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Overview: QP Solver
The OPTMODEL procedure provides a framework for specifying and solving quadratic programs.

Mathematically, a quadratic programming (QP) problem can be stated as follows:

min 1
2

xTQxC cTx
subject to Ax f�;D;�g b

l � x � u

where

Q 2 Rn�n is the quadratic (also known as Hessian) matrix
A 2 Rm�n is the constraints matrix
x 2 Rn is the vector of decision variables
c 2 Rn is the vector of linear objective function coefficients
b 2 Rm is the vector of constraints right-hand sides (RHS)
l 2 Rn is the vector of lower bounds on the decision variables
u 2 Rn is the vector of upper bounds on the decision variables

The quadratic matrix Q is assumed to be symmetric; that is,

qij D qj i ; 8i; j D 1; : : : ; n

Indeed, it is easy to show that even if Q 6D QT, the simple modification

QQ D
1

2
.QCQT/

produces an equivalent formulation xTQx � xT QQxI hence symmetry is assumed. When you specify a
quadratic matrix, it suffices to list only lower triangular coefficients.

In addition to being symmetric, Q is also required to be positive semidefinite for minimization type of models:

xTQx � 0; 8x 2 Rn

Q is required to be negative semidefinite for maximization type of models. Convexity can come as a result of
a matrix-matrix multiplication

Q D LLT

or as a consequence of physical laws, and so on. See Figure 12.1 for examples of convex, concave, and
nonconvex objective functions.

The order of constraints is insignificant. Some or all components of l or u (lower and upper bounds,
respectively) can be omitted.
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Figure 12.1 Examples of Convex, Concave, and Nonconvex Objective Functions

Getting Started: QP Solver
Consider a small illustrative example. Suppose you want to minimize a two-variable quadratic function
f .x1; x2/ on the nonnegative quadrant, subject to two constraints:

min 2x1 C 3x2 C x2
1 C 10x2

2 C 2:5x1x2

subject to x1 � x2 � 1

x1 C 2x2 � 100

x1 � 0

x2 � 0

To use the OPTMODEL procedure, it is not necessary to fit this problem into the general QP formulation
mentioned in the section “Overview: QP Solver” on page 596 and to compute the corresponding parameters.
However, since these parameters are closely related to the data set that is used by the OPTQP procedure
and has a quadratic programming system (QPS) format, you can compute these parameters as follows. The
linear objective function coefficients, vector of right-hand sides, and lower and upper bounds are identified
immediately as

c D
�
2

3

�
; b D

�
1

100

�
; l D

�
0

0

�
; u D

�
C1

C1

�
Carefully construct the quadratic matrix Q. Observe that you can use symmetry to separate the main-diagonal
and off-diagonal elements:

1

2
xTQx �

1

2

nX
i;jD1

xi qij xj D
1

2

nX
iD1

qi i x
2
i C

X
i>j

xi qij xj
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The first expression

1

2

nX
iD1

qi i x
2
i

sums the main-diagonal elements. Thus, in this case you have

q11 D 2; q22 D 20

Notice that the main-diagonal values are doubled in order to accommodate the 1/2 factor. Now the second
termX

i>j

xi qij xj

sums the off-diagonal elements in the strict lower triangular part of the matrix. The only off-diagonal
(xi xj ; i 6D j ) term in the objective function is 2:5 x1 x2, so you have

q21 D 2:5

Notice that you do not need to specify the upper triangular part of the quadratic matrix.

Finally, the matrix of constraints is as follows:

A D
�
1 �1

1 2

�
The following OPTMODEL program formulates the preceding problem in a manner that is very close to the
mathematical specification of the given problem:

/* getting started */
proc optmodel;

var x1 >= 0; /* declare nonnegative variable x1 */
var x2 >= 0; /* declare nonnegative variable x2 */

/* objective: quadratic function f(x1, x2) */
minimize f =

/* the linear objective function coefficients */
2 * x1 + 3 * x2 +

/* quadratic <x, Qx> */
x1 * x1 + 2.5 * x1 * x2 + 10 * x2 * x2;

/* subject to the following constraints */
con r1: x1 - x2 <= 1;
con r2: x1 + 2 * x2 >= 100;

/* specify iterative interior point algorithm (QP)

* in the SOLVE statement */
solve with qp;

