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Overview: OPTEX Procedure

The OPTEX procedure searches for optimal experimental designs. You specify a set of candidate design
points and a linear model, and the procedure chooses points so that the terms in the model can be estimated
as efficiently as possible.

Most experimental situations call for standard designs, such as fractional factorials, orthogonal arrays,
central composite designs, or Box-Behnken designs. Standard designs have assured degrees of precision and
orthogonality that are important for the exploratory nature of experimentation. However, standard designs
are not available in some situations, such as the following:

e Not all combinations of the factor levels are feasible.
e The region of experimentation is irregularly shaped.
e Resource limitations restrict the number of experiments that can be performed.

e There is a nonstandard linear or a nonlinear model.

The OPTEX procedure can generate an efficient experimental design for any of these situations.

NOTE: Instead of using PROC OPTEX directly, a more appropriate tool for you might be the ADX Interface.
The ADX Interface is designed primarily for engineers and researchers who require a point-and-click solution
for the entire experimental process, from building the designs through determining significant effects to
optimization and reporting. In addition to offering the standard designs, ADX makes it easy to use PROC
OPTEX to find optimal designs for nonstandard factorial, response surface, and mixture experiments, with
and without blocking. For more information about the ADX Interface, see Getting Started with the SAS ADX
Interface for Design of Experiments.

Features
This section summarizes key features of the OPTEX procedure.

The OPTEX procedure offers various criteria for searching a design; these criteria are summarized in
Table 15.1 and Table 15.2. In the formulas for these criteria, X denotes the design matrix, C the set of
candidate points, and D the set of design points. The default criterion is D-optimality. You can also use the
OPTEX procedure to generate G- and I-efficient designs.

The OPTEX procedure also offers a variety of search algorithms, ranging from a simple sequential search
(Dykstra 1971) to the computer-intensive Fedorov algorithm (Fedorov 1972; Cook and Nachtsheim 1980).
You can customize many aspects of the search, such as the initialization method and the number of iterations.

You can use the full general linear modeling facilities of the GLM procedure to specify a model for your
design, allowing for general polynomial effects in addition to classification or ANOVA effects. Optionally,
you can specify the following:

e design points to be optimally augmented
e fixed covariates (for example, blocks) for the design

e prior precisions for Bayesian optimal design
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The OPTEX procedure is an interactive procedure. After specifying an initial design, you can submit
additional statements without reinvoking the OPTEX procedure. Once you have found a design, you can do
the following:

e examine the design

e output the design to a data set

e change the model and find another design

e change the characteristics of the search and find another design

Table 15.1 Information-Based Optimality Criteria

Criterion Goal Formula

D-optimality Maximize determinant of the = max |X'X]
information matrix

A-optimality Minimize sum of the variances min trace(X’'X)~!
of estimated coefficients

Table 15.2 Distance-Based Optimality Criteria

Criterion Goal Formula

U-optimality Minimize distance from min) .. d(x,D)
design to candidates

S-optimality Maximize distance min Zyep d(ly,D—y)
between design points

Learning about the OPTEX Procedure

To learn the basic syntax of the OPTEX procedure, read the introductory example in the next section, which
covers a typical application of optimal designs. Other applications are illustrated in the section “Optimal
Design Scenarios” on page 1004. The summary tables in the section “Summary of Functions” on page 1008
provides an overview of the syntax. The section “Examples: OPTEX Procedure” on page 1040 illustrates
construction of complex designs.
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Getting Started: OPTEX Procedure

The examples in this section illustrate basic features of the OPTEX procedure. In addition, the examples
show how a variety of SAS software tools can be used to construct candidate sets. If you are working through
these examples on your own computer, note that the randomness in the OPTEX procedure’s search algorithm
will cause your results to be slightly different from those shown.

For illustrations of complex features, see the section “Examples: OPTEX Procedure” on page 1040.

Constructing a Nonstandard Design
NOTE: See Constructing a Nonstandard Design in the SAS/QC Sample Library.

This example shows how you can use the OPTEX procedure to construct a design for a complicated
experiment for which no standard design is available.

A chemical company is designing a new reaction process. The engineers have isolated the following five
factors that might affect the total yield:

Variable Description Range

RTemp Temperature of the reaction chamber 150-350 degrees

Press Pressure of the reaction chamber 10-30 psi
Time Amount of time for the reaction 3-5 minutes
Solvent ~ Amount of solvent used 20-25%
Source Source of raw materials 1,2,3,4,5

Although there are only two solvent levels of interest, the reaction control factors (RTemp, Press, and
Time) might be curvilinearly related to the total yield, and thus require three levels in the experiment. The
Source factor is categorical with five levels. In addition, some combinations of the factors are known to
be problematic; simultaneously setting all three reaction control factors to their lowest feasible levels will
result in worthless sludge, whereas setting them all to their highest levels can damage the reactor. Standard
experimental designs do not apply to this situation.

Creating the Candidate Set

You can use the OPTEX procedure to generate a design for this experiment. The first step in generating
an optimal design is to prepare a data set that contains the candidate runs (that is, the feasible factor level
combinations). In many cases, this step involves the most work. You can use a variety of SAS data
manipulation tools to set up the candidate data set. In this example, the candidate runs are all possible
combinations of the factor levels except those in which all three control factors are at their low levels and
those in which all three are at their high levels. The PLAN procedure (see SAS/STAT User’s Guide) provides
an easy way to create a full factorial data set, which can then be subsetted by using the DATA step, as shown
in the following statements:
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proc plan ordered;
factors RTemp=3 Press=3 Time=3 Solvent=2 Source=5 / noprint;
output out=Candidate
RTemp nvals=(150 to 350 by 100)
Press nvals=( 10 to 30 by 10)

Time nvals=( 3 to 5 )
Solvent nvals=( 20 to 25 by 5)
Source nvals=( 1 to 5 );

data Candidate; set Candidate;
if (*((RTemp 150) & (Press = 10) & (Time
if (*((RTemp 350) & (Press = 30) & (Time
run;
proc print data=Candidate (obs=10);
run;

3)));
5)));

A partial listing of the candidate data set Candidate is shown in Figure 15.1.

Figure 15.1 Candidate Set of Runs for Chemical Reaction Design

Obs RTemp Press Time Solvent Source

1 150 10 4 20 1
2 150 10 4 20 2
3 150 10 4 20 3
4 150 10 4 20 4
5 150 10 4 20 5
6 150 10 4 25 1
7 150 10 4 25 2
8 150 10 4 25 3
9 150 10 4 25 4
10 150 10 4 25 5

Generating the Design

The next step is to invoke the OPTEX procedure, specifying the candidate data set as the input data set.
You must also provide a model for the experiment by using the MODEL statement, which uses the linear
modeling syntax of the GLM procedure (see SAS/STAT User’s Guide). Because Source is a classification
(qualitative) factor, you need to specify it in a CLASS statement. To detect possible crossproduct effects
in the other factors, in addition to the quadratic effects of the three reaction control factors, you can use a
modified response surface model, as shown in the following statements:
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proc optex data=Candidate seed=12345;
class Source;
model Source Solvent |RTemp |Press|Time(@2
RTempxRTemp PressxPress Time*Time;
run;

Note that the MODEL statement does not involve a response variable (unlike the MODEL statement in the
GLM procedure). The default number of runs for a design is assumed by the OPTEX procedure to be 10
plus the number of parameters (a total of 10 4 18 = 28 in this case). Thus, the procedure searches for 28
runs among the candidates in Candidate that enable D-optimal estimation of the effects in the model. (For a
precise definition of D-optimality, see the section “Optimality Criteria” on page 1032.) Randomness is built
into the search algorithm to overcome the problem of local optima. By default, the OPTEX procedure takes
10 random “tries” to find the best design. The output, shown in Figure 15.2, lists efficiency factors for the 10
designs found. These designs are all very close in terms of their D-efficiency.

Figure 15.2 Efficiencies for Chemical Reaction Design
The OPTEX Procedure

Average

Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error

1 57.0082 32.8139 78.3162 0.8319

2 56.7660 27.3874 75.8168 0.8563
3 56.2145 28.7217 74.9937 0.8594
4 55.8960 28.7509 74.4196 0.8559
5 55.7341 29.9372 74.4554 0.8544
6 55.6224 31.4902 73.6200 0.8626
7 55.5762 28.3016 75.8959 0.8652
8 55.5080 30.3889 78.4385 0.8552
9 55.3366 28.5103 74.7014 0.8614
10 55.2176 26.8133 76.2307 0.8660

The final step is to save the best design in a data set. You can do this interactively by submitting the OUTPUT
statement immediately after the preceding statements. Then use the PRINT procedure to list the design. The
design is listed in Figure 15.3.

output out=Reactor;
proc print data=Reactor;
run;
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Figure 15.3 Optimal Design for Chemical Reaction Process Experiment

Obs Solvent RTemp Press Time Source

1 20 150 20 4 5
2 20 250 10 5 5
3 20 350 30 3 5
4 25 150 30 5 5
5 25 250 10 3 5
6 25 350 20 5 5
7 20 150 10 5 4
8 20 150 30 3 4
9 20 350 10 3 4
10 20 350 20 5 4
" 25 250 30 4 4
12 20 250 10 3 3
13 20 350 30 4 3
14 25 150 30 3 3
15 25 350 10 5 3
16 25 350 20 3 3
17 20 150 30 5 2
18 20 250 30 3 2
19 20 350 10 5 2
20 25 150 10 4 2
21 25 250 20 5 2
22 25 350 30 4 2
23 20 150 20 3 1
24 20 250 20 4 1
25 20 250 30 5 1
26 25 150 10 5 1
27 25 350 10 4 1
28 25 350 30 3 1

Customizing the Number of Runs

The OPTEX procedure provides options that enable you to customize many aspects of the design optimization
process. Suppose the budget for this experiment can accommodate only 25 runs. You can use the N= option
in the GENERATE statement to request a design with this number of runs.

proc optex data=Candidate seed=12345;
class source;
model source Solvent |RTemp|Press|Time(@2
RTemp*RTemp PressxPress TimexTime;
generate n=25;
run;

Including Specific Runs

If there are factor combinations that you want to include in the final design, you can use the OPTEX
procedure to augment those combinations optimally. For example, suppose you want to force four specific
factor combinations to be in the design. If these combinations are saved in a data set, you can force them
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into the design by specifying the data set with the AUGMENT= option in the GENERATE statement. This

technique is demonstrated in the following statements:

data Preset;

input Solvent RTemp Press Time Source;

datalines;
20 350 10 5 4
20 150 10 4 3
25 150 30 3 3
25 250 10 5 3

4

proc optex data=Candidate seed=12345;
class Source;
model Source Solvent |RTemp|Press|Time(@2
RTemp*RTemp PressxPress TimexTime;

generate n=25 augment=preset;

output out=Reactor2;

run;

The final design is listed in Figure 15.4.

proc print data=Reactor2;

run;

Figure 15.4 Augmented Design for Chemical Reaction Process Experiment

Obs Solvent RTemp Press Time Source

1

O 0 N OO U A WN

N N N N NN = d cad d ad d d d d o
U A W N =2 O OO NOOUVLAE WN= O

20
20
25
25
20
20
25
25
25
20
20
20
25
25
20
20
20
25
25
20
20
20
25
25
25

150
350
150
250
350
350
150
250
350
150
150
350
150
250
150
250
350
150
350
250
250
350
150
350
350

30
20
10
30
10
30
30
10
20
10
30
20
30
10
10
30
10
20
10
10
20
30
10
10
30

3

W w v MW waHOU oo wwouh~owowouod~>hsWom

= 2 a2 s  a NN DNDNDNWWW W WS PSSP OOV



1004 4 Chapter 15: The OPTEX Procedure

Note that the points in the AUGMENT= data set appear as observations 7, 11, 15, and 16.

Using an Alternative Search Technique

You can also specify a variety of optimization methods by using the GENERATE statement. The default
method is relatively fast; although other methods might find better designs, they take longer to run and the
improvement is usually only marginal. The method that generally finds the best designs is the Fedorov
procedure (Fedorov 1972). The following statements show how to request this method:

proc optex data=Candidate seed=12345;
class Source;
model Source Solvent |RTemp|Press|Time(@2
RTemp*RTemp PressxPress TimexTime;
generate n=25 method=fedorov;
output out=Reactor2;
run;

The efficiencies for the resulting designs are shown in Figure 15.5.

Figure 15.5 Efficiency Factors for the Fedorov Search
The OPTEX Procedure

Average

Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error

1 56.9072 27.6680 75.2161 0.9023

2 56.8715 27.4939 72.8202 0.9058
3 56.6148 27.7799 75.1840 0.9031
4 56.3021 31.4247 76.0654 0.9044
5 56.0569 25.4498 70.2491 0.9290
6 55.9501 26.8714 75.6991 0.9144
7 55.8461 29.0473 74.1291 0.9138
8 55.8355 26.9242 76.8595 0.9062
9 55.7253 27.4625 74.3391 0.9189
10 55.6071 26.3825 74.1827 0.9107

In this case, the Fedorov procedure takes several times longer than the default method, and D-efficiency
shows no improvement. On the other hand, the longer search method often does improve the design and
might take only a few seconds on a reasonably fast computer.

Optimal Design Scenarios

The following examples briefly describe some additional common situations that call for optimal designs.
These examples show how you can use a variety of SAS software tools to generate an appropriate set of
candidate runs and use the OPTEX procedure to search the candidate set for an optimal design.

The emphasis here is on the programming techniques; output is omitted.
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Constructing a Saturated Second-Order Design

Suppose you want a design for seven two-level factors that is as small as possible but still permits estimation
of all main effects and two-factor interactions—that is, a saturated design. Among standard orthogonal
arrays, the smallest appropriate 2% design has 64 runs, far more than the 29 parameters you want to estimate.
To generate a D-efficient nonorthogonal design, first use the FACTEX procedure to create the full set of
27 = 128 candidate runs, and then invoke the OPTEX procedure with a full second-order model, asking for
a saturated design, as follows:

proc factex;
factors x1-x7;
output out=Candidatel;

run;

proc optex data=Candidatel seed=12345;
model x1|x2|x3|x4|x5|x6|x7Q@2;
generate n=saturated;
output out=Designla;

run;

The default search procedure quickly finds a design with a D-efficiency of 82.3%. If search time is not an
issue, you can try a more powerful search technique. For example, you can specify 500 tries with the Fedorov
method:

proc optex data=Candidatel seed=12345;
model x1|x2|x3|x4|x5|x6|x7@2;
generate n=saturated
method=fedorov
iter=500;
output out=Designlb;
run;

This takes much longer to run, and the resulting design is only slightly more D-efficient.

Augmenting a Resolution 4 Design

In a situation similar to the previous example, suppose you have performed an experiment for seven two-level
factors with a 16-run, fractional factorial design of resolution 4. You can estimate all main effects with this
design, but some two-factor interactions will be confounded with each other. You now want to add enough
runs to estimate all two-factor interactions as well. You can use the FACTEX procedure to create the original
design in addition to the candidate set.

proc factex;
factors x1-x7;
output out=Candidate2;
run;
model resolution=4;
size design=min;
output out=Augment2;
run;

Now specify Augment2 (the data set that contains the design to be augmented) with the AUGMENT= option
in the GENERATE statement:
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proc optex data=Candidate2 seed=12345;
model x1|x2|x3|x4|x5|x6|x7Q@2;
generate n=30 augment=Augment2;
output out=Design2;

run;

Handling Many Variables

When you have many factors, the set of all possible factor level combinations might be too large to work
with as a candidate set. Suppose you want a main-effects design for 15 three-level factors. The complete set
of 315 = 14, 348, 907 candidates is too large to use with the OPTEX procedure; in fact, it might be too large
to store in your computer. One solution is to find a subset of the full factorial set to use as candidates. For

example, an alternative candidate set is the 81-run orthogonal design of resolution 3, which can easily be
constructed by the FACTEX procedure:

proc factex;
factors x1-x15 / nlev=3;
model resolution=3;
size design=81;
output out=Candidate3;
run;
proc optex data=can3 seed=12345;
class x1-x15;
model x1-x15;
generate n=saturated;
output out=Design3;
run;

Constructing an Incomplete Block Design

An incomplete block design is a design for v (qualitative) treatments in b blocks of size k, where k < v so
that not all treatments can occur in each block. To construct an incomplete block design with the OPTEX
procedure, simply create a candidate data set that contains a treatment variable with ¢ values and then use the

BLOCKS statement. For example, the following statements construct a design for seven treatments in seven
blocks of size three:

data Candidate4;
do Treatment = 1 to 7;
output;
end;
proc optex data=Candidated4 seed=12345;
class Treatment;
model Treatment;
blocks structure=(7) 3;
run;
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The resulting design is equireplicated in the sense that each treatment occurs the same number of times and
balanced in the sense that each pair of treatments occurs together in the same number of blocks. Balanced
designs, when they exist, are known to be optimal, and the OPTEX procedure usually succeeds at finding

them for small to moderately sized problems.

