Chapter 121
The VARCOMP Procedure

Overview: VARCOMP Procedure

The VARCOMP procedure handles general linear models that have random effects. Random effects are classification effects with levels that are assumed to be randomly selected from an infinite population of possible levels. PROC VARCOMP estimates the contribution of each of the random effects to the variance of the dependent variable.

A single MODEL statement specifies the dependent variables and the effects: main effects, interactions, and nested effects. The effects must be composed of classification variables; no continuous variables are allowed on the right side of the equal sign.
You can specify certain effects as fixed (nonrandom) by putting them first in the `MODEL` statement and indicating the number of fixed effects with the `FIXED=` option. An intercept is always fitted and assumed fixed. Except for the effects specified as fixed, all other effects are assumed to be random. Their contribution to the model can be thought of as an observation from a distribution that is normally and independently distributed.

The dependent variables are grouped based on the similarity of their missing values. Each group of dependent variables is then analyzed separately. The columns of the design matrix X are formed in the same order in which the effects are specified in the `MODEL` statement. A singular parameterization involving just 0–1 dummy variables is used, as in the `GLM` procedure.

You can specify four general methods of estimation in the `PROC VARCOMP` statement by using the `METHOD=` option. They are `TYPE1` (based on computation of Type I sum of squares for each effect), `MIVQUE0`, maximum likelihood (`METHOD=ML`), and restricted maximum likelihood (`METHOD=REML`). A fifth method, `METHOD=GRR`, provides a specialized analysis for gauge repeatability and reproducibility (R&R) studies. See the section “Gauge Repeatability and Reproducibility Analysis” on page 9829 for further details. Note that this method, along with the `CL` option in the `MODEL` statement for confidence limits, applies only to certain designs, namely balanced one-way or two-way designs. The other four general methods apply to any random-effects model and design.

Other procedures, such as `PROC GLM`, `PROC MIXED`, and `PROC GLIMMIX`, fit similar random effects models. The `VARCOMP` procedure is usually more computationally efficient for certain special designs and models. See the section “Relationship to PROC MIXED” on page 9834 for a more precise comparison with the `MIXED` procedure in particular.

The `GAUGE` application in SAS/QC software provides a graphical interface for computing many of the same statistics as `METHOD=GRR` in `PROC VARCOMP`.

Getting Started: VARCOMP Procedure

Analyzing the Cure Rate of Rubber

This example, using data from Hicks (1973), concerns an experiment to determine the sources of variability in cure rates of rubber. The goal of the experiment was to find out if the different laboratories contributed more to the variance of cure rates than did the different batches of raw materials. This information would be useful in trying to control the cure rate of the final product because it would provide insight into the sources of the variability in cure rates. The rubber used was cured at three temperatures, which were taken to be fixed. Three laboratories were chosen at random, and three different batches of raw material were tested at each combination of temperature and laboratory. The following statements read the data into the SAS data set `Cure`.

data Cure;
 input Lab Temp Batch $ Cure @@;
datalines;
 1 145 A 18.6 1 145 A 17.0 1 145 A 18.7 1 145 A 18.7
 1 145 B 14.5 1 145 B 15.8 1 145 B 16.5 1 145 B 17.6
 1 145 C 21.1 1 145 C 20.8 1 145 C 21.8 1 145 C 21.0
 1 155 A 9.5 1 155 A 9.4 1 155 A 9.5 1 155 A 10.0
 1 155 B 7.8 1 155 B 8.3 1 155 B 8.9 1 155 B 9.1
 1 155 C 11.2 1 155 C 10.0 1 155 C 11.5 1 155 C 11.1
 1 165 A 5.4 1 165 A 5.3 1 165 A 5.7 1 165 A 5.3
 1 165 B 5.2 1 165 B 4.9 1 165 B 4.3 1 165 B 5.2
 1 165 C 6.3 1 165 C 6.4 1 165 C 5.8 1 165 C 5.6
 2 145 A 20.0 2 145 A 20.1 2 145 A 19.4 2 145 A 20.0
 2 145 B 18.4 2 145 B 18.1 2 145 B 16.5 2 145 B 16.7
 2 145 C 22.5 2 145 C 22.7 2 145 C 21.5 2 145 C 21.3
 2 155 A 11.4 2 155 A 11.5 2 155 A 11.4 2 155 A 11.5
 2 155 B 10.8 2 155 B 11.1 2 155 B 9.5 2 155 B 9.7
 2 155 C 13.3 2 155 C 14.0 2 155 C 12.0 2 155 C 11.5
 2 165 A 6.8 2 165 A 6.9 2 165 A 6.0 2 165 A 5.7
 2 165 B 6.0 2 165 B 6.1 2 165 B 5.0 2 165 B 5.2
 2 165 C 7.7 2 165 C 8.0 2 165 C 6.6 2 165 C 6.3
 3 145 A 19.7 3 145 A 18.3 3 145 A 16.8 3 145 A 17.1
 3 145 B 16.3 3 145 B 16.7 3 145 B 14.4 3 145 B 15.2
 3 145 C 22.7 3 145 C 21.9 3 145 C 19.3 3 145 C 19.3
 3 155 A 9.3 3 155 A 10.2 3 155 A 9.8 3 155 A 9.5
 3 155 B 9.1 3 155 B 9.2 3 155 B 8.0 3 155 B 9.0
 3 155 C 11.3 3 155 C 11.0 3 155 C 10.9 3 155 C 11.4
 3 165 A 6.7 3 165 A 6.0 3 165 A 5.0 3 165 A 4.8
 3 165 B 5.7 3 165 B 5.5 3 165 B 4.6 3 165 B 5.4
 3 165 C 6.6 3 165 C 6.5 3 165 C 5.9 3 165 C 5.8
;

The variables Lab, Temp, and Batch contain levels of laboratory, temperature, and batch, respectively. The Cure variable contains the response values.

The following SAS statements perform a restricted maximum likelihood variance component analysis.

 title 'Analyzing the Cure Rate of Rubber';
 proc varcomp method=reml data=cure;
 class temp lab batch;
 model cure=temp|lab batch(lab temp) / fixed=1;
 run;

The FIXED=1 option indicates that the first factor, Temp, is fixed. The effect specification Temp|Lab is equivalent to putting the three terms Temp, Lab, and Temp*Lab in the model. Batch(Lab Temp) is equivalent to putting Batch(Temp*Lab) in the MODEL statement. The results of this analysis are displayed in Figure 121.1 through Figure 121.4.
Figure 121.1 provides information about the variables used in the analysis and the number of observations and specifies the dependent variable.

Figure 121.2 displays the iteration history, which includes the value of the objective function associated with REML and the values of the variance components at each iteration.

Figure 121.3 displays the REML estimates of the variance components.
The “Asymptotic Covariance Matrix of Estimates” table in Figure 121.4 displays the asymptotic covariance matrix of the REML estimates.

The results of the analysis show that the variance attributable to Batch(Temp*Lab) (with a variance component of 2.0739) is considerably larger than the variance attributable to Lab (0.3176). Therefore, attempts to reduce the variability of cure rates should concentrate on improving the homogeneity of the batches of raw material used rather than standardizing the practices or equipment within the laboratories. Also, note that since the Batch(Temp*Lab) variance is considerably larger than the experimental error (Var(Error)=0.6026), the Batch(Temp*Lab) variability plays an important part in the overall variability of the cure rates.

