Osas

SAS°® Scalable Performance
Data Server® 4.45

User’s Guide

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2008. SAS® Scalable
Performance Data Server® 4.45: User’s Guide. Cary, NC: SAS Institute Inc.

SAS® Scalable Performance Data Server® 4.45: User’s Guide
Copyright © 2008, SAS Institute Inc., Cary, NC, USA
All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without
the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book: Your use of this publication shall be governed by the terms
established by the vendor at the time you acquire this publication.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related
documentation by the U.S. government is subject to the Agreement with SAS Institute and the
restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
Ist printing, May 2008

SAS® Publishing provides a complete selection of books and electronic products to help customers use
SAS software to its fullest potential. For more information about our e-books, e-learning products, CDs,
and hard-copy books, visit the SAS Publishing Web site at support.sas.com/publishing or call 1-800-
727-3228.

SAS®and all other SAS Institute Inc. product or service names are registered trademarks or trademarks
of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Table of Contents

Product Notes

. SAS Scalable Performance Data (SPD) Server Product Notes

SAS Scalable Performance Data (SPD) Server Usage

. SAS Scalable Performance Data (SPD) Server Overview

. Connecting to SAS Scalable Performance Data (SPD) Server

. Accessing and Creating SAS Scalable Performance Data (SPD) Server Tables

. Indexing, Sorting, and Manipulating SAS Scalable Performance Data (SPD) Server Tables
. Using SAS Scalable Performance Data (SPD) Server with Other Clients

. SAS Scalable Performance Data (SPD) Server Dynamic Cluster Tables

SAS Scalable Performance Data (SPD) Server SQL Features

. SAS Scalable Performance Data (SPD) Server SOL Planner

. Connecting to the SAS Scalable Performance Data (SPD) Server SOL Engine
. SAS Scalable Performance Data (SPD) Server SOL Planner Options

. Paralel Join Facility

. Pardlel Group-By Facility

. SAS Scalable Performance Data (SPD) Server STARJOIN Facility

. SAS Scalable Performance Data (SPD) Server Index Scan

. Optimizing Correlated Queries

. Materialized Views

. SAS Scalable Performance Data (SPD) Server SOL Extensions

. Differences between SAS SOL and SAS Scalable Performance Data (SPD) Server SOL

SAS Scalable Performance Data (SPD) Server SQL Reference

. SAS Scalable Performance Data (SPD) Server SOL Syntax Reference Guide
. SAS Scalable Performance Data (SPD) Server SOL Access Library APl Reference

SAS Scalable Performance Data (SPD) Server Reference

. Optimizing SAS Scalable Performance Data (SPD) Server Performance
. SAS Scalable Performance Data (SPD) Server Macro Variables

. SAS Scalable Performance Data (SPD) Server LIBNAME Options

. SAS Scalable Performance Data (SPD) Server Table Options

. SAS Scalable Performance Data (SPD) Server Formats and |nformats

. SAS Scalable Performance Data (SPD) Server NL S Support

SAS Scalable Performance Data (SPD) Server Frequently Asked Questions

. SAS Scalable Performance Data (SPD) Server Frequently Asked Questions

Copyright © 2008 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

SAS Scalable Performance Data (SPD) Server Product
Notes

. Overview

. What's New in SAS Scalable Performance Data (SPD) Server 4.45?
o SAS Scalable Performance Data (SPD) Server 4.45 Enhancements
« CLUSTER LIST Statement Enhancements
« Method Trace for SOL Enhancements

. What's New in SAS Scalable Performance Data (SPD) Server 4.44?

. What's New in SAS Scalable Performance Data (SPD) Server 4.43?
o SAS Scalable Performance Data (SPD) Server 4.43 Enhancements
« CLUSTER MODIFY Command for PROC SPDO
« Table Option MEMNUM-= for Dynamic Clusters

. What's New in SAS Scalable Performance Data (SPD) Server 4.42?
o SAS Scalable Performance Data (SPD) Server 4.42 Enhancements
« CLUSTER CREATE Option for Unigue Indexes
« Additional PROC SPDO Proxy Commands

. What's New in SAS Scalable Performance Data (SPD) Server 4.417?

. What's New in SAS Scalable Performance Data (SPD) Server 4.4?
o SAS Scalable Performance Data (SPD) Server 4.4 Documentation
o SAS Scalable Performance Data (SPD) Server 4.4 Platform Support Changes
« New Platforms
« Platforms No Longer Supported
o SAS Scalable Performance Data (SPD) Server 4.4 and SAS Data Integration Studio
o SAS Scalable Performance Data (SPD) Server 4.4 New Features
« Materialized Views
« SAS Scalable Performance Data (SPD) Server Profiling
« LDAP Password Authentication
« Dynamic Locking
« Surfacing Ports through an Internet Firewall
o SAS Scalable Performance Data (SPD) Server 4.4 Enhancements
« MINMAX Table Indexing for Character Columns
« Expression Support for STARJOIN
« Dynamic Support for Larger Index Keys

« SORTEDBY Specification for Dynamic Clusters
« Additional Backup, Restore, and List Options
« Additional IXUTIL Options

. What's New in SAS Scalable Performance Data (SPD) Server 4.3?
o SAS9.1.3 Compatibility and Large Table Support
o SAS Scalable Performance Data (SPD) Server 4.3 and SAS 9.1.3 Password Encoding
o SAS Scalable Performance Data (SPD) Server 4.3 and SAS Management Console
o SAS Scalable Performance Data (SPD) Server 4.3 and SAS Data Integration Studio
o SAS Scalable Performance Data (SPD) Server 4.3 Utility Requirements
o SAS Scalable Performance Data (SPD) Server 4.3 SQL Planner Enhancements
o SAS Scalable Performance Data (SPD) Server 4.3 MINMAX Table Indexing
o SAS Scalable Performance Data (SPD) Server 4.3 WHERE Costing Improvements
o SAS Scalable Performance Data (SPD) Server 4.3 Cluster Tables
o SAS Scalable Performance Data (SPD) Server 4.3 Random Placement of Initial Data Partition Filesin
DATAPATH= Setting
o SAS Scalable Performance Data (SPD) Server 4.3 Debugging Tools

Overview

This document summarizes enhancements and changesin SAS Scalable Performance Data (SPD) Server 4.4, including
the SAS Scalable Performance Data (SPD) Server 4.45, SAS Scalable Performance Data (SPD) Server 4.44, SAS
Scalable Performance Data (SPD) Server 4.43, SAS Scalable Performance Data (SPD) Server 4.42 and SAS Scalable
Performance Data (SPD) Server 4.41 maintenance releases. The enhancements and changesin SAS Scalable
Performance Data (SPD) Server 4.3 are also included to provide users with a chronology.

The following compatibility information between the SAS System and the SAS Scalable Performance Data (SPD)
Server 4.4 mediaisimportant:

. The SAS Scalable Performance Data (SPD) Server 4.4 CD-ROM includes client modules that are compatible
with SAS 9.

. SAS Scalable Performance Data (SPD) Server 4.4 is not compatible with SAS versions earlier than SAS 9. Refer
to the appropriate SAS Scal able Performance Data (SPD) Server UNIX or Windows installation guide for more
information about SA S software requirements for use with SAS Scalable Performance Data (SPD) Server 4.4.

. For SAS9.1.3 Service Pack 3 and earlier releases, you must rename the sassqlu_ for _ sas913 sp3 _and_ earlier
modules from the SAS Scalable Performance Data (SPD) Server client installation to sassglu. If you do not
rename these modules for SAS 9.1.3 Service Pack 3 and earlier releases, problems will occur with SAS Scalable
Performance Data (SPD) Server implicit pass-through SQL that uses three-part names. Y ou will get an SQL
parse error from SAS Scalable Performance Data (SPD) Server that causes the implicit pass-through SQL to fail.

What's New in SAS Scalable Performance Data (SPD) Server 4.45?

SAS Scalable Performance Data (SPD) Server 4.45, also called SAS Scalable Performance Data (SPD) Server 4.4
TSM5, isan interim release. SAS Scalable Performance Data (SPD) Server 4.45 contains maintenance fixes and feature
enhancements that are not in SAS Scalable Performance Data (SPD) Server 4.44 and earlier releases.

The following feature enhancements are provided in SAS Scalable Performance Data (SPD) Server 4.45:

. SAS Scalable Performance Data (SPD) Server index performance after deleting values from atable has been
improved. When values are deleted from atable, corresponding SAS Scalable Performance Data (SPD) Server
4.45 index values are virtually deleted, instead of physically deleted. Virtually deleted index values are invisible
to SQL index queries. When you virtually delete an index value instead of physically deleting it, updating the
index metadata requires less overhead resources. However, virtually deleted index values still occupy space in
the disk image for the index. This disk image space can be reclaimed by using the ixutil index utility to
reorganize the index. Seethe"SAS Scalable Performance Data Server Index Utility Ixutil" section of the online
SAS Scalable Performance Data Server 4.45: Administrator's Guide for more detailed information about using
theixutil utility to generate virtually deleted value statistics and to reorganize indexes for optimum performance.

. SAS Scalable Performance Data (SPD) Server SQL has been enhanced to remove partial tables that can be
created if certain SQL queriesfail during execution. Previoudly, if an SQL statement such as, CREATE TABLE
as SELECT failed during execution, partial tables were created that SAS Scalable Performance Data (SPD)
Server could subsequently use, which led to erroneous results.

Note: The online SAS Scalable Performance Data Server 4.45: Administrator's Guide and the SAS Scalable
Performance Data Server 4.45: User's Guide can be found at

http://support.sas.com/documentation/onlinedoc/spds/index.htmil.

SAS Scalable Performance Data (SPD) Server 4.45 Enhancements

SAS Scalable Performance Data (SPD) Server 4.45 introduces the following enhancements:

. CLUSTER LIST Statement Enhancements
. Method Trace for SOL Enhancements

CLUSTER LIST Statement Enhancements

The SAS Scalable Performance Data (SPD) Server CLUSTER LIST statement output lists the member
tables of adynamic cluster in numbered order. In SAS Scalable Performance Data (SPD) Server 4.45,
more information is produced by the CLUSTER LIST statement.

Now, CLUSTER LIST statement output lists the member tables in a dynamic cluster, the maximum
number of dotsthat are available in the cluster, and the unique index validation status.

The following example uses PROC SPDO to create a dynamic cluster that has a unique index, five
3

http://support.sas.com/documentation/onlinedoc/spds/index.html

member tables, and space for asixth table. Then, aCLUSTER LIST statement isissued. The output lists
the dynamic cluster name, the names of each member table, the maximum number of member tables, and
the unique index validation status.

PROC SPDO | i brary=& i bdom ;

CLUSTER CREATE nat | sal es ;
menFne_regi on
memEse_regi on
nmemecentral _region
MeMENW_r egi on
MenFESW_r egi on

MAXSLOT=6

UNI QUEI NDEX=yes ;

NOTE: CLUSTER NATLSALES has been created with 6 maxi nrum sl ots.
CLUSTER LI ST natl sal es;

Cl uster Nanme NATLSALES, Men=NE_REGQ ON

Cl uster Name NATLSALES, Mem=SE_REGQ ON

Cluster Nanme NATLSALES, Mem=CENTRAL_REG ON

Cl uster Nanme NATLSALES, Men=NW REGQ ON

Cl uster Nanme NATLSALES, Menm=SW REGQ ON

NOTE: The maxi mum nunber of possible slots is 6.
NOTE: Uni que index is validated in CLUSTER NATLSALES.

Method Trace for SQL Enhancements

The enhanced SAS Scal able Performance Data (SPD) Server method trace for SQL now includes the
names of the source tables. Including source table names makes it easier to determine how the SAS
Scalable Performance Data (SPD) Server SQL planner constructed the query in cases where multiple
source tables were used.

To better understand the method trace enhancement, the following example shows a simple SQL
statement that joins two tables and explicitly states the SAS Scalable Performance Data (SPD) Server
execution methods that you want to use. The enhanced information content is displayed:

Before SAS Scalable Perfor mance Data (SPD) Server 4.45:

PROC SQL;
CONNECT to sasspds(dbg=...);
EXECUTE(RESET _method) by sasspds;
EXECUTE(CREATE TABLE casSELECT tl.bt2.c
FROM atl,bt2
WHERE tl.a =t2.a) by sasspds;

SPDS NOTE: SQL execution methods chosen are:
sgxcrta

sgxjpll

SPDS NOTE: Table X0000003.C created, with 1 rowsand 2 columns.

SAS Scalable Performance Data (SPD) Server 4.45:

PROC SQL;
CONNECT to sasspds(dbg=...);
EXECUTE(RESET _method) by sasspds;
EXECUTE(CREATE TABLE casSELECT tl.bt2.c
FROM atl, bt2
WHERE tl.a =t2.a) by sasspds;

SPDS NOTE: SQL execution methods chosen are:
sgxcrta
sqxjpll
sgxrc ([X0000001].A (alias=11))
sgxrc ([X0000001].B (alias=12))

SPDS NOTE: Table X0000001.C created, with 1 rowsand 2 columns.

See the section "Important SAS Scalable Performance Data (SPD) Server SQL Planner
Options' in the online SAS Scal able Performance Data Server 4.45: User's Guide for more
information on the SAS Scal able Performance Data (SPD) Server SQL planner.

What's New in SAS Scalable Performance Data (SPD) Server 4.447

SAS Scalable Performance Data (SPD) Server 4.44, also called SAS Scalable Performance Data (SPD) Server 4.4
TSM4, isan interim release. SAS Scalable Performance Data (SPD) Server 4.44 contains maintenance fixes and feature
enhancements that are not in SAS Scalable Performance Data (SPD) Server 4.43 and earlier releases.

The following feature enhancement is provided in SAS Scalable Performance Data (SPD) Server 4.44:

. LASTCLUSTERMEMBER isanew argument that you can use with the MEMNUM= table option to when you
want to query or read from the last member table of adynamic cluster. Instead of counting cluster membersto
determine the number (n) of the last member to use in the statement MEMNUM=n; you can specify
MEMNUM=LASTCLUSTERMEMBER. When you specify MEMNUM=LASTCLUSTERMEMBER, SAS
Scalable Performance Data (SPD) Server selects the last member for you. No numeric value for nisrequired
when you use the LASTCLUSTERMEMBER argument.

For example, to view the contents of the last member table in a cluster called Clustername, issue the statement:

PROC CONTENTS dat a=Cl ust er nanme(MEMNUM-LASTCLUSTERVEMBER)

See the section "Querying and Reading Member Tablesin a Dynamic Cluster” in the online SAS Scalable
Performance Data Server: User's Guide for more information.

Note: The online SAS Scalable Performance Data Server: Administrator's Guide and the SAS Scal able Performance
Data Server: User's Guide can be found at

http://support.sas.com/documentati on/onlinedoc/spds/index.html

What's New in SAS Scalable Performance Data (SPD) Server 4.437

SAS Scalable Performance Data (SPD) Server 4.43, or SAS Scalable Performance Data (SPD) Server 4.4 TSM3, isan
interim release. SAS Scalable Performance Data (SPD) Server 4.43 contains maintenance fixes and feature
enhancements that are not found in SAS Scalable Performance Data (SPD) Server 4.42 and previous releases.

The following feature improvements are provided in the SAS Scalable Performance Data (SPD) Server 4.43 release:

. The Windows 64 client WIA64 is supported. For more information on Windows 64 client support, see the
"Installing and Configuring SAS Scal able Performance Data (SPD) Server Clients' topic in the "SAS Scalable
Performance Data (SPD) Server Windows I nstallation Guide" documentation, or the "Configuring SAS Scalable
Performance Data (SPD) Server Client Software" topic in the "SAS Scal able Performance Data (SPD) Server
UNIX Installation Guide" documentation in the Installation section of the online SAS Scalable Performance Data
Server: Administrator's Guide.

. The SAS Scalable Performance Data (SPD) Server Index Utility adds an option to provide index distribution
statistics. For more information on the index distribution statistics option, see the "Ixutil Options" topic in the
"SAS Scalable Performance Data (SPD) Server Index Utility Ixutil” documentation in the System Management
section of the online SAS Scalable Performance Data Server: Administrator's Guide.

. Documentation has been added for using SAS Scalable Performance Data (SPD) Server with an Internet firewall.
For more information on configuring SAS Scalable Performance Data (SPD) Server for use with Internet
firewalls, seethe "Using SAS Scalable Performance Data (SPD) Server with an Internet Firewall" documentation
in the Security section of the online SAS Scalable Performance Data Server: Administrator's Guide.

. Internal performance optimizations have been implemented in SAS Scalable Performance Data (SPD) Server
pass-through SQL. The updated SAS Scalable Performance Data (SPD) Server pass-through SQL improves the
performance of queries that select a small number of columns from atable. The performance gains are most
noticeable when joining tables where the result set contains only asmall proportion of the total number of
columns that exist in the joined tables.

. BY-clause control has been enhanced. A new server parameter option, [NO]BYINDEX, and a corresponding
server macro, SPDSNBIX=, are used to permit BY -clauses on an indexed variable to sort the table using the
variable'sindex. For more information on the [NO]BY INDEX server parameter option, see the "Setting Up SAS
Scalable Performance Data (SPD) Server Parameter Files' documentation in the Configuration section of the
online SAS Scalable Performance Data Server: Administrator's Guide. For more information on the
SPDSNBIX= server macro, see the"SAS Scalable Performance Data (SPD) Server Macro Variables'
documentation of the"SAS Scalable Performance Data (SPD) Server Reference” section of the online SAS
Scalable Performance Data Server: User's Guide.

. SAS Scalable Performance Data (SPD) Server 4.43 features secure LDAP authentication for Solaris, AIX, HP-
UX, and HP Itanium. For more information on secure LDAP authentication, see the "SAS Sca able Performance

Data (SPD) Server Parameter File Configurations for LDAP" topic in the " Setting Up SAS Scalable Performance
6

http://support.sas.com/documentation/onlinedoc/spds/index.html

Data (SPD) Server Parameter files' documentation in the Configuration section of the online SAS Scalable
Performance Data Server: Administrator's Guide.

The SAS Scalable Performance Data (SPD) Server cluster add operation has been modified to alow cluster reads

while acluster add is progress. The reader sees the state of the cluster when the read begins. Cluster adds till
are exclusive operations; a cluster can only have one add operation occurring at any time.

Note: The online SAS Scalable Performance Data Server: Administrator's Guide and the SAS Scalable
Performance Data Server: User's Guide can be found at

http://support.sas.com/documentati on/onlinedoc/spds/index.html .

SAS Scalable Performance Data (SPD) Server 4.43
Enhancements

. CLUSTER MODIFY Command for PROC SPDO
. Table Option MEMNUM= for Dynamic Clusters

CLUSTER MODIFY Command for PROC SPDO

The PROC SPDO command set for dynamic clusters features anew CLUSTER MODIFY cluster
command. The CLUSTER MODIFY command setsaMINMAXVARLIST attribute on one or more
variables that belong to an existing dynamic cluster. When the SAS Scalable Performance Data (SPD)
Server runsthe CLUSTER MODIFY command, the dynamic cluster is unclustered while the variable
modifications are made to the individual member tables. The cluster isrecreated after the
MINMAXVARLIST changes are completed.

For more information on the CLUSTER MODIFY command, see the "Modify Dynamic Cluster Tables"
topic in the "SAS Scalable Performance Data (SPD) Server Dynamic Tables' document inthe "SAS
Scalable Performance Data (SPD) Server Usage" section of the online SAS Scalable Performance Data
Server: User's Guide.

Table Option MEMNUM= for Dynamic Clusters

Dynamic clusters provide atable option MEMNUM=. The MEMNUM= option allows you to perform
query or read operations on a single member table that belongs to the cluster. When you use the
MEMNUM= option, SAS Scalable Performance Data (SPD) Server opens only the specified member
table instead of opening all of the member tables that belong to the cluster.

For more information on the MEMNUM= option, see the "Querying and Reading Member Tablesin a
Dynamic Cluster” topic in the "SAS Scalable Performance Data (SPD) Server Dynamic Tables" document

7

http://support.sas.com/documentation/onlinedoc/spds/index.html

in the "SAS Scalable Performance Data (SPD) Server Usage" section of the online SAS Scalable
Performance Data Server: User's Guide.

What's New in SAS Scalable Performance Data (SPD) Server
4.427

SAS Scalable Performance Data (SPD) Server 4.42 (or SAS Scalable Performance Data (SPD) Server 4.4
TSM2) isan interim release. SAS Scalable Performance Data (SPD) Server 4.42 contains maintenance
fixes and feature enhancements that are not found in SAS Scal able Performance Data (SPD) Server 4.41
and earlier releases.

The following feature enhancements are provided in the SAS Scalable Performance Data (SPD) Server
4.42 release;

. The SQL RESET option, PRINTLOG, logs SQL queriesto the SAS Scalable Performance Data
(SPD) Server log. For more information, see the section "Important SAS Scalable Performance
Data (SPD) Server SQL Planner Options,” in the chapter, " Scalable Performance Data (SPD)
Server SQL Features,” in the SAS Scalable Performance Data Server: User's Guide.

. SQL LIBNAMESs and record-level locking LIBNAMEs are supported. For more information, see
the section "LIBNAME Proxy Commands,” in the chapter "SAS Scal able Performance Data (SPD)
Server Operator Interface Procedure (PROC SPDO)," in the SAS Scalable Performance Data
Server: Administrator's Guide.

. An SPD Management Proxy Manager utility is part of the SAS Management Console. The SPD
Management Proxy Manager utility monitors SAS Scalable Performance Data (SPD) Server
LIBNAME activity. For more information, see the section "Proxy Manager," in the chapter,
"Administering and Configuring SAS Scalable Performance Data (SPD) Server Using the SAS
Management Console," in the SAS Scalable Performance Data Server: Administrator's Guide.

. The SAS Scalable Performance Data (SPD) Server STARJOIN facility offersan IN-SET join
strategy. The IN-SET join strategy allows you to use star schema processing when the star
schema's fact table and dimension tables have simple indexes on join columns. For more
information, see the section "SAS Scalable Performance Data (SPD) Server STARJOIN
Optimization," in the chapter, "SAS Scalable Performance Data (SPD) Server STARJOIN
Facility," in the SAS Scalable Performance Data Server: User's Guide.

. A BY clause sort optimization is available for cluster tables if the member tables in the star schema
are sorted by the BY clause. For more information, see the section "Dynamic Cluster BY Clause
Optimization," in the chapter, "SAS Scalable Performance Data (SPD) Server Dynamic Cluster
Tables," in the SAS Scalable Performance Data Server: User's Guide.

. Secure LDAP authentication is available for Solarisand AlX. For more information, see the
section "SAS Scalable Performance Data (SPD) Server Parameter File Configurations for LDAP,"
in the chapter, "Setting Up SAS Scalable Performance Data Server Parameter files," in the SAS
Scalable Performance Data Server: Administrator's Guide.

The SAS Scalable Performance Data Server: User's Guide and SAS Scal able Performance Data Server:
Administrator's Guide can be viewed from the following URL:

http://support.sas.com/documentation/onlinedoc/spds/index.html

SAS Scalable Performance Data (SPD) Server 4.42
Enhancements

. CLUSTER CREATE Option for Unique Indexes
. Additional PROC SPDO Proxy Commands

CLUSTER CREATE Option for Unigue Indexes

The CLUSTER CREATE command in PROC SPDO has a new option that allows the user
to specify whether unique indexes that are defined in the member tables should be validated
and marked as unique in the cluster. If the UNIQUEINDEX option is set to No, then unique
indexes are not validated, and the cluster metadata does not mark the indexes as unique
within the cluster. If the UNIQUEINDEX option is not specified, then it defaultsto YES
and the indexes are validated and marked unique within the cluster.

The usage syntax for the CLUSTER CREATE command is:

CLUSTER CREATE cl ust er nane
MEM=nenber tabl el
VEM=nenber _t abl e2

MEM=nmenber _t abl e_n
MAXSLOT=n
UNI QUEI NDEX=<yes| no>;

For more information on PROC SPDO commands, see the "SAS Scal able Performance
Data (SPD) Server Operator Interface Procedure (PROC SPDO)" documentation in the
System Management section of the online SAS Scalable Performance Data Server:
Administrator's Guide.

Additional PROC SPDO Proxy Commands

The existing PROC SPDO command set has new commands that capture proxy information
about pass-through SQL librefs. The new commands, LIST USERS/LOCKING and SET
USER/LOCKING, capture information about record-level locking proxiesthat are
associated with pass-through SQL librefs.

The new privileged OPER command OPER INTERRUPT enables certain users to interrupt

long-running jobs. The new privileged OPER command OPER DISCONNECT drops the
9

http://support.sas.com/documentation/onlinedoc/spds/index.html

proxy fromits client. The OPER HALT and OPER RESUME commands are no longer
supported.

For more detailed information on PROC SPDO proxy commands, see the "SAS Scalable
Performance Data (SPD) Server Operator Interface Procedure (PROC SPDO)"
documentation in the System Management section of the online SAS Scalable Performance
Data Server: Administrator's Guide.

What's New in SAS Scalable Performance Data (SPD) Server
4.417?

SAS Scalable Performance Data (SPD) Server 4.41 (or SAS Scalable Performance Data (SPD) Server 4.4
TSM1) isaninterim release. SAS Scalable Performance Data (SPD) Server 4.41 contains maintenance
fixes and feature enhancements that are not found in SAS Scalable Performance Data (SPD) Server 4.4
and earlier releases.

The following feature enhancements are provided in the SAS Scalable Performance Data (SPD) Server
4.41 release:

. Indexes can be created on materialized views. For more information, see the section, "Materialized
Views" in the chapter, "SAS Scalable Performance Data Server SQL Features,” in the SAS
Scalable Performance Data Server: User's Guide.

. Thestd, avg, stderr, uss, css, and var GROUP BY functions are supported for use with fast index
scans. All functions that can use index scans can use the DISTINCT function aswell. For more
information, see the section, "SAS Scalable Performance Data (SPD) Server Index Scan,”" in the
chapter "SAS Scalable Performance (SPD) Data Server SQL Features,” in the SAS Scalable
Performance Data Server: User's Guide.

. The SPDSBKUP utility backs up MINMAXVARLIST information and table column metadata
such as FORMAT and LABEL. The SPDSRSTR utility restoresthe MINMAXVARLIST
information and the table column metadata. For more information about SPDSBKUP and
SPDSRSTR, see the chapter "SAS Scalable Performance Data Server Backup and Restore
Utilities," in the SAS Scalable Performance Data Server: Administrator's Guide.

. When you create a sorted table using the ORDER BY clause with the CREATE TABLE SQL
statement, the ORDER BY column in the new table is marked as sorted. Subsequent queries on
the table that include an ORDER BY clause on the column will not cause the table to be re-sorted.

What's New in SAS Scalable Performance Data (SPD) Server
4.47?

. SAS Scaable Performance Data (SPD) Server 4.4 User's Guide and Administrator's Guide
. SAS Scaable Performance Data (SPD) Server 4.4 and SAS Data I ntegration Studio
10

. SAS Scaable Performance Data (SPD) Server 4.4 Platform Support Changes
. SAS Scaable Performance Data (SPD) Server 4.4 New Features
. SAS Scaable Performance Data (SPD) Server 4.4 Enhancements

SAS Scalable Performance Data (SPD) Server 4.4
Documentation

The SAS Scalable Performance Data Server: User's Guide and SAS Scalable Performance Data Server:
Administrator's Guide have been removed from the SAS Scal able Performance Data (SPD) Server
installation media. The documentation is available online at

http://support.sas.com/documentati on/onlinedoc/spds/index.html.

Having the SAS Scalable Performance Data (SPD) Server 4.4 documentation on support.sas.com enables
you to accessit viayour Web browser and facilitates rapid distribution of SAS documentation updates
between successive SAS Scalable Performance Data (SPD) Server releases.

SAS Scalable Performance Data (SPD) Server 4.4 Platform
Support Changes

New Platforms

SAS Scalable Performance Data (SPD) Server 4.4 has added support for the UNIX Solaris
x64 platform.

Platforms No Longer Supported

SAS Scalable Performance Data (SPD) Server 4.4 no longer supports the Linux 1A-64
platform or the HP Tru64 UNIX platform.

SAS Scalable Performance Data (SPD) Server 4.4 and SAS Data
Integration Studio

Y ou can integrate the processing power of SAS Scalable Performance Data (SPD) Server 4.4 with SAS
Data Integration Studio. The plug-in file that SAS Scal able Performance Data (SPD) Server usesto
integrate with the SAS Management Console can aso incorporate SAS Scal able Performance Data (SPD)
Server resources into the SAS Data I ntegration Studio user interface.

To incorporate SAS Scalable Performance Data (SPD) Server 4.4 functionality into the SAS Data
Integration Studio user interface, copy the SAS Scalable Performance Data (SPD) Server 4.4 plug-in file

11

http://support.sas.com/documentation/onlinedoc/spds/index.html

into the SAS Data Integration Studio pl ugi ns subdirectory.
The SAS Scalable Performance Data (SPD) Server 4.4 plug-in fileislocated at:
SASROOT/ spdssnt/ sas. snt. SpdsMyr . | ar

Note: SASROOT represents the path to the base directory of the SAS software installation on your client
machine. spds44 represents the installed SAS Scal able Performance Data (SPD) Server software
directory. The name of the installed SAS Scalable Performance Data (SPD) Server software directory
varies according to the specific version and release of your SAS Scalable Performance Data (SPD) Server
software. For example, the path to your SAS Scalable Performance Data (SPD) Server plug-in file might
begin with SASROOT/ spds44, SASROOT/ spds44t s, or SASROOT/ spds44t sn2, depending on
whether you have the original SAS Scalable Performance Data (SPD) Server 4.4 software, or the first or
second maintenance release of the SAS Scalable Performance Data (SPD) Server 4.4 software.

Copy the SAS Scalable Performance Data (SPD) Server 4.4 plug-in file to the SAS Data Integration
Studio pl ugi ns directory:

SASROOT/ SASETLSt udi o/ 9. 1/ pl ugi ns/ sas. snt. SpdsMyr . j ar

SAS Scalable Performance Data (SPD) Server 4.4 New Features

. Materialized Views

. SAS Scalable Performance Data (SPD) Server Profiling
. LDAP Password Authentication

. Dynamic Locking

. Surfacing Ports through an Internet Firewall

Materialized Views

A materialized view saves the results of a VIEW statement in atemporary SAS Scalable
Performance Data (SPD) Server table. When the view is queried the temporary tableis used
for the query, instead of the entire view. If any of the input tables that comprise the view are
modified, the materialized view dynamically updates the temporary table. A materialized
view is supported only through the SAS Scalable Performance Data (SPD) Server SQL pass-
through facility. A materialized view can result in significant performance improvements
for queries that query the view.

For more information on materialized views, see the section, "Materialized Views," in the
chapter, "Optimizing SAS Scal able Performance Data Server Performance,” in the SAS
Scalable Performance Data Server: User's Guide.

SAS Scalable Performance Data (SPD) Server Profiling

12

The SAS Scalable Performance Data (SPD) Server Process Profiler utility monitors and
logs the activity of the SAS Scal able Performance Data (SPD) Server processes. Once the
information is logged, the output can be formatted to be read into a SAS table for analysis.

The SPD Management Server utility in the SAS Management Console connects to the SAS
Scalable Performance Data (SPD) Server Performance Server to provide real-time feedback
of SAS Scalable Performance Data (SPD) Server process activity. The SAS Scalable
Performance Data (SPD) Server 4.4 process profile panel dynamically refreshes SAS
Scalable Performance Data (SPD) Server process activity such as memory and CPU usage.
An SAS Scalable Performance Data (SPD) Server processisidentified by its process ID
(PID), and, if it isa proxy process, the SAS Scalable Performance Data (SPD) Server user
name that is associated with the proxy isincluded.

Thisfeature is available only for SAS Scalable Performance Data (SPD) Server 4.4 (and
later) installed on UNIX.

For more information on SAS Scalable Performance Data (SPD) Server profiling, see the
section, "SPD Process Profiler” in the chapter, "Administering and Configuring SAS
Scalable Performance Data (SPD) Server Using the SAS Management Console," in the SAS
Scalable Performance Data Server: Administrator's Guide.

LDAP Password Authentication

LDAP authentication causes SAS Scalable Performance Data (SPD) Server to authenticate
auser password via LDAP, rather than the password in the PSMGR database.

LDAP authentication allows an SAS Scalable Performance Data (SPD) Server user to have
the same user name and password as the UNIX/Windows user name and password, if the
UNIX/Windows logon user name and password meets the SAS Scalable Performance Data
(SPD) Server user name and password character restrictions.

The administrator can select the mode of password authentication with server parameters;
either viathe PSMGR database or LDAP. Once selected all authentication will be done in
that mode. With LDAP Authentication, a SAS Scalable Performance Data (SPD) Server
user must still be entered in the SAS Scalable Performance Data (SPD) Server PSMGR
database to maintain other information necessary for SAS Scalable Performance Data
(SPD) Server, such as the user's groups and access level.

Thisfeature is available only for SAS Scalable Performance Data (SPD) Server 4.4
installed on Solaris, AlX, HP-UX, HP Itanium, and Windows.

For more information on SAS Scalable Performance Data (SPD) Server LDAP
authentication, see the section, "The Password Manager Utility," in the chapter, "Managing
SAS Scalable Performance Data (SPD) Server Passwords, Users, and Table ACLS," in the
SAS Scalable Performance Data Server: Administrator's Guide.

13

Dynamic Locking

Dynamic locking provides more flexible locking semantics on a domain, which allows
multiple clients to share both Read and Write access to tables in the domain without getting
locking failures. Dynamic locking differs from SPD record-level locking in that clients
using dynamic locking connect to a separate SAS Scal able Performance Data (SPD) Server
user proxy process for each LIBNAME connection in the domain. With record-level
locking, all users share the same record-level locking proxy process. Having separate SAS
Scalable Performance Data (SPD) Server user proxy processes lessens the chance of
resource limits, and removes a single record-level locking point of failure for the record-
level proxy process.

Dynamic locking can provide better performance than record-level locking in cases where
concurrent reads and updates to atable are required, but the performance benefit needs to be
measured on a case-by-case basis.

For more information on SAS Scalable Performance Data (SPD) Server dynamic locking,
see the chapter, "Accessing and Creating SAS Scalable Performance Data Server Tables,"”
in the SAS Scalable Performance Data Server: User's Guide.

Surfacing Ports through an Internet Firewall

SAS Scalable Performance Data (SPD) Server uses a client/server relationship, which
means that the client cannot exist on the same host as the server. If the network
environment has an Internet firewall, you have to control the ports that the SAS Scalable
Performance Data (SPD) Server server and client use for communication so that those ports
can be surfaced through the Internet firewall. Certain ports that the SAS Scalable
Performance Data (SPD) Server uses are defined at start-up, and can therefore be easily
controlled. However, ports are dynamically allocated to support each connection to the SAS
Scalable Performance Data (SPD) Server and the subsequent user proxy processes that are
created as aresult of the connection. These ports are usually allocated as any available port.
The MINPORTNO and MAXPORTNO server parameters are fully supported featuresin
SAS Scalable Performance Data (SPD) Server 4.4. Y ou can use the MINPORTNO and
MAXPORTNO server parameters to control the dynamic portsthat SAS Scalable
Performance Data (SPD) Server uses.

For more information on surfacing ports through an Internet firewall, see the chapter,
"Setting Up SAS Scalable Performance Data (SPD) Server Parameter Files," in the SAS
Scalable Performance Data Server: Administrator's Guide, and the questions, "How do
SAS Scalable Performance Data (SPD) Server client and server processes communicate?”
and "How do | know which ports must be surfaced through an Internet firewall?" in the
chapter, "SAS Scalable Performance Data (SPD) Server Frequently Asked Questions,” in
the SAS Scalable Performance Data Server: User's Guide.

SAS Scalable Performance Data (SPD) Server 4.4 Enhancements

14

MINMAX Table Indexing for Character Columns
Expression Support for STARJOIN

Dynamic Support for Larger Index Keys
SORTEDBY Specification for Dynamic Clusters
Additional Backup, Restore, and List Options
Additional IXUTIL Options

MINMAX Table Indexing for Character Columns

The SAS Scalable Performance Data (SPD) Server table option for MINMAXVARLIST=
has been enhanced to support character columns. The SAS Scalable Performance Data
(SPD) Server WHERE clause planner uses the MINMAXVARLIST parameter values for a
table to quickly determine whether a WHERE clause on the character column can be
quickly evaluated astrivially true or false.

For more information on MINMAX table indexing, see the section, "MINMAX Indexes," in
the chapter, "Optimizing SAS Scalable Performance Data Server Performance,” in the SAS
Scalable Performance Data Server: User's Guide.

Expression Support for STARJOIN

The SAS Scalable Performance Data (SPD) Server STARJOIN optimization has been

enhanced to accept some queries that previously could not use the optimization. Those
queriesmet the STARJOIN requirements, but the selected column was an expression,

instead of asimple column. Asaresult, STARJOIN was not allowed.

For more information on expression support for STARJOIN, see the chapter "SAS Scalable
Performance Data (SPD) Server STARJOIN Facility,” in the SAS Scalable Performance
Data Server: User's Guide.

Dynamic Support for Larger Index Keys

The SAS Scalable Performance Data (SPD) Server Indexes dynamically support an index
key up to 32,608 bytes. An index key isthe sum of the length of all of the columns that
comprise the index. Previoudly, you had to reconfigure the BTREE_PAGESIZE server
option to support larger index keys. With dynamic sizing of the index metadata to support
larger index keys, reconfiguring the BTREE_PAGESIZE server option is no longer
necessary and the option is now obsol ete.

15

SORTEDBY Specification for Dynamic Clusters

SAS Scalable Performance Data (SPD) Server supports the SORTEDBY specification for
columnsthat are defined in adynamic cluster. To use the SORTEDBY specification, each
member table in the dynamic cluster must have SORTEDBY specification set for the
column. You set the SORTEDBY specification on a dynamic cluster in the same way you
set it for asimple table.

PROC DATASETS i brary=li bdomai n;
nodi fy cl usternanme(sortedby=<var>);
quit;

The SORTEDBY specification assumes that the dynamic cluster was created using member
tables that were added in the correct SORTEDBY order.

Additional Backup, Restore, and List Options

The SAS Scalable Performance Data (SPD) Server backup utility has added a -V option to
provide verbose output. The -v option will log the full name of the backup file and table of
contentsfile.

The SAS Scalable Performance Data (SPD) Server backup utility has added a -PROJ <dir>
option to support backing up filesin adomain project directory.

The SAS Scalable Performance Data (SPD) Server restore utility has added a-PROJ <dir>
option to support restoring filesto a domain project directory.

The SAS Scalable Performance Data (SPD) Server list utility has added an -S option to
include the size (in bytes) of the component files that are listed.

The SAS Scalable Performance Data (SPD) Server list utility has added an -INFO option to
get table information for adomain, including the number of component metadata, data, and
index files for atable, and the accumulated size of the component files for atable.

For more information, see the chapter, "SAS Scalable Performance Data (SPD) Server
Backup and Restore Utilities," in the SAS Scalable Performance Data Server:
Administrator's Guide.

Additional IXUTIL Options

The SAS Scalable Performance Data (SPD) Server IXUTIL utility has added the -
CREJIDX option to create ajoin index, the -DELJIDX option to delete ajoin index, the -
STATJDX option to print join index statistics, and the -LSTJDX option to list the join
indexesin adomain.

For more information, see the chapter, "SAS Scalable Performance Data (SPD) Server
16

Hybrid Index Utility IXUTIL," in the SAS Scalable Performance Data Server:
Administrator's Guide.

What's New in SAS Scalable Performance Data (SPD) Server 4.3?

The enhancements and changes for SAS Scal able Performance Data (SPD) Server 4.3 areincluded to
provide users with a chronology for the SAS Scalable Performance Data (SPD) Server feature set over the
most recent releases.

. SAS9.1.3 Compatibility and Large Table Support

. SAS Scalable Performance Data (SPD) Server 4.3 and SAS 9.1.3 Password Encoding

. SAS Scalable Performance Data (SPD) Server 4.3 and SAS Management Console

. SAS Scalable Performance Data (SPD) Server 4.3 and SAS Data I ntegration Studio

. SAS Scaable Performance Data (SPD) Server 4.3 Utility Requirements

. SAS Scalable Performance Data (SPD) Server 4.3 SQL Planner Enhancements

. SAS Scaable Performance Data (SPD) Server 4.3 MINMAX Table Indexing

. SAS Scalable Performance Data (SPD) Server 4.3 WHERE Costing | mprovements

. SAS Scalable Performance Data (SPD) Server 4.3 Cluster Tables

. SAS Scalable Performance Data (SPD) Server 4.3 Random Placement of Initial Data Partition
Filesin DATAPATH= Setting

. SAS Scalable Performance Data (SPD) Server 4.3 Debugging Tools

SAS9.1.3 Compatibility and Large Table Support

SAS Scalable Performance Data (SPD) Server 4.3 is compatible with the improved 1/0
infrastructure of SAS9.1.3.

SAS Scalable Performance Data (SPD) Server 4.3 provides on-disk structures that are
compatible with SAS 9 and the large table capacities that it supports. Enterprise-wide data
mining often creates immense tables. In order to generate business intelligence quickly, the
ability to update tables that contain billions of rows is more important than ever. Earlier
versions of SAS Scalable Performance Data (SPD) Server were based on 32-bit architecture
that supported just over 2 billion rows and 32,768 columns. SAS Scalable Performance
Data (SPD) Server 4.3 is based on a 64-bit architecture that supports tables with over 9
quintillion rows and over 2 billion columns.

The architectural differences between SAS 9 and earlier SAS versions mean that SAS
Scalable Performance Data (SPD) Server 4.3 cannot access SAS Scalable Performance Data
(SPD) Server 3.x stores, and vice versa. For more information on sharing SAS Scalable
Performance Data (SPD) Server 3.x and SAS Scal able Performance Data (SPD) Server 4.3
data stores, see the chapter, "SAS Scalable Performance Data (SPD) Server 3.x and SAS
Scalable Performance Data (SPD) Server 4.4 Compatibility" in the SAS Scalable
Performance Data Server: Administrator's Guide.

17

SAS Scalable Performance Data (SPD) Server 4.3 and
SAS 9.1.3 Password Encoding

SAS Scalable Performance Data (SPD) Server 4.3 supports the integration of the SAS 9.1.3
PROC PWENCODE. This procedure permits scripts to be generated that do not explicitly
contain secure passwords that could easily be used without authorization. Y ou must run
PROC PWENCODE in Base SAS software to enable the usage of script password encoding
within SAS Scalable Performance Data (SPD) Server 4.3. See the Base SAS software
documentation for detailed instructions on running PROC PWENCODE for use with SAS
Scalable Performance Data (SPD) Server 4.3.

The following example shows an SAS Scalable Performance Data (SPD) Server 4.3
LIBNAME statement that uses the password encoding option:

[i bname nmylib sasspds ' spdsdat a’
server =kaboom 5200
user =' spdsuser'
passwor d=' { sas001} c3BkczEyMn==";

SAS Scalable Performance Data (SPD) Server 4.3 and
SAS Management Console

SAS Management Console is a Java application that provides a single point of control for
managing multiple SAS application resources. Rather than using a separate administrative
interface for each application in your enterprise intelligence environment, you can use the
SAS Management Console interface to perform the administrative tasks that are required to
create and maintain an integrated environment.

SA S Management Console manages resources and controls by creating and maintaining
metadata definitions for entities such as:

server definitions
library definitions

user definitions
resource access controls
metadata repositories
job schedules

[} [} [} () [} [}

After installing the SAS Scalable Performance Data (SPD) Server 4.3 Java plug-infile,
SAS Scalable Performance Data (SPD) Server administrators can use the SAS Scalable
Performance Data (SPD) Server Server Manager utility in SAS Management Console to
configure SAS Scalable Performance Data (SPD) Server 4.3 user and group passwords and
ACLs, instead of using the traditional SAS Scal able Performance Data (SPD) Server

18

PSMGR database and PROC SPDO commands.

By default, SAS Management Console looks for plug-insin the pl ugi ns subdirectory of
each installed SAS product. The plug-in file that makes the SAS Scalable Performance Data
(SPD) Server Server Manager utility available in SAS Management Console is located at:

SASRCOOT/spds43/ pl ugi ns/ sas. snt. SpdsMyr . j ar

Note: SASROCT represents the path to the base directory of the SAS software installation
on your client machine. The previous plug-in file path in the example is specifically for
SAS Scalable Performance Data (SPD) Server 4.3. The plug-in file for SAS Scalable
Performance Data (SPD) Server 4.4 isin adifferent location.

SAS Scalable Performance Data (SPD) Server 4.3 and
SAS Data Integration Studio

Y ou can integrate the processing power of SAS Scalable Performance Data (SPD) Server
4.3 with other SAS software, such as SAS Data Integration Studio. The same Java plug-in
filethat SAS Scalable Performance Data (SPD) Server uses to integrate with SAS
Management Console can be used to integrate SAS Scal able Performance Data (SPD)
Server resources with the SAS Data Integration Studio user interface.

SAS Data Integration Studio enables data warehouse specialists to create and manage
metadata obj ects that define sources, targets, and the sequence of steps for the extraction,
transformation, and loading of datainto data marts or warehouses. SAS Scalable
Performance Data (SPD) Server can be an excellent tool for managing the large tables of
data associated with large data marts and warehouses.

By default, SAS Data Integration Studio looks for plug-insin the pl ugi ns subdirectory of
the SAS Data Integration Studios installation. To incorporate SAS Scalable Performance
Data (SPD) Server 4.3 functionality with the SAS Data I ntegration Studio user interface,
copy the SAS Scalable Performance Data (SPD) Server 4.3 Java plug-in file into the SAS
Data Integration Studio pl ugi ns subdirectory.

The SAS Scalable Performance Data (SPD) Server 4.3 Java plug-in fileislocated at:

SASROOT/ spds43/ pl ugi ns/ sas. snt. SpdsMyr. j ar

Note: SASROOT represents the path to the base directory of the SAS software installation on
your client machine. spds43 representstheinstalled SAS Scalable Performance Data
(SPD) Server software directory. The name of the installed SAS Scalable Performance
Data (SPD) Server software directory varies according to the specific version and release of
your SAS Scalable Performance Data (SPD) Server software. For example, the path to your
SAS Scalable Performance Data (SPD) Server Java plug-in file might begin with SASROOT/
spds43, SASROOT/ spds43t snil, or SASROOT/ spds43t sn?2, depending on whether you

have the original SAS Scalable Performance Data (SPD) Server 4.3 software, or the first or
19

second maintenance release of the SAS Scalable Performance Data (SPD) Server 4.3
software.

Copy the SAS Scalable Performance Data (SPD) Server 4.3 Javaplug-in fileto the SAS
Data Integration Studio pl ugi ns directory:

SASROOT/ SASETLSt udi o/ 9. 1/ pl ugi ns/ sas. snt. SpdsMyr . j ar

SAS Scalable Performance Data (SPD) Server 4.3 Utility
Requirements

SAS Scalable Performance Data (SPD) Server 4.3 provides NLS (National Language

Support) functionality for multiple languages and character sets in database operations. As
aresult, all SAS Scalable Performance Data (SPD) Server 4.3 utilities require access to the
<i nstal | di r>/bi n64 directory, and you must ensure that the <i nst al | di r >/ bi n64

directory is specified in your SAS Scalable Performance Data (SPD) Server 4.3 path
Statement.
Here is an example of a statement that specifies the necessary path:

LD LI BRARY_PATH=$LD LI BRARY_PATH: I nstal | Di r/ bi n64

export LD LI BRARY PATH

SAS Scalable Performance Data (SPD) Server 4.3 SQL
Planner Enhancements

SAS Scalable Performance Data (SPD) Server 4.3 includes SQL planner optimizations.
SQL planner optimizations improve the performance of frequent query types that are used
in data mining solutions such as SAS Marketing Automation. A key enhancement to the
SAS Scalable Performance Data (SPD) Server 4.3 SQL planner is optimizing correlated
queries through query rewrite techniques. Correlated queries are common in business and
analytic intelligence data mining. Another key enhancement is the tighter integration of the
paralel GROUP BY technology in the SQL planner. Tighter integration adds performance
benefits to nested GROUP BY syntax.

. SAS Scaable Performance Data (SPD) Server 4.3 STARJOIN Facility

. SAS Scaable Performance Data (SPD) Server 4.3 Index Scans

. SAS Scalable Performance Data (SPD) Server 4.3 Optimized Correlated Queries
. SAS Scalable Performance Data (SPD) Server 4.3 Parallel GROUP BY

. SAS Scaable Performance Data (SPD) Server 4.3 Parallel Join

20

SAS Scalable Performance Data (SPD) Server 4.3
STARJOIN Facility

The SAS Scalable Performance Data (SPD) Server 4.3 enhanced SQL
planner includes the new STARJOIN facility. The SAS Scalable
Performance Data (SPD) Server 4.3 STARJOIN facility validates, optimizes,
and executes SQL queries on data that is configured in a star schema. Star
schemas are composed of two or more normalized dimension tables that
surround a centralized fact table. The centralized fact table contains data
elements of interest that are derived from the dimension tables.

For more information on the STARJOIN facility, see the section, "SAS
Scalable Performance Data (SPD) Server STARJOIN Facility,” in the chapter
"SAS Scalable Performance Data (SPD) Server," and the chapter, "SAS
Scalable Performance Data (SPD) Server STARJOIN Facility,” in the SAS
Scalable Performance Data Server: User's Guide.

SAS Scalable Performance Data (SPD) Server 4.3 Index
Scans

SAS Scalable Performance Data (SPD) Server 4.3 SQL enables usersto
perform fast index scans on large tables. Rather than scanning entire tables
that might have millions of rows, in specific cases, SAS Scalable
Performance Data (SPD) Server 4.3 SQL can use index data to resolve the
query. Index datais compact, small, and faster to query than an entire table.
SAS Scalable Performance Data (SPD) Server 4.3 SQL provides enhanced
index scan support for the following functions:

MIN, MAX, COUNT, COUNT DISTINCT, NMISS, RANGE

For more information on index scans, see the section, "SAS Scalable
Performance Data (SPD) Server Index Scan,” in the chapter "SAS Scalable
Performance Data (SPD) Server SQL Features,” in the SAS Scalable
Performance Data Server: User's Guide.

SAS Scalable Performance Data (SPD) Server 4.3
Optimized Correlated Queries

Intelligent storage must have the ability to interpret and process complex
requests such as correlated queries. A correlated query is a select expression
where a predicate within the query has arelationship to acolumn that is
defined in another layer of code. Today's business and analytic intelligence
tools often generate SQL queries that are nested three or four layers
deep. Queries with cross-nested rel ationships use significant processor

21

resources and require more time to complete processing. New algorithmsin
the SQL planner of SAS Scalable Performance Data (SPD) Server 4.3
implement techniques that significantly improve the performance of
correlated queries for patterns that permit query rewrites or query de-
correlation.

SAS Scalable Performance Data (SPD) Server 4.3
Parallel GROUP BY

Parallel GROUP BY isahigh performance parallel summarization of data
that is executed using SQL. Parallel GROUP BY works against single tables
that are used to aggregate data. Summarization tasks are common in data
warehousing applications. Parallel GROUP BY was developed to quicken
processor performance summarization tasks. Parallel GROUP BY is often
used in SQL queries (through the use of sub-queries) to apply selection lists
for inclusion or exclusion.

Parallel GROUP BY support in SAS Scalable Performance Data (SPD)
Server 4.3 has been expanded. Parallel GROUP BY isintegrated in the
WHERE clause planner code so that it will boost the capabilities of the SAS
Scalable Performance Data (SPD) Server SQL engine. Any section of code
that matches the parallel GROUP BY trigger pattern will use paralel
GROUPBY.

For more information on parallel GROUP BY/, see the section, "Parallel Joins
with GROUP BY," in the chapter "SAS Scalable Performance Data (SPD)
Server SQL Features,” in the SAS Scalable Performance Data Server: User's
Guide.

SAS Scalable Performance Data (SPD) Server 4.3
Parallel Join

Parallel join is a high-performance pairwise join of two SAS Scalable
Performance Data (SPD) Server tables. The parallel join feature enhances
join performance in two ways. First, SAS Scalable Performance Data (SPD)
Server parallel joins are performed using parallel threading. Second, SAS
Scalable Performance Data (SPD) Server parallel joins use enhanced data
summarization methods after rowsin atable are joined.

For more information on SAS Scalable Performance Data (SPD) Server
parallel joins, seethe section, "Parallel Join Facility,” in the chapter "SAS
Scalable Performance Data (SPD) Server SQL Features,” in the SAS Scalable
Performance Data Server: User's Guide.

22

SAS Scalable Performance Data (SPD) Server 4.3
MINMAX Table Indexing

SAS Scalable Performance Data (SPD) Server 4.3 contains a new table option called
MINMAXVARLIST=. The primary purpose of the MINMAXVARLIST= table option is
for use with SAS Scalable Performance Data (SPD) Server 4.3 dynamic cluster tables,
where specific member tables in the dynamic cluster contain a set or range of values, such
as sales datafor a given month. When an SAS Scalable Performance Data (SPD) Server
SQL subsetting WHERE clause specifies specific months from arange of sales data values,
the WHERE clause planner checks the MINMAX indexes. Based on the MINMAX index
information, the SAS Scalable Performance Data (SPD) Server WHERE clause planner
includes or eliminates member tables in the dynamic cluster for evaluation.

Use the MINMAXVARLIST= table option with numeric columns. MINMAXVARLIST=
uses the list of columns you submit to build anindex. The MINMAXVARLIST= index
contains only the minimum and maximum values for each column. The WHERE clause
planner uses the index to filter SQL predicates quickly, and to include or eliminate member
tables in the dynamic cluster for evaluation.

Although the MINMAXVARLIST= table option is primarily intended for use with dynamic
cluster tables, it can be used with standard SAS Scalable Performance Data (SPD) Server
tables. MINMAXVARLIST= can help reduce the need to create many indexes on atable,
which can save valuabl e resources and space.

For more information on SAS Scalable Performance Data (SPD) Server the
MINMAXVARLIST= table options, see the section, "MINMAX Indexes," in the chapter,
"Optimizing SAS Scalable Performance Data (SPD) Server Performance,” in the SAS
Scalable Performance Data Server: User's Guide.

SAS Scalable Performance Data (SPD) Server 4.3 WHERE Costing | mprovements

The WHERE clause planner that isimplemented in SAS Scalable Performance Data (SPD)
Server 4.3 avoids resource-intensive computations and uses simple computations where
possible. WHERE clauses in large database operations can be resource-intensive. In SAS
Scalable Performance Data (SPD) Server 3.x and earlier releases, users often needed to
manually tune queries for performance. Tuning was accomplished using macro variables
and index settings. The WHERE clause planner that isintegrated into SAS Scalable
Performance Data (SPD) Server 4.3 does the tuning for the user by costing the different
approaches to index evaluation.

For more information on SAS Scalable Performance Data (SPD) Server WHERE clause
improvements, see the section, "Optimizing WHERE Clauses," in the chapter, "Optimizing
SAS Scalable Performance Data Server Performance,” in the SAS Scal able Performance
Data Server: User's Guide.

23

SAS Scalable Performance Data (SPD) Server 4.3
Cluster Tables

SAS Scalable Performance Data (SPD) Server 4.3 uses a virtual table structure called a
cluster table. Cluster tables provide a storage architecture that has parallel processing and
data management capabilities.

A cluster table is a structure that can store multiple SAS Scalable Performance Data (SPD)
Server tables. A cluster table is composed of member tables (or partitions). Each member
can store asingle SAS Scalable Performance Data (SPD) Server table. The cluster table
uses a layer of metadata to manage the members. Cluster tables can also be used in
WHERE clause costing. Each member in a cluster table is analyzed and assigned an EVAL
strategy that best fits the data patterns in the member or slot. Using multiple EVAL
strategies while performing WHERE clause costing on a cluster table provides better
process granularity, which can improve overall data throughput and performance.

Dynamic Cluster Tables

SAS Scalable Performance Data (SPD) Server cluster tables are virtual table
structures. SAS Scalable Performance Data (SPD) Server 4.3 cluster tables
are abound collection of multiple members. Each member isastandard SAS
Scalable Performance Data (SPD) Server table. All member tables that
belong to a dynamic cluster table must share the same metadata formats and
organization. SAS Scalable Performance Data (SPD) Server 4.3 dynamic
cluster tables use metadata to manage the data that is contained in the
member tables.

The SAS Scalable Performance Data (SPD) Server 4.3 dynamic cluster table
structure provides architecture that enables flexible loading, rapid storage,
and parallel processing for very large datatables. Using dynamic cluster
tables, loading data, removing data, and refreshing tablesin very large data
marts become easier and more timely. Dynamic cluster tables provide
organizational features and performance benefits that traditional SAS tables
and SAS Scalable Performance Data (SPD) Server tables do not have.

For example, you can add new data or remove historical data from very large
tables by accessing only the member tables that are affected by the change.

Y ou can access the individual member tablesin parallel. This strategy
reduces the time that is needed for the job to complete and uses very ssmple
commands. Furthermore, a complete refresh of a dynamic cluster table can
occur using afraction of the disk space that is needed to refresh alarge
traditional SAS or SAS Scalable Performance Data (SPD) Server table that
contains the same amount of data.

For more information on SAS Scalable Performance Data (SPD) Server
dynamic cluster tables, see the chapter, "SAS Scalable Performance Data
(SPD) Server Dynamic Cluster Tables," in the SAS Scalable Performance

24

Data Server: User's Guide.

Unsupported Features in Cluster Tables

Because of differencesin the load and read structures for dynamic cluster
tables, some standard features that are normally available in Base SAStables
and SAS Scalable Performance Data (SPD) Server tables are currently not
supported in SAS Scalable Performance Data (SPD) Server 4.3 cluster tables.

The features are;

« You cannot append datato adynamic cluster table. To append datato
adynamic cluster table, the table must be unclustered, the dataiis
appended to the individual unclustered files, and then the unclustered
files must be reclustered.

. Record-level locking is not allowed.

. The SAS Scalable Performance Data (SPD) Server backup/restore
utility is not available.

. Copying data with PROC COPY or PROC SQL is not supported.
If atask for adynamic cluster table requires one of these features, you should

undo the dynamic cluster table and create standard SAS Scalable
Performance Data (SPD) Server tables.

SAS Scalable Performance Data (SPD) Server 4.3
Random Placement of Initial Data Partition Files in
DATAPATH= Setting

In SAS Scalable Performance Data (SPD) Server 3.x, the initial data partition filesfor all
tables in the same domain are assigned to the first DATAPATH= setting that was defined in
the libnames.parm LIBNAME configuration file. Subsequent data partition files for atable
are placed in subsequent DATAPATHSs. When al SAS Scalable Performance Data (SPD)
Server DATAPATHS contain a data partition file, the process returns to the first
DATAPATH and continues. However, numerous SA S Scal able Performance Data (SPD)
Server installations have many small-to-medium-sized tables that do not have data partition
filesin all of the available DATAPATHS. This process could unevenly balance the
distribution of data on the disk, resulting with the first few DATAPATHsin adomain
containing significantly more data than the last few DATAPATHs in the domain. The
uneven data distribution results in unbalanced 1/0.

In SAS Scalable Performance Data (SPD) Server 4.3, the initial data partition filesfor all

25

tables in the same domain are no longer assigned to the first DATAPATH= setting that was
defined in the libnames.parm LIBNAME configuration file. Instead, SAS Scalable
Performance Data (SPD) Server randomly chooses from the available DATAPATHs when
assigning theinitial data partition filesfor alarge datatable. Asaresult, thedatais
distributed more evenly and permits more balanced 1/0O within SAS Scalable Performance
Data (SPD) Server processing.

By default, SAS Scalable Performance Data (SPD) Server 4.3 is configured to use random
placement of initial data partition files among SAS Scalable Performance Data (SPD)
Server DATAPATHs. The RANDOMPLACEDPF option is specified in the spdsserv.parm
file. To disable random placement of initial data partition filesin the DATAPATH= lit,
remove the RANDOMPL ACEDPF option from your spdsserv.parm file.

For more information on the RANDOM PL A CEDPF option, see the chapter, " Setting up
SAS Scalable Performance Data (SPD) Server Parameter Files," in the SAS Scalable
Performance Data Server: Administrator's Guide.

SAS Scalable Performance Data (SPD) Server 4.3
Debugging Tools

SAS Scalable Performance Data (SPD) Server 4.3 includes useful debugging tools. The
debugging tools enable SAS Scalable Performance Data (SPD) Server system
administrators to create debug images and to evaluate test images without interfering with a
production SAS Scalable Performance Data (SPD) Server environment. The debugging
tools are for use with SAS Scalable Performance Data (SPD) Server 4.3 running on SAS
9.1.3. The debugging tools are organized into LIBNAME statement options for debugging,
and server parameter file options for debugging.

For more information on SAS Scalable Performance Data (SPD) Server debugging tools,
see the chapter, "SAS Scalable Performance Data (SPD) Server Debugging Tools," in the
SAS Scalable Performance Data Server: Administrator's Guide.

