SAS/STAT® 13.2 User’s Guide
The SURVEYSELECT Procedure
Gain Greater Insight into Your SAS® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/bookstore for additional books and resources.
Chapter 102
The SURVEYSELECT Procedure

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview: SURVEYSELECT Procedure</td>
<td>8402</td>
</tr>
<tr>
<td>Getting Started: SURVEYSELECT Procedure</td>
<td>8403</td>
</tr>
<tr>
<td>Simple Random Sampling</td>
<td>8404</td>
</tr>
<tr>
<td>Stratified Sampling</td>
<td>8406</td>
</tr>
<tr>
<td>Stratified Sampling with Control Sorting</td>
<td>8410</td>
</tr>
<tr>
<td>Syntax: SURVEYSELECT Procedure</td>
<td>8411</td>
</tr>
<tr>
<td>PROC SURVEYSELECT Statement</td>
<td>8411</td>
</tr>
<tr>
<td>CONTROL Statement</td>
<td>8430</td>
</tr>
<tr>
<td>FREQ Statement</td>
<td>8431</td>
</tr>
<tr>
<td>ID Statement</td>
<td>8431</td>
</tr>
<tr>
<td>SAMPLINGUNIT</td>
<td>CLUSTER Statement</td>
</tr>
<tr>
<td>SIZE Statement</td>
<td>8433</td>
</tr>
<tr>
<td>STRATA Statement</td>
<td>8433</td>
</tr>
<tr>
<td>Details: SURVEYSELECT Procedure</td>
<td>8438</td>
</tr>
<tr>
<td>Missing Values</td>
<td>8438</td>
</tr>
<tr>
<td>Sorting by CONTROL Variables</td>
<td>8439</td>
</tr>
<tr>
<td>Random Number Generation</td>
<td>8440</td>
</tr>
<tr>
<td>Sample Selection Methods</td>
<td>8440</td>
</tr>
<tr>
<td>Simple Random Sampling</td>
<td>8441</td>
</tr>
<tr>
<td>Unrestricted Random Sampling</td>
<td>8442</td>
</tr>
<tr>
<td>Systematic Random Sampling</td>
<td>8442</td>
</tr>
<tr>
<td>Sequential Random Sampling</td>
<td>8443</td>
</tr>
<tr>
<td>Bernoulli Sampling</td>
<td>8444</td>
</tr>
<tr>
<td>Poisson Sampling</td>
<td>8444</td>
</tr>
<tr>
<td>PPS Sampling without Replacement</td>
<td>8445</td>
</tr>
<tr>
<td>PPS Sampling with Replacement</td>
<td>8446</td>
</tr>
<tr>
<td>PPS Systematic Sampling</td>
<td>8447</td>
</tr>
<tr>
<td>PPS Sequential Sampling</td>
<td>8447</td>
</tr>
<tr>
<td>Brewer’s PPS Method</td>
<td>8449</td>
</tr>
<tr>
<td>Murthy’s PPS Method</td>
<td>8449</td>
</tr>
<tr>
<td>Sampford’s PPS Method</td>
<td>8450</td>
</tr>
<tr>
<td>Sample Size Allocation</td>
<td>8450</td>
</tr>
<tr>
<td>Proportional Allocation</td>
<td>8451</td>
</tr>
<tr>
<td>Optimal Allocation</td>
<td>8451</td>
</tr>
<tr>
<td>Neyman Allocation</td>
<td>8452</td>
</tr>
<tr>
<td>Specifying the Margin of Error</td>
<td>8452</td>
</tr>
</tbody>
</table>
Overview: SURVEYSELECT Procedure

The SURVEYSELECT procedure provides a variety of methods for selecting probability-based random samples. The procedure can select a simple random sample or can sample according to a complex multistage sample design that includes stratification, clustering, and unequal probabilities of selection. With probability sampling, each unit in the survey population has a known, positive probability of selection. This property of probability sampling avoids selection bias and enables you to use statistical theory to make valid inferences from the sample to the survey population.

To select a sample with PROC SURVEYSELECT, you input a SAS data set that contains the sampling frame, which is the list of units from which the sample is to be selected. The sampling units can be individual observations or groups of observations (clusters). You also specify the selection method, the desired sample size or sampling rate, and other selection parameters. PROC SURVEYSELECT selects the sample and produces an output data set that contains the selected units, their selection probabilities, and their sampling weights. When you select a sample in multiple stages, you invoke the procedure separately for each stage of selection, inputting the frame and selection parameters for each current stage.

PROC SURVEYSELECT provides methods for both equal probability sampling and probability proportional to size (PPS) sampling. In equal probability sampling, each unit in the sampling frame, or in a stratum, has the same probability of being selected for the sample. In PPS sampling, a unit’s selection probability is proportional to its size measure. For information about probability sampling methods, see Lohr (2010), Kish (1965), Kish (1987), Kalton (1983), and Cochran (1977).

PROC SURVEYSELECT provides the following equal probability sampling methods:

- simple random sampling (without replacement)
- unrestricted random sampling (with replacement)
- systematic random sampling
- sequential random sampling
- Bernoulli sampling
This procedure also provides Poisson sampling and the following probability proportional to size (PPS) sampling methods:

- PPS sampling without replacement
- PPS sampling with replacement
- PPS systematic sampling
- PPS algorithms for selecting two units per stratum
- sequential PPS sampling with minimum replacement

The procedure uses fast, efficient algorithms for these sample selection methods. Thus, it performs well even for large input data sets or sampling frames.

PROC SURVEYSELECT can perform stratified sampling by selecting samples independently within strata, which are nonoverlapping subgroups of the survey population. Stratification controls the distribution of the sample size in the strata. It is widely used in practice toward meeting a variety of survey objectives. For example, with stratification you can ensure adequate sample sizes for subgroups of interest, including small subgroups, or you can use stratification toward improving the precision of the overall estimates. When you use a systematic or sequential selection method, PROC SURVEYSELECT can also sort by control variables within strata for the additional control of implicit stratification.

For stratified sampling, PROC SURVEYSELECT provides survey design methods to allocate the total sample size among the strata. Available allocation methods include proportional, Neyman, and optimal allocation. Optimal allocation maximizes the estimation precision within the available resources, taking into account stratum sizes, costs, and variances.

PROC SURVEYSELECT provides replicated sampling, where the total sample is composed of a set of replicates, and each replicate is selected in the same way. You can use replicated sampling to study variable nonsampling errors, such as variability in the results obtained by different interviewers. You can also use replication to estimate standard errors for combined sample estimates and to perform a variety of other resampling and simulation tasks.

Getting Started: SURVEYSELECT Procedure

In this example, an Internet service provider conducts a customer satisfaction survey. The survey population consists of the company’s current subscribers. The company plans to select a sample of customers from this population, interview the selected customers, and then make inferences about the entire survey population from the sample data.

The SAS data set Customers contains the sampling frame, which is the list of units in the survey population. The sample of customers will be selected from this sampling frame. The data set Customers is constructed from the company’s customer database. It contains one observation for each customer, with a total of 13,471 observations.
The following PROC PRINT statements display the first 10 observations of the data set Customers and produce Figure 102.1:

```sas
title1 'Customer Satisfaction Survey';
title2 'First 10 Observations';
proc print data=Customers(obs=10);
run;
```

Figure 102.1 Customers Data Set (First 10 Observations)

<table>
<thead>
<tr>
<th>Obs</th>
<th>CustomerID</th>
<th>State</th>
<th>Type</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>416-87-4322</td>
<td>AL</td>
<td>New</td>
<td>839</td>
</tr>
<tr>
<td>2</td>
<td>288-13-9763</td>
<td>GA</td>
<td>Old</td>
<td>224</td>
</tr>
<tr>
<td>3</td>
<td>339-00-8654</td>
<td>GA</td>
<td>Old</td>
<td>2451</td>
</tr>
<tr>
<td>4</td>
<td>118-98-0542</td>
<td>GA</td>
<td>New</td>
<td>349</td>
</tr>
<tr>
<td>5</td>
<td>421-67-0342</td>
<td>FL</td>
<td>New</td>
<td>562</td>
</tr>
<tr>
<td>6</td>
<td>623-18-9201</td>
<td>SC</td>
<td>New</td>
<td>68</td>
</tr>
<tr>
<td>7</td>
<td>324-55-0324</td>
<td>FL</td>
<td>Old</td>
<td>137</td>
</tr>
<tr>
<td>8</td>
<td>832-90-2397</td>
<td>AL</td>
<td>Old</td>
<td>1563</td>
</tr>
<tr>
<td>9</td>
<td>586-45-0178</td>
<td>GA</td>
<td>New</td>
<td>615</td>
</tr>
<tr>
<td>10</td>
<td>801-24-5317</td>
<td>SC</td>
<td>New</td>
<td>728</td>
</tr>
</tbody>
</table>

In the SAS data set Customers, the variable CustomerID uniquely identifies each customer. The variable State contains the state of the customer’s address. The company has customers in four states: Georgia (GA), Alabama (AL), Florida (FL), and South Carolina (SC). The variable Type equals ‘Old’ if the customer has subscribed to the service for more than one year; otherwise, the variable Type equals ‘New’. The variable Usage contains the customer’s average monthly service usage, in minutes.

The following sections illustrate the use of PROC SURVEYSELECT for probability sampling with three different designs for the customer satisfaction survey. All three designs are one-stage, with customers as the sampling units. The first design is simple random sampling without stratification. In the second design, customers are stratified by state and type, and the sample is selected by simple random sampling within strata. In the third design, customers are sorted within strata by usage, and the sample is selected by systematic random sampling within strata.

Simple Random Sampling

The following PROC SURVEYSELECT statements select a probability sample of customers from the Customers data set by using simple random sampling:

```sas
title1 'Customer Satisfaction Survey';
title2 'Simple Random Sampling';
proc surveyselect data=Customers method=srs n=100
   out=SampleSRS;
run;
```
The PROC SURVEYSELECT statement invokes the procedure. The DATA= option names the SAS data set Customers as the input data set from which to select the sample. The METHOD=SRS option specifies simple random sampling as the sample selection method. In simple random sampling, each unit has an equal probability of selection, and sampling is without replacement. Without-replacement sampling means that a unit cannot be selected more than once. The N= option specifies a sample size of 100 customers. The OUT= option stores the sample in the SAS data set named SampleSRS.

Figure 102.2 displays the output from PROC SURVEYSELECT, which summarizes the sample selection. A sample of 100 customers is selected from the data set Customers by simple random sampling. With simple random sampling and no stratification in the sample design, the selection probability is the same for all units in the sample. In this sample, the selection probability for each customer is 0.007423, which is the sample size (100) divided by the population size (13,471). The sampling weight is 134.71 for each customer in the sample, where the weight is the inverse of the selection probability. If you specify the STATS option, PROC SURVEYSELECT includes the selection probabilities and sampling weights in the output data set. (This information is always included in the output data set for more complex designs.)

The random number seed is 39647. PROC SURVEYSELECT uses this number as the initial seed for random number generation. Because the SEED= option is not specified in the PROC SURVEYSELECT statement, the seed value is obtained by using the time of day from the computer’s clock. You can specify SEED=39647 to reproduce this sample.

Figure 102.2 Sample Selection Summary

Customer Satisfaction Survey

Simple Random Sampling

The SURVEYSELECT Procedure

<table>
<thead>
<tr>
<th>Selection Method</th>
<th>Simple Random Sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Data Set</td>
<td>Customers</td>
</tr>
<tr>
<td>Random Number Seed</td>
<td>39647</td>
</tr>
<tr>
<td>Sample Size</td>
<td>100</td>
</tr>
<tr>
<td>Selection Probability</td>
<td>0.007423</td>
</tr>
<tr>
<td>Sampling Weight</td>
<td>134.71</td>
</tr>
<tr>
<td>Output Data Set</td>
<td>SampleSRS</td>
</tr>
</tbody>
</table>

The sample of 100 customers is stored in the SAS data set SampleSRS. PROC SURVEYSELECT does not display this output data set. The following PROC PRINT statements display the first 20 observations of SampleSRS:

```
title1 'Customer Satisfaction Survey';
title2 'Sample of 100 Customers, Selected by SRS';
title3 '(First 20 Observations)';
proc print data=SampleSRS(obs=20);
run;
```
Figure 102.3 displays the first 20 observations of the output data set SampleSRS, which contains the sample of customers. This data set includes all the variables from the DATA= input data set Customers. If you do not want to include all variables, you can use the ID statement to specify which variables to copy from the input data set to the output (sample) data set.

Figure 102.3 Customer Sample (First 20 Observations)

<table>
<thead>
<tr>
<th>Obs</th>
<th>CustomerID</th>
<th>State</th>
<th>Type</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>017-27-4096</td>
<td>GA</td>
<td>New</td>
<td>168</td>
</tr>
<tr>
<td>2</td>
<td>026-37-3895</td>
<td>AL</td>
<td>New</td>
<td>59</td>
</tr>
<tr>
<td>3</td>
<td>038-54-9276</td>
<td>GA</td>
<td>New</td>
<td>785</td>
</tr>
<tr>
<td>4</td>
<td>046-40-3131</td>
<td>FL</td>
<td>New</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>070-37-6924</td>
<td>GA</td>
<td>New</td>
<td>524</td>
</tr>
<tr>
<td>6</td>
<td>100-58-3342</td>
<td>FL</td>
<td>New</td>
<td>302</td>
</tr>
<tr>
<td>7</td>
<td>107-61-9029</td>
<td>AL</td>
<td>New</td>
<td>235</td>
</tr>
<tr>
<td>8</td>
<td>110-95-0432</td>
<td>FL</td>
<td>New</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>112-81-9251</td>
<td>SC</td>
<td>New</td>
<td>347</td>
</tr>
<tr>
<td>10</td>
<td>137-33-0478</td>
<td>GA</td>
<td>New</td>
<td>551</td>
</tr>
<tr>
<td>11</td>
<td>143-83-4677</td>
<td>AL</td>
<td>New</td>
<td>203</td>
</tr>
<tr>
<td>12</td>
<td>147-19-9164</td>
<td>GA</td>
<td>New</td>
<td>172</td>
</tr>
<tr>
<td>13</td>
<td>159-51-0606</td>
<td>FL</td>
<td>New</td>
<td>102</td>
</tr>
<tr>
<td>14</td>
<td>164-14-7799</td>
<td>GA</td>
<td>Old</td>
<td>388</td>
</tr>
<tr>
<td>15</td>
<td>165-05-7323</td>
<td>SC</td>
<td>New</td>
<td>606</td>
</tr>
<tr>
<td>16</td>
<td>174-69-3566</td>
<td>AL</td>
<td>Old</td>
<td>111</td>
</tr>
<tr>
<td>17</td>
<td>177-69-6934</td>
<td>FL</td>
<td>New</td>
<td>202</td>
</tr>
<tr>
<td>18</td>
<td>181-58-3508</td>
<td>AL</td>
<td>Old</td>
<td>261</td>
</tr>
<tr>
<td>19</td>
<td>207-41-8446</td>
<td>AL</td>
<td>Old</td>
<td>183</td>
</tr>
<tr>
<td>20</td>
<td>207-64-7308</td>
<td>GA</td>
<td>New</td>
<td>193</td>
</tr>
</tbody>
</table>

Stratified Sampling

In this section, stratification is added to the sample design for the customer satisfaction survey. The sampling frame, which is the list of all customers, is stratified by State and Type. This divides the sampling frame into nonoverlapping subgroups formed from the values of the State and Type variables. Samples are then selected independently within the strata.

PROC SURVEYSELECT requires that the input data set be sorted by the STRATA variables. The following PROC SORT statements sort the Customers data set by the stratification variables State and Type:

```plaintext
cproc sort data=Customers;
by State Type;
run;
```
The following PROC FREQ statements display the crosstabulation of the Customers data set by State and Type:

```sas
title1 'Customer Satisfaction Survey';
title2 'Strata of Customers';
proc freq data=Customers;
   tables State*Type;
run;
```

Figure 102.4 presents the table of State by Type for the 13,471 customers. There are four states and two levels of Type, forming a total of eight strata.

![Figure 102.4 Stratification of Customers by State and Type](image)

The following PROC SURVEYSELECT statements select a probability sample of customers from the Customers data set according to the stratified sample design:

```sas
title1 'Customer Satisfaction Survey';
title2 'Stratified Sampling';
proc surveyselect data=Customers method=srs n=15 seed=1953 out=SampleStrata;
   strata State Type;
run;
```

The STRATA statement names the stratification variables State and Type. In the PROC SURVEYSELECT statement, the METHOD=SRS option specifies simple random sampling. The N= option specifies a sample size of 15 customers in each stratum. If you want to specify different sample sizes for different strata, you can use the N=SAS-data-set option to name a secondary data set that contains the stratum sample sizes. The SEED= option specifies 1953 as the initial seed for random number generation.
Figure 102.5 displays the output from PROC SURVEYSELECT, which summarizes the sample selection. A total of 120 customers are selected.

Figure 102.5 Sample Selection Summary

Customer Satisfaction Survey
Stratified Sampling

<table>
<thead>
<tr>
<th>Selection Method</th>
<th>Simple Random Sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strata Variables</td>
<td>State, Type</td>
</tr>
<tr>
<td>Input Data Set</td>
<td>CUSTOMERS</td>
</tr>
<tr>
<td>Random Number Seed</td>
<td>1953</td>
</tr>
<tr>
<td>Stratum Sample Size</td>
<td>15</td>
</tr>
<tr>
<td>Number of Strata</td>
<td>8</td>
</tr>
<tr>
<td>Total Sample Size</td>
<td>120</td>
</tr>
<tr>
<td>Output Data Set</td>
<td>SAMPLESTRATA</td>
</tr>
</tbody>
</table>

The following PROC PRINT statements display the first 30 observations of the output data set **SampleStrata**:

```latex
title1 'Customer Satisfaction Survey';
title2 'Sample Selected by Stratified Design';
title3 '(First 30 Observations)';
proc print data=SampleStrata(obs=30);
run;
```

Figure 102.6 displays the first 30 observations of the output data set **SampleStrata**, which contains the sample of 120 customers, 15 customers from each of the eight strata. The variable **SelectionProb** contains the selection probability for each customer in the sample. Because customers are selected with equal probability within strata in this design, the selection probability equals the stratum sample size (15) divided by the stratum population size. The selection probabilities differ from stratum to stratum because the stratum population sizes differ. The selection probability for each customer in the first stratum (**State='AL'** and **Type='New'**) is 0.012116, and the selection probability for customers in the second stratum is 0.021246. The variable **SamplingWeight** contains the sampling weights, which are computed as inverse selection probabilities.
Figure 102.6 Customer Sample (First 30 Observations)

Customer Satisfaction Survey
Sample Selected by Stratified Design
(First 30 Observations)

<table>
<thead>
<tr>
<th>Obs</th>
<th>State</th>
<th>Type</th>
<th>CustomerID</th>
<th>Usage</th>
<th>SelectionProb</th>
<th>SamplingWeight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AL</td>
<td>New</td>
<td>015-57-9903</td>
<td>26</td>
<td>0.012116</td>
<td>82.5333</td>
</tr>
<tr>
<td>2</td>
<td>AL</td>
<td>New</td>
<td>052-18-5029</td>
<td>576</td>
<td>0.012116</td>
<td>82.5333</td>
</tr>
<tr>
<td>3</td>
<td>AL</td>
<td>New</td>
<td>064-72-0145</td>
<td>88</td>
<td>0.012116</td>
<td>82.5333</td>
</tr>
<tr>
<td>4</td>
<td>AL</td>
<td>New</td>
<td>291-22-2497</td>
<td>1221</td>
<td>0.012116</td>
<td>82.5333</td>
</tr>
<tr>
<td>5</td>
<td>AL</td>
<td>New</td>
<td>305-62-6833</td>
<td>187</td>
<td>0.012116</td>
<td>82.5333</td>
</tr>
<tr>
<td>6</td>
<td>AL</td>
<td>New</td>
<td>309-63-9722</td>
<td>534</td>
<td>0.012116</td>
<td>82.5333</td>
</tr>
<tr>
<td>7</td>
<td>AL</td>
<td>New</td>
<td>413-76-0209</td>
<td>435</td>
<td>0.012116</td>
<td>82.5333</td>
</tr>
<tr>
<td>8</td>
<td>AL</td>
<td>New</td>
<td>492-18-7867</td>
<td>70</td>
<td>0.012116</td>
<td>82.5333</td>
</tr>
<tr>
<td>9</td>
<td>AL</td>
<td>New</td>
<td>508-16-8324</td>
<td>189</td>
<td>0.012116</td>
<td>82.5333</td>
</tr>
<tr>
<td>10</td>
<td>AL</td>
<td>New</td>
<td>561-82-0366</td>
<td>392</td>
<td>0.012116</td>
<td>82.5333</td>
</tr>
<tr>
<td>11</td>
<td>AL</td>
<td>New</td>
<td>685-24-1718</td>
<td>74</td>
<td>0.012116</td>
<td>82.5333</td>
</tr>
<tr>
<td>12</td>
<td>AL</td>
<td>New</td>
<td>800-20-2155</td>
<td>21</td>
<td>0.012116</td>
<td>82.5333</td>
</tr>
<tr>
<td>13</td>
<td>AL</td>
<td>New</td>
<td>857-94-2672</td>
<td>77</td>
<td>0.012116</td>
<td>82.5333</td>
</tr>
<tr>
<td>14</td>
<td>AL</td>
<td>New</td>
<td>918-29-9618</td>
<td>540</td>
<td>0.012116</td>
<td>82.5333</td>
</tr>
<tr>
<td>15</td>
<td>AL</td>
<td>New</td>
<td>963-93-4916</td>
<td>33</td>
<td>0.012116</td>
<td>82.5333</td>
</tr>
<tr>
<td>16</td>
<td>AL</td>
<td>Old</td>
<td>000-88-0484</td>
<td>401</td>
<td>0.021246</td>
<td>47.0667</td>
</tr>
<tr>
<td>17</td>
<td>AL</td>
<td>Old</td>
<td>005-80-0241</td>
<td>114</td>
<td>0.021246</td>
<td>47.0667</td>
</tr>
<tr>
<td>18</td>
<td>AL</td>
<td>Old</td>
<td>171-99-9085</td>
<td>210</td>
<td>0.021246</td>
<td>47.0667</td>
</tr>
<tr>
<td>19</td>
<td>AL</td>
<td>Old</td>
<td>182-45-1938</td>
<td>160</td>
<td>0.021246</td>
<td>47.0667</td>
</tr>
<tr>
<td>20</td>
<td>AL</td>
<td>Old</td>
<td>208-99-1105</td>
<td>60</td>
<td>0.021246</td>
<td>47.0667</td>
</tr>
<tr>
<td>21</td>
<td>AL</td>
<td>Old</td>
<td>229-48-6213</td>
<td>1169</td>
<td>0.021246</td>
<td>47.0667</td>
</tr>
<tr>
<td>22</td>
<td>AL</td>
<td>Old</td>
<td>265-55-4763</td>
<td>1370</td>
<td>0.021246</td>
<td>47.0667</td>
</tr>
<tr>
<td>23</td>
<td>AL</td>
<td>Old</td>
<td>467-73-7465</td>
<td>14</td>
<td>0.021246</td>
<td>47.0667</td>
</tr>
<tr>
<td>24</td>
<td>AL</td>
<td>Old</td>
<td>509-38-7128</td>
<td>173</td>
<td>0.021246</td>
<td>47.0667</td>
</tr>
<tr>
<td>25</td>
<td>AL</td>
<td>Old</td>
<td>601-71-3629</td>
<td>142</td>
<td>0.021246</td>
<td>47.0667</td>
</tr>
<tr>
<td>26</td>
<td>AL</td>
<td>Old</td>
<td>603-40-7787</td>
<td>302</td>
<td>0.021246</td>
<td>47.0667</td>
</tr>
<tr>
<td>27</td>
<td>AL</td>
<td>Old</td>
<td>702-39-0977</td>
<td>270</td>
<td>0.021246</td>
<td>47.0667</td>
</tr>
<tr>
<td>28</td>
<td>AL</td>
<td>Old</td>
<td>861-79-5340</td>
<td>101</td>
<td>0.021246</td>
<td>47.0667</td>
</tr>
<tr>
<td>29</td>
<td>AL</td>
<td>Old</td>
<td>908-20-0603</td>
<td>340</td>
<td>0.021246</td>
<td>47.0667</td>
</tr>
<tr>
<td>30</td>
<td>AL</td>
<td>Old</td>
<td>937-69-9106</td>
<td>182</td>
<td>0.021246</td>
<td>47.0667</td>
</tr>
</tbody>
</table>
Stratified Sampling with Control Sorting

The next sample design for the customer satisfaction survey uses stratification by State and also control sorting by Type and Usage within State. After stratification and control sorting, customers are selected by systematic random sampling within strata. Selection by systematic sampling, together with control sorting before selection, spreads the sample uniformly over the range of type and usage values within each stratum (state). The following PROC SURVEYSELECT statements select a probability sample of customers from the Customers data set according to this design:

```plaintext
title1 'Customer Satisfaction Survey';
title2 'Stratified Sampling with Control Sorting';
proc surveyselect data=Customers method=sys rate=.02
   seed=1234 out=SampleControl;
   strata State;
   control Type Usage;
run;
```

The STRATA statement names the stratification variable State. The CONTROL statement names the control variables Type and Usage. In the PROC SURVEYSELECT statement, the METHOD=SYS option requests systematic random sampling. The RATE= option specifies a sampling rate of 2% for each stratum. The SEED= option specifies the initial seed for random number generation.

Figure 102.7 displays the output from PROC SURVEYSELECT, which summarizes the sample selection. A sample of 271 customers is selected by using systematic random sampling within strata determined by State. The sampling frame Customers is sorted by control variables Type and Usage within strata. The type of sorting is serpentine, which is the default when SORT=NEST is not specified. See the section “Sorting by CONTROL Variables” on page 8439 for a description of serpentine sorting. The sorted data set replaces the input data set. (To leave the input data set unsorted and store the sorted input data in another data set, use the OUTSORT= option.) The output data set SampleControl contains the sample of customers.
Syntax: SURVEYSELECT Procedure

The following statements are available in the SURVEYSELECT procedure:

```sas
PROC SURVEYSELECT options;
  CONTROL variables;
  FREQ variable;
  ID variables;
  SAMPLINGUNIT | CLUSTER variables < / options >;
  SIZE variable;
  STRATA variables < / options >;
```

The PROC SURVEYSELECT statement invokes the SURVEYSELECT procedure. Optionally, it identifies input and output data sets. It also specifies the selection method, the sample size, and other sample design parameters. The PROC SURVEYSELECT statement is required.

