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Overview: MI Procedure

Missing values are an issue in a substantial number of statistical analyses. Most SAS statistical procedures
exclude observations with any missing variable values from the analysis. These observations are called
incomplete cases. While using only complete cases is simple, you lose information that is in the incomplete
cases. Excluding observations with missing values also ignores the possible systematic difference between
the complete cases and incomplete cases, and the resulting inference might not be applicable to the population
of all cases, especially with a smaller number of complete cases.

Some SAS procedures use all the available cases in an analysis—that is, cases with useful information. For
example, the CORR procedure estimates a variable mean by using all cases with nonmissing values for this
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variable, ignoring the possible missing values in other variables. The CORR procedure also estimates a
correlation by using all cases with nonmissing values for this pair of variables. This estimation might make
better use of the available data, but the resulting correlation matrix might not be positive de�nite.

Another strategy is single imputation, in which you substitute a value for each missing value. Standard
statistical procedures for complete data analysis can then be used with the �lled-in data set. For example,
each missing value can be imputed from the variable mean of the complete cases. This approach treats
missing values as if they were known in the complete-data analyses. Single imputation does not re�ect the
uncertainty about the predictions of the unknown missing values, and the resulting estimated variances of the
parameter estimates are biased toward zero (Rubin 1987, p. 13).

Instead of �lling in a single value for each missing value, multiple imputation replaces each missing value
with a set of plausible values that represent the uncertainty about the right value to impute (Rubin 1976, 1987).
The multiply imputed data sets are then analyzed by using standard procedures for complete data and
combining the results from these analyses. No matter which complete-data analysis is used, the process of
combining results from different data sets is essentially the same.

Multiple imputation does not attempt to estimate each missing value through simulated values, but rather
to represent a random sample of the missing values. This process results in valid statistical inferences that
properly re�ect the uncertainty due to missing values; for example, valid con�dence intervals for parameters.

Multiple imputation inference involves three distinct phases:

1. The missing data are �lled inm times to generatem complete data sets.

2. Themcomplete data sets are analyzed by using standard procedures.

3. The results from them complete data sets are combined for the inference.

The MI procedure is a multiple imputation procedure that creates multiply imputed data sets for incomplete
p-dimensional multivariate data. It uses methods that incorporate appropriate variability across them
imputations. The imputation method of choice depends on the patterns of missingness in the data and the
type of the imputed variable.

A data set with variablesY1, Y2, . . . ,Yp (in that order) is said to have amonotone missing patternwhen the
event that a variableYj is missing for a particular individual implies that all subsequent variablesYk , k > j ,
are missing for that individual.

For data sets with monotone missing patterns, the variables with missing values can be imputed sequentially
with covariates constructed from their corresponding sets of preceding variables. To impute missing values
for a continuous variable, you can use a regression method (Rubin 1987, pp. 166–167), a predictive mean
matching method (Heitjan and Little 1991; Schenker and Taylor 1996), or a propensity score method (Rubin
1987, pp. 124, 158; Lavori, Dawson, and Shera 1995). To impute missing values for a classi�cation variable,
you can use a logistic regression method when the classi�cation variable has a binary, nominal, or ordinal
response, or you can use a discriminant function method when the classi�cation variable has a binary or
nominal response.

For data sets with arbitrary missing patterns, you can use either of the following methods to impute missing
values: a Markov chain Monte Carlo (MCMC) method (Schafer 1997) that assumes multivariate normality,
or a fully conditional speci�cation (FCS) method (Brand 1999; Van Buuren 2007) that assumes the existence
of a joint distribution for all variables.
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You can use the MCMC method to impute either all the missing values or just enough missing values to
make the imputed data sets have monotone missing patterns. With a monotone missing data pattern, you
have greater �exibility in your choice of imputation models, such as the monotone regression method that do
not use Markov chains. You can also specify a different set of covariates for each imputed variable.

An FCS method does not start with an explicitly speci�ed multivariate distribution for all variables, but rather
uses a separate conditional distribution for each imputed variable. For each imputation, the process contains
two phases: the preliminary �lled-in phase followed by the imputation phase. At the �lled-in phase, the
missing values for all variables are �lled in sequentially over the variables taken one at a time. These �lled-in
values provide starting values for these missing values at the imputation phase. At the imputation phase,
the missing values for each variable are imputed sequentially for a number of burn-in iterations before the
imputation.

As in methods for data sets with monotone missing patterns, you can use a regression method or a predictive
mean matching method to impute missing values for a continuous variable, a logistic regression method
to impute missing values for a classi�cation variable with a binary or ordinal response, and a discriminant
function method to impute missing values for a classi�cation variable with a binary or nominal response.

After them complete data sets are analyzed using standard SAS procedures, you can use the MIANALYZE
procedure to generate valid statistical inferences about these parameters by combining results from them
analyses.

The number of imputations,m, must be speci�ed in advance. The relative ef�ciency of an estimator based
on a small number of imputations is high for cases with modest missing information (Rubin 1987, p. 114),
and often a value ofm as low as three or �ve is adequate (Rubin 1996, p. 480). For more information about
relative ef�ciency, see the section “Multiple Imputation Ef�ciency” on page 6008.

Although a small number of imputations can suf�ce for high relative ef�ciency, they might not be adequate
for other aspects of inference, such as con�dence intervals andp-values. Recent studies examine these
aspects and recommend much larger values ofm than the traditionally advised values of three to �ve (Allison
2012; Van Buuren 2012, pp. 49–50). For more information, see the section “Number of Imputations” on
page 6009.

Multiple imputation inference assumes that the model (variables) you used to analyze the multiply imputed
data (the analyst's model) is the same as the model used to impute missing values in multiple imputation (the
imputer's model). But in practice, the two models might not be the same. The consequences for different
scenarios (Schafer 1997, pp. 139–143) are discussed in the section “Imputer's Model Versus Analyst's Model”
on page 6010.

Multiple imputation usually assumes that the data are missing at random (MAR). That is, for a variableY,
the probability that an observation is missing depends only on the observed values of other variables, not
on the unobserved values ofY. The MAR assumption cannot be veri�ed, because the missing values are
not observed. For a study that assumes MAR, the sensitivity of inferences to departures from the MAR
assumption should be examined.

The pattern-mixture model approach to sensitivity analysis models the distribution of a response as the
mixture of a distribution of the observed responses and a distribution of the missing responses. Missing values
can then be imputed under a plausible scenario for which the missing data are missing not at random (MNAR).
If this scenario leads to a conclusion that is different from inference under MAR, then the conclusion under
MAR is not robust to MNAR.
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Getting Started: MI Procedure

TheFitness data described in the REG procedure are measurements of 31 individuals in a physical �tness
course. See Chapter 99, “The REG Procedure,” for more information.

TheFitness1 data set is constructed from theFitness data set and contains three variables:Oxygen, RunTime,
andRunPulse. Some values have been set to missing, and the resulting data set has an arbitrary pattern of
missingness in these three variables.

* ---------------------Data on Physical Fitness------------------------- *
| These measurements were made on men involved in a physical fitness |
| course at N.C. State University. Certain values have been set to |
| missing and the resulting data set has an arbitrary missing pattern. |
| Only selected variables of |
| Oxygen (intake rate, ml per kg body weight per minute), |
| Runtime (time to run 1.5 miles in minutes), |
| RunPulse (heart rate while running) are used. |
* ---------------------------------------------------------------------- * ;
data Fitness1;

input Oxygen RunTime RunPulse @@;
datalines;

44.609 11.37 178 45.313 10.07 185
54.297 8.65 156 59.571 . .
49.874 9.22 . 44.811 11.63 176

. 11.95 176 . 10.85 .
39.442 13.08 174 60.055 8.63 170
50.541 . . 37.388 14.03 186
44.754 11.12 176 47.273 . .
51.855 10.33 166 49.156 8.95 180
40.836 10.95 168 46.672 10.00 .
46.774 10.25 . 50.388 10.08 168
39.407 12.63 174 46.080 11.17 156
45.441 9.63 164 . 8.92 .
45.118 11.08 . 39.203 12.88 168
45.790 10.47 186 50.545 9.93 148
48.673 9.40 186 47.920 11.50 170
47.467 10.50 170
;

Suppose that the data are multivariate normally distributed and the missing data are missing at random (MAR).
That is, the probability that an observation is missing can depend on the observed variable values of the
individual, but not on the missing variable values of the individual. See the section “Statistical Assumptions
for Multiple Imputation” on page 5980 for a detailed description of the MAR assumption.

The following statements invoke the MI procedure and impute missing values for theFitness1 data set:

proc mi data=Fitness1 seed=501213 mu0=50 10 180 out=outmi;
mcmc;
var Oxygen RunTime RunPulse;

run;
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The “Model Information” table in Figure 76.1 describes the method used in the multiple imputation process.
By default, the MCMC statement uses the Markov chain Monte Carlo (MCMC) method with a single chain to
create 25 imputations. The posterior mode, the highest observed-data posterior density, with a noninformative
prior, is computed from the expectation-maximization (EM) algorithm and is used as the starting value for
the chain.

Figure 76.1 Model Information

The MI procedure takes 200 burn-in iterations before the �rst imputation and 100 iterations between
imputations. In a Markov chain, the information in the current iteration in�uences the state of the next
iteration. The burn-in iterations are iterations in the beginning of each chain that are used both to eliminate
the series of dependence on the starting value of the chain and to achieve the stationary distribution. The
between-imputation iterations in a single chain are used to eliminate the series of dependence between the
two imputations.

The “Missing Data Patterns” table in Figure 76.2 lists distinct missing data patterns with their corresponding
frequencies and percentages. An “X” means that the variable is observed in the corresponding group, and a “.”
means that the variable is missing. The table also displays group-speci�c variable means. The MI procedure
sorts the data into groups based on whether the analysis variables are observed or missing. For a detailed
description of missing data patterns, see the section “Missing Data Patterns” on page 5980.

Figure 76.2 Missing Data Patterns

After the completion ofm imputations, the “Variance Information” table in Figure 76.3 displays the between-
imputation variance, within-imputation variance, and total variance for combining complete-data inferences.
It also displays the degrees of freedom for the total variance. The relative increase in variance due to missing
values, the fraction of missing information, and the relative ef�ciency (in units of variance) for each variable
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are also displayed. A detailed description of these statistics is provided in the section “Combining Inferences
from Multiply Imputed Data Sets” on page 6007.

Figure 76.3 Variance Information

The “Parameter Estimates” table in Figure 76.4 displays the estimated mean and standard error of the mean
for each variable. The inferences are based on thet distribution. The table also displays a 95% con�dence
interval for the mean and at statistic with the associatedp-value for the hypothesis that the population mean
is equal to the value speci�ed with the MU0= option. A detailed description of these statistics is provided in
the section “Combining Inferences from Multiply Imputed Data Sets” on page 6007.

Figure 76.4 Parameter Estimates

In addition to the output tables, the procedure also creates a data set with imputed values. The imputed data
sets are stored in theOutmi data set, with the index variable_Imputation_ indicating the imputation numbers.
The data set can now be analyzed using standard statistical procedures with_Imputation_ as a BY variable.

The following statements list the �rst 10 observations of data setOutmi:

proc print data=outmi (obs=10);
title �First 10 Observations of the Imputed Data Set�;

run;

The table in Figure 76.5 shows that the precision of the imputed values differs from the precision of the
observed values. You can use the ROUND= option to make the imputed values consistent with the observed
values.
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Figure 76.5 Imputed Data Set

Syntax: MI Procedure

The following statements are available in the MI procedure:

PROC MI < options > ;
BY variables ;
CLASS variables ;
EM < options > ;
FCS < options > ;
FREQ variable ;
MCMC < options > ;
MNAR options ;
MONOTONE < options > ;
TRANSFORM transform (variables< / options >) < . . . transform (variables< / options >) > ;
VAR variables ;

The BY statement speci�es groups in which separate multiple imputation analyses are performed.

The CLASS statement lists the classi�cation variables in the VAR statement. If the MNAR statement is spec-
i�ed, the CLASS statement also includes the identi�cation variables in the MNAR statement. Classi�cation
variables can be either character or numeric.

The EM statement uses the EM algorithm to compute the maximum likelihood estimate (MLE) of the data
with missing values, assuming a multivariate normal distribution for the data.

The FREQ statement speci�es the variable that represents the frequency of occurrence for other values in the
observation.

For a data set with a monotone missing pattern, you can use the MONOTONE statement to specify applicable
monotone imputation methods; otherwise, you can use either the MCMC statement assuming multivariate
normality or the FCS method assuming a joint distribution for variables exists. Note that you can specify no
more than one of these statements. When none of these three statements is speci�ed, the MCMC method
with its default options is used.
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The FCS statement uses a multivariate imputation by chained equations method to impute values for a data
set with an arbitrary missing pattern, assuming a joint distribution exists for the data.

The MCMC statement uses a Markov chain Monte Carlo method to impute values for a data set with an
arbitrary missing pattern, assuming a multivariate normal distribution for the data.

The MNAR statement imputes missing values, assuming that the missing data are missing not at random
(MNAR). The MNAR statement is applicable only if you also specify either an FCS or MONOTONE
statement.

The MONOTONE statement speci�es monotone methods to impute continuous and classi�cation variables
for a data set with a monotone missing pattern.

The TRANSFORM statement speci�es the variables to be transformed before the imputation process; the
imputed values of these transformed variables are reverse-transformed to the original forms before the
imputation.

The VAR statement lists the numeric variables to be analyzed. If you omit the VAR statement, all numeric
variables not listed in other statements are used.

The PROC MI statement is the only required statement for the MI procedure. The rest of this section provides
detailed syntax information for each of these statements, beginning with the PROC MI statement. The
remaining statements are presented in alphabetical order.

PROC MI Statement

PROC MI < options > ;

The PROC MI statement invokes the MI procedure. Table 76.1 summarizes the options available in the PROC
MI statement.

Table 76.1 Summary of PROC MI Options

Option Description

Data Sets
DATA= Speci�es the input data set
OUT= Speci�es the output data set with imputed values

Imputation Details
NIMPUTE= Speci�es the number of imputations
SEED= Speci�es the seed to begin random number generator
ROUND= Speci�es units to round imputed variable values
MAXIMUM= Speci�es maximum values for imputed variable values
MINIMUM= Speci�es minimum values for imputed variable values
MINMAXITER= Speci�es the maximum number of iterations to impute values in the speci�ed range
SINGULAR= Speci�es the singularity criterion

Statistical Analysis
ALPHA= Speci�es the level for the con�dence interval,.1 � �/
MU0= Speci�es means under the null hypothesis
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Table 76.1 continued

Option Description

Printed Output
NOPRINT Suppresses all displayed output
SIMPLE Displays univariate statistics and correlations

The following options can be used in the PROC MI statement. They are listed in alphabetical order.

ALPHA= �
speci�es that con�dence limits be constructed for the mean estimates with con�dence level100.1� �/ %,
where0 < � < 1 . The default is ALPHA=0.05.

DATA=SAS-data-set
names the SAS data set to be analyzed by PROC MI. By default, the procedure uses the most recently
created SAS data set.

MAXIMUM=numbers
speci�es maximum values for imputed variables. When an intended imputed value is greater than
the maximum, PROC MI redraws another value for imputation. If only one number is speci�ed, that
number is used for all variables. If more than one number is speci�ed, you must use a VAR statement,
and the speci�ed numbers must correspond to variables in the VAR statement. The default number is a
missing value, which indicates no restriction on the maximum for the corresponding variable

The MAXIMUM= option is related to the MINIMUM= and ROUND= options, which are used to
make the imputed values more consistent with the observed variable values. These options apply only
if you use the MCMC method, the monotone regression method, or the FCS regression method. For
more information about these methods, see the section “Imputation Methods” on page 5982.

When you specify a maximum for the �rst variable only, you must also specify a missing value after
the maximum. Otherwise, the maximum is used for all variables. For example, “MAXIMUM= 100 .”
sets a maximum of 100 only for the �rst analysis variable and no maximum for the remaining variables.
“MAXIMUM= . 100” sets a maximum of 100 only for the second analysis variable and no maximum
for the other variables.

MINIMUM=numbers
speci�es the minimum values for imputed variables. When an intended imputed value is less than
the minimum, PROC MI redraws another value for imputation. If only one number is speci�ed, that
number is used for all variables. If more than one number is speci�ed, you must use a VAR statement,
and the speci�ed numbers must correspond to variables in the VAR statement. The default number is a
missing value, which indicates no restriction on the minimum for the corresponding variable

MINMAXITER=number
speci�es the maximum number of iterations for imputed values to be in the speci�ed range when the
option MINIMUM or MAXIMUM is also speci�ed. The default is MINMAXITER=100.
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MU0=numbers

THETA0=numbers
speci�es the parameter values� 0 under the null hypothesis� D � 0 for the population means
corresponding to the analysis variables. Each hypothesis is tested with at test. If only one number is
speci�ed, that number is used for all variables. If more than one number is speci�ed, you must use a
VAR statement, and the speci�ed numbers must correspond to variables in the VAR statement. The
default is MU0=0.

If a variable is transformed as speci�ed in a TRANSFORM statement, then the same transformation
for that variable is also applied to its corresponding speci�ed MU0= value in thet test. If the parameter
values� 0 for a transformed variable are not speci�ed, then a value of zero is used for the resulting� 0

after transformation.

NIMPUTE=n | PCTMISSING < ( range-options ) >
speci�es the number of imputations. NIMPUTE=n speci�es the number explicitly, and NIM-
PUTE=PCTMISSING uses the percentage of incomplete cases as the number of imputations. By
default, NIMPUTE=25.

When you specify NIMPUTE=PCTMISSING, the number of imputations is the resulting percentage
rounded up to an integer. You can use the followingrange-options to set the range for the number of
imputations:

MIN=min
speci�es the minimum number of imputations, 2� min � 100. If the resulting number of
imputations is less thanmin, thenmin is used. By default, MIN=5.

MAX=max
speci�es the maximum number of imputations, 2� max � 100. If the resulting number of
imputations is greater thanmax , thenmax is used. By default, MAX=50.

The classic advice of using only a small number of imputations is based on considerations of relative
ef�ciency. Recent studies, based on other aspects such as con�dence intervals andp-values, recommend
a much larger number of imputations. Thus, the default number of imputations has been increased
from 5 to 25 in SAS/STAT 14.1. For more information, see the section “Number of Imputations” on
page 6009.

You can specify NIMPUTE=0 to skip the imputation. In this case, only tables of model information,
missing data patterns, descriptive statistics (SIMPLE option), and the MLE from the EM algorithm
(EM statement) are displayed.

NOPRINT
suppresses the display of all output. Note that this option temporarily disables the Output Delivery
System (ODS); see Chapter 20, “Using the Output Delivery System,” for more information.

OUT=SAS-data-set
creates an output SAS data set that contains imputation results. The data set includes an index variable,
_Imputation_, to identify the imputation number. For each imputation, the data set contains all variables
in the input data set with missing values being replaced by the imputed values. See the section “Output
Data Sets” on page 6005 for a description of this data set.
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ROUND=numbers
speci�es the units to round variables in the imputation. If only one number is speci�ed, that number is
used for all continuous variables. If more than one number is speci�ed, you must use a VAR statement,
and the speci�ed numbers must correspond to variables in the VAR statement. When the classi�cation
variables are listed in the VAR statement, their corresponding roundoff units are not used. The default
number is a missing value, which indicates no rounding for imputed variables.

When specifying a roundoff unit for the �rst variable only, you must also specify a missing value
after the roundoff unit. Otherwise, the roundoff unit is used for all variables. For example, the option
“ROUND= 10 .” sets a roundoff unit of 10 for the �rst analysis variable only and no rounding for the
remaining variables. The option “ROUND= . 10” sets a roundoff unit of 10 for the second analysis
variable only and no rounding for other variables.

The ROUND= option sets the precision of imputed values. For example, with a roundoff unit of 0.001,
each value is rounded to the nearest multiple of 0.001. That is, each value has three signi�cant digits
after the decimal point. See Example 76.3 for an illustration of this option.

SEED=number
speci�es a positive integer to start the pseudo-random number generator. The default is a value
generated from reading the time of day from the computer's clock. However, in order to duplicate the
results under identical situations, you must use the same value of the seed explicitly in subsequent runs
of the MI procedure.

The seed information is displayed in the “Model Information” table so that the results can be reproduced
by specifying this seed with the SEED= option. You need to specify the same seed number in the
future to reproduce the results.

SIMPLE
displays simple descriptive univariate statistics and pairwise correlations from available cases. For a
detailed description of these statistics, see the section “Descriptive Statistics” on page 5977.

SINGULAR=p
speci�es the criterion for determining the singularity of a covariance matrix based on standardized
variables, where0 < p < 1 . The default is SINGULAR=1E–8.

Suppose thatS is a covariance matrix andv is the number of variables inS. Based on the spectral
decompositionS D €ƒ€ 0, whereƒ is a diagonal matrix of eigenvalues� j , j D 1; : : :, v, where
� i � � j when i < j , and€ is a matrix with the corresponding orthonormal eigenvectors ofS
as columns,S is considered singular when an eigenvalue� j is less thanp N� , where the average
N� D

P v
k D 1 � k =v.

BY Statement

BY variables ;

You can specify a BY statement with PROC MI to obtain separate analyses of observations in groups that are
de�ned by the BY variables. When a BY statement appears, the procedure expects the input data set to be
sorted in order of the BY variables. If you specify more than one BY statement, only the last one speci�ed is
used.
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If your input data set is not sorted in ascending order, use one of the following alternatives:

� Sort the data by using the SORT procedure with a similar BY statement.

� Specify the NOTSORTED or DESCENDING option in the BY statement for the MI procedure. The
NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

� Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion inSAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in theBase SAS Procedures Guide.

CLASS Statement

CLASS variables ;

The CLASS statement speci�es the classi�cation variables in the VAR statement. Classi�cation variables can
be either character or numeric. The CLASS statement must be used in conjunction with either an FCS or
MONOTONE statement.

Classi�cation levels are determined from the formatted values of the classi�cation variables. See “The
FORMAT Procedure” in theBase SAS Procedures Guidefor details.