Copyright © 2008 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

26

SAS Scalable Performance Data (SPD) Server Overview

. Introduction to SAS Scalable Performance Data (SPD) Server

. The SAS Scalable Performance Data (SPD) Server Client/Server Model

. Symmetric Multi-Processor Hosts

. SAS Scalable Performance Data (SPD) Server Host Services for Clients

. Accessing SAS Scalable Performance Data (SPD) Server Using SAS

. Securing SAS Data

. Organizing SAS Data

. SAS Scalable Performance Data (SPD) Server Performance Enhancements

. SAS Scalable Performance Data (SPD) Server Extensionsto Base SAS

. Using SAS Scalable Performance Data (SPD) Server with Data Warehousing

Introduction to SAS Scalable Performance Data (SPD) Server

SAS Scalable Performance Data (SPD) Server software is designed for high-performance data delivery. Its primary functionisto
provide user access to SAS data for intensive processing (queries and sorts) on the host server machine. When client
workstations from varying operating platforms send processing requests to a SAS Scalable Performance Data (SPD) Server host,
the host returns results in the format required by each client workstation. SAS Scalable Performance Data (SPD) Server usesthe
power of parallel processing to exploit the threading capabilities of servers with multiple processors.

SAS Scalable Performance Data (SPD) Server executes threads, units of processing, in parallel on a SAS Scalable Performance
Data (SPD) Server host. The software tasks are performed in conjunction with an operating system that enables threads to
execute on any of the machine's available processors. A specialized machine and operating System are important processing
partners, but SAS Scalable Performance Data (SPD) Server's power is derived from the software architecture that enableit to
rapidly and efficiently process SAS data in concurrent parallel threads on multiple processors .

SAS Scalable Performance Data (SPD) Server isthe high-speed processing tool among SAS products. SPD 4.3 introduces on-
disk structures that are compatible with SAS 9 and the large table capacities that it supports. Enterprise-wide data mining often
createsimmense tables. In order to generate business intelligence quickly, the ability to update tables that contain billions of
rows is more important then ever. The cluster table structure introduced in SAS Scalable Performance Data (SPD) Server 4.3
provides a new foundation for the next generation of SAS data storage. Previous versions of SAS Scalable Performance Data
(SPD) Server were based on 32-bit architecture that supported just over 2 billion rows and 32,768 columns. SAS Scalable
Performance Data (SPD) Server is based on a 64-bit architecture which supports tables with over 9 quintillion rows and over 2
billion columns.

SAS Scalable Performance Data (SPD) Server 4.4 operates on computers running SAS 9.1.3 or later. PC users that do not use
SAS can still use SAS Scal able Performance Data (SPD) Server. Information on connecting to SAS Scalable Performance Data
(SPD) Server with Other Clientsisfound in Using SAS Scalable Performance Data (SPD) Server With Other Clients. SAS users

can access SAS Scalable Performance Data (SPD) Server either by using SQL pass-through or by using SAS language.

Syntax Conventions. SAS Scalable Performance Data (SPD) Server software supports both SAS users and non-SAS users. The
SAS Scalable Performance Data (SPD) Server document uses common terminology that both audiences should understand. In
the SAS Scalable Performance Data (SPD) Server documentation, SAS data sets are referred to as tables, SAS variables are
referred to as columns, and SAS observations are referred to as rows. The SAS Scalable Performance Data (SPD) Server product
isreferred to as SAS Scalable Performance Data (SPD) Server or "the software”, depending on the context of the documentation.

27

The SAS Scalable Performance Data (SPD) Server Client/Server Model

SAS Scalable Performance Data (SPD) Server software divides SAS processing loads between the client and server. The Client/
Server Model diagram shows a simple client/server topology. The server hosts multiple concurrent clients while performing the
heaviest processing tasks. Typica clients are desktop PCs or low-end UNIX workstations running front-end software. The front-
end application sends the client's data requests over the network to the server and processes the information that the server
returns.

Y ou can create one or more SAS Scalable Performance Data (SPD) Servers on the host server machine. When a SAS Scalable
Performance Data (SPD) Server host receives a client's data request, it performs some action on behalf of the client. The action
varies with the request received.

Where does the user fit within in the SAS Scalable Performance Data (SPD) Server Client/Server model? Usersinitiate SAS
Scalable Performance Data (SPD) Server client sessions. In this documentation, the term ‘user’ refers to the operator of a SAS
Scalable Performance Data (SPD) Server client.

Figurel.1

The SAS Scalable Performance Data (SPD) Server
Client/Server Model

SPD Server SPD Server
Clignt !) Client
Process | “1 Process

",
",
*,
",
",
“,
", e
™, o
SPD Server ™, SPD Server s SPD Server
C“En; > Shqp HG‘S! / I::“Er”
.,
Process / Data Server N Process
rd Y
e ™,
e .
v
r
A
SPD Server K,-"'f . SPD Server
Client b i Client
Frocess Process

Symmetric Multi-Processor Hosts

SAS Scalable Performance Data (SPD) Server host machines use operating systems that can process concurrent threadsin

28

parallel on multiple processors. SAS Scalable Performance Data (SPD) Server exploits symmetric multiprocessing (SMP)
hardware and software architecture.

The number of processors on an SMP server varies by manufacturer and model. The operating system of the machine must also
support the parallel processing. Operating systems which possess a threaded kernel enjoy enhanced performance because the
threaded kernel prevents contention issues among competing threads in real-time. Synergy between processors and threads
allows SAS Scalable Performance Data (SPD) Server to scale processing performance. The scalability, in turn, significantly
improves the speed of SAS Scalable Performance Data (SPD) Server table creates, appends, scans, queries, and sorts.

SAS Scalable Performance Data (SPD) Server Host Services for Clients

SAS Scalable Performance Data (SPD) Server hosts provide multiple services to SAS Scalable Performance Data (SPD) Server
clients:

. Accessto data stores SAS Scalable Performance Data (SPD) Server offers concurrent read access and retrieval of SAS
data.

. High-speed data server SAS Scalable Performance Data (SPD) Server manages and processes massive SAS tables.

. Offloads heavy processing work SAS Scalable Performance Data (SPD) Server divides the labor. The Server process
retrieves, sorts, and subsets SAS data. A client process reviews and analyzes the data that the Server returns.

. Embellishesclient hardwar e SAS Scalable Performance Data (SPD) Server host machines are able to utilize the
computing hardware resources that are required to process large tables efficiently and rapidly.

. Reduces network traffic SAS Scalable Performance Data (SPD) Serversread, sort, and subset entire SAS tables and
then return answer sets. A query subset replaces large file downloads to the client machine. SAS Scalable Performance
Data (SPD) Server also offers acommon storage facility. Multiple client users can use the same SAS data on the server
without having to each transfer the SAS data to their workstations.

. Provides multi-platform support SAS Scalable Performance Data (SPD) Server allows clients to share SAS data across
computing platforms with other SAS users.

Tablel.1

SAS Scalable Performance Data (SPD) Server Features

SPD Server SPD Server
=HD) SEAer (el Client Action Host Response
The SPD Server client inputs
existing SAS tables with a The SPD Server host creates
PROC COPY statement or component filesthat are

creates a SPD Server tableusing || composed of one or more

a SA S data step or procedure. physical partition files. The
SPD Server clientscan aso use || server stores the physical
SQL pass-through CREATE, partition filesin one or more
COPY, or LOAD statementsto device/ directory paths.
input SAStables.

Support for
Gigabytes of data

29

Scalable Symmetric
Multiple Processor
(SMP) Support

The SPD Server client runs SAS
procedures and SQL pass-
through syntax to read, sort,
index, or query an SPD Server
table.

The SPD Server host utilizesits
threaded operating system to
perform concurrent processing
tasks distributed across multiple
processors.

Selective Paralle

The SPD Server client uses
WHERE-clause or SQL
SELECT syntax. Pass-through

The SPD Server host supports
and subsets SPD Server tables,

COPY to store SAS dataand
indexes.

Queries SQL, PROC SQL, and non-SAS || then delivers query answer sets
WHERE alternatives are to clients.
supported.
The SPD Seryer client runs SAS The SPD Server host uses
Parallel Loads procedures with LOAD or multiple threads to load and store

tables and indexes.

Parallel Indexes

The SPD Server client creates
table indexes using a DATA step
or the DATASETS procedure
with an INDEX option, or pass-
through SQL with the LOAD or
COPY command.

The SPD Server host creates
SPD Server tableindexesin
parallel.

SAS Data Security

The SPD Server client accesses
the SPD Server host using SQL
pass-through, aLIBNAME
statement, or anon-SAS
alternative connection.

The SPD Server host secures
SPD Server files at the
LIBNAME domain and/ or
table, column, and row level.

Accessing SAS Scalable Performance Data (SPD) Server Using SAS

Y ou begin a SAS Scalable Performance Data (SPD) Server session by starting your SAS Scal able Performance Data (SPD)
Server client. There aretwo waysto start your SAS Scalable Performance Data (SPD) Server client session. Y ou can use SQL
pass-through commands to start your SAS Scalable Performance Data (SPD) Server client session, or you can use aLIBNAME
statement to start your SAS Scalable Performance Data (SPD) Server client session. Both methods use the SASSPDS engine
and initiate communication between the SAS Scal able Performance Data (SPD) Server client machine and SAS Scalable

Performance Data (SPD) Server host.

. SOL Pass-Through Facility

. LIBNAME Access

. SAS Scalable Performance Data (SPD) Server Host Name Server

. Specifying the Port Address for the Name Server

SQL Pass-Through Facility

SAS Scalable Performance Data (SPD) Server can use SQL pass-through commands. The SAS Scalable
Performance Data (SPD) Server host can perform complete SQL -expression evaluation. SAS Scalable
Performance Data (SPD) Server also supports nested SQL pass-through commands. Nested SQL pass-through
commands permit you to connect to other SAS Scalable Performance Data (SPD) Server hosts while you are still

30

connected to your SAS Scal able Performance Data (SPD) Server host. Y ou can use nested pass-through
commands to distribute simultaneous SQL queries across multiple SAS Scalable Performance Data (SPD) Server
hosts on your network.

The SQL pass-through facility can be accessed with or without SAS syntax and applications. Y ou can use SAS to
connect to an SAS Scalable Performance Data (SPD) Server host by using pass-through syntax from PROC SQL
or from other SQL-aware SAS applications. The chapter on Accessing and Creating SAS Scalable Performance
Data Server Tables contains more detailed information about the SAS Scal able Performance Data (SPD) Server
pass-through facility and provides examples of the syntax.

Figurel1.2

SAS Scalable Performance Data (SPD) Server Client
Access to SAS Scalable Performance Data (SPD) Server Host
Using SQL Pass-Through and SAS CONNECT

SQL SPD Server Client with SAS User

‘——f proc sql;
SPD Server Name Server : connection to SASSPOS (..}

execute (...) by SASSPDS,
select * from SASSPDS ()

SPD Server
Host Environment

SPD Server SQL Server

LIBNAME Access

SAS users can initiate a client session by issuing aLIBNAME statement using the engine SASSPDS. LIBNAME
accessisillustrated in Figure 1.3. The documentation chapter on Connecting SAS Clientsto SAS Scalable

Performance Data (SPD) Server explains the mechanics of LIBNAME access to the engine and SAS Scalable
Performance Data (SPD) Server LIBNAME options.

31

Figure1.3

SAS Scalable Performance Data (SPD) Server
Client (SAS User) Access to SAS Scalable
Performance Data (SPD) Server Host

Using a LIBNAME Statement

LIBNAME
: SAS User
PROXY
SPD Server Name Server h the client LIBNAME specifies the
! SPD Server engine and a
Ni LIENAME domain
illlll,
A
H lIII".
SPD Server P
Host Environment t x&
: \ access to SPD Server
e Data Server using a
LIENAME statement

SPD Server Data Server

SAS Scalable Performance Data (SPD) Server Host Name Server

Distributed computing may enrich user resources, but it has an inherent problem. To connect to a SAS Scalable
Performance Data (SPD) Server, you must know its location within your network. Instead of requiring usersto
memorize long paths or I P addresses, SAS Scalable Performance Data (SPD) Server software uses a specialized
server caled aname server. The SAS Scalable Performance Data (SPD) Server name server locates active SAS
Scalable Performance Data (SPD) Server hosts on your network. A name server recognizes active SAS Scalable
Performance Data (SPD) Server machines because all the SAS Scalable Performance Data (SPD) Servers 'register’
with the name server as they come up and contact the host machine.

The name server keeps network addresses and a list of the LIBNAME domains for each SAS Scalable
Performance Data (SPD) Server host. What is an SAS Scalable Performance Data (SPD) Server LIBNAME
domain? A SAS Scalable Performance Data (SPD) Server LIBNAME domain isalogica entity that SAS Scalable
Performance Data (SPD) Server creates. A LIBNAME domain maintains domain attributes such as the library
name, owner, and contents. Whenever you use a LIBNAME statement to specify a LIBNAME domain, a name
server can determine the correct directory path to the SAS Scalable Performance Data (SPD) Server datalibrary
and connect your SAS Scal able Performance Data (SPD) Server client to the SAS Scalable Performance Data
(SPD) Server host for that domain.

32

Specifying the Port Address for the Name Server

SAS Scalable Performance Data (SPD) Server clients use port addressing to locate SPD name servers. SAS
Scalable Performance Data (SPD) Server administrators must assign a port address to a name server. Most UNIX
system clients use their local / et ¢/ ser vi ces fileto register port assignments. The service name for aSAS
Scalable Performance Data (SPD) Server name server inan/ et ¢/ ser vi ces filemust be SPDSNAME. PC
clients use servicesfiles to register port assignments. The servicesfiles on PC clients vary according to the
software that the PC network uses.

When aclient SAS Scalable Performance Data (SPD) Server application issues a LIBNAME statement that does
not contain the port address of the name server, SAS Scalable Performance Data (SPD) Server checks the services
file for the SPDSNAME entry and the port address. Registering the name server port assignment in your client's
network servicesfile relieves you from the responsibility of coding name server port numbers when you write SAS
jobs. The Help on Connecting SAS Clientsto SAS Scalable Performance Data (SPD) Server contains examples
that show you how to Connect to SAS Scalable Performance Data (SPD) Server Using a LIBNAME Statement

and a Name Server.

Securing SAS Data

. LIBNAME Domain Registration
. ACL File Security

LIBNAME Domain Registration

The name server helps SAS Scalable Performance Data (SPD) Server clients locate and connect to SAS Scalable
Performance Data (SPD) Server hosts. The name server also controls access to the SAS Scalable Performance
Data (SPD) Server LIBNAME domains. How does the name server get domain information? The SAS Scalable
Performance Data (SPD) Server administrator defines LIBNAME domainsin an SAS Scalable Performance Data
(SPD) Server LIBNAME parameter file.

When a SAS Scalable Performance Data (SPD) Server administrator brings up a server on the host machine, SAS
Scalable Performance Data (SPD) Server reads the spdssrv.parm parameter file and registers the domains that are
listed in the parameter file with the name server. The name server remembers which SAS Scalable Performance
Data (SPD) Server host or hosts have access to agiven LIBNAME domain. If you want to specify aLIBNAME
domain, you can do so using a LIBNAME statement or a pass-through SQL CONNECT statement. Your SAS
Scalable Performance Data (SPD) Server administrator can provide you with alist of the LIBNAME domains that
are mapped to your SAS Scalable Performance Data (SPD) Server host machine.

ACL File Security

SAS Scalable Performance Data (SPD) Server uses Access Control Lists (ACLs) and SAS Scalable Performance
Data (SPD) Server user IDs to secure domain resources. Y ou obtain your user ID and password from your SAS
Scal able Performance Data (SPD) Server administrator.

SAS Scalable Performance Data (SPD) Server also supports ACL groups, which are similar to UNIX groups. SAS
33

Scal able Performance Data (SPD) Server administrators can associate a SAS Scalable Performance Data (SPD)
Server user as many as five ACL groups.

ACL file security isturned on by default when an administrator brings up SAS Scalable Performance Data (SPD)
Server. ACL permissions affect all SAS Scalable Performance Data (SPD) Server resources, including domains,
tables, table columns, catalogs, catalog entries, and utility files. When ACL file security is enabled, SAS Scalable
Performance Data (SPD) Server only grants access rights to the owner (creator) of a SAS Scalable Performance
Data (SPD) Server resource. Resource owners can use PROC SPDO to grant ACL permissions to a specific group
(called an ACL group) or to al SAS Scalable Performance Data (SPD) Server users.

The resource owner can use the following properties to grant ACL permissionsto all SAS Scalable Performance
Data (SPD) Server users:

READ
universal READ access to the resource (read or query).

WRITE
universal WRITE access to the resource (append to or update).

ALTER
universal ALTER access to the resource (rename, delete, or replace aresource and add, delete indexes
associated with atable).

The resource owner can use the following properties to grant ACL permissionsto anamed ACL group:

GROUPREAD
group READ access to the resource (read or query).

GROUPWRITE
group WRITE access to the resource (append to or update).

GROUPALTER
group ALTER access to the resource (rename, delete, or replace a resource and add, delete indexes
associated with atable).

Organizing SAS Data

. SAS Scalable Performance Data (SPD) Server Tables
. SAS Scalable Performance Data (SPD) Server Component Files
. SAS Scalable Performance Data (SPD) Server Table Indexes

SAS Scalable Performance Data (SPD) Server Tables

SAS Scalable Performance Data (SPD) Server software alters SAS tables to enable high-performance processing.
SAS Scalable Performance Data (SPD) Server tables are physically different than a Base SAStable. Y ou can use
tablesin either SAS or native SAS Scalable Performance Data (SPD) Server format. The SAS Scalable
Performance Data (SPD) Server User's Guide chapter on Accessing and Creating SAS Scalable Performance Data

(SPD) Server Tables discusses how asimple SAS PROC COPY statement handles conversion details and
34

changing between table formats.

How are SAS tables organized? SAS tables stores a single file that contains the data descriptors and the table data.
The data are column values, the descriptors are metadata that describe the column and data formatting that the
table uses.

SAS Scalable Performance Data (SPD) Server tables do not reuse space. When an SQL command to delete one or
more rows from atable isissued, the row is marked deleted and the space will not be reused. To recapture the
space, the table must be copied.

The diagram of the SAS Scalable Performance Data (SPD) Server Table Component Files shows differencesin the
architecture between SAS Scalable Performance Data (SPD) Server tables and SAS tables. SAS Scalable
Performance Data (SPD) Server uses component files to store tables. One component file stores the stream of data
values. Another component file stores the column and data descriptors, the metadata. If you create an index for a
column or acomposite of columns, SAS Scal able Performance Data (SPD) Server creates component files for

each index.

SAS Scalable Performance Data (SPD) Server Component Files

SAS Scalable Performance Data (SPD) Server uses four types of component files to store SAS Scalable
Performance Data (SPD) Server tables. The diagram of the SAS Scalable Performance Data (SPD) Server Table
Component Files shows the components of SAS Scalable Performance Data (SPD) Server tables. Two component
files store table information: the *.dpf component file stores a stream of the table's data val ues, and the * .mdf
component file stores the table's metadata (column and data descriptors) information. SAS Scalable Performance
Data (SPD) Server also creates two more component files to manage index data: *.hbx components are unique
global B-tree indexes and *.idx components are segmented views of the indexed column data. The *.idx
components are especialy useful in evaluating parallel WHERE-clauses.

Figurel14

SAS Scalable
Performance Data (SPD)
Server Component Files

35

SPD Server Table A N Associated Table Indexes

Enhanced
Bitmap
Index Data

Table
Metadata

Segmented
Index Data

*.mdf file *dpf files * icdx file *.hbx file

SAS Scalable Performance Data (SPD) Server partitions component files when they are created to keep them from
growing too large. Each partitioned component fileis stored as one or more disk files. There are several
advantages to partitioning the component files:

. VeylLargeTables: SAS Scalable Performance Data (SPD) Server bypasses file size limits imposed by
many applications and operating systems. By using partitioned component files, SAS Scalable
Performance Data (SPD) Server can support any file system transparently.

. Multiple Directory Paths: SAS Scalable Performance Data (SPD) Server can access data libraries that
span numerous directory paths and storage devices. SAS Scalable Performance Data (SPD) Server
software partitions massive data libraries into component files. The component architecture enables rapid
threaded data access while circumventing device capacity and file size limitation issues. Storage lists
transparently track component file locations so users can access multiple storage devices asasingle
volume, even if file partitions exist in different locations.

. Flexibility in Storage: Thereisno need to store data tables and associated indexes in the same location
when using SAS Scalable Performance Data (SPD) Server component files. Data files and associated
indexes can be stored on different directory structures or devicesif you wish. When deciding where to
store component SAS Scalable Performance Data (SPD) Server tables, you only need to consider the cost,
performance, and availability of the disk space.

. Improved Table Scan Performance: Data component partitions that are created using fixed-size intervals
will perform aggressively during parallelized full table scans. The documentation chapter on SAS Scalable
Performance Data (SPD) Server Table Options contains information on how to use the PARTSIZE= option
to control partition size.

36

SAS Scalable Performance Data (SPD) Server Table Indexes

SAS Scalable Performance Data (SPD) Server allows you to create indexes on table columns. SAS Scalable
Performance Data (SPD) Server can thread WHERE-clause evaluations for tables that are not indexed. Indexes
enable more rapid WHERE-clause evaluations. Large tables in particular should be indexed to exploit SAS
Scalable Performance Data (SPD) Server performance. A detailed description of the SAS Scalable Performance
Data (SPD) Server index is provided in the Usage section on Indexing a Table.

SAS Scalable Performance Data (SPD) Server Performance Enhancements

. SAS Scalable Performance Data (SPD) Server Pass-Through SQOL Enhancements
. Implicit and Explicit Server Sorts

. Modified SAS Heapsort

. Indexed Parallel Table Scan

. Improved Table Appends

SAS Scalable Performance Data (SPD) Server Pass-Through SQL Enhancements

Y ou can use pass-through SQL to submit SQL statements that use SAS Scalable Performance Data (SPD) Server
tables directly to SAS Scalable Performance Data (SPD) Server. The SAS Scalable Performance Data (SPD)
Server SQL planner contains several optimizations that you can utilize to create SQL queries that can take
advantage of symmetric multiprocessing and SPD table indexes, resulting in improved SQL query performance.
Refer to the SAS Scalable Performance Data (SPD) Server User's Guide section on the SAS Scalable Performance
Data (SPD) Server SQL Planner for more information on SAS Scalable Performance Data (SPD) Server pass-

through SQL enhancements.

Implicit and Explicit Server Sorts

Y ou can use implicit or explicit sorts with SAS Scalable Performance Data (SPD) Server. For example, the PROC
SORT in Base SAS softwareis an explicit sort. Y ou can use PROC SORT with SAS Scalable Performance Data
(SPD) Server aswell.

Animplicit sort is unique to SAS Scalable Performance Data (SPD) Server. Each time you submit a SAS
statement with aBY clause, SAS Scalable Performance Data (SPD) Server sorts your data -- unlessthe tableis
aready sorted or indexed on the BY column. The automatic sort is very convenient. The documentation chapter on
Accessing and Creating SAS Scalable Performance Data Server Tables contains tips on how and when to use each

sort type.

Modified SAS Heapsort

SAS Scalable Performance Data (SPD) Server uses Heapsort as its default sort with some slight changes. Under
SAS Scalable Performance Data (SPD) Server, Heapsort compares available memory on the server to the memory
required to load and process the index key datain memory. If the memory is not constrained, SAS Scalable
Performance Data (SPD) Server performs the Heapsort in RAM memory.

37

Indexed Parallel Table Scan

SAS Scalable Performance Data (SPD) Server indexes are designed to support parallelism. Experienced RDBMS
users are accustomed to a perceptible processing lag that occurs when databases must read or process
enormous tables. When SAS Scalable Performance Data (SPD) Server performs table queries, the SAS
Scalable Performance Data (SPD) Server index architecture enables the software to analyze different
table sections or segmentsin paralel. By processing large table segments in parallel, SAS Scalable
Performance Data (SPD) Server delivers much faster data throughput. The faster throughput may be
difficult to perceive on small tables, but when SAS Scalable Performance Data (SPD) Server performs
scans on very large tables, the processing performance is significantly faster than database systems that
support only serial indexed table scans.

Improved Table Appends

SAS Scalable Performance Data (SPD) Server decomposes table append operation into a set of steps that can be
performed in parallel. The level of parallelism attained depends on the number of indexes present on the table. The
more indexes you have, the greater the potential exploitation of parallelism during the append processing.

Tip: You can save time by creating an empty table in SAS Scalable Performance Data (SPD) Server, then define
your indexes on it, and then append the data, as opposed to loading the table and then creating the indexes
afterwards. It is faster to create indexes on an empty table.

SAS Scalable Performance Data (SPD) Server Extensions to Base SAS

Y ou can access SAS Scalable Performance Data (SPD) Server by using an SQL pass-through CONNECT statement or you can
issue a SAS LIBNAME statement. After connecting to SAS Scalable Performance Data (SPD) Server, you can run SAS DATA
steps, SAS procedures, or PROC SQL statements.

The documentation in the SAS Scalable Performance Data (SPD) Server Adminstrator's Guide and the SAS Scalable
Performance Data (SPD) Server User's Guide furnish syntax and examples that use SAS Scalable Performance Data (SPD)
Server extensions to Base SAS language. Most of your existing SAS programs will work in SAS Scalable Performance Data
(SPD) Server with only minor modifications.

SAS Scalable Performance Data (SPD) Server extensions to the Base SAS language include:

. hew LIBNAME statement options

. SAS Scalable Performance Data (SPD) Server SQL pass-through syntax
. hew table options

. new macro variables

. paralel WHERE-clause processing

. parallel group-by processing

. BY-datagrouping

. paralel index creation

. PROC SPDO, an operator interface procedure.

38

Using SAS Scalable Performance Data (SPD) Server with Data Warehousing

SAS Scalable Performance Data (SPD) Server offers SAS Data Warehousing customers an excellent facility to store data. Using
component files and partitioning, SAS Scalable Performance Data (SPD) Server alleviates large table constraints such as device
or directory size limits. SAS Scalable Performance Data (SPD) Server can perform storage services on areliable and relatively
inexpensive machine.

Besides providing efficient, economical storage, SAS Scalable Performance Data (SPD) Server can deliver the enhanced
processing capabilities users need to manage and query data in a warehouse. SMP processing furnishes the machine's
horsepower to parallel-process huge tables. SAS Scalable Performance Data (SPD) Server also offers multiple access, domain
protection, and table locking: these features enable Data Warehouse users to secure and access their shared SAS Scalable
Performance Data (SPD) Server.

Figure 1.5
Data Warehouse With Large Data Stores
Transaction E j
Databases 8
:
;
: t
T Y £
Definitions WEWEURYEW
Crata Validation
Transformation
Integration
Summarization
Subjects / Data
| pa Marls
{ /
Detail Tables Summary Tables -—:;;:"'
Lot
Data d o
Warehouse I —
/’7 \HN'\\E """" 7
Iiformiatiom E
Marts i H
: /—
LY

NI

Data Access |
Analysis
Touls

e

pUaia ACCERE T

Analysis |
Tools _
L "
e S
o -/ I\-‘I\-'\.
p S,
“ _—
i ok i i
rd ¥ i 1
%L_._f’ | S N— i)

Within a Data Warehouse, there are several data stores (repositories for data). Three stores are of interest above: Detail Tables,
Summary Tables, and Data Marts. Organizations often store transactions that are up to 90 days old in a Detail store, transactions
that are up to ayear old in a Summary store, and additional data 'snapshots in Data Marts. The three data stores share a common
requirement -- they must maintain hundreds of gigabytes of data.

To perform queries, Data Warehouse users can use the SAS System with SAS syntax or PROC SQL syntax. Alternatively, the
software supports use of other vendors' applications that allow pass-through SQL and comply with other non-SAS connection
standards. In brief, SAS Scalable Performance Data (SPD) Server can contribute significantly to objectives for a Data
Warehouse: to deliver low-cost, relevant, machine-independent, and timely information to users throughout the organization.

Copyright © 2008 by SAS Ingtitute Inc., Cary, NC, USA. All rights reserved.

40

Connecting to SAS Scalable Performance Data
(SPD) Server

. Introduction
. SASand SPD Server Tables
o SAS Data Libraries
o Temporary LIBNAME Domains
« SPD Server Resource Security
o UNIX File Security
o ACL File Security
. Accessing SPD Server from a SAS Client
o SQL Pass-Through Facility
o LIBNAME Access
« LIBNAME Options
o Connect to a Specified SPD Server Host
o SPDSHOST= Macro Variable
o Validate the Client User ID
o Manage Server Network Traffic
o Additional LIBNAME Options
« LIBNAME Example Statements
. SPD Server Table Options
o Options to Enhance Performance
o Options for Other Functions
. SPD Server Macro Variables
o Macro Variables and Corresponding Table Options
o Summary of SPD Server Macro Variables
« Variablefor aClient and Server Running on the Same UNIX Machine
« Variable for Compatibility with the Base SAS Engine
« Variablesfor Miscellaneous Functions
« Variablesfor Sorts
« Variables for WHERE Clause Evaluations
« Variables That Affect Disk Space
= Variablesto Enhance Performance

Introduction

All SAS users should read the Help section on Accessing and Creating SPD Server Tablesto review the

41

methods that they can use to access SPD Server. These methods include LIBNAME statements and SQL pass-
through statements. Syntax statements and options are provided for each method, as well as useful table
options and macro variables.

SAS and SPD Server Tables

SPD Server tables have different physical structures than SAS tables. In agenera discussion, a SAStable can
also refer to an SPD Server table. If the context is specific, for example, an SPD Server command, then the
reference is specific. A SAS table refers to the Base SAS format; an SPD Server table refersto the SPD Server
format.

Using SPD Server and SAS together, you can
. convert tables from the Base SAS format to the SPD Server format
. convert tables from the SPD Server format to the Base SAS format

. create anew SPD Server table
. read, query, append to, update, sort, and index SPD Server tables.

SAS Data Libraries

Theterm 'SAS data library' refers either to a collection of SASfiles or SPD Server files. For SPD Server, a
SASdata library is a collection of one or more directories that specify the location of stored SPD Server files.
A datalibrary has a primary file system. Thisisthe directory an SPD Server administrator defines for the
LIBNAME domain when it is set up. Optionally, adata library can have other directories for separation of
SPD Server component files.

An SPD Server datalibrary can contain the following LIBNAME domain files:

. SPD Server tables

. SPD Server indexes

. SPD Server catalogs

. SPD Server ACL files

. SPD Server utility files, suchasaVIEW, an MDDB, etc.

Temporary LIBNAME Domains

SPD Server allowsyou to create temporary LIBNAME domains that exist only for the duration of the
LIBNAME assignment. Using this capability, SPD Server users can create space analogousto the SAS
WORK library. To create atemporary LIBNAME domain, use the SPD Server LIBNAME statement option,
TEMP=YES.

When you end your SPD Server session, al the data objects, including tables, catalogs, and utility filesin the

42

TEMP=YES temporary domain are automatically deleted. Thisis similar to how the SAS WORK library
functions.

SPD Server Resource Security

SPD Server provides two levels of data security: UNIX file security and ACL file security. ACL file security
enforces SPD Server permissions with SPD Server user IDs and Access Control Lists (ACLS).

UNIX File Security

The software enables ACL file security by default. While ACL file security is strongly recommended, the
default can be changed. Only an SPD Server administrator can change the default file security setting. When a
SPD Server administrator specifiesthe NOACL option, al clientsfor SPD Server obtain the SPD Server user
ID 'anonymous. Thereisno SPD Server security in effect. SPD Server tables are then secured only by the
UNIX file protections that are currently in force.

When UNIX file security controls SPD Server file access, it validates on the user |D associated with SPD
Server. Which UNIX user ID is associated with SPD Server? The UNIX ID associated with SPD Server isthe
UNIX ID of the user that brings up the server. Suppose an SPD Server administrator brings up the SPD Server
host machine, using his SPD Server administrator's account named SPDSADMN. When any SAS client
connectsto this SPD Server host, they will only be able to read files that have UNIX read permissions set for
the SPDSADMN user. Asaresult, SAS clients that are connected to this SPD Server host must write all files
in adirectory created by SPDSADMIN that also has write permission set for SPDSADMN. SPDSADMN will
own al fileswritten in this directory.

How is security maintained? The SPD Server administrator can set up the SPD Server LIBNAME domain
directories such that only the administrator has appropriate read and write access to those directories.

It ispossible for asiteto give different UNIX permissions to a group of users. To do this, an SPD Server
administrator must bring up another SPD Server using a different UNIX user account. (Bringing up adifferent
SPD Server affects only the new SPD Server files created, not existing SPD Server files.)

ACL File Security

UNIX file security aoneis not adequate for many installations. For more complex workplace environments,
SPD Server provides afiner level of controls, called ACL file security. ACL file security is used by default for
SPD Server LIBNAME domains. SPD Server always enforces ACL file security unless an SPD Server
administrator specifies the NOACL option when bringing up a Server.

To understand ACL file security, you must know how SPD Server user IDswork. The SPD Server
administrator assigns each approved SPD Server user an ID, a password, alevel of data authorization, and,
optionally, membership in up to five ACLGROUPS. (The SPD Server user ID ‘anonymous' does not require a

43

password.)

Once your SPD Server UserlD has been created, you and the SPD Server administrator can use PROC SPDO
to create ACL s that grant or deny other users access to an SPD Server table. The documentation chapter on
Accessing and Creating SAS Scalable Performance Data Server Tables explains how to use the PROC SPDO

operator interface to secure SPD Server resources.

Accessing SPD Server from a SAS Client

SQL Pass-Through Facility

SPD Server SQL pass-through processing supports an associated proxy process for each new client (viathe
name server). The proxy issues SQL pass-through requests. To connect to an SPD Server SQL server from a
SAS session, you must submit a CONNECT statement that specifies the SASSPDS engine and SPD Server
options, and then issues the SQL commands.

For example:

PROC SQL;
connect to sasspds
(dbg="' nydonai n'
host =' nanesvr | D
serv="'5555
user =' ner aksr'
passwd='si uya');
sel ect *
from connection
to sasspds
(select * from enpl oyee_ i nfo);
di sconnect from sasspds;
quit;

LIBNAME Access

A logical name, or libref, isaname for the data library that you associate with an SPD Server domain during a
SASjob or session. Once alibref isassigned, SPD Server allows you to read, create, or update filesin the
datalibrary if you have the appropriate access to the data library.

A libref isvalid only for the current SAS job or session. Librefs can be referenced repeatedly during avalid
job or session. SAS does not limit the number of librefs that you can assign during a session. Once you define
alibref, it is most commonly used as the first element in two-level SASfile names: LibraryName.Tablename.

44

Thelibrary name, or libref, identifies where the SPD Server can find or store thefile.

The documentation chapter on Accessing and Creating SAS Scalable Performance Data Server Tables
contains several SQL pass-through examples that use librefs. The following exampleisalibref used with
LIBNAME accessto an SPD Server.

Example: A LIBREF Used with LIBNAME Access

The statement below creates the table TRAVEL and storesit in a permanent SAS data library with the libref
ANNUAL.

data annual . travel;
Below isa LIBNAME statement that associates a libref, the SASSPDS engine, and an SPD Server domain.

I i bname nydatalib sasspds ' nydomai n'
host =" nanesvr| D
serv='5555'
user =' ner aksr'
passwd='si uya';

LI BNAME |i bref SASSPDS <' SAS-data-library'> <SPD Server-opti ons>;
Use the following arguments:

libref
aname that is up to eight characters long and that conformsto the rules for SAS names.
SASSPDS
the name of the SPD Server engine.
'SAS-data-library’
thelogical LIBNAME domain name for an SPD Server data library on the host machine. The name
server resolves the domain name into the physical path for the library.
SPD Server-options
one or more SPD Server options.

LIBNAME Options

Y ou must supply the SASSPDS engine name to access SPD Server LIBNAME domains with aLIBNAME
statement. Y ou must also specify one or more SPD Server options. The syntax for an SPD Server optionis

<SPD Server - opti on>=<val ue>;

45

SPD Server-option
a keyword to name the option.

value
avalue expected by the keyword.

Option valuesin a LIBNAME statement enable the engine to initiate, manage, and tailor aclient session. This
section summarizes LIBNAME options and groups them by function.

Connect to a Specified SPD Server Host

To connect to ahost, SPD Server needs the network node name for the SPD Server host
machine or the I P address of the server machine, and the port number of a name server. SPD
Server provides the following options to locate a name server using a named service.

SERVER=
specifies a node name for an SPD Server host machine and a port number for the name
server running on the machine.

HOST=
specifies anode for an SPD Server host machine and a port number for the name server
running on the machine.

Both options have the same function. SERV ER= arguments are compatible with SAS/SHARE
software. HOST= arguments support FTP conventions. The HOST option allows a node to be
an | P address (for example, 123.456.76.1); the SERV ER option requires a network node name.

SPDSHOST= Macro Variable

If you create a SAS macro variable named SPDSHOST= or an environment
variable named SPDSHOST =, whenever a LIBNAME statement does not specify
an SPD Server host machine, SPD Server will look for the value of SPDSHOST=
to identify the server.

% et spdshost =sanson;

i bname nyref sasspds 'nylib’
user ="yourid'
passwor d=' swam ' ;

Thefirst statement assigns the SPD Server host SAM SON to the macro variable
SPDSHOST. Therefore, a subsequent LIBNAME statement does not need to
name the host server again.

46

Validate the Client User ID

SPD Server uses the name server to secure its domains. SPD Server uses ACL file security to
secures domain resources. If ACL file security is enabled, the software grants accessin the
following hierarchy:

. using the permissions that belong to the UNIX ID that is associated with the SPD Server
. using the permissions that belong to the SPD Server user ID.

Y ou can use SQL pass-through and LIBNAME options to specify the identify of an SPD Server
user. SPD Server uses a special |D table to validate user IDs and passwords. The following
LIBNAME optionsidentify aclient:

ACLGRP=
specifies one of up to five ACL groups that the user may belong to.

ACLSPECIAL=
grants special privilegesto an SPD Server user who is previously set up as special
(ACLSPECIAL=YES isdefined for the user in the password file.) Special privileges
override other ACL restrictions that apply to resources in the domain.

CHNGPASS=
prompts a client user to change his or her SPD Server password.

NEWPASSWORD= or NEWPASSWD=
specifies a new password for an SPD Server client user.

PASSWORD= or PASSWD=
specifies a password to validate an SPD Server client user.

PROMPT=
prompts for a password to validate an SPD Server client user.

PASSTHRU=
specifiesimplicit SQL pass-through options for an SPD Server client user.

USER=
specifies the SPD Server user ID.

Table2.1

47

User ID Options When ACL File Security Is

Enabled
User= Pasa/vord:_or GrantsAccessTo. ..
Prompt=
Required unless the
SAS client process has Resources that you create
aUser ID, that is, nota ||Required and within the SPD Server
Windows client. validated against the ||LIBNAME domain and in
Submitted values for SPD Server User ID || other resources that are not
User= are validated Table. excluded by ACLsor by
against the SPD Server UNIX file permissions.
User ID Table.
Table2.2
User ID Options When UNIX File Security Only Is
Enabled
User= PSS ord:_or GrantsAccessTo. ..
Prompt=
Not required. The SPD All resources within the

Not required with

Server User ID under N , LIBNAME domain granted
anonymous' User

UNIX file security only D by UNIX permissions for
IS "anonymous". ' the SPD Server's UNIX ID.

Manage Server Network Traffic

If your SPD Server installation uses the same physical machine to run your SPD
Server client process and your SPD Server host services, you can use the two
following SPD Server options to improve client / server network traffic:

48

NETCOMP=
compresses the data stream in an SPD Server network packet.

UNIXDOMAIN=

uses UNIX domain sockets for data transfer between the client and the
SPD Server.

Additional LIBNAME Options

BYSORT=
performs an implicit sort when aBY clause is encountered.

DISCONNECT=

specifies when to close network connections between the SAS client and
the SPD Server. This may be after all librefs are cleared or at the end of a
SAS session.

ENDOBS=
specifies the end row (observation) in a user-defined range.

NOSASSORT=
ignores an explicit PROC SORT statement.

STARTOBS=
specifies the start row (observation) in a user-defined range.

TRUNCWARN=

Suppresses hard failure on NL S transcoding overflow and character
mapping errors. When using the TRUNCWARN=YES LIBNAME
option, dataintegrity may be compromised because significant
characters can be lost in this configuration. The default setting is
NO, which causes hard read/write stops when transcode overflow
or mapping errors are encountered. When TRUNCWARN=YES,
and an overflow or character mapping error occurs, awarning is
posted to the SAS log at data set close time if overflow occurs, but
the data overflow islost.

LIBNAME Example Statements

49

Example 1

Example 1 creates the libref MINE, associates it with the SASSPDS engine, and specifies the
SPD Server LIBNAME domain GOLDMINE. Values for the SPD Server options specify to

. locate the server machine FASTCPUS and use the default service SPDSNAME to get the
port number of the name server

. validate the SPD Server user EXPLORER

. prompt for EXPLORER's old SPD Server password

. change the password.

| i bnane m ne sasspds ' gol dmi ne'
user ="' expl orer’
host =' f ast cpus'
pronpt =yes
chngpass=yes;

Example 2

Example 2 represents the first LIBNAME statement that was made for the SPDSDATA domain.
It createsthe libref MY LIB, associates MY LIB with the SASSPDS engine, and specifies the
SPD Server libname domain SPDSDATA. Valuesfor the SPD Server options specify to

. locate the server machine HEFTY and use the named service SPDSNAME to get the port
number of the name server.

. validate the SPD Server user ID camills and account password of escort.

. Store datafile partitionsin the directories MAINDATA on device DISK1, MOREDATA
on device DISK2, and MOREDATA on device DISK3. This example impliesthat the
metadata and index partitions for tables are stored in the primary file system, that is, the
path set up by the SPD Server administrator for SPDSDATA.

i bnanme nylib sasspds 'spdsdata’
server =hefty. spdsnane
user="camlls' password='escort'
dat apat h=("'/di sk1/ mai ndat a

'/ di sk2/ nor edat a
'/ di sk3/ noredata');

SPD Server Table Options

50

SPD Server table options specify processing actions that apply only to a specific table. When you use a
LIBNAME statement, you should specify the options in parentheses next to the table name. If you use an
SQL pass-through statement, use brackets to specify the options next to the table name.

Options to Enhance Performance

BYNOEQUAL S=
specifies the index output order of table rows with identical values for the BY column.

NETPACKSIZE=
controls the size of an SPD Server network data packet.

SEGSIZE=
sizes the segment for index files associated with an SPD Server table.

Options for Other Functions

BYSORT=

performs an implicit sort of a given tablewhen aBY clauseis encountered and thereis
no index available.

ENDOBS=
specifies the end row (observation) number in a user-defined range.

STARTOBS=
specifies the start row (observation) number in a user-defined range.

SORTSIZE=

specifies the amount of memory (in number of bytes, not Kbytes or Mbytes) that SPD
Server is able to alocate in order to complete a sorting request. The SORTSIZE= table
option declared must be less than the global sortsize parameter specified in the spdsserv.
parm server parameter file.

VERBOSE=

details all indexes associated with an SPD Server table. This option also provides other
information, such as who is the table owner and the ACL group.

SPD Server Macro Variables

51

Y ou can use global macro variablesin SPD Server to simplify your work. Global macro variables use default
values set by the SPD Server software and operate in the background. Y ou can make global changesto the
values of macro variablesin your code by specifying a new the default setting for the specified variable. The
new default setting is applied to all macro variablesin the code that you submit to SPD Server. You can also
override the setting for a single macro variable by using atable option to change the setting for only the
specified table.

The default macro variable values automate sophisticated processing decisions. The default settings furnish
good performance. However, top performance often requires intelligent changes to some macro variable
default settings. When you make changes to the macro variable default settings, you should attempt to find the
best processing opportunity for the type of datathat you have.

Learning the best way to set SPD Server macro variables and options takes time. Sometimes, performance
testing is the only way to determine if changing a setting improves processing performance. Performance
testing is time well spent. After you quantify performance parameters under various macro variable settings,
you can customize SPD Server so that it solves your real business or data problems with maximum efficiency.

Each SPD Server installation is different. Y ou may want to change many values, or just afew default values.
When you make changes, you will find macro variables are friendly, flexible and easily to manipulate.

Use a %LET statement to change macro variable values. Y ou can place the macro variable assignment
anywhere in the open code of a SAS program except data lines. The most convenient place to put your %LET
statements to initialize macro variablesisin your autoexec.sasfile or at the beginning of a program. The
macro variable assignment isvalid for the duration of your session or the executing program. Macro variable
values remain in effect until they are changed by a subsequent assignment.

Assignments for macro variables with YES|NO arguments must be entered in uppercase (capitalized).

Because the SPD Server macro variables operate behind the scenes, you cannot query SPD Server to find out
the status of a macro variable. SAS does not ‘know' about the status of macro variables. If you want to see
which SPD Server macro variables are in effect, or their default values, you can use PROC SPDO.

Macro Variables and Corresponding Table Options

When you need to apply the action to a single table that a macro variable applies globally to al tables, you
should use atable option instead of the macro variable setting. A table option is more selective because you
can turn the macro variable function on or off for asingle table.

Summary of SPD Server Macro Variables

This section summarizes the SPD Server macro variables and groups them by the function of their default
value.

52

Variable for a Client and Server Running on the Same UNIX Machine

SPDSCOM P=
specifies to compress the data when sending a data packet through the network.

Variable for Compatibility with the Base SAS Engine

SPDSBNEQ=
specifies the output order of table rows with identical valuesin the BY column.

Variables for Miscellaneous Functions

SPDSEOBS=
specifies, when processing atable, the end row (observation) number in a user-defined range.

SPDSSOBS=
specifies, when processing atable, the start row (observation) number in a user-defined range.

SPDSUSAV=

specifies, when appending to tables with unique indexes, to save rows with non-unique (rejected) keys
to a separate SAS table.

SPDSUSDS=

returns the name of a hidden SAS table generated by the SPD Server which stores rows with identical
(non-unique) table values.

SPDSVERB=

specifies when executing a PROC CONTENTS statement to provide more details that are specific to
SPD Server indexes that are associated with the table. Examples of information include ACL
information, index information, PARTSIZE= value, and others.

SPDSFSAV=

specifiesto retain the table if an abnormal condition is encountered during a table-creation operation.
(Normally SAS closes and del etes these tables.)

SPDSEINT=
specifies disconnect behavior for the SQL pass-through EXECUTE() statement.

53

Variables for Sorts

SPDSBSRT=

specifies for the SPD Server to perform a sort whenever it encountersaBY clause, and thereis no
index available.

SPDSNBI X=
specifies whether to turn BY -sorts with an index on or off.

SPDSSTAG=
specifies whether to use non-tagged or tagged sorting for PROC SORT or BY processing.

Variables for WHERE Clause Evaluations

SPDSTCNT=
specifies the number of threads to be used for WHERE clause evaluations.

SPDSEV1T=

specifies whether the data returned from WHERE clause evaluations that utilize an index should bein
strict row (observation) order.

SPDSEV2T=

specifies whether the data returned from WHERE clause evaluations that do not utilize an index should
be in strict row (observation) order.

SPDSWDEB=

specifies when evaluating a WHERE expression, whether WHINIT, the WHERE clause planner,
should display a summary of the execution plan.

SPDSIRAT=

controls, when WHERE clause processing with enhanced bitmap indexes, whether to perform segment
candidate pre-evaluation.

Variables That Affect Disk Space

SPDSCM PF=
specifies to add a number of bytes to a compressed block as growth space.

SPDSDCM P=

54

specifies to compress SPD Server tables on the disk.

SPDSIASY=

specifies, when creating multiple indexes on an SPD Server table, whether to create the indexesin
paralel.

SPDSSIZE=
specifies the size of an SPD Server table partition.

Variables to Enhance Performance

SPDSNETP=
sizes a buffer in server memory for the network data packet.

SPDSSADD=
specifies whether to apply asingle row, or multiple rows at atime, when appending to a table.

SPDSSYRD=
specifies whether to perform data streaming when reading a table.

SPDSAUNQ=
specifies whether to abort an append if uniqueness is not maintained.

Copyright © 2008 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

55

Accessing and Creating SAS Scalable Performance Data (SPD)
Server Tables

. Introduction
. Using aLIBNAME Statement to Access SPD Server
o Example: Issuing an Initial LIBNAME Statement
o TheClient Session
. Managing Large SPD Server Files
o Initial Setup of SPD Server LIBNAME Domain Storage
o Effect of the Administrator Option, ROPTIONS=
o Explicit or Default Storage Paths
o Understanding SPD Server Component Storage
o Forced Partitioning of the Data Component
o Importance of the First Metadata Partition
o Using Path Options for Large Table Storage
« Example 1. Specify an Explicit Initial Set of Paths
« Example 2: Specify a Subsequent LIBNAME Statement to Add Paths
. Interchanging SPD Server and SAS File Formats
o Migrating Tables between SAS and SPD Server
« Example 1. Create a SAS Table from an SPD Server Table
« Example 2: Convert from SASto SPD Server Format
. The SQL Pass-Through Facility
o Accessing Data Using the SQL Pass-Through Facility
o SQL Pass-Through Statements
« CONNECT Statement
« DISCONNECT Statement
« EXECUTE Statement
« CONNECTION TO Statement
« Example 1: Using SAS PROC SQL to Connect to an SQL Server
« Example 2: Nested SOL Pass-Through
. Creating aNew Table
o Example - Creating a New Table Using Pass-Through Statements
o Example - Creating a New Table with aLIBNAME Statement

Introduction

This documentation chapter describes how to access SPD Server using SAS and a SPD Server SQL pass-through facility or SAS
LIBNAME statement. The chapter also demonstrates typical data tasks on an SPD Server host. Finaly, it discusses how to secure SPD
Server resources using PROC SPDO. (Power users who have special privileges should see Using PROC SPDO, Specia and Privileged

OPER Commands.)

Note: For readability, the SPD Server SQL pass-through facility is shortened here to "SQL pass-through facility,” unless the context
requires amore explicit reference. Similarly, when the chapter references a name server, it is the Scalable Performance Data Server
name server.

56

Using a LIBNAME Statement to Access SPD Server

It is not necessary to understand all possible LIBNAME and table optionsto initiate an SPD Server client session. There are only afew
required elements which are shown in the example below. The LIBNAME statement should specify

. thelocal library reference (libref)

. therequired engine name SASSPDS

. avalid domain name that is registered to the name server and defined to the SPD Server host

. the name server host's name

. theuser ID

. password access, either through the PROMPT=Y ES switch or using the PASSWD keyword. (The PROMPT=YES approach is
recommended for security reasons.)

Example: Issuing an Initial LIBNAME Statement

i bname mar ket sasspds 'nktdata' host='sunone'
user="user id" pronpt=yes;

This example specifies the libref "market,” the engine name SASSPDS, the LIBNAME domain "mktdata," and the name server host
called "sunone." It identifiesan SPD Server user "user id" and is configured to prompt the user for a password. Alternately, but less
recommended, is

i bnane market sasspds 'nktdata' host='sunone'
user="user id passwd='beener';

The only difference between this and the previous example is the password specification. Here the password "beemer" is recursed into
the LIBNAME statement. This method can be used for batched SPD Server jobs that run unattended.

The Client Session

Successfully issuing the LIBNAME statement or SQL pass-through statement(s) initiates an SPD Server client session. Theclient
session operates using a combination of up to four distinct components:

SPD Server Name Server
The name server acts as a "traffic cop" and provides a central point of control between clients and SPD Server hosts. The name
server maintains alist of LIBNAME domains associated with each SPD Server host. Client sessions will always connect to an
SPD Server host through a name server. The name server resolves the submitted LIBNAME domain name (alogical entity) to a
physical path (usually a UNIX or Windows directory). The name server then connects you to the SPD Server serving the
domain without requiring you to know physical addresses. An SPD Server administrator sets up the LIBNAME domainsin a
parameter file for SPD Server which then registers its domains with the name server.

SPD Server Host
Each SPD Server host controls security access to the domain resources it manages. When an SPD Server host starts up, it
registersits LIBNAME domains with the name server. Clients may only connect to an SPD Server host through a name server
-- direct connections between clients and SPD Server hosts are not permitted. The SPD Server host validates the client user ID
and password (passed in the LIBNAME statement), launches the system process (client proxy) for each client, and grants access
to the appropriate SPD Server domain.

SQL Server
The SQL server parses and processes the pass-through SQL syntax submitted by the SAS client.

SPDSSNET Server
The SPDSSNET server enables access between clients without SAS software and SAS Scalable Performance Data Server. The
SPDSSNET server runs as a stand-al one process on either the client or SPD Server host machine. It acts as a bridge between

57

the SAS ODBC driver and the SPD Server host. SPDSSNET also can be used with JIDBC drivers and HTMSQL used with Web
Servers. SPDSSNET can run multiple processes concurrently and perform parallel processing.

Figure3.1 SPD Server Hosts, SPD Server Name Servers, and LIBNAME Domains

SPD Server Hosts, SPD Server Data Servers, and
LIENAME Domains

SPD Server Name Server
(Command Central)
Maintains list of LIBNAME domains for SPD Server Hosts
SPD Server clients connect to SPD Server Hosts via the
SPD Server Name Server

SPD Server SPD Server SPD Server
Host 1 Host 2 Host 3
I
| ! |
Domain & Domain C Domain E
Domain B Domain D Domain F

Managing Large SPD Server Files

L eaving aside performance issues, managing large filesis amatter of file storage and disk space. Optimally, an SPD Server
administrator will manage storage space for SPD Server LIBNAME domains. In this case, you do not need to consider storage issues --
SPD Server does the work for you. The Help section on Optimizing SPD Server Performance contains more detail on managing large

SPD Server files.

Initial Setup of SPD Server LIBNAME Domain Storage

Figure 3.2 reviews how an SPD Server domain is set up. An SPD Server administrator must define the name and primary path for the
domain in the LIBNAME parameter file for SPD Server. The path that the administrator defines for each domain isreferred to asthe
primary file system for that domain. The LIBNAME parameter fileis read by the SPD Server at startup. The SPD Server registers the
domains with the SPD Name Server. When the user issues a LIBNAME statement, the client sends a message to the SPD Name Server
that will resolve the domain name to its physical directory path and also determine the SPD Server that registered the domain.

Figure 3.2 Setup of SPD Server LIBNAME Domains

58

- registers with
LIBNAME SPD Server | _ %0 ,| SPDServer

. Host | Name Server
Farameter File
* . . I
\, // |
\\‘ /' sasspds engine
', i . B
Client proxy S !':t?ll:f rfp:.:;ala
! makes LIBNAME ., 4 Li'r&mo P g[l‘l'l
The SPD Server Administrator assignment Ve et 8L
enters diskl/jcsuser S
., <
LIBMAME=zpdadata I k%4
PATHNAME=/disk]l/jcsusar SPD Server
Client

PATHMAME= defines the
primary file system for the
spdsdata ibname domain.

LIBMAME Engine

/* LIBNAME statement */

libname mylib sasspds ‘spdsdata’
gerver=hefty.spdsnames
unzer='Jcamith’ password="halcyon® ;

The Scalable Performance Data 4.3 Overview documentation chapter discusses LIBNAME path options that allow a user to specify
additional storage devices and paths for adomain. To manage their own disk space, a user must be aware of the DATAPATH=,
METAPATH=, and INDEXPATH= options, aswell asthe ROPTIONS= option that the SPD Server administrator uses.

Effect of the Administrator Option, ROPTIONS=

After defining a primary file system for adomain, an SPD Server administrator can use LIBNAME parameter file options, identical to
the DATAPATH=, METAPATH=, and INDEXPATH= optionsin the LIBNAME statement, to set up additional paths for the domain.
However, the administrator can a so exercise an option to restrict athe user from defining additional paths on the LIBNAME statement
with the ROPTIONS= LIBNAME parameter file option. When an SPD Server administrator uses the ROPTIONS= option, the
administrator's specification takes precedence over the users. More information is available in the Help section on Configuring
LIBNAME Domain Disk Space in the SPD Server Administrator's Guide.

For example, assume that a user uses the DATAPATH= option to specify a path(s) to store table data for a domain, and that the SPD
Server administrator also usesthe DATAPATH= option, along with ROPTIONS= for that domain entry in the LIBNAMES parameter
file. The user's DATAPATH= specifications are then ignored.

The administrator's use of ROPTIONS= with path options is recommended. It relieves users of the complicated task of managing disk
space and avoids the need to embed physical path information in SAS programs. Instead, SAS jobs need to refer to only the logical
LIBNAME, relying on ROPTIONS= embedded by the administrator to specify all of the physical information. This approach utilizes
the power of the name server, alowing it to resolve path information for an SPD Server domain.

Figure 3.3 Primary File System Default Paths

59

f/* First LIBNAME statement for the
domain without path optionsg */f

libname mylib sasspds ‘spdsdata’

sarver=hefty. spdsname
usar=‘jesmith’ password='haleyan’ ;

SPD Server e et }é SPD Server
Host Client

The SPD Semver Name Senver
resolves spdsdata into the path

diakl/josuser

the primary file system for the
domain.

Faths for spdsdata in .spdslib11
are:

METAPATH=/diskl/josuzser
DATAPATH=/diskl /josuser
INDEXPATH=/digkl/jcsuzer

Explicit or Default Storage Paths

Y ou may wonder why the software offers you path options and then discourages their use? The answer is flexibility. A site may elect to
alow users to manage their own disk space. While this practice is not recommended, the software alows for the possibility.

To use path options effectively, you must know that the first LIBNAME assignment or SQL Pass-Through CONNECT statement
naming adomain establishes an initial set of paths for the domain. Y ou can specify the paths, or the software can establish a default set.
Figure 3.2 shows a default set of paths. Figure 3.4 shows an explicit initial set of paths.

The path options METAPATH=, DATAPATH= and INDEXPATH= store partitions for the component files: metadata, data, and
indexes. Subsequent LIBNAME assignments augment the path list created by theinitial LIBNAME assignment. That is, SPD Server
appends each new path assignment to any prior list for the component.

Figure 3.4 Explicit Initial Set of Paths

60

/* First LIBMAME statement for
domain with path options *f

libname mylib sasspds ‘spdsdata’
garver=hefty . spdsnamea
uger="Jocamith’ password="halcyon”
METAPATH={ */disk2/jcsuser?’)
DATAPATH= (* /disk2/josuser?’
‘Sdisk3/josuserd)
INDEXPATH=(*/disk2/jesusard’) ;

sposerver | .| SPDServer
Host Client

The SPD Server Mame Server
resolves spdsdata into the path

diskl/josuser

the primary file system for the
domain.

Faths for spdsdata in .spdslib11 are:

METAPATH={ ' /diskl/jcsusar
V/disk2/jcsuser?!)

DATAPATH= (' /diak?/jocsuser?’
‘/disk3/jcsuserit)

INDEXPATH={ ' /digk2/jcsuzer2’) ;

In summary, unless you or an SPD Server administrator specify an initial set of paths, the software uses the domain's primary file
systemin the LIBNAMES parameter file for the default path set. Asyou will learn in the next section, the default path set may not be
ample for large tables nor provide optimal performance.

Understanding SPD Server Component Storage

Earlier, you learned that the software creates alist of paths for storage of table filesin an SPD Server domain, but file partition storage
was not discussed. This section focuses on using path options when an SPD Server administrator has not used ROPTIONS=.

Minimally, each table consists of a metadata component and a data component. Each component file is composed of one or more
partition files on disk. The software requires that the first metadata partition reside in the primary file system, that is, the path defined
for the domain by an SPD Server administrator. Other metadata partitions can overflow to additional paths specified using the
METAPATH= option.

If no paths are specified for index and data components by the INDEXPATH= or DATAPATH= options, the software stores these
partitions in the primary file system too. If other paths are specified, the software stores the initial partition for these classes in the first
path with available space. (Unlike metadata partitions, data and index partitions do not have to start in the primary file system.) A
partition can expand until the path fills up; remaining partitions then overflow to the next path with available space, and so on. (See

Figure 3.5.)

Forced Partitioning of the Data Component

To improve parallel processing of various operations involving full-table scans (for example, WHERE-clause eva uations without
indexes or SQL GROUP-BY evaluations) the SPD Server allows you to force creation of data component partitions at fixed-size
intervals. To specify the size interval, use the PARTSIZE= table option. By default, the SPD Server sets PARTSIZE= to 16 megabytes.

61

See the documentation chapter on SAS Scalable Performance Data Server Table Options for details.

The SPD Server uses the collection of file systems that you specify with the DATAPATH= option to distribute partitionsin acyclic
(round-robin) fashion. But, instead of creating partitions until the first file systemisfull, the SPD Server randomly chooses afile
system from the DATAPATH= list for the first partition, then sequentially assigns partitions to successive file systemsin the
DATAPATH-= list. The software continues to cycle through the file system set, as many times as needed, until al data partitions for the
table are stored. Assume that you specify

DATAPATH=' (' /datal' '/data2')
Subsequently, you store your BIGONE table into the domain. SPD

uses random placement of data partitionsin the DATAPATH= list, so thefirst first BIGONE partition may be stored in either the/
datal or the /data2 directory. Subsequent partitions will alternate between the /datal and /data2 directories, and so on.

If you set PARTSIZE=0, SPD Server usesthe DATAPATH= file systems strictly as overflow space. That is, it creates partitions in the
first file system, up to thefile size limit of your operating system. Then, when the first file system isfull, it proceeds to the second file
system, etc.

