THE POWER TO KNOW.

SAS/OR ${ }^{\circledR} 15.1$ User’s Guide Mathematical Programming The Quadratic Programming Solver

This document is an individual chapter from SAS/OR ${ }^{\circledR}$ 15.1 User's Guide: Mathematical Programming.
The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2018. SAS/OR ${ }^{\circledR}$ 15.1 User's Guide: Mathematical Programming. Cary, NC: SAS Institute Inc.

SAS/OR ${ }^{\circledR}$ 15.1 User's Guide: Mathematical Programming

Copyright © 2018, SAS Institute Inc., Cary, NC, USA
All Rights Reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this publication.
The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted materials. Your support of others' rights is appreciated.
U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The Government's rights in Software and documentation shall be only those set forth in this Agreement.
SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414
November 2018
SAS ${ }^{\circledR}$ and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.
SAS software may be provided with certain third-party software, including but not limited to open-source software, which is licensed under its applicable third-party software license agreement. For license information about third-party software distributed with SAS software, refer to http://support.sas.com/thirdpartylicenses.

Chapter 12 The Quadratic Programming Solver

Contents

Overview: QP Solver 596
Getting Started: QP Solver 597
Syntax: QP Solver 600
Functional Summary 600
QP Solver Options 601
Details: QP Solver 603
Interior Point Algorithm: Overview 603
Parallel Processing 605
Iteration Log 605
Problem Statistics 605
Irreducible Infeasible Set 606
Macro Variable _OROPTMODEL 607
Examples: QP Solver 608
Example 12.1: Linear Least Squares Problem 609
Example 12.2: Portfolio Optimization 611
Example 12.3: Portfolio Selection with Transactions 615
References 618

Overview: QP Solver

The OPTMODEL procedure provides a framework for specifying and solving quadratic programs.
Mathematically, a quadratic programming (QP) problem can be stated as follows:

$$
\begin{array}{rc}
\min & \frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{Q} \mathbf{x}+\mathbf{c}^{\mathrm{T}} \mathbf{x} \\
\text { subject to } & \mathbf{A x}\{\geq,=, \leq\} \mathbf{b} \\
& \mathbf{l} \leq \mathbf{x} \leq \mathbf{u}
\end{array}
$$

where

\mathbf{Q}	\in	$\mathbb{R}^{n \times n}$	is the quadratic (also known as Hessian) matrix
\mathbf{A}	\in	$\mathbb{R}^{m \times n}$	is the constraints matrix
\mathbf{x}	\in	\mathbb{R}^{n}	is the vector of decision variables
\mathbf{c}	\in	\mathbb{R}^{n}	is the vector of linear objective function coefficients
\mathbf{b}	\in	\mathbb{R}^{m}	is the vector of constraints right-hand sides (RHS)
\mathbf{l}	$\in \mathbb{R}^{n}$	is the vector of lower bounds on the decision variables	
\mathbf{u}	$\in \mathbb{R}^{n}$	is the vector of upper bounds on the decision variables	

The quadratic matrix \mathbf{Q} is assumed to be symmetric; that is,

$$
q_{i j}=q_{j i}, \quad \forall i, j=1, \ldots, n
$$

Indeed, it is easy to show that even if $\mathbf{Q} \neq \mathbf{Q}^{\mathrm{T}}$, the simple modification

$$
\tilde{\mathbf{Q}}=\frac{1}{2}\left(\mathbf{Q}+\mathbf{Q}^{\mathrm{T}}\right)
$$

produces an equivalent formulation $\mathbf{x}^{T} \mathbf{Q} \mathbf{x} \equiv \mathbf{x}^{\mathrm{T}} \tilde{\mathbf{Q}} \mathbf{x}$; hence symmetry is assumed. When you specify a quadratic matrix, it suffices to list only lower triangular coefficients.

In addition to being symmetric, \mathbf{Q} is also required to be positive semidefinite for minimization type of models:

$$
\mathbf{x}^{\mathrm{T}} \mathbf{Q} \mathrm{x} \geq 0, \quad \forall \mathrm{x} \in \mathbb{R}^{n}
$$

Q is required to be negative semidefinite for maximization type of models. Convexity can come as a result of a matrix-matrix multiplication

$$
\mathbf{Q}=\mathbf{L L}^{\mathrm{T}}
$$

or as a consequence of physical laws, and so on. See Figure 12.1 for examples of convex, concave, and nonconvex objective functions.

The order of constraints is insignificant. Some or all components of \mathbf{l} or \mathbf{u} (lower and upper bounds, respectively) can be omitted.

Figure 12.1 Examples of Convex, Concave, and Nonconvex Objective Functions

Getting Started: QP Solver

Consider a small illustrative example. Suppose you want to minimize a two-variable quadratic function $f\left(x_{1}, x_{2}\right)$ on the nonnegative quadrant, subject to two constraints:

$$
\begin{array}{rcccc}
\min & 2 x_{1} & +3 x_{2} & +x_{1}^{2}+10 x_{2}^{2}+2.5 x_{1} x_{2} \\
\text { subject to } & x_{1} & -x_{2} & \leq 1 \\
& x_{1}+2 x_{2} & \geq 100 \\
& x_{1} & & \geq 0 \\
& & x_{2} & \geq 0
\end{array}
$$