/* print the optimal solution */
print x1 x2;
save qps qpsdata;

quit;

The “with qp” clause in the SOLVE statement invokes the QP solver to solve the problem. The output is
shown in Figure 12.2.
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Figure 12.2 Summaries and Optimal Solution

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function f

Objective Type Quadratic

Number of Variables 2

Bounded Above 0

Bounded Below 2

Bounded Below and Above 0

Free 0

Fixed 0

Number of Constraints 2

Linear LE (<=) 1

Linear EQ (=) 0

Linear GE (>=) 1

Linear Range 0

Constraint Coefficients 4

Hessian Diagonal Elements 2

Hessian Elements Below Diagonal 1

Solution Summary

Solver QP

Algorithm Interior Point

Objective Function f

Solution Status Optimal

Objective Value 15018.000046

Primal Infeasibility 0

Dual Infeasibility 0

Bound Infeasibility 0

Duality Gap 7.8497853E-9

Complementarity 0

Iterations 4

Presolve Time 0.00

Solution Time 0.04

x1 x2

34 33

In this example, the SAVE QPS statement is used to save the QP problem in the QPS-format data set qpsdata,
shown in Figure 12.3. The data set is consistent with the parameters of general quadratic programming
previously computed. Also, the data set can be used as input to the OPTQP procedure.
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Figure 12.3 QPS-Format Data Set

Obs FIELD1 FIELD2 FIELD3 FIELD4 FIELD5 FIELD6

1 NAME qpsdata . .

2 ROWS . .

3 N f . .

4 L r1 . .

5 G r2 . .

6 COLUMNS . .

7 x1 f 2.0 r1 1

8 x1 r2 1.0 .

9 x2 f 3.0 r1 -1

10 x2 r2 2.0 .

11 RHS . .

12 .RHS. r1 1.0 .

13 .RHS. r2 100.0 .

14 QSECTION . .

15 x1 x1 2.0 .

16 x1 x2 2.5 .

17 x2 x2 20.0 .

18 ENDATA . .

Syntax: QP Solver
The following statement is available in the OPTMODEL procedure:

SOLVE WITH QP < / options > ;

Functional Summary
Table 12.1 summarizes the list of options available for the SOLVE WITH QP statement, classified by function.

Table 12.1 Options for the QP Solver

Description Option
Solver Options
Enables or disables IIS detection IIS=
Control Options
Specifies the stopping criterion based on duality gap DUALITYGAP=
Specifies the dual feasibility tolerance DUALTOL=
Specifies how often to print the solution progress LOGFREQ=
Specifies the maximum number of iterations MAXITER=
Specifies the time limit for the optimization process MAXTIME=
Specifies the maximum number of threads NTHREADS=
Specifies the type of presolve PRESOLVER=
Specifies the primal feasibility tolerance PRIMALTOL=
Specifies units of CPU time or real time TIMETYPE=
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QP Solver Options
This section describes the options recognized by the QP solver. These options can be specified after a forward
slash (/) in the SOLVE statement, provided that the QP solver is explicitly specified using a WITH clause.

The QP solver does not provide an intermediate solution if the solver terminates before reaching optimality.

DUALITYGAP=ı
specifies the desired relative duality gap, ı 2 [1E–9, 1E–4]. This is the relative difference between
the primal and dual objective function values and is the primary solution quality parameter. For more
information, see the section “Interior Point Algorithm: Overview” on page 603. The default value is
1E–6.

DUALTOL=ˇ

OPTTOL=ˇ
specifies the maximum relative dual constraints violation, ˇ 2 [1E–9, 1E–4]. For more information,
see the section “Interior Point Algorithm: Overview” on page 603. The default value is 1E–6.

IIS=FALSE j TRUE
specifies whether to attempt to identify a set of constraints and variables that form an irreducible
infeasible set (IIS). You can specify the following values:

FALSE disables IIS detection.

TRUE enables IIS detection.

If an IIS is found, you can find information about the infeasibilities in the .status values of the
constraints and variables. For more information about this option, see the section “Irreducible Infeasible
Set” on page 606. For more information about the .status suffix, see the section “Suffixes” on page 135.
By default, IIS=FALSE.

