
SAS/OR® 15.1 User’s Guide
Project Management
The CPM Procedure

This document is an individual chapter from SAS/OR® 15.1 User’s Guide: Project Management.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2018. SAS/OR® 15.1 User’s Guide: Project
Management. Cary, NC: SAS Institute Inc.

SAS/OR® 15.1 User’s Guide: Project Management

Copyright © 2018, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute
Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time
you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is
illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic
piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software
developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or
disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as
applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S.
federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision
serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The
Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

November 2018

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SAS software may be provided with certain third-party software, including but not limited to open-source software, which is
licensed under its applicable third-party software license agreement. For license information about third-party software distributed
with SAS software, refer to http://support.sas.com/thirdpartylicenses.

http://support.sas.com/thirdpartylicenses

Chapter 4

The CPM Procedure

Contents
Overview: CPM Procedure . 57
Getting Started: CPM Procedure . 58
Syntax: CPM Procedure . 63

Functional Summary . 63
PROC CPM Statement . 67
ACTIVITY Statement . 72
ACTUAL Statement . 72
ALIGNDATE Statement . 75
ALIGNTYPE Statement . 75
BASELINE Statement . 76
CALID Statement . 77
DURATION Statement . 78
HEADNODE Statement . 78
HOLIDAY Statement . 79
ID Statement . 80
PROJECT Statement . 80
RESOURCE Statement . 82
SUCCESSOR Statement . 92
TAILNODE Statement . 93

Details: CPM Procedure . 94
Scheduling Subject to Precedence Constraints . 95
Using the INTERVAL= Option . 96
Nonstandard Precedence Relationships . 97
Time-Constrained Scheduling . 98
Finish Milestones . 100
OUT= Schedule Data Set . 101
Multiple Calendars . 103
Baseline and Target Schedules . 111
Progress Updating . 111
Resource-Driven Durations and Resource Calendars 114
Resource Usage and Allocation . 115
RESOURCEOUT= Usage Data Set . 129
RESOURCESCHED= Resource Schedule Data Set 133
Multiproject Scheduling . 133
Macro Variable _ORCPM_ . 136
Input Data Sets and Related Variables . 137

56 F Chapter 4: The CPM Procedure

Missing Values in Input Data Sets . 139
FORMAT Specification . 141
Computer Resource Requirements . 141

Examples: CPM Procedure . 142
Example 4.1: Activity-on-Node Representation . 144
Example 4.2: Activity-on-Arc Representation . 148
Example 4.3: Meeting Project Deadlines . 151
Example 4.4: Displaying the Schedule on a Calendar 153
Example 4.5: Precedence Gantt Chart . 156
Example 4.6: Changing Duration Units . 157
Example 4.7: Controlling the Project Calendar . 161
Example 4.8: Scheduling around Holidays . 163
Example 4.9: CALEDATA and WORKDATA Data Sets 169
Example 4.10: Multiple Calendars . 174
Example 4.11: Nonstandard Relationships . 183
Example 4.12: Activity Time Constraints . 188
Example 4.13: Progress Update and Target Schedules 190
Example 4.14: Summarizing Resource Utilization 195
Example 4.15: Resource Allocation . 201
Example 4.16: Using Supplementary Resources . 210
Example 4.17: INFEASDIAGNOSTIC Option and Aggregate Resource Type 214
Example 4.18: Variable Activity Delay . 221
Example 4.19: Activity Splitting . 228
Example 4.20: Alternate Resources . 233
Example 4.21: PERT Assumptions and Calculations 241
Example 4.22: Scheduling Course - Teacher Combinations 244
Example 4.23: Multiproject Scheduling . 248
Example 4.24: Resource-Driven Durations and Resource Calendars 258
Example 4.25: Resource-Driven Durations and Alternate Resources 270
Example 4.26: Multiple Alternate Resources . 276
Example 4.27: Auxiliary Resources and Alternate Resources 278
Example 4.28: Use of the SETFINISHMILESTONE Option 281
Example 4.29: Negative Resource Requirements . 289
Example 4.30: Auxiliary Resources and Negative Requirements 292
Example 4.31: Resource-Driven Durations and Negative Requirements 296
Statement and Option Cross-Reference Tables . 301

References . 303

Overview: CPM Procedure F 57

Overview: CPM Procedure
The CPM procedure can be used for planning, controlling, and monitoring a project. A typical project
consists of several activities that may have precedence and time constraints. Some of these activities may
already be in progress; some of them may follow different work schedules. All of the activities may compete
for scarce resources. PROC CPM enables you to schedule activities subject to all of these constraints.

PROC CPM enables you to define calendars and specify holidays for the different activities so that you can
schedule around holidays and vacation periods. Once a project has started, you can monitor it by specifying
current information or progress data that is used by PROC CPM to compute an updated schedule. You can
compare the new schedule with a baseline (or target) schedule.

For projects with scarce resources, you can determine resource-constrained schedules. PROC CPM enables
you to select from a wide variety of options so that you can control the scheduling process. Thus, you may
select to delay project completion time or use supplementary levels of resources, or alternate resources, if
they are available.

All project information is contained in SAS data sets. The input data sets used by PROC CPM are as follows:

� The Activity data set contains all activity-related information such as activity name, precedence infor-
mation, calendar used by the activity, progress information, baseline (or target schedule) information,
resource requirements, time constraints, and any other information that you want to identify with each
activity.

� The Resource data set specifies resource types, resource availabilities, resource priorities, and alternate
resources.

� The Workday data set and the Calendar data set together enable you to specify any type of work pattern
during a week and within each day of the week.

� The Holiday data set enables you to associate standard holidays and vacation periods with each
calendar.

The output data sets are as follows:

� The Schedule data set contains the early, late, baseline, resource-constrained, and actual schedules and
any other activity-related information that is calculated by PROC CPM.

� The Resource Schedule data set contains the schedules for each resource used by an activity.

� The Usage data set contains the resource usage for each of the resources used in the project.

See Chapter 5, “The PM Procedure,” for an interactive procedure that enables you to use a Graphical User
Interface to enter and edit project information.

58 F Chapter 4: The CPM Procedure

Getting Started: CPM Procedure
The basic steps necessary to schedule a project are illustrated using a simple example. Consider a software
development project in which an applications developer has the software finished and ready for preliminary
testing. In order to complete the project, several activities must take place. Certain activities cannot start
until other activities have finished. For instance, the preliminary documentation must be written before it
can be revised and edited and before the Quality Assurance department (QA) can test the software. Such
constraints among the activities (namely, activity B can start after activity A has finished) are referred to as
precedence constraints. Given the precedence constraints and estimated durations of the activities, you can
use the critical path method to determine the shortest completion time for the project.

Figure 4.1 Activity-On-Arc Network

The first step in determining project completion time is to capture the relationships between the activities in a
convenient representation. This is done by using a network diagram. Two types of network diagrams are
popular for representing a project.

� Activity-On-Arc (AOA) or Activity-On-Edge (AOE) diagrams show the activities on the arcs or edges
of the network. Figure 4.1 shows the AOA representation for the software project. This method of
representing a project is known also as the arrow diagramming method (ADM). For projects represented
in the AOA format, PROC CPM requires the use of the following statements:

PROC CPM options ;
TAILNODE variable ;
HEADNODE variable ;
DURATION variable ;

Getting Started: CPM Procedure F 59

� Activity-On-Node (AON) or Activity-On-Vertex (AOV) diagrams show the activities on nodes or
vertices of the network. Figure 4.2 shows the AON representation of the project. This method is
known also as the precedence diagramming method (PDM). The AON representation is more flexible
because it enables you to specify nonstandard precedence relationships between the activities (for
example, you can specify that activity B starts five days after the start of activity A). PROC CPM
requires the use of the following statements to schedule projects that are represented using the AON
format:

PROC CPM options ;
ACTIVITY variable ;
SUCCESSOR variables ;
DURATION variable ;

Figure 4.2 Activity-On-Node Network

The AON representation of the network is used in the remainder of this section to illustrate some of the
features of PROC CPM. The project data are input to PROC CPM using a SAS data set. The basic project
information is conveyed to PROC CPM through the ACTIVITY, SUCCESSOR, and DURATION statements.
Each observation of the Activity data set specifies an activity in the project, its duration, and its immediate
successors. PROC CPM enables you to specify all of the immediate successors in the same observation,
or you can have multiple observations for each activity, listing each successor in a separate observation.
(Multiple variables in the SUCCESSOR statement are used here.) PROC CPM enables you to use long
activity names. In this example, shorter names are used for the activities to facilitate data entry; a variable,
Descrpt, is used to specify a longer description for each activity.

60 F Chapter 4: The CPM Procedure

The procedure determines items such as the following:

� the minimum time in which the project can be completed

� the set of activities that is critical to the completion of the project in the minimum amount of time

No displayed output is produced. However, the results are saved in an output data set (the Schedule data set)
that is shown in Figure 4.3.

The code for the entire program is as follows.

data software;
format Descrpt $20. Activity $8.

Succesr1-Succesr2 $8. ;
input Descrpt & Duration Activity $

Succesr1 $ Succesr2 $;
datalines;

Initial Testing 20 TESTING RECODE .
Prel. Documentation 15 PRELDOC DOCEDREV QATEST
Meet Marketing 1 MEETMKT RECODE .
Recoding 5 RECODE DOCEDREV QATEST
QA Test Approve 10 QATEST PROD .
Doc. Edit and Revise 10 DOCEDREV PROD .
Production 1 PROD . .
;

proc cpm data=software
out=intro1
interval=day
date='01mar04'd;

id descrpt;
activity activity;
duration duration;
successor succesr1 succesr2;

run;

title 'Project Schedule';
proc print data=intro1;
run;

Getting Started: CPM Procedure F 61

Figure 4.3 Software Project Plan

Project Schedule

Obs Activity Succesr1 Succesr2 Duration Descrpt

1 TESTING RECODE 20 Initial Testing

2 PRELDOC DOCEDREV QATEST 15 Prel. Documentation

3 MEETMKT RECODE 1 Meet Marketing

4 RECODE DOCEDREV QATEST 5 Recoding

5 QATEST PROD 10 QA Test Approve

6 DOCEDREV PROD 10 Doc. Edit and Revise

7 PROD 1 Production

Obs E_START E_FINISH L_START L_FINISH T_FLOAT F_FLOAT

1 01MAR04 20MAR04 01MAR04 20MAR04 0 0

2 01MAR04 15MAR04 11MAR04 25MAR04 10 10

3 01MAR04 01MAR04 20MAR04 20MAR04 19 19

4 21MAR04 25MAR04 21MAR04 25MAR04 0 0

5 26MAR04 04APR04 26MAR04 04APR04 0 0

6 26MAR04 04APR04 26MAR04 04APR04 0 0

7 05APR04 05APR04 05APR04 05APR04 0 0

In addition to the variables specified in the ACTIVITY, SUCCESSOR, DURATION, and ID statements, the
output data set contains the following new variables.

E_START
specifies the earliest time an activity can begin, subject to any time constraints and the completion time
of the preceding activity.

E_FINISH
specifies the earliest time an activity can be finished, assuming it starts at E_START.

L_START
specifies the latest time an activity can begin so that the project is not delayed.

L_FINISH
specifies the latest time an activity can be finished without delaying the project.

T_FLOAT
specifies the amount of flexibility in the starting of a specific activity without delaying the project:

T_FLOAT = L_START � E_START = L_FINISH � E_FINISH

F_FLOAT
specifies the difference between the early finish time of the activity and the early start time of the
activity’s immediate successors.

In Figure 4.3 the majority of the tasks have a total float value of 0. These events are critical; that is, any
delay in these activities will cause the project to be delayed. Some of the activities have slack present, which
means that they can be delayed by that amount without affecting the project completion date. For example,
the activity MEETMKT has a slack period of 19 days because there are 19 days between 01MAR04 and
20MAR04.

62 F Chapter 4: The CPM Procedure

The INTERVAL= option in the PROC CPM statement enables you to specify the durations of the activities
in one of several possible units including days, weeks, months, hours, and minutes. In addition, you can
schedule activities around weekends and holidays. (To skip weekends, you specify INTERVAL=WEEKDAY.)
You can also select different patterns of work during a day or a week (for example, holidays on Friday and
Saturday) and different sets of holidays for the different activities in the project. A calendar consists of a set
of work schedules for a typical week and a set of holidays. PROC CPM enables you to define any number of
calendars and associate different activities with different calendars.

In the previous example, you saw that you could schedule your project by selecting a project start date. You
can also specify a project finish date if you have a deadline to be met and you need to determine the latest
start times for the different activities in the project. You can also set constraints on start or finish dates for
specific activities within a given project. For example, testing the software may have to be delayed until the
testing group finishes another project that has a higher priority. PROC CPM can schedule the project subject
to such restrictions through the use of the ALIGNDATE and ALIGNTYPE statements. See Example 4.12 for
more information about the use of the ALIGNDATE and ALIGNTYPE statements.

For a project that is already in progress, you can incorporate the actual schedule of the activities (some
activities may already be completed while others may still be in progress) to obtain a progress update. You
can save the original schedule as a baseline schedule and use it to compare against the current schedule to
determine if any of the activities have taken longer than anticipated.

Quite often the resources needed to perform the activities in a project are available only in limited quantities
and may cause certain activities to be postponed due to unavailability of the required resources. You can use
PROC CPM to schedule the activities in a project subject to resource constraints. A wide range of options
enables you to control the scheduling process. For example, you can specify resource or activity priorities,
set constraints on the maximum amount of delay that can be tolerated for a given activity, enable activities to
be preempted, specify alternate resources that can be used instead of scarce resources, or indicate secondary
levels of resources that can be used when the primary levels are insufficient.

When an activity requires multiple resources, it is possible that each resource may follow a different calendar
and each may require varying amounts of work. PROC CPM enables you to define resource-driven durations
for the activities. You can also specify calendars for the resources. In either of these situations it is possible
that each resource used by an activity may have its own individual schedule. PROC CPM enables you to save
the resource schedules for the different activities in a Resource Schedule data set, the RESOURCESCHED=
data set.

In addition to obtaining a resource-constrained schedule in an output data set, you can save the resource
utilization summary in another output data set, the RESOURCEOUT= data set. Several options enable you
to control the amount of information saved in this data set.

The CPM procedure enables you to define activities in a multiproject environment with multiple levels of
nesting. You can specify a PROJECT variable that identifies the name or number of the project to which each
activity belongs.

All the options available with the CPM procedure are discussed in detail in the following sections. Several
examples illustrate most of the features.

Syntax: CPM Procedure F 63

Syntax: CPM Procedure
The following statements are used in PROC CPM:

PROC CPM options ;
ACTIVITY variable ;
ACTUAL / actual options ;
ALIGNDATE variable ;
ALIGNTYPE variable ;
BASELINE / baseline options ;
CALID variable ;
DURATION / duration options ;
HEADNODE variable ;
HOLIDAY variable / holiday options ;
ID variables ;
PROJECT variable / project options ;
RESOURCE variables / resource options ;
SUCCESSOR variables / lag options ;
TAILNODE variable ;

Functional Summary
Table 4.1 outlines the options available for the CPM procedure, classified by function.

Table 4.1 Functional Summary

Description Statement Option

Activity Splitting Specifications
Splits in-progress activities at TIMENOW ACTUAL TIMENOWSPLT
Specifies the maximum number of segments variable RESOURCE MAXNSEGMT=
Specifies the minimum segment duration variable RESOURCE MINSEGMTDUR=
Enables splitting RESOURCE SPLITFLAG

Baseline or Target Schedule Specifications
Specifies the baseline finish date variable BASELINE B_FINISH=
Specifies the baseline start date variable BASELINE B_START=
Specifies the schedule to compare with baseline BASELINE COMPARE=
Specifies the schedule to use as baseline BASELINE SET=
Specifies the schedule to update baseline BASELINE UPDATE=

Calendar Specifications
Specifies the calendar variable CALID
Specifies the holiday variable HOLIDAY
Specifies the holiday duration variable HOLIDAY HOLIDUR=
Specifies the holiday finish variable HOLIDAY HOLIFIN=

64 F Chapter 4: The CPM Procedure

Table 4.1 continued

Description Statement Option

Data Set Specifications
Specifies the Calendar input data set PROC CPM CALEDATA=
Specifies the Activity input data set PROC CPM DATA=
Specifies the Holiday input data set PROC CPM HOLIDATA=
Specifies the Schedule Output data set PROC CPM OUT=
Specifies the Resource Availability input data set PROC CPM RESOURCEIN=
Specifies the Resource Schedule output data set PROC CPM RESOURCESCHED=
Specifies the Resource Usage output data set PROC CPM RESOURCEOUT=
Specifies the Workday input data set PROC CPM WORKDATA=

Duration Control Specifications
Specifies the workday length PROC CPM DAYLENGTH=
Specifies the workday start PROC CPM DAYSTART=
Specifies the duration unit PROC CPM INTERVAL=
Specifies the duration multiplier PROC CPM INTPER=
Converts milestones into finish milestones PROC CPM SETFINISHMILESTONE
Specifies the duration variable DURATION
Specifies the finish variable DURATION FINISH=
Overrides specified duration DURATION OVERRIDEDUR
Specifies the start variable DURATION START=
Specifies the work variable RESOURCE WORK=

Lag Specifications
Specifies the name of the lag duration calendar SUCCESSOR ALAGCAL=
Specifies the lag variables SUCCESSOR LAG=
Specifies the number of the lag duration calendar SUCCESSOR NLAGCAL=

Miscellaneous Options
Suppresses warning messages PROC CPM SUPPRESSOBSWARN
Fixes L_FINISH for finish tasks to E_FINISH PROC CPM FIXFINISH

Network Specifications
Specifies the AON format activity variable ACTIVITY
Specifies the AOA format headnode variable HEADNODE
Specifies the project variable PROJECT
Specifies the AON format successor variables SUCCESSOR
Specifies the AOA format tailnode variable TAILNODE

Multiproject Specifications
Specifies the project variable PROJECT
Aggregates parent resources PROJECT AGGREGATEPARENTRES
Ignores parent resources PROJECT IGNOREPARENTRES
Computes separate critical paths PROJECT SEPCRIT
Uses specified project duration PROJECT USEPROJDUR

Functional Summary F 65

Table 4.1 continued

Description Statement Option

Computes WBS Code PROJECT WBSCODE
OUT= Data Set Options
Includes percent complete variable ACTUAL ESTIMATEPCTC
Adds an observation for missing activities PROC CPM ADDACT
Specifies single observation per activity PROC CPM COLLAPSE
Copies relevant variables to Schedule data set PROC CPM XFERVARS
Specifies the variables to be copied to Schedule data set ID
Includes descending sort variables PROJECT DESCENDING
Includes all sort order variables PROJECT ORDERALL
Includes early start sort order variable PROJECT ESORDER
Includes late start sort order variable PROJECT LSORDER
Includes resource start order variable PROJECT SSORDER
Includes WBS Code PROJECT WBSCODE
Includes information about resource delays RESOURCE DELAYANALYSIS
Includes early start schedule RESOURCE E_START
Includes free float RESOURCE F_FLOAT
Sets unscheduled S_START and S_FINISH RESOURCE FILLUNSCHED
Includes late start schedule RESOURCE L_START
Excludes early start schedule RESOURCE NOE_START
Excludes free float RESOURCE NOF_FLOAT
Excludes late start schedule RESOURCE NOL_START
Excludes resource variables RESOURCE NORESOURCEVARS
Excludes total float RESOURCE NOT_FLOAT
Includes resource variables RESOURCE RESOURCEVARS
Includes total float RESOURCE T_FLOAT
Sets unscheduled S_START and S_FINISH to missing RESOURCE UNSCHEDMISS
Updates unscheduled S_START, S_FINISH RESOURCE UPDTUNSCHED

Problem Size Options
Specifies the number of precedence constraints PROC CPM NADJ=
Specifies the number of activities PROC CPM NACTS=
Specifies the number of distinct node or activity names PROC CPM NNODES=
Specifies the number of resource requirements PROC CPM NRESREQ=
Disables use of the Utility data set PROC CPM NOUTIL

Progress Updating Options
Specifies the actual finish variable ACTUAL A_FINISH=
Specifies the actual start variable ACTUAL A_START=
Assumes automatic completion ACTUAL AUTOUPDT
Enables actual time to fall in a non-work period ACTUAL FIXASTART
Does not assume automatic completion ACTUAL NOAUTOUPDT
Specifies the percentage complete variable ACTUAL PCTCOMP=
Specifies the remaining duration variable ACTUAL REMDUR=

66 F Chapter 4: The CPM Procedure

Table 4.1 continued

Description Statement Option

Specifies that progress updating should override resource
scheduling (Experimental)

RESOURCE SETFINISH=

Shows float for all activities ACTUAL SHOWFLOAT
Specifies the current date ACTUAL TIMENOW=

Resource Variable Specifications
Specifies the resource variables RESOURCE
Specifies the observation type variable RESOURCE OBSTYPE=
Specifies the resource availability date/time variable RESOURCE PERIOD=
Specifies the alternate resource variable RESOURCE RESID=
Specifies the work variable RESOURCE WORK=

Resource Allocation Control Options
Specifies the delay variable RESOURCE ACTDELAY=
Specifies the activity priority variable RESOURCE ACTIVITYPRTY=
Uses alternate resources before supplementary levels RESOURCE ALTBEFORESUP
Waits until L_STARTC DELAY RESOURCE AWAITDELAY
Specifies the delay RESOURCE DELAY=
Schedules even if there are insufficient resources RESOURCE INFEASDIAGNOSTIC
Specifies independent allocation RESOURCE INDEPENDENTALLOC
Enables milestones to consume resources RESOURCE MILESTONERESOURCE
Prevents milestones from consuming resources RESOURCE MILESTONENORESOURCE
Uses multiple alternates for a single resource RESOURCE MULTIPLEALTERNATES
Specifies the resource calendar intersect RESOURCE RESCALINTERSECT
Specifies the scheduling priority rule RESOURCE SCHEDRULE=
Specifies the secondary scheduling priority rule RESOURCE SCHEDRULE2=
Specifies the stop date for resource constrained schedul-
ing

RESOURCE STOPDATE=

RESOURCEOUT= Data Set Options
Includes all types of resource usage RESOURCE ALL
Appends observations for total usage RESOURCE APPEND
Specifies the name of the calendar for _TIME_ increment RESOURCE AROUTCAL=
Includes availability profile for each resource RESOURCE AVPROFILE
Specifies the cumulative usage for consumable resources RESOURCE CUMUSAGE
Includes early start profile for each resource RESOURCE ESPROFILE
Excludes unscheduled activities in profile RESOURCE EXCLUNSCHED
Includes unscheduled activities in profile RESOURCE INCLUNSCHED
Records total usage of resource RESOURCE TOTUSAGE
Includes late start profile for each resource RESOURCE LSPROFILE
Specifies the maximum value of _TIME_ RESOURCE MAXDATE=
Specifies the maximum number of observations RESOURCE MAXOBS=
Specifies the minimum value of _TIME_ RESOURCE MINDATE=
Specifies the numeric calendar for _TIME_ RESOURCE NROUTCAL=

PROC CPM Statement F 67

Table 4.1 continued

Description Statement Option

Includes resource constrained profile RESOURCE RCPROFILE
Specifies the unit of difference between consecutive
TIME values

RESOURCE ROUTINTERVAL=

Specifies the difference between consecutive _TIME_
values

RESOURCE ROUTINTPER=

Uses a continuous calendar for _TIME_ RESOURCE ROUTNOBREAK

RESOURCESCHED= Data Set Options
Adds activity or resource calendar RESOURCE ADDCAL
Includes WBS code PROJECT RSCHEDWBS
Includes order variables PROJECT RSCHEDORDER
Specifies the ID variables RESOURCE RSCHEDID=

Time Constraint Specifications
Specifies the alignment date variable ALIGNDATE
Specifies the alignment type variable ALIGNTYPE
Specifies the project start date PROC CPM DATE=
Specifies the project finish date PROC CPM FBDATE=
Finishes before DATE= value PROC CPM FINISHBEFORE

PROC CPM Statement
PROC CPM options ;

The following options can appear in the PROC CPM statement.

ADDACT

ADDALLACT

EXPAND
indicates that an observation is to be added to the Schedule output data set (and the Resource Schedule
output data set) for each activity that appears as a value of the variables specified in the SUCCESSOR
or PROJECT statements without appearing as a value of the variable specified in the ACTIVITY
statement. If the PROJECT statement is used, and the activities do not have a single common parent,
an observation is also added to the Schedule data set containing information for a single common
parent defined by the procedure.

CALEDATA=SAS-data-set

CALENDAR=SAS-data-set
identifies a SAS data set that specifies the work pattern during a standard week for each of the calendars
that are to be used in the project. Each observation of this data set (also referred to as the Calendar
data set) contains the name or the number of the calendar being defined in that observation, the names
of the shifts or work patterns used each day, and, optionally, a standard workday length in hours. For

68 F Chapter 4: The CPM Procedure

details about the structure of this data set, see the section “Multiple Calendars” on page 103. The work
shifts referred to in the Calendar data set are defined in the Workday data set. The calendars defined in
the Calendar data set can be identified with different activities in the project.

COLLAPSE
creates only one observation per activity in the output data set when the input data set for a network in
AON format contains multiple observations for the same activity. This option is allowed only if the
network is in AON format.

Often, the input data set may have more than one observation per activity (especially if the activity has
several successors). If you are interested only in the schedule information about the activity, there is no
need for multiple observations in the output data set for this activity. Use the COLLAPSE option in
this case.

DATA=SAS-data-set
names the SAS data set that contains the network specification and activity information. If the DATA=
option is omitted, the most recently created SAS data set is used. This data set (also referred to in this
chapter as the Activity data set) contains all of the information that is associated with each activity in
the network.

DATE=date
specifies the SAS date, time, or datetime that is to be used as an alignment date for the project. If neither
the FINISHBEFORE option nor any other alignment options are specified, then the CPM procedure
schedules the project to start on date. If date is a SAS time value, the value of the INTERVAL=
parameter should be HOUR, MINUTE, or SECOND; if it is a SAS date value, interval should be DAY,
WEEKDAY, WORKDAY, WEEK, MONTH, QTR, or YEAR; and if it is a SAS datetime value, interval
should be DTWRKDAY, DTDAY, DTHOUR, DTMINUTE, DTSECOND, DTWEEK, DTMONTH,
DTQTR, or DTYEAR.

DAYLENGTH=daylength
specifies the length of the workday. On each day, work is scheduled starting at the beginning of the
day as specified in the DAYSTART= option and ending daylength hours later. The DAYLENGTH=
value should be a SAS time value. The default value of daylength is 24 if the INTERVAL= option is
specified as DTDAY, DTHOUR, DTMINUTE, or DTSECOND, and the default value of daylength
is 8 if the INTERVAL= option is specified as WORKDAY or DTWRKDAY. If INTERVAL=DAY or
WEEKDAY and the value of daylength is less than 24, then the schedule produced is in SAS datetime
values. For other values of the INTERVAL= option, the DAYLENGTH= option is ignored.

DAYSTART=daystart
specifies the start of the workday. The DAYSTART= value should be a SAS time value. This parameter
should be specified only when interval is one of the following: DTDAY, WORKDAY, DTWRKDAY,
DTHOUR, DTMINUTE, or DTSECOND; in other words, this parameter should be specified only if
the schedule produced by the CPM procedure is in SAS datetime values. The default value of daystart
is 9 a.m. if INTERVAL is WORKDAY; otherwise, the value of daystart is equal to the time part of the
SAS datetime value specified for the DATE= option.

FBDATE=fbdate
specifies a finish-before date that can be specified in addition to the DATE= option. If the FBDATE=
option is not given but the FINISHBEFORE option is specified, then fbdate = date. Otherwise, fbdate is
equal to the project completion date. If fbdate is given in addition to the DATE= and FINISHBEFORE

PROC CPM Statement F 69

options, then the minimum of the two dates is used as the required project completion date. See the
section “Scheduling Subject to Precedence Constraints” on page 95 for details about how the procedure
uses the date and fbdate to compute the early and late start schedules.

FINISHBEFORE
specifies that the project be scheduled to complete before the date given in the DATE= option.

FIXFINISH
specifies that all finish tasks are to be constrained by their respective early finish times. In other words,
the late finish times of all finish tasks do not float to the project completion time.

HOLIDATA=SAS-data-set

HOLIDAY=SAS-data-set
identifies a SAS data set that specifies holidays. These holidays can be associated with specific
calendars that are also identified in the HOLIDATA= data set (also referred to as the Holiday data set).
The HOLIDATA= option must be used with a HOLIDAY statement that specifies the variable in the
SAS data set that contains the start time of holidays. Optionally, the data set can include a variable
that specifies the length of each holiday or a variable that identifies the finish time of each holiday (if
the holidays are longer than one day). For projects involving multiple calendars, this data set can also
include the variable specified by the CALID statement that identifies the calendar to be associated
with each holiday. See the section “Multiple Calendars” on page 103 for further information regarding
holidays and multiple calendars.

INTERVAL=interval
requests that each unit of duration be measured in interval units. Possible values for interval are DAY,
WEEK, WEEKDAY, WORKDAY, MONTH, QTR, YEAR, HOUR, MINUTE, SECOND, DTDAY,
DTWRKDAY, DTWEEK, DTMONTH, DTQTR, DTYEAR, DTHOUR, DTMINUTE, and DTSEC-
OND. The default value is based on the format of the DATE= parameter. See the section “Using the
INTERVAL= Option” on page 96 for further information regarding this option.

INTPER=period
requests that each unit of duration be equivalent to period units of duration. The default value is 1.

NACTS=nacts
specifies the number of activities for which memory is allocated in core by the procedure. If the number
of activities exceeds nacts, the procedure uses a utility data set for storing the activity array. The default
value for nacts is set to nobs, if the network is specified in AOA format, and to nobs�.nsuccC1/, if
the network is specified in AON format, where nobs is the number of observations in the Activity data
set and nsucc is the number of variables specified in the SUCCESSOR statement.

NADJ=nadj
specifies the number of precedence constraints (adjacencies) in the project network. If the number of
adjacencies exceeds nadj , the procedure uses a utility data set for storing the adjacency array. The
default value of nadj is set to nacts if the network is in AON format, and it is set to nacts�2 if the
network is in AOA format.

NNODES=nnodes
specifies the size of the symbolic table used to look up the activity names (node names) for the network
specification in AON (AOA) format. If the number of distinct names exceeds nnodes, the procedure
uses a utility data set for storing the tree used for the table lookup. The default value for nnodes is

70 F Chapter 4: The CPM Procedure

set to nobs�2 if the network is specified in AOA format and to nobs�.nsuccC1/ if the network is
specified in AON format, where nobs is the number of observations in the Activity data set and nsucc
is the number of variables specified in the SUCCESSOR statement.

NOUTIL
specifies that the procedure should not use utility data sets for memory management. By default, the
procedure resorts to the use of utility data sets and swaps between core memory and utility data sets as
necessary if the number of activities or precedence constraints or resource requirements in the input
data sets is larger than the number of each such entity for which memory is initially allocated in core.
Specifying this option causes the procedure to increase the memory allocation instead of using a utility
data set; if the problem is too large to fit in core memory, PROC CPM will stop with an error message.

NRESREQ=nres
specifies the number of distinct resource requirements corresponding to all activities and resources
in the project. The default value of nres is set to nobs�nresvar �0:25, where nobs is the number
of observations in the Activity data set, and nresvar is the number of RESOURCE variables in the
Activity data set.

OUT=SAS-data-set
specifies a name for the output data set that contains the schedule determined by PROC CPM. This
data set (also referred to as the Schedule data set) contains all of the variables that were specified in the
Activity data set to define the project. Every observation in the Activity data set has a corresponding
observation in this output data set. If PROC CPM is used to determine a schedule that is not subject to
any resource constraints, then this output data set contains the early and late start schedules; otherwise,
it also contains the resource-constrained schedule. See the section “OUT= Schedule Data Set” on
page 101 for information about the names of the new variables in the data set. If the OUT= option is
omitted, the SAS system creates a data set and names it according to the DATAn naming convention.

RESOURCEIN=SAS-data-set

RESIN=SAS-data-set

RIN=SAS-data-set

RESLEVEL=SAS-data-set
names the SAS data set that contains the levels available for the different resources used by the activities
in the project. This data set also contains information about the type of resource (replenishable or
consumable), the calendar associated with each resource, the priority for each resource, and lists, for
each resource, all the alternate resources that can be used as a substitute. In addition, this data set
indicates whether or not the resource rate affects the duration. The specification of the RESIN= data
set (also referred to as the Resource data set) indicates to PROC CPM that the schedule of the project
is to be determined subject to resource constraints. For further information about the format of this
data set, see the section “RESOURCEIN= Input Data Set” on page 116.

If this option is specified, you must also use the RESOURCE statement to identify the variable names
for the resources to be used for resource-constrained scheduling. In addition, you must specify the
name of the variable in this data set (using the PERIOD= option in the RESOURCE statement) that
contains the dates from which the resource availabilities in each observation are valid. Furthermore,
the data set must be sorted in order of increasing values of this period variable.

PROC CPM Statement F 71

RESOURCEOUT=SAS-data-set

RESOUT=SAS-data-set

ROUT=SAS-data-set

RESUSAGE=SAS-data-set
names the SAS data set in which you can save resource usage profiles for each of the resources
specified in the RESOURCE statement. This data set is also referred to as the Usage data set. In
the Usage data set, you can save the resource usage by time period for the early start, late start, and
resource-constrained schedules, and the surplus level of resources remaining after resource allocation
is performed.

By default, it provides the usage profiles for the early and late start schedules if resource allocation is
not performed. If resource allocation is performed, this data set also provides usage profiles for the
resource-constrained schedule and a profile of the level of remaining resources.

You can control the types of profiles to be saved by using the ESPROFILE (early start usage),
LSPROFILE (late start usage), RCPROFILE (resource-constrained usage), or AVPROFILE (resource
availability after resource allocation) options in the RESOURCE statement. You can specify any
combination of these four options. You can also specify the ALL option to indicate that all four options
(ESPROFILE, LSPROFILE, RCPROFILE, AVPROFILE) are to be in effect. For details about variable
names and the interpretation of the values in this data set, see the section “RESOURCEOUT= Usage
Data Set” on page 129.

RESOURCESCHED=SAS-data-set

RESSCHED=SAS-data-set

RSCHEDULE=SAS-data-set

RSCHED=SAS-data-set
names the SAS data set in which you can save the schedules for each resource used by any activity.
This option is valid whenever the RESOURCE statement is used to specify any resource requirements.
The resulting data set is especially useful when resource-driven durations or resource calendars cause
the resources used by an activity to have different schedules.

SETFINISHMILESTONE
specifies that milestones (zero duration activities) should have the same start and finish times as the
finish time of their predecessor. In other words, this option enables milestones that mark the end of
the preceding activity to coincide with its finish time. By default, if a milestone M is a successor
to an activity that finishes at the end of the day (say 15Mar2004), the start and finish times for
the milestone are specified as the beginning of the next day (16Mar2004). This corresponds to the
definition of start times in the CPM procedure: all start times indicate the beginning of the date
specified. For zero duration activities, the finish time is defined to be the same as the start time. The
SETFINISHMILESTONE option specifies that the start and finish times for the milestone M should be
specified as 15Mar2004, with the interpretation that the milestone’s schedule corresponds to the end of
the day. There may be exceptions to this definition if there are special alignment constraints on the
milestone. For details, see the section “Finish Milestones” on page 100.

72 F Chapter 4: The CPM Procedure

SUPPRESSOBSWARN
turns off the display of warnings and notes for every observation with invalid or missing specifications.

WORKDATA=SAS-data-set

WORKDAY=SAS-data-set
identifies a SAS data set that defines the work pattern during a standard working day. Each numeric
variable in this data set (also referred to as the Workday data set) is assumed to denote a unique
shift pattern during one working day. The variables must be formatted as SAS time values and the
observations are assumed to specify, alternately, the times when consecutive shifts start and end. See
the section “Multiple Calendars” on page 103 for a description of this data set.

XFERVARS
indicates that all relevant variables are to be copied from the Activity data set to the Schedule data
set. This includes all variables used in the ACTUAL statement, the ALIGNDATE and ALIGNTYPE
statements, the SUCCESSOR statement, and the RESOURCE statement.

