Gain Greater Insight into Your SAS® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.
Chapter 79
The PRINCOMP Procedure

Overview: PRINCOMP Procedure

The PRINCOMP procedure performs principal component analysis. As input, you can use raw data, a correlation matrix, a covariance matrix, or a sum-of-squares-and-crossproducts (SSCP) matrix. You can create output data sets that contain eigenvalues, eigenvectors, and standardized or unstandardized principal component scores.

Principal component analysis is a multivariate technique for examining relationships among several quantitative variables. The choice between using factor analysis and using principal component analysis depends in part on your research objectives. You should use the PRINCOMP procedure if you are interested in summarizing data and detecting linear relationships. You can use principal component analysis to reduce the
number of variables in regression, clustering, and so on. For a detailed comparison of the PRINCOMP and FACTOR procedures, see Chapter 9, “Introduction to Multivariate Procedures.”

You can use ODS Graphics to display the scree plot, component pattern plot, component pattern profile plot, matrix plot of component scores, and component score plots. These plots are especially valuable tools in exploratory data analysis.

Principal component analysis was originated by Pearson (1901) and later developed by Hotelling (1933). The application of principal components is discussed by Rao (1964); Cooley and Lohnes (1971); Gnanadesikan (1977). Excellent statistical treatments of principal components are found in Kshirsagar (1972); Morrison (1976); Mardia, Kent, and Bibby (1979).

If you have a data set that contains \(p \) numeric variables, you can compute \(p \) principal components. Each principal component is a linear combination of the original variables, with coefficients equal to the eigenvectors of the correlation or covariance matrix. The eigenvectors are usually taken with unit length. The principal components are sorted by descending order of the eigenvalues, which are equal to the variances of the components.

Principal components have a variety of useful properties (Rao 1964; Kshirsagar 1972):

- The eigenvectors are orthogonal, so the principal components represent jointly perpendicular directions through the space of the original variables.
- The principal component scores are jointly uncorrelated. Note that this property is quite distinct from the previous one.
- The first principal component has the largest variance of any unit-length linear combination of the observed variables. The \(j \)th principal component has the largest variance of any unit-length linear combination orthogonal to the first \(j - 1 \) principal components. The last principal component has the smallest variance of any linear combination of the original variables.
- The scores on the first \(j \) principal components have the highest possible generalized variance of any set of unit-length linear combinations of the original variables.
- The first \(j \) principal components provide a least squares solution to the model

\[
Y = XB + E
\]

where \(Y \) is an \(n \times p \) matrix of the centered observed variables; \(X \) is the \(n \times j \) matrix of scores on the first \(j \) principal components; \(B \) is the \(j \times p \) matrix of eigenvectors; \(E \) is an \(n \times p \) matrix of residuals; and you want to minimize \(\text{trace}(E'E) \), the sum of all the squared elements in \(E \). In other words, the first \(j \) principal components are the best linear predictors of the original variables among all possible sets of \(j \) variables, although any nonsingular linear transformation of the first \(j \) principal components would provide equally good prediction. The same result is obtained if you want to minimize the determinant or the Euclidean (Schur, Frobenius) norm of \(E'E \) rather than the trace.

- In geometric terms, the \(j \)-dimensional linear subspace that is spanned by the first \(j \) principal components provides the best possible fit to the data points as measured by the sum of squared perpendicular distances from each data point to the subspace. This contrasts with the geometric interpretation of least squares regression, which minimizes the sum of squared vertical distances. For example, suppose you have two variables. Then, the first principal component minimizes the sum of squared perpendicular distances from the points to the first principal axis. This contrasts with least squares, which would minimize the sum of squared vertical distances from the points to the fitted line.
Principal component analysis can also be used for exploring polynomial relationships and for multivariate outlier detection (Gnanadesikan 1977), and it is related to factor analysis, correspondence analysis, allometry, and biased regression techniques (Mardia, Kent, and Bibby 1979).

Getting Started: PRINCOMP Procedure

The following data provide crime rates per 100,000 people in seven categories for each of the 50 US states in 1977. Because there are seven numeric variables, it is impossible to plot all the variables simultaneously. You can use principal components to summarize the data in two or three dimensions, and they help you visualize the data. The following statements produce Figure 79.1 through Figure 79.5:

```
title 'Crime Rates per 100,000 Population by State';
data Crime;
  input State $1-15 Murder Rape Robbery Assault
         Burglary Larceny Auto_Theft;
datalines;
Alabama  14.2  25.2  96.8  278.3  1135.5  1881.9  280.7
Alaska   10.8  51.6  96.8  284.0  1331.7  3369.8  753.3
Arizona  9.5   34.2 138.2 287.0   358.0  2139.4  3499.8
Arkansas  8.8  27.6  83.2  292.9  1935.2  3903.2  477.1
California 11.5  49.4  82.5  213.4  1270.4  2739.3  244.3
Colorado  6.3  42.0 170.7  322.9  1935.2  3903.2  477.1
Connecticut 4.2  58.5 129.5  213.4  1935.2  3903.2  477.1
Delaware  6.0  24.9 157.0  193.5  1935.2  3903.2  477.1
Florida  10.2  39.6 187.9  449.1  1859.9  3840.5  351.4
Georgia  11.7  31.1 140.5  256.5  1351.1  2170.2  297.9
Hawaii    7.2  25.5 128.0  64.1  1911.5  3920.4  489.4
Idaho     5.5  19.4  39.6  172.5  1050.8  2599.6  237.6
Illinois  9.9  21.8 211.3  209.0  1085.0  2828.5  526.8
Indiana    7.4  26.5 123.2  153.5  1086.2  2498.7  377.4
Iowa      2.3  10.6  41.2  89.8  812.5  2685.1  219.9
Kansas    6.6  22.0 100.7  180.5  1270.4  2739.3  244.3
Kentucky  10.1  19.1  81.1  123.3  1270.4  2739.3  244.3
Louisiana 15.5  30.9 142.9  335.5  1165.5  2469.9  337.7
Maine     2.4  13.5  38.7  170.0  1253.1  2350.7  246.9
Maryland  8.0  34.8 292.1  358.9  1400.0  3177.7  428.5
Massachusetts  3.1  20.8 169.1  231.6  1532.2  2311.3  1140.1
Michigan  9.3  38.9 261.9  274.6  1522.7  3159.0  545.5
Minnesota  2.7  19.5  85.9  85.8  1134.7  2559.3  343.1
Mississippi 14.3  19.6  65.7  189.1  915.6  1239.9  144.4
Missouri  9.6  23.3 189.0  233.5  1318.3  2424.2  378.4
Montana   5.4  16.7  39.2  156.8  804.9  2773.2  309.2
Nebraska  3.9  18.1  64.7  112.7  760.0  2316.1  249.1
Nevada    15.8  49.1 323.1  355.0  2453.1  4212.6  559.2
New Hampshire  3.2  10.7  23.2  76.0  1041.7  2343.9  293.4
New Jersey  5.6  21.0  180.4  185.1  1435.8  2774.5  511.5
New Mexico  8.8  39.1 109.6  343.4  1418.7  3008.6  259.5
New York  10.7  29.4  472.6  319.1  1728.0  2782.0  745.8
North Carolina 10.6  17.0  61.3  318.3  1154.1  2037.8  192.1
```
Chapter 79: The PRINCOMP Procedure

North Dakota 0.9 9.0 13.3 43.8 446.1 1843.0 144.7
Ohio 7.8 27.3 190.5 181.1 1216.0 2696.8 400.4
Oklahoma 8.6 29.2 73.8 205.0 1288.2 2288.1 326.8
Oregon 4.9 39.9 124.1 286.9 1636.4 3506.1 388.9
Pennsylvania 5.6 19.0 130.3 128.0 877.5 1624.1 332.3
Rhode Island 3.6 10.5 86.5 201.0 1489.5 2844.1 791.4
South Carolina 11.9 33.0 105.9 485.3 1613.6 2342.4 245.1
South Dakota 2.0 13.5 17.9 155.7 570.5 1704.4 147.5
Tennessee 10.1 29.7 145.8 203.9 1259.7 1776.5 314.0
Texas 13.3 33.8 152.4 208.2 1603.1 2988.7 397.6
Utah 3.5 20.3 68.8 147.3 1171.6 3004.6 334.5
Vermont 1.4 15.9 30.8 101.2 1348.2 2201.0 265.2
Virginia 9.0 23.3 92.1 165.7 986.2 2521.2 226.7
Washington 4.3 39.6 106.2 224.8 1605.6 3386.9 360.3
West Virginia 6.0 13.2 42.2 90.9 597.4 1341.7 163.3
Wisconsin 2.8 12.9 52.2 63.7 846.9 2614.2 220.7
Wyoming 5.4 21.9 39.7 173.9 811.6 2772.2 282.0

ods graphics on;

proc princomp out=Crime_Components plots= score(ellipse ncomp=3);
 id State;
run;

Figure 79.1 displays the PROC PRINCOMP output, beginning with simple statistics and followed by the correlation matrix. By default, the PROC PRINCOMP statement requests principal components that are computed from the correlation matrix, so the total variance is equal to the number of variables, 7.

Figure 79.1 Number of Observations and Simple Statistics from the PRINCOMP Procedure

<table>
<thead>
<tr>
<th>Crime Rates per 100,000 Population by State</th>
</tr>
</thead>
<tbody>
<tr>
<td>The PRINCOMP Procedure</td>
</tr>
<tr>
<td>Observations 50</td>
</tr>
<tr>
<td>Variables 7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Simple Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murder 25.73400000 212.9020000 211.3000000 1291.9040000 2671.2860000 377.5260000</td>
</tr>
<tr>
<td>Rape 88.3485672 100.2530492 432.455711 725.908707 193.3944175</td>
</tr>
<tr>
<td>Robbery 10.75962995 8.3485672 1.0000 0.6140 0.3489</td>
</tr>
<tr>
<td>Assault 0.5571 0.6372 0.6229 0.4044 0.2758</td>
</tr>
<tr>
<td>Burglary 0.5907 0.8121 0.6229 1.0000 0.5580</td>
</tr>
<tr>
<td>Larceny 0.6140 0.4467 0.4044 0.7921 1.0000</td>
</tr>
<tr>
<td>Auto_Theft 0.0668 0.3489 0.5907 0.2758 0.5580</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Correlation Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murder 1.0000 0.6012 0.4837 0.6486 0.3858 0.1019 0.0688</td>
</tr>
<tr>
<td>Rape 0.6012 1.0000 0.5919 0.7403 0.7121 0.6140 0.3489</td>
</tr>
<tr>
<td>Robbery 0.4837 0.5919 1.0000 0.5571 0.6372 0.4467 0.5907</td>
</tr>
<tr>
<td>Assault 0.6486 0.7403 0.5571 1.0000 0.6229 0.4044 0.2758</td>
</tr>
<tr>
<td>Burglary 0.3858 0.7121 0.6372 0.6229 1.0000 0.7921 0.5580</td>
</tr>
<tr>
<td>Larceny 0.1019 0.6140 0.4467 0.4044 0.7921 1.0000 0.4442</td>
</tr>
<tr>
<td>Auto_Theft 0.0688 0.3489 0.5907 0.2758 0.5580 0.4442 1.0000</td>
</tr>
</tbody>
</table>
Figure 79.2 displays the eigenvalues. The first principal component accounts for about 58.8% of the total variance, the second principal component accounts for about 17.7%, and the third principal component accounts for about 10.4%. Note that the eigenvalues sum to the total variance.