Syntax: VARCOMP Procedure

The following statements are available in the VARCOMP procedure:

```plaintext
PROC VARCOMP <options> ;
  CLASS variables ;
  MODEL dependent = <effects> <options> ;
  BY variables ;
```

Only one MODEL statement is allowed. The BY, CLASS, and MODEL statements are described after the PROC VARCOMP statement.

PROC VARCOMP Statement

```plaintext
PROC VARCOMP <options> ;
```

The PROC VARCOMP statement invokes the VARCOMP procedure. Table 121.1 summarizes the options available in the VARCOMP statement.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA=</td>
<td>Specifies the input SAS data set to use</td>
</tr>
<tr>
<td>EPSILON=</td>
<td>Specifies the convergence value of the objective function</td>
</tr>
<tr>
<td>MAXITER=</td>
<td>Specifies the maximum number of iterations for METHOD=ML or METHOD=REML</td>
</tr>
<tr>
<td>METHOD=</td>
<td>Specifies which of the five methods to use</td>
</tr>
</tbody>
</table>
Table 121.1 continued

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEED=</td>
<td>Specifies an unsigned integer used to start the pseudo-random number generator</td>
</tr>
</tbody>
</table>

You can specify the following options in the PROC VARCOMP statement.

DATA=SAS-data-set
specifies the input SAS data set to use. If this option is omitted, the most recently created SAS data set is used.

EPSILON=number
specifies the convergence value of the objective function for METHOD=ML or METHOD=REML. By default, EPSILON=1E–8.

MAXITER=number
specifies the maximum number of iterations for METHOD=ML or METHOD=REML. By default, MAXITER=50.

METHOD=TYPE1 | MIVQUE0 | ML | REML | GRR < (options) >
specifies which of the five methods (TYPE1, MIVQUE0, ML, REML, or GRR) you want to use. By default, METHOD=MIVQUE0. METHOD=GRR provides a specialized analysis only for certain designs, whereas the other four methods apply to any random-effects model and design. You can specify the following options in parentheses after METHOD=GRR.

SPECLIMITS=(LSL,USL,<k>)
specifies the specification limits for the first random factor, which is regarded as the product being tested in the gauge R&R study. The lower limit (LSL) must be smaller than the upper limit (USL). The value k is optional. The default value is 6, which corresponds to the number of standard deviations between the “natural” tolerance limits containing the middle 99.73% of a normal process. SPECLIMITS=(LSL,USL,k) requests the estimates of the parameters PTR(LSL,USL,k) and Cp(LSL,USL,k) to be displayed.

RATIO
specifies that certain additional ratios of variance components should also be computed and displayed, such as proportion of total variance due to the process. These ratios are listed in Table 121.5.

For more information see the section “Computational Methods” on page 9828.

SEED=n
specifies an unsigned integer used to start the pseudo-random number generator. If you do not specify a seed or if you specify zero, the seed is generated from reading the time of day from the computer clock. You can use a SAS date as a seed. The random number generation is used in the computation of generalized confidence limits; see the section “Confidence Limits” on page 9831.
BY Statement

BY variables;

You can specify a BY statement with PROC VARCOMP to obtain separate analyses of observations in groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

- Sort the data by using the SORT procedure with a similar BY statement.
- Specify the NOTSORTED or DESCENDING option in the BY statement for the VARCOMP procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged in groups (according to values of the BY variables) and that these groups are not necessarily in alphabetical or increasing numeric order.
- Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts. For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement

CLASS variables;

The CLASS statement specifies the classification variables to be used in the analysis. All effects in the MODEL statement must be composed of effects that appear in the CLASS statement. Classification variables can be either numeric or character; if they are character, only the first 16 characters are used.

Numeric classification variables are not restricted to integers since a variable’s format determines the levels. For more information, see the discussion of the FORMAT statement in SAS Formats and Informats: Reference.

MODEL Statement

MODEL dependent = <effects> <options>;

The MODEL statement gives the dependent variables and independent effects. If you specify more than one dependent variable, a separate analysis is performed for each one. The independent effects are limited to main effects, interactions, and nested effects; no continuous effects are allowed. All independent effects must be composed of effects that appear in the CLASS statement. Effects are specified in the VARCOMP procedure in the same way as described for the ANOVA procedure. Only one MODEL statement is allowed.

The following options are available in the MODEL statement.
Chapter 121: The VARCOMP Procedure

FIXED=n
specifies that the first \(n \) effects in the MODEL statement are fixed effects. The remaining effects are assumed to be random. By default, PROC VARCOMP assumes that all effects are random in the model. Keep in mind that if you use bar notation and, for example, specify \(Y = A | B \) / FIXED=2, then \(A*B \) is considered a random effect.

CL=MLS | GCL< (options) >
specifies that confidence limits for all of the parameters of interest be computed and displayed. It also optionally specifies the method to use for computing the confidence limits. There are two methods: the modified large-sample (MLS) method and the generalized confidence limits (GCL) method. The default method is MLS. For more information about these two methods, see the section “Confidence Limits” on page 9831.

You can specify the following options in parentheses after CL=GCL.

NSAMPLE=n
specifies the sample size for generalized pivot quantities (GPQ) sampling. The default value is 12,605.

EPSILON=number
specifies a small positive value used in some GPQ computations. The default value is 0.001.

The CL option applies only to balanced one-way or two-way designs for METHOD=TYPE1 or GRR.

ALPHA=\(\alpha \)
specifies the level of significance \(\alpha \) for \((1 - \alpha)100\%\) two-sided confidence limits. The value of \(\alpha \) must be between 0 and 1. By default, \(\alpha \) is equal to 0.05.

Details: VARCOMP Procedure

Missing Values

If an observation has a missing value for any variable used in the independent effects, then the analyses of all dependent variables omit this observation. An observation is deleted from the analysis of a given dependent variable if the observation’s value for that dependent variable is missing. Note that a missing value in one dependent variable does not eliminate an observation from the analysis of the other dependent variables.

During processing, PROC VARCOMP groups the dependent variables on their missing values across observations so that sums of squares and crossproducts can be computed in the most efficient manner.

Fixed and Random Effects

Central to the idea of variance components models is the idea of fixed and random effects. Each effect in a variance components model must be classified as either a fixed or a random effect. Fixed effects arise when the levels of an effect constitute the entire population in which you are interested. For example,
if a plant scientist is comparing the yields of three varieties of soybeans, then Variety would be a fixed effect, providing that the scientist was concerned about making inferences about only these three varieties of soybeans. Similarly, if an industrial experiment focused on the effectiveness of two brands of a machine, Machine would be a fixed effect only if the experimenter’s interest did not go beyond the two machine brands.

On the other hand, an effect is classified as a random effect when you want to make inferences about an entire population, and the levels in your experiment represent only a sample from that population. Psychologists comparing test results between different groups of subjects would consider Subject as a random effect. Depending on the psychologists’ particular interest, the Group effect might be either fixed or random. For example, if the groups are based on the sex of the subject, then Sex would be a fixed effect. But if the psychologists are interested in the variability in test scores due to different teachers, then they might choose a random sample of teachers as being representative of the total population of teachers, and Teacher would be a random effect. Note that, in the soybean example presented earlier, if the scientists are interested in making inferences about the entire population of soybean varieties and randomly choose three varieties for testing, then Variety would be a random effect.

If all the effects in a model (except for the intercept) are considered random effects, then the model is called a random-effects model; likewise, a model with only fixed effects is called a fixed-effects model. The more common case, where some factors are fixed and others are random, is called a mixed model. In PROC VARCOMP, by default, effects are assumed to be random. You specify which effects are fixed by using the FIXED= option in the MODEL statement. In general, if an interaction or nested effect contains any effect that is random, then the interaction or nested effect should be considered a random effect as well.

