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The Mixed Integer Linear Programming Solver

Contents
Overview: MILP Solver . . . . . . . . . . . .. e 361
Getting Started: MILP Solver . . . . . . . . . . . . . 362
Syntax: MILP Solver . . . . . . . . . . . e 363
Functional Summary . . . . . . . ... L 363
MILP Solver Options . . . . . . . . ... ... 365
Details: MILP Solver . . . . . . . .. ... . 375
Branch-and-Bound Algorithm . . . . . . ... ... .. ... L 375
Controlling the Branch-and-Bound Algorithm . . . . . ... ... ... ... .... 376
Presolve and Probing . . . . . . . . .. ..o oL 378
Cutting Planes . . . . . . . . . . . o e e 378
Primal Heuristics . . . . . . . . .. ... 380
Parallel Processing . . . . . . . . . . . L 380
NodeLog . . . . . . . o o e 381
Problem Statistics . . . . . . . ... 382
Macro Variable _ OROPTMODEL_ . . . . . . . . . . . . . 383
Examples: MILP Solver . . . . . . . . . . .. . e 386
Example 9.1: Scheduling . . . . . ... ... ... o 386
Example 9.2: Multicommodity Transshipment Problem with Fixed Charges . . . . . . 390
Example 9.3: Facility Location . . . . . . ... ... ... ... .. ... .. ... 396
Example 9.4: Traveling Salesman Problem . . . . ... ... ... ... ....... 408
References . . . . . . . . . . .. . 413

Overview: MILP Solver

The OPTMODEL procedure provides a framework for specifying and solving mixed integer linear programs
(MILPs). A standard mixed integer linear program has the formulation

min ¢!'x

subjectto Ax {>,=,<} b (MILP)
I<x<u
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where
x € R is the vector of structural variables
A € R™" isthe matrix of technological coefficients
c € R is the vector of objective function coefficients
b € R™ is the vector of constraints’ right-hand sides (RHS)
1 € R is the vector of lower bounds on variables
u € R is the vector of upper bounds on variables
S is a nonempty subset of the set {1...,n} of indices

The MILP solver, available in the OPTMODEL procedure, implements a linear-programming-based branch-
and-cut algorithm. This divide-and-conquer approach attempts to solve the original problem by solving
linear programming relaxations of a sequence of smaller subproblems. The MILP solver also implements
advanced techniques such as presolving, generating cutting planes, and applying primal heuristics to improve
the efficiency of the overall algorithm.

The MILP solver provides various control options and solution strategies. In particular, you can enable,
disable, or set levels for the advanced techniques previously mentioned. It is also possible to input an
incumbent solution; see the section “Warm Start Option” on page 366 for details.

Getting Started: MILP Solver

The following example illustrates how you can use the OPTMODEL procedure to solve mixed integer linear
programs. For more examples, see the section “Examples: MILP Solver” on page 386. Suppose you want to
solve the following problem:

min 2x; — 3xp — 4dxj3
s.t. — 2x — 3x3 > =5 (Rl)
X1 + x2 + 2x3 < 4 (RZ)
X1+ 2xp + 3x3 = 7 (R3)
X1, X2, X3 > 0
X1, X2, X3 e”Z

You can use the following statements to call the OPTMODEL procedure for solving mixed integer linear
programs:

proc optmodel;
var x{1..3} >= 0 integer;

min £ = 2+x[1] - 3*x[2] - 4*x[3];

con rl: -2xx[2] - 3%*x[3] >= -5;
con r2: x[1] + x[2] + 2*xx[3] <= 4;
con r3: x[1l] + 2*x[2] + 3*x[3] <= 7;

solve with milp / presolver = automatic heuristics = automatic;
print x;
quit;
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The PRESOLVER= and HEURISTICS= options specify the levels for presolving and applying heuristics,
respectively. In this example, each option is set to its default value, AUTOMATIC, meaning that the solver
automatically determines the appropriate levels for presolve and heuristics.

The optimal value of x is shown in Figure 9.1.

Figure 9.1 Solution Output
The OPTMODEL Procedure
[1] x
10

2 1
3 1

The solution summary stored in the macro variable _OROPTMODEL_ can be viewed by issuing the following
statement:
$put & OROPTMODEL_;

This statement produces the output shown in Figure 9.2.

Figure 9.2 Macro Output

STATUS=0K ALGORITHM=BAC SOLUTION_ STATUS=OPTIMAL OBJECTIVE=-7 RELATIVE GAP=0
ABSOLUTE GAP=0 PRIMAL INFEASIBILITY=0 BOUND INFEASIBILITY=0

INTEGER INFEASIBILITY=0 BEST BOUND=-7 NODES=1 SOLUTIONS FOUND=2 ITERATIONS=3
PRESOLVE TIME=0.00 SOLUTION TIME=0.01

Syntax: MILP Solver

The following statement is available in the OPTMODEL procedure:
SOLVE WITH MILP </ options> ;

Functional Summary
Table 9.1 summarizes the options available for the SOLVE WITH MILP statement, classified by function.

Table 9.1 Options for the MILP Solver

Description Option
Presolve Option

Specifies the type of presolve PRESOLVER=
Warm Start Option

Specifies the input primal solution (warm start) PRIMALIN
Control Options

Specifies the stopping criterion based on absolute objective gap ABSOBJGAP=
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Table 9.1 (continued)
Description Option
Specifies the cutoff value for node removal CUTOFF=
Emphasizes feasibility or optimality EMPHASIS=
Specifies the maximum violation on variables and constraints ~ FEASTOL=
Specifies the maximum allowed difference between an integer INTTOL=
variable’s value and an integer
Specifies the frequency of printing the node log LOGFREQ=
Specifies the detail of solution progress printed in log LOGLEVEL=
Specifies the maximum number of nodes to be processed MAXNODES=
Specifies the maximum number of solutions to return from the MAXPOOLSOLS=
pool
Specifies the maximum number of solutions to be found MAXSOLS=
Specifies the time limit for the optimization process MAXTIME=
Specifies the tolerance used in determining the optimality of OPTTOL=
nodes in the branch-and-bound tree
Specifies the probing level PROBE=
Specifies the stopping criterion based on relative objective gap RELOBJGAP=
Enables the use of scaling on the problem matrix SCALE=
Specifies the initial seed for the random number generator SEED=
Specifies the stopping criterion based on target objective value TARGET=
Specifies whether time units are CPU time or real time TIMETYPE=
Heuristics Option
Specifies the primal heuristics level HEURISTICS=
Search Options
Specifies the level of conflict search CONFLICTSEARCH=
Specifies the node selection strategy NODESEL=
Enables use of variable priorities PRIORITY=
Specifies the restarting strategy RESTARTS=
Specifies the number of simplex iterations to perform on each STRONGITER=
variable in the strong branching variable selection strategy
Specifies the number of candidates for the strong branching STRONGLEN=
variable selection strategy
Specifies the level of symmetry detection SYMMETRY=
Specifies the rule for selecting the branching variable VARSEL=
Cut Options
Specifies the cut level for all cuts ALLCUTS=
Specifies the clique cut level CUTCLIQUE=
Specifies the flow cover cut level CUTFLOWCOVER=
Specifies the flow path cut level CUTFLOWPATH=
Specifies the Gomory cut level CUTGOMORY=
Specifies the generalized upper bound (GUB) cover cut level CUTGUB=
Specifies the implied bounds cut level CUTIMPLIED=
Specifies the knapsack cover cut level CUTKNAPSACK=
Specifies the lift-and-project cut level CUTLAP=
Specifies the mixed lifted 0-1 cut level CUTMILIFTED=
Specifies the mixed integer rounding (MIR) cut level CUTMIR=
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Table 9.1 (continued)
Description Option
Specifies the multicommodity network flow cut level CUTMULTICOMMODITY=
Specifies the row multiplier factor for cuts CUTSFACTOR=
Specifies the overall cut aggressiveness CUTSTRATEGY=
Specifies the zero-half cut level CUTZEROHALF=
Decomposition Algorithm Options
Enables decomposition algorithm and specifies general control DECOMP=()

options

Specifies options for the master problem

Specifies options for the master problem solved as a MILP
Specifies options for the subproblem

Parallel Options

DECOMPMASTER=()
DECOMPMASTERIP=()
DECOMPSUBPROB=()

Enables the MILP solver to run in concurrent mode CONCURRENT=
Enables the MILP solver to run deterministically DETERMINISTIC=
Enables the MILP solver to run in distributed mode DISTRIBUTED=
Specifies the number of threads for the parallel MILP solver to NTHREADS=

use

MILP Solver Options

This section describes the options that are recognized by the MILP solver in PROC OPTMODEL. These
options can be specified after a forward slash (/) in the SOLVE statement, provided that the MILP solver is
explicitly specified using a WITH clause. For example, the following line could appear in PROC OPTMODEL
statements:

solve with milp / allcuts=aggressive maxnodes=10000 primalin;

Presolve Option

PRESOLVER=AUTOMATIC | NONE | BASIC | MODERATE | AGGRESSIVE
specifies the level of presolve processing. You can specify the following values:

AUTOMATIC applies the default level of presolve processing.
NONE disables the presolver.

BASIC performs minimal presolve processing.
MODERATE applies a higher level of presolve processing.
AGGRESSIVE applies the highest level of presolve processing.

By default, PRESOLVER=AUTOMATIC.
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Warm Start Option

PRIMALIN

enables you to input a starting solution in PROC OPTMODEL before invoking the MILP solver.
Adding the PRIMALIN option to the SOLVE statement requests that the MILP solver use the current
variable values as a starting solution (warm start). If the MILP solver finds that the input solution is
feasible, then the input solution provides an incumbent solution and a bound for the branch-and-bound
algorithm. If the solution is not feasible, the MILP solver tries to repair it. It is possible to set a variable
value to the missing value ‘" to mark a variable for repair. When it is difficult to find a good integer
feasible solution for a problem, warm start can reduce solution time significantly.

NOTE: If the MILP solver produces a feasible solution, the variable values from that run can be
used as the warm start solution for a subsequent run. If the warm start solution is not feasible for the
subsequent run, the solver automatically tries to repair it.

Control Options

ABSOBJGAP=number

ABSOLUTEOBJECTIVEGAP=number
specifies a stopping criterion. When the absolute difference between the best integer objective and the
best bound on the objective function value falls below the value of number, the MILP solver stops.
The value of number can be any nonnegative number; the default value is 1E-6.

CUTOFF=number
cuts off any nodes in a minimization (maximization) problem that have an objective value at or above
(below) number. The value of number can be any number; the default value is the largest (smallest)
number that can be represented by a double.

EMPHASIS=BALANCE | OPTIMAL | FEASIBLE
specifies a search emphasis string as listed below.

BALANCE performs a balanced search.
OPTIMAL emphasizes optimality over feasibility.
FEASIBLE emphasizes feasibility over optimality.

By default, EMPHASIS=BALANCE.

FEASTOL=number
specifies the tolerance that the MILP solver uses to check the feasibility of a solution. This tolerance
applies both to the maximum violation of bounds on variables and to the difference between the
right-hand sides and left-hand sides of constraints. The value of number can be any value between
1E—4 and 1E-9, inclusive. However, the value of number cannot be larger than the integer feasibility
tolerance. If the value of number is larger than the value of the INTTOL= option, then the solver sets
FEASTOL= to the value of INTTOL=. The default value is 1E-6.

If the MILP solver fails to find a feasible solution within this tolerance but does find a solution that
has some violation, then the solver stops with a solution status of OPTIMAL_COND (see the section
“Macro Variable _OROPTMODEL_ ” on page 383).
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INTTOL=number

INTEGERTOLERANCE=number
specifies the amount by which an integer variable value can differ from an integer and still be considered
integer feasible. The value of number can be any number between 1E-9 and 0.5, inclusive. The MILP
solver attempts to find an optimal solution whose integer infeasibility is less than number. The default
value is 1E-5.

If the best solution that the solver finds has an integer infeasibility larger than the value of number,
then the solver stops with a solution status of OPTIMAL_COND (see the section “Macro Variable
_OROPTMODEL_ ” on page 383).

LOGFREQ=k

PRINTFREQ=k
prints information in the node log every k seconds, where k is any nonnegative integer up to the largest
four-byte signed integer, which is 23! — 1. If k=0, then the node log is disabled. If k is positive, then
the root node processing information is printed and, if possible, an entry is made every k seconds. An
entry is also made each time a better integer solution is found.