EM Statement

EM < options > ;

The expectation-maximization (EM) algorithm is a technique for maximum likelihood estimation in paramet-
ric models for incomplete data. The EM statement uses the EM algorithm to compute the MLE for. � ; † / ,
the means and covariance matrix, of a multivariate normal distribution from the input data set with missing
values. Either the means and covariances from complete cases or the means and standard deviations from
available cases can be used as the initial estimates for the EM algorithm. You can also specify the correlations
for the estimates from available cases.

You can also use the EM statement with the NIMPUTE=0 option in the PROC MI statement to compute the
EM estimates without multiple imputation, as shown in Example 76.1.

The following seven options are available with the EM statement (in alphabetical order):

CONVERGE=p

XCONV=p
sets the convergence criterion. The value must be between 0 and 1. The iterations are considered to
have converged when the change in the parameter estimates between iteration steps is less thanp for
each parameter—that is, for each of the means and covariances. For each parameter, the change is
a relative change if the parameter is greater than 0.01 in absolute value; otherwise, it is an absolute
change. By default, CONVERGE=1E–4.
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INITIAL=CC | AC | AC(R= r)
sets the initial estimates for the EM algorithm. The INITIAL=CC option uses the means and covariances
from complete cases; the INITIAL=AC option uses the means and standard deviations from available
cases, and the correlations are set to zero; and the INITIAL=AC( R=r ) option uses the means and
standard deviations from available cases with correlationr, where� 1=.p � 1/ < r < 1 andp is the
number of variables to be analyzed. The default is INITIAL=AC.

ITPRINT
prints the iteration history in the EM algorithm.

MAXITER=number
speci�es the maximum number of iterations used in the EM algorithm. The default is MAXITER=200.

OUT=SAS-data-set
creates an output SAS data set that contains results from the EM algorithm. The data set contains all
variables in the input data set, with missing values being replaced by the expected values from the EM
algorithm. See the section “Output Data Sets” on page 6005 for a description of this data set.

OUTEM=SAS-data-set
creates an output SAS data set of TYPE=COV that contains the MLE of the parameter vector. � ; † / .
These estimates are computed with the EM algorithm. See the section “Output Data Sets” on page 6005
for a description of this output data set.

OUTITER < ( options ) > =SAS-data-set
creates an output SAS data set of TYPE=COV that contains parameters for each iteration. The data set
includes a variable named_Iteration_ to identify the iteration number. The parameters in the output
data set depend on the options speci�ed. You can specify the MEAN and COV options to output the
mean and covariance parameters. When no options are speci�ed, the output data set contains the mean
parameters for each iteration. See the section “Output Data Sets” on page 6005 for a description of this
data set.

FCS Statement

FCS < options > ;

The FCS statement speci�es a multivariate imputation by fully conditional speci�cation methods. If you
specify an FCS statement, you must also specify a VAR statement.

Table 76.2 summarizes the options available for the FCS statement.

Table 76.2 Summary of Options in FCS

Option Description

Imputation Details
NBITER= Speci�es the number of burn-in iterations

Data Set
OUTITER= Outputs parameter estimates used in iterations
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Table 76.2 continued

Option Description

ODS Graphics Output
PLOTS=TRACE Displays trace plots

Imputation Methods
DISCRIM Speci�es the discriminant function method
LOGISTIC Speci�es the logistic regression method
REG Speci�es the regression method
REGPMM Speci�es the predictive mean matching method

The following options are available for the FCS statement in addition to the imputation methods speci�ed (in
alphabetical order):

NBITER=number
speci�es the number of burn-in iterations before each imputation. The default is NBITER=20.

OUTITER < ( options ) > =SAS-data-set
creates an output SAS data set of TYPE=COV that contains parameters used in the imputation step
for each iteration. The data set includes variables named_Imputation_ and_Iteration_ to identify the
imputation number and iteration number.

The parameters in the output data set depend on the options speci�ed. You can specify the options
MEAN and STD to output parameters of means and standard deviations, respectively. When no options
are speci�ed, the output data set contains the mean parameters used in the imputation step for each
iteration. See the section “Output Data Sets” on page 6005 for a description of this data set.

PLOTS < ( LOG ) > < = TRACE < ( trace-options ) > >
requests statistical graphics of trace plots from iterations via the Output Delivery System (ODS).

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;
proc mi data=Fitness1 seed=501213 mu0=50 10 180;

mcmc plots=(trace(mean(Oxygen)) acf(mean(Oxygen)));
var Oxygen RunTime RunPulse;

run;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 607 in Chapter 21, “Statistical Graphics Using ODS.”

The global plot option LOG requests that the logarithmic transformations of parameters be used. The
default is PLOTS=TRACE(MEAN).

The availabletrace-options are as follows:

MEAN < ( variables ) >
displays plots of means for continuous variables in the list. When the MEAN option is speci�ed
without variables, all continuous variables are used.
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STD < ( variables ) >
displays plots of standard deviations for continuous variables in the list. When the STD option is
speci�ed without variables, all continuous variables are used.

The discriminant function, logistic regression, regression, and predictive mean matching methods are available
in the FCS statement. You specify each method with the syntax

method < (< imputed < = effects > > < / options >) >

That is, for each method, you can specify the imputed variables and, optionally, a set of effects to impute
these variables. Each effect is a variable or a combination of variables in the VAR statement. The syntax for
the speci�cation of effects is the same as for the GLM procedure. See Chapter 47, “The GLM Procedure,”
for more information.

One general form of an effect involving several variables is

X1 * X2 * A * B * C ( D E )

whereA, B, C, D, andE are classi�cation variables andX1 andX2 are continuous variables.

When an FCS statement is used without specifying any methods, the regression method is used for all imputed
continuous variables and the discriminant function method is used for all imputed classi�cation variables.
In this case, for each imputed continuous variable, all other variables in the VAR statement are used as the
covariates, and for each imputed classi�cation variable, all other continuous variables in the VAR statement
are used as the covariates.

When a method for continuous variables is speci�ed without imputed variables, the method is used for all
continuous variables in the VAR statement that are not speci�ed in other methods. Similarly, when a method
for classi�cation variables is speci�ed without imputed variables, the method is used for all classi�cation
variables in the VAR statement that are not speci�ed in other methods.

For each imputed variable that does not use the discriminant function method, if no covariates are speci�ed,
then all other variables in the VAR statement are used as the covariates. That is, each continuous variable is
used as a regressor effect, and each classi�cation variable is used as a main effect. For an imputed variable
that uses the discriminant function method, if no covariates are speci�ed, then all other variables in the VAR
statement are used as the covariates with the CLASSEFFECTS=INCLUDE option, and all other continuous
variables in the VAR statement are used as the covariates with the CLASSEFFECTS=EXCLUDE option
(which is the default).

With an FCS statement, the variables are imputed sequentially in the order speci�ed in the VAR statement.
For a continuous variable, you can use a regression method or a regression predicted mean matching method
to impute missing values. For a nominal classi�cation variable, you can use either a discriminant function
method or a logistic regression method (generalized logit model) to impute missing values without using the
ordering of the class levels. For an ordinal classi�cation variable, you can use a logistic regression method
(cumulative logit model) to impute missing values by using the ordering of the class levels. For a binary
classi�cation variable, either a discriminant function method or a logistic regression method can be used. By
default, a regression method is used for a continuous variable, and a discriminant function method is used for
a classi�cation variable.

Note that except for the regression method, all other methods impute values from the observed values. See the
section “FCS Methods for Data Sets with Arbitrary Missing Patterns” on page 5992 for a detailed description
of the FCS methods.

You can specify the following imputation methods in an FCS statement (in alphabetical order):
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DISCRIM < ( imputed < = effects > < / options > ) >
speci�es the discriminant function method of classi�cation variables. The available options are as
follows:

CLASSEFFECTS=EXCLUDE | INCLUDE
speci�es whether the CLASS variables are used as covariate effects. The CLASSEF-
FECTS=EXCLUDE option excludes the CLASS variables from covariate effects and the CLASS-
EFFECTS=INCLUDE option includes the CLASS variables as covariate effects. The default is
CLASSEFFECTS=EXCLUDE.

DETAILS
displays the group means and pooled covariance matrix used in each imputation.

PCOV=FIXED | POSTERIOR
speci�es the pooled covariance used in the discriminant method. The PCOV=FIXED option uses
the observed-data pooled covariance matrix for each imputation and the PCOV=POSTERIOR
option draws a pooled covariance matrix from its posterior distribution. The default is
PCOV=POSTERIOR.

PRIOR=EQUAL | JEFFREYS < = c > | PROPORTIONAL | RIDGE < = d >
speci�es the prior probabilities of group membership. The PRIOR=EQUAL option sets the prior
probabilities equal for all groups; the PRIOR=JEFFREYS < =c > option speci�es a noninforma-
tive prior, 0 <c < 1; the PRIOR=PROPORTIONAL option sets the prior probabilities proportion
to the group sample sizes; and the PRIOR=RIDGE < =d > option speci�es a ridge prior,d > 0.
If the noninformative priorc is not speci�ed,c=0.5 is used. If the ridge priord is not speci�ed,
d=0.25 is used. The default is PRIOR=JEFFREYS.

See the section “Monotone and FCS Discriminant Function Methods” on page 5986 for a detailed
description of the method.

LOGISTIC < ( imputed < = effects > < / options > ) >
speci�es the logistic regression method for classi�cation variables. The available options are as follows:

DESCENDING
reverses the sort order for the levels of the response variables.

DETAILS
displays the regression coef�cients in the logistic regression model used in each imputation.

LIKELIHOOD=NOAUGMENT

LIKELIHOOD=AUGMENT < ( WEIGHT= w | NPARM < (MULT=m) > ) >
speci�es whether to add new observations to the likelihood function in the computation of
maximum likelihood estimates. The LIKELIHOOD=AUGMENT option adds observations in
each response group to the likelihood function, and the LIKELIHOOD=NOAUGMENT option
makes no adjustment to the likelihood function. By default, LIKELIHOOD=NOAUGMENT.

The LIKELIHOOD=AUGMENT option is useful when the maximum likelihood parameter
estimates do not exist. When LIKELIHOOD=AUGMENT, each added observation contributes
the same weight, and the WEIGHT= option speci�es the total added weight:
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WEIGHT=w
explicitly speci�es the total added weightw .

WEIGHT=NPARM < (MULT=m) >
uses the number of parameters in the logistic regression model as the total added weight.
For example, for a simple binary logistic regression model that consists only ofp continuous
effects, the added weight isp+1. The MULT=m option speci�es the multiplier for the total
added weight, 0 <m � 1, and the resulting total added weight ism times the number of
parameters in the model. By default, MULT=1.

BY default, WEIGHT=NPARM. You can specify either the MULT=m suboption in
WEIGHT=NPARM or the WEIGHT=w option to use a different total added weight in
the computation of maximum likelihood estimates. For example, if the ratio between the number
of parameters and the number of available observations (before augmentation) is large, you
can use either MULT=m or WEIGHT=w to reduce the weight for the added observations (that
is, reduce the effect from the added observations in the computation of maximum likelihood
estimates). For more information about the augmented data approach, see the section “Logistic
Regression with Augmented Data” on page 5991.

LINK=GLOGIT | LOGIT
speci�es the link function that links the response probabilities to the linear predictors. The
LINK=LOGIT option (which is the default) uses the log odds function to �t the binary logit
model when there are two response categories and to �t the cumulative logit model when there
are more than two response categories. The LINK=GLOGIT option uses the generalized logit
function to �t the generalized logit model, in which each nonreference category is contrasted
with the last category.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
speci�es the sort order for the levels of the response variable. The ORDER=DATA sorts by
the order of appearance in the input data set; the ORDER=FORMATTED sorts by their exter-
nal formatted values; the ORDER=FREQ sorts by the descending frequency counts; and the
ORDER=INTERNAL sorts by the unformatted values. The default is ORDER=FORMATTED.

See the section “Monotone and FCS Logistic Regression Methods” on page 5988 for a detailed
description of the method.

REG | REGRESSION < ( imputed < = effects > < / DETAILS > ) >
speci�es the regression method of continuous variables. The DETAILS option displays the regression
coef�cients in the regression model used in each imputation.

With a regression method, the MAXIMUM=, MINIMUM=, and ROUND= options can be used to
make the imputed values more consistent with the observed variable values.

See the section “Monotone and FCS Regression Methods” on page 5984 for a detailed description of
the method.

REGPMM < ( imputed < = effects > < / options > ) >

REGPREDMEANMATCH < ( imputed < = effects > < / options > ) >
speci�es the predictive mean matching method for continuous variables. This method is similar to
the regression method except that it imputes a value randomly from a set of observed values whose
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predicted values are closest to the predicted value for the missing value from the simulated regression
model (Heitjan and Little 1991; Schenker and Taylor 1996).

The available options are DETAILS and K=. The DETAILS option displays the regression coef�cients
in the regression model used in each imputation. The K= option speci�es the number of closest
observations to be used in the selection. The default is K=5.

See the section “Monotone and FCS Predictive Mean Matching Methods” on page 5985 for a detailed
description of the method.

With an FCS statement, the missing values of variables in the VAR statement are imputed. After the initial
�lled in, these variables with missing values are imputed sequentially in the order speci�ed in the VAR
statement in each iteration. For example, the following MI procedure statements use the regression method
to impute variabley1 from effecty2, the regression method to impute variabley3 from effectsy1 andy2, the
logistic regression method to impute variablec1 from effectsy1, y2, andy1 � y2, and the default regression
method for continuous variables to impute variabley2 from effectsy1, y3, andc1:

proc mi;
class c1;
fcs reg(y1= y2);
fcs reg(y3= y1 y2);
fcs logistic(c1= y1 y2 y1 * y2);
var y1 y2 y3 c1;

run;

FREQ Statement

FREQ variable ;

To run a procedure on an input data set that contains observations that occur multiple times, you can use a
variable in the data set to represent how frequently observations occur and specify a FREQ statement with
the name of that variable as its argument (variable) when you run the procedure.

When you specify a FREQ statement in other SAS procedures, they treat the data set as if each observation
appearedn times, wheren is the value ofvariable in the observation. However, PROC MI treats the data
set differently because as PROC MI imputes each missing value in each observation, it generates only one
imputed value for that missing value. That is, when you specify a FREQvariable, each imputed observation
(with its imputed value in place of the missing value) is treated as if it appearedn times. In contrast, if an
observation actually occursn times in the data set, the missing value at each occurrence is imputed separately,
and the resultingn observations are not identical.

PROC MI uses only the integer portion of each value ofvariable; if any value is less than 1, PROC MI does
not use the corresponding observation in the analysis. When PROC MI calculates signi�cance probabilities,
it considers the total number of observations to be equal to the sum of the values ofvariable.
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MCMC Statement

MCMC < options > ;

The MCMC statement speci�es the details of the MCMC method for imputation.

Table 76.3 summarizes the options available for the MCMC statement.

Table 76.3 Summary of Options in MCMC

Option Description

Data Sets
INEST= Inputs parameter estimates for imputations
OUTEST= Outputs parameter estimates used in imputations
OUTITER= Outputs parameter estimates used in iterations

Imputation Details
IMPUTE= Speci�es monotone or full imputation
CHAIN= Speci�es single or multiple chain
NBITER= Speci�es the number of burn-in iterations for each chain
NITER= Speci�es the number of iterations between imputations in a chain
INITIAL= Speci�es initial parameter estimates for MCMC
PRIOR= Speci�es the prior parameter information
START= Speci�es starting parameters

ODS Graphics Output
PLOTS=TRACE Displays trace plots
PLOTS=ACF Displays autocorrelation plots

Printed Output
WLF Displays the worst linear function
DISPLAYINIT Displays initial parameter values for MCMC

The following options are available for the MCMC statement (in alphabetical order).

CHAIN=SINGLE | MULTIPLE
speci�es whether a single chain is used for all imputations or a separate chain is used for each
imputation. The default is CHAIN=SINGLE.

DISPLAYINIT
displays initial parameter values in the MCMC method for each imputation.

IMPUTE=FULL | MONOTONE
speci�es whether a full-data imputation is used for all missing values or a monotone-data imputation is
used for a subset of missing values to make the imputed data sets have a monotone missing pattern.
The default is IMPUTE=FULL. When IMPUTE=MONOTONE is speci�ed, the order in the VAR
statement is used to complete the monotone pattern.
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INEST=SAS-data-set
names a SAS data set of TYPE=EST that contains parameter estimates for imputations. These estimates
are used to impute values for observations in the DATA= data set. A detailed description of the data set
is provided in the section “Input Data Sets” on page 6004.

INITIAL=EM < (options) >

INITIAL=INPUT=SAS-data-set
speci�es the initial mean and covariance estimates for the MCMC method. The default is INI-
TIAL=EM.

You can specify INITIAL=INPUT=SAS-data-set to read the initial estimates of the mean and covari-
ance matrix for each imputation from a SAS data set. See the section “Input Data Sets” on page 6004
for a description of this data set.

With INITIAL=EM, PROC MI derives parameter estimates for a posterior mode, the highest observed-
data posterior density, from the EM algorithm. The MLE from the EM algorithm is used to start the
EM algorithm for the posterior mode, and the resulting EM estimates are used to begin the MCMC
method. The prior information speci�ed in the PRIOR= option is also used in the process to compute
the posterior mode.

The following four options are available with INITIAL=EM:

BOOTSTRAP < =number >
requests bootstrap resampling, which uses a simple random sample with replacement from the
input data set for the initial estimate. You can explicitly specify the number of observations in
the random sample. Alternatively, you can implicitly specify the number of observations in the
random sample by specifying the proportionp; 0 < p < D 1, to request [np] observations in the
random sample, wheren is the number of observations in the data set and [np] is the integer part
of np. This produces an overdispersed initial estimate that provides different starting values for
the MCMC method. If you specify the BOOTSTRAP option without the number,p = 0.75 is
used by default.

CONVERGE=p

XCONV=p
sets the convergence criterion. The value must be between 0 and 1. The iterations are considered
to have converged when the change in the parameter estimates between iteration steps is less than
p for each parameter—that is, for each of the means and covariances. For each parameter, the
change is a relative change if the parameter is greater than 0.01 in absolute value; otherwise, it is
an absolute change. By default, CONVERGE=1E–4.

ITPRINT
prints the iteration history in the EM algorithm for the posterior mode.

MAXITER=number
speci�es the maximum number of iterations used in the EM algorithm. The default is MAX-
ITER=200.

NBITER=number
speci�es the number of burn-in iterations before the �rst imputation in each chain. The default is
NBITER=200.
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NITER=number
speci�es the number of iterations between imputations in a single chain. The default is NITER=100.

OUTEST=SAS-data-set
creates an output SAS data set of TYPE=EST. The data set contains parameter estimates used in
each imputation. The data set also includes a variable named_Imputation_ to identify the imputation
number. See the section “Output Data Sets” on page 6005 for a description of this data set.

OUTITER < ( options ) > =SAS-data-set
creates an output SAS data set of TYPE=COV that contains parameters used in the imputation step
for each iteration. The data set includes variables named_Imputation_ and_Iteration_ to identify the
imputation number and iteration number.

The parameters in the output data set depend on the options speci�ed. You can specify the options
MEAN, STD, COV, LR, LR_POST, and WLF to output parameters of means, standard deviations,
covariances, –2 log LR statistic, –2 log LR statistic of the posterior mode, and the worst linear function,
respectively. When no options are speci�ed, the output data set contains the mean parameters used
in the imputation step for each iteration. See the section “Output Data Sets” on page 6005 for a
description of this data set.

PLOTS < ( LOG ) > < = plot-request >

PLOTS < ( LOG ) > < = ( plot-request < . . . plot-request > ) >
requests statistical graphics via the Output Delivery System (ODS). To request these graphs, ODS
Graphics must be enabled and you must specify options in the MCMC statement. For more information
about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.”

The global plot option LOG requests that the logarithmic transformations of parameters be used. The
plot request options include the following:

ACF < ( acf-options ) >
displays plots of the autocorrelation function of parameters from iterations. The default is ACF(
MEAN).

ALL
produces all appropriate plots.

NONE
suppresses all plots.

TRACE < ( trace-options ) >
displays trace plots of parameters from iterations. The default is TRACE( MEAN).

The availableacf-options are as follows:

NLAG=n
speci�es the maximum lag of the series. The default is NLAG=20. The autocorrelations at each
lag are displayed in the graph.

COV < ( < variables > < variable1*variable2 > . . . ) >
displays plots of variances for variables in the list and covariances for pairs of variables in the list.
When the option COV is speci�ed without variables, variances for all variables and covariances
for all pairs of variables are used.
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MEAN < ( variables ) >
displays plots of means for variables in the list. When the option MEAN is speci�ed without
variables, all variables are used.

WLF
displays the plot for the worst linear function.

The availabletrace-options are as follows:

COV < ( < variables > < variable1*variable2 > . . . ) >

displays plots of variances for variables in the list and covariances for pairs of variables in the list.
When the option COV is speci�ed without variables, variances for all variables and covariances
for all pairs of variables are used.

MEAN < ( variables ) >
displays plots of means for variables in the list. When the option MEAN is speci�ed without
variables, all variables are used.

WLF
displays the plot of the worst linear function.

PRIOR=name

PRIOR=JEFFREYS | RIDGE=number | INPUT=SAS-data-set
speci�es the prior information for the means and covariances. The PRIOR=JEFFREYS option speci�es
a noninformative prior, the RIDGE=number option speci�es a ridge prior, and the INPUT=SAS-data-
set option speci�es a data set that contains prior information.

For a detailed description of the prior information, see the section “Bayesian Estimation of the Mean
Vector and Covariance Matrix” on page 5997 and the section “Posterior Step” on page 5997. If you do
not specify the PRIOR= option, the default is PRIOR=JEFFREYS.

The PRIOR=INPUT= option speci�es a TYPE=COV data set from which the prior information of the
mean vector and the covariance matrix is read. See the section “Input Data Sets” on page 6004 for a
description of this data set.