Figure 3.5 SPD Server Component Siorage

me tadata index
Aata data
¥ * ¥
I EAEERETE EEENEEER
.mdf partitions .dpf partitions Jddx and .aux partitions
File partitions are stored ————— 1 |]
in the domain's primary file system —— |
andior in other paths specified %
with the LIBMAME options. ———
—— 1
——————— 1 Disk
—
e ———

What happens when you issue the first LIBNAME statement for a domain but do not specify path options? If your tables are small,
most likely the primary file system is probably adequate. However, if you store large tables, the primary file system can fill up quickly.
How do you know when the primary file system isfull? SPD Server will return an error message when you perform an append
operation on an existing table or create a new tablein the domain.

Importance of the First Metadata Partition

If the primary file system is full, you may issue a subsequent LIBNAME statement specifying additional paths. This allows a data
62

append to an existing table but may not allow creation of a new table in the domain. The reason why the new paths did not solve the
create failure may not be obvious. The answer is the software cannot store the first metadata file partition because the primary file
system is till full. What is the create failure solution? Either free space in the primary file system or have the SPD Server
administrator create anew LIBNAME domain.

Using Path Options for Large Table Storage

If you must manage your table storage, anticipate disk space for large tables. Use the LIBNAME path options with the
first LIBNAME statement for the domain. Store data and index partitions using the DATAPATH= and INDEXPATH=
options on a different storage device than the primary file system. This reserves the primary file system for metadata
files.

Example 1: Specify An Explicit Initial Set of Paths

SITEUSR1 issuesthefirst LIBNAME statement for the MY LIB domain. By default, the domain's primary file system is
used to store metadata partitions but another device MY DISK 30 and directory SITEUSER is specified to store the data
and index partitions. (The SPD Server administrator created the primary file system for MYLIB.)

/* | anticipate the primary file systemfor the MYLIB donain */
/* is anple for nmetadata files, but | will use MyDl SK30 */
/* to store ny data and index partitions. */

i bnanme nyref sasspds 'nylib’
dat apat h=("'/ mydi sk30/ si t euser")
i ndexpat h=("/mydi sk30/ si teuser"')
server =husky. spdsnane
user='siteusrl' pronpt=yes;

Example 2: Specify A Subsequent LIBNAME Statement to Add Paths

SITEUSR1 issues a subsequent LIBNAME statement for the MY LI1B domain specifying additional paths for the data and
index partitions. The user is storing very large tables so two storage devices (and directories) for data are listed, and a
third device for indexes associated with the tables is listed.

/* 1 noticed today MYDI SK30 is getting full. */
/* 1 am addi ng MYDI SK31 for possible overfl ows. */
I i bnane expand sasspds 'nylib
dat apat h=("/ nydi sk31/siteuser' '/nydi sk32/siteuser')
i ndexpat h=("/mydi sk33/si teuser')
server =husky. spdsnane
user="siteusrl' pronpt=yes;

The software appends the new paths listed to the prior list for each component type. The entire path list that .
spdsl i b1l now maintainsis

dat apat h=("' nydi sk30/ si teuser' '/ nydi sk31/siteuser' '/nydisk32/siteuser')
i ndexpat h=("' mydi sk30/ si teuser' '/nydi sk33/siteuser"')

How does SPD Server use the path list? It stores partitions of the data components for MY LIB tablesin the specified
data paths. (How the software uses the paths depends upon the value of the PARTSIZE= option.) For index components,

it storesthefilesin thefirst path listed until the space isfilled, then it proceeds to fill the next path listed.

63

Interchanging SPD Server and SAS File Formats

Migrating Tables between SAS and SPD Server

Many organizations use SPD Server when they discover thereis a need for more "horsepower” dealing with large SAStables. Asa
result, there are many instances where it is handy to be able to move SAStablesinto SPD Server format, and vice versa. Fortunately,
SPD Server was designed with ease of table conversionin mind. The examples below illustrate the flexibility built into SPD Server
and the ease of table conversion between the SAS and SPD Server systems.

Example 1. Create a SAS Table from an SPD Server Table

To create a SAStable from an SPD Server table, issue aLIBNAME statement but do not specify the engine SASSPDS. Y our program
will then create a Base SAS table. (Later, if you decide to use SPD Server capabilities, you can convert the SAS table to the SPD
Server format. Conversion is easy: interchange table formats using the SAS System's COPY procedure. See Example 2.)

/[* Create |l ocal racquets data set. */
i bname | ocal '/ul/sasdeno/local"’;

data | ocal . racquets;
i nput racquet _nane $20. @2 wei ght _oz @8 bal ance $2.
@2 flex @6 gripsize
@2 string_type $3. @7 retail _price @5 inventory_onhand;

dat al i nes;
Fil bert VolleyMaster 10.5 HL 5 4.5 syn 129.95 5
Sol o Queensi ze 10,9 HH 6 5.0 syn 130.00 3
Per ki nson Al | Court 11.0 N 5 4.25 syn 159.99 12
W1 co Speciali st 8.9 HL 3 5.0 nat 287.50 1

Example 2: Convert from SAS to SPD Server Format

SITEUSR1 makes alibref SPORT, associates SPORT with the SPD Server engine SASSPDS, and points to the
CONVERSION_AREA domain on an SPD Server host server named HUSKY . User SITEUSRL1 uses a default named service
SPDSNAME to locate the port number of the name server and requests a prompt for the password.

The PROC COPY statement inputs the SAS table LOCAL.RACQUETS and outputs the SPD Server table SPORT.RACQUETS to the
CONVERSION_AREA domain. After the PROC COPY statement executes, the SAS table becomes two SPD Server table component
files. (See Figure 3.6.)

/* Copy existing SAS table to the SPD Server format. */
i bnane sport sasspds 'conversion_area' server=husky.spdsnane

user='siteusrl1l' pronpt=yes;
proc copy in=local out=sport;

sel ect racquets;
run;

Figure 3.6 PROC COPY Convertsa SASTableto an SPD Server Table

64

f, \ proc copy in=local s N,
/ "x._\‘ out=spds ; ff'r - SPD ."‘a‘
{ SAS P — >{ Server
/
R\ Table / select racquets; Y Table ,
\"t -III.,-'II- Tam ""‘ /
N

data and - L. _ data
metadata

.mdf file -dpf file

The SQL Pass-Through Facility

SPD Server uses pass-through SQL commands to access and manipulate data. What does this mean? Enabling pass-through SQL

functionality provides SPD Server clients with a new way to establish a connection with an SPD Server host or direct load from an
external database such as Oracle. Users now have broader data access in the SPD Server environment and growing connectivity to
external databases using the SPD Server engine.

The SQL Syntax Reference Guide documentation chapter provides additional detailed reference information on using SPD Server SQL
syntax.

Accessing Data Using the SQL Pass-Through Facility

The SQL pass-through facility is another access method allowing SPD Server to connect to an SQL server and manipulate data. An
overview of the stepsis presented here, and followed with examples. These are the major steps for using SQL pass-through:

1. Establish aconnection from an SPD Server client using a CONNECT statement.

2. Send SPD Server SQL statements using the EXECUTE statement.

3. Retrieve data SQL query with the CONNECTION TO component in a SELECT statement's FROM clause.
4. Terminate the connection using the DISCONNECT statement.

SQL Pass-Through Statements

CONNECT Statement

Specifiesthe SAS 1/0 engine that will provide the SQL pass-through access.

65

Syntax
CONNECT TO dbms-name < AS alias >(dbms-args);
Use the following arguments:

dbms-name (required)
Specifies the name of the engine.
When running SAS and PROC SQL, you must specify sasspds to obtain SQL pass-through to an SPD Server SQL Server. You
must specify spdseng to obtain SQL pass-through from an SPD Server SQL server. The later examples show CONNECT
statements specifying these engines.

AS alias (optional)
Specifies an alias or logical name for a connection.
When specifying an alias to identify the connection, use a string without quotes. Then refer to thislogical name in subsequent
SQL pass-through statements.
Note: The alias must specify the connection that will execute the statement.

Example- Using an Alias
execute(...) by alias
or

select * fromconnection to alias(...)

dbms-args (required and/or optional arguments)
Identifies the SQL server and data source. The following dbms-args arguments are for the SPD Server engines, sasspds and
spdseng. SPD Server SQL uses the following simple syntax: Keyword=Value

DBQ=libname-domain (required)
Specifies the primary SPD Server LIBNAME domain for the SQL pass-through connection.
The name that you specify isidentical to the LIBNAME domain name that you used when making a SAS LIBNAME
assignment to sasspds. Use single or double quotes around the specified value.

HOST=name-server-host (optional)
Specifies anode name or | P address for a name server that is currently running.
Use single or double quotes around the specified string. If you do not specify a name, the software uses the current value of the
SAS macro variable spdshost to determine the node name.

SERVICE=name-server-port (optional)

SERV=name-server-port (optional)
Specifies the network address (port number) for a name server that is currently running.
Use single or double quotes around the specified value. If you do not furnish a port number for the name server, the software
determines the port address from the named service spdsname in the /etc/servicesfile.

USER=SPD Server user ID (required on Windows but not UNIX)
Specifiesan SPD Server user ID to access an SPD Server SQL Server. Use single or double quotes around the specified value.

PASSWORD=password (required)

PASSWD=password (required, or use PROMPT=Y ES, unless USER="anonymou’)
Specifiesan SPD Server user |D password to access an SPD Server. (Thisvalueis case sensitive.) Normally you would not
specify apassword in text files that others can view. More likely you would use this argument in batch jobs that are protected by
file system permissions, prohibiting others from reading the job files.

PROMPT=YES (required, or use PASSWD or PASSWORD=, unless USER="anonymou’)
66

Specifies a password prompt to access an SPD Server SQL server. Thisvalueis case sensitive.

DISCONNECT Statement

Disconnects you from your DBM S source.
Syntax

DISCONNECT FROM [dbms-name | alias];
Description

When you are finished with a PROC SQL connection, you must disconnect from the DBMS source. This automatically occurs when
you exit the PROC SQL procedure. Y ou can, however, explicitly disconnect from the DBMS by using the DISCONNECT statement.

Use the arguments:

dbms-name
the name specified in the CONNECT statement that established the connection.
alias

the dias value specified in the CONNECT statement that established the connection.

EXECUTE Statement

The EXECUTE statement is part of the pass-through SQL facility. It allows the user to use specific SQL statements during a pass-
through connection. Before using the EXECUTE statement, the user must first establish a connection using the CONNECT statement.
After auser has created a pass-through connection, use EXECUTE to submit valid SQL statements (except the SELECT statement).

Syntax

EXECUTE (SQL statement) BY [dbms-name | alias];
Use the following arguments:

(SQL statement)
A valid SQL statement passed for execution (except SELECT statements). This argument is required and must be enclosed
within parentheses.

dbms-name (required, or use alias)
Identifies the DBM S to which you want to direct the SQL statement. Note that dbms-name must be preceded by the keyword
BY.

alias (optional, or use doms-name)
Specifies an optional alias used in the CONNECT statement.

67

CONNECTION TO Statement

CONNECTION TO isan SQL pass-through component that can be used in a SELECT statement's FROM clause as part of the from-
list. The CONNECTION TO component enables you to make pass-through queries for data and to use that datain a PROC SQL query
or table. PROC SQL treats the results of the query like avirtual table.

Syntax
CONNECTION TO dbms-name (SQL-query)
Use the following arguments:

dbms-name (required)
If you have a single connection, doms-name is the doms-name specified in your CONNECT statement. If you have multiple
connections, use the alias specified in the AS clause of the CONNECT statement.

(SQL-query)
The (SQL-query) specifies the SQL query you want to send. Your SQL query cannot contain a semicolon because that
represents the end of a statement to SPD Server. Character literals are limited to 32,000 characters. Be sure your SQL query is

enclosed in parentheses.

alias (optional)
Specifies an optional alias used in the CONNECT statement.

Example 1: Using SAS PROC SQL to Connect to an SQL Server

To connect from a SAS session to an SQL server, in this example the SPD Server's SQL Server, execute a CONNECT
statement. After making the connection, the first execute statement creates atable EMPLOY EE_INFO with three
columns, EMPLOY EE_NO, EMPLOY EE_NAME, and ANNUAL_SALARY . The second execute statement inserts an
observation into the table where EMPLOY EE_NO equals "1" and EMPLOY EE_NAME equas"The Prez".

The subsequent FROM CONNECTION TO statement retrieves all the records from the new EMPLOY EE_INFO table.
(In this example, that would be the single observation inserted by the second execute statement.) The DISCONNECT
statement terminates the data source connection.

PRCC SQ.;
connect to sasspds
(dbg=" nydonai n'
host =" wor kst ati onl’
serv='spdsnane'
user =' ne'
passwd=' noway') ;
execute (create table enployee_info
(empl oyee_no num enpl oyee_nane char (30),
annual sal ary num by sasspds;
execute (insert into enployee info
values (1, 'The Prez')) by sasspds;
select * from connection to sasspds
(select * from enpl oyee info);
di sconnect from sasspds;
quit;

68

Example 2 - Nested SQL Pass-Through

SPD Server pass-through access can be nested. Nesting allows access to data stored on two different networks or
network nodes.

In the example that follows, we nest SQL pass-through from the current local network host DATAGATE to accessthe
EMPLOYEE_INFO table, which is available at the PROD host on aremote network. (Our example presumes that we
have user accessto PROD.)

proc sql
connect to sasspds (dbg='"domai n1'
host =' dat agat e' serv='spdshane
user="usrl' passwd='usrl pw);
execute (connect to spdseng (dbg='domai n2'
host =" prod' serv='spdsnane’
user="usr2' passwd='usr2_pw) by sasspds;
select * from connection to sasspds(
sel ect * fromconnection to spdseng(
sel ect enpl oyee no, annual _sal ary
from enpl oyee_info));
execut e (di sconnect from spdseng) by sasspds;
di sconnect from sasspds;
quit;

Creating a New Table

One of the SPD Server's strengths liesin the ability to create, manipulate, and query very large tables. Asarule of thumb, client users
generally choose not to store massive tables locally because of their sheer size. The following code examples assume that users will
create and store large tables on the SPD Server host.

Example - Creating a New Table Using Pass-Through Statements

First, connect from a SAS session to an SQL server, in this example the SPD Server's SQL Server, then execute a CONNECT
statement. After making the connection, the first execute statement creates atable LOTTERY WIN with two columns, TICKETNO and
WINNAME. The second execute statement inserts an observation into the table where TICKETNO equals "1" and NAME equals
"Wishu Weremee."

The subsequent FROM CONNECTION TO statement retrieves all the records from the new LOTTERYWIN table. (In this example,
that would be the single observation inserted by the second execute statement. The DISCONNECT statement terminates the data
source connection.

proc sql;
connect to sasspds (dbg=' nydomai n'
host =' wor kst ati onl' serv='spdsnang'
user='nme' passwd='luckyones');
execute (create table lotterywn
(ticketno num wi nname char(30))) by sasspds;
execute (insert into lotterywn
val ues (1, 'Wshu Werenee')) by sasspds;
sel ect * from connection to sasspds
(select * from enpl oyee);
di sconnect from sasspds;

69

quit;

Example - Creating a New Table with a LIBNAME Statement

SITEUSRLI creates anew SPD Server table CARDATA.OLD _AUTOS on the server.

i bname cardata sasspds 'conversion_area' server=husky. 5105

user="siteusrl' pronpt=yes;

/* Create the table CARDATA. OLD AUTGCS on the SPD Server host.

data cardata. ol d_aut os;

*/

i nput year $4. @ manufacturer $12. nodel $12. body_style $5.

engine_liters @9 transm ssion_type $1. @1 exterior_color

$10. options $10. m | eage conditon;

dat al i nes;

1966 Ford Must ang conv 3.5 M white
1967 Chevrol et Corvair sedan 2.2 M burgundy
1975 Vol kswagen Beetl e 2door 1.8 M yellow
1987 BMW 325i s 2door 2.5 A black
1962 Nash Metropolitan conv 1.3 M red

Copyright © 2008 by SAS Ingtitute Inc., Cary, NC, USA. All rights reserved.

70

00000001
00000001
00000010
11000010
00000111

143000 2
70000 3
80000 4

110000 3

125000 3

Indexing, Sorting, and Manipulating SAS Scalable
Performance Data (SPD) Server Tables

. Introduction
. IndexingaTable
o The SPD Index
o Creating SPD Indexes Examples
« Creating SPD Indexes from aDATA Step
« Creating SPD Indexes from PROC DATASETS
« Creating SPD Indexes Using SOL
« Creating SPD Indexes Using Pass-Through SOL
o Using VERBOSE= to See Index Information
. Using PROC SORT with SPD Server
« Example Using Implicit SPD Server BY Clause Sort
« Example Using PROC SORT

Introduction

This chapter describes and provides examples on indexing, sorting, and manipulating SPD Server tables on an
SPD Server host.

Indexing a Table

SPD Server provides asingle SPD index type that efficiently indexes tables of varying size and data
distributions. The SPD Server SPD index optimally supports queries that require global table views (such as
gueriesthat contain BY Clause processing and SQL joins), or queries which require segmented views (such as
parallel processing of WHERE-clause statements).

The SPD Index

The SPD index maintains two views of the index values, aglobal view and a segmented view.
The global view is maintained using a unigue global B-tree that has a single entry for each
discrete value. The segmented view is maintained by the data for each value in the global B-tree,
which includes alist of segments that contain the value, and for each segment a bitmap that
identifies which rows in the segment contain the value. The global view is maintained in the
SPD index . hbx file, and the segmented data is maintained in the SPD index . i dx file.

71

For queriesthat require aglobal view, SPD Server searches the hybrid global B-tree for a
particular value. The segment lists are scanned for the value, then the bitmaps from each
segment containing the value are read. SPD Server uses the bitmap to locate and retrieve the
observations for that segment. This type of query returns results sorted first by value and then by
observation number. This sorting is optimal for BY Clause processing and SQL joins.

A paralel WHERE-clause on atable that isindexed is done in two phases. The first phase, pre-
evaluation, uses the SPD indexesto build alist of segments that satisfy the query. The list drops
segments from the WHERE-clause scan queue when those segments contain no datain the
clause range. As more and more segments are excluded from the scan queue, the benefit of the
pre-evaluation phase increases proportionally. The second phase in the evaluation launches
threads which read an index in parallel. Each thread queries a particular segment of the index,
using information from the pre-evaluation phase. Using the SPD index, the thread reads the
segment bitmap. The per-segment bitmaps identify the segment rows which satisfy the query for
that particular column. If you include more than one indexed column in the WHERE-clause,
SPD Server retrieves the per-segment bitmaps for each column in parallel (as are the segments
for each column). After retrieving all the bitmaps for each column of the segment, SPD Server
determines which rows satisfy the query, and returns those segment rows to the client. The multi-
threaded per-segment queries begin execution at the same time, and their finishing order varies
and can not be reasonably predicted. Asaresult, the overal order of the results cannot be
guaranteed when you are using this type of query. See the documentation chapter on
Understanding Whinit - the Data Server WHERE Clause Planner for a more detailed description

on using indexed columns with WHERE-clause evaluations.

When atable is modified due an append or update, all SPD indexes on the table are updated.
Updating the index can potentially fragment the per-value segment lists or cause some disk
space to be wasted. A highly fragmented SPD index can negatively impact the performance of
queries that utilize the index. In this case, you should reorganize the index to eliminate the
fragmentation and reclaim wasted disk space, using the ixutil utility program. For more detailed
information on reorganizing an SPD index, refer to the topic on Password Manager Utility in the
SPD 4.3 Administrator's Guide.

Creating SPD Indexes Examples

This section shows how to create SPD indexes for new and existing tables.

Creating SPD Indexes from a DATA Step

data fo0. x(
i ndex=(x y=(a b)));
x=1;
a="Doe";

72

b=20;
run;

This creates SPD Server table X, then creates a simple SPD index X on column X,
and a composite SPD index Y on columns (A B).

Creating SPD Indexes from PROC DATASETS

PROC DATASETS | i b=f o0;
nodi fy x;
i ndex create X;
i ndex create y=(a b);
quit;

This creates the same simple and composite SPD indexes as Example 1, assuming
that the same DATA step was executed without index creation included.

Creating SPD Indexes Using SQL

PROC SQL;
create index x

on foo.x (Xx);
Create index y

on foo.x (a,b);
quit;

This creates the same simple and composite SPD indexes as Example 1, assuming
that the same DATA step was executed without index creation included.

Creating SPD Indexes Using Pass-Through SQL

PROC SQ;

connect to sasspds (
dbg="pat h1"
server =host . port
user =" anonynous') ;

execute(create index x on x (X))
by sasspds;

73

execute(create index y on x (a, b))
by sasspds;
qui t;

This creates the same simple and composite SPD indexes as Example 1, assuming
that the same DATA step was executed without index creation included.

Using VERBOSE-= to See Index Information

There will be times when you want to see information about indexes associated with a particular
table. The table option VERBOSE= provides details of all indexes associated with an SPD
Server table. For example, if the code from Example 2 above is followed with the expression
below:

PROC CONTENTS
dat a=sports. exprags
(ver bose=yes);

run;

The following will be output:

Al phabetic List of Index Info:

Bitmap I ndex (No d obal I ndex): QR PSI ZE
KeyVal ue (M n): 4. 250000

KeyVal ue (Max): 5. 000000

of Discrete val ues: 3

Using PROC SORT with SPD Server

If you use PROC SORT with SPD Server, your table will be sorted. However, you may want to understand a
few sort details to avoid surprises. Assume, for example, that you submit a PROC SORT statement to sort a
table not previously indexed or sorted on the BY column.

PROC SORT takes advantage of SPD Server sorting implicitly and asserts BY Clause ordering to the SPD
Server. This performs the sort on the SPD Server machine, but there will still be significant I/O between the
client node and the SPD Server machine. The sorted data still makes a round trip from the server machine to
the client machine and back again. Fortunately, the SQL pass-through facility in SPD Server offers an
extension to the SQL language to permit a table copy and sort operation, all on the server machine.

Knowing the implications of using PROC SORT with SPD Server, how can you avoid inefficiency? The

74

answer isto eliminate PROC SORT statements from your SAS jobs where possible. Instead, make SAS
procedures and DATA steps that require BY Clause processing use SPD Server's implicit sorts.

Example Using Implicit SPD Server BY Clause Sort

/* The follow ng DATA step perforns a server sort on the */
/* table colum PRICE. There is no prior index for PRICE */

data null _;
set sport.exprags;
by price;
If (string="nat') then do;
put '*' @@
price = price - 30.00;
end,
put ragnanme @O0 price;
run;

Example Using PROC SORT

/* The follow ng PROC SORT perforns a server sort on the */
/* table colum MODEL. There is no prior index for MODEL */

PROC SORT
dat a=i nventory. ol d_aut os
out =i nventory. ol d_aut os_by_ nodel ;
by nodel ;

run;

Copyright © 2008 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

75

Using SAS Scalable Performance Data (SPD) Server with Other Clients

. Overview

. Using Open Database Connectivity (ODBC) to Access SAS Scalable Performance Data (SPD) Server Tables
. Using JDBC (Java) to Access SAS Scalable Performance Data (SPD) Server Tables

. Using htmSQL to Access SAS Scalable Performance Data (SPD) Server Tables

. Using SOL C API to Access SAS Scalable Performance Data (SPD) Server Tables

This chapter describes using SAS Scalable Performance Data (SPD) Server to connect with ODBC, JDBC, htmSQL, and SQL C API clients.

Overview

Scalable Performance Data Server provides ODBC, JDBC, htmSQL, and SQL C API accessto SAS Scalable Performance Data (SPD) Server data stores from all supported
platforms.

SAS Scalable Performance Data (SPD) Server can read tables exported from Base SAS software using PROC COPY, and, with the proper driversinstalled on the network,
allows queries on the tables from client machines that do not have SAS software.

There are four possible options:

. ODBC: Open Database Connectivity - Thisis an interface standard that provides a common interface for accessing databases. Many software packages runningin a
Windows environment are compliant with this standard and can access data created by other software. Thisisagood choice if you have client machines running
Windows applications, such as Microsoft Excel or Microsoft Access.

. JDBC: Java Database Connectivity - This option alows users with browsersto log on to a Web page and make a query. The results of the request are formatted and
returned to a Web page. This makes information available across awide range of client platforms because all you need, after installing the JDBC driver on SAS
Scalable Performance Data (SPD) Server, isaWeb page with some Java code, and a client machine with a Java-enabled browser.

. htmSQL: HyperText Markup Structured Query Language - This option allows users with browsers to log on to a Web page and make a query. The results of the
request are formatted and returned to a Web page. This makes information available across awide range of client platforms. Why? After installing the htmSQL driver
in SAS Scalable Performance Data (SPD) Server, all you need is an htmSQL Web page and a client machine with a browser.

. SQL C API: Thisoption alows access to SAS Scalable Performance Data (SPD) Server tables from SQL statements generated by C/C++ language applications. This
accessis provided in the form of a C-language run-time access library. This library provides a set of functions that you can use to write custom applications to process
SAS Scalable Performance Data (SPD) Server tables and to generate new ones. Thislibrary is designed to support multi-threaded applications and is available on all
supported SAS Scalable Performance Data (SPD) Server platforms.

Note: GUI interfaces may not display all return codes or error messages that the server generates.

Using Open Database Connectivity (ODBC) to Access SAS Scalable Performance Data (SPD) Server Tables

Read this section if you do not have Base SAS software on the network client, but you want to access SAS Scalable Performance Data (SPD) Server tables on the network,
using an ODBC compliant program, such as Microsoft Word, Query, Excel, or Access, and you have SAS Scalable Performance Data (SPD) Server tables available for use,
somewhere on the network, or Scalable Performance Data Servers and SPD SNET servers running, or client machines in a Windows environment.

. Why Use ODBC?
. Installing ODBC Drivers on the Server

. Configuring ODBC on the Client

. Preparing your Client for ODBC Installation

. Two Types of ODBC Connections

. Primary and Secondary LIBNAME Domains

. Configuring an ODBC Data Source to Connect Directly to a SAS Scalable Performance Data (SPD) Server
. Configuring an ODBC Data Source for SPD SNET

. Creating a Query Using an ODBC-Compliant Program

Why Use ODBC?

Y ou have SAS Scalable Performance Data (SPD) Server tables available on your network, and one or more of the following may be true:

. You do not have Base SAS software running on the Windows client, but you need to view or change SAS Scalable Performance Data (SPD) Server
tables.

- You need to view or change the SAS Scalable Performance Data (SPD)ferver tables using aMicrosoft spreadsheet, database or word processor.

. You need to view or change SAS Scalable Performance Data (SPD) Server tablesin ways that cannot be predetermined or programmed into a Web page.

. You need to view or change SAS Scalable Performance Data (SPD) Server tables using Windows tools you are familiar with.

Installing OBDC Drivers on the Server

. Instructions for installing the OBDC driver are included in the download package.

Configuring ODBC on the Client

1. Configure an ODBC data source.

2. Make your query using a Windows program.

Figure 6.1: Configure ODBC to Connect SAS Scalable Performance Data (SPD) Server Client to SAS Scalable Performance Data (SPD) Server Host

Client Server
ODBC Tce
Compliant
Software
T Application Data Server
Host Machine
ODBC API by |
SAS ODBC Driver
F Y
Data
Data Sources
Source

Figure 6.2: Configure ODBC to Connect SAS Scalable Performance Data (SPD) Server Client to SPD SNET Server

77

Client Server

obBC TCP
Compliant
Software
? Application

ODBC API o

SAS ODBC Driver

SPDSSMNET
Searver

3

Data Server
Host Machine

Data
Source

Data
Sources

Preparing your Client Machine for ODBC Installation

Before you create OBDC data sources driver, you'll need the following information from your network administrator:
o aUsername and Password that is defined by a SAS Scalable Performance Data (SPD) Server administrator
o the primary LIBNAME domain of the SAS Scalable Performance Data (SPD) Server (also called the DBQ)
o the port number of the SPD name server (also called the SERV)
o the machine name or I P address of the SAS Scalable Performance Data (SPD) Server Name Server (also called the HOST)

o any secondary LIBNAME domains you wish to assign to the ODBC connection.

Two Types of ODBC Connections

With SAS Scalable Performance Data (SPD) Server software you can connect directly to a SAS Scalable Performance Data (SPD) Server without going
through the SPD SNET server. Although connecting directly isthe preferred method, connections via the SPD SNET server are still supported.

Note that connections viathe SPD SNET server are not supported in the SAS 9 ODBC Driver software. If you intend to connect viathe SPD SNET Server you
must install the SAS 8 ODBC Driver.

Primary and Secondary LIBNAME Domains

When a connection to the SAS Scalable Performance Data (SPD) Server is established aprimary LIBNAME domain is assigned. The primary LIBNAME
domain is specified by the "DBQ" connection options parameter. Immediately after the connection is made the SAS ODBC Driver assigns the secondary
LIBNAME domains which are configured through the Libraries tab of the SAS ODBC Driver Configuration window.

ODBC Connections viathe SPD SNET server must have an odbc.parm file configured on the SPD SNET Server machine.

Configuring an ODBC Data Source to Connect Directly to a SAS Scalable Performance Data (SPD) Server

Once the SAS ODBC driver isinstalled, you will need to configure your ODBC data source. When you open the ODBC manager, you'll get adisplay screen
that allows you to enter information that points the OBDC driver to the data on the SAS Scalable Performance Data (SPD) Server.

1. From the Windows Start button, select
78

Start = Settings= Control Panel

2. Locate the ODBC Data Sources icon and open the Microsoft ODBC Data Source Administrator . The exact location of this program depends on your
version of Windows.

3. Select the Add button, then select the SAS ODBC driver.

4. Enter a data source name (and description if desired.)

5. Select the Servers panel and type in your two-part server name.

6. Click on the Configure box. The TCP Options window appears:

Server Address: Enter the network address of the machine on which the SAS Scalable Performance Data (SPD) Server is running.

Server User Name: Enter the user name as configured for aDBQ (SAS Scalable Performance Data (SPD) Server primary LIBNAME domain)
on the SAS Scalable Performance Data (SPD) Server to which you will connect.

Server User Password: Enter the user password as configured for aDBQ (SAS Scalable Performance Data (SPD) Server primary LIBNAME
domain) on the SAS Scalable Performance Data (SPD) Server host to which you will connect.

Connection Options: Enter the Connection Options as follows:
« DBQ=' SPD Server primary LIBNAME donain',thisisthe SAS Scalable Performance Data (SPD) Server LIBNAME domain

« HOST=' naneserver node nane', thisisthelocation of the host computer

« SERV=' naneserver port nunber',thisisthe port number of the SAS Scalable Performance Data (SPD) Server name server
running on the HOST.

= Any other SAS Scalable Performance Data (SPD) Server LIBNAME options. For more information, see the User's Guide section on
LIBNAME Options.

9. Click OK, then click Add, and select the Libraries panel.

10. Enter the DBQ name of a secondary LIBNAME domain in both the Name and Host File text fields.

11. Enter “spdseng” in the Engine text field.

12. Follow the syntax rules for the SQL Pass-Through LIBREF statement for entering a value in the Options text field.

Configuring an ODBC Data Source for SPD SNET

Once the SAS ODBC driver isinstalled, you will need to configure your ODBC data source. When you open the ODBC manager, you'll get adisplay screen
that allows you to enter information that points the OBDC driver to the data on the SAS Scalable Performance Data (SPD) Server.

1. From the Windows Start button, select

Start = Settings= Control Panel

2. Click on the ODBC icon and select the Add button.

3. Select the SAS ODBC driver.

4. Enter adata source name (and description if desired).

5. Select the Servers panel and type in the two-part server name. The second part of the server name should match the entry in the servicesfile. In the
example that follows that shows you how to edit the servicesfile, the server nameis spdssnet.

6. Click on the Configure box. The TCP Options window appears with four input fields that you fill:

o

Server Address: Enter the network address of the machine on which the SPD SNET server isrunning.

Server User Name: Enter the user name as configured for a DBQ (SAS Scalable Performance Data (SPD) Server primary LIBNAME domain)
on the SAS Scalable Performance Data (SPD) Server to which you will connect.

Server User Password: Enter the user password as configured for aDBQ (SAS Scalable Performance Data (SPD) Server primary LIBNAME
domain) on the SAS Scalable Performance Data (SPD) Server host to which you will connect.

Connection Options: Enter the connection options as follows:
79

« DBQ=' SPD Server primary LIBNAMVE donain': thisisthe SAS Scalable Performance Data (SPD) Server LIBNAME domain.

= HOST=' nameserver node nane': thisisthelocation of the host computer.

« SERV=' naneserver port nunber': thisisthe port number of the SAS Scalable Performance Data (SPD) Server name server
running on the HOST.

8. Click OK, and then click Add.

Editing the Services File on Your Machine - ODBC Details

Editing the Servicesfileis only required for ODBC connections viathe SPD SNET Server.
1. Find the Servicesfile on your Windows machine. In Windows, the Servicesfileis usualy located in
c:\wi ndows\ servi ces
2. Open the Servicesfile using atext editor.
3. Theservicesfile contains four columns. The rows of information may be sorted in port number order. Find the closest port number to the SAS Scalable

Performance Data (SPD) Server port number, which you obtained from the network administrator (see "Preparing for Installation"). Thisiswhere you
insert the new information.

4. Add an entry to the Servicesfile, onitsown line, in proper numeric order, using the following syntax:

columnl Ca il column3 | column4
. < :
<service name> LA Lo <aliases> [<comment>
& protocol>
spdssnet nnnn/tcp
_ nnnn=port number not not
spdssnet=name required | required
. protocol is
assigned to server aways ftcp

Table 6.1: How to Add Service Name and Port Number to the Services File

Remember: The service name, spdssnet must match the server name that you used in step 6 of Configuring an ODBC Data Source for SPD SNET. The port
number must match the port number on which the SPD SNET server is running.

Creating a Query Using an ODBC-Compliant Program

The following instructions create a query using Microsoft Access.
1. Start the SPD SNET server.
2. Start Microsoft Access.
3. From the Microsoft Access main menu, select
File » Get External Table.
4. Select Link Table.
5. Select Filesof Type.
6. Select ODBC Databases.

7. Select the data source.

Using JDBC (Java) to Access SAS Scalable Performance Data (SPD) Server Tables

Read thisinformation if you do not have Base SAS software on the network client, but you want to use the power of the Java programming language to query SAS Scalable
Performance Data (SPD) Server tables from any client on the network that has a browggy. Y ou must have SAS Scalable Performance Data (SPD) Server tables on the

network and SAS Scalable Performance Data (SPD) Server and SPD SNET servers running on the same server as the Web server in order to use JDBC to access SAS
Scalable Performance Data (SPD) Server tables.

. Why Would | Want to Use JDBC?

. How IsJDBC Set Up on the Server?

. How IsJDBC Set Up on the Client?

. How Do | Use JDBC to Make a Query?

. JDBC Code Examples and Tips

. Limitations of Using JDBC with SAS Scalable Performance Data (SPD) Server

Why Would | Want to Use JDBC?

Y ou might want to use JDBC if you have SAS Scalable Performance Data (SPD) Server tables available on your network and one or more of the following is
true:

. You do not have Base SAS software on the network client to process the data sets.
. You want to distribute the information across your corporate intranet through a Web page.

. Theclients on your network are varied: UNIX boxes, Windows PCs, and workstations. One thing they might have in common is browser access to your
intranet.

. The audience for the information understands Web browsing and wants point-and-click access to the information.
. You want to distribute the information over the World Wide Web.

. Your planned application requires the power of the Java programming language.

How Is JDBC Set Up on the Server?

. JDBCisusually set up on the server at the time the SAS Scalable Performance Data (SPD) Server isinstalled. The processis covered in the SAS
Scalable Performance Data (SPD) Server installation manual.

How Is JDBC Set Up on the Client?

The client needs a browser set up to accept Java applets, such as

. Netscape Navigator, Release 3.0 or later
. Microsoft Internet Explorer, Release 3.02 or |ater.

Figure6.3: JDBC Set Up on a SAS Scalable Performance Data (SPD) Server Client

81

CLIENT MACHINE SERYER MACHINE
HTTP

Web Server
PSS
SASIShare™Met Data
Diriver for JOBC

Applet Data
Sources

How Do | Use JDBC to Make a Query?

1. Log on to the World Wide Web and enter the URL for the Web page that contains the JDBC code.
2. Click on the desired information.

3. JDBC handles the request, formats the information, and returns the result to the Web page.

JDBC Code Examplesand Tips

The following lines must be a part of the HTML file for JDBC:

<appl et code="CLASSPATH. *. cl ass" codebase="../" wi dt h=600 hei ght =425>
<param nane=ur| val ue="j dbc: sharenet://spdssnet_node: PORT" >

<param nane="dbns_options" val ue="DBQ='I|ibnane' HOST=' host_node' SERV="NNNN "
<par am name="spdsuser" val ue="userid">

<par am nane="shar ePasswor d" val ue="t hepassword" >
<par am nane="shar eRel ease" val ue="V9">

<par am nane="dbns" val ue="spds">

</ appl et >

Linel:

. CLASSPATH poaintsto the class path set up where the JDBC driver isinstalled.
. *.classisthe name of the Java class that consumes all of the <PARAM name=...> lines.

Line2:

. spdssnet_node is the node name of the machine on which the SPD SNET server is running.
. PORT=port number of the machine on which the SPD SNET server is running.

Line3:

. value=DBQ='libname' isthe LIBNAME domain of the SAS Scalable Performance Data (SPD) Server.
. HOST="host_node' isthe location of the SPD SNET server.
. SERV='NNNN' isthe port number of the name server.

[e]
N

Line4:

. "spdsuser" value="userid" isthe user ID that queries the SAS Scalable Performance Data (SPD) Server table.

Line5:

. "sharePassword" value="thepassword" is the password of the user ID that will make the query.

Line6:

. "shareRelease" value="V9" is the version of the driver you are using. This must not be altered.

Line7:

. Setsthe foreign database property on the JDBC driver. This means that the server is not SAS and JDBC should not create a
DataBaseM etaData object. See the examples below for how to get around this.

Limitations of Using JDBC with SAS Scalable Performance Data (SPD) Server

. JDBC Used with SAS Versus. JDBC Used with SAS Scalable Performance Data (SPD) Server
. Example JDBC Query for Getting a List of Tables
. Example JDBC Query for Getting M etadata about a Specific Table

JDBC Used with SAS Versus JDBC Used with SAS Scalable Performance Data (SPD) Server

SAS Scalable Performance Data (SPD) Server istreated as aforeign database. SAS Scalable Performance Data (SPD) Server
clients can't query the JDBC metadata class for available tables and other metadata. Users must write their own queries to do this.

Example JDBC Query for Getting a List of Tables

(JDBC Used with SAS Scalable Performance Data (SPD) Server)

SELECT '' AS qual,
LI BNAME AS owner,
VMEMNAME AS nane,
MEMTYPE AS type,
MEMNAME AS renmarks FROM dictionary.tables AS thbl
VWHERE (nentype = 'DATA' OR nentype = 'VIEW OR nentype = ' SYSTEM TABLE OR
mentype = 'ALIAS' OR nentype = ' SYNONYM)
AND (tbl.libname NE ' MAPS' AND tbl.libname NE ' SASUSER AND tbl.libnane NE ' SASHELP')
ORDER BY type, qual, owner, nane

Example JDBC Query for Getting M etadata about a Specific Table

(Your datafile)

SELECT '' AS qual,
LI BNAME AS owner,
VMEMNAME AS tname, nane,
| ength AS dat at ype,
type || ' ",
I ength AS prec,|ength,
Il ength AS scale, length AS radix, length AS nullable, | abel,
FORMAT FROM di ctionary. col uims AS t bl
WHERE nemmane = 'your data file'
AND (thbl.libname NE ' MAPS
AND thbl.libname NE ' SASUSER
AND tbl.libname NE ' SASHELP')

83

Using htmSQL to Access SAS Scalable Performance Data (SPD) Server Tables

Read this section if you do not have Base SAS software on the network client, but you want to use the point-and-click convenience of a Web page to query SAS Scalable
Performance Data (SPD) Server tables from any browser-enabled client on the network. Y ou must have SAS Scalable Performance Data (SPD) Server tables available for
use, htmSQL loaded and configured on a UNIX or Windows operating system, and Scalable Performance Data Servers and SPD SNET servers running.

. Why Would | Want to Use htmSQL ?

. How IshtmSQL Set Up on the Server?

. How IshtmSQL Set Up on The Client?

. How Do | Use htmSQL to Make a Query?

. Examples of Setting Up an htmSQL Web Page

Why Would | Want to Use htmSQL?

Y ou may want to use htmSQL if you have SAS Scalable Performance Data (SPD) Server tables available on your network and one or more of the following is
true:

. You do not have Base SAS software on the network client to process the data sets.
. You want to distribute the information across your corporate intranet through a Web page.

. Theclients on your network are varied: UNIX boxes, Windows PCs, and workstations. One thing they might have in common is browser access to your
intranet.

. The audience for the information understands Web browsing and wants point-and-click access to the data.
. You would like to use the JDBC option to extract the information but cannot permit Java applets to run on your network browsers.
. You want to distribute the information over the World Wide Web.

. Your developers are familiar with SQL and HTML.

How Is htmSQL Set Up on the Server?

. htmSQL isusualy set up on the server at the time the SAS Scalable Performance Data (SPD) Server isinstalled. The processis covered in the SAS
Scalable Performance Data (SPD) Server installation manual.

. htmSQL must be installed on the Web server and you need the name of a data source that points to the SPD SNET server and to the specific LIBNAME
domain that contains the SAS Scalable Performance Data (SPD) Server datayou are interested in.

How Is htmSQL Set Up on the Client?

HtmSQL requires nothing more than a browser on the network or Web client.

Figure 6.4: htmSQL Configured on a SAS Scalable Performance Data (SPD) Server Client

84

Client Machine Server Machine A
HTTP
caGl
htmSQL
Web Server
Web Browser

o SAS saL
Protocol

Server Machine B ‘

Data

Data Server SPDSSNET
Sources

Host Machine Server

How Do | Use htmSQL to Make a Query?

1. Log on to the World Wide Web and enter the URL for the Web page that contains the htmSQL code.

2. Click on the desired information.

3. htmSQL handles the request, formats the information, and returns the result to the Web page.

Examples of Setting Up an htmSQL Web Page

SAS Institute maintains a Web site that explains the technical details of setting up htmSQL Web pages. In some cases, there are references to the SAS/SHARE
product. The rules for setting up htmSQL for either the SAS Scalable Performance Data (SPD) Server or SAS/SHARE are virtually the same.

The SAS Institute Web page for htmSQL is

http://support.sas.confrnd/ web/intrnet/htnSQL/i ndex. ht

Using SQL C API to Access SAS Scalable Performance Data (SPD) Server Tables

Read this section if you do not have Base SAS software on the network client but you want to provide your network client machines with the capability of accessing SAS
Scalable Performance Data (SPD) Server tables, using SQL query methods. Y ou must have SAS Scalable Performance Data (SPD) Server tables available for use, SAS
Scalable Performance Data (SPD) Servers and SPD SNET servers running, and Network client machines capable of running C/C++ programs.

Why Would | Want to Use SQL C API?

Y ou have SAS Scalable Performance Data (SPD) Server tables available on your network and one or more of the following may be true:

Y ou do not have Base SAS software on the network client to process the data sets.

. You wish to distribute the information across your corporate intranet.

. Theclients on your network are varied: UNIX boxes, Windows PCs, workstations. One thing they might have in common is the ability to run C/C++
programs.

. Your developers are familiar with SQL and C/C++.

SAS Scalable Performance Data (SPD) Server SQL Access Library API Reference contains additional information on SQL C API.

Copyright © 2008 by SAS Institute Inc., Cary, NC, USA. All rights reserved. 85

SAS Scalable Performance Data (SPD) Server Dynamic Cluster
Tables

Contents

. Introduction to Dynamic Cluster Tables
. Dynamic Cluster Table Structure
. Benefits of Dynamic Cluster Tables
o Paralel Loading
o Fast and Economical Refreshes
. Creating and Controlling Dynamic Cluster Tables
o Create aDynamic Cluster Table
o Dynamic Cluster Table Access Control
o Add Tablesto a Dynamic Cluster
o Undo Dynamic Cluster Tables
o Refresh Dynamic Cluster Tables
o Maodify Dynamic Cluster Tables
. Dynamic Cluster BY Clause Optimization
o Dynamic Cluster BY Clause Optimization Example
. Member Table Requirements for Creating Dynamic Cluster Tables
o Table Attributes
o Variable Attributes
o Index Attributes
. Querying and Reading Member Tables in a Dynamic Cluster
. Unsupported Featuresin Dynamic Cluster Tables
. Dynamic Cluster Table Examples
o Create aDynamic Cluster Table Example
o Add Tablesto a Dynamic Cluster Example
o Undo Dynamic Cluster Table Example
o Refresh Dynamic Cluster Table Example

Introduction to Dynamic Cluster Tables

SPD Server is designed to meet the storage and performance demands that are associated with processing large amounts of data using SAS.
Asthe size of the data grows, the demand to process that data increases, and storage architecture must change to keep up with business
needs.

SPD Server offers dynamic cluster tables. Earlier releases of SPD Server provided atype of cluster table called the time-based partitioning
table. To optimize the benefits of the clustering, the SPD Server administrator can use dynamic clustersto partition SPD Server datatables
for speed and enhanced 1/0O processing. Clustering is performed using metadata that when combined with SPD Server functionality, provides
parallel processing capabilities for loading and querying data tables. Parallel processing can accel erate performance and increase the
manageability, flexibility, and scalability of very large data stores.

Dynamic Cluster Table Structure

The SPD Server dynamic cluster table can be considered as part of a hierarchy of tables with increasing sophistication:

86

Traditional SPD Server SPD Server

SAS Table Table Cluster Table
Descriptor Metadata | Cluster Metadata |
Data Data] i i 5
: mEe i S S R an = ar pr
i3 ! HH :H:_“EHZHZ'I{:I [1| 1| 1| []
e | I EEEREE R | T || EREE | | ER
s | ceesen | | B (B |
_ THEE ﬁ%ﬂ May Jun Jul Aug
L 1 . N S EEE EEEE L | L | L | [|
SEIEEEE EEEEHRLSE %EHIEEI?—EH%HE@ EHE || EEH | |EE | |5 Es
e | e | | s o nov oeo
: SRR/ : S | 7 [t AL []
s | S e | | | B | | ||| e

Traditional SAStables are single files that contain the data descriptors and the table data. Data values are the columns, and the descriptors
are the metadata that describe the column and data formatting that the table uses. If atraditional SAS table contains one or more indexes,
they are stored in a separate file.

SPD Server tables use component files to store tables. One component file stores the stream of data values. Another component file stores
the column and data descriptors. If you create an index for a column or a composite of columns, SPD Server creates two separate
component files (a*.hbx fileand a*.idx file) for each index.

SPD Server Cluster tables are virtua table structures. SPD Server cluster tables are composed of members. Each member is an SPD
Server table. All members must share the same metadata formats and organization. SPD Server cluster tables use the metadata to manage
the data that is contained in the members.

The SPD Server dynamic cluster table structure provides architecture that enables flexible loading and rapid storage and processing for very
large data tables. Using dynamic cluster tables, loading data, removing data, and refreshing tables in very large data marts become easier
and more timely. Dynamic cluster tables provide organizational features and performance benefits that traditional SAS tables and SPD
Server tables do not have.

Benefits of Dynamic Cluster Tables

Organizing SPD Server datainto dynamic cluster tables creates an architecture that supports parallelism, enhanced data flexibility and
manageability, and significantly improved speed in robust data warehousing environments that use large and very large data tables.

For example, you can add new data or remove historical datafrom very large tables by accessing only the member tables that are affected by
the change. Y ou can access the individual member tablesin parallel. This strategy reduces the time that is needed for the job to complete
and uses simple commands. Furthermore, acomplete refresh of a dynamic cluster table can occur using a fraction of the disk spacethat is
needed to refresh alarge traditional SAS or SPD Server table that contains the same amount of data.

Parallel Loading

Because dynamic cluster tables are virtual tables that consist of numerous small SPD Server tables, the architecture enables
paralel loading and processing. Cluster table loads and refreshes are broken down into multiple tasks that can be performed
concurrently. Separate SAS MP CONNECT jobs manage the parallel 1oading and processing.

The scalability of parallel loading with dynamic cluster tables depends on the scalahility of the server 1/O and the number of
processors on the server.

87

Parallel loading requires multiple concurrent writes to disk. If the I/O hardware does not scale appropriately, the loading
process can degrade performance.

SPD Server can create multiple indexes on the same table in parallel, and index creation is a CPU-intensive process. When
sufficient processing power is available, parallel index creation in SPD Server is highly scalable. The creation process for
each index is multi-threaded. A singleindex creation can use multiple CPUs on a server if they are available, which greatly
improves performance.

Fast and Economical Refreshes

Refreshing a dynamic cluster table requires only a fraction of the disk space that atraditional SPD Server table with the same
amount of datawould require. The dynamic cluster table architecture allows users to refresh many large tables concurrently,
while conserving disk and 1/0 resources. With very large traditional SAS or SPD Server tables, available disk space often
limits the number of tables that can be concurrently refreshed.

In thelife cycle of data warehouses, tables can be refreshed to recapture disk space when rows have been updated or deleted,
or to reorder datafor optimized performance. However, refreshing atable can temporarily use twice the disk space of the
tableitself. With very large tables, disk space can be alimiting factor when updating a data warehouse or data mart. When
disk space is limited on a server, the amount of datathat can be refreshed at any given timeis constrained. The window of
time that is required to load and refresh can become huge.

Because dynamic cluster tables can be quickly unbound into smaller SPD Server tables, refreshing dynamic cluster tables does
not use twice the disk space of the original table. Instead, only twice the disk space of the largest member table in the
dynamic cluster tableis required.

After the dynamic cluster table is unbound, disk space equal to the first member table is required to perform arefresh. A
backup of the refresh is created, and then the old version is deleted, creating more available disk space. The refresh process
repeats for each successive member table until all members in the dynamic cluster table have been refreshed and updated.
Then, the member tables are merged into a dynamic cluster table once again.

When a server has enough disk space and 1/0O resources to refresh more than one member table at atime, the benefits of
parallel processing can be realized.

Creating and Controlling Dynamic Cluster Tables

Creating dynamic cluster tablesin SPD Server is simple and straightforward. The following operations are associated with creating and
controlling dynamic cluster tables:

. Create a Dynamic Cluster Table

. Dynamic Cluster Table Access Control
. Add Tablesto a Dynamic Cluster

. Undo Dynamic Cluster Tables

. Refresh Dynamic Cluster Tables

Create a Dynamic Cluster Table

To create dynamic cluster tablesin SPD Server, you must have a set of related SPD Server tables that you want to cluster,
such as tables that contain monthly sales histories. The SPD Server tables that you want to cluster must all be in the same
domain, and must use identical table structures (columns and indexes) and compression. However, member table partition
sizes and member table owners can vary. These requirements ensure the metadata compatibility that is necessary to create
dynamic cluster tablesin SPD Server.

88

Oncethe related SPD Server tables are organized, asimple PROC SPDO command is used to bind the tables into a dynamic

cluster table,

The following graphic represents a dynamic cluster table with 24 members. Each member table is an SPD Server table that

contains monthly sales transactions:

Dynamic Cluster Table

et R TR T T T T, P Tl R e
[S . [e e pas T e e NS S
Jan 2003 Feb 2003 Mar 2003 Apr 2003
Iy cEEpmee (Saaelsy aEoTERR
May 2003 Jun 2003 Jul 2003 Aug 2003
e e e e e e e M e,
Sep 2003 Oct 2003 Mow 2003 Dec 2003

P T e T P e U e
et e
Jan 2004 Feb 2004 Mar 2004 Apr 2004
R Sk ey ey . -——
o e e, B
[[Rnats s e e e e
May 2004 Jun 2004 Jul 2004 Aug 2004
e e o = o] o E
Sep 2004 Oct 2004 Nay 2004 Dec 2004
e R e e ey

The following code shows the PROC SPDO command syntax that is used to create dynamic cluster tables from the member
tables:

PROC SPDO |i brary=donai n- nane ;
cluster create Sales Hi story
nmenrsal es200301
nmenrsal es200302
mem~sal es200303
menrsal es200304
nmemrsal es200305
nmenrsal es200306
nmenrsal es200307
nmem~sal es200308
nmenrsal es200309
nmemrsal es200310
menrsal es200311
menrsal es200312
nmenrsal es200401
menrsal es200402
memrsal es200403
nmenrsal es200404
nmenrsal es200405
nmenrsal es200406
nmenrsal es200407
nmemrsal es200408
menrsal es200409
nmenmrsal es200410
nmenrsal es200411
nmenrsal es200412
maxsl| ot =36 ;
quit ;
89

PROC SPDO usesaLIBRARY statement to identify the domain that contains the tablesto be clustered. Thecl ust er
cr eat e syntax specifies the name of the dynamic cluster table to be created (Sales_History).

The mene syntax identifies the members of the cluster table. The tables in the previous example represent monthly sales
transactions. This example uses 24 monthly sales tables for the years 2003 and 2004.

The maxsl ot = specification specifies the maximum number of members that are allowed in the dynamic cluster table
Sales History.

The "Dynamic Cluster Table Examples' section contains more extensive code examples of creating dynamic cluster tables.

Dynamic Cluster Table Access Control

A user must have SPD Server control access on any member tables that are used in the CLUSTER CREATE or CLUSTER
ADD commands. A user must also have SPD Server control access on the dynamic cluster table itself to submit a CLUSTER
UNDO command. There is no restriction on table ownership, aslong as the user has control access on all member tables. All
users that have access to a domain have default control access on tables that were created by the user Anonymous within that
domain. ACLs can be defined on a dynamic cluster table after it is created, and the permissions that are specified in the
dynamic cluster table ACL are applied when SPD Server accesses the dynamic cluster table. Any individual ACL that is
defined on a member table does not apply during the time when the member tableis part of a created dynamic cluster table.

Add Tables to a Dynamic Cluster

To add tables to a dynamic cluster table, you must have an existing dynamic cluster table. The SPD Server tables that you
want to add to the dynamic cluster table must all be in the same domain as the dynamic cluster table. These tables must use
identical table structures (columns and indexes) and compression. However, partition sizes and owners can vary. These
requirements ensure the metadata compatibility that is required to add to a dynamic cluster table.

Once the tables to be added are organized, a simple PROC SPDO command is used to add the new tables to an existing

dynamic cluster table. In the following graphic, sales tables for the first six months of 2005 are set up to be added to the
dynamic cluster table that contains monthly sales transaction data for 2003 and 2004:

90

Dynamic Cluster Table

Mew Months

e W e W e e R
Jan 2003 Feb 2003 dar 2003 Apr 2003 Jan 20035
R e et Wl e e et e (e o
May 2003 Jun 2003 Jul 2003 Aug 2003 Feb 2005
iy gEEeeey e cEEeSn | oSS
Sep 2003 Ot 2003 Mow 2003 Cec 2003 Mar 2005
e T e S R e e =
o O e - P Trr o
T] I S — g
Jan 2004 Feb 2004 Mar 2004 Apr 2004 Apr 20035
ey Ly e e - -
I ey e S || e
May 2004 Jun 2004 Jul 2004 Aug 2004 May 2005
) Sl ie— e T
Sep 2004 Ot 2004 Now 2004 Dec 2004 Jun 2005
Ly e iy ey

The following code shows the PROC SPDO command syntax that is used to add new tables to an existing dynamic cluster
table:

PRCC SPDO | i br ary=donai n- nane ;
cluster add Sal es_History
mem~sal es200501
menrsal es200502
nmemrsal es200503
menrsal es200504
menrsal es200505
nmenrsal es200506
quit ;

PROC SPDO usesaLIBRARY statement to identify the domain that contains the existing dynamic cluster table that you want
toaddto. Thecl uster add syntax specifiesthe name of the dynamic cluster table that you want to add to
(Sales History).

The menr syntax identifies the members that form the table to be added to the existing dynamic cluster table. In the following

graphic, six tables that include monthly sales transactions for the first half of 2005 are set up to be added to the existing
dynamic cluster table of 2003 and 2004 sales transactions data:

91

T G G SR ——
Jan 2003 Feb 2003 Mar 2003 Apr 2003 Jan 2005
S o paes prens Nmpaaameereenen L= S

e e s S =

filay 200 Jun 2003 Jul 2003 Aug 2003 Feb 2005
N pe L C S p ey i o —
EEE— = EE—

Sen 2003 Cct 2003 Moy 2003 Cec 2003 Mar 2005
T e —— — e —— —— ___,< — —
[BTG (e fom St T e (e =

Jan 2004 Feb 2004 Nar 2004 Apr 2004 Apr 2005
e S e s Ty e e e M e
" — =N o — —— — ——

e] e

May 2004 | | Jun 2004 Jul 2004 Aug 2004 Way 2005
gt — - s e S L oy g W T it
e o e ———— i
e e e s ——

Sen 2004 Cct 2004 Moy 2004 Dec 2004 m
e g Ry N e Jﬂ T

See the "Dynamic Cluster Table Examples" section for a more extensive code example of adding to a dynamic cluster table.

Undo Dynamic Cluster Tables

To undo adynamic cluster table, you must have an existing dynamic cluster table. Undoing the dynamic cluster table simply
reverts the table back to unbound SPD Server tables. Undoing a dynamic cluster tableis required to remove a specific member
table from a dynamic cluster table, to add data to a specific member table in the dynamic cluster table, or to completely refresh
a specific member table that belongs to the dynamic cluster table.

The following graphic represents a dynamic cluster table with 24 members. Each member contains monthly sales transactions
for the years 2003 and 2004:

Dynamic Cluster Table

(R, (TR (CCERRRET, RS

Jan 2003 Juf 2003 Jan 2004 Jul 2004 Jan 2005
g o e RS R R s
(GRS (TSRS (CONSSNNes (CSENSSNT (C—,

Feb 2003 Aug 2003 Feb 2004 Aug 2004 Feb 2005
e e s e i et
Eheeaaan @y @hmeeeany EEfesoanne RGewenTT

Mar 2003 Sep 2003 Mar 2004 Sep 2004 Mar 2005
A N S S M e S R o S e i-—._______,_.--'
N R R G G

Apr 2003 Oct 2004 Apr 2004 Oct 2004 Apr 2005
e ey s e ey =y i ey
s D i e oo S <D o e

May 2003 Naov 2004 May 2004 Nov 2004 May 2005
(SRR () CRR (R
e] [e o e] I

Jun 2004 Dec 2004 Jun 2004 Dec 2004 Jun 2005

92

PROC SPDO is used to undo the existing dynamic cluster table.
The following code shows the PROC SPDO command syntax that is used to undo an existing dynamic cluster table:

PROC SPDO | i brary=
domai n- nane ;
cluster

quit ;

undo Sales History ;

PROC SPDO usesaLIBRARY statement to identify the domain that contains the existing dynamic cluster table that you want
toundo. Thecl uster undo syntax specifiesthe name of the dynamic cluster table that you want to undo (Sales_History).

The following graphic represents the previous dynamic cluster table, now unbound.

Unclustered Member Tables

G ey ety CipEeeen e
I Jan 2003 Jul 2003 Jan 2004 Jul 2004 Jan 2005
L | Sl
o T sEae e S T e e
i [e e e o] e] o e e]
Feb 2003 Aug 2003 Feb 2004 Aug 2004 Feb 2005
. _—y e e e, ey — — —
T P T e T, B e
Mar 2003 Sep 2003 Mar 2004 Sep 2004 Mar 2005
- o e — ey R o
T S e e T T T e,
Apr 2003 Qct 2004 Apr 2004 Oet 2004 Apr 2005
e L e o gy - ey e — e ey
S L G o o = —
e] e] e i s e e] o
May 2003 Nov 2004 May 2004 Nov 2004 May 2005
W W e e T e e r e
Jun 2004 Dec 2004 Jun 200 Dec 2004 Jurn 2005
e ey e - - e e

See the " Dynamic Cluster Table Examples' section for a more extensive code example of undoing a dynamic cluster table
and then refreshing it.

Refresh Dynamic Cluster Tables

To refresh adynamic cluster table, you perform the same actions that are required to undo a dynamic cluster table. Then, you
recreate the dynamic cluster table after you add a member table or change an existing member table. An example of
refreshing an SPD Server dynamic cluster table is updating on a monthly basis a dynamic cluster table whose members are the
24 previous months of sales transaction data.

To refresh adynamic cluster table, use sequential PROC SPDO commands to UNDO CLUSTER and CREATE CLUSTER
with the desired member tables. The dynamic cluster table isfirst undone. Table changes are made, and then the dynamic
cluster table is rebound again. The following example unbinds the sales transactions tables for 2003 and 2004, and then
refreshes the dynamic cluster table with sales transactions tables for the first six months of 2005:

93

Unclustered Member Tables

Reclustered

Table
i) cEnmaeem imeseeicy CEmesewesy | EESSRmeRbT
Jan 2003 Jul 2003 Jan 2004 Jul 2004 Jan 2005
e s e ey e e i gy gt e gy
ey commeeey cEEmeeean GEEeevr | coREESEey
Feb 2003 Aug 2003 Feb 2004 Aug 2004 Feb 2005
SRy SRR RN, (GERERNES: | A
Mar 2003 Sep 2003 Mar 2004 Sep 2004 Mar 2005
. — - " e — e ey
OESEsane) ooy oEeaaven Eepaedienry | coSSbegeesaa
Apr 2003 Oct 2004 Apr 2004 Oct 2004 Apr 2005
sy e e o ey g ey e e T Ry
iEmsenty oESESSST. cOSEESSTy (G e | =y
May 2003 Moy 2004 MMay 2004 MNowv 2004 May 2005
e R e e et e e
CEEP, TR ((A e
Jun 2004 Dec 2004 Jun 2004 Dec 2004 Jun 2005
R E—— | . e . o . oy

See the " Dynamic Cluster Table Examples" section for a more extensive code example of unbinding a dynamic cluster table
and then refreshing it by recreating it with different member tables.

