SAS/STAT® 13.2 User’s Guide
The SURVEYMEANS Procedure
Gain Greater Insight into Your SAS® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/bookstore
for additional books and resources.
Chapter 99
The SURVEYMEANS Procedure

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview: SURVEYMEANS Procedure</td>
<td>8154</td>
</tr>
<tr>
<td>Getting Started: SURVEYMEANS Procedure</td>
<td>8154</td>
</tr>
<tr>
<td>Simple Random Sampling</td>
<td>8154</td>
</tr>
<tr>
<td>Stratified Sampling</td>
<td>8157</td>
</tr>
<tr>
<td>Output Data Sets</td>
<td>8159</td>
</tr>
<tr>
<td>Syntax: SURVEYMEANS Procedure</td>
<td>8160</td>
</tr>
<tr>
<td>PROC SURVEYMEANS Statement</td>
<td>8161</td>
</tr>
<tr>
<td>BY Statement</td>
<td>8173</td>
</tr>
<tr>
<td>CLASS Statement</td>
<td>8173</td>
</tr>
<tr>
<td>CLUSTER Statement</td>
<td>8174</td>
</tr>
<tr>
<td>DOMAIN Statement</td>
<td>8174</td>
</tr>
<tr>
<td>POSTSTRATA Statement</td>
<td>8175</td>
</tr>
<tr>
<td>RATIO Statement</td>
<td>8177</td>
</tr>
<tr>
<td>REPWEIGHTS Statement</td>
<td>8179</td>
</tr>
<tr>
<td>STRATA Statement</td>
<td>8180</td>
</tr>
<tr>
<td>VAR Statement</td>
<td>8181</td>
</tr>
<tr>
<td>WEIGHT Statement</td>
<td>8181</td>
</tr>
<tr>
<td>Details: SURVEYMEANS Procedure</td>
<td>8182</td>
</tr>
<tr>
<td>Missing Values</td>
<td>8182</td>
</tr>
<tr>
<td>Survey Data Analysis</td>
<td>8183</td>
</tr>
<tr>
<td>Statistical Computations</td>
<td>8184</td>
</tr>
<tr>
<td>Replication Methods for Variance Estimation</td>
<td>8209</td>
</tr>
<tr>
<td>Computational Resources</td>
<td>8213</td>
</tr>
<tr>
<td>Output Data Sets</td>
<td>8215</td>
</tr>
<tr>
<td>Displayed Output</td>
<td>8218</td>
</tr>
<tr>
<td>ODS Table Names</td>
<td>8223</td>
</tr>
<tr>
<td>ODS Graphics</td>
<td>8224</td>
</tr>
<tr>
<td>Examples: SURVEYMEANS Procedure</td>
<td>8225</td>
</tr>
<tr>
<td>Example 99.1: Stratified Cluster Sample Design</td>
<td>8225</td>
</tr>
<tr>
<td>Example 99.2: Domain Analysis</td>
<td>8228</td>
</tr>
<tr>
<td>Example 99.3: Ratio Analysis</td>
<td>8232</td>
</tr>
<tr>
<td>Example 99.4: Analyzing Survey Data with Missing Values</td>
<td>8232</td>
</tr>
<tr>
<td>Example 99.5: Variance Estimation Using Replication Methods</td>
<td>8234</td>
</tr>
<tr>
<td>References</td>
<td>8237</td>
</tr>
</tbody>
</table>
Overview: SURVEYMEANS Procedure

The SURVEYMEANS procedure estimates characteristics of a survey population by using statistics computed from a survey sample. It enables you to estimate statistics such as means, totals, proportions, quantiles, geometric means, and ratios. PROC SURVEYMEANS also provides domain analysis, which computes estimates for subpopulations or domains. PROC SURVEYMEANS also estimates variances and confidence limits and performs t tests for these statistics. PROC SURVEYMEANS uses either the Taylor series (linearization) method or replication (subsampling) methods to estimate sampling errors of estimators based on complex sample designs. The sample design can be a complex survey sample design with stratification, clustering, and unequal weighting. For more information, see Fuller (2009); Lohr (2010); Särndal, Swensson, and Wretman (1992); Wolter (2007).

PROC SURVEYMEANS uses the Output Delivery System (ODS), a SAS subsystem that provides capabilities for displaying and controlling the output from SAS procedures. ODS enables you to convert any of the output from PROC SURVEYMEANS into a SAS data set. For more information, see the section “ODS Table Names” on page 8223.

PROC SURVEYMEANS uses ODS Graphics to create graphs as part of its output. For general information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific information about the statistical graphics available with the SURVEYMEANS procedure, see the PLOTS= option in the PROC SURVEYMEANS statement and the section “ODS Graphics” on page 8224.

Getting Started: SURVEYMEANS Procedure

This section demonstrates how you can use the SURVEYMEANS procedure to produce descriptive statistics from sample survey data. For a complete description of PROC SURVEYMEANS, see the section “Syntax: SURVEYMEANS Procedure” on page 8160. The section “Examples: SURVEYMEANS Procedure” on page 8225 provides more complicated examples to illustrate the applications of PROC SURVEYMEANS.

Simple Random Sampling

This example illustrates how you can use PROC SURVEYMEANS to estimate population means and proportions from sample survey data. The study population is a junior high school with a total of 4,000 students in grades 7, 8, and 9. Researchers want to know how much these students spend weekly for ice cream, on average, and what percentage of students spend at least $10 weekly for ice cream.

To answer these questions, 40 students were selected from the entire student population by using simple random sampling (SRS). Selection by simple random sampling means that all students have an equal chance of being selected and no student can be selected more than once. Each student selected for the sample was asked how much he or she spends for ice cream per week, on average. The SAS data set IceCream saves the responses of the 40 students:
data IceCream;
 input Grade Spending @@;
 if (Spending < 10) then Group='less';
 else Group='more';
datalines;
 7 7 7 7 8 12 9 10 7 1 7 10 7 3 8 20 8 19 7 2
 7 2 9 15 8 16 7 6 7 6 7 6 9 15 8 17 8 14 9 8
 9 8 9 7 7 3 7 12 7 4 9 14 8 18 9 9 7 2 7 1
 7 4 7 11 9 8 8 10 8 13 7 2 9 6 9 11 7 2 7 9
;

The variable Grade contains a student’s grade. The variable Spending contains a student’s response regarding how much he spends per week for ice cream, in dollars. The variable Group is created to indicate whether a student spends at least $10 weekly for ice cream: Group='more’ if a student spends at least $10, or Group='less’ if a student spends less than $10.

You can use PROC SURVEYMEANS to produce estimates for the entire student population, based on this random sample of 40 students:

ods graphics on;
title1 'Analysis of Ice Cream Spending';
title2 'Simple Random Sample Design';
proc surveymeans data=IceCream total=4000;
 var Spending Group;
run;
ods graphics off;

The PROC SURVEYMEANS statement invokes the procedure. The TOTAL=4000 option specifies the total number of students in the study population, or school. PROC SURVEYMEANS uses this total to adjust variance estimates for the effects of sampling from a finite population. The VAR statement names the variables to analyze, Spending and Group.

Figure 99.1 displays the results from this analysis. There are a total of 40 observations used in the analysis. The “Class Level Information” table lists the two levels of the variable Group. This variable is a character variable, and so PROC SURVEYMEANS provides a categorical analysis for it, estimating the relative frequency or proportion for each level. If you want a categorical analysis for a numeric variable, you can name that variable in the CLASS statement.

Figure 99.1 Analysis of Ice Cream Spending

Analysis of Ice Cream Spending
Simple Random Sample Design

The SURVEYMEANS Procedure

<table>
<thead>
<tr>
<th>Data Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class Level Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS</td>
</tr>
<tr>
<td>Variable Levels Values</td>
</tr>
<tr>
<td>Group</td>
</tr>
</tbody>
</table>
The “Statistics” table displays the estimates for each analysis variable. By default, PROC SURVEYMEANS displays the number of observations, the estimate of the mean, its standard error, and the 95% confidence limits for the mean. You can obtain other statistics by specifying the corresponding `statistic-keywords` in the PROC SURVEYMEANS statement.

The estimate of the average weekly ice cream expense is $8.75 for students at this school. The standard error of this estimate if $0.85, and the 95% confidence interval for weekly ice cream expense is from $7.04 to $10.46. The analysis variable `Group` is a character variable, and so PROC SURVEYMEANS analyzes it as categorical, estimating the relative frequency or proportion for each level or category. These estimates are displayed in the Mean column of the “Statistics” table. It is estimated that 57.5% of all students spend less than $10 weekly on ice cream, while 42.5% of the students spend at least $10 weekly. The standard error of each estimate is 7.9%.

When ODS Graphics is enabled, PROC SURVEYMEANS also displays plots that depict the distribution of the continuous variables. Figure 99.2 displays such a plot for the variable Spending.

Figure 99.2 Distribution of Spending
Stratified Sampling

Suppose that the sample of students described in the previous section was actually selected by using stratified random sampling. In stratified sampling, the study population is divided into nonoverlapping strata, and samples are selected from each stratum independently.

The list of students in this junior high school was stratified by grade, yielding three strata: grades 7, 8, and 9. A simple random sample of students was selected from each grade. Table 99.1 shows the total number of students in each grade.

Table 99.1 Number of Students by Grade

<table>
<thead>
<tr>
<th>Grade</th>
<th>Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1,824</td>
</tr>
<tr>
<td>8</td>
<td>1,025</td>
</tr>
<tr>
<td>9</td>
<td>1,151</td>
</tr>
<tr>
<td>Total</td>
<td>4,000</td>
</tr>
</tbody>
</table>

To analyze this stratified sample, you need to provide the population totals for each stratum to PROC SURVEYMEANS. The SAS data set StudentTotals contains the information from Table 99.1:

```sas
data StudentTotals;
  input Grade _total_;
datalines;
  7 1824
  8 1025
  9 1151
;
```

The variable Grade is the stratum identification variable, and the variable _TOTAL_ contains the total number of students for each stratum. PROC SURVEYMEANS requires you to use the variable name _TOTAL_ for the stratum population totals.

PROC SURVEYMEANS uses the stratum population totals to adjust variance estimates for the effects of sampling from a finite population. If you do not provide population totals or sampling rates, then PROC SURVEYMEANS assumes that the proportion of the population in the sample is very small, and the computation does not involve a finite population correction.

In a stratified sample design, when the sampling rates in the strata are unequal, you need to use sampling weights to reflect this information in order to produce an unbiased mean estimator. In this example, the appropriate sampling weights are reciprocals of the probabilities of selection. You can use the following DATA step to create the sampling weights:

```sas
data IceCream;
  set IceCream;
  if Grade=7 then Prob=20/1824;
  if Grade=8 then Prob=9/1025;
  if Grade=9 then Prob=11/1151;
  Weight=1/Prob;
run;
```
When you use PROC SURVEYSELECT to select your sample, the procedure creates these sampling weights for you.

The following SAS statements perform the stratified analysis of the survey data:

```sas
title1 'Analysis of Ice Cream Spending';
title2 'Stratified Sample Design';
proc surveymeans data=IceCream total=StudentTotals;
   stratum Grade / list;
   var Spending Group;
   weight Weight;
run;
```

The PROC SURVEYMEANS statement invokes the procedure. The DATA= option names the SAS data set `IceCream` as the input data set to be analyzed. The TOTAL= option names the data set `StudentTotals` as the input data set that contains the stratum population totals. Comparing this to the analysis in the section “Simple Random Sampling” on page 8154, notice that the TOTAL= `StudentTotals` option is used here instead of the TOTAL=4000 option. In this stratified sample design, the population totals are different for different strata, and so you need to provide them to PROC SURVEYMEANS in a SAS data set.

The STRATA statement identifies the stratification variable `Grade`. The LIST option in the STRATA statement requests that PROC SURVEYMEANS display stratum information. The WEIGHT statement tells PROC SURVEYMEANS that the variable `Weight` contains the sampling weights.

Figure 99.3 displays information about the input data set. There are three strata in the design and 40 observations in the sample. The categorical variable `Group` has two levels, ‘less’ and ‘more.’

Figure 99.4 displays information for each stratum. The table displays a stratum index and the values of the STRATA variable. The stratum index identifies each stratum by a sequentially assigned number. For each stratum, the table gives the population total (total number of students), the sampling rate, and the sample size. The stratum sampling rate is the ratio of the number of students in the sample to the number of students in the population for that stratum. The table also lists each analysis variable and the number of stratum observations for that variable. For categorical variables, the table lists each level and the number of sample observations in that level.
Figure 99.4 Stratum Information

<table>
<thead>
<tr>
<th>Stratum Index</th>
<th>Grade</th>
<th>Population Total</th>
<th>Sampling Rate</th>
<th>N Obs</th>
<th>Variable</th>
<th>Level</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>1824</td>
<td>1.10%</td>
<td>20</td>
<td>Spending</td>
<td>Group</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>less</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>more</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>1025</td>
<td>0.88%</td>
<td>9</td>
<td>Spending</td>
<td>Group</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>less</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>more</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>1151</td>
<td>0.96%</td>
<td>11</td>
<td>Spending</td>
<td>Group</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>less</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>more</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 99.5 shows the following:

- The estimate of average weekly ice cream expense is $9.14 for students in this school, with a standard error of $0.53, and a 95% confidence interval from $8.06 to $10.22.

- An estimate of 54.5% of all students spend less than $10 weekly on ice cream, and 45.5% spend more, with a standard error of 5.8%.

Figure 99.5 Analysis of Ice Cream Spending

<table>
<thead>
<tr>
<th>Variable</th>
<th>Level</th>
<th>N</th>
<th>Mean</th>
<th>Std Error of Mean</th>
<th>95% CL for Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spending</td>
<td>40</td>
<td>9.141298</td>
<td>0.531799</td>
<td>8.06377052</td>
<td>10.2188254</td>
</tr>
<tr>
<td>Group</td>
<td>less</td>
<td>23</td>
<td>0.544555</td>
<td>0.058424</td>
<td>0.42617678</td>
</tr>
<tr>
<td></td>
<td>more</td>
<td>17</td>
<td>0.455445</td>
<td>0.058424</td>
<td>0.33706769</td>
</tr>
</tbody>
</table>

Output Data Sets

PROC SURVEYMEANS uses the Output Delivery System (ODS) to create output data sets. This is a departure from older SAS procedures that provide OUTPUT statements for similar functionality. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

For example, to save the “Statistics” table shown in Figure 99.5 in the previous section in an output data set, you use the ODS OUTPUT statement as follows:

```
title1 'Analysis of Ice Cream Spending';
title2 'Stratified Sample Design';
proc surveymeans data=IceCream total=StudentTotals;
   stratum Grade / list;
   var Spending Group;
   weight Weight;
   ods output Statistics=MyStat;
run;
```
The statement

```
ods output Statistics=MyStat;
```

requests that the “Statistics” table that appears in Figure 99.5 be placed in a SAS data set MyStat.

The PRINT procedure displays observations of the data set MyStat:

```
proc print data=MyStat;
run;
```

Figure 99.6 displays the data set MyStat. The section “ODS Table Names” on page 8223 gives the complete list of tables produced by PROC SURVEYMEANS.

![Figure 99.6 Output Data Set MyStat](image)

Syntax: SURVEYMEANS Procedure

The following statements are available in the SURVEYMEANS procedure:

```
PROC SURVEYMEANS < options > < statistic-keywords > ;
    BY variables ;
    CLASS variables ;
    CLUSTER variables ;
    DOMAIN variables < variable*variable variable*variable*variable ... > < / option > ;
    POSTSTRATA variables / PSTOTAL= < option > ;
    POSTSTRATA variables / PSPCT= < option > ;
    RATIO < 'label' > variables / variables ;
    REPWEIGHTS variables < / options > ;
    STRATA variables < / option > ;
    VAR variables ;
    WEIGHT variable ;
```

The PROC SURVEYMEANS statement invokes the procedure. It optionally names the input data sets, specifies statistics for the procedure to compute, and specifies the variance estimation method. The PROC SURVEYMEANS statement is required.

The VAR statement identifies the variables to be analyzed. The CLASS statement identifies numeric variables that are to be analyzed as categorical variables. The STRATA statement lists the variables that form the strata in a stratified sample design. The CLUSTER statement specifies cluster identification variables in a clustered sample design. The DOMAIN statement lists the variables that define domains for subpopulation analysis.
The RATIO statement requests ratio analysis for means or proportions of analysis variables. The WEIGHT statement names the sampling weight variable. The POSTSTRATA statement lists the variables that are used to form poststrata for poststratification. The REPWEIGHTS statement names replicate weight variables for BRR or jackknife variance estimation. You can use a BY statement with PROC SURVEYMEANS to obtain separate analyses for groups defined by the BY variables.

All statements can appear multiple times except the PROC SURVEYMEANS statement, POSTSTRATA statement, and WEIGHT statement, which can appear only once.

The rest of this section gives detailed syntax information for the BY, CLASS, CLUSTER, DOMAIN, POSTSTRATA, RATIO, REPWEIGHTS, STRATA, VAR, and WEIGHT statements in alphabetical order after the description of the PROC SURVEYMEANS statement.

PROC SURVEYMEANS Statement

PROC SURVEYMEANS < options > statistic-keywords ;

The PROC SURVEYMEANS statement invokes the SURVEYMEANS procedure. In this statement, you identify the data set to be analyzed, specify the variance estimation method, and provide sample design information. The DATA= option names the input data set to be analyzed. The VARMETHOD= option specifies the variance estimation method, which is the Taylor series method by default. For Taylor series variance estimation, you can include a finite population correction factor in the analysis by providing either the sampling rate or population total with the RATE= or TOTAL= option. If your design is stratified, with different sampling rates or totals for different strata, then you can input these stratum rates or totals in a SAS data set that contains the stratification variables.

In the PROC SURVEYMEANS statement, you also can use statistic-keywords to specify statistics, such as population mean and population total, for PROC SURVEYMEANS to compute. You can also request data set summary information and sample design information.

Table 99.2 summarizes the options available in the PROC SURVEYMEANS statement.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA=</td>
<td>Sets the confidence level for confidence limits</td>
</tr>
<tr>
<td>DATA=</td>
<td>Specifies the SAS data set to be analyzed</td>
</tr>
<tr>
<td>MISSING</td>
<td>Treats missing values as a valid</td>
</tr>
<tr>
<td>NOMCAR</td>
<td>Computes variance estimates by analyzing the nonmissing values as a domain</td>
</tr>
<tr>
<td>NONSYMCL</td>
<td>Requests nonsymmetric confidence limits for quantiles</td>
</tr>
<tr>
<td>NOSPARSE</td>
<td>Suppresses the display of analysis variables with zero frequency</td>
</tr>
<tr>
<td>ORDER=</td>
<td>Specifies the order in which to report the values of the categorical variables</td>
</tr>
<tr>
<td>PERCENTILE=</td>
<td>Specifies percentiles that you want the procedure to compute</td>
</tr>
<tr>
<td>PLOTS=</td>
<td>Requests plots from ODS Graphics</td>
</tr>
<tr>
<td>QUANTILE=</td>
<td>Specifies quantiles that you want the procedure to compute</td>
</tr>
<tr>
<td>RATE=</td>
<td>Specifies the sampling rate</td>
</tr>
<tr>
<td>STACKING</td>
<td>Produces the output data sets by using a stacking table structure</td>
</tr>
<tr>
<td>TOTAL=</td>
<td>Specifies the total number of primary sampling units</td>
</tr>
<tr>
<td>VARMETHOD=</td>
<td>Specifies the variance estimation method</td>
</tr>
</tbody>
</table>
You can specify the following options in the PROC SURVEYMEANS statement:

ALPHA=
sets the confidence level for confidence limits. The value of the ALPHA= option must be between 0 and 1, and the default value is 0.05. A confidence level of α produces $100(1 - \alpha)$% confidence limits. The default of ALPHA=0.05 produces 95% confidence limits.

DATA=
specifies the SAS data set to be analyzed by PROC SURVEYMEANS. If you omit the DATA= option, the procedure uses the most recently created SAS data set.

MISSING
treats missing values as a valid (nonmissing) category for all categorical variables, which include CLASS, STRATA, CLUSTER, DOMAIN, and POSTSTRATA variables.

By default, if you do not specify the MISSING option, an observation is excluded from the analysis if it has a missing value. For more information, see the section “Missing Values” on page 8182.

NOMCAR
requests that PROC SURVEYMEANS treat missing values in the variance computation as not missing completely at random (NOMCAR) for Taylor series variance estimation. When you specify the NOMCAR option, PROC SURVEYMEANS computes variance estimates by analyzing the nonmissing values as a domain (subpopulation), where the entire population includes both nonmissing and missing domains. For more details, see the section “Missing Values” on page 8182.

By default, PROC SURVEYMEANS completely excludes an observation from analysis if that observation has a missing value, unless you specify the MISSING option for categorical variables. Note that the NOMCAR option has no effect on a categorical variable when you specify the MISSING option, which treats missing values as a valid nonmissing level.

The NOMCAR option applies only to Taylor series variance estimation. The replication methods, which you request with the VARMETHOD=BRR and VARMETHOD=JACKKNIFE options, do not use the NOMCAR option.

The NOMCAR option is not available for geometric means or poststratification.

NONSYMCL
requests nonsymmetric confidence limits for quantiles when you request quantiles with PERCENTILE= or QUANTILE= option. This option applies only to the default VARMETHOD=TAYLOR option. For more details, see the section “Confidence Limits” on page 8196.

NOSPARSE
suppresses the display of analysis variables with zero frequency. By default, the procedure displays all continuous variables and all levels of categorical variables.

ORDER=
specifies the order in which the values of the categorical variables are to be reported.

This option also determines the sort order for the levels of CLUSTER and DOMAIN variables and controls STRATA variable levels in the “Stratum Information” table.

The following shows how PROC SURVEYMEANS interprets values of the ORDER= option:
DATA orders values according to their order in the input data set.

FORMATTED orders values by their formatted values. This order is operating environment dependent. By default, the order is ascending.

INTERNAL orders values by their unformatted values, which yields the same order that the SORT procedure does. This order is operating environment dependent.

By default, ORDER=INTERNAL. For ORDER=FORMATTED and ORDER=INTERNAL, the sort order is machine-dependent.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

PERCENTILE=(values) specifies percentiles you want the procedure to compute. You can separate values with blanks or commas. Each value must be between 0 and 100. You can also use the statistic-keywords DECILES, MEDIAN, Q1, Q3, and QUARTILES to request common percentiles.

PROC SURVEYMEANS uses Woodruff’s method (Dorfman and Valliant 1993; Särndal, Swensson, and Wretman 1992; Francisco and Fuller 1991) to estimate the variances of quantiles. For more details, see the section “Quantiles” on page 8194.

PLOTS < (global-plot-options) >= plot-request < (plot-option) > controls the plots that are produced through ODS Graphics.

A plot-request identifies the plot, and a plot-option controls the appearance and content of the plot. You can specify plot-options in parentheses after a plot-request. A global-plot-option applies to all plots for which it is available. You can specify global-plot-options in parentheses after the PLOTS option.

When you specify only one plot-request, you can omit the parentheses around it. Here are a few examples of requesting plots:

```plaintext
plots=all
plots(unpack)=summary
plots=(summary(unpack) domain)
plots=boxplot
plots=(domain(packvar) histogram)
```

You can suppress default plots and request specific plots by specifying the PLOTS(ONLY)= option; PLOTS(ONLY)=(plot-requests) produces only the plots that are specified as plot-requests.

ODS Graphics must be enabled before you can request plots. For example:

```plaintext
ods graphics on;
proc surveymeans plots=boxplot;
   variable income;
run;
ods graphics off;
```
For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

When ODS Graphics is enabled but you do not specify the PLOTS= option, PROC SURVEYMEANS produces summary plots, and it also produces domain plots when you specify a DOMAIN statement. You can suppress all plots by specifying PLOTS=NONE.

For a continuous analytical variable, PROC SURVEYMEANS provides a summary plot, which contains a box plot and a histogram plot. For a categorical variable, PROC SURVEYFREQ provides corresponding plots for it.

For general information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.”

Global Plot Option

A global-plot-option applies to all plots for which the option is available. You can specify the following global-plot-options:

ONLY

suppresses the default plots and requests only the plots that are specified as plot-requests.

NBINS=value

specifies the number of bins in a histogram plot. If you do not specify this option, then by default the number of bins is determined by the method of Terrell and Scott (1985).

UNPACK

requests that the procedure create a histogram with overlaid densities and a box plot along with a confidence interval band separately.

Plot Requests

You can specify the following plot-requests:

ALL

requests all appropriate plots.

BOXPLOT | BOX

requests a box plot for continuous variables.

DOMAIN < (plot-options)>

requests box plots for domain statistics for each domain definition. By default, the procedure plots each domain in a single panel for all continuous analysis variables. This plot is produced by default if you specify a DOMAIN statement. You can specify the following plot-options:

EXCLUDE

requests that the procedure create box plots for every domain level of a domain but exclude the box plot for the full sample. By default, the box plot includes the full sample box plot.

PACKDOMAIN

requests box plots for all domain definitions in one panel for each analytical variable.
PACKVAR
requests box plots for all analytical variables in one panel for each domain definition. This is the default when you do not specify the UNPACK option.

UNPACK
requests a box plot for each domain and for each analytical variable in a single panel.

HISTOGRAM < (plot-option)>
HIST < (plot-option)>
requests a histogram with overlaid normal and kernel densities. You can specify the following plot-option:

NBINS=value
specifies the number of bins in a histogram plot. If you do not specify this option, then by default the number of bins is determined by the method of Terrell and Scott (1985).

NONE
suppresses all plots.

SUMMARY < (plot-options)>
requests that a histogram and a box plot be displayed together in a single panel, sharing the same X axis. This packed plot is produced by default. You can specify the following plot-options:

NBINS=value
specifies the number of bins in a histogram plot. If you do not specify this option, then by default the number of bins is determined by the method of Terrell and Scott (1985).

UNPACK
requests that a histogram with overlaid densities be displayed in one panel and a box plot along with a confidence interval band be displayed separately. Note that specifying PLOTS(ONLY)=SUMMARY(UNPACK) is exactly the same as specifying PLOTS(ONLY)=(BOX HISTOGRAM).

PLOTS=SUMMARY overwrites the PLOTS=BOX and the PLOTS=HISTOGRAM plot-requests. That is, if you do not specify the UNPACK option, PROC SURVEYMEANS does not display a histogram plot or a box plot by itself when PLOTS=SUMMARY is specified.

