Osas

SAS°® Scalable Performance
Data Server® 4.48

User’s Guide

SAS® Documentation



The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2009. SAS® Scalable
Performance Data Server® 4.48: User’s Guide. Cary, NC: SAS Institute Inc.

SAS"® Scalable Performance Data Server® 4.48: User’s Guide
Copyright © 2009, SAS Institute Inc., Cary, NC, USA
All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without
the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book: Your use of this publication shall be governed by the terms
established by the vendor at the time you acquire this publication.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related
documentation by the U.S. government is subject to the Agreement with SAS Institute and the
restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
Ist printing, February 2009

SAS® Publishing provides a complete selection of books and electronic products to help customers use
SAS software to its fullest potential. For more information about our e-books, e-learning products, CDs,
and hard-copy books, visit the SAS Publishing Web site at support.sas.com/publishing or call 1-800-
727-3228.

SAS®and all other SAS Institute Inc. product or service names are registered trademarks or trademarks
of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.



. Product Notes
o SPD Server 4.4 Product Notes

. SPD Server Usage
o Scalable Performance Data Server Overview

o Connecting to SPD Server

Accessing and Creating SPD Server Tables

O

Indexing, Sorting, and Manipulating SPD Server Tables
Using SPD Server With Other Clients
o SPD Server Dynamic Cluster Tables

O

O

« SPD Server SQL Features
o SPD Server SQL Planner

o Connecting to the SPD Server SQL Engine
o SPD Server SQL Planner Options

o Parallel Join Facility

o Parallel Join SQL Options

o Parallel Group-By Facility

o Parallel Group-By SQL Options

o SPD Server STARJOIN Facility

o STARJOIN Options

o SPD Server Index Scan

o Optimizing Correlated Queries

o Correlated Query Options

o Materialized Views

o SPD Server SQL Extensions

o Differences between SAS SQL and SPD Server SQL

« SPD Server SQL Reference
o SPD Server SQL Syntax Reference Guide

o SPD Server SQL Access Library API Reference

« SPD Server Reference
o Optimizing SPD Server Performance

o SPD Server Macro Variables

o SPD Server LIBNAME Options

o SPD Server Table Options

o SPD Server Formats and Informats




o SPD Server NLS Support

. SPD Server Frequently Asked Questions
o SPD Server Frequently Asked Questions




SAS Scalable Performance Data (SPD) Server Product Notes

. Overview

. What's New in SPD Server 4.47?
o SPD Server 4.47 Enhancements
« CLUSTER LIST VERBOSE Statement Enhancements

« What's New in SPD Server 4.45?
o SPD Server 4.45 Enhancements
« CLUSTER LIST Statement Enhancements
= Method Trace for SQL Enhancements

. What's New in SPD Server 4.44?

. What's New in SPD Server 4.43?
o SPD Server 4.43 Enhancements
« CLUSTER MODIFY Command for PROC SPDO
« Table Option MEMNUM-= for Dynamic Clusters

. What's New in SPD Server 4.42?
o SPD Server 4.42 Enhancements
« CLUSTER CREATE Option for Unique Indexes
« Additional PROC SPDO Proxy Commands

. What's New in SPD Server 4.41?

. What's New in SPD Server 4.4?
o SPD Server 4.4 Documentation
o SPD Server 4.4 Platform Support Changes
« New Platforms

« Platforms No Longer Supported
o SPD Server 4.4 and SAS Data Integration Studio
o SPD Server 4.4 New Features
« Materialized Views
« SPD Server Profiling
« LDAP Password Authentication
« Dynamic Locking
« Surfacing Ports through an Internet Firewall




o SPD Server 4.4 Enhancements
« MINMAX Table Indexing for Character Columns
= Expression Support for STARJOIN
= Dynamic Support for Larger Index Keys
« SORTEDBY Specification for Dynamic Clusters
= Additional Backup, Restore, and List Options
« Additional IXUTIL Options

. What's New in SPD Server 4.3?
o SAS 9.1.3 Compatibility and Large Table Support
o SPD Server 4.3 and SAS 9.1.3 Password Encoding
o SPD Server 4.3 and SAS Management Console
o SPD Server 4.3 and SAS Data Integration Studio
o SPD Server 4.3 Utility Requirements
o SPD Server 4.3 SQL Planner Enhancements
o SPD Server 4.3 MINMAX Table Indexing
o SPD Server 4.3 WHERE Costing Improvements
o SPD Server 4.3 Cluster Tables
o SPD Server 4.3 Random Placement of Initial Data Partition Files in DATAPATH= Setting
o SPD Server 4.3 Debugging Tools

Overview

This document summarizes enhancements and changes in SPD Server 4.4, including the SPD Server 4.47, 4.45, SPD Server
4.44, SPD Server 4.43, SPD Server 4.42 and SPD Server 4.41 maintenance releases. The enhancements and changes in SPD
Server 4.3 are also included to provide users with a chronology.

The following compatibility information between the SAS System and the SPD Server 4.4 media is important:
. The SPD Server 4.4 CD-ROM includes client modules that are compatible with SAS 9.

. SPD Server 4.4 is not compatible with SAS versions earlier than SAS 9. Refer to the appropriate SPD Server UNIX or
Windows installation guide for more information about SAS software requirements for use with SPD Server 4.4.

. For SAS 9.1.3 Service Pack 3 and earlier releases, you must rename the sassqlu_ for_ sas913 sp3_and_ earlier
modules from the SPD Server client installation to sassglu. If you do not rename these modules for SAS 9.1.3 Service
Pack 3 and earlier releases, problems will occur with SPD Server implicit pass-through SQL that uses three-part names.
You will get an SQL parse error from SPD Server that causes the implicit pass-through SQL to fail.

What's New in SPD Server 4.477

SAS Scalable Performance Data (SPD) Server 4.47, also called SAS Scalable Performance Data (SPD) Server 4.4 TSM7, is an
interim release. SPD Server 4.47 contains maintenance fixes and feature enhancements that are not in SPD Server 4.46 and
earlier releases.



The following feature enhancements are provided in SPD Server 4.47:

. SPD Server auditing has been improved in the following ways:

o SPD Server 4.47 audit logs are now saved in a flat file format that can be read directly into a SAS program, even
if the SPD Server session (that produced the audit log) and the SAS session are running in different operating
environments. In other words, the audit log from an SPD Server 4.47 session running in a 64-bit UNIX operating
environment can be read directly into a SAS session running in a 32-bit Windows operating environment.

Note: SPD Server audit logs produced by SPD Server 4.46 or earlier are not compatible with SPD Server 4.47
audit logs. Audit logs from SPD Server 4.46 or earlier must pass through an FTP server before they can be read
into a SAS program.

o SPD Server 4.47 allows proxy auditing using WHERE clauses that can be up to 4,096 characters in length.

o SPD Server auditing has been enhanced to include SQL auditing.

o A new section in the SAS Scalable Performance Data Server: Administrator's Guide discusses SPD Server
auditing. For more information, see SPD Server Auditing.

. The SPD Server pass-through SQL performance for N-way joins is improved. The N-way join planner helps decide how
to order N-way joins, based on the estimated sizes of the joins. The SPD Server N-way join planner now resembles the
SAS N-way join planner.

. The CLUSTER LIST command in PROC SPDO has been enhanced to support a VERBOSE option that includes
additional information about each cluster in the output. For example, the additional information includes
MINMAXVARLIST settings for each cluster member.

The following platform changes are provided in SPD Server 4.47:
. SPD Server 4.47 adds server support for the Linux for x64 platform. Linux for x64 is supported only for SPD Server
4.47. Linux for x64 client support is not provided. You can connect to an SPD Server 4.47 Linux for x64 server using an

SPD Server 4.47 client running on SAS 9.1.3.

Note: Online versions of the SAS Scalable Performance Data Server 4.47: Administrator's Guide and the SAS Scalable
Performance Data Server 4.47: User's Guide can be found at

http://support.sas.com/documentation/onlinedoc/spds/index.html.

SPD Server 4.47 Enhancements

SPD Server 4.47 has the following enhancements:

CLUSTER LIST VERBOSE Statement Enhancements

The SPD Server CLUSTER LIST statement output lists the member tables of a dynamic cluster in
numbered order. In SPD Server 4.47, additional information is available when you include the new
VERBOSE option.


file:///U|/Conversions/spdsug/security_new.htm#spdsaud
http://support.sas.com/documentation/onlinedoc/spds/index.html

You can specify additional information in the CLUSTER LIST statement by using the following option
syntax:

CLUSTER LI ST cl usternane [/ VERBOSE]

When you issue the VERBOSE option with a CLUSTER LIST statement, the output lists additional
information such as the MINMAXVARLIST settings for each member table in a dynamic cluster.

The following example uses PROC SPDO to create a dynamic cluster that has a MINMAXVARLIST
setting on the numeric column STORE _ID of each member table. Then, a CLUSTER LIST statement is
issued using the VERBOSE option. The CLUSTER LIST output displays the dynamic cluster name, the
names of each member table in the dynamic cluster, and the MINMAXVARLIST values for each member

table.
PROC SPDO |i brary=& i bdom ;

CLUSTER CREATE ussal es
nmenEne_r egi on
menEse_regi on
mem=central _region
maxsl ot =6 ;

CLUSTER LI ST ussal es/ VERBCSE;

M NMAXVARLI ST COUNT = 1
varnane = store id
Nuneric type.

Cluster Nanme USSALES, Menm=NE_REG ON
Vari abl e Nanme (M N, MAX)
STORE_I D ( 1, 20)

Cl uster Name USSALES, Mem=SE_REG ON
Vari abl e Name (M N, MAX)
STORE_ID ( 60, 70)

Cluster Name USSALES, Menm=CENTRAL_REG ON
Vari abl e Name (M N, MAX)
STORE I D ( 60, 70)

NOTE: The maxi mum nunber of possible slots is 6.

What's New in SPD Server 4.457

SPD Server 4.45, also called SPD Server 4.4 TSMS5, is an interim release. SPD Server 4.45 contains maintenance fixes
and feature enhancements that are not in SPD Server 4.44 and earlier releases.



The following feature enhancements are provided in SPD Server 4.45:

o SPD Server index performance after deleting values from a table has been improved. When values are deleted
from a table, corresponding SPD Server 4.45 index values are virtually deleted, instead of physically deleted.
Virtually deleted index values are invisible to SQL index queries. When you virtually delete an index value
instead of physically deleting it, updating the index metadata requires less overhead resources. However,
virtually deleted index values still occupy space in the disk image for the index. This disk image space can be
reclaimed by using the ixutil index utility to reorganize the index. See the "SAS Scalable Performance Data
Server Index Utility Ixutil" section of the online SAS Scalable Performance Data Server 4.45: Administrator's
Guide for more detailed information about using the ixutil utility to generate virtually deleted value statistics and
to reorganize indexes for optimum performance.

o SPD Server SQL has been enhanced to remove partial tables that can be created if certain SQL queries fail during

execution. Previously, if an SQL statement such as, CREATE TABLE as SELECT failed during execution,
partial tables were created that SPD Server could subsequently use, which led to erroneous results.

Note: The online SAS Scalable Performance Data Server 4.45: Administrator's Guide and the SAS Scalable
Performance Data Server 4.45: User's Guide can be found at

http://support.sas.com/documentation/onlinedoc/spds/index.html .

SPD Server 4.45 Enhancements

SPD Server 4.45 introduces the following enhancements:

o CLUSTER LIST Statement Enhancements
o Method Trace for SQL Enhancements

CLUSTER LIST Statement Enhancements

The SPD Server CLUSTER LIST statement output lists the member tables of a dynamic cluster in
numbered order. In SPD Server 4.45, more information is produced by the CLUSTER LIST statement.

Now, CLUSTER LIST statement output lists the member tables in a dynamic cluster, the maximum
number of slots that are available in the cluster, and the unique index validation status.

The following example uses PROC SPDO to create a dynamic cluster that has a unique index, five
member tables, and space for a sixth table. Then, a CLUSTER LIST statement is issued. The output lists
the dynamic cluster name, the names of each member table, the maximum number of member tables, and
the unique index validation status.

PROC SPDO |i brary=& i bdom ;
CLUSTER CREATE natl sal es ;
menEne_regi on
nmenEse_regi on
mem=central _region
menENw_r egi on
mem=sSw_r egi on


http://support.sas.com/documentation/onlinedoc/spds/index.html

MAXSLOT=6
UNI QUEI NDEX=yes ;

NOTE: CLUSTER NATLSALES has been created with 6 maxi num sl ots.
CLUSTER LI ST natl sal es;

Cluster Name NATLSALES, Mem=NE_REG ON

Cluster Name NATLSALES, Mem=SE_REG ON

Cluster Name NATLSALES, Mem=CENTRAL_REG ON

Cl uster Name NATLSALES, Mem=NW REG ON

Cl uster Nane NATLSALES, Menm=SW REGQ ON

NOTE: The maxi mum nunber of possible slots is 6.
NOTE: Uni que index is validated in CLUSTER NATLSALES.

Method Trace for SOL Enhancements

The enhanced SPD Server method trace for SQL now includes the names of the source tables. Including
source table names makes it easier to determine how the SPD Server SQL planner constructed the query
in cases where multiple source tables were used.

To better understand the method trace enhancement, the following example shows a simple SQL
statement that joins two tables and explicitly states the SPD Server execution methods that you want to
use. The enhanced information content is displayed:

Before SPD Server 4.45:

PROC SQL;
CONNECT to sasspds(dbg=...);
EXECUTE(RESET _method) by sasspds,
EXECUTE(CREATE TABLE casSELECT tl.bt2.c
FROM atl, bt2
WHERE tl.a=1t2.a) by sasspds;

SPDS NOTE: SQL execution methods chosen are:
sgxcrta

soxjpll

SPDS NOTE: Table X0000003.C created, with 1 rows and 2 columns.

SPD Server 4.45:

PROC SQL;
CONNECT to sasspds(dbg=...);
EXECUTE(RESET _method) by sasspds,
EXECUTE(CREATE TABLE casSELECT tl.bt2.c
FROM atl, bt2
WHERE tl.a =t2.a) by sasspds;

SPDS NOTE: SQL execution methods chosen are:
sgxcrta



saxjpll
sgxrc ( [X0000001].A (alias=11))
sgxrc ( [X0000001].B (alias=12) )

SPDS NOTE: Table X0000001.C created, with 1 rowsand 2 columns.

See the section "Important SPD Server SQL Planner Options" in the online SAS Scalable
Performance Data Server 4.45: User's Guide for more information on the SPD Server SQL
planner.

What's New in SPD Server 4.44?

SPD Server 4.44, also called SPD Server 4.4 TSM4, is an interim release. SPD Server 4.44 contains maintenance fixes
and feature enhancements that are not in SPD Server 4.43 and earlier releases.

The following feature enhancement is provided in SPD Server 4.44:

o LASTCLUSTERMEMBER is a new argument that you can use with the MEMNUM= table option to when you
want to query or read from the last member table of a dynamic cluster. Instead of counting cluster members to
determine the number (n) of the last member to use in the statement MEMNUM=n; you can specify
MEMNUM=LASTCLUSTERMEMBER. When you specify MEMNUM=LASTCLUSTERMEMBER, SPD
Server selects the last member for you. No numeric value for n is required when you use the
LASTCLUSTERMEMBER argument.

For example, to view the contents of the last member table in a cluster called Clustername, issue the statement:

PROC CONTENTS dat a=C ust er nanme( MEMNUM=LASTCLUSTERVEMBER)

See the section "Querying and Reading Member Tables in a Dynamic Cluster" in the online SAS Scalable
Performance Data Server: User's Guide for more information.

Note: The online SAS Scalable Performance Data Server: Administrator's Guide and the SAS Scalable Performance
Data Server: User's Guide can be found at

http://support.sas.com/documentation/onlinedoc/spds/index.html.

What's New in SPD Server 4.437

SPD Server 4.43, or SPD Server 4.4 TSM3, is an interim release. SPD Server 4.43 contains maintenance fixes and
feature enhancements that are not found in SPD Server 4.42 and previous releases.

The following feature improvements are provided in the SPD Server 4.43 release:

o The Windows 64 client WIA64 is supported. For more information on Windows 64 client support, see the
"Installing and Configuring SPD Server Clients" topic in the "SPD Server Windows Installation Guide"


http://support.sas.com/documentation/onlinedoc/spds/index.html

documentation, or the "Configuring SPD Server Client Software" topic in the "SPD Server UNIX Installation
Guide" documentation in the Installation section of the online SAS Scalable Performance Data Server:
Administrator's Guide.

The SPD Server Index Utility adds an option to provide index distribution statistics. For more information on the
index distribution statistics option, see the "Ixutil Options" topic in the "SPD Server Index Utility Ixutil"
documentation in the System Management section of the online SAS Scalable Performance Data Server:
Administrator's Guide.

Documentation has been added for using SPD Server with an Internet firewall. For more information on
configuring SPD Server for use with Internet firewalls, see the "Using SPD Server with an Internet Firewall"
documentation in the Security section of the online SAS Scalable Performance Data Server: Administrator's
Guide.

Internal performance optimizations have been implemented in SPD Server pass-through SQL. The updated SPD
Server pass-through SQL improves the performance of queries that select a small number of columns from a
table. The performance gains are most noticeable when joining tables where the result set contains only a small
proportion of the total number of columns that exist in the joined tables.

BY-clause control has been enhanced. A new server parameter option, [NO]BYINDEX, and a corresponding
server macro, SPDSNBIX=, are used to permit BY-clauses on an indexed variable to sort the table using the
variable's index. For more information on the [NO]BYINDEX server parameter option, see the "Setting Up SPD
Server Parameter Files" documentation in the Configuration section of the online SAS Scalable Performance
Data Server: Administrator's Guide. For more information on the SPDSNBIX= server macro, see the "SPD
Server Macro Variables" documentation of the "SPD Server Reference" section of the online SAS Scalable
Performance Data Server: User's Guide.

SPD Server 4.43 features secure LDAP authentication for Solaris, AIX, HP-UX, and HP Itanium. For more
information on secure LDAP authentication, see the "SPD Server Parameter File Configurations for LDAP" topic
in the "Setting Up SPD Server Parameter files" documentation in the Configuration section of the online SAS
Scalable Performance Data Server: Administrator's Guide.

The SPD Server cluster add operation has been modified to allow cluster reads while a cluster add is progress.

The reader sees the state of the cluster when the read begins. Cluster adds still are exclusive operations; a cluster
can only have one add operation occurring at any time.

Note: The online SAS Scalable Performance Data Server: Administrator's Guide and the SAS Scalable
Performance Data Server: User's Guide can be found at

http://support.sas.com/documentation/onlinedoc/spds/index.html.

SPD Server 4.43 Enhancements

o CLUSTER MODIFY Command for PROC SPDO
o Table Option MEMNUM= for Dynamic Clusters

CLUSTER MODIFY Command for PROC SPDO

The PROC SPDO command set for dynamic clusters features a new CLUSTER MODIFY cluster


http://support.sas.com/documentation/onlinedoc/spds/index.html

command. The CLUSTER MODIFY command sets a MINMAXVARLIST attribute on one or more
variables that belong to an existing dynamic cluster. When the SPD Server runs the CLUSTER MODIFY
command, the dynamic cluster is unclustered while the variable modifications are made to the individual
member tables. The cluster is recreated after the MINMAXVARLIST changes are completed.

For more information on the CLUSTER MODIFY command, see the "Modify Dynamic Cluster Tables"
topic in the "SPD Server Dynamic Tables" document in the "SPD Server Usage" section of the online SAS
Scalable Performance Data Server: User's Guide.

Table Option MEMNUM = for Dynamic Clusters

Dynamic clusters provide a table option MEMNUM=. The MEMNUM= option allows you to perform
query or read operations on a single member table that belongs to the cluster. When you use the
MEMNUM= option, SPD Server opens only the specified member table instead of opening all of the
member tables that belong to the cluster.

For more information on the MEMNUM= option, see the "Querying and Reading Member Tables in a
Dynamic Cluster" topic in the "SPD Server Dynamic Tables" document in the "SPD Server Usage"
section of the online SAS Scalable Performance Data Server: User's Guide.

What's New in SPD Server 4.427

SPD Server 4.42 (or SPD Server 4.4 TSM2) is an interim release. SPD Server 4.42 contains maintenance
fixes and feature enhancements that are not found in SPD Server 4.41 and earlier releases.

The following feature enhancements are provided in the SPD Server 4.42 release:

n The SQL RESET option, PRINTLOG, logs SQL queries to the SPD Server log. For more
information, see the section "Important SPD Server SQL Planner Options," in the chapter,
"Scalable Performance Data (SPD) Server SQL Features," in the SAS Scalable Performance Data
Server: User's Guide.

o SQL LIBNAME:s and record-level locking LIBNAME:s are supported. For more information, see
the section "LIBNAME Proxy Commands," in the chapter "SAS Scalable Performance Data (SPD)
Server Operator Interface Procedure (PROC SPDO)," in the SAS Scalable Performance Data
Server: Administrator's Guide.

o An SPD Management Proxy Manager utility is part of the SAS Management Console. The SPD
Management Proxy Manager utility monitors SPD Server LIBNAME activity. For more
information, see the section "Proxy Manager," in the chapter, "Administering and Configuring
SPD Server Using the SAS Management Console," in the SAS Scalable Performance Data Server:
Administrator's Guide.

o The SPD Server STARJOIN facility offers an IN-SET join strategy. The IN-SET join strategy
allows you to use star schema processing when the star schema's fact table and dimension tables
have simple indexes on join columns. For more information, see the section "SPD Server
STARJOIN Optimization," in the chapter, "SAS Scalable Performance Data (SPD) Server



STARJOIN Facility," in the SAS Scalable Performance Data Server: User's Guide.

o A BY clause sort optimization is available for cluster tables if the member tables in the star schema
are sorted by the BY clause. For more information, see the section "Dynamic Cluster BY Clause
Optimization," in the chapter, "SAS Scalable Performance Data (SPD) Server Dynamic Cluster
Tables," in the SAS Scalable Performance Data Server: User's Guide.

o Secure LDAP authentication is available for Solaris and AIX. For more information, see the
section "SPD Server Parameter File Configurations for LDAP," in the chapter, "Setting Up SAS
Scalable Performance Data Server Parameter files," in the SAS Scalable Performance Data Server:
Administrator's Guide.

The SAS Scalable Performance Data Server: User's Guide and SAS Scalable Performance Data Server:
Administrator's Guide can be viewed from the following URL:

http://support.sas.com/documentation/onlinedoc/spds/index.html.

SPD Server 4.42 Enhancements

o CLUSTER CREATE Option for Unique Indexes
o Additional PROC SPDO Commands

CLUSTER CREATE Option for Unique I ndexes

The CLUSTER CREATE command in PROC SPDO has a new option that allows the user
to specify whether unique indexes that are defined in the member tables should be validated
and marked as unique in the cluster. If the UNIQUEINDEX option is set to No, then unique
indexes are not validated, and the cluster metadata does not mark the indexes as unique
within the cluster. If the UNIQUEINDEX option is not specified, then it defaults to YES
and the indexes are validated and marked unique within the cluster.

The usage syntax for the CLUSTER CREATE command is:

CLUSTER CREATE cl ust er nane
MEM=nenber _t abl el
MEM=menber _t abl e2

MEMFenber _tabl e_n
MAXSLOT=n
UNI QUEI NDEX=<yes| no>;

For more information on PROC SPDO commands, see the "SAS Scalable Performance
Data (SPD) Server Operator Interface Procedure (PROC SPDO)" documentation in the
System Management section of the online SAS Scalable Performance Data Server:
Administrator's Guide.

10


http://support.sas.com/documentation/onlinedoc/spds/index.html

Additional PROC SPDO Proxy Commands

The existing PROC SPDO command set has new commands that capture proxy information
about pass-through SQL librefs. The new commands, LIST USERS/LOCKING and SET
USER/LOCKING, capture information about record-level locking proxies that are
associated with pass-through SQL librefs.

The new privileged OPER command OPER INTERRUPT enables certain users to interrupt
long-running jobs. The new privileged OPER command OPER DISCONNECT drops the
proxy from its client. The OPER HALT and OPER RESUME commands are no longer
supported.

For more detailed information on PROC SPDO proxy commands, see the "SAS Scalable
Performance Data (SPD) Server Operator Interface Procedure (PROC SPDO)"
documentation in the System Management section of the online SAS Scalable Performance
Data Server: Administrator's Guide.

What's New in SPD Server 4.417

SPD Server 4.41 (or SPD Server 4.4 TSM1) is an interim release. SPD Server 4.41 contains maintenance
fixes and feature enhancements that are not found in SPD Server 4.4 and earlier releases.

The following feature enhancements are provided in the SPD Server 4.41 release:

o Indexes can be created on materialized views. For more information, see the section, "Materialized
Views" in the chapter, "SAS Scalable Performance Data Server SQL Features," in the SAS
Scalable Performance Data Server: User's Guide.

o The std, avg, stderr, uss, css, and var GROUP BY functions are supported for use with fast index
scans. All functions that can use index scans can use the DISTINCT function as well. For more
information, see the section, "SPD Server Index Scan," in the chapter "SAS Scalable Performance
(SPD) Data Server SQL Features," in the SAS Scalable Performance Data Server: User's Guide.

o The SPDSBKUP utility backs up MINMAXVARLIST information and table column metadata
such as FORMAT and LABEL. The SPDSRSTR utility restores the MINMAXVARLIST
information and the table column metadata. For more information about SPDSBKUP and
SPDSRSTR, see the chapter "SAS Scalable Performance Data Server Backup and Restore
Utilities," in the SAS Scalable Performance Data Server: Administrator's Guide.

o When you create a sorted table using the ORDER BY clause with the CREATE TABLE SQL
statement, the ORDER BY column in the new table is marked as sorted. Subsequent queries on
the table that include an ORDER BY clause on the column will not cause the table to be re-sorted.

What's New in SPD Server 4.4?

o SPD Server 4.4 User's Guide and Administrator's Guide
o SPD Server 4.4 and SAS Data Integration Studio
o SPD Server 4.4 Platform Support Changes

1"



o SPD Server 4.4 New Features
o SPD Server 4.4 Enhancements

SPD Server 4.4 Documentation

The SAS Scalable Performance Data Server 4.4: User's Guide and SAS Scalable Performance Data
Server 4.4: Administrator's Guide have been removed from the SPD Server installation media. The
documentation is available at

http://support.sas.com/documentation/onlinedoc/spds/index.html.

Having the SPD Server 4.4 documentation on the support.sas.com Web page enables you to access it on
your Web browser and facilitates rapid distribution of SAS documentation updates between successive
SPD Server releases.

SPD Server 4.4 Platform Support Changes

New Platforms

SPD Server 4.4 has added support for the UNIX Solaris x64 platform.

Platforms No L onger Supported

SPD Server 4.4 no longer supports the Linux [A-64 platform or the HP Tru64 UNIX
platform.

SPD Server 4.4 and SAS Data | ntegr ation Studio

You can integrate the processing power of SPD Server 4.4 with SAS Data Integration Studio. The plug-in
file that SPD Server uses to integrate with the SAS Management Console can also incorporate SPD Server
resources into the SAS Data Integration Studio user interface.

To incorporate SPD Server 4.4 functionality into the SAS Data Integration Studio user interface, copy the
SPD Server 4.4 plug-in file into the SAS Data Integration Studio pl ugi ns subdirectory.

The SPD Server 4.4 plug-in file is located at:

SASROOT/ spdssnt/ sas. sntc. SpdsMyr . j ar
Note: SASROOT represents the path to the base directory of the SAS software installation on your client
machine. spds44 represents the installed SPD Server software directory. The name of the installed SPD
Server software directory varies according to the specific version and release of your SPD Server

software. For example, the path to your SPD Server plug-in file might begin with SASROOT/ spds44,

12


http://support.sas.com/documentation/onlinedoc/spds/index.html

SASROOT/ spds44t smil, or SASROOT/ spds44t sn2, depending on whether you have the original SPD
Server 4.4 software, or the first or second maintenance release of the SPD Server 4.4 software.

Copy the SPD Server 4.4 plug-in file to the SAS Data Integration Studio pl ugi ns directory:

SASROOT/ SASETLSt udi o/ 9. 1/ pl ugi ns/ sas. snt. SpdsMyr . j ar

SPD Server 4.4 New Featur es

u}

0

0

Materialized Views

SPD Server Profiling

LDAP Password Authentication

Dynamic Locking

Surfacing Ports through an Internet Firewall

M aterialized Views

A materialized view saves the results of a VIEW statement in a temporary SPD Server
table. When the view is queried the temporary table is used for the query, instead of the
entire view. If any of the input tables that comprise the view are modified, the materialized
view dynamically updates the temporary table. A materialized view is supported only
through the SPD Server SQL pass-through facility. A materialized view can result in
significant performance improvements for queries that query the view.

For more information on materialized views, see the section, "Materialized Views," in the
chapter, "Optimizing SAS Scalable Performance Data Server Performance," in the SAS
Scalable Performance Data Server: User's Guide.

SPD Server Profiling

The SPD Server Process Profiler utility monitors and logs the activity of the SPD Server
processes. Once the information is logged, the output can be formatted to be read into a
SAS table for analysis.

The SPD Management Server utility in the SAS Management Console connects to the SPD
Server Performance Server to provide real-time feedback of SPD Server process activity.
The SPD Server 4.4 process profile panel dynamically refreshes SPD Server process
activity such as memory and CPU usage. An SPD Server process is identified by its process
ID (PID), and, if it is a proxy process, the SPD Server user name that is associated with the
proxy is included.

This feature is available only for SPD Server 4.4 (and later) installed on UNIX.
For more information on SPD Server profiling, see the section, "SPD Process Profiler" in

the chapter, "Administering and Configuring SPD Server Using the SAS Management
Console," in the SAS Scalable Performance Data Server: Administrator's Guide.

13



L DAP Password Authentication

LDAP authentication causes SPD Server to authenticate a user password via LDAP, rather
than the password in the PSMGR database. LDAP authentication allows an SPD Server
user to have the same user name and password as the UNIX/Windows user name and
password, if the UNIX/Windows logon user name and password meets the SPD Server user
name and password character restrictions.

The administrator can select the mode of password authentication with server parameters;
either via the PSMGR database or LDAP. Once selected all authentication will be done in
that mode. With LDAP Authentication, a SPD Server user must still be entered in the SPD
Server PSMGR database to maintain other information necessary for SPD Server, such as
the user's groups and access level.

This feature is available only for SPD Server 4.4 installed on Solaris, AIX, HP-UX, HP
Itanium, and Windows.

For more information on SPD Server LDAP authentication, see the section, "The Password
Manager Utility," in the chapter, "Managing SAS Scalable Performance Data (SPD) Server
Passwords, Users, and Table ACLs," in the SAS Scalable Performance Data Server:
Administrator's Guide.

Dynamic L ocking

Dynamic locking provides more flexible locking semantics on a domain, which allows
multiple clients to share both Read and Write access to tables in the domain without getting
locking failures. Dynamic locking differs from SPD record-level locking in that clients
using dynamic locking connect to a separate SPD Server user proxy process for each
LIBNAME connection in the domain. With record-level locking, all users share the same
record-level locking proxy process. Having separate SPD Server user proxy processes
lessens the chance of resource limits, and removes a single record-level locking point

of failure for the record-level proxy process.

Dynamic locking can provide better performance than record-level locking in cases where
concurrent reads and updates to a table are required, but the performance benefit needs to be
measured on a case-by-case basis.

For more information on SPD Server dynamic locking, see the chapter, "Accessing and
Creating SAS Scalable Performance Data Server Tables," in the SAS Scalable Performance
Data Server: User's Guide.

Surfacing Portsthrough an I nternet Firewall

SPD Server uses a client/server relationship, which means that the client cannot exist on the
same host as the server. If the network environment has an Internet firewall, you have to

14



control the ports that the SPD Server server and client use for communication so that those
ports can be surfaced through the Internet firewall. Certain ports that the SPD Server uses
are defined at start-up, and can therefore be easily controlled. However, ports are
dynamically allocated to support each connection to the SPD Server and the subsequent
user proxy processes that are created as a result of the connection. These ports are usually
allocated as any available port. The MINPORTNO and MAXPORTNO server parameters
are fully supported features in SPD Server 4.4. You can use the MINPORTNO and
MAXPORTNO server parameters to control the dynamic ports that SPD Server uses.

For more information on surfacing ports through an Internet firewall, see the chapter,
"Setting Up SAS Scalable Performance Data (SPD) Server Parameter Files," in the SAS
Scalable Performance Data Server: Administrator's Guide, and the questions, "How do
SPD Server client and server processes communicate?" and "How do I know which ports
must be surfaced through an Internet firewall?" in the chapter, "SPD Server Frequently
Asked Questions," in the SAS Scalable Performance Data Server: User's Guide.

SPD Server 4.4 Enhancements

o MINMAX Table Indexing for Character Columns
o Expression Support for STARJOIN

o Dynamic Support for Larger Index Keys

o SORTEDBY Specification for Dynamic Clusters
o Additional Backup, Restore, and List Options

o Additional IXUTIL Options

MINMAX Tablelndexing for Character Columns

The SPD Server table option for MINMAXVARLIST= has been enhanced to support
character columns. The SPD Server WHERE clause planner uses the MINMAXVARLIST
parameter values for a table to quickly determine whether a WHERE clause on the
character column can be quickly evaluated as trivially true or false.

For more information on MINMAX table indexing, see the section, "MINMAX Indexes," in
the chapter, "Optimizing SAS Scalable Performance Data Server Performance," in the SAS
Scalable Performance Data Server: User's Guide.

Expression Support for STARJOIN

The SPD Server STARJOIN optimization has been enhanced to accept some queries that
previously could not use the optimization. Those queries met the STARJOIN requirements,
but the selected column was an expression, instead of a simple column. As a result,
STARJOIN was not allowed.

For more information on expression support for STARJOIN, see the chapter "SAS Scalable

15



Performance Data (SPD) Server STARJOIN Facility," in the SAS Scalable Performance
Data Server: User's Guide.

Dynamic Support for Larger |ndex Keys

The SPD Server Indexes dynamically support an index key up to 32,608 bytes. An index
key is the sum of the length of all of the columns that comprise the index. Previously, you
had to reconfigure the BTREE PAGESIZE server option to support larger index keys. With
dynamic sizing of the index metadata to support larger index keys, reconfiguring the
BTREE PAGESIZE server option is no longer necessary and the option is now obsolete.

SORTEDBY Specification for Dynamic Clusters

SPD Server supports the SORTEDBY specification for columns that are defined in a
dynamic cluster. To use the SORTEDBY specification, each member table in the dynamic
cluster must have SORTEDBY specification set for the column. You set the SORTEDBY
specification on a dynamic cluster in the same way you set it for a simple table.

PROC DATASETS Ii brary=li bdonai n;
nodi fy cl usternane(sortedby=<var>);
qui t;

The SORTEDBY specification assumes that the dynamic cluster was created using member
tables that were added in the correct SORTEDBY order.

Additional Backup, Restore, and List Options

The SPD Server backup utility has added a -V option to provide verbose output. The -v
option will log the full name of the backup file and table of contents file.

The SPD Server backup utility has added a -PROJ <dir> option to support backing up files
in a domain project directory.

The SPD Server restore utility has added a -PROJ <dir> option to support restoring files to
a domain project directory.

The SPD Server list utility has added an -S option to include the size (in bytes) of the
component files that are listed.

The SPD Server list utility has added an -INFO option to get table information for a
domain, including the number of component metadata, data, and index files for a table, and
the accumulated size of the component files for a table.

For more information, see the chapter, "SAS Scalable Performance Data (SPD) Server
Backup and Restore Utilities," in the SAS Scalable Performance Data Server:
Administrator's Guide.

16



Additional I XUTIL Options

The SPD Server IXUTIL utility has added the -CREJIDX option to create a join index, the -
DELJIDX option to delete a join index, the -STATJIDX option to print join index statistics,
and the -LSTJIDX option to list the join indexes in a domain.

For more information, see the chapter, "SAS Scalable Performance Data (SPD) Server
Hybrid Index Utility IXUTIL," in the SAS Scalable Performance Data Server:
Administrator's Guide.

What's New in SPD Server 4.3?

The enhancements and changes for SPD Server 4.3 are included to provide users with a chronology for
the SPD Server feature set over the most recent releases.

o SAS 9.1.3 Compatibility and Large Table Support
o SPD Server 4.3 and SAS 9.1.3 Password Encoding
o SPD Server 4.3 and SAS Management Console

o SPD Server 4.3 and SAS Data Integration Studio

o SPD Server 4.3 Utility Requirements

o SPD Server 4.3 SQL Planner Enhancements

o SPD Server 4.3 MINMAX Table Indexing

o SPD Server 4.3 WHERE Costing Improvements

o SPD Server 4.3 Cluster Tables

o SPD Server 4.3 Random Placement of Initial Data Partition Files in DATAPATH= Setting
o SPD Server 4.3 Debugging Tools

SAS9.1.3 Compatibility and L arge Table Support

SPD Server 4.3 is compatible with the improved I/O infrastructure of SAS 9.1.3.

SPD Server 4.3 provides on-disk structures that are compatible with SAS 9 and the large
table capacities that it supports. Enterprise-wide data mining often creates immense tables.
In order to generate business intelligence quickly, the ability to update tables that contain
billions of rows is more important than ever. Earlier versions of SPD Server were based on
32-bit architecture that supported just over 2 billion rows and 32,768 columns. SPD Server
4.3 is based on a 64-bit architecture that supports tables with over 9 quintillion rows and
over 2 billion columns.

The architectural differences between SAS 9 and earlier SAS versions mean that SPD
Server 4.3 cannot access SPD Server 3.x stores, and vice versa. For more information on
sharing SPD Server 3.x and SPD Server 4.3 data stores, see the chapter, "SAS Scalable
Performance Data (SPD) Server 3.x and SPD Server 4.4 Compatibility" in the SAS Scalable

17



Performance Data Server: Administrator's Guide.

SPD Server 4.3 and SAS 9.1.3 Password Encoding

SPD Server 4.3 supports the integration of the SAS 9.1.3 PROC PWENCODE. This
procedure permits scripts to be generated that do not explicitly contain secure passwords
that could easily be used without authorization. You must run PROC PWENCODE in Base
SAS software to enable the usage of script password encoding within SPD Server 4.3. See
the Base SAS software documentation for detailed instructions on running PROC
PWENCODE for use with SPD Server 4.3.

The following example shows an SPD Server 4.3 LIBNAME statement that uses the
password encoding option:

i bname nylib sasspds 'spdsdata’
server =kaboom 5200
user =' spdsuser’
passwor d=' {sas001} c3BkczEyMn==";

SPD Server 4.3 and SAS M anagement Console

SAS Management Console is a Java application that provides a single point of control for
managing multiple SAS application resources. Rather than using a separate administrative
interface for each application in your enterprise intelligence environment, you can use the
SAS Management Console interface to perform the administrative tasks that are required to
create and maintain an integrated environment.

SAS Management Console manages resources and controls by creating and maintaining
metadata definitions for entities such as:

« server definitions

« library definitions

« user definitions

« resource access controls
« metadata repositories

=« job schedules

After installing the SPD Server 4.3 Java plug-in file, SPD Server administrators can use the
SPD Server Server Manager utility in SAS Management Console to configure SPD Server
4.3 user and group passwords and ACLs, instead of using the traditional SPD Server
PSMGR database and PROC SPDO commands.

By default, SAS Management Console looks for plug-ins in the pl ugi ns subdirectory of

each installed SAS product. The plug-in file that makes the SPD Server Server Manager
utility available in SAS Management Console is located at:

18



SASRCOOT/spds43/ pl ugi ns/ sas. snt. SpdsMr . j ar

Note: SASROOT represents the path to the base directory of the SAS software installation

on your client machine. The previous plug-in file path in the example is specifically for
SPD Server 4.3. The plug-in file for SPD Server 4.4 is in a different location.

SPD Server 4.3 and SAS Data | ntegr ation Studio

You can integrate the processing power of SPD Server 4.3 with other SAS software, such as
SAS Data Integration Studio. The same Java plug-in file that SPD Server uses to integrate
with SAS Management Console can be used to integrate SPD Server resources with the
SAS Data Integration Studio user interface.

SAS Data Integration Studio enables data warehouse specialists to create and manage
metadata objects that define sources, targets, and the sequence of steps for the extraction,
transformation, and loading of data into data marts or warehouses. SPD Server can be an
excellent tool for managing the large tables of data associated with large data marts and
warehouses.

By default, SAS Data Integration Studio looks for plug-ins in the pl ugi ns subdirectory of
the SAS Data Integration Studios installation. To incorporate SPD Server 4.3 functionality
with the SAS Data Integration Studio user interface, copy the SPD Server 4.3 Java plug-in
file into the SAS Data Integration Studio pl ugi ns subdirectory.

The SPD Server 4.3 Java plug-in file is located at:

SASRQOOT/ spds43/ pl ugi ns/ sas. snt. SpdsMyr. | ar

Note: SASROOT represents the path to the base directory of the SAS software installation on
your client machine. spds43 represents the installed SPD Server software directory. The
name of the installed SPD Server software directory varies according to the specific version
and release of your SPD Server software. For example, the path to your SPD Server Java
plug-in file might begin with SASROOT/ spds43, SASROOT/ spds43t snil, or SASROOT/
spds43t sn?2, depending on whether you have the original SPD Server 4.3 software, or the
first or second maintenance release of the SPD Server 4.3 software.

Copy the SPD Server 4.3 Java plug-in file to the SAS Data Integration Studio pl ugi ns
directory:

SASROOT/ SASETLSt udi o/ 9. 1/ pl ugi ns/ sas. snt. SpdsMyr. j ar

SPD Server 4.3 Utility Requirements

SPD Server 4.3 provides NLS (National Language Support) functionality for multiple
languages and character sets in database operations. As a result, all SPD Server 4.3 utilities
require access to the <i nst al | di r >/ bi n64 directory, and you must ensure that the

19



<instal |l di r>/bi n64 directory is specified in your SPD Server 4.3 path statement.

Here is an example of a statement that specifies the necessary path:

LD LI BRARY_PATH=$LD LI BRARY_PATH: I nstal | Di r/ bi n64

export LD LI BRARY PATH

SPD Server 4.3 SOL Planner Enhancements

SPD Server 4.3 includes SQL planner optimizations. SQL planner optimizations improve
the performance of frequent query types that are used in data mining solutions such as SAS
Marketing Automation. A key enhancement to the SPD Server 4.3 SQL planner is
optimizing correlated queries through query rewrite techniques. Correlated queries are
common in business and analytic intelligence data mining. Another key enhancement is the
tighter integration of the parallel GROUP BY technology in the SQL planner. Tighter
integration adds performance benefits to nested GROUP BY syntax.

o SPD Server 4.3 STARJOIN Facility

o SPD Server 4.3 Index Scans

o SPD Server 4.3 Optimized Correlated Queries
o SPD Server 4.3 Parallel GROUP BY

o SPD Server 4.3 Parallel Join

SPD Server 4.3 STARJOIN Facility

The SPD Server 4.3 enhanced SQL planner includes the new STARJOIN
facility. The SPD Server 4.3 STARJOIN facility validates, optimizes, and
executes SQL queries on data that is configured in a star schema. Star
schemas are composed of two or more normalized dimension tables that
surround a centralized fact table. The centralized fact table contains data
elements of interest that are derived from the dimension tables.

For more information on the STARJOIN facility, see the section, "SPD
Server STARJOIN Facility," in the chapter "SAS Scalable Performance Data
(SPD) Server," and the chapter, "SAS Scalable Performance Data (SPD)
Server STARJOIN Facility," in the SAS Scalable Performance Data Server:
User's Guide.

SPD Server 4.3 Index Scans

SPD Server 4.3 SQL enables users to perform fast index scans on large
tables. Rather than scanning entire tables that might have millions of rows, in
specific cases, SPD Server 4.3 SQL can use index data to resolve the query.
Index data is compact, small, and faster to query than an entire table. SPD

20



Server 4.3 SQL provides enhanced index scan support for the following
functions:

MIN, MAX, COUNT, COUNT DISTINCT, NMISS, RANGE
For more information on index scans, see the section, "SPD Server Index

Scan," in the chapter "SAS Scalable Performance Data (SPD) Server SQL
Features," in the SAS Scalable Performance Data Server: User's Guide.

SPD Server 4.3 Optimized Correlated Queries

Intelligent storage must have the ability to interpret and process complex
requests such as correlated queries. A correlated query is a select expression
where a predicate within the query has a relationship to a column that is
defined in another layer of code. Today's business and analytic intelligence
tools often generate SQL queries that are nested three or four layers

deep. Queries with cross-nested relationships use significant processor
resources and require more time to complete processing. New algorithms in
the SQL planner of SPD Server 4.3 implement techniques that significantly
improve the performance of correlated queries for patterns that permit query
rewrites or query de-correlation.

SPD Server 4.3 Parallel GROUP BY

Parallel GROUP BY is a high performance parallel summarization of data
that is executed using SQL. Parallel GROUP BY works against single tables
that are used to aggregate data. Summarization tasks are common in data
warehousing applications. Parallel GROUP BY was developed to quicken
processor performance summarization tasks. Parallel GROUP BY is often
used in SQL queries (through the use of sub-queries) to apply selection lists
for inclusion or exclusion.

Parallel GROUP BY support in SPD Server 4.3 has been expanded. Parallel
GROUP BY is integrated in the WHERE clause planner code so that it will
boost the capabilities of the SPD Server SQL engine. Any section of code
that matches the parallel GROUP BY trigger pattern will use parallel
GROUP BY.

For more information on parallel GROUP BY, see the section, "Parallel Joins
with GROUP BY," in the chapter "SAS Scalable Performance Data (SPD)
Server SQL Features," in the SAS Scalable Performance Data Server: User's
Guide.

SPD Server 4.3 Parallel Join

21



Parallel join is a high-performance pairwise join of two SPD Server tables.
The parallel join feature enhances join performance in two ways. First, SPD
Server parallel joins are performed using parallel threading. Second, SPD
Server parallel joins use enhanced data summarization methods after rows in
a table are joined.

For more information on SPD Server parallel joins, see the section, "Parallel
Join Facility," in the chapter "SAS Scalable Performance Data (SPD) Server
SQL Features," in the SAS Scalable Performance Data Server: User's Guide.

SPD Server 4.3 MINMAX Tablelndexing

SPD Server 4.3 contains a new table option called MINMAXVARLIST=. The primary
purpose of the MINMAXVARLIST= table option is for use with SPD Server 4.3 dynamic
cluster tables, where specific member tables in the dynamic cluster contain a set or range of
values, such as sales data for a given month. When an SPD Server SQL subsetting WHERE
clause specifies specific months from a range of sales data values, the WHERE clause
planner checks the MINMAX indexes. Based on the MINMAX index information, the SPD
Server WHERE clause planner includes or eliminates member tables in the dynamic cluster
for evaluation.

Use the MINMAXVARLIST= table option with numeric columns. MINMAXVARLIST=
uses the list of columns you submit to build an index. The MINMAXVARLIST= index
contains only the minimum and maximum values for each column. The WHERE clause
planner uses the index to filter SQL predicates quickly, and to include or eliminate member
tables in the dynamic cluster for evaluation.

Although the MINMAXVARLIST= table option is primarily intended for use with dynamic
cluster tables, it can be used with standard SPD Server tables. MINMAXVARLIST= can
help reduce the need to create many indexes on a table, which can save valuable resources
and space.

For more information on SPD Server the MINMAXVARLIST= table options, see the
section, "MINMAX Indexes," in the chapter, "Optimizing SAS Scalable Performance Data
(SPD) Server Performance," in the SAS Scalable Performance Data Server: User's Guide.

SPD Server 4.3 WHERE Costing | mprovements

The WHERE clause planner that is implemented in SPD Server 4.3 avoids resource-
intensive computations and uses simple computations where possible. WHERE clauses in
large database operations can be resource-intensive. In SPD Server 3.x and earlier releases,
users often needed to manually tune queries for performance. Tuning was accomplished
using macro variables and index settings. The WHERE clause planner that is integrated
into SPD Server 4.3 does the tuning for the user by costing the different approaches to
index evaluation.

For more information on SPD Server WHERE clause improvements, see the section,

22



"Optimizing WHERE Clauses," in the chapter, "Optimizing SAS Scalable Performance
Data Server Performance," in the SAS Scalable Performance Data Server: User's Guide.

SPD Server 4.3 Cluster Tables

o Dynamic Cluster Tables

o Unsupported Features in Cluster Tables

SPD Server 4.3 uses a virtual table structure called a cluster table. Cluster tables provide a
storage architecture that has parallel processing and data management capabilities.

A cluster table is a structure that can store multiple SPD Server tables. A cluster table is
composed of member tables (or partitions). Each member can store a single SPD Server
table. The cluster table uses a layer of metadata to manage the members. Cluster tables can
also be used in WHERE clause costing. Each member in a cluster table is analyzed and
assigned an EVAL strategy that best fits the data patterns in the member or slot. Using
multiple EVAL strategies while performing WHERE clause costing on a cluster table
provides better process granularity, which can improve overall data throughput and
performance.

Dynamic Cluster Tables

SPD Server cluster tables are virtual table structures. SPD Server 4.3 cluster
tables are a bound collection of multiple members. Each member is a
standard SPD Server table. All member tables that belong to a dynamic
cluster table must share the same metadata formats and organization. SPD
Server 4.3 dynamic cluster tables use metadata to manage the data that is
contained in the member tables.

The SPD Server 4.3 dynamic cluster table structure provides architecture that
enables flexible loading, rapid storage, and parallel processing for very large
data tables. Using dynamic cluster tables, loading data, removing data, and
refreshing tables in very large data marts become easier and more timely.
Dynamic cluster tables provide organizational features and performance
benefits that traditional SAS tables and SPD Server tables do not have.

For example, you can add new data or remove historical data from very large
tables by accessing only the member tables that are affected by the change.
You can access the individual member tables in parallel. This strategy
reduces the time that is needed for the job to complete and uses very simple
commands. Furthermore, a complete refresh of a dynamic cluster table can
occur using a fraction of the disk space that is needed to refresh a large
traditional SAS or SPD Server table that contains the same amount of data.

For more information on SPD Server dynamic cluster tables, see the chapter,
"SAS Scalable Performance Data (SPD) Server Dynamic Cluster Tables," in
the SAS Scalable Performance Data Server: User's Guide.

23



Unsupported Featuresin Cluster Tables

Because of differences in the load and read structures for dynamic cluster
tables, some standard features that are normally available in Base SAS tables
and SPD Server tables are currently not supported in SPD Server 4.3 cluster
tables.

The features are:

o You cannot append data to a dynamic cluster table. To append data to
a dynamic cluster table, the table must be unclustered, the data is
appended to the individual unclustered files, and then the unclustered
files must be reclustered.

o Record-level locking is not allowed.

o The SPD Server backup/restore utility is not available.

o Copying data with PROC COPY or PROC SQL is not supported.

If a task for a dynamic cluster table requires one of these features, you should
undo the dynamic cluster table and create standard SPD Server tables.

SPD Server 4.3 Random Placement of I nitial Data Partition
Filesin DATAPATH= Setting

In SPD Server 3.x, the initial data partition files for all tables in the same domain are
assigned to the first DATAPATH= setting that was defined in the libnames.parm
LIBNAME configuration file. Subsequent data partition files for a table are placed in
subsequent DATAPATHs. When all SPD Server DATAPATHSs contain a data partition
file, the process returns to the first DATAPATH and continues. However, numerous SPD
Server installations have many small-to-medium-sized tables that do not have data partition
files in all of the available DATAPATHSs. This process could unevenly balance the
distribution of data on the disk, resulting with the first few DATAPATHSs in a domain
containing significantly more data than the last few DATAPATHs in the domain. The
uneven data distribution results in unbalanced 1/0.

In SPD Server 4.3, the initial data partition files for all tables in the same domain are no
longer assigned to the first DATAPATH= setting that was defined in the libnames.parm
LIBNAME configuration file. Instead, SPD Server randomly chooses from the available
DATAPATHSs when assigning the initial data partition files for a large data table. As a
result, the data is distributed more evenly and permits more balanced I/O within SPD Server
processing.

By default, SPD Server 4.3 is configured to use random placement of initial data partition
files among SPD Server DATAPATHs. The RANDOMPLACEDPF option is specified in
the spdsserv.parm file. To disable random placement of initial data partition files in the
DATAPATH= list, remove the RANDOMPLACEDPF option from your spdsserv.parm

24



file.

For more information on the RANDOMPLACEDPF option, see the chapter, "Setting up
SAS Scalable Performance Data (SPD) Server Parameter Files," in the SAS Scalable
Performance Data Server: Administrator's Guide.

SPD Server 4.3 Debugging Tools

SPD Server 4.3 includes useful debugging tools. The debugging tools enable SPD Server
system administrators to create debug images and to evaluate test images without
interfering with a production SPD Server environment. The debugging tools are for use
with SPD Server 4.3 running on SAS 9.1.3. The debugging tools are organized into
LIBNAME statement options for debugging, and server parameter file options for
debugging.

For more information on SPD Server debugging tools, see the chapter, "SPD Server
Debugging Tools," in the SAS Scalable Performance Data Server 4.45: Administrator's
Guide.

25



SAS Scalable Performance Data (SPD) Server Overview

. Introduction to SAS Scalable Performance Data (SPD) Server

. The SAS Scalable Performance Data (SPD) Server Client/Server Model

. Symmetric Multi-Processor Hosts

. SAS Scalable Performance Data (SPD) Server Host Services for Clients

. Accessing SAS Scalable Performance Data (SPD) Server Using SAS

. Securing SAS Data

. Organizing SAS Data

. SAS Scalable Performance Data (SPD) Server Performance Enhancements

. SAS Scalable Performance Data (SPD) Server Extensions to Base SAS

. Using SAS Scalable Performance Data (SPD) Server with Data Warehousing

| ntroduction to SAS Scalable Performance Data (SPD) Server

SAS Scalable Performance Data (SPD) Server software is designed for high-performance data delivery. Its primary function
is to provide user access to SAS data for intensive processing (queries and sorts) on the host server machine. When

client workstations from varying operating platforms send processing requests to a SAS Scalable Performance Data
(SPD) Server host, the host returns results in the format required by each client workstation. SAS Scalable Performance
Data (SPD) Server uses the power of parallel processing to exploit the threading capabilities of servers with multiple
processors.SAS Scalable Performance Data (SPD) Server executes threads, units of processing, in parallel on a SAS
Scalable Performance Data (SPD) Server host. The software tasks are performed in conjunction with an operating system
that enables threads to execute on any of the machine's available processors. A specialized machine and operating system
are important processing partners, but SAS Scalable Performance Data (SPD) Server's power is derived from the
software architecture that enable it to rapidly and efficiently process SAS data in concurrent parallel threads on

multiple processors . SAS Scalable Performance Data (SPD) Server is the high-speed processing tool among SAS
products. SPD 4.3 introduces on-disk structures that are compatible with SAS 9 and the large table capacities that it
supports. Enterprise-wide data mining often creates immense tables. In order to generate business intelligence quickly,
the ability to update tables that contain billions of rows is more important then ever. The cluster table structure introduced
in SAS Scalable Performance Data (SPD) Server 4.3 provides a new foundation for the next generation of SAS data
storage. Previous versions of SAS Scalable Performance Data (SPD) Server were based on 32-bit architecture that
supported just over 2 billion rows and 32,768 columns. SAS Scalable Performance Data (SPD) Server is based on a 64-
bit architecture which supports tables with over 9 quintillion rows and over 2 billion columns. SAS Scalable
Performance Data (SPD) Server 4.4 operates on computers running SAS 9.1.3 or later. PC users that do not use SAS can
still use SAS Scalable Performance Data (SPD) Server. Information on connecting to SAS Scalable Performance Data
(SPD) Server with Other Clients is found in Using SAS Scalable Performance Data (SPD) Server With Other Clients.
SAS users can access SAS Scalable Performance Data (SPD) Server either by using SQL pass-through or by using

SAS language.

Syntax Conventions: SAS Scalable Performance Data (SPD) Server software supports both SAS users and non-SAS
users. The SAS Scalable Performance Data (SPD) Server document uses common terminology that both audiences
should understand. In the SAS Scalable Performance Data (SPD) Server documentation, SAS data sets are referred to
as tables, SAS variables are referred to as columns, and SAS observations are referred to as rows. The SAS

Scalable Performance Data (SPD) Server product is referred to as SAS Scalable Performance Data (SPD) Server or
"the software", depending on the context of the documentation.

