SAS/STAT® 13.1 User’s Guide
The TPSPLINE Procedure
Gain Greater Insight into Your SAS® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/bookstore for additional books and resources.
Chapter 100
The TPSPLINE Procedure

Overview: TPSPLINE Procedure

The TPSPLINE procedure uses the penalized least squares method to fit a nonparametric regression model. It computes thin-plate smoothing splines to approximate smooth multivariate functions observed with noise. The TPSPLINE procedure allows great flexibility in the possible form of the regression surface. In particular, PROC TPSPLINE makes no assumptions of a parametric form for the model. The generalized cross validation (GCV) function can be used to select the amount of smoothing.

The TPSPLINE procedure complements the methods provided by the standard SAS regression procedures such as the GLM, REG, and NLIN procedures. These procedures can handle most situations in which you
Chapter 100: The TPSPLINE Procedure

specify the regression model and the model is known up to a fixed number of parameters. However, when you have no prior knowledge about the model, or when you know that the data cannot be represented by a model with a fixed number of parameters, you can use the TPSPLINE procedure to model the data.

The TPSPLINE procedure uses the penalized least squares method to fit the data with a flexible model in which the number of effective parameters can be as large as the number of unique design points. Hence, as the sample size increases, the model space also increases, enabling the thin-plate smoothing spline to fit more complicated situations.

The main features of the TPSPLINE procedure are as follows:

- provides penalized least squares estimates
- supports the use of multidimensional data
- supports multiple SCORE statements
- fits both semiparametric models and nonparametric models
- provides options for handling large data sets
- supports multiple dependent variables
- enables you to choose a particular model by specifying the model degrees of freedom or smoothing parameter
- produces graphs with ODS Graphics

Penalized Least Squares Estimation

Penalized least squares estimation provides a way to balance fitting the data closely and avoiding excessive roughness or rapid variation. A penalized least squares estimate is a surface that minimizes the penalized squared error over the class of all surfaces that satisfy sufficient regularity conditions.

Define \(x_i \) as a \(d \)-dimensional covariate vector from an \(n \times d \) matrix \(X \), \(z_i \) as a \(p \)-dimensional covariate vector, and \(y_i \) as the observation associated with \((x_i, z_i) \). Assuming that the relation between \(z_i \) and \(y_i \) is linear but the relation between \(x_i \) and \(y_i \) is unknown, you can fit the data by using a semiparametric model as follows:

\[
y_i = f(x_i) + z_i \beta + \epsilon_i
\]

where \(f \) is an unknown function that is assumed to be reasonably smooth, \(\epsilon_i, i = 1, \ldots, n \), are independent, zero-mean random errors, and \(\beta \) is a \(p \)-dimensional unknown parameter vector.
This model consists of two parts. The $z_i \beta$ is the parametric part of the model, and the z_i are the regression variables. The $f(x_i)$ is the nonparametric part of the model, and the x_i are the smoothing variables. The ordinary least squares method estimates $f(x_i)$ and β by minimizing the quantity:

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i) - z_i \beta)^2$$

However, the functional space of $f(x)$ is so large that you can always find a function f that interpolates the data points. In order to obtain an estimate that fits the data well and has some degree of smoothness, you can use the penalized least squares method.

The penalized least squares function is defined as

$$S_2(f) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i) - z_i \beta)^2 + \lambda J_2(f)$$

where $J_2(f)$ is the penalty on the roughness of f and is defined, in most cases, as the integral of the square of the second derivative of f.

The first term measures the goodness of fit and the second term measures the smoothness associated with f. The λ term is the smoothing parameter, which governs the tradeoff between smoothness and goodness of fit. When λ is large, it more heavily penalizes rougher fits. Conversely, a small value of λ puts more emphasis on the goodness of fit.

The estimate f_λ is selected from a reproducing kernel Hilbert space, and it can be represented as a linear combination of a sequence of basis functions. Hence, the final estimates of f can be written as

$$\hat{f}_\lambda(x_i) = \theta_0 + \sum_{j=1}^{d} \theta_j x_{ij} + \sum_{j=1}^{p} \delta_j B_j(x_j)$$

where B_j is the basis function, which depends on where the data x_i are located, and $\theta = \{\theta_0, \ldots, \theta_d\}$ and $\delta = \{\delta_1, \ldots, \delta_p\}$ are the coefficients that need to be estimated.

For a fixed λ, the coefficients (θ, δ, β) can be estimated by solving an $n \times n$ system.

The smoothing parameter can be chosen by minimizing the generalized cross validation (GCV) function. If you write

$$\hat{y} = A(\lambda)y$$

then $A(\lambda)$ is referred to as the hat or smoothing matrix, and the GCV function $GCV(\lambda)$ is defined as

$$GCV(\lambda) = \frac{(1/n) \| (I - A(\lambda))y \|^2}{[(1/n) \text{tr}(I - A(\lambda))]^2}$$
PROC TPSPLINE with Large Data Sets

The calculation of the penalized least squares estimate is computationally intensive. The amount of memory and CPU time needed for the analysis depends on the number of unique design points, which corresponds to the number of unknown parameters to be estimated.

You can specify the D= option in the MODEL statement to reduce the number of unknown parameters. The option groups design points by the specified range (see the D= option on page 8542).

PROC TPSPLINE selects one design point from the group and treats all observations in the group as replicates of that design point. Calculation of the thin-plate smoothing spline estimates is based on the reprocessed data. The way to choose the design point from a group depends on the order of the data. Hence, different orders of input data might result in different estimates.

By combining several design points into one, this option reduces the number of unique design points, thereby approximating the original data. The value you specify for the D= option determines the width of the range used to group the data.

Getting Started: TPSPLINE Procedure

The following example demonstrates how you can use the TPSPLINE procedure to fit a semiparametric model.

Suppose that \(y \) is a continuous variable and \(x_1 \) and \(x_2 \) are two explanatory variables of interest. To fit a bivariate thin-plate spline model, you can use a MODEL statement similar to that used in many regression procedures in the SAS System:

```sas
proc tpspline;
  model y = (x1 x2);
run;
```

The TPSPLINE procedure can fit semiparametric models; the parentheses in the preceding MODEL statement separate the smoothing variables from the regression variables. The following statements illustrate this syntax:

```sas
proc tpspline;
  model y = z1 (x1 x2);
run;
```

This model assumes a linear relation with \(z_1 \) and an unknown functional relation with \(x_1 \) and \(x_2 \).

If you want to fit several responses by using the same explanatory variables, you can save computation time by using the multiple responses feature in the MODEL statement. For example, if \(y_1 \) and \(y_2 \) are two response variables, the following MODEL statement can be used to fit two models. Separate analyses are then performed for each response variable.
The following example illustrates the use of PROC TPSPLINE. The data are from Bates et al. (1987).

data Measure;
 input x1 x2 y @@;
datalines;
-1.0 -1.0 15.54483570 -1.0 -1.0 15.76312613
-1.0 -1.0 18.67397826 -1.0 -1.0 18.49722167
-1.0 -1.0 19.66086310 -1.0 -1.0 19.80231311
-1.0 -1.0 18.59838649 -1.0 -1.0 18.51904737
-1.0 -1.0 15.86842815 -1.0 -1.0 16.03913832
-1.0 -1.0 10.92383867 -1.0 -1.0 11.14066546
-1.0 -1.0 14.81392847 -1.0 -1.0 14.82830425
-1.0 -1.0 16.56496998 -1.0 -1.0 16.44307297
-1.0 -1.0 14.03133439 -1.0 -1.0 14.03122345
-1.0 -1.0 10.791042284 -1.0 -1.0 10.94227538
-1.0 -1.0 9.61492010 -1.0 -1.0 9.64648093
-1.0 -1.0 14.03122345 -1.0 -1.0 14.03122345
-1.0 -1.0 15.77400253 -1.0 -1.0 16.00412514
-1.0 -1.0 13.99627680 -1.0 -1.0 14.02826553
-1.0 -1.0 9.55700164 -1.0 -1.0 9.58467047
-1.0 -1.0 11.20625177 -1.0 -1.0 11.08651907
-1.0 -1.0 11.86253493 -1.0 -1.0 14.99369172
-1.0 -1.0 16.55494349 -1.0 -1.0 16.51294369
-1.0 -1.0 14.98488603 -1.0 -1.0 14.71816070
-1.0 -1.0 11.14575565 -1.0 -1.0 11.17168689
-1.0 -1.0 15.82595514 -1.0 -1.0 15.96022497
-1.0 -1.0 18.64014953 -1.0 -1.0 18.56095997
-1.0 -1.0 19.54375504 -1.0 -1.0 19.80902641
-1.0 -1.0 18.56884576 -1.0 -1.0 18.61010439
-1.0 -1.0 15.86586951 -1.0 -1.0 15.90137475
;

The data set Measure contains three variables x1, x2, and y. Suppose that you want to fit a surface by using the variables x1 and x2 to model the response y. The variables x1 and x2 are spaced evenly on a \([-1 \times 1] \times [-1 \times 1]\) square, and the response y is generated by adding a random error to a function \(f(x_1, x_2)\). The raw data are plotted in three-dimensional scatter plot by using the G3D procedure. In order to visualize those replicates, half of the data are shifted a little bit by adding a small value (0.001) to x1 values, as in the following statements:

data Measure1;
 set Measure;
run;

proc sort data=Measure1;
 by x2 x1;
run;
data Measure1;
 set Measure1;
 if mod(_N_, 2) = 0 then x1=x1+0.001;
run;

proc g3d data=Measure1;
 scatter x2*x1=y /size=.5
 zmin=9 zmax=21
 zticknum=4;
 title "Raw Data";
run;

Figure 100.1 displays the raw data.

Figure 100.1 Plot of Data Set MEASURE
The following statements invoke the TPSPLINE procedure, to analyze the Measure data set as input. In the MODEL statement, the \(x_1\) and \(x_2\) variables are listed as smoothing variables. The \texttt{LOGNLAMBDA=} option specifies that PROC TPSPLINE examine a list of models with \(\log_{10}(n\lambda)\) ranging from \(-4\) to \(-2.5\). The OUTPUT statement creates the data set \texttt{estimate} to contain the predicted values and the 95% upper and lower confidence limits from the best model selected by the GCV criterion.

```sas
ods graphics on;
proc tpspline data=Measure;
    model y=(x1 x2) /lognlambda=(-4 to -2.5 by 0.1);
    output out=estimate pred uclm lclm;
run;
proc print data=estimate;
run;
```

When ODS Graphics is enabled, PROC TPSPLINE produces several default plots. One of the default plots is the contour plot of the fitted surface, shown in Figure 100.2. The surface exhibits nonlinear patterns along the directions of both predictors.

Figure 100.2 Fitted Surface from PROC TPSPLINE
Figure 100.3 shows the “Criterion Plot” that provides a graphical display of the GCV selection process. Three sets of values are shown in the plot: the specified smoothing values and their GCV values, the examined smoothing values and their GCV values during the optimization process, and the best smoothing parameter and its GCV value. The final thin-plate smoothing spline estimate is based on $\log_{10}(n\lambda) = -3.4762$, which minimizes the GCV.

Figure 100.3 The GCV Criterion by $\log_{10}(n\lambda)$

Figure 100.4 shows that the data set Measure contains 50 observations with 25 unique design points. The final model contains no parametric regression terms and two smoothing variables. The order of the derivative in the penalty is 2 by default, and the dimension of polynomial space is 3. See the section “Computational Formulas” on page 8545 for definitions.

Figure 100.4 also lists the GCV values along with the supplied values of $\log_{10}(n\lambda)$. The value that minimizes the GCV function is -3.5 among the given list of $\log_{10}(n\lambda)$.