In the linear model, each level of a fixed effect contributes a fixed amount to the expected value of the dependent variable. What makes a random effect different is that each level of a random effect contributes an amount that is viewed as a sample from a population of normally distributed variables, each with mean 0, and an unknown variance, much like the usual random error term that is a part of all linear models. The estimate of the variance associated with the random effect is known as the variance component because it measures the part of the overall variance contributed by that effect. Thus, PROC VARCOMP estimates the variance of the random variables that are associated with the random effects in your model, and the variance components tell you how much each of the random factors contributes to the overall variability in the dependent variable.

Negative Variance Component Estimates

The variance components estimated by PROC VARCOMP should theoretically be nonnegative because they are assumed to represent the variance of a random variable. Nevertheless, when you are using METHOD=MIVQUE0, TYPE1, or GRR, some estimates of variance components might become negative. (Due to the nature of the algorithms used for METHOD=ML and METHOD=REML, negative estimates are constrained to zero.) These negative estimates might arise for a variety of reasons:

- The variability in your data might be large enough to produce a negative estimate, even though the true value of the variance component is positive.
- Your data might contain outliers. See Hocking (1983) for a graphical technique for detecting outliers in variance components models by using the SAS System.
- A different model for interpreting your data might be appropriate. Under some statistical models for variance components analysis, negative estimates are an indication that observations in your data are negatively correlated. See Hocking (1985) for further information about these models.
Assuming you are satisfied that the model that PROC VARCOMP is using is appropriate for your data, it is common practice to treat negative variance components as if they are zero.

Computational Methods

Four methods of estimation can be specified in the PROC VARCOMP statement by using the METHOD= option. They are described in the following sections.

The Type I Method

This method (METHOD=TYPE1) computes the Type I sum of squares for each effect, equates each mean square involving only random effects to its expected value, and solves the resulting system of equations (Gaylor, Lucas, and Anderson 1970). The $X'X | X'Y$ matrix is computed and adjusted in segments whenever memory is not sufficient to hold the entire matrix.

The MIVQUE0 Method

Based on the technique suggested by Hartley, Rao, and LaMotte (1978), the MIVQUE0 method (METHOD=MIVQUE0) produces unbiased estimates that are invariant with respect to the fixed effects of the model and that are locally best quadratic unbiased estimates given that the true ratio of each component to the residual error component is zero. The technique is similar to TYPE1 except that the random effects are adjusted only for the fixed effects. This affords a considerable timing advantage over the TYPE1 method; thus, MIVQUE0 is the default method used in PROC VARCOMP. The $X'X | X'Y$ matrix is computed and adjusted in segments whenever memory is not sufficient to hold the entire matrix. Each element i,j of the form $SSQ(X'_iM X_j)$ is computed, where

$$M = I - X_0(X'_0X_0)^{-1}X'_0$$

and where X_0 is part of the design matrix for the fixed effects, X_i is part of the design matrix for one of the random effects, and SSQ is an operator that takes the sum of squares of the elements. For more information see Rao (1971, 1972) and Goodnight (1978).

The Maximum Likelihood Method

The maximum likelihood method (METHOD=ML) computes maximum likelihood estimates of the variance components; see Searle, Casella, and McCulloch (1992). The computing algorithm makes use of the W-transformation developed by Hemmerle and Hartley (1973) and Goodnight and Hemmerle (1979). The procedure uses a Newton-Raphson algorithm, iterating until the log-likelihood objective function converges. The objective function for METHOD=ML is $\ln(|V|) + r'V^{-1}r$, where

$$V = \sigma_0^2I + \sum_{i=1}^{n_r} \sigma_i^2 X_i X'_i$$
and where σ_0^2 is the residual variance, n_r is the number of random effects in the model, σ_i^2 represents the variance components, X_i is part of the design matrix for one of the random effects, and

$$r = y - X_0(X_0'V^{-1}X_0)^{-1}X_0'V^{-1}y$$

is the vector of residuals.

The Restricted Maximum Likelihood Method

The restricted maximum likelihood method (METHOD=REML) is similar to the maximum likelihood method, but it first separates the likelihood into two parts: one that contains the fixed effects and one that does not (Patterson and Thompson 1971). The procedure uses a Newton-Raphson algorithm, iterating until convergence is reached for the log-likelihood objective function of the portion of the likelihood that does not contain the fixed effects. Using notation from earlier methods, the objective function for METHOD=REML is $\ln(|V|) + rV^{-1}r + \ln(|X_0'V^{-1}X_0|)$. See Searle, Casella, and McCulloch (1992) for additional details.

The GRR Method

Based on the technique suggested by Burdick, Borror, and Montgomery (2005), the GRR method (METHOD=GRR) produces minimum variance unbiased estimators.

Gauge Repeatability and Reproducibility Analysis

In a typical gauge R&R experiment, each operator (O_j) makes multiple observations on each of several similar parts (P_i) from a monitored process. The statistical model used to describe the response variable is the balanced two-factor crossed random model with interaction

$$y_{ijk} = \mu + P_i + O_j + (PO)_{ij} + E_{ijk}$$

where $i = 1, \ldots, p$, $j = 1, \ldots, o$, $k = 1, \ldots, r$. μ is an unknown constant, and $P_i, O_j, (PO)_{ij}, E_{ijk}$ are jointly independent normal random variables with means of zero and variances $\text{Var}(P)$, $\text{Var}(O)$, $\text{Var}(PO)$, and $\text{Var}(E)$, respectively. The corresponding SAS statements are as follows:

```sas
proc varcomp method=grr;
  class P O;
  model y = P|O;
run;
```

The first random effect in the MODEL statement is assumed to be the “Part” effect and the second is “Operator.”

The ANOVA table for the preceding model is shown in Table 121.2.

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Mean Square</th>
<th>Expected Mean Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parts(P)</td>
<td>$p - 1$</td>
<td>S_P^2</td>
<td>$\text{Var}(E) + r\text{Var}(PO) + or\text{Var}(P)$</td>
</tr>
<tr>
<td>Operators(O)</td>
<td>$o - 1$</td>
<td>S_O^2</td>
<td>$\text{Var}(E) + r\text{Var}(PO) + pr\text{Var}(O)$</td>
</tr>
<tr>
<td>$P \times O$</td>
<td>$(p - 1)(o - 1)$</td>
<td>S_{PO}^2</td>
<td>$\text{Var}(E) + r\text{Var}(PO)$</td>
</tr>
<tr>
<td>Error(E)</td>
<td>$po(r - 1)$</td>
<td>S_E^2</td>
<td>$\text{Var}(E)$</td>
</tr>
</tbody>
</table>
Chapter 121: The VARCOMP Procedure

The gauge R&R parameters of interest are given in Table 121.3 in terms of $\text{Var}(P)$, $\text{Var}(O)$, $\text{Var}(PO)$, and $\text{Var}(E)$.