LOGFREQ=k

PRINTFREQ=k
prints the solution progress to the iteration log after every k iterations, where k is an integer between 0
and the largest four-byte signed integer, which is 231 � 1. The value k = 0 suppresses printing of the
progress of the solution. By default, LOGFREQ=1.

MAXITER=k
specifies the maximum number of iterations, where k can be any integer between 1 and the largest
four-byte signed integer, which is 231 � 1. If you do not specify this option, the procedure does not
stop based on the number of iterations performed.

MAXTIME=t
specifies an upper limit of t units of time for the optimization process, including problem generation
time and solution time. The value of the TIMETYPE= option determines the type of units used. If you
do not specify the MAXTIME= option, the solver does not stop based on the amount of time elapsed.
The value of t can be any positive number; the default value is the positive number that has the largest
absolute value that can be represented in your operating environment.
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NTHREADS=k
specifies the number of threads that the QP solver can use, where k can be any integer between 1 and
256, inclusive. The default is the value of the OPTMODEL NTHREADS= option.

Specifying k as a number greater than the actual number of available cores might result in reduced
performance. Specifying a high value for k does not guarantee shorter solution time; the actual change
in solution time depends on the computing hardware and the scalability of the underlying algorithms
in the QP solver. In some circumstances, the QP solver might use fewer than k threads because the
solver’s internal algorithms have determined that a smaller number is preferable.

PRESOLVER=AUTOMATIC j NONE j BASIC j MODERATE j AGGRESSIVE
specifies the presolve level. You can specify the following values:

AUTOMATIC applies the presolver by using the default setting.

NONE disables the presolver.

BASIC applies the basic presolver.

MODERATE applies the moderate presolver.

AGGRESSIVE applies the aggressive presolver.

By default, PRESOLVER=AUTOMATIC.

PRIMALTOL=˛

FEASTOL=˛
specifies the maximum relative bound and primal constraints violation, ˛ 2 [1E–9, 1E–4]. For more
information, see the section “Interior Point Algorithm: Overview” on page 603. The default value is
1E–6.

TIMETYPE=CPU j REAL
specifies the units of time used by the MAXTIME= option and reported by the PRESOLVE_TIME and
SOLUTION_TIME terms in the _OROPTMODEL_ macro variable. You can specify the following
values:

CPU specifies that units are in CPU time.

REAL specifies that units are in real time.

The “Optimization Statistics” table, an output of the OPTMODEL procedure if you specify PRINT-
LEVEL=2 in the PROC OPTMODEL statement, also includes the same time units for Presolver Time,
Solver Time, and other times (such as Problem Generation Time).

The default value of the TIMETYPE= option depends on the value of the NTHREADS= option.
Table 12.2 describes the detailed logic for determining the default; the first context in the table that
applies determines the default value.

Table 12.2 Default Value for TIMETYPE= Option

Context Default
Solver is invoked in an OPTMODEL COFOR loop REAL
NTHREADS= value is greater than 1 REAL
NTHREADS= 1 CPU
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Details: QP Solver

Interior Point Algorithm: Overview
The QP solver implements an infeasible primal-dual predictor-corrector interior point algorithm. To illustrate
the algorithm and the concepts of duality and dual infeasibility, consider the following QP formulation (the
primal):

min 1
2
xTQxC cTx

subject to Ax � b
x � 0

The corresponding dual formulation is

max �
1
2
xTQx C bTy

subject to �Qx C ATy C w D c
y � 0
w � 0

where y 2 Rm refers to the vector of dual variables and w 2 Rn refers to the vector of dual slack variables.

The dual makes an important contribution to the certificate of optimality for the primal. The primal and
dual constraints combined with complementarity conditions define the first-order optimality conditions, also
known as KKT (Karush-Kuhn-Tucker) conditions, which can be stated as follows where e � .1; : : : ; 1/T of
appropriate dimension and s 2 Rm is the vector of primal slack variables:

Ax � s D b .primal feasibility/
�QxCATyC w D c .dual feasibility/

WXe D 0 .complementarity/
SYe D 0 .complementarity/

x; y; w; s � 0

NOTE: Slack variables (the s vector) are automatically introduced by the solver when necessary; it is therefore
recommended that you not introduce any slack variables explicitly. This enables the solver to handle slack
variables much more efficiently.