By default, LOGFREQ=5.

LOGLEVEL=NONE | BASIC | MODERATE | AGGRESSIVE
controls the amount of information displayed in the SAS log by the MILP solver. You can specify the
following values:

NONE turns off all solver-related messages in the SAS log.
BASIC displays a solver summary after stopping.
MODERATE prints a solver summary and a node log by using the interval specified in the

LOGFREQ= option.

AGGRESSIVE  prints a detailed solver summary and a node log by using the interval specified in
the LOGFREQ= option.

By default, LOGLEVEL=MODERATE.

MAXNODES=number
specifies the maximum number of branch-and-bound nodes to be processed, where number can be
any nonnegative integer up to the largest four-byte signed integer, which is 23! — 1. If you run the
MILP solver in concurrent mode (CONCURRENT=TRUE), then the solver stops as soon as number
is reached on any machine. If you run the MILP solver in distributed mode (DISTRIBUTED=TRUE),
then the solver periodically checks and stops as soon as the total number of nodes that are processed
by all grid nodes exceeds number. The default value of number is 23! — 1.

MAXPOOLSOLS=number
specifies the number of solutions to return from the MILP solution pool, where number can be any
positive integer up to the largest four-byte signed integer, which is 23! — 1. Only feasible and unique
solutions are returned, and they are returned in order of objective value, with the best solution first. The
number of solutions that are found is reported in both the solution summary and the _OROPTMODEL _
macro variable. By default, MAXPOOLSOLS=1.
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MAXSOLS=number
specifies a stopping criterion, where number can be any positive integer up to the largest four-byte
signed integer, which is 23! — 1. If number of solutions have been found, then the solver stops. The
default value of number is 23! — 1.

MAXTIME=t
specifies an upper limit of ¢ units of time for the optimization process, including problem generation
time and solution time. The value of the TIMETYPE= option determines the type of units used.
If you do not specify the MAXTIME= option, the solver does not stop because of the amount of
time elapsed. If concurrent or distributed mode of the solver is enabled (CONCURRENT=TRUE or
DISTRIBUTED=TRUE), then the solver stops as soon as t is reached on any machine. The value of ¢
can be any positive number; the default value is the largest number that can be represented by a double.

OPTTOL=number
specifies the tolerance used to determine the optimality of nodes in the branch-and-bound tree. The
value of number can be any value between (and including) 1E—4 and 1E-9. The default is 1E-6.

PROBE=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies a probing strategy. You can specify the following values:

AUTOMATIC uses the probing strategy determined by the MILP solver.
NONE disables probing.

MODERATE uses the probing moderately.

AGGRESSIVE  uses probing aggressively.

By default, PROBE=AUTOMATIC.

RELOBJGAP=number
specifies a stopping criterion based on the best integer objective (BestInteger) and the best bound on
the objective function value (BestBound). The relative objective gap is equal to

|BestInteger — BestBound|/ (1IE—10 + |BestBound|)

When this value becomes smaller than the specified gap size number, the MILP solver stops. The
value of number can be any nonnegative number; the default value is 1E—4.

SCALE=AUTOMATIC | NONE
indicates whether to scale the problem matrix. You can specify the following values:

AUTOMATIC scales the matrix as determined by the MILP solver.
NONE disables scaling.

By default, SCALE=AUTOMATIC.

SEED=number
specifies the initial seed of the random number generator. This option affects the perturbation in the
simplex solvers; thus it might result in a different optimal solution and a different solver path. This
option usually has a significant, but unpredictable, effect on the solution time. The value of number

can be any positive integer up to the largest four-byte signed integer, which is 23! — 1. By default,
SEED=100.
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TARGET=number
specifies a stopping criterion for a minimization or maximization problem. If the best integer objective
is better than or equal to number, the solver stops. The value of number can be any number; the
default value is the largest (in magnitude) negative number (for a minimization problem) or the largest
(in magnitude) positive number (for a maximization problem) that can be represented by a double.

TIMETYPE=CPU | REAL
specifies the units of time used by the MAXTIME= option and reported by the PRESOLVE_TIME and
SOLUTION_TIME terms in the _OROPTMODEL_ macro variable. You can specify the following

values:
CPU specifies that units are in CPU time.
REAL specifies that units are in real time.

The “Optimization Statistics” table, an output of PROC OPTMODEL if you specify PRINTLEVEL=2
in the PROC OPTMODEL statement, also includes the same time units for Presolver Time and Solver
Time. The other times (such as Problem Generation Time) in the “Optimization Statistics” table are
also in the same units.

By default, TIMETYPE=REAL.

Heuristics Option

HEURISTICS=AUTOMATIC | NONE | BASIC | MODERATE | AGGRESSIVE
controls the level of primal heuristics applied by the MILP solver. This level determines how frequently
primal heuristics are applied during the branch-and-bound tree search. It also affects the maximum
number of iterations allowed in iterative heuristics. Some computationally expensive heuristics might
be disabled by the solver at less aggressive levels. You can specify the following values:

AUTOMATIC applies the default level of heuristics, similar to MODERATE.

NONE disables all primal heuristics. This value does not disable the heuristics that repair
an infeasible input solution that is specified by using the PRIMALIN option.

BASIC applies basic primal heuristics at low frequency.
MODERATE applies most primal heuristics at moderate frequency.
AGGRESSIVE  applies all primal heuristics at high frequency.

By default, HEURISTICS=AUTOMATIC. For more information about primal heuristics, see the
section “Primal Heuristics” on page 380.

Search Options

CONFLICTSEARCH=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the level of conflict search performed by the MILP solver. A conflict search finds clauses
resulting from infeasible subproblems that arise in the search tree. You can specify the following
values:



370 4 Chapter 9: The Mixed Integer Linear Programming Solver

AUTOMATIC performs conflict search based on a strategy determined by the MILP solver.
NONE disables conflict search.

MODERATE performs a moderate conflict search.

AGGRESSIVE  performs an aggressive conflict search.

By default, CONFLICTSEARCH=AUTOMATIC.

NODESEL=AUTOMATIC | BESTBOUND | BESTESTIMATE | DEPTH
specifies the node selection strategy. You can specify the following values:

AUTOMATIC uses automatic node selection.
BESTBOUND chooses the node with the best relaxed objective (best-bound-first strategy).

BESTESTIMATE chooses the node with the best estimate of the integer objective value (best-estimate-
first strategy).

DEPTH chooses the most recently created node (depth-first strategy).

By default, NODESEL=AUTOMATIC. For more information about node selection, see the section
“Node Selection” on page 376.

PRIORITY= TRUE | FALSE
indicates whether to use specified branching priorities for integer variables. You can specify the
following values:

TRUE uses priorities when they exist.
FALSE ignores variable priorities.

By default, PRIORITY=TRUE. For more information, see the section ‘“Branching Priorities” on
page 378.

RESTARTS=AUTOMATIC | NONE | BASIC | MODERATE | AGGRESSIVE
specifies the strategy for restarting the processing of the root node. You can specify the following
values:

AUTOMATIC uses a restarting strategy determined by the MILP solver.

NONE disables restarting.
BASIC uses a basic restarting strategy.
MODERATE uses a moderate restarting strategy.

AGGRESSIVE uses an aggressive restarting strategy.

By default, RESTARTS=AUTOMATIC.

STRONGITER=number | AUTOMATIC
specifies the number of simplex iterations performed for each variable in the candidate list when the
strong branching variable selection strategy is used. The value of number can be any positive integer
up to the largest four-byte signed integer, which is 23! — 1. If you specify the keyword AUTOMATIC,
the MILP solver uses the default value; this value is calculated automatically.
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STRONGLEN=number | AUTOMATIC
specifies the number of candidates used when the strong branching variable selection strategy is
performed. The value of number can be any positive integer up to the largest four-byte signed integer,
which is 23! — 1. If you specify the keyword AUTOMATIC, the MILP solver uses the default value;
this value is calculated automatically.

SYMMETRY=AUTOMATIC | NONE | BASIC | MODERATE | AGGRESSIVE
specifies the level of symmetry detection. Symmetry detection identifies groups of equivalent decision
variables and uses this information to solve the problem more efficiently. You can specify the following
values:

AUTOMATIC performs symmetry detection based on a strategy that is determined by MILP solver.

NONE disables symmetry detection.
BASIC performs a basic symmetry detection.
MODERATE performs a moderate symmetry detection.

AGGRESSIVE performs an aggressive symmetry detection.

By default, SYMMETRY=AUTOMATIC. For more information about symmetry detection, see
(Ostrowski 2008).

VARSEL=AUTOMATIC | MAXINFEAS | MININFEAS | PSEUDO | STRONG
specifies the rule for selecting the branching variable. You can specify the following values:

AUTOMATIC uses automatic branching variable selection.

MAXINFEAS chooses the variable with maximum infeasibility.

MININFEAS chooses the variable with minimum infeasibility.
PSEUDO chooses a branching variable based on pseudocost.
STRONG uses a strong branching variable selection strategy.

By default, VARSEL=AUTOMATIC. For more information about variable selection, see the section
“Variable Selection” on page 377.

Cut Options
Table 9.2 describes the string values for the cut options in the OPTMODEL procedure.

Table 9.2 Values for Individual Cut Options

string Description

AUTOMATIC Generates cutting planes based on a strategy
determined by the MILP solver

NONE Disables generation of cutting planes

MODERATE Uses a moderate cut strategy

AGGRESSIVE  Uses an aggressive cut strategy
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You can specify the CUTSTRATEGY= option to set the overall aggressiveness of the cut generation in
the MILP solver. Alternatively, you can use the ALLCUTS= option to set all cut types to the same level.
You can override the ALLCUTS= value by using the options that correspond to particular cut types. For
example, if you want the MILP solver to generate only Gomory cuts, specify ALLCUTS=NONE and
CUTGOMORY=AUTOMATIC. If you want to generate all cuts aggressively but generate no lift-and-project
cuts, set ALLCUTS=AGGRESSIVE and CUTLAP=NONE.

ALLCUTS=AUTOMATIC | NONE | MODERATE | AGGRESSIVE

provides a shorthand way of setting all the cuts-related options in one setting. In other
words, ALLCUTS=string is equivalent to setting each of the individual cuts parameters
to the same value string. Thus, ALLCUTS=AUTOMATIC has the effect of setting CUT-
CLIQUE=AUTOMATIC, CUTFLOWCOVER=AUTOMATIC, CUTFLOWPATH=AUTOMATIC,
..., CUTMULTICOMMODITY=AUTOMATIC, and CUTZEROHALF=AUTOMATIC. Table 9.2
lists the values that can be assigned to option. In addition, you can override levels for individual cuts
with the CUTCLIQUE=, CUTFLOWCOVER=, CUTFLOWPATH=, CUTGOMORY=, CUTGUB=,
CUTIMPLIED=, CUTKNAPSACK=, CUTLAP=, CUTMILIFTED=, CUTMIR=, CUTMULTI-
COMMODITY=, and CUTZEROHALF= options. If the ALLCUTS= option is not specified, then all
the cuts-related options are either at their individually specified values (if the corresponding option is
specified) or at their default values (if that option is not specified).

CUTCLIQUE=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the level of clique cuts that are generated by the MILP solver. Table 9.2 describes the possible
values. This option overrides the ALLCUTS= option. By default, CUTCLIQUE=AUTOMATIC.

CUTFLOWCOVER=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the level of flow cover cuts that are generated by the MILP solver. Table 9.2 describes
the possible values. The option overrides the ALLCUTS= option. By default, CUTFLOW-
COVER=AUTOMATIC.

CUTFLOWPATH=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the level of flow path cuts that are generated by the MILP solver. Table 9.2 describes
the possible values. This option overrides the ALLCUTS= option. By default, CUTFLOW-
PATH=AUTOMATIC.

CUTGOMORY=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the level of Gomory cuts that are generated by the MILP solver. Table 9.2 describes the possi-
ble values. This option overrides the ALLCUTS= option. By default, CUTGOMORY=AUTOMATIC.

CUTGUB=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the level of generalized upper bound (GUB) cover cuts that are generated by the MILP solver.
Table 9.2 describes the possible values. This option overrides the ALLCUTS= option. By default,
CUTGUB=AUTOMATIC.

