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Introduction to Clustering Procedures
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Overview: Clustering Procedures
You can use SAS clustering procedures to cluster the observations or the variables in a SAS data set. Both
hierarchical and disjoint clusters can be obtained. Only numeric variables can be analyzed directly by
the procedures, although the DISTANCE procedure can compute a distance matrix that uses character or
numeric variables.

The purpose of cluster analysis is to place objects into groups, or clusters, suggested by the data, not defined
a priori, such that objects in a given cluster tend to be similar to each other in some sense, and objects in
different clusters tend to be dissimilar. You can also use cluster analysis to summarize data rather than to
find “natural” or “real” clusters; this use of clustering is sometimes called dissection (Everitt 1980).

Any generalization about cluster analysis must be vague because a vast number of clustering methods have
been developed in several different fields, with different definitions of clusters and similarity among ob-
jects. The variety of clustering techniques is reflected by the variety of terms used for cluster analysis:
botryology, classification, clumping, competitive learning, morphometrics, nosography, nosology, numeri-
cal taxonomy, partitioning, Q-analysis, systematics, taximetrics, taxonorics, typology, unsupervised pattern
recognition, vector quantization, and winner-take-all learning. Good (1977) has also suggested aciniformics
and agminatics.
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Several types of clusters are possible:

� Disjoint clusters place each object in one and only one cluster.

� Hierarchical clusters are organized so that one cluster can be entirely contained within another cluster,
but no other kind of overlap between clusters is allowed.

� Overlapping clusters can be constrained to limit the number of objects that belong simultaneously to
two clusters, or they can be unconstrained, allowing any degree of overlap in cluster membership.

� Fuzzy clusters are defined by a probability or grade of membership of each object in each cluster.
Fuzzy clusters can be disjoint, hierarchical, or overlapping.

The data representations of objects to be clustered also take many forms. The most common are as follows:

� a square distance or similarity matrix, in which both rows and columns correspond to the objects to
be clustered. A correlation matrix is an example of a similarity matrix.

� a coordinate matrix, in which the rows are observations and the columns are variables, as in the usual
SAS multivariate data set. The observations, the variables, or both can be clustered.

The SAS procedures for clustering are oriented toward disjoint or hierarchical clusters from coordinate data,
distance data, or a correlation or covariance matrix. The following procedures are used for clustering:

CLUSTER performs hierarchical clustering of observations by using eleven agglomerative methods
applied to coordinate data or distance data and draws tree diagrams, which are also called
dendrograms or phenograms.

FASTCLUS finds disjoint clusters of observations by using a k-means method applied to coordinate
data. PROC FASTCLUS is especially suitable for large data sets.

MODECLUS finds disjoint clusters of observations with coordinate or distance data by using nonpara-
metric density estimation. It can also perform approximate nonparametric significance
tests for the number of clusters.

VARCLUS performs both hierarchical and disjoint clustering of variables by using oblique multiple-
group component analysis and draws tree diagrams, which are also called dendrograms
or phenograms.

TREE draws tree diagrams, also called dendrograms or phenograms, by using output from the
CLUSTER or VARCLUS procedure. PROC TREE can also create a data set indicating
cluster membership at any specified level of the cluster tree.

The following procedures are useful for processing data prior to the actual cluster analysis:

ACECLUS attempts to estimate the pooled within-cluster covariance matrix from coordinate data
without knowledge of the number or the membership of the clusters (Art, Gnanadesikan,
and Kettenring 1982). PROC ACECLUS outputs a data set containing canonical variable
scores to be used in the cluster analysis proper.
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DISTANCE computes various measures of distance, dissimilarity, or similarity between the observa-
tions (rows) of a SAS data set. PROC DISTANCE also provides various nonparametric
and parametric methods for standardizing variables. Different variables can be standard-
ized with different methods.

PRINCOMP performs a principal component analysis and outputs principal component scores.

STDIZE standardizes variables by using any of a variety of location and scale measures, including
mean and standard deviation, minimum and range, median and absolute deviation from
the median, various M-estimators and A-estimators, and some scale estimators designed
specifically for cluster analysis.

Massart and Kaufman (1983) is the best elementary introduction to cluster analysis. Other important texts
are Anderberg (1973); Sneath and Sokal (1973); Duran and Odell (1974); Hartigan (1975); Titterington,
Smith, and Makov (1985); McLachlan and Basford (1988); Kaufman and Rousseeuw (1990). Hartigan
(1975); Spath (1980) give numerous FORTRAN programs for clustering. Any prospective user of cluster
analysis should study the Monte Carlo results of Milligan (1980); Milligan and Cooper (1985); Cooper and
Milligan (1988). Important references on the statistical aspects of clustering include MacQueen (1967);
Wolfe (1970); Scott and Symons (1971); Hartigan (1977, 1978, 1981, 1985a); Symons (1981); Everitt
(1981); Sarle (1983); Bock (1985); Thode, Mendell, and Finch (1988). Bayesian methods have impor-
tant advantages over maximum likelihood; see Binder (1978, 1981); Banfield and Raftery (1993); Bensmail
et al. (1997). For fuzzy clustering, see Bezdek (1981); Bezdek and Pal (1992). The signal-processing per-
spective is provided by Gersho and Gray (1992). For a discussion of the fragmented state of the literature
on cluster analysis, see Blashfield and Aldenderfer (1978).

