Chapter 58
The HPPRINCOMP Procedure

Contents

Overview: HPPRINCOMP Procedure 4446
 PROC HPPRINCOMP Features 4446
 PROC HPPRINCOMP Contrasted with PROC PRINCOMP 4447
Getting Started: HPPRINCOMP Procedure 4448
Syntax: HPPRINCOMP Procedure 4452
 PROC HPPRINCOMP Statement 4452
 BY Statement .. 4456
 CODE Statement ... 4456
 FREQ Statement ... 4457
 ID Statement ... 4457
 OUTPUT Statement ... 4457
 PARTIAL Statement 4459
 PERFORMANCE Statement 4459
 VAR Statement .. 4459
 WEIGHT Statement 4460
Details: HPPRINCOMP Procedure 4460
 Computing Principal Components 4460
 Eigenvalue Decomposition 4460
 NIPALS .. 4460
 ITERGS ... 4461
 Missing Values ... 4461
 Output Data Sets ... 4461
 OUT= Data Set ... 4461
 OUTSTAT= Data Set 4462
 Computational Method 4464
 Multithreading ... 4464
 Displayed Output ... 4464
 Performance Information 4465
 Data Access Information 4465
 Model Information 4465
 Number of Observations 4465
 Number of Variables 4465
 Simple Statistics 4465
 Centering and Scaling Information 4465
 Explained Variation of Variables 4465
 Correlation Matrix 4466
Overview: HPPRINCOMP Procedure

The HPPRINCOMP procedure is a high-performance procedure that performs principal component analysis. It is a high-performance version of the PRINCOMP procedure in SAS/STAT software, but it provides additional iterative methods to calculate the principal components.

Principal component analysis is a multivariate technique for examining relationships among several quantitative variables, providing an optimal way of reducing dimensionality by projecting the data onto a lower-dimensional orthogonal subspace that explains as much variation in those variables as possible. The choice between using factor analysis and using principal component analysis depends in part on your research objectives. You should use the HPPRINCOMP procedure if you are interested in summarizing data and detecting linear relationships. You can use principal component analysis to reduce the number of variables in regression, clustering, and so on.

PROC HPPRINCOMP runs in either single-machine mode or distributed mode.

NOTE: Distributed mode requires SAS High-Performance Statistics.

PROC HPPRINCOMP Features

The main features of the HPPRINCOMP procedure are as follows:

- supports a PARTIAL statement for analyzing a partial correlation or covariance matrix
- supports a FREQ statement for grouped analysis
- supports a WEIGHT statement for weighted analysis
• produces an output data set that contains principal component scores and other observationwise statistics

• produces an output data set that contains means, standard deviations, number of observations, correlations or covariances, eigenvalues, and eigenvectors

The HPPRINCOMP procedure implements the following algorithms:

• eigenvalue decomposition, which uses the correlation or covariance of the data matrix and calculates all the principal components simultaneously

• nonlinear iterative partial least squares (NIPALS), which uses the data matrix and extracts the principal components successively

• the iterative method based on Gram-Schmidt orthogonalization (ITERGS) of Andrecut (2009), which uses the data matrix and extracts the principal components successively. The algorithm applies reorthogonalization correction to both the scores and the loadings at each iteration step.

Because the HPPRINCOMP procedure is a high-performance analytical procedure, it also does the following:

• enables you to run in distributed mode on a cluster of machines that distribute the data and the computations when you license SAS High-Performance Statistics

• enables you to run in single-machine mode on the server where SAS is installed

• exploits all the available cores and concurrent threads, regardless of execution mode

For more information, see the section “Processing Modes” (Chapter 3, SAS/STAT User’s Guide: High-Performance Procedures).

PROC HPPRINCOMP Contrasted with PROC PRINCOMP

The HPPRINCOMP procedure and the PRINCOMP procedure in SAS/STAT have the following similarities and differences:

• All statements that are available in PROC PRINCOMP are supported by the HPPRINCOMP procedure.

• The HPPRINCOMP procedure supports the OUTPUT statement, which is not available in PROC PRINCOMP.

• The HPPRINCOMP procedure can specify various methods to be used for calculating the principal components by using the METHOD= option, which is not available in PROC PRINCOMP.

• PROC PRINCOMP can accept ordinary SAS data sets and other types of special SAS data sets as input. The HPPRINCOMP procedure can accept only ordinary SAS data sets (raw data) as input.

• The HPPRINCOMP procedure does not support the PLOTS option that is available in PROC PRINCOMP.
The HPPRINCOMP procedure is specifically designed to operate in the high-performance distributed environment. By default, PROC HPPRINCOMP performs computations on multiple threads. The PRINCOMP procedure executes on a single thread.

Getting Started: HPPRINCOMP Procedure

The following data provide crime rates per 100,000 people in seven categories for each of the 50 US states in 1977:

```sas
title 'Crime Rates per 100,000 Population by State';

data Crime;
  input State $1-15 Murder Rape Robbery Assault Burglary Larceny Auto_Theft;

datalines;
Alabama  14.2  25.2  96.8  278.3  1135.5  1881.9  280.7
Alaska   10.8  51.6  96.8  284.0  1331.7  3369.8  753.3
Arizona  9.5  34.2  138.2  2346.1  4467.4  439.5
Arkansas  8.8  27.6  83.2  203.4  972.6  1862.1  183.4
California  11.5  49.4  287.0  358.0  2139.4  3499.8  663.5
Colorado  6.3  42.0  170.7  292.9  1935.2  3903.2  477.1
Connecticut  4.2  16.8  129.5  1346.0  2620.7  593.2
Delaware  6.0  24.9  157.0  1862.1  1682.6  3678.4  467.0
Florida   10.2  39.6  187.9  449.1  1859.9  3840.5  351.4
Georgia   11.7  31.1  140.5  256.5  1351.1  2170.2  297.9
Hawaii    7.2  25.5  128.0  1911.5  3920.4  489.4
Idaho     5.5  19.4  39.6  172.5  1253.1  2350.7  246.9
Illinois  9.9  21.8  211.3  1085.0  2828.5  528.6
Indiana   7.4  26.5  123.2  1086.2  2498.7  377.4
Iowa      2.3  10.6  41.2  89.8  2685.1  219.9
Kansas    6.6  22.0  100.7  1270.4  2739.3  244.3
Kentucky  10.1  19.1  81.1  123.3  1662.1  245.4
Louisiana 15.5  30.9  142.9  1165.5  2469.9  337.7
Maine     2.4  13.5  38.7  1253.1  2350.7  469.9
Maryland  8.0  34.8  292.1  1400.0  3177.7  428.5
Massachusetts 3.1  20.8  169.1  231.6  3152.2  2311.3  1140.1
Michigan  9.3  38.9  261.9  274.6  3159.0  545.5
Minnesota 2.7  19.5  85.9  1134.7  2559.3  343.1
Mississippi 14.3  19.6  65.7  189.1  915.6  1239.9  144.4
Missouri  9.6  28.3  189.0  233.5  3138.3  2424.2  378.4
Montana   5.4  16.7  39.2  156.8  804.9  2773.2  309.2
Nebraska  3.9  18.1  64.7  112.7  760.0  2316.1  249.1
Nevada   15.8  49.1  323.1  355.0  2453.1  4212.6  559.2
New Hampshire 3.2  10.7  23.2  76.0  1041.7  2343.9  293.4
New Jersey 5.6  21.0  180.4  185.1  1435.8  2774.5  511.5
New Mexico  8.8  39.1  109.6  343.4  1418.7  3008.6  259.5
New York  10.7  29.4  472.6  319.1  1728.0  2782.0  745.8
North Carolina 10.6  17.0  61.3  318.3  1154.1  2037.8  192.1
North Dakota 0.9  9.0  13.3  43.8  446.1  1843.0  144.7
Ohio     7.8  27.3  190.5  181.1  1216.0  2696.8  400.4
```

The following statements invoke the HPPRINCOMP procedure, which requests a principal component analysis of the data and produces Figure 58.1 through Figure 58.4:

```sas
proc hprrincomp data=Crime;
run;
```

Figure 58.1 displays the “Performance Information,” “Data Access Information,” “Model Information,” “Number of Observations,” “Number of Variables,” and “Simple Statistics” tables.

The “Performance Information” table shows the procedure executes in single-machine mode—that is, the data reside and the computation is performed on the machine where the SAS session executes. This run of the HPPRINCOMP procedure took place on a multicore machine with four CPUs; one computational thread was spawned per CPU.

The “Data Access Information” table shows that the input data set is accessed with the V9 (base) engine on the client machine where the MVA SAS session executes.

The “Model Information” table identifies the data source and shows that the principal component extraction method is eigenvalue decomposition, which is the default.

The “Number of Observations” table shows that of the 50 observations in the input data, only 48 observations are used in the analysis because some observations have incomplete data.

The “Number of Variables” table indicates that there are seven variables to be analyzed and seven principal components to be computed. By default, if the VAR statement is omitted, all numeric variables that are not listed in other statements are used in the analysis.

The “Simple Statistics” table displays the mean and standard deviation of the analysis variables.