CUTIMPLIED=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the level of implied bound cuts that are generated by the MILP solver. Table 9.2 de-
scribes the possible values. This option overrides the ALLCUTS= option. By default, CUT-
IMPLIED=AUTOMATIC.
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CUTKNAPSACK=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the level of knapsack cover cuts that are generated by the MILP solver. Table 9.2 de-
scribes the possible values. This option overrides the ALLCUTS= option. By default, CUTKNAP-
SACK=AUTOMATIC.

CUTLAP=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the level of lift-and-project (LAP) cuts that are generated by the MILP solver. Table 9.2
describes the possible values that can be assigned to option. This option overrides the ALLCUTS=
option. By default, CUTLAP=NONE.

CUTMILIFTED=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the level of mixed lifted 0-1 cuts that are generated by the MILP solver. Table 9.2
describes the possible values. This option overrides the ALLCUTS= option. By default, CUT-
MILIFTED=AUTOMATIC.

CUTMIR=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the level of mixed integer rounding (MIR) cuts that are generated by the MILP solver.
Table 9.2 describes the possible values. This option overrides the ALLCUTS= option. By default,
CUTMIR=AUTOMATIC.

CUTMULTICOMMODITY=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the level of multicommodity network flow cuts that are generated by the MILP solver.
Table 9.2 describes the possible values. This option overrides the ALLCUTS= option. By default,
CUTMULTICOMMODITY=AUTOMATIC.

CUTSFACTOR=number
specifies a row multiplier factor for cuts. The number of cuts that are added is limited to number times
the original number of rows. The value of number can be any nonnegative number less than or equal
to 100; the default value is automatically calculated by the MILP solver.

CUTSTRATEGY=AUTOMATIC | NONE | MODERATE | AGGRESSIVE

CUTS=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the overall aggressiveness of the cut generation in the solver. By default, CUTSTRAT-
EGY=AUTOMATIC. Setting a nondefault value adjusts a number of cut parameters such that the cut
generation is none, moderate, or aggressive compared to the default value.

CUTZEROHALF=AUTOMATIC | NONE | MODERATE | AGGRESSIVE
specifies the level of zero-half cuts that are generated by the MILP solver. Table 9.2 describes
the possible values. This option overrides the ALLCUTS= option. By default, CUTZERO-
HALF=AUTOMATIC.

Decomposition Algorithm Options

The following options are available for the decomposition algorithm in the MILP solver. For information
about the decomposition algorithm, see Chapter 16, “The Decomposition Algorithm.”

DECOMP=(options)
enables the decomposition algorithm and specifies overall control options for the algorithm. For more
information about this option, see Chapter 16, “The Decomposition Algorithm.”
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DECOMPMASTER=(options)
specifies options for the master problem. For more information about this option, see Chapter 16, “The
Decomposition Algorithm.”

DECOMPMASTERIP=(options)
specifies options for the (restricted) master problem solved as a MILP with the current set of columns in
an effort to obtain an integer feasible solution. For more information about this option, see Chapter 16,
“The Decomposition Algorithm.”

DECOMPSUBPROB=(options)
specifies option for the subproblem. For more information about this option, see Chapter 16, “The
Decomposition Algorithm.”

Parallel Options

CONCURRENT=TRUE | FALSE
specifies whether to run the MILP solver in concurrent mode. You can specify the following values:

TRUE runs the MILP solver in concurrent mode. The solver automatically runs the same
problem on each grid node with different MILP solver options.

FALSE turns off concurrent mode for the MILP solver.

By default, CONCURRENT=FALSE.

DETERMINISTIC=TRUE | FALSE
specifies whether to run the MILP solver deterministically when distributed or concurrent mode is
enabled. The DETERMINISTIC= option is valid only when DISTRIBUTED=TRUE or CONCUR-
RENT=TRUE. You can specify the following values:

TRUE runs the MILP solver in deterministic distributed or concurrent mode. The solver
always returns the same solution for subsequent runs on the same grid.

FALSE runs the MILP solver in nondeterministic distributed or concurrent mode.

By default, DETERMINISTIC=FALSE when you specifty CONCURRENT=TRUE, and DETERMIN-
ISTIC=TRUE when you specify DISTRIBUTED=TRUE.

DISTRIBUTED=TRUE | FALSE
specifies whether to run the MILP solver in distributed mode. For more information about this option
as it relates to the standard MILP algorithm, see the section “Parallel Processing” on page 380. For
more information about this option as it relates to the decomposition algorithm, see Chapter 16, “The
Decomposition Algorithm.” You can specify the following values:

TRUE runs the MILP solver in distributed mode.
FALSE turns off distributed mode for the MILP solver.

By default, DISTRIBUTED=FALSE.



Details: MILP Solver 4 375

NTHREADS=number
specifies the maximum number of threads for the MILP solver to use for multithreaded processing,
where number can be any integer between 1 and 256, inclusive. The branch-and-cut algorithm can

take advantage of multicore machines and can potentially run faster when number is greater than 1.
The default is the value of the NTHREADS= option in PROC OPTMODEL.

Details: MILP Solver

Branch-and-Bound Algorithm

The branch-and-bound algorithm, first proposed by Land and Doig (1960), is an effective approach to solving
mixed integer linear programs. The following discussion outlines the approach and explains how to enhance
its progress by using several advanced techniques.

The branch-and-bound algorithm solves a mixed integer linear program by dividing the search space and
generating a sequence of subproblems. The search space of a mixed integer linear program can be represented
by a tree. Each node in the tree is identified with a subproblem derived from previous subproblems on the
path that leads to the root of the tree. The subproblem (MILP®) associated with the root is identical to the
original problem, which is called (MILP), given in the section “Overview: MILP Solver” on page 361.

The linear programming relaxation (LP?) of (MILP®) can be written as

min c¢'x

subjectto Ax {>,=,<}Db
I<x<u

The branch-and-bound algorithm generates subproblems along the nodes of the tree by using the following
scheme. Consider x°, the optimal solution to (LP?), which is usually obtained by using the dual simplex
algorithm. If )Elp is an integer for all i € S, then x° is an optimal solution to (MILP). Suppose that for some
i €S, )?lp is nonintegral. In that case the algorithm defines two new subproblems (MILP') and (MILP?),
descendants of the parent subproblem (MILP?). The subproblem (MILP!) is identical to (MILP?) except for
the additional constraint

xi < %]
and the subproblem (MILP?) is identical to (MILP?) except for the additional constraint

xi = [%}]
The notation | y | represents the largest integer that is less than or equal to y, and the notation [y represents
the smallest integer that is greater than or equal to y. The two preceding constraints can be handled by
modifying the bounds of the variable x; rather than by explicitly adding the constraints to the constraint
matrix. The two new subproblems do not have X as a feasible solution, but the integer solution to (MILP)
must satisfy one of the preceding constraints. The two subproblems thus defined are called active nodes in
the branch-and-bound tree, and the variable x; is called the branching variable.
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In the next step the branch-and-bound algorithm chooses one of the active nodes and attempts to solve the
linear programming relaxation of that subproblem. The relaxation might be infeasible, in which case the
subproblem is dropped (fathomed). If the subproblem can be solved and the solution is integer feasible
(that is, x; is an integer for all i € §), then its objective value provides an upper bound for the objective
value in the minimization problem (MILP); if the solution is not integer feasible, then it defines two new
subproblems. Branching continues in this manner until there are no active nodes. At this point the best
integer solution found is an optimal solution for (MILP). If no integer solution has been found, then (MILP)
is integer infeasible. You can specify other criteria to stop the branch-and-bound algorithm before it processes
all the active nodes; see the section “Controlling the Branch-and-Bound Algorithm” on page 376 for details.

Upper bounds from integer feasible solutions can be used to fathom or cut off active nodes. Since the
objective value of an optimal solution cannot be greater than an upper bound, active nodes with lower bounds
higher than an existing upper bound can be safely deleted. In particular, if z is the objective value of the
current best integer solution, then any active subproblems whose relaxed objective value is greater than or
equal to z can be discarded.

It is important to realize that mixed integer linear programs are nondeterministic polynomial-time hard
(NP-hard). Roughly speaking, this means that the effort required to solve a mixed integer linear program
grows exponentially with the size of the problem. For example, a problem with 10 binary variables can
generate in the worst case 2!% = 1,024 nodes in the branch-and-bound tree. A problem with 20 binary
variables can generate in the worst case 220 = 1,048,576 nodes in the branch-and-bound tree. Although it is
unlikely that the branch-and-bound algorithm has to generate every single possible node, the need to explore
even a small fraction of the potential number of nodes for a large problem can be resource-intensive.

A number of techniques can speed up the search progress of the branch-and-bound algorithm. Heuristics
are used to find feasible solutions, which can improve the upper bounds on solutions of mixed integer linear
programs. Cutting planes can reduce the search space and thus improve the lower bounds on solutions of
mixed integer linear programs. When using cutting planes, the branch-and-bound algorithm is also called the
branch-and-cut algorithm. Preprocessing can reduce problem size and improve problem solvability. The
MILP solver in PROC OPTMODEL employs various heuristics, cutting planes, preprocessing, and other
techniques, which you can control through corresponding options.

Controlling the Branch-and-Bound Algorithm

There are numerous strategies that can be used to control the branch-and-bound search (see Linderoth and
Savelsbergh 1998, Achterberg, Koch, and Martin 2005). The MILP solver in PROC OPTMODEL implements
the most widely used strategies and provides several options that enable you to direct the choice of the next
active node and of the branching variable. In the discussion that follows, let (LPX) be the linear programming
relaxation of subproblem (MILPk). Also, let

filk) = xF — |5F]

where x* is the optimal solution to the relaxation problem (LPK) solved at node k.

Node Selection

The NODESEL= option specifies the strategy used to select the next active node. The valid keywords for this
option are AUTOMATIC, BESTBOUND, BESTESTIMATE, and DEPTH. The following list describes the
strategy associated with each keyword:
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AUTOMATIC enables the MILP solver to choose the best node selection strategy based on problem
characteristics and search progress. This is the default setting.

BESTBOUND chooses the node with the smallest (or largest, in the case of a maximization problem)
relaxed objective value. The best-bound strategy tends to reduce the number of nodes
to be processed and can improve lower bounds quickly. However, if there is no good
upper bound, the number of active nodes can be large. This can result in the solver
running out of memory.

BESTESTIMATE  chooses the node with the smallest (or largest, in the case of a maximization problem)
objective value of the estimated integer solution. Besides improving lower bounds,
the best-estimate strategy also attempts to process nodes that can yield good feasible
solutions.

DEPTH chooses the node that is deepest in the search tree. Depth-first search is effective in
locating feasible solutions, since such solutions are usually deep in the search tree.
Compared to the costs of the best-bound and best-estimate strategies, the cost of
solving LP relaxations is less in the depth-first strategy. The number of active nodes is
generally small, but it is possible that the depth-first search will remain in a portion
of the search tree with no good integer solutions. This occurrence is computationally
expensive.

Variable Selection

The VARSEL= option specifies the strategy used to select the next branching variable. The valid keywords
for this option are AUTOMATIC, MAXINFEAS, MININFEAS, PSEUDO, and STRONG. The following list
describes the action taken in each case when x¥, a relaxed optimal solution of (MILPk), is used to define two
active subproblems. In the following list, “INTTOL” refers to the value assigned using the INTTOL= option.
For details about the INTTOL= option, see the section “Control Options” on page 366.

AUTOMATIC enables the MILP solver to choose the best variable selection strategy based on problem
characteristics and search progress. This is the default setting.

MAXINFEAS chooses as the branching variable the variable x; such that i maximizes
{min{ fi(k), 1 — fi(k)}|i € S and
INTTOL < f;(k) <1—INTTOL}
MININFEAS chooses as the branching variable the variable x; such that i minimizes
{min{ fi (k),1— fi(k)} |i € S and
INTTOL < fi(k) <1 —INTTOL}

PSEUDO chooses as the branching variable the variable x; such that i maximizes the weighted up
and down pseudocosts. Pseudocost branching attempts to branch on significant variables
first, quickly improving lower bounds. Pseudocost branching estimates significance based
on historical information; however, this approach might not be accurate for future search.
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STRONG chooses as the branching variable the variable x; such that i maximizes the estimated
improvement in the objective value. Strong branching first generates a list of candidates,
then branches on each candidate and records the improvement in the objective value.
The candidate with the largest improvement is chosen as the branching variable. Strong
branching can be effective for combinatorial problems, but it is usually computationally
expensive.