Table 121.3 Gauge R&R Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean of population of measurements</td>
<td>$\mu_y = \bar{y}{..} = \sum{ijk} y_{ijk}/por$</td>
</tr>
<tr>
<td>Variance of the monitored process</td>
<td>$\gamma_p = \text{Var}(P)$</td>
</tr>
<tr>
<td>Variance of the measurement system</td>
<td>$\gamma_M = \text{Var}(O) + \text{Var}(PO) + \text{Var}(E)$</td>
</tr>
<tr>
<td>Total variance of the response variable</td>
<td>$\gamma_y = \text{Var}(y) = \gamma_p + \gamma_M$</td>
</tr>
<tr>
<td>Ratio of process variance to measurement variance</td>
<td>$\gamma_R = \frac{\gamma_p}{\gamma_M}$</td>
</tr>
<tr>
<td>Proportion of total variance due to the process</td>
<td>$\rho_p = \frac{\gamma_p}{\gamma_y} = \frac{\gamma_R}{1+\gamma_R}$</td>
</tr>
<tr>
<td>Proportion of total variance due to the measurement</td>
<td>$\rho_M = \frac{\gamma_M}{\gamma_y} = 1 - \rho_p$</td>
</tr>
<tr>
<td>Signal-to-noise ratio</td>
<td>$\text{SNR} = \sqrt{2 \times \gamma_R}$</td>
</tr>
<tr>
<td>Discrimination ratio</td>
<td>$\text{DR} = 1 + 2\gamma_R$</td>
</tr>
</tbody>
</table>

For a one-way model, $\gamma_M = \text{Var}(E)$, and for a two-way model with no interaction, $\gamma_M = \text{Var}(O) + \text{Var}(E)$.

If you use the SPECLIMITS option to give specification limits, the two parameters in Table 121.4 will also be estimated and displayed.

Table 121.4 Gauge R&R Parameters Related to Specification Limits

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision-to-tolerance ratio</td>
<td>$\text{PTR}(\text{LSL}, \text{USL}, k) = \frac{k \sqrt{\gamma_M}}{\text{(USL} - \text{LSL})}$</td>
</tr>
<tr>
<td>Process capability ratio</td>
<td>$\text{Cp}(\text{LSL}, \text{USL}, k) = \frac{\text{(USL} - \text{LSL})}{(k \sqrt{\gamma_P})}$</td>
</tr>
</tbody>
</table>

Here, USL and LSL are the specification limits, and the value k corresponds to the number of standard deviations between the “natural” tolerance limits of a normal process.

If you use the RATIO option, the ratios in Table 121.5 will also be estimated and displayed.

Table 121.5 Gauge R&R Ratios

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio of process variance to total variance</td>
<td>$\frac{\text{Var}(P)}{\gamma_y}$</td>
</tr>
<tr>
<td>Ratio of operator variance to total variance</td>
<td>$\frac{\text{Var}(O)}{\gamma_y}$</td>
</tr>
<tr>
<td>Ratio of process by operator variance to total variance</td>
<td>$\frac{\text{Var}(PO)}{\gamma_y}$</td>
</tr>
<tr>
<td>Ratio of process variance to residual variance</td>
<td>$\frac{\text{Var}(P)}{\text{Var}(E)}$</td>
</tr>
<tr>
<td>Ratio of operator variance to residual variance</td>
<td>$\frac{\text{Var}(O)}{\text{Var}(E)}$</td>
</tr>
<tr>
<td>Ratio of process by operator variance to residual variance</td>
<td>$\frac{\text{Var}(PO)}{\text{Var}(E)}$</td>
</tr>
</tbody>
</table>
Confidence Limits

When no exact confidence limits exist, it is common practice to use approximate confidence limits. Two such approximations are the modified large-sample (MLS) method and the generalized confidence limit (GCL) method as discussed in Burdick, Borror, and Montgomery (2005). When analyzing a balanced one-way or two-way design, if you specify the CL= option with METHOD=TYPE1 or GRR, the VARCOMP procedure computes confidence limits by using either the MLS method (the default) or the GCL method. Generalized confidence limits are obtained by specifying the CL=GCL option in the MODEL statement.

MLS Confidence Limits

The method of MLS confidence limits was first introduced by Graybill and Wang (1980). It starts with approximate large-sample confidence limits; then it modifies the limits to be exact under certain parameter conditions.

For a balanced two-way crossed random model with interaction, formulas for the MLS method are given in Table 121.6. See Burdick, Borror, and Montgomery (2005) for the formulas for one-way or balanced two-way with no interaction models.

Confidence limits for parameters such as variances and their ratios might not contain the corresponding point estimates, because negative confidence bounds are increased to zero.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_y</td>
<td>$\hat{y}_{..} - C \sqrt{\frac{K}{\text{por}}}$</td>
<td>$\hat{y}_{..} + C \sqrt{\frac{K}{\text{por}}}$</td>
</tr>
<tr>
<td>γ_p</td>
<td>$\hat{y}p - \sqrt{V{LF}/(or)}$</td>
<td>$\hat{y}p + \sqrt{V{UP}/(or)}$</td>
</tr>
<tr>
<td>γ_M</td>
<td>$\hat{y}M - \sqrt{V{LM}/(pr)}$</td>
<td>$\hat{y}M + \sqrt{V{UM}/(pr)}$</td>
</tr>
<tr>
<td>γ_Y</td>
<td>$\hat{y}Y - \sqrt{V{LT}/(por)}$</td>
<td>$\hat{y}Y + \sqrt{V{UT}/(por)}$</td>
</tr>
<tr>
<td>γ_R</td>
<td>L_R</td>
<td>U_R</td>
</tr>
<tr>
<td>ρ_P</td>
<td>$L_R/(1 + L_R)$</td>
<td>$U_R/(1 + U_R)$</td>
</tr>
<tr>
<td>ρ_M</td>
<td>$1/(1 + U_R)$</td>
<td>$1/(1 + L_R)$</td>
</tr>
</tbody>
</table>
The terms in Table 121.6 are defined as follows:

\[V_{LP} = G_1^2 S_p^4 + H_2^2 S_{PO}^4 + G_{13} S_p^2 S_{PO}^2 \]
\[V_{UP} = H_2^2 S_p^4 + G_3^2 S_{PO}^4 + H_{13} S_p^2 S_{PO}^2 \]
\[V_{LM} = G_2^2 S_p^4 + G_3^4 (p-1)^2 S_{PO}^4 + G_4^2 p^2 (r-1)^2 S_E^4 \]
\[V_{UM} = H_2^2 S_p^4 + H_3^2 (p-1)^2 S_{PO}^4 + H_4^2 p^2 (r-1)^2 S_E^4 \]
\[V_{LT} = G_1^4 p^2 S_p^4 + G_2^2 o^2 S_{PO}^4 + G_3^2 (po - p - o)^2 S_{PO}^4 + G_4^2 (po)^2 (r-1)^2 S_E^4 \]
\[V_{UT} = H_1^2 p^2 S_p^4 + H_2^2 o^2 S_{PO}^4 + H_3^2 (po - p - o)^2 S_{PO}^4 + H_4^2 (po)^2 (r-1)^2 S_E^4 \]

\[L_R = \frac{p(1 - G_1)(S_p^2 - F_1 S_{PO}^2)}{po(r-1)S_E^2 + o(1 - G_1)F_2 S_{PO}^2 + o(p-1)S_{PO}^2} \]
\[U_R = \frac{p(1 + H_1)(S_p^2 - F_2 S_{PO}^2)}{po(r-1)S_E^2 + o(1 + H_1)F_4 S_{PO}^2 + o(p-1)S_{PO}^2} \]