The SIZE statement identifies the variable that contains the size measures of the sampling units. This statement is required for any probability proportional to size (PPS) selection method unless you specify the PPS option in the SAMPLINGUNIT statement.

The remaining statements are optional. The STRATA statement identifies a variable or set of variables that stratify the input data set. When you specify a STRATA statement, PROC SURVEYSELECT selects samples independently from the strata that are formed by the STRATA variables. The STRATA statement also provides options to allocate the total sample size among the strata.

The SAMPLINGUNIT statement identifies a variable or set of variables that group the input data set observations into sampling units (clusters). Sampling units are nested within strata. When you specify a SAMPLINGUNIT statement, PROC SURVEYSELECT selects clusters instead of individual observations.

The CONTROL statement identifies variables for ordering units within strata. It can be used for systematic and sequential sampling methods. The ID statement identifies variables to copy from the input data set to the output data set of selected units.

The FREQ statement identifies a variable that contains the frequency of occurrence for each observation. The FREQ statement is available only for sample allocation when no sample is selected, which you can request by specifying the ALLOC= and NOSAMPLE options in the STRATA statement.

The following sections describe the PROC SURVEYSELECT statement and then describe the other statements in alphabetical order.

PROC SURVEYSELECT Statement

```sas
PROC SURVEYSELECT options;
```

The PROC SURVEYSELECT statement invokes the SURVEYSELECT procedure. Optionally, it identifies input and output data sets. If you do not name a DATA= input data set, the procedure selects the sample from the most recently created SAS data set. If you do not name an OUT= output data set to contain the sample of selected units, the procedure still creates an output data set and names it according to the DATA$n convention.

The PROC SURVEYSELECT statement also specifies the sample selection method, the sample size, and other sample design parameters.
If you do not specify a selection method, PROC SURVEYSELECT uses simple random sampling (METHOD=SRS) by default unless you specify a SIZE statement or the PPS option in the SAMPLINGUNIT statement. If you do specify a SIZE statement (or the PPS option), PROC SURVEYSELECT uses probability proportional to size selection without replacement (METHOD=PPS) by default. For more information, see the description of the METHOD= option.

You can use the SAMPSIZE=n option to specify the sample size, or you can use the SAMPSIZE=SAS-data-set option to name a secondary input data set that contains stratum sample sizes. You must specify a sample size or sampling rate except when you request one of the following: random assignment (GROUPS=); Poisson sampling (METHOD=POISSON); Brewer’s method or Murthy’s method, either of which selects two units from each stratum (METHOD=PPS_BREWER or METHOD=PPS_MURTHY); or sample allocation for a specified margin (MARGIN=).

You can provide stratum sample sizes, sampling rates, initial seeds, minimum size measures, maximum size measures, and certainty size measures in a secondary input data set. For more information, see the descriptions of the SAMPSIZE=, SAMPRATE=, SEED=, MINSIZE=, MAXSIZE=, CERTSIZE=, and CERTSIZE=P= options. You can name only one secondary input data set in each invocation of PROC SURVEYSELECT. For more information, see the section “Secondary Input Data Set” on page 8454.

Table 102.1 summarizes the options available in the PROC SURVEYSELECT statement. Descriptions of the options follow in alphabetical order.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input and Output Data Sets</td>
<td></td>
</tr>
<tr>
<td>DATA=</td>
<td>Names the input SAS data set</td>
</tr>
<tr>
<td>OUT=</td>
<td>Names the output SAS data set that contains the sample</td>
</tr>
<tr>
<td>OUTSORT=</td>
<td>Names an output SAS data set that stores the sorted input data set</td>
</tr>
<tr>
<td>Selection Method</td>
<td></td>
</tr>
<tr>
<td>METHOD=</td>
<td>Specifies the sample selection method</td>
</tr>
<tr>
<td>Sample Size</td>
<td></td>
</tr>
<tr>
<td>SAMPSIZE=</td>
<td>Specifies the sample size</td>
</tr>
<tr>
<td>SELECTALL</td>
<td>Selects all stratum units when the sample size exceeds the total</td>
</tr>
<tr>
<td>Sampling Rate</td>
<td></td>
</tr>
<tr>
<td>SAMPRATE=</td>
<td>Specifies the sampling rate</td>
</tr>
<tr>
<td>NMIN=</td>
<td>Specifies the minimum stratum sample size</td>
</tr>
<tr>
<td>NMAX=</td>
<td>Specifies the maximum stratum sample size</td>
</tr>
<tr>
<td>Replicated Sampling</td>
<td></td>
</tr>
<tr>
<td>REPS=</td>
<td>Specifies the number of sample replicates</td>
</tr>
<tr>
<td>Size Measures</td>
<td></td>
</tr>
<tr>
<td>MINSIZE=</td>
<td>Specifies the minimum size measure</td>
</tr>
<tr>
<td>MAXSIZE=</td>
<td>Specifies the maximum size measure</td>
</tr>
<tr>
<td>CERTSIZE=</td>
<td>Specifies the certainty size measure</td>
</tr>
<tr>
<td>CERTSIZE=P=</td>
<td>Specifies the certainty proportion</td>
</tr>
<tr>
<td>Control Sorting</td>
<td></td>
</tr>
<tr>
<td>SORT=</td>
<td>Specifies the type of sorting</td>
</tr>
</tbody>
</table>
Table 102.1 continued

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Number Generation</td>
<td></td>
</tr>
<tr>
<td>SEED=</td>
<td>Specifies the initial seed</td>
</tr>
<tr>
<td>RANUNI</td>
<td>Requests the RANUNI random number generator</td>
</tr>
<tr>
<td>Random Assignment</td>
<td></td>
</tr>
<tr>
<td>GROUPS=</td>
<td>Requests random assignment</td>
</tr>
<tr>
<td>Displayed Output</td>
<td></td>
</tr>
<tr>
<td>NOPRINT</td>
<td>Suppresses the display of all output</td>
</tr>
<tr>
<td>OUT= Data Set Contents</td>
<td></td>
</tr>
<tr>
<td>CERTUNITS=</td>
<td>Includes number of certainty units</td>
</tr>
<tr>
<td>JTPROBS</td>
<td>Includes joint probabilities of selection</td>
</tr>
<tr>
<td>OUTALL</td>
<td>Includes all observations from the DATA= input data set</td>
</tr>
<tr>
<td>OUTHITS</td>
<td>Includes a distinct copy of each selected unit</td>
</tr>
<tr>
<td>OUTSEED</td>
<td>Includes the initial seed for each stratum</td>
</tr>
<tr>
<td>OUTSIZE</td>
<td>Includes additional design and sampling frame information</td>
</tr>
<tr>
<td>STATS</td>
<td>Includes selection probabilities and sampling weights</td>
</tr>
</tbody>
</table>

You can specify the following options in the PROC SURVEYSELECT statement:

CERTSIZE < =value | SAS-data-set >

specifies the certainty size measure that PROC SURVEYSELECT uses to identify units that are selected with certainty. You can provide a single certainty value for the entire sample selection, or you can provide stratum-level certainty values by specifying a SAS-data-set. The certainty size values must be positive numbers.

You can use the SIZE statement to provide size measures for the sampling units. PROC SURVEYSELECT selects with certainty all sampling units whose size measures are greater than or equal to the certainty size value. After removing the certainty units, the procedure selects the remainder of the sample by using the method that you specify in the METHOD= option. The OUT= output data set contains a variable named Certain that identifies units that are selected with certainty. The selection probability of each certainty unit is one.

This option is available for the following PPS selection methods: METHOD=PPS, METHOD=PPS_SAMPFORD, METHOD=PPS_SYS, and METHOD=PPS_WR. The CERTSIZE= option is not available when you specify a SAMPLINGUNIT statement.

You can provide certainty size values by specifying one of the following forms:

CERTSIZE

indicates that certainty size values are provided in a secondary input data set that you name in another option (for example, the SAMPSIZE=SAS-data-set option). This data set should include a variable named _CERTSIZE_ that contains the certainty values. For more information, see the section “Secondary Input Data Set” on page 8454. You can name only one secondary input data set in each invocation of PROC SURVEYSELECT.

CERTSIZE=value

specifies a single certainty size value, which must be a positive number. If you request a stratified sample design by specifying the STRATA statement, PROC SURVEYSELECT uses the certainty value to determine certainty selections for all strata.
CERTSIZE=SAS-data-set
names a SAS-data-set that contains stratum-level certainty size values. You should provide the certainty values in the data set variable named _CERTSIZE_. Each observation in this data set should correspond to a stratum group, which is determined by the values of the STRATA variables.

This data set, which is a secondary input data set, must contain all stratification variables that you specify in the STRATA statement. The data set must also contain all stratum groups that appear in the DATA= data set. The order of the stratum groups in the CERTSIZE= data set must match the order of the groups in the DATA= data set. If formats are associated with the STRATA variables, the formats must be consistent in the two data sets. For more information, see the section “Secondary Input Data Set” on page 8454. You can name only one secondary input data set in each invocation of PROC SURVEYSELECT.

CERTSIZE=P < =p | SAS-data-set >
specifies the certainty proportion that PROC SURVEYSELECT uses for iterative certainty selection. You can provide a single certainty proportion \(p \) for the entire sample, or you can provide stratum-level certainty proportions by specifying a SAS-data-set.

The certainty proportions must be positive numbers. You can specify a certainty proportion as a number between 0 and 1. Or you can specify a proportion in percentage form as a number between 1 and 100, which PROC SURVEYSELECT converts to a proportion. The procedure treats the value 1 as 100% instead of 1%.

You can use the SIZE statement to provide size measures for the sampling units. PROC SURVEYSELECT computes the certainty size as the certainty proportion \(p \) of the total size for all units. The procedure selects with certainty the sampling units whose size measures are greater than or equal to the certainty size. After removing these certainty units from consideration, the procedure computes a new certainty size as the certainty proportion of the total size of the remaining units and again identifies certainty units. PROC SURVEYSELECT repeats this process until no more certainty units are selected. After certainty selection is complete, the remainder of the sample is selected by using the method that you specify in the METHOD= option. The OUT= output data set contains a variable named Certain that identifies units that are selected with certainty. The selection probability of each certainty unit is one.

This option is available for METHOD=PPS and METHOD=PPS_SAMPFORD. This option is not available when you specify a SAMPLINGUNIT statement.

You can provide certainty size proportions by specifying one of the following forms:

CERTSIZE=P
indicates that certainty size proportions are provided in a secondary input data set that you name in another option (for example, the SAMPSIZE=SAS-data-set option). You should provide the certainty proportions in the data set variable named _CERTP_. For more information, see the section “Secondary Input Data Set” on page 8454. You can name only one secondary input data set in each invocation of PROC SURVEYSELECT.

CERTSIZE=P=p
specifies a single certainty size proportion \(p \), which must be a positive number. If you request a stratified sample design by specifying the STRATA statement, PROC SURVEYSELECT uses the certainty proportion \(p \) to determine certainty selections for all strata.
CERTSIZE=P=SAS-data-set
names a SAS-data-set that contains stratum-level certainty size proportions. You should provide the certainty proportions in the data set variable named _CERTP_. Each observation in the data set should correspond to a stratum group, which is determined by the values of the STRATA variables.

This data set, which is a secondary input data set, must contain all stratification variables that you specify in the STRATA statement. The data set must also contain all stratum groups that appear in the DATA= input data set. The order of the stratum groups in the CERTSIZE=P= data set must match the order of the groups in the DATA= data set. If formats are associated with the STRATA variables, the formats must be consistent in the two data sets. For more information, see the section “Secondary Input Data Set” on page 8454. You can name only one secondary input data set in each invocation of PROC SURVEYSELECT.

CERTUNITS=NOPRINT | OUTPUT
controls the display and output of information about certainty selection. This option is available when you specify the CERTSIZE= or CERTSIZE=P= option. CERTUNITS=NOPRINT suppresses display of the number of certainty units in the “Sample Selection Summary” table. For more information, see the section “Displayed Output” on page 8460. CERTUNITS=OUTPUT includes the number of certainty units in the output data set. For more information about the contents of the output data set, see the section “Sample Output Data Set” on page 8454.

DATA=SAS-data-set
names the SAS-data-set from which PROC SURVEYSELECT selects the sample. If you omit the DATA= option, the procedure uses the most recently created SAS data set. In sampling terminology, the input data set is the sampling frame (the list of units from which the sample is selected).

By default, the procedure uses input data set observations as sampling units and selects a sample of these units. Alternatively, you can use the SAMPLINGUNIT statement to define sampling units as groups of observations (clusters).

GROUPS=n | (values)
requests random assignment of the observations in the input data set to groups. You can specify the total number of groups as n, which must be a positive integer. Or you can provide a list of group size values, which are positive integers that specify the number of observations in the groups. When you use a STRATA statement, PROC SURVEYSELECT performs the specified random assignment independently in each stratum. Otherwise, the procedure performs the random assignment for the entire data set.

When you specify GROUPS=n, PROC SURVEYSELECT randomly assigns the observations in the data set (or stratum) to n groups. The number of observations in each group is equal, or as nearly equal as possible. For example, if the data set contains 100 observations and you specify GROUPS=3, PROC SURVEYSELECT creates three groups that contain 33, 33, and 34 observations. This is equivalent to specifying GROUPS=(33, 33, 34).

When you specify GROUPS=values, the number of groups is determined by the number of group size values that you list. You can separate the values with blanks or commas, and you must enclose the list of values in parentheses. The sum of the group size values must equal the total number of observations in the data set (or in the stratum, if you specify a STRATA statement).

The OUT= data set includes a variable named GroupID that identifies the group assignment of each observation. When you specify the OUTSIZE option, the output data set includes a variable named
GroupSize that provides the number of units in the group; the output data set also includes the total number of units and the number of groups (in the data set, or in the stratum if you specify a STRATA statement). For more information, see the section “Random Assignment Output Data Set” on page 8459.

The following options are available when you specify the GROUPS= option: the SEED=, RANUNI, and OUTSEED options, which pertain to random number generation; the REPS= option, which provides independent replicates of the random assignment; the NOPRINT option, which suppresses display of the “Random Assignment” table; and the OUTSIZE option.

The GROUPS= option does not select a sample; you cannot specify sample selection options (for example, METHOD= or SAMPSIZE=) when you use the GROUPS= option. The SAMPLINGUNIT statement is not available when you use the GROUPS= option.

JTPROBS includes joint probabilities of selection in the OUT= output data set. This option is available for the following probability proportional to size selection methods: METHOD=PPS, METHOD=PPS_SAMPFORD, and METHOD=PPS_WR. By default, PROC SURVEYSELECT outputs joint selection probabilities for METHOD=PPS_BREWER and METHOD=PPS_MURTHY, which select two units per stratum.

For information about joint selection probabilities for a particular sampling method, see the method description in the section “Sample Selection Methods” on page 8440. For more information about the contents of the output data set, see the section “Sample Output Data Set” on page 8454.

MAXSIZE < =value | SAS-data-set > specifies the maximum size measure. You can provide a single maximum value for the entire sample selection, or you can provide stratum-level maximum values by specifying a SAS-data-set. The maximum size values must be positive numbers.

PROC SURVEYSELECT uses the maximum size values to adjust the size measures, which you can provide by specifying the SIZE statement or by specifying the PPS option in the SAMPLINGUNIT statement. When a size measure exceeds the maximum value, the procedure replaces the size measure with the maximum value.

If you use a SAMPLINGUNIT statement to define sampling units (clusters), PROC SURVEYSELECT adjusts the sampling unit sizes (instead of the observation sizes). If you specify a SIZE statement, the size of a sampling unit is the sum of the size measures of the observations in the unit. If you specify the SAMPLINGUNIT PPS option, the size of a sampling unit is the number of observations in the unit.

When you use a SAMPLINGUNIT statement, the OUT= data set includes a variable named UnitSize that contains the adjusted sampling unit size measures. When you do not use a SAMPLINGUNIT statement, the OUT= data set includes a variable named AdjustedSize that contains the adjusted observation size measures.

You can provide maximum size values by specifying one of the following forms:

MAXSIZE indicates that maximum size values are provided in a secondary input data set that you name in another option (for example, the SAMPSIZE=SAS-data-set option). You should provide the maximum size values in the data set variable named _MAXSIZE_. For more information, see the section “Secondary Input Data Set” on page 8454. You can specify only one secondary input data set in each invocation of PROC SURVEYSELECT.
PROC SURVEYSELECT Statement

MAXSIZE= *value*

specifies a single maximum size *value*, which must be a positive number. If you request a stratified sample design by specifying the **STRATA** statement, **PROC SURVEYSELECT** uses the value to adjust size measures in all strata.

MAXSIZE= *SAS-data-set*

names a *SAS-data-set* that contains stratum-level maximum size values. You should provide the maximum size values in the data set variable named _MAXSIZE_. Each observation in the data set should correspond to a stratum group, which is determined by the values of the **STRATA** variables.

This data set, which is a secondary input data set, must contain all stratification variables that you specify in the **STRATA** statement. The data set must also contain all stratum groups that appear in the **DATA=** data set. The order of the stratum groups in the **MAXSIZE=** data set must match the order of the groups in the **DATA=** data set. If formats are associated with the **STRATA** variables, the formats must be consistent in the two data sets. For more information, see the section “Secondary Input Data Set” on page 8454. You can name only one secondary input data set in each invocation of **PROC SURVEYSELECT**.

METHOD= *name*

M= *name*

specifies the method for sample selection.

If you do not specify the **METHOD=** option, **PROC SURVEYSELECT** uses simple random sampling (**METHOD=SRS**) by default unless you specify a **SIZE** statement or the **PPS** option in the **SAMPLINGUNIT** statement. If you do specify a **SIZE** statement (or the **PPS** option), **PROC SURVEYSELECT** uses probability proportional to size selection without replacement (**METHOD=PPS**) by default.

The following values are available for the **METHOD=** option:

BERNOULLI

requests Bernoulli sampling, which consists of \(N \) independent selection trials, each with constant inclusion probability \(\pi \), where \(N \) is the total number of sampling units in the stratum or data set. The sample size is not fixed but is a random variable. For more information, see the section “Bernoulli Sampling” on page 8444.

When you specify this method, you must provide the sampling rate (inclusion probability \(\pi \)) in the **SAMPRATE=** option. For stratified sampling (which you request with the **STRATA** statement), you can specify the same sampling rate for each stratum in the **SAMPRATE=** option. Or you can specify different sampling rates for different strata in the **SAMPRATE=(values)** or **SAMPRATE=** *SAS-data-set* option.

Because Bernoulli sampling is based on a specified inclusion probability instead of a fixed sample size, **METHOD=BERNOULLI** does not use the **SAMPSIZE=** option. Also, the **ALLOC=** option in the **STRATA** statement (which allocates the total sample size among strata) is not available with **METHOD=BERNOULLI**.
POISSON requests Poisson sampling. A generalization of Bernoulli sampling, Poisson sampling consists of \(N \) independent selection trials with a separate inclusion probability specified for each unit, where \(N \) is the total number of sampling units in the stratum or data set. The sample size is not fixed but is a random variable. For more information, see the section “Poisson Sampling” on page 8444.

You must provide inclusion probabilities for Poisson sampling in the SIZE variable. The probability values should be between 0 and 1. If a value of the SIZE variable is missing, nonpositive, or greater than 1, PROC SURVEYSELECT omits the observation from sample selection.

Because Poisson sampling is based on specified inclusion probabilities instead of a fixed sample size, you cannot specify the SAMPSIZE= option when you specify METHOD=POISSON. You also cannot specify the ALLOC= option in the STRATA statement when you specify METHOD=POISSON.

The SAMPLINGUNIT statement is not available when you specify METHOD=POISSON.

When you specify the SAMPRATE= option for METHOD=POISSON but do not specify a SIZE statement, PROC SURVEYSELECT uses METHOD=BERNOULLI.

PPS requests selection with probability proportional to size and without replacement. For more information, see the section “PPS Sampling without Replacement” on page 8445. When you specify this method, you must name a size measure variable in the SIZE statement or specify the PPS option in the SAMPLINGUNIT statement.

PPS_BREWER

BREWER requests selection according to Brewer’s method. Brewer’s method selects two units from each stratum with probability proportional to size and without replacement. For more information, see the section “Brewer’s PPS Method” on page 8449. When you specify this method, you must name a size measure variable in the SIZE statement or specify the PPS option in the SAMPLINGUNIT statement. You do not need to specify the sample size in the SAMPSIZE= option because Brewer’s method selects two units from each stratum.

PPS_MURTHY

MURTHY requests selection according to Murthy’s method. Murthy’s method selects two units from each stratum with probability proportional to size and without replacement. For more information, see the section “Murthy’s PPS Method” on page 8449. When you specify this method, you must name a size measure variable in the SIZE statement or specify the PPS option in the SAMPLINGUNIT statement. You do not need to specify the sample size in the SAMPSIZE= option because Murthy’s method selects two units from each stratum.

PPS_SAMPFORD

SAMPFORD requests selection according to Sampford’s method. Sampford’s method selects units with probability proportional to size and without replacement. For more information, see the section “Sampford’s PPS Method” on page 8450. When you specify this method, you must name a size measure variable in the SIZE statement or specify the PPS option in the SAMPLINGUNIT statement.
PROC SURVEYSELECT Statement 8419

PPS_SEQ

CHROMY
requests sequential selection with probability proportional to size and with minimum replacement. This method is also known as Chromy’s method. For more information, see the section “PPS Sequential Sampling” on page 8447. When you specify this method, you must name a size measure variable in the SIZE statement or specify the PPS option in the SAMPLINGUNIT statement.

PPS_SYS < (method-options)>
requests systematic selection with probability proportional to size. For more information, see the section “PPS Systematic Sampling” on page 8447. When you specify this method, you must provide size measures by specifying the SIZE statement or the PPS option in the SAMPLINGUNIT statement.

You can specify the following method-options:

DETAILS
 displays the random start and the systematic interval in the “Sample Selection Summary” table when the design does not include strata or replicates. For more information, see the section “Displayed Output” on page 8460.

INTERVAL=value
 specifies the interval value for PPS systematic selection. The interval value must be a positive number. It must not exceed the total of the size measures in the data set (or in each stratum if you specify a STRATA statement). By default, the systematic interval is the ratio of the size measure total to the sample size (which you provide in the SAMPsize= option). For more information, see the section “PPS Systematic Sampling” on page 8447.

 You cannot use the INTERVAL= method-option when you specify a sample size in the SAMPsize= option or when you specify the ALLOC= option, which allocates the total sample size among strata.

START=value
 specifies the starting value for PPS systematic selection. The starting value must be a positive number that is less than the systematic interval. By default, PROC SURVEYSELECT randomly determines a starting point in the systematic interval. For more information, see the section “PPS Systematic Sampling” on page 8447.

 When you use this option to specify a systematic starting point (instead of allowing the procedure to randomly determine the starting point), the following options for random number generation have no effect: SEED=, RANUNI, and OUTSEED. You cannot use the REPS= option when you specify the START= method-option.

 When the starting value that you provide is not randomly determined, the resulting selection is not a probability-based sample.

PPS_WR
requests selection with probability proportional to size and with replacement. For more information, see the section “PPS Sampling with Replacement” on page 8446. When you specify this method, you must name a size measure variable in the SIZE statement or specify the PPS option in the SAMPLINGUNIT statement.
SEQ

CHROMY requests sequential selection according to Chromy’s method. If you specify this method and do not specify a SIZE statement (or the PPS option in the SAMPLINGUNIT statement), PROC SURVEYSELECT uses sequential zoned selection with equal probability and without replacement. For more information, see the section “Sequential Random Sampling” on page 8443.

If you specify METHOD=SEQ and also specify a SIZE statement (or the PPS option in the SAMPLINGUNIT statement), PROC SURVEYSELECT uses METHOD=PPS_SEQ, which is sequential selection with probability proportional to size and with minimum replacement. For more information, see the section “PPS Sequential Sampling” on page 8447.

SRS

requests simple random sampling, which is selection with equal probability and without replacement. For more information, see the section “Simple Random Sampling” on page 8441. METHOD=SRS is the default selection method if you do not specify the METHOD= option and also do not specify a SIZE statement (or the PPS option in the SAMPLINGUNIT statement).

SYS < (method-options)>

requests systematic random sampling. If you specify this method and do not specify a SIZE statement (or the PPS option in the SAMPLINGUNIT statement), PROC SURVEYSELECT uses systematic random sampling with equal probability. For more information, see the section “Systematic Random Sampling” on page 8442.

If you specify this method and also specify a SIZE statement (or the PPS option in the SAMPLINGUNIT statement), PROC SURVEYSELECT uses systematic random sampling with probability proportional to size (METHOD=PPS_SYS). For more information, see the section “PPS Systematic Sampling” on page 8447.

You can specify the following method-options:

DETAILS

displays the random start and the systematic interval in the “Sample Selection Summary” table when the design does not include strata or replicates. For more information, see the section “Displayed Output” on page 8460.

INTERVAL=value

specifies the interval for systematic random sampling. The interval value must be a positive number and must not exceed the number of sampling units in the data set (or the number of units in each stratum, if you specify a STRATA statement).

By default, PROC SURVEYSELECT determines the systematic interval from the sampling rate or sample size that you provide in the SAMPRATE= or SAMPsize= option, respectively. When you specify the sampling rate, PROC SURVEYSELECT computes the systematic interval as the inverse of the sampling rate. When you specify the sample size, the procedure computes the interval as the ratio of the number of sampling units to the sample size. For more information, see the section “Systematic Random Sampling” on page 8442.

You cannot use the INTERVAL= method-option when you specify the SAMPsize= option, the SAMPRate= option, or the ALLOC= option (which allocates the total sample size among strata).
START=value
specifies the starting value for systematic selection. The starting value must be a positive number that is less than the systematic interval. By default, PROC SURVEYSELECT randomly determines a starting point in the systematic interval. For more information, see the section “Systematic Random Sampling” on page 8442.

When you use this option to specify a systematic starting point (instead of allowing the procedure to randomly determine the starting point), the following options for random number generation have no effect: SEED=, RANUNI, and OUTSEED. You cannot use the REPS= option when you specify the START= method-option.

When the starting value that you provide is not randomly determined, the resulting selection is not a probability-based sample.

URS
requests unrestricted random sampling, which is selection with equal probability and with replacement. For more information, see the section “Unrestricted Random Sampling” on page 8442.

MINSIZE < value | SAS-data-set >
specifies the minimum size measure. You can provide a single minimum value for the entire sample selection, or you can provide stratum-level minimum values by specifying a SAS-data-set. The minimum size values must be positive numbers.

PROC SURVEYSELECT uses the minimum size values to adjust the size measures, which you provide by specifying the SIZE statement or by specifying the PPS option in the SAMPLINGUNIT statement. When a size measure is less than the minimum value, the procedure replaces the size measure with the minimum value.