Branching Priorities

In some cases, it is possible to speed up the branch-and-bound algorithm by branching on variables in a
specific order. You can accomplish this in PROC OPTMODEL by attaching branching priorities to the integer
variables in your model by using the .priority suffix. More information about this suffix is available in the
section “Integer Variable Suffixes” on page 139 in Chapter 5. For an example in which branching priorities
are used, see Example 9.3.

Presolve and Probing

The MILP solver in PROC OPTMODEL includes a variety of presolve techniques to reduce problem
size, improve numerical stability, and detect infeasibility or unboundedness (Andersen and Andersen 1995;
Gondzio 1997). During presolve, redundant constraints and variables are identified and removed. Presolve
can further reduce the problem size by substituting variables. Variable substitution is a very effective
technique, but it might occasionally increase the number of nonzero entries in the constraint matrix. Presolve
might also modify the constraint coefficients to tighten the formulation of the problem.

In most cases, using presolve is very helpful in reducing solution times. You can enable presolve at different
levels by specifying the PRESOLVER= option.

Probing is a technique that tentatively sets each binary variable to O or 1, then explores the logical conse-
quences (Savelsbergh 1994). Probing can expedite the solution of a difficult problem by fixing variables and
improving the model. However, probing is often computationally expensive and can significantly increase the
solution time in some cases. You can enable probing at different levels by specifying the PROBE= option.

Cutting Planes

The feasible region of every linear program forms a polyhedron. Every polyhedron in n-space can be
written as a finite number of half-spaces (equivalently, inequalities). In the notation used in this chapter, this
polyhedron is defined by the set @ = {x € R" | Ax < b,] < x < u}. After you add the restriction that
some variables must be integral, the set of feasible solutions, F = {x € Q | x; € Z Vi € S}, no longer
forms a polyhedron.

The convex hull of a set X is the minimal convex set that contains X. In solving a mixed integer linear program,
in order to take advantage of LP-based algorithms you want to find the convex hull, conv(F), of F. If you
can find conv(F) and describe it compactly, then you can solve a mixed integer linear program with a linear
programming solver. This is generally very difficult, so you must be satisfied with finding an approximation.
Typically, the better the approximation, the more efficiently the LP-based branch-and-bound algorithm can
perform.



Cutting Planes 4 379

As described in the section “Branch-and-Bound Algorithm™ on page 375, the branch-and-bound algorithm
begins by solving the linear programming relaxation over the polyhedron Q. Clearly, Q contains the convex
hull of the feasible region of the original integer program; that is, conv(F) € Q.

Cutting plane techniques are used to tighten the linear relaxation to better approximate conv(JF). Assume
you are given a solution X to some intermediate linear relaxation during the branch-and-bound algorithm. A
cut, or valid inequality (wx < 7?), is some half-space with the following characteristics:

e The half-space contains conv(F); that is, every integer feasible solution is feasible for the cut (7x <
0
7%, Vx € F).

o The half-space does not contain the current solution X; that is, X is not feasible for the cut (wx > 7).

Cutting planes were first made popular by Dantzig, Fulkerson, and Johnson (1954) in their work on the
traveling salesman problem. The two major classifications of cutting planes are generic cuts and structured
cuts. Generic cuts are based solely on algebraic arguments and can be applied to any relaxation of any integer
program. Structured cuts are specific to certain structures that can be found in some relaxations of the mixed
integer linear program. These structures are automatically discovered during the cut initialization phase of the
MILP solver. Table 9.3 lists the various types of cutting planes that are built into the MILP solver. Included
in each type are algorithms for numerous variations based on different relaxations and lifting techniques.
For a survey of cutting plane techniques for mixed integer programming, see Marchand et al. (1999). For a
survey of lifting techniques, see Atamturk (2004).

Table 9.3 Cutting Planes in the MILP Solver

Generic Cutting Planes Structured Cutting Planes

Gomory mixed integer Cliques

Lift-and-project Flow cover

Mixed integer rounding  Flow path

Mixed lifted 0-1 Generalized upper bound cover
Zero-half Implied bound

Knapsack cover
Multicommodity network flow

You can set levels for individual cuts by using the CUTCLIQUE=, CUTFLOWCOVER=, CUTFLOWPATH=,
CUTGOMORY=, CUTGUB=, CUTIMPLIED=, CUTKNAPSACK=, CUTLAP=, CUTMILIFTED=, CUT-
MIR=, CUTMULTICOMMODITY=, and CUTZEROHALF-= options. The valid levels for these options are
listed in Table 9.2.

The cut level determines the internal strategy that is used by the MILP solver for generating the cutting planes.
The strategy consists of several factors, including how frequently the cut search is called, the number of cuts
allowed, and the aggressiveness of the search algorithms.

Sophisticated cutting planes, such as those included in the MILP solver, can take a great deal of CPU time.
Usually, additional tightening of the relaxation helps speed up the overall process because it provides better
bounds for the branch-and-bound tree and helps guide the LP solver toward integer solutions. In rare cases,
shutting off cutting planes completely might lead to faster overall run times.

The default settings of the MILP solver have been tuned to work well for most instances. However, problem-
specific expertise might suggest adjusting one or more of the strategies. These options give you that flexibility.
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Primal Heuristics

Primal heuristics, an important component of the MILP solver in PROC OPTMODEL, are applied during the
branch-and-bound algorithm. They are used to find integer feasible solutions early in the search tree, thereby
improving the upper bound for a minimization problem. Primal heuristics play a role that is complementary
to cutting planes in reducing the gap between the upper and lower bounds, thus reducing the size of the
branch-and-bound tree.

Applying primal heuristics in the branch-and-bound algorithm assists in the following areas:

e finding a good upper bound early in the tree search (this can lead to earlier fathoming, resulting in
fewer subproblems to be processed)

e locating a reasonably good feasible solution when that is sufficient (sometimes a reasonably good
feasible solution is the best the solver can produce within certain time or resource limits)

e providing upper bounds for some bound-tightening techniques

The MILP solver implements several heuristic methodologies. Some algorithms, such as rounding and
iterative rounding (diving) heuristics, attempt to construct an integer feasible solution by using fractional
solutions to the continuous relaxation at each node of the branch-and-cut tree. Other algorithms start with an
incumbent solution and attempt to find a better solution within a neighborhood of the current best solution.

The HEURISTICS= option enables you to control the level of primal heuristics that are applied by the MILP
solver. This level determines how frequently primal heuristics are applied during the tree search. Some
expensive heuristics might be disabled by the solver at less aggressive levels. Setting the HEURISTICS=
option to a lower level also reduces the maximum number of iterations that are allowed in iterative heuristics.

Parallel Processing

You can run the branch-and-cut algorithm in the following modes:

¢ In single-machine mode, the computation is executed on a single computer by multiple threads. The
number of threads is specified in the NTHREADS= option.

e In distributed mode, the branch-and-cut algorithm is executed on a cluster of nodes. You disable
deterministic distributed mode by specifying DETERMINISTIC=FALSE in the MILP solver options.
By default, the MILP solver is executed deterministically.

e In concurrent mode, the computation is executed on a cluster of nodes by solving the same problem
across those nodes under different MILP solver settings. By default, the MILP solver is executed
nondeterministically.

You can run the decomposition algorithm in either single-machine or distributed mode. In distributed mode,
the computation is executed on multiple computing nodes in a distributed computing environment.
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Node Log
The following information about the status of the branch-and-bound algorithm is printed in the node log:
Node indicates the sequence number of the current node in the search tree.
Active indicates the current number of active nodes in the branch-and-bound tree.
Sols indicates the number of feasible solutions that are found so far. You can use the

MAXPOOLSOLS= option to obtain more than one solution. Note that the number
printed in the node log can be different from the number of found solutions that is
reported in the solution summary and in the _OROPTMODEL_ macro variable.

BestInteger indicates the best upper bound (assuming minimization) that is found so far.
BestBound indicates the best lower bound (assuming minimization) that is found so far.
Gap indicates the relative gap between BestInteger and BestBound, displayed as a percentage.

If the relative gap is larger than 1,000, then the absolute gap is displayed. If no active
nodes remain, the value of Gap is 0.

Time indicates the elapsed real or CPU time.

If CONCURRENT=TRUE, then the following information about the status of the branch-and-bound algorithm
is printed in the node log:

Node indicates the total number of nodes that are processed by all concurrent solves.

Active indicates the minimum number of active nodes among all concurrent solves.

Sols indicates the number of feasible solutions that are found by all concurrent solves.

BestInteger indicates the best upper bound (assuming minimization) that is found by all concurrent
solves.

BestBound indicates the best lower bound (assuming minimization) that is found by all concurrent
solves.

Gap indicates the relative gap between BestInteger and BestBound, displayed as a percentage.

If the relative gap is larger than 1,000, then the absolute gap is displayed. If no active
nodes remain, the value of Gap is 0.

Time indicates the elapsed real or CPU time.

If CONCURRENT=TRUE, the node log displays the progress of the overall grid. If DETERMINIS-
TIC=TRUE, the solver tries to return a reproducible solution. Therefore, there might be discrepancies
between the node log and the final solution that is reported by the deterministic concurrent MILP solver.

The LOGFREQ= option can be used to control the amount of information that is printed in the node log. By
default, the root node processing information is printed and, if possible, an entry is made every five seconds.
A new entry is also included each time a better integer solution is found. The LOGFREQ= option enables
you to change the interval between entries in the node log. Figure 9.3 shows a sample node log.
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Figure 9.3 Sample Node Log

NOTE: Problem generation will use 16 threads.
NOTE: The problem has 510 variables (0 free, 0 fixed).
NOTE: The problem uses 1 implicit variables.
NOTE: The problem has 510 binary and 0 integer variables.
NOTE: The problem has 560 linear constraints (510 LE, 50 EQ, O GE, O range).
NOTE: The problem has 2010 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, O GE, O range).
NOTE: The initial MILP heuristics are applied.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed O variables and 0 constraints.
NOTE: The MILP presolver removed O constraint coefficients.
NOTE: The MILP presolver modified O constraint coefficients.
NOTE: The presolved problem has 510 variables, 560 constraints, and 2010
constraint coefficients.
NOTE: The MILP solver is called.
NOTE: The parallel Branch and Cut algorithm is used.
NOTE: The Branch and Cut algorithm is using up to 16 threads.
Node Active Sols BestInteger BestBound Gap Time
0 1 5 24086.8916716 0 24087 0
0 1 5 24086.8916716 19197.7909681 25.47% 0
0 1 5 24086.8916716 19206.4233772 25.41% 0
0 1 5 24086.8916716 19210.6103687 25.38% 0
0 1 5 24086.8916716 19217.2330320 25.34% 0
0 1 7 21700.2572819 19217.2330320 12.92% 0
0 1 7 21700.2572819 19219.6945880 12.91% 0
0 1 7 21700.2572819 19224.1234459 12.88% 0
0 1 7 21700.2572819 19224.5850109 12.88% 0
0 1 8 21693.6723572 19224.5850109 12.84% 0
0 1 8 21693.6723572 19227.8702614 12.82% 0
NOTE: The MILP solver added 20 cuts with 741 cut coefficients at the root.
77 51 9 21686.3282331 19292.0971396 12.41% 0
122 60 11 21554.0701956 19314.7035626 11.59% 0
353 14 12 21548.6159565 20326.6015711 6.01% 0
385 6] 12 21548.6159565 21546.8592630 0.01% 0

NOTE: Optimal within relative gap.

NOTE: Objective = 21548.615957.

Problem Statistics

Optimizers can encounter difficulty when solving poorly formulated models. Information about data
magnitude provides a simple gauge to determine how well a model is formulated. For example, a model
whose constraint matrix contains one very large entry (on the order of 10°) can cause difficulty when the
remaining entries are single-digit numbers. The PRINTLEVEL=2 option in the OPTMODEL procedure
causes the ODS table ProblemStatistics to be generated when the MILP solver is called. This table provides
basic data magnitude information that enables you to improve the formulation of your models.
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The example output in Figure 9.4 demonstrates the contents of the ODS table ProblemStatistics.