Modify Dynamic Cluster Tables

The PROC SPDO command set for dynamic clusters provides a CLUSTER MODIFY cluster command. The usage syntax for
the CLUSTER MODIFY command is

CLUSTER MODI FY cl ust er nane
M NMAXVARLI ST=(var nanel <varnanme2 varnane3 ...>);

The CLUSTER MODIFY command setsa MINMAXVARLIST attribute on one or more variables that belong to an existing
dynamic cluster. The variable names that are specified in the CLUSTER MODIFY command must exist in the cluster and the
variables must not have a pre-existing MINMAXVARLIST setting. When the SPD Server runs the CLUSTER MODIFY
command, the dynamic cluster is unclustered while the variable modifications are made to the individual member tables. The
cluster isrecreated after the MINMAXVARLIST changes are completed. Control permission and exclusive access to the
dynamic cluster isrequired in order to run the CLUSTER MODIFY command. SPD Server performs afull table scan to
initialize the MINMAXVARLIST values in each member table, so the processor time that is required to perform the
CLUSTER MODIFY command is directly related to the size of the tables that belong to the cluster. If an error occurs while
the CLUSTER MODIFY command is running, the cluster may not be recreated and the user will need to manually recreate the
cluster using the CLUSTER CREATE command.

Dynamic Cluster BY Clause Optimization

When you use SPD Server dynamic clusters, you can create huge data sets. If the huge data sets need further manipulation by some SAS
job, it might be better to sort them for more efficient processing. Traditional processing of huge data sets can overuse or overwhelm
available resources. The resulting lack of available run-time or processor resources can prohibit you from running full-table scans and
manipulating table rows, which are required to sort huge data sets for subsequent processing.

94

SPD Server provides dynamic cluster BY clause optimization to reduce the need for alarge amount of processor resources when evaluating
BY clauses. The dynamic cluster BY clause optimization uses SPD Server to join individually created SPD Server member data sets so that
the data sets appear to be single data set, while still keeping the individual member data setsintact. The dynamic cluster BY clause
optimization uses the SORTEDBY metadata of the member data sets to bypass most of the sorting that is required to perform the implicit
BY clause ordering. With the SORTEDBY metadata of each member, SPD Server merges the member data setsin the dynamic cluster by
using each member data set's order. No additional SPD Server work-space is required, and the ordered data set records are returned with
minimum delay since member sorting is eliminated.

To use dynamic cluster BY clause optimization, you need to build the dynamic cluster table a certain way. All of the member tablesin your
dynamic cluster table need to be sorted by the same columns that you need to usein the BY clause. When you build your dynamic cluster
table from member tables that are presorted by your BY clause columns, your dynamic cluster table can use the BY clause optimization.

When aBY clauseis run that matches the SORTEDBY column order of the dynamic cluster table member tables, SPD Server performsthe
BY clause without using sort work-space or experiencing first-record latency. SPD Server uses the presorted member tables to perform an
instantaneous interleave. By using the presorted member tables, the dynamic cluster BY clause optimization enables you to perform
operations on huge data sets that would be impossible to handle otherwise.

For example, suppose that you have a system that has sufficient CPU, memory, and work-space resources to sort a50-GB dataset in a
reasonable amount of time. However, suppose this system accumulates 50 GB of new data every month, so that after 12 months, the data
setsrequire 600 GB of storage. The system cannot handle sorting 600 GB of data to process queries that are based on the previous 12-month
period. If you use SPD Server to create a dynamic cluster table from the 12 50-GB member tables, you can store each rolling month of data
in a SPD Server member table, and then sort it like the other dynamic cluster table member tables, and then add the new member table to the
600-GB dynamic cluster table. Now you can use the dynamic cluster BY clause optimization to run SAS stepsthat use BY clauses on the
600-GB cluster. For example, you can run aDATA step MERGE statement that uses the dynamic cluster table as the master source for the
MERGE statement. The BY clause from the MERGE statement triggers the dynamic cluster BY clause optimization. As aresult, the
operation completes in the time that it takes to interleave the individual member tables, using no SPD Server work-space and without
experiencing any implicit BY sort delays.

Dynamic cluster BY clause optimization allows the BY optimization to be combined with certain WHERE clauses on dynamic cluster
tables. For the WHERE clause optimization to work, SPD Server must be able to determine whether the WHERE clause is trivially true or
trivially false for each member table in the dynamic cluster table. To be trivially true, a WHERE clause must find the clause condition true
for every row in the member table. To be trivially false, a WHERE clause must find the clause condition false for every row in the member
table.

SPD Server keeps metadata about indexed values in dynamic cluster table member tables, and if the WHERE clause criteria can be
determined astrue or false based on the dynamic cluster table's member table metadata, the WHERE clause optimization is possible on a
member-by-member basis for the entire dynamic cluster table. Suppose that member tables of a dynamic cluster table all have an index on
the column QUARTER (1=Jan-Mar, 2=Apr-Jun, 3=Jul-Sep, 4=0ct-Dec). Suppose that you need to run a DATA step MERGE statement that
uses the expression WHERE QUARTER=2. Because the QUARTER columnisindexed in all of the member tables, SPD Server usesthe
BY clause optimization to determine that the WHERE clauseistrivialy true. SPD Server then evaluates the expression only on the member
tablesfor April, May, and June without using any SPD Server work-space. When the WHERE clause can be determined as trivially true or
trivially false for each member table of the dynamic cluster table in advance, the BY clause optimization performsthe BY processing only
on the appropriate member tables.

The dynamic cluster BY clause optimization is triggered when member tables all have an applicable SORTEDBY ordering for the BY
clause that is asserted. When the SORTEDBY ordering is strong (validated), SPD Server does not perform checks to verify the order of BY
variables that are returned from the member table. When the SORTEDBY ordering is weak (such asfrom a SORTEDBY assertion that was
adata set option), additional checking is performed to verify the order of BY variables that are returned from the member table. If aninvalid
BY variable order is detected, SPD Server terminates the BY clause and displays the following error message:

ERROR C ustered BY nenber viol ates weak
sort order during nerge.

Dynamic Cluster BY Clause Optimization Example

Consider adatabase of medical patient insurance claims, with quarterly claims data sets that are named ClaimsQ1, ClaimsQz2,
95

ClaimsQ3, and ClaimsQ4. Each quarterly claims table is sorted by columns that are named PatID (for Patient ID) and
ClaimID (for Claim ID). The member tables are combined into a dynamic cluster table that is named ClaimsAll. The
following example shows the code:

DATA SPDS. d ai nsQL;

r un;

DATA SPDS. d ai ns@;

r un;

PROC SORT DATA=SPDS. C ai nsQL;

BY Patl D Cl ai m D
run;

PROC SORT DATA=SPDS. Cl ai ms@2;
BY PatI D CaimD;
run;

PROC SPDO LI B=SPDS;
create cluster C ainsAll;
qui t;

Consider the DATA step MERGE statement to be submitted to the ClaimsAll dynamic cluster table:

DATA SPDS. ToAdd SPDS. ToUpdat e;
VERGE SPDS. NewOnes(| N=NEW)

SPDS. d ai nsAl | (1 N=OLD1) ;
BY Pat|I D C ai M D

SELECT;

VWHEN(NEWL and OLD1)
DG,

OQUTPUT SPDS. ToUpdat €;
end;

WHEN(NEWL and not OLD1)
DG,

OUTPUT SPDS. ToAdd;
end;

run;

If ClaimsAll were not adynamic cluster table, the DATA step MERGE statement would create an implicit sort from the BY
clause on the respective SPD Server data sets. However, ClaimsAll is a dynamic cluster table with member tables that are
presorted. As aresult, the dynamic cluster BY clause optimization uses BY clause processing to merge the sorted member
tables instantaneously without using any SPD Server work-space or experiencing delays. The previous example merges the
transaction data named NewOnes into new rows that will be appended to the data for the next quarter.

Consider that the member data sets ClaimsQ1 and ClaimsQ2 are indexed on the column Claim_Date:

DATA SPDS. Repd ai 1rs;

SET SPDS. C ai nsAl | ;

VWHERE Cl ai m Dat e BETWEEN ' 01JAN2007' and ' 31MAR2007' ;
BY PatI D CaimbD;
run;

The WHERE clause determines whether each member table is true or false for each quarter. The WHERE clauseistrivially
true for the data set ClaimsQ1 because the WHERE clause is true for all datesin the first quarter. The WHERE clauseis

96

trivially false for the data set ClaimsQ2 because the WHERE clauseisfalse for al datesin the second quarter. The BY clause
optimization determines that the member table ClaimsQ1 will be processed because the WHERE clauseistrue for all of the
rows of the ClaimsQ1 table. The BY clause optimization skips the member table ClaimsQ2 because the WHERE clauseis
falsefor all of the rows of the ClaimsQ?2 table.

Suppose that the Claim_Date range is changed in the WHERE clause:

DATA SPDS. Repd ai 1rs;

SET SPDS. C ai nsAl | ;

WHERE Cl ai m Dat e BETWEEN ' 05JAN2007' and ' 28JUN2007' ;
BY Patl D Cl ai m D,
run;

When the new WHERE clause is evaluated, it is not trivially true for member tables ClaimsQ1 or Claims Q2. The WHERE
clauseis not trivially false for member tables ClaimsQ1 or Claims Q2 either. The WHERE clause calls dates that exist in
portions of the member table ClaimsQ1, and it calls dates that exist in portions of the member table ClaimsQ2. The datesin
the WHERE clause do not match all of the dates that exist in the member table ClaimsQ1, or all of the dates that exist in the
member table ClaimsQ2. The dates in the WHERE clause are not totally exclusive of the dates that exist in the member tables
ClaimsQ1 or ClaimsQ2. Asaresult, BY clause optimization will not be used when SPD Server runs the code.

Member Table Requirements for Creating Dynamic Cluster Tables

When you create a dynamic cluster table, all of the member tables must have matching table, variable, and index attributes. If there are
attribute mismatches, the dynamic cluster table creation fails, and SPD Server displays the following error message:

ERROR: Menber table not conpatible with other
cluster nmenbers. Conpare CONTENTS.

A more detailed error message is written to the SPD Server log. The SPD Server log lists which attribute is mismatched in the member
tables. The following lists specify the member table attributes that must match for SPD Server to successfully create a dynamic cluster table.

. TableAttributes
. Variable Attributes
. Index Attributes

Table Attributes

The following table attributes must match in all member tables to successfully create a dynamic cluster table:

IDXSEGSIZE
index segment size

OBSLEN
observation record length

NVAR
number of columns

NINDEXES
number of indexes

DSORG
data set organization

97

SEMTYPE
data set semantic type

DSTYPE
SAS data set type

LOCALE
creation locale

LANG
data set language tag

LTYPE
data set language type tag

FLAGS
compressed data set
encrypted data set
backup data set
NLSvariablesin data set
minmaxvarlist variables in data set
SAS encryption password in data set

SASPW
SAS encryption password

DS ROLE
data set option for ROLE

ENCODING_CEI
encoding CEI for NLS (for compressed tables)

DISKCOMP
compression algorithm

IOBLOCKSIZE
I/0O block size

|OBLOCKFACTOR
1/0O block factor

Variable Attributes

The following variable attributes must match in all member tables to successfully create a dynamic cluster table:

NAME
variable name

LABEL
variable label

NFORM
variable format

NIFORM
variable informat

98

NPOS
variable offset in record

NVARO
variable number in record

NLNG
variable length

NPREC
variable precision

FLAGS
NLS encoding supported
minmaxvarlist variable

NFL
format length

NFD
format decimal places

NIFL
informat length

NIFD
informat precision

NSCALE
scale for fixed-point decimal

NTATTR
variable type attributes

TYPE
variable type

SUBTYPE
variable subtype

SORT
variable sorted status

NTYPE2
variable extended type code

Index Attributes

The following index attributes must match in all member tables to successfully create a dynamic cluster table:

NAME
index name

TYPE
index type

KEYFLAGS
99

unigue index

nomiss index

LENGTH
index length

NVAR

number of variablesin index

NVARO

variable number in index

Querying and Reading Member Tablesin a Dynamic Cluster

PROC SPDO |i brary=&domai n ;

CLUSTER CREATE sal es_hi story

nmenrsal es200501
menrsal es200502
nenrsal es200503
memrsal es200504
nmenrsal es200505
nmenrsal es200506
maxsl ot =12 ;
quit ;

PROC PRI NT dat a=&domai n..sal es_history

(MEMNUM=4) ;
VWHERE sal esdat e
run;

30Apr 2005;

PROC SPDO |i brary=&domai n ;

CLUSTER CREATE sal es_hi story

nmenrsal es200501
menmrsal es200502
nmenrsal es200503
memrsal es200504
mem=sal es200505
nmenrsal es200506
maxsl ot =12 ;
quit ;

Dynamic clusters can be read using the MEMNUM= table option. The MEMNUM= option enables you to perform query or read operations
on asingle member table that belongsto a dynamic cluster. When you use the MEMNUM= option, SPD Server opens only the specified
member table, instead of opening all of the member tables that belong to the cluster. Y ou can determine the member number of atablein the
cluster by issuing a CLUSTER LIST statement or a PROC CONTENTS command on the cluster. The SPD Server CLUSTER LIST or
PROC CONTENTS command output lists the member tables of the cluster in numbered order.

Y ou can specify an integer value n as an argument for the MEMNUM = table option to select the nth member of the table, or you can use the
argument LASTCLUSTERMEMBER. When you use the LASTCLUSTERMEMBER argument with MEMNUM=, SPD Server selectsthe
last member of the dynamic cluster table, without needing to count the members to determine the number (n) of the last member.

The following example uses the MEMNUM= table option to query against the member table sales200504 that belongs to the dynamic
cluster table sales _history:

To use the MEMNUM-= table option to query the last member table in the dynamic cluster table sales200506, the query would be:

100

PROC PRI NT dat a=&donai n..sal es_history
(MEMNUM=LASTCLUSTERMEMBER) ;
WHERE sal esdate = 15Jun2005;
run;

Unsupported Featuresin Dynamic Cluster Tables

Because of differencesin the load and read structures for dynamic cluster tables, some standard features that are available in SAS tables and
SPD Server tables are currently not supported in SPD Server 4.4. These features are;

. You cannot append data to a dynamic cluster table. To append data to a dynamic cluster table, the table must be unclustered, the data
is appended to the individual unclustered files, and then the individual unclustered files must be reclustered.

. Record-level locking is not allowed.
. The SPD Server backup/restore utility is not available.

. Copying data with PROC COPY or PROC SQL is not supported.

If atask for adynamic cluster table requires one of these features, you should undo the dynamic cluster table and create standard SPD Server
tables.

Dynamic Cluster Table Examples

The following four examples show all of the fundamental operations that are required to use dynamic cluster tables:

. Create a Dynamic Cluster Table Example

. Add Tablesto a Dynamic Cluster Example
. Undo Dynamic Cluster Table Example

. Refresh Dynamic Cluster Table Example

Create a Dynamic Cluster Table Example

The following example creates a dynamic cluster table named Sales History. Thefirst part of the example
generates dummy transaction data that is used in the rest of the example.

The example uses SPD Server tables from the domain bmwcycle. Twelveindividual SPD Server tables for
monthly motorcycle sales during 2004 are bound into the dynamic cluster table named Sales History. Tables
are created for the first six months of motorcycle sales during 2005:

/* declare macro variables that will be used to */
/* generate dummy transaction data */

%racro var (varout, dist, card, seed, peak) ;
Y%ut &di st &card &seed ;
% ocal varl ;

if upcase("&dist") = "RANUNI'
then do ;
&arout = int(ranuni (&seed)*&card) +1;

end ;
101

el se

i f upcase("&dist") = 'RANTRI'

t hen do ;
*OBhet vartri = Usubstr("&dist",5, 2)&card ;
&arout = int(rantri(&seed, &eak)&card) +1
&arout = int(rantri(&seed, &eak)*&card) +1

end ;

%rend ;

%racro |inkvar (varin,varout, devisor) ;
&arout = int(&varin/ &levisor)
%rend ;

/* declare main vars */

% et domai n=bmacycl e
% et host =kaboom ;

% et port=5200

% et spdssi ze=256M ;
% et spdsi asy=YES ;

I i bname &donai n sasspds "&domai n"
server =&host . . &port
user =' anonynous'
i p=YES ;

/* generate nonthly sales data tables for */
/* 2004 and the first six nmonths of 2005 */

dat a
&domai n. . sal es200401
&donai n. . sal es200402
&donmai n. . sal es200403
&domai n. . sal es200404
&donmai n. . sal es200405
&domai n. . sal es200406
&donai n. . sal es200407
&donmai n. . sal es200408
&domai n. . sal es200409
&donmai n. . sal es200410
&domai n. . sal es200411
&donmai n. . sal es200412
&domai n. . sal es200501
&donai n. . sal es200502
&domai n. . sal es200503
&domai n. . sal es200504
&domai n. . sal es200505

n..sal es200506

&domai

drop seed bunpl bunmp2 random di st ;

seed = int(time()) ;

[* format the dunmy transaction data */

102

format trandate shi pdate pai ddate yymdd10. ;

put seed ;
do transact = 1 to 5000

%var (custoner,ranuni, 100000, seed, 1) ;

% i nkvar (customer, zi pcode, 10) ;

% i nkvar (custoner, agent, 20) ;

% i nkvar (custoner, nkt seg, 10000) ;
% i nkvar (agent, state, 100) ;

% i nkvar (agent, branch, 25) ;

% i nkvar (state, region,10) ;

%var (item nunber,ranuni, 15000, seed, 1) ;

%var (trandate,ranuni,577,seed, 1) ;
trandate = trandate + 16071

%var (bunpl,ranuni, 20, seed, . 1) ;
shipdate = trandate + bunpl

%var (bunp2,rantri, 30, seed,.5) ;
pai ddate = trandate + bunp2

%var (units,ranuni, 100, seed, 1) ;
%var (trantype,ranuni, 10, seed, 1) ;

%var (amount,rantri, 50, seed, .5) ;
anount = anmount + 25 ;

random di st = ranuni (' 03feb2005'd) ;

/* sort the dunmy transaction data into */
/* nmonthly sales data tables */

if '"01jan2004' d <= trandate <= '31jan2004'd
t hen out put &donmi n..sal es200401

else if '01feb2004'd <= trandate <= '28feb2004' d
t hen out put &domain. . sal es200402 ;

else if '"01lmar2004'd <= trandate <= '31nar2004'd
t hen out put &donmi n. . sal es200403

else if '0lapr2004'd <= trandate <= '30apr2004'd
t hen out put &domain. . sal es200404

else if '0lmay2004' d <= trandate <= '31nay2004'd
t hen out put &donmai n..sal es200405 ;

else if '01jun2004'd <= trandate <= '30j un2004'd
t hen output &donain..sal es200406 ;

else if '01jul 2004'd <= trandate <= '31jul 2004' d
t hen out put &donmi n. . sal es200407 ;

el se if '0laug2004'd <= trandate <= '31aug2004'd
t hen out put &domain. . sal es200408

103

else if '01sep2004'd <= trandate <= ' 30sep2004'd
t hen out put &domain. . sal es200409

else if '"0Oloct2004'd <= trandate <= '3loct2004'd
t hen out put &domain..sal es200410 ;

else if '01nov2004'd <= trandate <= '30nov2004'd
t hen output &donmin..sal es200411

else if '01dec2004'd <= trandate <= '31dec2004'd
t hen out put &domain. . sal es200412 ;

else if '01jan2005' d <= trandate <= '31jan2005' d
t hen out put &donmi n.. sal es200501

else if '01feb2005' d <= trandate <= '28feb2005' d
t hen out put &domai n. . sal es200502 ;

else if '01lmar2005'd <= trandate <= ' 31nmar2005'd
t hen out put &donain..sal es200503 ;

else if '0lapr2005' d <= trandate <= '30apr2005'd
t hen out put &domain. . sal es200504

else if '"0Olmay2005' d <= trandate <= '31nay2005' d
t hen out put &domain. . sal es200505 ;

else if '01jun2005'd <= trandate <= '31jun2005'd
t hen out put &domain. . sal es200506
end ;
run ;

/* index the transaction data in the */
/* monthly sales data tables */

%racro indexit (yrmth) ;
PROC DATASETS |i brary=&domai n noli st ;
nodi fy sal es&rnth ;
i ndex create transact custoner agent state branch trandate
quit ;
%rend ;

% et spdsiasy=YES ;

% ndexit (200401) ;
% ndexi t (200402) ;
% ndexi t (200403) ;
% ndexit (200404) ;
% ndexit (200405) ;
% ndexit (200406) ;
% ndexit (200407) ;
% ndexi t (200408) ;
% ndexi t (200409) ;
% ndexit (200410) ;
% ndexit (200411) ;
% ndexit (200412) ;
% ndexit (200501) ;
% ndexi t (200502) ;

104

% ndexi t (200503) ;
% ndexit (200504) ;
% ndexit (200505) ;
% ndexit (200506) ;

/* Use PROC SPDO to create the dynam c cluster */
/* table sales_history */

PROC SPDO |i brary=&domai n ;
cluster create sales_history
menFsal es200401
nmenrsal es200402
nmenrsal es200403
nmenrsal es200404
nenrsal es200405
memrsal es200406
nmenrsal es200407
memesal es200408
menrsal es200409
nmenrsal es200410
menrsal es200411
nmenrsal €es200412
maxs| ot =36
quit ;

Add Tables to a Dynamic Cluster Example

The following example adds member tables to the dynamic cluster table named Sales History. The

Sales History table currently contains 12 members. Each member isan SPD Server table that contains monthly
salesdata. This example augments the 12 member tables for 2004 with 6 new member tables that contain sales
data for January through June of 2005:

/* declare main vars */

% et domai n=bmacycl e
% et host =kaboom ;

% et port=5200

% et spdssi ze=256M ;
% et spdsi asy=YES ;

[i bname &donai n sasspds "&domai n"
server =&host . . &port
user ="' anonynous'
i p=YES ;

/* Use PROC SPDO to add menber tables to */
/[* the dynam c cluster table sales_history */

PROC SPDO |i brary=&donai n ;
cluster add sales_history
nmemrsal es200501
nmenrsal es200502
nmemFsal es200503
nmenrsal es200504
nmenrsal es200505

105

nmenrsal es200506 ;
quit ;

/* Verify the presence of the added tables

PROC CONTENTS dat a=&donai n. . sal es_hi story ;

run ;

*/

Undo Dynamic Cluster Table Example

The undo example isincluded as part of the following refresh example.

Refresh Dynamic Cluster Table Example

Refreshing SPD Server dynamic cluster tablesis a combination of two tasks, UNDO CLUSTER and CREATE CLUSTER.
The UNDO CLUSTER command unbinds an existing dynamic cluster table. The CREATE CLUSTER command rebinds the
dynamic cluster table with updated member tables. Therefore, the following example shows both the UNDO CLUSTER and

CREATE CLUSTER commands with SPD Server dynamic cluster tables.

The following example refreshes the dynamic cluster table named Sales History. The Sales History table received additional
member tablesin the previous example. The 18-member dynamic cluster table Sales History isunbound. The 12 member
tables that contain 2004 sales data are deleted when the dynamic cluster table Sales History is recreated with only the six
member tables that contain 2005 sales data. The combined actions refresh the contents of the dynamic cluster table

Sales History.

/* declare nmain vars */

% et
% et
% et
% et
% et

domai n=bmacycl e ;
host =kaboom ;
port=5200 ;
spdssi ze=256M ;
spdsi asy=YES ;

I i bnanme &donai n sasspds "&domai n"
server =&host . . &port
user =" anonynous'
| P=YES ;

/* Use PROC SPDO to undo the existing dynamc
/* cluster table Sales Hi story, then rebind
/* it with menbers fromnmonths in 2005 only

PROC SPDO |i brary=&domain ;
cluster undo sales_history ;
cluster create sales _history

menrsal es200501
nemrsal es200502
nmem~sal es200503
nmenrsal es200504
nmemrsal es200505
nmenrsal es200506

maxs| ot =36 ;

quit

106

*/
*/
*/

/* Verify the contents of the refreshed dynamc */
/* cluster table sales_history */

PROC CONTENTS dat a=&donui n. . sal es_hi story ;
run ;

Copyright © 2008 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

107

SAS Scalable Performance Data (SPD) Server SQL Features

. SPD Server SOL Planner
. Connecting to the SPD Server SOL Engine
. SPD Server SQL Planner Options
o Specify SQL Options using Explicit Pass-Through Code
o Specify SQL Options using Implicit Pass-Through Code
o Important SPD Server SQL Planner Options
. Parale Join Facility
o Parallel Join Methods
o Parallel Joins with Group-By
o Parallel Join SQL Options
o Parallel Join Example 1
o Parallel Join Example 2
o Parallel Join Example 3
. Paralel Group-By Facility
o Enhanced Group-By Functions
o Table Aliases Supported
o Nested Queries Meet Group-By Syntax Requirements
o Formatted Parallel Group Select
o Parallel Group-By SQL Options
. SPD Server STARJOIN Facility
o STARJOIN Options
. SPD Server Index Scan
. Optimizing Correlated Queries
o Correlated Query Options
. Materialized Views
. SPD Server SQOL Extensions
. Differences between SAS SQL and SPD Server SQL

SPD Server SQL Planner

SPD Server includes SQL Planner optimizations. SQL Planner optimizations improve the performance of the more frequent query types that used in data
mining solutions such as Enterprise Marketing Automation. A key enhancement to the SPD Server SQL Planner is optimizing correlated queries through the
use of query rewrite techniques. Correlated queries are common in business and analytic intelligence data mining. Another significant enhancement is the
tighter integration of the Parallel Group-By technology in the planner. The tighter integration adds performance benefits to nested Group-By syntax.

Connecting to the SPD Server SQL Engine

. Implicit Pass-Through Connection
. Explicit Pass-Through Connection
o LIBNAME Syntax to Specify a LIBREF
o LIBREF Statements
o LIBREF Clauses
o LIBREF Examples

Implicit Pass-Through Connection

Y ou can use an implicit pass-through connection to passimplicit SQL statements to the SPD Server SQL Engine. When you use an implicit
pass-through connection, the SAS SQL planner parses SQL statements to determine which, if any, portions can be passed to the SPD Server
SQL Engine. In order for a submitted SQL statement to take advantage of implicit pass-through SQL, the tables that are referenced in the SQL
statement must be SPD Server tables, and the SPD Server SQL engine must be able to successfully parse the submitted SQL statement.

108

An example of an SPD Server implicit pass-through connection is available in the Help section in this document on how to specify SQL options

using implicit pass-through code.

Explicit Pass-Through Connection

Y ou can use an explicit pass-through connection to pass explicit SQL statements to the SPD Server SQL Engine. When you use an explicit
pass-through connection, you decide explicitly which SQL statements are passed to the SPD Server SQL Engine. The explicit pass-through
connection passes the entire SQL statement as written to the SPD Server SQL Engine, which parses and plans the SQL statement. All tables
that are referenced in the SQL statement must be SPD Server tables or an error will occur.

An example of an SPD Server implicit pass-through connection is available in the Help section in this document on how to specify SQL options

using explicit pass-through code.

LIBNAME Syntax to Specify a LIBREF

Below isaLIBNAME statement that associates a libref, the SASSPDS engine, and an SPD Server domain.

LIBNAME libref
SASSPDS <'SAS-data-library> <SPD Server-options>;

Use the following arguments:

libref
aname that is up to eight characters long and that conforms to the rules for SAS names.
SASSPDS
the name of the SPD Server engine.
'SAS-data-library'
thelogical LIBNAME domain name for an SPD Server data library on the host machine. The name server resolves the
domain name into the physical path for the library.
SPD Server-options
one or more SPD Server options.

LIBREF Statements

Whenever you issue a CONNECT statement to an SPD Server SQL server with the DBQ option, by default you define a primary
LIBNAME domain. The software uses the primary domain to resolve table references in SQL statements executed for that
connection.

Y ou can also use the LIBREF statement to assign secondary LIBNAME domains for the SPD Server SQL Server. The additional
LIBREF statements assign explicit LIBNAME domains, allowing the software to specify two-part table names for SQL
statements executed for the connection.

PROC SQL;

execute(libref |ibrefnane
<engi nenane>

engopt=" ")

by sasspds;

LIBREF Clauses

. The ENGNAME Clause
. The ENGOPT Clause

The ENGNAME Clause

109

Specifies the name of an alternate SAS 1/O engine to service the LIBREF's access to data. If you do not specify an
aternate SAS 1/0 engine, the default is spdseng, which accesses SPD Server tables.

The ENGOPT Clause
Specifies options that configure the LIBREF to access a specific data source or storage domain. Use single or double
quotes around the clause. (If you have nested quotes within a clause, alternate between single and double quoted
expressions.) The available options depend on the current value of the ENGNAME option. For the default spdseng, you
can specify any SPD Server CONNECT or LIBNAME engine option with the exception of prompt, newpasswd, and
chngpass. Use the same keyword/value syntax required by the CONNECT statement.

Note: If you specify the SAS 1/O engine spdseng and use explicit optionsin your CONNECT statement, these options
become default ENGOPT clause options. Explicit options can al so be specified using the ENGOPT clause. Explicit
options specified in an ENGOPT clause will override default values or declarations made in previous CONNECT
statements.

LIBREF Examples

. LIBREF for Another Domain but the Same CONNECT Statement User
. LIBREF to Same Domain but Different CONNECT Statement User
. Secondary LIBREF Using a Different Host

LIBREF for Another Domain but the Same CONNECT Statement User

In this example the client connects to the SPD Server SQL server using the engine sasspds. Thedomainis
"mydomain,” the server machineis called "namesvrID," and the port number is "namesvrPortNum". The execute
statement assigns the LIBREF "cookie" to another domain, "dough.” After the libref is executed, the user issuing
the connect statement can now access either the default domain "mydomain” or the secondary domain "dough."

PROC SQL;
connect to sasspds
(dbg=" nydomai n'
host =' nanesvr| D
serv='"nanmesvr Port Nuni
user ="' ner aksr'
passwd='siuya');

execute(libref cookie
engopt ='
dbg="dough"")

by sasspds;

In the example above, the LIBREF is "cookie," and the secondary domain named is "dough." The intent of the
exampleisto show how the CONNECT and LIBREF statements work in conjunction to access multiple domains
for the same user.

LIBREF to Same Domain but Different CONNECT Statement User

This example assigns a LIBREF to the domain specified by the CONNECT statement but for another user
(different SPD Server User ID).

PROC SQL;
execute(libref samslib
engopt ='
user ="sant

passwd="sanmspwd"")
by sasspds;

110

Secondary LIBREF Using a Different Host

This example assigns a secondary LIBREF to a different host machine.

PROC SQ.;
execute(libref san
engopt ='
host ="f | ex"
dbg="sanspl ace"")
by sasspds;

SPD Server SQL Planner Options

The SPD Server SQL Planner provides reset options that you can use to configure the behavior of the SQL Planner and the SPD Server facilities that function
through the SQL Planner, such asthe SPD Server Parallel Group-By facility, the SPD Server Parallel Join facility, and the SPD Server STARJOIN facility.
Y ou can specify SPD Server SQL reset options using either using explicit pass-through code, or by using implicit pass-through code.

Specify SQL Options using Explicit Pass-Through Code

The example below shows how to use an execute(r eset <reset-options>) statement in explicit SPD Server pass-through SQL code to invoke an
SQL Planner, Parallel Group-By facility, Parallel Join facility, or STARJOIN facility reset option.

Most SQL Planner reset option usage examples in this document use explicit pass-through code. See the implicit pass-through code example
below to see how SQL reset options can be declared using an implicit % let spdssglr= statement instead of an explicit execute(reset <reset-
options>) statement.

/* Explicit Pass-Through SQL Exanple */
/* to invoke an SQL Reset Option */

PROC SQL ;

connect to sasspds (
dbg="donai n- nane"
server =<host - nane>. <port - nunber >
user =' usernane') ;

execut e(reset <reset-options>)
by sasspds ;

execut e(SQL st atenents)
by sasspds ;

di sconnect from sasspds ;
quit ;

Specify SQL Options using Implicit Pass-Through Code

The example below shows how to use a % let spdssqlr=<reset-options> statement in implicit SPD Server pass-through SQL code to invoke an
SQL Planner, Parallel Group-By facility, Parallel Join facility, or STARJOIN facility reset option.

Most SQL Planner reset option usage examplesin this document use explicit pass-through code. The implicit pass-through code example
below shows how SQL reset options can be declared using an implicit %let spdssqlr= statement instead of an explicit execute(r eset <reset-
options>) statement.

/* Inplicit Pass-Through SQ Exanple */
/* to invoke an SQL Reset Option */

% et spdssql r=<reset-options> ;
111

PROC SQL ;
SQ. statenents ;

quit ;

Important SPD Server SQL Planner Options

The following reset options belong directly to the SPD Server SQL Planner.

. _Method

. EXEC/INOEXEC

. MAGIC

. INDEXSELECTIVITY=

« OUTRSRTINDX/NOOUTRSRTJINDX
. INOBS

. OUTOBS

. SASVIEW/NOSASVIEW
. UNDO POLICY=

. BUFFERSIZE=

. PRINTLOG/NOPRINTLOG

More detailed information about the available SQL reset options for the SPD Server SQL Parallel Join, Parallel Group-By, STARJOIN, and
Correlated Query facilities can be found in this document as follows:

. Parald Join Facility Reset Options

. Parale Group-By Facility Reset Options
. STARJOIN Facility Reset Options

. Correlated Query Facility Options

~Method

The SQL _method option is one of the most important reset options. The _method reset option provides a method
tree in the output that shows how the SQL was executed.

The following methods are displayed in the SQL _method tree:

sgxcrta
Create table as Select.

sgxslct
Select rows from table.

S sl
Step Loop Join (Cartesian Join).

sgxjm
Merge Join execution.

sgxjndx
Index Join execution.

sgxjhsh
Hash Join execution.

sqxsort
Sort table or rows.

SgXsrc
112

Read rows from source.

sgxfil
Filter rows from table.

sgxsumg

Summary Statistics (with GROUP BY).

sgxsumn
Summary Statistics (not grouped).

sgxuniq
Distinct rows only.

Soxstj
STARJOIN

sgxxpgb
Parallel Group-By

SOXXpjn

Parallel Join with Group-By. The SAS log will display the name of the parallel join method that was used.

sgxpll
Parallel Join without Group-By

Reading the Method Tree

A method tree is produced in your output when the _method reset option is specified for the SQL Planner. The
SQL Planner method tree is read from bottom row to top row. Below is an example that shows how to interpret the

method tree by substituting the type of method that was used in each step.

PROC SQL ;

create table thl1l as

sel ect *
from pat hl. dansj unkl a,
pat hl. dansj unk2 b,
pat hl. dansj unk3 c
where a.i = b.i
and a.i = c.i ;

quit ;

Here is the example Method Tree that was printed:

SPDS NOTE: SQL execution nethods chosen are:

<0x00000001006BBD78>
<0x00000001006BBBF8>
<0x00000001006BBB38>
<0x0000000100691058>
<0x0000000100667280>
<0x0000000100666C50>
<0x0000000100690BD8>
<0x00000001006AE600>
<0x0000000100694748>

sqgxsl ct

Sgxj m
sgxsort
SgXsrc
sgxj m
sgxsort
Sgxsrc
sgxsort
SgXxsrc

Reading from bottom to top, you can review the sequence of methods that were invoked.

SPDS _NOTE: SQ. execution nethods chosen are:

<0x00000001006BBD78> step-9
<0x00000001006BBBF8> step-8
<0x00000001006BBB38> st ep7
<0x0000000100691058> step-6

113

<0x0000000100667280> step-5

<0x0000000100666C50> step-4
<0x0000000100690BD8> step-3
<0x00000001006AE600> step-2
<0x0000000100694748> step-1

In step 1, sgxsrc reads rows from the source. In step 2, sgxsort sorts the table rows. Then in steps 3 and 4, more
rows are read and sorted. In step 5, the tables are joined by sgxjm, and so on.

EXEC/NOEXEC

Y ou use the SPD Server SQL Planner EXEC/NOEXEC option to turn SPD Server SQL execution on or off.
Usage:

/* This explicit Pass-Through SQ */
[* prints the nethod tree wthout */
/* executing the SQ code. */

PROC SQL ;
connect to sasspds
(dbg="donai n"
server =<host - nane>. <port - nunber >
user =' usernane') ;

execute (reset _nethod noexec)
by sasspds ; /* turns SQ exec off */

execute (SQL statenents)
by sasspds ;

di sconnect from sasspds ;
quit ;

MAGIC

Y ou use the SPD Server SQL Planner MAGI C reset option that controls how the SPD Server SQL planner
executes join statements. The Magic option has three settings, 101, 102, and 103.

Usage:

execut e(reset magi c=<101/ 102/ 103>)
by sasspds ;

MAGIC=101
SPD Server performs sequential loop joins. Sequential loop joins are brute force joins that match every row
from the first table to every row of the second table.

MAGIC=102
SPD Server performs sort merge joins. Sort merge joins force a sort on al tables that are involved in the
join.

MAGIC=103
SPD Server performs hash joins. Hash joins require SPD Server to create an memory table in order to
perform the join. The size of the memory tableis limited based on memory available.

INDEXSELECTIVITY=

114

The INDEXSELECTIVITY= option allows you to tune SPD Server join methods, depending on the proportion of
the tables to be joined. The indexselectivity property can have values of 0.0 or 1.0.

Usage:

execut e(reset indexselectivity=<1.0/0.0>)
by sasspds ;

INDEXSELECTIVITY=0.0isthe default SPD Server setting and uses index join methods.

INDEXSELECTIVITY=1.0 configures the SPD Server SQL planner to use a 15% heuristic rule when it decides
to perform ajoin with an index. If the SPD Server SQL Planner calculates that |ess then 15% of the total table rows
will be selected in ajoin, the SQL Planner uses an index join method. If the SPD Server SQL Planner determines
that greater than 15% of the total table rows will be selected in ajoin, the SQL Planner uses a sort merge join.

OUTRSRTJIJNDX/NOOUTRSRTJNDX

Use the OUTRSRTINDX/NOOUTRSRTJINDX option to configure sort behavior for a SPD Server join index.
OUTRSRTJINDX sorts the outer table for ajoin index by the join key. Thisisthe default SPD Server setting.
NOOUTRSRTJINDX does not sort the outer table for ajoin index.

Usage:
/* Disable outer table */
/* sorting for a join index */
execut e(reset nooutrsrtjndx)
by sasspds ;
/* Enabl e outer table */
/* sorting for a join index */
execut e(reset outrsrtjndx)
by sasspds ;
INOBS

Use the INOBS option to specify the specific number of observations that you want to read from input tables.
Usage:

execut e(reset inobs=<n>)
by sasspds ;

where the integer value <n> isthe desired number of observations.

OUTOBS

Use the OUTOBS option to specify the specific number of observations that you want to create or print in your
output.

Usage:

execut e(reset out obs=<n>)
by sasspds ;

where the integer value <n> isthe desired number of observations.

115

SASVIEW/NOSASVIEW

Use the SASVIEW/NOSASVIEW option to enable or disable SAS PROC SQL views that use an SPD Server
LIBNAME. SASPROC SQL views use ageneric transport format to represent numeric values, which SPD Server
converts to native numeric values. When extremely large or extremely small numeric values are conveyed in a
SAS PROC SQL view to SPD Server, some precision may be lost in extreme values during the SPD Server
numeric conversion.

Usage:
/* Di sabl e SAS PROC SQ vi ews */

/* that use an SPD Server LIBNAME */
execut e(reset nosasvi ew)

by sasspds ;
/* Enabl e SAS PROC SQL views that */
/* use an SPD Server LI BNAME */
execut e(reset sasvi ew)

by sasspds ;

If SAS PROC SQL views are disabled and SPD Server Pass-Through SQL uses aview that was created by PROC
SQL, SPD Server rejects the PROC SQL statement and inserts the following error message in the SASlog::

SPDS_WARNI NG SAS Vi ew and SASVI EW Reset Option equal s No.
SPDS ERROR: An error has occured.

If SAS PROC SQL views are enabled and SPD Server Pass-Through SQL uses aview that was created by PROC
SQL, SPD Server prints the following note in the SAS log:

SPDS_NOTE: SPDS using SAS View in transport node.

UNDO POLICY=

Usethe UNDO_POLICY optionin SPD Server PROC SQL and RESET statements to configure SPD Server
PROC SQL error recovery. When you update or insert rows in atable, you may receive an error message that
states that the update or insert operation cannot be performed. The UNDO_POLICY option specifies how you
want SPD Server to handle rows that were affected by INSERT or UPDATE statements that preceded a processing
error.

Usage:

/* Do not undo any updates or inserts */
execut e(reset undo_pol i cy=none)
by sasspds ;

/* Permit rowinserts and updates to */
/* be done up to the point of error */
execut e(reset undo_policy=required)

by sasspds ;

UNDO_POLICY=NONE
isthe default setting for SPD Server. It does not undo any updates or inserts.

UNDO_POLICY=REQUIRED
undoes all row updates or inserts up to the point of error.

UNDO_POLICY=0OPTIONAL
Undoes any updates or inserts that it can undo reliably.

116

If the UNDO policy is not REQUIRED, you will get the following warning message for an insert into the table:

WARNI NG The SQ. option UNDO POLI CY=REQUIRED is not in effect. If an
error is detected when processing this insert statenent, that error
will not cause the entire statenent to fail.

BUFFERSIZE=

The SPD Server query optimizer considers a hash join when an index join is eliminated as a possibility. With a
hash join, the smaller tableis reconfigured in memory as a hash table. SQL sequentially scans the larger table and
row-by-row performs a hash lookup against the small table to form the result set. On a memory-rich system,
consider increasing the BUFFERSI ZE= option to to increase the likelihood that a hash join is chosen. The default
BUFFERSIZE= setting is 64K. Y ou can specify the amount of memory that you want SPD Server to use for hash
joins.

Usage:

/* Increase buffersize from64K */
execut e(reset buffersize=1048576)
by sasspds ;

PRINTLOG/NOPRINTLOG

Y ou use the PRINTLOG/NOPRINTLOG option of the SPD Server SQL Planner to turn the printing of the SQL
statement text to the SPD Server log on or off.

Usage:
PRCC SQL ;
connect to sasspds
(dbg="donai n"

server =<host - nane>. <port - nunber >
user =' usernane') ;

/[* turn SQL statenment printing on */
execute (reset printlog)

by sasspds ;

/* all statements will be printed to SPD Server |og */
execute (SQ. statenents)

by sasspds ;

/* turn SQL statenent printing off */
execute (reset noprintlog)
by sasspds ;

di sconnect from sasspds ;
quit ;

Parallel Join Facility

The Parallel Join facility is afeature of the SPD Server SQL planner that decreases the required processing time when creating a pair-wise join

between two SPD Server tables. The processing time savingsis created when SPD Server performs the pair-wise join in parallel.

The SQL planner first searches for pairs when SPD Server source tables are to be joined. When a pair is found, the planner checks the join
syntax for that pair to determineif it meets all of the requirements for the Parallel Join facility. If the join syntax meets the requirements, the

pair of tables will be joined by the Parallel Join facility.

117

. Parald Join Methods

Parallel Joins with Group-By

. Parallel Join SQOL Options
. Pardlé Join Example 1

Parallel Join Example 2

. Parallel Join Example 3

Parallel Join Methods

The SPD Server Parallel Join facility supports two methods, the parallel sort-merge method and the parallel range
join method.

Parallel Sort-Merge Method

The parallel sort-merge join method first performs a parallel sort to order the data, then merges the
sorted tablesin parallel. During the merge, the facility concurrently joins multiple rows from one
table with the corresponding rows in the other table. Y ou can use the parallel sort-merge join method
to execute any join that meets the requirements for parallel join.

The parallel sort-merge method is agood all-around parallel join strategy that requires no
intervention from the user. The tables for the sort-merge method do not need to be in the same
domain. The performance for the sort-merge method is not affected by the distribution of the datain
the sort key columns.

The sort-merge method begins by completely sorting the smaller of the two tables being joined,
while also performing concurrent partial parallel sorts on the larger table. If both tables are very

large and sufficient resources are not available to do the complete sort on the smaller table, the
performance of the parallel sort-merge method can degrade. The parallel sort-merge method is also
limited when performing an outer, left, or right join in parallel. Only two concurrent threads can be
used when performing parallel outer, |eft, or right joins. Inner joins are not limited in the parallel sort-
merge method and can utilize more than two concurrent threads during parallel operations.

Parallel Range Join Method

The parallel range join method uses ajoin index to determine the ranges of rows between the tables
that can be joined in parallel. The parallel range join method requires you to create a join index on
the columns to be joined in the tables that you want to merge. The join index divides the two tables
into a specified number of near-equal parts, or ranges, based on matching values between the join
columns. The Parallel Join Facility recognizes the ranges of rows that contain matching values
between the join columns, then uses concurrent join threads to join the rows in parallel. The SPD
Server parallel sort then sorts the rows within arange.

The parallel range join method can only be performed on tables that are in the same domain. If either
of the two tables are updated after the join index is created, the join index must be rebuilt before the
paralel range join method can be used. The parallél range join method performs best when the
columns of the tables that are being joined are sorted. If the columns are not relatively sorted, then
the concurrent join threads can cause processor thrashing. Processor thrashing occurs when unsorted
rows in atable require SPD Server to perform increasingly larger table row scans, which can
consume processor resources at a high rate during concurrent join operations.

More detailed information on creating join indexesis available in the section in the SPD Server
Adminstrator's Guide documentation on The Hybrid Index Utility Ixutil.

How does the SPD Server Parallel Join facility choose between the sort-merge method and the range join method?
If ajoinindex is available for the tables to be joined, the Parallel Join facility will choose the parallel range join
method. If ajoinindex does not exist, or if the join index has not been rebuilt since a table was updated, the
Parallel Join facility defaults to using the parallel sort-merge method.

Parallel Joins with Group-By

A powerful feature of the SPD Server Parallel Join facility isitsintegration with the SPD Server Parallel Group-By
118

facility. If the result of the parallel join contains a group-by statement, the partial results of the parallel join threads
are passed to the Parallel Group-By facility, which performs the group-by operation in paralel. In the following
example, SPD Server performs both a parallel join and parallel group-by operation.

LI BNAME pathl sasspds |P=YES;

PROC SQL;

create table junk as
select a.c, b.d, sum(b.e)
frompathl.tablel a,

pathl.table2 b

where a.i = b.i

group by a.d, b.d;

quit;

When you use the SPD Server Parallel Join facility, you are not restricted to using the parallel group-by method
only on single tables.

Parallel Join SQL Options

SPD Server provides the following Parallel Join reset options:

. PLLJOIN/NOPLLJOIN
. CONCURRENCY
. PLLIMAGIC

PLLJOIN/NOPLLJOIN

The PLLJOIN/NOPL LJOIN option enables and disables the SPD Server Parallel Join
facility.

Usage:

execute(reset noplljoin)
by sasspds ; /* disables Parallel Join */

CONCURRENCY
The CONCURRENCY =<n> option sets the concurrency level that is used by the SPD
Server Parallel Join facility, where the integer n specifies the number of levels. In most cases,
changing the default SPD Server concurrency setting (half of the available number of
processors) is not recommended.

Usage:

execut e(reset concurrency=4)
by sasspds ; /* enables 4 concurrency |evels */

PLLIMAGIC
The PLLIMAGIC option specifies how SPD server performs parallel joins.

Usage:

execut e(reset plljmagi c=<100/200>)
by sasspds ;

PLLJIMAGIC=100 forces a parallel range join when the range index is available.

PLLJIJMAGIC=200 forces aparallel mergejoin.
119

Parallel Join Example 1

Thefirst paralel join exampleisabasic SQL query that creates a pair-wise join of two SPD Server tables, tablel and table2.

LI BNAME pat hl sasspds |P=YES;
PROC SQL;

create table junk as

sel ect *

from pathl.tabl el a,
pathl.table2 b
where a.i = b.i;
quit;

Parallel Join Example 2

The next parallel join exampleis an SQL query that uses more than two SPD Server tables. In this example, the SQL planner
performs aparallel join on tablel and table2, and then use a non-parallel method to join the results of thefirst join and table3. A
non-parallel join method is used for the second join, because the criteriafor a parallel join was not met. A paralel join can only
be performed on a pair-wise join of two SPD Server tables, and the query calls three SPD Server tables.

LI BNAME pat hl sasspds |P=YES;
PROC SQ.;
create table junk as

sel ect *

from pathl.tablel a,

pat hl.tabl e2 b,

pathl.table3 c

where a.i = b.i and b.i =c.i;
quit;

Parallel Join Example 3

Multiple parallel joins can be used in the same SQL query, aslong asthe SQL planner can perform the query using more than
one pairwise join. In the next paralléel join example, a more complex query contains aunion of two separate joins. Both joinsare
pair-wise joins of two SPD Server tables. Thereis apair-wisejoin between tablel and table2, and then a pair-wise join between
table3 and tabled is performed concurrently, using the Parallel Join facility.

PRCC sSQL;
create table junk as
sel ect *
frompathl.tablel a,
pathl.table2 b
where a.i = b.i
uni on

sel ect *
from pathl.tabl e3 c,
pathl.tabled d
where c.i = d.i;
qui t;

The required criteriato use the SPD Server Parallel Join facility can be more complex than simply requiring a pair-wise join of
two SPD Server tables. The Parallel Join facility can handle multiple character columns, numeric columns, or combinations of
character and numeric columns that are joined between pairs of tables. Numeric columns do not need to be of the same width to
act asajoin key, but character columns must be of the same width in order to be ajoin key. Columnsthat areinvolved in ajoin
cannot be derived from a SAS CASE statement, and cannot be %rzegtted from character manipulation functions such as SUBSTR,

YEAR, MONT, DAY, and TRIM.

Parallel Group-By Facility

SPD Server SQL Planner optimizations improve the performance of the more frequent query types used in data mining solutions. One of the
SQL planner optimizations integrated into SPD Server istighter integration of the Parallel Group-By capability. Parallel Group-By isahigh
performance parallel summarization of data executed using SQL. Parallel Group-By is often used in SQL queries (through the use of sub
queries) to apply selection lists for inclusion or exclusion. The tighter integration adds performance benefits to nested Group-By syntax.

Parallel Group-By looks for specific patterns in a query that can be performed using parallel processing summarization. Parallel Group-By
works against single tables that are used to aggregate data. Parallel processing summarization is limited to the types of functions it can handle.

The Parallel Group-By support in SPD Server has been expanded in many areas. Parallel Group-By isintegrated into the WHERE-clause
planner code so that it will boost the capabilities of the SPD Server SQL engine. Any section of code that matches the Parallel Group-By
trigger pattern will useit. Some examples of SQL syntax that employ Parallel Group-By technology in SPD Server are:

. Enhanced Group-By Functions

. Table Aliases Supported

. Nested Queries Meet Group-By Syntax Reguirements
. Formatted Parallel Group Select

. Paralée Group-By SQL Options

Enhanced Group-By Functions. Parallel Group-By now supports the following functions in syntax: COUNT, FREQ, N, USS,
CSS, AVG, MEAN, MAX, MIN, NMISS, RANGE, STD, STDERR, SUM, VAR. These functions all can accept the
DISTINCT term. The listed functions are the minimum summary functions that are required in order to support the SAS
Enterprise Marketing Automation tool suite.

Table Aliases Supported: Table aliases are now supported in SPD Server in order to better support front end tools such as SAS
Enterprise Marketing Automation. Tools such as SAS Enterprise Marketing Automation generate SQL queries that use table
aliases. Table aliases allow both shorter coding syntax and a method to select a specific column in aquery that has two tables
that share common column names.

Nested Queries M eet Group-By Syntax Requirements: Since the Parallel Group-By functionality is integrated into the SPD
Server WHERE-clause planner, now many sections of queries can take advantage of performance enhancements such as parallel
processing. Some common performance enhancements are sub-queries that generate value listsin an IN clause, views that now
conform to Parallel Group-By syntax, and views that contain nested Group-By syntax.

General Syntax:
SELECT 'project-listt FROM 'table name' ;
WHERE [where_expression];
GROUP BY [groupby-list];
HAVING [having-expression];

ORDER BY [orderby-list];

project-list
Items must be either column names (which must appear in the groupby-list) or aggregate (summary)
functions involving a single column (with the exception of "count(*)" which accepts an asterisk argument.
At least one aggregate function must be specified. Project items may be aliased (for example, select avg
(salary) asavgsal from ...) and these aliases may appear in any where-expression, having-expression,
groupby-list or orderby-list. The following aggregate functions are supported: count, avg, avg distinct,
count distinct, css, max, min, nmiss, sum, sum distinct, supportc, range, std, stderr, uss, var. "Mean" isa
synonym for "avg". "Freq" and "n" are synonyms for "count" except they do not accept the asterisk
argument.

121

table name
Table names may be one- or two-part identifiers (for example, mytable or foo.mytable), the latter requiring
aprevious "libref" statement to define the domain identifier (for example, foo).

The where-expression is optional.
The optional groupby-list must be column names or projected aliases.

The optional having-expression must be a boolean expression composed of aggregate functions, groupby columns
and/or constants.

The optional orderby-list must be projected column names or aliases or numbers which represent the position of a
projected item (for example, select a count (*) order by 2).

Since the Parallel Group-By functionality isintegrated into the SPD Server WHERE-clause planner, now many sections of
queries can take advantage of performance enhancements such as parallel processing. Some common performance
enhancements are sub-queries that generate value listsin an IN clause, views that now conform to Parallel Group-By syntax, and
views that contain nested Group-By syntax.

Formatted Parallel Group Select

By default, the columns of a group-by statement are grouped by their unformatted value. SQL pass-through parallel groupby
provides the capability to also group data by the columns output data format. For example, you could group by the date column
of atable with an input format of mmddyy8 and an output format of monname9. Suppose the column has dates 01/01/04 and
01/02/04. Grouping by the unformatted value would put these dates into two separate groups. However, grouping by the
formatted month name, would put these values into the same month grouping of January.

Y ou enable or disable pass-through formatted parallel groupby with the following execute commands:

PROC SQL;
connect to sasspds
(dbg=........):

/* turn on formatted parallel group-by */
execute(reset fntgrpsel)
by sasspds;

sel ect *

from connecti on

to sasspds
(select dte
from nmytabl e
groupby dte);

/* turn off formatted parallel group-by */
execut e(reset nofntgrpsel)
by sasspds;

sel ect *

from connecti on

to sasspds
(select dte
from nmytabl e
groupby dte);

quit;
The example code below is extracted from alarger block of code, whose purpose is to make computations based on user-defined

classes of age, such as Child, Adolescent, Adult, and Pensioner. The code uses SQL Parallel Group-By features to create the user-
defined classes and then uses them to perform aggregate summaries and calculations.

/* Use the parallel group-by feature with the */
/* fntgrpsel option. This groups the d%tza based */

/* on the output format specified in the table. */
/* This will be executed in parallel. */

PROC SQL;

connect to sasspds
(dbg="&donai n"
serv="&serv"
host =" &host "
user ="anonynous");

/* Explicitly set the fntgrpsel option */

execute(reset fntgrpsel)
by sasspds;

title 'Sinple Fntgrpsel Exanple';
sel ect *
from connection to sasspds
(sel ect age, count(*) as count
fromfnmtest group by age);

di sconnect from sasspds;
qui t;

PROC SQ.;

connect to sasspds
(dbg="&donai n"
serv="&serv"
host =" &ost "
user ="anonynous");

/* Explicitly set the fntgrpsel option */

execute(reset fntgrpsel)
by sasspds;

title 'Format Both Col umms Group Sel ect Exanpl e

sel ect *
from connection to sasspds
(sel ect
GENDER f or mat =$GENDER.
AGE f or mat =AGEGRP. ,
count (*) as count
fromfnttest
formatted group by CENDER, AGE)

di sconnect from sasspds;
quit;

PROC SQL;

connect to sasspds
(dbg="&donai n"
serv="8&serv"
host =" &host "
user ="anonynous") ;

/* Explicitly set the fntgrpsel option */

execute(reset fmtgrpsel)
by sasspds;

titlel 'To use Format on Only One Columm Wth G oup Sel ect'
title2 "Override Colum Format Wth a Starndard Format';

sel ect *
123

from connection to sasspds
(sel ect
GENDER f or mat =$1. ,
AGE f or mat =AGEGRP. ,
count (*) as count
fromfnttest
formatted group by CENDER, AGE);

di sconnect from sasspds;
quit;
/* A WHERE-cl ause that uses a format to subset */

/* data is pushed to the server. If it is not */
/* pushed to the server, the follow ng warning */

/* message will be witten to the SAS | og: */
/* WARNI NG Server is unable to execute the */
/* where cl ause. */
data tenp;
set &Jomain..fnttest;

wher e put

(AGE, AGEGRP.) = "Child';
run;

The complete code example is found in the User-Defined Formats section of the SPD Server User's Guide chapter on SPD Server
Formats and Informats.

Parallel Group-By SQL Options

SPD Server provids the following Parallel Group-By SQL reset options:

. GRPSEL/NOGRPSEL
. EMTGRPSEL/NOFMTGRPSEL
. SCANGRPSEL/NOSCANGRPSEL

GRPSEL/NOGRPSEL
The GRPSEL/NOGRPSEL option enables or disables the SPD Server Parallel Group-By facility.

Usage:

/* Disable Parallel G oup-By */
execut e(reset nogrpsel)
by sasspds ;

FMTGRPSEL/NOFMTGRPSEL

The FMTGRPSEL/NOFMTGRPSEL option enables or disables the SPD Server Parallel Group-By use of
formats.

Usage:

/* Disable Parallel Goup-By */
/* use of formats. */
execut e(reset nofntgrpsel)

by sasspds ;

SCANGRPSEL/NOSCANGRPSEL

124

Use the SCANGRPSEL/NOSCANGRPSEL option to turn the SPD Server index scan facility on
and off. The default SPD Server setting uses the index scan facility.

Usage:

/* Disable index scan facility */
execut e(reset noscangrpsel)
by sasspds ;

/* Enabl e index scan facility */
execut e(reset scangrpsel)
by sasspds ;

SPD Server STARJOIN Facility

The SPD Server's enhanced SQL planner includes the STARJOIN facility. The SPD Server STARJOIN facility validates, optimizes, and
executes SQL queries on datathat is configured in a star schema. Star schemas are composed of two or more normalized dimension tables that
surround a centralized fact table. The centralized fact table contains data elements of interest derived from the dimension tables.

In data warehouses with large numbers of tables and millions or billions of rows of data, properly constructed star joins can minimize overhead
data redundancy during query evaluation. If the SPD Server STARJOIN facility is not enabled, or of SPD Server SQL does not detect a star
schema, then the SQL will be processed using pair-wise joins.

How do star joins differ from pair-wise joins? In SPD Server 4.4, properly configured star joins require only three steps to complete, regardless
of the number of dimension tables. SPD Server pair-wise joins require one step for each table to complete the join. If a star schema consisted
of 25 dimension tables and one fact table, the STARJOIN is accomplished in three steps; joining the tablesin the star schema using pair-wise
joinswill require 26 steps.

When datais configured in avalid SPD Server star schema, and the STARJOIN facility is not disabled, the SPD Server STARJOIN facility can
produce quicker and more processor-efficient SQL query performance than would be realized using SQL pair-wise join queries.

More detailed information is available in the documentation chapter on the STARJOIN Facility.

STARJOIN Options

Use the SPD Server SQL STARJOIN facility options to specify how SPD Server implements Star Joins.
. NOSTARJOIN

. STARMAGIC
. DETAILS

NOSTARJOIN

Use the NOSTARJOIN option to disable or enable the SPD Server STARJOIN facility.
Usage

execut e(reset nostarj oi n=<1/0>)
by sasspds ;

NOSTARJOIN=0 enables the SPD Server STARJOIN facility.

NOSTARJOIN=1 disables the SPD Server STARJOIN facility.

STARMAGIC
125

Use the STARMAGI C option to modify the behavior of the SPD Server STARJOIN and override
some internal heuristicsin order to favor a particular join strategy in the planner. The vaules are bit
flagsin the STARJOIN code that can be added together to result in avariety of controls.

Usage

execut e(reset starnmagi c=<1/2/4/8/16>)
by sasspds ;

STARMAGIC=1 forces al dimension tables to be classified as Phase | tables.
STARMAGIC=2iscurrently not used.

STARMAGI C=4 requires an exact match on the FACT composite index in order to meet Phase |
conditions for STARJOIN.

STARMAGIC=8 disablesthe IN-SET STARJOIN strategy. The IN-SET strategy is enabled by
defauilt.

STARMAGI C=16 disables the COMPOSITE STARJOIN strategy. The COMPOSITE strategy is
enabled by defaullt.

DETAILS

Use the DETAIL S option to print details about your SPD Server STARJOIN facility settings. All
internal STARJOIN debugging information istied to the "stj$* DETAILS key. Issuing the "stj$"
reset option displays available information as SPD Server attemptsto validate ajoin sub-tree. The
RESET DETAILS="stj$" option is very useful for debugging STARJOIN and SQL statement
execution.