The letters X; Y;W; and S denote matrices with corresponding x, y, w, and s on the main diagonal and zero
elsewhere, as in the following example:

X �

26664
x1 0 � � � 0

0 x2 � � � 0
:::

:::
: : :

:::

0 0 � � � xn

37775
If .x�; y�;w�; s�/ is a solution of the previously defined system of equations that represent the KKT
conditions, then x� is also an optimal solution to the original QP model.
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At each iteration the interior point algorithm solves a large, sparse system of linear equations,�
Y�1S A
AT �Q �X�1W

� �
�y
�x

�
D

�
„

‚

�
where �x and �y denote the vector of search directions in the primal and dual spaces, respectively, and ‚
and „ constitute the vector of the right-hand sides.

The preceding system is known as the reduced KKT system. The QP solver uses a preconditioned quasi-
minimum residual algorithm to solve this system of equations efficiently.

An important feature of the interior point algorithm is that it takes full advantage of the sparsity in the
constraint and quadratic matrices, thereby enabling it to efficiently solve large-scale quadratic programs.

The interior point algorithm works simultaneously in the primal and dual spaces. It attains optimality when
both primal and dual feasibility are achieved and when complementarity conditions hold. Therefore, it is of
interest to observe the following four measures where kvk2 is the Euclidean norm of the vector v:

� relative primal infeasibility measure ˛:

˛ D
kAx � b � sk2
kbk2 C 1

� relative dual infeasibility measure ˇ:

ˇ D
kQxC c �ATy � wk2

kck2 C 1

� relative duality gap ı:

ı D
jxTQxC cTx � bTyj
j
1
2
xTQxC cTxj C 1

� absolute complementarity  :

 D

nX
iD1

xiwi C

mX
iD1

yisi

These measures are displayed in the iteration log.



Parallel Processing F 605

Parallel Processing
The interior point algorithm can be run in single-machine mode (in single-machine mode, the computation is
executed by multiple threads on a single computer).

Iteration Log
The following information is displayed in the iteration log:

Iter indicates the iteration number.

Complement indicates the (absolute) complementarity.

Duality Gap indicates the (relative) duality gap.

Primal Infeas indicates the (relative) primal infeasibility measure.

Bound Infeas indicates the (relative) bound infeasibility measure.

Dual Infeas indicates the (relative) dual infeasibility measure.

Time indicates the time elapsed (in seconds).

If the sequence of solutions converges to an optimal solution of the problem, you should see all columns
in the iteration log converge to zero or very close to zero. Nonconvergence can be the result of insufficient
iterations being performed to reach optimality. In this case, you might need to increase the value that you
specify in the MAXITER= or MAXTIME= option. If the complementarity or the duality gap does not
converge, the problem might be infeasible or unbounded. If the infeasibility columns do not converge, the
problem might be infeasible.

Problem Statistics
Optimizers can encounter difficulty when solving poorly formulated models. Information about data
magnitude provides a simple gauge to determine how well a model is formulated. For example, a model
whose constraint matrix contains one very large entry (on the order of 109) can cause difficulty when the
remaining entries are single-digit numbers. The PRINTLEVEL=2 option in the OPTMODEL procedure
causes the ODS table ProblemStatistics to be generated when the QP solver is called. This table provides
basic data magnitude information that enables you to improve the formulation of your models.

The example output in Figure 12.4 demonstrates the contents of the ODS table ProblemStatistics.
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Figure 12.4 ODS Table ProblemStatistics

The OPTMODEL Procedure

Problem Statistics

Number of Constraint Matrix Nonzeros 4

Maximum Constraint Matrix Coefficient 2

Minimum Constraint Matrix Coefficient 1

Average Constraint Matrix Coefficient 1.25

Number of Linear Objective Nonzeros 2

Maximum Linear Objective Coefficient 3

Minimum Linear Objective Coefficient 2

Average Linear Objective Coefficient 2.5

Number of Nonzeros Below Diagonal in the Hessian 1

Number of Diagonal Nonzeros in the Hessian 2

Maximum Hessian Coefficient 20

Minimum Hessian Coefficient 2

Average Hessian Coefficient 6.75

Number of RHS Nonzeros 2

Maximum RHS 100

Minimum RHS 1

Average RHS 50.5

Maximum Number of Nonzeros per Column 2

Minimum Number of Nonzeros per Column 2

Average Number of Nonzeros per Column 2

Maximum Number of Nonzeros per Row 2

Minimum Number of Nonzeros per Row 2

Average Number of Nonzeros per Row 2

Irreducible Infeasible Set
For a quadratic programming problem, an irreducible infeasible set (IIS) is an infeasible subset of constraints
and variable bounds that becomes feasible if any single constraint or variable bound is removed. It is possible
to have more than one IIS in an infeasible QP. Identifying an IIS can help isolate the structural infeasibility in
a QP. The IIS=TRUE option directs the QP solver to search for an IIS in a specified QP.