ACTIVITY Statement
ACTIVITY variable ;

ACT variable ;

The ACTIVITY statement is required when data are input in an AON format; this statement identifies the
variable that contains the names of the nodes in the network. The activity associated with each node has a
duration equal to the value of the DURATION variable. The ACTIVITY variable can be character or numeric
because it is treated symbolically. Each node in the network must be uniquely defined.

The ACTIVITY statement is also supported in the Activity-on-Arc format. The ACTIVITY variable is used
to uniquely identify the activity specified between two nodes of the network. In the AOA format, if the
ACTIVITY statement is not specified, each observation in the Activity data set is treated as a new activity.

ACTUAL Statement
ACTUAL / actual options ;

The ACTUAL statement identifies variables in the Activity data set that contain progress information about
the activities in the project. For a project that is already in progress, you can describe the actual status of
any activity by specifying the activity’s actual start, actual finish, remaining duration, or percent of work
completed. At least one of the four variables (A_START, A_FINISH, REMDUR, PCTCOMP) needs to be
specified in the ACTUAL statement. These variables are referred to as progress variables. The TIMENOW=
option in this statement represents the value of the current time (referred to as TIMENOW), and it is used in
conjunction with the values of the progress variables to check for consistency and to determine default values
if necessary.

You can also specify options in the ACTUAL statement that control the updating of the project schedule.
Using the ACTUAL statement causes four new variables (A_START, A_FINISH, A_DUR, and STATUS) to
be added to the Schedule data set; these variables are defined in the section “OUT= Schedule Data Set” on
page 101. See the section “Progress Updating” on page 111 for more information.

ACTUAL Statement F 73

The following options can be specified in the ACTUAL statement after a slash (/).

A_FINISH=variable

AF=variable
identifies a variable in the Activity data set that specifies the actual finish times of activities that are
already completed. The actual finish time of an activity must be less than TIMENOW.

A_START=variable

AS=variable
identifies a variable in the Activity data set that specifies the actual start times of activities that are
in progress or that are already completed. The actual start time of an activity must be less than
TIMENOW.

AUTOUPDT
requests that PROC CPM should assume automatic completion (or start) of activities that are prede-
cessors to activities already completed (or in progress). For example, if activity B is a successor of
activity A, and B has an actual start time (or actual finish time or both) specified, while A has missing
values for both actual start and actual finish times, then the AUTOUPDT option causes PROC CPM to
assume that A must have already finished. PROC CPM then assigns activity A an actual start time and
an actual finish time consistent with the precedence constraints. The AUTOUPDT option is the default.

ESTIMATEPCTC

ESTPCTC

ESTPCTCOMP

ESTPROG
indicates that a variable named PCT_COMP is to be added to the Schedule output data set (and the
Resource Schedule output data set) that contains the percent completion time for each activity (for
each resource used by each activity) in the project. This value is 0 for activities that have not yet started
and 100 for completed activities; for activities in progress, this value is computed using the actual start
time, the value of TIMENOW, and the revised duration of the activity.

FIXASTART
specifies that the actual start time of an activity should not be overwritten if it is specified to be on a
non-work day. By default, none of the start or finish times of an activity can occur during a non-work
period corresponding to the activity’s calendar. If the actual start time is specified on a non-work day,
it is moved to the nearest work day. The FIXASTART option specifies that the actual start and finish
times be left unchanged even if they coincide with a non-working time. Thus, if the actual start time is
specified to be sometime on Sunday, it is left unchanged even if Sunday is a non-working day in the
activity’s calendar.

NOAUTOUPDT
requests that PROC CPM should not assume automatic completion of activities. (The NOAUTOUPDT
option is the reverse of the AUTOUPDT option.) In other words, only those activities that have
nonmissing actual start or nonmissing actual finish times or both (either specified as values for the
A_START and A_FINISH variables or computed on the basis of the REMDUR or PCTCOMP variables
and TIMENOW) are assumed to have started; all other activities have an implicit start time that is
greater than or equal to TIMENOW. This option requires you to enter the progress information for all
the activities that have started or are complete; an activity is assumed to be pending until one of the
progress variables indicates that it has started.

74 F Chapter 4: The CPM Procedure

PCTCOMP=variable

PCTCOMPLETE=variable

PCOMP=variable
identifies a variable in the Activity data set that specifies the percentage of the work that has been
completed for the current activity. The values for this variable must be between 0 and 100. A value of
0 for this variable means that the current activity has not yet started. A value of 100 means that the
activity is already complete. Once again, the value of the TIMENOW= option is used as a reference
point to resolve the values specified for the PCTCOMP variable. See the section “Progress Updating”
on page 111 for more information.

REMDUR=variable

RDURATION=variable

RDUR=variable
identifies a variable in the Activity data set that specifies the remaining duration of activities that are in
progress. The values of this variable must be nonnegative: a value of 0 for this variable means that the
activity in that observation is completed, while a value greater than 0 means that the activity is not yet
complete (the remaining duration is used to revise the estimate of the original duration). The value
of the TIMENOW parameter is used to determine an actual start time or an actual finish time or both
for activities based on the value of the remaining duration. See the section “Progress Updating” on
page 111 for further information.

SHOWFLOAT
This option in the ACTUAL statement indicates that PROC CPM should allow activities that are
completed or in progress to have nonzero float. By default, all activities that are completed or in
progress have the late start schedule set to be equal to the early start schedule and thus have both
total float and free float equal to 0. If the SHOWFLOAT option is specified, the late start schedule is
computed for in-progress and completed activities using the precedence and time constraints during
the backward pass.

TIMENOW=timenow

CURRDATE=timenow
specifies the SAS date, time, or datetime value that is used as a reference point to resolve the values of
the remaining duration and percent completion times when the ACTUAL statement is used. It can be
thought of as the instant at the beginning of the specified date, when a snapshot of the project is taken;
the actual start times or finish times or both are specified for all activities that have started or have been
completed by the end of the previous day. If an ACTUAL statement is used without specification of
the TIMENOW= option, the default value is set to be the time period following the maximum of all
the actual start and finish times that have been specified; if there are no actual start or finish times, then
TIMENOW is set to be equal to the current date. See the section “Progress Updating” on page 111 for
further information regarding the TIMENOW= option and the ACTUAL statement.

TIMENOWSPLT
indicates that activities that are in progress at TIMENOW can be split at TIMENOW if they cause
resource infeasibilities. During resource allocation, any activities with values of E_START less than
TIMENOW are scheduled even if there are not enough resources (a warning message is printed to
the log if this is the case). This is true even for activities that are in progress. The TIMENOWSPLT
option permits an activity to be split into two segments at TIMENOW, allowing the second segment of
the activity to be scheduled later when resource levels permit. See the section “Activity Splitting” on

ALIGNDATE Statement F 75

page 124 for information regarding activity segments. Activities with an alignment type of MS or MF
are not allowed to be split; also, activities without resource requirements will not be split.

ALIGNDATE Statement
ALIGNDATE variable ;

DATE variable ;

ADATE variable ;

The ALIGNDATE statement identifies the variable in the Activity data set that specifies the dates to be
used to constrain each activity to start or finish on a particular date. The ALIGNDATE statement is used in
conjunction with the ALIGNTYPE statement, which specifies the type of alignment. A missing value for
the variables specified in the ALIGNDATE statement indicates that the particular activity has no restriction
imposed on it.

PROC CPM requires that if the ALIGNDATE statement is used, then all start activities (activities with no
predecessors) have nonmissing values for the ALIGNDATE variable. If any start activity has a missing
ALIGNDATE value, it is assumed to start on the date specified in the PROC CPM statement (if such a date
is given) or, if no date is given, on the earliest specified start date of all start activities. If none of the start
activities has a start date specified and a project start date is not specified in the PROC CPM statement, the
procedure stops execution and returns an error message. See the section “Time-Constrained Scheduling” on
page 98 for information about how the variables specified in the ALIGNDATE and ALIGNTYPE statements
affect the schedule of the project.

ALIGNTYPE Statement
ALIGNTYPE variable ;

ALIGN variable ;

ATYPE variable ;

The ALIGNTYPE statement is used to specify whether the date value in the ALIGNDATE statement is the
earliest start date, the latest finish date, and so forth, for the activity in the observation. The values allowed
for the variable specified in the ALIGNTYPE statement are specified in Table 4.2.

Table 4.2 Valid Values for the ALIGNTYPE Variable

Value Type of Alignment
SEQ Start equal to
SGE Start greater than or equal to
SLE Start less than or equal to
FEQ Finish equal to
FGE Finish greater than or equal to
FLE Finish less than or equal to
MS Mandatory start equal to
MF Mandatory finish equal to

76 F Chapter 4: The CPM Procedure

If an ALIGNDATE statement is specified without an ALIGNTYPE statement, all of the activities are assumed
to have an aligntype of SGE. If an activity has a nonmissing value for the ALIGNDATE variable and a
missing value for the ALIGNTYPE variable, then the aligntype is assumed to be SGE. See the section
“Time-Constrained Scheduling” on page 98 for information about how the ALIGNDATE and ALIGNTYPE
variables affect project scheduling.

BASELINE Statement
BASELINE / options ;

The BASELINE statement enables you to save a specific schedule as a baseline or target schedule and
compare another schedule, such as an updated schedule or resource constrained schedule, against it. The
schedule that is to be saved as a baseline can be specified either by explicitly identifying two numeric
variables in the input data set as the B_START and B_FINISH variables, or by indicating the particular
schedule (EARLY, LATE, ACTUAL, or RESOURCE constrained schedule) that is to be used to set the
B_START and B_FINISH variables. The second method of setting the schedule is useful when you want to
set the baseline schedule on the basis of the current invocation of PROC CPM.

Note that the BASELINE statement needs to be specified in order for the baseline start and finish times to be
copied to the Schedule data set. Just including the B_START and B_FINISH variables in the Activity data
set does not initiate baseline processing.

The following options can be specified in the BASELINE statement after a slash (/).

B_FINISH=variable

BF=variable
specifies the numeric-valued variable in the Activity data set that sets B_FINISH.

B_START=variable

BS=variable
specifies the numeric-valued variable in the Activity data set that sets B_START.

COMPARE=schedule
compares a specific schedule (EARLY, LATE, RESOURCE or ACTUAL) in the Activity data set with
the baseline schedule. The COMPARE option is valid only if the input data set already has a B_START
and a B_FINISH variable or if the SET= option is also specified. In other words, the COMPARE
option is valid only if there is a baseline schedule to compare with. The comparison is specified in two
variables in the Schedule data set, S_VAR and F_VAR, which have the following definition:

S_VAR = Compare Start - B_START;
F_VAR = Compare Finish - B_FINISH;

where Compare Start and Compare Finish refer to the start and finish times corresponding to the
schedule that is used as a comparison.

The values of the variables S_VAR and F_VAR are calculated in units of the INTERVAL= parameter,
taking into account the calendar defined for the activity.

CALID Statement F 77

SET=schedule
specifies which of the four schedules (EARLY, LATE, RESOURCE, or ACTUAL) to set the baseline
schedule equal to. The SET= option causes the addition of two new variables in the Schedule data set;
these are the B_START and B_FINISH variables. The procedure sets B_START and B_FINISH equal
to the start and finish times corresponding to the EARLY, LATE, ACTUAL, or RESOURCE schedules.
If the Activity data set already has a B_START and B_FINISH variable, it is overwritten by the
SET= option and a warning is displayed. The value RESOURCE is valid only if resource-constrained
scheduling is being performed, and the value ACTUAL is valid only if the ACTUAL statement is
present.

NOTE: The values ACTUAL, RESOURCE, and so on cause the B_START and B_FINISH val-
ues to be set to the computed values of A_START, S_START, . . . , and so on. They cannot be
used to set the B_START and B_FINISH values to be equal to, say, A_START and A_FINISH or
S_START and S_FINISH, if these variables are present in the Activity data set; to do that you must
use B_START=A_START, B_FINISH=A_FINISH, and so on.

UPDATE=schedule
specifies the name of the schedule (EARLY, LATE, ACTUAL, or RESOURCE) that can be used to
update the B_START and B_FINISH variables. This sets B_START and B_FINISH on the basis of the
specified schedules only when the values of the baseline variables are missing in the Activity data set.
The UPDATE option is valid only if the Activity data set already has B_START and B_FINISH. Note
that if both the UPDATE= and SET= options are specified, the SET= specification is used.

CALID Statement
CALID variable ;

The CALID statement specifies the name of a SAS variable that is used in the Activity, Holiday, and Calendar
data sets to identify the calendar to which each observation refers. This variable can be either numeric or
character depending on whether the different calendars are identified by unique numbers or names. If this
variable is not found in any of the three data sets, PROC CPM looks for a default variable named _CAL_ in
each data set (a warning message is then printed to the log). In the Activity data set, this variable specifies
the calendar used by the activity in the given observation. Each calendar in the project is defined using the
Workday, Calendar, and Holiday data sets. Each observation of the Calendar data set defines a standard work
week through the shift patterns as defined by the Workday data set and a standard day length; these values
are associated with the calendar identified by the value of the calendar variable in that observation. Likewise,
each observation of the Holiday data set defines a holiday for the calendar identified by the value of the
calendar variable.

If there is no calendar variable in the Activity data set, all activities are assumed to follow the default calendar.
If there is no calendar variable in the Holiday data set, all of the holidays specified are assumed to occur in
all the calendars. If there is no calendar variable in the Calendar data set, the first observation is assumed to
define the default work week (which is also followed by any calendar that might be defined in the Holiday
data set), and all subsequent observations are ignored. See the section “Multiple Calendars” on page 103 for
further information.

78 F Chapter 4: The CPM Procedure

DURATION Statement
DURATION variable / options ;

DUR variable ;

The DURATION statement identifies the variable in the Activity data set that contains the length of time
necessary to complete the activity. If the network is input in AOA format, then the variable identifies the
duration of the activity denoted by the arc joining the TAILNODE and the HEADNODE. If the network
is input in AON format, then the variable identifies the duration of the activity specified in the ACTIVITY
statement. The variable specified must be numeric. The DURATION statement must be specified. The
values of the DURATION variable are assumed to be in interval units, where interval is the value of the
INTERVAL= option.

If you want the procedure to compute the durations of the activities based on specified start and finish times,
you can specify the start and finish times in the Activity data set, identified by the variables specified in
the START= and FINISH= options. By default, the computed duration is used only if the value of the
DURATION variable is missing for that activity. The duration is computed in units of the INTERVAL=
parameter, taking into account the calendar defined for the activity.

In addition to specifying a fixed duration for an activity, you can specify the amount of work required (in
units of the INTERVAL parameter) from each resource for a given activity. The WORK variable enables you
to specify resource-driven durations for an activity; these (possibly different) durations are used to calculate
the length of time required for the activity to be completed.

The following options can be specified in the DURATION statement after a slash (/).

FINISH=variable
specifies a variable in the Activity data set that is to be used in conjunction with the START variable to
determine the activity’s duration.

START=variable
specifies a variable in the Activity data set that is to be used in conjunction with the FINISH variable
to determine the activity’s duration.

OVERRIDEDUR
specifies that if the START= and FINISH= values are not missing, the duration computed from these
values is to be used in place of the duration specified for the activity. In other words, the computed
duration is used in place of the duration specified for the activity.

HEADNODE Statement
HEADNODE variable ;

HEAD variable ;

TO variable ;

The HEADNODE statement is required when data are input in AOA format. This statement specifies the
variable in the Activity data set that contains the name of the node on the head of an arrow in the project

HOLIDAY Statement F 79

network. This node is identified with the event that signals the end of an activity on that arc. The variable
specified can be either a numeric or character variable because the procedure treats this variable symbolically.
Each node must be uniquely defined.

HOLIDAY Statement
HOLIDAY variable / options ;

HOLIDAYS variable / options ;

The HOLIDAY statement specifies the names of variables used to describe non-workdays in the Holiday data
set. PROC CPM accounts for holidays only when the INTERVAL= option has one of the following values:
DAY, WORKDAY, WEEKDAY, DTDAY, DTWRKDAY, DTHOUR, DTMINUTE, or DTSECOND. The
HOLIDAY statement must be used with the HOLIDATA= option in the PROC CPM statement. Recall that
the HOLIDATA= option identifies the SAS data set that contains a list of the holidays and non-workdays
around which you schedule your project. Holidays are defined by specifying the start of the holiday (the
HOLIDAY variable) and either the length of the holiday (the HOLIDUR variable) or the finish time of the
holiday (the HOLIFIN variable). The HOLIDAY variable is mandatory with the HOLIDAY statement; the
HOLIDUR and HOLIFIN variables are optional.

The HOLIDAY and HOLIFIN variables must be formatted as SAS date or datetime variables. If no format is
associated with a HOLIDAY variable, it is assumed to be formatted as a SAS date value. If the schedule of
the project is computed as datetime values (which is the case if INTERVAL is DTDAY, WORKDAY, and so
on), the holiday variables are interpreted as follows:

� If the HOLIDAY variable is formatted as a date value, then the holiday is assumed to start at the value
of the DAYSTART= option on the day specified in the observation and to end d units of interval later
(where d is the value of the HOLIDUR variable and interval is the value of the INTERVAL= option).

� If the HOLIDAY variable is formatted as a datetime value, then the holiday is assumed to start at the
date and time specified and to end d units of interval later.

The HOLIDUR and HOLIFIN variables are specified using the following options in the HOLIDAY statement:

HOLIDUR=variable

HDURATION=variable
identifies a variable in the Holiday data set that specifies the duration of the holiday. The INTERVAL=
option specified on the PROC CPM statement is used to interpret the value of the holiday duration
variables. Thus, if the duration of a holiday is specified as 2 and the value of the INTERVAL= option
is WEEKDAY, the length of the holiday is interpreted as two weekdays.

HOLIFIN=variable

HOLIEND=variable
identifies a variable in the Holiday data set that specifies the finish time of the holiday defined in that
observation. If a particular observation contains both the duration as well as the finish time of the
holiday, only the finish time is used; the duration is ignored.

80 F Chapter 4: The CPM Procedure

ID Statement
ID variables ;

The ID statement identifies variables not specified in the TAILNODE, HEADNODE, ACTIVITY, SUCCES-
SOR, or DURATION statements that are to be included in the Schedule data set. This statement is useful for
carrying any relevant information about each activity from the Activity data set to the Schedule data set.

PROJECT Statement
PROJECT variable / options ;

PARENT variables / options ;

The PROJECT statement specifies the variable in the Activity data set that identifies the project to which
an activity belongs. This variable must be of the same type and length as the variable defined in the
ACTIVITY statement. A project can also be treated as an activity with precedence and time constraints. In
other words, any value of the PROJECT variable can appear as a value of the ACTIVITY variable, and it
can have specifications for the DURATION, ALIGNDATE, ALIGNTYPE, ACTUAL, RESOURCE, and
SUCCESSOR variables. However, some of the interpretations of these variables for a project (or supertask)
may be different from the corresponding interpretation for an activity at the lowest level. See the section
“Multiproject Scheduling” on page 133 for an explanation.

The following options can be specified in the PROJECT statement after a slash (/).

AGGREGATEPARENTRES

AGGREGATEP_RES

AGGREGPR
indicates that the resource requirements for all supertasks are to be used only for aggregation purposes
and not for resource-constrained scheduling.

DESCENDING

DESC
indicates that, in addition to the ascending sort variables (ES_ASC, LS_ASC, and SS_ASC) that are
requested by the ESORDER, LSORDER, and SSORDER options, the corresponding descending sort
variables (ES_DESC, LS_DESC, and SS_DESC, respectively) are also to be added to the Schedule
output data set.

ESORDER

ESO
indicates that a variable named ES_ASC is to be added to the Schedule output data set; this variable can
be used to order the activities in such a way that the activities within each subproject are in increasing
order of the early start time. This order is not necessarily the same as the one that would be obtained
by sorting all the activities in the Schedule data set by E_START.

PROJECT Statement F 81

IGNOREPARENTRES

IGNOREP_RES

IGNOREPR
indicates that the resource requirements for all supertasks are to be ignored.

LSORDER

LSO
indicates that a variable named LS_ASC is to be added to the Schedule output data set; this variable can
be used to order the activities in such a way that the activities within each subproject are in increasing
order of the late start time.

ORDERALL

ALL
is equivalent to specifying the ESORDER and LSORDER options (and the SSORDER option when
resource constrained scheduling is performed).

RSCHEDORDER

RSCHDORD

RSORDER
indicates that the order variables that are included in the Schedule output data set are also to be included
in the Resource Schedule output data set.

RSCHEDWBS

RSCHDWBS

RSWBS
indicates that the WBS code is also to be included in the Resource Schedule data set.

SEPCRIT
computes individual critical paths for each project. By default, the master project’s early finish time is
treated as the starting point for the calculation of the backward pass (which calculates the late start
schedule). The late finish time for each subproject is then determined during the backward pass on the
basis of the precedence constraints. If a time constraint is placed on the finish time of a subproject
(using the ALIGNDATE and ALIGNTYPE variables), the late finish time of the subproject is further
constrained by this value.

The SEPCRIT option, on the other hand, requires the late finish time of each subproject to be less
than or equal to the early finish time of the subproject. Thus, if you have a set of independent, parallel
projects, the SEPCRIT option enables you to compute separate critical paths for each of the subprojects.

SSORDER

SSO
indicates that a variable named SS_ASC is to be added to the Schedule output data set; this variable can
be used to order the activities in such a way that the activities within each subproject are in increasing
order of the resource-constrained start time.

82 F Chapter 4: The CPM Procedure

USEPROJDUR

USEPROJDURSPEC

USESPECDUR
uses the specified subproject duration to compute the maximum allowed late finish for each subproject.
This is similar to the SEPCRIT option, except that the specified project duration is used to set an upper
bound on each subproject’s late finish time instead of the project span as computed from the span of
all the subtasks of the project. In other words, if E_START and E_FINISH are the early start and finish
times of the subproject under consideration, and the subproject duration is PROJ_DUR, where

PROJ_DUR = E_FINISH - E_START

then the SEPCRIT option sets

L_FINISH � E_START + PROJ_DUR

while the USEPROJDUR option sets

L_FINISH � E_START + DUR

where DUR is the duration specified for the subproject in the Activity data set.

WBSCODE

WBS

ADDWBS
indicates that the CPM procedure is to compute a WBS code for the activities in the project using the
project hierarchy structure specified. This code is computed for each activity and stored in the variable
WBS_CODE in the Schedule output data set.

RESOURCE Statement
RESOURCE variables / resource options ;

RES variables / resource options ;

The RESOURCE statement identifies the variables in the Activity data set that contain the levels of the
various resources required by the different activities. This statement is necessary if the procedure is required
to summarize resource utilization for various resources.

This statement is also required when the activities in the network use limited resources and a schedule is to
be determined subject to resource constraints in addition to precedence constraints. The levels of the various
resources available are obtained from the RESOURCEIN= data set (the Resource data set.) This data set need
not contain all of the variables listed in the RESOURCE statement. If any resource variable specified in the
RESOURCE statement is not also found in the Resource data set, it is assumed to be available in unlimited
quantity and is not used in determining the constrained schedule.

The following options are available with the RESOURCE statement to help control scheduling the activ-
ities subject to resource constraints. Some control the scheduling heuristics, some control the amount of
information to be output to the RESOURCEOUT= data set (the Usage data set), and so on.

RESOURCE Statement F 83

ACTDELAY=variable
specifies the name of a variable in the Activity data set that specifies a value for the maximum amount
of delay allowed for each activity. The values of this variable should be greater than or equal to 0. If a
value is missing, the value of the DELAY= option is used instead.

ACTIVITYPRTY=variable

ACTPRTY=variable
identifies the variable in the Activity data set that contains the priority of each activity. This option
is required if resource-constrained scheduling is to be performed and the scheduling rule specified
is ACTPRTY. If the value of the SCHEDRULE= option is specified as the keyword ACTPRTY,
then all activities waiting for resources are ordered by increasing values of the ACTPRTY= variable.
Missing values of the activity priority variable are treated as CINFINITY. See the section “Scheduling
Method” on page 121 for a description of the various scheduling rules used during resource constrained
scheduling.

ADDCAL
requests that a variable, _CAL_, be added to the Resource Schedule data set that identifies the resource
calendar for each resource used by each activity. For observations that summarize the activity’s
schedule, this variable identifies the activity’s calendar.

ALL
is equivalent to specifying the ESPROFILE and LSPROFILE options when an unconstrained schedule
is obtained and is equivalent to specifying all four options, AVPROFILE (AVP), ESPROFILE (ESP),
LSPROFILE (LSP), and RCPROFILE (RCP), when a resource-constrained schedule is obtained. If
none of these four options are specified and a Usage data set is specified, by default the ALL option is
assumed to be in effect.

ALTBEFORESUP
indicates that all alternate resources are to be checked first before using supplementary resources. By
default, if supplementary levels of resources are available, the procedure uses supplementary levels
first and uses alternate resources only if the supplementary levels are not sufficient.

APPEND

APPENDINTXRATE

APPENDRATEXINT

APPENDUSAGE
indicates that the Usage data set is to contain two sets of observations: the first set indicates the rate of
usage for each resource at the beginning of the current time period, and the second set contains the
total usage of each resource for the current time period. In other words, the Usage data set appends
observations indicating the total usage of each resource to the default set of observations. If the
APPEND option is specified, the procedure adds a variable named OBS_TYPE to the Usage data set.
This variable contains the value ‘RES_RATE’ for the observations that indicate rate of usage and the
value ‘RES_USED’ for the observations that indicate the total usage.

AROUTCAL=calname
specifies the name of the calendar to be used for incrementing the _TIME_ variable in the Usage data
set.

84 F Chapter 4: The CPM Procedure

AVPROFILE

AVP

AVL
creates one variable in the Usage data set corresponding to each variable in the RESOURCE statement.
These new variables denote the amount of resources remaining after resource allocation. This option is
ignored if resource allocation is not performed.

AWAITDELAY
forces PROC CPM to wait until L_STARTCdelay , where delay is the maximum delay allowed for
the activity (which is the value of the ACTDELAY= variable or the DELAY= option), before an
activity is scheduled using supplementary levels of resources. By default, even if an activity has a
nonzero value specified for the ACTDELAY= variable (or the DELAY= option), it may be scheduled
using supplementary resources before L_STARTCdelay . This happens if the procedure does not
see any increase in the resource availability in the future. Thus, if it appears that the activity will
require supplementary resources anyway, the procedure may schedule it before L_STARTCdelay . The
AWAITDELAY option prohibits this behavior; it will not use supplementary resources to schedule an
activity before L_STARTCdelay . This option can be used to force activities with insufficient resources
to start at L_START by setting DELAY=0.

CUMUSAGE
specifies that the Usage data set should indicate the cumulative usage of consumable resources. Note
that by default, for consumable resources, each observation in the Usage data set contains the rate of
usage for each resource at the start of the given time interval. See the section “RESOURCEOUT=
Usage Data Set” on page 129 for a definition of the variables in the resource usage output data
set. In some applications, it may be useful to obtain the cumulative usage of these resources. The
CUMUSAGE option can be used to obtain the cumulative usage of consumable resources up to the
time specified in the _TIME_ variable.

DELAY=delay
specifies the maximum amount by which an activity can be delayed due to lack of resources. If
E_START of an activity is 1JUN04 and L_START is 5JUN04 and delay is specified as 2, PROC CPM
first tries to schedule the activity to start on June 1, 2004. If there are not enough resources to schedule
the activity, the CPM procedure postpones the activity’s start time. However, it does not postpone the
activity beyond June 7, 2004 (because delay=2 and L_START=5JUN04).

If the activity cannot be scheduled even on 7JUN04, then PROC CPM tries to schedule it by using
supplementary levels of resources, if available, or by using alternate resources, if possible. If resources
are still not sufficient, the procedure stops with an error message. The default value of the DELAY=
option is assumed to beCINFINITY.

DELAYANALYSIS

SLIPINF
causes the addition of three new variables to the Schedule data set. The variables are R_DELAY,
DELAY_R and SUPPL_R. The R_DELAY variable indicates the number of units (in interval units) by
which the activity’s schedule has slipped due to resource unavailability, and the DELAY_R variable
contains the name of the resource, the delaying resource, that has caused the slippage.

The R_DELAY variable is calculated as follows: it is the difference between S_START and the time
when an activity first enters the list of activities that are available to be scheduled. (See the section

RESOURCE Statement F 85

“Scheduling Method” on page 121 for a definition of this waiting list of activities.) R_DELAY is not
necessarily the same as S_START � E_START.

If several resources are insufficient, causing a delay in the activity, DELAY_R is the name of the
resource that first causes an activity to be postponed.

The variable SUPPL_R contains the name of the first resource that is used above the primary level in
order for an activity to be scheduled at S_START.

ESPROFILE
ESP
ESS

creates one variable in the Usage data set corresponding to each variable in the RESOURCE statement.
Each new variable denotes the resource usage based on the early start schedule for the corresponding
resource variable.

E_START
requests that the E_START and E_FINISH variables, namely the variables specifying the early start
schedule, be included in the Schedule data set in addition to the S_START and S_FINISH variables.
This option is the default and can be turned off using the NOE_START option.

EXCLUNSCHED
excludes the resource consumption corresponding to unscheduled activities from the daily resource
usage reported for each time period in the Usage data set. The Usage data set contains a variable
named Rresname for each resource variable resname. For each observation in this data set, each
such variable contains the total amount of resource (rate of usage for a consumable resource) used by
all the activities that are active at the time period corresponding to that observation. By default, this
calculation includes even activities that are still unscheduled when resource constrained scheduling is
stopped either by the STOPDATE= option or due to resource infeasibilities. The EXCLUNSCHED
option enables the exclusion of activities that are still unscheduled. The unscheduled activities are
assumed to start as per the early start schedule (unless the UPDTUNSCHED option is specified).

FILLUNSCHED
FILLMISSING

fills in S_START and S_FINISH values for activities that are still unscheduled when resource con-
strained scheduling is stopped either by the STOPDATE= option or due to resource infeasibilities. By
default, the Schedule data set contains missing values for S_START and S_FINISH corresponding to
unscheduled activities. If the FILLUNSCHED option is on, the procedure uses the original E_START
and E_FINISH times for these activities. If the UPDTUNSCHED option is also specified, the procedure
uses updated values.

F_FLOAT
requests that the Schedule data set include the F_FLOAT variable computed using the unconstrained
early and late start schedules. If resource allocation is not performed, this variable is always included
in the output data set.

INCLUNSCHED
enables the inclusion of activities that are still unscheduled in the computation of daily (or cumulative)
resource usage in the Usage data set when resource-constrained scheduling is stopped either by the
STOPDATE= option or due to resource infeasibilities. This option is the default and can be turned off
by the EXCLUNSCHED option.

86 F Chapter 4: The CPM Procedure

INDEPENDENTALLOC

INDEPALLOC
enables each resource to be scheduled independently for each activity during resource-constrained
scheduling. Consider the basic resource scheduling algorithm described in the section “Scheduling
Method” on page 121. When all the precedence requirements of an activity are satisfied, the activity is
inserted into the list of activities that are waiting for resources using the appropriate scheduling rule.
An activity in this list is scheduled to start at a particular time only if all the resources required by
it are available in sufficient quantity. Even if the resources are required by the activity for different
lengths of time, or if the resources have different calendars, all resources must be available to start at
that particular time (or at the beginning of the next work period for the resource’s calendar).

If you specify the INDEPENDENTALLOC option, however, each resource is scheduled independently
of the others. This may cause an activity’s schedule to be extended if its resources cannot all start at
the same time.

INFEASDIAGNOSTIC

INFEASDIAG
requests PROC CPM to continue scheduling even when resources are insufficient. When PROC
CPM schedules the project subject to resource constraints, the scheduling process is stopped when
the procedure cannot find sufficient resources for an activity before the activity’s latest possible start
time (accounting for the DELAY= or ACTDELAY= options and using supplementary or alternate
resources if necessary and if allowed). The INFEASDIAGNOSTIC option can be used to override
this default action. (Sometimes, you may want to know the level of resources needed to schedule a
project to completion even if resources are insufficient.) This option is equivalent to specifying infinite
supplementary levels for all the resources under consideration; the DELAY= value is assumed to equal
the default value ofCINFINITY, unless otherwise specified.

LSPROFILE

LSP

LSS
creates one variable in the Usage data set corresponding to each variable in the RESOURCE statement.
Each new variable denotes the resource usage based on the late start schedule for the corresponding
resource variable.

L_START
requests that the L_START and L_FINISH variables, namely the variables specifying the late start
schedule, be included in the Schedule data set in addition to the S_START and S_FINISH variables.
This option is the default and can be turned off using the NOL_START option.

MAXDATE=maxdate
specifies the maximum value of the _TIME_ variable in the Usage data set. The default value of
maxdate is the maximum finish time for all of the schedules for which a usage profile was requested.

MAXNSEGMT=variable

MAXNSEG=variable
specifies a variable in the Activity data set that indicates the maximum number of segments that the
current activity can be split into. A missing value for this variable is set to a default value that depends
on the duration of the activity and the value of the MINSEGMTDUR variable. A value of 1 indicates
that the activity cannot be split. By default, PROC CPM assumes that any activity, once started, cannot

RESOURCE Statement F 87

be stopped until it is completed (except for breaks due to holidays or weekends). Thus, even during
resource-constrained scheduling, an activity is scheduled only if enough resources can be found for it
throughout its entire duration. Sometimes, you may want to allow preemption of activities already
in progress; thus, a more critical activity could cause another activity to be split into two or more
segments.

However, you may not want a particular activity to be split into too many segments, or to be split too
many times. The MAXNSEGMT= and MINSEGMTDUR= options enable you to control the number
of splits and the length of each segment.

MAXOBS=max
specifies an upper limit on the number of observations that the Usage data set can contain. If the
values specified for the ROUTINTERVAL= and ROUTINTPER= options are such that the data set will
contain more than max observations, then PROC CPM does not create the output data set and stops
with an error message.

The MAXOBS= option is useful as a check to ensure that a very large data set (with several thousands
of observations) is not created due to a wrong specification of the ROUTINTERVAL= option. For
example, if interval is DTYEAR and routinterval is DTHOUR and the project extends over 2 years, the
number of observations would exceed 15,000. The default value of the MAXOBS= option is 1000.

MILESTONERESOURCE
specifies that milestone activities consume resources. If a nonzero requirement is specified for a
milestone, the corresponding consumable resources are used at the scheduled time of that milestone.

MILESTONENORESOURCE
specifies that milestone activities do not consume resources. This implies that all resource requirements
are ignored for milestone activities. This is the default behavior.

MINDATE=mindate
specifies the minimum value of the _TIME_ variable in the Usage data set. The default value of
mindate is the minimum start time for all of the schedules for which a usage profile is requested. Thus,
the Usage data set has observations containing the resource usage and availability information from
mindate through maxdate .

MINSEGMTDUR=variable

MINSEGD=variable
specifies a variable in the Activity data set that indicates the minimum duration of any segment of the
current activity. A missing value for this variable is set to a value equal to one fifth of the activity’s
duration.

MULTIPLEALTERNATES

MULTALT
indicates that multiple alternate resources can be used to substitute for a single resource. In other
words, if one of the alternate resources is not sufficient to substitute for the primary resource, the
procedure will use other alternates, as needed, to fulfill the resource requirement. For example, if an
activity needs 1.5 programmers and the allowed alternates are JOHN and MARY, the procedure will
use JOHN (at rate 1) and MARY (at rate 0.5) to allocate a total of 1.5 programmers. See the section
“Specifying Multiple Alternates” on page 127 for details.

88 F Chapter 4: The CPM Procedure

NOE_START
requests that the E_START and E_FINISH variables, namely the variables specifying the early start
schedule, be dropped from the Schedule data set. Note that the default is E_START. Also, if resource
allocation is not performed, the NOE_START option is ignored.

NOF_FLOAT
requests that the F_FLOAT variable be dropped from the Schedule data set when resource-constrained
scheduling is requested. This is the default behavior. To include the F_FLOAT variable in addition to
the resource-constrained schedule, use the F_FLOAT option. If resource allocation is not performed,
F_FLOAT is always included in the Schedule data set.

NOL_START
requests that the Schedule data set does not include the late start schedule, namely, the L_START and
L_FINISH variables. Note that the default is L_START. Also, if resource allocation is not performed,
the NOL_START option is ignored.

NORESOURCEVARS

NORESVARSOUT

NORESVARS
requests that the variables specified in the RESOURCE statement be dropped from the Schedule data
set. By default, all of the resource variables specified on the RESOURCE statement are also included
in the Schedule data set.