START=VALUE | DIST
speci�es that the initial parameter estimates are used either as the starting value (START=VALUE)
or as the starting distribution (START=DIST) in the �rst imputation step of each chain. If the
IMPUTE=MONOTONE option is speci�ed, then START=VALUE is used in the procedure. The
default is START=VALUE.

WLF
displays the worst linear function of parameters. This scalar function of parameters� and† is “worst”
in the sense that its values from iterations converge most slowly among parameters. For a detailed
description of this statistic, see the section “Worst Linear Function of Parameters” on page 6003.
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MNAR Statement

MNAR options ;

The MNAR statement imputes missing values by using the pattern-mixture model approach, assuming the
missing data are missing not at random (MNAR), which is described in the section “Multiple Imputation
with Pattern-Mixture Models” on page 6012. By comparing inferential results for these values to results
for imputed values that are obtained under the missing at random (MAR) assumption, you can assess the
sensitivity of the conclusions to the MAR assumption. The inference under MAR is questionable if it leads
to results that are different from the results for a plausible MNAR scenario.

There are two main options in the MNAR statement, MODEL and ADJUST. You use the MODEL option to
specify a subset of observations from which imputation models are to be derived for speci�ed variables. You
use the ADJUST option to specify an imputed variable and adjustment parameters (such as shift and scale)
for adjusting the imputed variable values for a speci�ed subset of observations.

The MNAR statement is applicable only if it is used along with a MONOTONE statement or an FCS
statement. For a detailed explanation of the imputation process for the MNAR statement and how this process
is implemented differently using the MONOTONE and FCS statements, see the section “Multiple Imputation
with Pattern-Mixture Models” on page 6012.

MODEL( imputed-variables / model-options )
speci�es a set ofimputed-variables in the VAR statement and the subset of observations from which
the imputation models for these variables are to be derived. You can specify multiple MODEL options
in the MNAR statement, but only one MODEL option for each imputed variable.

When an imputed variable that is listed in the VAR statement is not speci�ed as animputed-variable in
the MODEL option, all available observations are used to construct the imputation for that variable.

The followingmodel-options provide various ways to specify the subset of observations:

MODELOBS=CCMV < ( K= k) >

MODELOBS=NCMV < ( K= k) >

MODELOBS=( obs-variable=character-list)
identi�es the subset of observations that are used to derive the imputation models.

When you use the MNAR statement along with an FCS statement, only the MODELOBS=(
obs-variable=character-list) model-option is applicable. When you use the MNAR statement
along with a MONOTONE statement, all threemodel-options are applicable.

MODELOBS=CCMV speci�es the complete-case missing values method (Little 1993; Molen-
berghs and Kenward 2007, p. 35). This method derives the imputation model from the group of
observations for which all the variables are observed.

MODELOBS=CCMV(K=k) uses thek groups of observations together with as many observed
variables as possible to derive the imputation models. For a data set that has a monotone missing
pattern andp variables, there are at mostp groups of observations for which the same number of
variables is observed. The default is K=1, which uses observations from the group for which all
the variables in the VAR statement are observed (this corresponds to MODELOBS=CCMV).

MODELOBS=NCMV speci�es the neighboring-case missing values method (Molenberghs and
Kenward 2007, pp. 35–36). For an imputed variableYj , this method uses the observations for
whichYj is observed andYj C 1 is missing.
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For an imputed variableYj , MODELOBS=NCMV( K=k) uses thek closest groups of observations
for which Yj is observed and for whichYj C k is missing. The default is K=1, which corresponds
to MODELOBS=NCMV.

MODELOBS=(obs-variable=character-list) identi�es the subset of observations from which the
imputation models are to be derived in terms of speci�ed levels of theobs-variable. You must
also specify theobs-variable in the CLASS statement. If you include theobs-variable in the VAR
statement, it must be completely observed.

For a detailed description of the options for specifying the observations for deriving the imputation
model. see the section “Specifying Sets of Observations for Imputation in Pattern-Mixture Models”
on page 6014.

ADJUST( imputed-variable / adjust-options )

ADJUST( imputed-variable (EVENT='level ') / adjust-options )
speci�es animputed-variable in the VAR statement and the subset of observations from which the
imputed values for the variable are to be adjusted. If theimputed-variable is a classi�cation variable,
you must specify the EVENT= option to identify the response category to which the adjustments are
applied. Theadjust-options specify the subset of observations and the adjustment parameters.

You can specify multiple ADJUST options. Each ADJUST option adjusts the imputed values of an
imputed-variable for the subset of observations that are speci�ed in the option. The ADJUST option
applies only to continuousimputed-variables whose values are imputed using the regression and
predictive mean matching methods, and to classi�cationimputed-variables whose values are imputed
using the logistic regression method.

You can use the followingadjust-option to specify the subset of observations to be adjusted:

ADJUSTOBS= ( obs-variable=character-list )
identi�es the subset of observations for which the imputed values ofimputed-variable are to be
adjusted in terms of speci�ed levels of theobs-variable. You must also specify theobs-variable
in the CLASS statement. If theobs-variable appears in the VAR statement, it must be completely
observed.

If you do not specify the ADJUSTOBS= option, all the imputed values ofimputed-variable are
adjusted.

You can use the followingadjust-options to explicitly specify adjustment parameters:

SCALE=c
speci�es a scale parameter for adjusting imputed values of a continuousimputed-variable. The
value ofc must be positive. By default,c= 1 (no scale adjustment is made). The SCALE= option
does not apply to adjusting imputed values of classi�cation variables.

SHIFT | DELTA= �
speci�es the shift parameter for imputed values ofimputed-variable. By default,� = 0 (no shift
adjustment is made).

SIGMA=�
speci�es the sigma parameter for imputed values ofimputed-variable, where� � 0. For a
speci�ed� > 0 , a simulated shift parameter is generated from the normal distribution, with mean
� and standard deviation� in each imputation. By default,� = 0, which means that the same
shift adjustment� is made for imputed values ofimputed-variable.
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You can use the followingadjust-option to adjust imputed values by using parameters that are stored in
a data set:

PARMS( parms-options )=SAS-data-set
names the SAS data set that contains the adjustment parameters at each imputation for imputed
values ofimputed-variable. You can specify the followingparms-options:

SHIFT | DELTA=variable
identi�es thevariable for the shift parameter.

SCALE=variable
identi�es thevariable for the scale parameter of a continuousimputed-variable.

When the PARMS= data set does not contain a variable named_IMPUTATION_, the same
adjustment parameters are used for each imputation. When the PARMS= data set contains
a variable named_IMPUTATION_, whose values are 1, 2, . . . ,n, wheren is the number of
imputations, the adjustment parameters are used for the corresponding imputations.

For a classi�cationimputed-variable whose values are imputed by using an ordinal logistic regression
method, you cannot specify the SHIFT= and SIGMA= parameters for more than one EVENT= level if
the imputed variable has more than two response levels. For a detailed description of imputed value
adjustments, see the section “Adjusting Imputed Values in Pattern-Mixture Models” on page 6015.

MONOTONE Statement

MONOTONE < method < (< imputed < = effects > > < / options >) > >
< . . . method < (< imputed < = effects > > < / options >) > > ;

The MONOTONE statement speci�es imputation methods for data sets with monotone missingness. You
must also specify a VAR statement, and the data set must have a monotone missing pattern with variables
ordered in the VAR list.

Table 76.4 summarizes the options available for the MONOTONE statement.

Table 76.4 Summary of Imputation Methods in MONOTONE
Statement

Option Description

DISCRIM Speci�es the discriminant function method
LOGISTIC Speci�es the logistic regression method
PROPENSITY Speci�es the propensity scores method
REG Speci�es the regression method
REGPMM Speci�es the predictive mean matching method

For each method, you can specify the imputed variables and, optionally, a set of the effects to impute these
variables. Each effect is a variable or a combination of variables preceding the imputed variable in the VAR
statement. The syntax for speci�cation of effects is the same as for the GLM procedure. See Chapter 47,
“The GLM Procedure,” for more information.
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One general form of an effect involving several variables is

X1 * X2 * A * B * C ( D E )

whereA, B, C, D, andE are classi�cation variables andX1 andX2 are continuous variables.

When a MONOTONE statement is used without specifying any methods, the regression method is used for
all imputed continuous variables and the discriminant function method is used for all imputed classi�cation
variables. In this case, for each imputed continuous variable, all preceding variables in the VAR statement
are used as the covariates, and for each imputed classi�cation variable, all preceding continuous variables in
the VAR statement are used as the covariates.

When a method for continuous variables is speci�ed without imputed variables, the method is used for all
continuous variables in the VAR statement that are not speci�ed in other methods. Similarly, when a method
for classi�cation variables is speci�ed without imputed variables, the method is used for all classi�cation
variables in the VAR statement that are not speci�ed in other methods.

For each imputed variable that does not use the discriminant function method, if no covariates are speci�ed,
then all preceding variables in the VAR statement are used as the covariates. That is, each preceding
continuous variable is used as a regressor effect, and each preceding classi�cation variable is used as a main
effect. For an imputed variable that uses the discriminant function method, if no covariates are speci�ed, then
all preceding variables in the VAR statement are used as the covariates with the CLASSEFFECTS=INCLUDE
option, and all preceding continuous variables in the VAR statement are used as the covariates with the
CLASSEFFECTS=EXCLUDE option (which is the default).

With a MONOTONE statement, the variables are imputed sequentially in the order given by the VAR
statement. For a continuous variable, you can use a regression method, a regression predicted mean matching
method, or a propensity score method to impute missing values. For a nominal classi�cation variable, you
can use either a discriminant function method or a logistic regression method (generalized logit model) to
impute missing values without using the ordering of the class levels. For an ordinal classi�cation variable,
you can use a logistic regression method (cumulative logit model) to impute missing values by using the
ordering of the class levels. For a binary classi�cation variable, either a discriminant function method or a
logistic regression method can be used.

Note that except for the regression method, all other methods impute values from the observed observation
values. You can specify the following methods in a MONOTONE statement.

DISCRIM < ( imputed < = effects > < / options > ) >
speci�es the discriminant function method of classi�cation variables. The available options are as
follows:

CLASSEFFECTS=EXCLUDE | INCLUDE
speci�es whether the CLASS variables are used as covariate effects. The CLASSEF-
FECTS=EXCLUDE option excludes the CLASS variables from covariate effects and the CLASS-
EFFECTS=INCLUDE option includes the CLASS variables as covariate effects. The default is
CLASSEFFECTS=EXCLUDE.

DETAILS
displays the group means and pooled covariance matrix used in each imputation.
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PCOV=FIXED | POSTERIOR
speci�es the pooled covariance used in the discriminant method. The PCOV=FIXED option uses
the observed-data pooled covariance matrix for each imputation and the PCOV=POSTERIOR
option draws a pooled covariance matrix from its posterior distribution. The default is
PCOV=POSTERIOR.

PRIOR=EQUAL | JEFFREYS < = c > | PROPORTIONAL | RIDGE < = d >
speci�es the prior probabilities of group membership. The PRIOR=EQUAL option sets the prior
probabilities equal for all groups; the PRIOR=JEFFREYS < =c > option speci�es a noninforma-
tive prior, 0 <c < 1; the PRIOR=PROPORTIONAL option sets the prior probabilities proportion
to the group sample sizes; and the PRIOR=RIDGE < =d > option speci�es a ridge prior,d > 0.
If the noninformative priorc is not speci�ed,c=0.5 is used. If the ridge priord is not speci�ed,
d=0.25 is used. The default is PRIOR=JEFFREYS.

See the section “Monotone and FCS Discriminant Function Methods” on page 5986 for a detailed
description of the method.

LOGISTIC < ( imputed < = effects > < / options > ) >
speci�es the logistic regression method for classi�cation variables. The available options are as follows:

DESCENDING
reverses the sort order for the levels of the response variables.

DETAILS
displays the regression coef�cients in the logistic regression model used in each imputation.

LIKELIHOOD=NOAUGMENT

LIKELIHOOD=AUGMENT < ( WEIGHT= w | NPARM < (MULT=m) > ) >
speci�es whether to add new observations to the likelihood function in the computation of
maximum likelihood estimates. The LIKELIHOOD=AUGMENT option adds observations in
each response group to the likelihood function, and the LIKELIHOOD=NOAUGMENT option
makes no adjustment to the likelihood function. By default, LIKELIHOOD=NOAUGMENT.

The LIKELIHOOD=AUGMENT option is useful when the maximum likelihood parameter
estimates do not exist. When LIKELIHOOD=AUGMENT, each added observation contributes
the same weight, and the WEIGHT= option speci�es the total added weight:

WEIGHT=w
explicitly speci�es the total added weightw .

WEIGHT=NPARM < (MULT=m) >
uses the number of parameters in the logistic regression model as the total added weight.
For example, for a simple binary logistic regression model that consists only ofp continuous
effects, the added weight isp+1. The MULT=m option speci�es the multiplier for the total
added weight, 0 <m � 1, and the resulting total added weight ism times the number of
parameters in the model. By default, MULT=1.

By default, WEIGHT=NPARM. You can specify either the MULT=m suboption in
WEIGHT=NPARM or the WEIGHT=w option to use a different total added weight in
the computation of maximum likelihood estimates. For example, if the ratio between the number
of parameters and the number of available observations (before augmentation) is large, you
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can use either MULT=m or WEIGHT=w to reduce the weight for the added observations (that
is, reduce the effect from the added observations in the computation of maximum likelihood
estimates). For more information about the augmented data approach, see the section “Logistic
Regression with Augmented Data” on page 5991.

LINK=GLOGIT | LOGIT
speci�es the link function linking the response probabilities to the linear predictors. The default
is LINK=LOGIT. The LINK=LOGIT option uses the log odds function to �t the binary logit
model when there are two response categories and to �t the cumulative logit model when there
are more than two response categories; and the LINK=GLOGIT option uses the generalized logit
function to �t the generalized logit model where each nonreference category is contrasted with
the last category.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
speci�es the sort order for the levels of the response variable. The ORDER=DATA sorts by
the order of appearance in the input data set; the ORDER=FORMATTED sorts by their exter-
nal formatted values; the ORDER=FREQ sorts by the descending frequency counts; and the
ORDER=INTERNAL sorts by the unformatted values. The default is ORDER=FORMATTED.

See the section “Monotone and FCS Logistic Regression Methods” on page 5988 for a detailed
description of the method.

PROPENSITY < ( imputed < = effects > < / options > ) >
speci�es the propensity scores method of variables. Each variable is either a classi�cation variable
or a continuous variable. The available options are DETAILS and NGROUPS=. The DETAILS
option displays the regression coef�cients in the logistic regression model for propensity scores. The
NGROUPS= option speci�es the number of groups created based on propensity scores. The default is
NGROUPS=5.

See the section “Monotone Propensity Score Method” on page 5992 for a detailed description of the
method.

REG | REGRESSION < ( imputed < = effects > < / DETAILS > ) >
speci�es the regression method of continuous variables. The DETAILS option displays the regression
coef�cients in the regression model used in each imputation.

With a regression method, the MAXIMUM=, MINIMUM=, and ROUND= options can be used to
make the imputed values more consistent with the observed variable values.

See the section “Monotone and FCS Regression Methods” on page 5984 for a detailed description of
the method.

REGPMM < ( imputed < = effects > < / options > ) >

REGPREDMEANMATCH < ( imputed < = effects > < / options > ) >
speci�es the predictive mean matching method for continuous variables. This method is similar to
the regression method except that it imputes a value randomly from a set of observed values whose
predicted values are closest to the predicted value for the missing value from the simulated regression
model (Heitjan and Little 1991; Schenker and Taylor 1996).

The available options are DETAILS and K=. The DETAILS option displays the regression coef�cients
in the regression model used in each imputation. The K= option speci�es the number of closest
observations to be used in the selection. The default is K=5.
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See the section “Monotone and FCS Predictive Mean Matching Methods” on page 5985 for a detailed
description of the method.

With a MONOTONE statement, the variables with missing values are imputed sequentially in the order
speci�ed in the VAR statement. For example, the following MI procedure statements use the default regression
method for continuous variables to impute variabley2 from the effecty1, the logistic regression method to
impute variablec1 from effectsy1, y2, andy1 � y2, and the regression method to impute variabley3 from
effectsy1, y2, andc1:

proc mi;
class c1;
var y1 y2 c1 y3;
monotone logistic(c1= y1 y2 y1 * y2);
monotone reg(y3= y1 y2 c1);

run;

The variabley1 is not imputed since it is the leading variable in the VAR statement.

TRANSFORM Statement

TRANSFORM transform (variables< / options >)< . . . transform (variables< / options >) > ;

The TRANSFORM statement lists the transformations and their associated variables to be transformed. The
options are transformation options that provide additional information for the transformation.

The MI procedure assumes that the data are from a multivariate normal distribution when either the regression
method or the MCMC method is used. When some variables in a data set are clearly non-normal, it is useful
to transform these variables to conform to the multivariate normality assumption. With a TRANSFORM
statement, variables are transformed before the imputation process, and these transformed variable values are
displayed in all of the results. When you specify an OUT= option, the variable values are back-transformed
to create the imputed data set.

The following transformations can be used in the TRANSFORM statement:

BOXCOX
speci�es the Box-Cox transformation of variables. The variableY is transformed to.YC c/ � � 1

� , where
c is a constant such that each value ofY C c must be positive. If the speci�ed constant� D 0, the
logarithmic transformation is used.

EXP
speci�es the exponential transformation of variables. The variableY is transformed toe.YC c/ , wherec
is a constant.

LOG
speci�es the logarithmic transformation of variables. The variableY is transformed tolog.Y C c/,
wherec is a constant such that each value ofY C c must be positive.

LOGIT
speci�es the logit transformation of variables. The variableY is transformed tolog. Y=c

1� Y=c / , where the
constantc>0 and the values ofY=c must be between 0 and 1.
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POWER
speci�es the power transformation of variables. The variableY is transformed to.Y C c/� , wherec is
a constant such that each value ofY C c must be positive and the constant� ¤ 0.

The following options provide the constantc and� values in the transformations.

C=number
speci�es thec value in the transformation. The default isc = 1 for logit transformation andc = 0 for
other transformations.

LAMBDA= number
speci�es the� value in the power and Box-Cox transformations. You must specify the� value for
these two transformations.

For example, the following statement requests that variableslog.y1/ , a logarithmic transformation for
the variabley1, and

p
y2 C 1, a power transformation for the variabley2, be used in the imputation:

transform log(y1) power(y2/c=1 lambda=.5);

If the MU0= option is used to specify a parameter value� 0 for a transformed variable, the same
transformation for the variable is also applied to its corresponding MU0= value in thet test. Otherwise,
� 0 D 0 is used for the transformed variable. See Example 76.10 for a usage of the TRANSFORM
statement.

VAR Statement

VAR variables ;

The VAR statement lists the variables to be analyzed. The variables can be either character or numeric.
If you omit the VAR statement, all continuous variables not mentioned in other statements are used. The
VAR statement is required if you specify either an FCS statement, a MONOTONE statement, an IM-
PUTE=MONOTONE option in the MCMC statement, or more than one number in the MU0=, MAXIMUM=,
MINIMUM=, or ROUND= option.

The classi�cation variables in the VAR statement, which can be either character or numeric, are further
speci�ed in the CLASS statement.

Details: MI Procedure

Descriptive Statistics

SupposeY D .y1; y2; : : : ; yn /
0
is the.n� p/ matrix of complete data, which might not be fully observed,n0

is the number of observations fully observed, andnj is the number of observations with observed values for
variableYj .
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With complete cases, the sample mean vector is

y D
1
n0

X
yi

and the CSSCP matrix is
X

.yi � y/. yi � y/
0

where each summation is over the fully observed observations.

The sample covariance matrix is

S D
1

n0 � 1

X
.yi � y/. yi � y/

0

and is an unbiased estimate of the covariance matrix.

The correlation matrixR, which contains the Pearson product-moment correlations of the variables, is derived
by scaling the corresponding covariance matrix:

R D D� 1S D� 1

whereD is a diagonal matrix whose diagonal elements are the square roots of the diagonal elements ofS.

With available cases, the corrected sum of squares for variableYj is

X
.y j i � y j /2

wherey j D 1
n j

P
y j i is the sample mean and each summation is over observations with observed values

for variableYj .

The variance is

s2
jj D

1
nj � 1

X
.y j i � y j /2

The correlations for available cases contain pairwise correlations for each pair of variables. Each correlation
is computed from all observations that have nonmissing values for the corresponding pair of variables.

EM Algorithm for Data with Missing Values

The EM algorithm (Dempster, Laird, and Rubin 1977) is a technique that �nds maximum likelihood estimates
in parametric models for incomplete data. For a detailed description and applications of the EM algorithm,
see the books by Little and Rubin (2002); Schafer (1997); McLachlan and Krishnan (1997).

The EM algorithm is an iterative procedure that �nds the MLE of the parameter vector by repeating the
following steps:
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1. The expectation E-step
Given a set of parameter estimates, such as a mean vector and covariance matrix for a multivariate normal
distribution, the E-step calculates the conditional expectation of the complete-data log likelihood given the
observed data and the parameter estimates.

2. The maximization M-step
Given a complete-data log likelihood, the M-step �nds the parameter estimates to maximize the complete-data
log likelihood from the E-step.

The two steps are iterated until the iterations converge.

In the EM process, the observed-data log likelihood is nondecreasing at each iteration. For multivariate
normal data, suppose there areG groups with distinct missing patterns. Then the observed-data log likelihood
being maximized can be expressed as

logL.� jYobs/ D
GX

g D 1

logL g . � jYobs/

wherelogL g . � jYobs/ is the observed-data log likelihood from thegth group, and

logL g . � jYobs/ D �
ng

2
log j† g j �

1
2

X

ig

.yig � � g /0† g
� 1.yig � � g /

whereng is the number of observations in thegth group, the summation is over observations in thegth group,
yig is a vector of observed values corresponding to observed variables,� g is the corresponding mean vector,
and† g is the associated covariance matrix.