Whether a quadratic programming problem is feasible or infeasible is determined by its constraints and
variable bounds, which have nothing to do with its objective function. When you specify the IIS=TRUE
option, the QP solver treats this problem as a linear programming problem by ignoring its objective function.
Then finding IIS is the same as what the LP solver does with the IIS=TRUE option. For more information
about the irreducible infeasible set, see the section “Irreducible Infeasible Set” on page 275 in Chapter 7,
“The Linear Programming Solver.”
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Macro Variable _OROPTMODEL_
The OPTMODEL procedure always creates and initializes a SAS macro called _OROPTMODEL_. This
variable contains a character string. After each PROC OROPTMODEL run, you can examine this macro by
specifying %put &_OROPTMODEL_; and check the execution of the most recently invoked solver from the
value of the macro variable. The various terms of the variable after the QP solver is called are interpreted as
follows.

STATUS
indicates the solver status at termination. It can take one of the following values:

OK The solver terminated normally.

SYNTAX_ERROR Incorrect syntax was used.

DATA_ERROR The input data were inconsistent.

OUT_OF_MEMORY Insufficient memory was allocated to the procedure.

IO_ERROR A problem occurred in reading or writing data.

SEMANTIC_ERROR An evaluation error, such as an invalid operand type, occurred.

ERROR The status cannot be classified into any of the preceding categories.

ALGORITHM
indicates the algorithm that produced the solution data in the macro variable. This term appears only
when STATUS=OK. It can take the following value:

IP The interior point algorithm produced the solution data.

IIS The IIS functionality produced the solution data.

SOLUTION_STATUS
indicates the solution status at termination. It can take one of the following values:

OPTIMAL The solution is optimal.

CONDITIONAL_OPTIMAL The solution is optimal, but some infeasibilities (primal,
dual or bound) exceed tolerances due to scaling or pre-
processing.

INFEASIBLE The problem is infeasible.

UNBOUNDED The problem is unbounded.

INFEASIBLE_OR_UNBOUNDED The problem is infeasible or unbounded.

BAD_PROBLEM_TYPE The problem type is unsupported by the solver.

ITERATION_LIMIT_REACHED The maximum allowable number of iterations was
reached.

TIME_LIMIT_REACHED The solver reached its execution time limit.

FUNCTION_CALL_LIMIT_REACHED The solver reached its limit on function evaluations.

INTERRUPTED The solver was interrupted externally.
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FAILED The solver failed to converge, possibly due to numerical
issues.

OBJECTIVE
indicates the objective value obtained by the solver at termination.

PRIMAL_INFEASIBILITY
indicates the (relative) infeasibility of the primal constraints at the solution. For more information, see
the section “Interior Point Algorithm: Overview” on page 603.

DUAL_INFEASIBILITY
indicates the (relative) infeasibility of the dual constraints at the solution. For more information, see
the section “Interior Point Algorithm: Overview” on page 603.

BOUND_INFEASIBILITY
indicates the (relative) violation by the solution of the lower or upper bounds (or both). For more
information, see the section “Interior Point Algorithm: Overview” on page 603.

DUALITY_GAP
indicates the (relative) duality gap. For more information, see the section “Interior Point Algorithm:
Overview” on page 603.

COMPLEMENTARITY
indicates the (absolute) complementarity at the solution. For more information, see the section “Interior
Point Algorithm: Overview” on page 603.

ITERATIONS
indicates the number of iterations required to solve the problem.

PRESOLVE_TIME
indicates the time (in seconds) taken for preprocessing.

SOLUTION_TIME
indicates the time (in seconds) taken to solve the problem, including preprocessing time.

