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Introduction to Bayesian Analysis Procedures
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Overview
SAS/STAT software provides Bayesian capabilities in six procedures: BCHOICE, FMM, GENMOD, LIF-
EREG, MCMC, and PHREG. The FMM, GENMOD, LIFEREG, and PHREG procedures provide Bayesian
analysis in addition to the standard frequentist analyses they have always performed. Thus, these procedures
provide convenient access to Bayesian modeling and inference for finite mixture models, generalized linear
models, accelerated life failure models, Cox regression models, and piecewise constant baseline hazard
models (also known as piecewise exponential models). The BCHOICE procedure provides Bayesian analysis
for discrete choice models. The MCMC procedure is a general procedure that fits Bayesian models with
arbitrary priors and likelihood functions.

This chapter provides an overview of Bayesian statistics; describes specific sampling algorithms used in
these four procedures; and discusses posterior inference and convergence diagnostics computations. Sources
that provide in-depth treatment of Bayesian statistics can be found at the end of this chapter, in the section
“A Bayesian Reading List” on page 154. Additional chapters contain syntax, details, and examples for the
individual procedures BCHOICE(see Chapter 27, “The BCHOICE Procedure”), FMM (see Chapter 39, “The
FMM Procedure”), GENMOD (see Chapter 43, “The GENMOD Procedure”), LIFEREG (see Chapter 57,
“The LIFEREG Procedure”), MCMC (see Chapter 61, “The MCMC Procedure”), and PHREG (see Chapter 73,
“The PHREG Procedure”).
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Introduction
The most frequently used statistical methods are known as frequentist (or classical) methods. These methods
assume that unknown parameters are fixed constants, and they define probability by using limiting relative
frequencies. It follows from these assumptions that probabilities are objective and that you cannot make
probabilistic statements about parameters because they are fixed. Bayesian methods offer an alternative
approach; they treat parameters as random variables and define probability as “degrees of belief” (that is, the
probability of an event is the degree to which you believe the event is true). It follows from these postulates
that probabilities are subjective and that you can make probability statements about parameters. The term
“Bayesian” comes from the prevalent usage of Bayes’ theorem, which was named after the Reverend Thomas
Bayes, an eighteenth century Presbyterian minister. Bayes was interested in solving the question of inverse
probability: after observing a collection of events, what is the probability of one event?

Suppose you are interested in estimating � from data y D fy1; : : : ; yng by using a statistical model described
by a density p.yj�/. Bayesian philosophy states that � cannot be determined exactly, and uncertainty about
the parameter is expressed through probability statements and distributions. You can say that � follows
a normal distribution with mean 0 and variance 1, if it is believed that this distribution best describes the
uncertainty associated with the parameter. The following steps describe the essential elements of Bayesian
inference:

1. A probability distribution for � is formulated as �.�/, which is known as the prior distribution, or just
the prior. The prior distribution expresses your beliefs (for example, on the mean, the spread, the
skewness, and so forth) about the parameter before you examine the data.

2. Given the observed data y, you choose a statistical model p.yj�/ to describe the distribution of y given
� .

3. You update your beliefs about � by combining information from the prior distribution and the data
through the calculation of the posterior distribution, p.� jy/.

The third step is carried out by using Bayes’ theorem, which enables you to combine the prior distribution
and the model in the following way:

p.� jy/ D
p.�; y/
p.y/

D
p.yj�/�.�/

p.y/
D

p.yj�/�.�/R
p.yj�/�.�/d�

The quantity

p.y/ D
Z
p.yj�/�.�/d�

is the normalizing constant of the posterior distribution. This quantity p.y/ is also the marginal distribution
of y, and it is sometimes called the marginal distribution of the data. The likelihood function of � is any
function proportional to p.yj�/; that is, L.�/ / p.yj�/. Another way of writing Bayes’ theorem is as
follows:



Background in Bayesian Statistics F 125

p.� jy/ D
L.�/�.�/R
L.�/�.�/d�

The marginal distribution p.y/ is an integral. As long as the integral is finite, the particular value of the
integral does not provide any additional information about the posterior distribution. Hence, p.� jy/ can be
written up to an arbitrary constant, presented here in proportional form as:

p.� jy/ / L.�/�.�/

Simply put, Bayes’ theorem tells you how to update existing knowledge with new information. You begin
with a prior belief �.�/, and after learning information from data y, you change or update your belief about
� and obtain p.� jy/. These are the essential elements of the Bayesian approach to data analysis.

In theory, Bayesian methods offer simple alternatives to statistical inference—all inferences follow from
the posterior distribution p.� jy/. In practice, however, you can obtain the posterior distribution with
straightforward analytical solutions only in the most rudimentary problems. Most Bayesian analyses require
sophisticated computations, including the use of simulation methods. You generate samples from the posterior
distribution and use these samples to estimate the quantities of interest. PROC MCMC uses a self-tuning
Metropolis algorithm (see the section “Metropolis and Metropolis-Hastings Algorithms” on page 132). The
GENMOD, LIFEREG, and PHREG procedures use the Gibbs sampler (see the section “Gibbs Sampler” on
page 133). The BCHOICE and FMM procedure use a combination of Gibbs sampler and latent variable
sampler. An important aspect of any analysis is assessing the convergence of the Markov chains. Inferences
based on nonconverged Markov chains can be both inaccurate and misleading.

Both Bayesian and classical methods have their advantages and disadvantages. From a practical point of
view, your choice of method depends on what you want to accomplish with your data analysis. If you
have prior information (either expert opinion or historical knowledge) that you want to incorporate into
the analysis, then you should consider Bayesian methods. In addition, if you want to communicate your
findings in terms of probability notions that can be more easily understood by nonstatisticians, Bayesian
methods might be appropriate. The Bayesian paradigm can often provide a framework for answering specific
scientific questions that a single point estimate cannot sufficiently address. Alternatively, if you are interested
only in estimating parameters based on the likelihood, then numerical optimization methods, such as the
Newton-Raphson method, can give you very precise estimates and there is no need to use a Bayesian analysis.
For further discussions of the relative advantages and disadvantages of Bayesian analysis, see the section
“Bayesian Analysis: Advantages and Disadvantages” on page 130.

Background in Bayesian Statistics

Prior Distributions
A prior distribution of a parameter is the probability distribution that represents your uncertainty about the
parameter before the current data are examined. Multiplying the prior distribution and the likelihood function
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together leads to the posterior distribution of the parameter. You use the posterior distribution to carry out
all inferences. You cannot carry out any Bayesian inference or perform any modeling without using a prior
distribution.

Objective Priors versus Subjective Priors

Bayesian probability measures the degree of belief that you have in a random event. By this definition,
probability is highly subjective. It follows that all priors are subjective priors. Not everyone agrees with
this notion of subjectivity when it comes to specifying prior distributions. There has long been a desire to
obtain results that are objectively valid. Within the Bayesian paradigm, this can be somewhat achieved by
using prior distributions that are “objective” (that is, that have a minimal impact on the posterior distribution).
Such distributions are called objective or noninformative priors (see the next section). However, while
noninformative priors are very popular in some applications, they are not always easy to construct. See
DeGroot and Schervish (2002, Section 1.2) and Press (2003, Section 2.2) for more information about
interpretations of probability. See Berger (2006) and Goldstein (2006) for discussions about objective
Bayesian versus subjective Bayesian analysis.

Noninformative Priors

Roughly speaking, a prior distribution is noninformative if the prior is “flat” relative to the likelihood function.
Thus, a prior �.�/ is noninformative if it has minimal impact on the posterior distribution of � . Other names
for the noninformative prior are vague, diffuse, and flat prior. Many statisticians favor noninformative priors
because they appear to be more objective. However, it is unrealistic to expect that noninformative priors
represent total ignorance about the parameter of interest. In some cases, noninformative priors can lead to
improper posteriors (nonintegrable posterior density). You cannot make inferences with improper posterior
distributions. In addition, noninformative priors are often not invariant under transformation; that is, a prior
might be noninformative in one parameterization but not necessarily noninformative if a transformation is
applied.

See Box and Tiao (1973) for a more formal development of noninformative priors. See Kass and Wasserman
(1996) for techniques for deriving noninformative priors.

Improper Priors

A prior �.�/ is said to be improper if

Z
�.�/d� D1

For example, a uniform prior distribution on the real line, �.�/ / 1, for �1 < � < 1, is an improper
prior. Improper priors are often used in Bayesian inference since they usually yield noninformative priors
and proper posterior distributions. Improper prior distributions can lead to posterior impropriety (improper
posterior distribution). To determine whether a posterior distribution is proper, you need to make sure that
the normalizing constant

R
p.yj�/p.�/d� is finite for all y. If an improper prior distribution leads to an

improper posterior distribution, inference based on the improper posterior distribution is invalid.

The GENMOD, LIFEREG, and PHREG procedures allow the use of improper priors—that is, the flat prior
on the real line—for regression coefficients. These improper priors do not lead to any improper posterior
distributions in the models that these procedures fit. PROC MCMC allows the use of any prior, as long as the
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distribution is programmable using DATA step functions. However, the procedure does not verify whether
the posterior distribution is integrable. You must ensure this yourself.