The eigenvalues indicate that two or three components provide a good summary of the data: two components account for 76% of the total variance, and three components account for 87%. Subsequent components account for less than 5% each.

Figure 79.2 Results of Principal Component Analysis: PROC PRINCOMP

<table>
<thead>
<tr>
<th>Eigenvalues of the Correlation Matrix</th>
<th>Eigenvalue</th>
<th>Difference</th>
<th>Proportion</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 4.11495951</td>
<td>2.87623768</td>
<td>0.5879</td>
<td>0.5879</td>
<td></td>
</tr>
<tr>
<td>2 1.23872183</td>
<td>0.51290521</td>
<td>0.1770</td>
<td>0.7648</td>
<td></td>
</tr>
<tr>
<td>3 0.72581663</td>
<td>0.40938458</td>
<td>0.1037</td>
<td>0.8685</td>
<td></td>
</tr>
<tr>
<td>4 0.31643205</td>
<td>0.05845759</td>
<td>0.0452</td>
<td>0.9137</td>
<td></td>
</tr>
<tr>
<td>5 0.25797446</td>
<td>0.03593499</td>
<td>0.0369</td>
<td>0.9506</td>
<td></td>
</tr>
<tr>
<td>6 0.22203947</td>
<td>0.09798342</td>
<td>0.0317</td>
<td>0.9823</td>
<td></td>
</tr>
<tr>
<td>7 0.12405606</td>
<td>0.0177</td>
<td>1.0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 79.3 displays the eigenvectors. From the eigenvectors matrix, you can represent the first principal component, Prin1, as a linear combination of the original variables:

\[
\text{Prin1} = 0.300279 \times \text{Murder} \\
+ 0.431759 \times \text{Rape} \\
+ 0.396875 \times \text{Robbery} \\
+ \ldots \\
+ 0.295177 \times \text{Auto_Theft}
\]

Similarly, the second principal component, Prin2, is

\[
\text{Prin2} = -0.629174 \times \text{Murder} \\
- 0.169435 \times \text{Rape} \\
+ 0.042247 \times \text{Robbery} \\
+ \ldots \\
- 0.502421 \times \text{Auto_Theft}
\]

where the variables are standardized.
The first component is a measure of the overall crime rate because the first eigenvector shows approximately equal loadings on all variables. The second eigenvector has high positive loadings on the variables Auto_Theft and Larceny and high negative loadings on the variables Murder and Assault. There is also a small positive loading on the variable Burglary and a small negative loading on the variable Rape. This component seems to measure the preponderance of property crime compared to violent crime. The interpretation of the third component is not obvious.

The ODS GRAPHICS statement enables the creation of graphs. For more information, see Chapter 21, “Statistical Graphics Using ODS.” The option PLOTS(SCORE(ELLIPSE NCOMP=3) in the PROC PRINCOMP statement requests the pairwise component score plots for the first three components, with a 95% prediction ellipse overlaid on each scatter plot. Figure 79.4 shows the plot of the first two components. You can identify regional trends in the plot of the first two components. Nevada and California are at the extreme right, with high overall crime rates but an average ratio of property crime to violent crime. North Dakota and South Dakota are at the extreme left, with low overall crime rates. Southeastern states tend to be at the bottom of the plot, with a higher-than-average ratio of violent crime to property crime. New England states tend to be in the upper part of the plot, with a higher-than-average ratio of property crime to violent crime. Assuming that the first two components are from a bivariate normal distribution, the ellipse identifies Nevada as a possible outlier.
Figure 79.4 Plot of the First Two Component Scores
Figure 79.5 shows the plot of the first and third components. Assuming that the first and third components are from a bivariate normal distribution, the ellipse identifies Nevada, Massachusetts, and New York as possible outliers.

Figure 79.5 Plot of the First and Third Component Scores

The most striking feature of the plot of the first and third principal components is that Massachusetts and New York are outliers on the third component.
Syntax: PRINCOMP Procedure

The following statements are available in the PRINCOMP procedure:

```
PROC PRINCOMP <options> ;
   BY variables ;
   FREQ variable ;
   ID variables ;
   PARTIAL variables ;
   VAR variables ;
   WEIGHT variable ;
```

Usually only the VAR statement is used in addition to the PROC PRINCOMP statement. The rest of this section provides detailed syntax information for each of the preceding statements, beginning with the PROC PRINCOMP statement. The remaining statements are described in alphabetical order.

PROC PRINCOMP Statement

```
PROC PRINCOMP <options> ;
```

The PROC PRINCOMP statement invokes the PRINCOMP procedure. Optionally, it also identifies input and output data sets, specifies the analyses that are performed, and controls displayed output. Table 79.1 summarizes the options available in the PROC PRINCOMP statement.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify Data Sets</td>
<td></td>
</tr>
<tr>
<td>DATA=</td>
<td>Specifies the name of the input data set</td>
</tr>
<tr>
<td>OUT=</td>
<td>Specifies the name of the output data set</td>
</tr>
<tr>
<td>OUTSTAT=</td>
<td>Specifies the name of the output data set that contains various statistics</td>
</tr>
<tr>
<td>Specify Details of Analysis</td>
<td></td>
</tr>
<tr>
<td>COV</td>
<td>Computes the principal components from the covariance matrix</td>
</tr>
<tr>
<td>N=</td>
<td>Specifies the number of principal components to be computed</td>
</tr>
<tr>
<td>NOINT</td>
<td>Omits the intercept from the model</td>
</tr>
<tr>
<td>PREFIX=</td>
<td>Specifies a prefix for naming the principal components</td>
</tr>
<tr>
<td>PARPREFIX=</td>
<td>Specifies a prefix for naming the residual variables</td>
</tr>
<tr>
<td>SINGULAR=</td>
<td>Specifies the singularity criterion</td>
</tr>
<tr>
<td>STD</td>
<td>Standardizes the principal component scores</td>
</tr>
<tr>
<td>VARDEF=</td>
<td>Specifies the divisor used in calculating variances and standard deviations</td>
</tr>
<tr>
<td>Suppress the Display of Output</td>
<td></td>
</tr>
<tr>
<td>NOPRINT</td>
<td>Suppresses the display of all output</td>
</tr>
<tr>
<td>Specify ODS Graphics Details</td>
<td></td>
</tr>
<tr>
<td>PLOTS=</td>
<td>Specifies options that control the details of the plots</td>
</tr>
</tbody>
</table>
Chapter 79: The PRINCOMP Procedure

The following list provides details about these options.

COVARIANCE

COV
computes the principal components from the covariance matrix. If you omit the COV option, the correlation matrix is analyzed. The COV option causes variables that have large variances to be more strongly associated with components that have large eigenvalues, and causes variables that have small variances to be more strongly associated with components that have small eigenvalues. You should not specify the COV option unless the units in which the variables are measured are comparable or the variables are standardized in some way.

DATA=SAS-data-set
specifies the SAS data set to be analyzed. The data set can be an ordinary SAS data set or a TYPE=ACE, TYPE=CORR, TYPE=COV, TYPE=FACTOR, TYPE=SSCP, TYPE=UCORR, or TYPE=UCOV data set (see Appendix A, “Special SAS Data Sets”). Also, the PRINCOMP procedure can read the _TYPE_='COVB' matrix from a TYPE=EST data set. If you omit the DATA= option, the procedure uses the most recently created SAS data set.

N=number
specifies the number of principal components to be computed. The default is the number of variables. The value of the N= option must be an integer greater than or equal to 0.

NOINT
omits the intercept from the model. In other words, the NOINT option requests that the covariance or correlation matrix not be corrected for the mean. When you specify the NOINT option, the covariance matrix and, hence, the standard deviations are not corrected for the mean.

If you use a TYPE=SSCP data set as input to the PRINCOMP procedure and list the variable Intercept in the VAR statement, the procedure acts as if you had also specified the NOINT option. If you use the NOINT option and also create an OUTSTAT= data set, the data set is TYPE=UCORR or TYPE=UCOV rather than TYPE=CORR or TYPE=COV.

NOPRINT
suppresses the display of all output. This option temporarily disables the Output Delivery System (ODS). For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

OUT=SAS-data-set
creates an output SAS data set to contain all the original data in addition to the principal component scores.

If you want to create a SAS data set in a permanent library, you must specify a two-level name. For more information about permanent libraries and SAS data sets, see *SAS Language Reference: Concepts*. For information about OUT= data sets, see the section “Output Data Sets” on page 6599.

OUTSTAT=SAS-data-set
creates an output SAS data set to contain means, standard deviations, number of observations, correlations or covariances, eigenvalues, and eigenvectors. If you specify the COV option, the data set is TYPE=COV or TYPE=UCOV, depending on the NOINT option, and it contains covariances; otherwise, the data set is TYPE=CORR or TYPE=UCORR, depending on the NOINT option, and it contains correlations. If you specify the PARTIAL statement, the OUTSTAT= data set also contains R squares.
If you want to create a SAS data set in a permanent library, you must specify a two-level name. For more information about permanent libraries and SAS data sets, see SAS Language Reference: Concepts. For more information about OUTSTAT= data sets, see the section “Output Data Sets” on page 6599.

PLOTS < (global-plot-options) > <= plot-request < (options) >>

PLOTS < (global-plot-options) > <= (plot-request < (options) > < ... plot-request < (options) >>)>

controls the plots that are produced through ODS Graphics. When you specify only one plot request, you can omit the parentheses around the plot request. Here are some examples:

plots=none
plots=(scatter pattern)
plots(unpack)=scree
plots(ncomp=3 flip)=(pattern(circles=0.5 1.0) score)

ODS Graphics must be enabled before plots can be requested. For example:

 ods graphics on;
 proc princomp plots=all;
 var x1-x10;
 run;
 ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

If ODS Graphics is enabled but you do not specify the PLOTS= option, PROC PRINCOMP produces the scree plot by default.