To use the OPTMODEL procedure, it is not necessary to fit this problem into the general QP formulation mentioned in the section "Overview: QP Solver" on page 596 and to compute the corresponding parameters. However, since these parameters are closely related to the data set that is used by the OPTQP procedure and has a quadratic programming system (QPS) format, you can compute these parameters as follows. The linear objective function coefficients, vector of right-hand sides, and lower and upper bounds are identified immediately as

$$
\mathbf{c}=\left[\begin{array}{l}
2 \\
3
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
1 \\
100
\end{array}\right], \quad \mathbf{l}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad \mathbf{u}=\left[\begin{array}{l}
+\infty \\
+\infty
\end{array}\right]
$$

Carefully construct the quadratic matrix \mathbf{Q}. Observe that you can use symmetry to separate the main-diagonal and off-diagonal elements:

$$
\frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{Q} \mathbf{x} \equiv \frac{1}{2} \sum_{i, j=1}^{n} x_{i} q_{i j} x_{j}=\frac{1}{2} \sum_{i=1}^{n} q_{i i} x_{i}^{2}+\sum_{i>j} x_{i} q_{i j} x_{j}
$$

The first expression

$$
\frac{1}{2} \sum_{i=1}^{n} q_{i i} x_{i}^{2}
$$

sums the main-diagonal elements. Thus, in this case you have

$$
q_{11}=2, \quad q_{22}=20
$$

Notice that the main-diagonal values are doubled in order to accommodate the $1 / 2$ factor. Now the second term

$$
\sum_{i>j} x_{i} q_{i j} x_{j}
$$

sums the off-diagonal elements in the strict lower triangular part of the matrix. The only off-diagonal $\left(x_{i} x_{j}, i \neq j\right)$ term in the objective function is $2.5 x_{1} x_{2}$, so you have

$$
q_{21}=2.5
$$

Notice that you do not need to specify the upper triangular part of the quadratic matrix.
Finally, the matrix of constraints is as follows:

$$
\mathbf{A}=\left[\begin{array}{rr}
1 & -1 \\
1 & 2
\end{array}\right]
$$

The following OPTMODEL program formulates the preceding problem in a manner that is very close to the mathematical specification of the given problem:

```
/* getting started */
proc optmodel;
    var x1 >= 0; /* declare nonnegative variable x1 */
    var x2 >= 0; /* declare nonnegative variable x2 */
    /* objective: quadratic function f(x1, x2) */
    minimize f =
        /* the linear objective function coefficients */
        2 * x1 + 3 * x2 +
        /* quadratic <x, Qx> */
        x1 * x1 + 2.5 * x1 * x2 + 10 * x2 * x2;
    /* subject to the following constraints */
    con r1: x1 - x2 <= 1;
    con r2: x1 + 2 * x2 >= 100;
    /* specify iterative interior point algorithm (QP)
        * in the SOLVE statement */
    solve with qP;
    /* print the optimal solution */
    print x1 x2;
    save qps qpsdata;
quit;
```

The "with qp" clause in the SOLVE statement invokes the QP solver to solve the problem. The output is shown in Figure 12.2.

Figure 12.2 Summaries and Optimal Solution
The OPTMODEL Procedure

In this example, the SAVE QPS statement is used to save the QP problem in the QPS-format data set qpsdata, shown in Figure 12.3. The data set is consistent with the parameters of general quadratic programming previously computed. Also, the data set can be used as input to the OPTQP procedure.

Figure 12.3 QPS-Format Data Set

Obs	FIELD1	FIELD2	FIELD3	FIELD4	FIELD5	FIELD6
1	NAME		qpsdata	.		
2	Rows			.		.
3	N	f		.		
4		r1		.		
5	G	r2		.		.
6	COLUMNS			.		.
7		$\times 1$	f	2.0 r		1
8		$\times 1$	r2	1.0		.
9		x2	f	3.0 r		-1
10		x2	r2	2.0		.
	RHS			.		.
12		.RHS.	r1	1.0		
13		.RHS.	r2	100.0		.
	QSECTION			.		.
15		$\times 1$	x1	2.0		.
16		$\times 1$	x2	2.5		.
17		x2	x2	20.0		.
	ENDATA			.		.

Syntax: QP Solver

The following statement is available in the OPTMODEL procedure:

```
SOLVE WITH QP </ options> ;
```


Functional Summary

Table 12.1 summarizes the list of options available for the SOLVE WITH QP statement, classified by function.

Table 12.1 Options for the QP Solver

Description	Option
Solver Options Enables or disables IIS detection Control Options	
Specifies the stopping criterion based on duality gap Specifies the dual feasibility tolerance	DUALITYGAP=
Specifies how often to print the solution progress	DUALTOL=
Specifies the maximum number of iterations	MAXITER= $=$
Specifies the time limit for the optimization process	MAXTIME=
Specifies the maximum number of threads	NTHREADS $=$
Specifies the type of presolve	PRESOLVER=
Specifies the primal feasibility tolerance	PRIMALTOL=
Specifies units of CPU time or real time	TIMETYPE=

QP Solver Options

This section describes the options recognized by the QP solver. These options can be specified after a forward slash (/) in the SOLVE statement, provided that the QP solver is explicitly specified using a WITH clause.

The QP solver does not provide an intermediate solution if the solver terminates before reaching optimality.

DUALITYGAP= δ

specifies the desired relative duality gap, $\delta \in[1 \mathrm{E}-9,1 \mathrm{E}-4]$. This is the relative difference between the primal and dual objective function values and is the primary solution quality parameter. For more information, see the section "Interior Point Algorithm: Overview" on page 603. The default value is 1E-6.