\[G_1 = 1 - F_{\alpha/2:\infty,p-1} \]
\[G_2 = 1 - F_{\alpha/2:\infty,o-1} \]
\[G_3 = 1 - F_{\alpha/2:\infty,(p-1)(o-1)} \]
\[G_4 = 1 - F_{\alpha/2:\infty,po(r-1)} \]
\[H_1 = F_{1-\alpha/2:\infty,p-1} - 1 \]
\[H_2 = F_{1-\alpha/2:\infty,o-1} - 1 \]
\[H_3 = F_{1-\alpha/2:\infty,(p-1)(o-1)} - 1 \]
\[H_4 = F_{1-\alpha/2:\infty,po(r-1)} - 1 \]
\[F_1 = F_{1-\alpha/2:p-1,(p-1)(o-1)} \]
\[F_2 = F_{\alpha/2:p-1,(p-1)(o-1)} \]
\[F_3 = F_{1-\alpha/2:p-1,o-1} \]
\[F_4 = F_{\alpha/2:p-1,o-1} \]
\[G_{13} = \frac{(F_1 - 1)^2 - G_1^2 F_1^2 - H_3^2}{F_1} \]
\[H_{13} = \frac{(1 - F_2)^2 - H_1^2 F_2^2 - G_3^2}{F_2} \]
\[K = s_p^2 + s_o^2 - s_{PO}^2 \]
\[C = \frac{s_p^2 \sqrt{F_{1-\alpha:1,p-1}} + s_o^2 \sqrt{F_{1-\alpha:1,o-1}} - s_{PO}^2 \sqrt{F_{1-\alpha:1,(p-1)(o-1)}}}{K} \]

The symbol \(F_{\alpha:df1,df2} \) represents the percentile of an \(F \) distribution with \(df1 \) and \(df2 \) degrees of freedom and area \(\alpha \) to the left.
Generalized Confidence Limits

The method of generalized confidence limits was first introduced by Weerahandi (1993). The 100(1-\(\alpha\))% generalized confidence limits are determined as follows:

1. Initialize the random number generator with the seed. The seed value is specified by the SEED= option.

2. Sample \(N\) generalized pivot quantities (GPQ), defined to have a distribution that is independent of the parameters under study. The value \(N\) is specified by the NSAMPLE= option.

3. Define the lower and upper limits as the \(\alpha/2\) and \(1 - \alpha/2\) quantiles of the sampled GPQ values.

Formulas for generalized confidence limits are given in Table 121.7, where \(Z\) denotes a standard normal random variable and \(W_1, W_2, W_3,\) and \(W_4\) denote jointly independent chi-square random variables that are independent of \(Z\) with degrees of freedom \(p - 1, o - 1, (p - 1)(o - 1)\) and \(po(r - 1)\), respectively. The value of \(\epsilon\) in Table 121.7 is specified by the EPSILON= option.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>GPQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_y)</td>
<td>(\bar{y}_n - Z \sqrt{\max\left[\epsilon, \frac{(p-1)s^2}{pr W_1} + \frac{(o-1)s^2}{pr W_2} - \frac{(p-1)(o-1)s^2}{pr W_3}\right]})</td>
</tr>
<tr>
<td>(\gamma_P)</td>
<td>(\max\left[0, \frac{(p-1)s^2}{or W_1} - \frac{(p-1)(o-1)s^2}{pr W_3}\right])</td>
</tr>
<tr>
<td>(\gamma_M)</td>
<td>(\frac{(p-1)s^2}{pr W_2} + \frac{(p-1)(o-1)s^2}{pr W_3} + \frac{po(r-1)^2s^2}{r W_4})</td>
</tr>
<tr>
<td>(\gamma_Y)</td>
<td>(\frac{(p-1)s^2}{pr W_1} + \frac{(o-1)s^2}{pr W_2} + \frac{(po-\alpha)(p-1)(o-1)s^2}{pr W_3} + \frac{po(r-1)^2s^2}{r W_4})</td>
</tr>
<tr>
<td>(\gamma_R)</td>
<td>(\frac{GPQ(\gamma_P)}{GPQ(\gamma_M)})</td>
</tr>
</tbody>
</table>

In general, the GCL method provides a more accurate confidence interval with a shorter interval width than the MLS method. However, the greater accuracy comes at the cost of being somewhat nondeterministic, because of the reliance on simulation.

Displayed Output

PROC VARCOMP displays the following items:

- Class Level Information for verifying the levels in your data
- Number of observations read from the data set and number of observations used in the analysis
- for METHOD=TYPE1, an analysis-of-variance table with Source, DF, Type I Sum of Squares, Type I Mean Square, and Expected Mean Square, and a table of Type I variance component estimates
- for METHOD=MIVQUE0, the SSQ Matrix containing sums of squares of partitions of the \(X'X\) crossproducts matrix adjusted for the fixed effects
• for METHOD=ML and METHOD=REML, the iteration history, including the objective function, a table of variance component estimates, and the estimated Asymptotic Covariance Matrix of the variance components

• for METHOD=GRR, an analysis-of-variance table with Source, DF, GRR Sum of Squares, GRR Mean Square, and Expected Mean Square, and a table of GRR parameter estimates. If the CL option is specified, confidence limits for each parameter estimate will also be displayed.

ODS Table Names

PROC VARCOMP assigns a name to each table it creates. You can use these names to reference the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in Table 121.8. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

<table>
<thead>
<tr>
<th>ODS Table Name</th>
<th>Description</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Type 1 analysis of variance</td>
<td>METHOD=TYPE1 or GRR</td>
</tr>
<tr>
<td>AsyCov</td>
<td>Asymptotic covariance matrix of estimates</td>
<td>METHOD=ML or REML</td>
</tr>
<tr>
<td>ClassLevels</td>
<td>Class level information</td>
<td>default</td>
</tr>
<tr>
<td>ConvergenceStatus</td>
<td>Convergence status</td>
<td>METHOD=ML or REML</td>
</tr>
<tr>
<td>DepVar</td>
<td>Dependent variable</td>
<td>METHOD=TYPE1, REML, ML, or GRR</td>
</tr>
<tr>
<td>DependentInfo</td>
<td>Dependent variable info (multiple variables)</td>
<td>default</td>
</tr>
<tr>
<td>Estimates</td>
<td>Variance component estimates</td>
<td>default</td>
</tr>
<tr>
<td>IterHistory</td>
<td>Iteration history</td>
<td>METHOD=ML or REML</td>
</tr>
<tr>
<td>NObs</td>
<td>Number of observations</td>
<td>default</td>
</tr>
<tr>
<td>SSCP</td>
<td>Sum of squares matrix</td>
<td>METHOD=MIVQUE0</td>
</tr>
</tbody>
</table>

In situations where multiple dependent variables are analyzed that differ in their missing value pattern, separate names for ANOVAn, AsyCovn, Estimatesn, IterHistoryn, and SSCPn tables are no longer required. The results are combined into a single output data set. For METHOD=TYPE1, ML, or REML, the variable Dependent in the output data set identifies the dependent variable. For METHOD=MIVQUE0, a variable is added to the output data set for each dependent variable.

Relationship to PROC MIXED

The MIXED procedure effectively performs the same analyzes as PROC VARCOMP and many others, including Type I, Type II, and Type III tests of fixed effects, confidence limits, customized contrasts, and least squares means. Furthermore, continuous variables are permitted as both fixed and random effects in PROC MIXED, and numerous other covariance structures besides variance components are available. The VARCOMP procedure is more computationally efficient for some special designs and models.
To translate PROC VARCOMP code into PROC MIXED code, move all random effects to the RANDOM statement in PROC MIXED. For example, the syntax for the example in the section “Getting Started: VARCOMP Procedure” on page 9820 is as follows:

```plaintext
proc mixed;
  class Temp Lab Batch;
  model Cure = Temp;
  random Lab Temp*Lab Batch(Lab Temp);
run;
```

REML is the default estimation method in PROC MIXED, and you can specify other methods by using the METHOD= option.