You can specify the following global-plot-options:

FLIP
flips or interchanges the X-axis and Y-axis dimensions of the component score plots and the component pattern plots. For example, if you have three components, the default plots (y * x) are Component 2 * Component 1, Component 3 * Component 1, and Component 3 * Component 2. When you specify PLOTS(FLIP), the plots are Component 1 * Component 2, Component 1 * Component 3, and Component 2 * Component 3.

NCOMP=n
specifies the number of components n(≥2) to be plotted for the component pattern plots and the component score plots. If you specify the NCOMP= option again in an individual plot, such as PLOTS=SCORE(NCOMP= m), the value m determines the number of components to be plotted in the component score plots. Be aware that the number of plots (n × (n - 1)/2) that are produced grows quadratically when n increases. The default is 5 or the total number of components m(≥2), whichever is smaller. If n > m, NCOMP=m is used.

ONLY
suppresses the default plots. Only plots that you specifically request are displayed.
UNPACKPANEL

UNPACK suppresses paneling in the scree plot. By default, multiple plots can appear in an output panel. Specify UNPACKPANEL to get each plot to appear in a separate panel. You can specify PLOTS(UNPACKPANEL) to unpack the default plots. You can also specify UNPACKPANEL as a suboption with the SCREE option (such as PLOTS=SCREE(UNPACKPANEL)).

You can specify the following plot-requests:

ALL produces all appropriate plots. You can specify other options along with ALL; for example, to request all plots and unpack only the scree plot, specify PLOTS=(ALL SCREE(UNPACKPANEL)).

EIGEN | EIGENVALUE | SCREE < (UNPACKPANEL) > produces the scree plot of eigenvalues and proportion variance explained. By default, both plots appear in the same panel. Specify PLOTS=SCREE(UNPACKPANEL) to get each plot to appear in a separate panel.

MATRIX produces the matrix plot of principal component scores.

NONE suppresses the display of all graphics output.

PATTERN < (pattern-options) > produces the pairwise component pattern plots. Each variable is plotted as an observation whose coordinates are correlations between the variable and the two corresponding components in the plot. Use the NCOMP= option (for instance, PLOTS=PATTERN(NCOMP=3)) as described in the following list to control the number of plots to display.

You can specify the following pattern-options:

CIRCLES < = number-list > plots the variance percentage circles. For each number \(c \) \((0 < c \leq 1)\) that is specified, a \((c \times 100\%)\) variance circle is displayed. For each number \(c \) \((c > 1)\) that is specified, a \(c\%\) variance circle is displayed. You can specify either CIRCLES=0.05 1 or CIRCLES=5 100 to display 5% and 100% variance circles. PLOTS=PATTERN(CIRCLES) and PLOTS=PATTERN(VECTOR) both display a unit circle (100% variance). By default, no circle is displayed when you specify PLOTS=PATTERN.

FLIP flips or interchanges the X-axis and Y-axis dimensions of the component pattern plots. Specify PLOTS=PATTERN(FLIP) to flip the X-axis and Y-axis dimensions.

NCOMP=n specifies the number of components \(n(\geq 2) \) to be plotted. The default is 5 or the total number of components \(m(\geq 2) \), whichever is smaller. If \(n > m \), NCOMP=m is used. Be aware that the number of plots \((n \times (n - 1)/2)\) that are produced grows quadratically when \(n \) increases.
VECTOR
plots the pattern in a vector form.

PATTERNPROFILE | PROFILE
produces the pattern profile plot. Each component has its own profile. The Y-axis value represents
the correlation between the variable (corresponding to the X-axis value) and the profiled principal
component.

SCORE < (score-options) >
produces the pairwise component score plots. Use the NCOMP= option (for example,
PLOTS=SCORE(NCOMP=3)) as described in the following list to control the number of plots to
display.

You can specify the following score-options.

ALPHA=number list
specifies a list of numbers for the prediction ellipses to be displayed in the score plots. Each
value (α) in the list must be greater than 0. If α is greater than or equal to 1, it is interpreted
as a percentage and divided by 100; ALPHA=0.05 and ALPHA=5 are equivalent.

ELLIPSE
requests prediction ellipses for the principal component scores of a new observation to be
created in the principal component score plots. For information about the computation of
a prediction ellipse, see the section “Confidence and Prediction Ellipses” in “The CORR

FLIP
flips or interchanges the X-axis and Y-axis dimensions of the component score plots. Specify
PLOTS=SCORE(FLIP) to flip the X-axis and Y-axis dimensions.

NCOMP=n
specifies the number of components n(≥ 2) to be plotted. The default is 5 or the total number
of components m(≥ 2), whichever is smaller. If n > m, NCOMP=m is used. Be aware that
the number of plots (n × (n - 1)/2) that are produced grows quadratically when n increases.

PAINT <=position >=
creates plots of component i versus component j, painted by component k. When you have at
least three components, the PLOTS=SCORE option is specified, and the PAINT option is not
specified, a painted score plot for component 3 versus component 2, painted by component 1,
is produced. Use the PAINT option when you want to create painted score plots that involve
other triples of components.

PLOTS=SCORE(PAINT), PLOTS=SCORE(PAINT=F), and PLOTS=SCORE(PAINT=FIRST) are all equivalent and create painted plots of i × j, painted by k for triples (i, j, k),
where k < j < i.

PLOTS=SCORE(PAINT=L) and PLOTS=SCORE(PAINT=LAST) are equivalent and create
painted plots of i × j, painted by k for triples (i, j, k), where j < i < k.

PLOTS=SCORE(PAINT=M) and PLOTS=SCORE(PAINT=MIDDLE) are equivalent and
create painted plots of i × j, painted by k for triples (i, j, k), where j < k < i.
PREFIX=name

specifies a prefix for naming the principal components. By default, the names are Prin1, Prin2, …, Prinn. If you specify PREFIX=Abc, the components are named Abc1, Abc2, Abc3, and so on. The number of characters in the prefix plus the number of digits required to designate the variables should not exceed the current name length that is defined by the VALIDVARNAME= system option.

PARPREFIX=name

PPREFIX=name

RPREFIX=name

specifies a prefix for naming the residual variables in the OUT= data set and the OUTSTAT= data set. By default, the prefix is R_. The number of characters in the prefix plus the maximum length of the variable names should not exceed the current name length that is defined by the VALIDVARNAME= system option.

SINGULAR=p

SING=p

specifies the singularity criterion, where $0 < p < 1$. If a variable in a PARTIAL statement has an R square as large as $1 - p$ when predicted from the variables listed before it in the statement, the variable is assigned a standardized coefficient of 0. By default, SINGULAR=1E–8.

STANDARD

STD

standardizes the principal component scores in the OUT= data set to unit variance. If you omit the STANDARD option, the scores have variance equal to the corresponding eigenvalue. Note that the STANDARD option has no effect on the eigenvalues themselves.

VARDEF=DF | N | WDF | WEIGHT | WGT

specifies the divisor to be used in calculating variances and standard deviations. By default, VARDEF=DF. The following table displays the values and associated divisors:

<table>
<thead>
<tr>
<th>Value</th>
<th>Divisor</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF</td>
<td>Error degrees of freedom</td>
<td>$n - i$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(before partialing)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$n - p - i$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(after partialing)</td>
</tr>
<tr>
<td>N</td>
<td>Number of observations</td>
<td>n</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>Weight</td>
<td>$\sum_{j=1}^{n} w_j$</td>
</tr>
<tr>
<td>WDF</td>
<td>Sum of weights minus one</td>
<td>$\left(\sum_{j=1}^{n} w_j \right) - i$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(before partialing)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\left(\sum_{j=1}^{n} w_j \right) - p - i$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(after partialing)</td>
</tr>
</tbody>
</table>

In the formulas for VARDEF=DF and VARDEF=WDF, p is the number of degrees of freedom of the variables in the PARTIAL statement, and i is 0 if the NOINT option is specified and 1 otherwise.
BY Statement

```by```

BY variables;
```

You can specify a BY statement with PROC PRINCOMP to obtain separate analyses of observations in groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

- Sort the data by using the SORT procedure with a similar BY statement.
- Specify the NOTSORTED or DESCENDING option in the BY statement for the PRINCOMP procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged in groups (according to values of the BY variables) and that these groups are not necessarily in alphabetical or increasing numeric order.
- Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in *SAS Language Reference: Concepts*. For more information about the DATASETS procedure, see the discussion in the *Base SAS Procedures Guide*.

FREQ Statement

```freq```

FREQ variable;
```

The FREQ statement specifies a variable that provides frequencies for each observation in the DATA= data set. Specifically, if \(n \) is the value of the FREQ variable for a given observation, then that observation is used \(n \) times.

The analysis that you produce by using a FREQ statement reflects the expanded number of observations. The total number of observations is considered to be equal to the sum of the FREQ variable. You could produce the same analysis (without the FREQ statement) by first creating a new data set that contains the expanded number of observations. For example, if the value of the FREQ variable is 5 for the first observation, the first five observations in the new data set are identical. Each observation in the old data set would be replicated \(n_j \) times in the new data set, where \(n_j \) is the value of the FREQ variable for that observation.

If the value of the FREQ variable is missing or is less than 1, the observation is not used in the analysis. If the value is not an integer, only the integer portion is used.

ID Statement

```id```

ID variables;
```

The ID statement labels observations by using values from the first ID variable in the principal component score plot. If one or more ID variables are specified, their values are displayed in tooltips of the component score plot and the matrix plot of component scores.
PARTIAL Statement

PARTIAL variables ;

If you want to analyze a partial correlation or covariance matrix, specify the names of the numeric variables to be partialed out in the PARTIAL statement. The PRINCOMP procedure computes the principal components of the residuals from the prediction of the VAR variables by the PARTIAL variables. If you request an OUT= or OUTSTAT= data set, the residual variables are named by prefixing the characters R_ by default or the string specified in the PARPREFIX= option to the VAR variables.

VAR Statement

VAR variables ;

The VAR statement lists the numeric variables to be analyzed. If you omit the VAR statement, all numeric variables not specified in other statements are analyzed. However, if the DATA= data set is TYPE=SSCP, the default set of variables used as VAR variables does not include Intercept so that the correlation or covariance matrix is constructed correctly. If you want to analyze Intercept as a separate variable, you should specify it in the VAR statement.