The residual sum of squares from the fitted model is 0.246110, and the model degrees of freedom are 24.593203. The standard deviation, defined as $\text{RSS}/(\text{tr}(I - A))$, is 0.098421. The predictions and 95% confidence limits are displayed in Figure 100.5.
Figure 100.4 Fitted Model Summaries from PROC TPSPLINE

```
Raw Data

The TPSPLINE Procedure
Dependent Variable: y

Summary of Input Data Set

Number of Non-Missing Observations  50
Number of Missing Observations        0
Unique Smoothing Design Points        25

Summary of Final Model

Number of Regression Variables       0
Number of Smoothing Variables        2
Order of Derivative in the Penalty   2
Dimension of Polynomial Space        3

GCV Function

<table>
<thead>
<tr>
<th>log10(n*Lambda)</th>
<th>GCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4.000000</td>
<td>0.019215</td>
</tr>
<tr>
<td>-3.900000</td>
<td>0.019183</td>
</tr>
<tr>
<td>-3.800000</td>
<td>0.019148</td>
</tr>
<tr>
<td>-3.700000</td>
<td>0.019113</td>
</tr>
<tr>
<td>-3.600000</td>
<td>0.019082</td>
</tr>
<tr>
<td>-3.500000</td>
<td>0.019064*</td>
</tr>
<tr>
<td>-3.400000</td>
<td>0.019074</td>
</tr>
<tr>
<td>-3.300000</td>
<td>0.019135</td>
</tr>
<tr>
<td>-3.200000</td>
<td>0.019286</td>
</tr>
<tr>
<td>-3.100000</td>
<td>0.019584</td>
</tr>
<tr>
<td>-3.000000</td>
<td>0.020117</td>
</tr>
<tr>
<td>-2.900000</td>
<td>0.021015</td>
</tr>
<tr>
<td>-2.800000</td>
<td>0.022462</td>
</tr>
<tr>
<td>-2.700000</td>
<td>0.024718</td>
</tr>
<tr>
<td>-2.600000</td>
<td>0.028132</td>
</tr>
<tr>
<td>-2.500000</td>
<td>0.033165</td>
</tr>
</tbody>
</table>

Note: * indicates minimum GCV value.

Summary Statistics
of Final Estimation

<table>
<thead>
<tr>
<th>log10(n*Lambda)</th>
<th>-3.4762</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoothing Penalty</td>
<td>2558.1432</td>
</tr>
<tr>
<td>Residual SS</td>
<td>0.2461</td>
</tr>
<tr>
<td>Tr(I-A)</td>
<td>25.4068</td>
</tr>
<tr>
<td>Model DF</td>
<td>24.5932</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.0984</td>
</tr>
<tr>
<td>GCV</td>
<td>0.0191</td>
</tr>
</tbody>
</table>
```
Figure 100.5 Data Set ESTIMATE

Raw Data

<table>
<thead>
<tr>
<th>Obs</th>
<th>x1</th>
<th>x2</th>
<th>y</th>
<th>P_y</th>
<th>LCLM_y</th>
<th>UCLM_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.0</td>
<td>-1.0</td>
<td>15.5448</td>
<td>15.6474</td>
<td>15.5115</td>
<td>15.7832</td>
</tr>
<tr>
<td>2</td>
<td>-1.0</td>
<td>-1.0</td>
<td>15.7631</td>
<td>15.6474</td>
<td>15.5115</td>
<td>15.7832</td>
</tr>
<tr>
<td>3</td>
<td>-0.5</td>
<td>-1.0</td>
<td>18.6740</td>
<td>18.5783</td>
<td>18.4430</td>
<td>18.7136</td>
</tr>
<tr>
<td>4</td>
<td>-0.5</td>
<td>-1.0</td>
<td>18.4972</td>
<td>18.5783</td>
<td>18.4430</td>
<td>18.7136</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>-1.0</td>
<td>19.6609</td>
<td>19.7270</td>
<td>19.5917</td>
<td>19.8622</td>
</tr>
<tr>
<td>6</td>
<td>0.0</td>
<td>-1.0</td>
<td>19.8023</td>
<td>19.7270</td>
<td>19.5917</td>
<td>19.8622</td>
</tr>
<tr>
<td>7</td>
<td>0.5</td>
<td>-1.0</td>
<td>18.5984</td>
<td>18.5552</td>
<td>18.4199</td>
<td>18.6905</td>
</tr>
<tr>
<td>8</td>
<td>0.5</td>
<td>-1.0</td>
<td>18.5190</td>
<td>18.5552</td>
<td>18.4199</td>
<td>18.6905</td>
</tr>
<tr>
<td>9</td>
<td>1.0</td>
<td>-1.0</td>
<td>15.8684</td>
<td>15.9436</td>
<td>15.8077</td>
<td>16.0794</td>
</tr>
<tr>
<td>10</td>
<td>1.0</td>
<td>-1.0</td>
<td>16.0391</td>
<td>15.9436</td>
<td>15.8077</td>
<td>16.0794</td>
</tr>
<tr>
<td>11</td>
<td>-1.0</td>
<td>-0.5</td>
<td>10.9238</td>
<td>11.0467</td>
<td>10.9114</td>
<td>11.1820</td>
</tr>
<tr>
<td>12</td>
<td>-1.0</td>
<td>-0.5</td>
<td>11.1407</td>
<td>11.0467</td>
<td>10.9114</td>
<td>11.1820</td>
</tr>
<tr>
<td>13</td>
<td>-0.5</td>
<td>-0.5</td>
<td>14.8139</td>
<td>14.8246</td>
<td>14.6896</td>
<td>14.9597</td>
</tr>
<tr>
<td>14</td>
<td>-0.5</td>
<td>-0.5</td>
<td>14.8283</td>
<td>14.8246</td>
<td>14.6896</td>
<td>14.9597</td>
</tr>
<tr>
<td>15</td>
<td>0.0</td>
<td>-0.5</td>
<td>16.5645</td>
<td>16.5102</td>
<td>16.3752</td>
<td>16.6452</td>
</tr>
<tr>
<td>16</td>
<td>0.0</td>
<td>-0.5</td>
<td>16.4431</td>
<td>16.5102</td>
<td>16.3752</td>
<td>16.6452</td>
</tr>
<tr>
<td>17</td>
<td>0.5</td>
<td>-0.5</td>
<td>14.9079</td>
<td>14.9812</td>
<td>14.8461</td>
<td>15.1162</td>
</tr>
<tr>
<td>18</td>
<td>0.5</td>
<td>-0.5</td>
<td>15.0565</td>
<td>14.9812</td>
<td>14.8461</td>
<td>15.1162</td>
</tr>
<tr>
<td>19</td>
<td>1.0</td>
<td>-0.5</td>
<td>10.9196</td>
<td>10.9497</td>
<td>10.8144</td>
<td>11.0850</td>
</tr>
<tr>
<td>20</td>
<td>1.0</td>
<td>-0.5</td>
<td>10.9423</td>
<td>10.9497</td>
<td>10.8144</td>
<td>11.0850</td>
</tr>
<tr>
<td>21</td>
<td>-1.0</td>
<td>0.0</td>
<td>9.6149</td>
<td>9.6372</td>
<td>4.0197</td>
<td>9.7724</td>
</tr>
<tr>
<td>22</td>
<td>-1.0</td>
<td>0.0</td>
<td>9.6465</td>
<td>9.6372</td>
<td>4.0197</td>
<td>9.7724</td>
</tr>
<tr>
<td>23</td>
<td>-0.5</td>
<td>0.0</td>
<td>14.0313</td>
<td>14.0188</td>
<td>13.8838</td>
<td>14.1538</td>
</tr>
<tr>
<td>24</td>
<td>-0.5</td>
<td>0.0</td>
<td>14.0312</td>
<td>14.0188</td>
<td>13.8838</td>
<td>14.1538</td>
</tr>
<tr>
<td>25</td>
<td>0.0</td>
<td>0.0</td>
<td>15.7740</td>
<td>15.8822</td>
<td>15.7472</td>
<td>16.0171</td>
</tr>
<tr>
<td>26</td>
<td>0.0</td>
<td>0.0</td>
<td>16.0041</td>
<td>15.8822</td>
<td>15.7472</td>
<td>16.0171</td>
</tr>
<tr>
<td>27</td>
<td>0.5</td>
<td>0.0</td>
<td>13.9963</td>
<td>14.0006</td>
<td>13.8656</td>
<td>14.1356</td>
</tr>
<tr>
<td>28</td>
<td>0.5</td>
<td>0.0</td>
<td>14.0283</td>
<td>14.0006</td>
<td>13.8656</td>
<td>14.1356</td>
</tr>
<tr>
<td>29</td>
<td>1.0</td>
<td>0.0</td>
<td>9.5570</td>
<td>9.5769</td>
<td>4.417</td>
<td>9.7122</td>
</tr>
<tr>
<td>30</td>
<td>1.0</td>
<td>0.0</td>
<td>9.5847</td>
<td>9.5769</td>
<td>4.417</td>
<td>9.7122</td>
</tr>
<tr>
<td>31</td>
<td>-1.0</td>
<td>0.5</td>
<td>11.2063</td>
<td>11.1614</td>
<td>11.0261</td>
<td>11.2967</td>
</tr>
<tr>
<td>32</td>
<td>-1.0</td>
<td>0.5</td>
<td>11.0865</td>
<td>11.1614</td>
<td>11.0261</td>
<td>11.2967</td>
</tr>
<tr>
<td>33</td>
<td>-0.5</td>
<td>0.5</td>
<td>14.8372</td>
<td>14.9182</td>
<td>14.7831</td>
<td>15.0532</td>
</tr>
<tr>
<td>34</td>
<td>-0.5</td>
<td>0.5</td>
<td>14.9937</td>
<td>14.9182</td>
<td>14.7831</td>
<td>15.0532</td>
</tr>
<tr>
<td>35</td>
<td>0.0</td>
<td>0.5</td>
<td>16.5549</td>
<td>16.5386</td>
<td>16.4036</td>
<td>16.6736</td>
</tr>
<tr>
<td>36</td>
<td>0.0</td>
<td>0.5</td>
<td>16.5129</td>
<td>16.5386</td>
<td>16.4036</td>
<td>16.6736</td>
</tr>
<tr>
<td>37</td>
<td>0.5</td>
<td>0.5</td>
<td>14.9845</td>
<td>14.8549</td>
<td>14.7199</td>
<td>14.9900</td>
</tr>
<tr>
<td>38</td>
<td>0.5</td>
<td>0.5</td>
<td>14.7182</td>
<td>14.8549</td>
<td>14.7199</td>
<td>14.9900</td>
</tr>
<tr>
<td>39</td>
<td>1.0</td>
<td>0.5</td>
<td>11.1458</td>
<td>11.1727</td>
<td>11.0374</td>
<td>11.3080</td>
</tr>
<tr>
<td>40</td>
<td>1.0</td>
<td>0.5</td>
<td>11.1717</td>
<td>11.1727</td>
<td>11.0374</td>
<td>11.3080</td>
</tr>
<tr>
<td>41</td>
<td>-1.0</td>
<td>1.0</td>
<td>15.8260</td>
<td>15.8851</td>
<td>15.7493</td>
<td>16.0210</td>
</tr>
<tr>
<td>42</td>
<td>-1.0</td>
<td>1.0</td>
<td>15.9602</td>
<td>15.8851</td>
<td>15.7493</td>
<td>16.0210</td>
</tr>
<tr>
<td>43</td>
<td>-0.5</td>
<td>1.0</td>
<td>18.6401</td>
<td>18.5946</td>
<td>18.4593</td>
<td>18.7299</td>
</tr>
<tr>
<td>44</td>
<td>-0.5</td>
<td>1.0</td>
<td>18.5610</td>
<td>18.5946</td>
<td>18.4593</td>
<td>18.7299</td>
</tr>
<tr>
<td>45</td>
<td>0.0</td>
<td>1.0</td>
<td>19.5438</td>
<td>19.6729</td>
<td>19.5376</td>
<td>19.8081</td>
</tr>
<tr>
<td>46</td>
<td>0.0</td>
<td>1.0</td>
<td>19.8090</td>
<td>19.6729</td>
<td>19.5376</td>
<td>19.8081</td>
</tr>
<tr>
<td>47</td>
<td>0.5</td>
<td>1.0</td>
<td>18.5688</td>
<td>18.5832</td>
<td>18.4478</td>
<td>18.7185</td>
</tr>
<tr>
<td>48</td>
<td>0.5</td>
<td>1.0</td>
<td>18.6101</td>
<td>18.5832</td>
<td>18.4478</td>
<td>18.7185</td>
</tr>
<tr>
<td>49</td>
<td>1.0</td>
<td>1.0</td>
<td>15.8659</td>
<td>15.8761</td>
<td>15.7402</td>
<td>16.0120</td>
</tr>
<tr>
<td>50</td>
<td>1.0</td>
<td>1.0</td>
<td>15.9014</td>
<td>15.8761</td>
<td>15.7402</td>
<td>16.0120</td>
</tr>
</tbody>
</table>
You can also use the TEMPLATE and SGRENDER procedures to create a perspective plot for visualizing the fitted surface. Because the data in the data set Measure are very sparse, the fitted surface is not smooth. To produce a smoother surface, the following statements generate the data set pred in order to obtain a finer grid. The LOGNLAMBDA0= option requests that PROC TPSPLINE fit a model with a fixed \(\log_{10}(n\lambda) \) value of –3.4762. The SCORE statement evaluates the fitted surface at those new design points.

```plaintext
data pred;
  do x1=-1 to 1 by 0.1;
    do x2=-1 to 1 by 0.1;
      output;
    end;
  end;
run;

proc tpspline data=measure;
  model y=(x1 x2)/lognlambda0=-3.4762;
  score data=pred out=predy;
run;

proc template;
  define statgraph surface;
  dynamic _X _Y _Z _T;
  begingraph /designheight=360;
    entrytitle _T;
    layout overlay3d/rotate=120 cube=false xaxisopts=(label="x1")
      yaxisopts=(label="x2") zaxisopts=(label="P_y");
      surfaceplotparm x=_X y=_Y z=_Z;
    endlayout;
  endgraph;
run;

proc sgrender data=predy template=surface;
  dynamic _X='x1' _Y='x2' _Z='P_y'
    _T='Plot of Fitted Surface on a Fine Grid';
run;
```
The surface plot based on the finer grid is displayed in Figure 100.6. The plot indicates that a parametric model with quadratic terms of x_1 and x_2 provides a reasonable fit to the data.

Figure 100.6 Plot of TPSPLINE Fit

Figure 100.7 shows a panel of fit diagnostics for the selected model that indicate a reasonable fit:

- The predicted values closely approximate the observed values.
- The residuals are approximately normally distributed and do not show obvious systematic patterns.
- The RFPLOT shows that much variation in the response variable is addressed by the fit and only a little remains in the residuals.
Syntax: TPSPLINE Procedure

The following statements are available in the TPSPLINE procedure:

```sas
PROC TPSPLINE < options > ;
   MODEL dependents = < variables > (variables) /< options > ;
   SCORE DATA=SAS-data-set OUT=SAS-data-set <keyword ... keyword> ;
   OUTPUT <OUT=SAS-data-set> keyword ... keyword ;
   BY variables ;
   FREQ variable ;
   ID variables ;
```

The syntax in PROC TPSPLINE is similar to that of other regression procedures in the SAS System. The PROC TPSPLINE and MODEL statements are required. The SCORE statement can appear multiple times; all other statements appear no more than once.

