THE POWER TO KNOW.

SAS/OR 15.1 User's Guide Project Management The DTREE Procedure

This document is an individual chapter from SAS/OR ${ }^{\circledR}$ 15.1 User's Guide: Project Management.
The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2018. SAS/OR ${ }^{\circledR}$ 15.1 User's Guide: Project Management. Cary, NC: SAS Institute Inc.

SAS/OR ${ }^{\circledR}$ 15.1 User's Guide: Project Management

Copyright © 2018, SAS Institute Inc., Cary, NC, USA
All Rights Reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this publication.
The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted materials. Your support of others' rights is appreciated.
U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The Government's rights in Software and documentation shall be only those set forth in this Agreement.
SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414
November 2018
SAS ${ }^{\circledR}$ and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. \circledR^{\circledR} indicates USA registration.

Other brand and product names are trademarks of their respective companies.
SAS software may be provided with certain third-party software, including but not limited to open-source software, which is licensed under its applicable third-party software license agreement. For license information about third-party software distributed with SAS software, refer to http://support.sas.com/thirdpartylicenses.

Chapter 7 The DTREE Procedure

Contents

Overview: DTREE Procedure 386
Getting Started: DTREE Procedure 387
Introductory Example 387
Attitudes toward Risk 392
Sensitivity Analysis and Value of Perfect Information 393
Value of Perfect Control 394
Oil Wildcatter's Problem with Sounding Test 395
Syntax: DTREE Procedure 399
Functional Summary 400
PROC DTREE Statement 403
EVALUATE Statement 415
MODIFY Statement 415
MOVE Statement 416
QUIT Statement 416
RECALL Statement 416
RESET Statement 416
SAVE Statement 417
SUMMARY Statement 417
TREEPLOT Statement 417
VARIABLES Statement 418
VPC Statement 421
VPI Statement 422
Details: DTREE Procedure 422
Input Data Sets 422
Missing Values 425
Interactivity 426
Options in Multiple Statements 426
The Order of Stages 426
Evaluation 427
Displayed Output 430
Displaying the Decision Tree 431
Web-Enabled Decision Tree 435
ODS Table Names 435
ODS Style Templates 436
Precision Errors 438
Computer Resource Requirements 439
Examples: DTREE Procedure 439
Example 7.1: Oil Wildcatter's Problem with Insurance 440
Example 7.2: Oil Wildcatter's Problem in Risk-Averse Setting 445
Example 7.3: Contract Bidding Problem 456
Example 7.4: Research and Development Decision Problem 461
Example 7.5: Loan Grant Decision Problem 465
Example 7.6: Petroleum Distributor's Decision Problem 475
Statement and Option Cross-Reference Tables 484
References 486

Overview: DTREE Procedure

The DTREE procedure in SAS/OR software is an interactive procedure for decision analysis. The procedure interprets a decision problem represented in SAS data sets, finds the optimal decisions, and plots on a line printer or a graphics device the decision tree showing the optimal decisions.

To use PROC DTREE you first construct a decision model to represent your problem. This model, called a generic decision tree model, is made up of stages. ${ }^{1}$ Every stage has a stage name, which identifies the stage, as well as a type, which specifies the type of the stage. There are three types of stages: decision stages, chance stages, and end stages. In addition, every stage has possible outcomes.

A decision stage represents a particular decision you have to make. The outcomes of a decision stage are the possible alternatives (or actions) of the decision. A chance stage represents an uncertain factor in the decision problem (a statistician might call it a random variable; here it is called an uncertainty). The outcomes of a chance stage are events, one of which will occur according to a given probability distribution. An end stage terminates a particular scenario (a sequence of alternatives and events). It is not necessary to include an end stage in your model; the DTREE procedure adds an end stage to your model if one is needed.

Each outcome of a decision or chance stage also has several attributes, an outcome name to identify the outcome, a reward to give the instant reward of the outcome, and a successor to specify the name of the stage that comes next when this outcome is realized. For chance stages, a probability attribute is also needed. It gives the relative likelihood of this outcome. Every decision stage should have at least two alternatives, and every chance stage should have at least two events. Probabilities of events for a chance stage must sum to 1. End stages do not have any outcomes.

The structure of a decision model is given in the STAGEIN = data set. It contains the stage name, the type, and the attributes (except probability) of all outcomes for each stage in your model. You can specify each stage in one observation or across several observations. If a diagrammatic representation of a decision problem is all you want, you probably do not need any other data sets.

If you want to evaluate and analyze your decision problem, you need another SAS data set, called the PROBIN= data set. This data set describes the probabilities or conditional probabilities for every event in your model. Each observation in the data set contains a list of given conditions (list of outcomes), if there are any, and at least one combination of event and probability. Each event and probability combination identifies

[^0]the probability that the event occurs given that all the outcomes specified in the list occur. If no conditions are given, then the probabilities are unconditional probabilities.

The third data set, called the PAYOFFS= data set, contains the value of each possible scenario. You can specify one or more scenarios and the associated values in one observation. If the PAYOFFS= data set is omitted, the DTREE procedure assumes that all values are zero and uses rewards for outcomes to evaluate the decision problem.

You can use PROC DTREE to display, evaluate, and analyze your decision problem. In the PROC DTREE statement, you specify input data sets and other options. A VARIABLES statement identifies the variables in the input data set that describe the model. This statement can be used only once and must appear immediately after the PROC DTREE statement. The EVALUATE statement evaluates the decision tree. You can display the optimal decisions by using the SUMMARY statement, or you can plot the complete tree with the TREEPLOT statement. Finally, you can also associate HTML pages with decision tree nodes and create Web-enabled decision tree diagrams.

It is also possible to interactively modify some attributes of your model with the MODIFY statement and to change the order of decisions by using the MOVE statement. Before making any changes to the model, you should save the current model with the SAVE statement so that you can call it back later by using the RECALL statement. Questions about the value of perfect information or the value of perfect control are answered using the VPI and VPC statements. Moreover, any options that can be specified in the PROC DTREE statement can be reset at any time with the RESET statement.

All statements can appear in any order and can be used as many times as desired with one exception. The RECALL statement must be preceded by at least one SAVE statement. In addition, only one model can be saved at any time; the SAVE statement overwrites the previously saved model. Finally, you can use the QUIT statement to stop processing and exit the procedure.

The DTREE procedure produces one output data set. The IMAGEMAP= data set contains the outline coordinates for the nodes in the decision tree that can be used to generate HTML MAP tags.

PROC DTREE uses the Output Delivery System (ODS), a SAS subsystem that provides capabilities for displaying and controlling the output from SAS procedures. ODS enables you to convert any of the output from PROC DTREE into a SAS data set. For further details, refer to the chapter on ODS in the SAS/STAT User's Guide.

Getting Started: DTREE Procedure

Introductory Example

A decision problem for an oil wildcatter illustrates the use of the DTREE procedure. The oil wildcatter must decide whether or not to drill at a given site before his option expires. He is uncertain about many things: the cost of drilling, the extent of the oil or gas deposits at the site, and so on. Based on the reports of his technical staff, the hole could be 'Dry' with probability 0.5 , 'Wet' with probability 0.3 , and 'Soaking' with probability 0.2 . His monetary payoffs are given in the following table.

Table 7.1 Monetary Payoffs of Oil Wildcatter's Problem

	Drill	Not Drill
Dry	0	0
Wet	$\$ 700,000$	0
Soaking	$\$ 1,200,000$	0

The wildcatter also learned from the reports that the cost of drilling could be $\$ 150,000$ with probability 0.2 , $\$ 300,000$ with probability 0.6 , and $\$ 500,000$ with probability 0.2 . He can gain further relevant information about the underlying geological structure of this site by conducting seismic soundings. A cost control procedure that can make the probabilities of the 'High' cost outcomes smaller (and hence, the probabilities of the 'Low' cost outcomes larger) is also available. However, such information and control are quite costly, about $\$ 60,000$ and $\$ 120,000$, respectively. The wildcatter must also decide whether or not to take the sounding test or the cost control program before he makes his final decision: to drill or not to drill.

The oil wildcatter feels that he should structure and analyze his basic problem first: whether or not to drill. He builds a model that contains one decision stage named 'Drill' (with two outcomes, 'Drill' and 'Not_Drill') and two chance stages named 'Cost' and 'Oil_Deposit'. A representation of the model is saved in three SAS data sets. In particular, the STAGEIN= data set can be saved as follows:

```
/* -- create the STAGEIN= data set -- */
data Dtoils1;
format _STNAME_ $12. _STTYPE_ $2. _OUTCOM_ $10.
    _SUCCES_ $12. ;
input _STNAME_ $ _STTYPE_ $ _OUTCOM_ $ _SUCCES_ $ ;
datalines;
Drill D Drill Cost
. . Not_Drill .
Cost C Low Oil_Deposit
. . Fair Oil_Deposit
. . High Oil_Deposit
Oil_Deposit C Dry .
. . Wet Soaking .
;
```

The structure of the decision problem is given in the Dtoils1 data set. As you apply this data set, you should be aware of the following points:

- There is no reward variable in this data set; it is not necessary.
- The ordering of the chance stages 'Cost' and 'Oil_Deposit' is arbitrary.
- Missing values for the _SUCCES_ variable are treated as '_ENDST_' (the default name of the end stage) unless the associated outcome variable (_OUTCOM_) is also missing.

The following PROBIN= data set contains the probabilities of events:

```
/* -- create the PROBIN= data set -- */
data Dtoilp1;
input _EVENT1 $ _PROB1
    _EVENT2 $ _PROB2
    _EVENT3 $ _PROB3 ;
datalines;
\begin{tabular}{llllll} 
Low & 0.2 & Fair & 0.6 & High & 0.2 \\
Dry & 0.5 & Wet & 0.3 & Soaking & 0.2
\end{tabular}
;
```

Notice that the sum of the probabilities of the events 'Low', 'Fair', and 'High' is 1.0. Similarly, the sum of the probabilities of the events 'Dry', 'Wet', and 'Soaking' is 1.0.

Finally, the following statements produce the PAYOFFS = data set that lists all possible scenarios and their associated payoffs.

```
/* -- create PAYOFFS= data set -- */
data Dtoilu1;
format _STATE1-_STATE3 $12. _VALUE_ dollar12.0;
input _STATE1 $ _STATE2 $ _STATE3 $ ;
/* determine the cost for this scenario */
if _STATE1='LOW' then _COST_=150000;
else if _STATE1='Fair' then _COST_=300000;
else _COST_=500000;
/* determine the oil deposit and the */
/* corresponding net payoff for this scenario */
if _STATE2='Dry' then _PAYOFF_=0;
else if _STATE2='Wet' then _PAYOFF_=700000;
else _PAYOFF_=1200000;
/* calculate the net return for this scenario */
if _STATE3='Not_Drill' then _VALUE_=0;
else _VALUE_=_PAYOFF_-_COST_;
/* drop unneeded variables */
drop _COST_ _PAYOFF_;
datalines;
\begin{tabular}{lll} 
Low & Dry & Not_Drill \\
Low & Dry & Drill \\
Low & Wet & Not_Drill \\
Low & Wet & Drill \\
Low & Soaking & Not_Drill \\
Low & Soaking & Drill \\
Fair & Dry & Not_Drill \\
Fair & Dry & Drill \\
Fair & Wet & Not_Drill \\
Fair & Wet & Drill \\
Fair & Soaking & Not_Drill \\
Fair & Soaking & Drill
\end{tabular}
```

High	Dry	Not_Drill
High	Dry	Drill
High	Wet	Not_Drill
High	Wet	Drill
High	Soaking	Not_Drill
High	Soaking	Drill
;		

This data set can be displayed, as shown in Figure 7.1, with the following PROC PRINT statements:

```
/* -- print the payoff table -- */
title "Oil Wildcatter's Problem";
title3 "The Payoffs";
proc print data=Dtoilu1;
run;
```

Figure 7.1 Payoffs of the Oil Wildcatter's Problem
Oil Wildcatter's Problem
The Payoffs

Obs _STATE1_STATE2 _STATE3	_VALUE_		
$\mathbf{1}$ Low	Dry	Not_Drill	$\$ 0$
$\mathbf{2}$ Low	Dry	Drill	$\$-150,000$
$\mathbf{3}$ Low	Wet	Not_Drill	$\$ 0$
$\mathbf{4}$ Low	Wet	Drill	$\$ 550,000$
$\mathbf{5}$ Low	Soaking	Not_Drill	$\$ 0$
$\mathbf{6}$ Low	Soaking	Drill	$\$ 1,050,000$
$\mathbf{7}$ Fair	Dry	Not_Drill	$\$ 0$
$\mathbf{8}$ Fair	Dry	Drill	$\$-300,000$
$\mathbf{9}$ Fair	Wet	Not_Drill	$\$ 0$
$\mathbf{1 0}$ Fair	Wet	Drill	$\$ 400,000$
$\mathbf{1 1}$ Fair	Soaking	Not_Drill	$\$ 0$
$\mathbf{1 2}$ Fair	Soaking	Drill	$\$ 900,000$
$\mathbf{1 3}$ High	Dry	Not_Drill	$\$ 0$
$\mathbf{1 4}$ High	Dry	Drill	$\$-500,000$
$\mathbf{1 5}$ High	Wet	Not_Drill	$\$ 0$
$\mathbf{1 6}$ High	Wet	Drill	$\$ 200,000$
$\mathbf{1 7}$ High	Soaking	Not_Drill	$\$ 0$
$\mathbf{1 8}$ High	Soaking	Drill	$\$ 700,000$

The $\$ 550,000$ payoff associated with the scenario 'Low', 'Wet ', and 'Drill' is a net figure; it represents a return of $\$ 700,000$ for a wet hole less the $\$ 150,000$ cost for drilling. Similarly, the net return of the consequence associated with the scenario 'High', 'Soaking', and 'Drill' is $\$ 700,000$, which is interpreted as a return of $\$ 1,200,000$ less the $\$ 500,000$ 'High ' cost.

Now the wildcatter can invoke PROC DTREE to evaluate his model and to find the optimal decision using the following statements:

```
    /* -- PROC DTREE statements -- */
title "Oil Wildcatter's Problem";
proc dtree stagein=Dtoils1
    probin=Dtoilp1
    payoffs=Dtoilu1
    nowarning;
    evaluate / summary;
```

The following message, which notes the order of the stages, appears on the SAS log:

```
NOTE: Present order of stages:
Drill(D), Cost(C), Oil_Deposit(C), _ENDST_(E).
```

Figure 7.2 Optimal Decision Summary of the Oil Wildcatter's Problem
Oil Wildcatter's Problem
The DTREE Procedure
Optimal Decision Summary

The SUMMARY option in the EVALUATE statement produces the optimal decision summary shown in Figure 7.2.

The summary shows that the best action, in the sense of maximizing the expected payoff, is to drill. The expected payoff for this optimal decision is $\$ 140,000$, as shown on the summary.

Perhaps the best way to view the details of the results is to display the complete decision tree. The following statement draws the decision tree, as shown in Figure 7.3, in line-printer format:
/* plot decision tree diagram in line-printer mode */
OPTIONS LINESIZE=100;
treeplot/ lineprinter;

Figure 7.3 The Decision Tree

Oil Wildcatter's Problem

The DTREE Procedure

Line-printer Plot

Attitudes toward Risk

Assume now that the oil wildcatter is constantly risk averse and has an exponential utility function with a risk tolerance (RT) of $\$ 700,000$. The risk tolerance is a measure of the decision maker's attitude to risk. See the section "Evaluation" on page 427 for descriptions of the utility function and risk tolerance.

The new optimal decision based on this utility function can be determined with the following statement:

```
evaluate / criterion=maxce rt=700000 summary;
```

The summary, shown in Figure 7.4, indicates that the venture of investing in the oil well is worth $\$-13,580$ to the wildcatter, and he should not drill the well.

Figure 7.4 Summary of the Oil Wildcatter's Problem with RT $=\$ 700,000$
Oil Wildcatter's Problem
The DTREE Procedure
Optimal Decision Summary

Order of Stages Stage	Type
Drill	Decision
Cost	Chance
Oil_Deposit	Chance
	ENDST_

Decision Parameters
Decision Criterion: Maximize Certain Equivalent Value (MAXCE)
Risk Tolerance: $\$ 700,000$
Optimal Decision Yields: $\$ 0$

Optimal Decision Policy Up to Stage Drill		
Alternatives or		Cumulative Evaluating
Outcomes	Reward	Value
Drill		$\$-13,580$
Not_Drill		$\$ 0^{*}$

Sensitivity Analysis and Value of Perfect Information

The oil wildcatter learned that the optimal decision changed when his attitude toward risk changed. Since risk attitude is difficult to express quantitatively, the oil wildcatter wanted to learn more about the uncertainties in his problem. Before spending any money on information-gathering procedures, he would like to know the benefit of knowing, before the 'Drill' or 'Not_Drill' decision, the amount of oil or the cost of drilling. The simplest approach is to calculate the value of perfect information for each uncertainty. This quantity gives an upper limit on the amount that could be spent profitably on information gathering. The expected value of information for the amount of oil is calculated by the following statement:

```
vpi Oil_Deposit;
```

The result of the previous statement is written to the SAS \log as

```
NOTE: The currently optimal decision yields 140000.
```

```
NOTE: The new optimal decision yields 295000.
NOTE: The value of perfect information of stage Oil_Deposit
    yields 155000.
```

This means that the wildcatter could spend up to $\$ 155,000$ to determine the amount of oil in the deposit with certainty before losing money. There are several alternative ways to calculate the expected value of perfect information. For example, the following statement

```
vpi Cost;
```

is equivalent to

```
save;
move Cost before Drill;
evaluate;
recall;
```

The messages, which appear on the SAS log, show that if there is some way that the wildcatter knows what the cost to drill will be before his decision has to be made, it will yield an expected payoff of $\$ 150,000$. So, the expected value of perfect information about drilling cost is $\$ 150,000-\$ 140,000=\$ 10,000$.

```
NOTE: The current problem has been successfully saved.
NOTE: Present order of stages:
    Cost(C), Drill(D), Oil_Deposit(C), _ENDST_(E).
NOTE: The currently optimal decision yields 150000.
NOTE: The original problem has been successfully recalled.
NOTE: Present order of stages:
    Drill(D), Cost(C), Oil_Deposit(C), _ENDST_(E).
```


Value of Perfect Control

The oil wildcatter may also want to know what the value of perfect control (VPC) is on the cost of drilling. That is, how much is he willing to pay for getting complete control on the drilling cost? This analysis can be performed with the following statement:

```
vpc Cost;
```

The result is written to the SAS \log as

```
NOTE: The currently optimal decision yields 140000.
NOTE: The new optimal decision yields 300000.
NOTE: The value of perfect control of stage Cost
    yields 160000.
```


Oil Wildcatter's Problem with Sounding Test

The wildcatter is impressed with the results of calculating the values of perfect information and perfect control. After comparing those values with the costs of the sounding test and the cost-controlling procedure, he prefers to spend $\$ 60,000$ on sounding test, which has a potential improvement of $\$ 155,000$. He is informed that the sounding will disclose whether the terrain below has no structure (which is bad), open structure (which is okay), or closed structure (which is really hopeful). The expert also provides him with the following table, which shows the conditional probabilities.

Table 7.2 Conditional Probabilities of Oil Wildcatter's Problem

	Seismic Outcomes		
State	No Structure	Open Structure	Closed Structure
Dry	0.6	0.3	0.1
Wet	0.3	0.4	0.3
Soaking	0.1	0.4	0.5

To include this additional information into his basic problem, the wildcatter needs to add two stages to his model: a decision stage to represent the decision whether or not to take the sounding test, and one chance stage to represent the uncertain test result. The new STAGEIN= data set is

```
/* -- create the STAGEIN= data set -- */
data Dtoils2;
format _STNAME_ $12. _STTYPE_ $2. _OUTCOM_ $14.
    _SUCCES_ $12. _REWARD_ dollar12.0;
input _STNAME_ & _STTYPE_ & _OUTCOM_ &
    _SUCCES_ & _REWARD_ dollar12.0;
datalines;
Drill D Drill Cost
. . Not_Drill
Cost C Low Oil_Deposit
. . Fair Oil_Deposit .
Oil_Deposit c C High Oil_Deposit .
Oil_Deposit C Dry . . . .
j . Soaking . .
Sounding D Noseismic lll
Structure C No_Struct Drill .
. . Open_Struct Drill
. . Closed_Struct Drill
;
```

Note that the cost for the seismic soundings is represented as negative reward (of the outcome Seismic) in this data set. The conditional probabilities for stage Structure are added to the PROBIN= data set as follows:

```
    /* -- create PROBIN= data set -- */
data Dtoilp2;
    format _EVENT1 $10. _EVENT2 $12. _EVENT3 $14. ;
    input _GIVEN__ $ _EVENT1 $ _PROB1
        _EVENT2 $ __PROB2 _EVENT3 $ _PROB3;
    datalines;
        Low 0.2 Fair 0.6 High 0.2
. Dry 0.5 Wet 0.3 Soaking 0.2
Dry No_Struct 0.6 Open_Struct 0.3 Closed_Struct 0.1
Wet No_Struct 0.3 Open_Struct 0.4 Closed_Struct 0.3
Soaking No_Struct 0.1 Open_Struct 0.4 Closed_Struct 0.5
;
```

It is not necessary to make any change to the PAYOFFS = data set. To evaluate his new model, the wildcatter invokes PROC DTREE as follows:

```
    /* -- PROC DTREE statements -- */
title "Oil Wildcatter's Problem";
proc dtree stagein=Dtoils2
    probin=Dtoilp2
    payoffs=Dtoilu1
    nowarning;
    evaluate;
```

As before, the following messages are written to the SAS log:

```
NOTE: Present order of stages:
    Sounding(D), Structure(C), Drill(D), Cost(C),
    Oil_Deposit(C), _ENDST_(E).
NOTE: The currently optimal decision yields 140000.
```

The following SUMMARY statements produce the optimal decision summary as shown in Figure 7.5 and Figure 7.6:

```
summary / target=Sounding;
summary / target=Drill;
```

The optimal strategy for the oil-drilling problem is found to be the following:

- No soundings test should be taken, and always drill. This alternative has an expected payoff of \$140,000.
- If the soundings test is conducted, then drill unless the test shows the terrain below has no structure.
- The soundings test is worth $\$ 180,100-\$ 140,000=\$ 40,100$ (this quantity is also called the value of imperfect information or the value of sample information), but it costs $\$ 60,000$; therefore, it should not be taken.

Figure 7.5 Summary of the Oil Wildcatter's Problem for SOUNDING
Oil Wildcatter's Problem
The DTREE Procedure
Optimal Decision Summary

Figure 7.6 Summary of the Oil Wildcatter's Problem for DRILL
Oil Wildcatter's Problem
The DTREE Procedure
Optimal Decision Summary

Note that the value of sample information also can be obtained by using the following statements:

```
modify Seismic reward 0;
evaluate;
```

The following messages, which appear in the SAS log, show the expected payoff with soundings test is $\$ 180,100$. Recall that the expected value without test information is $\$ 140,000$. Again, following the previous calculation, the value of test information is $\$ 180,100-\$ 140,000=\$ 40,100$.

```
NOTE: The reward of outcome Seismic has been changed to 0.
NOTE: The currently optimal decision yields 180100.
```

Now, the wildcatter has the information to make his best decision.

Syntax: DTREE Procedure

The following statements are available in PROC DTREE:

```
PROC DTREE options;
    EVALUATE / options;
    MODIFY specifications;
    MOVE specifications;
    QUIT ;
    RECALL ;
    RESET options;
    SAVE ;
    SUMMARY / options;
    TREEPLOT / options;
    VARIABLES / options;
    VPC specifications;
    VPI specifications;
```

The DTREE procedure begins with the PROC DTREE statement and terminates with the QUIT statement. The VARIABLES statement can be used only once, and if it is used, it must appear before any other statements. The EVALUATE, MODIFY, MOVE, RECALL, RESET, SAVE, SUMMARY, TREEPLOT, VPC, and VPI statements can be listed in any order and can be used as many times as desired with one exception: the RECALL statement must be preceded by at least one SAVE statement.

You can also submit any other valid SAS statements, for example, OPTIONS, TITLE, and SAS/GRAPH global statements. In particular, the SAS/GRAPH statements that can be used to enhance the DTREE procedure's output on graphics devices are listed in Table 7.3. Note that the DTREE procedure is not supported with the ActiveX or Java series of devices on the GOPTIONS statement. Refer to SAS/GRAPH Software: Reference for more explanation of these statements.

Table 7.3 Statements to Enhance Graphics Output

Statement	Function
FOOTNOTE	Produce footnotes that are displayed on the graphics output
GOPTIONS	Define default values for graphics options
NOTE	Produce text that is displayed on the graphics output
SYMBOL	Create symbol definitions
TITLE	Produce titles that are displayed on the graphics output

Functional Summary

Table 7.4 outlines the options available for the DTREE procedure, classified by function.

