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Overview: HPFMM Procedure

The HPFMM procedure is a high-performance counterpart of the FMM procedure that �ts statistical models
to data for which the distribution of the response is a �nite mixture of univariate distributions—that is, each
response comes from one of several random univariate distributions that have unknown probabilities. You
can use PROC HPFMM to model the component distributions in addition to the mixing probabilities. For
more precise de�nitions and a discussion of similar but distinct modeling methodologies, see the section “A
Gentle Introduction to Finite Mixture Models” on page 4144.

The HPFMM procedure is designed to �t �nite mixtures of regression models or �nite mixtures of generalized
linear models in which the covariates and regression structure can be the same across components or can be
different. You can �t �nite mixture models by maximum likelihood or Bayesian methods. Note that classical
statistical models are a special case of the �nite mixture models in which the distribution of the data has only
a single component.

PROC HPFMM runs in either single-machine mode or distributed mode.

NOTE : Distributed mode requires SAS High-Performance Statistics.
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Basic Features

The HPFMM procedure estimates the parameters in univariate �nite mixture models and produces various
statistics to evaluate parameters and model �t. The following list summarizes some basic features of the
HPFMM procedure:

� maximum likelihood estimation for all models

� Markov chain Monte Carlo estimation for many models, including zero-in�ated Poisson models

� many built-in link and distribution functions for modeling, including the beta, shiftedt, Weibull,
beta-binomial, and generalized Poisson distributions, in addition to many standard members of the
exponential family of distributions

� specialized built-in mixture models such as the binomial cluster model (Morel and Nagaraj 1993;
Morel and Neerchal 1997; Neerchal and Morel 1998)

� acceptance of multiple MODEL statements to build mixture models in which the model effects,
distributions, or link functions vary across mixture components

� model-building syntax using CLASS and effect-based MODEL statements familiar from many other
SAS/STAT procedures (for example, the GLM, GLIMMIX, and MIXED procedures)

� evaluation of sequences of mixture models when you specify ranges for the number of components

� simple syntax to impose linear equality and inequality constraints among parameters

� ability to model regression and classi�cation effects in the mixing probabilities through the PROB-
MODEL statement

� ability to incorporate full or partially known component membership into the analysis through the
PARTIAL= option in the PROC HPFMM statement

� OUTPUT statement that produces a SAS data set with important statistics for interpreting mixture
models, such as component log likelihoods and prior and posterior probabilities

� ability to add zero-in�ation to any model

� output data set with posterior parameter values for the Markov chain

� multithreading and distributed computing for high-performance optimization and Monte Carlo sampling

The HPFMM procedure uses ODS Graphics to create graphs as part of its output. For general information
about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For speci�c information about the
statistical graphics available with the HPFMM procedure, see the PLOTS options in the PROC HPFMM
statement.

Because the HPFMM procedure is a high-performance analytical procedure, it also does the following:

� enables you to run in distributed mode on a cluster of machines that distribute the data and the
computations
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� enables you to run in single-machine mode on the server where SAS is installed

� exploits all the available cores and concurrent threads, regardless of execution mode

For more information, see the section “Processing Modes” (Chapter 2,SAS/STAT User's Guide: High-
Performance Procedures).

PROC HPFMM Contrasted with PROC FMM

For general contrasts between SAS high-performance analytical procedures and other SAS procedures, see
the section “Common Features of SAS High-Performance Statistical Procedures” (Chapter 3,SAS/STAT
User's Guide: High-Performance Procedures).

The HPFMM procedure is somewhat distinct from other high-performance analytical procedures in being
very nearly a twin of its counterpart, PROC FMM. You can �t the same kinds of models and get the same
kinds of tabular, graphical, and data set results from PROC HPFMM as from PROC FMM. The main
difference is that PROC HPFMM was developed primarily to work in a distributed environment, and PROC
FMM primarily for a single (potentially multithreaded) host.

PROC HPFMM and PROC FMM have several differences because of their respective underlying technology:

� The ORDER option that speci�es the sort order for the levels of CLASS variables is not available in
the PROC statement of the HPFMM procedure. Instead the HPFMM procedure makes this option
available in the CLASS statement.

� The CLASS statement in the HPFMM procedure provides many more options than the CLASS
statement in the FMM procedure.

� The PERFORMANCE statement in the HPFMM procedure includes a superset of the options that are
available in the PERFORMANCE statement in the FMM procedure.