Figure 9.4 ODS Table ProblemStatistics

ProblemStatistics

Obs Label1 cValue1 nValuel
1 Number of Constraint Matrix Nonzeros 8 8.000000
2 Maximum Constraint Matrix Coefficient 3 3.000000
3 Minimum Constraint Matrix Coefficient 1 1.000000
4 Average Constraint Matrix Coefficient 1.875 1.875000
5 .
6 Number of Objective Nonzeros 3 3.000000
7 Maximum Objective Coefficient 4 4.000000
8 Minimum Objective Coefficient 2 2.000000
9 Average Objective Coefficient 3 3.000000

10 .
11 Number of RHS Nonzeros 3 3.000000
12 Maximum RHS 7 7.000000
13 Minimum RHS 4 4.000000
14 Average RHS 5.3333333333 5.333333
15 .
16 Maximum Number of Nonzeros per Column 3 3.000000
17 Minimum Number of Nonzeros per Column 2 2.000000
18 Average Number of Nonzeros per Column 2.67 2.666667
19 .
20 Maximum Number of Nonzeros per Row 3 3.000000
21 Minimum Number of Nonzeros per Row 2 2.000000
22 Average Number of Nonzeros per Row 2.67 2.666667

The variable names in the ODS table ProblemStatistics are Labell, cValuel, and nValuel.

Macro Variable _ OROPTMODEL _

The OPTMODEL procedure defines a macro variable named _OROPTMODEL_. This variable contains a
character string that indicates the status of the solver upon termination. The contents of the macro variable
depend on which solver was invoked. For the MILP solver, the various terms of _OROPTMODEL _ are
interpreted as follows.

STATUS
indicates the solver status at termination. It can take one of the following values:

OK The solver terminated normally.
SYNTAX_ERROR Syntax was used incorrectly.
DATA_ERROR The input data was inconsistent.

OUT_OF_MEMORY Insufficient memory was allocated to the solver.
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IO_ERROR A problem occurred in reading or writing data.

SEMANTIC_ERROR An evaluation error, such as an invalid operand type, was found.

ERROR The status cannot be classified into any of the preceding categories.
ALGORITHM

indicates the algorithm that produced the solution data in the macro variable. This term only appears
when STATUS=OK. It can take one of the following values:

BAC The branch-and-cut algorithm produced the solution data.

DECOMP The decomposition algorithm produced the solution data.

SOLUTION_STATUS

indicates the solution status at termination. It can take one of the following values:

OPTIMAL
OPTIMAL_AGAP

OPTIMAL_RGAP

OPTIMAL_COND

TARGET

INFEASIBLE

UNBOUNDED
INFEASIBLE_OR_UNBOUNDED
BAD_PROBLEM_TYPE
SOLUTION_LIM

NODE_LIM_SOL

NODE_LIM_NOSOL

TIME_LIM_SOL

TIME_LIM_NOSOL

ABORT_SOL
ABORT_NOSOL
OUTMEM_SOL

The solution is optimal.

The solution is optimal within the absolute gap specified by the
ABSOBJGAP= option.

The solution is optimal within the relative gap specified by the
RELOBJGAP= option.

The solution is optimal, but some infeasibilities (primal, bound,
or integer) exceed tolerances due to scaling or choice of small
INTTOL= value.

The solution is not worse than the target specified by the TAR-
GET= option.

The problem is infeasible.

The problem is unbounded.

The problem is infeasible or unbounded.
The problem type is unsupported by solver.

The solver reached the maximum number of solutions specified
by the MAXSOLS= option.

The solver reached the maximum number of nodes specified by
the MAXNODES= option and found a solution.

The solver reached the maximum number of nodes specified by
the MAXNODES= option and did not find a solution.

The solver reached the execution time limit specified by the
MAXTIME-= option and found a solution.

The solver reached the execution time limit specified by the
MAXTIME-= option and did not find a solution.

The solver was stopped by user but still found a solution.
The solver was stopped by user and did not find a solution.

The solver ran out of memory but still found a solution.



Macro Variable _OROPTMODEL 4 385

OUTMEM_NOSOL The solver ran out of memory and either did not find a solution
or failed to output the solution due to insufficient memory.
FAIL_SOL The solver stopped due to errors but still found a solution.
FAIL_NOSOL The solver stopped due to errors and did not find a solution.
OBJECTIVE

indicates the objective value obtained by the solver at termination.

RELATIVE_GAP
indicates the relative gap between the best integer objective (BestInteger) and the best bound on the
objective function value (BestBound) upon termination of the MILP solver. The relative gap is equal to

|BestInteger — BestBound|/ (IE—10 + |BestBound|)

ABSOLUTE_GAP
indicates the absolute gap between the best integer objective (BestInteger) and the best bound on the
objective function value (BestBound) upon termination of the MILP solver. The absolute gap is equal
to |BestInteger — BestBound].

PRIMAL_INFEASIBILITY
indicates the maximum (absolute) violation of the primal constraints by the solution.

BOUND INFEASIBILITY
indicates the maximum (absolute) violation by the solution of the lower or upper bounds (or both).

INTEGER_INFEASIBILITY
indicates the maximum (absolute) violation of the integrality of integer variables returned by the MILP
solver.

BEST_BOUND
indicates the best bound on the objective function value at termination. A missing value indicates that
the MILP solver was not able to obtain such a bound.

NODES
indicates the number of nodes enumerated by the MILP solver by using the branch-and-bound algo-
rithm.

SOLUTIONS_FOUND
indicates the number of solutions that are found by the MILP solver.

ITERATIONS
indicates the number of simplex iterations taken to solve the problem.

PRESOLVE_TIME
indicates the time (in seconds) used in preprocessing.

SOLUTION_TIME
indicates the time (in seconds) taken to solve the problem, including preprocessing time.
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NOTE: The time reported in PRESOLVE_TIME and SOLUTION_TIME is either CPU time or real time.
The type is determined by the TIMETYPE= option.

When SOLUTION_STATUS has a value of OPTIMAL, CONDITIONAL_OPTIMAL, ITERA-
TION_LIMIT_REACHED, or TIME_LIMIT_REACHED, all terms of the _OROPTMODEL_ macro
variable are present; for other values of SOLUTION_STATUS, some terms do not appear.

Examples: MILP Solver

This section contains examples that illustrate the options and syntax of the MILP solver in PROC OPT-
MODEL. Example 9.1 illustrates the use of PROC OPTMODEL to solve an employee scheduling problem.
Example 9.2 discusses a multicommodity transshipment problem with fixed charges. Example 9.3 demon-
strates how to warm start the MILP solver. Example 9.4 shows the solution of an instance of the traveling
salesman problem in PROC OPTMODEL. Other examples of mixed integer linear programs, along with
example SAS code, are given in Chapter 14.

Example 9.1: Scheduling

The following example has been adapted from the example “A Scheduling Problem” in Chapter 4, “The LP
Procedure” (SAS/OR User’s Guide: Mathematical Programming Legacy Procedures).

Scheduling is a common application area in which mixed integer linear programming techniques are used. In
this example, you have eight one-hour time slots in each of five days. You have to assign four employees to
these time slots so that each slot is covered every day. You allow the employees to specify preference data for
each slot on each day. In addition, the following constraints must be satisfied:

e Each employee has some time slots for which he or she is unavailable (OneEmpPerSlot).
e Each employee must have either time slot 4 or time slot 5 off for lunch (EmpMustHaveLunch).
e Each employee can work at most two time slots in a row (AtMost2ConSlots).

e Each employee can work only a specified number of hours in the week (WeeklyHoursLimit).
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To formulate this problem, let i denote a person, j denote a time slot, and k denote a day. Then, let x; k=1
if person i is assigned to time slot j on day k, and O otherwise. Let p;;x denote the preference of person i
for slot j on day k. Let h; denote the number of hours in a week that person i will work. The formulation of

this problem follows:

max Z DijkXijk

s.t.

ijk

injk
i

Xiak + Xisk
Xigk t Xig+1,k + Xig+2.k

Xijk

Jjk
Xijk

x;jk €10,1}

IATATA

Vi k

Vi, k
Vi,k,and [ <6
Vi

Vi,j,k s.t. Pijk = 0
Vi, j.k

(OneEmpPerSlot)

(EmpMustHaveLunch)
(AtMost2ConSlots)

(WeeklyHoursLimit)

The following data set preferences gives the preferences for each individual, time slot, and day. A 10
represents the most desirable time slot, and a 1 represents the least desirable time slot. In addition, a 0
indicates that the time slot is not available. The data set maxhours gives the maximum number of hours each
employee can work per week.

data preferences;

input name $ slot mon tue wed thu fri;

datalines;
marc 1 10
marc 2 9
marc 3 8
marc 4 1
marc 5 1
marc 6 1
marc 7 1
marc 8 1
mike 1 10
mike 2 10
mike 3 10
mike 4 10
mike 5 1
mike 6 1
mike 7 1
mike 8 1
bill 1 10
bill 2 9
bill 3 8
bill 4 0
bill 5 1
bill 6 1
bill 7 1
bill 8 1
bob 1 10
bob 2 10
bob 3 10

10 10 10 10
9 9 9 9
8 8 8 8
1 1 1 1
1 1 1 1
1 1 1 1
11 1 1
11 1 1
9 8 7 6
9 8 7 6
9 8 7 6
3 3 3 3
11 1 1
2 3 4 5
2 3 4 5
2 3 4 5

10 10 10 10
9 9 9 9
8 8 8 8
0O 0 0 O
1 1 1 1
11 1 1
11 1 1
1 1 1 1
9 8 7 6
9 8 7 6
9 8 7 6
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bob 4 10 3 3 3 3
bob 5 1 1 1 11
bob 6 1 2 3 4 5
bob 7 1 2 3 4 5
bob 8 1 2 3 4 5

data maxhours;
input name $ hour;

datalines;
marc 20
mike 20
bill 20
bob 20

Using PROC OPTMODEL, you can model and solve the scheduling problem as follows:
proc optmodel;
/* read in the preferences and max hours from the data sets x*/

set <string,num> DailyEmployeeSlots;
set <string> Employees;

set <num> TimeSlots (setof {<name,slot> in DailyEmployeeSlots} slot);

set <string> WeekDays = {"mon", "tue","wed","thu","fri"};

num WeeklyMaxHours {Employees};
num PreferenceWeights{DailyEmployeeSlots, Weekdays};
num NSlots = card(TimeSlots);

read data preferences into DailyEmployeeSlots=[name slot]
{day in Weekdays} <PreferenceWeights[name, slot,day] = col (day)>;
read data maxhours into Employees=[name] WeeklyMaxHours=hour;

/* declare the binary assignment variable x[i,]j, k] =%/
var Assign{<name, slot> in DailyEmployeeSlots, day in Weekdays} binary;

/* for each p[i,j, k] = 0, fix x[i,j, k] = 0 »/
for {<name,slot> in DailyEmployeeSlots, day in Weekdays:
PreferenceWeights[name, slot,day] = 0}
fix Assign[name,slot,day] = O;

/* declare the objective function =*/
max TotalPreferenceWeight =
sum{<name, slot> in DailyEmployeeSlots, day in Weekdays}
PreferenceWeights[name, slot,day] * Assign[name, slot,day];

/* declare the constraints =*/
con OneEmpPerSlot{slot in TimeSlots, day in Weekdays}:
sum{name in Employees} Assign[name, slot,day] = 1;

con EmpMustHaveLunch{name in Employees, day in Weekdays}:
Assign[name, 4,day] + Assign[name, 5,day] <= 1;
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con AtMost2ConsSlots{name in Employees, start in 1..NSlots-2,
day in Weekdays}:
Assign[name, start,day] + Assign[name, start+1l,day]
+ Assign|[name, start+2,day] <= 2 ;

con WeeklyHoursLimit{name in Employees}:
sum{slot in TimeSlots, day in Weekdays} Assign[name, slot, day]
<= WeeklyMaxHours [name];

/* solve the model */
solve with milp;

/* clean up the solution %/
for {<name,slot> in DailyEmployeeSlots, day in Weekdays}
Assign[name, slot,day] = round(Assign[name, slot,day], le-6);

str assigned _employee {TimeSlots, Weekdays} init '';
for {slot in TimeSlots, day in Weekdays} do;
for {name in Employees: Assign[name,slot,day] > 0} do;
assigned_employee[slot,day] = name;
leave;
end;
end;

create data report from [slot]=TimeSlots
{day in Weekdays} <col (day)=assigned_employee[slot, day]>;
quit;
The following statements demonstrate how to use the PRINT procedure to display a schedule that shows how
the eight time slots are covered for the week:

title 'Reported Solution'’;
proc print data=report;

id slot;
run;

The output from the preceding code is displayed in Output 9.1.1.