DUALTOL $=\beta$

OPTTOL= β
specifies the maximum relative dual constraints violation, $\beta \in[1 \mathrm{E}-9,1 \mathrm{E}-4]$. For more information, see the section "Interior Point Algorithm: Overview" on page 603. The default value is $1 \mathrm{E}-6$.

IIS=FALSE | TRUE

specifies whether to attempt to identify a set of constraints and variables that form an irreducible infeasible set (IIS). You can specify the following values:

FALSE disables IIS detection.
 TRUE enables IIS detection.

If an IIS is found, you can find information about the infeasibilities in the .status values of the constraints and variables. For more information about this option, see the section "Irreducible Infeasible Set" on page 606. For more information about the .status suffix, see the section "Suffixes" on page 135. By default, IIS=FALSE.

LOGFREQ=k

PRINTFREQ=k

prints the solution progress to the iteration log after every k iterations, where k is an integer between 0 and the largest four-byte signed integer, which is $2^{31}-1$. The value $k=0$ suppresses printing of the progress of the solution. By default, LOGFREQ=1.

MAXITER=k

specifies the maximum number of iterations, where k can be any integer between 1 and the largest four-byte signed integer, which is $2^{31}-1$. If you do not specify this option, the procedure does not stop based on the number of iterations performed.

MAXTIME $=t$

specifies an upper limit of t units of time for the optimization process, including problem generation time and solution time. The value of the TIMETYPE= option determines the type of units used. If you do not specify the MAXTIME= option, the solver does not stop based on the amount of time elapsed. The value of t can be any positive number; the default value is the positive number that has the largest absolute value that can be represented in your operating environment.

NTHREADS=k

specifies the number of threads that the QP solver can use, where k can be any integer between 1 and 256 , inclusive. The default is the value of the OPTMODEL NTHREADS= option.

Specifying k as a number greater than the actual number of available cores might result in reduced performance. Specifying a high value for k does not guarantee shorter solution time; the actual change in solution time depends on the computing hardware and the scalability of the underlying algorithms in the QP solver. In some circumstances, the QP solver might use fewer than k threads because the solver's internal algorithms have determined that a smaller number is preferable.

PRESOLVER=AUTOMATIC | NONE | BASIC | MODERATE | AGGRESSIVE

specifies the presolve level. You can specify the following values:

```
AUTOMATIC applies the presolver by using the default setting.
NONE disables the presolver.
BASIC applies the basic presolver.
MODERATE applies the moderate presolver.
AGGRESSIVE applies the aggressive presolver.
```

By default, PRESOLVER=AUTOMATIC.

PRIMALTOL= α

FEASTOL= α
specifies the maximum relative bound and primal constraints violation, $\alpha \in[1 \mathrm{E}-9,1 \mathrm{E}-4]$. For more information, see the section "Interior Point Algorithm: Overview" on page 603. The default value is 1E-6.

TIMETYPE=CPU | REAL

specifies the units of time used by the MAXTIME= option and reported by the PRESOLVE_TIME and SOLUTION_TIME terms in the _OROPTMODEL_ macro variable. You can specify the following values:

CPU specifies that units are in CPU time.
REAL specifies that units are in real time.
The "Optimization Statistics" table, an output of the OPTMODEL procedure if you specify PRINTLEVEL=2 in the PROC OPTMODEL statement, also includes the same time units for Presolver Time, Solver Time, and other times (such as Problem Generation Time).

The default value of the TIMETYPE= option depends on the value of the NTHREADS= option. Table 12.2 describes the detailed logic for determining the default; the first context in the table that applies determines the default value.

Table 12.2 Default Value for TIMETYPE= Option

Context	Default
Solver is invoked in an OPTMODEL COFOR loop	REAL
NTHREADS $=$ value is greater than 1	REAL
NTHREADS $=1$	CPU

Details: QP Solver

Interior Point Algorithm: Overview

The QP solver implements an infeasible primal-dual predictor-corrector interior point algorithm. To illustrate the algorithm and the concepts of duality and dual infeasibility, consider the following QP formulation (the primal):

$$
\begin{aligned}
\min & \frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{Q x}+\mathbf{c}^{\mathrm{T}} \mathbf{x} \\
\text { subject to } & \mathbf{A x} \geq \mathbf{b} \\
& \mathbf{x} \geq \mathbf{0}
\end{aligned}
$$

The corresponding dual formulation is

$$
\begin{aligned}
& \max -\frac{1}{2} \mathrm{x}^{\mathrm{T}} \mathbf{Q} \mathbf{x}+\mathbf{b}^{\mathrm{T}} \mathbf{y} \\
& \text { subject to }-\mathbf{Q x}+\mathbf{A}^{\mathrm{T}} \mathbf{y}+\mathbf{w}=\mathbf{c} \\
& \mathrm{y} \geq 0 \\
& \mathbf{w} \geq \mathbf{0}
\end{aligned}
$$

where $\mathbf{y} \in \mathbb{R}^{m}$ refers to the vector of dual variables and $\mathbf{w} \in \mathbb{R}^{n}$ refers to the vector of dual slack variables.
The dual makes an important contribution to the certificate of optimality for the primal. The primal and dual constraints combined with complementarity conditions define the first-order optimality conditions, also known as KKT (Karush-Kuhn-Tucker) conditions, which can be stated as follows where $\mathbf{e} \equiv(1, \ldots, 1)^{\mathrm{T}}$ of appropriate dimension and $\mathrm{s} \in \mathbb{R}^{m}$ is the vector of primal slack variables:

$$
\begin{array}{rlr}
\mathbf{A x}-\mathbf{s} & =\mathbf{b} & \text { (primal feasibility) } \\
-\mathbf{Q} \mathbf{x}+\mathbf{A}^{\mathrm{T}} \mathbf{y}+\mathbf{w} & =\mathbf{c} \\
\mathbf{W X e} & =\mathbf{0} & \text { (dual feasibility) } \\
\mathbf{S Y e} & =\mathbf{0} & \text { (complementarity) } \\
\mathbf{x}, \mathbf{y}, \mathbf{w}, \mathbf{s} & \geq \mathbf{0}
\end{array}
$$

NOTE: Slack variables (the s vector) are automatically introduced by the solver when necessary; it is therefore recommended that you not introduce any slack variables explicitly. This enables the solver to handle slack variables much more efficiently.