� The NOVAR option in the OUTPUT statement in the FMM procedure is not available in the OUTPUT
statement of the HPFMM procedure.

The OUTPUT statement in PROC HPFMM produces observationwise statistics. However, as is customary
for SAS high-performance analytical procedures, PROC HPFMM's OUTPUT statement does not by default
include the input and BY variables in the output data set. This is to avoid data duplication for large data sets.
In order to include any input or BY variables in the output data set, you must list these variables in the ID
statement. Furthermore, PROC HPFMM's OUTPUT statement includes the predicted values of the response
variable if you do not specify any output statistics.

In contrast, when you request that the posterior sample be saved to a SAS data by specifying the OUTPOST=
option in the BAYES statement, PROC HPFMM includes the BY variables in the data set.
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Assumptions

The HPFMM procedure makes the following assumptions in �tting statistical models:

� The number of componentsk in the �nite mixture is known a priori and is not a parameter to be
estimated.

� The parameters of the components are distinct a priori.

� The observations are uncorrelated.

Notation for the Finite Mixture Model

The general expression for the �nite mixture model �tted with the HPFMM procedure is as follows:

f .y/ D
kX

j D 1

� j .z; � j /p j .y I x0
j � j ; � j /

The number of components in the mixture is denoted ask. The mixture probabilities� j can depend on
regressor variablesz and parameters� j . By default, the HPFMM procedure models these probabilities
using a logit transform ifk = 2 and as a generalized logit model ifk > 2. The component distributionsp j

can also depend on regressor variables inxj , regression parameters� j , and possibly scale parameters� j .
Notice that the component distributionsp j are indexed byj since the distributions might belong to different
families. For example, in a two-component model, you might model one component as a normal (Gaussian)
variable and the second component as a variable with at distribution with low degrees of freedom to manage
overdispersion.

The mixture probabilities� j satisfy� j � 0, for all j, and

kX

j D 1

� j .z; � j / D 1

Homogeneous Mixtures

If the component distributions are of the same distributional form, the mixture is called homogeneous. In
most applications of homogeneous mixtures, the mixing probabilities do not depend on regression parameters.
The general model then simpli�es to

f .y/ D
kX

j D 1

� j p.y I x0� j ; � j /
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Since the component distributions depend on regression parameters� j , this model is known as a homoge-
neous regression mixture. A homogeneous regression mixture assumes that the regression effects are the
same across the components, although the HPFMM procedure does not impose such a restriction. If the
component distributions do not contain regression effects, the model

f .y/ D
kX

j D 1

� j p.y I � j ; � j /

is thehomogeneous mixture model. A classical case is the estimation of a continuous density as ak-component
mixture of normal distributions.

Special Mixtures

The HPFMM procedure enables you to �t several special mixture models. The Morel-Neerchal binomial
cluster model (Morel and Nagaraj 1993; Morel and Neerchal 1997; Neerchal and Morel 1998) is a mixture of
binomial distributions in which the success probabilities depend on the mixing probabilities.

Zero-in�ated count models are obtained as two-component mixtures where one component is a classical
count model—such as the Poisson or negative binomial model—and the other component is a distribution
that is concentrated at zero. If the nondegenerate part of this special mixture is a zero-truncated model, the
resulting two-component mixture is known as a hurdle model (Cameron and Trivedi 1998).

Getting Started: HPFMM Procedure

Mixture Modeling for Binomial Overdispersion: “Student,” Pearson, Beer,
and Yeast

The following example demonstrates how you can model a complicated, two-component binomial mixture
distribution, either with maximum likelihood or with Bayesian methods, with a few simple PROC HPFMM
statements.

William Sealy Gosset, a chemist at the Arthur Guinness Son and Company brewery in Dublin, joined the
statistical laboratory of Karl Pearson in 1906–1907 to study statistics. At �rst Gosset—who published all
but one paper under the pseudonym “Student” because his employer forbade publications by employees
after a co-worker had disclosed trade secrets—worked on the Poisson limit to the binomial distribution,
using haemacytometer yeast cell counts. Gosset's interest in studying small-sample (and limit) problems was
motivated by the small sample sizes he typically saw in his work at the brewery.