A sample covariance matrix is computed at each step of the EM algorithm. If the covariance matrix is
singular, the linearly dependent variables for the observed data are excluded from the likelihood function.
That is, for each observation with linear dependency among its observed variables, the dependent variables
are excluded from the likelihood function. Note that this can result in an unexpected change in the likelihood
between iterations prior to the �nal convergence.

See Schafer (1997, pp. 163–181) for a detailed description of the EM algorithm for multivariate normal data.

By default, PROC MI uses the means and standard deviations from available cases as the initial estimates
for the EM algorithm. The correlations are set to zero. These estimates provide a good starting value with
positive de�nite covariance matrix. For a discussion of suggested starting values for the algorithm, see
Schafer (1997, p. 169).

You can specify the convergence criterion with the CONVERGE= option in the EM statement. The iterations
are considered to have converged when the maximum change in the parameter estimates between iteration
steps is less than the value speci�ed. You can also specify the maximum number of iterations used in the EM
algorithm with the MAXITER= option.

The MI procedure displays tables of the initial parameter estimates used to begin the EM process and the
MLE parameter estimates derived from EM. You can also display the EM iteration history with the ITPRINT
option. PROC MI lists the iteration number, the likelihood –2 log L, and the parameter values� at each
iteration. You can also save the MLE derived from the EM algorithm in a SAS data set by specifying the
OUTEM= option.
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Statistical Assumptions for Multiple Imputation

The MI procedure assumes that the data are from a multivariate distribution and contain missing values that
can occur for any of the variables. It also assumes that the data are from a multivariate normal distribution
when either the regression method or the MCMC method is used.

SupposeY is then� p matrix of complete data, which is not fully observed, and denote the observed part of
Y by Yobs and the missing part byYmis . The MI and MIANALYZE procedures assume that the missing
data are missing at random (MAR); that is, the probability that an observation is missing can depend onYobs,
but not onYmis (Rubin 1976, 1987, p. 53).

To be more precise, suppose thatR is then� p matrix of response indicators whose elements are zero or one
depending on whether the corresponding elements of Y are missing or observed. Then the MAR assumption
is that the distribution ofR can depend onYobs but not onYmis :

pr.RjYobs; Ymis / D pr.RjYobs/

For example, consider a trivariate data set with variablesY1 andY2 fully observed, and a variableY3 that
has missing values. MAR assumes that the probability thatY3 is missing for an individual can be related to
the individual's values of variablesY1 andY2, but not to its value ofY3. On the other hand, if a complete
case and an incomplete case forY3 with exactly the same values for variablesY1 andY2 have systematically
different values, then there exists a response bias forY3, and MAR is violated.

The MAR assumption is not the same as missing completely at random (MCAR), which is a special case of
MAR. Under the MCAR assumption, the missing data values are a simple random sample of all data values;
the missingness does not depend on the values of any variables in the data set.

Although the MAR assumption cannot be veri�ed with the data and it can be questionable in some situations,
the assumption becomes more plausible as more variables are included in the imputation model (Schafer
1997, pp. 27–28; Van Buuren, Boshuizen, and Knook 1999, p. 687).

Furthermore, the MI and MIANALYZE procedures assume that the parameters� of the data model and
the parameters� of the model for the missing-data indicators are distinct. That is, knowing the values of
� does not provide any additional information about� , and vice versa. If both the MAR and distinctness
assumptions are satis�ed, the missing-data mechanism is said to be ignorable Rubin 1987, pp. 50–54; Schafer
1997, pp. 10–11).

Missing Data Patterns

The MI procedure sorts the data into groups based on whether the analysis variables are observed or missing.
Note that the input data set does not need to be sorted in any order.

For example, with variablesY1, Y2, andY3 (in that order) in a data set, up to eight groups of observations
can be formed from the data set. Figure 76.6 displays the eight groups of observations and an unique missing
pattern for each group.
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Figure 76.6 Missing Data Patterns

An “X” in Figure 76.6 means that the variable is observed in the corresponding group and a “.” means that
the variable is missing. The MI procedure denotes variables that have missing values by “.” or “O”. The
value “.” means that the variable is missing and will be imputed, and the value “O” means that the variable is
missing and will not be imputed.

The variable order is used to derive the order of the groups from the data set, and thus determines the order of
missing values in the data to be imputed. If you specify a different order of variables in the VAR statement,
then the results are different even if the other speci�cations remain the same.

A data set with variablesY1, Y2, . . . ,Yp (in that order) is said to have amonotone missing patternwhen the
event that a variableYj is missing for a particular individual implies that all subsequent variablesYk , k > j ,
are missing for that individual. Alternatively, when a variableYj is observed for a particular individual, it is
assumed that all previous variablesYk , k < j , are also observed for that individual.

For example, Figure 76.7 displays a data set of three variables with a monotone missing pattern.

Figure 76.7 Monotone Missing Patterns

Figure 76.8 displays a data set of three variables with a non-monotone missing pattern.

Figure 76.8 Non-monotone Missing Patterns
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A data set with anarbitrary missing patternis a data set with either a monotone missing pattern or a
non-monotone missing pattern.

Imputation Methods

This section describes the methods for multiple imputation that are available in the MI procedure. The
method of choice depends on the pattern of missingness in the data and the type of the imputed variable, as
summarized in Table 76.5.

Table 76.5 Imputation Methods in PROC MI

Pattern of Type of Type of Available Methods
Missingness Imputed Variable Covariates

Monotone Continuous Arbitrary � Monotone regression
� Monotone predicted mean matching
� Monotone propensity score

Monotone Classi�cation (ordinal) Arbitrary � Monotone logistic regression

Monotone Classi�cation (nominal) Arbitrary � Monotone discriminant function
� Monotone logistic regression

Arbitrary Continuous Continuous � MCMC full-data imputation
� MCMC monotone-data imputation

Arbitrary Continuous Arbitrary � FCS regression
� FCS predicted mean matching

Arbitrary Classi�cation (ordinal) Arbitrary � FCS logistic regression

Arbitrary Classi�cation (nominal) Arbitrary � FCS discriminant function
� FCS logistic regression

To impute missing values for a continuous variable in data sets with monotone missing patterns, you should
use either a parametric method that assumes multivariate normality or a nonparametric method that uses
propensity scores Rubin 1987, pp. 124, 158; Lavori, Dawson, and Shera 1995). Parametric methods available
include the regression method (Rubin 1987, pp. 166–167) and the predictive mean matching method (Heitjan
and Little 1991; Schenker and Taylor 1996).

To impute missing values for a classi�cation variable in data sets with monotone missing patterns, you should
use the logistic regression method or the discriminant function method. Use the logistic regression method
when the classi�cation variable has a binary, nominal, or ordinal response, and use the discriminant function
method when the classi�cation variable has a binary or nominal response.

For data sets with arbitrary missing patterns, you can use either of the following methods to impute missing
values: a Markov chain Monte Carlo (MCMC) method (Schafer 1997) that assumes multivariate normality,
or a fully conditional speci�cation (FCS) method (Van Buuren 2007; Brand 1999) that assumes the existence
of a joint distribution for all variables.
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For continuous variables in data sets with arbitrary missing patterns, you can use the MCMC method to
impute either all the missing values or just enough missing values to make the imputed data sets have
monotone missing patterns. With a monotone missing data pattern, you have greater �exibility in your choice
of imputation models. In addition to the MCMC method, you can implement other methods, such as the
regression method, that do not use Markov chains. You can also specify a different set of covariates for each
imputed variable.

Although the regression and MCMC methods assume multivariate normality, inferences based on multiple
imputation can be robust to departures from multivariate normality if the amount of missing information is
not large, because the imputation model is effectively applied not to the entire data set but only to its missing
part (Schafer 1997, pp.147–148).

To impute missing values for both continuous and classi�cation variables in data sets with arbitrary missing
patterns, you can use FCS methods to impute missing values for all variables assuming a joint distribution
for these variables exists (Brand 1999; Van Buuren 2007). Similar to the methods of imputing missing
values for variables in data sets with monotone missing patterns, you can use the regression and predictive
mean matching methods to impute missing values for a continuous variable, the logistic regression method
to impute missing values for a classi�cation variable when the variable has a binary, nominal, or ordinal
response, and the discriminant function method to impute missing values for a classi�cation variable when
the variable has a binary or nominal response.

You can also use a TRANSFORM statement to transform variables to conform to the multivariate normality
assumption. Variables are transformed before the imputation process and then are reverse-transformed to
create the imputed data set. All continuous variables are standardized before the imputation process and then
are transformed back to the original scale after the imputation process.

Li (1988) presents a theoretical argument for convergence of the MCMC method in the continuous case
and uses it to create imputations for incomplete multivariate continuous data. In practice, however, it is not
easy to check the convergence of a Markov chain, especially for a large number of parameters. PROC MI
generates statistics and plots that you can use to check for convergence of the MCMC method. The details
are described in the section “Checking Convergence in MCMC” on page 6002.

Monotone Methods for Data Sets with Monotone Missing Patterns

For data sets with monotone missing data patterns, you can use monotone methods to impute missing values
for the variables. A monotone method creates multiple imputations by imputing missing values sequentially
over the variables taken one at a time.

For example, with variablesY1, Y2, . . . , Yp (in that order) in the VAR statement, a monotone method
sequentially simulates a draw for missing values for variablesY2, . . . ,Yp . That is, the missing values are
imputed by using the sequence



5984 F Chapter 76: The MI Procedure

� . � /
2 � P . � 2 j Y1. obs/ ; Y2. obs/ /

Y . � /
2 � P . Y2 j � . � /

2 /

: : :

: : :

� . � /
p � P . � p j Y1. obs/ ; : : : ; Yp. obs/ /

Y . � /
p � P . Yp j � . � /

p /

whereYj. obs/ is the set of observedYj values,� . � /
j is the set of simulated parameters for the conditional

distribution ofYj given covariates constructed from variablesY1, Y2, . . . , Yj � 1, andY . � /
j is the set of

imputedYj values.

The missing values for the leading variableY1 are not imputed, and missing values forY2, . . . , Yp are
not imputed for those observations with missingY1 values. For each subsequent variableYj with missing
values, the corresponding imputation method is used to �t a model with covariates constructed from its
preceding variablesY1; Y2; : : : ; Yj � 1. The observed observations forYj , which include only observations
with observed values forY1; Y2; : : : ; Yj � 1, are used in the model �tting. With this resulting model, a new
model is drawn and then used to impute missing values forYj .

You can specify a separate monotone method for each imputed variable. If a method is not speci�ed for
the variable, then the default method is used. That is, a regression method is used for a continuous variable
and a discriminant function method is used for a classi�cation variable. For each imputed variable, you can
also specify a set of covariates that are constructed from its preceding variables. If a set of covariates is not
speci�ed for the variable, all preceding variables in the VAR list are used as covariates.

You can use a regression method, a predictive mean matching method, or a propensity score method to impute
missing values for a continuous variable; a logistic regression method for a classi�cation variable with a
binary or ordinal response; and a discriminant function method for a classi�cation variable with a binary or
nominal response. See the sections “Monotone and FCS Regression Methods” on page 5984, “Monotone
and FCS Predictive Mean Matching Methods” on page 5985, “Monotone Propensity Score Method” on
page 5992, “Monotone and FCS Discriminant Function Methods” on page 5986, and “Monotone and FCS
Logistic Regression Methods” on page 5988 for these methods.

Monotone and FCS Regression Methods

The regression method is the default imputation method in the MONOTONE and FCS statements for
continuous variables.

In the regression method, a regression model is �tted for a continuous variable with the covariates constructed
from a set of effects. Based on the �tted regression model, a new regression model is simulated from the
posterior predictive distribution of the parameters and is used to impute the missing values for each variable
(Rubin 1987, pp. 166–167). That is, for a continuous variableYj with missing values, a model

Yj D � 0 C � 1 X1 C � 2 X2 C : : : C � k Xk

is �tted using observations with observed values for the variableYj and its covariatesX1, X2, . . . ,Xk .
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The �tted model includes the regression parameter estimatesO� D . O� 0; O� 1; : : : ; O� k / and the associated
covariance matrixO� 2

j V j , whereV j is the usualX0X inverse matrix derived from the intercept and covariates
X1, X2, . . . ,Xk .

The following steps are used to generate imputed values for each imputation:

1. New parameters� � D .� � 0; � � 1; : : : ; � � .k/ / and� 2
� j are drawn from the posterior predictive distribu-

tion of the parameters. That is, they are simulated from. O� 0; O� 1; : : : ; O� k / , � 2
j , andV j . The variance is

drawn as

� 2
� j D O� 2

j .n j � k � 1/=g

whereg is a� 2
n j � k � 1 random variate andnj is the number of nonmissing observations forYj . The

regression coef�cients are drawn as

� � D O� C � � j V0
hj Z

whereVhj is the upper triangular matrix in the Cholesky decomposition,V j D V0
hj Vhj , andZ is a

vector ofk C 1 independent random normal variates.

2. The missing values are then replaced by

� � 0 C � � 1 x1 C � � 2 x2 C : : : C � � .k/ xk C zi � � j

wherex1; x2; : : : ; xk are the values of the covariates andzi is a simulated normal deviate.

Monotone and FCS Predictive Mean Matching Methods

The predictive mean matching method is also an imputation method available for continuous variables. It is
similar to the regression method except that for each missing value, it imputes a value randomly from a set
of observed values whose predicted values are closest to the predicted value for the missing value from the
simulated regression model (Heitjan and Little 1991; Schenker and Taylor 1996).

Following the description of the model in the section “Monotone and FCS Regression Methods” on page 5984,
the following steps are used to generate imputed values:

1. New parameters� � D .� � 0; � � 1; : : : ; � � .k/ / and� 2
� j are drawn from the posterior predictive distribu-

tion of the parameters. That is, they are simulated from. O� 0; O� 1; : : : ; O� k / , � 2
j , andV j . The variance is

drawn as

� 2
� j D O� 2

j .n j � k � 1/=g

whereg is a� 2
n j � k � 1 random variate andnj is the number of nonmissing observations forYj . The

regression coef�cients are drawn as

� � D O� C � � j V0
hj Z

whereVhj is the upper triangular matrix in the Cholesky decomposition,V j D V0
hj Vhj , andZ is a

vector ofk C 1 independent random normal variates.
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2. For each missing value, a predicted value

y i � D � � 0 C � � 1 x1 C � � 2 x2 C : : : C � � .k/ xk

is computed with the covariate valuesx1; x2; : : : ; xk .

3. A set ofk0 observations whose corresponding predicted values are closest toy i � is generated. You
can specifyk0 with the K= option.

4. The missing value is then replaced by a value drawn randomly from thesek0 observed values.

The predictive mean matching method requires the number of closest observations to be speci�ed. A smaller
k0 tends to increase the correlation among the multiple imputations for the missing observation and results in
a higher variability of point estimators in repeated sampling. On the other hand, a largerk0 tends to lessen
the effect from the imputation model and results in biased estimators (Schenker and Taylor 1996, p. 430).

The predictive mean matching method ensures that imputed values are plausible; it might be more appropriate
than the regression method if the normality assumption is violated (Horton and Lipsitz 2001, p. 246).

Monotone and FCS Discriminant Function Methods

The discriminant function method is the default imputation method in the MONOTONE and FCS statements
for classi�cation variables.

For a nominal classi�cation variableYj with responses 1, . . . ,g and a set of effects from its preceding
variables, if the covariatesX1, X2, . . . ,Xk associated with these effects within each group are approximately
multivariate normal and the within-group covariance matrices are approximately equal, the discriminant
function method (Brand 1999, pp. 95–96) can be used to impute missing values for the variableYj .

Denote the group-speci�c means for covariatesX1, X2, . . . ,Xk by

X t D .X t1 ; X t2 ; : : : ; X tk /; t D 1; 2; : : : ; g

then the pooled covariance matrix is computed as

S D
1

n � g

gX

t D 1

.n t � 1/St

whereSt is the within-group covariance matrix,nt is the group-speci�c sample size, andn D
P g

t D 1 nt is
the total sample size.

In each imputation, new parameters of the group-speci�c means (m� t ), pooled covariance matrix (S� ), and
prior probabilities of group membership (q� t ) can be drawn from their corresponding posterior distributions
(Schafer 1997, p. 356).

Pooled Covariance Matrix and Group-Speci�c Means

For each imputation, the MI procedure uses either the �xed observed pooled covariance matrix
(PCOV=FIXED) or a drawn pooled covariance matrix (PCOV=POSTERIOR) from its posterior distri-
bution with a noninformative prior. That is,

† jX � W � 1 . n � g; .n � g/S/

whereW � 1 is an inverted Wishart distribution.
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The group-speci�c means are then drawn from their posterior distributions with a noninformative prior

� t j.† ; Xt / � N
�

Xt ;
1
nt

†
�

See the section “Bayesian Estimation of the Mean Vector and Covariance Matrix” on page 5997 for a
complete description of the inverted Wishart distribution and posterior distributions that use a noninformative
prior.

Prior Probabilities of Group Membership

The prior probabilities are computed through the drawing of new group sample sizes. When the total sample
sizen is considered �xed, the group sample sizes.n1; n2; : : : ; ng / have a multinomial distribution. New
multinomial parameters (group sample sizes) can be drawn from their posterior distribution by using a
Dirichlet prior with parameters.� 1; � 2; : : : ; � g / .

After the new sample sizes are drawn from the posterior distribution of.n1; n2; : : : ; ng / , the prior probabilities
q� t are computed proportionally to the drawn sample sizes.

See Schafer (1997, pp. 247–255) for a complete description of the Dirichlet prior.

Imputation Steps

The discriminant function method uses the following steps in each imputation to impute values for a nominal
classi�cation variableYj with g responses:

1. Draw a pooled covariance matrixS� from its posterior distribution if the PCOV=POSTERIOR option
is used.

2. For each group, draw group meansm� t from the observed group meanX t and either the ob-
served pooled covariance matrix (PCOV=FIXED) or the drawn pooled covariance matrixS�

(PCOV=POSTERIOR).

3. For each group, compute or drawq� t , prior probabilities of group membership, based on the PRIOR=
option:

� PRIOR=EQUAL,q� t D 1=g, prior probabilities of group membership are all equal.

� PRIOR=PROPORTIONAL,q� t D nt =n, prior probabilities are proportional to their group
sample sizes.

� PRIOR=JEFFREYS=c, a noninformative Dirichlet prior with� t D c is used.

� PRIOR=RIDGE=d , a ridge prior is used with� t D d � nt =n for d � 1 and� t D d � nt for
d < 1.

4. With the group meansm� t , the pooled covariance matrixS� , and the prior probabilities of group
membershipq� t , the discriminant function method derives linear discriminant function and computes
the posterior probabilities of an observation belonging to each group

p t .x/ D
exp.� 0:5D2

t .x//
P g

uD 1 exp.� 0:5D2
u .x//
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whereD 2
t .x/ D .x � m� t /

0S� 1
� .x � m� t / � 2 log.q� t / is the generalized squared distance fromx to

groupt.

5. Draw a random uniform variateu, between 0 and 1, for each observation with missing group value.
With the posterior probabilities,p1.x/ C p2.x/ C : : : ; Cpg .x/ D 1, the discriminant function method
imputesYj D 1 if the value ofu is less thanp1.x/ , Yj D 2 if the value is greater than or equal to
p1.x/ but less thanp1.x/ C p2.x/ , and so on.

Monotone and FCS Logistic Regression Methods

The logistic regression method is another imputation method available for classi�cation variables. In the
logistic regression method, a logistic regression model is �tted for a classi�cation variable with a set of
covariates constructed from the effects, where the classi�cation variable is an ordinal response or a nominal
response variable.

In the MI procedure, ordered values are assigned to response levels in ascending sorted order. If the response
variableY takes values inf1; : : : ; Kg, then for ordinal response models, the cumulative model has the form

logit.Pr.Y � j jx// D log
�

Pr.Y � j jx/
1 � Pr.Y � j jx/

�
D � j C � 0x; j D 1; : : : ; K � 1

where� 1; : : : ; � K � 1 are K-1 intercept parameters, and� is the vector of slope parameters.

For nominal response logistic models, where the K possible responses have no natural ordering, the general-
ized logit model has the form

log
�

Pr.Y D j j x/
Pr.Y D K j x/

�
D � j C � 0

j x; j D 1; : : : ; K � 1

where the� 1; : : : ; � K � 1 are K-1 intercept parameters, and the� 1; : : : ; � K � 1 are K-1 vectors of slope
parameters.

Binary Response Logistic Regression

For a binary classi�cation variable, based on the �tted regression model, a new logistic regression model
is simulated from the posterior predictive distribution of the parameters and is used to impute the missing
values for each variable (Rubin 1987, pp. 167–170).

For a binary variableY with responses 1 and 2, a logistic regression model is �tted using observations with
observed values for the imputed variableY:

logit .p 1/ D � 0 C � 1 X1 C � 2 X2 C : : : C � p Xp

whereX1; X2; : : : ; Xp are covariates forY, p1 D Pr.Y D 1jX1; X2; : : : ; Xp / , and logit .p 1/ D
log.p 1=.1 � p1//

The �tted model includes the regression parameter estimatesO� D . O� 0; O� 1; : : : ; O� p / and the associated
covariance matrixV.
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The following steps are used to generate imputed values for a binary variableY with responses 1 and 2:

1. New parameters� � D .� � 0; � � 1; : : : ; � � .p/ / are drawn from the posterior predictive distribution of
the parameters.

� � D O� C V0
hZ

whereVh is the upper triangular matrix in the Cholesky decomposition,V D V0
hVh , andZ is a vector

of p C 1 independent random normal variates.

2. For an observation with missingYj and covariatesx1; x2; : : : ; xp , compute the predicted probability
thatY= 1:

p1 D
exp.� 1/

1 C exp.� 1/

where� 1 D � � 0 C � � 1 x1 C � � 2 x2 C : : : C � � .p/ xp .

3. Draw a random uniform variate,u, between 0 and 1. If the value ofu is less thanp1, imputeY= 1;
otherwise imputeY= 2.

The binary logistic regression imputation method can be extended to include the ordinal classi�cation
variables with more than two levels of responses, and the nominal classi�cation variables. The LINK=LOGIT
and LINK=GLOGIT options can be used to specify the cumulative logit model and the generalized logit
model, respectively. The options ORDER= and DESCENDING can be used to specify the sort order for the
levels of the imputed variables.