26



The SAS Scalable Perfor mance Data (SPD) Server Client/Server M odel

SAS Scalable Performance Data (SPD) Server software divides SAS processing loads between the client and server.
The Client/Server Model diagram below shows a simple client/server topology. The server hosts multiple concurrent
clients while performing the heaviest processing tasks. Typical clients are desktop PCs or low-end UNIX workstations
running front-end software. The front-end application sends the client's data requests over the network to the server

and processes the information that the server returns. You can create one or more SAS Scalable Performance Data
(SPD) Servers on the host server machine. When a SAS Scalable Performance Data (SPD) Server host receives a client's
data request, it performs some action on behalf of the client. The action varies with the request received.

Where does the user fit within in the SAS Scalable Performance Data (SPD) Server Client/Server model? Users initiate
SAS Scalable Performance Data (SPD) Server client sessions. In this documentation, the term 'user' refers to the operator of
a SAS Scalable Performance Data (SPD) Server client.

The SAS Scalable Performance Data (SPD) Server
Client/Server Model

SPD Server SPD Server
Client L ; Client
Process AN f"f Process
™, '

R r
™, o
", i
Y i
™, rd
™, r
™, i
SPD Server ., SPD Server # SPD Server
Clent > SMP Host / Client

",
Process / Data Server N Process
e s,
ra
/ AN
e
v K\
e ™,
SPD Server /-”f \”\\ SPD Server
Client 4 i Client
Process Process

Symmetric Multi-Processor Hosts

SAS Scalable Performance Data (SPD) Server host machines use operating systems that can process concurrent threads
in parallel on multiple processors. SAS Scalable Performance Data (SPD) Server exploits symmetric multiprocessing
(SMP) hardware and software architecture. The number of processors on an SMP server varies by manufacturer and
model. The operating system of the machine must also support the parallel processing. Operating systems which possess
a threaded kernel enjoy enhanced performance because the threaded kernel prevents contention issues among

competing threads in real-time. Synergy between processors and threads allows SAS Scalable Performance Data (SPD)

27



Server to scale processing performance. The scalability, in turn, significantly improves the speed of SAS Scalable
Performance Data (SPD) Server table creates, appends, scans, queries, and sorts.

SAS Scalable Performance Data (SPD) Server Host Servicesfor Clients

SAS Scalable Performance Data (SPD) Server hosts provide multiple services to SAS Scalable Performance Data (SPD)
Server clients:

. Accessto data stores SAS Scalable Performance Data (SPD) Server offers concurrent read access and retrieval of SAS
data.

High-speed data server SAS Scalable Performance Data (SPD) Server manages and processes massive SAS tables.

Offloads heavy processing work SAS Scalable Performance Data (SPD) Server divides the labor. The Server process
retrieves, sorts, and subsets SAS data. A client process reviews and analyzes the data that the Server returns.

Embellishes client hardware SAS Scalable Performance Data (SPD) Server host machines are able to utilize the
computing hardware resources that are required to process large tables efficiently and rapidly.

Reduces network traffic SAS Scalable Performance Data (SPD) Servers read, sort, and subset entire SAS tables and
then return answer sets. A query subset replaces large file downloads to the client machine. SAS Scalable Performance
Data (SPD) Server also offers a common storage facility. Multiple client users can use the same SAS data on the server
without having to each transfer the SAS data to their workstations.

. Provides multi-platform support SAS Scalable Performance Data (SPD) Server allows clients to share SAS data across

computing platforms with other SAS users.

SAS Scalable Performance Data (SPD) Server Features

SPD Server Feature

SPD Server
Client Action

SPD Server
Host Response

Support for
Gigabytes of data

The SPD Server client inputs
existing SAS tables with a
PROC COPY statement or
creates a SPD Server table using
a SAS data step or procedure.
SPD Server clients can also use
SQL pass-through CREATE,
COPY, or LOAD statements to
input SAS tables.

The SPD Server host creates
component files that are
composed of one or more
physical partition files. The
server stores the physical
partition files in one or more
device / directory paths.

Scalable Symmetric
M ultiple Processor
(SMP) Support

The SPD Server client runs SAS
procedures and SQL pass-
through syntax to read, sort,
index, or query an SPD Server
table.

The SPD Server host utilizes its
threaded operating system to
perform concurrent processing
tasks distributed across multiple
processors.

Selective Parallel
Queries

The SPD Server client uses
WHERE-clause or SQL
SELECT syntax. Pass-through
SQL, PROC SQL, and non-SAS
WHERE alternatives are
supported.

The SPD Server host supports
and subsets SPD Server tables,
then delivers query answer sets
to clients.

28




Parallel Loads

The SPD Server client runs SAS
procedures with LOAD or
COPY to store SAS data and
indexes.

The SPD Server host uses
multiple threads to load and store
tables and indexes.

Parallel Indexes

The SPD Server client creates
table indexes using a DATA step
or the DATASETS procedure
with an INDEX option, or pass-
through SQL with the LOAD or
COPY command.

The SPD Server host creates
SPD Server table indexes in
parallel.

SAS Data Security

The SPD Server client accesses
the SPD Server host using SQL
pass-through, a LIBNAME
statement, or a non-SAS
alternative connection.

The SPD Server host secures
SPD Server files at the
LIBNAME domain and / or
table, column, and row level.

Accessing SAS Scalable Performance Data (SPD) Server Using SAS

You begin a SAS Scalable Performance Data (SPD) Server session by starting your SAS Scalable Performance Data
(SPD) Server client. There are two ways to start your SAS Scalable Performance Data (SPD) Server client session. You
can use SQL pass-through commands to start your SAS Scalable Performance Data (SPD) Server client session, or you can
use a LIBNAME statement to start your SAS Scalable Performance Data (SPD) Server client session. Both methods use
the SASSPDS engine and initiate communication between the SAS Scalable Performance Data (SPD) Server client

machine and SAS Scalable Performance Data (SPD) Server host.

« SQL Pass-Through Facility LIBNAME Access SAS Scalable Performance Data (SPD) Server Host Name Server

. Specifying the Port Address for the Name Server

SOL Pass-Through Facility

SAS Scalable Performance Data (SPD) Server can use SQL pass-through commands. The SAS Scalable
Performance Data (SPD) Server host can perform complete SQL-expression evaluation. SAS Scalable
Performance Data (SPD) Server also supports nested SQL pass-through commands. Nested SQL pass-through
commands permit you to connect to other SAS Scalable Performance Data (SPD) Server hosts while you are still
connected to your SAS Scalable Performance Data (SPD) Server host. You can use nested pass-through
commands to distribute simultaneous SQL queries across multiple SAS Scalable Performance Data (SPD) Server
hosts on your network.

The SQL pass-through facility can be accessed with or without SAS syntax and applications. You can use SAS to
connect to an SAS Scalable Performance Data (SPD) Server host by using pass-through syntax from PROC SQL
or from other SQL-aware SAS applications. The chapter on Accessing and Creating SAS Scalable Performance

Data Server Tables contains more detailed information about the SAS Scalable Performance Data (SPD) Server

pass-through facility and provides examples of the syntax.

SAS Scalable Performance Data (SPD) Server Client

29




Access to SAS Scalable Performance Data (SPD) Server Host
Using SQL Pass-Through and SAS CONNECT

SQL SPD Server Client with SAS User

PROXY
h. proc sq;
SPD Server Name Server : connection to SASSPODS (...}

execute ) by SASEPDSE;
selact * from SASSPDS (.

SPD Server
Host Environment

SPD Server SQL Server

LIBNAME Access

SAS users can initiate a client session by issuing a LIBNAME statement using the engine SASSPDS. LIBNAME
access is illustrated in Figure 1.3. The documentation chapter on Connecting SAS Clients to SAS Scalable
Performance Data (SPD) Server explains the mechanics of LIBNAME access to the engine and SAS Scalable

Performance Data (SPD) Server LIBNAME options.

SAS Scalable Performance Data (SPD) Server Client (SAS
User) Access to SAS Scalable Performance Data (SPD)
Server Host Using a LIBNAME Statement

30



LIBNAME

: SAS User
PROXY
SPD Server Name Server h the client LIBNAME specifies the
! SPD Server engine and a
Ni LIBNAME domain
L
il"\
A
L IIII'-.
SPD Server I
Host Environment t ﬁ‘u
; \ access to SPD Server
R s Data Server using &
LIBNAME statement

SPD Server Data Server

SAS Scalable Performance Data (SPD) Server Host Name Server

Distributed computing may enrich user resources, but it has an inherent problem. To connect to a SAS Scalable
Performance Data (SPD) Server, you must know its location within your network. Instead of requiring users to
memorize long paths or IP addresses, SAS Scalable Performance Data (SPD) Server software uses a specialized
server called a name server. The SAS Scalable Performance Data (SPD) Server name server locates active SAS
Scalable Performance Data (SPD) Server hosts on your network. A name server recognizes active SAS Scalable
Performance Data (SPD) Server machines because all the SAS Scalable Performance Data (SPD) Servers 'register’
with the name server as they come up and contact the host machine.

The name server keeps network addresses and a list of the LIBNAME domains for each SAS Scalable
Performance Data (SPD) Server host. What is an SAS Scalable Performance Data (SPD) Server LIBNAME
domain? A SAS Scalable Performance Data (SPD) Server LIBNAME domain is a logical entity that SAS Scalable
Performance Data (SPD) Server creates. A LIBNAME domain maintains domain attributes such as the library
name, owner, and contents. Whenever you use a LIBNAME statement to specify a LIBNAME domain, a name
server can determine the correct directory path to the SAS Scalable Performance Data (SPD) Server data library
and connect your SAS Scalable Performance Data (SPD) Server client to the SAS Scalable Performance Data
(SPD) Server host for that domain.

Specifying the Port Address for the Name Server

SAS Scalable Performance Data (SPD) Server clients use port addressing to locate SPD name servers. SAS
Scalable Performance Data (SPD) Server administrators must assign a port address to a name server. Most UNIX
system clients use their local / et ¢/ ser vi ces file to register port assignments. The service name for a SAS

31



Scalable Performance Data (SPD) Server name server in an/ et ¢/ ser vi ces file must be SPDSNAME. PC

clients use services files to register port assignments. The services files on PC clients vary according to the
software that the PC network uses.

When a client SAS Scalable Performance Data (SPD) Server application issues a LIBNAME statement that does
not contain the port address of the name server, SAS Scalable Performance Data (SPD) Server checks the services
file for the SPDSNAME entry and the port address. Registering the name server port assignment in your client's
network services file relieves you from the responsibility of coding name server port numbers when you write SAS
jobs. The Help on Connecting SAS Clients to SAS Scalable Performance Data (SPD) Server contains examples
that show you how to Connect to SAS Scalable Performance Data (SPD) Server Using a LIBNAME Statement

and a Name Server.

Securing SAS Data

. LIBNAME Domain Registration
. ACL File Security

LIBNAME Domain Registration

The name server helps SAS Scalable Performance Data (SPD) Server clients locate and connect to SAS Scalable
Performance Data (SPD) Server hosts. The name server also controls access to the SAS Scalable Performance
Data (SPD) Server LIBNAME domains. How does the name server get domain information? The SAS Scalable
Performance Data (SPD) Server administrator defines LIBNAME domains in an SAS Scalable Performance Data
(SPD) Server LIBNAME parameter file.

When a SAS Scalable Performance Data (SPD) Server administrator brings up a server on the host machine, SAS
Scalable Performance Data (SPD) Server reads the spdssrv.parm parameter file and registers the domains that are
listed in the parameter file with the name server. The name server remembers which SAS Scalable Performance
Data (SPD) Server host or hosts have access to a given LIBNAME domain. If you want to specify a LIBNAME
domain, you can do so using a LIBNAME statement or a pass-through SQL CONNECT statement. Your SAS
Scalable Performance Data (SPD) Server administrator can provide you with a list of the LIBNAME domains that
are mapped to your SAS Scalable Performance Data (SPD) Server host machine.

ACL File Security

SAS Scalable Performance Data (SPD) Server uses Access Control Lists (ACLs) and SAS Scalable Performance
Data (SPD) Server user IDs to secure domain resources. You obtain your user ID and password from your SAS
Scalable Performance Data (SPD) Server administrator. SAS Scalable Performance Data (SPD) Server also
supports ACL groups, which are similar to UNIX groups. SAS Scalable Performance Data (SPD) Server
administrators can associate a SAS Scalable Performance Data (SPD) Server user as many as five ACL groups.
ACL file security is turned on by default when an administrator brings up SAS Scalable Performance Data (SPD)
Server. ACL permissions affect all SAS Scalable Performance Data (SPD) Server resources, including domains,
tables, table columns, catalogs, catalog entries, and utility files. When ACL file security is enabled, SAS Scalable
Performance Data (SPD) Server only grants access rights to the owner (creator) of a SAS Scalable Performance
Data (SPD) Server resource. Resource owners can use PROC SPDO to grant ACL permissions to a specific group
(called an ACL group) or to all SAS Scalable Performance Data (SPD) Server users. The resource owner can use
the following properties to grant ACL permissions to all SAS Scalable Performance Data (SPD) Server users:

32



READ
universal READ access to the resource (read or query).
WRITE
universal WRITE access to the resource (append to or update).
ALTER
universal ALTER access to the resource (rename, delete, or replace a resource and add, delete indexes
associated with a table).

The resource owner can use the following properties to grant ACL permissions to a named ACL group:

GROUPREAD
group READ access to the resource (read or query).
GROUPWRITE
group WRITE access to the resource (append to or update).
GROUPALTER
group ALTER access to the resource (rename, delete, or replace a resource and add, delete indexes
associated with a table).

Organizing SAS Data

« SAS Scalable Performance Data (SPD) Server Tables SAS Scalable Performance Data (SPD) Server Component Files
« SAS Scalable Performance Data (SPD) Server Table Indexes

SAS Scalable Performance Data (SPD) Server Tables

SAS Scalable Performance Data (SPD) Server software alters SAS tables to enable high-performance processing.
SAS Scalable Performance Data (SPD) Server tables are physically different than a Base SAS table. You can use
tables in either SAS or native SAS Scalable Performance Data (SPD) Server format. The SAS Scalable
Performance Data (SPD) Server User's Guide chapter on Accessing and Creating SAS Scalable Performance Data
(SPD) Server Tables discusses how a simple SAS PROC COPY statement handles conversion details and
changing between table formats. How are SAS tables organized? SAS tables stores a single file that contains the

data descriptors and the table data. The data are column values, the descriptors are metadata that describe the
column and data formatting that the table uses. SAS Scalable Performance Data (SPD) Server tables do not reuse
space. When an SQL command to delete one or more rows from a table is issued, the row is marked deleted and
the space will not be reused. To recapture the space, the table must be copied. The diagram of the SAS Scalable
Performance Data (SPD) Server Table Component Files below shows differences in the architecture between SAS
Scalable Performance Data (SPD) Server tables and SAS tables. SAS Scalable Performance Data (SPD) Server
uses component files to store tables. One component file stores the stream of data values. Another component file
stores the column and data descriptors, the metadata. If you create an index for a column or a composite of
columns, SAS Scalable Performance Data (SPD) Server creates component files for each index.

SAS Scalable Performance Data (SPD) Server Component Files

SAS Scalable Performance Data (SPD) Server uses four types of component files to store SAS Scalable
Performance Data (SPD) Server tables. The diagram of the SAS Scalable Performance Data (SPD) Server Table
Component Files below shows the components of SAS Scalable Performance Data (SPD) Server tables. Two
component files store table information: the *.dpf component file stores a stream of the table's data values, and the
* mdf component file stores the table's metadata (column and data descriptors) information. SAS Scalable

33



Performance Data (SPD) Server also creates two more component files to manage index data: *.hbx components
are unique global B-tree indexes and *.idx components are segmented views of the indexed column data. The *.
idx components are especially useful in evaluating parallel WHERE-clauses.

SAS Scalable Performance
Data (SPD) Server
Component Files

SPD Server Tahle W S— Associated Table Indexes

Table
Metadata

Enhanced
Bitmap
Index Data

Segmented
Index Data

*.mdf file *.dpf files * ichx file *.hbx file

SAS Scalable Performance Data (SPD) Server partitions component files when they are created to keep them from
growing too large. Each partitioned component file is stored as one or more disk files. There are several
advantages to partitioning the component files:

. Very LargeTables: SAS Scalable Performance Data (SPD) Server bypasses file size limits imposed by
many applications and operating systems. By using partitioned component files, SAS Scalable
Performance Data (SPD) Server can support any file system transparently.

. Multiple Directory Paths: SAS Scalable Performance Data (SPD) Server can access data libraries that
span numerous directory paths and storage devices. SAS Scalable Performance Data (SPD) Server
software partitions massive data libraries into component files. The component architecture enables rapid
threaded data access while circumventing device capacity and file size limitation issues. Storage lists
transparently track component file locations so users can access multiple storage devices as a single
volume, even if file partitions exist in different locations.

. Flexibility in Storage: There is no need to store data tables and associated indexes in the same location
when using SAS Scalable Performance Data (SPD) Server component files. Data files and associated

34



indexes can be stored on different directory structures or devices if you wish. When deciding where to
store component SAS Scalable Performance Data (SPD) Server tables, you only need to consider the cost,
performance, and availability of the disk space.

. Improved Table Scan Performance: Data component partitions that are created using fixed-size intervals
will perform aggressively during parallelized full table scans. The documentation chapter on SAS Scalable

Performance Data (SPD) Server Table Options contains information on how to use the PARTSIZE= option
to control partition size.

SAS Scalable Performance Data (SPD) Server Table | ndexes

SAS Scalable Performance Data (SPD) Server allows you to create indexes on table columns. SAS Scalable
Performance Data (SPD) Server can thread WHERE-clause evaluations for tables that are not indexed. Indexes
enable more rapid WHERE-clause evaluations. Large tables in particular should be indexed to exploit SAS
Scalable Performance Data (SPD) Server performance. A detailed description of the SAS Scalable Performance
Data (SPD) Server index is provided in the Usage section on Indexing a Table.

SAS Scalable Perfor mance Data (SPD) Server Perfor mance Enhancements

« SAS Scalable Performance Data (SPD) Server Pass-Through SQL Enhancements Implicit and Explicit Server Sorts
Modified SAS Heapsortindexed Parallel Table Scan
. Improved Table Appends

SAS Scalable Performance Data (SPD) Server Pass-Through SOL Enhancements

You can use pass-through SQL to submit SQL statements that use SAS Scalable Performance Data (SPD) Server
tables directly to SAS Scalable Performance Data (SPD) Server. The SAS Scalable Performance Data (SPD)
Server SQL planner contains several optimizations that you can utilize to create SQL queries that can take
advantage of symmetric multiprocessing and SPD table indexes, resulting in improved SQL query performance.
Refer to the SAS Scalable Performance Data (SPD) Server User's Guide section on the SAS Scalable Performance
Data (SPD) Server SQL Planner for more information on SAS Scalable Performance Data (SPD) Server pass-

through SQL enhancements.

Implicit and Explicit Server Sorts

You can use implicit or explicit sorts with SAS Scalable Performance Data (SPD) Server. For example, the PROC
SORT in Base SAS software is an explicit sort. You can use PROC SORT with SAS Scalable Performance Data
(SPD) Server as well.

An implicit sort is unique to SAS Scalable Performance Data (SPD) Server. Each time you submit a SAS
statement with a BY clause, SAS Scalable Performance Data (SPD) Server sorts your data -- unless the table is
already sorted or indexed on the BY column. The automatic sort is very convenient. The documentation chapter on
Accessing and Creating SAS Scalable Performance Data Server Tables contains tips on how and when to use each

sort type.

35



Modified SAS Heapsort

SAS Scalable Performance Data (SPD) Server uses Heapsort as its default sort with some slight changes. Under
SAS Scalable Performance Data (SPD) Server, Heapsort compares available memory on the server to the memory
required to load and process the index key data in memory. If the memory is not constrained, SAS Scalable
Performance Data (SPD) Server performs the Heapsort in RAM memory.

Indexed Parallel Table Scan

SAS Scalable Performance Data (SPD) Server indexes are designed to support parallelism. Experienced RDBMS
users are accustomed to a perceptible processing lag that occurs when databases must read or process
enormous tables. When SAS Scalable Performance Data (SPD) Server performs table queries, the SAS
Scalable Performance Data (SPD) Server index architecture enables the software to analyze different
table sections or segments in parallel. By processing large table segments in parallel, SAS Scalable
Performance Data (SPD) Server delivers much faster data throughput. The faster throughput may be
difficult to perceive on small tables, but when SAS Scalable Performance Data (SPD) Server performs
scans on very large tables, the processing performance is significantly faster than database systems that
support only serial indexed table scans.

I mproved Table Appends

SAS Scalable Performance Data (SPD) Server decomposes table append operation into a set of steps that can be
performed in parallel. The level of parallelism attained depends on the number of indexes present on the table. The
more indexes you have, the greater the potential exploitation of parallelism during the append processing.

Tip: You can save time by creating an empty table in SAS Scalable Performance Data (SPD) Server, then define
your indexes on it, and then append the data, as opposed to loading the table and then creating the indexes
afterwards. It is faster to create indexes on an empty table.

SAS Scalable Performance Data (SPD) Server Extensonsto Base SAS

You can access SAS Scalable Performance Data (SPD) Server by using an SQL pass-through CONNECT statement or you
can issue a SAS LIBNAME statement. After connecting to SAS Scalable Performance Data (SPD) Server, you can run
SAS DATA steps, SAS procedures, or PROC SQL statements. The documentation in the SAS Scalable Performance

Data (SPD) Server Adminstrator's Guide and the SAS Scalable Performance Data (SPD) Server User's Guide furnish
syntax and examples that use SAS Scalable Performance Data (SPD) Server extensions to Base SAS language. Most of
your existing SAS programs will work in SAS Scalable Performance Data (SPD) Server with only minor modifications.
SAS Scalable Performance Data (SPD) Server extensions to the Base SAS language include:

. new LIBNAME statement options SAS Scalable Performance Data (SPD) Server SQL pass-through syntaxnew table
options new macro variablesparallel WHERE-clause processing parallel group-by processing BY-data grouping parallel
index creation

36



. PROC SPDO, an operator interface procedure.

Using SAS Scalable Performance Data (SPD) Server with Data War ehousing

SAS Scalable Performance Data (SPD) Server offers SAS Data Warehousing customers an excellent facility to store

data. Using component files and partitioning, SAS Scalable Performance Data (SPD) Server alleviates large table
constraints such as device or directory size limits. SAS Scalable Performance Data (SPD) Server can perform storage
services on a reliable and relatively inexpensive machine. Besides providing efficient, economical storage, SAS

Scalable Performance Data (SPD) Server can deliver the enhanced processing capabilities users need to manage and query
data in a warehouse. SMP processing furnishes the machine's horsepower to parallel-process huge tables. SAS

Scalable Performance Data (SPD) Server also offers multiple access, domain protection, and table locking: these

features enable Data Warehouse users to secure and access their shared SAS Scalable Performance Data (SPD) Server.

Data Warehouse With Large Data Stores
Trangaction 8 S
Databases
é
;
3

Operational - .
Definiions S

Data Validation
Transformation
Integration
Summarization

mar

/

Subjects / Data
[ 7 Marts

{ i
Detaif Tables Summary Tables

A\

j

Data
Warehouse

——— T

T M\\Ev..mw

!nﬁlah:nutinn l
arts i
T -

Data Access (
Analysis
Toals




Within a Data Warehouse, there are several data stores (repositories for data). Three stores are of interest above: Detail
Tables, Summary Tables, and Data Marts. Organizations often store transactions that are up to 90 days old in a Detail
store, transactions that are up to a year old in a Summary store, and additional data 'snapshots' in Data Marts. The three
data stores share a common requirement -- they must maintain hundreds of gigabytes of data.

To perform queries, Data Warehouse users can use the SAS System with SAS syntax or PROC SQL syntax. Alternatively,
the software supports use of other vendors' applications that allow pass-through SQL and comply with other non-

SAS connection standards. In brief, SAS Scalable Performance Data (SPD) Server can contribute significantly to objectives
for a Data Warehouse: to deliver low-cost, relevant, machine-independent, and timely information to users throughout

the organization.

38



Connecting to SAS Scalable Performance Data (SPD)
Server

. Introduction
. SAS and SPD Server Tables
o SAS Data Libraries
o Temporary LIBNAME Domains
. SPD Server Resource Security
o UNIX File Security
o ACL File Security
« Accessing SPD Server from a SAS Client
o SQL Pass-Through Facility
o LIBNAME Access
« LIBNAME Options
o Connect to a Specified SPD Server Host
o SPDSHOST= Macro Variable
o Validate the Client User ID
o Manage Server Network Traffic
o Additional LIBNAME Options
. LIBNAME Example Statements
« SPD Server Table Options
o Options to Enhance Performance

o Options for Other Functions
« SPD Server Macro Variables

o Macro Variables and Corresponding Table Options

o Summary of SPD Server Macro Variables
« Variable for a Client and Server Running on the Same UNIX Machine
= Variable for Compatibility with the Base SAS Engine
= Variables for Miscellaneous Functions
= Variables for Sorts
= Variables for WHERE Clause Evaluations
= Variables That Affect Disk Space
= Variables to Enhance Performance

| ntr oduction

39



All SAS users should read the Help section on Accessing and Creating SPD Server Tables to review the
methods that they can use to access SPD Server. These methods include LIBNAME statements and SQL pass-
through statements. Syntax statements and options are provided for each method, as well as useful table
options and macro variables.

SAS and SPD Server Tables

SPD Server tables have different physical structures than SAS tables. In a general discussion, a SAS table can
also refer to an SPD Server table. If the context is specific, for example, an SPD Server command, then the
reference is specific. A SAS table refers to the Base SAS format; an SPD Server table refers to the SPD Server
format.

Using SPD Server and SAS together, you can

. convert tables from the Base SAS format to the SPD Server format
. convert tables from the SPD Server format to the Base SAS format
. create a new SPD Server table

. read, query, append to, update, sort, and index SPD Server tables.

SASDatalLibraries

The term 'SAS data library' refers either to a collection of SAS files or SPD Server files. For SPD Server, a
SASdata library is a collection of one or more directories that specify the location of stored SPD Server files.
A data library has a primary file system. This is the directory an SPD Server administrator defines for the
LIBNAME domain when it is set up. Optionally, a data library can have other directories for separation of
SPD Server component files.

An SPD Server data library can contain the following LIBNAME domain files:

« SPD Server tables

« SPD Server indexes

. SPD Server catalogs

« SPD Server ACL files

. SPD Server utility files, such as a VIEW, an MDDB, etc.

Temporary LIBNAME Domains

SPD Server allows you to create temporary LIBNAME domains that exist only for the duration of the
LIBNAME assignment. Using this capability, SPD Server users can create space analogous to the SAS
WORK library. To create a temporary LIBNAME domain, use the SPD Server LIBNAME statement option,
TEMP=YES.

40



When you end your SPD Server session, all the data objects, including tables, catalogs, and utility files in the
TEMP=YES temporary domain are automatically deleted. This is similar to how the SAS WORK library
functions.

SPD Server Resource Security

SPD Server provides two levels of data security: UNIX file security and ACL file security. ACL file security
enforces SPD Server permissions with SPD Server user IDs and Access Control Lists (ACLs).

UNI X File Security

The software enables ACL file security by default. While ACL file security is strongly recommended, the
default can be changed. Only an SPD Server administrator can change the default file security setting. When a
SPD Server administrator specifies the NOACL option, all clients for SPD Server obtain the SPD Server user
ID 'anonymous'. There is no SPD Server security in effect. SPD Server tables are then secured only by the
UNIX file protections that are currently in force.

When UNIX file security controls SPD Server file access, it validates on the user ID associated with SPD
Server. Which UNIX user ID is associated with SPD Server? The UNIX ID associated with SPD Server is the
UNIX ID of the user that brings up the server. Suppose an SPD Server administrator brings up the SPD Server
host machine, using his SPD Server administrator's account named SPDSADMN. When any SAS client
connects to this SPD Server host, they will only be able to read files that have UNIX read permissions set for
the SPDSADMN user. As a result, SAS clients that are connected to this SPD Server host must write all files
in a directory created by SPDSADMIN that also has write permission set for SPDSADMN. SPDSADMN will
own all files written in this directory.

How is security maintained? The SPD Server administrator can set up the SPD Server LIBNAME domain
directories such that only the administrator has appropriate read and write access to those directories.

It is possible for a site to give different UNIX permissions to a group of users. To do this, an SPD Server

administrator must bring up another SPD Server using a different UNIX user account. (Bringing up a different
SPD Server affects only the new SPD Server files created, not existing SPD Server files.)

ACL File Security

UNIX file security alone is not adequate for many installations. For more complex workplace environments,
SPD Server provides a finer level of controls, called ACL file security. ACL file security is used by default for
SPD Server LIBNAME domains. SPD Server always enforces ACL file security unless an SPD Server
administrator specifies the NOACL option when bringing up a Server.

To understand ACL file security, you must know how SPD Server user IDs work. The SPD Server

41



administrator assigns each approved SPD Server user an ID, a password, a level of data authorization, and,
optionally, membership in up to five ACLGROUPS. (The SPD Server user ID 'anonymous' does not require a
password.)

Once your SPD Server UserID has been created, you and the SPD Server administrator can use PROC SPDO
to create ACLs that grant or deny other users access to an SPD Server table. The documentation chapter on
Accessing and Creating SAS Scalable Performance Data Server Tables explains how to use the PROC SPDO

operator interface to secure SPD Server resources.

Accessing SPD Server from a SAS Client

SOL Pass-Through Facility

SPD Server SQL pass-through processing supports an associated proxy process for each new client (via the
name server). The proxy issues SQL pass-through requests. To connect to an SPD Server SQL server from a
SAS session, you must submit a CONNECT statement that specifies the SASSPDS engine and SPD Server
options, and then issues the SQL commands.

For example:

PROC SQ;
connect to sasspds
(dbg="' nydonai n'
host =" nanesvr | D
serv="'5555'
user =' ner aksr'
passwd='si uya');
sel ect *
from connection
to sasspds
(select * from enpl oyee_info);
di sconnect from sasspds;
qui t;

LIBNAME Access

A logical name, or libref, is a name for the data library that you associate with an SPD Server domain during a
SAS job or session. Once a libref is assigned, SPD Server allows you to read, create, or update files in the
data library if you have the appropriate access to the data library.

A libref is valid only for the current SAS job or session. Librefs can be referenced repeatedly during a valid

42



job or session. SAS does not limit the number of librefs that you can assign during a session. Once you define
a libref, it is most commonly used as the first element in two-level SAS file names: LibraryName. Tablename.
The library name, or libref, identifies where the SPD Server can find or store the file.

The documentation chapter on Accessing and Creating SAS Scalable Performance Data Server Tables

contains several SQL pass-through examples that use librefs. The following example is a libref used with
LIBNAME access to an SPD Server.

Example: A LIBREF Used with LIBNAME Access

The statement below creates the table TRAVEL and stores it in a permanent SAS data library with the libref
ANNUAL.

dat a annual . travel ;

Below is a LIBNAME statement that associates a libref, the SASSPDS engine, and an SPD Server domain.

i bname nydatalib sasspds ' nydonain'
host =' nanesvr| D
serv="'5555"
user =' ner aksr'
passwd=' si uya';

LI BNAMVE | i bref SASSPDS <' SAS-data-library' > <SPD Server-options>;

Use the following arguments:

libref
a name that is up to eight characters long and that conforms to the rules for SAS names.
SASSPDS
the name of the SPD Server engine.
'SAS-data-library
the logical LIBNAME domain name for an SPD Server data library on the host machine. The name
server resolves the domain name into the physical path for the library.
SPD Server-options
one or more SPD Server options.

LIBNAME Options

You must supply the SASSPDS engine name to access SPD Server LIBNAME domains with a LIBNAME
statement. You must also specify one or more SPD Server options. The syntax for an SPD Server option is

43



<SPD Server-opti on>=<val ue>;

SPD Server-option
a keyword to name the option.

value
a value expected by the keyword.

Option values in a LIBNAME statement enable the engine to initiate, manage, and tailor a client session. This
section summarizes LIBNAME options and groups them by function.

Connect to a Specified SPD Server Host

To connect to a host, SPD Server needs the network node name for the SPD Server host
machine or the IP address of the server machine, and the port number of a name server. SPD
Server provides the following options to locate a name server using a named service.

SERVER=
specifies a node name for an SPD Server host machine and a port number for the name

server running on the machine.

HOST=
specifies a node for an SPD Server host machine and a port number for the name server
running on the machine.

Both options have the same function. SERVER= arguments are compatible with SAS/SHARE

software. HOST= arguments support FTP conventions. The HOST option allows a node to be
an [P address (for example, 123.456.76.1); the SERVER option requires a network node name.

SPDSHOST= Macro Variable

If you create a SAS macro variable named SPDSHOST= or an environment
variable named SPDSHOST=, whenever a LIBNAME statement does not specify
an SPD Server host machine, SPD Server will look for the value of SPDSHOST=
to identify the server.

% et spdshost =sanson;

i bname nyref sasspds 'nylib’
user =" yourid'
passwor d=' swam ' ;

44



The first statement assigns the SPD Server host SAMSON to the macro variable
SPDSHOST. Therefore, a subsequent LIBNAME statement does not need to
name the host server again.

Validatethe Client User ID

SPD Server uses the name server to secure its domains. SPD Server uses ACL file security to
secures domain resources. If ACL file security is enabled, the software grants access in the
following hierarchy:

. using the permissions that belong to the UNIX ID that is associated with the SPD Server
. using the permissions that belong to the SPD Server user ID.

You can use SQL pass-through and LIBNAME options to specify the identify of an SPD Server
user. SPD Server uses a special ID table to validate user IDs and passwords. The following
LIBNAME options identify a client:

ACLGRP=
specifies one of up to five ACL groups that the user may belong to.

ACLSPECIAL=

grants special privileges to an SPD Server user who is previously set up as special
(ACLSPECIAL=YES is defined for the user in the password file.) Special privileges
override other ACL restrictions that apply to resources in the domain.

CHNGPASS=
prompts a client user to change his or her SPD Server password.

NEWPASSWORD=or NEWPASSWD=
specifies a new password for an SPD Server client user.

PASSWORD= or PASSWD=
specifies a password to validate an SPD Server client user.

PROMPT=
prompts for a password to validate an SPD Server client user.

PASSTHRU=
specifies implicit SQL pass-through options for an SPD Server client user.

USER=
specifies the SPD Server user ID.

45



User ID Options When ACL File Security Is Enabled

User= Password:_or GrantsAccessTo. ..
Prompt=
Required unless the
SAS client process has Resources that you create
a User ID, that is, nota ||Required and within the SPD Server
Windows client. validated against the || LIBNAME domain and in
Submitted values for SPD Server User ID || other resources that are not
User= are validated Table. excluded by ACLs or by
against the SPD Server UNIX file permissions.
User ID Table.
User ID Options When UNIX File Security Only Is
Enabled
User= P ord:_or GrantsAccessTo. ..
Prompt=
Not required. The SPD Not required with All resources within the
Server User ID under "anon qmous" User LIBNAME domain granted
UNIX file security only D Y by UNIX permissions for
is "anonymous". ' the SPD Server's UNIX ID.

M anage Server Network Traffic

If your SPD Server installation uses the same physical machine to run your SPD
Server client process and your SPD Server host services, you can use the two
following SPD Server options to improve client / server network traffic:

NETCOMP=

46



compresses the data stream in an SPD Server network packet.

UNIXDOMAIN=
uses UNIX domain sockets for data transfer between the client and the
SPD Server.

Additional LIBNAME Options

BYSORT=
performs an implicit sort when a BY clause is encountered.

DISCONNECT=
specifies when to close network connections between the SAS client and
the SPD Server. This may be after all librefs are cleared or at the end of a
SAS session.

ENDOBS=
specifies the end row (observation) in a user-defined range.

STARTOBS=
specifies the start row (observation) in a user-defined range.

TRUNCWARN=

Suppresses hard failure on NLS transcoding overflow and character
mapping errors. When using the TRUNCWARN=YES LIBNAME
option, data integrity may be compromised because significant
characters can be lost in this configuration. The default setting is
NO, which causes hard read/write stops when transcode overflow
or mapping errors are encountered. When TRUNCWARN=YES,
and an overflow or character mapping error occurs, a warning is
posted to the SAS log at data set close time if overflow occurs, but
the data overflow is lost.

LI BNAME Example Statements

Example 1l

47



Example 1 creates the libref MINE, associates it with the SASSPDS engine, and specifies the
SPD Server LIBNAME domain GOLDMINE. Values for the SPD Server options specify to

. locate the server machine FASTCPUS and use the default service SPDSNAME to get the
port number of the name server

. validate the SPD Server user EXPLORER

. prompt for EXPLORER's old SPD Server password

. change the password.

| i bnanme m ne sasspds ' gol dm ne'
user =" expl orer'
host =' f ast cpus’
pronpt =yes
chngpass=yes;

Example 2

Example 2 represents the first LIBNAME statement that was made for the SPDSDATA domain.
It creates the libref MYLIB, associates MYLIB with the SASSPDS engine, and specifies the
SPD Server libname domain SPDSDATA. Values for the SPD Server options specify to

. locate the server machine HEFTY and use the named service SPDSNAME to get the port
number of the name server.

. validate the SPD Server user ID camills and account password of escort.

. store data file partitions in the directories MAINDATA on device DISK1, MOREDATA
on device DISK2, and MOREDATA on device DISK3. This example implies that the
metadata and index partitions for tables are stored in the primary file system, that is, the
path set up by the SPD Server administrator for SPDSDATA.

i bname nylib sasspds 'spdsdata
server =hefty. spdsnane
user='camlls' password='escort'
dat apat h=("'/ di sk1/ mai ndat a

"/ di sk2/ nor edat a
"/ di sk3/ noredata');

SPD Server Table Options

SPD Server table options specify processing actions that apply only to a specific table. When you use a

48



LIBNAME statement, you should specify the options in parentheses next to the table name. If you use an
SQL pass-through statement, use brackets to specify the options next to the table name.

Options to Enhance Performance

BYNOEQUAL S=
specifies the index output order of table rows with identical values for the BY column.

NETPACKSIZE=
controls the size of an SPD Server network data packet.

SEGSIZE=
sizes the segment for index files associated with an SPD Server table.

Optionsfor Other Functions

BYSORT=
performs an implicit sort of a given table when a BY clause is encountered and there is
no index available.

ENDOBS=
specifies the end row (observation) number in a user-defined range.

STARTOBS=
specifies the start row (observation) number in a user-defined range.

SORTSIZE=
specifies the amount of memory (in number of bytes, not Kbytes or Mbytes) that SPD
Server is able to allocate in order to complete a sorting request. The SORTSIZE= table
option declared must be less than the global sortsize parameter specified in the spdsserv.
parm server parameter file.

VERBOSE=
details all indexes associated with an SPD Server table. This option also provides other
information, such as who is the table owner and the ACL group.

SPD Server Macro Variables

49



You can use global macro variables in SPD Server to simplify your work. Global macro variables use default
values set by the SPD Server software and operate in the background. You can make global changes to the
values of macro variables in your code by specifying a new the default setting for the specified variable. The
new default setting is applied to all macro variables in the code that you submit to SPD Server. You can also
override the setting for a single macro variable by using a table option to change the setting for only the
specified table.

The default macro variable values automate sophisticated processing decisions. The default settings furnish
good performance. However, top performance often requires intelligent changes to some macro variable
default settings. When you make changes to the macro variable default settings, you should attempt to find the
best processing opportunity for the type of data that you have.

Learning the best way to set SPD Server macro variables and options takes time. Sometimes, performance
testing is the only way to determine if changing a setting improves processing performance. Performance
testing is time well spent. After you quantify performance parameters under various macro variable settings,
you can customize SPD Server so that it solves your real business or data problems with maximum efficiency.

Each SPD Server installation is different. You may want to change many values, or just a few default values.
When you make changes, you will find macro variables are friendly, flexible and easily to manipulate.

Use a %LET statement to change macro variable values. You can place the macro variable assignment
anywhere in the open code of a SAS program except data lines. The most convenient place to put your %LET
statements to initialize macro variables is in your autoexec.sas file or at the beginning of a program. The
macro variable assignment is valid for the duration of your session or the executing program. Macro variable
values remain in effect until they are changed by a subsequent assignment.

Assignments for macro variables with YES|NO arguments must be entered in uppercase (capitalized).

Because the SPD Server macro variables operate behind the scenes, you cannot query SPD Server to find out
the status of a macro variable. SAS does not 'know' about the status of macro variables. If you want to see
which SPD Server macro variables are in effect, or their default values, you can use PROC SPDO.

Macro Variables and Corresponding Table Options

When you need to apply the action to a single table that a macro variable applies globally to all tables, you
should use a table option instead of the macro variable setting. A table option is more selective because you
can turn the macro variable function on or off for a single table.

Summary of SPD Server Macro Variables

This section summarizes the SPD Server macro variables and groups them by the function of their default
value.

50



Variablefor a Client and Server Running on the Same UNI X Machine

SPDSCOM P=
specifies to compress the data when sending a data packet through the network.

Variablefor Compatibility with the Base SAS Engine

SPDSBNEQ=
specifies the output order of table rows with identical values in the BY column.

Variablesfor Miscellaneous Functions

SPDSEOBS=

specifies, when processing a table, the end row (observation) number in a user-defined
range.

SPDSSOBS=

specifies, when processing a table, the start row (observation) number in a user-defined
range.

SPDSUSAV=

specifies, when appending to tables with unique indexes, to save rows with non-unique
(rejected) keys to a separate SAS table.

SPDSUSDS=

returns the name of a hidden SAS table generated by the SPD Server which stores rows
with identical (non-unique) table values.

SPDSVERB=

specifies when executing a PROC CONTENTS statement to provide more details that are
specific to SPD Server indexes that are associated with the table. Examples of
information include ACL information, index information, PARTSIZE= value, and others.

SPDSFSAV=

specifies to retain the table if an abnormal condition is encountered during a table-
creation operation. (Normally SAS closes and deletes these tables.)

51



SPDSEINT=
specifies disconnect behavior for the SQL pass-through EXECUTE() statement.

Variablesfor Sorts

SPDSBSRT=

specifies for the SPD Server to perform a sort whenever it encounters a BY clause, and
there is no index available.

SPDSNBIX=
specifies whether to turn BY-sorts with an index on or off.

SPDSSTAG=

specifies whether to use non-tagged or tagged sorting for PROC SORT or BY
processing.

Variablesfor WHERE Clause Evaluations

SPDSTCNT=
specifies the number of threads to be used for WHERE clause evaluations.

SPDSEVI1T=

specifies whether the data returned from WHERE clause evaluations that utilize an index
should be in strict row (observation) order.

SPDSEV2T=

specifies whether the data returned from WHERE clause evaluations that do not utilize
an index should be in strict row (observation) order.

SPDSWDEB=

specifies when evaluating a WHERE expression, whether WHINIT, the WHERE clause
planner, should display a summary of the execution plan.

SPDSIRAT=

controls, when WHERE clause processing with enhanced bitmap indexes, whether to
perform segment candidate pre-evaluation.

52



Variables That Affect Disk Space

SPDSCM PF=
specifies to add a number of bytes to a compressed block as growth space.

SPDSDCM P=
specifies to compress SPD Server tables on the disk.

SPDSIASY =

specifies, when creating multiple indexes on an SPD Server table, whether to create the
indexes in parallel.

SPDSSIZE=
specifies the size of an SPD Server table partition.

Variables to Enhance Perfor mance

SPDSNETP=
sizes a buffer in server memory for the network data packet.

SPDSSADD=

specifies whether to apply a single row, or multiple rows at a time, when appending to a
table.

SPDSSYRD=
specifies whether to perform data streaming when reading a table.

SPDSAUNQ=
specifies whether to abort an append if uniqueness is not maintained.

53



Accessing and Creating SAS Scalable Perfor mance Data
(SPD) Server Tables

« Introduction
. Using a LIBNAME Statement to Access SPD Server
o Example: Issuing an Initial LIBNAME Statement
o The Client Session
. Managing Large SPD Server Files
o Initial Setup of SPD Server LIBNAME Domain Storage
o Effect of the Administrator Option, ROPTIONS=
o Explicit or Default Storage Paths
o Understanding SPD Server Component Storage
o Forced Partitioning of the Data Component

o Importance of the First Metadata Partition
o Using Path Options for Large Table Storage
« Example 1: Specify an Explicit Initial Set of Paths
« Example 2: Specify a Subsequent LIBNAME Statement to Add Paths
. Interchanging SPD Server and SAS File Formats
o Migrating Tables between SAS and SPD Server
« Example 1: Create a SAS Table from an SPD Server Table
« Example 2: Convert from SAS to SPD Server Format
« The SQL Pass-Through Facility
o Accessing Data Using the SQL Pass-Through Facility
o SQL Pass-Through Statements
« CONNECT Statement
« DISCONNECT Statement
« EXECUTE Statement
« CONNECTION TO Statement
« Example 1: Using SAS PROC SQL to Connect to an SQL Server
« Example 2: Nested SQL Pass-Through
« Creating a New Table
o Example - Creating a New Table Using Pass-Through Statements
o Example - Creating a New Table with a LIBNAME Statement

I ntroduction

This documentation chapter describes how to access SPD Server using SAS and a SPD Server SQL pass-through facility
or SAS LIBNAME statement. The chapter also demonstrates typical data tasks on an SPD Server host. Finally, it
discusses how to secure SPD Server resources using PROC SPDO. (Power users who have special privileges should see
Using PROC SPDO, Special and Privileged OPER Commands.)

Note: For readability, the SPD Server SQL pass-through facility is shortened here to "SQL pass-through facility," unless
the context requires a more explicit reference. Similarly, when the chapter references a name server, it is the
Scalable Performance Data Server name server.

54


file:///U|/Conversions/spdsug/saspdo.htm#toc Special SPDO Commands

UsngalLIBNAME Statement to Access SPD Server

It is not necessary to understand all possible LIBNAME and table options to initiate an SPD Server client session. There
are only a few required elements which are shown in the example below. The LIBNAME statement should specify

. the local library reference (libref)

. the required engine name SASSPDS

. avalid domain name that is registered to the name server and defined to the SPD Server host

. the name server host's name

. the user ID

. password access, either through the PROMPT=YES switch or using the PASSWD keyword. (The PROMPT=YES

approach is recommended for security reasons.)

Example: Issuing an Initial LIBNAME Statement

i bnanme market sasspds 'nktdata' host='sunone'
user="user id" pronpt=yes;

This example specifies the libref "market," the engine name SASSPDS, the LIBNAME domain "mktdata," and the name
server host called "sunone." It identifies an SPD Server user "user id" and is configured to prompt the user for a
password. Alternately, but less recommended, is

i bname market sasspds 'nktdata' host='sunone'
user="user id passwd='beener';

The only difference between this and the previous example is the password specification. Here the password "beemer"
is recursed into the LIBNAME statement. This method can be used for batched SPD Server jobs that run unattended.

The Client Session

Successfully issuing the LIBNAME statement or SQL pass-through statement(s) initiates an SPD Server client session.
The client session operates using a combination of up to four distinct components:

SPD Server Name Server
The name server acts as a "traffic cop" and provides a central point of control between clients and SPD Server hosts. The
name server maintains a list of LIBNAME domains associated with each SPD Server host. Client sessions will always
connect to an SPD Server host through a name server. The name server resolves the submitted LIBNAME domain name
(a logical entity) to a physical path (usually a UNIX or Windows directory). The name server then connects you to the
SPD Server serving the domain without requiring you to know physical addresses. An SPD Server administrator sets up the
LIBNAME domains in a parameter file for SPD Server which then registers its domains with the name server.

SPD Server Host
Each SPD Server host controls security access to the domain resources it manages. When an SPD Server host starts up,
it registers its LIBNAME domains with the name server. Clients may only connect to an SPD Server host through a
name server -- direct connections between clients and SPD Server hosts are not permitted. The SPD Server host validates
the client user ID and password (passed in the LIBNAME statement), launches the system process (client proxy) for
each client, and grants access to the appropriate SPD Server domain.

SQL Server
The SQL server parses and processes the pass-through SQL syntax submitted by the SAS client.

SPDSSNET Server
The SPDSSNET server enables access between clients without SAS software and SAS Scalable Performance Data Server. The
SPDSSNET server runs as a stand-alone process on either the client or SPD Server host machine. It acts as a bridge

55



between the SAS ODBC driver and the SPD Server host. SPDSSNET also can be used with JDBC drivers and HTMSQL used
with Web Servers. SPDSSNET can run multiple processes concurrently and perform parallel processing.

SPD Server Hosts, SPD Server Name Servers, and LIBNAME Domains

SPD Server Hosts, SPD Server Data Servers, and
LIENAME Domains

SPD Server Name Server
(Command Central)
Maintains list of LIBNAME domains for SPD Server Hosts
SPD Server clients connect to SPD Server Hosts via the
SPD Server Name Server

SPD Server SPD Server SPD Server
Host 1 Host 2 Host 3
I
| ! |
Domain A Domain G Domain E
Domain B Damain D Domain F

Managing L arge SPD Server Files

Leaving aside performance issues, managing large files is a matter of file storage and disk space. Optimally, an SPD
Server administrator will manage storage space for SPD Server LIBNAME domains. In this case, you do not need to
consider storage issues -- SPD Server does the work for you. The Help section on Optimizing SPD Server

Performance contains more detail on managing large SPD Server files.

Initial Setup of SPD Server LIBNAME Domain Storage

Figure 3.2 reviews how an SPD Server domain is set up. An SPD Server administrator must define the name and primary
path for the domain in the LIBNAME parameter file for SPD Server. The path that the administrator defines for each domain
is referred to as the primary file system for that domain. The LIBNAME parameter file is read by the SPD Server at

startup. The SPD Server registers the domains with the SPD Name Server. When the user issues a LIBNAME statement,

the client sends a message to the SPD Name Server that will resolve the domain name to its physical directory path and

also determine the SPD Server that registered the domain.

Setup of SPD Server LIBNAME Domains

56



B

LIBNAL -1E- ) ‘ read by SPD Server _ registers with SPD Server

I > Host [ 71 Name Server
Parameter File !
* : - /x'.
\x‘-‘ / |
h‘x\‘ ' sasspds engine
Client proxy ™ /,f’ resolves “spdsdata’
kes LIBNAME ™ / into the physical
; makes ", s directory path
The SPD Server Administrator assignment , /!
enters diskl/jcsuser /
™, ~
LY ra
LIBNAME=gpdadata [ ol
PATHHNAME=/diskl/jcsusar SPD Server
Client

FATHMAME= defines the
primary file system for the
spdsdata libname domain.

LIBMAME Engine

/* LIBNAME statement */

libname mylib sasspds ‘spdsdata’
sarver=hefty . spdsname
user='Jcsmith" password="halcyon’ ;

The Scalable Performance Data 4.3 Overview documentation chapter discusses LIBNAME path options that allow a user

to specify additional storage devices and paths for a domain. To manage their own disk space, a user must be aware of
the DATAPATH=, METAPATH=, and INDEXPATH= options, as well as the ROPTIONS= option that the SPD

Server administrator uses.

Effect of the Administrator Option, ROPTIONS=

After defining a primary file system for a domain, an SPD Server administrator can use LIBNAME parameter file
options, identical to the DATAPATH=, METAPATH=, and INDEXPATH= options in the LIBNAME statement, to set
up additional paths for the domain. However, the administrator can also exercise an option to restrict a the user from
defining additional paths on the LIBNAME statement with the ROPTIONS= LIBNAME parameter file option. When an
SPD Server administrator uses the ROPTIONS= option, the administrator's specification takes precedence over the users.
More information is available in the Help section on Configuring LIBNAME Domain Disk Space in the SPD

Server Administrator's Guide.

For example, assume that a user uses the DATAPATH= option to specify a path(s) to store table data for a domain, and that
the SPD Server administrator also uses the DATAPATH= option, along with ROPTIONS= for that domain entry in
the LIBNAMES parameter file. The user's DATAPATH= specifications are then ignored.

The administrator's use of ROPTIONS= with path options is recommended. It relieves users of the complicated task

of managing disk space and avoids the need to embed physical path information in SAS programs. Instead, SAS jobs need
to refer to only the logical LIBNAME, relying on ROPTIONS= embedded by the administrator to specify all of the
physical information. This approach utilizes the power of the name server, allowing it to resolve path information for an
SPD Server domain.

Primary File System Default Paths

57



J* First LIBNAME statement for the
domain without path options */

libname mylib sasspds ‘spdsdata’

sarver=hefty. spdsname
user=‘jesmith’ password='haleyon’ ;

SFD Sawnr * ........................................................................ :.. SPD SEWET
Host Client

The SPD Server Mame Server
resolves spdsdata into the path

diaskl/jcsusar

the primary file system for the
domain.

Paths for spdsdata in spdslibi1
are:

METAPATH=/disk]l/jcsuser
DATAPATH=/diskl/jcsuser
INDEXPATH=/digkl/jcsuzer

Explicit or Default Stor age Paths

You may wonder why the software offers you path options and then discourages their use? The answer is flexibility. A site
may elect to allow users to manage their own disk space. While this practice is not recommended, the software allows for
the possibility.

To use path options effectively, you must know that the first LIBNAME assignment or SQL Pass-Through
CONNECT statement naming a domain establishes an initial set of paths for the domain. You can specify the paths, or
the software can establish a default set. Figure 3.2 shows a default set of paths. Figure 3.4 shows an explicit initial set of paths.

The path options METAPATH=, DATAPATH= and INDEXPATH= store partitions for the component files: metadata,

data, and indexes. Subsequent LIBNAME assignments augment the path list created by the initial LIBNAME assignment.
That is, SPD Server appends each new path assignment to any prior list for the component.

Explicit Initial Set of Paths

58



/* First LIBEMAME statement for
domain with path options */

libname mylib sasspds ‘spdsdata”
garver=hefty. spdenams
uzer="'Jcamith’ password="haloyon’
METAPATH={ ' fdisk?2/jcsuser?’ )
DATAPATH= | * /disk2/jcsuserd’
"fdisk3d/josuser3)
INDEXPATH=( */disk?/jcsusar?’) ;

SPD Server é SPD Server
Host Client

The SFD Server Name Server
resolves spdsdata into the path

diskl/jcsuser

the primary file system for the
domain.

Paths for spdsdata in spdslib11 are:

METAPATH={ ' /disgkl/jcsuser
Vdisk2/jesuser2’)

DATAPATH={ ' /disk?/josuser?’
‘fdisk3/jecsuserd’)

INDEXPATH={"/digk2/jcsuser?’ ) ;

In summary, unless you or an SPD Server administrator specify an initial set of paths, the software uses the domain's
primary file system in the LIBNAMES parameter file for the default path set. As you will learn in the next section, the
default path set may not be ample for large tables nor provide optimal performance.

Under standing SPD Server Component Stor age

Earlier, you learned that the software creates a list of paths for storage of table files in an SPD Server domain, but file
partition storage was not discussed. This section focuses on using path options when an SPD Server administrator has not
used ROPTIONS=.

Minimally, each table consists of a metadata component and a data component. Each component file is composed of one
or more partition files on disk. The software requires that the first metadata partition reside in the primary file system, that
is, the path defined for the domain by an SPD Server administrator. Other metadata partitions can overflow to additional
paths specified using the METAPATH= option.

If no paths are specified for index and data components by the INDEXPATH= or DATAPATH= options, the software
stores these partitions in the primary file system too. If other paths are specified, the software stores the initial partition
for these classes in the first path with available space. (Unlike metadata partitions, data and index partitions do not have to
start in the primary file system.) A partition can expand until the path fills up; remaining partitions then overflow to the
next path with available space, and so on. (See Figure 3.5.)

For ced Partitioning of the Data Component

To improve parallel processing of various operations involving full-table scans (for example, WHERE-clause
evaluations without indexes or SQL GROUP-BY evaluations) the SPD Server allows you to force creation of data

59



component partitions at fixed-size intervals. To specify the size interval, use the PARTSIZE= table option. By default, the
SPD Server sets PARTSIZE= to 16 megabytes. See the documentation chapter on SAS Scalable Performance Data
Server Table Options for details.

The SPD Server uses the collection of file systems that you specify with the DATAPATH= option to distribute partitions in
a cyclic (round-robin) fashion. But, instead of creating partitions until the first file system is full, the SPD Server

randomly chooses a file system from the DATAPATH= list for the first partition, then sequentially assigns partitions

to successive file systems in the DATAPATH= list. The software continues to cycle through the file system set, as many
times as needed, until all data partitions for the table are stored. Assume that you specify

DATAPATH=' (' /datal' '/data2')

Subsequently, you store your BIGONE table into the domain. SPD

uses random placement of data partitions in the DATAPATH= list, so the first first BIGONE partition may be stored in
either the /datal or the /data2 directory. Subsequent partitions will alternate between the /datal and /data2 directories, and

SO on.