Informative Priors

An informative prior is a prior that is not dominated by the likelihood and that has an impact on the posterior
distribution. If a prior distribution dominates the likelihood, it is clearly an informative prior. These types
of distributions must be specified with care in actual practice. On the other hand, the proper use of prior
distributions illustrates the power of the Bayesian method: information gathered from the previous study, past
experience, or expert opinion can be combined with current information in a natural way. See the “Examples”
sections of the GENMOD and PHREG procedure chapters for instructions about constructing informative
prior distributions.

Conjugate Priors

A prior is said to be a conjugate prior for a family of distributions if the prior and posterior distributions are
from the same family, which means that the form of the posterior has the same distributional form as the prior
distribution. For example, if the likelihood is binomial, y Ï Bin.n; �/, a conjugate prior on � is the beta
distribution; it follows that the posterior distribution of � is also a beta distribution. Other commonly used
conjugate prior/likelihood combinations include the normal/normal, gamma/Poisson, gamma/gamma, and
gamma/beta cases. The development of conjugate priors was partially driven by a desire for computational
convenience—conjugacy provides a practical way to obtain the posterior distributions. The Bayesian
procedures do not use conjugacy in posterior sampling.

Jeffreys’ Prior

A very useful prior is Jeffreys’ prior (Jeffreys 1961). It satisfies the local uniformity property: a prior that
does not change much over the region in which the likelihood is significant and does not assume large values
outside that range. It is based on the Fisher information matrix. Jeffreys’ prior is defined as

�.�/ / jI.�/j1=2

where j j denotes the determinant and I.�/ is the Fisher information matrix based on the likelihood function
p.yj�/:

I.�/ D �E

�
@2 logp.yj�/

@�2

�

Jeffreys’ prior is locally uniform and hence noninformative. It provides an automated scheme for finding a
noninformative prior for any parametric model p.yj�/. Another appealing property of Jeffreys’ prior is that
it is invariant with respect to one-to-one transformations. The invariance property means that if you have
a locally uniform prior on � and �.�/ is a one-to-one function of � , then p.�.�// D �.�/ � j�0.�/j�1 is a
locally uniform prior for �.�/. This invariance principle carries through to multidimensional parameters
as well. While Jeffreys’ prior provides a general recipe for obtaining noninformative priors, it has some
shortcomings: the prior is improper for many models, and it can lead to improper posterior in some cases;
and the prior can be cumbersome to use in high dimensions. PROC GENMOD calculates Jeffreys’ prior
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automatically for any generalized linear model. You can set it as your prior density for the coefficient
parameters, and it does not lead to improper posteriors. You can construct Jeffreys’ prior for a variety of
statistical models in the MCMC procedure. See the section “Example 61.4: Logistic Regression Model with
Jeffreys’ Prior” on page 4887 in Chapter 61, “The MCMC Procedure,” for an example. PROC MCMC does
not guarantee that the corresponding posterior distribution is proper, and you need to exercise extra caution
in this case.

Bayesian Inference
Bayesian inference about � is primarily based on the posterior distribution of � . There are various ways
in which you can summarize this distribution. For example, you can report your findings through point
estimates. You can also use the posterior distribution to construct hypothesis tests or probability statements.

Point Estimation and Estimation Error

Classical methods often report the maximum likelihood estimator (MLE) or the method of moments estimator
(MOME) of a parameter. In contrast, Bayesian approaches often use the posterior mean. The definition of the
posterior mean is given by

E.� jy/ D
Z
� p.� jy/ d�

Other commonly used posterior estimators include the posterior median, defined as

� WP.� � medianjy/ D P.median � � jy/ D
1

2

and the posterior mode, defined as the value of � that maximizes p.� jy/.

The variance of the posterior density (simply referred to as the posterior variance) describes the uncertainty
in the parameter, which is a random variable in the Bayesian paradigm. A Bayesian analysis typically uses
the posterior variance, or the posterior standard deviation, to characterize the dispersion of the parameter. In
multidimensional models, covariance or correlation matrices are used.

If you know the distributional form of the posterior density of interest, you can report the exact posterior
point estimates. When models become too difficult to analyze analytically, you have to use simulation
algorithms, such as the Markov chain Monte Carlo (MCMC) method to obtain posterior estimates (see the
section “Markov Chain Monte Carlo Method” on page 131). All of the Bayesian procedures rely on MCMC
to obtain all posterior estimates. Using only a finite number of samples, simulations introduce an additional
level of uncertainty to the accuracy of the estimates. Monte Carlo standard error (MCSE), which is the
standard error of the posterior mean estimate, measures the simulation accuracy. See the section “Standard
Error of the Mean Estimate” on page 151 for more information.

The posterior standard deviation and the MCSE are two completely different concepts: the posterior standard
deviation describes the uncertainty in the parameter, while the MCSE describes only the uncertainty in the
parameter estimate as a result of MCMC simulation. The posterior standard deviation is a function of the
sample size in the data set, and the MCSE is a function of the number of iterations in the simulation.
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Hypothesis Testing

Suppose you have the following null and alternative hypotheses: H0 is � 2 ‚0 and H1 is � 2 ‚c0, where
‚0 is a subset of the parameter space and ‚c0 is its complement. Using the posterior distribution �.� jy/,
you can compute the posterior probabilities P.� 2 ‚0jy/ and P.� 2 ‚c0jy/, or the probabilities that H0 and
H1 are true, respectively. One way to perform a Bayesian hypothesis test is to accept the null hypothesis
if P.� 2 ‚0jy/ � P.� 2 ‚c0jy/ and vice versa, or to accept the null hypothesis if P.� 2 ‚0jy/ is greater
than a predefined threshold, such as 0.75, to guard against falsely accepted null distribution.

It is more difficult to carry out a point null hypothesis test in a Bayesian analysis. A point null hypothesis
is a test of H0W � D �0 versus H1W � ¤ �0. If the prior distribution �.�/ is a continuous density, then the
posterior probability of the null hypothesis being true is 0, and there is no point in carrying out the test. One
alternative is to restate the null to be a small interval hypothesis: � 2 ‚0 D .�0 � a; �0 C a/, where a is
a very small constant. The Bayesian paradigm can deal with an interval hypothesis more easily. Another
approach is to give a mixture prior distribution to � with a positive probability of p0 on �0 and the density
.1 � p0/�.�/ on � ¤ �0. This prior ensures a nonzero posterior probability on �0, and you can then make
realistic probabilistic comparisons. For more detailed treatment of Bayesian hypothesis testing, see Berger
(1985).

Interval Estimation

The Bayesian set estimates are called credible sets, which are also known as credible intervals. This is
analogous to the concept of confidence intervals used in classical statistics. Given a posterior distribution
p.� jy/, A is a credible set for � if

P.� 2 Ajy/ D
Z
A

p.� jy/d�

For example, you can construct a 95% credible set for � by finding an interval, A, over which
R
A p.� jy/ D

0:95.

You can construct credible sets that have equal tails. A 100.1 � ˛/% equal-tail interval corresponds to the
100.˛=2/ and 100.1 � ˛=2/ percentiles of the posterior distribution. Some statisticians prefer this interval
because it is invariant under transformations. Another frequently used Bayesian credible set is called the
highest posterior density (HPD) interval.

A 100.1 � ˛/% HPD interval is a region that satisfies the following two conditions:

1. The posterior probability of that region is 100.1 � ˛/%.

2. The minimum density of any point within that region is equal to or larger than the density of any point
outside that region.

The HPD is an interval in which most of the distribution lies. Some statisticians prefer this interval because it
is the smallest interval.

One major distinction between Bayesian and classical sets is their interpretation. The Bayesian probability
reflects a person’s subjective beliefs. Following this approach, a statistician can make the claim that � is
inside a credible interval with measurable probability. This property is appealing because it enables you to
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make a direct probability statement about parameters. Many people find this concept to be a more natural
way of understanding a probability interval, which is also easier to explain to nonstatisticians. A confidence
interval, on the other hand, enables you to make a claim that the interval covers the true parameter. The
interpretation reflects the uncertainty in the sampling procedure; a confidence interval of 100.1�˛/% asserts
that, in the long run, 100.1 � ˛/% of the realized confidence intervals cover the true parameter.

Bayesian Analysis: Advantages and Disadvantages
Bayesian methods and classical methods both have advantages and disadvantages, and there are some
similarities. When the sample size is large, Bayesian inference often provides results for parametric models
that are very similar to the results produced by frequentist methods. Some advantages to using Bayesian
analysis include the following:

• It provides a natural and principled way of combining prior information with data, within a solid
decision theoretical framework. You can incorporate past information about a parameter and form a
prior distribution for future analysis. When new observations become available, the previous posterior
distribution can be used as a prior. All inferences logically follow from Bayes’ theorem.