The letters $\mathbf{X}, \mathbf{Y}, \mathbf{W}$, and \mathbf{S} denote matrices with corresponding x, y, w, and s on the main diagonal and zero elsewhere, as in the following example:

$$
\mathbf{X} \equiv\left[\begin{array}{cccc}
x_{1} & 0 & \cdots & 0 \\
0 & x_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & x_{n}
\end{array}\right]
$$

If ($\mathrm{x}^{*}, \mathrm{y}^{*}, \mathbf{w}^{*}, \mathrm{~s}^{*}$) is a solution of the previously defined system of equations that represent the KKT conditions, then x^{*} is also an optimal solution to the original QP model.

At each iteration the interior point algorithm solves a large, sparse system of linear equations,
$\left[\begin{array}{cc}\mathbf{Y}^{-1} \mathbf{S} & \mathbf{A} \\ \mathbf{A}^{T} & -\mathbf{Q}-\mathbf{X}^{-1} \mathbf{W}\end{array}\right]\left[\begin{array}{c}\Delta \mathbf{y} \\ \Delta \mathbf{x}\end{array}\right]=\left[\begin{array}{l}\Xi \\ \Theta\end{array}\right]$
where $\Delta \mathrm{x}$ and $\Delta \mathrm{y}$ denote the vector of search directions in the primal and dual spaces, respectively, and Θ and Ξ constitute the vector of the right-hand sides.

The preceding system is known as the reduced KKT system. The QP solver uses a preconditioned quasiminimum residual algorithm to solve this system of equations efficiently.

An important feature of the interior point algorithm is that it takes full advantage of the sparsity in the constraint and quadratic matrices, thereby enabling it to efficiently solve large-scale quadratic programs.

The interior point algorithm works simultaneously in the primal and dual spaces. It attains optimality when both primal and dual feasibility are achieved and when complementarity conditions hold. Therefore, it is of interest to observe the following four measures where $\|v\|_{2}$ is the Euclidean norm of the vector v :

- relative primal infeasibility measure α :

$$
\alpha=\frac{\|\mathbf{A x}-\mathbf{b}-\mathbf{s}\|_{2}}{\|\mathbf{b}\|_{2}+1}
$$

- relative dual infeasibility measure β :

$$
\beta=\frac{\left\|\mathbf{Q x}+\mathbf{c}-\mathbf{A}^{\mathrm{T}} \mathbf{y}-\mathbf{w}\right\|_{2}}{\|\mathbf{c}\|_{2}+1}
$$

- relative duality gap δ :

$$
\delta=\frac{\left|\mathbf{x}^{\mathrm{T}} \mathbf{Q} \mathbf{x}+\mathbf{c}^{\mathrm{T}} \mathbf{x}-\mathbf{b}^{\mathrm{T}} \mathbf{y}\right|}{\left|\frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{Q} \mathbf{x}+\mathbf{c}^{\mathrm{T} \mathbf{x}}\right|+1}
$$

- absolute complementarity γ :

$$
\gamma=\sum_{i=1}^{n} x_{i} w_{i}+\sum_{i=1}^{m} y_{i} s_{i}
$$

These measures are displayed in the iteration log.

Parallel Processing

The interior point algorithm can be run in single-machine mode (in single-machine mode, the computation is executed by multiple threads on a single computer).

Iteration Log

The following information is displayed in the iteration log:
Iter indicates the iteration number.
Complement indicates the (absolute) complementarity.
Duality Gap indicates the (relative) duality gap.
Primal Infeas indicates the (relative) primal infeasibility measure.
Bound Infeas indicates the (relative) bound infeasibility measure.
Dual Infeas indicates the (relative) dual infeasibility measure.
Time indicates the time elapsed (in seconds).
If the sequence of solutions converges to an optimal solution of the problem, you should see all columns in the iteration log converge to zero or very close to zero. Nonconvergence can be the result of insufficient iterations being performed to reach optimality. In this case, you might need to increase the value that you specify in the MAXITER= or MAXTIME= option. If the complementarity or the duality gap does not converge, the problem might be infeasible or unbounded. If the infeasibility columns do not converge, the problem might be infeasible.

Problem Statistics

Optimizers can encounter difficulty when solving poorly formulated models. Information about data magnitude provides a simple gauge to determine how well a model is formulated. For example, a model whose constraint matrix contains one very large entry (on the order of 10^{9}) can cause difficulty when the remaining entries are single-digit numbers. The PRINTLEVEL $=2$ option in the OPTMODEL procedure causes the ODS table ProblemStatistics to be generated when the QP solver is called. This table provides basic data magnitude information that enables you to improve the formulation of your models.
The example output in Figure 12.4 demonstrates the contents of the ODS table ProblemStatistics.