If you use a SAMPLINGUNIT statement to define sampling units (clusters), PROC SURVEYSELECT adjusts the sampling unit sizes (not the observation sizes). If you specify a SIZE statement, the size of a sampling unit is the sum of the size measures of the observations in the unit. If you specify the SAMPLINGUNIT PPS option, the size of a sampling unit is the number of observations in the unit.

When you use a SAMPLINGUNIT statement, the OUT= data set includes a variable named UnitSize that contains the adjusted sampling unit size measures. When you do not use a SAMPLINGUNIT statement, the OUT= data set includes a variable named AdjustedSize that contains the adjusted observation size measures.

You can provide minimum size values by specifying one of the following forms:

MINSIZE
indicates that minimum size values are provided in a secondary input data set that you name in another option (for example, the SAMPSIZE=SAS-data-set option). You should provide the minimum size values in the data set variable named _MINSIZE_. For more information, see the section “Secondary Input Data Set” on page 8454. You can specify only one secondary input data set in each invocation of PROC SURVEYSELECT.

MINSIZE=value
specifies a single minimum size value, which must be a positive number. If you request a stratified sample design by specifying the STRATA statement, PROC SURVEYSELECT uses the minimum value to adjust size measures in all strata.
MINSIZE=SAS-data-set

names a SAS-data-set that contains stratum-level minimum size values. You should provide the minimum size values in the data set variable named _MINSIZE_. Each observation in the data set should correspond to a stratum group, which is determined by the values of the STRATA variables.

This data set, which is a secondary input data set, must contain all stratification variables that you specify in the STRATA statement. The data set must also contain all stratum groups that appear in the DATA= input data set. The order of the stratum groups in the MINSIZE= data set must match the order of the groups in the DATA= input data set. If formats are associated with the STRATA variables, the formats must be consistent in the two data sets. For more information, see the section “Secondary Input Data Set” on page 8454. You can name only one secondary input data set in each invocation of PROC SURVEYSELECT.

NMAX=n

specifies the maximum stratum sample size n for the SAMPRATE= option. When you specify the SAMPRATE= option, PROC SURVEYSELECT calculates the stratum sample size by multiplying the total number of units in the stratum by the specified sampling rate. If this sample size is greater than the value NMAX=n, PROC SURVEYSELECT selects only n units.

The maximum sample size n must be a positive integer. The NMAX= option is available only with the SAMPRATE= option, which you can specify for equal probability selection methods (METHOD=SRS, METHOD=URS, METHOD=SYS, and METHOD=SEQ). The NMAX= option is not available with METHOD=BERNOULLI, where the SAMPRATE= option specifies the constant inclusion probability.

NMIN=n

specifies the minimum stratum sample size n for the SAMPRATE= option. When you specify the SAMPRATE= option, PROC SURVEYSELECT calculates the stratum sample size by multiplying the total number of units in the stratum by the specified sampling rate. If this sample size is less than the value NMIN=n, PROC SURVEYSELECT selects n units.

The minimum sample size n must be a positive integer. The NMIN= option is available only with the SAMPRATE= option, which you can specify for equal probability selection methods (METHOD=SRS, METHOD=URS, METHOD=SYS, and METHOD=SEQ). The NMIN= option is not available with METHOD=BERNOULLI, where the SAMPRATE= option specifies the constant inclusion probability.

NOPRINT

suppresses the display of all output. You can use the NOPRINT option when you want only to create an output data set. This option temporarily disables the Output Delivery System (ODS). For more information, see Chapter 20, “Using the Output Delivery System.”

OUT=SAS-data-set

names the output data set. If you omit the OUT= option, the data set is named DATA

n

, where n is the smallest integer that makes the name unique. If you request sample selection by specifying the METHOD= option, the output data set contains the observations that are selected for the sample. If you request sample allocation without sample selection by specifying the ALLOC= and NOSAMPLE options in the STRATA statement, the output data set contains the allocated sample sizes. If you request random assignment by specifying the GROUPS= option, the output data set contains all observations in the input data set together with their assigned group identification.

When PROC SURVEYSELECT selects a sample, the output data set contains the units that are selected, sample design information, and selection statistics. You can specify options that control the information
to include in the output data set. For more information, see the descriptions of the following options: JTPROBS, OUTALL, OUTHITS, OUTSEED, OUTSIZE, and STATS. For more information about the contents of the output data set, see the section “Sample Output Data Set” on page 8454.

By default, the sample output data set contains only those units that are selected for the sample. To include all observations from the input data set in the output data set, use the OUTALL option.

By default, the sample output data set includes one copy of each selected unit, even when a unit is selected more than once, which can occur when you use with-replacement or with-minimum-replacement selection methods. For with-replacement or with-minimum-replacement selection methods, the output data set includes a variable NumberHits that records the number of hits (selections) for each unit. To include a distinct copy of each selection in the output data set when the same unit is selected more than once, use the OUTHITS option.

When you specify the ALLOC= and NOSAMPLE options in the STRATA statement, PROC SURVEYSELECT allocates the total sample size among the strata but does not select a sample. In this case, the OUT= data set contains the allocated sample sizes. For more information, see the section “Allocation Output Data Set” on page 8458.

When you specify the GROUPS= option, PROC SURVEYSELECT randomly assigns observations to groups; it does not select a sample. In this case, the OUT= data set contains all observations from the input data set and includes a variable named GroupID that identifies group assignments. For more information, see the section “Random Assignment Output Data Set” on page 8459.

OUTALL

includes all observations from the DATA= input data set in the OUT= output data set. By default, the output data set includes only those units selected for the sample. When you specify the OUTALL option, the output data set includes all observations from the input data set and also contains a variable that indicates each observation’s selection status. For an observation that is selected, the value of the variable Selected is 1; for an observation that is not selected, the value of Selected is 0. For information about the contents of the output data set, see the section “Sample Output Data Set” on page 8454.

The OUTALL option is available for equal probability selection methods (METHOD=SRS, METHOD=URS, METHOD=SYS, METHOD=SEQ, and METHOD=BERNOULLI). The OUTALL option is also available for METHOD=POISSON.

OUTHITS

includes a distinct copy of each selected unit in the OUT= output data set when the same sampling unit is selected more than once. By default, the output data set contains a single copy of each unit selected, even when a unit is selected more than once, and the variable NumberHits records the number of hits (selections) for each unit. If you specify the OUTHITS option, the output data set contains \(m \) copies of a sampling unit for which NumberHits is \(m \); for example, the output data set contains three copies of a unit that is selected three times (NumberHits is 3).

A sampling unit can be selected more than once by with-replacement and with-minimum-replacement selection methods, which include METHOD=URS, METHOD=PPS_WR, METHOD=PPS_SYS, and METHOD=PPS_SEQ. The OUTHITS option is available for these selection methods.

For information about the contents of the output data set, see the section “Sample Output Data Set” on page 8454.
OUTSEED includes the initial seed for each stratum in the OUT= output data set. The variable InitialSeed contains the stratum initial seeds. For information about the contents of the output data set, see the section “Sample Output Data Set” on page 8454.

To reproduce the same sample for any stratum in a subsequent execution of PROC SURVEYSELECT, you can specify the same stratum initial seed in the SEED=SAS-data-set option together with the same sample selection parameters. For more information, see the section “Random Number Generation” on page 8440.

The “Sample Selection Summary” table displays the initial random number seed for the entire sample selection, which is the same as the initial seed for the first stratum when the design is stratified. To reproduce the entire sample, you can specify this same seed value in the SEED= option, along with the same sample selection parameters.

Beginning in SAS/STAT 12.1, PROC SURVEYSELECT uses the Mersenne-Twister random number generator by default. In previous releases, PROC SURVEYSELECT uses the RANUNI random number generator, which you can now request by specifying the RANUNI option. To reproduce samples that PROC SURVEYSELECT selects in releases prior to SAS/STAT 12.1, specify the RANUNI option with the SEED= option (for the same input data set and sample selection parameters).

OUTSIZE includes additional design and sampling frame information in the OUT= output data set.

If you use a STRATA statement, the OUTSIZE option provides stratum-level values in the output data set. Otherwise, the OUTSIZE option provides overall values.

The OUTSIZE option includes the sample size or sampling rate in the output data set, depending on whether you specify the SAMPSIZE= option or the SAMPRATE= option, respectively. For PPS selection methods, the OUTSIZE option includes the total size measure in the output data set. If you do not provide size measures, or if you specify a SAMPLINGUNIT statement, the OUTSIZE option includes the total number of sampling units.

If you request size measure adjustment or certainty selection, the OUTSIZE option includes the following information in the output data set: the minimum size measure if you specify the MINSIZE= option, the maximum size measure if you specify the MAXSIZE= option, the certainty size measure if you specify the CERTSIZE= option, and the certainty proportion if you specify the CERTSIZE=P= option.

For METHOD=BERNOULLI, the OUTSIZE option includes the following information in the output data set: total number of sampling units, selection probability (sampling rate), expected sample size, and actual sample size. See the section “Bernoulli Sampling” on page 8444 for descriptions of these statistics.

For more information about the contents of the output data set, see the section “Sample Output Data Set” on page 8454.

If you specify the GROUPS= option for random assignment, the OUTSIZE option adds the following information to the output data set: total number of units, number of groups, and number of units in the group. For more information, see the section “Random Assignment Output Data Set” on page 8459.
OUTSORT=SAS-data-set

names an output data set to store the sorted input data set. This option is available when you specify a
CONTROL statement to sort the DATA= input data set for systematic or sequential selection methods
(METHOD=SYS, METHOD=PPS_SYS, METHOD=SEQ, and METHOD=PPS_SEQ).

If you specify CONTROL variables but do not name an output data set in the OUTSORT= option, the
sorted data set replaces the input data set.

RANUNI

requests uniform random number generation by the method of Fishman and Moore (1982), which
PROC SURVEYSELECT uses in releases before SAS/STAT 12.1. This is the same random number
generator that the RANUNI function provides.

Beginning in SAS/STAT 12.1, PROC SURVEYSELECT uses the Mersenne-Twister random number
generator by default. Developed by Matsumoto and Nishimura (1998), the Mersenne-Twister random
number generator has a very long period and good statistical properties. This is the random number
generator that the RAND function provides for the uniform distribution.

For more information, see the section “Random Number Generation” on page 8440. For information
about the RANUNI and RAND functions, see SAS Functions and CALL Routines: Reference.

You can specify the RANUNI option with the SEED= option to reproduce samples that PROC
SURVEYSELECT selects in releases before SAS/STAT 12.1. To reproduce a sample by using the
RANUNI and SEED= options, you must also specify the same input data set and sample selection
parameters.

REPS=nreps

specifies the number of sample replicates. The value of nreps must be a positive integer.

When you specify the REPS= option, PROC SURVEYSELECT selects nreps independent samples,
each with the same sample size or sampling rate and the same sample design that you request. The
variable Replicate in the OUT= data set contains the sample replicate number.

You can use replicated sampling to provide a simple method of variance estimation for any form
of statistic, and also to evaluate variable nonsampling errors such as interviewer differences. For
information about replicated sampling, see Lohr (2010), Wolter (2007), Kish (1965), Kish (1987),
and Kalton (1983). You can also use the REPS= option to perform a variety of other resampling and
simulation tasks. For more information, see Cassell (2007).

SAMPRATE=value | (values) SAS-data-set

RATE=value | (values) SAS-data-set

specifies the sampling rate, which is the proportion of units to select for the sample. You can provide a
single sampling rate value for the entire sample selection, or you can provide stratum sampling rates
by specifying values or a SAS-data-set.

The sampling rate value must be a positive number. The stratum sampling rate values and the stratum
sampling rates that you provide in the SAS-data-set must be nonnegative numbers. You can specify a
sampling rate as a number between 0 and 1. Or you can specify a rate in percentage form as a number
between 1 and 100, which PROC SURVEYSELECT converts to a proportion. The procedure treats the
value 1 as 100% instead of 1%.

This option is available for equal probability selection methods (METHOD=SRS, METHOD=URS,
METHOD=SYS, METHOD=SEQ, and METHOD=BERNOULLI). For systematic random sampling
(METHOD=SYS), PROC SURVEYSELECT computes the selection interval as the inverse of the sampling rate. For more information, see the section “Systematic Random Sampling” on page 8442. For Bernoulli sampling (METHOD=BERNOULLI), the procedure uses the sampling rate as the inclusion probability. For more information, see the section “Bernoulli Sampling” on page 8444. For the other equal probability selection methods, PROC SURVEYSELECT converts the sampling rate to the sample size before selection by multiplying the total number of units in the stratum or data set by the sampling rate and rounding up to the nearest integer.

You cannot specify both the SAMPRATE= option and the SAMPSIZE= option.

You can provide sampling rates by specifying one of the following forms:

SAMPRATE=value

RATE=value

specifies a single sampling rate value, which must be a positive number. If you request a stratified sample design by specifying the STRATA statement, PROC SURVEYSELECT uses the rate value for all strata.

SAMPRATE=(values)

RATE=(values)

specifies a list of stratum sampling rate values. You can separate the values with blanks or commas, and you must enclose the list of values in parentheses. The number of stratum sampling rate values should equal the number of strata in the input data set.

The order of the stratum sampling rate values must match the order of the stratum groups in the DATA= input data set. When you specify a list of values, the input data set must be sorted by the STRATA variables in ascending order; you cannot use the DESCENDING or NOTSORTED option in the STRATA statement.

The stratum sampling rate values must be nonnegative numbers. If you specify a stratum sampling rate of zero, PROC SURVEYSELECT does not select a sample from the stratum. This has the effect of subsetting the input data set before sample selection; the stratum that you omit is not included in the sampling frame or represented in the sample.

SAMPRATE=SAS-data-set

RATE=SAS-data-set

names a SAS-data-set that contains stratum sampling rates. You should provide the sampling rates in the data set variable named _RATE_. Each observation in the data set should correspond to a stratum group, which is determined by the values of the STRATA variables.

This data set, which is a secondary input data set, must contain all stratification variables that you specify in the STRATA statement. The data set must also contain all stratum groups that appear in the DATA= input data set. The order of the stratum groups in the SAMPRATE= data set must match the order of the groups in the DATA= data set. If formats are associated with the STRATA variables, the formats must be consistent in the two data sets. For more information, see the section “Secondary Input Data Set” on page 8454. You can name only one secondary input data set in each invocation of PROC SURVEYSELECT.

The stratum sampling rates must be nonnegative numbers. If you specify a stratum sampling rate of zero, PROC SURVEYSELECT does not select a sample from the stratum. This has the effect of subsetting the input data set before sample selection; the stratum that you omit is not included in the sampling frame or represented in the sample.
SAMPSIZE=

specifies the sample size, which is the number of units to select for the sample. You can provide a single sample size \(n \) for the entire sample selection, or you can provide stratum sample sizes by specifying \(\text{values} \) or a **SAS-data-set**.

The value of \(n \) must be a positive integer. The stratum sample size values and the stratum sample sizes that you provide in the **SAS-data-set** must be nonnegative numbers. For selection methods that select without replacement, the sample size must not exceed the total number of units in the data set (or the number of units in the stratum, if you specify a **STRATA** statement).

This option specifies the number of sampling units to select. If you do not specify a **SAMPLINGUNIT** statement, PROC SURVEYSELECT defines sampling units as observations and selects the number of observations that you specify. If you specify a **SAMPLINGUNIT** statement, PROC SURVEYSELECT defines sampling units as groups of observations (clusters) and selects the number of clusters that you specify.

If you specify **SAMPSIZE=**\(n \) and the **ALLOC=** option in the **STRATA** statement, PROC SURVEYSELECT allocates the sample size \(n \) among the strata according to the allocation method that you request. For more information, see the section “Sample Size Allocation” on page 8450. You cannot specify **SAMPSIZE=**\(\text{values} \) or **SAMPSIZE=****SAS-data-set** when you use the **ALLOC=** option. You cannot specify **SAMPSIZE=** with the **MARGIN=** option, which determines stratum sample sizes that provide the specified margin of error. For more information, see the section “Specifying the Margin of Error” on page 8452.

You cannot specify both the **SAMPSIZE=** option and the **SAMPRATE=** option.

You can provide sample size values by specifying one of the following forms:

SAMPSIZE=\(n \)

\(N=n \) specifies a single sample size value \(n \), which must be a positive integer. If you request a stratified sample design, PROC SURVEYSELECT selects \(n \) units from each stratum (unless you also specify the **ALLOC=** option in the **STRATA** statement, which allocates the total sample size among the strata).

For methods that select without replacement, the sample size \(n \) must not exceed the number of units in the stratum unless you also specify the **SELECTALL** option. If you specify the **SELECTALL** option, PROC SURVEYSELECT selects all stratum units when the stratum sample size exceeds the total number of units in the stratum.

SAMPSIZE=(values)

\(N=(values) \) specifies a list of stratum sample size \(\text{values} \). You can separate the values with blanks or commas, and you must enclose the list of values in parentheses. The number of sample size values must equal the number of strata in the input data set.

The order of the stratum sample size values must match the order of the stratum groups in the **DATA=** input data set. When you specify a list of values, the input data set must be sorted by the **STRATA** variables in ascending order; you cannot use the **DESCENDING** or **NOTSORTED** option in the **STRATA** statement.
The values of the stratum sample sizes must be nonnegative numbers. If you specify a stratum sample size of zero, PROC SURVEYSELECT does not select a sample from the stratum. This has the effect of subsetting the input data set before sample selection; the stratum that you omit is not included in the sampling frame or represented in the sample.

SAMPSIZE=SAS-data-set

Names a SAS-data-set that contains stratum sample sizes. You should provide the sample sizes in the data set variable named _NSIZE_ or SampleSize. Each observation in the data set should correspond to a stratum group, which is determined by the values of the STRATA variables.

This data set, which is a secondary data set, must contain all stratification variables that you specify in the STRATA statement. The data set must also contain all stratum groups that appear in the DATA= input data set. The order of the stratum groups in the SAMPSIZE= data set must match the order of the groups in the DATA= data set. If formats are associated with the STRATA variables, the formats must be consistent in the two data sets. For more information, see the section “Secondary Input Data Set” on page 8454. You can name only one secondary input data set in each invocation of PROC SURVEYSELECT.

The stratum sample sizes must be nonnegative numbers. If you specify a stratum sample size of zero, PROC SURVEYSELECT does not select a sample from the stratum. This has the effect of subsetting the input data set before sample selection; the stratum that you omit is not included in the sampling frame or represented in the sample.

SEED < =value | SAS-data-set >

Specifies the initial seed for random number generation. You can provide a single seed value for the entire sample selection, or you can provide stratum initial seeds by specifying a SAS-data-set. To initialize random number generation, a seed must be a positive integer. If you do not specify this option, or if you specify an initial seed that is negative or zero, PROC SURVEYSELECT uses the time of day from the computer’s clock to obtain an initial seed. For more information, see the section “Random Number Generation” on page 8440.

PROC SURVEYSELECT displays the value of the initial seed in the “Sample Selection Summary” table. To reproduce the same sample in a subsequent execution of PROC SURVEYSELECT, you can specify the same initial seed in the SEED= option (for the same input data set and sample selection parameters).

If you specify a STRATA statement, you can provide stratum initial seeds by specifying a SAS-data-set. If you do not provide stratum initial seeds, the procedure generates random numbers continuously across strata from the random number stream that is initialized by the single seed value or by default. You can specify the OUTSEED option to include stratum initial seeds in the output data set.

Beginning in SAS/STAT 12.1, PROC SURVEYSELECT uses the Mersenne-Twister random number generator by default. In previous releases, PROC SURVEYSELECT uses the RANUNI random number generator, which you can now request by specifying the RANUNI option. To reproduce samples that PROC SURVEYSELECT selects in releases before SAS/STAT 12.1, use the RANUNI option with the SEED= option (for the same input data set and sample selection parameters).
You can provide initial seeds by specifying one of the following forms:

SEED

indicates that stratum initial seeds are provided in a secondary input data set that you name in another option (for example, the `SAMPsize=SAS-data-set` option). You should provide the initial seeds in the data set variable named `_SEED_` or `InitialSeed`. For more information, see the section “Secondary Input Data Set” on page 8454. You can name only one secondary input data set in each invocation of PROC SURVEYSELECT.

SEED=value

specifies a single initial seed value for random number generation. To initialize random number generation, the value must be a positive integer.

SEED=SAS-data-set

names a SAS-data-set that contains stratum initial seeds. You should provide the stratum initial seeds in the data set variable named `_SEED_` or `InitialSeed`. Each observation in the data set should correspond to a stratum group, which is determined by the values of the STRATA variables.

This data set, which is a secondary input data set, must contain all stratification variables that you specify in the STRATA statement. The data set must also contain all stratum groups that appear in the DATA= input data set. The order of the stratum groups in the SEED= data set must match the order of the groups in the DATA= data set. If formats are associated with the STRATA variables, the formats must be consistent in the two data sets. For more information, see the section “Secondary Input Data Set” on page 8454. You can name only one secondary input data set in each invocation of PROC SURVEYSELECT.

The OUTSEED option includes the stratum initial seeds in the OUT= output data set. You can reproduce the same sample in a subsequent execution of PROC SURVEYSELECT by specifying the same stratum initial seeds (for the same input data set and sample selection parameters). If you need to reproduce the same sample for only a subset of the strata, you can use the same initial seeds for the strata in the subset.

SELECTALL

requests that PROC SURVEYSELECT select all stratum units when the stratum sample size exceeds the total number of units in the stratum. By default, PROC SURVEYSELECT does not allow you to specify a stratum sample size that is greater than the total number of units in the stratum, unless you are using a with-replacement selection method.

The SELECTALL option is available for the following without-replacement selection methods: METHOD=SRS, METHOD=SYS, METHOD=SEQ, METHOD=PPS, and `METHOD=PPS_SAMPFORD`.

The SELECTALL option is not available for with-replacement selection methods, with-minimum-replacement methods, or those PPS methods that select two units per stratum.

SORT=NEST | SERP

specifies the type of sorting by CONTROL variables. The option SORT=NEST requests nested sorting, and SORT=SERP requests hierarchic serpentine sorting. The default is SORT=SERP. See the section “Sorting by CONTROL Variables” on page 8439 for descriptions of serpentine and nested sorting. Where there is only one CONTROL variable, the two types of sorting are equivalent.

The SORT= option is available when you specify a CONTROL statement for systematic or sequential selection methods (METHOD=SYS, METHOD=PPS_SYS, METHOD=SEQ, and
Chapter 102: The SURVEYSELECT Procedure

When you specify a CONTROL statement, PROC SURVEYSELECT sorts the input data set by the CONTROL variables within strata before selecting the sample. The SORT= option and the CONTROL statement are not available when you specify a SAMPLINGUNIT statement. For more information, see the descriptions of the CONTROL and SAMPLINGUNIT statements.

When you specify a CONTROL statement, you can also use the OUTSORT= option to name an output data set that contains the sorted input data set. Otherwise, if you do not specify the OUTSORT= option, the sorted data set replaces the input data set.

STATS

includes the selection probability and sampling weight in the OUT= output data set for equal probability selection methods when you do not specify a STRATA statement. By default, the output data set does not include these values for equal probability selection methods unless you specify a STRATA statement. The STATS option applies to the following selection methods: METHOD=SRS, METHOD=URS, METHOD=SYS, METHOD=SEQ, and METHOD=BERNOULLI.

In addition to the selection probability and sampling weight, the STATS option includes the following statistics in the output data set for METHOD=BERNOULLI: total number of sampling units, expected sample size, actual sample size, and adjusted sampling weight. For more information, see the section “Bernoulli Sampling” on page 8444.

For PPS selection methods, the output data set contains selection probabilities and sampling weights by default. The STATS option has no effect for PPS methods.

For more information about the contents of the output data set, see the section “Sample Output Data Set” on page 8454.

CONTROL Statement

CONTROL variables ;

The CONTROL statement names one or more variables for sorting the input data set before sample selection. The CONTROL variables can be character or numeric. If you also specify a STRATA statement, PROC SURVEYSELECT sorts by CONTROL variables within strata.

Control sorting is available for systematic and sequential selection methods (METHOD=SYS, METHOD=PPS_SYS, METHOD=SEQ, and METHOD=PPS_SEQ). Ordering the sampling units before systematic or sequential selection can provide additional control over the distribution of the sample.

Control sorting is not available when you use a SAMPLINGUNIT statement, which defines groups of observations as units (clusters) for sample selection. See the description of the SAMPLINGUNIT statement for information about ordering clusters before systematic or sequential selection.

By default (or if you specify the SORT=SERP option in the PROC SURVEYSELECT statement), PROC SURVEYSELECT uses hierarchic serpentine sorting by the CONTROL variables. If you specify the SORT=NEST option, the procedure uses nested sorting. For more information about serpentine and nested sorting, see the section “Sorting by CONTROL Variables” on page 8439.

You can use the OUTSORT= option in the PROC SURVEYSELECT statement to name an output data set that contains the sorted input data set. If you do not specify the OUTSORT= option when you use the CONTROL statement, then the sorted data set replaces the input data set.
FREQ Statement

FREQ variable ;

The FREQ statement names a numeric variable that contains the frequency of occurrence of each observation. If you use a FREQ statement, PROC SURVEYSELECT assumes that an observation represents \(n \) observations, where \(n \) is the value of the FREQ variable for the observation. The FREQ statement is not available when you specify a SAMPLINGUNIT statement.

The FREQ statement is available only for sample allocation when no sample is selected, which you can request by specifying the ALLOC= and NOSAMPLE options in the STRATA statement. The ALLOC= option requests allocation of the total sample size among the strata, and the NOSAMPLE option requests that no sample be selected after allocation. When you specify the NOSAMPLE option, the procedure computes stratum sample sizes according to the allocation method that you request, but does not select the sample. For more information, see the section “Sample Size Allocation” on page 8450.

The sum of the FREQ variable values (frequencies) represents the total number of sampling units. The sum of the frequencies in a stratum represents the total number of sampling units in the stratum. When you use a FREQ statement, the sample size allocation is based on the expanded total and stratum frequencies.

Values of the FREQ variable must be nonmissing and nonnegative. If a value of the FREQ variable is 0, PROC SURVEYSELECT ignores the observation. If a value of the FREQ variable is not an integer, PROC SURVEYSELECT uses only the integer portion as the frequency of the observation.

ID Statement

ID variables ;

The ID statement names one or more variables from the DATA= input data set to include in the OUT= output data set of selected units. If there is no ID statement, PROC SURVEYSELECT includes all variables from the input data set in the output data set. The ID variables can be either character or numeric.