Figure 58.1 Performance Information and Simple Statistics

<table>
<thead>
<tr>
<th>State</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oklahoma</td>
<td>8.6</td>
<td>29.2</td>
</tr>
<tr>
<td>Oregon</td>
<td>4.9</td>
<td>39.9</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>5.6</td>
<td>19.0</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>3.6</td>
<td>10.5</td>
</tr>
<tr>
<td>South Carolina</td>
<td>11.9</td>
<td>33.0</td>
</tr>
<tr>
<td>South Dakota</td>
<td>2.0</td>
<td>13.5</td>
</tr>
<tr>
<td>Tennessee</td>
<td>10.1</td>
<td>29.7</td>
</tr>
<tr>
<td>Texas</td>
<td>13.3</td>
<td>33.8</td>
</tr>
<tr>
<td>Utah</td>
<td>3.5</td>
<td>20.3</td>
</tr>
<tr>
<td>Vermont</td>
<td>1.4</td>
<td>15.9</td>
</tr>
<tr>
<td>Virginia</td>
<td>9.0</td>
<td>23.3</td>
</tr>
<tr>
<td>Washington</td>
<td>4.3</td>
<td>39.6</td>
</tr>
<tr>
<td>West Virginia</td>
<td>6.0</td>
<td>13.2</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>2.8</td>
<td>12.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>2.1</td>
<td>15.9</td>
</tr>
</tbody>
</table>

The following tables show the performance information:

<table>
<thead>
<tr>
<th>State</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oklahoma</td>
<td>8.6</td>
<td>29.2</td>
</tr>
<tr>
<td>Oregon</td>
<td>4.9</td>
<td>39.9</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>5.6</td>
<td>19.0</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>3.6</td>
<td>10.5</td>
</tr>
<tr>
<td>South Carolina</td>
<td>11.9</td>
<td>33.0</td>
</tr>
<tr>
<td>South Dakota</td>
<td>2.0</td>
<td>13.5</td>
</tr>
<tr>
<td>Tennessee</td>
<td>10.1</td>
<td>29.7</td>
</tr>
<tr>
<td>Texas</td>
<td>13.3</td>
<td>33.8</td>
</tr>
<tr>
<td>Utah</td>
<td>3.5</td>
<td>20.3</td>
</tr>
<tr>
<td>Vermont</td>
<td>1.4</td>
<td>15.9</td>
</tr>
<tr>
<td>Virginia</td>
<td>9.0</td>
<td>23.3</td>
</tr>
<tr>
<td>Washington</td>
<td>4.3</td>
<td>39.6</td>
</tr>
<tr>
<td>West Virginia</td>
<td>6.0</td>
<td>13.2</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>2.8</td>
<td>12.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>2.1</td>
<td>15.9</td>
</tr>
</tbody>
</table>
Figure 58.1 continued

<table>
<thead>
<tr>
<th>Data Access Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>WORK.CRIME V9 Input On Client</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Source</td>
</tr>
<tr>
<td>Component Extraction Method</td>
</tr>
<tr>
<td>Number of Observations Read</td>
</tr>
<tr>
<td>Number of Observations Used</td>
</tr>
<tr>
<td>Number of Variables</td>
</tr>
<tr>
<td>Number of Principal Components</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Simple Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>Murder</td>
</tr>
<tr>
<td>Rape</td>
</tr>
<tr>
<td>Robbery</td>
</tr>
<tr>
<td>Assault</td>
</tr>
<tr>
<td>Burglary</td>
</tr>
<tr>
<td>Larceny</td>
</tr>
<tr>
<td>Auto_Theft</td>
</tr>
</tbody>
</table>

Figure 58.2 displays the “Correlation Matrix” table. By default, the PROC HPPRINCOMP statement requests that principal components be computed from the correlation matrix, so the total variance is equal to the number of variables, 7.

Figure 58.2 Correlation Matrix Table

<table>
<thead>
<tr>
<th>Correlation Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>Murder</td>
</tr>
<tr>
<td>Rape</td>
</tr>
<tr>
<td>Robbery</td>
</tr>
<tr>
<td>Assault</td>
</tr>
<tr>
<td>Burglary</td>
</tr>
<tr>
<td>Larceny</td>
</tr>
<tr>
<td>Auto_Theft</td>
</tr>
</tbody>
</table>

Figure 58.3 displays the “Eigenvalues” table. The first principal component accounts for about 57.8% of the total variance, the second principal component accounts for about 18.1%, and the third principal component accounts for about 10.7%. Note that the eigenvalues sum to the total variance.

The eigenvalues indicate that two or three components provide a good summary of the data: two components account for 76% of the total variance, and three components account for 87%. Subsequent components account for less than 5% each.
Figure 58.3 Eigenvalues Table

<table>
<thead>
<tr>
<th>Eigenvalues of the Correlation Matrix</th>
<th>Eigenvalue</th>
<th>Difference</th>
<th>Proportion</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.045824</td>
<td>2.781795</td>
<td>0.5780</td>
<td>0.5780</td>
</tr>
<tr>
<td>2</td>
<td>1.264030</td>
<td>0.516529</td>
<td>0.1806</td>
<td>0.7586</td>
</tr>
<tr>
<td>3</td>
<td>0.747500</td>
<td>0.421175</td>
<td>0.1068</td>
<td>0.8653</td>
</tr>
<tr>
<td>4</td>
<td>0.326325</td>
<td>0.061119</td>
<td>0.0466</td>
<td>0.9120</td>
</tr>
<tr>
<td>5</td>
<td>0.265207</td>
<td>0.036843</td>
<td>0.0379</td>
<td>0.9498</td>
</tr>
<tr>
<td>6</td>
<td>0.228364</td>
<td>0.105613</td>
<td>0.0326</td>
<td>0.9825</td>
</tr>
<tr>
<td>7</td>
<td>0.122750</td>
<td></td>
<td>0.0175</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Figure 58.4 displays the “Eigenvectors” table. From the eigenvectors matrix, you can represent the first principal component, Prin1, as a linear combination of the original variables:

\[
\text{Prin1} = 0.302888 \times (\text{Murder}) + 0.434103 \times (\text{Rape}) + 0.397055 \times (\text{Robbery}) + \ldots + 0.288343 \times (\text{Auto_Theft})
\]

Similarly, the second principal component, Prin2, is

\[
\text{Prin2} = -0.618929 \times (\text{Murder}) - 0.170526 \times (\text{Rape}) + 0.047125 \times (\text{Robbery}) + \ldots + 0.504003 \times (\text{Auto_Theft})
\]

where the variables are standardized.

Figure 58.4 Eigenvectors Table

<table>
<thead>
<tr>
<th>Variable</th>
<th>Prin1</th>
<th>Prin2</th>
<th>Prin3</th>
<th>Prin4</th>
<th>Prin5</th>
<th>Prin6</th>
<th>Prin7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murder</td>
<td>0.3029</td>
<td>-0.6189</td>
<td>0.1735</td>
<td>-0.2331</td>
<td>0.5489</td>
<td>0.2637</td>
<td>0.2643</td>
</tr>
<tr>
<td>Rape</td>
<td>0.4341</td>
<td>-0.1705</td>
<td>-0.2353</td>
<td>0.0654</td>
<td>0.1807</td>
<td>-0.7823</td>
<td>-0.2794</td>
</tr>
<tr>
<td>Robbery</td>
<td>0.3970</td>
<td>0.0471</td>
<td>0.4920</td>
<td>-0.5747</td>
<td>-0.5080</td>
<td>-0.0945</td>
<td>-0.0249</td>
</tr>
<tr>
<td>Assault</td>
<td>0.3962</td>
<td>-0.3514</td>
<td>-0.0534</td>
<td>0.6174</td>
<td>-0.5152</td>
<td>0.1739</td>
<td>0.1992</td>
</tr>
<tr>
<td>Burglary</td>
<td>0.4416</td>
<td>0.2086</td>
<td>-0.2245</td>
<td>-0.0275</td>
<td>0.1127</td>
<td>0.5234</td>
<td>-0.6508</td>
</tr>
<tr>
<td>Larceny</td>
<td>0.3563</td>
<td>0.4057</td>
<td>-0.5368</td>
<td>-0.2323</td>
<td>0.0217</td>
<td>0.0408</td>
<td>0.6034</td>
</tr>
<tr>
<td>Auto_Theft</td>
<td>0.2883</td>
<td>0.5040</td>
<td>0.5752</td>
<td>0.4185</td>
<td>0.3593</td>
<td>-0.0602</td>
<td>0.1548</td>
</tr>
</tbody>
</table>
Chapter 58: The HPPRINCOMP Procedure

The first component is a measure of the overall crime rate, because the first eigenvector shows approximately equal loadings on all variables. The second eigenvector has high positive loadings on the variables Auto_Theft and Larceny and high negative loadings on the variables Murder and Assault. There is also a small positive loading on the variable Burglary and a small negative loading on the variable Rape. This component seems to measure the preponderance of property crime compared to violent crime. The interpretation of the third component is not obvious.

Syntax: HPPRINCOMP Procedure

The following statements are available in the HPPRINCOMP procedure:

```
PROC HPPRINCOMP <options> ;
   BY variables ;
   CODE <options> ;
   FREQ variable ;
   ID variables ;
   OUTPUT <OUT=SAS-data-set>
      <keyword <prefix>=prefix> . . . <keyword <prefix>=prefix> > ;
   PARTIAL variables ;
   PERFORMANCE performance-options ;
   VAR variables ;
   WEIGHT variable ;
```

The rest of this section provides detailed syntax information for each of the preceding statements, beginning with the PROC HPPRINCOMP statement. The remaining statements are described in alphabetical order.