• It provides inferences that are conditional on the data and are exact, without reliance on asymptotic
approximation. Small sample inference proceeds in the same manner as if one had a large sample.
Bayesian analysis also can estimate any functions of parameters directly, without using the “plug-in”
method (a way to estimate functionals by plugging the estimated parameters in the functionals).

• It obeys the likelihood principle. If two distinct sampling designs yield proportional likelihood
functions for � , then all inferences about � should be identical from these two designs. Classical
inference does not in general obey the likelihood principle.

• It provides interpretable answers, such as “the true parameter � has a probability of 0.95 of falling in a
95% credible interval.”

• It provides a convenient setting for a wide range of models, such as hierarchical models and missing
data problems. MCMC, along with other numerical methods, makes computations tractable for
virtually all parametric models.

There are also disadvantages to using Bayesian analysis:

• It does not tell you how to select a prior. There is no correct way to choose a prior. Bayesian inferences
require skills to translate subjective prior beliefs into a mathematically formulated prior. If you do not
proceed with caution, you can generate misleading results.

• It can produce posterior distributions that are heavily influenced by the priors. From a practical point
of view, it might sometimes be difficult to convince subject matter experts who do not agree with the
validity of the chosen prior.

• It often comes with a high computational cost, especially in models with a large number of parameters.
In addition, simulations provide slightly different answers unless the same random seed is used. Note
that slight variations in simulation results do not contradict the early claim that Bayesian inferences are
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exact. The posterior distribution of a parameter is exact, given the likelihood function and the priors,
while simulation-based estimates of posterior quantities can vary due to the random number generator
used in the procedures.

For more in-depth treatments of the pros and cons of Bayesian analysis, see Berger (1985, Sections 4.1 and
4.12), Berger and Wolpert (1988), Bernardo and Smith (1994, with a new edition coming out), Carlin and
Louis (2000, Section 1.4), Robert (2001, Chapter 11), and Wasserman (2004, Section 11.9).

The following sections provide detailed information about the Bayesian methods provided in SAS.

Markov Chain Monte Carlo Method
The Markov chain Monte Carlo (MCMC) method is a general simulation method for sampling from posterior
distributions and computing posterior quantities of interest. MCMC methods sample successively from a
target distribution. Each sample depends on the previous one, hence the notion of the Markov chain. A
Markov chain is a sequence of random variables, �1, �2, � � � , for which the random variable � t depends on
all previous �s only through its immediate predecessor � t�1. You can think of a Markov chain applied to
sampling as a mechanism that traverses randomly through a target distribution without having any memory
of where it has been. Where it moves next is entirely dependent on where it is now.

Monte Carlo, as in Monte Carlo integration, is mainly used to approximate an expectation by using the
Markov chain samples. In the simplest version

Z
S

g.�/p.�/d� Š
1

n

nX
tD1

g.� t /

where g.�/ is a function of interest and � t are samples from p.�/ on its support S. This approximates
the expected value of g.�/. The earliest reference to MCMC simulation occurs in the physics literature.
Metropolis and Ulam (1949) and Metropolis et al. (1953) describe what is known as the Metropolis algorithm
(see the section “Metropolis and Metropolis-Hastings Algorithms” on page 132). The algorithm can be used

to generate sequences of samples from the joint distribution of multiple variables, and it is the foundation of
MCMC. Hastings (1970) generalized their work, resulting in the Metropolis-Hastings algorithm. Geman
and Geman (1984) analyzed image data by using what is now called Gibbs sampling (see the section “Gibbs
Sampler” on page 133). These MCMC methods first appeared in the mainstream statistical literature in
Tanner and Wong (1987).

The Markov chain method has been quite successful in modern Bayesian computing. Only in the simplest
Bayesian models can you recognize the analytical forms of the posterior distributions and summarize
inferences directly. In moderately complex models, posterior densities are too difficult to work with directly.
With the MCMC method, it is possible to generate samples from an arbitrary posterior density p.� jy/ and to
use these samples to approximate expectations of quantities of interest. Several other aspects of the Markov
chain method also contributed to its success. Most importantly, if the simulation algorithm is implemented
correctly, the Markov chain is guaranteed to converge to the target distribution p.� jy/ under rather broad
conditions, regardless of where the chain was initialized. In other words, a Markov chain is able to improve
its approximation to the true distribution at each step in the simulation. Furthermore, if the chain is run for a
very long time (often required), you can recover p.� jy/ to any precision. Also, the simulation algorithm is
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easily extensible to models with a large number of parameters or high complexity, although the “curse of
dimensionality” often causes problems in practice.

Properties of Markov chains are discussed in Feller (1968), Breiman (1968), and Meyn and Tweedie (1993).
Ross (1997) and Karlin and Taylor (1975) give a non-measure-theoretic treatment of stochastic processes,
including Markov chains. For conditions that govern Markov chain convergence and rates of convergence,
see Amit (1991), Applegate, Kannan, and Polson (1990), Chan (1993), Geman and Geman (1984), Liu,
Wong, and Kong (1991a, b), Rosenthal (1991a, b), Tierney (1994), and Schervish and Carlin (1992). Besag
(1974) describes conditions under which a set of conditional distributions gives a unique joint distribution.
Tanner (1993), Gilks, Richardson, and Spiegelhalter (1996), Chen, Shao, and Ibrahim (2000), Liu (2001),
Gelman et al. (2004), Robert and Casella (2004), and Congdon (2001, 2003, 2005) provide both theoretical
and applied treatments of MCMC methods. You can also see the section “A Bayesian Reading List” on
page 154 for a list of books with varying levels of difficulty of treatment of the subject and its application to
Bayesian statistics.

Metropolis and Metropolis-Hastings Algorithms

The Metropolis algorithm is named after its inventor, the American physicist and computer scientist Nicholas
C. Metropolis. The algorithm is simple but practical, and it can be used to obtain random samples from any
arbitrarily complicated target distribution of any dimension that is known up to a normalizing constant.

Suppose you want to obtain T samples from a univariate distribution with probability density function f .� jy/.
Suppose � t is the tth sample from f. To use the Metropolis algorithm, you need to have an initial value �0

and a symmetric proposal density q.� tC1j� t /. For the (t + 1) iteration, the algorithm generates a sample
from q.�j�/ based on the current sample � t , and it makes a decision to either accept or reject the new sample.
If the new sample is accepted, the algorithm repeats itself by starting at the new sample. If the new sample is
rejected, the algorithm starts at the current point and repeats. The algorithm is self-repeating, so it can be
carried out as long as required. In practice, you have to decide the total number of samples needed in advance
and stop the sampler after that many iterations have been completed.

Suppose q.�newj�
t / is a symmetric distribution. The proposal distribution should be an easy distribution from

which to sample, and it must be such that q.�newj�
t / D q.� t j�new/, meaning that the likelihood of jumping

to �new from � t is the same as the likelihood of jumping back to � t from �new. The most common choice of
the proposal distribution is the normal distribution N .� t ; �/ with a fixed � . The Metropolis algorithm can be
summarized as follows:

1. Set t D 0. Choose a starting point �0. This can be an arbitrary point as long as f .�0jy/ > 0.

2. Generate a new sample, �new, by using the proposal distribution q.�j� t /.

3. Calculate the following quantity:

r D min
�
f .�newjy/
f .� t jy/

; 1

�
4. Sample u from the uniform distribution U .0; 1/.

5. Set � tC1 D �new if u < r ; otherwise set � tC1 D � t .

6. Set t D t C 1. If t < T , the number of desired samples, return to step 2. Otherwise, stop.
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Note that the number of iteration keeps increasing regardless of whether a proposed sample is accepted.

This algorithm defines a chain of random variates whose distribution will converge to the desired distribution
f .� jy/, and so from some point forward, the chain of samples is a sample from the distribution of interest. In
Markov chain terminology, this distribution is called the stationary distribution of the chain, and in Bayesian
statistics, it is the posterior distribution of the model parameters. The reason that the Metropolis algorithm
works is beyond the scope of this documentation, but you can find more detailed descriptions and proofs in
many standard textbooks, including Roberts (1996) and Liu (2001). The random-walk Metropolis algorithm
is used in the MCMC procedure.

You are not limited to a symmetric random-walk proposal distribution in establishing a valid sampling
algorithm. A more general form, the Metropolis-Hastings (MH) algorithm, was proposed by Hastings (1970).
The MH algorithm uses an asymmetric proposal distribution: q.�newj�

t / ¤ q.� t j�new/. The difference in
its implementation comes in calculating the ratio of densities:

r D min
�
f .�newjy/q.� t j�new/

f .� t jy/q.�newj� t /
; 1

�

Other steps remain the same.

The extension of the Metropolis algorithm to a higher-dimensional � is straightforward. Suppose � D

.�1; �2; � � � ; �k/
0 is the parameter vector. To start the Metropolis algorithm, select an initial value for each �k

and use a multivariate version of proposal distribution q.�j�/, such as a multivariate normal distribution, to
select a k-dimensional new parameter. Other steps remain the same as those previously described, and this
Markov chain eventually converges to the target distribution of f .�jy/. Chib and Greenberg (1995) provide
a useful tutorial on the algorithm.

