Overview: HPCANDISC Procedure

The HPCANDISC procedure is a high-performance procedure that performs canonical discriminant analysis. It is a high-performance version of the CANDISC procedure in SAS/STAT software. PROC HPCANDISC runs in either single-machine mode or distributed mode.
NOTE: Distributed mode requires SAS High-Performance Statistics.

Canonical discriminant analysis is a dimension-reduction technique related to principal component analysis and canonical correlation. The methodology that is used in deriving the canonical coefficients parallels that of a one-way multivariate analysis of variance (MANOVA). MANOVA tests for equality of the mean vector across class levels. Canonical discriminant analysis finds linear combinations of the quantitative variables that provide maximal separation between classes or groups. Given a classification variable and several quantitative variables, the HPCANDISC procedure derives canonical variables, which are linear combinations of the quantitative variables that summarize between-class variation in much the same way that principal components summarize total variation.

The HPCANDISC procedure performs a canonical discriminant analysis, computes squared Mahalanobis distances between class means, and performs both univariate and one-way multivariate analyses of variance. Two output data sets can be produced: one that contains the canonical coefficients and another that contains, among other things, scored canonical variables. You can rotate the canonical coefficients output data set by using the FACTOR procedure. It is customary to standardize the canonical coefficients so that the canonical variables have means that are equal to 0 and pooled within-class variances that are equal to 1. PROC HPCANDISC displays both standardized and unstandardized canonical coefficients. Correlations between the canonical variables and the original variables in addition to the class means for the canonical variables are also displayed; these correlations, sometimes known as loadings, are called canonical structures.

When you have two or more groups of observations that have measurements on several quantitative variables, canonical discriminant analysis derives a linear combination of the variables that has the highest possible multiple correlation with the groups. This maximal multiple correlation is called the first canonical correlation. The coefficients of the linear combination are the canonical coefficients or canonical weights. The variable that is defined by the linear combination is the first canonical variable or canonical component. The second canonical correlation is obtained by finding the linear combination uncorrelated with the first canonical variable that has the highest possible multiple correlation with the groups. The process of extracting canonical variables can be repeated until the number of canonical variables equals the number of original variables or the number of classes minus one, whichever is smaller.

The first canonical correlation is at least as large as the multiple correlation between the groups and any of the original variables. If the original variables have high within-group correlations, the first canonical correlation can be large even if all the multiple correlations are small. In other words, the first canonical variable can show substantial differences between the classes, even if none of the original variables do. Canonical variables are sometimes called discriminant functions, but this usage is ambiguous because the DISCRIM procedure produces very different functions for classification that are also called discriminant functions.

For each canonical correlation, PROC HPCANDISC tests the hypothesis that it and all smaller canonical correlations are zero in the population. An F approximation (Rao 1973; Kshirsagar 1972) is used that gives better small-sample results than the usual chi-square approximation. The variables should have an approximate multivariate normal distribution within each class, with a common covariance matrix in order for the probability levels to be valid.

Canonical discriminant analysis is equivalent to canonical correlation analysis between the quantitative variables and a set of dummy variables coded from the class variable. Performing canonical discriminant analysis is also equivalent to performing the following steps:

1. Transform the variables so that the pooled within-class covariance matrix is an identity matrix.
2. Compute class means on the transformed variables.

3. Perform a principal component analysis on the means, weighting each mean by the number of observations in the class. The eigenvalues are equal to the ratio of between-class variation to within-class variation in the direction of each principal component.

4. Back-transform the principal components into the space of the original variables to obtain the canonical variables.

An interesting property of the canonical variables is that they are uncorrelated whether the correlation is calculated from the total sample or from the pooled within-class correlations. However, the canonical coefficients are not orthogonal, so the canonical variables do not represent perpendicular directions through the space of the original variables.

PROC HPCANDISC Features

The main features of the HPCANDISC procedure are as follows:

- Performs a canonical discriminant analysis, computes squared Mahalanobis distances between class means, and performs both univariate and multivariate one-way analyses of variance
- Can perform analysis on a massively parallel SAS high-performance appliance
- Reads input data in parallel and writes output data in parallel when the data source is the appliance database
- Is highly multithreaded during calculations of the within-class sum-of-squares-and-crossproducts (SSCP) matrix and the canonical variable scores
- Supports a FREQ statement for grouped analysis
- Supports a WEIGHT statement for weighted analysis
- Displays both standardized and unstandardized canonical coefficients
- Displays correlations between the canonical variables and the original variables
- Displays class means for the canonical variables
- Produces two output data sets: one that contains the canonical coefficients and another that contains scored canonical variables

PROC HPCANDISC Compared with PROC CANDISC

The HPCANDISC procedure and the CANDISC procedure in SAS/STAT have the following similarities and differences:
• All the statements that are available in PROC CANDISC are supported in the HPCANDISC procedure.

• As input, PROC CANDISC can accept ordinary SAS data set and other types of special SAS data sets. In the HPCANDISC procedure, only the ordinary SAS data set (raw data) can be used as input.

• The HPCANDISC procedure supports an ID statement that is not available in PROC CANDISC.

• The HPCANDISC procedure is specifically designed to operate in the high-performance distributed environment. By default, PROC HPCANDISC performs computations on multiple threads. The CANDISC procedure executes on a single thread.

Getting Started: HPCANDISC Procedure

The data in this example are measurements of 159 fish caught in Finland’s Lake Laangelmaevesi; this data set is available from the Puranen. For each of the seven species (bream, roach, whitefish, parkki, perch, pike, and smelt), the weight, length, height, and width of each fish are tallied. Three different length measurements are recorded: from the nose of the fish to the beginning of its tail, from the nose to the notch of its tail, and from the nose to the end of its tail. The height and width are recorded as percentages of the third length variable. The fish data set is available from the Sashelp library.

The following step uses PROC HPCANDISC to find the three canonical variables that best separate the species of fish in the Sashelp.Fish data and create the output data set outcan. When the NCAN=3 option is specified, only the first three canonical variables are displayed. The ID statement adds the variable Species from the input data set to the output data set. The ODS EXCLUDE statement excludes the canonical structure tables and most of the canonical coefficient tables in order to obtain a more compact set of results. The TEMPLATE and SGRENDER procedures create a plot of the first two canonical variables. The following statements produce Figure 50.1 through Figure 50.6:

```sas
title 'Fish Measurement Data';
proc hpcandisc data=sashelp.fish ncan=3 out=outcan;
ods exclude tstruc bstruc pstruc tcoef pcoef;
id Species;
class Species;
var Weight Length1 Length2 Length3 Height Width;
run;
proc template;
define statgraph scatter;
begingraph;
entrytitle 'Fish Measurement Data';
layout overlayequated / equatetype=fit
  xaxisopts=(label='Canonical Variable 1')
  yaxisopts=(label='Canonical Variable 2');
scatterplot x=Can1 y=Can2 / group=species name='fish';
layout gridded / autoalign=(topright);
discretelegend 'fish' / border=false opaque=false;
endlayout;
endlayout;
```
PROC HPCANDISC begins by displaying performance information, data access information, and summary information about the variables in the analysis, as shown in Figure 50.1.

The “Performance Information” table shows the procedure executes in single-machine mode; that is, the data reside and the computation is conducted on the machine where the SAS session executes. This run of the HPCANDISC procedure took place on a multicore machine that had four CPUs; one computational thread was spawned per CPU.

The “Data Access Information” table shows that the input data set and the output data set are both accessed with the V9 (base) engine on the client machine where the MVA SAS session executes.

The summary information includes the number of observations, the number of quantitative variables in the analysis (specified using the VAR statement), and the number of class levels in the classification variable (specified using the CLASS statement). The value and frequency of each class level are also displayed.