QUANTILE=(values)
specifies quantiles you want the procedure to compute. You can separate values with blanks or commas. Each value must be between 0 and 1. You can also use the statistic-keywords DECILES, MEDIAN, Q1, Q3, and QUARTILES to request common quantiles.

PROC SURVEYMEANS uses Woodruff’s method (Dorfman and Valliant 1993; Särndal, Swensson, and Wretman 1992; Francisco and Fuller 1991) to estimate the variances of quantiles. For more details, see the section “Quantiles” on page 8194.

RATE=value | SAS-data-set
R=value | SAS-data-set
specifies the sampling rate as a nonnegative value, or specifies an input data set that contains the stratum sampling rates. The procedure uses this information to compute a finite population correction for Taylor series variance estimation. The procedure does not use the RATE= option for BRR or jackknife variance estimation, which you request with the VARMETHOD=BRR or VARMETHOD=JACKKNIFE option.
If your sample design has multiple stages, you should specify the first-stage sampling rate, which is the ratio of the number of PSUs selected to the total number of PSUs in the population.

For a nonstratified sample design, or for a stratified sample design with the same sampling rate in all strata, you should specify a nonnegative value for the RATE= option. If your design is stratified with different sampling rates in the strata, then you should name a SAS data set that contains the stratification variables and the sampling rates. For more details, see the section “Specification of Population Totals and Sampling Rates” on page 8183.

The value in the RATE= option or the values of _RATE_ in the secondary data set must be nonnegative numbers. You can specify value as a number between 0 and 1. Or you can specify value in percentage form as a number between 1 and 100, and PROC SURVEYMEANS converts that number to a proportion. The procedure treats the value 1 as 100% instead of 1%.

If you do not specify the TOTAL= or RATE= option, then the Taylor series variance estimation does not include a finite population correction. You cannot specify both the TOTAL= and RATE= options.

STACKING

requests that the procedure produce the output data sets by using a stacking table structure, which was the default before SAS 9. The new default is to produce a rectangular table structure in the output data sets.

A rectangular structure creates one observation for each analysis variable in the data set. A stacking structure creates only one observation in the output data set for all analysis variables.

The STACKING option affects the following tables:

- Domain
- Ratio
- Statistics
- StrataInfo

For more details, see the section “Rectangular and Stacking Structures in an Output Data Set” on page 8216.

TOTAL=value | SAS-data-set

N=value | SAS-data-set

specifies the total number of primary sampling units in the study population as a positive value, or specifies an input data set that contains the stratum population totals. The procedure uses this information to compute a finite population correction for Taylor series variance estimation. The procedure does not use the TOTAL= option for BRR or jackknife variance estimation, which you request with the VARMETHOD=BRR or VARMETHOD=JACKKNIFE option.

For a nonstratified sample design, or for a stratified sample design with the same population total in all strata, you should specify a positive value for the TOTAL= option. If your sample design is stratified with different population totals in the strata, then you should name a SAS data set that contains the stratification variables and the population totals. For more details, see the section “Specification of Population Totals and Sampling Rates” on page 8183.

If you do not specify the TOTAL= or RATE= option, then the Taylor series variance estimation does not include a finite population correction. You cannot specify both the TOTAL= and RATE= options.
statistic-keywords

specifies the statistics for the procedure to compute. If you do not specify any statistic-keywords, PROC SURVEYMEANS computes the NOBS, MEAN, STDERR, and CLM statistics by default.

The statistics produced depend on the type of the analysis variable. If you name a numeric variable in the CLASS statement, then the procedure analyzes that variable as a categorical variable. The procedure always analyzes character variables as categorical. For more information, see the section “CLASS Statement” on page 8173.

PROC SURVEYMEANS computes MIN, MAX, and RANGE for numeric variables but not for categorical variables. For numeric variables, the keyword MEAN produces the mean, but for categorical variables it produces the proportion in each category or level. Also, for categorical variables, the keyword NOBS produces the number of observations for each variable level, and the keyword NMISS produces the number of missing observations for each level. If you request the keyword NCLUSTER for a categorical variable, PROC SURVEYMEANS displays for each level the number of clusters with observations in that level. PROC SURVEYMEANS computes SUMWGT in the same way for both categorical and numeric variables, as the sum of the weights over all nonmissing observations.

PROC SURVEYMEANS performs univariate analysis, analyzing each variable separately. Thus the number of nonmissing and missing observations might not be the same for all analysis variables. For more information, see the section “Missing Values” on page 8182.

The following statistics are available for ratios (which you request with a RATIO statement): N, NCLU, SUMWGT, RATIO, STDERR, DF, T, PROBT, and CLM, as shown in the following list. If no statistics are requested, the procedure computes the ratio and its standard error by default.

You can specify the following statistic-keywords:

ALL requests all available statistics except those that are associated with geometric means.

ALLGEO requests all available statistics that are associated with geometric means.

CLM requests the \(100(1 - \alpha)\%\) two-sided confidence limits for MEAN, where \(\alpha\) is determined by the ALPHA= option; the default is \(\alpha = 0.05\).

CLSUM requests the \(100(1 - \alpha)\%\) two-sided confidence limits for SUM, where \(\alpha\) is determined by the ALPHA= option; the default is \(\alpha = 0.05\).

CV requests the coefficient of variation for MEAN.

CVSUM requests the coefficient of variation for SUM.

DECILES requests the 10th through the 90th percentiles, including their standard errors and confidence limits.

DF requests the degrees of freedom for the \(t\) test.

GEOMEAN requests the geometric mean of a numeric variable that contains positive values.

GMCLM requests the \(100(1 - \alpha)\%\) two-sided confidence limits for GEOMEAN, where \(\alpha\) is determined by the ALPHA= option; the default is \(\alpha = 0.05\).

GMSTDERR requests the standard error of GEOMEAN. When you specify GEOMEAN, SURVEYMEANS procedure computes GMSTDERR by default.

LCLM requests the \(100(1 - \alpha)\%\) one-sided lower confidence limit for MEAN, where \(\alpha\) is determined by the ALPHA= option; the default is \(\alpha = 0.05\).
LCLSUM requests the $100(1 - \alpha)$% one-sided lower confidence limit for SUM, where α is determined by the ALPHA= option; the default is $\alpha = 0.05$.

LGMCLM requests the $100(1 - \alpha)$% one-sided lower confidence limit for GEOMEAN, where α is determined by the ALPHA= option; the default is $\alpha = 0.05$.

MAX requests the maximum value.

MEAN requests the mean for a numeric variable, or the proportion in each category for a categorical variable.

MEDIAN requests the median (50th percentile) for a numeric variable.

MIN requests the minimum value.

NCLUSTER requests the number of clusters.

NMISS requests the number of missing observations.

NOBS requests the number of nonmissing observations.

Q1 requests the lower quartile (25th percentile).

Q3 requests the upper quartile (75th percentile).

QUARTILES requests Q1 (25th percentile), MEDIAN (50th percentile), and Q3 (75th percentile), including their standard errors and confidence limits.

RANGE requests the range, MAX–MIN.

RATIO requests the ratio of means or proportions.

STD requests the standard deviation of SUM. When you request SUM, the procedure computes STD by default.

STDERR requests the standard error of MEAN or RATIO. When you request MEAN or RATIO, the procedure computes STDERR by default.

SUM requests the weighted sum, $\sum w_i y_i$, or estimated population total when the appropriate sampling weights are used.

SUMWGT requests the sum of the weights, $\sum w_i$.

T requests the t value and its corresponding p-value with DF degrees of freedom for $H_0 : \theta = 0$, where θ is a requested statistic.

UCLM requests the $100(1 - \alpha)$% one-sided upper confidence limit for MEAN, where α is determined by the ALPHA= option; the default is $\alpha = 0.05$.

UCLSUM requests the $100(1 - \alpha)$% one-sided upper confidence limit for SUM, where α is determined by the ALPHA= option; the default is $\alpha = 0.05$.

UGMCLM requests the $100(1 - \alpha)$% one-sided upper confidence limit for GEOMEAN, where α is determined by the ALPHA= option; the default is $\alpha = 0.05$.

VAR requests the variance of MEAN or RATIO.

VARSUM requests the variance of SUM.

For details about how PROC SURVEYMEANS computes these statistics, see the section “Statistical Computations” on page 8184.
VARMETHOD=BRR < (method-options) >

VARMETHOD=JACKKNIFE | JK < (method-options) >

VARMETHOD=TAYLOR

specifies the variance estimation method. VARMETHOD=TAYLOR requests the Taylor series method, which is the default if you do not specify the VARMETHOD= option or the REPWEIGHTS statement. VARMETHOD=BRR requests variance estimation by balanced repeated replication (BRR), and VARMETHOD=JACKKNIFE requests variance estimation by the delete-1 jackknife method.

For VARMETHOD=BRR and VARMETHOD=JACKKNIFE you can specify *method-options* in parentheses. Table 99.3 summarizes the available *method-options*.

Table 99.3 Variance Estimation Options

<table>
<thead>
<tr>
<th>VARMETHOD=</th>
<th>Variance Estimation Method</th>
<th>Method-Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRR</td>
<td>Balanced repeated replication</td>
<td>DFADJ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FAY <=value></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HADAMARD=SAS-data-set</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OUTWEIGHTS=SAS-data-set</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRINTH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REPS=number</td>
</tr>
<tr>
<td>JACKKNIFE</td>
<td>Jackknife</td>
<td>DFADJ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OUTJKCOEFS=SAS-data-set</td>
</tr>
<tr>
<td>TAYLOR</td>
<td>Taylor series linearization</td>
<td>None</td>
</tr>
</tbody>
</table>

Method-options must be enclosed in parentheses following the method keyword. For example:

```
varmethod=BRR(reps=60 outweights=myReplicateWeights)
```

The following values are available for the VARMETHOD= option:

BRR < (method-options) >

requests balanced repeated replication (BRR) variance estimation. The BRR method requires a stratified sample design with two primary sampling units (PSUs) per stratum. See the section “Balanced Repeated Replication (BRR) Method” on page 8210 for more information.

You can specify the following *method-options* in parentheses following VARMETHOD=BRR:

DFADJ

computes the degrees of freedom as the number of nonmissing strata for an analysis variable. The degrees of freedom for VARMETHOD=BRR equal the number of strata, which by default is based on all valid observations in the data set. But if you specify the DFADJ method-option, PROC SURVEYMEANS does not count any empty strata that are due to all observations containing missing values for an analysis variable.
Chapter 99: The SURVEYMEANS Procedure

See the section “Degrees of Freedom” on page 8187 for more information. See the section “Data and Sample Design Summary” on page 8218 for details about valid observations.

The DFADJ method-option has no effect on categorical variables when you specify the MISSING option, which treats missing values as a valid nonmissing level.

The DFADJ method-option cannot be used when you provide replicate weights with a REPWEIGHTS statement. When you use a REPWEIGHTS statement, the degrees of freedom equal the number of REPWEIGHTS variables (or replicates), unless you specify an alternative value in the DF= option in the REPWEIGHTS statement.

FAY <=value>
requests Fay’s method, a modification of the BRR method, for variance estimation. See the section “Fay’s BRR Method” on page 8211 for more information.

You can specify the value of the Fay coefficient, which is used in converting the original sampling weights to replicate weights. The Fay coefficient must be a nonnegative number less than 1. By default, the value of the Fay coefficient equals 0.5.

HADAMARD=SAS-data-set

names a SAS data set that contains the Hadamard matrix for BRR replicate construction. If you do not provide a Hadamard matrix with the HADAMARD= method-option, PROC SURVEYMEANS generates an appropriate Hadamard matrix for replicate construction. See the sections “Balanced Repeated Replication (BRR) Method” on page 8210 and “Hadamard Matrix” on page 8213 for details.

If a Hadamard matrix of a given dimension exists, it is not necessarily unique. Therefore, if you want to use a specific Hadamard matrix, you must provide the matrix as a SAS data set in the HADAMARD= method-option.

In the HADAMARD= input data set, each variable corresponds to a column of the Hadamard matrix, and each observation corresponds to a row of the matrix. You can use any variable names in the HADAMARD= data set. All values in the data set must equal either 1 or −1. You must ensure that the matrix you provide is indeed a Hadamard matrix—that is, $A^T A = R I$, where A is the Hadamard matrix of dimension R and I is an identity matrix. PROC SURVEYMEANS does not check the validity of the Hadamard matrix that you provide.

The HADAMARD= input data set must contain at least H variables, where H denotes the number of first-stage strata in your design. If the data set contains more than H variables, the procedure uses only the first H variables. Similarly, the HADAMARD= input data set must contain at least H observations.

If you do not specify the REPS= method-option, then the number of replicates is taken to be the number of observations in the HADAMARD= input data set.
If you specify the number of replicates—for example, REPS=nreps—then the first nreps observations in the HADAMARD= data set are used to construct the replicates.

You can specify the PRINTH option to display the Hadamard matrix that the procedure uses to construct replicates for BRR.

OUTWEIGHTS=SAS-data-set

names a SAS data set that contains replicate weights. See the section “Balanced Repeated Replication (BRR) Method” on page 8210 for information about replicate weights. See the section “Replicate Weights Output Data Set” on page 8215 for more details about the contents of the OUTWEIGHTS= data set.

The OUTWEIGHTS= *method-option* is not available when you provide replicate weights with the REPWEIGHTS statement.

PRINTH

displays the Hadamard matrix.

When you provide your own Hadamard matrix with the HADAMARD= *method-option*, only the rows and columns of the Hadamard matrix that are used by the procedure are displayed. See the sections “Balanced Repeated Replication (BRR) Method” on page 8210 and “Hadamard Matrix” on page 8213 for details.

The PRINTH *method-option* is not available when you provide replicate weights with the REPWEIGHTS statement because the procedure does not use a Hadamard matrix in this case.

REPS=number

specifies the number of replicates for BRR variance estimation. The value of number must be an integer greater than 1.

If you do not provide a Hadamard matrix with the HADAMARD= *method-option*, the number of replicates should be greater than the number of strata and should be a multiple of 4. See the section “Balanced Repeated Replication (BRR) Method” on page 8210 for more information. If a Hadamard matrix cannot be constructed for the REPS= value that you specify, the value is increased until a Hadamard matrix of that dimension can be constructed. Therefore, it is possible for the actual number of replicates used to be larger than the REPS= value that you specify.

If you provide a Hadamard matrix with the HADAMARD= *method-option*, the value of REPS= must not be less than the number of rows in the Hadamard matrix. If you provide a Hadamard matrix and do not specify the REPS= *method-option*, the number of replicates equals the number of rows in the Hadamard matrix.

If you do not specify the REPS= or HADAMARD= *method-option* and do not include a REPWEIGHTS statement, the number of replicates equals the smallest multiple of 4 that is greater than the number of strata.
If you provide replicate weights with the REPWEIGHTS statement, the procedure does not use the REPS= method-option. With a REPWEIGHTS statement, the number of replicates equals the number of REPWEIGHTS variables.

JACKKNIFE | JK <(method-options) >
requests variance estimation by the delete-1 jackknife method. See the section “Jackknife Method” on page 8211 for details. If you provide replicate weights with a REPWEIGHTS statement, VARMETHOD=JACKKNIFE is the default variance estimation method.

You can specify the following method-options in parentheses following VARMETHOD=JACKKNIFE:

DFADJ
computes the degrees of freedom as the number of nonmissing strata for an analysis variable. The degrees of freedom for VARMETHOD=JACKKNIFE equal the number of clusters (or number of observations if there is no clusters) minus the number of strata (or one if there is no strata). By default, the number of strata is based on all valid observations in the data set. But if you specify the DFADJ method-option, PROC SURVEYMEANS does not count any empty strata that are due to all observations containing missing values for an analysis variable.

See the section “Degrees of Freedom” on page 8187 for more information. See the section “Data and Sample Design Summary” on page 8218 for details about valid observations.

The DFADJ method-option has no effect on categorical variables when you specify the MISSING option, which treats missing values as a valid nonmissing level.

The DFADJ method-option cannot be used when you provide replicate weights with a REPWEIGHTS statement. When you use a REPWEIGHTS statement, the degrees of freedom equal the number of REPWEIGHTS variables (or replicates), unless you specify an alternative value in the DF= option in the REPWEIGHTS statement.

OUTJKCOEFS=SAS-data-set
names a SAS data set that contains jackknife coefficients. See the section “Jackknife Method” on page 8211 for information about jackknife coefficients. See the section “Jackknife Coefficients Output Data Set” on page 8215 for more details about the contents of the OUTJKCOEFS= data set.

OUTWEIGHTS=SAS-data-set
names a SAS data set that contains replicate weights. See the section “Jackknife Method” on page 8211 for information about replicate weights. See the section “Replicate Weights Output Data Set” on page 8215 for more details about the contents of the OUTWEIGHTS= data set.

The OUTWEIGHTS= method-option is not available when you provide replicate weights with the REPWEIGHTS statement, unless you specify a POST-STRATA statement.
requests Taylor series variance estimation. This is the default method if you do not specify the VARMETHOD= option or a REPWEIGHTS statement. See the section “Taylor Series Method” on page 8186 for more information.

BY Statement

BY variables ;

You can specify a BY statement with PROC SURVEYMEANS to obtain separate analyses of observations in groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

- Sort the data by using the SORT procedure with a similar BY statement.
- Specify the NOTSORTED or DESCENDING option in the BY statement for the SURVEYMEANS procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged in groups (according to values of the BY variables) and that these groups are not necessarily in alphabetical or increasing numeric order.
- Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

Note that using a BY statement provides completely separate analyses of the BY groups. It does not provide a statistically valid domain (subpopulation) analysis, where the total number of units in the subpopulation is not known with certainty. You should use the DOMAIN statement to obtain domain analysis. For more information about subpopulation analysis for sample survey data, see Cochran (1977).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts. For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

CLASS Statement

CLASS variables ;

The CLASS statement names variables to be analyzed as categorical variables. For categorical variables, PROC SURVEYMEANS estimates the proportion in each category or level, instead of the overall mean. PROC SURVEYMEANS always analyzes character variables as categorical. If you want categorical analysis for a numeric variable, you must include that variable in the CLASS statement.

The CLASS variables are one or more variables in the DATA= input data set. These variables can be either character or numeric. The formatted values of the CLASS variables determine the categorical variable levels. Thus, you can use formats to group values into levels. See the FORMAT procedure in the Base SAS Procedures Guide and the FORMAT statement and SAS formats in SAS Formats and Informats: Reference for more information.
When determining levels of a CLASS variable, an observation with missing values for this CLASS variable is excluded, unless you specify the **MISSING** option. For more information, see the section “**Missing Values**” on page 8182.

You can use multiple CLASS statements to specify categorical variables.

When you specify classification variables, you can use the SAS system option SUMSIZE= to limit (or to specify) the amount of memory that is available for data analysis. See the chapter on SAS system options in *SAS System Options: Reference* for a description of the SUMSIZE= option.

CLUSTER Statement

```
CLUSTER variables;
```

The CLUSTER statement names variables that identify the clusters in a clustered sample design. The combinations of categories of CLUSTER variables define the clusters in the sample. If there is a **STRATA** statement, clusters are nested within strata.

If you provide replicate weights for BRR or jackknife variance estimation with the **REPWEIGHTS** statement, you do not need to specify a CLUSTER statement.

If your sample design has clustering at multiple stages, you should identify only the first-stage clusters (primary sampling units (PSUs)), in the CLUSTER statement. See the section “**Primary Sampling Units (PSUs)**” on page 8183 for more information.

The CLUSTER variables are one or more variables in the DATA= input data set. These variables can be either character or numeric. The formatted values of the CLUSTER variables determine the CLUSTER variable levels. Thus, you can use formats to group values into levels. See the FORMAT procedure in the *Base SAS Procedures Guide* and the FORMAT statement and SAS formats in *SAS Formats and Informats: Reference* for more information.

When determining levels of a CLUSTER variable, an observation with missing values for this CLUSTER variable is excluded, unless you specify the **MISSING** option. For more information, see the section “**Missing Values**” on page 8182.

You can use multiple CLUSTER statements to specify cluster variables. The procedure uses variables from all CLUSTER statements to create clusters.

DOMAIN Statement

```
DOMAIN variables < variable variable variable variable ... > < / option >;
```

The DOMAIN statement requests analysis for domains (subpopulations) in addition to analysis for the entire study population. The DOMAIN statement names the variables that identify domains, which are called domain variables.

It is common practice to compute statistics for domains. The formation of these domains might be unrelated to the sample design. Therefore, the sample sizes for the domains are random variables. Use a DOMAIN statement to incorporate this variability into the variance estimation.
Note that a DOMAIN statement is different from a BY statement. In a BY statement, you treat the sample sizes as fixed in each subpopulation, and you perform analysis within each BY group independently. See the section “Domain Analysis” on page 8184 for more details.

Use the DOMAIN statement on the entire data set to perform a domain analysis. Creating a new data set from a single domain and analyzing that with PROC SURVEYMEANS yields inappropriate estimates of variance.

A domain variable can be either character or numeric. The procedure treats domain variables as categorical variables. If a variable appears by itself in a DOMAIN statement, each level of this variable determines a domain in the study population. If two or more variables are joined by asterisks (*), then every possible combination of levels of these variables determines a domain. The procedure performs a descriptive analysis within each domain that is defined by the domain variables.

When determining levels of a DOMAIN variable, an observation with missing values for this DOMAIN variable is excluded, unless you specify the MISSING option. For more information, see the section “Missing Values” on page 8182.

The formatted values of the domain variables determine the categorical variable levels. Thus, you can use formats to group values into levels. See the FORMAT procedure in the Base SAS Procedures Guide and the FORMAT statement and SAS formats in SAS Formats and Informats: Reference for more information.

You can specify the following option in the DOMAIN statement after a slash (/):

DFADJ

computes the degrees of freedom by using the number of non-empty strata for an analysis variable in a domain.

In a domain analysis, it is possible that some strata contain no sampling units for a specific domain. Or some strata in the domain might be empty due to missing values. By default, the procedure counts these empty strata when computing the degrees of freedom.

However, if you specify the DFADJ option, the procedure excludes any empty strata when computing the degrees of freedom. Prior to SAS 9.2, the procedure excluded empty strata by default.

The DFADJ option has no effect on categorical variables when you specify the MISSING option, which treats missing values as a valid nonmissing level.

For more information about valid observations, see the section “Data and Sample Design Summary” on page 8218. For more information about degrees of freedom, see the section “Degrees of Freedom” on page 8187.

The POSTSTRATA statement names variables that form the poststrata to adjust the sampling weight for analyzing the survey. The combinations of categories of POSTSTRATA variables define the poststrata in the sample.

The POSTSTRATA variables are one or more variables in the DATA= input data set. These variables can be either character or numeric. The formatted values of the POSTSTRATA variables determine the categorical
levels. Thus, you can use formats to group values into levels. See the FORMAT procedure in the Base SAS Procedures Guide and the FORMAT statement and SAS formats in SAS Formats and Informats: Reference for more information.

You must specify either poststratification totals or poststratification proportions, but not both, in the POSTSTRATA statement after a slash (/).

PSTOTAL= `SAS-data-set | values`
POSTTOTAL= `SAS-data-set | values`
PSCONTROL= `SAS-data-set | values`

specifies an input data set that contains the poststratum totals or specifies the population poststratum totals as positive values. The SURVEYMEANS procedure uses this information to compute weight adjustment for poststratification.

You can provide poststratification totals by specifying `PSTOTAL=`, which names a SAS data set that contains the poststratification variables and the poststratum totals. This data set is called the *poststratum total data set*.

A poststratum total data set must contain all the poststratification variables that are listed in the POSTSTRATA statement and all the variables listed in the BY statement. If there are formats associated with the POSTSTRATA variables and the BY variables, then the formats in the poststratum total data set for these variables must be consistent with those in the DATA= data set in the PROC SURVEYMEANS statement.

A poststratum total data set must have a variable named `_PSTOTAL_` that contains the poststratum totals. The value of `_PSTOTAL_` must be positive.

When poststratum levels are easy to identify, their corresponding poststratum totals can be specified as a list of positive numbers.

ORDER=FORMATTED is used to order the levels of poststratum levels.

You can separate `values` in the `PSTOTAL=` option with blanks or commas. The number of `values` must equal the number of poststrata in the data. List the `values` in the order of the corresponding poststratum level. The sum of the `values` should equal the total sampling weights.

PSPCT= `SAS-data-set | values`
POSTPCT= `SAS-data-set | values`

specifies an input data set that contains the population poststratum proportions or specifies the population poststratum proportions as positive values. The SURVEYMEANS procedure uses this information to compute weight adjustment for poststratification.

You can provide poststratification proportions by specifying `POSTPCT=`, which names a SAS data set that contains the poststratification variables and the poststratum poststratification. This data set is called the *poststratum proportion data set*.

A poststratum proportion data set must contain all the poststratification variables that are listed in the POSTSTRATA statement and all the variables listed in the BY statement. If there are formats associated with the POSTSTRATA variables and the BY variables, then the formats in the poststratum proportion data set for these variables must be consistent with those in the DATA= data set in the PROC SURVEYMEANS statement.

A poststratum proportion data set must have a variable named `_PSPCT_` that contains the poststratum proportions. The value of `_PSPCT_` must be positive.
You can provide poststratum proportions either as positive decimal numbers between 0 and 1 for all poststrata or as positive percentages that must be less than 100 for all poststrata. If any value of the proportions is greater than 1, the procedure treats all proportions as percentages instead of decimal numbers.

When poststratum levels are easy to identify, their corresponding poststratum proportions can be specified as a list of positive numbers.

ORDER=FORMATTED is used to order the levels of poststratum levels.

You can separate values in the POSTPCT= option with blanks or commas. The number of values must equal the number of poststrata in the data. List the values in the order of the corresponding poststratum level.

If you provide the proportions as decimal numbers, then the sum of these values over all poststrata must be 1.

If you provide the proportions as percentages, then the sum of these percentages over all poststrata must be 100.

You can also optionally specify the following option to create an output data set to store the poststratification weights.

OUTPSWGT= **SAS-data-set**

OUT= **SAS-data-set**

names a SAS data set to contain poststratification weights. For information about poststratification weights, see the section “Poststratification” on page 8203.

If you also specify an OUTWEIGHTS= **method-option** for VARMETHOD=BRR or VARMETHOD=JACKKNIFE in the **PROC SURVEYMEANS** statement, the OUTPSWGT= option is ignored. The poststratification weights for the full sample and the replication weights adjusted for poststratification are stored in the OUTWEIGHTS= data set.

For more information about the contents of the OUTPSWGT= data set, see the section “Poststratification Weights Output Data Set” on page 8216. For more information about the contents of the OUTWEIGHTS= data set, see the section “Replicate Weights Output Data Set” on page 8215.