Constructing a Mixture-Process Design

Suppose you want to design an experiment with three mixture factors X1, X2, and X3 (continuous factors that
represent proportions of the components of a mixture) and one process factor A (a classification factor with
five levels). Furthermore, suppose that X1 can account for no more than 50% of the mixture. The following
statements create a data set containing the vertices and generalized edge centroids of the region that is defined
by the mixture factor constraints and then use the FACTEX procedure (see the section “Overview: FACTEX
Procedure” on page 616) to create a candidate set that includes the process factor:

data XVert;
input x1 x2 x3 Q@Q;

datalines;
0.50 0.000
0.50 0.500
0.00 1.000
0.00 0.000
0.00 0.500
0.50 0.250
0.25 0.000
0.25 0.750
0.25 0.375

4

O O0OO0OO0OO0Okr OO o

proc factex;

factors a / nlev=5;
output out=Candidate5 pointrep=XVert;

run;

.500
.000
.000
.000
.500
.250
.750
.000
.375

Analyzing mixture designs with linear models can be problematic because of the constraint that the mixture
factors sum to one; however, to generate an optimal design, you can simply drop one of the mixture factors.
The following statements use the preceding candidate set to find an optimal design for fitting the main effect

of A and a second-order model in the mixture factors:

proc optex data=Candidate5 seed=12345;
class a;
model a x1|x2 xlx*xl x2xx2;

run;

See Example 15.10 for a more detailed example of a mixture experiment.
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Syntax: OPTEX Procedure

The following statements are available in the OPTEX procedure. Items within the brackets <> are optional.

PROC OPTEX < options> ;
CLASS class-variables ;
MODEL effects </ options > ;
BLOCKS block-specification < options > ;
EXAMINE < options> ;
GENERATE < options > ;
ID variables ;
OUTPUT OUT= SAS-data-set < options > ;

To generate a design, you must use the PROC OPTEX and MODEL statements. You can use the other
statements as needed. The OPTEX procedure is interactive, so you can use all statements (except the PROC
OPTEX statement) after the first RUN statement.

Statement Ordering for Covariate Designs

You use the CLASS and MODEL statements to define a linear model for the runs in the candidate data set.
You can also use these statements to define a general covariate model. In this case, list the CLASS and
MODEL statements that define the model for the candidate points immediately after the PROC OPTEX
statement. Then list the CLASS and MODEL statements that define the covariate model after the BLOCKS
DESIGN= specification. Thus, in this case, the ordering for these statements should be as follows:

1. PROC OPTEX statement
2. CLASS and MODEL statements for the candidate points
3. BLOCKS DESIGN-= statement

4. CLASS and MODEL statements for the covariates

In addition, a CLASS statement that names classification variables must precede the MODEL statement that
uses those variables.

Summary of Functions
Table 15.3, Table 15.4, and Table 15.5 classify the OPTEX statements and options by function.
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Table 15.3 Summary of Options for Specifying the Design

Function Statement Option
Design Characteristics
Number of design points GENERATE N=number
Saturated design GENERATE N=SATURATED
Augmented design GENERATE AUGMENT=SAS-data-set
Bayesian optimal design MODEL / PRIOR=p;, p5, ...
Optimality Criteria
Minimize trace of (X'X)~! GENERATE CRITERION=A
Maximize |X'X] GENERATE CRITERION=D
Minimize mean minimum GENERATE CRITERION=U
distance to design
Maximize mean distance GENERATE CRITERION=S
between nearest design points
Model Specification
Specify independent effects MODEL effects
Exclude intercept term MODEL effects NOINT
Specify CLASS variables CLASS variables
Specify CLASS variable parameterization CLASS / PARAM=method
Display CLASS variable parameterization PROC OPTEX CLASSPARAM
Static coding PROC OPTEX CODING=STATIC
Orthogonal coding PROC OPTEX CODING=ORTH
Orthogonal coding with PROC OPTEX CODING=ORTHCAN
respect to candidates only
Suppress coding of effects PROC OPTEX NOCODE
Block Specification
Specify general covariance BLOCKS COVAR=SAS-data-set <options>
matrix for runs VAR=variables
Specify general covariate model BLOCKS DESIGN=SAS-data-set <options>
Specify b blocks of size k BLOCKS STRUCTURE=(b)k <options>
Options for block specifications
Repeat the search n times ITER=n
Retain best m searches KEEP=m
Select initial design at random INIT=RANDOM
Select initial design in order INIT=CHAIN
Initial Design Characteristics
Random and sequential methods GENERATE INITDESIGN=PARTIAL< (m) >
Random initial design GENERATE INITDESIGN=RANDOM
Sequential initial design GENERATE INITDESIGN=SEQUENTIAL
Specify initial design GENERATE INITDESIGN=S5AS-data-set
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Table 15.4 Summary of Options for Searching for the Design

Function Statement Option

Design Search Specification

Retain best n searches GENERATE KEEP=n

Search n times GENERATE ITER=n

Specify candidate points PROC OPTEX DATA=SAS-data-set

Specify random seed PROC OPTEX SEED=number

Specify effective zero PROC OPTEX EPSILON=¢

Design Search Methods

DETMAX algorithm with maximum excursion leve/l GENERATE METHOD=DETMAX<(level)>
Exchange algorithm GENERATE METHOD=EXCHANGE
k-exchange algorithm GENERATE METHOD=EXCHANGE< (k) >
Sequential algorithm GENERATE METHOD=SEQUENTIAL
Fedorov algorithm GENERATE METHOD=FEDOROV
Modified Fedorov algorithm GENERATE METHOD=M_FEDOROV

Table 15.5 Summary of Options for Examining and Saving the

Design
Function Statement Option
Save the Design
Best design OUTPUT OUT=SAS-data-set
Specific design OUTPUT OUT=SAS-data-set NUMBER=design-number

Block variable name OUTPUT OUT=SAS-data-set BLOCK=variable-name

Specify transfer variables ID variables

List the Design

Design characteristics EXAMINE

Design points EXAMINE DESIGN

Information matrix X’X ~ EXAMINE INFORMATION

Specific optimal design EXAMINE NUMBER=design-number
Variance matrix (X'X)~! EXAMINE VARIANCE

Suppress all output PROC OPTEX NOPRINT

PROC OPTEX Statement
PROC OPTEX < options> ;

The PROC OPTEX statement invokes the procedure. You can specify the following options:
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CLASSPARAM
displays a table that summarizes the parameterization of classification variables in the model for the
design.

CODING=NONE | STATIC | ORTH | ORTHCAN
specifies which type of coding to use for modeling effects in the design. Coding equalizes all model
effects as far as the optimization is concerned. You can specify the following values:

NONE suppresses coding of effects. This option is equivalent to the NOCODE option.

ORTH specifies orthogonal coding with respect to the points in the candidate data set and
in the AUGMENT= and INITDESIGN= data sets.

ORTHCAN specifies orthogonal coding with respect to the points in the candidate data set only.

STATIC requests that the values of all effects be coded to have maximum and minimum

values of +1 and -1, respectively.

By default, CODING=STATIC. For more information about coding, see the section “Design Coding”
on page 1030. Although CODING=STATIC is the default, CODING=ORTH usually produces give
more meaningful efficiency values, especially if all possible combinations of factor levels occur in the
candidate data set.

DATA=SAS-data-set
specifies the input SAS data set that contains the candidate points for the design. By default, the
OPTEX procedure uses the most recently created SAS data set. For more information, see the section
“DATA= Data Set” on page 1025.

EPSILON=¢
specifies the smallest value € that is considered to be nonzero for determining when the search is no
longer yielding an improved design and when the information matrix for the design is singular. By
default, € = 0.00001.

NAMELEN=n
specifies the length of effect names in tables and output data sets to be n characters long, where nis a
value between 20 and 200 characters. By default, NAMELEN=20.

NOCODE
suppresses the coding of effects in the model for the design. This option is equivalent to COD-
ING=NONE.

NOPRINT
suppresses all output. This option is useful when you only want the final design to be saved in a data
set.

SEED=s
specifies an integer used to start the pseudorandom number generator for initialization (see the section
“Search Methods” on page 1035). If you do not specify a seed, or if you specify a value less than or
equal to zero, the seed is generated by default from reading the time of day from the computer’s clock.
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STATUS=status-level
requests that the status of the search be checked at the specified status-level, which must be an integer
between 1 and 4, inclusive. If you specify a status-level, then a table of the status at each check point
is displayed. You can use this table to track the progress of long searches. The allowable status-levels
are listed in the following table:

status-level Checks status after each:

1 design search (the number of searches is specified in the NITER= option)
2 search loop

3 internal search loop

4 extra internal search loop for METHOD=M_FEDOROV

Each search method loops to produce successively better designs; these are the search loops for
STATUS=2. STATUS=3 and STATUS=4 refer to deeper loops within the search methods. You will
need to specify STATUS=3 or STATUS=4 only very rarely, because evaluating and displaying the
status at either of these levels usually makes the search much slower.

BLOCKS Statement
BLOCKS block-specification < options > ;

You use the BLOCKS statement to find a D-optimal design in the presence of fixed covariates (for example,
blocks) or covariance. The technique is an extension of the optimal blocking technique of Cook and
Nachtsheim (1989); see the section “Optimal Blocking” on page 1037.

For the purposes of optimal blocking, the model for the original candidate points is referred to as the treatment
model; the candidate points for the part of the design matrix that corresponds to the treatment model form
the treatment set. 1f the GENERATE statement is not specified, then the full candidate set is used as the
treatment set; otherwise, an optimal design for the treatment model ignoring the blocks is first generated, and
the result is used as the treatment set for optimal blocking.

You can specify any of the following three mutually exclusive block-specifications:

COVAR=SAS-data-set VAR=( variables)
specifies a data set to use in providing a general covariance matrix for the runs, where variables names
the variables in this data set that contain the columns of the covariance matrix for the runs. For an
example, see Example 15.9.

DESIGN=SAS-data-set
specifies a data set to use in providing a general covariate model. In addition to this data set, you must
use the CLASS and MODEL statements to specify a covariate model. Covariate models are specified
in the same way as the treatment model; CLASS and MODEL statements that come after a BLOCKS
statement that involves the DESIGN= specification are interpreted as applying to the covariate model.
For an example, see Example 15.8.

STRUCTURE=(b) k
specifies a block design that has b blocks of size k. For an example, see Example 15.7.

You can also specify the following options:
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INIT=RANDOM | CHAIN
specifies the initialization method for constructing the starting design. You can specify the following

values:
CHAIN selects candidate points in the order in which they occur in the original data set.
RANDOM constructs the starting design by selecting candidates at random without replace-

ment.

By default, INIT=RANDOM.

ITER=n
specifies the number of times to repeat the search from different initial designs. Because local optima
are common in difficult search problems, it is often a good idea to make several tries for the optimal
design with a random or partially random method of initialization (see the preceding INIT= option).
By default, n = 10. Specify both INIT=CHAIN and ITER=0 to evaluate the initial design itself.

KEEP=m
retains only the best m designs. The value m must be less than or equal to the value n of the ITER=
option. By default m = n, so that all iterations are kept. This option is useful when you want to make
many searches to overcome the problem of local optima but you are only interested in the results of the
best m designs.

NOEXCHANGE
suppresses the part of the optimal blocking algorithm that exchanges treatment design points for
candidate treatment points. When this option is specified, only interchanges between design points are
performed. Use this option when you do not want to change which treatment points are included in the
design and you only want to find their optimal ordering.

CLASS Statement

CLASS variable < (v-options) > < variable < (v-options) > ... > </ v-options>> ;

You use the CLASS statement to identify classification (qualitative) variables, which are factors that separate
the observations into groups. For example, a completely randomized design has a single variable that
identifies the groups of observations. A randomized complete block design has two variables; one identifies
the blocks and one identifies the treatments.

You can specify various v-options for each variable by enclosing them in parentheses after the variable name.
You can also specify global v-options for the CLASS statement by placing them after a slash (/). Global
v-options are applied to all the variables specified in the CLASS statement. However, individual CLASS
variable v-options override the global v-options.

The OPTEX procedure uses the formatted values of variables (can be either numeric or character) in forming
model effects. Any variable in the model that is not listed in the CLASS statement is assumed to be continuous
(quantitative). Continuous variables must be numeric.

NOTE: If you use the DESIGN= option in the BLOCKS statement to specify a data set that contains fixed
covariate effects, then a CLASS or MODEL statement that follows the BLOCKS statement refers to the
model for the fixed covariates. A CLASS or MODEL statement that defines the model for the candidate
points (treatment model) should be specified before the BLOCKS statement.
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DESCENDING

DESC
reverses the sorting order of the classification variable.

ORDER=DATA | FORMATTED | FREQ | INTERNAL

specifies the sorting order for the levels of classification variables. This ordering determines which
parameters in the model correspond to each level in the data, so the ORDER= option can be useful
when you use the CONTRAST statement. When ORDER=FORMATTED (the default) for numeric
variables for which you have supplied no explicit format (that is, for which there is no corresponding
FORMAT statement in the current PROC OPTEX run or in the DATA step that created the data set),
the levels are ordered by their internal (numeric) value. This represents a change from how class levels
were ordered before SAS 8, when numeric class levels with no explicit format were ordered by their
BESTI12. formatted values. In order to revert to the previous ordering, you can specify this format
explicitly for the affected classification variables. The change was implemented because the former
default behavior for ORDER=FORMATTED often resulted in levels not being ordered numerically.
The following table shows how PROC OPTEX interprets values of the ORDER= option.

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric
variables with no explicit format, which are
sorted by their unformatted (internal) value
(the sort order is machine-dependent)

FREQ Descending frequency count; levels with the
most observations come first in the order
INTERNAL Unformatted value (the sort order is

machine-dependent)

By default, ORDER=FORMATTED.

For more information about sorting order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

PARAM=method
specifies the parameterization method for the classification variables. Design matrix columns are
created from CLASS variables according to the specified coding scheme.

By default, PARAM=ORTHEFFECT. This represents a change from how classification variables were
parameterized before SAS 9, when the default was PARAM=EFFECT. In order to revert to the previous
parameterization, you can specify PARAM=EFFECT explicitly for the affected classification variables.
The change was implemented because an orthogonal parameterization leads to D- and A-efficiency
values that more realistically reflect the true efficiency of the design.

You can specify the following parameterization methods, all of which are full rank. The orthogonal
versions perform a scaled, intercept-augmented Gram-Schmidt orthogonalization on the columns of
the corresponding nonorthogonal parameterizations. Each description shows how a model that has one
CLASS variable A with four levels (1, 2, 5, and 7) is coded.



EFFECT

REFERENCE | REF

Effect Coding
A | Design Matrix
1)1 0 0
21 0 1 0
510 0 1
71-1 -1 -1

they are translated into 1, 2, 3, ...
matrix columns for A are as follows.

Polynomial Coding

A | Design Matrix
1|1 1 1
212 4 8
515 25 125
717 49 343

Reference Coding

A | Design Matrix
1|1 0 0
210 1 0
510 0 1
710 0 0
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specifies effect coding. Three columns are created to indicate group member-
ship of the nonreference levels. The REF= option in the CLASS statement
determines the reference level. For the reference level, all three dummy vari-
ables have a value of —1. For example, if the reference level is 7 (REF=7), the
design matrix columns for A are as follows.