Ordinal Response Logistic Regression

For an ordinal classi�cation variable, based on the �tted regression model, a new logistic regression model
is simulated from the posterior predictive distribution of the parameters and is used to impute the missing
values for each variable.

For a variableY with ordinal responses 1, 2, . . . , K, a logistic regression model is �tted using observations
with observed values for the imputed variableY:

logit .p j / D � j C � 1 X1 C � 2 X2 C : : : C � p Xp

whereX1; X2; : : : ; Xp are covariates forY and p j D Pr.Y � j jX1; X2; : : : ; Xk / .

The �tted model includes the regression parameter estimatesO� D . O� 0; : : : ; O� K � 1/ and O� D . O� 0; O� 1; : : : ; O� k / ,
and their associated covariance matrixV.

The following steps are used to generate imputed values for an ordinal classi�cation variableY with responses
1, 2, . . . , K:

1. New parameters � are drawn from the posterior predictive distribution of the parameters.

 � D O C V0
hZ

where O D . O�; O� / , Vh is the upper triangular matrix in the Cholesky decomposition,V D V0
hVh , and

Z is a vector ofp C K � 1 independent random normal variates.
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2. For an observation with missingY and covariatesx1; x2; : : : ; xk , compute the predicted cumulative
probability forY � j :

p j D pr.Y � j / D
e� j C x0�

e� j C x0� C 1

3. Draw a random uniform variate,u, between 0 and 1, then impute

Y D

8
<

:

1 if u < p 1

k if pk � 1 � u < p k
K if pK � 1 � u

Nominal Response Logistic Regression

For a nominal classi�cation variable, based on the �tted regression model, a new logistic regression model
is simulated from the posterior predictive distribution of the parameters and is used to impute the missing
values for each variable.

For a variableY with nominal responses 1, 2, . . . , K, a logistic regression model is �tted using observations
with observed values for the imputed variableY:

log
�

p j

pK

�
D � j C � j1 X1 C � j 2 X2 C : : : C � jp Xp

whereX1; X2; : : : ; Xp are covariates forY and p j D Pr.Y D j jX1; X2; : : : ; Xp / .

The �tted model includes the regression parameter estimatesO� D . O� 0; : : : ; O� K � 1/ and O� D . O� 0; : : : ; O� K � 1/ ,
and their associated covariance matrixV, where O� j D . O� j 0 ; O� j1 ; : : : ; O� jp / ,

The following steps are used to generate imputed values for a nominal classi�cation variableY with responses
1, 2, . . . , K:

1. New parameters � are drawn from the posterior predictive distribution of the parameters.

 � D O C V0
hZ

where O D . O�; O� / , Vh is the upper triangular matrix in the Cholesky decomposition,V D V0
hVh , and

Z is a vector ofp C K � 1 independent random normal variates.

2. For an observation with missingY and covariatesx1; x2; : : : ; xk , compute the predicted probability
for Y= j, j=1, 2, . . . , K-1:

pr.Y D j / D
e� j C x0� j

P K � 1
k D 1 e� k C x0� k C 1

and

pr.Y D K/ D
1

P K � 1
k D 1 e� k C x0� k C 1
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3. Compute the cumulative probability forY � j :

Pj D
jX

k D 1

pr.Y D k/

4. Draw a random uniform variate,u, between 0 and 1, then impute

Y D

8
<

:

1 if u < p 1

k if pk � 1 � u < p k
K if pK � 1 � u

Logistic Regression with Augmented Data

In a logistic regression model, you might not be able to �nd the maximum likelihood estimates of the
parameters if there is no overlap of the sample points from response groups—that is, if the data points have
either a complete separation pattern or a quasi-complete separation pattern.

Complete separation of data points occurs when a linear combination of predictors correctly allocates all
observations to their response groups. Quasi-complete separation occurs when a linear combination of
predictors correctly allocates all observations to their response groups except for a subset of observations
where the values of linear combinations of predictors are identical. For more information about complete sep-
aration patterns and quasi-complete separation patterns, see the section “Existence of Maximum Likelihood
Estimates” on page 5463 in Chapter 73, “The LOGISTIC Procedure.”

To address the separation issue in multiple imputation, White, Daniel, and Royston (2010) add observations
to each response group and then use the augmented data to �t a weighted logistic regression. In each response
group, 2p observations are added, wherep is the number of predictors. More speci�cally, corresponding to
each predictor, two observations are added: the �rst with the predictor mean minus the predictor standard
deviation, and the second with the predictor mean plus the predictor standard deviation. In both observations,
the values of other predictors are �xed at their corresponding means. Each additional observation contributes
the same weight, and the total added weight isp+1. Each available observation in the data set (before
augmentation) has a weight of 1. With this approach, there is an overlap of sample points, and maximum
likelihood estimates can be obtained.

In the MONOTONE and FCS statements, the LIKELIHOOD=AUGMENT suboption in the LOGISTIC
option requests maximum likelihood estimates based on augmented data. When LIKELIHOOD=AUGMENT,
you can use the WEIGHT=w option to specify the total added weightw explicitly, or you can use the
WEIGHT=NPARM option to specify the number of parameters as the total added weight. More speci�cally,
for logistic regression models that consist only ofp continuous effects, the added weight isp+1 for a simple
binary logistic model,p+k–1 for an ordinal response model, and (p+1) (k–1) for a nominal response model,
wherek is the number of response levels.

If the ratio between the number of parameters and the number of available observations (before augmentation)
is large, the effect from the added observations in the computation of maximum likelihood estimates can
be signi�cant. You can use the MULT=m suboption in the WEIGHT=NPARM option to reduce the total
added weight, where the multiplier 0 <m � 1. The resulting total added weight is thenm times the number
of parameters. Alternatively, you can use the WEIGHT=w option to specify a smaller total added weightw
explicitly.
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Monotone Propensity Score Method

The propensity score method is another imputation method available for continuous variables when the data
set has a monotone missing pattern.

A propensity score is generally de�ned as the conditional probability of assignment to a particular treatment
given a vector of observed covariates (Rosenbaum and Rubin 1983). In the propensity score method, for a
variable with missing values, a propensity score is generated for each observation to estimate the probability
that the observation is missing. The observations are then grouped based on these propensity scores, and an
approximate Bayesian bootstrap imputation (Rubin 1987, p. 124) is applied to each group (Lavori, Dawson,
and Shera 1995).

The propensity score method uses the following steps to impute values for variableYj with missing values:

1. Creates an indicator variableRj with the value 0 for observations with missingYj and 1 otherwise.

2. Fits a logistic regression model

logit .p j / D � 0 C � 1 X1 C � 2 X2 C : : : C � k Xk

whereX1; X2; : : : ; Xk are covariates forYj , p j D Pr.R j D 0jX1; X2; : : : ; Xk / , and logit .p/ D
log.p=.1 � p//:

3. Creates a propensity score for each observation to estimate the probability that it is missing.

4. Divides the observations into a �xed number of groups (typically assumed to be �ve) based on these
propensity scores.

5. Applies an approximate Bayesian bootstrap imputation to each group. In groupk, suppose thatYobs

denotes then1 observations with nonmissingYj values andYmis denotes then0 observations with
missingYj . The approximate Bayesian bootstrap imputation �rst drawsn1 observations randomly
with replacement fromYobs to create a new data setY �

obs. This is a nonparametric analog of drawing
parameters from the posterior predictive distribution of the parameters. The process then draws then0

values forYmis randomly with replacement fromY �
obs.

Steps 1 through 5 are repeated sequentially for each variable with missing values.

The propensity score method was originally designed for a randomized experiment with repeated measures
on the response variables. The goal was to impute the missing values on the response variables. The method
uses only the covariate information that is associated with whether the imputed variable values are missing; it
does not use correlations among variables. It is effective for inferences about the distributions of individual
imputed variables, such as a univariate analysis, but it is not appropriate for analyses that involve relationship
among variables, such as a regression analysis (Schafer 1999, p. 11). It can also produce badly biased
estimates of regression coef�cients when data on predictor variables are missing (Allison 2000).

FCS Methods for Data Sets with Arbitrary Missing Patterns

For a data set with an arbitrary missing data pattern, you can use FCS methods to impute missing values
for all variables, assuming the existence of a joint distribution for these variables (Brand 1999; Van Buuren
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2007). FCS method involves two phases in each imputation: the preliminary �lled-in phase followed by the
imputation phase.

At the �lled-in phase, the missing values for all variables are �lled in sequentially over the variables taken
one at a time. The missing values for each variable are �lled in using the speci�ed method, or the default
method for the variable if a method is not speci�ed, with preceding variables serving as the covariates. These
�lled-in values provide starting values for these missing values at the imputation phase.

At the imputation phase, the missing values for each variable are imputed using the speci�ed method and
covariates at each iteration. The default method for the variable is used if a method is not speci�ed, and the
remaining variables are used as covariates if the set of covariates is not speci�ed. After a number of iterations,
as speci�ed with the NBITER= option, the imputed values in each variable are used for the imputation. At
each iteration, the missing values are imputed sequentially over the variables taken one at a time.

The MI procedure orders the variables as they are ordered in the VAR statement. For example, if the order of
thep variables in the VAR statement isY1, Y2, . . . ,Yp , thenY1, Y2, . . . ,Yp (in that order) are used in the
�lled-in and imputation phases.

The �lled-in phase replaces missing values with �lled-in values for each variable. That is, withp variables
Y1, Y2, . . . ,Yp (in that order), the missing values are �lled in by using the sequence,

� .0/
1 � P . � 1 j Y1. obs/ /

Y .0/
1. � / � P . Y1 j � .0/

1 /

Y .0/
1 D .Y1. obs/ ; Y .0/

1. � / /

: : :

: : :

� .0/
p � P . � p j Y .0/

1 ; : : : ; Y .0/
p � 1; Yp. obs/ /

Y .0/
p. � / � P . Yp j � .0/

p /

Y .0/
p D .Yp. obs/ ; Y .0/

p. � / /

whereYj. obs/ is the set of observedYj values,Y .0/
j. � / is the set of �lled-inYj values,Y .0/

j is the set of both

observed and �lled-inYj values, and� .0/
j is the set of simulated parameters for the conditional distribution

of Yj given variablesY1, Y2, . . . ,Yj � 1.

For each variableYj with missing values, the corresponding imputation method is used to �t the model
with covariatesY1; Y2; : : : ; Yj � 1. The observed observations forYj , which might include observations with
�lled-in values for Y1; Y2; : : : ; Yj � 1, are used in the model �tting. With this resulting model, a new model is
drawn and then used to impute missing values forYj .

The imputation phase replaces these �lled-in valuesY .0/
j. � / with imputed values for each variable sequentially

at each iteration. That is, withp variablesY1, Y2, . . . ,Yp (in that order), the missing values are imputed with
the sequence at iterationt + 1,
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� .t C 1/
1 � P . � 1 j Y1. obs/ ; Y .t /

2 ; : : : ; Y .t /
p /

Y .t C 1/
1. � / � P . Y1 j � .t C 1/

1 /

Y .t C 1/
1 D .Y1. obs/ ; Y .t C 1/

1. � / /

: : :

: : :

� .t C 1/
p � P . � p j Y .t C 1/

1 ; : : : ; Y .t C 1/
p � 1 ; Yp. obs/ /

Y .t C 1/
p. � / � P . Yp j � .t C 1/

p /

Y .t C 1/
p D .Yp. obs/ ; Y .t C 1/

p. � / /

whereYj. obs/ is the set of observedYj values,Y .t C 1/
j. � / is the set of imputedYj values at iterationt + 1, Y .t /

j. � /

is the set of �lled-inYj values (t = 0) or the set of imputedYj values at iterationt (t > 0), Y .t C 1/
j is the set of

both observed and imputedYj values at iterationt + 1, and� .t C 1/
j is the set of simulated parameters for the

conditional distribution ofYj given covariates constructed fromY1, . . . ,Yj � 1, Yj C 1, . . . ,Yp .

At each iteration, a speci�ed model is �tted for each variable with missing values by using observed
observations for that variable, which might include observations with imputed values for other variables.
With this resulting model, a new model is drawn and then used to impute missing values for the imputed
variable.

The steps are iterated long enough for the results to reliably simulate an approximately independent draw of
the missing values for an imputed data set.

The imputation methods used in the �lled-in and imputation phases are similar to the corresponding monotone
methods for monotone missing data. You can use a regression method or a predictive mean matching method
to impute missing values for a continuous variable, a logistic regression method for a classi�cation variable
with a binary or ordinal response, and a discriminant function method for a classi�cation variable with a
binary or nominal response. See the sections “Monotone and FCS Regression Methods” on page 5984,
“Monotone and FCS Predictive Mean Matching Methods” on page 5985, “Monotone and FCS Discriminant
Function Methods” on page 5986, and “Monotone and FCS Logistic Regression Methods” on page 5988 for
these methods.

The FCS method requires fewer iterations than the MCMC method (Van Buuren 2007). Often, as few as �ve
or 10 iterations are enough to produce satisfactory results (Van Buuren 2007; Brand 1999).

Checking Convergence in FCS Methods

The parameters used in the imputation step at each iteration can be saved in an output data set with the
OUTITER= option. These include the means and standard deviations. You can then monitor the convergence
by displaying trace plots for those parameter values with the PLOTS=TRACE option.

A trace plot for a parameter� is a scatter plot of successive parameter estimates� i against the iteration
numberi. The plot provides a simple way to examine the convergence behavior of the estimation algorithm
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for � . Long-term trends in the plot indicate that successive iterations are highly correlated and that the series
of iterations has not converged.

You can display trace plots for the variable means and standard deviations. You can also request logarithmic
transformations for positive parameters in the plots with the LOG option. With the LOG option, if a parameter
value is less than or equal to zero, then the value is not displayed in the corresponding plot.

See Example 76.8 for a usage of the trace plot.

MCMC Method for Arbitrary Missing Multivariate Normal Data

The Markov chain Monte Carlo (MCMC) method originated in physics as a tool for exploring equilibrium
distributions of interacting molecules. In statistical applications, it is used to generate pseudorandom draws
from multidimensional and otherwise intractable probability distributions via Markov chains. A Markov
chain is a sequence of random variables in which the distribution of each element depends only on the value
of the previous element.

In MCMC simulation, you constructs a Markov chain long enough for the distribution of the elements to
stabilize to a stationary distribution, which is the distribution of interest. Repeatedly simulating steps of the
chain simulates draws from the distribution of interest. See Schafer (1997) for a detailed discussion of this
method.

In Bayesian inference, information about unknown parameters is expressed in the form of a posterior
probability distribution. This posterior distribution is computed using Bayes' theorem,

p. � jy/ D
p.y j� /p. � /

R
p.y j� /p. � /d �

MCMC has been applied as a method for exploring posterior distributions in Bayesian inference. That is,
through MCMC, you can simulate the entire joint posterior distribution of the unknown quantities and obtain
simulation-based estimates of posterior parameters that are of interest.

In many incomplete-data problems, the observed-data posteriorp. � jYobs/ is intractable and cannot easily be
simulated. However, whenYobs is augmented by an estimated or simulated value of the missing dataYmis ,
the complete-data posteriorp. � jYobs; Ymis / is much easier to simulate. Assuming that the data are from a
multivariate normal distribution, data augmentation can be applied to Bayesian inference with missing data
by repeating the following steps:

1. The imputation I-step
Given an estimated mean vector and covariance matrix, the I-step simulates the missing values for each
observation independently. That is, if you denote the variables with missing values for observationi by
Yi . mis / and the variables with observed values byYi . obs/ , then the I-step draws values forYi . mis / from a
conditional distribution forYi . mis / givenYi . obs/ .

2. The posterior P-step
Given a complete sample, the P-step simulates the posterior population mean vector and covariance matrix.
These new estimates are then used in the next I-step. Without prior information about the parameters, a
noninformative prior is used. You can also use other informative priors. For example, a prior information
about the covariance matrix can help to stabilize the inference about the mean vector for a near singular
covariance matrix.
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That is, with a current parameter estimate� .t / at the tth iteration, the I-step drawsY .t C 1/
mis from

p.Ymis jYobs; � .t / / and the P-step draws� .t C 1/ from p. � jYobs; Y .t C 1/
mis / . The two steps are iterated long

enough for the results to reliably simulate an approximately independent draw of the missing values for a
multiply imputed data set (Schafer 1997).

This creates a Markov chain.Y .1/
mis ; � .1/ / , .Y .2/

mis ; � .2/ / , . . . , which converges in distribution to
p.Ymis ; � jYobs/ . Assuming the iterates converge to a stationary distribution, the goal is to simulate an
approximately independent draw of the missing values from this distribution.

To validate the imputation results, you should repeat the process with different random number generators
and starting values based on different initial parameter estimates.

The next three sections provide details for the imputation step, Bayesian estimation of the mean vector and
covariance matrix, and the posterior step.

Imputation Step

In each iteration, starting with a given mean vector� and covariance matrix† , the imputation step draws
values for the missing data from the conditional distributionYmis givenYobs.

Suppose� D
�
� 0

1; � 0
2

� 0 is the partitioned mean vector of two sets of variables,Yobs andYmis , where� 1 is
the mean vector for variablesYobs and� 2 is the mean vector for variablesYmis .

Also suppose

† D
�

† 11 † 12

† 0
12 † 22

�

is the partitioned covariance matrix for these variables, where† 11 is the covariance matrix for variablesYobs,
† 22 is the covariance matrix for variablesYmis , and† 12 is the covariance matrix between variablesYobs

and variablesYmis .

By using the sweep operator (Goodnight 1979) on the pivots of the† 11 submatrix, the matrix becomes

�
† � 1

11 † � 1
11 † 12

� † 0
12† � 1

11 † 22:1

�

where† 22:1 D † 22 � † 0
12† � 1

11 † 12 can be used to compute the conditional covariance matrix ofYmis after
controlling forYobs.

For an observation with the preceding missing pattern, the conditional distribution ofYmis givenYobs D y1

is a multivariate normal distribution with the mean vector

� 2:1 D � 2 C † 0
12† � 1

11 .y1 � � 1/

and the conditional covariance matrix

† 22:1 D † 22 � † 0
12† � 1

11 † 12
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Bayesian Estimation of the Mean Vector and Covariance Matrix

Suppose thatY D . y0
1; y0

2; : : : ; y0
n /0 is an.n� p/ matrix made up ofn .p � 1/ independent vectorsyi , each of

which has a multivariate normal distribution with mean zero and covariance matrixƒ . Then the SSCP matrix

A D Y0Y D
X

i

yi y0
i

has a Wishart distributionW.n; ƒ /.

When each observationyi is distributed with a multivariate normal distribution with an unknown mean� ,
then the CSSCP matrix

A D
X

i

.yi � y/. yi � y/0

has a Wishart distributionW.n � 1;ƒ /.

If A has a Wishart distributionW.n; ƒ /, thenB D A � 1 has an inverted Wishart distributionW � 1.n; ‰/,
wheren is the degrees of freedom and‰D ƒ � 1 is the precision matrix (Anderson 1984).

Note that, instead of using the parameter‰D ƒ � 1 for the inverted Wishart distribution, Schafer (1997) uses
the parameterƒ .

Suppose that each observation in the data matrixY has a multivariate normal distribution with mean� and
covariance matrix† . Then with a prior inverted Wishart distribution for† and a prior normal distribution
for �

† � W � 1 . m; ‰/

� j† � N
�

� 0;
1
�

†
�

where� > 0 is a �xed number.

The posterior distribution (Anderson 1984, p. 270; Schafer 1997, p. 152) is

† jY � W � 1
�

n C m; .n � 1/SC ‰C
n�

n C �
.y � � 0/. y � � 0/0

�

� j.† ; Y/ � N
�

1
n C �

.ny C � � 0/;
1

n C �
†

�

where.n � 1/S is the CSSCP matrix.

Posterior Step

In each iteration, the posterior step simulates the posterior population mean vector� and covariance matrix
† from prior information for� and† , and the complete sample estimates.

You can specify the prior parameter information by using one of the following methods:

� PRIOR=JEFFREYS, which uses a noninformative prior
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� PRIOR=INPUT=, which provides a prior information for† in the data set. Optionally, it also provides
a prior information for� in the data set.

� PRIOR=RIDGE=, which uses a ridge prior

The next four subsections provide details of the posterior step for different prior distributions.

1. A Noninformative Prior
Without prior information about the mean and covariance estimates, you can use a noninformative prior by
specifying the PRIOR=JEFFREYS option. The posterior distributions (Schafer 1997, p. 154) are

† .t C 1/ jY � W � 1 . n � 1; .n � 1/S/

� .t C 1/ j.† .t C 1/ ; Y/ � N
�

y;
1
n

† .t C 1/
�

2. An Informative Prior for � and †
When prior information is available for the parameters� and† , you can provide it with a SAS data set that
you specify with the PRIOR=INPUT= option:

† � W � 1 �
d � ; d � S� �

� j† � N
�

� 0;
1
n0

†
�

To obtain the prior distribution for† , PROC MI reads the matrixS� from observations in the data set with
_TYPE_=`COV', and it readsn� D d � C 1 from observations with_TYPE_=`N'.

To obtain the prior distribution for� , PROC MI reads the mean vector� 0 from observations with
_TYPE_=`MEAN', and it readsn0 from observations with_TYPE_=`N_MEAN'. When there are no
observations with_TYPE_=`N_MEAN', PROC MI readsn0 from observations with_TYPE_=`N'.

The resulting posterior distribution, as described in the section “Bayesian Estimation of the Mean Vector and
Covariance Matrix” on page 5997, is given by

† .t C 1/ jY � W � 1 �
n C d � ; .n � 1/SC d � S� C Sm

�

� .t C 1/ j
�
† .t C 1/ ; Y

�
� N

�
1

n C n0
.ny C n0� 0/;

1
n C n0

† .t C 1/
�

where

Sm D
nn0

n C n0
.y � � 0/. y � � 0/0
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3. An Informative Prior for †
When the sample covariance matrixS is singular or near singular, prior information about† can also be used
without prior information about� to stabilize the inference about� . You can provide it with a SAS data set
that you specify with the PRIOR=INPUT= option.