SAMPLINGUNIT | CLUSTER Statement

SAMPLINGUNIT | CLUSTER variables < / options > ;

The SAMPLINGUNIT statement names one or more variables that identify the sampling units as groups of observations (clusters). The combinations of categories of SAMPLINGUNIT variables define the sampling units. If there is a STRATA statement, sampling units are nested within strata.

When you use a SAMPLINGUNIT statement to define units (clusters), PROC SURVEYSELECT selects a sample of these units by using the selection method and design parameters that you specify in the PROC SURVEYSELECT statement. If you do not use a SAMPLINGUNIT statement, then PROC SURVEYSELECT uses the input data set observations as sampling units by default.

The SAMPLINGUNIT variables are one or more variables in the DATA= input data set. These variables can be either character or numeric. The formatted values of the SAMPLINGUNIT variables determine the SAMPLINGUNIT variable levels. Thus, you can use formats to group values into levels. For more
information, see the FORMAT procedure in the Base SAS Procedures Guide and the FORMAT statement and SAS formats in SAS Formats and Informats: Reference.

You can use a SAMPLINGUNIT statement with any equal probability selection method or PPS selection method. The SAMPLINGUNIT statement is not available for Poisson sampling (METHOD=POISSON).

If you specify the PPS option in the SAMPLINGUNIT statement and do not specify a SIZE statement, the procedure computes sampling unit size as the number of observations in the sampling unit. If you specify a SIZE statement and a SAMPLINGUNIT statement, the procedure computes sampling unit size by summing the size measures of all observations in the sampling unit.

By default, PROC SURVEYSELECT sorts the input data set by the SAMPLINGUNIT variables within strata before sample selection. This groups the observations into sampling units and orders the sampling units by the SAMPLINGUNIT variables. If you do not want the procedure to sort the input data set by the SAMPLINGUNIT variables, then specify the PRESORTED option in the SAMPLINGUNIT statement. By using the PRESORTED option, you can provide the order of the sampling units for systematic and sequential selection methods. The CONTROL statement is not available with the SAMPLINGUNIT statement.

The SAMPLINGUNIT statement defines groups of observations (clusters) to use as sampling units, and PROC SURVEYSELECT selects a sample of these units. When you use a SAMPLINGUNIT statement, PROC SURVEYSELECT does not select samples of observations from within the sampling units (clusters). To select independent samples within groups, use the STRATA statement.

You can specify the following options in the SAMPLINGUNIT statement after a slash (/):

PPS

computes a sampling unit’s size measure as the number of observations in the sampling unit. The procedure then uses these size measures to select a sample according to the PPS selection method that you specify in the METHOD= option in the PROC SURVEYSELECT statement.

This option has no effect when you specify a SIZE statement. When you specify a SIZE statement, the procedure computes sampling unit size by summing the size measures of all observations that belong to the sampling unit.

PRESORTED

requests that PROC SURVEYSELECT not sort the input data set by the SAMPLINGUNIT variables within strata. By default, the procedure sorts the input data set by the SAMPLINGUNIT variables, which groups the observations into sampling units and orders the units by the SAMPLINGUNIT variables.

The PRESORTED option enables you to provide the order of the sampling units. For systematic and sequential selection methods, ordering provides additional control over the distribution of the sample and gives some benefits of proportionate stratification. Systematic and sequential methods include METHOD=SYS, METHOD=PPS_SYS, METHOD=SEQ, and METHOD=PPS_SEQ. For more information, see the descriptions of these methods in the section “Sample Selection Methods” on page 8440.

When you specify the PRESORTED option, the procedure treats the sampling unit groups as NOTSORTED. Like the BY statement option NOTSORTED, this does not mean that the data are unsorted by the SAMPLINGUNIT variables, but rather that the data are arranged in groups (according to values of the SAMPLINGUNIT variables) and that these groups are not necessarily in alphabetical or increasing numeric order. For more information about the BY statement NOTSORTED option, see SAS Language Reference: Concepts.
SIZE Statement

```plaintext
SIZE variable ;
```

The SIZE statement names one and only one `variable` that contains size measures that are used for PPS selection. The SIZE variable must be numeric.

If you specify a `SAMPLINGUNIT` statement together with a SIZE statement, the procedure computes a sampling unit’s size by summing the size measures of all observations that belong to the sampling unit. Alternatively, if you specify the `PPS` option in the SAMPLINGUNIT statement and do not specify a SIZE statement, the procedure computes sampling unit size as the number of observations in the sampling unit.

When the value of a sampling unit’s size measure is missing or nonpositive, that sampling unit is excluded from the sample selection. For more information, see the section “Missing Values” on page 8438.

You can adjust the size measure values by using the `MAXSIZE=` option, the `MINSIZE=` option, or both of these options in the `PROC SURVEYSELECT` statement.

All PPS selection methods require size measures, which you can provide by specifying a SIZE statement (or by specifying the `PPS` option in the SAMPLINGUNIT statement). PPS selection methods include the following: `METHOD=PPS`, `METHOD=PPS_BREWER`, `METHOD=PPS_MURTHY`, `METHOD=PPS_SAMFORD`, `METHOD=PPS_SEQ`, `METHOD=PPS_SYS`, and `METHOD=PPS_WR`. For information about how size measures are used in sample selection, see the descriptions of PPS selection methods in the section “Sample Selection Methods” on page 8440.

A sampling unit’s size measure, which you provide for PPS selection by specifying a SIZE statement, is not the same as the `sample size`. The sample size is the number of units to select for the sample; you specify the sample size in the `SAMSIZE=` option in the `PROC SURVEYSELECT` statement.

For `METHOD=POISSON`, the variable that you specify in the SIZE statement provides inclusion probabilities for Poisson sampling. For more information, see the section “Poisson Sampling” on page 8444. When the value of the SIZE variable is missing, nonpositive, or greater than 1, the sampling unit is not included in the sample selection.

STRATA Statement

```plaintext
STRATA variables < / options > ;
```

You can specify a STRATA statement to obtain stratified sampling. The STRATA statement names one or more `variables` that partition the input data set into nonoverlapping groups (strata). The combinations of levels of the STRATA variables define the strata. PROC SURVEYSELECT independently selects samples from the strata according to the selection method and design parameters that you specify in the `PROC SURVEYSELECT` statement. For information about stratification in sample design, see Lohr (2010), Kalton (1983), Kish (1965), Kish (1987), and Cochran (1977).

The STRATA variables are one or more variables in the `DATA=` input data set. These variables can be either character or numeric, but PROC SURVEYSELECT treats them as categorical variables. The formatted values of the STRATA variables determine the STRATA variable levels. Thus, you can use formats to group values into levels. For more information, see the FORMAT procedure in the `Base SAS Procedures Guide` and the FORMAT statement and SAS formats in `SAS Formats and Informats: Reference`.
The STRATA variables function much like BY variables, and PROC SURVEYSELECT expects the input data set to be sorted by the STRATA variables. The BY statement options DESCENDING and NOTSORTED are available in the STRATA statement. For more information about these BY statement options, see SAS Language Reference: Concepts.

If you specify a CONTROL statement or METHOD=PPS in the PROC SURVEYSELECT statement, the input data set must be sorted by the STRATA variables in ascending order. In this case, you cannot specify the NOTSORTED or DESCENDING option in the STRATA statement.

If your input data set is not sorted by the STRATA variables, use one of the following alternatives:

- Sort the data by using the SORT procedure with the STRATA variables in a BY statement.
- Specify the NOTSORTED or DESCENDING option in the STRATA statement (if you do not specify a CONTROL statement or METHOD=PPS in the PROC SURVEYSELECT statement). The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged in groups (according to values of the STRATA variables) and that these groups are not necessarily in alphabetical or increasing numeric order.
- Create an index on the STRATA variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts. For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

Table 102.2 summarizes the options available in the STRATA statement. Descriptions of the options follow in alphabetical order.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLOC=name</td>
<td>Specifies the allocation method</td>
</tr>
<tr>
<td>ALLOC=(values)</td>
<td>Provides allocation proportions</td>
</tr>
<tr>
<td>ALLOCMIN=</td>
<td>Specifies the minimum sample size per stratum</td>
</tr>
<tr>
<td>ALPHA=</td>
<td>Specifies the confidence level for the MARGIN= option</td>
</tr>
<tr>
<td>COST=</td>
<td>Provides stratum costs</td>
</tr>
<tr>
<td>MARGIN=</td>
<td>Specifies the margin of error</td>
</tr>
<tr>
<td>NOSAMPLE</td>
<td>Allocates but does not select the sample</td>
</tr>
<tr>
<td>STATS</td>
<td>Displays additional allocation statistics</td>
</tr>
<tr>
<td>VAR=</td>
<td>Provides stratum variances</td>
</tr>
</tbody>
</table>

You can specify the following options in the STRATA statement after a slash (/):

ALLOC=name [(values)] SAS-data-set

specifies the allocation method name or specifies the stratum allocation proportions as a list of values or a SAS-data-set. You can use the ALLOC= option with any selection method (which you specify in the PROC SURVEYSELECT statement) except METHOD=PPS_BREWER and METHOD=PPS_MURTHY, either of which selects two units from each stratum.
You can specify the sample size allocation by using one of the following forms:

ALLOC=\textit{name}

specifies the method for allocating the total sample size among the strata. You can specify one of the following values for \textit{name}:

\textbf{NEYMAN}
requests Neyman allocation, which allocates the total sample size among the strata in proportion to the stratum sizes and variances. For more information, see the section “Neyman Allocation” on page 8452. If you specify ALLOC=NEYMAN, you must provide the stratum variances by also specifying the \texttt{VAR=} option.

\textbf{OPTIMAL}
\texttt{OPT}
requests optimal allocation, which allocates the total sample size among the strata in proportion to the stratum sizes, stratum variances, and stratum costs. For more information, see the section “Optimal Allocation” on page 8451. If you specify ALLOC=OPTIMAL, you must provide the stratum variances by also specifying the \texttt{VAR=} option, and you must provide the stratum costs by also specifying the \texttt{COST=} option.

\textbf{PROPORTIONAL}
\texttt{PROP}
requests proportional allocation, which allocates the total sample size in proportion to the stratum sizes, where stratum size is the number of sampling units in the stratum. For more information, see the section “Proportional Allocation” on page 8451.

ALLOC=\texttt{\{(values\)}}

specifies a list of stratum allocation proportion \texttt{values}. You can separate the values with blanks or commas, and you must enclose the list of values in parentheses. Each value should correspond to a stratum group, and the number of values must equal the number of strata in the input data set.

A stratum allocation proportion specifies the proportion of the total sample size to allocate to the stratum. The sum of the allocation proportions must be 1 or 100\%.

The allocation proportions must be positive numbers. You can specify the proportion values as numbers between 0 and 1. Or you can specify the values in percentage form (as numbers between 1 and 100), and \texttt{PROC SURVEYSELECT} converts the numbers to proportions. \texttt{PROC SURVEYSELECT} treats the value 1 as 100\% instead of 1\%.

The order of the stratum allocation proportions must match the order of the stratum groups in the DATA= input data set. When you specify a list of proportion values, the input data set must be sorted by the STRATA variables in ascending order; you cannot use the DESCENDING or NOTSORTED option in the STRATA statement.

ALLOC=\texttt{SAS-data-set}

names a \texttt{SAS-data-set} that contains stratum allocation proportions. You should provide the stratum allocation proportions in the data set variable named _ALLOC_. Each observation in the data set should correspond to a stratum group, which is determined by the values of the STRATA variables.

A stratum allocation proportion specifies the proportion of the total sample size to allocate to the corresponding stratum. The sum of the allocation proportions must be 1 or 100\%.
The allocation proportions must be positive numbers. You can specify the proportion values as numbers between 0 and 1. Or you can specify the values in percentage form (as numbers between 1 and 100), and PROC SURVEYSELECT converts the numbers to proportions. PROC SURVEYSELECT treats the value 1 as 100% instead of 1%.

The ALLOC= data set, which is a secondary input data set, must contain all stratification variables that you specify in the STRATA statement. The data set must also contain all stratum groups that appear in the DATA= input data set. The order of the stratum groups in the ALLOC= data set must match the order of the groups in the DATA= data set. If formats are associated with the STRATA variables, the formats must be consistent between the two data sets. For more information, see the section “Secondary Input Data Set” on page 8454. You can name only one secondary data set in each invocation of PROC SURVEYSELECT.

ALLOCMIN=\(n\)

specifies the minimum sample size to allocate to a stratum. If you specify ALLOCMIN=\(n\), PROC SURVEYSELECT allocates at least \(n\) sampling units to each stratum.

The minimum stratum sample size \(n\) must be a positive integer. The value of \(n\) times the number of strata must not exceed the total sample size to be allocated. For without-replacement selection methods, the value of \(n\) must not exceed the number of sampling units in any stratum.

By default, PROC SURVEYSELECT allocates at least one sampling unit to each stratum.

ALPHA=\(\alpha\)

specifies the confidence level that PROC SURVEYSELECT uses in the MARGIN= computations. For more information, see the section “Specifying the Margin of Error” on page 8452.

The value of \(\alpha\) must be between 0 and 1; a confidence level of \(\alpha\) produces a \(100(1 - \alpha)\)% confidence interval. By default, ALPHA=0.05, which produces a 95% confidence interval.

COST < =values | SAS-data-set >

specifies the stratum-level costs that PROC SURVEYSELECT uses to compute optimal allocation when you specify ALLOC=OPTIMAL. For more information, see the section “Optimal Allocation” on page 8451. The stratum costs must be positive numbers. A stratum cost represents the per-unit cost, which is the survey cost of a single unit in the stratum.

You can provide stratum costs by specifying one of the following forms:

COST

indicates that stratum costs are provided in a secondary input data set that you name in another option (for example, the VAR=SAS-data-set option). You should provide the stratum costs in the data set variable named _COST_. For more information, see the section “Secondary Input Data Set” on page 8454. You can name only one secondary input data set in each invocation of PROC SURVEYSELECT.

COST=(values)

specifies a list of stratum cost values. You can separate the values with blanks or commas, and you must enclose the list of values in parentheses. Each value should correspond to a stratum group, and the number of values must equal the number of strata in the input data set.

The order of the stratum cost values must match the order of the stratum groups in the DATA= input data set. When you specify a list of values, the input data set must be sorted by the STRATA
variables in ascending order; you cannot use the DESCENDING or NOTSORTED option in the STRATA statement.

COST=SAS-data-set

names a SAS-data-set that contains the stratum costs. You should provide the stratum costs in the data set variable named _COST_. Each observation in the data set should correspond to a stratum group, which is determined by the values of the STRATA variables.

This data set, which is a secondary data set, must contain all stratification variables that you specify in the STRATA statement. The data set must also contain all stratum groups that appear in the DATA= input data set. The order of the stratum groups in the COST= data set must match the order of the groups in the DATA= data set. If formats are associated with the STRATA variables, the formats must be consistent in the two data sets. For more information, see the section “Secondary Input Data Set” on page 8454. You can name only one secondary input data set in each invocation of PROC SURVEYSELECT.

MARGIN=value

specifies the desired margin of error for estimating the overall mean from the stratified sample. When you specify this option, PROC SURVEYSELECT determines the stratum sample sizes that achieve the margin value by using the allocation method or proportions that you specify in the ALLOC= option. For more information, see the section “Specifying the Margin of Error” on page 8452.

The value must be a positive number. When you specify this option, you must also provide the stratum variances in the VAR= option.

You can use the ALPHA= option to specify the confidence level for the MARGIN= computations. By default, ALPHA=0.05, which produces a 95% confidence interval.

You can specify the MARGIN= option with any allocation method (proportional, optimal, or Neyman) or with allocation proportions (ALLOC=(values) or ALLOC=SAS-data-set).

Allocation to achieve a specified margin is an alternative approach to the allocation of a specified total sample size. Therefore, when you specify the MARGIN= option, you cannot also specify a total sample size in the SAMPSIZE= option in the PROC SURVEYSELECT statement.

NOSAMPLE

requests that PROC SURVEYSELECT not select a sample after computing the allocation. When you specify this option, the OUT= output data set contains the stratum sample sizes that PROC SURVEYSELECT computes. For more information, see the section “Allocation Output Data Set” on page 8458. (By default, PROC SURVEYSELECT selects a sample after computing the allocation.)

STATS

displays sample allocation statistics. When you specify the MARGIN= option, the STATS option displays the expected margin of error for the allocation. For more information, see the section “Specifying the Margin of Error” on page 8452. When you specify ALLOC=OPTIMAL or ALLOC=NEYMAN but do not specify the MARGIN= option, the STATS option displays the expected variance, which is computed from the stratum variances that you provide and the allocated stratum sample sizes. When you specify ALLOC=OPTIMAL, the STATS option also displays the total stratum-level cost, which is computed from the stratum costs that you provide and the allocated stratum sample sizes.
VAR < = **values | SAS-data-set >**
specifies the stratum variances that PROC SURVEYSELECT uses to compute optimal allocation (ALLOC=OPTIMAL), Neyman allocation (ALLOC=NEYMAN), or allocation for a specified margin (MARGIN=). The stratum variances must be positive numbers.

You can provide stratum variances by specifying one of the following forms:

VAR
indicates that stratum variances are provided in a secondary input data set that you name in another option (for example, the **COST=SAS-data-set** option). You should provide the stratum variances in the data set variable named `_VAR_`. For more information, see the section “Secondary Input Data Set” on page 8454. You can name only one secondary input data set in each invocation of PROC SURVEYSELECT.

VAR=(values)
specifies a list of stratum variance **values**. You can separate the values with blanks or commas, and you must enclose the list of values in parentheses. Each value should correspond to a stratum group, and the number of values must equal the number of strata in the input data set.

The order of the stratum variance values must match the order of the stratum groups in the **DATA=** input data set. When you specify a list of values, the input data set must be sorted by the STRATA variables in ascending order; you cannot use the DESCENDING or NOTSORTED option in the STRATA statement.

VAR=SAS-data-set
names a **SAS-data-set** that contains the stratum variances. You should provide the stratum variances in the data set variable named `_VAR_`. Each observation in the data set should correspond to a stratum group, which is determined by the values of the STRATA variables.

This data set, which is a secondary data set, must contain all stratification variables that you specify in the STRATA statement. The data set must also contain all stratum groups that appear in the **DATA=** input data set. The order of the stratum groups in the **VAR=** data set must match the order of the groups in the **DATA=** data set. If formats are associated with the STRATA variables, the formats must be consistent in the two data sets. For more information, see the section “Secondary Input Data Set” on page 8454. You can name only one secondary input data set in each invocation of PROC SURVEYSELECT.

Details: SURVEYSELECT Procedure

Missing Values

PROC SURVEYSELECT treats missing values of STRATA and SAMPLINGUNIT variables like any other STRATA or SAMPLINGUNIT variable value. The missing values form a separate, valid variable level.

When you use a **FREQ** statement for sample size allocation, all values of the frequency variable must be nonmissing. If there is a missing or nonpositive frequency, PROC SURVEYSELECT does not perform the allocation.
When you specify a SIZE variable, any sampling units that have missing or nonpositive size measures are excluded from the sample selection. The procedure provides a log note that reports the number of observations omitted due to missing or nonpositive size measures.

If you do not use a SAMPLINGUNIT statement with the SIZE statement, your sampling units are input data set observations, and observations that have missing or nonpositive size measures are excluded from the sample selection. If you do use a SAMPLINGUNIT statement with the SIZE statement, the procedure computes sampling unit size by summing the size measures of all observations in the unit. When summing the observation size measures, the procedure omits any observations that have missing or nonpositive size measures. If the size of an entire sampling unit is missing or nonpositive, the procedure excludes that unit from the sample selection. When a sampling unit is selected, the output data set includes all observations that belong to the selected unit, regardless of whether an observation’s size measure is missing.

If you provide stratum-level design or allocation information in a secondary input data set, the variable values should be nonmissing. For example, if a stratum value of _NSIZE_ (or SampleSize) in the SAMPsize= secondary input data set is missing or negative, PROC SURVEYSELECT cannot select a sample from the stratum. The procedure gives an error message and skips the stratum. Similarly, if other secondary data set variables have missing values for a stratum, a sample cannot be selected from the stratum. These variables include _NRATE_, _MINSIZE_, _MAXSIZE_, _CERTSIZE_, and _CERTP_. Additionally, if any of the sample allocation variables in the secondary input data set have missing or nonpositive values, PROC SURVEYSELECT cannot compute the sample allocation. Variables that provide information for allocation include _ALLOC_, _VAR_, and _COST_. For more information, see the section “Secondary Input Data Set” on page 8454.

If you specify a CONTROL statement, PROC SURVEYSELECT sorts the input data set by the CONTROL variables before selecting the sample. If you also specify a STRATA statement, the procedure sorts by CONTROL variables within strata. Sorting by CONTROL variables is available for systematic and sequential selection methods, which include METHOD=SYS, METHOD=PPS_SYS, METHOD=SEQ, and METHOD=PPS_SEQ. Sorting provides additional control over the distribution of the sample and gives some benefits of proportionate stratification.

Control sorting is not available when you use a SAMPLINGUNIT statement, which defines groups of observations as units (clusters) for sample selection. See the description of the SAMPLINGUNIT statement for information about ordering clusters before systematic or sequential selection.

When you specify a CONTROL statement, the sorted data set replaces the input data set by default. Alternatively, you can use the OUTSORT= option to name an output data set that contains the sorted input data set.

PROC SURVEYSELECT provides two types of sorting: hierarchic serpentine sorting and nested sorting. By default (or if you specify the SORT=SERP option), the procedure uses serpentine sorting. If you specify the SORT=NEST option, then the procedure sorts by the CONTROL variables according to nested sorting. These two types of sorting are equivalent when there is only one CONTROL variable.

If you request nested sorting, PROC SURVEYSELECT sorts observations in the same order as PROC SORT does for an ascending sort by the CONTROL variables. For more information, see the chapter “The SORT Procedure” in the Base SAS Procedures Guide. PROC SURVEYSELECT sorts within strata if you also specify a STRATA statement. The procedure first arranges the input observations in ascending order of
Chapter 102: The SURVEYSELECT Procedure

the first CONTROL variable. Then within each level of the first control variable, the procedure arranges the observations in ascending order of the second CONTROL variable. This continues for all CONTROL variables that are specified.

In hierarchic serpentine sorting, PROC SURVEYSELECT sorts by the first CONTROL variable in ascending order. Then within the first level of the first CONTROL variable, the procedure sorts by the second CONTROL variable in ascending order. Within the second level of the first CONTROL variable, the procedure sorts by the second CONTROL variable in descending order. Sorting by the second CONTROL variable continues to alternate between ascending and descending sorting throughout all levels of the first CONTROL variable. If there is a third CONTROL variable, the procedure sorts by that variable within levels formed from the first two CONTROL variables, again alternating between ascending and descending sorting. This continues for all CONTROL variables that are specified. This sorting algorithm minimizes the change from one observation to the next with respect to the CONTROL variable values, thus making nearby observations more similar. For more information about serpentine sorting, see Chromy (1979) and Williams and Chromy (1980).

Random Number Generation

The probability sampling methods provided by PROC SURVEYSELECT use random numbers in their selection algorithms, as described in the following sections and in the references cited. PROC SURVEYSELECT uses a uniform random number function to generate streams of pseudo-random numbers from an initial starting point, or seed. You can use the SEED= option to specify the initial seed. If you do not specify the SEED= option, PROC SURVEYSELECT uses the time of day from the computer’s clock to obtain the initial seed. For information about specifying initial seeds for strata, storing stratum seeds in the output data set, and reproducing samples, see the description of the SEED= option.

Beginning in SAS/STAT 12.1, PROC SURVEYSELECT uses the Mersenne-Twister random number generator by default. The Mersenne-Twister generator (Matsumoto and Nishimura 1998) has a very long period \(2^{19937} - 1\) and very good statistical properties. The algorithm is a twisted generalized feedback shift register. This is the same random number generator that the RAND function provides for the uniform distribution. For more information, see SAS Functions and CALL Routines: Reference.

In previous releases, PROC SURVEYSELECT uses the RANUNI random number generator, which you can now request by specifying the RANUNI option. This uniform random number generator is based on the method of Fishman and Moore (1982), which uses a prime modulus multiplicative generator with modulus \(2^{31}\) and multiplier 397,204,094. This is the same uniform random number generator that the RANUNI function provides. For more information about the RANUNI function, see SAS Functions and CALL Routines: Reference.

To reproduce samples that PROC SURVEYSELECT selects in releases before SAS/STAT 12.1, you can use the RANUNI option with the SEED= option (for the same input data set and selection parameters).

Sample Selection Methods

PROC SURVEYSELECT provides a variety of methods for selecting probability-based random samples. With probability sampling, each unit in the survey population has a known, positive probability of selection. This property of probability sampling avoids selection bias and enables you to use statistical theory to make
valid inferences from the sample to the survey population. For more information about probability sampling, see Lohr (2010), Kish (1965), Kish (1987), Kalton (1983), and Cochran (1977).

In equal probability sampling, each unit in the sampling frame, or in a stratum, has the same probability of being selected for the sample. PROC SURVEYSELECT provides the following methods that select units with equal probability: simple random sampling, unrestricted random sampling, systematic random sampling, sequential random sampling, and Bernoulli sampling. In simple random sampling, units are selected without replacement, which means that a unit cannot be selected more than once. Both systematic and sequential equal probability sampling are also without replacement. In unrestricted random sampling, units are selected with replacement, which means that a unit can be selected more than once. In with-replacement sampling, the number of hits refers to the number of times a unit is selected.

In probability proportional to size (PPS) sampling, a unit’s selection probability is proportional to its size measure. PROC SURVEYSELECT provides the following methods that select units with probability proportional to size (PPS): PPS sampling without replacement, PPS sampling with replacement, PPS systematic sampling, PPS sequential sampling, Brewer’s method, Murthy’s method, and Sampford’s method. PPS sampling is often used in cluster sampling, where you select clusters (or groups of sampling units) of varying size in the first stage of selection. For example, clusters might be schools, hospitals, or geographical areas, and the final sampling units might be students, patients, or citizens. Cluster sampling can provide efficiencies in frame construction and other survey operations. For more information, see Lohr (2010), Kalton (1983), and Kish (1965), in addition to the other references cited in the following sections.

The following sections give detailed descriptions of the sample selection methods available in PROC SURVEYSELECT. In these sections, \(n_h \) denotes the sample size (the number of units in the sample) for stratum \(h \), and \(N_h \) denotes the population size (number of units in the population) for stratum \(h \), for \(h = 1, 2, \ldots, H \). When the sample design is not stratified, \(n \) denotes the sample size, and \(N \) denotes the population size. For PPS sampling, \(M_{hi} \) represents the size measure for unit \(i \) in stratum \(h \), \(M_h \) is the total of all size measures for the population of stratum \(h \), and \(Z_{hi} = M_{hi} / M_h \) is the relative size of unit \(i \) in stratum \(h \).