Usage

execute(reset details="stj$")
by sasspds ;

SPD Server Index Scan

SPD Server SQL provides users with the capability to use lightning-fast index scans on large tables. Rather than scanning entire tables which
may have million or billions of rows, SPD Server SQL is able to scan cached index metadata instead of sequentially scanning entire large
tables. SPD Server SQL provides enhanced index scan support for the following functions:

min, max, count, Nmiss, range uss, css, std, stderr, and var. All of the functions can accept the DISTINCT term as well..

All index scan capabilities listed above are available for both standard SPD Server tables as well as clustered tables, with the exception of the
DISTINCT qualifier. The DISTINCT index scan function is not available in clustered tables.

The count(*) function is the only function included with the index scan support enhancement that does not require an index on the table. For
example,

sel ect count(*) fromtabl enaneg;

will return the number of rowsin the large tabl e tablename without performing arow scan of the table. Table metadatais able to return the
correct number of rows. Asaresult, the responseis as fast as an index scan, even on an unindexed table in this case.

Count(*) functions with WHERE-clauses require an index for each column referenced in the WHERE-clause, in order for the index scan

feature to provide the performance enhancement. For example, suppose SPD Server table Foo has indexes on numeric columnsaand b. The
following count(*) functions benefit from SPD Server index scan support:

126

sel ect count (*)
from Foo
where a = 1;

sel ect count (*)
from Foo
where a LT 4
and b EQ 5;

sel ect count (*)
from Foo
where a in (2,4,5)
or b in (10,20, 30);

All functions other than count(*) require an index on function columns in order to exploit the index scan performance savings. Minimal
WHERE-clause support is available for these queries, as long as all functions use the same column, and the WHERE-clause is asimple clause
that usesthe LT, LE, EQ, GE, GT, IN, or BETWEEN operator for that column. For example, suppose that the SPD Server table Bar has
indexes on numeric columns x and y. The following SQL submissions will be able to exploit the performance gains of index scans:

sel ect m n(x),
max(x),
count (x),
nm ss(x),
range(x),
count (di stinct x)
from Bar;

sel ect min(x),
max(x),
count (x),
nm ss(x),
range(x),
count (di stinct x)
from Bar
where x between 5 and 10;

sel ect mn(x),
max(x) ,
count (x),
nm ss(x),
range(x),
count (di stinct x)
from Bar
where x gt 100;

sel ect m n(x),
mn(y),
count (x),
count (y)
from Bar;

If any one function in a statement does not meet the index scan criteria, all functionsin that statement will revert to being resolved by table scan
instead of index scan. Suppose the SPD Server table Oops has indexes on numeric columns x and y. Column z is not indexed. Then, the SPD
Server SQL statement below

sel ect mn(x),
mn(y),
count (x),
count (y),
count (z)

from Qops;

will be entirely evaluated by table scan; index scanning will not be performed on any of the functions. To take advantage of index scans, the
statement above could be resubmitted as
127

sel ect mn(x),
mn(y),
count (x),
count (y)
from Qops;

sel ect count(y)
from Bar;

The functions min(x), min(y), count(x), and count(y) will be evaluated using index scan metadata and will exploit the performance gains. The
function count(y) will continue to be evaluated by table scan. The count(*) function can be combined with other functions and benefit from
index scan performance gains. Continuing to use the SPD Server table Oops with indexes on numeric columns x and y, the following SPD
Server SQL statement will benefit from index scan performance:

sel ect m n(x),
range(y),
count (x),
count (*)
from Qops;

SPD Server Index Scan is an extension to the SPD Server Parallel Group-By Facility. The query must first be accepted by Parallel Group-By to
be evaluated for an Index Scan. The section on SPD Server Parallel Group-by Facility contains more detailed information. When SPD Server
utilizes the Index Scan optimization, the following message will be printed to the SAS log:

SPDS_NOTE: Metascan used to resolve this query.

Optimizing Correlated Queries

Intelligent storage must have the ability to interpret and process complex requests such as correlated queries. A correlated query is a select
expression where a predicate within the query has a réelationship to a column that is defined in another scope. Today's business and analytic
intelligence tools often generate SQL queries that are nested 3 or 4 layers deep. Queries with cross-nested rel ationships consume significant
processor resources and require more time to complete processing. New algorithmsin the SQL Planner of SPD Server implement techniques
that significantly improve the performance of correlated queries for patterns that permit query rewrites or query de-correlation.

The SQL Planner improves correlated query performance by changing complex rules about nested relationships into a series of simple steps.
SPD Server can process the simple steps much faster than it can process the complex rules that arise with multiple levels of nesting. When a
query with multiple levels of nesting is submitted to the SQL Planner, the planner examines the relationships between nested and un-nested
sections of the query. When a complex nested relation ship is found, the SQL Planner restructures or recodes the SQL query into asimpler
form using temporary SPD Server tables.

Development work continues to improve the range of sub-expressions that are addressed by the SPD Server rewrite facility. More information
isavailable in the SQL Query Rewrite Facility Help section, including SPD Server parameter specifications and SQL RESET options.

Correlated Query Options

The following are SPD Server SQL options for use with correlated query rewrites:

. _ORW/NO ORW
. _ORWENABLE/NO QRWENABLE

_QRW/NO QRW

Usethe_ QRW/NO_QRW option to configure SPD Server to enable or disable the query rewrite
facility diagnostic output. Specifying this SPD Server RESET option enables or disables various
debugging and tracing outputs from the query rewrite facility. The debugging and tracing outputs
are generated when the SPD Server query rewrite facility detects sub-expressions that it rewrites and
executes the SQL code. The SQL code produces the intermediate results and final rewritten SQL
statement. By default, the SPD Server _QRW option for diagnostic output is not enabled.

128

SPD Server provides alternate expressions that do the same thing asthe_ QRW/NO_QRW option.
They arethe_QRW=1/_QRW=0 option and the NO _QRW=0/NO_QRW=1 option.

Usage:

/* Enable query rewite diagnostics */
execute(reset _qrw)
by sasspds ;

/* A second way to enable */
/* query rewrite diagnostics */
execute(reset _qrw=1)

by sasspds ;

/* Athird way to enable */
/* query rewrite diagnostics */
execut e(reset no_qrw=0)

by sasspds ;

/* Disable query rewite diagnostics */
execute(reset no_qrw)

by sasspds ;
/* A second way to disable query */
/* rewite diagnostics */
execute(reset _qrw=0)

by sasspds ;
/* Another way to disable query */
/* rewite diagnostics */
execut e(reset no_qgrw=1)

by sasspds ;

QRWENABLE/NO_QRWENABLE

Usethe_ QRWENABLE/NO_QRWENABLE option to completely disable the SPD Server query
rewrite facility. Disabling the query rewrite facility prevents the rewrite planner from intervening in

the SQL flow and from making any optimizing rewrites. This option is not normally specified unless
you wish to test if an SQL statement would run faster without rewrite optimization, or if you suspect
that the resulting row set that you get from a query rewrite evaluation isincorrect.

SPD Server provides an alternate expression that does the same thing asthe _QRWENABLE/
NO_QRWENABLE option. It isthe_ QRWENABLE=1/ QRWENABL E=0 option. The query
rewrite facility is enabled in SPD Server by default.

Usage:

/* Disable query rewite */

[* facility */
execut e(reset no_qgrwenabl e)
by sasspds ;

/* A second way to disable */
/* query rewrite facility */
execut e(reset _qgrwenabl e=0)

by sasspds ;
/* Enable query rewite */
[* facility */
execut e(reset _qgrwenabl e)
by sasspds ;

129

/* A second way to enable */

/* query rewite facility */

execut e(reset _qgrwenabl e=1)
by sasspds ;

Materialized Views

SPD Server allows usersto create a SQL view as a materialized view. What makes a materialized view different from an SQL view? For a
materialized view, the results of the view statement are computed and saved in atemporary SPD Server table at the time the view is created.
For astandard SQL view the results are computed each time the view is referenced in a subsequent SQL statement. Aslong as there are no
changesto any of the input tables that the view is comprised of, the materialized view will return the results from the temporary table when the
view is referenced in a SQL statement. If any of the input tables that comprise the view are modified, the materialized view will recompute the
results the next time that the view is referenced and it will refresh the temporary table with the new results. The materialized view temporary
results table exists for aslong as the view isin existence. When aview is dropped or deleted, then the temporary results tableis also deleted.

. Materialized Views Operating Details
. User Interface for Materialized Views
. Benefits of Materialized Views

. Materialized View Example

Materialized Views Operating Details

A materialized view can only be created at the time the SQL view is created. Thisfeatureis only available using the SPD Server
4.4 SQL Pass-Through facility. A new keyword Materialized is added to the Create View syntax that identifies the view to be
created as amaterialized view. When amaterialized view is created, the Create View operation will not complete until the
temporary results table has been populated. This may add substantial time to the execution of Create View.

Each time a created materialized view is referenced in a SQL statement, there is a check to determine if any of the input tables
used to produce the temporary results table have been modified. If not, the temporary table is substituted in place of the view file
within the SQL statement. If any of the input tables have been modified, the SQL statement will execute without this substitution
soitwill act asif it isastandard SQL view reference. Thereis also a background thread launched at this time that is independent
of the SQL statement execution which will refresh the temporary results table. Until this refresh is completed, any incoming
references to the view will be treated as standard view references.

Creating a standard SQL view resultsin aview file being created in the specified domain with the name <viewname>.view.0.0.0.
spds9. Creating a materialized view resultsin an additional SPD Server table being created in the same domain asthe view file
with the name format <.viewname>.mdfspds9 and corresponding dpf files <.viewname>.dpfspds9. The materialized view tableis
not visible or accessible to the user by using PROC DATASETS or other SAS procedures. If one or more simple indexes are
defined on any of the input tables that are used to create the results table, the indexes will also be created on the materialized
view table, aslong as the column that was indexed in the input table also exists in the materialized view table.

User Interface for Materialized Views

To create amaterialized view, use the following SQL Pass-Through syntax.

EXECUTE (Create Materialized View <vi ewname> as Select) BY [sasspds | alias];
All other references to the view follow the existing SQL syntax, whether it is a standard SQL view or amaterialized view. The
Materialized keyword is only used in the Create statement. For example, to drop a materialized view, you would use the
following syntax.

EXECUTE (Drop View <vi ewnane>) BY [sasspds | alias];
If any of the input tables to a materialized view are modified, the next time the view is referenced, arefresh is performed on the
materialized view table. You can use an spdsserv.parm file option setting to specify the time delay before the materialized view

table is refreshed.

MVREFRESHT| ME=<nunber - of - seconds> ;

130

Where <number-of-seconds> specifies the number of seconds before the refresh will start. Y ou can set the MVREFRESHTIME=
option to any integer value between 0 and 86400. The default MVREFRESHTIME= specification is 30 seconds.

The reason that atime delay may be necessary before refreshing a materialized view table isto prevent processor thrashing.
Processor thrashing may occur if you refresh the materialized view table when other processes are concurrently processing
updates to the tables that are used in the view. If your computing environment does not perform multiple concurrent table
updates, then you can set MVREFRESHTIME=0 and eliminate any time delay associated with materialized view refreshes.

Benefits of Materialized Views

Creating a materialized view instead of a Standard SQL view can provide enormous performance benefits when the view is
referenced in an SQL statement. For views that contain costly operations such as multiple table joins or operations on very large
tables, the execution time for queries containing a materialized view can be orders of magnitude less than a standard view. If the
results table produced by the view is relatively small in comparison with the input tables, the execution time for queries using a
materialized view may be afew seconds versus several minutes for a standard view.

For example, if it takes on average 20 minutes to produce the result set from aview and the result isin the order of thousands of
rows or less, a query referencing the materialized view will now take seconds. Previously using the standard view operations,
every time the view was referenced would result in 20 minutes of execution time. The performance benefits should be measured
on acase by case basis.

The decision of whether to use a standard view or a materialized view can be primarily driven by how often the input tablesto
the view are updated versus how often the view isreferenced in a SQL statement. If aview is being referenced at least twice
before any updates may occur, then the materialized view should provide superior performance. In cases where the defined view
can be created very quickly, thereis probably not a need for using a materialized view. If the input tables are frequently updated
in comparison to how often the view is referenced, a standard view would probably be more efficient.

Materialized View Example

The following code shows the creation and use of a materialized view. The input tables X and Z are created with X having three
columns a,b,c and Z having four columns a,b,c,d respectively.

dat a nydomai n. X;
do a =1 to 1000;

b = sin(a);
c = cos(a);
out put;
end;
run;

dat a nydomai n. Z;

do a = 500 to 1500;
b = sin(a);
c = cos(a);
d = nod(a, 99);
out put ;
end;
run;
PRCC SQ.;
connect to sasspds (dbg='nydonmain'
host =' nyhost"'
serv='nyport'
user =' ne'

passwd=' nypasswd') ;

execute (create materialized view XZVI EW as
sel ect *
fromzZz
where a in
(select a from X))

by sasspds; 131

sel ect *
from connection

to sasspds
(select *
from XzVlI EW
where d >90);

execute (drop view XZVI EW ;
quit;

SPD Server SQL Extensions

SPD Server SQL furnishes several extensions to the SQL language. These extensions are not a part of standardized industry SQL, but they are
an integral part of the SPD Server system. These extensions enable systemic data management unique to the SPD Server. The SPD Server
SQL uses a specia pass-through facility that employs these extensions for data manipulation and extraction operations. The following section
discusses the roles of the following extensions which enable SPD Server's SQL pass-through facility. Extensions users should know are
LIBREF statements, LIBREF clauses, BEGIN ASYNC OPERATION statements, END ASYNC OPERATION statements, LOAD statements,

and COPY statements.

. BEGIN and END ASYNC OPERATION Statements
. LOAD Statement
. COPY Statement

BEGIN and END ASYNC OPERATION Statements

Asynchronous statements are a useful technique you can use to harness the multi-processor power of SPD Server. Asynchronous
statements enabl e execution of multiple, independent threads at the same time. The BEGIN ASYNC OPERATION and END
ASYNC OPERATION statements alow you to delimit one or more statements for asynchronous, parallel execution. Since the
statements execute in parallel, they must not depend on another, because there is no way to guarantee which statement will finish
before another statement executes. SPD Server software initiates thread execution according to the order of the statementsin the
block.

. lllegal ASYNC Block Statements

. Legal ASYNC Block Statements

. Using LIBREFsin an ASYNC Block Statement

. Using SQL Optionsin an ASYNC Block Statement

Usage:

execute ([BEGN | END] ASYNCH OPERATI ON);

Illegal ASYNC Block Statements

The statementsin this Illegal ASYNC Block example haveillegal interdependencies and cannot be expected to
work correctly:

/* Exanple of Illegal ASYNC Bl ock Code */

PROC SQ;
connect to sasspds
(dbg="ny- donai n"
server =host . port
user =" user - nane'
passwor d=' user - passwor d'
ot her connection options);

132

execut e(begi n async operation)
by sasspds;

execute(create table Tl as
sel ect *
from SRC1)
by sasspds;

execute(create unique index |1 on
Ti(a, b))
by sasspds;

execut e(end async operation)
by sasspds;

di sconnect from sasspds;
qui t;

The example violates the interdependency rule. Thecr eat e i ndex statement assumestable T1 existsand is
complete. However, table T1 is created from table SRC1, and may not be complete before the asynchronous create
index statement executes. Hence, index | 1 is dependent on acompletetable T1. The resultant data would not be
reliable. The purpose of this exampleisto illustrate the concept of interdependency, and how not to write an
ASYNC block.

Legal ASYNC Block Statements

The statementsin this Legal ASYNC Block example have no interdependencies.

/* Exanpl e of Legal ASYNC Bl ock Code */
/* Creates sone tables in the first ASYNC bl ock */
/* */
PROC SQ.;
connect to sasspds
(dbg="pat h1"

server =host . port
user ="' anonynous');

execut e(begi n async operation)
by sasspds;

execute(create table state_al as
sel ect *
fromallstates
where state="AL")
by sasspds;

execute(create table state_az as
sel ect *
fromallstates
where state='AZ")
by sasspds;

execute(create table state_wy as
sel ect *
fromallstates
where state="W")
by sasspds;

execut e(end async operation)
by sasspds;

133

/* */
/* Create sonme indexes in the second ASYNC bl ock */
/* */

execut e(begi n async operation)
by sasspds;

execute(create index county on
state_al (county))
by sasspds;

execute(create index county on
state_az(county))
by sasspds;

execute(create index county on
state_wy(county))
by sasspds;

execut e(end async operation)
by sasspds;

di sconnect from sasspds;
quit;

Why does the second example work correctly? First, each tableis created independently. Second, thereisa
‘synchronization point": thefirst END ASY NC operation. This point ensures that all the tables are created before
the second ASY NC statement block begins. (Y ou can aso achieve results that are similar to this example by using
the LOAD Statement).

Using LIBREFsin an ASYNC Block Statement

To refer to atwo-part table name inside an ASY NC block, you must re-execute the LIBREF statement issued
before entering the block. Conversely, if you issue a LIBREF statement inside the ASY NC block, it does not
extend outside the ASYNC block. An ASYNC block creates a distinct scope for the LIBREF. To work correctly, a
LIBREF statement must be located inside the ASY NC block, and the LIBREF statement must precede the first
SQL statement that referencesit.

/* Exanple of Legal Code using LIBREFs in an ASYNC Bl ock */
/* Create sone tables in the first ASYNC bl ock */

PROC SQL;
connect to sasspds
(dbg="pat h1"
server =host . port
user =' anonynous') ;

execut e(begi n async operati on)
by sasspds;

execute(libref pathl engopt='dbg="pathl"
server =host . port
user ="anonynous"')
by sasspds;

execute(libref path2 engopt='dbg="pathl"
server =host . port
user ="anonynous"')
by sasspds;

execute(create tabl e pathl. sout heast as
sel ect a.custoner_id,
a. region,
134

b. sal es
from pathl.custoner a,
pat h2. orders b
where a.custoner_id = b.custoner_id
and a.region="SE")
by sasspds;

execute(create table pathl.northeast as
sel ect a.custoner_id,
a. region,
b. sal es
from pathl. custoner a,
path2.orders b
where a.custoner_id = b.custoner_id
and a.region="NE)
by sasspds;

execut e(end async operation)
by sasspds;

di sconnect from sasspds;
quit;

Using SQL Optionsin an ASYNC Block Statement

SPD Server SQL options must be set globally for all execute statementsin the ASYNC block. These options must
be set using an execute statement before the BEGIN ASY NC operation. This example uses code blocks from the
preceding example to show how to print a method tree without executing the SQL.

/* */
/* Exanple of Legal SQL Options in ASYNC Bl ock */
/* */
PROC SQ.;
connect to sasspds
(dbg="pat h1"

server =host . port
user ="' anonynous');

execut e(reset noexec _nethod)
by sasspds;

execut e(begi n async operation)
by sasspds;

execute(libref pathl
engopt =' dbg="pat h1"
server =host . port
user ="anonynous""')
by sasspds;

execute(libref path2
engopt =' dbg="pat h1"
server =host . port
user ="anonynous""')
by sasspds;

execute(create table pathl. sout heast as
sel ect a.custoner_id,
a. region,
b. sal es
from pathl.custoner a
path2.orders b

135

where a.custoner_id = b.custoner_id
and a.region="SE')
by sasspds;

execute(create table pathl.northeast as
sel ect a.custoner _id,
a.region,
b. sal es
from pathl. custoner a,
pat h2. orders b
where a.custonmer_id = b.custoner_id
and a.region='"NE)
by sasspds;

execut e(end async operation)
by sasspds;

di sconnect from sasspds;
quit;

LOAD Statement

The LOAD statement enables table creation (with one or more indexes) with a single statement. The data source for the
statement isa SELECT clause. The SELECT list in the clause defines the columns for the new table. All characteristics of the
columns (variables) in the select list are preserved, becoming permanent attributes of the new table's column definitions. The
target table for the LOAD TABLE statement must be on the local machine.

Usage:

execute (LOAD TABLE tabl e spec
< WTH i ndex spec
< WTH i ndex spec >>
by sasspds;

In the following example, each execute statement creates a table for one U.S. state using a global table called STATE that
contains many states. The first execute statement uses LOAD to create table STATE_AL (Alabama), and creates an index on
the COUNTY column. The structure of the state table STATE_AL and the data in the state table both come from the global table
STATE. Thedatain STATE_AL isthe subset of all records from STATE where the STATE column variable equals 'AL".

LOAD creates atable for states from Alabamato Wyoming, with each state's table indexed by county and mirroring the structure
of the parent table STATE.

execute(l oad table state_al
with index county
on (county) as
sel ect *
fromstate
where state="AL")
by sasspds;

execute(load table state_az
with index county
on (county) as
sel ect *
fromstate
where state='AZ")
by sasspds;

execute(load table state wy
with index county

136

on (county) as

sel ect *

fromstate

where state="W")
by sasspds;

In general, the LOAD statement is faster than a corresponding "create table" / "create index™ statement pair, because it builds the
table and associated index(es) asynchronously using parallel processing.

COPY Statement

The COPY table statement creates a copy of a SPD Server table with or without the table index(es). For the COPY table
statement to work, the source and target tables must be on the local machine. By default, the software creates an index(es). The
COPY table statement is faster than either of the following CREATE and LOAD statements:

create table ...
as sel ect
create index ..

or

| oad table ...
wi th index..
as sel ect

The COPY statement is faster than the two above statements because it uses amore direct access path than the SQL SELECT
clause when accessing the data.

In the exampl e that follows, two new tables are created: T_NEW and T2_NEW. Thefirst table, T_NEW, is created with index
structuresidentical to table T_NEW. The second table, T2_NEW, is unindexed regardless of the structure of table T2_OLD.

execute(copy table t_new
fromt_old)
by sasspds;

execute(copy table t2_new
fromt2 old
wi t hout i ndexes)
by sasspds;

The COPY statement also supports an ORDER BY clause you use to create a new table with a sort order on one or more columns
of the new table. While COPY TABLE does not support all of the options of PROC SORT, you can achieve substantial
performance gains when creating this ordered table by using COPY with an ORDER BY clause when appropriate.

The next example copiesthetable T_OLD to T_NEW using the order by clause. The datawill be ordered by columns. x in
ascending order, y in descending order, and z in ascending order. The results are the same if you run PROC SORT on the
columns using the same BY clause. The syntax of the COPY ORDER BY follows the normal SQL ORDER BY clause, but the
column identifiers that you can specify are restricted. Y ou can only specify actual table columns when using the COPY ORDER
BY clause.

execute(copy table t_new

fromt_old
order by x, y desc, z asc)
by sasspds;

Differences between SAS SQL and SPD Server SQL

This section overviews some of the functional differences between SAS SQL and SPD Server SQL. A great deal of SAS SQL functionality is
integrated into SPD Server. Exceptions between SAS and SPD Server SQL are listed below.

137

Reserved Keywords
Table Options and Delimiters

. Mixing Scalar Expressions and Boolean Predicates

. INTO Clause

Tilde Negation

. Nested Queries
. "USER" Vaue

Supported Functions

Reserved Keywords
SPD Server uses keywords to initiate statements or refer to syntax elements. For example, the words "where" and "group”
can only be used in certain ways because there are WHERE and GROUP BY clauses. Keywords are treated as reserved
words. That means you cannot use keywords when naming a LIBREF, atable, a column or an index.

In contrast, SAS allows keywords in some, but not all, syntax locations. The documentation chapter SPD Server SQL
Syntax Reference Guide contains alist of reserved SPD Server SOL keywords.

Table Options and Delimiters
SPD Server SQL uses brackets to delimit table options. SAS SQL uses parentheses as delimiters. Y ou can place table
optionsin a"create table" statement. Y ou must put table options within parentheses to delimit column definitions within a
table.

Mixing Scalar Expressions and Boolean Predicates
SPD Server SQL does not allow mixing scalar expressions with Boolean predicates. SAS SQL does allow mixing scalar
expressions with Boolean predicates in most places. The Help section on Scalar Expressions and Boolean Predicates
contains more information on permissible expression content.

INTO Clause

SPD Server SQL does not support the INTO clause, asin
select a, b into :varl, :var2 fromt where a > 7;

In contrast, SAS SQL supportsthe INTO clause.

Tilde Negation
SPD Server SQL supports the use of thetilde only to negate the 'equals operator, "~=" (not equals). SAS SQL alows

broader use of the tilde ('~") character, where the tilde is synonymous with "not" and can be combined with various
operators. For example, SAS SQL can use the tilde with 'between’ "~ between" (not between). SPD Server does not
recognize that expression.

Nested Queries
SAS SQL permits sub-queries without parentheses delimiters in more places than SPD Server SQL. SPD Server SQL
uses parentheses to explicitly group sub-queries or expressions that are nested within a query statement whenever
possible. Querieswith nested expressions execute more reliably and are also easier to read.

"USER" Value
SAS SQL permits sub-queries without parentheses delimiters in more places than SPD Server SQL. SPD Server SQL
uses parentheses whenever possible to explicitly group sub-queries or expressions that are nested within a query
statement. Queries with nested expressions execute more reliably and are easier to read.

SPD Server SQL does not support the "USER" keyword in the INSERT statement. For example, the following query will
fail in SPD Server SQL:

138

insert into t1(myname) val ues(USER);

Supported Functions
SPD Server SQL supports the following functions:

abs, addr, arcos, arsin, atan, band, betainv, blshift, bnot, bor, brshift, bxor, byte, ceil, cinv, collate, compbl,
compound, compr ess, cos, cosh, css, cv, daccdb, daccdbsl, daccd, daccsyd, dacctab, date, datejul, datepart,
datetime, day, dcss, depdb, depdbsl, depd, depsyd, deptab, dequote, dhms, digamma, dmax, dmean, dmin, drange,
dstd, dstderr, dsum, duss, dvar, erf, erfc, exp, finv, fipname, fipnamel, fipstate, floor, fnonmiss, fuzz, gaminv,
gamma, hms, hour, int, intck, intnx, intrr, irr, ispexec, isplink, kurtosis, left, length, lgamma, log, 10g10, log2,
lowcase, max, mdy, mean, min, minute, mod, month, mort, n, netpv, nmiss, npv, ordinal, poisson, probbeta,
probbnml, probchi, praobf, probgam, probhypr, probit, probnegb, probnorm, probt, gtr, quote, range, ranuni,
rank, recip, repeat, reverse, right, round, saving, second, sign, signum, sin, sinh, skewness, sqrt, std, stderr, stfips,
sthame, stnamel, substr, sum, tan, tanh, time, timepart, tinv, today, tranwrd, trigamma, trim, upcase, uss, var,
weekday, year, zipfips, zipname, zipnamel, and zipstate.

Ranuni functions may show slight variation from run to run due to the impact of parallel processing.
Notethat date, int, left, right and trim are reserved keywords; therefore, they must be preceded with a backslash in SPD

Server SQL queries:
select \date() fromt

Copyright © 2008 by SAS Ingtitute Inc., Cary, NC, USA. All rights reserved.

139

SAS Scalable Performance Data Server SQL Syntax Reference Guide

Contents

. Overview

. Document Conventions

. SOL Syntax Definitions

. SQL Statements
o Alter Table Statement
o Connect Statement
o Create Index Statement
o Create Table Statement
o Create View Statement
o Delete Statement
o Describe Table Statement
o Describe View Statement
o Disconnect Statement
o Drop Index Statement
o Drop Table Statement
o Drop View Statement
o Execute Statement
o Insert Statement
o Reset Statement
o Select Statement
o Update Statement
o Validate Statement

. NEW SOL Statements
o Async Operation Statement
o Contents Statement
o Copy Table Statement
o Create Materialized View Statement
o LIBREF Statement
o Load Table Statement

. SOL Building Blocks
o AliasName
o Atomic Expression
o Between Predicate
o Boolean Expression
o Case Expression
o Column Definition
o Column Definition List
o Column Modifier
o Column Name
o Column NamelList
o Column Specifications
o Comparative Operators
o Comparison Predicates
o Connection String
o Constant
o Contains Predicate
o DataTypes
o Date/ Time String
o DBMS Options
o Digits (Numeric)

140

o Exists Predicate

o Function Arguments
o Function Expressions
o Function Name

o ldentifier

o InPredicate

o Index Name

o Insert Set List

o Insert Source

o Insert Value

o Insert ValuesList

o Letter (Alpha)

o LIBREF Name

o LIKE Predicate

o Missing Value

o Null Predicate

o Number

o ORDER BY Clause
o Pass-Through Spec
o Predicate Types

o Quantified Comparison Predicate
o Query Expression

a] uer eC

o Scalar Expression

o Select Item

o Select Spec

o SetVauelist

o Soundslike Predicate
o String

o Subgquery

o TableAlias

o TableJoin

o Table Name

o Table Options
o Table Reference

o Table Spec
o Truth Vaue

o Unsigned
o WHERE Clause

o With Index Spec

Overview

This chapter describes the SQL syntax that is allowed with the Scalable Performance Data (SPD) Server. SPD Server SQL isadialect of SQL. That
is, it combines SQL-92, SAS SQL and extensions that are specific to SPD Server. Whenever possible, SPD Server attempts to conform to SAS SQL .

Document Conventions

. Productions
. Production Links/ References
. Litera Text

. Optional Text

141

. Selection Lists

Productions - The syntax uses building blocks which are referred to as "productions”. Productions are denoted by the symbol "::=" . To
the left of the equal sign is a production name; to the right of the equal, or on the next line, isalist of production constructs. If a
production has more than one possible construct, the alternatives are separated by avertical bar *|'. Read productions top-down. For
example, reading the delete statement, there are literal keywords and two subproductions, a “table_spec” and the "WHERE clause".

Production Links/ References - Subproductions that are referenced within a production definition are HTML links to their definitions.
Y ou can navigate the links with an HTML browser.

Literal Text - Traversing down a syntax tree leads to leaf/terminal definitions. The definitions are composed either of keywords

(select), identifiers (names of tables, columns, etc.) or symbols (punctuation, operators, etc.). Keywords and identifiers are shown
with bold, capitalized text. In contrast, symbols are shown with single quotation marks and are bold.

Optional Text - Optional syntax is delimited by square brackets, "[" and "]". Optional lists (syntax elements that are repeated) are
denoted by "[" and "]*". The"*" signifies zero or more occurrences of the bracketed syntax.

Selection Lists - Selection lists, that allow you to choose from alist of aternative syntax elements, are denoted by braces"{" and "}".
These elements are separated by avertical bar "|". The selection list itself is not optional; you must choose at least one element. If you
must choose one or more of the elements, thelist isterminated with a"}+". The "+" indicates one or more occurrences of the
delimited syntax.

Note: The browser displays links best with underscores. To view underscores using Netscape, refer to the option under the File Command: Options/
General Preferences/Appearance.

SQL Syntax Definitions

. Statement (Query)

. Scalar Expressions Contrasted with Boolean Predicates
. Strings

. ldentifiers

. (Reserved) Keywords

Statement (Query)
One or more syntax elements terminated by a semicolon.

Scalar Expressions Contrasted with Boolean Predicates
Scalar expressions represent a single data value, either a numeric or a string from a constant specification. Examplesinclude: 1,
'hello there, '31-DEC-60'd), afunction (that is, "avg(a*b)"), a column/variable (that is foo.bar), the case expression, or even a
subquery which returns a single run-time value. Boolean predicates are either "true" or "false". They are used in WHERE
clauses, having clauses and in the case expression. Y ou cannot select predicates, nor can you assign them to columns (that is, in
an update statement). Scalar expressions and Boolean predicates cannot be used interchangeably, although SAS SQL does
allow you to mix the expressions.

Strings
SPD Server SQL strings are character streams which are delimited by either single or double quotation marks. If you use a
single quotation mark to begin a string, you must use a single quotation mark to terminate the string. To embed asingle
guotation mark in a string, use two single quotation marks together. For example,

SELECT '"it''s a wonderful life'" fromnytable.

Y ou can use double quotation marks in the same manner. There is another way to embed a single quotation mark without
doubling the character. Y ou can use double-quotation marks as delimiters. For example,

SELECT "it's a wonderful life" from nytable.

In some of the syntax specifications that follow, a"user-defined" or "database-specific" string is noted. Delimit these strings
with a bracket or parenthesis. Characters between the delimiters are considered part of the string up to, but not including, the

matching delimiter.
142

CONNECT to sasspds(
user =" j ohn'
passwd=' f oobar"'
options=(a b c)

);
The dbms_options string is

user='john'
passwd="foobar'
options=(a b c).

In this example, the first right-parenthesis is considered part of the string. It is not the matching termination delimiter.
Identifiers
Identifiers are the names of librefs, tables, indexes and columns as well as table and column aliases.
(Reserved) Keywords
Keywords are used to initiate statements and syntax elements. For example, WHERE or GROUP BY clauses. Keywords are
also "reserved”. They cannot be used for identifiers because this use introduces ambiguity. For example, "select unique unique
unique from from from;" is avalid but ambiguous statement. Below isalist of current SPD Server keywords. Some words have
been reserved for future enhancements to SPD Server SQL.:

add, all, alter, and, any, as, asc, async, begin, between, both, by, calculated, cascade, case, char, character,
column, connect, connection, contains, contents, copy, corr, corresponding, create, cross, date, dec, decimal,
default, delete, desc, describe, dictionary, disconnect, distinct, double, drop, else, end, engname, engopt, €q,
except, execute, exists, false, float, for, format, from, full, ge, grant, group, gt, having, in, index, indexes, infor mat,
inner, insert, int, integer, intersect, into, is, join, label, le, leading, l€eft, libref, like, load, lower, It, match, missing,
modify, natural, ne, no, not, notin, null, num, numeric, on, operation, option, or, order, outer, overlaps, partial,
precision, privileges, public, real, references, reset, restrict, revoke, right, select, set, smallint, some, table, then,
to, trailing, trim, true, union, unique, unknown, update, upper, using, validate, values, varchar, verbose, view,
when, where, with, without, yes

SQL Statements

. Alter Table Statement

. Connect Statement

. Create Index Statement

. Create Table Statement

. Create View Statement - Create aview upon one or more tables
. Delete Statement - Delete records

. Describe Table Statement - Describe a table definition

. Describe View Statement - Describe aview definition

. Disconnect Statement Pass-Through Statement

. Drop Index Statement - Drop an index from atable

. Drop Table Statement - Drop atable definition

. Drop View Statement - Drop aview definition

. Execute Statement - Pass-Through Statement

. Insert Statement - Add records

. Reset Statement - Reset session options and flags

. Select Statement - Retrieve information

. Update Statement - Update records

. Validate Statement - Validate a given select specification

Alter Table Statement
143

The Alter table statement changes atable definition.

alter table statenment ::=

ALTER TABLE tabl e spec

{ { ADD| MODI FY| ALTER [COLUWN] columm def list } |
{ DROP [COLUW] colum nane list }

Pt

Connect Statement
The Connect statement creates a pass-through connection.

connect statenent ::=
CONNECT TO libref nane [[AS]

alias nane] ' ('
dbns options ")'] ;"'

Create Index Statement
The Create Index statement creates an index on atable.
create index statement ::=

CREATE [UNIQUE] I NDEX index nane ON
table spec '(' colum nane list ")" ';'

Create Table Statement
The Create Table statement creates a table definition.

create table statenent ::=

CREATE TABLE tabl e spec

{ "(' colum def list ")'" | AS
select spec | LIKE

table spec } ';

Create View Statement

create view statenent ::= CREATE VI EW
tabl e spec AS

sel ect spec ';

Delete Statement

del ete statenent ::= DELETE FROM

tabl e spec |
where clause] ;'

144

Describe Table Statement

descri be table statenent ::=
DESCRI BE TABLE table spec [[',']

table spec 1* ',

Describe View Statement

descri be view statenent ::=
DESCRIBE VIEWtable spec [[',"]

table spec 1* "'

Disconnect Statement

di sconnect statenent ::= DI SCONNECT FROM

libref nane ';

Drop Index Statement

drop index statement ::=
DROP I NDEX index nanme [[',']
i ndex nane]* FROM

tabl e spec ';

Drop Table Statement

drop table statenent ::= DROP TABLE
table spec [[',"]
table spec 1* *';"

Drop View Statement

drop view statenent ::=
DROP VIEWtable spec [[',']

table spec 1* ';'

Execute Statement

execute statenent ::= EXECUTE ' ('
passthru spec ')' BY
libref nane ';'

145

Insert Statement

insert statement ::=
| NSERT | NTO table spec [' ('
colum nane list ")]

i nsert source ';'

Reset Statement

set option statenent ::=
{ SET OPTION | RESET }
{ identifier
["= { constant |
identifier |
truth val ue
| DEFAULT }] }+

Select Statement

sel ect statenment::=

sel ect spec ';

Update Statement

update statement ::=

UPDATE t abl e spec
SET columm nane '='

scalar expr [','

col um name '=

scalar expr]*
[where clause] ;'

Validate Statement

val i date statenent ::= VALIDATE
sel ect spec ';'

NEW SQL Statements

. Async Operation Statement — Delimit an asynchronous execution block

. Contents Statement — Perform a SAS "proc contents' on atable

. Copy Table Statement — Copy atable, and optionally no indexes on the table, to another table on the same local machine

. Create Materialized View Statement — create a SQL view as a materialized view. In a materialized view, the results of the view statement

are computed and saved in atemporary SPD Server table when the view is created.
. LIBREF Statement — Perform a SAS LIBREF assignment

. Load Table Statement — Create atable, and optionally indexes on the table on the local machine , with a select statement

146

New SQL Statements

Async Operation Statement

async operation statenments ::= { BEG N | END } ASYNC OPERATION ' ;'

Contents Statement

contents statenent ::= CONTENTS

table spec [VERBOSE | ';

Copy Table Statement

copy table statenment ::=
COPY TABLE tabl e spec FROM
table spec [WTHOUT | NDEXES] [ORDER BY
col um nane
[ASC| DESC] [',"
colum nane [ASC| DESC]]] "'

Create Materialized View Statement

create materialized view statenment ::= CREATE MATERI ALI ZED VI EW

tabl e spec AS

select spec ;'

LIBREF Statement

libref statenent ::=
LI BREF |ibref nane [ENGNAME ' ='
identifier] [ENGOPT '='

string] ';

Load Table Statement

| oad table statenent ::=
LOAD TABLE table spec [WTH

with index spec [',
with index spec]*]

AS sel ect spec ';

SQL Building Blocks

147

Alias Name

Atomic Expression
Between Predicate
Boolean Expression
Case Expression
Column Definition
Column Definition List
Column Modifier
Column Name
Column Name List
Column Specifications
Comparative Operators
Comparison Predicates
Connection String
Constant

Contains Predicate
Data Types

Date/ Time String
DBMS Options
Digits (Numeric)
Exists Predicate
Function Arguments
Function Expressions
Function Name
Identifier

In Predicate

Index Name

Insert Set List

Insert Source

Insert Value

Insert Values List

L etter (Alpha)
LIBREF Name

LIKE Predicate
Missing Value

Null Predicate
Number

ORDER BY Clause
Pass-Through Spec
Predicate Types
Quantified Comparison Predicate
Query Expression
Query Spec

Scalar Expression
Select [tem

Select Spec

Set Value List
Soundslike Predicate
String

Subquery
TableAlias

Table Join

Table Name

Table Options
Table Reference

Table Spec

148

. Truth Value

. Unsigned

. WHERE Clause
. With Index Spec

SQL Building Blocks

Alias Name

alias nane ::=
identifier

Atomic Expression

atom c expr ::=
const ant |

col um spec

Between Predicate

between pred ::=

scalar expr [NOT] BETWEEN
scal ar _expr AND

scal ar _expr

Boolean Expression

bool ean expr ::=
| [NOT] { predicate | ' ('
bool ean expr ")" } [IS [NOT]
truth val ue]
| boolean expr { AND | OR}
bool ean expr

Case Expression

case expr ::=

CASE { WHEN bool ean expr THEN
scal ar _expr }+ [ELSE
scalar expr] END

| CASE scal ar expr { WHEN

scal ar _expr THEN

scal ar _expr }+ [ELSE

scalar expr] END

149

Column Definition

colum def ::=
col um nane

data type [
colum nodifier]* [NOT NULL]

Column Definition List

columm def list ::=

columm def [',
colum def]*

Column Modifier

colum nodifier ::=

FORMAT ' =' <quoted or nonquoted SAS format specification>
| LABEL '=' string

Column Name

col um nane ::=
identifier

Column Name List

colum nane list ::=
colum nanme [[',"]
colum nane]*

Column Specifications

col um spec ::=
[CALCULATED] colum nane
| table alias'.'
col um nane

Comparative Operators

conp operator ::=

| EQ| =

| NE| A== | s] e
| LT | '<

| oT | >

| LE| '<=

| G| =

150

Comparison Predicates

conparison pred ::=
scal ar _expr {
conp_oper at or

scal ar _expr }+

Connection String

connection string ::= <user-defined
string delimted by endi ng/ mat chi ng parent hesi s>

Constant

const ant =

| nunber | missing val ue

| string | date/tine string
| NULL

Contains Predicate

contains pred ::=
scal ar _expr { CONTAINS | "?' }
scal ar _expr

Data Types

data type ::=

{ CHAR[ACTER] | VARCHAR } ['('unsigned ')"']
{ INT[EGER] | SMALLINT }

{ NUMERI C] | DEC I MAL] | FLOAT }

"(" unsigned [',' unsigned] ")"]

|
|
[
| REAL | DOUBLE PRECI SION | DATE

Date / Time String

date/tine string ::
string{D T| DT}

DBMS Options

dbns options ::= <user-defined
string delimted by endi ng/ mat chi ng parent hesi s>

151

Digits (Numeric)

digit ::="'0" <through> "9

Exists Predicate

exists pred ::= EXI STS subquery

Function Arguments

function args ::
scalar expr [',' scalar expr]* | D STINCT scalar expr | [DISTINCT] "*'

Function Expressions

function expr
func nanme ' ('
function args ')’

Function Name

function nane ::=

identifier

Identifier
identifier ::=1["\"]{
etter|<underscore>}{
letter|

digi t| <underscore>}*

In Predicate

in pred ::=
scalar expr { [NOT] IN| NOTIN} {
subquery | ('

constant [',
constant]* ')' }

Index Name

i ndex nane ::=
152

identifier

Insert Set List

insert set list ::= SET
set value list [SET
set value list]*

Insert Source

insert source ::=
| insert values |ist
| insert set list

| query expr
Insert Value
insert value ::= VALUES ' ('

scal ar _expr [',
scalar _expr]1* ")

Insert Values List

insert values list ::=
insert value [
i nsert value]*

Letter (Alpha)

letter ::="a <through>

z' <or>"'A

<t hrough> ' Z'

LIBREF Name

li bref name ::=
identifier

LIKE Predicate

like pred ::=
scalar expr [NOT] LIKE
scal ar _expr

153

Missing Value

mssing value ::= "'."[

letter

Null Predicate

null pred ::=
scalar expr IS NOT'] { NULL | M SSING }

Number

nunber ::=
{unsi gned]| {
digit}+ .'[{
digit}+]]"."{
digit+}p[{ e |"E}"+|"-"]{
digit}+]

ORDER BY Clause

order by clause ::=
ORDER BY atomic expr [ASC| DESC] [',

atomc expr [ASC| DESC]]*

Pass-Through Spec

passthru spec ::=
<dat abase-specific string delimted by endi ng/ matchi ng parenthesi s>

Predicate Types

predicate ::=
| conparison pred
| between pred
| in pred

| like pred

| null pred

|

I

I

|

quantified conparison pred
exists pred

contai ns pred

soundsl i ke pred

Quantified Comparison Predicate

154

qgquantified conparison pred ::=
scal ar _expr
conp operator { ALL | SOVE | ANY }
subquery

Query Expression

query expr ::=
uery spec

| query expr { [OUTER] UNION | EXCEPT | INTERSECT } [CORRESPONDING] [ALL]
uer expr

Query Spec

query spec ::=
SELECT [DISTINCT | UNNQUE] select item][',
select item]*
FROMtable ref [','
table ref]*
[WHERE bool ean expr]
[GROUP BY scalar expr [',
scal ar_expr 1*]
[HAVI NG bool ean expr]

Scalar Expression

scal ar expr ::=
| atom c expr
| function expr
| " (" scalar expr ")’
| subquery
| scalar expr { "+ | "-' | KU |t | R)
scal ar_expr

| "+ | '-'" } scalar expr
| case expr

-~ D

Select Item

select item::=

| identifier'.*'

| scalar expr [[AS]
identifier] [

colum nodifier]*

Select Spec

155

sel ect spec ::=

query expr [
order by clause]

Set Value List

set value list ::=
col um nane '='

scalar expr [',
colum nane ' =

scalar expr]*

Soundslike Predicate

soundsli ke pred ::
scal ar _expr '=*'
scal ar _expr

String

string ::=
<a single- or doubl e-quoted
literal string -- see Strings>

Subquery

subquery ::= " ('
uery expr ')’

Table Alias
table alias ::=
identifier
Table Join

table join ::=
table ref [INNER| { LEFT | RIGHT | FULL }
[QUTER]] JON table ref
{ ON bool ean expr | USING " ('

colum nane list ')' }

| *(" table join ")’

Table Name
156

tabl e nane ::
identifier

Table Options

tabl e options ::= <user-defined
string delimted by endi ng/ matchi ng bracket >

Table Reference

table ref ::=

table spec [[AS]
identifier]

| subquery [[AS]

identifier] ['('

colum nane list ")]

| CONNECTION TO identifier '('

connection string ")" [[AS]

identifier]

| table join

Table Spec

table spec ::=
| table name ['[°'
table options ']’
| lLibref nane'.'
table name ['['
table options ']']

]

Truth Value

truth value ::={ TRUE| YES} | { FALSE | NO}

Unsigned

unsigned ::= {
digit }+

WHERE Clause

wher e cl ause ::= WHERE
bool ean expr

157

With Index Spec

with index spec ::=[UNIQUE] | NDEX
i ndex name ON ' ('
colum nane list ')’

Copyright © 2008 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

158

file:///U|/Conversions/common.hlp/images/copyrite.htm

SAS Scalable Performance Data (SPD) Server SQL Access
Library APl Reference

. Introduction

. Overview of SPOL Usage

. SPOL API Description

. SPOL API Functions

. SPOL Function Return Codes

Introduction

This chapter describes the Scalable Performance Data Server SQL access library API (Application Programming Interface) and
provides some simple examples. This chapter refers to the Scalable Performance Data Server SQL access library as SPQL.
Read this chapter if you want alibrary that provides a C-language compatible interface to write user applications to access an
SPD Server SQL server. Because the library was designed for multi-threaded applications, the code is thread safe.

Overview of SPQL Usage

SPQL enables you to write application: programs that can connect to and access Scalable Performance Data Server (SPD
Server) hosts using the SQL language. SPQL is oriented toward connection, allowing you to submit SQL statements to one or
more SPD Server SQL servers which execute SQL statements on your behalf.

SPQL API Description

The C-language H file spgl.h is provided for customer-written applications. This chapter describes the API functions, their use,
and restrictions.

SPQL API Functions

The SPQL API functions include

« spglinit()

. spglterm()

. spglconnect()

. spgldisconnect()
. spalperform()

. spalfreestok()

. spgltabinfo()

159

« spglcalinfo()
. spalfetch()
- spalgmsg().

spglinit()
Initializes the SPQL library for operation.
int spglinit(void)

Usage: Performs a one-time initialization which enables the SPQL library to function. For this
reason, you must call spglinit() at least once to activate an SPQL program. Do not make other
SPQL API calls before calling this function. If you do, the results are unpredictable. When spglinit
() successfully completes, you can safely proceed to use the SPQL API in amulti-threaded context.

Note: Spglinit()-is not athread-safe function. Call it only within a single-threaded context in your
application. Alternatively, call it within an application-controlled mutex region.

Parameters. None

Returns: 0if successful; SPQL_INITFAILED if theinitialization fails.

spglterm()

|s the termination counterpart of the spglinit() function.
int spgltermvoid)

Usage: Terminates the SPQL library session, disconnecting all active SPD Server SQL server
connections and freeing up the memory resources associated with the SPQL run-time library
executables.

Parameters: None

Returns: O if successful.

spglconnect()

Establishes a connection to a specified SPD Server SQL server.
i nt spgl connect (char *constr, void **cont ok)

Usage: Establishes a connection to the SPD Server SQL server. The constr parameter specifies all
the connection information needed to establish the connection to an SPD Server SQL server. When
a connection is made successfully, a connection, token (contok) is returned to the caller.

160

Parameters:

char *constr
A null-terminated string identifying the SPD Server SQL server to connect to for this
session. The syntax for the string is identical to that used for the SAS PROC SQL pass-
through CONNECT statement.

void **contok
Returns a connection token if the connection successfully completes. Y ou must retain the
token; useit in subsequent SPQL library operations that you perform using the connection.

Returns. 0if successful; SPQL_NOMEM if unable to alocate memory for the connection token;
SPQL_CONFAILED if unable to connect successfully to the SPD Server SQL server.

spgldisconnect()

Terminates a connection from the SPD Server SQL server specified with an spglconnect().

i nt spgl di sconnect (voi d *cont ok)
Usage: Disconnects from a specified SPD Server SQL server. The caller passes the connection
token which was returned from an spglconnect() call. Then, the SPD Server SQL server associated
with the connection is disconnected from the caller, and the memory associated with connection
token is returned to the system.

Parameters:

void *contok
Connection token previously obtained from spglconnect().

Returns: O if successful.

spglperform()

Submits an SQL statement for execution on a given connection.

int spgl perform void *contok, char *stntbuf, int stntlen,
int *actions, void **stnttok);

Usage: Performs specified SQL statement and informs caller of the results. The actions parameter
returnsavalue of 0 if no additional actionisrequired. If actions are required to complete the
statement, one or more of the following bit flags are returned.

Fl ag Action

SPQLDATA Data is returned(see spqlfetch())
SPQLCOLI NFO Colum information is returned(see spglcolinfo())

161

Parameters:

void *contok
The connection used to execute the SQL statement.

char *stmtbuf
A buffer that holds the SQL statement to perform.

int stmtlen
The length of the SQL statement in buffer; -1 if null-terminated.

int *actions
Returns post-processing notification bit flags.

void **stmttok
Returns a statement token to use in post-processing the SQL statement results. See post-
processing action definitions for use of statement token.

Returns: Oif the SQL statement is successfully prepared/executed; SPQL_BADSTMT if the SQL
statement specified in the statement buffer is prepared incorrectly; SPQL_NOMEM if
spqlperform cannot allocate memory for the statement token.

spglfreestok()

Generates a free statement token from spglperform().

int spgl freestok(void *stnttok);
Usage: Free resources used for the statement token from spglperform(). Call spqlfreestok() after
the data/information from the statement token has been extracted. Y ou may call this function
before all selected rows from the spglperform() are read. If you do, the remaining unread rows
(from the previous select) are discarded.

Parameters:

void *stmttok
Statement token to free

Returns: O if successful.

spgltabinfo()

Gets table information from a statement token.
int spgltabinfo(void *stnttok, spgltinfo t **tinfo)

Usage: Interrogates the statement token for table information. Upon return of the call, updates tinfo
162

with the pointer to the spgltinfo_t structure in the statement.
Note: Treat the structure accessed by the returned pointer as read-only memory.
Parameters:

void *stmttok
The statement token to use to access table information from a 'select'.

spgltinfo **tinfo
Returns pointer to spgltinfo_t structure into the statement token memory.

Returns: O for successful completion.

spglcolinfo()

Gets column information from a statement token.
int spglcolinfo(void *stmtok, int *ncols, spglcinfo t **col vec)
Usage: Interrogates token for column information. Upon return of the call, updates ncols with the

column count selected in the statement and updates colvec with the pointer to the vector of
spglcol_t structuresin the statement.

Note: Treat structures accessed by the returned pointer as read-only memory.
Parameters:

void *stmttok
The statement token to use to access column information from 'select'.

int *ncols
Returns in the statement token the number of columns selected.

spglcinfo ** colvec
Returns in the statement token a pointer to the array of spglcinfo_t structures.

Returns: O if successful.

spglfetch()

Gets row data from a statement token.
int spglfetch(void *stnttok, void **bufptr, int *bufsize)
Usage: Fetches the rows returned from executing a statement. Each call to spglfetch returns arow

from a statement to the caller's buffer. If bufptr containsaNULL value, the routine returns a
163

pointer to a buffer containing the next row. If the valueis not NULL, it assumes that the buffer is
owned by the caller and returns the data to the caller's buffer. In either case, bufsize is updated with
the row length returned. Callers that use locate-mode spglfetch semantics (that is, who specify
bufptr as NULL), should NEVER FREE the memory pointer returned by spglfetch! A call to
spqglfetch(), after al rows for the statement are returned, returns a bufsize of O.

Parameters:

void *stmttok
The statement token to use to access row data from 'select’.

void **pufptr
Contains a pointer to the caller's row buffer to fill with row data. If itisNULL on entry, it
returns a pointer to the internal statement buffer.

int *bufsize
Returns the size of the row buffer that was returned to the caller.

Returns. 0if successful; SPQL_ENDDATA if the statement has no more rows to return;
SPQL_FETCHFAILED if thereis an unexpected failure while fetching the next row buffer.

ms

A ccesses thread-specific error/diagnostic message buffer contents.

i nt spqgl gnmsg(char **nbuf)

Usage: Returns a pointer to the threads error/diagnostic message buffer. Call spglgmsg() to get any diagnostic
messages if you encounter an error executing an SPQL function. If there is message information, spglgmsg()
returns the message pointer in the mbuf parameter as well as the length of the message (the function return

Parameters:

char **mbuf
Returns a pointer to the thread's error/diagnostic message buffer. If mbuf isNULL, thereis no message
information. The call aso returns the length of the thread's error/diagnostic message buffer. A O indicates

that no message exists.

SPOL Function Return Codes

Some SPQL functions generate return codes, allowing you to check the value and take appropriate action in your application
code. Typically, the application action taken upon receiving an error code, is a call to spglgmsg() to get the contents of the

diagnostic buffer. The program can then display the buffer's contents to the user or write the contentsto alog.

The following return codes are classified, in general, by their state: positive [(WARNING), (SUCCESS)] or negative
[(ERRORY)].

164

. SPQL_SUCCESS(==0)

. SPOL_ENDDATA(WARNING)
. SPOL_INITFAILED(ERROR)
. SPOL_NOMEM

. SPOL_CONFAILED(ERROR)
. SPOL_BADSTMT(ERROR)

SPQL SUCCESS(==0)
Successful completion of the SPQL function call.

SPQL ENDDATA(WARNING)
All rows selected were read from the statement token.

SPQL INITFAILED(ERROR)
Initialization failure. (It is unsafe for your application to make additional SPQL callsif this error occurs.)

SPQL NOMEM
Unable to allocate memory for some type of SPQL data structure. Check the diagnostic buffer for details.

SPQL _CONFAILED(ERROR)_
Unable to make a connection to an SPD Server SQL server. Check the diagnostic buffer for details.

SPQL BADSTMT(ERROR)

SQL statement isincorrectly formatted for submission to sglprepare(). Either the statement is blank (all
white space) or contains contiguous non-white space characters.

Copyright © 2008 by SAS Ingtitute Inc., Cary, NC, USA. All rights reserved.

165

Optimizing SAS Scalable Performance Data (SPD) Server
Performance

. SAS Scalable Performance Data (SPD) Server Performance and Usage Tips
. Symmetric Multiple Processor (SMP) Utilization
. File System Performance Concepts
. LIBNAME Domains
o Dataand Index Separation
o Configuring a LIBNAME Domain
. Loading Datainto a SAS Scalable Performance Data (SPD) Server Host
. Loading Indexesin Parallel
. Truncating Tables
. Optimizing WHERE Clauses
. SAS Scalable Performance Data (SPD) Server Indexing
. WHERE Clause Planner
. How to Affect the WHERE Planner
. WHERE Clause Examples
. Server-Side Sorting

SAS Scalable Performance Data (SPD) Server Performance and Usage Tips

SAS Scalable Performance Data (SPD) Server gives good performance when run using default configuration settings. To realize
the full benefits of SAS Scalable Performance Data (SPD) Server's design and capabilities, you must configure some of the
software's options to modify the default behaviors. The configuration changes will depend on the computing environment, table
size and complexity, and indexing structures.

Y ou use SAS/MACRO variables that are specific to SAS Scalable Performance Data (SPD) Server and SAS statement options
(LIBNAME options and table options) to configure SAS Scal able Performance Data (SPD) Server for optimum performance.

Symmetric Multiple Processor (SMP) Utilization

A cornerstone of SAS Scalable Performance Data (SPD) Server's power isthe ability to perform parallel processing. Parallel
processing uses multiple processors to execute more than one set of instructions, or threads, concurrently. SAS Scalable
Performance Data (SPD) Server is oriented to exploit parallelism whenever it can improve transaction times and processor
utilization.

A fundamental question about parallelism is whether using additional CPUs on a specific problem will deliver data faster. Extra
CPUs do not guarantee faster results every time. The amount of CPU-intensive work that athread must do needs to last long
enough to justify the cost of the thread. The cost of the thread is creating it, managing it, and interacting with other threads
involved in the same parallel algorithm.

If not properly matched to the workload, the parallel algorithm can use more CPU time without reducing data delivery time.
Additional threads can create conflicting demands for critical system resources such as physical memory. Excessive execution
times can occur if too many threads attempt to access a large table at the same time, because many threads demand large amounts

166

of physical memory. Extreme resource constraints can result in slower overall processing.
SAS Scalable Performance Data (SPD) Server focuses on the following areas to speed overall processing using parallelism:

. User-definable parallel execution blocks for SQL pass-through statements

. Parallel aggregation for common summary functions when performing SELECT [...] GROUP BY statements
. WHERE Clause evaluation for indexed and non-indexed strategies

. Overlapped table and concurrent index updates when appending to tables

. Index creation when creating multiple indexes

. Optimize PROC SORT/BY -clauses

. Pipelined read-ahead when concurrently accessing multiple tables

File System Performance Concepts

SAS Scalable Performance Data (SPD) Server uses several filetypesin its data storage model. Data objectsin SAS Scalable
Performance Data (SPD) Server are composed of one or more component files. Each component fileisitself a collection of one
or more disk files. These are called the partitions of the component.

Component files create partitions when any of the following conditionsis true:

. The current partition exceeds the user-specified PARTSIZE= value: Subsequent partitions are allocated in cyclical fashion
across the set of directories that are specified in the DATAPATH= statement for the LIBNAME domain. Partitioning uses
file-level striping to create PARTSIZE-sized files that complement disk-level striping that your operating system's volume
manager software creates. SAS Scalable Performance Data (SPD) Server uses a default PARTSIZE= setting of 16 MB.
PARTSIZE= determines a unit of work for parallel operations that require full table scans. Examples of parallel
operations that require full table scans are WHERE Clause evaluation and SQL GROUP-BY summarization. Trade-offs
are balancing increased numbers of files used to store the table versus the work savings realized through parallel partitions.

Extra partitions means files are opened to process a table, but with fewer rows in each partition.

. The current partition exceedsthe RLIMIT_FILESIZE value: In UNIX systems, RLIMIT_FILESIZE is a system parameter
that defines the maximum size of asingle disk file. In Windows, SAS Scalable Performance Data (SPD) Server usesa
default RLIMIT_FILESIZE value of 2 GB.

. The current partition exceeds the space on the file system where it has been created.

. Defining Directories
. Disk Striping

. RAID Levels

. Transient Storage

Defining Directories

SAS Scalable Performance Data (SPD) Server alows the user to define a set of directories that contain component
filesand their partitions. Normally, asingle directory path is constrained by some volume limit for the file system,
or the maximum amount of disk space that the operating system understands.

Most UNIX and Windows systems offer a volume manager utility. Y ou can use volume manager utilities to create
file systems (volumes) that are greater than the available space on a single disk. System administrators can use
these utilities to create large, multi-gigabyte volumes. These volumes may be spread across a number of disk

167

partitions, or even span multiple disk devices. Volume manager utilities generally support creation of disk volumes
that implement one of the common RAID (redundant arrays of inexpensive disks) configuration levels.

Disk Striping

A defining feature of all RAID levelsisdisk striping. Striping organizes the linear address space of avolumeinto
pieces that are spread across a collection of disk drive partitions. For example, auser may configure avolume
across two 1 GB partitions on separate disk drives A and B with a stripe size of 64K bytes. Stripe O lives on drive
A, stripe 1 lives on drive B, stripe 2 lives on drive A, and so on.

By distributing the stripes of avolume across multiple disksit is possible to

. achieve parallelism at the disk 1/0O level
. use multiple kernel threads to drive a block of 1/0.

This also reduces contention and data transfer latency for alarge block 1/0 because the physical transfer can be
split across multiple disk controllers and drives.

RAID Levels

Thefollowing isabrief summary of RAID levelsrelevant to SAS Scalable Performance Data (SPD) Server:

RAID-0
High performance with low availability. Physically losing adisk means dataislost. No redundancy exists
to recover volume stripes on afailed disk.

RAID-1
Disk mirroring for high availability. Every block is duplicated on another mirror disk, sometimes referred to
as shadowing. Inthe event onedisk islost, the mirror disk isstill likely to be intact, preserving the data.
RAID-1 can also improve read performance since a device driver has two potential sources for the same
data. The system can choose the drive that has the least load/latency at a given point in time. The down
sideto RAID-1: it requires twice the number of disk drives as RAID-0 to store a given amount of data.