Output 9.1.1 Scheduling Reported Solution
Reported Solution

slot mon tue wed thu fri

marc marc marc marc marc
mike marc marc marc marc
mike mike mike bill  bill

bob mike mike mike mike
marc marc marc marc marc
marc mike mike mike mike
mike mike mike mike mike
marc bob bob bob bob

0 N O U A WN =
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Example 9.2: Multicommodity Transshipment Problem with Fixed Charges

The following example has been adapted from the example “A Multicommodity Transshipment Problem
with Fixed Charges” in Chapter 4, “The LP Procedure” (SAS/OR User’s Guide: Mathematical Programming
Legacy Procedures).

This example illustrates the use of PROC OPTMODEL to generate a mixed integer linear program to solve
a multicommodity network flow model with fixed charges. Consider a network with nodes N, arcs A, and
a set C of commodities to be shipped between the nodes. The commodities are defined in the data set
COMMODITY_DATA, as follows:

title 'Multicommodity Transshipment Problem with Fixed Charges';

data commodity_ data;
do c =1 to 4;
output;
end;
run;

Shipping cost s;j is for each of the four commodities ¢ across each of the arcs (7, j). In addition, there is a
fixed charge f;; for the use of each arc (i, j). The shipping costs and fixed charges are defined in the data set
ARC_DATA, as follows:

data arc_data;
input from $ to $ cl c2 c3 c4d f£x;
datalines;
farm-a Chicago 20 15 17 22 100
farm-b Chicago 15 15 15 30 75
farm-c Chicago 30 30 10 10 100
farm—-a StLouis 30 25 27 22 150
farm-c StLouis 10 9 11 10 75

Chicago NY 75 75 75 75 200
StLouis NY 80 80 80 80 200
run;

The supply (positive numbers) or demand (negative numbers) d;. at each of the nodes for each commodity ¢
is shown in the data set SUPPLY DATA, as follows:

data supply_data;
input node $ sdl sd2 sd3 sd4;
datalines;

farm-a 100 100 40

farm-b 100 200 50 50

farm-c 40 100 75 100

NY -150 -200 -50 -75

run;
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Let x;jc define the flow of commodity c across arc (7, j). Let y;; = 1 if arc (7, j) is used, and O otherwise.
Since the total flow on an arc (i, j) must be at most the total demand across all nodes k£ € N, you can define
the trivial upper bound u; ;. as

Xije Suije = Y (—dic)

keN|dye<0

This model can be represented using the following mixed integer linear program:

min YD sijeXije + Y, Sijvij

(i,j)€A ceC (i,j)eA

s.t. Z Xije — Z Xjic = dic Vie NoceC (balance_con)
JEN|(,j)eA JEN|(j,i)eA
Xije < ujjcyij VY(@,j)e€ A ceC (fixed_charge_con)
Xije > 0 V(i,j)e A,ceC
y,‘jE{O,l} V(i,j)e A

Constraint (balance_con) ensures conservation of flow for both supply and demand. Constraint
(fixed_charge_con) models the fixed charge cost by forcing y;; = 1 if x;;c > 0 for some commodity
ceC.

The PROC OPTMODEL statements follow:
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proc optmodel;
set COMMODITIES;
read data commodity_data into COMMODITIES=|[c];

set <str,str> ARCS;

num unit_cost {ARCS, COMMODITIES};

num fixed_charge {ARCS};

read data arc_data into ARCS=[from to] {c in COMMODITIES}
<unit_cost[from,to,c]=col('c'||c)> fixed charge=fx;

print unit_cost fixed_ charge;

set <str> NODES = union {<i, j> in ARCS} {i, j};

num supply {NODES, COMMODITIES} init O;

read data supply_data nomiss into [node] {c in COMMODITIES}
<supply[node,c]=col('sd'| |c)>;

print supply;

var AmountShipped {ARCS, c in COMMODITIES} >= 0 <= sum {i in NODES}
max (supply[i,c],0);

/* UseArc[i,j] = 1 if arc (i,]j) is used, 0 otherwise */
var UseArc {ARCS} binary;

/* TotalCost = variable costs + fixed charges */

min TotalCost = sum {<i, j> in ARCS, c in COMMODITIES}
unit_cost[i, j,c] * AmountShipped[i, j, c]
+ sum {<i, j> in ARCS} fixed chargel[i, j] * UseArcl|i, j];

con flow_balance {i in NODES, c¢c in COMMODITIES}:
sum {<(i),3j> in ARCS} AmountShipped[i, j,c] -
sum {<j, (i)> in ARCS} AmountShipped[j,i,c] <= supplyli,c];

/* if AmountShipped[i,j,c] > 0 then UseArc[i,j] = 1 */
con fixed charge_def {<i,j> in ARCS, c¢ in COMMODITIES}:
AmountShipped[i, j,c] <= AmountShipped[i, j,c].ub * UseArc[i, j];

solve;
print AmountShipped;

create data solution from [from to commodity]={<i, j> in ARCS,
c in COMMODITIES: AmountShipped[i, j,c].sol ne 0} amount=AmountShipped;

quit;
Although the PROC LP example used M = 1.0e6 in the FIXED_CHARGE_DEEF constraint that links the
continuous variable to the binary variable, it is numerically preferable to use a smaller, data-dependent
value. Here, the upper bound on AmountShipped[i, j, c] is used instead. This upper bound is calculated
in the first VAR statement as the sum of all positive supplies for commodity c. The logical condition
AmountShipped[i, j, k] .sol ne 0 inthe CREATE DATA statement ensures that only the nonzero parts
of the solution appear in the SOLUTION data set.

The problem summary, solution summary, and the output from the two PRINT statements are shown in
Output 9.2.1.
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Output 9.2.1 Multicommodity Transshipment Problem with Fixed Charges Solution Summary

Multicommodity Transshipment Problem with Fixed Charges

The OPTMODEL Procedure

[11 [2] [3] unit_cost
Chicago NY 1 75
Chicago NY 2 75
Chicago NY 3 75
Chicago NY 4 75
StLouis NY 1 80
StLouis NY 2 80
StLouis NY 3 80
StLouis NY 4 80
farm-a Chicago 1 20
farm-a Chicago 2 15
farm-a Chicago 3 17
farm-a Chicago 4 22
farm-a StLouis 1 30
farm-a StlLouis 2 25
farm-a StLouis 3 27
farm-a StlLouis 4 22
farm-b  Chicago 1 15
farm-b  Chicago 2 15
farm-b  Chicago 3 15
farm-b  Chicago 4 30
farm-c  Chicago 1 30
farm-c  Chicago 2 30
farm-c  Chicago 3 10
farm-c  Chicago 4 10
farm-c  StLouis 1 10
farm-c  StLouis 2 9
farm-c  StLouis 3 11
farm-c  StLouis 4 10
[1] [2] fixed_charge
Chicago NY 200
StLouis NY 200
farm-a Chicago 100
farm-a  StLouis 150
farm-b  Chicago 75
farm-c  Chicago 100

farm-c  StLouis 75
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Output 9.2.1 continued

supply

1 2 3 4
Chicago 0 0 0 O
NY -150 -200 -50 -75

StLouis 0 0 0 O
farm-a 100 100 40 O
farm-b 100 200 50 50
farm-c 40 100 75 100

Problem Summary

Objective Sense Minimization
Objective Function TotalCost
Objective Type Linear
Number of Variables 35
Bounded Above 0
Bounded Below 0
Bounded Below and Above 35
Free 0
Fixed 0
Binary 7
Integer 0
Number of Constraints 52
Linear LE (<=) 52
Linear EQ (=) 0
Linear GE (>=) 0
Linear Range 0

Constraint Coefficients 112
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Output 9.2.1 continued

Solution Summary

Solver MILP
Algorithm Branch and Cut
Objective Function TotalCost
Solution Status Optimal
Objective Value 42825
Relative Gap 0
Absolute Gap 0
Primal Infeasibility 0
Bound Infeasibility 0
Integer Infeasibility 0
Best Bound 42825
Nodes 1
Solutions Found 4
lterations 38
Presolve Time 0.00

Solution Time 0.01
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Output 9.2.1 continued

[1] [2] [3] AmountShipped
Chicago NY 1 110
Chicago NY 2 100
Chicago NY 3 50
Chicago NY 4 75
StLouis NY 1 40
StLouis NY 2 100
StLouis NY 3 0
StLouis NY 4 0
farm-a Chicago 1 10

farm-a Chicago 2 0
farm-a Chicago 3 0
farm-a Chicago 4 0
farm-a  StlLouis 1 0
farm-a StlLouis 2 0
farm-a StlLouis 3 0
farm-a StlLouis 4 0
farm-b  Chicago 1 100
farm-b  Chicago 2 100
farm-b  Chicago 3 0
farm-b  Chicago 4 0
farm-c  Chicago 1

farm-c  Chicago 2

farm-c  Chicago 3 50
farm-c  Chicago 4 75
farm-c  StlLouis 1 40
farm-c  StlLouis 2 100
farm-c  StLouis 3 0
farm-c  StLouis 4 0

Example 9.3: Facility Location

Consider the classic facility location problem. Given a set L of customer locations and a set F' of candidate
facility sites, you must decide on which sites to build facilities and assign coverage of customer demand to
these sites so as to minimize cost. All customer demand ¢; must be satisfied, and each facility has a demand
capacity limit C. The total cost is the sum of the distances c;; between facility j and its assigned customer i,
plus a fixed charge f; for building a facility at site j. Let y; = 1 represent choosing site j to build a facility,
and O otherwise. Also, let x;; = 1 represent the assignment of customer i to facility j, and O otherwise. This
model can be formulated as the following integer linear program:



min YN eixij+ Y fiy;

s.t.
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(assign_def)

(capacity)

ieL jeF JjeEF

> xij = 1 Viel

JjEF

Xij < yj Viel,jeF (link)
Zd,'x,'j < Cy; VjeF

i€eL

xij €10,1} VielL,jeF

v; €40,1} VjeF

Constraint (assign_def) ensures that each customer is assigned to exactly one site. Constraint (link) forces a
facility to be built if any customer has been assigned to that facility. Finally, constraint (capacity) enforces
the capacity limit at each site.

Consider also a variation of this same problem where there is no cost for building a facility. This problem is
typically easier to solve than the original problem. For this variant, let the objective be

min E E CijXij

ieL jeF

First, construct a random instance of this problem by using the following DATA steps:

title

$let
%let
$let
%$let
%$let
$let
%let

/* generate random

data

call streaminit (&seed);

'Facility Location Problem';
NumCustomers = 50;
NumSites = 10;
SiteCapacity = 35;
MaxDemand = 10;
xXmax = 200;
ymax = 100;
seed = 423;

cdata (drop=i) ;

length name $8;

do i = 1 to &NumCustomers;

customer locations */

name = compress('C'||put(i,best.));
X = rand('UNIFORM') x &xmax;
y = rand('UNIFORM') *x &ymax;
demand = rand('UNIFORM') * &MaxDemand;

output;

end;

run;

/* generate random site locations and fixed charge x*/

data

call streaminit (&seed);

sdata (drop=i) ;

length name $8;
do i = 1 to &NumSites;
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name = compress('SITE'||put(i,best.));
x = rand('UNIFORM') = &xmax;
y = rand('UNIFORM') * &ymax;
fixed _charge = 30 * (abs(&xmax/2-x) + abs(&ymax/2-y));
output;
end;
run;

The following PROC OPTMODEL statements first generate and solve the model that contains the no-fixed-
charge variant of the cost function. Next, they solve the fixed-charge model and demonstrate the usage of the
MAXPOOLSOLS= option for outputting multiple solutions. Note that the solution to the model that has no
fixed charge is feasible for the fixed-charge model and should provide a good starting point for the MILP
solver. Use the PRIMALIN option to provide an incumbent solution (warm start).