To obtain the prior distribution for† , PROC MI reads the matrixS� from observations in the data set with
_TYPE_=`COV', and it readsn� from observations with_TYPE_=`N'.

The resulting posterior distribution for. � ; † / (Schafer 1997, p. 156) is

† .t C 1/ jY � W � 1 �
n C d � ; .n � 1/SC d � S� �

� .t C 1/ j
�
† .t C 1/ ; Y

�
� N

�
y;

1
n

† .t C 1/
�

Note that if the PRIOR=INPUT= data set also contains observations with_TYPE_=`MEAN', then a complete
informative prior for both� and† will be used.

4. A Ridge Prior
A special case of the preceding adjustment is a ridge prior withS� = Diag.S/ (Schafer 1997, p. 156). That
is, S� is a diagonal matrix with diagonal elements equal to the corresponding elements inS.

You can request a ridge prior by using the PRIOR=RIDGE= option. You can explicitly specify the number
d � � 1 in the PRIOR=RIDGE=d � option. Or you can implicitly specify the number by specifying the
proportionp in the PRIOR=RIDGE=p option to requestd � D .n � 1/p .

The posterior is then given by

† .t C 1/ jY � W � 1 �
n C d � ; .n � 1/SC d � Diag.S/

�

� .t C 1/
�
�
�
�
† .t C 1/ ; Y

�
� N

�
y;

1
n

† .t C 1/
�

Producing Monotone Missingness with the MCMC Method

The monotone data MCMC method was �rst proposed by Li (1988) and Liu (1993) described the algorithm.
The method is useful especially when a data set is close to having a monotone missing pattern. In this case,
the method needs to impute only a few missing values to the data set to have a monotone missing pattern
in the imputed data set. Compared to a full data imputation that imputes all missing values, the monotone
data MCMC method imputes fewer missing values in each iteration and achieves approximate stationarity in
fewer iterations (Schafer 1997, p. 227).

You can request the monotone MCMC method by specifying the option IMPUTE=MONOTONE in the
MCMC statement. The “Missing Data Patterns” table now denotes the variables with missing values by “.” or
“O”. The value “.” means that the variable is missing and will be imputed, and the value “O” means that the
variable is missing and will not be imputed. The “Variance Information” and “Parameter Estimates” tables
are not created.
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You must specify the variables in the VAR statement. The variable order in the list determines the monotone
missing pattern in the imputed data set. With a different order in the VAR list, the results will be different
because the monotone missing pattern to be constructed will be different.

Assuming that the data are from a multivariate normal distribution, then like the MCMC method, the
monotone MCMC method repeats the following steps:

1. The imputation I-step
Given an estimated mean vector and covariance matrix, the I-step simulates the missing values for each
observation independently. Only a subset of missing values are simulated to achieve a monotone pattern of
missingness.

2. The posterior P-step
Given a new sample with a monotone pattern of missingness, the P-step simulates the posterior population
mean vector and covariance matrix with a noninformative Jeffreys prior. These new estimates are then used
in the next I-step.

Imputation Step

The I-step is almost identical to the I-step described in the section “MCMC Method for Arbitrary Missing
Multivariate Normal Data” on page 5995 except that only a subset of missing values need to be simulated.
To state this precisely, denote the variables with observed values for observationi by Yi . obs/ and the variables
with missing values byYi . mis / D .Yi . m1 / ; Yi . m2 / / , whereYi . m1 / is a subset of the missing variables that
will cause a monotone missingness when their values are imputed. Then the I-step draws values forYi . m1 /
from a conditional distribution forYi . m1 / givenYi . obs/ .

Posterior Step

The P-step is different from the P-step described in the section “MCMC Method for Arbitrary Missing
Multivariate Normal Data” on page 5995. Instead of simulating the� and† parameters from the full
imputed data set, this P-step simulates the� and† parameters through simulated regression coef�cients
from regression models based on the imputed data set with a monotone pattern of missingness. The step is
similar to the process described in the section “Monotone and FCS Regression Methods” on page 5984.

That is, for the variableYj , a model

Yj D � 0 C � 1 Y1 C � 2 Y2 C : : : C � j � 1 Yj � 1

is �tted usingnj nonmissing observations for variableYj in the imputed data sets.

The �tted model consists of the regression parameter estimatesO� D . O� 0; O� 1; : : : ; O� j � 1/ and the associ-
ated covariance matrixO� 2

j V j , whereV j is the usualX0X inverse matrix from the intercept and variables
Y1; Y2; : : : ; Yj � 1.

For each imputation, new parameters� � D .� � 0; � � 1; : : : ; � � .j � 1/ / and� 2
� j are drawn from the posterior

predictive distribution of the parameters. That is, they are simulated from. O� 0; O� 1; : : : ; O� j � 1/ , � 2
j , andV j .

The variance is drawn as

� 2
� j D O� 2

j .n j � j /=g

whereg is a � 2
n j � p C j � 1 random variate andnj is the number of nonmissing observations forYj . The

regression coef�cients are drawn as

� � D O� C � � j V0
hj Z
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whereVhj is the upper triangular matrix in the Cholesky decomposition,V j D V0
hj Vhj , andZ is a vector of

j independent random normal variates.

These simulated values of� � and� 2
� j are then used to re-create the parameters� and† . For a detailed

description of how to produce monotone missingness with the MCMC method for a multivariate normal data,
see Schafer (1997, pp. 226–235).

MCMC Method Speci�cations

With the MCMC method, you can impute either all missing values (IMPUTE=FULL) or just enough missing
values to make the imputed data set have a monotone missing pattern (IMPUTE=MONOTONE). In the
process, either a single chain for all imputations (CHAIN=SINGLE) or a separate chain for each imputation
(CHAIN=MULTIPLE) is used. The single chain might be somewhat more precise for estimating a single
quantity such as a posterior mean (Schafer 1997, p. 138). See Schafer (1997, pp. 137–138) for a discussion
of single versus multiple chains.

You can specify the number of initial burn-in iterations before the �rst imputation with the NBITER= option.
This number is also used for subsequent chains for multiple chains. For a single chain, you can also specify
the number of iterations between imputations with the NITER= option.

You can explicitly specify initial parameter values for the MCMC method with the INITIAL=INPUT= data
set option. Alternatively, you can use the EM algorithm to derive a set of initial parameter values for MCMC
with the option INITIAL=EM. These estimates are used as either the starting value (START=VALUE) or
the starting distribution (START=DIST) for the MCMC method. For multiple chains, these estimates are
used again as either the starting value (START=VALUE) or the starting distribution (START=DIST) for the
subsequent chains.

You can specify the prior parameter information in the PRIOR= option. You can use a noninformative
prior (PRIOR=JEFFREYS), a ridge prior (PRIOR=RIDGE), or an informative prior speci�ed in a data set
(PRIOR=INPUT).

The parameter estimates used to generate imputed values in each imputation can be saved in a data set with
the OUTEST= option. Later, this data set can be read with the INEST= option to provide the reference
distribution for imputing missing values for a new data set.

By default, the MCMC method uses a single chain to produce �ve imputations. It completes 200 burn-in
iterations before the �rst imputation and 100 iterations between imputations. The posterior mode computed
from the EM algorithm with a noninformative prior is used as the starting values for the MCMC method.

INITIAL=EM Speci�cations

The EM algorithm is used to �nd the maximum likelihood estimates for incomplete data in the EM statement.
You can also use the EM algorithm to �nd a posterior mode, the parameter estimates that maximize the
observed-data posterior density. The resulting posterior mode provides a good starting value for the MCMC
method.

With the INITIAL=EM option, PROC MI uses the MLE of the parameter vector as the initial estimates in the
EM algorithm for the posterior mode. You can use the ITPRINT option within the INITIAL=EM option to
display the iteration history for the EM algorithm.
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You can use the CONVERGE= option to specify the convergence criterion in deriving the EM posterior
mode. The iterations are considered to have converged when the maximum change in the parameter estimates
between iteration steps is less than the value speci�ed. By default, CONVERGE=1E–4.

You can also use the MAXITER= option to specify the maximum number of iterations of the EM algorithm.
By default, MAXITER=200.

With the BOOTSTRAP option, you can use overdispersed starting values for the MCMC method. In this
case, PROC MI applies the EM algorithm to a bootstrap sample, a simple random sample with replacement
from the input data set, to derive the initial estimates for each chain (Schafer 1997, p. 128).

Checking Convergence in MCMC

The theoretical convergence of the MCMC method has been explored under various conditions, as described
in Schafer (1997, p. 70). However, in practice, veri�cation of convergence is not a simple matter.

The parameters used in the imputation step for each iteration can be saved in an output data set with the
OUTITER= option. These include the means, standard deviations, covariances, worst linear function, and
observed-data LR statistics. You can then monitor the convergence in a single chain by displaying trace
plots and autocorrelations for those parameter values (Schafer 1997, p. 120). The trace and autocorrelation
function plots for parameters such as variable means, covariances, and the worst linear function can be
displayed by specifying the PLOTS=TRACE and PLOTS=ACF options, respectively.

You can apply the EM algorithm to a bootstrap sample to obtain overdispersed starting values for multiple
chains (Gelman and Rubin 1992). This provides a conservative estimate of the number of iterations needed
before each imputation.

The next four subsections describe useful statistics and plots that can be used to check the convergence of the
MCMC method.

LR Statistics

You can save the observed-data likelihood ratio (LR) statistic in each iteration with the LR option in the
OUTITER= data set. The statistic is based on the observed-data likelihood with parameter values used in the
iteration and the observed-data maximum likelihood derived from the EM algorithm.

In each iteration, the LR statistic is given by

� 2 log

 
f . O� i /

f . O� /

!

wheref . O� / is the observed-data maximum likelihood derived from the EM algorithm andf . O� i / is the
observed-data likelihood forO� i used in the iteration.

Similarly, you can also save the observed-data LR posterior mode statistic for each iteration with the
LR_POST option. This statistic is based on the observed-data posterior density with parameter values used
in each iteration and the observed-data posterior mode derived from the EM algorithm for posterior mode.

For large samples, these LR statistics tends to be approximately� 2 distributed with degrees of freedom equal
to the dimension of� (Schafer 1997, p. 131). For example, with a large number of iterations, if the values of
the LR statistic do not behave like a random sample from the described� 2 distribution, then there is evidence
that the MCMC method has not converged.
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Worst Linear Function of Parameters

The worst linear function (WLF) of parameters (Schafer 1997, pp. 129–131) is a scalar function of parameters
� and† that is “worst” in the sense that its function values converge most slowly among parameters in the
MCMC method. The convergence of this function is evidence that other parameters are likely to converge as
well.

For linear functions of parameters� D .� ; † / , a worst linear function of� has the highest asymptotic rate
of missing information. The function can be derived from the iterative values of� near the posterior mode in
the EM algorithm. That is, an estimated worst linear function of� is

w. � / D v0. � � O� /

where O� is the posterior mode and the coef�cientsv D O� . � 1/ � O� are the difference between the estimated
value of� one step prior to convergence and the converged valueO� .

You can display the coef�cients of the worst linear function,v, by specifying the WLF option in the MCMC
statement. You can save the function value from each iteration in an OUTITER= data set by specifying the
WLF option within the OUTITER option. You can also display the worst linear function values from iterations
in an autocorrelation plot or a trace plot by specifying PLOTS=ACF(WLF) or PLOTS=TRACE(WLF),
respectively.

Note that when the observed-data posterior is nearly normal, the WLF is one of the slowest functions to
approach stationarity. When the posterior is not close to normal, other functions might take much longer than
the WLF to converge, as described in Schafer (1997, p.130).

Trace Plot

A trace plot for a parameter� is a scatter plot of successive parameter estimates� i against the iteration
numberi. The plot provides a simple way to examine the convergence behavior of the estimation algorithm
for � . Long-term trends in the plot indicate that successive iterations are highly correlated and that the series
of iterations has not converged.

You can display trace plots for worst linear function, variable means, variable variances, and covariances of
variables. You can also request logarithmic transformations for positive parameters in the plots with the LOG
option. When a parameter value is less than or equal to zero, the value is not displayed in the corresponding
plot. See Example 76.11 for a usage of the trace plot.

Autocorrelation Function Plot

To examine relationships of successive parameter estimates� , the autocorrelation function (ACF) can be
used. For a stationary series,� i ; i � 1, in trace data, the autocorrelation function at lagk is

� k D
Cov.� i ; � i C k /

Var.� i /

The samplekth order autocorrelation is computed as

rk D

P n� k
i D 1 .� i � �/.� i C k � �/

P n
i D 1.� i � �/ 2
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You can display autocorrelation function plots for the worst linear function, variable means, variable variances,
and covariances of variables. You can also request logarithmic transformations for parameters in the plots
with the LOG option. When a parameter has values less than or equal to zero, the corresponding plot is not
created.

You specify the maximum number of lags of the series with the NLAG= option. The autocorrelations at
each lag less than or equal to the speci�ed lag are displayed in the graph. In addition, the plot also displays
approximate 95% con�dence limits for the autocorrelations. At lagk, the con�dence limits indicate a set
of approximate 95% critical values for testing the hypothesis� j D 0; j � k: See Example 76.11 for an
illustration of the autocorrelation function plot.

Input Data Sets

You can specify the input data set with missing values by using the DATA= option in the PROC MI statement.
When an MCMC method is used, you can specify the data set that contains the reference distribution
information for imputation with the INEST= option, the data set that contains initial parameter estimates for
the MCMC method with the INITIAL=INPUT= option, and the data set that contains information for the
prior distribution with the PRIOR=INPUT= option in the MCMC statement.

When the ADJUST option is speci�ed in the MNAR statement, you can use the PARMS= option to specify
the data set that contains adjustment parameters for the sensitivity analysis.

DATA=SAS-data-set

The input DATA= data set is an ordinary SAS data set that contains multivariate data with missing values.

INEST=SAS-data-set

The input INEST= data set is a TYPE=EST data set and contains a variable_Imputation_ to identify
the imputation number. For each imputation, PROC MI reads the point estimate from the observations
with _TYPE_=`PARM' or _TYPE_=`PARMS' and the associated covariances from the observations with
_TYPE_=`COV' or _TYPE_=`COVB'. These estimates are used as the reference distribution to impute
values for observations in the DATA= data set. When the input INEST= data set also contains observations
with _TYPE_=`SEED', PROC MI reads the seed information for the random number generator from these
observations. Otherwise, the SEED= option provides the seed information.

INITIAL=INPUT=SAS-data-set

The input INITIAL=INPUT= data set is a TYPE=COV or CORR data set and provides initial parameter
estimates for the MCMC method. The covariances derived from the TYPE=COV/CORR data set are divided
by the number of observations to get the correct covariance matrix for the point estimate (sample mean).

If TYPE=COV, PROC MI reads the number of observations from the observations with_TYPE_=`N', the
point estimate from the observations with_TYPE_=`MEAN', and the covariances from the observations
with _TYPE_=`COV'.

If TYPE=CORR, PROC MI reads the number of observations from the observations with_TYPE_=`N', the
point estimate from the observations with_TYPE_=`MEAN', the correlations from the observations with
_TYPE_=`CORR', and the standard deviations from the observations with_TYPE_=`STD'.
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PARMS= SAS-data-set

The input PARMS= data set is an ordinary SAS data set that contains adjustment parameters for imputed
values of the speci�ed imputed variables.

The PARMS= data set contains variables_Imputation_ for the imputation number, the SHIFT= or DELTA=
variable for the shift parameter, and the SCALE= variable for the scale parameter. Either the shift or scale
variable must be included in the data set.

PRIOR=INPUT=SAS-data-set

The input PRIOR=INPUT= data set is a TYPE=COV data set that provides information for the prior
distribution. You can use the data set to specify a prior distribution for† of the form

† � W � 1 �
d � ; d � S� �

whered � D n� � 1 is the degrees of freedom. PROC MI reads the matrixS� from observations with
_TYPE_=`COV' and readsn� from observations with_TYPE_=`N'.

You can also use this data set to specify a prior distribution for� of the form

� � N
�

� 0;
1
n0

†
�

PROC MI reads the mean vector� 0 from observations with_TYPE_=`MEAN' and readsn0 from observa-
tions with_TYPE_=`N_MEAN'. When there are no observations with_TYPE_=`N_MEAN', PROC MI
readsn0 from observations with_TYPE_=`N'.

Output Data Sets

You can specify the output data set of imputed values with the OUT= option in the PROC MI statement.
When an EM statement is used, you can specify the data set that contains the original data set with missing
values being replaced by the expected values from the EM algorithm by using the OUT= option in the EM
statement. You can also specify the data set that contains MLE computed with the EM algorithm by using
the OUTEM= option.

When an MCMC method is used, you can specify the data set that contains parameter estimates used in each
imputation with the OUTEST= option in the MCMC statement, and you can specify the data set that contains
parameters used in the imputation step for each iteration with the OUTITER option in the MCMC statement.

OUT=SAS-data-set in the PROC MI statement

The OUT= data set contains all the variables in the original data set and a new variable named_Imputation_
that identi�es the imputation. For each imputation, the data set contains all variables in the input DATA=
data set with missing values being replaced by imputed values. Note that when the NIMPUTE=1 option is
speci�ed, the variable_Imputation_ is not created.
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OUT=SAS-data-set in an EM statement

The OUT= data set contains the original data set with missing values being replaced by expected values from
the EM algorithm.

OUTEM=SAS-data-set

The OUTEM= data set is a TYPE=COV data set and contains the MLE computed with the EM algorithm. The
observations with_TYPE_=`MEAN' contain the estimated mean and the observations with_TYPE_=`COV'
contain the estimated covariances.

OUTEST=SAS-data-set

The OUTEST= data set is a TYPE=EST data set and contains parameter estimates used in each imputation in
the MCMC method. It also includes an index variable named_Imputation_, which identi�es the imputation.

The observations with_TYPE_=`SEED' contain the seed information for the random number generator. The
observations with_TYPE_=`PARM' or _TYPE_=`PARMS' contain the point estimate, and the observations
with _TYPE_=`COV' or _TYPE_=`COVB' contain the associated covariances. These estimates are used as
the parameters of the reference distribution to impute values for observations in the DATA= dataset.

Note that these estimates are the values used in the I-step before each imputation. These are not the parameter
values simulated from the P-step in the same iteration. See Example 76.12 for a usage of this option.

OUTITER < (options) > =SAS-data-set in an EM statement

The OUTITER= data set in an EM statement is a TYPE=COV data set and contains parameters for each
iteration. It also includes a variable_Iteration_ that provides the iteration number.

The parameters in the output data set depend on the options speci�ed. You can specify the MEAN and
COV options for OUTITER. With the MEAN option, the output data set contains the mean parameters
in observations with the variable_TYPE_=`MEAN'. Similarly, with the COV option, the output data set
contains the covariance parameters in observations with the variable_TYPE_=`COV'. When no options are
speci�ed, the output data set contains the mean parameters for each iteration.

OUTITER < (options) > =SAS-data-set in an FCS statement

The OUTITER= data set in an FCS statement is a TYPE=COV data set and contains parameters for each
iteration. It also includes variables named_Imputation_ and_Iteration_, which provide the imputation
number and iteration number.

The parameters in the output data set depend on the options speci�ed. You can specify the MEAN and STD
options for OUTITER. With the MEAN option, the output data set contains the mean parameters used in the
imputation in observations with the variable_TYPE_=`MEAN'. Similarly, with the STD option, the output
data set contains the standard deviation parameters used in the imputation in observations with the variable
_TYPE_=`STD'. When no options are speci�ed, the output data set contains the mean parameters for each
iteration.
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OUTITER < (options) > =SAS-data-set in an MCMC statement

The OUTITER= data set in an MCMC statement is a TYPE=COV data set and contains parameters used in
the imputation step for each iteration. It also includes variables named_Imputation_ and_Iteration_, which
provide the imputation number and iteration number.

The parameters in the output data set depend on the options speci�ed. Table 76.6 summarizes the options
available for OUTITER and the corresponding values for the output variable_TYPE_.

Table 76.6 Summary of Options for OUTITER in an MCMC
statement

Option Output Parameters _TYPE_

MEAN mean parameters MEAN
STD standard deviations STD
COV covariances COV
LR –2 log LR statistic LOG_LR
LR_POST –2 log LR statistic of the posterior mode LOG_POST
WLF worst linear function WLF

When no options are speci�ed, the output data set contains the mean parameters used in the imputation step
for each iteration. For a detailed description of the worst linear function and LR statistics, see the section
“Checking Convergence in MCMC” on page 6002.

Combining Inferences from Multiply Imputed Data Sets

With m imputations,m different sets of the point and variance estimates for a parameterQ can be computed.
Suppose OQ i and OWi are the point and variance estimates from theith imputed data set,i = 1, 2, . . . ,m. Then
the combined point estimate forQ from multiple imputation is the average of them complete-data estimates:

Q D
1
m

mX

i D 1

OQ i

SupposeW is the within-imputation variance, which is the average of them complete-data estimates,

W D
1
m

mX

i D 1

OWi

andB is the between-imputation variance

B D
1

m � 1

mX

i D 1

. OQ i � Q/ 2

Then the variance estimate associated withQ is the total variance (Rubin 1987)

T D W C .1 C
1
m

/B
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The statistic.Q � Q/T � .1=2/ is approximately distributed ast with vm degrees of freedom (Rubin 1987),
where

vm D .m � 1/

"

1 C
W

.1 C m� 1/B

#2

The degrees of freedomvm depend onm and the ratio

r D
.1 C m� 1/B

W

The ratior is called the relative increase in variance due to nonresponse (Rubin 1987). When there is no
missing information aboutQ, the values ofr andB are both zero. With a large value ofm or a small value of
r, the degrees of freedomvm will be large and the distribution of.Q � Q/T � .1=2/ will be approximately
normal.

Another useful statistic is the fraction of missing information aboutQ:

O� D
r C 2=.vm C 3/

r C 1

Both statisticsr and� are helpful diagnostics for assessing how the missing data contribute to the uncertainty
aboutQ.