Parameter estimates of CLASS main effects that use the effect coding scheme
estimate the difference in the effect of each nonreference level compared to
the average effect over all four levels.

POLYNOMIAL | POLY specifies polynomial coding. Three columns are created. The first represents
the linear term (x), the second represents the quadratic term (x2), and the third
represents the cubic term (x3), where x is the level value. If the CLASS levels
are numeric, then the ORDER= option in the CLASS statement is ignored and
the internal, unformatted values are used. If the CLASS levels are not numeric,

according to their sorting order. The design

specifies reference cell coding. Three columns are created to indicate group
membership of the nonreference levels. The REF= option in the CLASS
statement determines the reference level. For the reference level, all three
dummy variables have a value of 0. For example, if the reference level is 7
(REF=7), the design matrix columns for A are as follows.

Parameter estimates of CLASS main effects that use the reference coding
scheme estimate the difference in the effect of each nonreference level com-
pared to the effect of the reference level.



1016 4 Chapter 15: The OPTEX Procedure

ORDINAL | ORD

ORTHEFFECT

ORTHPOLY

ORTHREF

specifies ordinal (“thermometer”) coding. Three columns are created to indi-
cate group membership in successive collections of levels after the first. For
example, the design matrix columns for A are as follows.

Ordinal Coding
A | Design Matrix
110 O 0
211 0 0
511 1 0
711 1 1

Parameter estimates of CLASS main effects that use the ordinal coding scheme
estimate the difference in the average effect of each successive collection of
levels compared to the effect of the first level.

The columns are obtained by applying the Gram-Schmidt orthogonalization
to the mean-centered columns for PARAM=EFFECT and then scaling so that
the sum of squares for each column equals the number of levels. The design
matrix columns for A are as follows.

Orthogonal Effects Coding
A Design Matrix

1| 1414 -0.816 -0.577
2 0 1.633 -0.577
5 0 0 1.732
7| -1414 -0.816 -0.577

specifies orthogonal polynomial coding. The columns are obtained by apply-
ing the Gram-Schmidt orthogonalization to the mean-centered columns for
PARAM=POLY and then scaling so that the sum of squares for each column
equals the number of levels. The design matrix columns for A are as follows.

Orthogonal Polynomial Coding
A Design Matrix

1|-1.153  0.907 -0.921
2 | -0.734 -0.540 1.473
51 0524 -1.370 -0.921
7| 1363 1.004 0.368

If the CLASS levels are numeric, then the ORDER= option in the CLASS
statement is ignored and the internal, unformatted values are used.

specifies orthogonal reference cell coding. The columns are obtained by
applying the Gram-Schmidt orthogonalization to the mean-centered columns
for PARAM=REFERENCE and then scaling so that the sum of squares for
each column equals the number of levels. The design matrix columns for A
are as follows.
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Orthogonal Reference Coding
A Design Matrix
1 1.732 0 0
2| -0.577 1.633 0
51-0577 -0.816 1.414
7| -0577 -0.816 -1414
ORTHORDINAL The columns are obtained by applying the Gram-Schmidt orthogonalization to

the mean-centered columns for PARAM=ORDINAL, and then scaling so that
the sum of squares for each column equals the number of levels. The design
matrix columns for A are as follows.

Orthogonal Ordinal Coding

Design Matrix
-1.732 0 0
0.577 -1.633 0

0.577 0.816 -1.414
0.577 0816 1414

G N —| P

REF="level’ | FIRST | LAST
specifies the reference level for PARAM=EFFECT or PARAM=REFERENCE. You can specify the
following values:

'level specifies the level of the variable to use as the reference level. You can specify this
value only for an individual v-option. You cannot specify this value for a global
v-option.

FIRST designates the first ordered level as reference.

LAST designates the last ordered level as reference.

By default, REF=LAST.

TRUNCATE
determines class levels by using only up to the first 16 characters of the formatted values of CLASS
variables. When formatted values are longer than 16 characters, you can use this option in order to
revert to the levels as determined in releases previous to SAS 9.

EXAMINE Statement
EXAMINE < options > ;

You use the EXAMINE statement to display the characteristics of a selected design. By default, the
EXAMINE statement lists certain measures of design efficiency for the best design. (See the section “Output”
on page 1039.) You can specify the following options to modify the output:

DESIGN
lists the actual points in the selected design. Designs are ordered by the value of the efficiency criterion
that is being optimized. Thus, a design-number of 1 (specified in the NUMBER= option) corresponds
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to the best design found, a design-number of 2 corresponds to the second best design, and so on. By
default, the first design (NUMBER=1) is examined. You can select a different design to be examined
by using the NUMBER= option.

INFORMATION
INFO

I
lists the information matrix X’X for the selected design.

NUMBER=design-number
selects a design to examine by specifying its design-number.

VARIANCE
VAR

\'
lists the variance matrix (X’ X)_1 for the parameter estimates for the selected design.

For more information about design efficiencies, see the section “Design Efficiency Measures” on page 1029.

If you use the OPTEX procedure interactively, you must enter the options for every EXAMINE statement.
For example, the following statements list default information and the design points for the best design but
only default information for the second-best design:

examine number=1 design;
examine number=2;

The following statements list default information and design points for both the best and second-best designs:

examine number=1 design;
examine number=2 design;

GENERATE Statement
GENERATE < options> ;
You use the GENERATE statement to customize the search for a design. By default, the OPTEX procedure

searches for a design by doing the following:
e using the exchange algorithm (METHOD=EXCHANGE)
e using D-optimality as the optimality criterion (CRITERION=D)

e using a completely random initial design to start the search
(INITDESIGN=RANDOM)

e selecting candidate points only from the DATA= data set (modified by using AUGMENT= or INITDE-
SIGN= data sets)

e performing 10 iterations in the search (ITER=10)
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e finding a design with 10 + p points, where p is the number of parameters in the model (modified by
using the N= or INITDESIGN= option)

You can specify the following options to modify these defaults:

AUGMENT=SAS-data-set
specifies a data set that contains a design to be augmented—in other words, a set of points that must be
contained in the generated design. When creating designs, the OPTEX procedure adds points from
the DATA= data set (or the last data set created, if the DATA= option is not specified) to points from
the AUGMENT= data set. The number of points in the design to be augmented must be less than the
number of points specified in the N= option. For more information, see the section “AUGMENT=
Data Set” on page 1025.

CRITERION=D |A|U|S
specifies the optimality criterion used in the search. You can specify any one of the following values:

A specifies A-optimality; the optimal design minimizes the sum of the variances of the estimated
parameters for the model, which is the same as minimizing the trace of (X'X)~!.

D specifies D-optimality; the optimal design maximizes the determinant |X’X| of the information
matrix for the design.

S specifies S-optimality; the optimal design maximizes the harmonic mean of the minimum
distance from each design point to any other design point. Mathematically, an S-optimal design

maximizes
Np

2 yep 1/d(y. D —y)
where D is the set of design points and Np is the number of points in D. This measures how

spread out the design points are; thus, an S-optimal design is also called a maximum spread
design.

U specifies U-optimality; the optimal design minimizes the sum of the minimum distances from
each candidate point to the design. That is, if C is the set of candidate points, D is the set of
design points, and d (x, D) is the minimum distance from x to any point in D, then a U-optimal

design minimizes
Y d(x.D)
xeC

This measures how well the design “covers” the candidate set; thus, a U-optimal design is also
called a uniform coverage design.

By default, CRITERION=D. For more information about the different criteria, see the section “Opti-
mality Criteria” on page 1032.

INITDESIGN=SEQUENTIAL | RANDOM | PARTIAL <m> | SAS-data-set
specifies a method of obtaining an initial design for the search procedure. You can specify the following
values:

SEQUENTIAL  specifies an initial design chosen by a sequential search. The design that
is produced by this option is the same as the design that is produced by
METHOD=SEQUENTIAL. You can use this option with other values of the
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RANDOM

PARTIAL<(m )>

SAS-data-set

METHOD-= option to specify a sequential design as the initial design for vari-
ous search methods. For more information, see the section “Search Methods™ on
page 1035.

specifies a completely random initial design. The initially generated design consists
of a random selection of observations from the DATA= data set.

specifies an initial design by using a mixture of RANDOM and SEQUENTIAL
methods. A small number (7, ) of points for the initial design are chosen at random
from the candidates, and the rest of the design points are chosen by a sequential
search. (For a definition of the sequential search, see the section “Search Methods”
on page 1035.)

You can specify the optional integer m to modify the selection of n,. By default, or
if m=0, n, is randomly chosen between 0 and one less than half the number of
parameters in the linear model. If m > 0, then 7, is randomly chosen between O
and m for each try. If m <0, then n, = |m| for each try. The maximum value for
|m| is the number of points in the design. For notes on choosing 7, , see Galil and
Kiefer (1980).

specifies a data set that holds the initial design. Use this option when you have a
specific design that you want to improve or when you want to evaluate an existing
design. For more information, see the section “INITDESIGN= Data Set” on
page 1025.

The default initialization method depends on the search procedure as shown in Table 15.6.

Table 15.6 Default Initialization Methods

Search Procedure Default Initialization Method
(METHOD= Option) (INITDESIGN= Option)
DETMAX PARTIAL

EXCHANGE RANDOM

FEDOROV RANDOM

M_FEDOROV PARTIAL

SEQUENTIAL None

If you specify INITDESIGN=SAS-data-set and METHOD=SEQUENTIAL, no search is performed;
the INITDESIGN= data set is taken as the final design. By specifying these options, you can use the
procedure to evaluate an existing design.

ITER=n

specifies the number (n) of searches to make. Because local optima are common in difficult search
problems, it is often a good idea to make several tries for the optimal design by using a random or
partially random method of initialization (see the preceding INITDESIGN= option).

The n designs that are found are sorted by their respective efficiencies according to the current
optimality criterion (see the CRITERION= option on page 1019). The most efficient design is assigned
a design-number of 1, the second most efficient design is assigned a design-number of 2, and so on.
You can then specify the design-number in the NUMBER= option in the EXAMINE and OUTPUT
statements to display the characteristics of a design or to save a design in a data set.
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By default, ITER=10.

KEEP=m
retains only the best m designs. The value m must be less than or equal to the value n of the ITER=
option. By default m = n, so that all iterations are kept. This option is useful when you want to make
many searches to overcome the problem of local optima but are interested only in the results of the
best m designs.

METHOD=DETMAX< (/evel) > | EXCHANGE < (k)> | FEDOROV | M_FEDOROV | SEQUENTIAL
specifies the procedure used to search for the optimal design. You can specify the following values:

DETMAX<(/level)> uses the DETMAX algorithm of Mitchell (1974a). This algorithm is the best-
known and most widely used optimal design search algorithm. The optional /eve/
specifies the maximum excursion level for the search, where level is an integer
greater than or equal to 1. The default value for /evel is 4. In general, larger values
of level result in longer search times.

EXCHANGE<(k)> uses the simple exchange method of Mitchell and Miller (1970). The optional k
specifies the k-exchange search method of Johnson and Nachtsheim (1983), which
generalizes the modified Fedorov search algorithm of Cook and Nachtsheim (1980).

FEDOROV uses the Fedorov algorithm (Fedorov 1972), which seeks the pair (x,y) of one
candidate point and one design point that maximizes A(x,y) and then switches x
for y in the design.

M_FEDOROV uses the modified Fedorov algorithm of Cook and Nachtsheim (1980), which
computes the same number of A’s on each step but switches each point y in
the design with the candidate point x that maximizes A(x,y). This procedure is
generally as reliable as the simple Fedorov algorithm in finding the optimal design,
but it can be up to twice as fast.

SEQUENTIAL  uses the sequential search of Dykstra (1971), which starts with an empty design
and adds successive candidate points so that the chosen criterion is optimized at
each step. The is the simplest and fastest algorithm.

By default, METHOD=EXCHANGE. From fastest to slowest, the methods are as follows:
SEQUENTIAL — EXCHANGE — DETMAX — M_FEDOROV — FEDOROV

In general, slower methods result in more efficient designs. Although the default method
(METHOD=EXCHANGE) always works relatively quickly, you might want to specify a more reliable
method, such as METHOD=M_FEDOROYV, when you have a fast computer or a small to moderately
sized problem.

For more information about the algorithms, see the section “Search Methods” on page 1035.

N=n | SATURATED
specifies the number of points in the final design. The default design size is 10 + p, where p is the
number of parameters in the model. If you use the INITDESIGN= option, the default number is the
number of points in the initial design. Specify N=n to search for a design that has n points. Specify
N=SATURATED to search for a design whose number of points is equal to the number of parameters
in the model. A saturated design has no degrees of freedom to estimate error and should be used with
caution.
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ID Statement
ID variables ;

You use the ID statement to name the variables in the DATA= data set that are not involved in the model but
are to be transferred from the input data set to the output data set.

The variables must be contained in the DATA= data set, which is specified in the PROC OPTEX statement.
They can also be contained in other input data sets. If a variable is also contained in an AUGMENT= or
INITDESIGN= data set and an observation from that data set is used in the final design, the values of the
variables for that observation are transferred to the OUT= data set. For more information, see the section
“Input Data Sets” on page 1024.

MODEL Statement
MODEL effects </ options > ;

You use the MODEL statement to specify the independent effects used to model data that are to be collected
with the design that is being constructed. The effects can be any of the following:

simple continuous regressor effects

polynomial continuous effects

main effects of classification variables
e interactions of classification variables

e continuous-by-class effects

The variables that are used to form effects in the MODEL statement must be present in all input data sets. For
more information about input data sets, see the section “Input Data Sets” on page 1024. For more information
about the specification of different types of effects and about how the design matrix is defined with respect to
the effects, see the section “Specifying Effects in MODEL Statements” on page 1027.

If you use the DESIGN= option in the BLOCKS statement to specify a data set that contains fixed covariate
effects, then a CLASS or MODEL statement that follows the BLOCKS statement refers to the model for the
fixed covariates. A CLASS or MODEL statement that defines the model for the candidate points (treatment
model) should occur before the BLOCKS statement.

You can specify the following options:

NOINT

excludes the intercept parameter from the model. By default, the OPTEX procedure includes the
intercept parameter in the model.

PRIOR=num-list
specifies prior precision values that correspond to groups of effects in the model. Groups of effects in
the MODEL statement that have the same prior precision must be separated by commas. Then use the
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PRIOR= option, listing as many prior precision values as there are groups of effects. See Example 15.6
for an example.

When you specify prior precision values, the information matrix for estimating the linear parameters
is X’X + P, where X is the design matrix and P is a diagonal matrix whose diagonal contains the
prior precision values that you specify. Thus, in terms of a prior distribution, the inverses of the prior
precision values can be interpreted as prior variances for the linear parameters that correspond to each
effect. As an alternative interpretation, note that with orthogonal coding the value of the prior for an
effect says approximately how many prior “observations’ worth” of information you have for that
effect. For more information about orthogonal coding, see the section “Design Coding” on page 1030.

OUTPUT Statement
OUTPUT OUT= SAS-data-set < options > ;

You use the OUTPUT statement to save a design in an output data set. By default, the saved design is the
best design found. You specify the data set name as follows:

OUT=5AS-data-set
gives a name for the output data set. The OUT= data set is required in the OUTPUT statement.

You can specify the following options:

BLOCKNAME-=variable-name
specifies the name to be given to the blocking variable in the output data set. The default name
is BLOCK. You can use this option in conjunction with a STRUCTURE= option in the BLOCKS
statement. See Example 15.7 for an example.

NUMBER=design-number | DBEST | ABEST | GBEST | VBEST
specifies how to select the design to output. You can specify the following values:

design-number  selects a design to output by specifying its design-number. Designs are ordered by
the value of the efficiency criterion that is being optimized. Thus, a design-number
of 1 corresponds to the best design found, a design-number of 2 corresponds to the
second best design, and so on. To modify the number of designs created, see the
ITER= option.