NOT_FLOAT
requests that the T_FLOAT variable be dropped from the Schedule data set when resource-constrained
scheduling is requested. This is the default behavior. To include the T_FLOAT variable in addition to
the resource-constrained schedule, use the T_FLOAT option. If resource allocation is not performed,
T_FLOAT is always included in the Schedule data set.

NROUTCAL=calnum
specifies the number of the calendar to be used for incrementing the _TIME_ variable in the Usage
data set.

OBSTYPE=variable
specifies a character variable in the Resource data set that contains the type identifier for each observa-
tion. Valid values for this variable are RESLEVEL, RESTYPE, RESUSAGE, RESPRTY, SUPLEVEL,
ALTRATE, ALTPRTY, RESRCDUR, CALENDAR, MULTALT, MINARATE, and AUXRES. If OB-
STYPE= is not specified, then all observations in the data set are assumed to denote the levels of the
resources, and all resources are assumed to be replenishable and constraining.

PERIOD=variable

PER=variable
identifies the variable in the RESOURCEIN= data set that specifies the date from which a specified level
of the resource is available for each observation with the OBSTYPE variable equal to ‘RESLEVEL’. It
is an error if the PERIOD= variable has a missing value for any observation specifying the levels of
the resources or if the Resource data set is not sorted in increasing order of the PERIOD= variable.

RESOURCE Statement F 89

RCPROFILE

RCP

RCS
creates one variable in the Usage data set corresponding to each variable in the RESOURCE statement.
Each new variable denotes the resource usage based on the resource-constrained schedule for the
corresponding resource variable. This option is ignored if resource allocation is not performed.

RESCALINTERSECT

RESCALINT

RCI
specifies that an activity can be scheduled only during periods that are common working times for all
resource calendars (corresponding to the resources used by that activity) and the activity’s calendar.
This option is valid only if multiple calendars are in use and if calendars are associated with individual
resources. Use this option with caution; if an activity uses resources that have mutually disjoint
calendars, that activity can never be scheduled. For example, if one resource works a night shift while
another resource works a day shift, the two calendars do not have any common working time.

Only primary resources are included in the intersection; any alternate or auxiliary resources are not
included when determining the common working calendar for the activity.

If you do not specify the RESCALINTERSECT option, and resources have independent calendars,
then the procedure schedules each resource using its own calendar. Thus, an activity can have one
resource working on a five-day calendar, while another resource is working on a seven-day calendar.

RESID=variable
specifies a variable in the RESOURCEIN= data set that indicates the name of the resource variable
for which alternate resource information or auxiliary resource information is being specified in that
observation.

Observations that indicate alternate resources are identified by the values ‘ALTRATE’ and ‘ALTPRTY’
for the OBSTYPE variable. These values indicate whether the observation specifies a rate of substitu-
tion or a priority for substitution; the value of the RESID variable in such an observation indicates
the particular resource for which alternate resource information is specified in that observation. The
specification of the RESID= option triggers the use of alternate resources. See the section “Specifying
Alternate Resources” on page 125 for further information.

Observations indicating auxiliary resources are identified by the value ‘AUXRES’ for the OBSTYPE
variable. Such observations specify the name of the primary resource as the value of the RESID variable
and the rate of auxiliary resources needed for every unit of the primary resource as values of the other
resource variables. See the section “Auxiliary Resources” on page 129 for further information.

RESOURCEVARS

RESVARSOUT
requests that the variables specified in the RESOURCE statement be included in the Schedule data set.
These include the RESOURCE variables identifying the resource requirements, the activity priority
variable, the activity delay variable, and any variables specifying activity splitting information. This
option is the default and can be turned off by the NORESVARSOUT option.

90 F Chapter 4: The CPM Procedure

ROUTINTERVAL=routinterval

STEPINT=routinterval
specifies the units to be used to determine the time interval between two successive values of the
TIME variable in the Usage data set. It can be used in conjunction with the ROUTINTPER= option
to control the amount of information to be included in the data set. Valid values for routinterval are
DAY, WORKDAY, WEEK, MONTH, WEEKDAY, QTR, YEAR, DTDAY, DTWRKDAY, DTWEEK,
DTMONTH, DTQTR, DTYEAR, DTSECOND, DTMINUTE, DTHOUR, SECOND, MINUTE, or
HOUR. The value of this parameter must be chosen carefully; a massive amount of data could be
generated by a bad choice. If this parameter is not specified, a default value is chosen depending on the
format of the schedule variables.

ROUTINTPER=routintper

STEPSIZE=routintper

STEP=routintper
specifies the number of routinterval units between successive observations in the Usage data set where
routinterval is the value of the ROUTINTERVAL= option. For example, if routinterval is MONTH and
routintper is 2, the time interval between each pair of observations in the Usage data set is two months.
The default value of routintper is 1. If routinterval is blank (‘ ’), then routintper can be used to specify
the exact numeric interval between two successive values of the _TIME_ variable in the Usage data set.
routintper is only allowed to have integer values when routinterval is specified as one of the following:
WEEK, MONTH, QTR, YEAR, DTWEEK, DTMONTH, DTQTR, or DTYEAR.

ROUTNOBREAK

ROUTCONT
specifies that the _TIME_ variable is to be incremented using a calendar with no breaks or holidays.
Thus, the Usage data set contains one observation per unit routinterval from mindate to maxdate,
without any breaks for holidays or weekends. By default, the _TIME_ variable is incremented using
the default calendar; thus, if the default calendar follows a five-day work week, the Usage data set
skips weekends.

RSCHEDID=(variables)

RSID=(variables)
identifies variables not specified in the TAILNODE, HEADNODE, or ACTIVITY statements that
are to be included in the Resource Schedule data set. This option is useful for carrying any relevant
information about each activity from the Activity data set to the Resource Schedule data set.

SCHEDRULE=schedrule

RULE=schedrule
specifies the rule to be used to order the list of activities whose predecessor activities have been
completed while scheduling activities subject to resource constraints. Valid values for schedrule
are LST, LFT, SHORTDUR, ACTPRTY, RESPRTY, and DELAYLST. (See the section “Scheduling
Rules” on page 122 for more information.) The default value of SCHEDRULE is LST. If an invalid
specification is given for the SCHEDRULE= option, the default value is used, and a warning message
is displayed in the log.

RESOURCE Statement F 91

SCHEDRULE2=schedrule2

RULE2=schedrule2
specifies the rule to be used to break ties caused by the SCHEDRULE= option. Valid values for
schedrule2 are LST, LFT, SHORTDUR, ACTPRTY, RESPRTY, and DELAYLST. ACTPRTY and
RESPRTY cannot be specified at the same time for the two scheduling rules; in other words, if
schedrule is ACTPRTY, schedrule2 cannot be RESPRTY and vice versa.

SETFINISH=MAX j EARLY (Experimental)
controls the computation of resource-constrained finish times for activities that are in progress. A
value of EARLY sets the resource-constrained finish time to the early finish time as derived from the
progress updating variables A_START, A_FINISH, REMDUR, and PCTCOMP. Specifying the default
value of MAX sets the resource-constrained finish time to the maximum of the early finish time and
the finish times for all resources for the given activity. Use of the EARLY value for this option could
leave work unfulfilled because of the priority given to the progress updating information.

SPLITFLAG
indicates that activities are allowed to be split into segments during resource allocation. This option
can be used instead of specifying either the MAXNSEGMT= or the MINSEGMTDUR= variable;
PROC CPM assumes that the activity can be split into no more than five segments.

STOPDATE=stdate
specifies the cutoff date for resource-constrained scheduling. When such a date is specified, S_START
and S_FINISH are set to missing beyond the cutoff date. Options are available to set these missing
values to the original E_START and E_FINISH times (FILLUNSCHED) or to updated values based
on the scheduled activities (UPDTUNSCHED).

T_FLOAT
requests that the Schedule data set include the T_FLOAT variable computed using the unconstrained
early and late start schedules. Note that if resource allocation is not performed, this variable is always
included in the Schedule data set.

TOTUSAGE

INTXRATE

INTUSAGE

RATEXINT
specifies that the Usage data set is to indicate the total usage of the resource for the current time
period. The current time period is the time interval from the time specified in the _TIME_ variable
for the current observation to the time specified in the _TIME_ variable for the next observation. The
total usage is computed taking into account the relevant activity and resource calendars. Note that,
by default, the observations in the Usage data set specify the rate of usage for each resource at the
beginning of the current time period. The TOTUSAGE option specifies the product of the rate and
the time interval between two successive observations. To get both the rate and the product, use the
APPEND option.

92 F Chapter 4: The CPM Procedure

UNSCHEDMISS
sets the S_START and S_FINISH values to missing for activities that are still unscheduled when
resource constrained scheduling is stopped either by the STOPDATE= option or due to resource
infeasibilities. This is the default and can be turned off by specifying the FILLUNSCHED option.

UPDTUNSCHED
causes the procedure to use the S_START and S_FINISH times of scheduled activities to update the
projected start and finish times for the activities that are still unscheduled when resource constrained
scheduling is stopped either by the STOPDATE= option or due to resource infeasibilities. These
updated dates are used as the S_START and S_FINISH times.

WORK=variable
identifies a variable in the Activity data set that specifies the total amount of work required by one unit
of a resource. This work is represented in units of the INTERVAL parameter. The procedure uses the
rate specified for the resource variable to compute the duration of the activity for that resource. Thus, if
the value of the WORK variable is 10, and the value of the resource variable R1 is 2, then the activity
requires 5 interval units for the resource R1. For details, see the section “Resource-Driven Durations
and Resource Calendars” on page 114.

SUCCESSOR Statement
SUCCESSOR variables / lag options ;

SUCC variables / lag options ;

The SUCCESSOR statement is required when data are input in an AON format. This statement specifies the
variables that contain the names of the immediate successor nodes (activities) to the ACTIVITY node. These
variables must be of the same type and length as those defined in the ACTIVITY statement.

If the project does not have any precedence relationships, it is not necessary to use the SUCCESSOR
statement. Thus, you can specify only the ACTIVITY statement without an accompanying SUCCESSOR
statement.

If the precedence constraints among the activities have some nonstandard relationships, you can specify these
using the LAG options. The following is a list of LAG options.

ALAGCAL=calname
specifies the name of the calendar to be used for all lags. The default value for this option is the
DEFAULT calendar.

LAG=variables
specifies the variables in the Activity data set used to identify the lag relationship (lag type, duration,
and calendar) between the activity and its successor. The LAG variables must be character variables.
You can specify as many LAG variables as there are SUCCESSOR variables; each SUCCESSOR
variable is matched with the corresponding LAG variable. You must specify the LAG variables
enclosed in parentheses. In a given observation, the ith LAG variable specifies the type of relation
between the current activity (as specified by the ACTIVITY variable) and the activity specified by
the ith SUCCESSOR variable. If there are more LAG variables than SUCCESSOR variables, the
extra LAG variables are ignored; conversely, if there are fewer LAG variables, the extra SUCCESSOR
variables are all assumed to indicate successors with a standard (finish-to-start) relationship.

TAILNODE Statement F 93

In addition to the type of relation, you can also specify a lag duration and a lag calendar in the same
variable. The relation_lag_calendar information is expected to be specified as

keyword _ duration _ calendar

where keyword is one of ‘ ’, FS, SS, SF, or FF, duration is a number specifying the duration of the lag
(in interval units), and calendar is either a calendar name or number identifying the calendar followed
by the lag duration. A missing value for the keyword is assumed to mean the same as FS, which is
the standard relation of finish-to-start. The other three values, SS, SF, and FF, denote relations of the
type start-to-start, start-to-finish, and finish-to-finish, respectively. If there are no LAG variables, all
relationships are assumed to be of the type finish-to-start with no lag duration. Table 4.3 contains some
examples of lag specifications.

Table 4.3 Lag Specifications

Activity Successor LAG Interpretation
A B SS_3 Start to start lag of 3 units
A B _5.5 Finish to start lag of 5.5 units
A B FF_4 Finish to finish lag of 4 units
A B _SS Invalid and ignored (with warning)
A SS_3 Ignored
A B SS_3_1 Start to start lag of 3 units w.r.t. calendar 1

NLAGCAL=calnum
specifies the number of the calendar to be used for all lags. The default value for this option is the
DEFAULT calendar.

TAILNODE Statement
TAILNODE variable ;

TAIL variable ;

FROM variable ;

The TAILNODE statement is required when data are input in AOA (arrow notation) format. It specifies
the variable that contains the name of each node on the tail of an arc in the project network. This node is
identified with the event that signals the start of the activity on that arc. The variable specified can be either
a numeric or character variable since the procedure treats this variable symbolically. Each node must be
uniquely defined.

94 F Chapter 4: The CPM Procedure

Details: CPM Procedure
This section provides a detailed outline of the use of the CPM procedure. The material is organized
in subsections that describe different aspects of the procedure. They have been placed in increasing
order of functionality. The first section describes how to use PROC CPM to schedule a project sub-
ject only to precedence constraints. The next two sections describe some of the features that enable
you to control the units of duration and specify nonstandard precedence constraints. In the section
“Time-Constrained Scheduling” on page 98, the statements needed to place time constraints on the activ-
ities are introduced. the section “Finish Milestones” on page 100 describes some options controlling the
treatment of milestones.

The section “OUT= Schedule Data Set” on page 101 describes the format of the schedule output data set
(the Schedule data set). The section “Multiple Calendars” on page 103 deals with calendar specifications for
the different activities.

The section “Baseline and Target Schedules” on page 111 describes how you can save specific sched-
ules as baseline or target schedules. The section “Progress Updating” on page 111 describes how to
incorporate the actual start and finish times for a project that is already in progress. The section
“Resource-Driven Durations and Resource Calendars” on page 114 describes how the WORK variable can
be used to specify resource-driven durations and the effect of resource calendars on the activity schedules.

Next, the section “Resource Usage and Allocation” on page 115 pertains to resource usage and resource-
constrained scheduling and describes how to specify information about the resources and the resource
requirements for the activities. The scheduling algorithm is also described in this section and some advanced
features such as alternate resources, auxiliary resources, negative resource requirements, and so on, are
discussed under separate subsections.

The section “RESOURCEOUT= Usage Data Set” on page 129 describes the format of the resource usage
output data set (the Usage data set) and explains how to interpret the variables in it.

When resource-driven durations are specified or resource calendars are in effect, each resource used by
an activity may have a different schedule. In this case, the Resource Schedule data set, described in the
section “RESOURCESCHED= Resource Schedule Data Set” on page 133, contains the individual resource
schedules for each activity.

The section “Multiproject Scheduling” on page 133 describes how you can use PROC CPM when there are
multiple projects that have been combined together in a multiproject structure.

PROC CPM also defines a macro variable that is described in the section “Macro Variable _ORCPM_” on
page 136.

Table 4.9 in the section “Input Data Sets and Related Variables” on page 137 lists all the variables
used by the CPM procedure and the data sets that contain them. Table 4.10 in the section
“Missing Values in Input Data Sets” on page 139 lists all of the variables in the different input data sets
and describes how PROC CPM treats missing values corresponding to each of them. Finally, the section
“FORMAT Specification” on page 141 underlines the importance of associating the correct FORMAT speci-
fication with all the date-type variables, and the section “Computer Resource Requirements” on page 141
indicates the storage and time requirements of the CPM procedure.

Scheduling Subject to Precedence Constraints F 95

Scheduling Subject to Precedence Constraints
The basic function of the CPM procedure is to determine a schedule of the activities in a project subject to
precedence constraints among them. The minimum amount of information that is required for a successful
invocation of PROC CPM is the network information specified either in AON or AOA formats and the
duration of each activity in the network. The INTERVAL= option specifies the units of duration, and the
DATE= option specifies a start date for the project. If a start date is not specified for the project, the schedule
is computed as unformatted numerical values with a project start date of 0. The DATE= option can be a SAS
date, time, or datetime value (or a number) and can be used to specify a start date for the project. In addition
to the start date of the project, you can specify a desired finish date for the project using the FBDATE= option.

PROC CPM computes the early start schedule as well as the late start schedule for the project. The project
start date is used as the starting point for the calculation of the early start schedule, while the project
completion date is used in the computation of the late start schedule. The early start time (E_START) for all
start activities (those activities with no predecessors) in the project is set to be equal to the value of the DATE
parameter (if the FINISHBEFORE option is not specified). The early finish time (E_FINISH) for each start
activity is computed as E_STARTC dur , where dur is the activity’s duration (as specified in the Activity
data set). For each of the other activities in the network, the early start time is computed as the maximum of
the early finish time of all its immediate predecessors.

The project finish time is computed as the maximum of the early finish time of all the activities in the network.
The late finish time (L_FINISH) for all the finish activities (those activities with no successors) in the project
is set to be equal to the project finish time. The late start time (L_START) is computed as L_FINISH � dur .
For each of the other activities in the network, the late finish time is computed as the minimum of the late
start time of all its immediate successors. If the FIXFINISH option is specified, the late finish time for each
finish activity is set to be equal to its early finish time. In other words, the finish activities are not allowed to
float to the end of the project.

Once the early and late start schedules have been computed, the procedure computes the free and total float
times for each activity. Free float (F_FLOAT) is defined as the maximum delay that can be allowed in an
activity without delaying a successor activity. Total float (T_FLOAT) is calculated as the difference between
the activity’s late finish time and early finish time; it indicates the amount of time by which an activity can be
delayed without delaying the entire project. The values of both the float variables are calculated in units of
the INTERVAL parameter.

An activity that has zero T_FLOAT is said to be critical. As a result of the forward and backward pass
computations just described, there is at least one path in the project network that contains only critical
activities. This path is called the critical path. The duration of the project is equal to the length of the critical
path.

If the FBDATE= option is also specified, the project finish time is set equal to the value of the FBDATE=
option. The backward pass computation is initiated by setting the late finish time for all the finish activities in
the project to be equal to fbdate. If the project finish time, as computed from the forward pass calculations, is
different from fbdate, the longest path in the network may no longer have 0 total float. In such a situation,
the critical path is defined to be the path in the network with the least total float. Activities with negative
T_FLOAT are referred to as supercritical activities.

NOTE: An important requirement for a project network is that it should be acyclic (cycles are not allowed).

96 F Chapter 4: The CPM Procedure

A network is said to contain a cycle (or loop) if the precedence relationships starting from an activity loops
back to the same activity. The forward and backward pass computations cannot be performed for a cyclic
network. If the project network has a cycle, the CPM procedure stops processing after identifying the cycle.

Using the INTERVAL= Option
The INTERVAL= option enables you to define the units of the DURATION variable; that is, you can indicate
whether the durations are specified as hours, minutes, days, or in terms of workdays, and so on. In addition to
specifying the units, the INTERVAL= option also indicates whether the schedule is to be output as SAS time,
date, or datetime values, or as unformatted numeric values.

The prefix DT in the value of the INTERVAL= option (as in DTDAY, DTWEEK, and so on) indicates to
PROC CPM that the schedule is output as SAS datetime values, and the DATE= option is expected to be a
SAS datetime value. Thus, use DTYEAR, DTMONTH, DTQTR, or DTWEEK instead of the corresponding
YEAR, MONTH, QTR, or WEEK if the DATE= option is specified as a SAS datetime value.

The start and finish times for the different schedules computed by PROC CPM denote the first and last day of
work, respectively, when the values are formatted as SAS date values. If the times are SAS time or datetime
values, they denote the first and last second of work, respectively.

If the INTERVAL= option is specified as WORKDAY, the procedure schedules work on weekdays and
nonholidays starting at 9 a.m. and ending at 5 p.m. If you use INTERVAL=DTWRKDAY, the procedure also
schedules work only on weekdays and nonholidays. In this case, however, the procedure expects the DATE=
option to be a SAS datetime value, and the procedure interprets the start of the workday from the time portion
of that option. To change the length of the workday, use the DAYLENGTH= option in conjunction with
INTERVAL=DTWRKDAY.

The procedure sets the default value of the INTERVAL= option on the basis of the units of the DATE= option.
Table 4.4 lists various valid combinations of the INTERVAL= option and the type of the DATE= option
(number, SAS time, date or datetime value) and the resulting interpretation of the duration units and the
format type of the schedule variables (numbers, SAS time, date or datetime format) output to the Schedule
data set. For each DATE type value, the first INTERVAL value is the default. Thus, if the DATE= option is a
SAS date value, the default value of the INTERVAL= option is DAY, and so on.

For the first five specifications of the INTERVAL= option in the last part of Table 4.4 (DTDAY , . . . ,
DTHOUR), the day starts at daystart and is daylength hours long.

The procedure may change the INTERVAL= specification and the units of the schedule variables to be
compatible with the format specification of the ALIGNDATE variable, or the A_START or A_FINISH
variables in the Activity data set, or the PERIOD variable in the Resource data set. For example, if interval is
specified as DAY, but the ALIGNDATE variable contains SAS datetime values, the schedule is computed in
SAS datetime values. Similarly, if interval is specified as DAY or WEEKDAY, but some of the durations are
fractional, the schedule is computed as SAS datetime values.

Nonstandard Precedence Relationships F 97

Table 4.4 INTERVAL= and DATE= Parameters and Units of Duration

DATE Type INTERVAL Units of Duration Format of Schedule
Variables

Number Period Unformatted
SAS time HOUR Hour SAS time

MINUTE Minute SAS time
SECOND Second SAS time

SAS date DAY Day SAS date
WEEKDAY Day (5-day week) SAS date
WORKDAY Day (5-day week: SAS datetime

9-5 day)
WEEK Week SAS date
MONTH Month SAS date
QTR Quarter SAS date
YEAR Year SAS date

SAS datetime DTDAY Day (7-day week) SAS datetime
DTWRKDAY Day (5-day week) SAS datetime
DTSECOND Second SAS datetime
DTMINUTE Minute SAS datetime
DTHOUR Hour SAS datetime

DTWEEK Week SAS datetime
DTMONTH Month SAS datetime
DTQTR Quarter SAS datetime
DTYEAR Year SAS datetime

Nonstandard Precedence Relationships
A standard precedence constraint between two activities (for example, activity A and an immediate successor
B) implies that the second activity is ready to start as soon as the first activity has finished. Such a relationship
is called a finish-to-start relationship with zero lag. Often, you want to specify other types of relationships
between activities. For example:

� Activity B can start five days after activity A has started: start-to-start lag of five days.

� Activity B can start three days after activity A has finished: finish-to-start lag of three days.

The AON representation of the network enables you to specify such relationships between activities: use
the LAG= option in the SUCCESSOR statement. This enables you to use variables in the Activity data set
that specify the type of relationship between two activities and the time lag between the two events involved;
you can also specify the calendar to be used in measuring the lag duration. See the section “SUCCESSOR
Statement” on page 92 for information about the specification. Example 4.11, “Nonstandard Relationships,”
in the section “Examples” illustrates a nonstandard precedence relationship.

98 F Chapter 4: The CPM Procedure

This section briefly discusses how the computation of the early and late start schedules, described in the
section “Scheduling Subject to Precedence Constraints” on page 95, changes in the presence of nonstandard
relationships.

For each (predecessor, successor) pair of activities, the procedure saves the lag type, lag duration, and lag
calendar information. Suppose that the predecessor is A, the immediate successor is B, the durations of the
two activities are durA and durB, respectively, and the activity’s early start and finish times are pes and pef ,
respectively. Suppose further that the lag type is lt , lag duration is ld , and lag calendar is lc. Recall that the
basic forward and backward passes described in the section “Scheduling Subject to Precedence Constraints”
on page 95 assume that all the precedence constraints are standard of the type finish-to-start with zero lag.
Thus, in terms of the notation just defined, the early start time of an activity is computed as the maximum of
pef for all the preceding activities. However, in the presence of nonstandard relationships, the predecessor’s
value used to compute an activity’s early start time depends on the lag type and lag value. Table 4.5 lists the
predecessor’s value that is used to determine the successor’s early start time.

Table 4.5 Effect of Lag Duration and Calendar on Early Start Schedule

Lag Type Definition Value Used to Compute Successor’s E_START
FS Finish-to-start pef C ld
SS Start-to-start pes C ld
SF Start-to-finish pes C ld � durB
FF Finish-to-finish pef C ld � durB

The addition of the lag durations (ld) is in units following the lag calendar lc; the subtraction of durB is in
units of the activity B’s calendar. The backward pass to determine the late start schedule is modified in a
similar way to include lag durations and calendars.

Time-Constrained Scheduling
You can use the DATE= and FBDATE= options in the PROC CPM statement (or the DATE= option in
conjunction with the FINISHBEFORE option) to impose start and finish dates on the project as a whole. Often,
you want to impose start or finish constraints on individual activities within the project. The ALIGNDATE
and ALIGNTYPE statements enable you to do so. For each activity in the project, you can specify a particular
date (as the value of the ALIGNDATE variable) and whether you want the activity to start on or finish before
that date (by specifying one of several alignment types as the value of the ALIGNTYPE variable). PROC
CPM uses all these dates in the computation of the early and late start schedules.

The following explanation best illustrates the restrictions imposed on the start or finish times of an activity
by the different types of alignment allowed. Let d denote the value of the ALIGNDATE variable for a
particular activity and let dur be the activity’s duration. If minsdate and maxfdate are used to denote the
earliest allowed start date and the latest allowed finish date, respectively, for the activity, then Table 4.6
illustrates the values of minsdate and maxfdate as a function of the value of the ALIGNTYPE variable.

Once the minsdate and maxfdate dates have been calculated for all of the activities in the project, the values
of minsdate are used in the computation of the early start schedule and the values of maxfdate are used in
the computation of the late start schedule.

Time-Constrained Scheduling F 99

Table 4.6 Determining Alignment Date Values with the ALIGNTYPE Statement

Keywords Alignment Type minsdate maxfdate
SEQ Start equal d d C dur
SGE Start greater than or equal d C infinity
SLE Start less than or equal � infinity d C dur
FEQ Finish equal d � dur d
FGE Finish greater than or equal d � dur C infinity
FLE Finish less than or equal � infinity d
MS Mandatory start d d C dur
MF Mandatory finish d � dur d

For the first six alignment types in Table 4.6, the value of minsdate specifies a lower bound on the early
start time and the value of maxfdate specifies an upper bound on the late finish time of the activity. The
early start time (E_START) of an activity is computed as the maximum of its minsdate and the early finish
times (E_FINISH) of all its predecessors (E_FINISH=E_STARTC dur). If nonstandard relationships are
present in the project, the predecessor’s value that is used depends on the type of the lag and the lag duration;
Table 4.5 in the previous section lists the values used as a function of the lag type. If a target completion date
is not specified (using the FBDATE or FINISHBEFORE options), the project completion time is determined
as the maximum value of E_FINISH over all of the activities in the project. The late finish time (L_FINISH)
for each of the finish activities (those with no successors) is computed as the minimum of its maxfdate and
the project completion date; late start time (L_START) is computed as L_FINISH � dur . The late finish time
(L_FINISH) for each of the other activities in the network is computed as the minimum of its maxfdate and
the times of all its successors.

It is important to remember that the precedence constraints of the network are always respected (for these
first six alignment types). Thus, it is possible that an activity that has an alignment constraint of the type SEQ,
constraining it to start on a particular date, say d , may not start on the specified date d due to its predecessors
not being finished before d . During resource-constrained scheduling, a further slippage in the start date could
occur due to insufficient resources. In other words, the precedence constraints and resource constraints have
priority over the time constraints (as imposed by the ALIGNDATE and ALIGNTYPE statements) in the
determination of the schedule of the activities in the network.

The last two alignment types, MS and MF, however, specify mandatory dates for the start and finish times
of the activities for both the early and late start schedules. These alignment types can be used to schedule
activities to start or finish on a given date disregarding precedence and resource constraints. Thus, an activity
with the ALIGNTYPE variable’s value equal to MS and the ALIGNDATE variable’s value equal to d is
scheduled to start on d (for the early, late, and resource-constrained schedules) irrespective of whether or not
its predecessors are finished or whether or not there are enough resources.

It is possible for the L_START time of an activity to be less than its E_START time if there are constraints
on the start times of certain activities in the network (or constraints on the finish times of some successor
activities) that make the target completion date infeasible. In such cases, some of the activities in the network
have negative values for T_FLOAT, indicating that these activities are supercritical. See Example 4.12,
“Activity Time Constraints,” for a demonstration of this situation.

100 F Chapter 4: The CPM Procedure

Finish Milestones
By default, the start and finish times for the different schedules computed by PROC CPM denote the first and
last day of work, respectively, when the values are formatted as SAS date values. All start times are assumed
to denote the beginning of the day and all finish times are assumed to correspond to the end of the day. If the
times are SAS time or datetime values, they denote the first and last second of work, respectively. However,
for zero duration activities, both the start and the finish times correspond to the beginning of the date (or
second) specified.

Thus, according to the preceding definitions, the CPM procedure assumes that all milestones are scheduled at
the beginning of the day indicated by their start times. In other words, the milestones can be regarded as start
milestones since they correspond to the beginning of the time period indicated by their scheduled times.

However, in some situations, you may want to treat the milestones as finish milestones.

Consider the following example:

Activity ‘A’ has a 2-day duration and is followed by a milestone (zero duration) activity, ‘B’. Suppose that
activity ‘A’ starts on March 15, 2004. The default calculations by the CPM procedure will produce the
following schedule for the two activities:

OBS Activity Duration E_START E_FINISH

1 A 2 15MAR2004 16MAR2004
2 B 0 17Mar2004 17MAR2004

The start and finish times of the milestone activity, ‘B’, are interpreted as the beginning of March 17, 2004.
In some situations, you may want the milestones to start and finish on the same day as their predecessors. For
instance, in this example, you may want the start and finish time of activity ‘B’ to be set to March 16, 2004,
with the interpretation that the time corresponds to the end of the day. Such milestones will be referred to as
finish milestones.

The SETFINISHMILESTONE option in the PROC CPM statement indicates that a milestone that is linked
to its predecessor by a Finish-to-Start or a Finish-to-Finish precedence constraint should be treated as a finish
milestone. In other words, such a milestone should have the start and finish time set to the end of the day that
the predecessor activity finishes. There are some exceptions to this rule:

� There is an alignment constraint on activity ‘B’ that requires the milestone to start on a later day than
the date dictated by the precedence constraint.

� Activity ‘B’ has an actual start or finish time specified that is inconsistent with the predecessor’s finish
date.

The alignment constraint that affects the early schedule of the project may not have any impact on the late
schedule. Thus, a milestone may be treated as a finish milestone for the late schedule even if it is not a finish
milestone according to the early schedule. See Example 4.28 for an illustration of this situation. In addition,
while computing the resource-constrained schedule, a start milestone (according to the early schedule) may
in fact turn out to be a finish milestone according to the resource-constrained schedule.

Since the same milestone could be treated as either a start or a finish milestone depending on the presence or
absence of an alignment constraint, or depending on the type of the schedule (early, late, resource-constrained,

OUT= Schedule Data Set F 101

or actual), the CPM procedure adds extra variables to the Schedule data set corresponding to each type of
schedule. These variables, EFINMILE, LFINMILE, SFINMILE, and AFINMILE, indicate for each milestone
activity in the project whether the corresponding schedule times (early, late, resource-constrained, or actual)
are to be interpreted as finish milestone times. These variables have a value of ‘1’ if the milestone is treated
as a finish milestone for the corresponding schedule; otherwise, the value is missing. In addition to providing
an unambiguous interpretation for the schedule times of the milestones, these variables are useful in plotting
the schedules correctly using the Gantt procedure. (See Example 4.28).

OUT= Schedule Data Set
The Schedule data set always contains the variables in the Activity data set that are listed in the TAILNODE,
HEADNODE, ACTIVITY, SUCCESSOR, DURATION, and ID statements. If the INTPER= option is
specified in the PROC CPM statement, then the values of the DURATION variable in the Schedule data set
are obtained by multiplying the corresponding values in the Activity data set by intper . Thus, the values in
the Schedule data set are the durations used by PROC CPM to compute the schedule. If the procedure is
used without specifying a RESOURCEIN= data set and only the unconstrained schedule is obtained, then the
Schedule data set contains six new variables named E_START, L_START, E_FINISH, L_FINISH, T_FLOAT,
and F_FLOAT.

If a resource-constrained schedule is obtained, however, the Schedule data set contains two new variables
named S_START and S_FINISH; the T_FLOAT and F_FLOAT variables are omitted. You can request
the omission of the E_START and E_FINISH variables by specifying NOE_START and the omission of
the L_START and L_FINISH variables by specifying NOL_START in the RESOURCE statement. The
variables listed in the RESOURCE statement are also included in the Schedule data set; to omit them, use the
NORESOURCEVARS option in the RESOURCE statement. If the DELAYANALYSIS option is specified,
the Schedule data set also includes the variables R_DELAY, DELAY_R and SUPPL_R.

If resource-driven durations or resource calendars are in effect, the start and finish times shown in the
Schedule data set are computed as the minimum of the start times for all resources for that activity and
the maximum of the finish times for all resources for that activity, respectively. For details see the section
“Resource-Driven Durations and Resource Calendars” on page 114.

If an ACTUAL statement is specified, the Schedule data set also contains the four variables A_START,
A_FINISH, A_DUR, and STATUS.

The format of the schedule variables in this data set (namely, A_START, A_FINISH, E_START, E_FINISH,
L_START, and so on) is consistent with the format of the DATE= specification and the INTERVAL= option
in the PROC CPM statement.

Definitions of Variables in the OUT= Data Set

Each observation in the Schedule data set is associated with an activity. The variables in the data set have the
following meanings.

A_DUR
specifies the actual duration of the activity. This variable is included in the Schedule data set only if
the ACTUAL statement is used. The value for this variable is missing unless the activity is completed
and may be different from the duration of the activity as specified by the DURATION variable. It is
based on the values of the progress variables. See the section “Progress Updating” on page 111 for
further details.

102 F Chapter 4: The CPM Procedure

A_FINISH
specifies the actual finish time of the activity, either as specified in the Activity data set or as computed
by PROC CPM on the basis of the progress variables specified. This variable is included in the
Schedule data set only if the ACTUAL statement is used.

A_START
specifies the actual start time of the activity, either as specified in the Activity data set or as computed by
PROC CPM on the basis of the progress variables specified. This variable is included in the Schedule
data set only if the ACTUAL statement is used.

E_FINISH
specifies the completion time if the activity is started at the early start time.

E_START
specifies the earliest time the activity can be started. This is the maximum of the maximum early finish
time of all predecessor activities and any lower bound placed on the start time of this activity by the
alignment constraints.

F_FLOAT
specifies the free float time, which is the difference between the early finish time of the activity and the
minimum early start time of the activity’s immediate successors. Consequently, it is the maximum
delay that can be tolerated in the activity without affecting the scheduling of a successor activity. The
values of this variable are calculated in units of the INTERVAL= parameter.

L_FINISH
specifies the latest completion time of the activity. This is the minimum of the minimum late start
time of all successor activities and any upper bound placed on the finish time of the activity by the
alignment constraints.

L_START
specifies the latest time the activity can be started. This is computed from the activity’s latest finish
time.

S_FINISH
specifies the resource-constrained finish time of the activity. If resources are insufficient and the
procedure cannot schedule the activity, the value is set to missing, unless the FILLUNSCHED option
is specified.

S_START
specifies the resource-constrained start time of the activity. If resources are insufficient and the
procedure cannot schedule the activity, the value is set to missing, unless the FILLUNSCHED option
is specified.

STATUS
specifies the current status of the activity. This is a character valued variable. Possible values for
the status of an activity are Completed, In Progress, Infeasible or Pending; the meanings are self-
evident. If the project is scheduled subject to resource constraints, activities that are Pending are
classified as Pending or Infeasible depending on whether or not PROC CPM is able to determine a
resource-constrained schedule for the activity.

Multiple Calendars F 103

T_FLOAT
specifies the total float time, which is the difference between the activity late finish time and early
finish time. Consequently, it is the maximum delay that can be tolerated in performing the activity and
still complete the project on schedule. An activity is said to be on the critical path if T_FLOAT=0. The
values of this variable are calculated in units of the INTERVAL= parameter.

If activity splitting is allowed during resource-constrained scheduling, the Schedule data set may
contain more than one observation corresponding to each observation in the Activity data set. It
will also contain the variable SEGMT_NO, which is explained in the section “Activity Splitting” on
page 124.

If the PROJECT statement is used, some additional variables are added to the output data set. See the section
“Schedule Data Set” on page 136 for details.