Figure 50.1 Fish Data: Performance, Data Access, and Summary Information

Fish Measurement Data

The HPCANDISC Procedure

<table>
<thead>
<tr>
<th>Performance Information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Execution Mode</td>
<td>Single-Machine</td>
</tr>
<tr>
<td>Number of Threads</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Access Information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Engine</td>
</tr>
<tr>
<td>SASHELP.FISH</td>
<td>V9</td>
</tr>
<tr>
<td>WORK.OUTCAN</td>
<td>V9</td>
</tr>
<tr>
<td>Role</td>
<td>Path</td>
</tr>
<tr>
<td>Input</td>
<td>On Client</td>
</tr>
<tr>
<td>Output</td>
<td>On Client</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Sample Size</th>
<th>158</th>
<th>DF Total</th>
<th>157</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td>6</td>
<td>DF Within Classes</td>
<td>151</td>
</tr>
<tr>
<td>Class Levels</td>
<td>7</td>
<td>DF Between Classes</td>
<td>6</td>
</tr>
</tbody>
</table>

| Number of Observations Read | 159 |
| Number of Observations Used | 158 |

<table>
<thead>
<tr>
<th>Class Level Information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>Frequency</td>
</tr>
<tr>
<td>Bream</td>
<td>34</td>
</tr>
<tr>
<td>Parkki</td>
<td>11</td>
</tr>
<tr>
<td>Perch</td>
<td>56</td>
</tr>
<tr>
<td>Pike</td>
<td>17</td>
</tr>
<tr>
<td>Roach</td>
<td>20</td>
</tr>
<tr>
<td>Smelt</td>
<td>14</td>
</tr>
<tr>
<td>Whitefish</td>
<td>6</td>
</tr>
</tbody>
</table>
Chapter 50: The HPCANDISC Procedure

Figure 50.2 displays the “Multivariate Statistics and F Approximations” table. PROC HPCANDISC performs a one-way multivariate analysis of variance (one-way MANOVA) and provides four multivariate tests of the hypothesis that the class mean vectors are equal. These tests indicate that not all the mean vectors are equal \(p < 0.0001 \).

Figure 50.2 Fish Data: MANOVA and Multivariate Tests

Fish Measurement Data

The HPCANDISC Procedure

<table>
<thead>
<tr>
<th>Multivariate Statistics and F Approximations</th>
<th>S=6 M=0.5 N=72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistic</td>
<td>Value</td>
</tr>
<tr>
<td>Wilks’ Lambda</td>
<td>0.000363</td>
</tr>
<tr>
<td>Pillai’s Trace</td>
<td>3.104651</td>
</tr>
<tr>
<td>Hotelling-Lawley Trace</td>
<td>52.057997</td>
</tr>
<tr>
<td>Roy’s Greatest Root</td>
<td>39.134998</td>
</tr>
</tbody>
</table>

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

Figure 50.3 displays the “Canonical Correlations” table. The first canonical correlation is the greatest possible multiple correlation with the classes that you can achieve by using a linear combination of the quantitative variables. The first canonical correlation, displayed in the table, is 0.987463. The figure shows a likelihood ratio test of the hypothesis that the current canonical correlation and all smaller ones are zero. The first line is equivalent to Wilks’ lambda multivariate test.

Figure 50.3 Fish Data: Canonical Correlations

Fish Measurement Data

The HPCANDISC Procedure

<table>
<thead>
<tr>
<th>Eigenvalues of (\text{Inv}(E)^*H) = CanRsq/(1-CanRsq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canonical Correlation</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

Test of H0: The canonical correlations in the current row and all that follow are zero

<table>
<thead>
<tr>
<th>Likelihood Ratio</th>
<th>Approximate F Value</th>
<th>Num DF</th>
<th>Den DF</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00036325</td>
<td>90.71</td>
<td>36</td>
<td><.0001</td>
</tr>
<tr>
<td>2</td>
<td>0.01457896</td>
<td>46.46</td>
<td>25</td>
<td><.0001</td>
</tr>
<tr>
<td>3</td>
<td>0.1567134</td>
<td>23.61</td>
<td>16</td>
<td><.0001</td>
</tr>
<tr>
<td>4</td>
<td>0.52820347</td>
<td>12.09</td>
<td>9</td>
<td><.0001</td>
</tr>
<tr>
<td>5</td>
<td>0.88152702</td>
<td>4.88</td>
<td>4</td>
<td>0.0008</td>
</tr>
<tr>
<td>6</td>
<td>0.99996749</td>
<td>0.00</td>
<td>1</td>
<td>0.9442</td>
</tr>
</tbody>
</table>
Figure 50.4 displays the “Raw Canonical Coefficients” table. The first canonical variable, Can1, shows that the linear combination of the centered variables Can1 = –0.0006 × Weight – 0.33 × Length1 2.49 × Length2 + 2.60 × Length3 + 1.12 × Height – 1.45 × Width separates the species most effectively.

Figure 50.4 Fish Data: Raw Canonical Coefficients

<table>
<thead>
<tr>
<th>Variable</th>
<th>Can1</th>
<th>Can2</th>
<th>Can3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>-0.00064851</td>
<td>-0.00523</td>
<td>-0.00560</td>
</tr>
<tr>
<td>Length1</td>
<td>-0.32944</td>
<td>-0.62660</td>
<td>-2.93432</td>
</tr>
<tr>
<td>Length2</td>
<td>-2.48613</td>
<td>-0.69025</td>
<td>4.04504</td>
</tr>
<tr>
<td>Length3</td>
<td>2.59565</td>
<td>1.80318</td>
<td>-1.13926</td>
</tr>
<tr>
<td>Height</td>
<td>1.12198</td>
<td>-0.71475</td>
<td>0.28320</td>
</tr>
<tr>
<td>Width</td>
<td>-1.44639</td>
<td>-0.90703</td>
<td>0.74149</td>
</tr>
</tbody>
</table>

Figure 50.5 displays the “Class Means on Canonical Variables” table. PROC HPCANDISC computes the means of the canonical variables for each class. The first canonical variable is the linear combination of the variables Weight, Length1, Length2, Length3, Height, and Width that provides the greatest difference (in terms of a univariate F test) between the class means. The second canonical variable provides the greatest difference between class means while being uncorrelated with the first canonical variable.

Figure 50.5 Fish Data: Class Means for Canonical Variables

<table>
<thead>
<tr>
<th>Species</th>
<th>Can1</th>
<th>Can2</th>
<th>Can3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bream</td>
<td>10.94142</td>
<td>0.52078</td>
<td>0.23497</td>
</tr>
<tr>
<td>Parkki</td>
<td>2.58904</td>
<td>-2.54722</td>
<td>-0.49326</td>
</tr>
<tr>
<td>Perch</td>
<td>-4.47181</td>
<td>-1.70823</td>
<td>1.29281</td>
</tr>
<tr>
<td>Pike</td>
<td>-4.89689</td>
<td>8.22141</td>
<td>-0.16469</td>
</tr>
<tr>
<td>Roach</td>
<td>-0.35837</td>
<td>0.08734</td>
<td>-1.10056</td>
</tr>
<tr>
<td>Smelt</td>
<td>-4.09137</td>
<td>-2.35806</td>
<td>-4.03836</td>
</tr>
<tr>
<td>Whitefish</td>
<td>-0.39542</td>
<td>-0.42072</td>
<td>1.06459</td>
</tr>
</tbody>
</table>

Figure 50.6 displays a plot of the first two canonical variables, which shows that Can1 discriminates among three groups: (1) bream; (2) whitefish, roach, and parkki; and (3) smelt, pike, and perch. Can2 best discriminates between pike and the other species.
Figure 50.6 Fish Data: Plot of First Two Canonical Variables

Syntax: HPCANDISC Procedure

The following statements are available in the HPCANDISC procedure:

```
PROC HPCANDISC <options> ;
   BY variables ;
   CLASS variable ;
   FREQ variable ;
   ID variables ;
   PERFORMANCE performance-options ;
   VAR variables ;
   WEIGHT variable ;
```

The PROC HPCANDISC statement and a single CLASS statement are required. All other statements are optional.
The PROC HPCANDISC statement invokes the HPCANDISC procedure. Optionally, it also identifies input and output data sets, specifies the analyses performed, and controls displayed output. Table 50.1 summarizes the options available in the PROC HPCANDISC statement.