The statements available for PROC TPSPLINE are described in alphabetical order after the description of the PROC TPSPLINE statement.
The PROC TPSPLINE statement invokes the TPSPLINE procedure. Table 100.1 summarizes the options available in the TPSPLINE statement.

Table 100.1 PROC TPSPLINE Statement Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA=</td>
<td>Specifies the SAS data set to be read</td>
</tr>
<tr>
<td>PLOTS</td>
<td>Controls the plots that are produced through ODS Graphics</td>
</tr>
</tbody>
</table>

You can specify the following options:

DATA=SAS-data-set

specifies the SAS data set to be read by PROC TPSPLINE. The default value is the most recently created data set.

PLOTS < (global-plot-options) > < = plot-request<(options)> >

controls the plots that are produced through ODS Graphics. When you specify only one plot request, you can omit the parentheses around the plot request. Here are some examples:

- plots=none
- plots=residuals(smooth)
- plots(unpack)=diagnostics
- plots(only)=(fit residualHistogram)

ODS Graphics must be enabled before plots can be requested. For example:

```sas
ods graphics on;
proc tpspline;
   model y = (x);
run;
ods graphics off;
```

For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

If ODS Graphics is enabled but you do not specify the PLOTS= option, then PROC TPSPLINE produces a default set of plots. The following table lists the plots that are produced.

Table 100.2 Graphs Produced

<table>
<thead>
<tr>
<th>Plot</th>
<th>Conditional on:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ContourFitPanel</td>
<td>LAMBDA= or LOGNLAMBDA= option specified in the MODEL statement</td>
</tr>
<tr>
<td>ContourFit</td>
<td>Model with two predictors</td>
</tr>
</tbody>
</table>
Table 100.2 continued

<table>
<thead>
<tr>
<th>Plot</th>
<th>Conditional On</th>
</tr>
</thead>
<tbody>
<tr>
<td>CriterionPlot</td>
<td>Multiple values for the smoothing parameter</td>
</tr>
<tr>
<td>DiagnosticsPanel</td>
<td>Unconditional</td>
</tr>
<tr>
<td>ResidualBySmooth</td>
<td>LAMBDA= or LOGNLAMBDA= option specified in the MODEL statement</td>
</tr>
<tr>
<td>ResidualPanel</td>
<td>Unconditional</td>
</tr>
<tr>
<td>FitPanel</td>
<td>LAMBDA= or LOGNLAMBDA= option specified in the MODEL statement</td>
</tr>
<tr>
<td>FitPlot</td>
<td>Model with one predictor</td>
</tr>
<tr>
<td>ScorePlot</td>
<td>One or more SCORE statements and a model with one predictor</td>
</tr>
</tbody>
</table>

For models with multiple dependent variables, separate plots are produced for each dependent variable. For models in which multiple smoothing parameters are specified with the LAMBDA= or LOGNLAMBDA= option in the MODEL statement, the plots are produced for the selected model only.

Global Plot Options

The global-plot-options apply to all relevant plots generated by the TPSPLINE procedure, unless they are overridden by a specific-plot-option. The following global-plot-options are supported by the TPSPLINE procedure:

ONLY
suppresses the default plots. Only the plots specifically requested are produced.

UNPACK
suppresses paneling. By default, multiple plots can appear in some output panels. Specify UNPACK to get each plot individually. You can specify PLOTS(UNPACK) to unpack the default plots. You can also specify UNPACK as a suboption with the CONTOURFITPANEL, DIAGNOSTICS, FITPANEL, RESIDUALS and RESIDUALSBYSMOOTH options.

Plot Requests

You can specify the following specific plot-requests and controls for them:

ALL
produces all plots appropriate for the particular analysis. You can specify other options with ALL; for example, to request that all plots be produced and that only the residual plots be unpacked, specify PLOTS=(ALL RESIDUALS(UNPACK)).

CONTOURFIT <(OBS=contour-options)>
produces a contour plot of the fitted surface overlaid with a scatter plot of the data for models with two predictors. You can use the following contour-options to control how the observations are displayed:

GRADIENT
displays observations as circles colored by the observed response. The same color gradient is used to display the fitted surface and the observations. Observations where the predicted response is close to the observed response have similar colors—the greater the contrast between the color of an observation and the surface, the larger the residual is at that point. OBS=GRADIENT is the default if you do not specify any contour-options.
NONE
suppresses the observations.

OUTLINE
displays observations as circles with a border but with a completely transparent fill.

OUTLINEGRADIENT
is the same as OBS=GRADIENT except that a border is shown around each observation. This option is useful for identifying the location of observations where the residuals are small, because at these points the color of the observations and the color of the surface are indistinguishable.

CONTOURFITPANEL < (options) >
produces panels of contour plots overlaid with a scatter plot of the data for each smoothing parameter specified in the LAMBDA= or LOGNLAMBDA= option in the MODEL statement, for models with two predictors. If you do not specify the LAMBDA= or LOGNLAMBDA= option or if the model does not have two predictors, then this plot is not produced. Each panel contains at most six plots, and multiple panels are used when there are more than six smoothing parameters in the LAMBDA= or LOGNLAMBDA= option. The following options are available:

OBS=contour-options
specifies how the observations are displayed. See contour-options for the CONTOURFIT option for details.

UNPACK
suppresses paneling.

CRITERIONPLOT | CRITERION < (NOPATH) >
displays a scatter plot of the value of the GCV criterion versus the smoothing parameter value for all smoothing parameter values examined in the selection process. This plot is not produced when you specify one smoothing parameter with either the LAMBDA0= or LOGNLAMBDA0= option in the MODEL statement. When you supply a list of values for the smoothing parameter with the LAMBDA= or LOGNLAMBDA= option and PROC TPSPLINE obtains the optimal smoothing parameter by minimizing the GCV criterion, then the plot contains the supplied list of smoothing values and the optimal smoothing parameter in addition to the values examined during the optimization process. You can use the NOPATH suboption to disable the display of the optimization path in the plot in this case.

DIAGNOSTICSPANEL | DIAGNOSTICS < (UNPACK) >
produces a summary panel of fit diagnostics that consists of the following:

- residuals versus the predicted values
- a histogram of the residuals
- a normal quantile plot of the residuals
- a “Residual-Fit” (RF) plot that consists of side-by-side quantile plots of the centered fit and the residuals
- response values versus the predicted values

You can request the five plots in this panel as individual plots by specifying the UNPACK option. You can also request individual plots in the panel by name without having to unpack the panel. The fit diagnostics panel is produced by default whenever ODS Graphics is enabled.
FITPANEL < (options) > produces panels of plots that show the fitted TPSPLINE curve overlaid on a scatter plot of the input data for each smoothing parameter specified in the LAMBDA= or LOGNLAMBDA= option in the MODEL statement. If you do not specify the LAMBDA= or LOGNLAMBDA= option or the model has more than one predictor, then this plot is not produced. Each panel contains at most six plots, and multiple panels are used when there are more than six smoothing parameters in the LAMBDA= or LOGNLAMBDA= option. The following options are available:

CLM includes a confidence band at the significance level specified in the ALPHA= option in the MODEL statement in each plot in the panels.

UNPACK suppresses paneling.

FITPLOT | FIT < (CLM) > produces a scatter plot of the input data with the fitted TPSPLINE curve overlaid for models with a single predictor. If the CLM option is specified, then a confidence band at the significance level specified in the ALPHA= option in the MODEL statement is included in the plot.

NONE suppresses all plots.

OBSERVEDBYPREDICTED produces a scatter plot of the dependent variable values by the predicted values.

QQPLOT | QQ produces a normal quantile plot of the residuals.

RESIDUALBYSMOOTH < (SMOOTH) > produces, for each predictor, panels of plots that show the residuals of the TPSPLINE fit versus the predictor for each smoothing parameter specified in the LAMBDA= or LOGNLAMBDA= option in the MODEL statement. If you do not specify the LAMBDA= or LOGNLAMBDA= option, then this plot is not produced. Each panel contains at most six plots, and multiple panels are used when there are more than six smoothing parameters in the LAMBDA= or LOGNLAMBDA= option in the MODEL statement. The SMOOTH option displays a nonparametric fit line in each plot in the panel. The type of nonparametric fit and the options used are controlled by the underlying template for this plot. In the standard template that is provided, the nonparametric smooth is specified to be a loess fit that corresponds to the default options of PROC LOESS, except that the PRESEARCH suboption in the SELECT statement is always used. It is important to note that the loess fit that is shown in each of the residual plots is computed independently of the smoothing spline fit that is used to obtain the residuals.

RESIDUALBYPREDICTED produces a scatter plot of the residuals by the predicted values.

RESIDUALHISTOGRAM produces a histogram of the residuals.
Chapter 100: The TPSPLINE Procedure

RESIDUALPANEL | RESIDUALS <(options)>
produces panels of the residuals versus the predictors in the model. Each panel contains at most six plots, and multiple panels are used when there are more than six predictors in the model.

The following options are available:

SMOOTH
displays a nonparametric fit line in each plot in the panel. The type of nonparametric fit and the options used are controlled by the underlying template for this plot. In the standard template that is provided, the nonparametric smooth is specified to be a loess fit that corresponds to the default options of PROC LOESS, except that the PRESEARCH suboption in the SELECT statement is always used. It is important to note that the loess fit that is shown in each of the residual plots is computed independently of the smoothing spline fit that is used to obtain the residuals.

UNPACK
suppresses paneling.

RFPLOT | RF
produces a “Residual-Fit” (RF) plot that consists of side-by-side quantile plots of the centered fit and the residuals. This plot “shows how much variation in the data is explained by the fit and how much remains in the residuals” (Cleveland 1993).

SCOREPLOT | SCORE
produces a scatter plot of the scored values at the score points for each SCORE statement. SCORE plots are not produced for models with more than one predictor.

BY Statement

BY variables;
You can specify a BY statement with PROC TPSPLINE to obtain separate analyses of observations in groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

- Sort the data by using the SORT procedure with a similar BY statement.
- Specify the NOTSORTED or DESCENDING option in the BY statement for the TPSPLINE procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged in groups (according to values of the BY variables) and that these groups are not necessarily in alphabetical or increasing numeric order.
- Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts. For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.
FREQ Statement

```plaintext
FREQ variable ;
```

If one variable in your input data set represents the frequency of occurrence for other values in the observation, specify the variable’s name in a FREQ statement. PROC TPSPLINE treats the data as if each observation appears n times, where n is the value of the FREQ variable for the observation. If the value of the FREQ variable is less than one, the observation is not used in the analysis. Only the integer portion of the value is used.

ID Statement

```plaintext
ID variables ;
```

The ID statement is optional, and more than one ID statement can be used. If variables are specified in the ID statement, their values are displayed in tooltips to identify observations in the plots produced by PROC TPSPLINE.

MODEL Statement

```plaintext
MODEL dependent-variables = <regression-variables> (smoothing-variables) < / options> ;
```

The MODEL statement specifies the dependent variables, the independent regression variables, which are listed with no parentheses, and the independent smoothing variables, which are listed inside parentheses.

The regression variables are optional. At least one smoothing variable is required, and it must be listed after the regression variables. No variables can be listed in both the regression variable list and the smoothing variable list.

If you specify more than one dependent variable, PROC TPSPLINE calculates a thin-plate smoothing spline estimate for each dependent variable by using the regression variables and smoothing variables specified on the right side.

If you specify regression variables, PROC TPSPLINE fits a semiparametric model by using the regression variables as the linear part of the model.
Table 100.3 summarizes the options available in the MODEL statement.

Table 100.3 MODEL Statement Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA=</td>
<td>Specifies the significance level</td>
</tr>
<tr>
<td>DF=</td>
<td>Specifies the degrees of freedom</td>
</tr>
<tr>
<td>DISTANCE=</td>
<td>Defines a range in which points are treated as replicates</td>
</tr>
<tr>
<td>LAMBDA0=</td>
<td>Specifies the smoothing parameter</td>
</tr>
<tr>
<td>LAMBDA=</td>
<td>Specifies a set of values for the λ parameter</td>
</tr>
<tr>
<td>LOGNLAMBDA0=</td>
<td>Specifies the smoothing parameter on the $\log_{10}(n\lambda)$ scale</td>
</tr>
<tr>
<td>LOGNLAMBDA=</td>
<td>Specifies a set of values for the λ parameter on the $\log_{10}(n\lambda)$ scale</td>
</tr>
<tr>
<td>M=</td>
<td>Specifies the order of the derivative</td>
</tr>
<tr>
<td>RANGE=</td>
<td>Specifies the range for smoothing values to be evaluated</td>
</tr>
</tbody>
</table>

You can specify the following options in the MODEL statement:

ALPHA=
number

specifies the significance level α of the confidence limits on the final thin-plate smoothing spline estimate when you request confidence limits to be included in the output data set. Specify number as a value between 0 and 1. The default value is 0.05. See the section “OUTPUT Statement” on page 8544 for more information about the OUTPUT statement.

DF=
df

specifies the degrees of freedom of the thin-plate smoothing spline estimate, defined as

$$ df = \text{tr}(A(\lambda)) $$

where $A(\lambda)$ is the hat matrix. Specify df as a value between zero and the number of unique design points n_q. Smaller df values cause more penalty on the roughness and thus smoother fits.

DISTANCE=
number

D=number

defines a range such that if the L_∞ distance between two data points (x_i, z_i) and (x_j, z_j) satisfies

$$ \|x_i - x_j\|_\infty \leq D/2 $$

then these data points are treated as replicates, where x_i are the smoothing variables and z_i are the regression variables.