Multiple Calendars
Work pertaining to a given activity is assumed to be done according to a particular calendar. A calendar is
defined here in terms of a work pattern for each day and a work week structure for each week. In addition,
each calendar may have holidays during a given year.

You can associate calendars with Activities (using the CALID variable in the Activity data set) or Resources
(using observations with the keyword ‘CALENDAR’ for the OBSTYPE variable in the Resource data set).

PROC CPM enables you to define very general calendars using the WORKDATA, CALEDATA, and
HOLIDATA data sets and options in the PROC CPM statement. Recall that these data sets are referred to
as the Workday, Calendar, and Holiday data sets, respectively. The Workday data set specifies distinct shift
patterns during a day. The Calendar data set specifies a typical work week for any given calendar; for each
day of a typical week, it specifies the shift pattern that is followed. The Holiday data set specifies a list of
holidays and the calendars that they refer to; holidays are defined either by specifying the start of the holiday
and its duration in interval units, or by specifying the start and end of the holiday period. The Activity data
set (the DATA= input data set) then specifies the calendar that is used by each activity in the project through
the CALID variable (or a default variable _CAL_). Each of the three data sets used to define calendars is
described in greater detail later in this section.

Each new value for the CALID variable in either the Calendar data set or the Holiday data set defines a new
calendar. If a calendar value appears in the Calendar data set and not in the Holiday data set, it is assumed
to have the same holidays as the default calendar (the default calendar is defined later in this section). If a
calendar value appears in the Holiday data set and not in the Calendar data set, it is assumed to have the same
work pattern structures (for each week and within each day) as the default calendar. In the Activity data set,
valid values for the CALID variable are those that are defined in either the Calendar data set or the Holiday
data set.

Cautions

The Holiday, Calendar, and Workday data sets and the processing of holidays and different calendars
are supported only when interval is DAY, WEEKDAY, DTDAY, WORKDAY, DTWRKDAY, DTHOUR,
DTMINUTE, or DTSECOND. PROC CPM uses default specifications whenever some information required
to define a calendar is missing or invalid. The defaults have been chosen to provide consistency among
different types of specifications and to correct for errors in input, while maintaining compatibility with

104 F Chapter 4: The CPM Procedure

earlier versions of PROC CPM. You get a wide range of control over the calendar specifications, from letting
PROC CPM define a single calendar entirely from defaults, to defining several calendars of your choice with
precisely defined work patterns for each day of the week and for each week. If the Calendar, Workday, and
Holiday data sets are used along with multiple calendar specifications, it is important to remember how all of
the data sets and the various options interact to form the work patterns for the different calendars.

Default Calendar

The default calendar is a special calendar that is defined by PROC CPM; its definition and uses are explained
in this subsection.

If there is no CALID variable and no Calendar and Workday data sets, the default calendar is defined by
interval and the DAYSTART= and DAYLENGTH= options in the PROC CPM statement. If interval is DAY,
DTDAY, DTHOUR, DTMINUTE or DTSECOND, work is done on all seven days of the week; otherwise,
Saturday and Sunday are considered to be non-working days. Further, if the schedule is computed as SAS
datetime values, the length of the working day is determined by daystart and daylength. All of the holidays
specified in the Holiday data set refer to this default calendar, and all of the activities in the project follow
it. Thus, if there is no CALID variable, the default calendar is the only calendar that is used for all of the
activities in the project.

If there is a CALID variable that identifies distinct calendars, you can use an observation in the Calendar
data set to define the work week structure for the default calendar. Use the value ‘0’ (if CALID is a numeric
variable) or the value ‘DEFAULT’ (if CALID is a character variable) to identify the default calendar. In
the absence of such an observation, the default calendar is defined by interval , daystart , and daylength, as
described earlier. The default calendar is used to substitute default work patterns for missing values in the
Calendar data set or to set default work week structures for newly defined calendars in the Holiday data set.

WORKDATA Data Set

All numeric variables in the Workday data set are assumed to denote unique shift patterns during one working
day. For each variable the observations specify, alternately, the times when consecutive shifts start and end.
Suppose S1, S2, and S3 are numeric variables formatted as TIME6. Consider the following Workday data:

S1 S2 S3

7:00 . 7:00 (start)
11:00 08:00 11:00 (end)
12:00 . . (start)
16:00 . . (end)

The variables S1, S2, and S3 define three different work patterns. A missing value in the first observation is
assumed to be 0 (or 12:00 midnight); a missing value in any other observation is assumed to denote 24:00
and ends the definition of the shift. Thus, the workdays defined are:

� S1 defines a workday starting at 7:00 a.m. and continuing until 4:00 p.m. with an hour off for lunch
from 11:00 a.m. until 12:00 noon.

Multiple Calendars F 105

� S2 defines a workday from midnight to 8:00 a.m.

� S3 defines a workday from 7:00 a.m. to 11:00 a.m.

The last two values for the variables S2 and S3 (both values are ‘24:00’, by default) are ignored. This data set
can be used to define all of the unique shift patterns that occur in any of the calendars in the project. These
shift patterns are tied to the different calendars in which they occur using the Calendar data set.

CALEDATA Data Set

The Calendar data set defines specific calendars using the names of the shift variables in the Workday data
set. You can use the variable specified in the CALID statement or a variable named _CAL_ to identify the
calendar name or number. Character variables named _SUN_, _MON_, _TUE_, _WED_, _THU_, _FRI_, and
SAT are used to indicate the work pattern that is followed on each day of the week. Valid values for these
variables are ‘HOLIDAY’, ‘WORKDAY’ or, any shift variable name defined in the Workday data set.

NOTE: A missing value for any of these variables is assumed to denote that the work pattern for the
corresponding day is the same as for the default calendar.

When interval is specified as DTDAY, WORKDAY, or DTWRKDAY, it is necessary to know the length of
a standard working day in order to be able to compute the schedules consistently. For example, a given
calendar may have an eight-hour day on Monday, Tuesday, and Wednesday and a seven-hour day on Thursday
and Friday. If a given activity following that calendar has a duration of four days, does it mean that its
duration is equal to 8 � 4 D 32 hours or 7 � 4 D 28 hours? To avoid ambiguity, a numeric variable named
D_LENGTH can be specified in the Calendar data set to define the length of a standard working day for
the specified calendar. If this variable is not found in the Calendar data set, all calendars for the project are
assumed to have a standard daylength as defined by the default calendar.

For example, consider the following Calendar data:

CAL _SUN_ _MON_ _TUE_ _FRI_ _SAT_ D_LENGTH

1 HOLIDAY S1 S1 S2 S3 8:00
2 HOLIDAY . . . HOLIDAY .
3

These three observations define three calendars: ‘1’, ‘2’, and ‘3’. The values ‘S1’, ‘S2’, and ‘S3’ refer to
the shift variables defined in the section “WORKDATA Data Set” on page 104. Activities in the project can
follow either of these three calendars or the default calendar.

Suppose daystart has been specified as 9:00 a.m. and daylength is eight hours. Further, suppose that interval
is DTDAY. Using these parameter specifications, PROC CPM defines the default calendar and calendars 1, 2
and 3 using the Calendar data set just defined:

� The default calendar (not specified explicitly in the Calendar data set) is defined using interval , daystart ,
and daylength. It follows a seven-day week with each day being an eight-hour day (from 9:00 a.m. to
5:00 p.m.). Recall that the default calendar is defined to have seven or five working days depending on
whether interval is DTDAY or WORKDAY, respectively.

106 F Chapter 4: The CPM Procedure

� Calendar ‘1’ (defined in observation 1) has a holiday on Sunday; on Monday and Tuesday work is done
from 7:00 a.m. to 11:00 a.m. and then from 12:00 noon to 4:00 p.m.; work on Friday is done from
12:00 (midnight) to 8:00 a.m.; work on Saturday is done from 7:00 a.m. to 11:00 a.m.; on other days
work is done from 9:00 a.m. to 5:00 p.m., as defined by the default calendar. The value of D_LENGTH
specifies the number of hours in a standard work day; when durations of activities are specified in terms
of number of workdays, then the value of D_LENGTH is used as a multiplier to convert workdays to
the appropriate number of hours.

� Calendar ‘2’ (defined in observation 2) has holidays on Saturday and Sunday, and on the remaining
days, it follows the standard working day as defined by the default calendar.

� Calendar ‘3’ (defined in observation 3) follows the same definition as the default calendar.

NOTE: If there are multiple observations in the Calendar data set identifying the same calendar, all except
the first occurrence are ignored. The value ‘0’ (if CALID is a numeric variable) or the value ‘DEFAULT’ (if
CALID is a character variable) refers to the default calendar. A missing value for the CALID variable is also
assumed to refer to the default calendar. The Calendar data set can be used to define the default calendar also.

HOLIDATA Data Set

The HOLIDATA data set (referred to as the Holiday data set) defines holidays for the different calendars that
may be used in the project. Holidays are specified by using the HOLIDAY statement. See the HOLIDAY
statement earlier in this chapter for a description of the syntax. This data set must contain a variable (the
HOLIDAY variable) whose values specify the start of each holiday. Optionally, the data set may also contain
a variable (the HOLIDUR variable) used to specify the length of each holiday or another variable (the
HOLIFIN variable) specifying the finish time of each holiday. The variable specified by the CALID statement
(or a variable named _CAL_) can be used in this data set to identify the calendar to which each holiday
refers. A missing value for the HOLIDAY variable in an observation causes that observation to be ignored. If
both the HOLIDUR and the HOLIFIN variables have missing values in a given observation, the holiday is
assumed to start at the date and time specified for the HOLIDAY variable and last one unit of interval where
the INTERVAL= option has been specified as interval . If a given observation has valid values for both the
HOLIDUR and HOLIFIN variables, only the HOLIFIN variable is used so that the holiday is assumed to
start and end as specified by the HOLIDAY and HOLIFIN variables, respectively. A missing value for the
CALID variable causes the holiday to be included in all of the calendars, including the default.

The HOLIDUR variable is a natural way of expressing vacation times as n workdays, and the HOLIFIN
variable is more useful for defining standard holiday periods, such as the CHRISTMAS holiday from
24DEC03 to 26DEC03 (both days inclusive). The HOLIDUR variable is assumed to be in units of interval
and the procedure uses the particular work pattern structure for the given calendar to compute the length
(finish time) of the holiday.

Multiple Calendars F 107

For example, consider the following Holiday data:

HOLISTA HOLIDUR HOLIFIN _CAL_

24DEC03 . 26DEC03 .
01JAN04 1 . 1
19JAN04 . . 2
29JAN04 3 . 2
29JAN04 3 . 3

Suppose calendars ‘1’, ‘2’, and ‘3’ and the default calendar have been defined as described earlier in
the description of the Calendar and Workday data sets. Recall that in this example INTERVAL=DTDAY,
DAYSTART=‘09:00’T, and DAYLENGTH=‘08:00’T. Because the schedule is computed as SAS datetime
values (since INTERVAL=DTDAY), the holiday values (specified here as SAS date values) are converted to
SAS datetime values. The first observation in the Holiday data set has a missing value for _CAL_ and, hence,
the holiday in this observation pertains to all the calendars. As defined by the Holiday data, the holiday lists
for the different calendars (not including breaks due to shift definitions) are as shown in Table 4.7.

Even though both calendars ‘2’ and ‘3’ have the same specifications for HOLISTA and HOLIDUR, the actual
holiday periods are different for the two calendars. For calendar ‘2’, the three days starting from Thursday,
January 29, imply that the holidays are on Thursday, Friday, and Monday (because Saturday and Sunday are
already holidays). For calendar ‘3’ (all seven days are working days), the holidays are on Thursday, Friday,
and Saturday.

Table 4.7 Holiday Definitions

Calendar Holiday Start Holiday End
0 24DEC03:09:00 26DEC03:16:59:59
1 24DEC03:09:00 26DEC03:07:59:59

01JAN04:00:00 01JAN04:07:59:59
2 24DEC03:09:00 26DEC03:16:59:59

19JAN04:09:00 19JAN04:16:59:59
29JAN04:09:00 02FEB04:16:59:59

3 24DEC03:09:00 26DEC03:16:59:59
29JAN04:09:00 31JAN04:16:59:59

You can use the GANTT procedure to visualize the breaks and holidays for the different calendar. Figure 4.4
shows all the breaks and holidays for the period between Christmas and New Year. Holidays and breaks are
denoted by *. Likewise, Figure 4.5 shows the vacation periods in January for calendars ‘2’ and ‘3’.

108 F Chapter 4: The CPM Procedure

Figure 4.4 Christmas and New Year Holidays for Multiple Calendars

Christmas and New Year Holidays

 DEC DEC DEC DEC DEC DEC

 22 22 23 23 24 24

 cal 00:00 12:00 00:00 12:00 00:00 12:00

 -+-----------+-----------+-----------+-----------+-----------+-

 0 |*********--------****************--------********************|

 1 |*******----*----***************----*----*********************|

 2 |*********--------****************--------********************|

 3 |*********--------****************--------********************|

 -+-----------+-----------+-----------+-----------+-----------+-

Christmas and New Year Holidays

 DEC DEC DEC DEC DEC DEC DEC

 24 25 25 26 26 27 27

 12:00 00:00 12:00 00:00 12:00 00:00 12:00

 -+-----------+-----------+-----------+-----------+-----------+-----------+-

 |***----|

 |***----**|

 |***|

 |***----|

 -+-----------+-----------+-----------+-----------+-----------+-----------+-

Multiple Calendars F 109

Figure 4.4 continued

Christmas and New Year Holidays

 DEC DEC DEC DEC DEC DEC DEC

 27 28 28 29 29 30 30

 12:00 00:00 12:00 00:00 12:00 00:00 12:00

 -+-----------+-----------+-----------+-----------+-----------+-----------+-

 |-----****************--------****************--------****************----|

 |***----*----***************----*-|

 |***--------****************----|

 |-----****************--------****************--------****************----|

 -+-----------+-----------+-----------+-----------+-----------+-----------+-

Christmas and New Year Holidays

 DEC DEC DEC JAN JAN JAN JAN

 30 31 31 01 01 02 02

 12:00 00:00 12:00 00:00 12:00 00:00 12:00

 -+-----------+-----------+-----------+-----------+-----------+-----------+-

 |-----****************--------****************--------****************----|

 |----*****************--------*******************************--------*****|

 |-----****************--------****************--------****************----|

 |-----****************--------****************--------****************----|

 -+-----------+-----------+-----------+-----------+-----------+-----------+-

110 F Chapter 4: The CPM Procedure

Figure 4.5 Vacation Time for Calendars 2 and 3

Vacation Times for Calendars 2 and 3

 JAN JAN JAN JAN JAN JAN JAN

 18 18 19 19 20 20 21

 cal 00:00 12:00 00:00 12:00 00:00 12:00 00:00

 -+-----------+-----------+-----------+-----------+-----------+-----------+-

 2 |***--------********|

 3 |*********--------****************--------****************--------********|

 -+-----------+-----------+-----------+-----------+-----------+-----------+-

Vacation Times for Calendars 2 and 3

 JAN JAN JAN JAN JAN JAN JAN JAN

 21 21 22 22 23 23 24 24

 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00

 -+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-

 |*********--------****************--------****************--------********************|

 |*********--------****************--------****************--------****************----|

 -+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-

Vacation Times for Calendars 2 and 3

 JAN JAN JAN JAN JAN JAN JAN JAN

 24 25 25 26 26 27 27 28

 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00

 -+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-

 |***--------****************--------********|

 |-----****************--------****************--------****************--------********|

 -+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-

Baseline and Target Schedules F 111

Figure 4.5 continued

Vacation Times for Calendars 2 and 3

 JAN JAN JAN JAN JAN JAN JAN JAN

 28 28 29 29 30 30 31 31

 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00

 -+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-

 |*********--------**|

 |*********--------**|

 -+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-

Vacation Times for Calendars 2 and 3

 JAN FEB FEB FEB FEB FEB FEB FEB

 31 01 01 02 02 03 03 04

 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00

 -+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-

 |***--------********|

 |*********************--------****************--------****************--------********|

 -+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-

Baseline and Target Schedules
An important aspect of project management is to examine the effects of changing some of the parameters
of the project on project completion time. For example, you may want to examine different scenarios by
changing the durations of some of the activities, or increasing or decreasing the resource levels. To see the
effect of these changes, you need to compare the schedules corresponding to the changes. The BASELINE
statement enables you to save a particular schedule as a target schedule and then compare a new schedule
against that. See the section “BASELINE Statement” on page 76 for a description of the syntax.

Progress Updating
Once a project has been defined with all of its activities and their relationships, the durations, the resources
needed, and so on, it is often useful to monitor its progress periodically. During resource-constrained
scheduling, it is useful to schedule only activities that have not yet started, taking into consideration the

112 F Chapter 4: The CPM Procedure

activities that have already been completed or scheduled and the resources that have already been used by
them or allotted for them. The ACTUAL statement is used in PROC CPM to convey information about the
current status of a project. As information about the activities becomes available, it can be incorporated into
the schedule of the project through the specification of the actual start or finish times or both, the duration
that is still remaining for the activity, or the percentage of work that has been completed on an activity.
The specification of the progress variables and the options in the ACTUAL statement have been described
earlier in this chapter. This section describes how the options work together and how some default values are
determined.

The following options are discussed in this section:

� the TIMENOW= option

� the AUTOUPDT and NOAUTOUPDT options

� the TIMENOWSPLT option

� the progress variables (A_START, A_FINISH, REMDUR, and PCTCOMP)

The TIMENOW= option is specified in the ACTUAL statement. The value of the TIMENOW= option (often
referred to simply as TIMENOW) is used as a reference point to resolve the values of the remaining duration
and percent completion times. All actual start and finish times specified are checked to ensure that they are
less than TIMENOW. If there is some inconsistency, a warning message is printed to the log.

If the ACTUAL statement is used, at least one of the four progress variables must be specified. PROC CPM
uses the nonmissing values for the progress variables in any given observation to determine the information
that is to be used for the activity. It is possible that there are some inconsistencies in the specification of
the values relating to the progress information. For example, an activity may have valid values for both
the A_START and the A_FINISH variables and also have the value of the PCTCOMP variable less than
100. PROC CPM looks at the values in a specific order, resolving inconsistencies in a reasonable manner.
Further, PROC CPM determines revised estimates of the durations of the activities on the basis of the actual
information.

Suppose that for a given activity, as is the actual start, af is the actual finish, remdur is the remaining
duration, pctc is the percent complete, and dur is the duration of the activity as specified by the values of
the corresponding variables in the Activity data set. (If a particular variable is not specified, assume that the
corresponding value is missing.)

The elapsed duration of an activity in progress is the time lapse between its actual start and TIMENOW; the
revised duration of the activity is the updated duration of the activity that is used to calculate the projected
finish time for activities in progress and the actual duration for activities that are completed. The revised
duration is used by PROC CPM to compute the updated schedule as described later in this section. In the
discussion that follows, as, af , remdur , and pctc refer to the actual start time, actual finish time, remaining
duration, and percent completed, respectively, for the activity in the Activity data set, while A_START,
A_FINISH, and A_DUR refer to the values calculated by PROC CPM for the corresponding new variables
added to the Schedule data set.

The following is a list of some of the conventions used by PROC CPM in calculating the revised duration:

� If both as and af are specified, the revised duration is computed as the time, excluding non-working
periods, between as and af ; in the Schedule data set, the variable A_DUR is also set to this value;
A_START is set to as and A_FINISH to af .

Progress Updating F 113

� If as is specified without af , PROC CPM uses remdur to compute the revised duration as the sum of
the elapsed duration and the remaining duration.

� If as is specified and both af and remdur are missing, the revised duration is computed on the basis of
the elapsed duration and pctc.

� If as is specified and af , remdur and pctc are not specified, the duration is not revised. If the time
lapse between as and TIMENOW is greater than or equal to the duration of the activity, it is assumed
to have finished at the appropriate time (as C dur) and the Schedule data set has the appropriate values
for A_START, A_FINISH, and A_DUR.

� If as is missing and af is valid, PROC CPM determines as on the basis of af and the specified duration
(remdur and pctc, if specified, are ignored.)

� If as and af are both missing, the revised duration is determined on the basis of remdur and pctc. If
the activity has started (if pctc > 0 or remdur < dur), as is set appropriately, and if it has also finished
(which is the case if pctc = 100 or remdur = 0), af is also set.

Using the preceding rules, PROC CPM attempts to determine actual start and finish times for as many
activities as possible using the information given for each activity. The next question is: What about activities
that have missing values for the actual start and finish times? Suppose a given activity has a valid value for
A_START and is currently in progress. It seems logical for successors of this activity to have missing values
for A_START. But how about predecessors of the activity? If they have missing values for A_START and
A_FINISH, does it mean that there was an error in the input of the actual dates or an error in the precedence
constraints? The AUTOUPDT and NOAUTOUPDT options enable you to control the answer to this question.
AUTOUPDT instructs CPM to automatically fill in appropriate A_START and A_FINISH values for all
activities that precede activities which have already started. NOAUTOUPDT implies that only those activities
that have explicit progress information confirming their status are assumed to be in progress or completed; all
other activities are assumed to have an implicit start date that is greater than or equal to TIMENOW. In other
words, NOAUTOUPDT assumes that the precedence constraints may be overridden by the actual data. The
default option is AUTOUPDT.

The scheduling algorithm treats the actual start and finish times as follows:

� If A_START is not missing, the E_START time is set equal to A_START during the forward pass, and
the E_FINISH time is set equal to E_STARTC the revised duration.

� If A_START is missing, the E_START time is computed as before.

� If A_FINISH or A_START is not missing, the L_FINISH time is set equal to A_FINISH during the
backward pass, and the L_START time is computed on the basis of L_FINISH and the revised duration.

This rule causes the late start schedule to be the same as the early start schedule for completed or
in-progress activities. Thus, T_FLOAT and F_FLOAT are 0 for such activities. Use the SHOWFLOAT
option if you want to allow nonzero float for in-progress or completed activities. In this case, the late
start schedule is computed as before, using the precedence constraints, so that you can determine the
degree of lateness for the activities that have already been completed or are in progress.

� If E_START is less than TIMENOW for an activity (and thus it is also the same as A_START), the
activity is scheduled during resource allocation even if there are not enough resources (a warning

114 F Chapter 4: The CPM Procedure

message is printed to the log if this is the case). Thus, resource-constrained scheduling is done only for
the period starting from TIMENOW.

NOTE: The resources required by activities that are completed or in progress are accounted for and
the corresponding changes are made to the resource availability profile before starting the constrained
scheduling process at TIMENOW.

� If resource-constrained scheduling is being performed, the TIMENOWSPLT option can be used. This
option affects those activities that are currently in progress that cause resource infeasibilities. The
TIMENOWSPLT option causes such activities to be split at TIMENOW into segments; the first segment
is assumed to be complete before TIMENOW, and the second segment is delayed until sufficient
resources are available.

The Schedule data set contains the actual start times (A_START) for all activities that are in progress or
completed and the actual finish times (A_FINISH) and the actual duration times (A_DUR) for all activities
that are completed. Some of these values may have been derived from the percent completion or remaining
duration times in the Activity data set or may have been implicitly determined through the AUTOUPDT
option. Also included in the Schedule data set is a variable named STATUS describing the status of each
activity. The possible values are Completed, In Progress, Infeasible, and Pending; the interpretations are
self-evident.

If the ESTPCTC option is specified, the Schedule data set also contains a variable named PCT_COMP that
contains the percent completion time for each activity in the project.

Resource-Driven Durations and Resource Calendars
The DURATION variable enables you to specify a fixed duration for an activity. The CPM procedure then
assumes that all the resources for that activity are required throughout the duration of that activity; further,
the activity is assumed to follow the work pattern specified by the activity’s calendar. Suppose that there are
multiple resources required by an activity, each following a different calendar and each requiring varying
amounts of work. For example, a programming task may require 50 hours of a programmer’s time and 20
hours of a tester’s time. Further, the programmer may work full time on the tasks, while the tester, due to other
commitments, may work only half time on the same activity. The scheduling could be further complicated if
the tester and the programmer followed different calendars. Situations of this type can be modeled using
resource-driven durations and resource calendars.

The WORK variable in the Activity data set specifies the total amount of work required by one unit of
a resource. Unlike the DURATION variable, which represents a fixed duration for an activity for all its
resources, the WORK variable drives the duration for each resource required by the activity using the
resource rate specified. You can specify different amounts of work for different resources by using different
observations to specify rates and total work for the different resources. Consider the following data from an
Activity data set:

ACT WORK PGMR TESTER

1 50 1 .
1 20 . .5
2 15 1 1

Resource Usage and Allocation F 115

PGMR and TESTER are resource variables specifying the rate at which the respective resource is required
(used) for the particular activity; WORK specifies the total number of hours (assuming that the INTERVAL
parameter has been specified as HOUR) of work required by each resource that has a rate specified in
that observation. Thus, Activity ‘1’ requires 50 hours of the resource PGMR and 20 hours of the resource
TESTER, while activity ‘2’ requires 15 hours of each of the two resources. Using the rates for the resources
specified in the preceding data, the procedure determines the resource durations for activity 1 to be 50 hours
for PGMR and 40 hours for TESTER. Likewise, the resource durations for both resources are 15 hours for
activity 2.

In the forward and backward pass calculations, the procedure computes the schedules for each resource
and sets the activity’s start (finish) time to be the minimum (maximum) of the start (finish) times for all the
resources.

Some activities may have a fixed duration for some resources and a resource-driven duration for other
resources. For such activities, use the DURATION variable to specify the fixed duration and the WORK
variable to specify the total amount of work required for the activity. If a particular observation has values
specified for both the WORK and DURATION variables, use the resource type information in the Resource
data set (described in the section “RESOURCEIN= Input Data Set” on page 116) to determine if the resource
drives the duration of the activity.

Recall that the CALID variable in the Activity data set specifies the calendar that is used by each activity in
the project. In addition, you can also associate calendars with the resources in the project. Resource calendars
are specified in the Resource data set. However, the CALID variable must be numeric for you to associate
calendars with resources; in other words, the calendars must be identified by numbers and not names.

Resource Usage and Allocation
Often the activities in a project use several resources. If you assume that these resources are available in
unlimited quantities, then the only restrictions on the start and finish times of the activities in the project
are those imposed by precedence constraints and dates specified for alignment of the activities. In most
practical situations, however, there are limitations on the availability of resources; as a result, neither the
early start schedule nor the late start schedule (nor any intermediate schedule for that matter) may be feasible.
In such cases, the project manager is faced with the task of scheduling the activities in the project subject to
constraints on resource availability in addition to the precedence constraints and constraints on the start and
finish times of certain activities in the project. This problem is known as resource allocation.

You can use PROC CPM to schedule the activities in a project subject to resource constraints. To perform
resource allocation, you must specify the resource requirements for each activity in the project and also
specify the amount of resources available on each day under consideration. The resource requirements are
given in the Activity data set, with the variable names identified to PROC CPM through the RESOURCE
statement. The levels of resources available on different dates, as well as other information regarding the
resources, such as the type of resource, the priority of the resource, and so forth, are obtained from the
RESOURCEIN= data set.

Specifying resource requirements is described in detail in the section “Specifying Resource Requirements” on
page 120, and the description of the format of the Resource data set is given in the section “RESOURCEIN=
Input Data Set” on page 116, which follows. the section “Scheduling Method” on page 121 describes
how you can use the SCHEDRULE= and DELAY= options (and other options) in conjunction with certain
special observations in the Resource data set to control the process of resource allocation to suit your needs.

116 F Chapter 4: The CPM Procedure

Subsequent sections describe the different scheduling rules, supplementary resources, activity splitting,
progress updating, and alternate resources.

RESOURCEIN= Input Data Set

The RESOURCEIN= data set (referred to as the Resource data set) contains all of the necessary information
about the resources that are to be used by PROC CPM to schedule the project. Typically, the Resource data
set contains the resource variables (numeric), a type identifier variable (character) that identifies the type
of information in each observation, a period variable (numeric and usually a SAS time, date, or datetime
variable), and a RESID variable that is used to specify alternate resources and auxiliary resources.

The value of the type identifier variable in each observation tells CPM how to interpret that observation.
Valid values for this variable are RESLEVEL, RESTYPE, RESUSAGE, RESPRTY, SUPLEVEL, ALTPRTY,
ALTRATE, RESRCDUR, CALENDAR, MULTALT, MINARATE, and AUXRES.

Table 4.8 Type Identifier Variables

Type Identifier
Keywords

Description Values

Contains levels available for each Missing values are not allowed. For
‘RESLEVEL’ resource from the time specified in consumable resources, the observation

the period variable. indicates the total availability and for
replenishable resources, the new level.

Specifies the nature of the resources, 1 = Replenishable
‘RESTYPE’ i.e., if they are consumable, 2 = Consumable

replenishable, replenishable aggregate 3 = Replenishable Aggregate
or consumable aggregate resources. 4 = Consumable Aggregate

0 = Resource used continuously at
‘RESUSAGE’ Indicates a profile of usage for a specified rate

consumable resource 1 = Resource required at the beginning
of activity
2 = Resource used at the end of activity
A missing value is treated as 0.

Specifies that PROC CPM should
‘RESPRTY’ sort the activities in the waiting list Low values indicate high priority.

in the order of increasing values of
the resource priority for the most
important resource used by each
activity.
Specifies the amount of extra

‘SUPLEVEL’ resource available for use through
out the duration of the project.
Specifies the effect of the resource 0 = Resource uses a fixed duration

‘RESRCDUR’ on the activity‘s duration. 1 = Driving resource
2 = Spanning resource

Specifies the calendar that is Requires the calendar variable in the
‘CALENDAR’ followed by each resource. If no Activity and other data sets to be

calendar is specified for a given numeric.
resource, the relevant activity’s
calendar is used instead.

Resource Usage and Allocation F 117

Indicates which resources can have 0 = Multiple alternates not allowed
‘MULTALT’ multiple alternate resources. 1 = Multiple alternates allowed

Indicates the minimum rate of
‘MINARATE’ substitution for each resource,

whenever multiple alternates are used.
Specifies the rate of substitution of Lower value indicates higher priority.

‘ALTRATE’ alternate resources when a resource Missing values imply that the
has more than one substitute. Resource particular resource cannot
data set must have a RESID variable. be substituted.
Specifies the prioritization of the Lower values indicate higher priority.

‘ALTPRTY’ alternate resources when a resource
has more than one substitution.
Resource data set must have a
RESID variable.
Specifies the auxiliary resources that Value for each auxiliary resource

‘AUXRES’ are needed for each primary indicates the rate at which it is required
resource. RESID variable specifies whenever the primary resource is used.
the name of the primary resource.

If the value of the type identifier variable in a particular observation is ‘RESLEVEL’, then that observation
contains the levels available for each resource from the time specified in the period variable. Missing
values are not allowed for the period variable in an observation containing the levels of the resources. For
consumable resources, the observation indicates the total availability and not the increase in the availability.
Likewise, for replenishable resources, the observation indicates the new level and not the change in the level
of the resource.

Each resource can be classified as either consumable or replenishable. A consumable resource is one that
is used up by the job (such as bricks or money), while a replenishable resource becomes available again
once a job using it is over (such as manpower or machinery). If the value of the type identifier variable is
‘RESTYPE’, then that observation identifies the nature (consumable or replenishable) of the resource. The
observation contains a value 1 for a replenishable resource and a value 2 for a consumable one. A missing
value in this observation is treated as 1. In fact, if there is no observation in the Resource data set with the
type identifier variable equal to ‘RESTYPE’, then all resources are assumed to be replenishable.

Sometimes, it may be useful to include resources in the project that are to be used only for aggregation
purposes. You can indicate that a given resource is to be used for aggregation, and not for resource allocation,
by specifying the values 3 or 4, depending on whether the resource is replenishable or consumable. In other
words, use 3 for replenishable aggregate resources and 4 for consumable aggregate resources.

Consumable resources are assumed to be used continuously throughout the duration of the activity at the
rate specified in the Activity data set (as described in the section “Specifying Resource Requirements” on
page 120). For example, when you specify a rate of 100 per day for bricks, the CPM procedure assumes
that the activity consumes bricks at the constant rate of 100 per day. Sometimes, you may wish to allocate
all of the resource at the beginning or end of an activity. For example, you may pay an advance at the start
of a contracted activity while the full payment is made when the activity is completed. You can indicate
such a profile of usage for a consumable resource using the keyword ‘RESUSAGE’ for the value of the type
identifier variable. Valid values for the resource variables in such an observation are 0, 1, and 2. A value

118 F Chapter 4: The CPM Procedure

0 indicates that the resource is used continuously at the specified rate throughout the activity’s duration, a
value 1 indicates that the resource is required at the beginning of the activity, and a value 2 specifies that the
resource is used at the end of the activity. A missing value in this observation is treated as 0.

One of the scheduling rules that can be specified using the SCHEDRULE= option is RESPRTY,
which requires ordering the resources according to some priority (details are given in the section
“Scheduling Rules” on page 122). If this option is used, there must be an observation in the Resource
data set with the type identifier variable taking the value ‘RESPRTY’. This observation specifies the ordering
of the resources.

If the type identifier variable is given as ‘SUPLEVEL’, the observation denotes the amount of extra resource
that is available for use throughout the duration of the project. This extra resource is used only if the activity
cannot be scheduled without delaying it beyond its late start time. See the section “Secondary Levels of
Resources” on page 123 for details about the use of supplementary levels of resources in conjunction with
the DELAY= and ACTDELAY= options.

If the type identifier variable is specified as ‘ALTRATE’, ‘ALTPRTY’, or ‘AUXRES’, the Resource data set
must also have a RESID variable that is used to identify the name of a resource for which the current observa-
tion lists the possible alternate resources or the required auxiliary resources. See the section “Specifying
Alternate Resources” on page 125 and the section “Auxiliary Resources” on page 129 for details.

If the value of the type identifier variable is ‘RESRCDUR’, that observation specifies the effect of the
resource on an activity’s duration. Valid values for the resource variables in such an observation are 0, 1,
and 2. A value 0 indicates that the resource uses a fixed duration (specified by the DURATION variable); in
other words, the activity’s duration is not affected by changing the rate of the resource. A value 1 indicates
that the WORK variable for an activity specifies the total amount of work required by the resource that is
used to calculate the time required by the resource to complete its work on that activity; such a resource is
referred to as a driving resource. The value 2 indicates a third type of resource; such a resource (referred to
as a spanning resource) is required throughout the activity’s duration, no matter which resource is working
on it. For example, an activity might require 10 percent of a “supervisor,” or the use of a particular room,
throughout its duration. For such an activity, the duration used for the spanning resource is computed after
determining the span of the activity for all the other resources.

If the value of the type identifier variable is ‘CALENDAR’, that observation specifies the calendar that is
followed by each resource. If no calendar is specified for a given resource, the relevant activity’s calendar is
used instead. This use of the calendar requires that the calendar variable in the Activity and other data sets be
numeric.

If the value of the type identifier variable is ‘MULTALT’, that observation indicates which resources can have
multiple alternate resources. The value 1 for a resource variable in the observation indicates that multiple
alternates are allowed for that resource, and a value 0 indicates that multiple alternates are not allowed. See
the section “Specifying Multiple Alternates” on page 127 for details.

If the value of the type identifier variable is ‘MINARATE’, that observation indicates the minimum rate of
substitution for each resource, whenever multiple alternates are used. The ‘MINARATE’ values specified in
this observation are used only if the MULTIPLEALTERNATES option is specified or if the Resource data set
has an observation with the type identifier value of ‘MULTALT’.

The period variable must have nonmissing values for observations specifying the levels of the resources (that
is, with type identifier equal to ‘RESLEVEL’). However, the period variable does not have any meaning when
the type identifier variable has any value other than ‘RESLEVEL’; if the period variable has nonmissing

Resource Usage and Allocation F 119

values in these observations, it is ignored. The Resource data set must be sorted in order of increasing values
of the period variable.

Multiple observations are allowed for each type of observation. If there is a conflict in the values specified,
only the first nonmissing value is honored; for example, if there are two observations of the type ‘RESTYPE’
and a resource variable has value 1 in the first and 2 in the second of these observations, the resource type is
assumed to be 1 (replenishable). On the other hand, if the value is missing in the first observation but set to 2
in the second, the resource type is assumed to be 2 (consumable).

A resource is available at the specified level from the time given in the first observation with a nonmissing
value for the resource. Its level changes (to the new value) whenever a new observation is encountered with a
nonmissing value, and the date of change is the date specified in this observation.