PROC HPPRINCOMP Statement

```
PROC HPPRINCOMP <options> ;
```

The PROC HPPRINCOMP statement invokes the HPPRINCOMP procedure. Optionally, it also identifies the input and output data sets, specifies the analyses to be performed, and controls displayed output. Table 58.1 summarizes the options available in the PROC HPPRINCOMP statement.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify Data Sets</td>
<td></td>
</tr>
<tr>
<td>DATA=</td>
<td>Specifies the name of the input data set</td>
</tr>
<tr>
<td>OUT=</td>
<td>Specifies the name of the output data set</td>
</tr>
<tr>
<td>OUTSTAT=</td>
<td>Specifies the name of the output data set that contains various statistics</td>
</tr>
<tr>
<td>Specify Details of Analysis</td>
<td></td>
</tr>
<tr>
<td>COV</td>
<td>Computes the principal components from the covariance matrix</td>
</tr>
<tr>
<td>METHOD=</td>
<td>Specifies the principal component extraction method to be used</td>
</tr>
</tbody>
</table>
Table 58.1 continued

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=</td>
<td>Specifies the number of principal components to be computed</td>
</tr>
<tr>
<td>NOINT</td>
<td>Omits the intercept from the model</td>
</tr>
<tr>
<td>PREFIX=</td>
<td>Specifies a prefix for naming the principal components</td>
</tr>
<tr>
<td>PARPREFIX=</td>
<td>Specifies a prefix for naming the residual variables</td>
</tr>
<tr>
<td>SINGULAR=</td>
<td>Specifies the singularity criterion</td>
</tr>
<tr>
<td>STD</td>
<td>Standardizes the principal component scores</td>
</tr>
<tr>
<td>VARDEF=</td>
<td>Specifies the divisor used in calculating variances and standard deviations</td>
</tr>
</tbody>
</table>

Suppress the Display of Output

NOPRINT Suppresses the display of all output

The following list provides details about these options.

COVARIANCE

COV

computes the principal components from the covariance matrix. If you omit the COV option, the correlation matrix is analyzed. The COV option causes variables that have large variances to be more strongly associated with components that have large eigenvalues, and it causes variables that have small variances to be more strongly associated with components that have small eigenvalues. You should not specify the COV option unless the units in which the variables are measured are comparable or the variables are standardized in some way.

DATA=SAS-data-set

specifies the SAS data set to be analyzed. The data set can only be an ordinary SAS data set (raw data). If you omit the DATA= option, the HPPRINCOMP procedure uses the most recently created SAS data set.

If PROC HPPRINCOMP executes in distributed mode, the input data are distributed to memory on the appliance nodes and analyzed in parallel, unless the data are already distributed in the appliance database. In that case PROC HPPRINCOMP reads the data alongside the distributed database. For more information about the various execution modes, see the section “Processing Modes” (Chapter 3, SAS/STAT User’s Guide: High-Performance Procedures). For more information about the alongside-the-database model, see the section “Alongside-the-Database Execution” (Chapter 3, SAS/STAT User’s Guide: High-Performance Procedures).

METHOD=EIG | ITERGS< (iter-options) > | NIPALS< (iter-options) >

specifies the principal component extraction method to be used. You can specify the following values:

EIG

requests eigenvalue decomposition.

ITERGS< (iter-options) >

requests the iterative method based on Gram-Schmidt orthogonalization (ITERGS) of Andrecut (2009). You can also specify the following optional iter-options in parentheses after METHOD=ITERGS:
EPSILON=n
specifies the convergence criterion for the iterative method. By default, EPSILON=1E–12.

MAXITER=n
specifies the maximum number of iterations for the iterative method. By default, MAXITER=5000.

NOCENTER
suppresses centering of the numeric variables to be analyzed. This option is useful if the analysis variables are already centered and scaled.

NOSCALE
suppresses scaling of the numeric variables to be analyzed. This option is useful if the analysis variables are already centered and scaled.

NIPALS< (iter-options) >
requests the nonlinear iterative partial least squares (NIPALS) method. You can also specify the optional iter-options in parentheses after METHOD=NIPALS.

By default, METHOD=EIG. If you specify METHOD=NIPALS or METHOD=ITERGS, the following options in the PROC HPPRINCOMP statement are ignored: COV, NOINT, OUT=, OUTSTAT=, PARPREFIX=, SINGULAR=, and STD.

N=number
specifies the number of principal components to be computed. The default is the number of variables. The value of the N= option must be an integer greater than or equal to 0.

NOINT
omits the intercept from the model. In other words, the NOINT option requests that the covariance or correlation matrix not be corrected for the mean. When you specify the NOINT option in the HPPRINCOMP procedure, the covariance matrix and, hence, the standard deviations are not corrected for the mean. If you want to obtain the standard deviations corrected for the mean, you can obtain them by using a procedure such as PROC MEANS.

If you use the NOINT option and also create an OUTSTAT= data set, the data set is TYPE=UCORR or TYPE=UCOV rather than TYPE=CORR or TYPE=COV.

NOPRINT
suppresses the display of all output. This option temporarily disables the Output Delivery System (ODS). For more information, see Chapter 20, “Using the Output Delivery System.”

OUT=SAS-data-set
creates an output SAS data set to contain observationwise principal component scores. To avoid data duplication when you have large data sets, the variables in the input data set are not included in the output data set; however, variables that are specified in the ID statement are included.

If the input data are in distributed form, in which access of data in a particular order cannot be guaranteed, the HPPRINCOMP procedure copies the distribution or partition key to the output data set so that its contents can be joined with the input data.

If you want to create a SAS data set in a permanent library, you must specify a two-level name. For more information about permanent libraries and SAS data sets, see SAS Language Reference: Concepts. For more information about OUT= data sets, see the section “Output Data Sets” on page 4461.
OUTSTAT=SAS-data-set creates an output SAS data set to contain means, standard deviations, number of observations, correlations or covariances, eigenvalues, and eigenvectors. If you specify the COV option, the data set is TYPE=COV or TYPE=UCOV, depending on the NOINT option, and it contains covariances; otherwise, the data set is TYPE=CORR or TYPE=UCORR, depending on the NOINT option, and it contains correlations. If you specify the PARTIAL statement, the OUTSTAT= data set also contains R squares.

If you want to create a SAS data set in a permanent library, you must specify a two-level name. For more information about permanent libraries and SAS data sets, see *SAS Language Reference: Concepts*. For more information about OUTSTAT= data sets, see the section “Output Data Sets” on page 4461.

PREFIX=name specifies a prefix for naming the principal components. By default, the names are Prin1, Prin2, ..., Prin n. If you specify PREFIX=Abc, the components are named Abc1, Abc2, Abc3, and so on. The number of characters in the prefix plus the number of digits required to designate the variables should not exceed the current name length that is defined by the VALIDVARNAME= system option.

PARPREFIX=name

PPREFIX=name

RPREFIX=name specifies a prefix for naming the residual variables in the OUT= data set and the OUTSTAT= data set. By default, the prefix is R_. The number of characters in the prefix plus the maximum length of the variable names should not exceed the current name length that is defined by the VALIDVARNAME= system option.

SINGULAR=p

SING=p specifies the singularity criterion, where $0 < p < 1$. If a variable in a PARTIAL statement has an R square as large as $1 - p$ when predicted from the variables listed before it in the statement, the variable is assigned a standardized coefficient of 0. By default, SINGULAR=1E–8.

STANDARD

STD standardizes the principal component scores in the OUT= data set to unit variance. If you omit the STANDARD option, the scores have a variance equal to the corresponding eigenvalue. Note that the STANDARD option has no effect on the eigenvalues themselves.

VARDEF=DF | N | WDF | WEIGHT | WGT specifies the divisor to be used in calculating variances and standard deviations. By default, VARDEF=DF. The following table displays the values and associated divisors:

<table>
<thead>
<tr>
<th>Value</th>
<th>Divisor</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF</td>
<td>Error degrees of freedom</td>
<td>$n - i$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$n - p - i$</td>
</tr>
<tr>
<td></td>
<td>(before partialing)</td>
<td>(after partialing)</td>
</tr>
<tr>
<td>N</td>
<td>Number of observations</td>
<td>n</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>WGT</td>
<td>Sum of weights</td>
</tr>
</tbody>
</table>
Table 58.1 continued

<table>
<thead>
<tr>
<th>Value</th>
<th>Divisor</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>WDF</td>
<td>Sum of weights minus one</td>
<td>(\left(\sum_{j=1}^{n} w_j \right) - i) (before partialing)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\left(\sum_{j=1}^{n} w_j \right) - p - i) (after partialing)</td>
</tr>
</tbody>
</table>

In the formulas for VARDEF=DF and VARDEF=WDF, \(p \) is the number of degrees of freedom of the variables in the PARTIAL statement, and \(i \) is 0 if the NOINT option is specified and 1 otherwise.

BY Statement

BY variables ;

You can specify a BY statement with PROC HPRINCOMP to obtain separate analyses of observations in groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

- Sort the data by using the SORT procedure with a similar BY statement.
- Specify the NOTSORTED or DESCENDING option in the BY statement for the HPRINCOMP procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged in groups (according to values of the BY variables) and that these groups are not necessarily in alphabetical or increasing numeric order.
- Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts. For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CODE Statement

CODE options ;

The CODE statement enables you to write SAS DATA step code for computing the principal component scores either to a file or to a catalog entry. This code can then be included in a DATA step to score new data.