Subsequently, Gosset's yeast count data have been examined and revisited by many authors. In 1915, Karl
Pearson undertook his own examination and realized that the variability in “Student's” data exceeded that
consistent with a Poisson distribution. Pearson (1915) bemoans the fact that if this were so, “it is certainly
most unfortunate that such material should have been selected to illustrate Poisson's limit to the binomial.”

Using a count of Gosset's yeast cell counts on the 400 squares of a haemacytometer (Table 52.1), Pearson
argues that a mixture process would explain the heterogeneity (beyond the Poisson).
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Table 52.1 “Student's” Yeast Cell Counts

Number of Cells 0 1 2 3 4 5

Frequency 213 128 37 18 3 1

Pearson �ts various models to these data, chief among them a mixture of two binomial series

� 1.p 1 C q1/ � C � 2.p 2 C q2/ �

where� is real-valued and thus the binomial series expands to

.p C q/� D
1X

k D 0

€.� C 1/
€.k C 1/€.� � k C 1/

pk q� � k

Pearson's �tted model has� D 4:89997, � 1 D 356:986, � 2 D 43:014(corresponding to a mixing proportion
of 356:986=.43:014C 356:986/D 0:892), and estimated success probabilities in the binomial components
of 0.1017 and 0.4514, respectively. The success probabilities indicate that although the data have about a
90% chance of coming from a distribution with small success probability of about 0.1, there is a 10% chance
of coming from a distribution with a much larger success probability of about 0.45.

If � is an integer, the binomial series is the cumulative mass function of a binomial random variable. The
value of� suggests that a suitable model for these data could also be constructed as a two-component mixture
of binomial random variables as follows:

f .y/ D � binomial.5; � 1/ C .1 � �/ binomial.5; � 2/

The binomial sample sizen=5 is suggested by Pearson's estimate of� D 4:89997and the fact that the largest
cell count in Table 52.1 is 5.

The following DATA step creates a SAS data set from the data in Table 52.1.

data yeast;
input count f;
n = 5;
datalines;
0 213
1 128
2 37
3 18
4 3
5 1

;

The two-component binomial model is �t with the HPFMM procedure with the following statements:

proc hpfmm data=yeast;
model count/n = / k=2;
freq f;

run;
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Because the events/trials syntax is used in the MODEL statement, PROC HPFMM defaults to the binomial
distribution. The K=2 option speci�es that the number of components is �xed and known to be two. The
FREQ statement indicates that the data are grouped; for example, the �rst observation represents 213 squares
on the haemacytometer where no yeast cells were found.

The “Model Information” and “Number of Observations” tables in Figure 52.1 convey that the �tted model is
a two-component homogeneous binomial mixture with a logit link function. The mixture ishomogeneous
because there are no model effects in the MODEL statement and because both component distributions
belong to the same distributional family. By default, PROC HPFMM estimates the model parameters by
maximum likelihood.

Although only six observations are read from the data set, the data represent 400 observations (squares on the
haemacytometer). Since a constant binomial sample size of 5 is assumed, the data represent 273 successes
(�nding a yeast cell) out of 2,000 Bernoulli trials.

Figure 52.1 Model Information for Yeast Cell Model

The estimated intercepts (on the logit scale) for the two binomial means are –2.2316 and –0.2974, respectively.
These values correspond to binomial success probabilities of 0.09695 and 0.4262, respectively (Figure 52.2).
The two components mix with probabilities 0.8799 and1 � 0:8799D 0:1201. These values are generally
close to the values found by Pearson (1915) using in�nite binomial series instead of binomial mass functions.

Figure 52.2 Maximum Likelihood Estimates
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Figure 52.2 continued

To obtain �tted values and other observationwise statistics under the stipulated two-component model, you
can add the OUTPUT statement to the previous PROC HPFMM run. The following statements request
componentwise predicted values and the posterior probabilities:

proc hpfmm data=yeast;
model count/n = / k=2;
freq f;
id f n;
output out=hpfmmout pred(components) posterior;

run;
data hpfmmout;

set hpfmmout;
PredCount_1 = post_1 * f;
PredCount_2 = post_2 * f;

run;
proc print data=hpfmmout;
run;

The DATA step following the PROC HPFMM step computes the predicted cell counts in each component
(Figure 52.3). Note that the The predicted means in the components, 0.48476 and 2.13099, are close to the
values determined by Pearson (0.4983 and 2.2118), as are the predicted cell counts.

