GSas

THE POWER TOr FUMNOW

SAS/OR" 15.1 User’s Guide

Mathematical Programming

The OPTMILP Procedure

This document is an individual chapter from SAS/OR® 15.1 User’s Guide: Mathematical Programming.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2018. SAS/OR® 15.1 User’s Guide: Mathematical
Programming. Cary, NC: SAS Institute Inc.

SAS/OR® 15.1 User’s Guide: Mathematical Programming
Copyright © 2018, SAS Institute Inc., Cary, NC, USA
All Rights Reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute
Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time
you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is
illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic
piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software
developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or
disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as
applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S.
federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision
serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The
Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414
November 2018

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SAS software may be provided with certain third-party software, including but not limited to open-source software, which is
licensed under its applicable third-party software license agreement. For license information about third-party software distributed
with SAS software, refer to http://support.sas.com/thirdpartylicenses.

http://support.sas.com/thirdpartylicenses

Chapter 14
The OPTMILP Procedure

Contents
Overview: OPTMILP Procedure 675
Getting Started: OPTMILP Procedure 676
Syntax: OPTMILP Procedure 679
Functional Summary oL 679
PROC OPTMILP Statemento oo v vttt e 680
Decomposition Algorithm Statements L. 690
TUNER Statement 691
Details: OPTMILP Procedure 691
Datalnputand Output e e 691
Warm Start 693
Branch-and-Bound Algorithm L oo 693
Controlling the Branch-and-Bound Algorithm 695
Presolve and Probing 697
Cutting Planes 697
Primal Heuristics 698
Parallel Processing L 699
NodeLog e 699
ODSTables. oo 701
Macro Variable _ OROPTMILP_. 705
Examples: OPTMILP Procedure 708
Example 14.1: Simple Integer Linear Program 708
Example 14.2: MIPLIB Benchmark Instance 712
Example 14.3: Facility Location, 717
Example 14.4: Scheduling 725
References 734

Overview: OPTMILP Procedure

The OPTMILP procedure solves general mixed integer linear programs (MILPs).

A standard mixed integer linear program has the formulation

min ¢I'x

subjectto Ax {>,=,<} b (MILP)
I<x<u
x;€Z VieS

676 4 Chapter 14: The OPTMILP Procedure

where
x € R is the vector of structural variables
A e R™" isthe matrix of technological coefficients
c € R is the vector of objective function coefficients
b € R™" is the vector of constraints’ right-hand sides (RHS)
1 € R is the vector of lower bounds on variables
u € R is the vector of upper bounds on variables
S is a nonempty subset of the set {1...,n} of indices

The OPTMILP procedure implements a linear-programming-based branch-and-cut algorithm. This divide-
and-conquer approach attempts to solve the original problem by solving linear programming relaxations of a
sequence of smaller subproblems. The OPTMILP procedure also implements advanced techniques such as
presolving, generating cutting planes, and applying primal heuristics to improve the efficiency of the overall
algorithm.

The OPTMILP procedure requires a mixed integer linear program to be specified using a SAS data set that
adheres to the mathematical programming system (MPS) format, a widely accepted format in the optimization
community. Chapter 18 discusses the MPS format in detail. It is also possible to input an incumbent solution
in MPS format; see the section “Warm Start” on page 693 for details.

The OPTMILP procedure provides various control options and solution strategies. In particular, you can
enable, disable, or set levels for the advanced techniques previously mentioned.

The OPTMILP procedure outputs an optimal solution or the best feasible solution found, if any, in SAS data
sets. This enables you to generate solution reports and perform additional analyses by using SAS software.

Getting Started: OPTMILP Procedure

The following example illustrates the use of the OPTMILP procedure to solve mixed integer linear programs.
For more examples, see the section “Examples: OPTMILP Procedure” on page 708. Suppose you want to
solve the following problem:

min 2x; — 3xp — 4x3
s.t. — 2x — 3x3 > =5 (Rl)
X1 + X2 + 2x3 < 4 (R2)
X1+ 2xp + 3x3 <= 7 (R3)
X1, X2, X3 > 0
X1, X2, X3 e”Z

The corresponding MPS-format data set is created as follows:

Getting Started: OPTMILP Procedure 4 677

data ex_mip;
input fieldl $ field2 $ field3 $ field4 field5 $ field6;

datalines;

NAME . EX_ MIP

ROWS .

N COST

G R1

L R2

L R3

COLUMNS . . .
MARKOO 'MARKER' . 'INTORG'
X1 COST 2 R2 1
X1 R3 1 . .
X2 COST -3 R1 -2
X2 R2 1 R3 2
X3 COST -4 R1 -3
X3 R2 2 R3 3

. MARKO1l 'MARKER' . '"INTEND'

RHS
RHS R1 -5 R2 4

. RHS R3 7

ENDATA

You can also create this SAS data set from an MPS-format flat file (ex_mip.mps) by using the following SAS
macro:

smps2sasd (mpsfile = "ex mip.mps", outdata = ex _mip);

This problem can be solved by using the following statement to call the OPTMILP procedure:

proc optmilp data = ex mip

objsense = min

primalout = primal_out

dualout = dual_out

presolver = automatic

heuristics = automatic;
run;

The DATA= option names the MPS-format SAS data set that contains the problem data. The OBJSENSE=
option specifies whether to maximize or minimize the objective function. The PRIMALOUT= option names
the SAS data set to contain the optimal solution or the best feasible solution found by the solver. The
DUALOUT= option names the SAS data set to contain the constraint activities. The PRESOLVER= and
HEURISTICS= options specify the levels for presolving and applying heuristics, respectively. In this example,
each option is set to its default value AUTOMATIC, meaning that the solver automatically determines the
appropriate levels for presolve and heuristics.

The optimal integer solution and its corresponding constraint activities, stored in the data sets primal_out and
dual_out, respectively, are displayed in Figure 14.1 and Figure 14.2.

678 4 Chapter 14: The OPTMILP Procedure

Figure 14.1 Optimal Solution

The OPTMILP Procedure
Primal Integer Solution

Objective
Function RHS Variable Variable Objective Lower Upper Variable
Obs ID ID Name Type Coefficient Bound Bound Value Solution
1 COST RHS X1 B 2 0 1 0 1
2 COST RHS X2 B -3 0 1 1 1
3 COST RHS X3 B -4 0 1 1 1
Figure 14.2 Constraint Activities
The OPTMILP Procedure
Constraint Information
Objective Constraint Constraint
Function RHS Constraint Constraint Constraint Lower Upper Constraint
Obs ID ID Name Type RHS Bound Bound Activity Solution
1 COST RHS R1 G -5 . . -5 1
2 COST RHS R2 L 4 . . 3 1
3 COST RHS R3 L 7 . . 5 1

The solution summary stored in the macro variable _OROPTMILP_ can be viewed by issuing the following
statement:

$put &_OROPTMILP_;

This produces the output shown in Figure 14.3.

Figure 14.3 Macro Output

STATUS=0K ALGORITHM=BAC SOLUTION_ STATUS=OPTIMAL OBJECTIVE=-7 RELATIVE GAP=0
ABSOLUTE GAP=0 PRIMAL INFEASIBILITY=0 BOUND INFEASIBILITY=0

INTEGER INFEASIBILITY=0 BEST BOUND=-7 NODES=0 SOLUTIONS FOUND=2 ITERATIONS=0
PRESOLVE TIME=0.01 SOLUTION TIME=0.01

See the section “Data Input and Output” on page 691 for details about the type and status codes displayed for
variables and constraints.

Syntax: OPTMILP Procedure 4 679

Syntax: OPTMILP Procedure

The following statements are available in the OPTMILP procedure:

PROC OPTMILP < options> ;
DECOMP < options> ;
DECOMPMASTER < options > ;
DECOMPMASTER_IP < options> ;
DECOMPSUBPROB < options> ;

Functional Summary

Table 14.1 summarizes the options available for the OPTMILP procedure, classified by function.

Table 14.1 Options for the OPTMILP Procedure
Description Option
Input and Output Options
Specifies the input data set DATA=
Specifies the constraint activities output data set DUALOUT=
Specifies the input MPS file format FORMAT=
Specifies the number of solutions to return in the output data MAXPOOLSOLS=
sets
Specifies the input MPS file MPSFILE=
Specifies the constant part of the objective OBJCONSTANT=
Specifies whether the MILP model is a maximization or mini- OBJSENSE=
mization problem
Specifies the primal solution input data set (warm start) PRIMALIN=
Specifies the primal solution output data set PRIMALOUT=
Presolve Option
Specifies the type of presolve PRESOLVER=
Control Options
Specifies the stopping criterion based on absolute objective gap ABSOBJGAP=
Specifies the cutoff value for node removal CUTOFF=
Emphasizes feasibility or optimality EMPHASIS=
Specifies the maximum violation on variables and constraints =~ FEASTOL=
Specifies the maximum allowed difference between an integer INTTOL=
variable’s value and an integer
Specifies the frequency of printing the node log LOGFREQ=
Specifies the detail of solution progress printed in log LOGLEVEL=
Specifies the maximum number of nodes to be processed MAXNODES=
Specifies the maximum number of solutions to be found MAXSOLS=
Specifies the time limit for the optimization process MAXTIME=
Specifies the tolerance used in determining the optimality of OPTTOL=
nodes in the branch-and-bound tree
Toggles ODS output PRINTLEVEL=
Specifies the probing level PROBE=
Specifies the stopping criterion based on relative objective gap RELOBJGAP=
Enables the use of scaling on the problem matrix SCALE=

680 4 Chapter 14: The OPTMILP Procedure

Table 14.1 (continued)

Description Option
Specifies the initial seed for the random number generator SEED=
Specifies the stopping criterion based on target objective value TARGET=
Specifies whether time units are CPU time or real time TIMETYPE=
Heuristics Option

Specifies the primal heuristics level HEURISTICS=
Search Options

Specifies the level of conflict search CONFLICTSEARCH=
Specifies the node selection strategy NODESEL=
Enables use of variable priorities PRIORITY=
Specifies the restarting strategy RESTARTS=

Specifies the number of simplex iterations performed on each STRONGITER=
variable in the strong branching variable selection strategy

Specifies the number of candidates for the strong branching STRONGLEN=
variable selection strategy

Specifies the level of symmetry detection SYMMETRY=
Specifies the rule for selecting the branching variable VARSEL=

Cut Options

Specifies the cut level for all cuts ALLCUTS=
Specifies the clique cut level CUTCLIQUE=
Specifies the flow cover cut level CUTFLOWCOVER=
Specifies the flow path cut level CUTFLOWPATH=
Specifies the Gomory cut level CUTGOMORY=
Specifies the generalized upper bound (GUB) cover cut level CUTGUB=
Specifies the implied bounds cut level CUTIMPLIED=
Specifies the knapsack cover cut level CUTKNAPSACK=
Specifies the lift-and-project cut level CUTLAP=
Specifies the mixed lifted 0-1 cut level CUTMILIFTED=
Specifies the mixed integer rounding (MIR) cut level CUTMIR=
Specifies the multicommodity network flow cut level CUTMULTICOMMODITY=
Specifies the row multiplier factor for cuts CUTSFACTOR=
Specifies the overall cut aggressiveness CUTSTRATEGY=
Specifies the zero-half cut level CUTZEROHALF=
Parallel Options

Enables PROC OPTMILP to run in concurrent mode CONCURRENT=
Enables PROC OPTMILP to run deterministically DETERMINISTIC=
Enables PROC OPTMILP to run in distributed mode DISTRIBUTED=

Specifies the number of threads for the parallel OPTMILP pro- NTHREADS=
cedure to use

PROC OPTMILP Statement
PROC OPTMILP < options> ;
You can specify the following options in the PROC OPTMILP statement.

PROC OPTMILP Statement 4 681

Input and Output Options

DATA=SAS-data-set
specifies the input data set that corresponds to the MILP model. If neither the DATA= option nor the
MPSFILE= option is specified, PROC OPTMILP uses the most recently created SAS data set. For
more information about the input data set, see Chapter 18, “The MPS-Format SAS Data Set.”

DUALOUT=SAS-data-set

DOUT=SAS-data-set
specifies the output data set to contain the constraint activities.

FORMAT=FREE | FIXED
specifies the format of the MPS file that is specified in the MPSFILE= option. You can specify the
following values:

FREE specifies that the fields of a data record are separated by a space.

FIXED specifies that each field of a data record occurs in specific columns.

This option is used only when the MPSFILE= option is specified. For more information about the free
and fixed formats of MPS-format files, see Chapter 18, “The MPS-Format SAS Data Set.”

By default, FORMAT=FREE.

MAXPOOLSOLS=number
specifies the number of solutions to return in the output data sets, where number can be any positive
integer up to the largest four-byte signed integer, which is 231 — 1. By default, MAXPOOLSOLS=1.

MPSFILE=string
specifies the input MPS-format file that corresponds to the MILP model. This option cannot be used
with the DATA= option. If neither the DATA= option nor the MPSFILE= option is specified, PROC
OPTMILP uses the most recently created SAS data set.

OBJCONSTANT=number
OBJECTIVECONSTANT=number

specifies the constant part of the objective, where number can be any number. This option supersedes
the objective right-hand side that is specified in the input data set. By default, OBJCONSTANT=0.

OBJSENSE=MIN | MAX
specifies whether the MILP model is a minimization or a maximization problem. You can use
OBJSENSE=MIN for a minimization problem and OBJSENSE=MAX for a maximization problem.
Alternatively, you can specify the objective sense in the input data set. This option supersedes the
objective sense specified in the input data set. If the objective sense is not specified anywhere, then
PROC OPTMILP interprets and solves the MILP as a minimization problem.

PRIMALIN=SAS-data-set

enables you to input a warm start solution in a SAS data set. PROC OPTMILP validates both the data
set and the solution stored in the data set. If the data set is not valid, then the PRIMALIN= data are
ignored. If the solution stored in a valid PRIMALIN= data set is a feasible integer solution, then it
provides an incumbent solution and a bound for the branch-and-bound algorithm. If the solution stored
in a valid PRIMALIN= data set is infeasible, contains missing values, or contains fractional values
for integer variables, PROC OPTMILP tries to repair the solution with a number of specialized repair
heuristics. See the section “Warm Start” on page 693 for details.

682 4 Chapter 14: The OPTMILP Procedure

PRIMALOUT=SAS-data-set

POUT=SAS-data-set
specifies the output data set for the primal solution. This data set contains the primal solution
information. See the section “Data Input and Output” on page 691 for details.

Presolve Option

PRESOLVER=AUTOMATIC | NONE | BASIC | MODERATE | AGGRESSIVE
specifies a presolve level. You can specify the following values:

AUTOMATIC applies the default level of presolve processing.
NONE disables the presolver.

BASIC performs minimal presolve processing.
MODERATE applies a higher level of presolve processing.
AGGRESSIVE applies the highest level of presolve processing.

By default, PRESOLVER=AUTOMATIC.

Control Options

ABSOBJGAP=number

ABSOLUTEOBJECTIVEGAP=number
specifies a stopping criterion. When the absolute difference between the best integer objective and the
best bound on the objective function value becomes smaller than the value of number, the procedure
stops. The value of number can be any nonnegative number; the default value is 1E-6.

CUTOFF=number
cuts off any nodes in a minimization (maximization) problem that have an objective value at or above
(below) number. The value of number can be any number; the default value is the largest (smallest)
number that can be represented by a double.

EMPHASIS=BALANCE | OPTIMAL | FEASIBLE
specifies the type of search emphasis. You can specify the following values:

BALANCE performs a balanced search.
OPTIMAL emphasizes optimality over feasibility.
FEASIBLE emphasizes feasibility over optimality.