The CODE statement is not supported when the PARTIAL statement is specified. If you specify more than one CODE statement, only the last one specified is used.

Table 58.2 summarizes the options available in the CODE statement.
FREQ Statement

FREQ variable;

The variable in the FREQ statement identifies a numeric variable in the data set that contains the frequency of occurrence of each observation. SAS high-performance analytics procedures that support the FREQ statement treat each observation as if it appeared f times, where f is the value of the FREQ variable for the observation. If the frequency value is not an integer, it is truncated to an integer. If the frequency value is less than 1 or missing, the observation is not used in the analysis. When the FREQ statement is not specified, each observation is assigned a frequency of 1.

The FREQ statement is not supported if you specify METHOD=NIPALS or METHOD=ITERGS in the PROC HPPRINCOMP statement.

ID Statement

ID variables;

The ID statement lists one or more variables from the input data set that are transferred to output data sets created by SAS high-performance analytics procedures, provided that the output data set produces one (or more) records per input observation.

For information about the common ID statement in SAS high-performance analytics procedures, see the section “ID Statement” (Chapter 4, SAS/STAT User’s Guide: High-Performance Procedures).

OUTPUT Statement

OUTPUT <OUT=SAS-data-set>
 <keyword =prefix> . . . <keyword =prefix> ;

The OUTPUT statement creates a data set that contains observationwise statistics, which are computed after PROC HPPRINCOMP fits the model. If you do not specify a keyword, then only the principal component scores are included.
The OUTPUT statement causes the OUT= option in the PROC HPPRINCOMP statement to be ignored.

The variables in the input data set are *not* included in the output data set, in order to avoid data duplication for large data sets; however, variables that you specify in the ID statement are included. If the input data are in distributed form, in which accessing data in a particular order cannot be guaranteed, the HPPRINCOMP procedure copies the distribution or partition key to the output data set so that its contents can be joined with the input data.

You can specify the following syntax elements:

- **OUT=SAS-data-set**
- **DATA=SAS-data-set**

 specifies the name of the output data set. If you omit this option, the procedure uses the DATAn convention to name the output data set.

- **keyword <=prefix >**

 specifies a statistic to include in the output data set and optionally a prefix for naming the output variables. If you do not provide a prefix, the HPPRINCOMP procedure assigns a default prefix based on the type of statistic requested. For example, for the VAR variables x1 and x2, RESIDUAL produces two residual value variables, R_x1 and R_x2.

You can specify the following *keywords* to add statistics to the OUTPUT data set:

- **H**

 requests the approximate leverage. The default prefix is H.

- **STD**

 requests standardized (centered and scaled) VAR variable values for each VAR variable. The default prefix is Std.

- **STDSSE**

 requests the sum of squares of residuals for standardized VAR variables. The default prefix is StdSSE.

- **TSQUARE**

 T2

 requests scaled sum of squares of score values. The default prefix is TSquare.

- **RESIDUAL**

 RESID

 R

 requests residuals for each VAR variable. The default prefix is R.

- **SCORE**

 requests principal component scores for each principal component. The default prefix is Score.

If you specify METHOD=EIG, the only valid *keywords* are RESIDUAL (if you also specify the PARTIAL statement) and SCORE. Other *keywords* are ignored.

The output variables that contain the requested statistic are named as follows, according to the *keyword* that you specify:
• The *keywords* RESIDUAL and STD define an output variable for each VAR variable, so the variables that correspond to each VAR variable are named by appending the name of the VAR variable to the prefix. For example, if the model has the VAR variables \(x_1 \) and \(x_2 \), then RESIDUAL=R produces the variables \(R_{x1} \) and \(R_{x2} \).

• The *keyword* SCORE defines an output variable for each principal component, so the variables that correspond to each successive component are named by appending the component number to the prefix. For example, if the model has three principal components, then SCORE=T produces the variables \(T_1 \), \(T_2 \), and \(T_3 \).

• The *keywords* H, STDSSE, and TSQUARE each define a single output variable, so the variable name matches the prefix.

PARTIAL Statement

```
PARTIAL variables ;
```

If you want to analyze a partial correlation or covariance matrix, specify the names of the numeric variables to be partialed out in the PARTIAL statement. The HPPRINCOMP procedure computes the principal components of the residuals from the prediction of the VAR variables by the PARTIAL variables. If you request an OUT= or OUTSTAT= data set, the residual variables are named by prefixing either the characters \(R_{-} \) (by default) or the string specified in the PARPREFIX= option to the VAR variables.

The PARTIAL statement is not supported if you specify METHOD=NIPALS or METHOD=ITERGS in the PROC HPPRINCOMP statement.

PERFORMANCE Statement

```
PERFORMANCE < performance-options> ;
```

The PERFORMANCE statement defines performance parameters for multithreaded and distributed computing, passes variables that describe the distributed computing environment, and requests detailed results about the performance characteristics of the HPPRINCOMP procedure.

You can also use the PERFORMANCE statement to control whether the HPPRINCOMP procedure executes in single-machine mode or distributed mode.

The PERFORMANCE statement is documented further in the section “PERFORMANCE Statement” (Chapter 3, *SAS/STAT User’s Guide: High-Performance Procedures*).

VAR Statement

```
VAR variables ;
```

The VAR statement lists the numeric variables to be analyzed. If you omit the VAR statement, all numeric variables that are not specified in other statements are analyzed.
WEIGHT Statement

```plaintext
WEIGHT variable ;
```

The `variable` in the WEIGHT statement is used as a weight to perform a weighted analysis of the data. Observations that have nonpositive or missing weights are not included in the analysis. If you do not specify a WEIGHT statement, all observations that are used in the analysis are assigned a weight of 1.

The WEIGHT statement is not supported if you specify METHOD=NIPALS or METHOD=ITERGS in the PROC HPPRINCOMP statement.

Details: HPPRINCOMP Procedure

Computing Principal Components

The HPPRINCOMP procedure implements several algorithms to calculate principal components: eigenvalue decomposition, NIPALS, and ITERGS of Andrecut (2009). Eigenvalue decomposition is more efficient when you want to calculate all principal components, whereas the NIPALS method is faster if you want to extract only the first few principal components. For high-dimensional data sets, the NIPALS method is more efficient, whereas it gets expensive for eigenvalue decomposition to calculate all the components simultaneously.

Eigenvalue Decomposition

Let X be a centered and scaled data matrix that has k numerical variables. The eigenvalue decomposition method bases the component extraction on the eigenvalue decomposition of the covariance matrix $X^t X$, which extracts all the k principal components simultaneously. Each principal component is a linear combination of the original variables, and each component is orthogonal, with coefficients equal to the eigenvectors of the covariance matrix $X^t X$. The eigenvectors are usually normalized to have unit length. The principal components are sorted by descending order of the eigenvalues, which are equal to the variances of the components.

NIPALS

The nonlinear iterative partial least squares (NIPALS) method extracts the principal components successively based on the data matrix X. The NIPALS method starts by calculating the loadings, p, as $p' = (t't)^{-1}t'X$, where t is the score vector. It then calculates an improved score vector, $t = Xp$. The method iteratively computes the improved p and t until convergence is reached.

This process accounts for how the first principal component is extracted. The second component is extracted in the same way, by replacing X with the residual from the first component: $E = X - tp'$.

For large data matrices or matrices that have a high degree of column collinearity, the NIPALS method suffers from loss of orthogonality because of the machine-precision errors that accumulate at each iteration step. In practice, the NIPALS method is used to extract only the first few principal components.
ITERGS

The iterative method based on Gram-Schmidt orthogonalization (ITERGS) of Andrecut (2009) overcomes the issue of loss of orthogonality in the NIPALS method by applying Gram-Schmidt reorthogonalization correction to both the loadings and the scores at each iteration step:

\[
P_c = p - P_k P_k' p \\
t_c = t - T_k T_k' t
\]

Here, \(p_c \) and \(t_c \) are the corrected loading vector and score vector, respectively. \(P_k \) is the matrix that is formed by using the first \(k \) loadings. \(T_k \) is the matrix that is formed by using the first \(k \) scores.

The ITERGS method stabilizes the iterative process at the cost of increased computational effort.

Missing Values

Observations that have missing values for any variable in the VAR, PARTIAL, FREQ, or WEIGHT statement are omitted from the analysis and are given missing values for principal component scores in the OUT= data set.

Output Data Sets

When an observationwise output data set is created, many SAS procedures add the variables from the input data set to the output data set. High-performance statistical procedures assume that the input data sets can be large and can contain many variables. For performance reasons, the output data set contains only the following:

- variables that are explicitly created by the statement
- variables that are listed in the ID statement
- distribution keys or hash keys that are transferred from the input data set

Including these variables and keys enables you to add output data set information that is necessary for subsequent SQL joins without copying the entire input data set to the output data set. For more information about output data sets that are produced when you run PROC HPPRINCOMP in distributed mode, see the section “Output Data Sets” (Chapter 3, SAS/STAT User’s Guide: High-Performance Procedures).