If you set PARTSIZE=0, SPD Server uses the DATAPATH= file systems strictly as overflow space. That is, it
creates partitions in the first file system, up to the file size limit of your operating system. Then, when the first file system
is full, it proceeds to the second file system, etc.

SPD Server Component Stor age

metadata index
data data
- * ¥
I O I EEEEEEEE EEENEEEE
.mdf partitions .dpf partitions dd= and .aux partitions
File partitions are stored [ ]
in the domain's primary file system  ———— |
andior in ether paths specified %
weith the LIBMAME options. —
1 Disk
1
—
e ——
 ————

What happens when you issue the first LIBNAME statement for a domain but do not specify path options? If your tables
are small, most likely the primary file system is probably adequate. However, if you store large tables, the primary file
system can fill up quickly. How do you know when the primary file system is full? SPD Server will return an error
message when you perform an append operation on an existing table or create a new table in the domain.

60



I mportance of the First M etadata Partition

If the primary file system is full, you may issue a subsequent LIBNAME statement specifying additional paths. This allows
a data append to an existing table but may not allow creation of a new table in the domain. The reason why the new paths
did not solve the create failure may not be obvious. The answer is the software cannot store the first metadata file

partition because the primary file system is still full. What is the create failure solution? Either free space in the primary
file system or have the SPD Server administrator create a new LIBNAME domain.

Using Path Options for L arge Table Stor age

If you must manage your table storage, anticipate disk space for large tables. Use the LIBNAME path options with the
first LIBNAME statement for the domain. Store data and index partitions using the DATAPATH= and INDEXPATH=

options on a different storage device than the primary file system. This reserves the primary file system for metadata
files.

Example 1: Specify An Explicit | nitial Set of Paths

SITEUSRI issues the first LIBNAME statement for the MYLIB domain. By default, the domain's primary file system is
used to store metadata partitions but another device MYDISK30 and directory SITEUSER is specified to store the data
and index partitions. (The SPD Server administrator created the primary file system for MYLIB.)

/* 1 anticipate the primary file systemfor the MYLIB domain */
/* is anple for netadata files, but | will use MYDI SK30 */
/* to store ny data and index partitions. */

i bnane nyref sasspds 'nylib’
dat apat h=("'/ mydi sk30/ si t euser"')
i ndexpat h=("/mydi sk30/ si teuser"')
server =husky. spdsnane
user='siteusrl1l" pronpt=yes;

Example 2: Specify A Subsequent LI BNAME Statement to Add Paths

SITEUSRI issues a subsequent LIBNAME statement for the MYLIB domain specifying additional paths for the data and
index partitions. The user is storing very large tables so two storage devices (and directories) for data are listed, and a
third device for indexes associated with the tables is listed.

/* 1 noticed today MYDI SK30 is getting full. */
/* 1 am addi ng MYDI SK31 for possible overfl ows. */
I i bnane expand sasspds 'nylib'
dat apat h=("'/ nmydi sk31/siteuser' '/mydi sk32/siteuser')
i ndexpat h=("/mydi sk33/siteuser"')
server =husky. spdsnane
user='siteusrl1l" pronpt=yes;

The software appends the new paths listed to the prior list for each component type. The entire path list that .
spdsl i b11 now maintains is

dat apat h=("' nydi sk30/siteuser' '/ mydi sk31l/siteuser' '/nydisk32/siteuser")
i ndexpat h=("' nydi sk30/ si teuser' '/nydi sk33/siteuser')

How does SPD Server use the path list? It stores partitions of the data components for MYLIB tables in the specified
data paths. (How the software uses the paths depends upon the value of the PARTSIZE= option.) For index components,

61



it stores the files in the first path listed until the space is filled, then it proceeds to fill the next path listed.

I nter changing SPD Server and SAS File Formats

Migrating T ables between SAS and SPD Server

Many organizations use SPD Server when they discover there is a need for more "horsepower" dealing with large SAS
tables. As a result, there are many instances where it is handy to be able to move SAS tables into SPD Server format, and
vice versa. Fortunately, SPD Server was designed with ease of table conversion in mind. The examples below illustrate
the flexibility built into SPD Server and the ease of table conversion between the SAS and SPD Server systems.

Example 1: Create a SAS Tablefrom an SPD Server Table

To create a SAS table from an SPD Server table, issue a LIBNAME statement but do not specify the engine SASSPDS.
Your program will then create a Base SAS table. (Later, if you decide to use SPD Server capabilities, you can convert the
SAS table to the SPD Server format. Conversion is easy: interchange table formats using the SAS System's COPY
procedure. See Example 2.)

/* Create |local racquets data set. */
|'i bnane | ocal '/u/sasdeno/local’;

data | ocal .racquets;
i nput racquet _nane $20. @2 wei ght _oz @8 bal ance $2.
@2 flex @6 gripsize
@2 string_type $3. @7 retail _price @5 inventory_onhand;

dat al i nes;
Filbert VolleyMaster 10.5 HL 5 4.5 syn 129.95 5
Sol 0 Queensi ze 10,9 HH 6 5.0 syn 130.00 3
Per ki nson Al | Court 11.0 N 5 4.25 syn 159.99 12
W1 co Speciali st 8.9 HL 3 5.0 nat 287.50 1

Example 2: Convert from SASto SPD Server For mat

SITEUSR1 makes a libref SPORT, associates SPORT with the SPD Server engine SASSPDS, and points to
the CONVERSION_ AREA domain on an SPD Server host server named HUSKY. User SITEUSR1 uses a default
named service SPDSNAME to locate the port number of the name server and requests a prompt for the password.

The PROC COPY statement inputs the SAS table LOCAL.RACQUETS and outputs the SPD Server table
SPORT.RACQUETS to the CONVERSION_ AREA domain. After the PROC COPY statement executes, the SAS
table becomes two SPD Server table component files. (See Figure 3.6.)

/* Copy existing SAS table to the SPD Server format. */
i bname sport sasspds 'conversion_area' server=husky.spdsnane

user='siteusrl" pronpt=yes;
proc copy in=local out=sport;

sel ect racquets;
run;

62



PROC COPY Convertsa SAS Tableto an SPD Server Table

f Y rr————————
f,f- ‘1_\ proc copy in=local J,r’f \x“
% e - / )

/ \ out=spds ; f_f SPD ‘x\‘

{ SAS |1 S — » { Server Y

Jl,l" %

\"‘-,"‘ Table rd select racquetbs; Y Table ,/

" f’r ran; A /
L \___TT__E

data and - L _ data
metadata

.mdf file .dpf file

The SOL Pass-Through Facility

SPD Server uses pass-through SQL commands to access and manipulate data. What does this mean? Enabling pass-
through SQL functionality provides SPD Server clients with a new way to establish a connection with an SPD Server host
or direct load from an external database such as Oracle. Users now have broader data access in the SPD Server
environment and growing connectivity to external databases using the SPD Server engine.

The SQL Syntax Reference Guide documentation chapter provides additional detailed reference information on using
SPD Server SQL syntax.

Accessing Data Using the SOL Pass-Through Facility

The SQL pass-through facility is another access method allowing SPD Server to connect to an SQL server and
manipulate data. An overview of the steps is presented here, and followed with examples. These are the major steps for
using SQL pass-through:

1. Establish a connection from an SPD Server client using a CONNECT statement.

2. Send SPD Server SQL statements using the EXECUTE statement.

3. Retrieve data SQL query with the CONNECTION TO component in a SELECT statement's FROM clause.
4. Terminate the connection using the DISCONNECT statement.

SOL Pass-Through Statements

63



CONNECT Statement

Specifies the SAS I/0 engine that will provide the SQL pass-through access.
Syntax

CONNECT TO dbms-name < AS alias >(dbms-args);
Use the following arguments:

dbms-name (required)
Specifies the name of the engine.
When running SAS and PROC SQL, you must specify sasspds to obtain SQL pass-through to an SPD Server SQL Server. You
must specify spdseng to obtain SQL pass-through from an SPD Server SQL server. The later examples show
CONNECT statements specifying these engines.

AS alias (optional)
Specifies an alias or logical name for a connection.
When specifying an alias to identify the connection, use a string without quotes. Then refer to this logical name in subsequent
SQL pass-through statements.
Note: The alias must specify the connection that will execute the statement.

Example - Using an Alias
execute(...) by alias
or

select * from connection to alias(...)

dbms-args (required and/or optional arguments)
Identifies the SQL server and data source. The following dbms-args arguments are for the SPD Server engines, sasspds
and spdseng. SPD Server SQL uses the following simple syntax: Keyword=Value

DBQ=libname-domain (required)
Specifies the primary SPD Server LIBNAME domain for the SQL pass-through connection.
The name that you specify is identical to the LIBNAME domain name that you used when making a SAS
LIBNAME assignment to sasspds. Use single or double quotes around the specified value.

HOST=name-server-host (optional)
Specifies a node name or IP address for a name server that is currently running.
Use single or double quotes around the specified string. If you do not specify a name, the software uses the current value of
the SAS macro variable spdshost to determine the node name.

SERVICE=name-server-port (optional)

SERV=name-server-port (optional)
Specifies the network address (port number) for a name server that is currently running.
Use single or double quotes around the specified value. If you do not furnish a port number for the name server, the software
determines the port address from the named service spdsname in the /etc/servicesfile.

USER=SPD Server user ID (required on Windows but not UNIX)
Specifies an SPD Server user ID to access an SPD Server SQL Server. Use single or double quotes around the specified value.

PASSWORD=password (required)

64



PASSWD=password (required, or use PROMPT=YES, unless USER="anonymou')
Specifies an SPD Server user ID password to access an SPD Server. (This value is case sensitive.) Normally you would
not specify a password in text files that others can view. More likely you would use this argument in batch jobs that
are protected by file system permissions, prohibiting others from reading the job files.

PROMPT=YES (required, or use PASSWD or PASSWORD-=, unless USER="anonymou')
Specifies a password prompt to access an SPD Server SQL server. This value is case sensitive.

DISCONNECT Statement

Disconnects you from your DBMS source.
Syntax
DISCONNECT FROM [dbms-name | alias];
Description
When you are finished with a PROC SQL connection, you must disconnect from the DBMS source. This automatically
occurs when you exit the PROC SQL procedure. You can, however, explicitly disconnect from the DBMS by using
the DISCONNECT statement.
Use the arguments:
doms-name
the name specified in the CONNECT statement that established the connection.
alias

the alias value specified in the CONNECT statement that established the connection.

EXECUTE Statement

The EXECUTE statement is part of the pass-through SQL facility. It allows the user to use specific SQL statements during
a pass-through connection. Before using the EXECUTE statement, the user must first establish a connection using

the CONNECT statement. After a user has created a pass-through connection, use EXECUTE to submit valid SQL
statements (except the SELECT statement).

Syntax
EXECUTE (SQL statement) BY [dbms-name | alias];
Use the following arguments:

(SQL statement)
A valid SQL statement passed for execution (except SELECT statements). This argument is required and must
be enclosed within parentheses.

65



dbms-name (required, or use alias)
Identifies the DBMS to which you want to direct the SQL statement. Note that doms-name must be preceded by the keyword
BY.

alias (optional, or use doms-name)
Specifies an optional alias used in the CONNECT statement.

CONNECTION TO Statement

CONNECTION TO is an SQL pass-through component that can be used in a SELECT statement's FROM clause as part of
the from- list. The CONNECTION TO component enables you to make pass-through queries for data and to use that data in
a PROC SQL query or table. PROC SQL treats the results of the query like a virtual table.

Syntax
CONNECTION TO dbms-name (SQL-query)
Use the following arguments:

dbms-name (required)
If you have a single connection, doms-name is the doms-name specified in your CONNECT statement. If you have multiple
connections, use the alias specified in the AS clause of the CONNECT statement.

(SQL-query)
The (SQL-query) specifies the SQL query you want to send. Your SQL query cannot contain a semicolon because
that represents the end of a statement to SPD Server. Character literals are limited to 32,000 characters. Be sure your
SQL query is enclosed in parentheses.

alias (optional)
Specifies an optional alias used in the CONNECT statement.

Example 1: Using SAS PROC SOQL to Connect to an SOL Server

To connect from a SAS session to an SQL server, in this example the SPD Server's SQL Server, execute a CONNECT
statement. After making the connection, the first execute statement creates a table EMPLOYEE INFO with three
columns, EMPLOYEE NO, EMPLOYEE NAME, and ANNUAL SALARY. The second execute statement inserts an
observation into the table where EMPLOYEE NO equals "1" and EMPLOYEE NAME equals "The Prez".

The subsequent FROM CONNECTION TO statement retrieves all the records from the new EMPLOYEE INFO table.
(In this example, that would be the single observation inserted by the second execute statement.) The DISCONNECT
statement terminates the data source connection.

PROC SQL;
connect to sasspds
(dbg=' nydomai n'
host =" wor kst ati onl'
serv='spdsnaneg'
user ="' ne'
passwd=' noway');

66



execute (create table enployee_info
(enmpl oyee_no num enpl oyee_nane char (30),
annual _sal ary num) by sasspds;
execute (insert into enployee_info
values (1, 'The Prez')) by sasspds;
sel ect * fromconnection to sasspds
(select * from enpl oyee_info);
di sconnect from sasspds;
quit;

Example 2 - Nested SOL Pass-Through

SPD Server pass-through access can be nested. Nesting allows access to data stored on two different networks or
network nodes.

In the example that follows, we nest SQL pass-through from the current local network host DATAGATE to access the
EMPLOYEE INFO table, which is available at the PROD host on a remote network. (Our example presumes that we

have user access to PROD.)

proc sql;
connect to sasspds (dbg='"domai nl'
host =' dat agat e’ serv='spdsnane
user="usrl' passwd="usrl pw);
execute (connect to spdseng (dbg=' donai n2
host =' prod' serv='spdsnane
user='usr2' passwd='usr2_pw ) by sasspds;
select * from connection to sasspds(
sel ect * fromconnection to spdseng(
sel ect enpl oyee _no, annual sal ary
fromenpl oyee_info));
execut e (di sconnect from spdseng) by sasspds;
di sconnect from sasspds;
quit;

Creating a New Table

One of the SPD Server's strengths lies in the ability to create, manipulate, and query very large tables. As a rule of
thumb, client users generally choose not to store massive tables locally because of their sheer size. The following
code examples assume that users will create and store large tables on the SPD Server host.

Example - Creating a New Table Using Pass-T hrough Statements

First, connect from a SAS session to an SQL server, in this example the SPD Server's SQL Server, then execute a
CONNECT statement. After making the connection, the first execute statement creates a table LOTTERY WIN with
two columns, TICKETNO and WINNAME. The second execute statement inserts an observation into the table
where TICKETNO equals "1" and NAME equals "Wishu Weremee."

The subsequent FROM CONNECTION TO statement retrieves all the records from the new LOTTERYWIN table. (In
this example, that would be the single observation inserted by the second execute statement. The DISCONNECT
statement terminates the data source connection.

proc sql;

67



connect to sasspds (dbg=' nydonai n'
host =" wor kst ati onl' serv='spdsnange'
user='me' passwd='luckyones');
execute (create table lotterywn
(ticketno num w nnanme char(30))) by sasspds;
execute (insert into lotterywin
values (1, 'Wshu Werenee')) by sasspds;
select * from connection to sasspds
(sel ect * from enpl oyee);
di sconnect from sasspds;
quit;

Example - Creating a New Tablewith a LIBNAME Statement

SITEUSRI creates a new SPD Server table CARDATA.OLD AUTOS on the server.

i bname cardata sasspds 'conversion_area' server=husky.5105
user="siteusrl1l' pronpt=yes;

/* Create the tabl e CARDATA. OLD AUTGCS on the SPD Server host. */

data cardata. ol d_aut os;
i nput year $4. @ manufacturer $12. nodel $12. body_style $5.
engine_liters @9 transmi ssion_type $1. @1 exterior_color
$10. options $10. m | eage conditon;

dat al i nes;

1966 Ford Must ang conv 3.5 M white 00000001 143000 2
1967 Chevrol et Corvair sedan 2.2 M burgundy 00000001 70000 3
1975 Vol kswagen Beetle 2door 1.8 M yellow 00000010 80000 4
1987 BMW 325i s 2door 2.5 A Dblack 11000010 110000 3
1962 Nash Metropolitan conv 1.3 M red 00000111 125000 3

68



| ndexing, Sorting, and Manipulating SAS Scalable
Perfor mance Data (SPD) Server Tables

« Introduction
. Indexing a Table
o The SPD Index
o Creating SPD Indexes Examples
« Creating SPD Indexes from a DATA Step
« Creating SPD Indexes from PROC DATASETS
« Creating SPD Indexes Using SQL
= Creating SPD Indexes Using Pass-Through SQL
o Using VERBOSE= to See Index Information
. Using PROC SORT with SPD Server
« Example Using Implicit SPD Server BY Clause Sort
« Example Using PROC SORT

| ntr oduction

This chapter describes and provides examples on indexing, sorting, and manipulating SPD Server tables on an
SPD Server host.

|ndexing a Table

SPD Server provides a single SPD index type that efficiently indexes tables of varying size and data
distributions. The SPD Server SPD index optimally supports queries that require global table views (such as
queries that contain BY Clause processing and SQL joins), or queries which require segmented views (such as
parallel processing of WHERE-clause statements).

The SPD | ndex

The SPD index maintains two views of the index values, a global view and a segmented view.
The global view is maintained using a unique global B-tree that has a single entry for each
discrete value. The segmented view is maintained by the data for each value in the global B-tree,
which includes a list of segments that contain the value, and for each segment a bitmap that
identifies which rows in the segment contain the value. The global view is maintained in the

69



SPD index . hbx file, and the segmented data is maintained in the SPD index . i dx file.

For queries that require a global view, SPD Server searches the hybrid global B-tree for a
particular value. The segment lists are scanned for the value, then the bitmaps from each
segment containing the value are read. SPD Server uses the bitmap to locate and retrieve the
observations for that segment. This type of query returns results sorted first by value and then by
observation number. This sorting is optimal for BY Clause processing and SQL joins.

A parallel WHERE-clause on a table that is indexed is done in two phases. The first phase, pre-
evaluation, uses the SPD indexes to build a list of segments that satisfy the query. The list drops
segments from the WHERE-clause scan queue when those segments contain no data in the
clause range. As more and more segments are excluded from the scan queue, the benefit of the
pre-evaluation phase increases proportionally. The second phase in the evaluation launches
threads which read an index in parallel. Each thread queries a particular segment of the index,
using information from the pre-evaluation phase. Using the SPD index, the thread reads the
segment bitmap. The per-segment bitmaps identify the segment rows which satisfy the query for
that particular column. If you include more than one indexed column in the WHERE-clause,
SPD Server retrieves the per-segment bitmaps for each column in parallel (as are the segments
for each column). After retrieving all the bitmaps for each column of the segment, SPD Server
determines which rows satisfy the query, and returns those segment rows to the client. The multi-
threaded per-segment queries begin execution at the same time, and their finishing order varies
and can not be reasonably predicted. As a result, the overall order of the results cannot be
guaranteed when you are using this type of query. See the documentation chapter on
Understanding Whinit - the Data Server WHERE Clause Planner for a more detailed description

on using indexed columns with WHERE-clause evaluations.

When a table is modified due an append or update, all SPD indexes on the table are updated.
Updating the index can potentially fragment the per-value segment lists or cause some disk
space to be wasted. A highly fragmented SPD index can negatively impact the performance of
queries that utilize the index. In this case, you should reorganize the index to eliminate the
fragmentation and reclaim wasted disk space, using the ixutil utility program. For more detailed
information on reorganizing an SPD index, refer to the topic on Password Manager Utility in the
SPD 4.3 Administrator's Guide.

Creating SPD | ndexes Examples

This section shows how to create SPD indexes for new and existing tables.

Creating SPD Indexesfrom a DATA Step

data foo. x(
I ndex=(x y=(a b)));

70



x=1;

a="Doe";
b=20;
run,

This creates SPD Server table X, then creates a simple SPD index X on column X,
and a composite SPD index Y on columns (A B).

Creating SPD Indexesfrom PROC DATASETS

PROC DATASETS | i b=f 0o;
nmodi fy X;
I ndex create Xx;
I ndex create y=(a b);
qui t;

This creates the same simple and composite SPD indexes as Example 1, assuming
that the same DATA step was executed without index creation included.

Creating SPD I ndexes Using SOL

PROC SQ;
create index Xx

on foo.x (x);
create index y

on foo.x (a,b);
qui t;

This creates the same simple and composite SPD indexes as Example 1, assuming
that the same DATA step was executed without index creation included.

Creating SPD | ndexes Using Pass-Through SOL

PROC SQ.;

connect to sasspds (
dbg="pat h1"
server =host . port

71



user =" anonynous');

execute(create index x on x (X))
by sasspds;

execute(create index y on x (a,b))
by sasspds;
qui t;

This creates the same simple and composite SPD indexes as Example 1, assuming
that the same DATA step was executed without index creation included.

Using VERBOSE=to See | ndex I nformation

There will be times when you want to see information about indexes associated with a particular
table. The table option VERBOSE= provides details of all indexes associated with an SPD
Server table. For example, if the code from Example 2 above is followed with the expression

below:

PROC CONTENTS
dat a=sports. expraqgs
(ver bose=yes);

run;

The following will be output:

Al phabetic List of Index Info:

Bitmap I ndex (No d obal | ndex): GRI PSI ZE
KeyVal ue (M n): 4. 250000
KeyVal ue ( Max): 5. 000000

# of Discrete val ues: 3

Using PROC SORT with SPD Server

If you use PROC SORT with SPD Server, your table will be sorted. However, you may want to understand a
few sort details to avoid surprises. Assume, for example, that you submit a PROC SORT statement to sort a

table not previously indexed or sorted on the BY column.

PROC SORT takes advantage of SPD Server sorting implicitly and asserts BY Clause ordering to the SPD
Server. This performs the sort on the SPD Server machine, but there will still be significant I/O between the

72



client node and the SPD Server machine. The sorted data still makes a round trip from the server machine to
the client machine and back again. Fortunately, the SQL pass-through facility in SPD Server offers an
extension to the SQL language to permit a table copy and sort operation, all on the server machine.

Knowing the implications of using PROC SORT with SPD Server, how can you avoid inefficiency? The

answer is to eliminate PROC SORT statements from your SAS jobs where possible. Instead, make SAS
procedures and DATA steps that require BY Clause processing use SPD Server's implicit sorts.

Example Using | mplicit SPD Server BY Clause Sort

/* The foll ow ng DATA step perforns a server sort on the */
/* table colum PRICE. There is no prior index for PRICE */

data null _;
set sport.exprags;
by price;
I f (string="nat') then do;
put '*' @
price = price - 30.00;
end;
put raqgnanme @0 price;
run;

Example Using PROC SORT

/* The foll owi ng PROC SORT perforns a server sort on the */
/* table colum MODEL. There is no prior index for MODEL */

PROC SORT
dat a=i nventory. ol d_aut os
out =i nvent ory. ol d_aut os_by_ nodel ;
by nodel ;

run;

73



Using SAS Scalable Performance Data (SPD) Server with
Other Clients

. Overview
. Using Open Database Connectivity (ODBC) to Access SAS Scalable Performance Data (SPD) Server Tables
. Using JDBC (Java) to Access SAS Scalable Performance Data (SPD) Server Tables

. Using htmSQL to Access SAS Scalable Performance Data (SPD) Server Tables
. Using SQL C API to Access SAS Scalable Performance Data (SPD) Server Tables

This chapter describes using SAS Scalable Performance Data (SPD) Server to connect with ODBC, JDBC, htmSQL, and
SQL C API clients.

Overview

Scalable Performance Data Server provides ODBC, JDBC, htmSQL, and SQL C API access to SAS Scalable
Performance Data (SPD) Server data stores from all supported platforms.

SAS Scalable Performance Data (SPD) Server can read tables exported from Base SAS software using PROC COPY, and,
with the proper drivers installed on the network, allows queries on the tables from client machines that do not have
SAS software.

There are four possible options:

. ODBC: Open Database Connectivity - This is an interface standard that provides a common interface for accessing
databases. Many software packages running in a Windows environment are compliant with this standard and can access
data created by other software. This is a good choice if you have client machines running Windows applications, such
as Microsoft Excel or Microsoft Access.

. JDBC: Java Database Connectivity - This option allows users with browsers to log on to a Web page and make a query.
The results of the request are formatted and returned to a Web page. This makes information available across a wide range
of client platforms because all you need, after installing the JDBC driver on SAS Scalable Performance Data (SPD) Server, is
a Web page with some Java code, and a client machine with a Java-enabled browser.

. htmSQL: HyperText Markup Structured Query Language - This option allows users with browsers to log on to a Web
page and make a query. The results of the request are formatted and returned to a Web page. This makes information
available across a wide range of client platforms. Why? After installing the htmSQL driver in SAS Scalable Performance
Data (SPD) Server, all you need is an htmSQL Web page and a client machine with a browser.

. SQL C API: This option allows access to SAS Scalable Performance Data (SPD) Server tables from SQL statements
generated by C/C++ language applications. This access is provided in the form of a C-language run-time access library.
This library provides a set of functions that you can use to write custom applications to process SAS Scalable
Performance Data (SPD) Server tables and to generate new ones. This library is designed to support multi-



threaded applications and is available on all supported SAS Scalable Performance Data (SPD) Server platforms.

Note: GUI interfaces may not display all return codes or error messages that the server generates.

Using Open Database Connectivity (ODBC) to Access SAS Scalable Perfor mance Data (SPD)
Server Tables

Read this section if you do not have Base SAS software on the network client, but you want to access SAS

Scalable Performance Data (SPD) Server tables on the network, using an ODBC compliant program, such as Microsoft
Word, Query, Excel, or Access, and you have SAS Scalable Performance Data (SPD) Server tables available for

use, somewhere on the network, or Scalable Performance Data Servers and SPD SNET servers running, or client machines in
a Windows environment.

. Why Use ODBC?

. Installing ODBC Drivers on the Server

. Configuring ODBC on the Client

. Preparing your Client for ODBC Installation

. Two Types of ODBC Connections

« Primary and Secondary LIBNAME Domains

. Configuring an ODBC Data Source to Connect Directly to a SAS Scalable Performance Data (SPD) Server
. Configuring an ODBC Data Source for SPD SNET

. Editing the Services File on Your Machine - ODBC Details

. Creating a Query Using an ODBC-Compliant Program

Why Use ODBC?

You have SAS Scalable Performance Data (SPD) Server tables available on your network, and one or more of the
following may be true:

. You do not have Base SAS software running on the Windows client, but you need to view or change SAS
Scalable Performance Data (SPD) Server tables.

. You need to view or change the SAS Scalable Performance Data (SPD) Server tables using a Microsoft spreadsheet,
database or word processor.

. You need to view or change SAS Scalable Performance Data (SPD) Server tables in ways that cannot be predetermined
or programmed into a Web page.

. You need to view or change SAS Scalable Performance Data (SPD) Server tables using Windows tools you are familiar with.

Installing OBDC Driverson the Server

75



. Instructions for installing the OBDC driver are included in the download package.

Configuring ODBC on the Client

1. Configure an ODBC data source.

2. Make your query using a Windows program.

Configure ODBC to Connect SAS Scalable Performance Data (SPD) Server Client to SAS Scalable Performance
Data (SPD) Server Host

Client Server

oDBC TCP
Compliant
Software
Application

!

Data Server
Host Machine

ODBC AP |
SAS ODBC Driver
i
Data
Data Sources

Source

Configure ODBC to Connect SAS Scalable Performance Data (SPD) Server Client to SPD SNET Server

76



Client Server

QODBC TCP
Compliant
Software
? Application
Server
SAS ODBC Driver
'y
Data Server

Host Machine
Data
Source

Data
Sources

Preparing your Client Machinefor ODBC Installation

Before you create OBDC data sources driver, you'll need the following information from your network administrator:
o a Username and Password that is defined by a SAS Scalable Performance Data (SPD) Server administrator
o the primary LIBNAME domain of the SAS Scalable Performance Data (SPD) Server (also called the DBQ)
o the port number of the SPD name server (also called the SERV)
o the machine name or IP address of the SAS Scalable Performance Data (SPD) Server Name Server (also called the HOST)

o any secondary LIBNAME domains you wish to assign to the ODBC connection.

Two Types of ODBC Connections

With SAS Scalable Performance Data (SPD) Server software you can connect directly to a SAS Scalable Performance
Data (SPD) Server without going through the SPD SNET server. Although connectfig directly is the preferred



method, connections via the SPD SNET server are still supported.

Note that connections via the SPD SNET server are not supported in the SAS 9 ODBC Driver software. If you intend
to connect via the SPD SNET Server you must install the SAS 8 ODBC Driver.

Primary and Secondary LI BNAME Domains

When a connection to the SAS Scalable Performance Data (SPD) Server is established a primary LIBNAME domain

is assigned. The primary LIBNAME domain is specified by the "DBQ" connection options parameter. Immediately after
the connection is made the SAS ODBC Driver assigns the secondary LIBNAME domains which are configured through
the Libraries tab of the SAS ODBC Driver Configuration window.

ODBC Connections via the SPD SNET server must have an odbc.parm file configured on the SPD SNET Server machine.

Configuring an ODBC Data Sour ce to Connect Directly to a SAS Scalable Perfor mance Data
SPD) Server

Once the SAS ODBC driver is installed, you will need to configure your ODBC data source. When you open the
ODBC manager, you'll get a display screen that allows you to enter information that points the OBDC driver to the data on
the SAS Scalable Performance Data (SPD) Server.

1. From the Windows Start button, select
Start # Settings= Control Panel
2. Locate the ODBC Data Sources icon and open the Microsoft ODBC Data Source Administrator . The exact location of
this program depends on your version of Windows.
3. Select the Add button, then select the SAS ODBC driver.
4. Enter a data source name (and description if desired.)

5. Select the Servers panel and type in your two-part server name.

6. Click on the Configure box. The TCP Options window appears:

o Server Address: Enter the network address of the machine on which the SAS Scalable Performance Data (SPD) Server
is running.

o Server User Name: Enter the user name as configured for a DBQ (SAS Scalable Performance Data (SPD) Server
primary LIBNAME domain) on the SAS Scalable Performance Data4$PD) Server to which you will connect.



o Server User Password: Enter the user password as configured for a DBQ (SAS Scalable Performance Data (SPD)
Server primary LIBNAME domain) on the SAS Scalable Performance Data (SPD) Server host to which you will connect.

o Connection Options: Enter the Connection Options as follows:
« DBQ=' SPD Server primary LI BNAME donmi n', this is the SAS Scalable Performance Data (SPD) Server
LIBNAME domain

« HOST=' naneserver node nane', this is the location of the host computer

« SERV=' naneserver port nunber', this is the port number of the SAS Scalable Performance Data (SPD) Server
name server running on the HOST.

» Any other SAS Scalable Performance Data (SPD) Server LIBNAME options. For more information, see the User's
Guide section on LIBNAME Options.

9. Click OK, then click Add, and select the Libraries panel.
10. Enter the DBQ name of a secondary LIBNAME domain in both the Name and Host File text fields.
11. Enter “spdseng” in the Engine text field.

12. Follow the syntax rules for the SQL Pass-Through LIBREF statement for entering a value in the Options text field.

Configuring an ODBC Data Sourcefor SPD SNET

Once the SAS ODBC driver is installed, you will need to configure your ODBC data source. When you open the
ODBC manager, you'll get a display screen that allows you to enter information that points the OBDC driver to the data on
the SAS Scalable Performance Data (SPD) Server.

1. From the Windows Start button, select
Start = Settings= Control Panel
2. Click on the ODBC icon and select the Add button.
3. Select the SAS ODBC driver.
4. Enter a data source name (and description if desired).

5. Select the Servers panel and type in the two-part server name. The second part of the server name should match the entry in
the services file. In the example that follows that shows you how to edit the services file, the server name is spdssnet.

6. Click on the Configure box. The TCP Options window appears with four input fields that you fill:

o Server Address: Enter the network address of the machine on which the SPD SNET server is running.
79



o Server User Name: Enter the user name as configured for a DBQ (SAS Scalable Performance Data (SPD) Server
primary LIBNAME domain) on the SAS Scalable Performance Data (SPD) Server to which you will connect.

o Server User Password: Enter the user password as configured for a DBQ (SAS Scalable Performance Data (SPD)
Server primary LIBNAME domain) on the SAS Scalable Performance Data (SPD) Server host to which you will connect.

o Connection Options; Enter the connection options as follows:
« DBQ=' SPD Server primary LI BNAME donmi n': this is the SAS Scalable Performance Data (SPD) Server

LIBNAME domain.
« HOST=' naneserver node nane': this is the location of the host computer.
« SERV=' naneserver port nunber': thisis the port number of the SAS Scalable Performance Data (SPD) Server

name server running on the HOST.

8. Click OK, and then click Add.

Editing the Services Fileon Your Machine - ODBC Details

Editing the Services file is only required for ODBC connections via the SPD SNET Server.
1. Find the Services file on your Windows machine. In Windows, the Services file is usually located in
c:\wi ndows\ servi ces
2. Open the Services file using a text editor.
3. The services file contains four columns. The rows of information may be sorted in port number order. Find the closest

port number to the SAS Scalable Performance Data (SPD) Server port number, which you obtained from the
network administrator (see "Preparing for Installation"). This is where you insert the new information.

4. Add an entry to the Services file, on its own line, in proper numeric order, using the following syntax:

How to Add Service Name and Port Number to the Services File

column2
columnl column3 | column4

<port number
& protocol>

nnnn/tcp

<service name> <aliases> |<comment>

spdssnet

nnnn=port number | not not

spdssnet=name . .
p required required
protocol is

assigned to server
& always /tcp

80




Remember: The service name, spdssnet must match the server name that you used in step 6 of Configuring an ODBC
Data Source for SPD SNET. The port number must match the port number on which the SPD SNET server is running.

Creating a Query Using an ODBC-Compliant Program

The following instructions create a query using Microsoft Access.
1. Start the SPD SNET server.
2. Start Microsoft Access.
3. From the Microsoft Access main menu, select
File = Get External Table.
4. Select Link Table.
5. Select Filesof Type.
6. Select ODBC Databases.

7. Select the data source.

Using JDBC (Java) to Access SAS Scalable Perfor mance Data (SPD) Server Tables

Read this information if you do not have Base SAS software on the network client, but you want to use the power of the
Java programming language to query SAS Scalable Performance Data (SPD) Server tables from any client on the network
that has a browser. You must have SAS Scalable Performance Data (SPD) Server tables on the network and SAS

Scalable Performance Data (SPD) Server and SPD SNET servers running on the same server as the Web server in order to
use JDBC to access SAS Scalable Performance Data (SPD) Server tables.

. Why Would I Want to Use JDBC?

. How Is JDBC Set Up on the Server?

. How Is JDBC Set Up on the Client?

. How Do I Use JDBC to Make a Query?

. JDBC Code Examples and Tips

. Limitations of Using JDBC with SAS Scalable Performance Data (SPD) Server

Why Would | Want to Use JDBC?

You might want to use JDBC if you have SAS Scalable Performance Data (SPD) S&tver tables available on your network



and one or more of the following is true:
. You do not have Base SAS software on the network client to process the data sets.
. You want to distribute the information across your corporate intranet through a Web page.

« The clients on your network are varied: UNIX boxes, Windows PCs, and workstations. One thing they might have in
common is browser access to your intranet.

. The audience for the information understands Web browsing and wants point-and-click access to the information.
. You want to distribute the information over the World Wide Web.

« Your planned application requires the power of the Java programming language.

How 1sJDBC Set Up on the Server?

. JDBC is usually set up on the server at the time the SAS Scalable Performance Data (SPD) Server is installed. The process
is covered in the SAS Scalable Performance Data (SPD) Server installation manual.

How IsJDBC Set Up on the Client?

The client needs a browser set up to accept Java applets, such as

. Netscape Navigator, Release 3.0 or later
. Microsoft Internet Explorer, Release 3.02 or later.

JDBC Set Up on a SAS Scalable Performance Data (SPD) Server Client

82



CLIEMT MACHIME SERWER MACHINE
HTTF

Web Server
KPS
SASShare™Met Data
Crriver for JOEC

Applet Data
Sources

How Do | Use JDBC to Make a Query?

1. Log on to the World Wide Web and enter the URL for the Web page that contains the JDBC code.
2. Click on the desired information.

3. JDBC handles the request, formats the information, and returns the result to the Web page.

JDBC Code Examplesand Tips

The following lines must be a part of the HTML file for JDBC:

<appl et code="CLASSPATH. *. cl ass" codebase="../" wi dt h=600 hei ght =425>
<par am nanme=ur| val ue="j dbc: sharenet://spdssnet node: PORT" >

<par am nanme="dbns_options" val ue="DBQ="|i bnane' HOST=' host node' SERV="NNNN ">
<par am nanme="spdsuser" val ue="userid">

<par am name="shar ePasswor d" val ue="t hepassword">

<par am nanme="shar eRel ease" val ue="V9"> 83



<par am name="dbns" val ue="spds" >
</ appl et >

Linel:

« CLASSPATH points to the class path set up where the JDBC driver is installed.
. *.classis the name of the Java class that consumes all of the <PARAM name=...> lines.

Line2:

. spdssnet_node is the node name of the machine on which the SPD SNET server is running.
« PORT=port number of the machine on which the SPD SNET server is running.

Line3:

. value=DBQ='libname' is the LIBNAME domain of the SAS Scalable Performance Data (SPD) Server.
. HOST="host_nod€ is the location of the SPD SNET server.
. SERV="NNNN' is the port number of the name server.

Line4:

. "spdsuser" value="userid" is the user ID that queries the SAS Scalable Performance Data (SPD) Server table.

Lineb5:

. "sharePassword" value="thepassword" is the password of the user ID that will make the query.

Line6:

. "shareRelease" value="V9" is the version of the driver you are using. This must not be altered.

Line7:

. Sets the foreign database property on the JDBC driver. This means that the server is not SAS and JDBC should not create
a DataBaseMetaData object. See the examples below for how to get #bund this.



Limitations of Using JDBC with SAS Scalable Perfor mance Data (SPD) Server

. JDBC Used with SAS Versus. JDBC Used with SAS Scalable Performance Data (SPD) Server
. Example JDBC Query for Getting a List of Tables
. Example JDBC Query for Getting Metadata about a Specific Table

JDBC Used with SAS Versus JDBC Used with SAS Scalable Perfor mance Data (SPD) Server

SAS Scalable Performance Data (SPD) Server is treated as a foreign database. SAS Scalable Performance Data (SPD)
Server clients can't query the JDBC metadata class for available tables and other metadata. Users must write their own
queries to do this.

Example JDBC Query for Getting a List of Tables

(JDBC Used with SAS Scalable Performance Data (SPD) Server)

SELECT '* AS qual,
LI BNAME AS owner,
MEMNAME AS nane,
MEMIYPE AS type,
MEMNAME AS remarks FROM dictionary.tables AS tbl
VWHERE ( nmentype = ' DATA' OR nentype = 'VIEW OR nemype = 'SYSTEM TABLE OR
mentype = ' ALIAS' OR nentype = ' SYNONYM )
AND (thl.libname NE ' MAPS' AND tbl.libname NE ' SASUSER AND tbl.|ibnane NE ' SASHELP')
ORDER BY type, qual, owner, nane

Example JDBC Query for Getting M etadata about a Specific Table

(Your datafile)

SELECT '' AS qual,

LI BNAME AS owner,
MEMNAME AS t nane, nane,
| engt h AS dat at ype,

type || :

I ength AS prec, | ength,

l ength AS scale, length AS radix, [ength AS null abl e, | abel,
FORMAT FROM di ctionary. colums AS tbl

WHERE nmemmane = 'your data file'

AND (tbl.libname NE ' MAPS 85



AND t bl .libname NE ' SASUSER
AND t bl .libname NE ' SASHELP')

Using htmSQL to Access SAS Scalable Performance Data (SPD) Server Tables

Read this section if you do not have Base SAS software on the network client, but you want to use the point-and-

click convenience of a Web page to query SAS Scalable Performance Data (SPD) Server tables from any browser-
enabled client on the network. You must have SAS Scalable Performance Data (SPD) Server tables available for use,
htmSQL loaded and configured on a UNIX or Windows operating system, and Scalable Performance Data Servers and
SPD SNET servers running.

. Why Would I Want to Use htmSQL?

. How Is htmSQL Set Up on the Server?

. How Is htmSQL Set Up on The Client?

. How Do I Use htmSQL to Make a Query?

. Examples of Setting Up an htmSQL Web Page

Why Would | Want to Use htmSQL ?

You may want to use htmSQL if you have SAS Scalable Performance Data (SPD) Server tables available on your network
and one or more of the following is true:

. You do not have Base SAS software on the network client to process the data sets.
. You want to distribute the information across your corporate intranet through a Web page.

. The clients on your network are varied: UNIX boxes, Windows PCs, and workstations. One thing they might have in
common is browser access to your intranet.

. The audience for the information understands Web browsing and wants point-and-click access to the data.

« You would like to use the JDBC option to extract the information but cannot permit Java applets to run on your
network browsers.

. You want to distribute the information over the World Wide Web.

. Your developers are familiar with SQL and HTML.

How IshtmSQL Set Up on the Server?

. htmSQL is usually set up on the server at the time the SAS Scalable Performance Data (SPD) Server is installed. The process
is covered in the SAS Scalable Performance Data (SPD) Server installation ggnual.



. htmSQL must be installed on the Web server and you need the name of a data source that points to the SPD SNET server
and to the specific LIBNAME domain that contains the SAS Scalable Performance Data (SPD) Server data you are
interested in.

How IshtmSQL Set Up on the Client?

HtmSQL requires nothing more than a browser on the network or Web client.

htmSQL Configured on a SAS Scalable Performance Data (SPD) Server Client

Client Machine Server Machine A
HTTP
htmSQL
Web Server
Web Browser
B SAS SQL
Protocol

Server Machine B ‘

(o]
Data
Sources

Data Server SPDSSNET
Host Machine Server

How Do | Use htmSOL to Make a Query?

1. Log on to the World Wide Web and enter the URL for the Web page that contains the htmSQL code.
2. Click on the desired information.

3. htmSQL handles the request, formats the information, and returns the result §o the Web page.



Examples of Setting Up an htmSQL Web Page

SAS Institute maintains a Web site that explains the technical details of setting up htmSQL Web pages. In some cases, there
are references to the SAS/SHARE product. The rules for setting up htmSQL for either the SAS Scalable Performance

Data (SPD) Server or SAS/SHARE are virtually the same.

The SAS Institute Web page for htmSQL is

http://support.sas.com/rnd/web/intrnet/htmSQL/index.html

Using SOL C API to Access SAS Scalable Perfor mance Data (SPD) Server Tables

Read this section if you do not have Base SAS software on the network client but you want to provide your network

client machines with the capability of accessing SAS Scalable Performance Data (SPD) Server tables, using SQL

query methods. You must have SAS Scalable Performance Data (SPD) Server tables available for use, SAS

Scalable Performance Data (SPD) Servers and SPD SNET servers running, and Network client machines capable of running
C/C++ programs.

Why Would | Want to Use SQL C API?

You have SAS Scalable Performance Data (SPD) Server tables available on your network and one or more of the
following may be true:

. You do not have Base SAS software on the network client to process the data sets.
. You wish to distribute the information across your corporate intranet.

« The clients on your network are varied: UNIX boxes, Windows PCs, workstations. One thing they might have in common
is the ability to run C/C++ programs.

« Your developers are familiar with SQL and C/C++.

SAS Scalable Performance Data (SPD) Server SQL Access Library API Reference contains additional information on SQL
C APL

88



SAS Scalable Perfor mance Data (SPD) Server Dynamic
Cluster Tables

Contents

. Introduction to Dynamic Cluster Tables
. Dynamic Cluster Table Structure
. Benefits of Dynamic Cluster Tables

o Parallel Loading
o Fast and Economical Refreshes

. Creating and Controlling Dynamic Cluster Tables

o Create a Dynamic Cluster Table

o Dynamic Cluster Table Access Control
o Add Tables to a Dynamic Cluster

o Undo Dynamic Cluster Tables

o Refresh Dynamic Cluster Tables

o Modify Dynamic Cluster Tables

. Dynamic Cluster BY Clause Optimization

o Dynamic Cluster BY Clause Optimization Example

. Member Table Requirements for Creating Dynamic Cluster Tables
o Table Attributes
o Variable Attributes
o Index Attributes

. Querying and Reading Member Tables in a Dynamic Cluster

. Unsupported Features in Dynamic Cluster Tables

. Dynamic Cluster Table Examples

o Create a Dynamic Cluster Table Example

o Add Tables to a Dynamic Cluster Example

o Undo Dynamic Cluster Table Example
o Refresh Dynamic Cluster Table Example

I ntroduction to Dynamic Cluster Tables

SPD Server is designed to meet the storage and performance demands that are associated with processing large amounts of
data using SAS. As the size of the data grows, the demand to process that data increases, and storage architecture must
change to keep up with business needs.

SPD Server offers dynamic cluster tables. Earlier releases of SPD Server provided a type of cluster table called the time-
based partitioning table. To optimize the benefits of the clustering, the SPD Server administrator can use dynamic clusters
to partition SPD Server data tables for speed and enhanced I/O processing. Clustering is performed using metadata that
when combined with SPD Server functionality, provides parallel processing capabilities for loading and querying data
tables. Parallel processing can accelerate performance and increase the manageability, flexibility, and scalability of very
large data stores.

Dynamic Cluster Table Structure

The SPD Server dynamic cluster table can be considered as part of a hierarchy of tables with increasing sophistication:

89



Traditional SPD Server SPD Server

SAS Table Table Cluster Table
Descriptor Metadata Cluster Metadata
_Data : Data ] . i i
T E ii :FHH:I—EEH:F—H Ian | Iebl IarI I[::lr ,
i '....:._ (W . .':" e E,.. JI E_l_]du:' I—:—LI-IH—‘L-' !LZ_HH: ] !—::I:I-”:l—t}—l
i —H—II—H—H—ﬁ—HJ EEHIE | | B | | EE e | |ER e
1 :UI”IU::_EH tlay Jun Jul Aug
| i == . R EEE | | B A | | IS | | B A
H | R EE R e | |HE | (B e | | e
! i h :E;Iﬁ;ééﬂ Sep Oct Moy Dec
- : inmws [ mamn | anm; [ 1 |[E 1| 1| ]
SR | B | | || ||| |

Traditional SAStables are single files that contain the data descriptors and the table data. Data values are the columns,
and the descriptors are the metadata that describe the column and data formatting that the table uses. If a traditional SAS
table contains one or more indexes, they are stored in a separate file.

SPD Server tablesuse component files to store tables. One component file stores the stream of data values.
Another component file stores the column and data descriptors. If you create an index for a column or a composite
of columns, SPD Server creates two separate component files (a *.hbx file and a *.idx file) for each index.

SPD Server Cluster tables are virtual table structures. SPD Server cluster tables are composed of members. Each member
is an SPD Server table. All members must share the same metadata formats and organization. SPD Server cluster tables
use the metadata to manage the data that is contained in the members.

The SPD Server dynamic cluster table structure provides architecture that enables flexible loading and rapid storage

and processing for very large data tables. Using dynamic cluster tables, loading data, removing data, and refreshing tables
in very large data marts become easier and more timely. Dynamic cluster tables provide organizational features

and performance benefits that traditional SAS tables and SPD Server tables do not have.

Benefits of Dynamic Cluster Tables

Organizing SPD Server data into dynamic cluster tables creates an architecture that supports parallelism, enhanced
data flexibility and manageability, and significantly improved speed in robust data warehousing environments that use
large and very large data tables.

For example, you can add new data or remove historical data from very large tables by accessing only the member tables
that are affected by the change. You can access the individual member tables in parallel. This strategy reduces the time that
is needed for the job to complete and uses simple commands. Furthermore, a complete refresh of a dynamic cluster table
can occur using a fraction of the disk space that is needed to refresh a large traditional SAS or SPD Server table that
contains the same amount of data.

Parallel L oading

Because dynamic cluster tables are virtual tables that consist of numerous small SPD Server tables, the architecture enables
parallel loading and processing. Cluster table loads and refreshes are broken down into multiple tasks that can be performed

concurrently. Separate SAS MP CONNECT jobs manage the parallel loading and processing.

90



The scalability of parallel loading with dynamic cluster tables depends on the scalability of the server I/O and the number of
processors on the server.

Parallel loading requires multiple concurrent writes to disk. If the I/O hardware does not scale appropriately, the loading
process can degrade performance.

SPD Server can create multiple indexes on the same table in parallel, and index creation is a CPU-intensive process. When
sufficient processing power is available, parallel index creation in SPD Server is highly scalable. The creation process for
each index is multi-threaded. A single index creation can use multiple CPUs on a server if they are available, which greatly
improves performance.

Fast and Economical Refreshes

Refreshing a dynamic cluster table requires only a fraction of the disk space that a traditional SPD Server table with the same
amount of data would require. The dynamic cluster table architecture allows users to refresh many large tables concurrently,
while conserving disk and I/O resources. With very large traditional SAS or SPD Server tables, available disk space often
limits the number of tables that can be concurrently refreshed.

In the life cycle of data warehouses, tables can be refreshed to recapture disk space when rows have been updated or deleted,
or to reorder data for optimized performance. However, refreshing a table can temporarily use twice the disk space of the
table itself. With very large tables, disk space can be a limiting factor when updating a data warehouse or data mart. When
disk space is limited on a server, the amount of data that can be refreshed at any given time is constrained. The window of
time that is required to load and refresh can become huge.

Because dynamic cluster tables can be quickly unbound into smaller SPD Server tables, refreshing dynamic cluster tables does
not use twice the disk space of the original table. Instead, only twice the disk space of the largest member table in the
dynamic cluster table is required.

After the dynamic cluster table is unbound, disk space equal to the first member table is required to perform a refresh. A
backup of the refresh is created, and then the old version is deleted, creating more available disk space. The refresh process
repeats for each successive member table until all members in the dynamic cluster table have been refreshed and updated.
Then, the member tables are merged into a dynamic cluster table once again.

When a server has enough disk space and I/O resources to refresh more than one member table at a time, the benefits of
parallel processing can be realized.

Creating and Controlling Dynamic Cluster Tables

Creating dynamic cluster tables in SPD Server is simple and straightforward. The following operations are associated
with creating and controlling dynamic cluster tables:

. Create a Dynamic Cluster Table

. Dynamic Cluster Table Access Control
. Add Tables to a Dynamic Cluster

. Undo Dynamic Cluster Tables

. Refresh Dynamic Cluster Tables

Create a Dynamic Cluster Table

To create dynamic cluster tables in SPD Server, you must have a set of related SPD Server tables that you want to cluster,
such as tables that contain monthly sales histories. The SPD Server tables that you want to cluster must all be in the same

91



domain, and must use identical table structures (columns and indexes) and compression. However, member table partition
sizes and member table owners can vary. These requirements ensure the metadata compatibility that is necessary to create
dynamic cluster tables in SPD Server.

Once the related SPD Server tables are organized, a simple PROC SPDO command is used to bind the tables into a dynamic
cluster table.

The following graphic represents a dynamic cluster table with 24 members. Each member table is an SPD Server table that
contains monthly sales transactions:

Dynamic Cluster Table

et Py T e Ry e e A, T T
e ] P
Jan 2003 Feb 2003 har 2003 Apr 2003
e ey i sl L gy g ey
e Wl Sl e e S e
May 2003 Jun 2003 Jul 2003 Aug 2003
EEEERey GESeeeern (ENER AT R
Sep 2003 Oct 2003 Mov 2003 Dec 2003
e o e o P e
po e o e T peiit e e e e e

Jan 2004 Feb 2004 Mar 2004 Apr 2004
R T e e e s ——
e P T e TR
[ e 2] e e — =y e ]

May 2004 Jun 2004 Jul 2004 Aug 2004
= —— o — = e e —_—— - E
Sep 2004 Oet 2004 Nov 2004 Dec 2004
ey e e ey ey

The following code shows the PROC SPDO command syntax that is used to create dynamic cluster tables from the member

tables:

PROC SPDO | i brary=domai n- nane ;
cluster create Sal es_History

menrsal es200301
nmenrsal es200302
menrsal es200303
nmenrsal es200304
menrsal es200305
menrsal es200306
nmenrsal es200307
menFsal es200308
menrsal es200309
menrsal es200310
menrsal es200311
nmenrsal es200312
menksal es200401
menrsal es200402
nmenrsal es200403
nmenrsal es200404
nmenrsal es200405
menFsal es200406
menrsal es200407
menrsal es200408
menrsal es200409
nmenrsal es200410

92




menrFsal es200411
menrsal es200412
maxsl| ot =36 ;
quit ;

PROC SPDO uses a LIBRARY statement to identify the domain that contains the tables to be clustered. The cl ust er
cr eat e syntax specifies the name of the dynamic cluster table to be created (Sales History).

The menr syntax identifies the members of the cluster table. The tables in the previous example represent monthly sales
transactions. This example uses 24 monthly sales tables for the years 2003 and 2004.

The maxsl ot = specification specifies the maximum number of members that are allowed in the dynamic cluster table
Sales_History.

The "Dynamic Cluster Table Examples" section contains more extensive code examples of creating dynamic cluster tables.

Dynamic Cluster Table Access Control

A user must have SPD Server control access on any member tables that are used in the CLUSTER CREATE or CLUSTER
ADD commands. A user must also have SPD Server control access on the dynamic cluster table itself to submit a CLUSTER
UNDO command. There is no restriction on table ownership, as long as the user has control access on all member tables. All
users that have access to a domain have default control access on tables that were created by the user Anonymous within that
domain. ACLs can be defined on a dynamic cluster table after it is created, and the permissions that are specified in the
dynamic cluster table ACL are applied when SPD Server accesses the dynamic cluster table. Any individual ACL that is
defined on a member table does not apply during the time when the member table is part of a created dynamic cluster table.

Add Tablesto a Dynamic Cluster

To add tables to a dynamic cluster table, you must have an existing dynamic cluster table. The SPD Server tables that you
want to add to the dynamic cluster table must all be in the same domain as the dynamic cluster table. These tables must use
identical table structures (columns and indexes) and compression. However, partition sizes and owners can vary. These
requirements ensure the metadata compatibility that is required to add to a dynamic cluster table.

Once the tables to be added are organized, a simple PROC SPDO command is used to add the new tables to an existing
dynamic cluster table. In the following graphic, sales tables for the first six months of 2005 are set up to be added to the
dynamic cluster table that contains monthly sales transaction data for 2003 and 2004:

93



Dynamic Cluster Table

Mew Months

P e e, I e P T e O R R,
Jan 2003 Feb 2003 Nar 2003 Apr 2003 Jan 2005
PETl e W Wl e e R R
May 2003 Jun 2003 Jul 2003 Aug 2003 Feb 2005
EEERe ey (SEemoe | CEiEGEs s et
Sep 2003 Oct 2003 Mow 2003 Dec 2003 Mar 2005
T ey i ey —_———

P ey B e e W T - Y

Jan 2004 Feb 2004 Mar 2004 Apr 2004 Apr 2005
. e e .. g Sy
i W SR Ml cE

May 2004 Jun 2004 Jul 2004 Aug 2004 May 2005
e ey ey TRy e i e gy
e e P T .,-o—'—'__E

Sep 2004 Oct 2004 | | Nov2004 | | Dec 2004 " Jun 2005

The following code shows the PROC SPDO command syntax that is used to add new tables to an existing dynamic cluster
table:

PROC SPDO | i brary=domai n- nane ;
cluster add Sal es_History
nmenrsal es200501
menrsal es200502
nmenrsal es200503
menrsal es200504
menrsal es200505
nmenrsal es200506 ;
quit ;

PROC SPDO uses a LIBRARY statement to identify the domain that contains the existing dynamic cluster table that you want
to add to. Thecl uster add syntax specifies the name of the dynamic cluster table that you want to add to

(Sales_History).
The nen¥ syntax identifies the members that form the table to be added to the existing dynamic cluster table. In the following

graphic, six tables that include monthly sales transactions for the first half of 2005 are set up to be added to the existing
dynamic cluster table of 2003 and 2004 sales transactions data:

94



S e Wl e Rl R g

Jan 2003 Feb 2003 Mar 2003 Apr 2003 Jan 2005
SR (e e R S

fiday 2003 Jun 2003 Jul 2003 Aug 2003 Feb 2005
R S e CIRREN R T e e e | e i T e =y
e —— i —— o

Sep 2003 Cct 2003 MNow 2003 Cec 2003 far 2005
— — T— —_— —— — T— —— — —_—
frm ] e e S e e - =

Jan 2004 Feb 2004 Nar 2004 Apr 2004 Apr 2005
oy o sy e g e e ey
e = e — o —, i

May 2004 Jun 2004 Jul 2004 Aug 2004 Wiy 2005
— _— - e S e —— —— LA N )
e e — o e ————— i

s e e o] m——

Sen 2004 Cct 2004 Mowv 2004 Dec 2004 m

i .- e g e g e e a_.__i:n 1=

See the "Dynamic Cluster Table Examples" section for a more extensive code example of adding to a dynamic cluster table.