Examples: VARCOMP Procedure

Example 121.1: Using the Four General Estimation Methods

In this example, a and b are classification variables and y is the dependent variable. a is declared fixed, and b and a*b are random. Note that this design is unbalanced because the cell sizes are not all the same. PROC VARCOMP is invoked four times, once for each of the general estimation methods. The data are from Hemmerle and Hartley (1973). The following statements produce Output 121.1.1.

```plaintext
data a;
  input a b y @@;
datalines;
1 1 237 1 1 254 1 1 246 1 2 178 1 2 179
2 1 208 2 1 178 2 1 187 2 2 146 2 2 145 2 2 141
3 1 186 3 1 183 3 2 142 3 2 125 3 2 136
;
proc varcomp method=type1 data=a;
  class a b;
  model y=a|b / fixed=1;
run;
```

Output 121.1.1 VARCOMP Procedure: Method=TYPE1

<table>
<thead>
<tr>
<th>Variance Components Estimation Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Level Information</td>
</tr>
<tr>
<td>Class Levels Values</td>
</tr>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
</tbody>
</table>

Number of Observations Read 16
Number of Observations Used 16

Dependent Variable: y
Chapter 121: The VARCOMP Procedure

Output 121.1 continued

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>Expected Mean Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
<td>11736</td>
<td>5868.218750</td>
<td>Var(Error) + 2.725 Var(a*b) + 0.1 Var(b) + Q(a)</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>11448</td>
<td>11448</td>
<td>Var(Error) + 2.6308 Var(a*b) + 7.8 Var(b)</td>
</tr>
<tr>
<td>a*b</td>
<td>2</td>
<td>299.041026</td>
<td>149.520513</td>
<td>Var(Error) + 2.5846 Var(a*b)</td>
</tr>
<tr>
<td>Error</td>
<td>10</td>
<td>786.333333</td>
<td>78.633333</td>
<td>Var(Error)</td>
</tr>
<tr>
<td>Corrected Total</td>
<td>15</td>
<td>24270</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The “Class Level Information” table in Output 121.1 displays the levels of each variable specified in the CLASS statement. You can check this table to make sure the data are input correctly.

The Type I analysis of variance in Output 121.1 consists of a sequential partition of the total sum of squares. The mean square is the sum of squares divided by the degrees of freedom, and the expected mean square is the expected value of the mean square under the mixed model. The “Q” notation in the expected mean squares refers to a quadratic form in parameters of the parenthesized effect.

The Type I estimates of the variance components in Output 121.1 result from solving the linear system of equations established by equating the observed mean squares to their expected values.

The following statements are the same as before, except that the estimation method is MIVQUE0 instead of the default TYPE1. They produce Output 121.1.2.

```
proc varcomp method=mivque0 data=a;
  class a b;
  model y=a|b / fixed=1;
run;
```

Output 121.1.2 VARCOMP Procedure: Method=MIVQUE0

Variance Components Estimation Procedure

<table>
<thead>
<tr>
<th>Source</th>
<th>MIVQUE(0) SSQ Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>60.840000</td>
</tr>
<tr>
<td>a*b</td>
<td>20.520000</td>
</tr>
<tr>
<td>Error</td>
<td>7.800000</td>
</tr>
</tbody>
</table>

MIVQUE(0) Estimates

<table>
<thead>
<tr>
<th>Variance Component</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Var(b)</td>
<td>1466.1</td>
</tr>
<tr>
<td>Var(a*b)</td>
<td>-35.49170</td>
</tr>
<tr>
<td>Var(Error)</td>
<td>105.73660</td>
</tr>
</tbody>
</table>
The MIVQUE0 estimates in Output 121.1.2 result from solving the equations established by the MIVQUE0 SSQ matrix. Note that the estimate of the variance component for the interaction effect, Var(a*b), is negative for this example.

The following statements use METHOD=ML to invoke maximum likelihood estimation. They produce Output 121.1.3.

```plaintext
proc varcomp method=ml data=a;
  class a b;
  model y=a|b / fixed=1;
run;
```

Output 121.1.3 VARCOMP Procedure: Method=ML

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Maximum Likelihood Iterations</th>
<th>Objective</th>
<th>Var(b)</th>
<th>Var(a*b)</th>
<th>Var(Error)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>78.3850371200</td>
<td>1031.49070</td>
<td>74.3909717935</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>78.2637043807</td>
<td>732.3606453635</td>
<td>77.4011688154</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>78.2635471161</td>
<td>723.6867470850</td>
<td>77.5301774839</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>78.2635471152</td>
<td>723.6658365289</td>
<td>77.5304926877</td>
<td></td>
</tr>
</tbody>
</table>

Convergence criteria met.

Maximum Likelihood Estimates

<table>
<thead>
<tr>
<th>Variance Component</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Var(b)</td>
<td>723.66584</td>
</tr>
<tr>
<td>Var(a*b)</td>
<td>0</td>
</tr>
<tr>
<td>Var(Error)</td>
<td>77.53049</td>
</tr>
</tbody>
</table>

Asymptotic Covariance Matrix of Estimates

<table>
<thead>
<tr>
<th></th>
<th>Var(b)</th>
<th>Var(a*b)</th>
<th>Var(Error)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Var(b)</td>
<td>537826.1</td>
<td>0</td>
<td>-107.33905</td>
</tr>
<tr>
<td>Var(a*b)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Var(Error)</td>
<td>-107.33905</td>
<td>0</td>
<td>858.71104</td>
</tr>
</tbody>
</table>

The “Maximum Likelihood Iterations” table in Output 121.1.3 shows that the Newton-Raphson algorithm used by PROC VARCOMP requires three iterations to converge.

The ML estimate of Var(a*b) is zero for this example, and the other two estimates are smaller than their Type I and MIVQUE0 counterparts.

One benefit of using likelihood-based methods is that an approximate covariance matrix is available from the matrix of second derivatives evaluated at the ML solution. This covariance matrix is valid asymptotically and can be unreliable in small samples.

Here the variance component estimates for B and the Error are negatively correlated, and the elements for Var(a*b) are set to zero because the estimate equals zero. Also, the very large variance for Var(b) indicates a lot of uncertainty about the estimate for Var(b), and one contributing explanation is that B has only two levels in this data set.
Finally, the following statements use the restricted maximum likelihood (REML) for estimation. They produce Output 121.1.4.

```plaintext
proc varcomp method=reml data=a;
   class a b;
   model y=a|b / fixed=1;
run;
```

Output 121.1.4 VARCOMP Procedure: Method=REML

Variance Components Estimation Procedure

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Objective</th>
<th>Var(b)</th>
<th>Var(a*b)</th>
<th>Var(Interaction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>63.4134144942</td>
<td>1269.5270</td>
<td>0</td>
<td>91.5581191305</td>
</tr>
<tr>
<td>1</td>
<td>63.0446869787</td>
<td>1601.84199</td>
<td>32.7632417174</td>
<td>76.9355562461</td>
</tr>
<tr>
<td>2</td>
<td>63.0311530508</td>
<td>1468.82932</td>
<td>27.2258186561</td>
<td>78.7548276319</td>
</tr>
<tr>
<td>3</td>
<td>63.0311265148</td>
<td>1464.33646</td>
<td>26.9564053003</td>
<td>78.8431476502</td>
</tr>
<tr>
<td>4</td>
<td>63.0311265127</td>
<td>1464.36727</td>
<td>26.9588525177</td>
<td>78.8423898761</td>
</tr>
</tbody>
</table>

Convergence criteria met.