OUT= Data Set

The new variables that are created for the OUT= data set contain the principal component scores. The N= option determines the number of new variables. The names of the new variables are formed by concatenating the value given by the PREFIX= option (or Prin if PREFIX= is omitted) to the numbers 1, 2, 3, and so on. The new variables have mean 0 and a variance equal to the corresponding eigenvalue, unless you specify the STANDARD option to standardize the scores to unit variance. Also, if you specify the COV option, PROC
HPPRINCOMP computes the principal component scores from the corrected or uncorrected (if the NOINT option is specified) variables rather than from the standardized variables.

If you use a PARTIAL statement, the OUT= data set also contains the residuals from predicting the VAR variables from the PARTIAL variables.

OUTSTAT= Data Set

The OUTSTAT= data set is similar to the TYPE=CORR data set that the CORR procedure produces. The following table relates the TYPE= value for the OUTSTAT= data set to the options that are specified in the PROC HPPRINCOMP statement:

<table>
<thead>
<tr>
<th>Options</th>
<th>TYPE=</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Default)</td>
<td>CORR</td>
</tr>
<tr>
<td>COV</td>
<td>COV</td>
</tr>
<tr>
<td>NOINT</td>
<td>UCORR</td>
</tr>
<tr>
<td>COV NOINT</td>
<td>UCOV</td>
</tr>
</tbody>
</table>

Note that the default (neither the COV nor NOINT option) produces a TYPE=CORR data set.

The new data set contains the following variables:

- the BY variables, if any
- two new variables, _TYPE_ and _NAME_, both character variables
- the variables that are analyzed (that is, those in the VAR statement); or, if there is no VAR statement, all numeric variables not listed in any other statement; or, if there is a PARTIAL statement, the residual variables as described in the section “OUT= Data Set”

Each observation in the new data set contains some type of statistic, as indicated by the _TYPE_ variable. The values of the _TYPE_ variable are as follows:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAN</td>
<td>mean of each variable. If you specify the PARTIAL statement, this observation is omitted.</td>
</tr>
<tr>
<td>STD</td>
<td>standard deviations. If you specify the COV option, this observation is omitted, so the SCORE procedure does not standardize the variables before computing scores. If you use the PARTIAL statement, the standard deviation of a variable is computed as its root mean squared error as predicted from the PARTIAL variables.</td>
</tr>
<tr>
<td>USTD</td>
<td>uncorrected standard deviations. When you specify the NOINT option in the PROC HPPRINCOMP statement, the OUTSTAT= data set contains standard deviations not corrected for the mean. However, if you also specify the COV option in the PROC HPPRINCOMP statement, this observation is omitted.</td>
</tr>
<tr>
<td>N</td>
<td>number of observations on which the analysis is based. This value is the same for each variable. If you specify the PARTIAL statement and the value of the VARDEF= option is DF or unspecified, then the number of observations is decremented by the degrees of freedom for the PARTIAL variables.</td>
</tr>
</tbody>
</table>
SUMWGT the sum of the weights of the observations. This value is the same for each variable. If you specify the PARTIAL statement and VARDEF=WDF, then the sum of the weights is decremented by the degrees of freedom for the PARTIAL variables. This observation is output only if the value is different from that in the observation for which _TYPE_='N'.

CORR correlations between each variable and the variable specified by the _NAME_ variable. The number of observations for which _TYPE_='CORR' is equal to the number of variables being analyzed. If you specify the COV option, no _TYPE_='CORR' observations are produced. If you use the PARTIAL statement, the partial correlations, not the raw correlations, are output.

UCORR uncorrected correlation matrix. When you specify the NOINT option without the COV option in the PROC HPPRINCOMP statement, the OUTSTAT= data set contains a matrix of correlations not corrected for the means. However, if you also specify the COV option in the PROC HPPRINCOMP statement, this observation is omitted.

COV covariances between each variable and the variable specified by the _NAME_ variable. _TYPE_='COV' observations are produced only if you specify the COV option. If you use the PARTIAL statement, the partial covariances, not the raw covariances, are output.

UCOV uncorrected covariance matrix. When you specify the NOINT and COV options in the PROC HPPRINCOMP statement, the OUTSTAT= data set contains a matrix of covariances not corrected for the means.

EIGENVAL eigenvalues. If the N= option requests less than the maximum number of principal components, only the specified number of eigenvalues are produced, with missing values filling out the observation.

SCORE eigenvectors. The _NAME_ variable contains the name of the corresponding principal component as constructed from the PREFIX= option. The number of observations for which _TYPE_='SCORE' equals the number of principal components computed. The eigenvectors have unit length unless you specify the STD option, in which case the unit-length eigenvectors are divided by the square roots of the eigenvalues to produce scores that have unit standard deviations.

To obtain the principal component scores, if the COV option is not specified, these coefficients should be multiplied by the standardized data. For the COV option, these coefficients should be multiplied by the centered data. To center and standardize the data, you should use means that are obtained from the observation for which _TYPE_='MEAN' and standard deviations that are obtained from the observation for which _TYPE_='STD'.

USCORE scoring coefficients to be applied without subtracting the mean from the raw variables. Observations for which _TYPE_='USCORE' are produced when you specify the NOINT option in the PROC HPPRINCOMP statement.

To obtain the principal component scores, these coefficients should be multiplied by the data that are standardized by the uncorrected standard deviations obtained from the observation for which _TYPE_='USTD'.

RSQUARED R squares for each VAR variable as predicted by the PARTIAL variables.

B regression coefficients for each VAR variable as predicted by the PARTIAL variables. This observation is produced only if you specify the COV option.

STB standardized regression coefficients for each VAR variable as predicted by the PARTIAL variables. If you specify the COV option, this observation is omitted.
You can use the data set in the SCORE procedure to compute principal component scores, or you can use it as input to the FACTOR procedure and specify METHOD=SCORE to rotate the components. If you use the PARTIAL statement, the scoring coefficients should be applied to the residuals, not to the original variables.

Computational Method

Multithreading

Threading is the organization of computational work into multiple tasks (processing units that can be scheduled by the operating system). A task is associated with a thread. Multithreading is the concurrent execution of threads. When multithreading is possible, you can realize substantial performance gains compared to the performance that you get from sequential (single-threaded) execution.

The number of threads that the HPPRINC procedure spawns is determined by the number of CPUs on a machine and can be controlled in the following ways:

- You can specify the CPU count by using the CPUCOUNT= SAS system option. For example, if you specify the following statements, the HPPRINC procedure schedules threads as if it were executing on a system that had four CPUs, regardless of the actual CPU count:

  ```plaintext
  options cpucount=4;
  ```

- You can specify the NTHREADS= option in the PERFORMANCE statement to determine the number of threads. This specification overrides the system option. Specify NTHREADS=1 to force single-threaded execution.

The number of threads per machine is displayed in the “Performance Information” table, which is part of the default output. The HPPRINC procedure allocates one thread per CPU.

The tasks that are multithreaded by the HPPRINC procedure are primarily defined by dividing the data processed on a single machine among the threads; that is, PROC HPPRINC implements multithreading through a data-parallel model. For example, if the input data set has 1,000 observations and you are running on four threads, then 250 observations are associated with each thread. All operations that require access to the data are then multithreaded. Those operations include the following:

- formation of the crossproducts matrix
- computation of loadings, scores, and residual sums of squares
- principal component scoring of observations

Displayed Output

The following sections describe the output that PROC HPPRINC produces. The output is organized into various tables, which are discussed in order of appearance.
Performance Information

The “Performance Information” table is produced by default. It displays information about the execution mode. For single-machine mode, the table displays the number of threads used. For distributed mode, the table displays the grid mode (symmetric or asymmetric), the number of compute nodes, and the number of threads per node.

Data Access Information

The “Data Access Information” table is produced by default. For the input and output data sets, it displays the libref and data set name, the engine used to access the data, the role (input or output) of the data set, and the path that data followed to reach the computation.

Model Information

The “Model Information” table displays basic information about the model, including the input data set and the principal component extraction method that is used in the analysis.

Number of Observations

The “Number of Observations” table displays the number of observations read from the input data set and the number of observations used in the analysis. If you specify a FREQ statement, the table also displays the sum of frequencies read and used.

Number of Variables

The “Number of Variables” table displays the number of VAR variables, the number of PARTIAL variables, and the number of principal components to be extracted.

Simple Statistics

If you specify METHOD=EIG, the HPPRINCOMP procedure produces a “Simple Statistics” table that displays the mean and standard deviation (std) for each variable. If you specify the NOINT option, the uncorrected standard deviation (ustd) is displayed.

Centering and Scaling Information

If you specify METHOD=NIPALS or METHOD=ITERGS, the HPPRINCOMP procedure produces a “Centering and Scaling Information” table that displays the centering and scaling information for each variable.

Explained Variation of Variables

If you specify METHOD=NIPALS or METHOD=ITERGS, the HPPRINCOMP procedure produces an “Explained Variation of Variables” table that displays the fraction of variation that is accounted for in each variable by each successive principal component.
Chapter 58: The HPPRINCOMP Procedure

Correlation Matrix

If you specify METHOD=EIG, the HPPRINCOMP procedure produces a “Correlation Matrix” table that displays the correlation or, if you specify the COV option, the covariance matrix.

Regression Statistics

When you specify the PARTIAL statement, the HPPRINCOMP procedure produces a “Regression Statistics” table that displays the R square and root mean squared error (RMSE) for each VAR variable as predicted by the PARTIAL variables.

Regression Coefficients

When you specify the PARTIAL statement, the HPPRINCOMP procedure produces a “Regression Coefficients” table that displays standardized regression coefficients or, if you specify the COV option, regression coefficients for predicting the VAR variables from the PARTIAL variables.