Simple Random Sampling

The method of simple random sampling (METHOD=SRS) selects units with equal probability and without replacement. Each possible sample of \(n \) different units out of \(N \) has the same probability of being selected. The selection probability for each individual unit is \(n/N \). When you request stratified sampling by using a STRATA statement, PROC SURVEYSELECT selects samples independently within strata. The selection probability for a unit in stratum \(h \) is \(n_h / N_h \) for stratified simple random sampling.

By default, PROC SURVEYSELECT uses Floyd’s ordered hash table algorithm for simple random sampling. This algorithm is fast, efficient, and appropriate for large data sets. For more information, see Bentley and Floyd (1987) and Bentley and Knuth (1986).

If there is not enough memory available for Floyd’s algorithm, PROC SURVEYSELECT switches to the sequential algorithm of Fan, Muller, and Rezucha (1962), which requires less memory but might require more time to select the sample. When PROC SURVEYSELECT uses the alternative sequential algorithm, it writes a note to the log. To request the sequential algorithm, even if enough memory is available for Floyd’s algorithm, you can specify METHOD=SRS2 in the PROC SURVEYSELECT statement.
Unrestricted Random Sampling

The method of unrestricted random sampling (METHOD=URS) selects units with equal probability and with replacement. Because units are selected with replacement, a unit can be selected for the sample more than once. The expected number of hits (selections) for each unit is n/N when sampling without stratification. For stratified sampling, the expected number of hits for a unit in stratum h is n_h/N_h. The expected number of hits exceeds one when the sample size n is greater than the population size N.

For unrestricted random sampling, by default, the output data set contains a single copy of each unit selected, even when a unit is selected more than once, and the variable NumberHits records the number of hits (selections) for each unit. If you specify the OUTHITS option, the output data set contains m copies of a sampling unit for which NumberHits is m; for example, the output data set contains three copies of a sampling unit that is selected three times (NumberHits is three). For information about the contents of the output data set, see the section “Sample Output Data Set” on page 8454.

Systematic Random Sampling

Systematic random sampling (METHOD=SYS) selects units at a fixed interval throughout the sampling frame (or stratum) after a random start. If you request stratified sampling by specifying a STRATA statement, PROC SURVEYSELECT independently selects systematic samples from the strata. PROC SURVEYSELECT applies systematic selection to sampling units in the order of their appearance in the input data set, or in their sorted order if you specify a CONTROL statement.

This section describes equal-probability systematic sampling, where each sampling unit in the sampling frame (or stratum) has the same probability of selection. For information about PPS systematic sampling, see the section “PPS Systematic Sampling” on page 8447.

When you specify the sample size in the SAMPSIZE= option, PROC SURVEYSELECT computes the systematic selection interval as the ratio of the total number of sampling units to the sample size ($N=n$, or $N_h=n_h$ for stratified sampling). The procedure uses a fractional systematic interval to provide the specified sample size exactly. The selection probability for each unit is computed as n/N (or n_h/N_h for stratified sampling).

When you specify the sampling rate in the SAMPRATE= option, PROC SURVEYSELECT computes the systematic selection interval as the inverse of the sampling rate. The selection probability for each unit is the sampling rate.

Instead of specifying the sample size or sampling rate, you can directly specify the systematic interval in the INTERVAL= option. When you specify the interval, PROC SURVEYSELECT computes the selection probability as the inverse of the interval value.

By default, PROC SURVEYSELECT randomly determines a starting value in the selection interval. Optionally, you can specify the starting value in the START= option. The random component of systematic sampling is the random selection of a starting value in the systematic interval. If you use the START= option to provide a purposely chosen (nonrandom) starting value, the resulting systematic selection does not provide a random, probability-based sample.

Systematic sampling controls the distribution of the sample by spreading the selections throughout the sampling frame (or stratum) at equal intervals and thus provides implicit stratification. You can specify a CONTROL statement to order the input data set by CONTROL variables before sample selection. If you also specify a STRATA statement, PROC SURVEYSELECT sorts by the CONTROL variables within strata. If you do not specify a CONTROL statement, PROC SURVEYSELECT applies systematic selection to the observations in the order in which they appear in the input data set.
Sequential Random Sampling

If you specify the METHOD=SEQ option and do not include a SIZE statement, PROC SURVEYSELECT uses the equal probability version of Chromy’s method for sequential random sampling. This method selects units sequentially with equal probability and without replacement. For more information, see Chromy (1979) and Williams and Chromy (1980). For information about Chromy’s PPS selection method, see the section “PPS Sequential Sampling” on page 8447.

Sequential random sampling controls the distribution of the sample by spreading it throughout the sampling frame or stratum, thus providing implicit stratification according to the order of units in the frame or stratum. You can use the CONTROL statement to sort the input data set by the CONTROL variables before sample selection. If you also use a STRATA statement, PROC SURVEYSELECT sorts by the CONTROL variables within strata. By default (or if you specify the SORT=SERP option), the procedure uses hierarchic serpentine ordering for sorting. If you specify the SORT=NEST option, the procedure uses nested sorting. See the section “Sorting by CONTROL Variables” on page 8439 for descriptions of serpentine and nested sorting. If you do not specify a CONTROL statement, PROC SURVEYSELECT applies sequential selection to the observations in the order in which they appear in the input data set.

Following Chromy’s method of sequential selection, PROC SURVEYSELECT randomly chooses a starting unit from the entire stratum (or frame, if the design is not stratified). With this unit as the first one, the procedure treats the stratum units as a closed loop. This is done so that all pairwise (joint) selection probabilities are positive and an unbiased variance estimator can be obtained. The procedure numbers units sequentially from the random start to the end of the stratum and then continues from the beginning of the stratum until all units are numbered.

Beginning with the randomly chosen starting unit, PROC SURVEYSELECT accumulates the expected number of selections (hits), where the expected number of selections $E(S_{hi})$ is n_h/N_h for all units i in stratum h. The procedure computes

$$I_{hi} = \text{Int} \left(\sum_{j=1}^{i} E(S_{hj}) \right) = \text{Int}(i n_h/N_h)$$

$$F_{hi} = \text{Frac} \left(\sum_{j=1}^{i} E(S_{hj}) \right) = \text{Frac}(i n_h/N_h)$$

where Int(·) denotes the integer part of the number, and Frac(·) denotes the fractional part.

Considering each unit sequentially, Chromy’s method determines whether unit i is selected by comparing the total number of selections for the first $(i-1)$ units,

$$T_{h(i-1)} = \sum_{j=1}^{i-1} S_{hj}$$

with the value of $I_{h(i-1)}$.

If $T_{h(i-1)} = I_{h(i-1)}$, Chromy’s method determines whether or not unit i is selected as follows. If $F_{hi} = 0$ or $F_{h(i-1)} > F_{hi}$, then unit i is selected with certainty. Otherwise, unit i is selected with probability

$$(F_{hi} - F_{h(i-1)})/(1 - F_{h(i-1)})$$
If \(T_{h(i-1)} = (I_{h(i-1)} + 1) \), Chromy’s method determines whether or not unit \(i \) is selected as follows. If \(F_{hi} = 0 \) or \(F_{hi} > F_{h(i-1)} \), then the unit is not selected. Otherwise, unit \(i \) is selected with probability
\[
F_{hi} / F_{h(i-1)}
\]

Bernoulli Sampling

Bernoulli sampling, which you request by specifying the METHOD=BERNOULLI option, is an equal probability selection method for which the total sample size is not fixed. PROC SURVEYSELECT performs an independent random selection trial for each of the \(N \) sampling units in the input data set by using the constant inclusion probability (sampling rate) that you specify. You can specify a single value of the inclusion probability \(\pi \) to use for all \(N \) sampling units, or you can specify separate stratum-level values of \(\pi_h \) to use for the \(N_h \) units in each stratum.

You provide the inclusion probability (or probabilities) by specifying the SAMPRATE= option. For stratified sampling (which you request by using the STRATA statement), you can specify the same sampling rate for each stratum in the SAMPRATE=value option. Or you can specify different sampling rates for different strata by using the SAMPRATE=(values) or SAMPRATE=SAS-data-set option.

In Bernoulli sampling, the sample size \(n \) (number of units selected) is not fixed; it is a random variable that has a binomial distribution with parameters \(N \) and \(\pi \). The possible values of \(n \) range from 0 to \(N \). The expected value of the sample size is \(\pi N \) (or \(\pi_h N_h \) for stratified sampling), and the variance of the sample size is \(\pi (1 - \pi) N \).

For Bernoulli sampling, the selection probability is the inclusion probability that you specify in the SAMPRATE= option. PROC SURVEYSELECT computes the sampling weight as the inverse of the selection probability, which is \(1/\pi \). For Bernoulli sampling, the procedure also computes an adjusted sampling weight as the ratio of the total number of sampling units to the actual sample size, \(N/n \) (or \(N_h/n_h \) for stratified sampling). The joint selection probability for any two distinct units is \(\pi^2 \). For more information, see Särndal, Swensson, and Wretman (1992).

You can specify the STATS option to include the following information in the OUT= output data set for METHOD=BERNOULLI: total number of sampling units, selection probability, expected sample size, actual sample size, sampling weight, and adjusted sampling weight.

Poisson Sampling

Poisson sampling, which you request by specifying the METHOD=POISSON option, is an unequal probability sampling method for which the total sample size is not fixed. A generalization of Bernoulli sampling, Poisson sampling also consists of independent random selection trials for the \(N \) sampling units in the input data set, but the sampling units can have different inclusion probabilities. You provide inclusion probabilities for Poisson sampling in the variable that you specify in the SIZE statement.

The expected value of the sample size for Poisson sampling is \(\sum \pi_i \), where \(\pi_i \) is the inclusion probability for sampling unit \(i \). The variance of the sample size is \(\sum_i \pi_i (1 - \pi_i) \).

For Poisson sampling, the selection probability for unit \(i \) is the inclusion probability \(\pi_i \) that you specify by using the SIZE statement. PROC SURVEYSELECT computes the sampling weight for unit \(i \) as the inverse of the selection probability, which is \(1/\pi_i \). The joint selection probability for any two distinct units \(i \) and \(j \) is \(\pi_i \pi_j \) for Poisson sampling. For more information, see Särndal, Swensson, and Wretman (1992).
PPS Sampling without Replacement

If you specify the METHOD=PPS option, PROC SURVEYSELECT selects units with probability proportional to size and without replacement. The selection probability for unit \(i \) in stratum \(h \) is \(n_h Z_{hi} \), where \(n_h \) is the sample size for stratum \(h \), and \(Z_{hi} \) is the relative size of unit \(i \) in stratum \(h \). The relative size is \(M_{hi}/M_h \), which is the ratio of the size measure for unit \(i \) in stratum \(h \) \((M_{hi})\) to the total of all size measures for stratum \(h \) \((M_h)\).

Because selection probabilities cannot exceed 1, the relative size for each unit must not exceed \(1/n_h \) for METHOD=PPS. This requirement can be expressed as \(Z_{hi} \leq 1/n_h \), or equivalently, \(M_{hi} \leq M_h/n_h \). If your size measures do not meet this requirement, you can adjust the size measures by using the MAXSIZE= or MINSIZE= option. Or you can request certainty selection for the larger units by using the CERTSIZE= or CERTSIZE=P= option. Alternatively, you can use a selection method that does not have this relative size restriction, such as PPS with minimum replacement (METHOD=PPS_SEQ).

PROC SURVEYSELECT uses the Hanurav-Vijayan algorithm for PPS selection without replacement. Hanurav (1967) introduced this algorithm for the selection of two units per stratum, and Vijayan (1968) generalized it for the selection of more than two units. The algorithm enables computation of joint selection probabilities and provides joint selection probability values that usually ensure nonnegativity and stability of the Sen-Yates-Grundy variance estimator. For more information, see Fox (1989), Golmant (1990), and Watts (1991).

Notation in the remainder of this section drops the stratum subscript \(h \) for simplicity, but selection is still done independently within strata if you specify a stratified design. For a stratified design, \(n \) now denotes the sample size for the current stratum, \(N \) denotes the stratum population size, and \(M_i \) denotes the size measure for unit \(i \) in the stratum. If the design is not stratified, this notation applies to the entire sampling frame.

According to the Hanurav-Vijayan algorithm, PROC SURVEYSELECT first orders units within the stratum in ascending order by size measure, so that \(M_1 \leq M_2 \leq \ldots \leq M_N \). Then the procedure selects the PPS sample of \(n \) observations as follows:

1. The procedure randomly chooses one of the integers \(1, 2, \ldots, n \) with probability \(\theta_1, \theta_2, \ldots, \theta_n \), where

 \[
 \theta_i = n(Z_{N-n+i+1} - Z_{N-n+i})(T + iZ_{N-n+1})/T
 \]

 where \(Z_j = M_j/M \) and

 \[
 T = \sum_{j=1}^{N-n} Z_j
 \]

 By definition, \(Z_{N+1} = 1/n \) to ensure that \(\sum_{i=1}^{n} \theta_i = 1 \).

2. If \(i \) is the integer selected in step 1, the procedure includes the last \((n-i)\) units of the stratum in the sample, where the units are ordered by size measure as described previously. The procedure then selects the remaining \(i \) units according to steps 3 through 6.

3. The procedure defines new normed size measures for the remaining \((N-n+i)\) stratum units that were not selected in steps 1 and 2:

 \[
 Z_j^* = \begin{cases}
 Z_j/(T + iZ_{N-n+1}) & \text{for } j = 1, \ldots, N-n+1 \\
 Z_{N-n+1}/(T + iZ_{N-n+1}) & \text{for } j = N-n+2, \ldots, N-n+i
 \end{cases}
 \]
4. The procedure selects the next unit from the first \((N - n + 1)\) stratum units with probability proportional to \(a_j(1)\), where

\[
a_1(1) = Z_1^*
\]

\[
a_j(1) = Z_j^* \prod_{k=1}^{j-1} (1 - (i - 1) P_k) \quad \text{for } j = 2, \ldots, N - n + 1
\]

and

\[
P_k = M_k / (M_{k+1} + M_{k+2} + \cdots + M_{N-n+i})
\]

5. If stratum unit \(j_1\) is the unit selected in step 4, then the procedure selects the next unit from units \((j_1 + 1)\) through \((N - n + 2)\) with probability proportional to \(a_j(2, j_1)\), where

\[
a_{j_1+1}(2, j_1) = (i - 1) Z_{j_1+1}^*
\]

\[
a_j(2, j_1) = (i - 1) Z_j^* \prod_{k=j_1+1}^{j-1} (1 - (i - 2) P_k) \quad \text{for } j = j_1 + 2, \ldots, N - n + 2
\]

6. The procedure repeats step 5 until all \(n\) sample units are selected.

If you specify the JTPROBS option, PROC SURVEYSELECT computes the joint selection probabilities for all pairs of selected units in each stratum. The joint selection probability for units \(i\) and \(j\) in the stratum is

\[
P_{ij} = \sum_{r=1}^{n} \theta_r K_{ij}^{(r)}
\]

where

\[
K_{ij} = \begin{cases}
1 & N - n + r < i \leq N - 1 \\
n N - n + r & N - n < i \leq N - n + r, \quad j > N - n + r \\
\frac{rZ_{N-n+1}(T + rZ_{N-n+1})}{rZ_i(T + rZ_{N-n+1})} & 1 \leq i \leq N - n, \quad j > N - n + r \\
\pi_{ij}^{(r)} & j \leq N - n + r
\end{cases}
\]

\[
\pi_{ij}^{(r)} = \frac{\theta_r}{2} P_i Z_j \prod_{k=1}^{i-1} (1 - P_k)
\]

\[
P_k = M_k / (M_{k+1} + M_{k+2} + \cdots + M_{N-n+r})
\]

PPS Sampling with Replacement

If you specify the METHOD=PPS_WR option, PROC SURVEYSELECT selects units with probability proportional to size and with replacement. The procedure makes \(n_h\) independent random selections from the stratum of \(N_h\) units, selecting with probability \(Z_{hi} = M_{hi} / M_h\). Because units are selected with replacement, a unit can be selected for the sample more than once. The expected number of hits (selections) for unit \(i\) in stratum \(h\) is \(n_h Z_{hi}\). If you specify the JTPROBS option, PROC SURVEYSELECT computes the joint expected number of hits for all pairs of selected units in each stratum. The joint expected number of hits for units \(i\) and \(j\) in stratum \(h\) is

\[
P_{h(ij)} = \begin{cases}
n_h(n_h - 1)Z_{hi}Z_{hj}/2 & \text{for } j \neq i \\
n_h(n_h - 1)Z_{hi}Z_{hj}/2 & \text{for } j = i
\end{cases}
\]
PPS Systematic Sampling

If you specify the METHOD=PPS_SYS option, PROC SURVEYSELECT selects the sample by using systematic random sampling with probability proportional to size. Systematic sampling selects units at a fixed interval throughout the sampling frame (or stratum) after a random start. If you request stratified sampling by specifying a STRATA statement, PROC SURVEYSELECT independently selects systematic samples from the strata. PROC SURVEYSELECT applies systematic selection to sampling units in the order of their appearance in the input data set, or in their sorted order if you specify a CONTROL statement.

When you specify the sample size in the SAMPSIZE= option, PROC SURVEYSELECT computes the systematic selection interval as the ratio of the total size to the sample size \(M/n \). Depending on the sample size and the values of the size measures, it might be possible for a sampling unit to be selected more than once. The expected number of hits (selections) for unit \(i \) in stratum \(h \) is computed as \(n_h M_{hi}/M_h = n_h Z_{hi} \). For more information, see Cochran (1977, pp. 265–266) and Madow (1949).

Instead of specifying the sample size for systematic sampling, you can directly specify the systematic interval in the INTERVAL= option. When you specify the interval, PROC SURVEYSELECT computes the expected number of hits as the inverse of the interval value.

By default, PROC SURVEYSELECT randomly determines a starting value in the selection interval. Optionally, you can specify the starting value in the START= option. The random component of systematic sampling is the random selection of a starting value in the systematic interval. If you use the START= option to provide a purposely chosen (nonrandom) starting value, the resulting systematic selection does not provide a random, probability-based sample.

Systematic sampling controls the distribution of the sample by spreading the selections throughout the sampling frame (or stratum) at equal intervals and thus provides implicit stratification. You can specify a CONTROL statement to order the input data set by the CONTROL variables before sample selection. If you also specify a STRATA statement, PROC SURVEYSELECT sorts by the CONTROL variables within strata. If you do not specify a CONTROL statement, PROC SURVEYSELECT applies systematic selection to the observations in the order in which they appear in the input data set.

PPS Sequential Sampling

If you specify the METHOD=PPS_SEQ option, PROC SURVEYSELECT uses Chromy’s method of sequential random sampling. For more information, see Chromy (1979) and Williams and Chromy (1980). Chromy’s method selects units sequentially with probability proportional to size and with minimum replacement. Selection with minimum replacement means that the actual number of hits for a unit can equal the integer part of the expected number of hits for that unit, or the next largest integer. This can be compared to selection without replacement, where each unit can be selected only once, so the number of hits can equal 0 or 1. The other alternative is selection with replacement, where there is no restriction on the number of hits for each unit, so the number of hits can equal 0, 1, \(\cdots \), \(n_h \), where \(n_h \) is the stratum sample size.

Sequential random sampling controls the distribution of the sample by spreading it throughout the sampling frame or stratum, thus providing implicit stratification according to the order of units in the frame or stratum. You can use the CONTROL statement to sort the input data set by the CONTROL variables before sample selection. If you also use a STRATA statement, PROC SURVEYSELECT sorts by the CONTROL variables within strata. By default (or if you specify the SORT=SERP option), the procedure uses hierarchic serpentine ordering to sort the sampling frame by the CONTROL variables within strata. If you specify the SORT=NEST option, the procedure uses nested sorting. See the section “Sorting by CONTROL Variables” on page 8439.
for descriptions of serpentine and nested sorting. If you do not specify a CONTROL statement, PROC SURVEYSELECT applies sequential selection to the observations in the order in which they appear in the input data set.

According to Chromy’s method of sequential selection, PROC SURVEYSELECT first chooses a starting unit randomly from the entire stratum, with probability proportional to size. The procedure uses this unit as the first one and treats the stratum observations as a closed loop. This is done so that all pairwise (joint) expected number of hits are positive and an unbiased variance estimator can be obtained. The procedure numbers observations sequentially from the random start to the end of the stratum and then continues from the beginning of the stratum until all units are numbered.

Beginning with the randomly chosen starting unit, Chromy’s method partitions the ordered stratum sampling frame into \(n_h \) zones of equal size. There is one selection from each zone and a total of \(n_h \) hits (selections), although fewer than \(n_h \) distinct units might be selected. Beginning with the random start, the procedure accumulates the expected number of hits and computes

\[
\begin{align*}
E(S_{hi}) &= n_h Z_{hi} \\
I_{hi} &= \text{Int} \left(\sum_{j=1}^{i} E(S_{hj}) \right) \\
F_{hi} &= \text{Frac} \left(\sum_{j=1}^{i} E(S_{hj}) \right)
\end{align*}
\]

where \(E(S_{hi}) \) represents the expected number of hits for unit \(i \) in stratum \(h \), \(\text{Int}(\cdot) \) denotes the integer part of the number, and \(\text{Frac}(\cdot) \) denotes the fractional part.

Considering each unit sequentially, Chromy’s method determines the actual number of hits for unit \(i \) by comparing the total number of hits for the first \((i-1) \) units,

\[
T_{h(i-1)} = \sum_{j=1}^{i-1} S_{hj}
\]

with the value of \(I_{h(i-1)} \).

If \(T_{h(i-1)} = I_{h(i-1)} \), Chromy’s method determines the total number of hits for the first \(i \) units as follows. If \(F_{hi} = 0 \) or \(F_{h(i-1)} > F_{hi} \), then \(T_{hi} = I_{hi} \). Otherwise, \(T_{hi} = I_{hi} + 1 \) with probability

\[
(F_{hi} - F_{h(i-1)}) / (1 - F_{h(i-1)})
\]

And the number of hits for unit \(i \) is \(T_{hi} - T_{h(i-1)} \).

If \(T_{h(i-1)} = (I_{h(i-1)} + 1) \), Chromy’s method determines the total number of hits for the first \(i \) units as follows. If \(F_{hi} = 0 \), then \(T_{hi} = I_{hi} \). If \(F_{hi} > F_{h(i-1)} \), then \(T_{hi} = I_{hi} + 1 \). Otherwise, \(T_{hi} = I_{hi} + 1 \) with probability

\[
F_{hi} / F_{h(i-1)}
\]
Brewer’s PPS Method

Brewer’s method (METHOD=PPS_BREWER) selects two units from each stratum, with probability proportional to size and without replacement. The selection probability for unit i in stratum h is $2M_{hi}/M_h = 2Z_{hi}$. (Because selection probabilities cannot exceed 1, the relative size for each unit, Z_{hi}, must not exceed $1/2$.)

Brewer’s algorithm first selects a unit with probability
\[
\frac{Z_{hi}(1 - Z_{hi})}{D_h(1 - 2Z_{hi})}
\]

where
\[
D_h = \sum_{i=1}^{N_h} \frac{Z_{hi}(1 - Z_{hi})}{1 - 2Z_{hi}}
\]

Then a second unit is selected from the remaining units with probability
\[
\frac{Z_{hj}}{1 - Z_{hi}}
\]

where unit i is the first unit selected. The joint selection probability for units i and j in stratum h is
\[
P_{h(ij)} = \frac{2Z_{hi}Z_{hj}}{D_h}\left(\frac{1 - Z_{hi} - Z_{hj}}{(1 - 2Z_{hi})(1 - 2Z_{hj})}\right)
\]

For more information, see Cochran (1977, pp. 261–263) and Brewer (1963). Brewer’s method yields the same selection probabilities and joint selection probabilities as Durbin’s method (Cochran 1977; Durbin 1967).

Murthy’s PPS Method

Murthy’s method (METHOD=PPS_MURTHY) selects two units from each stratum, with probability proportional to size and without replacement. The selection probability for unit i in stratum h is
\[
P_{hi} = Z_{hi}(1 + K_h - (Z_{hi}/(1 - Z_{hi}))
\]

where $Z_{hi} = M_{hi}/M_h$, and
\[
K_h = \sum_{j=1}^{N_h} (Z_{hj}/(1 - Z_{hj}))
\]

Murthy’s algorithm first selects a unit with probability Z_{hi}. Then a second unit is selected from the remaining units with probability $Z_{hj}/(1 - Z_{hi})$, where unit i is the first unit selected. The joint selection probability for units i and j in stratum h is
\[
P_{h(ij)} = Z_{hi}Z_{hj}\left(\frac{2 - Z_{hi} - Z_{hj}}{(1 - Z_{hi})(1 - Z_{hj})}\right)
\]

For more information, see Cochran (1977, pp. 263–265) and Murthy (1957).
Sampford’s PPS Method

Sampford’s method (METHOD=PPS_SAMPFORD) is an extension of Brewer’s method that selects more than two units from each stratum, with probability proportional to size and without replacement. The selection probability for unit \(i \) in stratum \(h \) is \(n_h M_{hi} / M_h = n_h Z_{hi} \). (Because selection probabilities cannot exceed 1, the relative size for each unit, \(Z_{hi} \), must not exceed \(1/n_h \)).

Sampford’s method first selects a unit from stratum \(h \) with probability \(Z_{hi} \). Then subsequent units are selected with probability proportional to

\[
\lambda_{hi} \equiv Z_{hi} / (1 - n_h Z_{hi})
\]

and with replacement. If the same unit appears more than once in the sample of size \(n_h \), then Sampford’s algorithm rejects that sample and selects a new sample. The sample is accepted if it contains \(n_h \) distinct units.

If you specify the JTPROBS option, PROC SURVEYSELECT computes the joint selection probabilities for all pairs of selected units in each stratum. The joint selection probability for units \(i \) and \(j \) in stratum \(h \) is

\[
P_{h(ij)} = K_h \lambda_{hi} \lambda_{hj} \sum_{t=2}^{n_h} \left(\left(t - n_h (Z_{hi} + Z_{hj}) \right) L_{h,(n_h-t)(i,j)} \right) / n_h^{t-2}
\]

where

\[
K_h = 1 / \sum_{t=1}^{n_h} \left(t L_{h,(n_h-t)} / n_h^t \right)
\]

\[
L_{h,m} = \sum_{S_h(m)} \lambda_{h1} \lambda_{h2} \cdots \lambda_{hm}
\]

and \(S_h(m) \) denotes all possible samples of size \(m \), for \(m = 1, 2, \ldots, N_h \). The sum \(L_{h,m}(i,j) \) is defined similarly to \(L_{h,m} \) but sums over all possible samples of size \(m \) that do not include units \(i \) and \(j \). For more information, see Cochran (1977, pp. 262–263) and Sampford (1967).