Clustering Variables
Factor rotation is often used to cluster variables, but the resulting clusters are fuzzy. It is preferable to use
PROC VARCLUS if you want hard (nonfuzzy), disjoint clusters. Factor rotation is better if you want to be
able to find overlapping clusters. It is often a good idea to try both PROC VARCLUS and PROC FACTOR
with an oblique rotation, compare the amount of variance explained by each, and see how fuzzy the factor
loadings are and whether there seem to be overlapping clusters.

You can use PROC VARCLUS to harden a fuzzy factor rotation; use PROC FACTOR to create an output
data set containing scoring coefficients and initialize PROC VARCLUS with this data set as follows:

proc factor rotate=promax score outstat=fact;
run;

proc varclus initial=input proportion=0;
run;

You can use any rotation method instead of the PROMAX method. The SCORE and OUTSTAT= options
are necessary in the PROC FACTOR statement. PROC VARCLUS reads the correlation matrix from the
data set created by PROC FACTOR. The INITIAL=INPUT option tells PROC VARCLUS to read initial
scoring coefficients from the data set. The option PROPORTION=0 keeps PROC VARCLUS from splitting
any of the clusters.
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Clustering Observations
PROC CLUSTER is easier to use than PROC FASTCLUS because one run produces results from one cluster
up to as many as you like. You must run PROC FASTCLUS once for each number of clusters.

The time required by PROC FASTCLUS is roughly proportional to the number of observations, whereas
the time required by PROC CLUSTER with most methods varies with the square or cube of the number of
observations. Therefore, you can use PROC FASTCLUS with much larger data sets than PROC CLUSTER.

If you want to hierarchically cluster a data set that is too large to use with PROC CLUSTER directly, you
can have PROC FASTCLUS produce, for example, 50 clusters, and let PROC CLUSTER analyze these 50
clusters instead of the entire data set. The MEAN= data set produced by PROC FASTCLUS contains two
special variables:

� The variable _FREQ_ gives the number of observations in the cluster.

� The variable _RMSSTD_ gives the root mean square across variables of the cluster standard devia-
tions.

These variables are automatically used by PROC CLUSTER to give the correct results when clustering
clusters. For example, you could specify Ward’s minimum variance method Ward (1963):

proc fastclus maxclusters=50 mean=temp;
var x y z;

run;

ods graphics on;
proc cluster method=ward outtree=tree;

var x y z;
run;

Or you could specify Wong’s hybrid method (Wong 1982):

proc fastclus maxclusters=50 mean=temp;
var x y z;

run;

ods graphics on;
proc cluster method=density hybrid outtree=tree;

var x y z;
run;

More detailed examples are given in Chapter 31, “The CLUSTER Procedure.”



Characteristics of Methods for Clustering Observations F 193

Characteristics of Methods for Clustering Observations
Many simulation studies comparing various methods of cluster analysis have been performed. In these
studies, artificial data sets containing known clusters are produced using pseudo-random-number generators.
The data sets are analyzed by a variety of clustering methods, and the degree to which each clustering
method recovers the known cluster structure is evaluated. See Milligan (1981) for a review of such studies.
In most of these studies, the clustering method with the best overall performance has been either average
linkage or Ward’s minimum variance method. The method with the poorest overall performance has almost
invariably been single linkage. However, in many respects, the results of simulation studies are inconsistent
and confusing.

When you attempt to evaluate clustering methods, it is essential to realize that most methods are biased
toward finding clusters possessing certain characteristics related to size (number of members), shape, or dis-
persion. Methods based on the least squares criterion (Sarle 1982), such as k-means and Ward’s minimum
variance method, tend to find clusters with roughly the same number of observations in each cluster. Av-
erage linkage is somewhat biased toward finding clusters of equal variance. Many clustering methods tend
to produce compact, roughly hyperspherical clusters and are incapable of detecting clusters with highly
elongated or irregular shapes. The methods with the least bias are those based on nonparametric density
estimation such as single linkage and density linkage.

Most simulation studies have generated compact (often multivariate normal) clusters of roughly equal size
or dispersion. Such studies naturally favor average linkage and Ward’s method over most other hierarchical
methods, especially single linkage. It would be easy, however, to design a study that uses elongated or
irregular clusters in which single linkage would perform much better than average linkage or Ward’s method
(see some of the following examples). Even studies that compare clustering methods that use “realistic” data
might unfairly favor particular methods. For example, in all the data sets used by Mezzich and Solomon
(1980), the clusters established by field experts are of equal size. When interpreting simulation or other
comparative studies, you must, therefore, decide whether the artificially generated clusters in the study
resemble the clusters you suspect might exist in your data in terms of size, shape, and dispersion. If, like
many people doing exploratory cluster analysis, you have no idea what kinds of clusters to expect, you
should include at least one of the relatively unbiased methods, such as density linkage, in your analysis.