Partial Correlation Matrix

When you specify the PARTIAL statement, the HPPRINCOMP procedure produces a “Partial Correlation Matrix” table that displays the partial correlation matrix or, if you specify the COV option, the partial covariance matrix.

Total Variance

If you specify METHOD=EIG and the COV option, the HPPRINCOMP procedure produces a simple table that displays the total variance.

Eigenvalues

The “Eigenvalues” table displays eigenvalues of the correlation or covariance matrix (if you specify METHOD=EIG) or eigenvalues of the data matrix (if you specify METHOD=NIPALS or METHOD=ITERGS), along with the difference between successive eigenvalues, the proportion of variance explained by each eigenvalue, and the cumulative proportion of variance explained.

Eigenvectors

If you specify METHOD=EIG, the HPPRINCOMP procedure produces an “Eigenvectors” table that displays the eigenvectors.

Loadings

If you specify METHOD=NIPALS or METHOD=ITERGS, the HPPRINCOMP procedure produces a “Loadings” table that displays the loadings.

Timing Information

If you specify the DETAILS option in the PERFORMANCE statement, the HPPRINCOMP procedure produces a “Timing” table that displays the elapsed time of each main task of the procedure.
ODS Table Names

PROC HPPRINCOMP assigns a name to each table that it creates. You can use these names to reference the ODS table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in Table 58.3. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 58.3 ODS Tables Produced by PROC HPPRINCOMP

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
<th>Required Statement / Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>CenScaleInfo</td>
<td>Centering and scaling information</td>
<td>METHOD=NIPALS</td>
</tr>
<tr>
<td>Corr</td>
<td>Correlation matrix</td>
<td>METHOD=EIG</td>
</tr>
<tr>
<td>Cov</td>
<td>Covariance matrix</td>
<td>METHOD=EIG and COV</td>
</tr>
<tr>
<td>DataAccessInfo</td>
<td>Information about modes of data access</td>
<td>Default output</td>
</tr>
<tr>
<td>Eigenvalues</td>
<td>Eigenvalues</td>
<td>Default output</td>
</tr>
<tr>
<td>Eigenvectors</td>
<td>Eigenvectors</td>
<td>METHOD=EIG</td>
</tr>
<tr>
<td>Loadings</td>
<td>Loadings</td>
<td>METHOD=NIPALS</td>
</tr>
<tr>
<td>ModelInfo</td>
<td>Model information</td>
<td>Default output</td>
</tr>
<tr>
<td>NObs</td>
<td>Number of observations read and used</td>
<td>Default output</td>
</tr>
<tr>
<td>NVars</td>
<td>Number of variables, partial variables, and principal components</td>
<td>Default output</td>
</tr>
<tr>
<td>ParCorr</td>
<td>Partial correlation matrix</td>
<td>PARTIAL statement</td>
</tr>
<tr>
<td>ParCov</td>
<td>Uncorrected partial covariance matrix</td>
<td>PARTIAL statement and COV</td>
</tr>
<tr>
<td>PerformanceInfo</td>
<td>Information about the high-performance computing environment</td>
<td>Default output</td>
</tr>
<tr>
<td>RegCoef</td>
<td>Regression coefficients</td>
<td>PARTIAL statement and COV</td>
</tr>
<tr>
<td>RSquareRMSE</td>
<td>Regression statistics: R-squares and RMSEs</td>
<td>PARTIAL statement</td>
</tr>
<tr>
<td>SimpleStatistics</td>
<td>Simple statistics</td>
<td>METHOD=EIG</td>
</tr>
<tr>
<td>StdRegCoef</td>
<td>Standardized regression coefficients</td>
<td>PARTIAL statement</td>
</tr>
<tr>
<td>Timing</td>
<td>Absolute and relative times of tasks that are performed by the procedure</td>
<td>DETAILS option in PERFORMANCE statement</td>
</tr>
<tr>
<td>TotalVariance</td>
<td>Total variance</td>
<td>METHOD=EIG and COV</td>
</tr>
<tr>
<td>Variation</td>
<td>Explained variation of variables</td>
<td>METHOD=NIPALS</td>
</tr>
</tbody>
</table>
Chapter 58: The HPPRINCOMP Procedure

Examples: HPPRINCOMP Procedure

Example 58.1: Analyzing Mean Temperatures of US Cities

This example analyzes mean daily temperatures of selected US cities in January and July. The following statements create the Temperature data set:

```sas
data Temperature;
  length Cityid $ 2;
  title 'Mean Temperature in January and July for Selected Cities';
  input City $1-15 January July;
  Cityid = substr(City,1,2);
  datalines;
  Mobile 51.2 81.6
  Phoenix 51.2 91.2
  Little Rock 39.5 81.4
  Sacramento 45.1 75.2
  Denver 29.9 73.0
  ... more lines ...
  Cheyenne 26.6 69.1
;
```

The following statements invoke the HPPRINCOMP procedure, which requests a principal component analysis of the Temperature data set and outputs the scores to the Scores data set (OUT= Scores). The Cityid variable in the ID statement is also included in the output data set.

```sas
  title 'Mean Temperature in January and July for Selected Cities';
  proc hpprincomp data=Temperature cov out=Scores;
    var July January;
    id Cityid;
  run;
```

Output 58.1.1 displays the PROC HPPRINCOMP output. The standard deviation of January (11.712) is higher than the standard deviation of July (5.128). The COV option in the PROC HPPRINCOMP statement requests that the principal components be computed from the covariance matrix. The total variance is 163.474. The first principal component accounts for about 94% of the total variance, and the second principal component accounts for only about 6%. The eigenvalues sum to the total variance.

Note that January receives a higher loading on Prin1 because it has a higher standard deviation than July. Also note that the HPPRINCOMP procedure calculates the scores by using the centered variables rather than the standardized variables.
Output 58.1.1 Results of Principal Component Analysis

Mean Temperature in January and July for Selected Cities

The HPBINCOMP Procedure

Performance Information
Execution Mode Single-Machine
Number of Threads 4

Data Access Information
Data Engine Role Path
WORK.TEMPERATURE V9 Input On Client
WORK.SCORc ES V9 Output On Client

Model Information
Data Source WORK.TEMPERATURE
Component Extraction Method Eigenvalue Decomposition

Number of Observations Read 64
Number of Observations Used 64

Number of Variables 2
Number of Principal Components 2

Simple Statistics

Variable Mean Standard Deviation
July 75.60781 5.12762
January 32.09531 11.71243

Covariance Matrix

Variable July January
July 26.29248 46.82829
January 46.82829 137.18109

Total Variance 163.47356647

Eigenvalues of the Covariance Matrix

<table>
<thead>
<tr>
<th>Eigenvalue</th>
<th>Difference</th>
<th>Proportion</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 154.310607</td>
<td>145.147647</td>
<td>0.9439</td>
<td>0.9439</td>
</tr>
<tr>
<td>2 9.162960</td>
<td>0.0561</td>
<td>1.0000</td>
<td></td>
</tr>
</tbody>
</table>

Eigenvectors

<table>
<thead>
<tr>
<th>Variable</th>
<th>Prin1</th>
<th>Prin2</th>
</tr>
</thead>
<tbody>
<tr>
<td>July</td>
<td>0.34353</td>
<td>0.93914</td>
</tr>
<tr>
<td>January</td>
<td>0.93914</td>
<td>-0.34353</td>
</tr>
</tbody>
</table>
Example 58.2: Computing Principal Components in Single-Machine and Distributed Modes

PROC HPPRINCOMP shows its real power when the computation is conducted with multiple threads or in a distributed environment. This example shows how you can run PROC HPPRINCOMP in single-machine and distributed modes. For more information about the execution modes of SAS high-performance analytics procedures, see the section “Processing Modes” (Chapter 3, SAS/STAT User’s Guide: High-Performance Procedures). The focus of this example is to show how you can switch the modes of execution in PROC HPPRINCOMP. The following DATA step generates the data:

```sas
data ex2Data;
  array x{100};
  do i = 1 to 5000000;
    do j = 1 to dim(x);
      x[j] = ranuni(1);
    end;
    output;
  end;
run;
```

The following statements use PROC HPPRINCOMP to perform a principal component analysis and to output various statistics to the Stats data set (OUTSTAT= Stats):

```sas
proc hpprincomp data=ex2Data n=20 outstat=Stats;
  var x:;
  performance details;
run;
```

Output 58.2.1 shows the “Performance Information” table. This table shows that the HPPRINCOMP procedure executes in single-machine mode on four threads, because the client machine has four CPUs. You can force a certain number of threads on any machine to be involved in the computations by specifying the NTHREADS= option in the PERFORMANCE statement.