REML Estimates

<table>
<thead>
<tr>
<th>Component Estimate</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Var(b)</td>
<td>1464.4</td>
</tr>
<tr>
<td>Var(a*b)</td>
<td>26.95885</td>
</tr>
<tr>
<td>Var(Interaction)</td>
<td>78.84239</td>
</tr>
</tbody>
</table>

Asymptotic Covariance Matrix of Estimates

<table>
<thead>
<tr>
<th>Var(b)</th>
<th>Var(a*b)</th>
<th>Var(Interaction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Var(b)</td>
<td>4401703.8</td>
<td>1.29359 -273.39651</td>
</tr>
<tr>
<td>Var(a*b)</td>
<td>1.29359</td>
<td>3559.1 -502.85157</td>
</tr>
<tr>
<td>Var(Interaction)</td>
<td>-273.39651</td>
<td>-502.85157 1249.7</td>
</tr>
</tbody>
</table>

The “REML Iterations” table in Output 121.1.4 shows that the REML optimization requires four iterations to converge.

The REML estimates in Output 121.1.4 are all larger than the corresponding ML estimates (adjusting for potential downward bias) and are fairly similar to the Type I estimates.

The “Asymptotic Covariance Matrix of Estimates” table in Output 121.1.4 shows that the Error variance component estimate is negatively correlated with the other two variance component estimates, and the estimated variances are all larger than their ML counterparts.

Example 121.2: Using the GRR Method

In this example from Houf and Burman (1988), the response variable is the thermal performance of a module measured in Celsius degrees per watt. Each of three operators measures 10 parts three times. It is assumed that parts and operators are selected at random from larger populations. The following statements produce Output 121.2.1.
data Houf;
 input a b y@@;
datalines;
1 1 37 1 1 38 1 1 37
1 2 41 1 2 41 1 2 40
1 3 41 1 3 42 1 3 41
2 1 42 2 1 41 2 1 43
2 2 42 2 2 42 2 2 42
2 3 43 2 3 42 2 3 43
3 1 30 3 1 31 3 1 31
3 2 31 3 2 31 3 2 31
3 3 29 3 3 30 3 3 28
4 1 42 4 1 43 4 1 42
4 2 43 4 2 43 4 2 43
4 3 42 4 3 42 4 3 42
5 1 28 5 1 30 5 1 29
5 2 29 5 2 30 5 2 29
5 3 31 5 3 29 5 3 29
6 1 42 6 1 42 6 1 43
6 2 45 6 2 45 6 2 45
6 3 44 6 3 46 6 3 45
7 1 25 7 1 26 7 1 27
7 2 28 7 2 28 7 2 30
7 3 29 7 3 27 7 3 27
8 1 40 8 1 40 8 1 40
8 2 43 8 2 42 8 2 42
8 3 43 8 3 43 8 3 41
9 1 25 9 1 25 9 1 25
9 2 27 9 2 29 9 2 28
9 3 26 9 3 26 9 3 26
10 1 35 10 1 34 10 1 34
10 2 35 10 2 35 10 2 34
10 3 35 10 3 34 10 3 35
;
proc varcomp data=Houf method=grr (speclimits=(18,58) ratio);
class a b;
model y=a|b/cl;
run;

You specify METHOD=GRR in this example to drive the VARCOMP procedure to produce a gauge repeatability and reproducibility analysis. With the option speclimits=(18 58), the parameters PTR and Cp are estimated and displayed. With the RATIO option, certain additional ratios of variance components are also estimated and displayed. Finally, the CL= option in the MODEL statement specifies that estimates of GRR quantities should have the corresponding confidence limits.
Output 121.2.1 Class Level Information Using Method=GRR

Variance Components Estimation Procedure

<table>
<thead>
<tr>
<th>Class Level Information</th>
<th>Class Levels Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
<tr>
<td>b</td>
<td>3 1 2 3</td>
</tr>
</tbody>
</table>

Number of Observations Read 90
Number of Observations Used 90

Dependent Variable: y

The “Class Level Information” table in Output 121.2.1 displays the levels of each variable specified in the CLASS statement.

Output 121.2.2 Analysis of Variance Using Method=GRR

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>Expected Mean Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>9</td>
<td>3935.955556</td>
<td>437.328395</td>
<td>Var(\text{Error}) + 3 \text{Var}(a*b) + 9 \text{Var}(a)</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td>39.266667</td>
<td>19.633333</td>
<td>Var(\text{Error}) + 3 \text{Var}(a*b) + 30 \text{Var}(b)</td>
</tr>
<tr>
<td>a*b</td>
<td>18</td>
<td>48.511111</td>
<td>2.695062</td>
<td>Var(\text{Error}) + 3 \text{Var}(a*b)</td>
</tr>
<tr>
<td>Error</td>
<td>60</td>
<td>30.666667</td>
<td>0.511111</td>
<td>Var(\text{Error})</td>
</tr>
<tr>
<td>Corrected Total</td>
<td>89</td>
<td>4054.400000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The GRR analysis of variance in Output 121.2.2 is the same as for the Type I analysis when the design is balanced.
Finally, the estimates of the GRR parameters of interest and their confidence limits are displayed in Output 121.2.3.

Output 121.2.3 Parameter Estimates Using Method=GRR

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>95% Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mu Y</td>
<td>35.80000</td>
<td>30.49477 - 41.10523</td>
</tr>
<tr>
<td>Var(a)</td>
<td>48.29259</td>
<td>22.69452 - 161.63918</td>
</tr>
<tr>
<td>Var(b)</td>
<td>0.56461</td>
<td>0.07296 - 25.75077</td>
</tr>
<tr>
<td>Var(a*b)</td>
<td>0.72798</td>
<td>0.33273 - 1.79272</td>
</tr>
<tr>
<td>Var(Error)</td>
<td>0.51111</td>
<td>0.36816 - 0.75754</td>
</tr>
<tr>
<td>Gamma Y</td>
<td>50.09630</td>
<td>24.48844 - 166.22217</td>
</tr>
<tr>
<td>Gamma P</td>
<td>48.29259</td>
<td>22.69452 - 161.63918</td>
</tr>
<tr>
<td>Gamma M</td>
<td>1.80370</td>
<td>1.20623 - 27.01724</td>
</tr>
<tr>
<td>Gamma R</td>
<td>26.77413</td>
<td>1.69168 - 105.60895</td>
</tr>
<tr>
<td>SNR</td>
<td>7.31767</td>
<td>1.83939 - 14.53334</td>
</tr>
<tr>
<td>PTR(18.58.6)</td>
<td>0.20145</td>
<td>0.16474 - 0.77967</td>
</tr>
<tr>
<td>Cp(18.58.6)</td>
<td>0.95933</td>
<td>0.52437 - 1.39942</td>
</tr>
<tr>
<td>DR</td>
<td>54.54825</td>
<td>4.38336 - 212.21791</td>
</tr>
<tr>
<td>Rho P</td>
<td>0.96400</td>
<td>0.62848 - 0.99062</td>
</tr>
<tr>
<td>Rho M</td>
<td>0.03600</td>
<td>0.0093801 - 0.37152</td>
</tr>
<tr>
<td>Var(a)/Gamma Y</td>
<td>0.96400</td>
<td>0.62848 - 0.99062</td>
</tr>
<tr>
<td>Var(b)/Gamma Y</td>
<td>0.01127</td>
<td>0.0008700 - 0.34151</td>
</tr>
<tr>
<td>Var(a*b)/Gamma Y</td>
<td>0.01453</td>
<td>0.0027083 - 0.04744</td>
</tr>
<tr>
<td>Var(a)/Var(Error)</td>
<td>94.48551</td>
<td>40.19199 - 327.32469</td>
</tr>
<tr>
<td>Var(b)/Var(Error)</td>
<td>1.10467</td>
<td>0.13662 - 50.37744</td>
</tr>
<tr>
<td>Var(a*b)/Var(Error)</td>
<td>1.42432</td>
<td>0.55232 - 3.74691</td>
</tr>
</tbody>
</table>