Table 7.4 Functional Summary

Description	Statement	Option		
Accuracy Control Options Specifies the accuracy of numerical com- putation	DTREE, RESET	TOLERANCE=		
Data Set Specifications				
Specifies the Annotate data set Specifies the Image map output data set	DTREE, RESET, TREEPLOT	ANNOTATE=		
Specifies the Payoffs data set Specifies the Probability data set	DTREE	DTREE		IMAGEMAP=
:---				
Specifies the Stage data set	\quad DTREE	PAYOFFS=		
:---				
Error Handling Options				

Table 7.4 continued

Description	Statement	Option		
Line-Printer Options Specifies the characters for line-printer plot	DTREE, RESET, TREEPLOT	FORMCHAR=		
Link Appearance Options				
Specifies the color of LOD Specifies the color of all links except	DTREE, RESET, TREEPLOT	CBEST=		
LOD 1		CLINK=		
Defines the symbol for all links except, TREEPLOT	DTREE, RESET, TREEPLOT	LINKA=		
LOD 1 and LCP ${ }^{2}$				Defines the symbol for LOD ${ }^{1}$
:---				

Table 7.4 continued

Description	Statement	Option
Specifies the decision stage up to which the optimal decision summary is displayed	DTREE, EVALUATE, RESET, SUMMARY	TARGET=
Plot Control Options		
Draws diagram on one page in graphics mode	DTREE, RESET, TREEPLOT	COMPRESS
Displays information on the decision tree diagram	DTREE, RESET, TREEPLOT	DISPLAY=
Processes the Annotate data set	DTREE, RESET, TREEPLOT	DOANNOTATE
Invokes graphics version	DTREE, RESET, TREEPLOT	GRAPHICS
Displays labels	DTREE, RESET, TREEPLOT	LABEL
Displays legend	DTREE, RESET, TREEPLOT	LEGEND
Invokes line-printer version	DTREE, RESET, TREEPLOT	LINEPRINTER
Suppresses processing of the Annotate data set	DTREE, RESET, TREEPLOT	NOANNOTATE
Draws diagram across multiple pages	DTREE, RESET, TREEPLOT	NOCOMPRESS
Suppresses displaying label	DTREE, RESET, TREEPLOT	NOLABEL
Suppresses displaying legend	DTREE, RESET, TREEPLOT	NOLEGEND
Suppresses displaying page number	DTREE, RESET, TREEPLOT	NOPAGENUM
Uses rectangular corners for turns in the links	DTREE, RESET, TREEPLOT	NORC
Displays page number at upper right corner	DTREE, RESET, TREEPLOT	PAGENUM
Uses rounded corners for turns in the links	DTREE, RESET, TREEPLOT	RC
Specifies the vertical space between two end nodes	DTREE, RESET, TREEPLOT	YBETWEEN=
Text Appearance Options		
Specifies the text color	DTREE, RESET, TREEPLOT	CTEXT=
Specifies the text font	DTREE, RESET, TREEPLOT	FTEXT=
Specifies the text height	DTREE, RESET, TREEPLOT	HTEXT=
Variables in PAYOFFS= Data Set		
Specifies the action outcome names	VARIABLES	ACTION=
Specifies the state outcome names	VARIABLES	STATE=
Specifies the payoffs	VARIABLES	VALUE=
Variables in PROBIN= Data Set		
Specifies the event outcome names	VARIABLES	EVENT=
Specifies the given outcome names	VARIABLES	GIVEN=
Specifies the (conditional) probabilities	VARIABLES	PROB=

Table 7.4 continued

Description	Statement	Option
Variables in STAGEIN= Data Set		
Specifies the outcome names	VARIABLES	OUTCOME=
Specifies the rewards	VARIABLES	REWARD=
Specifies the stage name	VARIABLES	STAGE=
Specifies the successor names	VARIABLES	SUCCESSOR=
Specifies the type of stage	VARIABLES	TYPE=
Specifies the web reference variable	VARIABLES	WEB=

${ }^{1}$ LOD denotes links that indicate optimal decisions.
${ }^{2} \mathrm{LCP}$ denotes links that continue on subsequent pages.

PROC DTREE Statement

PROC DTREE options;
The options that can appear in the PROC DTREE statement are listed in the following section. The options specified in the PROC DTREE statement remain in effect for all statements until the end of processing or until they are changed by a RESET statement. These options are classified under appropriate headings: first, all options that are valid for all modes of the procedure are listed followed by the options classified according to the mode (line-printer or graphics) of invocation of the procedure.

General Options

AUTOSCALE | NOSCALE

specifies whether the procedure should rescale the probabilities of events for a given chance stage if the total probability of this stage is not equal to 1 . The default is NOSCALE.

CRITERION=i

indicates the decision criterion to be used for determining the optimal decision and the certain equivalent for replacing uncertainties. The following table shows all valid values of i and their corresponding decision criteria and certain equivalents.

Table 7.5 Values for the CRITERION= Option

i	Criterion	Certain Equivalent
MAXEV	Maximize	Expected value
MINEV	Minimize	Expected value
MAXMLV	Maximize	Value with largest probability
MINMLV	Minimize	Value with largest probability
MAXCE	Maximize	Certain equivalent value of expected utility
MINCE	Minimize	Certain equivalent value of expected utility

The default value is MAXEV. The last two criteria are used when your utility curve can be fit by an exponential function. See the section "Evaluation" on page 427 for more information on the exponential utility function.

DISPLAY=(information-list)

specifies information that should be displayed on each link of the decision tree diagram. Table 7.6 lists the valid keywords and corresponding information.

Table 7.6 Information on Decision Tree and Keywords

Keyword	Information
ALL	All information listed in this table
CR	Cumulative rewards of outcomes on the path that leads to the successor of the link
EV	Evaluating value that can be expected from the successor of the link
LINK	Outcome name represented by the link
P	Probability of the outcome represented by the link
R	Instant reward of the outcome represented by the link
STAGE	Stage name of the successor of the link

The default value is (LINK P EV R CR).
Note that the probability information displays on links that represent chance outcomes only. In addition, the PROBIN= option must be specified. The expected values display only if the decision tree has been evaluated. The reward information displays on a link only if the instant reward of the outcome represented by the link is nonzero. The cumulative rewards do not display if the cumulative rewards of links are all zero.

ERRHANDLE=DRAIN | QUIT

specifies whether the procedure should stop processing the current statement and wait for next statement or quit PROC DTREE when an error has been detected by the procedure. The default value is DRAIN.

GRAPHICS

creates plots for a graphics device. To specify this option, you need to have SAS/GRAPH software licensed at your site. This is the default.

LABEL | NOLABEL

specifies whether the labels for information displayed on the decision tree diagram should be displayed. If the NOLABEL option is not specified, the procedure uses the following symbols to label all the information that is displayed on each link.

Table 7.7 Labels and Their Corresponding Information

Label	Information
$\mathrm{cr}=$	The cumulative rewards of outcomes on the path that lead to the successor of the link
$\mathrm{EV}=$	The value that can be expected from the successor of the link
$\mathrm{p}=$	The probability of the outcome represented by the link
$\mathrm{r}=$	The instant reward of the outcome

The default is LABEL.

LINEPRINTER

LP

creates plots of line-printer quality. If you do not specify this option, graphics plots are produced.

MAXPREC=d

specifies the maximum decimal width (the precision) in which to format numerical values using w.d format. This option is used in displaying the decision tree diagrams and the summaries. The value for this option must be no greater than 9 ; the default value is 3 .

MAXWIDTH=mw

specifies the maximum field width in which to format numerical values (probabilities, rewards, cumulative rewards and evaluating values) using $w . d$ format. This option is used in displaying the decision tree diagrams and the summaries. The value for this option must be no greater than 16 and must be at least 5 plus the value of the MAXPREC= option. The default value is 10 .

NWIDTH=nw

specifies the maximum field width in which to format outcome names when displaying the decision tree diagrams. The value for this option must be no greater than 40; the default value is 32 .

PAYOFFS=SAS-data-set

names the SAS data set that contains the evaluating values (payoffs, losses, utilities, and so on) for each state and action combination. The use of PAYOFFS $=$ is optional in the PROC DTREE statement. If the PAYOFFS = option is not used, PROC DTREE assumes that all evaluating values at the end nodes of the decision tree are 0 .

PROBIN=SAS-data-set

names the SAS data set that contains the (conditional) probability specifications of outcomes. The PROBIN= SAS data set is required if the evaluation of the decision tree is desired.

$\mathbf{R T}=r$

specifies the value of the risk tolerance. The RT= option is used only when CRITERION=MAXCE or CRITERION=MINCE is specified. If the RT= option is not specified, and CRITERION=MAXCE or CRITERION=MINCE is specified, PROC DTREE changes the value of the CRITERION= option to MAXEV or MINEV (which would mean straight-line utility function and imply infinite risk tolerance).

STAGEIN=SAS-data-set

names the SAS data set that contains the stage names, stage types, names of outcomes, and their rewards and successors for each stage. If the STAGEIN= option is not specified, PROC DTREE uses the most recently created SAS data set.

SUMMARY | NOSUMMARY

specifies whether an optimal decision summary should be displayed each time the decision tree is evaluated. The decision summary lists all paths through the tree that lead to the target stage as well as the cumulative rewards and the evaluating values of all alternatives for that path. The alternative with optimal evaluating value for each path is marked with an asterisk (*). The default is NOSUMMARY.

TARGET=stage

specifies the decision stage up to which the optimal decision policy table is displayed. The TARGET= option is used only in conjunction with the SUMMARY option. The stage specified must be a decision stage. If the TARGET= option is not specified, the procedure displays an optimal decision policy table for each decision stage.

TOLERANCE=d

specifies either a positive number close to 0 or greater than 1. PROC DTREE treats all numbers within e of 0 as 0 , where

$$
e= \begin{cases}d & \text { if } d<1 \\ d \times \epsilon & \text { otherwise }\end{cases}
$$

and ϵ is the machine epsilon. The default value is 1,000 .

WARNING | NOWARNING

specifies whether the procedure should display a warning message when

- the payoff for an outcome is not assigned in the PAYOFFS= data set
- probabilities of events for a given chance stage have been automatically scaled by PROC DTREE because the total probability of the chance stage does not equal 1

The default is WARNING.

YBETWEEN=ybetween < units>

specifies the vertical distance between two successive end nodes. If the GRAPHICS option is specified, the valid values for the optional units are listed in Table 7.8.

Table 7.8 Valid Values for the Units of the YBETWEEN= Option

Unit	Description
CELL	Character cells
CM	Centimeters
INCH	Inches
PCT	Percentage of the graphics output area
SPACE	Height of the box surrounding the node, its predecessor link, and all text information

The value of the YBETWEEN= option must be greater than or equal to 0 . Note that if the COMPRESS option is specified, the actual distance between two successive end nodes is scaled by PROC DTREE and may not be the same as the YBETWEEN = specification.
If the LINEPRINTER option is specified, the optional units value can be CELL or SPACE. The value of the YBETWEEN= option must be a nonnegative integer.

If you do not specify units, a unit specification is determined in the following order:

- the GUNIT= option in a GOPTIONS statement, if the GRAPHICS option is specified
- the default unit, CELL

The default value of YBETWEEN $=$ option is 0 .

Graphics Options

The following options are specifically for the purpose of producing a high-resolution quality decision tree diagram.

ANNOTATE=SAS-data-set

ANNO=SAS-data-set
specifies an input data set that contains appropriate Annotate variables. The ANNOTATE= option enables you to add features (for example, customized legend) to plots produced on graphics devices. For additional information, refer to the chapter on the annotate data set in SAS/GRAPH Software: Reference.

CBEST=color

CB=color
specifies the color for all links in the decision tree diagram that represent optimal decisions. If you do not specify the CBEST $=$ option, the color specification is determined in the following order:

- the CI= option in the j th generated SYMBOL definition, if the option LINKB $=j$ is specified
- the ContrastColor attribute of the GraphData2 element of the current ODS style template (if the GSTYLE system option is active)
- the second color in the colors list

CLINK=color

CL=color
specifies the color for all links in the decision tree diagram except those that represent optimal decisions. If the CLINK= option is not specified, the color specification is determined in the following order:

- the $\mathrm{CI}=$ option in the i th generated SYMBOL definition, if the option LINKA=i is specified
- the ContrastColor attribute of the GraphData3 element of the current ODS style template (if the GSTYLE system option is active)
- the third color in the colors list

COMPRESS | NOCOMPRESS

CP | NOCP
specifies whether the decision tree diagram should be drawn on one physical page. If the COMPRESS option is specified, PROC DTREE determines the scale so that the diagram is compressed, if necessary, to fit on one physical page. Otherwise, the procedure draws the diagram across multiple pages if necessary. The default is NOCOMPRESS.

CSYMBOLC=color

CC=color
specifies the color of the symbol used to draw all chance nodes in the decision tree diagram. If the CSYMBOLC= option is not specified, the color specification is determined in the following order:

- the $\mathrm{CV}=$ option in the m th generated SYMBOL definition, if the option $\mathrm{SYMBOLC}=m$ is specified
- the CSYMBOL= option in a GOPTIONS statement
- the ContrastColor attribute of the GraphDatal element of the current ODS style template (if the GSTYLE system option is active)
- the fifth color in the colors list

CSYMBOLD=color

CD=color
specifies the color of the symbol used to draw all decision nodes in the decision tree diagram. If the CSYMBOLD = option is not specified, the color specification is determined in the following order:

- the $\mathrm{CV}=$ option in the d th generated $S Y M B O L$ definition, if the option $S Y M B O L D=d$ is specified
- the CSYMBOL= option in a GOPTIONS statement
- the ContrastColor attribute of the GraphData5 element of the current ODS style template (if the GSTYLE system option is active)
- the fourth color in the colors list

CSYMBOLE=color

CE=color
specifies the color of the symbol used to draw all end nodes in the decision tree diagram. If the CSYMBOLE= option is not specified, the color specification is determined in the following order:

- the $\mathrm{CV}=$ option in the nth generated SYMBOL definition, if the option $\mathrm{SYMBOLE}=n$ is specified
- the CSYMBOL= option in a GOPTIONS statement
- the ContrastColor attribute of the GraphData8 element of the current ODS style template (if the GSTYLE system option is active)
- the sixth color in the colors list

CTEXT=color
CT=color
specifies the color to be used for all text that appears on plots except on TITLE and FOOTNOTE lines. If the CTEXT= option is not specified, the color specification is determined in the following order:

- the CTEXT= option in a GOPTIONS statement
- the Color attribute of the GraphDataText element of the current ODS style template (if the GSTYLE system option is active)
- the first color in the colors list

DESCRIPTION=‘string’

DES= 'string'
specifies a descriptive string, up to 40 characters long, that appears in the description field of the master menu of PROC GREPLAY. If the DESCRIPTION= option is omitted, the description field contains a description assigned by PROC DTREE.

DOANNOTATE | NOANNOTATE

DOANNO | NOANNO

specifies whether the Annotate data set should be processed. If the NOANNOTATE option is specified, the procedure does not process the Annotate data set even though the ANNOTATE= option is specified. The default is DOANNOTATE.

FTEXT=name

FONT=name
specifies the font to be used for text on plots. If you do not use this option, the font specification is determined in the following order:

- the FTEXT= option in a GOPTIONS statement
- the Font attribute of the GraphDataText element of the current ODS style template (if the GSTYLE system option is active)
- the hardware font for your graphics output device

Refer to the chapter on SAS/GRAPH fonts in SAS/GRAPH Software: Reference for details about SAS/GRAPH fonts.

GOUT=SAS-catalog

specifies the name of the graphics catalog used to save the output produced by PROC DTREE for later replay. For additional information, refer to the chapter on graphics output in SAS/GRAPH Software: Reference.

HSYMBOL=h

HS=h
specifies that the height of symbols for all nodes in the decision tree diagram is h times the heights of symbols assigned by SAS/GRAPH software. You can specify the heights of decision nodes, chance nodes, and end nodes by using the HEIGHT = options in the corresponding SYMBOL statements. For example, if you specify the options HSYMBOL=2 and SYMBOLD=1 in the PROC DTREE statement and defined SYMBOLl as

```
symbol1 height=4 pct;
```

then all decision nodes in the decision tree diagram are sized at $2 \times 4=8 \%$ of the graphics output area. The default value is 1 .

HTEXT=h

HT=h
specifies that the height for all text in plots (except that in TITLE and FOOTNOTE statements) be h times the height of the characters assigned by SAS/GRAPH software. You can also specify character height by using the HTEXT= option in a GOPTIONS statement.
For example, if you specify the option HTEXT $=0.6$ in the PROC DTREE statement and also specified a GOPTIONS statement as follows

```
goptions htext=2 in;
```

then the size of all text is $0.6 \times 2=1.2$ inches. For more explanation of the GOPTIONS statement, refer to the chapter on the GOPTIONS statement in SAS/GRAPH Software: Reference. The default value is 1 .

IMAGEMAP=SAS-data-set

names the SAS data set that receives a description of the areas of a graph and a link for each area. This information is for the construction of HTML image maps. You use a SAS DATA step to process the output file and generate your own HTML files. The graph areas correspond to the link information that comes from the $\mathrm{WEB}=$ variable in the STAGEIN= data set. This gives you complete control over the appearance and structure of your HTML pages.

LEGEND | NOLEGEND

LG | NOLG

specifies whether the default legend should be displayed. If the NOLEGEND is not specified, the procedure displays a legend at the end of each page of the decision tree diagram. The default is LEGEND.

LINKA=i

If the LINKA $=i$ option is specified, then PROC DTREE uses the color specified with the $\mathrm{CI}=$ option, the type specified with the LINE= option, and the thickness specified with the WIDTH= option in the i th generated SYMBOL definition to draw all links in the decision tree diagram, except those that indicate optimal decisions and those that are continued on subsequent pages. There is no default value for this option. The color, type, and thickness specifications may be overridden by the specifications of the CLINK=, LSTYLE=, and LWIDTH= options in the PROC DTREE statement.

Note that if you specify the LINKA $=i$ option, PROC DTREE uses the specifications in the i th generated SYMBOL definition and not the specifications in the SYMBOLi statement. Refer to SAS/GRAPH Software: Reference for the details about creating, canceling, reviewing, and altering SYMBOL definitions.

LINKB=j

If the LINKB=j option is specified, then PROC DTREE uses the color specified with the CI= option, the type specified with the LINE= option, and the thickness specified with the WIDTH= option in the j th generated SYMBOL definition to draw all links that represent optimal decisions. There is no default value for this option. The color, type, and thickness specifications may be overridden by the specifications of the CBEST=, LSTYLEB=, and LWIDTHB= options in the PROC DTREE statement.

Note that if you specify the LINKB=j option, PROC DTREE uses the specifications in the j th generated SYMBOL definition and not the specifications in the SYMBOLj statement. Refer to SAS/GRAPH Software: Reference for the details about creating, canceling, reviewing, and altering SYMBOL definitions.

LINKC=k

If the LINKC $=k$ option is specified, then PROC DTREE uses the type specified with the LINE= option in the k th generated SYMBOL definition to draw all links in the decision tree diagram that are continued on subsequent pages. There is no default value for this option. The color and thickness for links continued on another page indicate whether the link represents an optimal decision or not. The type specification may be overridden by the specification of the LSTYLEC= option in the PROC DTREE statement.

Note that if you specify the LINKC=k option, PROC DTREE uses the specifications in the k th generated SYMBOL definition and not the specifications in the SYMBOLk statement. Refer to SAS/GRAPH Software: Reference for the details about creating, canceling, reviewing, and altering SYMBOL definitions.

LSTYLE=/

L=/
specifies the line type (style) used for drawing all links in the decision tree diagram, except those that represent the optimal decisions and those that are continued on subsequent pages. Valid values for l are 1 through 46. If the LSTYLE= option is not specified, the type specification is determined in the following order:

- the LINE $=$ option in the i th generated SYMBOL definition, if the option LINKA= i is specified
- the default value, 1 (solid line)

LSTYLEB=12

LB=12

specifies the line type (style) used for drawing the links in the decision tree diagram that represent optimal decisions. Valid values for $l 2$ are 1 through 46. If the LSTYLEB= option is not specified, the type specification is determined in the following order:

- the LINE $=$ option in the j th generated SYMBOL definition, if the option LINKB $=j$ is specified
- the default value, 1 (solid line)

LSTYLEC=/3

LC=/3
specifies the line type (style) used for drawing the links in the decision tree diagram that are continued on the next subsequent pages. Valid values for $l 3$ are 1 through 46.

If the LSTYLEC= option is not specified, the type specification is determined in the following order:

- the LINE= option in the k th generated SYMBOL definition, if the option LINKC $=k$ is specified
- the default value, 2 (dot line)

LWIDTH=w

LTHICK=w
specifies the line thickness (width) used to draw all links in the decision tree diagram except those that represent the optimal decisions.

If the LWIDTH= option is not specified, the thickness specification is determined in the following order:

- the WIDTH $=$ option in the i th generated SYMBOL definition, if the option LINKA $=i$ is specified
- the default value, 1

LWIDTHB=w2

LTHICKB=w2
specifies the line thickness (width) used to draw the links in the decision tree diagram that represent optimal decisions. If the LWIDTHB $=$ option is not specified, the thickness specification is determined in the following order:

- the WIDTH $=$ option in the j th generated SYMBOL definition, if the option LINKB $=j$ is specified
- 2 times the thickness for links that represent regular outcomes

NAME='string'

specifies a descriptive string, up to 8 characters long, that appears in the name field of the master menu of PROC GREPLAY. The default is 'DTREE'.

PAGENUM | NOPAGENUM

PAGENUMBER | NOPAGENUMBER

specifies whether the page numbers should be displayed in the top right corner of each page of a multipage decision tree diagram. If the NOPAGENUM is not specified, the pages are ordered from top to bottom, left to right.

The default is PAGENUM.

RC | NORC

specifies whether the links in the decision tree diagram should be drawn with rounded corners or with rectangular corners. The default is RC.

SYMBOLC=m

SYMBC= m
If the SYMBOLC= option is specified, then PROC DTREE uses the color specified with the CV= option, the character specified with the VALUE= option, the font specified with the FONT= option, and the height specified with the HEIGHT= option in the m th generated SYMBOL definition to draw all chance nodes in the decision tree diagram. There is no default value for this option. The color and the symbol specifications may be overridden by the specification of the CSYMBOLC= and VSYMBOLC= options in the PROC DTREE statement. The height of the symbol can be changed by the HSYMBOL= option in the PROC DTREE statement.

Note that if you specify the SYMBOLC $=m$ option, PROC DTREE uses the specifications in the m th generated SYMBOL definition and not the specifications in the SYMBOLm statement. Refer to SAS/GRAPH Software: Reference for the details about creating, canceling, reviewing, and altering SYMBOL definitions.

SYMBOLD= d

SYMBD $=d$
If the SYMBOLD= option is specified, then PROC DTREE uses the color specified with the CV= option, the character specified with the VALUE= option, the font specified with the FONT= option, and the height specified with the HEIGHT= option in the d th generated SYMBOL definition to draw all decision nodes in the decision tree diagram. There is no default value for this option. The color and the symbol specifications may be overridden by the specification of the CSYMBOLD= and VSYMBOLD= options in the PROC DTREE statement. The height of the characters can be changed by the HSYMBOL= option in the PROC DTREE statement.

Note that if you specify the SYMBOLD=d option, PROC DTREE uses the specifications in the d th generated SYMBOL definition and not the specifications in the SYMBOLd statement. Refer to SAS/GRAPH Software: Reference for the details about creating, canceling, reviewing, and altering SYMBOL definitions.

SYMBOLE=n
 SYMBE=n

If the SYMBOLE= option is specified, then PROC DTREE uses the color specified with the $\mathrm{CV}=$ option, the character specified with the VALUE= option, the font specified with the FONT= option, and the height specified with the HEIGHT= option in the nth generated SYMBOL definition to draw all end nodes in the decision tree diagram. There is no default value for this option. The color and the symbol specifications may be overridden by the specification of the CSYMBOLE= and VSYMBOLE= options specified in the PROC DTREE statement. The height of the characters can be changed by the HSYMBOL= option in the PROC DTREE statement.

Note that if you specify the SYMBOLE= n option, PROC DTREE uses the specifications in the nth generated SYMBOL definition and not the specifications in the SYMBOL n statement. Refer to SAS/GRAPH Software: Reference for the details about creating, canceling, reviewing, and altering SYMBOL definitions.

VSYMBOLC=symbolc-name

VC=symbolc-name

specifies that the symbol symbolc-name from the special symbol table be used to draw all chance nodes in the decision tree diagram. If you do not specify this option, the symbol used is determined in the following order:

- the options VALUE $=$ and FONT= specifications in the m th generated $S Y M B O L$ definition, if the option SYMBOLC=m is specified
- the symbol CIRCLE in the special symbol table

VSYMBOLD=symbold-name

VD=symbold-name

specifies that the symbol symbold-name from the special symbol table be used to draw all decision nodes in the decision tree diagram. If you do not specify this option, the symbol used is determined in the following order:

- the options VALUE $=$ and FONT= specifications in the d th generated SYMBOL definition, if the option SYMBOLD= d is specified
- the symbol SQUARE in the special symbol table

VSYMBOLE=symbole-name

VE=symbole-name

specifies that the symbol symbole-name from the special symbol table be used to draw all end nodes in the decision tree diagram. If you do not specify this option, the symbol used is determined in the following order:

- the options VALUE $=$ and $F O N T=$ specifications in the nth generated SYMBOL definition, if the option SYMBOLE= n is specified
- the symbol DOT in the special symbol table

Line-Printer Options

The following options are specifically for the purpose of producing line-printer quality decision tree diagram.
FORMCHAR< (syni-list) >= 'formchar-string'
defines characters to be used for features on line-printer plots. The syni-list is a list of numbers ranging from 1 to 13 . The list identifies which features are controlled with the string characters. The formchar-string gives characters for features in syni-list. Any character or hexadecimal string can be used. By default, syni-list is omitted, and the FORMCHAR= option gives a string for all 13 features. The features associated with values of syni are listed in Table 7.9. Note that characters 4, 6, 7, 10, and 12 are not used in drawing a decision tree diagram.