By default, EMPHASIS=BALANCE.

FEASTOL=number
specifies the tolerance that PROC OPTMILP uses to check the feasibility of a solution. This tolerance
applies both to the maximum violation of bounds on variables and to the difference between the right-
hand sides and left-hand sides of constraints. The value of number can be any value between 1E—4 and
1E-9, inclusive. However, the value of number cannot be larger than the integer feasibility tolerance.
If the value of number is larger than the value of the INTTOL= option, then PROC OPTMILP sets
FEASTOL-= to the value of INTTOL=. The default value is 1E-6.

PROC OPTMILP Statement 4 683

If PROC OPTMILP fails to find a feasible solution within this tolerance but does find a solution that
has some violation, then the procedure stops with a solution status of OPTIMAL_COND (see the
section “Macro Variable _OROPTMILP_” on page 705).

INTTOL=number

INTEGERTOLERANCE=number
specifies the amount by which an integer variable value can differ from an integer and still be considered
integer feasible. The value of number can be any number between 1E-9 and 0.5, inclusive. PROC
OPTMILP attempts to find an optimal solution whose integer infeasibility is less than number. The
default value is 1E-5.

If the best solution that PROC OPTMILP finds has an integer infeasibility larger than the value of
number, then PROC OPTMILP stops with a solution status of OPTIMAL_COND (see the section
“Macro Variable _OROPTMILP_" on page 705).

LOGFREQ=k

PRINTFREQ=k
prints information in the node log every k seconds, where k is any nonnegative integer up to the largest
four-byte signed integer, which is 23! — 1. If k=0, then the node log is disabled. If k is positive, then
the root node processing information is printed and, if possible, an entry is made every k seconds. An
entry is also made each time a better integer solution is found.

By default, LOGFREQ=S5.

LOGLEVEL=NONE | BASIC | MODERATE | AGGRESSIVE
controls the amount of information displayed in the SAS log by the solver. You can specify the
following values:

NONE turns off all solver-related messages in the SAS log.
BASIC displays a solver summary after stopping.

MODERATE prints a solver summary and a node log at the interval specified in the LOGFREQ=
option.

AGGRESSIVE prints a detailed solver summary and a node log at the interval specified in the
LOGFREQ= option.

By default, LOGLEVEL=MODERATE.

MAXNODES=number
specifies the maximum number of branch-and-bound nodes to be processed, where number can be
any nonnegative integer up to the largest four-byte signed integer, which is 23! — 1. If you run PROC
OPTMILP in concurrent mode (CONCURRENT=TRUE), then the procedure stops as soon as number
is reached on any machine. If you run PROC OPTMILP in distributed mode (DISTRIBUTED=TRUE),
then the procedure periodically checks and stops as soon as the total number of nodes that are processed
by all grid nodes exceeds number. The default value is 231 — 1.

MAXSOLS=number
specifies a stopping criterion, where number can be any positive integer up to the largest four-byte
signed integer, which is 23! — 1. If number of solutions have been found, then the procedure stops.
The default value of number is 23! — 1.

684 4 Chapter 14: The OPTMILP Procedure

MAXTIME=t
specifies an upper limit of f units of time for reading in the data and performing the optimization
process. The value of the TIMETYPE= option determines the type of units used. If you do not
specify MAXTIME= option, the procedure does not stop because of the amount of time elapsed.
If concurrent or distributed mode of PROC OPTMILP is enabled (CONCURRENT=TRUE or DIS-
TRIBUTED=TRUE), then the procedure stops as soon as ¢ is reached on any machine. The value of ¢
can be any positive number; the default value is the largest number that can be represented by a double.

OPTTOL=number
specifies the tolerance that is used to determine the optimality of nodes in the branch-and-bound tree.

The value of number can be any value between (and including) 1E—4 and 1E-9. The default value is
1E-6.

PRINTLEVEL=0 |1 |2
specifies whether to print a summary of the problem and solution. You can specify the following

values:

0 does not produce or print any Output Delivery System (ODS) tables.

1 produces and prints the following ODS tables: ProblemSummary and SolutionSum-
mary.

2 produces and prints the following ODS tables: ProblemSummary, SolutionSum-

mary, ProblemStatistics, and Timing table.

By default, PRINTLEVEL=1.

For more information about the ODS tables created by PROC OPTMILP, see the section “ODS Tables”
on page 701.

PROBE=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the probing strategy. You can specify the following values:

AUTOMATIC uses the probing strategy that is determined by PROC OPTMILP.
NONE disables probing.

MODERATE uses probing moderately.

AGGRESSIVE uses probing aggressively.

By default, PROBE=AUTOMATIC. For more information, see the section “Presolve and Probing” on
page 697.

RELOBJGAP=number
specifies a stopping criterion based on the best integer objective (BestInteger) and the best bound on
the objective function value (BestBound). The relative objective gap is equal to

|BestInteger — BestBound|/ (1IE—10 + |BestBound|)

When this value becomes smaller than the specified gap size number, the procedure stops. The value
of number can be any nonnegative number; the default value is 1E—4.

PROC OPTMILP Statement 4 685

SCALE=AUTOMATIC | NONE
indicates whether to scale the problem matrix. You can specify the following values:

AUTOMATIC scales the matrix as determined by PROC OPTMILP.
NONE disables scaling.

By default, SCALE=AUTOMATIC.

SEED=number
specifies the initial seed of the random number generator. This option affects the perturbation in the
simplex solvers; thus it might result in a different optimal solution and a different solver path. This
option usually has a significant, but unpredictable, effect on the solution time. The value of number
can be any positive integer up to the largest four-byte signed integer, which is 23! — 1. The default
value of the seed is 100.

TARGET=number
specifies a stopping criterion for a minimization or maximization problem. If the best integer objective
is better than or equal to number, the procedure stops. The value of number can be any number; the
default value is the largest (in magnitude) negative number (for a minimization problem) or the largest
(in magnitude) positive number (for a maximization problem) that can be represented by a double.

TIMETYPE=CPU | REAL
specifies whether CPU time or real time is used for the MAXTIME= option and the _ OROPTMILP_
macro variable in a PROC OPTMILP call. You can specify the following values:

CPU specifies that units are in CPU time.

REAL specifies that units are in real time.

By default, TIMETYPE=REAL.

Heuristics Option

HEURISTICS=AUTOMATIC | NONE | BASIC | MODERATE | AGGRESSIVE
controls the level of primal heuristics applied by PROC OPTMILP. This level determines how frequently
primal heuristics are applied during the branch-and-bound tree search. It also affects the maximum
number of iterations allowed in iterative heuristics. Some computationally expensive heuristics might
be disabled by the solver at less aggressive levels. You can specify the following values:

AUTOMATIC applies the default level of heuristics, similar to MODERATE.

NONE disables all primal heuristics. This value does not disable the heuristics that repair
an infeasible input solution that is specified in a PRIMALIN= data set.

BASIC applies basic primal heuristics at low frequency.

MODERATE applies most primal heuristics at moderate frequency.

AGGRESSIVE applies all primal heuristics at high frequency.

By default, HEURISTICS=AUTOMATIC. For more information about primal heuristics, see the
section “Primal Heuristics” on page 698.

686 4 Chapter 14: The OPTMILP Procedure

Search Options

CONFLICTSEARCH=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the level of conflict search performed by PROC OPTMILP. Conflict search is used to find
clauses resulting from infeasible subproblems that arise in the search tree. You can specify the
following values:

AUTOMATIC performs conflict search based on a strategy that is determined by PROC OPTMILP.
NONE disables conflict search.

MODERATE performs a moderate conflict search.

AGGRESSIVE performs an aggressive conflict search.

By default, CONFLICTSEARCH=AUTOMATIC.

NODESEL=AUTOMATIC | BESTBOUND | BESTESTIMATE | DEPTH
specifies the node selection strategy. You can specify the following values:

AUTOMATIC uses automatic node selection.
BESTBOUND chooses the node with the best relaxed objective (best-bound-first strategy).

BESTESTIMATE chooses the node with the best estimate of the integer objective value (best-
estimate-first strategy).

DEPTH chooses the most recently created node (depth-first strategy).

By default, NODESEL=AUTOMATIC. For more information about node selection, see the section
“Node Selection” on page 695.

PRIORITY=TRUE | FALSE
indicates whether to use specified branching priorities for integer variables. You can specify the
following values:

TRUE uses priorities when they exist.
FALSE ignores variable priorities.

By default, PRIORITY=TRUE. For more information, see the section “Branching Priorities” on
page 696.

RESTARTS=AUTOMATIC | NONE | BASIC | MODERATE | AGGRESSIVE
specifies the strategy for restarting the processing of the root node. You can specify the following
values:

AUTOMATIC uses a restarting strategy determined by PROC OPTMILP.

NONE disables restarting.
BASIC uses a basic restarting strategy.
MODERATE uses a moderate restarting strategy.

AGGRESSIVE uses an aggressive restarting strategy.

By default, RESTARTS=AUTOMATIC.

PROC OPTMILP Statement 4 687

STRONGITER=number | AUTOMATIC
specifies the number of simplex iterations performed for each variable in the candidate list when using
the strong branching variable selection strategy. The value of number can be any positive integer up
to the largest four-byte signed integer, which is 23! — 1. If you specify the keyword AUTOMATIC,
PROC OPTMILP uses the default value; this value is calculated automatically.

STRONGLEN=number | AUTOMATIC
specifies the number of candidates used when performing the strong branching variable selection
strategy. The value of number can be any positive integer up to the largest four-byte signed integer,
which is 23! — 1. If you specify the keyword AUTOMATIC, PROC OPTMILP uses the default value;
this value is calculated automatically.

SYMMETRY=AUTOMATIC | NONE | BASIC | MODERATE | AGGRESSIVE
specifies the level of symmetry detection. Symmetry detection identifies groups of equivalent decision
variables and uses this information to solve the problem more efficiently. You can specify the following
values:

AUTOMATIC performs symmetry detection based on a strategy that is determined by PROC

OPTMILP.
NONE disables symmetry detection.
BASIC performs a basic symmetry detection.
MODERATE performs a moderate symmetry detection.

AGGRESSIVE performs an aggressive symmetry detection.

By default, SYMMETRY=AUTOMATIC. For more information about symmetry detection, see
(Ostrowski 2008).

VARSEL=AUTOMATIC | MAXINFEAS | MININFEAS | PSEUDO | STRONG
specifies the rule for selecting the branching variable. You can specify the following values:

AUTOMATIC uses automatic branching variable selection.
MAXINFEAS chooses the variable with maximum infeasibility.

MININFEAS chooses the variable with minimum infeasibility.
PSEUDO chooses a branching variable based on pseudocost.
STRONG uses a strong branching variable selection strategy.

By default, VARSEL=AUTOMATIC. For details about variable selection, see the section “Variable
Selection” on page 696.

Cut Options
Table 14.2 describes the string values for the cut options in PROC OPTMILP.

688 4 Chapter 14: The OPTMILP Procedure

Table 14.2 Values for Individual Cut Options

string Description

AUTOMATIC Generates cutting planes based on a strategy
determined by PROC OPTMILP

NONE Disables generation of cutting planes

MODERATE Uses a moderate cut strategy

AGGRESSIVE Uses an aggressive cut strategy

You can specify the CUTSTRATEGY= option to set the overall aggressiveness of the cut generation in
PROC OPTMILP. Alternatively, you can use the ALLCUTS= option to set all cut types to the same level.
You can override the ALLCUTS= value by using the options that correspond to particular cut types. For
example, if you want PROC OPTMILP to generate only Gomory cuts, specify ALLCUTS=NONE and
CUTGOMORY=AUTOMATIC. If you want to generate all cuts aggressively but generate no lift-and-project
cuts, set ALLCUTS=AGGRESSIVE and CUTLAP=NONE.

ALLCUTS=AUTOMATIC | NONE | MODERATE | AGGRESSIVE

provides a shorthand way of setting all the cuts-related options in one setting. In other words,
ALLCUTS=string is equivalent to setting each of the individual cuts parameters to the same value
string. Thus, ALLCUTS=AUTOMATIC has the effect of setting CUTCLIQUE=AUTOMATIC,
CUTFLOWCOVER=AUTOMATIC, ..., and CUTZEROHALF=AUTOMATIC. Table 14.2 lists
the values that can be assigned to string. In addition, you can override levels for individual cuts
with the CUTCLIQUE=, CUTFLOWCOVER=, CUTFLOWPATH=, CUTGOMORY=, CUTGUB-=,
CUTIMPLIED=, CUTKNAPSACK=, CUTLAP=, CUTMILIFTED=, CUTMIR=, CUTMULTI-
COMMODITY=, and CUTZEROHALF= options. If the ALLCUTS= option is not specified, all
the cuts-related options are either set to their individually specified values (if the corresponding option
is specified) or to their default values (if that option is not specified).

CUTCLIQUE=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the level of clique cuts generated by PROC OPTMILP. Table 14.2 describes the possible
values. This option overrides the ALLCUTS= option. By default, CUTCLIQE=AUTOMATIC.

CUTFLOWCOVER=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the level of flow cover cuts generated by PROC OPTMILP. Table 14.2 describes the possible
values. This option overrides the ALLCUTS= option. By default, CUTFLOWCOVER=AUTOMATIC.

CUTFLOWPATH=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the level of flow path cuts generated by PROC OPTMILP. Table 14.2 describes the possible
values. This option overrides the ALLCUTS= option. By default, CUTFLOWPATH=AUTOMATIC.

CUTGOMORY=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the level of Gomory cuts generated by PROC OPTMILP. Table 14.2 describes the possible
values. This option overrides the ALLCUTS= option. By default, CUTGOMORY=AUTOMATIC.

CUTGUB=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the level of generalized upper bound (GUB) cover cuts generated by PROC OPTMILP.
Table 14.2 describes the possible values. This option overrides the ALLCUTS= option. By default,
CUTGUB=AUTOMATIC.

PROC OPTMILP Statement 4 689

CUTIMPLIED=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the level of implied bound cuts generated by PROC OPTMILP. Table 14.2 describes the possi-
ble values. This option overrides the ALLCUTS= option. By default, CUTIMPLIED=AUTOMATIC.

CUTKNAPSACK=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the level of knapsack cover cuts generated by PROC OPTMILP. Table 14.2 describes
the possible values. This option overrides the ALLCUTS= option. By default, CUTKNAP-
SACK=AUTOMATIC.

CUTLAP=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the level of lift-and-project (LAP) cuts generated by PROC OPTMILP. Table 14.2 describes
the possible values. This option overrides the ALLCUTS= option. By default, CUTLAP=NONE.

CUTMILIFTED=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the level of mixed lifted 0-1 cuts that are generated by PROC OPTMILP. Table 14.2
describes the possible values. This option overrides the ALLCUTS= option. By default, CUT-
MILIFTED=AUTOMATIC.

CUTMIR=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the level of mixed integer rounding (MIR) cuts generated by PROC OPTMILP. Table 14.2
describes the possible values. This option overrides the ALLCUTS= option. By default, CUT-
MIR=AUTOMATIC.

CUTMULTICOMMODITY=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the level of multicommodity network flow cuts generated by PROC OPTMILP. Table 14.2
describes the possible values. This option overrides the ALLCUTS= option. By default, CUTMULTI-
COMMODITY=AUTOMATIC.

CUTSFACTOR=number
specifies a row multiplier factor for cuts. The number of cuts that are added is limited to number times
the original number of rows. The value of number can be any nonnegative number less than or equal
to 100; the default value is automatically calculated by PROC OPTMILP.