DBEST selects the design that has the highest D-efficiency value.
ABEST selects the design that has the highest A-efficiency value.
GBEST selects the design that has the highest G-efficiency value.
VBEST selects the design that has the minimum average standard error for prediction.

By default, NUMBER=1.

The DBEST, ABEST, GBEST, and VBEST options can be used to find designs that are efficient
for more than one criterion. For example, you can use the default CRITERION=D option in the
GENERATE statement with the NUMBER=GBEST option in the OUTPUT statement to find the
D-optimal design that has maximal G-efficiency. In fact, this is the best way to use the OPTEX
procedure to find G-efficient designs; for more information, see the section “G- and I-Optimality” on
page 1033.
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Details: OPTEX Procedure

Input Data Sets

This section discusses the five input data sets for the OPTEX procedure. Three of the data sets provide points
to be used to generate the design according to the effects you specify in the MODEL statement. Two other
data sets provide points to be used to generate a model for fixed covariates.

Only the DATA= data set is required. If you do not specify a DATA= data set in the PROC OPTEX statement,
the procedure uses the last data set created as a set of candidate points for the design. The AUGMENT= data
set is optional and contains points that are guaranteed to be included in the final design. The INITDESIGN=
data set is also optional and provides an initial design to be used by a search procedure. Variables listed in
the MODEL statement must be present in all three of these data sets, and the variable characteristics (type
and length) must match across data sets.

Figure 15.6 is a schematic diagram of the roles of the DATA=, AUGMENT=, and INITDESIGN= data sets in
constructing the design. Figure 15.7 presents the role of the DESIGN= data set for block designs.

Figure 15.6 Choosing from DATA= Points
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Figure 15.7 Choosing Treatment Candidates
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DATA= Data Set

The DATA= data set provides a set of candidate points to be used to create a design. The OPTEX procedure
uses the variables listed in the MODEL statement when creating a design.

The effects specified in a MODEL statement determine the variables to be used when generating a design.
For example, if the DATA= data set contains the variables A, B, and C, but the MODEL statement specifies
effects that involve only A and B, then the variable C is not considered when generating designs.

Variables in the DATA= data set that are listed in the ID statement are transferred to the OUT= data set (if
one is created).

AUGMENT= Data Set

The AUGMENT= data set provides a set of points that must be included in the final design. The OPTEX
procedure adds candidate points from the DATA= data set to the points from the AUGMENT= data set
when generating designs. The number of points in the AUGMENT= data set must be less than or equal
to the number of points for the design (either the default or the number specified by the N= option in the
GENERATE statement).

As with the DATA= data set, the effects specified in a MODEL statement determine the variables used when
generating a design. The types and lengths of variables in an AUGMENT= data set that are used in the
MODEL and ID statements must match the types and lengths of the same variables in the DATA= data
set. If you use an ID statement and the AUGMENT= data set contains the ID variables, these variables are
transferred to the OUT= data set (if one is created). For an example that uses an AUGMENT= data set, see
the section “Including Specific Runs” on page 1002.

INITDESIGN= Data Set

The INITDESIGN= data set provides a set of points that are used as an initial design in the search for an
optimal design. These points are not necessarily contained in the final design. The OPTEX procedure uses
these points to begin the search for an optimal design. The number of points in the INITDESIGN= data set
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must be the same as the number of points in the design (either the default or the number specified by the N=
option in the GENERATE statement).

As with the DATA= data set, the effects specified in a MODEL statement determine the variables used when
generating a design. The types and lengths of variables in an INITDESIGN= data set that are used in the
MODEL and ID statements must match the types and lengths of the same variables in the DATA= data
set. If you use an ID statement and the INITDESIGN= data set contains the ID variables, these variables
are transferred to the OUT= data set (if one is created). See Example 15.3 for an example that uses an
INITDESIGN= data set.

If you use an INITDESIGN= data set and also specify METHOD=SEQUENTIAL in the GENERATE
statement, no search is performed (you do not have to specify ITER=0 in this case). The INITDESIGN= data
set is the final design. In this way, you can use the OPTEX procedure to evaluate an existing design.

BLOCKS DESIGN= Data Set

The DESIGN= data set in the BLOCKS statement contains a set of points that are used to generate a model
for fixed covariates. These points are contained in the final design and are transferred to the OUT= data set
(if one is created). See Example 15.8 for an example that uses a BLOCKS DESIGN= data set.

BLOCKS COVAR= Data Set

If you specify a COVAR= data set in the BLOCKS statement, the observations for the variables listed in the
VAR-= option are used to define the assumed variance-covariance matrix for the experimental runs. These
observations are not transferred to the OUT= data set (if one is created). Because covariance matrices are
necessarily square, the number of observations in the COVAR= data set must be the same as the number of
variables listed in the VAR= option. See Example 15.9 for an example that uses a BLOCKS COVAR= data
set.

Output Data Sets

You typically use the OPTEX procedure to create an output data set that contains the design for your
experiment. If you use an OUTPUT statement, the variables in the output data set are the factors of the
design in addition to any ID variables. The values for the ID variables are taken from the input data set (the
DATA=, AUGMENT=, or INITDESIGN= data set) that provided the design point. ID variables must be
contained in the DATA= data set and can also be contained in the AUGMENT= or INITDESIGN= data set.
If an AUGMENT= or INITDESIGN= data set does not contain the ID variables and points from the data set
are used in the final design, values of ID variables for those points are missing.

Because the input data sets provide candidate points for the design, all the observations in the OUT= data set
originate in one of the input data sets. The OPTEX procedure does not change the values of variables in the
input data sets.

Because you can use multiple OUTPUT statements with the OPTEX procedure, you can create multiple
OUT= data sets in a single run of the procedure.
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Specifying Effects in MODEL Statements

This section discusses how to specify the linear model that you plan to fit with the design. The OPTEX
procedure provides for the same general linear models as the GLM procedure, although it does not use the
GLM procedure’s overparameterized technique for generating the design matrix (see the section “Static
Coding” on page 1030.)

Each term in a model, called an effect, is a variable or combination of variables. To specify effects, you
use a special notation that involves variables and operators. There are two kinds of variables: classification
variables and continuous variables. Classification variables separate observations into groups, and the model
depends on them through these groups; on the other hand, the model depends on the actual (or coded) values
of continuous variables. There are two primary operators: crossing and nesting. A third operator, the bar
operator, simplifies the specification for multiple crossed terms, as in a factorial model. The @ operator, used
in combination with the bar operator, further simplifies specification of crossed terms.

When specifying a model, you must list the classification variables in a CLASS statement. Any variables in
the model that are not listed in the CLASS statement are assumed to be continuous. Continuous variables
must be numeric.

Types of Effects

Five types of effects can be specified in the MODEL statement. Each row of the design matrix is generated
by combining values for the independent variables according to effects that are specified in the MODEL
statement. This section discusses how to specify different types of effects and explains how they relate to the
columns of the design matrix.

In the following list of effect types, assume that A, B, and C are classification variables and X1, X2, and X3
are continuous variables:

e Regressor effects are specified by writing continuous variables by themselves, as follows:
X1 X2 X3

For regressor effects, the actual values of the variable are used in the design matrix.

e Polynomial effects are specified by joining two or more continuous variables with asterisks, as follows:
X1xX1 X1%X1%xX1 X1xX2 X1xX2xX3 X1xX1xX2

Polynomial effects are also referred to as interactions or crossproducts of continuous variables. When
a variable is joined with itself, polynomial effects are referred to as quadratic effects, cubic effects,
and so on. In the preceding examples, the first two effects are the quadratic and cubic effects for X1,
respectively. The remaining effects are crossproducts.

For polynomial effects, the value used in the design matrix is the product of the values of the constituent
variables.

e Main effects are specified by writing classification variables by themselves. as follows:
A B C

If a classification variable A has k levels, then its main effect has k — 1 degrees of freedom, correspond-
ing to k — 1 independent differences between the mean response at different levels.
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Most designs involve main effects because they correspond to the factors in your experiment. For ex-
ample, in a factorial experiment for a chemical process, the main effects can be metal type, temperature,
pressure, and the level of a catalyst.

For information about how the OPTEX procedure generates the k — 1 columns in the design matrix
that correspond to the main effects of a classification variable, see the section “Design Coding” on
page 1030.

e Crossed effects (interactions) are specified by joining class variables with asterisks, as follows:

AxB BxC A*xBxC

The number of degrees of freedom for a crossed effect is the product of the numbers of degrees of
freedom for the constituent main effects. The columns in the design matrix that correspond to a crossed
effect are formed by the horizontal direct products of the constituent main effects.

e Continuous-by-class effects are specified by joining continuous variables and classification variables
with asterisks, as follows:

X1*xA

The design columns for a continuous-by-class effect are constructed by multiplying the values in the
design columns for the continuous variables and the classification variable.

All design matrices start with a column of ones for the assumed intercept term unless you use the NOINT
option in the MODEL statement.

Bar and @ Operators

You can shorten the specification of a factorial model by using the bar operator. For example, the following
statements show two ways of specifying a full three-way factorial model:

model a b ¢ a*b a*c bxc axbxc;
model alb]|c;

When the vertical bar (|) is used, the right- and left-hand sides become effects, and their cross becomes an
effect. Multiple bars are permitted. The expressions are expanded from left to right by using rules given by
Searle (1971). For example, A|B|C is evaluated as follows:

A|lB|CcC — {aAa|B}|C
— {ABAxB} | C
— A B AxB C AxC BxC AxBxC

The bar operator does not cross a variable with itself. To produce a quadratic term, you must specify it
directly.

You can also specify the maximum number of variables involved in any effect that results from bar evaluation
by putting it at the end of a bar effect, preceded by an @ sign. For example, the specification A|B|c@2 results
in only those effects that contain two or fewer variables (in this case A, B, A*B, C, A*C, and B*C).
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Examples of Models

Main Effects Model For a three-factor main effects model with A, B, and C as the factors, the MODEL
statement is

model a b c;

Factorial Model with Interactions To specify interactions in a factorial model, join effects with asterisks,
as described previously. For example, the following statements show two ways of specifying a complete
factorial model, which includes all the interactions:

model a b ¢ a*b a*c bxc axbxc;
model a|b|c;

Quadratic Model The following statements show two ways of specifying a model with crossed and
quadratic effects (for a central composite design, for example):

model x1 x2 x1x*x2 x3 x1*x3 x2%x3
x1*xl x2%*x2 x3%x3;
model x1|x2|x3@2 x1*xl x2*xx2 x3*%x3;

Design Efficiency Measures

The output from the OPTEX procedure includes efficiency measures for the resulting designs according to
various criteria. This section gives the precise definitions for these measures.

By default, the OPTEX procedure calculates the following efficiency measures for each design that it finds in
its search for an optimum design:

IX'X|1/P
D-efficiency = 100 x | ———
Np
N
Aefficiency = 100x [ — PN
trace(X’X) !

. P/Np
G-effi = 100
efficiency x (\/ T G lx)

where p is the number of parameters in the linear model, Np is the number of design points, and C is the set
of candidate points. The D- and A-efficiencies are the relative number of runs (expressed as percentages) that
are required by a hypothetical orthogonal design to achieve the same |X'X| and trace(X'X) ™!, respectively
(Mitchell 1974b).

When you specify a BLOCKS statement, the D- and A-efficiencies for the treatment part of the model are
calculated. They are calculated similarly to the preceding efficiencies, except that they are based on the
information matrix after correcting for block and covariate effects. This matrix can be written as X’ AT'X
for a symmetric, positive definite matrix A that depends on the model for the block and covariate effects. If
you specify a block structure or a covariate model, then A = A~! =1 — Z(Z'Z)~'Z’, where Z' is the design
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matrix for the block and covariate effects. Alternatively, you can use the COVAR= option to specify the
matrix A directly. Given A, the efficiencies in the presence of covariates are defined as follows:

D-efficiency = 100 x ¢! - [X'A™'X|V/7/N, cp = [[P, A7

1=

A-efficiency = IOOchI-(p/N)/trace(X/A_lX)_l, ca = Y2 Ai/p

where A1, ..., A, are the p largest eigenvalues of AL If you use the STRUCTURE= block model specifica-
tion and the treatment model has only one classification variable, then the design fits into the traditional block
design framework. In this case, the D-efficiency relative to a balanced incomplete block design is also listed.

Because these efficiencies measure the goodness of the design relative to theoretical designs that might be far
from possible in many cases, they are typically not useful as absolute measures of design goodness. Instead,
efficiency measures should be used relatively, to compare one design to another for the same situation.

For the distance-based criteria, there are no simple measures of design efficiency that can be scaled from
0 to 100. For a definition of the design measures tabulated for these criteria, see the section “Output” on
page 1039.

Design Coding

The way the independent effects of the model are interpreted to generate a linear model is called coding. The
OPTEX procedure provides for different types of coding. For D-optimality, the type of coding affects only
the absolute value of the computed efficiency criteria, not the relative values for two different designs. Thus,
different codings do not affect the choice of D-optimal design. In this section, the details and ramifications of
the different types of coding are discussed.

Coding the points in a design involves selecting linearly independent columns that correspond to each
model term, turning particular values of the factors into a row vector x. The OPTEX procedure requires
a nonsingular coding for the design matrix. Because of this, any two coding schemes are related by a
nonsingular transformation.

Static Coding

The default coding for the design points is as follows:

e Unless you specify CODING=NONE (or NOCODE) in the PROC OPTEX statement, continuous
variables are centered and scaled so that their maximum and minimum values are 1 and —1, respectively.

e The k — 1 columns that correspond to the main effect of a classification variable A are computed as
follows: For a design point with A at its ith level, for | <i < k — 1, the columns of the design matrix
associated with A are all 0 except for the ith column, which is 1. When A is at its kth level, all k — 1
columns associated with A are —1. Thus, if «; denotes the expected response at the ith level of A, the
k — 1 columns yield estimates of oy — o, 000 — O, ..., Qf—1 — -

e Columns for crossed effects are computed by taking the horizontal direct product of columns that
correspond to the constituent effects.

This coding corresponds to modeling without overparameterization, by using the same method as the
CATMOD procedure in SAS/STAT software uses. This is different from the method used by the GLM
procedure, which uses an overparameterized model.
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Orthogonal Coding

If you specify CODING=0ORTH or CODING=0ORTHCAN, the points are first coded as described in the
previous section and then recoded so that X’C Xc = Nc¢ - I, where X is the design matrix for the candidate
points, N¢ is the number of candidates, and I is the identity matrix. This is required in order for the D- and
A-efficiency measures to make sense. For the CODING=ORTHCAN option, this recoding is accomplished
by computing a square matrix R such that X’C X¢ = R'R and then transforming each row vector x as

x — xR 'Y/Nc¢

If you specify CODING=ORTH, the recoding is done in a similar fashion, except that the matrix R is
computed according to X’C Xc + X’AX A+ X’I X7 = R'R, where X 4 and X are the design matrices for the
AUGMENT= and INITDESIGN= data sets, respectively (coded as described in the previous section.) Thus,
these two orthogonal coding options differ only when there is an AUGMENT= or an INITDESIGN= data
set; the CODING=ORTH option includes points from these data sets in computing the orthogonal coding,
whereas the CODING=ORTHCAN option uses only the candidates themselves.

Example of Coding

For example, consider a main effect model that has one continuous variable X and one three-level classification
variable A. The results of the various coding options are shown in Table 15.7.

Table 15.7 Different Types of Design Coding

Original | Design Matrix with | Design Matrix with Design Matrix with
Data CODING=NONE | CODING=STATIC CODING=ORTH

X A X Al A2 X Al A2 X Al A2
1 1 1 1 1 0|1 -1 1 0|1 -1464 0598 -0.707
2 2 1 2 0 1{1 06 O 111 -0878 -0478 1414
3 3 1 3 -1 -1/1 -02 -1 -1]1 -0293 -1.554 -0.707
4 1 1 4 1 1 02 1 1 0293 1554 -0.707
5 2 1 5 0 1/1 06 O 111 0878 0478 1414
6 3 1 6 -1 -1]1 1 -1 -1]|1 1464 -0598 -0.707

The first column in each design matrix is an all-ones vector that corresponds to the intercept, the next column
corresponds to the linear effect of X, and the last two columns correspond to the two degrees of freedom for
the main effect of A.