Table 7.9 Features Associated with the FORMCHAR= Option

Syni	Description of Character	Feature
1	Vertical bar	Vertical link
2	Horizontal bar	Horizontal link
3	Box character (upper left)	Vertical up to horizontal turn
5	Box character (upper right)	Horizontal and down vertical joint
8	Box character (middle right)	Horizontal to split joint
9	Box character (lower left)	Vertical down to horizontal turn
11	Box character (lower right)	Horizontal and up vertical joint
13	Horizontal thick	Horizontal link that represents

As an example, the decision tree diagram in Figure 7.7 is produced by the following statement:

```
title "Decision Tree Showing the Effects of FORMCHAR";
data Dtoils4;
    format _STNAME_ $12. _STTYPE_ $2. _OUTCOM_ $10.
            _SUCCES_ $12.;
    input _STNAME_ $ _STTYPE_ $ _OUTCOM_ $ _SUCCES_ $;
    datalines;
Drill D Drill Cost
. . Not_Drill .
Cost C Low Oil_Deposit
. . High Oil_Deposit
Oil_Deposit C Dry .
;
proc dtree stagein=Dtoils4
            nowarning
            ;
    treeplot / formchar(1 2 3 5 8 9 11 13)='|-/*<\+='
                lineprinter display=(LINK);
quit;
```

Figure 7.7 Decision Tree Showing the Effects of FORMCHAR
Decision Tree Showing the Effects of FORMCHAR
The DTREE Procedure
Line-printer Plot

By default, the form character list specified with the SAS system option FORMCHAR= is used; otherwise, the default is ' $1----\mid+1---+=$ '. Refer to the chapter on the Calendar Procedure in the SAS Procedures Guide for more information.

EVALUATE Statement

EVALUATE /options;

The EVALUATE statement causes PROC DTREE to evaluate the decision tree and calculate the optimal decisions. If the SUMMARY option is specified a decision summary is displayed. Otherwise, the current optimal value is displayed on the SAS log.

The following options, which can appear in the PROC DTREE statement, can also be specified in the EVALUATE statement:

CRITERION $=i$	MAXPREC $=d$	MAXWIDTH $=m w$
NOSUMMARY	NWIDTH $=n w$	RT $=r$
SUMMARY	TARGET $=s t a g e$	

The MAXPREC=, MAXWIDTH=, and NWIDTH=, options are valid only in conjunction with the SUMMARY option. The RT= option is valid only in conjunction with the CRITERION=MAXCE or CRITERION=MINCE specification. The options specified in this statement are only in effect for this statement.

MODIFY Statement

MODIFY outcome-name REWARD new-value ;
MODIFY stage-name TYPE ;
The MODIFY statement is used to change either the type of a stage or the reward from an outcome. If MODIFY outcome-name REWARD new-value is given where the outcome-name is an outcome specified in the STAGEIN= data set, and new-value is a numeric value, then the reward of the outcome named outcome-name is changed to new-value.

If MODIFY stage-name TYPE is given where stage-name is a stage name specified in the STAGEIN= data set, then the type of the stage named stage-name is changed to 'DECISION' if its current type is 'CHANCE ' and is changed to 'CHANCE ' if its current type is 'DECISION'. You cannot change the type of an 'END' stage. The change of the type of a stage from 'CHANCE' to 'DECISION' can help the decision-maker learn how much improvement can be expected if he or she could pick which of the future (or unknown) outcomes would occur. However, if you want to change the type of a stage from 'DECISION' to 'CHANCE ', the procedure is not able to determine the probabilities for its outcomes unless you specify them in the PROBIN= data set.

MOVE Statement

MOVE stage1 (BEFORE | AFTER) stage2;
The MOVE statement is used to change the order of the stages. After all data in input data sets have been read, PROC DTREE determines the order (from left to right) of all stages specified in the STAGEIN= data set and display the order in the SAS log. The ordering is determined based on the rule that if stage \mathbf{A} is the successor of an outcome of stage \mathbf{B}, then stage A should occur to the right of stage B. The MOVE statement can be used to change the order. If the keyword BEFORE is used, stagel becomes the new successor for all immediate predecessors of stage2, and stage 2 becomes the new successor for all outcomes of stagel. An outcome is said to be an immediate predecessor of a stage if the stage is the successor of that outcome. Similarly, if the keyword AFTER is used, the old leftmost (in previous order) successor of outcomes for stage 2 becomes the new successor for all outcomes of stagel and the new successor of all outcomes of stage 2 is stagel.

There are two limitations: the END stage cannot be moved, and no stage can be moved after the END stage. In practice, any stage after the END stage is useless.

QUIT Statement

QUIT ;
The QUIT statement tells the DTREE procedure to terminate processing. This statement has no options.

RECALL Statement

RECALL ;

This statement tells PROC DTREE to recall the decision model that was saved previously with a SAVE statement. The RECALL statement has no options.

RESET Statement

RESET options;
The RESET statement is used to change options after the procedure has started. All of the options that can be set in the PROC DTREE statement can also be reset with this statement, except for the STAGEIN=, the PROBIN $=$, and the PAYOFFS = data set options.

SAVE Statement

SAVE ;

The SAVE statement saves the current model (attributes of stages and outcomes, the ordering of stages, and so on) to a scratch space from which you can call it back later. It is a good idea to save your decision model before you specify any MOVE or MODIFY statements. Then you can get back to your original model easily after a series of statements that changes the decision model. The SAVE statement has no options.

SUMMARY Statement

SUMMARY /options;

Unlike the SUMMARY option on the PROC DTREE statement or the EVALUATE statement, which specifies that PROC DTREE display a decision summary when the decision tree is evaluated, the SUMMARY statement causes the procedure to display the summary immediately. If the decision tree has not been evaluated yet, or if it has been changed (by the MOVE, MODIFY, or RECALL statement) since last evaluated, the procedure evaluates or re-evaluates the decision tree before the summary is displayed.
The following options that can appear in the PROC DTREE statement can also be specified in this statement:

$$
\begin{array}{ll}
\text { MAXPREC=d } & \text { MAXWIDTH=mw } \\
\text { NWIDTH=nw } & \text { TARGET=stage }
\end{array}
$$

The options specified in this statement are in effect only for this statement.

TREEPLOT Statement

TREEPLOT /options;

The TREEPLOT statement plots the current decision tree (a diagram of the decision problem). Each path in the decision tree represents a possible scenario of the problem. In addition to the nodes and links on the decision tree, the information for each link that can be displayed on the diagram is listed in Table 7.10.

Table 7.10 Information on Decision Tree Diagram

Information	Labeled by
Stage name for the successor of the link	NL^{3}
Outcome name for the link	NL^{3}
Probability of the outcome	$\mathrm{p}=$
Value can be expected from the successor	$\mathrm{EV}=$
Instant reward of the outcome	$\mathrm{r}=$
Cumulative rewards of outcomes on the path that leads to the successor	$\mathrm{cr}=$

[^1]If necessary, the outcome names and the stage names are displayed above the link, and other information (if there is any) is displayed below the link. The DISPLAY = option can be used to control which information should be included in the diagram. The NOLABEL can be used to suppress the displaying of the labels.

If the LINEPRINTER option is used, the decision nodes, chance nodes, and the end nodes are represented by the characters ' \mathbf{D} ', ' \mathbf{C} ', and ' \mathbf{E} ', respectively. The links are displayed using the specifications of the FORMCHAR= option. See the section "PROC DTREE Statement" on page 403 for more details. In graphics mode, the control of the appearances of nodes and links is more complex. See the section "Displaying the Decision Tree" on page 431 for more information.

The following options that can appear in the PROC DTREE statement can also be specified in the TREEPLOT statement:

DISPLAY=(information-list)	GRAPHICS	LABEL
LINEPRINTER	MAXPREC=d	MAXWIDTH=mw
NOLABEL	NWIDTH=nw	YBETWEEN=ybetween <units>

The following line-printer options that can appear in the PROC DTREE statement can also be specified in the TREEPLOT statement if the LINEPRINTER option is specified:
FORMCHAR<(syni-list)>='formchar-string'

Moreover, the following graphics options that can appear in the PROC DTREE statement can also be specified in the TREEPLOT statement if the GRAPHICS option is specified:

ANNOTATE=SAS-data-set	CBEST=color	CLINK=color
COMPRESS	CSYMBOLC=color	CSYMBOLD=color
CSYMBOLE=color	CTEXT=color	DESCRIPTION='string'
DOANNOTATE	FTEXT=name	GOUT=SAS-catalog
HSYMBOL $=h$	HTEXT= h	IMAGEMAP=SAS-data-set
LEGEND	LINKA=i	LINKB=j
LINKC= k	LSTYLE=l	LSTYLEB=l2
LSTYLEC $=/ 3$	LWIDTH=w2	LWIDTHB=w2
NAME='string'	NOANNOTATE	NOCOMPRESS
NOLEGEND	NOPAGENUM	NORC
PAGENUM	RC	SYMBOLC=m
SYMBOLD=d	SYMBOLE=n	VSYMBOLC=symbolc-name
VSYMBOLD=symbold-name	VSYMBOLE=symbole-name	

The options specified in this statement are in effect only for this statement, and they may override the options specified in the PROC DTREE statement.

VARIABLES Statement

VARIABLES / options ;
The VARIABLES statement specifies the variable lists in the input data sets. This statement is optional but if it is used, it must appear immediately after the PROC DTREE statement. The options that can appear in the

VARIABLES statement are divided into groups according to the data set in which they occur. Table 7.11 lists all the variables or variable lists associated with each input data set and their types. It also lists the default variables if they are not specified in this statement.

Table 7.11 Input Data Sets and Their Associated Variables

Data Set	Variable	Type ${ }^{4}$	Interpretation	Default
STAGEIN=	OUTCOME=	C/N	Outcome names	Variables with prefix _OUT
	REWARD=	N	Instant reward	Variables with prefix _REW
	STAGE=	C/N	Stage name	_STNAME_
	SUCCESSOR=	as STAGE=	Immediate successors	Variables with prefix _SUCC
	TYPE=	C/N	Stage type	_STTYPE_
	WEB=	C	HTML page for the stage	
PROBIN=	EVENT=	as OUTCOME=	Event names	Variables with prefix _EVEN
	GIVEN=	as OUTCOME=	Names of given outcomes	Variables with prefix _GIVE
	PROB=	N	Conditional probabilities	Variables with prefix _PROB
PAYOFFS $=$	ACTION=	as OUTCOME=	Action names of final decision	Variables with prefix _ACT
	STATE=	as OUTCOME=	Outcome names	Variables with prefix _STAT
	VALUE=	N	Values of the scenario	Variables with prefix _VALU

${ }^{4}$ ' C ' denotes character, ' N ' denotes numeric, ' C / N ' denotes character or numeric, and 'as X ' denotes the same as variable X .

Variables in STAGEIN= Data Set

The following options specify the variables or variable lists in the STAGEIN= input data set that identify the stage name, its type, its outcomes, and the reward; and the immediate successor of each outcome for each stage in the decision model:

OUTCOME=(variables)

identifies all variables in the STAGEIN= data set that contain the outcome names of the stage specified by the STAGE= variable. If the OUTCOME= option is not specified, PROC DTREE looks for the default variable names that have the prefix _OUT in the data set. It is necessary to have at least one OUTCOME= variable in the STAGEIN= data set. The OUTCOME= variables can be either all character or all numeric. You cannot mix character and numeric variables as outcomes.

REWARD=(variables)

COST=(variables)

identifies all variables in the STAGEIN= data set that contain the reward for each outcome specified by the OUTCOME $=$ variables. If the REWARD $=$ option is not specified, PROC DTREE looks for the default variable names that have the prefix _REW in the data set. The number of REWARD= variables must be equal to the number of OUTCOME= variables in the data set. The REWARD= variables must have numeric values.

STAGE=variable

specifies the variable in the STAGEIN= data set that names the stages in the decision model. If the STAGE= option is omitted, PROC DTREE looks for the default variable named_STNAME_ in the data set. The STAGE= variable must be specified if the data set does not contain a variable named _STNAME_. The STAGE= variable can be either character or numeric.

SUCCESSOR=(variables)

SUCC=(variables)

identifies all variables in the STAGEIN= data set that contain the names of immediate successors (another stage) of each outcome specified by the OUTCOME= variables. These variables must be of the same type and length as those defined in the STAGE= option. If the SUCCESSOR=option is not specified, PROC DTREE looks for the default variable names that have the prefix _SUCC in the data set. The number of SUCCESSOR= variables must be equal to the number of OUTCOME= variables. The values of SUCCESSOR= variables must be stage names (values of STAGE= variables in the same data set).

TYPE=variable

identifies the variable in the STAGEIN= data set that contains the type identifier of the stage specified by the STAGE= variable. If the TYPE= option is omitted, PROC DTREE looks for the default variable named _STTYPE_ in the data set. The TYPE= variable must be specified if the data set does not contain a variable named _STTYPE_. The STAGE= variable can be either character or numeric.

The following are valid values for the TYPE= variable.

	Value				Description			
DECISION	or	D	or	1	Identifies the stage as a decision stage			
CHANCE	or	C	or	2	Identifies the stage as an uncertain stage			
END	or	E	or	3	Identifies the stage as an end stage			

It is not necessary to specify an end stage in the STAGEIN= data set.

WEB=variable

HTML= variable
specifies the character variable in the STAGEIN= data set that identifies an HTML page for each stage. The procedure generates an HTML image map using this information for all the decision tree nodes corresponding to a stage.

Variables in PROBIN= Data Set

The following options specify the variables or variable lists in the PROBIN= input data set that identify the given outcome names, the event (outcome) name, and the conditional probability for each outcome of a chance stage.

EVENT=(variables)

identifies all variables in the $\mathrm{PROBIN}=$ data set that contain the names of events (outcomes) that probabilities depend on the outcomes specified by the GIVEN= variables. If the EVENT= option is not specified, PROC DTREE looks for the default variable names that have the prefix _EVEN in the data set. You must have at least one EVENT= variable in the $\mathrm{PROB}=$ data set. The values of EVENT= variables must be outcome names that are specified in the STAGEIN= data set.

GIVEN=(variables)

identifies all variables in the PROBIN= data set that contain the given condition (a list of outcome names) of a chance stage on which the probabilities of the outcome depend. If the GIVEN= option is not specified, PROC DTREE looks for the default variable names that have the prefix _GIVE in the data set. It is not necessary to have GIVEN= variables in the data set but if there are any, their values must be outcome names that are specified in the STAGEIN= data set.

PROB=(variables)

identifies all variables in the PROBIN= data set that contain the values of the conditional probability of each event specified by the EVENT= variables, given that the outcomes specified by the GIVEN= variables have occurred. If the PROB= option is not specified, PROC DTREE looks for the default variable names that have the prefix _PROB in the data set. The number of PROB= variables in the data set must be equal to the number of EVENT= variables. The PROB= variables must have numeric values between 0 and 1 inclusive.

Variables in PAYOFFS= Data Set

The following options specify the variables or variable lists in the PAYOFFS= input data set that identify the possible scenarios (a sequence of outcomes), the final outcome names, and the evaluating values (payoff) of combinations of scenarios and final outcomes.

ACTION=(variables)

identifies all variables in the PAYOFFS= data set that contain the name of the final outcome for each possible scenario. If the ACTION= option is not specified, PROC DTREE looks for the default variable names that have the prefix _ACT in the data set. It is not necessary to have any ACTION= variables in the PAYOFFS= data set, but if there are any, their values must be outcome names specified in the STAGEIN= data set.

STATE=(variables)

identifies all variables in the PAYOFFS= data set that contain the names of outcomes that identify a possible scenario (a sequence of outcomes or a path in the decision tree), or the names of outcomes which combine with every outcome specified by the ACTION= variables to identify a possible scenario. If the STATE= option is not specified, PROC DTREE looks for the default variable names that have the prefix _STAT in the data set. It is not necessary to have any STATE= variables in the PAYOFFS= data set, but if there are any, their values must be outcome names specified in the STAGEIN= data set.

VALUE=(variables)

PAYOFFS=(variables)
UTILITY=(variables)

LOSS=(variables)

identifies all variables in the PAYOFFS= data set that contain the evaluating values or payoffs for all possible scenarios identified by the outcomes specified by the STATE= variables and the outcomes specified by the associated ACTION= variables. If the VALUE= option is not specified, PROC DTREE looks for the default variable names that have the prefix _VALU in the data set. The number of VALUE= variables must be equal to the number of ACTION= variables if there are any ACTION= variables. If there are no ACTION= variables in the data set, at least one STATE= variable must be in the data set, and the number of VALUE= variables must be exactly 1. The VALUE= variables must have numeric values.

VPC Statement

VPC chance-stage-name;

The VPC statement causes PROC TREE to compute the value of perfect control (the value of controlling an uncertainty). The effect of perfect control is that you can pick the outcome of an uncertain stage. This value
gives an upper limit on the amount you should be willing to spend on any control procedure. Only the name of a chance stage can be used to calculate the value of perfect control. The procedure evaluates the decision tree, if it has not already done so, before computing this value.

VPI Statement

VPI chance-stage-name;

The VPI statement causes PROC DTREE to compute the value of perfect information. The value of perfect information is the benefit of resolving an uncertain stage before making a decision. This value is the upper limit on the improvement that can be expected for any information gathering effort. Only the name of a chance stage can be used to calculate the value of perfect information. The procedure evaluates the decision tree, if it has not already done so, before computing this value.

Details: DTREE Procedure

Input Data Sets

A decision problem is normally constructed in three steps:

1. A structuring of the problem in terms of decisions, uncertainties, and consequences.
2. Assessment of probabilities for the events.
3. Assessment of values (payoffs, losses, or preferences) for each consequence or scenario.

PROC DTREE represents these three steps in three SAS data sets. The STAGEIN= data set describes the structure of the problem. In this data set, you define all decisions and define all key uncertainties. This data set also contains the relative order of when decisions are made and uncertainties are resolved (planning horizon). The PROBIN= data set assigns probabilities for the uncertain events, and the PAYOFFS= data set contains the values (or utility measure) for each consequence or scenario. See the section "Overview: DTREE Procedure" on page 386 and the section "Getting Started: DTREE Procedure" on page 387 for a description of these three data sets.

PROC DTREE is designed to minimize the rules for describing a problem. For example, the PROBIN= data set is required only when the evaluation and analysis of a decision problem is necessary. Similarly, if the PAYOFFS = data set is not specified, the DTREE procedure assumes all payoff values are 0 . The order of the observations is not important in any of the input data sets. Since a decision problem can be structured in many different ways and the data format is so flexible, all possible ways of describing a given decision problem cannot be shown here. However, some alternate ways of supplying the same problem are demonstrated. For example, the following statements show another way to input the oil wildcatter's problem described in the section "Introductory Example" on page 387.

```
data Dtoils3;
    format _STNAME_ $12. _STTYPE_ $2. _OUTCOM_ $10.
        _REWARD_ dollar12.0 _SUCCES_ $12.;
    input _STNAME_ $12. _STTYPE_ $4. _OUTCOM_ $12.
        REWARD_ dollar12.0 _SUCCES_ $12.;
    datalines;
Drill D Drill . Cost
. . Not_drill
Cost C Low -$150,000 Oil_deposit
. . Fair -$300,000 Oil_deposit
. . High -$500,000 Oil_deposit
Oil_deposit C Dry
    $700,000.
    $1,200,000 .
;
/* -- create PAYOFFS= data set -- */
data Dtoilp3;
    input _EVENT1 $ _PROB1 _EVENT2 $ _PROB2;
    datalines;
Low 0.2 Dry 0.5
Fair 0.6 Wet 0.3
High 0.2 Soaking 0.2
;
/* -- PROC DTREE statements -- */
title "Oil Wildcatter's Problem";
proc dtree stagein=Dtoils3
    probin=Dtoilp3
    nowarning;
    evaluate / summary;
```

Note that the STAGEIN= data set describes the problem structure and the payoffs (using the REWARD= variable). Thus, the PAYOFFS= data set is no longer needed. Note also the changes made to the $\mathrm{PROBIN}=$ data set. The results, shown in Figure 7.8, are the same as those shown in Figure 7.2. However, the rewards and the payoffs are entirely different entities in decision tree models. Recall that the reward of an outcome means the instant returns when the outcome is realized. On the other hand, the payoffs are the return from each scenario. In the other words, the decision tree model described in the previous code and the model described in the section "Introductory Example" on page 387 are not equivalent, even though they have the same optimal decision.

Figure 7.8 Optimal Decision Summary of the Oil Wildcatter's Problem

Oil Wildcatter's Problem

The DTREE Procedure

Optimal Decision Summary

You can try many alternative ways to specify your decision problem. Then you can choose the model that is most convenient and closest to your real problem. If PROC DTREE cannot interpret the input data, it writes a message to that effect to the SAS log unless the NOWARNING option is specified. However, there are mistakes that PROC DTREE cannot detect. These often occur after the model has been modified with either the MOVE statement or the MODIFY statement. After a MOVE statement is specified, it is a good idea to display the decision tree (using the TREEPLOT statement) and check the probabilities and value assessments to make sure they are reasonable.

For example, using the REWARD= variable in the STAGEIN= data set to input the payoff information as shown in the previous code may cause problems if you change the order of the stages. Suppose you move the stage 'Cost' to the beginning of the tree, as was done in the section "Sensitivity Analysis and Value of Perfect Information" on page 393:

```
move Cost before Drill;
evaluate / summary;
```

The optimal decision yields $\$ 140,000$, as shown on the optimal decision summary in Figure 7.9.

Figure 7.9 Optimal Decision Summary of the Oil Wildcatter's Problem

Oil Wildcatter's Problem

The DTREE Procedure

Optimal Decision Summary

Recall that when this was done in the section "Sensitivity Analysis and Value of Perfect Information" on page 393, the optimal decision yielded $\$ 150,000$. The reason for this discrepancy is that the cost of drilling, implemented as (negative) instant rewards here, is imposed on all scenarios including those that contain the outcome 'Not_drill'. This mistake can be observed easily from the Cumulative Reward column of the optimal decision summary shown Figure 7.9.

Changing a decision stage to a chance stage is another example where using the MODIFY statement without care may cause problems. PROC DTREE cannot determine the probabilities of outcomes for this new chance stage unless they are included in the PROBIN= data set. In contrast to changing a chance stage to a decision stage (which yields insight on the value of gaining control of an uncertainty), changing a decision stage to a chance stage is not likely to yield any valuable insight even if the needed probability data are included in the PROBIN= data set, and it should be avoided.

Missing Values

In the STAGEIN= data set, missing values are allowed only for the STAGE= and TYPE= variables when the information of a stage is specified in more than one observation. In this case, missing values for the STAGE $=$ and TYPE $=$ variables are not allowed for the first observation defining the stage. Missing values for the OUTCOME=, GIVEN=, EVENT=, STATE=, and ACTION= variables are ignored. Missing values for
the REWARD $=, \operatorname{PROB}=$, and VALUE $=$ variables are treated as 0 . Missing values for the SUCCESSOR= variables are ignored if the value for the corresponding OUTCOME= variable is also missing.

Interactivity

The DTREE procedure is interactive. You start the procedure with the PROC DTREE statement and terminate it with the QUIT statement. It is not necessary to have a VARIABLES statement, although if you do include one, it must appear immediately after the PROC DTREE statement. The other statements such as the EVALUATE, MODIFY, MOVE, RECALL, RESET, SAVE, SUMMARY, TREEPLOT, VPC, and VPI, as well as the FOOTNOTE, GOPTIONS, NOTE, SYMBOL, and TITLE statements of SAS/GRAPH Software can be used in any order and as often as needed. One exception is that the RECALL statement has to be preceded by at least one SAVE statement.

When an error is detected during processing a statement other than the PROC DTREE statement and the QUIT statement, the procedure terminates if the option ERRHANDLE=QUIT is specified; otherwise it stops processing the current statement and waits for the next statement. In either case, an error message is written to the SAS log. If an error is detected in the PROC DTREE statement or the QUIT statement, the procedure terminates immediately with an error message.

Options in Multiple Statements

Many options that can be specified in the PROC DTREE statement can also appear in other statements. The options specified in the PROC DTREE statement remain in effect for all statements until the end of processing or until they are changed by a RESET statement. In this sense, those options are global options. The options specified in other statements are in effect only for the statement in which they are specified; hence, they are local options. If an option is specified both in the PROC DTREE statement and in another statement, the local specification overrides the global specification.

For example, the following statements

```
reset criterion=maxev;
evaluate / criterion=maxce rt=700000;
summary;
```

imply that the decision problem is evaluated and the optimal decision is determined based on the criterion MAXCE with RT=700000. However, the optimal decision summary produced by the SUMMARY statement is based on the option CRITERION=MAXEV and not the MAXCE criterion. If you want an option to be set permanently, use the RESET statement.

The Order of Stages

The order of stages is an important issue in structuring the decision problem. This sets the sequence of events or a time horizon and determines when a decision has to be made and when a chance stage has its uncertainty resolved. If a decision stage precedes another decision stage in the stages order, the decision to the right is made after the decision to the left. Moreover, the choice made in the first decision is remembered by the
decision maker when he or she makes the second decision. Any chance stages that occur to the left of a decision stage have their uncertainty resolved before the decision is made. In other words, the decision maker knows what actually happened when he or she makes the decision. However, the order of two chance stages is fairly arbitrary if there are no other decision stages between them. For example, you can change the order of stages 'Cost' and 'Oil_Deposit' in the oil wildcatter's problem without affecting the results.

PROC DTREE determines the order (from left to right) of all stages specified in the STAGEIN= data set. The ordering is based on the rule that if stage \mathbf{A} is the successor of an outcome of stage \mathbf{B}, then stage \mathbf{A} should occur to the right of (or after) stage в. With the MOVE statement, you can change this order. The MOVE statement is very useful in determining the value (benefit or penalty) of postponing or hurrying a decision. In particular, the value of perfect information about an uncertainty can be determined by moving the corresponding chance stage to the beginning. However, as mentioned in early sections, the results may be misleading if you use the MOVE statement without care. See the section "Input Data Sets" on page 422 for an example.

Suggestions for preventing misleading results are as follows:

- Using the SAVE statement, always save the original structure before making any changes.
- Use the TREEPLOT statement to display the complete decision tree and check all details after you change the order.