CUTSTRATEGY=AUTOMATIC | NONE | MODERATE | AGGRESSIVE

CUTS=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the overall aggressiveness of the cut generation in the procedure. By default, CUTSTRAT-
EGY=AUTOMATIC. Setting a nondefault value adjusts a number of cut parameters such that the cut
generation is none, moderate, or aggressive compared to the default value.

CUTZEROHALF=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the level of zero-half cuts that are generated by PROC OPTMILP. Table 14.2 describes
the possible values. This option overrides the ALLCUTS= option. By default, CUTZERO-
HALF=AUTOMATIC.

Parallel Options

CONCURRENT=TRUE | FALSE
specifies whether to run PROC OPTMILP in concurrent mode. You can specify the following values:

690 4 Chapter 14: The OPTMILP Procedure

TRUE runs PROC OPTMILP in concurrent mode. The solver automatically runs the same
problem on each grid node with different PROC OPTMILP options.
FALSE turns off concurrent mode for PROC OPTMILP.

By default, CONCURRENT=FALSE.

DETERMINISTIC=TRUE | FALSE
specifies whether to run PROC OPTMILP deterministically when distributed or concurrent mode is
enabled. The DETERMINISTIC= option is valid only when DISTRIBUTED=TRUE or CONCUR-
RENT=TRUE. You can specify the following values:

TRUE runs PROC OPTMILP in deterministic distributed or concurrent mode. The proce-
dure always returns the same solution for subsequent runs on the same grid.

FALSE runs PROC OPTMILP in nondeterministic distributed or concurrent mode.

By default, DETERMINISTIC=FALSE when you specify CONCURRENT=TRUE, and DETERMIN-
ISTIC=TRUE when you specify DISTRIBUTED=TRUE.

DISTRIBUTED=TRUE | FALSE
specifies whether to run PROC OPTMILP in distributed mode. For more information about this option
as it relates to the standard PROC OPTMILP processing, see the section “Parallel Processing” on
page 699. For more information about this option as it relates to the decomposition algorithm, see
Chapter 16, “The Decomposition Algorithm.” You can specify the following values:

TRUE runs PROC OPTMILP in distributed mode.
FALSE turns off distributed mode for PROC OPTMILP.

By default, DISTRIBUTED=FALSE.

NTHREADS=number
specifies the maximum number of threads to use for multithreaded processing. The branch-and-cut
algorithm can take advantage of multicore machines and can potentially run faster when number is
greater than 1. The value of number can be any integer between 1 and 256, inclusive. The default is
the number of cores on the machine that executes the process or the number of cores permissible based
on your installation (whichever is less). The number of simultaneously active CPUs is limited by your
installation and license configuration.

Decomposition Algorithm Statements
The following statements are available for the decomposition algorithm in the OPTMILP procedure:
DECOMP < options> ;
DECOMPMASTER < options > ;
DECOMPMASTER_IP < options > ;
DECOMPSUBPROB < options > ;

For more information about these statements, see Chapter 16, “The Decomposition Algorithm.”

TUNER Statement 4+ 691

TUNER Statement

TUNER < performance-options > ;

The TUNER statement invokes the OPTMILP option tuner. The option tuner is a tool that enables you to
explore alternative (and potentially better) option configurations for your optimization problems. For more
information about this feature, see Chapter 17, “The OPTMILP Option Tuner.”

Details: OPTMILP Procedure

Data Input and Output

This subsection describes the PRIMALIN= data set required to warm start PROC OPTMILP, in addition to
the PRIMALOUT= and DUALOUT= data sets.

Definitions of Variables in the PRIMALIN= Data Set

The PRIMALIN= data set must contain the following variables:

VAR
specifies the variable (column) names of the problem. The values should match the column names in
the DATA= data set for the current problem.

VALUE
specifies the solution value for each variable in the problem.

The PRIMALIN= data set can also contain the following optional variable:

SOL
specifies the identifier of the input solution. This optional numeric field is strictly needed only in cases
where you specify multiple input solutions through the PRIMALIN= data set. Each solution needs to
have a unique corresponding identifier.

NOTE: If PROC OPTMILP produces a feasible solution, the primal output data set from that run can be
used as the PRIMALIN= data set for a subsequent run, provided that the variable names are the same. If
this input solution is not feasible for the subsequent run, the solver automatically tries to repair it. For more
information, see the section “Warm Start” on page 693.

Definitions of Variables in the PRIMALOUT= Data Set

PROC OPTMILP stores the current best integer feasible solution of the problem in the data set that is
specified in the PRIMALOUT= option. The variables in this data set are defined as follows:

_OBJ_ID_
specifies the identifier of the objective function.

692 4 Chapter 14: The OPTMILP Procedure

_RHS_ID_
specifies the identifier of the right-hand side.

VAR
specifies the variable (column) names.

TYPE
specifies the variable type. _TYPE_ can take one of the following values:

C continuous variable
I general integer variable

B binary variable (0 or 1)

OBJCOEF
specifies the coefficient of the variable in the objective function.

LBOUND
specifies the lower bound on the variable.

UBOUND
specifies the upper bound on the variable.

VALUE
specifies the value of the variable in the current solution.

SOL
specifies the identifier of the output solution. You can specify the number of solutions to return in the
PRIMALOUT= data set by setting the MAXPOOLSOLS= option. Each solution has its own identifier,
starting from 1. Only feasible and unique solutions are returned.

NOTE: Both the PRIMALOUT= and DUALOUT= data sets are ordered by the _SOL_ identifier. Solu-
tions that have the same or better objective value have a lower _SOL_ identifier. In the PRIMALOUT=
and DUALOUT= data sets, the respective solutions and activities that have the same _SOL_ identifier
correspond to each other.

Definitions of the DUALOUT= Data Set Variables

The DUALOUT= data set contains the constraint activities that correspond to the primal solution in the
PRIMALOUT= data set. Information about additional objective rows of the MILP problem is not included.
The variables in this data set are defined as follows:

_OBJ_ID_
specifies the identifier of the objective function from the input data set.

_RHS_ID_
specifies the identifier of the right-hand side from the input data set.

ROW
specifies the constraint (row) name.

Warm Start 4 693

TYPE
specifies the constraint type. _TYPE_ can take one of the following values:
L “less than or equal” constraint
E equality constraint
G “greater than or equal” constraint
R ranged constraint (both “less than or equal” and “greater than or equal”)
RHS
specifies the value of the right-hand side of the constraint. It takes a missing value for a ranged
constraint.
L RHS
specifies the lower bound of a ranged constraint. It takes a missing value for a non-ranged constraint.
_U_RHS_
specifies the upper bound of a ranged constraint. It takes a missing value for a non-ranged constraint.
ACTIVITY

specifies the activity of a constraint for a given primal solution. In other words, the value of _ACTIV-

ITY_ for the ith constraint is equal to aiT x, where a; refers to the ith row of the constraint matrix and x
denotes the vector of the current primal solution.

SOL

gpeciﬁes the identifier of the corresponding solution in the PRIMALOUT= data set.

Warm Start

PROC OPTMILP enables you to input a warm start solution by using the PRIMALIN= option. PROC
OPTMILP checks that the decision variables named in _ VAR _ are the same as those in the MPS-format SAS
data set. If they are not the same, PROC OPTMILP issues a warning and ignores the input solution. PROC
OPTMILP also checks whether the solution is infeasible, contains missing values, or contains fractional
values for integer variables. If this is the case, PROC OPTMILP attempts to repair the solution with a number
of specialized repair heuristics. The success of the attempt largely depends both on the specific model and on
the proximity between the input solution and an integer feasible solution. An infeasible input solution can be
considered a hint for PROC OPTMILP that might or might not help to solve the problem.

An integer feasible or repaired input solution provides an incumbent solution in addition to an upper (min) or
lower (max) bound for the branch-and-bound algorithm. PROC OPTMILP uses the input solution to reduce
the search space and to guide the search process. When it is difficult to find a good integer feasible solution
for a problem, warm start can reduce solution time significantly.

Branch-and-Bound Algorithm

The branch-and-bound algorithm, first proposed by Land and Doig (1960), is an effective approach to solving
mixed integer linear programs. The following discussion outlines the approach and explains how PROC
OPTMILP enhances the basic algorithm by using several advanced techniques.

694 4 Chapter 14: The OPTMILP Procedure

The branch-and-bound algorithm solves a mixed integer linear program by dividing the search space and
generating a sequence of subproblems. The search space of a mixed integer linear program can be represented
by a tree. Each node in the tree is identified with a subproblem derived from previous subproblems on
the path that leads to the root of the tree. The subproblem (MILP?) associated with the root is identical to
the original problem, which is called (MILP), given in the section “Overview: OPTMILP Procedure” on
page 675.

The linear programming relaxation (LP?) of (MILP®) can be written as

min ¢!'x

subjectto Ax {>,=,<} b
I<x<u

The branch-and-bound algorithm generates subproblems along the nodes of the tree by using the following
scheme. Consider x°, the optimal solution to (LP?), which is usually obtained by using the dual simplex
algorithm. If)Elp is an integer for all i € S, then x° is an optimal solution to (MILP). Suppose that for some
i €S,)E? is nonintegral. In that case the algorithm defines two new subproblems (MILP') and (MILP?),
descendants of the parent subproblem (MILP?). The subproblem (MILP!) is identical to (MILP®) except for
the additional constraint

xi < %]
and the subproblem (MILP?) is identical to (MILP?) except for the additional constraint

xi > [%)]

The notation | y | represents the largest integer that is less than or equal to y, and the notation [y] represents
the smallest integer that is greater than or equal to y. The two preceding constraints can be handled by
modifying the bounds of the variable x; rather than by explicitly adding the constraints to the constraint
matrix. The two new subproblems do not have %9 as a feasible solution, but the integer solution to (MILP)
must satisfy one of the preceding constraints. The two subproblems thus defined are called active nodes in
the branch-and-bound tree, and the variable x; is called the branching variable.

In the next step the branch-and-bound algorithm chooses one of the active nodes and attempts to solve the
linear programming relaxation of that subproblem. The relaxation might be infeasible, in which case the
subproblem is dropped (fathomed). If the subproblem can be solved and the solution is integer feasible
(that is, x; is an integer for all i € &), then its objective value provides an upper bound for the objective
value in the minimization problem (MILP); if the solution is not integer feasible, then it defines two new
subproblems. Branching continues in this manner until there are no active nodes. At this point the best
integer solution found is an optimal solution for (MILP). If no integer solution has been found, then (MILP)
is integer infeasible. You can specify other criteria to stop the branch-and-bound algorithm before it processes
all the active nodes; see the section “Controlling the Branch-and-Bound Algorithm” on page 695 for details.

Upper bounds from integer feasible solutions can be used to fathom or cut off active nodes. Since the
objective value of an optimal solution cannot be greater than an upper bound, active nodes with lower bounds
higher than an existing upper bound can be safely deleted. In particular, if z is the objective value of the
current best integer solution, then any active subproblems whose relaxed objective value is greater than or
equal to z can be discarded.

It is important to realize that mixed integer linear programs are nondeterministic polynomial-time hard
(NP-hard). Roughly speaking, this means that the effort required to solve a mixed integer linear program

Controlling the Branch-and-Bound Algorithm 4 695

grows exponentially with the size of the problem. For example, a problem with 10 binary variables can
generate in the worst case 2!% = 1,024 nodes in the branch-and-bound tree. A problem with 20 binary
variables can generate in the worst case 22° = 1,048,576 nodes in the branch-and-bound tree. Although it is
unlikely that the branch-and-bound algorithm has to generate every single possible node, the need to explore
even a small fraction of the potential number of nodes for a large problem can be resource-intensive.

A number of techniques can speed up the search progress of the branch-and-bound algorithm. Heuristics
are used to find feasible solutions, which can improve the upper bounds on solutions of mixed integer linear
programs. Cutting planes can reduce the search space and thus improve the lower bounds on solutions of
mixed integer linear programs. When using cutting planes, the branch-and-bound algorithm is also called the
branch-and-cut algorithm. Preprocessing can reduce problem size and improve problem solvability. PROC
OPTMILP employs various heuristics, cutting planes, preprocessing, and other techniques, which you can
control through corresponding options.

Controlling the Branch-and-Bound Algorithm

There are numerous strategies that can be used to control the branch-and-bound search (see Linderoth and
Savelsbergh 1998, Achterberg, Koch, and Martin 2005). PROC OPTMILP implements the most widely used
strategies and provides several options that enable you to direct the choice of the next active node and of
the branching variable. In the discussion that follows, let (LP¥) be the linear programming relaxation of
subproblem (MILP¥). Also, let

filk) = x¥ — |xF]

where x* is the optimal solution to the relaxation problem (LP¥) solved at node k.

Node Selection

The NODESEL= option specifies the strategy used to select the next active node. The valid keywords for this
option are AUTOMATIC, BESTBOUND, BESTESTIMATE, and DEPTH. The following list describes the
strategy associated with each keyword:

AUTOMATIC allows PROC OPTMILP to choose the best node selection strategy based on problem
characteristics and search progress. This is the default setting.

BESTBOUND chooses the node with the smallest (or largest, in the case of a maximization problem)
relaxed objective value. The best-bound strategy tends to reduce the number of nodes
to be processed and can improve lower bounds quickly. However, if there is no good
upper bound, the number of active nodes can be large. This can result in the solver
running out of memory.

BESTESTIMATE chooses the node with the smallest (or largest, in the case of a maximization problem)
objective value of the estimated integer solution. Besides improving lower bounds,
the best-estimate strategy also attempts to process nodes that can yield good feasible
solutions.

DEPTH chooses the node that is deepest in the search tree. Depth-first search is effective in
locating feasible solutions, since such solutions are usually deep in the search tree.
Compared to the costs of the best-bound and best-estimate strategies, the cost of
solving LP relaxations is less in the depth-first strategy. The number of active nodes is

696 4 Chapter 14: The OPTMILP Procedure

generally small, but it is possible that the depth-first search will remain in a portion
of the search tree with no good integer solutions. This occurrence is computationally
expensive.

Variable Selection

The VARSEL= option specifies the strategy used to select the next branching variable. The valid keywords
for this option are AUTOMATIC, MAXINFEAS, MININFEAS, PSEUDOQO, and STRONG. The following list
describes the action taken in each case when x¥, a relaxed optimal solution of (MILPk), is used to define two
active subproblems. In the following list, “INTTOL” refers to the value assigned using the INTTOL= option.
For details about the INTTOL= option, see the section “Control Options” on page 682.

AUTOMATIC enables PROC OPTMILP to choose the best variable selection strategy based on problem
characteristics and search progress. This is the default setting.

MAXINFEAS chooses as the branching variable the variable x; such that i maximizes
{min{ fi (k),1— fi(k)} | i € S and
INTTOL < f;(k) <1 —INTTOL}
MININFEAS chooses as the branching variable the variable x; such that i minimizes
{min{ fj (k),1 — fi(k)} |i € S and
INTTOL < f;(k) <1—INTTOL}

PSEUDO chooses as the branching variable the variable x; such that i maximizes the weighted up
and down pseudocosts. Pseudocost branching attempts to branch on significant variables
first, quickly improving lower bounds. Pseudocost branching estimates significance based
on historical information; however, this approach might not be accurate for future search.

STRONG chooses as the branching variable the variable x; such that i maximizes the estimated
improvement in the objective value. Strong branching first generates a list of candidates,
then branches on each candidate and records the improvement in the objective value.
The candidate with the largest improvement is chosen as the branching variable. Strong
branching can be effective for combinatorial problems, but it is usually computationally
expensive.