Gibbs Sampler

The Gibbs sampler, named by Geman and Geman (1984) after the American physicist Josiah W. Gibbs, is a
special case of the “Metropolis and Metropolis-Hastings Algorithms” on page 132 in which the proposal
distributions exactly match the posterior conditional distributions and proposals are accepted 100% of
the time. Gibbs sampling requires you to decompose the joint posterior distribution into full conditional
distributions for each parameter in the model and then sample from them. The sampler can be efficient when
the parameters are not highly dependent on each other and the full conditional distributions are easy to sample
from. Some researchers favor this algorithm because it does not require an instrumental proposal distribution
as Metropolis methods do. However, while deriving the conditional distributions can be relatively easy, it is
not always possible to find an efficient way to sample from these conditional distributions.

Suppose � D .�1; : : : ; �k/
0 is the parameter vector, p.yj�/ is the likelihood, and �.�/ is the prior distribution.

The full posterior conditional distribution of �.�i j�j ; i ¤ j; y/ is proportional to the joint posterior density;
that is,

�.�i j�j ; i ¤ j; y/ / p.yj�/�.�/

For instance, the one-dimensional conditional distribution of �1 given �j D ��j ; 2 � j � k, is computed as
the following:
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�.�1j�j D �
�
j ; 2 � j � k; y/ D p.yj.� D .�1; �

�
2 ; : : : ; �

�
k /
0/�.� D .�1; �

�
2 ; : : : ; �

�
k /
0/

The Gibbs sampler works as follows:

1. Set t D 0, and choose an arbitrary initial value of �.0/ D f�
.0/
1 ; : : : ; �

.0/

k
g.

2. Generate each component of � as follows:

• draw �
.tC1/
1 from �.�1j�

.t/
2 ; : : : ; �

.t/

k
; y/

• draw �
.tC1/
2 from �.�2j�

.tC1/
1 ; �

.t/
3 ; : : : ; �

.t/

k
; y/

• . . .

• draw �
.tC1/

k
from �.�kj�

.tC1/
1 ; : : : ; �

.tC1/

k�1
; y/

3. Set t D t C 1. If t < T , the number of desired samples, return to step 2. Otherwise, stop.

The name “Gibbs” was introduced by Geman and Geman (1984). Gelfand et al. (1990) first used Gibbs
sampling to solve problems in Bayesian inference. See Casella and George (1992) for a tutorial on the
sampler. The GENMOD, LIFEREG, and PHREG procedures update parameters using the Gibbs sampler.

Adaptive Rejection Sampling Algorithm

The GENMOD, LIFEREG, and PHREG procedures use the adaptive rejection sampling (ARS) algorithm to
sample parameters sequentially from their univariate full conditional distributions. The ARS algorithm is a
rejection algorithm that was originally proposed by Gilks and Wild (1992). Given a log-concave density (the
log of the density is concave), you can construct an envelope for the density by using linear segments. You
then use the linear segment envelope as a proposal density (it becomes a piecewise exponential density on
the original scale and is easy to generate samplers from) in the rejection sampling.

The log-concavity condition is met in some of the models that are fit by the procedures. For example, the
posterior densities for the regression parameters in the generalized linear models are log-concave under
flat priors. When this condition fails, the ARS algorithm calls for an additional Metropolis-Hastings step
(Gilks, Best, and Tan 1995), and the modified algorithm becomes the adaptive rejection Metropolis sampling
(ARMS) algorithm. The GENMOD, LIFEREG, and PHREG procedures can recognize whether a model is
log-concave and select the appropriate sampler for the problem at hand.

Although samples obtained from the ARMS algorithm often exhibit less dependence with lower autocorre-
lations, the algorithm could have a high computational cost because it requires repeated evaluations of the
objective function (usually five to seven repetitions) at each iteration for each univariate parameter.1

Implementation the ARMS algorithm in the GENMOD, LIFEREG, and PHREG procedures is based on
code that is provided by Walter R. Gilks, University of Leeds (Gilks 2003). For a detailed description and
explanation of the algorithm, see Gilks and Wild (1992); Gilks, Best, and Tan (1995).

1The extension to the multivariate ARMS algorithm is possible in theory but problematic in practice because the computational
cost associated with constructing a multidimensional hyperbola envelop is often prohibitive.
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Slice Sampler

The slice sampler (Neal 2003), like the ARMS algorithm, is a general algorithm that can be used to sample
parameters from their target distribution. As with the ARMS algorithm, the only requirement of the slice
sampler is the ability to evaluate the objective function (the unnormalized conditional distribution in a Gibbs
step, for example) at a given parameter value. In theory, you can draw a random number from any given
distribution as long as you can first obtain a random number uniformly under the curve of that distribution.
Treat the area under the curve of p.�/ as a two-dimensional space that is defined by the � -axis and the Y-axis,
the latter being the axis for the density function. You draw uniformly in that area, obtain a two-dimensional
vector of .�i ; yi /, ignore the yi , and keep the �i . The �i ’s are distributed according to the right density.

To solve the problem of sampling uniformly under the curve, Neal (2003) proposed the idea of slices (hence
the name of the sampler), which can be explained as follows:

1. Start the algorithm at �0.

2. Calculate the objective function p.�0/ and draw a line between y D 0 and y D p.�0/, which defines
a vertical slice. You draw a uniform number, y1, on this slice, between .0; p.�0//.

3. Draw a horizontal line at y1 and find the two points where the line intercepts with the curve, .L1; R1/.
These two points define a horizontal slice. Draw a uniform number, x1, on this slice, between .L1; R1/.

4. Repeat steps 2 and 3 many times.

The challenging part of the algorithm is finding the horizontal slice .Li ; Ri / at each iteration. The closed
form expressions of p�1L .yi / and p�1R .yi / are virtually impossible to obtain analytically in most problems.
Neal (2003) proved that although exact solutions would be nice, devising a search algorithm that finds
portions of this horizontal slice is sufficient for the sampler to work. The search algorithm is based on the
rejection method to expand and contract, when needed.

The sampler is implemented as an optional algorithm in the MCMC procedure, where you can use it to draw
either model parameters or random-effects parameters. As with the ARMS algorithm, only the univariate
version of the slice sampler is implemented. The slice sampler requires repeated evaluations of the objective
function; this happens in the search algorithm to identify each horizontal slice at every iteration. Hence, the
computational cost could be high if each evaluation of the objective function requires one pass through the
entire data set.

Independence Sampler

Another type of Metropolis algorithm is the “independence” sampler. It is called the independence sampler
because the proposal distribution in the algorithm does not depend on the current point as it does with the
random-walk Metropolis algorithm. For this sampler to work well, you want to have a proposal distribution
that mimics the target distribution and have the acceptance rate be as high as possible.

1. Set t D 0. Choose a starting point �0. This can be an arbitrary point as long as f .�0jy/ > 0.

2. Generate a new sample, �new, by using the proposal distribution q.�/. The proposal distribution does
not depend on the current value of � t .
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3. Calculate the following quantity:

r D min
�
f .�newjy/=q.�new/

f .� t jy/=q.� t /
; 1

�
4. Sample u from the uniform distribution U .0; 1/.

5. Set � tC1 D �new if u < r ; otherwise set � tC1 D � t .

6. Set t D t C 1. If t < T , the number of desired samples, return to step 2. Otherwise, stop.

A good proposal density should have thicker tails than those of the target distribution. This requirement
sometimes can be difficult to satisfy especially in cases where you do not know what the target posterior
distributions are like. In addition, this sampler does not produce independent samples as the name seems to
imply, and sample chains from independence samplers can get stuck in the tails of the posterior distribution
if the proposal distribution is not chosen carefully. The MCMC procedure uses the independence sampler.

Gamerman Algorithm

The Gamerman algorithm, named after the inventor Dani Gamerman is a special case of the “Metropolis and
Metropolis-Hastings Algorithms” on page 132 in which the proposal distribution is derived from one iteration
of the iterative weighted least squares (IWLS) algorithm. As the name suggests, a weighted least squares
algorithm is carried out inside an iteration loop. For each iteration, a set of weights for the observations
is used in the least squares fit. The weights are constructed by applying a weight function to the current
residuals. The proposal distribution uses the current iteration’s values of the parameters to form the proposal
distribution from which to generate a proposed random value (Gamerman 1997).

The multivariate sampling algorithm is simple but practical, and can be used to obtain random samples from
the posterior distribution of the regression parameters in a generalized linear model (GLM). See “Generalized
Linear Regression” on page 77 in Chapter 4, “Introduction to Regression Procedures,” for further details
on generalized linear regression models. See McCullagh and Nelder (1989) for a discussion of transformed
observations and diagonal matrix of weights pertaining to IWLS.

The GENMOD procedure uses the Gamerman algorithm to sample parameters from their multivariate
posterior conditional distributions. For a detailed description and explanation of the algorithm, see Gamerman
(1997).