WEIGHT Statement

WEIGHT variable ;

To use relative weights for each observation in the input data set, place the weights in a variable in the data set and specify the name in a WEIGHT statement. This is often done when the variance associated with each observation is different and the values of the weight variable are proportional to the reciprocals of the variances.

The observation is used in the analysis only if the value of the WEIGHT statement variable is nonmissing and is greater than 0.

Details: PRINCOMP Procedure

Missing Values

Observations that have missing values for any variable in the VAR, PARTIAL, FREQ, or WEIGHT statement are omitted from the analysis and are given missing values for principal component scores in the OUT= data set. If a correlation, covariance, or SSCP matrix is read, it can contain missing values as long as every pair of variables has at least one nonmissing entry.
Output Data Sets

OUT= Data Set

The OUT= data set contains all the variables in the original data set plus new variables that contain the principal component scores. The N= option determines the number of new variables. The names of the new variables are formed by concatenating the value given by the PREFIX= option (or Prin if PREFIX= is omitted) to the numbers 1, 2, 3, and so on. The new variables have mean 0 and variance equal to the corresponding eigenvalue, unless you specify the STANDARD option to standardize the scores to unit variance. Also, if you specify the COV option, PROC PRINCOMP computes the principal component scores from the corrected or uncorrected (if the NOINT option is specified) variables rather than from the standardized variables.

If you use a PARTIAL statement, the OUT= data set also contains the residuals from predicting the VAR variables from the PARTIAL variables.

You cannot create an OUT= data set if the DATA= data set is TYPE=ACE, TYPE=CORR, TYPE=COV, TYPE=EST, TYPE=FACTOR, TYPE=SSCP, TYPE=UCORR, or TYPE=UCOV.

OUTSTAT= Data Set

The OUTSTAT= data set is similar to the TYPE=CORR data set that the CORR procedure produces. The following table relates the TYPE= value for the OUTSTAT= data set to the options that are specified in the PROC PRINCOMP statement:

<table>
<thead>
<tr>
<th>Options</th>
<th>TYPE=</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Default)</td>
<td>CORR</td>
</tr>
<tr>
<td>COV</td>
<td>COV</td>
</tr>
<tr>
<td>NOINT</td>
<td>UCORR</td>
</tr>
<tr>
<td>COV NOINT</td>
<td>UCOV</td>
</tr>
</tbody>
</table>

Note that the default (neither the COV nor NOINT option) produces a TYPE=CORR data set.

The new data set contains the following variables:

- the BY variables, if any
- two new variables, _TYPE_ and _NAME_, both character variables
- the variables that are analyzed (that is, those in the VAR statement); or, if there is no VAR statement, all numeric variables not listed in any other statement; or, if there is a PARTIAL statement, the residual variables as described in the section “OUT= Data Set” on page 6599

Each observation in the new data set contains some type of statistic, as indicated by the _TYPE_ variable. The values of the _TYPE_ variable are as follows:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAN</td>
<td>mean of each variable. If you specify the PARTIAL statement, this observation is omitted.</td>
</tr>
</tbody>
</table>
Chapter 79: The PRINCOMP Procedure

STD standard deviations. If you specify the COV option, this observation is omitted, so the SCORE procedure does not standardize the variables before computing scores. If you use the PARTIAL statement, the standard deviation of a variable is computed as its root mean squared error as predicted from the PARTIAL variables.

USTD uncorrected standard deviations. When you specify the NOINT option in the PROC PRINCOMP statement, the OUTSTAT= data set contains standard deviations not corrected for the mean. However, if you also specify the COV option in the PROC PRINCOMP statement, this observation is omitted.

N number of observations on which the analysis is based. This value is the same for each variable. If you specify the PARTIAL statement and the value of the VARDEF= option is DF or unspecified, then the number of observations is decremented by the degrees of freedom of the PARTIAL variables.

SUMWGT the sum of the weights of the observations. This value is the same of each variable. If you specify the PARTIAL statement and VARDEF=WDF, then the sum of the weights is decremented by the degrees of freedom of the PARTIAL variables. This observation is output only if the value is different from that in the observation for which _TYPE_='N'.

CORR correlations between each variable and the variable specified by the _NAME_ variable. The number of observations for which _TYPE_='CORR' is equal to the number of variables being analyzed. If you specify the COV option, no _TYPE_='CORR' observations are produced. If you use the PARTIAL statement, the partial correlations, not the raw correlations, are output.

UCORR uncorrected correlation matrix. When you specify the NOINT option without the COV option in the PROC PRINCOMP statement, the OUTSTAT= data set contains a matrix of correlations not corrected for the means. However, if you also specify the COV option in the PROC PRINCOMP statement, this observation is omitted.

COV covariances between each variable and the variable specified by the _NAME_ variable. _TYPE_='COV' observations are produced only if you specify the COV option. If you use the PARTIAL statement, the partial covariances, not the raw covariances, are output.

UCOV uncorrected covariance matrix. When you specify the NOINT and COV options in the PROC PRINCOMP statement, the OUTSTAT= data set contains a matrix of covariances not corrected for the means.

EIGENVAL eigenvalues. If the N= option requests fewer principal components than the maximum number, only the specified number of eigenvalues is produced, with missing values filling out the observation.

SCORE eigenvectors. The _NAME_ variable contains the name of the corresponding principal component as constructed from the PREFIX= option. The number of observations for which _TYPE_='SCORE' equals the number of principal components computed. The eigenvectors have unit length unless you specify the STD option, in which case the unit-length eigenvectors are divided by the square roots of the eigenvalues to produce scores that have unit standard deviations.

When you do not specify the COV option, you can produce the principal component scores by multiplying the standardized data by these coefficients. When you specify the COV option, you can produce the principal component scores by multiplying the centered data by these coefficients. You should use the means, obtained from the observation
for which _TYPE_='MEAN', to center the data. You should use the standard deviations, obtained from the observation for which _TYPE_='STD', to standardize the data.

USCORE scoring coefficients to be applied without subtracting the mean from the raw variables. Observations for which _TYPE_='USCORE' are produced when you specify the NOINT option in the PROC PRINCOMP statement.

To obtain the principal component scores, these coefficients should be multiplied by the data that are standardized by the uncorrected standard deviations obtained from the observation for which _TYPE_='USTD'.

RSQUARED R squares for each VAR variable as predicted by the PARTIAL variables

B regression coefficients for each VAR variable as predicted by the PARTIAL variables. This observation is produced only if you specify the COV option.

STB standardized regression coefficients for each VAR variable as predicted by the PARTIAL variables. If you specify the COV option, this observation is omitted.

You can use the data set with the SCORE procedure to compute principal component scores, or you can use it as input to the FACTOR procedure and specify METHOD=SCORE to rotate the components. If you use the PARTIAL statement, the scoring coefficients should be applied to the residuals, not to the original variables.

Computational Resources

Let

\[n = \text{number of observations} \]
\[v = \text{number of VAR variables} \]
\[p = \text{number of PARTIAL variables} \]
\[c = \text{number of components} \]

- The minimum allocated memory required (in bytes) is
 \[232v + 120p + 48c + \max(8cv, 8vp + 4(v + p)(v + p + 1)) \]

- The time required to compute the correlation matrix is approximately proportional to
 \[n(v + p)^2 + \frac{p}{2}(v + p)(v + p + 1) \]

- The time required to compute eigenvalues is approximately proportional to \(v^3 \).
- The time required to compute eigenvectors is approximately proportional to \(cv^2 \).
Displayed Output

The PRINCOMP procedure displays the following items if the DATA= data set is not TYPE=CORR, TYPE=COV, TYPE=SSCP, TYPE=UCORR, or TYPE=UCOV:

- simple statistics, including the mean and standard deviation (StD) for each variable. If you specify the NOINT option, the uncorrected standard deviation (UStD) is displayed.
- the correlation or, if you specify the COV option, the covariance matrix

The PRINCOMP procedure displays the following items if you use the PARTIAL statement:

- regression statistics, giving the R square and root mean squared error (RMSE) for each VAR variable as predicted by the PARTIAL variables (not shown)
- standardized regression coefficients or, if you specify the COV option, regression coefficients for predicting the VAR variables from the PARTIAL variables (not shown)
- the partial correlation matrix or, if you specify the COV option, the partial covariance matrix (not shown)

The PRINCOMP procedure displays the following item if you specify the COV option:

- the total variance

The PRINCOMP procedure displays the following items unless you specify the NOPRINT option:

- eigenvalues of the correlation or covariance matrix, in addition to the difference between successive eigenvalues, the proportion of variance explained by each eigenvalue, and the cumulative proportion of variance explained
- the eigenvectors

ODS Table Names

PROC PRINCOMP assigns a name to each table that it creates. You can use these names to reference the ODS table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in Table 79.2. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

All the tables are created by specifying the PROC PRINCOMP statement; a few tables need an additional PARTIAL statement.
Table 79.2 ODS Tables Produced by PROC PRINCOMP

<table>
<thead>
<tr>
<th>ODS Table Name</th>
<th>Description</th>
<th>Statement / Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corr</td>
<td>Correlation matrix</td>
<td>Default</td>
</tr>
<tr>
<td>Cov</td>
<td>Covariance matrix</td>
<td>COV</td>
</tr>
<tr>
<td>Eigenvalues</td>
<td>Eigenvalues</td>
<td>Default</td>
</tr>
<tr>
<td>Eigenvectors</td>
<td>Eigenvectors</td>
<td>Default</td>
</tr>
<tr>
<td>NObsNVar</td>
<td>Number of observations, variables, and partial variables</td>
<td>Default</td>
</tr>
<tr>
<td>ParCorr</td>
<td>Partial correlation matrix</td>
<td>PARTIAL statement</td>
</tr>
<tr>
<td>ParCov</td>
<td>Uncorrected partial covariance matrix</td>
<td>PARTIAL statement and COV</td>
</tr>
<tr>
<td>RegCoef</td>
<td>Regression coefficients</td>
<td>PARTIAL statement and COV</td>
</tr>
<tr>
<td>RSquareRMSE</td>
<td>Regression statistics: R squares and RMSEs</td>
<td>PARTIAL statement</td>
</tr>
<tr>
<td>SimpleStatistics</td>
<td>Simple statistics</td>
<td>Default</td>
</tr>
<tr>
<td>StdRegCoef</td>
<td>Standardized regression coefficients</td>
<td>PARTIAL statement</td>
</tr>
<tr>
<td>TotalVariance</td>
<td>Total variance</td>
<td>COV</td>
</tr>
</tbody>
</table>

ODS Graphics

Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPHICS ON statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21, “Statistical Graphics Using ODS.”