Branching Priorities

In some cases, it is possible to speed up the branch-and-bound algorithm by branching on variables in a
specific order. You can accomplish this in PROC OPTMILP by attaching branching priorities to the integer
variables in your model.

You can set branching priorities for use by PROC OPTMILP in two ways. You can specify the branching
priorities directly in the input MPS-format data set; see the section “BRANCH Section (Optional)” on
page 889 for details. If you are constructing a model in PROC OPTMODEL, you can set branching priorities
for integer variables by using the .priority suffix. More information about this suffix is available in the section
“Integer Variable Suffixes” on page 139 in Chapter 5. For an example in which branching priorities are used,
see Example 9.3.

Presolve and Probing 4 697

Presolve and Probing

PROC OPTMILP includes a variety of presolve techniques to reduce problem size, improve numerical
stability, and detect infeasibility or unboundedness (Andersen and Andersen 1995; Gondzio 1997). During
presolve, redundant constraints and variables are identified and removed. Presolve can further reduce the
problem size by substituting variables. Variable substitution is a very effective technique, but it might
occasionally increase the number of nonzero entries in the constraint matrix. Presolve might also modify the
constraint coefficients to tighten the formulation of the problem.

In most cases, using presolve is very helpful in reducing solution times. You can enable presolve at different
levels by specifying the PRESOLVER= option.

Probing is a technique that tentatively sets each binary variable to O or 1, then explores the logical conse-
quences (Savelsbergh 1994). Probing can expedite the solution of a difficult problem by fixing variables and
improving the model. However, probing is often computationally expensive and can significantly increase the
solution time in some cases. You can enable probing at different levels by specifying the PROBE= option.

Cutting Planes

The feasible region of every linear program forms a polyhedron. Every polyhedron in n-space can be
written as a finite number of half-spaces (equivalently, inequalities). In the notation used in this chapter, this
polyhedron is defined by the set @ = {x € R" | Ax < b,] < x < u}. After you add the restriction that
some variables must be integral, the set of feasible solutions, 7 = {x € Q | x; € Z Vi € S}, no longer
forms a polyhedron.

The convex hull of a set X is the minimal convex set that contains X. In solving a mixed integer linear program,
in order to take advantage of LP-based algorithms you want to find the convex hull, conv(F), of F. If you
can find conv(F) and describe it compactly, then you can solve a mixed integer linear program with a linear
programming solver. This is generally very difficult, so you must be satisfied with finding an approximation.
Typically, the better the approximation, the more efficiently the LP-based branch-and-bound algorithm can
perform.

As described in the section “Branch-and-Bound Algorithm” on page 693, the branch-and-bound algorithm
begins by solving the linear programming relaxation over the polyhedron Q. Clearly, O contains the convex
hull of the feasible region of the original integer program; that is, conv(F) C Q.

Cutting plane techniques are used to tighten the linear relaxation to better approximate conv(F). Assume
you are given a solution X to some intermediate linear relaxation during the branch-and-bound algorithm. A
cut, or valid inequality (wx < 7?), is some half-space with the following characteristics:

e The half-space contains conv(JF); that is, every integer feasible solution is feasible for the cut (7x <
0
', Vx € F).

o The half-space does not contain the current solution X; that is, X is not feasible for the cut (wx > 7).
Cutting planes were first made popular by Dantzig, Fulkerson, and Johnson (1954) in their work on the

traveling salesman problem. The two major classifications of cutting planes are generic cuts and structured
cuts. Generic cuts are based solely on algebraic arguments and can be applied to any relaxation of any

698 4 Chapter 14: The OPTMILP Procedure

integer program. Structured cuts are specific to certain structures that can be found in some relaxations of
the mixed integer linear program. These structures are automatically discovered during the cut initialization
phase of PROC OPTMILP. Table 14.3 lists the various types of cutting planes that are built into PROC
OPTMILP. Included in each type are algorithms for numerous variations based on different relaxations and
lifting techniques. For a survey of cutting plane techniques for mixed integer programming, see Marchand
et al. (1999). For a survey of lifting techniques, see Atamturk (2004).

Table 14.3 Cutting Planes in PROC OPTMILP

Generic Cutting Planes Structured Cutting Planes

Gomory mixed integer Cliques

Lift-and-project Flow cover

Mixed integer rounding Flow path

Mixed lifted 0-1 Generalized upper bound cover
Zero-half Implied bound

Knapsack cover
Multicommodity network flow

You can set levels for individual cuts by using the CUTCLIQUE=, CUTFLOWCOVER=, CUTFLOWPATH=,
CUTGOMORY=, CUTGUB=, CUTIMPLIED=, CUTKNAPSACK=, CUTLAP=, CUTMIR=, CUTMULTI-
COMMODITY=, and CUTZEROHALF= options. The valid levels for these options are given in Table 14.2.

The cut level determines the internal strategy used by PROC OPTMILP for generating the cutting planes.
The strategy consists of several factors, including how frequently the cut search is called, the number of cuts
allowed, and the aggressiveness of the search algorithms.

Sophisticated cutting planes, such as those included in PROC OPTMILP, can take a great deal of CPU time.
Usually, the additional tightening of the relaxation helps speed up the overall process because it provides
better bounds for the branch-and-bound tree and helps guide the LP solver toward integer solutions. In rare
cases, shutting off cutting planes completely might lead to faster overall run times.

The default settings of PROC OPTMILP have been tuned to work well for most instances. However,
problem-specific expertise might suggest adjusting one or more of the strategies. These options give you that
flexibility.

Primal Heuristics

Primal heuristics, an important component of PROC OPTMILP, are applied during the branch-and-bound
algorithm. They are used to find integer feasible solutions early in the search tree, thereby improving the
upper bound for a minimization problem. Primal heuristics play a role that is complementary to cutting planes
in reducing the gap between the upper and lower bounds, thus reducing the size of the branch-and-bound tree.

Applying primal heuristics in the branch-and-bound algorithm assists in the following areas:
e finding a good upper bound early in the tree search (this can lead to earlier fathoming, resulting in
fewer subproblems to be processed)

e locating a reasonably good feasible solution when that is sufficient (sometimes a good feasible solution
is the best the solver can produce within certain time or resource limits)

Parallel Processing 4 699

e providing upper bounds for some bound-tightening techniques

The OPTMILP procedure implements several heuristic methodologies. Some algorithms, such as rounding
and iterative rounding (diving) heuristics, attempt to construct an integer feasible solution by using fractional
solutions to the continuous relaxation at each node of the branch-and-cut tree. Other algorithms start with an
incumbent solution and attempt to find a better solution within a neighborhood of the current best solution.

The HEURISTICS= option enables you to control the level of primal heuristics that are applied by PROC
OPTMILP. This level determines how frequently primal heuristics are applied during the tree search. Some
expensive heuristics might be disabled by the solver at less aggressive levels. Setting the HEURISTICS=
option to a lower level also reduces the maximum number of iterations that are allowed in iterative heuristics.

Parallel Processing

You can run the branch-and-cut algorithm in the following modes:

¢ In single-machine mode, the computation is executed on a single computer by multiple threads. The
number of threads is specified in the NTHREADS= option.

e In distributed mode, the branch-and-cut algorithm is executed on a cluster of nodes. You disable
deterministic distributed mode by specifying DETERMINISTIC=FALSE in the PROC OPTMILP
statement. By default, PROC OPTMILP is executed deterministically.

e In concurrent mode, the computation is executed on a cluster of nodes by solving the same problem
across those nodes under different PROC OPTMILP settings. By default, PROC OPTMILP is executed
nondeterministically.

You can run the decomposition algorithm in either single-machine or distributed mode. In distributed mode,
the computation is executed on multiple computing nodes in a distributed computing environment.

Node Log
The following information about the status of the branch-and-bound algorithm is printed in the node log:
Node indicates the sequence number of the current node in the search tree.
Active indicates the current number of active nodes in the branch-and-bound tree.
Sols indicates the number of feasible solutions that are found so far. You can use the

MAXPOOLSOLS= option to obtain more than one solution. Note that the number
printed in the node log can be different from the number of found solutions that is
reported in the solution summary.

BestInteger indicates the best upper bound (assuming minimization) that is found so far.

BestBound indicates the best lower bound (assuming minimization) that is found so far.

700 4 Chapter 14: The OPTMILP Procedure

Gap

Time

indicates the relative gap between BestInteger and BestBound, displayed as a percentage.
If the relative gap is larger than 1,000, then the absolute gap is displayed. If no active
nodes remain, the value of Gap is O.

indicates the elapsed real or CPU time.

If CONCURRENT=TRUE, then the following information about the status of the branch-and-bound algorithm
is printed in the node log:

Node
Active

Sols
Bestlnteger

BestBound

Gap

Time

indicates the total number of nodes that are processed by all concurrent solves.
indicates the minimum number of active nodes among all concurrent solves.
indicates the number of feasible solutions that are found by all concurrent solves.

indicates the best upper bound (assuming minimization) that is found by all concurrent
solves.

indicates the best lower bound (assuming minimization) that is found by all concurrent
solves.

indicates the relative gap between BestInteger and BestBound, displayed as a percentage.
If the relative gap is larger than 1,000, then the absolute gap is displayed. If no active
nodes remain, the value of Gap is 0.

indicates the elapsed real or CPU time.

If CONCURRENT=TRUE, the node log displays the progress of the overall grid. If DETERMINIS-
TIC=TRUE, PROC OPTMILP tries to return a reproducible solution. Therefore, there might be discrepancies
between the node log and the final solution that is reported by the deterministic concurrent OPTMILP

procedure.

The LOGFREQ= and LOGLEVEL= options can be used to control the amount of information that is printed
in the node log. By default, the root node processing information is printed and, if possible, an entry is
made every five seconds. A new entry is also included each time a better integer solution is found. The
LOGFREQ-= option enables you to change the interval between entries in the node log. Figure 14.4 shows a

sample node log.

NOTE:

NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:

NOTE:
NOTE:
NOTE:

NOTE:
NOTE: Objective
NOTE: There were 475 observations read from the data set WORK.MPSDATA.

The problem BELL3A has 133 variables (39 binary,

fixed) .

The problem has 123 constraints

The problem has 347 constraint coefficients.

The MPS read time is 0.01 seconds.

The MILP presolver
The MILP presolver
The MILP presolver
The MILP presolver

The presolved problem has 88 variables,

constraint coefficients.

The MILP solver is called.

(123 LE,

Figure 14.4 Sample Node Log

value AUTOMATIC is applied.

removed 144 constraint coefficients.
modified 25 constraint coefficients.

64 constraints,

The parallel Branch and Cut algorithm is used.

The Branch and Cut algorithm is using up to 16 threads.

Node
0
378
381
392
502
896
897
1596
1617
1705
2221
2227
2368
2382
2630
5677
Optimal.

Active
1
362
363
370
455
188
188
134
149
82
287
288
336
343
424

Sols

O © 4 60 U bdh W N P O

B R R R Rk R
S R N

= 878430.316.

BestInteger

918528
916952
913798
898096
897846
896314
888839
881651
878651
878430
878430
878430
878430
878430
878430

BestBound
869515
872143
872143
872143
872660
873441
873441
874847
874847
874847
874847
874847
874847
874847
874875
878430

32 integer,

removed 45 variables and 59 constraints.

and

O O O O O O O O Fr M NN M B G

0 EQ, 0 GE, O range).

ODS Tables 4 701

0 free, 0
203
Gap Time
0
.32% 0
.14% 0
.78% 0
.91% 0
.79% 0
.62% 0
.60% 0
.78% 0
.43% 0
.41% 0
.41% 0
.41% 0
.41% 0
.41% 0
.00% 0

ODS Tables

PROC OPTMILP creates two Output Delivery System (ODS) tables by default. The first table, ProblemSum-
mary, is a summary of the input MILP problem. The second table, SolutionSummary, is a brief summary
of the solution status. You can use ODS table names to select tables and create output data sets. For more
information about ODS, see SAS Output Delivery System: User’s Guide.

If you specify a value of 2 for the PRINTLEVEL= option, then the ProblemStatistics table and a Timing
table are produced. The ProblemStatistics table contains information about the problem data. See the section
“Problem Statistics” on page 705 for more information. The Timing table contains detailed information about
the solution time.

702 4 Chapter 14: The OPTMILP Procedure

Table 14.4 lists all the ODS tables that can be produced by the OPTMILP procedure, along with the statement
and option specifications required to produce each table.

Table 14.4 ODS Tables Produced by PROC OPTMILP

ODS Table Name Description Statement Option

ProblemSummary Summary of the input MILP PROC OPTMILP PRINTLEVEL=1 (default)
problem

SolutionSummary Summary of the solution status PROC OPTMILP PRINTLEVEL=1 (default)

ProblemStatistics ~ Description of input problem data PROC OPTMILP PRINTLEVEL=2

Timing Detailed solution timing PROC OPTMILP PRINTLEVEL=2

A typical ProblemSummary table is shown in Figure 14.5.

Figure 14.5 Example PROC OPTMILP Output: Problem Summary
The OPTMILP Procedure

Problem Summa
Problem Name
Objective Sense
Objective Function
RHS

Number of Variables
Bounded Above

Bounded Below

Bounded Above and Below
Free

Fixed

Binary

Integer

Number of Constraints
LE (<=)

EQ ()

GE (>=)

Range

Constraint Coefficients

A typical SolutionSummary table is shown in Figure 14.6.

ry
EX_MIP

Minimization
COST
RHS

O W O O w o o w

o = O N W

ODS Tables 4 703

Figure 14.6 Example PROC OPTMILP Output: Solution Summary
The OPTMILP Procedure

Solution Summary

Solver MILP
Algorithm Branch And Cut
Objective Function COST
Solution Status Optimal
Objective Value -7
Relative Gap 0
Absolute Gap 0
Primal Infeasibility 0
Bound Infeasibility 0
Integer Infeasibility 0
Best Bound -7
Nodes 0
Solutions Found 2
Iterations 0
Presolve Time 0.00
Solution Time 0.00

You can create output data sets from these tables by using the ODS OUTPUT statement. The output data sets
from the preceding example are displayed in Figure 14.7 and Figure 14.8, where you can also find variable
names for the tables used in the ODS template of the OPTMILP procedure.

704 4 Chapter 14: The OPTMILP Procedure

Figure 14.7 ODS Output Data Set: Problem Summary

Problem Summary

Obs Labell cValue1 nValuel
1 Problem Name EX_MIP
2 Objective Sense Minimization
3 Objective Function COST
4 RHS RHS
5 .
6 Number of Variables 3 3.000000
7 Bounded Above 0 0
8 Bounded Below 0 0
9 Bounded Above and Below 3 3.000000
10 Free 0 0
11 Fixed 0 0
12 Binary 3 3.000000
13 Integer 0 0
14 .
15 Number of Constraints 3 3.000000
16 LE (<=) 2 2.000000
17 EQ(3) 0 0
18 GE (>=) 1 1.000000
19 Range 0 0
20 .
21 Constraint Coefficients 8 8.000000

Figure 14.8 ODS Output Data Set: Solution Summary

Solution Summary

Obs Labell cValue1 nValuel
1 Solver MILP
2 Algorithm Branch And Cut
3 Objective Function COST
4 Solution Status Optimal .
5 Objective Value -7 -7.000000
6 .
7 Relative Gap 0 0
8 Absolute Gap 0 0
9 Primal Infeasibility 0 0
10 Bound Infeasibility 0 0
11 Integer Infeasibility 0 0
12 .
13 Best Bound -7 -7.000000
14 Nodes 0 0
15 Solutions Found 2 2.000000
16 lterations 0 0
17 Presolve Time 0.00 0.001290
18 Solution Time 0.00 0.001371

Macro Variable _OROPTMILP_ 4 705

Problem Statistics

Optimizers can encounter difficulty when solving poorly formulated models. Information about data
magnitude provides a simple gauge to determine how well a model is formulated. For example, a model
whose constraint matrix contains one very large entry (on the order of 10°) can cause difficulty when the
remaining entries are single-digit numbers. The PRINTLEVEL=2 option in the OPTMILP procedure causes
the ODS table ProblemStatistics to be generated. This table provides basic data magnitude information that
enables you to improve the formulation of your models.