proc optmodel;
set <str> CUSTOMERS;
set <str> SITES init {};
/* x and y coordinates of CUSTOMERS and SITES x/
num x {CUSTOMERS union SITES};
num y {CUSTOMERS union SITES};
num demand {CUSTOMERS};
num fixed_charge {SITES},;
/* distance from customer i to site j */
num dist {i in CUSTOMERS, j in SITES}
= sqrt ((x[i] - x[3])*2 + (y[i] - y[3i])*2);
read data cdata into CUSTOMERS=[name] x y demand;
read data sdata into SITES=[name] x y fixed_charge;
var Assign {CUSTOMERS, SITES} binary;
var Build {SITES} binary;
min CostNoFixedCharge
= sum {i in CUSTOMERS, Jj in SITES} dist[i, j] * Assignl[i, j];
min CostFixedCharge
= CostNoFixedCharge + sum {j in SITES} fixed charge[]j] * Build[]j];
/* each customer assigned to exactly one site */
con assign_def {i in CUSTOMERS}:
sum {j in SITES} Assignl[i,j] = 1;
/* if customer i assigned to site j, then facility must be built at j */
con link {i in CUSTOMERS, j in SITES}:
Assign[i, j] <= Buildl[j];
/* each site can handle at most &SiteCapacity demand =/
con capacity {j in SITES}:
sum {i in CUSTOMERS} demand[i] * Assign[i, j] <=
&SiteCapacity * Build[j];
/* solve the MILP with no fixed charges x*/
solve obj CostNoFixedCharge with milp;
/* clean up the solution =%/
for {i in CUSTOMERS, j in SITES} Assign[i, j] = round(Assign[i, j]);
for {j in SITES} Build[j] = round(Build[j]);
call symput ('varcostNo', put (CostNoFixedCharge,6.1));
/* create a data set for use by PROC SGPLOT */
create data CostNoFixedCharge Data from
[customer site]={i in CUSTOMERS, j in SITES: Assign[i,j] = 1}
x1=x[i] yl=y[i] x2=x[]] y2=yI[]jl
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function='line' drawspace='datavalue' linethickness=1 linecolor='black';
submit;
data csdata;
set cdata(rename=(y=cy)) sdata(rename=(y=sy));
run;
titlel "Facility Location Problem";
title2 "TotalCost = &varcostNo (Variable = &varcostNo, Fixed = 0)";
proc sgplot data=csdata sganno=CostNoFixedCharge Data noautolegend;
scatter x=x y=cy / datalabel=name datalabelattrs=(size=6pt)
markerattrs=(symbol=circlefilled color=black size=6pt);
scatter x=x y=sy / datalabel=name datalabelattrs=(size=6pt)
markerattrs=(symbol=diamond color=blue size=6pt);
xaxis display=(nolabel);
yaxis display=(nolabel);
run;
endsubmit;
/* solve the MILP with fixed charges with warm start x*/
solve obj CostFixedCharge with milp / primalin maxpoolsols=3;
num varcost = sum {i in CUSTOMERS, j in SITES} dist[i, j] * Assign[i, j].sol;
num fixcost = sum {j in SITES} fixed_charge[j] * Build[j].sol;
for {s in 1.._NSOL_} do;
/* clean up the solution =*/
for {i in CUSTOMERS, j in SITES} Assign[i, j] = round(Assign[i, j].sol[s]);
for {j in SITES} Build[j] = round(Build[j].sol[s]);
call symput ('varcost', put(varcost,6.1));
call symput ('fixcost', put (fixcost,5.1));
call symput ('totalcost', put (CostFixedCharge,6.1));
/* create a data set for use by PROC SGPLOT */
create data CostFixedCharge_Data from
[customer site]={i in CUSTOMERS, j in SITES: Assignl[i, j] = 1}
x1l=x[i] yl=y[i] x2=x[]] y2=y[]j]
function='line' drawspace='datavalue' linethickness=1 linecolor='black';
submit s;
titlel "Facility Location Problem: Solution &s";
title2 "TotalCost = &totalcost (Variable = &varcost, Fixed = &fixcost)";
proc sgplot data=csdata sganno=CostFixedCharge_Data noautolegend;
scatter x=x y=cy / datalabel=name datalabelattrs=(size=6pt)
markerattrs=(symbol=circlefilled color=black size=6pt);
scatter x=x y=sy / datalabel=name datalabelattrs=(size=6pt)
markerattrs=(symbol=diamond color=blue size=6pt);
xaxis display=(nolabel);
yaxis display=(nolabel);
run;
endsubmit;
end;
quit;
Output 9.3.1 displays the information that is printed in the log for the facility location problem.
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Output 9.3.1 OPTMODEL Log for Facility Location

NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:

NOTE:
NOTE:
NOTE:

NOTE:

NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:

NOTE:
NOTE:
NOTE:

Problem generation will use 16 threads.

The problem has 510 variables (0 free, 0 fixed).
The problem has 510 binary and 0 integer variables.
The problem has 560 linear constraints (510 LE, 50 EQ, O GE, O range).
The problem has 2010 linear constraint coefficients.
The problem has 0 nonlinear constraints (0 LE, 0 EQ, O GE, O range).
The initial MILP heuristics are applied.
The MILP presolver value AUTOMATIC is applied.
The MILP presolver removed 10 variables and 500 constraints.
The MILP presolver removed 1010 constraint coefficients.
The MILP presolver modified O constraint coefficients.
The presolved problem has 500 variables, 60 constraints, and 1000
constraint coefficients.
The MILP solver is called.
The parallel Branch and Cut algorithm is used.
The Branch and Cut algorithm is using up to 16 threads.
Node Active Sols BestInteger BestBound Gap Time
0 1 5 1249.9063818 1177.1539196 6.18% 0
The MILP presolver is applied again.
0 1 5 1249.9063818 1177.1539196 6.18%
0 1 5 1249.9063818 1190.5434820 4.99%
0 1 6 1192.6273240 1190.5434820 0.18%
The MILP solver added 12 cuts with 273 cut coefficients at the root.
Optimal within relative gap.
Objective = 1192.627324.
Problem generation will use 16 threads.
The problem has 510 variables (0 free, 0 fixed).
The problem uses 1 implicit variables.
The problem has 510 binary and 0 integer variables.
The problem has 560 linear constraints (510 LE, 50 EQ, O GE, O range).
The problem has 2010 linear constraint coefficients.
The problem has O nonlinear constraints (0 LE, 0 EQ, O GE, O range).
The initial MILP heuristics are applied.
The MILP presolver value AUTOMATIC is applied.
The MILP presolver removed O variables and O constraints.
The MILP presolver removed O constraint coefficients.
The MILP presolver modified O constraint coefficients.
The presolved problem has 510 variables, 560 constraints, and 2010
constraint coefficients.
The MILP solver is called.
The parallel Branch and Cut algorithm is used.
The Branch and Cut algorithm is using up to 16 threads.
Node Active Sols BestInteger BestBound Gap Time
0 1 7 24086.8916716 0 24087 0
0 1 7 24086.8916716 19197.7909681 25.47% 0
0 1 7 24086.8916716 19206.4233772 25.41% 0
0 1 7 24086.8916716 19210.6103687 25.38% 0
0 1 7 24086.8916716 19217.2330320 25.34% 0
0 1 9 21700.2572819 19217.2330320 12.92% 0
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Output 9.3.1 continued

0 1 21700.2572819 19219.6945880 12.91% 0
0 1 21700.2572819 19224.1234459 12.88% 0
0 1 21700.2572819 19224.5850109 12.88% 0
0 1 10 21693.6723572 19224.5850109 12.84% 0
0 1 10 21693.6723572 19227.8702614 12.82% 0
NOTE: The MILP solver added 20 cuts with 741 cut coefficients at the root.
77 51 11 21686.3282331 19292.0971396 12.41% 0
122 60 13 21554.0701956 19314.7035626 11.59% 0
353 14 14 21548.6159565 20326.6015711 6.01% 0
385 0 14 21548.6159565 21546.8592630 0.01% 0

NOTE: Optimal within relative gap.
NOTE: Objective = 21548.615957.

The output of the program is shown in Output 9.3.2.

Output 9.3.2 Solution Plots for Facility Location

Facility Location Problem
TotalCost = 1192.6 (Variable = 1192.6, Fixed = 0)

100 SITE3
C2 C40
Cc38 Cc17

C19 C45
80 C35
SITE2
C4 C
60
C27
C2
ITE9
40
C30
C15
20
0

0 50 100 150 200



402 4 Chapter 9: The Mixed Integer Linear Programming Solver

Output 9.3.2 continued

Facility Location Problem: Solution 1
TotalCost = 21549 (Variable = 1456.5, Fixed = 20092)

100

80

C4

60

C2

ITE9

40
C30

C15
20

0 50 100 150 200



Example 9.3: Facility Location 4 403

Output 9.3.2 continued

Facility Location Problem: Solution 2
TotalCost = 21553 (Variable = 1460.5, Fixed = 20092)
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Output 9.3.2 continued

Facility Location Problem: Solution 3
TotalCost = 21553 (Variable = 1461.0, Fixed = 20092)
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The economic trade-off for the fixed-charge model forces you to build fewer sites and push more demand to
each site.

It is possible to expedite the solution of the fixed-charge facility location problem by choosing appropriate
branching priorities for the decision variables. Recall that for each site j, the value of the variable y;
determines whether or not a facility is built on that site. Suppose you decide to branch on the variables y ;
before the variables x;;. You can set a higher branching priority for y; by using the .priority suffix for the
Build variables in PROC OPTMODEL, as follows:

for{j in SITES} Build[j].priority=10;

Setting higher branching priorities for certain variables is not guaranteed to speed up the MILP solver, but
it can be helpful in some instances. The following program creates and solves an instance of the facility
location problem, giving higher priority to the variables y ;. The LOGFREQ= option is used to abbreviate
the node log.



%let NumCustomers = 45;
%$let NumSites = 8;
%$let SiteCapacity = 35;
%$let MaxDemand = 10;
%$let xmax = 200;
%$let ymax = 100;
%$let seed = 2345;

/* generate random customer locations */
data cdata (drop=i);
length name $8;
do i 1 to &NumCustomers;
name compress ('C'| |put(i,best.));
X rand ('UNIFORM') +* &xmax;
y rand ('UNIFORM') * &ymax;
demand = rand('UNIFORM') x &MaxDemand;
output;
end;
run;

/* generate random site locations and fixed charge x*/
data sdata (drop=i);
length name $8;
do i 1 to &NumSites;
name compress ('SITE' | |put (i,best.));
rand ('UNIFORM') * &xmax;
rand ('UNIFORM') * &ymax;

x
Y
fixed charge
output;

end;
run;

proc optmodel;
set <str> CUSTOMERS;
set <str> SITES init {};

/* x and y coordinates of CUSTOMERS and SITES x/
x {CUSTOMERS union SITES};

y {CUSTOMERS union SITES};

demand {CUSTOMERS};

fixed charge {SITES};

num
num
num
num

/* distance from customer i to site j */
num dist {i in CUSTOMERS, Jj in SITES}
sqrt ((x[i] - x[j]1)"2 + (y[i]l - y[3]1)"2);

read data cdata into CUSTOMERS=[name] x y demand;
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(abs (&xmax/2-x) + abs(&ymax/2-y)) / 2;

read data sdata into SITES=[name] x y fixed_charge;

var Assign {CUSTOMERS, SITES} binary;
var Build {SITES} binary;
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min CostFixedCharge
= sum {i in CUSTOMERS, Jj in SITES} dist[i, j] * Assign[i, j]
+ sum {j in SITES} fixed_charge[j] * Build[j];

/* each customer assigned to exactly one site */
con assign_def {i in CUSTOMERS}:
sum {j in SITES} Assignl[i,j] = 1;

/* if customer i assigned to site j, then facility must be built at j */
con link {i in CUSTOMERS, j in SITES}:
Assign[i, j] <= Build[j];

/* each site can handle at most &SiteCapacity demand */
con capacity {j in SITES}:
sum {i in CUSTOMERS} demand[i] * Assign[i, j] <= &SiteCapacity * Build[j];

/* assign priority to Build variables (y) =*/
for{j in SITES} Build[j].priority=10;

/* solve the MILP with fixed charges, using branching priorities =*/
solve obj CostFixedCharge with milp / logfreq=1000;

quit;
The resulting output is shown in Output 9.3.3.
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Output 9.3.3 PROC OPTMODEL Log for Facility Location with Branching Priorities

NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:

NOTE:
NOTE:
NOTE:

NOTE:

NOTE:

There were 45 observations read from the data set WORK.CDATA.