The rest of this section consists of a series of examples that illustrate the performance of various clustering
methods under various conditions. The first, and simplest, example shows a case of well-separated clusters.
The other examples show cases of poorly separated clusters, clusters of unequal size, parallel elongated
clusters, and nonconvex clusters.
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Well-Separated Clusters
If the population clusters are sufficiently well separated, almost any clustering method performs well, as
demonstrated in the following example, which uses single linkage. In this and subsequent examples, the
output from the clustering procedures is not shown, but cluster membership is displayed in scatter plots. The
SAS autocall macro MODSTYLE is specified to change the default marker symbols for the plot. For more
information about autocall libraries, see SAS Macro Language: Reference. The following SAS statements
produce Figure 11.1:

data compact;
keep x y;
n=50; scale=1;
mx=0; my=0; link generate;
mx=8; my=0; link generate;
mx=4; my=8; link generate;
stop;

generate:
do i=1 to n;

x=rannor(1)*scale+mx;
y=rannor(1)*scale+my;
output;

end;
return;

run;

proc cluster data=compact outtree=tree method=single noprint;
run;

proc tree noprint out=out n=3;
copy x y;

run;

%modstyle(name=ClusterStyle,parent=Statistical,type=CLM,
markers=Circle Triangle Square circlefilled);
ods listing style=ClusterStyle;

proc sgplot;
scatter y=y x=x / group=cluster;
title 'Single Linkage Cluster Analysis: '

'Well-Separated, Compact Clusters';
run;



Poorly Separated Clusters F 195

Figure 11.1 Well-Separated, Compact Clusters: PROC CLUSTER METHOD=SINGLE

Poorly Separated Clusters
To see how various clustering methods differ, you must examine a more difficult problem than that of the
previous example.

The following data set is similar to the first except that the three clusters are much closer together. This ex-
ample demonstrates the use of PROC FASTCLUS and five hierarchical methods available in PROC CLUS-
TER. To help you compare methods, this example plots true, generated clusters. Also included is a bubble
plot of the density estimates obtained in conjunction with two-stage density linkage in PROC CLUSTER.



196 F Chapter 11: Introduction to Clustering Procedures

The following SAS statements produce Figure 11.2:

data closer;
keep x y c;
n=50; scale=1;
mx=0; my=0; c=3; link generate;
mx=3; my=0; c=1; link generate;
mx=1; my=2; c=2; link generate;
stop;

generate:
do i=1 to n;

x=rannor(9)*scale+mx;
y=rannor(9)*scale+my;
output;

end;
return;

run;

title 'True Clusters for Data Containing Poorly Separated, Compact Clusters';
proc sgplot;

scatter y=y x=x / group=c ;
run;

Figure 11.2 Poorly Separated, Compact Clusters: Plot of True Clusters
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The following statements use the FASTCLUS procedure to find three clusters and then use the SGPLOT
procedure to plot the clusters. The following statements produce Figure 11.3:

proc fastclus data=closer out=out maxc=3 noprint;
var x y;
title 'FASTCLUS Analysis: '

'Poorly Separated, Compact Clusters';
run;

proc sgplot;
scatter y=y x=x / group=cluster;

run;

Figure 11.3 Poorly Separated, Compact Clusters: PROC FASTCLUS
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The following SAS statements produce Figure 11.4:

proc cluster data=closer outtree=tree method=ward noprint;
var x y;

run;

proc tree noprint out=out n=3;
copy x y;
title 'Ward''s Minimum Variance Cluster Analysis: '

'Poorly Separated, Compact Clusters';
run;

proc sgplot;
scatter y=y x=x / group=cluster;

run;

Figure 11.4 Poorly Separated, Compact Clusters: PROC CLUSTER METHOD=WARD
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The following SAS statements produce Figure 11.5:

proc cluster data=closer outtree=tree method=average noprint;
var x y;

run;

proc tree noprint out=out n=3 dock=5;
copy x y;
title 'Average Linkage Cluster Analysis: '

'Poorly Separated, Compact Clusters';
run;

proc sgplot;
scatter y=y x=x / group=cluster;

run;

Figure 11.5 Poorly Separated, Compact Clusters: PROC CLUSTER METHOD=AVERAGE
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The following SAS statements produce Figure 11.6:

proc cluster data=closer outtree=tree method=centroid noprint;
var x y;

run;

proc tree noprint out=out n=3 dock=5;
copy x y;
title 'Centroid Cluster Analysis: '