Figure 12.4 ODS Table ProblemStatistics
The OPTMODEL Procedure

Problem Statistics	
Number of Constraint Matrix Nonzeros	4
Maximum Constraint Matrix Coefficient	2
Minimum Constraint Matrix Coefficient	1
Average Constraint Matrix Coefficient	1.25
Number of Linear Objective Nonzeros	2
Maximum Linear Objective Coefficient	3
Minimum Linear Objective Coefficient	2
Average Linear Objective Coefficient	2.5
Number of Nonzeros Below Diagonal in the Hessian	1
Number of Diagonal Nonzeros in the Hessian	2
Maximum Hessian Coefficient	20
Minimum Hessian Coefficient	2
Average Hessian Coefficient	6.75
Number of RHS Nonzeros	2
Maximum RHS	2
Minimum RHS	2
Average RHS	2
Maximum Number of Nonzeros per Column	2
Minimum Number of Nonzeros per Column	20.5
Average Number of Nonzeros per Column	2
Maximum Number of Nonzeros per Row	2
	2

Irreducible Infeasible Set

For a quadratic programming problem, an irreducible infeasible set (IIS) is an infeasible subset of constraints and variable bounds that becomes feasible if any single constraint or variable bound is removed. It is possible to have more than one IIS in an infeasible QP. Identifying an IIS can help isolate the structural infeasibility in a QP. The IIS=TRUE option directs the QP solver to search for an IIS in a specified QP.

Whether a quadratic programming problem is feasible or infeasible is determined by its constraints and variable bounds, which have nothing to do with its objective function. When you specify the IIS=TRUE option, the QP solver treats this problem as a linear programming problem by ignoring its objective function. Then finding IIS is the same as what the LP solver does with the IIS=TRUE option. For more information about the irreducible infeasible set, see the section "Irreducible Infeasible Set" on page 275 in Chapter 7, "The Linear Programming Solver."

Macro Variable _OROPTMODEL_

The OPTMODEL procedure always creates and initializes a SAS macro called _OROPTMODEL_. This variable contains a character string. After each PROC OROPTMODEL run, you can examine this macro by specifying \%put \&_OROPTMODEL_; and check the execution of the most recently invoked solver from the value of the macro variable. The various terms of the variable after the QP solver is called are interpreted as follows.

STATUS

indicates the solver status at termination. It can take one of the following values:
OK The solver terminated normally.
SYNTAX_ERROR Incorrect syntax was used.
DATA_ERROR The input data were inconsistent.
OUT_OF_MEMORY Insufficient memory was allocated to the procedure.
IO_ERROR A problem occurred in reading or writing data.
SEMANTIC_ERROR An evaluation error, such as an invalid operand type, occurred.
ERROR

ALGORITHM

indicates the algorithm that produced the solution data in the macro variable. This term appears only when STATUS=OK. It can take the following value:

IP The interior point algorithm produced the solution data.
IIS The IIS functionality produced the solution data.

SOLUTION_STATUS

indicates the solution status at termination. It can take one of the following values:

OPTIMAL
CONDITIONAL_OPTIMAL

INFEASIBLE
UNBOUNDED
INFEASIBLE_OR_UNBOUNDED
BAD_PROBLEM_TYPE
ITERATION_LIMIT_REACHED

TIME_LIMIT_REACHED
FUNCTION_CALL_LIMIT_REACHED
INTERRUPTED

The solution is optimal.
The solution is optimal, but some infeasibilities (primal, dual or bound) exceed tolerances due to scaling or preprocessing.
The problem is infeasible.
The problem is unbounded.
The problem is infeasible or unbounded.
The problem type is unsupported by the solver.
The maximum allowable number of iterations was reached.

The solver reached its execution time limit.
The solver reached its limit on function evaluations.
The solver was interrupted externally.

FAILED
The solver failed to converge, possibly due to numerical issues.

OBJECTIVE

indicates the objective value obtained by the solver at termination.

PRIMAL_INFEASIBILITY

indicates the (relative) infeasibility of the primal constraints at the solution. For more information, see the section "Interior Point Algorithm: Overview" on page 603.

DUAL_INFEASIBILITY

indicates the (relative) infeasibility of the dual constraints at the solution. For more information, see the section "Interior Point Algorithm: Overview" on page 603.

BOUND_INFEASIBILITY

indicates the (relative) violation by the solution of the lower or upper bounds (or both). For more information, see the section "Interior Point Algorithm: Overview" on page 603.

DUALITY_GAP

indicates the (relative) duality gap. For more information, see the section "Interior Point Algorithm: Overview" on page 603.

COMPLEMENTARITY

indicates the (absolute) complementarity at the solution. For more information, see the section "Interior Point Algorithm: Overview" on page 603.

ITERATIONS

indicates the number of iterations required to solve the problem.

PRESOLVE_TIME

indicates the time (in seconds) taken for preprocessing.

SOLUTION_TIME

indicates the time (in seconds) taken to solve the problem, including preprocessing time.
Note: The time that is reported in PRESOLVE_TIME and SOLUTION_TIME is either CPU time or real time. The type is determined by the TIMETYPE= option.

Examples: QP Solver

This section presents examples that illustrate the use of the OPTMODEL procedure to solve quadratic programming problems. Example 12.1 illustrates how to model a linear least squares problem and solve it by using PROC OPTMODEL. Example 12.2 and Example 12.3 show in detail how to model the portfolio optimization and selection problems.