The following examples illustrate the details about the Resource data set. Consider the following Resource
data:

OBS OBSTYPE DATE WORKERS BRICKS PAYMENT ADVANCE

1 RESTYPE . 1 2 2 2
2 RESUSAGE . . 0 2 1
3 RESPRTY . 10 10 10 10
4 SUPLEVEL . 1 . . .
5 RESLEVEL 1JUL04 . 1000 2000 500
6 RESLEVEL 5JUL04 4 . . .
7 RESLEVEL 9JUL04 . 1500 . .

There are four resources in these data, WORKERS, BRICKS, PAYMENT, and ADVANCE. The variable
OBSTYPE is the type identifier, and the variable DATE is the period variable. The first observation (because
OBSTYPE has value ‘RESTYPE’) indicates that WORKERS is a replenishable resource while the other
three resources are consumable. The second observation indicates the usage profile for the consumable
resources: the resource BRICKS is used continuously throughout the duration of an activity, while the
resource PAYMENT is required at the end of the activity and the resource ADVANCE is needed at the start of
the activity. The third observation indicates that all the resources have equal priority. In the fourth observation,
a value ‘1’ under WORKERS indicates that a supplementary level of 1 worker is available if necessary, while
no reserve is available for the resources BRICKS, PAYMENT, and ADVANCE.

The next three observations indicate the resource availability profile. The resource WORKERS is unavailable
until July 5, 2004, when the level jumps from 0 to 4 and remains at that level through the end of the project.
The resource BRICKS is available from July 1, 2004, at level 1000, while the resource levels for PAYMENT,
and ADVANCE are 2000 and 500, respectively. On July 9, an additional 500 bricks are made available to
increase the total availability to 1500. Missing values in observations 5 and 6 indicate that there is no change
in the availability for the respective resources.

As another example, suppose that you want to treat BRICKS as an aggregate resource (one that is not to be
included in resource allocation). Then consider the following data from a Resource data set:

OBSTYPE BRICKS PAINTER SUPERV

RESTYPE 4 1 1
RESRCDUR 0 1 2
CALENDAR 1 0 0

120 F Chapter 4: The CPM Procedure

The first observation indicates that the resource BRICKS is consumable and is to be used only for aggregation
while the other two resources are replenishable and are to be treated as constrained resources during resource
allocation.

The second observation, with the keyword ‘RESRCDUR’, specifies the effect of the resource on an activity’s
duration. The value ‘0’ for the resource BRICKS implies that this resource does not affect the duration of
an activity. On the other hand, the value ‘1’ identifies the resource PAINTER as a driving resource; this
means that by increasing the number of painters, an activity’s duration can be decreased. The procedure
uses this information about the nature of the resource only if a particular observation in the Activity data
set has valid values for both the WORK and DURATION variables. Otherwise, if you specify a value only
for the WORK variable, the procedure assumes that the resource specifications in that observation drive the
activity’s duration. Likewise, if you specify a value only for the DURATION variable, the procedure assumes
that the resources specified in that observation require a fixed duration.

In the Resource data set specifications, the second observation also identifies the resource SUPERV to be
of the spanning type. In other words, such a resource is required by an activity whenever any of the other
resources are working on the same activity. Thus, if you add more painters to an activity, thereby reducing its
duration, the supervisor (a spanning resource) will be needed for a shorter time.

The third observation indicates the calendar to be used in calculating the activity’s start and finish times for
the particular resource. If you do not specify a calendar, the procedure uses the activity’s calendar.

Specifying Resource Requirements

To perform resource allocation or to summarize the resource utilization, you must specify the amount of
resources required by each activity. In this section, the format for this specification is described. The amount
required by each activity for each of the resources listed in the RESOURCE statement is specified in the
Activity data set. The requirements for each activity are assumed to be constant throughout the activity’s
duration. A missing value for a resource variable in the Activity data set indicates that the particular resource
is not required for the activity in that observation.

The interpretation of the specification depends on whether or not the resource is replenishable. Suppose that
the value for a given resource variable in a particular observation is ‘x’. If the resource is replenishable, it
indicates that x units of the resource are required throughout the duration of the activity specified in that
observation. On the other hand, if the resource is consumable, it indicates that the specified resource is
consumed at the rate of x units per unit interval, where interval is the value specified in the INTERVAL=
option in the PROC CPM statement. For example, consider the following specification:

OBS ACTIVITY DUR WORKERS BRICKS

1 A 5 . 100
2 B 4 2 .

Here, ACTIVITY denotes the activity under consideration, DUR is the duration in days (assuming that
INTERVAL=DAY), and the resource variables are WORKERS and BRICKS. A missing value for WORKERS
in observation 1 indicates that activity ‘A’ does not need the resource WORKERS, while the same is true for
the resource BRICKS and activity ‘B’. You can assume that the resource WORKERS has been identified as
replenishable, and the resource BRICKS has been identified as consumable in a Resource data set. Thus, a
value ‘100’ for the consumable resource BRICKS indicates that 100 bricks per day are required for each of the
5 days of the duration of activity ‘A’, and a value ‘2’ for the replenishable resource WORKERS indicates that
2 workers are required throughout the duration (4 days) of activity ‘B’. Recall that consumable resources can

Resource Usage and Allocation F 121

be further identified as having a special usage profile, indicating that the requirement is only at the beginning
or end of an activity. See the section “Variable Usage Profile for Consumable Resources” on page 132 for
details.

Negative Resource Requirements

The CPM procedure enables you to specify negative resource requirements. A negative requirement indicates
that a resource is produced instead of consumed. Typically, this interpretation is valid only for consumable
resources. For example, a brick-making machine may produce bricks at the rate of 1000 units per hour which
are then available for consumption by other tasks in the project. To indicate that a resource is produced (and
not consumed) by an activity, specify the rate of usage for the resource as a negative number. For example, to
indicate that a machine produces boxed cards at the rate of 5000 boxes per day, set the value of the resource,
NUMBOXES, to -5000.

Scheduling Method

PROC CPM uses the serial-parallel (serial in time and parallel in activities) method of scheduling. In this
section, the basic scheduling algorithm is described. (Modifications to the algorithm if an ACTUAL statement
is used, if activity splitting is allowed, or if alternate resources are specified, are described later.) The basic
algorithm proceeds through the following steps:

1. An initial tentative schedule describing the early and late start and finish times is determined without
taking any resource constraints into account. This schedule does, however, reflect any restrictions
placed on the start and finish times by the use of the ALIGNDATE and ALIGNTYPE statements. As
much as possible, PROC CPM tries to schedule each activity to start at its E_START time (e_start , as
calculated in this step). Set time=min(e_start), where the minimum is taken over all the activities in
the network.

2. All of the activities whose e_start values coincide with time are arranged in a waiting list that is sorted
according to the rule specified in the SCHEDRULE= option. (See the section “Scheduling Rules”
on page 122 for details about the valid values of this option.) The SCHEDRULE2= option can be
used to break ties. PROC CPM tries to schedule the activities in the same order as on this list. For
each activity the procedure checks to see if the required amount of each resource will be available
throughout the activity’s duration; if enough resources are available, the activity is scheduled to start at
time. Otherwise, the resource availability profile is examined to see if there is likely to be an increase
in resources in the future. If none is perceived until l_start C delay , the procedure tries to schedule the
activity to start at time using supplementary levels of the resources (if there is an observation in the
Resource data set specifying supplementary levels of resources); otherwise, it is postponed. (Note that
if the AWAITDELAY option is specified, and there are not enough resources at time, the activity is
not scheduled at time using supplementary resources). If time is equal to or greater than the value of
l_start C delay , and the activity cannot be scheduled (even using supplementary resources), PROC
CPM stops with an error message, giving a partial schedule. You can also specify a cut-off date (using
the STOPDATE= option) when resource constrained scheduling is to stop.

Once an activity that uses a supplementary level of a replenishable resource is over, the supplementary
level that was used is returned to the reservoir and is not used again until needed. For consumable
resources, if supplementary levels were used on a particular date, PROC CPM attempts to bring the
reservoir back to the original level at the earliest possible time. In other words, the next time the
primary availability of the resource increases, the reservoir is first used to replenish the supplementary

122 F Chapter 4: The CPM Procedure

level of the resource. (See Example 4.16, “Using Supplementary Resources”). Adjustment is made to
the resource availability profile to account for any activity that is scheduled to start at time.

3. All of the activities in the waiting list that were unable to be scheduled in Step 2 are postponed and are
tentatively scheduled to start at the time when the next change takes place in the resource availability
profile (that is, their e_start is set to the next change date in the availability of resources). time is
advanced to the minimum e_start time of all unscheduled activities.

Steps 1, 2, and 3 are repeated until all activities are scheduled or the procedure stops with an error message.

Some important points to keep in mind are:

� Holidays and other non-working times are automatically accounted for in the process of resource
allocation. Do not specify zero availabilities for the resources on holidays; PROC CPM accounts for
holidays and weekends during resource allocation just as in the unrestricted case.

� It is assumed that the activities cannot be interrupted once they are started, unless one of the splitting
options is used. See the section “Activity Splitting” on page 124 for details.

Scheduling Rules

The SCHEDRULE= option specifies the criterion to use for determining the order in which activities are to
be considered while scheduling them subject to resource constraints. As described in the section “Scheduling
Method” on page 121, at a given time specified by time, all activities whose tentative e_start coincides with
time are arranged in a list ordered according to the scheduling rule, schedrule. The SCHEDRULE2= option
can be used to break ties caused by the SCHEDRULE= option; valid values for schedrule2 are the same as
for schedrule. However, if schedrule is ACTPRTY, then schedrule2 cannot be RESPRTY, and vice versa.

The following is a list of the six valid values of schedrule, along with a brief description of their respective
effects.

ACTPRTY
specifies that PROC CPM should sort the activities in the waiting list in the order of increasing values
of the variable specified in the ACTIVITYPRTY= option in the RESOURCE statement. This variable
specifies a user-assigned priority to each activity in the project (low value of the variable indicates high
priority).

NOTE: If SCHEDRULE is specified as ACTPRTY, the RESOURCE statement must contain the
specification of the variable in the Activity data set that assigns priorities to the activities; if the variable
name is not specified through the ACTIVITYPRTY= option, then CPM ignores the specification for
the SCHEDRULE= option and uses the default scheduling rule, LST, instead.

DELAYLST
specifies that the activities in the waiting list are sorted in the order of increasing L_START C
ACTDELAY, where ACTDELAY is the value of the ACTDELAY variable for that activity.

LFT
specifies that the activities in the waiting list are sorted in the order of increasing L_FINISH time.

Resource Usage and Allocation F 123

LST
specifies that the activities in the waiting list are sorted in the order of increasing L_START time. Thus,
this option causes activities that are closer to being critical to be scheduled first. This is the default rule.

RESPRTY
specifies that PROC CPM should sort the activities in the waiting list in the order of increasing values of
the resource priority for the most important resource used by each activity. In order for this scheduling
rule to be valid, there must be an observation in the Resource data set identified by the value RESPRTY
for the type identifier variable and specifying priorities for the resources. PROC CPM uses these
priority values (once again, low values indicate high priority) to order the activities; then, the activities
in the waiting list are ordered according to the highest priority resource used by them. In other words,
the CPM procedure uses the resource priorities to assign priorities to the activities in the project;
these activity priorities are then used to order the activities in the waiting list (in increasing order). If
this option is specified, and there is no observation in the Resource data set specifying the resource
priorities, PROC CPM ignores the specification for the SCHEDRULE= option and uses the default
scheduling rule, LST, instead.

SHORTDUR
specifies that the activities in the waiting list are sorted in the order of increasing durations. Thus,
PROC CPM tries to schedule activities with shorter durations first.

Secondary Levels of Resources

There are two factors that you can use to control the process of scheduling subject to resource constraints:
time and resources. In some applications, time is the most important factor, and you may be willing to use
extra resources in order to meet project deadlines; in other applications, you may be willing to delay the
project completion by an arbitrary amount of time if insufficient resources warrant doing so. The DELAY=
and ACTDELAY= options and the availability of supplementary resources enable you to select either method
or a combination of the two approaches.

In the first case, where you do not want the project to be delayed, specify the availability of supplementary
resources in the Resource data set and set DELAY=0. In the latter case, where extra resources are unavailable
and you are willing to delay project completion time, set the DELAY= option to some very large number or
leave it unspecified (in which case it is assumed to be C INFINITY). You can achieve a combination of both
effects (using supplementary levels and setting a limit on the delay allowed) by specifying an intermediate
value for the DELAY= option and including an observation in the Resource data set with supplementary
levels.

You can also use the INFEASDIAGNOSTIC option which is equivalent to specifying infinite supplementary
levels for all the resources under consideration. In this case, the DELAY= value is assumed to equal the
default value of +INFINITY, unless it is specified otherwise. See Example 4.17, “INFEASDIAGNOSTIC
Option and Aggregate Resource Type,” for an illustration.

The DELAY= option presupposes that all the activities can be subjected to the same amount of delay. In
some situations, you may want to control the amount of delay for each activity on the basis of some criterion,
say the amount of float present in the activity. The ACTDELAY= option enables you to specify a variable
amount of delay for each activity.

124 F Chapter 4: The CPM Procedure

Resource-Driven Durations and Resource Allocation

If resource-driven durations or resource calendars are specified, the procedure computes the start and finish
times for each resource separately for each activity. An activity is considered to be completed only when all
the resources have completed their work on that activity. Thus, an activity’s start (finish) time is computed as
the minimum (maximum) of the start (finish) times for all the resources used by that activity.

During resource-constrained scheduling, an activity enters the list of activities waiting for resources when
all its precedence constraints have been satisfied. As before, this list is ordered using the scheduling rule
specified. At this point, a tentative start and finish time is computed for each of the resources required by
the activity using the resource’s duration and calendar. An attempt is made to schedule all of this activity’s
resources at these calculated times using the available resources. If the attempt is successful, the activity is
scheduled to start at the given time with the appropriate resource schedule times, and the required resources
are reduced from the resource availabilities. Otherwise, the procedure attempts to schedule the next activity
in the list of activities waiting for resources. When all activities have been considered at the given time, the
procedure continues to the next event and continues the allocation process. Note that, at a given point of time,
the procedure schedules the activity only if all the required resources are available for that activity to start at
that time (or at the nearest time per that resource’s calendar), unless you specify the INDEPENDENTALLOC
option.

The INDEPENDENTALLOC option enables each resource to be scheduled independently for the activity.
Thus, when an activity enters the list of activities waiting for resources, each resource requirement is
considered independently, and a particular resource can be scheduled for that activity even if none of the
other resources are available. However, the spanning type of resources must always be available throughout
the activity’s duration. The activity is considered to be finished (and its successors can start) only after all the
resources for that activity have been scheduled. This option is valid even if all activities have fixed durations
and calendars are not associated with resources.

Activity Splitting

As mentioned in the section “Scheduling Method” on page 121, PROC CPM assumes that activities cannot
be preempted once they have started. Thus, an activity is scheduled only if it can be assured of enough
resources throughout its entire duration. Sometimes, you may be able to make better use of the resources by
allowing activities to be split. PROC CPM enables you to specify the maximum number of segments that
an activity can be split into as well as the minimum duration of any segment of the activity. Suppose that
for a given activity, d is its duration, maxn is the maximum number of segments allowed, and dmin is the
minimum duration allowed for a segment. If one or the other of these values is not given, it is calculated
appropriately based on the duration of the activity.

The scheduling algorithm described earlier is modified as follows:

� In Step 2, the procedure tries to schedule the entire activity (call it A) if it is critical. Otherwise, PROC
CPM schedules, if possible, only the first part (say A1) of the activity (of length dmin). The remainder
of the activity (call it A2, of length d � dmin) is added to the waiting list to be scheduled later. When
it is A2’s turn to be scheduled, it is again a candidate for splitting if the values of maxn and dmin allow
it, and if it is not critical. This process is repeated until the entire activity has been scheduled.

� While ordering the activities in the waiting list, in case of a tie, the split segments of an activity are
given priority over unsplit activities. Note that some scheduling rules could lead to more splitting than
others.

Resource Usage and Allocation F 125

� Activities that have an alignment type of MS or MF imposed on them by the ALIGNTYPE variable
are not split.

Note that splitting may not always reduce project completion time; it is designed to make better use of
resources. In particular, if there are gaps in resource availability, it allows activities to be split and scheduled
around the gaps, thus using the resources more efficiently.

If activity splitting is allowed, a new variable is included in the Schedule data set called SEGMT_NO
(segment number). If splitting does occur, the Schedule data set has more observations than the Activity data
set. Activities that are not split are treated as before, except that the value of the variable SEGMT_NO is set
to missing. For split activities, the number of observations output is one more than the number of disjoint
segments created.

The first observation corresponding to such an activity has SEGMT_NO set to missing, and the S_START
and S_FINISH times are set to be equal to the start and finish times, respectively, of the entire activity.
That is, S_START is equal to the scheduled start time of the first segment, and S_FINISH is equal to the
scheduled finish time of the last segment that the activity is split into. Following this observation, there
are as many observations as the number of disjoint segments in the activity. All values for these additional
observations are the same as the corresponding values for the first observation for this activity, except for the
variables SEGMT_NO, S_START, S_FINISH, and the DURATION variable. SEGMT_NO is the index of
the segment, S_START and S_FINISH are the resource-constrained start and finish times for this segment,
and DURATION is the duration of this segment.

Actual Dates and Resource Allocation

The resource-constrained scheduling algorithm uses the early start schedule as the base schedule to determine
possible start times for activities in the project. If an ACTUAL statement is used in the invocation of
PROC CPM, the early start schedule (as well as the late start schedule) reflects the progress information
that is specified for activities in the project, and thus affects the resource constrained schedule also. Further,
activities that are already completed or in progress are scheduled at their actual start without regard to resource
constraints. If the resource usage profile for such activities indicates that the resources are insufficient, a
warning is printed to the log, but the activities are not postponed beyond their actual start time. The Usage
data set contains negative values for the availability of the insufficient resources. These extra amounts are
assumed to have come from the supplementary levels of the resources (if such a reservoir existed); for details
about supplementary resources, see the section “Secondary Levels of Resources” on page 123.

If activity splitting is allowed (through the specification of the MINSEGMTDUR or MAXNSEGMT variable
or the SPLITFLAG or TIMENOWSPLT option), activities that are currently in progress may be split at
TIMENOW if resources are insufficient; then the second segment of the split activity is added to the list of
activities that need to be scheduled subject to resource constraints. Starting from TIMENOW, all activities
that are still unscheduled are treated as described in the section “Scheduling Method” on page 121.

Specifying Alternate Resources

PROC CPM enables you to identify alternate resources that can be substituted for any given resource that is
insufficient. Thus, for example, you can specify that if programmer John is unavailable for a given task, he
can be substituted by programmer David or Robert. This information is passed to PROC CPM through the
Resource data set.

As with other aspects of the Resource data set, each observation is identified by a keyword indicating the
type of information in that observation. Two keywords, ALTRATE and ALTPRTY, enable you to specify

126 F Chapter 4: The CPM Procedure

the rate of substitution and a prioritization of the alternate resources when a resource has more than one
substitution (lower value indicates higher priority). Further, a new variable (identified to PROC CPM through
the RESID= option) is used to identify the resource for which alternates are being specified in the current
observation. Consider the following Resource data:

OBS OBSTYPE RES_NAME RES_DATE JOHN DAVID ROBERT

1 RESTYPE . 1 1.0 1.0
2 ALTRATE JOHN . 1 0.5 0.5
3 ALTPRTY JOHN . 1 2.0 3.0
4 RESLEVEL 15JUL04 1 1.0 1.0

In these Resource data, the second observation indicates that John can be substituted by David or Robert;
however, either David or Robert can accomplish John’s tasks with half the effort. In other words, if an activity
requires 1 unit of John, it can also be accomplished with 0.5 units of David. Also, the third observation, with
OBSTYPE=‘ALTPRTY’, indicates that if John is unavailable, PROC CPM should first try to use David and if
he, too, is unavailable, then should use Robert. This set up enables a wide range of control for specifying
alternate resources.

In other words, the mechanism for specifying alternate resources is as follows: for each resource, specify
a list of possible alternatives along with a conversion rate and an order in which the alternatives are to be
considered. In the Resource data set, add another variable (identified by the RESID= option) to specify the
name of the resource variable for which alternatives are being specified (the variable RES_NAME in the
preceding example).

Let OBSTYPE=‘ALTRATE’ for the observation that specifies the rate of conversion for each possible alternate
resource (missing implies the particular resource cannot be substituted). For resources that drive an activity’s
duration, the specification of the alternate rate is used as a multiplier of the resource-driven duration. See the
section “Resource-Driven Durations and Alternate Resources” on page 128 for details.

Let OBSTYPE=‘ALTPRTY’ for the observation that specifies a prioritization for the resources.

All substitute resources must be of the same type (replenishable or consumable) as the primary resource. The
specification of the RESID= option triggers the use of alternate resources. If alternate resources are used, the
Schedule data set contains new variables that specify the actual resources that are used; the names of these
variables are obtained by prefixing the resource names by ‘U’. When activities are allowed to be split and
alternate resources are allowed, different segments of the activity can use a different set of resources. If this
is the case, the Schedule data set contains a different observation for every segment that uses a different set of
resources, even if these segments are contiguous in time. Contiguous segments, even if they use different sets
of resources, are not treated as true splits for the purpose of counting the number of splits allowed for the
activity.

By default, multiple resources cannot be used to substitute for a single resource. To enable multiple alternates,
use the MULTIPLEALTERNATES option or add an observation to the Resource data set identifying which
resources allow multiple alternates. For details, see the section “Specifying Multiple Alternates” on page 127.

See Example 4.20 for an illustration of the use of alternate resources.

Resource Usage and Allocation F 127

Specifying Multiple Alternates

As described in the section “Specifying Alternate Resources” on page 125, you can use the Resource data set
to specify alternate resources for any given resource. You can specify a rate of substitution and a priority
for substitution. However, the CPM procedure will not use multiple alternate resources to substitute for a
given resource. For example, suppose that an activity needs two programmers and the available programmers
(alternate resources) are John and Mary. By default, the CPM procedure cannot assign both John and Mary
to the activity to fulfill the resource requirement of two programmers.

However, this type of substitution is useful to effectively model group resources or skill pools. To enable
substitution of multiple alternates for a single resource, use the MULTIPLEALTERNATES option in
the RESOURCE statement. This option enables all resources that have alternate specifications (through
observations of the type ALTRATE or ALTPRTY in the Resource data set) to use multiple alternates. See
Table 4.8 for details about type identifier variables.

You can refine this feature to selectively allow multiple substitution or set a minimum rate of substitution,
by adding special observations to the Resource data set. As with other aspects of the Resource data set, the
specifications related to multiple alternates are identified by observations with special keywords, MULTALT
and MINARATE.

Let OBSTYPE=‘MULTALT’ for the observation that identifies which resources can have multiple alternates.
Valid values for such an observation are ‘0’ and ‘1’: ‘0’ indicates that the resource cannot be substituted by
multiple resources, and ‘1’ indicates that it can be substituted by multiple resources. If the Resource data set
contains such an observation, the MULTIPLEALTERNATES option is ignored and the values specified in
the observation are used to allow multiple substitutions for only selected resources. See Table 4.8 for details
about type identifier variables.

Let OBSTYPE=‘MINARATE’ for the observation that indicates the minimum rate of substitution for each
resource. For example, you may not want a primary resource requirement of 1.5 programmers, to be
satisfied by 5 different alternate programmers at a rate of 0.3 each. To ensure that the minimum rate of
substitution is 0.5, specify the value for the resource variable, PROGRAMMER, as ‘0.5’ in the observation
with OBSTYPE=‘MINARATE’. In other words, use this observation if you do not wish to split an activity’s
resource requirement across several alternate resources with a very small rate of utilization per resource. See
Table 4.8 for details about type identifier variables. Consider the following Resource data:

OBS OBSTYPE RES_NAME RES_DATE JOHN DAVID ROBERT

1 RESTYPE . 1 1 1
2 ALTRATE JOHN . 1 2 2
3 MULTALT . . 1 . .
4 MINARATE . . 0.5 . .
5 RESLEVEL 15JUL04 0 1.0 1.0

In these Resource data, observations 3 and 4 control the use of multiple alternates. They specify that a
requirement for John can be substituted with multiple alternates. Further, if multiple alternates are used
instead of John, do not allocate them in units less than 0.5. Observation 2 indicates that David and Robert
require twice the effort to accomplish John’s tasks. Thus, if an activity requires 1 unit of John, and he is
unavailable, the CPM procedure will require 2 units of David (or Robert) to substitute for John. However, only
1 unit each of David and Robert is available. If multiple alternates are not allowed, the resource allocation
algorithm will fail. However, since the resource John does allow multiple substitution, the activity can be
scheduled with 1 unit of David and 1 unit of Robert (each substituting for 1/2 of the requirement for John).

128 F Chapter 4: The CPM Procedure

Allowing multiple alternates for a single resource raises an interesting question: When distributing the
resource requirements across multiple alternatives, should the primary resource be included in the list of
multiple alternates? For instance, in the preceding example, if the resource level for John is ‘0.5’ (in observa-
tion 5), should the activity use John at rate 0.5 and assign the remainder to one (or more) of the alternate
resources? Or, should the primary resource be excluded from the list of possible alternates? You can select
either behavior for the primary resource by specifying ‘1’ (for inclusion) or ‘0’ (for exclusion) in the observa-
tion with OBSTYPE=‘ALTRATE’ that corresponds to the primary resource (with RES_NAME=‘JOHN’).
Thus, in the preceding example, John can be one of the multiple alternates when substituting for himself. To
exclude John from the list, set the value of the variable JOHN to ‘0’ in observation 2. You will also need to
set the value of JOHN to ‘0’ in any observation with OBSTYPE=‘ALTPRTY’ and RES_NAME=‘JOHN’.

Resource-Driven Durations and Alternate Resources

the section “Specifying Alternate Resources” on page 125 describes the use of the RESID= option and the
observations of type ‘ALTRATE’ and ‘ALTPRTY’ in the Resource data set to control the use of alternate
resources during resource allocation. The behavior described in that section refers to the substitution of
resources for resources that have a fixed duration. Alternate resources can also be specified for resources that
drive an activity’s duration. However, the specification of the alternate rate is interpreted differently: it is
used as a multiplier of the resource-driven duration.

For example, consider the following Resource data:

OBS OBSTYPE RES_NAME RES_DATE JOHN DAVID ROBERT

1 RESTYPE . . 1 1 1
2 RESRCDUR . . 1 1 1
3 ALTRATE JOHN . 1 2 2
4 ALTPRTY JOHN . 1 2 3
5 RESLEVEL . 15JUL04 . 1.0 1.0

In these Resource data, the second observation indicates that all the resources are driving resources. The
third observation indicates that John can be substituted by David or Robert; however, either David or Robert
will require twice as long to accomplish John’s tasks for resource-driven activities. Thus, in contrast to the
fixed-duration activities, the ALTRATE specification changes the duration of the alternate resource, not the
rate of use.

For instance, consider the following activity with the specified values for the DURATION and WORK variables
and the resource requirement for John:

OBS ACTIVITY DURATION WORK JOHN DAVID ROBERT

1 Act1 3 10 1 . .

Activity ‘Act1’ requires 10 days of work from John, indicating that the resource-driven duration for Act1 is
10 days. However, from the preceding Resource data, John is not available, but can be substituted by David
or Robert, who will require twice as long to accomplish the work. So, if Act1 is scheduled using either one
of the alternate resources, its resource-driven duration will be 20 days.

RESOURCEOUT= Usage Data Set F 129

Auxiliary Resources

Sometimes, the use of a certain resource may require simultaneous use of other resources. For example,
use of a crane will necessitate the use of a crane operator. In other words, if an activity needs the resource,
CRANE, it will also need a corresponding resource, CRANEOP. Such requirements can be easily modeled
by adding both CRANE and CRANEOP to the list of resources required by the activity.

However, when alternate resources are used, the problem becomes more complex. For example, suppose
an activity requires a CRANE and there are two possible cranes that can be used, CRANE1 and CRANE2.
You can specify CRANE1 and CRANE2 as the alternate resources for CRANE. Suppose further that each of
the two cranes has a specific operator, CRANEOP1 and CRANEOP2, respectively. Specifying CRANEOP1
and CRANEOP2 separately as alternates for CRANEOP will not necessarily guarantee that CRANEOP1
(or CRANEOP2) is used as the alternate for CRANEOP in conjunction with the use of the corresponding
CRANE1 (or CRANE2).

You can model such a situation by the use of Auxiliary resource specification: specify CRANEOP1 and
CRANEOP2 as auxiliary resources for CRANE1 and CRANE2, respectively. Auxiliary resources are
specified through the Resource data set, using observations identified by the keyword AUXRES for the value
of the OBSTYPE variable. For an observation of this type, the RESID variable specifies the name of the
primary resource. (This is similar to the specification of ALTRATE and ALTPRTY.) See Table 4.8 for details
about type identifier variables.

Once auxiliary resources are specified in the Resource data set, it is sufficient to specify only the primary
resource requirements in the Activity data set. In this situation, for example, it is sufficient to require a
CRANE for the activity in the Activity data set.

In the Resource data set, add a new observation type, ‘AUXRES’, which will specify the auxiliary resources
that are needed for each primary resource. For an observation of this type, the RESID variable specifies the
name of the primary resource. The value for each auxiliary resource indicates the rate at which it is required
whenever the primary resource is used. You will also need to specify CRANE1 and CRANE2 as the alternate
resources for CRANE in the Resource data set.

When scheduling the activity, PROC CPM will schedule CRANE1 (or CRANE2) as the alternate only if both
CRANE1 and CRANEOP1 (or CRANE2 and CRANEOP2) are available.

For instance, the preceding example will have the following Resource data set:

OBSTYPE RESID PER CRANE CRANE1 CRANE2 CRANEOP1 CRANEOP2

AUXRES CRANE1 1 .
AUXRES CRANE2 1
ALTRATE CRANE . . 1 1 . .
RESLEVEL . 10JUL04 . 1 1 1 1

RESOURCEOUT= Usage Data Set
The RESOURCEOUT= data set (referred to as the Usage data set) contains information about the resource
usage for the resources specified in the RESOURCE statement. The options ALL, AVPROFILE, ESPROFILE,
LSPROFILE, and RCPROFILE (each is discussed earlier in the section “RESOURCE Statement” on
page 82) control the number of variables that are to be created in this data set. The ROUTINTERVAL= and
ROUTINTPER= options control the number of observations that this data set is to contain. Of the options

130 F Chapter 4: The CPM Procedure

controlling the number of variables, AVPROFILE and RCPROFILE are allowed only if the procedure is used
to obtain a resource-constrained schedule.

The Usage data set always contains a variable named _TIME_ that specifies the date for which the resource
usage or availability in the observation is valid. For each of the variables specified in the RESOURCE
statement, one, two, three, or four new variables are created depending on how many of the four possible
options (AVPROFILE, ESPROFILE, LSPROFILE, and RCPROFILE) are in effect. If none of these four
options is specified, the ALL option is assumed to be in effect. Recall that the ALL option is equivalent to
specifying ESPROFILE and LSPROFILE when PROC CPM is used to obtain an unconstrained schedule,
and it is equivalent to specifying all four options when PROC CPM is used to obtain a resource-constrained
schedule.

The new variables are named according to the following convention:

� The prefix A is used for the variable describing the resource availability profile.

� The prefix E is used for the variable denoting the early start usage.

� The prefix L is used for the variable denoting the late start usage.

� The prefix R is used for the variable denoting the resource-constrained usage.

The suffix is the name of the resource variable if the name is less than the maximum possible variable length
(which is dependent on the VALIDVARNAME option). If the length of the name is equal to this maximum
length, the suffix is formed by deleting the character following the (n/2)th position. The user must ensure that
this naming convention results in unique variable names in the Usage data set.

The ROUTINTERVAL=routinterval and ROUTINTPER=routintper options specify that two successive
values of the _TIME_ variable differ by routintper number of routinterval units, measured with respect to a
specific calendar. If the routinterval is not specified, PROC CPM selects a default value depending on the
format of the start and finish variables in the Schedule data set. The value of routinterval is indicated in a
message written to the SAS log.

The MINDATE=mindate and MAXDATE=maxdate options specify the minimum and maximum values of
the _TIME_ variable, respectively. Thus, the Usage data set has observations containing the resource usage
information from mindate to maxdate with the time interval between the values of the _TIME_ variable
in two successive observations being equal to routintper units of routinterval , measured with respect to a
specific calendar. For example, if routinterval is MONTH and routintper is 3, then the time interval between
successive observations in the Usage data set is three months.

The calendar used for incrementing the _TIME_ variable is specified using the AROUTCAL= or NROUT-
CAL= options depending on whether the calendars for the project are specified using alphanumeric or numeric
values, respectively. In the absence of either of these specifications, the default calendar is used. For example,
if the default calendar follows a five-day work week and ROUTINTERVAL=DAY, the Usage data set will
not contain observations corresponding to Saturdays and Sundays. You can also use the ROUTNOBREAK
option to indicate that there should be no breaks in the _TIME_ values due to breaks or holidays.

RESOURCEOUT= Usage Data Set F 131

Interpretation of Variables

The availability profile indicates the amount of resources available at the beginning of the time interval
specified in the _TIME_ variable, after accounting for the resources used through the previous time period.

By default, each observation in the Resource Usage data set indicates the rate of resource usage per unit
routinterval at the start of the time interval specified in the _TIME_ variable. Note that replenishable
resources are assumed to be tied to an activity during any of the activity’s breaks or holidays that fall in the
course of the activity’s duration. For consumable resources, you can use the CUMUSAGE option to obtain
cumulative usage of the resource, instead of daily rate of usage. Often, it is more useful to obtain cumulative
usage for consumable resources.

You can use the TOTUSAGE option on the RESOURCE statement to get the total resource usage for each
resource within each time period. If you wish to obtain both the rate of usage and the total usage for each
time period, use the APPEND option on the RESOURCE statement.

The following example illustrates the default interpretation of the new variables.

Suppose that for the data given earlier (see the section “Specifying Resource Requirements” on page 120),
activities ‘A’ and ‘B’ have S_START equal to 1JUL04 and 5JUL04, respectively. If the RESOURCE
statement has the options AVPROFILE and RCPROFILE, the Usage data set has these five variables,
TIME, RWORKERS, AWORKERS, RBRICKS, and ABRICKS. Suppose further that routinterval is DAY
and routintper is 1. The Usage data set contains the following observations:

TIME RWORKERS AWORKERS RBRICKS ABRICKS

1JUL04 0 0 100 1000
2JUL04 0 0 100 900
3JUL04 0 0 100 800
4JUL04 0 0 100 700
5JUL04 2 2 100 600
6JUL04 2 2 0 500
7JUL04 2 2 0 500
8JUL04 2 2 0 500
9JUL04 0 4 0 1000

On each day of activity A’s duration, the resource BRICKS is consumed at the rate of 100 bricks per day. At
the beginning of the first day (July 1, 2004), all 1000 bricks are still available. Each day the availability drops
by 100 bricks, which is the rate of consumption. On July 5, activity ‘B’ is scheduled to start. On the four
days starting with July 5, the value of RWORKERS is ‘2’, indicating that 2 workers are used on each of those
days leaving an available supply of 2 workers (AWORKERS is equal to ‘2’ on all 4 days).

If ROUTINTPER is set to 2, and the CUMUSAGE option is used, then the observations would be as follows:

TIME RWORKERS AWORKERS RBRICKS ABRICKS

1JUL04 0 0 0 1000
3JUL04 0 0 200 800
5JUL04 2 2 400 600
7JUL04 2 2 500 500
9JUL04 0 4 500 1000

The value of RBRICKS indicates the cumulative usage of the resource BRICKS through the beginning of the
date specified by the value of the variable _TIME_ in each observation. That is why, for example, RBRICKS
= 0 on 1JUL04 and not 200.

132 F Chapter 4: The CPM Procedure

If the procedure uses supplementary levels of resources, then, on a day when supplementary levels of
resources were used through the beginning of the day, the value for the availability profile for the relevant
resources would be negative. The absolute magnitude of this value would denote the amount of supplementary
resource that was used through the beginning of the day. For instance, if ABRICKS is ‘�100’ on 11JUL04, it
would indicate that 100 bricks from the supplementary reservoir were used through the end of July 10, 2004.
See Example 4.16, “Using Supplementary Resources,” and Example 4.17, “INFEASDIAGNOSTIC Option
and Aggregate Resource Type.”