'Poorly Separated, Compact Clusters';
run;

proc sgplot;
scatter y=y x=x / group=cluster;

run;

Figure 11.6 Poorly Separated, Compact Clusters: PROC CLUSTER METHOD=CENTROID
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The following SAS statements produce Figure 11.7 and Figure 11.8:

proc cluster data=closer outtree=tree method=twostage k=10 noprint;
var x y;

run;

proc tree noprint out=out n=3;
copy x y _dens_;
title 'Two-Stage Density Linkage Cluster Analysis: '

'Poorly Separated, Compact Clusters';
run;

proc sgplot;
scatter y=y x=x / group=cluster;

run;

proc sgplot;
bubble y=y x=x size=_dens_ / nofill lineattrs=graphdatadefault;
title 'Estimated Densities for Data Containing Poorly Separated, '

'Compact Clusters';
run;

Figure 11.7 Poorly Separated, Compact Clusters: PROC CLUSTER METHOD=TWOSTAGE
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Figure 11.8 Poorly Separated, Compact Clusters: PROC CLUSTER METHOD=TWOSTAGE

In two-stage density linkage, each cluster is a region surrounding a local maximum of the estimated prob-
ability density function. If you think of the estimated density function as a landscape with mountains and
valleys, each mountain is a cluster, and the boundaries between clusters are placed near the bottoms of the
valleys.

The following SAS statements produce Figure 11.9:

proc cluster data=closer outtree=tree method=single noprint;
var x y;

run;

proc tree data=tree noprint out=out n=3 dock=5;
copy x y;
title 'Single Linkage Cluster Analysis: '

'Poorly Separated, Compact Clusters';
run;

proc sgplot;
scatter y=y x=x / group=cluster;

run;
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Figure 11.9 Poorly Separated, Compact Clusters: PROC CLUSTER METHOD=SINGLE

The two least squares methods, PROC FASTCLUS and Ward’s, yield the most uniform cluster sizes and
the best recovery of the true clusters. This result is expected since these two methods are biased toward
recovering compact clusters of equal size. With average linkage, the lower-left cluster is too large; with
the centroid method, the lower-right cluster is too large; and with two-stage density linkage, the top cluster
is too large. The single linkage analysis resembles average linkage except for the large number of outliers
resulting from the DOCK= option in the PROC TREE statement; the outliers are plotted as filled circles
(missing values).

Multinormal Clusters of Unequal Size and Dispersion
In this example, there are three multinormal clusters that differ in size and dispersion. PROC FASTCLUS
and five of the hierarchical methods available in PROC CLUSTER are used. To help you compare methods,
the true, generated clusters are plotted.
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The following SAS statements produce Figure 11.10:

data unequal;
keep x y c;
mx=1; my=0; n=20; scale=.5; c=1; link generate;
mx=6; my=0; n=80; scale=2.; c=3; link generate;
mx=3; my=4; n=40; scale=1.; c=2; link generate;
stop;

generate:
do i=1 to n;

x=rannor(1)*scale+mx;
y=rannor(1)*scale+my;
output;

end;
return;

run;

title 'True Clusters for Data Containing Multinormal Clusters of Unequal Size';
proc sgplot;

scatter y=y x=x / group=c;
run;

Figure 11.10 Generated Clusters of Unequal Size
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The following statements use the FASTCLUS procedure to find three clusters and then use the SGPLOT
procedure to plot the clusters. The following statements produce Figure 11.11:

proc fastclus data=unequal out=out maxc=3 noprint;
var x y;
title 'FASTCLUS Analysis: Compact Clusters of Unequal Size';

run;

proc sgplot;
scatter y=y x=x / group=cluster;

run;

Figure 11.11 Compact Clusters of Unequal Size: PROC FASTCLUS
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The following SAS statements produce Figure 11.12:

proc cluster data=unequal outtree=tree method=ward noprint;
var x y;

run;

proc tree noprint out=out n=3;
copy x y;
title 'Ward''s Minimum Variance Cluster Analysis: '

'Compact Clusters of Unequal Size';
run;

proc sgplot;
scatter y=y x=x / group=cluster;

run;

Figure 11.12 Compact Clusters of Unequal Size: PROC CLUSTER METHOD=WARD
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The following SAS statements produce Figure 11.13:

proc cluster data=unequal outtree=tree method=average noprint;
var x y;

run;

proc tree noprint out=out n=3 dock=5;
copy x y;
title 'Average Linkage Cluster Analysis: '

'Compact Clusters of Unequal Size';
run;

proc sgplot;
scatter y=y x=x / group=cluster;

run;

Figure 11.13 Compact Clusters of Unequal Size: PROC CLUSTER METHOD=AVERAGE
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The following SAS statements produce Figure 11.14:

proc cluster data=unequal outtree=tree method=centroid noprint;
var x y;

run;

proc tree noprint out=out n=3 dock=5;
copy x y;
title 'Centroid Cluster Analysis: '