The example output in Figure 14.9 demonstrates the contents of the ODS table ProblemStatistics.

Figure 14.9 ODS Table ProblemStatistics

ProblemStatistics

Obs Label1 cValue1 nValuel
1 Number of Constraint Matrix Nonzeros 8 8.000000
2 Maximum Constraint Matrix Coefficient 3 3.000000
3 Minimum Constraint Matrix Coefficient 1 1.000000
4 Average Constraint Matrix Coefficient 1.875 1.875000
5 .
6 Number of Objective Nonzeros 3 3.000000
7 Maximum Objective Coefficient 4 4.000000
8 Minimum Objective Coefficient 2 2.000000
9 Average Objective Coefficient 3 3.000000

10 .
11 Number of RHS Nonzeros 3 3.000000
12 Maximum RHS 7 7.000000
13 Minimum RHS 4 4.000000
14 Average RHS 5.3333333333 5.333333
15 .
16 Maximum Number of Nonzeros per Column 3 3.000000
17 Minimum Number of Nonzeros per Column 2 2.000000
18 Average Number of Nonzeros per Column 2.67 2.666667
19 .
20 Maximum Number of Nonzeros per Row 3 3.000000
21 Minimum Number of Nonzeros per Row 2 2.000000
22 Average Number of Nonzeros per Row 2.67 2.666667

The variable names in the ODS table ProblemStatistics are Labell, cValuel, and nValuel.

Macro Variable OROPTMILP

The OPTMILP procedure defines a macro variable named _OROPTMILP_. This variable contains a character
string that indicates the status of the OPTMILP procedure upon termination. The various terms of the variable
are interpreted as follows.

706 4 Chapter 14: The OPTMILP Procedure

STATUS
indicates the solver status at termination. It can take one of the following values:

OK The procedure terminated normally.

SYNTAX ERROR Incorrect syntax was used.

DATA_ERROR The input data was inconsistent.

OUT_OF_MEMORY Insufficient memory was allocated to the procedure.

I0O_ERROR A problem occurred in reading or writing data.

ERROR The status cannot be classified into any of the preceding categories.
ALGORITHM

indicates the algorithm that produced the solution data in the macro variable. This term only appears
when STATUS=O0K. It can take one of the following values:

BAC The branch-and-cut algorithm produced the solution data.
DECOMP The decomposition algorithm produced the solution data.

SOLUTION_STATUS
indicates the solution status at termination. It can take one of the following values:

OPTIMAL The solution is optimal.

OPTIMAL_AGAP The solution is optimal within the absolute gap specified by the
ABSOBJGAP= option.

OPTIMAL_RGAP The solution is optimal within the relative gap specified by the
RELOBJGAP= option.

OPTIMAL_COND The solution is optimal, but some infeasibilities (primal, bound,

or integer) exceed tolerances due to scaling or choice of a small
INTTOL= value.

TARGET The solution is not worse than the target specified by the TAR-
GET= option.

INFEASIBLE The problem is infeasible.

UNBOUNDED The problem is unbounded.

INFEASIBLE_OR_UNBOUNDED The problem is infeasible or unbounded.

SOLUTION_LIM The solver reached the maximum number of solutions specified
by the MAXSOLS= option.

NODE_LIM_SOL The solver reached the maximum number of nodes specified by
the MAXNODES= option and found a solution.

NODE_LIM_NOSOL The solver reached the maximum number of nodes specified by
the MAXNODES= option and did not find a solution.

TIME_LIM_SOL The solver reached the execution time limit specified by the

MAXTIME-= option and found a solution.

Macro Variable _OROPTMILP_ 4 707

TIME_LIM_NOSOL The solver reached the execution time limit specified by the

MAXTIME-= option and did not find a solution.
ABORT_SOL The solver was stopped by the user but still found a solution.
ABORT_NOSOL The solver was stopped by the user and did not find a solution.
OUTMEM_SOL The solver ran out of memory but still found a solution.
OUTMEM_NOSOL The solver ran out of memory and either did not find a solution

or failed to output the solution due to insufficient memory.
FAIL_SOL The solver stopped due to errors but still found a solution.
FAIL_NOSOL The solver stopped due to errors and did not find a solution.

OBJECTIVE

indicates the objective value obtained by the solver at termination.

RELATIVE_GAP
indicates the relative gap between the best integer objective (BestInteger) and the best bound on the
objective function value (BestBound) upon termination of the OPTMILP procedure. The relative gap
is equal to

|BestInteger — BestBound|/ (1IE—10 + |BestBound|)

ABSOLUTE_GAP
indicates the absolute gap between the best integer objective (BestInteger) and the best bound on the
objective function value (BestBound) upon termination of the OPTMILP procedure. The absolute gap
is equal to |BestInteger — BestBound|.

PRIMAL_INFEASIBILITY
indicates the maximum (absolute) violation of the primal constraints by the solution.

BOUND_INFEASIBILITY
indicates the maximum (absolute) violation by the solution of the lower or upper bounds (or both).

INTEGER_INFEASIBILITY
indicates the maximum (absolute) violation of the integrality of integer variables returned by the
OPTMILP procedure.

BEST_BOUND
indicates the best bound on the objective function value at termination. A missing value indicates that
the OPTMILP procedure was not able to obtain such a bound.

NODES
indicates the number of nodes enumerated by the OPTMILP procedure when using the branch-and-
bound algorithm.

SOLUTIONS_FOUND
indicates the number of solutions that are found by the OPTMILP procedure.

708 4 Chapter 14: The OPTMILP Procedure

ITERATIONS
indicates the number of simplex iterations taken to solve the problem.

PRESOLVE_TIME
indicates the time (in seconds) used in preprocessing.

SOLUTION_TIME
indicates the time (in seconds) taken to solve the problem, including preprocessing time.

NOTE: The time reported in PRESOLVE_TIME and SOLUTION_TIME is either CPU time or real time.
The type is determined by the TIMETYPE= option.

Examples: OPTMILP Procedure

This section contains examples that illustrate the options and syntax of PROC OPTMILP. Example 14.1
demonstrates a model contained in an MPS-format SAS data set and finds an optimal solution by using PROC
OPTMILP. Example 14.2 illustrates the use of standard MPS-format files in PROC OPTMILP. Example 14.3
demonstrates how to warm start PROC OPTMILP. More detailed examples of mixed integer linear programs,
along with example SAS code, are given in Chapter 9.

Example 14.1: Simple Integer Linear Program

This example illustrates a model in an MPS-format SAS data set. This data set is passed to PROC OPTMILP,
and a solution is found.

Consider a scenario where you have a container with a set of limiting attributes (volume V and weight W)
and a set / of items that you want to pack. Each item type i has a certain value p;, a volume v;, and a weight
w; . You must choose at most four items of each type so that the total value is maximized and all the chosen
items fit into the container. Let x; be the number of items of type i to be included in the container. This
model can be formulated as the following integer linear program:

Vv (volume_con)

102]
:_F
g
<
=
I

w (weight_con)

g
&
=
IA

4 Viel
xieZt Viel

=
A

Constraint (volume_con) enforces the volume capacity limit, while constraint (weight_con) enforces the
weight capacity limit. An instance of this problem can be saved in an MPS-format SAS data set by using the
following code:

Example 14.1: Simple Integer Linear Program 4 709

data exldata;
input fieldl $ field2 $ field3 $ fieldd field5 $ fields6;

datalines;

NAME . exldata

ROWS

MAX z

L volume_con

L weight_con

COLUMNS . . .
.MRKO 'MARKER' . 'INTORG'
x[1] z 1 volume_con 10
x[1] weight_con 12 . .
x[2] z 2 volume_con 300
x[2] weight_con 15 . .
x[3] z 3 volume_con 250
x[3] weight_con 72 .
x[4] z 4 volume_con 610
x[4] weight_con 100 . .
x[5] z 5 volume_con 500
x[5] weight_con 223 .
x[6] z 6 volume_con 120
x[6] weight_con 16 .
x[7] z 7 volume_con 45
x[7] weight_con 73 . .
x[8] z 8 volume_ con 100
x[8] weight_con 12 .
x[9] z 9 volume_con 200
x[9] weight_con 200 .
x[10] z 10 volume_con 61
x[10] weight_con 110 .

. .MRK1 'MARKER' . '"INTEND'

RHS . . .
.RHS. volume_con 1000

. .RHS. weight_con 500

BOUNDS . .

UP .BOUNDS . x[1] 4

uUP .BOUNDS. x[2] 4

19)4 .BOUNDS. x[3] 4

UP .BOUNDS. x[4] 4

UP .BOUNDS. x[5] 4

UP .BOUNDS . x[6] 4

UP .BOUNDS. x[7] 4

UP .BOUNDS. x[8] 4

UP .BOUNDS. x[9] 4

UP .BOUNDS. x[10] 4

ENDATA

’

In the COLUMNS section of this data set, the name of the objective is z, and the objective coefficients p;
appear in field4. The coefficients v; of (volume_con) appear in field6. The coefficients w; of (weight_con)
appear in field4. In the RHS section, the bounds V and W appear in field4. This problem can be solved by
using the following statements to call the OPTMILP procedure:

710 4 Chapter 14: The OPTMILP Procedure

proc optmilp data=exldata primalout=exlsoln;

run;

The progress of the solver is shown in Output 14.1.1.

Output 14.1.1 Simple Integer Linear Program PROC OPTMILP Log

NOTE:

NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:

NOTE:
NOTE:
NOTE:

NOTE:

NOTE:
NOTE:
NOTE:
NOTE:

The problem exldata has 10 variables (0 binary, 10 integer, 0 free, 0
fixed) .

The problem has 2 constraints (2 LE, 0 EQ, O GE, O range).

The problem has 20 constraint coefficients.

The MPS read time is 0.00 seconds.

The initial MILP heuristics are applied.

The MILP presolver value AUTOMATIC is applied.

The MILP presolver removed 2 variables and O constraints.

The MILP presolver removed 4 constraint coefficients.

The MILP presolver modified O constraint coefficients.

The presolved problem has 8 variables, 2 constraints, and 16 constraint
coefficients.

The MILP solver is called.

The parallel Branch and Cut algorithm is used.

The Branch and Cut algorithm is using up to 16 threads.

Node Active Sols BestInteger BestBound Gap Time
0 1 4 85.0000000 158.0000000 46.20% 0
0 1 4 85.0000000 88.0955497 3.51% 0
0 1 4 85.0000000 87.4545455 2.81% 0

The MILP presolver is applied again.
0 1 5 87.0000000 87.4545455 0.52% 0
Optimal.
Objective = 87.
There were 43 observations read from the data set WORK.EX1DATA.
The data set WORK.EX1SOLN has 10 observations and 9 variables.

The data set ex1soln is shown in Output 14.1.2.

Example 14.1: Simple Integer Linear Program 4 711

Output 14.1.2 Simple Integer Linear Program Solution

Example 1 Solution Data

Objective
Function RHS Variable Variable Objective Lower Upper Variable
ID ID Name Type Coefficient Bound Bound Value Solution

RHS. x[1] 1 0 4
RHS. x[2]
RHS. x[3]
RHS. x[4]
RHS. x[5]
RHS. x[6]
RHS. x[7]
RHS. x[8]
RHS. x[9]
RHS. x[10]

N

© 00 N O U1 A W N

N N N N N N N N N
O O O O O O o o o
L T T o T T)
Ww o A =2 WO O O o o
- a4 a4 4O A g

—_
o

The optimal solution is x¢ = 3,x7 = 1,xg = 4, and x;¢9 = 3, with a total value of 87. From this
solution, you can compute the total volume used, which is 988 (< V' = 1000); the total weight used is 499
(< W = 500). The problem summary and solution summary are shown in Output 14.1.3.

Output 14.1.3 Simple Integer Linear Program Summary
The OPTMILP Procedure

Problem Summary

Problem Name exl1data
Objective Sense Maximization
Objective Function z
RHS .RHS.
Number of Variables 10
Bounded Above 0
Bounded Below 0
Bounded Above and Below 10
Free 0
Fixed 0
Binary 0
Integer 10
Number of Constraints 2
LE (<=) 2
EQ (=) 0
GE (>=) 0
Range 0

Constraint Coefficients 20

712 4 Chapter 14: The OPTMILP Procedure

Output 14.1.3 continued

Solution Summary

Solver MILP
Algorithm Branch And Cut
Objective Function z
Solution Status Optimal
Objective Value 87
Relative Gap 0
Absolute Gap 0
Primal Infeasibility 0
Bound Infeasibility 0
Integer Infeasibility 0
Best Bound 87
Nodes 1
Solutions Found 5
lterations 14
Presolve Time 0.00
Solution Time 0.02

Example 14.2: MIPLIB Benchmark Instance

The following example illustrates the conversion of a standard MPS-format file into an MPS-format SAS data
set. The problem is re-solved several times, each time by using a different control option. For such a small
example, it is necessary to disable cuts and heuristics in order to see the computational savings gained by
using other options. For larger or more complex examples, the benefits of using the various control options
are more pronounced.

The standard set of MILP benchmark cases is called MIPLIB (Bixby et al. 1998, Achterberg, Koch, and Martin
2003) and can be found at http://miplib.zib.de/. The following statement uses the %MPS2SASD
macro to convert an example from MIPLIB to a SAS data set:

$smps2sasd (mpsfile="bell3a.mps", outdata=mpsdata);
The problem can then be solved using PROC OPTMILP on the data set created by the conversion:

proc optmilp data=mpsdata allcuts=none heuristics=none logfreq=10000;
run;

The resulting log is shown in Output 14.2.1.

http://miplib.zib.de/

Example 14.2: MIPLIB Benchmark Instance 4 713

Output 14.2.1 MIPLIB PROC OPTMILP Log

NOTE: The problem BELL3A has 133 variables (39 binary, 32 integer, 0 free, 0
fixed) .

NOTE: The problem has 123 constraints (123 LE, 0 EQ, 0 GE, O range).

NOTE: The problem has 347 constraint coefficients.

NOTE: The MPS read time is 0.01 seconds.

NOTE: The MILP presolver value AUTOMATIC is applied.

NOTE: The MILP presolver removed 45 variables and 59 constraints.

NOTE: The MILP presolver removed 144 constraint coefficients.

NOTE: The MILP presolver modified 25 constraint coefficients.

NOTE: The presolved problem has 88 variables, 64 constraints, and 203
constraint coefficients.

NOTE: The MILP solver is called.

NOTE: The parallel Branch and Cut algorithm is used.

NOTE: The Branch and Cut algorithm is using up to 16 threads.

Node Active Sols BestInteger BestBound Gap Time
0 1 0 869515 0
378 362 1 918528 872143 5.32% 0
381 363 2 916952 872143 5.14% 0
392 370 3 913798 872143 4.78% 0
502 455 4 898096 872660 2.91% 0
896 188 5 897846 873441 2.79% 0
897 188 6 896314 873441 2.62% 0
1596 134 7 888839 874847 1.60% 0
1617 149 8 881651 874847 0.78% 0
1705 82 9 878651 874847 0.43% 0
2221 287 10 878430 874847 0.41% 0
2227 288 11 878430 874847 0.41% 0
2368 336 12 878430 874847 0.41% 0
2382 343 13 878430 874847 0.41% 0
2630 424 14 878430 874875 0.41% 0
5677 6] 14 878430 878430 0.00% 0

NOTE: Optimal.
NOTE: Objective = 878430.316.
NOTE: There were 475 observations read from the data set WORK.MPSDATA.