RATIO Statement

RATIO <'label'> variables / variables ;

The RATIO statement requests ratio analysis for means or proportions of analysis variables. A ratio statement names the variables whose means are used as numerators or denominators in a ratio. Variables that appear before the slash (/) are called numerator variables and are used as numerators. Variables that appear after the slash (/) are called denominator variables and are used as denominators. These variables can be any number of analysis variables, either continuous or categorical, except those named in the BY, CLUSTER, STRATA, DOMAIN, POSTSTRATA, REPWEIGHTS, and WEIGHT statements.

You can optionally specify a label for each RATIO statement to identify the ratios in the output. Labels must be enclosed in single quotes.
The computation of ratios depends on whether the numerator and denominator variables are continuous or categorical.

For continuous variables, ratios are calculated from the variable means. For example, for continuous variables X, Y, Z, and T, the following RATIO statement requests that the procedure analyze the ratios \bar{x}/\bar{z}, \bar{x}/\bar{t}, \bar{y}/\bar{z}, and \bar{y}/\bar{t}:

```
ratio x y / z t;
```

If a continuous variable appears as both a numerator and a denominator variable, the ratio of this variable to itself is ignored.

For categorical variables, ratios are calculated with the proportions for the categories. For example, if the categorical variable Gender has the values ‘Male’ and ‘Female,’ with the proportions $p_m = \text{Pr}(\text{Gender}='\text{Male}')$ and $p_f = \text{Pr}(\text{Gender}='\text{Female}')$, and Y is a continuous variable, then the following RATIO statement requests that the procedure analyze the ratios p_m/p_f, p_f/p_m, \bar{y}/p_m, and \bar{y}/p_f:

```
ratio Gender y / Gender;
```

If a categorical variable appears as both a numerator and denominator variable, then the ratios of the proportions for all categories are computed, except the ratio of each category to itself.

You can have more than one RATIO statement. Each RATIO statement produces ratios independently by using its own numerator and denominator variables. Each RATIO statement also produces its own ratio analysis table.

Available statistics for a ratio are as follows:

- N, number of observations used to compute the ratio
- NCLU, number of clusters
- SUMWGT, sum of weights
- RATIO, ratio
- STDERR, standard error of ratio
- VAR, variance of ratio
- T, t-value of ratio
- PROBT, p-value of t
- DF, degrees of freedom of t
- CLM, two-sided confidence limits for ratio
- UCLM, one-sided upper confidence limit for ratio
- LCLM, one-sided lower confidence limit for ratio

The procedure calculates these statistics based on the statistic-keywords that you specify in the PROC SURVEYMEANS statement. If a statistic-keyword is not appropriate for a RATIO statement, that statistic-keyword is ignored for the ratios. If no valid statistics are requested for a RATIO statement, the procedure computes the ratio and its standard error by default.
When the means or proportions for the numerator and denominator variables in a ratio are calculated, an observation is excluded if it has a missing value for a continuous numerator or denominator variable. The procedure also excludes an observation with a missing value for a categorical numerator or denominator variable unless you specify the MISSING option.

When the denominator for a ratio is zero, then the value of the ratio is displayed as ‘–Infty’, ‘Infty’, or a missing value, depending on whether the numerator is negative, positive, or zero, respectively, and the corresponding internal value is the special missing value ‘.M’, the special missing value ‘.I’, or the usual missing value, respectively.

REPWEIGHTS Statement

```plaintext
REPWEIGHTS variables < / options > ;
```

The REPWEIGHTS statement names variables that provide replicate weights for BRR or jackknife variance estimation, which you request with the VARMETHOD=BRR or VARMETHOD=JACKKNIFE option in the PROC SURVEYMEANS statement. If you do not provide replicate weights for these methods by using a REPWEIGHTS statement, then the procedure constructs replicate weights for the analysis. See the sections “Balanced Repeated Replication (BRR) Method” on page 8210 and “Jackknife Method” on page 8211 for information about replicate weights.

Each REPWEIGHTS variable should contain the weights for a single replicate, and the number of replicates equals the number of REPWEIGHTS variables. The REPWEIGHTS variables must be numeric, and the variable values must be nonnegative numbers.

If you provide replicate weights with a REPWEIGHTS statement, you do not need to specify a CLUSTER or STRATA statement. If you use a REPWEIGHTS statement and do not specify the VARMETHOD= option in the PROC SURVEYMEANS statement, the procedure uses VARMETHOD=JACKKNIFE by default.

If you specify a REPWEIGHTS statement but do not include a WEIGHT statement, the procedure uses the average of replicate weights of each observation as the observation’s weight.

You can specify the following options in the REPWEIGHTS statement after a slash (/):

DF=<df>

specifies the degrees of freedom for the analysis. The value of <df> must be a positive number. By default, the degrees of freedom equals the number of REPWEIGHTS variables.

JKCOEFS=<value>

specifies a jackknife coefficient for VARMETHOD=JACKKNIFE. The coefficient <value> must be a nonnegative number. See the section “Jackknife Method” on page 8211 for details about jackknife coefficients.

You can use this option to specify a single value of the jackknife coefficient, which the procedure uses for all replicates. To specify different coefficients for different replicates, use the JKCOEFS=values or JKCOEFS=SAS-data-set option.

JKCOEFS=<values>

specifies jackknife coefficients for VARMETHOD=JACKKNIFE, where each coefficient corresponds to an individual replicate that is identified by a REPWEIGHTS variable. You can separate values with blanks or commas. The coefficient values must be nonnegative numbers. The number of values
must equal the number of replicate weight variables named in the REPWEIGHTS statement. List these values in the same order in which you list the corresponding replicate weight variables in the REPWEIGHTS statement.

See the section “Jackknife Method” on page 8211 for details about jackknife coefficients.

To specify different coefficients for different replicates, you can also use the JKCOEFS=SAS-data-set option. To specify a single jackknife coefficient for all replicates, use the JKCOEFS=value option.

\[\text{JKCOEFS} = \text{SAS-data-set} \]

names a SAS data set that contains the jackknife coefficients for VARMETHOD=JACKKNIFE. You provide the jackknife coefficients in the JKCOEFS= data set variable JKCoefficient. Each coefficient value must be a nonnegative number. The observations in the JKCOEFS= data set should correspond to the replicates that are identified by the REPWEIGHTS variables. Arrange the coefficients or observations in the JKCOEFS= data set in the same order in which you list the corresponding replicate weight variables in the REPWEIGHTS statement. The number of observations in the JKCOEFS= data set must not be less than the number of REPWEIGHTS variables.

See the section “Jackknife Method” on page 8211 for details about jackknife coefficients.

To specify different coefficients for different replicates, you can also use the JKCOEFS=values option. To specify a single jackknife coefficient for all replicates, use the JKCOEFS=value option.

STRATA Statement

\[\text{STRATA variables} \]

The STRATA statement specifies variables that form the strata in a stratified sample design. The combinations of categories of STRATA variables define the strata in the sample.

If your sample design has stratification at multiple stages, you should identify only the first-stage strata in the STRATA statement. See the section “Specification of Population Totals and Sampling Rates” on page 8183 for more information.

If you provide replicate weights for BRR or jackknife variance estimation with the REPWEIGHTS statement, you do not need to specify a STRATA statement.

The STRATA variables are one or more variables in the DATA= input data set. These variables can be either character or numeric. The formatted values of the STRATA variables determine the levels. Thus, you can use formats to group values into levels. See the FORMAT procedure in the *Base SAS Procedures Guide* and the FORMAT statement and SAS formats in *SAS Formats and Informats: Reference* for more information.

When determining levels of a STRATA variable, an observation with missing values for this STRATA variable is excluded, unless you specify the MISSING option. For more information, see the section “Missing Values” on page 8182.

You can use multiple STRATA statements to specify stratum variables.

You can specify the following option in the STRATA statement after a slash (/):
LIST

Displays a “Stratum Information” table, which includes values of the STRATA variables and the number of observations, number of clusters, population total, and sampling rate for each stratum. See the section “Stratum Information” on page 8218 for more details.

VAR Statement

```sas
VAR variables;
```

The VAR statement names the variables to be analyzed.

A *variable* in the VAR statement should not appear in any of the BY, CLUSTER, DOMAIN, POSTSTRATA, REPWEIGHTS, STRATA, and WEIGHT statements.

If you want a categorical analysis for a numeric variable, you must also name that variable in the CLASS statement. For categorical variables, PROC SURVEYMEANS estimates the proportion in each category or level, instead of the overall mean. Character variables are always analyzed as categorical variables. For more information, see the section “CLASS Statement” on page 8173.

When you specify a variable in a RATIO statement but not in a VAR statement, PROC SURVEYMEANS includes this variable as an analysis variable.

If you do not specify a VAR statement, but you have a RATIO statement, then PROC SURVEYMEANS analyzes only the variables in the RATIO statement.

If you do not specify a VAR statement nor a RATIO statement, then PROC SURVEYMEANS analyzes all variables in the DATA= input data set, except those named in the BY, CLUSTER, DOMAIN, POSTSTRATA, REPWEIGHTS, STRATA, and WEIGHT statements.

WEIGHT Statement

```sas
WEIGHT variable;
```

The WEIGHT statement names the variable that contains the sampling weights. This variable must be numeric, and the sampling weights must be positive numbers. If an observation has a weight that is nonpositive or missing, then the procedure omits that observation from the analysis. See the section “Missing Values” on page 8182 for more information. If you specify more than one WEIGHT statement, the procedure uses only the first WEIGHT statement and ignores the rest.

If you do not specify a WEIGHT statement but provide replicate weights with a REPWEIGHTS statement, PROC SURVEYMEANS uses the average of replicate weights of each observation as the observation’s weight.

If you do not specify a WEIGHT statement or a REPWEIGHTS statement, PROC SURVEYMEANS assigns all observations a weight of one.
Missing Values

If you have missing values in your survey data for any reason, such as nonresponse, this can compromise the quality of your survey results. If the respondents are different from the nonrespondents with regard to a survey effect or outcome, then survey estimates might be biased and cannot accurately represent the survey population. There are a variety of techniques in sample design and survey operations that can reduce nonresponse. After data collection is complete, you can use imputation to replace missing values with acceptable values, and/or you can use sampling weight adjustments to compensate for nonresponse. You should complete this data preparation and adjustment before you analyze your data with PROC SURVEYMEANS. For more information, see Cochran (1977); Kalton and Kasprzyk (1986); Brick and Kalton (1996).

If an observation has a missing value or a nonpositive value for the WEIGHT variable, then that observation is excluded from the analysis.

An observation is also excluded from the analysis if it has a missing value for any design (STRATA, CLUSTER, or POSTSTRATA) variable, unless you specify the MISSING option in the PROC SURVEYMEANS statement. If you specify the MISSING option, the procedure treats missing values as a valid (nonmissing) category for all categorical variables. An observation is also excluded from a domain analysis if it has a missing value for a DOMAIN variable that defines a domain.

By default, when computing statistics for an analysis variable, PROC SURVEYMEANS omits observations with missing values for that analysis variable. The procedure computes statistics for each variable based only on observations that have nonmissing values for that variable. This treatment is based on the assumption that the missing values are missing completely at random (MCAR). However, this assumption is sometimes not true. For example, evidence from other surveys might suggest that observations with missing values are systematically different from observations without missing values. If you believe that missing values are not missing completely at random, then you can specify the NOMCAR option to let variance estimation include these observations with missing values in the analysis variables.

Whether or not you specify the NOMCAR option, PROC SURVEYMEANS always excludes observations that have missing or invalid values for the WEIGHT, STRATA, and CLUSTER variables unless you specify the MISSING option. Similarly, the procedure always excludes observations that have missing or invalid values for DOMAIN variables in domain analysis unless you specify the MISSING option.

When you specify the NOMCAR option, the procedure treats observations with and without missing values for analysis variables as two different domains, and it performs a domain analysis in the domain of nonmissing observations.

The procedure performs univariate analysis and analyzes each VAR variable separately. Thus, the number of missing observations might be different for different variables. You can specify the keyword NMISS in the PROC SURVEYMEANS statement to display the number of missing values for each analysis variable in the “Statistics” table.

When you specify a RATIO statement, the procedure excludes any observation that has a missing value for a continuous numerator or denominator variable. The procedure also excludes an observation with a missing value for a categorical numerator or denominator variable unless you specify the MISSING option.

If you use a REPWEIGHTS statement, all REPWEIGHTS variables must contain nonmissing values.
Survey Data Analysis

Specification of Population Totals and Sampling Rates

To include a finite population correction (fpc) in Taylor series variance estimation, you can input either the sampling rate or the population total by using the RATE= or TOTAL= option in the PROC SURVEYMEANS statement. (You cannot specify both of these options in the same PROC SURVEYMEANS statement.) The RATE= and TOTAL= options apply only to Taylor series variance estimation. The procedure does not use a finite population correction for BRR or jackknife variance estimation.

If you do not specify the RATE= or TOTAL= option, the Taylor series variance estimation does not include a finite population correction. For fairly small sampling fractions, it is appropriate to ignore this correction. For more information, see Cochran (1977); Kish (1965).

If your design has multiple stages of selection and you are specifying the RATE= option, you should input the first-stage sampling rate, which is the ratio of the number of PSUs in the sample to the total number of PSUs in the study population. If you are specifying the TOTAL= option for a multistage design, you should input the total number of PSUs in the study population. See the section “Primary Sampling Units (PSUs)” on page 8183 for more details.

For a nonstratified sample design, or for a stratified sample design with the same sampling rate or the same population total in all strata, you can use the RATE=value or TOTAL=value option. If your sample design is stratified with different sampling rates or population totals in different strata, use the RATE=SAS-data-set or TOTAL=SAS-data-set option to name a SAS data set that contains the stratum sampling rates or totals. This data set is called a secondary data set, as opposed to the primary data set that you specify with the DATA= option.

The secondary data set must contain all the stratification variables listed in the STRATA statement and all the variables in the BY statement. If there are formats associated with the STRATA variables and the BY variables, then the formats must be consistent in the primary and the secondary data sets. If you specify the TOTAL=SAS-data-set option, the secondary data set must have a variable named _TOTAL_ that contains the stratum population totals. Or if you specify the RATE=SAS-data-set option, the secondary data set must have a variable named _RATE_ that contains the stratum sampling rates. If the secondary data set contains more than one observation for any one stratum, then the procedure uses the first value of _TOTAL_ or _RATE_ for that stratum and ignores the rest.

The value in the RATE= option or the values of _RATE_ in the secondary data set must be nonnegative numbers. You can specify value as a number between 0 and 1. Or you can specify value in percentage form as a number between 1 and 100, and PROC SURVEYMEANS converts that number to a proportion. The procedure treats the value 1 as 100% instead of 1%.

If you specify the TOTAL=value option, value must not be less than the sample size. If you provide stratum population totals in a secondary data set, these values must not be less than the corresponding stratum sample sizes.

Primary Sampling Units (PSUs)

When you have clusters, or primary sampling units (PSUs), in your sample design, the procedure estimates variance from the variation among PSUs when the Taylor series variance method is used. See the section “Variance and Standard Error of the Mean” on page 8186 and the section “Variance and Standard Deviation of the Total” on page 8190 for more information.
BRR or jackknife variance estimation methods draw multiple replicates (or subsamples) from the full sample by following a specific resampling scheme. These subsamples are constructed by deleting PSUs from the full sample.

If you use a REPWEIGHTS statement to provide replicate weights for BRR or jackknife variance estimation, you do not need to specify a CLUSTER statement. Otherwise, you should specify a CLUSTER statement whenever your design includes clustering at the first stage of sampling. If you do not specify a CLUSTER statement, then PROC SURVEYMEANS treats each observation as a PSU.

Domain Analysis

It is common practice to compute statistics for domains (subpopulations), in addition to computing statistics for the entire study population. Analysis for domains that uses the entire sample is called *domain analysis* (also called subgroup analysis, subpopulation analysis, or subdomain analysis). The formation of these subpopulations of interest might be unrelated to the sample design. Therefore, the sample sizes for the subpopulations might actually be random variables.

Use a DOMAIN statement to incorporate this variability into the variance estimation. Note that using a BY statement provides completely separate analyses of the BY groups. It does not provide a statistically valid subpopulation or domain analysis, where the total number of units in the subpopulation is not known with certainty.

For more detailed information about domain analysis, see Kish (1965).

Statistical Computations

The SURVEYMEANS procedure uses the Taylor series (linearization) method or replication (resampling) methods to estimate sampling errors of estimators based on complex sample designs. For more information, see Fuller (2009); Wolter (2007); Lohr (2010); Kalton (1983); Hidiroglou, Fuller, and Hickman (1980); Fuller et al. (1989); Lee, Forthofer, and Lorimor (1989); Cochran (1977); Kish (1965); Hansen, Hurwitz, and Madow (1953); Rust (1985); Dippo, Fay, and Morganstein (1984); Rao and Shao (1999); Rao, Wu, and Yue (1992); Rao and Shao (1996). You can use the VARMETHOD= option to specify a variance estimation method to use. By default, the Taylor series method is used.

The Taylor series method obtains a linear approximation for the estimator and then uses the variance estimate for this approximation to estimate the variance of the estimate itself (Woodruff 1971; Fuller 1975). When there are clusters, or PSUs, in the sample design, the procedure estimates variance from the variation among PSUs. When the design is stratified, the procedure pools stratum variance estimates to compute the overall variance estimate. For t tests of the estimates, the degrees of freedom equal the number of clusters minus the number of strata in the sample design.

For a multistage sample design, the Taylor series estimation depends only on the first stage of the sample design. Therefore, the required input includes only first-stage cluster (PSU) and first-stage stratum identification. You do not need to input design information about any additional stages of sampling. This variance estimation method assumes that the first-stage sampling fraction is small, or that the first-stage sample is drawn with replacement, as it often is in practice.

Quite often in complex surveys, respondents have unequal weights, which reflect unequal selection probabilities and adjustments for nonresponse. In such surveys, the appropriate sampling weights must be used to obtain valid estimates for the study population.
However, replication methods have recently gained popularity for estimating variances in complex survey data analysis. One reason for this popularity is the relative simplicity of replication-based estimates, especially for nonlinear estimators; another is that modern computational capacity has made replication methods feasible for practical survey analysis.

Replication methods draw multiple replicates (also called subsamples) from a full sample according to a specific resampling scheme. The most commonly used resampling schemes are the balanced repeated replication (BRR) method and the jackknife method. For each replicate, the original weights are modified for the PSUs in the replicates to create replicate weights. The population parameters of interest are estimated by using the replicate weights for each replicate. Then the variances of parameters of interest are estimated by the variability among the estimates derived from these replicates. You can use a REPWEIGHTS statement to provide your own replicate weights for variance estimation. For more information about using replication methods to analyze sample survey data, see the section “Replication Methods for Variance Estimation” on page 8209.

Definitions and Notation

For a stratified clustered sample design, together with the sampling weights, the sample can be represented by an $n \times (P + 1)$ matrix

$$(w, Y) = (w_{hij}, y_{hij}) = (w_{hij}, y_{hij}^{(1)}, y_{hij}^{(2)}, \ldots, y_{hij}^{(P)})$$

where

- $h = 1, 2, \ldots, H$ is the stratum index
- $i = 1, 2, \ldots, n_h$ is the cluster index within stratum h
- $j = 1, 2, \ldots, m_{hi}$ is the unit index within cluster i of stratum h
- $p = 1, 2, \ldots, P$ is the analysis variable number, with a total of P variables
- $n = \sum_{h=1}^{H} \sum_{i=1}^{n_h} m_{hi}$ is the total number of observations in the sample
- w_{hij} denotes the sampling weight for unit j in cluster i of stratum h
- $y_{hij} = (y_{hij}^{(1)}, y_{hij}^{(2)}, \ldots, y_{hij}^{(P)})$ are the observed values of the analysis variables for unit j in cluster i of stratum h, including both the values of numerical variables and the values of indicator variables for levels of categorical variables.

For a categorical variable C, let l denote the number of levels of C, and denote the level values as c_1, c_2, \ldots, c_l. Let $y^{(q)}_h (q \in \{1, 2, \ldots, P\})$ be an indicator variable for the category $C = c_k$ ($k = 1, 2, \ldots, l$) with the observed value in unit j in cluster i of stratum h:

$$y^{(q)}_{hij} = I_{\{C=c_k\}}(h, i, j) = \begin{cases} 1 & \text{if } C_{hij} = c_k \\ 0 & \text{otherwise} \end{cases}$$

Note that the indicator variable $y^{(q)}_{hij}$ is set to missing when C_{hij} is missing. Therefore, the total number of analysis variables, P, is the total number of numerical variables plus the total number of levels of all categorical variables.
Chapter 99: The SURVEYMEANS Procedure

The sampling rate \(f_h \) for stratum \(h \), which is used in Taylor series variance estimation, is the fraction of first-stage units (PSUs) selected for the sample. You can use the TOTAL= or RATE= option to input population totals or sampling rates. See the section “Specification of Population Totals and Sampling Rates” on page 8183 for details. If you input stratum totals, PROC SURVEYMEANS computes \(f_h \) as the ratio of the stratum sample size to the stratum total. If you input stratum sampling rates, PROC SURVEYMEANS uses these values directly for \(f_h \). If you do not specify the TOTAL= or RATE= option, then the procedure assumes that the stratum sampling rates \(f_h \) are negligible, and a finite population correction is not used when computing variances. Replication methods specified by the VARMETHOD=BRR or the VARMETHOD=JACKKNIFE option do not use this finite population correction \(f_h \).

Mean

When you specify the keyword MEAN, the procedure computes the estimate of the mean (mean per element) from the survey data. Also, the procedure computes the mean by default if you do not specify any statistic-keywords in the PROC SURVEYMEANS statement.

PROC SURVEYMEANS computes the estimate of the mean as

\[
\widehat{Y} = \left(\sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} w_{hij} y_{hij} \right) / \, w...
\]

where

\[
w... = \sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} w_{hij}
\]

is the sum of the weights over all observations in the sample.

Variance and Standard Error of the Mean

When you specify the keyword STDERR, the procedure computes the standard error of the mean. Also, the procedure computes the standard error by default if you specify the keyword MEAN, or if you do not specify any statistic-keywords in the PROC SURVEYMEANS statement. The keyword VAR requests the variance of the mean.

Taylor Series Method

When you use VARMETHOD=TAYLOR, or by default if you do not specify the VARMETHOD= option, PROC SURVEYMEANS uses the Taylor series method to estimate the variance of the mean \(\widehat{Y} \). The procedure computes the estimated variance as

\[
\widehat{V}(\widehat{Y}) = \sum_{h=1}^{H} \widehat{V}_h(\widehat{Y})
\]
where, if \(n_h > 1 \), then

\[
\hat{V}_h(\hat{Y}) = \frac{n_h(1 - f_h)}{n_h - 1} \sum_{i=1}^{n_h} (e_{hi} - \bar{e}_{hi})^2
\]

\[
e_{hi} = \left(\sum_{j=1}^{m_{hi}} w_{hij} (y_{hij} - \hat{Y}) \right) / w_{...}
\]

\[
\bar{e}_{hi} = \left(\sum_{i=1}^{n_h} e_{hi} \right) / n_h
\]

and if \(n_h = 1 \), then

\[
\hat{V}_h(\hat{Y}) = \begin{cases}
 \text{missing} & \text{if } n_{h'} = 1 \text{ for } h' = 1, 2, \ldots, H \\
 0 & \text{if } n_{h'} > 1 \text{ for some } 1 \leq h' \leq H
\end{cases}
\]

Replication Methods

When you specify `VARMETHOD=BRR` or `VARMETHOD=JACKKNIFE`, the procedure computes the variance \(\hat{V}(\hat{Y}) \) with replication methods by using the variability among replicate estimates to estimate the overall variance. See the section “Replication Methods for Variance Estimation” on page 8209 for more details.

Standard Error

The standard error of the mean is the square root of the estimated variance.

\[
\text{StdErr}(\hat{Y}) = \sqrt{\hat{V}(\hat{Y})}
\]

t Test for the Mean

If you specify the keyword T, PROC SURVEYMEANS computes the \(t \)-value for testing that the population mean equals zero, \(H_0 : \bar{Y} = 0 \). The test statistic equals

\[
t(\hat{Y}) = \hat{Y} / \text{StdErr}(\hat{Y})
\]

The two-sided \(p \)-value for this test is

\[
\text{Prob}(|T| > |t(\hat{Y})|)
\]

where \(T \) is a random variable with the \(t \) distribution with \(df \) degrees of freedom.

Degrees of Freedom

PROC SURVEYMEANS computes degrees of freedom \(df \) to obtain the \(100(1 - \alpha)\% \) confidence limits for means, proportions, totals, ratios, and other statistics. The degrees of freedom computation depends on the variance estimation method that you request. Missing values can affect the degrees of freedom computation. See the section “Missing Values” on page 8182 for details.
Taylor Series Variance Estimation
For the Taylor series method, PROC SURVEYMEANS calculates the degrees of freedom for the t test as the number of clusters minus the number of strata. If there are no clusters, then the degrees of freedom equal the number of observations minus the number of strata. If the design is not stratified, then the degrees of freedom equal the number of PSUs minus one.

If all observations in a stratum are excluded from the analysis due to missing values, then that stratum is called an *empty stratum*. Empty strata are not counted in the total number of strata for the table. Similarly, empty clusters and missing observations are not included in the total counts of cluster and observations that are used to compute the degrees of freedom for the analysis.

If you specify the MISSING option, missing values are treated as valid nonmissing levels for a categorical variable and are included in computing degrees of freedom. If you specify the NOMCAR option for Taylor series variance estimation, observations with missing values for an analysis variable are included in computing degrees of freedom.

Replicate-Based Variance Estimation
When there is a REPWEIGHTS statement, the degrees of freedom equal the number of REPWEIGHTS variables, unless you specify an alternative in the DF= option in a REPWEIGHTS statement.

For BRR or jackknife variance estimation without a REPWEIGHTS statement, by default PROC SURVEYMEANS computes the degrees of freedom by using all valid observations in the input data set. A valid observation is an observation that has a positive value of the WEIGHT variable and nonmissing values of the STRATA and CLUSTER variables unless you specify the MISSING option. See the section “Data and Sample Design Summary” on page 8218 for details about valid observations.

For BRR variance estimation (including Fay’s method) without a REPWEIGHTS statement, PROC SURVEYMEANS calculates the degrees of freedom as the number of strata. PROC SURVEYMEANS bases the number of strata on all valid observations in the data set, unless you specify the DFADJ method-option for VARMETHOD=BRR. When you specify the DFADJ option, the procedure computes the degrees of freedom as the number of nonmissing strata for an analysis variable. This excludes any empty strata that occur when observations with missing values of that analysis variable are removed.