'Compact Clusters of Unequal Size';
run;

proc sgplot;
scatter y=y x=x / group=cluster;

run;

Figure 11.14 Compact Clusters of Unequal Size: PROC CLUSTER METHOD=CENTROID
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The following SAS statements produce Figure 11.15 and Figure 11.16:

proc cluster data=unequal outtree=tree method=twostage k=10 noprint;
var x y;

run;

proc tree noprint out=out n=3;
copy x y _dens_;
title 'Two-Stage Density Linkage Cluster Analysis: '

'Compact Clusters of Unequal Size';
run;

proc sgplot;
scatter y=y x=x / group=cluster;

run;

proc sgplot;
bubble y=y x=x size=_dens_ / nofill lineattrs=graphdatadefault;
title 'Estimated Densities for Data Containing '

'Compact Clusters of Unequal Size';
run;

Figure 11.15 Compact Clusters of Unequal Size: PROC CLUSTER METHOD=TWOSTAGE
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Figure 11.16 Compact Clusters of Unequal Size: PROC CLUSTER METHOD=TWOSTAGE
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The following SAS statements produce Figure 11.17:

proc cluster data=unequal outtree=tree method=single noprint;
var x y;

run;

proc tree data=tree noprint out=out n=3 dock=5;
copy x y;
title 'Single Linkage Cluster Analysis: '

'Compact Clusters of Unequal Size';
run;

proc sgplot;
scatter y=y x=x / group=cluster;

run;

Figure 11.17 Compact Clusters of Unequal Size: PROC CLUSTER METHOD=SINGLE
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In the PROC FASTCLUS analysis, the smallest cluster, in the bottom-left portion of the plot, has stolen
members from the other two clusters, and the upper-left cluster has also acquired some observations that
rightfully belong to the larger, lower-right cluster. With Ward’s method, the upper-left cluster is separated
correctly, but the lower-left cluster has taken a large bite out of the lower-right cluster. For both of these
methods, the clustering errors are in accord with the biases of the methods to produce clusters of equal size.
In the average linkage analysis, both the upper-left and lower-left clusters have encroached on the lower-
right cluster, thereby making the variances more nearly equal than in the true clusters. The centroid method,
which lacks the size and dispersion biases of the previous methods, obtains an essentially correct partition.

Two-stage density linkage does almost as well, even though the compact shapes of these clusters favor the
traditional methods. Single linkage also produces excellent results.

Elongated Multinormal Clusters
In this example, the data are sampled from two highly elongated multinormal distributions with equal co-
variance matrices. The following SAS statements produce Figure 11.18:

data elongate;
keep x y;
ma=8; mb=0; link generate;
ma=6; mb=8; link generate;
stop;

generate:
do i=1 to 50;

a=rannor(7)*6+ma;
b=rannor(7)+mb;
x=a-b;
y=a+b;
output;

end;
return;

run;

proc fastclus data=elongate out=out maxc=2 noprint;
run;

%modstyle(name=ClusterStyle2,parent=Statistical,type=CLM,
markers=Circle Triangle circlefilled);
ods listing style=ClusterStyle2;

proc sgplot;
scatter y=y x=x / group=cluster;
title 'FASTCLUS Analysis: Parallel Elongated Clusters';

run;

Notice that PROC FASTCLUS found two clusters, as requested by the MAXC= option. However, it at-
tempted to form spherical clusters, which are obviously inappropriate for these data.
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Figure 11.18 Parallel Elongated Clusters: PROC FASTCLUS
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The following SAS statements produce Figure 11.19:

proc cluster data=elongate outtree=tree method=average noprint;
run;

proc tree noprint out=out n=2 dock=5;
copy x y;

run;

proc sgplot;
scatter y=y x=x / group=cluster;
title 'Average Linkage Cluster Analysis: '

'Parallel Elongated Clusters';
run;

Figure 11.19 Parallel Elongated Clusters: PROC CLUSTER METHOD=AVERAGE
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The following SAS statements produce Figure 11.20:

proc cluster data=elongate outtree=tree method=twostage k=10 noprint;
run;

proc tree noprint out=out n=2;
copy x y;

run;

proc sgplot;
scatter y=y x=x / group=cluster;
title 'Two-Stage Density Linkage Cluster Analysis: '

'Parallel Elongated Clusters';
run;

Figure 11.20 Parallel Elongated Clusters: PROC CLUSTER METHOD=TWOSTAGE

PROC FASTCLUS and average linkage fail miserably. Ward’s method and the centroid method (not shown)
produce almost the same results. Two-stage density linkage, however, recovers the correct clusters. Single
linkage (not shown) finds the same clusters as two-stage density linkage except for some outliers.