NOTE: The time that is reported in PRESOLVE_TIME and SOLUTION_TIME is either CPU time or real
time. The type is determined by the TIMETYPE= option.

Examples: QP Solver
This section presents examples that illustrate the use of the OPTMODEL procedure to solve quadratic
programming problems. Example 12.1 illustrates how to model a linear least squares problem and solve it
by using PROC OPTMODEL. Example 12.2 and Example 12.3 show in detail how to model the portfolio
optimization and selection problems.
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Example 12.1: Linear Least Squares Problem
The linear least squares problem arises in the context of determining a solution to an overdetermined set
of linear equations. In practice, these equations could arise in data fitting and estimation problems. An
overdetermined system of linear equations can be defined as

Ax D b

where A 2 Rm�n, x 2 Rn, b 2 Rm, and m > n. Since this system usually does not have a solution, you
need to be satisfied with some sort of approximate solution. The most widely used approximation is the least
squares solution, which minimizes kAx � bk22.

This problem is called a least squares problem for the following reason. Let A, x, and b be defined as
previously. Let ki .x/ be the kth component of the vector Ax � b:

ki .x/ D ai1x1 C ai2x2 C � � � C ainxn � bi ; i D 1; 2; : : : ; m

By definition of the Euclidean norm, the objective function can be expressed as follows:

kAx � bk22 D
mX

iD1

ki .x/
2

Therefore, the function you minimize is the sum of squares of m terms ki .x/; hence the term least squares.
The following example is an illustration of the linear least squares problem; that is, each of the terms ki is a
linear function of x .

Consider the following least squares problem defined by

A D

24 4 0

�1 1

3 2

35 ; b D

24 1

0

1

35
This translates to the following set of linear equations:

4x1 D 1; �x1 C x2 D 0; 3x1 C 2x2 D 1

The corresponding least squares problem is:

minimize .4x1 � 1/
2
C .�x1 C x2/

2
C .3x1 C 2x2 � 1/

2

The preceding objective function can be expanded to:

minimize 26x2
1 C 5x

2
2 C 10x1x2 � 14x1 � 4x2 C 2

In addition, you impose the following constraint so that the equation 3x1 C 2x2 D 1 is satisfied within a
tolerance of 0.1:

0:9 � 3x1 C 2x2 � 1:1

You can use the following SAS statements to solve the least squares problem:
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/* example 1: linear least squares problem */
proc optmodel;

/* declare free (no explicit bounds) variables x[1] and x[2] */
var x {1..2};

/* objective function: minimize the sum of squares */
minimize f = 26*x[1]^2 + 5*x[2]^2 + 10*x[1]*x[2] - 14*x[1] - 4*x[2] + 2;

/* subject to the following constraint */
con R: 0.9 <= 3*x[1] + 2*x[2] <= 1.1;

/* call the QP solver */
solve;

/* print the optimal solution */
print x;

quit;

The output is shown in Output 12.1.1.

Output 12.1.1 Summaries and Optimal Solution

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function f

Objective Type Quadratic

Number of Variables 2

Bounded Above 0

Bounded Below 0

Bounded Below and Above 0

Free 2

Fixed 0

Number of Constraints 1

Linear LE (<=) 0

Linear EQ (=) 0

Linear GE (>=) 0

Linear Range 1

Constraint Coefficients 2

Hessian Diagonal Elements 2

Hessian Elements Below Diagonal 1



Example 12.2: Portfolio Optimization F 611

Output 12.1.1 continued

Solution Summary

Solver QP

Algorithm Interior Point

Objective Function f

Solution Status Optimal

Objective Value 0.0095238095

Primal Infeasibility 0

Dual Infeasibility 6.290213E-8

Bound Infeasibility 0

Duality Gap 9.4234001E-8

Complementarity 0

Iterations 5

Presolve Time 0.00

Solution Time 0.00

[1] x

1 0.2381

2 0.1619

Example 12.2: Portfolio Optimization
Consider a portfolio optimization example. The two competing goals of investment are (1) long-term growth
of capital and (2) low risk. A good portfolio grows steadily without wild fluctuations in value. The Markowitz
model is an optimization model for balancing the return and risk of a portfolio. The decision variables are
the amounts invested in each asset. The objective is to minimize the variance of the portfolio’s total return,
subject to the constraints that (1) the expected growth of the portfolio reaches at least some target level and
(2) you do not invest more capital than you have.