Output 58.2.1 Performance Information in Single-Machine Mode

<table>
<thead>
<tr>
<th>The HPPRINCOMP Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Information</td>
</tr>
<tr>
<td>Execution Mode</td>
</tr>
<tr>
<td>Number of Threads</td>
</tr>
</tbody>
</table>

Output 58.2.2 shows timing information for the PROC HPPRINCOMP run. This table is produced when you specify the DETAILS option in the PERFORMANCE statement. You can see that, in this case, the majority of time is spent reading the data and computing the moments.
Output 58.2.2 Timing in Single-Machine Mode

<table>
<thead>
<tr>
<th>Task</th>
<th>Procedure Task Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading Data and Computing Moments</td>
<td>53.02 85.98%</td>
</tr>
<tr>
<td>Computing Principal Components</td>
<td>8.63 13.99%</td>
</tr>
<tr>
<td>Producing Output Statistics Data Set</td>
<td>0.01 0.02%</td>
</tr>
</tbody>
</table>

To switch to running PROC HPPRINCOMP in distributed mode, specify valid values for the NODES=, INSTALL=, and HOST= options in the PERFORMANCE statement. An alternative to specifying the INSTALL= and HOST= options in the PERFORMANCE statement is to use OPTIONS SET commands to set appropriate values for the GRIDHOST and GRIDINSTALLLOC environment variables. For information about setting these options or environment variables, see the section “Processing Modes” (Chapter 3, SAS/STAT User’s Guide: High-Performance Procedures).

The following statements provide an example. To run these statements successfully, you need to set the macro variables GRIDHOST and GRIDINSTALLLOC to resolve to appropriate values, or you can replace the references to macro variables with appropriate values.

```sas
proc hpprincomp data=ex2Data n=20 outstat=Stats;
  var x;
  performance details nodes = 4
    host="&GRIDHOST" install="&GRIDINSTALLLOC";
run;
```

The execution mode in the “Performance Information” table shown in Output 58.2.3 indicates that the calculations were performed in a distributed environment that uses four nodes, each of which uses 32 threads.

Output 58.2.3 Performance Information in Distributed Mode

<table>
<thead>
<tr>
<th>Performance Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Node</td>
</tr>
<tr>
<td>Install Location</td>
</tr>
<tr>
<td>Execution Mode</td>
</tr>
<tr>
<td>Number of Compute Nodes</td>
</tr>
<tr>
<td>Number of Threads per Node</td>
</tr>
</tbody>
</table>

Another indication of distributed execution is the following message in the SAS log, which is issued by all high-performance analytics procedures:

NOTE: The HPPRINCOMP procedure is executing in the distributed computing environment with 4 worker nodes.

Output 58.2.4 shows timing information for this distributed run of the HPPRINCOMP procedure. In contrast with the single-machine mode (where reading the data and computing the moments dominate the time spent), the majority of time in the distributed-mode run is spent distributing the data.
Example 58.3: Extracting Principal Components with NIPALS

This example demonstrates the NIPALS method in PROC HPPRINCORP, which extracts principal components successively. The data that this example uses are from the Getting Started section; they provide crime rates per 100,000 people in seven categories for each of the 50 US states in 1977. The following DATA step generates the data:

```plaintext
data Crime;
    title 'Crime Rates per 100,000 Population by State';
    input State $1-15 Murder Rape Robbery Assault
        Burglary Larceny Auto_Theft;
    datalines;
    Alabama  14.2 25.2 96.8 278.3 1135.5 1881.9 280.7
    Alaska   10.8 51.6 96.8 284.0 1331.7 3369.8 753.3
    Arizona  9.5 34.2 138.2 312.3 2346.1 4467.4 439.5
    Arkansas 8.8 27.6 83.2 203.4 972.6 1862.1 183.4
    California 11.5 49.4 287.0 358.0 2139.4 3499.8 663.5
    Wisconsin 2.8 12.9 52.2 63.7 846.9 2614.2 220.7
    Wyoming   . 21.9 39.7 173.9 811.6 2772.2 282.0
;
```

The following statements use PROC HPPRINCORP to extract principal components by using the NIPALS method:

```plaintext
proc hpprincomp data=Crime method=nipals;
run;
```

Output 58.3.1 displays the PROC HPPRINCORP output. The “Model Information” table shows that the NIPALS method is used to extract principal components. The “Explained Variation of Variables” table lists the fraction of variation that is accounted for in each variable by each of the seven principal components. All the variation in each variable is accounted for by seven principal components because there are only seven variables. The eigenvalues indicate that two or three components provide a good summary of the data: two components account for 76% of the total variance, and three components account for 87%. Subsequent components account for less than 5% each.
Note that in the Getting Started section, the principal components are extracted from the same data by using the eigenvalue decomposition method; the “Eigenvalues” table generated there matches the one generated by the NIPALS method. Also, the eigenvectors in the “Eigenvectors” table match the loading factors in the “Loadings” table.

Output 58.3.1 Results of Principal Component Analysis Using NIPALS

Crime Rates per 100,000 Population by State

The HPPRINCOMP Procedure

<table>
<thead>
<tr>
<th>Performance Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execution Mode</td>
</tr>
<tr>
<td>Number of Threads</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Access Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
</tr>
<tr>
<td>WORK.CRIME</td>
</tr>
</tbody>
</table>

Model Information

Data Source	WORK.CRIME
Component Extraction Method	NIPALS
Number of Observations Read	50
Number of Observations Used	48
Number of Variables	7
Number of Principal Components	7

Centering and Scaling Information

<table>
<thead>
<tr>
<th>Variable</th>
<th>Subtracted off</th>
<th>Divided by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murder</td>
<td>7.51667</td>
<td>3.93059</td>
</tr>
<tr>
<td>Rape</td>
<td>26.07500</td>
<td>10.81304</td>
</tr>
<tr>
<td>Robbery</td>
<td>127.55625</td>
<td>88.49374</td>
</tr>
<tr>
<td>Assault</td>
<td>214.58750</td>
<td>100.64360</td>
</tr>
<tr>
<td>Burglary</td>
<td>1316.37917</td>
<td>423.31261</td>
</tr>
<tr>
<td>Larceny</td>
<td>2696.88542</td>
<td>714.75023</td>
</tr>
<tr>
<td>Auto_Theft</td>
<td>383.97917</td>
<td>194.37033</td>
</tr>
</tbody>
</table>

Explained Variation of Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Prin1</th>
<th>Prin2</th>
<th>Prin3</th>
<th>Prin4</th>
<th>Prin5</th>
<th>Prin6</th>
<th>Prin7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murder</td>
<td>0.37117</td>
<td>0.85539</td>
<td>0.87790</td>
<td>0.89562</td>
<td>0.97555</td>
<td>0.99143</td>
<td>1.00000</td>
</tr>
<tr>
<td>Rape</td>
<td>0.76242</td>
<td>0.79917</td>
<td>0.84059</td>
<td>0.84199</td>
<td>0.85065</td>
<td>0.99041</td>
<td>1.00000</td>
</tr>
<tr>
<td>Robbery</td>
<td>0.63783</td>
<td>0.64064</td>
<td>0.82164</td>
<td>0.92942</td>
<td>0.99788</td>
<td>0.99992</td>
<td>1.00000</td>
</tr>
<tr>
<td>Assault</td>
<td>0.63517</td>
<td>0.79127</td>
<td>0.79341</td>
<td>0.91781</td>
<td>0.98822</td>
<td>0.99513</td>
<td>1.00000</td>
</tr>
<tr>
<td>Burglary</td>
<td>0.78913</td>
<td>0.84414</td>
<td>0.88183</td>
<td>0.88207</td>
<td>0.88544</td>
<td>0.94800</td>
<td>1.00000</td>
</tr>
<tr>
<td>Larceny</td>
<td>0.51373</td>
<td>0.72178</td>
<td>0.93718</td>
<td>0.95479</td>
<td>0.95492</td>
<td>0.95530</td>
<td>1.00000</td>
</tr>
<tr>
<td>Auto_Theft</td>
<td>0.33638</td>
<td>0.65746</td>
<td>0.90481</td>
<td>0.96197</td>
<td>0.99623</td>
<td>0.99706</td>
<td>1.00000</td>
</tr>
</tbody>
</table>
Output 58.3.1 continued

<table>
<thead>
<tr>
<th>Eigenvalue</th>
<th>Difference</th>
<th>Proportion</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.045824</td>
<td>0.5780</td>
<td>0.5780</td>
</tr>
<tr>
<td>2</td>
<td>1.264030</td>
<td>0.1806</td>
<td>0.7586</td>
</tr>
<tr>
<td>3</td>
<td>0.747500</td>
<td>0.1068</td>
<td>0.8653</td>
</tr>
<tr>
<td>4</td>
<td>0.326325</td>
<td>0.0466</td>
<td>0.9120</td>
</tr>
<tr>
<td>5</td>
<td>0.265207</td>
<td>0.0379</td>
<td>0.9498</td>
</tr>
<tr>
<td>6</td>
<td>0.228364</td>
<td>0.0326</td>
<td>0.9825</td>
</tr>
<tr>
<td>7</td>
<td>0.122750</td>
<td>0.0175</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Prin1</th>
<th>Prin2</th>
<th>Prin3</th>
<th>Prin4</th>
<th>Prin5</th>
<th>Prin6</th>
<th>Prin7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murder</td>
<td>0.30289</td>
<td>-0.61893</td>
<td>0.17353</td>
<td>-0.23308</td>
<td>0.54896</td>
<td>-0.26371</td>
<td>-0.26428</td>
</tr>
<tr>
<td>Rape</td>
<td>0.43410</td>
<td>-0.17053</td>
<td>-0.23539</td>
<td>0.06540</td>
<td>0.18075</td>
<td>0.78232</td>
<td>0.27946</td>
</tr>
<tr>
<td>Robbery</td>
<td>0.39705</td>
<td>0.04713</td>
<td>0.49208</td>
<td>-0.57470</td>
<td>-0.50808</td>
<td>0.09452</td>
<td>0.02497</td>
</tr>
<tr>
<td>Assault</td>
<td>0.39622</td>
<td>-0.35142</td>
<td>-0.05343</td>
<td>0.61744</td>
<td>-0.51525</td>
<td>-0.17395</td>
<td>-0.19921</td>
</tr>
<tr>
<td>Burglary</td>
<td>0.44164</td>
<td>0.20861</td>
<td>-0.22454</td>
<td>-0.02750</td>
<td>0.11273</td>
<td>-0.52340</td>
<td>0.65085</td>
</tr>
<tr>
<td>Larceny</td>
<td>0.35634</td>
<td>0.40570</td>
<td>-0.53681</td>
<td>-0.23231</td>
<td>0.02172</td>
<td>-0.04085</td>
<td>-0.60346</td>
</tr>
<tr>
<td>Auto_Theft</td>
<td>0.28834</td>
<td>0.50400</td>
<td>0.57524</td>
<td>0.41853</td>
<td>0.35939</td>
<td>0.06024</td>
<td>-0.15487</td>
</tr>
</tbody>
</table>