Burn-in, Thinning, and Markov Chain Samples

Burn-in refers to the practice of discarding an initial portion of a Markov chain sample so that the effect of
initial values on the posterior inference is minimized. For example, suppose the target distribution is N .0; 1/
and the Markov chain was started at the value 106. The chain might quickly travel to regions around 0 in
a few iterations. However, including samples around the value 106 in the posterior mean calculation can
produce substantial bias in the mean estimate. In theory, if the Markov chain is run for an infinite amount
of time, the effect of the initial values decreases to zero. In practice, you do not have the luxury of infinite
samples. In practice, you assume that after t iterations, the chain has reached its target distribution and you
can throw away the early portion and use the good samples for posterior inference. The value of t is the
burn-in number.
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With some models you might experience poor mixing (or slow convergence) of the Markov chain. This
can happen, for example, when parameters are highly correlated with each other. Poor mixing means
that the Markov chain slowly traverses the parameter space (see the section “Visual Analysis via Trace
Plots” on page 137 for examples of poorly mixed chains) and the chain has high dependence. High sample
autocorrelation can result in biased Monte Carlo standard errors. A common strategy is to thin the Markov
chain in order to reduce sample autocorrelations. You thin a chain by keeping every kth simulated draw
from each sequence. You can safely use a thinned Markov chain for posterior inference as long as the chain
converges. It is important to note that thinning a Markov chain can be wasteful because you are throwing
away a k�1

k
fraction of all the posterior samples generated. MacEachern and Berliner (1994) show that you

always get more precise posterior estimates if the entire Markov chain is used. However, other factors, such
as computer storage or plotting time, might prevent you from keeping all samples.

To use the BCHOICE, FMM, GENMOD, LIFEREG, MCMC, and PHREG procedures, you need to determine
the total number of samples to keep ahead of time. This number is not obvious and often depends on the
type of inference you want to make. Mean estimates do not require nearly as many samples as small-tail
percentile estimates. In most applications, you might find that keeping a few thousand iterations is sufficient
for reasonably accurate posterior inference. In all four procedures, the relationship between the number of
iterations requested, the number of iterations kept, and the amount of thinning is as follows:

kept D
�
requested
thinning

�

where Œ � is the rounding operator.

Assessing Markov Chain Convergence
Simulation-based Bayesian inference requires using simulated draws to summarize the posterior distribution
or calculate any relevant quantities of interest. You need to treat the simulation draws with care. There are
usually two issues. First, you have to decide whether the Markov chain has reached its stationary, or the
desired posterior, distribution. Second, you have to determine the number of iterations to keep after the
Markov chain has reached stationarity. Convergence diagnostics help to resolve these issues. Note that many
diagnostic tools are designed to verify a necessary but not sufficient condition for convergence. There are no
conclusive tests that can tell you when the Markov chain has converged to its stationary distribution. You
should proceed with caution. Also, note that you should check the convergence of all parameters, and not
just those of interest, before proceeding to make any inference. With some models, certain parameters can
appear to have very good convergence behavior, but that could be misleading due to the slow convergence of
other parameters. If some of the parameters have bad mixing, you cannot get accurate posterior inference for
parameters that appear to have good mixing. See Cowles and Carlin (1996) and Brooks and Roberts (1998)
for discussions about convergence diagnostics.

Visual Analysis via Trace Plots

Trace plots of samples versus the simulation index can be very useful in assessing convergence. The trace
tells you if the chain has not yet converged to its stationary distribution—that is, if it needs a longer burn-in
period. A trace can also tell you whether the chain is mixing well. A chain might have reached stationarity if
the distribution of points is not changing as the chain progresses. The aspects of stationarity that are most
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recognizable from a trace plot are a relatively constant mean and variance. A chain that mixes well traverses
its posterior space rapidly, and it can jump from one remote region of the posterior to another in relatively
few steps. Figure 7.1 through Figure 7.4 display some typical features that you might see in trace plots. The
traces are for a parameter called 
 .

Figure 7.1 Essentially Perfect Trace for 


Figure 7.1 displays a “perfect” trace plot. Note that the center of the chain appears to be around the value
3, with very small fluctuations. This indicates that the chain could have reached the right distribution. The
chain is mixing well; it is exploring the distribution by traversing to areas where its density is very low. You
can conclude that the mixing is quite good here.
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Figure 7.2 Initial Samples of 
 Need to be Discarded

Figure 7.2 displays a trace plot for a chain that starts at a very remote initial value and makes its way to the
targeting distribution. The first few hundred observations should be discarded. This chain appears to be
mixing very well locally. It travels relatively quickly to the target distribution, reaching it in a few hundred
iterations. If you have a chain that looks like this, you would want to increase the burn-in sample size. If you
need to use this sample to make inferences, you would want to use only the samples toward the end of the
chain.
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Figure 7.3 Marginal Mixing for 


Figure 7.3 demonstrates marginal mixing. The chain is taking only small steps and does not traverse its
distribution quickly. This type of trace plot is typically associated with high autocorrelation among the
samples. To obtain a few thousand independent samples, you need to run the chain for much longer.
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Figure 7.4 Bad Mixing, Nonconvergence of 


The trace plot shown in Figure 7.4 depicts a chain with serious problems. It is mixing very slowly, and it
offers no evidence of convergence. You would want to try to improve the mixing of this chain. For example,
you might consider reparameterizing your model on the log scale. Run the Markov chain for a long time to
see where it goes. This type of chain is entirely unsuitable for making parameter inferences.
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Statistical Diagnostic Tests

The Bayesian procedures include several statistical diagnostic tests that can help you assess Markov chain
convergence. For a detailed description of each of the diagnostic tests, see the following subsections. Table 7.1
provides a summary of the diagnostic tests and their interpretations.

Table 7.1 Convergence Diagnostic Tests Available in the
Bayesian Procedures

Name Description Interpretation of the Test
Gelman-Rubin Uses parallel chains with dispersed initial

values to test whether they all converge to
the same target distribution. Failure could
indicate the presence of a multi-mode pos-
terior distribution (different chains con-
verge to different local modes) or the need
to run a longer chain (burn-in is yet to be
completed).

One-sided test based on a
variance ratio test statistic.
LargebRc values indicate re-
jection.

Geweke Tests whether the mean estimates have
converged by comparing means from the
early and latter part of the Markov chain.

Two-sided test based on a z-
score statistic. Large abso-
lute z values indicate rejec-
tion.

Heidelberger-Welch
(stationarity test)

Tests whether the Markov chain is a
covariance (or weakly) stationary pro-
cess. Failure could indicate that a longer
Markov chain is needed.

One-sided test based on a
Cramer–von Mises statistic.
Small p-values indicate re-
jection.

Heidelberger-Welch
(half-width test)

Reports whether the sample size is ade-
quate to meet the required accuracy for
the mean estimate. Failure could indicate
that a longer Markov chain is needed.

If a relative half-width statis-
tic is greater than a prede-
termined accuracy measure,
this indicates rejection.

Raftery-Lewis Evaluates the accuracy of the estimated
(desired) percentiles by reporting the num-
ber of samples needed to reach the de-
sired accuracy of the percentiles. Failure
could indicate that a longer Markov chain
is needed.

If the total samples needed
are fewer than the Markov
chain sample, this indicates
rejection.

autocorrelation Measures dependency among Markov
chain samples.

High correlations between
long lags indicate poor mix-
ing.

effective sample size Relates to autocorrelation; measures mix-
ing of the Markov chain.

Large discrepancy between
the effective sample size and
the simulation sample size
indicates poor mixing.
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Gelman and Rubin Diagnostics
Gelman and Rubin diagnostics (Gelman and Rubin 1992; Brooks and Gelman 1997) are based on analyzing
multiple simulated MCMC chains by comparing the variances within each chain and the variance between
chains. Large deviation between these two variances indicates nonconvergence.

Define f� tg, where t D 1; : : : ; n, to be the collection of a single Markov chain output. The parameter � t is
the tth sample of the Markov chain. For notational simplicity, � is assumed to be single dimensional in this
section.

Suppose you have M parallel MCMC chains that were initialized from various parts of the target distribu-
tion. Each chain is of length n (after discarding the burn-in). For each � t , the simulations are labeled as
� tm; where t D 1; : : : ; n and m D 1; : : : ;M . The between-chain variance B and the within-chain variance W
are calculated as

B D
n

M � 1

MX
mD1

. N� �m �
N� �� /
2; where N� �m D

1

n

nX
tD1

� tm;
N� �� D

1

M

MX
mD1

N� �m

W D
1

M

MX
mD1

s2m; where s2m D
1

n � 1

nX
tD1

.� tm �
N� �m/

2

The posterior marginal variance, var.� jy/, is a weighted average of W and B. The estimate of the variance is

bV D n � 1

n
W C

M C 1

nM
B

If all M chains have reached the target distribution, this posterior variance estimate should be very close to
the within-chain variance W. Therefore, you would expect to see the ratio bV =W be close to 1. The square
root of this ratio is referred to as the potential scale reduction factor (PSRF). A large PSRF indicates that the
between-chain variance is substantially greater than the within-chain variance, so that longer simulation is
needed. If the PSRF is close to 1, you can conclude that each of the M chains has stabilized, and they are
likely to have reached the target distribution.