Table 50.1 PROC HPCANDISC Statement Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify Data Sets</td>
<td></td>
</tr>
<tr>
<td>DATA=</td>
<td>Specifies the input data set</td>
</tr>
<tr>
<td>OUT=</td>
<td>Specifies the output data set that contains canonical scores</td>
</tr>
<tr>
<td>OUTSTAT=</td>
<td>Specifies the output statistics data set</td>
</tr>
<tr>
<td>Specify Details of Analysis</td>
<td></td>
</tr>
<tr>
<td>NCAN=</td>
<td>Specifies the number of canonical variables</td>
</tr>
<tr>
<td>PREFIX=</td>
<td>Specifies a prefix for naming the canonical variables</td>
</tr>
<tr>
<td>SINGULAR=</td>
<td>Specifies the singularity criterion</td>
</tr>
<tr>
<td>Control Displayed Output</td>
<td></td>
</tr>
<tr>
<td>ALL</td>
<td>Displays all output</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Displays univariate statistics</td>
</tr>
<tr>
<td>BCORR</td>
<td>Displays between correlations</td>
</tr>
<tr>
<td>BCOV</td>
<td>Displays between covariances</td>
</tr>
<tr>
<td>BSSCP</td>
<td>Displays between SSCPs</td>
</tr>
<tr>
<td>DISTANCE</td>
<td>Displays squared Mahalanobis distances</td>
</tr>
<tr>
<td>NOPRINT</td>
<td>Suppresses all displayed output</td>
</tr>
<tr>
<td>PCORR</td>
<td>Displays pooled correlations</td>
</tr>
<tr>
<td>PCOV</td>
<td>Displays pooled covariances</td>
</tr>
<tr>
<td>PSSCP</td>
<td>Displays pooled SSCPs</td>
</tr>
<tr>
<td>SHORT</td>
<td>Suppresses some displayed output</td>
</tr>
<tr>
<td>SIMPLE</td>
<td>Displays simple descriptive statistics</td>
</tr>
<tr>
<td>STDMEAN</td>
<td>Displays standardized class means</td>
</tr>
<tr>
<td>TCORR</td>
<td>Displays total correlations</td>
</tr>
<tr>
<td>TCOV</td>
<td>Displays total covariances</td>
</tr>
<tr>
<td>TSSCP</td>
<td>Displays total SSCPs</td>
</tr>
<tr>
<td>WCORR</td>
<td>Displays within correlations</td>
</tr>
<tr>
<td>WCOV</td>
<td>Displays within covariances</td>
</tr>
<tr>
<td>WSSCP</td>
<td>Displays within SSCPs</td>
</tr>
</tbody>
</table>

The following list provides details about these *options*.
ALL
activates all the display options.

ANOVA
displays univariate statistics for testing the hypothesis that the class means are equal in the population for each variable.

BCORR
displays between-class correlations.

BCOV
displays between-class covariances. The between-class covariance matrix equals the between-class SSCP matrix divided by \(n(c - 1)/c \), where \(n \) is the number of observations and \(c \) is the number of classes. The between-class covariances should be interpreted in comparison with the total-sample and within-class covariances, not as formal estimates of population parameters.

BSSCP
displays the between-class SSCP matrix.

DATA=SAS-data-set
specifies the data set to be analyzed. The data set can only be an ordinary SAS data set (raw data). If you omit the DATA= option, PROC HPCANDISC uses the most recently created SAS data set.

If PROC HPCANDISC executes in distributed mode, the input data are distributed to memory on the appliance nodes and analyzed in parallel, unless the data are already distributed in the appliance database. In that case the procedure reads the data alongside the distributed database. For more information, see the section “Processing Modes” (Chapter 3, SAS/STAT User’s Guide: High-Performance Procedures) about the various execution modes and the section “Alongside-the-Database Execution” (Chapter 3, SAS/STAT User’s Guide: High-Performance Procedures) about the alongside-the-database model.

DISTANCE
MAHALANOBIS
displays squared Mahalanobis distances between the group means, the \(F \) statistics, and the corresponding probabilities of greater squared Mahalanobis distances between the group means.

NCAN=n
specifies the number of canonical variables to be computed. The value of \(n \) must be less than or equal to the number of variables. If you specify NCAN=0, PROC HPCANDISC displays the canonical correlations but not the canonical coefficients, structures, or means. A negative value suppresses the canonical analysis entirely. Let \(v \) be the number of variables in the VAR statement, and let \(c \) be the number of classes. If you omit the NCAN= option, only \(\min(v, c - 1) \) canonical variables are generated; if you also specify an OUT= output data set, \(v \) canonical variables are generated, and the last \(v - (c - 1) \) canonical variables have missing values.

NOPRINT
suppresses the normal display of results. This option temporarily disables the Output Delivery System (ODS). For more information about ODS, see Chapter 20, “Using the Output Delivery System.”
OUT=SAS-data-set
creates an output SAS data set to contain observationwise canonical variable scores. The variables in
the input data set are not included in the output data set to avoid data duplication for large data sets;
however, variables that are specified in the ID statement are included.

If the input data are in distributed form, in which access of data in a particular order cannot be
guaranteed, the HPCANDISC procedure copies the distribution or partition key to the output data set
so that its contents can be joined with the input data.

If you want to create a SAS data set in a permanent library, you must specify a two-level name. For
more information about permanent libraries and SAS data sets, see SAS Language Reference: Concepts.
For more information about OUT= data sets, see the section “Output Data Sets” on page 3984.

OUTSTAT=SAS-data-set
creates a TYPE=CORR output SAS data set to contain various statistics, including class means,
standard deviations, correlations, canonical correlations, canonical structures, canonical coefficients,
and means of canonical variables for each class level.

If you want to create a SAS data set in a permanent library, you must specify a two-level name. For
more information about permanent libraries and SAS data sets, see SAS Language Reference: Concepts.

PCORR
displays pooled within-class correlations (partial correlations based on the pooled within-class covari-
ances).

PCOV
displays pooled within-class covariances.

PREFIX=name
specifies a prefix for naming the canonical variables. By default, the names are Can1, Can2, Can3, and
so on. If you specify PREFIX=Abc, the components are named Abc1, Abc2, and so on. The number of
characters in the prefix plus the number of digits required to designate the canonical variables should
not exceed 32. The prefix is truncated if the combined length exceeds 32.

PSSCP
displays the pooled within-class corrected SSCP matrix.

SHORT
suppresses the display of canonical structures, canonical coefficients, and class means on canonical
variables; only tables of canonical correlations and multivariate test statistics are displayed.

SIMPLE
displays simple descriptive statistics for the total sample and within each class.

SINGULAR=p
specifies the criterion for determining the singularity of the total-sample correlation matrix and the
pooled within-class covariance matrix, where $0 < p < 1$. The default is SINGULAR=1E–8.

Let S be the total-sample correlation matrix. If the R square for predicting a quantitative variable in the
VAR statement from the variables that precede it exceeds $1 – p$, then S is considered singular. If S is
singular, the probability levels for the multivariate test statistics and canonical correlations are adjusted
for the number of variables whose R square exceeds $1 – p$.
If S is considered singular and the inverse of S (squared Mahalanobis distances) is required, a quasi inverse is used instead. For more information, see the section “Quasi-inverse” on page 2216.

STDMEAN
- displays total-sample and pooled within-class standardized class means.

TCORR
- displays total-sample correlations.

TCOV
- displays total-sample covariances.

TSSCP
- displays the total-sample corrected SSCP matrix.

WCORR
- displays within-class correlations for each class level.

WCOV
- displays within-class covariances for each class level.

WSSCP
- displays the within-class corrected SSCP matrix for each class level.

BY Statement

```
BY variables;
```

You can specify a BY statement with PROC HPCANDISC to obtain separate analyses of observations in groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

- Sort the data by using the SORT procedure with a similar BY statement.
- Specify the NOTSORTED or DESCENDING option in the BY statement for the HPCANDISC procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged in groups (according to values of the BY variables) and that these groups are not necessarily in alphabetical or increasing numeric order.
- Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in *SAS Language Reference: Concepts*. For more information about the DATASETS procedure, see the discussion in the *Base SAS Procedures Guide*.
CLASS Statement

`CLASS variable ;`

The values of the CLASS variable define the groups for analysis. Class levels are determined by the formatted values of the CLASS variable. The CLASS variable can be numeric or character. A CLASS statement is required.

FREQ Statement

`FREQ variable ;`

The variable in the FREQ statement identifies a numeric variable in the data set that contains the frequency of occurrence of each observation. SAS high-performance analytics procedures that support the FREQ statement treat each observation as if it appeared \(f \) times, where \(f \) is the value of the FREQ variable for the observation. If the frequency value is not an integer, it is truncated to an integer. If the frequency value is less than 1 or missing, the observation is not used in the analysis. When the FREQ statement is not specified, each observation is assigned a frequency of 1.

The total number of observations is considered to be equal to the sum of the FREQ variable when the procedure determines degrees of freedom for significance probabilities.

ID Statement

`ID variables ;`

The ID statement lists one or more variables from the input data set that are transferred to output data sets created by SAS high-performance analytics procedures, provided that the output data set produces one (or more) records per input observation.

For information about the common ID statement in SAS high-performance analytics procedures, see the section “ID Statement” (Chapter 4, SAS/STAT User’s Guide: High-Performance Procedures).

PERFORMANCE Statement

`PERFORMANCE < performance-options> ;`

The PERFORMANCE statement defines performance parameters for multithreaded and distributed computing, passes variables that describe the distributed computing environment, and requests detailed results about the performance characteristics of the HPCANDISC procedure.

You can also use the PERFORMANCE statement to control whether the HPCANDISC procedure executes in single-machine mode or distributed mode.