Some graphs are produced by default; other graphs are produced by using statements and options. You can reference every graph produced through ODS Graphics by name. The names of the graphs that PROC PRINCOMP generates are listed in Table 79.3, along with a description of each graph and the required statements and options.

Table 79.3 Graphs Produced by PROC PRINCOMP

<table>
<thead>
<tr>
<th>ODS Graph Name</th>
<th>Plot Description</th>
<th>Statement and Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>PaintedScorePlot</td>
<td>Score plot of component i versus component j, painted by component k</td>
<td>PLOTS=SCORE when number of variables ≥ 3</td>
</tr>
<tr>
<td>PatternPlot</td>
<td>Component pattern plot</td>
<td>PLOTS=PATTERN</td>
</tr>
<tr>
<td>PatternProfilePlot</td>
<td>Component pattern profile plot</td>
<td>PLOTS=PATTERNPROFILE</td>
</tr>
<tr>
<td>ScoreMatrixPlot</td>
<td>Matrix plot of component scores</td>
<td>PLOTS=MATRIX</td>
</tr>
<tr>
<td>ScorePlot</td>
<td>Component score plot</td>
<td>PLOTS=SCORE</td>
</tr>
<tr>
<td>ScreePlot</td>
<td>Scree and variance plots</td>
<td>Default and PLOTS=SCREE</td>
</tr>
<tr>
<td>VariancePlot</td>
<td>Variance proportion explained plot</td>
<td>PLOTS=SCREE(UNPACKPANEL)</td>
</tr>
</tbody>
</table>
Example 79.1: Analyzing Mean Temperatures of US Cities

This example analyzes mean daily temperatures of selected US cities in January and July. Both the raw data and the principal components are plotted to illustrate that principal components are orthogonal rotations of the original variables.

The following statements create the Temperature data set:

```sas
data Temperature;
  length CityId $ 2;
  title 'Mean Temperature in January and July for Selected Cities';
  input City $ 1-15 January July;
  CityId = substr(City,1,2);
  datalines;
  Mobile 51.2 81.6
  Phoenix 51.2 91.2
  Little Rock 39.5 81.4
  Sacramento 45.1 75.2
  Denver 29.9 73.0
  ... more lines ...
  Cheyenne 26.6 69.1
;
```

The following statements plot the Temperature data set. The variable Cityid instead of City is used as a data label in the scatter plot to avoid label collisions.

```sas
  title 'Mean Temperature in January and July for Selected Cities';
  proc sgplot data=Temperature;
    scatter x=July y=January / datalabel=CityId;
  run;
```

The results are displayed in Output 79.1.1, which shows a scatter plot of the 64 pairs of data points in which July temperatures are plotted against January temperatures.
Example 79.1: Analyzing Mean Temperatures of US Cities

Output 79.1.1 Plot of Raw Data

The following step requests a principal component analysis of the Temperature data set:

```plaintext
ods graphics on;

title 'Mean Temperature in January and July for Selected Cities';
proc princomp data=Temperature cov plots=score(ellipse);
   var July January;
   id CityId;
run;
```

Output 79.1.2 displays the PROC PRINCOMP output. The standard deviation of January (11.712) is higher than the standard deviation of July (5.128). The COV option in the PROC PRINCOMP statement requests that the principal components be computed from the covariance matrix. The total variance is 163.474. The first principal component accounts for about 94% of the total variance, and the second principal component accounts for only about 6%. The eigenvalues sum to the total variance.

Note that January receives a higher loading on Prin1 because it has a higher standard deviation than July. Also note that the PRINCOMP procedure calculates the scores by using the centered variables rather than the standardized variables.
The PLOTS=SCORE option in the PROC PRINCOMP statement requests a plot of the second principal component against the first principal component, as shown in Output 79.1.3. It is clear from this plot that the principal components are orthogonal rotations of the original variables and that the first principal component has a larger variance than the second principal component. In fact, the first component has a larger variance than either of the original variables, July and January. The ellipse indicates that Miami, Phoenix, and Portland are possible outliers.
The data in this example are rankings of 35 US college basketball teams. The rankings were made before the start of the 1985–86 season by 10 news services. The purpose of the principal component analysis is to compute a single variable that best summarizes all 10 preseason rankings. Note that the various news services rank different numbers of teams, ranging from 20 to 30 (one of the variables, WashPost, has a missing rank). And, of course, not all news services rank the same teams, so there are missing values in these data. Each of the 35 teams is ranked by at least one news service.

The PRINCOMP procedure omits observations that have missing values. To obtain principal component scores for all the teams, you must replace the missing values. Because it is the best teams that are ranked, it is not appropriate to replace missing values with the mean of the nonmissing values. Instead, an ad hoc method is used that replaces missing values with the mean of the unassigned ranks. For example, if a news service ranks 20 teams, then ranks 21 through 35 are unassigned. The mean of ranks 21 through 35 is 28, so missing values for that variable are replaced by the value 28. To prevent the method of missing-value replacement from having an undue effect on the analysis, each observation is weighted according to the number of nonmissing values that it has. For an alternative analysis of these data, see Example 80.2 in Chapter 80, “The PRINQUAL Procedure.”

Because the first principal component accounts for 78% of the variance, there is substantial agreement among the rankings. The eigenvector shows that all the news services are about equally weighted; this is also suggested by the nearly horizontal line of the pattern profile plot in Output 79.2.3. So a simple average would work almost as well as the first principal component. The following statements produce Output 79.2.1.
Chapter 79: The PRINCOMP Procedure

/*--*/
/* */
/* Pre-season 1985 College Basketball Rankings */
/* (rankings of 35 teams by 10 news services) */
/* */
/* Note: (a) news services rank varying numbers of teams; */
/* (b) not all teams are ranked by all news services; */
/* (c) each team is ranked by at least one service; */
/* (d) rank 20 is missing for UPI. */
/* */
/*--*/

data HoopsRanks;
 input School $13. CSN DurSun DurHer WashPost USAToday
 Sport InSports UPI AP SI;
 label CSN = 'Community Sports News (Chapel Hill, NC)'
 DurSun = 'Durham Sun'
 DurHer = 'Durham Morning Herald'
 WashPost = 'Washington Post'
 USAToday = 'USA Today'
 Sport = 'Sport Magazine'
 InSports = 'Inside Sports'
 UPI = 'United Press International'
 AP = 'Associated Press'
 SI = 'Sports Illustrated';
 format CSN--SI 5.1;
 datalines;
Louisville 1 8 1 9 8 9 6 10 9 9
Georgia Tech 2 2 4 3 1 1 1 2 1 1
Kansas 3 4 5 1 5 11 8 4 5 7
Michigan 4 5 9 4 2 5 3 1 3 2
Duke 5 6 7 5 4 10 4 5 6 5
UNC 6 1 2 2 3 4 2 3 2 3
Syracuse 7 10 6 11 6 6 5 6 4 10
Notre Dame 8 14 15 13 11 20 18 13 12
Kentucky 9 15 16 14 19 11 12 11 13
LSU 10 9 13 . 13 15 16 9 14 8
DePaul 11 . 21 15 20 . 19 . . 19
Georgetown 12 7 8 6 9 2 9 8 8 4
Navy 13 20 23 10 18 13 15 . 20
Illinois 14 3 3 7 7 3 10 7 7 6
Iowa 15 16 . . 23 . . 14 . 20
Arkansas 16 . . . 25 . . . 16
Memphis State 17 . 11 . 16 8 20 . 15 12
Washington 18 17 .
UAB 19 13 10 . 12 17 . 16 16 15
UNLV 20 18 18 19 22 . 14 18 18 .
NC State 21 17 14 16 15 . 12 15 17 18
Maryland 22 . . . 19 . . . 19 14
Pittsburgh 23
Oklahoma 24 19 17 17 17 12 17 . 13 17
Indiana 25 12 20 18 21
Example 79.2: Analyzing Rankings of US College Basketball Teams

Virginia 26 . 22 . . 18 . . .
Old Dominion 27
Auburn 28 11 12 8 10 7 7 11 10 11
UCLA 30 19 .
St. Joseph's . . 19
Tennessee . . 24 . . 16 . . .
Montana . . . 20
Houston 24
Virginia Tech 13 . .

PROC MEANS is used to output a data set containing the maximum value of each of the newspaper and magazine rankings. The output data set, maxrank, is then used to set the missing values to the next highest rank plus thirty-six, divided by two (that is, the mean of the missing ranks). This ad hoc method of replacing missing values is based more on intuition than on rigorous statistical theory. Observations are weighted by the number of nonmissing values.

Options include:
- PROC MEANS
- Output statement
- Title statement
- Summary statistics

Output 79.2.1 Summary Statistics for Basketball Rankings from Using PROC MEANS

Pre-Season 1985 College Basketball Rankings

The MEANS Procedure

<table>
<thead>
<tr>
<th>Variable</th>
<th>Label</th>
<th>N</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSN</td>
<td>Community Sports News (Chapel Hill, NC)</td>
<td>30</td>
<td>15.5000000</td>
<td>8.8034084</td>
<td>1.0000000</td>
<td>30.0000000</td>
</tr>
<tr>
<td>DurSun</td>
<td>Durham Sun</td>
<td>20</td>
<td>10.5000000</td>
<td>5.9160798</td>
<td>1.0000000</td>
<td>20.0000000</td>
</tr>
<tr>
<td>DurHer</td>
<td>Durham Morning Herald</td>
<td>24</td>
<td>12.5000000</td>
<td>7.0710678</td>
<td>1.0000000</td>
<td>24.0000000</td>
</tr>
<tr>
<td>USA Today</td>
<td>USA Today</td>
<td>25</td>
<td>13.0000000</td>
<td>7.3598007</td>
<td>1.0000000</td>
<td>25.0000000</td>
</tr>
<tr>
<td>Sport</td>
<td>Sport Magazine</td>
<td>20</td>
<td>10.5000000</td>
<td>5.9160798</td>
<td>1.0000000</td>
<td>20.0000000</td>
</tr>
<tr>
<td>InSports</td>
<td>Inside Sports</td>
<td>20</td>
<td>10.5000000</td>
<td>5.9160798</td>
<td>1.0000000</td>
<td>20.0000000</td>
</tr>
<tr>
<td>UPI</td>
<td>United Press International</td>
<td>19</td>
<td>10.0000000</td>
<td>5.6273143</td>
<td>1.0000000</td>
<td>19.0000000</td>
</tr>
<tr>
<td>AP</td>
<td>Associated Press</td>
<td>20</td>
<td>10.5000000</td>
<td>5.9160798</td>
<td>1.0000000</td>
<td>20.0000000</td>
</tr>
<tr>
<td>SI</td>
<td>Sports Illustrated</td>
<td>20</td>
<td>10.5000000</td>
<td>5.9160798</td>
<td>1.0000000</td>
<td>20.0000000</td>
</tr>
</tbody>
</table>
The following statements produce Output 79.2.2 and Output 79.2.3:

``` Sas
data Basketball;
  set HoopsRanks;
  if _n_=1 then set MaxRank;
  array Services{10} CSN--SI;
  array MaxRanks{10} CSNMax--SIMax;
  keep School CSN--SI Weight;
  Weight=0;
  do i=1 to 10;
    if Services{i}=. then Services{i}=(MaxRanks{i}+36)/2;
    else Weight=Weight+1;
  end;
run;
ods graphics on;
proc princomp data=Basketball n=1 out=PCBasketball standard
  plots=patternprofile;
  var CSN--SI;
  weight Weight;
run;
```