For jackknife variance estimation without a REPWEIGHTS statement, PROC SURVEYMEANS calculates the degrees of freedom as the number of clusters (or number of observations if there are no clusters) minus the number of strata (or one if there are no strata). For jackknife variance estimation, PROC SURVEYMEANS bases the number of strata and clusters on all valid observations in the data set, unless you specify the DFADJ method-option for VARMETHOD=JACKKNIFE. When you specify the DFADJ option, the procedure computes the degrees of freedom from the number of nonmissing strata and clusters for an analysis variable. This excludes any empty strata or clusters that occur when observations with missing values of an analysis variable are removed.

The procedure displays the degrees of freedom for the t test if you specify the keyword DF in the PROC SURVEYMEANS statement.

Confidence Limits for the Mean
If you specify the keyword CLM, the procedure computes two-sided confidence limits for the mean. Also, the procedure includes the confidence limits by default if you do not specify any statistic-keywords in the PROC SURVEYMEANS statement.
The confidence coefficient is determined by the value of the ALPHA= option, which by default equals 0.05 and produces 95% confidence limits. The confidence limits are computed as

\[\hat{Y} \pm \text{StdErr}(\hat{Y}) \cdot t_{df, \alpha/2} \]

where \(\hat{Y} \) is the estimate of the mean, \(\text{StdErr}(\hat{Y}) \) is the standard error of the mean, and \(t_{df, \alpha/2} \) is the \(100(1 - \alpha/2) \) percentile of the \(t \) distribution with \(df \) calculated as in the section “\(t \) Test for the Mean” on page 8187.

If you specify the keyword UCLM, the procedure computes the one-sided upper \(100(1 - \alpha) \)% confidence limit for the mean:

\[\hat{Y} + \text{StdErr}(\hat{Y}) \cdot t_{df, \alpha} \]

If you specify the keyword LCLM, the procedure computes the one-sided lower \(100(1 - \alpha) \)% confidence limit for the mean:

\[\hat{Y} - \text{StdErr}(\hat{Y}) \cdot t_{df, \alpha} \]

Coefficient of Variation

If you specify the keyword CV, PROC SURVEYMEANS computes the coefficient of variation, which is the ratio of the standard error of the mean to the estimated mean:

\[cv(\hat{Y}) = \frac{\text{StdErr}(\hat{Y})}{\hat{Y}} \]

If you specify the keyword CVSUM, PROC SURVEYMEANS computes the coefficient of variation for the estimated total, which is the ratio of the standard deviation of the sum to the estimated total:

\[cv(Y) = \frac{\text{Std}(\hat{Y})}{\hat{Y}} \]

Proportions

If you specify the keyword MEAN for a categorical variable, PROC SURVEYMEANS estimates the proportion, or relative frequency, for each level of the categorical variable. If you do not specify any statistic-keywords in the PROC SURVEYMEANS statement, the procedure estimates the proportions for levels of the categorical variables, together with their standard errors and confidence limits.

The procedure estimates the proportion in level \(c_k \) for variable \(C \) as

\[\hat{p} = \frac{\sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} w_{hij} y_{hij}^{(q)}}{\sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} w_{hij}} \]

where \(y_{hij}^{(q)} \) is the value of the indicator function for level \(C = c_k \), defined in the section “Definitions and Notation” on page 8185, and \(y_{hij}^{(q)} \) equals 1 if the observed value of variable \(C \) equals \(c_k \), and \(y_{hij}^{(q)} \) equals 0 otherwise. Since the proportion estimator is actually an estimator of the mean for an indicator variable, the procedure computes its variance and standard error according to the method outlined in the section “Variance and Standard Error of the Mean” on page 8186. Similarly, the procedure computes confidence limits for proportions as in the section “Confidence Limits for the Mean” on page 8188.
Total

If you specify the keyword SUM, the procedure computes the estimate of the population total from the survey data. The estimate of the total is the weighted sum over the sample:

\[
\widehat{Y} = \sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} w_{hij} y_{hij}
\]

For a categorical variable level, \(\widehat{Y}\) estimates its total frequency in the population.

Variance and Standard Deviation of the Total

When you specify the keyword STD or the keyword SUM, the procedure estimates the standard deviation of the total. The keyword VARMETHOD=SOMA requests the variance of the total.

Taylor Series Method

When you use VARMETHOD=TAYLOR, or by default, PROC SURVEYMEANS uses the Taylor series method to estimate the variance of the total as

\[
\widehat{V}(\widehat{Y}) = \sum_{h=1}^{H} \widehat{V}_h(\widehat{Y})
\]

where, if \(n_h > 1\), then

\[
\widehat{V}_h(\widehat{Y}) = \frac{n_h(1 - f_h)}{n_h - 1} \sum_{i=1}^{n_h} (y_{hi} - \bar{y}_{hi})^2
\]

\[
y_{hi} = \sum_{j=1}^{m_{hi}} w_{hij} y_{hij}
\]

\[
\bar{y}_{hi} = \left(\sum_{i=1}^{n_h} y_{hi} \right) / n_h
\]

and if \(n_h = 1\), then

\[
\widehat{V}_h(\widehat{Y}) = \begin{cases}
\text{missing} & \text{if } n_{h'} = 1 \text{ for } h' = 1, 2, \ldots, H \\
0 & \text{if } n_{h'} > 1 \text{ for some } 1 \leq h' \leq H
\end{cases}
\]

Replication Methods

When you specify VARMETHOD=BRR or VARMETHOD=JACKKNIFE option, the procedure computes the variance \(\widehat{V}(\widehat{Y})\) with replication methods by measuring the variability among the estimates derived from these replicates. See the section “Replication Methods for Variance Estimation” on page 8209 for more details.

Standard Deviation

The standard deviation of the total equals

\[
\text{Std}(\widehat{Y}) = \sqrt{\widehat{V}(\widehat{Y})}
\]
Confidence Limits for the Total

If you specify the keyword CLSUM, the procedure computes confidence limits for the total. The confidence coefficient is determined by the value of the ALPHA= option, which by default equals 0.05 and produces 95% confidence limits. The confidence limits are computed as

\[
\hat{Y} \pm \text{Std}(\hat{Y}) \cdot t_{df, \alpha/2}
\]

where \(\hat{Y} \) is the estimate of the total, \(\text{Std}(\hat{Y}) \) is the estimated standard deviation, and \(t_{df, \alpha/2} \) is the 100(1−\(\alpha/2 \)) percentile of the \(t \) distribution with \(df \) calculated as described in the section “\(t \) Test for the Mean” on page 8187.

If you specify the keyword UCLSUM, the procedure computes the one-sided upper 100(1 − \(\alpha \))% confidence limit for the sum:

\[
\hat{Y} + \text{Std}(\hat{Y}) \cdot t_{df, \alpha}
\]

If you specify the keyword LCLSUM, the procedure computes the one-sided lower 100(1 − \(\alpha \))% confidence limit for the sum:

\[
\hat{Y} - \text{Std}(\hat{Y}) \cdot t_{df, \alpha}
\]

Ratio

When you use a RATIO statement, the procedure produces statistics requested by the statistic-keywords in the PROC SURVEYMEANS statement.

Suppose that you want to calculate the ratio of variable \(Y \) to variable \(X \). Let \(x_{hij} \) be the value of variable \(X \) for the \(j \)th member in cluster \(i \) in the \(h \)th stratum.

The ratio of \(Y \) to \(X \) is

\[
\hat{R} = \frac{\sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} w_{hij} y_{hij}}{\sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} w_{hij} x_{hij}}
\]

PROC SURVEYMEANS uses the Taylor series method to estimate the variance of the ratio \(\hat{R} \) as

\[
\hat{V}(\hat{R}) = \sum_{h=1}^{H} \hat{V}_h(\hat{R})
\]

where, if \(n_h > 1 \), then

\[
\hat{V}_h(\hat{R}) = \frac{n_h (1 - f_h)}{n_h - 1} \sum_{i=1}^{n_h} (\hat{g}_{hi} - \bar{g}_h)^2
\]

\[
g_{hi} = \frac{\sum_{j=1}^{m_{hi}} w_{hij} (y_{hij} - x_{hij} \hat{R})}{\sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} w_{hij} x_{hij}}
\]

\[
\bar{g}_h = \left(\sum_{i=1}^{n_h} g_{hi} \right) / n_h
\]
and if \(n_h = 1 \), then
\[
\hat{V}_h(\hat{R}) = \begin{cases}
\text{missing} & \text{if } n_{h'} = 1 \text{ for } h' = 1, 2, \ldots, H \\
0 & \text{if } n_{h'} > 1 \text{ for some } 1 \leq h' \leq H
\end{cases}
\]

The standard error of the ratio is the square root of the estimated variance:
\[
\text{StdErr}(\hat{R}) = \sqrt{\hat{V}(\hat{R})}
\]

When the denominator for a ratio is zero, then the value of the ratio is displayed as ‘–Infty’, ‘Infty’, or a missing value, depending on whether the numerator is negative, positive, or zero, respectively; and the corresponding internal value is the special missing value ‘.M’, the special missing value ‘.I’, or the usual missing value, respectively.

Domain Statistics

When you use a **DOMAIN** statement to request a domain analysis, the procedure computes the requested statistics for each domain.

For a domain \(D \), let \(I_D \) be the corresponding indicator variable:
\[
I_D(h, i, j) = \begin{cases}
1 & \text{if observation } (h, i, j) \text{ belongs to } D \\
0 & \text{otherwise}
\end{cases}
\]

Let
\[
z_{hij} = y_{hij} I_D(h, i, j) = \begin{cases}
y_{hij} & \text{if observation } (h, i, j) \text{ belongs to } D \\
0 & \text{otherwise}
\end{cases}
\]

Let
\[
v_{hij} = w_{hij} I_D(h, i, j) = \begin{cases}
w_{hij} & \text{if observation } (h, i, j) \text{ belongs to } D \\
0 & \text{otherwise}
\end{cases}
\]

The requested statistics for variable \(y \) in domain \(D \) are computed by using the new weights \(v \).

Note that \(z_{hij} \) is set to missing if \(y_{hij} \) represents a level of a categorical variable and \(y_{hij} \) is missing.

Domain Mean

The estimated mean of \(y \) in the domain \(D \) is
\[
\hat{Y}_D = \left(\sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} v_{hij} y_{hij} \right) / v_{..}
\]

where
\[
v_{..} = \sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} v_{hij}
\]

The variance of \(\hat{Y}_D \) is estimated by
\[
\hat{V}(\hat{Y}_D) = \sum_{h=1}^{H} \hat{V}_h(\hat{Y}_D)
\]
where, if \(n_h > 1 \), then

\[
\hat{V}_h(\hat{Y}_D) = \frac{n_h(1 - f_h)}{n_h - 1} \sum_{i=1}^{n_h} (r_{hi.} - \bar{r}_{h.})^2
\]

\[
r_{hi.} = \left(\sum_{j=1}^{m_{hi}} v_{hij} (h_{ij} - \hat{Y}_D) \right) / v_{..}
\]

\[
\bar{r}_{h.} = \left(\sum_{i=1}^{n_h} r_{hi.} \right) / n_h
\]

and if \(n_h = 1 \), then

\[
\hat{V}_h(\hat{Y}_D) = \begin{cases}
\text{missing} & \text{if } n_{hp} = 1 \text{ for } h' = 1, 2, \ldots, H \\
0 & \text{if } n_{hp} > 1 \text{ for some } 1 \leq h' \leq H
\end{cases}
\]

Domain Total

The estimated total in domain \(D \) is

\[
\hat{Y}_D = \sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} v_{hij} y_{hij}
\]

and its estimated variance is

\[
\hat{V}(\hat{Y}_D) = \sum_{h=1}^{H} \hat{V}_h(\hat{Y}_D)
\]

where, if \(n_h > 1 \), then

\[
\hat{V}_h(\hat{Y}_D) = \frac{n_h(1 - f_h)}{n_h - 1} \sum_{i=1}^{n_h} (z_{hi.} - \bar{z}_{h.})^2
\]

\[
z_{hi.} = \sum_{j=1}^{m_{hi}} v_{hij} z_{hij}
\]

\[
\bar{z}_{h.} = \left(\sum_{i=1}^{n_h} z_{hi.} \right) / n_h
\]

and if \(n_h = 1 \), then

\[
\hat{V}_h(\hat{Y}_D) = \begin{cases}
\text{missing} & \text{if } n_{hp} = 1 \text{ for } h' = 1, 2, \ldots, H \\
0 & \text{if } n_{hp} > 1 \text{ for some } 1 \leq h' \leq H
\end{cases}
\]
Domain Ratio

The estimated ratio of Y to X in domain D is

$$\hat{R}_D = \frac{\sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} v_{hij} y_{hij}}{\sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} v_{hij} x_{hij}}$$

and its estimated variance is

$$\hat{V}(\hat{R}_D) = \sum_{h=1}^{H} \hat{V}_h(\hat{R}_D)$$

where, if $n_h > 1$, then

$$\hat{V}_h(\hat{R}_D) = \frac{n_h (1 - \hat{f}_h)}{n_h - 1} \sum_{i=1}^{n_h} (g_{hi} - \bar{g}_{hi})^2$$

$$g_{hi} = \frac{\sum_{j=1}^{m_{hi}} v_{hij} (y_{hij} - x_{hij} \hat{R}_D)}{\sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} v_{hij} x_{hij}}$$

$$\bar{g}_{hi} = \left(\frac{\sum_{i=1}^{n_h} g_{hi}}{n_h} \right) / n_h$$

and if $n_h = 1$, then

$$\hat{V}_h(\hat{R}_D) = \begin{cases}
\text{missing} & \text{if } n_{h'} = 1 \text{ for } h' = 1, 2, \ldots, H \\
0 & \text{if } n_{h'} > 1 \text{ for some } 1 \leq h' \leq H
\end{cases}$$

For domain analysis with poststratification, see the section “Poststratification” on page 8203. For quantile estimation in a domain, see the section “Domain Quantile” on page 8198. For quantile estimation in a domain with poststratification, see the section “Domain Quantile Estimation with Poststratification” on page 8200.

Quantiles

Let Y be the variable of interest in a complex survey. Denote $F(t) = \Pr(Y \leq t)$ as the cumulative distribution function of Y. For $0 < p < 1$, the pth quantile of the population cumulative distribution function is

$$Q(p) = \inf\{y : F(y) \geq p\}$$

Estimate of Quantile

Let $\{y_{hij}, w_{hij}\}$ be the observed values for variable Y that are associated with sampling weights, where (h, i, j) are the stratum index, cluster index, and member index, respectively, as shown in the section “Definitions and Notation” on page 8185. Let $y_{(1)} < y_{(2)} < \cdots < y_{(n)}$ denote the sample order statistics for variable Y.

An estimate of quantile $Q(p)$ is

$$\hat{Q}(p) = \begin{cases}
y_{(1)} & \text{if } p < \hat{F}(y_{(1)}) \\
y_{(k)} + \frac{p - \hat{F}(y_{(k)})}{\hat{F}(y_{(k+1)}) - \hat{F}(y_{(k)})}(y_{(k+1)} - y_{(k)}) & \text{if } \hat{F}(y_{(k)}) \leq p < \hat{F}(y_{(k+1)}) \\
y_{(n)} & \text{if } p = 1
\end{cases}$$
where \(\hat{F}(t) \) is the estimated cumulative distribution for \(Y \),

\[
\hat{F}(t) = \frac{\sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} w_{hij} I(y_{hij} \leq t)}{\sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} w_{hij}}
\]

and \(I(\cdot) \) is the indicator function.

Standard Error

When you specify `VARMETHOD=TAYLOR`, or by default if you do not specify the `VARMETHOD=` option, `PROC SURVEYMEANS` uses Woodruff’s method (Dorfman and Valliant 1993; Särndal, Swensson, and Wretman 1992; Francisco and Fuller 1991) to estimate the variances of quantiles. This method first constructs a confidence interval on a quantile. Then it uses the width of the confidence interval to estimate the standard error of a quantile.

In order to estimate the variance of \(\hat{Q}(p) \), `PROC SURVEYMEANS` first estimates the variance of the estimated distribution function \(\hat{F}(\hat{Q}(p)) \) by

\[
\hat{V}(\hat{F}(\hat{Q}(p))) = \sum_{h=1}^{H} n_h (1 - f_h) \sum_{i=1}^{n_h} (e_{hi} - \bar{e}_{h...})^2
\]

where

\[
e_{hi} = \left(\sum_{j=1}^{m_{hi}} w_{hij} (I(y_{hij} \leq \hat{Q}(p)) - \hat{F}(\hat{Q}(p))) \right) / w_{...}
\]

\[
\bar{e}_{h...} = \left(\sum_{i=1}^{n_h} e_{hi...} \right) / n_h
\]

\[
w_{...} = \sum_{h=1}^{H} n_h \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} w_{hij}
\]

Then \(100(1 - \alpha)\% \) confidence limits for \(\hat{F}(\hat{Q}(p)) \) can be constructed by

\[
(\hat{p}_L, \hat{p}_U) = \left(\hat{F}(\hat{Q}(p)) - t_{df, \alpha/2} \sqrt{\hat{V}(\hat{F}(\hat{Q}(p)))}, \hat{F}(\hat{Q}(p)) + t_{df, \alpha/2} \sqrt{\hat{V}(\hat{F}(\hat{Q}(p)))} \right)
\]

where \(t_{df, \alpha/2} \) is the \(100(1 - \alpha/2) \) percentile of the \(t \) distribution with \(df \) degrees of freedom, described in the section “Degrees of Freedom” on page 8187.

When \((\hat{p}_L, \hat{p}_U) \) is out of the range of \([0,1]\), the procedure does not compute the standard error of \(\hat{Q}(p) \).

The \(\hat{p}_L \)th quantile is defined as

\[
\hat{Q}(\hat{p}_L) = \begin{cases}
 y(1) & \text{if } \hat{p}_L < \hat{F}(y(1)) \\
 y(k_L) + \frac{\hat{p}_L - \hat{F}(y(k_L))}{\hat{F}(y(k_{L+1})) - \hat{F}(y(k_L))} (y(k_{L+1}) - y(k_L)) & \text{if } \hat{F}(y(k_L)) \leq \hat{p}_L < \hat{F}(y(k_{L+1})) \\
 y(d) & \text{if } \hat{p}_L = 1
\end{cases}
\]
and the \(\hat{p}_U \)th quantile is defined as

\[
\hat{Q}(\hat{p}_U) = \begin{cases}
 y(1) & \text{if } \hat{p}_U < \hat{F}(y(1)) \\
 y(k_U) + \frac{\hat{p}_U - \hat{F}(y(k_U))}{\hat{F}(y(k_U+1)) - \hat{F}(y(k_U))} (y(k_U+1) - y(k_U)) & \text{if } \hat{F}(y(k_U)) \leq \hat{p}_U < \hat{F}(y(k_U+1)) \\
 y(d) & \text{if } \hat{p}_U = 1
\end{cases}
\]

The standard error of \(\hat{Q}(p) \) is then estimated by

\[
\hat{sdl}(\hat{Q}(p)) = \frac{\hat{Q}(\hat{p}_U) - \hat{Q}(\hat{p}_L)}{2t_{df, \alpha/2}}
\]

where \(t_{df, \alpha/2} \) is the 100(1 - \(\alpha/2 \)) percentile of the \(t \) distribution with \(df \) degrees of freedom.

When you use the replication method, PROC SURVEYMEANS uses the usual variance estimates for a quantile as described in the section “Replication Methods for Variance Estimation” on page 8209. However, you should proceed cautiously, because this variance estimator can have poor properties (Dorfman and Valliant 1993).

Confidence Limits

Symmetric 100(1 - \(\alpha \))% confidence limits are computed as

\[
\left(\hat{Q}(p) - \hat{sdl}(\hat{Q}(p)) t_{df, \alpha/2}, \hat{Q}(p) + \hat{sdl}(\hat{Q}(p)) t_{df, \alpha/2} \right)
\]

If you specify the NONSYMCL option in the PROC SURVEYMEANS statement when you use the VARMETHOD=TAYLOR option, the procedure computes 100(1 - \(\alpha \))% nonsymmetric confidence limits:

\[
\left(\hat{Q}(\hat{p}_L), \hat{Q}(\hat{p}_U) \right)
\]

Quantile Estimation with Poststratification

When you specify a POSTSTRATA statement, the quantile estimation and its variance estimation incorporate poststratification. For more information about poststratification, see the section “Poststratification” on page 8203.

For a selected sample, let \(r = 1, 2, \ldots, R \) be the poststratum index; let \(Z_1, Z_2, \ldots, Z_R \) be the population totals for each corresponding poststratum, and let \(I_r \) be the indicator variable for the poststratum \(r \) that is defined by

\[
I_r(h, i, j) = \begin{cases}
 1 & \text{if observation } (h, i, j) \text{ belongs to the } r \text{th poststratum} \\
 0 & \text{otherwise}
\end{cases}
\]

Denote the total sum of original weights in the sample for each poststratum as

\[
\psi_r = \sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} w_{hij} I_r(h, i, j)
\]
Assume that the observation \((h, i, j)\) belongs to the \(r\)th poststratum. Then the poststratification weight for the observation \((h, i, j)\) is

\[
\tilde{w}_{hij} = w_{hij} \frac{Z_r}{\Psi_r}
\]

Then the estimated cumulative distribution function of \(Y, \hat{F}(t)\) and the estimated \(p\)th quantile estimation \(\hat{Q}(p)\) can be computed as in the section “Estimate of Quantile” on page 8194 by replacing the original weights, \(w_{hij}\), with the poststratification weights, \(\tilde{w}_{hij}\).

When you specify \(\text{VARMETHOD=TAYLOR}\) (or by default), the variance of \(\hat{Q}(p)\) is estimated as in the section “Standard Error” on page 8195, except that the variance of the estimated distribution function \(\hat{F}(\hat{Q}(p))\) is computed as follows.

For each poststratum \(r = 1, 2, \ldots, r\), define

\[
\hat{\theta}^{(r)}(\hat{Q}(p)) = Z_r^{-1} \sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} I_r(h, i, j) \tilde{w}_{hij} (I(y_{hij} \leq \hat{Q}(p)) - \hat{F}(\hat{Q}(p)))
\]

where \(I(\cdot)\) is the indicator function.

Assume that the observation \((h, i, j)\) belongs to the \(r\)th poststratum. Let

\[
\tilde{y}_{hij} = I(y_{hij} \leq \hat{Q}(p)) - \hat{F}(\hat{Q}(p)) - \hat{\theta}^{(r)}(\hat{Q}(p))
\]

PROC SURVEYMEANS estimates the variance of the estimated distribution function \(\hat{F}(\hat{Q}(p))\) with poststratification by

\[
\hat{V}(\hat{F}(\hat{Q}(p))) = \sum_{h=1}^{H} \frac{n_h}{n_h - 1} \sum_{i=1}^{n_h} (u_{hi} - \bar{u}_{h..})^2
\]

where

\[
\begin{align*}
u_{hi} &= \left(\sum_{j=1}^{m_{hi}} \tilde{w}_{hij} \tilde{y}_{hij} \right) / \bar{w}_{...} \\
\bar{u}_{h..} &= \left(\sum_{i=1}^{n_h} u_{hi} \right) / n_h \\
\bar{w}_{...} &= \sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} \tilde{w}_{hij}
\end{align*}
\]
Domain Quantile

Let Y be the variable of interest in a complex survey, and let a subpopulation of interest be domain D. Denote $F_D(t)$ as the cumulative distribution function of Y in domain D. For $0 < p < 1$, the pth quantile of the population cumulative distribution function is

$$Q_D(p) = \inf \{ y : F_D(y) \geq p \}$$

Let I_D be the corresponding indicator variable:

$$I_D(h, i, j) = \begin{cases}
1 & \text{if observation } (h, i, j) \text{ belongs to } D \\
0 & \text{otherwise}
\end{cases}$$

Assume that there are a total of d observations among the n observations in the entire sample that belong to domain D. Let $y(1) < y(2) < \cdots < y(d)$ denote the order statistics of variable Y for these d observations that fall in domain D.

The cumulative distribution function of Y in domain D is estimated by

$$\hat{F}_D(t) = \frac{\sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} w_{hij} I(D(h, i, j) \leq t) I_D(h, i, j)}{\sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} w_{hij} I_D(h, i, j)}$$

and $I(\cdot)$ is the indicator function. Then the estimated quantile in domain D is

$$\hat{Q}_D(p) = \begin{cases}
y(1) & \text{if } p < \hat{F}_D(y(1)) \\
y(k) + \frac{p - \hat{F}_D(y(k))}{\hat{F}_D(y(k+1)) - \hat{F}_D(y(k))}(y(k+1) - y(k)) & \text{if } \hat{F}_D(y(k)) \leq p < \hat{F}_D(y(k+1)) \\
y(d) & \text{if } p = 1
\end{cases}$$

In order to estimate the variance for $\hat{Q}_D(p)$, PROC SURVEYMEANS first estimates the variance of the estimated distribution function $\hat{F}_D(\hat{Q}_D(p))$ in domain D. When you specify VARMETHOD=TAYLOR (or by default), the variance of $\hat{F}_D(\hat{Q}_D(p))$ is estimated by

$$\hat{V}(\hat{F}_D(\hat{Q}_D(p))) = \sum_{h=1}^{H} n_h (1 - f_h) \sum_{i=1}^{n_h} (d_{hi} - \tilde{d}_{hi})^2$$

where

$$v_{hij} = I_D(h, i, j) w_{hij}$$

$$v_{\ldots} = \sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} v_{hij}$$

$$d_{hi} = \left(\sum_{j=1}^{m_{hi}} v_{hij} (I(y_{hij} \leq \hat{Q}_D(p)) - \hat{F}_D(\hat{Q}_D(p))) \right) / v_{\ldots}$$

$$\tilde{d}_{hi} = \left(\sum_{i=1}^{n_h} d_{hi} \right) / n_h$$
Then 100(1 - \(\alpha \))% confidence limits for \(\hat{F}_D(\hat{Q}_D(p)) \) can be constructed by \((\hat{p}_{DL}, \hat{p}_{DU})\), where

\[
\hat{p}_{DL} = \hat{F}_D(\hat{Q}_D(p)) - t_{df, \alpha/2} \sqrt{\hat{V}(\hat{F}_D(\hat{Q}_D(p)))}
\]
\[
\hat{p}_{DU} = \hat{F}_D(\hat{Q}_D(p)) + t_{df, \alpha/2} \sqrt{\hat{V}(\hat{F}_D(\hat{Q}_D(p)))}
\]

and \(t_{df, \alpha/2} \) is the 100(1 - \(\alpha/2 \)) percentile of the \(t \) distribution with \(df \) degrees of freedom, described in the section “Degrees of Freedom” on page 8187. When \((\hat{p}_{DL}, \hat{p}_{DU})\) is out of the range of [0,1], PROC SURVEYMEANS does not compute the standard error of \(\hat{Q}_D(p) \).