The PERFORMANCE statement is documented further in the section “PERFORMANCE Statement” (Chapter 3, SAS/STAT User’s Guide: High-Performance Procedures).
VAR Statement

```
VAR variables;
```

You specify the quantitative variables to include in the analysis by using a VAR statement. If you do not use a VAR statement, the analysis includes all numeric variables that are not listed in other statements.

WEIGHT Statement

```
WEIGHT variable;
```

The variable in the WEIGHT statement is used as a weight to perform a weighted analysis of the data. Observations that have nonpositive or missing weights are not included in the analysis. If a WEIGHT statement is not included, all observations that are used in the analysis are assigned a weight of 1.

The WEIGHT statement does not alter the degrees of freedom.

Details: HPCANDISC Procedure

Missing Values

If an observation has a missing value for any of the quantitative variables, it is omitted from the analysis. If an observation has a missing CLASS value but is otherwise complete, PROC HPCANDISC does not use it in computing the canonical correlations and coefficients; however, canonical variable scores are computed for that observation for the OUT= data set.

Computational Method

General Formulas

Canonical discriminant analysis is equivalent to canonical correlation analysis between the quantitative variables and a set of dummy variables coded from the class variable. In the following notation, the dummy variables are denoted by \(y \) and the quantitative variables are denoted by \(x \). The total sample covariance matrix for the \(x \) and \(y \) variables is

\[
S = \begin{bmatrix}
S_{xx} & S_{xy} \\
S_{yx} & S_{yy}
\end{bmatrix}
\]

When \(c \) is the number of groups, \(n_t \) is the number of observations in group \(t \), and \(S_t \) is the sample covariance matrix for the \(x \) variables in group \(t \), the within-class pooled covariance matrix for the \(x \) variables is

\[
S_p = \frac{1}{\sum n_t - c} \sum (n_t - 1)S_t
\]
The canonical correlations, ρ_i, are the square roots of the eigenvalues, λ_i, of the following matrix. The corresponding eigenvectors are v_i.

$$S_p^{-1/2}S_{xy}S_{yy}^{-1}S_{yx}S_p^{-1/2}$$

Let V be the matrix that contains the eigenvectors v_i that correspond to nonzero eigenvalues as columns. The raw canonical coefficients are calculated as follows:

$$R = S_p^{-1/2}V$$

The pooled within-class standardized canonical coefficients are

$$P = \text{diag}(S_p)^{1/2}R$$

The total sample standardized canonical coefficients are

$$T = \text{diag}(S_{xx})^{1/2}R$$

Let X_c be the matrix that contains the centered x variables as columns. The canonical scores can be calculated by any of the following:

$$X_c R$$

$$X_c \text{ diag}(S_p)^{-1/2}P$$

$$X_c \text{ diag}(S_{xx})^{-1/2}T$$

For the multivariate tests based on $E^{-1}H$,

$$E = (n - 1)(S_{yy} - S_{yx}S_{xx}^{-1}S_{xy})$$

$$H = (n - 1)S_{yx}S_{xx}^{-1}S_{xy}$$

where n is the total number of observations.

Multithreading

Threading is the organization of computational work into multiple tasks (processing units that can be scheduled by the operating system). A task is associated with a thread. Multithreading is the concurrent execution of threads. When multithreading is possible, you can realize substantial performance gains compared to the performance that you get from sequential (single-threaded) execution.

The number of threads that the HPCANDISC procedure spawns is determined by the number of CPUs on a machine and can be controlled in the following ways:

- You can specify the CPU count by using the CPUCOUNT= SAS system option. For example, if you specify the following statement, PROC HPCANDISC schedules threads as if it were executing on a system that had four CPUs, regardless of the actual CPU count:

  ```
  options cpucount=4;
  ```
You can specify the NTHREADS= option in the PERFORMANCE statement to determine the number of threads. This specification overrides the system option. Specify NTHREADS=1 to force single-threaded execution.

The number of threads per machine is displayed in the “Performance Information” table, which is part of the default output. The HPCANDISC procedure allocates one thread per CPU.

The tasks that are multithreaded by the HPCANDISC procedure are primarily defined by dividing the data processed on a single machine among the threads; that is, PROC HPCANDISC implements multithreading through a data-parallel model. For example, if the input data set has 1,000 observations and you are running on four threads, then 250 observations are associated with each thread. All operations that require access to the data are then multithreaded. These operations include the following:

- variable levelization
- formation of the crossproducts matrix
- canonical variable scoring of observations

Output Data Sets

OUT= Data Set

Many SAS procedures add the variables from the input data set when an observationwise output data set is created. The assumption of high-performance analytics procedures is that the input data sets can be large and can contain many variables. For performance reasons, the OUT= data set contains the following:

- new variables that are explicitly created for the OUT= data set
- variables that are listed in the ID statement
- distribution keys or hash keys that are transferred from the input data set

Having these variables and keys in the OUT= data set enables you to add output data set information that is necessary for subsequent SQL joins without copying the entire input data set to the output data set. For more information about output data sets that are produced when PROC HPCANDISC is run in distributed mode, see the section “Output Data Sets” (Chapter 3, *SAS/STAT User’s Guide: High-Performance Procedures*).

The new variables that are created for the OUT= data set contain the canonical variable scores. You determine the number of new variables by using the NCAN= option. The names of the new variables are formed as they are for the PREFIX= option. The new variables have means equal to 0 and pooled within-class variances equal to 1.
OUTSTAT= Data Set

The OUTSTAT= data set is similar to the TYPE=CORR data set that the CORR procedure produces but contains many results in addition to those produced by PROC CORR.

The OUTSTAT= data set is TYPE=CORR, and it contains the following variables:

- the BY variables, if any
- the CLASS variable
- _TYPE_, a character variable of length 8 that identifies the type of statistic
- _NAME_, a character variable of length 32 that identifies the row of the matrix or the name of the canonical variable
- the quantitative variables (those in the VAR statement, or if there is no VAR statement, all numeric variables not listed in any other statement)

The observations, as identified by the variable _TYPE_, have the following _TYPE_ values:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>number of observations for the total sample (CLASS variable missing) and within each class (CLASS variable present)</td>
</tr>
<tr>
<td>SUMWGT</td>
<td>sum of weights for the total sample (CLASS variable missing) and within each class (CLASS variable present) if a WEIGHT statement is specified</td>
</tr>
<tr>
<td>MEAN</td>
<td>means for the total sample (CLASS variable missing) and within each class (CLASS variable present)</td>
</tr>
<tr>
<td>STDMEAN</td>
<td>total-standardized class means</td>
</tr>
<tr>
<td>PSTDMEAN</td>
<td>pooled within-class standardized class means</td>
</tr>
<tr>
<td>STD</td>
<td>standard deviations for the total sample (CLASS variable missing) and within each class (CLASS variable present)</td>
</tr>
<tr>
<td>PSTD</td>
<td>pooled within-class standard deviations</td>
</tr>
<tr>
<td>BSTD</td>
<td>between-class standard deviations</td>
</tr>
<tr>
<td>RSQUARED</td>
<td>univariate R squares</td>
</tr>
</tbody>
</table>

The following kinds of observations are identified by the combination of the variables _TYPE_ and _NAME_. When the _TYPE_ variable has one of the following values, the _NAME_ variable identifies the row of the matrix:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSSCP</td>
<td>corrected SSCP matrix for the total sample (CLASS variable missing) and within each class (CLASS variable present)</td>
</tr>
</tbody>
</table>
PSSCP pooled within-class corrected SSCP matrix
BSSCP between-class SSCP matrix
COV covariance matrix for the total sample (CLASS variable missing) and within each class (CLASS variable present)
PCOV pooled within-class covariance matrix
BCOV between-class covariance matrix
CORR correlation matrix for the total sample (CLASS variable missing) and within each class (CLASS variable present)
PCORR pooled within-class correlation matrix
BCORR between-class correlation matrix

When the _TYPE_ variable has one of the following values, the _NAME_ variable identifies the canonical variable:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANCORR</td>
<td>canonical correlations</td>
</tr>
<tr>
<td>STRUCTUR</td>
<td>canonical structure</td>
</tr>
<tr>
<td>BSTRUCT</td>
<td>between canonical structure</td>
</tr>
<tr>
<td>PSTRUCT</td>
<td>pooled within-class canonical structure</td>
</tr>
<tr>
<td>SCORE</td>
<td>total-sample standardized canonical coefficients</td>
</tr>
<tr>
<td>PSCORE</td>
<td>pooled within-class standardized canonical coefficients</td>
</tr>
<tr>
<td>RAWSCORE</td>
<td>raw canonical coefficients</td>
</tr>
<tr>
<td>CANMEAN</td>
<td>means of the canonical variables for each class</td>
</tr>
</tbody>
</table>

You can use this data set in PROC SCORE to get scores on the canonical variables for new data by using one of the following forms:

* The CLASS variable C is numeric;
 proc score data=NewData score=Coef(where=(c = .)) out=Scores;
 run;

* The CLASS variable C is character;
 proc score data=NewData score=Coef(where=(c = ' ')) out=Scores;
 run;

The WHERE clause excludes the within-class means and standard deviations. PROC SCORE standardizes the new data by subtracting the original variable means that are stored in the _TYPE_='MEAN' observations and dividing by the original variable standard deviations from the _TYPE_='STD' observations. Then PROC SCORE multiplies the standardized variables by the coefficients from the _TYPE_='SCORE' observations to get the canonical scores.
By default, the HPCANDISC procedure begins by displaying the output along with the following:

- The “Performance Information” table, which is produced by default. It displays information about the execution mode. For single-machine mode, the table displays the number of threads used. For distributed mode, the table displays the grid mode (symmetric or asymmetric), the number of compute nodes, and the number of threads per node.