Example 12.1: Linear Least Squares Problem

The linear least squares problem arises in the context of determining a solution to an overdetermined set of linear equations. In practice, these equations could arise in data fitting and estimation problems. An overdetermined system of linear equations can be defined as

$$
A x=b
$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{x} \in \mathbb{R}^{n}, \mathbf{b} \in \mathbb{R}^{m}$, and $m>n$. Since this system usually does not have a solution, you need to be satisfied with some sort of approximate solution. The most widely used approximation is the least squares solution, which minimizes $\|\mathbf{A x}-\mathbf{b}\|_{2}^{2}$.

This problem is called a least squares problem for the following reason. Let \mathbf{A}, \mathbf{x}, and \mathbf{b} be defined as previously. Let $k_{i}(x)$ be the k th component of the vector $\mathbf{A x}-\mathbf{b}$:

$$
k_{i}(x)=a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n}-b_{i}, i=1,2, \ldots, m
$$

By definition of the Euclidean norm, the objective function can be expressed as follows:

$$
\|\mathbf{A x}-\mathbf{b}\|_{2}^{2}=\sum_{i=1}^{m} k_{i}(x)^{2}
$$

Therefore, the function you minimize is the sum of squares of m terms $k_{i}(x)$; hence the term least squares. The following example is an illustration of the linear least squares problem; that is, each of the terms k_{i} is a linear function of x.

Consider the following least squares problem defined by

$$
\mathbf{A}=\left[\begin{array}{rr}
4 & 0 \\
-1 & 1 \\
3 & 2
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

This translates to the following set of linear equations:

$$
4 x_{1}=1, \quad-x_{1}+x_{2}=0, \quad 3 x_{1}+2 x_{2}=1
$$

The corresponding least squares problem is:

$$
\text { minimize }\left(4 x_{1}-1\right)^{2}+\left(-x_{1}+x_{2}\right)^{2}+\left(3 x_{1}+2 x_{2}-1\right)^{2}
$$

The preceding objective function can be expanded to:

$$
\operatorname{minimize} \quad 26 x_{1}^{2}+5 x_{2}^{2}+10 x_{1} x_{2}-14 x_{1}-4 x_{2}+2
$$

In addition, you impose the following constraint so that the equation $3 x_{1}+2 x_{2}=1$ is satisfied within a tolerance of 0.1 :

$$
0.9 \leq 3 x_{1}+2 x_{2} \leq 1.1
$$

You can use the following SAS statements to solve the least squares problem:

```
/* example 1: linear least squares problem */
proc optmodel;
    /* declare free (no explicit bounds) variables x[1] and x[2] */
    var x {1..2};
    /* objective function: minimize the sum of squares */
    minimize f = 26*x[1]^2 + 5*x[2]^2 + 10*x[1]*x[2] - 14*x[1] - 4*x[2] + 2;
    /* subject to the following constraint */
    con R: 0.9 <= 3*x[1] + 2*x[2] <= 1.1;
    /* call the QP solver */
    solve;
    /* print the optimal solution */
    print x;
quit;
```

The output is shown in Output 12.1.1.
Output 12.1.1 Summaries and Optimal Solution
The OPTMODEL Procedure

Problem Summary	
Objective Sense	Minimization
Objective Function	quadratic
Objective Type	
	2
Number of Variables	0
Bounded Above	0
Bounded Below	0
Bounded Below and Above	2
Free	0
Fixed	1
	0
Number of Constraints	0
Linear LE (<=)	0
Linear EQ (=)	1
Linear GE (>=)	2
Linear Range	
Constraint Coefficients	2
	1
Hessian Diagonal Elements	

Output 12.1.1 continued

Solution Summary	
Solver	QP
Algorithm	Interior Point
Objective Function	f
Solution Status	Optimal
Objective Value	0.0095238095
Primal Infeasibility	0
Dual Infeasibility	$6.290213 \mathrm{E}-8$
Bound Infeasibility	0
Duality Gap	$9.4234001 \mathrm{E}-8$
Complementarity	0
Iterations	5
Presolve Time	0.00
Solution Time	0.00

[1]	\mathbf{x}
$\mathbf{1}$	0.2381
$\mathbf{2}$	0.1619

Example 12.2: Portfolio Optimization

Consider a portfolio optimization example. The two competing goals of investment are (1) long-term growth of capital and (2) low risk. A good portfolio grows steadily without wild fluctuations in value. The Markowitz model is an optimization model for balancing the return and risk of a portfolio. The decision variables are the amounts invested in each asset. The objective is to minimize the variance of the portfolio's total return, subject to the constraints that (1) the expected growth of the portfolio reaches at least some target level and (2) you do not invest more capital than you have.

Let x_{1}, \ldots, x_{n} be the amount invested in each asset, \mathcal{B} be the amount of capital you have, \mathbf{R} be the random vector of asset returns over some period, and \mathbf{r} be the expected value of \mathbf{R}. Let G be the minimum growth you hope to obtain, and \mathcal{C} be the covariance matrix of \mathbf{R}. The objective function is $\operatorname{Var}\left(\sum_{i=1}^{n} x_{i} R_{i}\right)$, which can be equivalently denoted as $\mathbf{x}^{\mathrm{T}} \mathcal{C} \mathbf{x}$.