General Recommendations

Coding does not affect the relative ordering of designs by D-efficiency, and the same is true for G-efficiency
and the average standard error of prediction. This is easy to see for the latter two measures, which are based
on the variance of prediction, because how accurately a point is predicted should not be affected by how
the independent variables are coded. For D-optimality, note again that coding corresponds to multiplying
the design matrix on the right by some nonsingular transformation A, which changes the determinant of the
information matrix as follows:

IX'X| — |AX'XA| = |[AA|IX'X| = |[APXX]
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Thus, recoding simply multiplies the D-criterion by a constant that is the same for all designs. However,
A-optimality is not invariant to coding.

Orthogonal coding will usually be the right one; it is not the default because it depends on the candidate
set. However, for the distance-based criteria, if the distance between two points should be computed in
terms of the actual values of the model variables instead of centered and scaled values, then you should
specify CODING=NONE or NOCODE. The NOCODE option can also be useful when the NOINT option is
specified.

Optimality Criteria

An optimality criterion is a single number that summarizes how good a design is, and it is maximized or
minimized by an optimal design. This section discusses in detail the optimality criteria available in the
OPTEX procedure.

Types of Criteria
Two general types of criteria are available: information-based criteria and distance-based criteria.

The information-based criteria that are directly available are D- and A-optimality; they are both related to the
information matrix X’X for the design. This matrix is important because it is proportional to the inverse of
the variance-covariance matrix for the least squares estimates of the linear parameters of the model. Roughly,
a good design should “minimize” the variance (X’X)™!, which is the same as “maximizing” the information
X'X. D- and A-efficiency are different ways of saying how large (X'X) or (X'X)~! are.

For the distance-based criteria, the candidates are viewed as comprising a point cloud in p-dimensional
Euclidean space, where p is the number of terms in the model. The goal is to choose a subset of this cloud
that “covers” the whole cloud as uniformly as possible (in the case of U-optimality) or that is as broadly
“spread” as possible (in the case of S-optimality). These ideas of coverage and spread are defined in detail
in the section “Distance-Based Criteria” on page 1034. The distance-based criteria thus correspond to the
intuitive idea of filling the candidate space as well as possible.

The rest of this section discusses different optimality criteria in detail.

D-Optimality

D-optimality is based on the determinant of the information matrix for the design, which is the same as the
reciprocal of the determinant of the variance-covariance matrix for the least squares estimates of the linear
parameters of the model.

XX = 1/IXX)7

The determinant is thus a general measure of the size of (X'X)~!. D-optimality is the most commonly used
criterion for generating optimal designs and is therefore the default criterion for the OPTEX procedure.

The D-optimality criterion has the following characteristics:

e D-optimality is the most computationally efficient criterion to optimize for the low-rank update
algorithms of the OPTEX procedure, because each update depends only on the variance of prediction
for the current design; see the section “Useful Matrix Formulas” on page 1035.
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e |X'X] is inversely proportional to the size of a 100(1 — «)% confidence ellipsoid for the least squares
estimates of the linear parameters of the model.

e |X’X|'/? is equal to the geometric mean of the eigenvalues of X'X.

e The D-optimal design is invariant to nonsingular recoding of the design matrix.

IX'X| — |AX'XA| = |[AA|X'X| = |A]?XX]

A-Optimality

A-optimality is based on the sum of the variances of the estimated parameters for the model, which is the
same as the sum of the diagonal elements, or trace, of (X'X)~!. Like the determinant, the A-optimality
criterion is a general measure of the size of (X’X)~!. A-optimality is less commonly used than D-optimality
as a criterion for computer optimal design, partly because it is more computationally difficult to update (see
the section “Useful Matrix Formulas” on page 1035). Also, A-optimality is not invariant to nonsingular
recoding of the design matrix; different designs will be optimal with different codings.

G- and I-Optimality

Both G-efficiency and the average prediction variance are well-known criteria for optimal design. Both are
based on the variance of prediction of the candidate points, which is proportional to x'(X’X)~'x. As this
formula shows, these two criteria are also related to the information matrix X’X. Minimizing the average
prediction variance has also been called I-optimality, the “I” denoting integration over the candidate space.

It is possible to apply the search techniques available in the OPTEX procedure to these two criteria, but this
turns out to be a poor way to find G- and I-optimal designs. One reason for this is that there are no efficient
low-rank update rules (see the section “Useful Matrix Formulas” on page 1035), so that the searches can take
a very long time. More seriously, for G-optimality such a search often does not converge on a design with
good G-efficiency. G-efficiency is simply too “rough” a criterion to be optimized by the relatively short steps
of the search algorithms available in the OPTEX procedure.

However, the OPTEX procedure does offer an approach for finding G-efficient designs. Begin by searching
for designs according to the default D-optimality criterion. Then, from the various designs found on the
different tries, you can save the one that has the best G-efficiency by specifying the NUMBER=GBEST
option in the OUTPUT statement. Because D- and G-efficiency are highly correlated over the space of all
designs, this method usually results in adequately G-efficient designs, especially when the number of tries is
large (see Nguyen and Piepel (2005)). For more information about specifying the number of tries, see the
ITER= option.

To find I-optimal designs, note that if the design is orthogonally coded then I-optimality is equivalent to the
A-optimality, because the sum of the prediction variances of all points x in the candidate space C is

Z X (X'X)"x Z trace (x'(X'X) 'x)

xeC xeC

= trace ((X’X)_1 Z xx')

xeC
= trace (X'X)'XX¢)
= Nc -trace (X'X)™!)
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where N¢ is the number of candidate points and X¢ is the design matrix for the candidate points. Thus,
you can use the CODING=0ORTH option in the PROC OPTEX statement together with the CRITERION=A
option in the GENERATE statement to search for I-optimal designs.

Note that both G- and I-optimality are invariant to nonsingular recoding of the design matrix, because the
coding does not affect how well a point is predicted.

Distance-Based Criteria

The distance-based criteria are based on the distance d(x, .4) from a point x in the p-dimensional Euclidean
space R” to aset A C RP. This distance is defined as follows:

dx,A) = min|[x—Yy]||
yeA

where ||x — y|| is the usual p-dimensional Euclidean distance,

Ix=yll = =32+t (= )

U-optimality seeks to minimize the sum of the distances from each candidate point to the design

> d(x.D)

xeC

where C is the set of candidate points and D is the set of design points. You can visualize the U criterion by
associating with any design point those candidates to which it is closest. Thus, the design defines a clustering
of the candidate set, and indeed cluster analysis has been used in this context. Johnson, Moore, and Ylvisaker
(1990) consider a similar measure of design efficiency, but over infinite rather than finite candidate spaces.
Computationally, the U-optimality criterion can be very difficult to optimize, especially if the matrix of all
pairwise distances between candidate points does not fit in memory. In this case, the OPTEX procedure
recomputes each distance as needed. When searching for a U-optimal design, you should start with a small
version of the problem to get an idea of the computing resources required.

S-optimality seeks to maximize the harmonic mean distance from each design point to all the other points in
the design.
Np
> yep 1/d(y.D —y)

For an S-optimal design, the distances d(y, D — y) are large, so the points are as spread out as possible.
Because the S-optimality criterion depends only on the distances between design points, it is usually
computationally easier to compute and optimize than the U-optimality criterion, which depends on the
distances between all pairs of candidate points.

Memory and Run-Time Considerations

The OPTEX procedure provides a computationally intensive approach to designing an experiment, and
therefore some finesse is called for to make the most efficient use of computer resources.
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The OPTEX procedure must retain the entire set of candidate points in memory because all the search
algorithms access these points repeatedly. If this requires more memory than is available, consider using
knowledge of the problem to reduce the set of candidate points. For example, for first- or second-order models,
it is usually adequate to restrict the candidates to just the center and the edges of the experimental region or
perhaps an even smaller set; see the introductory examples in the sections “Handling Many Variables” on
page 1006 and “Constructing a Mixture-Process Design” on page 1007.

The distance-based criteria (CRITERION=U and CRITERION=S) also require repeated access to the distance
between candidate points. PROC OPTEX tries to fit the matrix of these distances in memorys; if it cannot, it
recomputes them as needed, but this causes the search to be dramatically slower.

The run time of each search algorithm depends primarily on Np, the size of the target design, and on N¢, the
number of candidate points. For a particular model, the run times of the sequential, exchange, and DETMAX
algorithms are all roughly proportional to both Np and N¢c—that is, O(Np) + O(N¢). The run times for
the two simultaneous switching algorithms (FEDOROV and M_FEDORQOV) are approximately proportional
to the product of Np and Nc—thatis, O(N¢ Np). The constant of proportionality is larger when searching
for A-optimal designs because the update formulas are more complicated (see the section “Search Methods,”
which follows).

For problems where either Np or Nc is large, it is a good idea to make a few test runs with a faster algorithm
and a small number of tries before attempting to use one of the slower and more reliable search algorithms.
For most problems, the efficiency of a design that a faster algorithm finds will be within 1-2% of that for
the best possible design, and this is usually sufficient if it appears that searching with a slower algorithm is
infeasible.

Search Methods

The search procedures available in the OPTEX procedure offer various compromises between speed and
reliability in finding the optimum. In general, the longer an algorithm takes to arrive at an answer, the more
efficient is the resulting design, although this is not invariably true. The right search procedure for any
specific case depends on the size of the problem, the relative importance of using the best possible design as
opposed to a very good one, and the computing resources available.

Useful Matrix Formulas

All of the search algorithms are based on adding candidate points to a design and deleting them from this
design. If V = (X’X) ™! is the inverse of the information matrix for the design at any stage, then the change
in V that results from adding a point x to a design (which adds a new row x to the design matrix) is

Vxx'V

V - V— —
1+ x'Vx

and the change in V that results from deleting the point y from this design is

Vyy'V
1-yVy

It follows that adding x multiplies the determinant of the information matrix by 1 + x’Vx. Likewise, deleting
y multiplies the determinant by 1 — y’Vy. For any point z, the quantity z’Vz is proportional to the prediction
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variance at the point z. Thus, the point x whose addition to the design maximizes the determinant of the
information is the point whose prediction variance calculated from the present design is largest. The point
whose deletion from the design costs the least in terms of the determinant is the point with the smallest
prediction variance.

Similar rank-one update formulas can be derived for A-optimality, which is based on the trace of the inverse
of the information matrix instead of its determinant. However, in this case there is no single quantity that
can be examined for both adding and deleting a point. Here, the trace that results from adding a point x to a
design depends on

x'V?%x

1+x'Vx
and the trace that results from deleting a point y to this design depends on

y'V2y
1-yVy

This complication makes A-optimal designs harder to search for than D-optimal ones.

There are no useful rank-one update formulas for the distance-based design criteria.

Sequential Search Algorithm

The simplest and fastest algorithm is the sequential search due to Dykstra (1971), which starts with an empty
design and adds successive candidate points so that the chosen criterion is optimized at each step. You can
use the sequential procedure as a first step in finding a design to judge the size of the problem in terms of
time and space requirements and to determine the number of design points needed to estimate the parameters
of the model.

The sequential algorithm requires no initial design; in fact, it can be used to provide an initial design for the
other search procedures (see the INITDESIGN= option on page 1019). If you specify a data set for an initial
design for this search procedure, no search will be made; in this way, you can use the OPTEX procedure to
evaluate an existing design.

Because the sequential search method involves no randomness, it requires only one try to find a design. The
sequential procedure is by far the fastest of any of the search methods, but in difficult design situations it is
also the least reliable in finding a globally optimal design. Also, the fact that it always finds the same design
(due to the lack of randomness mentioned previously) makes it inappropriate when you want to find a design
that represents a compromise between several optimality criteria.

Exchange Algorithm

The next fastest algorithm is the simple exchange method of Mitchell and Miller (1970). This technique tries
to improve an initial design by adding a candidate point and then deleting one of the design points, stopping
when the chosen criterion ceases to improve. This method is relatively fast (though typically much slower
than the sequential search) and fairly reliable. METHOD=EXCHANGE is the default.
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DETMAX Algorithm

The DETMAX algorithm of Mitchell (1974a) is the best-known and most widely used optimal design search
algorithm. It generalizes the simple exchange method. Instead of requiring that each addition of a point be
followed directly by a deletion, the algorithm provides for excursions in which the size of the design might
vary between Np + k and Np — k, where Np is the specified size of the design and k is the maximum
allowed size for an excursion. By default k is 4, but you can change this (see the METHOD=DETMAX(level)
option on page 1021). For the precise stopping rules for each excursion and for the entire search, see Mitchell
(1974a). Due to the mentioned excursions, the DETMAX algorithm might not be a good choice when the
design you want to construct is saturated or near-saturated.

Fedorov and Modified Fedorov Algorithms

The three algorithms discussed so far add and delete points one at a time. By contrast, the Fedorov and
modified Fedorov algorithms are based on simultaneous switching—that is, adding and deleting points
simultaneously. These two algorithms usually find a better design than the others, but because each step
involves a search over all possible pairs of candidate and design points, they generally run much slower.

From the equations in the section “Useful Matrix Formulas” on page 1035 (see also Nguyen and Piepel (2005,
sec. 4)), it follows that simultaneously adding a point x and deleting a point y multiplies the determinant of
the information matrix by 1 + A(x, y), where:

A(x,y) = X'Vx — y'Vy + (X' Vy)? — (x'Vx)(y'Vy)

The quantity A(x,y) is often referred to as Fedorov’s delta function.

At each step, the Fedorov algorithm (Fedorov 1972) seeks the pair (x,y) of one candidate point and one
design point that maximizes A(x,y) and then switches x for y in the design. Thus, after computing A(x, y)
for all possible pairs of candidate and design points, the Fedorov algorithm performs only one switch.

The modified Fedorov algorithm of Cook and Nachtsheim (1980) computes the same number of A’s on
each step but switches each point y in the design with the candidate point x that maximizes A(x,y). This
procedure is generally as reliable as the simple Fedorov algorithm in finding the optimal design, but it can be
up to twice as fast.

Johnson and Nachtsheim (1983) introduce a generalization of both the simple exchange algorithm and the
modified Fedorov search algorithm of Cook and Nachtsheim (1980), which is described later in this list. In
the modified Fedorov algorithm, each of the points in the current design is considered for exchange with
a candidate point; in the generalized version, only the k£ design points that have smallest variance in the
current design are considered for exchange. You can specify k-exchange as the search procedure for OPTEX
by specifying a value for & in parentheses after METHOD=EXCHANGE. When k = Np (the size of the
design), k-exchange is equivalent to the modified Fedorov algorithm; when k = 1, it is equivalent to the
simple exchange algorithm. Cook and Nachtsheim (1980) indicate that k < Np /4 is typically sufficient.

For a detailed review of the preceding search methods, see Nguyen and Miller (1992).

Optimal Blocking

Building on the work of Harville (1974), Cook and Nachtsheim (1989) give an algorithm for finding D-
optimal designs in the presence of fixed block effects. In this case, the design for the original candidate points



1038 4 Chapter 15: The OPTEX Procedure

is called the freatment design. The information matrix for the treatment design has the form X’AX for a
certain symmetric, nonnegative-definite matrix A that depends on the blocks. The algorithm is based on two
kinds of low-rank changes to the treatment design matrix X: exchanging a point in the design with a potential
treatment point, and interchanging two points in the design. Cook and Nachtsheim (1989) give formulas for
computing the resulting change in X’AX and |X’AX|. These update formulas can be generalized to apply
whenever the information matrix for the treatment design has the form X’AX, not just when A is derived
from fixed blocks. This is the basis for the optimal blocking algorithm in the OPTEX procedure.

Notice that you can combine several options to use the OPTEX procedure to evaluate a design with respect
to the fixed covariates. Assume the design you want to evaluate is in a data set named Edesign. Then first
specify the GENERATE statement to make the data set Edesign the treatment design:

generate initdesign=Edesign method=sequential;

Then specify the following BLOCKS statement options:

blocks {block-specification} init=chain iter=0;

The INIT=CHAIN option ensures that the starting ordering for the treatment points is the same as in the
Edesign data set, and the ITER=0 specification causes the procedure simply to output the efficiencies for the
initial design, without trying to optimize it.