- The “Data Access Information” table, which is produced by default. For the input and output data sets, it displays the libref and data set name, the engine used to access the data, the role (input or output) of the data set, and the path that data followed to reach the computation.

- Summary information about the variables in the analysis that displays the total sample size, the number of quantitative variables, the number of class levels, and the number of degrees of freedom.

- The “Number of Observations” table, which displays the number of observations read from the input data set and the number of observations used in the analysis. If you specify a FREQ statement, the table also displays the sum of frequencies read and used.

- The “Class Level Information” table, which displays, for each level of the classification variable, the frequency sum, weight sum, and proportion of the total sample.

The optional output from PROC HPCANDISC includes the following:

- Within-class SSCP matrices for each group
- Pooled within-class SSCP matrix
- Between-class SSCP matrix
- Total-sample SSCP matrix
- Within-class covariance matrices for each group
- Pooled within-class covariance matrix
- Between-class covariance matrix, equal to the between-class SSCP matrix divided by $n(c - 1)/c$, where n is the number of observations and c is the number of classes
- Total-sample covariance matrix
- Within-class correlation coefficients and $Pr > |r|$ to test the hypothesis that the within-class population correlation coefficients are zero
- Pooled within-class correlation coefficients and $Pr > |r|$ to test the hypothesis that the partial population correlation coefficients are zero
- Between-class correlation coefficients and $Pr > |r|$ to test the hypothesis that the between-class population correlation coefficients are zero.
Chapter 50: The HPCANDISC Procedure

- Total-sample correlation coefficients and \(Pr > |r| \) to test the hypothesis that the total population correlation coefficients are zero

- Simple statistics, including \(N \) (the number of observations), sum, mean, variance, and standard deviation for the total sample and within each class

- Total-sample standardized class means, obtained by subtracting the grand mean from each class mean and dividing by the total sample standard deviation

- Pooled within-class standardized class means, obtained by subtracting the grand mean from each class mean and dividing by the pooled within-class standard deviation

- Pairwise squared distances between groups

- Univariate test statistics, including total-sample standard deviations, pooled within-class standard deviations, between-class standard deviations, \(R^2/(1 - R^2) \), \(F \), and \(Pr > F \) (univariate \(F \) values and probability levels for one-way analyses of variance)

- The “Timing” table, which displays the elapsed time for each main task of the procedure, if you specify the DETAILS option in the PERFORMANCE statement

By default, PROC HPCANDISC displays these statistics:

- Multivariate statistics and \(F \) approximations, including Wilks’ lambda, Pillai’s trace, Hotelling-Lawley trace, and Roy’s greatest root with \(F \) approximations, numerator and denominator degrees of freedom (Num DF and Den DF), and probability values (\(Pr > F \)). Each of these four multivariate statistics tests the hypothesis that the class means are equal in the population. For more information, see the section “Multivariate Tests” on page 94.

- Canonical correlations

- Adjusted canonical correlations (Lawley 1959). These are asymptotically less biased than the raw correlations and can be negative. The adjusted canonical correlations might not be computable and are displayed as missing values if two canonical correlations are nearly equal or if some are close to zero. A missing value is also displayed if an adjusted canonical correlation is larger than a previous adjusted canonical correlation.

- Approximate standard error of the canonical correlations

- Squared canonical correlations

- Eigenvalues of \(E^{-1}H \). Each eigenvalue is equal to \(\rho^2/(1 - \rho^2) \), where \(\rho^2 \) is the corresponding squared canonical correlation and can be interpreted as the ratio of between-class variation to pooled within-class variation for the corresponding canonical variable. The table includes eigenvalues, differences between successive eigenvalues, the proportion of the sum of the eigenvalues, and the cumulative proportion.

- Likelihood ratio for the hypothesis that the current canonical correlation and all smaller ones are zero in the population. The likelihood ratio for the hypothesis that all canonical correlations equal zero is Wilks’ lambda.
Approximate F statistic based on Rao’s approximation to the distribution of the likelihood ratio (Rao 1973, p. 556; Kshirsagar 1972, p. 326)

Numerator degrees of freedom (Num DF), denominator degrees of freedom (Den DF), and $Pr > F$, the probability level associated with the F statistic

You can suppress the following statistics by specifying the SHORT option:

- Total canonical structure, giving total-sample correlations between the canonical variables and the original variables
- Between canonical structure, giving between-class correlations between the canonical variables and the original variables
- Pooled within canonical structure, giving pooled within-class correlations between the canonical variables and the original variables
- Total-sample standardized canonical coefficients, standardized to give canonical variables that have zero mean and unit pooled within-class variance when applied to the total-sample standardized variables
- Pooled within-class standardized canonical coefficients, standardized to give canonical variables that have zero mean and unit pooled within-class variance when applied to the pooled within-class standardized variables
- Raw canonical coefficients, standardized to give canonical variables that have zero mean and unit pooled within-class variance when applied to the centered variables
- Class means on the canonical variables

ODS Table Names

PROC HPCANDISC assigns a name to each table that it creates. You can use these names to reference the ODS table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in Table 50.2. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
<th>Required Statement / Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Univariate statistics</td>
<td>ANOVA</td>
</tr>
<tr>
<td>AveRSquare</td>
<td>Average R square</td>
<td>ANOVA</td>
</tr>
<tr>
<td>BCorr</td>
<td>Between-class correlations</td>
<td>BCOV</td>
</tr>
<tr>
<td>BCov</td>
<td>Between-class covariances</td>
<td>BCOV</td>
</tr>
<tr>
<td>BSSCP</td>
<td>Between-class SSCP matrix</td>
<td>BSSCP</td>
</tr>
<tr>
<td>BStruc</td>
<td>Between canonical structure</td>
<td>Default</td>
</tr>
<tr>
<td>CanCorr</td>
<td>Canonical correlations</td>
<td>Default</td>
</tr>
<tr>
<td>CanonicalMeans</td>
<td>Class means on canonical variables</td>
<td>Default</td>
</tr>
</tbody>
</table>
Table 50.2 continued