The \(\hat{p}_{DL} \)th quantile is then estimated as

\[
\hat{Q}_D(\hat{p}_{DL}) = \begin{cases}
y(1)
& \text{if } \hat{p}_{DL} < \hat{F}_D(y(1))

y(k_L) + \frac{(\hat{p}_{DL} - \hat{F}_D(y(k_L))) (y(k_L+1) - y(k_L))}{\hat{F}_D(y(k_L+1)) - \hat{F}_D(y(k_L))}
& \text{if } \hat{F}_D(y(k_L)) \leq \hat{p}_{DL} < \hat{F}_D(y(k_L+1))

y(d)
& \text{if } \hat{p}_{DL} = 1
\end{cases}
\]

The \(\hat{p}_{DU} \)th quantile is then estimated as

\[
\hat{Q}_D(\hat{p}_{DU}) = \begin{cases}
y(1)
& \text{if } \hat{p}_{DU} < \hat{F}_D(y(1))

y(k_U) + \frac{(\hat{p}_{DU} - \hat{F}_D(y(k_U))) (y(k_U+1) - y(k_U))}{\hat{F}_D(y(k_U+1)) - \hat{F}_D(y(k_U))}
& \text{if } \hat{F}_D(y(k_U)) \leq \hat{p}_{DU} < \hat{F}_D(y(k_U+1))

y(d)
& \text{if } \hat{p}_{DU} = 1
\end{cases}
\]

The standard error of \(\hat{Q}_D(p) \) is then estimated by

\[
\hat{sd}(\hat{Q}_D(p)) = \frac{\hat{Q}_D(\hat{p}_{DU}) - \hat{Q}_D(\hat{p}_{DL})}{2t_{df, \alpha/2}}
\]

where \(t_{df, \alpha/2} \) is the 100(1 - \(\alpha/2 \)) percentile of the \(t \) distribution with \(df \) degrees of freedom.

Symmetric 100(1 - \(\alpha \))% confidence limits for \(\hat{Q}_D(p) \) are computed as

\[
\left(\hat{Q}_D(p) - \hat{sd}(\hat{Q}_D(p)) t_{df, \alpha/2}, \hat{Q}_D(p) + \hat{sd}(\hat{Q}_D(p)) t_{df, \alpha/2} \right)
\]

If you specify the NONSYMCL option in the PROC SURVEYMEANS statement, the procedure displays 100(1 - \(\alpha \))% nonsymmetric confidence limits as

\[
\left(\hat{Q}_D(\hat{p}_{DL}), \hat{Q}_D(\hat{p}_{DU}) \right)
\]
Chapter 99: The SURVEYMEANS Procedure

Domain Quantile Estimation with Poststratification

When you specify both a POSTSTRATA statement and a DOMAIN statement, the domain quantile estimation and its variance estimation incorporate poststratification. For more information about poststratification, see the section “Poststratification” on page 8203.

For a selected sample, let \(r = 1, 2, \ldots, R \) be the poststratum index, let \(Z_1, Z_2, \ldots, Z_R \) be the population totals for each corresponding poststratum, and let \(I_r \) be the indicator variable for the poststratum \(r \):

\[
I_r(h, i, j) = \begin{cases}
1 & \text{if observation } (h, i, j) \text{ belongs to the } r \text{th poststratum} \\
0 & \text{otherwise}
\end{cases}
\]

The poststratification weights, \(\tilde{w}_{hij} \), are defined as in the section “Quantile Estimation with Poststratification” on page 8196.

For domain \(D \), let \(I_D \) be the corresponding indicator variable:

\[
I_D(h, i, j) = \begin{cases}
1 & \text{if observation } (h, i, j) \text{ belongs to } D \\
0 & \text{otherwise}
\end{cases}
\]

With poststratification, for variable \(Y \), the estimated cumulative distribution in domain \(D \), \(\hat{F}_D(t) \), and its \(p \)th quantile estimation, \(\hat{Q}_D(p) \), can be computed as in the section “Domain Quantile” on page 8198 by replacing the original weights, \(w_{hij} \), with the poststratification weights, \(\tilde{w}_{hij} \). However, the variance of \(\hat{F}_D(\hat{Q}_D(p)) \), which is described in the section “Domain Quantile” on page 8198, is computed as follows when you specify the VARMETHOD=TAYLOR option (or by default).

Define

\[
\hat{\theta}_D^{(r)}(\hat{Q}_D(p)) = Z_r^{-1} \sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} I_D(h, i, j) I_r(h, i, j) \tilde{w}_{hij} (I(y_{hij} \leq \hat{Q}_D(p)) - \hat{F}_D(\hat{Q}_D(p)))
\]

\[
\hat{\theta}_D(p) = \frac{\sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} I_D(h, i, j) \tilde{w}_{hij} (I(y_{hij} \leq \hat{Q}_D(p)) - \hat{F}_D(\hat{Q}_D(p)))}{\sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} I_D(h, i, j) \tilde{w}_{hij}}
\]

Assume that the observation \((h, i, j)\) belongs to the \(r \)th poststratum. Then the variance of \(\hat{F}_D(\hat{Q}_D(p)) \) is estimated by
\[
\hat{V}(\hat{F}_D(\hat{Q}_D(p))) = \sum_{h=1}^{H} \frac{n_h(1 - f_h)}{n_h - 1} \sum_{i=1}^{n_h} (e_{hi} - \bar{e}_h)^2
\]

\[
e_{hij} = I_D(h, i, j) \left(I(y_{hij} \leq \hat{Q}_D(p)) - \hat{F}_D(\hat{Q}_D(p)) \right) - \left(I_D(h, i, j) - \hat{I}_D^{(r)}(\hat{Q}_D(p)) \right) \hat{\theta}_D(p)
\]

\[
e_{hi} = \sum_{j=1}^{m_{hi}} \tilde{w}_{hij} e_{hij} / \tilde{w}_{..}
\]

\[
\bar{e}_h = \left(\sum_{i=1}^{n_h} e_{hi} \right) / n_h
\]

Geometric Mean

For a continuous variable \(Y \) that has positive values, the SURVEYMEANS procedure can compute its geometric mean and associated standard error and confidence limits. To request these statistics, you can specify statistic-keywords such as GEOMEAN, GMSTDERR, and GMCLM.

The geometric mean of \(Y \) from a sample is computed as

\[
\hat{Y}_G = \left(\prod_{h=1}^{H} \prod_{i=1}^{n_h} \prod_{j=1}^{m_{hi}} y_{hij} w_{hij} \right)^{\frac{1}{\tilde{w}_{..}}}
\]

\[
= \exp \left(\frac{1}{\tilde{w}_{..}} \sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} w_{hij} \ln(y_{hij}) \right)
\]

where

\[
w_{..} = \sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} w_{hij}
\]

is the sum of the weights over all observations in the data set.

When you use the Taylor series method, the variance estimation for the geometric mean is computed as

\[
\hat{V}(\hat{Y}_G) = \left(\hat{Y}_G \right)^2 \sum_{h=1}^{H} \frac{n_h(1 - f_h)}{n_h - 1} \sum_{i=1}^{n_h} (r_{hi} - \bar{r}_h)^2
\]
where

\[
\begin{align*}
 r_{hi} &= \left(\frac{\sum_j w_{hij} (\ln(y_{hij}) - \ln(\hat{Y}_G))}{w_h} \right) \\
 \hat{r}_{h} &= \left(\frac{\sum_i r_{hi}}{n_h} \right)
\end{align*}
\]

The standard error of the geometric mean is the square root of the estimated variance:

\[
\text{StdErr}\left(\hat{Y}_G\right) = \sqrt{\hat{V}(\hat{Y}_G)}
\]

The confidence limits for the geometric means are computed based on the confidence limits for the log transformation of the variable \(Y \) as

\[
\left(\exp(\ln(\hat{Y}_G) - \gamma), \exp(\ln(\hat{Y}_G) + \gamma) \right)
\]

where

\[
\gamma = t_{df, \alpha/2} \times \text{StdErr(\hat{Y}_G)} / \hat{Y}_G
\]

and \(t_{df, \alpha/2} \) is the 100(1 - \(\alpha/2 \)) percentile of the \(t \) distribution, with \(df \) calculated as in the section “\(t \) Test for the Mean” on page 8187.

If you use replication methods to estimate the variance by specifying VARMETHOD=BRR or VARMETHOD=JACKKNIFE, the procedure computes the variance of a geometric means \(\hat{V}_R(\hat{Y}_G) \) by using the variability among replicate estimates to estimate the overall variance. See the section “Replication Methods for Variance Estimation” on page 8209 for more information.

Then the standard error is the square root of the estimated variance:

\[
\text{StdErr}_R(\hat{Y}_G) = \sqrt{\hat{V}_R(\hat{Y}_G)}
\]

The confidence limits for the geometric means are computed based on the confidence limits for the log transformation of the variable \(Y \) as

\[
\left(\exp(\ln(\hat{Y}_G) - \lambda), \exp(\ln(\hat{Y}_G) + \lambda) \right)
\]

where

\[
\lambda = t_{df, \alpha/2} \times \text{StdErr}_R(\hat{Y}_G) / \hat{Y}_G
\]

and \(t_{df, \alpha/2} \) is the 100(1 - \(\alpha/2 \)) percentile of the \(t \) distribution, with \(df \) calculated as in the section “\(t \) Test for the Mean” on page 8187.
Poststratification

After a probability sample is drawn and survey data are collected, researchers sometimes want to stratify the sample according to auxiliary information about the sampled population. This process is often called poststratification.

When poststratification is done properly, it can improve efficiency. It can also be used to adjust the sampling weights such that the marginal distribution of the sampling weights is in agreement with known auxiliary information from other resources, such as the census. The adjusted weight is often called the poststratification weight. It is quite common for researchers to use poststratification techniques in survey data analysis.

Poststratification is also used by epidemiologists, who frequently analyze health survey data. They often compute statistics based on a process called direct standardization, a form of poststratification. For example, certain diseases, such as cancer, are more common among older populations. Therefore, to compare the prevalence rates among geographic regions that are populated with different age groups, it is necessary to make adjustments according to such demographic categories and to compute relative prevalence rates of the diseases.

For more information about poststratification, see Fuller (2009); Lohr (2010); Wolter (2007); Rao, Yung, and Hidiroglou (2002).

After you provide the population controls for each poststratum that is defined by the poststratification variables, the SURVEYMEANS procedure creates the poststratification weights accordingly. Then the procedure computes statistics that you request by using poststratification weights.

You can save the poststratification weights in an OUTPSWGT= data set to be used in subsequent analyses.

For a selected sample, let \(p = 1, 2, \ldots, P \) be the poststratum index; let \(Z_1, Z_2, \ldots, Z_P \) be the population totals for the corresponding poststrata; and let \(I_p \) be a corresponding indicator variable for poststratum \(p \) defined by

\[
I_p(h, i, j) = \begin{cases}
1 & \text{if observation } (h, i, j) \text{ belongs to poststratum } p \\
0 & \text{otherwise}
\end{cases}
\]

Denote the total sum of original weights in the sample for each poststratum as

\[
\psi_p = \sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} w_{hij} I_p(h, i, j)
\]

Then the poststratification weight for observation \((h, i, j)\) is

\[
\tilde{w}_{hij} = \frac{Z_p}{\psi_p} w_{hij}
\]

The SURVEYMEANS procedure computes statistics by using the poststratification weights \(\tilde{w}_{hij} \) instead of the original weights \(w_{hij} \).

The standard error and confidence intervals of computed statistics are based on the estimated variances, which are computed by using either a replication method or the Taylor series method.
Replication Methods
When you specify VARMETHOD=BRR or VARMETHOD=JACKKNIFE, PROC SURVEYMEANS computes the variance of a statistic by using replication methods, as described in the section “Replication Methods for Variance Estimation” on page 8209. However, with poststratification, an extra step is needed to adjust the weights.

First, PROC SURVEYMEANS constructs a replicate and computes appropriate replicate weights for the replicate. Then, by using the poststratification control totals, the procedure adjusts these replicate weights in the same way as described previously for constructing the poststratification weights for the full sample. Finally, PROC SURVEYMEANS computes the estimate for a desired statistics by using the poststratification weights that are adjusted from the replicate weights in the current replicate. Then the final variance is estimated by the variability among replicate estimates, as described in the section “Replication Methods for Variance Estimation” on page 8209.

Taylor Series Method
When you specify VARMETHOD=TAYLOR, or by default when you do not specify the VARMETHOD= option, PROC SURVEYMEANS uses the Taylor series method to estimate the variances of requested statistics.

Variance of the Mean and Sum
The sum and mean of variable Y under poststratification are

$$
\hat{Y}^{(PS)} = \sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} \tilde{w}_{hij} y_{hij}
$$

$$
\hat{Y} = \frac{\hat{Y}^{(PS)}}{\tilde{w}_{...}}
$$

where

$$
\tilde{w}_{...} = \sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} \tilde{w}_{hij}
$$

is the sum of the poststratification weights over all observations in the sample.

For each poststratum $p = 1, 2, \ldots, P$, let the mean of variable Y be

$$
\hat{Y}^{(p)} = \left(\sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} I_p(h, i, j) \tilde{w}_{hij} y_{hij} \right) / Z_p
$$

where Z_p is the total of the poststratification weights in poststratum p.

For observation (h, i, j), assume that it belongs to the pth poststratum. Let

$$
\hat{y}_{hij} = y_{hij} - \hat{Y}^{(p)}
$$
PROC SURVEYMEANS estimates the variance of $\hat{Y}^{(PS)}$ as

$$\hat{V} \left(\hat{Y}^{(PS)} \right) = \sum_{h=1}^{H} \hat{V}_h \left(\hat{Y}^{(PS)} \right)$$

where, if $n_h > 1$, then

$$\hat{V}_h \left(\hat{Y}^{(PS)} \right) = \frac{n_h(1 - f_h)}{n_h - 1} \sum_{i=1}^{n_h} (e_{hi} - \bar{e}_{h.})^2$$

$$e_{hi} = \left(\sum_{j=1}^{m_{hi}} \tilde{w}_{hij} \tilde{y}_{hij} \right) / \bar{w}_{..}$$

$$\bar{e}_{h.} = \left(\sum_{i=1}^{n_h} e_{hi} \right) / n_h$$

and if $n_h = 1$, then

$$\hat{V}_h \left(\hat{Y}^{(PS)} \right) = \begin{cases} \text{missing} & \text{if } n_{h'} = 1 \text{ for } h' = 1, 2, \ldots, H \\ 0 & \text{if } n_{h'} > 1 \text{ for some } 1 \leq h' \leq H \end{cases}$$

PROC SURVEYMEANS estimates the variance of $\hat{Y}^{(PS)}$ as

$$\hat{V}_h \left(\hat{Y}^{(PS)} \right) = \hat{V}_h \left(\hat{Y}^{(PS)} \right) \bar{w}_{..}^2$$

Variance of the Domain Mean and Sum For a domain D, let I_D be the corresponding indicator variable:

$$I_D(h, i, j) = \begin{cases} 1 & \text{if observation } (h, i, j) \text{ belongs to } D \\ 0 & \text{otherwise} \end{cases}$$

Let

$$\tilde{v}_{hij} = \tilde{w}_{hij} I_D(h, i, j) = \begin{cases} \tilde{w}_{hij} & \text{if observation } (h, i, j) \text{ belongs to } D \\ 0 & \text{otherwise} \end{cases}$$

The sum and mean of variable Y under poststratification in domain D are

$$\hat{Y}_D^{(PS)} = \frac{\sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} \tilde{v}_{hij} y_{hij}}{\sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} \tilde{v}_{hij}}$$

$$\hat{Y}_D = \frac{\hat{Y}_D^{(PS)}}{\bar{v}_{..}}$$
where

$$\bar{v}_{..} = \sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} \bar{v}_{hij}$$

is the sum of the poststratification weights over all observations in the sample in domain D. For each poststratum $p = 1, 2, \ldots, P$, let the mean of variable Y and the mean of the domain indicator variable in each poststratum be

$$\hat{Y}^{(p)} = \left(\sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} I_p(h, i, j) I_D(h, i, j) \bar{w}_{hij} y_{hij} \right) / Z_p$$

$$\hat{I}^{(p)} = \left(\sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} I_p(h, i, j) I_D(h, i, j) \bar{w}_{hij} \right) / Z_p$$

Assume that the observation (h, i, j) belongs to the pth poststratum. Let

$$d_{hij} = y_{hij} I_D(h, i, j) - \hat{Y}^{(p)}$$

$$e_{hij} = d_{hij} - \left(I_D(h, i, j) - \hat{I}^{(p)} \right) \hat{Y}^{(PS)}$$

Then PROC SURVEYMEANS estimates the variance of domain sum $\hat{Y}^{(PS)}$ as

$$\hat{V}(\hat{Y}^{(PS)}) = \sum_{h=1}^{H} \hat{V}_h(\hat{Y}^{(PS)})$$

where, if $n_h > 1$, then

$$\hat{V}_h(\hat{Y}^{(PS)}) = \frac{n_h(1 - f_h)}{n_h - 1} \sum_{i=1}^{n_h} (d_{hi} - \bar{d}_{hi})^2$$

$$d_{hi} = \sum_{j=1}^{m_{hi}} \bar{w}_{hij} d_{hij}$$

$$\bar{d}_{hi} = \left(\sum_{i=1}^{n_h} d_{hi} \right) / n_h$$
Variance of the Ratio Suppose you want to calculate the ratio of variable Y to variable X. Let \(x_{hij} \) and \(y_{hij} \) be the values of variable X and variable Y, respectively, for observation \((h, i, j)\).

The ratio of Y to X after poststratification is

\[
\hat{R}(PS) = \frac{\sum_{h=1}^{H} \sum_{i=1}^{n_{h}} \sum_{j=1}^{m_{hi}} \bar{w}_{hij} y_{hij}}{\sum_{h=1}^{H} \sum_{i=1}^{n_{h}} \sum_{j=1}^{m_{hi}} \bar{w}_{hij} x_{hij}}
\]

where \(\bar{w}_{hij} \) is the poststratification weight for observation \((h, i, j)\).

Assume that the observation \((h, i, j)\) belongs to the \(p \)th poststratum. Let

\[
\hat{y}_{hij} = y_{hij} - \hat{Y}(p)
\]
\[
\hat{x}_{hij} = x_{hij} - \hat{X}(p)
\]

where \(\hat{Y}(p) \) and \(\hat{X}(p) \) are the means of variable Y and variable X, respectively, in poststratum \(p \).
The variance of \(\hat{R}^{(PS)} \) is estimated by

\[
\hat{V}(\hat{R}^{(PS)}) = \sum_{h=1}^{H} \hat{V}_h(\hat{R}^{(PS)})
\]

where, if \(n_h > 1 \), then

\[
\hat{V}_h(\hat{R}^{(PS)}) = \frac{n_h(1 - f_h)}{n_h - 1} \sum_{i=1}^{n_h} (g_{hi} - \bar{g}_{h*})^2
\]

\[
g_{hi} = \frac{\sum_{j=1}^{m_{hi}} \tilde{w}_{hij} (\tilde{y}_{hij} - \tilde{x}_{hij} \hat{R}^{(PS)})}{\sum_{h'=1}^{H} \sum_{i=1}^{n_{h'}} \sum_{j=1}^{m_{hi}} \tilde{w}_{hij} x_{hij}}
\]

\[
\bar{g}_{h*} = \left(\sum_{i=1}^{n_h} g_{hi} \right) / n_h
\]

and if \(n_h = 1 \), then

\[
\hat{V}_h(\hat{R}^{(PS)}) = \begin{cases}
\text{missing} & \text{if } n_{h'} = 1 \text{ for } h' = 1, 2, \ldots, H \\
0 & \text{if } n_{h'} > 1 \text{ for some } 1 \leq h' \leq H
\end{cases}
\]

Variance of the Domain Ratio

For a domain \(D \), let \(I_D \) be the corresponding indicator variable:

\[
I_D(h, i, j) = \begin{cases}
1 & \text{if observation } (h, i, j) \text{ belongs to } D \\
0 & \text{otherwise}
\end{cases}
\]

Let

\[
\tilde{v}_{hij} = \tilde{w}_{hij} I_D(h, i, j) = \begin{cases}
\tilde{w}_{hij} & \text{if observation } (h, i, j) \text{ belongs to } D \\
0 & \text{otherwise}
\end{cases}
\]

The ratio of variable \(Y \) to variable \(X \) in domain \(D \) after poststratification is estimated by

\[
\hat{R}_D^{(PS)} = \frac{\sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} \tilde{w}_{hij} y_{hij} I_D(h, i, j)}{\sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} \tilde{w}_{hij} x_{hij} I_D(h, i, j)}
\]

For each poststratum \(p = 1, 2, \ldots, P \), let the mean of variable \(X \) and \(Y \) in each poststratum be

\[
\hat{Y}_D^{(p)} = \left(\sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} I_p(h, i, j) \tilde{v}_{hij} x_{hij} \right) / Z_p
\]

\[
\hat{X}_D^{(p)} = \left(\sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} I_p(h, i, j) \tilde{v}_{hij} y_{hij} \right) / Z_p
\]
Assume that the observation \((h, i, j)\) belongs to the \(p\)th poststratum. Let

\[
r_{hij} = y_{hij} I_D(h, i, j) - \hat{z}^{(p)}_{D} - \left(x_{hij} I_D(h, i, j) - \hat{z}^{(p)}_{D} \right) \hat{R}_{D}^{(PS)}
\]

Then PROC SURVEYMEANS estimates the variance of domain ratio \(\hat{R}_{D}^{(PS)}\) after poststratification as

\[
\hat{V} \left(\hat{R}_{D}^{(PS)} \right) = \sum_{h=1}^{H} \hat{V}_h \left(\hat{R}_{D}^{(PS)} \right)
\]

where, if \(n_h > 1\), then

\[
\hat{V}_h \left(\hat{R}_{D}^{(PS)} \right) = \frac{n_h(1 - f_h)}{n_h - 1} \sum_{i=1}^{n_h} \left(r_{hi} - \bar{r}_h \right)^2
\]

\[
r_{hi} = \sum_{j=1}^{m_{hi}} \bar{w}_{hij} r_{hij} / \sum_{h=1}^{H} \sum_{i=1}^{n_h} \sum_{j=1}^{m_{hi}} \bar{w}_{hij} x_{hij}
\]

\[
\bar{r}_h = \left(\sum_{i=1}^{n_h} r_{hi} \right) / n_h
\]

and if \(n_h = 1\), then

\[
\hat{V}_h \left(\hat{R}_{D}^{(PS)} \right) = \begin{cases}
\text{missing} & \text{if } n_{h'} = 1 \text{ for } h' = 1, 2, \ldots, H \\
0 & \text{if } n_{h'} > 1 \text{ for some } 1 \leq h' \leq H
\end{cases}
\]

Replication Methods for Variance Estimation

Recently replication methods have gained popularity for estimating variances in complex survey data analysis. One reason for this popularity is the relative simplicity of replication-based estimates, especially for nonlinear estimators; another is that modern computational capacity has made replication methods feasible for practical survey analysis. For more information, see Lohr (2010); Wolter (2007); Rust (1985); Dippo, Fay, and Morganstein (1984); Rao and Shao (1999); Rao, Wu, and Yue (1992); Rao and Shao (1996).

Replication methods draw multiple replicates (also called subsamples) from a full sample according to a specific resampling scheme. The most commonly used resampling schemes are the balanced repeated replication (BRR) method and the jackknife method. For each replicate, the original weights are modified for the PSUs in the replicates to create replicate weights. The statistics of interest are estimated by using the replicate weights for each replicate. Then the variances of parameters of interest are estimated by the variability among the estimates derived from these replicates. You can use the REPWEIGHTS statement to provide your own replicate weights for variance estimation.
Balanced Repeated Replication (BRR) Method

The balanced repeated replication (BRR) method requires that the full sample be drawn by using a stratified sample design with two primary sampling units (PSUs) per stratum. Let H be the total number of strata. The total number of replicates R is the smallest multiple of 4 that is greater than H. However, if you prefer a larger number of replicates, you can specify the REPS=number option. If a number \times number Hadamard matrix cannot be constructed, the number of replicates is increased until a Hadamard matrix becomes available.

Each replicate is obtained by deleting one PSU per stratum according to the corresponding Hadamard matrix and adjusting the original weights for the remaining PSUs. The new weights are called replicate weights.

Replicates are constructed by using the first H columns of the $R \times R$ Hadamard matrix. The rth ($r = 1, 2, \ldots, R$) replicate is drawn from the full sample according to the rth row of the Hadamard matrix as follows:

- If the (r, h) element of the Hadamard matrix is 1, then the first PSU of stratum h is included in the rth replicate and the second PSU of stratum h is excluded.
- If the (r, h) element of the Hadamard matrix is –1, then the second PSU of stratum h is included in the rth replicate and the first PSU of stratum h is excluded.

Note that the “first” and “second” PSUs are determined by data order in the input data set. Thus, if you reorder the data set and perform the same analysis by using BRR method, you might get slightly different results, because the contents in each replicate sample might change.

The replicate weights of the remaining PSUs in each half-sample are then doubled to their original weights. For more details about the BRR method, see Wolter (2007) and Lohr (2010).

By default, an appropriate Hadamard matrix is generated automatically to create the replicates. You can request that the Hadamard matrix be displayed by specifying the VARMETHOD=BRR(PRINTH) method-option. If you provide a Hadamard matrix by specifying the VARMETHOD=BRR(HADAMARD=) method-option, then the replicates are generated according to the provided Hadamard matrix.

You can use the VARMETHOD=BRR(OUTWEIGHTS=) method-option to save the replicate weights into a SAS data set.

Suppose that θ is a population parameter of interest. Let $\hat{\theta}$ be the estimate from the full sample for θ. Let $\hat{\theta}_r$ be the estimate from the rth replicate subsample by using replicate weights. PROC SURVEYMEANS estimates the variance of $\hat{\theta}$ by

$$\hat{V}(\hat{\theta}) = \frac{1}{R} \sum_{r=1}^{R} \left(\hat{\theta}_r - \hat{\theta} \right)^2$$

with H degrees of freedom, where H is the number of strata.