Evaluation

The EVALUATE statement causes PROC DTREE to calculate the optimal decision. The evaluate process is done by successive use of two devices:

- Find a certain equivalent for the uncertain evaluating values at each chance node.
- Choose the best alternative at each decision node.

The certain equivalent of an uncertainty is the certain amount you would accept in exchange for the uncertain venture. In other words, it is a single number that characterizes an uncertainty described by a probability distribution. This value is subjective and can vary widely from person to person. There are two quantities, closely related to the certain equivalent, that are commonly used by decision-makers: the most likely value and the expected value. The most likely value of an uncertainty is the value with the largest probability. The expected value is the sum of all outcomes multiplied by their probabilities.

Perhaps the most popular way to find the certain equivalent for an uncertainty is the use of utility function or utility curve. Utility is a measurement of relative preference to the decision maker for particular outcomes. The utility function assigns a utility to payoff when it is in terms of continuous values such as money. The certain equivalent of an uncertainty (a random variable) is calculated by the following steps:

1. Use the utility function or the utility curve to find the utility values of the outcomes.
2. Calculate the expected utility of the uncertainty.
3. Determine the certain equivalent of the uncertainty as the value that corresponding utility value is the expected utility.

Refer to Raiffa (1970) for a complete discussion of the utility function.
A simple case that is commonly used is the straight line utility curve or the linear utility function. The linear utility function has the form

$$
u(x)=a+b x
$$

where x is the evaluating value, and a and b are parameters set by the choice of two points in the utility curve. For example, if the utility curve passes two points $u(0)=0$ and $u(1000)=1$, then parameters a and b are set by $a=0$ and $b=1 / 1000$. The certain equivalent of an uncertainty based on this function is the expected value.

Another special case that is commonly used is the exponential utility function, as

$$
u(x)=a-b \times \exp (-x / r)
$$

where, again, a and b can be set by the choice of two arbitrary points in the utility curve. For example, if your utility curve goes through points $(0,0)$ and $(1000,1)$, then a and b are given by

$$
a=b=1 /[1-\exp (-1000 / r)]
$$

If an uncertain venture A has n events, event i having probability p_{i} and payoff x_{i}, and if the utility function is an exponential function as in the preceding example, then the certain equivalent of A is

$$
\mathrm{CE}(A)=-r \ln \left[\sum_{i=1}^{n} p_{i} \exp \left(-x_{i} / r\right)\right]
$$

and is independent of the choice of values for a and b (provided that $b>0$) (Raiffa 1970).
The parameter r, called the risk tolerance, describes the curvature of the utility function. Moreover, the quantity $1 / r$, called risk aversion coefficient (Howard 1968) is a measure of risk aversion.

Experimental results show that within a reasonable range of values, many utility curves can be fit quite well by an exponential function.

If your utility function is an exponential function as in the preceding example, the risk tolerance can be estimated by the largest number R for which the following venture is still acceptable to you.

A similar way to approximate the risk tolerance is to find the largest value R for which the venture is acceptable (Howard 1988).

For corporate decision making, there are some rules of thumb for estimating the risk tolerance. Examples are to set risk tolerance about equal to one of the following:

- net income of the company
- one sixth of equity
- six percent of net sales

To reveal how well these rules perform in assessing corporate risk tolerance, Howard (1988) provided the following two tables: Table 7.12 shows the relationship between the risk tolerance and financial measures of four large oil and chemicals companies. There, the risk tolerances are obtained from the top executives of the companies. The net sales, net income, and equity are obtained from the annual reports of the four companies.

Table 7.12 Relating Corporate Risk Tolerance to Financial Measures

Measure	Company			
(\$ millions)	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
Net Sales	2,300	3,307	16,000	31,000
Net Income	120	152	700	1,900
Equity	1,000	1,153	6,500	12,000
Risk Tolerance	150	200	1,000	2,000

Table 7.13 shows the ratio of risk tolerance to each of the other quantities.

Table 7.13 Ratios of Corporate Risk Tolerance to Financial Measures

	Company				
Measure	A	B	C	D	Average
RT/Sales	0.0652	0.0605	0.0625	0.0645	0.0632
RT/Income	1.25	1.32	1.43	1.05	1.26
RT/Equity	0.150	0.174	0.154	0.167	0.161

Once the certain equivalents for all chance nodes are assessed, the choice process at each decision node is fairly simple; select the alternative yielding either the maximum or the minimum (depending on the problem) future certain equivalent value.* You can use the CRITERION= option to control the way the certain equivalent is calculated for each chance node and the optimal alternative is chosen at each decision node. Possible values for the CRITERION= option are listed in Table 7.5. If you use an exponential utility function, the RT= option can be used to specify your risk tolerance. You also have control over how to present the solution. By default, PROC DTREE writes the value of the optimal decisions to the SAS log. In addition, with the SUMMARY option, you can ask PROC DTREE to display the optimal decision summary to the output.

Displayed Output

The SUMMARY statement and the SUMMARY option in an EVALUATE statement cause PROC DTREE to display a optimal decision summary for the decision model. This output is organized into various tables, and they are discussed in order of appearance.

[^2]
Order of stages

The Order of stages table lists all stages, and their types, in order of appearance in the decision model. See the section "The Order of Stages" on page 426 for details.

For ODS purposes, the label of the Order of stages table is "Stages."

Decision Parameters

The Decision Parameters table describes the criterion used for determining the optimal decision and the certain equivalent for replacing uncertainties. If you specify the option CRITERION=MAXCE or CRITERION=MINCE in the PROC DTREE statement or in the EVALUATE statement, an additional row is added to the table listing the value of the risk tolerance. It also contains a row showing the value of the optimal decision yields. For additional information, see the section "Evaluation" on page 427.

For ODS purposes, the label of the Decision Parameters table is "Parameters."

Optimal Decision Policy

By default, PROC DTREE produces an Optimal Decision Policy table for each decision stage. You can use the TARGET = option to force PROC DTREE to produce only one table for a particular stage. The Alternatives or Outcomes columns list the events in the scenario that leads to the current stage. The Cumulative Reward column lists the rewards accumulated along the scenario to the events of the current target stage. The Evaluating Value column lists the values that can be expected form the events of the target stage. An asterisk $(*)$ is placed beside an evaluating value indicates the current event is the best alternative of the given scenario.

For ODS purposes, the label of the Optimal Decision Policy table is "Policy."

Displaying the Decision Tree

PROC DTREE draws the decision tree either in line-printer mode or in graphics mode. However, you need to have SAS/GRAPH software licensed at your site to use graphics mode. In many cases, the procedure draws the decision tree across page boundaries. If the decision tree diagram is drawn on multiple pages, the procedure numbers each page of the diagram on the upper right corner of the page (unless the NOPAGENUM option is specified). The pages are numbered starting with the upper left corner of the entire diagram. Thus, if the decision tree diagram is broken into three horizontal and four vertical levels and you want to paste all the pieces together to form one picture, they should be arranged as shown in Figure 7.10.

Figure 7.10 Page Layout of the Decision Tree Diagram

1	5	9
2		
3	6	10
4	7	11
	8	12

The number of pages that are produced depends on the size of the tree and on the number of print positions that are available in the horizontal and vertical directions. Table 7.14 lists all options you can use to control the number of pages.

Table 7.14 Options That Control the Number of Pages

Option	Effect
DISPLAY $=$	Amounts of information displayed on the diagram
MAXPREC $=$	Maximum decimal width allowed (the precision) to format numerical values into $w . d$ format
MAXWIDTH $=$	Maximum field width allowed to format numerical values
NOLABEL	No labels are displayed on the diagram
NWIDTH $=$	Maximum field width allowed to format outcome names
YBETWEEN $=$	Vertical spaces between two successive end nodes

If the GRAPHICS option is used, the following options can be used to control the number of pages:

- The COMPRESS option draws the entire decision tree on one page.
- The HSYMBOL= option controls the height of all symbols.
- The HTEXT= option controls the height of text in the tree.
- The HEIGHT = option in a SYMBOL definition specifies the height of a symbol.
- The HTEXT= option in a GOPTIONS statement specifies the height of all text.
- The HTITLE= option in a GOPTIONS statement specifies the height of the first title line.
- The HPOS = and VPOS = options in a GOPTIONS statement change the number of rows and columns.

The font used for all text can also affect the number of pages needed. Some fonts take more space than others.

If the decision tree diagram is produced on a line printer, you can use the FORMCHAR= option to control the appearance of the links and the junctions of the diagram. When you specify the GRAPHICS option, several options are available to enhance the appearance of the decision tree diagram. These are described in the section "Graphics Options" on page 407. In addition, many other options are available in the GOPTIONS and SYMBOL statements for controlling the details of graphics output. See the relevant chapters in SAS/GRAPH Software: Reference for a detailed discussion of the GOPTIONS and SYMBOL statements. ODS graphical styles can be applied to the decision tree diagram; see the section "ODS Style Templates" on page 436 for more information.

Table 7.15, Table 7.16, and Table 7.17 show the relationship among the options for controlling the appearance of texts, nodes, and links, respectively. The order that PROC DTREE uses in determining which option is in effect is also provided. The order assumes that the GSTYLE system option is in effect; if that is not the case, then the steps that refer to ODS style templates are ignored. Names with arguments indicate style elements and attributes of the current ODS style template. For example, "GraphDataText('Font')" refers to the Font attribute of the GraphDataText element.

For ODS purposes, the label of the decision tree diagram drawn in line-printer quality is "Treeplot."

Table 7.15 Options That Control Text Appearance

Object	Specification		Search Order
Text	Font	1.	The FTEXT= option
		2.	The FTEXT= option in a GOPTIONS statement
		3.	GraphDataText('Font')
	4.	Hardware font	
	Color	1.	The CTEXT= option
	2.	The CTEXT= option in a GOPTIONS statement	
	3.	GraphDataText('ContrastColor')	
	4.	The first color in the colors list	

${ }^{1}$ If this option is not specified, the default value 1 is used.
${ }^{2}$ The default value of this option is 1 unit.
Table 7.16 Options That Control Node Appearance

Object	Specification		Search Order
Chance	Symbol	1.	The VSYMBOLC= option
Nodes		3.	The VALUE= and FONT= options in the m th generated SYMBOL definition, if SYMBOLC $=m$ is specified The default symbol, CIRCLE
	Color	1	The CSYMBOLC= option
		2.	The CV= option in the m th generated SYMBOL definition, if SYMBOLC=m is specified
		3	The CSYMBOL= option in a GOPTIONS statement
			GraphData1('ContrastColor')
		5.	The fifth color in the colors list

Table 7.16 (continued)

Object	Specification		Search Order
	Height		h times the value of the HEIGHT= option in the m th generated SYMBOL definition, if both HSYMBOL=h and SYMBOLC= $=m$ are specified The HSYMBOL= option, if it is specified The HEIGHT $=$ option in the m th generated symbol definition, if SYMBOLC $=m$ is specified The default value, 1 cell
Decision Nodes	Symbol	1. 2. 3.	The VSYMBOLD = option The VALUE $=$ and $F O N T=$ options in the d th generated SYMBOL definition, if $S Y M B O L D=d$ is specified The default value, SQUARE
	Color	1. 2. 3. 4. 5.	The CSYMBOLD= option The CV= option in the d th generated SYMBOL definition, if $\mathrm{SYMBOLD}=d$ is specified The CSYMBOL= option in a GOPTIONS statement GraphData5('ContrastColor') The fourth color in the colors list
	Height		h times the value of the HEIGHT= option in the d th generated SYMBOL definition, if both HSYMBOL=h and SYMBOLD $=d$ are specified The HSYMBOL= option, if it is specified The HEIGHT $=$ option in the d th generated symbol definition, if $\mathrm{SYMBOLD}=d$ is specified The default value, 1 cell
End Nodes	Symbol		The VSYMBOLE= option The VALUE= and FONT= options in the nth generated SYMBOL definition, if SYMBOLE= n is specified The default value, DOT
	Color		The CSYMBOLE= option The CV= option in the nth generated SYMBOL definition if the option SYMBOLE= n is specified The CSYMBOL= option in a GOPTIONS statement GraphData8('ContrastColor') The sixth color in the colors list
	Height		h times the value of the HEIGHT= option in the nth generated SYMBOL definition, if both HSYMBOL=h and SYMBOLE= n are specified The HSYMBOL= option, if it is specified The HEIGHT= option in the nth generated symbol definition, if SYMBOLE= n is specified The default value, 1 cell

Table 7.17 Options That Control Link Appearance

Object	Specification		Search Order
Links	Type	1.	The LSTYLE $=$ option
for	2.	The LINE $=$ option in the i th generated SYMBOL Regular	
Outcomes		3.	definition, if LINKA= i is specified

Table 7.17 (continued)

Object	Specification		Search Order
		3.	The CI= option in the i th generated SYMBOL definition, if $\operatorname{LINKA}=i$ is specified GraphData3('ContrastColor') The third color in the colors list
	Thickness	1 2 3	The LWIDTH= option The WIDTH $=$ option in the i th generated SYMBOL definition, if $\operatorname{LINKA}=i$ is specified The default value, 1
Links for Optimal Decision	Type	3	The LSTYLEB= option The LINE= option in the j th generated SYMBOL definition, if LINKB $=j$ is specified The default value, 1 (solid line)
	Color	4	The CBEST= option The $\mathrm{CI}=$ option in the j th generated SYMBOL definition, if $\operatorname{LINKB}=j$ is specified GraphData2('ContrastColor') The second color in the colors list
	Thickness		The LWIDTHB= option The WIDTH $=$ option in the j th generated SYMBOL definition, if $\operatorname{LINKB}=j$ is specified 2 times the thickness of links that represent regular outcomes
Links That Fall across Pages	Type		The LSTYLEC= option
		3	The LINE $=$ option in the k th generated SYMBOL definition, if LINKC $=k$ is specified The default value, 2 (dot line)
	Color	.	Depends on whether or not it represents an optimal decision
	Thickness		Depends on whether or not it represents an optimal decision

Web-Enabled Decision Tree

The WEB= variable in the STAGEIN= data set enables you to define an HTML reference for each stage. This HTML reference is currently associated with all the decision tree nodes that correspond to the stage. The WEB= variable is a character variable, and the values need to be of the form $\mathrm{HREF}=$ htmlpage.

In addition, you can also store the coordinate and link information defined by the WEB= option in a SAS data set by specifying the IMAGEMAP= option in the PROC DTREE statement or in the TREEPLOT statement. If you process this SAS data set by using a DATA step, you can generate customized HTML pages for your decision tree diagram.

ODS Table Names

PROC DTREE assigns a name to each table that it creates. You can use these names to reference the table when you use the Output Delivery System (ODS) to select tables and create output data sets. These names
are listed in Table 7.18. For more information about ODS, see the chapter on ODS in the SAS/STAT User's Guide .

Table 7.18 ODS Tables Produced in PROC DTREE

ODS Table Name	Description	Statement / Option
Parameters	Decision parameters	SUMMARY or EVALUATE / SUMMARY
Policy	Optimal decision policy	SUMMARY or EVALUATE / Stages
List of stages in order	SUMMARY SUMMARY or EVALUATE / Treeplot	Line-printer plot of decision tree

ODS Style Templates

ODS style templates, or styles, control the overall look of your output. An ODS style template consists of a set of style elements. A style element is a collection of style attributes that apply to a particular feature or aspect of the output. You can specify a value for each attribute in a style. See Chapter 21, "Statistical Graphics Using ODS" (SAS/STAT User's Guide), for a thorough discussion of ODS Graphics.

To create your own style or to modify a style for use with ODS Graphics, you need to understand the relationships between style elements and graph features. This information is provided in the ODS Graphics documentation at http://support.sas.com/documentation/onlinedoc/base/. You create and modify style templates with the TEMPLATE procedure. For more information, see the section "TEMPLATE Procedure: Creating a Style Template" in the SAS Output Delivery System: User's Guide. Kuhfeld (2010) also offers detailed information and examples.

PROC DTREE Style Template

A predefined ODS style template named DTREE is available for the DTREE procedure. You can use the template to maintain a consistent appearance in all graphical output produced by the procedure.

To change the current style, specify the STYLE= option in an ODS destination statement. The specified style is applied to all output for that destination until you change or close the destination or start a new SAS session. For example, the following statement specifies that ODS should apply the DTREE style template to all HTML output:

```
ods html style=dtree;
```

To disable the use of graphical styles, specify the SAS system option NOGSTYLE.
The parent style template for the DTREE style is the DEFAULT style. Table 7.19 lists the style elements (in bold) and corresponding attributes specified in the DTREE style. The table also indicates which, if any, PROC DTREE options or graphics options (in a GOPTIONS statement) can be used to override the value of a style attribute.

Table 7.19 Style Elements and Attributes in the DTREE Style

Element/Attributes	Description	DTREE Option	GOPTION
GraphColors	Colors of various graph features		
gcdata5	Decision nodes	CSYMBOLD=	COLORS $=$
gcdatal	Chance nodes	CSYMBOLC=	COLORS=
gcdata8	End nodes	CSYMBOLE=	COLORS=
gcdata3	Regular links	CLINK=	COLORS=
gcdata2	Optimal links	CBEST=	COLORS=
gtextt	Title text		CTITLE=
gtext	Text		CTEXT=
GraphFonts	Fonts for various graph features		
GraphDataFont	Default		FTEXT=
GraphLabelFont	Labels		FTEXT=
GraphTitleFont	Title text		FTITLE=
GraphDataText	Attributes related to general text		
ContrastColor	GraphColors('gtext')	CTEXT=	CTEXT=
Font	GraphFonts('GraphDataFont')	FTEXT=	FTEXT=
GraphTitleText	Attributes related to title text		
Color	GraphColors('gtext')		CTITLE $=$
Font	GraphFonts('gtext')		FTITLE=
GraphTitle1Text	Attributes related to the first title text		
Color	GraphColors('gtext')		CTITLE=
Font	GraphFonts('gtext')		FTITLE=
GraphLabelText	Attributes related to label text		
Color	GraphColors('glabel')		CTEXT=
Font	GraphFonts('GraphTitleFont')		FTEXT=
GraphDataDefault	Default values		
Color	GraphColors('gdata')		COLORS $=$
GraphBackground	Attributes related to graph background		
Image	Dtree.jpg		CBACK=

Attributes that you do not override retain the values specified in the style template.
Figure 7.11 demonstrates features of the DTREE graphical style. The decision tree in the figure is the first output from Example 7.4.

Figure 7.11 DTREE Style Template: Example

Default Values

If the SAS system option GSTYLE is in effect (this is the default), then the default values of certain PROC DTREE options can depend on the current ODS style template. See the section "Displaying the Decision Tree" on page 431 for more information.

Precision Errors

When PROC DTREE detects an error, it displays a message on the SAS log to call it to your attention. If the error is in a statement other than the PROC DTREE statement and the QUIT statement, and if the ERRHANDLE=QUIT option is not specified, the procedure ignores the erroneous statement and waits for you to enter another statement. This gives you a chance to correct the mistake you made and keep running. You can exit the procedure at any time by specifying the QUIT statement.

If the error is in an input data set, typically, you will have to edit the data set and then reinvoke PROC DTREE. In one case, however, you can use an option to correct the problem. You may receive an error message indicating that the sum of probabilities for a particular chance stage does not equal 1.0. If it is caused by roundoff errors in the summation, then you can reset the TOLERANCE= option to correct this error. For
example, suppose that your problem contains a chance stage that has three outcomes, 'Out1', 'Out2' and ' Out3', and each has probability $1 / 3$. Suppose also that you input their probabilities in the PROBIN= data set as follows:

```
Out1 Out2 Out3 0.3333 0.3333 0.3333
```

Then, PROC DTREE detects the total probabilities for that stage as 0.9999 , not equal to 1 , and hence displays an error message. The following RESET statement fixes the error:
reset tolerance $=0.00015$;

Alternatively, you can specify the AUTOSCALE option to ask the procedure to rescale the probabilities whenever this situation occurs.

Computer Resource Requirements

There is no inherent limit on the size of the decision tree model that can be evaluated and analyzed with the DTREE procedure. The numbers of stages and outcomes are constrained only by the amount of memory available. Naturally, there needs to be a sufficient amount of core memory available in order to invoke and initialize the SAS system. Furthermore, more memory is required to load the graphics sublibrary if the GRAPHICS option is specified. As far as possible, the procedure attempts to store all the data in core memory. However, if the problem is too large to fit in core memory, the procedure resorts to the use of utility data sets and swaps between core memory and utility data sets as necessary.

The storage requirement for the data area required by the procedure is proportional to the number of stages and outcomes as well as the number of nodes ${ }^{2}$ in the decision tree model. The time required depends heavily on the number of nodes in the decision tree.

Examples: DTREE Procedure

This section contains six examples that illustrate several features and applications of the DTREE procedure. The aim of this section is to show you how to use PROC DTREE to solve your decision problem and gain valuable insight into its structure.

Example 7.1 and Example 7.2 show two methods frequently used to spread the risk of a venture: buy insurance and enter a partnership. Example 7.1 also illustrates the use of the VARIABLE statement to identify the variables in the input data sets. Example 7.3 illustrates the use of the graphics options to produce a graphics quality decision tree diagram. Example 7.4 illustrates the use of SYMBOL and GOPTIONS statements and the Annotate facility to control the appearance of the decision tree diagram. Example 7.5 demonstrates an application of PROC DTREE for financial decision problems. It also illustrates a situation where redundant data are necessary to determine the value of information. In addition, it shows a case where the results from the VPI and VPC statements are misleading if they are used without care. Example 7.6

[^3]shows an application in litigation, a sophisticated use of sensitivity analysis. It also shows you how to deal with the value of future money.

Finally, Table 7.27 and Table 7.28 list all the examples in this chapter, and the options and statements in the DTREE procedure that are illustrated by each example.

Example 7.1: Oil Wildcatter's Problem with Insurance

Again consider the oil wildcatter's problem introduced in the section "Introductory Example" on page 387. Suppose that the wildcatter is concerned that the probability of a dry well may be as high as 0.5 .

The wildcatter has learned that an insurance company is willing to offer him a policy that, with a premium of $\$ 130,000$, will redeem $\$ 200,000$ if the well is dry. He would like to include the alternative of buying insurance into his analysis. One way to do this is to include a stage for this decision in the model. The following DATA step reads this new decision problem into the STAGEIN= data set named Dtoils4. Notice the new stage named 'Insurance', which represents the decision of whether or not to buy the insurance. Also notice that the cost of the insurance is represented as a negative reward of $\$ 130,000$.

```
/* -- create the STAGEIN= data set -- */
data Dtoils4;
format Stage $12. Stype $2. Outcome $14.
    Succ $12. Premium dollar12.0;
input Stage $12. Stype $4. Outcome $16. Succ $12.
    Premium dollar12.0;
datalines;
Drill D Drill Insurance
. . Not_Drill .
Insurance D Buy_Insurance Cost -$130,000
. . Do_Not_Buy Cost .
Cost C Low Oil_Deposit .
. . Fair Oil_Deposit .
Oil_Deposit C H Dry Oil_Deposit .
Oil_Deposit C Dry .
. . Soaking . .
;
```

Probabilities associated with the uncertain events are given in the PROBIN= data set named Dtoilp4. Except for the order of the variables in this data set, it is the same as the Dtoilp1 data set given in the section "Introductory Example" on page 387.

```
/* -- create the PROBIN= data set -- */
data Dtoilp4;
input (V1-V3) ($) P1-P3 ;
datalines;
\begin{tabular}{llllll} 
Low & Fair & High & 0.2 & 0.6 & 0.2 \\
Dry & Wet & Soaking & 0.5 & 0.3 & 0.2
\end{tabular}
```

The payoffs for this problem are now calculated to include the cost and value of the insurance. The following DATA step does this.

```
/* -- create PAYOFFS= data set -- */
data Dtoilu4;
input (Cost Deposit Drill Insuran) ($16.) ;
format Drill $9. Insuran $14. Payoff dollar12.0;
/* determine the cost for this scenario */
if Cost='Low' then Rcost=150000;
else if Cost='Fair' then Rcost=300000;
else Rcost=500000;
/* determine the oil deposit and the corresponding */
/* net payoff for this scenario
*/
if Deposit='Dry' then Return=0;
else if Deposit='Wet' then Return=700000;
else Return=1200000;
/* calculate the net return for this scenario */
if Drill='Not_Drill' then Payoff=0;
else Payoff=Return-Rcost;
/* determine redeem received for this scenario */
if Insuran='Buy_Insurance' and Deposit='Dry' then
    Payoff=Payoff+200000;
/* drop unneeded variables */
drop Rcost Return;
datalines;
\begin{tabular}{llll} 
Low & Dry & Not_Drill & . \\
Low & Dry & Drill & Buy_Insurance \\
Low & Dry & Drill & Do_Not_Buy \\
Low & Wet & Not_Drill & . \\
Low & Wet & Drill & Buy_Insurance \\
Low & Wet & Drill & Do_Not_Buy \\
Low & Soaking & Not_Drill & . \\
Low & Soaking & Drill & Buy_Insurance \\
Low & Soaking & Drill & Do_Not_Buy \\
Fair & Dry & Not_Drill & . \\
Fair & Dry & Drill & Buy_Insurance \\
Fair & Dry & Drill & Do_Not_Buy \\
Fair & Wet & Not_Drill & . \\
Fair & Wet & Drill & Buy_Insurance \\
Fair & Wet & Drill & Do_Not_Buy \\
Fair & Soaking & Not_Drill & \\
Fair & Soaking & Drill & Buy_Insurance \\
Fair & Soaking & Drill & Do_Not_Buy \\
High & Dry & Not_Drill & \\
High & Dry & Drill & Buy_Insurance \\
High & Dry & Drill & Do_Not_Buy \\
High & Wet & Not_Drill & . \\
High & Wet & Drill & Buy_Insurance \\
High & Wet & Drill & Do_Not_Buy \\
High & Soaking & Not_Drill & \\
High & Soaking & Drill & Buy_Insurance \\
High & Soaking & Drill & Do_Not_Buy
\end{tabular}
```

The payoff table can be displayed with the following PROC PRINT statement:

```
    /* -- print the payoff table -- */
title "Oil Wildcatter's Problem";
title3 "The Payoffs";
proc print data=Dtoilu4;
run;
```

The table is shown in Output 7.1.1.
Output 7.1.1 Payoffs of the Oil Wildcatter's Problem with an Insurance Option

Oil Wildcatter's Problem

The Payoffs

Obs	Cost	Deposit	Drill	Insuran	Payoff
1	Low	Dry	Not_Drill		\$0
2	Low	Dry	Drill	Buy_Insurance	\$50,000
3	Low	Dry	Drill	Do_Not_Buy	\$-150,000
4	Low	Wet	Not_Drill		\$0
5	Low	Wet	Drill	Buy_Insurance	\$550,000
6	Low	Wet	Drill	Do_Not_Buy	\$550,000
7	Low	Soaking	Not_Drill		\$0
8	Low	Soaking	Drill	Buy_Insurance	\$1,050,000
9	Low	Soaking	Drill	Do_Not_Buy	\$1,050,000
10	Fair	Dry	Not_Drill		\$0
11	Fair	Dry	Drill	Buy_Insurance	\$-100,000
12	Fair	Dry	Drill	Do_Not_Buy	\$-300,000
13	Fair	Wet	Not_Drill		\$0
14	Fair	Wet	Drill	Buy_Insurance	\$400,000
15	Fair	Wet	Drill	Do_Not_Buy	\$400,000
16	Fair	Soaking	Not_Drill		\$0
17	Fair	Soaking	Drill	Buy_Insurance	\$900,000
18	Fair	Soaking	Drill	Do_Not_Buy	\$900,000
19	High	Dry	Not_Drill		\$0
20	High	Dry	Drill	Buy_Insurance	\$-300,000
21	High	Dry	Drill	Do_Not_Buy	\$-500,000
22	High	Wet	Not_Drill		\$0
23	High	Wet	Drill	Buy_Insurance	\$200,000
24	High	Wet	Drill	Do_Not_Buy	\$200,000
25	High	Soaking	Not_Drill		\$0
26	High	Soaking	Drill	Buy_Insurance	\$700,000
27	High	Soaking	Drill	Do_Not_Buy	\$700,000

To find the optimal decision, call PROC DTREE with the following statements:

```
    /* -- PROC DTREE statements -- */
title "Oil Wildcatter's Problem";
proc dtree stagein=Dtoils4
```

```
probin=Dtoilp4
payoffs=Dtoilu4
nowarning
;
```

variables / stage=Stage type=Stype outcome=(Outcome)
reward=(Premium) successor=(Succ)
event=(V1 V2 V3) prob=(P 1 P 2 P 3)
state=(Cost Deposit Drill Insuran)
payoff=(Payoff);
evaluate;
summary / target=Insurance;

The VARIABLES statement identifies the variables in the input data sets. The yield of the optimal decision is written to the SAS \log as:

```
NOTE: Present order of stages:
    Drill(D), Insurance(D), Cost(C), Oil_Deposit(C),
    _ENDST_(E).
NOTE: The currently optimal decision yields 140000.
```

The optimal decision summary produced by the SUMMARY statements are shown in Output 7.1.2. The summary in Output 7.1.2 shows that the insurance policy is worth $\$ 240,000-\$ 140,000=\$ 100,000$, but since it costs $\$ 130,000$, the wildcatter should reject such an insurance policy.