Sample Size Allocation

If you specify the ALLOC= option in the STRATA statement, PROC SURVEYSELECT allocates the total sample size among the strata according to the method that you request. PROC SURVEYSELECT provides proportional allocation (ALLOC=PROPORTIONAL), optimal allocation (ALLOC=OPTIMAL), and Neyman allocation (ALLOC=NEYMAN). For more information about these allocation methods, see Lohr (2010), Kish (1965), and Cochran (1977). You can also directly provide the allocation proportions by using the ALLOC=(values) option or the ALLOC=SAS-data-set option. Then PROC SURVEYSELECT allocates the sample size among the strata according to the proportions that you provide. Allocation proportions are the relative stratum sample sizes, \(n_h / n \), where \(n_h \) is the sample size for stratum \(h \) and \(n \) is the total sample size.

You can use the SAMPSIZE=n option in the PROC SURVEYSELECT statement to specify the total sample size to allocate among the strata. Or you can specify the desired margin of error in the MARGIN= option in the STRATA statement, and PROC SURVEYSELECT computes the stratum sample sizes necessary to achieve that margin of error for the allocation method that you request. For more information, see the section “Specifying the Margin of Error” on page 8452.
Proportional Allocation

When you specify the ALLOC=PROPORTIONAL option in the STRATA statement, PROC SURVEYSELECT allocates the total sample size among the strata in proportion to the stratum sizes, where the stratum size is the number of sampling units in the stratum. The allocation proportion of the total sample size for stratum h is

$$f_h^* = \frac{N_h}{N}$$

where N_h is the number of sampling units in stratum h and N is the total number of sampling units for all strata. If you specify the total sample size n in the SAMPSIZE= option in the PROC SURVEYSELECT statement, the procedure computes the target sample size for stratum h as

$$n_h^* = f_h^* \times n$$

The target sample size values, n_h^*, might not be integers, but the stratum sample sizes are required to be integers. PROC SURVEYSELECT uses a rounding algorithm to convert the n_h^* to integer values n_h and maintain the requested total sample size n. The rounding algorithm includes the restriction that all values of n_h must be at least 1, so that at least one unit is selected from each stratum. If you specify a minimum stratum sample size n_{min} in the ALLOCMIN= option in the STRATA statement, then all values of n_h are required to be at least n_{min}. For without-replacement selection methods, PROC SURVEYSELECT also requires that each stratum sample size must not exceed the total number of sampling units in the stratum, $n_h \leq N_h$. If a target stratum sample size exceeds the number of units in the stratum, PROC SURVEYSELECT allocates the maximum number of units, N_h, to the stratum, and then allocates the remaining total sample size proportionally among the remaining strata.

PROC SURVEYSELECT provides the target allocation proportions f_h^* in the output data set variable AllocProportion. The variable ActualProportion contains the actual proportions for the allocated sample sizes n_h. For stratum h, the actual proportion is computed as

$$f_h = \frac{n_h}{n}$$

where n_h is the allocated sample size for stratum h and n is the total sample size. The actual proportions f_h can differ from the target allocation proportions f_h^* due to rounding, the requirement that $n_h \geq 1$ (or $n_h \geq n_{min}$), and the requirement that $n_h \leq N_h$ for without-replacement selection methods.

Optimal Allocation

When you specify the ALLOC=OPTIMAL option in the STRATA statement, PROC SURVEYSELECT allocates the total sample size among the strata in proportion to stratum sizes, stratum costs, and stratum variances. You provide the stratum costs and variances in the COST= and VAR= options, respectively.

Optimal allocation minimizes the overall variance for a specified cost, or equivalently minimizes the overall cost for a specified variance. For more information, see Lohr (2010), Cochran (1977), and Kish (1965). For optimal allocation, PROC SURVEYSELECT computes the proportion of the total sample size for stratum h as

$$f_h^* = \frac{N_h S_h}{\sqrt{C_h}} / \sum_{i=1}^{H} \frac{N_i S_i}{\sqrt{C_i}}$$

where N_h is the number of sampling units in stratum h, S_h is the standard deviation within stratum h, C_h is the unit cost within stratum h, and H is the total number of strata.
If you specify the total sample size \(n \) in the SAMPSIZE= option in the PROC SURVEYSELECT statement, the procedure computes the target sample size for stratum \(h \) as

\[n_h^* = f_h^* \times n \]

As described in the section “Proportional Allocation” on page 8451, the values of \(n_h^* \) are converted to integer sample sizes \(n_h \) by using a rounding algorithm that requires the sum of the stratum sample sizes to equal \(n \). The final stratum sample sizes \(n_h \) are also required to be at least 1, or at least \(n_{\text{min}} \) if you specify a minimum stratum sample size in the ALLOCMIN= option in the STRATA statement. For without-replacement selection methods, the final sample sizes cannot exceed the stratum sizes.

Neyman Allocation

When you specify the ALLOC=NEYMAN option in the STRATA statement, PROC SURVEYSELECT allocates the total sample size among the strata in proportion to stratum sizes and stratum variances. Neyman allocation is a special case of optimal allocation (described in the section “Optimal Allocation” on page 8451), where the costs per unit are the same for all strata. For Neyman allocation, the proportion of the total sample size for stratum \(h \) is computed as

\[f_h^* = N_h S_h / \sum_{i=1}^{H} N_i S_i \]

If you specify the total sample size \(n \) in the SAMPSIZE= option in the PROC SURVEYSELECT statement, the procedure computes the target sample size for stratum \(h \) as \(n_h^* = f_h^* \times n \). The \(n_h^* \) are converted to integer sample sizes \(n_h \) by using a rounding algorithm that requires the sum of the stratum sample sizes to equal \(n \). The final sample sizes \(n_h \) are required to be at least 1, or at least \(n_{\text{min}} \) if you specify a minimum sample size in the ALLOCMIN= option in the STRATA statement. For without-replacement selection methods, the final sample sizes must not exceed the stratum sizes.

Specifying the Margin of Error

Instead of specifying the total sample size to allocate among the strata, you can specify the desired margin of error for estimating the overall mean from the stratified sample. Based on the requested allocation method and the stratum variances that you provide, PROC SURVEYSELECT computes the stratum sample sizes that are required to achieve this margin of error. You specify the margin of error in the MARGIN= option in the STRATA statement, and you provide stratum variances in the VAR= option. You can use the MARGIN= option with any allocation method (proportional, optimal, or Neyman) or with allocation proportions that you provide (ALLOC=(values) or ALLOC=SAS-data-set).

The margin of error \(e \) is the half-width of the \(100(1 - \alpha) \% \) confidence interval for the overall mean based on the stratified sample,

\[e = z_{\alpha/2} \times \sqrt{\text{Var}(\bar{y}_{\text{str}})} \]

where \(\text{Var}(\bar{y}_{\text{str}}) \) is the variance of the estimate of the mean from the stratified sample and \(z_{\alpha/2} \) is the \(100(1 - \alpha/2) \) percentile of the standard normal distribution. You can specify the value of \(\alpha \) in the ALPHA= option in the STRATA statement. By default, PROC SURVEYSELECT uses a 95% confidence interval (ALPHA=0.05).
For the specified margin of error \(e \), PROC SURVEYSELECT computes the target stratum sample sizes \(n_h^* \) for without-replacement selection methods as

\[
n_h^* = f_h^* \left(\frac{\sum_{i=1}^{H} N_i^2 S_i^2 / f_i^*}{eN/z_{\alpha/2}^2 + \sum_{i=1}^{H} N_i S_i^2} \right)
\]

where \(N_i \) is the number of sampling units in stratum \(i \), \(S_i^2 \) is the variance within stratum \(i \), \(N \) is the total number of sampling units for all strata, and \(H \) is the total number of strata.

The values of \(f_h^* \) are the stratum allocation proportions, which PROC SURVEYSELECT computes according to the allocation method that you request. For more information, see the sections “Proportional Allocation” on page 8451, “Optimal Allocation” on page 8451, and “Neyman Allocation” on page 8452.

For with-replacement selection methods, PROC SURVEYSELECT computes the target stratum sample sizes as

\[
n_h^* = f_h^* \left(\frac{\sum_{i=1}^{H} N_i^2 S_i^2 / f_i^*}{eN/z_{\alpha/2}^2} \right)
\]

For more information, see Lohr (2010, p. 91), Cochran (1977, Chapter 5), and Arkin (1984, Chapter 10).

The target sample size values \(n_h^* \) might not be integers, but the stratum sample sizes are required to be integers. PROC SURVEYSELECT rounds all fractional target sample sizes up to integer sample sizes. If you specify a minimum stratum sample size \(n_{\text{min}} \) in the \texttt{ALLOCMIN=} option in the \texttt{STRATA} statement, then all stratum sample sizes \(n_h \) are required to be at least \(n_{\text{min}} \).

For without-replacement selection methods, a stratum sample size cannot exceed the number of units in the stratum. If a target stratum sample size does exceed the number of units in the stratum, the procedure sets \(n_h = N_h \) for that stratum, removes the stratum from the variance computation (because it contributes nothing to the sampling error), revises the allocation proportions \(f_h^* \) for the remaining strata, and computes the stratum sample sizes again. If a stratum sample size equals the number of units in its stratum, the procedure also removes that stratum from the variance computation and revises the sample sizes for the remaining strata. For more information, see Cochran (1977, p. 104) and Arkin (1984, p. 176).

When you specify the \texttt{STATS} option with the \texttt{MARGIN=} option in the \texttt{STRATA} statement, PROC SURVEYSELECT displays the expected margin of error for the sample allocation. The expected margin of error (for the overall mean based on the stratified sample) is computed from the stratum sizes \((N_i) \), the stratum variances that you provide \((S_i^2) \), and the allocated stratum sample sizes that the procedure computes \((n_i) \). For without-replacement selection methods, the expected margin of error is

\[
e = z_{\alpha/2} \times \frac{1}{N} \sqrt{\sum_{i=1}^{H} \frac{N_i^2 S_i^2}{n_i} \left(1 - \frac{n_i}{N}\right)}
\]

For with-replacement selection methods, the expected margin of error is

\[
e = z_{\alpha/2} \times \frac{1}{N} \sqrt{\sum_{i=1}^{H} \frac{N_i^2 S_i^2}{n_i}}
\]

The expected margin of error should be less than or equal to the value specified in the \texttt{MARGIN=} option. Any difference between the expected margin and the specified value is due to rounding the target stratum sample sizes up to integer values and increasing stratum sample sizes to equal the required minimum value (\texttt{ALLOCMIN=}).
Secondary Input Data Set

The primary input data set for PROC SURVEYSELECT is the DATA= data set, which contains the list of units from which the sample is selected. You can use a secondary input data set to provide stratum-level design and selection information, such as sample sizes or rates, certainty size values, or stratum costs. This secondary input data set is sometimes called the SAMPSIZE= input data set. You can provide stratum sample sizes in the _NSIZE_ (or SampleSize) variable in the SAMPSIZE= data set.

The secondary input data set must contain all the STRATA variables, with the same type and length as in the DATA= data set. The STRATA groups should appear in the same order in the secondary data set as in the DATA= data set. You can name only one secondary data set in each invocation of PROC SURVEYSELECT.

You must name the secondary input data set in the appropriate PROC SURVEYSELECT or STRATA option, and use the designated variable name to provide the stratum-level values. For example, if you want to provide stratum-level costs for sample allocation, you name the secondary data set in the COST=SAS-data-set option in the STRATA statement. The data set must include the stratum costs in a variable named _COST_. You can use the secondary input data set for more than one option if it is appropriate for your design. For example, the secondary data set can include both stratum costs and stratum variances, which are required for optimal allocation (ALLOC=OPTIMAL).

Instead of using a separate secondary input data set, you can include secondary information in the DATA= data set along with the sampling frame. When you include secondary information in the DATA= data set, name the DATA= data set in the appropriate options, and include the required variables in the DATA= data set.

Table 102.3 lists the available secondary data set variables, together with their descriptions and the corresponding options.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLOC</td>
<td>Allocation proportion</td>
<td>STRATA</td>
<td>ALLOC=</td>
</tr>
<tr>
<td>CERTP</td>
<td>Certainty proportion</td>
<td>PROC</td>
<td>CERTSIZE=P=</td>
</tr>
<tr>
<td>CERTSIZE</td>
<td>Certainty size</td>
<td>PROC</td>
<td>CERTSIZE=</td>
</tr>
<tr>
<td>COST</td>
<td>Cost</td>
<td>STRATA</td>
<td>COST=</td>
</tr>
<tr>
<td>MAXSIZE</td>
<td>Maximum size</td>
<td>PROC</td>
<td>MAXSIZE=</td>
</tr>
<tr>
<td>MINSIZE</td>
<td>Minimum size</td>
<td>PROC</td>
<td>MINSIZE=</td>
</tr>
<tr>
<td>NSIZE</td>
<td>Sample size</td>
<td>PROC</td>
<td>SAMPSIZE=</td>
</tr>
<tr>
<td>RATE</td>
<td>Sampling rate</td>
<td>PROC</td>
<td>SAMPRATE=</td>
</tr>
<tr>
<td>SEED</td>
<td>Random number seed</td>
<td>PROC</td>
<td>SEED=</td>
</tr>
<tr>
<td>VAR</td>
<td>Variance</td>
<td>STRATA</td>
<td>VAR=</td>
</tr>
</tbody>
</table>

Sample Output Data Set

PROC SURVEYSELECT selects a sample and creates a SAS data set that contains the sample of selected units unless you specify the NOSAMPLE option in the STRATA statement or the GROUPS= option in the PROC SURVEYSELECT statement. When you specify the NOSAMPLE option, PROC SURVEYSELECT
allocates the total sample size among strata but does not select a sample; the output data set contains the allocated sample sizes. For more information, see the section “Allocation Output Data Set” on page 8458. When you specify the GROUPS= option, PROC SURVEYSELECT randomly assigns observations to groups and does not select a sample. For more information, see the section “Random Assignment Output Data Set” on page 8459.

You can specify the name of the sample output data set in the OUT= option in the PROC SURVEYSELECT statement. If you omit the OUT= option, the data set is named DATA\textit{n}, where \textit{n} is the smallest integer that makes the name unique.

The output data set contains the units that are selected for the sample. These units are either observations or groups of observations (clusters) that you define by specifying the SAMPLINGUNIT statement. If you do not specify the SAMPLINGUNIT statement to define units (clusters), then PROC SURVEYSELECT uses observations as sampling units by default.

By default, the output data set contains only those units that are selected for the sample. But if you specify the OUTALL option, the output data set includes all observations from the input data set and also contains a variable that indicates each observation’s selection status. For an observation that is selected, the value of the variable Selected is 1; for an observation that is not selected, the value of Selected is 0. The OUTALL option is available for equal probability selection methods.

By default, the output data set contains a single copy of each selected unit, even if the unit is selected more than once, and the variable NumberHits records the number of hits (selections) for each unit. A unit can be selected more than once if you use a with-replacement or with-minimum-replacement selection method (METHOD=URS, METHOD=PPS_WR, METHOD=PPS_SYS, or METHOD=PPS_SEQ). If you specify the OUTHITS option, the output data set includes a distinct copy of each selection in the output data set; for example, the output data set includes three copies of a unit that is selected three times (NumberHits is three).

The output data set also contains design information and selection statistics, depending on the selection method and output options you specify. The output data set can include the following variables:

- **Selected**, which indicates whether or not the observation is selected for the sample. This variable is included if you specify the OUTALL option. For an observation that is selected, the value of the variable Selected is 1; for an observation that is not selected, the value of Selected is 0.
- **STRATA** variables, which you specify in the STRATA statement.
- **Replicate**, which is the sample replicate number. This variable is included when you request replicated sampling with the REPS= option.
- **SAMPLINGUNIT (CLUSTER)** variables, which you specify in the SAMPLINGUNIT statement.
- **ID** variables, which you name in the ID statement.
- **CONTROL** variables, which you specify in the CONTROL statement.
- **Zone**, which is the selection zone. This variable is included for METHOD=PPS_SEQ.
- **SIZE** variable, which you specify in the SIZE statement.
- **AdjustedSize**, which is the adjusted size measure. This variable is included if you request adjusted sizes with the MINSIZE= or MAXSIZE= option when your sampling units are observations.
• **UnitSize**, which is the sampling unit (or cluster) size measure. This variable is included if you specify the `SAMPLINGUNIT` statement.

• **Certain**, which indicates certainty selection. This variable is included if you specify the `CERTSIZE=` or `CERTSIZE=P=` option. For units that are selected with certainty (because their size measures exceed the certainty size value or the certainty proportion), the value of **Certain** is 1; for other units, the value of **Certain** is 0.

• **NumberHits**, which is the number of hits (selections). This variable is included for selection methods that are with replacement or with minimum replacement (`METHOD=URS, METHOD=PPS_WR, METHOD=PPS_SYS, and METHOD=PPS_SEQ`).

The output data set includes the following variables if you request a PPS selection method or if you specify the **STATS** option in the `PROC SURVEYSELECT` statement for other methods:

• **ExpectedHits**, which is the expected number of hits (selections). This variable is included for selection methods that are with replacement or with minimum replacement, where the same unit can be selected more than once (`METHOD=URS, METHOD=PPS_WR, METHOD=PPS_SYS, and METHOD=PPS_SEQ`).

• **SelectionProb**, which is the probability of selection. This variable is included for selection methods that are without replacement.

• **SamplingWeight**, which is the sampling weight. The value of this variable is the inverse of **ExpectedHits** or **SelectionProb**.

If you specify the **STATS** or **OUTSIZE** option for `METHOD=BERNOULLI`, the output data set contains the following variables. If you specify a **STRATA** statement, the output data set includes stratum-level values of these variables; otherwise, the output data set includes overall values.

• **Total**, which is the total number of sampling units

• **SelectionProb**, which is the selection probability that you specify in the `SAMPRATE=` option

• **ExpectedN**, which is the expected value of the sample size

• **SampleSize**, which is the actual sample size

If you specify the **STATS** option for `METHOD=BERNOULLI`, the output data set also contains the following variable:

• **AdjSamplingWeight**, which is the adjusted sampling weight

For `METHOD=PPS_BREWER` and `METHOD=PPS_MURTHY`, either of which selects two units from each stratum with probability proportional to size, the output data set contains the following variable:

• **JtSelectionProb**, which is the joint probability of selection for the two units selected from the stratum.
If you specify the JTPROBS option to compute joint probabilities of selection for METHOD=PPS or METHOD=PPS_SAMPFORD, then the output data set contains the following variables:

- **Unit**, which is an identification variable that numbers the selected units sequentially within each stratum.
- **JtProb_1, JtProb_2, JtProb_3, . . .**, where the variable JtProb_1 contains the joint probability of selection for the current unit and unit 1. Similarly, JtProb_2 contains the joint probability of selection for the current unit and unit 2, and so on.

If you specify the JTPROBS option for METHOD=PPS_WR, then the output data set contains the following variables:

- **Unit**, which is an identification variable that numbers the selected units sequentially within each stratum.
- **JtHits_1, JtHits_2, JtHits_3, . . .**, where the variable JtHits_1 contains the joint expected number of hits for the current unit and unit 1. Similarly, JtHits_2 contains the joint expected number of hits for the current unit and unit 2, and so on.

If you specify the OUTSIZE option, the output data set contains the following variables. If you specify a STRATA statement, the output data set includes stratum-level values of these variables; otherwise, the output data set includes overall values.

- **MinimumSize**, which is the minimum size measure that you specify in the MINSIZE= option. This variable is included if you specify the MINSIZE= option.
- **MaximumSize**, which is the maximum size measure that you specify in the MAXSIZE= option. This variable is included if you specify the MAXSIZE= option.
- **CertaintySize**, which is the certainty size measure that you specify in the CERTSIZE= option. This variable is included if you specify the CERTSIZE= option.
- **CertaintyProp**, which is the certainty proportion that you specify in the CERTSIZE=P= option. This variable is included if you specify the CERTSIZE=P= option.
- **Total**, which is the total number of sampling units in the stratum. This variable is included if you do not specify a SIZE statement or a SAMPLINGUNIT statement.
- **TotalSize**, which is the total of size measures in the stratum. This variable is included if you specify a SIZE statement or the PPS option in the SAMPLINGUNIT statement.
- **TotalAdjSize**, which is the total of adjusted size measures in the stratum. This variable is included if you request adjusted sizes in the MAXSIZE= or MINSIZE= option.
- **SamplingRate**, which is the sampling rate. This variable is included if you specify the SAMPRATE= option.
• SampleSize, which is the sample size. This variable is included if you specify the SAMPSIZE= option, or if you specify METHOD=PPS_BREWER or METHOD=PPS_MURTHY, either of which selects two units from each stratum.

• Interval, which is the specified systematic interval. This variable is included if you specify the INTERVAL= option for METHOD=SYS or METHOD=PPS_SYS.

• NCertain, which is the number of certainty units. This variable is included if you specify the CERTSIZE= or CERTSIZE=P= option and CERTUNITS=OUTPUT.

If you specify the OUTSEED option, the output data set contains the following variable:

• InitialSeed, which is the initial seed for the stratum.

If you specify the ALLOC= option in the STRATA statement, the output data set contains the following variables:

• Total, which is the total number of sampling units in the stratum.

• Variance, which is the stratum variance. This variable is included if you specify the VAR, VAR=(values), or VAR=SAS-data-set option for the ALLOC=OPTIMAL, ALLOC=NEYMAN, or MARGIN= allocation option.

• Cost, which is the stratum cost. This variable is included if you specify the COST, COST=(values), or COST=SAS-data-set option for ALLOC=OPTIMAL.

• AllocProportion, which is the target allocation proportion (the proportion of the total sample size to allocate to the stratum). PROC SURVEYSELECT computes this proportion by using the allocation method that you specify.

• SampleSize, which is the sample size allocated to the stratum.

• ActualProportion, which is the actual proportion allocated to the stratum. The value of ActualProportion equals the allocated stratum sample size divided by the total sample size. This value can differ from the target AllocProportion due to rounding and other restrictions. For more information, see the section “Sample Size Allocation” on page 8450.

Allocation Output Data Set

When you specify the NOSAMPLE option in the STRATA statement, PROC SURVEYSELECT allocates the total sample size among the strata but does not select the sample. In this case, the OUT= data set contains the allocated sample sizes.

You can specify the name of the allocation output data set with the OUT= option in the PROC SURVEYSELECT statement. If you omit the OUT= option, the data set is named DATAn, where n is the smallest integer that makes the name unique.
The allocation output data set contains one observation for each stratum. The data set can include the following variables:

- **STRATA variables**, which you specify in the STRATA statement.
- **Total**, which is the total number of sampling units in the stratum.
- **Variance**, which is the stratum variance. This variable is included if you specify the VAR, VAR=(values), or VAR=SAS-data-set option for the ALLOC=OPTIMAL, ALLOC=NEYMAN, or MARGIN= allocation option.
- **Cost**, which is the stratum cost. This variable is included if you specify the COST, COST=(values), or COST=SAS-data-set option for ALLOC=OPTIMAL.
- **AllocProportion**, which is the target allocation proportion (the proportion of the total sample size to allocate to the stratum). PROC SURVEYSELECT computes this proportion by using the allocation method that you specify.
- **SampleSize**, which is the sample size allocated to the stratum.
- **ActualProportion**, which is the actual proportion allocated to the stratum. The value of ActualProportion equals the allocated stratum sample size divided by the total sample size. This value can differ from the target AllocProportion due to rounding and other restrictions. For more information, see the section “Sample Size Allocation” on page 8450.

Random Assignment Output Data Set

When you specify the GROUPS= option, PROC SURVEYSELECT provides random assignment of the observations in the DATA= input data set. The OUT= output data set contains all observations in the input data set and identifies the assigned groups. If you do not specify an ID statement, the output data set contains all variables in the input data set. If you specify an ID statement, PROC SURVEYSELECT copies those variable that you specify from the input data set to the output data set.

You can specify the name of the output data set in the OUT= option in the PROC SURVEYSELECT statement. If you omit the OUT= option, the data set is named DATAn, where n is the smallest integer that makes the name unique.

The random assignment output data set can include the following variables:

- **STRATA variables**, if you specify a STRATA statement
- **Replicate**, which is the replicate identification number. This variable is included when you specify the REPS= option.
- **ID variables**, if you specify an ID statement
- **GroupID**, which is the group identification number. If you specify a STRATA statement, PROC SURVEYSELECT performs random assignment independently within strata, and the groups are nested within strata.
- **InitialSeed**, which is the initial seed for random number generation
If you specify the `OUTSIZE` option, the random assignment output data set also includes the following variables:

- **Total**, which is the total number of units in the data set, or the total in the stratum if you specify a `STRATA` statement
- **NGroups**, which is the number of groups in the data set, or the number in the stratum if you specify a `STRATA` statement
- **GroupSize**, which is the number of units in the observation’s group

Displayed Output

By default, PROC SURVEYSELECT displays two tables that summarize the sample selection: the “Sample Selection Method” table and the “Sample Selection Summary” table.

If you request sample allocation but no sample selection, PROC SURVEYSELECT displays two tables that summarize the allocation: the “Sample Allocation Method” table and the “Sample Allocation Summary” table.

If you request random assignment, the procedure displays the “Random Assignment” table.

You can suppress display of these tables by specifying the `NOPRINT` option.

PROC SURVEYSELECT creates an output data set that contains the units that are selected for the sample. Or if you request sample allocation but no sample selection, PROC SURVEYSELECT creates an output data set that contains the sample size allocation results. If you request random assignment, the procedure creates an output data set that contains the assignments. For more information, see the sections “Sample Output Data Set” on page 8454, “Allocation Output Data Set” on page 8458, and “Random Assignment Output Data Set” on page 8459. The procedure does not display the output data set that it creates. Use PROC PRINT, PROC REPORT, or any other SAS reporting tool to display the output data set.