Alternatively, you can directly use the MPS-format file instead of a data set:

proc optmilp mpsfile="bell3a.mps" allcuts=none heuristics=none logfreq=10000;
run;

The output is the same as when you use the data set for input. Using the MPS-format file is typically faster
than using the data set for large instances.

If there is an objective value that satisfies your requirements, even if it is not optimal, then you can save time
by using the TARGET= option. The following PROC OPTMILP call solves the problem with a target value
of 880,000:

714 4 Chapter 14: The OPTMILP Procedure

proc optmilp data=mpsdata allcuts=none heuristics=none logfreq=5000
target=880000;
run;

The relevant results from this run are displayed in Output 14.2.2. In this case, there is a decrease in CPU
time, but the objective value has increased.

Output 14.2.2 MIPLIB PROC OPTMILP Log with TARGET= Option

NOTE: The problem BELL3A has 133 variables (39 binary, 32 integer, 0 free, O
fixed) .

NOTE: The problem has 123 constraints (123 LE, 0 EQ, 0 GE, O range).

NOTE: The problem has 347 constraint coefficients.

NOTE: The MPS read time is 0.00 seconds.

NOTE: The MILP presolver value AUTOMATIC is applied.

NOTE: The MILP presolver removed 45 variables and 59 constraints.

NOTE: The MILP presolver removed 144 constraint coefficients.

NOTE: The MILP presolver modified 25 constraint coefficients.

NOTE: The presolved problem has 88 variables, 64 constraints, and 203
constraint coefficients.

NOTE: The MILP solver is called.

NOTE: The parallel Branch and Cut algorithm is used.

NOTE: The Branch and Cut algorithm is using up to 16 threads.

Node Active Sols BestInteger BestBound Gap Time
0 1 0 869515 0
378 362 1 918528 872143 5.32% 0
381 363 2 916952 872143 5.14% 0
392 370 3 913798 872143 4.78% 0
502 455 4 898096 872660 2.91% 0
896 188 5 897846 873441 2.79% 0
897 188 6 896314 873441 2.62% 0
1596 134 7 888839 874847 1.60% 0
1617 149 8 881651 874847 0.78% 0
1705 82 9 878651 874847 0.43% 0

NOTE: Target reached.
NOTE: Objective of the best integer solution found = 878651.068.
NOTE: There were 475 observations read from the data set WORK.MPSDATA.

When the objective value of a solution is within a certain relative gap of the optimal objective value, the
procedure stops. The acceptable relative gap can be changed using the RELOBJGAP= option, as demonstrated
in the following example:

proc optmilp data=mpsdata allcuts=none heuristics=none relobjgap=0.01;
run;

Example 14.2: MIPLIB Benchmark Instance 4 715

The relevant results from this run are displayed in Output 14.2.3. In this case, since the specified RELOBIJ-
GAP= value is larger than the default value, the number of nodes that are processed has decreased from their
values in the original run. Note that these savings are possible because PROC OPTMILP makes a weaker
statement about how good the found solution is, which is indicated by the decreased best bound value.

Output 14.2.3 MIPLIB PROC OPTMILP Log with RELOBJGAP= Option

NOTE: The problem BELL3A has 133 variables (39 binary, 32 integer, 0 free, O
fixed) .

NOTE: The problem has 123 constraints (123 LE, 0 EQ, O GE, O range).

NOTE: The problem has 347 constraint coefficients.

NOTE: The MPS read time is 0.01 seconds.

NOTE: The MILP presolver value AUTOMATIC is applied.

NOTE: The MILP presolver removed 45 variables and 59 constraints.

NOTE: The MILP presolver removed 144 constraint coefficients.

NOTE: The MILP presolver modified 25 constraint coefficients.

NOTE: The presolved problem has 88 variables, 64 constraints, and 203
constraint coefficients.

NOTE: The MILP solver is called.

NOTE: The parallel Branch and Cut algorithm is used.

NOTE: The Branch and Cut algorithm is using up to 16 threads.

Node Active Sols BestInteger BestBound Gap Time
0 1 0 869515 0
378 362 1 918528 872143 5.32% 0
381 363 2 916952 872143 5.14% 0
392 370 3 913798 872143 4.78% 0
502 455 4 898096 872660 2.91% 0
896 188 5 897846 873441 2.79% 0
897 188 6 896314 873441 2.62% 0
1596 134 7 888839 874847 1.60% 0
1617 149 8 881651 874847 0.78% 0

NOTE: Optimal within relative gap.
NOTE: Objective = 881650.93.
NOTE: There were 475 observations read from the data set WORK.MPSDATA.

The MAXTIME-= option enables you to accept the best solution produced by PROC OPTMILP in a specified
amount of time. The following example illustrates the use of the MAXTIME= option:

proc optmilp data=mpsdata allcuts=none heuristics=none maxtime=0.1;
run;

The relevant results from this run are displayed in Output 14.2.4. Once again, a reduction in solution time is
traded for an increase in objective value.

716 4 Chapter 14: The OPTMILP Procedure

Output 14.2.4 MIPLIB PROC OPTMILP Log with MAXTIME= Option

NOTE: The problem BELL3A has 133 variables (39 binary, 32 integer, 0 free, 0
fixed) .

NOTE: The problem has 123 constraints (123 LE, 0 EQ, 0 GE, O range).

NOTE: The problem has 347 constraint coefficients.

NOTE: The MPS read time is 0.01 seconds.

NOTE: The MILP presolver value AUTOMATIC is applied.

NOTE: The MILP presolver removed 45 variables and 59 constraints.

NOTE: The MILP presolver removed 144 constraint coefficients.

NOTE: The MILP presolver modified 25 constraint coefficients.

NOTE: The presolved problem has 88 variables, 64 constraints, and 203
constraint coefficients.

NOTE: The MILP solver is called.

NOTE: The parallel Branch and Cut algorithm is used.

NOTE: The Branch and Cut algorithm is using up to 16 threads.

Node Active Sols BestInteger BestBound Gap Time
0 1 0 . 869515 . 0
378 362 1 918528 872143 5.32% 0
381 363 2 916952 872143 5.14% 0
384 366 2 916952 872143 5.14% 0

NOTE: Real time limit reached.
NOTE: Objective of the best integer solution found = 916951.54.
NOTE: There were 475 observations read from the data set WORK.MPSDATA.

The MAXNODES= option enables you to limit the number of nodes generated by PROC OPTMILP. The
following example illustrates the use of the MAXNODES= option:

proc optmilp data=mpsdata allcuts=none heuristics=none maxnodes=1000;
run;

The relevant results from this run are displayed in Output 14.2.5. PROC OPTMILP displays the best objective
value of all the solutions produced.

Example 14.3: Facility Location 4 717

Output 14.2.5 MIPLIB PROC OPTMILP Log with MAXNODES= Option

NOTE: The problem BELL3A has 133 variables (39 binary, 32 integer, 0 free, 0
fixed) .

NOTE: The problem has 123 constraints (123 LE, 0 EQ, 0 GE, O range).

NOTE: The problem has 347 constraint coefficients.

NOTE: The MPS read time is 0.01 seconds.

NOTE: The MILP presolver value AUTOMATIC is applied.

NOTE: The MILP presolver removed 45 variables and 59 constraints.

NOTE: The MILP presolver removed 144 constraint coefficients.

NOTE: The MILP presolver modified 25 constraint coefficients.

NOTE: The presolved problem has 88 variables, 64 constraints, and 203
constraint coefficients.

NOTE: The MILP solver is called.

NOTE: The parallel Branch and Cut algorithm is used.

NOTE: The Branch and Cut algorithm is using up to 16 threads.

Node Active Sols BestInteger BestBound Gap Time
0 1 0 869515 0
378 362 1 918528 872143 5.32% 0
381 363 2 916952 872143 5.14% 0
392 370 3 913798 872143 4.78% 0
502 455 4 898096 872660 2.91% 0
896 188 5 897846 873441 2.79% 0
897 188 6 896314 873441 2.62% 0
999 258 6 896314 873792 2.58% 0

NOTE: Node limit reached.
NOTE: Objective of the best integer solution found = 896314.316.
NOTE: There were 475 observations read from the data set WORK.MPSDATA.

Example 14.3: Facility Location

This advanced example demonstrates how to warm start PROC OPTMILP by using the PRIMALIN= option.
The model is constructed in PROC OPTMODEL and saved in an MPS-format SAS data set for use in PROC
OPTMILP. This problem can also be solved from within PROC OPTMODEL; see Chapter 9 for details.

Consider the classical facility location problem. Given a set L of customer locations and a set F of candidate
facility sites, you must decide on which sites to build facilities and assign coverage of customer demand to
these sites so as to minimize cost. All customer demand ¢; must be satisfied, and each facility has a demand
capacity limit C. The total cost is the sum of the distances c;; between facility j and its assigned customer i,
plus a fixed charge f; for building a facility at site j. Let y; = 1 represent choosing site j to build a facility,
and O otherwise. Also, let x;; = 1 represent the assignment of customer i to facility j, and O otherwise. This
model can be formulated as the following integer linear program:

718 4 Chapter 14: The OPTMILP Procedure

min YN eixij+ Y fiy;

ieL jeF jeF
s.t. 2{:~XU

JjEF

Xij

> dixy

ieL

xij €10, 1}

y;j €10, 1}

[A

Viel (assign_def)

Viel,jeF (link)
VjeF (capacity)

VielL,jeF
VjeF

Constraint (assign_def) ensures that each customer is assigned to exactly one site. Constraint (link) forces a
facility to be built if any customer has been assigned to that facility. Finally, constraint (capacity) enforces
the capacity limit at each site.

Consider also a variation of this same problem where there is no cost for building a facility. This problem is
typically easier to solve than the original problem. For this variant, let the objective be

min E E CijXij

ieL jeF

First, construct a random instance of this problem by using the following DATA steps:

%$let
%$let
$let
$let
$let
%$let
%$let

/* generate random

data

call streaminit (&seed);

NumCustomers = 50;
NumSites = 10;
SiteCapacity = 35;
MaxDemand = 10;
xmax = 200;
ymax = 100;
seed = 423;

cdata (drop=i) ;

length name $8;

do i = 1 to &NumCustomers;

customer locations */

name = compress('C'||put(i,best.));

x = rand('UNIFORM') * &xmax;
rand ('UNIFORM') * &ymax;

Y

demand = rand('UNIFORM') x &MaxDemand;

output;

end;

run;

/* generate random site locations and fixed charge x*/

data

call streaminit (&seed);

sdata (drop=i) ;

length name $8;
do i = 1 to &NumSites;

Example 14.3: Facility Location 4 719

name = compress ('SITE'||put(i,best.));
x = rand('UNIFORM') x &xmax;
y = rand('UNIFORM') * &ymax;
fixed _charge = 30 * (abs(&xmax/2-x) + abs(&ymax/2-y));
output;
end;
run;

The following PROC OPTMODEL statements generate the model and define both variants of the cost
function:

proc optmodel;
set <str> CUSTOMERS;
set <str> SITES init ({};
/* x and y coordinates of CUSTOMERS and SITES x/
num x {CUSTOMERS union SITES};
num y {CUSTOMERS union SITES};
num demand {CUSTOMERS};
num fixed_charge {SITES},;
/* distance from customer i to site j */
num dist {i in CUSTOMERS, j in SITES}
= sqrt ((x[i] - x[3])*2 + (y[i] - y[3i])*2);
read data cdata into CUSTOMERS=[name] x y demand;
read data sdata into SITES=[name] x y fixed_ charge;
var Assign {CUSTOMERS, SITES} binary;
var Build {SITES} binary;
/* each customer assigned to exactly one site */
con assign_def {i in CUSTOMERS}:
sum {j in SITES} Assign[i,j] = 1;
/* if customer i assigned to site j, then facility must be */
/* built at j */
con link {i in CUSTOMERS, j in SITES}:
Assign[i, j] <= Buildl[j];
/* each site can handle at most &SiteCapacity demand */
con capacity {j in SITES}:
sum {i in CUSTOMERS} demand[i] * Assign[i, j]
<= &SiteCapacity * Build[j];
min CostNoFixedCharge
= sum {i in CUSTOMERS, Jj in SITES} dist[i, j] * Assignl[i, j];
save mps nofcdata;
min CostFixedCharge
= CostNoFixedCharge
+ sum {j in SITES} fixed_charge[j] * Build[j];
save mps fcdata;
quit;

First solve the problem for the model with no fixed charge by using the following statements. The first PROC
SQL call populates the macro variables varcostNo. This macro variable displays the objective value when
the results are plotted. The second PROC SQL call generates a data set that is used to plot the results. The
information printed in the log by PROC OPTMILP is displayed in Output 14.3.1.

720 4 Chapter 14: The OPTMILP Procedure

proc optmilp data=nofcdata primalout=nofcout;

run;

proc sqgl noprint;
select put (sum(_objcoef * _value_),6.1) into :varcostNo
from nofcout;

quit;

proc sql;
create table CostNoFixedCharge_Data as
select
scan(p._var_,2,'[],') as customer,
scan(p._var_,3,'[],') as site,
c.x as x1, c.y as yl, s.x as x2,
from
cdata as c,
sdata as s,
nofcout (where=(substr(_var_,1,6)="Assign'
round (_value_) 1)) as p
where calculated customer c.name and calculated site

quit;

s.y as y2

and

S.name;

Output 14.3.1 PROC OPTMILP Log for Facility Location with No Fixed Charges

NOTE: The problem nofcdata has 510 variables (510 binary, 0 integer, 0 free, O
fixed) .
NOTE: The problem has 560 constraints (510 LE, 50 EQ, 0 GE, 0O range).
NOTE: The problem has 2010 constraint coefficients.
NOTE: The MPS read time is 0.01 seconds.
NOTE: The initial MILP heuristics are applied.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 10 variables and 500 constraints.
NOTE: The MILP presolver removed 1010 constraint coefficients.
NOTE: The MILP presolver modified O constraint coefficients.
NOTE: The presolved problem has 500 variables, 60 constraints, and 1000
constraint coefficients.
NOTE: The MILP solver is called.
NOTE: The parallel Branch and Cut algorithm is used.
NOTE: The Branch and Cut algorithm is using up to 16 threads.
Node Active Sols BestInteger BestBound Gap Time
0 1 5 1249.9063818 1177.1539196 6.18% 0
NOTE: The MILP presolver is applied again.
0 1 5 1249.9063818 1177.1539196 6.18%
0 1 5 1249.9063818 1190.5434820 4.99%
0 1 6 1192.6273240 1190.5434820 0.18%
NOTE: The MILP solver added 12 cuts with 273 cut coefficients at the root.
NOTE: Optimal within relative gap.
NOTE: Objective = 1192.627324.
NOTE: There were 2389 observations read from the data set WORK.NOFCDATA.

NOTE: The data set WORK.NOFCOUT has 510 observations and 9 variables.