Undo Dynamic Cluster Tables

To undo a dynamic cluster table, you must have an existing dynamic cluster table. Undoing the dynamic cluster table simply
reverts the table back to unbound SPD Server tables. Undoing a dynamic cluster table is required to remove a specific member
table from a dynamic cluster table, to add data to a specific member table in the dynamic cluster table, or to completely refresh
a specific member table that belongs to the dynamic cluster table.

The following graphic represents a dynamic cluster table with 24 members. Each member contains monthly sales transactions
for the years 2003 and 2004:

Dynamic Cluster Table

e et e e R e e

Jan 2003 Jul 2003 Jan 2004 Jul 2004 Jan 2005
s o R 000 - =t ey
S CaE o N Ca
e ] [ ——— =] ] e ]

Feb 2003 Aug 2003 Feb 2004 Aug 2004 Feb 2005
g ey e ey g sy s ey
EEaseesn, EEoaLaen @Emseeaes, RS sTY) Ry

Mar 2003 Sep 2003 Mar 2004 Sep 2004 Mar 2005
R, R (SRR (G ("

Apr 2003 Oct 2004 Apr 2004 Oct 2004 Apr 2005
copEEs o oEa oo ety = n e e

May 2003 MNov 2004 May 2004 MNov 2004 May 2005
ST, (S (e ey

Jun 2004 Dec 2004 Jun 2004 Dec 2004 Jun 2005

95




PROC SPDO is used to undo the existing dynamic cluster table.

The following code shows the PROC SPDO command syntax that is used to undo an existing dynamic cluster table:

PROC SPDO i brary=
domai n- nane ;
cluster undo Sal es History ;
quit ;

PROC SPDO uses a LIBRARY statement to identify the domain that contains the existing dynamic cluster table that you want
toundo. The cl uster undo syntax specifies the name of the dynamic cluster table that you want to undo (Sales_History).

The following graphic represents the previous dynamic cluster table, now unbound.

Unclustered Member Tables

c'--._,ﬂ_'_.__;._-_:—’ P e ey [ :-..______._.--' [ o]
Jan 2003 Jul 2003 Jan 2004 Jul 2004 Jan 2005
e ST SRS RRRaieEs S e ey
sEE—— onkEss cEEmn GEEDEs CSEI
Feb 2003 Aug 2003 Feb 2004 Aug 2004 Feb 2005
T T T e T, e T e T
e ] [ s ] ——— o ) e s ] [ e S ]
Mar 2003 Sep 2003 Mar 2004 Sep 2004 Mar 2005
—— e e e e e e
e e P i N - T e e ey W
fa T W R Rt R e e e R
Apr 2003 Oct 2004 Apr 2004 Oct 2004 Apr 2005
— e o S ey ey o e
S SoE. cas o e =y
[EE ] PEoeaeen, SR | PRl S
May 2003 Nov 2004 May 2004 Nov 2004 May 2005
BT e BRI ot oy ORI e e O P TR T T
e e I T ST R e Ry
Jun 2004 Dec 2004 Jun 2004 Dec 2004 Jurn 2005
P e Ty e e Ly e

See the " Dynamic Cluster Table Examples" section for a more extensive code example of undoing a dynamic cluster table

and then refreshing it.

Refresh Dynamic Cluster Tables

To refresh a dynamic cluster table, you perform the same actions that are required to undo a dynamic cluster table. Then, you
recreate the dynamic cluster table after you add a member table or change an existing member table. An example of
refreshing an SPD Server dynamic cluster table is updating on a monthly basis a dynamic cluster table whose members are the
24 previous months of sales transaction data.

To refresh a dynamic cluster table, use sequential PROC SPDO commands to UNDO CLUSTER and CREATE CLUSTER
with the desired member tables. The dynamic cluster table is first undone. Table changes are made, and then the dynamic
cluster table is rebound again. The following example unbinds the sales transactions tables for 2003 and 2004, and then
refreshes the dynamic cluster table with sales transactions tables for the first six months of 2005:

96



Unclustered Member Tables

Feclustered

Table
EETEEE cEaaeen (CEESeasc, SoEsleRey | (EESGRRGRDI
Jan 2003 Jul 2003 Jan 2004 Jul 2004 Jan 2005
o i L g e SR e i nee ey i
SN cEEaeeeany cEESseeaT, (GEEaeT | cEEEEseTT
Feb 2003 Aug 2003 Feb 2004 Aug 2004 Feb 2005
RN  CERNRET CESRRNS  (GESEnaRS | e
Mar 2003 Sep 2003 Mar 2004 Sep 2004 Mar 2005
. g e I e e — —
T R ey P I e C:—_‘-'-u. ..-'—'_'_—:3 .a-'"_—::,
Apr 2003 Oct 2004 Apr 2004 Oct 2004 Apr 2005
e - o . D U o T . g e G ey e ey
May 2003 Nov 2004 May 2004 Nov 2004 May 2005
- Bl e ey e e e ey e e e e ey
el L Sl R = G
Jun 2004 Dec 2004 Jun 2004 Dec 2004 Jun 2005
- — - ey s —

See the " Dynamic Cluster Table Examples" section for a more extensive code example of unbinding a dynamic cluster table

and then refreshing it by recreating it with different member tables.

M odify Dynamic Cluster Tables

The PROC SPDO command set for dynamic clusters provides a CLUSTER MODIFY cluster command. The usage syntax for
the CLUSTER MODIFY command is

CLUSTER MODI FY cl ust er nane
M NVAXVARLI ST=(var nanel <varnane2 varnane3 ...>);

The CLUSTER MODIFY command sets a MINMAXVARLIST attribute on one or more variables that belong to an existing
dynamic cluster. The variable names that are specified in the CLUSTER MODIFY command must exist in the cluster and the
variables must not have a pre-existing MINMAXVARLIST setting. When the SPD Server runs the CLUSTER MODIFY
command, the dynamic cluster is unclustered while the variable modifications are made to the individual member tables. The
cluster is recreated after the MINMAXVARLIST changes are completed. Control permission and exclusive access to the
dynamic cluster is required in order to run the CLUSTER MODIFY command. SPD Server performs a full table scan to
initialize the MINMAXVARLIST values in each member table, so the processor time that is required to perform the
CLUSTER MODIFY command is directly related to the size of the tables that belong to the cluster. If an error occurs while
the CLUSTER MODIFY command is running, the cluster may not be recreated and the user will need to manually recreate the
cluster using the CLUSTER CREATE command.

Dynamic Cluster BY Clause Optimization

When you use SPD Server dynamic clusters, you can create huge data sets. If the huge data sets need further manipulation
by some SAS job, it might be better to sort them for more efficient processing. Traditional processing of huge data sets
can overuse or overwhelm available resources. The resulting lack of available run-time or processor resources can prohibit
you from running full-table scans and manipulating table rows, which are required to sort huge data sets for

subsequent processing.

97



SPD Server provides dynamic cluster BY clause optimization to reduce the need for a large amount of processor
resources when evaluating BY clauses. The dynamic cluster BY clause optimization uses SPD Server to join
individually created SPD Server member data sets so that the data sets appear to be single data set, while still keeping
the individual member data sets intact. The dynamic cluster BY clause optimization uses the SORTEDBY metadata of
the member data sets to bypass most of the sorting that is required to perform the implicit BY clause ordering. With
the SORTEDBY metadata of each member, SPD Server merges the member data sets in the dynamic cluster by using
each member data set's order. No additional SPD Server work-space is required, and the ordered data set records are
returned with minimum delay since member sorting is eliminated.

To use dynamic cluster BY clause optimization, you need to build the dynamic cluster table a certain way. All of the
member tables in your dynamic cluster table need to be sorted by the same columns that you need to use in the BY
clause. When you build your dynamic cluster table from member tables that are presorted by your BY clause columns,
your dynamic cluster table can use the BY clause optimization.

When a BY clause is run that matches the SORTEDBY column order of the dynamic cluster table member tables, SPD
Server performs the BY clause without using sort work-space or experiencing first-record latency. SPD Server uses

the presorted member tables to perform an instantaneous interleave. By using the presorted member tables, the dynamic
cluster BY clause optimization enables you to perform operations on huge data sets that would be impossible to

handle otherwise.

For example, suppose that you have a system that has sufficient CPU, memory, and work-space resources to sort a 50-GB
data set in a reasonable amount of time. However, suppose this system accumulates 50 GB of new data every month, so
that after 12 months, the data sets require 600 GB of storage. The system cannot handle sorting 600 GB of data to
process queries that are based on the previous 12-month period. If you use SPD Server to create a dynamic cluster table
from the 12 50-GB member tables, you can store each rolling month of data in a SPD Server member table, and then sort it
like the other dynamic cluster table member tables, and then add the new member table to the 600-GB dynamic cluster
table. Now you can use the dynamic cluster BY clause optimization to run SAS steps that use BY clauses on the 600-
GB cluster. For example, you can run a DATA step MERGE statement that uses the dynamic cluster table as the master
source for the MERGE statement. The BY clause from the MERGE statement triggers the dynamic cluster BY

clause optimization. As a result, the operation completes in the time that it takes to interleave the individual member
tables, using no SPD Server work-space and without experiencing any implicit BY sort delays.

Dynamic cluster BY clause optimization allows the BY optimization to be combined with certain WHERE clauses on
dynamic cluster tables. For the WHERE clause optimization to work, SPD Server must be able to determine whether

the WHERE clause is trivially true or trivially false for each member table in the dynamic cluster table. To be trivially true,
a WHERE clause must find the clause condition true for every row in the member table. To be trivially false, a WHERE
clause must find the clause condition false for every row in the member table.

SPD Server keeps metadata about indexed values in dynamic cluster table member tables, and if the WHERE clause
criteria can be determined as true or false based on the dynamic cluster table's member table metadata, the WHERE

clause optimization is possible on a member-by-member basis for the entire dynamic cluster table. Suppose that member
tables of a dynamic cluster table all have an index on the column QUARTER (1=Jan-Mar, 2=Apr-Jun, 3=Jul-Sep, 4=Oct-
Dec). Suppose that you need to run a DATA step MERGE statement that uses the expression WHERE QUARTER=2.
Because the QUARTER column is indexed in all of the member tables, SPD Server uses the BY clause optimization

to determine that the WHERE clause is trivially true. SPD Server then evaluates the expression only on the member tables
for April, May, and June without using any SPD Server work-space. When the WHERE clause can be determined as
trivially true or trivially false for each member table of the dynamic cluster table in advance, the BY clause

optimization performs the BY processing only on the appropriate member tables.

The dynamic cluster BY clause optimization is triggered when member tables all have an applicable SORTEDBY ordering
for the BY clause that is asserted. When the SORTEDBY ordering is strong (validated), SPD Server does not perform
checks to verify the order of BY variables that are returned from the member table. When the SORTEDBY ordering is
weak (such as from a SORTEDBY assertion that was a data set option), additional checking is performed to verify the order
of BY variables that are returned from the member table. If an invalid BY variable order is detected, SPD Server
terminates the BY clause and displays the following error message:

ERROR: Cl ustered BY nenber viol ates weak
98



sort order during nerge.

Dynamic Cluster BY Clause Optimization Example

Consider a database of medical patient insurance claims, with quarterly claims data sets that are named ClaimsQ1, ClaimsQ?2,
ClaimsQ3, and ClaimsQ4. Each quarterly claims table is sorted by columns that are named PatID (for Patient ID) and
ClaimID (for Claim ID). The member tables are combined into a dynamic cluster table that is named ClaimsAll. The
following example shows the code:

DATA SPDS. d ai nsQ1;

run;

DATA SPDS. Cl ai msQ2;

i

PROC SORT DATA=SPDS. d ai nsQ1;

BY PatI D C aimD;
run;

PROC SORT DATA=SPDS. O ai ms(Q2;
BY Pat1 D C ai m D,
run,

PROC SPDO LI B=SPDS;
create cluster d ainsAll;
quit;

Consider the DATA step MERGE statement to be submitted to the ClaimsAll dynamic cluster table:

DATA SPDS. ToAdd SPDS. ToUpdat e;
VERGE SPDS. NewOnes( | N=NEWL)

SPDS. d ai nsAl | (1 N=CLD1) ;
BY Pat|I D C ai m D

SELECT;
VWHEN( NEW. and OLD1)
DG,
OUTPUT SPDS. ToUpdat €;
end;
WHEN( NEWL and not OLD1)
DG,
OUTPUT SPDS. ToAdd;
end;
run;

If ClaimsAll were not a dynamic cluster table, the DATA step MERGE statement would create an implicit sort from the BY
clause on the respective SPD Server data sets. However, ClaimsAll is a dynamic cluster table with member tables that are
presorted. As a result, the dynamic cluster BY clause optimization uses BY clause processing to merge the sorted member
tables instantaneously without using any SPD Server work-space or experiencing delays. The previous example merges the
transaction data named NewOnes into new rows that will be appended to the data for the next quarter.

Consider that the member data sets ClaimsQ1 and ClaimsQ?2 are indexed on the column Claim_Date:

99



DATA SPDS. Repd ai 1rs;

SET SPDS. d ai nsAl | ;

VWHERE Cl ai m Dat e BETWEEN ' 01JAN2007' and ' 31MAR2007';
BY PatI D ClaimD
run;

The WHERE clause determines whether each member table is true or false for each quarter. The WHERE clause is trivially
true for the data set ClaimsQ1 because the WHERE clause is true for all dates in the first quarter. The WHERE clause is
trivially false for the data set ClaimsQ2 because the WHERE clause is false for all dates in the second quarter. The BY clause
optimization determines that the member table ClaimsQ1 will be processed because the WHERE clause is true for all of the
rows of the ClaimsQ1 table. The BY clause optimization skips the member table ClaimsQ2 because the WHERE clause is
false for all of the rows of the ClaimsQ2 table.

Suppose that the Claim_Date range is changed in the WHERE clause:

DATA SPDS. Repd ai ns;

SET SPDS. d ai nsAl | ;

WHERE Cl ai m Dat e BETWEEN ' 05JAN2007' and ' 28JUN2007' ;
BY PatI D ClaimD;
run;

When the new WHERE clause is evaluated, it is not trivially true for member tables ClaimsQ1 or Claims Q2. The WHERE
clause is not trivially false for member tables ClaimsQ1 or Claims Q2 either. The WHERE clause calls dates that exist in
portions of the member table ClaimsQ1, and it calls dates that exist in portions of the member table ClaimsQ2. The dates in
the WHERE clause do not match all of the dates that exist in the member table ClaimsQ1, or all of the dates that exist in the
member table ClaimsQ2. The dates in the WHERE clause are not totally exclusive of the dates that exist in the member tables
ClaimsQ1 or ClaimsQ?2. As a result, BY clause optimization will not be used when SPD Server runs the code.

Member Table Requirementsfor Creating Dynamic Cluster Tables

When you create a dynamic cluster table, all of the member tables must have matching table, variable, and index attributes.
If there are attribute mismatches, the dynamic cluster table creation fails, and SPD Server displays the following error message:

ERROR Menber table not conpatible with other
cluster nenbers. Conpare CONTENTS.

A more detailed error message is written to the SPD Server log. The SPD Server log lists which attribute is mismatched in
the member tables. The following lists specify the member table attributes that must match for SPD Server to
successfully create a dynamic cluster table.

. Table Attributes
. Variable Attributes
. Index Attributes

Table Attributes

The following table attributes must match in all member tables to successfully create a dynamic cluster table:

IDXSEGSIZE
index segment size

OBSLEN
observation record length

100



NVAR
number of columns

NINDEXES
number of indexes

DSORG
data set organization

SEMTYPE
data set semantic type

DSTYPE
SAS data set type

LOCALE
creation locale

LANG
data set language tag

LTYPE
data set language type tag

FLAGS
compressed data set
encrypted data set
backup data set
NLS variables in data set
minmaxvarlist variables in data set
SAS encryption password in data set

SASPW
SAS encryption password

DS ROLE
data set option for ROLE

ENCODING_CEI
encoding CEI for NLS (for compressed tables)

DISKCOMP
compression algorithm

IOBLOCKSIZE
1/0O block size

IOBLOCKFACTOR
I/0 block factor

Variable Attributes

The following variable attributes must match in all member tables to successfully create a dynamic cluster table:

NAME

101



variable name

LABEL
variable label

NFORM

variable format

NIFORM
variable informat

NPOS
variable offset in record

NVARO
variable number in record

NLNG
variable length

NPREC

variable precision

FLAGS
NLS encoding supported
minmaxvarlist variable

NFL
format length

NFD
format decimal places

NIFL
informat length

NIFD
informat precision

NSCALE
scale for fixed-point decimal

NTATTR
variable type attributes

TYPE
variable type

SUBTYPE
variable subtype

SORT
variable sorted status

NTYPE2
variable extended type code

102



| ndex Attributes

The following index attributes must match in all member tables to successfully create a dynamic cluster table:

NAME
index name

TYPE
index type

KEYFLAGS
unique index
nomiss index

LENGTH
index length

NVAR
number of variables in index

NVARO

variable number in index

Querying and Reading Member Tablesin a Dynamic Cluster

Dynamic clusters can be read using the MEMNUM-= table option. The MEMNUM= option enables you to perform query
or read operations on a single member table that belongs to a dynamic cluster. When you use the MEMNUM= option,
SPD Server opens only the specified member table, instead of opening all of the member tables that belong to the cluster.
You can determine the member number of a table in the cluster by issuing a CLUSTER LIST statement or a

PROC CONTENTS command on the cluster. The SPD Server CLUSTER LIST or PROC CONTENTS command output
lists the member tables of the cluster in numbered order.

You can specify verbose output for the CLUSTER LIST statement by using the following option syntax:

CLUSTER LI ST cl usternane [/ VERBCSE]

When you issue the /VERBOSE option with a CLUSTER LIST statement, the output lists the
MINMAXVARLIST information for each member table in a dynamic cluster.

The following example uses PROC SPDO to create a dynamic cluster that has a MINMAXVARLIST on the numeric
column STORE _ID of each member table. Then a CLUSTER LIST statement is issued using the /'VERBOSE option.
The CLUSTER LIST output displays the dynamic cluster name, the names of each member table in the cluster, and
the MINMAXVARLIST values for each member table.

PROC SPDO |i brary=& i bdom ;

CLUSTER CREATE ussal es
men=ne_r egi on
menEse_regi on
mem=central _regi on
maxsl ot =6

CLUSTER LI ST ussal es/ VERBCSE

103



M NVAXVARLI ST COUNT = 1
varnane = store_id
Nuneric type

Cl uster Nanme USSALES, Menm=NE _REG ON
Vari abl e Name (M N, MAX)
STORE_I D ( 1, 20)

Cl uster Nane USSALES, Mem=SE REG ON
Vari able Name (M N, MAX)
STORE | D ( 60, 70)

Cl uster Nanme USSALES, Mem=CENTRAL_REG ON
Vari abl e Name (M N, MAX)
STORE_I D ( 60, 70)

NOTE: The maxi mum nunber of possible slots is 6.

You can specify an integer value n as an argument for the MEMNUM-= table option to select the nth member of the table,
or you can use the argument LASTCLUSTERMEMBER. When you use the LASTCLUSTERMEMBER argument

with MEMNUM=, SPD Server selects the last member of the dynamic cluster table, without needing to count the members
to determine the number (n) of the last member.

The following example uses the MEMNUM-= table option to query against the member table sales200504 that belongs to
the dynamic cluster table sales_history:

PROC SPDO |i brary=&domai n ;

CLUSTER CREATE sal es_hi story
nmenrsal es200501
nmenFsal es200502
nmenrsal es200503
nmenmFsal es200504
mem~sal es200505
nmenrsal es200506
maxsl ot =12 ;

quit ;
PROC PRI NT dat a=&donmai n..sal es_hi story
( MEMNUME4)
WHERE sal esdate = 30Apr 2005;
run;

To use the MEMNUM= table option to query the last member table in the dynamic cluster table sales200506, the query
would be:

PROC SPDO |i brary=&domai n
CLUSTER CREATE sal es_hi story
nenrsal es200501
nmenrsal es200502
mem~sal es200503
nmenrsal es200504
nmemFsal es200505
nenrsal es200506
maxsl ot =12 ;
quit ;

PROC PRI NT dat a=&donmi n. . sal es_hi story

104



( MEMNUM=LASTCLUSTERMEMVBER ) ;
VWHERE sal esdate = 15Jun2005;
run;

Unsupported Featuresin Dynamic Cluster Tables

Because of differences in the load and read structures for dynamic cluster tables, some standard features that are available
in SAS tables and SPD Server tables are currently not supported in SPD Server 4.4. These features are:

. You cannot append data to a dynamic cluster table. To append data to a dynamic cluster table, the table must be
unclustered, the data is appended to the individual unclustered files, and then the individual unclustered files must
be reclustered.

. Record-level locking is not allowed.

. The SPD Server backup/restore utility is not available.

« Copying data with PROC COPY or PROC SQL is not supported.

If a task for a dynamic cluster table requires one of these features, you should undo the dynamic cluster table and
create standard SPD Server tables.

Dynamic Cluster Table Examples

The following four examples show all of the fundamental operations that are required to use dynamic cluster tables:

. Create a Dynamic Cluster Table Example

. Add Tables to a Dynamic Cluster Example

. Undo Dynamic Cluster Table Example

. Refresh Dynamic Cluster Table Example

Create a Dynamic Cluster Table Example

The following example creates a dynamic cluster table named Sales_History. The first part of the example
generates dummy transaction data that is used in the rest of the example.

The example uses SPD Server tables from the domain bmwcycle. Twelve individual SPD Server tables for
monthly motorcycle sales during 2004 are bound into the dynamic cluster table named Sales_History. Tables
are created for the first six months of motorcycle sales during 2005:

/* declare macro variables that will be used to */
/* generate dunmy transaction data */

%racro var (varout, dist, card, seed, peak) ;
%ut &di st &card &seed ;
% ocal varl ;

i f upcase("&dist") = '"RANUNI"'
then do ;

&arout = int(ranuni (&seed)*&card) +1;
end ;

105



el se
i f upcase("&dist") = 'RANTRI"'

then do ;
*%et vartri = %substr("&dist",5,2)&ard ;
*&arout = int(rantri(&seed, &eak)*&card) +1
&arout = int(rantri(&seed, &eak)*&card) +1;
end ;
%rend ;

%racro |inkvar (varin,varout, devisor) ;
&varout = int(&varin/&evisor)
%rend ;

/* declare main vars */

% et dormai n=bmacycl e ;
% et host =kaboom ;

% et port=5200 ;

% et spdssi ze=256M ;
% et spdsiasy=YES ;

I i bname &donai n sasspds "&domai n"
server =&host . . &port
user =' anonynous'
i p=YES ;

/* generate nmonthly sales data tables for */
/* 2004 and the first six nmonths of 2005 */

dat a
&domai n. . sal es200401
&domai n. . sal es200402
&domai n. . sal es200403
&donmai n. . sal es200404
&donmai n. . sal es200405
&domai n. . sal es200406
&domai n. . sal es200407
&domai n. . sal es200408
&donmai n. . sal es200409
&donai n. . sal es200410
&domai n. . sal es200411
&domai n. . sal es200412
&domai n. . sal es200501
&domai n. . sal es200502
&donmai n. . sal es200503
&domai n. . sal es200504
&domai n. . sal es200505

n..sal es200506

&donma

drop seed bunpl bunp2 random di st ;

seed = int(tinme()) ;

/* format the dunmy transaction data */

106



format trandate shipdate paiddate yymudl10. ;

put seed ;
do transact = 1 to 5000 ;
%var (customer,ranuni, 100000, seed, 1) ;

% i nkvar (custoner, zi pcode, 10) ;

% i nkvar (customer, agent, 20) ;

% i nkvar (custoner, nktseg, 10000) ;
% i nkvar (agent, state, 100) ;

% i nkvar (agent, branch, 25) ;

% i nkvar (state,region, 10) ;

%var (item nunber,ranuni, 15000, seed, 1) ;

%ar (trandate,ranuni,577,seed, 1) ;
trandate = trandate + 16071

%ar (bunpl,ranuni, 20, seed, . 1) ;
shi pdate = trandate + bunpl ;

%var (bunp2,rantri, 30, seed,.5) ;
pai ddate = trandate + bunp2

%var (units,ranuni, 100, seed, 1) ;
%var (trantype,ranuni, 10, seed, 1) ;
%var (amount,rantri, 50, seed,.5) ;
anount = amount + 25 ;

random di st = ranuni (' 03feb2005'd) ;
/* sort the dummy transaction data into */
/* nmonthly sales data tables */

if '01jan2004'd <= trandate <= '31jan2004'd
t hen out put &domai n. . sal es200401 ;

else if '01feb2004'd <= trandate <= '28feb2004'd

t hen out put &domai n. . sal es200402 ;

else if "Olnmar2004'd <= trandate <= '31mar 2004'd

t hen out put &domai n. . sal es200403 ;

else if '0lapr2004'd <= trandate <= '30apr2004'd

then out put &domai n. . sal es200404 ;

else if '01lmay2004'd <= trandate <= '31may2004'd

t hen out put &domai n. . sal es200405 ;

else if '01jun2004'd <= trandate <= '30jun2004'd

t hen out put &domain. . sal es200406 ;

else if "0ljul 2004'd <= trandate <= ' 31jul 2004' d

t hen out put &domai n. . sal es200407 ;

el se if '0laug2004'd <= trandate <= '3laug2004'd

t hen out put &domai n. . sal es200408 ;

107



else if '01sep2004'd <= trandate <= '30sep2004'd
t hen out put &domai n. . sal es200409 ;

else if '0loct2004'd <= trandate <= '3loct2004'd
then out put &domai n. . sal es200410 ;

else if '"01lnov2004'd <= trandate <= '30nov2004'd
then out put &domain. . sal es200411 ;

else if '01dec2004'd <= trandate <= '31dec2004'd
t hen out put &domai n. . sal es200412 ;

el se if '01jan2005'd <= trandate <= ' 31j an2005' d
t hen out put &domai n. . sal es200501 ;

else if '01f eb2005'd <= trandate <= '28feb2005' d
t hen out put &domai n. . sal es200502 ;

else if '0lmar2005'd <= trandate <= '31mar2005'd
t hen out put &domai n. . sal es200503 ;

else if '0lapr2005'd <= trandate <= '30apr2005'd
t hen out put &domain..sal es200504 ;

else if '01lmay2005'd <= trandate <= '31may2005'd
t hen out put &domain. . sal es200505 ;

else if '01jun2005'd <= trandate <= '31jun2005'd
t hen out put &domai n. . sal es200506 ;
end ;
run ;

/* index the transaction data in the */
/* monthly sales data tables */

%racro indexit (yrnth) ;
PROC DATASETS | i brary=&donai n nolist ;
nodi fy sal es&rnth ;
i ndex create transact custoner agent state branch trandate ;
quit ;
%rend ;

% et spdsiasy=YES ;

% ndexit (200401) ;
% ndexit (200402) ;
% ndexit (200403) ;
% ndexit (200404) ;
% ndexit (200405) ;
% ndexit (200406) ;
% ndexit (200407) ;
% ndexit (200408) ;
% ndexit (200409) ;
% ndexit (200410) ;
% ndexit (200411) ;
% ndexit (200412) ;
% ndexit (200501) ;

108



% ndexit (200502) ;
% ndexit (200503) ;
% ndexit (200504) ;
% ndexit (200505) ;
% ndexit (200506) ;

/* Use PROC SPDO to create the dynamic cluster */
/* table sales_history

PROC SPDO | i brary=&donai n ;
cluster create sales_history

menrsal es200401
nmenrsal es200402
menrsal es200403
menrsal es200404
nmenrsal es200405
menrsal es200406
nmenrsal es200407
menrsal es200408
menrsal es200409
menrsal es200410
menrsal es200411
nmenrsal es200412

maxsl ot =36

qui t

*/

Add Tablesto a Dynamic Cluster Example

The following example adds member tables to the dynamic cluster table named Sales History. The

Sales History table currently contains 12 members. Each member is an SPD Server table that contains monthly
sales data. This example augments the 12 member tables for 2004 with 6 new member tables that contain sales
data for January through June of 2005:

/* declare nain vars */

% et
% et
% et
% et
% et

domai n=bmacycl e
host =kaboom ;
port=5200 ;
spdssi ze=256M ;
spdsi asy=YES ;

i bname &donain sasspds "&domai n"
server =&host . . &port
user ="' anonynous'
i p=YES ;

/* Use PROC SPDO to add menber tables to
/* the dynam c cluster table sales_history

PROC SPDO | i brary=&donai n ;
cluster add sal es_history

menrFsal es200501
nmenksal es200502
menrsal es200503

109

*/
*/



nmem~sal es200504

nmenrsal es200505

nmemrsal es200506
quit ;

/* Verify the presence of the added tables */

PROC CONTENTS dat a=&dormai n. . sal es_hi story ;
run ;

Undo Dynamic Cluster Table Example

The undo example is included as part of the following refresh example.

Refresh Dynamic Cluster Table Example

Refreshing SPD Server dynamic cluster tables is a combination of two tasks, UNDO CLUSTER and CREATE CLUSTER.
The UNDO CLUSTER command unbinds an existing dynamic cluster table. The CREATE CLUSTER command rebinds the
dynamic cluster table with updated member tables. Therefore, the following example shows both the UNDO CLUSTER and
CREATE CLUSTER commands with SPD Server dynamic cluster tables.

The following example refreshes the dynamic cluster table named Sales History. The Sales History table received additional
member tables in the previous example. The 18-member dynamic cluster table Sales History is unbound. The 12 member
tables that contain 2004 sales data are deleted when the dynamic cluster table Sales History is recreated with only the six
member tables that contain 2005 sales data. The combined actions refresh the contents of the dynamic cluster table

Sales History.

/[* declare main vars */

% et domai n=bmacycl e ;
% et host =kaboom ;

% et port=5200 ;

% et spdssi ze=256M ;

% et spdsi asy=YES ;

i bname &domai n sasspds " &domai n"
server =&host . . &port
user =" anonynous'
| P=YES ;

/* Use PROC SPDO to undo the existing dynamc */
/* cluster table Sales History, then rebind */
/[* it with menbers fromnmonths in 2005 only */

PROC SPDO i brary=&donai n
cluster undo sal es_history ;
cluster create sales_history

nmemFsal es200501
memrsal es200502
menmrsal es200503
nmem~sal es200504
menrsal es200505
nmemFsal es200506
maxsl ot =36 ;

110



quit ;

/* Verify the contents of the refreshed dynamc */
/* cluster table sales history */

PROC CONTENTS dat a=&donai n. . sal es_history ;
run ;

111



SAS Scalable Performance Data (SPD) Server SQL Features

. SPD Server SQL Planner
. Connecting to the SPD Server SQL Engine
« SPD Server SQL Planner Options
o Specify SQL Options using Explicit Pass-Through Code

o Specify SQL Options using Implicit Pass-Through Code
o Important SPD Server SQL Planner Options
. Parallel Join Facility
o Parallel Join Methods
o Parallel Joins with Group-By
o Parallel Join SQL Options
o Parallel Join Example 1

o Parallel Join Example 2

o Parallel Join Example 3

. Parallel Group-By Facility

o Enhanced Group-By Functions

o Table Aliases Supported
o Nested Queries Meet Group-By Syntax Requirements
o Formatted Parallel Group Select
o Parallel Group-By SQL Options
« SPD Server STARJOIN Facility
o STARJOIN Options
. SPD Server Index Scan
. Optimizing Correlated Queries

o Correlated Query Options

. Materialized Views
« SPD Server SQL Extensions
. Differences between SAS SQL and SPD Server SQL

SPD Server SOL Planner

SPD Server includes SQL Planner optimizations. SQL Planner optimizations improve the performance of the more
frequent query types that used in data mining solutions such as Enterprise Marketing Automation. A key enhancement to
112



the SPD Server SQL Planner is optimizing correlated queries through the use of query rewrite techniques. Correlated
queries are common in business and analytic intelligence data mining. Another significant enhancement is the

tighter integration of the Parallel Group-By technology in the planner. The tighter integration adds performance benefits
to nested Group-By syntax.

Connecting to the SPD Server SOL Engine

. Implicit Pass-Through Connection
. Explicit Pass-Through Connection

o LIBNAME Syntax to Specify a LIBREF
o LIBREF Statements

o LIBREF Clauses

o LIBREF Examples

I mplicit Pass-T hrough Connection

You can use an implicit pass-through connection to pass implicit SQL statements to the SPD Server SQL Engine. When
you use an implicit pass-through connection, the SAS SQL planner parses SQL statements to determine which, if any,
portions can be passed to the SPD Server SQL Engine. In order for a submitted SQL statement to take advantage of
implicit pass-through SQL, the tables that are referenced in the SQL statement must be SPD Server tables, and the SPD
Server SQL engine must be able to successfully parse the submitted SQL statement.

An example of an SPD Server implicit pass-through connection is available in the Help section in this document on how
to specify SQL options using implicit pass-through code.

Explicit Pass-Through Connection

You can use an explicit pass-through connection to pass explicit SQL statements to the SPD Server SQL Engine. When
you use an explicit pass-through connection, you decide explicitly which SQL statements are passed to the SPD Server
SQL Engine. The explicit pass-through connection passes the entire SQL statement as written to the SPD Server SQL
Engine, which parses and plans the SQL statement. All tables that are referenced in the SQL statement must be SPD
Server tables or an error will occur.

113



An example of an SPD Server implicit pass-through connection is available in the Help section in this document on how
to specify SQL options using explicit pass-through code.

LIBNAME Syntax to Specify a LI BREF

Below is a LIBNAME statement that associates a libref, the SASSPDS engine, and an SPD Server domain.

LIBNAME libref
SASSPDS <'SAS-data-library> <SPD Server-options>;

Use the following arguments:

libref
a name that is up to eight characters long and that conforms to the rules for SAS names.
SASSPDS
the name of the SPD Server engine.
'SAS-data-library'
the logical LIBNAME domain name for an SPD Server data library on the host machine. The name server resolves the
domain name into the physical path for the library.
SPD Server-options
one or more SPD Server options.

LI BREF Statements

Whenever you issue a CONNECT statement to an SPD Server SQL server with the DBQ option, by default you define
a primary LIBNAME domain. The software uses the primary domain to resolve table references in SQL statements
executed for that connection.

You can also use the LIBREF statement to assign secondary LIBNAME domains for the SPD Server SQL Server.
The additional LIBREF statements assign explicit LIBNAME domains, allowing the software to specify two-part table
names for SQL statements executed for the connection.

PROC SQ;
execute(libref Iibrefnane
<engi nenane>

engopt=" ") 4



by sasspds;

L IBREF Clauses

. The ENGNAME Clause
. The ENGOPT Clause

The ENGNAME Clause

Specifies the name of an alternate SAS I/O engine to service the LIBREF's access to data. If you do not specify an
alternate SAS 1/O engine, the default is Spdseng, which accesses SPD Server tables.

The ENGOPT Clause

Specifies options that configure the LIBREF to access a specific data source or storage domain. Use single or double
quotes around the clause. (If you have nested quotes within a clause, alternate between single and double quoted
expressions.) The available options depend on the current value of the ENGNAME option. For the default spdseng, you
can specify any SPD Server CONNECT or LIBNAME engine option with the exception of prompt, newpasswd, and
chngpass. Use the same keyword/value syntax required by the CONNECT statement.

Note: If you specify the SAS I/O engine spdseng and use explicit options in your CONNECT statement, these options
become default ENGOPT clause options. Explicit options can also be specified using the ENGOPT clause. Explicit
options specified in an ENGOPT clause will override default values or declarations made in previous CONNECT
statements.

LI BREF Examples

. LIBREF for Another Domain but the Same CONNECT Statement User
. LIBREF to Same Domain but Different CONNECT Statement User
« Secondary LIBREF Using a Different Host

LI BREF for Another Domain but the Same CONNECT Statement User

In this example the client connects to the SPD Server SQL server using the engine sasspds. The domain is

"mydomain," the server machine is called "namesvrID," and the port number is "namesvrPortNum". The execute
115



statement assigns the LIBREF "cookie" to another domain, "dough." After the libref is executed, the user issuing
the connect statement can now access either the default domain "mydomain" or the secondary domain "dough."

PRCC SQL

connect to sasspds
(dbg=" nydomai n'
host =' nanesvr| D
serv='"nanesvr Port Numn
user =' ner aksr'
passwd='si uya');

execut e(libref cookie
engopt ='
dbg="dough"")

by sasspds;

In the example above, the LIBREEF is "cookie," and the secondary domain named is "dough." The intent of the
example is to show how the CONNECT and LIBREF statements work in conjunction to access multiple domains
for the same user.

LI BREF to Same Domain but Different CONNECT Statement User

This example assigns a LIBREF to the domain specified by the CONNECT statement but for another user
(different SPD Server User ID).

PROC SQL;
execute(libref sanslib
engopt ='

user ="sanf
passwd="sanspwd""' )

by sasspds;

Secondary LIBREF Using a Different Host

This example assigns a secondary LIBREF to a different host machine.

116



PROC SQL;
execute(libref sant
engopt ='
host ="f | ex"
dbg="sanspl ace"")
by sasspds;

SPD Server SOL Planner Options

The SPD Server SQL Planner provides reset options that you can use to configure the behavior of the SQL Planner and
the SPD Server facilities that function through the SQL Planner, such as the SPD Server Parallel Group-By facility, the
SPD Server Parallel Join facility, and the SPD Server STARJOIN facility. You can specify SPD Server SQL reset
options using either using explicit pass-through code, or by using implicit pass-through code.

Specify SOL Options using Explicit Pass-Through Code

The example below shows how to use an execute(r eset <reset-options>) statement in explicit SPD Server pass-through
SQL code to invoke an SQL Planner, Parallel Group-By facility, Parallel Join facility, or STARJOIN facility reset option.

Most SQL Planner reset option usage examples in this document use explicit pass-through code. See the implicit pass-
through code example below to see how SQL reset options can be declared using an implicit %let spdssglr= statement
instead of an explicit execute(r eset <reset-options>) statement.

/* Explicit Pass-Through SQ. Exanple */
/* to invoke an SQL Reset Option */

PROC SQL ;

connect to sasspds (
dbg="domai n- nane"
server =<host - nanme>. <port - nunber >
user =' user nane')

execut e(reset <reset-options>)
by sasspds ;

execut e( SQL st at enment s)

by sasspds ;
117



di sconnect from sasspds ;
quit ;

Specify SOL Optionsusing I mplicit Pass-Through Code

The example below shows how to use a %let spdssqlr =<reset-options> statement in implicit SPD Server pass-through
SQL code to invoke an SQL Planner, Parallel Group-By facility, Parallel Join facility, or STARJOIN facility reset option.

Most SQL Planner reset option usage examples in this document use explicit pass-through code. The implicit pass-
through code example below shows how SQL reset options can be declared using an implicit %let spdssglr= statement
instead of an explicit execute(r eset <reset-options>) statement.

/* Inplicit Pass-Through SQ. Exanple */
/* to invoke an SQL Reset Option */

% et spdssqgl r=<reset-options> ;

PROC SQL ;
SQL statenents ;

quit ;

I mportant SPD Server SOL Planner Options

The following reset options belong directly to the SPD Server SQL Planner.

« _Method

« EXEC/NOEXEC

. MAGIC

. INDEXSELECTIVITY=

« OUTRSRTINDX/NOOUTRSRTINDX

. INOBS

. OUTOBS

. SASVIEW/NOSASVIEW

. UNDO POLICY= 118




. BUFFERSIZE=
. PRINTLOG/NOPRINTLOG

More detailed information about the available SQL reset options for the SPD Server SQL Parallel Join, Parallel Group-
By, STARJOIN, and Correlated Query facilities can be found in this document as follows:

. Parallel Join Facility Reset Options

. Parallel Group-By Facility Reset Options
. STARJOIN Facility Reset Options

. Correlated Query Facility Options

M ethod

The SQL _method option is one of the most important reset options. The _method reset option provides a method
tree in the output that shows how the SQL was executed.

The following methods are displayed in the SQL _method tree:

sgxcrta
Create table as Select.

sgxslct
Select rows from table.

soxjsl
Step Loop Join (Cartesian Join).

SoXjm
Merge Join execution.

sgxj ndx
Index Join execution.

sgxj hsh

Hash Join execution.

sgxsort
Sort table or rows.
119



SOXSIC
Read rows from source.

sgxfil
Filter rows from table.

sgxsumg
Summary Statistics (with GROUP BY).

sgxsumn
Summary Statistics (not grouped).

sgxuniq

Distinct rows only.

SOXstj
STARJOIN

sgxxpgb
Parallel Group-By

sgxxpjn
Parallel Join with Group-By. The SAS log will display the name of the parallel join method that was used.

sgxpll
Parallel Join without Group-By

Reading the Method Tree

A method tree is produced in your output when the _method reset option is specified for the SQL Planner. The
SQL Planner method tree is read from bottom row to top row. Below is an example that shows how to interpret the
method tree by substituting the type of method that was used in each step.

PROC SQL ;
create table tbl1 as
sel ect *
from pat hl. dansj unkl a,

pat hl. dansj unk2 b,
120



pat hl. dansj unk3 c
where a.i = b.i
and a.i =c¢.i ;
quit ;

Here is the example Method Tree that was printed:

SPDS NOTE: SQL execution nethods chosen are:
<0x00000001006BBD78>  sqgxsl ct

<0x00000001006BBBF8> Sgxj m
<0x00000001006BBB38> sgxsort
<0x0000000100691058> SQgxsrc
<0x0000000100667280> sgxj m
<0x0000000100666C50> sgxsort
<0x0000000100690BD8> Sqgxsrc
<0x00000001006AE600> sgxsort
<0x0000000100694748> sgxsrc

Reading from bottom to top, you can review the sequence of methods that were invoked.

SPDS NOTE: SQL execution methods chosen are:
<0x00000001006BBD78> step-9

<0x00000001006BBBF8> step-8

<0x00000001006BBB38> st ep7?
<0x0000000100691058> step-6
<0x0000000100667280> step-5
<0x0000000100666C50> step-4
<0x0000000100690BD8> step-3
<0x00000001006AE600> step-2
<0x0000000100694748> step-1

In step 1, sgxsrc reads rows from the source. In step 2, Sgxsort sorts the table rows. Then in steps 3 and 4, more
rows are read and sorted. In step 5, the tables are joined by Sgxjm, and so on.

EXEC/NOEXEC

You use the SPD Server SQL Planner EXEC/NOEXEC option to turn SPD Server SQL execution on or off.

Usage: 121



/* This explicit Pass-Through SQ. */
/* prints the nethod tree without */
/* executing the SQ code. */

PROC SQL ;

connect to sasspds

(dbg="donai n"
server =<host - nanme>. <port - nunber >
user =' user nane')

execute (reset _nethod noexec)
by sasspds ; /* turns SQL exec off */

execute (SQ. statenents)
by sasspds ;

di sconnect from sasspds ;
quit ;

MAGIC

You use the SPD Server SQL Planner MAGI C reset option that controls how the SPD Server SQL planner
executes join statements. The Magic option has three settings, 101, 102, and 103.

Usage:

execut e(reset magi c=<101/102/103>)
by sasspds ;

MAGIC=101

SPD Server performs sequential loop joins. Sequential loop joins are brute force joins that match every row
from the first table to every row of the second table.

MAGIC=102

SPD Server performs sort merge joins. Sort merge joins force a sort on all tables that are involved in the
join.

MAGIC=103 192



SPD Server performs hash joins. Hash joins require SPD Server to create an memory table in order to
perform the join. The size of the memory table is limited based on memory available.

INDEXSELECTIVITY=

The INDEXSELECTIVITY = option allows you to tune SPD Server join methods, depending on the proportion of
the tables to be joined. The indexselectivity property can have values of 0.0 or 1.0.

Usage:

execut e(reset indexselectivity=<1.0/0.0>)
by sasspds ;

INDEXSELECTIVITY=0.0is the default SPD Server setting and uses index join methods.

INDEXSELECTIVITY=1.0 configures the SPD Server SQL planner to use a 15% heuristic rule when it decides
to perform a join with an index. If the SPD Server SQL Planner calculates that less then 15% of the total table rows
will be selected in a join, the SQL Planner uses an index join method. If the SPD Server SQL Planner determines
that greater than 15% of the total table rows will be selected in a join, the SQL Planner uses a sort merge join.

OUTRSRTJINDX/NOOUTRSRTJINDX

Use the OUTRSRTJIJNDX/NOOUTRSRTJINDX option to configure sort behavior for a SPD Server join index.
OUTRSRTJNDX sorts the outer table for a join index by the join key. This is the default SPD Server setting.
NOOUTRSRTJINDX does not sort the outer table for a join index.

Usage:

/* Disable outer table */

/* sorting for a join index */

execut e(reset nooutrsrtjndx)
by sasspds ;

/* Enabl e outer table *
/* sorting for a join index */
123



execute(reset outrsrtjndx)
by sasspds ;

INOBS
Use the INOBS option to specify the specific number of observations that you want to read from input tables.
Usage:

execut e(reset i nobs=<n>)
by sasspds ;

where the integer value <n> is the desired number of observations.

OUTOBS

Use the OUTOBS option to specify the specific number of observations that you want to create or print in your
output.

Usage:

execut e(reset outobs=<n>)
by sasspds ;

where the integer value <n> is the desired number of observations.

SASVIEW/NOSASVIEW

Use the SASVIEW/NOSASVIEW option to enable or disable SAS PROC SQL views that use an SPD Server
LIBNAME. SAS PROC SQL views use a generic transport format to represent numeric values, which SPD Server
converts to native numeric values. When extremely large or extremely small numeric values are conveyed in a

SAS PROC SQL view to SPD Server, some precision may be lost in extreme values during the SPD Server
numeric conversion.

124



Usage:

/* Disabl e SAS PROC SQL vi ews */
/* that use an SPD Server LIBNAMVE */
execut e(reset nosasvi ew)

by sasspds ;
/* Enabl e SAS PROC SQL views that */
/* use an SPD Server LI BNAVE */
execut e(reset sasvi ew)

by sasspds ;

If SAS PROC SQL views are disabled and SPD Server Pass-Through SQL uses a view that was created by PROC
SQL, SPD Server rejects the PROC SQL statement and inserts the following error message in the SAS log::

SPDS WARNI NG SAS Vi ew and SASVI EW Reset Option equal s No.
SPDS ERROR: An error has occured.

If SAS PROC SQL views are enabled and SPD Server Pass-Through SQL uses a view that was created by PROC
SQL, SPD Server prints the following note in the SAS log:

SPDS NOTE: SPDS using SAS View in transport node.

UNDO POLICY=

Use the UNDO_POLICY option in SPD Server PROC SQL and RESET statements to configure SPD Server
PROC SQL error recovery. When you update or insert rows in a table, you may receive an error message that
states that the update or insert operation cannot be performed. The UNDO_POLICY option specifies how you
want SPD Server to handle rows that were affected by INSERT or UPDATE statements that preceded a processing
error.

Usage:
/* Do not undo any updates or inserts */
execut e(reset undo_policy=none)

by sasspds ;

/* Permt rowinserts and updates to */
125



/* be done up to the point of error */
execut e(reset undo_policy=required)
by sasspds ;

UNDO_POLICY=NONE
is the default setting for SPD Server. It does not undo any updates or inserts.

UNDO_POLICY=REQUIRED
undoes all row updates or inserts up to the point of error.

UNDO_POLICY=0OPTIONAL
Undoes any updates or inserts that it can undo reliably.

If the UNDO policy is not REQUIRED, you will get the following warning message for an insert into the table:

WARNI NG The SQ. option UNDO PCLI CY=REQU RED is not in effect. If an
error is detected when processing this insert statenment, that error
wi |l not cause the entire statenent to fail.

BUFFERSIZE=

The SPD Server query optimizer considers a hash join when an index join is eliminated as a possibility. With a
hash join, the smaller table is reconfigured in memory as a hash table. SQL sequentially scans the larger table and
row-by-row performs a hash lookup against the small table to form the result set. On a memory-rich system,
consider increasing the BUFFERSIZE= option to to increase the likelihood that a hash join is chosen. The default
BUFFERSIZE= setting is 64K. You can specify the amount of memory that you want SPD Server to use for hash
joins.

Usage:
/* I ncrease buffersize from 64K */

execut e(reset buffersize=1048576)
by sasspds ;

126



PRINTLOG/NOPRINTLOG

You use the PRINTLOG/NOPRINTLOG option of the SPD Server SQL Planner to turn the printing of the SQL
statement text to the SPD Server log on or off.

Usage:

PROC SQ ;
connect to sasspds
(dbg="donai n"
server =<host - nane>. <port - nunber >
user='usernane') ;

/[* turn SQL statenent printing on */
execute (reset printlog)
by sasspds ;

/* all statements will be printed to SPD Server |og */
execute (SQ. statenents)
by sasspds ;

/[* turn SQL statenment printing off */
execute (reset noprintl og)
by sasspds ;

di sconnect from sasspds ;
quit ;

Parallel Join Facility

The Parallel Join facility is a feature of the SPD Server SQL planner that decreases the required processing time when
creating a pair-wise join between two SPD Server tables. The processing time savings is created when SPD Server performs
the pair-wise join in parallel.

The SQL planner first searches for pairs when SPD Server source tables are to be joined. When a pair is found, the
planner checks the join syntax for that pair to determine if it meets all of the requirements for the Parallel Join facility. If

the join syntax meets the requirements, the pair of tables will be joined by the Parallel Join facility.

127



Parallel Join Methods
Parallel Joins with Group-By
Parallel Join SQL Options
Parallel Join Example 1
Parallel Join Example 2

Parallel Join Example 3

Parallel Join M ethods

The SPD Server Parallel Join facility supports two methods, the parallel sort-merge method and the parallel range
join method.

Parallel Sort-Merge M ethod

The parallel sort-merge join method first performs a parallel sort to order the data, then merges the
sorted tables in parallel. During the merge, the facility concurrently joins multiple rows from one
table with the corresponding rows in the other table. You can use the parallel sort-merge join method
to execute any join that meets the requirements for parallel join.

The parallel sort-merge method is a good all-around parallel join strategy that requires no
intervention from the user. The tables for the sort-merge method do not need to be in the same
domain. The performance for the sort-merge method is not affected by the distribution of the data in
the sort key columns.

The sort-merge method begins by completely sorting the smaller of the two tables being joined,

while also performing concurrent partial parallel sorts on the larger table. If both tables are very

large and sufficient resources are not available to do the complete sort on the smaller table, the
performance of the parallel sort-merge method can degrade. The parallel sort-merge method is also
limited when performing an outer, left, or right join in parallel. Only two concurrent threads can be
used when performing parallel outer, left, or right joins. Inner joins are not limited in the parallel sort-
merge method and can utilize more than two concurrent threads during parallel operations.

Parallel Range Join M ethod

The parallel range join method uses a join index to determine the ranges of rows between the tables
that can be joined in parallel. The parallel range join method requires you to create a join index on
the columns to be joined in the tables that you want to merge. The join index divides the two tables
into a specified number of near-equal parts, or ranges, based on matching values between the join
columns. The Parallel Join Facility recognizes the ranges of rows that contain matching values
between the join columns, then uses concurrent j6d& threads to join the rows in parallel. The SPD



Server parallel sort then sorts the rows within a range.

The parallel range join method can only be performed on tables that are in the same domain. If either
of the two tables are updated after the join index is created, the join index must be rebuilt before the
parallel range join method can be used. The parallel range join method performs best when the
columns of the tables that are being joined are sorted. If the columns are not relatively sorted, then
the concurrent join threads can cause processor thrashing. Processor thrashing occurs when unsorted
rows in a table require SPD Server to perform increasingly larger table row scans, which can
consume processor resources at a high rate during concurrent join operations.

More detailed information on creating join indexes is available in the section in the SPD Server
Adminstrator's Guide documentation on The Hybrid Index Utility Ixutil.

How does the SPD Server Parallel Join facility choose between the sort-merge method and the range join method?
If a join index is available for the tables to be joined, the Parallel Join facility will choose the parallel range join
method. If a join index does not exist, or if the join index has not been rebuilt since a table was updated, the
Parallel Join facility defaults to using the parallel sort-merge method.

Par allel Joinswith Group-By

A powerful feature of the SPD Server Parallel Join facility is its integration with the SPD Server Parallel Group-By
facility. If the result of the parallel join contains a group-by statement, the partial results of the parallel join threads
are passed to the Parallel Group-By facility, which performs the group-by operation in parallel. In the following
example, SPD Server performs both a parallel join and parallel group-by operation.

LI BNAME pat hl sasspds .... | P=YES

PROC SQL;
create table junk as
select a.c, b.d, sumb.e)
frompathl.tablel a,
pathl.table2 b
where a.i = b.i
group by a.d, b.d;
qui t;

When you use the SPD Server Parallel Join facility, you are not restricted to using the parallel group-by method
only on single tables.

129



Parallel Join SOL Options

SPD Server provides the following Parallel Join reset options:

. PLLJOIN/NOPLLJOIN
. CONCURRENCY
. PLLIMAGIC

PLLJOIN/NOPLLJOIN

The PLLJOIN/NOPLLJOIN option enables and disables the SPD Server Parallel Join
facility.

Usage:

execut e(reset noplljoin)
by sasspds ; /* disables Parallel Join */

CONCURRENCY
The CONCURRENCY =<n> option sets the concurrency level that is used by the SPD
Server Parallel Join facility, where the integer n specifies the number of levels. In most cases,

changing the default SPD Server concurrency setting (half of the available number of
processors) is not recommended.

Usage:

execut e(reset concurrency=4)
by sasspds ; /* enables 4 concurrency |levels */

PLLIMAGIC
The PLLIMAGI C option specifies how SPD server performs parallel joins.

Usage:

130



execut e(reset plljmgi c=<100/200>)
by sasspds ;

PLLJMAGIC=100 forces a parallel range join when the range index is available.

PLLJIMAGIC=200 forces a parallel merge join.

Parallel Join Example 1

The first parallel join example is a basic SQL query that creates a pair-wise join of two SPD Server tables, tablel and table2.

LI BNAME pat hl sasspds .... |P=YES;
PROC SQL;

create table junk as

sel ect *

from pathl.tablel a,
pathl.table2 b
where a.i = b.i;
quit;

Parallel Join Example 2

The next parallel join example is an SQL query that uses more than two SPD Server tables. In this example, the SQL

planner performs a parallel join on tablel and table2, and then use a non-parallel method to join the results of the first join

and table3. A non-parallel join method is used for the second join, because the criteria for a parallel join was not met.

A parallel join can only be performed on a pair-wise join of two SPD Server tables, and the query calls three SPD Server tables.

LI BNAME pat hl sasspds .... |P=YES
PROC SQL;
create table junk as

sel ect *

frompathl.tablel a,

pat hl. tabl e2 b,

pat hl.tabl e3 c
where a.i = b.i and b.i = c.i; 131



qui t;

Parallel Join Example 3

Multiple parallel joins can be used in the same SQL query, as long as the SQL planner can perform the query using more
than one pairwise join. In the next parallel join example, a more complex query contains a union of two separate joins.
Both joins are pair-wise joins of two SPD Server tables. There is a pair-wise join between tablel and table2, and then a
pair-wise join between table3 and table4 is performed concurrently, using the Parallel Join facility.

PROC SQL;

create table junk as

sel ect *
frompathl.tablel a,
pathl.table2 b
where a.i = b.i
uni on

sel ect *

from pathl.table3 c,
pat hl.table4 d
where c.i = d.i;
quit;

The required criteria to use the SPD Server Parallel Join facility can be more complex than simply requiring a pair-wise join
of two SPD Server tables. The Parallel Join facility can handle multiple character columns, numeric columns, or
combinations of character and numeric columns that are joined between pairs of tables. Numeric columns do not need to be
of the same width to act as a join key, but character columns must be of the same width in order to be a join key. Columns
that are involved in a join cannot be derived from a SAS CASE statement, and cannot be created from character
manipulation functions such as SUBSTR, YEAR, MONT, DAY, and TRIM.

Parallel Group-By Facility

SPD Server SQL Planner optimizations improve the performance of the more frequent query types used in data

mining solutions. One of the SQL planner optimizations integrated into SPD Server is tighter integration of the Parallel
Group-By capability. Parallel Group-By is a high performance parallel summarization of data executed using SQL.
Parallel Group-By is often used in SQL queries (through the use of sub queries) to apply selection lists for inclusion

or exclusion. The tighter integration adds performance benefits to nestéd Group-By syntax.