In this example, the population clusters have equal covariance matrices. If the within-cluster covariances
are known, the data can be transformed to make the clusters spherical so that any of the clustering methods
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can find the correct clusters. But when you are doing a cluster analysis, you do not know what the true
clusters are, so you cannot calculate the within-cluster covariance matrix. Nevertheless, it is sometimes
possible to estimate the within-cluster covariance matrix without knowing the cluster membership or even
the number of clusters, using an approach invented by Art, Gnanadesikan, and Kettenring (1982). A method
for obtaining such an estimate is available in the ACECLUS procedure.

In the following analysis, PROC ACECLUS transforms the variables X and Y into the canonical variables
Can1 and Can2. The latter are plotted and then used in a cluster analysis by Ward’s method. The clusters
are then plotted with the original variables X and Y.

The following SAS statements produce Figure 11.21 and Figure 11.22:

proc aceclus data=elongate out=ace p=.1;
var x y;
title 'ACECLUS Analysis: Parallel Elongated Clusters';

run;

proc sgplot;
scatter y=can2 x=can1;
title 'Data Containing Parallel Elongated Clusters';
title2 'After Transformation by PROC ACECLUS';

run;

Figure 11.21 Parallel Elongated Clusters: PROC ACECLUS

ACECLUS Analysis: Parallel Elongated Clusters

The ACECLUS Procedure

Approximate Covariance Estimation for Cluster Analysis

Observations 100 Proportion 0.1000
Variables 2 Converge 0.00100

Means and Standard Deviations
Standard

Variable Mean Deviation

x 2.6406 8.3494
y 10.6488 6.8420

COV: Total Sample Covariances

x y

x 69.71314819 24.24268934
y 24.24268934 46.81324861

Initial Within-Cluster Covariance Estimate = Full Covariance Matrix

Threshold = 0.328478
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Figure 11.21 continued

Iteration History

Pairs
RMS Distance Within Convergence

Iteration Distance Cutoff Cutoff Measure
------------------------------------------------------------

1 2.000 0.657 672.0 0.673685
2 9.382 3.082 716.0 0.006963
3 9.339 3.068 760.0 0.008362
4 9.437 3.100 824.0 0.009656
5 9.359 3.074 889.0 0.010269
6 9.267 3.044 955.0 0.011276
7 9.208 3.025 999.0 0.009230
8 9.230 3.032 1052.0 0.011394
9 9.226 3.030 1091.0 0.007924

10 9.173 3.013 1121.0 0.007993

WARNING: Iteration limit exceeded.

ACE: Approximate Covariance Estimate Within Clusters

x y

x 9.299329632 8.215362614
y 8.215362614 8.937753936

Eigenvalues of Inv(ACE)*(COV-ACE)

Eigenvalue Difference Proportion Cumulative

1 36.7091 33.1672 0.9120 0.9120
2 3.5420 0.0880 1.0000

Eigenvectors (Raw Canonical Coefficients)

Can1 Can2

x -.748392 0.109547
y 0.736349 0.230272

Standardized Canonical Coefficients

Can1 Can2

x -6.24866 0.91466
y 5.03812 1.57553
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Figure 11.22 Parallel Elongated Clusters after Transformation by PROC ACECLUS
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The following SAS statements produce Figure 11.23:

proc cluster data=ace outtree=tree method=ward noprint;
var can1 can2;
copy x y;

run;

proc tree noprint out=out n=2;
copy x y;

run;

proc sgplot;
scatter y=y x=x / group=cluster;
title 'Ward''s Minimum Variance Cluster Analysis: '

'Parallel Elongated Clusters';
title2 'After Transformation by PROC ACECLUS';

run;

Figure 11.23 Transformed Data Containing Parallel Elongated Clusters: PROC CLUSTER
METHOD=WARD
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Nonconvex Clusters
If the population clusters have very different covariance matrices, using PROC ACECLUS is of no avail.
Although methods exist for estimating multinormal clusters with unequal covariance matrices (Wolfe 1970;
Symons 1981; Everitt and Hand 1981; Titterington, Smith, and Makov 1985; McLachlan and Basford 1988),
these methods tend to have serious problems with initialization and might converge to degenerate solutions.
For unequal covariance matrices or radically nonnormal distributions, the best approach to cluster analysis
is through nonparametric density estimation, as in density linkage. The next example illustrates population
clusters with nonconvex density contours. The following SAS statements produce Figure 11.24:

data noncon;
keep x y;
do i=1 to 100;

a=i*.0628319;
x=cos(a)+(i>50)+rannor(7)*.1;
y=sin(a)+(i>50)*.3+rannor(7)*.1;
output;

end;
run;

proc fastclus data=noncon out=out maxc=2 noprint;
run;

proc sgplot;
scatter y=y x=x / group=cluster;
title 'FASTCLUS Analysis: Nonconvex Clusters';

run;
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Figure 11.24 Nonconvex Clusters: PROC FASTCLUS
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The following SAS statements produce Figure 11.25:

proc cluster data=noncon outtree=tree method=centroid noprint;
run;

proc tree noprint out=out n=2 dock=5;
copy x y;

run;

proc sgplot;
scatter y=y x=x / group=cluster;
title 'Centroid Cluster Analysis: Nonconvex Clusters';

run;