When the complete-data degrees of freedomv0 are small, and there is only a modest proportion of missing
data, the computed degrees of freedom,vm , can be much larger thanv0, which is inappropriate. For example,
with m= 5 andr = 10%, the computed degrees of freedomvm D 484, which is inappropriate for data sets
with complete-data degrees of freedom less than 484.

Barnard and Rubin (1999) recommend the use of adjusted degrees of freedom

v�
m D

�
1

vm
C

1
Ovobs

� � 1

where Ovobs D .1 �  / v 0.v0 C 1/=.v0 C 3/ and  D .1 C m� 1/B=T .

Note that the MI procedure uses the adjusted degrees of freedom,v�
m , for inference.

Multiple Imputation Ef�ciency

The relative ef�ciency (RE) of using the �nitem imputation estimator, rather than using an in�nite number
for the fully ef�cient imputation, in units of variance, is approximately a function ofm and� (Rubin 1987, p.
114):

RE D
�

1 C
�
m

� � 1

wheremis the number of imputations and� is the fraction of missing information.

Table 76.7 shows relative ef�ciencies with different values ofm and� .
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Table 76.7 Relative Ef�ciencies

�
m 10% 20% 30% 50% 70%

3 0.9677 0.9375 0.9091 0.8571 0.8108
5 0.9804 0.9615 0.9434 0.9091 0.8772

10 0.9901 0.9804 0.9709 0.9524 0.9346
20 0.9950 0.9901 0.9852 0.9756 0.9662

The table shows that if the fraction of missing information is modest, only a small number of imputations
are needed. For example, if� D 0:3, only three imputations are needed to have a 91% ef�ciency and �ve
imputations are needed to have a 94% ef�ciency.

Number of Imputations

In multiple imputation, the number of imputations,m, must be speci�ed in advance. The classic recommen-
dation of a smallm is based on a relative ef�ciency argument. For example, with 30% missing information,
only three imputations are needed for 91% ef�ciency and �ve imputations are needed for 94% ef�ciency.
Thus, often as few as three to �ve imputations are adequate in multiple imputation (Rubin 1996, p. 480).
For more information about the relative ef�ciency of an estimator based onmimputations, see the section
“Multiple Imputation Ef�ciency” on page 6008.

Recent studies by Graham, Olchowski, and Gilreath (2007); Bodner (2008); and Von Hippel (2009, p. 278)
note that a small number of imputations that suf�ce for high relative ef�ciency might not be adequate for
other inferential goals, such as con�dence intervals andp-values. These studies recommend much larger
numbers of imputations.

Graham, Olchowski, and Gilreath (2007) use simulations to examine the effect ofm on the power of a
hypothesis test, and they recommend the use of many more imputations than the classic recommendation
of three to �ve imputations. For example, with a 1% power falloff tolerance in multiple imputation, as
compared to an in�nite number of imputations, multiple imputation requires 20 imputations for 30% missing
information and 40 imputations for 50% missing information (Graham, Olchowski, and Gilreath 2007, p.
212).

Bodner (2008) points out that with smallm there is substantial imprecision in important statistics such as
p-values and widths of con�dence intervals. That is, different conclusions might be drawn for the same test
in separate multiple imputation runs. Bodner (2008) uses simulation to compute the minimum number of
imputations that are needed for an estimated 95% con�dence interval width to achieve a speci�ed precision.
For example, for a 95% con�dence interval width to be within 10% of its true value 95% of the time, multiple
imputation requires 24 imputations if� = 0.3 and 59 imputations if� = 0.5 (Bodner 2008, p. 668), where�
is the fraction of missing information. Because� is unknown, a conservative estimate of� is the proportion
of cases with missing values (Bodner 2008, p. 670).

Von Hippel (2009, p. 278) shows that with a small number of imputations, only the point estimates are
reliable. That is, the point estimates will not change much if the missing values are imputed again. For other
statistics (such as standard error andp-value) to be reliable, the rule of thumb is to use the percentages of
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cases with missing values as the number of imputations. White, Royston, and Wood (2011, pp. 387–388)
also suggest the use of this rule of thumb, at least when� � 0:5, and the resulting number of imputations
often provides an adequate level to reproduce the results if the missing values are imputed again.

These recent studies suggest the use of a much larger number of imputations than the classic recommendation
of three to �ve imputations. Thus, the default number of imputations in PROC MI has been changed from
NIMPUTE=5 to NIMPUTE=25 in SAS/STAT 14.1. Alternatively, you can specify NIMPUTE=PCTMISSING
to use the percentage of cases with missing values as the number of imputations.

In practice, you can verify the needed number of imputations informally by replicating sets ofm imputations
and checking whether the estimates are stable between sets (Horton and Lipsitz 2001, p. 246).

Imputer's Model Versus Analyst's Model

Multiple imputation inference assumes that the model you used to analyze the multiply imputed data (the
analyst's model) is the same as the model used to impute missing values in multiple imputation (the imputer's
model). But in practice, the two models might not be the same (Schafer 1997, p. 139).

Schafer (1997, pp. 139–143) provides comprehensive coverage of this topic, and the following example is
based on his work.

Consider a trivariate data set with variablesY1 andY2 fully observed, and a variableY3 with missing values.
An imputer creates multiple imputations with the modelY3 D Y1 Y2. However, the analyst can later use the
simpler modelY3 D Y1. In this case, the analyst assumes more than the imputer. That is, the analyst assumes
there is no relationship between variablesY3 andY2.

The effect of the discrepancy between the models depends on whether the analyst's additional assumption
is true. If the assumption is true, the imputer's model still applies. The inferences derived from multiple
imputations will still be valid, although they might be somewhat conservative because they re�ect the
additional uncertainty of estimating the relationship betweenY3 andY2.

On the other hand, suppose that the analyst modelsY3 D Y1, and there is a relationship between variablesY3

andY2. Then the modelY3 D Y1 will be biased and is inappropriate. Appropriate results can be generated
only from appropriate analyst models.

Another type of discrepancy occurs when the imputer assumes more than the analyst. For example, suppose
that an imputer creates multiple imputations with the modelY3 D Y1, but the analyst later �ts a model
Y3 D Y1 Y2. When the assumption is true, the imputer's model is a correct model and the inferences still
hold.

On the other hand, suppose there is a relationship betweenY3 andY2. Imputations created under the incorrect
assumption that there is no relationship betweenY3 andY2 will make the analyst's estimate of the relationship
biased toward zero. Multiple imputations created under an incorrect model can lead to incorrect conclusions.

Thus, generally you should include as many variables as you can when doing multiple imputation. The
precision you lose with included unimportant predictors is usually a relatively small price to pay for the
general validity of analyses of the resultant multiply imputed data set (Rubin 1996). But at the same time,
you need to keep the model building and �tting feasible (Barnard and Meng 1999, pp. 19–20).

To produce high-quality imputations for a particular variable, the imputation model should also include
variables that are potentially related to the imputed variable and variables that are potentially related to the
missingness of the imputed variable (Schafer 1997, p. 143).
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Similar suggestions were also given by Van Buuren, Boshuizen, and Knook (1999, p. 687). They recommend
that the imputation model include three sets of covariates: variables in the analyst's model, variables
associated with the missingness of the imputed variable, and variables correlated with the imputed variable.
They also recommend the removal of the covariates not in the analyst's model if they have too many missing
values for observations with missing imputed variables.

Note that it is good practice to include a description of the imputer's model with the multiply imputed data
set (Rubin 1996, p. 479). That way, the analysts will have information about the variables involved in the
imputation and which relationships among the variables have been implicitly set to zero.

Parameter Simulation versus Multiple Imputation

As an alternative to multiple imputation, parameter simulation can also be used to analyze the data for many
incomplete-data problems. Although the MI procedure does not offer parameter simulation, the trade-offs
between the two methods (Schafer 1997, pp. 89–90, 135–136) are examined in this section.

The parameter simulation method simulates random values of parameters from the observed-data posterior
distribution and makes simple inferences about these parameters (Schafer 1997, p. 89). When a set of
well-de�ned population parameters� are of interest, parameter simulation can be used to directly examine
and summarize simulated values of� . This usually requires a large number of iterations, and involves
calculating appropriate summaries of the resulting dependent sample of the iterates of the� . If only a small
set of parameters are involved, parameter simulation is suitable (Schafer 1997).

Multiple imputation requires only a small number of imputations. Generating and storing a few imputations
can be more ef�cient than generating and storing a large number of iterations for parameter simulation.

When fractions of missing information are low, methods that average over simulated values of the missing
data, as in multiple imputation, can be much more ef�cient than methods that average over simulated values
of � as in parameter simulation (Schafer 1997).

Sensitivity Analysis for the MAR Assumption

Multiple imputation usually assumes that the data are missing at random (MAR). Suppose the data set
contains variablesY D .Yobs; Ymis / , whereYobs are fully observed variables andYmis is a variable that
contains missing observations. Also supposeR is a response indicator whose element is 0 or 1, depending
on whetherYmis is missing or observed. Then the MAR assumption is that the probability that aYmis

observation is missing can depend onYobs but not onYmis . That is,

pr. R j Yobs; Ymis / D pr. R j Yobs /

The MAR assumption cannot be veri�ed, because the missing values are not observed. In clinical trials, for a
study that assumes MAR, the sensitivity of inferences to departures from the MAR assumption should be
examined, as recommended by the National Research Council (2010, p. 111):

Recommendation 15: Sensitivity analysis should be part of the primary reporting of �ndings
from clinical trials. Examining sensitivity to the assumptions about the missing data mechanism
should be a mandatory component of reporting.
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If it is plausible that the missing data are not MAR, you can perform sensitivity analysis under the missing
not at random (MNAR) assumption. You can generate inferences for various scenarios under MNAR and
then examine the results. If the results under MNAR differ from the results under MAR, then the conclusion
under MAR is in question.

Based on the factorization of the joint distributionpr. Y; R /, there are two common strategies for sensitivity
analysis under MNAR: the pattern-mixture model approach and the selection model approach. The pattern-
mixture model approach is implemented in the MI procedure because it is natural and straightforward.

Pattern-Mixture Model Approach

In the pattern-mixture model approach (Little 1993; Molenberghs and Kenward 2007, pp. 30, 34–37; National
Research Council 2010, pp. 88–89), the joint distribution is factorized as

pr. Y; R / D pr. Y j R/ pr. R /

This allows for different distributions for missing values and for observed values. For example,

pr. Y; R / D pr. Y j R/ pr.R / D pr. Y j R D 1/ pr.R D 1/ C pr. Y j R D 0/ pr.R D 0/

which is a mixture of distributions for two different patterns. Here, the “pattern” refers to a group of
observations that have the same distribution; the term is not used in the same sense as “missing data pattern.”

In the pattern-mixture model approach, the joint distribution is factored as

pr.Yobs; Ymis ; R/ D pr.Ymis j Yobs; R/ pr.Yobs; R/

and under the MNAR assumption,

pr. Ymis j Yobs; R D 0 / ¤ pr. Ymis j Yobs; R D 1 /

It is straightforward to create imputations by using pattern-mixture models. The next three sections provide
details for this approach.

Selection Model Approach

In the selection model approach (Rubin 1987, p. 207; Little and Rubin 2002, pp. 313–314; Molenberghs and
Kenward 2007, p. 30), the joint distribution is factorized as

pr.Y; R/ D pr.R j Y / pr.Y /

whereY D .Yobs; Ymis / , pr. Y / is the marginal distribution ofY, and pr. R j Y / is the conditional
distribution of the missing mechanism R givenY. The term “selection” comes from the speci�cation of R
that selects individuals to be observed in the conditional distributionpr. R j Y /. Both distributions,pr.Y /
andpr.R j Y /, must be speci�ed for the analysis. The MI procedure does not provide this approach.

Multiple Imputation with Pattern-Mixture Models

ForY D .Yobs; Ymis / , the joint distribution ofY andR can be expressed as

pr. Yobs; Ymis ; R / D pr. Ymis j Yobs; R / pr. Yobs; R /
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Under the MAR assumption,

pr. R j Yobs; Ymis / D pr. R j Yobs/

and it can be shown that

pr. Ymis j Yobs; R / D pr. Ymis j Yobs /

That is,

pr. Ymis j Yobs; R D 0 / D pr. Ymis j Yobs; R D 1 /

Thus the posterior distributionpr. Ymis j Yobs; R D 1 / can be used to create imputations for missing data.

Under the MNAR assumption, each pattern that has missingYmis values might have a different distribution
than the corresponding pattern that has observedYmis values. For example, in a clinical trial, suppose the
data set contains an indicator variableTrt, with a value of 1 for patients in the treatment group and a value of
0 for patients in the placebo control group, a variableY0 for the baseline ef�cacy score, and a variableY for
the ef�cacy score at a follow-up visit. Assume thatTrt andY0 are fully observed andY is not fully observed.
The indicator variableR is 0 or 1, depending on whetherY is missing or observed.

Then, under the MAR assumption,

pr. Y j Trt D 0; Y0; R D 0 / D pr. Y j Trt D 0; Y0; R D 1 /

and

pr. Y j Trt D 1; Y0; R D 0 / D pr. Y j Trt D 1; Y0; R D 1 /

Under the MNAR assumption,

pr. Y j Trt D 0; Y0; R D 0 / ¤ pr. Y j Trt D 0; Y0; R D 1 /

or

pr. Y j Trt D 1; Y0; R D 0 / ¤ pr. Y j Trt D 1; Y0; R D 1 /

Thus, under MNAR, missingY values in the treatment group can be imputed from a posterior distribution
generated from observations in the control group, and the imputed values can be adjusted to re�ect the
systematic difference between the distributions for missing and observedY values.

Multiple imputation inference, under either the MAR or MNAR assumption, involves three distinct phases:

1. The missing data are �lled inm times to generatem complete data sets.

2. Themcomplete data sets are analyzed by using other SAS procedures.

3. The results from them complete data sets are combined for the inference.

For sensitivity analysis, you must specify the MNAR statement together with a MONOTONE statement or
an FCS statement. When you specify a MONOTONE statement, the variables that have missing values are
imputed sequentially in each imputation. When you specify an FCS statement, each imputation is carried out
in two phases: the preliminary �lled-in phase, followed by the imputation phase. The variables that have
missing values are imputed sequentially for a number of burn-in iterations before the imputation.

Under the MNAR assumption, the following steps are used to impute missing values for each imputed
variable in each imputation (when you specify a MONOTONE statement) or in each iteration (when you
specify an FCS statement):
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1. For each imputed variable, a conditional model, such as a regression model for continuous variables, is
�tted using either all applicable observations or a speci�ed subset of observations.

2. A new model is simulated from the posterior predictive distribution of the �tted model.

3. Missing values of the variable are imputed based on the new model, and the imputed values for a
speci�ed subset of observations can be adjusted using speci�ed shift and scale parameters.

The next two sections provide details for specifying subsets of observations for imputation models and for
adjusting imputed values.

Specifying Sets of Observations for Imputation in Pattern-Mixture Models

By default, all available observations are used to derive the imputation model. By using the MODEL option
in the MNAR statement, you can specify the set of observations that are used to derive the model. You
specify a classi�cation variable (obs-variable) by using the option MODELOBS= (obs-variable= ' level1'
< ' level2' . . . >). The MI procedure uses the group of observations for whichobs-variable equals one of the
speci�ed classi�cation levels.

When you use the MNAR statement together with a MONOTONE statement, you can also use the MOD-
ELOBS=CCMV and MODELOBS=NCMV options to specify the set of observations for deriving the
imputation model. For a monotone missing pattern data set that contains the variablesY1, Y2, . . . ,Yp (in that
order), there are at mostp groups of observations such that the same number of variables is observed for
observations in each group. The complete-case missing values (CCMV) method (Little 1993; Molenberghs
and Kenward 2007, p. 35) uses the group of observations for which all variables are observed (complete
cases) to derive the imputation model. The neighboring-case missing values (NCMV) method (Molenberghs
and Kenward 2007, pp. 35–36) uses only the neighboring group of observations (that is, forYj , the group of
observations withYj observed andYj C 1 missing).

In PROC MI, the option MODELOBS=CCMV(K=k) uses thek groups of observations together with as
many observed variables as possible to derive the imputation model. For instance, specifying K=1 (which is
the default) uses observations from the group that has all variables observed (complete cases). Specifying
K=2 uses observations from the two groups that have the most variables observed (the group of observations
that has all variables observed and the group of observations that hasYp � 1 observed butYp missing).

For an imputed variableYj , the option MODELOBS=NCMV(K=k) uses thek closest groups of observations
that have observedYj but have as few observed variables as possible to derive the imputation model. For
instance, specifying K=1 (which is the default) uses the group of observations that hasYj observed butYj C 1

missing (neighboring cases). Specifying K=2 uses observations from the two closest groups that haveYj

observed (the group of observations that hasYj observed butYj C 1 missing, and the group of observations
that hasYj C 1 observed andYj C 2 missing).

When you use the MNAR statement together with an FCS statement, the MODEL option applies only after
the preliminary �lled-in phase in each of the imputations.

For an illustration of the MODEL option, see Example 76.15.
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Adjusting Imputed Values in Pattern-Mixture Models

It is straightforward to specify pattern-mixture models under the MNAR assumption. When you impute
continuous variables by using the regression and predictive mean matching methods, you can adjust the
imputed values directly (Carpenter and Kenward 2013, pp. 237–239; Van Buuren 2012, pp. 88–89). When
you impute classi�cation variables by using the logistic regression method, you can adjust the imputed
classi�cation levels by modifying the log odds ratios for the classi�cation levels (Carpenter and Kenward
2013, pp. 240–241; Van Buuren 2012, pp. 88–89). By modifying the log odds ratios, you modify the
predicted probabilities for the classi�cation levels.

For each imputed variable, you can use the ADJUST option to do the following:

� specify a subset of observations for which imputed values are adjusted. Otherwise, all imputed values
are adjusted.

� adjust imputed continuous variable values by using the SHIFT=, SCALE=, and SIGMA= options.
These options add a constant, multiply by a constant factor, and add a simulated value to the imputed
values, respectively.

� adjust imputed classi�cation variable levels by adjusting predicted probabilities for the classi�cation
levels by using the SHIFT= and SIGMA= options. These options add a constant and add a simulated
constant value, respectively, to the log odds ratios for the classi�cation levels.

In addition, you can provide the shift and scale parameters for each imputation by using a PARMS= data set.

When you use the MNAR statement together with a MONOTONE statement, the variables are imputed
sequentially. For each imputed variable, the values can be adjusted using the ADJUST option, and these
adjusted values are used to impute values for subsequent variables.

When you use the MNAR statement together with an FCS statement, there are two phases in each imputation:
the preliminary �lled-in phase, followed by the imputation phase. For each imputed variable, the values can
be adjusted using the ADJUST option in the imputation phase in each of the imputations. These adjusted
values are used to impute values for other variables in the imputation phase.

For illustrations of adjusting imputed continuous values, adjusting log odds ratio for imputed classi�cation
levels, and adjusting imputed continuous values by using parameters that are stored in an input data set, see
Example 76.16, Example 76.17, and Example 76.18, respectively.

Specifying the Imputed Values to Be Adjusted

By default, all available imputed values are adjusted. You can specify a subset of imputed values to be
adjusted by using the ADJUSTOBS= suboption in the ADJUST option.

You can specify a classi�cation variable to identify the subset of imputed values to be adjusted by using the
ADJUSTOBS= (obs-variable= ' level1' < ' level2' . . . >) option. This subset consists of the imputed values in
the set of observations for whichobs-variable equals one of the speci�ed levels.
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Adjusting Imputed Continuous Variables

For an imputed continuous variable, the SCALE=c option speci�es the scale parameter,c > 0, for imputed
values; the SHIFT=� option speci�es the shift parameter,� , for imputed values; and the SIGMA=� option
speci�es the sigma parameter,� > 0, for imputed values.

When the sigma parameter is not speci�ed, the adjusted value for each imputed valuey is given by

y � D c y C �

wherec is the scale parameter and� is the shift parameter.

When you specify a sigma parameter� , a simulated shift parameter is generated from the normal distribution
that has mean� and standard deviation� in each imputation

� � � N
�

�; � 2 �

The adjusted value is then given by

y � D c y C � �

Adjusting Imputed Classi�cation Variables

For an imputed classi�cation variable, you can specify adjustment parameters for the response level. The
SHIFT=� option speci�es the shift parameter� , the SIGMA=� option speci�es the sigma parameter� > 0,
and the EVENT='level ' option identi�es the response level.

When the sigma parameter is not speci�ed, the shift parameter� is used in all imputations. When you specify
a sigma parameter� , a simulated shift parameter is generated from the normal distribution that has mean�
and standard deviation� for each imputation

� � � N
�

�; � 2 �

The next three sections provide details for adjusting imputed binary, ordinal, and nominal response variables.

Adjusting Imputed Binary Response Variables

For an imputed binary classi�cation variableY, the shift parameter� is applied to the logit function values
for the corresponding response level.

For instance, ifY has binary responses 1 and 2, a simulated logit model

logit. pr.Y D 1 j x/ / D � C x0�

is used to impute the missing response values. For a detailed description of this simulated logit model, see
the section “Binary Response Logistic Regression” on page 5988.

For an observation that has missingY and covariatesx0, the predicted probabilities thatY=1 andY=2 are
then given by

pr.Y D 1/ D
e� C x0

0�

e� C x0
0� C 1

D
ed1

ed1 C ed2
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pr.Y D 2/ D
1

e� C x0
0� C 1

D
ed2

ed1 C ed2

whered1 D � C x0
0� andd2 D 0.

When you provide the shift parameters� 1 for the responseY=1 and� 2 for the responseY=2, the predicted
probabilities are

pr.Y D 1/ D
ed �

1

ed �
1 C ed �

2

pr.Y D 2/ D
ed �

2

ed �
1 C ed �

2

whered �
1 D d1 C � 1 andd �

2 D d2 C � 2 D � 2.

For example, the following statement speci�es the shift parameters� 1 D 0:8and� 2 D 1:6:

mnar adjust( y(event=�1�) / shift=0.8)
adjust( y(event=�2�) / shift=1.6);

The statement

mnar adjust( y(event=�1�) / shift=0.8 sigma=0.2);

simulates a shift parameter� 1 from

� � N
�

0:8; 0:22
�

in each imputation. Because an adjustment is not speci�ed forY=2, the corresponding shift parameter is
� 2 D 0.