Parallel Group-By looks for specific patterns in a query that can be performed using parallel processing
summarization. Parallel Group-By works against single tables that are used to aggregate data. Parallel
processing summarization is limited to the types of functions it can handle.

The Parallel Group-By support in SPD Server has been expanded in many areas. Parallel Group-By is integrated into

the WHERE-clause planner code so that it will boost the capabilities of the SPD Server SQL engine. Any section of code
that matches the Parallel Group-By trigger pattern will use it. Some examples of SQL syntax that employ Parallel Group-
By technology in SPD Server are:

Enhanced Group-By Functions

Table Aliases Supported

Nested Queries Meet Group-By Syntax Requirements
Formatted Parallel Group Select

Parallel Group-By SQL Options

Enhanced Group-By Functions: Parallel Group-By now supports the following functions in syntax: COUNT, FREQ,

N, USS, CSS, AVG, MEAN, MAX, MIN, NMISS, RANGE, STD, STDERR, SUM, VAR. These functions all can accept
the DISTINCT term. The listed functions are the minimum summary functions that are required in order to support the
SAS Enterprise Marketing Automation tool suite.

Table Aliases Supported: Table aliases are now supported in SPD Server in order to better support front end tools such
as SAS Enterprise Marketing Automation. Tools such as SAS Enterprise Marketing Automation generate SQL queries that
use table aliases. Table aliases allow both shorter coding syntax and a method to select a specific column in a query that
has two tables that share common column names.

Nested Queries Meet Group-By Syntax Requirements: Since the Parallel Group-By functionality is integrated into the
SPD Server WHERE-clause planner, now many sections of queries can take advantage of performance enhancements such
as parallel processing. Some common performance enhancements are sub-queries that generate value lists in an IN

clause, views that now conform to Parallel Group-By syntax, and views that contain nested Group-By syntax.

General Syntax:
SELECT 'project-listt FROM 'table name' ;

WHERE [where_expression];
133



GROUP BY [groupby-list];
HAVING [having-expression];

ORDER BY [orderby-list];

project-list
Items must be either column names (which must appear in the groupby-list) or aggregate (summary)
functions involving a single column (with the exception of "count(*)" which accepts an asterisk argument.
At least one aggregate function must be specified. Project items may be aliased (for example, select avg
(salary) asavgsal from [Jand these aliases may appear in any where-expression, having-expression,
groupby-list or orderby-list. The following aggregate functions are supported: count, avg, avg distinct,
count distinct, css, max, min, nmiss, sum, sum distinct, supportc, range, std, stderr, uss, var. "Mean" is a
synonym for "avg". "Freq" and "n" are synonyms for "count" except they do not accept the asterisk
argument.

table name
Table names may be one- or two-part identifiers (for example, mytable or foo.mytable), the latter requiring
a previous "libref" statement to define the domain identifier (for example, foo).

The where-expression is optional.
The optional groupby-list must be column names or projected aliases.

The optional having-expression must be a boolean expression composed of aggregate functions, groupby columns
and/or constants.

The optional orderby-list must be projected column names or aliases or numbers which represent the position of a
projected item (for example, select a, count (*) order by 2).

Since the Parallel Group-By functionality is integrated into the SPD Server WHERE-clause planner, now many sections
of queries can take advantage of performance enhancements such as parallel processing. Some common

performance enhancements are sub-queries that generate value lists in an IN clause, views that now conform to Parallel
Group-By syntax, and views that contain nested Group-By syntax.

For matted Parallel Group Select

By default, the columns of a group-by statement are grouped by their unformatted value. SQL pass-through parallel
groupby provides the capability to also group data by the columns output data format. For example, you could group by
the date column of a table with an input format of mmddyy8 andsan output format of monname9. Suppose the column has



dates 01/01/04 and 01/02/04. Grouping by the unformatted value would put these dates into two separate groups.
However, grouping by the formatted month name, would put these values into the same month grouping of January.

You enable or disable pass-through formatted parallel groupby with the following execute commands:

PROC SQL;
connect to sasspds
(dbg=........ ):

/[* turn on formatted parallel group-by */
execut e(reset fntgrpsel)
by sasspds;

sel ect *

from connection

to sasspds
(sel ect dte
from nytable
groupby dte);

/* turn off formatted parallel group-by */
execut e(reset nof nt grpsel)
by sasspds;

sel ect *

from connection

to sasspds
(sel ect dte
from nytable
groupby dte);

quit;

The example code below is extracted from a larger block of code, whose purpose is to make computations based on
user-defined classes of age, such as Child, Adolescent, Adult, and Pensioner. The code uses SQL Parallel Group-By features
to create the user-defined classes and then uses them to perform aggregate summaries and calculations.

/* Use the parallel group-by feature with the */
[* fntgrpsel option. This groups the data based */
/* on the output format specified in the table. */

/[* This will be executed in parallel.135 */



PROC SQL;

connect to sasspds
(dbg="&donai n"
serv="&serv"
host =" &ost "
user ="anonynous") ;

/* Explicitly set the fntgrpsel option */

execute(reset fntgrpsel)
by sasspds;

title 'Sinple Fntgrpsel Exanple';
sel ect *
from connection to sasspds
(sel ect age, count(*) as count
fromfnttest group by age);

di sconnect from sasspds;
quit;

PROC SQL;

connect to sasspds
(dbg="&donai n"
serv="4&serv"
host =" &ost "
user ="anonynous") ;

/* Explicitly set the fntgrpsel option */

execute(reset fntgrpsel)
by sasspds;

title "Format Both Col unms G oup Sel ect Exanpl e';

sel ect *
from connection to sasspds
(sel ect
GENDER f or mat =$GENDER.
ACGE f or mat =AGEGRP. ,

count (*) as count
136



fromfnttest
formatted group by GENDER, AGE);

di sconnect from sasspds;
quit;

PROC SQL;
connect to sasspds
(dbg="&domai n"
serv="4&serv"
host =" &host "
user ="anonynous") ;

/* Explicitly set the fntgrpsel option */

execute(reset fntgrpsel)
by sasspds;

titlel 'To use Format on Only One Colum Wth Goup Select';
title2 'Override Columm Format Wth a Starndard Format';

sel ect *
from connection to sasspds
(sel ect
GENDER f or mat =$1. ,
AGE f or mat =AGEGRP. ,
count (*) as count
fromfnttest
formatted group by GENDER, AGE);

di sconnect from sasspds;
qui t;

/* A WHERE-cl ause that uses a fornat to subset */
/* data is pushed to the server. If it is not */
/* pushed to the server, the followi ng warning */
/* message will be witten to the SAS | og: */
/* WARNI NG Server is unable to execute the */
/* where cl ause. *

137



data tenp;
set &dJomain..fnttest;
wher e put

(AGE, AGEGRP.) = "Child';
run;

The complete code example is found in the User-Defined Formats section of the SPD Server User's Guide chapter on
SPD Server Formats and Informats.

Parallel Group-By SOL Options

SPD Server provids the following Parallel Group-By SQL reset options:

. GRPSEL/NOGRPSEL
« FMTGRPSEL/NOFMTGRPSEL
« SCANGRPSEL/NOSCANGRPSEL

GRPSEL/NOGRPSEL
The GRPSEL/NOGRPSEL option enables or disables the SPD Server Parallel Group-By facility.

Usage:

/* Disable Parallel G oup-By */
execut e(reset nogrpsel)
by sasspds ;

FMTGRPSEL/NOFMTGRPSEL

The FMTGRPSEL/NOFMTGRPSEL option enables or disables the SPD Server Parallel Group-By use of
formats.

Usage:

/* Disable Parallel G oup-By */
/* use of formats. */
execut e(reset nof nt grpsel)

by sasspds ; 138



SCANGRPSEL/NOSCANGRPSEL

Use the SCANGRPSEL/NOSCANGRPSEL option to turn the SPD Server index scan facility on
and off. The default SPD Server setting uses the index scan facility.

Usage:

/* Disable index scan facility */
execut e(reset noscangrpsel)
by sasspds ;

/* Enabl e index scan facility */
execut e(reset scangrpsel)
by sasspds ;

SPD Server STARJOIN Facility

The SPD Server's enhanced SQL planner includes the STARJOIN facility. The SPD Server STARJOIN facility
validates, optimizes, and executes SQL queries on data that is configured in a star schema. Star schemas are composed of
two or more normalized dimension tables that surround a centralized fact table. The centralized fact table contains

data elements of interest derived from the dimension tables.

In data warehouses with large numbers of tables and millions or billions of rows of data, properly constructed star joins
can minimize overhead data redundancy during query evaluation. If the SPD Server STARJOIN facility is not enabled, or
of SPD Server SQL does not detect a star schema, then the SQL will be processed using pair-wise joins.

How do star joins differ from pair-wise joins? In SPD Server 4.4, properly configured star joins require only three steps

to complete, regardless of the number of dimension tables. SPD Server pair-wise joins require one step for each table

to complete the join. If a star schema consisted of 25 dimension tables and one fact table, the STARJOIN is accomplished
in three steps; joining the tables in the star schema using pair-wise joins will require 26 steps.

When data is configured in a valid SPD Server star schema, and the STARJOIN facility is not disabled, the SPD
Server STARJOIN facility can produce quicker and more processor-efficient SQL query performance than would be
realized using SQL pair-wise join queries.

139



More detailed information is available in the documentation chapter on the STARJOIN Facility.

STARJOIN Options

Use the SPD Server SQL STARJOIN facility options to specify how SPD Server implements Star Joins.

. NOSTARJOIN
. STARMAGIC
. DETAILS

NOSTARJOIN

Use the NOSTARJOIN option to disable or enable the SPD Server STARJOIN facility.
Usage

execut e(reset nostarjoi n=<1/0>)
by sasspds ;

NOSTARJOIN=0 enables the SPD Server STARJOIN facility.

NOSTARJOIN=1 disables the SPD Server STARJOIN facility.

STARMAGIC

Use the STARMAGI C option to modify the behavior of the SPD Server STARJOIN and override
some internal heuristics in order to favor a particular join strategy in the planner. The vaules are bit
flags in the STARJOIN code that can be added together to result in a variety of controls.

Usage

execut e(reset starnmagi c=<1/2/4/8/16>)
by sasspds ;

140


file:///U|/Conversions/spdsug/starjoin.htm

STARMAGI C=1 forces all dimension tables to be classified as Phase I tables.
STARMAGIC=2 is currently not used.

STARMAGI C=4 requires an exact match on the FACT composite index in order to meet Phase |
conditions for STARJOIN.

STARMAGI C=8 disables the IN-SET STARJOIN strategy. The IN-SET strategy is enabled by
default.

STARMAGI C=16 disables the COMPOSITE STARJOIN strategy. The COMPOSITE strategy is
enabled by default.

DETAILS

Use the DETAIL S option to print details about your SPD Server STARJOIN facility settings. All
internal STARJOIN debugging information is tied to the "stj$" DETAILS key. Issuing the "stj$"
reset option displays available information as SPD Server attempts to validate a join sub-tree. The
RESET DETAILS="stj$" option is very useful for debugging STARJOIN and SQL statement
execution.

Usage

execut e(reset detail s="stj$")
by sasspds ;

SPD Server Index Scan

SPD Server SQL provides users with the capability to use lightning-fast index scans on large tables. Rather than
scanning entire tables which may have million or billions of rows, SPD Server SQL is able to scan cached index
metadata instead of sequentially scanning entire large tables. SPD Server SQL provides enhanced index scan support for
the following functions:

min, max, count, NMIss, range uss, css, std, stderr, and var. All of the functions can accept the DISTINCT term as well..

All index scan capabilities listed above are available for both standard §PD Server tables as well as clustered tables, with



the exception of the DISTINCT qualifier. The DISTINCT index scan function is not available in clustered tables.

The count(*) function is the only function included with the index scan support enhancement that does not require an index
on the table. For example,

sel ect count(*) fromtabl enaneg;

will return the number of rows in the large table tablename without performing a row scan of the table. Table metadata is
able to return the correct number of rows. As a result, the response is as fast as an index scan, even on an unindexed table
in this case.

Count(*) functions with WHERE-clauses require an index for each column referenced in the WHERE-clause, in order for
the index scan feature to provide the performance enhancement. For example, suppose SPD Server table Foo has indexes
on numeric columns a and b. The following count(*) functions benefit from SPD Server index scan support:

sel ect count (*)
from Foo
where a = 1;

sel ect count (*)
from Foo
where a LT 4
and b EQ 5;

sel ect count (*)
from Foo
where a in (2,4,5)
or b in (10,20, 30);

All functions other than count(*) require an index on function columns in order to exploit the index scan performance
savings. Minimal WHERE-clause support is available for these queries, as long as all functions use the same column, and
the WHERE-clause is a simple clause that uses the LT, LE, EQ, GE, GT, IN, or BETWEEN operator for that column.
For example, suppose that the SPD Server table Bar has indexes on numeric columns x and y. The following SQL
submissions will be able to exploit the performance gains of index scans:

sel ect m n(x),
max( x) ,
count (x),
nm ss(x),
range( x),
count (di stinct x)
142



from Bar;

sel ect m n(x),
max( x),
count ( x),
nm ss( x),
range( x),
count (di stinct x)
from Bar
where x between 5 and 10;

sel ect m n(x),
max( Xx) ,
count ( x),
nm ss(x),
range( x),
count (di stinct x)

from Bar
where x gt 100;

sel ect m n(x),
mn(y),
count ( x),
count (y)

from Bar;

If any one function in a statement does not meet the index scan criteria, all functions in that statement will revert to
being resolved by table scan instead of index scan. Suppose the SPD Server table Oops has indexes on numeric columns x
and y. Column z is not indexed. Then, the SPD Server SQL statement below

sel ect m n(x),
mn(y),
count ( x),
count (y),
count (z)

from Qops;

will be entirely evaluated by table scan; index scanning will not be performed on any of the functions. To take advantage
of index scans, the statement above could be resubmitted as

sel ect m n(x),
mn(y), 143



count (x),
count (y)
from Qops;

sel ect count (y)
from Bar;

The functions min(x), min(y), count(x), and count(y) will be evaluated using index scan metadata and will exploit

the performance gains. The function count(y) will continue to be evaluated by table scan. The count(*) function can

be combined with other functions and benefit from index scan performance gains. Continuing to use the SPD Server table
Oops with indexes on numeric columns x and y, the following SPD Server SQL statement will benefit from index

scan performance:

sel ect m n(x),
range(y),
count ( x),
count (*)
from Qops;

SPD Server Index Scan is an extension to the SPD Server Parallel Group-By Facility. The query must first be accepted
by Parallel Group-By to be evaluated for an Index Scan. The section on SPD Server Parallel Group-by Facility contains

more detailed information. When SPD Server utilizes the Index Scan optimization, the following message will be printed to
the SAS log:

SPDS_NOTE: Metascan used to resolve this query.

Optimizing Correlated Queries

Intelligent storage must have the ability to interpret and process complex requests such as correlated queries. A
correlated query is a select expression where a predicate within the query has a relationship to a column that is defined
in another scope. Today's business and analytic intelligence tools often generate SQL queries that are nested 3 or 4
layers deep. Queries with cross-nested relationships consume significant processor resources and require more time
to complete processing. New algorithms in the SQL Planner of SPD Server implement techniques that significantly
improve the performance of correlated queries for patterns that permit query rewrites or query de-correlation.

The SQL Planner improves correlated query performance by changing complex rules about nested relationships into a series
of simple steps. SPD Server can process the simple steps much faster than it can process the complex rules that arise

with multiple levels of nesting. When a query with multiple levels of nesting is submitted to the SQL Planner, the

planner examines the relationships between nested and un-nested sectioms of the query. When a complex nested relation ship



is found, the SQL Planner restructures or recodes the SQL query into a simpler form using temporary SPD Server tables.

Development work continues to improve the range of sub-expressions that are addressed by the SPD Server rewrite
facility. More information is available in the SQL Query Rewrite Facility section of the SAS Scalable Performance Data Server's Administrator's
Guide, including SPD Server parameter specifications and SQL RESET options.

Correlated Query Options

The following are SPD Server SQL options for use with correlated query rewrites:

. _ORW/NO_QRW
. _ORWENABLE/NO_QRWENABLE

QRW/NO QRW

Use the _ QRW/NO_QRW option to configure SPD Server to enable or disable the query rewrite
facility diagnostic output. Specifying this SPD Server RESET option enables or disables various
debugging and tracing outputs from the query rewrite facility. The debugging and tracing outputs
are generated when the SPD Server query rewrite facility detects sub-expressions that it rewrites and
executes the SQL code. The SQL code produces the intermediate results and final rewritten SQL
statement. By default, the SPD Server _QRW option for diagnostic output is not enabled.

SPD Server provides alternate expressions that do the same thing as the _ QRW/NO_QRW option.
They are the _ QRW=1/_QRW=0 option and the NO _QRW=0/NO_QRW=1 option.

Usage:

/* Enabl e query rewite diagnostics */
execute(reset _grw)
by sasspds ;

/* A second way to enable */
/* query rewite diagnostics */
execute(reset _qrw=1)

by sasspds ;

/[* Athird way to enabl e */
/[* query rewite diagnosti css/



execut e(reset no_qrw=0)
by sasspds ;

/* Disable query rewite diagnostics */
execute(reset no_qgrw)

by sasspds ;
/* A second way to disable query */
/* rewite diagnostics */
execut e(reset _qrw=0)

by sasspds ;
/* Another way to disable query */
/* rewite diagnostics */
execute(reset no_qgrw=l)

by sasspds ;

QRWENABLE/NO QRWENABLE

Use the _ QRWENABLE/NO_QRWENABLE option to completely disable the SPD Server query
rewrite facility. Disabling the query rewrite facility prevents the rewrite planner from intervening in

the SQL flow and from making any optimizing rewrites. This option is not normally specified unless
you wish to test if an SQL statement would run faster without rewrite optimization, or if you suspect
that the resulting row set that you get from a query rewrite evaluation is incorrect.

SPD Server provides an alternate expression that does the same thing as the _QRWENABLE/
NO_QRWENABLE option. It is the  QRWENABLE=1/ QRWENABL E=0 option. The query
rewrite facility is enabled in SPD Server by default.

Usage:

/* Disable query rewite */

[* facility */
execut e(reset no_grwenabl e)
by sasspds ;

/* A second way to disable */
/* query rewite facility */
execute(reset _qrwenabl e=0) 444



by sasspds ;

/* Enable query rewite */

[* facility */

execut e(reset _grwenabl e)
by sasspds ;

/* A second way to enable */

/[* query rewite facility */

execut e(reset _qgrwenabl e=1)
by sasspds ;

M aterialized Views

SPD Server allows users to create a SQL view as a materialized view. What makes a materialized view different from an
SQL view? For a materialized view, the results of the view statement are computed and saved in a temporary SPD Server
table at the time the view is created. For a standard SQL view the results are computed each time the view is referenced in

a subsequent SQL statement. As long as there are no changes to any of the input tables that the view is comprised of,

the materialized view will return the results from the temporary table when the view is referenced in a SQL statement. If any
of the input tables that comprise the view are modified, the materialized view will recompute the results the next time that
the view is referenced and it will refresh the temporary table with the new results. The materialized view temporary

results table exists for as long as the view is in existence. When a view is dropped or deleted, then the temporary results table
is also deleted.

. Materialized Views Operating Details
. User Interface for Materialized Views
. Benefits of Materialized Views

. Materialized View Example

Materialized Views Oper ating Details

A materialized view can only be created at the time the SQL view is created. This feature is only available using the

SPD Server 4.4 SQL Pass-Through facility. A new keyword Materialized is added to the Create View syntax that identifies
the view to be created as a materialized view. When a materialized view is created, the Create View operation will

not complete until the temporary results table has been populated. This may add substantial time to the execution of
Create View.

147



Each time a created materialized view is referenced in a SQL statement, there is a check to determine if any of the input
tables used to produce the temporary results table have been modified. If not, the temporary table is substituted in place of
the view file within the SQL statement. If any of the input tables have been modified, the SQL statement will execute
without this substitution so it will act as if it is a standard SQL view reference. There is also a background thread launched
at this time that is independent of the SQL statement execution which will refresh the temporary results table. Until this
refresh is completed, any incoming references to the view will be treated as standard view references.

Creating a standard SQL view results in a view file being created in the specified domain with the name
<viewname>.view.0.0.0.spds9. Creating a materialized view results in an additional SPD Server table being created in the
same domain as the view file with the name format <.viewname>.mdfspds9 and corresponding dpf files <.
viewname>.dpfspds9. The materialized view table is not visible or accessible to the user by using PROC DATASETS or
other SAS procedures. If one or more simple indexes are defined on any of the input tables that are used to create the
results table, the indexes will also be created on the materialized view table, as long as the column that was indexed in the
input table also exists in the materialized view table.

User Interfacefor Materialized Views

To create a materialized view, use the following SQL Pass-Through syntax.

EXECUTE (Create Materialized View <vi ewnane> as Select ) BY [sasspds | alias];

All other references to the view follow the existing SQL syntax, whether it is a standard SQL view or a materialized view.
The Materialized keyword is only used in the Create statement. For example, to drop a materialized view, you would use
the following syntax.

EXECUTE (Drop View <vi ewnane> ) BY [sasspds | alias];

If any of the input tables to a materialized view are modified, the next time the view is referenced, a refresh is performed on
the materialized view table. You can use an spdsserv.parm file option setting to specify the time delay before the
materialized view table is refreshed.

MVREFRESHT| ME=<nunber - of - seconds> ;

Where <number-of-seconds> specifies the number of seconds before the refresh will start. You can set
the MVREFRESHTIME= option to any integer value between 0 and 86400. The default MVREFRESHTIME= specification
is 30 seconds.

The reason that a time delay may be necessary before refreshing a materialized view table is to prevent processor
thrashing. Processor thrashing may occur if you refresh the matggalized view table when other processes are



concurrently processing updates to the tables that are used in the view. If your computing environment does not
perform multiple concurrent table updates, then you can set MVREFRESHTIME=0 and eliminate any time delay
associated with materialized view refreshes.

Benefits of Materialized Views

Creating a materialized view instead of a Standard SQL view can provide enormous performance benefits when the view
is referenced in an SQL statement. For views that contain costly operations such as multiple table joins or operations on
very large tables, the execution time for queries containing a materialized view can be orders of magnitude less than a
standard view. If the results table produced by the view is relatively small in comparison with the input tables, the
execution time for queries using a materialized view may be a few seconds versus several minutes for a standard view.

For example, if it takes on average 20 minutes to produce the result set from a view and the result is in the order of
thousands of rows or less, a query referencing the materialized view will now take seconds. Previously using the standard
view operations, every time the view was referenced would result in 20 minutes of execution time. The performance
benefits should be measured on a case by case basis.

The decision of whether to use a standard view or a materialized view can be primarily driven by how often the input tables
to the view are updated versus how often the view is referenced in a SQL statement. If a view is being referenced at least
twice before any updates may occur, then the materialized view should provide superior performance. In cases where

the defined view can be created very quickly, there is probably not a need for using a materialized view. If the input tables
are frequently updated in comparison to how often the view is referenced, a standard view would probably be more efficient.

Materialized View Example

The following code shows the creation and use of a materialized view. The input tables X and Z are created with X
having three columns a,b,c and Z having four columns a,b,c,d respectively.

data mydomai n. X;

do a =1 to 1000;
b = sin(a);
c = cos(a);
out put ;
end,;
run;

data mydomai n. Z;
149



do a = 500 to 1500;
b = sin(a);
c = cos(a);
d = nod(a, 99);
out put ;
end;
run;
PROC SQL;
connect to sasspds (dbg='"nydonmain'
host =' nyhost"
serv='nyport'
user ="' ne'

passwd=' nypasswd' ) ;

execute (create materialized view XZVI EW as
sel ect *
fromZz
where a in
(select a from X))
by sasspds;

sel ect *
from connection
to sasspds
(select *
from XZVI EW
where d >90);

execute (drop view XZVI EW;
qui t;

SPD Server SOL Extensions

SPD Server SQL furnishes several extensions to the SQL language. These extensions are not a part of standardized
industry SQL, but they are an integral part of the SPD Server system. These extensions enable systemic data
management unique to the SPD Server. The SPD Server SQL uses a special pass-through facility that employs
these extensions for data manipulation and extraction operations. The following section discusses the roles of the

following extensions which enable SPD Server's SQL pass-through facility. Extensions users should know are
150



LIBREF statements, LIBREF clauses, BEGIN ASYNC OPERATION statements, END ASYNC OPERATION
statements, LOAD statements, and COPY statements.

. BEGIN and END ASYNC OPERATION Statements
. LOAD Statement
. COPY Statement

BEGIN and END ASYNC OPERATION Statements

Asynchronous statements are a useful technique you can use to harness the multi-processor power of SPD

Server. Asynchronous statements enable execution of multiple, independent threads at the same time. The BEGIN
ASYNC OPERATION and END ASYNC OPERATION statements allow you to delimit one or more statements

for asynchronous, parallel execution. Since the statements execute in parallel, they must not depend on another, because
there is no way to guarantee which statement will finish before another statement executes. SPD Server software
initiates thread execution according to the order of the statements in the block.

. Illegal ASYNC Block Statements

. Legal ASYNC Block Statements

. Using LIBREFs in an ASYNC Block Statement

. Using SQL Options in an ASYNC Block Statement

Usage:

execute ([ BEGN | END ] ASYNCH OPERATI ON);

Illegal ASYNC Block Statements

The statements in this Illegal ASYNC Block example have illegal interdependencies and cannot be expected to
work correctly:

/* Exanple of Illegal ASYNC Bl ock Code */

PROC SQ.;
connect to sasspds
(dbg="ny-domai n"
server =host . port
151



user ='user - nane'
passwor d=' user - passwor d’
ot her connection options);

execut e(begi n async operation)
by sasspds;

execute(create table Tl as
sel ect *
from SRC1)
by sasspds;

execute(create unique index 11 on
T1l(a, b))
by sasspds;

execut e(end async operation)
by sasspds;

di sconnect from sasspds;
qui t;

The example violates the interdependency rule. The cr eat e i ndex statement assumes table T1 exists and is
complete. However, table T1 is created from table SRC1, and may not be complete before the asynchronous create
index statement executes. Hence, index | 1 1s dependent on a complete table T1. The resultant data would not be

reliable. The purpose of this example is to illustrate the concept of interdependency, and how not to write an
ASYNC block.

Legal ASYNC Block Statements

The statements in this Legal ASYNC Block example have no interdependencies.

/* Exanple of Legal ASYNC Bl ock Code */

/* Creates sone tables in the first ASYNC bl ock */

[ * *
PROC SQL;

connect to sasspds
152



(dbg="pat h1"
server =host . port
user =" anonynous') ;

execut e(begi n async operation)
by sasspds;

execute(create table state_al as
sel ect *
fromallstates
where state="AL")
by sasspds;

execute(create table state _az as
sel ect *
fromallstates
where state='AZ")
by sasspds;

execute(create table state wy as
sel ect *
fromallstates
where state='W")
by sasspds;

execut e(end async operation)
by sasspds;

/*
/* Create sone indexes in the second ASYNC bl ock
/*

execut e(begi n async operation)
by sasspds;

execute(create index county on
state_al (county))
by sasspds;

execute(create i ndex county on

state_az(county))
153

*/
*/
*/



by sasspds;

execute(create index county on
state_wy(county))
by sasspds;

execut e(end async operation)
by sasspds;

di sconnect from sasspds;
quit;

Why does the second example work correctly? First, each table is created independently. Second, there is a
'synchronization point": the first END ASYNC operation. This point ensures that all the tables are created before
the second ASYNC statement block begins. (You can also achieve results that are similar to this example by using
the LOAD Statement).

Using LIBREFsin an ASYNC Block Statement

To refer to a two-part table name inside an ASYNC block, you must re-execute the LIBREF statement issued
before entering the block. Conversely, if you issue a LIBREF statement inside the ASYNC block, it does not
extend outside the ASYNC block. An ASYNC block creates a distinct scope for the LIBREF. To work correctly, a
LIBREEF statement must be located inside the ASYNC block, and the LIBREF statement must precede the first
SQL statement that references it.

/* Exanpl e of Legal Code using LIBREFs in an ASYNC Bl ock */
/* Create sonme tables in the first ASYNC bl ock */

PROC SQL;
connect to sasspds
(dbg="pat h1"
server =host . port
user =" anonynous');

execut e(begi n async operation)
by sasspds;

execute(libref pathl engopt="dbg="pathl"
server =host. port 154



user ="anonynous"')
by sasspds;

execute(libref path2 engopt="dbg="pathl"
server =host. port
user ="anonynous"')
by sasspds;

execute(create table pathl. southeast as
sel ect a.custoner _id,
a. region,
b. sal es
from pathl.custoner a
pat h2. orders b
where a.customer_id = b.custoner_id
and a.region='SE)
by sasspds;

execute(create tabl e pathl. northeast as
sel ect a.custoner _id,
a.region,
b. sal es
from pathl. custoner a,
pat h2. orders b
where a.custoner_id = b.customer _id
and a.region="NE)
by sasspds;

execut e(end async operation)
by sasspds;

di sconnect from sasspds;
qui t;

Using SQL Optionsin an ASYNC Block Statement

SPD Server SQL options must be set globally for all execute statements in the ASYNC block. These options must
be set using an execute statement before the BEGIN ASYNC operation. This example uses code blocks from the
preceding example to show how to print a method tree without executing the SQL.




/*

/* Exanple of Legal SQ. Options in ASYNC Bl ock

/*

PROC SQL:

connect to sasspds
(dbg="pat h1"
server =host . port
user =" anonynous' ) ;

execut e(reset noexec _nethod)
by sasspds;

execut e(begi n async operation)
by sasspds;

execute(libref pathl
engopt =" dbqg="pat h1"
server =host. port
user ="anonynous""')
by sasspds;

execute(libref path2
engopt =" dbqg="pat h1"
server =host. port
user ="anonynous"')
by sasspds;

execute(create table pathl. southeast as
sel ect a.custoner _id,

a. region,
b. sal es
from pathl. custoner a,
pat h2. orders b
where a.customer_id = b.custoner_id
and a.region='"SE)
by sasspds;

execute(create tabl e pathl. northeast as

156

*/
*/
*/



sel ect a.custoner _id,

a.region,

b. sal es
from pathl.custoner a,

pat h2. orders b

where a.custoner id = b.custoner _id
and a.region="NE)
by sasspds;

execut e(end async operati on)
by sasspds;

di sconnect from sasspds;
quit;

L OAD Statement

The LOAD statement enables table creation (with one or more indexes) with a single statement. The data source for

the statement is a SELECT clause. The SELECT list in the clause defines the columns for the new table. All characteristics
of the columns (variables) in the select list are preserved, becoming permanent attributes of the new table's column
definitions. The target table for the LOAD TABLE statement must be on the local machine.

Usage:

execute (LOAD TABLE tabl e spec
< WTH i ndex spec
< WTH i ndex spec >>
by sasspds;

In the following example, each execute statement creates a table for one U.S. state using a global table called STATE

that contains many states. The first execute statement uses LOAD to create table STATE AL (Alabama), and creates an
index on the COUNTY column. The structure of the state table STATE AL and the data in the state table both come from
the global table STATE. The data in STATE_ AL is the subset of all records from STATE where the STATE column
variable equals 'AL'. LOAD creates a table for states from Alabama to Wyoming, with each state's table indexed by county
and mirroring the structure of the parent table STATE.

execute(load table state_al
W th index county
on (county) as 157



sel ect *

fromstate

where state="AL")
by sasspds;

execute(load table state_az
wi th index county
on (county) as
sel ect *
fromstate
where state='AZ")
by sasspds;

execute(load table state_ wy
W th index county
on (county) as
sel ect *
fromstate
where state="W")
by sasspds;

In general, the LOAD statement is faster than a corresponding "create table" / "create index" statement pair, because it
builds the table and associated index(es) asynchronously using parallel processing.

COPY Statement

The COPY table statement creates a copy of a SPD Server table with or without the table index(es). For the COPY
table statement to work, the source and target tables must be on the local machine. By default, the software creates an
index(es). The COPY table statement is faster than either of the following CREATE and LOAD statements:

create table ..
as sel ect
create index ..

or

158



| oad table ...
with index...

as sel ect

The COPY statement is faster than the two above statements because it uses a more direct access path than the SQL
SELECT clause when accessing the data.

In the example that follows, two new tables are created: T NEW and T2 NEW. The first table, T NEW, is created with
index structures identical to table T NEW. The second table, T2 NEW, is unindexed regardless of the structure of
table T2 OLD.

execute(copy table t_new
fromt _old)
by sasspds;

execute(copy table t2 new
fromt2_ old
wi t hout i ndexes)
by sasspds;

The COPY statement also supports an ORDER BY clause you use to create a new table with a sort order on one or
more columns of the new table. While COPY TABLE does not support all of the options of PROC SORT, you can
achieve substantial performance gains when creating this ordered table by using COPY with an ORDER BY clause
when appropriate.

The next example copies the table T OLD to T _NEW using the order by clause. The data will be ordered by columns: x
in ascending order, y in descending order, and z in ascending order. The results are the same if you run PROC SORT on
the columns using the same BY clause. The syntax of the COPY ORDER BY follows the normal SQL ORDER BY clause,
but the column identifiers that you can specify are restricted. You can only specify actual table columns when using the
COPY ORDER BY clause.

execute(copy table t_new
fromt _old
order by x, y desc, z asc)
159



by sasspds;

Differ ences between SAS SOL and SPD Server SOL

This section overviews some of the functional differences between SAS SQL and SPD Server SQL. A great deal of SAS
SQL functionality is integrated into SPD Server. Exceptions between SAS and SPD Server SQL are listed below.

. Reserved Keywords

. Table Options and Delimiters

. Mixing Scalar Expressions and Boolean Predicates
« INTO Clause

. Tilde Negation

. Nested Queries
. "USER" Value

. Supported Functions

Reserved K eywords

SPD Server uses keywords to initiate statements or refer to syntax elements. For example, the words "where" and "group"
can only be used in certain ways because there are WHERE and GROUP BY clauses. Keywords are treated as reserved
words. That means you cannot use keywords when naming a LIBREF, a table, a column or an index.

In contrast, SAS allows keywords in some, but not all, syntax locations. The documentation chapter SPD Server SQL
Syntax Reference Guide contains a list of reserved SPD Server SQL keywords.

Table Options and Delimiters

SPD Server SQL uses brackets to delimit table options. SAS SQL uses parentheses as delimiters. You can place table
options in a "create table" statement. You must put table options within parentheses to delimit column definitions within a
table.

Mixing Scalar Expressions and Boolean Predicates

SPD Server SQL does not allow mixing scalar expressions with Boolean predicates. SAS SQL does allow mixing scalar
expressions with Boolean predicates in most places. The Help section on Scalar Expressions and Boolean Predicates
contains more information on permissible expression co1r16t0ent.




INTO Clause
SPD Server SQL does not support the INTO clause, as in

select a, binto :varl, :var2 fromt where a > 7;

In contrast, SAS SQL supports the INTO clause.

Tilde Negation
SPD Server SQL supports the use of the tilde only to negate the 'equals' operator, "~=" (not equals). SAS SQL allows
broader use of the tilde ('~') character, where the tilde is synonymous with "not" and can be combined with various
operators. For example, SAS SQL can use the tilde with 'between' "~ between" (not between). SPD Server does not
recognize that expression.

Nested Queries
SAS SQL permits sub-queries without parentheses delimiters in more places than SPD Server SQL. SPD Server SQL
uses parentheses to explicitly group sub-queries or expressions that are nested within a query statement whenever
possible. Queries with nested expressions execute more reliably and are also easier to read.

"USER" Value
SAS SQL permits sub-queries without parentheses delimiters in more places than SPD Server SQL. SPD Server SQL
uses parentheses whenever possible to explicitly group sub-queries or expressions that are nested within a query
statement. Queries with nested expressions execute more reliably and are easier to read.

SPD Server SQL does not support the "USER" keyword in the INSERT statement. For example, the following query will
fail in SPD Server SQL:

insert into t1(nynane) val ues(USER);

Supported Functions
SPD Server SQL supports the following functions: 161




abs, addr, arcos, arsin, atan, band, betainv, blshift, bnot, bor, brshift, bxor, byte, ceil, cinv, collate, compbl,
compound, compr ess, cos, cosh, css, cv, daccdb, daccdbsdl, daccsl, daccsyd, dacctab, date, datejul, datepart,
datetime, day, dcss, depdb, depdbsl, depdl, depsyd, deptab, dequote, dhms, digamma, dmax, dmean, dmin, drange,
dstd, dstderr, dsum, duss, dvar, erf, erfc, exp, finv, fipname, fipnamel, fipstate, floor, fnonmiss, fuzz, gaminv,
gamma, hms, hour, int, intck, intnx, intrr, irr, ispexec, isplink, kurtosis, left, length, Igamma, log, 1og10, log2,
lowcase, max, mdy, mean, min, minute, mod, month, mort, n, netpv, nmiss, npv, ordinal, poisson, probbeta,
probbnml, probchi, probf, probgam, probhypr, probit, probnegb, probnorm, probt, gtr, quote, range, ranuni,
rank, recip, repeat, rever se, right, round, saving, second, sign, signum, sin, sinh, skewness, sgrt, std, stderr, stfips,
stname, stnamel, substr, sum, tan, tanh, time, timepart, tinv, today, tranwrd, trigamma, trim, upcase, uss, var,
weekday, year, zipfips, zipname, zipnamel, and zipstate.

Ranuni functions may show slight variation from run to run due to the impact of parallel processing.
Note that date, int, left, right and trim are reserved keywords; therefore, they must be preceded with a backslash in SPD

Server SQL queries:

select \date() fromt ;

162



SAS Scalable Performance Data Server SQL Syntax
Reference Guide

Contents

. Overview

. Document Conventions

« SQL Syntax Definitions

. SQL Statements
o Alter Table Statement
o Connect Statement

o Create Index Statement

o Create Table Statement

o Create View Statement

o Delete Statement
o Describe Table Statement

o Describe View Statement

o Disconnect Statement

o Drop Index Statement

o Drop Table Statement

o Drop View Statement
o Execute Statement

o Insert Statement
o Reset Statement
o Select Statement
o Update Statement
o Validate Statement
. NEW SQL Statements
o Async Operation Statement

o Copy Table Statement

o Create Materialized View Statement
o LIBREF Statement
o Load Table Statement
. SQL Building Blocks
o Alias Name

o Atomic Expression

o Between Predicate

o Boolean Expression

o Case Expression
o Column Definition

o Column Definition List
o Column Modifier

o Column Name
o Column Name List

o Column Specifications
o Comparative Operators
o Comparison Predicates

o Connection String

o Constant
o Contains Predicate

o Data Types
o Date / Time String

163



o DBMS Options

o Digits (Numeric)

o Exists Predicate

o Function Arguments

o Function Expressions
o Function Name

o Identifier

o In Predicate

o Index Name

o Insert Set List

o Insert Source

o Insert Value

o Insert Values List
o Letter (Alpha)

o LIBREF Name

o LIKE Predicate

o Missing Value

o Null Predicate

o Number

o ORDER BY Clause
o Pass-Through Spec
o Predicate Types

o Quantified Comparison Predicate
o Query Expression
o Query Spec

o Scalar Expression

o Select Item

o Select Spec

o Set Value List

o Soundslike Predicate
o String

o Subquery

o Table Alias

o Table Join

o Table Name

o Table Options
o Table Reference

o Table Spec
o Truth Value

o Unsigned
o WHERE Clause

o With Index Spec

Overview

This chapter describes the SQL syntax that is allowed with the Scalable Performance Data (SPD) Server. SPD Server SQL is
a dialect of SQL. That is, it combines SQL-92, SAS SQL and extensions that are specific to SPD Server. Whenever
possible, SPD Server attempts to conform to SAS SQL.

Document Conventions

. Productions

164



Production Links / References
Literal Text

Optional Text
Selection Lists

Productions - The syntax uses building blocks which are referred to as "productions". Productions are denoted by the symbol
"::=". To the left of the equal sign is a production name; to the right of the equal, or on the next line, is a list of
production constructs. If a production has more than one possible construct, the alternatives are separated by a vertical bar
"|". Read productions top-down. For example, reading the delete statement, there are literal keywords and two

subproductions, a "table_spec" and the "WHERE clause".

Production Links / References - Subproductions that are referenced within a production definition are HTML links to

their definitions. You can navigate the links with an HTML browser.

Literal Text - Traversing down a syntax tree leads to leaf/terminal definitions. The definitions are composed either of
keywords (select), identifiers (names of tables, columns, etc.) or symbols ( punctuation, operators, etc.). Keywords
and identifiers are shown with bold, capitalized text. In contrast, symbols are shown with single quotation marks and are bold.

Optional Text - Optional syntax is delimited by square brackets, "[" and "]". Optional lists (syntax elements that are
repeated) are denoted by "[" and "]*". The "*" signifies zero or more occurrences of the bracketed syntax.

Selection Lists - Selection lists, that allow you to choose from a list of alternative syntax elements, are denoted by braces
"{"and "}". These elements are separated by a vertical bar "|". The selection list itself is not optional; you must choose at
least one element. If you must choose one or more of the elements, the list is terminated with a "}+". The "+" indicates one
or more occurrences of the delimited syntax.

Note: The browser displays links best with underscores. To view underscores using Netscape, refer to the option under the
File Command: Options/General Preferences/Appearance.

SQL Syntax Definitions

Statement (Query)

Scalar Expressions Contrasted with Boolean Predicates
Strings

Identifiers

(Reserved) Keywords

Statement (Query)
One or more syntax elements terminated by a semicolon.
Scalar Expressions Contrasted with Boolean Predicates

Scalar expressions represent a single data value, either a numeric or a string from a constant specification. Examples include: 1,
'hello there', '31-DEC-60'd), a function (that is, "avg(a*b)"), a column/variable (that is foo.bar), the case expression, or even a
subquery which returns a single run-time value. Boolean predicates are either "true" or "false". They are used in WHERE
clauses, having clauses and in the case expression. You cannot select predicates, nor can you assign them to columns (that is, in
an update statement). Scalar expressions and Boolean predicates cannot be used interchangeably, although SAS SQL does
allow you to mix the expressions.

Strings

SPD Server SQL strings are character streams which are delimited by either single or double quotation marks. If you use a
single quotation mark to begin a string, you must use a single quotation mark to terminate the string. To embed a single
quotation mark in a string, use two single quotation marks together. For example,

SELECT "it''s a wonderful life' from nytable.

You can use double quotation marks in the same manner. There is another way to embed a single quotation mark without
doubling the character. You can use double-quotation marks as delimiters. For example,

SELECT "it's a wonderful |ife" from nytable.

165



In some of the syntax specifications that follow, a "user-defined" or "database-specific" string is noted. Delimit these strings
with a bracket or parenthesis. Characters between the delimiters are considered part of the string up to, but not including, the
matching delimiter.

CONNECT to sasspds(
user ='j ohn'
passwd='f oobar"
options=(a b c)

)
The dbms_options string is

user='john’
passwd="'foobar"
options=(a b c).

In this example, the first right-parenthesis is considered part of the string. It is not the matching termination delimiter.

I dentifiers
Identifiers are the names of librefs, tables, indexes and columns as well as table and column aliases.

(Reserved) Keywords
Keywords are used to initiate statements and syntax elements. For example, WHERE or GROUP BY clauses. Keywords are
also "reserved". They cannot be used for identifiers because this use introduces ambiguity. For example, "select unique unique
unique from from from;" is a valid but ambiguous statement. Below is a list of current SPD Server keywords. Some words have
been reserved for future enhancements to SPD Server SQL:

add, all, alter, and, any, as, asc, async, begin, between, both, by, calculated, cascade, case, char, character,
column, connect, connection, contains, contents, copy, corr, corresponding, create, cr oss, date, dec, decimal,
default, delete, desc, describe, dictionary, disconnect, distinct, double, drop, else, end, engname, engopt, eq,
except, execute, exists, false, float, for, format, from, full, ge, grant, group, gt, having, in, index, indexes, infor mat,
inner, insert, int, integer, intersect, into, is, join, label, le, leading, |€eft, libref, like, load, lower, It, match, missing,
modify, natural, ne, no, not, notin, null, num, numeric, on, operation, option, or, order, outer, overlaps, partial,
precision, privileges, public, real, references, reset, restrict, revoke, right, select, set, smallint, some, table, then,
to, trailing, trim, true, union, unique, unknown, update, upper, using, validate, values, varchar, verbose, view,
when, where, with, without, yes

SOL Statements

. Alter Table Statement
. Connect Statement

« Create Index Statement

. Create Table Statement

. Create View Statement - Create a view upon one or more tables
. Delete Statement - Delete records

. Describe Table Statement - Describe a table definition

. Describe View Statement - Describe a view definition
. Disconnect Statement Pass-Through Statement

. Drop Index Statement - Drop an index from a table

. Drop Table Statement - Drop a table definition

« Drop View Statement - Drop a view definition

. Execute Statement - Pass-Through Statement

. Insert Statement - Add records

. Reset Statement - Reset session options and flags

. Select Statement - Retrieve information

. Update Statement - Update records

. Validate Statement - Validate a given select specification

166



Alter Table Statement

The Alter table statement changes a table definition.

alter table statenent ::=
ALTER TABLE tabl e spec
{ { ADD| MODI FY| ALTER [ COLUW ] colum def list } |
{ DROP [ COLUW ] columm nane list }
}+l.|

Connect Statement

The Connect statement creates a pass-through connection.

connect statenment ::=
CONNECT TO libref name [ [ AS ]

alias nane ] ' ('
dbns options ")' ] ';'

Create Index Statement

The Create Index statement creates an index on a table.

create index statenent ::=
CREATE [ UNIQUE ] | NDEX index nane ON

table spec '(' columm nane list ')" ';'

Create Table Statement

The Create Table statement creates a table definition.

create table statenent ::=

CREATE TABLE tabl e spec

{ "(" columm def list ")" | AS
sel ect spec | LIKE

table spec } ';

Create View Statement

create view statenent ::= CREATE VI EW
tabl e spec AS

sel ect spec ';

Delete Statement
167



del ete statenent ::= DELETE FROM

tabl e spec [
where clause | ';'

Describe Table Statement

descri be table statement ::=
DESCRI BE TABLE table spec [ [',']

table spec 1* ;"

Describe View Statement

descri be view statenent ::=
DESCRI BE VIEWtable spec [ [',"]

table spec ]1* ;'

Disconnect Statement

di sconnect statenent ::= DI SCONNECT FROM
li bref name ';'

Drop Index Statement

drop i ndex statement ::=
DROP | NDEX index name [ [',"]

i ndex nane ]1* FROM
tabl e spec '

Drop Table Statement

drop table statenment ::= DROP TABLE
table spec [ [',"]
table spec 1* ';"

Drop View Statement

drop view statenent ::=
DROP VIEWtable spec [ [',"]
table spec ]* ';'

Execute Statement

168



execute statement ::= EXECUTE ' ('
passthru spec ')' BY

| i bref nane ';

Insert Statement

insert statenment ::=
I NSERT I NTO table spec [ ' ('
colum name list ")' ]

insert source ';

Reset Statement

set option statement ::=
{ SET OPTION | RESET }
{ identifier
[ "= { constant |
identifier |
truth val ue
| DEFAULT } ] }+

Sdlect Statement

sel ect statenent::=

sel ect spec ';

Update Statement

update statenent ::=
UPDATE t abl e spec

SET col umm nane '=

scalar expr [ ',
colum nane '

scalar expr ]*
[ where clause ] ';'

Validate Statement

val i date statenent ::= VALIDATE

sel ect spec ';

NEW SOL Statements

. Async Operation Statement — Delimit an asynchronous execution block
. Contents Statement — Perform a SAS "proc contents" on a table

169



. Copy Table Statement — Copy a table , and optionally no indexes on the table, to another table on the same local machine

. Create Materialized View Statement — create a SQL view as a materialized view. In a materialized view, the results of

the view statement are computed and saved in a temporary SPD Server table when the view is created.
. LIBREF Statement — Perform a SAS LIBREF assignment

. Load Table Statement — Create a table, and optionally indexes on the table on the local machine , with a select statement

New SOL Statements

Async Operation Statement

async operation statenents ::={ BEG N | END } ASYNC OPERATION ' ;'

Copy Table Statement

copy table statenent ::=
COPY TABLE table spec FROM
tabl e spec [ WTHOUT | NDEXES ] [ ORDER BY
colum nane
[ ASC| DESC] [',"
colum nane [ ASC| DESC]]] ;'

Create Materialized View Statement

create materialized view statenment ::= CREATE MATERI ALI ZED VI EW
tabl e spec AS

sel ect spec ';'

LIBREF Statement

l'ibref statenment ::=
LI BREF libref name [ ENGNAME ' ='
identifier ] [ ENGOPT '='

string ] ';

L oad Table Statement

| oad table statenent ::=
LOAD TABLE table spec [ WTH
with index spec [ ',
with index spec ]* ]

170



AS sel ect spec ';

SOL Building Blocks

. Alias Name
. Atomic Expression

. Between Predicate

. Boolean Expression

. Case Expression
« Column Definition

« Column Definition List
« Column Modifier

« Column Name
« Column Name List

. Column Specifications
. Comparative Operators
. Comparison Predicates

. Connection String
. Constant

. Contains Predicate

. Data Types

. Date / Time String
. DBMS Options

. Digits (Numeric)

. Exists Predicate

. Function Arguments
. Function Expressions

. Function Name

. Identifier

. In Predicate

. Index Name

. Insert Set List

. Insert Source

. Insert Value

. Insert Values List

. Letter (Alpha)

. LIBREF Name

. LIKE Predicate

. Missing Value

« Null Predicate

« Number

. ORDER BY Clause
. Pass-Through Spec
. Predicate Types

. Quantified Comparison Predicate
. Query Expression

. Query Spec

« Scalar Expression

. Select Item

. Select Spec

« Set Value List

. Soundslike Predicate

. String

171



. Subquery
. Table Alias

. Table Join
. Table Name

. Table Options
. Table Reference

. Table Spec
. Truth Value

. Unsigned
. WHERE Clause

. With Index Spec

SOL Building Blocks

Alias Name

alias nane ::
identifier

Atomic Expression

atom c expr ::=
const ant |

col unm spec

Between Predicate

between pred :: =

scalar expr [ NOT ] BETWEEN
scal ar _expr AND

scal ar expr

Boolean Expression

bool ean expr ::=
| [ NOT ] { predicate | ' ('
boolean expr ")" } [ IS NOT ]
truth value ]
| boolean expr { AND| OR}
bool ean expr

Case Expression
case expr ::=
CASE { WHEN bool ean expr THEN
scalar expr }+ [ ELSE

172



scalar expr ] END
| CASE scal ar expr { WHEN
scal ar expr THEN
scalar expr }+ [ ELSE
scalar expr ] END

Column Definition

columm def ::=
col unn_nane

data type [
colum nodifier 1* [ NOT NULL ]

Column Definition List

colum def list ::=

columm def [ ',
columm def ]*

Column M odifier

colum nodifier ::=

FORVMAT ' =' <quoted or nonquoted SAS format specification>
| LABEL '=' string

Column Name

columm nane ::=
identifier

Column NameList

col umm nane |
colum nane |
]

col um nane

Column Specifications

col umm spec :: =
[ CALCULATED ] columm nane
| table alias'.'
colum nane

173



Comparative Operators

conp oper at or

| EQ| "=

| NE| A= | = ] s | e
| LT | '<

| G| ">

| LE | '<=

| G| =

Comparison Predicates

conparison pred ::=
scal ar _expr {
conp oper at or

scal ar _expr }+

Connection String

connection string ::= <user-defined
string delinited by endi ng/ mat chi ng parent hesi s>

Constant

const ant =

| nunber | missing value

| string | date/tine string
| NULL

Contains Predicate

contains pred ::=
scalar expr { CONTAINS | "?" }
scal ar expr

Data Types

data type ::=
{ CHAR[ACTER] | VARCHAR } [ '('unsigned ')' ]
| { INT[EGER] | SMALLINT }
| { NUMERIC] | DEC[I MAL] | FLOAT }
[ "(" unsigned [ '," unsigned ] ')' ]
| REAL | DOUBLE PRECI SION | DATE

Date/ Time String

174



date/tine string ::
string{D| T| DT}

DBM S Options

dbns options ::= <user-defined
string delimted by endi ng/ mat chi ng parent hesi s>

Digits (Numeric)

digit ::="'0" <through> '9'

Exists Predicate

exi sts pred ::= EXI STS subquery

Function Arguments

function args :
scalar expr [ ',"' scalar expr ]* | DI STINCT scalar expr | [ DISTINCT ] '*'

Function Expressions

function expr
func nane ' ('

function args ')’

Function Name

function nane ::

identifier

Identifier
identifier ::=1"\"]{
| etter| <underscore>}{
letter|

digit|<underscore>}*

In Predicate

175



in pred ::=
scalar expr { [ NOT' ] IN| NOTIN} {
subquery | ' ('

constant [ ',
constant ]* ')"' }

Index Name

i ndex nanme ::
identifier

Insert Set List

insert set list ::= SET
set value list [ SET
set value list ]*

Insert Source

insert source ::=
| insert values list
| insert set list

| query expr
Insert Value
insert value ::= VALUES ' ('

scalar expr [ ',
scalar expr ]1* ')

Insert ValuesList

insert values list ::=
insert value [
insert value ]*

Letter (Alpha)

letter ::="a" <through> 'z' <or>'A <through> 'Z

LIBREF Name

l'i bref name ::=

176



identifier

LIKE Predicate

like pred ::=
scalar expr [ NOT ] LIKE
scal ar _expr

Missing Value

mssing value ::="."][

letter]

Null Predicate

null pred ::=
scalar expr IS NOT ] { NULL | M SSING }

Number

nunber ::=
{unsi gned| {
digit}+ .'[{
digit}+]]".'{
digit}+}[{ e ["E} "+ [|"-"]{
digit}+]

ORDER BY Clause

order by clause ::=
ORDER BY atomic expr [ ASC| DESC] [ ',

atomic expr [ ASC| DESC] ]*

Pass-Through Spec

passthru spec ::=
<dat abase-specific string delimted by endi ng/ mat chi ng parenthesi s>

Predicate Types

predicate ::=
| conparison pred
| between pred

177



in pred

like pred

null pred

quantified conparison pred
exists pred

contains pred

soundsl i ke pred

Quantified Comparison Predicate

quantified conparison pred ::=
scal ar _expr
conp operator { ALL | SOVE | ANY }

subquery

Query Expression

query expr ::=
uer spec
| query expr { [ OUTER] UNION | EXCEPT | INTERSECT } [ CORRESPONDING ] [ ALL ]
uer expr

Query Spec

query spec ::=
SELECT [ DISTINCT | UNNQUE ] select item][ ','
select item]*
FROM table ref [ ',
table ref ]*
[ WHERE bool ean expr ]

[ GROUP BY scalar expr [ ',

scalar expr ]* ]
[ HAVI NG bool ean expr ]

Scalar Expression

scal ar expr ::=
| atom c expr
| function expr
| "(' scalar expr ')
| subquery
| scalar expr { "+ | "-" | "* | /| [T | e}
scal ar _expr
| "+ | '-'" } scalar expr
| case expr

-~ |

178



Sdlect Item

select item::=

Vs
| identifier'.*'

| scalar expr [ [ AS ]
identifier ] [

colum nodifier ]*

Select Spec

sel ect spec ::=

query expr [
order by clause ]

Set Value List

set value list ::=
col um nane '

scalar expr [ ',

colum nane '=
scal ar _expr ]*

Soundslike Predicate

soundsli ke pred ::=
scal ar expr '=*'
scal ar _expr

String

string ::=
<a single- or doubl e-quoted
literal string -- see Strings>

Subquery

subquery ::="("
query expr ')’

Table Alias

table alias ::=
identifier

179



Table Join

table join ::=
table ref [ INNER | { LEFT |
[ QUTER ] ] JON table ref
{ ON bool ean expr | USING " ('
colum nane list '")" }

| *(" table join ")

Rl GHT |

FULL }

Table Name

table name ::=
identifier

Table Options

table options ::= <user-defined

string delimted by ending/ matchi ng bracket>

Table Reference

table ref ::=

table spec [ [ AS ]
identifier ]

| subquery [ [ AS ]

identifier 1 [ ' ('

colum nanme list ")" ]

| CONNECTION TO identifier '(

connection string ')' [ [ AS ]

identifier ]

| table join

Table Spec

table spec ::=
| table nane [ '[°
table options ']" ]
| Libref nane'.’
table nane [ '['
table options ']" ]

Truth Value

truth value ::={ TRUE | YES } |

{ FALSE |

NO }

180



Unsigned

unsigned ::= {
digit }+

WHERE Clause

where cl ause ::= WHERE
bool ean expr

With Index Spec

with index spec ::= [ UNIQUE ] | NDEX
i ndex nane ON ' ('
colum nane [ist ")’

181



SAS Scalable Performance Data (SPD) Server SQL AccessLibrary
API Reference

. Introduction

« Overview of SPQL Usage

« SPQL API Description

« SPQL API Functions

« SPQL Function Return Codes

I ntroduction

This chapter describes the Scalable Performance Data Server SQL access library API (Application Programming Interface) and
provides some simple examples. This chapter refers to the Scalable Performance Data Server SQL access library as SPQL.
Read this chapter if you want a library that provides a C-language compatible interface to write user applications to access

an SPD Server SQL server. Because the library was designed for multi-threaded applications, the code is thread safe.