A refined version of PSRF is calculated, as suggested by Brooks and Gelman (1997), as

bRc D
s
Od C 3

Od C 1
�
bV
W
D

s
Od C 3

Od C 1

�
n � 1

n
C
M C 1

nM

B

W

�

where

Od D
2bV 2

bVar.bV /
and
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cVar.bV / D �
n � 1

n

�2 1

M
cVar.s2m/C

�
M C 1

nM

�2 2

M � 1
B2

C 2
.M C 1/.n � 1/

n2M

n

M

�bcov.s2m; . N�
�
m/
2/ � 2 N� ��bcov.s2m; N�

�
m/
�

All the Bayesian procedures also produce an upper 100.1 � ˛=2/% confidence limit of bRc . Gelman and
Rubin (1992) showed that the ratio B=W in bRc has an F distribution with degrees of freedom M � 1

and 2W 2M=bVar.s2m/. Because you are concerned only if the scale is large, not small, only the upper
100.1 � ˛=2/% confidence limit is reported. This is written as

vuut 
n � 1

n
C
M C 1

nM
� F1�˛=2

 
M � 1;

2W 2

bVar.s2m/=M

!!
�

Od C 3

Od C 1

In the Bayesian procedures, you can specify the number of chains that you want to run. Typically three
chains are sufficient. The first chain is used for posterior inference, such as mean and standard deviation; the
other M � 1 chains are used for computing the diagnostics and are discarded afterward. This test can be
computationally costly, because it prolongs the simulation M-fold.

It is best to choose different initial values for all M chains. The initial values should be as dispersed from
each other as possible so that the Markov chains can fully explore different parts of the distribution before
they converge to the target. Similar initial values can be risky because all of the chains can get stuck in a
local maximum; that is something this convergence test cannot detect. If you do not supply initial values for
all the different chains, the procedures generate them for you.

Geweke Diagnostics
The Geweke test (Geweke 1992) compares values in the early part of the Markov chain to those in the latter
part of the chain in order to detect failure of convergence. The statistic is constructed as follows. Two
subsequences of the Markov chain f� tg are taken out, with f� t1 W t D 1; : : : ; n1g and f� t2 W t D na; : : : ; ng,
where 1 < n1 < na < n. Let n2 D n � na C 1, and define

N�1 D
1

n1

n1X
tD1

� t and N�2 D
1

n2

nX
tDna

� t

Let Os1.0/ and Os2.0/ denote consistent spectral density estimates at zero frequency (see the subsection
“Spectral Density Estimate at Zero Frequency” on page 145 for estimation details) for the two MCMC chains,
respectively. If the ratios n1=n and n2=n are fixed, .n1 C n2/=n < 1, and the chain is stationary, then the
following statistic converges to a standard normal distribution as n!1 :

Zn D
N�1 � N�2q
Os1.0/
n1
C
Os2.0/
n2

This is a two-sided test, and large absolute z-scores indicate rejection.
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Spectral Density Estimate at Zero Frequency
For one sequence of the Markov chain f�tg, the relationship between the h-lag covariance sequence of a time
series and the spectral density, f, is

sh D
1

2�

Z �

��

exp.i!h/f .!/d!

where i indicates that !h is the complex argument. Inverting this Fourier integral,

f .!/ D

1X
hD�1

sh exp.�i!h/ D s0

 
1C 2

1X
hD1

�h cos.!h/

!

It follows that

f .0/ D �2

 
1C 2

1X
hD1

�h

!

which gives an autocorrelation adjusted estimate of the variance. In this equation, �2 is the naive variance
estimate of the sequence f�tg and �h is the lag h autocorrelation. Due to obvious computational difficulties,
such as calculation of autocorrelation at infinity, you cannot effectively estimate f .0/ by using the preceding
formula. The usual route is to first obtain the periodogram p.!/ of the sequence, and then estimate f .0/ by
smoothing the estimated periodogram. The periodogram is defined to be

p.!/ D
1

n

24 nX
tD1

�t sin.!t/

!2
C

 
nX
tD1

�t cos.!t/

!235
The procedures use the following way to estimate Of .0/ from p (Heidelberger and Welch 1981). In p.!/, let
! D !k D 2�k=n and k D 1; : : : ; Œn

2
�.2 A smooth spectral density in the domain of .0; �� is obtained by

fitting a gamma model with the log link function, using p.!k/ as response and x1.!k/ D
p
3.4!k=.2�/�1/

as the only regressor. The predicted value Of .0/ is given by

Of .0/ D exp. Ǒ0 �
p
3 Ǒ1/

where Ǒ0 and Ǒ1 are the estimates of the intercept and slope parameters, respectively.

2This is equivalent to the fast Fourier transformation of the original time series �t .
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Heidelberger and Welch Diagnostics
The Heidelberger and Welch test (Heidelberger and Welch 1981, 1983) consists of two parts: a stationary
portion test and a half-width test. The stationarity test assesses the stationarity of a Markov chain by testing
the hypothesis that the chain comes from a covariance stationary process. The half-width test checks whether
the Markov chain sample size is adequate to estimate the mean values accurately.

Given f� tg, set S0 D 0, Sn D
Pn
tD1 �

t , and N� D .1=n/
Pn
tD1 �

t . You can construct the following sequence
with s coordinates on values from 1

n
; 2
n
; � � � ; 1:

Bn.s/ D .SŒns� � Œns� N�/=.n Op.0//
1=2

where Œ � is the rounding operator, and Op.0/ is an estimate of the spectral density at zero frequency that uses
the second half of the sequence (see the section “Spectral Density Estimate at Zero Frequency” on page 145
for estimation details). For large n, Bn converges in distribution to a Brownian bridge (Billingsley 1986). So
you can construct a test statistic by using Bn. The statistic used in these procedures is the Cramer–von Mises
statistic3; that is

R 1
0 Bn.s/

2ds D CVM.Bn/. As n!1, the statistic converges in distribution to a standard
Cramer–von Mises distribution. The integral

R 1
0 Bn.s/

2ds is numerically approximated using Simpson’s
rule.

Let yi D Bn.s/
2, where s D 0; 1

n
; � � � ; n�1

n
; 1, and i D ns D 0; 1; � � � ; n. If n is even, let m D n=2;

otherwise, let m D .n � 1/=2. The Simpson’s approximation to the integral is

Z 1

0

Bn.s/
2ds �

1

3n
Œy0 C 4.y1 C � � � C y2m�1/C 2.y2 C � � � C y2m�2/C y2m�

Note that Simpson’s rule requires an even number of intervals. When n is odd, yn is set to be 0 and the value
does not contribute to the approximation.

This test can be performed repeatedly on the same chain, and it helps you identify a time t when the chain
has reached stationarity. The whole chain, f� tg, is first used to construct the Cramer–von Mises statistic. If it
passes the test, you can conclude that the entire chain is stationary. If it fails the test, you drop the initial 10%
of the chain and redo the test by using the remaining 90%. This process is repeated until either a time t is
selected or it reaches a point where there are not enough data remaining to construct a confidence interval
(the cutoff proportion is set to be 50%).

The part of the chain that is deemed stationary is put through a half-width test, which reports whether the
sample size is adequate to meet certain accuracy requirements for the mean estimates. Running the simulation
less than this length of time would not meet the requirement, while running it longer would not provide any
additional information that is needed. The statistic calculated here is the relative half-width (RHW) of the
confidence interval. The RHW for a confidence interval of level 1 � ˛ is

RHW D
z.1�˛=2/ � .Osn=n/

1=2

O�
3 The von Mises distribution was first introduced by von Mises (1918). The density function is p.� j��/ Ï M.�; �/ D

Œ2�I0.�/�
�1 exp.� cos.� � �// .0 � � � 2�/, where the function I0.�/ is the modified Bessel function of the first kind and order

zero, defined by I0.�/ D .2�/�1
R 2�
0 exp.� cos.� � �//d� .
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where z.1�˛=2/ is the z-score of the 100.1 � ˛=2/ percentile (for example, z.1�˛=2/ D 1:96 if ˛ D 0:05),
Osn is the variance of the chain estimated using the spectral density method (see explanation in the section
“Spectral Density Estimate at Zero Frequency” on page 145), n is the length, and O� is the estimated mean.
The RHW quantifies accuracy of the 1 � ˛ level confidence interval of the mean estimate by measuring the
ratio between the sample standard error of the mean and the mean itself. In other words, you can stop the
Markov chain if the variability of the mean stabilizes with respect to the mean. An implicit assumption is
that large means are often accompanied by large variances. If this assumption is not met, then this test can
produce false rejections (such as a small mean around 0 and large standard deviation) or false acceptance
(such as a very large mean with relative small variance). As with any other convergence diagnostics, you
might want to exercise caution in interpreting the results.

The stationarity test is one-sided; rejection occurs when the p-value is greater than 1 � ˛. To perform the
half-width test, you need to select an ˛ level (the default of which is 0.05) and a predetermined tolerance
value � (the default of which is 0.1). If the calculated RHW is greater than �, you conclude that there are not
enough data to accurately estimate the mean with 1 � ˛ confidence under tolerance of �.