RAID-5
High performance and high availability at the expense of resources. An error correcting code (ECC) is
generated for each stripe written to disk. The ECC distributes the datain each logical stripe across physical
stripesin such away that if agiven disk in the volumeislost, datain the logical stripe can still be recovered
from the remaining physical stripes. RAID-5's downside is resource utilization; RAID-5 requires extra CPU
cycles and extra disk space to transform and manage data using the ECC model.

RAID-1+0
Many RAID systems offer a combination of RAID-1 (pure disk mirroring) and RAID-O0 (striping) to provide
both redundancy and I/O parallelism in a configuration known as RAID-1+0 (sometimes referred to as
RAID-10). Advantages are the same as for RAID-1 and RAID-0. The only disadvantage is the requirement
for twice as much disk asthe pure RAID-0 solution. Generally, this configuration tends to be atop
performer if you have the disk resources to pursueit.

Regardless of RAID level, disk volumes should be hardware striped when using the SAS Scalable Performance
Data (SPD) Server software. Thisis a significant way to improve performance. Without hardware striping, 1/0 will
bottleneck and constrain SAS Scalable Performance Data (SPD) Server performance.

168

Transient Storage

Y ou should configure a RAID-0 volume for WORKPATH= storage for your SAS Scalable Performance Data
(SPD) Server. When sizing this RAID-0 volume, keep in mind that the WORKPATH= that you set up for agiven
SAS Scalable Performance Data (SPD) Server host must be shared by all of its SQL and LIBNAME proxy
processes that exist at agiven point intime. The SAS Scalable Performance Data (SPD) Server Frequently Asked
Questions (FAQ) is agood source of information on estimating disk space requirements for WORKPATH=.

Consider using one or more RAID-0 volumes to locate the database domains that will support TEMP=YES
LIBNAME assignments. This LIBNAME statement option creates atemporary storage domain that exists only for
the duration of the LIBNAME assignment. Thisisthe SAS Scalable Performance Data (SPD) Server equivalent of
the SASWORK library. All data objects (tables, catalogs, utility files) that are created in the TEMP=YES
temporary domain are automatically deleted when you end the SAS session.

LIBNAME Domains

LIBNAME domains define the primary directory path and can optionally define other directories for placing the data and index
components of SAS Scalable Performance Data (SPD) Server tables. The METAPATH=, DATAPATH=, and INDEXPATH=

LIBNAME definition options determine the placement of SAS Scalable Performance Data (SPD) Server's component and
partition files.

. Dataand Index Separation
. Configuring aLIBNAME Domain

Data and Index Separation

The section on File System Performance Concepts discussed how distributing 1/0 load across different disk drives

can improve performance. Further load distribution can be achieved by separating data and index components of
SAS Scalable Performance Data (SPD) Server tables. To do this, usethe DATAPATH= and INDEXPATH=

options when configuring LIBNAME domains.

For example, when performing complex WHERE Clause evaluations, multiple threads are active on index
component files and the data component file at the same time. Splitting the index and data file components onto
different volumes can improve performance by reducing disk contention and increasing the level of parallelism
down to the disk access level.

A word of caution when using DATAPATH= and INDEXPATH= options to distribute the data and index
components. take extra care when performing and restoring disk backups of SAS Scalable Performance Data
(SPD) Server tables using a system backup and restore utility. When making a backup, ensure that the metadata,
data, and index component partition files are of the same generation and are in their respective directories.

When restoring a backup, restore the component partitions to the same directories where they were created. To
avoid this restore problem, create symbolic links with the original directory path that point to the restore
directories. Of coursg, if the components are not separated using the path options, this restore issue does not apply.

The backup and restore issues are not an issue when using the SAS Scalable Performance Data (SPD) Server
Backup and Restore Utilities. These utilities resolve any component files when backing up or restoring tables.
More information on SAS Scalable Performance Data (SPD) Server Backup and Restore Utilitiesis available in the

169

SAS Scalable Performance Data (SPD) Server Administrator's Guide.

Configuring a LIBNAME Domain

Suppose a user has four volumes designated. Volumes exist for (1) SAS Scalable Performance Data (SPD) Server
metadata, (2) data components, (3) index components, and (4) proxy working storage, as follows

. /dmart_domain isa4 GB volume
. /dmart_dataisa40 GB volume

. /dmart_index isa 40 GB volume
. Ispds work isa 10 GB volume

The user wants to configure a LIBNAME domain called dmart to use /dmart_domain for the primary directory,
with data components going to /dmart_data, and index components going to /dmart_index. The /spds work
volume should be configured for proxy working storage.
The configuration is made in two steps:

1. Inthe server parameter file (-parmfile) enter the following line:

WORKPATH=/ spds_wor k;

2. Inthe SAS Scalable Performance Data (SPD) Server LIBNAME file (-libnamefile) enter the following
domain definition:

['i bname=dmart
pat h=/dmart _domai n
ropti ons="datapat h=('/dmart_data')
i ndexpat h=('/dmart _i ndex"')";

Loading Data into an SAS Scalable Performance Data (SPD) Server Host

SAS Scalable Performance Data (SPD) Server's emphasis on complete LIBNAME compatibility means that when you access
SAS Scalable Performance Data (SPD) Server, the standard procedures used to create tablesin SAS apply to SAS Scalable
Performance Data (SPD) Server tables aswell.

Using SAS, you can load datainto SAS Scalable Performance Data (SPD) Server tables using DATA step programs, PROC
COPY or PROC APPEND, and SCL applications. You also can use SQL pass-through to load SAS Scalable Performance Data
(SPD) Server tables. The SAS Scalable Performance Data (SPD) Server SQL extensions for the LOAD TABLE and COPY
TABLE statements provide further support.

Use LOAD TABLE to load atable from the projected columns of an SQL SELECT statement and create indexes, al in asingle
pass. LOAD TABLE exploits multi-thread table I/O and index creation. The multi-thread table 1/0O and index creation overlaps
with the SELECT statement that extracts the data from its source tables.

Use COPY TABLE to copy an existing SAS Scalable Performance Data (SPD) Server table to a new table and include indexes as
part of the copy operation. It offers the same parallel table and index 1/O and overlapped input as the LOAD TABLE command.

170

The COPY TABLE and LOAD TABLE statements work only for source and target tables on the local machine.

Table Loading Techniques

The SAS data storage model adds rowsto a data set one at atime. The SAS Scalable Performance Data (SPD) Server 1/O engine
buffers rows to be added from the SAS application and performs block adds using a highly efficient pipelined append protocol
when communicating with the proxy.

. Pardled Table Load Technigue Using PROC APPEND

. Parallel Table Load Technique Using SOL Pass-Through
. Paralel Pass-Through Table Load and Data Subset

. Parald Pass-Through Table Copy

To achieve significant improvements in building atable, create the empty table first, defining indexes on the desired columns.
Then, use PROC APPEND to populate the table and indexes. The example below demonstrates this technique.

Parallel Table Load Technique Using PROC APPEND

/* Create an enpty SPD Server table with the sane */
/* colums and colum attributes as the existing */
/* SAS table. * |

data spdslib. cars;
set sonelib. cars(obs=0);
run;

/* Create indexes for the enpty table so the indexes */
/* are appended in parallel with the table appends. */

PROC DATASETS | i b=spdsl i b;
nodi fy cars;
i ndex create make;
i ndex create origin;
i ndex create npg;
quit;

/* PROC APPEND SAS table Cars to SPD Server table */
/* Cars. The append to the SPD Server table and */
/* its indexes will occur in parallel. */

PROC APPEND
base=spdslib. cars
dat a=sonel i b. cars;

run;

If you are using SQL pass-through, consider using the LOAD TABLE command to perform the same operation.
LOAD TABLE encapsulates the sequence of SAS DATA and PROC steps into an even more powerful technique
for gaining maximum performance when loading a new table. The following example demonstrates the same table
construction using LOAD TABLE and SQL pass-through:

171

Parallel Table Load Technique Using SQL Pass-Through

/* Create a copy of the SPD Server table Cars and */
/* its index fromExanple 1 to another SPD Server */

/* table carl oad using pass-through LOAD conmand. */
/* The table creation of the SPD Server table */
/* carload and its indexes will occur in parallel. */
execut e(
| oad table carload with
i ndex make
on (make),

i ndex origin
on (origin),
i ndex npg
on (npg)
as select *
fromcars
) by sasspds;

Parallel Pass-Through Table Load and Data Subset

/* Create a subset of the SPD Server table Cars */
/* from Exanple 1 to another SPD Server table */
/* Fordcar using the pass-through LOAD conmand. */

/* The table creation of the SPD Server table */
/* Fordcar and its indexes occurs in parallel. */
execut e(

| oad table fordcar with
i ndex origin
on (origin),
i ndex npg
on (npg)
as select *
fromcars
wher e nake="f ord"
) by sasspds;

Parallel Pass-Through Table Copy

/* Create a copy of the SPD Server table Cars and */

/* all its indexes fromExanple 1 to another Data */
/* Server table Copycars using the pass-through */
/[* COPY command. The table creation of the Data */
/* Server table Copycars and its indexes wil| */

/* occur in parallel. */

172

execut e(

copy table copycars
fromcars

) by sasspds;

Loading Indexes in Parallel

A significant strength of SAS Scalable Performance Data (SPD) Server is efficient creation, maintenance, and use of table
indexes. Indexing can greatly speed the evaluation of WHERE Clause queries. The index can aso be a source of sort order when
performing BY -clause processing. Theindex is also used directly by some SAS applications. For example, PROC SQL uses
indexes to efficiently evaluate equi-joins.

. Pardlel Index Creation
. Pardlel Index Updates

Parallel Index Creation

SAS Scalable Performance Data (SPD) Server supports parallel index creation using asynchronous index options.
To enable asynchronous parallel index creation, either submit the SPDSIASY =Y ES macro variable prior to

creating an index in SAS, or use the ASYNCINDEX=Y ES table option.

Both the macro variable and the table option apply to the DATA step INDEX= processing as well asto PROC
DATASETSINDEX CREATE commands. Either method allows all of the declared indexes to be populated with
asingle scan of thetable. A single scan isasubstantial improvement over making multiple passes through the data
to build each index seridly.

Asaways, thereisaprice for parallelism. To create multiple indexes requires enough WORKPATH= disk space
to create all of the key sorts at the same time. The PROC DATASETS structure has the flexibility to allow batched
parallel index creation by using multiple MODIFY groups. The Parallel Index Creation example below inserts
INDEX CREATE statements between two successive MODIFY statements resulting in a parallel creation group.

Parallel Index Creation Example

DATA f oo. pati ent _i nf o;
| ength
| ast _nane $10
first_nanme $20
patient class $2
pati ent_sex $1

pati ent no=10;
| ast _nane="Doe";
first_nane="John";
patient class="XY";
pati ent _age=33;
patient_sex="M;

run;

173

% et spdsi asy=YES;
PROC DATASETS | i b=f oo;
nodi fy patient _info;
i ndex create
patient _no
pati ent cl ass;
nodi fy patient_info;
i ndex create
| ast _nane
first_nane;
nodi fy patient _info;
i ndex create
whol e_nanme=(1 ast _name first_nane)
cl ass_sex=(patient _class patient_sex);
quit;

Indexesfor PATIENT_NO and PATIENT _CLASS are created in parallel, indexesfor LAST_NAME and
FIRST_NAME are created in parallel, and indexes for WHOLE_NAME and CLASS SEX are created in parallel.

Parallel Index Updates

SAS Scalable Performance Data (SPD) Server also supports paralel index updates during table append operations.
Multiple threads enable overlap of data transfer to the proxy, aswell as updates of the data store and index files.
SAS Scalable Performance Data (SPD) Server decomposes table append operations into a set of steps that can be
performed in parallel. The level of parallelism attained depends on the number of indexes that are present on the
table. The more indexes you have, the greater the exploitation of parallelism during the append processing. Aswith
parallel index creation, parallel index updates use WORKPATH= disk space for the key sortsthat are part of the
index append processing.

Truncating Tables

The Truncate command is a PROC SPDO command that allows the deletion of all rows in atable without deleting the table
structure or metadata. The PROC SPDO truncate command is shaded for emphasis in the code example below.

% et host =kaboom ;
% et port=5191 ;
% et donmi n=pat h2 ;

I i bnane &domai n sasspds " &domai n"
server =&host . . &port
user =" anonynous'
i p=YES ;

/* create a table */

data &domai n..staceys table ;

doi =1to 100 ;

174

out put ;
end ;
run ;

[* verify the contents of the created table */

PROC CONTENTS dat a=&donai n. . staceys_table ;
run ;

/* SPDO Truncate command del etes the table */
/* data but |eaves the table structure in */
/* place so new data can be appended */

PRCC SPDO | i b=&domai n ;
set acl user ;
Truncate staceys_table ;

quit ;
/* verify that no rows or data remain in */
/* the structure of staceys table */

PROC CONTENTS dat a=&donai n. . staceys_table ;
run ;

Optimizing WHERE Clauses

SAS Scalable Performance Data (SPD) Server includes more advanced methods to optimize WHERE Clauses. Before SAS
Scalable Performance Data (SPD) Server 4.0, the rule-based, heuristic WHERE Clause planner WHINIT was used to manually
"tune" queriesfor performance. SAS Scalable Performance Data (SPD) Server provides dynamic WHERE Clause costing, an
automatic feature which can replace the need to manually "tune" queries. SAS Scalable Performance Data (SPD) Server dynamic
WHERE-costing uses factors of duplicity and distribution to calculate relative processor "costs' of various WHERE Clause
options. SAS Scalable Performance Data (SPD) Server users can use server parameter commandsin the spdsser v. par mfile or
macro variables to turn dynamic WHERE-costing on and off. 1f dynamic WHERE-costing is turned off, SAS Scalable
Performance Data (SPD) Server revertsto using the rules-based WHERE Clause planner.

WHERE Clause Definitions and Terminology

. WHERE Clauses are selection criteriafor a query that specify one or more boolean predicates.
Implementing the criteria, SAS Scalable Performance Data (SPD) Server selects only records that satisfy the
WHERE clause.

. Predicates are the building blocks of WHERE clauses. Use them stand-alone or combine them with the
operators AND and/or OR to form complex WHERE clauses. An example of aWHERE Clause is

"where x > 1 andy in (12 3)"

In this example, there aretwo predicates, "x > 1" and"y in (1 2 3)". You specify the negative of a
predicate by using "not". For example, " where x > 1 and not (y in (1 2 3))".

175

. Boolean logic determines whether two predicates, joined with an AND or OR, are true (satisfies) or false
(does not satisfy) the specification. The AND operator requires that all predicates be true for the entire
expression to be true. For example, the expression "pl AND p2 AND p3", istrue only if all three predicates
(p1, p2 and p3) are true. In contrast, the OR operator requires only one predicate to be true for the entire
expression to betrue.

For the WHERE clause"(x <5o0ryin(123)) and z = 10", the following truth table describes the overall

result (truth):

Xx <57? "yin (123 ? z =10 ? Resul t
Fal se Fal se Fal se Fal se
Fal se Fal se True Fal se
Fal se True Fal se Fal se
Fal se True True True
True Fal se Fal se Fal se
True Fal se True True
True True Fal se Fal se
True True True True

. Indexes are structures associated with tables that permit SAS Scalable Performance Data (SPD) Server to
guickly access records that satisfy an indexed predicate. In an example WHERE clause, " where x = 10
and y > 11", SAS Scalable Performance Data (SPD) Server selects the best index on column "x" to
directly retrieve records that have avalue of 10 in the "x" column. If no index exists for "x", SAS Scalable
Performance Data (SPD) Server must sequentially read each record in the table searching for "x" equal to 10.

. Simple and compositeindexes. Simple indexesindex a single column; composite indexes index two or
more columns. The list of column(s) in anindex is sometimes called the index key.

. Parallelism isthe SAS Scalable Performance Data (SPD) Server capability that enables multiple threads to
execute in paralel. Using multiple processorsin parallel mode is sometimes called 'divide and conquer’
processing. SAS Scalable Performance Data (SPD) Server uses parallelism to evaluate the multiple indexes
that are involved in more complicated WHERE clauses.

SAS Scalable Performance Data (SPD) Server Indexing

SAS Scalable Performance Data (SPD) Server tables may have one or more indexes. There are a combination of four different
indexing strategies atable can use, and the choice depends on the data populating the table, the size of the table, and the types of
queries that will be executed against the table.

SAS Scalable Performance Data (SPD) Server indexing evaluates the processor "cost" of a WHERE Clause. The section Costing
Using Duplicity and Distribution Values shows how factors of duplicity and distribution are used to choose the eval uation

strategy that will perform the WHERE Clause at the smallest processor "cost”. The five evaluation strategies that the WHERE
Clause planner usesare EVAL 1, EVAL 2, EVAL 3, EVAL 4, and EVAL 5. Thediffering EVAL strategies calculate the number
of rows that will be required to execute a given query.

"True" rows are rows that contain the variable values specified in aWHERE Clause. "False" rows do not contain the variable
value specified in the clause. EVAL 1, EVAL 3, EVAL 4, and EVAL 5 evauate "true" rowsin the table using indices. EVAL 2
evaluates true rows of atable without using indices. EVAL strategies are explored in more detail in the section below on
WHERE Clause EVAL Strategies.

o SPD Indexes
o MINMAX Indexes

176

SPD Indexes

SAS Scalable Performance Data (SPD) Server uses segmented indices. A segmented index is created by dividing
theindex of atableinto equally sized ranges of rows. Each range of rows s called a segment, or slot. Y ou use the
SEGSIZE= setting to define the size of the segment. A series of sub-indices each point to blocks of rowsin the
table. By default, SAS Scalable Performance Data (SPD) Server creates an index segment for every 8192 rowsin a
table.

The SPD segmented index facilitates SAS Scalable Performance Data (SPD) Server's parallel evaluation of
WHERE Clauses with an indexed predicate. First, the SPD index supports a pre-evaluation phase to determine
which segments contain values that satisfy the predicate. Pre-evaluation speeds queries by eliminating segments
that do not contain any possible values. Then, up to SPDSTCNT= threads are launched to query the remaining
index segments. The threads query the segments of the SPD index in parallel to retrieve the segment rows that
satisfy the predicate. When all segments have been queried, the per-segment results are accumul ated to determine
the rows that satisfy the predicate. If the query contains multiple indexed predicates, then those predicates are also
evaluated in parallel. When all predicates have been completed, their results are accumulated to determine the rows
that satisfy the query.

MINMAX Indexes

SAS Scalable Performance Data (SPD) Server contains a new table option called MINMAXVARLIST=. The
primary purpose of the MIINMAXVARLIST= table option is for use with SAS Scalable Performance Data (SPD)
Server dynamic cluster tables where specific membersin the dynamic cluster contain a set or range of values, such
as sales data for a given month. When a SAS Scalable Performance Data (SPD) Server SQL subsetting WHERE
Clause specifies specific months from arange of sales data, the WHERE planner checks the min/max indexes.
Based on the min/max index information, the SAS Scalable Performance Data (SPD) Server WHERE planner
includes or eliminates member tablesin the dynamic cluster for evaluation.

Use the MIINMAXVARLIST= table option with either numeric or character-based columns.
MINMAXVARLIST= usesthelist of columns you submit to build an index. The MINMAXVARLIST= index
contains only the minimum and maximum values for each column. The WHERE Clause planner uses the index to
filter SQL predicates quickly, and to include or eliminate member tables belonging to the cluster table from the
evaluation.

Although the MINMAXVARLIST= table option is primarily intended for use with dynamic clusters, it also works
on standard SAS Scal able Performance Data (SPD) Server tables. MINMAXVARLIST= can help reduce the need
to create many indexes on atable, which can save valuable resources and space.

The MINMAXVARLIST= table option is only available when atable is being created or defined. If atable hasa
MINMAXVARLIST= type of index, moving or copying the table will destroy the index unless
MINMAXVARLIST= is specified in the table output.

% et domai n=pat h3 ;
% et host =kaboom ;
% et port=5201 ;

I i bnane &domai n sasspds " &domai n"

server =&host .. &port
user =" anonynous' ;

177

/* Create three tables called */
/* xyl, xy2, and xy3. */

data &domain..xyl(m nmaxvarlist=(x y));
do x =1 to 10;
doy =1to 3
out put ;
end;
end;
run;

data &domai n..xy2(m nmaxvarlist=(x y));
do x = 11 to 20;
doy =41t0 6
out put ;
end;
end;
run;

data &domai n..xy3(m nmaxvarlist=(x y));
do x = 21 to 30;
doy =710 9 ;
out put ;
end;
end;
run;

/* Create a dynamic cluster table */
/* called cluster _table out of */
/* new tables xyl, xy2, and xy3 */

PROC SPDO | i brary=&domai n ;
cluster create cluster _table
mem=xyl
menmFxy 2
MenExy 3
maxsl| ot =10;
quit;

/* Enabl e WHERE eval uation to see */
/* how the SQL planner selects */
/* menbers fromthe cluster. Each */
/* menber is evaluated using the */
[* mn-max i ndex. x|

% et SPDSWDEB=YES;

[* The first nmenber has true rows */

PROC PRI NT dat a=&donmi n..cluster _table ;
where x eq 3 and y eq 3;
run;
178

/* Exam ne the other tables */

PROC PRI NT dat a=&domai n. . cluster _table ;
where x eq 19
and y eq 4 ;

run;

PROC PRI NT dat a=&donmi n..cluster _table ;
where x eq 22
and y eq 9;

run;

PROC PRI NT dat a=&dommai n. . cluster_table ;
where x between 1 and 10
and y eq 3;

run;

PROC PRI NT dat a=&dommain. . cluster_table ;
where x between 11 and 30
and y eq 8 ;

run;

/* Delete the dynam c cluster table. */

PROC SPDO i brary=&domain ;
cluster undo cluster _table ;
quit;

PROC DATASETS | i b=&domai n noli st;
delete xyl xy2 xy3 ;
quit ;

WHERE Clause Planner

The WHERE Clause Planner implemented in SAS Scalable Performance Data (SPD) Server avoids computation-intensive
operations and uses simple computations where possible. WHERE Clauses in large database operations can be very resource-
intensive operations. In SAS Scalable Performance Data (SPD) Server 3.x and earlier releases, query authors often needed to
manually "tune" queries for performance. The "tuning" was accomplished using macro variables and index settings. The
WHERE Clause planner integrated into SAS Scalable Performance Data (SPD) Server does the "tuning” work for the user by
automatically costing the different approaches to index evaluation.

o WHERE-Costing Using Duplicity and Distribution Values
o WHINIT: Indexed and Non-Indexed Predicates

o WHERE Clause EVAL Strategies

o Assigning EVAL Strategies

o Sample WHINIT Output

o WHINIT Output Return Keywords

179

o Composite Index Permutations

WHERE-Costing Using Duplicity and Distribution Values

Two key factors are used to evaluate, or "cost" WHERE Clause indices. The factors are duplicity and distribution.

Duplicity refers to the proportion expressed by the number of rowsin atable divided by the number of distinct
valuesin theindex. When many observationsin atable hold the same value for agiven variable, the variable value
issaid to have a high duplicity. An example of atable with high duplicity might be atable of unleaded gasoline
prices from service stations in the same area of alarge city.

Conversely, when atable has only one or few observations that contain a given value for avariable, then that value
can be described as low duplicity. An example of atable with low duplicity might be an office phone directory,
where the variable for phone extension is always unique.

The duplicity value for an index ranges from 1 to the number of rows in the table. Indiceswith a duplicity value of
1 areunique. Indiceswith high duplicity generate a score that is close to the number of rows in the table.

Distribution refers to the sequential proximity between observations for values of avariable that are repeated
throughout the variable's data set distribution. When a certain value for a variable exists in many observations that
are scattered uniformly throughout the table, that value is said to have awide distribution. If avariable value exists
in many contiguous or nearly contiguous rows, the distribution is clustered.

WHERE Clause EVAL Strategies

SAS Scalable Performance Data (SPD) Server indexing keeps track of the duplicity and distribution of variable
valuesin atable and usesthem to calculate the cost of a WHERE Clause. The WHERE Clause planner uses four
evaluation strategies to determine the number of rows that will be required to execute a given query. The four
evaluation strategiesare EVAL 1, EVAL 2, EVAL 3, and EVAL 4. "True" rows are rows that contain the variable
values specified in aWHERE Clause. "False" rows do not contain the variable value specified in the clause.

EVAL 1, EVAL 3, EVAL 4, and EVAL 5 evaluate "true" rowsin the table using indices. EVAL 2 evaluates true
rows of atable without using indices.

. EVAL 1 evauates "true" rows using an index to locate the true rows in each segment of the table. The
index evaluation process generates alist of row IDs per segment. EVAL 1 accepts WHERE Clause
operators for equivalency expressionssuchasEQ, =, LE, <=,LT, <, GE, >=, GT, >, IN, and
BETWEEN. EVAL 1 usesthreaded parallel processing across the index segments to permit concurrent
evaluation of multiple indices. EVAL 1 combines multiple segment bitmaps from queries that use multiple
indices to generate the list of row 1Ds per segment.

. EVAL 2 takes"true" rows as determined by EVAL 1, EVAL 3, or EVAL 4, then uses brute force to
eliminate any rows shown to be "false", leaving a table which contains only "true" rows. EVAL 2 processes
all rows of atable when no index evaluation is possible. For example, no index evaluation is possible when
an index is not present or when some predecessor function performs an operation that invalidates the index.

. EVAL 3isasingleindex sequential process. Use EVAL 3 when the number of rows returned by an index
is unique or nearly unique (when duplicity islow). EVAL 3returnsalist of "true” rows for the entire table.
EVAL 3 only supports the equality operators EQ and =.

180

. EVAL 4issimilar to EVAL 3 but supports alarger set of inequality and inclusion operators, such as|IN,
GT,GE, LT, LE, and BETWEEN.

. EVAL 5 can operate when the SAS Scalable Performance Data (SPD) Server Index Scan Facility is used.
The EVAL 5 strategy uses index metadata and aggregate SQL functionsto evaluate "true" rows. The EVAL
5 strategy does not require atable scan.

For example, when x isindexed, and SAS Scalable Performance Data (SPD) Server usesEVAL 5to
evaluate the SQL expression

count (*) where x=5 ,

the index metadata is scanned for the condition, "x = 5" instead of performing table scans. The EVAL 5
strategy supports the min(), max(), count(), count(distint), nmiss(), and range() functions. The EVAL 5
strategy cannot be used on SQL expressions which uses functions other than those listed above.

The WHERE Clause planner in SAS Scalable Performance Data (SPD) Server 3.x relied heavily on EVAL 1 and
EVAL 2 threaded strategies to evaluate most clauses. Sometimes the SAS Scal able Performance Data (SPD)
Server 3.x EVAL 1 and EVAL 2 strategies would over-thread and over-manipulate indices during the eval uations
during WHERE Clause evaluation. This resulted in reduced performance or excessive resource

consumption. With SAS Scalable Performance Data (SPD) Server 4.4's WHERE Clause costing in place, EVAL 3
and EVAL 4 strategies are more suitable eval uation engines which conserve resources and boost processor
performance.

Assigning EVAL Strategies

The SAS Scalable Performance Data (SPD) Server WHERE Clause planner uses the following logic when
selecting an EVAL strategy to evaluate expressions:

When the planner encounters a WHERE Clause, it builds atree that represents all of the possible predicate
expressions. The objective of the WHERE Clause planner is to divide the set of predicate expressionsinto two
trees. One tree collects predicate expressions which lack usable indices and are constrained to EVAL 2
evaluation. The remaining predicate expressions are put in the other tree. Each of the predicate expressionsin the
second tree are scanned and assigned an evaluation strategy of EVAL 1, EVAL 3, or EVAL 4, depending on the
WHERE Clause costing values and the syntax used in the predicate expression .

The second tree, which does not use the EVAL 2 method, is scanned for predicate expressions that return values
with high duplicity . When high duplicity predicate expressions are identified, they are ranked. The predicate
expression with the highest duplicity valueis set aside for an index-based evaluation. All of the other remaining
predicate expressions are evaluated using the EVAL 2 tree strategy. The lowest duplicity predicate expression is
evaluated using either the EVAL 3 or the EVAL 4 strategy. The syntax used in the predicate expression determines
which of the two strategiesto use. Frequently, the singleindex EVAL 3 or EVAL 4 is chosen because single index
evaluations require smaller processing loads and yield reliable results. With alow processor overhead and a high
datayield, thereis no reason to include other indices when a single index is sufficient.

When the WHERE Clause planner determines that no predicate expressions meet the high duplicity criteria, it
choosesthe EVAL 1 strategy. Beforethe EVAL 1 operation is performed, the costing algorithm is run on the
remaining predicates in order to prune any predicate expressions which represent large processor loads and large
datayields. Predicate expressions which will require large processor loads and produce large data yields are moved
tothe EVAL 2 tree.

181

Index Scan Facility

High Yield Predicate Expressions

High Processing L oad Predicate Expressions

High Yield and High Processing L oad Predicate Expressions
Turning WHERE Clause Costing Off

Index Scan Facility

When SAS Scalable Performance Data (SPD) Server invokes the Index Scan Facility, and the SQL
aggregate uses the specified supported functions for EVAL 5, the EVAL 5 strategy uses afast index
metadata scan to select SQL statements that meet the aggregate function criterion.

High Yield Predicate Expressions

A large, or high datayield expression has a high percentage of rows containing true segments. The
default threshold for afor high yield expression is one where less than 25% of the rows evaluated are
returned by the predicate. At this point, processor costs related to index use begin increasing without
proportional returns on the evaluation results.

High Processing Load Predicate Expressions

Predicate expressions that require high processing loads are predicates that usually require large
amounts of index manipulation before they can complete. When the amount of index work that is
required exceeds the work that is required to use an EVAL 2 strategy, the predicate expression will
be best evaluated by the EVAL 2 tree. Open-ended predicate expressions that contain many syntax
inequality operators such as GT and LT or many variations in syntax are good high work candidates
for EVAL 2. High work predicate expressions are detected by comparing the number of unique
valuesin the predicate expression to the number of unique values contained in the index.

High Yield and High Processing Load Predicate Expressions

When all predicate expressionsin EVAL 1 are high yield or high processor load, SAS Scalable
Performance Data (SPD) Server uses segmented costing. In segmented costing, "true" segments are
passed to EVAL 2 for processing. EVAL 2 only processes table segments that can provide "true"
rows for the WHERE Clause.

Turning WHERE Clause Costing Off

Y ou can use the SAS Scalable Performance Data (SPD) Server spdsser v. par mparameter file to
configure the default WHERECOSTING parameter setting to ON. If you want to turn WHERE
Clause costing off within the scope of ajob, you can use macros or aDATA step to turn WHERE
Clause costing off and on:

182

. The SPDSWCST=NO macro setting turns off WHERE Clause costing.

. The SPDSWSEQ=Y ES macro overrides WHERE Clause costing and allows you to force a
global EVAL3 or EVALA4 strategy.

. The WHERECOSTING parameter can be removed or set to NOWHERECOSTING in the
spdsserv. par mfileif you want to turn off costing for the entire server.

If you turn WHERE Clause costing off inthe spdsser v. par m parameter file, or if you use the

macro setting SPDSWCST=NO, the WHERE Clause planner reverts to the rules-based WHERE
Clause planning of earlier versions of SAS Scalable Performance Data (SPD) Server.

WHINIT: Indexed and Non-Indexed Predicates

If SAS Scalable Performance Data (SPD) Server is not configured to use dynamic WHERE-costing, the WHERE
Clause planner reverts to the rule-based heuristics of WHINIT. WHINIT uses rules to select indexes for the
predicates, and then select the most appropriate EVAL strategy for the query.

WHINIT splits the WHERE clause, represented as atree, into non-indexed and indexed parts. Non-indexed
predicates include

. non-indexed columns
. functions
. columnsthat have indexes that WHINIT cannot use.

If the WHERE Clause planner places indexed predicates in the non-indexed tree, it is usually because the predicates
involve an OR expression. An example of a predicate with an OR expression is, "wherex =1 ory = 2". Even if
column "x" isindexed, WHINIT cannot use the index because the OR is digunctive. As aresult of the disunctive
OR, the planner cannot use the index, and places both the predicates, "x = 1" and "y = 2", into the non-indexed part
of the WHERE tree.

Sample WHINIT Output

SAS users can use an SAS Scal able Performance Data (SPD) Server macro variable to view WHERE Clause
planner output:

% et SPDSVIDEB=YES;

The following is what the WHINIT plan might give for the following scenario:

. aWHERE clause of "wherea=1andbin(123)andd=3and (d + 3=¢)"
. an SPD index IDX_ABC on columns (A B C)
. an SPD index D on column (D).

Note: The line numbers are for reference; they are NOT part of the actual output.
L:whinit: WHERE ((A=1) and Bin (1, 2, 3) and (D=3) and (C=(D+3)))

2:whinit: wh-tree presented
183

/-NAME = [A]
4: /-CEQ ---|
5: |
\-LITN = [1]
6: --LAND---|
7: |
/ - NAME = [B]
8: [--TN-----]
9: |
| /-LITN = [1]
10: |
\-SET----|
11: |
|--LITN = [2]
12: |
\-LITN = [3]
13: |
/-NAME = [D
14: | --CEQ ---]|
15: |
\-LITN = [3]
16: |
/-NAME = [(C]
17: \-CEQ ---|
18:
| /-NAME = [D]
19:
\ - AADD- - - |
20:

\-LITN = [3]
21:whinit: wh-tree after split
22: /-NAME = [(C]
23 --CEQ---|
24. |

/-NAME = [D
25: \ - AADD- - - |
26:

\-LITN = [3]

27:whinit: SBM I NDEX D uses 50% of segs (WTHI N maxsegrati o 75%
28:whinit: INDEX tree after split

29:
/-NAME = [A] <1>SBM | NDEX | DX_ABC (A, B)

30: /-CEQ---|
31: |

\-LITN = [1]
32: --LAND --|
33: |

/ -NAME = [B]
34: [--TN----]
35: |

| /-LITN = [1]
36: |

\-SET----|
37: |

184

|--LITN

[2]

38: |
\-LITN = [3]
39: |
/-NAME = [D] <2>SBM | NDEX D (D)
40: \-CEQ ---|
41

\-LITN = [3]
42:whinit returns: ALL EVAL1(w SEGLI ST) EVAL2

Line 1 shows what the WHINIT Planner received. Do not be surprised -- what the Planner receives can differ from
your entries. Sometimes SAS optimizes or transforms a WHERE clause before passing it to SAS Scalable
Performance Data (SPD) Server. For example, it can eliminate entities such as NOTS, the union of set lists, and so
on.

Lines 2 to 20 show the presented WHERE clause in atree format. The tree format is a user-readable form of the
actual WHERE clause that is processed by the SAS Scalable Performance Data (SPD) Server engine.

Lines 21 to 26 show the non-indexed WHERE tree, the result of splitting off the indexed part. The non-indexed
WHERE tree can be "empty" or it can look the same as lines 2 to 20 if no indexes are selected. Bear in mind that it
is the non-indexed part of the WHERE clause that WHINIT uses to filter records obtained by the indexed strategies
(EVALL, 3o0r 4).

Lines 27 to 41 shows that the percentage of segments containing values selected from column D iswith the
maximum allowed to proceed with pre-segment logic. Therefore, only those segments that contain values that
satisfy the where clause for column D will be included in further query processing for that column. Composite
index IDX_ABC and simpleindex D are used to resolve the indexed WHERE clause predicates.

Line 42, thelast line in our output, shows which strategies are used. The first keyword "ALL" indicates that SAS
Scalable Performance Data (SPD) Server can identify correctly ALL resulting records, without help from the SAS
System. First, SAS Scalable Performance Data (SPD) Server will call EVAL1, an indexed method, to quickly
access alist of records which satisfy "wherea=21and b in (12 3)" and"d = 3", then it will use EVAL2to
determineif "c = d + 3" istrue on these records.

When output from EVAL 1 displays the suffix "w/ seglist”, asit does in the above output, it means that SPD indexes
were detected, and that the indexes were used to filter out only the segments that satisfy the given indexed
predicates. When EVAL1 has no suffix, it meansthat ALL segments will be evaluated.

SAS Scalable Performance Data (SPD) Server stores the minimum and maximum values for atable index in a
global structure. WHINIT can use the numeric range to 'prune’ predicates when the table index values are out of the
min / max range. WHINIT output keywords can indicate pruning activity. For example, if WHINIT had
determined that the values for "D" (in our WHERE clause) are between 5 and 13, then as a consequence, the
predicate "where d = 3" could never betrue. Inthiscase, WHINIT would have pruned this predicate sinceit is
logically impossible, or FALSE. Pruning can also affect higher nodes. If the "d = 3" predicate were deemed
FALSE, then the AND sub tree would also be FAL SE and would also have been pruned.

WHINIT Output Return Keywords

In the last line of the output, "ALL" is one of the following keywords that the Planner can display:

. ALL - SAS Scaable Performance Data (SPD) Server can evaluate ALL of the WHERE clause when
185

determining which records satisfy the clause.

. SOME - SAS Scalable Performance Data (SPD) Server can handle SOME, or part, of the WHERE clausg; it
will then need some of the SAS System to help identify resulting records.

. NONE - SAS Scalable Performance Data (SPD) Server cannot evaluate this WHERE clause; the SAS
System will perform all evaluations.

. TRUE - SAS Scaable Performance Data (SPD) Server has determined that the entire WHERE clauseis
TRUE, and that all the records satisfy the given WHERE clause. (It did index minimum / maximum values
or other checks, for example, "where 1 =1".)

. FALSE - SAS Scaable Performance Data (SPD) Server determined that the WHERE clause is FAL SE, that
is, no records can satisfy the WHERE clause.

. RC=number - Aninternal error has occurred; the error number is displayed.

. EVALX -the EVAL strategies the Planner will use, "x" canbe 1, 2, 3 or 4.

Composite Index Permutations

A composite index can involve one or more "in set” equality predicates, such as an index on columns (ab ¢). When
WHINIT is presented with a WHERE Clause that has such a composite index, for example, "wherea=1and bin
(123)andcin(45)", it will generate all permutations of this compound key, probing the index for each value. In
our example, six values are generated:

(abc)=(114)(115)(124)(125)(134) (135)

The permutations start at the "back" end of the key to take advantage of locality: to locate keys with close values
which access the same disk page. This means less input/output operations on the index.

How to Affect the WHERE Planner

. Macro Variable: SPDSWCOST=

. Macro Variablee SPDSWDEB=

. Macro Variable: SPDSIRAT=

. Macro Variable SPDSNIDX = or Table Option NOINDEX=
« Macro Variable SPDSWSEQ=

. Server Parameter Option WHERECOSTING

« WHERENOINDEX= Option

. When and Why Should | Suppress Indexes?

. ldentical Parallel WHERE Clause Subsetting Results

Macro Variable SPDSWCST=

To turn off dynamic WHERE-costing, specify

186

% et SPDSWCST=NQG,

Macro Variable SPDSWDEB=

To turn on WHINIT planning output, specify

% et SPDSWDEB=YES;

Macro Variable SPDSIRAT=

To affect the WHERE-planner SPD index pre-eval uation, specify
% et SPDSI RAT=i ndex-segnent-rati o;

The SPDSIRAT= macro variable specifies a maximum percentage (ratio) for the number of segmentsin the hybrid
bitmap which must contain the index value before the WHERE-planner should pre-evaluate a segment list.

The segment list enables the planner to launch threads only for segments that contain the value. If the value number
exceeds the ratio, the planner performs no pre-evaluation. Instead, the planner launches a thread for each segment
in the table.

The SPDSIRAT= macro variable option can be used to ensure that time spent in pre-evaluation does not exceed the
cost of launching athread for each segment in the table. By default SPDSIRAT=is set to 75 percent. This means
that if an index value is contained in 75 percent or less of the index segments, the hybrid bitmap logic will pre-
evaluate the value and return alist of segments to the WHERE Clause planner. If more than 75 percent of the
index segments contain the target index value, the time spent on pre-evaluation might be more than the time saved
by skipping a small number of segments.

For some tables 75 percent may not be the optimal setting. To determine a better setting, run a performance
benchmark, adjust the percentage, and rerun the performance benchmark. Comparing results will show you how
the specific data population you are querying responds to shifting the index-segment ratio. The allowable range to
adjust the setting value is from 0 to 100, where 0 means never perform WHERE Clause pre-evaluation, and 100
means always perform WHERE Clause pre-evaluation.

Macro Variable SPDSNIDX= or Table Option NOINDEX=

To suppress WHINIT use of any index, specify the no index SAS Scalable Performance Data (SPD) Server macro
variable or the corresponding SAS Scalable Performance Data (SPD) Server table option:

% et SPDSNI DX=YES;

data _null _;
set foo.a (noindex=yes);

187

Macro Variable SPDSWSEQ=

By default, when WHINIT detects equality predicates that have indexes, it chooses EVAL1. However, the user
may decide that sequential EVAL3 or EVAL4 methods are better. For example, in an equality WHERE predicate
such as"wherex = 3", WHINIT will default EVAL1 to evaluate the clause. If auser knows that the table queried
has only afew records that can satisfy this predicate, EVAL3 may be a better choice. To force WHINIT to choose
EVAL3/4, specify:

% et SPDSWSEQ=YES;

‘Server Parameter Option [NOJWHERECOSTING

Controls whether the server uses dynamic WHERE-costing. When dynamic WHERE-costing is disable, the rules-
based WHINIT heuristic is used to "tune" WHERE Clauses for performance. The default setting is for
NOWHERECOSTING.

WHERENOINDEX Option

A user may decide that one or more indexes selected by aWHINIT plan are not the best choice. This can occur
because WHINIT is rule-based, not cost-based. Sometimes WHINIT selects a less-than-optimal plan. WHINIT's
use of specific indexes can be affected by specifying the SAS Scalable Performance Data (SPD) Server option
WHERENOINDEX= in your data step.

data null _;
set foo.a (wherenoi ndex=(idx_abc d))

This example specifies that WHINIT not use index "idx_abc" and index "d".

When and Why Should | Suppress Indexes?

Most rule-based planners, including WHINIT from SAS Scalable Performance Data (SPD) Server, assume that the
index has a uniform distribution of values between the upper and lower value boundaries. This meansif data values
range between 2 and 10, that there are an equal number of 3's and 4's, and so on. When the assumption of auniform
distribution isfalse, an indexed predicate can return alarge number of records. In turn, this causes WHINIT's
indexed plan to run slower than a sequential read of the entire table. In this case the index should be suppressed.

Hereis another, more subtle instance. When the WHERE clause uses only the front part of the key, WHINIT
selects a composite index. Assume an index abcd on columns A, B, C and D and an index e on column E, and
specify the WHERE clause

where a = 3 and e = 5;

Normally, WHINIT will select both indexes (abcd and €) and choose EVAL 1. However, using the index abced just
to interrogate a might return alarge number of records. In this case, suppressing the abcd index may be a good
idea. If so, WHINIT will still choose EVAL1 for e=5, or EVAL3if SPDSWEV1=NO, and EVAL2, the post-

188

filter, for a= 3.

Identical Parallel WHERE Clause Subsetting Results

Under certain circumstances, it is possible to perform parallel WHERE Clause subsetting on a table more than once
and to receive dlightly different results. This event can occur when submitting parallel WHERE Clause code to
SAS Scalable Performance Data (SPD) Server that utilizes the SAS OBS=nnnn data set option.

The SAS OBS=nnnn data set option causes processing to end with the specified (nth) observation in atable.
Because parallel WHERE Clause processing is threaded, subsetting a table and using the OBS=nnnn may not
produce identical results from run to run, or different batch jobs using the sasme WHERE Clause code may produce
dightly different results.

When a parallel WHERE-cause evaluation is split into multiple threads, SAS Scalable Performance Data (SPD)
Server employs a multi-threading model that is designed to return rows as fast as possible. Some threads may be
able to complete row scans incrementally faster than other threads, due to uneven loads across multiple processors
or system contention issues. Thisinequity can create minute variances which can generate non-identical resultsto
the same subsetting request.

If you have code that performs parallel WHERE Clause subsetting in conjunction with the OBS=nnnn data
processing option, and if it iscritica that successive WHERE Clause subsets on the same data must be identical,
you can eliminate thread contention error by setting the thread count value for that operation to 1.

To set the SAS Scalable Performance Data (SPD) Server thread count value, you can use the SPDSTCNT= macro:

% et SPDSTCNT=1;

The same potential for subsetting variation applies when a data step uses the OBS=nnnn data processing option
with a parallel by-clause, such as:

data test1l;
set spds44.testdata (obs=1000);
where j in (1,5, 25);
by i;

run;

Use the SPDSTCNT= macro solution to ensure identical results across multiple identical table subsetting requests.

. WHERE Clause Subsetting Variation Example

WHERE Clause Subsetting Variation Example:

Job 1 and Job 2 use the same tables and data requests but produce non-identical results as seen in the
respective Job 1 and Job 2 outputs.

To eliminate variation in the output, ssmply add the thread count statement

189

% et SPDSTCNT=1;

to the beginning of each job.

Job 1

data testl
set spds44.testdata
(obs=1000);
where j in (1,5, 25);
run;

PROC SORT dat a=test1;
by i;

run;

PRCC PRI NT data=test1

(0obs=10);
run;

Job 1 Output:

The SAS System 11: 44 Monday, May 9, 2005
Qbs a i] k
1 24601 1 1
2 24605 5 5
3 24625 25 0
4 24701 1 1
5 24705 5 5
6 24725 25 0
7 24801 1 1
8 24805 5 5
9 24825 25 0
10 24901 1 1
Job 2:
data test2
set spds44.testdata
(0obs=1000);
where j in (1,5, 25);
run;

PROC SORT dat a=t est 2;
by i;
run;
190

PRCC PRI NT dat a=t est 2
(0obs=10);
run;

Job 2 Output:

The SAS System
11: 44 Monday, My 9, 2005 1

Qbs a i] k
1 1 1 1
2 5 5 5
3 25 25 0
4 101 1 1
5 105 5 5
6 125 25 0
7 201 1 1
8 205 5 5
9 225 25 0

10 301 1 1

WHERE Clause Examples

. Examplel: "wherei=1andj=2and m=4"

. Example2: "whereiin(1,2,3)andjin(4,5,6,7)andk >8and m=2"

. Example 3: "wherei =1andj > 5 and mod(k, 3) = 2"

. Example4: "wherei =1 andj > 5 and mod(k, 3) = 2" (the index I1JK is suppressed)

The WHERE Clause examples below assume that the user is connected to the SAS Scalable Performance Data (SPD) Server
LIBNAME foo and has executed the following SAS code:

data foo. a;
do i=1 to 100;
do j=1 to 100;
do k=1 to 100;
menod(i, 3) ;
out put ;
end;
end;
end;
run;

proc datasets |ib=foo;
nodi fy a;
index create ijk = (i j k);
i ndex create j;
index create m
qui t;
191

Example 1 "wherei=1andj=2and m=4"

whinit: WHERE ((1=1) and (J=2) and (M-4))
whinit: wh-tree presented

/-NAME = [I]
/-CEQ---|
I
\-LITN = [1]
-~ LAND- - - |
I
/-NAME = [J]
I--CEQ---I
\-LITN = [2]
|
/-NAME = [M
\-CEQ---|

\-LITN = [4]
whinit: wh-tree after split
--[enpty]
whinit: pruning | NDEX node which is trivially FALSE
/-NAME = [M INDEX M (M
--CEQ ---|
\-LITN = [4]
whinit: INDEX tree evaluated to FALSE
whinit returns: FALSE

Here the only values that column M can contain are O, 1, or 2. Thus, the predicate m = 4 isidentified astrivially
FALSE. Because this predicate is part of an AND predicate, it too is FALSE. Consequently, the entire WHERE
clauseis pre-evaluated to FAL SE, meaning that no records can satisfy this WHERE clause. Thus, as aresult of the
pre-evaluation, no records are actually read from disk. Thisis an example of optimization at its best.

Example 2: "whereiin (1,2,3)andjin (4,5,6,7)and k >8 and m = 2"

whinit: WHERE (I in (1, 2, 3) and J in (4, 5, 6, 7) and (K>8) and (M=2))
whinit: wh-tree presented

/-NAME = [1]
[-IN----]
I
| /-LITN = [1]
I
\ - SET----|
I
[--LITN = [2]
I
\-LITN = [3]
-~ LAND- - - |
I
/-NAME = [J]

192

| /-LITN = [4]
\-SET-l——-|
| |--LITN = [5]
| |--LITN = [6]
| \-LITN = [7]
/-NAl\/Elz[K]
|-~ CGT- - |
\-LITN|:[8]
/-NAIVE|:[|V]
\-CEQ---|
\-LITN = [2]

whinit: SBM I NDEX M uses 60% of segs(W THI N maxsegrati o 100%
whinit: wh-tree after split
/-NAME = [K]
--CGT---- |
\-LITN = [8]
whinit: INDEX tree after split

/-NAME = [1] <1>SBM I NDEX 1JK (I,J)

[-IN----]
| | /-LITN = [1]
\-SET-l——-|
| [--LITN = [2]
| \-LITN = [3]
-~ LAND- - - |
/-NAIVE|=[J]
|- 1N
| | /-LITN = [4]
\-SE-l---|
| |--LITN = [5]
| |--LITN = [6]
| \-LITN = [7]
/-NAI\/E|: [M <2>SBM | NDEX M (M
\- CEQ -~ -|
\-LITN = [2]

whinit returns: ALL EVAL1(w SEGLI ST) EVAL2

193

Here, acomposite index ijk was defined on columns (i j k). This compositeindex is used for column'si and j,
which is an equality index predicate. Column k is not included because it involves ainequality operator (greater
than). Since there are no other indexes for column k, this predicate is assigned to EVAL2 . EVAL2 will post-filter
the records obtained through the use of indexes.

Example 3: "wherei=1and j >5 and mod(k, 3) = 2"

whinit: WHERE ((1=1) and (J>5) and (MOD(K, 3)=2))
whinit: wh-tree presented

/-NAME = [1]
/-CEQ---|
I
\-LITN = [1]
-~ LAND- - - |
I
/-NAME = [J]
ICGT|
\-LITN = [5]
I

I

/- FLST---|
I

| | - - NAMVE
I

| \-LI TN
\-CEQ ---|

/- FUNC

[MOD()]

[K]
[3]

\-LITN = [2]
whinit: wh-tree after split

/-FUNC = [MOX()]
/- FLST---|
I
| --NAME = [K]
I
\-LITN = [3]
--CEQ - --|
\-LITN = [2]
whinit: SBM I NDEX | JK uses 1% of sges(W THI N maxsegrati o 75%
whinit: SBM I NDEX J uses at |east 76% of segs(EXCEEDS nmaxsegrati o 75%
whinit: INDEX tree after split

/-NAME = [1] <1>SBM I NDEX |JK (1)

/- CEQ-- -]
I

\-LITN = [1]

-~ LAND- - - |

I

/-NAME = [J] <2>SBM I NDEX J (J)
\-CGT-- - - |

\-LITN = [5]
whinit returns: ALL EVAL1(w SEGLI ST) EVAL2

194

Here the indexes on column i, a composite index on the columns (i j k), and the column j are combined. In this
example WHINIT uses both EVAL1 and EVALZ2. Thej predicate involves ainequality operator (greater than).
Therefore, WHINIT cannot combine the predicate with i and the composite index involving i andj (and k).

Using the composite index ijk in this plan may be inefficient. If asmaller composite index (that is, oneoni j or a
simple index on i) were available, WHINIT would select it. In lieu of this, try benchmarking the plan. Suppress the
composite index and compare the results to the existing plan to see which is more efficient (faster) on your
machine.

The example that follows shows what WHINIT's plan would look like with the composite index suppressed.

Example 4: "wherei =1and j>5 and mod(k, 3) = 2" (the index IJK is suppressed)

whinit: WHERE ((1=1) and (J>5) and (MOD(K, 3)=2))
whinit: wh-tree presented

/-NAME = [I]
/-CEQ---|
I
\-LITN = [1]
--LAND- - - |
I
/-NAME = [J]
ICGT|
\-LITN = [5]
I
/-FUNC = [MOD()]
|
/- FLST---|
I
I I | --NAME = [K]
[\-LITN = [3]
\-CEQ - --|
\-LITN = [2]
whinit: wh-tree after split
/-NAME = [1]
/-CEQ ---|
I
\-LITN = [1]
--LAND- - - |
|
/-FUNC = [MOD()]
I
/- FLST---|
I
I I | --NAME = [K]
| \-LITN = [3]

\-CEQ ---|

195

\-LITN = [2]

whinit: SBMINDEX J uses at |east 76% of segs (EXCEEDS naxsegratio 75%
whinit: checking all hybrid segnents
whinit: INDEX tree after split

/-NAMVE = [J] <1>SBM I NDEX J (J)
--CGT----|

\-LITN = [5]
whinit returns: ALL EVAL1 EVAL2

Notice that the predicate involving column i is non-indexed. WHINIT evauatesit using EVAL2. Because the
predicatej > 5 still uses an inequality comparison, WHINIT continuesto use EVAL1. Finally, because the
percentage of segments that contain values for column J exceeds the maximum segment ratio, pre-segment logic is
not done on column J. Asaresult, all segments of the table are queried for values which satisfy the WHERE
Clause for column J.

Server-Side Sorting

In most instances, using a BY -clause in SAS code submitted to a SAS Scalable Performance Data (SPD) Server tabletriggersa
BY -clause evaluation by SAS Scalable Performance Data (SPD) Server. This BY -clause assertion to the SAS Scalable
Performance Data (SPD) Server may or may not require sorting to produce the ordered row set that the BY -clause requires. In
some cases, atable index can be used to sort the rowsto satisfy aBY -clause.

For example, the input table to a PROC SORT step is sorted in server context (by the associated LIBNAME proxy). Therows are
returned to PROC SORT in BY -clause order. In this case, PROC SORT knows that the data is aready ordered, and writes the
data to the output table without sorting it again. Unfortunately, this approach still must send the data from the LIBNAME proxy
to the SAS client and then back to the LIBNAME proxy. However, there are other waysto use a SAS Scalable Performance Data
(SPD) Server SQL pass-through COPY statement to avoid the overhead of the data round-trip.

SAS Scalable Performance Data (SPD) Server attempts to use an index when performing aBY -clause. The software looks
specifically for an index that has variables in the order specified in the BY -clause. On the surface this seems like a good idea:
table row order is already determined because the keysin the index are ordered. SAS Scalable Performance Data (SPD) Server
reads the keys in order from the index, then returns the rows from the table based upon the row IDsthat are stored with the index
key values.

Use caution when using BY -clauses on tables that have indexes on their BY columns. Using the index is not always a good idea.
When no suitable index exists to determine BY -clause order, SAS Scalable Performance Data (SPD) Server uses a parallel table
scan sort that keeps the table row intact with the sort key. The time required to access a highly random distribution of row IDs
(obtained by using the index) can greatly exceed the time required to sort the rows from scratch.

When you use aWHERE Clause to filter the rows from a SAS Scalable Performance Data (SPD) Server table with aBY -clause
to order them in adesired way, SAS Scalable Performance Data (SPD) Server handles both the subsetting and the ordering for
thisrequest. In this case, the filtered rows that were qualified by the WHERE Clause are fed directly into a sort step. Feeding the
filtered rowsinto the sort step is part of the parallel WHERE Clause evaluation. The final ordered row set is the result. In this
case, the previous discussion of index use does not apply. Index use for WHERE Clausefiltering is very desirable and greatly
improves the filtering performance that feeds into the sort step. Arbitrarily suppressing index use withaWHERE and BY
combination should be avoided.

. Suppressing the Use of Indexes
. Advantages of Implicit Server Sorts

Suppressing the Use of Indexes

196

Suppress the use of indexes on the BY -clause by using the SPDSNIDX=Y ES macro variable or by asserting the
NOINDEX=Y ES table option. Suppressing the use of the index may significantly improve time required to process
aBY-clausein SAS Scalable Performance Data (SPD) Server.

Advantages of Implicit Server Sorts

An exceptional feature is the software's ability to execute ad-hoc order-BY queries without pre-sorting the table on
the BY variables. Many SASjob streams are structured with code that alternates PROC SORT followed by PROC
XXxX invocations where the PROC SORT step is only needed for the execution of the PROC xxxx step.

When sort order isrelevant only to the following step, eliminate the PROC SORT step and just use the BY -clause
on the PROC xxxx step. This eliminates the extra data transfer (to PROC SORT from SAS Scalable Performance
Data (SPD) Server and then back from PROC SORT to SAS Scalable Performance Data (SPD) Server) to store the
sorted result. Even if SAS Scalable Performance Data (SPD) Server performs the sort associated with the PROC
SORT, there is extra data transfer. The data's round trip from the server to the SAS client and back can impose a
substantial time penalty.

Copyright © 2008 by SAS Ingtitute Inc., Cary, NC, USA. All rights reserved.

197

SAS Scalable Performance Data (SPD) Server Macro
Variables

. Introduction
. Variable for Compatibility with the Base SAS Engine
o SPDSBNEQ=
. Variablesfor Miscellaneous Functions
o SPDSEOBS=
o SPDSSOBS=
o SPDSUSAV=
o SPDSUSDS=
o SPDSVERB=
o SPDSFSAV=
o SPDSEINT=
. Variablesfor Sorts
o SPDSBSRT=
o SPDSNBIX=
o SPDSSTAG=
. Variablesfor WHERE Clause Evaluations
o SPDSTCNT=
o SPDSEVIT=
o SPDSEV2T=
o SPDSWDEB=
o SPDSIRAT=
o SPDSNIDX=
o SPDSWCST=
o SPDSWSEQ=
. Variables That Affect Disk Space
o SPDSCMPF=
o SPDSDCMP=
o SPDSIASY=
o SPDSSIZE=
. Variables To Enhance Performance
o SPDSNETP=
o SPDSSADD=
o SPDSSYRD=
o SPDSAUNQ=
. Variablesfor aClient and a Server Running on the Same UNIX Machine
o SPDSCOMP=

Introduction

Macro variables, known as symbolic variables, operate similarly to LIBNAME and table options. But, they have an advantage
because they apply globally. That is, their value remains constant until explicitly changed.

198

This chapter presents reference information for SPD Server macro variables, including their purpose, default values, and when
and how to use them. The variables are grouped by function or purpose of the default value. Changing the value can also change
the purpose, making the variable fall into another group.

For example, the default setting for the macro variable SPDSSADD= is NO. The SPDSSADD= macro enhances performance
during data appends. Setting SPDSSADD= to Y ES changes the way the variable functions. The macro setting SPDSADD=YES
ensures compatibility with the base SAS engine. The default setting improves performance. Changing the setting from the
default improves Base SA S software compatibility.

To set amacro variable to Y ES submit the following statement:

% et MACROVAR=YES;
Note: Assignments for macro variables with Y ES|INO arguments must be entered in uppercase (capitalized).

When you specify table option settings, precedence matters. If you specify atable option after you set the option in amacro
variable statement, the table option setting takes precedence over the macro variable option setting. 1f you specify an option
using aLIBNAME statement, then later specify an option setting through a macro variabl e statement, the table option setting
made in the macro variable takes precedence over the over the LIBNAME statement setting.

To view the default values for the SPD Server macro variables, use the SPDSMAC command associated with PROC SPDO.

SAS displays the macro variables and their current settings. Understanding proper use of macro variablesin SPD Server allows
you to unleash the power of the software.

Variable for Compatibility with the Base SAS Engine

SPDSBNEQ=

Use the SPDSBNEQ= setting to specify the output order of table rows that have identical valuesin the BY column.

Syntax
SPDSBNEQ=YES|NO

Default: NO
Corresponding Table Option: BYNOEQUALS=
Use the following arguments:

YES
outputs rows with identical valuesin aBY clause in random order.

NO
outputs rows with identical valuesin aBY clause using the relative table position of the rows from the input
table.

Description
SPDSBNEQ=NO configures the SPD Server to imitate the Base SAS engine behavior. If strict compatibility is not
required, assign SPDSBNEQ=Y ES. Random output allows the SPD Server to create indexes and append to tables
faster.

199

file:///C:/SPDSUserPRISM/faqspds.htm#HowList

Example
Configure the SPD Server so that it output table rows as quickly as possible when processing rows that have
identical valuesin the BY column.

% et SPDSBNEQ=YES;

Variables for Miscellaneous Functions

SPDSEOBS=

Use the SPDSEOBS= macro variable to specify the number of the last row (end observation) of a user-defined
range that you want to processin atable.

Syntax
SPDSEOBS=n

Default: The default setting of O processes the entire table.
Corresponding Table Option: ENDOBS=
Use the following argument:

n
is the number of the end row.

Description

The SPD Server processes the entire table by default unless you specify arange of rows. Y ou can specify arange
using the macro variables SPDSSOBS= and SPDSEOBS=, or you can use the table options, STARTOBS= and
ENDOBS=.

If you use the range start macro variable SPDSSOBS= without specifying an end range value using the
SPDSEOBS= macro variable, SPD Server processesto the last row in the table. If you specify values for both
SPDSSOBS= and SPDSEOBS= macro variables, the value of SPDSEOBS= must be greater than SPDSSOBS-=.
The SPDSSOBS= and SPDSEOBS= macro variables specify ranges for table input processing as well as WHERE
Clause processing.