Search Strategies
General Recommendations

As with all combinatorial optimization problems, finding efficient experimental designs can be difficult. For
this reason, the OPTEX procedure provides a variety of ways to customize the search.

Although default settings make the procedure simple to use ‘“as is,” you can usually improve the
search by using knowledge of the specific design problem. For example, if the default algorithm
(METHOD=EXCHANGE) runs quickly but does not clearly indicate it finds the best design, you can
try a slower but more reliable search method or use more iterations than the default number of 10.

Set of Candidate Points

The choice of candidate points can profoundly affect both the speed with which the search converges at a local
optimum and the likelihood that this local optimum is indeed the global optimum. Up to a point, the more
candidate points there are, the better the resulting optimum design will be but the longer it will take to find.
Any prior knowledge that can be brought to bear on the choice of candidates will almost certainly improve
the search. For example, for first- or second-order models it is usually adequate to restrict the candidates
to just the center and the edges of the experimental region, or perhaps even less; see Snee (1985), and see
the introductory examples in the sections “Handling Many Variables” on page 1006 and “Constructing a
Mixture-Process Design” on page 1007.

Initial Design

The reliability of the search algorithms in finding the optimal design can be quite sensitive to the choice
of initial design. The default method of initialization for each search procedure should achieve good
results for a wide variety of situations (see the INITDESIGN= option on page 1019). However, in certain
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situations it is better to override the defaults. For example, if there are many local optima and you want
to find the exact global optimum, it is probably best to start each try with a completely random design
(INITDESIGN=RANDOM). On the other hand, prior knowledge might provide a specific initial design,
which can be placed in a SAS data set and specified with the INITDESIGN= option.

Output

By default, the OPTEX procedure lists the following information for each attempt to find the optimum design:

the D-efficiency of the design

the A-efficiency of the design

the G-efficiency of the design

the square root of the average variance for prediction over the candidate points

If you specify a BLOCKS statement, then the covariate-adjusted D- and A-efficiencies are also listed.

For more information about the efficiencies, see the section “Design Efficiency Measures” on page 1029.
The OPTEX procedure orders the designs first by the optimality criteria with which they were generated and
then by optimality with respect to the other three preceding measures.

If you use the NOCODE option, the OPTEX procedure lists the following:

log |X'X|

trace(X'X) !

the G-efficiency of the design

the square root of the average variance for prediction over the candidate points

If you specify one of the distance-based optimality criteria (CRITERION=U or CRITERION=S), then
PROC OPTEX lists alternative measures of coverage and spread instead of the preceding efficiencies. For
U-optimality the following measures are listed:

e the average distance from each candidate to the nearest design point (this is the U criterion)

o the average harmonic mean distance from each candidate to the design

For S-optimality, the following alternative measures of spread are listed:

e the harmonic mean distance from each design point to the nearest other design point (this is the S
criterion)

e the average distance from each design point to the nearest other design point

In addition, the OPTEX procedure can create an output data set, as described in the sections “OUTPUT
Statement” on page 1023 and “Output Data Sets” on page 1026.
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ODS Tables

The following table summarizes the ODS tables that you can request with the PROC OPTEX statement.

Table 15.8 ODS Tables Produced in PROC OPTEX

ODS Table Name Description Statement Option
ClassLevels Classification variable levels CLASS Default
FactorRanges Continuous variable ranges Default Default
BlockDesignEfficiencies Block design efficiency criteria BLOCK Default
Efficiencies Efficiency criteria for all designs GENERATE Default
Criteria Efficiency criteria for a single design EXAMINE  Default
Points Design points EXAMINE  POINTS
Information Information matrix XPX EXAMINE  INFORMATION
Variance Inverse information matrix inv(XPX) EXAMINE  VARIANCE
Status Optimization status PROC STATUS
Distances Distance criteria for all designs GENERATE CRITERION=U
orS

Examples: OPTEX Procedure

Example 15.1: Nonstandard Linear Model
NOTE: See A Nonstandard Linear Model in the SAS/QC Sample Library.

This example is based on an example in Mitchell (1974a). An animal scientist wants to compare wildlife
densities in four different habitats over a year. However, due to the cost of experimentation, only 12
observations can be made. The following model is postulated for the density y;(¢) in habitat j during month
r

4 3
yi(t) = pj+PBt+Y aicosint/4)+ Y b;sin(int/4)

i=1 i=1

This model includes the habitat as a classification variable, the effect of time with an overall linear drift term
Bt, and cyclic behavior in the form of a Fourier series. There is no intercept term in the model.

The OPTEX procedure is used because there are no standard designs that cover this situation. The candidate
set is the full factorial arrangement of four habitats by 12 months, which can be generated with a DATA step,
as follows:
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data a;
drop theta pi;
array c{4} cl-c4;
array s{3} sl-s3;
pi = arcos(-1);
do Habitat=1l to 4;
do Month=1 to 12;
theta = pi * Month / 4;
do i=1 to 4; c{i} = cos(ixtheta); end;
do i=1 to 3; s{i} = sin(ixtheta); end;
output;
end;
end;
run;

Data set a contains the 48 candidate points and includes the four cosine variables (c1, ¢2, ¢3, and c4) and
three sine variables (s1, s2, and s3). The following statements produce Output 15.1.1:

proc optex seed=193030034 data=a;

class Habitat;
model Habitat Month cl-c4 sl-s3 / noint;
generate n=12;

run;

Output 15.1.1 Sampling Wildlife Habitats over Time
The OPTEX Procedure

Average

Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error

1 31.6103 19.7379 57.7350 1.3229

2 31.6103 19.7379 57.7350 1.3229
3 31.6103 19.3793 57.7350 1.3229
4 31.6103 19.2916 57.7350 1.3229
5 31.6103 19.2626 57.7350 1.3229
6 31.6103 19.0335 57.7350 1.3229
7 30.1304 14.4796 44.7214 1.4907
8 30.1304 14.2433 44.7214 1.5092
9 30.1304 13.1687 44.7214 1.5456
10 28.1616 9.8842 40.8248 1.7559

The best determinant (D-efficiency) was found in 6 out of the 10 tries. Thus, you can be confident that
this is the best achievable determinant. Only the A-efficiency distinguishes among the designs listed in
Output 15.1.1. The best design has an A-efficiency of 19.74%, whereas another design has the same D-
efficiency but a slightly smaller A-efficiency of 19.03%, or about 96% relative A-efficiency. To explore
the differences, you can save the designs in data sets and print them. Because the OPTEX procedure is
interactive, you need to submit only the following statements (immediately after the preceding statements) to
produce Output 15.1.2 and Output 15.1.3:
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output out=dl number=1;
run;

output out=d6é number=6;
run;

proc sort data=dil;
by Month Habitat;
run;
proc print data=dl;
var Month Habitat;
run;

proc sort data=dé;
by Month Habitat;
run;
proc print data=dé6;
var Month Habitat;
run;

Output 15.1.2 The Best Design

Obs Month Habitat

1 1 3
2 2 2
3 3 4
4 4 1
5 5 4
6 6 1
7 7 2
8 8 3
9 9 4
10 10 1
" 11 2
12 12 3

Output 15.1.3 Design with Lower A-Efficiency

Obs Month Habitat
1 1

O 0 N O Ul A WN
0 N o U~ WN
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o
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Note the structure of the best design in Output 15.1.2. One habitat is sampled in each month, each habitat is
sampled three times, and the habitats are sampled in consecutive complete blocks. Even though the design in
Output 15.1.3 is as D-efficient as the best, it has almost none of this structure; one habitat is sampled each
month, but habitats are not sampled an equal number of times. This demonstrates the importance of choosing
a final design on the basis of more than one criterion.

You can try searching for the A-optimal design directly. This takes more time but with only 48 candidate
points is not too large a problem. The following statements produce Output 15.1.4:

proc optex seed=193030034 data=a;

class Habitat;
model Habitat Month cl-c4 sl-s3 / noint;
generate n=12 criterion=A;

run;

Output 15.1.4 Searching Directly for an A-Efficient Design
The OPTEX Procedure

Average

Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error

1 31.6103 19.7379 57.7350 1.3229

2 30.1304 17.8273 52.2233 1.3894
3 30.1304 17.7943 52.2233 1.3944
4 30.1304 17.6471 52.2233 1.4093
5 28.1616 15.7055 44.7214 1.4860
6 28.1616 14.5289 44.7214 1.5343
7 28.1616 13.8603 39.2232 1.5811
8 25.0891 11.6152 37.7964 1.8143
9 25.0891 10.7563 37.7964 1.8143
10 25.0891 10.5437 33.3333 1.8930

The best design found is no more A-efficient than the one found previously.

Example 15.2: Comparing the Fedorov Algorithm to the Sequential Algorithm
NOTE: See Engine Mapping Problem in the SAS/QC Sample Library.

An automotive engineer wants to fit a quadratic model to fuel consumption data in order to find the values of
the control variables that minimize fuel consumption (Vance 1986). The three control variables AFR (air fuel
ratio), EGR (exhaust gas recirculation), and SA (spark advance) and their possible settings are shown in the
following table:

Variable Values

AFR 15 16 17 18
EGR 0.020 0.177 0377 0.566 0.921 1.117
SA 10 16 22 28 34 40 46 52
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Rather than run all 192 (4 x 6 x 8) combinations of these factors, the engineer would like to see whether the
total number of runs can be reduced to 50 in an optimal fashion.

Because the factors have different numbers of levels, you can use the PLAN procedure (see SAS/STAT User’s
Guide) to generate the full factorial set to serve as a candidate data set for the OPTEX procedure:

proc plan;
factors AFR=4 ordered EGR=6 ordered SA=8 ordered
/ noprint;
output out=a
AFR nvals=(15, 16, 17, 18)
EGR nvals=(0.020, 0.177, 0.377, 0.566, 0.921, 1.117)
SA nvals=(10, 16, 22, 28, 34, 40, 46, 52);
run;

The Fedorov algorithm (Fedorov 1972) is generally the most successful optimal design search algorithm,
although it also typically can take relatively much longer to run than other algorithms. This algorithm is not
the default search method for the OPTEX procedure. However, you can request that it be used by specifying
the METHOD=FEDOROV option in the GENERATE statement. For example, the following statements
produce Output 15.2.1:

proc optex data=a seed=61552;
model AFR|EGR|SAQ@2 AFR*AFR EGR*EGR SAxSA;
generate n=50 method=fedorov iter=100 keep=10;
run;

Output 15.2.1 Efficiencies with the Fedorov Algorithm
The OPTEX Procedure

Average

Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error

1 46.5246 24.5897 96.3915 0.4231

2 46.5241 24.5901 96.3926 0.4233
3 46.5238 24.5844 96.2306 0.4231
4 46.5237 24.5855 96.2318 0.4233
5 46.5219 24.5866 96.4790 0.4233
6 46.5192 24.5832 96.3070 0.4231
7 46.5192 24.5832 96.3070 0.4231
8 46.5190 24.5741 96.1695 0.4232
9 46.5189 24.5841 96.3062 0.4233
10 46.5188 24.5755 96.3020 0.4234

The Fedorov search method for the preceding problem requires a few seconds for 100 tries on a 2.8GHz
desktop PC.

For comparison, you can use the METHOD=SEQUENTIAL option in the GENERATE statement, as shown
in the following statements, which produce Output 15.2.2:
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proc optex data=a seed=33805;
model AFR|EGR|SAQ@2 AFR*AFR EGR*EGR SA*SA;
generate n=50 method=sequential iter=100 keep=10;
run;

Output 15.2.2 Efficiencies with Sequential Algorithm

Average

Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error

1 46.5246 24.5897 96.3915 0.4231

2 46.5241 24.5901 96.3926 0.4233
3 46.5238 24.5844 96.2306 0.4231
4 46.5237 24.5855 96.2318 0.4233
5 46.5219 24.5866 96.4790 0.4233
6 46.5192 24.5832 96.3070 0.4231
7 46.5192 24.5832 96.3070 0.4231
8 46.5190 24.5741 96.1695 0.4232
9 46.5189 24.5841 96.3062 0.4233
10 46.5188 24.5755 96.3020 0.4234

In a fraction of the run time required by the Fedorov method, the sequential algorithm finds a design with
a relative D-efficiency of 46.4009/46.5246 = 99.73% compared to the best design found by the Fedorov
method, and with better A-efficiency. As this demonstrates, if absolute D-optimality is not required, a faster,
simpler search might be sufficient.

Example 15.3: Using an Initial Design to Search an Optimal Design
NOTE: See Engine Mapping Problem in the SAS/QC Sample Library.
This example is a continuation of Example 15.2.

You can customize the runs used to initialize the search in the OPTEX procedure. For example, you can use
the INITDESIGN=SEQUENTIAL option to use an initial design chosen by the sequential search. Or you can
place specific points in a data set and use the INITDESIGN=SAS-dafa-set option. In both cases, the search
time can be significantly reduced because the search only has to be done once. This example illustrates both
of these options.

The previous example compared the results of the DETMAX and sequential search algorithms. You can
use the design chosen by the sequential search as the starting point for the DETMAX algorithm. The
following statements specify the DETMAX search method, replacing the default initialization method with
the sequential search:

proc optex data=a seed=33805;

model AFR|EGR|SA@2 AFR*AFR EGR*EGR SA*SA;

generate n=50 method=detmax initdesign=sequential;
run;

The results, which are displayed in Output 15.3.1, show an improvement over the sequential design itself
(Output 15.2.2) but not over the DETMAX algorithm with the default initialization method (Output 15.2.1).
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Evidently the sequential design represents a local optimum that is not the global optimum, which is a common
phenomenon in combinatorial optimization problems such as this one.

Output 15.3.1 Initializing with a Sequential Design
The OPTEX Procedure

Average

Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error

1 46.4333 25.0321 95.1371 0.4199

Prior knowledge of the design problem at hand might also provide a specific set of factor combinations to
use as the initial design. For example, many D-optimal designs are composed of replications of the optimal
saturated design—that is, the optimal design with exactly as many points as there are parameters to be
estimated. In this case, there are 10 parameters in the model. Thus, you can find the optimal saturated design
in 10 points, replicate it five times, and use the resulting design as an initial design, as follows:

proc optex data=a seed=33805;
model AFR|EGR|SAQ@2 AFRxAFR EGR*EGR SAx*SA;
generate n=saturated method=detmax;
output out=b;

run;

data c;

set b;

drop i;

do i=1 to 5; output; end;
run;

proc optex data=a seed=33805;
model AFR|EGR|SA@2 AFRxAFR EGR*EGR SAxSA;
generate n=50 method=detmax initdesign=c;
run;

The results are displayed in Output 15.3.2 and Output 15.3.3. The resulting design is 99.9% D-efficient and
98.4% A-efficient relative to the best design found by the straightforward approach (Output 15.2.1), and it
takes considerably less time to produce.
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Output 15.3.2 Efficiencies for the Unreplicated Saturated Design
The OPTEX Procedure

Average

Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error

1 41.6990 24.8480 67.6907 0.9508

2 41.4931 22.2840 70.8532 0.9841
3 40.9248 20.7672 62.2177 1.0247
4 40.7447 21.6253 52.7537 1.0503
5 39.9563 20.1557 46.4244 1.0868
6 39.9287 19.5856 45.9023 1.0841
7 39.9287 19.5856 45.9023 1.0841
8 38.9078 13.5976 37.7964 1.2559
9 38.9078 13.5976 37.7964 1.2559
10 37.6832 12.5540 45.3315 1.3036

Output 15.3.3 Initializing with a Data Set
The OPTEX Procedure

Average

Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error

1 46.4388 24.4951 96.0717 0.4242

Example 15.4: Optimal Design Using an Augmented Best Design
NOTE: See Engine Mapping Problem in the SAS/QC Sample Library.
This example is a continuation of Example 15.2.

You can specify a set of points that you want to be included in the final design that the OPTEX procedure
finds by using the AUGMENT= option in the GENERATE statement to specify a data set that contains a
design to be augmented.