If, for the same data, ROUTINTPER is 2, and the APPEND option is specified, the Usage data set would
contain two sets of observations, the first indicating the rate of resource usage per day, and the second set
indicating the product of the rate and the time interval between two successive observations. The observations
(five in each set) would be as follows:

TIME OBS_TYPE RWORKERS RBRICKS

01JUL04 RES_RATE 0 100
03JUL04 RES_RATE 0 100
05JUL04 RES_RATE 2 100
07JUL04 RES_RATE 2 0
09JUL04 RES_RATE 0 0
01JUL04 RES_USED 0 200
03JUL04 RES_USED 0 200
05JUL04 RES_USED 4 100
07JUL04 RES_USED 4 0
09JUL04 RES_USED 0 0

Variable Usage Profile for Consumable Resources

For consumable resources that have a variable usage profile (as indicated by the values 1 or 2 for observations
of type RESUSAGE in the Resource data set), the values of the usage variables indicate the amount of the
resource consumed by an activity at the beginning or end of the activity. For example, consider the resources
PAYMENT and ADVANCE specified in the following Resource data set:

OBS OBSTYPE DATE WORKERS BRICKS PAYMENT ADVANCE

1 RESTYPE . 1 2 2 2
2 RESUSAGE . . . 2 1
3 RESLEVEL 1JUL2004 4 1000 2000 500

Suppose the activity ‘Task 1’, specified in the following observation, is scheduled to start on July 1, 2004:

OBS ACTIVITY DUR WORKERS BRICKS PAYMENT ADVANCE

1 Task 1 5 1 100 1000 200

For these data, the resource usage profile for the resources will be as indicated in the following output:

TIME RWORKERS RBRICKS RPAYMENT RADVANCE

1JUL04 1 100 0 200
2JUL04 1 100 0 0
3JUL04 1 100 0 0
4JUL04 1 100 0 0
5JUL04 1 100 0 0
6JUL04 0 0 1000 0

RESOURCESCHED= Resource Schedule Data Set F 133

RESOURCESCHED= Resource Schedule Data Set
The Resource Schedule data set (requested by the RESSCHED= option on the CPM statement) is very similar
to the Schedule data set, and it contains the start and finish times for each resource used by each activity. The
data set contains the variables listed in the ACTIVITY, TAILNODE, and HEADNODE statements and all the
relevant schedule variables (E_START, E_FINISH, and so forth). For each activity in the project, this data
set contains the schedule for the entire activity as well as the schedule for each resource used by the activity.
The variable RESOURCE identifies the name of the resource to which the observation refers; the value of the
RESOURCE variable is missing for observations that refer to the entire activity’s schedule. The variable
DUR_TYPE indicates whether the resource is a driving resource or a spanning resource or whether it is of
the fixed type.

A variable _DUR_ indicates the duration of the activity for the resource identified in that observation. This
variable has missing values for resources that are of the spanning type. For resources that are of the driving
type, the variable _WORK_ shows the total amount of work required by the resource for the activity in that
observation. The variable R_RATE shows the rate of usage of the resource for the relevant activity. For
driving resources, the variable _DUR_ is computed as (WORK / R_RATE).

If you specify an ACTUAL statement, the Resource Schedule data set also contains the STATUS variable
indicating whether the resource has completed work on the activity, is in progress, or is still pending.

Multiproject Scheduling
The CPM procedure enables you to define activities in a multiproject environment with multiple levels of
nesting. You can specify a PROJECT variable that identifies the name or number of the project to which each
activity belongs. The PROJECT variable must be of the same type and length as the ACTIVITY variable.
Further, each project can be considered as an activity, enabling you to specify precedence constraints,
alignment dates, or progress information for the different projects. Precedence constraints can be specified
between two projects, between activities in the same or different projects, or between a project and activities
in another project.

The PROJECT variable enables you to specify the name of the project to which each activity belongs. Each
project can in turn be treated as an activity that belongs to a bigger project. Thus, the (PROJECT, ACTIVITY)
pair of variables enables you to specify multiple levels of nesting using a hierarchical structure for the (task,
supertask) relationship.

In the following discussion, the terms superproject, supertask, parent task, ancestor task, project, or subproject
refer to a composite task (a task composed of other tasks). A lowest level task (one which has no subtasks
under it) is referred to as a child task, descendent task, a leaf task, or a regular task.

You can assign most of the “activity attributes” to a supertask; however, some of the interpretations may be
different. The significant differences are listed as follows.

Activity Duration
Even though a supertask has a value specified for the DURATION variable, the finish time of the
supertask may not necessarily be equal to the (start time + duration). The start and finish times of a

134 F Chapter 4: The CPM Procedure

parent task (supertask) always encompass the span of all its subtasks. In other words, the start (finish)
time of a supertask is the minimum start (maximum finish) time of all its subtasks.

The specified DURATION for a supertask is used only if the USEPROJDUR option is specified; this
variable is used to compute an upper bound on the late finish time of the project. In other words, you
can consider the duration of a supertask as a desired duration that puts a constraint on its finish time.

NOTE: You cannot specify resource-driven durations for supertasks.

Precedence Constraints
You cannot specify a Start-to-Finish or Finish-to-Finish type of precedence constraint when the
Successor task is a supertask. Such a constraint is ignored, and a warning is written to the log.

Time Constraints
The CPM procedure supports all the customary time constraints for a supertask. However, since the
supertask does not really have an inherent duration, some of the constraints may lead to unexpected
results.

For example, a constraint of the type SLE (Start Less than or Equal to) on a leaf task uses the task’s
duration to impose a maximum late finish time for the task. However, for a supertask, the duration
is determined by the span of all its subtasks, which may depend on the activities’ calendars. The
CPM procedure uses an estimate of the supertask’s duration computed on the basis of the precedence
constraints to determine the maximum finish time for the supertask using the date specified for the SLE
constraint. Such a constraint may not translate to the correct upper bound on the supertask’s finish time
if the project has multiple calendars. The presence of multiple calendars could change the computed
duration of the supertask depending on the starting date of the supertask. Thus, in general, it is better
to specify SGE (Start Greater than or Equal to) or FLE (Finish Less than or Equal to) constraints on
supertasks.

Note that alignment constraints of the type SGE or FLE percolate down the project hierarchy. For
example, if there is an SGE specification on a supertask, then all the subtasks of this supertask must
also start on or after the specified date.

Mandatory constraints (either of the type MS or MF) are used to set fixed start and finish times on
the relevant task. Such constraints are checked for consistency between a parent task and all its
descendants.

Progress Information
You can enter progress information for supertasks in the same way as you do for leaf tasks. The
procedure attempts to reconcile inconsistencies between the actual start and finish times of a parent and
its children. However, it is sufficient (and less ambiguous) to enter progress information only about the
tasks at the lowest level.

Resource Requirements
You can specify resource requirements for supertasks in the same way as you do for regular tasks.
However, the supertask is scheduled in conjunction with all its subtasks. In other words, a leaf task is
scheduled only when its resources and the resources for all its ancestors are available in sufficient
quantity. Thus, a supertask needs to have enough resources throughout the schedule of any of its
subtasks; in fact, the supertask needs to have enough resources throughout its entire span. In other
words, a supertask’s resource requirements are treated as “spanning.”

In addition to the above treatment of a supertask’s resources, there are two other resource scheduling
options available for handling the resource requirements of supertasks. You can use the AGGRE-

Multiproject Scheduling F 135

GATEPARENTRES option in the PROJECT statement to indicate that a supertask’s resource require-
ments are to be used only for aggregation. In other words, resource allocation is performed taking
into account the resource requirements of only the leaf tasks. Alternately, you can select to ignore any
resource requirements specified for supertasks by specifying the IGNOREPARENTRES option. Note
the difference between the AGGREGATEPARENTRES and IGNOREPARENTRES options. The first
option includes the supertask’s requirements while computing the aggregate resource usage, while the
second option is equivalent to setting all parent resource requirements to 0.

Resource-Driven Durations
Any WORK specification is ignored for a parent task. Resources required for a supertask cannot drive
the duration of the task; a supertask’s duration is driven by all its subtasks. Note that each leaf task can
still be resource driven.

Schedule Computation

The project hierarchy and all the precedence constraints (between leaf tasks, between supertasks, or between
a supertask and a leaf task) are taken into consideration when the project schedule is computed. A task
(parent or leaf) can be scheduled only when its precedences and all its parent’s precedences are satisfied.

During the forward pass of the scheduling algorithm, all independent start tasks (leaf tasks or supertasks
with no predecessors) are initialized to the project start date. Once a supertask’s precedences (if any) are
satisfied, all its subtasks whose precedences have been satisfied are added to the list of activities that can be
scheduled. The early start times for the subtasks are initialized to the early start time of the supertask and are
then updated, taking into account the precedence constraints and any alignment constraints on the activities.

Once all the subtasks are scheduled, a supertask’s early start and finish times are set to the minimum early
start and maximum early finish, respectively, of all its subtasks.

The late start schedule is computed using a backward pass through the project network, considering the
activities in a reverse order from the forward pass. The late schedule is computed starting with the last activity
(activities) in the project; the late finish time for each such activity is set to the master project’s finish date.
By default, the master project’s finish date is the maximum of the early finish dates of all the activities in
the master project (if a FINISHBEFORE date is specified with the FBDATE option, this date is used as the
starting point for the backward calculations).

During the backward pass, the late finish time of a supertask is determined by the precedence constraints and
any alignment specification on the supertask. You can specify a finish constraint on a supertask by using the
ALIGNDATE and ALIGNTYPE variables, or by using the SEPCRIT or USEPROJDUR option.

If a finish constraint is specified using the ALIGNDATE and ALIGNTYPE specifications, the L_FINISH
for the supertask is initialized to this value. If the SEPCRIT option is specified, the supertask’s late finish
time is initialized to its early finish time. If the USEPROJDUR option is specified, the late finish time for the
supertask is initialized using the early start time of the supertask and the specified supertask duration. The
late finish time of the supertask could further be affected by the precedence constraints. Once a supertask’s
late finish has been determined, this value is treated as an upper bound on the late finish of all its subtasks.

As with the early start schedule, once all the subtasks have been scheduled, the late start and finish times for
a supertask are set to the minimum late start and maximum late finish time, respectively, of all its subtasks.

136 F Chapter 4: The CPM Procedure

Schedule Data Set

If a PROJECT variable is specified, the Schedule data set contains the PROJECT variable as well as two new
variables called PROJ_DUR and PROJ_LEV.

The PROJ_DUR variable contains the project duration (computed as E_FINISH - E_START of the project)
for each superproject in the master project. This variable has missing values for the leaf tasks. It is possible
for (L_FINISH - L_START) to be different from the value of PROJ_DUR. If a resource-constrained schedule
is produced by PROC CPM, the project duration is computed using the resource constrained start and finish
times of the superproject; in other words, in this case PROJ_DUR = (S_FINISH - S_START).

The PROJ_LEV variable specifies the depth of each activity from the root of the project hierarchy tree. The
root of the tree has PROJ_LEV = 0; If the project does not have a single root, a common root is defined by
the CPM procedure.

The ADDACT option on the PROC CPM statement causes an observation to be added to the Schedule
data set for this common root. This observation contains the project start and finish times and the project
duration. The ADDACT option also adds an observation for any activity that may appear as a value of the
SUCCESSOR or PROJECT variable without appearing as a value of the ACTIVITY variable.

In addition to the PROJ_DUR and PROJ_LEV variables, you can request that a WBS code be added to the
output data set (using the option ADDWBS). You can also add variables, ES_ASC, ES_DESC, LS_ASC,
LS_DESC, SS_ASC, and SS_DESC, that indicate a sorting order for activities in the output data set. For
example, the variable ES_ASC enables you to sort the output data set in such a way that the activities within
each superproject are ordered according to increasing early start time.

Macro Variable _ORCPM_
The CPM procedure defines a macro variable named _ORCPM_ . This variable contains a character string
that indicates the status of the procedure. It is set at procedure termination. The form of the _ORCPM_
character string is STATUS=, optionally followed by REASON=. The value for STATUS= is one of the
following:

� SUCCESSFUL - indicates successful completion

� ERROR_EXIT - indicates unsuccessful termination

If PROC CPM terminates unsuccessfully, REASON= will be followed by one of the values below:

� CYCLE - indicates that PROC CPM found a cycle in the project network; activity/successor (or
tailnode/headnode for an AOA representation) and parent/child (see PROJECT statement) pairs define
precedence relationships among the activities, which can be viewed as directed arcs in a graph

� RES_INFEASIBLE - indicates that PROC CPM could not find a schedule that satisfies the resource
requirements, given the specified resource levels; the INFEASDIAGNOSTIC option might be useful
in this case

� BADDATA_ERROR - points to problems with the input specification; an example would be neglecting
to name an activity or duration variable

Input Data Sets and Related Variables F 137

� MEMORY_ERROR - occurs when memory is exhausted

� IO_ERROR - triggered by problems with a data set

� SEMANTIC_ERROR - indicates an incongruity in the user specification or input data

� SYNTAX_ERROR - occurs when the user has specified an invalid value for a keyword, for instance

� CPM_BUG - should not occur

� UNKNOWN_ERROR - should not occur

This information can be used when PROC CPM is one step in a larger program that needs to determine
whether the procedure terminated successfully or not. Because _ORCPM_ is a standard SAS macro variable,
it can be used in the ways that all macro variables can be used.

Input Data Sets and Related Variables
The CPM procedure uses activity, resource, and holiday data from several different data sets with key variable
names being used to identify the appropriate information. Table 4.9 lists all of the variables associated with
each input data set and their interpretation by the CPM procedure. The variables are grouped according to the
statement that they are identified in. Some variables use default names and are not required to be identified in
any statement.

Table 4.9 PROC CPM Input Data Sets and Associated Variables

Data Set Statement Variable Name Interpretation
CALEDATA CALID CALID Calendar corresponding

to work pattern

Default D_LENGTH Length of standard
names work day

SUN Work pattern on day of
. . . week, valid values:
SAT WORKDAY, HOLIDAY, or one

of the numeric variables
in the Workday data set

DATA ACTIVITY ACTIVITY Activity in AON format

ACTUAL A_START Actual start time of activity
A_FINISH Actual finish time of activity
REMDUR Remaining duration
PCTCOMP Percentage of work

completed

ALIGNDATE ALIGNDATE Time constraint on
activity

138 F Chapter 4: The CPM Procedure

Table 4.9 (continued)

Data Set Statement Variable Name Interpretation
ALIGNTYPE ALIGNTYPE Type of time constraint,

valid values: SGE, SEQ,
SLE, FGE, FEQ, FLE, MS,
MF

BASELINE B_START Baseline start time
of activity

B_FINISH Baseline finish time
of activity

CALID CALID Calendar followed by
activity

DURATION DURATION Duration of activity
FINISH Finish time of activity
START Start time of activity

HEADNODE HEADNODE Head of arrow (arc) in
AOA format

ID ID Additional project
information

PROJECT PROJECT Project to which activity
belongs

RESOURCE ACTDELAY Activity delay
ACTPRTY Activity priority
MAXNSEGMT Maximum number of

segments
MINSEGMTDUR Minimum duration of a

segment
RESOURCE Amount of resource

required
WORK Amount of work required

SUCCESSOR SUCCESSOR Successor in AON format
LAG Nonstandard precedence

relationship

TAILNODE TAILNODE Tail of arrow (arc) in
AOA format

Missing Values in Input Data Sets F 139

Table 4.9 (continued)

Data Set Statement Variable Name Interpretation
HOLIDATA CALID CALID Calendar to which

holiday applies

HOLIDAY HOLIDAY Start of holiday
HOLIDUR Duration of holiday
HOLIFIN End of holiday

RESOURCEIN RESOURCE OBSTYPE Type of observation;
valid values: RESLEVEL,
RESTYPE, SUPLEVEL,
RESPRTY, ALTRATE,
ALTPRTY, RESUSAGE,
AUXRES, MULTALT,
MINARATE, CALENDAR

PERIOD Time from which resource
is available

RESID Resource for which
alternates are given

RESOURCE Resource type, priority,
availability, alternate
rate, alternate priority

WORKDATA Any numeric On-off pattern of work
variable (shift definition)

Missing Values in Input Data Sets
The following table summarizes the treatment of missing values for variables in the input data sets used by
PROC CPM.

Table 4.10 Treatment of Missing Values in the CPM Procedure

Data Set Variable Value Used / Assumption Made /
Action Taken

CALEDATA CALID Default calendar (0 or DEFAULT)
D_LENGTH DAYLENGTH, if available.

8:00, if INTERVAL = WORKDAY, DTWRKDAY
24:00, otherwise

SUN Corresponding shift for default
. . . calendar
SAT

DATA ACTIVITY Input error: procedure stops with error message
ACTDELAY DELAY= specification
ACTPRTY Infinity (indicates lowest priority)
ALIGNDATE Project start date for start activity

140 F Chapter 4: The CPM Procedure

Table 4.10 (continued)

Data Set Variable Value Used / Assumption Made /
Action Taken

ALIGNTYPE SGE: if ALIGNDATE is not missing
A_FINISH See the section “Progress Updating” on page 111 for details
A_START See the section “Progress Updating” on page 111 for details
B_FINISH Updated if UPDATE= option is on
B_START Updated if UPDATE= option is on
CALID Default calendar (0 or DEFAULT)
DURATION Input error: procedure stops with error message
FINISH Value ignored
HEADNODE Input error: procedure stops with error message
ID Missing
LAG FS_0: if corresponding successor

Variable value is not missing
MAXNSEGMT Calculated from MINSEGMTDUR
MINSEGMTDUR 0.2 * DURATION
PCTCOMP See the section “Progress Updating” on page 111 for details
PROJECT Activity is at highest level
REMDUR See the section “Progress Updating” on page 111 for details
RESOURCE 0
START Value ignored
SUCCESSOR Value ignored
TAILNODE Input error: procedure stops with error message
WORK Resources use fixed duration

HOLIDATA CALID Holiday applies to all calendars defined
HOLIDAY Observation ignored
HOLIDUR Ignored if HOLIFIN is not missing;

1, otherwise
HOLIFIN Ignored if HOLIDUR is not missing;

HOLIDAYC (1 unit of INTERVAL), otherwise
RESOURCEIN OBSTYPE RESLEVEL

PERIOD Input error if OBSTYPE is RESLEVEL,
otherwise ignored

RESID Observation ignored
RESOURCE 1.0, if OBSTYPE is RESTYPE

infinity, if OBSTYPE is RESPRTY
0.0, if OBSTYPE is RESUSAGE
0.0, if OBSTYPE is SUPLEVEL
0.0, if OBSTYPE is RESLEVEL and this
is the first observation of this type
otherwise, equal to value in previous
observation

WORKDATA Any numeric 00:00, if first observation
variable 24:00, otherwise

FORMAT Specification F 141

FORMAT Specification
As can be seen from the description of all of the statements and options used by PROC CPM, the procedure
handles SAS date, time, and datetime values in several ways: as time constraints on the activities, holidays
specified as date or datetime values, periods of resource availabilities, actual start and finish times, and
several other options that control the scheduling of the activities in time. The procedure tries to reconcile any
differences that may exist in the format specifications for the different variables. For example, if holidays
are formatted as SAS date values while alignment constraints are specified in terms of SAS datetime values,
PROC CPM converts all of the holidays to SAS datetime values suitably. However, the procedure needs
to know how the variables are to be interpreted (as SAS date, datetime, or time values) in order for this
reconciliation to be correct. Thus, it is important that you always use a FORMAT statement explicitly for
each SAS date, time, or datetime variable that is used in the invocation of PROC CPM.

Computer Resource Requirements
There is no inherent limit on the size of the project that can be scheduled with the CPM procedure. The
number of activities and precedences, as well as the number of resources are constrained only by the amount
of memory available. Naturally, there needs to be a sufficient amount of core memory available in order to
invoke and initialize the SAS system. As far as possible, the procedure attempts to store all the data in core
memory.

However, if the problem is too large to fit in core memory, the procedure resorts to the use of utility data sets
and swaps between core memory and utility data sets as necessary, unless the NOUTIL option is specified.
The procedure uses the NACTS=, NADJ=, NNODES=, and NRESREQ= options to determine approximate
problem size. If these options are not specified, the procedure estimates default values on the basis of the
number of observations in the Activity data set. See the section “Syntax: CPM Procedure” on page 63 for
default specifications.

The storage requirement for the data area required by the procedure is proportional to the number of activities
and precedence constraints in the project and depends on the number of resources required by each activity.
The time required depends heavily on the number of resources that are constrained and on how tightly
constrained they are.

142 F Chapter 4: The CPM Procedure

Examples: CPM Procedure
This section contains examples that illustrate several features of the CPM procedure. Most of the available
options are used in at least one example. Two tables, Table 4.13 and Table 4.14, at the end of this section list
all the examples in this chapter and the options and statements in the CPM procedure that are illustrated by
each example.

A simple project concerning the manufacture of a widget is used in most of the examples in this section.
Example 4.22 deals with a nonstandard application of PROC CPM and illustrates the richness of the modeling
environment that is available with the SAS System. The last few examples use different projects to illustrate
multiproject scheduling and resource-driven durations. resource calendars and negative resource requirements.

There are 14 activities in the widget manufacturing project. Example 4.1 and Example 4.2 illustrate a basic
project network that is built upon by succeeding examples. The tasks in the project can be classified by the
division or department that is responsible for them.

Table 4.11 lists the detailed names (and corresponding abbreviations) of all the activities in the project and
the department that is responsible for each one. As in any typical project, some of these activities must be
completed before others. For example, the activity ‘Approve Plan’ must be done before any of the activities
‘Drawings’, ‘Study Market’, and ‘Write Specs’, can start. Table 4.12 summarizes the relationships among the
tasks and gives the duration in days to complete each task. This table shows the relationship among tasks by
listing the immediate successors to each task.

Table 4.11 Widget Manufacture: Activity List

Task Department Activity Description
Approve Plan Planning Finalize and Approve Plan
Drawings Engineering Prepare Drawings
Study Market Marketing Analyze Potential Markets
Write Specs Engineering Write Specifications
Prototype Engineering Build Prototype
Mkt. Strat. Marketing Develop Marketing Concept
Materials Manufacturing Procure Raw Materials
Facility Manufacturing Prepare Manufacturing Facility
Init. Prod. Manufacturing Initial Production Run
Evaluate Testing Evaluate Product In-House
Test Market Testing Mail Product to Sample Market
Changes Engineering Engineering Changes
Production Manufacturing Begin Full Scale Production
Marketing Marketing Begin Full Scale Marketing

Examples: CPM Procedure F 143

Table 4.12 Widget Manufacture: Precedence Information

Task Dur Successor Successor Successor
Approve Plan 10 Drawings Study Market Write Specs
Drawings 20 Prototype
Study Market 10 Mkt. Strat.
Write Specs 15 Prototype
Prototype 30 Materials Facility
Mkt. Strat. 25 Test Market Marketing
Materials 60 Init. Prod.
Facility 45 Init. Prod.
Init. Prod. 30 Test Market Marketing Evaluate
Evaluate 40 Changes
Test Market 30 Changes
Changes 15 Production
Production 0
Marketing 0

The relationship among the tasks can be represented by the network in Output 4.1.1. The diagram was
produced by the NETDRAW procedure. The code used is the same as in Example 9.11 in Chapter 9, “The
NETDRAW Procedure,” although the colors may be different.

144 F Chapter 4: The CPM Procedure

Example 4.1: Activity-on-Node Representation

Output 4.1.1 Network Showing Task Relationships in Activity-on-Node Format

The following DATA step reads the project network in AON format into a SAS data set named WIDGET. The
data set contains the minimum amount of information needed to invoke PROC CPM, namely, the ACTIVITY
variable, one or more SUCCESSOR variables, and a DURATION variable. PROC CPM is invoked, and the
Schedule data set is displayed using the PRINT procedure in Output 4.1.2. The Schedule data set produced
by PROC CPM contains the solution in canonical units, without reference to any calendar date or time. For
instance, the early start time of the first activity in the project is the beginning of period 0 and the early finish
time is the beginning of period 5.

/* Activity-on-Node representation of the project */
data widget;
format task $12. succ1-succ3 $12.;
input task & days succ1 & succ2 & succ3 & ;
datalines;

Approve Plan 5 Drawings Study Market Write Specs
Drawings 10 Prototype . .
Study Market 5 Mkt. Strat. . .
Write Specs 5 Prototype . .

Example 4.1: Activity-on-Node Representation F 145

Prototype 15 Materials Facility .
Mkt. Strat. 10 Test Market Marketing .
Materials 10 Init. Prod. . .
Facility 10 Init. Prod. . .
Init. Prod. 10 Test Market Marketing Evaluate
Evaluate 10 Changes . .
Test Market 15 Changes . .
Changes 5 Production . .
Production 0 . . .
Marketing 0 . . .
;

/* Invoke PROC CPM to schedule the project specifying the */
/* ACTIVITY, DURATION and SUCCESSOR variables */
proc cpm;

activity task;
duration days;
successor succ1 succ2 succ3;
run;

title 'Widget Manufacture: Activity-On-Node Format';
title2 'Critical Path';
proc print;

run;

Output 4.1.2 Critical Path

Widget Manufacture: Activity-On-Node Format
Critical Path

Obs task succ1 succ2 succ3 days E_START E_FINISH L_START L_FINISH T_FLOAT F_FLOAT

1 Approve
Plan

Drawings Study
Market

Write
Specs

5 0 5 0 5 0 0

2 Drawings Prototype 10 5 15 5 15 0 0

3 Study
Market

Mkt. Strat. 5 5 10 35 40 30 0

4 Write Specs Prototype 5 5 10 10 15 5 5

5 Prototype Materials Facility 15 15 30 15 30 0 0

6 Mkt. Strat. Test
Market

Marketing 10 10 20 40 50 30 30

7 Materials Init. Prod. 10 30 40 30 40 0 0

8 Facility Init. Prod. 10 30 40 30 40 0 0

9 Init. Prod. Test
Market

Marketing Evaluate 10 40 50 40 50 0 0

10 Evaluate Changes 10 50 60 55 65 5 5

11 Test Market Changes 15 50 65 50 65 0 0

12 Changes Production 5 65 70 65 70 0 0

13 Production 0 70 70 70 70 0 0

14 Marketing 0 50 50 70 70 20 20

Alternately, if you know that the project is to start on December 1, 2003, then you can determine the project
schedule with reference to calendar dates by specifying the DATE= option in the PROC CPM statement.
The default unit of duration is assumed to be DAY. The architecture of PROC CPM enables you to include

146 F Chapter 4: The CPM Procedure

any number of additional variables that are relevant to the project. Here, for example, you may want to
include more descriptive activity names and department information. The data set DETAILS contains more
information about the project that is merged with the WIDGET data set to produce the WIDGETN data set.
The ID statement is useful to carry information through to the data set. Output 4.1.3 displays the resulting
output data set.

data details;
format task $12. dept $13. descrpt $30. ;
input task & dept $ descrpt & ;
label dept = "Department"

descrpt = "Activity Description";
datalines;

Approve Plan Planning Finalize and Approve Plan
Drawings Engineering Prepare Drawings
Study Market Marketing Analyze Potential Markets
Write Specs Engineering Write Specifications
Prototype Engineering Build Prototype
Mkt. Strat. Marketing Develop Marketing Concept
Materials Manufacturing Procure Raw Materials
Facility Manufacturing Prepare Manufacturing Facility
Init. Prod. Manufacturing Initial Production Run
Evaluate Testing Evaluate Product In-House
Test Market Testing Mail Product to Sample Market
Changes Engineering Engineering Changes
Production Manufacturing Begin Full Scale Production
Marketing Marketing Begin Full Scale Marketing

;

/* Combine project network data with additional details */
data widgetn;

merge widget details;
run;

/* Schedule using PROC CPM, identifying the variables */
/* that specify additional project information */
/* and set project start date to be December 1, 2003 */
proc cpm data=widgetn date='1dec03'd;

activity task;
successor succ1 succ2 succ3;
duration days;
id dept descrpt;
run;

Example 4.1: Activity-on-Node Representation F 147

proc sort;
by e_start;
run;

title2 'Project Schedule';
proc print;

id descrpt;
var dept e_: l_: t_float f_float;
run;

Output 4.1.3 Critical Path: Activity-On-Node Format

Widget Manufacture: Activity-On-Node Format
Project Schedule

descrpt dept E_START E_FINISH L_START L_FINISH T_FLOAT F_FLOAT

Finalize and Approve Plan Planning 01DEC03 05DEC03 01DEC03 05DEC03 0 0

Prepare Drawings Engineering 06DEC03 15DEC03 06DEC03 15DEC03 0 0

Analyze Potential Markets Marketing 06DEC03 10DEC03 05JAN04 09JAN04 30 0

Write Specifications Engineering 06DEC03 10DEC03 11DEC03 15DEC03 5 5

Develop Marketing Concept Marketing 11DEC03 20DEC03 10JAN04 19JAN04 30 30

Build Prototype Engineering 16DEC03 30DEC03 16DEC03 30DEC03 0 0

Procure Raw Materials Manufacturing 31DEC03 09JAN04 31DEC03 09JAN04 0 0

Prepare Manufacturing Facility Manufacturing 31DEC03 09JAN04 31DEC03 09JAN04 0 0

Initial Production Run Manufacturing 10JAN04 19JAN04 10JAN04 19JAN04 0 0

Evaluate Product In-House Testing 20JAN04 29JAN04 25JAN04 03FEB04 5 5

Mail Product to Sample Market Testing 20JAN04 03FEB04 20JAN04 03FEB04 0 0

Begin Full Scale Marketing Marketing 20JAN04 20JAN04 09FEB04 09FEB04 20 20

Engineering Changes Engineering 04FEB04 08FEB04 04FEB04 08FEB04 0 0

Begin Full Scale Production Manufacturing 09FEB04 09FEB04 09FEB04 09FEB04 0 0

148 F Chapter 4: The CPM Procedure

Example 4.2: Activity-on-Arc Representation

Output 4.2.1 Network Showing Task Relationships in Activity-on-Arc Format

The problem discussed in Example 4.1 can also be described in an AOA format. The network is illustrated
in Output 4.2.1. The network has an arc labeled ‘Dummy’, which is required to accurately capture all the
precedence relationships. Dummy arcs are often needed when representing scheduling problems in AOA
format.

The following DATA step saves the network description in a SAS data set, WIDGAOA. The data set contains
the minimum amount of information required by PROC CPM for an activity network in AOA format, namely,
the TAILNODE and HEADNODE variables, which indicate the direction of each arc in the network and the
DURATION variable which gives the length of each task. In addition, the data set also contains a variable
identifying the name of the task associated with each arc. This variable, task, can be identified to PROC
CPM using the ACTIVITY statement. PROC CPM treats each observation in the data set as a new task,
thus enabling you to specify multiple arcs between a pair of nodes. In this example, for instance, both the
tasks ‘Drawings’ and ‘Write Specs’ connect the nodes 2 and 3; likewise, both the tasks ‘Materials’ and
‘Facility’ connect the nodes 5 and 7. If multiple arcs are not allowed, you would need more dummy arcs in
this example. However, the dummy arc between nodes 8 and 6 is essential to the structure of the network and
cannot be eliminated.

As in Example 4.1, the data set DETAILS containing additional activity information, can be merged with the
Activity data set and used as input to PROC CPM to determine the project schedule. For purposes of display
(in Gantt charts, and so on) the dummy activity has been given a label, ‘Production Milestone’. Output 4.2.2
displays the project schedule.