Figure 11.25 Nonconvex Clusters: PROC CLUSTER METHOD=CENTROID
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The following SAS statements produce Figure 11.26:

proc cluster data=noncon outtree=tree method=twostage k=10 noprint;
run;

proc tree noprint out=out n=2;
copy x y;

run;

proc sgplot;
scatter y=y x=x / group=cluster;
title 'Two-Stage Density Linkage Cluster Analysis: Nonconvex Clusters';

run;

Figure 11.26 Nonconvex Clusters: PROC CLUSTER METHOD=TWOSTAGE
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Ward’s method and average linkage (not shown) do better than PROC FASTCLUS but not as well as the
centroid method. Two-stage density linkage recovers the correct clusters, as does single linkage (not shown).

The preceding examples are intended merely to illustrate some of the properties of clustering methods in
common use. If you intend to perform a cluster analysis, you should consult more systematic and rigorous
studies of the properties of clustering methods, such as Milligan (1980).

The Number of Clusters
There are no completely satisfactory methods that can be used for determining the number of population
clusters for any type of cluster analysis (Everitt 1979; Hartigan 1985a; Bock 1985).

If your purpose in clustering is dissection—that is, to summarize the data without trying to uncover real
clusters—it might suffice to look at R square for each variable and pooled over all variables. Plots of R
square against the number of clusters are useful.

It is always a good idea to look at your data graphically. If you have only two or three variables, use
PROC SGPLOT to make scatter plots identifying the clusters. With more variables, use PROC CANDISC
to compute canonical variables for plotting.

Ordinary significance tests, such as analysis of variance F tests, are not valid for testing differences between
clusters. Since clustering methods attempt to maximize the separation between clusters, the assumptions of
the usual significance tests, parametric or nonparametric, are drastically violated. For example, if you take
a sample of 100 observations from a single univariate normal distribution, have PROC FASTCLUS divide
it into two clusters, and run a t test between the clusters, you usually obtain a p-value of less than 0.0001.
For the same reason, methods that purport to test for clusters against the null hypothesis that objects are
assigned randomly to clusters (such as McClain and Rao 1975 and Klastorin 1983) are useless.

Most valid tests for clusters either have intractable sampling distributions or involve null hypotheses for
which rejection is uninformative. For clustering methods based on distance matrices, a popular null hypoth-
esis is that all permutations of the values in the distance matrix are equally likely (Ling 1973; Hubert 1974).
Using this null hypothesis, you can do a permutation test or a rank test. The trouble with the permutation
hypothesis is that, with any real data, the null hypothesis is implausible even if the data do not contain
clusters. Rejecting the null hypothesis does not provide any useful information (Hubert and Baker 1977).

Another common null hypothesis is that the data are a random sample from a multivariate normal distribu-
tion (Wolfe 1970, 1978; Duda and Hart 1973; Lee 1979). The multivariate normal null hypothesis arises
naturally in normal mixture models (Titterington, Smith, and Makov 1985; McLachlan and Basford 1988).
Unfortunately, the likelihood ratio test statistic does not have the usual asymptotic �2 distribution because
the regularity conditions do not hold. Approximations to the asymptotic distribution of the likelihood ratio
have been suggested Wolfe (1978), but the adequacy of these approximations is debatable (Everitt 1981;
Thode, Mendell, and Finch 1988). For small samples, bootstrapping seems preferable (McLachlan and Bas-
ford 1988). Bayesian inference provides a promising alternative to likelihood ratio tests for the number of
mixture components for both normal mixtures and other types of distributions (Binder 1978, 1981; Banfield
and Raftery 1993; Bensmail et al. 1997).
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The multivariate normal null hypothesis is better than the permutation null hypothesis, but it is not satis-
factory because there is typically a high probability of rejection if the data are sampled from a distribution
with lower kurtosis than a normal distribution, such as a uniform distribution. The tables in Englemann and
Hartigan (1969), for example, generally lead to rejection of the null hypothesis when the data are sampled
from a uniform distribution. Hawkins, Muller, and ten Krooden (1982, pp. 337–340) discuss a highly con-
servative Bonferroni method for the use of hypothesis testing. The conservativeness of this approach might
compensate to some extent for the liberalness exhibited by tests based on normal distributions when the
population is uniform.

Perhaps a better null hypothesis is that the data are sampled from a uniform distribution (Hartigan 1978;
Arnold 1979; Sarle 1983) The uniform null hypothesis leads to conservative error rates when the data are
sampled from a strongly unimodal distribution such as the normal. However, in two or more dimensions
and depending on the test statistic, the results can be very sensitive to the shape of the region of support of
the uniform distribution. Sarle (1983) suggests using a hyperbox with sides proportional in length to the
singular values of the centered coordinate matrix.