In this case, you can try to speed up the search for a 50-run design by first finding an optimal 25-run design
and then augmenting that design with another 25 runs, as shown in the following statements:

proc optex data=a seed=36926;
model AFR|EGR|SAQ2 AFR*AFR EGR*EGR SAx*SA;
generate n=25 method=detmax;
output out=b;

run;

proc optex data=a seed=37034;
model AFR|EGR|SAQ2 AFR*AFR EGR*EGR SA*SA;
generate n=50 method=detmax augment=b;
run;
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The result (see Output 15.4.1 and Output 15.4.2) is a design with almost 100% D-efficiency and A-efficiency
relative to the best design found by the first attempt. However, this approach is not much faster than the
original approach because the run time for the DETMAX algorithm is essentially linear in the size of the
design (see the section “Memory and Run-Time Considerations” on page 1034).

Output 15.4.1 Efficiencies for the 25-Point Design to Be Augmented
The OPTEX Procedure

Average

Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error

1 46.2975 26.0374 91.1822 0.5849

2 46.2171 25.9733 86.4608 0.5859
3 46.1720 25.9378 88.3293 0.5860
4 46.1374 25.9128 86.1895 0.5866
5 46.0808 22.6647 86.1502 0.6169
6 46.0620 24.7326 89.7179 0.6012
7 45.9992 25.4549 90.3330 0.5946
8 45.9630 24.7610 88.2701 0.5991
9 45.9627 25.5310 88.5737 0.5894
10 45.7994 24.5645 87.7544 0.6005

Output 15.4.2 Efficiencies for the Augmented 50-Point Design
The OPTEX Procedure

Average

Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error

1 46.4957 25.0858 94.8160 0.4195

2 46.4773 25.0696 95.0646 0.4195
3 46.4684 24.5519 96.1259 0.4234
4 46.4676 24.5002 95.6830 0.4238
5 46.4587 25.0709 94.6650 0.4196
6 46.4555 24.8087 95.7768 0.4209
7 46.4471 24.5460 95.0073 0.4240
8 46.4373 25.0740 94.4640 0.4194
9 46.3899 25.0007 95.2162 0.4201
10 46.3662 24.4013 94.9539 0.4242

Example 15.5: Optimal Design Using a Small Candidate Set
NOTE: See Engine Mapping Problem in the SAS/QC Sample Library.
This example is a continuation of Example 15.4.

A well-chosen initial design can speed up the search procedure, as illustrated in Example 15.2. Another way
to speed up the search is to reduce the candidate set. The following statements generate the optimal design
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with a fast, sequential search and then use the FREQ procedure to examine the frequency of different factor
levels in the final design:

proc optex data=a seed=33805 noprint;
model AFR|EGR|SAQ2 AFR*AFR EGR*EGR SAx*SA;
generate n=50 method=sequential;
output out=b;
run;
proc freq;
table AFR EGR SA / nocum;
run;

Output 15.5.1 Factor-Level Frequencies for Sequential Design
The FREQ Procedure

AFR Frequency Percent

15 19 38.00
16 6 12.00
17 6 12.00
18 19 38.00

EGR Frequency Percent

0.02 20 40.00
0.566 9 18.00
1.117 21 42.00

SA Frequency Percent

10 19 38.00
28 6 12.00
34 5 10.00
52 20 40.00

From Output 15.5.1, it is evident that most of the factor values lie in the middle or at the extremes of their
respective ranges. This suggests looking for an optimal design by using a candidate set that includes only
those points in which the factors have values in the middle or at the extremes of their respective ranges. The
following statements illustrate this approach (see Output 15.5.2):

proc plan;
factors AFR=4 ordered EGR=4 ordered SA=4 ordered
/ noprint;
output out=a AFR nvals=(15, 16, 17, 18)
EGR nvals=(0.020, 0.377, 0.566, 1.117)
SA nvals=(10, 28, 34, 52);
run;
proc optex seed=61552;
model AFR|EGR|SA@2 AFRxAFR EGR*EGR SA*SA;
generate n=50 method=detmax;
run;
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Output 15.5.2 Optimal Design Using a Smaller Candidate Set
The OPTEX Procedure

Average

Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error

1 46.5151 24.9003 96.7226 0.4442

2 46.4997 24.5549 96.1157 0.4478
3 46.4920 24.5530 95.9941 0.4480
4 46.4657 24.8653 95.5627 0.4446
5 46.4547 24.5071 96.0385 0.4481
6 46.4333 25.0321 95.1371 0.4448
7 46.4333 25.0321 95.1371 0.4448
8 46.4333 25.0321 95.1371 0.4448
9 46.3916 24.3617 95.0041 0.4489
10 46.3379 24.8695 94.3115 0.4458

The resulting design is about as good as the best one obtained from a complete candidate set (> 99.9%
relative D-efficiency and marginally higher relative A-efficiency) and takes much less time to find.

For another example of reducing the candidate set for the optimal design search, see the section “Handling
Many Variables” on page 1006.

Example 15.6: Bayesian Optimal Design
NOTE: See Bayesian Optimal Design in the SAS/QC Sample Library.

Suppose you want a design in 20 runs for seven two-level factors. There are 29 terms in a full second-order
model, so you will not be able to estimate all main effects and two-factor interactions. If the number of runs
were a power of 2, a design of resolution 4 could be used to estimate all main effects free of the two-factor
interactions, as well as to provide partial information on the interactions. However, when the number of runs
is not a power of two, as in this case, DuMouchel and Jones (1994) suggest searching for a Bayesian optimal
design by specifying nonzero prior precision values for the interactions. You can specify these values in the
OPTEX procedure with the PRIOR= option in the MODEL statement. This option says that you want to
consider all main effects and interactions as potential effects but you are willing to sacrifice information on
the interactions to obtain maximal information on the main effects. When an orthogonal design of resolution
4 exists, it is optimal according to this Bayesian criterion. You can use the following statements to generate
the Bayesian D-optimal design:
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proc factex;

factors x1-x7;

output out=Candidates;
run;

proc optex data=Candidates seed=57922 coding=orth;
model x1-x7,
x1|x2|x3|x4|x5|x6|x7Q2 / prior=0,16;
generate n=20 method=m_fedorov;
output out=Design;
run;

With orthogonal coding, the value of the prior for an effect indicates approximately how many prior
“observations’ worth” of information you have for that effect. In this case, the PRIOR= precision values and
the use of commas to group effects in the MODEL statement indicate that there is no prior information for
the main effects and 16 runs’ worth of information for each two-factor interaction. For more information
about orthogonal coding, see the section “Design Coding” on page 1030.

The efficiencies are shown in Output 15.6.1.

Output 15.6.1 Efficiencies for Bayesian Optimal Designs
The OPTEX Procedure

Average

Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error

1 85.1815 74.6705 85.2579 1.1476

2 85.1815 74.6705 85.2579 1.1476
3 85.1815 74.6705 85.2579 1.1476
4 85.0424 73.3109 81.0800 1.1582
5 85.0424 73.3109 81.0800 1.1582
6 84.5680 73.5053 84.1376 1.1566
7 84.4931 72.1671 81.7855 1.1673
8 84.4239 72.4979 81.7431 1.1646
9 84.3919 74.6097 89.3631 1.1480
10 84.3919 74.6097 89.3631 1.1480

Notice that the best design was found in 3 tries out of 10. It might be a good idea to repeat the search with
more tries (see the ITER= option). You can use the ALIASING option of the GLM procedure to list the
aliasing structure for the design:

data Design; set Design;

y = ranuni (654231);
proc glm data=Design;

model y = x1-x7 x1|x2|x3|x4|x5|x6|x7@2 / e aliasing;
run;

The relevant part of the output is shown in Output 15.6.2. Most of the main effects are indeed unconfounded
with two-factor interactions, although many two-factor interactions are confounded with each other.
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Output 15.6.2 Aliasing Structure for Bayesian Optimal Design
The GLM Procedure

General Form of Aliasing
Structure

Intercept

x1 - 0.5*x3*x7

x2

x3

x4 + 0.5%x3*x7

x5

x6

X7

X1*X2 - X3*x6 + 0.5*x3*X7 - x4*x7
X1*X3 - X2*X6 - X5*x7

X2*x3 + x3*x7

X1*x4 - X5*x6 + x5*x7 + x6*x7
X2*x4 - X3*x6 + 0.5*x3*X7 - x4*x7
X3*X4 - X2*X6 - X5*x7

X1*X5 - X4*X6 - X3*x7

X2*X5 + x2*x6 + X5*X7 + x6*x7
X3*X5 + x3*x6 - x3*x7

X4*X5 - X1*X6 - X3*x7

X1*X7 - x4*x7

X2*X7 + X5*X7 + x6*x7

Example 15.7: Balanced Incomplete Block Design
NOTE: See Balanced Incomplete Block Design in the SAS/QC Sample Library.

This example uses the BLOCKS statement to construct a balanced incomplete block design (BIBD). An
incomplete block design is a design for v (qualitative) treatments in b blocks of k runs each, where k < v
so that not all treatments can occur in each block. An incomplete block design is said to be balanced when
all pairs of treatments occur equally often in the same block. A balanced design is always optimal for any
criterion based on the information matrix, although there are many values of (v, b, k) for which no balanced
design exists.

One way to construct an incomplete block design with the OPTEX procedure is to include the blocking
factor in the candidate set and in the model. For example, the following statements search for a BIBD
for seven treatments in seven blocks of size three—that is, (v, b, k) = (7,7, 3)—using the full set of 49
treatment-by-block combinations for candidates:

data Candidates;
do Treatment = 1 to 7;
do Block =1 to 7;
output;
end;
end;
run;
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proc optex data=Candidates seed=8327 coding=orth;
class Treatment Block;
model Treatment Block;
generate n=21;

run;

By default, the OPTEX procedure performs the search 10 times from different random starting designs. The
various efficiencies for each design are listed in Output 15.7.1.

Output 15.7.1 Efficiency Factors for v = b = 7, k = 3 Designs
The OPTEX Procedure

Average

Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error

1 89.0483 79.1304 82.7170 0.8845

2 89.0483 79.1304 82.7170 0.8845
3 88.4669 76.9882 78.6796 0.8967
4 88.4669 76.9882 78.6796 0.8967
5 88.4669 76.9882 78.6796 0.8967
6 88.4669 76.9882 78.6796 0.8967
7 88.4669 76.9882 78.6796 0.8967
8 88.4669 76.9882 78.6796 0.8967
9 88.1870 76.0262 78.7612 0.9024
10 87.7681 74.2459 73.9544 0.9131

Because the efficiency factors compare the designs to a (hypothetical) orthogonal design, values of 100% are
not possible in this case. The OPTEX procedure includes facilities for examining the information matrix for
the design; you can use these to verify that the best design found here is, in fact, balanced.

Searching for an optimal design for both treatments and blocks simultaneously has its limitations. Note that
the balanced design was found on only two of the 10 tries. A more serious limitation is that this approach
sometimes fails to find a design that has equal-sized blocks. A more efficient and flexible way to construct a
block design with the OPTEX procedure is to use the BLOCKS statement.

The following statements use the BLOCKS statement to solve the preceding incomplete block design problem.
In this case, the candidate set simply consists of the seven treatment levels.

data Candidates;
do Treatment = 1 to 7;
output;
end;
run;

proc optex data=Candidates seed=73462 coding=orth;
class Treatment;
model Treatment;
blocks structure=(7) 3;

run;
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The output again consists of efficiency factors for 10 different tries, but this time the factors are computed
from the information matrix for only the treatment effects. In this special case (a single classification effect
in the treatment model together with the STRUCTURE= option in the BLOCKS statement), the efficiency of
each design as an incomplete block design is also listed (Output 15.7.2).

Output 15.7.2 Efficiency Factors for v = b = 7, k = 3 Optimal Blocking Designs
The OPTEX Procedure

Design Treatment Treatment Block Design
Number D-Efficiency A-Efficiency D-Efficiency

1 77.7778 77.7778 100.0000

2 77.7778 77.7778 100.0000
3 77.7778 77.7778 100.0000
4 77.7778 77.7778 100.0000
5 77.7778 77.7778 100.0000
6 77.7778 77.7778 100.0000
7 77.7778 77.7778 100.0000
8 77.7778 77.7778 100.0000
9 77.7778 77.7778 100.0000
10 77.7778 77.7778 100.0000

The 100% efficiency in the fourth column of the output shows that the balanced design was found on all 10
tries.

Because the OPTEX procedure is interactive, you can save the final design in a data set by submitting
the OUTPUT statement immediately after the preceding statements. The following statements use the
BLOCKNAME-= option to rename the block variable:

output out=BIBD blockname=Block;
proc print data=BIBD;
run;

The final design is shown in Output 15.7.3.
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Output 15.7.3 Balanced Incomplete Block Designforv =b =7,k=3

Obs BLOCK Treatment

1 1 1
2 1 4
3 1 7
4 2 6
5 2 5
6 2 1
7 3 2
8 3 3
9 3 1
10 4 4
" 4 6
12 4 3
13 5 5
14 5 4
15 5 2
16 6 5
17 6 7
18 6 3
19 7 7
20 7 6
21 7 2

Although there is no guarantee that the OPTEX procedure will find the globally optimal block design by this
method, it usually does find small to medium-sized balanced designs, and it always finds a very efficient
design. For example, for the designs given in Table 9.5 of Cochran and Cox (1957), the OPTEX procedure
consistently finds the theoretically optimal BIBD in all cases with 10 or fewer treatments. Furthermore, in no
case is the D-efficiency relative to the balanced design less than 99%.

Example 15.8: Optimal Design with Fixed Covariates
NOTE: See Optimal Design with Fixed Covariates in the SAS/QC Sample Library.

In addition to finding optimal block designs, you can use the BLOCKS statement to find designs that are
optimal with respect to more general covariate models. You can use the DESIGN= option in the BLOCKS
statement to specify the data set that contains the covariates. Covariate models are specified in the same way
as the treatment model.

This example is based on an example in Harville (1974). Suppose you want a design for five qualitative
treatments in 10 runs. The value of a covariate that is thought to be related to the response has been recorded
for each of the experimental units. For example, if the treatments are different types of animal feed, a typical
covariate might be the initial weight of each animal. The following statements create the data sets Cov and
Treatment, which contain the covariate values and the candidate treatment levels, respectively. Then the
OPTEX procedure is invoked with a simple one-way model for the treatment effect and a quadratic model for
the covariate effect.
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data Cov;
input u QQ@;
datalines;
0.46 0.54 0.58 0.60 0.73 0.77 0.82 0.84 0.89 0.95

4
data Treatment;
do t =1 to 5; output; end;
run;
proc optex data=Treatment seed=17364 coding=orthcan;
class t;
model t;
blocks design=Cov;
model u ux*u;
output out=Design;
run;

proc print data=Design;
run;

In this case, the CODING=ORTHCAN option in the PROC OPTEX statement has the same effect as
CODING=0RTH, which is to produce orthogonal coding with respect to the candidates. Note the following:

e The CLASS and MODEL statements that define the treatment model precede the BLOCKS statement.

e The MODEL statement that defines the covariate model follows the BLOCKS statement.

As a general rule, CLASS and MODEL statements that come before a BLOCKS statement are interpreted
as applying to the treatment model, whereas CLASS and MODEL statements that come after a BLOCKS
statement that involves the DESIGN= blocks specification are interpreted as applying to the covariate model.

Output 15.8.1 shows the listing of the efficiency values for the 10 designs that are found. Note that the
efficiencies are the same for all tries. A listing of the design is shown in Output 15.8.2.