Sample Selection Method Table

PROC SURVEYSELECT displays the following information in the “Sample Selection Method” table:

- **Selection Method**
- **Sampling Unit Variables**, if you specify a `SAMPLINGUNIT` statement
- **Size Measure variable**, if you specify a `SIZE` statement
- **Size Measure: Number of Observations**, if you specify the `PPS` option in the `SAMPLINGUNIT` statement and do not specify a `SIZE` statement
- **Minimum Size Measure**, if you specify the `MINSIZE=` option
- **Maximum Size Measure**, if you specify the `MAXSIZE=` option
- **Certainty Size Measure**, if you specify the `CERTSIZE=` option
• Certainty Proportion, if you specify the CERTSIZE=P= option
• Strata Variables, if you specify a STRATA statement
• Control Variables, if you specify a CONTROL statement
• Control Sorting (Serpentine or Nested), if you specify a CONTROL statement
• Allocation (Proportional, Neyman, Optimal, or Input), if you specify the ALLOC= option in the STRATA statement
• Margin of Error, if you specify the MARGIN= option in the STRATA statement
• Confidence Level, if you specify the ALPHA= option in the STRATA statement

Sample Selection Summary Table

PROC SURVEYSELECT displays the following information in the “Sample Selection Summary” table:

• Input Data Set name
• Sorted Data Set name, if you specify the OUTSORT= option
• Random Number Seed
• Sample Size or Stratum Sample Size, if you specify the SAMPSIZE=n option
• Sample Size Data Set, if you specify the SAMPSIZE=SAS-data-set option
• Sampling Rate or Stratum Sampling Rate, if you specify the SAMPRATE=value option for METHOD=SRS, METHOD=URS, METHOD=SYS, or METHOD=SEQ.
• Sampling Rate Data Set, if you specify the SAMPRATE=SAS-data-set option
• Selection Probability or Stratum Selection Probability, if you specify the SAMPRATE=value option for METHOD=BERNOULLI
• Minimum Sample Size or Stratum Minimum Sample Size, if you specify the NMIN= option in the SAMPRATE= option
• Maximum Sample Size or Stratum Maximum Sample Size, if you specify the NMAX= option in the SAMPRATE= option
• Number of Certainty Units, if you specify the CERTSIZE= or CERTSIZE=P= option and do not specify a STRATA statement
• Specified Start, if you specify the START= option for METHOD=SYS or METHOD=PPS_SYS
• Random Start, if you specify the DETAILS option for METHOD=SYS or METHOD=PPS_SYS and do not specify a STRATA statement or the REPS= option
• Specified Interval, if you specify the INTERVAL= option for METHOD=SYS or METHOD=PPS_SYS
- Systematic Interval, if you specify the DETAILS option for METHOD=SYS or METHOD=PPS_SYS and do not specify a STRATA statement or the REPS= option
- Sample Size, if you specify the INTERVAL= option for METHOD=SYS or METHOD=PPS_SYS and do not specify a STRATA statement or the REPS= option
- Allocation Input Data Set name, if you specify the ALLOC=SAS-data-set option in the STRATA statement
- Variance Input Data Set name, if you specify the VAR=SAS-data-set option in the STRATA statement
- Cost Input Data Set name, if you specify the COST=SAS-data-set option in the STRATA statement
- Selection Probability, if you specify METHOD=SRS, METHOD=SYS, or METHOD=SEQ and do not specify a SIZE statement or a STRATA statement
- Expected Number of Hits, if you specify METHOD=URS and do not specify a STRATA statement
- Total Number of Units, if you specify METHOD=BERNOULLI or METHOD=POISSON and do not specify a STRATA statement
- Expected Sample Size, if you specify METHOD=BERNOULLI or METHOD=POISSON and do not specify a STRATA statement
- Sample Size, if you specify METHOD=BERNOULLI or METHOD=POISSON and do not specify a STRATA statement
- Sampling Weight, if you specify an equal probability selection method (METHOD=SRS, METHOD=URS, METHOD=SYS, METHOD=SEQ, or METHOD=BERNOULLI) and do not specify a STRATA statement
- Adjusted Sampling Weight, if you specify METHOD=BERNOULLI and do not specify a STRATA statement
- Number of Strata, if you specify a STRATA statement
- Stratum Minimum Sample Size, if you specify the ALLOCMIN= option in the STRATA statement
- Number of Replicates, if you specify the REPS= option
- Total Sample Size, if you specify a STRATA statement or the REPS= option
- Expected Margin of Error, if you specify the STATS option with the MARGIN= option in the STRATA statement
- Expected Variance, if you specify the STATS option without the MARGIN= option in the STRATA statement for ALLOC=OPTIMAL or ALLOC=NEYMAN
- Total Stratum Costs, if you specify the STATS option with ALLOC=OPTIMAL in the STRATA statement
- Output Data Set name
Sample Allocation Method Table

If you specify the NOSAMPLE option in the STRATA statement, PROC SURVEYSELECT allocates the total sample among the strata but does not select the sample. When you specify the NOSAMPLE option, PROC SURVEYSELECT displays the “Sample Allocation Method” table and the “Sample Allocation Summary” table. The “Sample Allocation Method” table includes the following information:

- Allocation (Proportional, Neyman, Optimal, or Input)
- Margin of Error, if you specify the MARGIN= option in the STRATA statement
- Confidence Level, if you specify the ALPHA= option in the STRATA statement
- Sampling Unit Variables, if you specify a SAMPLINGUNIT statement
- Strata Variables
- Frequency Variable
- Selection Method, if you specify the METHOD= option

Sample Allocation Summary Table

PROC SURVEYSELECT displays the following information in the “Sample Allocation Summary” table.

- Input Data Set name
- Allocation Input Data Set name, if you specify the ALLOC=SAS-data-set option in the STRATA statement
- Variance Input Data Set name, if you specify the VAR=SAS-data-set option in the STRATA statement
- Cost Input Data Set name, if you specify the COST=SAS-data-set option in the STRATA statement
- Number of Strata
- Stratum Minimum Sample Size, if you specify the ALLOCMIN= option in the STRATA statement
- Total Sample Size
- Expected Margin of Error, if you specify the STATS option with the MARGIN= option in the STRATA statement
- Expected Variance, if you specify the STATS option without the MARGIN= option in the STRATA statement for ALLOC=OPTIMAL or ALLOC=NEYMAN
- Total Stratum Costs, if you specify the STATS option with ALLOC=OPTIMAL in the STRATA statement
- Allocation Output Data Set name
Random Assignment Table

If you specify the GROUPS= option, PROC SURVEYSELECT displays the following information in the “Random Assignment” table:

- Input Data Set name
- Strata Variables, if you specify a STRATA statement
- Random Number Seed
- Number of Groups
- Total Number of Units, if you specify the GROUPS=n option and do not specify a STRATA statement
- Number of Units per Group, if you specify the GROUPS=n option and do not specify a STRATA statement
- Number of Replicates, if you specify the REPS= option
- Number of Strata, if you specify a STRATA statement
- Total Number of Groups, if you specify a STRATA statement or the REPS= option
- Output Data Set name

ODS Table Names

PROC SURVEYSELECT assigns a name to each table that it creates. You can use these names to refer to tables when you use the Output Delivery System (ODS) to select tables and create output data sets. For more information about ODS, see Chapter 20, “Using the Output Delivery System.” Table 102.4 lists the table names.

<table>
<thead>
<tr>
<th>ODS Table Name</th>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
<td>Random assignment summary</td>
<td>PROC</td>
<td>GROUPS=n</td>
</tr>
<tr>
<td>Method</td>
<td>Sample selection method</td>
<td>PROC</td>
<td>Default</td>
</tr>
<tr>
<td>Method</td>
<td>Sample allocation method</td>
<td>STRATA</td>
<td>NOSAMPLE</td>
</tr>
<tr>
<td>Summary</td>
<td>Sample selection summary</td>
<td>PROC</td>
<td>Default</td>
</tr>
<tr>
<td>Summary</td>
<td>Sample allocation summary</td>
<td>STRATA</td>
<td>NOSAMPLE</td>
</tr>
</tbody>
</table>
Example 102.1: Replicated Sampling

This example uses the Customers data set from the section “Getting Started: SURVEYSELECT Procedure” on page 8403. The data set Customers contains an Internet service provider’s current subscribers, and the service provider wants to select a sample from this population for a customer satisfaction survey.

This example illustrates replicated sampling, which selects multiple samples from the survey population according to the same design. You can use replicated sampling to provide a simple method of variance estimation, or to evaluate variable nonsampling errors such as interviewer differences. For information about replicated sampling, see Lohr (2010), Wolter (2007), Kish (1965), Kish (1987), and Kalton (1983).

This design includes four replicates, each with a sample size of 50 customers. The sampling frame is stratified by State and sorted by Type and Usage within strata. Customers are selected by sequential random sampling with equal probability within strata. The following PROC SURVEYSELECT statements select a probability sample of customers from the Customers data set by using this design:

```sas
options nocenter nodate nobootdate nodateonly nodiagonly; title1 'Customer Satisfaction Survey'; title2 'Replicated Sampling'; proc surveyselect data=Customers method=seq n=(8 12 20 10) reps=4 seed=40070 ranuni out=SampleRep; strata State; control Type Usage; run;
```

The STRATA statement names the stratification variable State. The CONTROL statement names the control variables Type and Usage.

In the PROC SURVEYSELECT statement, the METHOD=SEQ option requests sequential random sampling. The REPS= option specifies four replicates of this sample. The N=(8 12 20 10) option lists the stratum sample sizes for each replicate. The N= option lists the stratum sample sizes in the same order as the strata appear in the Customers data set, which has been sorted by State. The sample size of eight customers corresponds to the first stratum, State = ‘AL’. The sample size 12 corresponds to the next stratum, State = ‘FL’, and so on.

The SEED= option specifies 40070 as the initial seed for random number generation. The RANUNI option requests random number generation by the RANUNI generator, which PROC SURVEYSELECT uses in releases before SAS/STAT 12.1. (Beginning in SAS/STAT 12.1, PROC SURVEYSELECT uses the Mersenne-Twister random number generator by default.) You can specify the RANUNI option with the SEED= option to reproduce samples that PROC SURVEYSELECT selects in releases before SAS/STAT 12.1. To reproduce a sample by using the RANUNI and SEED= options, you must also specify the same input data set and sample selection parameters.

Output 102.1.1 displays the output from PROC SURVEYSELECT, which summarizes the sample selection. A total of 200 customers is selected in four replicates. PROC SURVEYSELECT selects each replicate by using sequential random sampling within strata determined by State. The sampling frame Customers is sorted by the control variables Type and Usage within strata, according to hierarchic serpentine sorting. The output data set SampleRep contains the sample.
Output 102.1.1 Sample Selection Summary

Customer Satisfaction Survey
Replicated Sampling

The SURVEYSELECT Procedure

<table>
<thead>
<tr>
<th>Selection Method</th>
<th>Sequential Random Sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With Equal Probability</td>
</tr>
<tr>
<td>Strata Variable</td>
<td>State</td>
</tr>
<tr>
<td>Control Variables</td>
<td>Type</td>
</tr>
<tr>
<td></td>
<td>Usage</td>
</tr>
<tr>
<td>Control Sorting</td>
<td>Serpentine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input Data Set</th>
<th>CUSTOMERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Number Seed</td>
<td>40070</td>
</tr>
<tr>
<td>Number of Strata</td>
<td>4</td>
</tr>
<tr>
<td>Number of Replicates</td>
<td>4</td>
</tr>
<tr>
<td>Total Sample Size</td>
<td>200</td>
</tr>
<tr>
<td>Output Data Set</td>
<td>SAMPLEREP</td>
</tr>
</tbody>
</table>

The following PROC PRINT statements display the selected customers for the first stratum, State = ‘AL’, from the output data set SampleRep:

```plaintext
title1 'Customer Satisfaction Survey';
title2 'Sample Selected by Replicated Design';
title3 '(First Stratum)';
proc print data=SampleRep;
  where State = 'AL';
run;
```

Output 102.1.2 displays the 32 sample customers of the first stratum (State = ‘AL’) from the output data set SampleRep, which includes the entire sample of 200 customers. The variable SelectionProb contains the selection probability, and SamplingWeight contains the sampling weight. Because customers are selected with equal probability within strata in this design, all customers in the same stratum have the same selection probability. These selection probabilities and sampling weights apply to a single replicate, and the variable Replicate contains the sample replicate number.
Output 102.1.2 Customer Sample (First Stratum)

Customer Satisfaction Survey
Sample Selected by Replicated Design
(First Stratum)

<table>
<thead>
<tr>
<th>Obs</th>
<th>State</th>
<th>Replicate</th>
<th>CustomerID</th>
<th>Type</th>
<th>Usage</th>
<th>SelectionProb</th>
<th>SamplingWeight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AL</td>
<td>1</td>
<td>882-37-7496</td>
<td>New</td>
<td>572</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>2</td>
<td>AL</td>
<td>1</td>
<td>581-32-5534</td>
<td>New</td>
<td>863</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>3</td>
<td>AL</td>
<td>1</td>
<td>980-29-2898</td>
<td>Old</td>
<td>571</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>4</td>
<td>AL</td>
<td>1</td>
<td>172-56-4743</td>
<td>Old</td>
<td>128</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>5</td>
<td>AL</td>
<td>1</td>
<td>1998-55-5227</td>
<td>Old</td>
<td>35</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>6</td>
<td>AL</td>
<td>1</td>
<td>625-44-3396</td>
<td>New</td>
<td>60</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>7</td>
<td>AL</td>
<td>1</td>
<td>627-48-2509</td>
<td>New</td>
<td>114</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>8</td>
<td>AL</td>
<td>1</td>
<td>257-66-6558</td>
<td>New</td>
<td>172</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>9</td>
<td>AL</td>
<td>2</td>
<td>622-83-1680</td>
<td>New</td>
<td>22</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>10</td>
<td>AL</td>
<td>2</td>
<td>343-57-1186</td>
<td>New</td>
<td>53</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>11</td>
<td>AL</td>
<td>2</td>
<td>976-05-3796</td>
<td>New</td>
<td>110</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>12</td>
<td>AL</td>
<td>2</td>
<td>859-74-0652</td>
<td>New</td>
<td>303</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>13</td>
<td>AL</td>
<td>2</td>
<td>476-48-1066</td>
<td>New</td>
<td>839</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>14</td>
<td>AL</td>
<td>2</td>
<td>109-27-914</td>
<td>Old</td>
<td>2102</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>15</td>
<td>AL</td>
<td>2</td>
<td>743-25-0298</td>
<td>Old</td>
<td>376</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>16</td>
<td>AL</td>
<td>2</td>
<td>722-08-2215</td>
<td>Old</td>
<td>105</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>17</td>
<td>AL</td>
<td>3</td>
<td>668-57-7696</td>
<td>New</td>
<td>200</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>18</td>
<td>AL</td>
<td>3</td>
<td>300-72-0129</td>
<td>New</td>
<td>471</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>19</td>
<td>AL</td>
<td>3</td>
<td>073-60-0765</td>
<td>New</td>
<td>656</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>20</td>
<td>AL</td>
<td>3</td>
<td>526-87-0258</td>
<td>Old</td>
<td>672</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>21</td>
<td>AL</td>
<td>3</td>
<td>726-61-0387</td>
<td>Old</td>
<td>150</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>22</td>
<td>AL</td>
<td>3</td>
<td>632-29-9020</td>
<td>Old</td>
<td>51</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>23</td>
<td>AL</td>
<td>3</td>
<td>417-17-8378</td>
<td>New</td>
<td>56</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>24</td>
<td>AL</td>
<td>3</td>
<td>091-26-2366</td>
<td>New</td>
<td>93</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>25</td>
<td>AL</td>
<td>4</td>
<td>336-04-1288</td>
<td>New</td>
<td>419</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>26</td>
<td>AL</td>
<td>4</td>
<td>827-04-7407</td>
<td>New</td>
<td>650</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>27</td>
<td>AL</td>
<td>4</td>
<td>317-70-6496</td>
<td>Old</td>
<td>452</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>28</td>
<td>AL</td>
<td>4</td>
<td>002-38-4582</td>
<td>Old</td>
<td>206</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>29</td>
<td>AL</td>
<td>4</td>
<td>181-83-3990</td>
<td>Old</td>
<td>33</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>30</td>
<td>AL</td>
<td>4</td>
<td>675-34-7393</td>
<td>New</td>
<td>47</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>31</td>
<td>AL</td>
<td>4</td>
<td>228-07-6671</td>
<td>New</td>
<td>65</td>
<td>.004115226</td>
<td>243</td>
</tr>
<tr>
<td>32</td>
<td>AL</td>
<td>4</td>
<td>298-46-2434</td>
<td>New</td>
<td>161</td>
<td>.004115226</td>
<td>243</td>
</tr>
</tbody>
</table>
Example 102.2: PPS Selection of Two Units per Stratum

This example describes hospital selection for a survey by using PROC SURVEYSELECT. A state health agency plans to conduct a statewide survey of a variety of different hospital services. The agency plans to select a probability sample of individual discharge records within hospitals by using a two-stage sample design. First-stage units are hospitals, and second-stage units are patient discharges during the study period. Hospitals are stratified first according to geographic region and then by rural/urban type and size of hospital. Two hospitals are selected from each stratum with probability proportional to size.

The data set HospitalFrame contains all hospitals in the first geographical region of the state:

```
data HospitalFrame;
  input Hospital$ Type$ SizeMeasure @@;
  if (SizeMeasure < 20) then Size='Small ';
    else if (SizeMeasure < 50) then Size='Medium';
    else Size='Large ';
  datalines;
034 Rural 0.870 107 Rural 1.316
079 Rural 2.127 223 Rural 3.960
236 Rural 5.279 165 Rural 5.893
086 Rural 0.501 141 Rural 11.528
042 Urban 3.104 124 Urban 4.033
006 Urban 4.249 261 Urban 4.376
195 Urban 5.024 190 Urban 10.373
038 Urban 17.125 083 Urban 40.382
259 Urban 44.942 129 Urban 46.702
133 Urban 46.992 218 Urban 48.231
026 Urban 61.460 058 Urban 65.931
119 Urban 66.352
;
```

In the SAS data set HospitalFrame, the variable Hospital identifies the hospital. The variable Type equals ‘Urban’ if the hospital is located in an urban area, and ‘Rural’ otherwise. The variable SizeMeasure contains the hospital’s size measure, which is constructed from past data on service utilization for the hospital together with the desired sampling rates for each service. This size measure reflects the amount of relevant survey information expected from the hospital. For information about this type of size measure, see Drummond et al. (1982). The value of the variable Size is ‘Small’, ‘Medium’, or ‘Large’, depending on the value of the hospital’s size measure.

The following PROC PRINT statements display the data set HospitalFrame and produce Output 102.2.1:

```
title1 'Hospital Utilization Survey';
title2 'Sampling Frame, Region 1';
proc print data=HospitalFrame;
run;
```
Example 102.2: PPS Selection of Two Units per Stratum

Output 102.2.1 Sampling Frame

Hospital Utilization Survey

Sampling Frame, Region 1

<table>
<thead>
<tr>
<th>Obs</th>
<th>Hospital</th>
<th>Type</th>
<th>SizeMeasure</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>034</td>
<td>Rural</td>
<td>0.870</td>
<td>Small</td>
</tr>
<tr>
<td>2</td>
<td>107</td>
<td>Rural</td>
<td>1.316</td>
<td>Small</td>
</tr>
<tr>
<td>3</td>
<td>079</td>
<td>Rural</td>
<td>2.127</td>
<td>Small</td>
</tr>
<tr>
<td>4</td>
<td>223</td>
<td>Rural</td>
<td>3.960</td>
<td>Small</td>
</tr>
<tr>
<td>5</td>
<td>236</td>
<td>Rural</td>
<td>5.279</td>
<td>Small</td>
</tr>
<tr>
<td>6</td>
<td>165</td>
<td>Rural</td>
<td>5.893</td>
<td>Small</td>
</tr>
<tr>
<td>7</td>
<td>086</td>
<td>Rural</td>
<td>0.501</td>
<td>Small</td>
</tr>
<tr>
<td>8</td>
<td>141</td>
<td>Rural</td>
<td>11.528</td>
<td>Small</td>
</tr>
<tr>
<td>9</td>
<td>042</td>
<td>Urban</td>
<td>3.104</td>
<td>Small</td>
</tr>
<tr>
<td>10</td>
<td>124</td>
<td>Urban</td>
<td>4.033</td>
<td>Small</td>
</tr>
<tr>
<td>11</td>
<td>006</td>
<td>Urban</td>
<td>4.249</td>
<td>Small</td>
</tr>
<tr>
<td>12</td>
<td>261</td>
<td>Urban</td>
<td>4.376</td>
<td>Small</td>
</tr>
<tr>
<td>13</td>
<td>195</td>
<td>Urban</td>
<td>5.024</td>
<td>Small</td>
</tr>
<tr>
<td>14</td>
<td>190</td>
<td>Urban</td>
<td>10.373</td>
<td>Small</td>
</tr>
<tr>
<td>15</td>
<td>038</td>
<td>Urban</td>
<td>17.125</td>
<td>Small</td>
</tr>
<tr>
<td>16</td>
<td>083</td>
<td>Urban</td>
<td>40.382</td>
<td>Medium</td>
</tr>
<tr>
<td>17</td>
<td>259</td>
<td>Urban</td>
<td>44.942</td>
<td>Medium</td>
</tr>
<tr>
<td>18</td>
<td>129</td>
<td>Urban</td>
<td>46.702</td>
<td>Medium</td>
</tr>
<tr>
<td>19</td>
<td>133</td>
<td>Urban</td>
<td>46.992</td>
<td>Medium</td>
</tr>
<tr>
<td>20</td>
<td>218</td>
<td>Urban</td>
<td>48.231</td>
<td>Medium</td>
</tr>
<tr>
<td>21</td>
<td>026</td>
<td>Urban</td>
<td>61.460</td>
<td>Large</td>
</tr>
<tr>
<td>22</td>
<td>058</td>
<td>Urban</td>
<td>65.931</td>
<td>Large</td>
</tr>
<tr>
<td>23</td>
<td>119</td>
<td>Urban</td>
<td>66.352</td>
<td>Large</td>
</tr>
</tbody>
</table>

The following PROC SURVEYSELECT statements select a probability sample of hospitals from the HospitalFrame data set by using a stratified design with PPS selection of two units from each stratum:

```plaintext
title1 'Hospital Utilization Survey';
title2 'Stratified PPS Sampling';
proc surveyselect data=HospitalFrame method=pps_brewer
   seed=48702 out=SampleHospitals;
   size SizeMeasure;
   strata Type Size notsorted;
run;
```

The STRATA statement names the stratification variables Type and Size. The NOTSORTED option specifies that observations with the same STRATA variable values are grouped together but are not necessarily sorted in alphabetical or increasing numerical order. In the HospitalFrame data set, Size = ‘Small’ precedes Size = ‘Medium’.

In the PROC SURVEYSELECT statement, the METHOD=PPS_BREWER option requests sample selection by Brewer’s method, which selects two units per stratum with probability proportional to size. The SEED= option specifies 48702 as the initial seed for random number generation. The SIZE statement names SizeMeasure as the size measure variable. It is not necessary to specify the sample size in the N= option, because Brewer’s method always selects two units from each stratum.
Output 102.2.2 displays the output from PROC SURVEYSELECT. A total of eight hospitals were selected from the four strata. The data set `SampleHospitals` contains the selected hospitals.

Output 102.2.2 Sample Selection Summary

Hospital Utilization Survey

Stratified PPS Sampling

The SURVEYSELECT Procedure

<table>
<thead>
<tr>
<th>Selection Method</th>
<th>Brewer's PPS Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size Measure</td>
<td>SizeMeasure</td>
</tr>
<tr>
<td>Strata Variables</td>
<td>Type Size</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Input Data Set
`HOSPITALFRAME`

Random Number Seed
`48702`

Stratum Sample Size
`2`

Number of Strata
`4`

Total Sample Size
`8`

Output Data Set
`SAMPLEHOSPITALS`

The following PROC PRINT statements display the sample hospitals and produce **Output 102.2.3**:

```sql
title1 'Hospital Utilization Survey';
title2 'Sample Selected by Stratified PPS Design';
proc print data=SampleHospitals;
run;
```

Output 102.2.3 Sample Hospitals

Hospital Utilization Survey

Sample Selected by Stratified PPS Design

<table>
<thead>
<tr>
<th>Obs</th>
<th>Type</th>
<th>Size</th>
<th>Hospital</th>
<th>SizeMeasure</th>
<th>SelectionProb</th>
<th>SamplingWeight</th>
<th>JtSelectionProb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rural</td>
<td>Small</td>
<td>165</td>
<td>5.893</td>
<td>0.37447</td>
<td>2.67046</td>
<td>0.22465</td>
</tr>
<tr>
<td>2</td>
<td>Rural</td>
<td>Small</td>
<td>141</td>
<td>11.528</td>
<td>0.73254</td>
<td>1.36511</td>
<td>0.22465</td>
</tr>
<tr>
<td>3</td>
<td>Urban</td>
<td>Small</td>
<td>006</td>
<td>4.249</td>
<td>0.17600</td>
<td>5.68181</td>
<td>0.01454</td>
</tr>
<tr>
<td>4</td>
<td>Urban</td>
<td>Small</td>
<td>195</td>
<td>5.024</td>
<td>0.20810</td>
<td>4.80533</td>
<td>0.01454</td>
</tr>
<tr>
<td>5</td>
<td>Urban</td>
<td>Medium</td>
<td>129</td>
<td>46.702</td>
<td>0.41102</td>
<td>2.43297</td>
<td>0.11211</td>
</tr>
<tr>
<td>6</td>
<td>Urban</td>
<td>Medium</td>
<td>218</td>
<td>48.231</td>
<td>0.42448</td>
<td>2.35584</td>
<td>0.11211</td>
</tr>
<tr>
<td>7</td>
<td>Urban</td>
<td>Large</td>
<td>058</td>
<td>65.931</td>
<td>0.68060</td>
<td>1.46929</td>
<td>0.36555</td>
</tr>
<tr>
<td>8</td>
<td>Urban</td>
<td>Large</td>
<td>119</td>
<td>66.352</td>
<td>0.68495</td>
<td>1.45996</td>
<td>0.36555</td>
</tr>
</tbody>
</table>

The variable `SelectionProb` contains the selection probability for each hospital in the sample. The variable `JtSelectionProb` contains the joint probability of selection for the two sample hospitals in the same stratum. The variable `SamplingWeight` contains the sampling weight component for this first stage of the design. The final-stage weight components, which correspond to patient record selection within hospitals, can be multiplied by the hospital weight components to obtain the overall sampling weights.
A small company wants to audit employee travel expenses in an effort to improve the expense reporting procedure and possibly reduce expenses. The company does not have resources to examine all expense reports and wants to use statistical sampling to objectively select expense reports for audit.