References

Subject Index

centering and scaling information
 HPPRINCOMP procedure, 4465
computational method
 HPPRINCOMP procedure, 4464
correlation
 HPPRINCOMP procedure, 4466
 principal components, 4463, 4466
covariance
 HPPRINCOMP procedure, 4466
 principal components, 4463, 4466
data access information
 HPPRINCOMP procedure, 4465
displayed output
 HPPRINCOMP procedure, 4464
eigenvalue decomposition method
 HPPRINCOMP procedure, 4447, 4460
eigenvalues
 HPPRINCOMP procedure, 4466
eigenvalues and eigenvectors
 HPPRINCOMP procedure, 4460, 4463, 4466
eigenvectors
 HPPRINCOMP procedure, 4466
explained variation of variables
 HPPRINCOMP procedure, 4465
frequency variable
 HPPRINCOMP procedure, 4457
HPPRINCOMP procedure, 4446
 centering and scaling information, 4465
 computational method, 4453, 4464
 correction for means, 4454
 correlation, 4466
 covariance, 4466
 crime rate data, example, 4448
 data access information, 4465
 displayed output, 4464
 eigenvalue decomposition method, 4447, 4460
 eigenvalues, 4466
 eigenvalues and eigenvectors, 4460, 4463, 4466
 eigenvectors, 4466
 examples, 4468
 explained variation of variables, 4465
 input data set, 4453
 ITERGS method, 4447, 4461
 loadings, 4460, 4466
 model information, 4465
 multithreading, 4459, 4464
 NIPALS method, 4447, 4460, 4472
 number of observations, 4465
 number of variables, 4465
 ODS table names, 4467
 OUT= data set, 4461
 output data sets, 4454, 4455, 4457, 4461–4463
 OUTSTAT= data set, 4462
 partial correlation, 4466
 partial covariance, 4466
 performance information, 4465
 regression coefficients, 4466
 regression statistics, 4466
 SCORE procedure, 4464
 simple statistics, 4465
 suppressing output, 4454
 timing, 4466
 total variance, 4466
 weights, 4460
ITERGS method
 HPPRINCOMP procedure, 4447, 4461
loadings
 HPPRINCOMP procedure, 4460, 4466
missing values
 HPPRINCOMP procedure, 4461
model information
 HPPRINCOMP procedure, 4465
 multithreading
 HPPRINCOMP procedure, 4459, 4464
NIPALS method
 HPPRINCOMP procedure, 4447, 4460
 number of observations
 HPPRINCOMP procedure, 4465
 number of variables
 HPPRINCOMP procedure, 4465
ODS table names
 HPPRINCOMP procedure, 4467
 OUT= data set
 HPPRINCOMP procedure, 4461
 output data sets
 HPPRINCOMP procedure, 4457
 OUTSTAT= data set
 HPPRINCOMP procedure, 4462
partial correlation
HPPRINCOMP procedure, 4466
principal components, 4466
partial covariance
HPPRINCOMP procedure, 4466
principal components, 4466
performance information
HPPRINCOMP procedure, 4465
principal components
interpreting eigenvalues, 4450
partialing out variables, 4459
rotating, 4464
using weights, 4460

regression coefficients
HPPRINCOMP procedure, 4466
regression statistics
HPPRINCOMP procedure, 4466
residuals
and partial correlation (HPPRINCOMP), 4462
partial correlation (HPPRINCOMP), 4459
rotating principal components, 4464

SCORE procedure
HPPRINCOMP procedure, 4464
simple statistics
HPPRINCOMP procedure, 4465

timing
HPPRINCOMP procedure, 4466

total variance
HPPRINCOMP procedure, 4466
Syntax Index

BY statement
 HPPRINCOMP procedure, 4456

CODE statement
 HPPRINCOMP procedure, 4456

COV option
 PROC HPPRINCOMP statement, 4453

COVARIANCE option
 PROC HPPRINCOMP statement, 4453

DATA= option
 OUTPUT statement (HPPRINCOMP), 4458
 PROC HPPRINCOMP statement, 4453

EPSILON= option
 PROC HPPRINCOMP statement,
 METHOD=ITERGS option, 4454
 PROC HPPRINCOMP statement,
 METHOD=NIPALS option, 4454

FREQ statement
 HPPRINCOMP procedure, 4457

HPPRINCOMP procedure
 PERFORMANCE statement, 4459
 PROC HPPRINCOMP statement, 4452
 syntax, 4452

HPPRINCOMP procedure, BY statement, 4456

HPPRINCOMP procedure, CODE statement, 4456

HPPRINCOMP procedure, FREQ statement, 4457

HPPRINCOMP procedure, ID statement, 4457

HPPRINCOMP procedure, OUTPUT statement, 4457
 DATA= option, 4458
 keyword option, 4458
 OUT= option, 4458

HPPRINCOMP procedure, PARTIAL statement, 4459

HPPRINCOMP procedure, PERFORMANCE statement, 4459

HPPRINCOMP procedure, PROC HPPRINCOMP statement, 4452
 COV option, 4453
 COVARIANCE option, 4453
 DATA= option, 4453
 METHOD= option, 4453
 N= option, 4453
 NOINT option, 4454
 NOPRINT option, 4454
 OUT= option, 4454
 OUTSTAT= option, 4455
 PARPREFIX= option, 4455
 PPREFIX= option, 4455
 PREFIX= option, 4455
 RPREFIX= option, 4455
 SING= option, 4455
 SINGULAR= option, 4455
 STANDARD option, 4455
 STD option, 4455
 VARDEF= option, 4455

HPPRINCOMP procedure, PROC HPPRINCOMP statement, METHOD=ITERGS option
 EPSILON= option, 4454
 MAXITER= option, 4454
 NOCENTER option, 4454
 NOSCALE option, 4454

HPPRINCOMP procedure, PROC HPPRINCOMP statement, METHOD=NIPALS option
 EPSILON= option, 4454
 MAXITER= option, 4454
 NOCENTER option, 4454
 NOSCALE option, 4454

HPPRINCOMP procedure, VAR statement, 4459

HPPRINCOMP procedure, WEIGHT statement, 4460

ID statement
 HPPRINCOMP procedure, 4457

keyword option
 OUTPUT statement (HPPRINCOMP), 4458

MAXITER= option
 PROC HPPRINCOMP statement,
 METHOD=ITERGS option, 4454
 PROC HPPRINCOMP statement,
 METHOD=NIPALS option, 4454

METHOD= option
 PROC HPPRINCOMP statement, 4453

N= option
 PROC HPPRINCOMP statement, 4454

NOCENTER option
 PROC HPPRINCOMP statement,
 METHOD=ITERGS option, 4454
 PROC HPPRINCOMP statement,
 METHOD=NIPALS option, 4454

NOINT option
 PROC HPPRINCOMP statement, 4454

NOPRINT option
 PROC HPPRINCOMP statement, 4454
NOSCALE option
 PROC HPPRINCOMP statement,
 METHOD=ITERGS option, 4454
 PROC HPPRINCOMP statement,
 METHOD=NIPALS option, 4454

OUT= option
 OUTPUT statement (HPPRINCOMP), 4458
 PROC HPPRINCOMP statement, 4454
OUTPUT statement
 HPPRINCOMP procedure, 4457
OUTSTAT= option
 PROC HPPRINCOMP statement, 4455

PARPREFIX= option
 PROC HPPRINCOMP statement, 4455
PARTIAL statement
 HPPRINCOMP procedure, 4459
PERFORMANCE statement
 HPPRINCOMP procedure, 4459
PPREFIX= option
 PROC HPPRINCOMP statement, 4455
PREFIX= option
 PROC HPPRINCOMP statement, 4455
PROC HPPRINCOMP statement, see HPPRINCOMP procedure
 HPPRINCOMP procedure, 4452
RPREFIX= option
 PROC HPPRINCOMP statement, 4455

SING= option
 PROC HPPRINCOMP statement, 4455
SINGULAR= option
 PROC HPPRINCOMP statement, 4455
STANDARD option
 PROC HPPRINCOMP statement, 4455
STD option
 PROC HPPRINCOMP statement, 4455

VAR statement
 HPPRINCOMP procedure, 4459
VARDEF= option
 PROC HPPRINCOMP statement, 4455

WEIGHT statement
 HPPRINCOMP procedure, 4460