Overview of SPOL Usage

SPQL enables you to write application: programs that can connect to and access Scalable Performance Data Server (SPD
Server) hosts using the SQL language. SPQL is oriented toward connection, allowing you to submit SQL statements to one or
more SPD Server SQL servers which execute SQL statements on your behalf.

SPOL API Description

The C-language H file spql.h is provided for customer-written applications. This chapter describes the API functions, their
use, and restrictions.

SPOL API Functions

The SPQL API functions include

. spqlinit()

. spqlterm()

. spglconnect()

. spgldisconnect()
. spglperform()

. spqlfreestok()

182



spqltabinfo()
spqlcolinfo()
spalfetch()
spqlgmsg()

spglinit()
Initializes the SPQL library for operation.
int spglinit(void)
Usage: Performs a one-time initialization which enables the SPQL library to function. For this
reason, you must call spqlinit() at least once to activate an SPQL program. Do not make other

SPQL API calls before calling this function. If you do, the results are unpredictable. When spqlinit
() successfully completes, you can safely proceed to use the SPQL API in a multi-threaded context.

Note: Spqlinit()-is not a thread-safe function. Call it only within a single-threaded context in your
application. Alternatively, call it within an application-controlled mutex region.

Parameters. None

Returns: 0 if successful; SPQL_INITFAILED if the initialization fails.

spglterm()

Is the termination counterpart of the spqlinit() function.
int spglterm void)

Usage: Terminates the SPQL library session, disconnecting all active SPD Server SQL server
connections and freeing up the memory resources associated with the SPQL run-time library
executables.

Parameters: None

Returns: 0 if successful.

spglconnect()

Establishes a connection to a specified SPD Server SQL server.

i nt spgl connect (char *constr, void **cont ok)

Usage: Establishes a connection to the SPD Server SQL server. The constr parameter specifies all
the connection information needed to establish the connection to an SPD Server SQL server. When

183



a connection is made successfully, a connection, token (contok) is returned to the caller.
Parameters:

char *constr
A null-terminated string identifying the SPD Server SQL server to connect to for this
session. The syntax for the string is identical to that used for the SAS PROC QL pass-
through CONNECT statement.

void **contok
Returns a connection token if the connection successfully completes. You must retain the
token; use it in subsequent SPQL library operations that you perform using the connection.

Returns: 0 if successful; SPQL NOMEM if unable to allocate memory for the connection token;
SPQL_CONFAILED if unable to connect successfully to the SPD Server SQL server.

spaldisconnect()

Terminates a connection from the SPD Server SQL server specified with an spqlconnect().

i nt spgl di sconnect (voi d *cont ok)

Usage: Disconnects from a specified SPD Server SQL server. The caller passes the connection
token which was returned from an spqlconnect() call. Then, the SPD Server SQL server associated
with the connection is disconnected from the caller, and the memory associated with connection
token is returned to the system.

Parameters:

void *contok
Connection token previously obtained from spglconnect().

Returns: 0 if successful.

spglperform()

Submits an SQL statement for execution on a given connection.

int spgl perform void *contok, char *stntbuf, int stntlen,
int *actions, void **stnttok);

Usage: Performs specified SQL statement and informs caller of the results. The actions parameter
returns a value of 0 if no additional action is required. If actions are required to complete the
statement, one or more of the following bit flags are returned.

Fl ag Acti on

184



SPQLDATA Data is returned(see spqglfetch())
SPQLCOLINFO  Colum information is returned(see spglcolinfo())

Parameters:

void *contok
The connection used to execute the SQL statement.

char *stmtbuf
A buffer that holds the SQL statement to perform.

int stmtlen
The length of the SQL statement in buffer; -1 if null-terminated.

int *actions
Returns post-processing notification bit flags.

void **stmttok
Returns a statement token to use in post-processing the SQL statement results. See post-
processing action definitions for use of statement token.

Returns: 0 if the SQL statement is successfully prepared/executed; SPQL_BADSTMT if the SQL
statement specified in the statement buffer is prepared incorrectly; SPQL NOMEM if
spqlperform cannot allocate memory for the statement token.

spglfreestok()

Generates a free statement token from spqlperform().

int spgl freestok(void *stnttok);

Usage: Free resources used for the statement token from spglperform(). Call spqlfreestok() after
the data/information from the statement token has been extracted. You may call this function
before all selected rows from the spqlperform() are read. If you do, the remaining unread rows
(from the previous select) are discarded.

Parameters:

void *stmttok
Statement token to free

Returns: 0 if successful.

spgltabinfo()

Gets table information from a statement token.

185



int spgltabinfo(void *stnmtok, spgltinfo_t **tinfo)

Usage: Interrogates the statement token for table information. Upon return of the call, updates tinfo
with the pointer to the spqltinfo_t structure in the statement.

Note: Treat the structure accessed by the returned pointer as read-only memory.
Parameters:

void *stmttok
The statement token to use to access table information from a 'select'.

spqltinfo **tinfo
Returns pointer to spgltinfo_t structure into the statement token memory.

Returns: 0 for successful completion.

spglcolinfo()

Gets column information from a statement token.

int spglcolinfo(void *stnttok, int *ncols, spqglcinfo t **col vec)

Usage: Interrogates token for column information. Upon return of the call, updates ncols with the
column count selected in the statement and updates colvec with the pointer to the vector of
spqglcol_t structures in the statement.

Note: Treat structures accessed by the returned pointer as read-only memory.

Parameters:

void *stmttok
The statement token to use to access column information from 'select'.

int *ncols
Returns in the statement token the number of columns selected.

spglcinfo **colvec
Returns in the statement token a pointer to the array of spglcinfo_t structures.

Returns: 0 if successful.

spqlfetch()

Gets row data from a statement token.

186



int spglfetch(void *stnttok, void **bufptr, int *bufsize)

Usage: Fetches the rows returned from executing a statement. Each call to spqlfetch returns a row
from a statement to the caller's buffer. If bufptr contains a NULL value, the routine returns a
pointer to a buffer containing the next row. If the value is not NULL, it assumes that the buffer is
owned by the caller and returns the data to the caller's buffer. In either case, bufsize is updated with
the row length returned. Callers that use locate-mode spqlfetch semantics (that is, who specify
bufptr as NULL), should NEVER FREE the memory pointer returned by spqlfetch! A call to
spqlfetch(), after all rows for the statement are returned, returns a bufsize of 0.

Parameters:

void *stmttok
The statement token to use to access row data from 'select'.

void **bufptr
Contains a pointer to the caller's row buffer to fill with row data. If it is NULL on entry, it
returns a pointer to the internal statement buffer.

int *bufsize
Returns the size of the row buffer that was returned to the caller.

Returns: 0 if successful; SPQL ENDDATA if the statement has no more rows to return;
SPQL FETCHFAILED if there is an unexpected failure while fetching the next row buffer.

spalgmsg()

Accesses thread-specific error/diagnostic message buffer contents.
i nt spgl gnsg(char **nbuf)

Usage: Returns a pointer to the threads error/diagnostic message buffer. Call spglgmsg() to get any diagnostic
messages if you encounter an error executing an SPQL function. If there is message information, spqlgmsg()
returns the message pointer in the mbuf parameter as well as the length of the message (the function return
value).

Parameters:

char **mbuf
Returns a pointer to the thread's error/diagnostic message buffer. If mbuf is NULL, there is no message
information. The call also returns the length of the thread's error/diagnostic message buffer. A 0 indicates
that no message exists.

SPOL Function Return Codes

Some SPQL functions generate return codes, allowing you to check the value and take appropriate action in your

187



application code. Typically, the application action taken upon receiving an error code, is a call to spqlgmsg() to get the contents
of the diagnostic buffer. The program can then display the buffer's contents to the user or write the contents to a log.

The following return codes are classified, in general, by their state: positive [(WARNING), (SUCCESS)] or negative
[(ERROR)].

. SPOQL_SUCCESS(==0)

. SPOL_ENDDATA(WARNING)
. SPOQL_INITFAILED(ERROR)
. SPOL_NOMEM

. SPOL_CONFAILED(ERROR)
. SPOL_BADSTMT(ERROR)

SPOQL _SUCCESS(==0)
Successful completion of the SPQL function call.

SPOL ENDDATA(WARNING)
All rows selected were read from the statement token.

SPOL _INITFAILED(ERROR)
Initialization failure. (It is unsafe for your application to make additional SPQL calls if this error occurs.)

SPOL_NOMEM
Unable to allocate memory for some type of SPQL data structure. Check the diagnostic buffer for details.

SPOQL_CONFAILED(ERROR)
Unable to make a connection to an SPD Server SQL server. Check the diagnostic buffer for details.

SPOL_BADSTMT(ERROR)

SQL statement is incorrectly formatted for submission to sqlprepare(). Either the statement is blank (all
white space) or contains contiguous non-white space characters.

188



Optimizing SAS Scalable Perfor mance Data (SPD)
Server Performance

« SAS Scalable Performance Data (SPD) Server Performance and Usage Tips

. Symmetric Multiple Processor (SMP) Utilization
. File System Performance Concepts
. LIBNAME Domains
o Data and Index Separation
o Configuring a LIBNAME Domain
. Loading Data into a SAS Scalable Performance Data (SPD) Server Host
. Loading Indexes in Parallel
. Truncating Tables
. Optimizing WHERE Clauses
. SAS Scalable Performance Data (SPD) Server Indexing
. WHERE Clause Planner
. How to Affect the WHERE Planner
. WHERE Clause Examples
. Server-Side Sorting

SAS Scalable Perfor mance Data (SPD) Server Performance and Usage Tips

SAS Scalable Performance Data (SPD) Server gives good performance when run using default configuration settings.

To realize the full benefits of SAS Scalable Performance Data (SPD) Server's design and capabilities, you must configure
some of the software's options to modify the default behaviors. The configuration changes will depend on the

computing environment, table size and complexity, and indexing structures.

You use SAS/MACRO variables that are specific to SAS Scalable Performance Data (SPD) Server and SAS statement
options (LIBNAME options and table options) to configure SAS Scalable Performance Data (SPD) Server for
optimum performance.

Symmetric Multiple Processor (SMP) Utilization

A cornerstone of SAS Scalable Performance Data (SPD) Server's power is the ability to perform parallel processing.
Parallel processing uses multiple processors to execute more than one set of instructions, or threads, concurrently.

SAS Scalable Performance Data (SPD) Server is oriented to exploit parallelism whenever it can improve transaction times
and processor utilization.

A fundamental question about parallelism is whether using additional CPUs on a specific problem will deliver data

faster. Extra CPUs do not guarantee faster results every time. The amount of CPU-intensive work that a thread must do
needs to last long enough to justify the cost of the thread. The cost of the thread is creating it, managing it, and interacting
with other threads involved in the same parallel algorithm.

If not properly matched to the workload, the parallel algorithm can use more CPU time without reducing data delivery
time. Additional threads can create conflicting demands for critical system resources such as physical memory.
Excessive execution times can occur if too many threads attempt to access a large table at the same time, because many
threads demand large amounts of physical memory. Extreme resource constraints can result in slower overall processing.

189



SAS Scalable Performance Data (SPD) Server focuses on the following areas to speed overall processing using parallelism:

. User-definable parallel execution blocks for SQL pass-through statements

. Parallel aggregation for common summary functions when performing SELECT [...] GROUP BY statements
. WHERE Clause evaluation for indexed and non-indexed strategies

. Overlapped table and concurrent index updates when appending to tables

. Index creation when creating multiple indexes

. Optimize PROC SORT/BY-clauses

. Pipelined read-ahead when concurrently accessing multiple tables

File System Perfor mance Concepts

SAS Scalable Performance Data (SPD) Server uses several file types in its data storage model. Data objects in SAS
Scalable Performance Data (SPD) Server are composed of one or more component files. Each component file is itself
a collection of one or more disk files. These are called the partitions of the component.

Component files create partitions when any of the following conditions is true:

. The current partition exceeds the user-specified PARTSIZE= value: Subsequent partitions are allocated in cyclical

fashion across the set of directories that are specified in the DATAPATH= statement for the LIBNAME domain.
Partitioning uses file-level striping to create PARTSIZE-sized files that complement disk-level striping that your

operating system's volume manager software creates. SAS Scalable Performance Data (SPD) Server uses a

default PARTSIZE= setting of 16 MB. PARTSIZE= determines a unit of work for parallel operations that require full
table scans. Examples of parallel operations that require full table scans are WHERE Clause evaluation and SQL GROUP-
BY summarization. Trade-offs are balancing increased numbers of files used to store the table versus the work savings
realized through parallel partitions. Extra partitions means files are opened to process a table, but with fewer rows in

each partition.

The current partition exceeds the RLIMIT FILESIZE value: In UNIX systems, RLIMIT FILESIZE is a system parameter
that defines the maximum size of a single disk file. In Windows, SAS Scalable Performance Data (SPD) Server uses a

default RLIMIT FILESIZE value of 2 GB.

The current partition exceeds the space on the file system where it has been created.

Defining Directories
Disk Striping

RAID Levels
Transient Storage

Defining Directories

SAS Scalable Performance Data (SPD) Server allows the user to define a set of directories that contain component files and
their partitions. Normally, a single directory path is constrained by some volume limit for the file system, or the maximum
amount of disk space that the operating system understands.

Most UNIX and Windows systems offer a volume manager utility. You can use volume manager utilities to create file
systems (volumes) that are greater than the available space on a single disk. System administrators can use these utilities to
create large, multi-gigabyte volumes. These volumes may be spread across a number of disk partitions, or even span
multiple disk devices. Volume manager utilities generally support creation of disk volumes that implement one of the
common RAID (redundant arrays of inexpensive disks) configuration levels.

190



Disk Striping

A defining feature of all RAID levels is disk striping. Striping organizes the linear address space of a volume into pieces
that are spread across a collection of disk drive partitions. For example, a user may configure a volume across two 1 GB
partitions on separate disk drives A and B with a stripe size of 64K bytes. Stripe 0 lives on drive A, stripe 1 lives on drive B,
stripe 2 lives on drive A, and so on.

By distributing the stripes of a volume across multiple disks it is possible to

. achieve parallelism at the disk I/O level
. use multiple kernel threads to drive a block of I/O.

This also reduces contention and data transfer latency for a large block I/O because the physical transfer can be split across
multiple disk controllers and drives.

RAID Levels

The following is a brief summary of RAID levels relevant to SAS Scalable Performance Data (SPD) Server:

RAID-0
High performance with low availability. Physically losing a disk means data is lost. No redundancy exists to
recover volume stripes on a failed disk.

RAID-1
Disk mirroring for high availability. Every block is duplicated on another mirror disk, sometimes referred to as
shadowing. In the event one disk is lost, the mirror disk is still likely to be intact, preserving the data. RAID-1 can
also improve read performance since a device driver has two potential sources for the same data. The system can
choose the drive that has the least load/latency at a given point in time. The down side to RAID-1: it requires twice
the number of disk drives as RAID-0 to store a given amount of data.

RAID-5
High performance and high availability at the expense of resources. An error correcting code (ECC) is generated for
each stripe written to disk. The ECC distributes the data in each logical stripe across physical stripes in such a way
that if a given disk in the volume is lost, data in the logical stripe can still be recovered from the remaining physical
stripes. RAID-5's downside is resource utilization; RAID-5 requires extra CPU cycles and extra disk space to
transform and manage data using the ECC model.

RAID-1+0
Many RAID systems offer a combination of RAID-1 (pure disk mirroring) and RAID-0 (striping) to provide both
redundancy and I/O parallelism in a configuration known as RAID-1+0 (sometimes referred to as RAID-10).
Advantages are the same as for RAID-1 and RAID-0. The only disadvantage is the requirement for twice as much
disk as the pure RAID-0 solution. Generally, this configuration tends to be a top performer if you have the disk
resources to pursue it.

Regardless of RAID level, disk volumes should be hardware striped when using the SAS Scalable Performance Data (SPD)
Server software. This is a significant way to improve performance. Without hardware striping, I/O will bottleneck and
constrain SAS Scalable Performance Data (SPD) Server performance.

Transient Storage

You should configure a RAID-0 volume for WORKPATH= storage for your SAS Scalable Performance Data (SPD)
Server. When sizing this RAID-0 volume, keep in mind that the WORKPATH= that you set up for a given SAS Scalable
Performance Data (SPD) Server host must be shared by all of its SQL and LIBNAME proxy processes that exist at a given

191



point in time. The SAS Scalable Performance Data (SPD) Server Frequently Asked Questions (FAQ) is a good source of
information on estimating disk space requirements for WORKPATH=.

Consider using one or more RAID-0 volumes to locate the database domains that will support TEMP=YES LIBNAME
assignments. This LIBNAME statement option creates a temporary storage domain that exists only for the duration of the
LIBNAME assignment. This is the SAS Scalable Performance Data (SPD) Server equivalent of the SAS WORK library.
All data objects (tables, catalogs, utility files) that are created in the TEMP=YES temporary domain are automatically
deleted when you end the SAS session.

LIBNAME Domains

LIBNAME domains define the primary directory path and can optionally define other directories for placing the data and
index components of SAS Scalable Performance Data (SPD) Server tables. The METAPATH=, DATAPATH=,

and INDEXPATH= LIBNAME definition options determine the placement of SAS Scalable Performance Data (SPD)
Server's component and partition files.

. Data and Index Separation
. Configuring a LIBNAME Domain

Data and | ndex Separ ation

The section on File System Performance Concepts discussed how distributing I/O load across different disk drives can

improve performance. Further load distribution can be achieved by separating data and index components of SAS Scalable
Performance Data (SPD) Server tables. To do this, use the DATAPATH= and INDEXPATH= options when configuring

LIBNAME domains.

For example, when performing complex WHERE Clause evaluations, multiple threads are active on index component files
and the data component file at the same time. Splitting the index and data file components onto different volumes can
improve performance by reducing disk contention and increasing the level of parallelism down to the disk access level.

A word of caution when using DATAPATH= and INDEXPATH= options to distribute the data and index components:
take extra care when performing and restoring disk backups of SAS Scalable Performance Data (SPD) Server tables using a
system backup and restore utility. When making a backup, ensure that the metadata, data, and index component partition
files are of the same generation and are in their respective directories.

When restoring a backup, restore the component partitions to the same directories where they were created. To avoid this
restore problem, create symbolic links with the original directory path that point to the restore directories. Of course, if the
components are not separated using the path options, this restore issue does not apply.

The backup and restore issues are not an issue when using the SAS Scalable Performance Data (SPD) Server Backup and
Restore Utilities. These utilities resolve any component files when backing up or restoring tables. More information on
SAS Scalable Performance Data (SPD) Server Backup and Restore Utilities is available in the SAS Scalable Performance
Data (SPD) Server Administrator's Guide.

Configuringa LIBNAME Domain

Suppose a user has four volumes designated. Volumes exist for (1) SAS Scalable Performance Data (SPD) Server
metadata, (2) data components, (3) index components, and (4) proxy working storage, as follows

. /dmart_domain is a 4 GB volume

192



. /dmart_datais a 40 GB volume
. /dmart_index is a 40 GB volume
. Ispds work is a 10 GB volume

The user wants to configure a LIBNAME domain called dmart to use /dmart_domain for the primary directory, with data
components going to /dmart_data, and index components going to /dmart_index. The /spds_work volume should be
configured for proxy working storage.

The configuration is made in two steps:

1. In the server parameter file (-parmfile) enter the following line:

WORKPATH=/ spds_wor k;

2. In the SAS Scalable Performance Data (SPD) Server LIBNAME file (-libnamefile) enter the following domain
definition:

I i bnanme=dnart
pat h=/ dmart _domai n
ropti ons="dat apat h=('/dnmart _data')
i ndexpat h=("'/dmart i ndex')";

L oading Data into an SAS Scalable Perfor mance Data (SPD) Server Host

SAS Scalable Performance Data (SPD) Server's emphasis on complete LIBNAME compatibility means that when you
access SAS Scalable Performance Data (SPD) Server, the standard procedures used to create tables in SAS apply to
SAS Scalable Performance Data (SPD) Server tables as well.

Using SAS, you can load data into SAS Scalable Performance Data (SPD) Server tables using DATA step programs,
PROC COPY or PROC APPEND, and SCL applications. You also can use SQL pass-through to load SAS

Scalable Performance Data (SPD) Server tables. The SAS Scalable Performance Data (SPD) Server SQL extensions for
the LOAD TABLE and COPY TABLE statements provide further support.

Use LOAD TABLE to load a table from the projected columns of an SQL SELECT statement and create indexes, all in a
single pass. LOAD TABLE exploits multi-thread table I/O and index creation. The multi-thread table I/O and index
creation overlaps with the SELECT statement that extracts the data from its source tables.

Use COPY TABLE to copy an existing SAS Scalable Performance Data (SPD) Server table to a new table and include
indexes as part of the copy operation. It offers the same parallel table and index I/O and overlapped input as the
LOAD TABLE command.

The COPY TABLE and LOAD TABLE statements work only for source and target tables on the local machine.
Table Loading Techniques

The SAS data storage model adds rows to a data set one at a time. The SAS Scalable Performance Data (SPD) Server I/
O engine buffers rows to be added from the SAS application and performs block adds using a highly efficient pipelined
append protocol when communicating with the proxy.

. Parallel Table Load Technique Using PROC APPEND

. Parallel Table Load Technique Using SQL Pass-Through
. Parallel Pass-Through Table Load and Data Subset

. Parallel Pass-Through Table Copy

193



To achieve significant improvements in building a table, create the empty table first, defining indexes on the desired
columns. Then, use PROC APPEND to populate the table and indexes. The example below demonstrates this technique.

Parallel Table L oad Technique Using PROC APPEND

/* Create an enpty SPD Server table with the sane */
/* colums and colum attributes as the existing */
/* SAS table. * |

data spdslib. cars;
set sonelib. cars(obs=0);
run;

/* Create indexes for the enpty table so the indexes */
/* are appended in parallel with the table appends. */

PROC DATASETS 1i b=spdsli b;
nmodi fy cars;
i ndex create nake;
i ndex create origin,;
i ndex create npg;
qui t;

/* PROC APPEND SAS table Cars to SPD Server table */
/* Cars. The append to the SPD Server table and */
/* its indexes will occur in parallel. */

PROC APPEND
base=spdsli b. cars
dat a=sonel i b. cars;

run;

If you are using SQL pass-through, consider using the LOAD TABLE command to perform the same operation. LOAD
TABLE encapsulates the sequence of SAS DATA and PROC steps into an even more powerful technique for gaining
maximum performance when loading a new table. The following example demonstrates the same table construction using
LOAD TABLE and SQL pass-through:

Parallel Table L oad Technique Using SOL Pass-Through

/* Create a copy of the SPD Server table Cars and */
/* its index from Exanple 1 to another SPD Server */

/* table carload using pass-through LOAD comand. */
/* The table creation of the SPD Server table */
/* carload and its indexes will occur in parallel. */
execut e(
| oad table carload with
i ndex make
on (nake),

i ndex origin
on (origin),
i ndex npg
on (npg)

194



as select *
fromcars
) by sasspds;

Parallel Pass-Through Table L oad and Data Subset

/* Create a subset of the SPD Server table Cars */
/* from Exanple 1 to another SPD Server table */
/* Fordcar using the pass-through LOAD command. */

/* The table creation of the SPD Server table */
/* Fordcar and its indexes occurs in parallel. */
execut e(

| oad table fordcar with
i ndex origin
on (origin),
i ndex npg

on (npg)
as select *

fromcars
wher e nake="f ord"
) by sasspds;

Parallel Pass-Through Table Copy

/* Create a copy of the SPD Server table Cars and */

/* all its indexes fromExanple 1 to another Data */
/* Server table Copycars using the pass-through */
/[* COPY command. The table creation of the Data */
/* Server table Copycars and its indexes will */
/* occur in parallel. */
execut e(

copy table copycars

fromcars

) by sasspds;

L oading | ndexesin Paralléel

A significant strength of SAS Scalable Performance Data (SPD) Server is efficient creation, maintenance, and use of
table indexes. Indexing can greatly speed the evaluation of WHERE Clause queries. The index can also be a source of
sort order when performing BY-clause processing. The index is also used directly by some SAS applications. For
example, PROC SQL uses indexes to efficiently evaluate equi-joins.

. Parallel Index Creation
. Parallel Index Updates

Parallel Index Creation

195



SAS Scalable Performance Data (SPD) Server supports parallel index creation using asynchronous index options. To
enable asynchronous parallel index creation, either submit the SPDSIASY=YES macro variable prior to creating an index in
SAS, or use the ASYNCINDEX=YES table option.

Both the macro variable and the table option apply to the DATA step INDEX= processing as well as to PROC DATASETS
INDEX CREATE commands. Either method allows all of the declared indexes to be populated with a single scan of the
table. A single scan is a substantial improvement over making multiple passes through the data to build each index serially.

As always, there is a price for parallelism. To create multiple indexes requires enough WORKPATH= disk space to create
all of the key sorts at the same time. The PROC DATASETS structure has the flexibility to allow batched parallel index
creation by using multiple MODIFY groups. The Parallel Index Creation example below inserts INDEX CREATE
statements between two successive MODIFY statements resulting in a parallel creation group.

Parallel Index Creation Example

DATA foo. pati ent _i nf o;
| engt h
| ast _name $10
first_nanme $20
patient class $2
patient _sex $1;

pati ent _no=10;
| ast _nane="Doe";
first_nane="John";
patient cl ass="XY"
patient _age=33;
patient_sex="M;

run;

% et spdsi asy=YES
PROC DATASETS Ii b=f o0;
nodi fy patient_info;
i ndex create
patient_no
patient _cl ass;
nodi fy patient_info;
i ndex create
| ast _nanme
first_nane;
nodi fy patient_info;
i ndex create
whol e_nane=(l ast _nane first_nane)
cl ass_sex=(patient_class patient_sex);
qui t;

Indexes for PATIENT NO and PATIENT CLASS are created in parallel, indexes for LAST NAME and FIRST NAME
are created in parallel, and indexes for WHOLE NAME and CLASS SEX are created in parallel.

Parallel |ndex Updates

SAS Scalable Performance Data (SPD) Server also supports parallel index updates during table append operations.

196



Multiple threads enable overlap of data transfer to the proxy, as well as updates of the data store and index files. SAS
Scalable Performance Data (SPD) Server decomposes table append operations into a set of steps that can be performed in
parallel. The level of parallelism attained depends on the number of indexes that are present on the table. The more indexes
you have, the greater the exploitation of parallelism during the append processing. As with parallel index creation, parallel
index updates use WORKPATH= disk space for the key sorts that are part of the index append processing.

Truncating Tables

The Truncate command is a PROC SPDO command that allows the deletion of all rows in a table without deleting the
table structure or metadata. The PROC SPDO truncate command is shaded for emphasis in the code example below.

% et host =kaboom ;
% et port=5191 ;
% et dommi n=pat h2 ;

i bname &domai n sasspds " &domai n"
server =&host .. &port
user ="' anonynous'
i p=YES ;

/|* create a table */

data &Jommin..staceys_table ;

doi =1 to 100 ;
out put ;

end ;

run ;

/* verify the contents of the created table */

PROC CONTENTS dat a=&donai n. . st aceys_tabl e ;
run ;

/* SPDO Truncate conmand del etes the table */
/* data but | eaves the table structure in */
/* place so new data can be appended */

PROC SPDO | i b=&donmai n ;
set acluser ;
Truncat e staceys table ;

quit ;
/* verify that no rows or data remain in */
/* the structure of staceys table */

PROC CONTENTS dat a=&donai n. . st aceys_tabl e ;
run ;

Optimizing WHERE Clauses

197



SAS Scalable Performance Data (SPD) Server includes more advanced methods to optimize WHERE Clauses. Before

SAS Scalable Performance Data (SPD) Server 4.0, the rule-based, heuristic WHERE Clause planner WHINIT was used

to manually "tune" queries for performance. SAS Scalable Performance Data (SPD) Server provides dynamic WHERE
Clause costing, an automatic feature which can replace the need to manually "tune" queries. SAS Scalable Performance
Data (SPD) Server dynamic WHERE-costing uses factors of duplicity and distribution to calculate relative processor "costs"
of various WHERE Clause options. SAS Scalable Performance Data (SPD) Server users can use server parameter
commands in the spdsser v. par mfile or macro variables to turn dynamic WHERE-costing on and off. If dynamic
WHERE-costing is turned off, SAS Scalable Performance Data (SPD) Server reverts to using the rules-based WHERE
Clause planner.

WHERE Clause Definitions and Ter minology

. WHERE Clauses are selection criteria for a query that specify one or more boolean predicates. Implementing the
criteria, SAS Scalable Performance Data (SPD) Server selects only records that satisfy the WHERE clause.

. Predicates are the building blocks of WHERE clauses. Use them stand-alone or combine them with the operators
AND and/or OR to form complex WHERE clauses. An example of a WHERE Clause is

"where x >1 andy in (1 2 3)"

In this example, there are two predicates, "x > 1" and"y in (1 2 3)". You specify the negative of a predicate
by using "not". For example, "where x > 1 and not (y in (1 2 3))".

. Boolean logic determines whether two predicates, joined with an AND or OR, are true (satisfies) or false (does not
satisfy) the specification. The AND operator requires that all predicates be true for the entire expression to be true.
For example, the expression "pl AND p2 AND p3", is true only if all three predicates (p1, p2 and p3) are true. In
contrast, the OR operator requires only one predicate to be true for the entire expression to be true.

For the WHERE clause "(x <5 ory in (1 2 3)) and z= 10", the following truth table describes the overall result

(truth):

"x <5 ?" "yvin (123 ?" "z =10 ?" Resul t
Fal se Fal se Fal se Fal se
Fal se Fal se True Fal se
Fal se True Fal se Fal se
Fal se True True True
True Fal se Fal se Fal se
True Fal se True True
True True Fal se Fal se
True True True True

. Indexesare structures associated with tables that permit SAS Scalable Performance Data (SPD) Server to quickly
access records that satisfy an indexed predicate. In an example WHERE clause, "where x =10 andy > 11", SAS
Scalable Performance Data (SPD) Server selects the best index on column "x" to directly retrieve records that have a
value of 10 in the "x" column. If no index exists for "x", SAS Scalable Performance Data (SPD) Server must
sequentially read each record in the table searching for "x" equal to 10.

. Simple and compositeindexes: Simple indexes index a single column; composite indexes index two or more
columns. The list of column(s) in an index is sometimes called the index key.

. Parallelism is the SAS Scalable Performance Data (SPD) Server capability that enables multiple threads to execute

in parallel. Using multiple processors in parallel mode is sometimes called 'divide and conquer’ processing. SAS
Scalable Performance Data (SPD) Server uses parallelism to evaluate the multiple indexes that are involved in more

198



complicated WHERE clauses.

SAS Scalable Performance Data (SPD) Server |ndexing

SAS Scalable Performance Data (SPD) Server tables may have one or more indexes. There are a combination of
four different indexing strategies a table can use, and the choice depends on the data populating the table, the size of the
table, and the types of queries that will be executed against the table.

SAS Scalable Performance Data (SPD) Server indexing evaluates the processor "cost" of a WHERE Clause. The

section Costing Using Duplicity and Distribution Values shows how factors of duplicity and distribution are used to choose
the evaluation strategy that will perform the WHERE Clause at the smallest processor "cost". The five evaluation
strategies that the WHERE Clause planner uses are EVAL 1, EVAL 2, EVAL 3, EVAL 4, and EVAL 5. The differing
EVAL strategies calculate the number of rows that will be required to execute a given query.

"True" rows are rows that contain the variable values specified in a WHERE Clause. "False" rows do not contain the
variable value specified in the clause. EVAL 1, EVAL 3, EVAL 4, and EVAL 5 evaluate "true" rows in the table

using indices. EVAL 2 evaluates true rows of a table without using indices. EVAL strategies are explored in more detail in
the section below on WHERE Clause EVAL Strategies.

o SPD Indexes
o MINMAX Indexes

SPD Indexes

SAS Scalable Performance Data (SPD) Server uses segmented indices. A segmented index is created by dividing the index
of a table into equally sized ranges of rows. Each range of rows is called a segment, or slot. You use the SEGSIZE= setting
to define the size of the segment. A series of sub-indices each point to blocks of rows in the table. By default, SAS
Scalable Performance Data (SPD) Server creates an index segment for every 8192 rows in a table.

The SPD segmented index facilitates SAS Scalable Performance Data (SPD) Server's parallel evaluation of WHERE
Clauses with an indexed predicate. First, the SPD index supports a pre-evaluation phase to determine which segments
contain values that satisfy the predicate. Pre-evaluation speeds queries by eliminating segments that do not contain any
possible values. Then, up to SPDSTCNT= threads are launched to query the remaining index segments. The threads query
the segments of the SPD index in parallel to retrieve the segment rows that satisfy the predicate. When all segments have
been queried, the per-segment results are accumulated to determine the rows that satisfy the predicate. If the query contains
multiple indexed predicates, then those predicates are also evaluated in parallel. When all predicates have been completed,
their results are accumulated to determine the rows that satisfy the query.

MINMAX Indexes

SAS Scalable Performance Data (SPD) Server contains a new table option called MINMAXVARLIST=. The primary
purpose of the MIINMAXVARLIST= table option is for use with SAS Scalable Performance Data (SPD) Server dynamic
cluster tables where specific members in the dynamic cluster contain a set or range of values, such as sales data for a given
month. When a SAS Scalable Performance Data (SPD) Server SQL subsetting WHERE Clause specifies specific months
from a range of sales data, the WHERE planner checks the min/max indexes. Based on the min/max index information, the
SAS Scalable Performance Data (SPD) Server WHERE planner includes or eliminates member tables in the dynamic
cluster for evaluation.

Use the MIINMAXVARLIST= table option with either numeric or character-based columns. MINMAXVARLIST= uses
the list of columns you submit to build an index. The MINMAXVARLIST= index contains only the minimum and
maximum values for each column. The WHERE Clause planner uses the index to filter SQL predicates quickly, and to

199



include or eliminate member tables belonging to the cluster table from the evaluation.

Although the MINMAXVARLIST= table option is primarily intended for use with dynamic clusters, it also works on
standard SAS Scalable Performance Data (SPD) Server tables. MINMAXVARLIST= can help reduce the need to create
many indexes on a table, which can save valuable resources and space.

The MINMAXVARLIST= table option is only available when a table is being created or defined. If a table has a
MINMAXVARLIST= type of index, moving or copying the table will destroy the index unless MINMAXVARLIST= is
specified in the table output.

% et domai n=pat h3 ;
% et host =kaboom ;
% et port=5201 ;

| i bnane &domai n sasspds " &domai n"
server =&host .. &port
user ='anonynous' ;

/* Create three tables called */
/* xyl, xy2, and xya3. */

data &domain..xyl(m nmaxvarlist=(x y));
do x =1 to 10;
doy =1to 3
out put;
end;
end;
run;

data &donmain..xy2(m nmaxvarlist=(x y));
do x = 11 to 20;
doy =41to 6 ;
out put ;
end;
end;
run;

data &domai n. . xy3(mi nmaxvarlist=(x y));
do x = 21 to 30;
doy =710 9 ;
out put;
end;
end;
run;

/* Create a dynamic cluster table */
/* called cluster_table out of */
/* new tables xyl, xy2, and xy3 */

PROC SPDO |i brary=&domai n ;
cluster create cluster _table
menFxyl
menExy 2
menFxy3
maxsl ot =10;
qui t;

200



/* Enabl e WHERE eval uation to see */
/* how the SQL pl anner sel ects */
/* menbers fromthe cluster. Each */
/* menber is evaluated using the */
/* mn-max index. */

% et SPDSWDEB=YES;

[* The first menber has true rows */

PROC PRI NT dat a=&dommi n. . cluster _table ;
where x eq 3 and y eq 3;
run;

/* Exam ne the other tables */

PROC PRI NT dat a=&dommi n. . cluster _table ;
where x eq 19
and y eq 4 ;

run;

PROC PRI NT dat a=&donmi n..cluster _table ;
where x eq 22
and y eq 9;

run;

PROC PRI NT dat a=&donai n..cluster_table ;
where x between 1 and 10
and y eq 3;

run;

PROC PRI NT dat a=&donai n..cluster _table ;
where x between 11 and 30
and y eq 8 ;

run;

/* Delete the dynamic cluster table. */

PROC SPDO | i brary=&domai n ;
cluster undo cluster _table
quit;

PROC DATASETS | i b=&domai n noli st;
del ete xyl xy2 xy3 ;
quit ;

WHERE Clause Planner

The WHERE Clause Planner implemented in SAS Scalable Performance Data (SPD) Server avoids computation-

201



intensive operations and uses simple computations where possible. WHERE Clauses in large database operations can be
very resource-intensive operations. In SAS Scalable Performance Data (SPD) Server 3.x and earlier releases, query
authors often needed to manually "tune" queries for performance. The "tuning" was accomplished using macro variables
and index settings. The WHERE Clause planner integrated into SAS Scalable Performance Data (SPD) Server does

the "tuning" work for the user by automatically costing the different approaches to index evaluation.

n}

]

]

0

0

WHERE-Costing Using Duplicity and Distribution Values
WHINIT: Indexed and Non-Indexed Predicates

WHERE Clause EVAL Strategies

Assigning EVAL Strategies

Sample WHINIT Output

WHINIT Output Return Keywords

Composite Index Permutations

WHERE-Costing Using Duplicity and Distribution Values

Two key factors are used to evaluate, or "cost” WHERE Clause indices. The factors are duplicity and distribution.

Duplicity refers to the proportion expressed by the number of rows in a table divided by the number of distinct values in the
index. When many observations in a table hold the same value for a given variable, the variable value is said to have a high
duplicity. An example of a table with high duplicity might be a table of unleaded gasoline prices from service stations in
the same area of a large city.

Conversely, when a table has only one or few observations that contain a given value for a variable, then that value can be
described as low duplicity. An example of a table with low duplicity might be an office phone directory, where the variable
for phone extension is always unique.

The duplicity value for an index ranges from 1 to the number of rows in the table. Indices with a duplicity value of 1 are
unique. Indices with high duplicity generate a score that is close to the number of rows in the table.

Distribution refers to the sequential proximity between observations for values of a variable that are repeated throughout the
variable's data set distribution. When a certain value for a variable exists in many observations that are scattered uniformly
throughout the table, that value is said to have a wide distribution. If a variable value exists in many contiguous or nearly
contiguous rows, the distribution is clustered.

WHERE Clause EVAL Strategies

SAS Scalable Performance Data (SPD) Server indexing keeps track of the duplicity and distribution of variable values in a
table and uses them to calculate the cost of a WHERE Clause. The WHERE Clause planner uses four evaluation strategies
to determine the number of rows that will be required to execute a given query. The four evaluation strategies are EVAL 1,
EVAL 2, EVAL 3, and EVAL 4. "True" rows are rows that contain the variable values specified in a WHERE Clause.
"False" rows do not contain the variable value specified in the clause.

EVAL 1, EVAL 3, EVAL 4, and EVAL 5 evaluate "true" rows in the table using indices. EVAL 2 evaluates true rows of a
table without using indices.

. EVAL 1 evaluates "true" rows using an index to locate the true rows in each segment of the table. The index
evaluation process generates a list of row IDs per segment. EVAL 1 accepts WHERE Clause operators for
equivalency expressions such as EQ, =, LE, <=,LT, <, GE, >=, GT, >, IN, and BETWEEN. EVAL 1 uses
threaded parallel processing across the index segments to permit concurrent evaluation of multiple indices. EVAL 1
combines multiple segment bitmaps from queries that use multiple indices to generate the list of row IDs per
segment.

202



EVAL 2 takes "true" rows as determined by EVAL 1, EVAL 3, or EVAL 4, then uses brute force to eliminate any
rows shown to be "false", leaving a table which contains only "true" rows. EVAL 2 processes all rows of a table
when no index evaluation is possible. For example, no index evaluation is possible when an index is not present or
when some predecessor function performs an operation that invalidates the index.

EVAL 3is a single index sequential process. Use EVAL 3 when the number of rows returned by an index is unique
or nearly unique (when duplicity is low). EVAL 3 returns a list of "true" rows for the entire table. EVAL 3 only
supports the equality operators EQ and =.

EVAL 4 is similar to EVAL 3 but supports a larger set of inequality and inclusion operators, such as IN, GT, GE,

LT, LE, and BETWEEN.

. EVAL 5 can operate when the SAS Scalable Performance Data (SPD) Server Index Scan Facility is used. The

EVAL 5 strategy uses index metadata and aggregate SQL functions to evaluate "true" rows. The EVAL 5 strategy

does not require a table scan.

For example, when X is indexed, and SAS Scalable Performance Data (SPD) Server uses EVAL 5 to evaluate the

SQL expression

count(*) where x=5 ,

the index metadata is scanned for the condition, "x = 5" instead of performing table scans. The EVAL 5 strategy

supports the min(), max(), count(), count(distint), nmiss(), and range() functions. The EVAL 5 strategy cannot be

used on SQL expressions which uses functions other than those listed above.

The WHERE Clause planner in SAS Scalable Performance Data (SPD) Server 3.x relied heavily on EVAL 1 and EVAL 2
threaded strategies to evaluate most clauses. Sometimes the SAS Scalable Performance Data (SPD) Server 3.x EVAL 1 and

EVAL 2 strategies would over-thread and over-manipulate indices during the evaluations during WHERE Clause
evaluation. This resulted in reduced performance or excessive resource consumption. With SAS Scalable Performance
Data (SPD) Server 4.4's WHERE Clause costing in place, EVAL 3 and EVAL 4 strategies are more suitable evaluation
engines which conserve resources and boost processor performance.

Assigning EVAL Strategies

The SAS Scalable Performance Data (SPD) Server WHERE Clause planner uses the following logic when selecting an
EVAL strategy to evaluate expressions:

When the planner encounters a WHERE Clause, it builds a tree that represents all of the possible predicate expressions. The

objective of the WHERE Clause planner is to divide the set of predicate expressions into two trees. One tree collects
predicate expressions which lack usable indices and are constrained to EVAL 2 evaluation. The remaining predicate
expressions are put in the other tree. Each of the predicate expressions in the second tree are scanned and assigned an

evaluation strategy of EVAL 1, EVAL 3, or EVAL 4, depending on the WHERE Clause costing values and the syntax used

in the predicate expression .

The second tree, which does not use the EVAL 2 method, is scanned for predicate expressions that return values with high

duplicity . When high duplicity predicate expressions are identified, they are ranked. The predicate expression with the
highest duplicity value is set aside for an index-based evaluation. All of the other remaining predicate expressions are

evaluated using the EVAL 2 tree strategy. The lowest duplicity predicate expression is evaluated using either the EVAL 3

or the EVAL 4 strategy. The syntax used in the predicate expression determines which of the two strategies to use.
Frequently, the single index EVAL 3 or EVAL 4 is chosen because single index evaluations require smaller processing

loads and yield reliable results. With a low processor overhead and a high data yield, there is no reason to include other

indices when a single index is sufficient.

When the WHERE Clause planner determines that no predicate expressions meet the high duplicity criteria, it chooses the

203



EVAL 1 strategy. Before the EVAL 1 operation is performed, the costing algorithm is run on the remaining predicates in
order to prune any predicate expressions which represent large processor loads and large data yields. Predicate expressions
which will require large processor loads and produce large data yields are moved to the EVAL 2 tree.

o Index Scan Facility

o High Yield Predicate Expressions

o High Processing Load Predicate Expressions

o High Yield and High Processing [Load Predicate Expressions
o Turning WHERE Clause Costing Off

I ndex Scan Facility

When SAS Scalable Performance Data (SPD) Server invokes the Index Scan Facility, and the SQL aggregate
uses the specified supported functions for EVAL 5, the EVAL 5 strategy uses a fast index metadata scan to
select SQL statements that meet the aggregate function criterion.

High Yield Predicate Expressions

A large, or high data yield expression has a high percentage of rows containing true segments. The default
threshold for a for high yield expression is one where less than 25% of the rows evaluated are returned by the
predicate. At this point, processor costs related to index use begin increasing without proportional returns on
the evaluation results.

High Processing L oad Predicate Expressions

Predicate expressions that require high processing loads are predicates that usually require large amounts of
index manipulation before they can complete. When the amount of index work that is required exceeds the
work that is required to use an EVAL 2 strategy, the predicate expression will be best evaluated by the EVAL
2 tree. Open-ended predicate expressions that contain many syntax inequality operators such as GT and LT
or many variations in syntax are good high work candidates for EVAL 2. High work predicate expressions
are detected by comparing the number of unique values in the predicate expression to the number of unique
values contained in the index.

High Yield and High Processing L oad Predicate Expressions

When all predicate expressions in EVAL 1 are high yield or high processor load, SAS Scalable Performance
Data (SPD) Server uses segmented costing. In segmented costing, "true" segments are passed to EVAL 2 for
processing. EVAL 2 only processes table segments that can provide "true" rows for the WHERE Clause.

Turning WHERE Clause Costing Off

You can use the SAS Scalable Performance Data (SPD) Server spdsser v. par mparameter file to configure

the default WHERECOSTING parameter setting to ON. If you want to turn WHERE Clause costing off
within the scope of a job, you can use macros or a DATA step to turn WHERE Clause costing off and on:

. The SPDSWCST=NO macro setting turns off WHERE Clause costing.

204



. The SPDSWSEQ=YES macro overrides WHERE Clause costing and allows you to force a global
EVALS3 or EVALA strategy.

. The WHERECOSTING parameter can be removed or set to NOWHERECOSTING in the spdsserv.
par mfile if you want to turn off costing for the entire server.

If you turn WHERE Clause costing off in the spdsser v. par mparameter file, or if you use the macro setting
SPDSWCST=NO, the WHERE Clause planner reverts to the rules-based WHERE Clause planning of earlier
versions of SAS Scalable Performance Data (SPD) Server.

WHINIT: Indexed and Non-Indexed Predicates

If SAS Scalable Performance Data (SPD) Server is not configured to use dynamic WHERE-costing, the WHERE Clause
planner reverts to the rule-based heuristics of WHINIT. WHINIT uses rules to select indexes for the predicates, and then
select the most appropriate EVAL strategy for the query.

WHINIT splits the WHERE clause, represented as a tree, into non-indexed and indexed parts. Non-indexed predicates
include

. non-indexed columns
. functions
. columns that have indexes that WHINIT cannot use.

If the WHERE Clause planner places indexed predicates in the non-indexed tree, it is usually because the predicates involve
an OR expression. An example of a predicate with an OR expression is, "where x = 1 or y =2". Even if column "x" is
indexed, WHINIT cannot use the index because the OR is disjunctive. As a result of the disjunctive OR, the planner cannot

use the index, and places both the predicates, "x = 1" and "y = 2", into the non-indexed part of the WHERE tree.

Sample WHINIT Output

SAS users can use an SAS Scalable Performance Data (SPD) Server macro variable to view WHERE Clause planner
output:

% et SPDSWDEB=YES;

The following is what the WHINIT plan might give for the following scenario:

. a WHERE clause of "wherea=1andbin(123)andd=3and (d + 3=¢)"
. an SPD index IDX ABC on columns (A B C)
. an SPD index D on column (D).

Note: The line numbers are for reference; they are NOT part of the actual output.

L:whinit: WHERE ((A=1) and Bin (1, 2, 3) and (D=3) and (C=(D+3)))
2:whinit: wh-tree presented

3.
[ -NAMVE = [ A]
4. /-CEQ ---|
5: |
\-LITN = [1]

205



6: --LAND---|
7: |

/- NAME = [ B]
8: [ --TN----
9: |

| /-LITN = [1]
10: |

\-SET----]|
11: |

|--LITN = [ 2]
12: |
\-LITN = [ 3]

13: |

/-NAVE = [ D]
14: | --CEQ ---|
15: |

\-LITN = [ 3]
16: |

/-NAMVE = [ (]
17: \-CEQ---|
18:

| /-NAMVE = [ D]
19:

\ - AADD- - - |
20:

\-LITN = [ 3]
21:whinit: wh-tree after split
22: /-NAME = [ (]
23: --CEQ ---|
24: |

/-NAMVE = [ D]
25: \ - AADD- - - |
26:

\-LITN = [ 3]

27:whinit: SBM I NDEX D uses 50% of segs (W THI N naxsegratio 75%
28:whinit: INDEX tree after split

29:
/-NAME = [A] <1>SBM | NDEX | DX_ABC (A B)

30: /-CEQ ---|
31: |

\-LITN = [1]
32: --LAND - -|
33: |

/- NAMVE = [ B]
34: [ --TN----]
35: |

| /[-LITN = [1]
36: |

\-SET----]|
37: |

|--LITN = [ 2]
38: |
\-LITN = [ 3]

39: |

/-NAME = [D] <2>SBM | NDEX D (D)
40: \-CEQ---|
41

\-LITN = [3]

206



42:whinit returns: ALL EVAL1(w SEG.I ST) EVAL2

Line 1 shows what the WHINIT Planner received. Do not be surprised -- what the Planner receives can differ from your
entries. Sometimes SAS optimizes or transforms a WHERE clause before passing it to SAS Scalable Performance Data
(SPD) Server. For example, it can eliminate entities such as NOTs, the union of set lists, and so on.

Lines 2 to 20 show the presented WHERE clause in a tree format. The tree format is a user-readable form of the actual
WHERE clause that is processed by the SAS Scalable Performance Data (SPD) Server engine.

Lines 21 to 26 show the non-indexed WHERE tree, the result of splitting off the indexed part. The non-indexed WHERE
tree can be "empty" or it can look the same as lines 2 to 20 if no indexes are selected. Bear in mind that it is the non-indexed
part of the WHERE clause that WHINIT uses to filter records obtained by the indexed strategies (EVALI, 3 or 4).

Lines 27 to 41 shows that the percentage of segments containing values selected from column D is with the maximum
allowed to proceed with pre-segment logic. Therefore, only those segments that contain values that satisfy the where clause
for column D will be included in further query processing for that column. Composite index IDX ABC and simple index D
are used to resolve the indexed WHERE clause predicates.

Line 42, the last line in our output, shows which strategies are used. The first keyword "ALL" indicates that SAS Scalable
Performance Data (SPD) Server can identify correctly ALL resulting records, without help from the SAS System. First,
SAS Scalable Performance Data (SPD) Server will call EVAL1, an indexed method, to quickly access a list of records
which satisfy "wherea=21and b in (12 3)" and "d = 3", then it will use EVAL2 to determine if "c = d + 3" is true on these
records.

When output from EVALI displays the suffix "w/ seglist", as it does in the above output, it means that SPD indexes were
detected, and that the indexes were used to filter out only the segments that satisfy the given indexed predicates. When
EVALI has no suffix, it means that ALL segments will be evaluated.

SAS Scalable Performance Data (SPD) Server stores the minimum and maximum values for a table index in a global
structure. WHINIT can use the numeric range to 'prune' predicates when the table index values are out of the min / max
range. WHINIT output keywords can indicate pruning activity. For example, if WHINIT had determined that the values for
"D" (in our WHERE clause) are between 5 and 13, then as a consequence, the predicate "whered = 3" could never be true.
In this case, WHINIT would have pruned this predicate since it is logically impossible, or FALSE. Pruning can also affect
higher nodes. If the "d = 3" predicate were deemed FALSE, then the AND sub tree would also be FALSE and would also
have been pruned.

WHINIT Output Return Keywords

In the last line of the output, "ALL" is one of the following keywords that the Planner can display:

. ALL - SAS Scalable Performance Data (SPD) Server can evaluate ALL of the WHERE clause when determining
which records satisfy the clause.

. SOME - SAS Scalable Performance Data (SPD) Server can handle SOME, or part, of the WHERE clause; it will
then need some of the SAS System to help identify resulting records.

. NONE - SAS Scalable Performance Data (SPD) Server cannot evaluate this WHERE clause; the SAS System will
perform all evaluations.

. TRUE - SAS Scalable Performance Data (SPD) Server has determined that the entire WHERE clause is TRUE, and
that all the records satisfy the given WHERE clause. (It did index minimum / maximum values or other checks , for
example, "where 1 =1".)

. FALSE - SAS Scalable Performance Data (SPD) Server determined that the WHERE clause is FALSE, that is, no
207



records can satisfy the WHERE clause.
. RC=number - An internal error has occurred; the error number is displayed.

. EVALX - the EVAL strategies the Planner will use, "x" can be 1, 2, 3 or 4.

Composite |ndex Per mutations

A composite index can involve one or more "in set" equality predicates, such as an index on columns (a b ¢). When
WHINIT is presented with a WHERE Clause that has such a composite index, for example, "where a=1 and b in (1 2 3)
and c in (4 5)", it will generate all permutations of this compound key, probing the index for each value. In our example, six
values are generated:

(abc)=(114)(115)(124)(125)(134) (135)

The permutations start at the "back" end of the key to take advantage of locality: to locate keys with close values which
access the same disk page. This means less input/output operations on the index.

How to Affect the WHERE Planner

. Macro Variable: SPDSWCOST=

. Macro Variable: SPDSWDEB=

« Macro Variable: SPDSIRAT=

. Macro Variable SPDSNIDX = or Table Option NOINDEX=
. Macro Variable SPDSWSEQ=

« Server Parameter Option WHERECOSTING

. WHERENOINDEX= Option

. When and Why Should I Suppress Indexes?

. Identical Parallel WHERE Clause Subsetting Results

Macro Variable SPDSWCST =

To turn off dynamic WHERE-costing, specify

% et SPDSWCST=NO,

Macro Variable SPDSWDEB=

To turn on WHINIT planning output, specify

% et SPDSWDEB=YES;

Macro Variable SPDSIRAT=

208



To affect the WHERE-planner SPD index pre-evaluation, specify

% et SPDSI RAT=i ndex- segnent-rati o;

The SPDSIRAT= macro variable specifies a maximum percentage (ratio) for the number of segments in the hybrid bitmap
which must contain the index value before the WHERE-planner should pre-evaluate a segment list.

The segment list enables the planner to launch threads only for segments that contain the value. If the value number exceeds
the ratio, the planner performs no pre-evaluation. Instead, the planner launches a thread for each segment in the table.

The SPDSIRAT= macro variable option can be used to ensure that time spent in pre-evaluation does not exceed the cost of
launching a thread for each segment in the table. By default SPDSIRAT= is set to 75 percent. This means that if an index
value is contained in 75 percent or less of the index segments, the hybrid bitmap logic will pre-evaluate the value and return
a list of segments to the WHERE Clause planner. If more than 75 percent of the index segments contain the target index
value, the time spent on pre-evaluation might be more than the time saved by skipping a small number of segments.

For some tables 75 percent may not be the optimal setting. To determine a better setting, run a performance benchmark,
adjust the percentage, and rerun the performance benchmark. Comparing results will show you how the specific data
population you are querying responds to shifting the index-segment ratio. The allowable range to adjust the setting value is
from 0 to 100, where 0 means never perform WHERE Clause pre-evaluation, and 100 means always perform WHERE
Clause pre-evaluation.

Macro Variable SPDSNIDX=or Table Option NOINDEX=

To suppress WHINIT use of any index, specify the no index SAS Scalable Performance Data (SPD) Server macro variable
or the corresponding SAS Scalable Performance Data (SPD) Server table option:

% et SPDSNI DX=YES;

data _null _;
set foo.a (noi ndex=yes);

Macro Variable SPDSWSEQ=

By default, when WHINIT detects equality predicates that have indexes, it chooses EVAL1. However, the user may decide
that sequential EVAL3 or EVAL4 methods are better. For example, in an equality WHERE predicate such as "where x =
3", WHINIT will default EVALLI to evaluate the clause. If a user knows that the table queried has only a few records that
can satisfy this predicate, EVAL3 may be a better choice. To force WHINIT to choose EVAL3/4, specify:

% et SPDSWSEQ=YES;

Server Parameter Option [NOJWHERECOSTING

Controls whether the server uses dynamic WHERE-costing. When dynamic WHERE-costing is disable, the rules-based
WHINIT heuristic is used to "tune" WHERE Clauses for performance. The default setting is for NOWHERECOSTING.