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
<th>Required Statement / Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClassLevels</td>
<td>Class level information</td>
<td>Default</td>
</tr>
<tr>
<td>Counts</td>
<td>Number of observations, variables, class levels, df</td>
<td>Default</td>
</tr>
<tr>
<td>.DataAccessInfo</td>
<td>Information about modes of data access</td>
<td>Default</td>
</tr>
<tr>
<td>Dist</td>
<td>Squared distances</td>
<td>DISTANCE</td>
</tr>
<tr>
<td>DistFValues</td>
<td>F statistics based on squared distances</td>
<td>DISTANCE</td>
</tr>
<tr>
<td>DistProb</td>
<td>Probabilities for F statistics from squared distances</td>
<td>DISTANCE</td>
</tr>
<tr>
<td>MultStat</td>
<td>MANOVA</td>
<td>Default</td>
</tr>
<tr>
<td>NObs</td>
<td>Number of observations</td>
<td>Default</td>
</tr>
<tr>
<td>PCoef</td>
<td>Pooled standard canonical coefficients</td>
<td>Default</td>
</tr>
<tr>
<td>PCorr</td>
<td>Pooled within-class correlations</td>
<td>PCORR</td>
</tr>
<tr>
<td>PCov</td>
<td>Pooled within-class covariances</td>
<td>PCOV</td>
</tr>
<tr>
<td>PerformanceInfo</td>
<td>Information about the high-performance computing environment</td>
<td>Default</td>
</tr>
<tr>
<td>PSSCP</td>
<td>Pooled within-class SSCP matrix</td>
<td>PSSCP</td>
</tr>
<tr>
<td>PStdMeans</td>
<td>Pooled standardized class means</td>
<td>STDMEAN</td>
</tr>
<tr>
<td>PStruc</td>
<td>Pooled within canonical structure</td>
<td>Default</td>
</tr>
<tr>
<td>RCoeff</td>
<td>Raw canonical coefficients</td>
<td>Default</td>
</tr>
<tr>
<td>SimpleStatistics</td>
<td>Simple statistics</td>
<td>SIMPLE</td>
</tr>
<tr>
<td>TCoef</td>
<td>Total-sample standard canonical coefficients</td>
<td>Default</td>
</tr>
<tr>
<td>TCorr</td>
<td>Total-sample correlations</td>
<td>TCOV</td>
</tr>
<tr>
<td>TCov</td>
<td>Total-sample covariances</td>
<td>TCOV</td>
</tr>
<tr>
<td>Timing</td>
<td>Absolute and relative times for tasks performed by the procedure</td>
<td>PERFORMANCE DETAILS</td>
</tr>
<tr>
<td>TSSCP</td>
<td>Total-sample SSCP matrix</td>
<td>TSSCP</td>
</tr>
<tr>
<td>TStdMeans</td>
<td>Total standardized class means</td>
<td>STDMEAN</td>
</tr>
<tr>
<td>TStruc</td>
<td>Total canonical structure</td>
<td>Default</td>
</tr>
<tr>
<td>WCorr</td>
<td>Within-class correlations</td>
<td>WCOV</td>
</tr>
<tr>
<td>WCOv</td>
<td>Within-class covariances</td>
<td>WCOV</td>
</tr>
<tr>
<td>WSSCP</td>
<td>Within-class SSCP matrices</td>
<td>WSSCP</td>
</tr>
</tbody>
</table>

Examples: HPCANDISC Procedure

Example 50.1: Analyzing Iris Data with PROC HPCANDISC

The iris data that were published by Fisher (1936) have been widely used for examples in discriminant analysis and cluster analysis. The sepal length, sepal width, petal length, and petal width are measured in millimeters in 50 iris specimens from each of three species: *Iris setosa*, *I. versicolor*, and *I. virginica*. The iris data set is available from the `Sashelp` library.
This example is a canonical discriminant analysis that creates an output data set that contains scores on the canonical variables and plots the canonical variables. The ID statement is specified to add the variable Species from the input data set to the output data set.

The following statements produce Output 50.1.1 through Output 50.1.6:

title 'Fisher (1936) Iris Data';

proc hpcandisc data=sashelp.iris out=outcan distance anova;
 id Species;
 class Species;
 var SepalLength SepalWidth PetalLength PetalWidth;
run;

Output 50.1.1 displays performance information, data access information, and summary information about the observations and the classes in the data set.

Output 50.1.1 Iris Data: Performance, Data Access, and Summary Information

Fisher (1936) Iris Data

The HPCANDISC Procedure

<table>
<thead>
<tr>
<th>Performance Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execution Mode</td>
</tr>
<tr>
<td>Number of Threads</td>
</tr>
</tbody>
</table>

Data Access Information

<table>
<thead>
<tr>
<th>Data</th>
<th>Engine</th>
<th>Role</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>SASHELP.IRIS</td>
<td>V9</td>
<td>Input</td>
<td>On Client</td>
</tr>
<tr>
<td>WORK.OUTCAN</td>
<td>V9</td>
<td>Output</td>
<td>On Client</td>
</tr>
</tbody>
</table>

Total Sample Size 150 DF Total 149
Variables 4 DF Within Classes 147
Class Levels 3 DF Between Classes 2

Number of Observations Read 150
Number of Observations Used 150

Class Level Information

<table>
<thead>
<tr>
<th>Species</th>
<th>Frequency</th>
<th>Weight</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setosa</td>
<td>50</td>
<td>50.000000</td>
<td>0.33333</td>
</tr>
<tr>
<td>Versicolor</td>
<td>50</td>
<td>50.000000</td>
<td>0.33333</td>
</tr>
<tr>
<td>Virginica</td>
<td>50</td>
<td>50.000000</td>
<td>0.33333</td>
</tr>
</tbody>
</table>

Output 50.1.2 shows results from the DISTANCE option in the PROC HPCANDISC statement, which display squared Mahalanobis distances between class means.
Output 50.1.2 Iris Data: Squared Mahalanobis Distances and Distance Statistics

Fisher (1936) Iris Data

The HPCANDISC Procedure

<table>
<thead>
<tr>
<th>Squared Distance to Species</th>
<th>From Species</th>
<th>Setosa</th>
<th>Versicolor</th>
<th>Virginica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setosa</td>
<td>0</td>
<td>89.86419</td>
<td>179.38471</td>
<td></td>
</tr>
<tr>
<td>Versicolor</td>
<td>89.86419</td>
<td>0</td>
<td>17.20107</td>
<td></td>
</tr>
<tr>
<td>Virginica</td>
<td>179.38471</td>
<td>17.20107</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F Statistics, Num DF=4, Den DF=144 for Squared Distance to Species</th>
<th>From Species</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Setosa</td>
</tr>
<tr>
<td>Setosa</td>
<td>0</td>
</tr>
<tr>
<td>Versicolor</td>
<td>550.18889</td>
</tr>
<tr>
<td>Virginica</td>
<td>1098.27375</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prob > Mahalanobis Distance for Squared Distance to Species</th>
<th>From Species</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Setosa</td>
</tr>
<tr>
<td>Setosa</td>
<td>1.0000</td>
</tr>
<tr>
<td>Versicolor</td>
<td><.0001</td>
</tr>
<tr>
<td>Virginica</td>
<td><.0001</td>
</tr>
</tbody>
</table>

Output 50.1.3 displays univariate and multivariate statistics. The ANOVA option uses univariate statistics to test the hypothesis that the class means are equal. The resulting R-square values range from 0.4008 for SepalWidth to 0.9414 for PetalLength, and each variable is significant at the 0.0001 level. The multivariate test for differences between the class levels (which is displayed by default) is also significant at the 0.0001 level; you would expect this from the highly significant univariate test results.
Output 50.1.3 Iris Data: Univariate and Multivariate Statistics

Fisher (1936) Iris Data

The **HPCANDISC** Procedure

<table>
<thead>
<tr>
<th>Variable</th>
<th>Label</th>
<th>Total Standard Deviation</th>
<th>Pooled Standard Deviation</th>
<th>Between Standard Deviation</th>
<th>R-Square</th>
<th>R-Square / (1-Rsq)</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>SepalLength</td>
<td>Sepal Length (mm)</td>
<td>8.28066</td>
<td>5.14789</td>
<td>7.95061</td>
<td>0.6187</td>
<td>1.6226</td>
<td>119.26</td>
<td><.0001</td>
</tr>
<tr>
<td>SepalWidth</td>
<td>Sepal Width (mm)</td>
<td>4.35866</td>
<td>3.39688</td>
<td>3.36822</td>
<td>0.4008</td>
<td>0.6688</td>
<td>49.16</td>
<td><.0001</td>
</tr>
<tr>
<td>PetalLength</td>
<td>Petal Length (mm)</td>
<td>17.65298</td>
<td>4.30334</td>
<td>20.90700</td>
<td>0.9414</td>
<td>16.0566</td>
<td>1180.16</td>
<td><.0001</td>
</tr>
<tr>
<td>PetalWidth</td>
<td>Petal Width (mm)</td>
<td>7.62238</td>
<td>2.04650</td>
<td>8.96735</td>
<td>0.9289</td>
<td>13.0613</td>
<td>960.01</td>
<td><.0001</td>
</tr>
</tbody>
</table>

Average R-Square

<table>
<thead>
<tr>
<th>Weighting</th>
<th>R-Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unweighted</td>
<td>0.7224358</td>
</tr>
<tr>
<td>Weighted by Variance</td>
<td>0.8689444</td>
</tr>
</tbody>
</table>

Multivariate Statistics and F Approximations

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
<th>F Value</th>
<th>Num DF</th>
<th>Den DF</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilks' Lambda</td>
<td>0.023439</td>
<td>199.15</td>
<td>8</td>
<td>288</td>
<td><.0001</td>
</tr>
<tr>
<td>Pillai's Trace</td>
<td>1.191899</td>
<td>53.47</td>
<td>8</td>
<td>290</td>
<td><.0001</td>
</tr>
<tr>
<td>Hotelling-Lawley Trace</td>
<td>32.477320</td>
<td>582.20</td>
<td>8</td>
<td>203.4</td>
<td><.0001</td>
</tr>
<tr>
<td>Roy's Greatest Root</td>
<td>32.191929</td>
<td>1166.96</td>
<td>4</td>
<td>145</td>
<td><.0001</td>
</tr>
</tbody>
</table>

NOTE: F Statistic for Roy's Greatest Root is an upper bound.