If a parameter cannot be computed from one or more replicates, then the variance estimate is computed by using those replicates from which the parameter can be estimated. For example, suppose the parameter is a ratio. If a replicate r contains observations such that the denominator of the ratio is zero, then the ratio cannot be computed from replicate r. In this case, the BRR variance estimate is computed as

$$\hat{V}(\hat{\theta}) = \frac{1}{R'} \sum_{r=1}^{R'} \left(\hat{\theta}_r - \hat{\theta} \right)^2$$
where the summation is over the replicates where the parameter θ can be computed, and R' is the number of those replicates.

Fay’s BRR Method

Fay’s method is a modification of the BRR method, and it requires a stratified sample design with two primary sampling units (PSUs) per stratum. The total number of replicates R is the smallest multiple of 4 that is greater than the total number of strata H. However, if you prefer a larger number of replicates, you can specify the `REPS=` method-option.

For each replicate, Fay’s method uses a Fay coefficient $0 \leq \epsilon < 1$ to impose a perturbation of the original weights in the full sample that is gentler than using only half-samples, as in the traditional BRR method. The Fay coefficient $0 \leq \epsilon < 1$ can be set by specifying the `FAY = ϵ` method-option. By default, $\epsilon = 0.5$ if the `FAY` method-option is specified without providing a value for ϵ (Judkins 1990; Rao and Shao 1999). When $\epsilon = 0$, Fay’s method becomes the traditional BRR method. For more details, see Dippo, Fay, and Morganstein (1984); Fay (1984, 1989); Judkins (1990).

Let H be the number of strata. Replicates are constructed by using the first H columns of the $R \times R$ Hadamard matrix, where R is the number of replicates, $R > H$. The rth ($r = 1, 2, ..., R$) replicate is created from the full sample according to the rth row of the Hadamard matrix as follows:

- If the (r, h) element of the Hadamard matrix is 1, then the full sample weight of the first PSU in stratum h is multiplied by ϵ and the full sample weight of the second PSU is multiplied by $2 - \epsilon$ to obtain the rth replicate weights.

- If the (r, h) element of the Hadamard matrix is -1, then the full sample weight of the first PSU in stratum h is multiplied by $2 - \epsilon$ and the full sample weight of the second PSU is multiplied by ϵ to obtain the rth replicate weights.

You can use the `VARMETHOD=BRR(OUTWEIGHTS=)` method-option to save the replicate weights into a SAS data set.

By default, an appropriate Hadamard matrix is generated automatically to create the replicates. You can request that the Hadamard matrix be displayed by specifying the `VARMETHOD=BRR(PRINTH)` method-option. If you provide a Hadamard matrix by specifying the `VARMETHOD=BRR(HADAMARD=)` method-option, then the replicates are generated according to the provided Hadamard matrix.

Suppose that θ is a population parameter of interest. Let $\hat{\theta}$ be the estimate from the full sample for θ. Let $\hat{\theta}_r$ be the estimate from the rth replicate subsample by using replicate weights. PROC SURVEYMEANS estimates the variance of $\hat{\theta}$ by

$$\hat{V}(\hat{\theta}) = \frac{1}{R(1-\epsilon)^2} \sum_{r=1}^{R} (\hat{\theta}_r - \hat{\theta})^2$$

with H degrees of freedom, where H is the number of strata.

Jackknife Method

The jackknife method of variance estimation deletes one PSU at a time from the full sample to create replicates. The total number of replicates R is the same as the total number of PSUs. In each replicate, the
sample weights of the remaining PSUs are modified by the jackknife coefficient α_r. The modified weights are called replicate weights.

The jackknife coefficient and replicate weights are described as follows.

Without Stratification If there is no stratification in the sample design (no STRATA statement), the jackknife coefficients α_r are the same for all replicates:

$$\alpha_r = \frac{R - 1}{R}$$

where $r = 1, 2, ..., R$

Denote the original weight in the full sample for the jth member of the ith PSU as w_{ij}. If the ith PSU is included in the rth replicate ($r = 1, 2, ..., R$), then the corresponding replicate weight for the jth member of the ith PSU is defined as

$$w_{ij}^{(r)} = w_{ij} / \alpha_r$$

With Stratification If the sample design involves stratification, each stratum must have at least two PSUs to use the jackknife method.

Let stratum \tilde{h}_r be the stratum from which a PSU is deleted for the rth replicate. Stratum \tilde{h}_r is called the donor stratum. Let $n_{\tilde{h}_r}$ be the total number of PSUs in the donor stratum \tilde{h}_r. The jackknife coefficients are defined as

$$\alpha_r = \frac{n_{\tilde{h}_r} - 1}{n_{\tilde{h}_r}}$$

where $r = 1, 2, ..., R$

Denote the original weight in the full sample for the jth member of the ith PSU as w_{ij}. If the ith PSU is included in the rth replicate ($r = 1, 2, ..., R$), then the corresponding replicate weight for the jth member of the ith PSU is defined as

$$w_{ij}^{(r)} = \begin{cases} w_{ij} & \text{if } i\text{th PSU is not in the donor stratum } \tilde{h}_r \\ w_{ij} / \alpha_r & \text{if } i\text{th PSU is in the donor stratum } \tilde{h}_r \end{cases}$$

You can use the `VARMETHOD=JACKKNIFE(OUTJKCOEFS=)` method-option to save the jackknife coefficients into a SAS data set and use the `VARMETHOD=JACKKNIFE(OUTWEIGHTS=)` method-option to save the replicate weights into a SAS data set.

If you provide your own replicate weights with a REPWEIGHTS statement, then you can also provide corresponding jackknife coefficients with the JKCOEFS= option. If you provide replicate weights but do not provide jackknife coefficients, PROC SURVEYMEANS uses $\alpha_r = (R - 1)/R$ as the jackknife coefficient for all replicates.

Suppose that θ is a population parameter of interest. Let $\hat{\theta}$ be the estimate from the full sample for θ. Let $\hat{\theta}_r$ be the estimate from the rth replicate subsample by using replicate weights. PROC SURVEYMEANS estimates the variance of $\hat{\theta}$ by

$$\hat{V}(\hat{\theta}) = \sum_{r=1}^{R} \alpha_r \left(\hat{\theta}_r - \hat{\theta} \right)^2$$

with $R - H$ degrees of freedom, where R is the number of replicates and H is the number of strata, or $R - 1$ when there is no stratification.
Hadamard Matrix

A Hadamard matrix H is a square matrix whose elements are either 1 or -1 such that

$$HH^T = kI$$

where k is the dimension of H and I is the identity matrix of order k. The order k is necessarily 1, 2, or a positive integer that is a multiple of 4.

For example, the following matrix is a Hadamard matrix of dimension $k = 8$:

$$
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 \\
1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 & -1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & -1 & 1 & 1 & -1 \\
\end{bmatrix}
$$

Computational Resources

Due to the complex nature of survey data analysis, the SURVEYMEANS procedure usually requires more memory than an analysis by the MEANS procedure for the same analysis variables. PROC SURVEYMEANS requires memory resources to keep a copy of each unique value of the STRATUM, CLUSTER, and DOMAIN variables in addition to the memory needed for the categorical analysis variables and other computations.

The estimated memory needed by the SURVEYMEANS procedure is described as follows.

Let:

- T_{str} be the total number of STRATUM variables
- $L_{\text{str}}(t)$ be the number of unique values for the tth STRATUM variable, where $t = 1, 2, \ldots, T_{\text{str}}$
- H be the total number of strata
- T_{clu} be the total number of CLUSTER variables
- $L_{\text{clu}}(t)$ be the number of unique values for the tth CLUSTER variable, where $t = 1, 2, \ldots, T_{\text{clu}}$
- T_{dom} be the total number of DOMAIN variables in a domain (you might have multiple domains defined in a DOMAIN statement)
- $L_{\text{dom}}(t)$ be the number of unique values for the tth DOMAIN variable, where $t = 1, 2, \ldots, T_{\text{dom}}$
- D be the total number of domains
- T_{cont} be the total number of continuous analysis variables
- T_{clas} be the total number of categorical analysis variables (CLASS variable)
Chapter 99: The SURVEYMEANS Procedure

- \(L_{\text{clas}}(t) \) be the number of unique values for the \(t \)th CLASS variable, where \(t = 1, 2, \ldots, T_{\text{clas}} \)
- \(T_{\text{ratio}} \) be the total number of ratios
- \(T_{\text{pctl}} \) be the total number of percentiles
- \(c \) be a constant on the order of 32 bytes (64 for 64-bit architectures) plus the maximum combined unformatted and formatted length among all the STRATUM, CLUSTER, DOMAIN, and CLASS variables

If all combinations of levels of categorical variables exist, the maximum potential memory (in bytes) requirements for the analysis is estimated by

\[
c \times P \times Q + 2000 \times (H + 1) \times (D + 1) \times Q
\]

where

\[
P = \prod_{t=1}^{T_{\text{str}}} L_{\text{str}}(t) \prod_{t=1}^{T_{\text{clu}}} L_{\text{clu}}(t) \prod_{t=1}^{T_{\text{dom}}} L_{\text{dom}}(t)
\]

\[
Q = T_{\text{cont}} + \sum_{t=1}^{T_{\text{clas}}} L_{\text{clas}}(t) + T_{\text{ratio}} + T_{\text{pctl}}
\]

A relatively small amount of memory, compared to the memory usage described in the preceding calculation, is also needed for the analysis.

When the data-dependent memory usage overwhelms what is available in the computer system, the procedure might open one or more utility files to complete the analysis. This process can be controlled by the SAS system option SUMSIZE=, which sets the memory threshold where utility file operations begin. For best results, set SUMSIZE= to be less than the amount of real memory that is likely to be available for the task. See the chapter on SAS system options in *SAS System Options: Reference* for a description of the SUMSIZE= option.

If PROC SURVEYMEANS reports that there is insufficient memory, increase SUMSIZE=. A SUMSIZE= value greater than MEMSIZE= has no effect. Therefore, you might also need to increase MEMSIZE=.

The MEMSIZE option can be specified at system invocation, on the SAS command line, or in a configuration file. However, the MEMSIZE system option is not available in some operating environments. See the SAS Companion for your operating environment for more information and for the syntax specification.

To report a procedure’s memory consumption, you can use the FULLSTIMER option. The syntax is described in the SAS Companion for your operating environment.

Also see the SAS System Options: Reference for more information about how to adjust your computation resource parameters for your operating environment.

For additional information about the memory usage for categorical variables, see the section “Computational Resources” in the chapter “The MEANS Procedure” in the *Base SAS Procedures Guide: Statistical Procedures*.
Output Data Sets

You can use the Output Delivery System to create a SAS data set from any piece of PROC SURVEYMEANS output. See the section “ODS Table Names” on page 8223 for more information.

PROC SURVEYMEANS also provides an output data set that stores the replicate weights for BRR or jackknife variance estimation and an output data set that stores the jackknife coefficients for jackknife variance estimation.

Replicate Weights Output Data Set

If you specify the OUTWEIGHTS= method-option for VARMETHOD=BRR or VARMETHOD=JACKKNIFE, PROC SURVEYMEANS stores the replicate weights in an output data set. The OUTWEIGHTS= output data set contains all observations from the DATA= input data set that are valid (used in the analysis). (A valid observation is an observation that has a positive value of the WEIGHT variable. Valid observations must also have nonmissing values of the STRATA and CLUSTER variables, unless you specify the MISSING option. See the section “Data and Sample Design Summary” on page 8218 for details about valid observations.)

The OUTWEIGHTS= data set contains the following variables:

- all variables in the DATA= input data set
- RepWt_1, RepWt_2, . . . , RepWt_n, which are the replicate weight variables

where \(n \) is the total number of replicates in the analysis. Each replicate weight variable contains the replicate weights for the corresponding replicate. Replicate weights equal zero for those observations not included in the replicate.

After the procedure creates replicate weights for a particular input data set and survey design, you can use the OUTWEIGHTS= method-option to store these replicate weights and then use them again in subsequent analyses, either in PROC SURVEYMEANS or in the other survey procedures. You can use the REPWEIGHTS statement to provide replicate weights for the procedure.

Jackknife Coefficients Output Data Set

If you specify the OUTJKCOEFS= method-option for VARMETHOD=JACKKNIFE, PROC SURVEYMEANS stores the jackknife coefficients in an output data set. The OUTJKCOEFS= output data set contains one observation for each replicate. The OUTJKCOEFS= data set contains the following variables:

- Replicate, which is the replicate number for the jackknife coefficient
- JKCoefficient, which is the jackknife coefficient
- DonorStratum, which is the stratum of the PSU that was deleted to construct the replicate, if you specify a STRATA statement

After the procedure creates jackknife coefficients for a particular input data set and survey design, you can use the OUTJKCOEFS= method-option to store these coefficients and then use them again in subsequent analyses, either in PROC SURVEYMEANS or in the other survey procedures. You can use the JKCOEFS= option in the REPWEIGHTS statement to provide jackknife coefficients for the procedure.
Chapter 99: The SURVEYMEANS Procedure

Poststratification Weights Output Data Set

If you specify the OUTPSWGT= option in the POSTSTRATA statement, PROC SURVEYMEANS stores the poststratification weights in an output data set. The OUTPSWGT= output data set contains all observations from the DATA= input data set that are valid (used in the analysis). (A valid observation is an observation that has a positive value of the WEIGHT variable. Valid observations must also have nonmissing values of the STRATA and CLUSTER variables, unless you specify the MISSING option. See the section “Data and Sample Design Summary” on page 8218 for more information about valid observations.)

For VARMETHOD=TAYLOR, the OUTPSWGT= data set contains the following variables:

- all variables in the DATA= input data set
- _PSWt_, which contains poststratification weights

For VARMETHOD=BRR and VARMETHOD=JACKKNIFE, the OUTPSWGT= option is the same OUTWEIGHTS= method-option that you specify in the PROC SURVEYMEANS statement, except that it also contains the variable _PSWt_, which contains poststratification weights for the full sample. The replication weights, adjusted for poststratification, are stored in the OUTWEIGHTS= data set. See the section “Replicate Weights Output Data Set” on page 8215 for the contents of the OUTWEIGHTS= data set.

However, if you also specify an OUTWEIGHTS= method-option in the PROC SURVEYMEANS statement and use a different data set name, the data set in OUTPSWGT= option is ignored.

If you provide your own replicate weights by using a REPWEIGHTS statement for VARMETHOD=BRR or VARMETHOD=JACKKNIFE, the poststratification replicate weights replace the original replicate weights in the OUTPSWGT= data set.

Rectangular and Stacking Structures in an Output Data Set

When you use an ODS output statement to create SAS data sets for certain tables in PROC SURVEYMEANS, there are two possible types of table structure for the output data sets: rectangular and stacking. A rectangular structure creates one observation for each analysis variable in the data set. A stacking structure creates only one observation in the output data set for all analysis variables.

Before SAS 9, the stacking table structure, similar to the table structure in PROC MEANS, was the default in PROC SURVEYMEANS. Since SAS 9, the new default is to produce a rectangular table in the output data sets. You can use the STACKING option to request that the procedure produce the output data sets by using a stacking table structure.

The STACKING option affects the following tables:

- Domain
- Ratio
- Statistics
- StrataInfo
Figure 99.7 and Figure 99.8 shows these two structures for analyzing the following data set:

```plaintext
data new;
   input sex$ x;
datalines;
   M 12
   F 5
   M 13
   F 23
   F 11
;
```

The following statements request the default rectangular structure of the output data set for the statistics table:

```plaintext
proc surveymeans data=new mean;
   ods output statistics=rectangle;
run;

proc print data=rectangle;
run;
```

Figure 99.7 shows the rectangular structure.

Figure 99.7 Rectangular Structure in the Output Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>x</th>
<th>x_Mean</th>
<th>x_S StdErr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
<td>12.800000</td>
<td>2.905168</td>
</tr>
<tr>
<td>2</td>
<td>sex</td>
<td>F</td>
<td>0.600000</td>
</tr>
<tr>
<td>3</td>
<td>sex</td>
<td>M</td>
<td>0.400000</td>
</tr>
</tbody>
</table>

The following statements specify the STACKING option to request that the output data set have a stacking structure:

```plaintext
proc surveymeans data=new mean stacking;
   ods output statistics=stacking;
run;

proc print data=stacking;
run;
```

Figure 99.8 shows the stacking structure of the output data set for the statistics table requested by the STACKING option.

Figure 99.8 Stacking Structure in the Output Data Set Requested by the STACKING option

<table>
<thead>
<tr>
<th>Obs</th>
<th>x</th>
<th>x_Mean</th>
<th>x_S StdErr</th>
<th>sex_F</th>
<th>sex_F_Mean</th>
<th>sex_F_S StdErr</th>
<th>sex_M</th>
<th>sex_M_Mean</th>
<th>sex_M_S StdErr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
<td>12.800000</td>
<td>2.905168</td>
<td>F</td>
<td>0.600000</td>
<td>0.244949</td>
<td>M</td>
<td>0.400000</td>
<td>0.244949</td>
</tr>
</tbody>
</table>
Displayed Output

The SURVEYMEANS procedure produces output that is described in the following sections.

Data and Sample Design Summary

The “Data Summary” table provides information about the input data set and the sample design. This table displays the total number of valid observations, where an observation is considered valid if it has nonmissing values for all procedure variables other than the analysis variables—that is, for all specified STRATA, CLUSTER, DOMAIN, POSTSTRATA, and WEIGHT variables. This number might differ from the number of nonmissing observations for an individual analysis variable, which the procedure displays in the “Statistics” table. See the section “Missing Values” on page 8182 for more information.

PROC SURVEYMEANS displays the following information in the “Data Summary” table:

- Number of Strata, if you specify a STRATA statement
- Number of Poststrata, if you specify a POSTSTRATA statement
- Number of Clusters, if you specify a CLUSTER statement
- Number of Observations, which is the total number of valid observations
- Sum of Weights, which is the sum over all valid observations, if you specify a WEIGHT statement

Class Level Information

If you use a CLASS statement to name classification variables for categorical analysis, or if you list any character variables in the VAR statement, then PROC SURVEYMEANS displays a “Class Level Information” table. This table contains the following information for each classification variable:

- CLASS Variable, which lists each CLASS variable name
- Levels, which is the number of values or levels of the classification variable
- Values, which lists the values of the classification variable. The values are separated by a white space character; therefore, to avoid confusion, you should not include a white space character within a classification variable value.

Stratum Information

If you specify the LIST option in the STRATA statement, PROC SURVEYMEANS displays a “Stratum Information” table. This table displays the number of valid observations in each stratum, as well as the number of nonmissing stratum observations for each analysis variable. The “Stratum Information” table provides the following for each stratum:

- Stratum Index, which is a sequential stratum identification number
- STRATA variable(s), which lists the levels of STRATA variables for the stratum
• Population Total, if you specify the TOTAL= option

• Sampling Rate, if you specify the TOTAL= or RATE= option. If you specify the TOTAL= option, the sampling rate is based on the number of valid observations in the stratum.

• N Obs, which is the number of valid observations

• Variable, which lists each analysis variable name

• Levels, which identifies each level for categorical variables

• N, which is the number of nonmissing observations for the analysis variable

• Clusters, which is the number of clusters, if you specify a CLUSTER statement

Variance Estimation

If the variance method is not Taylor series or if the NOMCAR option is used, by default, PROC SURVEYMEANS displays the following variance estimation specifications in the “Variance Estimation” table:

• Method, which is the variance estimation method

• Replicate Weights Data Set, which is the name of the SAS data set that contains the replicate weights

• Number of Replicates, which is the number of replicates if you specify the VARMETHOD=BRR or VARMETHOD=JACKKNIFE option

• Hadamard Data Set, which is the name of the SAS data set for the HADAMARD matrix if you specify the VARMETHOD=BRR(HADAMARD=) method-option

• Fay Coefficient, which is the value of the FAY coefficient if you specify the VARMETHOD=BRR(FAY) method-option

• Missing Levels Included (MISSING), if you specify the MISSING option

• Missing Levels Included (NOMCAR), if you specify the NOMCAR option

Statistics

The “Statistics” table displays all of the statistics that you request with statistic-keywords in the PROC SURVEYMEANS statement, except DECILES, MEDIAN, Q1, Q3, and QUARTILES, which are displayed in the “Quantiles” table. If you do not specify any statistic-keywords, then by default this table displays the following information for each analysis variable: the sample size, the mean, the standard error of the mean, and the confidence limits for the mean. The “Statistics” table can contain the following information for each analysis variable, depending on which statistic-keywords you request:

• Variable name

• Variable Label
• Level, which identifies each level for categorical variables
• N, which is the number of nonmissing observations
• N Miss, which is the number of missing observations
• Minimum
• Maximum
• Range
• Number of Clusters
• Sum of Weights
• DF, which is the degrees of freedom for the \(t \) test
• Mean
• Std Error of Mean, which is the standard error of the mean
• Var of Mean, which is the variance of the mean
• \(t \) Value, for testing \(H_0 : \text{population MEAN} = 0 \)
• \(\Pr > | t | \), which is the two-sided \(p \)-value for the \(t \) test
• \(100(1 - \alpha)\% \) CL for Mean, which are two-sided confidence limits for the mean
• \(100(1 - \alpha)\% \) Upper CL for Mean, which is a one-sided upper confidence limit for the mean
• \(100(1 - \alpha)\% \) Lower CL for Mean, which is a one-sided lower confidence limit for the mean
• Coeff of Variation, which is the coefficient of variation for the mean
• Sum
• Std Dev, which is the standard deviation of the sum
• Var of Sum, which is the variance of the sum
• \(100(1 - \alpha)\% \) CL for Sum, which are two-sided confidence limits for the sum
• \(100(1 - \alpha)\% \) Upper CL for Sum, which is a one-sided upper confidence limit for the sum
• \(100(1 - \alpha)\% \) Lower CL for Sum, which is a one-sided lower confidence limit for the Sum
• Coeff of Variation for sum, which is the coefficient of variation for the sum
Quantiles

The “Quantiles” table displays all the quantiles that you request with either statistic-keywords such as DECILES, MEDIAN, Q1, Q3, and QUARTILES, or the PERCENTILE= option, or the QUANTILE= option in the PROC SURVEYMEANS statement.

The “Quantiles” table contains the following information for each quantile:

- Variable name
- Variable Label
- Percentile, which is the requested quantile in the format of %
- Percentile Label, which is the corresponding common name for a percentile if it exists—for example, Median for 50th percentile
- Estimate, which is the estimate for a requested quantile with respect to the population distribution
- Std Error, which is the standard error of the quantile
- 100(1 − α)% Confidence Limits, which are two-sided confidence limits for the quantile

Domain Analysis

If you specify a DOMAIN statement, the procedure displays domain statistics in a “Domain Analysis” table. A “Domain Analysis” table displays all the requested statistics for each level of the domain request. The procedure produces a separate “Domain Analysis” for each separate domain request. For example, the DOMAIN statement

```plaintext
domain A B+C*D A*C C;
```

specifies four domain requests:

- A: all the levels of A
- C: all the levels of C
- A*C: all the interactive levels of A and C
- B*C*D: all the interactive levels of B, C, and D

The procedure displays four “Domain Analysis” tables, one for each domain definition. If you use an ODS OUTPUT statement to create an output data set for domain analysis, the output data set contains a variable Domain whose values are these domain definitions. It contains all the columns in the “Statistics” table plus columns of domain variable values.

Domain Quantiles

If you specify a DOMAIN statement, and if you request statistics by specifying either statistic-keywords such as DECILES, MEDIAN, Q1, Q3, and QUARTILES, or the PERCENTILE= option, or the QUANTILE= option in the PROC SURVEYMEANS statement, then the procedure displays domain quantiles in a “Domain Quantiles” table. This table displays all the quantile statistics for each level of the domain request. It contains all the columns in the “Quantiles” table plus columns of DOMAIN variable values.
Chapter 99: The SURVEYMEANS Procedure

Ratio Analysis

The “Ratio Analysis” table displays statistics for all the ratios that you request in the RATIO statement. If you do not specify any statistic-keywords in the PROC SURVEYMEANS statement, then by default this table displays the ratios and standard errors. The “Ratio Analysis” table can contain the following information for each ratio, depending on which statistic-keywords you request:

- Numerator, which identifies the numerator variable of the ratio
- Denominator, which identifies the denominator variable of the ratio
- N, which is the number of observations used in the ratio analysis
- number of Clusters
- Sum of Weights
- DF, which is the degrees of freedom for the t test
- Ratio
- Std Err of Ratio, which is the standard error of the ratio
- Var, which is the variance of the ratio
- t Value, for testing H_0 : population RATIO = 0
- Pr > | t |, which is the two-sided p-value for the t test
- 100(1 − α)% CL for Ratio, which are two-sided confidence limits for the Ratio
- Upper 100(1 − α)% CL for Ratio, which are one-sided upper confidence limits for the Ratio
- Lower 100(1 − α)% CL for Ratio, which are one-sided lower confidence limits for the Ratio

When you use the ODS OUTPUT statement to create an output data set, if you use labels for your RATIO statement, these labels are saved in the variable Ratio Statement in the output data set.

Domain Ratio Analysis

If you specify a DOMAIN statement with a RATIO statement, the procedure displays domain ratios in a “Domain Ratio Analysis” table. A “Domain Ratio Analysis” table displays all the ratio statistics for each level of the domain request. It contains all the columns in the “Ratio Analysis” table plus columns of domain variable values.

Hadamard Matrix

If you specify the VARMETHOD=BRR(PRINTH) method-option in the PROC SURVEYMEANS statement, PROC SURVEYMEANS displays the Hadamard matrix that is used to construct replicates for BRR variance estimation.

If you provide a Hadamard matrix with the VARMETHOD=BRR(HADAMARD=) method-option but the procedure does not use the entire matrix, the procedure displays only the rows and columns that are actually used to construct replicates.
The “Geometric Means” table displays all the statistics related to geometric mean that you request with `statistic-keywords` in the PROC SURVEYMEANS statement. The “Geometric Means” table can contain the following information for each analysis variable, depending on which `statistic-keywords` you request:

- Variable Name
- Variable Label
- Geometric Mean
- Std Error of Geometric Mean
- \(100(1 - \alpha)\%\) CL for Geometric Mean, which are two-sided confidence limits for the geometric mean
- \(100(1 - \alpha)\%\) Lower CL for Geometric Mean, which is a one-sided lower confidence limit for the geometric mean
- \(100(1 - \alpha)\%\) Upper CL for Geometric Mean, which is a one-sided upper confidence limit for the geometric mean

If you specify a DOMAIN statement and request any statistics related to geometric mean with `statistic-keywords` in the PROC SURVEYMEANS statement, the procedure displays these statistics for each domain level in a “Domain Geometric Means” table. It contains all the columns in the “Geometric Means” table plus columns of domain variable values.