Output 7.1.2 Summary of the Oil Wildcatter's Problem
Oil Wildcatter's Problem

The DTREE Procedure

Optimal Decision Summary

Order of Stages	
Stage	Type
Drill	Decision
Insurance	Decision
Cost	Chance
Oil_Deposit	Chance
ENDST_	End

Decision Parameters

Decision Criterion: Maximize Expected Value (MAXEV) Optimal Decision Yields: $\$ 140,000$

Output 7.1.2 continued

Optimal Decision Policy			
Up to Stage Insurance			
Alternatives or		Cumulative Evaluating	
Outcomes	Reward	Value	
Drill	Buy_Insurance	$\$-130,000$	$\$ 240,000$
Drill	Do_Not_Buy	$\$ 0$	$\$ 140,000^{*}$

Now assume that the oil wildcatter is risk averse and has an exponential utility function with a risk tolerance of $\$ 1,200,000$. In order to evaluate his problem based on this decision criterion, the wildcatter reevaluates the problem with the following statements:

```
reset criterion=maxce rt=1200000;
summary / target=Insurance;
```

The output from PROC DTREE given in Output 7.1.3 shows that the decision to purchase an insurance policy is favorable in the risk-averse environment. Note that an EVALUATE statement is not necessary before the SUMMARY statement. PROC DTREE evaluates the decision tree automatically when the decision criterion has been changed using the RESET statement.

Output 7.1.3 Summary of the Oil Wildcatter's Problem with RT $=1,200,000$
Oil Wildcatter's Problem
The DTREE Procedure
Optimal Decision Summary

Order of Stages	
Stage	Type
Drill	Decision
Insurance	Decision
Cost	Chance
Oil_Deposit	Chance
ENDST_	End

Decision Parameters

Decision Criterion: Maximize Certain Equivalent Value (MAXCE)
Risk Tolerance: $\$ 1,200,000$
Optimal Decision Yields: \$45,728

Optimal Decision Policy
Up to Stage Insurance

Alternatives or Outcomes		Cumulative Reward	Evaluating Value
Drill	Buy_Insurance	$\$-130,000$	$\$ 175,728^{*}$
Drill	Do_Not_Buy	$\$ 0$	$\$ 44,499$

Example 7.2: Oil Wildcatter's Problem in Risk-Averse Setting

Continuing with the oil wildcatter's problem, suppose that in addition to possibly buying insurance to spread the risk of the venture, the wildcatter is considering sharing the risk by selling a portion of this venture to other investors. Now, the decision he faces is whether to buy insurance or not and what percentage of the investment to divest. Again, assume that the wildcatter is risk averse with a risk tolerance of $\$ 1,200,000$. Notice that in the program that follows the 'Divestment ' decision includes possibilities of no divestment to 100% divestment in 10% increments.

```
/* -- create the STAGEIN= data set -- */
data Dtoils4;
format _STNAME_ $12. _OUTCOM_ $15. _SUCCES_ $12.;
input _STNAME_ $ _STTYPE_ $ _OUTCOM_ $
    _SUCCES_ $ ;
datalines;
\begin{tabular}{|c|c|c|c|}
\hline Divestment & Decision & No_Divestment & Insurance \\
\hline . & . & 10\%_Divestment & Insurance \\
\hline - & - & 20\%_Divestment & Insurance \\
\hline - & . & 30\%_Divestment & Insurance \\
\hline - & . & 40\%_Divestment & Insurance \\
\hline - & - & 50\%_Divestment & Insurance \\
\hline - & . & 60\%_Divestment & Insurance \\
\hline - & - & 70\%_Divestment & Insurance \\
\hline - & - & 80\%_Divestment & Insurance \\
\hline - & - & 90\%_Divestment & Insurance \\
\hline - & . & 100\%_Divestment & \\
\hline Insurance & Decision & Buy_Insurance & Cost \\
\hline . & . & Do_Not_Buy & Cost \\
\hline Cost & Chance & Low & Oil_Deposit \\
\hline . & - & Fair & Oil_Deposit \\
\hline & . & High & Oil_Deposit \\
\hline Oil_Deposit & Chance & Dry & . \\
\hline . & . & Wet & . \\
\hline - & - & Soaking & \\
\hline
\end{tabular}
```

The probabilities associated with the uncertain events are given in the PROBIN= data set named Dtoilp4. Except for the order of the variables in this data set, it is the same as the Dtoilp1 data set used in the section "Introductory Example" on page 387.

```
/* -- create the PROBIN= data set -- */
data Dtoilp4;
input _EVENT1 $ _PROB1 __EVENT3 $ _PROB3 ;
datalines;
Low 0.2 Dry 0.5
Fair 0.6 Wet 0.3
High 0.2 Soaking 0.2
;
/* -- create the PAYOFFS= data set -- */
data Dtoilu4(drop=i j k l);
length _STATE1-_STATE4 $16. ;
```

```
format _VALUE_ dollar12.0;
/* define and initialize arrays */
array DIVEST{11} $16. _TEMPORARY_ ('No_Divestment',
                                    '10%_Divestment',
                                    '20%_Divestment',
                                    '30%_Divestment',
                                    '40%_Divestment',
                            '50%_Divestment',
                            '60%_Divestment',
                            '70%_Divestment',
                            '80%_Divestment',
                            '90%_Divestment',
                            '100%_Divestment' );
array INSUR{3} $16. _TEMPORARY_ ('Do_Not_Buy',
                                    'Buy_Insurance',
                                    );
array COST{4} $ _TEMPORARY_ ('Low',
                                    'Fair',
                                    'High',
                                    ' ' );
array DEPOSIT{4} $ _TEMPORARY_ ('Dry',
                                    'Wet',
                                    'Soaking',
                                    ' ' );
do i=1 to 10; /* loop for each divestment */
    _STATE1=DIVEST{i};
    /*
        * determine the percentage of ownership retained
        * for this scenario
        */
    PCT=1.0-((i-1)*0.1);
    do j=1 to 2; /* loop for insurance decision */
        _STATE2=INSUR{j};
        /*
            * determine the premium need to pay for this
            * scenario
            */
        if _STATE2='Buy_Insurance' then PREMIUM=130000;
        else PREMIUM=0;
        do k=1 to 3; /* loop for each well cost */
            _STATE3=COST{k};
            /* determine the cost for this scenario */
            if _STATE3='Low' then _COST_=150000;
            else if _STATE3='Fair' then _COST_= 300000;
            else __COST_=500000;
            do l=1 to 3; /* loop for each deposit type */
```

```
                    _STATE4=DEPOSIT{l};
                        /*
                            * determine the oil deposit and the
                    * corresponding net payoff for this scenario
                    */
                    if _STATE4='Dry' then _PAYOFF_=0;
                    else if _STATE4='Wet' then _PAYOFF_=700000;
                    else _PAYOFF_=1200000;
                    /* determine redeem received for this scenario */
                    if _STATE2='Buy_Insurance' and _STATE4='Dry' then
                REDEEM=200000;
                    else REDEEM=0;
                    /* calculate the net return for this scenario */
                _VALUE_=(_PAYOFF___COST_-PREMIUM+REDEEM) *PCT;
                    /* drop unneeded variables */
                    drop _COST__ _PAYOFF_ PREMIUM REDEEM PCT;
                    /* output this record */
                    output;
            end;
            end;
        end;
end;
/* output an observation for the scenario 100%_Divestment */
_STATE1=DIVEST{11};
_STATE2=INSUR{3};
_STATE3=COST{4};
_STATE4=DEPOSIT{4};
_VALUE_=0;
output;
run;
```

The Dtoilu4 data set for this problem, which contains 181 observations and 5 variables, is displayed in Output 7.2.1.

Output 7.2.1 Payoffs of the Oil Wildcatter's Problem with Risk Sharing

Oil Wildcatter's Problem

The Payoffs

Obs _STATE1	_STATE2	_STATE3	STATE4	_VALUE_
1 No_Divestment	Do_Not_Buy	Low	Dry	\$-150,000
2 No_Divestment	Do_Not_Buy	Low	Wet	\$550,000
3 No_Divestment	Do_Not_Buy	Low	Soaking	\$1,050,000
4 No_Divestment	Do_Not_Buy	Fair	Dry	\$-300,000
5 No_Divestment	Do_Not_Buy	Fair	Wet	\$400,000
6 No_Divestment	Do_Not_Buy	Fair	Soaking	\$900,000
7 No_Divestment	Do_Not_Buy	High	Dry	\$-500,000
8 No_Divestment	Do_Not_Buy	High	Wet	\$200,000
9 No_Divestment	Do_Not_Buy	High	Soaking	\$700,000
10 No_Divestment	Buy_Insurance	Low	Dry	\$-80,000
11 No_Divestment	Buy_Insurance	Low	Wet	\$420,000
12 No_Divestment	Buy_Insurance	Low	Soaking	\$920,000
13 No_Divestment	Buy_Insurance	Fair	Dry	\$-230,000
14 No_Divestment	Buy_Insurance	Fair	Wet	\$270,000
15 No_Divestment	Buy_Insurance	Fair	Soaking	\$770,000
16 No_Divestment	Buy_Insurance	High	Dry	\$-430,000
17 No_Divestment	Buy_Insurance	High	Wet	\$70,000
18 No_Divestment	Buy_Insurance	High	Soaking	\$570,000
19 10\%_Divestment	Do_Not_Buy	Low	Dry	\$-135,000
20 10\%_Divestment	Do_Not_Buy	Low	Wet	\$495,000
21 10\%_Divestmen	Do_Not_Buy	Low	Soaking	\$945,000
22 10\%_Divestment	Do_Not_Buy	Fair	Dry	\$-270,000
23 10\%_Divestment	Do_Not_Buy	Fair	Wet	\$360,000
24 10\%_Divestment	Do_Not_Buy	Fair	Soaking	\$810,000
25 10\%_Divestment	Do_Not_Buy	High	Dry	\$-450,000
26 10\%_Divestment	Do_Not_Buy	High	Wet	\$180,000
27 10\%_Divestment	Do_Not_Buy	High	Soaking	\$630,000
28 10\%_Divestment	Buy_Insurance	Low	Dry	\$-72,000
29 10\%_Divestment	Buy_Insurance	Low	Wet	\$378,000
30 10\%_Divestment	Buy_Insurance	Low	Soaking	\$828,000
31 10\%_Divestment	Buy_Insurance	Fair	Dry	\$-207,000
32 10\%_Divestment	Buy_Insurance	Fair	Wet	\$243,000
33 10\%_Divestment	Buy_Insurance	Fair	Soaking	\$693,000
34 10\%_Divestment	Buy_Insurance	High	Dry	\$-387,000
35 10\%_Divestment	Buy_Insurance	High	Wet	\$63,000
36 10\%_Divestment	Buy_Insurance	High	Soaking	\$513,000
37 20\%_Divestment	Do_Not_Buy	Low	Dry	\$-120,000
38 20\%_Divestment	Do_Not_Buy	Low	Wet	\$440,000
39 20\%_Divestment	Do_Not_Buy	Low	Soaking	\$840,000
40 20\%_Divestment	Do_Not_Buy	Fair	Dry	\$-240,000
41 20\%_Divestment	Do_Not_Buy	Fair	Wet	\$320,000
42 20\%_Divestment	Do_Not_Buy	Fair	Soaking	\$720,000
43 20\%_Divestment	Do_Not_Buy	High	Dry	\$-400,000
44 20\%_Divestment	Do_Not_Buy	High	Wet	\$160,000
45 20\%_Divestment	Do_Not_Buy	High	Soaking	\$560,000

Output 7.2.1 continued

Oil Wildcatter's Problem

The Payoffs

Obs _STATE1	_STATE2	_STATE3	STATE4	_VALUE_
46 20\%_Divestment	Buy_Insurance	Low	Dry	\$-64,000
47 20\%_Divestment	Buy_Insurance	Low	Wet	\$336,000
48 20\%_Divestment	Buy_Insurance	Low	Soaking	\$736,000
49 20\%_Divestment	Buy_Insuranc	Fair	Dry	\$-184,000
50 20\%_Divestment	Buy_Insu	Fair	Wet	\$216,000
51 20\%_Divestment	Buy_Insurance	Fair	Soaking	\$616,000
52 20\%_Divestment	Buy	High	Dry	\$-344,000
53 20\%_Divestment	B	H	Wet	\$56,000
54 20\%_Divestment	Buy_Insurance	High	Soaking	\$456,000
55 30\%_Divestment	Do_Not_Buy	Low	Dry	\$-105,000
56 30\%_Divestment	Do_Not_Buy	Low	Wet	\$385,000
57 30\%_Divestment	Do_Not_Buy	Low	Soaking	\$735,000
58 30\%_Divestment	Do_Not_Buy	Fair	Dry	\$-210,000
59 30\%_Divestme	Do_Not_Buy	Fair	Wet	\$280,000
60 30\%_Divestment	Do_Not_Buy	Fair	Soaking	\$630,000
61 30\%_Divestment	Do_Not_Buy	High	Dry	\$-350,000
62 30\%_Divestment	Do_Not_Buy	High	Wet	\$140,000
63 30\%_Divestment	Do_Not_Buy	High	Soaking	\$490,000
64 30\%_Dives	Buy_Insurance	Low	Dry	,00
65 30\%_Divestment	Buy_Insurance	Low	Wet	\$294,000
66 30\%_Divestment	Buy_Insurance	Low	Soaking	\$644,000
67 30\%_Divestment	Buy_Insurance	Fair	Dry	\$-161,000
68 30\%_Divestment	Buy_Insurance	Fair	Wet	\$189,000
69 30\%_Divestment	Buy_Insuran	Fair	Soaking	\$539,000
70 30\%_Divestment	Buy_Insurance	High	Dry	\$-301,000
71 30\%_Divestment	Buy_Insurance	High	Wet	\$49,000
72 30\%_Divestment	Buy_Insurance	High	Soaking	\$399,000
73 40\%_Divestment	Do_Not_Buy	Low	Dry	\$-90,000
74 40\%_Divestment	Do_Not_Buy	Low	Wet	\$330,000
75 40\%_Divestment	Do_Not_Buy	Low	Soaking	\$630,000
76 40\%_Divestment	Do_Not_Buy	Fair	Dry	\$-180,000
77 40\%_Divestment	Do_Not_Buy	Fair	Wet	\$240,000
78 40\%_Divestment	Do_Not_Buy	Fair	Soaking	\$540,000
79 40\%_Divestment	Do_Not_Buy	High	Dry	\$-300,000
80 40\%_Divestment	Do_Not_Buy	High	Wet	\$120,000
81 40\%_Divestment	Do_Not_Buy	High	Soaking	\$420,000
82 40\%_Divestment	Buy_Insurance	Low	Dry	\$-48,000
83 40\%_Divestment	Buy_Insurance	Low	Wet	\$252,000
84 40\%_Divestment	Buy_Insurance	Low	Soaking	\$552,000
85 40\%_Divestment	Buy_Insurance	Fair	Dry	\$-138,000
86 40\%_Divestment	Buy_Insurance	Fair	Wet	\$162,000
87 40\%_Divestment	Buy_Insurance	Fair	Soaking	\$462,000
88 40\%_Divestment	Buy_Insurance	High	Dry	\$-258,000
89 40\%_Divestment	Buy_Insurance	High	Wet	\$42,000
90 40\%_Divestment	Buy_Insurance	High	Soaking	\$342,000

Output 7.2.1 continued
Oil Wildcatter's Problem

The Payoffs

Obs _STATE1	_STATE2	STATE3	STATE4	VALUE_
91 50\%_Divestment	Do_Not_Buy	Low	Dry	\$-75,000
92 50\%_Divestment	Do_Not_Buy	Low	Wet	\$275,000
93 50\%_Divestment	Do_Not_Buy	Low	Soaking	\$525,000
94 50\%_Divestment	Do_Not_Buy	Fair	Dry	\$-150,000
95 50\%_Divestment	Do_Not_Buy	Fair	Wet	\$200,000
96 50\%_Divestment	Do_Not_Buy	Fair	Soaking	\$450,000
97 50\%_Divestment	Do_Not_Buy	High	Dry	\$-250,000
98 50\%_Divestment	Do_Not_Buy	Hi	Wet	\$100,000
99 50\%_Divestment	Do_Not_Buy	High	Soaking	\$350,000
100 50\%_Divestment	Buy_Insurance	Low	Dry	\$-40,000
101 50\%_Divestment	Buy_Insurance	Low	Wet	\$210,000
102 50\%_Divestment	Buy_Insurance	Low	Soaking	\$460,000
103 50\%_Divestment	Buy_Insurance	Fair	Dry	\$-115,000
104 50\%_Divestment	Buy_Insurance	Fair	Wet	\$135,000
105 50\%_Divestment	Buy_Insurance	Fair	Soaking	\$385,000
106 50\%_Divestment	Buy_Insurance	High	Dry	\$-215,000
107 50\%_Divestment	Buy_Insurance	High	Wet	\$35,000
108 50\%_Divestment	Buy_Insurance	High	Soaking	\$285,000
109 60\%_Divestment	Do_Not_Buy	Low	Dry	\$-60,000
110 60\%_Divestment	Do_Not_Buy	Low	Wet	\$220,000
111 60\%_Divestment	Do_Not_Buy	Low	Soaking	\$420,000
112 60\%_Divestment	Do_Not_Buy	Fair	Dry	\$-120,000
113 60\%_Divestment	Do_Not_Buy	Fair	Wet	\$160,000
114 60\%_Divestment	Do_Not_Buy	Fair	Soaking	\$360,000
115 60\%_Divestment	Do_Not_Buy	High	Dry	\$-200,000
116 60\%_Divestment	Do_Not_Buy	High	Wet	\$80,000
117 60\%_Divestment	Do_Not_Buy	High	Soaking	\$280,000
118 60\%_Divestment	Buy_Insurance	Low	Dry	\$-32,000
119 60\%_Divestment	Buy_Insurance	Low	Wet	\$168,000
120 60\%_Divestment	Buy_Insurance	Low	Soaking	\$368,000
121 60\%_Divestment	Buy_Insurance	Fair	Dry	\$-92,000
122 60\%_Divestment	Buy_Insurance	Fair	Wet	\$108,000
123 60\%_Divestment	Buy_Insurance	Fair	Soaking	\$308,000
124 60\%_Divestment	Buy_Insurance	High	Dry	\$-172,000
125 60\%_Divestment	Buy_Insurance	High	Wet	\$28,000
126 60\%_Divestment	Buy_Insurance	High	Soaking	\$228,000
127 70\%_Divestment	Do_Not_Buy	Low	Dry	\$-45,000
128 70\%_Divestment	Do_Not_Buy	Low	Wet	\$165,000
129 70\%_Divestment	Do_Not_Buy	Low	Soaking	\$315,000
130 70\%_Divestment	Do_Not_Buy	Fair	Dry	\$-90,000
131 70\%_Divestment	Do_Not_Buy	Fair	Wet	\$120,000
132 70\%_Divestment	Do_Not_Buy	Fair	Soaking	\$270,000
133 70\%_Divestment	Do_Not_Buy	High	Dry	\$-150,000
134 70\%_Divestment	Do_Not_Buy	High	Wet	\$60,000
135 70\%_Divestment	Do_Not_Buy	High	Soaking	\$210,000

Output 7.2.1 continued

Oil Wildcatter's Problem

The Payoffs

Obs _STATE1	STATE2	STATE3	STATE4	VALUE
136 70\%_Divestment	Buy_Insurance	Low	Dry	\$-24,000
137 70\%_Divestment	Buy_Insurance	Low	Wet	\$126,000
138 70\%_Divestment	Buy_Insurance	Low	Soaking	\$276,000
139 70\%_Divestment	Buy_Insurance	Fair	Dry	\$-69,000
140 70\%_Divestment	Buy_Insurance	Fair	Wet	\$81,000
141 70\%_Divestment	Buy_Insurance	Fair	Soaking	\$231,000
142 70\%_Divestment	Buy_Insurance	High	Dry	\$-129,000
143 70\%_Divestment	Buy_Insurance	High	Wet	\$21,000
144 70\%_Divestment	Buy_Insurance	High	Soaking	\$171,000
145 80\%_Divestment	Do_Not_Buy	Low	Dry	\$-30,000
146 80\%_Divestment	Do_Not_Buy	Low	Wet	\$110,000
147 80\%_Divestment	Do_Not_Buy	Low	Soaking	\$210,000
148 80\%_Divestment	Do_Not_Buy	Fair	Dry	\$-60,000
149 80\%_Divestment	Do_Not_Buy	Fair	Wet	\$80,000
150 80\%_Divestment	Do_Not_Buy	Fair	Soaking	\$180,000
151 80\%_Divestment	Do_Not_Buy	High	Dry	\$-100,000
152 80\%_Divestment	Do_Not_Buy	High	Wet	\$40,000
153 80\%_Dives	Do_Not_Buy	High	Soaking	\$140,000
154 80\%_Divestment	Buy_Insurance	Low	Dry	\$-16,000
155 80\%_Divestment	Buy_Insurance	Low	Wet	\$84,000
156 80\%_Divestme	Buy_Insurance	Low	Soaking	\$184,000
157 80\%_Divestment	Buy_Insurance	Fair	Dry	\$-46,000
158 80\%_Divestment	Buy_Insurance	Fair	Wet	\$54,000
159 80\%_Divestment	Buy_Insurance	Fair	Soaking	\$154,000
160 80\%_Divestment	Buy_Insurance	High	Dry	\$-86,000
161 80\%_Divestment	Buy_Insurance	High	Wet	\$14,000
162 80\%_Divestment	Buy_Insurance	High	Soaking	\$114,000
163 90\%_Divestment	Do_Not_Buy	Low	Dry	\$-15,000
164 90\%_Divestment	Do_Not_Buy	Low	Wet	\$55,000
165 90\%_Divestment	Do_Not_Buy	Low	Soaking	\$105,000
166 90\%_Divestment	Do_Not_Buy	Fair	Dry	\$-30,000
167 90\%_Divestment	Do_Not_Buy	Fair	Wet	\$40,000
168 90\%_Divestment	Do_Not_Buy	Fair	Soaking	\$90,000
169 90\%_Divestment	Do_Not_Buy	High	Dry	\$-50,000
170 90\%_Divestment	Do_Not_Buy	High	Wet	\$20,000
171 90\%_Divestment	Do_Not_Buy	High	Soaking	\$70,000
172 90\%_Divestment	Buy_Insurance	Low	Dry	\$-8,000
173 90\%_Divestment	Buy_Insurance	Low	Wet	\$42,000
174 90\%_Divestment	Buy_Insurance	Low	Soaking	\$92,000
175 90\%_Divestment	Buy_Insurance	Fair	Dry	\$-23,000
176 90\%_Divestment	Buy_Insurance	Fair	Wet	\$27,000
177 90\%_Divestment	Buy_Insurance	Fair	Soaking	\$77,000
178 90\%_Divestment	Buy_Insurance	High	Dry	\$-43,000
179 90\%_Divestment	Buy_Insurance	High	Wet	\$7,000

Output 7.2.1 continued
Oil Wildcatter's Problem
The Payoffs

Obs _STATE1	_STATE2	_STATE3 _STATE4	_VALUE_	
$\mathbf{1 8 0}$ 90\%_Divestment	Buy_Insurance	High	Soaking	$\$ 57,000$
181 100\%_Divestment			$\$ 0$	

The optimal decisions for this problem can be identified by invoking PROC DTREE and using the SUMMARY statement as follows:

```
title "Oil Wildcatter's Problem";
proc dtree stagein=Dtoils4
    probin=Dtoilp4
    payoffs=Dtoilu4
    criterion=maxce rt=1200000
    nowarning;
    evaluate;
    summary / target=Divestment;
    summary / target=Insurance;
quit;
```

The optimal decision summaries in Output 7.2.2 and Output 7.2.3 show the optimal strategy for the wildcatter.