You can use the DISTANCE= option to reduce the number of unique design points by treating nearby data as replicates. This can be useful when you have a large data set. Larger DISTANCE= option values cause fewer n_q points. The default value is 0.

PROC TPSPLINE uses the DISTANCE= value to group points as follows: The data are first sorted by the smoothing variables in the order in which they appear in the MODEL statement. The first point in the sorted data becomes the first unique point. Subsequent points have their values set equal to that point until the first point where the maximum distance in one dimension is larger than $D/2$. This point becomes the next unique point, and so on. Because of this sequential processing, the set of unique points differs depending on the order of the smoothing variables in the MODEL statement.
For example, with a model that has two smoothing variables \((x_1, x_2)\), the data are first sorted by \(x_1\) and \(x_2\) (in that order), and then uniqueness is assessed sequentially. The first point in the sorted data \(x_1 = (x_{11}, x_{21})\) becomes the first unique point, \(u_1 = (u_{11}, u_{21})\). Subsequent points \(x_i = (x_{1i}, x_{2i})\) are set equal to \(u_1\) until the algorithm comes to a point with \(\max(|x_{1i} - u_{11}|, |x_{2i} - u_{21}|) > D/2\). This point becomes the second unique point \(u_2\), and data sorting proceeds from there.

LAMBDA0=number

specifies the smoothing parameter, \(\lambda_0\), to be used in the thin-plate smoothing spline estimate. By default, PROC TPSPLINE uses the \(\lambda\) parameter that minimizes the GCV function for the final fit. The LAMBDA0= value must be positive. Larger \(\lambda_0\) values cause smoother fits.

LAMBDA=list-of-values

specifies a set of values for the \(\lambda\) parameter. PROC TPSPLINE returns a GCV value for each \(\lambda\) point that you specify. You can use the LAMBDA= option to study the GCV function curve for a set of values for \(\lambda\). All values listed in the LAMBDA= option must be positive.

LOGNLAMBDA0=number

LOGNL0=number

specifies the smoothing parameter \(\lambda_0\) on the \(\log_{10}(n\lambda)\) scale. If you specify both the LOGNL0= and LAMBDA0= options, only the value provided by the LOGNL0= option is used. Larger \(\log_{10}(n\lambda_0)\) values cause smoother fits. By default, PROC TPSPLINE uses the \(\lambda\) parameter that minimizes the GCV function for the estimate.

LOGNLAMBDA=list-of-values

LOGNL=list-of-values

specifies a set of values for the \(\lambda\) parameter on the \(\log_{10}(n\lambda)\) scale. PROC TPSPLINE returns a GCV value for each \(\lambda\) point that you specify. You can use the LOGNLAMBDA= option to study the GCV function curve for a set of values for \(\lambda\). If you specify both the LOGNL= and LAMBDA= options, only the list of values provided by the LOGNL= option is used.

In some cases, the LOGNL= option might be preferred over the LAMBDA= option. Because the LAMBDA= value must be positive, a small change in that value can result in a major change in the GCV value. If you instead specify \(\lambda\) on the \(\log_{10}(n\lambda)\) scale, the allowable range is enlarged to include negative values. Thus, the GCV function is less sensitive to changes in LOGNLAMBDA.

The DF= option, LAMBDA0= option, and LOGNLAMBDA0= option all specify exact smoothness of a nonparametric fit. If you want to fit a model with specified smoothness, the DF= option is preferable to the other two options because \((0, n_q)\), the range of df, is much smaller in length than \((0, \infty)\) of \(\lambda\) and \((-\infty, \infty)\) of \(\log_{10}(n\lambda)\).

M=number

specifies the order of the derivative in the penalty term. The number must be a positive integer. The default value is \(\max(2, \text{int}(d/2) + 1)\), where \(d\) is the number of smoothing variables.

RANGE=(lower, upper)

specifies that on the \(\log_{10}(n\lambda)\) scale only smoothing values greater than or equal to lower and less than or equal to upper be evaluated to minimize the GCV function.
Chapter 100: The TPSPLINE Procedure

OUTPUT Statement

```
OUTPUT OUT=SAS-data-set < keyword . . . keyword > ;
```

The OUTPUT statement creates a new SAS data set that contains diagnostic measures calculated after fitting the model.

All the variables in the original data set are included in the new data set, along with variables created by specifying `keywords` in the OUTPUT statement. These new variables contain the values of a variety of statistics and diagnostic measures that are calculated for each observation in the data set. If no `keyword` is present, the data set contains only the original data set and predicted values.

Details about the specifications in the OUTPUT statement are as follows.

- **OUT=SAS-data-set**
 - specifies the name of the new data set to contain the diagnostic measures. This specification is required.

- **keyword**
 - specifies the statistics to include in the output data set. The names of the new variables that contain the statistics are formed by using a prefix of one or more characters to identify the statistic, followed by an underscore (_), followed by the dependent variable name.

 For example, suppose that you have two dependent variables—say, \(y_1 \) and \(y_2 \)—and you specify the keywords PRED, ADIAG, and UCLM. The output SAS data set will contain the following variables:

 - \(P_y_1 \) and \(P_y_2 \)
 - \(ADIAG_y_1 \) and \(ADIAG_y_2 \)
 - \(UCLM_y_1 \) and \(UCLM_y_2 \)

The `keywords` and the statistics they represent are as follows:

- **RESID | R**
 - residual values, calculated as fitted values subtracted from the observed response values: \(y - \hat{y} \). The default prefix is \(R_ \).

- **PRED**
 - predicted values. The default prefix is \(P_ \).

- **STD**
 - standard error of the mean predicted value. The default prefix is \(STD_ \).

- **UCLM**
 - upper limit of the Bayesian confidence interval for the expected value of the dependent variables. By default, PROC TPSPLINE computes 95% confidence limits. The default prefix is \(UCLM_ \).

- **LCLM**
 - lower limit of the Bayesian confidence interval for the expected value of the dependent variables. By default, PROC TPSPLINE computes 95% confidence limits. The default prefix is \(LCLM_ \).

- **ADIAG**
 - diagonal element of the hat matrix associated with the observation. The default prefix is \(ADIAG_ \).

- **COEF**
 - coefficients arranged in the order of \((\theta_0, \theta_1, \cdots, \theta_d, \delta_1, \cdots, \delta_{n_q}) \), where \(n_q \) is the number of unique data points. This option can be used only when there is only one dependent variable in the model. The default prefix is \(COEF_ \).
SCORE Statement

```plaintext
SCORE DATA=SAS-data-set OUT=SAS-data-set <keyword . . . keyword> ;
```

The SCORE statement calculates predicted statistics for a new data set. If you have multiple data sets to predict, you can specify multiple SCORE statements. You must use a SCORE statement for each data set.

You can request diagnostic measures that are calculated for each observation in the SCORE data set. The new data set contains all the variables in the SCORE data set in addition to the requested variables. If no `keyword` is present, the data set contains only the predicted values.

The following *keywords* must be specified in the SCORE statement:

- **DATA=SAS-data-set**
 - specifies the input SAS data set that contains the smoothing variables \(x\) and regression variables \(z\). The predicted response \((\hat{y})\) value is computed for each \((x, z)\) pair. The data set must include all independent variables specified in the MODEL statement.

- **OUT=SAS-data-set**
 - specifies the name of the SAS data set to contain the predictions.

- **keyword**
 - specifies the statistics to include in the output data set for the current SCORE statement. The names of the new variables that contain the statistics are formed by using a prefix of one or more characters to identify the statistic, followed by an underscore \(_\), followed by the dependent variable name. The *keywords* and the statistics they represent are as follows:

 - **PRED** predicted values
 - **STD** standard error of the mean predicted value
 - **UCLM** upper limit of the Bayesian confidence interval for the expected value of the dependent variables. By default, PROC TPSPLINE computes 95% confidence limits.
 - **LCLM** lower limit of the Bayesian confidence interval for the expected value of the dependent variables. By default, PROC TPSPLINE computes 95% confidence limits.

Details: TPSPLINE Procedure

Computational Formulas

The theoretical foundations for the thin-plate smoothing spline are described in Duchon (1976, 1977) and Meinguet (1979). Further results and applications are given in: Wahba and Wendelberger (1980); Hutchinson and Bischof (1983); Seaman and Hutchinson (1985).

Suppose that \(H_m\) is a space of functions whose partial derivatives of total order \(m\) are in \(L_2(E^d)\), where \(E^d\) is the domain of \(x\).
Now, consider the data model

\[y_i = f(x_i) + \epsilon_i, \ i = 1, \ldots, n \]

where \(f \in \mathcal{H}_m \).

Using the notation from the section “Penalized Least Squares Estimation” on page 8524, for a fixed \(\lambda \), estimate \(f \) by minimizing the penalized least squares function

\[
\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i) - z_i \beta)^2 + \lambda J_m(f)
\]

\(\lambda J_m(f) \) is the penalty term to enforce smoothness on \(f \). There are several ways to define \(J_m(f) \). For the thin-plate smoothing spline, with \(x = (x_1, \ldots, x_d) \) of dimension \(d \), define \(J_m(f) \) as

\[
J_m(f) = \int_{\infty}^{\infty} \cdots \int_{\infty}^{\infty} \sum_{i=1}^{m} \frac{m!}{\alpha_1! \cdots \alpha_d!} \left(\frac{\partial^m f}{\partial x_1^{\alpha_1} \cdots \partial x_d^{\alpha_d}} \right)^2 \, dx_1 \cdots dx_d
\]

where \(\sum_i \alpha_i = m \). Under this definition, \(J_m(f) \) gives zero penalty to some functions. The space that is spanned by the set of polynomials that contribute zero penalty is called the polynomial space. The dimension of the polynomial space \(M \) is a function of dimension \(d \) and order \(m \) of the smoothing penalty, \(M = \binom{m+d-1}{d-1} \).

Given the condition that \(2m > d \), the function that minimizes the penalized least squares criterion has the form

\[
\hat{f}(x) = \sum_{j=1}^{M} \theta_j \phi_j(x) + \sum_{i=1}^{n} \delta_i \eta_{md}(\|x - x_i\|)
\]

where \(\theta \) and \(\delta \) are vectors of coefficients to be estimated. The \(M \) functions \(\phi_j \) are linearly independent polynomials that span the space of functions for which \(J_m(f) \) is zero. The basis functions \(\eta_{md} \) are defined as

\[
\eta_{md}(r) = \begin{cases}
\frac{(-1)^{m+1+d/2}}{\Gamma(d/2-m)\Gamma(\frac{3}{2})} \frac{\log(r)}{2^{2m-d} \pi^{d/2}}, & \text{if } d \text{ is even} \\
\frac{(-1)^{m+1+d/2}}{\Gamma(d/2-m)\Gamma(\frac{3}{2})} \frac{\log(r)}{2^{2m-d} \pi^{d/2}}, & \text{if } d \text{ is odd}
\end{cases}
\]

When \(d = 2 \) and \(m = 2 \), then \(M = \binom{3}{2} = 3 \), \(\phi_1(x) = 1 \), \(\phi_2(x) = x_1 \), and \(\phi_3(x) = x_2 \). \(J_m(f) \) is as follows:

\[
J_2(f) = \int_{\infty}^{\infty} \int_{\infty}^{\infty} \left(\frac{\partial^2 f}{\partial x_1^2} \right)^2 + 2 \left(\frac{\partial^2 f}{\partial x_1 \partial x_2} \right)^2 + \left(\frac{\partial^2 f}{\partial x_2^2} \right)^2 \, dx_1 dx_2
\]

For the sake of simplicity, the formulas and equations that follow assume \(m = 2 \). See Wahba (1990) and Bates et al. (1987) for more details.

Duchon (1976) showed that \(f_\lambda \) can be represented as

\[
f_\lambda(x_i) = \theta_0 + \sum_{j=1}^{d} \theta_j x_{ij} + \sum_{j=1}^{n} \delta_j E_2(x_i - x_j)
\]

where \(E_2(s) = \frac{1}{2 \pi} \|s\|^2 \log(\|s\|) \) for \(d = 2 \). For derivations of \(E_2(s) \) for other values of \(d \), see Villalobos and Wahba (1987).
If you define K with elements $K_{ij} = E_2(x_i - x_j)$ and T with elements $T_{ij} = (X_{ij})$, the goal is to find vectors of coefficients $\beta, \theta,$ and δ that minimize

$$S_2(\beta, \theta, \delta) = \frac{1}{n} \|y - T\theta - K\delta - Z\beta\|^2 + \lambda \delta'K\delta$$

A unique solution is guaranteed if the matrix T is of full rank and $\delta'K\delta \geq 0$.

If $\alpha = \left(\begin{array}{c} \theta \\ \beta \end{array} \right)$ and $X = (T \ Z)$, the expression for S_2 becomes

$$\frac{1}{n} \|y - X\alpha - K\delta\|^2 + \lambda \delta'K\delta$$

The coefficients α and δ can be obtained by solving

$$(K + n\lambda I_n)\delta + X\alpha = y$$

$$X'\delta = 0$$

To compute α and δ, let the QR decomposition of X be

$$X = (Q_1 \ Q_2) \left(\begin{array}{c} R \\ 0 \end{array} \right)$$

where $(Q_1 \ Q_2)$ is an orthogonal matrix and R is an upper triangular, with $X'Q_2 = 0$ (Dongarra et al. 1979).