PROC SURVEYMEANS assigns a name to each table it creates; these names are listed in Table 99.4. You can use these names to refer to tables when you use the Output Delivery System (ODS) to select tables and create output data sets. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

<table>
<thead>
<tr>
<th>ODS Table Name</th>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClassVarInfo</td>
<td>Class level information</td>
<td>CLASS</td>
<td>Default</td>
</tr>
<tr>
<td>Domain</td>
<td>Statistics in domains</td>
<td>DOMAIN</td>
<td>Default</td>
</tr>
<tr>
<td>DomainRatio</td>
<td>Statistics for ratios in domains</td>
<td>DOMAIN and RATIO</td>
<td>Default</td>
</tr>
<tr>
<td>DomainGeoMeans</td>
<td>Statistics related to geometric means in domains</td>
<td>PROC and DOMAIN</td>
<td>Keywords</td>
</tr>
<tr>
<td>DomainQuantiles</td>
<td>Quantiles in domains</td>
<td>DOMAIN</td>
<td>Default</td>
</tr>
<tr>
<td>GeometricMeans</td>
<td>Statistics related to geometric means</td>
<td>PROC</td>
<td>Keywords</td>
</tr>
</tbody>
</table>
Table 99.4 (continued)

<table>
<thead>
<tr>
<th>ODS Table Name</th>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>HadamardMatrix</td>
<td>Hadamard matrix</td>
<td>PROC</td>
<td>PRINTH</td>
</tr>
<tr>
<td>Ratio</td>
<td>Statistics for ratios</td>
<td>RATIO</td>
<td>Default</td>
</tr>
<tr>
<td>Quantiles</td>
<td>Quantiles</td>
<td>PROC</td>
<td>Default</td>
</tr>
<tr>
<td>Statistics</td>
<td>Statistics</td>
<td>PROC</td>
<td>Default</td>
</tr>
<tr>
<td>StrataInfo</td>
<td>Stratum information</td>
<td>STRATA</td>
<td>LIST</td>
</tr>
<tr>
<td>Summary</td>
<td>Data summary</td>
<td>PROC</td>
<td>Default</td>
</tr>
<tr>
<td>VarianceEstimation</td>
<td>Variance estimation</td>
<td>PROC</td>
<td>VARMETHOD=JK</td>
</tr>
</tbody>
</table>

For example, the following statements create an output data set MyStrata, which contains the StrataInfo table, and an output data set MyStat, which contains the Statistics table for the ice cream study discussed in the section “Stratified Sampling” on page 8157:

```plaintext
title1 'Analysis of Ice Cream Spending';
proc surveymeans data=IceCream total=StudentTotals;
   strata Grade / list;
   var Spending Group;
   weight Weight;
   ods output
      StrataInfo = MyStrata
      Statistics = MyStat;
run;
```

ODS Graphics

Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPHICS ON statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21, “Statistical Graphics Using ODS.”

When ODS Graphics is enabled, you can request specific plots by specifying the PLOTS= option in the PROC SURVEYMEANS statement.

PROC SURVEYMEANS provides a summary plot that includes a box plot and a histogram plot for continuous analytical variables. For categorical variables, plots are available in PROC SURVEYFREQ.
By default, PROC SURVEYMEANS produces summary plots. When you specify a DOMAIN statement, PROC SURVEYMEANS also produce domain plots by default. You can suppress default plots and request specific plots by specifying the PLOTS(ONLY)= option. For more information, see the description of the PLOTS= option.

PROC SURVEYMEANS assigns a name to each graph that it creates using ODS Graphics. You can use these names to refer to the graphs. Table 99.5 lists the names of the graphs that PROC SURVEYMEANS generates, together with their descriptions and the PLOTS= options (plot-requests) and statements that produce them.

<table>
<thead>
<tr>
<th>ODS Graph Name</th>
<th>Description</th>
<th>PLOTS= Option</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>BoxPlot</td>
<td>Box plots</td>
<td>BOXPLOT</td>
<td>PROC</td>
</tr>
<tr>
<td>DomainPlot</td>
<td>Box plots for domain statistics for each domain definition</td>
<td>DOMAIN</td>
<td>DOMAIN</td>
</tr>
<tr>
<td>Histogram</td>
<td>Histograms with overlaid kernel densities and normal densities</td>
<td>HISTOGRAM</td>
<td>PROC</td>
</tr>
<tr>
<td>SummaryPanel</td>
<td>Histograms with overlaid kernel densities and normal densities, and box plots in a single panel</td>
<td>SUMMARY</td>
<td>PROC</td>
</tr>
</tbody>
</table>

Examples: SURVEYMEANS Procedure

The section “Getting Started: SURVEYMEANS Procedure” on page 8154 contains examples of analyzing data from simple random sampling and stratified simple random sample designs. This section provides more examples that illustrate how to use PROC SURVEYMEANS.

Example 99.1: Stratified Cluster Sample Design

Consider the example in the section “Stratified Sampling” on page 8157. The study population is a junior high school with a total of 4,000 students in grades 7, 8, and 9. Researchers want to know how much these students spend weekly for ice cream, on the average, and what percentage of students spend at least $10 weekly for ice cream.

The example in the section “Stratified Sampling” on page 8157 assumes that the sample of students was selected using a stratified simple random sample design. This example shows analysis based on a more complex sample design.

Suppose that every student belongs to a study group and that study groups are formed within each grade level. Each study group contains between two and four students. Table 99.6 shows the total number of study groups for each grade.
Table 99.6 Study Groups and Students by Grade

<table>
<thead>
<tr>
<th>Grade</th>
<th>Number of Study Groups</th>
<th>Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>608</td>
<td>1,824</td>
</tr>
<tr>
<td>8</td>
<td>252</td>
<td>1,025</td>
</tr>
<tr>
<td>9</td>
<td>403</td>
<td>1,151</td>
</tr>
<tr>
<td>Total</td>
<td>1263</td>
<td>4,000</td>
</tr>
</tbody>
</table>

It is quicker and more convenient to collect data from students in the same study group than to collect data from students individually. Therefore, this study uses a stratified clustered sample design. The primary sampling units, or clusters, are study groups. The list of all study groups in the school is stratified by grade level. From each grade level, a sample of study groups is randomly selected, and all students in each selected study group are interviewed. The sample consists of eight study groups from the 7th grade, three groups from the 8th grade, and five groups from the 9th grade.

The SAS data set `IceCreamStudy` saves the responses of the selected students:

```sas
data IceCreamStudy;
  input Grade StudyGroup Spending @@;
  if (Spending < 10) then Group='less';
  else Group='more';
datalines;
```

In the data set `IceCreamStudy`, the variable `Grade` contains a student’s grade. The variable `StudyGroup` identifies a student’s study group. It is possible for students from different grades to have the same study group number because study groups are sequentially numbered within each grade. The variable `Spending` contains a student’s response regarding how much he spends per week for ice cream, in dollars. The variable `GROUP` indicates whether a student spends at least $10 weekly for ice cream. It is not necessary to store the data in order of grade and study group.

The SAS data set `StudyGroups` is created to provide PROC SURVEYMEANS with the sample design information shown in Table 99.6:

```sas
data StudyGroups;
  input Grade _total_;
datalines;
```

In the data set `StudyGroups`, the variable `Grade` contains a student’s grade. The variable `StudyGroup` identifies a student’s study group. It is possible for students from different grades to have the same study group number because study groups are sequentially numbered within each grade. The variable `Spending` contains a student’s response regarding how much he spends per week for ice cream, in dollars. The variable `GROUP` indicates whether a student spends at least $10 weekly for ice cream. It is not necessary to store the data in order of grade and study group.
The variable Grade identifies the strata, and the variable _TOTAL_ contains the total number of study groups in each stratum. As discussed in the section “Specification of Population Totals and Sampling Rates” on page 8183, the population totals stored in the variable _TOTAL_ should be expressed in terms of the primary sampling units (PSUs), which are study groups in this example. Therefore, the variable _TOTAL_ contains the total number of study groups for each grade, rather than the total number of students.

In order to obtain unbiased estimates, you create sampling weights by using the following SAS statements:

```sas
data IceCreamStudy;
  set IceCreamStudy;
  if Grade=7 then Prob=8/608;
  if Grade=8 then Prob=3/252;
  if Grade=9 then Prob=5/403;
  Weight=1/Prob;
run;
```

The sampling weights are the reciprocals of the probabilities of selections. The variable Weight contains the sampling weights. Because the sampling design is clustered and all students from each selected cluster are interviewed, the sampling weights equal the inverse of the cluster (or study group) selection probabilities.

The following SAS statements perform the analysis for this sample design:

```sas
title1 'Analysis of Ice Cream Spending';
proc surveymeans data=IceCreamStudy total=StudyGroups;
  strata Grade / list;
  cluster StudyGroup;
  var Spending Group;
  weight Weight;
run;
```

Output 99.1.1 provides information about the sample design and the input data set. There are three strata in the sample design, and the sample contains 16 clusters and 40 observations. The variable Group has two levels, ‘less’ and ‘more.’

Output 99.1.1 Data Summary and Class Information

Analysis of Ice Cream Spending

The SURVEYMEANS Procedure

<table>
<thead>
<tr>
<th>Data Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Strata</td>
</tr>
<tr>
<td>Number of Clusters</td>
</tr>
<tr>
<td>Number of Observations</td>
</tr>
<tr>
<td>Sum of Weights</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class Level Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS</td>
</tr>
<tr>
<td>Variable Levels Values</td>
</tr>
<tr>
<td>Group</td>
</tr>
<tr>
<td>less</td>
</tr>
<tr>
<td>more</td>
</tr>
</tbody>
</table>

Output 99.1.2 displays information for each stratum. Since the primary sampling units in this design are study groups, the population totals shown in Output 99.1.1 are the total numbers of study groups for each
stratum or grade. This differs from Output 99.4, which provides the population totals in terms of students since students were the primary sampling units for that design. Output 99.1.2 also displays the number of clusters for each stratum and analysis variable.

Output 99.1.2 Stratum Information

<table>
<thead>
<tr>
<th>Stratum Index</th>
<th>Grade</th>
<th>Population Total</th>
<th>Sampling Rate</th>
<th>N Obs</th>
<th>Variable</th>
<th>Level</th>
<th>N Clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>608</td>
<td>1.32%</td>
<td>20</td>
<td>Spending</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Group</td>
<td>less</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>more</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Group</td>
<td>less</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>more</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>252</td>
<td>1.19%</td>
<td>9</td>
<td>Spending</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Group</td>
<td>less</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>more</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Group</td>
<td>less</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>more</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>403</td>
<td>1.24%</td>
<td>11</td>
<td>Spending</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Group</td>
<td>less</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>more</td>
<td>4</td>
</tr>
</tbody>
</table>

Output 99.1.3 displays the estimates of the average weekly ice cream expenditure and the percentage of students spending at least $10 weekly for ice cream.

Output 99.1.3 Statistics

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Variable</th>
<th>Level</th>
<th>N</th>
<th>Mean</th>
<th>Std Error of Mean</th>
<th>95% CL for Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spending</td>
<td>40</td>
<td>8.923860</td>
<td>0.650859</td>
<td>7.51776370</td>
<td>10.3299565</td>
</tr>
<tr>
<td></td>
<td>Group</td>
<td>less</td>
<td>23</td>
<td>0.561437</td>
<td>0.056368</td>
<td>0.43966057</td>
</tr>
<tr>
<td></td>
<td></td>
<td>more</td>
<td>17</td>
<td>0.438563</td>
<td>0.056368</td>
<td>0.31678698</td>
</tr>
</tbody>
</table>

Example 99.2: Domain Analysis

Suppose that you are studying profiles of 800 top-performing companies to provide information about their impact on the economy. You are also interested in the company profiles within each market type. A sample of 66 companies is selected with unequal probability across market types. However, market type is not included in the sample design. Thus, the number of companies within each market type is a random variable in your sample. To obtain statistics within each market type, you should use domain analysis. The data of the 66 companies are saved in the following data set:

```plaintext
data Company;
  length Type $14;
  input Type$ Asset Sale Value Profit Employee Weight;
  datalines;
Other        2764.0 1828.0 1850.3 144.0 18.7  9.6
Energy       13246.2 4633.5 4387.7 462.9 24.3 42.6
Finance      3597.7 377.8 93.0   14.0  1.1 12.2
Transportation 6646.1 6414.2 2377.5 348.2 47.1 21.8
HiTech       1068.4 1689.8 1430.2 72.9  4.6  4.3
Manufacturing 1125.0 1719.4 1057.5 98.1 20.4  4.5
```
Example 99.2: Domain Analysis

<table>
<thead>
<tr>
<th>Domain</th>
<th>Code 1</th>
<th>Code 2</th>
<th>Code 3</th>
<th>Code 4</th>
<th>Code 5</th>
<th>Code 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other</td>
<td>1459.0</td>
<td>1241.4</td>
<td>452.7</td>
<td>24.5</td>
<td>20.1</td>
<td>5.5</td>
</tr>
<tr>
<td>Finance</td>
<td>2672.3</td>
<td>262.5</td>
<td>296.2</td>
<td>23.1</td>
<td>2.2</td>
<td>9.3</td>
</tr>
<tr>
<td>Finance</td>
<td>311.0</td>
<td>566.2</td>
<td>932.0</td>
<td>52.8</td>
<td>2.7</td>
<td>1.9</td>
</tr>
<tr>
<td>Energy</td>
<td>1148.6</td>
<td>1014.6</td>
<td>485.1</td>
<td>60.6</td>
<td>4.0</td>
<td>4.5</td>
</tr>
<tr>
<td>Finance</td>
<td>5327.0</td>
<td>572.4</td>
<td>372.9</td>
<td>25.2</td>
<td>4.2</td>
<td>17.7</td>
</tr>
<tr>
<td>Energy</td>
<td>1602.7</td>
<td>678.4</td>
<td>653.0</td>
<td>75.6</td>
<td>2.8</td>
<td>6.0</td>
</tr>
<tr>
<td>Energy</td>
<td>5808.8</td>
<td>1288.4</td>
<td>2007.0</td>
<td>318.8</td>
<td>5.9</td>
<td>19.2</td>
</tr>
<tr>
<td>Medical</td>
<td>268.8</td>
<td>204.4</td>
<td>820.9</td>
<td>45.6</td>
<td>3.7</td>
<td>1.8</td>
</tr>
<tr>
<td>Transportation</td>
<td>5222.6</td>
<td>2627.8</td>
<td>1910.0</td>
<td>245.6</td>
<td>22.8</td>
<td>17.4</td>
</tr>
<tr>
<td>Other</td>
<td>872.7</td>
<td>1419.4</td>
<td>939.3</td>
<td>69.7</td>
<td>12.2</td>
<td>3.7</td>
</tr>
<tr>
<td>Retail</td>
<td>4461.7</td>
<td>8946.8</td>
<td>4662.7</td>
<td>289.0</td>
<td>132.1</td>
<td>15.0</td>
</tr>
<tr>
<td>HiTech</td>
<td>6719.2</td>
<td>6942.0</td>
<td>8240.2</td>
<td>381.3</td>
<td>85.8</td>
<td>22.1</td>
</tr>
<tr>
<td>Retail</td>
<td>833.4</td>
<td>1538.8</td>
<td>1090.3</td>
<td>64.9</td>
<td>15.4</td>
<td>3.5</td>
</tr>
<tr>
<td>Finance</td>
<td>415.9</td>
<td>167.3</td>
<td>1126.8</td>
<td>56.8</td>
<td>0.7</td>
<td>2.2</td>
</tr>
<tr>
<td>HiTech</td>
<td>442.4</td>
<td>1139.9</td>
<td>1039.9</td>
<td>57.6</td>
<td>22.7</td>
<td>2.3</td>
</tr>
<tr>
<td>Other</td>
<td>801.5</td>
<td>1157.0</td>
<td>664.2</td>
<td>56.9</td>
<td>15.5</td>
<td>3.4</td>
</tr>
<tr>
<td>Finance</td>
<td>4954.8</td>
<td>468.8</td>
<td>366.4</td>
<td>41.7</td>
<td>3.0</td>
<td>16.5</td>
</tr>
<tr>
<td>Finance</td>
<td>2661.9</td>
<td>257.9</td>
<td>181.1</td>
<td>21.2</td>
<td>2.1</td>
<td>9.3</td>
</tr>
<tr>
<td>Finance</td>
<td>5345.8</td>
<td>530.1</td>
<td>337.4</td>
<td>36.4</td>
<td>4.3</td>
<td>17.8</td>
</tr>
<tr>
<td>Energy</td>
<td>3334.3</td>
<td>1644.7</td>
<td>1407.8</td>
<td>157.6</td>
<td>6.4</td>
<td>11.4</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>1826.6</td>
<td>2671.7</td>
<td>483.2</td>
<td>71.3</td>
<td>25.3</td>
<td>6.7</td>
</tr>
<tr>
<td>Retail</td>
<td>618.8</td>
<td>2354.7</td>
<td>767.7</td>
<td>58.6</td>
<td>19.0</td>
<td>2.9</td>
</tr>
<tr>
<td>Retail</td>
<td>1529.1</td>
<td>6534.0</td>
<td>826.3</td>
<td>58.3</td>
<td>65.8</td>
<td>5.7</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>4458.4</td>
<td>4824.5</td>
<td>3132.1</td>
<td>28.9</td>
<td>67.0</td>
<td>15.0</td>
</tr>
<tr>
<td>HiTech</td>
<td>5831.7</td>
<td>6611.1</td>
<td>9464.7</td>
<td>459.6</td>
<td>86.7</td>
<td>19.3</td>
</tr>
<tr>
<td>Medical</td>
<td>6468.3</td>
<td>4199.2</td>
<td>3170.4</td>
<td>270.1</td>
<td>59.5</td>
<td>21.3</td>
</tr>
<tr>
<td>Energy</td>
<td>1720.7</td>
<td>473.1</td>
<td>811.1</td>
<td>86.6</td>
<td>1.6</td>
<td>6.3</td>
</tr>
<tr>
<td>Energy</td>
<td>1679.7</td>
<td>1379.9</td>
<td>721.1</td>
<td>91.8</td>
<td>4.5</td>
<td>6.2</td>
</tr>
<tr>
<td>Retail</td>
<td>4018.2</td>
<td>16823.4</td>
<td>2038.3</td>
<td>178.1</td>
<td>162.0</td>
<td>13.6</td>
</tr>
<tr>
<td>Other</td>
<td>227.1</td>
<td>575.8</td>
<td>1083.8</td>
<td>62.6</td>
<td>1.9</td>
<td>1.6</td>
</tr>
<tr>
<td>Finance</td>
<td>3872.8</td>
<td>362.0</td>
<td>209.3</td>
<td>27.6</td>
<td>2.4</td>
<td>13.1</td>
</tr>
<tr>
<td>Retail</td>
<td>3359.3</td>
<td>4844.7</td>
<td>2651.4</td>
<td>224.1</td>
<td>75.6</td>
<td>11.5</td>
</tr>
<tr>
<td>Energy</td>
<td>1295.6</td>
<td>356.9</td>
<td>180.8</td>
<td>162.3</td>
<td>0.6</td>
<td>5.0</td>
</tr>
<tr>
<td>Energy</td>
<td>1658.0</td>
<td>626.6</td>
<td>688.0</td>
<td>126.0</td>
<td>3.5</td>
<td>6.1</td>
</tr>
<tr>
<td>Finance</td>
<td>12156.7</td>
<td>1345.5</td>
<td>680.7</td>
<td>106.6</td>
<td>9.4</td>
<td>39.2</td>
</tr>
<tr>
<td>HiTech</td>
<td>3982.6</td>
<td>4196.0</td>
<td>3946.8</td>
<td>313.9</td>
<td>64.3</td>
<td>13.5</td>
</tr>
<tr>
<td>Finance</td>
<td>8760.7</td>
<td>886.4</td>
<td>1006.9</td>
<td>90.0</td>
<td>7.5</td>
<td>28.5</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>2362.2</td>
<td>3153.3</td>
<td>1080.0</td>
<td>137.0</td>
<td>25.2</td>
<td>8.4</td>
</tr>
<tr>
<td>Transportation</td>
<td>2499.9</td>
<td>3419.0</td>
<td>992.6</td>
<td>47.2</td>
<td>25.3</td>
<td>8.8</td>
</tr>
<tr>
<td>Energy</td>
<td>1430.4</td>
<td>1610.0</td>
<td>664.3</td>
<td>77.7</td>
<td>3.5</td>
<td>5.4</td>
</tr>
<tr>
<td>Energy</td>
<td>13666.5</td>
<td>15465.4</td>
<td>2736.7</td>
<td>411.4</td>
<td>26.6</td>
<td>43.9</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>4069.3</td>
<td>4174.7</td>
<td>2907.6</td>
<td>289.2</td>
<td>38.2</td>
<td>13.7</td>
</tr>
<tr>
<td>Energy</td>
<td>2924.7</td>
<td>711.9</td>
<td>1067.8</td>
<td>146.7</td>
<td>3.4</td>
<td>10.1</td>
</tr>
<tr>
<td>Transportation</td>
<td>1262.1</td>
<td>1716.0</td>
<td>364.3</td>
<td>71.2</td>
<td>14.5</td>
<td>4.9</td>
</tr>
<tr>
<td>Medical</td>
<td>684.4</td>
<td>672.9</td>
<td>287.4</td>
<td>61.8</td>
<td>6.0</td>
<td>3.1</td>
</tr>
<tr>
<td>Energy</td>
<td>3069.3</td>
<td>1719.0</td>
<td>1439.0</td>
<td>196.4</td>
<td>4.9</td>
<td>10.6</td>
</tr>
<tr>
<td>Medical</td>
<td>246.5</td>
<td>318.8</td>
<td>924.1</td>
<td>43.8</td>
<td>3.1</td>
<td>1.7</td>
</tr>
<tr>
<td>Finance</td>
<td>11562.2</td>
<td>1128.5</td>
<td>580.4</td>
<td>64.2</td>
<td>6.7</td>
<td>37.3</td>
</tr>
<tr>
<td>Finance</td>
<td>9316.0</td>
<td>1059.4</td>
<td>816.5</td>
<td>95.9</td>
<td>8.0</td>
<td>30.2</td>
</tr>
<tr>
<td>Retail</td>
<td>1094.3</td>
<td>3848.0</td>
<td>563.3</td>
<td>29.4</td>
<td>44.7</td>
<td>4.4</td>
</tr>
<tr>
<td>Retail</td>
<td>1102.1</td>
<td>4878.3</td>
<td>932.4</td>
<td>65.2</td>
<td>47.3</td>
<td>4.4</td>
</tr>
<tr>
<td>HiTech</td>
<td>466.4</td>
<td>675.8</td>
<td>845.7</td>
<td>64.5</td>
<td>5.2</td>
<td>2.4</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>10839.4</td>
<td>5468.7</td>
<td>1895.4</td>
<td>232.8</td>
<td>47.8</td>
<td>35.0</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>733.5</td>
<td>2135.3</td>
<td>96.6</td>
<td>10.9</td>
<td>2.7</td>
<td>3.2</td>
</tr>
</tbody>
</table>
Chapter 99: The SURVEYMEANS Procedure

<table>
<thead>
<tr>
<th>Type</th>
<th>Manufacturing</th>
<th>Energy</th>
<th>Other</th>
<th>Transportation</th>
<th>Retail</th>
<th>Retail</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10354.2</td>
<td>14477.4</td>
<td>5607.2</td>
<td>321.9</td>
<td>188.5</td>
<td>33.5</td>
</tr>
<tr>
<td></td>
<td>1902.1</td>
<td>2697.9</td>
<td>329.3</td>
<td>34.2</td>
<td>2.2</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td>2245.2</td>
<td>2132.2</td>
<td>2230.4</td>
<td>198.9</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>949.4</td>
<td>1248.3</td>
<td>298.9</td>
<td>35.4</td>
<td>10.4</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>2834.4</td>
<td>2884.6</td>
<td>458.2</td>
<td>41.2</td>
<td>49.8</td>
<td>9.8</td>
</tr>
<tr>
<td></td>
<td>2621.1</td>
<td>6173.8</td>
<td>1992.7</td>
<td>183.7</td>
<td>115.1</td>
<td>9.2</td>
</tr>
</tbody>
</table>

For each company in your sample, the variables are defined as follows:

- **Type** identifies the type of market for the company.
- **Asset** contains the company’s assets, in millions of dollars.
- **Sale** contains sales, in millions of dollars.
- **Value** contains the market value of the company, in millions of dollars.
- **Profit** contains the profit, in millions of dollars.
- **Employee** contains the number of employees, in thousands.
- **Weight** contains the sampling weight.

The following SAS statements use PROC SURVEYMEANS to perform the domain analysis, estimating means, and other statistics for the overall population and also for the subpopulations (or domain) defined by market type. The DOMAIN statement specifies **Type** as the domain variable:

```sas
ods graphics on;
title 'Top Companies Profile Study';
proc surveymeans data=Company total=800 mean sum;
  var Asset;
  weight Weight;
  domain Type;
run;
ods graphics off;
```

Output 99.2.1 shows that there are 66 observations in the sample. The sum of the sampling weights equals 799.8, which is close to the total number of companies in the study population.

Output 99.2.1 Company Profile Study

Top Companies Profile Study

The SURVEYMEANS Procedure

<table>
<thead>
<tr>
<th>Data Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations</td>
</tr>
<tr>
<td>Sum of Weights</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Asset</td>
</tr>
</tbody>
</table>
The “Statistics” table in Output 99.2.1 displays the estimates of the mean and total for all analysis variables for the entire set of 800 companies, while Output 99.2.2 shows the mean and total estimates for each company type.

When ODS Graphics is enabled, PROC SURVEYMEANS also displays Figure 99.2.3, which depicts the domain statistics for each company type in addition to the statistics in the full sample.