Output 15.8.1 Optimal Treatment Efficiency Factors with a Quadratic Covariate Effect
The OPTEX Procedure

Design Treatment Treatment
Number D-Efficiency A-Efficiency

1 91.6621 91.1336
91.6621 91.1336
91.6621 91.1336
91.6621 91.1336
91.6621 91.1336
91.6621 91.1336
91.6621 91.1336
91.6621 91.1336
91.6621 91.1336
91.6621 91.1336

O 0 N O U A WN

-
o
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Output 15.8.2 Optimal Design with a Quadratic Covariate Effect

Obs u
0.46
0.54
0.58
0.60
0.73
0.77
0.82
0.84
0.89
0.95

O 0 N O Ul A WIN =
U N =2 W s TN =2 W B~

-
o

When you use the BLOCKS statement without specifying the GENERATE statement, the full candidate
set is used as the treatment set for optimal blocking. If you specify both statements, an optimal design
for the treatments that ignores the blocks is first generated, and the result is used as the treatment set for
optimal blocking. This enables several options to be combined to evaluate existing designs. For example, the
following statements evaluate the optimal design given in Harville (1974) for the preceding situation:

data Harville;
input t QQ@;
datalines;

1 2 3 4 5 1 2 3 4 5

7

proc optex data=Treatment coding=orthcan;
class t;
model t;
generate initdesign=Harville method=sequential;
blocks design=Cov init=chain iter=0;
model u ux*u;

run;

The efficiency values for Harville’s design are shown in Output 15.8.3. They are the same as for the design
found by the OPTEX procedure.

Output 15.8.3 Treatment Efficiency Factors for Harville’s Design
The OPTEX Procedure

Design Treatment Treatment
Number D-Efficiency A-Efficiency

1 91.6621 91.1336

In fact, the optimal design found by OPTEX can be derived from Harville’s design simply by relabeling
treatments. In order of increasing U, both designs consist of two consecutive replicates of the treatments,
with treatments in both replicates occurring in the same order.
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Example 15.9: Optimal Design in the Presence of Covariance
NOTE: See Optimal Design in Presence of Covariance in the SAS/QC Sample Library.

The BLOCKS statement finds a design that maximizes the determinant | X’AX] of the treatment information
matrix, where A depends on the block or covariate model. Alternatively, you can directly specify the matrix
A to find the D-optimal design when A is the variance-covariance matrix for the runs. You can specify the
data set containing the covariance matrix with the COVAR= option in the BLOCKS statement, listing the
variables that correspond to the columns of the covariance matrix in the VAR= option. If you specify n
variables in the VAR= option, the values of these variables in the first n observations in the data set will be
used to define A.

For example, suppose you want to compare the effects of seven different fertilizers on crop yield, by using
seven long, narrow blocks of four plots each, as depicted in Figure 15.8.

Figure 15.8 Block Structure for Neighbor Balance

In this case, it is reasonable to conjecture that closer plots within each block are more correlated. In particular,
suppose that the plots are autocorrelated, so that the correlation matrix for the four plots in each block is of
the form

1 p p* p

p 1 p p?
R =

> p 1 op

3 ,02 o 1

where —1 < p < 1. If there is also an overall fixed effect due to blocks, the information matrix for the effect
of fertilizer has the form X’AX, where

A = (Vi-viz(@viz)zvt)

In this formula, V is the block diagonal matrix of the plot-by-plot correlation structure, with seven copies
of R4 on the diagonal. The matrix Z is the design matrix that corresponds to the block effect. The optimal
design should take into account this neighbor covariance structure in addition to the block structure.

The following code uses the SAS/IML matrix language to construct A by using p = 0.1 and saves it in a data
set named a:
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proc iml;
Blocks = int (((1:28)°-1)/4) + 1;
z = j(28,1) || designf (Blocks);
r = toeplitz (0.1x*%(0:3));
v = r;
do i =2 to 7; v = block(v,r); end;
iv = inv(v);
a = ginv(iv-iv*z*xinv(z *iv*z) *z *iv);

create A from a;
append from a;
quit;
The data set is created with variables named COL1, COL2 ..., COL28, by default.

To find an allocation of fertilizers to plots that is optimal for detecting the fertilizer effect in the presence of
this autocorrelation, simply specify a one-way model for the treatment effects and use the COVAR= option in
the BLOCKS statement to specify the data set A as the covariance matrix for the runs, as follows:

data Fertilizer;
do £ =1 to 7; output; end;
run;
proc optex data=Fertilizer seed=56672 coding=orth;
class f£;
model f£f;
blocks covar=A var=(COL1-COL28);
output out=NBD;
run;

The SAS/IML matrix language also provides a convenient way of listing the design:

proc iml;
use NBD;
read all var {f};
NBD = shape(£f,7,4);
print NBD [format=2.];

These PROC IML statements read in the selected levels of fertilizer and the reshape them into seven 4-run
blocks before printing them. The resulting design is shown in Output 15.9.1. Note that it is not only a
balanced incomplete block design, but it is also balanced for first neighbors—that is, every pair of treatments
occurS equally often on horizontally adjacent plots.

Output 15.9.1 Neighbor-Balanced BIBD for v = b = 7, k = 4, Found by Optimal Blocking

NBD
7215
6173
4762
1465
6352
1324
7543
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Example 15.10: Adding Space-Filling Points to a Design

NOTE: See Adding Space-filling Points to a Design in the SAS/QC Sample Library.

Suppose you want a 15-run experiment for three mixture factors x1, x2, and x3; furthermore, suppose that
x3 cannot account for any more than 75% of the mixture. The vertices and generalized edge centroids of
the region defined by these constraints make up a good candidate set to use with the OPTEX procedure for
finding a D-optimal design for such an experiment. However, information-based criteria such as D- and
A-efficiency tend to push the design to the edges of the candidate space, leaving large portions of the interior
relatively uncovered. For this reason, it is often a good idea to augment a D-optimal design with some points
that are chosen according to U-optimality, which seeks to cover the candidate region as well as possible.

The following statements create a candidate data set that contains 216 points in the region that is defined by
the constraints x1 + x2 + x3 = 1 and x3 < 0.75 on the factors:

data a;
do x1 = 0 to 100 by
do x3 = 0 to 100
x2 = 100 - x1
if (0<= x2 <=
end;
end;
run;
data a; set a;
x1 = x1 / 100;
x2 = x2 / 100;
x3 = x3 / 100;
run;

5;

by 5;

- x3;

75) then output;

The constraint that the factor levels sum to 1 means that the candidate points all lie on a plane. Thus, the
values of all three variables can be displayed in a two-dimensional “mixture plot,” as shown in Output 15.10.1.



Example 15.10: Adding Space-Filling Points to a Design 4 1061

Output 15.10.1 Points in the Feasible Region for Constrained Mixture Design

X2

x1 x3

You can use the OPTEX procedure to select 10 points from the mentioned candidate points optimal for
estimating a second-order model in the mixture factors:

proc optex data=a seed=60868 nocode;
model x1|x2|x3Q@2 / noint;
generate n=10;
output out=b;

run;

The resulting points are plotted in Output 15.10.2. There are only seven unique points, indicating that the
D-optimal design replicates some chosen candidate points.



1062 4 Chapter 15: The OPTEX Procedure

Output 15.10.2 D-Optimal Constrained Mixture Design

X2

x1 x3

E3]

The D-optimal design leaves a large “hole” in the feasible region. The following statements “fill in the hole
in the optimal design that is saved in B by augmenting it with points chosen from the candidate data set a to
optimize the U-criterion:

proc optex data=a seed=4321 nocode;
model x1 x2 x3 / noint;
generate n=15 augment=b criterion=u;
output out=c;

run;

The resulting points are shown in Output 15.10.3. The U-optimal design fills in the candidate region in much
the same way that you might construct the design by visually assigning points. That is, the general approach

that uses the OPTEX procedure agrees with visual intuition for this small problem. This indicates that the
general approach will yield an appropriate design for higher-dimensional problems that cannot be visualized.
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Output 15.10.3 D-optimal Constrained Mixture Design Filled in U-optimally

X2
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criteria

incomplete block design, see block designs

information matrix, 1018

initialization for design search, see optimal designs,
initialization

k-exchange algorithm, see optimal designs, search
algorithms

mixture designs
examples, 1007, 1060
plotting, 1061, 1063
mixture-process designs, see mixture designs
modified Fedorov algorithm, see optimal designs,
search algorithms

neighbor-balanced designs, 1059

ODS tables
OPTEX procedure, 1040
optimal blocking, see optimal designs, optimal
blocking
optimal designs
A-efficiency, 1029
Bayesian optimal designs, 1022, 1050
covariate designs, 1008, 1022
customizing design search, 1018
D-efficiency, 1029
data set roles, 1024, 1025
design augmentation, 1005, 1019, 1047
design augmentation data set, 1024, 1025
design listing, 1017
design search defaults, 1018
efficiency measures, 1029
efficiency measures, comparing, 1040, 1041, 1043
efficiency measures, interpreting, 1030
epsilon value, 1011
evaluating an existing design, 1020, 1036, 1038,
1057
examining, 1017, 1018
G-efficiency, 1029
getting started examples, 999
including identification variables, 1022, 1025,
1026
information matrix, 1018
input data sets, 1024
interactively, 1018, 1041
invoking, 1010
learning about the OPTEX procedure, 998
memory usage, 1034
mixture designs, 1060
number of design points, 1018, 1021
number of search tries, 1018, 1020
number of tries to keep, 1021
OPTEX procedure features, 997



OPTEX procedure overview, 997
optimal blocking, 1037

output, 1039

output data set, 1026

prior precision values, 1022, 1051
random number seed, 1011
resolution 4 designs, 1050
run-time considerations, 1034
saturated design, 1005, 1021
search methods, 1035

search strategies, 1038

statement descriptions, 1010
status of search, 1012

summary of functions, 1008
syntax, 1008

treatment candidate points, 1057
variance matrix, 1018

optimal designs, candidate data set

creating with DATA step, 1006, 1007, 1040
creating with FACTEX procedure, 1005, 1006
creating with PLAN procedure, 999, 1000, 1044
discussion, 1024, 1025

examples of creating, advanced, 1040

examples of creating, introductory, 999
recommendations, 1038, 1048

specifying, 1011

optimal designs, coding

default coding, 1030

discussion, 1030

examples, 1031

no coding, 1032

orthogonal coding, 1031, 1055-1057
recommendations, 1031

specifying, 1011

static coding, 1030

optimal designs, examples

advanced, 1040

Bayesian optimal designs, 1050
block design, 1006, 1052

design augmentation, 1005, 1047
designs with correlated runs, 1058
designs with covariates, 1055
handling many variables, 1006
initialization, 1045

introductory, 999

mixture design, 1007, 1060
nonstandard modeling, 1040
reducing candidate set, 1048
resolution 4 design, 1050

saturated second-order design, 1005
using different search methods, 1043

optimal designs, initialization

defaults, 1018-1020
example, 1045

initial design data set, 1020, 1024, 1025, 1046

optimal blocking, 1013
partially random, 1020
random, 1020
recommendations, 1038
sequential, 1019
specifying, 1019

optimal designs, model

abbreviation operators, 1028
classification variables, 1013, 1027
crossed effects, 1028
discussion, 1027

examples, 1029

factorial model, 1029
interactions, 1028

main effects, 1027

main effects model, 1029
no-intercept model, 1022
nonstandard, 1040
polynomial effects, 1027
quadratic model, 1029
regressor effects, 1027
specifying, 1022

types of effects, 1022, 1027
types of variables, 1027

optimal designs, optimal blocking

A-efficiency, 1030

block specification, 1012
classification variables, 1013
covariance specification, 1012
covariate designs, 1055
D-efficiency, 1030

data sets, 1026

discussion, 1037

evaluating an existing design, 1038
examples, 1052, 1055, 1058
initialization, 1013

number of search tries, 1013
specifying, 1009, 1012
suppressing exchange step, 1013
treatment candidate points, 1012, 1057
tries to keep, 1013

optimal designs, optimality criteria

A-optimality, 1019, 1033, 1043
computational limitations, 1034
D-optimality, 1019, 1032
default, 1018

definitions, 1032—-1034
discussion, 1032
distance-based, 1032, 1034
examples, 1041, 1060
G-optimality, 1023, 1033
I-optimality, 1033
information-based, 1032



S-optimality, 1019, 1034

specifying, 1019

types, 1032

U-optimality, 1019, 1034, 1060
optimal designs, output

block variable name, 1023

design number, 1023

options, 1023

output data set, 1023, 1026

selecting design by efficiency, 1023, 1033

transfer variables, 1022
optimal designs, search algorithms

comparing different algorithms, 1043, 1045

default, 1018

DETMAX, 1021, 1037, 1043

discussion, 1035

example, 1043, 1045

exchange, 1021, 1036

excursion level for DETMAX, 1021

FEDOROV, 1045

Fedorov, 1021, 1037

k-exchange, 1021

modified Fedorov, 1021, 1037

rank-one updates, 1035

sequential, 1021, 1036, 1043, 1045

specifying, 1021

speed, 1021, 1035, 1043, 1044
optimal designs, space-filling designs

coding for, 1032

criteria, 1032

definitions, 1034

distance from a point to a set, 1034

efficiency measures, 1030

examples, 1060

S-optimality, 1034

specifying, 1019

U-optimality, 1034

S-optimal designs, see optimal designs, space-filling
designs

saturated designs, OPTEX procedure, 1005, 1021

sequential algorithm, see optimal designs, search
algorithms

space-filling designs, see optimal designs, space-filling
designs

U-optimal designs, see optimal designs, space-filling
designs






Syntax Index

BLOCKS statement, OPTEX procedure, see OPTEX
procedure, BLOCKS statement
syntax, 1012

CLASS statement, OPTEX procedure, see OPTEX
procedure, CLASS statement
syntax, 1013

DESCENDING option
CLASS statement (OPTEX), 1014

EXAMINE statement, OPTEX procedure, see OPTEX
procedure, EXAMINE statement
syntax, 1017

GENERATE statement, OPTEX procedure, see
OPTEX procedure, GENERATE statement
default options, 1018
syntax, 1018

ID statement, OPTEX procedure, see OPTEX
procedure, ID statement
syntax, 1022

MODEL statement, OPTEX procedure, see OPTEX
procedure, MODEL statement
syntax, 1022

OPTEX procedure, 1008
getting started, 999
learning about, 998
order of statements, 1008, 1013, 1022, 1056
overview, 997
summary of functions, 1008
syntax, 1008

OPTEX procedure, BLOCKS statement
COVAR= option, 1012, 1059
DESIGN= option, 1012, 1055
INIT= option, 1013
ITER= option, 1013
KEEP= option, 1013
NOEXCHANGE option, 1013
options summarized by function, 1009
STRUCTURE-= option, 1012, 1053
VAR= option, 1059

OPTEX procedure, CLASS statement
DESCENDING option, 1014
example, 1000
ORDER= option, 1014
PARAM-= option, 1014

REF= option, 1017
syntax, 1013
TRUNCATE option, 1017
OPTEX procedure, EXAMINE statement
DESIGN option, 1017
INFORMATION option, 1018
NUMBER= option, 1018
VARIANCE option, 1018
OPTEX procedure, GENERATE statement
AUGMENT= option, 1019, 1047, 1048
CRITERION= option, 1019, 1062
INITDESIGN= option, 1019, 1046
ITER= option, 1020
KEEP= option, 1021
METHOD-= option, 1021, 1044
N= option, 1005, 1021, 1046
OPTEX procedure, ID statement, 1022
OPTEX procedure, MODEL statement
example, 1000
NOINT option, 1022, 1061
PRIOR= option, 1022, 1051
OPTEX procedure, OUTPUT statement
BLOCKNAME-= option, 1023
NUMBER-= option, 1023, 1041
OUT= option, 1023
OPTEX procedure, PROC OPTEX statement
CODING= option, 1011, 1055
DATA= option, 1011
EPSILON= option, 1011
example, 1000
NAMELEN option, 1011
NOCODE option, 1011, 1061
NOPRINT option, 1011
ODS tables, 1040
options summarized by function, 1009
SEED= option, 1011
STATUS= option, 1012
ORDER= option
CLASS statement (OPTEX), 1014
OUTPUT statement, OPTEX procedure, see OPTEX
procedure, OUTPUT statement
syntax, 1023

PARAM-= option
CLASS statement (OPTEX), 1014
PROC OPTEX statement, see OPTEX procedure,
PROC OPTEX statement
syntax, 1010



REF= option
CLASS statement (OPTEX), 1017

TRUNCATE option
CLASS statement (OPTEX), 1017
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