Let x1; : : : ; xn be the amount invested in each asset, B be the amount of capital you have, R be the random
vector of asset returns over some period, and r be the expected value of R. Let G be the minimum growth

you hope to obtain, and C be the covariance matrix of R. The objective function is Var
�

nP
iD1

xiRi

�
, which

can be equivalently denoted as xTCx.

Assume, for example, n = 4. Let B = 10,000, G = 1,000, r D Œ0:05;�0:2; 0:15; 0:30�, and

C D

2664
0:08 �0:05 �0:05 �0:05

�0:05 0:16 �0:02 �0:02

�0:05 �0:02 0:35 0:06

�0:05 �0:02 0:06 0:35

3775



612 F Chapter 12: The Quadratic Programming Solver

The QP formulation can be written as:

min 0:08x2
1 � 0:1x1x2 � 0:1x1x3 � 0:1x1x4 C 0:16x

2
2

�0:04x2x3 � 0:04x2x4 C 0:35x
2
3 C 0:12x3x4 C 0:35x

2
4

subject to
.budget/ x1 C x2 C x3 C x4 � 10000

.growth/ 0:05x1 � 0:2x2 C 0:15x3 C 0:30x4 � 1000

x1; x2; x3; x4 � 0

Use the following SAS statements to solve the problem:

/* example 2: portfolio optimization */
proc optmodel;

/* let x1, x2, x3, x4 be the amount invested in each asset */
var x{1..4} >= 0;

num coeff{1..4, 1..4} = [0.08 -.05 -.05 -.05
-.05 0.16 -.02 -.02
-.05 -.02 0.35 0.06
-.05 -.02 0.06 0.35];

num r{1..4}=[0.05 -.20 0.15 0.30];

/* minimize the variance of the portfolio's total return */
minimize f = sum{i in 1..4, j in 1..4}coeff[i,j]*x[i]*x[j];

/* subject to the following constraints */
con BUDGET: sum{i in 1..4}x[i] <= 10000;
con GROWTH: sum{i in 1..4}r[i]*x[i] >= 1000;

solve with qp;

/* print the optimal solution */
print x;

The summaries and the optimal solution are shown in Output 12.2.1.
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Output 12.2.1 Portfolio Optimization

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function f

Objective Type Quadratic

Number of Variables 4

Bounded Above 0

Bounded Below 4

Bounded Below and Above 0

Free 0

Fixed 0

Number of Constraints 2

Linear LE (<=) 1

Linear EQ (=) 0

Linear GE (>=) 1

Linear Range 0

Constraint Coefficients 8

Hessian Diagonal Elements 4

Hessian Elements Below Diagonal 6

Solution Summary

Solver QP

Algorithm Interior Point

Objective Function f

Solution Status Optimal

Objective Value 2232313.4432

Primal Infeasibility 1.131114E-17

Dual Infeasibility 2.799214E-13

Bound Infeasibility 0

Duality Gap 8.344009E-16

Complementarity 0

Iterations 7

Presolve Time 0.00

Solution Time 0.00

[1] x

1 3452.9

2 0.0

3 1068.8

4 2223.5
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Thus, the minimum variance portfolio that earns an expected return of at least 10% is x1 D 3;452:9, x2 D 0,
x3 D 1;068:8, x4 D 2;223:5. Asset 2 gets nothing because its expected return is �20% and its covariance
with the other assets is not sufficiently negative for it to bring any diversification benefits. What if you drop
the nonnegativity assumption?

Financially, that means you are allowed to short-sell—that is, sell low-mean-return assets and use the proceeds
to invest in high-mean-return assets. In other words, you put a negative portfolio weight in low-mean assets
and “more than 100%” in high-mean assets.

To solve the portfolio optimization problem with the short-sale option, continue to submit the following SAS
statements:

/* example 2: portfolio optimization with short-sale option */
/* dropping nonnegativity assumption */
for {i in 1..4} x[i].lb=-x[i].ub;

solve with qp;

/* print the optimal solution */
print x;

quit;

You can see in the optimal solution displayed in Output 12.2.2 that the decision variable x2, denoting Asset 2,
is equal to �1,563.61, which means short sale of that asset.