There were 8 observations read from the data set WORK.SDATA.

Problem generation will use 16 threads.

The problem has 368 variables (0 free, 0 fixed).

The problem has 368 binary and 0 integer variables.

The problem has 413 linear constraints (368 LE, 45 EQ, O GE, 0O range).
The problem has 1448 linear constraint coefficients.

The problem has 0 nonlinear constraints (0 LE, 0 EQ, O GE, O range).
The initial MILP heuristics are applied.

The MILP presolver value AUTOMATIC is applied.

The MILP presolver removed O variables and O constraints.

The MILP presolver removed O constraint coefficients.

The MILP presolver modified O constraint coefficients.

The presolved problem has 368 variables, 413 constraints, and 1448
constraint coefficients.

The MILP solver is called.

The parallel Branch and Cut algorithm is used.

The Branch and Cut algorithm is using up to 16 threads.

Node Active Sols BestInteger BestBound Gap Time
0 1 3 2010.8409428 1856.1887172 8.33% 0
0 1 3 2010.8409428 1865.6935656 7.78% 0
0 1 4 1969.5351860 1865.6935656 5.57% 0
0 1 4 1969.5351860 1869.5997552 5.35% 0
0 1 4 1969.5351860 1872.7829403 5.17% 0
0 1 4 1969.5351860 1872.7829403 5.17% 0
The MILP presolver is applied again.
0 1 5 1969.5351860 1872.7829403 5.17% 0
0 1 5 1969.5351860 1872.7829403 5.17% 0
0 1 7 1941.3999471 1872.7829403 3.66% 0
0 1 7 1941.3999471 1872.7829403 3.66% 0
0 1 7 1941.3999471 1873.4826852 3.63% 0
0 1 7 1941.3999471 1875.5427075 3.51% 0
0 1 7 1941.3999471 1877.3145846 3.41% 0
0 1 7 1941.3999471 1880.6572671 3.23% 0
0 1 7 1941.3999471 1881.1243727 3.20% 0
0 1 7 1941.3999471 1881.2709632 3.20% 0
0 1 7 1941.3999471 1881.2863228 3.20% 0
0 1 7 1941.3999471 1882.4166946 3.13% 0
0 1 7 1941.3999471 1883.1263478 3.09% 0
0 1 7 1941.3999471 1883.3726047 3.08% 0
0 1 7 1941.3999471 1884.0841457 3.04% 0
0 1 7 1941.3999471 1884.6919702 3.01% 0
0 1 7 1941.3999471 1884.8805876 3.00% 0
0 1 7 1941.3999471 1884.9934467 2.99% 0
0 1 7 1941.3999471 1885.0168380 2.99% 0
0 1 7 1941.3999471 1885.1502580 2.98% 0
The MILP solver added 23 cuts with 700 cut coefficients at the root.
12 8 8 1923.1420558 1889.4162078 1.78% 0

162 61 9 1922.3068612 1894.8107723 1.45% 0
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Output 9.3.3 continued

216 51 10 1920.4977643 1896.0848311 1.29% 0
231 46 11 1920.1512170 1900.8944249 1.01% 0
985 0] 11 1920.1512170 1920.1512170 0.00% 0

NOTE: Optimal.
NOTE: Objective = 1920.151217.

Example 9.4: Traveling Salesman Problem

The traveling salesman problem (TSP) is that of finding a minimum cost four in an undirected graph G with
vertex set V' = {1,...,|V|} and edge set E. A tour is a connected subgraph for which each vertex has degree
two. The goal is then to find a tour of minimum total cost, where the total cost is the sum of the costs of the
edges in the tour. With each edge e € E we associate a binary variable x., which indicates whether edge
e is part of the tour, and acost c, € R. Let §(S) = {{i,j} € E |i € S, j ¢ S}. Then an integer linear
programming (ILP) formulation of the TSP is as follows:

ecE
s.t. Z Xe = 2 VieV (two_match)
ecé(i)
Z Xe > 2 VSCV,2<|S|<|V|—1 (subtour_elim)
ecé(S)
xe € {0, 1} Vee E

The equations (two_match) are the matching constraints, which ensure that each vertex has degree two in the
subgraph, while the inequalities (subtour_elim) are known as the subtour elimination constraints (SECs) and
enforce connectivity.

Since there is an exponential number 021y of SECs, it is impossible to explicitly construct the full TSP
formulation for large graphs. An alternative formulation of polynomial size was introduced by Miller, Tucker,
and Zemlin (1960) (MTZ):

min E CijXij

(i.))€E
s.t. inj = 1 VieV (assign_i)
Jjev
> xij = 1 VieV (assign_j)
ieV
ui—uj+1 < (V[-DA—-x;) V@ j)eVi#lj#1 (mtz)
2 <u; < V| Vie{2, .., |V,
xl-je{o,l} V(i,j)GE

This formulation uses a directed graph. Constraints (assign_i) and (assign_j) now enforce that each vertex
has degree two (one edge in, one edge out). The MTZ constraints (mtz) enforce that no subtours exist.

TSPLIB is a set of benchmark instances for the TSP. For more information about TSPLIB, see https://
www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/. The following DATA
step converts a TSPLIB instance of type EUC_2D into a SAS data set that contains the coordinates of the
vertices:


https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
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/* convert the TSPLIB instance into a data set */
data tspData (drop=H) ;

infile "st70.tsp";

input H $1. @;

if H not in ('N','T','C','D','E');

input @1 varl-var3;
run;

The following PROC OPTMODEL statements attempt to solve the TSPLIB instance st70.tsp by using the
MTZ formulation:

/* direct solution using the MTZ formulation =*/
proc optmodel;
set VERTICES;
set EDGES = {i in VERTICES, j in VERTICES: i ne j};
num xc {VERTICES};
num yc {VERTICES};
/* read in the instance and customer coordinates (xc, yc) =*/
read data tspData into VERTICES=[_n_] xc=var2 yc=var3;
/* the cost is the Euclidean distance rounded to the nearest integer =/
num c¢ {<i, j> in EDGES}
init floor( sqrt( ((xc[i]l-xc[j])**2 + (ycl[i]-yc[]j]l)=*x2)) + 0.5);
var x {EDGES} binary;
var u {i in 2..card(VERTICES)} >= 2 <= card(VERTICES);
/* each vertex has exactly one in-edge and one out-edge */
con assign_i {i in VERTICES}:

sum {j in VERTICES: i ne j} x[i,]j] = 1;
con assign_j {j in VERTICES}:
sum {i in VERTICES: i ne j} x[i,]j] = 1;

/* minimize the total cost */
min obj
= sum {<i, j> in EDGES} (if i > j then c[i, j] else c[j,i]) * x[i,]j];
/* no subtours */
con mtz {<i,j> in EDGES : (i ne 1) and (j ne 1)}:
u[i] - u[j] + 1 <= (card(VERTICES) - 1) * (1 - x[i,3j]);
solve with milp / maxtime = 600;
quit;
It is well known that the MTZ formulation is much weaker than the subtour formulation. The exponential
number of SECs makes it impossible, at least in large instances, to use a direct call to the MILP solver with
the subtour formulation. For this reason, if you want to solve the TSP with one SOLVE statement, you must
use the MTZ formulation and rely strictly on generic cuts and heuristics. Except for very small instances,
this is unlikely to be a good approach.

A much more efficient way to tackle the TSP is to dynamically generate the subtour inequalities as cuts. Typi-
cally this is done by solving the LP relaxation of the two-matching problem, finding violated subtour cuts,
and adding them iteratively. The problem of finding violated cuts is known as the separation problem. In this
case, the separation problem takes the form of a minimum cut problem, which is nontrivial to implement
efficiently. Therefore, for the sake of illustration, an integer program is solved at each step of the process.

The initial formulation of the TSP is the integral two-matching problem. You solve this by using PROC
OPTMODEL to obtain an integral matching, which is not necessarily a tour. In this case, the separation
problem is trivial. If the solution is a connected graph, then it is a tour, so the problem is solved. If the
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solution is a disconnected graph, then each component forms a violated subtour constraint. These constraints
are added to the formulation, and the integer program is solved again. This process is repeated until the
solution defines a tour.

The following PROC OPTMODEL statements solve the TSP by using the subtour formulation and iteratively
adding subtour constraints:

/* iterative solution using the subtour formulation =*/
proc optmodel;
set VERTICES;
set EDGES = {i in VERTICES, j in VERTICES: i > j};
num xc {VERTICES};
num yc {VERTICES};

num numsubtour init O;
set SUBTOUR {1..numsubtour};

/* read in the instance and customer coordinates (xc, yc) =*/
read data tspData into VERTICES=[varl] xc=var2 yc=var3;

/* the cost is the Euclidean distance rounded to the nearest integer =/
num c {<i, j> in EDGES}
init floor( sqrt( ((xc[il-xc[j])**2 + (ycl[i]-yc[j]l)=*x2)) + 0.5);

var x {EDGES} binary;

/* minimize the total cost x/
min obj =
sum {<i, j> in EDGES} c[i,j] * x[i,3];

/* each vertex has exactly one in-edge and one out-edge */
con two_match {i in VERTICES}:

sum {j in VERTICES: i > j} x[i,J]

+ sum {j in VERTICES: i < j} xI[j,i] = 2;

/* no subtours (these constraints are generated dynamically) */
con subtour elim {s in 1..numsubtour}:
sum {<i, j> in EDGES: (i in SUBTOUR[s] and j not in SUBTOUR[s])
or (i not in SUBTOUR[s] and j in SUBTOUR[s])} x[i,j] >= 2;

/* this starts the algorithm to find violated subtours x*/
set <num, num> EDGES];

set VERTICES1 = union{<i, j> in EDGES1l} {i, 3j};

num component {VERTICES1l};

num numcomp init 2;

num iter init 1;

num numiters init 1;

set ITERS = 1. .numiters;

num sol {ITERS, EDGES};

/* initial solve with just matching constraints x*/

solve;

call symput (compress('obj'| |put (iter,best.)),
trim(left (put (round(obj) ,best.))));
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for {<i,j> in EDGES} soll[iter,i,j] = round(x[i, j]);

/* while the solution is disconnected, continue =x/
do while (numcomp > 1);
iter = iter + 1;

/* find connected components of support graph *x/
EDGES1 = {<i, j> in EDGES: round(x[i, j].sol) = 1};
solve with network /

links = (include=EDGES1)
nodes = (include=VERTICES1)
concomp
out = (concomp=component) ;
numcomp = _oroptmodel_num ["NUM_COMPONENTS"];

if numcomp = 1 then leave;
numiters = iter;
numsubtour = numsubtour + numcomp;
for {comp in 1..numcomp} do;
SUBTOUR [numsubtour—numcomp+comp]
= {i in VERTICES: component[i] = comp};
end;

solve;
call symput (compress('obj'| |put (iter,best.)),
trim(left (put (round(obj) ,best.))));
for {<i,j> in EDGES} soll[iter,i,j] = round(x[i, j]);
end;

/* create a data set for use by PROC SGPLOT */
create data solData from
[iter i j]={it in ITERS, <i, j> in EDGES: sol[it,i, j] = 1}
xl=xc[i] yl=yc[i] x2=xc[j] y2=yc[il;
call symput ('numiters', put (numiters,best.));
quit;

You can generate plots of the solution and objective value at each stage by using the following statements:

$macro plotTSP;
$do i = 1 %to &numiters;

/* create annotate data set to draw subtours */

data anno (drop=iter);
retain drawspace 'datavalue' linethickness 1 function 'line';
set solData;
where iter = &i;

run;

titlel h=2 "TSP: Iter = &i, Objective = &&obj&i";
title2;

proc sgplot data=tspData sganno=anno;
scatter x=var2 y=var3 / datalabel=varl;
xaxis display=none;
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yaxis display=none;
run;
$end;
$mend plotTSP;

$plotTSP;

The plot in Output 9.4.1 shows the solution and objective value at each stage. Notice that each stage restricts
some subset of subtours. When you reach the final stage, you have a valid tour.

NOTE: See the “Examples” section in Chapter 10, “The Network Solver,” for an example of how to use a
specialized algorithm to solve the TSP.

Output 9.4.1 Traveling Salesman Problem Iterative Solution

TSP: Iter = 1, Objective = 625
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Output 9.4.1 continued

TSP: Iter = 3, Objective = 673
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