Example 14.3: Facility Location 4 721

Next, solve the fixed-charge model by using the following statements. Note that the solution to the model
with no fixed charge is feasible for the fixed-charge model and should provide a good starting point for PROC
OPTMILP. The PRIMALIN= option provides an incumbent solution (“warm start”). The two PROC SQL
calls perform the same functions as in the case with no fixed charges. The results from this approach are
shown in Output 14.3.2.

proc optmilp data=fcdata primalin=nofcout primalout=fcout;
run;
proc sql noprint;
select put (sum(_objcoef * _value_), 6.1) into :varcost
from fcout (where=(substr(_var_,1,6)='Assign'));
select put (sum(_objcoef * _value_), 5.1) into :fixcost
from fcout (where=(substr(_wvar_ ,1,5)='Build'));
select put (sum(_objcoef_* _value_), 6.1) into :totalcost
from fcout;

quit;
proc sql;
create table CostFixedCharge_Data as
select
scan(p._var_,2,'[],"') as customer,
scan(p._var_,3,'[],') as site,
c.x as x1, c.y as yl, s.x as x2, s.y as y2
from

cdata as c,
sdata as s,
fcout (where=(substr(_var_,1,6)='Assign' and
round(_value_) = 1)) as p
where calculated customer = c.name and calculated site = s.name;
quit;

722 4 Chapter 14: The OPTMILP Procedure

Output 14.3.2 PROC OPTMILP Log for Facility Location with Fixed Charges, Using Warm Start

NOTE: The problem fcdata has 510 variables (510 binary, O integer, 0 free, 0
fixed) .

NOTE: The problem has 560 constraints (510 LE, 50 EQ, 0O GE, O range).

NOTE: The problem has 2010 constraint coefficients.

NOTE: The MPS read time is 0.01 seconds.

NOTE: The initial MILP heuristics are applied.

NOTE: The MILP presolver value AUTOMATIC is applied.

NOTE: The MILP presolver removed O variables and 0 constraints.

NOTE: The MILP presolver removed O constraint coefficients.

NOTE: The MILP presolver modified O constraint coefficients.

NOTE: The presolved problem has 510 variables, 560 constraints, and 2010
constraint coefficients.

NOTE: The MILP solver is called.

NOTE: The parallel Branch and Cut algorithm is used.

NOTE: The Branch and Cut algorithm is using up to 16 threads.

Node Active Sols BestInteger BestBound Gap Time
0 1 6 24086.8916716 0 24087 0
0 1 6 24086.8916716 19197.7909681 25.47% 0
0 1 6 24086.8916716 19206.4233772 25.41% 0
0 1 6 24086.8916716 19210.6103687 25.38% 0
0 1 6 24086.8916716 19217.2330320 25.34% 0
0 1 8 21700.2572819 19217.2330320 12.92% 0
0 1 8 21700.2572819 19219.6945880 12.91% 0
0 1 8 21700.2572819 19224.1234459 12.88% 0
0 1 8 21700.2572819 19224.5850109 12.88% 0
0 1 9 21693.6723572 19224.5850109 12.84% 0
0 1 9 21693.6723572 19227.8702614 12.82% 0
NOTE: The MILP solver added 20 cuts with 741 cut coefficients at the root.

77 51 10 21686.3282331 19292.0971396 12.41% 0
122 60 12 21554.0701956 19314.7035626 11.59% 0
364 8 13 21549.5715653 20159.6973585 6.89% 0
420 6] 15 21548.1764622 21546.1041577 0.01% 1

NOTE: Optimal within relative gap.

NOTE: Objective = 21548.176462.

NOTE: There were 2389 observations read from the data set WORK.FCDATA.
NOTE: There were 510 observations read from the data set WORK.NOFCOUT.
NOTE: The data set WORK.FCOUT has 510 observations and 9 variables.

Example 14.3: Facility Location 4 723

The following two SAS programs produce a plot of the solutions for both variants of the model, using data
sets produced by PROC SQL from the PRIMALOUT= data sets produced by PROC OPTMILP.

NOTE: Execution of this code requires SAS/GRAPH software.

titlel "Facility Location Problem";
title2 "TotalCost = &varcostNo (Variable = &varcostNo, Fixed = 0)";
data csdata;

set cdata(rename=(y=cy)) sdata (rename=(y=sy));

run;
/* create Annotate data set to draw line between customer and */
/* assigned site */

data anno;
retain function "line" drawspace "datavalue"
linethickness 1 linecolor "black";
set CostNoFixedCharge Data (keep=x1 yl x2 y2);
run;
proc sgplot data=csdata sganno=anno noautolegend;
scatter x=x y=cy / datalabel=name datalabelattrs=(size=6pt)
markerattrs=(symbol=circlefilled color=black size=6pt);
scatter x=x y=sy / datalabel=name datalabelattrs=(size=6pt)
markerattrs=(symbol=diamond color=blue size=6pt);
xaxis display=(nolabel);
yaxis display=(nolabel);
run;

The output from the first program appears in Output 14.3.3.

724 4 Chapter 14: The OPTMILP Procedure

Output 14.3.3 Solution Plot for Facility Location with No Fixed Charges

Facility Location Problem
TotalCost = 1192.6 (Variable = 1192.6, Fixed = 0)

100 SITE3
C2 C40
Cc38

C19 C45
80 C35
SITE2
c4 C
60
C27

C2

ITE9
40

C30
C48

C15
20
0

0 50 100 150 200

titlel "Facility Location Problem";
title2 "TotalCost = &totalcost (Variable = &varcost, Fixed = &fixcost)";
/* create Annotate data set to draw line between customer and */
/* assigned site */
data anno;
retain function "line" drawspace "datavalue"
linethickness 1 linecolor "black";
set CostFixedCharge_Data (keep=x1 yl x2 y2);
run;
proc sgplot data=csdata sganno=anno noautolegend;
scatter x=x y=cy / datalabel=name datalabelattrs=(size=6pt)
markerattrs=(symbol=circlefilled color=black size=6pt);
scatter x=x y=sy / datalabel=name datalabelattrs=(size=6pt)
markerattrs=(symbol=diamond color=blue size=6pt);
xaxis display=(nolabel);
yaxis display=(nolabel);
run;

The output from the second program appears in Output 14.3.4.

Example 14.4: Scheduling 4 725

Output 14.3.4 Solution Plot for Facility Location with Fixed Charges

Facility Location Problem
TotalCost = 21548 (Variable = 1456.0, Fixed = 20092)

100

80

C4

60

C2

ITE9

40
C30

C15
20

0 50 100 150 200

The economic trade-off for the fixed-charge model forces you to build fewer sites and push more demand to
each site.

Example 14.4: Scheduling

This example is intended for users who prefer to use the SAS DATA step, PROC SQL, and similar program-
ming methods to prepare data for input to SAS/OR optimization procedures. SAS/OR users who prefer to
use the algebraic modeling capabilities of PROC OPTMODEL to specify optimization models should consult
Example 9.1 in Chapter 9, “The Mixed Integer Linear Programming Solver,” for a discussion of the same
business problem in a PROC OPTMODEL context.

Scheduling is an application area where techniques in model generation can be valuable. Problems that
involve scheduling are often solved with integer programming and are similar to assignment problems. In
this example, you have eight one-hour time slots in each of five days. You have to assign four people to these
time slots so that each slot is covered every day. You allow the people to specify preference data for each slot
on each day. In addition, there are constraints that must be satisfied:

e Each person has some slots for which they are unavailable.

726 4 Chapter 14: The OPTMILP Procedure

e Each person must have either slot 4 or 5 off for lunch.
e Each person can work only two time slots in a row.
e Each person can work only a specified number of hours in the week.
To formulate this problem, let i denote person, j denote time slot, and k denote day. Then, let x;;x = 1 if

person i is assigned to time slot j on day k, and 0 otherwise; let p; ;i denote the preference of person i for
slot j on day k; and let /; denote the number of hours in a week that person i will work. Then, you get

max D_ijk PijkXijk
subject to) ; Xk =1 for all j and k
Xigk + Xisk <1 for alli and k
Xigk +Xig+1k T Xigq2k <2 foralliandk, andl =1,...,6
ij Xijk < hi for all i
Xijk = 0orl for all i and k such that p;;x > 0,

otherwise x;jx = 0

To solve this problem, create a data set that has the hours and preference data for each individual, time slot,
and day. A 10 represents the most desirable time slot, and a 1 represents the least desirable time slot. In
addition, a O indicates that the time slot is not available.

data raw;
input name $ hour slot mon tue wed thu fri;
datalines;

marc 20 1 10 10 10 10 10
marc 20 2 9 9 9 9 9
marc 20 3 8 8 8 8 8
marc 20 4 1 1 1 1 1
marc 20 5 1 1 1 1 1
marc 20 6 1 1 1 1 1
marc 20 7 1 1 1 1 1
marc 20 8 1 1 1 1 1
mike 20 1 10 9 8 7 6
mike 20 2 10 9 8 7 &6
mike 20 3 10 9 8 7 6
mike 20 4 10 3 3 3 3
mike 20 5 1 1 1 1 1
mike 20 6 1 2 3 4 5
mike 20 7 1 2 3 4 5
mike 20 8 1 2 3 4 5
bill 20 1 10 10 10 10 10
bill 20 2 9 9 9 9 9
bill 20 3 8 8 8 8 8
bill 20 4 0 0 0 0O O
bill 20 5 1 1 1 1 1
bill 20 6 1 1 1 1 1
bill 20 7 1 1 1 1 1
bill 20 8 1 1 1 1 1
bob 20 1 10 9 8 7 &6
bob 20 2 10 9 8 7 &6
bob 20 3 10 9 8 7 6

bob 20 4 10 3 3 3 3
bob 20 5 1 1 1 1 1
bob 20 6 1 2 3 4 5
bob 20 7 1 2 3 4 5
bob 20 8 1 2 3 4 5

4

Example 14.4: Scheduling 4 727

These data are read by the following DATA step, and an integer program is built to solve the problem. The
model is saved in the data set named MODEL, which is constructed in the following steps:

. The objective function is built using the data saved in the RAW data set.

The constraints that ensure that no one works during a time slot during which they are unavailable are
built.

. The constraints that require a person to be working in each time slot are built.
. The constraints that allow each person time for lunch are added.

3
4
5.
6

The constraints that restrict people to only two consecutive hours are added.

. The constraints that limit the time that any one person works in a week are added.

The statements to build each of these constraints follow the formulation closely, as shown in the following
example:

data model;

array workweek{5} mon tue wed thu fri;
array hours{4} hoursl hours2 hours3 hours4;
retain hoursl-hours4;

set raw end=eof;

length _row_ $ 8 _col_ $ 8 _type_ $ 8;
keep _type_ _col row_ _coef_;

if name='marc' then i=
else if name='mike' then i
else if name='bill' then i

i

else if name='bob' then

’

’

1
2
3;
4

=4;
hours{i}=hour;

/* build the objective function =*/

do k=1 to 5;
_col ="x"||put(i,1.)||put(slot,1.)||put(k,1.);

row='object';
_coef =workweek{k} *x 1000;
output;

end;

/* build the rest of the model */

/* cannot work during unavailable slots */

728 4 Chapter 14: The OPTMILP Procedure

do k=1 to 5;
if workweek{k}=0 then do;
row='off'||put(i,1.)||put(slot,1l.)||put(k,1.);
_type ='eq';
col='_RHS_';
coef=0;
output;
_col ="x"||put(i,1.)]||put(slot,1l.)||put(k,1.);
coef=1;
_type ="' ';
output;
end;
end;

if eof then do;
_coef =.;
col ="' "';

/* every hour 1 person working x*/
do j=1 to 8;
do k=1 to 5;
row='work'||put(j,1.)||put(k,1.);
type='eq';
col='_RHS ';
_coef =1;
output;
_coef =1;
_type ="' ';
do i=1 to 4;
_col ='x"||put(i,1.)|Iput(j,1.)|Iput(k,1.);
output;
end;
end;
end;

/* each person has a lunch */
do i=1 to 4;
do k=1 to 5;
row='"lunch'||put(i,1.)||put(k,1.);
_type ='le';
_col ='_RHS ';
_coef =1;
output;
_coef =1,
_type ="' ';
_col ="x"||put(i,1.)]|]|'4"']||put(k,1.);
output;
_col ="x"||put(i,1.)]|]|'5'||put(k,1.);
output;
end;
end;

/* work at most 2 slots in a row */
do i=1 to 4;

Example 14.4: Scheduling 4 729

do k=1 to 5;
do 1=1 to 6;
row='seq'||put(i,1.)||put(k,1.)||put(1,1.);
type='le';
col='_RHS ';
_coef =2;
output;
coef=1;
type ="' ';
do j=0 to 2;
col="x"||put(i,1.) | |put(1+j,1.)||lput(k,1.);
output;
end;
end;
end;
end;

/* work at most n hours in a week */
do i=1 to 4;
row='capacit'||put(i,1.);

type='le';
col='_RHS ';
_coef =hours{i};
output;
coef=1;
_type ="' ';

do j=1 to 8;
do k=1 to 5;
col='x'||put(i,1.)||put(j,1.)]|put(k,1.);
output;
end;
end;
end;
end;
run;

Next, this SAS data set is converted to an MPS-format SAS data set by establishing the structure of the MPS
format and through very minor conversions of the data.

/* the following code transforms the above sparse data set */
/* into an MPS-format data set */

/* generate the header of the MPS-format data set */
data mpsO;

format fieldl field2 field3 $10.;

format field4 10.;

format field5 $10.;

format field6 10.;

fieldl = 'NAME';
field2 =" '
field3 = 'PROBLEM';
fieldd = .;

field5 ="' '

field6 = .;

730 4 Chapter 14: The OPTMILP Procedure

output;

fieldl

"ROWS';

field3 = ;
output;

fieldl
field2

'MAX';
'object';

field3 = ;
output;

run;

/* generate

rows */

proc sql;
create table mpsl as

quit;

select _type_as fieldl, _row_
where _row_ eq 'object' and
select 'E' as fieldl, _row_ as
where _type_ eq 'eq' union
select 'L' as fieldl, _row_ as
where _type_ eq 'le' union
select 'G' as fieldl, _row_ as

where _type_ eq 'ge';

/* indicate start of columns section
/* variables as integer
data mps2;

format
format
format
format
fieldl

fieldl field2 field3
field4 10.;
field5 $10.;
field6 10.;
"COLUMNS ' ;

$10.;

field2 ;
field3 7
field4 .7

field5 ;
field6 = .;

output;

fieldl = ' '

field2
field3

' .MARKO';
" 'MARKER'";

field4 .

field5

"'INTORG'";

field6 = .;
output;

run;

/* generate

columns */

data mps3;
set model;

format fieldl field2 field3

$10.;

format field4 10.;
format field5 $10.;
format fieldé6 10.;

type ne

as field2 from model
''" union
field2 from model

field2 from model

field2 from model

and declare type of all */
*/

Example 14.4: Scheduling 4 731

keep fieldl-fields;

fieldl = ' '
field2 = _col_;
field3 = _row_;
field4 = _coef_;
field5 = ' ';
field6 = .;
if field2 ne '_RHS_' then do;
output;
end;
run;

/* sort columns by variable names =*/
proc sort data=mps3;

by field2;
run;

/* indicate the end of the columns section */
data mps4;
format fieldl field2 field3 $10.;
format field4 10.;
format field5 $10.;
format fieldé6 10.;
fieldl = ' '
field2 = ' .MARK1l';
field3 " 'MARKER'";
fieldd = .;
field5 "'INTEND'";
field6 = .;
output;
run;

/* indicate the start of the RHS section */
data mps5;
format fieldl field2 field3 $10.;
format field4 10.;
format field5 $10.;
format fieldé6 10.;
fieldl = 'RHS';
run;

/* generate RHS entries x*/
data mpsé6;
set model;
format fieldl field2 field3 $10.;
format field4 10.;
format field5 $10.;
format fieldé6 10.;
keep fieldl-field6;
fieldl = ' '
field2 = _col_;
field3 = _row_;
field4d = _coef_;
field5 = ' 'y

732 4 Chapter 14: The OPTMILP Procedure

field6 = .;
if field2 eq '_RHS_' then do;
output;
end;
run;

/* denote the end of the MPS-format data set =*/
data mps7;

format fieldl field2 field3 $10.;

format field4 10.;

format field5 $10.;

format fieldé6 10.;

fieldl = 'ENDATA';
run;

/* merge all sections of the MPS-format data set x*/
data mps;

format fieldl field2 field3 $10.;

format field4 10.;

format field5 $10.;

format field6 10.;

set mps0 mpsl mps2 mps3 mps4 mps5 mps6 mps7;
run;

The model is solved using the OPTMILP procedure. The option PRIMALOUT=SOLUTION causes PROC
OPTMILP to save the primal solution in the data set named SOLUTION.