You can draw the following inferences from the results of the analysis. Most of the variation is due to differences between parts because of the relative larger value of Gamma R. The measurement system is nearly inadequate because the PTR exceeds 20%. However, the measurement system is of value in monitoring the process since the SNR is greater than five. See Burdick, Borror, and Montgomery (2003) for more information about interpreting gauge R&R studies.

The confidence limits in Output 121.2.3 are based on large-sample asymptotic approximation. You can alternatively compute more accurate and usually smaller confidence intervals by using CL=GCL for generalized confidence limits. The following statements produce Output 121.2.4:

```plaintext
proc varcomp data=Houf method=grr (speclimits=(18,58) ratio) seed=104;
    class a b;
    model y=a|b/cl=gcl;
run;
```
Output 121.2.4 Generalized Confidence Limits

Variance Components Estimation Procedure

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>95% Generalized Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mu Y</td>
<td>35.80000</td>
<td>30.23607 41.39887</td>
</tr>
<tr>
<td>Var(a)</td>
<td>48.29259</td>
<td>22.46186 160.90542</td>
</tr>
<tr>
<td>Var(b)</td>
<td>0.56461</td>
<td>0.06936 29.93347</td>
</tr>
<tr>
<td>Var(a*b)</td>
<td>0.72798</td>
<td>0.33182 1.79558</td>
</tr>
<tr>
<td>Var(Error)</td>
<td>0.51111</td>
<td>0.36816 0.75754</td>
</tr>
<tr>
<td>Gamma Y</td>
<td>50.09630</td>
<td>25.20454 175.29591</td>
</tr>
<tr>
<td>Gamma P</td>
<td>48.29259</td>
<td>22.46186 160.90542</td>
</tr>
<tr>
<td>Gamma M</td>
<td>1.80370</td>
<td>1.18137 31.03229</td>
</tr>
<tr>
<td>Gamma R</td>
<td>26.77413</td>
<td>1.66841 84.92030</td>
</tr>
<tr>
<td>SNR</td>
<td>7.31767</td>
<td>1.82670 13.03229</td>
</tr>
<tr>
<td>PTR(18,58,6)</td>
<td>0.20145</td>
<td>0.16304 0.83560</td>
</tr>
<tr>
<td>Cp(18,58,6)</td>
<td>0.95933</td>
<td>0.52556 1.40665</td>
</tr>
<tr>
<td>DR</td>
<td>54.54825</td>
<td>4.33682 170.84061</td>
</tr>
<tr>
<td>Rho P</td>
<td>0.96400</td>
<td>0.62524 0.98836</td>
</tr>
<tr>
<td>Rho M</td>
<td>0.03600</td>
<td>0.01164 0.37476</td>
</tr>
<tr>
<td>Var(a)/Gamma Y</td>
<td>0.96400</td>
<td>0.62524 0.98836</td>
</tr>
<tr>
<td>Var(b)/Gamma Y</td>
<td>0.01127</td>
<td>0.0009352 0.35629</td>
</tr>
<tr>
<td>Var(a*b)/Gamma Y</td>
<td>0.01453</td>
<td>0.0032977 0.04258</td>
</tr>
<tr>
<td>Var(a)/Var(Error)</td>
<td>94.48551</td>
<td>40.62919 325.51792</td>
</tr>
<tr>
<td>Var(b)/Var(Error)</td>
<td>1.10467</td>
<td>0.13051 56.94205</td>
</tr>
<tr>
<td>Var(a*b)/Var(Error)</td>
<td>1.42432</td>
<td>0.55232 3.74691</td>
</tr>
</tbody>
</table>

Note that the generalized confidence interval widths from Output 121.2.4 for parameters γ_R and DR are 85.7 and 171.4, respectively. These widths are much shorter than the MLS-based widths, which are 103.9 and 207.8 from Output 121.2.3.

In general, the GCL method provides a more accurate confidence interval with a shorter interval width than the MLS method. However, as discussed in the section “Generalized Confidence Limits” on page 9833, they are computationally intensive and somewhat nondeterministic, because they are based on an underlying Monte Carlo simulation.

References

Subject Index

classification variables
 VARCOMP procedure, 9825

computational details
 GRR method (VARCOMP), 9829
 maximum likelihood method (VARCOMP), 9828
 MIVQUE0 method (VARCOMP), 9828
 restricted maximum likelihood method (VARCOMP), 9829
 Type I method (VARCOMP), 9828
 VARCOMP procedure, 9828, 9835

certainty limits
 VARCOMP procedure, 9831

estimation methods
 VARCOMP procedure, 9824

fixed effects
 VARCOMP procedure, 9820, 9826

fixed-effects model
 VARCOMP procedure, 9827

gauge R&R
 VARCOMP procedure, 9824, 9829

maximum likelihood
 VARCOMP procedure, 9824

methods of estimation
 VARCOMP procedure, 9820, 9835

missing values
 VARCOMP procedure, 9826

mixed model
 VARCOMP procedure, 9827

negative variance components
 VARCOMP procedure, 9827

random effects
 VARCOMP procedure, 9819, 9826

random effects model
 VARCOMP procedure, 9827

restricted maximum likelihood
 VARCOMP procedure, 9824

seed for random number
 VARCOMP procedure, 9824

VARCOMP procedure
 classification variables, 9825
 computational details, 9828
 confidence level, 9826
Syntax Index

ALPHA= option
 MODEL statement(VARCOMP), 9826

BY statement
 VARCOMP procedure, 9825

CL option
 MODEL statement(VARCOMP), 9826
CLASS statement
 VARCOMP procedure, 9825

DATA= option
 PROC VARCOMP statement, 9824

EPSILON= option
 PROC VARCOMP statement, 9824

FIXED= option
 MODEL statement (VARCOMP), 9826

MAXITER= option
 PROC VARCOMP statement, 9824
METHOD= option
 PROC VARCOMP statement, 9824
MODEL statement
 VARCOMP procedure, 9825

NSAMPLE= option
 PROC VARCOMP statement, 9826

PROC VARCOMP statement, see VARCOMP
 procedure
 VARCOMP procedure, 9823

RATIO option
 PROC VARCOMP statement, 9824

SEED= option
 PROC VARCOMP statement, 9824
SPECLIMITS= option
 PROC VARCOMP statement, 9824

VARCOMP procedure, 9823
 CLASS statement, 9825
 MODEL statement, 9825
 PROC VARCOMP statement, 9823
 SYNTAX, 9823
VARCOMP procedure, BY statement, 9825
VARCOMP procedure, CLASS statement, 9825
VARCOMP procedure, MODEL statement, 9825