Given that the uniform distribution provides an appropriate null hypothesis, there are still serious difficulties
in obtaining sampling distributions. Some asymptotic results are available (Hartigan 1978, 1985a; Pollard
1981; Bock 1985) for the within-cluster sum of squares, the criterion that PROC FASTCLUS and Ward’s
minimum variance method attempt to optimize. No distributional theory for finite sample sizes has yet
appeared. Currently, the only practical way to obtain sampling distributions for realistic sample sizes is by
computer simulation.

Arnold (1979) used simulation to derive tables of the distribution of a criterion based on the determinant
of the within-cluster sum of squares matrix jWj. Both normal and uniform null distributions were used.
Having obtained clusters with either PROC FASTCLUS or PROC CLUSTER, you can compute Arnold’s
criterion with the ANOVA or CANDISC procedure. Arnold’s tables provide a conservative test because
PROC FASTCLUS and PROC CLUSTER attempt to minimize the trace of W rather than the determinant.
Marriott (1971, 1975) also provides useful information about jWj as a criterion for the number of clusters.

Sarle (1983) used extensive simulations to develop the cubic clustering criterion (CCC), which can be used
for crude hypothesis testing and estimating the number of population clusters. The CCC is based on the
assumption that a uniform distribution on a hyperrectangle will be divided into clusters shaped roughly like
hypercubes. In large samples that can be divided into the appropriate number of hypercubes, this assumption
gives very accurate results. In other cases the approximation is generally conservative. For details about the
interpretation of the CCC, consult Sarle (1983).

Milligan and Cooper (1985) and Cooper and Milligan (1988) compared 30 methods of estimating the num-
ber of population clusters by using four hierarchical clustering methods. The three criteria that performed
best in these simulation studies with a high degree of error in the data were a pseudo F statistic developed
by Calinski and Harabasz (1974), a statistic referred to as Je.2/=Je.1/ by Duda and Hart (1973) that can be
transformed into a pseudo t2 statistic, and the cubic clustering criterion. The pseudo F statistic and the CCC
are displayed by PROC FASTCLUS; these two statistics and the pseudo t2 statistic, which can be applied
only to hierarchical methods, are displayed by PROC CLUSTER. It might be advisable to look for consen-
sus among the three statistics—that is, local peaks of the CCC and pseudo F statistic combined with a small
value of the pseudo t2 statistic and a larger pseudo t2 for the next cluster fusion. It must be emphasized
that these criteria are appropriate only for compact or slightly elongated clusters, preferably clusters that are
roughly multivariate normal.
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Recent research has tended to deemphasize mixture models in favor of nonparametric models in which
clusters correspond to modes in the probability density function. Hartigan and Hartigan (1985) and Hartigan
(1985b) developed a test of unimodality versus bimodality in the univariate case.

Nonparametric tests for the number of clusters can also be based on nonparametric density estimates. This
approach requires much weaker assumptions than mixture models, namely, that the observations are sampled
independently and that the distribution can be estimated nonparametrically. Silverman (1986) describes a
bootstrap test for the number of modes using a Gaussian kernel density estimate, but problems have been
reported with this method under the uniform null distribution. Further developments in nonparametric
methods are given by Müller and Sawitzki (1991); Minnotte (1992); Polonik (1993). All of these methods
suffer from heavy computational requirements.

One useful descriptive approach to the number-of-clusters problem is provided by Wong and Schaack (1982)
based on a kth-nearest-neighbor density estimate. The kth-nearest-neighbor clustering method developed by
Wong and Lane (1983) is applied with varying values of k. Each value of k yields an estimate of the number
of modal clusters. If the estimated number of modal clusters is constant for a wide range of k values, there
is strong evidence of at least that many modes in the population. A plot of the estimated number of modes
against k can be highly informative. Attempts to derive a formal hypothesis test from this diagnostic plot
have met with difficulties, but a simulation approach similar to Silverman (1986) does seem to work Girman
(1994). The simulation, of course, requires considerable computer time.

PROC MODECLUS uses a less expensive approximate nonparametric test for the number of clusters. This
test sacrifices statistical efficiency for computational efficiency. The method for conducting significance
tests is described in the chapter on the MODECLUS procedure. This method has the following useful
features:

� No distributional assumptions are required.

� The choice of smoothing parameter is not critical since you can try any number of different values.

� The data can be coordinates or distances.

� Time and space requirements for the significance tests are no worse than those for obtaining the
clusters.

� The power is high enough to be useful for practical purposes.

The method for computing the p-values is based on a series of plausible approximations. There are as yet no
rigorous proofs that the method is infallible. Neither are there any asymptotic results. However, simulations
for sample sizes ranging from 20 to 2000 indicate that the p-values are almost always conservative. The
only case discovered so far in which the p-values are liberal is a uniform distribution in one dimension for
which the simulated error rates exceed the nominal significance level only slightly for a limited range of
sample sizes.
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