Figure 52.3 Predicted Cell Counts

Gosset, who was interested in small-sample statistical problems, investigated the use of prior knowledge in
mathematical-statistical analysis—for example, deriving the sampling distribution of the correlation coef�-
cient after having assumed a uniform prior distribution for the coef�cient in the population(Aldrich 1997).
Pearson also was not opposed to using prior information, especially uniform priors that re�ect “equal distri-
bution of ignorance.” Fisher, on the other hand, would not have any of it: the best estimator in his opinion is
obtained by a criterion that is absolutely independent of prior assumptions about probabilities of particular
values. He objected to the insinuation that his derivations in the work on the correlation were deduced from
Bayes theorem (Fisher 1921).
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The preceding analysis of the yeast cell count data uses maximum likelihood methods that are free of prior
assumptions. The following analysis takes instead a Bayesian approach, assuming a beta prior distribution for
the binomial success probabilities and a uniform prior distribution for the mixing probabilities. The changes
from the previous run of PROC HPFMM are the addition of the ODS GRAPHICS, PERFORMANCE, and
BAYES statements and the SEED=12345 option.

ods graphics on;
proc hpfmm data=yeast seed=12345;

model count/n = / k=2;
freq f;
performance nthreads=2;
bayes;

run;
ods graphics off;

When ODS Graphics is enabled, PROC HPFMM produces diagnostic trace plots for the posterior samples.
Bayesian analyses are sensitive to the random number seed and thread count; the SEED= and NTHREADS=
options in the PERFORMANCE statement ensure consistent results for the purposes of this example. The
SEED=12345 option in the PROC HPFMM statement determines the random number seed for the random
number generator that the analysis used. The NTHREADS=2 option in the PERFORMANCE statement
sets the number of threads to be used by the procedure to two. The BAYES statement requests a Bayesian
analysis.

The “Bayes Information” table in Figure 52.4 provides basic information about the Markov chain Monte
Carlo sampler. Because the model is a homogeneous mixture, the HPFMM procedure applies an ef�cient
conjugate sampling algorithm with a posterior sample size of 10,000 samples after a burn-in size of 2,000
samples. The “Prior Distributions” table displays the prior distribution for each parameter along with its
mean and variance and the initial value in the chain. Notice that in this situation all three prior distributions
reduce to a uniform distribution on.0; 1/.

Figure 52.4 Basic Information about MCMC Sampler
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The HPFMM procedure produces a log note for this model, indicating that the sampled quantities are not the
linear predictors on the logit scale, but are the actual population parameters (on the data scale):

NOTE: Bayesian results for this model (no regressor variables,
non-identity link) are displayed on the data scale, not the
linked scale. You can obtain results on the linked (=linear)
scale by requesting a Metropolis-Hastings sampling algorithm.

The trace panel for the success probability in the �rst binomial component is shown in Figure 52.5. Note that
the �rst component in this Bayesian analysis corresponds to the second component in the MLE analysis. The
graphics in this panel can be used to diagnose the convergence of the Markov chain. If the chain has not
converged, inferences cannot be made based on quantities derived from the chain. You generally look for the
following:

� a smooth unimodal distribution of the posterior estimates in the density plot displayed on the lower
right

� good mixing of the posterior samples in the trace plot at the top of the panel (good mixing is indicated
when the trace traverses the support of the distribution and appears to have reached a stationary
distribution)

Figure 52.5 Trace Panel for Success Probability in First Component
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The autocorrelation plot in Figure 52.5 shows fairly high and sustained autocorrelation among the posterior
estimates. While this is generally not a problem, you can affect the degree of autocorrelation among the
posterior estimates by running a longer chain and thinning the posterior estimates; see the NMC= and THIN=
options in the BAYES statement.

Both the trace plot and the density plot in Figure 52.5 are indications of successful convergence.

Figure 52.6 reports selected results that summarize the 10,000 posterior samples. The arithmetic means of
the success probabilities in the two components are 0.0917 and 0.3974, respectively. The posterior mean of
the mixing probability is 0.8312. These values are similar to the maximum likelihood parameter estimates in
Figure 52.2 (after swapping components).

Figure 52.6 Summaries for Posterior Estimates

Note that the standard errors in Figure 52.2 are not comparable to those in Figure 52.6, since the standard
errors for the MLEs are expressed on the logit scale and the Bayes estimates are expressed on the data scale.
You can add the METROPOLIS option in the BAYES statement to sample the quantities on the logit scale.