209



WHERENOINDEX Option

A user may decide that one or more indexes selected by a WHINIT plan are not the best choice. This can occur because
WHINIT is rule-based, not cost-based. Sometimes WHINIT selects a less-than-optimal plan. WHINIT's use of specific
indexes can be affected by specifying the SAS Scalable Performance Data (SPD) Server option WHERENOINDEX= in

your data step.

data _null _;
set foo.a (wherenoi ndex=(idx_abc d))

This example specifies that WHINIT not use index "idx_abc" and index "d".

When and Why Should | Suppress | ndexes?

Most rule-based planners, including WHINIT from SAS Scalable Performance Data (SPD) Server, assume that the index
has a uniform distribution of values between the upper and lower value boundaries. This means if data values range between
2 and 10, that there are an equal number of 3's and 4's, and so on. When the assumption of a uniform distribution is false, an
indexed predicate can return a large number of records. In turn, this causes WHINIT's indexed plan to run slower than a
sequential read of the entire table. In this case the index should be suppressed.

Here is another, more subtle instance. When the WHERE clause uses only the front part of the key, WHINIT selects a
composite index. Assume an index abcd on columns A, B, C and D and an index € on column E, and specify the WHERE
clause

where a = 3 and e = 5;

Normally, WHINIT will select both indexes (abcd and €) and choose EVALI1. However, using the index abcd just to
interrogate a might return a large number of records. In this case, suppressing the abcd index may be a good idea. If so,
WHINIT will still choose EVALL1 for e=5, or EVAL3 if SPDSWEV1=NO, and EVAL?2, the post-filter, for a = 3.

|dentical Parallel WHERE Clause Subsetting Results

Under certain circumstances, it is possible to perform parallel WHERE Clause subsetting on a table more than once and to
receive slightly different results. This event can occur when submitting parallel WHERE Clause code to SAS Scalable
Performance Data (SPD) Server that utilizes the SAS OBS=nnnn data set option.

The SAS OBS=nnnn data set option causes processing to end with the specified (nth) observation in a table. Because
parallel WHERE Clause processing is threaded, subsetting a table and using the OBS=nnnn may not produce identical
results from run to run, or different batch jobs using the same WHERE Clause code may produce slightly different results.

When a parallel WHERE-cause evaluation is split into multiple threads, SAS Scalable Performance Data (SPD) Server
employs a multi-threading model that is designed to return rows as fast as possible. Some threads may be able to complete
row scans incrementally faster than other threads, due to uneven loads across multiple processors or system contention
issues. This inequity can create minute variances which can generate non-identical results to the same subsetting request.

If you have code that performs parallel WHERE Clause subsetting in conjunction with the OBS=nnnn data processing
option, and if it is critical that successive WHERE Clause subsets on the same data must be identical, you can eliminate
thread contention error by setting the thread count value for that operation to 1.

To set the SAS Scalable Performance Data (SPD) Server thread count value, you can use the SPDSTCNT= macro:

210



% et SPDSTCNT=1;

The same potential for subsetting variation applies when a data step uses the OBS=nnnn data processing option with a
parallel by-clause, such as:

data testl;
set spds44.testdata (obs=1000);
where j in (1,5, 25);
by i;

run;

Use the SPDSTCNT= macro solution to ensure identical results across multiple identical table subsetting requests.

. WHERE Clause Subsetting Variation Example

WHERE Clause Subsetting Variation Example:

Job 1 and Job 2 use the same tables and data requests but produce non-identical results as seen in the
respective Job 1 and Job 2 outputs.

To eliminate variation in the output, simply add the thread count statement

% et SPDSTCNT=1;

to the beginning of each job.

Job 1

data test1;
set spds44.testdata
(0obs=1000);
where j in (1,5,25);
run;

PROC SORT dat a=t est 1;
by i;

run;

PROC PRI NT data=test1l

(0obs=10);
run;

Job 1 Output:
The SAS System 11: 44 NMonday, May 9, 2005 1
os a i j k
1 24601 1 1

211



2 24605 5 5
3 24625 25 0
4 24701 1 1
5 24705 5 5
6 24725 25 0
7 24801 1 1
8 24805 5 5
9 24825 25 0
10 24901 1 1
Job 2:

data test 2,

set spds44.testdata
(0obs=1000);

where j in (1,5, 25);

run;

PROC SORT dat a=t est 2;
by i;
run;

PROC PRI NT dat a=t est 2
(obs=10);
run;

Job 2 Output:

The SAS System
11: 44 Monday, May 9, 2005 1

os a i j k
1 1 1 1
2 5 5 5
3 25 25 0
4 101 1 1
5 105 5 5
6 125 25 0
7 201 1 1
8 205 5 5
9 225 25 0

10 301 1 1

WHERE Clause Examples

. Example 1: "wherei=1andj=2and m=4"
. Example 2: "whereiin (1,2,3)andjin (4, 5,6, 7) and k> 8 and m = 2"
. Example 3: "where i =1 and j > 5 and mod(k, 3) =2"

212



. Example 4: "where i=1 and j > 5 and mod(k, 3) = 2" (the index 1JK is suppressed)

The WHERE Clause examples below assume that the user is connected to the SAS Scalable Performance Data (SPD)
Server LIBNAME foo and has executed the following SAS code:

data foo. a;
do i=1 to 100;
do j=1 to 100;
do k=1 to 100;
menod( i, 3) ;
out put ;
end;
end;
end;
run;

proc datasets |ib=foo;

nmodi fy a;

index create ijk = (i j k);
i ndex create j;

i ndex create m

quit;

Examplel "wherei=l1landj=2and m=4"

whinit: WHERE ((1=1) and (J=2) and (M=4))
whinit: wh-tree presented

/-NAME = [1]
/- CEQ - --|
I
\-LITN = [1]
- - LAND- - - |
|
/-NAME = [J]
| -- CEQ --- |
|
\-LITN = [2]
|
/-NAME = [M
\-CEQ - --|

\-LITN = [4]
whinit: wh-tree after split
--[enpty]
whinit: pruning | NDEX node which is trivially FALSE
/-NAME = [M INDEX M (M
--CEQ - --|
\-LITN = [4]
whinit: INDEX tree evaluated to FALSE
whinit returns: FALSE

Here the only values that column M can contain are 0, 1, or 2. Thus, the predicate m = 4 is identified as trivially FALSE.
Because this predicate is part of an AND predicate, it too is FALSE. Consequently, the entire WHERE clause is pre-
evaluated to FALSE, meaning that no records can satisfy this WHERE clause. Thus, as a result of the pre-evaluation, no

213



records are actually read from disk. This is an example of optimization at its best.

Example2: "whereiin (1,2,3)andjin(4,5,6,7)andk >8and m =2"

whinit: WHERE (I in (1, 2, 3) and J in (4, 5, 6, 7) and (K>8) and (M=2))
whinit: wh-tree presented

/-NAME = [1]
[-IN-=--|
I
| /-LITN = [1]
I
\ - SET----|
I
|--LITN = [2]
I
\-LITN = [3]
- - LAND- - - |
I
/-NAME = [J]
|- IN- -]
|
| /-LITN = [4]
I
\ - SET----|
I
|--LITN = [5]
I
|--LITN = [6]
I
\-LITN = [7]
I
/-NAME = [K]
e
\-LITN = [8]
I
/-NAME = [M
\-CEQ ---|
\-LITN = [2]

whinit: SBM | NDEX M uses 60% of segs(W THI N naxsegrati o 100%
whinit: wh-tree after split
/-NAVE = [K]
--CGT- - - - |
\-LITN = [ 8]
whinit: INDEX tree after split

/-NAME = [1] <1>SBM INDEX IJK (I,J)
[-IN==--|
|
| [-LITN = [1]

I
\ - SET----|

214



=
_|
Z
I

[2]

\-LITN = [3]
- - LAND- - - |
/-NAI\/EI:[J]
|- IN-- -]
| ! /-LITN = [4]
\- SE ||
! |--LITN = [5]
! |--LITN = [6]
| \-LITN = [7]

I
/-NAME = [M <2>SBM | NDEX M (M

\-CEQ ---|

\-LITN = [ 2]
whinit returns: ALL EVAL1(w SEGLI ST) EVAL2

Here, a composite index ijk was defined on columns (i j k). This composite index is used for column's i and j, which is an
equality index predicate. Column K is not included because it involves a inequality operator (greater than). Since there are
no other indexes for column K, this predicate is assigned to EVAL2 . EVAL2 will post-filter the records obtained through
the use of indexes.

Example 3: "wherei =1and j >5and mod(k, 3) = 2"

whinit: WHERE ((1=1) and (J>5) and (MOD(K, 3)=2))
whinit: wh-tree presented

/-NAME = [1]
/-CEQ ---|
|

\-LITN = [1]
-~ LAND- - - |
I
/-NAME = [J]
}CGTl
\-LITN = [5]
I

I
/- FLST---|

I
| | - - NAMVE

|
| \-LITN
\- CEQ - --|

/ - FUNC

[ MOX() ]

[ K]
[3]

\-LITN = [2]

215



whinit: wh-tree after split

/-FUNC = [ MOX()]
/- FLST- - -|
|
| -- NAMVE = [K]
I
\-LITN = [3]
--CEQ - --|
\-LITN = [2]
whinit: SBM I NDEX | JK uses 1% of sges(W THI N nmaxsegrati o 75%
whinit: SBMINDEX J uses at |east 76% of segs(EXCEEDS maxsegrati o 75%
whinit: INDEX tree after split

/-NAME = [1] <1>SBM I NDEX IJK (1)

/-CEQ ---|
|

\-LITN = [1]

-~ LAND- - - |

I

/-NAME = [J] <2>SBM I NDEX J (J)
\-CGT- - - - |

\-LITN = [5]
whinit returns: ALL EVAL1(w SEGLI ST) EVAL2

Here the indexes on column i, a composite index on the columns (i j k), and the column j are combined. In this example
WHINIT uses both EVAL1 and EVAL2. The j predicate involves a inequality operator (greater than). Therefore, WHINIT
cannot combine the predicate with i and the composite index involving i and j (and k).

Using the composite index ijK in this plan may be inefficient. If a smaller composite index (that is, one on i j or a simple
index on i) were available, WHINIT would select it. In lieu of this, try benchmarking the plan. Suppress the composite

index and compare the results to the existing plan to see which is more efficient (faster) on your machine.

The example that follows shows what WHINIT's plan would look like with the composite index suppressed.

Example 4. "wherei =1andj >5and mod(k, 3) = 2" (theindex | JK is suppressed)

whinit: WHERE ((1=1) and (J>5) and (MOD(K, 3)=2))
whinit: wh-tree presented

/-NAMVE = [I]
/-CEQ---|
I
\-LITN = [1]
- LAND- - - |

|
/-NAME = [J]

\-LITN = [5]
|
/-FUNC = [ MOD()]
|

/- FLST-- - |

216



I | | --NAME = [K]
| \-LITN = [3]
\-CEQ - - - |
\-LITN = [ 2]
whinit: wh-tree after split
/-NAME = [1I]
/- CEQ ---|
|
\-LITN = [1]
-- LAND- - - |
|
/-FUNC = [ MODX()]
|
/- FLST---|
|
I | | --NAME = [K]
| \-LITN = [3]
\-CEQ - - - |
\-LITN = [2]

whinit: SBMINDEX J uses at |east 76% of segs (EXCEEDS maxsegrati o 75%
whi nit: checking all hybrid segnents
whinit: INDEX tree after split
/-NAME = [J] <1>SBM | NDEX J (J)
--CGT----|
\-LITN = [5]
whinit returns: ALL EVAL1 EVAL2

Notice that the predicate involving column i is non-indexed. WHINIT evaluates it using EVAL2. Because the predicate j >
5 still uses an inequality comparison, WHINIT continues to use EVALI1. Finally, because the percentage of segments that
contain values for column J exceeds the maximum segment ratio, pre-segment logic is not done on column J. As a result,
all segments of the table are queried for values which satisfy the WHERE Clause for column J.

Server-Side Sorting

In most instances, using a BY-clause in SAS code submitted to a SAS Scalable Performance Data (SPD) Server table triggers
a BY-clause evaluation by SAS Scalable Performance Data (SPD) Server. This BY-clause assertion to the SAS

Scalable Performance Data (SPD) Server may or may not require sorting to produce the ordered row set that the BY-

clause requires. In some cases, a table index can be used to sort the rows to satisfy a BY-clause.

For example, the input table to a PROC SORT step is sorted in server context (by the associated LIBNAME proxy). The

rows are returned to PROC SORT in BY-clause order. In this case, PROC SORT knows that the data is already ordered,

and writes the data to the output table without sorting it again. Unfortunately, this approach still must send the data from

the LIBNAME proxy to the SAS client and then back to the LIBNAME proxy. However, there are other ways to use a

SAS Scalable Performance Data (SPD) Server SQL pass-through COPY statement to avoid the overhead of the data round-trip.

SAS Scalable Performance Data (SPD) Server attempts to use an index when performing a BY-clause. The software
looks specifically for an index that has variables in the order specified in the BY-clause. On the surface this seems like a
good idea: table row order is already determined because the keys in the index are ordered. SAS Scalable Performance

217



Data (SPD) Server reads the keys in order from the index, then returns the rows from the table based upon the row IDs that
are stored with the index key values.

Use caution when using BY-clauses on tables that have indexes on their BY columns. Using the index is not always a

good idea. When no suitable index exists to determine BY-clause order, SAS Scalable Performance Data (SPD) Server uses

a parallel table scan sort that keeps the table row intact with the sort key. The time required to access a highly

random distribution of row IDs (obtained by using the index) can greatly exceed the time required to sort the rows from scratch.

When you use a WHERE Clause to filter the rows from a SAS Scalable Performance Data (SPD) Server table with a BY-
clause to order them in a desired way, SAS Scalable Performance Data (SPD) Server handles both the subsetting and

the ordering for this request. In this case, the filtered rows that were qualified by the WHERE Clause are fed directly into a
sort step. Feeding the filtered rows into the sort step is part of the parallel WHERE Clause evaluation. The final ordered
row set is the result. In this case, the previous discussion of index use does not apply. Index use for WHERE Clause filtering
is very desirable and greatly improves the filtering performance that feeds into the sort step. Arbitrarily suppressing index
use with a WHERE and BY combination should be avoided.

. Suppressing the Use of Indexes
. Advantages of Implicit Server Sorts

Suppressing the Use of | ndexes

Suppress the use of indexes on the BY-clause by using the SPDSNIDX=YES macro variable or by asserting the
NOINDEX=YES table option. Suppressing the use of the index may significantly improve time required to process a BY-
clause in SAS Scalable Performance Data (SPD) Server.

Advantages of Implicit Server Sorts

An exceptional feature is the software's ability to execute ad-hoc order-BY queries without pre-sorting the table on the BY
variables. Many SAS job streams are structured with code that alternates PROC SORT followed by PROC xxxx
invocations where the PROC SORT step is only needed for the execution of the PROC xxxx step.

When sort order is relevant only to the following step, eliminate the PROC SORT step and just use the BY-clause on the
PROC xxxx step. This eliminates the extra data transfer (to PROC SORT from SAS Scalable Performance Data (SPD)
Server and then back from PROC SORT to SAS Scalable Performance Data (SPD) Server) to store the sorted result. Even
if SAS Scalable Performance Data (SPD) Server performs the sort associated with the PROC SORT, there is extra data
transfer. The data's round trip from the server to the SAS client and back can impose a substantial time penalty.

218



SAS Scalable Performance Data (SPD) Server Macro Variables

. Introduction
. Variable for Compatibility with the Base SAS Engine
o SPDSBNEQ=
. Variables for Miscellaneous Functions
o SPDSEOBS=
o SPDSSOBS=
o SPDSUSAV=
o SPDSUSDS=
o SPDSVERB=
o SPDSFSAV=
o SPDSEINT=
. Variables for Sorts
o SPDSBSRT=
o SPDSNBIX=
o SPDSSTAG=
. Variables for WHERE Clause Evaluations
o SPDSTCNT=
o SPDSEVIT=
o SPDSEV2T=
o SPDSWDEB=
o SPDSIRAT=
o SPDSNIDX=
o SPDSWCST=
o SPDSWSEQ=
. Variables That Affect Disk Space
o SPDSCMPF=
o SPDSDCMP=
o SPDSIASY=
o SPDSSIZE=
. Variables To Enhance Performance
o SPDSNETP=
o SPDSSADD=
o SPDSSYRD=
u] SPDSAUNQ:
. Variables for a Client and a Server Running on the Same UNIX Machine
o SPDSCOMP=

I ntroduction

Macro variables, known as symbolic variables, operate similarly to LIBNAME and table options. But, they have an
advantage because they apply globally. That is, their value remains constant until explicitly changed.

This chapter presents reference information for SPD Server macro variables, including their purpose, default values, and

219



when and how to use them. The variables are grouped by function or purpose of the default value. Changing the value can
also change the purpose, making the variable fall into another group.

For example, the default setting for the macro variable SPDSSADD= is NO. The SPDSSADD= macro enhances
performance during data appends. Setting SPDSSADD= to YES changes the way the variable functions. The macro
setting SPDSADD=YES ensures compatibility with the base SAS engine. The default setting improves
performance. Changing the setting from the default improves Base SAS software compatibility.

To set a macro variable to YES submit the following statement:

% et MACROVAR=YES;

Note: Assignments for macro variables with YES|NO arguments must be entered in uppercase (capitalized).

When you specify table option settings, precedence matters. If you specify a table option after you set the option in a
macro variable statement, the table option setting takes precedence over the macro variable option setting. If you specify
an option using a LIBNAME statement, then later specify an option setting through a macro variable statement, the
table option setting made in the macro variable takes precedence over the over the LIBNAME statement setting.

To view the default values for the SPD Server macro variables, use the SPDSMAC command associated with PROC

SPDO. SAS displays the macro variables and their current settings. Understanding proper use of macro variables in
SPD Server allows you to unleash the power of the software.

Variablefor Compatibility with the Base SAS Engine

SPDSBNEQ=

Use the SPDSBNEQ-= setting to specify the output order of table rows that have identical values in the BY column.

Syntax
SPDSBNEQ=YES|NO

Default: NO
Corresponding Table Option: BYNOEQUALS=

Use the following arguments:

YES
outputs rows with identical values in a BY clause in random order.

NO
outputs rows with identical values in a BY clause using the relative table position of the rows from the input
table.

Description

SPDSBNEQ=NO configures the SPD Server to imitate the Base SAS engine behavior. If strict compatibility is not
required, assign SPDSBNEQ=YES. Random output allows the SPD Server to create indexes and append to tables
faster.

220


file:///C:/SPDSUserPRISM/faqspds.htm#HowList

Example
Configure the SPD Server so that it output table rows as quickly as possible when processing rows that have
identical values in the BY column.

% et SPDSBNEQ=YES;

Variablesfor Miscellaneous Functions

SPDSEOBS=

Use the SPDSEOBS= macro variable to specify the number of the last row (end observation) of a user-defined
range that you want to process in a table.

Syntax
SPDSEOBS=n

Default: The default setting of 0 processes the entire table.
Corresponding Table Option: ENDOBS=

Use the following argument:

is the number of the end row.

Description

The SPD Server processes the entire table by default unless you specify a range of rows. You can specify a range
using the macro variables SPDSSOBS= and SPDSEOBS=, or you can use the table options, STARTOBS= and
ENDOBS=.

If you use the range start macro variable SPDSSOBS= without specifying an end range value using the
SPDSEOBS= macro variable, SPD Server processes to the last row in the table. If you specify values for both
SPDSSOBS= and SPDSEOBS= macro variables, the value of SPDSEOBS= must be greater than SPDSSOBS=.
The SPDSSOBS= and SPDSEOBS= macro variables specify ranges for table input processing as well as WHERE
Clause processing.

Example
In order to create test tables, you configure the SPD Server to subset the first 100 rows of each table in your job.
Submit the macro variable statement for SPDSEOBS= at the beginning of your job.

% et SPDSEOBS=100;

SPDSSOBS=

Use the SPDSSOBS= macro variable to specify the number of the starting row (observation) in a user-defined

221



range of a table.

Syntax
SPDSSOBS=n

Default: The default setting of 0 processes the entire table.
Corresponding Table Option: STARTOBS=

Use the following argument:

1s the number of the start row.

Description

By default, SPD Server processes entire tables unless you specify a range of rows. You can specify a range using
the macro variables SPDSSOBS= and SPDSEOBS=, or you can use the table options, STARTOBS= and
ENDOBS=.

If you specify the end of a user-defined range using the SPDSEOBS= macro variable, but do not implicitly specify
the beginning of the range using SPDSSOBS=, SPD Server sets SPDSSOBS= to 1, or the first row in the table. If
you specify values for both SPDSSOBS= and SPDSEOBS= macro variables, the value of SPDSEOBS= must be
greater than SPDSSOBS=. The SPDSSOBS= and SPDSEOBS= macro variables specify ranges for table input
processing as well as WHERE Clause processing.

Example
Print the INVENTORY.OLDAUTOS table, skipping rows 1-999 and beginning with row 1000. You should
submit the SPDSSOBS= macro variable statement before the PROC PRINT statement in your job.

% et SPDSSOBS=1000;

The statement above specifies the starting row with SPDSSOBS=, but does not declare an ending row for the range
using SPDSEOBS=. When the program executes, SAS will begin printing at row 1000 and continues until the
final row of the table is reached.

PROC PRI NT dat a=i nvent ory. ol daut os;
run;

SPDSUSAV=

Use the SPDSUSAV= macro variable to specify whether to save rows with non-unique (rejected) keys to a
separate SAS table.

Syntax
SPDSUSAV=YES|NO|REP

Default: NO

Affected by Table Option : SYNCADD=

222



Usein Conjunction with Variable: SPDSUSDS=
Corresponding Table Option : UNIQUESAVE=
Use the following arguments:

YES
writes rows with non-unique key values to a SAS table. Use the macro variable SPDSUSDS= to reference
the name of the SAS table for the rejected keys.

NO
non-unique key values are ignored and rejected rows are not written to a separate table.

REP
when updating a master table from a transaction table, where the two tables share identical variable
structures, the SPDSUSAV=REP option replaces the row updated row in the master table instead of
appending a row to the master table. The REP option only functions in the presence of a /UNIQUE index on
the MASTER table. Otherwise, the REP setting is ignored..

Description

When performing an append operation, SPD Server does not save the rows which contain duplicate key values
unless the SPDSUSA V= macro variable is set to YES.

When SPDSUSAV=is set to YES, SPD Server creates a hidden SAS table and writes rejected rows to the table.
Use the SPDSUSDS= macro variable command to view the contents of the table. Each append operation creates a
different table.

Example
Append several tables to the EMPLOYEE table, using employee number as a unique key. The appended tables
should not have records with duplicate employee numbers.

At the beginning of the job, configure SPD Server to write any rejected (identical) employee number records to a
SAS table. The macro variable SPDSUSDS= holds the name of the SAS table for the rejected keys.

% et SPDSUSAV=YES

Use a %PUT statement to display the name of the table, and then print the table.
%ut Set the macro variabl e spdsusds to &spdsusds;
title 'Duplicate (non-unique) enployee nunbers found in

EMPS' ;
PROC PRI NT dat a=&spdsusds; run;

SPDSUSDS=

223



Use the SPDSUSDS= macro variable to reference the name of the SAS table that SPD Server creates for duplicate
or rejected keys when the SPDSUSAV= macro variable is set to YES.

Syntax
SPDSUSDS=

Default: SPD Server automatically generates identifying strings for the duplicate or rejected key tables.

Usein Conjunction with Table Option: SYNCADD=

Usein Conjunction with Variable: SPDSUSAV=

Corresponding Table Option: UNIQUESAVE=

Description

When SPDSUSAV=or UNIQUESAVE=is set to YES, SPD Server creates a table to store any rows with duplicate

key values encountered during an append operation. Submitting the SPDSUSDS= macro variable references the
generated name for the hidden SAS table.

To obtain the name and print the table's contents, reference the variable SPDSUSDS=.

Example

% et SPDSUSAV=YES

Use a %PUT statement to display the name of the table created by SPDSUSDS= and to print out the duplicate
rOws.

%ut Set the nmacro variabl e spdsusds to &spdsusds;
title 'Duplicate Rows Found in MYTABLE

During the Last Data Append';
PROC PRI NT dat a=&spdsusds; run;

SPDSVERB=

Use the SPDSVERB= macro variable to provide verbose details on all indexes, ACL information, and other
information that is associated with SPD Server tables.

Syntax
SPDSVERB=YES|NO

Default: NO
Corresponding Table Option: VERBOSE=

Use the following arguments:

224



YES
requests detail information for indexes, ACLs, and other SPD Server table values.

NO
suppresses detail information for indexes, ACLs, and other SPD Server table values.

Example

You need information about associated indexes for the SPD Server table SUPPLY. Configure SPD Server for
verbose details at the start of your session so you can see index details. Submit the SPDSVERB= macro variable as
a line in your your autoexec.sas file:

% et SPDSVERB=YES;

Submit a PROC CONTENTS request for the SUPPLY table:

PROC CONTENTS dat a=suppl y;
run;

SPDSFSAV=

Use the SPDSFSAV= macro variable to specify whether you want to retain table data if the SPD Server table
creation process terminates abnormally.

Syntax
SPDSFSAV=YES|NO

Default: NO. Normally SAS closes and deletes tables which are not properly created.

Use the following arguments:

YES
enables FORCESAVE mode and saves the table.

NO
default SPD Server actions delete partially completed tables.

Description

Large tables can require a long time to create. If problems such as network interruptions or disk space shortages
occur during this time period, the table may not be properly created and signal an error condition. If SAS
encounters such an error condition, it deletes the partially completed table.

In SPD Server you can set SPDSFSAV=YES. Saving the partially created table can protect the time and resources
invested a in long-running job. When the SPDSFSAV= macro variable is set to YES, the SPD Server LIBNAME
proxy saves partially completed tables in their last state and identifies them as damaged tables.

Marking the table damaged prohibits other SAS DATA or PROC steps from accessing the table until its state of
completion can be verified. After you verify or repair a table, you can clear the 'damaged' status and enable further
read/update/append operations on the table. Use the PROC DATASETS REPAIR operation to remove the
damaged file indicator.

225



Example
Configure SPD Server before you run the table creation job for a large table called ANNUAL. If some error
prevents the successful completion of the table ANNUAL, the partially completed table will be saved.

% et SPDSFSAV=YES;
DATA SPDSLI B. ANNUAL;

RUN;

SPDSEINT=

Use the SPDSEINT= macro to specify how SPD Server responds to network disconnects during SQL pass-through
EXECUTE() statements.

Syntax
SPDSEINT=YES|NO

Default: YES

Description:

The SPD Server SQL server interrupts SQL processing by default when a network failure occurs . The interruption
prematurely terminates the EXECUTE() statement. Setting SPDSEINT=NO configures the SPD Server's SQL
server to continue processing until completion regardless of network disconnects.

Warning: Use the macro variable setting SPDSEINT=NO carefully! A runaway EXECUTE() statement requires a
privileged system user on the server machine to kill the SPD Server SQL proxy process. This is the only way to
stop the processing.

Variablesfor Sorts

SPDSBSRT=

Use the SPDSBSRT= macro variable to configure SPD Server's sorting behavior when it encounters a BY-clause
and there is no index available.

Syntax
SPDSBSRT=YES|NO

Default: YES
Corresponding Table Option: BYSORT=

Use the following arguments:

226



YES
SPD Server performs a server sort when it encounters a BY clause and there is no index available.

NO
SPD Server does not perform a sort when it encounters a BY clause.

Description
Base SAS software requires an explicit PROC SORT statement to sort SAS data. In contrast, SPD Server sorts a

table whenever it encounters a BY clause, if it determines that the table has no index.

Advantages for using SPD Server implicit sorts are discussed in detail in the Help section for Connecting to SAS

Scalable Performance Data Server.

Example 1
At the start of a session to run old SAS programs, you realize that you do not have time to remove the existing
PROC SORT statements. These statements are present only to generate print output.

To avoid redundant Server sorts, configure SPD Server to turn off implicit sorts. Put the macro variable assignment
in your autoexec.sas file so SPD Server retains the configuration for all job sessions.

% et SPDSBSRT=NO

During the Example 1 session you decide to run a new program that has no PROC SORT statements. Instead, the
new program takes advantage of SPD Server implicit sorts.

data i nventory. ol d_aut os;
i nput

year $4.
@ manuf acturer $12.
nodel $10.
body style $5.
engine_liters
@9 transm ssion_type $1.
@1 exterior_color $10.
options $10.
m | eage condition

dat al i nes;
1971 Bui ck Skyl ar k conv 5.8 A yellow 00000001 143000 2
1982 Ford Fi esta hatch 1.2 M silver 00000001 70000 3
1975 Lanci a Bet a 2door 1.8 M dk bl ue 00000010 80000 4
1966 A dsmobile Toronado 2door 7.0 A black 11000010 110000 3
1969 Ford Must ang sptrf 7.1 M red 00000111 125000 3

PROC PRI NT dat a=i nvent ory. ol d_aut os;
by nodel ;

run;

When the code executes, the PRINT procedure returns an error message. What happened? SAS expected
INVENTORY.OLDAUTOS to be sorted before it would generate print output. Since there is no PROC SORT

227



statement -- and implicit sorts are still turned off -- the sort does not occur.

Example 2
Keep implicit sorts turned off for the session, but specify an implicit sort for the table INVENTORY.OLDAUTOS.

PROC PRI NT dat a=i nvent ory. ol daut os(bysort =yes);
by nodel ;
run;

SPDSNBIX=

Use the SPDSNBIX= macro variable to configure whether to use an index during a BY-sort.

Syntax
SPDSNBIX=YES|NO

Default: NO
Corresponding Server Parameter Option: [NO]BYINDEX

Use the following arguments:

YES
Set SPDSNBIX=YES to suppress index use during a BY-sort. If the distribution of the values in the table are not
relatively sorted or clustered, using the index for the by sort can result in poor performance.

NO
Set SPDSNBIX=NO or use the default value to allow the [NO]BYINDEX server parameter option to determine whether
to use an index for a by sort.

Example
% et SPDSNBI X=YES;

SPDSSTAG=

Use the SPDSSTAG= macro variable to specify whether to use non-tagged or tagged sorting for PROC SORT or
BY processing.

Syntax
SPDSSTAG=YES|NO

Default: NO

Use the following arguments:

228



YES

performs tagged sorting.
NO

performs non-tagged sorting.
Description

During a non-tagged sort, SPD Server attaches the entire table column to the key field(s) to be sorted. Non-tagged
sorting allows the software to deliver better performance than a tagged sort. Non-tagged sorting also requires more
temporary disk space than a tagged sort.

Example
You are running low on disk space and don't know if you have enough disk overhead to accommodate the extra
sort space required to support a non-tagged sort operation.

Configure SPD Server to perform a tagged sort.

% et SPDSSTAG=YES;

Variablesfor WHERE Clause Evaluations

SPDSTCNT=

Usethe SPDSTCNT= macro variableto specify the number of threads that you want to use during WHERE
Clause evaluations.

Syntax
SPDSTCNT=n

Default: The value of MAXWHTHREADS is configured by SPD Server parameters.
Used in Conjunction with the SPD Server Parameter: MAXWHTHREADS
Corresponding Table Option: THREADNUM =

Use the following argument:

isthe number of threads.

Description
See THREADNUM= for a description and an explanation of how SPDSTCNT= interactswith the SPD

Server parameter MAXWHTHREADS.

SPDSEVIT=

229



Usethe SPDSEV1T= macro variableto indicate whether datareturned from a SPD Server WHERE Clause
evaluations should bein strict row (observation) order.

Themacro variables SPDSEV1T=and SPDSEV2T= work in conjunction with the SPD Server WHERE
Clause planner WHINIT.

Thevariables SPDSEV1T=and SPDSEV2T= areidentical in purpose. You usethem to specify therow
order of datareturned in WHERE-processing. Which variablethe server exer cises dependson the
evaluation strategy selected by WHINIT. The SPDSEV1T= evaluation strategy isindexed. The
SPDSEV 2T = evaluation strategy isnon-indexed. Avoid using these options unless you absolutely

under stand the SPD Server performance tradeoffs that depend on maintaining the order of data.

If compatibility with Base SAS softwareisimportant, set both SPDSEV1T=and SPDSEV2T=t00. When
both evaluation strategies are set to 0, SPD Server returnsdatain row order whether the SPDSEV1T=or
the SPDSEV 2T = strategy is selected.

When you use PROC SQL to perform tablejoinson sorted tablesthat use extra WHERE predicatesto filter
table rows, PROC SQL usessort order information to optimizethejoin strategy. Datathat has been filtered
by the evaluation of extra WHERE predicatesreturnsto PROC SQL in sorted order. SPD Server restricts
parallel evaluation of WHERE predicates any time the table(s) have been sorted using PROC SORT to meet
thisrequirement. Sorting datain thismanner can negatively impact net performance because most SAS
PROCsor DATA stepsdo not process sorted data any faster than unsorted data.. SPD Server recommends
you set the SPDSEV1T= and/or SPDSEV2T= macro variablesto 2. Setting SPDSEV1T= and/or
SPDSEV2T= macro variablesto 2 configures SPD Server to perform parallel WHERE Clause evaluations
without regard for the sort order of the SPD Server tables.

Note: The SPDSEV1T= and SPDSEV 2T = usage discussed here does not apply to SQL statements executed
viathe SPD Server pass-through SQL mechanism.

Syntax
SPDSEV1T=0|1|2

Default: 1
Used in Conjunction with Indexed WHERE Clause Evaluation Strategy

Uses the following arguments:

’ returnsdatain row order.

' may not return thedatain row order. SPD Server may override as needed to force a O setting if the
tableis sorted using PROC SORT.

’ always for ces parallel evaluation regardless of sorted order. May not return datain row order.

Description

If SPD Server must return many rows during WHERE Clause processing, setting the variable to O will
greatly slow performance. Use 0 only when row order isrequired. Use2 only when you know row order is
not important to the result.

230



Example
Configure SPD Server to send back datain row order whenever WHINIT performsan EVAL 1 evaluation.

% et SPDSEV1T=0;

SPDSEV2T=

Usethe SPDSEV2T= macro variable to specify whether the data returned from WHERE Clause
evaluations should bein strict row (observation) order.

Themacro variables SPDSEV1T=and SPDSEV2T= work in conjunction with the SPD Server WHERE
Clause planner WHINIT.

Thevariables SPDSEV1T=and SPDSEV2T= areidentical in purpose. You usethem to specify therow
order of datareturned in WHERE-processing. Which variable the server exercises dependson the
evaluation strategy selected by WHINIT. The SPDSEV1T= evaluation strategy isindexed. The
SPDSEV2T= evaluation strategy isnon-indexed. Avoid using these options unless you absolutely

under stand the SPD Server performance tradeoffs that depend on maintaining the order of data.

If compatibility with Base SAS softwareisimportant, set both SPDSEV1T=and SPDSEV2T=t00. When
both evaluation strategies are set to 0, SPD Server returnsdatain row order whether the SPDSEV1T= or
the SPDSEV 2T = strategy is selected.

When you use PROC SQL to perform tablejoinson sorted tablesthat use extra WHERE predicatesto filter
tablerows, PROC SQL usessort order information to optimize thejoin strategy. Data that has been filtered
by the evaluation of extra WHERE predicatesreturnsto PROC SQL in sorted order. SPD Server restricts
parallel evaluation of WHERE predicates any time the table(s) have been sorted using PROC SORT to meet
thisrequirement. Sorting datain thismanner can negatively impact net performance because most SAS
PROCsor DATA stepsdo not process sorted data any faster than unsorted data.. SPD Server recommends
you set the SPDSEV1T= and/or SPDSEV2T= macro variablesto 2. Setting SPDSEV1T= and/or
SPDSEV2T= macro variablesto 2 configures SPD Server to perform parallel WHERE Clause evaluations
without regard for the sort order of the SPD Server tables.

Note: The SPDSEV1T= and SPDSEV 2T = usage discussed here does not apply to SQL statements executed
viathe SPD Server pass-through SQL mechanism.

Syntax
SPDSEV2T=0|1|2

Default: 1
Used in Conjunction with Non-Indexed WHERE Clause Evaluation Strategy
Use the following arguments:
0
returnsdatain row order.

1
may not return the datain row order. SPD Server may override as needed to for ce O setting if the

231



tableis sorted using PROC SORT.

alwaysforcesparallel evaluation regardless of sorted order. May not return the datain row order.

Description

If SPD Server must return many rows during WHERE Clause processing, setting the variable to O will
greatly slow performance. Use O only when row order isrequired. Use 2 only when you know row order is
not important to the result.

Example
Configure SPD Server to send back datain row order whenever WHINIT performsan EVAL 2 evaluation.

% et SPDSEV2T=0;

SPDSWDEB=

Usethe SPDSWDEB= macro variableto specify whether the WHERE Clause planner WHINIT, when
evaluating a WHERE expression, should display a summary of the execution plan.

Syntax
SPDSWDEB=YESINO

Default: NO
Use the following ar guments:

YES
displays WHINIT's planning output.

NO
suppresses WHINIT's planning output.

SPDSIRAT=

Usethe SPDSIRAT= macro variablesto specify whether to perform segment candidate pre-evaluation when
performing WHERE Clause processing with hybrid indexes.

Syntax
SPDSIRAT=0..100

Default: MAXSEGRATIO server parameter
Description:
When using hybrid indexes, WHERE-based queries pre-evaluate segments. The segments are scanned for

candidates that match one or more predicatesin the WHERE clause. The candidate segmentsthat were
identified during the pre-evaluation are queried in subsequent logic to evaluate the WHERE Clause.

232



Eliminating the non-candidate segments from the WHERE Clause evaluation generally resultsin
substantial performance gains.

Some queries can benefit by limiting the pre-evaluation phase. SPD Server imposes the limit based on a
ratio: the number of segmentsthat contain candidates compared to thetotal number of segmentsin the
table. Thereason for thisissimple. If the predicate has candidatesin a high percentage of the segments, the
pre-evaluation work islargely wasted.

Theratio formed by dividing the number of segmentsthat containing candidates by the number of total
segmentsis compared to a cutoff point. If the ssgment ratio is greater than the value assigned to the cutoff
point, the extra processing required to perform pre-evaluation outweighs any potential process savings that
might be gained through the predicate pre-evaluation. SPD Server calculatestheratio for a given predicate
and comparestheratio to the SPDSIRAT= value, which acts asthe cutoff point. If the calculated ratio isless
than or equal to the SPDSIRAT= value, pre-evaluation is performed. If the calculated ratiois greater than
the SPDSIRAT= value, pre-evaluation is skipped and every segment is a candidate for the WHERE Clause.

Usetheglobal SPD Server parameter, MAXSEGRATIO to set the default cutoff value. The default
MAXSEGRATIO should provide good performance. Certain specific query situations might be justification
for modifying your SPDSIRAT=value. When you modify your SPDSIRAT= value, it overridesthe default
value established by MAXSEGRATIO.

Example:
Configure SPD Server to perform a pre-evaluation phase for WHERE Clause processing with hybrid
indexesif the candidates are in 65% or less of the segments.

% et SPDSI RAT=65;

SPDSNIDX=

Use the SPDSNIDX= macro variable to specify whether to usethetable'sindexes when processing WHERE
Clauses. SPDSNIDX= can also be used to disable index use for BY - order deter mination.

Syntax
SPDSNIDX=YES|NO

Default: NO
Corresponding Table Option: NOINDEX=
Use the following arguments:

YES
ignor esindexes when processing WHERE Clauses.

NO
usesindexes when processing WHERE Clauses.

Description:

233



Set SPDSNIDX=YESto test the effect of indexes on performance or for specific processing. Do not use YES
routinely for normal processing.

Example:

Assumeyou are processing data from SPORT.MAILLIST. Thereisan index for the SEX column and you
want to test to determine if theindex will improve performance when you use PROC PRINT processing on
SPORT.MAILLIST.

Y ou should configure SPD Server not to use theindex:

data sport.maillist;
i nput
nane $ 1-20
address $ 21-57
phoneno $ 58-69
sex $71;

dat al i nes;

Dougl as, M ke 3256 Main St., Cary, NC 27511 919-444-5555 M
Walters, Ann Marie 256 Evans Dr., Durham NC 27707 919-324-6786 F
Turner, Julia 709 Cedar Rd., Cary, NC 27513 919-555-9045 F
Cashwel I, Jack 567 Scott Ln., Chapel Hill, NC 27514 919-533-3845 M
Clark, John 9 Church St., Durham NC 27705 919-324-0390 M

PROC DATASETS |i b=sport noli st;

modi fy maillist;
i ndex create sex;
qui t;

/*Turn on the nmacro vari abl e SPDSWDEB */
/* to show that the index is not used */
/* during the table processing. */

% et spdswdeb=YES
% et spdsni dx=YES

title "All Fermales from Current Miiling List";
PROC PRI NT data=sport.maillist;

where sex="F";

run;

% et spdsni dx=NO

SPDSWCST=

Use the SPDSWCST= macro variable to specify whether to use dynamic WHERE Clause costing.

Syntax
SPDSWCST=YES|NO

234



Default: NO

Corresponding Server Parameter Option: [NOJWHERECOSTING
Turns WHERE-costing on or off for an entire server.

Description:
Set SPDSWCST=YESto use dynamic WHERE Clause costing. Disabling SPDSWCST = defaults SPD
Server to using WHERE-costing with WHINIT.

Example:

% et SPDSWCST=YES;

SPDSWSEQ=

Syntax
SPDSWSEQ=YES|NO

Default: NO
Description:

Set the SPDSWSEQ= macro variableto YES. When set to YES, the SPDSWSEQ= macro variable overrides
WHERE Clause costing and forcesa global EVAL3 or EVAL4 strategy.

Example:

% et SPDSWSEQ=YES;

Variables That Affect Disk Space

SPDSCM PE=

Usethe SPDSCM PF= macro variable to specify the amount of growth space, sized in bytes, to be added to a
compressed data block.

Syntax
SPDSCMPF=n

Default: O bytes

Use the following argument:

235



isthe number of bytesto add.

Description

Updating rowsin compressed tables can increase the size of a given table block. Additional spaceis
required for the block to bewritten back to disk. When contiguous spaceisnot available on thehard drive,
a new block fragment stor es the excess, updated quantity. Over time, the table will experience block
fragmentation.

When opening compressed tablesfor OUTPUT or UPDATE, you can use the SPDSCM PF= macro variable
to anticipate growth space for the table blocks. If you estimate correctly, you can greatly reduce block
fragmentation in the table.

Note: SPD Server table metadata does not retain compression buffer or growth space settings.

SPDSDCM P=

Usethe SPDSDCM P= macro variable to compress SPD Server tablesthat are stored on disk.

Syntax
SPDSDCMP=YES|NO

Default: NO

Usein Conjunction with Table Option: IOBLOCKSIZE=
Corresponding Table Option: COMPRESS=

Use the following arguments:

YES
performstherun-length compression algorithm SPDSRLLC.

NO
per forms no table compression.

Description

When you set the SPDSDCM P= macro variableto YES, SPD Server compresses newly created tables by
'blocks’ according to the algorithm specified. To control the amount of compression, use the table option
IOBLOCKSIZE= to specify the number of rowsthat you want to storein the block. For a complete
discussion, refer to | OBLOCKSIZE-=.

Note: Once a compressed tableis created, you cannot changeitsblock size. To resize the block, you must
PROC COPY thetableto a new table, setting lOBLOCK SIZE= to the new block sizefor the output table.

Example
Prior to creating huge tables, you want to conserve disk space. Specify compression, and the default
algorithm SPDSRLLC, at the beginning of your jab.

236



% et SPDSDCMP=YES;

SPDSIASY =

Use the SPDSIASY = macro variable to specify whether to createindexesin parallel when creating multiple
indexes on an SPD Server table.

Syntax
SPDSIASY=YESINO

Default: NO
Corresponding Table Option : ASYNCINDEX=
Use the following arguments:

YES

createstheindexesin parallel.
NO

createsoneindex at atime.

Description

Y ou use the macro variable SPDSIASY = to choose between parallel and sequential index creation on SPD
Server tableswith morethan oneindex. One advantage of creating multiple indexesin parallel is speed.
The speed enhancementsthat can be achieved with parallel indexesare not free. Parallel indexesrequire
significantly more disk space for working storage. The default SPD Server setting for the SPDSIASY=
macro variableis set to NO, in order to avoid exhausting the available work storage space.

However, if you have adequate disk spaceto support parallel sorts, it is strongly recommended that you
overridethe default SPDSIASY =NO setting and assign SPDSIASY=YES. You can substantially increase
performance -- indexes that take hoursto build complete much faster.

How many indexes should you create in parallel? The answer dependson several factors, such asthe
number of CPUsin the SMP configuration and available stor age space needed for index key sorting.

When managing disk space on your SPD Server, remember that groupingi ndex create statementscan
minimize the number of table scansthat SPD Server performs, but it also affects disk space consumption.
Thereisan inverserelationship between the table scan frequency and disk space requirements. A minimal
number of table scans requires more auxiliary disk space; a maximum number of table scansrequiresless
auxiliary disk space.

Example

Your perform batch processing from midnight to 6:00 a.m. All of your processing must be completed before
start of the next work day. One frequently-repeated batch job creates largeindexes on atable, and usually
takes several hoursto complete. Configure SPD Server to create indexesin parallel to reduce the processing
time.

% et SPDSI ASY=YES;

237



proc datasets |ib=spds;
nmodi fy a;
i ndex create Xx;
i ndex create vy;

nmodi fy a;
i ndex create conp=(x y) conmp2=(y X);
quit;

In the example above, the X and Y indexes will be created in parallel. After creating X and Y indexes, SPD
Server createsthe COMP and COMP2 indexesin parallel. In thisexample, two table scans are required:
onetable scan for the X and Y indexes, and a second table scan for the COMP and COM P2 indexes.

SPDSSIZE=

Usethe SPDSSIZE= macro variable to specify the size of an SPD Server table partition.

Syntax
SPDSSIZE=n

Default: 16 Megabytes
Corresponding Table Option: PARTSIZE=
Affected by LIBNAME option: DATAPATH=

Use the following argument:

isthe size of the partition in M egabytes.

Description
Use this SPDSSI ZE= macr o variable option to improve performance of WHERE Clause evaluation on non-
indexed table columns.

Splitting the data portion of a server table at fixed-sized intervals allows SPD Server tointroduce a high
degree of scalability for non-indexed WHERE Clause evaluation. Thisis because SPD Server launches
threadsin parallel and can evaluate different partitions of the table without file access or thread contention.
The speed enhancement comes at the cost of disk usage. The more data table splitsyou create, the moreyou
increase the number of files, which arerequired to storetherows of the table.

Scalability limitson the SPDSSIZE= macro variable ultimately depend on how you structurethe
DATAPATH= option in your LIBNAME statement. The configuration of the DATAPATH= file systems
across striped volumesisimportant. You should spread each individual volume's striping configuration
across multiple disk controllers/SCSI channelsin the disk storage array. Your configuration goal, at the
hardwar e level, should be to maximize parallelism when performing dataretrieval.

The SPDSSI ZE= specification isalso limited by MINPARTSIZE=, an SPD Server parameter maintained by
the SPD Server administrator. MINPART SIZE= ensuresthat an over-zealous SAS user cannot arbitrarily
create small partitions, ther eby generating an excessive number of physical files. The default for

238



MINPARTSIZE=is 16 Mbytes.

Note: The SPDSSIZE= valuefor atable cannot be changed after thetableiscreated. To changethe
SPDSSIZE=, you must PROC COPY thetable and use a different SPDSSIZE= (or PARTSIZE=) option
setting on the new (output) table.

For an example using the table option, see PARTSIZE=.

% et SPDSSI ZE=32;

Variables To Enhance Perfor mance

SPDSNETP=

Use the SPDSNET P= macro variable to size buffersin server memory for the network data packet.

Syntax
SPDSNET P=size-of-packet

Default: 32K

Corresponding Table Option: NETPACKSIZE=

Usethe argument:

size-of-packet
isthesize (integer) in bytes of the network packet.

Description
When sizing the buffer for data packet transfer between SPD Server and your SAS client machine, the
packet must be greater than or equal in sizeto onetablerow. See NETPACKSIZE= for moreinformation.

Example

Despite recent upgradesto your network connections, you ar e experiencing significant pauses when the SPD
Server transfersdata. You want to resize the data packet to send threerows at a time for a more continuous
data flow.

Specify a buffer sizein server memory that isthreetimesthe row size (6144 bytes.) Submit your
SPDSNETP= macro variable statement at the top of your job.

% et SPDSNETP=18432;

SPDSSADD=

239



Use the SPDSSADD= macr o variableto specify whether SPD Server appendstablesby transferring a single
row at a time synchronously, or by transferring multiple rows asynchronously (block row appends).

Syntax
SPDSSADD=YES|NO

Default: NO
Related Table Option: SYNCADD=
Use the following arguments:

YES
appliesa singlerow at atime during an append operation. This behavior imitatesthe Base SAS
engine.

NO
appends multiplerows at atime

Description
SPDSSADD=YES slows performance. Use thisargument only if you require strict compatibility with Base
SAS softwar e when processing a table. For a complete discussion, refer to SYNCADD-=.

SPDSSYRD=

Use the SPDSSY RD= macr o variable to specify whether SPD Server should perform asynchronous data
streaming when reading a table.

Syntax
SPDSSYRD=YES|NO

Default: NO
Related Table Option: SYNCREAD=
Use the following arguments:

YES
enables asynchronous data streaming.

NO
disables asynchronous data streaming.

Description Use SPDSSYRD=YES only with a MODIFY statement. If you useit with any other processing
operation, you slow performance.

240



SPDSAUNQ=

Use the SPDSAUNQ= macr o variable setting to specify whether to abort an append to atableif the table has
a uniqueindex and the append would violate the index uniqueness.

Syntax
SPDSAUNQ=YES|NO

Default: NO

Description: Use SPDSAUNQ=YES macro variableto improve append performanceto a table with unique
indexes. If uniquenessisnot maintained, the append isaborted and the tableisreturned to itsstate prior to
the append. In such an instance, you can scrub the table to remove non-unique values and re-do the append
with the macro variable SPDSAUNQ= set to YES. Theother alternativeisto simply re-do the append with
the macro variable SPDSAUNQ= set to NO.

If SPDSAUNQ=NO, the SPD Server will enforce uniqueness at the expense of appending unique indexesin
observation order onerow at atime. If uniquenessisnot maintained for any given row, that row is
discarded from the append.

Variablesfor a Client and a Server Running on the Same UNI X Machine

SPDSCOM P=
specifies to compress the data when sending a data packet through the network.

Syntax
SPDSCOMP=YESNO

Default: NO

241



SAS Scalable Performance Data (SPD) Server LIBNAME Options

. Introduction
. Options to Locate a SAS Scalable Performance Data (SPD) Server Host
o HOST=
. Using a Macro Variable to Specify the SAS Scalable Performance Data (SPD) Server Host
o SERVER=
. Options to Identify the SAS Scalable Performance Data (SPD) Server Client
o ACLGRP=
o CHNGPASS=
o NEWPASSWORD= or NEWPASSWD=
o PASSWORD= or PASSWD=
o PROMPT=
o USER=
. Options to Specify Implicit SQL Pass-Through
o IP=YES
o PASSTHRU=
. Options to Specify File Paths for Table Storage
o CREATE=
o DATAPATH=
o INDEXPATH=
o METAPATH=
. Options for Access Control Lists (ACLs)
o ACLSPECIAL=
. Options for a Client and Server Running on the Same UNIX Machine
o NETCOMP=
o UNIXDOMAIN=
. Options for Other Functions
o BYSORT=
o DISCONNECT=
o ENDOBS=
o LIBGEN=
o LOCKING=
o STARTOBS=
o TEMP=
o TRUNCWARN=
o WORKPATH=

I ntr oduction

All SAS users who want to use LIBNAME access to a SAS Scalable Performance Data (SPD) Server should read this chapter.

This chapter contains reference information for the SAS Scalable Performance Data (SPD) Server LIBNAME options.
The options are grouped by the function or purpose of their default value. You can change the default, thereby controlling
how they function in different data situations. The examples for using the options assume that a LIBNAME statement to

242



access the SAS Scalable Performance Data (SPD) Server engine SASSPDS has previously been issued.

When using the options, remember that if a table option is used subsequent to a LIBNAME option of the same name, the
value of the table option or macro variable takes precedence.

Optionsto L ocate a SAS Scalable Perfor mance Data (SPD) Server Host

HOST=

Specifies a SAS Scalable Performance Data (SPD) Server machine by node name or IP address and locates the
name server using the SERVICE value.

Syntax

HOST=' host nane' <SERVI CE=' servi ce' >

Use the following arguments:

'hostname'
is the node name of the SAS Scalable Performance Data (SPD) Server machine or an IP address.

'service'
is the name of a service or the port number for the SAS Scalable Performance Data (SPD) Server's name
server.

Description

This option provides the node name of a SAS Scalable Performance Data (SPD) Server host machine and locates
the port number of the SAS Scalable Performance Data (SPD) Server's name server. When there is no SERVICE=
specification, SAS Scalable Performance Data (SPD) Server checks the client's / et ¢/ ser vi ces file (or its

equivalent file) for SPDSNAME -- a reserved name for the SAS Scalable Performance Data (SPD) Server's name
server.

Examples

Specify the server machine SAMSON and use the default named service SPDSNAME to obtain the port number of
the SAS Scalable Performance Data (SPD) Server's name server.

LI BNAME nyli b sasspds 'spdsdata
host =' sanson’' ;

Specify the server machine SAMSON and provide the port number of the SAS Scalable Performance Data (SPD)
Server's name server.

LI BNAME nyli b sasspds 'spdsdata
host =' sanson’
servi ce=' 5002

243



Using a Macro Variableto Specify the SAS Scalable Perfor mance Data (SPD)
Server Host

Assign the macro variable SPDSHOST to the SAS Scalable Performance Data (SPD) Server host SAMSON so
that the LIBNAME statement need not specify SAMSON.

% et spdshost =sanson;
LI BNAME nyli b sasspds 'spdsdata’

user="yourid'
passwor d=' swam '

SERVER=

Specifies a SAS Scalable Performance Data (SPD) Server host machine by node name and locates the network
address (port number) of the SAS Scalable Performance Data (SPD) Server name server.

Syntax

SERVER=host nanme. ser vhane

Use the following arguments:

hostname
is the node name of the SAS Scalable Performance Data (SPD) Server host machine.

servname
is the name of a service or the port number of the SAS Scalable Performance Data (SPD) Server's name
server.

Examples

Specify the SAS Scalable Performance Data (SPD) Server host machine SAMSON and use the default named
service SPDSNAME to obtain the port number of the SAS Scalable Performance Data (SPD) Server's name server.

LI BNAME nyli b sasspds 'spdsdata’
server =sanson. spdsnane;

Specify the SAS Scalable Performance Data (SPD) Server host machine SAMSON and give the port address of the
SAS Scalable Performance Data (SPD) Server's name server.

LI BNAME nyli b sasspds 'spdsdata
server =sanson. 5002;

Optionsto ldentify the SAS Scalable Per for mance Data (SPD) Server Client

244



ACLGRP=

Names an ACL group which has been previously assigned to the SAS Scalable Performance Data (SPD) Server
user ID. The SAS Scalable Performance Data (SPD) Server system administrator sets up ACL groups and can
assign a single user to up to five ACL groups.

Syntax

ACLGRP= " acl group”
Use the following argument:
aclgroup

Names the ACL group that the SAS Scalable Performance Data (SPD) Server Administrator assigned to
your SAS Scalable Performance Data (SPD) Server user ID. (You can be assigned up to five ACL groups.)

Example

Specify the ACL group PROD.

LI BNAME nyl i b sasspds 'spdsdata’
user ='receiver'
acl gr p=' PROD
pronpt =yes;

Note: Password values are case sensitive. That is, if the SAS Scalable Performance Data (SPD) Server
administrator assigns a lowercase value, you must enter the password value in lowercase.

CHNGPASS=

Specifies to prompt a SAS Scalable Performance Data (SPD) Server user for a change of password. If ACL file
security is enabled, the SAS Scalable Performance Data (SPD) Server validates the old/new password against its
user ID table.

Syntax

CHNGPASS= YES | NO

Use the following arguments:

YES
prompts for a change of the SAS Scalable Performance Data (SPD) Server user password.

NO
suppresses a prompt for a change of the SAS Scalable Performance Data (SPD) Server user password. This

245



is the default.

Example
Specify a prompt to change the password of SAS Scalable Performance Data (SPD) Server user TEMPHIRE.