- The wildcatter should sell 30% of his investment to other companies and reject the insurance policy offered to him.
- The insurance policy should be accepted only if the decision to not divest is made.
- If the decision to buy the insurance policy is made, then it is optimal to divest 10% of the venture.

Output 7.2.2 Summary of the Oil Wildcatter's Problem for DIVESTMENT

Oil Wildcatter's Problem

The DTREE Procedure

Optimal Decision Summary

Order of Stages	
Stage	Type
Divestment	Decision
Insurance	Decision
Cost	Chance
Oil_Deposit	Chance
ENDST	End

Decision Parameters

Decision Criterion: Maximize Certain Equivalent Value (MAXCE)
Risk Tolerance: \$1,200,000
Optimal Decision Yields: \$50,104

Output 7.2.2 continued

Optimal Decision Policy Up to Stage Divestment	
Alternatives or	
Outcomes	Cumulative Reward
No_Divestment	Value
10\%_Divestment	$\$ 45,728$
20\%_Divestment	$\$ 48,021$
30\%_Divestment	$\$ 49,907$
40\%_Divestment	$\$ 50,104^{*}$
50\%_Divestment	$\$ 48,558$
60\%_Divestment	$\$ 45,219$
70\%_Divestment	$\$ 40,036$
80\%_Divestment	$\$ 32,965$
90\%_Divestment	$\$ 23,961$
100\%_Divestment	$\$ 12,985$

Output 7.2.3 Summary of the Oil Wildcatter's Problem for INSURANCE
Oil Wildcatter's Problem
The DTREE Procedure
Optimal Decision Summary

	Order of Stages	
	Stage	Type
	Divestment	Decision
	Insurance	Decision
	Cost	Chance
	Oil_Deposit	Chance
	ENDST_	End
Decision Parameters		
Decision Criterion: Maximize Certain Equivalent Value (MAXCE)		
Risk Tolerance: \$1,200,000		
Optimal Decision Yields: \$50,104		

Output 7.2.3 continued

Optimal Decision Policy Up to Stage Insurance	
Alternatives or Outcomes	Cumulative Evaluating Reward Value
No_Divestment Buy_Insurance	\$45,728*
No_Divestment Do_Not_Buy	\$44,499
10\%_Divestment Buy_Insurance	\$46,552
10\%_Divestment Do_Not_Buy	\$48,021*
20\%_Divestment Buy_Insurance	\$46,257
20\%_Divestment Do_Not_Buy	\$49,907*
30\%_Divestment Buy_Insurance	\$44,812
30\%_Divestment Do_Not_Buy	\$50,104*
40\%_Divestment Buy_Insurance	\$42,186
40\%_Divestment Do_Not_Buy	\$48,558*
50\%_Divestment Buy_Insurance	\$38,350
50\%_Divestment Do_Not_Buy	\$45,219*
60\%_Divestment Buy_Insurance	\$33,273
60\%_Divestment Do_Not_Buy	\$40,036*
70\%_Divestment Buy_Insurance	\$26,927
70\%_Divestment Do_Not_Buy	\$32,965*
80\%_Divestment Buy_Insurance	\$19,284
80\%_Divestment Do_Not_Buy	\$23,961*
90\%_Divestment Buy_Insurance	\$10,317
90\%_Divestment Do_Not_Buy	\$12,985*

This information can be illustrated graphically using the GPLOT procedure. Output 7.2.4, produced by the PROC GPLOT statements shown in the following code, provides a clear picture of the effects of the divestment possibilities and the insurance options.

```
    /* create a data set for the return corresponds to each */
    /* divestment possibilities and the insurance options */
data Data2g;
    input INSURE DIVEST VALUE;
    datalines;
        1 0 45728
        0 0 44499
        1 10 46552
        0 10 48021
        1 20 46257
        0 20 49907
        1 30 44812
        0 30 50104
        1 40 42186
        0 40 48558
        1 50 38350
        0 50 45219
        1 60 33273
        0 60 40036
        1 70 26927
        0 70 32965
```

```
                1 80 19284
                0 80 23961
                1 90 10317
                0 90 12985
                1 100 0
                0}10
;
    /* -- define a format for INSURE variable -- */
proc format;
    value sample 0='Do_Not_Buy' 1='Buy_Insurance';
run;
    /* -- define title -- */
title h=3 "Oil Wildcatter's Problem";
    /* define legend -- */
legend1 frame cframe=white label=none
        cborder=black position=center ;
    /* define symbol characteristics of the data points */
    /* and the interpolation line for returns vs divestment */
    /* when INSURE=0 */
symbol1 c=cyan i=join v=dot l=1 h=1;
    /* define symbol characteristics of the data points */
    /* and the interpolation line for returns vs divestment */
    /* when INSURE=1 */
symbol2 c=green i=join v=square l=2 h=1;
    /* -- define axis characteristics -- */
axis1 minor=none label=('Divestment (in percentage)');
axis2 minor=none label=(angle=90 rotate=0 'Certainty Equivalent');
    /* set graphics options */
goptions htext=1.5;
    /* plot VALUE vs DIVEST using INSURE as third variable */
proc gplot data=Data2g ;
    plot VALUE*DIVEST=INSURE / haxis=axis1
                                    vaxis=axis2
                                    legend=legend1
                                    name="dt2"
                                    frame
                                    cframe=white ;
    format INSURE SAMPLE.;
run;
quit;
```

Note that the data input into the Data2g data set is obtained from the optimal decision summary as in Output 7.2.3. The value 1 of the INSURE variable represents the alternative 'Buy_Insurance' and the value 0 represents the alternative 'Do_Not_Buy'.

Output 7.2.4 Returns of the Oil Wildcatter's Problem

Example 7.3: Contract Bidding Problem

This example illustrates the use of several of the graphics options for producing graphics quality decision tree diagrams.

The production manager of a manufacturing company is planning to bid on a project to manufacture a new type of machine. He has the choice of bidding low or high. The evaluation of the bid will more likely be favorable if the bidder has built a prototype of the machine and includes it with the bid. However, he is uncertain about the cost of building the prototype.- His technical staff has provided him a probability distribution on the cost of the prototype.

Table 7.20 Probability on the Cost of Building Prototype

Outcome	Cost	Probability
Expensive	$\$ 4,500$	0.4
Moderate	$\$ 2,500$	0.5
Inexpensive	$\$ 1,000$	0.1

There is also uncertainty in whether he will win the contract or not. He has estimated the probability distribution of winning the contract as shown in Table 7.21.

Table 7.21 Probability of Winning the Contract

		Events	
Givens	Win the Contract	Lose the Contract	
Build Prototype	High Bid	0.4	0.6
Build Prototype	Low Bid	0.8	0.2
No Prototype	High Bid	0.2	0.8
No Prototype	Low Bid	0.7	0.3

In addition, the payoffs of this bidding venture are affected by the cost of building the prototype. Table 7.22 shows his payoffs. The first row of the table shows the payoff is 0 if he loses the contract, regardless of whether or not he builds the prototype and whether he bids low or high. The remainder of the entries in the table give the payoff under the various scenarios.

Table 7.22 Payoffs of the Contract Bidding Decision

States		Actions	
Result	Cost	Bid low	Bid high
Lose the Contract		0	0
Win the Contract		$\$ 35,000$	$\$ 75,000$
Win the Contract	Expensive	$\$ 25,000$	$\$ 65,000$
Win the Contract	Moderate	$\$ 35,000$	$\$ 75,000$
Win the Contract	Inexpensive	$\$ 45,000$	$\$ 85,000$

The production manager must decide whether to build the prototype and how to bid. He uses PROC DTREE to help him to make these decisions. The structure of the model is stored in the STAGEIN= data set named Stage3. There are two decision stages, 'Choose' and 'Bid', and two chance stages, 'Cost_Prototype' and 'Contract'. The 'Choose' stage represents the decision whether or not to build a prototype. The chance stage 'Cost_Prototype' represents the uncertain cost for building a prototype. It can be 'Expensive', which costs $\$ 4,500$, or 'Moderate', which costs $\$ 2,500$, or 'Inexpensive', which costs $\$ 1,000$. The 'Bid' stage represents the decision whether to bid high or bid low. The last stage, 'Contract ', represents the result, either win the contract or lose the contract.

```
/* -- create the STAGEIN= data set
data Stage3;
format _STNAME_ $14. _STTYPE_ $2. _OUTCOM_ $15.
        _SUCCES_ $14. _REWARD_ dollar8.0 ;
input _STNAME_ $16. _STTYPE_ $4. _OUTCOM_ $16.
        _SUCCES_ $16. _REWARD_ dollar8.0 ;
datalines;
Choose D Build_Prototype Cost_Prototype Bid .
. . No_Prototype Bid .
Cost_Prototype C Expensive Bid -$4,500
. . Moderate Bid -$2,500
. . Inexpensive Bid -\$1,000
Bid llll
Contract C Win_Contract . .
. . Lose_Contract
```

;

The PROBIN= data set, named Prob3, contains the probability information as in Table 7.20 and Table 7.21.

```
/* -- create the PROBIN= data set -- */
data Prob3;
format _GIVEN1_ $15. _GIVEN2_ $15. _EVENT_ $14. ;
input (_GIVEN1__ _GVEN2_ _EVENT_) ($) _PROB_;
datalines;
. . Expensive 0.4
. . Moderate 0.5
. . Inexpensive 0.1
Build_Prototype High_Bid Win_Contract 0.4
Build_Prototype High_Bid Lose_Contract 0.6
Build_Prototype Low_Bid
Build_Prototype Low_Bid
No_Prototype High_Bid Win_Contract 0.2
No_Prototype High_Bid Lose_Contract 0.8
No_Prototype Low_Bid Win_Contract 0.7
No_Prototype Low_Bid Lose_Contract 0.3
;
```

The PAYOFFS = data set named Payoff3 contains the payoff information as in Table 7.22. Notice that the payoff to outcome 'Lose_Contract' is not in the data set Payoff3. Since PROC DTREE assigns the default value 0 to all scenarios that are not in the PAYOFFS = data set, it is not necessary to include it.

```
/* -- create the PAYOFFS= data set -- */
data Payoff3;
format _STATE1_ _STATE2_ $12.;
input (_STATE1_ _STATE2_ _ACTION_) ($16.)
    _VALUE_ dollar8.0;
datalines;
Win_Contract . Low_Bid $35,000
Win_Contract . High_Bid $75,000
Win_Contract Expensive Low_Bid $25,000
Win_Contract Expensive High_Bid $65,000
Win_Contract Moderate Low_Bid $35,000
Win_Contract Moderate High_Bid $75,000
Win_Contract Inexpensive Low_Bid $45,000
Win_Contract Inexpensive High_Bid $85,000
;
```

The solution, as in Output 7.3.1, is displayed on a graphics device with the following code. Notice that the title is specified before invoking PROC DTREE. The GRAPHICS option is given on the PROC DTREE statement. Specifying the COMPRESS option in the TREEPLOT statement causes the decision tree diagram to be drawn completely on one page. The vertical distance between two successive end nodes is 1 character cell (ybetween=1 cell). All text, except that in the first title line, is drawn with the font specified by the FTEXT= option.The height for all nodes is the number of character cells specified by the HSYMBOL= option. The thickness for all links in the diagram, except those that represent optimal decisions, is specified by the LWIDTH= option. The thickness of the links that represent optimal decisions is specified by the LWIDTHB = option, and the type of those links is 3 (1styleb=3), the dash line. Colors for the text, links and nodes, and symbols to be used for nodes are not specified and hence defaults are used.

```
goptions ctext=black;
goptions hsize=10in htext=3.0;
    /* -- define title -- */
title1 h=2 "Contract Bidding Example" ;
    /* -- PROC DTREE statements -- */
proc dtree stagein=Stage3 probin=Prob3 payoffs=Payoff3
        graphics
        nowarning
        ;
    evaluate;
    treeplot / name="dt3" compress ybetween=1 cell
                hsymbol=6
                    lstyleb=3 lwidth=1 lwidthb=1;
quit;
```

Output 7.3.1 Decision Tree for the Contract Bidding Problem

Contract Bidding Example

With the information on this decision tree, the production manager can select the optimal bidding strategy:

- He should build a prototype to accompany the bid and always bid high unless the cost for building the prototype is as low as $\$ 1,000$. This optimal strategy yields an expected return of $\$ 25,850$.
- If no prototype is built, the preferred decision is to make a low bid. In this case the expected return is \$24,500.

Example 7.4: Research and Development Decision Problem

This example illustrates the use of the SYMBOL and GOPTIONS statements for controlling the appearance of the decision tree diagram. It also uses the ANNOTATE= option to add a customized legend to the diagram.

A typical problem encountered in a research and development setting involves two decisions: whether or not to conduct research, and whether or not to commercialize the results of that research. Suppose that research and development for a specific project will cost $\$ 350,000$, and there is a 0.4 probability that it will fail. Also suppose that the different levels of market success and their corresponding probabilities are:

Table 7.23 Levels of Market Success and Their Probabilities

Market Success	Net Return	Probability
Great	$\$ 1,000,000$	0.25
Good	$\$ 500,000$	0.35
Fair	$\$ 200,000$	0.30
Poor	$-\$ 250,000$	0.10

The structure of the model is represented in the STAGEIN= data set Stage4.

```
/* -- create the STAGEIN= data set -- */
data Stage4;
input _STNAME_ $ 1-16 _STTYPE_ $ 17-20
    _OUTCOM_ $ 21-32 _REWARD_ dollar12.0
    SUCC_ $ 45-60;
datalines;
R_and_D D Not_Conduct . 
RD_Outcome C Success . Production
. . Failure . .
Production D Produce . Sales
. . Abandon . .
Sales C Great . .
. . Good . .
. . Fair . .
```

;

The probability distributions for the various outcomes of the chance stages are given in the PROBIN= data set named Prob4.

```
/* -- create the PROBIN= data set -- */
data Prob4;
input _EVENT1_ $ _PROB1_ __EVENT2_ $12. _PROB2_;
datalines;
Success 0.6 Failure 0.4
Great 0.25 Good 0.35
Fair 0.30 poor 0.1
;
```

The payoffs are given in the PAYOFFS= data set Payoff4.

```
/* -- create the PAYOFFS= data set -- */
data Payoff4;
input _STATE_ $12. _VALUE_ dollar12.0;
datalines;
Great $1,000,000
Good $500,000
Fair $200,000
Poor -$250,000
;
```

The following DATA step builds a data set that contains the Annotate description of a legend. Refer to the chapter on the annotate facility in SAS/GRAPH Software: Reference for a description of the Annotate facility.

```
/* -- create the ANNOTATE= data set for legend -- */
data Legend;
length FUNCTION $ 8;
length STYLE $ 16;
WHEN = 'B'; POSITION='O';
XSYS='4'; YSYS='4';
input FUNCTION $ X Y STYLE & 16. SIZE COLOR $ TEXT $ & 16.;
datalines;
move 
label 14 2 Cumberland AMT 0.6 black BEST ACTION
symbol 9 3.5 marker 0.6 red A
label 14 3.2 Cumberland AMT 0.6 black END NODE
symbol 9 4.7 marker 0.6 blue P
label 14 4.4 Cumberland AMT 0.6 black CHANCE NODE
symbol 9 5.9 marker 0.6 green U
label 14 5.6 Cumberland AMT 0.6 black DECISION NODE
label 8 7.0 Cumberland AMT 0.6 black LEGEND:
move 5 8.5 . . black .
draw 35 8.5 . 2 black .
draw 35 1 . 2 black .
draw 5 1 . 2 black .
draw 5 8.5 . 2 black .
;
```

The following program invokes PROC DTREE, which evaluates the decision tree and plots it on a graphics device using the Annotate data set Legend to draw the legend.

```
    /* define symbol characteristics for chance nodes and */
    /* links except those that represent optimal decisions */
symbol1 f=marker h=1.8 v=P c=blue w=5 l=1;
    /* define symbol characteristics for decision nodes */
    /* and links that represent optimal decisions */
symbol2 f=marker h=1.8 v=U cv=green ci=red w=10 l=1;
    /* define symbol characteristics for end nodes */
symbol3 f=marker h=1.8 v=A cv=red;
    /* define graphics options */
goptions htext=1.2;
    /* -- define title -- */
title f='Cumberland AMT'
h=2.5 'Research and Development Decision';
    /* -- PROC DTREE statements -- */
proc dtree
        stagein=Stage4 probin=Prob4 payoffs=Payoff4
        criterion=maxce rt=1800000
        graphics annotate=Legend nolg ;
    evaluate;
    treeplot / linka=1 linkb=2
        symbold=2 symbolc=1 symbole=3 compress name="dt4";
quit;
```

The SYMBOL1, SYMBOL2, and SYMBOL3 statements create three SYMBOL definitions that contain information for drawing nodes and links. The Legend data set and the ANNOTATE= option specified in the PROC DTREE statement cause the procedure to produce a customized legend for the decision tree diagram. The LINKA=, LINKB=, SYMBOLD=, SYMBOLC=, and SYMBOLE= specifications in the TREEPLOT statement tell PROC DTREE how to use SYMBOL definitions to draw the decision tree. Table 7.24 describes the options in SYMBOL definitions used to draw the decision tree diagram.

The decision tree diagram produced by the TREEPLOT statement is shown in Output 7.4.1. As illustrated on the decision tree, the program recommends that one should not conduct the research and development of the product if he or she is risk averse with a risk tolerance of $\$ 1,800,000$. However, if he or she decides to undertake the research and development and it is a success, then he or she should commercialize the product.

Table 7.24 The Usage of SYMBOL Definitions

SYMBOL Definition	Specification	Description	Used to Draw
The First	$\mathrm{C}=$ blue	Color	All links except
	$\mathrm{L}=1$	Line Type	those that indicate
	$\mathrm{W}=3$	Thickness	optimal decisions
	$\mathrm{C}=$ blue	Color	Chance nodes
	$\mathrm{F}=$ marker	Font	
	$\mathrm{H}=2$	Height	
	$\mathrm{V}=P$	Symbol	
The Second	$\mathrm{CI}=$ red	Color	All links that
	$\mathrm{L}=1$	Line Type	indicate optimal
	$\mathrm{W}=3$	Thickness	decisions
	$\mathrm{CV}=$ green	Color	Decision nodes
	$\mathrm{F}=$ marker	Font	
	$\mathrm{H}=2$	Height	
	$\mathrm{V}=U$	Symbol	
The Third	$\mathrm{CV}=$ red	Color	End nodes
	$\mathrm{F}=$ marker	Font	
	$\mathrm{H}=2$	Height	
	$\mathrm{V}=A$	Symbol	

Output 7.4.1 Research and Development Decision Tree

Example 7.5: Loan Grant Decision Problem

Many financial decisions are difficult to analyze because of the variety of available strategies and the continuous nature of the problem. However, if the alternatives and time frame can be restricted, then decision analysis can be a useful analysis tool.

For example, a loan officer is faced with the problem of deciding whether to approve or deny an application for a one-year $\$ 30,000$ loan at the current rate of 15% of interest. If the application is approved, the borrower will either pay off the loan in full after one year or default. Based on experience, the default rate is about 36 out of 700 . If the loan is denied, the money is put in government bonds at the interest rate of 8%.

To obtain more information about the applicant, the loan officer engages a credit investigation unit at a cost of $\$ 500$ per person that will give either a positive recommendation for making a loan or a negative recommendation. Past experience with this investigator yields that of those who ultimately paid off their loans, 570 out of 664 were given a positive recommendation. On the other hand, 6 out of 26 that had defaulted had also been given a positive recommendation by the investigator.

The STAGEIN= data set, Stage6, gives the structure of the decision problem.

```
/* -- create the STAGEIN= data set -- */
data Stage6;
format _STNAME_ $14. _STTYPE_ $2. _OUTCOM_ $20. _SUCC_ $14. ;
input _STNAME_ $ _STTYPE_ $ _OUTCOM_ & _SUCC_ $ ;
datalines;
\begin{tabular}{llll} 
Application & D & Approve loan & Payment \\
- & . & Deny loan & . \\
Payment & C & Pay off & . \\
- & . & Default & . \\
Investigation & D & Order investigation & Recommendation \\
. & Do not order & Application \\
Recommendation & C & Positive & Application \\
. & . & Negative & Application
\end{tabular}
```

The PROBIN= data set Prob6 gives the probability distributions for the random events at the chance nodes.

```
/* -- create the PROBIN= data set -- */
data Prob6;
length _GIVEN_ _EVENT1_ _EVENT2_ $16;
_EVENT1_='Pay off'; _EVENT2_='Default';
_PROB1_=664/700; _PROB2_=1.0-_PROB1_;
output;
_GIVEN_='Pay off';
_EVENT1_='Positive'; _EVENT2_='Negative';
_PROB1_=570/664; _PROB2_=1.0-_PROB1_;
output;
_GIVEN_='Default';
_EVENT1_='Positive'; _EVENT2_='Negative';
_PROB1_=6/26; _PROB2_=1.0-_PROB1_;
output;
run;
```

The PAYOFFS= data set Payoff6 gives the payoffs for the various scenarios. Notice that the first observation in this data set indicates that if the officer denies the loan application, then payoffs are the interest from the money invested in government bonds. The second and the third observations are redundant for the basic analysis but are needed to determine the value of information as shown later.

```
/* -- create the PAYOFFS= data set -- */
data Payoff6(drop=loan);
length _STATE_ _ACT_ $24;
loan=30000;
_ACT_='Deny loan'; _VALUE_=loan*0.08; output;
_STATE_='Pay off'; _VALUE_=loan*0.08; output;
_STATE_='Default'; _VALUE_=loan*0.08; output;
_ACT_='Approve loan';
```

```
_STATE_='Pay off'; _VALUE_=loan*0.15; output;
_STATE_='Default'; _VALUE_=-1.0*loan; output;
run;
```

The following code invokes the DTREE procedure to solve this decision problem.

```
    /* -- define title -- */
title 'Loan Grant Decision';
    /* -- PROC DTREE statements -- */
proc dtree
        stagein=Stage6 probin=Prob6 payoffs=Payoff6
        summary target=investigation nowarning;
    modify 'Order investigation' reward -500;
    evaluate;
    OPTIONS LINESIZE=85;
    summary / target=Application;
    OPTIONS LINESIZE=80;
```

Note that the $\$ 500$ investigation fee is not included in the Stage6 data set. Since the outcome 'Order investigation' is the only outcome that has a nonzero reward, it is easier to set the reward for this outcome using the MODIFY statement. The quotes that enclose the outcome name in the MODIFY statement are necessary because the outcome name contains a space.

The results in Output 7.5.1 and Output 7.5.2 indicate that it is optimal to do the following:

- The loan officer should order the credit investigation and approve the loan application if the investigator gives the applicant a positive recommendation. On the other hand, he should deny the application if a negative recommendation is given to the applicant.
- Furthermore, the loan officer should order a credit investigation if the cost for the investigation is less than $\$ 3,725-\$ 2,726=\$ 999$.

Output 7.5.1 Summary of the Loan Grant Decision for Investigation

Loan Grant Decision

The DTREE Procedure

Optimal Decision Summary

Order of Stages	
Stage	Type
Investigation	Decision
Recommendation	Chance
Application	Decision
Payment	Chance
ENDST	End

Output 7.5.1 continued

Decision Parameters		
Decision Criterion: Maximize Expected Value (MAXEV)		
Optimal Decision Yields: 3225		
Optimal Decision Policy		
Up to Stage Investigation		
Alternatives or		Cumulative Evaluating
Outcomes		
Order investigation		
Reward		
Do not order		

Output 7.5.2 Summary of the Loan Grant Decision for Application

Loan Grant Decision

The DTREE Procedure
Optimal Decision Summary

Order of Stages	
Stage	Type
Investigation	Decision
Recommendation	Chance
Application	Decision
Payment	Chance
ENDST	End

Decision Parameters
Decision Criterion: Maximize Expected Value (MAXEV)
Optimal Decision Yields: 3225

Optimal Decision Policy Up to Stage Application				
Alternatives or Outcomes			Cumulative Reward	Evaluating Value
Order investigation	Positive	Approve loan	-500	4004*
Order investigation	Positive	Deny loan	-500	2400
Order investigation	Negative	Approve loan	-500	-3351
Order investigation	Negative	Deny loan	-500	2400*
Do not order		Approve loan	0	2726*
Do not order		Deny loan	0	2400

Now, the loan officer learns of another credit investigation company that claims to have a more accurate credit checking system for predicting whether the applicants will default on their loans. However, he has not been able to find out what the company charges for their service or how accurate their credit checking system is. Perhaps the best thing he can do at this stage is to assume that the company can predict perfectly whether or not applicants will default on their loans and determine the maximum amount to pay for this perfect investigation. The answer to this question can be found with the PROC DTREE statements:

```
save;
move payment before investigation;
evaluate;
recall;
```

Notice that moving the stage 'Payment' to the beginning of the tree means that the new decision tree contains two scenarios that are not in the original tree: the scenario 'Pay off' and 'Deny loan', and the scenario 'Default' and 'Deny loan'. The second and third observations in the Payoff6 data set supply values for these new scenarios. If these records are not included in the PAYOFFS $=$ data set, then PROC DTREE assumes they are 0 .