Adjusting Imputed Ordinal Response Variables

For an imputed ordinal classi�cation variableY, the shift parameter� is applied to the cumulative logit
function values for the corresponding response level.

For instance, ifY has ordinal responses 1, 2, . . . ,K, a simulated cumulative logit model that has covariatesx,

logit. pr.Y � k j x/ / D � k C x0�

is used to impute the missing response values, wherek = 1, 2, . . . ,K–1. For a detailed description of this
model, see the section “Ordinal Response Logistic Regression” on page 5989.

For an observation that has missingY and covariatesx0, the predicted cumulative probability forY � j , j =
1, 2, . . . ,K–1, is then given by

pr.Y � j / D
e� j C x0

0�

e� j C x0
0� C 1

D
ed j

ed j C edK

wheredj D � j C x0
0� anddK D 0.

The predicted probabilities forY D k are

pr.Y D k/ D

8
ˆ̂
<

ˆ̂
:

ed 1

ed 1 C ed K
if k D 1

ed k

ed k C ed K
� ed .k � 1/

ed .k � 1/ C ed K
if 1 < k < K

ed K

ed .K � 1/ C ed K
if k D K
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For an ordinal logistic regression method that has two response levels, the section “Adjusting Imputed
Binary Response Variables” on page 6016 explains how the predicted probabilities are adjusted using shift
parameters.

For an ordinal logistic regression method that has more than two response levels, only one classi�cation
level can be adjusted. When you provide the shift parameter� for the response levelY D k, the predicted
probability forY D k is then given by

pr.Y D k/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

ed �
1

ed �
1 C ed K

if k D 1

ed �
k

ed �
k C ed K

� ed .k � 1/

ed .k � 1/ C ed K
if 1 < k < K

ed �
K

ed .K � 1/ C ed �
K

if k D K

whered �
k D dk C � .

The predicted probabilities for the remainingY ¤ k are then adjusted proportionally. When the shift
parameter� is less than 0, the valued �

k can be less thandk � 1 for 1 < k < K . In this case,pr.Y D k/ is set
to 0.

Adjusting Imputed Nominal Response Variables

For an imputed nominal classi�cation variableY, the shift parameter� is applied to the generalized logit
model function values for the corresponding response level.

For instance, if
VariableY has nominal responses 1, 2, . . . ,K, a simulated generalized logit model

log
�

pr. Y D k j x/
pr. Y D K j x/

�
D � k C x0� k

is used to impute the missing response values, wherek=1, 2, . . . ,K–1. For a detailed description of this
model, see the section “Nominal Response Logistic Regression” on page 5990.

For an observation with missingY and covariatesx0, the predicted probability forY = j, j < K, is then given
by

pr.Y D j / D
e� j C x0

0� j

P K � 1
k D 1 e� k C x0

0� k C 1
D

ed j

P K
k D 1 edk

and

pr.Y D K/ D
1

P K � 1
k D 1 e� k C x0

0� k C 1
D

edK

P K
k D 1 edk

wheredk D � k C x0� k for k < K anddK D 0.

When you use the shift parameters� k for Y D k; k D 1; 2; : : : ; K, the predicted probabilities are

pr.Y D j / D
ed �

j

P K
k D 1 ed �

k

whered �
k D dk C � k .
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Summary of Issues in Multiple Imputation

This section summarizes issues that are encountered in applications of the MI procedure.

The MAR Assumption

Multiple imputation usually assumes that the data are missing at random (MAR). But the assumption cannot
be veri�ed, because the missing values are not observed. Although the MAR assumption becomes more
plausible as more variables are included in the imputation model (Schafer 1997, pp. 27–28; Van Buuren,
Boshuizen, and Knook 1999, p. 687), it is important to examine the sensitivity of inferences to departures
from the MAR assumption.

Number of Imputations

Based on estimator ef�ciency, only a small number of imputations are needed for data that have modest
missing information (Rubin 1987, p. 114). However, based on other inferential aspects, such as con�dence in-
tervals andp-values, a larger number of imputations are needed for reliable results (Allison 2012; Van Buuren
2012, pp. 49–50). You can informally verify the number of imputations by replicating sets ofm imputations
and checking whether the estimates are stable (Horton and Lipsitz 2001, p. 246).

Imputation Model

Generally you should include as many variables as you can in the imputation model (Rubin 1996), At the
same time, however, it is important to keep the number of variables in control, as discussed by Barnard and
Meng (1999, pp. 19–20). For the imputation of a particular variable, the model should include variables
in the complete-data model, variables that are correlated with the imputed variable, and variables that are
associated with the missingness of the imputed variable Schafer 1997, p. 143; Van Buuren, Boshuizen, and
Knook 1999, p. 687).

Multivariate Normality Assumption

Although the regression and MCMC methods assume multivariate normality, inferences based on multiple
imputation can be robust to departures from the multivariate normality if the amount of missing information
is not large (Schafer 1997, pp. 147–148).

You can use variable transformations to make the normality assumption more tenable. Variables are trans-
formed before the imputation process and then back-transformed to create imputed values.

Monotone Regression Method

With the multivariate normality assumption, either the regression method or the predictive mean matching
method can be used to impute continuous variables in data sets with monotone missing patterns.

The predictive mean matching method ensures that imputed values are plausible and might be more ap-
propriate than the regression method if the normality assumption is violated (Horton and Lipsitz 2001, p.
246).
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Monotone Propensity Score Method

The propensity score method can also be used to impute continuous variables in data sets with monotone
missing patterns.

The propensity score method does not use correlations among variables and is not appropriate for analyses
involving relationship among variables, such as a regression analysis (Schafer 1999, p. 11). It can also
produce badly biased estimates of regression coef�cients when data on predictor variables are missing
(Allison 2000).

MCMC Monotone-Data Imputation

The MCMC method is used to impute continuous variables in data sets with arbitrary missing patterns,
assuming a multivariate normal distribution for the data. It can also be used to impute just enough missing
values to make the imputed data sets have a monotone missing pattern. Then, a more �exible monotone
imputation method can be used for the remaining missing values.

Checking Convergence in MCMC

In an MCMC method, parameters are drawn after the MCMC is run long enough to converge to its stationary
distribution. In practice, however, it is not simple to verify the convergence of the process, especially for a
large number of parameters.

You can check for convergence by examining the observed-data likelihood ratio statistic and worst linear
function of the parameters in each iteration. You can also check for convergence by examining a plot of
autocorrelation function, as well as a trace plot of parameters (Schafer 1997, p. 120).

EM Estimates

The EM algorithm can be used to compute the MLE of the mean vector and covariance matrix of the data
with missing values, assuming a multivariate normal distribution for the data. However, the covariance matrix
associated with the estimate of the mean vector cannot be derived from the EM algorithm.

In the MI procedure, you can use the EM algorithm to compute the posterior mode, which provides a good
starting value for the MCMC method (Schafer 1997, p. 169).

Sensitivity Analysis

Multiple imputation inference often assumes that the data are missing at random (MAR). But the MAR
assumption cannot be veri�ed, because the missing values are not observed. For a study that assumes MAR,
the sensitivity of inferences to departures from the MAR assumption should be examined.

In the MI procedure, you can use the MNAR statement to imputes missing values for scenarios under the
MNAR assumption. You can then generate inferences and examine the results. If the results under MNAR
differ from the results under MAR, then the conclusion under MAR is in question.

Plot Options Superseded by ODS Graphics

You can select one of two types of graphics in PROC MI: ODS and traditional. When ODS Graphics is
enabled, you can use the PLOTS= option in the MCMC statement to create plots by using ODS Graphics.
When ODS Graphics is not enabled, you can use the TIMEPLOT and ACFPLOT options in the MCMC
statement to create traditional graphics. ODS Graphics is the preferred method of creating graphs, superseding
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traditional graphics. For more information about ODS Graphics options see the PLOTS= option in the section
“MCMC Statement” on page 5966. This section describes the options that are available in the MCMC
statement for traditional graphics.

Table 76.8 summarizes the options available for traditional graphics in the MCMC statement.

Table 76.8 Traditional Graphics Options in the MCMC Statement

Option Description

TIMEPLOT Displays trace plots
ACFPLOT Displays autocorrelation plots
GOUT= Speci�es the graphics catalog name for saving traditional graphics output

The following options are available in the MCMC statement for traditional graphics (in alphabetical order).

ACFPLOT < (options< / display-options >) >
displays the traditional autocorrelation function plots of parameters from iterations. The ACFPLOT
option is applicable only if ODS Graphics is not enabled.

The available options are as follows.

COV < ( < variables > < variable1*variable2 > < . . . variable1*variable2 > ) >
displays plots of variances for variables in the list and covariances for pairs of variables in the list.
When the option COV is speci�ed without variables, variances for all variables and covariances
for all pairs of variables are used.

MEAN < ( variables ) >
displays plots of means for variables in the list. When the option MEAN is speci�ed without
variables, all variables are used.

WLF
displays the plot for the worst linear function.

When the ACFPLOT is speci�ed without the preceding options, the procedure displays plots of means
for all variables that are used.

The display options provide additional information for the autocorrelation function plots. By default,
the MI procedure uses the star (*) as the plot symbol to display the points with a height of one
(percentage screen unit) in the plot, a solid line to display the reference line of zero autocorrelation,
vertical line segments to connect autocorrelations to the reference line, and a pair of dashed lines to
display approximately 95% con�dence limits for the autocorrelations.

You can use the SYMBOL=, CSYMBOL=, and HSYMBOL= options to change the shape, color, and
height of the plot symbol, respectively, and the CNEEDLES= and WNEEDLES= options to change
the color and width of the needles, respectively. You can also use the LREF=, CREF=, and WREF=
options to change the line type, color, and width of the reference line, respectively. Similarly, you can
use the LCONF=, CCONF=, and WCONF= options to change the line type, color, and width of the
con�dence limits, respectively.

By default, the plot title “Autocorrelation Plot” is displayed in a autocorrelation function plot. You can
request another title by using the TITLE= option within the ACFPLOT option. When another title is
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also speci�ed in a TITLE statement, this title is displayed as the main title and the plot title is displayed
as a subtitle in the plot.

You can use options in the GOPTIONS statement to change the color and height of the title. See the
chapter “The SAS/GRAPH Statements” inSAS/GRAPH: Referencefor a description of title options.

The available display options are as follows:

CCONF=color
speci�es the color of the displayed con�dence limits. The default is CCONF=BLACK.

CFRAME=color
speci�es the color for �lling the area enclosed by the axes and the frame. By default, this area is
not �lled.

CNEEDLES=color
speci�es the color of the vertical line segments (needles) that connect autocorrelations to the
reference line. The default is CNEEDLES=BLACK.

CREF=color
speci�es the color of the displayed reference line. The default is CREF=BLACK.

CSYMBOL=color
speci�es the color of the displayed data points. The default is CSYMBOL=BLACK.

HSYMBOL=number
speci�es the height of data points in percentage screen units. The default is HSYMBOL=1.

LCONF=linetype
speci�es the line type for the displayed con�dence limits. The default is LCONF=1, a solid line.

LOG
requests that the logarithmic transformations of parameters be used to compute the autocorrela-
tions; it is generally used for the variances of variables. When a parameter has values less than or
equal to zero, the corresponding plot is not created.

LREF=linetype
speci�es the line type for the displayed reference line. The default is LREF=3, a dashed line.

NAME='string'
speci�es a descriptive name, up to eight characters, that appears in the name �eld of the PROC
GREPLAY master menu. The default is NAME='MI'.

NLAG=number
speci�es the maximum lag of the series. The default is NLAG=20. The autocorrelations at each
lag are displayed in the graph.

SYMBOL=value
speci�es the symbol for data points in percentage screen units. The default is SYMBOL=STAR.

TITLE='string'
speci�es the title to be displayed in the autocorrelation function plots. The default is TI-
TLE='Autocorrelation Plot'.

WCONF=number
speci�es the width of the displayed con�dence limits in percentage screen units. If you specify
the WCONF=0 option, the con�dence limits are not displayed. The default is WCONF=1.
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WNEEDLES=number
speci�es the width of the displayed needles that connect autocorrelations to the reference line, in
percentage screen units. If you specify the WNEEDLES=0 option, the needles are not displayed.
The default is WNEEDLES=1.

WREF=number
speci�es the width of the displayed reference line in percentage screen units. If you specify the
WREF=0 option, the reference line is not displayed. The default is WREF=1.

For example, the following statement requests autocorrelation function plots for the means and
variances of the variabley1, respectively:

acfplot( mean( y1) cov(y1) /log);

Logarithmic transformations of both the means and variances are used in the plots. For a detailed
description of the autocorrelation function plot, see the section “Autocorrelation Function Plot”
on page 6003; see also Schafer (1997, pp. 120–126) and theSAS/ETS User's Guide.

GOUT=graphics-catalog
speci�es the graphics catalog for saving graphics output from PROC MI. The default is WORK.GSEG.
For more information, see “The GREPLAY Procedure” inSAS/GRAPH: Reference.

TIMEPLOT < ( options < / display-options > ) >
displays the traditional trace (time series) plots of parameters from iterations. The TIMEPLOT option
is applicable only if ODS Graphics is not enabled.

The available options are as follows:

COV < ( < variables > < variable1*variable2 > . . . ) >

displays plots of variances for variables in the list and covariances for pairs of variables in the list.
When the option COV is speci�ed without variables, variances for all variables and covariances
for all pairs of variables are used.

MEAN < (variables) >
displays plots of means for variables in the list. When the option MEAN is speci�ed without
variables, all variables are used.

WLF
displays the plot of the worst linear function.

When the TIMEPLOT is speci�ed without the preceding options, the procedure displays plots of means
for all variables that are used.

The display options provide additional information for the trace plots. By default, the MI procedure
uses solid line segments to connect data points in a trace plot. You can use the CCONNECT=,
LCONNECT=, and WCONNECT= options to change the color, line type, and width of the line
segments, respectively. When WCONNECT=0 is speci�ed, the data points are not connected, and
the procedure uses the plus sign (+) as the plot symbol to display the points with a height of one
(percentage screen unit) in a trace plot. You can use the SYMBOL=, CSYMBOL=, and HSYMBOL=
options to change the shape, color, and height of the plot symbol, respectively.
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By default, the plot title “Trace Plot” is displayed in a trace plot. You can request another title by
using the TITLE= option in the TIMEPLOT option. When another title is also speci�ed in a TITLE
statement, this title is displayed as the main title and the plot title is displayed as a subtitle in the plot.

You can use options in the GOPTIONS statement to change the color and height of the title. See the
chapter “The SAS/GRAPH Statements” inSAS/GRAPH: Referencefor an illustration of title options.

The available display options are as follows:

CCONNECT=color
speci�es the color of the line segments that connect data points in the trace plots. The default is
CCONNECT=BLACK.

CFRAME=color
speci�es the color for �lling the area enclosed by the axes and the frame. By default, this area is
not �lled.

CSYMBOL=color
speci�es the color of the data points to be displayed in the trace plots. The default is CSYM-
BOL=BLACK.

HSYMBOL=number
speci�es the height of data points in percentage screen units. The default is HSYMBOL=1.

LCONNECT=linetype
speci�es the line type for the line segments that connect data points in the trace plots. The default
is LCONNECT=1, a solid line.

LOG
requests that the logarithmic transformations of parameters be used; it is generally used for the
variances of variables. When a parameter value is less than or equal to zero, the value is not
displayed in the corresponding plot.

NAME='string'
speci�es a descriptive name, up to eight characters, that appears in the name �eld of the PROC
GREPLAY master menu. The default is NAME='MI'.

SYMBOL=value
speci�es the symbol for data points in percentage screen units. The default is SYMBOL=PLUS.

TITLE='string'
speci�es the title to be displayed in the trace plots. The default is TITLE='Trace Plot'.

WCONNECT=number
speci�es the width of the line segments that connect data points in the trace plots, in percentage
screen units. If you specify the WCONNECT=0 option, the data points are not connected. The
default is WCONNECT=1.

For a detailed description of the trace plot, see the section “Trace Plot” on page 6003 and Schafer
(1997, pp. 120–126).
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ODS Table Names

PROC MI assigns a name to each table it creates. You must use these names to reference tables when using
the Output Delivery System (ODS). These names are listed in Table 76.9. For more information about ODS,
see Chapter 20, “Using the Output Delivery System.”

Table 76.9 ODS Tables Produced by PROC MI

ODS Table Name Description Statement Option

Corr Pairwise correlations SIMPLE
EMEstimates EM (MLE) estimates EM
EMInitEstimates EM initial estimates EM
EMIterHistory EM (MLE) iteration EM ITPRINT

history
EMPostEstimates EM (posterior mode) MCMC INITIAL=EM

estimates
EMPostIterHistory EM (posterior mode) MCMC INITIAL=EM (ITPRINT)

iteration history
EMWLF Worst linear function MCMC WLF
FCSDiscrim Discriminant model FCS DISCRIM (/DETAILS)

group means
FCSLogistic Logistic model FCS LOGISTIC (/DETAILS)
FCSModel FCS models FCS
FCSReg Regression model FCS REG (/DETAILS)
FCSRegPMM Predicted mean matching FCS REGPMM (/DETAILS)

model
MCMCInitEstimates MCMC initial estimates MCMC DISPLAYINIT
MissPattern Missing data patterns
MNARModel Observations that are used MNAR MODEL

for imputation model
under MNAR

MNARAdjust Adjustment parameters and MNAR ADJUST
imputed values to be adjusted
under MNAR

ModelInfo Model information
MonoDiscrim Discriminant model MONOTONE DISCRIM (/DETAILS)

group means
MonoLogistic Logistic model MONOTONE LOGISTIC (/DETAILS)
MonoModel Monotone models MONOTONE
MonoPropensity Propensity score model MONOTONE PROPENSITY (/DETAILS)

logistic function
MonoReg Regression model MONOTONE REG (/DETAILS)
MonoRegPMM Predicted mean matching MONOTONE REGPMM (/DETAILS)

model
ParameterEstimates Parameter estimates
Transform Variable transformations TRANSFORM
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Table 76.9 continued

ODS Table Name Description Statement Option

Univariate Univariate statistics SIMPLE
VarianceInfo Between, within, and

total variances

ODS Graphics

Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 607 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 606 in Chapter 21,
“Statistical Graphics Using ODS.”

PROC MI assigns a name to each graph it creates using ODS. You can use these names to reference the
graphs when using ODS. To request these graphs, ODS Graphics must be enabled and you must specify the
options indicated in Table 76.10.

Table 76.10 Graphs Produced by PROC MI

ODS Graph Name Description Statement Option

ACFPlot ACF plot MCMC PLOTS=ACF
TracePlot Trace plot MCMC PLOTS= TRACE

FCS PLOTS= TRACE

Examples: MI Procedure

TheFish data described in the STEPDISC procedure are measurements of 159 �sh of seven species caught in
Finland's Lake Laengelmaevesi. For each �sh, the length, height, and width are measured. Three different
length measurements are recorded: from the nose of the �sh to the beginning of its tail (Length1), from the
nose to the notch of its tail (Length2), and from the nose to the end of its tail (Length3). See Chapter 110,
“The STEPDISC Procedure,” for more information.
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TheFish1 data set is constructed from theFish data set and contains only one species of the �sh and the
three length measurements. Some values have been set to missing, and the resulting data set has a monotone
missing pattern in the variablesLength1, Length2, andLength3. TheFish1 data set is used in Example 76.2
with the propensity score method and in Example 76.3 with the regression method.

TheFish2 data set is also constructed from theFish data set and contains two species of �sh. Some values
have been set to missing, and the resulting data set has a monotone missing pattern in the variablesLength,
Width, andSpecies. TheFish2 data set is used in Example 76.4 with the logistic regression method and in
Example 76.5 with the discriminant function method. Note that some values of the variableSpecies have
also been altered in the data set.

TheFish3 data set is similar to the data setFish2 except some additional values have been set to missing
and the resulting data set has an arbitrary missing pattern. TheFish3 data set is used in Example 76.7 and in
Example 76.8.

TheFitness1 data set created in the section “Getting Started: MI Procedure” on page 5951 is used in other
examples.

The following statements create theFish1 data set:

* -----------------------------Fish1 Data----------------------------- *
| The data set contains one species of the fish (Bream) and |
| three measurements: Length1, Length2, Length3. |
| Some values have been set to missing, and the resulting data set |
| has a monotone missing pattern in the variables |
| Length1, Length2, and Length3. |
* -------------------------------------------------------------------- * ;
data Fish1;

title �Fish Measurement Data�;
input Length1 Length2 Length3 @@;
datalines;

23.2 25.4 30.0 24.0 26.3 31.2 23.9 26.5 31.1
26.3 29.0 33.5 26.5 29.0 . 26.8 29.7 34.7
26.8 . . 27.6 30.0 35.0 27.6 30.0 35.1
28.5 30.7 36.2 28.4 31.0 36.2 28.7 . .
29.1 31.5 . 29.5 32.0 37.3 29.4 32.0 37.2
29.4 32.0 37.2 30.4 33.0 38.3 30.4 33.0 38.5
30.9 33.5 38.6 31.0 33.5 38.7 31.3 34.0 39.5
31.4 34.0 39.2 31.5 34.5 . 31.8 35.0 40.6
31.9 35.0 40.5 31.8 35.0 40.9 32.0 35.0 40.6
32.7 36.0 41.5 32.8 36.0 41.6 33.5 37.0 42.6
35.0 38.5 44.1 35.0 38.5 44.0 36.2 39.5 45.3
37.4 41.0 45.9 38.0 41.0 46.5
;

TheFish2 data set contains two of the seven species in theFish data set. For each of the two species (Bream
andPike), the length from the nose of the �sh to the end of its tail and the width of each �sh are measured.
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