LI BNAME nyl i b sasspds 'spdsdata’
user="tenphire'
passwor d=" whi zbang'
chngpass=yes;

Note: If you are using LDAP user authentication, and create a user connection that uses the CHNGPASS=
LIBNAME option, the user password will not be changed. If you are using LDAP authentication and want to
change a user password, follow the operating system procedures to change a user password, and check with your
LDAP server administrator to en sure that the LDAP database also records password changes.

For more information on LDAP user authentication, see the reference help chapter in the SAS Scalable
Performance Data (SPD) Server Administrator's Guide, "Managing SAS Scalable Performance Data (SPD) Server
Passwords, Users, and Table ACLs."

NEWPASSWORD= or NEWPASSWD=

Specifies a new password for a SAS Scalable Performance Data (SPD) Server client user. If ACL file security is
enabled, the SAS Scalable Performance Data (SPD) Server validates the old/new password against its user ID
table.

Syntax

NEWPASSWORD= ' newpasswor d'
NEWPASSWD=" newpasswor d'

Use the following argument:

'newpassword
is the new password of a SAS Scalable Performance Data (SPD) Server client user. The password, visible in
a SAS program, is encrypted in the SAS log file.

Example
Specify a new password rambo for SAS Scalable Performance Data (SPD) Server client user RECEIVER.
LI BNAME nyli b sasspds 'spdsdata’
user ='receiver'

passwor d=" whi zbang'
newpasswor d='ranbo’ ;

Note: If you are using LDAP user authentication, and create a user connection that uses the NEWPASSWORD=

246



LIBNAME option, the user password will not be changed. If you are using LDAP authentication and want to
change a user password, follow the operating system procedures to change a user password, and check with your
LDAP server administrator to en sure that the LDAP database also records password changes.

For more information on LDAP user authentication, see the reference help chapter in the SAS Scalable
Performance Data (SPD) Server User's Gude, "Managing SAS Scalable Performance Data (SPD) Server
Passwords, Users, and Table ACLs."

PASSWORD= or PASSWD=

Specifies the SAS Scalable Performance Data (SPD) Server password of a SAS Scalable Performance Data (SPD)
Server client user. If ACL file security is enabled, the SAS Scalable Performance Data (SPD) Server validates the
password against its user ID table.

Syntax

PASSWORD=' passwor d'
PASSWD=' passwor d'

Use the following argument:

"‘password'
is the case-sensitive password of a SAS Scalable Performance Data (SPD) Server client user. The password,
visible in a SAS program, is encrypted in the SAS log file.

Example

Specify the password whizbang for SAS Scalable Performance Data (SPD) Server client user SPDSUSER.

LI BNAME nyli b sasspds 'spdsdata’
ser ver =kaboom 5200
user =' spdsuser’
passwor d="' whi zbang' ;

Options

SAS Scalable Performance Data (SPD) Server 4.4 supports the integration of the SAS 9.1.3 PROC PWENCODE.
This permits scripts to be generated that do not explicitly contain secure passwords that could easily be used
without authorization. You must run PROC PWENCODE in Base SAS to enable the usage of script password
encoding within SAS Scalable Performance Data (SPD) Server 4.4. See the Base SAS documentation for detailed
instruction on running PROC PWENCODE for use with SAS Scalable Performance Data (SPD) Server 4.4.

The example below shows a SAS Scalable Performance Data (SPD) Server LIBNAME statement that utilizes the
password encoding option:

LI BNAME nyl i b sasspds 'spdsdata'’
server =kaboom 5200
user ="' spdsuser’
passwor d=' {sas001} c3BkczEyMr==";

247



PROMPT=

Specifies to prompt a SAS Scalable Performance Data (SPD) Server user for a password. If ACL file security is
enabled, the SAS Scalable Performance Data (SPD) Server validates the password against its user ID table.

Syntax

PROVPT= YES | NO
Use the following arguments:

YES
prompts a SAS Scalable Performance Data (SPD) Server user for a password.

NO
suppresses a prompt for a password.

Example
Specify a prompt for the password of SAS Scalable Performance Data (SPD) Server user BIGWHIG.
LI BNAME nyl i b sasspds 'spdsdat a’

user =" bi gwhi g¢'
pronpt =yes;

USER=

Specifies the ID of a SAS Scalable Performance Data (SPD) Server client user. If ACL file security is enabled, the
SAS Scalable Performance Data (SPD) Server validates the ID against its user ID table. (The SAS Scalable
Performance Data (SPD) Server user ID defaults to the SAS process user ID if it is available; that is, when the
client is not a Windows client.)

Syntax

USER="' user nane'

Use the following argument:

‘username’
is the ID of a SAS Scalable Performance Data (SPD) Server client user.

Example

Specify the identifier SPDSUSER for a SAS Scalable Performance Data (SPD) Server client user.

248



LI BNAME nyl i b sasspds 'spdsdata’
user =' spdsuser"

pronpt =yes;

Optionsto Specify Implicit SOL Pass-Through

|P=YES

This is an abbreviated specification which replaces the more verbose PASSTHRU= option. The IP=YES option
draws on information specified in the LIBNAME declaration. The IP=YES option specifies an implicit SQL pass-
through connection for a single user to a specified domain and server during a given SAS Scalable Performance
Data (SPD) Server session.

Syntax

LI BNAME BOAF sasspds ' BOAF
server =kaboom 5200
user='rcnye'
passwor gd=' * kA E
| P=YES ;

PASSTHRU=

This older and more verbose specification for IP=YES is still supported. It specifies an implicit SQL pass-through
connection for a single user to a specified domain and server during a given SAS Scalable Performance Data
(SPD) Server session.

Syntax

PASSTHRU=<' dbq=<"SAS-data-li brary">
<SPD Server-options>
user=<'Userl D >
passwor d=<' password' > ;

Use the following arguments:

DBQ=libname-domain (required)
Specifies the primary SAS Scalable Performance Data (SPD) Server LIBNAME domain for the SQL pass-
through connection.

The name that you specify is identical to the LIBNAME domain name that you used when making a SAS
LIBNAME assignment to sasspds. Use single or double quotes around the specified value.

SPD Server-options
one or more SAS Scalable Performance Data (SPD) Server options.

USER=SAS Scalable Performance Data (SPD) Server user ID (required on Windows but not UNIX)

249



Specifies a SAS Scalable Performance Data (SPD) Server user ID to access a SAS Scalable Performance
Data (SPD) Server SQL Server. Use single or double quotes around the specified value.

PASSWORD=password (required, or use PROMPT=YES, unless USER="anonymou')
Specifies a SAS Scalable Performance Data (SPD) Server user ID password to access a SAS Scalable
Performance Data (SPD) Server. (This value is case sensitive.)

Example:

The following is a LIBNAME statement that specifies the implicit SQL pass-through option for user rcnye, using a
LIBREF to connect to the domain named 'BOAF' on the server named 'Kaboom' on port 5200:

LI BNAME BOAF sasspds ' BOAF
server =kaboom 5200
user='rcnye'
passwor gd=' * kA A

PASSTHRU='

dbqg=" BOAF"

server =kaboom 5200
user="rcnye"
passv\ord:"*******"' ’

Options

SAS Scalable Performance Data (SPD) Server 4.4 supports the integration of the SAS 9.1.3 PROC PWENCODE.
This permits scripts to be generated that do not explicitly contain secure passwords that could easily be used
without authorization. You must run PROC PWENCODE in Base SAS to enable the usage of script password
encoding within SAS Scalable Performance Data (SPD) Server 4.4. See the Base SAS documentation for detailed
instruction on running PROC PWENCODE for use with SAS Scalable Performance Data (SPD) Server 4.4.

The example below shows a SAS Scalable Performance Data (SPD) Server LIBNAME statement that utilizes the
password encoding option:

LI BNAME nyl i b sasspds 'spdsdata’
server =kaboom 5200
user =' spdsuser’
passwor d=' {sas001} c3BkczEyMn=="

PASSTHRU='

dbg="spdsdat a"

server =kaboom 5200

user ="spdsuser"

passwor d="{sas001} c3BkczEyMn=="";

Optionsto Specify File Pathsfor Table Storage

SAS Scalable Performance Data (SPD) Server strongly recommends that your site administrator defines SAS
Scalable Performance Data (SPD) Server domain options in the SAS Scalable Performance Data (SPD) Server

250



| i bnanmes. par mconfiguration file. However, in unusual cases, such as the SAS Scalable Performance Data
(SPD) Server administrator being temporarily unavailable, the following four LIBNAME options can be issued by
a SAS Scalable Performance Data (SPD) Server user to define domains and table file storage paths.

CREATE=

Creates the primary directory for a SAS Scalable Performance Data (SPD) Server domain if it does not already
exist.

Syntax

CREATE=YES | NO
Use the following arguments:

YES
creates the primary directory if it does not already exist.

NO
fails the LIBNAME assignment if the primary directory does not already exist. This is the default.

Description

a SAS Scalable Performance Data (SPD) Server administrator defines the primary directory for the SAS Scalable
Performance Data (SPD) Server domain in the LIBNAME parameter file. [f CREATE=is YES, the software
creates the directory (primary file system) in the event that a SAS Scalable Performance Data (SPD) Server
administrator forgets to create it.

DATAPATH=

The SAS Scalable Performance Data (SPD) Server administrator for your site should use options in the SAS
Scalable Performance Data (SPD) Server | i bnanes. par mconfiguration file to define SAS Scalable Performance
Data (SPD) Server domain options. However, if the SAS Scalable Performance Data (SPD) Server is temporarily
unavailable, the following LIBNAME option can be issued by a SAS Scalable Performance Data (SPD) Server
user to specify a list of initial or overflow paths to store data (. dpf ) file partitions for a SAS Scalable Performance

Data (SPD) Server table.
Syntax
DATAPATH=("'fil esystem 'filesystem...)

Use the following argument:

'filesystem'
is a directory path for UNIX or Windows.

Example

251



Create partitions as needed by cycling through the directories specified, DATAFLOW1 directory on DISK1 and
DATAFLOW?2 directory on DISK?2.

LI BNAME nyli b sasspds 'spdsdata’
dat apat h=("/di sk1/ dat af | owl"
"/ di sk2/ dat af | ow2' ) ;

INDEXPATH=

The SAS Scalable Performance Data (SPD) Server administrator for your site should use options in the SAS
Scalable Performance Data (SPD) Server | i bnanes. par mconfiguration file to define SAS Scalable Performance

Data (SPD) Server domain options. However, if the SAS Scalable Performance Data (SPD) Server is temporarily
unavailable, the following LIBNAME option can be issued by a SAS Scalable Performance Data (SPD) Server
user to specify a list of initial or overflow paths to store index (. hbx), (. i dx), and (. aux) file partitions

associated with a SAS Scalable Performance Data (SPD) Server table.

Syntax

| NDEXPATH=("fil esystem 'filesystenm ...)
Use the following argument:

'filesystem'
is a directory path for UNIX or Windows.

Example

Create index file partitions as needed using the directories specified, IDXFLOW1 directory on DISK1 and
IDXFLOW?2 directory on DISK2.

LI BNAME nyli b sasspds 'spdsdat a’
i ndexpat h=("/di sk1/i dxfl owl'
"/disk2/idxflow');

METAPATH=

The SAS Scalable Performance Data (SPD) Server administrator for your site should use options in the SAS
Scalable Performance Data (SPD) Server | i bnanes. par mconfiguration file to define SAS Scalable Performance
Data (SPD) Server domain options. However, if the SAS Scalable Performance Data (SPD) Server is temporarily
unavailable, the following LIBNAME option can be issued by a SAS Scalable Performance Data (SPD) Server
user to specify a list of overflow paths to store metadata (. ndf ) file partitions for a SAS Scalable Performance

Data (SPD) Server table.
Syntax

METAPATH=( 'filesystem 'filesystem...)

252



Use the following argument:

'filesystem'
is a directory path for UNIX or Windows.

Example

Create overflow metadata file partitions as needed using the directories specified, METAFLOW1 directory on
DISK1 and METAFLOW?2 directory on DISK?2.

LI BNAME nyli b sasspds 'spdsdata’
met apat h=("'/di sk1/ et af | owl’
"/ di sk2/ metafl ow2');

Options for Access Control Lists (ACLYS)

ACLSPECIAL=

Grants special access to SAS Scalable Performance Data (SPD) Server resources in the LIBNAME domain to a
SAS Scalable Performance Data (SPD) Server user. The SAS Scalable Performance Data (SPD) Server user must
also be defined as 'special’ by the SAS Scalable Performance Data (SPD) Server administrator.

Syntax

ACLSPECI AL=YES | NO

Use the following arguments:

YES
grants special access (read, write, alter, and control permission) to all SAS Scalable Performance Data
(SPD) Server resources in the domain.

NO
denies special access (read, write, alter, and control permission) to all SAS Scalable Performance Data
(SPD) Server resources in the domain.

Description

Grants special privileges to all SAS Scalable Performance Data (SPD) Server tables and associated indexes in the
LIBNAME domain. The special privileges, (read, write, alter, and control permissions), override normal ACL
restrictions only if the SAS Scalable Performance Data (SPD) Server administrator defines the user as 'special' in
the user ID table.

Example

Grant special privileges to THEBOSS allowing him to read, write, alter, and control all tables in the
CONVERSION_ AREA domain. (The SAS Scalable Performance Data (SPD) Server administrator has defined
THEBOSS as 'special'.)

253



LI BNAME nydatal i b sasspds 'conversion_area
server =husky. 5105
user ="' t heboss'
pronpt =yes
acl speci al =yes ;

Optionsfor a Client and Server Running on the Same UNI X Machine

NETCOMP=

Compresses the data stream for a SAS Scalable Performance Data (SPD) Server network packet.

Syntax

NETCOVP=YES | NO
Use the following arguments:

YES
sends compressed data in a SAS Scalable Performance Data (SPD) Server network packet.

NO
sends uncompressed data in a SAS Scalable Performance Data (SPD) Server network packet.

Description

Normally, data compression for inter-process transfers is recommended. However, for a client and server process
on the same machine -- with UNIXDOMAIN=YES -- turning off compression can improve performance. You
should examine NETCOMP together with UNIXDOMAIN and NETPACKSIZE for both client and server on the
same machine.

Example

Specify to turn off compression of the data stream.

LI BNAME nyli b sasspds 'test _area
net conmp=no;

UNIXDOMAIN=

Specifies the use of UNIX domain sockets for data communication between a SAS Scalable Performance Data
(SPD) Server and client process running on the same machine. (Not available in Windows.)

Syntax

254



UNI XDOVAI N=YES | NO

Use the following arguments:

YES
uses AF_UNIX domain sockets for client/server data communication.

NO
uses the default AF_INET domain sockets for client/server data communication.

Description

When UNIXDOMAIN=YES, SAS Scalable Performance Data (SPD) Server uses AF_UNIX domain sockets
rather than the customary AF_INET domain sockets for data communication. AF_UNIX sockets typically are
much faster and greatly enhance performance but are only possible for cases where client and server are running on
the same machine. You should also examine NETCOMP and NETPACKSIZE parameters for possible use to
enhance performance in conjunction with UNIXDOMAIN.

Example

You find that using the AF_UNIX sockets for your session that is running on the same machine as the SAS
Scalable Performance Data (SPD) Server is not faster. Configure SAS Scalable Performance Data (SPD) Server to
use the default AF_INET sockets instead.

LI BNAME nyli b sasspds 'test _area
uni xdomai n=no;

Note: If you are running SAS Scalable Performance Data (SPD) Server 4.4 or later, and the client and server are
both running UNIX, SAS Scalable Performance Data (SPD) Server automatically detects UNIX domain sockets. In
such cases, it is not necessary to specify the UNIXDOMAIN parameter for optimum performance.

Options for Other Functions

BYSORT=

Specifies an implicit automatic SAS Scalable Performance Data (SPD) Server sort for a BY clause.

Syntax

BYSORT=YES | NO
Use the following arguments:

YES
performs an implicit sort for a BY clause. This is the default.

NO
does not perform an implicit sort for a BY clause.

255



Description

Where Base SAS software requires an explicit sort statement (PROC SORT) to sort SAS data, by default, SAS
Scalable Performance Data (SPD) Server performs a sort whenever it encounters a BY clause. If the value of the
BYSORT= option is NO, the SAS Scalable Performance Data (SPD) Server software performs the same as the
base SAS engine.

Example 1

Specify to turn off implicit SAS Scalable Performance Data (SPD) Server sorts for the session.

LI BNAME nydatali b sasspds 'conversion_area
server =husky. 5105
user="siteusrl'
pronpt =yes
bysort=no ;

data mydatal i b. ol d_aut os;
i nput
year $4.
@ manufacturer $12.
nodel $10.
body style $5.
engine_liters
@9 transm ssion_type $1.
@1 exterior_color $10.

options $10.
m | eage condition ;
dat al i nes ;

1971 Bui ck Skyl ar k conv. 5.8 A yellow 00000001 143000 2
1982 Ford Fi est a hatch 1.2 M silver 00000001 70000 3
1975 Lanci a Bet a 2door 1.8 M dk blue 00000010 80000 4
1966 O dsmobile Toronado 2door 7.0 A bl ack 11000010 110000 3
1969 Ford Must ang sptrf 7.1 M red 00000111 125000 3

PROC PRI NT dat a=mydat al i b. ol d_aut os;
by nodel
run;

In this program, the PRINT procedure will return an error message because the table MYDATALIB.OLD AUTOS
is not sorted.

Example 2

Turn off implicit SAS Scalable Performance Data (SPD) Server sorts with the LIBNAME option, but specify a
server sort for the table MYDATALIB.OLD AUTOS using the BYSORT table option.

PROC PRI NT dat a=mydat al i b. ol d_aut os
(bysort=yes);

256



by nodel ;
run;

DISCONNECT=

Specifies when to close the network connections between the SAS client and the SAS Scalable Performance Data
(SPD) Server. This can be done either when all SAS Scalable Performance Data (SPD) Server librefs are cleared or
when the SAS client session ends.

Syntax

DI SCONNECT=YES | NO
Use the following arguments:
YES

closes network connections between the SAS client and SAS Scalable Performance Data (SPD) Server
when all SAS Scalable Performance Data (SPD) Server librefs are cleared.

NO
closes network connections between the SAS client and SAS Scalable Performance Data (SPD) Server only
when the SAS session ends. This is the default.

Description

When the DISCONNECT= option is NO, the network connections between the SAS client and the SAS Scalable
Performance Data (SPD) Server are closed when the current SAS session ends. When network connections are
active, the user can issue successive librefs to the same SAS Scalable Performance Data (SPD) Server more
efficiently.

When the DISCONNECT= option is YES, the server connection closes after all SAS Scalable Performance Data
(SPD) Server librefs are cleared. Assuming a user does not issue a subsequent LIBNAME statement, closing the
connection frees resources. For example, a SAS job or program accesses a SAS Scalable Performance Data (SPD)
Server table at the beginning of a job but performs remaining processing locally. In this situation, closing the
network connection after clearing all librefs frees both SAS and SAS Scalable Performance Data (SPD) Server file
descriptors, machine memory, and TCP/IP resources.

Note: Unless this option is used with the initial LIBNAME engine statement for the SAS Scalable Performance
Data (SPD) Server session, it has no effect.

Example

Specify for SAS Scalable Performance Data (SPD) Server to close the network connections after you clear your
librefs, rather than at the end of your SAS session.

LI BNAME spud sasspds ' pot at oes'
di sconnect =yes
server =husky. 5105
user="siteusrl'

257



pronpt =yes ;
data | ocal;

set spud.idaho ;
run ;

/* Clear the libref SPUD so SPD Server will close the server */
/* connection - Do the rest of the SAS processing locally */

LI BNAME spud cl ear;

/* The rest of the programfollows */

ENDOBS=

Specifies the end row (observation) number in a user-defined range for processing.

Syntax

ENDOBS=n

Use the following argument:

1s the number of the end row.
Description

By default, SAS Scalable Performance Data (SPD) Server processes the entire table unless the user specifies a
range of rows with the STARTOBS= and ENDOBS= options. If the STARTOBS= option is used without the
ENDOBS= option, the implied value of ENDOBS= is the end of the table. When both options are used together,
the value of ENDOBS= must be greater than STARTOBS=.

In contrast to the Base SAS software options FIRSTOBS= and OBS=, the STARTOBS= and ENDOBS= SAS
Scalable Performance Data (SPD) Server options can be used for WHERE-clause processing in addition to table
input operations.

Example 1

Specify for SAS Scalable Performance Data (SPD) Server to process only row numbers (observations) 200 — 500
while the LIBNAME is active.

LI BNAME nydatali b sasspds 'conversi on_area
server =husky. 5105
user="siteusrl'
pronpt =yes
start obs=200
endobs=500;

258



LIBGEN=

The LIBGEN=YES option is used in explicit SQL connection statements. When you set LIBGEN= yes, SAS
Scalable Performance Data (SPD) Server is configured to generate additional domain connections that enable you
to perform SQL joins across different SAS Scalable Performance Data (SPD) Server domains.

Syntax

LI BGEN=YES

Description
You should specify the LIBGEN=YES option in the explicit SQL LIBNAME connection. You cannot specify the
LIBGEN=YES option setting without first creating a LIBNAME connections to the domain.

Examples

The two code examples that follow both perform the same task. Both examples use explicit SQL to join two tables
from different domains. The first example uses execute connection statements to facilitate joining the tables from
separate domains. The second example uses the LIBGEN=YES option to perform the same join without having to
issue the extra execute connection statements.

SQL Without LIBGEN=YES

/* The exanpl e code w t hout LIBGEN=YES */

/[ * must |Issue execute connection */
[* statenents to access tables that */
/[* reside in two different donmins. */

LI BNAME pat hl sasspds 'pathl’
server =boxer. 5140
I p=YES
user =" anonynous' ;

LI BNAME pat h2 sasspds ' pat h2'
server =boxer. 5140
I p=YES
user =" anonynous' ;

DATA pat hl. tabl el
(keep=i tablel)

pat h2. t abl e2
(keep=i table2) ;

tablel = "tablel' ;
table2 = "table2' ;
doi =1to 10

out put ;

end ;
run ;

259



PROC SQL

CONNECT to sasspds (
dbg="' Pat h1'
server =boxer. 5140
user ="' anonynous') ;

/* Wthout LIBGEN=YES, you nmust make */
/* two execute connect statenents. */

execute (LIBREF pathl engopt="dbg="pathl' ")
by sasspds;

execute (LIBREF path2 engopt="dbg="path2'")
by sasspds;

execut e
(create table table4 as
sel ect *
from
pat hl.tabl el a,
pat h2.table2 b
where a.i = b.i)
by sasspds ;

di sconnect from sasspds ;

quit ;

SQL With LIBGEN=YES

/* The exanpl e code that uses LIBGEN=YES */
/* can join the tables fromtwo different */
/* domains in a nore sinple manner. */

LI BNAME pat hl sasspds ' pathl'
server =boxer. 5140
LI BGEN=YES
i p=YES
user =' anonynous' ;

LI BNAME pat h2 sasspds ' pat h2'
server =boxer. 5140
LI BGEN=YES
I p=YES
user =' anonynous' ;
DATA pat hl.tabl el
(keep=i tablel)
pat h2. t abl e2
(keep=i table2) ;

tablel = '"tablel' ;

260



table2 = "tabl e2' ;

doi =11to 10 ;
out put ;
end ;

run ;

PROC SQL

CONNECT to sasspds (
dbg="' Pat h1'
server =boxer. 5140
user =" anonynous')

/* Syntax used with LI BGEN=YES option */

execut e
(create table table4 as
sel ect *
from
pat hl.tabl el a,
pat h2.table2 b
where a.i = b.i)
by sasspds ;

di sconnect from sasspds ;

quit ;

LOCKING=

Overview of Record-Level Locking

Record-level locking isa SAS Scalable Performance Data (SPD) Server featurethat allows multiple users
concurrent read and write access to SAS Scalable Perfor mance Data (SPD) Server tables while maintaining
theintegrity of the table contents. When record-level locking isenabled, userscan insert, append, delete,
and update the contents of a SAS Scalable Perfor mance Data (SPD) Server table while performing
concurrent reads on the table. When a client enables record-level locking, the client connectsto the single
SAS Scalable Performance Data (SPD) Server record-level locking proxy process. When recor d-level
locking is not enabled, clients connect to separate SAS Scalable Performance Data (SPD) Server user proxy
processes for each LIBNAME connection to a domain.

Record-L evel Locking Details

Record-level locking is enabled when a SAS Scalable Perfor mance Data (SPD) Server client specifiesthe
LOCKING=YESLIBNAME option to theclient'sLIBNAME connection statement. All subsequent
operationson the given LIBNAME domain will employ record-level locking. The primary use of record-
level locking isto allow multiple clientsor parallel operations from the same client to have both read and
write accessto the same SAS Scalable Performance Data (SPD) Server tableresource. I f record-level
locking is not enabled, then any write oper ation (update, append, insert, or delete) to a SAS Scalable
Performance Data (SPD) Server tablerequires exclusive accessto theresource, or else a member lock
failureerror occurs. Operationsthat affect metadata, such ascreating or deleting indexes, renaming

261



variables, and renaming tables requir e exclusive access to the resour ce, whether record-level locking is
enabled or not. Thesetypes of operationswill report a member lock failure error when with record-level
locking is enabled, but exclusive accessis not available.

Record-level locking must be enabled in SAS Scalable Performance Data (SPD) Server before a SAS client
can usethe CNTLEV=REC table option in their SAS program to access SAS Scalable Performance Data
(SPD) Server tables. Record-level locking enforces SAS style record-level integrity across multiple clients,
so clients are guar anteed that an observation will not change during a multi-phased

read or write operation on the specified observation. Record-level locking will allow multiple concurrent
update access to a single SAS Scalable Performance Data (SPD) Server table, but it will deny concurrent
access to the specified observation within the table.

When a SAS Scalable Perfor mance Data (SPD) Server client establishesa LIBNAME connection to a
domain with record-level locking enabled, it connects using the single record-level locking proxy

process. Thereisonly onerecord-level locking proxy process per SAS Scalable Performance Data (SPD)
Server. All SAS Scalable Performance Data (SPD) Server clientsthat use record-level locking connections
are processed through the record-level locking proxy process. If therearealarge number of record-level
locking connections, there may be some contention for process resour ces between the clients. Therecord-
level locking proxy processisasingle point of failurefor all these connections, so care should be taken when
you use recor d-level locking to update critical data.

When you append or insert new rowsinto a table with defined indexes, the table updates ar e processed more
sequentially through the record-level locking proxy processthen they would be through the SPD user proxy
processes. The performance of record-level locking will probably be lessthan the performance that can be
obtained without record-level locking enabled for these types of operations. The standard member-level
locking that isused in SPD user proxy processes allows for more parallel processing when doing table
append or insert operations.

Record-level locking is not supported for operations on tablesthat use dynamic clusters.

Syntax

LOCKI NG=YES| NO
Default: NO

Use the following arguments:

YES

enablesrecord sharing mode.
NO

disables record sharing mode.

Example

LI BNAME testrl sasspds 'tnp'
server =server Node. port
user =' anonynous'
| ocki ng=YES ;

262



STARTOBS=

Specifiesthe start row (observation) number in a user-defined range for processing.

Syntax

STARTOBS=n

Usethefollowing arguments.

isthe number of the start row.
Description

By default, SAS Scalable Performance Data (SPD) Server processesthe entiretable unlessthe user specifies
arange of rowswith the options, STARTOBS= and ENDOBS=. If the ENDOBS= option is used without the
STARTOBS= option, theimplied value of STARTOBS=is 1. When both options are used together, the value
of STARTOBS= must belessthan the value of ENDOBS.=

In contrast to the Base SAS softwar e options FIRSTOBS= and OBS=, the STARTOBS= and ENDOBS=
SAS Scalable Perfor mance Data (SPD) Server options can be used for WHERE-clause processing in
addition to table input operations.

Example

Specify for SAS Scalable Performance Data (SPD) Server to process only row numbers (observations) 200
— 500 whilethe LIBNAME is active.

LI BNAME nydatal i b sasspds ' conversion_area
server =husky. 5105
user="siteusrl'
pronpt =yes
start obs=200
endobs=500;

TEMP=
Controlsthecreation of atemporary LIBNAME domain for this LIBNAME assignment.

Syntax
TEMP=YES| NO
Default: NO

Usethefollowing arguments.

263



YES
createsatemporary LIBNAME domain for the LIBNAME assignment.

NO
does not create atemporary LIBNAME domain.

Description
Usethisoption to create temporary LIBNAME domainsthat exist for the duration of the LIBNAME
assignment. The TEMP (temporary) domains are analogous to SASWORK libraries.

Tocreateatemporary LIBNAME domain, use TEMP=YES. Any data objects, tables, catalogs, or utility
filesthat are created in the TEMP=YEStemporary domain are automatically deleted when you end the SAS
session. Thisfunctionssimilarly toa SASWORK library. (Note: Thetemporary domain iscreated asa
subdirectory of the directory specified asthelibrary domain.)

Example 1

Createa LIBNAME domain to usefor temporary storage during your SAS session.

LI BNAME nydatal i b sasspds ' conversi on_area'
server =kaboom 5191
user="siteusrl
pr onpt =yes
t enp=yes ;

TRUNCWARN=

Suppresses hard failure on NL S transcoding over flow and character mapping errors.

Syntax

TRUNCWARN=YES| NO

Default: NO

Description

When usingthe TRUNCWARN=YESLIBNAME option, data integrity may be compromised because
significant characterscan belost in thisconfiguration. The default setting isNO, which causes hard read/
write stops when transcode over flow or mapping errorsare encountered. When TRUNCWARN=YES, and
an overflow or character mapping error occurs, awarning is posted to the SAS|og at data set close time if
overflow occurs, but the data overflow islost.

WORKPATH=

I/O contention can occur when many SAS Scalable Performance Data (SPD) Server usersor SAS Scalable
Performance Data (SPD) Server jobs perform heavy processing that uses the same workpath. The
WORKPATH= option permits usersto specify an alternate workpath that utility files (such asindex builds

264



and sorting files) can use. Specifying an alternate workpath can relieve 1/O contention issues when other
usersarerunning heavy processing jobs at the sametime.

A properly configured workpath directs /O from utility operationsto a separate disk. Mapping the utility
filework to a separate disk using the WORKPATH= option avoids conflict with other jobsthat use a default
workpath that is specified in the spdsserv.parm configuration file.

Using the optional WORKPATH= gspecification to direct utility file operationsto a separate disk increases
the overall 1/0 through-put for the utility filesand speeds up the server performance aswell.

Syntax
WORKPATH=('path-specification') ;
Example

Two SAS Scalable Performance Data (SPD) Server power users perform heavy index creation and are
creating heavy 1/0 contention on the default workpath that is defined in the spdsserv.parm configuration
file:

wor kpat h=(" wor kspacel')

Both usersoverride the default workpath by using the alternate WORKPATH= specification when issuing
the LIBNAME statementsin their jobs:

User 1 LIBNAME statement:
LI BNAME donmai n- nane sasspds "donai n- nane"
server =host - nane. port - nunber
user =" user 1’

wor kpat h=(" / bi gdi sk/ spdsngr/ wor kpat h1")

User 2 LIBNAME statement:
LI BNAME domai n- nane sasspds "donai n- nane"
server =host - nane. port - nunber
user =' user 2'

wor kpat h=(" / bi gdi sk/ spdsngr/wor kpat h2') ;

All SAS Scalable Performance Data (SPD) Server jobs by other users continueto use the default workpath
specification that isdeclared in spdsserv.parm

The libnames.parm configuration file also accepts alternate WORK PATH= specifications for each domain.

265



SAS Scalable Performance Data (SPD) Server Table Options

Contents

« Introduction
. Option for Compatibility with Base SAS Software
o SYNCADD=
. Options That Affect Disk Space
o ASYNCINDEX=
o COMPRESS=
o PARTSIZE=
. Optionsto Enhance Performance
o BYNOEQUALS=
o |OBLOCKSIZE=
o NETPACKSIZE=
v SEGSIZE=
. Option to Test Performance
o NOINDEX=
. Optionsfor WHERE Clause Evaluations
o MINMAXVARLIST=
v THREADNUM=
o WHERENOINDEX=
. Optionsfor Other Functions
o BYSORT=
o ENDOBS=
o STARTOBS=
o UNIQUESAVE=
o VERBOSE=
. Optionsfor Security
o ENCRYPT=

I ntroduction

All SAS userswho use LIBNAME accessto SAS Scalable Performance Data (SPD) Server should read this chapter.
Most table optionsalso work in SQL pass-through statements.

This chapter presentsreferenceinformation for the SAS Scalable Performance Data (SPD) Server table options.
To specify atable option with LIBNAME access, placethe option valuein parentheses after the table name. The
option value then specifies processing that applies only to that table. To specify a table option with pass-through
access, place the option valuein brackets after the table name. The option value then specifies processing that
appliesonly to that table. The SAS Scalable Performance Data (SPD) Server table optionsthat follow are grouped
by the function of their default value.

When using the optionsin this chapter, remember that if a table option is used subsequent to a LIBNAME option
or macro variable, the value of the table option takes precedence.

Option for Compatibility with Base SAS Softwar e

266



SYNCADD=

Specifieswhen appending to a table whether to apply a single or multiplerowsat atime.
Syntax
SYNCADD=YES|NO
Default
NO
Corresponding Macro Variable
SPDSSADD
Related Table Option
UNIQUESAVE=
Use thefollowing ar guments:

YES
imitatesthe behavior of the base SAS engine, applying a singlerow at a time (synchronously).

NO
appends multiple rows at a time (asynchronousdly).

Description

When SYNCADD=isYES, processing performanceisslower. Use this setting only to forcethe server's
append processing to be compatible with Base SAS softwar e processing. That is, when the server encounters
arow with a non-unique value, to abort the append operation, back out thetransactionsjust added, and
leavetheoriginal table on disk.

Example
In thisexample, when executing thefirst INSERT statement, PROC SQL permitsinsertion of the values
'rollbackl1' and 'rollback2' because the row additionsto table A are performed asynchronously. PROC SQL

does not get the true completion status at thetime it addsa row.

When executing the second INSERT statement, PROC SQL performsarollback on the INSERT, upon
encountering the Add error on 'nonunique’, and deletestherows 'rollback3' and 'rollback4'.

data a;
input z $ 1-20 x y;
list;
dat al i nes;
one 110
t wo 2 20
t hree 3 30
f our 4 40

five 5 50

267



PROC SQL sortseqg=ascii exec noerrorstop;
create unique index conp on a (X, Yy);
insert into a

val ues('rol | backl', -80, -80)

val ues(' rol |l back2',-90, -90)

val ues(' nonuni que', 2, 20);

insert into a(syncadd=yes)
set z="rollback3 , x=-60, y=-60
set z='roll back4', x=-70, y=-70
set z='nonuni que', x=2, y=20;
qui t;

Options That Affect Disk Space

ASYNCINDEX=

Specifieswhen creating multiple indexes on a SAS Scalable Performance Data (SPD) Server table whether to create
theindexesin parallel.

Syntax
ASYNCINDEX=YES|NO
Default
NO
Corresponding Macro Variable
SPDSIASY
Use thefollowing arguments:

YES
createstheindexesin parallel.

NO
createsasingleindex at atime.

Description

The SAS Scalable Performance Data (SPD) Server can create multipleindexesfor a table at the sametime.
Todothis, it launchesasinglethread for each index created, then processes the threads simultaneously.
Although creating indexesin parallel ismuch faster, the default for this option isNO. Thereason isbecause
parallel creation requiresadditional sort work space which may not be available.

For a complete description of the benefits and tradeoffs of creating multipleindexesin parallel, seethe SAS
Scalable Performance Data (SPD) Server User's Guide Help section on SPDSIASY =.

Example

268



Sincethe disk work spacerequired for parallel index creation is available, specify for SAS Scalable
Performance Data (SPD) Server to create, in parallel, the X, Y, and COMP indexesfor table A.

PROC DATASETS | i b=nydatal i b;
nmodi fy a(asynci ndex=yes);
i ndex create Xx;
i ndex create vy;
i ndex create conp=(x vy);
quit;

COMPRESS=

Compresses SAS Scalable Performance Data (SPD) Server tables on disk.
Syntax
COMPRESS=YES|NO
Default
NO
Usein Conjunction with Table Option
IOBLOCKSIZE=
Corresponding Macro Variable
SPDSDCMP
Use thefollowing ar guments:

YES
performstherun-length compression algorithm SPDSRLLC.

NO
performsno table compression.

Description

When COMPRESS= isassigned YES, SAS Scalable Performance Data (SPD) Server compresses newly
created tables by 'blocks based on the algorithm specified. To control the amount of compression, usethe
table option IOBL OCK SIZE=. Thisoption specifiesthe number of rowsthat you want to storein the block.

Note: Once a compressed tableis created, you cannot changeits block size. To resize the block, you must PROC
COPY thetableto a new table, setting IOBLOCK SIZE=to the block size desired for the output table.

PARTSIZE=

Specifiesthe size of a SAS Scalable Performance Data (SPD) Server table partition.

269



Syntax
PARTSIZE=n
Default
16 M egabytes
Corresponding Macro Variable
SPDSSIZE=
Affected by LIBNAME option
DATAPATH=

Use the following argument:

isthe size of the partition in megabytes.
Description

Specifying PARTSIZE= for ces the softwar e to partition (split) SAS Scalable Perfor mance Data (SPD)
Server tablesat the given size. The actual size is computed to accommodate the largest number of rowsthat
will fit in the specified size of n Mbytes.

Use this option to improve perfor mance of WHERE Clause evaluation on non-indexed table columns and on
SQL GROUP_BY processing. By splitting the data portion of a Scalable Platform Data Server table at
fixed-sized intervals, the softwar e can introduce a high degree of scalability for these operations. The
reason: it can launch threadsin parallel to perform the evaluation on different partitions of thetable,
without thethreat of file access contention between thethreads. Thereis, however, apricefor thetable
splits: an increased number of files, which arerequired to store the rows of thetable.

Ultimately, scalability limits using PART SIZE= depend on how you structure DATAPATH=, aLIBNAME
option discussed in the documentation on Scalable Performance Data Server LIBNAME Options.
Specifically, the limits depend on how you configure and spread the DATAPATH= file systems acr oss
striped volumes. Y ou should spread each individual volume's striping configuration across multiple disk
controllers/SCSI channelsin the disk storage array. The goal for the configuration is, at the hardware level,
to maximize parallelism during data retrieval.

The PARTSIZE= specification islimited by MINPARTSIZE=, a SAS Scalable Performance Data (SPD)
Server parameter maintained by the SAS Scalable Performance Data (SPD) Server administrator.
MINPARTSIZE= ensuresthat an over-zealous SAS user doesnot create arbitrarily small partitions,
thereby generating a large number of files. The default for MINPARTSIZE=is 16 M bytesand probably
should not be lowered much beyond thisvalue.

Note: The PARTSIZE valuefor atable cannot be changed after atableis created. To changethe
PARTSIZE, you must PROC COPY thetable and use a different PARTSIZE option setting on the new
(output) table.

Example

Using PROC SQL, extract a set of rows from an existing tableto create a non-indexed table with a partition
size of 32 Mbytesin a SASjob:

270



PROC SQL
create tabl e SPDSCEN. HRBOSPDS( part si ze=32)
as sel ect
st at e,
age,
sex,
hour 89,
i ndustry,
occup
f r om SPDSCEN. PRECS
where hour 89 > 40;
qui t;

Options to Enhance Perfor mance

BYNOEQUAL S=

Specifiesthe output order of table rowswith identical valuesfor the BY column.

Syntax
BYNOEQUALS=YES|NO
Use thefollowing arguments:

YES
does not guarantee the output order of tablerowswith identical valuesin aBY clause.

NO
guaranteesthe output order of table rowswith identical valuesin a BY clause will be the relative table position of
therowsfrom theinput table. Thisisthe default.

Example

Specify for SAS Scalable Performance Data (SPD) Server in the ensuing BY -column operation to output
rowswith identical valuesin the key column randomly.

data sport.racquets(index=(string));
i nput
ragnanme $20.
@2 wei ght
@8 bal ance $2.
@2 flex
@6 gripsize
@2 string $3.
@7 price
@5 instock;

dat al i nes;

Sol o Juni or 10.1 N 2
Sol o Lobber 11.3 N 10
Sol 0o Queensi ze 10,9 HH 6
Sol o Kingsi ze 13.1 HH 5

5 syn 50. 00
syn 160. 00
syn 130.00
syn 140. 00

oo 0w
o oo~
wWwerko

271



data sport.racqgbal (bynoequal =yes);
set sport.racquets;
by bal ance;

run;

IOBLOCKSIZE=

Specifiesthe number of rowsin ablock to bestored in or read from a SAS Scalable Performance Data (SPD)
Server table.

Syntax
IOBLOCKSIZE=n
Default
4096
Usein Conjunction with
Macro Variable SPDSDCMP= or Table Options COMPRESS= or ENCRYPT=.

Use thefollowing argument:

isthe size of the block.
Description

The softwarereads and stores a server tablein blocks. |IOBLOCK SIZE= isuseful on compressed or
encrypted tables. SAS Scalable Performance Data (SPD) Server software does not use |OBLOCKSIZE=on
noncompressed or nonencrypted tables.

For tablesthat you compressor encrypt, using either the option COM PRESS= or the macro variable
SPDSDCM P=, the |IOBL OCK Sl ZE= specification deter minesthe number of rowsto include in the block.
The specification appliesto block compression aswell asdata 1/0 to and from disk. The IOBLOCK SIZE=
value affects the table's organization on disk.

When using SAS Scalable Performance Data (SPD) Server table compression or encryption, specify an
|OBLOCK SIZE= value that complements how the data isto be accessed, sequentially or randomly.
Sequential accessor operationsrequiring full table scansfavor alarge block size, for example 64K. In
contrast, random access favors a smaller block size, for example 8K.

Example

A huge company mailing list is processed sequentially. Specify a block size for compression that is optimal
for sequential access.

/* |1 ol ocksi ze set to 64K */

data sport.maillist(ioblocksize=65536 conpress=yes);
i nput
name $ 1-20

address $ 21-57

272



phoneno $ 58-69

sex $71;

dat al i nes;
Dougl as, M ke 3256 Main St., Cary, NC 27511 919-444-5555 M
Walters, Ann Marie 256 Evans Dr., Durham NC 27707 919- 324- 6786 F
Turner, Julia 709 Cedar Rd., Cary, NC 27513 919-555-9045 F
Cashwel |, Jack 567 Scott Ln., Chapel HIl, NC 27514 919-533-3845 M
Cl ark, John 9 Church St., Durham NC 27705 919-324-0390 M
run;

NETPACKSIZE=

Specifiesthe size of the SAS Scalable Performance Data (SPD) Server network data packet.
Syntax

NETPACK Sl ZE=size-of-packet
Use thefollowing argument:

size-of-packet
isthe size of the network packet in bytes.

Description
Thisoption controlsthe size of the buffer used for data transfer between SAS Scalable Performance Data
(SPD) Server and a SAS client. The default is 32K bytes. The buffer sizeisreativeto the size of atablerow.
It cannot be lessthan the size of a singlerow. Packet size must be equal to some multiple of the tablerows. If
it isnot, SAS Scalable Performance Data (SPD) Server rounds up the size specified. For example, if the
packet buffer sizeis 4096 bytes and the row size is 3072, the softwar e rounds up the buffer sizeto 6144.

Select a packet size to complement the bandwidth of the network it must travel through. An optimum size
will flow the data continuously without significant pauses between packets.

Example

Createa 12K buffer in the memory of the server to send threerowsfrom MYTABLE in each network
packet. (Therow sizein MYTABLE is4K.)

data nylib. mytabl e (net packsi ze=12288);

SEGSIZE=
Specifiesthe size of the segment for an index file associated with a SAS Scalable Performance Data (SPD) Server table.

Syntax

SEGSIZE=number

273



Use thefollowing argument:

number
isthe number of tablerowsto includein the index segment.

Description

Theminimum SEGSIZE= valueis 1024 tablerows. The default valueis 8192 tablerows. Thesize of the
index segment correspondsto the structure of the table and cannot be changed after thetableis created.

Example
Specify a segment size of 64K for MYLIB.MYTABLE.
data nylib. nmytable (segsi ze=65536) ;

Note: Testsshow that increasing the size of the segment does not significantly increase performance.

Option to Test Performance

NOINDEX=
Specifieswhether to use the table'sindexes when processing WHERE Clauses.
Syntax
NOINDEX=YESINO
Default
NO

Use the following ar guments:

YES
ignores indexes when processing WHERE Clauses.
NO
usesindexes when processing WHERE Clauses.
Description
Set NOINDEX=to YESto test the effect of indexes on performance or for specific processing. Do not use
YES routinely for normal processing.
Example

We created an index for the SEX column but decide to test whether it isnecessary for our PROC PRINT
processing. Specify for the server not to use the index.

data sport.maillist;
i nput
nane $ 1-20

274



address $ 21-57
phoneno $ 58-69

sex $71;

dat al i nes;
Dougl as, M ke 3256 Main St., Cary, NC 27511 919- 444-5555 M
Walters, Ann Marie 256 Evans Dr., Durham NC 27707 919- 324-6786 F
Turner, Julia 709 Cedar Rd., Cary, NC 27513 919-555-9045 F
Cashwel | , Jack 567 Scott Ln., Chapel Hill, NC 27514 919-533-3845 M

Cl ark, John 9 Church St., Dur ham NC 27705 919-324-0390 M

PROC DATASETS |ib=sport nolist;

nodi fy maillist;
i ndex create sex;
qui t;

/*Turn on the macro vari abl e SPDSWDEB */
/* to show that the index is not used */
/* used during the table processing. */

% et spdswdeb=YES;

title "AIl Females from Current Mailing List";
PROC PRI NT data=sport.maillist(noi ndex=yes);
where sex="F";

run;

Options for WHERE Clause Evaluations

MINMAXVARLIST=

Creates an index that documentsthe minimum and maximum values of specified variables. SAS Scalable
Performance Data (SPD) Server WHERE Clause evaluations use MINMAXVARLIST= indexesto include or
eliminate member tablesin a SAS Scalable Performance Data (SPD) Server dynamic cluster table from SQL
evaluation scans..

Syntax
MINMAXVARLIST=(varnamel, varname2, ... , varnameN)
Use thefollowing argument:
varnamel, varname2, ..., varname N
are SAS Scalable Performance Data (SPD) Server table variable names.
Description
The primary purpose of the MIINMAXVARLIST=table option isfor use with SAS Scalable Performance

Data (SPD) Server dynamic cluster tables wher e specific membersin the dynamic cluster contain a set or

range of values, such as salesdata for a given month. When a SAS Scalable Performance Data (SPD) Server
SQL sub setting wher e- clause specifies specific months from a range of sales data, the WHERE planner
checks the min/max indexes. Based on the min/max index information, the SAS Scalable Performance Data

275



(SPD) Server WHERE planner includes or eliminates member tablesin the dynamic cluster for evaluation.

MINMAXVARLIST=usesthelist of columnsyou submit to build an index. The MINMAXVARLIST=
index contains only the minimum and maximum values for each column. The WHERE Clause planner uses
theindex to filter SQL predicates quickly, and to include or eliminate member tables belonging to the
cluster table from the evaluation.

Although the MINMAXVARLIST=tableoption isprimarily intended for use with dynamic clusters, it also
workson standard SAS Scalable Performance Data (SPD) Server tables. MINMAXVARLIST= can help
reducethe need to create many indexes on a table, which can save valuable resourcesand space.

Example

% et domai n=pat h3 ;
% et host =kaboom ;
% et port=5201 ;

i bname &donai n sasspds " &domai n"
server =&host . . &port
user ="' anonynous' ;

/* Create three tables called */
/* xyl, xy2, and xy3. */

data &donmain..xyl(m nmaxvarlist=(x y));
do x =1 to 10;
doy =1to 3
out put ;
end;
end;
run;

data &domain..xy2(m nmaxvarlist=(x y));
do x = 11 to 20;
doy =41to 6 ;
out put ;
end;
end;
run;

data &domain..xy3(m nmaxvarlist=(x y));
do x = 21 to 30;
doy =71to 9 ;
out put ;
end;
end;
run;

/* Create a dynanmic cluster table */
/* called cluster _table out of */
/* new tables xyl, xy2, and xy3 */

PROC SPDO i brary=&domai n ;
cluster create cluster_table
menFxyl
menExy 2
menExy3
maxsl ot =10;
qui t;

276



/* Enabl e WHERE eval uation to see */
/* how the SQ. planner selects */
/* menmbers fromthe cluster. Each */
/* menber is evaluated using the */
/* mn-max index. */

% et SPDSWDEB=YES;

/* The first menber has true rows */

PROC PRI NT dat a=&donmi n..cluster_table ;
where x eq 3
and y eq 3;

run;

/* Exam ne the other tables */

PROC PRI NT dat a=&donmi n..cluster_table ;
where x eq 3
and y eq 3 ;

run;

PROC PRI NT dat a=&donmi n..cluster_table ;
where x eq 3
and y eq 3;

run;

PROC PRI NT dat a=&domai n..cluster_table ;
where x between 1 and 10
and y eq 3;

run;

PROC PRI NT dat a=&donmi n..cluster _table ;
where x between 11 and 30
and y eq 8 ;

run;

/* Delete the dynam c cluster table. */
PROC DATASETS | i b=&Jdomai n noli st;

delete cluster_table ;
quit ;

THREADNUM=

Specifiesthe number of threadsto be used for WHERE Clause evaluations.
Syntax

THREADNUM=n

277



Default
THREADNUM= is set equal to the value of the MAXWHTHREADS server parameter.
Used in Conjunction with SAS Scalable Performance Data (SPD) Server Parameter
MAXWHTHREADS
Corresponding Macro Variable
SPDSTCNT=

Use the following argument:

isthe number of threads.
Description

THREADNUM= allows you to specify the thread count the SAS Scalable Performance Data
(SPD) Server should use when performing a parallel WHERE Clause evaluation.

Use this option to explor e scalability for WHERE Clause and GROUP_BY evaluationsin non-
production jobs. If you usethisoption for production jobs, you arelikely to lower the level of
parallelism that isapplied to those clause evaluations.

THREADNUM= worksin conjunction with MAXWHTHREADS, a configurable system
parameter. MAXWHTHREADS imposes an upper limit on the consumption of system
resour ces. The default value of MAXWHTHREADS is dependent on your operating system.
Your SAS Scalable Performance Data (SPD) Server administrator can change the default
valuefor MAXWHTHREADS.

If you do not use THREADNUM =, the softwar e provides a default thread number, up to the
value of MAXWHTHREADS asrequired. If you use THREADNUM =, the value that you
specify isalso constrained by the MAXWHTHREADS value.

The THREADNUM = value applies both to parallel table scans (EVAL 2 strategy), parallel
indexed evaluations (EVAL 1 strategy), parallel BY-clause processing, and parallel
GROUP_BY evaluations. The SAS Scalable Performance Data (SPD) Server User's Guide
Help section on Optimizing SAS Scalable Performance Data (SPD) Server Perfor mance,
contains mor e information on WHERE Clause evaluation.

Example

The SAS Scalable Performance Data (SPD) Server administrator sst MAXWHTHREADS=128
in the SAS Scalable Performance Data (SPD) Server's parameter file. Explore the effects of
parallelism on a given query by using the following SAS macr o:

%racr o dot est (maxthr);
%o nthr=1 % o &nmaxthr;

data null _;
set SPDSCEN. PRECS(t hr eadnum=é&nt hr) ;
WHERE
occup="022'

and state in("'37','03,'06"',"'36");
run;
%rend dot est;

278



WHERENOINDEX=

Specifiesalist of indexesto exclude when making WHERE Clause evaluations.

Syntax
WHERENOINDEX=(namel name2...)
Use the following ar guments:

(namel name2...)
alist of index namesthat you wish to exclude from the WHERE planner.

Example

We have a table PRECS with indexes defined as follows:

PROC DATASETS | i b=spdscen;
nodi fy precs(bitindex=(hour89));
i ndex create
stser=(state serial no)
occi nd=(occup industry)
hour 89;
qui t;

When evaluating the next query, we want the SAS Scalable Perfor mance Data (SPD) Server to exclude from
consideration indexes for both the STATE and HOUR89 columns.

In this case, we know that our AND combination of the predicatesfor the OCCUP and INDUSTRY columns
will produce avery small yield. Few rows satisfy the respective predicates. To avoid the extraindex I/O
(machinetime) that the query requiresfor afull-indexed evaluation, use the following SAS code:

PROC SQ.;
create table hr80spds
as sel ect
st at e,
age,
sex,
hour 89,
i ndustry,
occup
from spdscen. precs(wher enoi ndex=(st ser hour 89))
where occup=' 022
and state in("37','03 ,'06","'36")
and i ndustry="012
and hour 89 > 40;
qui t;

Note: Specify index namesin the WHERENOINDEX list, not the column names. The example excludes both
the composite index for the STATE column STSER and the simple index HOURS89 from consider ation by
the WHINIT WHERE planner.

279



Optionsfor Other Functions

BYSORT=

Perform an implicit automatic sort when SAS Scalable Performance Data (SPD) Server encountersaBY

clausefor a given table.

Syntax

BYSORT=YES | NO

Use the following ar guments:

YES

sortsthe data based on the BY columnsand returnsthe sorted data to the SAS client. This power ful
capability meansthe user does not haveto sort data using a PROC SORT statement before using a

BY clause.

NO

does not sort the data based on the BY columns. Thismay be desirableif a DATA step BY clause has
a GROUPFORMAT option or if a PROC step reports grouped and for matted data.

Description

Thedefault isYES. The NO argument means the table must have been previously sorted by
therequested BY columns. The NO argument allows gr ouped data to maintain their precise
order in thetable. A YES argument groupsthe data correctly but possibly in a different order

from theorder in thetable.

Example 1 - Group Formatting with BY SORT=

I i bname sport sasspds 'nylib'
host ="' sanson'
user ="' user 19
passwd="' dumy?2' ;

PROC FORVAT;
val ue doll ars
0-99. 99="1 ow'
100-199. 99="nedi unt
200- 1000=""hi gh";
run;

data sport.racquets;
i nput

ragnane $20.
@2 wei ght
@8 bal ance $2.
@2 flex
@6 gripsize
@2 string $3.
@7 price
@5 i nstock;

dat al i nes;

Sol 0 Juni or 10.1 N 2
Sol o Lobber 11.3 N 10

280

50. 00
160. 00

(o2}



Sol o Queensi ze 10.9 HH
Sol o Ki ngsi ze 13.1 HH

syn
syn

(620N}
o O

PROC PRI NT dat a=sport.racquets (bysort=yes);
var ragnane instock;
by price;
format price dollars.;
title 'Sol o Brand Racquets by Price Level';
run;

Output 4. 1 Report Output with BYSORT=

Solo Brand Racquets by Price Level

Price=low
OBS RAQNAME INSTOCK
1 Solo Junior 6

Price=medium

OBS RAQNAME INSTOCK
3 Solo Queensize 3
4 Solo Kingsize 3
2 Solo Lobber 1

Example 2 - Group Formatting without BY SORT=

PROC PRI NT data=sport.racquets (bysort=no);
var ragnanme instock;
by price;
format price dollars.;
title 'Solo Brand Racquets by Price Level';
run;

Output 4. 2 Report Output without BYSORT=

Solo Brand Racquets by Price Level

Price=low
OBS RAQNAME INSTOCK
1 Solo Junior 6

Price=medium

OBS RAQNAME INSTOCK

281

130. 00
140. 00

w



2 Solo Lobber 1
3 Solo Queensize 3

4 Solo Kingsize 3

ENDOBS=
Specifiesthe end row (observation) number in a user-defined range for the processing of a given table.
Syntax
ENDOBS=n

Use the following argument:

n
isthe number of theend row.

Description
By default, SAS Scalable Performance Data (SPD) Server processesthe entiretable unlessthe
user specifiesarange of rowswith the STARTOBS= and ENDOBS= options. If the
STARTOBS= option isused without the ENDOBS= option, theimplied value of ENDOBS=is
the end of the table. When both options are used together, the value of ENDOBS= must be
greater than STARTOBS=.
In contrast to the Base SAS softwar e options FIRSTOBS= and OBS=, the STARTOBS= and
ENDOBS= SAS Scalable Performance Data (SPD) Server options can be used for WHERE
Clause processing in addition to tableinput operations.

Example

Print only rows 2-4 of the table INVENTORY.OLD_AUTOS.

i bnane inventory sasspds 'conversion_area'
server =husky. 5105
user="siteusrl

pronpt =yes;

data inventory. ol d_autos;
i nput

year $4.
@ nmanuf acturer $12.
nodel $10.
body_ style $5.
engine_liters
@9 transm ssion_type $1.
@1 exterior_color $10.
opti ons $10.
nm 