Since $X'\delta = 0$, δ must be in the column space of Q_2. Therefore, δ can be expressed as $\delta = Q_2y$ for a vector y. Substituting $\delta = Q_2y$ into the preceding equation and multiplying through by Q_2' gives

$$Q_2'(K + n\lambda I_n)Q_2y = Q_2'y$$

or

$$\delta = Q_2y = Q_2[Q_2'(K + n\lambda I_n)Q_2]^{-1}Q_2'y$$

The coefficient α can be obtained by solving

$$R\alpha = Q_1'[y - (K + n\lambda I)\delta]$$

The influence matrix $A(\lambda)$ is defined as

$$\hat{y} = A(\lambda)y$$

and has the form

$$A(\lambda) = I - n\lambda Q_2[Q_2'(K + n\lambda I_n)Q_2]^{-1}Q_2$$

Similar to the regression case, if you consider the trace of $A(\lambda)$ as the degrees of freedom for the model and the trace of $(I - A(\lambda))$ as the degrees of freedom for the error, the estimate σ^2 can be represented as

$$\hat{\sigma}^2 = \frac{\text{RSS}(\lambda)}{\text{tr}(I - A(\lambda))}$$

where RSS(\lambda) is the residual sum of squares. Theoretical properties of these estimates have not yet been published. However, good numerical results in simulation studies have been described by several authors. For more information, see O’Sullivan and Wong (1987); Nychka (1986a, b, 1988); Hall and Titterington (1987).
Confidence Intervals

Viewing the spline model as a Bayesian model, Wahba (1983) proposed Bayesian confidence intervals for smoothing spline estimates as

\[\hat{f}_\lambda(x_i) \pm z_{\alpha/2} \sqrt{\hat{\sigma}^2 a_{ii}(\lambda)} \]

where \(a_{ii}(\lambda) \) is the \(i \)th diagonal element of the \(A(\lambda) \) matrix and \(z_{\alpha/2} \) is the \(1 - \alpha/2 \) quantile of the standard normal distribution. The confidence intervals are interpreted as intervals “across the function” as opposed to pointwise intervals.

For SCORE data sets, the hat matrix \(A(\lambda) \) is not available. To compute the Bayesian confidence interval for a new point \(x_{\text{new}} \), let

\[
S = X, \quad M = K + n\lambda I
\]

and let \(\xi \) be an \(n \times 1 \) vector with \(i \)th entry

\[\eta_{md}(\|x_{\text{new}} - x_i\|) \]

When \(d = 2 \) and \(m = 2 \), \(\hat{\xi}_i \) is computed with

\[E_2(x_i - x_{\text{new}}) = \frac{1}{2\pi} \|x_i - x_{\text{new}}\|^2 \log(\|x_i - x_{\text{new}}\|) \]

\(\phi \) is a vector of evaluations of \(x_{\text{new}} \) by the polynomials that span the functional space where \(J_m(f) \) is zero. The details for \(X, K, \) and \(E_2 \) are discussed in the previous section. Wahba (1983) showed that the Bayesian posterior variance of \(x_{\text{new}} \) satisfies

\[n\lambda \text{Var}(x_{\text{new}}) = \phi'(S'M^{-1}S)^{-1}\phi - 2\phi'd_\xi - \xi'c_\xi \]

where

\[c_\xi = (M^{-1} - M^{-1}S(S'M^{-1}S)^{-1}S'M^{-1})\xi \]
\[d_\xi = (S'M^{-1}S)^{-1}S'M^{-1}\xi \]

Suppose that you fit a spline estimate that consists of a true function \(f \) and a random error term \(\epsilon_i \) to experimental data. In repeated experiments, it is likely that about \(100(1 - \alpha)\% \) of the confidence intervals cover the corresponding true values, although some values are covered every time and other values are not covered by the confidence intervals most of the time. This effect is more pronounced when the true surface or surface has small regions of particularly rapid change.

Smoothing Parameter

The quantity \(\lambda \) is called the smoothing parameter, which controls the balance between the goodness of fit and the smoothness of the final estimate.

A large \(\lambda \) heavily penalizes the \(m \)th derivative of the function, thus forcing \(f^{(m)} \) close to 0. A small \(\lambda \) places less of a penalty on rapid change in \(f^{(m)}(x) \), resulting in an estimate that tends to interpolate the data points.
The smoothing parameter greatly affects the analysis, and it should be selected with care. One method is to perform several analyses with different values for \(\lambda \) and compare the resulting final estimates.

A more objective way to select the smoothing parameter \(\lambda \) is to use the “leave-out-one” cross validation function, which is an approximation of the predicted mean squares error. A generalized version of the leave-out-one cross validation function is proposed by Wahba (1990) and is easy to calculate. This generalized cross validation (GCV) function is defined as

\[
GCV(\lambda) = \frac{(1/n)||I - A(\lambda)||y^2}{[(1/n)\text{tr}(I - A(\lambda))]^2}
\]

The justification for using the GCV function to select \(\lambda \) relies on asymptotic theory. Thus, you cannot expect good results for very small sample sizes or when there is not enough information in the data to separate the model from the error component. Simulation studies suggest that for independent and identically distributed Gaussian noise, you can obtain reliable estimates of \(\lambda \) for \(n \) greater than 25 or 30. Note that, even for large values of \(n \) (say, \(n \geq 50 \)), in extreme Monte Carlo simulations there might be a small percentage of unwarranted extreme estimates in which \(\hat{\lambda} = 0 \) or \(\hat{\lambda} = \infty \) (Wahba 1983). Generally, if \(\sigma^2 \) is known to within an order of magnitude, the occasional extreme case can be readily identified. As \(n \) gets larger, the effect becomes weaker.

The GCV function is fairly robust against nonhomogeneity of variances and non-Gaussian errors (Villalobos and Wahba 1987). Andrews (1988) has provided favorable theoretical results when variances are unequal. However, this selection method is likely to give unsatisfactory results when the errors are highly correlated.

The GCV value might be suspect when \(\lambda \) is extremely small because computed values might become indistinguishable from zero. In practice, calculations with \(\lambda = 0 \) or \(\lambda \) near 0 can cause numerical instabilities that result in an unsatisfactory solution. Simulation studies have shown that a \(\lambda \) with \(\log_{10}(n\lambda) > -8 \) is small enough that the final estimate based on this \(\lambda \) almost interpolates the data points. A GCV value based on a \(\lambda \leq 10^{-8} \) might not be accurate.

ODS Table Names

PROC TPSPLINE assigns a name to each table it creates. You can use these names to reference the table when using the Output Delivery System (ODS) to select tables and create output data sets. Table 100.4 lists these names. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

<table>
<thead>
<tr>
<th>ODS Table Name</th>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataSummary</td>
<td>Data summary</td>
<td>PROC</td>
<td>Default</td>
</tr>
<tr>
<td>FitSummary</td>
<td>Fit parameters and fit summary</td>
<td>PROC</td>
<td>Default</td>
</tr>
<tr>
<td>FitStatistics</td>
<td>Model fit statistics</td>
<td>PROC</td>
<td>Default</td>
</tr>
<tr>
<td>GCVFunction</td>
<td>GCV table</td>
<td>MODEL</td>
<td>LOGNLAMBDA, LAMBDA</td>
</tr>
</tbody>
</table>

By referring to the names of such tables, you can use the ODS OUTPUT statement to place one or more of these tables in output data sets.
For example, the following statements create an output data set named FitStats which contains the FitStatistics table, an output data set named DataInfo which contains the DataSummary table, an output data set named ModelInfo which contains the FitSummary table, and an output data set named GCVFunc which contains the GCVFunction table.

```sas
proc tpspline data=Melanoma;
  model Incidences=Year /LOGNLAMBDA=(-4 to 0 by 0.2);
  ods output FitStatistics = FitStats
       DataSummary = DataInfo
       FitSummary = ModelInfo
       GCVFunction = GCVFunc;
run;
```

ODS Graphics

Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPHICS ON statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling ODS Graphics” on page 606 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 605 in Chapter 21, “Statistical Graphics Using ODS.”

You can reference every graph produced through ODS Graphics with a name. Table 100.5 lists the names of the graphs, along with the relevant PLOTS= options.

<table>
<thead>
<tr>
<th>ODS Graph Name</th>
<th>Plot Description</th>
<th>PLOTS Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>ContourFitPanel</td>
<td>Panel of thin-plate spline contour surfaces overlaid on scatter plots of data</td>
<td>CONTOURFITPANEL</td>
</tr>
<tr>
<td>ContourFit</td>
<td>Thin-plate spline contour surface overlaid on scatter plot of data</td>
<td>CONTOURFITPANEL</td>
</tr>
<tr>
<td>DiagnosticsPanel</td>
<td>Panel of fit diagnostics</td>
<td>DIAGNOSTICS</td>
</tr>
<tr>
<td>FitPanel</td>
<td>Panel of thin-plate spline curves overlaid on scatter plots of data</td>
<td>FITPANEL</td>
</tr>
<tr>
<td>FitPlot</td>
<td>Thin-plate spline curve overlaid on scatter plot of data</td>
<td>FIT</td>
</tr>
<tr>
<td>ObservedByPredicted</td>
<td>Dependent variable versus thin-plate spline fit</td>
<td>OBSERVEDBYPREDICTED</td>
</tr>
<tr>
<td>QQPlot</td>
<td>Normal quantile plot of residuals</td>
<td>QQPLOT</td>
</tr>
<tr>
<td>ResidualBySmooth</td>
<td>Panel of residuals versus predictor by smoothing parameter values</td>
<td>RESIDUALBYSMOOTH</td>
</tr>
<tr>
<td>ResidualByPredicted</td>
<td>Residuals versus thin-plate spline fit</td>
<td>RESIDUALBYPREDICTED</td>
</tr>
<tr>
<td>ResidualHistogram</td>
<td>Histogram of fit residuals</td>
<td>RESIDUALHISTOGRAM</td>
</tr>
<tr>
<td>ResidualPanel</td>
<td>Panel of residuals versus predictors for fixed smoothing parameter value</td>
<td>RESIDUALS</td>
</tr>
</tbody>
</table>
Table 100.5
continued

<table>
<thead>
<tr>
<th>ODS Graph Name</th>
<th>Plot Description</th>
<th>PLOTS Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResidualPlot</td>
<td>Plot of residuals versus predictor</td>
<td>RESIDUALS</td>
</tr>
<tr>
<td>RFPlot</td>
<td>Side-by-side plots of quantiles of centered fit and residuals</td>
<td>RFPLT</td>
</tr>
<tr>
<td>ScorePlot</td>
<td>Thin-plate spline fit evaluated at scoring points</td>
<td>SCOREPLT</td>
</tr>
<tr>
<td>CriterionPlot</td>
<td>GCV criterion versus smoothing parameter</td>
<td>CRITERION</td>
</tr>
</tbody>
</table>

Examples: TPSPLINE Procedure

Example 100.1: Partial Spline Model Fit

This example analyzes the data set Measure that was introduced in the section “Getting Started: TPSPLINE Procedure” on page 8526. That analysis determined that the final estimated surface can be represented by a quadratic function for one or both of the independent variables. This example illustrates how you can use PROC TPSPLINE to fit a partial spline model. The data set Measure is fit by using the following model:

\[
y = \beta_0 + \beta_1 x_1 + \beta x_1^2 + f(x_2)
\]

The model has a parametric component (associated with the \(x_1\) variable) and a nonparametric component (associated with the \(x_2\) variable). The following statements fit a partial spline model:

```plaintext
data Measure;
  set Measure;
  x1sq = x1*x1;
run;

data pred;
  do x1=-1 to 1 by 0.1;
    do x2=-1 to 1 by 0.1;
      x1sq = x1*x1;
      output;
    end;
  end;
run;

proc tpspline data= measure;
  model y = x1 x1sq (x2);
  score data = pred out = predy;
run;
```

Output 100.1.1 displays the results from these statements.
Output 100.1.1 Output from PROC TPSPLINE

Raw Data

The TPSPLINE Procedure
Dependent Variable: y

Summary of Input Data Set

Number of Non-Missing Observations 50
Number of Missing Observations 0
Unique Smoothing Design Points 5

Summary of Final Model

Number of Regression Variables 2
Number of Smoothing Variables 1
Order of Derivative in the Penalty 2
Dimension of Polynomial Space 4

Summary Statistics
of Final Estimation

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>log10(n*Lambda)</td>
<td>-2.2374</td>
</tr>
<tr>
<td>Smoothing Penalty</td>
<td>205.3461</td>
</tr>
<tr>
<td>Residual SS</td>
<td>8.5821</td>
</tr>
<tr>
<td>Tr(I-A)</td>
<td>43.1534</td>
</tr>
<tr>
<td>Model DF</td>
<td>6.8466</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.4460</td>
</tr>
<tr>
<td>GCV</td>
<td>0.2304</td>
</tr>
</tbody>
</table>

As displayed in Output 100.1.1, there are five unique design points for the smoothing variable \(x_2 \) and two regression variables in the model \((x_1, x_2^2)\). The dimension of the polynomial space is the number of columns in \(\{1, x_1, x_1^2, x_2\} \) = 4. The standard deviation of the estimate is much larger than the one based on the model with both \(x_1 \) and \(x_2 \) as smoothing variables (0.445954 compared to 0.098421). One of the many possible explanations might be that the number of unique design points of the smoothing variable is too small to warrant an accurate estimate for \(f(x_2) \).
Example 100.1: Partial Spline Model Fit

The following statements produce a surface plot for the partial spline model by using the surface template that is defined in the section “Getting Started: TPSPLINE Procedure” on page 8526.

```sas
proc sgrender data=predy template=surface;
    dynamic _X='x1' _Y='x2' _Z='P_y' _T='Plot of Fitted Surface on a Fine Grid';
run;
```

The surface displayed in Output 100.1.2 is similar to the one estimated by using the full nonparametric model (displayed in Output 100.2 and Output 100.6).