/* solve the binary program x/
proc optmilp data=mps
printlevel=0 loglevel=0
primalout=solution maxtime=1000;
run;

The following DATA step takes the solution data set SOLUTION and generates a report data set named
ASSIGNMENTS. It restores the original interpretation (person, shift, day) of the variable names x;;x so that a
more meaningful report can be written. Then a DATA step and PROC PRINT are used to display a schedule
that shows how the eight time slots are covered for the week.

/* report the solution =*/
title 'Reported Solution';

data assignments;
set solution;

keep slot mon tue wed thu fri;
if substr(_var_,1,1)='x'
if _value_>0 then do;
n=input (substr(_var_,2,1), 8.);
slot=input (substr(_var_,3,1), 8.);
d=substr(_var_ ,4,1);

if d='1"
else if d='2"'
else if d='3"'
else if d='4"
else

output;

end;
end;
run;

proc format;

value namefmt 1l='Marc'

run;

then
then
then
then

proc sort data=assignments;

by slot;
run;

data report;

do until (last.slot);
set assignments;

by slot

if mon

if tue

if wed

if thu

if fri
end;

drop mon tue wed thu fri;

’

ne
ne
ne
ne
ne

then
then
then
then
then

then do;

mon=n;
tue=n;
wed=n;
thu=n;
fri=n;

2='Mike' 3='Bill' 4='Bob' .='

Monday = mon;

Tuesday = tue;
Wednesday = wed;
Thursday = thu;
Friday = fri;

Example 14.4: Scheduling 4 733

format Monday Tuesday Wednesday Thursday Friday namefmt.;

run;

proc print data=report;

id slot;
run;

Output 14.4.1 from PROC PRINT summarizes the schedule. Notice that the constraint that requires a person
to be assigned to each possible time slot on each day is satisfied.

734 4 Chapter 14: The OPTMILP Procedure

Output 14.4.1 A Scheduling Problem
Reported Solution

slot Monday Tuesday Wednesday Thursday Friday

1 Marc Marc Marc Marc Marc
2 Mike Marc Marc Marc Marc
3 Mike Mike Mike Bill Bill
4 Bob Mike Mike Mike Mike
5 Marc Marc Marc Marc Marc
6 Marc Mike Mike Mike Mike
7 Mike Mike Mike Mike Mike
8 Marc Bob Bob Bob Bob

Recall that PROC OPTMILP puts a character string in the macro variable _OROPTMILP_ that describes
the characteristics of the solution on termination. This string can be parsed using macro functions, and the

information obtained can be used in report writing. The variable can be written to the log with the following
command:

$put &_ OROPTMILP_;

This command produces the output shown in Output 14.4.2.

Output 14.4.2 OROPTMILP_ Macro Variable

STATUS=0K ALGORITHM=BAC SOLUTION_ STATUS=OPTIMAL OBJECTIVE=211000 RELATIVE GAP=0
ABSOLUTE GAP=0 PRIMAL INFEASIBILITY=0 BOUND INFEASIBILITY=0

INTEGER INFEASIBILITY=0 BEST BOUND=211000 NODES=1 SOLUTIONS FOUND=1
ITERATIONS=63 PRESOLVE TIME=0.01 SOLUTION TIME=0.02

From this output you learn, for example, that at termination the solution is integer-optimal and has an
objective value of 211,000.

References

Achterberg, T., Koch, T., and Martin, A. (2003). “MIPLIB 2003.” http://miplib.zib.de/.

Achterberg, T., Koch, T., and Martin, A. (2005). “Branching Rules Revisited.” Operations Research Letters
33:42-54.

Andersen, E. D., and Andersen, K. D. (1995). “Presolving in Linear Programming.” Mathematical
Programming 71:221-245.

Atamturk, A. (2004). “Sequence Independent Lifting for Mixed-Integer Programming.” Operations Research
52:487-490.

Bixby, R. E., Ceria, S., McZeal, C. M., and Savelsbergh, M. W. P. (1998). “An Updated Mixed Integer
Programming Library: MIPLIB 3.0.” Optima 58:12-15.

http://miplib.zib.de/

References 4 735

Dantzig, G. B., Fulkerson, R., and Johnson, S. M. (1954). “Solution of a Large-Scale Traveling Salesman
Problem.” Operations Research 2:393-410.

Gondzio, J. (1997). “Presolve Analysis of Linear Programs Prior to Applying an Interior Point Method.”
INFORMS Journal on Computing 9:73-91.

Land, A. H., and Doig, A. G. (1960). “An Automatic Method for Solving Discrete Programming Problems.”
Econometrica 28:497-520.

Linderoth, J. T., and Savelsbergh, M. W. P. (1998). “A Computational Study of Search Strategies for Mixed
Integer Programming.” INFORMS Journal on Computing 11:173-187.

Marchand, H., Martin, A., Weismantel, R., and Wolsey, L. (1999). “Cutting Planes in Integer and Mixed
Integer Programming.” DP 9953, CORE, Université Catholique de Louvain.

Ostrowski, J. (2008). “Symmetry in Integer Programming.” Ph.D. diss., Lehigh University.

Savelsbergh, M. W. P. (1994). “Preprocessing and Probing Techniques for Mixed Integer Programming
Problems.” ORSA Journal on Computing 6:445-454.

Subject Index

active nodes
OPTMILP procedure, 694
ACTIVITY variable
DUALOUT= data set, 693

branch-and-bound

control options, 695
branching priorities

OPTMILP procedure, 696
branching variable

OPTMILP procedure, 694

cutting planes
OPTMILP procedure, 697

data, 681

decomposition algorithm
OPTMILP procedure, 690

DUALOUT= data set
OPTMILP procedure, 692, 693
variables, 692, 693

_LBOUND _ variable
PRIMALOUT= data set, 692
_L_RHS_ variable
DUALOUT= data set, 693

macro variable
OROPTMILP, 705

MILP solver examples
facility location, 717
miplib, 712
scheduling, 725

simple integer linear program, 708

node selection
OPTMILP procedure, 695
number of threads, 690

_OBJCOEF _ variable

PRIMALOUT= data set, 692
_OBJ_ID_ variable

DUALOUT= data set, 692

PRIMALOUT= data set, 691
ODS table names

OPTMILP procedure, 701
OPTMILP option tuner, 691
OPTMILP procedure

active nodes, 694

branch-and-bound, 695

branching priorities, 696

branching variable, 694

cutting planes, 697

data, 681

decomposition algorithm, 690

definitions of DUALOUT= data set variables,
692, 693

definitions of DUALOUT=data set variables, 693

definitions of PRIMALIN= data set variables, 691

definitions of PRIMALOUT= data set variables,

691, 692
DUALOUT= data set, 692, 693
functional summary, 679
introductory example, 676
node selection, 695
number of threads, 690
ODS table names, 701

OROPTMILP macro variable, 705

presolve, 697
PRIMALIN= data set, 691

PRIMALOUT= data set, 691, 692

probing, 697

problem statistics, 705
random seed, 685
variable selection, 696

presolve
OPTMILP procedure, 697
PRIMALIN= data set
OPTMILP procedure, 691
variables, 691
PRIMALOUT= data set
OPTMILP procedure, 691, 692
variables, 691, 692
probing
OPTMILP procedure, 697

random seed, 685
RHS variable
DUALOUT= data set, 693
_RHS_ID_ variable
DUALOUT= data set, 692
PRIMALOUT= data set, 692
ROW variable
DUALOUT= data set, 692

SOL solution
DUALOUT= data set, 693

PRIMALIN= data set, 691
PRIMALOUT= data set, 692

TYPE variable
DUALOUT= data set, 693
PRIMALOUT= data set, 692

_UBOUND _ variable
PRIMALOUT= data set, 692
_U_RHS_ variable
DUALOUT= data set, 693

VALUE variable
PRIMALIN= data set, 691
PRIMALOUT= data set, 692
VAR variable
PRIMALIN= data set, 691
PRIMALOUT= data set, 692
variable selection
OPTMILP procedure, 696

Syntax Index

ABSOBIJGAP= option
PROC OPTMILP statement, 682

CONCURRENT= option

PROC OPTMILP statement, 689
CONFLICTSEARCH= option

PROC OPTMILP statement, 686
CUTCLIQUE-= option

PROC OPTMILP statement, 688
CUTFLOWCOVER= option

PROC OPTMILP statement, 688
CUTFLOWPATH= option

PROC OPTMILP statement, 688
CUTGOMORY= option

PROC OPTMILP statement, 688
CUTGUB= option

PROC OPTMILP statement, 688
CUTIMPLIED= option

PROC OPTMILP statement, 689
CUTKNAPSACK= option

PROC OPTMILP statement, 689
CUTLAP= option

PROC OPTMILP statement, 689
CUTMILIFTED= option

PROC OPTMILP statement, 689
CUTMIR= option

PROC OPTMILP statement, 689
CUTMULTICOMMODITY = option

PROC OPTMILP statement, 689
CUTOFF= option

PROC OPTMILP statement, 682
CUTS= option

PROC OPTMILP statement, 689
CUTSFACTOR-= option

PROC OPTMILP statement, 689
CUTSTRATEGY= option

PROC OPTMILP statement, 689
CUTZEROHALF= option

PROC OPTMILP statement, 689

DATA= option
PROC OPTMILP statement, 681
DECOMPMASTERIP statement
OPTMILP procedure, 690
DECOMPMASTER statement
OPTMILP procedure, 690
DECOMP statement
OPTMILP procedure, 690
DECOMPSUBPROB statement

OPTMILP procedure, 690
DETERMINISTIC= option

PROC OPTMILP statement, 690
DISTRIBUTED= option

PROC OPTMILP statement, 690
DUALOUT= option

PROC OPTMILP statement, 681

EMPHASIS= option
PROC OPTMILP statement, 682

FEASTOL= option

PROC OPTMILP statement, 682
FORMAT= option

PROC OPTMILP statement, 681

HEURISTICS= option
PROC OPTMILP statement, 685

INTTOL= option
PROC OPTMILP statement, 683

LOGFREQ-= option

PROC OPTMILP statement, 683
LOGLEVEL= option

PROC OPTMILP statement, 683

MAXNODES= option

PROC OPTMILP statement, 683
MAXPOOLSOLS= option

PROC OPTMILP statement, 681
MAXSOLS= option

PROC OPTMILP statement, 683
MAXTIME= option

PROC OPTMILP statement, 684
MPSFILE= option

PROC OPTMILP statement, 681

NODESEL= option

PROC OPTMILP statement, 686
NTHREADS= option

PROC OPTMILP statement, 690

OBJCONSTANT= option

PROC OPTMILP statement, 681
OBJSENSE= option

PROC OPTMILP statement, 681
OPTMILP procedure, 679

DECOMPMASTERIP statement, 690
DECOMPMASTER statement, 690

DECOMP statement, 690

DECOMPSUBPROB statement, 690

TUNER statement, 691
OPTTOL= option
PROC OPTMILP statement, 684

PRESOLVER= option

PROC OPTMILP statement, 682
PRIMALIN= option

PROC OPTMILP statement, 681
PRIMALOUT= option

PROC OPTMILP statement, 682
PRINTFREQ= option

PROC OPTMILP statement, 683
PRINTLEVEL= option

PROC OPTMILP statement, 684
PRIORITY= option

PROC OPTMILP statement, 686
PROBE= option

PROC OPTMILP statement, 684
PROC OPTMILP statement

ABSOBJGAP= option, 682

CONCURRENT= option, 689

CONFLICTSEARCH= option, 686

CUTCLIQUE-= option, 688
CUTFLOWCOVER= option, 688
CUTFLOWPATH= option, 688
CUTGOMORY= option, 688
CUTGUB= option, 688
CUTIMPLIED= option, 689
CUTKNAPSACK-= option, 689
CUTLAP= option, 689
CUTMILIFTED= option, 689
CUTMIR= option, 689

CUTMULTICOMMODITY = option, 689

CUTOFF= option, 682

CUTS= option, 689
CUTSFACTOR-= option, 689
CUTSTRATEGY= option, 689
CUTZEROHALF-= option, 689
DATA= option, 681
DETERMINISTIC= option, 690
DISTRIBUTED= option, 690
DUALOUT= option, 681
EMPHASIS= option, 682
FEASTOL= option, 682
FORMAT= option, 681
HEURISTICS= option, 685
INTTOL= option, 683
LOGFREQ-= option, 683
LOGLEVEL= option, 683
MAXNODES= option, 683
MAXPOOLSOLS= option, 681
MAXSOLS= option, 683

MAXTIME= option, 684
MPSFILE= option, 681
NODESEL= option, 686
NTHREADS= option, 690
OBJCONSTANT= option, 681
OBJSENSE-= option, 681
OPTTOL= option, 684
PRIMALIN= option, 681
PRIMALOUT= option, 682
PRINTFREQ= option, 683
PRINTLEVEL= option, 684
PRIORITY= option, 686
PROBE-= option, 684
RELOBJGAP= option, 684
RESTARTS= option, 686
SCALE-= option, 685
SEED= option, 685
STRONGITER= option, 687
STRONGLEN-= option, 687
SYMMETRY= option, 687
TARGET= option, 685
TIMETYPE= option, 685
VARSEL-= option, 687

RELOBJGAP= option

PROC OPTMILP statement, 684
RESTARTS= option

PROC OPTMILP statement, 686

SCALE-= option

PROC OPTMILP statement, 685
SEED= option

PROC OPTMILP statement, 685
STRONGITER= option

PROC OPTMILP statement, 687
STRONGLEN= option

PROC OPTMILP statement, 687
SYMMETRY= option

PROC OPTMILP statement, 687

TARGET= option

PROC OPTMILP statement, 685
TIMETYPE= option

PROC OPTMILP statement, 685
TUNER statement

OPTMILP procedure, 691

VARSEL-= option
PROC OPTMILP statement, 687

	The OPTMILP Procedure
	Overview: OPTMILP Procedure
	Getting Started: OPTMILP Procedure
	Syntax: OPTMILP Procedure
	Functional Summary
	PROC OPTMILP Statement
	Decomposition Algorithm Statements
	TUNER Statement

	Details: OPTMILP Procedure
	Data Input and Output
	Warm Start
	Branch-and-Bound Algorithm
	Controlling the Branch-and-Bound Algorithm
	Presolve and Probing
	Cutting Planes
	Primal Heuristics
	Parallel Processing
	Node Log
	ODS Tables
	Macro Variable _OROPTMILP_

	Examples: OPTMILP Procedure
	Example 14.1: Simple Integer Linear Program
	Example 14.2: MIPLIB Benchmark Instance
	Example 14.3: Facility Location
	Example 14.4: Scheduling

	References

	Subject Index
	Syntax Index