Output 99.2.2 Domain Analysis for Company Profile Study

Top Companies Profile Study

The SURVEYMEANS Procedure

<table>
<thead>
<tr>
<th>Type</th>
<th>Variable</th>
<th>Mean</th>
<th>Std Error of Mean</th>
<th>Sum</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>Asset</td>
<td>7868.302932</td>
<td>1941.699163</td>
<td>1449341</td>
<td>785962</td>
</tr>
<tr>
<td>Finance</td>
<td>Asset</td>
<td>7890.190264</td>
<td>1057.185336</td>
<td>1855773</td>
<td>704506</td>
</tr>
<tr>
<td>HiTech</td>
<td>Asset</td>
<td>5031.959781</td>
<td>732.436967</td>
<td>321542</td>
<td>183302</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>Asset</td>
<td>7403.004250</td>
<td>1454.921083</td>
<td>888361</td>
<td>492577</td>
</tr>
<tr>
<td>Medical</td>
<td>Asset</td>
<td>5046.570609</td>
<td>1218.446438</td>
<td>140799</td>
<td>131942</td>
</tr>
<tr>
<td>Other</td>
<td>Asset</td>
<td>1850.250000</td>
<td>338.128984</td>
<td>58838</td>
<td>31375</td>
</tr>
<tr>
<td>Retail</td>
<td>Asset</td>
<td>2939.845750</td>
<td>393.692369</td>
<td>235188</td>
<td>94605</td>
</tr>
<tr>
<td>Transportation</td>
<td>Asset</td>
<td>4712.047359</td>
<td>888.954411</td>
<td>267644</td>
<td>163516</td>
</tr>
</tbody>
</table>

Output 99.2.3 Domain Analysis for Company Profile Study
Example 99.3: Ratio Analysis

Suppose you are interested in the profit per employee and the sale per employee among the 800 top-performing companies in the data in the previous example. The following SAS statements illustrate how you can use PROC SURVEYMEANS to estimate these ratios:

```
title 'Ratio Analysis in Top Companies Profile Study';
proc surveymeans data=Company total=800 ratio;
  var Profit Sale Employee;
  weight Weight;
  ratio Profit Sale / Employee;
run;
```

The RATIO statement requests the ratio of the profit and the sales to the number of employees.

Output 99.3.1 shows the estimated ratios and their standard errors. Because the profit and the sales figures are in millions of dollars, and the employee numbers are in thousands, the profit per employee is estimated as $5,120 with a standard error of $1,059, and the sales per employee are $114,332 with a standard error of $20,503.

```
Output 99.3.1 Estimate Ratios

Ratio Analysis in Top Companies Profile Study

The SURVEYMEANS Procedure

<table>
<thead>
<tr>
<th>Numerator</th>
<th>Denominator</th>
<th>Ratio</th>
<th>Std Err</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sale</td>
<td>Employee</td>
<td>114.332497</td>
<td>20.502742</td>
</tr>
<tr>
<td>Profit</td>
<td>Employee</td>
<td>5.119698</td>
<td>1.058939</td>
</tr>
</tbody>
</table>
```

Example 99.4: Analyzing Survey Data with Missing Values

As described in the section “Missing Values” on page 8182, the SURVEYMEANS procedure excludes an observation from the analysis if it has a missing value for the analysis variable or a nonpositive value for the WEIGHT variable.

However, if there is evidence indicating that the nonrespondents are different from the respondents for your study, you can use the NOMCAR option to compute descriptive statistics among respondents while still counting the number of nonrespondents.

This example continues the ice cream example in the section “Stratified Sampling” on page 8157 to illustrate how to perform a similar analysis when you have missing values.

Suppose that some of the students failed to provide the amounts spent on ice cream, as shown in the following data set, IceCream:

```
data IceCream;
  input Grade Spending @@;
  if Grade=7 then Prob=20/1824;
  if Grade=8 then Prob=9/1025;
  if Grade=9 then Prob=11/1151;
```

Example 99.4: Analyzing Survey Data with Missing Values

Weight=1/Prob;
datalines;
7 7 7 7 7 8 . 9 10 7 . 7 10 7 3 8 20 8 19 7 2
7 . 9 15 8 16 7 6 7 6 7 6 9 15 8 17 8 14 9 .
9 8 9 7 7 3 7 12 7 4 9 14 8 18 9 9 7 2 7 1
7 4 7 11 9 8 8 . 8 13 7 . 9 . 9 11 7 2 7 9;

data StudentTotals;
 input Grade _total_;
datalines;
7 1824
8 1025
9 1151;
;
Considering the possibility that those students who did not respond spend differently than those students who did respond, you can use the NOMCAR option to request the analysis to treat the respondents as a domain rather than exclude the nonrespondents.

The following SAS statements produce the desired analysis:

 title 'Analysis of Ice Cream Spending';
 proc surveymeans data=IceCream total=StudentTotals nomcar mean sum;
 strata Grade;
 var Spending;
 weight Weight;
 run;

Output 99.4.1 summarizes the analysis including the variance estimation method.

Output 99.4.1 Analysis of Incomplete Ice Cream Data Excluding Observations with Missing Values

Analysis of Ice Cream Spending

The SURVEYMEANS Procedure

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Summary</td>
<td></td>
</tr>
<tr>
<td>Number of Strata</td>
<td>3</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>40</td>
</tr>
<tr>
<td>Sum of Weights</td>
<td>4000</td>
</tr>
<tr>
<td>Variance Estimation</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>Taylor Series</td>
</tr>
<tr>
<td>Missing Values</td>
<td>NOMCAR</td>
</tr>
</tbody>
</table>

Output 99.4.2 shows the mean and total estimates when treating respondents as a domain in the student population. Although the point estimates are the same as the analysis without the NOMCAR option, for this particular example, the variance estimations are slightly higher when you assume that the missingness is not completely at random.
Example 99.5: Variance Estimation Using Replication Methods

In order to improve service, the San Francisco Municipal Railway (MUNI) conducts a survey to estimate passenger’s average waiting time for MUNI’s subway system.

The study uses a stratified cluster sample design. Each MUNI subway line is a stratum. The subway lines included in the study are ‘J-Church,’ ‘K-Ingleside,’ ‘L-Taraval,’ ‘M-Ocean View,’ ‘N-Judah,’ and the streetcar ‘F-Market & Wharves.’ The MUNI vehicles in service for these lines during a day are primary sampling units. Within each stratum, two vehicles (PSUs) are randomly selected. Then the waiting times of passengers for a selected MUNI vehicle are collected.

Table 99.7 shows the number of passengers that are interviewed in each of the selected MUNI vehicles.

<table>
<thead>
<tr>
<th>MUNI Line</th>
<th>Vehicle</th>
<th>Number of Passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-Market & Wharves</td>
<td>1</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>102</td>
</tr>
<tr>
<td>J-Church</td>
<td>1</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>142</td>
</tr>
<tr>
<td>K-Ingleside</td>
<td>1</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>180</td>
</tr>
<tr>
<td>L-Taraval</td>
<td>1</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>185</td>
</tr>
<tr>
<td>M-Ocean View</td>
<td>1</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>203</td>
</tr>
<tr>
<td>N-Judah</td>
<td>1</td>
<td>306</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>234</td>
</tr>
</tbody>
</table>

The collected data are saved in the SAS data set MUNIsurvey. The variable Line indicates which MUNI line a passenger is riding. The variable vehicle identifies the vehicle that a passenger is boarding. The variable Waittime is the time (in minutes) that a passenger waited. The variable weight contains the sampling weights, which are determined by selection probabilities within each stratum.

Output 99.5.1 displays the first 10 observations of the data set MUNIsurvey.
Using the VARMETHOD=BRR option, the following SAS statements analyze the MUNI subway survey by using the BRR method to estimate the variance:

```
title 'MUNI Passenger Waiting Time Analysis Using BRR';
proc surveymeans data=MUNIsurvey mean varmethod=brr mean clm;
   strata line;
   cluster vehicle;
   var waittime;
   weight weight;
run;
```

The STRATUM variable is `line`, which corresponds to MUNI lines. The two clusters within each stratum are identified by the variable `vehicle`. The sampling weights are stored in the variable `weight`. The mean and confident limits for passenger waiting time (in minutes) are requested statistics.

Output 99.5.2 summarizes the data and indicates that the variance estimation method is BRR with 8 replicates.

Output 99.5.3 reports that the average passenger waiting time for a MUNI vehicle is 7.33 minutes, with an estimated standard of 0.24 minutes, using the BRR method. The 95% confident limits for the mean are estimated as 6.75 to 7.91 minutes.
Alternatively, the variance can be estimated using the jackknife method if the VARMETHOD=JACKKNIFE option is used. The following SAS statements analyze the MUNI subway survey by using the jackknife method to estimate the variance:

```
title 'MUNI Passenger Waiting Time Analysis Using Jackknife';
proc surveymeans data=MUNIsurvey mean varmethod=jackknife mean clm;
  strata line;
  cluster vehicle;
  var waittime;
  weight weight;
run;
```

Output 99.5.4 summarizes the data and indicates that the variance estimation method is jackknife with 12 replicates.

```
Output 99.5.4  MUNI Passenger Waiting Time Analysis Using the Jackknife Method

MUNI Passenger Waiting Time Analysis Using Jackknife

The SURVEYMEANS Procedure

<table>
<thead>
<tr>
<th>Data Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Strata</td>
</tr>
<tr>
<td>Number of Clusters</td>
</tr>
<tr>
<td>Number of Observations</td>
</tr>
<tr>
<td>Sum of Weights</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variance Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
</tr>
<tr>
<td>Number of Replicates</td>
</tr>
</tbody>
</table>
```

Output 99.5.5 reports the statistics computed using the jackknife method. Although the average passenger waiting time remains the same (7.33 minutes), the standard error is slightly smaller 0.23 minutes when the jackknife method is used, as opposed to 0.24 minutes when the BRR method is used. The 95% confidence limits are between 6.76 and 7.90 minutes when the jackknife method is used.

```
Output 99.5.5  MUNI Passenger Waiting Time Analysis Using the Jackknife Method

<table>
<thead>
<tr>
<th>Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std Error</td>
</tr>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>waittime</td>
</tr>
</tbody>
</table>
```

Alternatively, the variance can be estimated using the jackknife method if the VARMETHOD=JACKKNIFE option is used. The following SAS statements analyze the MUNI subway survey by using the jackknife method to estimate the variance:

```
title 'MUNI Passenger Waiting Time Analysis Using Jackknife';
proc surveymeans data=MUNIsurvey mean varmethod=jackknife mean clm;
  strata line;
  cluster vehicle;
  var waittime;
  weight weight;
run;
```

Output 99.5.4 summarizes the data and indicates that the variance estimation method is jackknife with 12 replicates.

```
Output 99.5.4  MUNI Passenger Waiting Time Analysis Using the Jackknife Method

MUNI Passenger Waiting Time Analysis Using Jackknife

The SURVEYMEANS Procedure

<table>
<thead>
<tr>
<th>Data Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Strata</td>
</tr>
<tr>
<td>Number of Clusters</td>
</tr>
<tr>
<td>Number of Observations</td>
</tr>
<tr>
<td>Sum of Weights</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variance Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
</tr>
<tr>
<td>Number of Replicates</td>
</tr>
</tbody>
</table>
```

Output 99.5.5 reports the statistics computed using the jackknife method. Although the average passenger waiting time remains the same (7.33 minutes), the standard error is slightly smaller 0.23 minutes when the jackknife method is used, as opposed to 0.24 minutes when the BRR method is used. The 95% confidence limits are between 6.76 and 7.90 minutes when the jackknife method is used.

```
Output 99.5.5  MUNI Passenger Waiting Time Analysis Using the Jackknife Method

<table>
<thead>
<tr>
<th>Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std Error</td>
</tr>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>waittime</td>
</tr>
</tbody>
</table>
```
References

Subject Index

alpha level
 SURVEYMEANS procedure, 8162

balanced repeated replication
 SURVEYMEANS procedure, 8209, 8210
 variance estimation (SURVEYMEANS), 8210

box plots
 SURVEYMEANS procedure, 8163

BRR
 SURVEYMEANS procedure, 8209, 8210, 8234
 BRR variance estimation
 SURVEYMEANS procedure, 8210

categorical variable
 SURVEYMEANS procedure, 8185

classification variable
 SURVEYMEANS procedure, 8173, 8185, 8189

clustering
 SURVEYMEANS procedure, 8174

coefficient of variation
 SURVEYMEANS procedure, 8189

combined computational resources
 SURVEYMEANS procedure, 8213

classification level
 SURVEYMEANS procedure, 8162

classification limits
 SURVEYMEANS procedure, 8188, 8191

degrees of freedom
 SURVEYMEANS procedure, 8187

descriptive statistics
 survey sampling, 8154

direct standardization
 SURVEYMEANS procedure, 8203

domain analysis
 SURVEYMEANS procedure, 8184

domain analysis under poststratification
 SURVEYMEANS procedure, 8205

domain plots
 SURVEYMEANS procedure, 8163

domain quantile
 SURVEYMEANS procedure, 8198

domain quantile with poststratification
 SURVEYMEANS procedure, 8200

domain ratio under poststratification
 SURVEYMEANS procedure, 8208

domain statistics
 SURVEYMEANS procedure, 8192

donor stratum

 SURVEYMEANS procedure, 8211

Fay coefficient
 SURVEYMEANS procedure, 8170, 8211

Fay’s BRR method
 variance estimation (SURVEYMEANS), 8211
 finite population correction
 SURVEYMEANS procedure, 8165, 8166, 8183

geometric mean
 SURVEYMEANS procedure, 8201

Hadamard matrix
 SURVEYMEANS procedure, 8170, 8213

histogram plots
 SURVEYMEANS procedure, 8163

jackknife
 SURVEYMEANS procedure, 8209, 8211, 8234
 jackknife coefficients
 SURVEYMEANS procedure, 8211, 8215
 jackknife variance estimation
 SURVEYMEANS procedure, 8211

mean per element
 SURVEYMEANS procedure, 8186

means
 SURVEYMEANS procedure, 8186
 MEMSIZE= option
 SURVEYMEANS procedure, 8214

missing values
 SURVEYMEANS procedure, 8162, 8182, 8232

nbins= global plot option
 SURVEYMEANS procedure, 8163, 8164

nbins= plot option
 SURVEYMEANS procedure, 8163, 8165

number of replicates
 SURVEYMEANS procedure, 8171, 8210, 8211

ODS graph names
 SURVEYMEANS procedure, 8224

ODS Graphics
 SURVEYMEANS procedure, 8163

output data sets
 SURVEYMEANS procedure, 8215

output jackknife coefficient
 SURVEYMEANS procedure, 8215

output poststratification weights
SURVEYMEANS procedure, 8216
output replicate weights
SURVEYMEANS procedure, 8215
output table names
SURVEYMEANS procedure, 8223

percentiles
SURVEYMEANS procedure, 8194
poststrata
SURVEYMEANS procedure, 8203
poststratification
SURVEYMEANS procedure, 8175, 8196, 8200, 8203
poststratification percentages
SURVEYMEANS procedure, 8176
poststratification proportions
SURVEYMEANS procedure, 8176
poststratification totals
SURVEYMEANS procedure, 8176
poststratification weight
SURVEYMEANS procedure, 8203
primary sampling units (PSUs)
SURVEYMEANS procedure, 8183
proportion estimation
SURVEYMEANS procedure, 8189
quantile with poststratification
SURVEYMEANS procedure, 8196
quantiles
SURVEYMEANS procedure, 8194
ratio analysis
SURVEYMEANS procedure, 8177, 8191
ratio under poststratification
SURVEYMEANS procedure, 8207
ratios
SURVEYMEANS procedure, 8177, 8191
rectangular table
SURVEYMEANS procedure, 8166, 8216
replication methods
SURVEYMEANS procedure, 8169, 8209, 8234
sampling rates
SURVEYMEANS procedure, 8165, 8183
sampling weights
SURVEYMEANS procedure, 8179, 8181
simple random sampling
SURVEYMEANS procedure, 8154
stacking table
SURVEYMEANS procedure, 8166, 8216
standard deviations
SURVEYMEANS procedure, 8190
standard errors
SURVEYMEANS procedure, 8186
standardization
SURVEYMEANS procedure, 8203
statistic-keywords
SURVEYMEANS procedure, 8167
statistical computations
SURVEYMEANS procedure, 8184
stratification
SURVEYMEANS procedure, 8180
stratified cluster sample
SURVEYMEANS procedure, 8225
stratified sampling
SURVEYMEANS procedure, 8157
subdomain analysis, see also domain analysis
subgroup analysis, see also domain analysis
subpopulation analysis, see also domain analysis
summary panel plots
SURVEYMEANS procedure, 8163
summary plots
SURVEYMEANS procedure, 8163
SUMSIZE= option
SURVEYMEANS procedure, 8214
survey sampling
descriptive statistics, 8154
SURVEYMEANS procedure, 8154
alpha level, 8162
balanced repeated replication, 8209, 8210
box plots, 8163
BRR, 8209, 8210, 8234
BRR variance estimation, 8210
categorical variable, 8173, 8185, 8189
class level information table, 8218
classification variable, 8185
clustering, 8174
coefficient of variation, 8189
computational resources, 8213
certainty level, 8162
certainty limits, 8188, 8191
data and sample design summary table, 8218
degrees of freedom, 8187
denominator variable, 8177
direct standardization, 8203
domain analysis, 8184
domain analysis table, 8221
domain analysis under poststratification, 8205
domain geometric means table, 8223
domain means, 8192
domain plots, 8163
domain quantile, 8198
domain quantile with poststratification, 8200
domain quantiles table, 8221
domain ratio, 8194
domain ratio analysis table, 8222
domain ratio under poststratification, 8208
domain statistics, 8192
domain totals, 8193
domain variable, 8174
donor stratum, 8211
estimated frequencies, 8190
estimated totals, 8190
Fay coefficient, 8170, 8211
Fay’s BRR variance estimation, 8211
finite population correction, 8165, 8166, 8183
first-stage sampling rate, 8166
geometric mean, 8201
geometric means table, 8223
Hadamard matrix, 8170, 8213, 8222
histogram plots, 8163
jackknife, 8209, 8211, 8234
jackknife coefficients, 8211, 8215
jackknife variance estimation, 8211
list of strata, 8181
mean per element, 8186
means, 8186
MEMSIZE= option, 8214
missing values, 8162, 8182, 8232
nbins= global plot option, 8163, 8164
nbins= plot option, 8163, 8165
number of replicates, 8171, 8210, 8211
numerator variable, 8177
ODS graph names, 8224
ODS Graphics, 8163
ODS table names, 8223
output data sets, 8159, 8215
output jackknife coefficient, 8215
output replicate weights, 8216
output table names, 8223
percentiles, 8194
population totals, 8166, 8183
poststrata, 8203
poststratification, 8175, 8196, 8200, 8203
poststratification percentages, 8176
poststratification proportions, 8176
poststratification totals, 8176
poststratification weight, 8203
primary sampling units (PSUs), 8183
proportion estimation, 8189
quantile with poststratification, 8196
quantiles, 8194
quantiles table, 8221
ratio analysis, 8177, 8191
ratio analysis table, 8222
ratio under poststratification, 8207
ratios, 8177, 8191
rectangular table, 8166, 8216
replication methods, 8169, 8209, 8234
sampling rates, 8165, 8183
sampling weights, 8179, 8181
simple random sampling, 8154
stacking table, 8166, 8216
standard deviations of totals, 8190
standard errors, 8186
standard errors of means, 8186
standard errors of ratios, 8191
standardization, 8203
statistic-keywords, 8191
statistical computations, 8184
statistics table, 8219
stratification, 8180
stratified cluster sample, 8225
stratified sampling, 8157
summary panel plots, 8163
summary plots, 8163
SUMSIZE= option, 8214
t test, 8187
Taylor series variance estimation, 8173, 8186, 8188, 8190
valid observation, 8218
variance estimation, 8184
variance estimation table, 8219
variances of means, 8186
variances of totals, 8190
VARMETHOD=BRR option, 8210
VARMETHOD=JACKKNIFE option, 8211
VARMETHOD=JK option, 8211
weighting, 8179, 8181
t test
SURVEYMEANS procedure, 8187
Taylor series variance estimation
SURVEYMEANS procedure, 8173, 8186, 8188, 8190
variance estimation
BRR (SURVEYMEANS), 8210
jackknife (SURVEYMEANS), 8211
SURVEYMEANS procedure, 8184
Taylor series (SURVEYMEANS), 8173, 8186, 8188, 8190
variances of totals
SURVEYMEANS procedure, 8190
VARMETHOD=BRR option
SURVEYMEANS procedure, 8210
VARMETHOD=JACKKNIFE option
SURVEYMEANS procedure, 8211
VARMETHOD=JK option
SURVEYMEANS procedure, 8211
weighting
SURVEYMEANS procedure, 8179, 8181
Syntax Index

ALPHA= option
 PROC SURVEYMEANS statement, 8162

BY statement
 SURVEYMEANS procedure, 8173

CLASS statement
 SURVEYMEANS procedure, 8173

CLUSTER statement
 SURVEYMEANS procedure, 8174

DATA= option
 PROC SURVEYMEANS statement, 8162

DF= option
 REPWEIGHTS statement (SURVEYMEANS), 8179

DFADJ option
 DOMAIN statement (SURVEYMEANS), 8175
 VARMETHOD=BRR (PROC SURVEYMEANS statement), 8169
 VARMETHOD=JACKKNIFE (PROC SURVEYMEANS statement), 8172
 VARMETHOD=JK (PROC SURVEYMEANS statement), 8172

DOMAIN statement
 SURVEYMEANS procedure, 8174

FAY= option
 VARMETHOD=BRR (PROC SURVEYMEANS statement), 8170

H= option
 VARMETHOD=BRR (PROC SURVEYMEANS statement), 8170

HADAMARD= option
 VARMETHOD=BRR (PROC SURVEYMEANS statement), 8170

JKCOEFS= option
 REPWEIGHTS statement (SURVEYMEANS), 8179

LIST option
 STRATA statement (SURVEYMEANS), 8181

MISSING option
 PROC SURVEYMEANS statement, 8162

N= option
 PROC SURVEYMEANS statement, 8166

NOMCAR option
 PROC SURVEYMEANS statement, 8162

NONSYMCL option
 PROC SURVEYMEANS statement, 8162

NOSPARSE option
 PROC SURVEYMEANS statement, 8162

ORDER= option
 PROC SURVEYMEANS statement, 8162

OUT= option
 POSTSTRATA statement (SURVEYMEANS), 8177

OUTJKCOEFS= option
 VARMETHOD=BRR (PROC SURVEYMEANS statement), 8172
 VARMETHOD=JACKKNIFE (PROC SURVEYMEANS statement), 8172
 VARMETHOD=JK (PROC SURVEYMEANS statement), 8172

OUTPSWGT= option
 POSTSTRATA statement (SURVEYMEANS), 8177

OUTWEIGHTS= option
 VARMETHOD=BRR (PROC SURVEYMEANS statement), 8171
 VARMETHOD=JACKKNIFE (PROC SURVEYMEANS statement), 8172
 VARMETHOD=JK (PROC SURVEYMEANS statement), 8172

PERCENTILE= option
 PROC SURVEYMEANS statement, 8163

PLOTS= option
 PROC SURVEYMEANS statement, 8163
 PLOTS=BOXPLOT option
 PROC SURVEYMEANS statement, 8164

POSTPCT= option
 POSTSTRATA statement, 8176

POSTSTRATA statement
 SURVEYMEANS procedure, 8175

POSTTOTAL= option
 POSTSTRATA statement, 8176

PRINTH option
 VARMETHOD=BRR (PROC SURVEYMEANS statement), 8171

PROC SURVEYMEANS statement, see
 SURVEYMEANS procedure

PSCONTROL= option
 POSTSTRATA statement, 8176

PSPCT= option
 POSTSTRATA statement, 8176
PSTOTAL= option
 POSTSTRATA statement, 8176

QUANTILE= option
 PROC SURVEYMEANS statement, 8165

R= option
 PROC SURVEYMEANS statement, 8165

RATE= option
 PROC SURVEYMEANS statement, 8165

RATIO statement
 SURVEYMEANS procedure, 8177

REPS= option
 VARMETHOD=BRR (PROC SURVEYMEANS statement), 8171

REPWEIGHTS statement
 SURVEYMEANS procedure, 8179

STACKING option
 PROC SURVEYMEANS statement, 8166

STRATA statement
 SURVEYMEANS procedure, 8180

SUBGROUP statement
 SURVEYMEANS procedure, 8174

SURVEYMEANS procedure, BY statement, 8173

SURVEYMEANS procedure syntax, 8160

SURVEYMEANS procedure, CLASS statement, 8173

SURVEYMEANS procedure, CLUSTER statement, 8174

SURVEYMEANS procedure, DOMAIN statement, 8174

SURVEYMEANS option, 8175

SURVEYMEANS procedure, POSTSTRATA statement, 8175

OUT= option, 8177

OUTPSWGT= option, 8177

POSTPCT= option, 8176

POSTTOTAL= option, 8176

SURVEYMEANS procedure, PROC
 SURVEYMEANS statement, 8161

ALPHA= option, 8162

DATA= option, 8162

DFADJ option (VARMETHOD=BRR), 8169

DFADJ option (VARMETHOD=JACKKNIFE), 8172

DFADJ option (VARMETHOD=JK), 8172

FAY= option (VARMETHOD=BRR), 8170

H= option (VARMETHOD=BRR), 8170

HADAMARD= option (VARMETHOD=BRR), 8170

MISSING option, 8162

N= option, 8166

NOMCAR option, 8162

NONSYMCL option, 8162

NOSPARSE option, 8162

ORDER= option, 8162

OUTJKCOEFS= option
 (VARMETHOD=JACKKNIFE), 8172

OUTJKCOEFS= option (VARMETHOD=JK), 8172

OUTWEIGHTS= option (VARMETHOD=BRR), 8171

OUTWEIGHTS= option (VARMETHOD=JACKKNIFE), 8172

OUTWEIGHTS= option (VARMETHOD=JK), 8172

PERCENTILE= option, 8163

PLOTS= option, 8163

PLOTS=BOXPLOT option, 8164

PRINTH option (VARMETHOD=BRR), 8171

QUANTILE= option, 8165

R= option, 8165

RATE= option, 8165

REPS= option (VARMETHOD=BRR), 8171

STACKING option, 8166

TOTAL= option, 8166

VARMETHOD= option, 8169

SURVEYMEANS procedure, RATIO statement, 8177

SURVEYMEANS procedure, REPWEIGHTS statement, 8179

DF= option, 8179

JKCOEFS= option, 8179

SURVEYMEANS procedure, STRATA statement, 8180

LIST option, 8181

SURVEYMEANS procedure, VAR statement, 8181

SURVEYMEANS procedure, WEIGHT statement, 8181

TOTAL= option
 PROC SURVEYMEANS statement, 8166

VAR statement
 SURVEYMEANS procedure, 8181

VARMETHOD= option
 PROC SURVEYMEANS statement, 8169

WEIGHT statement
 SURVEYMEANS procedure, 8181