Output 100.1.2 Plot of PROC TPSPLINE Fit from the Partial Spline Model

![Plot of Fitted Surface on a Fine Grid](image)
Example 100.2: Spline Model with Higher-Order Penalty

This example continues the analysis of the data set Measure to illustrate how you can use PROC TPSPLINE to fit a spline model with a higher-order penalty term. Spline models with high-order penalty terms move low-order polynomial terms into the polynomial space. Hence, there is no penalty for these terms, and they can vary without constraint.

As shown in the previous analyses, the final model for the data set Measure must include quadratic terms for both x_1 and x_2. This example fits the following model:

\[
y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \beta_3 x_2 + \beta_4 x_2^2 + \beta_5 x_1 x_2 + f(x_1, x_2)
\]

The model includes quadratic terms for both variables, although it differs from the usual linear model. The nonparametric term $f(x_1, x_2)$ explains the variation of the data that is unaccounted for by a simple quadratic surface.

To modify the order of the derivative in the penalty term, specify the M= option. The following statements specify the option M=3 in order to include the quadratic terms in the polynomial space:

```plaintext
data Measure;
  set Measure;
  x1sq = x1*x1;
  x2sq = x2*x2;
  x1x2 = x1*x2;
run;

proc tpspline data= Measure;
  model y = (x1 x2) / m=3;
  score data = pred out = predy;
run;
```
Output 100.2.1 displays the results from these statements.

Output 100.2.1 Output from PROC TPSPLINE with M=3

<table>
<thead>
<tr>
<th>Raw Data</th>
<th>The TPSPLINE Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dependent Variable: y</td>
</tr>
<tr>
<td></td>
<td>Summary of Input Data Set</td>
</tr>
<tr>
<td></td>
<td>Number of Non-Missing Observations 50</td>
</tr>
<tr>
<td></td>
<td>Number of Missing Observations 0</td>
</tr>
<tr>
<td></td>
<td>Unique Smoothing Design Points 25</td>
</tr>
<tr>
<td></td>
<td>Summary of Final Model</td>
</tr>
<tr>
<td></td>
<td>Number of Regression Variables 0</td>
</tr>
<tr>
<td></td>
<td>Number of Smoothing Variables 2</td>
</tr>
<tr>
<td></td>
<td>Order of Derivative in the Penalty 3</td>
</tr>
<tr>
<td></td>
<td>Dimension of Polynomial Space 6</td>
</tr>
<tr>
<td></td>
<td>Summary Statistics</td>
</tr>
<tr>
<td></td>
<td>of Final Estimation</td>
</tr>
<tr>
<td></td>
<td>log10(n*Lambda) -3.7831</td>
</tr>
<tr>
<td></td>
<td>Smoothing Penalty 2092.4495</td>
</tr>
<tr>
<td></td>
<td>Residual SS 0.2731</td>
</tr>
<tr>
<td></td>
<td>Tr(I-A) 29.1716</td>
</tr>
<tr>
<td></td>
<td>Model DF 20.8284</td>
</tr>
<tr>
<td></td>
<td>Standard Deviation 0.0968</td>
</tr>
<tr>
<td></td>
<td>GCV 0.0160</td>
</tr>
</tbody>
</table>

The model contains six terms in the polynomial space is the number of columns in $((1, x_1, x_1^2, x_1 x_2, x_2, x_2^2)) = 6).$ Compare **Output 100.2.1** with **Output 100.1.1:** the $\log_{10}(n\lambda)$ value and the smoothing penalty differ significantly. In general, these terms are not directly comparable for different models. The final estimate based on this model is close to the estimate based on the model by using the default, $M=2.$

In the following statements, the REG procedure fits a quadratic surface model to the data set **Measure**:

```plaintext
proc reg data= Measure;
    model y = x1 x1sq x2 x2sq x1x2;
run;
```
The results are displayed in Output 100.2.2.

Output 100.2.2 Quadratic Surface Model: The REG Procedure

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>5</td>
<td>443.20502</td>
<td>88.64100</td>
<td>436.33</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>44</td>
<td>8.93874</td>
<td>0.20315</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>49</td>
<td>452.14376</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE: 0.45073 R-Square: 0.9802 Dependent Mean: 15.08548 Adj R-Sq: 0.9780 Coeff Var: 2.98781

The REG procedure produces slightly different results. To fit a similar model with PROC TPSPLINE, you can use a MODEL statement that specifies the degrees of freedom with the DF= option. You can also use a large value for the LOGNLAMBDA0= option to force a parametric model fit.

Because there is one degree of freedom for each of the terms intercept, x1, x2, x1sq, x2sq, and x1x2, the DF=6 option is used as follows:

```sas
proc tpspline data=measure;
  model y=(x1 x2) /m=3 df=6 lognlambda=(-4 to 1 by 0.5);
  score data = pred
    out = predy;
run;
```
The fit statistics are displayed in Output 100.2.3.

Output 100.2.3 Output from PROC TPSPLINE Using M=3 and DF=6

```plaintext
Raw Data

The TPSPLINE Procedure
Dependent Variable: y

Summary of Final Model

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Regression Variables</td>
<td>0</td>
</tr>
<tr>
<td>Number of Smoothing Variables</td>
<td>2</td>
</tr>
<tr>
<td>Order of Derivative in the Penalty</td>
<td>3</td>
</tr>
<tr>
<td>Dimension of Polynomial Space</td>
<td>6</td>
</tr>
</tbody>
</table>

GCV Function

<table>
<thead>
<tr>
<th>log10(n*Lambda)</th>
<th>GCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4.000000</td>
<td>0.016330*</td>
</tr>
<tr>
<td>-3.500000</td>
<td>0.016889</td>
</tr>
<tr>
<td>-3.000000</td>
<td>0.027496</td>
</tr>
<tr>
<td>-2.500000</td>
<td>0.067672</td>
</tr>
<tr>
<td>-2.000000</td>
<td>0.139642</td>
</tr>
<tr>
<td>-1.500000</td>
<td>0.195727</td>
</tr>
<tr>
<td>-1.000000</td>
<td>0.219512</td>
</tr>
<tr>
<td>-0.500000</td>
<td>0.227306</td>
</tr>
<tr>
<td>0</td>
<td>0.229740</td>
</tr>
<tr>
<td>0.500000</td>
<td>0.230504</td>
</tr>
<tr>
<td>1.000000</td>
<td>0.230745</td>
</tr>
</tbody>
</table>

Note: * indicates minimum GCV value.

Summary Statistics of Final Estimation

<table>
<thead>
<tr>
<th>log10(n*Lambda)</th>
<th>GCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3830</td>
<td></td>
</tr>
<tr>
<td>0.0000</td>
<td>0.507</td>
</tr>
<tr>
<td>8.9384</td>
<td>0.4507</td>
</tr>
<tr>
<td>43.9997</td>
<td>0.2309</td>
</tr>
<tr>
<td>6.0003</td>
<td></td>
</tr>
</tbody>
</table>
```

Example 100.2: Spline Model with Higher-Order Penalty

The fit statistics are displayed in Output 100.2.3.
Output 100.2.4 shows the GCV values for the list of supplied $\log_{10}(n\lambda)$ values in addition to the fitted model with fixed degrees of freedom 6. The fitted model has a larger GCV value than all other examined models.

The final estimate is based on 6.000330 degrees of freedom because there are already 6 degrees of freedom in the polynomial space and the search range for λ is not large enough (in this case, setting DF=6 is equivalent to setting $\lambda = \infty$).

The standard deviation and RSS (Output 100.2.3) are close to the sum of squares for the error term and the root MSE from the linear regression model (Output 100.2.2), respectively.

For this model, the optimal $\log_{10}(n\lambda)$ is around -3.8, which produces a standard deviation estimate of 0.096765 (see Output 100.2.1) and a GCV value of 0.016051, while the model that specifies DF=6 results in a $\log_{10}(n\lambda)$ larger than 1 and a GCV value larger than 0.23074. The nonparametric model, based on the GCV, should provide better prediction, but the linear regression model can be more easily interpreted.
Example 100.3: Multiple Minima of the GCV Function

The data in this example represent the deposition of sulfate (SO$_4$) at 179 sites in the 48 contiguous states of the United States in 1990. Each observation records the latitude and longitude of the site in addition to the SO$_4$ deposition at the site measured in grams per square meter (g/m^2).

You can use PROC TPSPLINE to fit a surface that reflects the general trend and that reveals underlying features of the data, which are shown in the following DATA step:

```sas
data so4;
   input latitude longitude so4 @@;
datalines;
32.45833  87.24222  1.403  34.28778  85.96889  2.103
33.07139  109.86472 0.299  36.07167  112.15500 0.304
31.95056  112.80000 0.263  33.60500  92.09722  1.950
34.17944  93.09861  2.168  36.08389  92.58694  1.578
   ... more lines ...
43.87333  104.19222 0.306  44.91722 110.42028 0.210
45.07611  72.67556  2.646
;

data pred;
   do latitude = 25 to 47 by 1;
      do longitude = 68 to 124 by 1;
         output;
      end;
   end;
run;
```

The preceding statements create the SAS data set so4 and the data set pred in order to make predictions on a regular grid. The following statements fit a surface for SO$_4$ deposition:

```sas
ods graphics on;
proc tpspline data=so4 plots(only)=criterion;
   model so4 = (latitude longitude) /lognlambda=(-6 to 1 by 0.1);
   score data=pred out=prediction1;
run;
```

Example 100.3: Multiple Minima of the GCV Function

The data in this example represent the deposition of sulfate (SO$_4$) at 179 sites in the 48 contiguous states of the United States in 1990. Each observation records the latitude and longitude of the site in addition to the SO$_4$ deposition at the site measured in grams per square meter (g/m^2).

You can use PROC TPSPLINE to fit a surface that reflects the general trend and that reveals underlying features of the data, which are shown in the following DATA step:

```sas
data so4;
   input latitude longitude so4 @@;
datalines;
32.45833  87.24222  1.403  34.28778  85.96889  2.103
33.07139  109.86472 0.299  36.07167  112.15500 0.304
31.95056  112.80000 0.263  33.60500  92.09722  1.950
34.17944  93.09861  2.168  36.08389  92.58694  1.578
   ... more lines ...
43.87333  104.19222 0.306  44.91722 110.42028 0.210
45.07611  72.67556  2.646
;

data pred;
   do latitude = 25 to 47 by 1;
      do longitude = 68 to 124 by 1;
         output;
      end;
   end;
run;
```

The preceding statements create the SAS data set so4 and the data set pred in order to make predictions on a regular grid. The following statements fit a surface for SO$_4$ deposition:

```sas
ods graphics on;
proc tpspline data=so4 plots(only)=criterion;
   model so4 = (latitude longitude) /lognlambda=(-6 to 1 by 0.1);
   score data=pred out=prediction1;
run;
```
Partial output from these statements is displayed in Output 100.3.1 and Output 100.3.2.

Output 100.3.1 Partial Output from PROC TPSPLINE for Data Set SO₄

<table>
<thead>
<tr>
<th>Raw Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>The TPSPLINE Procedure</td>
</tr>
<tr>
<td>Dependent Variable: so4</td>
</tr>
</tbody>
</table>

Summary of Input Data Set

Number of Non-Missing Observations	179
Number of Missing Observations	0
Unique Smoothing Design Points	179

Summary of Final Model

Number of Regression Variables	0
Number of Smoothing Variables	2
Order of Derivative in the Penalty	2
Dimension of Polynomial Space	3

Output 100.3.2 Partial Output from PROC TPSPLINE for Data Set SO₄

<table>
<thead>
<tr>
<th>Summary Statistics of Final Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>log₁₀(n*Lambda)</td>
</tr>
<tr>
<td>Smoothing Penalty</td>
</tr>
<tr>
<td>Residual SS</td>
</tr>
<tr>
<td>Tr(I-A)</td>
</tr>
<tr>
<td>Model DF</td>
</tr>
<tr>
<td>Standard Deviation</td>
</tr>
<tr>
<td>GCV</td>
</tr>
</tbody>
</table>
Output 100.3.3 displays the CriterionPlot of the GCV function versus $\log_{10}(n\lambda)$.

The GCV function has two minima. PROC TPSPLINE locates the global minimum at 0.277005. The plot also displays a local minimum located around –2.56. The TPSPLINE procedure might not always find the global minimum, although it did in this case. If there is a predetermined search range based on prior knowledge, you can use the RANGE= option to narrow the search range in order to find a desired smoothing value. For example, if you believe a better smoothing parameter should be within the (–4, –2) range, you can obtain the model with $\log_{10}(n\lambda) = –2.56$ with the following statements.

```
proc tpspline data=so4;
  model so4 = (latitude longitude) / range=(-4,-2);
  score data=pred out=prediction2;
run;
```
Output 100.3.4 displays the output from PROC TPSPLINE with a specified search range from the smoothing parameter.

Output 100.3.4 Output from PROC TPSPLINE for Data Set SO4 with $\log_{10}(n \lambda) = -2.56$

The smoothing penalty in Output 100.3.4 is much larger than that displayed in Output 100.3.2. The estimate in Output 100.3.2 uses a large λ value; therefore, the surface is smoother than the estimate by using $\log_{10}(n \lambda) = -2.56$ (Output 100.3.4).