NOTE: F Statistic for Wilks' Lambda is exact.
Output 50.1.4 displays canonical correlations and eigenvalues. The R square between Can1 and the class variable, 0.969872, is much larger than the corresponding R square for Can2, 0.222027.

Output 50.1.4 Iris Data: Canonical Correlations and Eigenvalues

Fisher (1936) Iris Data

The HPCANDISC Procedure

<table>
<thead>
<tr>
<th>Canonical Correlation</th>
<th>Adjusted Canonical Correlation</th>
<th>Approximate Standard Error</th>
<th>Squared Canonical Correlation</th>
<th>Eigenvalue</th>
<th>Difference</th>
<th>Proportion</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.984821</td>
<td>0.984508</td>
<td>0.002468</td>
<td>0.969872</td>
<td>32.1919</td>
<td>0.9912</td>
<td>0.9912</td>
</tr>
<tr>
<td>2</td>
<td>0.471197</td>
<td>0.461445</td>
<td>0.063734</td>
<td>0.222027</td>
<td>0.2854</td>
<td>0.0088</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Test of H0: The canonical correlations in the current row and all that follow are zero

<table>
<thead>
<tr>
<th>Likelihood Ratio</th>
<th>Approximate F Value</th>
<th>Num DF</th>
<th>Den DF</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.02343863</td>
<td>199.15</td>
<td>8</td>
<td><.0001</td>
</tr>
<tr>
<td>2</td>
<td>0.77797337</td>
<td>13.79</td>
<td>3</td>
<td><.0001</td>
</tr>
</tbody>
</table>

Output 50.1.5 displays correlations between canonical and original variables.

Output 50.1.5 Iris Data: Correlations between Canonical and Original Variables

Fisher (1936) Iris Data

The HPCANDISC Procedure

<table>
<thead>
<tr>
<th>Variable</th>
<th>Label</th>
<th>Total Canonical Structure</th>
<th>Between Canonical Structure</th>
<th>Pooled Within Canonical Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>SepalLength</td>
<td>Sepal Length (mm)</td>
<td>Can1 0.79189 0.21759</td>
<td>Can1 0.99147 0.13035</td>
<td>Can1 0.22260 0.31081</td>
</tr>
<tr>
<td>SepalWidth</td>
<td>Sepal Width (mm)</td>
<td>-0.53076 0.75799</td>
<td>-0.82566 0.56417</td>
<td>-0.11901 0.86368</td>
</tr>
<tr>
<td>PetalLength</td>
<td>Petal Length (mm)</td>
<td>0.98495 0.04604</td>
<td>0.99975 0.02236</td>
<td>0.70607 0.16770</td>
</tr>
<tr>
<td>PetalWidth</td>
<td>Petal Width (mm)</td>
<td>0.97281 0.22290</td>
<td>0.99404 0.10898</td>
<td>0.63318 0.73724</td>
</tr>
</tbody>
</table>
Example 50.1: Analyzing Iris Data with PROC HPCANDISC

Output 50.1.6 displays canonical coefficients. The raw canonical coefficients for the first canonical variable, Can1, show that the class levels differ most widely on the linear combination of the centered variables:

\[-0.0829378 \times \text{SepalLength} - 0.153447 \times \text{SepalWidth} + 0.220121 \times \text{PetalLength} + 0.281046 \times \text{PetalWidth}.

Output 50.1.6 Iris Data: Canonical Coefficients

Fisher (1936) Iris Data

The HPCANDISC Procedure

<table>
<thead>
<tr>
<th>Variable</th>
<th>Label</th>
<th>Can1</th>
<th>Can2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SepalLength</td>
<td>Sepal Length (mm)</td>
<td>-0.68678</td>
<td>0.01996</td>
</tr>
<tr>
<td>SepalWidth</td>
<td>Sepal Width (mm)</td>
<td>-0.66883</td>
<td>0.94344</td>
</tr>
<tr>
<td>PetalLength</td>
<td>Petal Length (mm)</td>
<td>3.88580</td>
<td>-1.64512</td>
</tr>
<tr>
<td>PetalWidth</td>
<td>Petal Width (mm)</td>
<td>2.14224</td>
<td>2.16414</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Label</th>
<th>Can1</th>
<th>Can2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SepalLength</td>
<td>Sepal Length (mm)</td>
<td>-0.42695</td>
<td>0.01241</td>
</tr>
<tr>
<td>SepalWidth</td>
<td>Sepal Width (mm)</td>
<td>-0.52124</td>
<td>0.73526</td>
</tr>
<tr>
<td>PetalLength</td>
<td>Petal Length (mm)</td>
<td>0.94726</td>
<td>-0.40104</td>
</tr>
<tr>
<td>PetalWidth</td>
<td>Petal Width (mm)</td>
<td>0.57516</td>
<td>0.58104</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Label</th>
<th>Can1</th>
<th>Can2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SepalLength</td>
<td>Sepal Length (mm)</td>
<td>-0.08294</td>
<td>0.00241</td>
</tr>
<tr>
<td>SepalWidth</td>
<td>Sepal Width (mm)</td>
<td>-0.15345</td>
<td>0.21645</td>
</tr>
<tr>
<td>PetalLength</td>
<td>Petal Length (mm)</td>
<td>0.22012</td>
<td>-0.09319</td>
</tr>
<tr>
<td>PetalWidth</td>
<td>Petal Width (mm)</td>
<td>0.28105</td>
<td>0.28392</td>
</tr>
</tbody>
</table>

Output 50.1.7 displays class means on canonical variables.

Output 50.1.7 Iris Data: Canonical Means

<table>
<thead>
<tr>
<th>Species</th>
<th>Can1</th>
<th>Can2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setosa</td>
<td>-7.60760</td>
<td>0.21513</td>
</tr>
<tr>
<td>Versicolor</td>
<td>1.82505</td>
<td>-0.72790</td>
</tr>
<tr>
<td>Virginica</td>
<td>5.78255</td>
<td>0.51277</td>
</tr>
</tbody>
</table>
The TEMPLATE and SGRENDER procedures are used to create a plot of the first two canonical variables. The following statements produce Output 50.1.8:

```sas
proc template;
  define statgraph scatter;
  begingraph;
    entrytitle 'Fisher (1936) Iris Data';
    layout overlayequated / equatetype=fit
      xaxisopts=(label='Canonical Variable 1')
      yaxisopts=(label='Canonical Variable 2');
    scatterplot x=Can1 y=Can2 / group=species name='iris';
    layout gridded / autoalign=(topleft);
      discretelegend 'iris' / border=false opaque=false;
    endlayout;
  endgraph;
end;
run;

proc sgrender data=outcan template=scatter;
run;
```

Output 50.1.8 Iris Data: Plot of First Two Canonical Variables

The plot of canonical variables in Output 50.1.8 shows that of the two canonical variables, Can1 has more discriminatory power.
Example 50.2: Performing Canonical Discriminant Analysis in Single-Machine and Distributed Modes

PROC HPCANDISC shows its real power when the computation is conducted using multiple threads or in a distributed environment.

This example shows how you can run PROC HPCANDISC in single-machine and distributed modes. For more information about the execution modes of SAS high-performance analytics procedures, see the section “Processing Modes” (Chapter 3, SAS/STAT User’s Guide: High-Performance Procedures). The focus of this example is to show how you can switch the modes of execution in PROC HPCANDISC. The following DATA step generates the data:

```plaintext
data ex2Data;
  drop i j n n1 n2 n3 n4;
  n = 5000000;
  n1 = n*0.1;
  n2 = n*0.25;
  n3 = n*0.45;
  n4 = n*0.7;
  array x{100};
  do i=1 to n;
    do j=1 to dim(x);
      x{j} = ranuni(1);
    end;
    if i <= n1 then z='small';
    else if i <= n2 then z='medium';
    else if i <= n3 then z='big';
    else if i <= n4 then z='verybig';
    else z='huge';
    output;
  end;
run;
```

The following statements use PROC HPCANDISC to perform a canonical discriminant analysis and to output various statistics to the stats data set (OUTSTAT= stats):

```plaintext
proc hpcandisc data=ex2Data outstat=stats;
  var x;;
  class z;
  performance details;
run;
```
Output 50.2.1 shows the “Performance Information” table. This table shows that the HPCANDISC procedure
executes in single-machine mode on four threads, because the client machine has four CPUs. You can force a
certain number of threads on any machine to be involved in the computations by specifying the NTHREADS=
option in the PERFORMANCE statement.