Also notice that the SUMMARY and TARGET= options are specified globally in the PROC DTREE statement and hence are not needed in the EVALUATE statement. The results from the DTREE procedure are displayed in Output 7.5.3.

Output 7.5.3 Summary of the Loan Grant Decision with Perfect Information
Loan Grant Decision
The DTREE Procedure
Optimal Decision Summary

Order of Stages	
Stage	Type
Payment	Chance
Investigation	Decision
Recommendation	Chance
Application	Decision
ENDST	End

Decision Parameters

eters		
Decision Criterion: Maximize Expec Optimal Decision Yields: 4392		
Optimal Decision Policy		
Up to Stage Investigation		
Alternatives or Outcomes	Cumulative Reward	uating Value
Pay off Order investigation	-500	4500
Pay off Do not order	0	4500*
Default Order investigation	-500	2400
Default Do not order	0	2400*

The optimal decision summary in Output 7.5 .3 shows that the yields with perfect investigation is $\$ 4,392$. Recall that the yield of alternative 'Do not order' the investigation, as shown in Output 7.5.1, is $\$ 2,726$.

Therefore, the maximum amount he should pay for the perfect investigation can be determined easily as

$$
\begin{aligned}
\text { VPI } & =\text { Value with Perfect Investigation }- \text { Value without Investigation } \\
& =\$ 4,392-\$ 2,726 \\
& =\$ 1,666
\end{aligned}
$$

Note that if you use the VPI statement to determine the value of a perfect investigation, the result is different from the value calculated previously.

```
    vpi payment;
NOTE: The currently optimal decision yields 3225.4725275.
NOTE: The new optimal decision yields 4392.
NOTE: The value of perfect information of stage Payment
    yields 1166.5274725.
```

The reason for this difference is that the VPI statement causes PROC DTREE first to determine the value with perfect information, then to compare this value with the value with current information available (in this example, it is the recommendation from the original investigation unit). Therefore, the VPI statement returns a value that is calculated as

$$
\begin{aligned}
\text { VPI } & =\text { Value with Perfect Information }- \text { Value with Current Information } \\
& =\$ 4,392-\$ 3,225 \\
& =\$ 1,167
\end{aligned}
$$

The loan officer considered another question regarding the maximum amount he should pay to a company to help collect the principal and the interest if an applicant defaults on the loan. This question is similar to the question concerning the improvement that can be expected if he can control whether or not an applicant will default on his loan (of course he will always want the applicant to pay off in full after one year). The answer to this question can be obtained with the following statements:

```
modify payment type;
evaluate;
```

Output 7.5.4 Summary of the Loan Grant Decision with Perfect Control

Loan Grant Decision

The DTREE Procedure

Optimal Decision Summary

Order of Stages	
Stage	Type
Investigation	Decision
Recommendation	Chance
Application	Decision
Payment	Decision
ENDST_	End

Decision Parameters

Decision Criterion: Maximize Expected Value (MAXEV)
Optimal Decision Yields: 4500

Optimal Decision Policy		
Up to Stage Investigation		
Alternatives or		Cumulative Evaluating
Outcomes	Reward	Value
Order investigation	-500	4500
Do not order	0	4500^{*}

The result is obvious and is shown in Output 7.5.4. Using a calculation similar to the one used to calculate the value of a perfect investigation, the maximum amount one should pay for this kind of service is $\$ 4,500-\$ 2,726=\$ 1,774$. As previously described, this value is different from the value obtained by using the VPC statement. In fact, if you specify the statement

```
vpc payment;
```

you get the value of VPC, which is $\$ 1,274.53$, from the SAS \log as

```
NOTE: The currently optimal decision yields 3225.4725275.
NOTE: The new optimal decision yields 4500.
NOTE: The value of perfect control of stage Payment yields
        1274.5274725.
```

Obviously, all of the values of investigation and other services depend on the value of the loan. Since each of the payoffs for the various scenarios given in the Payoff6 data set is proportional to the value of loan, you can safely assume that the value of the loan is 1 unit and determine the ratio of the value for a particular service to the value of the loan. To obtain these ratios, change the value of the variable LOAN to 1 in the Payoff6 data set and invoke PROC DTREE again as follows:

```
    /* -- create the alternative PAYOFFS= data set -- */
    data Payoff6a(drop=loan);
    length _STATE_ _ACT_ $24;
    loan=1;
    _ACT_='Deny loan'; _VALUE_=loan*0.08; output;
    _STATE_='Pay off'; _VALUE_=loan*0.08; output;
    _STATE_='Default'; _VALUE_=loan*0.08; output;
    _ACT_='Approve loan';
    _STATE_='Pay off'; _VALUE_=loan*0.15; output;
    _STATE_='Default'; _VALUE_=-1.0*loan; output;
run;
    /* -- PROC DTREE statements -- */
title 'Loan Grant Decision';
proc dtree
        stagein=Stage6 probin=Prob6 payoffs=Payoff6a
        nowarning;
    evaluate / summary target=investigation;
    save;
    move payment before investigation;
    evaluate;
    recall;
    modify payment type;
    evaluate;
quit;
```

The optimal decision summary given in Output 7.5 .5 shows that the ratio of the value of investigation that the loan officer currently engages in to the value of the loan is $0.1242-0.0909=0.0333$ to 1 .

Output 7.5.5 Summary of the Loan Grant Decision with 1 Unit Loan

Loan Grant Decision

The DTREE Procedure
Optimal Decision Summary

Order of Stages	
Stage	Type
Investigation	Decision
Recommendation	Chance
Application	Decision
Payment	Chance
ENDST	End

Output 7.5.5 continued

Decision Parameters	
Decision Criterion: Maximize Expected Value (MAXEV)	
Optimal Decision Yields: 0.1242	
Optimal Decision Policy	
Up to Stage Investigation	
Alternatives or	
Outcomes	
Cumulative Evaluating	
Order investigation	
Deward	
Do not order	

The following messages are written to the SAS log:

```
NOTE: Present order of stages:
    Investigation(D), Recommendation(C), Application(D),
    Payment (C), _ENDST_(E).
NOTE: The current problem has been successfully saved.
NOTE: Present order of stages:
    Payment(C), Investigation(D), Recommendation(C),
    Application(D), _ENDST_(E).
NOTE: The currently optimal decision yields 0.1464.
NOTE: The original problem has been successfully recalled.
NOTE: Present order of stages:
    Investigation(D), Recommendation(C), Application(D),
    Payment (C), _ENDST_(E).
NOTE: The type of stage Payment has been changed.
NOTE: The currently optimal decision yields 0.15.
```

The preceding messages show that the ratio of the value of perfect investigation to the value of a loan is $0.1464-0.0909=0.0555$ to 1 , and the ratio of the maximum amount the officer should pay for perfect control to the value of loan is $0.15-0.0909=0.591$ to 1 .

Output 7.5.6, produced by the following statements, shows a table of the values of the investigation currently engaged in, the values of perfect investigation, and the values of perfect control for loans ranging from $\$ 10,000$ to $\$ 100,000$.

```
    /* create the data set for value of loan */
    /* and corresponding values of services */
data Datav6(drop=k ratio1 ratio2 ratio3);
```

```
    label loan="Value of Loan"
        vci="Value of Current Credit Investigation"
        vpi="Value of Perfect Credit Investigation"
        vpc="Value of Perfect Collecting Service";
    /* calculate ratios */
    ratio1=0.1242-0.0909;
    ratio2=0.1464-0.0909;
    ratio3=0.15-0.0909;
    Loan=0;
    do k=1 to 10;
        /* set the value of loan */
        loan=loan+10000;
            /* calculate the values of various services */
        vci=loan*ratio1;
        vpi=loan*ratio2;
        vpc=loan*ratio3;
            /* output current observation */
        output;
    end;
run;
    /* print the table of the value of loan */
    /* and corresponding values of services */
title 'Value of Services by Value of Loan';
proc print label;
    format loan vci vpi vpc dollar12.0;
run;
```

Output 7.5.6 Values of Loan and Associated Values of Service

Value of Services by Value of Loan

	Value of Loan	Value of Current Credit	Value of Perfect Credit	Value of Perfect
Obs	 Cecting			
$\mathbf{1}$	$\$ 10,000$	$\$ 333$	$\$ 555$	$\$ 591$
$\mathbf{2}$	$\$ 20,000$	$\$ 666$	$\$ 1,110$	$\$ 1,182$
$\mathbf{3}$	$\$ 30,000$	$\$ 999$	$\$ 1,665$	$\$ 1,773$
$\mathbf{4}$	$\$ 40,000$	$\$ 1,332$	$\$ 2,220$	$\$ 2,364$
$\mathbf{5}$	$\$ 50,000$	$\$ 1,665$	$\$ 2,775$	$\$ 2,955$
$\mathbf{6}$	$\$ 60,000$	$\$ 1,998$	$\$ 3,330$	$\$ 3,546$
$\mathbf{7}$	$\$ 70,000$	$\$ 2,331$	$\$ 3,885$	$\$ 4,137$
$\mathbf{8}$	$\$ 80,000$	$\$ 2,664$	$\$ 4,440$	$\$ 4,728$
$\mathbf{9}$	$\$ 90,000$	$\$ 2,997$	$\$ 4,995$	$\$ 5,319$
$\mathbf{1 0}$	$\$ 100,000$	$\$ 3,330$	$\$ 5,550$	$\$ 5,910$

Example 7.6: Petroleum Distributor's Decision Problem

The president of a petroleum distribution company currently faces a serious problem. His company supplies refined products to its customers under long-term contracts at guaranteed prices. Recently, the price for petroleum has risen substantially and his company will lose $\$ 450,000$ this year because of its long-term contract with a particular customer. After a great deal of discussion with his legal advisers and his marketing staff, the president learns that the contract contains a clause that may be beneficial to his company. The clause states that when circumstances are beyond its control, the company may ask its customers to pay the prevailing market prices for up to 10% of the promised amount.

Several scenarios are possible if the clause is invoked. If the customer accepts the invocation of the clause and agrees to pay the higher price for the 10%, the company would turn a loss of $\$ 450,000$ into a net profit of $\$ 600,000$. If the customer does not accept the invocation, the customer may sue for damages or accept a settlement of $\$ 900,000$ (resulting in a loss of $\$ 400,000$) or simply decline to press the issue. In any case, the distribution company could then sell the 10% on the open market for an expected value of $\$ 500,000$. However, the lawsuit would result in one of three possible outcomes: the company wins and pays no damages; the company loses and pays normal damages of $\$ 1,500,000$; the company loses and pays double damages of $\$ 3,000,000$. The lawyers also feel that this case might last three to five years if the customer decides to sue the company. The cost of the legal proceedings is estimated as $\$ 30,000$ for the initial fee and $\$ 20,000$ per year. The likelihood of the various outcomes are also assessed and reported as in Table 7.25. Suppose that the company decides to use a discount rate of 10% to determine the present value of future funds.

Table 7.25 Likelihood of the Outcomes in the Petroleum Distributor's Decision

Uncertainty	Outcome	Probability
Customer's Response	Accept the Invocation	0.1
	Reject the Invocation	0.9
Customer's Action	Press the Issue	0.1
if the Invocation	Settle the Case	0.45
is being Rejected	Sue for Damages	0.45
Case Last	3 Years	0.3
	4 Years	0.4
	5 Years	0.3
Lawsuit Result	Pay No Damages	0.15
	Pay Normal Damages	0.65
	Pay Double Damages	0.2

The structure for this decision problem is given in the STAGEIN= data set named Stage7.

```
/* -- create the STAGEIN= data set -- */
data Stage7;
    format _OUTCOM1 $14. _OUTCOM2 $14. ;
    input _STNAME_ $ _STTYPE_ $ _OUTCOM1 $
        _SUCC1 $ _OUTCOM2 $ _SUCC2 $ ;
    datalines;
\begin{tabular}{llllll} 
Action & D & Invoking & Response & Not_Invoking & . \\
Response & C & Accept & \(\cdot\) & Refuse & Lawsuit \\
Lawsuit & C & Press Issue & & Settle &
\end{tabular}
```

.	.	Sue	Last	.	.
Last	C	3_Years	Result	4_Years	Result
.	.	5_Years	Result	.	.
Result	C	No_Damages	\cdot	Normal_Damages	.
$\dot{\text { P }}$.	Double_Damages	\cdot	.	.

The PROBIN= data set Prob7 contains the probability distributions for the chance nodes.

```
/* -- create the PROBIN= data set -- */
data Prob7;
    format _EVENT1_ _EVENT2_ $14.;
    input _EVENT1_ $ _PROB1_ _EVENT2_ $ _PROB2_ ;
    datalines;
Accept 0.1 Refuse 0.9
Press_Issue 0.1 Settle 0.45
Sue 0.45 .
3_Years 0.3 4_Years 0.4
5_Years 0.3 .
No_Damages 0.15 Normal_Damages 0.65
Double_Damages 0.20 .
;
```

The PAYOFFS= data set Payoff7 defines the payoffs for the various scenarios.

```
    /* -- create the PAYOFFS= data set -- */
data Payoff7(drop=i j k D PCOST);
    length _ACTION_ _STATE1__STATE4 $16;
        /* possible outcomes for the case last */
    array YEARS{3} $16. _TEMPORARY_ ('3_Years',
                                    '4_Years',
                                    '5_Years' );
        /* numerical values for the case last */
    array Y{3} _TEMPORARY_ (3, 4, 5);
        /* possible outcomes for the size of judgment */
    array DAMAGES{3} $16. _TEMPORARY_ ('No_Damages',
                                    'Normal_Damages',
                        'Double_Damages' );
        /* numerical values for the size of judgment */
    array C{3} __TEMPORARY_ (0, 1500, 3000);
    D=0.1; /* discount rate */
        /* payoff for the scenario which the */
        /* 10 percent clause is not invoked */
    _ACTION_='Not_Invoking'; _VALUE_=-450; output;
        /* the clause is invoked */
    _ACTION_='Invoking';
```

```
    /* payoffs for scenarios which the clause is */
    /* invoked and the customer accepts the */
    /* invocation */
    _STATE1='Accept'; _VALUE_=600; output;
    /* the customer refuses the invocation */
    _STATE1='Refuse';
    /* payoffs for scenarios which the clause is */
    /* invoked and the customer refuses the */
    /* invocation but decline to press the issue */
    _STATE2='Press_Issue'; _VALUE_=500; output;
    /* payoffs for scenarios which the clause is */
    /* invoked and the customer refuses the */
    /* invocation but willing to settle out of */
    /* court for 900K */
_STATE2='Settle'; _VALUE_=500-900; output;
    /* the customer will sue for damages */
_STATE2='Sue';
do i=1 to 3;
    _STATE3=YEARS{i};
        /* determine the cost of proceedings */
    PCOST=30; /* initial cost of the proceedings */
        /* additional cost for every years in */
        /* in present value */
    do k=1 to Y{i};
        PCOST=PCOST+(20/((1+D) **k));
    end;
        /* loop for all poss. of the lawsuit result */
    do j=1 to 3;
        _STATE4=DAMAGES{j}; /* the damage have to paid */
            /* compute the net return in present value */
        _VALUE_=500-PCOST-(C{j}/((1+D) **Y{i}));
            /* output an observation for the payoffs */
                /* of this scenario
            */
        output;
    end;
end;
run;
    /* -- print the payoff table -- */
title "Petroleum Distributor's Decision";
title3 "Payoff Table";
proc print;
run;
```

The payoff table of this problem is displayed in Output 7.6.1.

Output 7.6.1 Payoffs for the Petroleum Distributor's Problem

Petroleum Distributor's Decision
Payoff Table

Obs_ACTION__ _STATE1 _STATE2	_STATE3 _STATE4	_VALUE__			
$\mathbf{1}$ Not_Invoking				-450.00	
$\mathbf{2}$ Invoking	Accept			600.00	
$\mathbf{3}$ Invoking	Refuse	Press_Issue		500.00	
$\mathbf{4}$ Invoking	Refuse	Settle			-400.00
$\mathbf{5}$ Invoking	Refuse	Sue	3_Years	No_Damages	420.26
$\mathbf{6}$ Invoking	Refuse	Sue	3_Years	Normal_Damages	-706.71
$\mathbf{7}$ Invoking	Refuse	Sue	3_Years	Double_Damages	-1833.68
$\mathbf{8}$ Invoking	Refuse	Sue	4_Years	No_Damages	406.60
$\mathbf{9}$ Invoking	Refuse	Sue	4_Years	Normal_Damages	-617.92
$\mathbf{1 0}$ Invoking	Refuse	Sue	4_Years	Double_Damages	-1642.44
$\mathbf{1 1}$ Invoking	Refuse	Sue	5_Years	No_Damages	394.18
$\mathbf{1 2}$ Invoking	Refuse	Sue	5_Years	Normal_Damages	-537.20
$\mathbf{1 3}$ Invoking	Refuse	Sue	5_Years	Double_Damages	-1468.58

Note that the payoffs of the various scenarios in Output 7.6.1 are in thousands of dollars and are net present values (NPV) (Baird 1989). For example, the payoff for the following scenario "invoking the clause; the customer refuses to accept this and sues for damages; the case lasts four years and the petroleum distribution company loses and pays double damages" is calculated as

$$
\begin{aligned}
\text { Payoff }= & 500-\mathrm{NPV} \text { of proceedings cost } \\
& -\mathrm{NPV} \text { of damages of } 3,000,000 \\
= & -1,642.44
\end{aligned}
$$

where

$$
\text { NPV of proceedings cost }=30+\sum_{k=1}^{4} 20 /(1+0.1)^{k}
$$

and

$$
\text { NPV of damages of } 3,000,000=3,000 /(1+0.1)^{4}
$$

This is because the company can sell the 10% for $\$ 500,000$ immediately and pay the $\$ 3,000,000$ damages four years from now. The net present value of the proceedings is determined by paying the $\$ 30,000$ initial fee now and a fee of $\$ 20,000$ after every year up to four years. The value of 0.1 is the discount rate used.

The following statements evaluate the problem and plot the optimal solution.

```
    /* -- define graphics options -- */
goptions colors=(green red blue);
goptions hsize=8 in vsize=8.4 in;
    /* -- define title -- */
title h=2.5 "Petroleum Distributor's Decision";
    /* -- PROC DTREE statements -- */
proc dtree stagein=Stage7 probin=Prob7 payoffs=Payoff7;
    evaluate / summary;
    treeplot / graphics compress nolg name="dt6p1" ftext='Cumberland AMT'
        ybetween=1 cell lwidth=2 lwidthb=3 hsymbol=3;
quit;
```

The optimal decision summary in Output 7.6 .2 suggests that the president should invoke the 10% clause because it would turn a loss of $\$ 450,000$ into an expected loss of $\$ 329,000$ in present value.

Output 7.6.2 Summary of the Petroleum Distributor's Decision

Petroleum Distributor's Decision

The DTREE Procedure
Optimal Decision Summary

The decision tree for this problem is shown in Output 7.6.3. There you can find the expected value of each scenario.

Output 7.6.3 Decision Tree for the Petroleum Distributor's Decision

Petroleum Distributor's Decision

The president feels that the estimated likelihood of lawsuit outcomes is fairly reliable. However, the assessment of the likelihood of the customer's response and reaction is extremely difficult to estimate. Because of this, the president would like to keep the analysis as general as possible. His staff suggests using the symbols p and q to represent the probability that the customer will accept the invocation and the probability that the customer will decline to press the issue if he refuses the invocation, respectively. The probabilities of the other possible outcomes about the customer's response and reaction to the invocation of the 10% clause are listed in Table 7.26.

Table 7.26 Probabilities of the Petroleum Distributor's Decision

Uncertainty	Outcome	Probability
Customer's Response	Accept the Invocation	p
	Reject the Invocation	$1-p$
Customer's Action	Press the Issue	q
if the Invocation	Settle the Case	$(1-q) / 2$
is being Rejected	Sue for Damages	$(1-q) / 2$

Now from the decision tree shown in Output 7.6.3, the expected value of the outcome 'Refuse' is

$$
\begin{aligned}
\mathrm{EV} & =500 q-400(1-q) / 2-672(1-q) / 2 \\
& =500 q-200+200 q-336+336 q \\
& =1036 q-536
\end{aligned}
$$

Hence, the expected payoff if the petroleum distribution company invokes the clause is

$$
\begin{aligned}
\mathrm{EV} & =600 p+(1036 q-536)(1-p) \\
& =1136 p+1036 q-1036 p q-536 \\
& =1136 p+1036(1-p) q-536
\end{aligned}
$$

Therefore, the president should invoke the 10% clause if

$$
1136 p+1036(1-p) q-536>-450
$$

or

$$
q>\frac{86-1136 p}{1036-1036 p}
$$

This result is depicted in Output 7.6.4, which is produced by the following statements:

```
    /* -- create data set for decision diagram -- */
data Data7(drop=i);
    P=0.0; /* initialize P */
        /* loop for all possible values of P */
    do i=1 to 21;
            /* determine the corresponding Q */
        Q=(86-(1136*P))/(1036*(1.0-P));
        if Q < 0.0 then Q=0.0;
            /* output this data point */
        output;
            /* set next possible value of P */
        P=P+0.005;
    end;
```

run;
/* create the ANNOTATE= data set for labels of */
/* decision diagram
data label;
length FUNCTION STYLE COLOR \$8;
length XSYS YSYS \$1;
length WHEN POSITION \$1;
length X Y 8;
length SIZE ROTATE 8;
WHEN = 'A';
POSITION='O';
XSYS='2';
YSYS='2';
input FUNCTION \$ X Y STYLE \$ SIZE COLOR \$
ROTATE TEXT \$ \& 16.;
datalines;

label	0.01	0.04	centx	2	black	.	Do Not
label	0.01	0.03	centx	2	black	.	Invoke
label	0.01	0.02	centx	2	black	.	The Clause
label	0.06	0.06	centx	2	black	.	Invoke The
label	0.06	0.05	centx	2	black	.	Clause

;
/* -- define symbol characteristics for boundary -- */
symboll i=joint v=NONE l=1 ci=black;
/* -- define pattern for area fill -- */
pattern1 value=msolid color=cyan;
pattern2 value=msolid color=green;
/* -- define axis characteristics -- */
axis1 label=('Pr(Accept the Invocation)')

```
    order=(0 to 0.1 by 0.01) minor=none;
axis2 label=(angle=90 'Pr(Press the Issue)')
    order=(0 to 0.1 by 0.01) minor=none;
    /* -- plot decision diagram -- */
title h=2.5 "Petroleum Distributor's Decision";
proc gplot data=Data7 ;
    plot Q*P=1 / haxis=axis1
        vaxis=axis2
        annotate=label
        name="dt6p2"
        frame
        areas=2;
run;
quit;
```

Output 7.6.4 Decision Diagram for the Petroleum Distributor's Problem

The decision diagram in Output 7.6 .4 is an analysis of the sensitivity of the solution to the probabilities that the customer will accept the invocation and that the customer will decline to press the issue. He should invoke the clause if he feels the customer's probabilities of outcomes 'Accept ' and 'Press_Issue', p and q, are located in the upper-right area marked as 'Invoke The Clause' in Output 7.6.4 and should not invoke the clause otherwise. Note that the values $p=0.1$ and $q=0.1$ used in this example are located on the upper right corner on the diagram.

Statement and Option Cross-Reference Tables

The following tables reference the statements and options in the DTREE procedure (except the PROC DTREE statement and the QUIT statement) that are illustrated by the examples in this section.

Table 7.27 Statements Specified in Examples

Statement	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
EVALUATE	X	X	X	X	X	X
MODIFY					X	
MOVE					X	
RECALL RESET					X	
SAVE					X	
SUMMARY TREEPLOT	X	X			X	
VARIABLES	X		X	X		X
VPC						
VPI					X	

Table 7.28 Options Specified in Examples

Option	1	2	3	4	5	6
ANNOTATE=				X		
COMPRESS			X	X		X
CRITERION=	X	X		X		
EVENT=	X					
FTEXT=			X			X
GRAPHICS			X	X		X
HSYMBOL=			X			X
LINKA=				X		
LINKB=				X		
LINKC=						
LSTYLEB=			X			
LWIDTH=			X			X
LWIDTHB=			X			X
NAME=			X	X		X
NOLEGEND				X		X
NOWARNING	X	X	X		X	
OUTCOME=	X					
PAYOFFS=	X	X	X	X	X	X
PROB=	X					
PROBIN=	X	X	X	X	X	X
REWARD=	X					
RT=	X	X		X		
STAGE=	X					
STAGEIN=	X	X	X	X	X	X
STATE=	X					
SUCCESSOR=	X					
SUMMARY					X	X
SYMBOLC=				X		
SYMBOLD=				X		
SYMBOLE=				X		
TARGET=		X			X	
TYPE=	X					
VALUE=						
YBETWEEN=			X			X

References

Baird, B. F. (1989). Managerial Decisions under Uncertainty: An Introduction to the Analysis of Decision Making. New York: John Wiley \& Sons.

Howard, R. A. (1968). "The Foundations of Decision Analysis." IEEE Transactions on System Science and Cybernetics SSC-4:211-219.