Raftery and Lewis Diagnostics
If your interest lies in posterior percentiles, you want a diagnostic test that evaluates the accuracy of the
estimated percentiles. The Raftery-Lewis test (Raftery and Lewis 1992, 1995) is designed for this purpose.
Notation and deductions here closely resemble those in Raftery and Lewis (1995).

Suppose you are interested in a quantity �q such that P.� � �qjy/ D q, where q can be an arbitrary
cumulative probability, such as 0.025. This �q can be empirically estimated by finding the Œn � 100 � q�th
number of the sorted f� tg. Let O�q denote the estimand, which corresponds to an estimated probability
P.� � O�q/ D OPq . Because the simulated posterior distribution converges to the true distribution as the
simulation sample size grows, O�q can achieve any degree of accuracy if the simulator is run for a very long
time. However, running too long a simulation can be wasteful. Alternatively, you can use coverage probability
to measure accuracy and stop the chain when a certain accuracy is reached.

A stopping criterion is reached when the estimated probability is within˙r of the true cumulative probability
q, with probability s, such as P. OPq 2 .q � r; q C r// D s. For example, suppose you want the coverage
probability s to be 0.95 and the amount of tolerance r to be 0.005. This corresponds to requiring that the
estimate of the cumulative distribution function of the 2.5th percentile be estimated to within˙0:5 percentage
points with probability 0.95.

The Raftery-Lewis diagnostics test finds the number of iterations, M, that need to be discarded (burn-ins) and
the number of iterations needed, N, to achieve a desired precision. Given a predefined cumulative probability
q, these procedures first find O�q , and then they construct a binary 0 � 1 process fZtg by setting Zt D 1 if
� t � O�q and 0 otherwise for all t. The sequence fZtg is itself not a Markov chain, but you can construct
a subsequence of fZtg that is approximately Markovian if it is sufficiently k-thinned. When k becomes
reasonably large, fZ.k/t g starts to behave like a Markov chain.

Next, the procedures find this thinning parameter k. The number k is estimated by comparing the Bayesian
information criterion (BIC) between two Markov models: a first-order and a second-order Markov model. A
jth-order Markov model is one in which the current value of fZ.k/t g depends on the previous j values. For
example, in a second-order Markov model,
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p
�
Z
.k/
t D zt jZ

.k/
t�1 D zt�1; Z

.k/
t�2 D zt�2; � � � ; Z

.k/
0 D z0

�
D p

�
Z
.k/
t D zt jZ

.k/
t�1 D zt�1; Z

.k/
t�2 D zt�2

�

where zi D f0; 1g; i D 0; � � � ; t . Given fZ.k/t g, you can construct two transition count matrices for a
second-order Markov model:

zt D 0 zt D 1

zt�1 D 0 zt�1 D 1 zt�1 D 0 zt�1 D 1

zt�2 D 0 w000 w010 zt�2 D 0 w001 w011
zt�2 D 1 w100 w110 zt�2 D 1 w101 w111

For each k, the procedures calculate the BIC that compares the two Markov models. The BIC is based on a
likelihood ratio test statistic that is defined as

G2k D 2

1X
iD0

1X
jD0

1X
lD0

wijl log
wijl

Owijl

where Owijl is the expected cell count of wijl under the null model, the first-order Markov model, where the
assumption .Z.k/t ? Z

.k/
t�2/jZ

.k/
t�1 holds. The formula for the expected cell count is

Owijl D

P
i wijl �

P
l wijlP

i

P
l wijl

The BIC is G2
k
� 2 log.nk � 2/, where nk is the k-thinned sample size (every kth sample starting with the

first), with the last two data points discarded due to the construction of the second-order Markov model. The
thinning parameter k is the smallest k for which the BIC is negative. When k is found, you can estimate a
transition probability matrix between state 0 and state 1 for fZ.k/t g:

Q D

�
1 � ˛ ˛

ˇ 1 � ˇ

�

Because fZ.k/t g is a Markov chain, its equilibrium distribution exists and is estimated by

� D .�0; �1/ D
.ˇ; ˛/

˛ C ˇ
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where �0 D P.� � �qjy/ and �1 D 1��0. The goal is to find an iteration number m such that after m steps,
the estimated transition probability P.Z.k/m D i jZ

.k/
0 D j / is within � of equilibrium �i for i; j D 0; 1. Let

e0 D .1; 0/ and e1 D 1 � e0. The estimated transition probability after step m is

P.Z.k/m D i jZ
.k/
0 D j / D ej

��
�0 �1
�0 �1

�
C
.1 � ˛ � ˇ/m

˛ C ˇ

�
˛ �˛

�ˇ ˇ

��
e0j

which holds when

m D
log

�
.˛Cˇ/�

max.˛;ˇ/

�
log.1 � ˛ � ˇ/

assuming 1 � ˛ � ˇ > 0.

Therefore, by time m, fZ.k/t g is sufficiently close to its equilibrium distribution, and you know that a total
size of M D mk should be discarded as the burn-in.

Next, the procedures estimate N, the number of simulations needed to achieve desired accuracy on percentile
estimation. The estimate of P.� � �qjy/ is NZ.k/n D

1
n

Pn
tD1Z

.k/
t . For large n, NZ.k/n is normally distributed

with mean q, the true cumulative probability, and variance

1

n

.2 � ˛ � ˇ/˛ˇ

.˛ C ˇ/3

P.q � r � NZ
.k/
n � q C r/ D s is satisfied if

n D
.2 � ˛ � ˇ/˛ˇ

.˛ C ˇ/3

(
ˆ�1

�
sC1
2

�
r

)2

Therefore, N D nk.

By using similar reasoning, the procedures first calculate the minimal number of iterations needed to achieve
the desired accuracy, assuming the samples are independent:

Nmin D

�
ˆ�1

�
s C 1

2

��2 q.1 � q/
r2

If f� tg does not have that required sample size, the Raftery-Lewis test is not carried out. If you still want to
carry out the test, increase the number of Markov chain iterations.

The ratio N=Nmin is sometimes referred to as the dependence factor. It measures deviation from posterior
sample independence: the closer it is to 1, the less correlated are the samples. There are a few things to keep
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in mind when you use this test. This diagnostic tool is specifically designed for the percentile of interest
and does not provide information about convergence of the chain as a whole (Brooks and Roberts 1999). In
addition, the test can be very sensitive to small changes. Both N and Nmin are inversely proportional to r2,
so you can expect to see large variations in these numbers with small changes to input variables, such as the
desired coverage probability or the cumulative probability of interest. Last, the time until convergence for a
parameter can differ substantially for different cumulative probabilities.

Autocorrelations
The sample autocorrelation of lag h for a parameter � is defined in terms of the sample autocovariance
function:

O�h .�/ D
O
h .�/

O
0 .�/
; jhj < n

The sample autocovariance function of lag h of � is defined by

O
h .�/ D
1

n � h

n�hX
tD1

�
� tCh � N�

� �
� t � N�

�
; 0 � h < n

Effective Sample Size
You can use autocorrelation and trace plots to examine the mixing of a Markov chain. A closely related
measure of mixing is the effective sample size (ESS) (Kass et al. 1998).

ESS is defined as follows:

ESS D
n

�
D

n

1C 2
P1
kD1 �k.�/

where n is the total sample size and �k.�/ is the autocorrelation of lag k for � . The quantity � is referred to
as the autocorrelation time. To estimate � , the Bayesian procedures first find a cutoff point k after which the
autocorrelations are very close to zero, and then sum all the �k up to that point. The cutoff point k is such
that j�kj < min f0:01; 2skg, where sk is the estimated standard deviation:

sk D

vuuut
0@1
n

0@1C 2 k�1X
jD1

O�2j .�/

1A1A
ESS and � are inversely proportional to each other, and low ESS or high � indicates bad mixing of the Markov
chain.



Summary Statistics F 151

Summary Statistics
Let � be a p-dimensional parameter vector of interest: � D

˚
�1; : : : ; �p

	
. For each i 2 f1; : : : ; pg , there are

n observations: �i D
˚
� ti ; t D 1; : : : ; n

	
.

Mean

The posterior mean is calculated by using the following formula:

E .�i jy/ � N�i D
1

n

nX
tD1

� ti ; for i D 1; : : : ; n

Standard Deviation

Sample standard deviation (expressed in variance term) is calculated by using the following formula:

Var.�i jy/ � s2i D
1

n � 1

nX
tD1

�
� ti �

N�i
�2

Standard Error of the Mean Estimate

Suppose you have n iid samples, the mean estimate is N�i , and the sample standard deviation is si . The
standard error of the estimate is O�i=

p
n. However, positive autocorrelation (see the section “Autocorrelations”

on page 150 for a definition) in the MCMC samples makes this an underestimate. To take account of the
autocorrelation, the Bayesian procedures correct the standard error by using effective sample size (see the
section “Effective Sample Size” on page 150).