The “Posterior Intervals” table in Figure 52.6 displays 95% credible intervals (equal-tail intervals and intervals
of highest posterior density). It can be concluded that the component with the higher success probability
contributes less than 40% to the process.

Modeling Zero-In�ation: Is It Better to Fish Poorly or Not to Have Fished at
All?

The following example shows how you can use PROC HPFMM to model data with more zero values than
expected.

Many count data show an excess of zeros relative to the frequency of zeros expected under a reference model.
An excess of zeros leads to overdispersion since the process is more variable than a standard count data
model. Different mechanisms can lead to excess zeros. For example, suppose that the data are generated
from two processes with different distribution functions—one process generates the zero counts, and the
other process generates nonzero counts. In the vernacular of Cameron and Trivedi (1998), such a model is
called ahurdlemodel. With a certain probability—the probability of a nonzero count—a hurdle is crossed,
and events are being generated. Hurdle models are useful, for example, to model the number of doctor visits
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per year. Once the decision to see a doctor has been made—the hurdle has been overcome—a certain number
of visits follow.

Hurdle models are closely related to zero-in�ated models. Both can be expressed as two-component mixtures
in which one component has a degenerate distribution at zero and the other component is a count model. In
a hurdle model, the count model follows a zero-truncated distribution. In a zero-in�ated model, the count
model has a nonzero probability of generating zeros. Formally, a zero-in�ated model can be written as

Pr.Y D y/ D �p 1 C .1 � �/p 2.y; �/

p1 D
�

1 y D 0
0 otherwise

wherep2.y; �/ is a standard count model with mean� and supporty 2 f 0; 1; 2;� � � g.

The following data illustrates the use of a zero-in�ated model. In a survey of park attendees, randomly
selected individuals were asked about the number of �sh they caught in the last six months. Along with that
count, the gender and age of each sampled individual was recorded. The following DATA step displays the
data for the analysis:

data catch;
input gender $ age count @@;
datalines;

F 54 18 M 37 0 F 48 12 M 27 0
M 55 0 M 32 0 F 49 12 F 45 11
M 39 0 F 34 1 F 50 0 M 52 4
M 33 0 M 32 0 F 23 1 F 17 0
F 44 5 M 44 0 F 26 0 F 30 0
F 38 0 F 38 0 F 52 18 M 23 1
F 23 0 M 32 0 F 33 3 M 26 0
F 46 8 M 45 5 M 51 10 F 48 5
F 31 2 F 25 1 M 22 0 M 41 0
M 19 0 M 23 0 M 31 1 M 17 0
F 21 0 F 44 7 M 28 0 M 47 3
M 23 0 F 29 3 F 24 0 M 34 1
F 19 0 F 35 2 M 39 0 M 43 6

;

At �rst glance, the prevalence of zeros in the DATA set is apparent. Many park attendees did not catch any
�sh. These zero counts are made up of two populations: attendees who do not �sh and attendees who �sh
poorly. A zero-in�ation mechanism thus appears reasonable for this application since a zero count can be
produced by two separate distributions.

The following statements �t a standard Poisson regression model to these data. A common intercept is
assumed for men and women, and the regression slope varies with gender.

proc hpfmm data=catch;
class gender;
model count = gender * age / dist=Poisson;

run;

Figure 52.7 displays information about the model and data set. The “Model Information” table conveys
that the model is a single-component Poisson model (a Poisson GLM) and that parameters are estimated by
maximum likelihood. There are two levels in the CLASS variablegender, with females preceding males.
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Figure 52.7 Model Information and Class Levels in Poisson Regression

The “Fit Statistics” and “Parameter Estimates” tables from the maximum likelihood estimation of the Poisson
GLM are shown in Figure 52.8. If the model is not overdispersed, the Pearson statistic should roughly equal
the number of observations in the data set minus the number of parameters. Withn=52, there is evidence of
overdispersion in these data.

Figure 52.8 Fit Results in Poisson Regression

Suppose that the cause of overdispersion is zero-in�ation of the count data. The following statements �t a
zero-in�ated Poisson model.

proc hpfmm data=catch;
class gender;
model count = gender * age / dist=Poisson ;
model + / dist=Constant;

run;
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