Howard, R. A. (1988). "Decision Analysis: Practice and Promise." Management Science 34:679-695.
Kuhfeld, W. F. (2010). Statistical Graphics in SAS: An Introduction to the Graph Template Language and the Statistical Graphics Procedures. Cary, NC: SAS Institute Inc.

Raiffa, H. (1970). Decision Analysis Introductory Lectures on Choices under Uncertainty. Reading, MA: Addison-Wesley.

Subject Index

_ACT variables, see ACTION variables
Payoff data set (DTREE), 421
ACTION variables
Payoff data set (DTREE), 421
actions, decision stage, 386
alternatives, decision stage, 386
Annotate data set
DTREE procedure, 407
processing (DTREE), 409
suppress processing (DTREE), 409
Annotate facility
drawing legend of decision tree diagram, 463
DTREE procedure, 462
attitudes toward risk, 392
certain equivalent
calculation, 430
DTREE procedure, 403, 427, 428
exponential utility function, 428
chance nodes
character, 412
color, 407, 412
font, 412
height, 412
symbol, 413
chance stage
decision tree model, 386
outcomes, 386
probabilities, 386
character specification, see symbol specification
chance nodes (DTREE), 412
decision nodes (DTREE), 412
end nodes (DTREE), 413
CIRCLE, special symbol table
DTREE procedure, 413
color specification
chance nodes (DTREE), 407, 412
decision nodes (DTREE), 408, 412
end nodes (DTREE), 408, 413
links of optimal decisions (DTREE), 407, 410
links on decision tree (DTREE), 407, 410
symbol (DTREE), 407, 408, 412, 413
text (DTREE), 408
compress in graphics mode
decision tree diagram, 407, 458
computer resource requirements
DTREE procedure, 439
conditional probability, 386
contract bidding decision problem, 456
corners, rectangular
decision tree diagram, 412
corners, rounded
decision tree diagram, 412
corporate risk tolerance, 429
assessing, 429
estimating, 429
COST variables, see REWARD variables
COST= option, see REWARD= option
cumulative reward, 425
on decision tree diagram, 404, 405, 417
optimal decision summary, 405
decision criterion, 403
specifying, 393
decision model, see decision tree model
decision nodes
character, 412
color, 408, 412
font, 412
height, 412
symbol, 413
decision stage
decision tree model, 386
outcomes, 386
decision tree diagram
cumulative reward, 404, 417
displaying, 387, 391, 417, 427, 431
drawing on one page, 407, 458
evaluating value, 404, 417
graphics version, 433
information displayed, 404, 418
labels, 404, 418
line-printer version, 433
number of pages, 432
outcome name, 404, 417
page format, 431
probability, 404, 417
reward, 404, 417
stage name, 404, 417
decision tree model, 386
difference between rewards and payoffs, 423
evaluating, 387, 391
modifying, 387
outcomes, 386
recalling, 387, 416
representing, 405
saving, 387, 417, 427
scenario, 417
stages, 386
discount rate
example (DTREE), 475
display
information in decision tree diagram, 404, 417
displayed output
DTREE procedure, 430
DOT, special symbol table
DTREE procedure, 413
DTREE examples, 439
contract bidding decision problem, 456
loan grant decision problem, 465
oil wildcatter's decision problem, 440, 445
petroleum distributor's decision problem, 475
research and development decision problem, 461
DTREE procedure
computer resource requirements, 439
displayed output, 430
displaying decision tree, 431
error handling, 438
evaluating decision tree, 427
functional summary, 400
general options, 403-406
graphics options, 407-413
Imagemap data set, 410, 435
input data sets, 422
interactivity, 426
line-printer options, 414
missing values, 425
ODS style template, 436
ODS table names, 435
options classified by function, 400
output data sets, 387
Output Delivery System (ODS), 387
overview, 386
syntax skeleton, 399
table of syntax elements, 400
terminating, 387, 416, 426
variables, 419-421
end nodes
character, 413
color, 408, 413
font, 413
height, 413
symbol, 413
end stage
decision tree model, 386
equity
estimating corporate risk tolerance, 429
errors
DTREE procedure, 404, 424-427, 439
evaluating value
decision tree diagram, 405
DTREE procedure, 421, 428
on decision tree diagram, 404, 417
on optimal decision summary, 405
optimal, 415
represented with Payoff data set (DTREE), 405
selecting the best alternative, 430
_EVEN variables, see EVENT variables
Probability data set (DTREE), 420
EVENT variables
Probability data set (DTREE), 420
events, 386
examples, see DTREE examples
statement and option cross-reference tables (DTREE), 484
expected utility, DTREE procedure, 427
expected value, DTREE procedure, 427, 428
exponential utility function
DTREE procedure, 392, 404, 428, 430
example (DTREE), 444
financial decisions, see loan grant decision problem
font specification, see symbol specification
chance nodes (DTREE), 412
decision nodes (DTREE), 412
end nodes (DTREE), 413
symbol (DTREE), 412, 413
text (DTREE), 409
font, hardware
for text on decision tree, 409
format control options
DTREE procedure, 405, 432
formatting
numerical values on decision tree diagram, 405
outcome names on decision tree diagram, 405
functional summary
DTREE procedure, 400
future certain equivalent value, see evaluating value future funds
example (DTREE), 475
general options
DTREE procedure, 403-406
_GIVE variables, see GIVEN variables
Probability data set (DTREE), 420
GIVEN variables
Probability data set (DTREE), 420
global graphics options
color of symbol, 407, 408
color of text, 408
controlling the appearance of decision tree, 433, 461
font of text, 409
height, 409
number of columns, 433
number of rows, 433
unit of measure, 406
global options
DTREE procedure, 426
graphics catalog
DTREE procedure, 409
graphics version
example (DTREE), 456
options specific to (DTREE), 407-413
hardware font
for text on decision tree, 409
height specification
chance nodes (DTREE), 412
decision nodes (DTREE), 412
end nodes (DTREE), 413
nodes on decision tree (DTREE), 409
symbol (DTREE), 409, 412, 413
text (DTREE), 409
Imagemap data set
DTREE procedure, 387
input data sets, see Probability data set, see Stage data set, see Payoff data set, see Annotate data set, see Payoff data set, see Probability data set, see Stage data set, see Payoff data set, see Probability data set, see Stage data set
DTREE procedure, 386, 387, 419, 422
interactivity
DTREE procedure, 426
labels on decision tree diagram, 405, 417
displaying, 404
suppress displaying, 404, 418
legend
customized with Annotate data set (DTREE), 407, 463
on decision tree diagram, 410
suppress displaying (DTREE), 410
line-printer version
options specific to (DTREE), 414
line style specification
links across pages (DTREE), 410, 411
links of optimal decisions (DTREE), 410, 411
links on decision tree (DTREE), 410, 411
line width specification
links of optimal decisions (DTREE), 410, 411
links on decision tree (DTREE), 410, 411
linear utility function, 428
links across pages
color, 410
style, 411
thickness, 410
type, 410, 411
links of optimal decisions
color, 407, 410
style, 411
thickness, 410, 411
type, 410, 411
links on decision tree
color, 407, 410
style, 411
thickness, 410, 411
type, 410, 411
litigation decisions, see petroleum distributor's decision problem
loan grant decision problem, 465
local options
DTREE procedure, 426
LOSS variables, see VALUE variables
machine epsilon, 406
missing values
DTREE procedure, 425, 426
most likely value, DTREE procedure, 427
multiple pages
displaying decision tree diagram, 431
net income
estimating corporate risk tolerance, 429
net present value, 478
net sales
estimating corporate risk tolerance, 429
nodes on decision tree, 401, see chance nodes, see decision nodes, see end nodes
NPV, see net present value
number of columns, global graphics options
DTREE procedure, 433
number of pages
displaying decision tree diagram, 432
number of rows, global graphics options DTREE procedure, 433
numerical precision, DTREE procedure, 438
oil wildcatter's decision problem, 422, 427
a risk-averse setting, 445
an insurance option, 440
example, 387
sounding test option, 395
value of perfect control, 394
value of perfect information, 393
optimal decision
determining, 393
optimal decision summary
displaying, 387, 391, 405, 406, 417, 426, 430
example, 391, 396, 424, 425
suppress displaying, 405
optimal evaluating value, 415
options
not changed, 416
resetting, 387, 416, 426
specified on multiple statements, 426
options classified by function, see functional summary
order of stages
determining, 427
limitations to modifying, 416
modifying, 387, 416, 427
structuring decision problems, 426
order of statements
DTREE procedure, 426
_OUT variables, see OUTCOME variables
Stage data set (DTREE), 419
outcome name
on decision tree diagram, 404, 417
OUTCOME variables
Stage data set (DTREE), 419
outcomes
chance stage, 386
decision stage, 386
decision tree model, 386
name, 386
reward, 386
successor, 386
output data sets, see Imagemap data set
DTREE procedure, 387
Output Delivery System (ODS)
DTREE procedure, 387, 436
DTREE style template, 436
table names, 435
overview
DTREE procedure, 386
page
drawing decision tree on a single, 407, 458
format of decision tree diagram, 431
page numbers
on decision tree diagram, 412
suppress displaying (DTREE), 412
pages
needed in displaying decision tree diagram, 432
Payoff data set
DTREE procedure, 387, 405, 422, 423
example, 389
redundant observations, 466
variables, 421
payoffs
decision tree model, 423
different from rewards, 423
warning if unassigned, 406
PAYOFFS variables, see VALUE variables
petroleum distributor's decision problem, 475
preference, DTREE procedure, 427

PROB variables
Probability data set (DTREE), 421
_PROB variables, see PROB variables
Probability data set (DTREE), 421
probabilities
decision tree model, 386
do not sum to 1,403
on decision tree diagram, 404, 405, 417
scaled by DTREE procedure, 403
warning when rescaled, 406
Probability data set
DTREE procedure, 386, 405, 422, 423, 425
example, 389
variables, 420, 421
rectangular corners
decision tree diagram, 412
rescale probabilities
DTREE procedure, 403
warning in DTREE procedure, 406
research and development decision problem, 461
_REW variables, see REWARD variables
Stage data set (DTREE), 419
REWARD variables
Stage data set (DTREE), 419, 423, 424
rewards
decision tree model, 423
different from payoffs, 423
label on decision tree diagram, 405
modifying, 415
on decision tree diagram, 404, 417
risk, 428
risk averse, 444, 445
risk aversion
coefficient, 428
DTREE procedure, 428
risk tolerance
DTREE procedure, 392, 428, 429
estimation, 428
example (DTREE), 444, 445
specifying, 393, 405, 430
rounded corners
decision tree diagram, 412
RT, see risk tolerance
SAS catalogs, see graphics catalog
SAS data sets
DTREE procedure, 386-388, 422
scenario of decision tree, 386,417
spacing between
two successive end nodes, 406
special symbol table
DTREE procedure, 413
SQUARE, special symbol table

DTREE procedure, 413
Stage data set
DTREE procedure, 386, 405, 422-424, 427
example, 388
variables, 419, 420
stage name
on decision tree diagram, 404, 417
stage type
modifying, 415
STAGE variable
Stage data set (DTREE), 419
stages
chance, 386
decision, 386
decision tree model, 386
end, 386
name, 386
order, 416, 426, 427
outcomes, 386
type, 386, 415
_STAT variables, see STATE variables
Payoff data set (DTREE), 421
STATE variables
Payoff data set (DTREE), 421
statement order
DTREE procedure, 426
STNAME variable, see STAGE variable
Stage data set (DTREE), 419
straight-line utility function, 405
STTYPE variable, see TYPE variable
Stage data set (DTREE), 420
style of lines, see line style specification
_SUCC variables, see SUCCESSOR variables
Stage data set (DTREE), 420
SUCCESSOR variables
Stage data set (DTREE), 420
symbol specification
chance nodes (DTREE), 412, 413
controlling the appearance of decision tree, 433
decision nodes (DTREE), 412, 413
DTREE procedure, 410-413
end nodes (DTREE), 413
example (DTREE), 461, 463
identifying symbols for links on decision tree, 410
identifying symbols for nodes on decision tree, 412, 413
syntax skeleton
DTREE procedure, 399
text
color (DTREE), 408
font (DTREE), 409
height (DTREE), 409
thickness of lines, see line width specification
total probability
DTREE procedure, 403
is not equal to 1,403
type of lines, see line style specification
TYPE variable
Stage data set (DTREE), 420
unassigned payoffs
warning in DTREE procedure, 406
uncertain factor
represented as chance stage, 386
uncertainty, decision tree model, 386, 427, 428
unconditional probability
DTREE procedure, 387
unit of measure, global graphics options DTREE procedure, 406
units of vertical space
DTREE procedure, 406
graphics version (DTREE), 406
line-printer version, 406
utility, 427
utility curve, 404, 427
utility function
DTREE procedure, 392, 427, 428
exponential, 392, 404, 428, 430
straight-line, 405, 428
utility value, 427
UTILITY variables, see VALUE variables
_VALU variables, see VALUE variables Payoff data set (DTREE), 421
value of imperfect information, see value of sample information
value of perfect control, 394, 422
evaluating, 387, 394, 470, 471
misleading, 471
oil wildcatter's decision problem, 394
value of perfect information, 393, 422
evaluating, 387, 393, 394, 427, 470
misleading, 470
oil wildcatter's decision problem, 393
value of sample information, 397
evaluating, 398
VALUE variables
Payoff data set (DTREE), 421
variables
list of, DTREE procedure, 419
treatment of missing values (DTREE), 425
vertical space
between two end nodes (DTREE), 406
units (DTREE), 406
warning
suppress displaying (DTREE), 406, 424
Web-enabled decision tree, 410, 420, 435

WEB variable
Imagemap data set (DTREE), 410
Stage data set (DTREE), 420, 435
width of lines, see line width specification

Syntax Index

ACTION= option
VARIABLES statement (DTREE), 421
AFTER keyword
MOVE statement (DTREE), 416
ALL keyword
DISPLAY = option (DTREE), 404
ANNO= option, see ANNOTATE= option
ANNOTATE $=$ option
PROC DTREE statement, 407, 463
TREEPLOT statement (DTREE), 418
AUTOSCALE option
PROC DTREE statement, 403

BEFORE keyword

MOVE statement (DTREE), 416
$\mathrm{CB}=$ option, see $\mathrm{CBEST}=$ option
CBEST= option
PROC DTREE statement, 407
TREEPLOT statement (DTREE), 418
$\mathrm{CC}=$ option, see $\mathrm{CSYMBOLC}=$ option
CD= option, see CSYMBOLD= option
$\mathrm{CE}=$ option, see $\mathrm{CSYMBOLE}=$ option
CELL units
YBETWEEN= option (DTREE), 406
CHANCE keyword
TYPE variable (DTREE), 420
CL= option, see CLINK= option
CLINK= option
PROC DTREE statement, 407
TREEPLOT statement (DTREE), 418
CM units
YBETWEEN = option (DTREE), 406
COMPRESS option
PROC DTREE statement, 407
TREEPLOT statement (DTREE), 418, 459, 463, 479
CP option, see COMPRESS option
CR keyword
DISPLAY = option (DTREE), 404
CRITERION= option
EVALUATE statement (DTREE), 415
PROC DTREE statement, 403, 452, 463
RESET statement (DTREE), 444
CSYMBOLC= option
PROC DTREE statement, 407
TREEPLOT statement (DTREE), 418
CSYMBOLD= option
PROC DTREE statement, 408

TREEPLOT statement (DTREE), 418
CSYMBOLE= option
PROC DTREE statement, 408
TREEPLOT statement (DTREE), 418
CT= option, see CTEXT = option
CTEXT= option
PROC DTREE statement, 408
TREEPLOT statement (DTREE), 418
DECISION keyword
TYPE variable (DTREE), 420
DES = option, see DESCRIPTION= option
DESCRIPTION $=$ option
PROC DTREE statement, 408
TREEPLOT statement (DTREE), 418
DISPLAY = option
PROC DTREE statement, 404
TREEPLOT statement (DTREE), 418
DOANNO option, see DOANNOTATE option
DOANNOTATE option
PROC DTREE statement, 409
TREEPLOT statement (DTREE), 418
DRAIN keyword
ERRHANDLE= option (DTREE), 404
DTREE procedure, 399
EVALUATE statement, 415
MODIFY statement, 415
MOVE statement, 416
PROC DTREE statement, 403
QUIT statement, 416
RECALL statement, 416
RESET statement, 416
SAVE statement, 417
SUMMARY statement, 417
TREEPLOT statement, 417
VARIABLES statement, 418
VPC statement, 421
VPI statement, 422
END keyword
TYPE variable (DTREE), 420
ERRHANDLE= option
PROC DTREE statement, 404
EV keyword
DISPLAY = option (DTREE), 404
EVALUATE statement
DTREE procedure, 415
EVENT= option
VARIABLES statement (DTREE), 420, 443

FONT= option, see FTEXT= option
FORMCHAR= option
PROC DTREE statement, 414
TREEPLOT statement (DTREE), 418
FTEXT= option
PROC DTREE statement, 409
TREEPLOT statement (DTREE), 418, 459, 479
GIVEN= option
VARIABLES statement (DTREE), 420
GOUT= option
PROC DTREE statement, 409
TREEPLOT statement (DTREE), 418
GRAPHICS option
PROC DTREE statement, 404, 459, 463
TREEPLOT statement (DTREE), 418, 479
HS = option, see HSYMBOL= option
HSYMBOL= option
PROC DTREE statement, 409
TREEPLOT statement (DTREE), 418, 459, 479
HT= option, see HTEXT= option
HTEXT= option
PROC DTREE statement, 409
TREEPLOT statement (DTREE), 418
HTML $=$ option, see $\mathrm{WEB}=$ option
IMAGEMAP $=$ option
PROC DTREE statement, 410, 435
TREEPLOT statement (DTREE), 418
INCH units
YBETWEEN $=$ option (DTREE), 406
L= option, see LSTYLE= option
LABEL option
PROC DTREE statement, 404
TREEPLOT statement (DTREE), 418
LB $=$ option, see LSTYLEB $=$ option
LC= option, see LSTYLEC= option
LEGEND option
PROC DTREE statement, 410
TREEPLOT statement (DTREE), 418
LG option, see LEGEND option
LINEPRINTER option
PROC DTREE statement, 405
TREEPLOT statement (DTREE), 418
LINK keyword
DISPLAY = option (DTREE), 404
LINKA= option
PROC DTREE statement, 410
TREEPLOT statement (DTREE), 418, 463
LINKB = option
PROC DTREE statement, 410
TREEPLOT statement (DTREE), 418, 463
LINKC= option

PROC DTREE statement, 410
TREEPLOT statement (DTREE), 418
LOSS $=$ option, see VALUE= option
LP option, see LINEPRINTER option
LSTYLE = option
PROC DTREE statement, 411
TREEPLOT statement (DTREE), 418
LSTYLEB = option
PROC DTREE statement, 411
TREEPLOT statement (DTREE), 418, 459
LSTYLEC= option
PROC DTREE statement, 411
TREEPLOT statement (DTREE), 418
LTHICK= option, see LWIDTH= option
LTHICKB= option, see LWIDTHB= option
LWIDTH= option
PROC DTREE statement, 411
TREEPLOT statement (DTREE), 418, 459, 479
LWIDTHB = option
PROC DTREE statement, 411
TREEPLOT statement (DTREE), 418, 459, 479
MAXCE keyword
CRITERION $=$ option (DTREE), 404, 405
MAXEV keyword
CRITERION $=$ option (DTREE), 404
MAXMLV keyword
CRITERION = option (DTREE), 404
MAXPREC= option
EVALUATE statement (DTREE), 415
PROC DTREE statement, 405
SUMMARY statement (DTREE), 417
TREEPLOT statement (DTREE), 418
MAXWIDTH= option
EVALUATE statement (DTREE), 415
PROC DTREE statement, 405
SUMMARY statement (DTREE), 417
TREEPLOT statement (DTREE), 418
MINCE keyword
CRITERION = option (DTREE), 404, 405
MINEV keyword
CRITERION= option (DTREE), 404
MINMLV keyword
CRITERION = option (DTREE), 404
MODIFY statement
DTREE procedure, 415, 467, 470, 472
MOVE statement
DTREE procedure, 416, 469
NAME $=$ option
PROC DTREE statement, 412
TREEPLOT statement (DTREE), 418, 459
NOANNO option, see NOANNOTATE option NOANNOTATE option

PROC DTREE statement, 409
TREEPLOT statement (DTREE), 418
NOCOMPRESS option
PROC DTREE statement, 407
TREEPLOT statement (DTREE), 418
NOCP option, see NOCOMPRESS option
NOLABEL option
PROC DTREE statement, 404
TREEPLOT statement (DTREE), 418
NOLEGEND option
PROC DTREE statement, 410, 463
TREEPLOT statement (DTREE), 418, 479
NOLG option, see NOLEGEND option
NOPAGENUM option
PROC DTREE statement, 412
TREEPLOT statement (DTREE), 418
NOPAGENUMBER option, see NOPAGENUM option
NORC option
PROC DTREE statement, 412
TREEPLOT statement (DTREE), 418
NOSCALE option
PROC DTREE statement, 403
NOSUMMARY option
EVALUATE statement (DTREE), 415
PROC DTREE statement, 405
NOWARNING option
PROC DTREE statement, 406
NWIDTH= option
EVALUATE statement (DTREE), 415
PROC DTREE statement, 405
SUMMARY statement (DTREE), 417
TREEPLOT statement (DTREE), 418
OUTCOME= option
VARIABLES statement (DTREE), 419, 443
P keyword
DISPLAY $=$ option (DTREE), 404
PAGENUM option
PROC DTREE statement, 412
TREEPLOT statement (DTREE), 418
PAGENUMBER option, see PAGENUM option
PAYOFFS = option, see VALUE= option
PROC DTREE statement, 405
PCT units
YBETWEEN $=$ option (DTREE), 406
PROB= option
VARIABLES statement (DTREE), 421, 443
PROBIN $=$ option
PROC DTREE statement, 405
PROC DTREE statement, see DTREE procedure general options, 403-406
graphics options, 407-413
line-printer options, 414

QUIT keyword
ERRHANDLE $=$ option $(D T R E E), 404$
QUIT statement
DTREE procedure, 416
R keyword
DISPLAY $=$ option (DTREE), 404
RC option
PROC DTREE statement, 412
TREEPLOT statement (DTREE), 418
RECALL statement
DTREE procedure, 416, 469, 472
RESET statement
DTREE procedure, 416, 444
REWARD keyword
MODIFY statement (DTREE), 415
REWARD = option
VARIABLES statement (DTREE), 419, 443
RT=option
EVALUATE statement (DTREE), 415
PROC DTREE statement, 405, 452, 463
RESET statement (DTREE), 444
SAVE statement
DTREE procedure, 417, 469, 472
SPACE units
YBETWEEN $=$ option (DTREE), 406
STAGE keyword
DISPLAY = option (DTREE), 404
STAGE= option
VARIABLES statement (DTREE), 419, 443
STAGEIN= option PROC DTREE statement, 405
STATE $=$ option
VARIABLES statement (DTREE), 421, 443
SUCC= option, see SUCCESSOR= option
SUCCESSOR= option
VARIABLES statement (DTREE), 420, 443
SUMMARY option
EVALUATE statement (DTREE), 415, 472, 479
PROC DTREE statement, 405, 467
SUMMARY statement
DTREE procedure, 417, 443, 452, 467
SYMBC= option, see SYMBOLC= option
SYMBD = option, see $\mathrm{SYMBOLD}=$ option
SYMBE= option, see SYMBOLE= option
SYMBOLC= option
PROC DTREE statement, 412
TREEPLOT statement (DTREE), 418, 463
SYMBOLD = option
PROC DTREE statement, 412
TREEPLOT statement (DTREE), 418, 463
SYMBOLE= option
PROC DTREE statement, 413

TREEPLOT statement (DTREE), 418, 463
TARGET= option
EVALUATE statement (DTREE), 415, 472
PROC DTREE statement, 406, 467
SUMMARY statement (DTREE), 417, 443, 452, 467
TOLERANCE $=$ option
PROC DTREE statement, 406
TREEPLOT statement
DTREE procedure, 417, 418, 459, 463, 479
TYPE keyword
MODIFY statement (DTREE), 415
TYPE= option
VARIABLES statement (DTREE), 420, 443
UTILITY= option, see VALUE= option
VALUE= option
VARIABLES statement (DTREE), 421
VARIABLES statement
DTREE procedure, 418-421, 443
$\mathrm{VC}=$ option, see $\mathrm{VSYMBOLC}=$ option
$\mathrm{VD}=$ option, see $\mathrm{VSYMBOLD}=$ option
$\mathrm{VE}=$ option, see $\mathrm{VSYMBOLE}=$ option
VPC statement
DTREE procedure, 421, 471
VPI statement
DTREE procedure, 422,470
VSYMBOLC= option
PROC DTREE statement, 413
TREEPLOT statement (DTREE), 418
VSYMBOLD= option
PROC DTREE statement, 413
TREEPLOT statement (DTREE), 418
VSYMBOLE $=$ option
PROC DTREE statement, 413
TREEPLOT statement (DTREE), 418
WARNING option
PROC DTREE statement, 406
$\mathrm{WEB}=$ option
VARIABLES statement (DTREE), 420, 435
YBETWEEN= option
PROC DTREE statement, 406
TREEPLOT statement (DTREE), 418, 459, 479

[^0]: ${ }^{1}$ The stages are often referred to as variables in many decision analysis articles.

[^1]: ${ }^{3} \mathrm{NL}$ denotes that this information is not labeled.

[^2]: ${ }^{1}$ The future certain equivalent value is often referred to as the evaluating value in this documentation.

[^3]: ${ }^{2}$ The number of nodes depends on the number of stages and the number of outcomes for each stage.