/* Activity-on-Arc representation of the project */
data widgaoa;

format task $12. ;
input task & days tail head;
datalines;

Example 4.2: Activity-on-Arc Representation F 149

Approve Plan 5 1 2
Drawings 10 2 3
Study Market 5 2 4
Write Specs 5 2 3
Prototype 15 3 5
Mkt. Strat. 10 4 6
Materials 10 5 7
Facility 10 5 7
Init. Prod. 10 7 8
Evaluate 10 8 9
Test Market 15 6 9
Changes 5 9 10
Production 0 10 11
Marketing 0 6 12
Dummy 0 8 6
;

data details;
format task $12. dept $13. descrpt $30.;
input task & dept $ descrpt & ;
label dept = "Department"

descrpt = "Activity Description";
datalines;

Approve Plan Planning Finalize and Approve Plan
Drawings Engineering Prepare Drawings
Study Market Marketing Analyze Potential Markets
Write Specs Engineering Write Specifications
Prototype Engineering Build Prototype
Mkt. Strat. Marketing Develop Marketing Concept
Materials Manufacturing Procure Raw Materials
Facility Manufacturing Prepare Manufacturing Facility
Init. Prod. Manufacturing Initial Production Run
Evaluate Testing Evaluate Product In-House
Test Market Testing Mail Product to Sample Market
Changes Engineering Engineering Changes
Production Manufacturing Begin Full Scale Production
Marketing Marketing Begin Full Scale Marketing
Dummy . Production Milestone
;

data widgeta;
merge widgaoa details;
run;

/* The project is scheduled using PROC CPM */
/* The network information is conveyed using the TAILNODE */
/* and HEADNODE statements. The ID statement is used to */
/* transfer project information to the output data set */
proc cpm data=widgeta date='1dec03'd out=save;

tailnode tail;
headnode head;
duration days;
activity task;

150 F Chapter 4: The CPM Procedure

id dept descrpt;
run;

proc sort;
by e_start;
run;

title 'Widget Manufacture: Activity-On-Arc Format';
title2 'Project Schedule';
proc print;

id descrpt;
var dept e_: l_: t_float f_float;
run;

Output 4.2.2 Critical Path: Activity-on-Arc Format

Widget Manufacture: Activity-On-Arc Format
Project Schedule

descrpt dept E_START E_FINISH L_START L_FINISH T_FLOAT F_FLOAT

Finalize and Approve Plan Planning 01DEC03 05DEC03 01DEC03 05DEC03 0 0

Prepare Drawings Engineering 06DEC03 15DEC03 06DEC03 15DEC03 0 0

Analyze Potential Markets Marketing 06DEC03 10DEC03 05JAN04 09JAN04 30 0

Write Specifications Engineering 06DEC03 10DEC03 11DEC03 15DEC03 5 5

Develop Marketing Concept Marketing 11DEC03 20DEC03 10JAN04 19JAN04 30 30

Build Prototype Engineering 16DEC03 30DEC03 16DEC03 30DEC03 0 0

Procure Raw Materials Manufacturing 31DEC03 09JAN04 31DEC03 09JAN04 0 0

Prepare Manufacturing Facility Manufacturing 31DEC03 09JAN04 31DEC03 09JAN04 0 0

Initial Production Run Manufacturing 10JAN04 19JAN04 10JAN04 19JAN04 0 0

Evaluate Product In-House Testing 20JAN04 29JAN04 25JAN04 03FEB04 5 5

Mail Product to Sample Market Testing 20JAN04 03FEB04 20JAN04 03FEB04 0 0

Begin Full Scale Marketing Marketing 20JAN04 20JAN04 09FEB04 09FEB04 20 20

Production Milestone 20JAN04 20JAN04 20JAN04 20JAN04 0 0

Engineering Changes Engineering 04FEB04 08FEB04 04FEB04 08FEB04 0 0

Begin Full Scale Production Manufacturing 09FEB04 09FEB04 09FEB04 09FEB04 0 0

Example 4.3: Meeting Project Deadlines F 151

Example 4.3: Meeting Project Deadlines
This example illustrates the use of the project finish date (using the FBDATE= option) to specify a deadline on
the project. In the following program it is assumed that the project data are saved in the data set WIDGAOA.
PROC CPM is first invoked with the FBDATE= option. Output 4.3.1 shows the resulting schedule. The entire
schedule is shifted in time (as compared to the schedule in Output 4.2.2) so that the end of the project is on
March 1, 2004. The second part of the program specifies a project start date in addition to the project finish
date using both the DATE= and FBDATE= options. The schedule displayed in Output 4.3.2 shows that all of
the activities have a larger float than before due to the imposition of a less stringent target date.

proc cpm data=widgaoa
fbdate='1mar04'd interval=day;

tailnode tail;
headnode head;
duration days;
id task;
run;

proc sort;
by e_start;
run;

title 'Meeting Project Deadlines';
title2 'Specification of Project Finish Date';
proc print;

id task;
var e_: l_: t_float f_float;
run;

proc cpm data=widgaoa
fbdate='1mar04'd
date='1dec03'd interval=day;

tailnode tail;
headnode head;
duration days;
id task;
run;

proc sort;
by e_start;
run;

title2 'Specifying Project Start and Completion Dates';
proc print;

id task;
var e_: l_: t_float f_float;
run;

152 F Chapter 4: The CPM Procedure

Output 4.3.1 Meeting Project Deadlines: FBDATE= Option

Meeting Project Deadlines
Specification of Project Finish Date

task E_START E_FINISH L_START L_FINISH T_FLOAT F_FLOAT

Approve Plan 22DEC03 26DEC03 22DEC03 26DEC03 0 0

Drawings 27DEC03 05JAN04 27DEC03 05JAN04 0 0

Study Market 27DEC03 31DEC03 26JAN04 30JAN04 30 0

Write Specs 27DEC03 31DEC03 01JAN04 05JAN04 5 5

Mkt. Strat. 01JAN04 10JAN04 31JAN04 09FEB04 30 30

Prototype 06JAN04 20JAN04 06JAN04 20JAN04 0 0

Materials 21JAN04 30JAN04 21JAN04 30JAN04 0 0

Facility 21JAN04 30JAN04 21JAN04 30JAN04 0 0

Init. Prod. 31JAN04 09FEB04 31JAN04 09FEB04 0 0

Evaluate 10FEB04 19FEB04 15FEB04 24FEB04 5 5

Test Market 10FEB04 24FEB04 10FEB04 24FEB04 0 0

Marketing 10FEB04 10FEB04 01MAR04 01MAR04 20 20

Dummy 10FEB04 10FEB04 10FEB04 10FEB04 0 0

Changes 25FEB04 29FEB04 25FEB04 29FEB04 0 0

Production 01MAR04 01MAR04 01MAR04 01MAR04 0 0

Output 4.3.2 Meeting Project Deadlines: DATE= and FBDATE= Options

Meeting Project Deadlines
Specifying Project Start and Completion Dates

task E_START E_FINISH L_START L_FINISH T_FLOAT F_FLOAT

Approve Plan 01DEC03 05DEC03 22DEC03 26DEC03 21 0

Drawings 06DEC03 15DEC03 27DEC03 05JAN04 21 0

Study Market 06DEC03 10DEC03 26JAN04 30JAN04 51 0

Write Specs 06DEC03 10DEC03 01JAN04 05JAN04 26 5

Mkt. Strat. 11DEC03 20DEC03 31JAN04 09FEB04 51 30

Prototype 16DEC03 30DEC03 06JAN04 20JAN04 21 0

Materials 31DEC03 09JAN04 21JAN04 30JAN04 21 0

Facility 31DEC03 09JAN04 21JAN04 30JAN04 21 0

Init. Prod. 10JAN04 19JAN04 31JAN04 09FEB04 21 0

Evaluate 20JAN04 29JAN04 15FEB04 24FEB04 26 5

Test Market 20JAN04 03FEB04 10FEB04 24FEB04 21 0

Marketing 20JAN04 20JAN04 01MAR04 01MAR04 41 41

Dummy 20JAN04 20JAN04 10FEB04 10FEB04 21 0

Changes 04FEB04 08FEB04 25FEB04 29FEB04 21 0

Production 09FEB04 09FEB04 01MAR04 01MAR04 21 21

Example 4.4: Displaying the Schedule on a Calendar F 153

Example 4.4: Displaying the Schedule on a Calendar
This example shows how you can use the output from CPM to display calendars containing the critical path
schedule and the early start schedule. The example uses the network described in Example 4.2 and assumes
that the data set SAVE contains the project schedule. The following program invokes PROC CALENDAR to
produce two calendars; the first calendar in Output 4.4.1 displays only the critical activities in the project,
while the second calendar in Output 4.4.1 displays all the activities in the project. In both invocations of
PROC CALENDAR, a WHERE statement is used to display only the activities that are scheduled to finish in
December.

proc cpm data=widgaoa out=save
date='1dec03'd interval=day;
tailnode tail;
headnode head;
duration days;
id task;
run;

proc sort data=save out=crit;
where t_float=0;
by e_start;
run;

title 'Printing the Schedule on a Calendar';
title2 'Critical Activities in December';

/* print the critical act. calendar */
options nodate pageno=1 pagesize=50;

proc calendar schedule
data=crit;

id e_start;
where e_finish <= '31dec03'd;
var task;
dur days;
run;

/* sort data for early start calendar */
proc sort data=save;

by e_start;

/* print the early start calendar */
title2 'Early Start Schedule for December';
options nodate pageno=1 pagesize=50;
proc calendar schedule data=save;

id e_start;
where e_finish <= '31dec03'd;
var task;
dur days;
run;

154 F Chapter 4: The CPM Procedure

Output 4.4.1 Project Calendar: All Activities

Printing the Schedule on a Calendar
Critical Activities in December

 --
 | |
 | December 2003 |
Sunday
----------+----------+----------+----------+----------+----------+----------
----------+----------+----------+----------+----------+----------+----------
7
<=================================Drawings=================================>
----------+----------+----------+----------+----------+----------+----------
14
<=====Drawings======+
----------+----------+----------+----------+----------+----------+----------
21
<================================Prototype=================================>
----------+----------+----------+----------+----------+----------+----------
28
<==========Prototype===========+
 --

Example 4.4: Displaying the Schedule on a Calendar F 155

Output 4.4.1 continued

Printing the Schedule on a Calendar
Early Start Schedule for December

 --
 | |
 | December 2003 |
Sunday
----------+----------+----------+----------+----------+----------+----------
----------+----------+----------+----------+----------+----------+----------
7
<===============Write Specs===============+
<==============Study Market===============+
<=================================Drawings=================================>
----------+----------+----------+----------+----------+----------+----------
14
<===============================Mkt. Strat.================================+
<=====Drawings======+
----------+----------+----------+----------+----------+----------+----------
21
<================================Prototype=================================>
----------+----------+----------+----------+----------+----------+----------
28
<==========Prototype===========+
 --

156 F Chapter 4: The CPM Procedure

Example 4.5: Precedence Gantt Chart
This example produces a Gantt chart of the schedule obtained from PROC CPM. The example uses the
network described in Example 4.2 (AOA format) and assumes that the data set SAVE contains the schedule
produced by PROC CPM and sorted by the variable E_START. The Gantt chart produced shows the early and
late start schedules as well as the precedence relationships between the activities. The precedence information
is conveyed to PROC GANTT through the TAILNODE= and HEADNODE= options.

data details;
input task $ 1-12 dept $ 15-27 descrpt $ 30-59;
label dept = "Department"

descrpt = "Activity Description";
datalines;

Dev. Concept Planning Finalize and Approve Plan
Drawings Engineering Prepare Drawings
Study Market Marketing Analyze Potential Markets
Write Specs Engineering Write Specifications
Prototype Engineering Build Prototype
Mkt. Strat. Marketing Develop Marketing Concept
Materials Manufacturing Procure Raw Materials
Facility Manufacturing Prepare Manufacturing Facility
Init. Prod. Manufacturing Initial Production Run
Evaluate Testing Evaluate Product In-House
Test Market Testing Test Product in Sample Market
Changes Engineering Engineering Changes
Production Manufacturing Begin Full Scale Production
Marketing Marketing Begin Full Scale Marketing
Dummy Production Milestone
;

data widgeta;
merge widgaoa details;
run;

* specify the device on which you want the chart printed;

goptions vpos=50 hpos=80 border;

title 'Precedence Gantt Chart';
title2 'Early and Late Start Schedule';

proc gantt graphics data=save;
chart / compress tailnode=tail headnode=head

height=2 nojobnum skip=2
cprec=cyan cmile=magenta
caxis=black
dur=days increment=7 nolegend;

id descrpt;
run;

Example 4.6: Changing Duration Units F 157

Output 4.5.1 Gantt Chart of Project

Example 4.6: Changing Duration Units
This example illustrates the use of the INTERVAL= option to identify the units of duration to PROC CPM. In
the previous examples, it was assumed that work can be done on the activities all seven days of the week
without any break. Suppose now that you want to schedule the activities only on weekdays. To do so, specify
INTERVAL=WEEKDAY in the PROC CPM statement. Output 4.6.1 displays the schedule produced by
PROC CPM. Note that, with a shorter work week, the project finishes on March 8, 2004, instead of on
February 9, 2004.

proc cpm data=widget out=save
date='1dec03'd interval=weekday;

activity task;
succ succ1 succ2 succ3;
duration days;
run;

title 'Changing Duration Units';
title2 'INTERVAL=WEEKDAY';
proc print;

id task;
var e_: l_: t_float f_float;
run;

158 F Chapter 4: The CPM Procedure

Output 4.6.1 Changing Duration Units: INTERVAL=WEEKDAY

Changing Duration Units
INTERVAL=WEEKDAY

task E_START E_FINISH L_START L_FINISH T_FLOAT F_FLOAT

Approve Plan 01DEC03 05DEC03 01DEC03 05DEC03 0 0

Drawings 08DEC03 19DEC03 08DEC03 19DEC03 0 0

Study Market 08DEC03 12DEC03 19JAN04 23JAN04 30 0

Write Specs 08DEC03 12DEC03 15DEC03 19DEC03 5 5

Prototype 22DEC03 09JAN04 22DEC03 09JAN04 0 0

Mkt. Strat. 15DEC03 26DEC03 26JAN04 06FEB04 30 30

Materials 12JAN04 23JAN04 12JAN04 23JAN04 0 0

Facility 12JAN04 23JAN04 12JAN04 23JAN04 0 0

Init. Prod. 26JAN04 06FEB04 26JAN04 06FEB04 0 0

Evaluate 09FEB04 20FEB04 16FEB04 27FEB04 5 5

Test Market 09FEB04 27FEB04 09FEB04 27FEB04 0 0

Changes 01MAR04 05MAR04 01MAR04 05MAR04 0 0

Production 08MAR04 08MAR04 08MAR04 08MAR04 0 0

Marketing 09FEB04 09FEB04 08MAR04 08MAR04 20 20

To display the weekday schedule on a calendar, use the WEEKDAY option in the PROC CALENDAR
statement. The following code sorts the Schedule data set by the E_START variable and produces a calendar
shown in Output 4.6.2, which displays the schedule of activities for the month of December.

proc sort;
by e_start;
run;

/* truncate schedule: print only for december */
data december;

set save;
e_finish = min('31dec03'd, e_finish);
if e_start <= '31dec03'd;
run;

title3 'Calendar of Schedule';
options nodate pageno=1 ps=50;
proc calendar data=december schedule weekdays;

id e_start;
finish e_finish;
var task;
run;

Example 4.6: Changing Duration Units F 159

Output 4.6.2 Changing Duration Units: WEEKDAY Calendar for December

Changing Duration Units
INTERVAL=WEEKDAY
Calendar of Schedule

| |
| December 2003 |
Monday
---------------+---------------+---------------+---------------+---------------
1
+================================Approve Plan=================================+
---------------+---------------+---------------+---------------+---------------
8
+=================================Write Specs=================================+
+================================Study Market=================================+
+==================================Drawings===================================>
---------------+---------------+---------------+---------------+---------------
15
+=================================Mkt. Strat.=================================>
<==================================Drawings===================================+
---------------+---------------+---------------+---------------+---------------
22
+==================================Prototype==================================>
<=================================Mkt. Strat.=================================+
---------------+---------------+---------------+---------------+---------------
29
<==================Prototype==================+

The durations of the activities in the project are multiples of 5. Thus, if work is done only on weekdays, all
activities in the project last 0, 1, 2, or 3 weeks. The INTERVAL= option can also be used to set the units of
duration to hours, minutes, seconds, years, months, quarters, or weeks. In this example, the data set WIDGWK
is created from WIDGET to set the durations in weeks. PROC CPM is then invoked with INTERVAL=WEEK,
and the resulting schedule is displayed in Output 4.6.3. Note that the float values are also expressed in units
of weeks.

160 F Chapter 4: The CPM Procedure

data widgwk;
set widget;
weeks = days / 5;
run;

proc cpm data=widgwk date='1dec03'd interval=week;
activity task;
successor succ1 succ2 succ3;
duration weeks;
id task;
run;

title2 'INTERVAL=WEEK';
proc print;

id task;
var e_: l_: t_float f_float;
run;

Output 4.6.3 Changing Duration Units: INTERVAL=WEEK

Changing Duration Units
INTERVAL=WEEK

task E_START E_FINISH L_START L_FINISH T_FLOAT F_FLOAT

Approve Plan 01DEC03 07DEC03 01DEC03 07DEC03 0 0

Drawings 08DEC03 21DEC03 08DEC03 21DEC03 0 0

Study Market 08DEC03 14DEC03 19JAN04 25JAN04 6 0

Write Specs 08DEC03 14DEC03 15DEC03 21DEC03 1 1

Prototype 22DEC03 11JAN04 22DEC03 11JAN04 0 0

Mkt. Strat. 15DEC03 28DEC03 26JAN04 08FEB04 6 6

Materials 12JAN04 25JAN04 12JAN04 25JAN04 0 0

Facility 12JAN04 25JAN04 12JAN04 25JAN04 0 0

Init. Prod. 26JAN04 08FEB04 26JAN04 08FEB04 0 0

Evaluate 09FEB04 22FEB04 16FEB04 29FEB04 1 1

Test Market 09FEB04 29FEB04 09FEB04 29FEB04 0 0

Changes 01MAR04 07MAR04 01MAR04 07MAR04 0 0

Production 08MAR04 08MAR04 08MAR04 08MAR04 0 0

Marketing 09FEB04 09FEB04 08MAR04 08MAR04 4 4

Example 4.7: Controlling the Project Calendar F 161

Example 4.7: Controlling the Project Calendar
This example illustrates the use of the INTERVAL=, DAYSTART=, and DAYLENGTH= options to control
the project calendar. In Example 4.1 through Example 4.5, none of these three options is specified; hence
the durations are assumed to be days (INTERVAL=DAY), and work is scheduled on all seven days of the
week. In Example 4.6, the specification of INTERVAL=WEEKDAY causes the schedule to skip weekends.
The present example shows further ways of controlling the project calendar. For example, you may want to
control the work pattern during a standard week or the start and length of the workday.

Suppose you want to schedule the project specified in Example 4.1 but you want to schedule only on
weekdays from 9 a.m. to 5 p.m. To schedule the project, use the INTERVAL=WORKDAY option rather than
the default INTERVAL=DAY. Then, one unit of duration is interpreted as eight hours of work. To schedule
the manufacturing project to start on December 1, with an eight-hour workday and a five-day work week,
you can invoke PROC CPM with the following statements. Output 4.7.1 displays the resulting schedule; the
start and finish times are expressed in SAS datetime values.

title 'Controlling the Project Calendar';
title2 'Scheduling on Workdays';
proc cpm data=widget date='1dec03'd interval=workday;

activity task;
succ succ1 succ2 succ3;
duration days;
run;

title3 'Day Starts at 9 a.m.';
proc print;

id task;
var e_: l_: t_float f_float;
run;

Output 4.7.1 Controlling the Project Calendar: INTERVAL=WORKDAY

Controlling the Project Calendar
Scheduling on Workdays

Day Starts at 9 a.m.

task E_START E_FINISH L_START L_FINISH T_FLOAT F_FLOAT

Approve Plan 01DEC03:09:00:00 05DEC03:16:59:59 01DEC03:09:00:00 05DEC03:16:59:59 0 0

Drawings 08DEC03:09:00:00 19DEC03:16:59:59 08DEC03:09:00:00 19DEC03:16:59:59 0 0

Study Market 08DEC03:09:00:00 12DEC03:16:59:59 19JAN04:09:00:00 23JAN04:16:59:59 30 0

Write Specs 08DEC03:09:00:00 12DEC03:16:59:59 15DEC03:09:00:00 19DEC03:16:59:59 5 5

Prototype 22DEC03:09:00:00 09JAN04:16:59:59 22DEC03:09:00:00 09JAN04:16:59:59 0 0

Mkt. Strat. 15DEC03:09:00:00 26DEC03:16:59:59 26JAN04:09:00:00 06FEB04:16:59:59 30 30

Materials 12JAN04:09:00:00 23JAN04:16:59:59 12JAN04:09:00:00 23JAN04:16:59:59 0 0

Facility 12JAN04:09:00:00 23JAN04:16:59:59 12JAN04:09:00:00 23JAN04:16:59:59 0 0

Init. Prod. 26JAN04:09:00:00 06FEB04:16:59:59 26JAN04:09:00:00 06FEB04:16:59:59 0 0

Evaluate 09FEB04:09:00:00 20FEB04:16:59:59 16FEB04:09:00:00 27FEB04:16:59:59 5 5

Test Market 09FEB04:09:00:00 27FEB04:16:59:59 09FEB04:09:00:00 27FEB04:16:59:59 0 0

Changes 01MAR04:09:00:00 05MAR04:16:59:59 01MAR04:09:00:00 05MAR04:16:59:59 0 0

Production 08MAR04:09:00:00 08MAR04:09:00:00 08MAR04:09:00:00 08MAR04:09:00:00 0 0

Marketing 09FEB04:09:00:00 09FEB04:09:00:00 08MAR04:09:00:00 08MAR04:09:00:00 20 20

162 F Chapter 4: The CPM Procedure

If you want to change the length of the workday, use the DAYLENGTH= option in the PROC CPM statement.
For example, if you want an eight-and-a-half hour workday instead of the default eight-hour workday, you
should include DAYLENGTH=‘08:30’T in the PROC CPM statement. In addition, you might also want to
change the start of the workday. The workday starts at 9 a.m., by default. To change the default, use the
DAYSTART= option. The following program schedules the project to start at 7 a.m. on December 1. The
project is scheduled on eight-and-a-half hour workdays each starting at 7 a.m. Output 4.7.2 displays the
resulting schedule produced by PROC CPM.

proc cpm data=widget date='1dec03'd interval=workday
daylength='08:30't daystart='07:00't;

activity task;
succ succ1 succ2 succ3;
duration days;
run;

title3 'Day Starts at 7 a.m. and is 8.5 Hours Long';
proc print;

id task;
var e_: l_: t_float f_float;
run;

Output 4.7.2 Controlling the Project Calendar: DAYSTART and DAYLENGTH

Controlling the Project Calendar
Scheduling on Workdays

Day Starts at 7 a.m. and is 8.5 Hours Long

task E_START E_FINISH L_START L_FINISH T_FLOAT F_FLOAT

Approve Plan 01DEC03:07:00:00 05DEC03:15:29:59 01DEC03:07:00:00 05DEC03:15:29:59 0 0

Drawings 08DEC03:07:00:00 19DEC03:15:29:59 08DEC03:07:00:00 19DEC03:15:29:59 0 0

Study Market 08DEC03:07:00:00 12DEC03:15:29:59 19JAN04:07:00:00 23JAN04:15:29:59 30 0

Write Specs 08DEC03:07:00:00 12DEC03:15:29:59 15DEC03:07:00:00 19DEC03:15:29:59 5 5

Prototype 22DEC03:07:00:00 09JAN04:15:29:59 22DEC03:07:00:00 09JAN04:15:29:59 0 0

Mkt. Strat. 15DEC03:07:00:00 26DEC03:15:29:59 26JAN04:07:00:00 06FEB04:15:29:59 30 30

Materials 12JAN04:07:00:00 23JAN04:15:29:59 12JAN04:07:00:00 23JAN04:15:29:59 0 0

Facility 12JAN04:07:00:00 23JAN04:15:29:59 12JAN04:07:00:00 23JAN04:15:29:59 0 0

Init. Prod. 26JAN04:07:00:00 06FEB04:15:29:59 26JAN04:07:00:00 06FEB04:15:29:59 0 0

Evaluate 09FEB04:07:00:00 20FEB04:15:29:59 16FEB04:07:00:00 27FEB04:15:29:59 5 5

Test Market 09FEB04:07:00:00 27FEB04:15:29:59 09FEB04:07:00:00 27FEB04:15:29:59 0 0

Changes 01MAR04:07:00:00 05MAR04:15:29:59 01MAR04:07:00:00 05MAR04:15:29:59 0 0

Production 08MAR04:07:00:00 08MAR04:07:00:00 08MAR04:07:00:00 08MAR04:07:00:00 0 0

Marketing 09FEB04:07:00:00 09FEB04:07:00:00 08MAR04:07:00:00 08MAR04:07:00:00 20 20

An alternate way of specifying the start of each working day is to set the INTERVAL= option to DTWRKDAY
and specify a SAS datetime value for the project start date. Using INTERVAL=DTWRKDAY tells CPM
that the DATE= option is a SAS datetime value and that the time given is the start of the workday. For
the present example, you could have used DATE=‘1dec03:07:00’dt in conjunction with the specification
INTERVAL=DTWRKDAY and DAYLENGTH=‘08:30’t.

Example 4.8: Scheduling around Holidays F 163

Example 4.8: Scheduling around Holidays
This example shows how you can schedule around holidays with PROC CPM. First, save a list of holidays in
a SAS data set as SAS date variables. The length of the holidays is assumed to be measured in units specified
by the INTERVAL= option. By default, all holidays are assumed to be one unit long. You can control the
length of each holiday by specifying either the finish time for each holiday or the length of each holiday in
the same observation as the holiday specification.

Output 4.8.1 Scheduling around Holidays: HOLIDAYS Data Set

Scheduling Around Holidays
Data Set HOLIDAYS

Obs holiday holifin holidur

1 24DEC03 26DEC03 4

2 01JAN04 . .

For example, the data set HOLIDAYS, displayed in Output 4.8.1 specifies two holidays, one for Christmas
and the other for New Year’s Day. The variable holiday specifies the start of each holiday. The variable
holifin specifies the end of the Christmas holiday as 26Dec03. Alternately, the variable holidur can be used
to interpret the Christmas holiday as lasting four interval units starting from the 24th of December. If the
variable holidur is used, the actual days when work is not done depends on the INTERVAL= option and on
the underlying calendar used. This form of specifying holidays or breaks is useful for indicating vacations
for specific employees. The second observation in the data set defines the New Year’s holiday as just one day
long because both the variables holifin and holidur variables have missing values.

To invoke PROC CPM to schedule around holidays, use the HOLIDATA= option in the PROC CPM statement
(see the following program) to identify the data set, and list the names of the variables in the data set in a
HOLIDAY statement. The holiday start and finish are identified by specifying the HOLIDAY and HOLIFIN
variables. Output 4.8.2 displays the schedule obtained.

proc cpm data=widget holidata=holidays
out=saveh date='1dec03'd ;

activity task;
succ succ1 succ2 succ3;
duration days;
holiday holiday / holifin=(holifin);
run;

proc sort data=saveh;
by e_start;
run;

pattern1 c=green v=s; /* duration of a non-critical activity */
pattern2 c=green v=e; /* slack time for a noncrit. activity */
pattern3 c=red v=s; /* duration of a critical activity */
pattern4 c=magenta v=e; /* slack time for a supercrit. activity */
pattern5 c=magenta v=s; /* duration of a supercrit. activity */
pattern6 c=cyan v=s; /* actual duration of an activity */
pattern7 c=black v=e; /* break due to a holiday */

goptions vpos=50 hpos=80 border;

164 F Chapter 4: The CPM Procedure

title 'Scheduling Around Holidays';
title2 'Project Schedule';

proc gantt graphics data=saveh holidata=holidays;
chart / compress

height=1.7 nojobnum skip=2
dur=days increment=7
holiday=(holiday) holifin=(holifin);

id task;
run;

Output 4.8.2 Scheduling around Holidays: Project Schedule

Example 4.8: Scheduling around Holidays F 165

The next two invocations illustrate the use of the HOLIDUR= option and the effect of the INTERVAL=
option on the duration of the holidays. Recall that the holiday duration is also assumed to be in interval
units where interval is the value specified for the INTERVAL= option. Suppose that a holiday period for the
entire project starts on December 24, 2003, with duration specified as 4. First the project is scheduled with
INTERVAL=DAY so that the holidays are on December 24, 25, 26, and 27, 2003. Output 4.8.3 displays the
resulting schedule. The project completion is delayed by one day due to the extra holiday on December 27,
2003.

proc cpm data=widget holidata=holidays
out=saveh1 date='1dec03'd
interval=day;

activity task;
succ succ1 succ2 succ3;
duration days;
holiday holiday / holidur=(holidur);
run;

title2 'Variable Length Holidays : INTERVAL=DAY';
proc sort data=saveh1;

by e_start;
run;

proc gantt graphics data=saveh1 holidata=holidays;
chart / compress

height=1.7 skip=2
nojobnum
dur=days increment=7
holiday=(holiday) holidur=(holidur) interval=day;

id task;
run;

166 F Chapter 4: The CPM Procedure

Output 4.8.3 Scheduling around Holidays: INTERVAL=DAY

Next, suppose that work on the project is to be scheduled only on weekdays. The INTERVAL= option
is set to WEEKDAY. Then, the value ‘4’ specified for the variable holidur is interpreted as 4 weekdays.
Thus, the holidays are on December 24, 25, 26, and 29, 2003, because December 27 and 28 (Saturday and
Sunday) are non-working days anyway. (Note that if holifin had been used, the holiday would have ended
on December 26, 2003.) The following statements schedule the project to start on December 1, 2003 with
INTERVAL=WEEKDAY. Output 4.8.4 displays the resulting schedule. Note the further delay in project
completion time.

proc cpm data=widget holidata=holidays
out=saveh2 date='1dec03'd
interval=weekday;

activity task;
succ succ1 succ2 succ3;
duration days;
holiday holiday / holidur=(holidur);
run;

proc sort data=saveh2;
by e_start;
run;

Example 4.8: Scheduling around Holidays F 167

title2 'Variable Length Holidays : INTERVAL=WEEKDAY';
proc gantt graphics data=saveh2 holidata=holidays;

chart / compress
height=1.8 skip=2
nojobnum
dur=days increment=7
holiday=(holiday)
holidur=(holidur)
interval=weekday;

id task;
run;

Output 4.8.4 Scheduling around Holidays: INTERVAL=WEEKDAY

168 F Chapter 4: The CPM Procedure

Finally, the same project is scheduled to start on December 1, 2003 with INTERVAL=WORKDAY. Out-
put 4.8.5 displays the resulting Schedule data set. This time the holiday period starts at 5:00 p.m. on
December 23, 2003, and ends at 9:00 a.m. on December 30, 2003.

proc cpm data=widget holidata=holidays
out=saveh3 date='1dec03'd
interval=workday;

activity task;
succ succ1 succ2 succ3;
duration days;
holiday holiday / holidur=(holidur);
run;

proc sort data=saveh3;
by e_start;
run;

title2 'Variable Length Holidays : INTERVAL=WORKDAY';
proc gantt graphics data=saveh3 holidata=holidays;

chart / compress
height=1.8 nojobnum skip=2
dur=days increment=7
holiday=(holiday) holidur=(holidur) interval=workday;

id task;
run;

Example 4.9: CALEDATA and WORKDATA Data Sets F 169

Output 4.8.5 Scheduling around Holidays: INTERVAL=WORKDAY

Example 4.9: CALEDATA and WORKDATA Data Sets
This example shows how you can schedule the job over a nonstandard day and a nonstandard week. In the
first part of the example, the calendar followed is a six-day week with an eight-and-a-half hour workday
starting at 7 a.m. The project data are the same as were used in Example 4.8, but some of the durations have
been changed to include some fractional values. Output 4.9.1 shows the project data set.

170 F Chapter 4: The CPM Procedure

Output 4.9.1 Data Set WIDGET9: Scheduling on the Six-Day Week

Scheduling on the 6-Day Week
Data Set WIDGET9

Obs task days succ1 succ2 succ3

1 Approve Plan 5.5 Drawings Study Market Write Specs

2 Drawings 10.0 Prototype

3 Study Market 5.0 Mkt. Strat.

4 Write Specs 4.5 Prototype

5 Prototype 15.0 Materials Facility

6 Mkt. Strat. 10.0 Test Market Marketing

7 Materials 10.0 Init. Prod.

8 Facility 10.0 Init. Prod.

9 Init. Prod. 10.0 Test Market Marketing Evaluate

10 Evaluate 10.0 Changes

11 Test Market 15.0 Changes

12 Changes 5.0 Production

13 Production 0.0

14 Marketing 0.0

The same Holiday data set is used. To indicate that work is to be done on all days of the week except
Sunday, use INTERVAL=DTDAY and define a Calendar data set with a single variable _SUN_, and a single
observation identifying Sunday as a holiday. The DATA step creating CALENDAR and the invocation of
PROC CPM is shown in the following code. Output 4.9.2 displays the resulting schedule.

/* Set up a 6-day work week, with Sundays off */
data calendar;

sun='holiday';
run;

title 'Scheduling on the 6-Day Week';
proc cpm data=widget9 holidata=holidays

out=savec date='1dec03:07:00'dt
interval=dtday daylength='08:30't
calendar=calendar;

activity task;
succ succ1 succ2 succ3;
duration days;
holiday holiday / holifin=(holifin);
run;

Example 4.9: CALEDATA and WORKDATA Data Sets F 171

Output 4.9.2 Scheduling on the Six-Day Week

Scheduling on the 6-Day Week
Project Schedule

Obs task days E_START E_FINISH L_START L_FINISH T_FLOAT F_FLOAT

1 Approve Plan 5.5 01DEC03:07:00:00 06DEC03:11:14:59 01DEC03:07:00:00 06DEC03:11:14:59 0.0 0.0

2 Drawings 10.0 06DEC03:11:15:00 18DEC03:11:14:59 06DEC03:11:15:00 18DEC03:11:14:59 0.0 0.0

3 Study Market 5.0 06DEC03:11:15:00 12DEC03:11:14:59 15JAN04:11:15:00 21JAN04:11:14:59 30.0 0.0

4 Write Specs 4.5 06DEC03:11:15:00 11DEC03:15:29:59 13DEC03:07:00:00 18DEC03:11:14:59 5.5 5.5

5 Prototype 15.0 18DEC03:11:15:00 09JAN04:11:14:59 18DEC03:11:15:00 09JAN04:11:14:59 0.0 0.0

6 Mkt. Strat. 10.0 12DEC03:11:15:00 27DEC03:11:14:59 21JAN04:11:15:00 02FEB04:11:14:59 30.0 30.0

7 Materials 10.0 09JAN04:11:15:00 21JAN04:11:14:59 09JAN04:11:15:00 21JAN04:11:14:59 0.0 0.0

8 Facility 10.0 09JAN04:11:15:00 21JAN04:11:14:59 09JAN04:11:15:00 21JAN04:11:14:59 0.0 0.0

9 Init. Prod. 10.0 21JAN04:11:15:00 02FEB04:11:14:59 21JAN04:11:15:00 02FEB04:11:14:59 0.0 0.0

10 Evaluate 10.0 02FEB04:11:15:00 13FEB04:11:14:59 07FEB04:11:15:00 19FEB04:11:14:59 5.0 5.0

11 Test Market 15.0 02FEB04:11:15:00 19FEB04:11:14:59 02FEB04:11:15:00 19FEB04:11:14:59 0.0 0.0

12 Changes 5.0 19FEB04:11:15:00 25FEB04:11:14:59 19FEB04:11:15:00 25FEB04:11:14:59 0.0 0.0

13 Production 0.0 25FEB04:11:15:00 25FEB04:11:15:00 25FEB04:11:15:00 25FEB04:11:15:00 0.0 0.0

14 Marketing 0.0 02FEB04:11:15:00 02FEB04:11:15:00 25FEB04:11:15:00 25FEB04:11:15:00 20.0 20.0

Suppose now that you want to schedule work on a five-and-a-half day week (five full working days starting
on Monday and half a working day on Saturday). A full work day is from 8 a.m. to 4 p.m. Output 4.9.3
shows the data set WORKDAT, which is used to define the work pattern for a full day (in the shift variable
fullday and a half-day (in the shift variable halfday). Output 4.9.4 displays the Calendar data set, CALDAT,
which specifies the appropriate work pattern for each day of the week. The schedule produced by invoking
the following program is displayed in Output 4.9.5.

Output 4.9.3 Workday Data Set

Scheduling on a Five-and-a-Half-Day Week
Workdays Data Set

Obs fullday halfday

1 8:00 8:00

2 16:00 12:00

Output 4.9.4 Calendar Data Set

Scheduling on a Five-and-a-Half-Day Week
Calendar Data Set

Obs _sun_ _mon_ _tue_ _wed_ _thu_ _fri_ _sat_ d_length

1 holiday fullday fullday fullday fullday fullday halfday 8:00

172 F Chapter 4: The CPM Procedure

proc cpm data=widget9 holidata=holidays
out=savecw date='1dec03'd
interval=day
workday=workdat calendar=caldat;

activity task;
succ succ1 succ2 succ3;
duration days;
holiday holiday / holifin=(holifin);
run;

Output 4.9.5 Scheduling on a Five-and-a-Half Day Week

Scheduling on a Five-and-a-Half-Day Week
Project Schedule

Obs task days E_START E_FINISH L_START L_FINISH T_FLOAT F_FLOAT

1 Approve Plan 5.5 01DEC03:08:00:00 06DEC03:11:59:59 01DEC03:08:00:00 06DEC03:11:59:59 0.0 0.0

2 Drawings 10.0 08DEC03:08:00:00 19DEC03:11:59:59 08DEC03:08:00:00 19DEC03:11:59:59 0.0 0.0

3 Study Market 5.0 08DEC03:08:00:00 12DEC03:15:59:59 20JAN04:08:00:00 26JAN04:11:59:59 30.0 0.0

4 Write Specs 4.5 08DEC03:08:00:00 12DEC03:11:59:59 15DEC03:08:00:00 19DEC03:11:59:59 5.5 5.5

5 Prototype 15.0 19DEC03:12:00:00 13JAN04:11:59:59 19DEC03:12:00:00 13JAN04:11:59:59 0.0 0.0

6 Mkt. Strat. 10.0 13DEC03:08:00:00 30DEC03:11:59:59 26JAN04:12:00:00 06FEB04:15:59:59 30.0 30.0

7 Materials 10.0 13JAN04:12:00:00 26JAN04:11:59:59 13JAN04:12:00:00 26JAN04:11:59:59 0.0 0.0

8 Facility 10.0 13JAN04:12:00:00 26JAN04:11:59:59 13JAN04:12:00:00 26JAN04:11:59:59 0.0 0.0

9 Init. Prod. 10.0 26JAN04:12:00:00 06FEB04:15:59:59 26JAN04:12:00:00 06FEB04:15:59:59 0.0 0.0

10 Evaluate 10.0 07FEB04:08:00:00 19FEB04:15:59:59 13FEB04:12:00:00 26FEB04:11:59:59 5.0 5.0

11 Test Market 15.0 07FEB04:08:00:00 26FEB04:11:59:59 07FEB04:08:00:00 26FEB04:11:59:59 0.0 0.0

12 Changes 5.0 26FEB04:12:00:00 03MAR04:15:59:59 26FEB04:12:00:00 03MAR04:15:59:59 0.0 0.0

13 Production 0.0 04MAR04:08:00:00 04MAR04:08:00:00 04MAR04:08:00:00 04MAR04:08:00:00 0.0 0.0

14 Marketing 0.0 07FEB04:08:00:00 07FEB04:08:00:00 04MAR04:08:00:00 04MAR04:08:00:00 20.0 20.0

Note that, in this case, it was not necessary to specify the DAYLENGTH=, DAYSTART=, or INTERVAL=
option in the PROC CPM statement. The default value of INTERVAL=DAY is assumed, and the CALDAT
and WORKDAT data sets define the workday and work week completely. The length of a standard working
day is also included in the Calendar data set, completing all the necessary specifications.

To visualize the breaks in the work schedule created by these specifications, you can use the following simple
data set with a dummy activity ‘Schedule Breaks’ to produce a Gantt chart, shown in Output 4.9.6. The
period illustrated on the chart is from December 19, 2003 to December 27, 2003. The breaks are denoted by
*.