Output 79.2.2 Principal Component Analysis of Basketball Rankings by Using PROC PRINCOMP

Pre-Season 1985 College Basketball Rankings

<table>
<thead>
<tr>
<th></th>
<th>Observations</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Simple Statistics</th>
<th>CSN</th>
<th>DurSun</th>
<th>DurHer</th>
<th>WashPost</th>
<th>USAToday</th>
<th>Sport</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Simple Statistics</th>
<th>InSports</th>
<th>UPI</th>
<th>AP</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>13.24423963</td>
<td>13.59216590</td>
<td>12.83410138</td>
<td>13.52534562</td>
</tr>
<tr>
<td>STD</td>
<td>22.20231526</td>
<td>23.25602811</td>
<td>21.40782406</td>
<td>22.93219584</td>
</tr>
</tbody>
</table>
Example 79.2: Analyzing Rankings of US College Basketball Teams

Output 79.2.2 continued

Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>CSN</th>
<th>DurSun</th>
<th>DurHer</th>
<th>WashPost</th>
<th>USAToday</th>
<th>Sport</th>
<th>InSports</th>
<th>UPI</th>
<th>AP</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSN</td>
<td>1.000</td>
<td>0.6505</td>
<td>0.6415</td>
<td>0.6121</td>
<td>0.7456</td>
<td>0.4806</td>
<td>0.6558</td>
<td>0.7007</td>
<td>0.6779</td>
<td>0.6135</td>
</tr>
<tr>
<td>DurSun</td>
<td>0.6505</td>
<td>1.0000</td>
<td>0.8341</td>
<td>0.7667</td>
<td>0.8860</td>
<td>0.6940</td>
<td>0.7702</td>
<td>0.9015</td>
<td>0.8437</td>
<td>0.7518</td>
</tr>
<tr>
<td>DurHer</td>
<td>0.6415</td>
<td>0.8341</td>
<td>1.0000</td>
<td>0.7035</td>
<td>0.8877</td>
<td>0.7788</td>
<td>0.7900</td>
<td>0.7676</td>
<td>0.8788</td>
<td>0.7761</td>
</tr>
<tr>
<td>WashPost</td>
<td>0.6121</td>
<td>0.7667</td>
<td>0.7035</td>
<td>1.0000</td>
<td>0.7984</td>
<td>0.6598</td>
<td>0.8717</td>
<td>0.6953</td>
<td>0.7809</td>
<td>0.5952</td>
</tr>
<tr>
<td>USAToday</td>
<td>0.7456</td>
<td>0.8860</td>
<td>0.8877</td>
<td>0.7984</td>
<td>1.0000</td>
<td>0.7716</td>
<td>0.8475</td>
<td>0.8539</td>
<td>0.9479</td>
<td>0.8426</td>
</tr>
<tr>
<td>Sport</td>
<td>0.4806</td>
<td>0.6940</td>
<td>0.7788</td>
<td>0.6598</td>
<td>0.7716</td>
<td>1.0000</td>
<td>0.7176</td>
<td>0.6220</td>
<td>0.8217</td>
<td>0.7071</td>
</tr>
<tr>
<td>InSports</td>
<td>0.6558</td>
<td>0.7702</td>
<td>0.7900</td>
<td>0.8717</td>
<td>0.8475</td>
<td>0.7176</td>
<td>1.0000</td>
<td>0.7920</td>
<td>0.8830</td>
<td>0.7332</td>
</tr>
<tr>
<td>UPI</td>
<td>0.7007</td>
<td>0.9015</td>
<td>0.7676</td>
<td>0.6953</td>
<td>0.8539</td>
<td>0.6220</td>
<td>0.7920</td>
<td>1.0000</td>
<td>0.8436</td>
<td>0.7738</td>
</tr>
<tr>
<td>AP</td>
<td>0.6779</td>
<td>0.8437</td>
<td>0.8788</td>
<td>0.7809</td>
<td>0.9479</td>
<td>0.8217</td>
<td>0.8830</td>
<td>0.8436</td>
<td>1.0000</td>
<td>0.8212</td>
</tr>
<tr>
<td>SI</td>
<td>0.6135</td>
<td>0.7518</td>
<td>0.7761</td>
<td>0.5952</td>
<td>0.8426</td>
<td>0.7701</td>
<td>0.7332</td>
<td>0.7738</td>
<td>0.8212</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Eigenvalues of the Correlation Matrix

<table>
<thead>
<tr>
<th>Eigenvalue</th>
<th>Difference</th>
<th>Proportion</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.88601647</td>
<td>0.7886</td>
<td>0.7886</td>
</tr>
</tbody>
</table>

Eigenvectors

<table>
<thead>
<tr>
<th>Prin1</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CSN</td>
<td>Community Sports News (Chapel Hill, NC)</td>
<td>0.270205</td>
<td></td>
</tr>
<tr>
<td>DurSun</td>
<td>Durham Sun</td>
<td>0.326048</td>
<td></td>
</tr>
<tr>
<td>DurHer</td>
<td>Durham Morning Herald</td>
<td>0.324392</td>
<td></td>
</tr>
<tr>
<td>WashPost</td>
<td>Washington Post</td>
<td>0.300449</td>
<td></td>
</tr>
<tr>
<td>USAToday</td>
<td>USA Today</td>
<td>0.345200</td>
<td></td>
</tr>
<tr>
<td>Sport</td>
<td>Sport Magazine</td>
<td>0.293881</td>
<td></td>
</tr>
<tr>
<td>InSports</td>
<td>Inside Sports</td>
<td>0.324088</td>
<td></td>
</tr>
<tr>
<td>UPI</td>
<td>United Press International</td>
<td>0.319902</td>
<td></td>
</tr>
<tr>
<td>AP</td>
<td>Associated Press</td>
<td>0.342151</td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>Sports Illustrated</td>
<td>0.308570</td>
<td></td>
</tr>
</tbody>
</table>
The following statements produce **Output 79.2.4**:

```plaintext
proc sort data=PCBasketball;
   by Prin1;
run;

proc print;
   var School Prin1;
   title 'Pre-Season 1985 College Basketball Rankings';
   title2 'College Teams as Ordered by PROC PRINCOMP';
run;
```
Output 79.2.4 Basketball Rankings from Using PROC PRINCOMP

Pre-Season 1985 College Basketball Rankings

College Teams as Ordered by PROC PRINCOMP

<table>
<thead>
<tr>
<th>Obs</th>
<th>School</th>
<th>Prin1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Georgia Tech</td>
<td>-0.58068</td>
</tr>
<tr>
<td>2</td>
<td>UNC</td>
<td>-0.53317</td>
</tr>
<tr>
<td>3</td>
<td>Michigan</td>
<td>-0.47874</td>
</tr>
<tr>
<td>4</td>
<td>Kansas</td>
<td>-0.40285</td>
</tr>
<tr>
<td>5</td>
<td>Duke</td>
<td>-0.38464</td>
</tr>
<tr>
<td>6</td>
<td>Illinois</td>
<td>-0.33586</td>
</tr>
<tr>
<td>7</td>
<td>Syracuse</td>
<td>-0.31578</td>
</tr>
<tr>
<td>8</td>
<td>Louisville</td>
<td>-0.31489</td>
</tr>
<tr>
<td>9</td>
<td>Georgetown</td>
<td>-0.29735</td>
</tr>
<tr>
<td>10</td>
<td>Auburn</td>
<td>-0.09785</td>
</tr>
<tr>
<td>11</td>
<td>Kentucky</td>
<td>0.00843</td>
</tr>
<tr>
<td>12</td>
<td>LSU</td>
<td>0.00872</td>
</tr>
<tr>
<td>13</td>
<td>Notre Dame</td>
<td>0.09407</td>
</tr>
<tr>
<td>14</td>
<td>NC State</td>
<td>0.19404</td>
</tr>
<tr>
<td>15</td>
<td>UAB</td>
<td>0.19771</td>
</tr>
<tr>
<td>16</td>
<td>Oklahoma</td>
<td>0.23864</td>
</tr>
<tr>
<td>17</td>
<td>Memphis State</td>
<td>0.25319</td>
</tr>
<tr>
<td>18</td>
<td>Navy</td>
<td>0.28921</td>
</tr>
<tr>
<td>19</td>
<td>UNLV</td>
<td>0.35103</td>
</tr>
<tr>
<td>20</td>
<td>DePaul</td>
<td>0.43770</td>
</tr>
<tr>
<td>21</td>
<td>Iowa</td>
<td>0.50213</td>
</tr>
<tr>
<td>22</td>
<td>Indiana</td>
<td>0.51713</td>
</tr>
<tr>
<td>23</td>
<td>Maryland</td>
<td>0.55910</td>
</tr>
<tr>
<td>24</td>
<td>Arkansas</td>
<td>0.62977</td>
</tr>
<tr>
<td>25</td>
<td>Virginia</td>
<td>0.67586</td>
</tr>
<tr>
<td>26</td>
<td>Washington</td>
<td>0.67756</td>
</tr>
<tr>
<td>27</td>
<td>Tennessee</td>
<td>0.70822</td>
</tr>
<tr>
<td>28</td>
<td>St. Johns</td>
<td>0.71425</td>
</tr>
<tr>
<td>29</td>
<td>Virginia Tech</td>
<td>0.71638</td>
</tr>
<tr>
<td>30</td>
<td>St. Joseph's</td>
<td>0.73492</td>
</tr>
<tr>
<td>31</td>
<td>UCLA</td>
<td>0.73965</td>
</tr>
<tr>
<td>32</td>
<td>Pittsburgh</td>
<td>0.75078</td>
</tr>
<tr>
<td>33</td>
<td>Houston</td>
<td>0.75534</td>
</tr>
<tr>
<td>34</td>
<td>Montana</td>
<td>0.75790</td>
</tr>
<tr>
<td>35</td>
<td>Old Dominion</td>
<td>0.76821</td>
</tr>
</tbody>
</table>
Example 79.3: Analyzing Job Ratings of Police Officers

This example uses the PRINCOMP procedure to analyze job performance. Police officers were rated by their supervisors in 14 categories as part of standard police department administrative procedure.