Example
In order to create test tables, you configure the SPD Server to subset the first 100 rows of each tablein your job.
Submit the macro variable statement for SPDSEOBS= at the beginning of your job.

% et SPDSEOBS=100;

SPDSSOBS=

Use the SPDSSOBS= macro variable to specify the number of the starting row (observation) in a user-defined
range of atable.
200

Syntax
SPDSSOBS=n

Default: The default setting of O processes the entire table.
Corresponding Table Option: STARTOBS=
Use the following argument:

n
is the number of the start row.

Description

By default, SPD Server processes entire tables unless you specify arange of rows. Y ou can specify arange using
the macro variables SPDSSOBS= and SPDSEOBS=, or you can use the table options, STARTOBS= and
ENDOBS=.

If you specify the end of a user-defined range using the SPDSEOBS= macro variable, but do not implicitly specify
the beginning of the range using SPDSSOBS=, SPD Server sets SPDSSOBS=to 1, or thefirst row in the table. If
you specify vaues for both SPDSSOBS= and SPDSEOBS= macro variables, the value of SPDSEOBS= must be
greater than SPDSSOBS=. The SPDSSOBS= and SPDSEOBS= macro variables specify ranges for table input
processing as well as WHERE Clause processing.

Example
Print the INVENTORY .OLDAUTOS table, skipping rows 1-999 and beginning with row 1000. Y ou should
submit the SPDSSOBS= macro variable statement before the PROC PRINT statement in your job.

% et SPDSSOBS=1000;

The statement above specifies the starting row with SPDSSOBS=, but does not declare an ending row for the range
using SPDSEOBS=. When the program executes, SAS will begin printing at row 1000 and continues until the
final row of the table is reached.

PROC PRI NT dat a=i nvent ory. ol daut os;
run;

SPDSUSAV=

Use the SPDSUSAV = macro variable to specify whether to save rows with non-unique (rejected) keysto a
separate SAStable.

Syntax
SPDSUSAV=Y ES|NO|REP

Default: NO

Affected by Table Option : SYNCADD=

201

Usein Conjunction with Variable: SPDSUSDS=
Corresponding Table Option : UNIQUESAVE=
Use the following arguments:

YES
writes rows with non-unique key valuesto a SAS table. Use the macro variable SPDSUSDS= to reference
the name of the SAS table for the rejected keys.

NO
non-unique key values are ignored and rejected rows are not written to a separate table.

REP
when updating a master table from a transaction table, where the two tables share identical variable
structures, the SPDSUSAV=REP option replaces the row updated row in the master table instead of
appending arow to the master table. The REP option only functions in the presence of a/UNIQUE index on
the MASTER table. Otherwise, the REP setting isignored..

Description

When performing an append operation, SPD Server does not save the rows which contain duplicate key values
unless the SPDSUSAV = macro variable is set to YES.

When SPDSUSAV=isset to YES, SPD Server creates a hidden SAS table and writes rejected rows to the table.
Use the SPDSUSD S= macro variable command to view the contents of the table. Each append operation creates a
different table.

Example
Append several tablesto the EMPLOY EE table, using employee number as a unique key. The appended tables
should not have records with duplicate employee numbers.

At the beginning of the job, configure SPD Server to write any rejected (identical) employee number recordsto a
SAStable. The macro variable SPDSUSDS= holds the name of the SAS table for the rejected keys.

% et SPDSUSAV=YES

Use a%PUT statement to display the name of the table, and then print the table.

%ut Set the macro variabl e spdsusds to &spdsusds;

title 'Duplicate (non-unique) enployee nunbers found in
EMPS' ;

PROC PRI NT dat a=&spdsusds; run;

SPDSUSDS=

Use the SPDSUSD S= macro variable to reference the name of the SAStable that SPD Server creates for duplicate
or rejected keys when the SPDSUSAV = macro variableis set to YES.

202

Syntax
SPDSUSDS=

Default: SPD Server automatically generates identifying strings for the duplicate or rejected key tables.

Usein Conjunction with Table Option: SYNCADD=

Usein Conjunction with Variable: SPDSUSAV=

Corresponding Table Option: UNIQUESAVE=

Description

When SPDSUSAV= or UNIQUESAVE=isset to YES, SPD Server creates atable to store any rows with duplicate

key values encountered during an append operation. Submitting the SPDSUSDS= macro variable references the
generated name for the hidden SAStable.

To obtain the name and print the table's contents, reference the variable SPDSUSD S=.
Example
% et SPDSUSAV=YES

Use a%PUT statement to display the name of the table created by SPDSUSDS= and to print out the duplicate
rows.

%ut Set the nacro variabl e spdsusds to &spdsusds;

title "Duplicate Rows Found in MYTABLE
During the Last Data Append';
PROC PRI NT dat a=&spdsusds; run;

SPDSVERB=

Use the SPDSVERB= macro variable to provide verbose detailson al indexes, ACL information, and other
information that is associated with SPD Server tables.

Syntax
SPDSVERB=YES|NO

Default: NO
Corresponding Table Option: VERBOSE=
Use the following arguments:

YES
requests detail information for indexes, ACLSs, and other SPD Server table values.

203

NO
suppresses detail information for indexes, ACLs, and other SPD Server table values.

Example
Y ou need information about associated indexes for the SPD Server table SUPPLY. Configure SPD Server for
verbose details at the start of your session so you can see index details. Submit the SPDSVERB= macro variable as
aline in your your autoexec.sasfile:

% et SPDSVERB=YES;
Submit a PROC CONTENTS request for the SUPPLY table:

PROC CONTENTS dat a=suppl y;
run;

SPDSFSAV=

Use the SPDSFSAV = macro variable to specify whether you want to retain table data if the SPD Server table
creation process terminates abnormally.

Syntax
SPDSFSAV=YESINO

Default: NO. Normally SAS closes and del etes tables which are not properly created.
Use the following arguments:

YES
enables FORCESAYV E mode and saves the table.

NO
default SPD Server actions delete partially completed tables.

Description

Large tables can require along timeto create. If problems such as network interruptions or disk space shortages
occur during this time period, the table may not be properly created and signal an error condition. If SAS
encounters such an error condition, it deletes the partially completed table.

In SPD Server you can set SPDSFSAV=YES. Saving the partially created table can protect the time and resources
invested ain long-running job. When the SPDSFSAV = macro variableis set to YES, the SPD Server LIBNAME
proxy saves partially completed tables in their last state and identifies them as damaged tables.

Marking the table damaged prohibits other SAS DATA or PROC steps from accessing the table until its state of
completion can be verified. After you verify or repair atable, you can clear the 'damaged’ status and enable further
read/update/append operations on the table. Use the PROC DATASETS REPAIR operation to remove the
damaged file indicator.

Example
Configure SPD Server before you run the table creation job for alarge table called ANNUAL. If some error

204

prevents the successful completion of the table ANNUAL, the partially completed table will be saved.

% et SPDSFSAV=YES;
DATA SPDSLI B. ANNUAL,;

RUN;

SPDSEINT=

Use the SPDSEINT= macro to specify how SPD Server responds to network disconnects during SQL pass-through
EXECUTE() statements.

Syntax
SPDSEINT=YES|NO

Default: YES

Description:

The SPD Server SQL server interrupts SQL processing by default when a network failure occurs . The interruption
prematurely terminates the EXECUTE() statement. Setting SPDSEINT=NO configures the SPD Server's SQL
server to continue processing until completion regardless of network disconnects.

War ning: Use the macro variable setting SPDSEINT=NO carefully! A runaway EXECUTE() statement requires a
privileged system user on the server machine to kill the SPD Server SQL proxy process. Thisisthe only way to
stop the processing.

Variables for Sorts

SPDSBSRT=

Use the SPDSBSRT= macro variable to configure SPD Server's sorting behavior when it encountersaBY -clause
and thereis no index available.

Syntax
SPDSBSRT=YESNO

Default: YES
Corresponding Table Option: BY SORT=
Use the following arguments:

YES
SPD Server performs a server sort when it encountersaBY clause and there is no index available.

NO
205

SPD Server does not perform a sort when it encountersaBY clause.

Description
Base SAS software requires an explicit PROC SORT statement to sort SAS data. In contrast, SPD Server sorts a
table whenever it encountersaBY clause, if it determines that the table has no index.

Advantages for using SPD Server implicit sorts are discussed in detail in the Help section for Connecting to SAS
Scalable Performance Data Server.

Example 1
At the start of asession to run old SAS programs, you realize that you do not have time to remove the existing
PROC SORT statements. These statements are present only to generate print output.

To avoid redundant Server sorts, configure SPD Server to turn off implicit sorts. Put the macro variable assignment
in your autoexec.sas file so SPD Server retains the configuration for all job sessions.

% et SPDSBSRT=NO

During the Example 1 session you decide to run anew program that has no PROC SORT statements. Instead, the
new program takes advantage of SPD Server implicit sorts.

data i nventory. ol d_aut os;
i nput

year $4.
@ manufacturer $12.
nodel $10.
body _style $5.
engine_liters
@9 transm ssion_type $1
@1 exterior_color $10.
options $10.
m | eage condition;

dat al i nes;
1971 Bui ck Skyl ar k conv. 5.8 A yellow 00000001 143000 2
1982 Ford Fi esta hatch 1.2 M silver 00000001 70000 3
1975 Lanci a Bet a 2door 1.8 M dk bl ue 00000010 80000 4
1966 O dsmobile Toronado 2door 7.0 A black 11000010 110000 3
1969 Ford Must ang sptrf 7.1 M red 00000111 125000 3

PROC PRI NT dat a=i nventory. ol d_aut os;
by nodel ;

run;

When the code executes, the PRINT procedure returns an error message. What happened? SA S expected
INVENTORY.OLDAUTOS to be sorted before it would generate print output. Since there is no PROC SORT
statement -- and implicit sorts are still turned off -- the sort does not occur.

Example 2
Keep implicit sorts turned off for the session, but specify an implicit sort for the table INVENTORY.OLDAUTOS.

206

PROC PRI NT dat a=i nvent ory. ol daut os(bysort=yes);
by nodel ;
run;

SPDSNBIX=

Use the SPDSNBIX= macro variable to configure whether to use an index during a BY -sort.

Syntax
SPDSNBIX=YES|NO

Default: NO
Corresponding Server Parameter Option: [NO]BYINDEX
Use the following arguments:

YES
Set SPDSNBIX=YES to suppress index use during a BY -sort. If the distribution of the values in the table
are not relatively sorted or clustered, using the index for the by sort can result in poor performance.

NO
Set SPDSNBIX=NO or use the default value to allow the [NO]BY INDEX server parameter option to
determine whether to use an index for a by sort.

Example

% et SPDSNBI X=YES;

SPDSSTAG=

Use the SPDSSTAG= macro variable to specify whether to use non-tagged or tagged sorting for
PROC SORT or BY processing.

Syntax
SPDSSTAG=YES|NO

Default: NO
Use the following arguments:

YES
performs tagged sorting.

207

NO
performs non-tagged sorting.

Description

During a non-tagged sort, SPD Server attaches the entire table column to the key field(s) to be
sorted. Non-tagged sorting allows the software to deliver better performance than atagged sort. Non-
tagged sorting a so requires more temporary disk space than atagged sort.

Example

Y ou are running low on disk space and don't know if you have enough disk overhead to
accommodate the extra sort space required to support a non-tagged sort operation.
Configure SPD Server to perform atagged sort.

% et SPDSSTAG=YES;

Variables for WHERE Clause Evaluations

SPDSTCNT=

Use the SPDSTCNT= macro variable to specify the number of threads that you want to use during
WHERE Clause evaluations.

Syntax
SPDSTCNT=n

Default: The value of MAXWHTHREADS is configured by SPD Server parameters.
Used in Conjunction with the SPD Server Parameter: MAXWHTHREADS
Corresponding Table Option: THREADNUM=

Use the following argument:

n
is the number of threads.

Description
See THREADNUMZ= for a description and an explanation of how SPDSTCNT= interacts with the
SPD Server parameter MAXWHTHREADS.

SPDSEV1T=

Use the SPDSEV 1T= macro variable to indicate whether datareturned from a SPD Server WHERE
Clause evaluations should be in strict row (observation) order.

208

The macro variables SPDSEV 1T= and SPDSEV 2T= work in conjunction with the SPD Server
WHERE Clause planner WHINIT.

The variables SPDSEV 1T= and SPDSEV 2T= areidentical in purpose. Y ou use them to specify the
row order of data returned in WHERE-processing. Which variable the server exercises depends on
the evaluation strategy selected by WHINIT. The SPDSEV 1T= evaluation strategy isindexed. The
SPDSEV 2T= evaluation strategy is non-indexed. Avoid using these options unless you absolutely
understand the SPD Server performance tradeoffs that depend on maintaining the order of data.

If compatibility with Base SAS software isimportant, set both SPDSEV 1T= and SPDSEV2T=to 0.
When both evaluation strategies are set to 0, SPD Server returns datain row order whether the
SPDSEV 1T= or the SPDSEV 2T= strategy is selected.

When you use PROC SQL to perform table joins on sorted tables that use extra WHERE predicates
to filter table rows, PROC SQL uses sort order information to optimize the join strategy. Data that
has been filtered by the evaluation of extra WHERE predicates returns to PROC SQL in sorted
order. SPD Server restricts parallel evaluation of WHERE predicates any time the table(s) have been
sorted using PROC SORT to meet this requirement. Sorting data in this manner can negatively
impact net performance because most SAS PROCs or DATA steps do not process sorted data any
faster than unsorted data.. SPD Server recommends you set the SPDSEV 1T= and/or SPDSEV2T=
macro variablesto 2. Setting SPDSEV 1T= and/or SPDSEV 2T= macro variablesto 2 configures
SPD Server to perform parallel WHERE Clause eval uations without regard for the sort order of the
SPD Server tables.

Note: The SPDSEV 1T= and SPDSEV 2T= usage discussed here does not apply to SQL statements
executed viathe SPD Server pass-through SQL mechanism.

Syntax
SPDSEV1T=0|1|2

Default: 1
Used in Conjunction with Indexed WHERE Clause Evaluation Strategy

Uses the following arguments:

° returns data in row order.

' may not return the datain row order. SPD Server may override as needed to force a O setting
if the table is sorted using PROC SORT.

’ always forces parallel evaluation regardless of sorted order. May not return datain row order.

Description

If SPD Server must return many rows during WHERE Clause processing, setting the variable to O
will greatly slow performance. Use 0 only when row order isrequired. Use 2 only when you know
row order is not important to the result.

Example
Configure SPD Server to send back datain row order whenever WHINIT performsan EVAL1
evaluation.

209

% et SPDSEV1T=0;

SPDSEV2T=

Use the SPDSEV 2T= macro variable to specify whether the data returned from WHERE Clause
evaluations should be in strict row (observation) order.

The macro variables SPDSEV 1T= and SPDSEV 2T= work in conjunction with the SPD Server
WHERE Clause planner WHINIT.

The variables SPDSEV 1T= and SPDSEV2T= are identical in purpose. Y ou use them to specify the
row order of data returned in WHERE-processing. Which variable the server exercises depends on
the evaluation strategy selected by WHINIT. The SPDSEV 1T= evaluation strategy isindexed. The
SPDSEV 2T= eva uation strategy is non-indexed. Avoid using these options unless you absolutely
understand the SPD Server performance tradeoffs that depend on maintaining the order of data.

If compatibility with Base SAS software isimportant, set both SPDSEV1T= and SPDSEV2T= 10 0.
When both evaluation strategies are set to 0, SPD Server returns datain row order whether the
SPDSEV 1T= or the SPDSEV 2T= strategy is selected.

When you use PROC SQL to perform table joins on sorted tables that use extra WHERE predicates
to filter table rows, PROC SQL uses sort order information to optimize the join strategy. Data that
has been filtered by the evaluation of extra WHERE predicates returns to PROC SQL in sorted
order. SPD Server restricts parallel evaluation of WHERE predicates any time the table(s) have been
sorted using PROC SORT to meet this requirement. Sorting datain this manner can negatively
impact net performance because most SAS PROCs or DATA steps do not process sorted data any
faster than unsorted data.. SPD Server recommends you set the SPDSEV 1T= and/or SPDSEV2T=
macro variablesto 2. Setting SPDSEV 1T= and/or SPDSEV 2T= macro variables to 2 configures
SPD Server to perform parallel WHERE Clause eval uations without regard for the sort order of the
SPD Server tables.

Note: The SPDSEV1T= and SPDSEV 2T= usage discussed here does not apply to SQL statements
executed viathe SPD Server pass-through SQL mechanism.

Syntax
SPDSEV2T=0|1|2

Default: 1
Used in Conjunction with Non-1ndexed WHERE Clause Evaluation Strategy

Use the following arguments:

0
returns datain row order.

1
may not return the dataiin row order. SPD Server may override as needed to force 0 setting if
the tableis sorted using PROC SORT.

2

awaysforces paralel evaluation regardless of sorted order. May not return the datain row
210

order.

Description

If SPD Server must return many rows during WHERE Clause processing, setting the variableto O
will greatly slow performance. Use 0 only when row order isrequired. Use 2 only when you know
row order is not important to the result.

Example
Configure SPD Server to send back datain row order whenever WHINIT performsan EVAL2
evaluation.

% et SPDSEV2T=0;

SPDSWDEB=

Use the SPDSWDEB= macro variable to specify whether the WHERE Clause planner WHINIT,
when evaluating a WHERE expression, should display a summary of the execution plan.

Syntax
SPDSWDEB=YES|NO

Default: NO
Use the following arguments:

YES
displays WHINIT's planning output.

NO
suppresses WHINIT's planning output.

SPDSIRAT=

Use the SPDSIRAT= macro variablesto specify whether to perform segment candidate pre-
evaluation when performing WHERE Clause processing with hybrid indexes.

Syntax
SPDSIRAT=0..100

Default: MAXSEGRATIO server parameter

Description:

When using hybrid indexes, WHERE-based queries pre-evaluate segments. The segments are
scanned for candidates that match one or more predicates in the WHERE clause. The candidate
segments that were identified during the pre-evaluation are queried in subsequent logic to evaluate
the WHERE Clause. Eliminating the non-candidate segments from the WHERE Clause evaluation

211

generally resultsin substantial performance gains.

Some queries can benefit by limiting the pre-evaluation phase. SPD Server imposes the limit based
on aratio: the number of segments that contain candidates compared to the total number of segments
in the table. The reason for thisis simple. If the predicate has candidates in a high percentage of the
segments, the pre-evaluation work is largely wasted.

The ratio formed by dividing the number of segments that containing candidates by the number of
total segmentsis compared to a cutoff point. If the segment ratio is greater than the value assigned to
the cutoff point, the extra processing required to perform pre-evaluation outweighs any potential
process savings that might be gained through the predicate pre-evaluation. SPD Server calculates
theratio for a given predicate and compares the ratio to the SPDSIRAT= value, which acts asthe
cutoff point. If the calculated ratio isless than or equal to the SPDSIRAT= vaue, pre-evaluation is
performed. If the calculated ratio is greater than the SPDSIRAT= value, pre-evaluation is skipped
and every segment is a candidate for the WHERE Clause.

Use the global SPD Server parameter, MAXSEGRATIO to set the default cutoff value. The default
MAXSEGRATIO should provide good performance. Certain specific query situations might be
justification for modifying your SPDSIRAT= value. When you modify your SPDSIRAT= value, it
overrides the default value established by MAXSEGRATIO.

Example:
Configure SPD Server to perform a pre-evaluation phase for WHERE Clause processing with hybrid
indexes if the candidates are in 65% or less of the segments.

% et SPDSI RAT=65;

SPDSNIDX=

Use the SPDSNIDX= macro variable to specify whether to use the table's indexes when processing
WHERE Clauses. SPDSNIDX= can aso be used to disable index use for BY - order determination.

Syntax
SPDSNIDX=YES|NO

Default: NO
Corresponding Table Option: NOINDEX=
Use the following arguments:

YES
ignores indexes when processing WHERE Clauses.

NO
uses indexes when processing WHERE Clauses.

Description:

Set SPDSNIDX=Y ESto test the effect of indexes on performance or for specific processing. Do not
212

use Y ESroutinely for normal processing.

Example:

Assume you are processing datafrom SPORT.MAILLIST. Thereisan index for the SEX column
and you want to test to determine if the index will improve performance when you use PROC
PRINT processing on SPORT.MAILLIST.

Y ou should configure SPD Server not to use the index:

data sport.maillist;
i nput
nane $ 1-20
address $ 21-57
phoneno $ 58-69
sex $71;

dat al i nes;

Dougl as, M ke 3256 Main St., Cary, NC 27511 919-444-5555 M
Walters, Ann Marie 256 Evans Dr., Durham NC 27707 919-324-

6786 F
Turner, Julia 709 Cedar Rd., Cary, NC 27513 919-555-9045 F
Cashwel |, Jack 567 Scott Ln., Chapel Hill, NC 27514 919-533-
3845 M

Clark, John 9 Church St., Durham NC 27705 919-324-0390 M

PROC DATASETS |i b=sport noli st;

nodi fy maillist;
i ndex create sex;
quit;

/*Turn on the nmacro vari abl e SPDSWDEB */
/* to show that the index is not used */
/* during the table processing. */

% et spdswdeb=YES;
% et spdsni dX=YES;

title "All Fermales from Current Miiling List";
PROC PRI NT dat a=sport.maillist;

where sex="F";

run;

% et spdsni dx=NO,

SPDSWCST=

Use the SPDSWCST= macro variable to specify whether to use dynamic WHERE Clause costing.

Syntax
SPDSWCST=YESNO
213

Default: NO

Corresponding Server Parameter Option: [NOJWHERECOSTING
Turns WHERE-costing on or off for an entire server.

Description:

Set SPDSWCST=Y ES to use dynamic WHERE Clause costing. Disabling SPDSWCST= defaults
SPD Server to using WHERE-costing with WHINIT.

Example:

% et SPDSWCST=YES;

SPDSWSEQ=

Syntax
SPDSWSEQ=YES|NO

Default: NO
Description:

Set the SPDSWSEQ= macro variable to YES. When set to Y ES, the SPDSWSEQ= macro variable
overrides WHERE Clause costing and forces aglobal EVAL3 or EVALA4 strategy.

Example:

% et SPDSWSEQ=YES;

Variables That Affect Disk Space

SPDSCMPF=

Use the SPDSCMPF= macro variable to specify the amount of growth space, sized in bytes, to be
added to a compressed data block.

Syntax
SPDSCMPF=n

Default: 0 bytes
Use the following argument:

n
214

is the number of bytesto add.

Description

Updating rows in compressed tables can increase the size of a given table block. Additional spaceis
required for the block to be written back to disk. When contiguous space is hot available on the hard
drive, a new block fragment stores the excess, updated quantity. Over time, the table will experience
block fragmentation.

When opening compressed tables for OUTPUT or UPDATE, you can use the SPDSCM PF= macro
variable to anticipate growth space for the table blocks. If you estimate correctly, you can greatly
reduce block fragmentation in the table.

Note: SPD Server table metadata does not retain compression buffer or growth space settings.

SPDSDCMP=

Use the SPDSDCM P= macro variable to compress SPD Server tables that are stored on disk.

Syntax
SPDSDCMP=YES|NO

Default: NO

Usein Conjunction with Table Option: IOBLOCKSIZE=
Corresponding Table Option: COMPRESS=

Use the following arguments:

YES
performs the run-length compression algorithm SPDSRLLC.

NO
performs no table compression.

Description

When you set the SPDSDCM P= macro variable to YES, SPD Server compresses newly created
tables by 'blocks' according to the algorithm specified. To control the amount of compression, use
the table option IOBLOCK SIZE= to specify the number of rows that you want to store in the block.
For a complete discussion, refer to IOBLOCKSIZE=.

Note: Once acompressed tableis created, you cannot change its block size. To resize the block, you
must PROC COPY the table to a new table, setting IOBLOCK SIZE= to the new block size for the
output table.

Example
Prior to creating huge tables, you want to conserve disk space. Specify compression, and the default
algorithm SPDSRLLC, at the beginning of your job.

215

% et SPDSDCVP=YES;

SPDSIASY=

Use the SPDSIASY = macro variable to specify whether to create indexes in parallel when creating
multiple indexes on an SPD Server table.

Syntax
SPDSIASY=YES|NO

Default: NO
Corresponding Table Option : ASYNCINDEX=
Use the following arguments:

YES

creates the indexesin parallel.
NO

creates one index at atime.

Description

Y ou use the macro variable SPDSIASY = to choose between parallel and sequential index creation
on SPD Server tables with more than oneindex. One advantage of creating multiple indexesin
parallel is speed. The speed enhancements that can be achieved with parallel indexes are not free.
Parallel indexes require significantly more disk space for working storage. The default SPD Server
setting for the SPDSIASY = macro variable is set to NO, in order to avoid exhausting the available
work storage space.

However, if you have adequate disk space to support parallel sorts, it isstrongly recommended that
you override the default SPDSIASY =NO setting and assign SPDSIASY=YES. You can
substantially increase performance -- indexes that take hours to build complete much faster.

How many indexes should you create in parallel? The answer depends on several factors, such asthe
number of CPUs in the SMP configuration and available storage space needed for index key
sorting.

When managing disk space on your SPD Server, remember that grouping i ndex create
statements can minimize the number of table scansthat SPD Server performs, but it also affects disk
space consumption. There is an inverse relationship between the table scan frequency and disk space
requirements. A minimal number of table scans requires more auxiliary disk space; a maximum
number of table scans requires less auxiliary disk space.

Example

Y our perform batch processing from midnight to 6:00 am. All of your processing must be
completed before start of the next work day. One frequently-repeated batch job creates large indexes
on atable, and usually takes several hours to complete. Configure SPD Server to create indexesin
parallel to reduce the processing time.

216

% et SPDSI ASY=YES;
proc datasets |ib=spds;
nodi fy a;
I ndex create x;
i ndex create y;

nodi fy a;
i ndex create conp=(x y) conp2=(y X);
quit;

In the example above, the X and Y indexes will be created in parallel. After creating X and Y
indexes, SPD Server creates the COMP and COMP2 indexesin parallel. In this example, two table
scans are required: one table scan for the X and Y indexes, and a second table scan for the COMP
and COMP2 indexes.

SPDSSIZE=

Use the SPDSSIZE= macro variable to specify the size of an SPD Server table partition.

Syntax
SPDSSIZE=n

Default: 16 Megabytes

Corresponding Table Option: PARTSIZE=
Affected by LIBNAME option: DATAPATH=
Use the following argument:

n
isthe size of the partition in Megabytes.

Description
Use this SPDSSIZE= macro variable option to improve performance of WHERE Clause evaluation
on non-indexed table columns.

Splitting the data portion of a server table at fixed-sized intervals alows SPD Server to introduce a
high degree of scalability for non-indexed WHERE Clause evaluation. Thisis because SPD Server
launches threads in parallel and can evaluate different partitions of the table without file access or
thread contention. The speed enhancement comes at the cost of disk usage. The more data table
splits you create, the more you increase the number of files, which are required to store the rows of
the table.

Scalability limits on the SPDSSIZE= macro variable ultimately depend on how you structure the
DATAPATH= option in your LIBNAME statement. The configuration of the DATAPATH=file
systems across striped volumesis important. Y ou should spread each individual volume's striping
configuration across multiple disk controllers/SCSI channelsin the disk storage array. Y our
configuration goal, at the hardware level, should be to maximize parallelism when performing data
retrieval.

217

The SPDSSIZE= specification is also limited by MINPARTSIZE=, an SPD Server parameter
maintained by the SPD Server administrator. MINPARTSIZE= ensures that an over-zealous SAS
user cannot arbitrarily create small partitions, thereby generating an excessive number of physical
files. The default for MINPARTSIZE= is 16 Mbytes.

Note: The SPDSSIZE= value for atable cannot be changed after the table is created. To change the
SPDSSIZE=, you must PROC COPY the table and use a different SPDSSIZE= (or PARTSIZE=)
option setting on the new (output) table.

For an example using the table option, see PARTSIZE=.

% et SPDSSI ZE=32;

Variables To Enhance Performance

SPDSNETP=

Use the SPDSNETP= macro variable to size buffersin server memory for the network data packet.

Syntax
SPDSNET P=size-of-packet

Default: 32K

Corresponding Table Option: NETPACKSIZE=

Use the argument:

size-of-packet
isthe size (integer) in bytes of the network packet.

Description
When sizing the buffer for data packet transfer between SPD Server and your SAS client machine,
the packet must be greater than or equal in size to one tablerow. See NETPACKSIZE= for more
information.

Example

Despite recent upgrades to your network connections, you are experiencing significant pauses when
the SPD Server transfers data. Y ou want to resize the data packet to send three rows at atime for a
more continuous data flow.

Specify abuffer size in server memory that is three times the row size (6144 bytes.) Submit your
SPDSNETP= macro variable statement at the top of your job.

% et SPDSNETP=18432;

218

SPDSSADD=

Use the SPDSSADD= macro variable to specify whether SPD Server appends tables by transferring
asingle row at atime synchronously, or by transferring multiple rows asynchronously (block row

appends).

Syntax
SPDSSADD=YESINO

Default: NO
Related Table Option: SYNCADD=
Use the following arguments:

YES
appliesasingle row at atime during an append operation. This behavior imitates the Base
SASengine.

NO
appends multiple rows at atime

Description
SPDSSADD=Y ES slows performance. Use this argument only if you require strict compatibility
with Base SAS software when processing atable. For a complete discussion, refer to SYNCADD-=.

SPDSSYRD=

Use the SPDSSY RD= macro variable to specify whether SPD Server should perform asynchronous
data streaming when reading atable.

Syntax
SPDSSYRD=YES|NO

Default: NO
Related Table Option: SYNCREAD=
Use the following arguments:

YES
enabl es asynchronous data streaming.

NO
disables asynchronous data streaming.

Description Use SPDSSY RD=Y ES only with aMODIFY statement. If you use it with any other
processing operation, you slow performance.

219

SPDSAUNQ=

Use the SPDSAUNQ= macro variable setting to specify whether to abort an append to atableif the
table has a unique index and the append would violate the index uniqueness.

Syntax
SPDSAUNQ=YES|NO

Default: NO

Description: Use SPDSAUNQ=Y ES macro variable to improve append performance to atable with
unigue indexes. If uniqueness is not maintained, the append is aborted and the table is returned to its
state prior to the append. In such an instance, you can scrub the table to remove non-unique values
and re-do the append with the macro variable SPDSAUNQ-= set to YES. The other aternativeisto
simply re-do the append with the macro variable SPDSAUNQ= set to NO.

If SPDSAUNQ=NO, the SPD Server will enforce uniqueness at the expense of appending unique
indexes in observation order one row at atime. If uniquenessis not maintained for any given row,
that row is discarded from the append.

Variables for a Client and a Server Running on the Same UNIX
Machine

SPDSCOM P=
specifies to compress the data when sending a data packet through the network.

Syntax
SPDSCOMP=YES|NO

Default: NO

Copyright © 2008 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

220

SAS Scalable Performance Data (SPD) Server LIBNAME
Options

. Introduction
. Optionsto Locate a SAS Scaable Performance Data (SPD) Server Host
o HOST=
. Using aMacro Variable to Specify the SAS Scalable Performance Data (SPD) Server Host
o SERVER=
. Optionsto |dentify the SAS Scalable Performance Data (SPD) Server Client
o ACLGRP=
o CHNGPASS=
o NEWPASSWORD= or NEWPASSWD=
o PASSWORD= or PASSWD=
o PROMPT=
o USER=
. Optionsto Specify Implicit SOL Pass-Through
o IP=YES
o PASSTHRU=
. Optionsto Specify File Paths for Table Storage
o CREATE=
o DATAPATH=
o INDEXPATH=
o METAPATH=
. Options for Access Control Lists (ACLS)
o ACLSPECIAL=
. Optionsfor aClient and Server Running on the Same UNIX Machine
o NETCOMP=
o UNIXDOMAIN=
. Optionsfor Other Functions
o BYSORT=
o DISCONNECT=
o ENDOBS=
o LIBGEN=
o LOCKING=
o STARTOBS=
o TEMP=
o TRUNCWARN=
o WORKPATH=

Introduction

All SAS users who want to use LIBNAME access to a SAS Scalable Performance Data (SPD) Server should read this chapter.

This chapter contains reference information for the SAS Scalable Performance Data (SPD) Server LIBNAME options. The

options are grouped by the function or purpose of their default value. Y ou can change the default, thereby controlling how they
221

function in different data situations. The examples for using the options assume that a LIBNAME statement to access the SAS
Scalable Performance Data (SPD) Server engine SASSPDS has previously been issued.

When using the options, remember that if atable option is used subsequent to a LIBNAME option of the same name, the value of
the table option or macro variable takes precedence.

Options to Locate a SAS Scalable Performance Data (SPD) Server Host

HOST=

Specifies a SAS Scalable Performance Data (SPD) Server machine by node name or |P address and |ocates the
name server using the SERVICE vaue.

Syntax
HOST=' host nane' <SERVI CE=' servi ce' >
Use the following arguments:

'hosthame’
is the node name of the SAS Scalable Performance Data (SPD) Server machine or an |P address.

'service
isthe name of a service or the port number for the SAS Scalable Performance Data (SPD) Server's name
server.

Description

This option provides the node name of a SAS Scalable Performance Data (SPD) Server host machine and locates
the port number of the SAS Scal able Performance Data (SPD) Server's name server. When thereis no SERVICE=
specification, SAS Scalable Performance Data (SPD) Server checksthe client's/ et ¢/ ser vi ces file (or its
equivalent file) for SPDSNAME -- areserved name for the SAS Scalable Performance Data (SPD) Server's name

SErver.

Examples

Specify the server machine SAMSON and use the default named service SPDSNAME to obtain the port number of
the SAS Scalable Performance Data (SPD) Server's name server.

LI BNAME nyli b sasspds 'spdsdata’
host =" sanson’ ;

Specify the server machine SAMSON and provide the port number of the SAS Scal able Performance Data (SPD)
Server's name server.

LI BNAME nyli b sasspds 'spdsdata’
host =' sanson'
servi ce='5002';

222

Using a Macro Variable to Specify the SAS Scalable Performance Data (SPD)

Server Host

Assign the macro variable SPDSHOST to the SAS Scalable Performance Data (SPD) Server host SAMSON so
that the LIBNAME statement need not specify SAMSON.

% et spdshost =sanson;
LI BNAME nyli b sasspds 'spdsdata’
user="yourid'
passwor d=' swam ' ;
SERVER=

Specifiesa SAS Scalable Performance Data (SPD) Server host machine by node name and locates the network
address (port number) of the SAS Scalable Performance Data (SPD) Server name server.

Syntax
SERVER=host nane. ser vnane
Use the following arguments:

hostname
isthe node name of the SAS Scalable Performance Data (SPD) Server host machine.

servname

is the name of a service or the port number of the SAS Scalable Performance Data (SPD) Server's name
serve.

Examples

Specify the SAS Scalable Performance Data (SPD) Server host machine SAMSON and use the default named
service SPDSNAME to obtain the port number of the SAS Scalable Performance Data (SPD) Server's name server.

LI BNAME nyl i b sasspds 'spdsdata
server =sanson. spdsnane;

Specify the SAS Scalable Performance Data (SPD) Server host machine SAMSON and give the port address of the
SAS Scalable Performance Data (SPD) Server's name server.

LI BNAME nyl i b sasspds 'spdsdata’
server =samson. 5002;

Options to Identify the SAS Scalable Performance Data (SPD) Server Client

223

ACLGRP=

Names an ACL group which has been previously assigned to the SAS Scalable Performance Data (SPD) Server
user ID. The SAS Scalable Performance Data (SPD) Server system administrator sets up ACL groups and can
assign asingle user to up to five ACL groups.

Syntax
ACLGRP= ' acl gr oup"
Use the following argument:

aclgroup
Names the ACL group that the SAS Scalable Performance Data (SPD) Server Administrator assigned to
your SAS Scalable Performance Data (SPD) Server user ID. (Y ou can be assigned up to five ACL groups.)

Example
Specify the ACL group PROD.

LI BNAVE nyl i b sasspds 'spdsdata’
user ='receiver'
acl gr p=' PROD
pronpt =yes;

Note: Password values are case sensitive. That is, if the SAS Scalable Performance Data (SPD) Server
administrator assigns alowercase value, you must enter the password value in lowercase.

CHNGPASS=

Specifiesto prompt a SAS Scalable Performance Data (SPD) Server user for a change of password. If ACL file
security is enabled, the SAS Scalable Performance Data (SPD) Server validates the old/new password against its
user ID table.

Syntax
CHNGPASS= YES | NO
Use the following arguments:

YES
prompts for a change of the SAS Scalable Performance Data (SPD) Server user password.

NO
suppresses a prompt for a change of the SAS Scal able Performance Data (SPD) Server user password. This

is the default.
224

Example
Specify a prompt to change the password of SAS Scalable Performance Data (SPD) Server user TEMPHIRE.

LI BNAME nyli b sasspds 'spdsdata
user='tenphire'
passwor d=' whi zbang'
chngpass=yes;

Note: If you are using LDAP user authentication, and create a user connection that uses the CHNGPASS=
LIBNAME option, the user password will not be changed. If you are using LDAP authentication and want to
change a user password, follow the operating system procedures to change a user password, and check with your
LDAP server administrator to en sure that the LDAP database also records password changes.

For more information on LDAP user authentication, see the reference help chapter in the SAS Scalable
Performance Data (SPD) Server User's Guide, "Managing SAS Scalable Performance Data (SPD) Server
Passwords, Users, and Table ACLS."

NEWPASSWORD= or NEWPASSWD=

Specifies anew password for a SAS Scalable Performance Data (SPD) Server client user. If ACL file security is
enabled, the SAS Scalable Performance Data (SPD) Server validates the old/new password against its user ID
table.

Syntax

NEWPASSWORD= ' newpasswor d'
NEWPASSWD=" newpasswor d'

Use the following argument:

‘newpasswor d'
is the new password of a SAS Scalable Performance Data (SPD) Server client user. The password, visiblein
a SAS program, is encrypted in the SASlog file.

Example

Specify anew password rambo for SAS Scalable Performance Data (SPD) Server client user RECEIVER.

LI BNAME nyli b sasspds 'spdsdata’
user='receiver'
passwor d=' whi zbang’
newpasswor d=' r anbo’ ;

Note: If you are using LDAP user authentication, and create a user connection that uses the NEWPASSWORD=

LIBNAME option, the user password will not be changed. If you are using LDAP authentication and want to
change a user password, follow the operating system procedures to change a user password, and check with your
225

LDAP server administrator to en sure that the LDAP database also records password changes.

For more information on LDAP user authentication, see the reference help chapter in the SAS Scalable
Performance Data (SPD) Server User's Gude, "Managing SAS Scal able Performance Data (SPD) Server
Passwords, Users, and Table ACLS."

PASSWORD= or PASSWD=

Specifies the SAS Scalable Performance Data (SPD) Server password of a SAS Scalable Performance Data (SPD)
Server client user. If ACL file security is enabled, the SAS Scalable Performance Data (SPD) Server validates the
password against its user 1D table.

Syntax

PASSWORD=" passwor d'
PASSWD=" passwor d'

Use the following argument:

‘password'
isthe case-sensitive password of a SAS Scalable Performance Data (SPD) Server client user. The password,
visiblein a SAS program, is encrypted in the SASlog file.

Example
Specify the password whizbang for SAS Scalable Performance Data (SPD) Server client user SPDSUSER.

LI BNAME nyli b sasspds 'spdsdata’
server =kaboom 5200
user ="' spdsuser"
passwor d=' whi zbang' ;

Options

SAS Scalable Performance Data (SPD) Server 4.4 supports the integration of the SAS 9.1.3 PROC PWENCODE.
This permits scripts to be generated that do not explicitly contain secure passwords that could easily be used
without authorization. 'Y ou must run PROC PWENCODE in Base SAS to enable the usage of script password
encoding within SAS Scalable Performance Data (SPD) Server 4.4. See the Base SAS documentation for detailed
instruction on running PROC PWENCODE for use with SAS Scalable Performance Data (SPD) Server 4.4.

The example below shows a SAS Scalable Performance Data (SPD) Server LIBNAME statement that utilizes the
password encoding option:

LI BNAME nyli b sasspds 'spdsdata’
server =kaboom 5200
user =' spdsuser"
passwor d=' {sas001} c3BkczEy Mn==";

226

PROMPT=

Specifies to prompt a SAS Scalable Performance Data (SPD) Server user for a password. If ACL file security is
enabled, the SAS Scalable Performance Data (SPD) Server validates the password against its user ID table.

Syntax
PROMPT= YES | NO
Use the following arguments:

YES
prompts a SAS Scalable Performance Data (SPD) Server user for a password.

NO
suppresses a prompt for a password.

Example
Specify aprompt for the password of SAS Scalable Performance Data (SPD) Server user BIGWHIG.
LI BNAME nyli b sasspds 'spdsdata’

user =' bi gwhi g'
pr onpt =yes;

USER=

Specifiesthe ID of a SAS Scalable Performance Data (SPD) Server client user. If ACL file security is enabled, the
SAS Scalable Performance Data (SPD) Server validates the ID against its user ID table. (The SAS Scalable
Performance Data (SPD) Server user ID defaults to the SAS process user ID if it isavailable; that is, when the
client is not aWindows client.)

Syntax
USER=' user nane'
Use the following argument:

'username’
isthe ID of a SAS Scalable Performance Data (SPD) Server client user.

Example
Specify the identifier SPDSUSER for a SAS Scalable Performance Data (SPD) Server client user.
LI BNAME nyli b sasspds 'spdsdata’
user =' spdsuser"'

pr onpt =yes;

227

Options to Specify Implicit SQL Pass-Through

IP=YES

Thisis an abbreviated specification which replaces the more verbose PASSTHRU= option. The IP=YES option
draws on information specified in the LIBNAME declaration. The IP=Y ES option specifies an implicit SQL pass-
through connection for a single user to a specified domain and server during agiven SAS Scalable Performance
Data (SPD) Server session.

Syntax

LI BNAME BOAF sasspds ' BOAF
server =kaboom 5200
user="'rcnye'
passv\ord:‘ *khkkkkkx!
| P=YES ;

PASSTHRU=

This older and more verbose specification for IP=YES s still supported. It specifiesan implicit SQL pass-through
connection for asingle user to a specified domain and server during a given SAS Scalable Performance Data
(SPD) Server session.

Syntax

PASSTHRU=<' dbg=<"SAS-dat a-li brary" >
<SPD Server-options>
user=<'User| D >
passwor d=<' password' > ;

Use the following arguments:

DBQ=libname-domain (required)
Specifiesthe primary SAS Scalable Performance Data (SPD) Server LIBNAME domain for the SQL pass-
through connection.
The name that you specify isidentical to the LIBNAME domain name that you used when making a SAS
LIBNAME assignment to sasspds. Use single or double quotes around the specified value.

SPD Server-options
one or more SAS Scalable Performance Data (SPD) Server options.

USER=SAS Scalable Performance Data (SPD) Server user ID (required on Windows but not UNIX)
Specifies a SAS Scalable Performance Data (SPD) Server user |D to access a SAS Scalable Performance
Data (SPD) Server SQL Server. Use single or double quotes around the specified value.

PASSWORD=password (required, or use PROMPT=Y ES, unless USER="anonymou')
Specifiesa SAS Scalable Performance Data (SPD) Server user 1D password to access a SAS Scalable

Performance Data (SPD) Server. (Thisvalueis case sensitive.)
228

Example:

Thefollowing isa LIBNAME statement that specifiestheimplicit SQL pass-through option for user rcnye, using a
LIBREF to connect to the domain named 'BOAF' on the server named 'Kaboom' on port 5200:

LI BNAME BOAF sasspds ' BOAF
server =kaboom 5200
user="rcnye'
paSSV\Dr d:‘ *kkkkkx!

PASSTHRU='

dbqg=" BOAF"

server =kaboom 5200
user="rcnye"
passvvor d:" Ak kkkk Kk

Options

SAS Scalable Performance Data (SPD) Server 4.4 supports the integration of the SAS 9.1.3 PROC PWENCODE.
This permits scripts to be generated that do not explicitly contain secure passwords that could easily be used
without authorization. 'Y ou must run PROC PWENCODE in Base SAS to enable the usage of script password
encoding within SAS Scal able Performance Data (SPD) Server 4.4. See the Base SAS documentation for detailed
instruction on running PROC PWENCODE for use with SAS Scalable Performance Data (SPD) Server 4.4.

The example below shows a SAS Scalable Performance Data (SPD) Server LIBNAME statement that utilizes the
password encoding option:

LI BNAME nylib sasspds 'spdsdata’
server =kaboom 5200
user =' spdsuser"
passwor d=' { sas001} c3BkczEy Mr=='

PASSTHRU='

dbg="spdsdat a"

server =kaboom 5200

user ="spdsuser"”

passwor d="{sas001} c3BkczEy Mn=="";

Options to Specify File Paths for Table Storage

SAS Scalable Performance Data (SPD) Server strongly recommends that your site administrator defines SAS
Scalable Performance Data (SPD) Server domain optionsin the SAS Scalable Performance Data (SPD) Server

| i bnames. par mconfiguration file. However, in unusual cases, such asthe SAS Scalable Performance Data
(SPD) Server administrator being temporarily unavailable, the following four LIBNAME options can be issued by
a SAS Scalable Performance Data (SPD) Server user to define domains and table file storage paths.

CREATE=

Creates the primary directory for a SAS Scalable Performance Data (SPD) Server domain if it does not already
229

exist.
Syntax

CREATE=YES | NO
Use the following arguments:

YES
creates the primary directory if it does not already exist.

NO
failsthe LIBNAME assignment if the primary directory does not already exist. Thisisthe default.

Description

a SAS Scalable Performance Data (SPD) Server administrator defines the primary directory for the SAS Scalable
Performance Data (SPD) Server domain in the LIBNAME parameter file. If CREATE=is YES, the software
creates the directory (primary file system) in the event that a SAS Scal able Performance Data (SPD) Server
administrator forgets to create it.

DATAPATH=

The SAS Scalable Performance Data (SPD) Server administrator for your site should use optionsin the SAS
Scalable Performance Data (SPD) Server | i bnanes. par mconfiguration file to define SAS Scalable Performance
Data (SPD) Server domain options. However, if the SAS Scalable Performance Data (SPD) Server istemporarily
unavailable, the following LIBNAME option can be issued by a SAS Scalable Performance Data (SPD) Server
user to specify alist of initial or overflow paths to store data (. dpf) file partitions for a SAS Scal able Performance
Data (SPD) Server table.

Syntax
DATAPATH=('fil esystem 'filesystem...)
Use the following argument:

'filesystem’
isadirectory path for UNIX or Windows.

Example

Create partitions as needed by cycling through the directories specified, DATAFLOW1 directory on DISK1 and
DATAFLOW?2 directory on DISK2.

LI BNAME nyli b sasspds 'spdsdata’
dat apat h=("'/di sk1/ dat af | owl’
"/ di sk2/ dat af | ow2') ;

230

INDEXPATH=

The SAS Scalable Performance Data (SPD) Server administrator for your site should use optionsin the SAS
Scalable Performance Data (SPD) Server | i bnanes. par mconfiguration file to define SAS Scalable Performance
Data (SPD) Server domain options. However, if the SAS Scalable Performance Data (SPD) Server istemporarily
unavailable, the following LIBNAME option can be issued by a SAS Scalable Performance Data (SPD) Server
user to specify alist of initial or overflow pathsto storeindex (. hbx), (. i dx), and (. aux) file partitions
associated with a SAS Scalable Performance Data (SPD) Server table.

Syntax
| NDEXPATH=("'fil esystem 'filesystem...)
Use the following argument:

filesystem'
isadirectory path for UNIX or Windows.

Example

Create index file partitions as needed using the directories specified, IDXFLOWL1 directory on DISK1 and
IDXFLOW?2 directory on DISK?2.

LI BNAME nyli b sasspds 'spdsdata’
i ndexpat h=("/di sk1/i dxfl owl'
"/ disk2/idxflow');

METAPATH=

The SAS Scalable Performance Data (SPD) Server administrator for your site should use optionsin the SAS
Scalable Performance Data (SPD) Server | i bnanes. par mconfiguration file to define SAS Scalable Performance
Data (SPD) Server domain options. However, if the SAS Scalable Performance Data (SPD) Server istemporarily
unavailable, the following LIBNAME option can be issued by a SAS Scalable Performance Data (SPD) Server
user to specify alist of overflow paths to store metadata (. ndf) file partitions for a SAS Scalable Performance
Data (SPD) Server table.

Syntax
METAPATH=('filesystem 'filesystem...)
Use the following argument:

filesystem'
isadirectory path for UNIX or Windows.

Example

Create overflow metadata file partitions as needed using the directories specified, METAFLOWL directory on

DISK1 and METAFLOW?2 directory on DISK2.
231

LI BNAME nylib sasspds 'spdsdata’
net apat h=("'/di sk1/ et af | owl'
"/ disk2/ netafl ow2');

Options for Access Control Lists (ACLS)

ACLSPECIAL=

Grants special accessto SAS Scalable Performance Data (SPD) Server resourcesin the LIBNAME domain to a
SAS Scalable Performance Data (SPD) Server user. The SAS Scalable Performance Data (SPD) Server user must
also be defined as 'special’ by the SAS Scalable Performance Data (SPD) Server administrator.

Syntax
ACLSPECI AL=YES | NO
Use the following arguments:

YES
grants special access (read, write, alter, and control permission) to al SAS Scalable Performance Data
(SPD) Server resources in the domain.

NO
denies special access (read, write, alter, and control permission) to all SAS Scalable Performance Data
(SPD) Server resources in the domain.

Description

Grants special privilegesto all SAS Scalable Performance Data (SPD) Server tables and associated indexesin the
LIBNAME domain. The special privileges, (read, write, alter, and control permissions), override normal ACL
restrictions only if the SAS Scalable Performance Data (SPD) Server administrator defines the user as 'special’ in
the user 1D table.

Example

Grant special privilegesto THEBOSS allowing him to read, write, alter, and control all tablesin the
CONVERSION_AREA domain. (The SAS Scalable Performance Data (SPD) Server administrator has defined
THEBOSS as 'special’.)

LI BNAME nydatal i b sasspds 'conversion_area
server =husky. 5105
user ="t heboss'’
pronpt =yes
acl speci al =yes ;

Options for a Client and Server Running on the Same UNIX Machine
232

NETCOMP=

Compresses the data stream for a SAS Scalable Performance Data (SPD) Server network packet.
Syntax

NETCOMP=YES | NO
Use the following arguments:

YES
sends compressed datain a SAS Scalable Performance Data (SPD) Server network packet.

NO
sends uncompressed datain a SAS Scalable Performance Data (SPD) Server network packet.

Description

Normally, data compression for inter-process transfers is recommended. However, for aclient and server process
on the same machine -- with UNIXDOMAIN=YES -- turning off compression can improve performance. Y ou
should examine NETCOM P together with UNIXDOMAIN and NETPACKSIZE for both client and server on the
same machine.

Example
Specify to turn off compression of the data stream.

LI BNAME nylib sasspds 'test_area'
net conp=no;

UNIXDOMAIN=

Specifies the use of UNIX domain sockets for data communication between a SAS Scalable Performance Data
(SPD) Server and client process running on the same machine. (Not available in Windows.)

Syntax
UNI XDOVAI N=YES | NO
Use the following arguments:

YES
uses AF_UNIX domain sockets for client/server data communication.

NO
uses the default AF_INET domain sockets for client/server data communication.

Description
233

When UNIXDOMAIN=YES, SAS Scalable Performance Data (SPD) Server uses AF_UNIX domain sockets
rather than the customary AF_INET domain sockets for data communication. AF_UNIX sockets typically are
much faster and greatly enhance performance but are only possible for cases where client and server are running on
the same machine. Y ou should also examine NETCOMP and NETPACK SIZE parameters for possible use to
enhance performance in conjunction with UNIXDOMAIN.

Example

Y ou find that using the AF_UNI X sockets for your session that is running on the same machine asthe SAS
Scalable Performance Data (SPD) Server is not faster. Configure SAS Scalable Performance Data (SPD) Server to
use the default AF_INET sockets instead.

LI BNAME nylib sasspds 'test_area'
uni xdomai n=no;

Note: If you are running SAS Scalable Performance Data (SPD) Server 4.4 or later, and the client and server are
both running UNIX, SAS Scalable Performance Data (SPD) Server automatically detects UNIX domain sockets. In
such cases, it is not necessary to specify the UNIXDOMAIN parameter for optimum performance.

Options for Other Functions

BYSORT=

Specifies an implicit automatic SAS Scalable Performance Data (SPD) Server sort for aBY clause.
Syntax

BYSORT=YES | NO
Use the following arguments:

YES
performs an implicit sort for aBY clause. Thisisthe default.

NO
does not perform an implicit sort for aBY clause.

Description

Where Base SAS software requires an explicit sort statement (PROC SORT) to sort SAS data, by default, SAS
Scalable Performance Data (SPD) Server performs a sort whenever it encountersaBY clause. If the value of the
BY SORT= option is NO, the SAS Scalable Performance Data (SPD) Server software performs the same as the
base SAS engine.

Example 1

Specify to turn off implicit SAS Scalable Performance Data (SPD) Server sorts for the session.
234

LI BNAVE nydat al i b sasspds ' conversion_area
server =husky. 5105
user ="siteusrl'
pronpt =yes
bysort=no ;

dat a nydat al i b. ol d_aut os;
i nput
year $4.
@ manufacturer $12.
nodel $10.
body style $5.
engine_liters
@9 transnission_type $1.
@1 exterior_color $10.

options $10.
m | eage condition
datal i nes ;

1971 Bui ck Skyl ar k conv. 5.8 A yellow 00000001 143000 2
1982 Ford Fi esta hatch 1.2 M silver 00000001 70000 3
1975 Lanci a Bet a 2door 1.8 M dk blue 00000010 80000 4
1966 A dsnobile Toronado 2door 7.0 A bl ack 11000010 110000 3
1969 Ford Mustang sptrf 7.1 M red 00000111 125000 3

PROC PRI NT dat a=nydatal i b. ol d_aut os;
by nodel ;
run;

In this program, the PRINT procedure will return an error message because the table MYDATALIB.OLD_AUTOS
is not sorted.

Example 2

Turn off implicit SAS Scalable Performance Data (SPD) Server sorts with the LIBNAME option, but specify a
server sort for thetable MYDATALIB.OLD_AUTOS using the BY SORT table option.

PROC PRI NT dat a=nydatal i b. ol d_aut os
(bysort=yes);
by nodel ;
run;

DISCONNECT=

Specifies when to close the network connections between the SAS client and the SAS Scalable Performance Data
(SPD) Server. This can be done either when all SAS Scalable Performance Data (SPD) Server librefs are cleared or
when the SAS client session ends.

Syntax

235

DI SCONNECT=YES | NO
Use the following arguments:

YES
closes network connections between the SAS client and SAS Scalable Performance Data (SPD) Server
when all SAS Scalable Performance Data (SPD) Server librefs are cleared.

NO
closes network connections between the SAS client and SAS Scalable Performance Data (SPD) Server only
when the SAS session ends. This is the default.

Description

When the DISCONNECT= option is NO, the network connections between the SAS client and the SAS Scalable
Performance Data (SPD) Server are closed when the current SAS session ends. When network connections are
active, the user can issue successive librefs to the same SAS Scalable Performance Data (SPD) Server more
efficiently.

When the DISCONNECT= option is YES, the server connection closes after all SAS Scalable Performance Data
(SPD) Server librefs are cleared. Assuming a user does not issue a subsequent LIBNAME statement, closing the
connection frees resources. For example, a SAS job or program accesses a SAS Scal able Performance Data (SPD)
Server table at the beginning of ajob but performs remaining processing locally. In this situation, closing the
network connection after clearing all librefs frees both SAS and SAS Scalable Performance Data (SPD) Server file
descriptors, machine memory, and TCP/IP resources.

Note: Unless this option is used with the initial LIBNAME engine statement for the SAS Scalable Performance
Data (SPD) Server session, it has no effect.

Example

Specify for SAS Scalable Performance Data (SPD) Server to close the network connections after you clear your
librefs, rather than at the end of your SAS session.

LI BNAME spud sasspds ' potat oes
di sconnect =yes
server =husky. 5105
user ='"siteusrl'

pronpt =yes ;

data | ocal ;
set spud.idaho ;
run ;

/* Clear the libref SPUD so SPD Server will close the server */
/* connection - Do the rest of the SAS processing locally */

LI BNAME spud cl ear;

/* The rest of the programfollows */

236

ENDOBS=
Specifies the end row (observation) number in a user-defined range for processing.
Syntax
ENDOBS=n

Use the following argument:

is the number of the end row.

Description

By default, SAS Scalable Performance Data (SPD) Server processes the entire table unless the user specifies a
range of rows with the STARTOBS= and ENDOBS= options. If the STARTOBS= option is used without the
ENDOBS= option, the implied value of ENDOBS= is the end of the table. When both options are used together,
the value of ENDOBS= must be greater than STARTOBS=.

In contrast to the Base SA S software options FIRSTOBS= and OBS=, the STARTOBS= and ENDOBS= SAS
Scalable Performance Data (SPD) Server options can be used for WHERE-clause processing in addition to table
input operations.

Example 1

Specify for SAS Scalable Performance Data (SPD) Server to process only row numbers (observations) 200 — 500
whilethe LIBNAME is active.

LI BNAME nydatal i b sasspds 'conversion_area
server =husky. 5105
user ='siteusrl'
pronpt =yes
start obs=200
endobs=500;

LIBGEN=

The LIBGEN=YES option is used in explicit SQL connection statements. When you set LIBGEN=yes, SAS
Scalable Performance Data (SPD) Server is configured to generate additional domain connections that enable you
to perform SQL joins across different SAS Scalable Performance Data (SPD) Server domains.

Syntax
LI BGEN=YES
Description

Y ou should specify the LIBGEN=Y ES option in the explicit SQL LIBNAME connection. Y ou cannot specify the

LIBGEN=Y ES option setting without first creating a LIBNAME connections to the domain.
237

Examples
The two code examples that follow both perform the same task. Both examples use explicit SQL to join two tables
from different domains. The first example uses execute connection statements to facilitate joining the tables from
separate domains. The second example uses the LIBGEN=Y ES option to perform the same join without having to
issue the extra execute connection statements.

SQL Without LIBGEN=YES

/* The exanpl e code w thout LIBGEN=YES */

/* must issue execute connection */
/* statenents to access tables that */
/* reside in two different donains. */

LI BNAME pat hl sasspds ' pathl'
server =boxer. 5140
i p=YES
user =" anonynous' ;

LI BNAME pat h2 sasspds ' pat h2
server =boxer. 5140
I p=YES
user =" anonynous' ;

DATA pat hl.tabl el
(keep=i tablel)

pat h2. t abl e2
(keep=i table2) ;

tablel = 'tabl el
tabl e2 = 'tabl e2'
doi =1to 10 ;
out put ;
end ;
run ;
PROC SQL ;
CONNECT to sasspds (
dbg=' Pat h1'

server =boxer. 5140
user ="' anonynous') ;

/* Wthout LIBGEN=YES, you nust nmake */
/* two execute connect statenents. */

execute (LIBREF pathl engopt="dbg='pathl'")
by sasspds;

execute (LIBREF path2 engopt="dbg="pat h2'")
by sasspds;

execut e
(create table table4 as

238

sel ect *
from
pat hl.tabl el a,
path2.table2 b
where a.i = b.i)
by sasspds ;

di sconnect from sasspds ;

quit ;

SQL With LIBGEN=YES

/* The exanpl e code that uses LI BGEN=YES
[* can join the tables fromtwo different
/* domains in a nore sinple manner.

LI BNAME pat hl sasspds ' pat hl'
server =boxer. 5140
LI BGEN=YES
i p=YES
user =" anonynous' ;

LI BNAVE pat h2 sasspds ' pat h2
server =boxer. 5140
LI BGEN=YES
i p=YES
user =" anonynous' ;

DATA pat hl.tabl el
(keep=i tablel)

pat h2. t abl e2
(keep=i table2) ;

tablel = "tabl el’
table2 = 'tabl e2
doi =1to 10 ;
out put ;
end ;
run ;
PROC SQ ;
CONNECT to sasspds (
dbg="' Pat h1'

server =boxer. 5140
user =" anonynous') ;

/* Syntax used with LI BGEN=YES option */

execut e
(create table table4 as

239

*/
*/
*/

sel ect *
from
pat hl.tabl el a,
pat h2.tabl e2 b
where a.i = b.i)
by sasspds ;

di sconnect from sasspds ;

quit ;

LOCKING=

Overview of Record-Level Locking

Record-level locking is a SAS Scalable Performance Data (SPD) Server feature that allows multiple users
concurrent read and write access to SAS Scal able Performance Data (SPD) Server tables while maintaining the
integrity of the table contents. When record-level locking is enabled, users can insert, append, delete, and update
the contents of a SAS Scalable Performance Data (SPD) Server table while performing concurrent reads on the
table. When a client enables record-level locking, the client connects to the single SAS Scalable Performance Data
(SPD) Server record-level locking proxy process. When record-level locking is not enabled, clients connect to
separate SAS Scalable Performance Data (SPD) Server user proxy processes for each LIBNAME connection to a
domain.