Assume, for example, $n=4$. Let $\mathcal{B}=10,000, G=1,000, \mathbf{r}=[0.05,-0.2,0.15,0.30]$, and

$$
\mathcal{C}=\left[\begin{array}{cccc}
0.08 & -0.05 & -0.05 & -0.05 \\
-0.05 & 0.16 & -0.02 & -0.02 \\
-0.05 & -0.02 & 0.35 & 0.06 \\
-0.05 & -0.02 & 0.06 & 0.35
\end{array}\right]
$$

The QP formulation can be written as:

$$
\begin{array}{ll}
\min & 0.08 x_{1}^{2}-0.1 x_{1} x_{2}-0.1 x_{1} x_{3}-0.1 x_{1} x_{4}+0.16 x_{2}^{2} \\
& -0.04 x_{2} x_{3}-0.04 x_{2} x_{4}+0.35 x_{3}^{2}+0.12 x_{3} x_{4}+0.35 x_{4}^{2}
\end{array}
$$

$$
\begin{array}{rrl}
\text { subject to } & & \\
\text { (budget) } & x_{1}+x_{2}+x_{3}+x_{4} & \leq 10000 \\
\text { (growth) } & 0.05 x_{1}-0.2 x_{2}+0.15 x_{3}+0.30 x_{4} & \geq 1000 \\
& x_{1}, x_{2}, x_{3}, x_{4} & \geq 0
\end{array}
$$

Use the following SAS statements to solve the problem:

```
/* example 2: portfolio optimization */
proc optmodel;
    /* let x1, x2, x3, x4 be the amount invested in each asset */
    var x{1..4} >= 0;
    num coeff{1..4, 1..4} = [0.08 -.05 -. 05 -. .05
                        -.05 0.16 -. 02 -. .02
                        -.05 -. 02 0.35 0.06
                        -.05 -.02 0.06 0.35];
    num r{1..4}=[0.05 -. 20 0.15 0.30];
    /* minimize the variance of the portfolio's total return */
    minimize f = sum{i in 1..4, j in 1..4}coeff[i,j]*x[i]*x[j];
    /* subject to the following constraints */
    con BUDGET: sum{i in 1..4}x[i] <= 10000;
    con GROWTH: sum{i in 1..4}r[i]*x[i] >= 1000;
    solve with qP;
    /* print the optimal solution */
    print x;
```

The summaries and the optimal solution are shown in Output 12.2.1.

Output 12.2.1 Portfolio Optimization

The OPTMODEL Procedure

Thus, the minimum variance portfolio that earns an expected return of at least 10% is $x_{1}=3,452.9, x_{2}=0$, $x_{3}=1,068.8, x_{4}=2,223.5$. Asset 2 gets nothing because its expected return is -20% and its covariance with the other assets is not sufficiently negative for it to bring any diversification benefits. What if you drop the nonnegativity assumption?

Financially, that means you are allowed to short-sell-that is, sell low-mean-return assets and use the proceeds to invest in high-mean-return assets. In other words, you put a negative portfolio weight in low-mean assets and "more than 100% " in high-mean assets.

To solve the portfolio optimization problem with the short-sale option, continue to submit the following SAS statements:

```
    /* example 2: portfolio optimization with short-sale option */
    /* dropping nonnegativity assumption */
    for {i in 1..4} x[i].lb=-x[i].ub;
    solve with qp;
    /* print the optimal solution */
    print x;
quit;
```

You can see in the optimal solution displayed in Output 12.2.2 that the decision variable x_{2}, denoting Asset 2, is equal to $-1,563.61$, which means short sale of that asset.

Output 12.2.2 Portfolio Optimization with Short-Sale Option
The OPTMODEL Procedure

Solution Summary	
Solver	QP
Algorithm	Interior Point
Objective Function	f
Solution Status	Optimal
Objective Value	1907122.2254
Primal Infeasibility	$4.997261 \mathrm{E}-14$
Dual Infeasibility	$4.4944836 \mathrm{E}-8$
Bound Infeasibility	0
Duality Gap	$3.886201 \mathrm{E}-11$
Complementarity	0
Iterations	5
Presolve Time	0.00
Solution Time	0.00

[1]	\mathbf{x}
$\mathbf{1}$	1684.35
$\mathbf{2}$	-1563.61
$\mathbf{3}$	682.51
$\mathbf{4}$	1668.95

Example 12.3: Portfolio Selection with Transactions

Consider a portfolio selection problem with a slight modification. You are now required to take into account the current position and transaction costs associated with buying and selling assets. The objective is to find the minimum variance portfolio. In order to understand the scenario better, consider the following data.

You are given three assets. The current holding of the three assets is denoted by the vector $\mathbf{c}=[200,300$, 500], the amount of asset bought and sold is denoted by b_{i} and s_{i}, respectively, and the net investment in each asset is denoted by x_{i} and is defined by the following relation:

$$
x_{i}-b_{i}+s_{i}=c_{i}, \quad i=1,2,3
$$

Suppose that you pay a transaction fee of 0.01 every time you buy or sell. Let the covariance matrix \mathcal{C} be defined as

$$
\mathcal{C}=\left[\begin{array}{ccc}
0.027489 & -0.00874 & -0.00015 \\
-0.00874 & 0.109449 & -0.00012 \\
-0.00015 & -0.00012 & 0.000766
\end{array}\right]
$$

Assume that you hope to obtain at least 12% growth. Let $\mathbf{r}=[1.109048,1.169048,1.074286]$ be the vector of expected return on the three assets, and let $\mathcal{B}=1000$ be the available funds. Mathematically, this problem can be written in the following manner:

$$
\begin{array}{ll}
\min & 0.027489 x_{1}^{2}-0.01748 x_{1} x_{2}-0.0003 x_{1} x_{3}+0.109449 x_{2}^{2} \\
& -0.00024 x_{2} x_{3}+0.000766 x_{3}^{2}
\end{array}
$$

subject to

$$
\begin{aligned}
& \text { (return) } \\
& \sum_{i=1}^{3} r_{i} x_{i} \geq 1.12 \mathcal{B} \\
& \text { (budget) } \sum_{i=1}^{3} x_{i}+\sum_{i=1}^{3} 0.01\left(b_{i}+s_{i}\right)=\mathcal{B} \\
& \text { (balance) } \quad x_{i}-b_{i}+s_{i}=c_{i}, \quad i=1,2,3 \\
& x_{i}, b_{i}, s_{i} \geq \quad 0, \quad i=1,2,3
\end{aligned}
$$