Output 12.2.2 Portfolio Optimization with Short-Sale Option

The OPTMODEL Procedure

Solution Summary

Solver QP

Algorithm Interior Point

Objective Function f

Solution Status Optimal

Objective Value 1907122.2254

Primal Infeasibility 4.997261E-14

Dual Infeasibility 4.4944836E-8

Bound Infeasibility 0

Duality Gap 3.886201E-11

Complementarity 0

Iterations 5

Presolve Time 0.00

Solution Time 0.00

[1] x

1 1684.35

2 -1563.61

3 682.51

4 1668.95
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Example 12.3: Portfolio Selection with Transactions
Consider a portfolio selection problem with a slight modification. You are now required to take into account
the current position and transaction costs associated with buying and selling assets. The objective is to find
the minimum variance portfolio. In order to understand the scenario better, consider the following data.

You are given three assets. The current holding of the three assets is denoted by the vector c = [200, 300,
500], the amount of asset bought and sold is denoted by bi and si , respectively, and the net investment in
each asset is denoted by xi and is defined by the following relation:

xi � bi C si D ci ; i D 1; 2; 3

Suppose that you pay a transaction fee of 0.01 every time you buy or sell. Let the covariance matrix C be
defined as

C D

24 0:027489 �0:00874 �0:00015

�0:00874 0:109449 �0:00012

�0:00015 �0:00012 0:000766

35
Assume that you hope to obtain at least 12% growth. Let r = [1.109048, 1.169048, 1.074286] be the vector
of expected return on the three assets, and let B=1000 be the available funds. Mathematically, this problem
can be written in the following manner:

min 0:027489x2
1 � 0:01748x1x2 � 0:0003x1x3 C 0:109449x

2
2

�0:00024x2x3 C 0:000766x
2
3

subject to
.return/

P3
iD1 rixi � 1:12B

.budget/
P3

iD1 xi C
P3

iD1 0:01.bi C si / D B
.balance/ xi � bi C si D ci ; i D 1; 2; 3

xi ; bi ; si � 0; i D 1; 2; 3
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The problem can be solved by the following SAS statements:

/* example 3: portfolio selection with transactions */
proc optmodel;

/* let x1, x2, x3 be the amount invested in each asset */
var x{1..3} >= 0;
/* let b1, b2, b3 be the amount of asset bought */
var b{1..3} >= 0;
/* let s1, s2, s3 be the amount of asset sold */
var s{1..3} >= 0;

/* current holdings */
num c{1..3}=[ 200 300 500];
/* covariance matrix */
num coeff{1..3, 1..3} = [0.027489 -.008740 -.000150

-.008740 0.109449 -.000120
-.000150 -.000120 0.000766];

/* returns */
num r{1..3}=[1.109048 1.169048 1.074286];

/* minimize the variance of the portfolio's total return */
minimize f = sum{i in 1..3, j in 1..3}coeff[i,j]*x[i]*x[j];

/* subject to the following constraints */
con BUDGET: sum{i in 1..3}(x[i]+.01*b[i]+.01*s[i]) <= 1000;
con RETURN: sum{i in 1..3}r[i]*x[i] >= 1120;
con BALANC{i in 1..3}: x[i]-b[i]+s[i]=c[i];

solve with qp;

/* print the optimal solution */
print x b s;

quit;

The output is displayed in Output 12.3.1.
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Output 12.3.1 Portfolio Selection with Transactions

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function f

Objective Type Quadratic

Number of Variables 9

Bounded Above 0

Bounded Below 9

Bounded Below and Above 0

Free 0

Fixed 0

Number of Constraints 5

Linear LE (<=) 1

Linear EQ (=) 3

Linear GE (>=) 1

Linear Range 0

Constraint Coefficients 21

Hessian Diagonal Elements 3

Hessian Elements Below Diagonal 3

Solution Summary

Solver QP

Algorithm Interior Point

Objective Function f

Solution Status Optimal

Objective Value 19560.725753

Primal Infeasibility 7.215498E-17

Dual Infeasibility 2.503618E-14

Bound Infeasibility 0

Duality Gap 6.509101E-15

Complementarity 0

Iterations 9

Presolve Time 0.00

Solution Time 0.00

[1] x b s

1 397.58 197.58 0.00

2 406.12 106.12 0.00

3 190.17 0.00 309.83
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