Given an effective sample size of m, the standard error for N�i is O�i=
p
m. The procedures use the following

formula (expressed in variance term):

bVar. N�i / D
1C 2

P1
kD1 �k.�i /

n
�

Pn
tD1

�
� ti �

N�i
�2

.n � 1/

The standard error of the mean is also known as the Monte Carlo standard error (MCSE). The MCSE provides
a measurement of the accuracy of the posterior estimates, and small values do not necessarily indicate that
you have recovered the true posterior mean.

Percentiles

Sample percentiles are calculated using Definition 5 (see Chapter 4, “The UNIVARIATE Procedure” (Base
SAS Procedures Guide: Statistical Procedures),).
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Correlation

Correlation between �i and �j is calculated as

rij D

Pn
tD1

�
� ti �

N�i
� �
� tj �

N�j

�
rP

t

�
� ti �

N�i
�2P

t

�
� tj �

N�j

�2

Covariance

Covariance �i and �j is calculated as

sij D

nX
tD1

�
� ti �

N�i
� �
� tj �

N�j

�
=.n � 1/

Equal-Tail Credible Interval

Let � .�i jy/ denote the marginal posterior cumulative distribution function of �i . A 100 .1 � ˛/% Bayesian
equal-tail credible interval for �i is

�
�
˛=2
i ; �

1�˛=2
i

�
, where �

�
�
˛=2
i jy

�
D

˛
2

, and �
�
�
1�˛=2
i jy

�
D 1 � ˛

2
.

The interval is obtained using the empirical ˛
2

and .1 � ˛
2
/ percentiles of

˚
� ti
	
.

Highest Posterior Density (HPD) Interval

For a definition of an HPD interval, see the section “Interval Estimation” on page 129. The procedures use
the Chen-Shao algorithm (Chen and Shao 1999; Chen, Shao, and Ibrahim 2000) to estimate an empirical
HPD interval of �i :

1. Sort
˚
� ti
	

to obtain the ordered values:

�i.1/ � �i.2/ � � � � � �i.n/

2. Compute the 100 .1 � ˛/% credible intervals:

Rj .n/ D
�
�i.j /; �i.jCŒ.1�˛/n�/

�
for j D 1; 2; : : : ; n � Œ.1 � ˛/ n�.

3. The 100 .1 � ˛/% HPD interval, denoted by Rj� .n/, is the one with the smallest interval width
among all credible intervals.
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Deviance Information Criterion (DIC)

The deviance information criterion (DIC) (Spiegelhalter et al. 2002) is a model assessment tool, and it is a
Bayesian alternative to Akaike’s information criterion (AIC) and the Bayesian information criterion (BIC,
also known as the Schwarz criterion). The DIC uses the posterior densities, which means that it takes the prior
information into account. The criterion can be applied to nonnested models and models that have non-iid
data. Calculation of the DIC in MCMC is trivial—it does not require maximization over the parameter space,
like the AIC and BIC. A smaller DIC indicates a better fit to the data set.

Letting � be the parameters of the model, the deviance information formula is

DIC D D.�/C pD D D.�/C 2pD

where

D.�/D 2 .log.f .y// � log.p.yj�/// : deviance

where

p.yj�/: likelihood function with the normalizing constants.

f .y/: a standardizing term that is a function of the data alone. This term is constant with respect to
the parameter and is irrelevant when you compare different models that have the same likelihood
function. Since the term cancels out in DIC comparisons, its calculation is often omitted.

NOTE: You can think of the deviance as the difference in twice the log likelihood between the saturated,
f .y/, and fitted, p.yj�/, models.

�: posterior mean, approximated by 1
n

Pn
tD1 � t

D.�/: posterior mean of the deviance, approximated by 1
n

Pn
tD1D.�

t /. The expected deviation measures
how well the model fits the data.

D.�/: deviance evaluated at N� , equal to�2 log.p.yj N�//. It is the deviance evaluated at your “best” posterior
estimate.

pD: effective number of parameters. It is the difference between the measure of fit and the deviance at
the estimates: D.�/ � D.�/. This term describes the complexity of the model, and it serves as a
penalization term that corrects deviance’s propensity toward models with more parameters.
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A Bayesian Reading List
This section lists a number of Bayesian textbooks of varying difficulty degrees and a few tutorial/review
papers.

Textbooks

Introductory Books

Berry, D. A. (1996), Statistics: A Bayesian Perspective, London: Duxbury Press.

Bolstad, W. M. (2007), Introduction to Bayesian Statistics, 2nd ed. New York: John Wiley & Sons.

DeGroot, M. H. and Schervish, M. J. (2002), Probability and Statistics, Reading, MA: Addison Wesley.

Gamerman, D. and Lopes, H. F. (2006), Markov Chain Monte Carlo: Stochastic Simulation for Bayesian
Inference, 2nd ed. London: Chapman & Hall/CRC.

Ghosh, J. K., Delampady, M., and Samanta, T. (2006), An Introduction to Bayesian Analysis, New York:
Springer-Verlag.

Lee, P. M. (2004), Bayesian Statistics: An Introduction, 3rd ed. London: Arnold.

Sivia, D. S. (1996), Data Analysis: A Bayesian Tutorial, Oxford: Oxford University Press.

Intermediate-Level Books

Box, G. E. P., and Tiao, G. C. (1992), Bayesian Inference in Statistical Analysis, New York: John Wiley &
Sons.

Chen, M. H., Shao Q. M., and Ibrahim, J. G. (2000), Monte Carlo Methods in Bayesian Computation, New
York: Springer-Verlag.

Gelman, A. and Hill, J. (2006), Data Analysis Using Regression and Multilevel/Hierarchical Models,
Cambridge: Cambridge University Press.

Goldstein, M. and Wooff, D. A. (2007), Bayes Linear Statistics: Theory and Methods, New York: John Wiley
& Sons.

Harney, H. L. (2003), Bayesian Inference: Parameter Estimation and Decisions, New York: Springer-Verlag.

Leonard, T. and Hsu, J. S. (1999), Bayesian Methods: An Analysis for Statisticians and Interdisciplinary
Researchers, Cambridge: Cambridge University Press.

Liu, J. S. (2001), Monte Carlo Strategies in Scientific Computing, New York: Springer-Verlag.

Marin, J. M. and Robert, C. P. (2007), Bayesian Core: a Practical Approach to Computational Bayesian
Statistics, New York: Springer-Verlag.

Press, S. J. (2002), Subjective and Objective Bayesian Statistics: Principles, Models, and Applications, 2nd
ed. New York: Wiley-Interscience.

Robert, C. P. (2001), The Bayesian Choice, 2nd ed. New York: Springer-Verlag.
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Robert, C. P. and Casella, G. (2004), Monte Carlo Statistical Methods, 2nd ed. New York: Springer-Verlag.

Tanner, M. A. (1993), Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions
and Likelihood Functions, New York: Springer-Verlag.

Advanced Titles

Berger, J. O. (1985), Statistical Decision Theory and Bayesian Analysis, New York: Springer-Verlag.

Bernardo, J. M. and Smith, A. F. M. (2007), Bayesian Theory, 2nd ed. New York: John Wiley & Sons.

de Finetti, B. (1992), Theory of Probability, New York: John Wiley & Sons.

Jeffreys, H. (1998), Theory of Probability, Oxford: Oxford University Press.

O’Hagan, A. (1994), Bayesian Inference, volume 2B of Kendall’s Advanced Theory of Statistics, London:
Arnold.

Savage, L. J. (1954), The Foundations of Statistics, New York: John Wiley & Sons.

Books Motivated by Statistical Applications and Data Analysis

Carlin, B. and Louris, T. A. (2000), Bayes and Empirical Bayes Methods for Data Analysis, 2nd ed. London:
Chapman & Hall.

Congdon, P. (2006), Bayesian Statistical Modeling, 2nd ed. New York: John Wiley & Sons.

Congdon, P. (2003), Applied Bayesian Modeling, New York: John Wiley & Sons.

Congdon, P. (2005), Bayesian Models for Categorical Data, New York: John Wiley & Sons.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004), Bayesian Data Analysis, 3rd ed. London:
Chapman & Hall.

Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (1996), Markov Chain Monte Carlo in Practice, London:
Chapman & Hall.

Tutorial and Review Papers on MCMC
Besag, J., Green, P., Higdon, D., and Mengersen, K. (1995), “Bayesian Computation and Stochastic Systems,”
Statistical Science, 10(1), 3–66.

Casella, G. and George, E. (1992), “Explaining the Gibbs Sampler,” The American Statistician, 46, 167–174.

Chib, S. and Greenberg, E. (1995), “Understanding the Metropolis-Hastings Algorithm,” The American
Statistician, 49, 327–335.

Chib, S. and Greenberg, E. (1996), “Markov Chain Monte Carlo Simulation Methods in Econometrics,”
Econometric Theory, 12, 409–431.

Kass, R. E., Carlin, B. P., Gelman, A., and Neal, R. M. (1998), “Markov Chain Monte Carlo in Practice: A
Roundtable Discussion,” Statistical Science, 52(2), 93–100.
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