The data set TravelExpense contains the dollar amount of all employee travel expense transactions during the past month:

```sas
data TravelExpense;
  input ID$ Amount @@;
  if (Amount < 500) then Level='1_Low ';
    else if (Amount > 1500) then Level='3_High';
    else Level='2_Avg ';
  datalines;
110 237.18 002 567.89 234 118.50
743 74.38 411 1287.23 782 258.10
216 325.36 174 218.38 568 1670.80
302 134.71 285 2020.70 314 47.80
139 1183.45 775 330.54 425 780.10
506 895.80 239 620.10 011 420.18
672 979.66 142 810.25 738 670.85
192 314.58 243 87.50 568 1670.80
496 753.30 332 540.65 486 2580.35
614 230.56 654 185.60 308 688.43
784 505.14 017 205.48 162 650.42
289 1348.34 691 30.50 545 2214.80
517 940.35 382 217.85 024 142.90
478 806.90 107 560.72
;
```

In the SAS data set TravelExpense, the variable ID identifies the travel expense report. The variable Amount contains the dollar amount of the reported expense. The variable Level equals ‘1_Low’, ‘2_Avg’, or ‘3_High’, depending on the value of Amount.

In the sample design for this audit, expense reports are stratified by Level. This ensures that each of these expense levels is included in the sample and also permits a disproportionate allocation of the sample, selecting proportionately more of the expense reports from the higher levels. Within strata, the sample of expense reports is selected with probability proportional to the amount of the expense, thus giving a greater chance of selection to larger expenses. In auditing terms, this is known as monetary-unit sampling. For more information, see Wilburn (1984).

PROC SURVEYSELECT requires that the input data set be sorted by the STRATA variables. The following PROC SORT statements sort the TravelExpense data set by the stratification variable Level.

```sas
proc sort data=TravelExpense;
  by Level;
run;
```

Output 102.3.1 displays the sampling frame data set TravelExpense, which contains 41 observations.
Output 102.3.1 Sampling Frame

Travel Expense Audit

<table>
<thead>
<tr>
<th>Obs</th>
<th>ID</th>
<th>Amount</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>110</td>
<td>237.18</td>
<td>1_Low</td>
</tr>
<tr>
<td>2</td>
<td>234</td>
<td>118.50</td>
<td>1_Low</td>
</tr>
<tr>
<td>3</td>
<td>743</td>
<td>74.38</td>
<td>1_Low</td>
</tr>
<tr>
<td>4</td>
<td>782</td>
<td>258.10</td>
<td>1_Low</td>
</tr>
<tr>
<td>5</td>
<td>216</td>
<td>325.36</td>
<td>1_Low</td>
</tr>
<tr>
<td>6</td>
<td>174</td>
<td>218.38</td>
<td>1_Low</td>
</tr>
<tr>
<td>7</td>
<td>302</td>
<td>134.71</td>
<td>1_Low</td>
</tr>
<tr>
<td>8</td>
<td>314</td>
<td>47.80</td>
<td>1_Low</td>
</tr>
<tr>
<td>9</td>
<td>775</td>
<td>330.54</td>
<td>1_Low</td>
</tr>
<tr>
<td>10</td>
<td>011</td>
<td>420.18</td>
<td>1_Low</td>
</tr>
<tr>
<td>11</td>
<td>192</td>
<td>314.58</td>
<td>1_Low</td>
</tr>
<tr>
<td>12</td>
<td>243</td>
<td>87.50</td>
<td>1_Low</td>
</tr>
<tr>
<td>13</td>
<td>614</td>
<td>230.56</td>
<td>1_Low</td>
</tr>
<tr>
<td>14</td>
<td>654</td>
<td>185.60</td>
<td>1_Low</td>
</tr>
<tr>
<td>15</td>
<td>017</td>
<td>205.48</td>
<td>1_Low</td>
</tr>
<tr>
<td>16</td>
<td>691</td>
<td>30.50</td>
<td>1_Low</td>
</tr>
<tr>
<td>17</td>
<td>382</td>
<td>217.85</td>
<td>1_Low</td>
</tr>
<tr>
<td>18</td>
<td>024</td>
<td>142.90</td>
<td>1_Low</td>
</tr>
<tr>
<td>19</td>
<td>002</td>
<td>567.89</td>
<td>2_Avg</td>
</tr>
<tr>
<td>20</td>
<td>411</td>
<td>1287.23</td>
<td>2_Avg</td>
</tr>
<tr>
<td>21</td>
<td>139</td>
<td>1183.45</td>
<td>2_Avg</td>
</tr>
<tr>
<td>22</td>
<td>425</td>
<td>780.10</td>
<td>2_Avg</td>
</tr>
<tr>
<td>23</td>
<td>506</td>
<td>895.80</td>
<td>2_Avg</td>
</tr>
<tr>
<td>24</td>
<td>239</td>
<td>620.10</td>
<td>2_Avg</td>
</tr>
<tr>
<td>25</td>
<td>672</td>
<td>979.66</td>
<td>2_Avg</td>
</tr>
<tr>
<td>26</td>
<td>142</td>
<td>810.25</td>
<td>2_Avg</td>
</tr>
<tr>
<td>27</td>
<td>738</td>
<td>670.85</td>
<td>2_Avg</td>
</tr>
<tr>
<td>28</td>
<td>496</td>
<td>753.30</td>
<td>2_Avg</td>
</tr>
<tr>
<td>29</td>
<td>332</td>
<td>540.65</td>
<td>2_Avg</td>
</tr>
<tr>
<td>30</td>
<td>308</td>
<td>688.43</td>
<td>2_Avg</td>
</tr>
<tr>
<td>31</td>
<td>784</td>
<td>505.14</td>
<td>2_Avg</td>
</tr>
<tr>
<td>32</td>
<td>162</td>
<td>650.42</td>
<td>2_Avg</td>
</tr>
<tr>
<td>33</td>
<td>289</td>
<td>1348.34</td>
<td>2_Avg</td>
</tr>
<tr>
<td>34</td>
<td>517</td>
<td>940.35</td>
<td>2_Avg</td>
</tr>
<tr>
<td>35</td>
<td>478</td>
<td>806.90</td>
<td>2_Avg</td>
</tr>
<tr>
<td>36</td>
<td>107</td>
<td>560.72</td>
<td>2_Avg</td>
</tr>
<tr>
<td>37</td>
<td>568</td>
<td>1670.80</td>
<td>3_High</td>
</tr>
<tr>
<td>38</td>
<td>285</td>
<td>2020.70</td>
<td>3_High</td>
</tr>
<tr>
<td>39</td>
<td>263</td>
<td>1893.40</td>
<td>3_High</td>
</tr>
<tr>
<td>40</td>
<td>486</td>
<td>2580.35</td>
<td>3_High</td>
</tr>
<tr>
<td>41</td>
<td>545</td>
<td>2214.80</td>
<td>3_High</td>
</tr>
</tbody>
</table>
The following PROC SURVEYSELECT statements select a probability sample of expense reports from the TravelExpense data set by using the stratified design with PPS selection within strata:

```verbatim
title1 'Travel Expense Audit';
title2 'Stratified PPS (Dollar-Unit) Sampling';
proc surveyselect data=TravelExpense method=pps n=(6 10 4)
   seed=47279 out=AuditSample;
   size Amount;
   strata Level;
run;
```

The STRATA statement names the stratification variable Level. The SIZE statement specifies the size measure variable Amount. In the PROC SURVEYSELECT statement, the METHOD=PPS option requests sample selection with probability proportional to size and without replacement. The N=(6 10 4) option specifies the stratum sample sizes, listing the sample sizes in the same order as the strata appear in the TravelExpense data set. The sample size of 6 corresponds to the first stratum, Level = ‘1_Low’; the sample size of 10 corresponds to the second stratum, Level = ‘2_Avg’; and 4 corresponds to the last stratum, Level = ‘3_High’. The SEED= option specifies 47279 as the initial seed for random number generation.

Output 102.3.2 displays the output from PROC SURVEYSELECT. A total of 20 expense reports are selected for audit. The data set AuditSample contains the sample of travel expense reports.

Output 102.3.2 Sample Selection Summary

Travel Expense Audit

Stratified PPS (Dollar-Unit) Sampling

The SURVEYSELECT Procedure

<table>
<thead>
<tr>
<th>Selection Method</th>
<th>PPS, Without Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size Measure</td>
<td>Amount</td>
</tr>
<tr>
<td>Strata Variable</td>
<td>Level</td>
</tr>
</tbody>
</table>

Input Data Set	TRAVELEXPENSE
Random Number Seed	47279
Number of Strata	3
Total Sample Size	20
Output Data Set	AUDITSAMPLE

The following PROC PRINT statements display the audit sample, which is shown in Output 102.3.3:

```verbatim
title1 'Travel Expense Audit';
title2 'Sample Selected by Stratified PPS Design';
proc print data=AuditSample;
run;
```
Example 102.4: Proportional Allocation

This example uses the Customers data set from the section “Getting Started: SURVEYSELECT Procedure” on page 8403. The data set Customers contains an Internet service provider’s current subscribers, and the service provider wants to select a sample from this population for a customer satisfaction survey. This example illustrates proportional allocation, which allocates the total sample size among the strata in proportion to the strata sizes.

The section “Getting Started: SURVEYSELECT Procedure” on page 8403 gives an example of stratified sampling, where the list of customers is stratified by State and Type. Figure 102.4 displays the strata in a table of State by Type for the 13,471 customers. There are four states and two levels of Type, forming a total of eight strata. A sample of 15 customers was selected from each stratum by using the following PROC SURVEYSELECT statements:

```plaintext
title1 'Customer Satisfaction Survey';
title2 'Stratified Sampling';
proc surveyselect data=Customers method=srs n=15
   seed=1953 out=SampleStrata;
   strata State Type;
run;
```

The STRATA statement names the stratification variables State and Type. In the PROC SURVEYSELECT statement, the N= option specifies a sample size of 15 customers in each stratum.
Instead of specifying the number of customers to select from each stratum, you can specify the total sample size and request allocation of the total sample size among the strata. The following PROC SURVEYSELECT statements request proportional allocation, which allocates the total sample size in proportion to the stratum sizes:

```sas
title1 'Customer Satisfaction Survey';
title2 'Proportional Allocation';
proc surveyselect data=Customers n=1000
   out=SampleSizes;
   strata State Type / alloc=prop nosample;
run;
```

The STRATA statement names the stratification variables State and Type. In the STRATA statement, the ALLOC=PROP option requests proportional allocation. The NOSAMPLE option requests that no sample be selected after the procedure computes the sample size allocation. In the PROC SURVEYSELECT statement, the N= option specifies a total sample size of 1000 customers to be allocated among the strata.

Output 102.4.1 displays the output from PROC SURVEYSELECT, which summarizes the sample allocation. The total sample size of 1000 is allocated among the eight strata by using proportional allocation. The allocated sample sizes are stored in the SAS data set SampleSizes.

Output 102.4.1 Proportional Allocation Summary

Customer Satisfaction Survey

Proportional Allocation

The **SURVEYSELECT** Procedure

<table>
<thead>
<tr>
<th>Allocation</th>
<th>Proportional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strata Variables</td>
<td>State Type</td>
</tr>
</tbody>
</table>

- Input Data Set: CUSTOMERS
- Number of Strata: 8
- Total Sample Size: 1000
- Allocation Output Data Set: SAMPLESIZES

The following PROC PRINT statements display the allocation output data set SampleSizes, which is shown in Output 102.4.2:

```sas
title1 'Customer Satisfaction Survey';
title2 'Proportional Allocation';
proc print data=SampleSizes;
run;
```
Chapter 102: The SURVEYSELECT Procedure

Output 102.4.2 Stratum Sample Sizes

Customer Satisfaction Survey
Proportional Allocation

<table>
<thead>
<tr>
<th>Obs</th>
<th>State</th>
<th>Type</th>
<th>Total</th>
<th>AllocProportion</th>
<th>SampleSize</th>
<th>ActualProportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AL</td>
<td>New</td>
<td>1238</td>
<td>0.09190</td>
<td>92</td>
<td>0.092</td>
</tr>
<tr>
<td>2</td>
<td>AL</td>
<td>Old</td>
<td>706</td>
<td>0.05241</td>
<td>52</td>
<td>0.052</td>
</tr>
<tr>
<td>3</td>
<td>FL</td>
<td>New</td>
<td>2170</td>
<td>0.16109</td>
<td>161</td>
<td>0.161</td>
</tr>
<tr>
<td>4</td>
<td>FL</td>
<td>Old</td>
<td>1370</td>
<td>0.10170</td>
<td>102</td>
<td>0.102</td>
</tr>
<tr>
<td>5</td>
<td>GA</td>
<td>New</td>
<td>3488</td>
<td>0.25893</td>
<td>259</td>
<td>0.259</td>
</tr>
<tr>
<td>6</td>
<td>GA</td>
<td>Old</td>
<td>1940</td>
<td>0.14401</td>
<td>144</td>
<td>0.144</td>
</tr>
<tr>
<td>7</td>
<td>SC</td>
<td>New</td>
<td>1684</td>
<td>0.12501</td>
<td>125</td>
<td>0.125</td>
</tr>
<tr>
<td>8</td>
<td>SC</td>
<td>Old</td>
<td>875</td>
<td>0.06495</td>
<td>65</td>
<td>0.065</td>
</tr>
</tbody>
</table>

The output data set SampleSizes includes one observation for each of the eight strata, which are identified by the stratification variables State and Type. The variable Total contains the number of sampling units in the stratum, and the variable AllocProportion contains the proportion of the total sample size to allocate to the stratum. The variable SampleSize contains the allocated stratum sample size. For the first stratum (State='AL' and Type='New'), the total number of sampling units is 1238 customers, the allocation proportion is 0.09190, and the allocated sample size is 92 customers. The sum of the allocated sample sizes equals the requested total sample size of 1000 customers.

The output data set also includes the variable ActualProportion, which contains actual stratum proportions of the total sample size. The actual proportion for a stratum is the stratum sample size divided by the total sample size. For the first stratum (State='AL' and Type='New'), the actual proportion is 0.092, while the allocation proportion is 0.09190. The target sample sizes computed from the allocation proportions are often not integers, and PROC SURVEYSELECT uses a rounding algorithm to obtain integer sample sizes and maintain the requested total sample size. Due to rounding and other restrictions, the actual proportions can differ from the target allocation proportions. For more information, see the section “Sample Size Allocation” on page 8450.

If you want to use the allocated sample sizes in a later invocation of PROC SURVEYSELECT, you can name the allocation data set in the N=SAS-data-set option, as shown in the following PROC SURVEYSELECT statements:

```sas
title1 'Customer Satisfaction Survey';
title2 'Stratified Sampling';
proc surveyselect data=Customers method=srs n=SampleSizes seed=1953 out=SampleStrata;
   strata State Type;
run;
```
References

Subject Index

allocation
 of sample size (SURVEYSELECT), 8403, 8434, 8450

Bernoulli sampling
 SURVEYSELECT procedure, 8444

Brewer’s selection method
 SURVEYSELECT procedure, 8449, 8468

Chromy’s selection method
 SURVEYSELECT procedure, 8443, 8447

cluster sampling
 SURVEYSELECT procedure, 8431, 8441

clusters
 SURVEYSELECT procedure, 8402, 8431

control sorting
 SURVEYSELECT procedure, 8410, 8430, 8439, 8465

dollar-unit sampling
 SURVEYSELECT procedure, 8471

Hanurav-Vijayan selection method
 SURVEYSELECT procedure, 8445

initial seed
 SURVEYSELECT procedure, 8428

joint selection probabilities
 SURVEYSELECT procedure, 8416

margin of error
 SURVEYSELECT procedure, 8452

missing values
 SURVEYSELECT procedure, 8438

multistage sampling
 SURVEYSELECT procedure, 8402

Murthy’s selection method
 SURVEYSELECT procedure, 8449

Neyman allocation
 SURVEYSELECT procedure, 8435, 8452

optimal allocation
 SURVEYSELECT procedure, 8435, 8451

Poisson sampling
 SURVEYSELECT procedure, 8444

population
 SURVEYSELECT procedure, 8402

PPS sampling
 SURVEYSELECT procedure, 8402, 8433, 8441

PPS sampling, with replacement
 SURVEYSELECT procedure, 8446

PPS sampling, without replacement
 SURVEYSELECT procedure, 8445

PPS sequential sampling
 SURVEYSELECT procedure, 8447

PPS systematic sampling
 SURVEYSELECT procedure, 8447

probability sampling
 SURVEYSELECT procedure, 8402

proportional allocation
 SURVEYSELECT procedure, 8435, 8451, 8474

random sampling
 SURVEYSELECT procedure, 8402

replicated sampling
 SURVEYSELECT procedure, 8403, 8425, 8465

replication, see replicated sampling

Sampford’s selection method
 SURVEYSELECT procedure, 8450

sample
 SURVEYSELECT procedure, 8402

sample allocation
 SURVEYSELECT procedure, 8403, 8434, 8450

sample design
 SURVEYSELECT procedure, 8402

sample selection
 SURVEYSELECT procedure, 8402

sample selection methods
 SURVEYSELECT procedure, 8417, 8440

sample size
 SURVEYSELECT procedure, 8427

sample size allocation
 SURVEYSELECT procedure, 8403, 8434, 8450

sampling
 SURVEYSELECT procedure, 8402

sampling frame
 SURVEYSELECT procedure, 8402, 8415

sampling rate
 SURVEYSELECT procedure, 8425

sampling units
 SURVEYSELECT procedure, 8402, 8431, 8441

sampling weights
 SURVEYSELECT procedure, 8405

sampling with replacement
 SURVEYSELECT procedure, 8441
sampling without replacement
 SURVEYSELECT procedure, 8441
seed
 initial (SURVEYSELECT), 8428
sequential random sampling
 SURVEYSELECT procedure, 8443, 8465
serpentine sorting
 SURVEYSELECT procedure, 8439
simple random sampling
 SURVEYSELECT procedure, 8404, 8441
size measures
 PPS sampling (SURVEYSELECT), 8433, 8468
sorting
 SURVEYSELECT procedure, 8439
strata
 SURVEYSELECT procedure, 8403, 8406, 8433
stratification, see stratified sampling
stratified sampling
 SURVEYSELECT procedure, 8403, 8406, 8433
survey sampling
 sample selection (SURVEYSELECT), 8402
 SURVEYSELECT procedure, 8402
survey weights, see sampling weights
 SURVEYSELECT procedure, 8402
 allocation, 8434, 8450
 allocation output data set, 8458
 Bernoulli sampling, 8444
 Brewer’s selection method, 8449, 8468
 certainty size measure, 8413
 certainty size proportion, 8414
 Chromy’s selection method, 8443, 8447
 cluster sampling, 8431
 control sorting, 8410, 8430, 8439, 8465
 displayed output, 8460
 dollar-unit sampling, 8471
 Hanurav-Vijayan selection method, 8445
 initial seed, 8428
 introductory example, 8403
 joint selection probabilities, 8416
 margin of error, 8452
 maximum size measure, 8416
 minimum size measure, 8421
 missing values, 8438
 Murthy’s selection method, 8449
 nested sorting, 8439
 Neyman allocation, 8435, 8452
 ODS table names, 8464
 optimal allocation, 8435, 8451
 output data sets, 8454, 8458
 Poisson sampling, 8444
 PPS sampling, with replacement, 8446
 PPS sampling, without replacement, 8445
 PPS sequential sampling, 8447
 PPS systematic sampling, 8447
 proportional allocation, 8435, 8451, 8474
 replicated sampling, 8403, 8425, 8467
 Sampford’s selection method, 8450
 sample output data set, 8454
 sample selection methods, 8450, 8444
 sample size, 8427
 sample size allocation, 8403, 8434, 8450
 sampling rate, 8425
 sampling units, 8431
 secondary input data set, 8454
 sequential random sampling, 8443, 8465
 serpentine sorting, 8439
 simple random sampling, 8404, 8441
 size measures, 8433, 8468
 sorting, 8439
 strata, 8406, 8433
 stratified sampling, 8403, 8406, 8433
 systematic random sampling, 8410, 8442
 unrestricted random sampling, 8442
 without-replacement sampling, 8441
 systematic random sampling
 SURVEYSELECT procedure, 8410, 8442
 unrestricted random sampling
 SURVEYSELECT procedure, 8442
 weighting, see also sampling weights
weights, see sampling weights
 with-replacement sampling
 SURVEYSELECT procedure, 8441
 without-replacement sampling
 SURVEYSELECT procedure, 8441
Syntax Index

ALLOC= option
 STRATA statement (SURVEYSELECT), 8434
ALLOC=NEYMAN option
 STRATA statement (SURVEYSELECT), 8435
ALLOC=OPTIMAL option
 STRATA statement (SURVEYSELECT), 8435
ALLOC=PROPORTIONAL option
 STRATA statement (SURVEYSELECT), 8435
ALLOC=MIN option
 STRATA statement (SURVEYSELECT), 8436
ALPHA= option
 STRATA statement (SURVEYSELECT), 8436
CERTSIZE= option
 PROC SURVEYSELECT statement, 8413
CERTSIZE=P= option
 PROC SURVEYSELECT statement, 8414
CLUSTER statement
 SURVEYSELECT procedure, 8431
CONTROL statement
 SURVEYSELECT procedure, 8430
COST= option
 STRATA statement (SURVEYSELECT), 8436
DATA= option
 PROC SURVEYSELECT statement, 8415
FREQ statement
 SURVEYSELECT procedure, 8431
ID statement
 SURVEYSELECT procedure, 8431
JTPROBS option
 PROC SURVEYSELECT statement, 8416
MARGIN= option
 STRATA statement (SURVEYSELECT), 8437
MAXSIZE= option
 PROC SURVEYSELECT statement, 8416
METHOD= option
 PROC SURVEYSELECT statement, 8417
METHOD=BERNOULLI option
 PROC SURVEYSELECT statement, 8417
METHOD=CHROMY option
 PROC SURVEYSELECT statement, 8419, 8420
METHOD=POISSON option
 PROC SURVEYSELECT statement, 8418
METHOD=PPS option
 PROC SURVEYSELECT statement, 8418
 METHOD=PPS_BREWER option
 PROC SURVEYSELECT statement, 8418
 METHOD=PPS_MURTHY option
 PROC SURVEYSELECT statement, 8418
 METHOD=PPS_SAMPFORD option
 PROC SURVEYSELECT statement, 8418
 METHOD=PPS_SEQ option
 PROC SURVEYSELECT statement, 8419
 METHOD=PPS_SYS option
 PROC SURVEYSELECT statement, 8419
 METHOD=PPS_WR option
 PROC SURVEYSELECT statement, 8419
 METHOD=SEQ option
 PROC SURVEYSELECT statement, 8419
 METHOD=SRS option
 PROC SURVEYSELECT statement, 8420
 METHOD=SYS option
 PROC SURVEYSELECT statement, 8420
 METHOD=URS option
 PROC SURVEYSELECT statement, 8421
MINSIZE= option
 PROC SURVEYSELECT statement, 8421
NMAX= option
 PROC SURVEYSELECT statement, 8422
NMIN= option
 PROC SURVEYSELECT statement, 8422
NOPRINT option
 PROC SURVEYSELECT statement, 8422
NOSAMPLE option
 STRATA statement (SURVEYSELECT), 8437
OUT= option
 PROC SURVEYSELECT statement, 8422
OUTALL option
 PROC SURVEYSELECT statement, 8423
OUTHITS option
 PROC SURVEYSELECT statement, 8423
OUTSEED option
 PROC SURVEYSELECT statement, 8424
OUTSIZE option
 PROC SURVEYSELECT statement, 8424
OUTSORT= option
 PROC SURVEYSELECT statement, 8425
PPS option
 SAMPLINGUNIT statement
 (SURVEYSELECT), 8432
PRESORTED option
 SAMPLINGUNIT statement
 (SURVEYSELECT), 8432
PROC SURVEYSELECT statement, 8411, see SURVEYSELECT procedure

RANUNI option
 PROC SURVEYSELECT statement, 8425
REPS= option
 PROC SURVEYSELECT statement, 8425

SAMPLINGUNIT statement
 SURVEYSELECT procedure, 8431
SAMPRATE= option
 PROC SURVEYSELECT statement, 8425
SAMPSIZE= option
 PROC SURVEYSELECT statement, 8427
SEED= option
 PROC SURVEYSELECT statement, 8428
SELECTALL option
 PROC SURVEYSELECT statement, 8429
SIZE statement
 SURVEYSELECT procedure, 8433
SORT= option
 PROC SURVEYSELECT statement, 8429
STATS option
 PROC SURVEYSELECT statement, 8430

STRATA statement (SURVEYSELECT), 8437
STRATA statement
 SURVEYSELECT procedure, 8433
SURVEYSELECT procedure
 syntax, 8411
SURVEYSELECT procedure, CLUSTER statement, 8431
SURVEYSELECT procedure, CONTROL statement, 8430
SURVEYSELECT procedure, FREQ statement, 8430
SURVEYSELECT procedure, ID statement, 8431
SURVEYSELECT procedure, PROC
 SURVEYSELECT statement, 8411
 CERTSIZE= option, 8413
 CERTSIZE=P= option, 8414
 DATA= option, 8415
 JTPROBS option, 8416
 MAXSIZE= option, 8416
 METHOD= option, 8417
 METHOD=BERNOULLI option, 8417
 METHOD=CHROMY option, 8419, 8420
 METHOD=POISSON option, 8418
 METHOD=PPS option, 8418
 METHOD=PPS_BREWER option, 8418
 METHOD=PPS_MURTHY option, 8418
 METHOD=PPS_SAMPFORD option, 8418
 METHOD=PPS_SEQ option, 8419
METHOD=PPS_SYS option, 8419
METHOD=PPS_WR option, 8419
METHOD=SEQ option, 8420
METHOD=SRS option, 8420
METHOD=SYS option, 8420
METHOD=URS option, 8421
MINSIZE= option, 8421
NMAX= option, 8422
NMIN= option, 8422
NOSAMPLE option, 8437
NOSIZE option, 8422
OUT= option, 8422
OUTALL option, 8423
OUTHITS option, 8423
OUTSIZE option, 8424
OUTSORT option, 8424
REPS= option, 8425
SAMPRATE= option, 8425
SAMPSPIZE= option, 8427
SEED= option, 8428
SELECTALL option, 8429
SORT= option, 8429
STATS option, 8430

SURVEYSELECT procedure, SAMPLINGUNIT statement, 8431
PPS option, 8432
PRESORTED option, 8432

SURVEYSELECT procedure, SIZE statement, 8433
SURVEYSELECT procedure, STRATA statement, 8433
ALLOC= option, 8434
ALLOC=NEYMAN option, 8435
ALLOC=OPTIMAL option, 8435
ALLOC=PROPORTIONAL option, 8435
ALLOCMIN= option, 8436
ALPHA= option, 8436
COST= option, 8436
MARGIN= option, 8437
NOSAMPLE option, 8437
STATS option, 8437
VAR= option, 8438

VAR= option
 STRATA statement (SURVEYSELECT), 8438