The estimate based on $\log_{10}(n \lambda) = -2.56$ has a larger value of degrees of freedom, and it has a much smaller standard deviation.

However, a smaller standard deviation in nonparametric regression does not necessarily mean that the estimate is good: a small λ value always produces an estimate closer to the data and, therefore, a smaller standard deviation.
When ODS Graphics is enabled, you can compare the two fits by supplying 0.277 and –2.56 to the LOGNLAMBDA= option:

```
proc tpspline data=so4;
    model so4 = (latitude longitude) / lognlambda=(0.277 -2.56);
run;
```

Output 100.3.5 shows the contour surfaces of two models with the two minima. The fit that corresponds to the global minimum 0.277 shows a smoother fit that captures the general structure in the data set. The fit at the local minimum –2.56 is a rougher fit that captures local details. The response values are also displayed as circles with the same color gradient by the default GRADIENT contour-option. The contrast between the predicted and observed SO$_4$ deposition is greater for the smoother fit than for the other one, which means the smoother fit has larger absolute residual values.

Output 100.3.5 Panel of Contour Fit Plots by 0.277 and –2.56

The residuals for the two fits can be visualized in RESIDUALBYSMOOTH panels. Output 100.3.6 is a panel of plots of residuals against smoothing variable Latitude. Output 100.3.7 is a panel of plots of residuals against smoothing variable Longitude. Both panels show that the residuals from the model with the global minimum are larger in absolute values than the ones from the local minimum. This is expected, since the optimal model achieves the smallest GCV value by significantly increasing the smoothness of fit and sacrificing a little in the goodness of fit.
In summary, the fit with $\log_{10}(n\lambda) = 0.277$ represents the underlying surface, while the fit with the $\log_{10}(n\lambda) = -2.56$ overfits the data and captures the additional noise component.
Example 100.4: Large Data Set Application

This example illustrates how you can use the D= option to decrease the computation time needed by the TPSPLINE procedure. Although the D= option can be helpful in decreasing computation time for large data sets, it might produce unexpected results when used with small data sets.

The following statements generate the data set large:

```sas
data large;
  do x=-5 to 5 by 0.02;
    y=5*sin(3*x)+1*rannor(57391);
    output;
  end;
run;
```

The data set large contains 501 observations with one independent variable x and one dependent variable y. The following statements invoke PROC TPSPLINE to produce a thin-plate smoothing spline estimate and the associated 99% confidence interval. The output statistics are saved in the data set fit1.

```sas
proc tpspline data=large;
  model y = (x) / lognlambda=(-5 to -1 by 0.2) alpha=0.01;
  output out=fit1 pred lclm uclm;
run;
```

The results from this MODEL statement are displayed in Output 100.4.1.

Output 100.4.1 Output from PROC TPSPLINE without the D= Option

<table>
<thead>
<tr>
<th>Raw Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>The TPSPLINE Procedure</td>
</tr>
<tr>
<td>Dependent Variable: y</td>
</tr>
</tbody>
</table>

Summary of Input Data Set

Number of Non-Missing Observations	501
Number of Missing Observations	0
Unique Smoothing Design Points	501

Summary of Final Model

Number of Regression Variables	0
Number of Smoothing Variables	1
Order of Derivative in the Penalty	2
Dimension of Polynomial Space	2
Output 100.4.1 continued

<table>
<thead>
<tr>
<th>log10(n*Lambda)</th>
<th>GCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5.000000</td>
<td>1.258653</td>
</tr>
<tr>
<td>-4.800000</td>
<td>1.228743</td>
</tr>
<tr>
<td>-4.600000</td>
<td>1.205835</td>
</tr>
<tr>
<td>-4.400000</td>
<td>1.188371</td>
</tr>
<tr>
<td>-4.200000</td>
<td>1.174644</td>
</tr>
<tr>
<td>-4.000000</td>
<td>1.163102</td>
</tr>
<tr>
<td>-3.800000</td>
<td>1.152627</td>
</tr>
<tr>
<td>-3.600000</td>
<td>1.142590</td>
</tr>
<tr>
<td>-3.400000</td>
<td>1.132700</td>
</tr>
<tr>
<td>-3.200000</td>
<td>1.122789</td>
</tr>
<tr>
<td>-3.000000</td>
<td>1.112755</td>
</tr>
<tr>
<td>-2.800000</td>
<td>1.102642</td>
</tr>
<tr>
<td>-2.600000</td>
<td>1.092769</td>
</tr>
<tr>
<td>-2.400000</td>
<td>1.083779</td>
</tr>
<tr>
<td>-2.200000</td>
<td>1.076636</td>
</tr>
<tr>
<td>-2.000000</td>
<td>1.072763*</td>
</tr>
<tr>
<td>-1.800000</td>
<td>1.074636</td>
</tr>
<tr>
<td>-1.600000</td>
<td>1.087152</td>
</tr>
<tr>
<td>-1.400000</td>
<td>1.120339</td>
</tr>
<tr>
<td>-1.200000</td>
<td>1.194023</td>
</tr>
<tr>
<td>-1.000000</td>
<td>1.344213</td>
</tr>
</tbody>
</table>

Note: * indicates minimum GCV value.

Summary Statistics of Final Estimation

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>log10(n*Lambda)</td>
<td>-1.9483</td>
</tr>
<tr>
<td>Smoothing Penalty</td>
<td>9953.7066</td>
</tr>
<tr>
<td>Residual SS</td>
<td>475.0984</td>
</tr>
<tr>
<td>Tr(I-A)</td>
<td>471.0861</td>
</tr>
<tr>
<td>Model DF</td>
<td>29.9139</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>1.0042</td>
</tr>
<tr>
<td>GCV</td>
<td>1.0726</td>
</tr>
</tbody>
</table>

The following statements specify an identical model, but with the additional specification of the D= option. The estimates are obtained by treating nearby points as replicates.

```plaintext
proc tpspline data=large;
  model y = (x) / lognlambda=(-5 to -1 by 0.2) d=0.05 alpha=0.01;
  output out=fit2 pred lclm uclm;
run;
```
The output is displayed in **Output 100.4.2**.

Output 100.4.2 Output from PROC TPSPLINE with the D= Option

<table>
<thead>
<tr>
<th>log10(n*Lambda)</th>
<th>GCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5.000000</td>
<td>1.306536</td>
</tr>
<tr>
<td>-4.800000</td>
<td>1.261692</td>
</tr>
<tr>
<td>-4.600000</td>
<td>1.226881</td>
</tr>
<tr>
<td>-4.400000</td>
<td>1.200060</td>
</tr>
<tr>
<td>-4.200000</td>
<td>1.179284</td>
</tr>
<tr>
<td>-4.000000</td>
<td>1.162776</td>
</tr>
<tr>
<td>-3.800000</td>
<td>1.149072</td>
</tr>
<tr>
<td>-3.600000</td>
<td>1.137120</td>
</tr>
<tr>
<td>-3.400000</td>
<td>1.126220</td>
</tr>
<tr>
<td>-3.200000</td>
<td>1.115884</td>
</tr>
<tr>
<td>-3.000000</td>
<td>1.105766</td>
</tr>
<tr>
<td>-2.800000</td>
<td>1.095730</td>
</tr>
<tr>
<td>-2.600000</td>
<td>1.085972</td>
</tr>
<tr>
<td>-2.400000</td>
<td>1.077066</td>
</tr>
<tr>
<td>-2.200000</td>
<td>1.069954</td>
</tr>
<tr>
<td>-2.000000</td>
<td>1.066076*</td>
</tr>
<tr>
<td>-1.800000</td>
<td>1.067929</td>
</tr>
<tr>
<td>-1.600000</td>
<td>1.080419</td>
</tr>
<tr>
<td>-1.400000</td>
<td>1.113564</td>
</tr>
<tr>
<td>-1.200000</td>
<td>1.187172</td>
</tr>
<tr>
<td>-1.000000</td>
<td>1.337252</td>
</tr>
</tbody>
</table>

Note: * indicates minimum GCV value.
Chapter 100: The TPSPLINE Procedure

Output 100.4.2 continued

<table>
<thead>
<tr>
<th>Summary Statistics of Final Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>log10(n*Lambda)</td>
</tr>
<tr>
<td>Smoothing Penalty</td>
</tr>
<tr>
<td>Residual SS</td>
</tr>
<tr>
<td>Tr(I-A)</td>
</tr>
<tr>
<td>Model DF</td>
</tr>
<tr>
<td>Standard Deviation</td>
</tr>
<tr>
<td>GCV</td>
</tr>
</tbody>
</table>

The difference between the two estimates is minimal. However, the CPU time for the second MODEL statement is only about 1/7 of the CPU time used in the first model fit.

The following statements produce a plot for comparison of the two estimates:

```sas
data fit2;
  set fit2;
  P1_y = P_y;
  LCLM1_y = LCLM_y;
  UCLM1_y = UCLM_y;
  drop P_y LCLM_y UCLM_y;
run;

proc sort data=fit1;
  by x y;
proc sort data=fit2;
  by x y;
run;

data comp;
  merge fit1 fit2;
  by x y;
  label p1_y = "Yhat1" p_y="Yhat0"
     lclm_y ="Lower CL"
     uclm_y ="Upper CL";
run;

proc sgplot data=comp;
  title "Comparison of Two Estimates";
  title2 "with and without the D= Option";
  yaxis label="Predicted y Values";
  xaxis label="x";
  band x=x lower=lclm_y upper=uclm_y /name="range"
     legendlabel="99% CI of Predicted y without D=";
  series x=x y=P_y/ name="P_y" legendlabel="Predicted y without D="
     lineattrs=graphfit(thickness=1px pattern=shortdash);
  series x=x y=P1_y/ name="P1_y" legendlabel="Predicted y with D="
     lineattrs=graphfit(thickness=1px color=red);
  discretelegend "range" "P_y" "P1_y";
run;
```
The estimates from fit1 and fit2 are displayed in Output 100.4.3 with the 99% confidence interval from the fit1 output data set.

Output 100.4.3 Comparison of Two PROC TPSPLINE Fits with and without the D= Option

Example 100.5: Computing a Bootstrap Confidence Interval

This example illustrates how you can construct a bootstrap confidence interval by using the multiple responses feature in PROC TPSPLINE.

Numerous epidemiological observations have indicated that exposure to solar radiation is an important factor in the etiology of melanoma. The following data present age-adjusted melanoma incidences for 37 years from the Connecticut Tumor Registry (Houghton, Flannery, and Viola 1980). The data are analyzed by Ramsay and Silverman (1997).
data melanoma;
 input year incidences @@;
datalines;
1936 0.9 1937 0.8 1938 0.8 1939 1.3
1940 1.4 1941 1.2 1942 1.7 1943 1.8
1944 1.6 1945 1.5 1946 1.5 1947 2.0
1948 2.5 1949 2.7 1950 2.9 1951 2.5
1952 3.1 1953 2.4 1954 2.2 1955 2.9
1956 2.5 1957 2.6 1958 3.2 1959 3.8
1960 4.2 1961 3.9 1962 3.7 1963 3.3
1964 3.7 1965 3.9 1966 4.1 1967 3.8
1968 4.7 1969 4.4 1970 4.8 1971 4.8
1972 4.8;

The variable incidences records the number of melanoma cases per 100,000 people for the years 1936 to 1972. The following model fits the data and requests a 90% Bayesian confidence interval along with the estimate:

ods graphics on;
proc tpspline data=melanoma plots(only)=(criterionplot fitplot(clm));
 model incidences = (year) /alpha = 0.1;
 output out = result pred uclm lclm;
run;

The output is displayed in Output 100.5.1

Output 100.5.1 Output from PROC TPSPLINE for the MELANOMA Data

<table>
<thead>
<tr>
<th>Comparison of Two Estimates with and without the D= Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>The TPSPLINE Procedure</td>
</tr>
<tr>
<td>Dependent Variable: incidences</td>
</tr>
</tbody>
</table>

Summary of Input Data Set

<table>
<thead>
<tr>
<th>Number of Non-Missing Observations</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Missing Observations</td>
<td>0</td>
</tr>
<tr>
<td>Unique Smoothing Design Points</td>
<td>37</td>
</tr>
</tbody>
</table>

Summary of Final Model

<table>
<thead>
<tr>
<th>Number of Regression Variables</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Smoothing Variables</td>
<td>1</td>
</tr>
<tr>
<td>Order of Derivative in the Penalty</td>
<td>2</td>
</tr>
<tr>
<td>Dimension of Polynomial Space</td>
<td>2</td>
</tr>
</tbody>
</table>
Example 100.5: Computing a Bootstrap Confidence Interval

Output 100.5.1 continued

<table>
<thead>
<tr>
<th>Summary Statistics of Final Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>log10(n*Lambda)</td>
</tr>
<tr>
<td>Smoothing Penalty</td>
</tr>
<tr>
<td>Residual SS</td>
</tr>
<tr>
<td>Tr(I-A)</td>
</tr>
<tr>
<td>Model DF</td>
</tr>
<tr>
<td>Standard Deviation</td>
</tr>
<tr>
<td>GCV</td>
</tr>
</tbody>
</table>

The estimated curve is displayed with 90% confidence interval bands in **Output 100.5.2**. The number of melanoma incidences exhibits a periodic pattern and increases over the years. The periodic pattern is related to sunspot activity and the accompanying fluctuations in solar radiation.