Record-Level Locking Details

Record-level locking is enabled when a SAS Scal able Performance Data (SPD) Server client specifies the
LOCKING=YES LIBNAME option to the client's LIBNAME connection statement. All subsequent

operations on the given LIBNAME domain will employ record-level locking. The primary use of record-level
locking isto allow multiple clients or parallel operations from the same client to have both read and write access to
the same SAS Scalable Performance Data (SPD) Server table resource. If record-level locking is not enabled, then
any write operation (update, append, insert, or delete) to a SAS Scalable Performance Data (SPD) Server table
requires exclusive access to the resource, or else amember lock failure error occurs. Operations that affect
metadata, such as creating or deleting indexes, renaming variables, and renaming tables require exclusive accessto
the resource, whether record-level locking is enabled or not. These types of operations will report a member lock
failure error when with record-level locking is enabled, but exclusive accessis not available.

Record-level locking must be enabled in SAS Scalable Performance Data (SPD) Server before a SAS client can
use the CNTLEV=REC table option in their SAS program to access SAS Scalable Performance Data (SPD) Server
tables. Record-level locking enforces SAS style record-level integrity across multiple clients, so clients are
guaranteed that an observation will not change during a multi-phased

read or write operation on the specified observation. Record-level locking will alow multiple concurrent update
access to asingle SAS Scalable Performance Data (SPD) Server table, but it will deny concurrent access to the
specified observation within the table.

When a SAS Scalable Performance Data (SPD) Server client establishes a LIBNAME connection to a domain with
record-level locking enabled, it connects using the single record-level locking proxy

process. Thereis only one record-level locking proxy process per SAS Scalable Performance Data (SPD) Server.
All SAS Scalable Performance Data (SPD) Server clients that use record-level locking connections are processed
through the record-level locking proxy process. If there are alarge number of record-level locking connections,
there may be some contention for process resources between the clients. The record-level locking proxy processis

240

asingle point of failure for all these connections, so care should be taken when you use record-level locking to
update critical data.

When you append or insert new rows into a table with defined indexes, the table updates are processed more
sequentially through the record-level locking proxy process then they would be through the SPD user proxy
processes. The performance of record-level locking will probably be less than the performance that can be
obtained without record-level locking enabled for these types of operations. The standard member-level locking
that isused in SPD user proxy processes allows for more parallel processing when doing table append or insert
operations.

Record-level locking is not supported for operations on tables that use dynamic clusters.
Syntax
LOCKI NG=YES| NO
Default: NO
Use the following arguments:

YES

enables record sharing mode.
NO

disables record sharing mode.

Example

LI BNAME testrl sasspds 'tnp'
server =server Node. port
user ="' anonynous'
| ocki ng=YES ;

STARTOBS=

Specifies the start row (observation) number in a user-defined range for processing.

Syntax
STARTOBS=n
Use the following arguments:

n
is the number of the start row.

Description

By default, SAS Scalable Performance Data (SPD) Server processes the entire table unless the user specifiesa
range of rows with the options, STARTOBS= and ENDOBS=. If the ENDOBS= option is used without the

STARTOBS= option, the implied value of STARTOBS= is 1. When both options are used together, the value of
241

STARTOBS= must be less than the value of ENDOBS.=

In contrast to the Base SA S software options FIRSTOBS= and OBS=, the STARTOBS= and ENDOBS= SAS
Scalable Performance Data (SPD) Server options can be used for WHERE-clause processing in addition to table
input operations.

Example

Specify for SAS Scalable Performance Data (SPD) Server to process only row numbers (observations) 200 — 500
whilethe LIBNAME is active.

LI BNAME nydatal i b sasspds 'conversion_area
server =husky. 5105
user ='siteusrl'
pronpt =yes
start obs=200
endobs=500;

TEMP=
Controls the creation of atemporary LIBNAME domain for this LIBNAME assignment.
Syntax
TEMP=YES| NO
Default: NO
Use the following arguments:

YES
creates atemporary LIBNAME domain for the LIBNAME assignment.

NO
does not create atemporary LIBNAME domain.

Description

Use this option to create temporary LIBNAME domains that exist for the duration of the LIBNAME assignment.
The TEMP (temporary) domains are analogous to SAS WORK libraries.

To create atemporary LIBNAME domain, use TEMP=Y ES. Any data objects, tables, catalogs, or utility files that
are created in the TEMP=Y ES temporary domain are automatically deleted when you end the SAS session. This

functions similarly to aSASWORK library. (Note: Thetemporary domain is created as a subdirectory of the
directory specified as the library domain.)

Example 1

Create aLIBNAME domain to use for temporary storage during your SAS session.

242

LI BNAME nydatal i b sasspds 'conversion_area'
server =kaboom 5191
user='siteusrl'
pronpt =yes
t emp=yes ;

TRUNCWARN=

Suppresses hard failure on NL S transcoding overflow and character mapping errors.

Syntax
TRUNCWARN=YES| NO
Default: NO

Description

When using the TRUNCWARN=Y ES LIBNAME option, data integrity may be compromised because significant
characters can be lost in this configuration. The default setting is NO, which causes hard read/write stops when
transcode overflow or mapping errors are encountered. When TRUNCWARN=Y ES, and an overflow or character
mapping error occurs, awarning is posted to the SAS|og at data set close timeif overflow occurs, but the data
overflow islost.

WORKPATH=

I/O contention can occur when many SA'S Scal able Performance Data (SPD) Server users or SAS Scalable
Performance Data (SPD) Server jobs perform heavy processing that uses the same workpath. The WORKPATH=
option permits users to specify an alternate workpath that utility files (such asindex builds and sorting files) can
use. Specifying an alternate workpath can relieve I/O contention issues when other users are running heavy
processing jobs at the same time.

A properly configured workpath directs 1/O from utility operationsto a separate disk. Mapping the utility file work
to a separate disk using the WORKPATH= option avoids conflict with other jobs that use a default workpath that is
specified in the spdsserv.parm configuration file.

Using the optional WORKPATH= specification to direct utility file operations to a separate disk increases the
overal 1/0 through-put for the utility files and speeds up the server performance as well.

Syntax
WORKPATH=("path-specification’) ;
Example

Two SAS Scalable Performance Data (SPD) Server power users perform heavy index creation and are creating
heavy 1/0 contention on the default workpath that is defined in the spdsserv.parm configuration file:

wor kpat h=(" wor kspacel')
243

Both users override the default workpath by using the alternate WORK PATH= specification when issuing the
LIBNAME statementsin their jobs:

User 1 LIBNAME statement:
LI BNAME domai n- nanme sasspds "domai n- nanme"
server =host - nane. port - nunber

user =" user1'

wor kpat h=("/ bi gdi sk/ spdsngr/wor kpat h1') ;

User 2 LIBNAME statement:
LI BNAME domai n- nanme sasspds "domai n- nane"
server =host - nane. port - nunber
user =" user 2'

wor kpat h=("/ bi gdi sk/ spdsngr/wor kpat h2') ;

All SAS Scalable Performance Data (SPD) Server jobs by other users continue to use the default workpath
specification that is declared in spdsserv.parm

The LIBNAMEs.parm configuration file also accepts alternate WORKPATH= specifications for each domain.

Copyright © 2008 by SAS Ingtitute Inc., Cary, NC, USA. All rights reserved.

244

SAS Scalable Performance Data (SPD) Server Table Options

Contents

. Introduction
. Option for Compatibility with Base SAS Software
o SYNCADD=
. Options That Affect Disk Space
o ASYNCINDEX=
o COMPRESS=
o PARTSIZE=
. Optionsto Enhance Performance
o BYNOEQUALS=
o |IOBLOCKSIZE=
o NETPACKSIZE=
o SEGSIZE=
. Optionto Test Performance
o NOINDEX=
. Options for WHERE Clause Evauations
o MINMAXVARLIST=
o THREADNUM=
o WHERENOINDEX=
. Optionsfor Other Functions
o BYSORT=
o ENDOBS=
o STARTOBS=
o UNIQUESAVE=
o VERBOSE=
. Optionsfor Security
o ENCRYPT=

Introduction

All SAS users who use LIBNAME access to SAS Scalable Performance Data (SPD) Server should read this chapter. Most table options also
work in SQL pass-through statements.

This chapter presents reference information for the SAS Scalable Performance Data (SPD) Server table options. To specify atable option with
LIBNAME access, place the option value in parentheses after the table name. The option value then specifies processing that applies only to
that table. To specify atable option with pass-through access, place the option value in brackets after the table name. The option value then
specifies processing that applies only to that table. The SAS Scalable Performance Data (SPD) Server table options that follow are grouped by
the function of their default value.

When using the optionsin this chapter, remember that if atable option is used subsequent to a LIBNAME option or macro variable, the value
of the table option takes precedence.

Option for Compatibility with Base SAS Software

SYNCADD=

245

Specifies when appending to a table whether to apply asingle or multiple rows at atime.
Syntax

SYNCADD=YES|INO
Default

NO

Corresponding Macro Variable
SPDSSADD

Related Table Option
UNIQUESAVE=

Use the following arguments:

YES
imitates the behavior of the base SAS engine, applying asingle row at atime (synchronously).

NO
appends multiple rows at atime (asynchronously).

Description

When SYNCADD=is YES, processing performance is slower. Use this setting only to force the server's append
processing to be compatible with Base SAS software processing. That is, when the server encounters arow with a
non-unique value, to abort the append operation, back out the transactions just added, and |eave the original table
on disk.

Example
In this example, when executing the first INSERT statement, PROC SQL permitsinsertion of the values 'rollback1'
and 'rollback2' because the row additionsto table A are performed asynchronously. PROC SQL does not get the

true completion status at the time it adds a row.

When executing the second INSERT statement, PROC SQL performs arollback on the INSERT, upon encountering the Add
error on 'nonunique’, and deletes the rows 'rollback3' and 'rollback4'.

data a;
input z $ 1-20 x v;
|ist;
dat al i nes;
one 1 10
t wo 2 20
t hree 3 30
f our 4 40

five 5 50

PROC SQL sortseq=ascii exec noerrorstop;

create unique index conp on a (X, Yy);
246

insert into a
val ues(' rol | backl', -80, -80)
val ues('rol | back2',-90, -90)
val ues(' nonuni que', 2, 20);

insert into a(syncadd=yes)
set z="rollback3 , x=-60, y=-60
set z='rollback4', x=-70, y=-70
set z='nonuni que', x=2, y=20;
quit;

Options That Affect Disk Space

ASYNCINDEX=

Specifies when creating multiple indexes on a SAS Scalable Performance Data (SPD) Server table whether to create the indexes
in parallel.

Syntax
ASYNCINDEX=YES|NO
Default

NO

Corresponding Macro Variable
SPDSIASY
Use the following arguments:

YES
creates the indexes in parallel.

NO
createsasingleindex at atime.

Description
The SAS Scalable Performance Data (SPD) Server can create multiple indexes for atable at the sametime. To do
this, it launches asingle thread for each index created, then processes the threads simultaneously. Although

creating indexes in parallel is much faster, the default for this option is NO. The reason is because parallel creation
requires additional sort work space which may not be available.

For a complete description of the benefits and tradeoffs of creating multiple indexesin parallel, see the SAS
Scalable Performance Data (SPD) Server User's Guide Help section on SPDSIASY =.

Example

Since the disk work space required for parallel index creation is available, specify for SAS Scalable Performance
Data (SPD) Server to create, in paralel, the X, Y, and COMP indexes for table A.

PROC DATASETS | i b=nydat al i b;
247

nodi fy a(asynci ndex=yes);
i ndex create Xx;

i ndex create vy;

i ndex create conp=(x y);
qui t;

COMPRESS=

Compresses SAS Scalable Performance Data (SPD) Server tables on disk.
Syntax
COMPRESS=YES|NO
Default
NO
Use in Conjunction with Table Option
IOBLOCKSIZE=
Corresponding Macro Variable
SPDSDCMP
Use the following arguments:

YES
performs the run-length compression algorithm SPDSRLLC.

NO
performs no table compression.

Description

When COMPRESS= isassigned YES, SAS Scalable Performance Data (SPD) Server compresses newly created
tables by 'blocks' based on the algorithm specified. To control the amount of compression, use the table option
|IOBLOCKSIZE=. This option specifies the number of rows that you want to store in the block.

Note: Once acompressed tableis created, you cannot change its block size. To resize the block, you must PROC COPY the table
to anew table, setting IOBLOCK SIZE= to the block size desired for the output table.

PARTSIZE=

Specifies the size of a SAS Scalable Performance Data (SPD) Server table partition.
Syntax

PARTSIZE=n

248

Default

16 Megabytes

Corresponding Macro Variable

SPDSSIZE=

Affected by LIBNAME option

DATAPATH=

Use the following argument:

n

isthe size of the partition in megabytes.

Description

Specifying PARTSIZE= forces the software to partition (split) SAS Scalable Performance Data (SPD) Server
tables at the given size. The actual size is computed to accommodate the largest number of rows that will fit in the
specified size of n Mbytes.

Use this option to improve performance of WHERE Clause evaluation on non-indexed table columns and on SQL
GROUP_BY processing. By splitting the data portion of a Scalable Platform Data Server table at fixed-sized
intervals, the software can introduce a high degree of scalability for these operations. The reason: it can launch
threads in paralld to perform the evaluation on different partitions of the table, without the threat of file access
contention between the threads. Thereis, however, a price for the table splits: an increased number of files, which
are required to store the rows of the table.

Ultimately, scalability limits using PARTSIZE= depend on how you structure DATAPATH=, aLIBNAME option
discussed in the documentation on Scalable Performance Data Server LIBNAME Options. Specifically, the limits
depend on how you configure and spread the DATAPATH= file systems across striped volumes. Y ou should
spread each individual volume's striping configuration across multiple disk controllers’SCSI channelsin the disk
storage array. The goal for the configuration is, at the hardware level, to maximize parallelism during data
retrieval.

The PARTSIZE= specification is limited by MINPARTSIZE=, a SAS Scalable Performance Data (SPD) Server
parameter maintained by the SAS Scalable Performance Data (SPD) Server administrator. MINPARTSIZE=
ensures that an over-zealous SAS user does not create arbitrarily small partitions, thereby generating alarge
number of files. The default for MINPARTSIZE= is 16 Mbytes and probably should not be lowered much beyond
thisvalue.

Note: The PARTSIZE vaue for atable cannot be changed after atableis created. To change the PARTSIZE, you
must PROC COPY the table and use a different PARTSIZE option setting on the new (output) table.

Example

Using PROC SQL, extract a set of rows from an existing table to create a non-indexed table with a partition size of
32 Mbytesin aSASjob:

PROC SQ.;
create tabl e SPDSCEN. HR80SPDS(part si ze=32)
as sel ect
state,
age,
sex,

249

hour 89,
i ndustry,
occup
f r om SPDSCEN. PRECS
wher e hour 89 > 40;
qui t;

Options to Enhance Performance

BYNOEQUALS=

Specifies the output order of table rows with identical values for the BY column.
Syntax

BYNOEQUALS=YES|NO
Use the following arguments:

YES
does not guarantee the output order of table rows with identical valuesinaBY clause.

NO
guarantees the output order of table rows with identical valuesin aBY clause will be the relative table position of the
rows from the input table. Thisis the defaullt.

Example

Specify for SAS Scalable Performance Data (SPD) Server in the ensuing BY -column operation to output rows with
identical valuesin the key column randomly.

data sport.racquets(index=(string));
i nput
ragname $20
@2 wei ght
@8 bal ance $2.
@2 flex
@6 gripsize
@2 string $3.
@7 price
@5 i nstock;

dat al i nes;

Sol o Juni or 10.1 N 2
Sol o Lobber 11.3 N 10
Sol o Queensi ze 10,9 HH 6
Sol o Kingsize 13.1 HH 5

5 syn 50. 00
syn 160. 00
syn 130.00
syn 140.00

oo 0w
oo 0~
wWwek o

data sport.racqgbal (bynoequal =yes);
set sport.racquets;
by bal ance;

run;

250

IOBLOCKSIZE=

Specifies the number of rowsin ablock to be stored in or read from a SAS Scalable Performance Data (SPD) Server table.

Syntax

IOBLOCKSIZE=n
Default

4096

Use in Conjunction with

Macro Variable SPDSDCMP=or Table Options COMPRESS= or ENCRYPT=.

Use the following argument:

n
is the size of the block.

Description

The software reads and stores a server table in blocks. IOBLOCK SIZE= is useful on compressed or encrypted
tables. SAS Scalable Performance Data (SPD) Server software does not use IOBLOCK SIZE= on noncompressed
or nonencrypted tables.

For tables that you compress or encrypt, using either the option COMPRESS= or the macro variable
SPDSDCMP=, the IOBLOCK SIZE= specification determines the number of rowsto include in the block. The
specification applies to block compression as well as data /0O to and from disk. The IOBLOCK SIZE= value affects
the tabl€e's organization on disk.

When using SA S Scal able Performance Data (SPD) Server table compression or encryption, specify an
IOBLOCK SIZE= vaue that complements how the data is to be accessed, sequentially or randomly. Sequential

access or operations requiring full table scans favor alarge block size, for example 64K. In contrast, random access
favors a smaller block size, for example 8K.

Example

A huge company mailing list is processed sequentially. Specify a block size for compression that is optimal for
sequential access.

/* |1 bl ocksi ze set to 64K */

data sport.nmaillist(ioblocksize=65536 conpress=yes);
i nput
name $ 1-20

address $ 21-57
phoneno $ 58-69

sex $71;

dat al i nes;
Dougl as, M ke 3256 Main St., Cary, NC 27511 919- 444- 5555 M
Walters, Ann Marie 256 Evans Dr., Durham NC 27707 919- 324-6786 F
Turner, Julia 709 Cedar Rd., Cary, NC 27513 919-555-9045 F
Cashwel |, Jack 567 Scott Ln., Chapel Hll, NC 27514 919-533-3845 M

251

C ark, John 9 Church St., Durham NC 27705 919-324-0390 M

run;

NETPACKSIZE=

Specifies the size of the SAS Scalable Performance Data (SPD) Server network data packet.
Syntax

NETPACK SIZE=si ze-of -packet
Use the following argument:

size-of-packet
isthe size of the network packet in bytes.

Description

This option controls the size of the buffer used for data transfer between SAS Scalable Performance Data (SPD)
Server and a SAS client. The default is 32K bytes. The buffer size is relative to the size of atable row. It cannot be
less than the size of a single row. Packet size must be equal to some multiple of the table rows. If it isnot, SAS
Scalable Performance Data (SPD) Server rounds up the size specified. For example, if the packet buffer sizeis
4096 bytes and the row size is 3072, the software rounds up the buffer size to 6144.

Select a packet size to complement the bandwidth of the network it must travel through. An optimum size will flow
the data continuously without significant pauses between packets.

Example

Create a 12K buffer in the memory of the server to send three rows from MY TABLE in each network packet. (The
row sizein MYTABLE is4K.)

data nylib. nmytabl e (netpacksi ze=12288);

SEGSIZE=

Specifies the size of the segment for an index file associated with a SAS Scalable Performance Data (SPD) Server table.
Syntax

SEGSIZE=number
Use the following argument:

number
is the number of table rows to include in the index segment.

Description

The minimum SEGSIZE= value is 1024 table rows. The default value is 8192 tablerows. The size of the index
segment corresponds to the structure of the table and cannot be changed after the table is created.

252

Example
Specify a segment size of 64K for MYLIB.MYTABLE.
data nylib. mytable (segsi ze=65536) ;

Note: Tests show that increasing the size of the segment does not significantly increase performance.

Option to Test Performance

NOINDEX=
Specifies whether to use the table's indexes when processing WHERE Clauses.
Syntax
NOINDEX=YES|NO
Default
NO
Use the following arguments:

YES
ignores indexes when processing WHERE Clauses.

NO
uses indexes when processing WHERE Clauses.

Description

Set NOINDEX= to YES to test the effect of indexes on performance or for specific processing. Do not use YES
routinely for normal processing.

Example

We created an index for the SEX column but decide to test whether it is necessary for our PROC PRINT
processing. Specify for the server not to use the index.

data sport.maillist;
i nput
nane $ 1-20

address $ 21-57
phoneno $ 58-69

sex $71;

dat al i nes;
Dougl as, M ke 3256 Main St., Cary, NC 27511 919- 444-5555 M
Walters, Ann Marie 256 Evans Dr., Durham NC 27707 919- 324-6786 F
Turner, Julia 709 Cedar Rd., Cary, NC 27513 919-555-9045 F
Cashwel |, Jack 567 Scott Ln., Chapel HIl, NC 27514 919-533-3845 M

d ark, John 9 Church St., Durham NC 27705 919-324-0390 M

253

PROC DATASETS |i b=sport nolist;

modi fy maillist;
i ndex create sex;
quit;

/*Turn on the macro vari abl e SPDSWDEB */
/* to show that the index is not used */
/* used during the table processing. */

% et spdswdeb=YES;

title "All Fermales from Current Mailing List";
PROC PRI NT dat a=sport.maillist(noi ndex=yes);
where sex="F";

run;

Options for WHERE Clause Evaluations

MINMAXVARLIST=

Creates an index that documents the minimum and maximum values of specified variables. SAS Scalable Performance Data
(SPD) Server WHERE Clause evaluations use MINMAXVARLIST= indexes to include or eliminate member tablesin a SAS
Scalable Performance Data (SPD) Server dynamic cluster table from SQL evaluation scans..

Syntax

MINMAXVARLIST=(varnamel, varname2, ... , varnameN)
Use the following argument:
varnamel, varnamez, ... , varname N

are SAS Scalable Performance Data (SPD) Server table variable names.

Description

The primary purpose of the MIINMAXVARLIST=table option is for use with SAS Scalable Performance Data
(SPD) Server dynamic cluster tables where specific membersin the dynamic cluster contain a set or range of
values, such as sales data for a given month. When a SAS Scalable Performance Data (SPD) Server SQL sub
setting where- clause specifies specific months from arange of sales data, the WHERE planner checks the min/
max indexes. Based on the min/max index information, the SAS Scalable Performance Data (SPD) Server
WHERE planner includes or eliminates member tablesin the dynamic cluster for evauation.

MINMAXVARLIST= uses thelist of columns you submit to build an index. The MINMAXVARLIST= index
contains only the minimum and maximum values for each column. The WHERE Clause planner uses the index to
filter SQL predicates quickly, and to include or eliminate member tables belonging to the cluster table from the
evaluation.

Although the MINMAXVARLIST= table option is primarily intended for use with dynamic clusters, it also works
on standard SAS Scalable Performance Data (SPD) Server tables. MINMAXVARLIST= can help reduce the need
to create many indexes on atable, which can save valuable resources and space.

Example

254

% et donmai n=pat h3 ;
% et host =kaboom ;
% et port=5201 ;

[i bnamre &donmi n sasspds " &donai n"
server =&host . . &port
user =" anonynous'

/* Create three tables called */
/* xyl, xy2, and xy3. */

data &Jomai n. . xyl(m nmaxvarlist=(x y));
do x =1 to 10;
doy =1to 3
out put ;
end;
end;
run;

data &donain..xy2(m nnmaxvarlist=(x y));
do x = 11 to 20;
doy =41to 6 ;
out put ;
end;
end;
run;

data &donmi n..xy3(m nmaxvarlist=(x y));
do x = 21 to 30;
doy =71to9;
out put ;
end;
end;
run;

/* Create a dynami c cluster table */
/* called cluster_table out of */
/* new tables xyl, xy2, and xy3 */

PROC SPDO |i brary=&domai n ;
cluster create cluster _table
menFxyl
menmexy 2
mMenFxy3
maxsl ot =10;
quit;

/* Enabl e WHERE eval uation to see */
/* how the SQ planner selects */
/* menbers fromthe cluster. Each */
/* menber is evaluated using the */
/* m n-nmax index. */

% et SPDSWDEB=YES

/* The first nenber has true rows */

PROC PRI NT dat a=&donai n. .cluster_table ;
255

where x eq 3
and y eq 3;
run;

/* Exam ne the other tables */

PROC PRI NT dat a=&domai n. .cluster _table ;
where x eq 3
and y eq 3 ;

run;

PROC PRI NT dat a=&donmai n..cluster_table ;
where x eq 3
and y eq 3;

run;

PROC PRI NT dat a=&donai n. .cluster_table ;
where x between 1 and 10
and y eq 3;

run;

PROC PRI NT dat a=&donai n. .cluster_table ;
where x between 11 and 30
and y eq 8 ;

run;

/* Delete the dynam c cluster table. */
PROC DATASETS | i b=&donmai n nol i st;

delete cluster_table ;
quit ;

THREADNUM=

Specifies the number of threads to be used for WHERE Clause evaluations.
Syntax
THREADNUM=n
Default
THREADNUM= is set equal to the value of the MAXWHTHREADS server parameter.
Used in Conjunction with SAS Scalable Performance Data (SPD) Server Parameter
MAXWHTHREADS
Corresponding Macro Variable
SPDSTCNT=

Use the following argument:

256

is the number of threads.
Description

THREADNUM-= dlows you to specify the thread count the SAS Scal able Performance Data (SPD)
Server should use when performing a parallel WHERE Clause evaluation.

Use this option to explore scalability for WHERE Clause and GROUP_BY evaluationsin non-
production jobs. If you use this option for production jobs, you are likely to lower the level of
paralelism that is applied to those clause evaluations.

THREADNUM= works in conjunction with MAXWHTHREADS, a configurable system parameter.
MAXWHTHREADS imposes an upper limit on the consumption of system resources. The default
value of MAXWHTHREADS is dependent on your operating system. Your SAS Scalable
Performance Data (SPD) Server administrator can change the default value for
MAXWHTHREADS.

If you do not use THREADNUM=, the software provides a default thread number, up to the value of
MAXWHTHREADS as required. If you use THREADNUM=, the value that you specify is aso
constrained by the MAXWHTHREADS value.

The THREADNUM= value applies both to parallel table scans (EVAL2 strategy), parallel indexed
evaluations (EVAL1 strategy), parallel BY -clause processing, and parallel GROUP_BY evaluations.
The SAS Scalable Performance Data (SPD) Server User's Guide Help section on Optimizing SAS
Scalable Performance Data (SPD) Server Performance, contains more information on WHERE
Clause evaluation.

Example

The SAS Scalable Performance Data (SPD) Server administrator sst MAXWHTHREADS=128in
the SAS Scalable Performance Data (SPD) Server's parameter file. Explore the effects of parallelism
on agiven query by using the following SAS macro:

%racr o dot est (nmaxthr);
%o nthr=1 % o &maxthr;

data null _;
set SPDSCEN. PRECS(t hr eadnum=&nt hr) ;
VWHERE
occup="022'
and state in('37','03",'06","'36");
run;

%rend dot est;

WHERENOINDEX=

Specifies alist of indexes to exclude when making WHERE Clause evaluations.
Syntax

WHERENOINDEX=(namel name2...)
Use the following arguments:

(namel name2...)
257

alist of index names that you wish to exclude from the WHERE planner.
Example
We have atable PRECS with indexes defined as follows:

PROC DATASETS | i b=spdscen;
nodi fy precs(bitindex=(hour89));
i ndex create
stser=(state serial no)
occi nd=(occup industry)
hour 89;
qui t;

When eva uating the next query, we want the SAS Scalable Performance Data (SPD) Server to exclude from
consideration indexes for both the STATE and HOURS89 columns.

In this case, we know that our AND combination of the predicates for the OCCUP and INDUSTRY columns will
produce a very small yield. Few rows satisfy the respective predicates. To avoid the extraindex 1/0 (machine time)
that the query requires for afull-indexed evaluation, use the following SAS code:

PRCC SQL;
create table hr80spds
as sel ect
state,
age,
sex,
hour 89,
i ndustry,
occup
from spdscen. precs(wher enoi ndex=(st ser hour89))
wher e occup=' 022
and state in('37','03 ,'06',"'36")
and industry='012'
and hour 89 > 40;
qui t;

Note: Specify index names in the WHERENOINDEX list, not the column names. The exampl e excludes both the
composite index for the STATE column STSER and the ssmple index HOURS89 from consideration by the
WHINIT WHERE planner.

Options for Other Functions

BYSORT=

Perform an implicit automatic sort when SAS Scalable Performance Data (SPD) Server encountersaBY clause for
agiven table.

Syntax
BYSORT=YES | NO
Use the following arguments:

YES

sorts the data based on the BY columns and returns the sorted data to the SAS client. This powerful
258

capability means the user does not have to sort data using a PROC SORT statement before using aBY

clause.

NO
does not sort the data based on the BY columns. This may be desirable if aDATA step BY clause hasa
GROUPFORMAT option or if a PROC step reports grouped and formatted data.

Description

The default is YES. The NO argument means the table must have been previously sorted by the
requested BY columns. The NO argument allows grouped data to maintain their precise order in the
table. A Y ES argument groups the data correctly but possibly in a different order from the order in
the table.

Example 1 - Group Formatting with BYSORT=

i bname sport sasspds 'nylib'
host =' sanson'
user =" user 19'
passwd=" dunmmy?2' ;

PROC FORWVAT;
val ue doll ars
0-99. 99="1 ow'
100- 199. 99="nedi unt
200- 1000="hi gh";
run;

data sport.racquets;
i nput

ragname $20.
@2 wei ght
@8 bal ance $2.
@2 flex
@6 gripsize
@2 string $3.
@7 price
@5 i nstock;

dat al i nes;
Sol o Juni or 10.1 N 2
Sol o Lobber 11.3 N 10
Sol o Queensi ze 10,9 HH 6
Sol o Kingsi ze 13.1 HH 5

5 syn 50. 00
syn 160. 00
syn 130.00
syn 140. 00

o oaw
oo~
wweko

PROC PRI NT dat a=sport.racquets (bysort=yes);
var ragnane instock;
by price;
format price dollars.;
title 'Sol o Brand Racquets by Price Level';
run;

Output 4. 1 Report Output with BYSORT=

259

Solo Brand Racquets by Price Level

Price=low
OBS RAQNAME INSTOCK
1 Solo Junior 6

Price=medium

OBS RAQNAME INSTOCK
3 Solo Queensize 3
4 Solo Kingsize 3
2 Solo Lobber 1

Example 2 - Group Formatting without BYSORT=

PROC PRI NT dat a=sport.racquets (bysort=no);
var ragnane instock;
by price;
format price dollars.;
title 'Sol o Brand Racquets by Price Level"';
run;

Output 4. 2 Report Output without BYSORT=

Solo Brand Racquets by Price Level

Price=low
OBS RAQNAME INSTOCK
1 Solo Junior 6

Price=medium

OBS RAQNAME INSTOCK
2 Solo Lobber 1
3 Solo Queensize 3
4 Solo Kingsize 3

ENDOBS=

Specifies the end row (observation) number in a user-defined range for the processing of a given table.

260

Syntax
ENDOBS=n
Use the following argument:

n
is the number of the end row.

Description

By default, SAS Scalable Performance Data (SPD) Server processes the entire table unless the user
specifies arange of rows with the STARTOBS= and ENDOBS= options. If the STARTOBS= option
is used without the ENDOBS= option, the implied value of ENDOBS= is the end of the table. When
both options are used together, the value of ENDOBS= must be greater than STARTOBS=.

In contrast to the Base SAS software options FIRSTOBS= and OBS=, the STARTOBS= and
ENDOBS= SAS Scaable Performance Data (SPD) Server options can be used for WHERE Clause
processing in addition to table input operations.

Example
Print only rows 2-4 of thetable INVENTORY.OLD_AUTOS.

i bname inventory sasspds 'conversion_area'
server =husky. 5105
user='siteusrl

pronpt =yes;

data inventory. ol d_aut os;
i nput
year $4.
@ manufacturer $12.
nmodel $10
body style $5.
engine liters
@9 transmni ssion_type $1
@1 exterior_color $10.
options $10.
m | eage conditon;

dat al i nes;
1971 Bui ck Skyl ar k conv 5.8 A yellow 00000001 143000 2
1982 Ford Fiesta hatch 1.2 M silver 00000001 70000 3
1975 Lanci a Bet a 2door 1.8 M dk blue 00000010 80000 4
1966 A dsnobile Toronado 2door 7.0 A black 11000010 110000 3
1969 Ford Must ang sptrf 7.1 M red 00000111 125000 3

PROC PRI NT dat a=i nventory. ol d_autos (startobs=2 endobs=4);
run;

Output 4. 3 Data in the Printed Output

261

3

1982 Ford Fiesta hatch 1.2 M silver 00000001 70000

1975 Lancia Beta 2door 1.3 M dkblue 00000010 80000 4

1966 Oldsmobile Toronado 2door 7.0 A black 11000010 110000 3

STARTOBS=

Specifies the start row (observation) number in a user-defined range for the processing of a given table.

Syntax
STARTOBS=n
Use the following argument:

n
isthe number of the start row.

Description

By default, SAS Scalable Performance Data (SPD) Server processes the entire table unless the user
specifies arange of rows with the STARTOBS= and ENDOBS= options. If the ENDOBS= option is
used without the STARTOBS= option, theimplied value of STARTOBS= is 1. When both options

are used together, the value of STARTOBS= must be less than ENDOBS=.

In contrast to the Base SA S software options FIRSTOBS= and OBS=, the STARTOBS= and
ENDOBS= SAS Scalable Performance Data (SPD) Server options can be used for WHERE Clause

processing in addition to table input operations.
Example
Print only rows 2-4 of the table INVENTORY.OLD_AUTOS.

i bname inventory sasspds 'conversion_area'
server =husky. 5105
user='siteusrl'

pr onpt =yes;

data inventory. ol d_aut os;
i nput

year $4.
@ manufacturer $12.
nodel $10
body style $5.
engine_liters
@9 transm ssion_type $1.
@1 exterior_color $10.
options $10.
nm | eage conditon;

dat al i nes;

1971 Bui ck Skyl ar k conv 266'28 A vyellow

00000001 143000 2

1982 Ford Fi esta hatch 1.2 M silver 00000001 70000 3
1975 Lanci a Bet a 2door 1.8 M dk bl ue 00000010 80000 4
1966 A dsnobile Toronado 2door 7.0 A black 11000010 110000 3
1969 Ford Must ang sptrf 7.1 M red 00000111 125000 3

proc print data=inventory.old autos (startobs=2 endobs=4);
run;

UNIQUESAVE=

Specifies to save rows with non-unique key values (the rejected rows) to a separate table when appending data to
tables with unique indexes.

Syntax
UNIQUESAVE=YES|NO|REP
Default
NO
Complements the Table Option
SYNCADD=

Used in Conjunction with Macro Variable

SPDSUSDS=

Corresponding Macro Variable:
SPDSUSAV=
Use the following arguments:

YES
writes rejected rows to a separate, system-created table file which can be accessed by areferenceto the
macro variable SPDSUSDS-.

NO
does not write rejected rows to a separate table, that is, ignores non-unique key values.

REP
when updating a master table from atransaction table, where the two tables share identical variable
structures, the UNIQUESAYV E=REP option replaces the row updated row in the master table instead of
appending arow to the master table. The REP option only functions in the presence of a/UNIQUE index on
the MASTER table. Otherwise the REP setting isignored..

Description

SYNCADD= is defaulted to NO. When NO, table appends are 'pipelined’, meaning that the server
datais sent in astream ablock at atime (see table option NETPACKSIZE=). While pipelining is
faster than a synchronous append, SAS reports the results of the append operation differently for
these two modes.

263

When applying only asingle row (SYNCADD=NO), SAS returns a status code for each ADD
operation. The application can determine the next action based upon the status value. If arow is
rejected due to containing a non-unigue value for a unique index, the user receives a status message.
In contrast, when datais pipelined (SYNCADD=YES), SASreturns a status code only after all the
rows are applied to atable. As a consequence, the user does not know which rows have been
rejected.

To enjoy the performance of data pipelining but still retain the rejected rows, use the
UNIQUESAVE-= option. When set to YES, SAS Scalable Performance Data (SPD) Server will save
any rows that are rejected to a hidden SAS table.

When using this option, SAS returns the name of the hidden table containing the rejected rowsin the
macro variable SPDSUSDS. If you want to report the contents of the table, reference SPDSUSDS=.

Note: If SYNCADD= YES is set, data pipelining is overridden and the data is processed synchronously. In this
situation, the UNIQUESAVE= option is not relevant and, if set, isignored.

Example 1
We want to append two tables, NAMES2 and NAMES3, which contain employees names, to the NAMESLI table.
Before performing our append, we create an index on the NAME column in NAMESL, declaring the index unique.

Specify for SAS Scalable Performance Data (SPD) Server, during the append operation, to store rows found with
duplicate employee names to a separate table file generated by the macro variable SPDSUSDS=.

Use a%PUT statement to display the table name for SPDSUSDS=. Then request a printout of the duplicate rowsto
review later.

dat a enpl oyee. nanesli;
i nput narme $ exten;
dat al i nes;

Jill 4344

Jack 5589

Jim 8888

Sam 3334

run;

data enpl oyee. nanes2;
i nput narme $ exten;

dat al i nes;
Jack 4443
Ann 8438
Sam 3334
Susan 5321
Donna 3332
run;

dat a enpl oyee. naness3;
i nput name $ exten;
dat al i nes;

Donna 3332

Jerry 3268

M ke 2213

run;

PROC DATASETS | i b=enpl oyee noli st;
nodi fy nanmesi;

264

i ndex create nane/uni que;
qui t;

PROC APPEND dat a=enpl oyee. nanes?2
out =enpl oyee. nanes1l(uni quesave=yes); run;

title ' The NAMESL table with uni que nanes
from NAVES2' ;

PRCC PRI NT dat a=enpl oyee. nanesi;
run;

%ut Set the macro variabl e spdsusds to &spdsusds;

title 'Duplicate (non-unique) nanme rows found in
NAMES2' ;

PROC PRI NT dat a=&spdsusds;
run;

PROC APPEND dat a=enpl oyee. nanes3

out =enpl oyee. nanesl(uni quesave=yes);
run;

The SAS log provides the messages:

WARNI NG Duplicate values not allowed on index NAME for
file EMPLOYEE. NAMES1. (Cccurred 2 tines.)
NOTE: Duplicate records have been stored in file
EMPLOYEE. _30E3FD5.

And, an extract from our PROC PRINT shows:

The NAMES1 table with uni que nanes from NAMES2

OBS NANVE EXTENs
1 Jill 4344
2 Jack 5589
3 Jim 8888
4 Sam 3334
5 Ann 8438
6 Susan 5321
7 Donna 3332

Duplicate (non-uni que) nane rows found in NAMES2

OBS NAVE EXTEN XXX00000
1 Jack 4443 NAVE
2 Sam 3334 NAME

Example 2

Use the UNIQUESAV E=REP option to perform an update / append case using PROC APPEND
instead of aDATA step:

265

/* A MASTER table to update. 1D */
/* will get a UNI QUE i ndex */

DATA SPDS. MASTER;
| NPUT | D VALUE $;
CARDS;
1 one
2 two
3 three

PROC DATASETS LI B=SPDS;
MODI FY MASTER;
| NDEX CREATE | D/ UNI QUE;

QT

/* A transaction table TRANS to use to */
/* drive update/ appends to MASTER */

DATA SPDS. TRANS;
I NPUT | D VALUE $;
1 ONE
3 THREE
4 FOUR
4 FOUR*

/* Use of UN QUESAVE=REP to update/append */
/* TRANS rows to MASTER based on whet her */
/* TRANS records have an I D columm that */
/* matches an existing row fromthe MASTER */
/* table. Update MASTER rows with a match, */
/* otherw se append TRANS row to MASTER */

PROC APPEND DATA=SPDS. TRANS
OUT=SPDS. MASTER(UNI QUESAVE=REP) ;
run;

Output of the resulting MASTER table would look like:

Obs I D VALUE
1 1 ONE
2 2 t wo
3 2 THREE
4 4 FOUR*

VERBOSE=

Provides details of all indexes and ACL information associated with a SAS Scalable Performance Data (SPD)
Server table.

Syntax
VERBOSE= YES|NO

Use the following arguments:
266

YES
requests detail information for the indexes, ACLs, and other SAS Scalable Performance Data (SPD) Server
table values. This argument must be used with the CONTENTS procedure.

NO
suppresses detail information for the indexes, ACL s, and other SAS Scalable Performance Data (SPD)
Server table values. Thisisthe default.
Example
Request details of all the indexes for the table TEMPL in the domain SPDS44.
PROC CONTENTS dat a=SPDS44 (ver bose=yes);
run;
The CONTENTS Procedure
Data Set Nane SPDS44. TEMPL
Observati ons 1000
Menber Type DATA
Vari abl es 2
Engi ne SASSPDS
I ndexes 2
Creat ed Tuesday, My 10, 2005 10:00: 02 AM (bservation
Lengt h 16
Last Modified Tuesday, May 10, 2005 11:01:36 AM Del et ed
bservati ons 0
Protection
Conpr essed NO
Data Set Type
Sorted NO
Label
Dat a Representation Def aul t
Encodi ng Def aul t

Engi ne / Host Dependent | nformation

Bl ocki ng Factor (obs/bl ock) 2047

ACL Entry NO

ACL User Access(R WA, Q (Y, Y,VY,Y)
ACL User Nane ANONYMOU
ACL Owner Nane ANONYMOU
Data Set is Ranged NO

Al phabetic List of Index Info
Bitmap i ndex (No G obal Index) i

Keyval ue (M n) 1

Keyval ue (Max) 100

of Discrete val ues 100
Bitmap i ndex (No G obal Index) j

Keyval ue (M n) 1

Keyval ue (Max) 10

of Discrete val ues 10

Data Partsize 16777216

Al phabetic List of Variables and Attributes

267

* Vari abl e Type Len

=
o

Num
2 i Num 9

Al phabetic List of Indexes and Attributes

of
Uni que
* | ndex Val ues
1 i 100
2 i 10

Options for Security

ENCRYPT=

Encrypts SAS Scalable Performance Data (SPD) Server tables on disk. Encryption is a security mechanism that
protects table contents from users who have system accessto raw SAS Scalable Performance Data (SPD) Server
tables. Accessto tablesisnormally controlled by SAS Scalable Performance Data (SPD) Server ACLs. The SAS
Scalable Performance Data (SPD) Server Administrator's Guide contains detailed information about using SAS
Scalable Performance Data (SPD) Server ACL s to control access to tables.

When the ENCRY PT= option setting is set to YES, SAS Scalable Performance Data (SPD) Server encrypts newly
created tables by blocks. To control the amount of encryption per block, use the table option |IOBL OCKSIZE=.
The IOBLOCK SIZE= option specifies the number of rows to be encrypted in each block.

Syntax
ENCRYPT=YES|NO
Arguments

YES
encrypts the data set. The encryption method uses passwords. At a minimum, you must specify the READ=
or the PW= data set option at the same time that you specify an ENCRY PT=Y ES option setting.

NO
no table encryption is performed. NO is the default setting for the ENCRY PT= option.

Usage Notes

1. Depending on your query patterns, increasing or decreasing the block size can affect performance.

2. SAS Scalable Performance Data (SPD) Server does not encrypt table indexes or metadata. Only table row
data are encrypted.

3. Toencrypt SPD tables with pass-through SQL, use only the READ= or PW= table option. With pass-
through SQL, ENCRY PT=YES s implied with these options.

4. To access an encrypted table, the user must have appropriate ACL permissions to the table and must
provide the encryption key viathe READ= or PW= table option.

5. Encrypting a SAS Scalable Performance Data (SPD) Server table provides security from usersthat have
system access to dump raw SAS Scalable Performance Data (SPD) Server tables. The section on Security in

268

the SAS Scalable Performance Data (SPD) Server Administrator's Guide contains more information about
how to controll system accessto SAS Scalable Performance Data (SPD) Server tables.

Copyright © 2008 by SAS Ingtitute Inc., Cary, NC, USA. All rights reserved.

269

SAS Scalable Performance Data (SPD) Server Formats and
Informats

. Introduction
. Formats

o Formats Example

o User-Defined Formats Example
. Informats

Introduction

SAS Scalable Performance Data (SPD) Server supports some of the more commonly used SAS format and informats. Use these in
your SQL pass-through code when you want SAS Scalable Performance Data (SPD) Server to associate a data set variable with a
specific format.

A general reminder about formats. A format is applied to data set variables asit iswritten out. Informats are applied as the data set
variable is being read. For more information on the formats and informats listed here see Chapters 13 and 14 in the SAS Language
Reference.

Formats

« $-- Writes standard character data
. $BINARY -- Converts character valuesto binary representation
. $CHAR -- Writes standard character data
. $HEX -- Converts character values to hexadecimal representation
. $OCTAL -- Converts character values to octal representation
. $QUOTE -- Converts character values to quoted strings
. $VARYING -- Writes varying length values
. BEST -- SAS Scalable Performance Data (SPD) Server system chooses best notation
. BINARY -- Converts numeric valuesto binary representation
. COMMA -- Writes numeric values with commas and decimal points
. COMMAX -- Writes numeric values with commas and decimal points (European style)
. DATE -- Writes date values (ddmmmyy)
. DATETIME -- Writes date time values (ddmmmyy:hh:mm:ss.ss)
. DAY -- Writes day of month
. DDMMYY -- Writes date values (ddmmyy)
. DOLLAR -- Writes numeric values with dollar signs, commas, and decimal points
. DOLLARX -- Writes numeric values with dollar signs, commas, and decimal points (European style)
. DOWNAME -- Writes name of day of the week
. E -- Writes scientific notation
. F-- Writes scientific notation
. FRACT -- Converts valuesto fractions
. HEX -- Convertsreal binary (floating-point) numbers to hexadecimal representation
. HHMM -- Writes hours and minutes
. HOUR -- Writes hours and decimal fractions of hours
270

Note:

IB -- Writesinteger binary values

MMDDYY -- Writes date values (mmddyy)

MMSS -- Writes minutes and seconds

MMYY -- Writes month and year, separated by a'M'

MONNAME -- Writes name of month

MONTH -- Writes month of year

MONYY -- Writes month and year

NEGPAREN -- Displays negative values in parentheses

OCTAL -- Converts numeric values to octal representation

PD -- Writes packed decimal data

PERCENT -- Prints numbers as percentages

PIB -- Writes positive integer binary values

QTR -- Writes quarter of year

RB -- Writes real binary (floating-point) data

SSN -- Writes social security numbers

TIME -- Writes hours, minutes, and seconds

TOD -- Writes the time portion of datetime values

w.d -- Writes standard numeric data

WEEKDATE -- Writes day of week and date (day-of-week, month-name dd, yy)
WEEKDATX -- Writes day of week and date (day-of-week, dd month-name yy)
WEEKDAY -- Writes day of week

WORDDATE -- Writes date with name of month, day, and year (month-name dd, yyyy)
WORDDATX -- Writes date with day, name of month, and year (dd month-name yyyy)
WORDF -- Converts numeric values to words

WORDS -- Converts numeric values to words (fractions as words)

YEAR -- Writes year part of date value

YYMM -- Write year and month, separated by a'M'

YYMMDD -- Writes day values (yymmdd)

YYMON -- Writes year and month abbreviation

YYQ -- Writes year and quarter, separated by a'Q'

Z -- Writes leading Os

ZD -- Writes datain zoned decimal format

Formats which begin with a'$' sign are character formats. Otherwise the format accepts numeric values.

Formats Example:

Use the dollar. format to convert numeric sales figures into dollar values. Suppose you have a SAS
Scalable Performance Data (SPD) Server data set (sales) with a single numeric variable (salesite)
representing the total salesfor agiven site. Using SQL pass-through, create a new data set containing the
salesin dollar format.

PROC SQ;
connect to sasspds
(dbg="t np’
user =' anonynous'
host ="' | ocal host"
serv='5127");

execute(create tabl e noney
as select salesite
f or mat =dol | ar.
from sal es)

271

by sasspds;

qui t;

User-Defined Formats Example

This example is a sample test job that validates its own configuration to utilize user-defined formats.
When properly configured, user-defined formats will allow columns to be formatted using Parallel
Group-By statements and a WHERE-clause that uses a format to subset data to the server.

The example provides sample spdsserv.parm and libnames.parm file examples as well as code examples
which follow the two sample SAS Scalable Performance Data (SPD) Server configuration files.

Thisexampleis a sample test job that checks the usage of user-defined formats. When correctly set up,
user-defined formats will allow formatting of columnsin parallel group-by and permits usage of a
WHERE-clause that uses aformat to subset data.

SAS Scalable Performance Data (SPD) Server spdsserv.parm file used in the example:

SORTSI ZE=8M
| NDEX_SORTSI ZE=8M
Bl NBUFSI ZE=32K;

| NDEX_MAXMEMORY=8M
NOCOREF! LE:

SEQ OBUFM N=64K;
RANI OBUFM N=4K;
NOAL LOAVVAP:
MAXWHTHREADS=16;
WHERECOST! NG;
RANDOVPL ACEDPF:;
FMTDOVAI N=FORMATS:
FMINAVENODE=d8488
FMINAVEPORT=5200:

SAS Scalable Performance Data (SPD) Server libnames.parm file used in the example:

I'i bname=t np pat hname=c: \tenp;
| i bnanme=f ornmats pat hnane=c:\data\fornats;

SAS Scalable Performance Data (SPD) Server example code:

% et domai n=t np;
% et host =d8488;
% et serv=5200;

/* 1 ocki ng=YES nust be specified when using */
/* options fmtsearch=(formts); */

Ii bnane formats sasspds 'fornmats'
host =" &ost "
serv="4&serv"
user =" anonynous'

272

| ocki ng=YES

i bname &domai n sasspds " &domai n"
host =" &ost "
serv="&serv"
user =" anonynous'
| P=YES;

options fntsearch=(formats);

PROC DATASETS nol i st
i b=formats
nment ype=cat al og;

del ete formats;

quit ;

/* To create user defined formats, they nust be
/* | oaded fromthe same platformwhere they are
/* going to be stored. You cannot use W ndows
/* path specifications to | oad formats on UN X
/* platforns.

/* Add formats to format domain */

PROC FORVAT | i b=formats;
val ue AGEGRP

0-13="Chi | d'
14- 17=" Adol escent"
18- 64=" Adul t'

65- H GH=' Pensi oner"' ;

val ue $GENDER
"F ' Fenal e’
'M 'Mal e';

run ;

/* Create a test table with a columm that uses
/* AGEGRP f or mat

data &donmmin..fnttest;
format age AGEGRP. GENDER $GENDER. id z5.;
| engt h GENDER $1;
do id=1 to 100;
if mod (id,2) =0
then GENDER = 'F';
el se GENDER = ' M ;
age=i nt (ranuni (0)*100);
i nconme=age*i nt (ranuni (0) *1000) ;
out put ;

end;

273

*/
*/
*/
*/
*/

*/
*/

run;

/* Use the Parallel Goup-By feature with the */
/* fntgrpsel option. This groups the data based */
/* on the output format specified in the table. */
/* This will be executed in parallel. */

PROC SQ;

connect to sasspds
(dbg="&donai n"
serv="&serv"
host =" &ost "
user ="anonynous") ;

/* Explicitly set the fntgrpsel option */

execut e(reset fntgrpsel)
by sasspds;

title 'Sinple Frntgrpsel Exanple';

select *

from connection to sasspds
(sel ect age, count(*) as count
fromfnttest group by age);

di sconnect from sasspds;
quit;

PROC SQ.;

connect to sasspds
(dbg=" &domai n"
serv="&serv"
host =" &ost "
user ="anonynous") ;

/* Explicitly set the fntgrpsel option */

execut e(reset fmtgrpsel)
by sasspds;

title 'Format Both Colums G oup Sel ect Exanple';

select *
from connection to sasspds
(sel ect GENDER f or mat =$GENDER.
AGE f or mat =AGEGRP. ,
count(*) as count
fromfnttest
formatted group by GENDER, AGCE);

di sconnect from sasspds;
quit;

274

PROC SQ.;
connect to sasspds
(dbg=" &domai n"
serv="4&serv"
host =" &ost "
user ="anonynmous");

/* Explicitly set the fntgrpsel option */

execut e(reset fmtgrpsel)
by sasspds;

titlel 'To use Format on Only One Colum Wth G oup Select';
title2 '"Override Colum Format Wth a Starndard Fornat';

select *
from connection to sasspds
(sel ect GENDER format =$1.,
AGE for mat =AGEGRP. ,
count(*) as count
fromfnttest
formatted group by GENDER, ACE);

di sconnect from sasspds;
quit;

/* A WHERE-cl ause that uses a fornmat to subset */
/* data is pushed to the server. If it is not */
/* pushed to the server, the followi ng warning */
/* message will be witten to the SAS | og: */
/* WARNI NG Server is unable to execute the */
/* where cl ause. */

data tenp;
set &dommin..fnttest;

where put

(AGE, AGEGRP.) = "Child';
run;

Informats

. $-- Reads standard character data

. $BINARY -- Converts binary values to character values

. $CB -- Reads standard character data from column-binary files
. $CHAR -- Reads character data with blanks

. $HEX -- Converts hexadecimal datato character data

. $OCTAL -- Converts octal datato character data

. $PHEX -- Converts packed hexadecimal data to character data
. $QUOTE -- Converts quoted strings to character data

. $SASNAME --

. SVARYING -- Reads varying length values

. BEST -- SAS Scalable Performance Data (SPD) Server system chooses best notation

275

. BINARY -- Converts positive binary valuesto integers

. BITS-- Extract bits

. COMMA -- Removes embedded characters (e.g. $,.)

. COMMAX -- Removes embedded characters (e.g. $,.) European style
. D -- Reads scientific notation

. DATE -- Reads date values (ddmmmyy)

. DATETIME -- Reads datetime values (ddmmmyy hh:mm:ss.ss)

. DDMMYY -- Reads date values (ddmmyy)

. DOLLAR -- Reads numeric values with dollar signs, commas, and decimal points
. DOLLARX -- Reads numeric values with dollar signs, commas, and decimal points (European style)
. E -- Reads scientific notation

. F -- Reads scientific notation

. HEX -- Converts hexadecimal positive binary values to fixed- or floating-point values
. |B -- Readsinteger binary (fixed-point) values

« JULIAN -- Reads Julian dates (yyddd or yyyyddd)

. MMDDYY -- Reads date values (mmddyy)

. MONYY -- Reads month and year date values (mmmyy)

. MSEC -- Reads TIME MIC values

. OCTAL -- Converts octal valuesto integers

. PD -- Reads packed decimal data

. PDTIME -- Reads packed decimal time of SMF and RMF records

. PERCENT -- Converts percentages into numeric values

. PIB -- Reads positive integer binary (fixed-point) values

. PK -- Reads unsigned packed decimal data

« PUNCH -- Reads whether arow of column-binary datais punched

. RMFSTAMP -- Readstime and date fields of RMF records

. ROW -- Reads a column-binary field down a card column

. SMFSTAMP -- Reads time-date values of SMF records

. TIME -- Reads hours, minutes, and seconds (hh:mm:ss.ss)

. TODSTAMP -- Reads 8-byte time-of-day stamp

. TU -- Readstimer units

. YYMMDD -- Reads date values (yymmdd)

. YYQ -- Reads quarters of the year

Note: Informats which begin with a'$ sign are character informats. Otherwise the informat accepts numeric values.

The SQL procedure itself does not use the INFORMAT= modifier: it storesinformatsin its table definitions so that other procedures
and the data step can use the information. SAS Scalable Performance Data (SPD) Server informats are provided now to allow for
forward compatibility with future devel opment.

Copyright © 2008 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

276

SAS Scalable Performance Data (SPD) Server NLS
Support

Contents

. Overview of NLS
. Character Encoding Overview
o What is Character Encoding?
o Common Encodings
. Moving Data across Environments with Different Encodings
o Transcoding
o How Base SAS Transcodes Data
o Base SAS Encoding Behavior
o SAS 9 Output Processing
o SAS9 Input Processing
o Reading and Writing External Files
. Setting the Encoding for Base SAS Sessions
. Changing the Encoding for Base SAS Sessions
« NLS Support in SAS Scalable Performance Data (SPD) Server
. SAS Scalable Performance Data (SPD) Server NLS Limitations
o Affected Data
o Pass-Through SOL
o Case Folding and Sort Sequences
o Indexes and Ordering
o Date and Time Representations
o Suppressing Transcoding
o LIBNAME Option Restrictions:

Overview of NLS

NLS, or National Language Support, deals both with Internationalization and Localization of SAS software.
Internationalization is the process of designing an application so that it can be adapted to different languages
and regions, without requiring engineering changes. Often the term internationalization is abbreviated asi18n,
because there are 18 letters between the first "i* and the last "n." Localization is the process of adapting
software for a particular region or language by adding locale-specific components and translating text. The term
localization is often abbreviated as L 10n, because there are 10 |etters between the "L" and the "n." Trandlation
of user interface, messages, and documentation is alarge part (but not all) of localization. Localizers also verify
that the formatting of dates, numbers, currencies etc. conformsto local requirements.

277

SAS 9 contains built-in support for NL S character set encoding and locale choices. Users accessthe NLS
encoding and locale choices through various SAS, LIBNAME, and data set options. SAS Scalable
Performance Data (SPD) Server and SAS together offer basic levels of NL S support. This document describes
the basic entities of NL S support and how they are implemented in SAS Scal able Performance Data (SPD)
Server

Character Encoding Overview

All input to a computer is represented internally as numbers. The computer assigns a number to each character
-- technically, the number is a binary number (base 2 numbering system, consisting of Os and 1s).

Because most of us don't want to think in binary numbers, computers provide hexadecimal (base 16 numbering
system) representation as a shorthand for binary representation. For example, for the decima number 167, it's
easier to understand the hexadecimal number A7 than the equivaent binary number 10100111. Therefore, you
can think of the computer'sinternal numeric representation of all data as a hexadecimal number.

What is Character Encoding?

All datathat is stored, transmitted, or processed by a computer isin an encoding. An encoding
maps each character to a unique numeric representation. For example:

1. You pressakey on akeyboard, like the uppercase letter A.

2. The computer assigns the internal numeric representation, that is, a unique hexadecimal
number.

3. Todisplay or print the character, the computer uses the font (graphical representation) that
matches the numeric representation, that is, the uppercase letter A.

To assign the numeric representation to a character, an encoding uses a code page, which isan
ordered set of charactersin which anumeric index (code point value) is associated with each
character. The position of a character on the code page determines its two-digit hexadecimal
number. The first digit of the hexadecimal number is determined by the column, and the second
digit by the row. For example, the following is the code page for the Windows Latinl encoding.
The numeric representation for the uppercase A is the hexadecimal number 41, and the numeric
representation for the equal sign (=) is the hexadecimal number 3D.

278

o
m

. B g

=

= e
ik &

0-|1-|2-|3-[4 |5 |6 |7 | 8|09 |A-|B-

o
%
m
oL

e | O | @ | P " p| & mm [°

i
P

EPQ TR H O 1De00 B b De0000) L POROCO0 A0 1 30000 LR 0D | ST500000 P SO o R0 | L 3) L D D3 | L, 0 L LD
p ,
A f | 1|A|Q|a]|q | | £ |A|N|4]a
EFAITTH D] WO) (00s) LA e () LCRTSTR0a) LA (R 0] L o) S TOOCE | '3 P DG0D0CH SiMITe 6] 118 1T) L hERoreod | LA TR0 BL 10D
' A

2| B|R[b]|], ¢ | 2

EFYLAT D] H V00000) LEAN) LROGOOGO LG 00 | LR 0000

<o
L
l"}
<
Lr]
-

5 M ORI O N O 0000 | LO0 200ERT | L0000 | L0 D00 | L0 000 0 T D00 E5712 (R0 | 5200 DeR0E | 0 [0 T (0 | LARE)

§ %

[]

-9

o

ﬁ

[x =
¥

I

e |

L]
S0 DY M DG LD FT00E | L TR Te00) LD 00080 | L TOA 0000 | SPZI000 | EFTECG p=Ec 10000 | 501110000

k
)
2

=2

L] "3 1]

ay
FS
w
'
c
&
=

S ST R D = 0 O el TR0 | LB L O

vt =

DK | L6 DMK | Bl 264 DRR00 | S | SRAT 0N 1) ST E0000 | LA

1
[=F]

wlgt | —14%§]|"*

3| LTI QOO0 Elel =5 DO | 3 D0 [SRR 00 D} 1205 2000 | L

1
-]

-
O [

3
)
'

m

=1

-1

=

=

AL

1
==

1
w0

>

S0 LOEO0 | L D0 | ERERE0N (0] IFODe000 | L1000 L LAE06Ce | L1 130000

Tlmlolo|lm

Sh1 000 sPz0o|rFd o | Liscod Jovigtecs | Ui
L
- Pl ® | % |1
EF 1100) S pend o) L o s oot | L1000 | Boeosc | crnadd | oo | seeming| Wrisoess | LidRoo
e e ——— o T — —
3 ? | o ¥ |
Zabr e EEgldened [endc] §=2rnd] [Raejlonl Li1a00i0 | 06 10| £ tenco | Lyseeoog | LERTita | Lisroood JUrimoodn

Encoding is the combination of a character set with an encoding method:

. A character set isthe repertoire of characters and symbols that are used by alanguage or
group of languages. A character set includes national characters (which are characters
specific to a particular nation or group of nations), special characters (such as punctuation
marks), the unaccented L atin characters A-Z, the digits 0-9, and control characters that are
needed by the computer.

. Anencoding method is the set of rules that are used to assign the numbers to the set of
characters that are in an encoding. These rules govern such things as the size of the
encoding (number of bits used to store the numeric representation of the character) and the
ranges in the code page where characters are allowed to appear.

When the rules of the encoding method are followed, and numbers are assigned to the characters,

279

the result is called an encoding.

Anindividual character can ha