Output 50.2.1 Performance Information in Single-Machine Mode

The HPCANDISC Procedure

<table>
<thead>
<tr>
<th>Performance Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execution Mode</td>
</tr>
<tr>
<td>Number of Threads</td>
</tr>
</tbody>
</table>

Output 50.2.2 shows timing information for the PROC HPCANDISC run. This table is produced when you
specify the DETAILS option in the PERFORMANCE statement. You can see that, in this case, the majority
of time is spent reading, levelizing, and processing the data.

Output 50.2.2 Timing in Single-Machine Mode

<table>
<thead>
<tr>
<th>Procedure Task Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
</tr>
<tr>
<td>Reading, Levelizing, and Processing Data</td>
</tr>
<tr>
<td>Computing SSCP and Covariance Matrices</td>
</tr>
<tr>
<td>Performing Canonical Analysis</td>
</tr>
<tr>
<td>Producing Output Statistics Data Set</td>
</tr>
</tbody>
</table>

To switch to running PROC HPCANDISC in distributed mode, specify valid values for the NODES=,
INSTALL=, and HOST= options in the PERFORMANCE statement. An alternative to specifying the
INSTALL= and HOST= options in the PERFORMANCE statement is to use the OPTIONS SET commands to
set appropriate values for the GRIDHOST and GRIDINSTALLLOC environment variables. For information
about setting these options or environment variables, see the section “Processing Modes” (Chapter 3,

The following statements provide an example. To run these statements successfully, you need to set the
macro variables GRIDHOST and GRIDINSTALLLOC to resolve to appropriate values, or you can replace the
references to macro variables with appropriate values.

```sas
proc hpcandisc data=ex2Data outstat=stats;
  var x:;
  class z;
  performance details nodes = 4
      host="&GRIDHOST" install="&GRIDINSTALLLOC";
  run;
```

The execution mode in the “Performance Information” table shown in Output 50.2.3 indicates that the
calculations were performed in a distributed environment that uses four nodes, each of which uses 32 threads.
Another indication of distributed execution is the following message issued by all high-performance analytics procedures in the SAS log:

NOTE: The HPCANDISC procedure is executing in the distributed computing environment with 4 worker nodes.

Output 50.2.4 shows timing information for this distributed run of the HPCANDISC procedure. In contrast to the single-machine mode (where reading, levelizing, and processing the data dominated the time spent), the majority of time in the distributed mode run is spent distributing the data.

Output 50.2.4 Timing in Distributed Mode

<table>
<thead>
<tr>
<th>Task</th>
<th>Procedure Task Timing</th>
<th>Seconds</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obtaining Settings</td>
<td></td>
<td>0.00</td>
<td>0.00%</td>
</tr>
<tr>
<td>Distributing Data</td>
<td></td>
<td>61.53</td>
<td>94.60%</td>
</tr>
<tr>
<td>Reading, Levelizing, and Processing Data</td>
<td></td>
<td>3.12</td>
<td>4.79%</td>
</tr>
<tr>
<td>Computing SSCP and Covariance Matrices</td>
<td></td>
<td>0.00</td>
<td>0.00%</td>
</tr>
<tr>
<td>Performing Canonical Analysis</td>
<td></td>
<td>0.00</td>
<td>0.01%</td>
</tr>
<tr>
<td>Producing Output Statistics Data Set</td>
<td></td>
<td>0.15</td>
<td>0.23%</td>
</tr>
<tr>
<td>Waiting on Client</td>
<td></td>
<td>0.24</td>
<td>0.37%</td>
</tr>
</tbody>
</table>

References

Subject Index

analysis of variance
 multivariate (HPCANDISC), 3974

canonical coefficients, 3970
canonical component, 3970
canonical discriminant analysis, 3969
canonical variables, 3970
canonical weights, 3970
discriminant analysis
canonical, 3969
discriminant functions, 3970
displayed output
 HPCANDISC procedure, 3987

first canonical variable, 3970

HPCANDISC procedure, 3969
 computational method, 3982
 displayed output, 3987
 examples, 3990
 fish measurement data, example, 3972
 general formulas, 3982
 Mahalanobis distance, 3991
 MANOVA, 3974
 missing values, 3982
 multithreading, 3981, 3983
 multivariate analysis of variance, 3974
 ODS table names, 3989
 OUT= data set, 3984
 output data sets, 3979, 3984
 OUTSTAT= data set, 3985

Mahalanobis distance, 3978
 HPCANDISC procedure, 3991

MANOVA
 HPCANDISC procedure, 3974
 missing values
 HPCANDISC procedure, 3982
 multithreading
 HPCANDISC procedure, 3981
 multivariate analysis of variance
 HPCANDISC procedure, 3974

ODS table names
 HPCANDISC procedure, 3989
 OUT= data set
 HPCANDISC procedure, 3984
 OUTSTAT= data set
 HPCANDISC procedure, 3985
Syntax Index

ALL option
 PROC HPCANDISC statement, 3978
ANOVA option
 PROC HPCANDISC statement, 3978
BCORR option
 PROC HPCANDISC statement, 3978
BCOV option
 PROC HPCANDISC statement, 3978
BSSCP option
 PROC HPCANDISC statement, 3978
BY statement
 HPCANDISC procedure, 3980
CLASS statement
 HPCANDISC procedure, 3981
DATA= option
 PROC HPCANDISC statement, 3978
DISTANCE option
 PROC HPCANDISC statement, 3978
FREQ statement
 HPCANDISC procedure, 3981
HPCANDISC procedure
 PERFORMANCE statement, 3981
 PROC HPCANDISC statement, 3977
 syntax, 3976
HPCANDISC procedure, BY statement, 3980
HPCANDISC procedure, CLASS statement, 3981
HPCANDISC procedure, FREQ statement, 3981
HPCANDISC procedure, ID statement, 3981
HPCANDISC procedure, PERFORMANCE statement, 3981
HPCANDISC procedure, PROC HPCANDISC
 statement, 3977
 ALL option, 3978
 ANOVA option, 3978
 BCORR option, 3978
 BCOV option, 3978
 BSSCP option, 3978
 DATA= option, 3978
 DISTANCE option, 3978
 MAHALANOBIS option, 3978
 NCAN= option, 3978
 NOPRINT option, 3978
 OUT= option, 3979
 OUTSTAT= option, 3979
 PCORR option, 3979
 PCOV option, 3979
 PREFIX= option, 3979
 PSSCP option, 3979
 SHORT option, 3979
 SIMPLE option, 3979
 SINGULAR= option, 3979
 STDMEAN option, 3980
 TCORR option, 3980
 TCOV option, 3980
 TSSCP option, 3980
 WCORR option, 3980
 WCOV option, 3980
 WSSCP option, 3980
HPCANDISC procedure, VAR statement, 3982
HPCANDISC procedure, WEIGHT statement, 3982
ID statement
 HPCANDISC procedure, 3981
MAHALANOBIS option
 PROC HPCANDISC statement, 3978
NCAN= option
 PROC HPCANDISC statement, 3978
NOPRINT option
 PROC HPCANDISC statement, 3978
OUT= option
 PROC HPCANDISC statement, 3979
OUTSTAT= option
 PROC HPCANDISC statement, 3979
PCORR option
 PROC HPCANDISC statement, 3979
PCOV option
 PROC HPCANDISC statement, 3979
PERFORMANCE statement
 HPCANDISC procedure, 3981
PREFIX= option
 PROC HPCANDISC statement, 3979
PROC HPCANDISC statement, see HPCANDISC procedure
 HPCANDISC procedure, 3977
PSSCP option
 PROC HPCANDISC statement, 3979
SHORT option
 PROC HPCANDISC statement, 3979
SIMPLE option
 PROC HPCANDISC statement, 3979
SINGULAR= option
 PROC HPCANDISC statement, 3979
STDMEAN option
 PROC HPCANDISC statement, 3980
TCORR option
 PROC HPCANDISC statement, 3980
TCOV option
 PROC HPCANDISC statement, 3980
TSSCP option
 PROC HPCANDISC statement, 3980
VAR statement
 HPCANDISC procedure, 3982
WCORR option
 PROC HPCANDISC statement, 3980
WCOV option
 PROC HPCANDISC statement, 3980
WEIGHT statement
 HPCANDISC procedure, 3982
WSSCP option
 PROC HPCANDISC statement, 3980