Output 100.5.2 PROC TPSPLINE Estimate and 90% Confidence Interval of Data Set MELANOMA

![Fit Plot for incidences](image-url)
Chapter 100: The TPSPLINE Procedure

Wang and Wahba (1995) compare several bootstrap confidence intervals to Bayesian confidence intervals for smoothing splines. Both bootstrap and Bayesian confidence intervals are across-the-curve intervals, not pointwise intervals. They concluded that bootstrap confidence intervals work as well as Bayesian intervals concerning average coverage probability. Additionally, bootstrap confidence intervals appear to be better for small sample sizes. Based on their simulation, the “percentile-t interval” bootstrap interval performs better than the other types of bootstrap intervals.

Suppose that $\hat{f}_\lambda(x_i)$ and $\hat{\sigma}$ are the estimates of f and σ from the data. Assume that \hat{f}_λ is the “true” f, and generate the bootstrap sample as

$$y_i^* = \hat{f}_\lambda(x_i) + \epsilon_i^*, \quad i = 1, \ldots, n$$

where $\epsilon^* = (\epsilon_1^*, \ldots, \epsilon_n^*)' \sim N(0, \hat{\sigma} I)$. Denote $f^*_\lambda(x_i)$ as the random variable of the bootstrap estimate at x_i. Repeat this process K times, so that at each point x_i, you have K bootstrap estimates $\hat{f}^*_\lambda(x_i)$ or K realizations of $f^*_\lambda(x_i)$. For each fixed x_i, consider the statistic D_i^*, which is similar to the Student’s t statistic,

$$D_i^* = \left(f^*_\lambda(x_i) - \hat{f}^*_\lambda(x_i) \right) / \hat{\sigma}_i^*$$

where $\hat{\sigma}_i^*$ is the estimate of $\hat{\sigma}$ based on the ith bootstrap sample.

Suppose $\chi_{\alpha/2}$ and $\chi_{1-\alpha/2}$ are the lower and upper $\alpha/2$ points, respectively, of the empirical distribution of D_i^*. The $(1 - \alpha)100\%$ bootstrap confidence interval is defined as

$$\left(\hat{f}_\lambda(x_i) - \chi_{1-\alpha/2}\hat{\sigma}, \quad \hat{f}_\lambda(x_i) - \chi_{\alpha/2}\hat{\sigma} \right)$$

Bootstrap confidence intervals are easy to interpret and can be used with any distribution. However, because they require K model fits, their construction is computationally intensive.

The feature of multiple dependent variables in PROC TPSPLINE enables you to fit multiple models with the same independent variables. The procedure calculates the matrix decomposition part of the calculations only once, regardless of the number of dependent variables in the model. These calculations are responsible for most of the computing time used by the TPSPLINE procedure. This feature is particularly useful when you need to generate a bootstrap confidence interval.

To construct a bootstrap confidence interval, perform the following tasks:

- Fit the data by using PROC TPSPLINE and obtain estimates $\hat{f}_\lambda(x_i)$ and $\hat{\sigma}$.
- Generate K bootstrap samples based on $\hat{f}_\lambda(x_i)$ and $\hat{\sigma}$.
- Fit the K bootstrap samples with the TPSPLINE procedure to obtain estimates of $\hat{f}^*_\lambda(x_i)$ and $\hat{\sigma}_i^*$.
- Compute D_i^* and the values $\chi_{\alpha/2}$ and $\chi_{1-\alpha/2}$.
The following statements illustrate this process:

```plaintext
proc tpspline data=melanoma plots(only)=fitplot(clm);
   model incidences = (year) /alpha = 0.1;
   output out=result pred uclm lclm;
run;
```

The output from the initial PROC TPSPLINE analysis is displayed in Output 100.5.3. The data set result contains the predicted values and confidence limits from the analysis.

Output 100.5.3 Output from PROC TPSPLINE for the MELANOMA Data

```
<table>
<thead>
<tr>
<th>Comparison of Two Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>with and without the D= Option</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The TPSPLINE Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable: incidences</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summary of Input Data Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Non-Missing Observations</td>
</tr>
<tr>
<td>Number of Missing Observations</td>
</tr>
<tr>
<td>Unique Smoothing Design Points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summary of Final Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Regression Variables</td>
</tr>
<tr>
<td>Number of Smoothing Variables</td>
</tr>
<tr>
<td>Order of Derivative in the Penalty</td>
</tr>
<tr>
<td>Dimension of Polynomial Space</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summary Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>of Final Estimation</td>
</tr>
</tbody>
</table>

| log10(n*Lambda) | -0.0607 |
| Smoothing Penalty | 0.5171 |
| Residual SS | 1.2243 |
| Tr(I-A) | 22.5852 |
| Model DF | 14.4148 |
| Standard Deviation | 0.2328 |
| GCV | 0.0888 |
```

The following statements illustrate how you can obtain a bootstrap confidence interval for the Malignant data set. The following statements create the data set bootstrap. The observations are created with information from the preceding PROC TPSPLINE execution; as displayed in Output 100.5.3, \(\hat{\alpha} = 0.232823 \). The values of \(\hat{f}_{\hat{\alpha}}(x_i) \) are stored in the data set result in the variable P_incidence.
data bootstrap;
 set result;
 array y{1070} y1-y1070;
 do i=1 to 1070;
 y{i} = p_incidences + 0.232823*rannor(123456789);
 end;
 keep y1-y1070 p_incidences year;
run;
ods listing close;
proc tpspline data=bootstrap plots=none;
 ods output FitStatistics=FitResult;
 id p_incidences;
 model y1-y1070 = (year);
 output out=result2;
run;
ods listing;
The DATA step generates 1,070 bootstrap samples based on the previous estimate from PROC TPSPLINE. For this data set, some of the bootstrap samples result in λs (selected by the GCV function) that cause problematic behavior. Thus, an additional 70 bootstrap samples are generated.

The ODS listing destination is closed before PROC TPSPLINE is invoked. The PLOTS=NONE option suppresses all graphical output. The model fits all the y1...y1070 variables as dependent variables, and the models are fit for all bootstrap samples simultaneously. The output data set result2 contains the variables year, y1...y1070, p_y1...p_y1070, and p_incidences.

The ODS OUTPUT statement writes the FitStatistics table to the data set FitResult. The data set FitResult contains the two variables Parameter and Value. The FitResult data set is used in subsequent calculations for D_i^*. In the data set FitResult, there are 63 estimates with a standard deviation of zero, suggesting that the estimates provide perfect fits of the data and are caused by λs that are approximately equal to zero. For small sample sizes, there is a positive probability that the λ chosen by the GCV function will be zero (Wang and Wahba 1995).

In the following steps, these cases are removed from the bootstrap samples as “bad” samples: they represent failure of the GCV function.

The following SAS statements manipulate the data set FitResult, retaining the standard deviations for all bootstrap samples and merging FitResult with the data set result2, which contains the estimates for bootstrap samples. In the final data set boot, the D_i^* statistics are calculated.

data FitResult;
 set FitResult;
 if Parameter="Standard Deviation";
 keep Value;
run;
proc transpose data=FitResult out=sd prefix=sd;

data result2;
 if _N_ = 1 then set sd;
 set result2;
run;
data boot;
 set result2;
 array y{1070} p_y1-p_y1070;
 array sd{1070} sd1-sd1070;
 do i=1 to 1070;
 if sd{i} > 0 then do;
 d = (y{i} - P_incidences)/sd{i};
 obs = _N_;
 output;
 end;
 end;
 keep d obs P_incidences year;
run;

The following SAS statements retain the first 1,000 bootstrap samples and calculate the values $\chi_{\alpha/2}$ and $\chi_{1-\alpha/2}$ with $\alpha = 0.1$.

```
proc sort data=boot;
  by obs;
run;

data boot;
  set boot;
  by obs;
  retain n;
    if first.obs then n=1;
    else n=n+1;
    if n > 1000 then delete;
run;

proc sort data=boot;
  by obs d;
run;

data chi1 chi2 ;
  set boot;
    if (_N_ = (obs-1)*1000+50) then output chi1;
    if (_N_ = (obs-1)*1000+950) then output chi2;
run;

proc sort data=result;
  by year;
run;

proc sort data=chi1;
  by year;
run;

proc sort data=chi2;
  by year;
run;
```
data result;
merge result
 chi1(rename=(d=chi05))
 chi2(rename=(d=chi95));
keep year incidences P_incidences lower upper
LCLM_incidences UCLM_incidences;
lower = -chi95*0.232823 + P_incidences;
upper = -chi05*0.232823 + P_incidences;
label lower="Lower 90% CL (Bootstrap)"
upper="Upper 90% CL (Bootstrap)"
lclm_incidences="Lower 90% CL (Bayesian)"
uclm_incidences="Upper 90% CL (Bayesian)";
run;

The data set result contains the variables year and incidences, the PROC TPSPLINE estimate P_incidences, and the 90% Bayesian and 90% bootstrap confidence intervals.

The following statements produce Output 100.5.4:

```
proc sgplot data=result;
  title "Age-adjusted Melanoma Incidence for 37 Years";
  xaxis label="year";
  yaxis label="Incidences";
  band x=year lower=lclm_incidences upper=uclm_incidences/name="bayesian"
    legendlabel="90% Bayesian CI of Predicted incidences"
    fillattrs=(color=red);
  band x=year lower=lower upper=upper/name="bootstrap"
    legendlabel="90% Bootstrap CI of Predicted incidences"
    transparency=0.05;
  scatter x=year y=incidences/name="obs" legendlabel="incidences";
  series x=year y=p_incidences/name="pred"
    legendlabel="predicted values of incidences"
    lineattrs=graphfit(thickness=1px);
  discretelegend "bayesian" "bootstrap" "obs" "pred";
run;
```

Output 100.5.4 displays the plot of the variable incidences, the predicted values, and the Bayesian and bootstrap confidence intervals.

The plot shows that the bootstrap confidence interval is similar to the Bayesian confidence interval. However, the Bayesian confidence interval is symmetric around the estimates, while the bootstrap confidence interval is not.
References

Subject Index

Bayesian confidence interval
 TPSPLINE procedure, 8548, 8569
bootstrap confidence interval
 TPSPLINE procedure, 8569

design points
 TPSPLINE procedure, 8526, 8552

generalized cross validation (GCV)
 TPSPLINE procedure, 8525, 8548, 8549, 8559

goodness of fit
 TPSPLINE procedure, 8548

model degrees of freedom
 TPSPLINE procedure, 8547

nonhomogeneous variance
 TPSPLINE procedure, 8549

ODS Graphics
 TPSPLINE procedure, 8536
ordinary least squares
 TPSPLINE procedure, 8525

partial spline models
 TPSPLINE procedure, 8551
penalized least squares
 TPSPLINE procedure, 8524, 8545, 8554
polynomial space
 TPSPLINE procedure, 8546

QR decomposition
 TPSPLINE procedure, 8547

roughness penalty
 TPSPLINE procedure, 8525, 8546, 8554

semiparametric models
 TPSPLINE procedure, 8526
semiparametric regression models
 TPSPLINE procedure, 8524, 8551
smoothing parameter
 TPSPLINE procedure, 8548

theoretical foundation
 TPSPLINE procedure, 8545

TPSPLINE procedure
 computational formulas, 8545
 hat matrix, 8542
 large data sets, 8565
 main features, 8523
 ODS graph names, 8550
 ODS Graphics, 8536, 8550
 ODS table names, 8549
 order of the derivative, 8543
 replicates, 8542
 search range, 8543, 8560
 significance level, 8542
Syntax Index

ALPHA= option
 MODEL statement (TPSPLINE), 8542

BY statement
 TPSPLINE procedure, 8540

DATA= option
 PROC TPSPLINE statement, 8536
 SCORE statement (TPSPLINE), 8545

DF= option
 MODEL statement (TPSPLINE), 8542

DISTANCE= option
 MODEL statement (TPSPLINE), 8542

FREQ statement
 TPSPLINE procedure, 8541

ID statement
 TPSPLINE procedure, 8541

LAMBDA0= option
 MODEL statement (TPSPLINE), 8543

LAMBDA= option
 MODEL statement (TPSPLINE), 8543

LOGNLAMBDA0= option
 MODEL statement (TPSPLINE), 8543

LOGNLAMBDA= option
 MODEL statement (TPSPLINE), 8543

M= option
 MODEL statement (TPSPLINE), 8543

MODEL statement
 TPSPLINE procedure, 8541

OUT= option
 OUTPUT statement (TPSPLINE), 8544
 SCORE statement (TPSPLINE), 8545

OUTPUT statement
 TPSPLINE procedure, 8544

PLOTS option
 PROC TPSPLINE statement, 8536
 PROC TPSPLINE statement, see TPSPLINE procedure

RANGE= option
 MODEL statement (TPSPLINE), 8543

SCORE statement, TPSPLINE procedure, 8545

TPSPLINE procedure

syntax, 8535
TPSPLINE procedure, BY statement, 8540
TPSPLINE procedure, FREQ statement, 8541
TPSPLINE procedure, ID statement, 8541
TPSPLINE procedure, MODEL statement, 8541
 ALPHA= option, 8542
 DF= option, 8542
 DISTANCE= option, 8542
 LAMBDA0= option, 8543
 LAMBDA= option, 8543
 LOGNLAMBDA0= option, 8543
 LOGNLAMBDA= option, 8543
 M= option, 8543
 RANGE= option, 8543
TPSPLINE procedure, OUTPUT statement, 8544
 OUT= option, 8544
TPSPLINE procedure, PROC TPSPLINE statement, 8536
 DATA= option, 8536
 PLOTS option, 8536
TPSPLINE procedure, SCORE statement, 8545
 DATA= option, 8545
 OUT= option, 8545