The problem can be solved by the following SAS statements:

```
/* example 3: portfolio selection with transactions */
proc optmodel;
    /* let x1, x2, x3 be the amount invested in each asset */
    var x{1..3} >= 0;
    /* let b1, b2, b3 be the amount of asset bought */
    var b{1..3} >= 0;
    /* let s1, s2, s3 be the amount of asset sold */
    var s{1..3} >= 0;
    /* current holdings */
    num c{1..3}=[ 200 300 500];
    /* covariance matrix */
    num coeff{1..3, 1..3} = [0.027489 -.008740 -.000150
                                    -.008740 0.109449 -.000120
                                    -.000150 -.000120 0.000766];
    /* returns */
    num r{1..3}=[1.109048 1.169048 1.074286];
    /* minimize the variance of the portfolio's total return */
    minimize f = sum{i in 1..3, j in 1..3}coeff[i,j]*x[i]*x[j];
    /* subject to the following constraints */
    con BUDGET: sum{i in 1..3}(x[i]+.01*b[i]+.01*s[i]) <= 1000;
    con RETURN: sum{i in 1..3}r[i]*x[i] >= 1120;
    con BALANC{i in 1..3}: x[i]-b[i]+s[i]=c[i];
    solve with qp;
    /* print the optimal solution */
    print x b s;
quit;
```

The output is displayed in Output 12.3.1.

Output 12.3.1 Portfolio Selection with Transactions
The OPTMODEL Procedure

References

Freund, R. W. (1991). "On Polynomial Preconditioning and Asymptotic Convergence Factors for Indefinite Hermitian Matrices." Linear Algebra and Its Applications 154-156:259-288.

Freund, R. W., and Jarre, F. (1997). "A QMR-Based Interior Point Algorithm for Solving Linear Programs." Mathematical Programming 76:183-210.

Freund, R. W., and Nachtigal, N. M. (1996). "QMRPACK: A Package of QMR Algorithms." ACM Transactions on Mathematical Software 22:46-77.

Vanderbei, R. J. (1999). "LOQO: An Interior Point Code for Quadratic Programming." Optimization Methods and Software 11:451-484.

Wright, S. J. (1997). Primal-Dual Interior-Point Methods. Philadelphia: SIAM.

Subject Index

IIS
Irreducible Infeasible Set, 606
SOLVE WITH QP statement, 601
interior point algorithm
complementarity, 604
dual infeasibility, 601, 604
duality gap, 601, 604
overview, 603
primal infeasibility, 602, 604
stopping criteria, 604
iteration log
LOGFREQ= option, 601
QP solver, 605
stopping criteria, 604
macro variable
OROPTMODEL, 607
ODS
problem statistics, 605
summaries, 598
OROPTMODEL macro variable, 607
overview
QP solver, 596
positive semidefinite matrix, 596
QP solver
examples, 608
functional summary, 600
IIS, 606
interior point algorithm, 603
iteration log, 605
macro variable _OROPTMODEL_, 607
options, 601
overview, 596
problem statistics, 605
QPS format, 599
quadratic programming, 596
syntax, 600
QP solver examples
covariance matrix, 611
data fitting, 609
estimation, 609
linear least squares, 609
Markowitz model, 611
portfolio optimization, 611
portfolio selection with transactions, 615
short-sell, 614
quadratic programming overview, 596
quadratic matrix, 596
SOLVE WITH QP statement
dual infeasibility, 601
duality gap, 601
IIS, 601
log frequency, 601
maximum iteration, 601
maximum time, 601
number of threads, 602
presolver level, 602
primal infeasibility, 602
time type, 602

Syntax Index

DUALITYGAP= option

SOLVE WITH QP statement, 601
DUALTOL= option
SOLVE WITH QP statement, 601
FEASTOL= option
SOLVE WITH QP statement, 602
IIS $=$ option
SOLVE WITH QP statement, 601
LOGFREQ= option
SOLVE WITH QP statement, 601
MAXITER= option
SOLVE WITH QP statement, 601
MAXTIME $=$ option
SOLVE WITH QP statement, 601
NTHREADS = option
SOLVE WITH QP statement, 602
OPTMODEL procedure, QP solver
syntax, 600
OPTTOL= option
SOLVE WITH QP statement, 601
PRESOLVER= option
SOLVE WITH QP statement, 602
PRIMALTOL= option
SOLVE WITH QP statement, 602
PRINTFREQ= option
SOLVE WITH QP statement, 601
SOLVE WITH QP statement
DUALITYGAP= option, 601
DUALTOL= option, 601
FEASTOL= option, 602
IIS $=$ option, 601
LOGFREQ= option, 601
MAXITER = option, 601
MAXTIME $=$ option, 601
NTHREADS = option, 602
OPTTOL= option, 601
PRESOLVER= option, 602
PRIMALTOL= option, 602
PRINTFREQ $=$ option, 601
TIMETYPE= option, 602
TIMETYPE= option
SOLVE WITH QP statement, 602