The following statements create the Jobratings data set:

```plaintext
options validvarname=any;

data Jobratings;
  input 'Communication Skills'n 'Problem Solving'n
    'Learning Ability'n 'Judgment Under Pressure'n
    'Observational Skills'n 'Willingness to Confront Problems'n
    'Interest in People'n 'Interpersonal Sensitivity'n
    'Desire for Self-Improvement'n 'Appearance'n
    'Integrity'n 'Physical Ability'n
    'Overall Rating'n;
  datalines;
    2 6 8 3 8 5 3 8 7 9 8 6 7 7 4 7 5 8 8 7 6 8 5 7 6 6 7 5 6 7 5 7 8 6 3 7 7 5
    8 7 5 6 7 8 6 9 7 7 9 8 8 9 9 7 9 9 9 7 7 9 8 8 7 8 8 8 8 8 9 8 9 7 8 9 9
    8 8 8 7 9 9 9 9 9 8 8 9 9 9 7 9 8 8 7 7 9 4 7 9 8 4 6 8 8 8 6 3 5 6 5 2
    ... more lines ...

    7 8 9 9 7 9 9 7 9 9 9 9 8 9 9 8 9 9 9 8 9 9 9 9 7 6 6 5 6 3 9 9 5 6 7 4 8 6

;```

The Jobratings data set contains 14 variables. Each variable contains the job ratings, which use a scale measurement from 1 to 10 (1=fail to comply, 10=exceptional). The last variable, Overall Rating, contains a score as an overall index of how each officer performs.

The following statements request a principal component analysis of the Jobratings data set, output the scores to the Scores data set (OUT= Scores), and produce default plots. Note that the variable Overall Rating is excluded from the analysis.

```plaintext
ods graphics on;

proc princomp data=Jobratings(drop='Overall Rating'n);
run;
```
Figure 79.3.1 and Figure 79.3.2 display the PROC PRINCOMP output, beginning with simple statistics and then the correlation matrix. By default, PROC PRINCOMP computes principal components from the correlation matrix, so the total variance is equal to the number of variables, 13. In this example, it would also be reasonable to use the COV option, which would cause variables that have a high variance (such as Dependability) to influence the results more than variables that have a low variance (such as Learning Ability). If you used the COV option, scores would be computed from centered rather than standardized variables.

**Output 79.3.1** Simple Statistics and Correlation Matrix from Using PROC PRINCOMP

### The PRINCOMP Procedure

<table>
<thead>
<tr>
<th>Observations</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Simple Statistics</th>
<th>Communication Skills</th>
<th>Problem Solving</th>
<th>Learning Ability</th>
<th>Judgment Under Pressure</th>
<th>Observational Skills</th>
<th>Willingness to Confront Problems</th>
<th>Interest in People</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD</td>
<td>1.878837414</td>
<td>1.748873511</td>
<td>1.696135866</td>
<td>2.252792728</td>
<td>1.816259563</td>
<td>2.126622327</td>
<td>1.871631108</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Simple Statistics</th>
<th>Interpersonal Sensitivity</th>
<th>Desire for Self-Improvement</th>
<th>Appearance</th>
<th>Dependability</th>
<th>Physical Ability</th>
<th>Integrity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>6.540540541</td>
<td>7.027027027</td>
<td>7.135135135</td>
<td>7.027027027</td>
<td>7.162162162</td>
<td>7.081081081</td>
</tr>
<tr>
<td>STD</td>
<td>2.218540494</td>
<td>1.707605316</td>
<td>1.436859271</td>
<td>1.499749729</td>
<td>1.343988953</td>
<td>1.460182226</td>
</tr>
</tbody>
</table>
Figure 79.3.2 displays the eigenvalues. The first principal component accounts for about 50% of the total variance, the second principal component accounts for about 13.6%, and the third principal component accounts for about 7.7%. Note that the eigenvalues sum to the total variance. The eigenvalues indicate that three to five components provide a good summary of the data: three components account for about 71.7% of the total variance, and five components account for about 82.7%. Subsequent components account for less than 5% each.
Example 79.3: Analyzing Job Ratings of Police Officers

Output 79.3.2: Eigenvalues and Eigenvectors from Using PROC PRINCOMP

<table>
<thead>
<tr>
<th>Eigenvalues of the Correlation Matrix</th>
<th>Eigenvalue</th>
<th>Difference</th>
<th>Proportion</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.69466687</td>
<td>1.81899683</td>
<td>0.3611</td>
<td>0.3611</td>
</tr>
<tr>
<td>2</td>
<td>2.87569003</td>
<td>1.67100277</td>
<td>0.2212</td>
<td>0.5823</td>
</tr>
<tr>
<td>3</td>
<td>1.20468727</td>
<td>0.03118935</td>
<td>0.0927</td>
<td>0.6750</td>
</tr>
<tr>
<td>4</td>
<td>1.17349791</td>
<td>0.45846322</td>
<td>0.0903</td>
<td>0.7653</td>
</tr>
<tr>
<td>5</td>
<td>0.71503470</td>
<td>0.15713583</td>
<td>0.0550</td>
<td>0.8203</td>
</tr>
<tr>
<td>6</td>
<td>0.55789887</td>
<td>0.09269082</td>
<td>0.0429</td>
<td>0.8632</td>
</tr>
<tr>
<td>7</td>
<td>0.46520805</td>
<td>0.04118763</td>
<td>0.0358</td>
<td>0.8990</td>
</tr>
<tr>
<td>8</td>
<td>0.42402041</td>
<td>0.13454552</td>
<td>0.0326</td>
<td>0.9316</td>
</tr>
<tr>
<td>9</td>
<td>0.28947489</td>
<td>0.06869311</td>
<td>0.0223</td>
<td>0.9539</td>
</tr>
<tr>
<td>10</td>
<td>0.22078178</td>
<td>0.03221769</td>
<td>0.0170</td>
<td>0.9708</td>
</tr>
<tr>
<td>11</td>
<td>0.18856410</td>
<td>0.06620108</td>
<td>0.0145</td>
<td>0.9853</td>
</tr>
<tr>
<td>12</td>
<td>0.12236302</td>
<td>0.05427092</td>
<td>0.0094</td>
<td>0.9948</td>
</tr>
<tr>
<td>13</td>
<td>0.06809210</td>
<td></td>
<td>0.0052</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

### Eigenvectors

<table>
<thead>
<tr>
<th>Eigenvectors</th>
<th>Prin1</th>
<th>Prin2</th>
<th>Prin3</th>
<th>Prin4</th>
<th>Prin5</th>
<th>Prin6</th>
<th>Prin7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Skills</td>
<td>0.323548</td>
<td>-0.236730</td>
<td>0.206727</td>
<td>0.092655</td>
<td>0.293138</td>
<td>0.260352</td>
<td>-0.215988</td>
</tr>
<tr>
<td>Problem Solving</td>
<td>0.383857</td>
<td>-0.160898</td>
<td>-0.091224</td>
<td>0.212751</td>
<td>0.025258</td>
<td>0.252518</td>
<td>-0.140816</td>
</tr>
<tr>
<td>Learning Ability</td>
<td>0.322899</td>
<td>-0.050464</td>
<td>-0.553565</td>
<td>0.056656</td>
<td>-0.138393</td>
<td>0.168405</td>
<td>0.150062</td>
</tr>
<tr>
<td>Judgment Under Pressure</td>
<td>0.379958</td>
<td>-0.142821</td>
<td>0.155157</td>
<td>-0.025467</td>
<td>0.043612</td>
<td>0.175269</td>
<td>0.361045</td>
</tr>
<tr>
<td>Observational Skills</td>
<td>0.359246</td>
<td>-0.067434</td>
<td>-0.424397</td>
<td>-0.148191</td>
<td>0.093417</td>
<td>-0.221005</td>
<td>0.022944</td>
</tr>
<tr>
<td>Willingness to Confront Problems</td>
<td>0.333754</td>
<td>-0.064285</td>
<td>0.183338</td>
<td>0.459764</td>
<td>-0.024447</td>
<td>-0.304704</td>
<td>-0.247094</td>
</tr>
<tr>
<td>Interest in People</td>
<td>0.296160</td>
<td>0.082187</td>
<td>0.575827</td>
<td>-1.40226</td>
<td>0.023973</td>
<td>-0.159653</td>
<td>-0.015476</td>
</tr>
<tr>
<td>Interpersonal Sensitivity</td>
<td>0.302693</td>
<td>0.180810</td>
<td>0.119231</td>
<td>-0.432281</td>
<td>-0.047507</td>
<td>-0.238610</td>
<td>0.501550</td>
</tr>
<tr>
<td>Desire for Self-Improvement</td>
<td>0.225795</td>
<td>0.344425</td>
<td>-1.123363</td>
<td>-0.333516</td>
<td>-0.174557</td>
<td>-0.266986</td>
<td>-0.621875</td>
</tr>
<tr>
<td>Appearance</td>
<td>0.158341</td>
<td>0.425329</td>
<td>0.052469</td>
<td>-0.022665</td>
<td>-0.441729</td>
<td>0.494677</td>
<td>-0.051864</td>
</tr>
<tr>
<td>Dependability</td>
<td>0.025597</td>
<td>0.427337</td>
<td>0.079019</td>
<td>0.520679</td>
<td>-0.289013</td>
<td>-0.044047</td>
<td>0.221520</td>
</tr>
<tr>
<td>Physical Ability</td>
<td>0.052980</td>
<td>0.418985</td>
<td>-1.85687</td>
<td>0.312555</td>
<td>0.486621</td>
<td>-0.299641</td>
<td>0.145579</td>
</tr>
<tr>
<td>Integrity</td>
<td>-0.006172</td>
<td>0.435225</td>
<td>0.015874</td>
<td>-0.147905</td>
<td>0.578186</td>
<td>0.421421</td>
<td>-0.087126</td>
</tr>
</tbody>
</table>

### Eigenvectors

<table>
<thead>
<tr>
<th>Eigenvectors</th>
<th>Prin8</th>
<th>Prin9</th>
<th>Prin10</th>
<th>Prin11</th>
<th>Prin12</th>
<th>Prin13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Skills</td>
<td>-0.350645</td>
<td>-0.050648</td>
<td>0.107002</td>
<td>0.262509</td>
<td>0.341232</td>
<td>0.291574</td>
</tr>
<tr>
<td>Problem Solving</td>
<td>-1.043922</td>
<td>0.283104</td>
<td>0.221940</td>
<td>-0.548010</td>
<td>-0.492803</td>
<td>-0.073999</td>
</tr>
<tr>
<td>Learning Ability</td>
<td>0.055518</td>
<td>0.391053</td>
<td>-0.223399</td>
<td>0.132338</td>
<td>0.442471</td>
<td>-0.307096</td>
</tr>
<tr>
<td>Judgment Under Pressure</td>
<td>0.391055</td>
<td>-3.315796</td>
<td>-0.392714</td>
<td>-0.286021</td>
<td>0.111225</td>
<td>0.382730</td>
</tr>
<tr>
<td>Observational Skills</td>
<td>0.177808</td>
<td>-1.141041</td>
<td>0.225326</td>
<td>0.502509</td>
<td>-0.416669</td>
<td>0.278776</td>
</tr>
<tr>
<td>Willingness to Confront Problems</td>
<td>0.259896</td>
<td>-0.387665</td>
<td>0.158552</td>
<td>0.047611</td>
<td>0.168464</td>
<td>-0.459746</td>
</tr>
<tr>
<td>Interest in People</td>
<td>0.131682</td>
<td>0.540942</td>
<td>-0.277206</td>
<td>0.299254</td>
<td>-0.197252</td>
<td>-0.112818</td>
</tr>
<tr>
<td>Interpersonal Sensitivity</td>
<td>-0.303435</td>
<td>-0.079727</td>
<td>0.393688</td>
<td>-1.96906</td>
<td>0.137383</td>
<td>-0.224277</td>
</tr>
<tr>
<td>Desire for Self-Improvement</td>
<td>0.020842</td>
<td>0.018350</td>
<td>-0.105222</td>
<td>-0.293349</td>
<td>0.219662</td>
<td>0.263644</td>
</tr>
<tr>
<td>Appearance</td>
<td>-0.204081</td>
<td>-0.350816</td>
<td>-0.186793</td>
<td>0.226289</td>
<td>-0.256802</td>
<td>-0.177399</td>
</tr>
<tr>
<td>Dependability</td>
<td>0.079762</td>
<td>0.250326</td>
<td>0.336689</td>
<td>0.049300</td>
<td>0.146711</td>
<td>0.445352</td>
</tr>
<tr>
<td>Physical Ability</td>
<td>-0.340453</td>
<td>-0.072184</td>
<td>-0.432711</td>
<td>-0.090520</td>
<td>-0.154868</td>
<td>-0.034075</td>
</tr>
<tr>
<td>Integrity</td>
<td>0.396179</td>
<td>0.030130</td>
<td>0.284351</td>
<td>0.021483</td>
<td>0.113790</td>
<td>-0.129601</td>
</tr>
</tbody>
</table>
PROC PRINCOMP produces the scree plot as shown in Figure 79.3.3 by default when ODS Graphics is enabled. You can obtain more plots by specifying the PLOTS= option in the PROC PRINCOMP statement.

The scree plot on the left shows that the eigenvalue of the first component is approximately 6.5 and the eigenvalue of the second component is largely decreased to under 2.0. The variance explained plot on the right shows that the first four principal components account for nearly 80% of the total variance.

_output 79.3.3 Scree Plot from Using PROC PRINCOMP_

The first component reflects overall performance, because the first eigenvector shows approximately equal loadings on all variables. The second eigenvector has high positive loadings on the variables Observational Skills and Willingness to Confront Problems but even higher negative loadings on the variables Interest in People and Interpersonal Sensitivity. This component seems to reflect the ability to take action, but it also reflects a lack of interpersonal skills. The third eigenvector has a very high positive loading on the variable Physical Ability and high negative loadings on the variables Problem Solving and Learning Ability. This component seems to reflect physical strength, but it also shows poor learning and problem-solving skills.

In short, the three components represent the following:

First component: overall performance
Second component: smartness, toughness, and introversion
Third component: superior strength and average intellect

PROC PRINCOMP also produces other plots besides the scree plot, that help interpret the results. The following statements request plots from the PRINCOMP procedure:

```
proc princomp data=Jobratings(drop='Overall Rating'n) n=5 plots(ncomp=3)=all;
run;
```
The N=5 option sets the number of principal components to five. The option PLOTS(NCOMP=3)=ALL produces all plots but limits to three the number of components that are displayed in the component pattern plots and the component score plots.

Output 79.3.4 shows a matrix plot of component scores for the first five principal components. The histogram of each component is displayed in the diagonal element of the matrix. The histograms indicate that the first principal component is skewed to the left and the second principal component is slightly skewed to the right.
The pairwise component pattern plots are shown in Output 79.3.5 through Output 79.3.7. The pattern plots show the following:

- All variables positively and evenly correlate with the first principal component (Output 79.3.5 and Output 79.3.6).

- The variables Observational Skills and Willingness to Confront Problems correlate highly with the second component, and the variables Interest in People and Interpersonal Sensitivity correlate highly but negatively with the second component (Output 79.3.5).

- The variable Physical Ability correlates highly with the third component, and the variables Problem Solving and Learning Ability correlate highly but negatively with the third component (Output 79.3.6).

- The variables Observational Skills, Willingness to Confront Problems, Interest in People, and Interpersonal Sensitivity correlate highly (either positively or negatively) with the second component, but all these variables have very low correlations with the third component; the variables Physical Ability and Problem Solving correlate highly (either positively or negatively) with the third component, but both variables have very low correlations with the second component (Output 79.3.7).
Example 79.3: Analyzing Job Ratings of Police Officers

Output 79.3.6  Pattern Plot of Component 3 by Component 1

Output 79.3.7  Pattern Plot of Component 3 by Component 2
Output 79.3.8 shows a component pattern profile. As is shown in the pattern plots, the nearly horizontal profile from the first component indicates that the first component is mostly correlated evenly across all variables.

**Output 79.3.8** Component Pattern Profile Plot from Using PROC PRINCOMP
Output 79.3.9 through Output 79.3.11 display the pairwise component score plots. Observation numbers are used as the plotting symbol.

Output 79.3.9 shows a scatter plot of the first and second components. Observations 4 and 31 seem like outliers on the first component. Observations 22 and 30 can be potential outliers on the second component.

**Output 79.3.9** Component 2 versus Component 1
Output 79.3.10 shows a scatter plot of the first and third components. Observations 4 and 31 seem like outliers on the first component.

**Output 79.3.10** Component 3 versus Component 1
Example 79.3: Analyzing Job Ratings of Police Officers

Output 79.3.11 shows a scatter plot of the second and third components. Observations 22 and 30 can be potential outliers on the second component.

Output 79.3.11 Component 3 versus Component 2
Output 79.3.12 shows a scatter plot of the second and third components, displaying the first component in color. Color interpolation ranges from red (minimum) to blue (middle) to green (maximum).

**Output 79.3.12** Component 3 versus Component 2, Painted by Component 1

---

**References**


Subject Index

computational resources
  PRINCOMP procedure, 6601

correlation
  principal components, 6600, 6602

covariance
  principal components, 6600, 6602

crime rates data, example
  PRINCOMP procedure, 6585

eigenvalues and eigenvectors
  PRINCOMP procedure, 6584, 6600, 6602

missing values
  PRINCOMP procedure, 6598

ODS graph names
  PRINCOMP procedure, 6603

OUT= data sets
  PRINCOMP procedure, 6599

output table names
  PRINCOMP procedure, 6602

partial correlation
  principal components, 6602

principal components, see also PRINCOMP procedure
  definition, 6583
  interpreting eigenvalues, 6586
  partiaing out variables, 6598
  properties of, 6584, 6585
  rotating, 6601
  using weights, 6598

PRINCOMP procedure
  computational resources, 6601
  correction for means, 6592
  crime rates data, example, 6585
  DATA= data set, 6599
  eigenvalues and eigenvectors, 6584, 6600, 6602
  examples, 6604
  input data set, 6592
  ODS graph names, 6603
  output data sets, 6592, 6599, 6600
  output table names, 6602
  OUTSTAT= data set, 6599
  replace missing values, example, 6607
  SCORE procedure, 6601
  suppressing output, 6592
  weights, 6598

residuals

and partial correlation (PRINCOMP), 6599
  partial correlation (PRINCOMP), 6598
  rotating principal components, 6601

SCORE procedure
  PRINCOMP procedure, 6601
Syntax Index

BY statement
   PRINCOMP procedure, 6597

COV option
   PROC PRINCOMP statement, 6592
COVARIANCE option
   PROC PRINCOMP statement, 6592

DATA= option
   PROC PRINCOMP statement, 6592

FREQ statement
   PRINCOMP procedure, 6597

ID statement
   PRINCOMP procedure, 6597

N= option
   PROC PRINCOMP statement, 6592
NOINT option
   PROC PRINCOMP statement, 6592
NOPRINT option
   PROC PRINCOMP statement, 6592

OUT= option
   PROC PRINCOMP statement, 6592
OUTSTAT= option
   PROC PRINCOMP statement, 6592
PARPREFIX= option, 6596
PLOTS= option
   PROC PRINCOMP statement, 6593
PPREFIX= option
   PROC PRINCOMP statement, 6596
PREFIX= option
   PROC PRINCOMP statement, 6596
RPREFIX= option
   PROC PRINCOMP statement, 6596
SING= option
   PROC PRINCOMP statement, 6596
SINGULAR= option
   PROC PRINCOMP statement, 6596
STANDARD option
   PROC PRINCOMP statement, 6596
STD option
   PROC PRINCOMP statement, 6596
VARDEF= option
   PROC PRINCOMP statement, 6596

PRINCOMP procedure, VAR statement, 6598
PRINCOMP procedure, WEIGHT statement, 6598
PROC PRINCOMP statement, see PRINCOMP procedure

RPREFIX= option
   PROC PRINCOMP statement, 6596

SING= option
   PROC PRINCOMP statement, 6596
SINGULAR= option
   PROC PRINCOMP statement, 6596
STANDARD option
   PROC PRINCOMP statement, 6596
STD option
   PROC PRINCOMP statement, 6596

VAR statement
   PRINCOMP procedure, 6598
VARDEF= option
   PROC PRINCOMP statement, 6596

WEIGHT statement
   PRINCOMP procedure, 6598