/* To visualize the breaks, use following "dummy" data set
to plot a schedule bar showing holidays and breaks */

data temp;
e_start='19dec03:08:00'dt;
e_finish='27dec03:23:59:59'dt;
task='Schedule Breaks';
label task='Project Calendar';
format e_start e_finish datetime16.;
run;

Example 4.9: CALEDATA and WORKDATA Data Sets F 173

title2 'Holidays and Breaks in the Project Calendar';
proc gantt data=temp lineprinter

calendar=caldat holidata=holidays
workday=workdat;

chart / interval=dtday mininterval=dthour skip=0
holiday=(holiday) holifin=(holifin) markbreak
nojobnum nolegend increment=8 holichar='*';

id task;
run;

Output 4.9.6 Gantt Chart Showing Breaks and Holidays

Scheduling on a Five-and-a-Half-Day Week
Holidays and Breaks in the Project Calendar

 DEC DEC DEC DEC DEC DEC
 Project 19 19 20 20 20 21
 Calendar 08:00 16:00 00:00 08:00 16:00 00:00
 -+-------+-------+-------+-------+-------+-
 Schedule Breaks |<-------****************----*************|
 -+-------+-------+-------+-------+-------+-

Scheduling on a Five-and-a-Half-Day Week
Holidays and Breaks in the Project Calendar

 DEC DEC DEC DEC DEC DEC DEC DEC
 21 21 21 22 22 22 23 23
 00:00 08:00 16:00 00:00 08:00 16:00 00:00 08:00
 -+-------+-------+-------+-------+-------+-------+-------+-
 |********************************--------****************-|
 -+-------+-------+-------+-------+-------+-------+-------+-

Scheduling on a Five-and-a-Half-Day Week
Holidays and Breaks in the Project Calendar

 DEC DEC DEC DEC DEC DEC DEC DEC
 23 23 24 24 24 25 25 25
 08:00 16:00 00:00 08:00 16:00 00:00 08:00 16:00
 -+-------+-------+-------+-------+-------+-------+-------+-
 |--------***|
 -+-------+-------+-------+-------+-------+-------+-------+-

Scheduling on a Five-and-a-Half-Day Week
Holidays and Breaks in the Project Calendar

 DEC DEC DEC DEC DEC DEC DEC DEC
 25 26 26 26 27 27 27 28
 16:00 00:00 08:00 16:00 00:00 08:00 16:00 00:00
 -+-------+-------+-------+-------+-------+-------+-------+-
 |**----*************|
 -+-------+-------+-------+-------+-------+-------+-------+-

174 F Chapter 4: The CPM Procedure

Example 4.10: Multiple Calendars
This example illustrates the use of multiple calendars within a project. Different scenarios are presented to
show the use of different calendars and how project schedules are affected. Output 4.10.1 shows the data set
WORKDATA, which defines several shift patterns. These shift patterns are appropriately associated with three
different calendars in the data set CALEDATA, also shown in the same output. The three calendars are defined
as follows:

� The DEFAULT calendar has five eight-hour days (Monday through Friday) and holidays on Saturday
and Sunday.

� The calendar OVT_CAL specifies an overtime calendar that has 10-hour work days on Monday through
Friday and a half day on Saturday and a holiday on Sunday.

� The calendar PROD_CAL follows a more complicated work pattern: Sunday is a holiday; on Monday
work is done from 8 a.m. through midnight with a two hour break from 6 p.m. to 8 p.m.; on Tuesday
through Friday work is done round the clock with two 2-hour breaks from 6 a.m. to 8 a.m. and 6 p.m.
to 8 p.m.; on Saturday the work shifts are from midnight to 6 a.m. and again from 8 a.m. to 6 p.m. In
other words, work is done continuously from 8 a.m. on Monday morning to 6 p.m. on Saturday with
two hour breaks every day at 6 a.m. and 6 p.m.

Output 4.10.1 Workday and Calendar Data Sets

Multiple Calendars
Workdays Data Set

Obs fullday halfday ovtday s1 s2 s3

1 8:00 8:00 8:00 . 8:00 .

2 16:00 12:00 18:00 6:00 18:00 6:00

3 . . . 8:00 20:00 8:00

4 . . . 18:00 . 18:00

5 . . . 20:00 . .

6

Multiple Calendars
CALENDAR Data Set

Obs cal _sun_ _mon_ _tue_ _wed_ _thu_ _fri_ _sat_

1 DEFAULT holiday fullday fullday fullday fullday fullday holiday

2 OVT_CAL holiday ovtday ovtday ovtday ovtday ovtday halfday

3 PROD_CAL holiday s2 s1 s1 s1 s1 s3

The same set of holidays is used as in Example 4.9, except that in this case the holiday for New Year’s is
defined by specifying both the start and finish time for the holiday instead of defaulting to a one-day long
holiday. When multiple calendars are involved, it is often less confusing to define holidays by specifying
both a start and a finish time for the holiday instead of the start time and duration. Output 4.10.2 displays the
Holiday data set.

Example 4.10: Multiple Calendars F 175

Output 4.10.2 Holiday Data Set

Multiple Calendars
Holidays Data Set

Obs holiday holifin holidur

1 24DEC03 26DEC03 4

2 01JAN04 01JAN04 .

The data set HOLIDAYS does not include any variable identifying the calendars with which to associate the
holidays. By default, the procedure associates the two holiday periods with all the calendars.

An easy way to visualize all the breaks and holidays for each calendar is to use a Gantt chart, plotting a
bar for each calendar from the start of the project to January 4, 2004, with all the holiday and work shift
specifications. The following program produces Output 4.10.3. Holidays and breaks are marked with a solid
fill pattern.

goptions hpos=160 vpos=25;
title h=2 'Multiple Calendars';
title2 h=1.4 'Breaks and Holidays for the Different Calendars';
proc gantt data=cals graphics

calendar=calendar holidata=holidays
workday=workdata;

chart / interval=dtday mininterval=dthour skip=2
holiday=(holiday) holifin=(holifin)
markbreak daylength='08:00't calid=cal
ref='1dec03:00:00'dt to '4jan04:08:00'dt by dtday
nolegend nojobnum increment=16
hpages=6;

id cal;
run;

Output 4.10.3 Gantt Chart Showing Breaks and Holidays for Multiple Calendars

176 F Chapter 4: The CPM Procedure

Output 4.10.3 continued

Example 4.10: Multiple Calendars F 177

Output 4.10.3 continued

The Activity data set used in Example 4.9 is modified by adding a variable called cal, which sets the calendar
to be ‘PROD_CAL’ for the activity ‘Production’, and ‘OVT_CAL’ for the activity ‘Prototype’, and the
DEFAULT calendar for the other activities. Thus, in both the Activity data set and the Calendar data set, the
calendar information is conveyed through a CALID variable, cal.

PROC CPM is first invoked without reference to the CALID variable. Thus, the procedure recognizes only
the first observation in the Calendar data set (a warning is printed to the log to this effect), and only the
default calendar is used for all activities in the project. The daylength parameter is interpreted as the length
of a standard work day; all the durations are assumed to be in units of this standard work day. Output 4.10.4
displays the schedule obtained. The project is scheduled to finish on March 12, 2004, at 12 noon.

data widgcal;
set widget9;
if task = 'Production' then cal = 'PROD_CAL';
else if task = 'Prototype' then cal = 'OVT_CAL';
else cal = 'DEFAULT';
run;

proc cpm date='01dec03'd data=widgcal out=scheddef
holidata=holidays daylength='08:00't
workday=workdata
calendar=calendar;

holiday holiday / holifin = holifin;
activity task;
duration days;
successor succ1 succ2 succ3;
run;

title2 'Project Schedule: Default calendar';
proc print heading=h;

var task days e_start e_finish l_start l_finish
t_float f_float;

run;

178 F Chapter 4: The CPM Procedure

Output 4.10.4 Schedule Using Default Calendar

Multiple Calendars
Project Schedule: Default calendar

Obs task days E_START E_FINISH L_START L_FINISH T_FLOAT F_FLOAT

1 Approve Plan 5.5 01DEC03:08:00:00 08DEC03:11:59:59 01DEC03:08:00:00 08DEC03:11:59:59 0.0 0.0

2 Drawings 10.0 08DEC03:12:00:00 22DEC03:11:59:59 08DEC03:12:00:00 22DEC03:11:59:59 0.0 0.0

3 Study Market 5.0 08DEC03:12:00:00 15DEC03:11:59:59 23JAN04:12:00:00 30JAN04:11:59:59 30.0 0.0

4 Write Specs 4.5 08DEC03:12:00:00 12DEC03:15:59:59 16DEC03:08:00:00 22DEC03:11:59:59 5.5 5.5

5 Prototype 15.0 22DEC03:12:00:00 16JAN04:11:59:59 22DEC03:12:00:00 16JAN04:11:59:59 0.0 0.0

6 Mkt. Strat. 10.0 15DEC03:12:00:00 02JAN04:11:59:59 30JAN04:12:00:00 13FEB04:11:59:59 30.0 30.0

7 Materials 10.0 16JAN04:12:00:00 30JAN04:11:59:59 16JAN04:12:00:00 30JAN04:11:59:59 0.0 0.0

8 Facility 10.0 16JAN04:12:00:00 30JAN04:11:59:59 16JAN04:12:00:00 30JAN04:11:59:59 0.0 0.0

9 Init. Prod. 10.0 30JAN04:12:00:00 13FEB04:11:59:59 30JAN04:12:00:00 13FEB04:11:59:59 0.0 0.0

10 Evaluate 10.0 13FEB04:12:00:00 27FEB04:11:59:59 20FEB04:12:00:00 05MAR04:11:59:59 5.0 5.0

11 Test Market 15.0 13FEB04:12:00:00 05MAR04:11:59:59 13FEB04:12:00:00 05MAR04:11:59:59 0.0 0.0

12 Changes 5.0 05MAR04:12:00:00 12MAR04:11:59:59 05MAR04:12:00:00 12MAR04:11:59:59 0.0 0.0

13 Production 0.0 12MAR04:12:00:00 12MAR04:12:00:00 12MAR04:12:00:00 12MAR04:12:00:00 0.0 0.0

14 Marketing 0.0 13FEB04:12:00:00 13FEB04:12:00:00 12MAR04:12:00:00 12MAR04:12:00:00 20.0 20.0

Next PROC CPM is invoked with the CALID statement identifying the variable CAL in the Activity and
Calendar data sets. Recall that the two activities, ‘Production’ and ‘Prototype’, do not follow the default
calendar. The schedule displayed in Output 4.10.5 shows that, due to longer working hours for these two
activities in the project, the scheduled finish date is now March 8, at 10:00 a.m.

proc cpm date='01dec03'd data=widgcal out=schedmc
holidata=holidays daylength='08:00't
workday=workdata
calendar=calendar;

holiday holiday / holifin = holifin;
activity task;
duration days;
successor succ1 succ2 succ3;
calid cal;
run;

title2 'Project Schedule: Three Calendars';
proc print;

var task days cal e_: l_: t_float f_float;
run;

Example 4.10: Multiple Calendars F 179

Output 4.10.5 Schedule Using Three Calendars

Multiple Calendars
Project Schedule: Three Calendars

Obs task days cal E_START E_FINISH L_START

1 Approve Plan 5.5 DEFAULT 01DEC03:08:00:00 08DEC03:11:59:59 01DEC03:08:00:00

2 Drawings 10.0 DEFAULT 08DEC03:12:00:00 22DEC03:11:59:59 08DEC03:12:00:00

3 Study Market 5.0 DEFAULT 08DEC03:12:00:00 15DEC03:11:59:59 19JAN04:10:00:00

4 Write Specs 4.5 DEFAULT 08DEC03:12:00:00 12DEC03:15:59:59 16DEC03:08:00:00

5 Prototype 15.0 OVT_CAL 22DEC03:12:00:00 12JAN04:09:59:59 22DEC03:12:00:00

6 Mkt. Strat. 10.0 DEFAULT 15DEC03:12:00:00 02JAN04:11:59:59 26JAN04:10:00:00

7 Materials 10.0 DEFAULT 12JAN04:10:00:00 26JAN04:09:59:59 12JAN04:10:00:00

8 Facility 10.0 DEFAULT 12JAN04:10:00:00 26JAN04:09:59:59 12JAN04:10:00:00

9 Init. Prod. 10.0 DEFAULT 26JAN04:10:00:00 09FEB04:09:59:59 26JAN04:10:00:00

10 Evaluate 10.0 DEFAULT 09FEB04:10:00:00 23FEB04:09:59:59 16FEB04:10:00:00

11 Test Market 15.0 DEFAULT 09FEB04:10:00:00 01MAR04:09:59:59 09FEB04:10:00:00

12 Changes 5.0 DEFAULT 01MAR04:10:00:00 08MAR04:09:59:59 01MAR04:10:00:00

13 Production 0.0 PROD_CAL 08MAR04:10:00:00 08MAR04:10:00:00 08MAR04:10:00:00

14 Marketing 0.0 DEFAULT 09FEB04:10:00:00 09FEB04:10:00:00 08MAR04:10:00:00

Obs L_FINISH T_FLOAT F_FLOAT

1 08DEC03:11:59:59 0.00 0.00

2 22DEC03:11:59:59 0.00 0.00

3 26JAN04:09:59:59 25.75 0.00

4 22DEC03:11:59:59 5.50 5.50

5 12JAN04:09:59:59 0.00 0.00

6 09FEB04:09:59:59 25.75 25.75

7 26JAN04:09:59:59 0.00 0.00

8 26JAN04:09:59:59 0.00 0.00

9 09FEB04:09:59:59 0.00 0.00

10 01MAR04:09:59:59 5.00 5.00

11 01MAR04:09:59:59 0.00 0.00

12 08MAR04:09:59:59 0.00 0.00

13 08MAR04:10:00:00 0.00 0.00

14 08MAR04:10:00:00 20.00 20.00

Now suppose that the engineer in charge of writing specifications requests a seven-day vacation from
December 8, 2003. How is the project completion time going to be affected? A new calendar, Eng_cal, is
defined that has the same work pattern as the default calendar, but it also contains an extra vacation period.
Output 4.10.6 displays the data sets HOLIDATA and CALEDATA, which contain information about the new
calendar. The fourth observation in the data set CALEDATA has missing values for the variables _sun_, . . . ,
sat, indicating that the calendar, Eng_cal, follows the same work pattern as the default calendar.

180 F Chapter 4: The CPM Procedure

Output 4.10.6 HOLIDATA and CALEDATA Data Sets

Multiple Calendars
Holidays Data Set

Obs holiday holifin holidur cal

1 08DEC03 . 7 Eng_cal

2 24DEC03 26DEC03 .

3 01JAN04 01JAN04 .

Multiple Calendars
Calendar Data Set

Obs cal _sun_ _mon_ _tue_ _wed_ _thu_ _fri_ _sat_

1 DEFAULT holiday fullday fullday fullday fullday fullday holiday

2 OVT_CAL holiday ovtday ovtday ovtday ovtday ovtday halfday

3 PROD_CAL holiday s2 s1 s1 s1 s1 s3

4 Eng_cal

Once again, in the following code, PROC GANTT is used to compare the new calendar with the default
calendar, as shown in Output 4.10.7. Note that the breaks and holidays are marked with a solid fill pattern.

/* Create a data set to illustrate holidays with PROC GANTT */
data cals2;

e_start='1dec03:00:00'dt;
e_finish='18dec03:00:00'dt;
label cal ='Schedule Breaks / Holidays';
format e_start e_finish datetime16.;
length cal $8.;
cal='DEFAULT' ; output;
cal='Eng_cal' ; output;
run;

title2 'Breaks and Holidays for Eng_cal and the DEFAULT Calendar';
proc gantt data=cals2 graphics

calendar=caledata holidata=holidata
workday=workdata;

chart / interval=dtday mininterval=dthour skip=2
holiday=(holiday) holifin=(holifin) holidur=(holidur)
markbreak daylength='08:00't calid=cal
ref='1dec03:00:00'dt to '18dec03:00:00'dt by dtday
nojobnum nolegend increment=16 hpages=3;

id cal;
run;

Example 4.10: Multiple Calendars F 181

Output 4.10.7 Difference between Eng_cal and DEFAULT Calendar

The Activity data set is modified to redefine the calendar for the task ‘Write Specs’. PROC CPM is invoked,
and Output 4.10.8 shows the new schedule obtained. Note the effect of the Engineer’s vacation on the project
completion time. The project is now scheduled to finish at 10 a.m. on March 9, 2004; in effect, the delay is
only one day, even though the planned vacation period is seven days. This is due to the fact that the activity
‘Write Specs’, which follows the new calendar, had some slack time present in its original schedule; however,
this activity has now become critical.

data widgvac;
set widgcal;
if task = 'Write Specs' then cal = 'Eng_cal';
run;

182 F Chapter 4: The CPM Procedure

proc cpm date='01dec03'd data=widgvac out=schedvac
holidata=holidata daylength='08:00't
workday=workdata
calendar=caledata;

holiday holiday / holifin = holifin holidur=holidur;
activity task;
duration days;
successor succ1 succ2 succ3;
calid cal;
run;

title2 'Project Schedule: Four Calendars';
proc print;

var task days cal e_: l_: t_float f_float;
run;

Output 4.10.8 Schedule Using Four Calendars

Multiple Calendars
Project Schedule: Four Calendars

Obs task days cal E_START E_FINISH L_START

1 Approve Plan 5.5 DEFAULT 01DEC03:08:00:00 08DEC03:11:59:59 02DEC03:08:00:00

2 Drawings 10.0 DEFAULT 08DEC03:12:00:00 22DEC03:11:59:59 09DEC03:12:00:00

3 Study Market 5.0 DEFAULT 08DEC03:12:00:00 15DEC03:11:59:59 20JAN04:10:00:00

4 Write Specs 4.5 Eng_cal 17DEC03:08:00:00 23DEC03:11:59:59 17DEC03:08:00:00

5 Prototype 15.0 OVT_CAL 23DEC03:12:00:00 13JAN04:09:59:59 23DEC03:12:00:00

6 Mkt. Strat. 10.0 DEFAULT 15DEC03:12:00:00 02JAN04:11:59:59 27JAN04:10:00:00

7 Materials 10.0 DEFAULT 13JAN04:10:00:00 27JAN04:09:59:59 13JAN04:10:00:00

8 Facility 10.0 DEFAULT 13JAN04:10:00:00 27JAN04:09:59:59 13JAN04:10:00:00

9 Init. Prod. 10.0 DEFAULT 27JAN04:10:00:00 10FEB04:09:59:59 27JAN04:10:00:00

10 Evaluate 10.0 DEFAULT 10FEB04:10:00:00 24FEB04:09:59:59 17FEB04:10:00:00

11 Test Market 15.0 DEFAULT 10FEB04:10:00:00 02MAR04:09:59:59 10FEB04:10:00:00

12 Changes 5.0 DEFAULT 02MAR04:10:00:00 09MAR04:09:59:59 02MAR04:10:00:00

13 Production 0.0 PROD_CAL 09MAR04:10:00:00 09MAR04:10:00:00 09MAR04:10:00:00

14 Marketing 0.0 DEFAULT 10FEB04:10:00:00 10FEB04:10:00:00 09MAR04:10:00:00

Obs L_FINISH T_FLOAT F_FLOAT

1 09DEC03:11:59:59 1.00 0.00

2 23DEC03:11:59:59 1.00 1.00

3 27JAN04:09:59:59 26.75 0.00

4 23DEC03:11:59:59 0.00 0.00

5 13JAN04:09:59:59 0.00 0.00

6 10FEB04:09:59:59 26.75 26.75

7 27JAN04:09:59:59 0.00 0.00

8 27JAN04:09:59:59 0.00 0.00

9 10FEB04:09:59:59 0.00 0.00

10 02MAR04:09:59:59 5.00 5.00

11 02MAR04:09:59:59 0.00 0.00

12 09MAR04:09:59:59 0.00 0.00

13 09MAR04:10:00:00 0.00 0.00

14 09MAR04:10:00:00 20.00 20.00

Example 4.11: Nonstandard Relationships F 183

Example 4.11: Nonstandard Relationships
This example shows the use of LAG variables to describe nonstandard relationships. Consider the project
network in AON format. Output 4.11.1 shows the data set WIDGLAG, which contains the required project
information; here the data set contains only one successor variable, requiring multiple observations for
activities that have more than one immediate successor. In addition, the data set contains two new variables,
lagdur and lagdurc, which are used to convey nonstandard relationships that exist between some of the
activities. In the first part of the example, lagdur specifies a lag type and lag duration between activities; in the
second part, the variable lagdurc specifies a lag calendar in addition to the lag type and lag duration. When
multiple successor variables are used, you can specify multiple lag variables and the lag values specified are
matched one-for-one with the corresponding successor variables.

Output 4.11.1 Network Data

Non-Standard Relationships
Activity Data Set WIDGLAG

Obs task days succ lagdur lagdurc

1 Approve Plan 5 Drawings

2 Approve Plan 5 Study Market

3 Approve Plan 5 Write Specs

4 Drawings 10 Prototype

5 Study Market 5 Mkt. Strat.

6 Write Specs 5 Prototype

7 Prototype 15 Materials ss_9 ss_9

8 Prototype 15 Facility ss_9 ss_9

9 Mkt. Strat. 10 Test Market

10 Mkt. Strat. 10 Marketing

11 Materials 10 Init. Prod.

12 Facility 10 Init. Prod. fs_2 fs_2_SEVENDAY

13 Init. Prod. 10 Test Market

14 Init. Prod. 10 Marketing

15 Init. Prod. 10 Evaluate

16 Evaluate 10 Changes

17 Test Market 15 Changes

18 Changes 5 Production

19 Production 0

20 Marketing 0

Suppose that the project calendar follows a five-day work week. Recall from Example 4.6 that the project
finishes on March 8, 2004. The data set, WIDGLAG, specifies that there is a ‘ss_9’ lag between the activities
‘Prototype’ and ‘Materials’, which means that you can start acquiring raw materials nine days after the start
of the activity ‘Prototype’ instead of waiting until its finish time. Likewise, there is an ‘ss_9’ lag between
‘Prototype’ and ‘Facility’. The ‘fs_2’ lag between ‘Facility’ and ‘Init. Prod’ indicates that you should wait
two days after the completion of the ‘Facility’ task before starting the initial production. To convey the lag
information to PROC CPM, use the LAG= specification in the SUCCESSOR statement. The program and
the resulting output (Output 4.11.2) follow.

184 F Chapter 4: The CPM Procedure

proc cpm data=widglag date='1dec03'd
interval=weekday collapse out=lagsched;

activity task;
succ succ / lag = (lagdur);
duration days;
run;

Output 4.11.2 Project Schedule: Default LAG Calendar

Non-Standard Relationships
Lag Type and Duration: Default LAG Calendar

task E_START E_FINISH L_START L_FINISH T_FLOAT F_FLOAT

Approve Plan 01DEC03 05DEC03 01DEC03 05DEC03 0 0

Drawings 08DEC03 19DEC03 08DEC03 19DEC03 0 0

Study Market 08DEC03 12DEC03 13JAN04 19JAN04 26 0

Write Specs 08DEC03 12DEC03 15DEC03 19DEC03 5 5

Prototype 22DEC03 09JAN04 22DEC03 09JAN04 0 0

Mkt. Strat. 15DEC03 26DEC03 20JAN04 02FEB04 26 26

Materials 02JAN04 15JAN04 06JAN04 19JAN04 2 2

Facility 02JAN04 15JAN04 02JAN04 15JAN04 0 0

Init. Prod. 20JAN04 02FEB04 20JAN04 02FEB04 0 0

Evaluate 03FEB04 16FEB04 10FEB04 23FEB04 5 5

Test Market 03FEB04 23FEB04 03FEB04 23FEB04 0 0

Changes 24FEB04 01MAR04 24FEB04 01MAR04 0 0

Production 02MAR04 02MAR04 02MAR04 02MAR04 0 0

Marketing 03FEB04 03FEB04 02MAR04 02MAR04 20 20

Due to the change in the type of precedence constraint (from the default ‘fs_0’ to ‘ss_9’), the project finishes
earlier, on March 2, 2004, instead of on March 8, 2004 (compare with Output 4.6.1).

By default, all the lags are assumed to follow the default calendar for the project. In this case, the default
project calendar has five workdays (since INTERVAL=WEEKDAY). Suppose now that the ‘fs_2’ lag between
‘Facility’ and ‘Init. Prod.’ really indicates two calendar days and not two workdays. (Perhaps you want to
allow two days for the paint to dry or the building to be ventilated.) The variable lagdurc in the WIDGLAG
data set indicates the calendar for this lag by specifying the lag to be ‘fs_2_sevenday’ where ‘sevenday’ is
the name of the seven-day calendar defined in the Calendar data set, CALENDAR, displayed in Output 4.11.3.
PROC CPM is invoked with LAG=lagdurc and Output 4.11.4 displays the resulting schedule. Note that the
project now finishes on March 1, 2004.

Output 4.11.3 Calendar Data Set

Non-Standard Relationships
Calendar Data Set

Obs _cal_ _sun_ _mon_ _tue_ _wed_ _thu_ _fri_ _sat_

1 SEVENDAY workday workday workday workday workday workday workday

Example 4.11: Nonstandard Relationships F 185

proc cpm data=widglag date='1dec03'd calendar=calendar
interval=weekday collapse out=lagsched;

activity task;
succ succ / lag = (lagdurc);
duration days;
run;

Output 4.11.4 Project Schedule: Lag Type, Duration, and Calendar

Non-Standard Relationships
Lag Type, Duration, and Calendar

task E_START E_FINISH L_START L_FINISH T_FLOAT F_FLOAT

Approve Plan 01DEC03 05DEC03 02DEC03 08DEC03 1 0

Drawings 08DEC03 19DEC03 09DEC03 22DEC03 1 0

Study Market 08DEC03 12DEC03 12JAN04 16JAN04 25 0

Write Specs 08DEC03 12DEC03 16DEC03 22DEC03 6 5

Prototype 22DEC03 09JAN04 23DEC03 12JAN04 1 0

Mkt. Strat. 15DEC03 26DEC03 19JAN04 30JAN04 25 25

Materials 02JAN04 15JAN04 05JAN04 16JAN04 1 1

Facility 02JAN04 15JAN04 05JAN04 16JAN04 1 1

Init. Prod. 19JAN04 30JAN04 19JAN04 30JAN04 0 0

Evaluate 02FEB04 13FEB04 09FEB04 20FEB04 5 5

Test Market 02FEB04 20FEB04 02FEB04 20FEB04 0 0

Changes 23FEB04 27FEB04 23FEB04 27FEB04 0 0

Production 01MAR04 01MAR04 01MAR04 01MAR04 0 0

Marketing 02FEB04 02FEB04 01MAR04 01MAR04 20 20

In fact, you can specify an alternate calendar for all the lag durations by using the ALAGCAL= or NLAG-
CAL= option in the SUCCESSOR statement. The next invocation of the CPM procedure illustrates this
feature by specifying ALAGCAL=SEVENDAY in the SUCCESSOR statement. Thus, all the lag durations
now follow the seven-day calendar instead of the five-day calendar, which is the default calendar for this
project. Output 4.11.5 shows the resulting schedule. Now the project finishes on February 27, 2004. Out-
put 4.11.6 displays a precedence Gantt chart of the project. Note how the nonstandard precedence constraints
are displayed.

proc cpm data=widglag date='1dec03'd calendar=calendar
interval=weekday collapse out=lagsched;

activity task;
succ succ / lag = (lagdur) alagcal=sevenday;
duration days;

run;

pattern1 c=green v=s; /* duration of a non-critical activity */
pattern2 c=green v=e; /* slack time for a noncrit. activity */
pattern3 c=red v=s; /* duration of a critical activity */

title h=1.5 'Non-Standard Relationships';
title2 h=1 'Precedence Gantt Chart';

186 F Chapter 4: The CPM Procedure

proc gantt graphics data=lagsched logic=widglag;
chart / compress act=task succ=(succ) dur=days

cprec=black cmile=blue
caxis=black
height=1.5 nojobnum
dur=days increment=7 lag=(lagdur);

id task;
run;

Output 4.11.5 Project Schedule: LAG Calendar = SEVENDAY

Non-Standard Relationships
Lag Type and Duration: LAG Calendar = SEVENDAY

task E_START E_FINISH L_START L_FINISH T_FLOAT F_FLOAT

Approve Plan 01DEC03 05DEC03 01DEC03 05DEC03 0 0

Drawings 08DEC03 19DEC03 08DEC03 19DEC03 0 0

Study Market 08DEC03 12DEC03 09JAN04 15JAN04 24 0

Write Specs 08DEC03 12DEC03 15DEC03 19DEC03 5 5

Prototype 22DEC03 09JAN04 22DEC03 09JAN04 0 0

Mkt. Strat. 15DEC03 26DEC03 16JAN04 29JAN04 24 24

Materials 31DEC03 13JAN04 02JAN04 15JAN04 2 2

Facility 31DEC03 13JAN04 31DEC03 13JAN04 0 0

Init. Prod. 16JAN04 29JAN04 16JAN04 29JAN04 0 0

Evaluate 30JAN04 12FEB04 06FEB04 19FEB04 5 5

Test Market 30JAN04 19FEB04 30JAN04 19FEB04 0 0

Changes 20FEB04 26FEB04 20FEB04 26FEB04 0 0

Production 27FEB04 27FEB04 27FEB04 27FEB04 0 0

Marketing 30JAN04 30JAN04 27FEB04 27FEB04 20 20

Example 4.11: Nonstandard Relationships F 187

Output 4.11.6 Precedence Gantt Chart

188 F Chapter 4: The CPM Procedure

Example 4.12: Activity Time Constraints
Often, in addition to a project start date or a project finish date, there may be other time constraints imposed
selectively on the activities in the project. The ALIGNDATE and ALIGNTYPE statements enable you to
add various types of time constraints on the activities. In this example, the data set WIDGET12 displayed in
Output 4.12.1 contains two variables, adate and atype, which enable you to specify these restrictions. For
example, the activity ‘Drawings’ has an ‘feq’ (Finish Equals) constraint, requiring it to finish on the 15th of
December. The activity ‘Test Market’ has a mandatory start date imposed on it.

Output 4.12.1 Activity Data Set WIDGET12

Activity Time Constraints
Activity data set

Obs task days succ1 succ2 succ3 adate atype

1 Approve Plan 5 Drawings Study Market Write Specs .

2 Drawings 10 Prototype 15DEC03 feq

3 Study Market 5 Mkt. Strat. .

4 Write Specs 5 Prototype 15DEC03 sge

5 Prototype 15 Materials Facility .

6 Mkt. Strat. 10 Test Market Marketing .

7 Materials 10 Init. Prod. .

8 Facility 10 Init. Prod. .

9 Init. Prod. 10 Test Market Marketing Evaluate .

10 Evaluate 10 Changes 27FEB04 fle

11 Test Market 15 Changes 16FEB04 ms

12 Changes 5 Production .

13 Production 0 .

14 Marketing 0 .

The following statements are needed to schedule the project subject to these restrictions. The option
XFERVARS in the PROC CPM statement causes CPM to transfer all variables that were used in the analysis
to the Schedule data set. Output 4.12.2 shows the resulting schedule.

proc cpm data=widget12 date='1dec03'd
xfervars interval=weekday;

activity task;
successor succ1 succ2 succ3;
duration days;
aligndate adate;
aligntype atype;
run;

Example 4.12: Activity Time Constraints F 189

title 'Activity Time Constraints';
title2 'Aligned Schedule';
proc print;

id task;
var adate atype e_: l_: t_float f_float;
run;

Output 4.12.2 Aligned Schedule

Activity Time Constraints
Aligned Schedule

task adate atype E_START E_FINISH L_START L_FINISH T_FLOAT F_FLOAT

Approve Plan . 01DEC03 05DEC03 25NOV03 01DEC03 -4 -4

Drawings 15DEC03 feq 08DEC03 19DEC03 02DEC03 15DEC03 -4 -4

Study Market . 08DEC03 12DEC03 26JAN04 30JAN04 35 0

Write Specs 15DEC03 sge 15DEC03 19DEC03 22DEC03 26DEC03 5 0

Prototype . 22DEC03 09JAN04 29DEC03 16JAN04 5 0

Mkt. Strat. . 15DEC03 26DEC03 02FEB04 13FEB04 35 30

Materials . 12JAN04 23JAN04 19JAN04 30JAN04 5 0

Facility . 12JAN04 23JAN04 19JAN04 30JAN04 5 0

Init. Prod. . 26JAN04 06FEB04 02FEB04 13FEB04 5 0

Evaluate 27FEB04 fle 09FEB04 20FEB04 16FEB04 27FEB04 5 5

Test Market 16FEB04 ms 16FEB04 05MAR04 16FEB04 05MAR04 0 0

Changes . 08MAR04 12MAR04 08MAR04 12MAR04 0 0

Production . 15MAR04 15MAR04 15MAR04 15MAR04 0 0

Marketing . 09FEB04 09FEB04 15MAR04 15MAR04 25 25

Note that the MS and MF constraints are mandatory and override any precedence constraints; thus, both
the late start and early start times for the activity ‘Test Market’ coincide with February 16, 2004. However,
the other types of constraints are not mandatory; they are superseded by any constraints imposed by the
precedence relationships. In other words, neither the early start nor the late start schedule violate precedence
constraints. Thus, even though the activity ‘Drawings’ is required to finish on the 15th of December (by
the ‘feq’ constraint), the early start schedule causes it to finish on the 19th of December because of its
predecessor’s schedule. This type of inconsistency is indicated by the presence of negative floats for some of
the activities alerting you to the fact that if some of these deadlines are to be met, these activities must start
earlier than the early start schedule. Such activities are called supercritical.

190 F Chapter 4: The CPM Procedure

Example 4.13: Progress Update and Target Schedules
This example shows the use of the ACTUAL and BASELINE statements to track and compare a project’s
progress with the original planned schedule. Consider the data in Example 4.1, for the network in AON
format. Suppose that the project has started as scheduled on December 1, 2003, and that the current date is
December 19, 2003. You may want to enter the actual dates for the activities that are already in progress or
have been completed and use the CPM procedure to determine the schedule for activities that remain to be
done. In addition to computing an updated schedule, you may want to check the progress of the project by
comparing the current schedule with the planned schedule.

The BASELINE statement enables you to save a target schedule in the Schedule data set. In this example,
suppose that you want to try to schedule the activities according to the project’s early start schedule. As a first
step, schedule the project with PROC CPM, and use the SET= option in the BASELINE statement to save the
early start and finish times as the baseline start and finish times. The following program saves the baseline
schedule (in the variables B_START and B_FINISH), and Output 4.13.1 displays the resulting output data set.

data holidays;
format holiday holifin date7.;
input holiday & date7. holifin & date7. holidur;
datalines;

24dec03 26dec03 4
01jan04 . .
;

* store early schedule as the baseline schedule;

proc cpm data=widget holidata=holidays
out=widgbase date='1dec03'd;

activity task;
succ succ1 succ2 succ3;
duration days;
holiday holiday / holifin=(holifin);
baseline / set=early;
run;

Example 4.13: Progress Update and Target Schedules F 191

Output 4.13.1 Target Schedule

Progress Update and Target Schedules
Set Baseline Schedule

Obs task succ1 succ2 succ3 days E_START E_FINISH

1 Approve Plan Drawings Study Market Write Specs 5 01DEC03 05DEC03

2 Drawings Prototype 10 06DEC03 15DEC03

3 Study Market Mkt. Strat. 5 06DEC03 10DEC03

4 Write Specs Prototype 5 06DEC03 10DEC03

5 Prototype Materials Facility 15 16DEC03 03JAN04

6 Mkt. Strat. Test Market Marketing 10 11DEC03 20DEC03

7 Materials Init. Prod. 10 04JAN04 13JAN04

8 Facility Init. Prod. 10 04JAN04 13JAN04

9 Init. Prod. Test Market Marketing Evaluate 10 14JAN04 23JAN04

10 Evaluate Changes 10 24JAN04 02FEB04

11 Test Market Changes 15 24JAN04 07FEB04

12 Changes Production 5 08FEB04 12FEB04

13 Production 0 13FEB04 13FEB04

14 Marketing 0 24JAN04 24JAN04

Obs L_START L_FINISH T_FLOAT F_FLOAT B_START B_FINISH

1 01DEC03 05DEC03 0 0 01DEC03 05DEC03

2 06DEC03 15DEC03 0 0 06DEC03 15DEC03

3 09JAN04 13JAN04 30 0 06DEC03 10DEC03

4 11DEC03 15DEC03 5 5 06DEC03 10DEC03

5 16DEC03 03JAN04 0 0 16DEC03 03JAN04

6 14JAN04 23JAN04 30 30 11DEC03 20DEC03

7 04JAN04 13JAN04 0 0 04JAN04 13JAN04

8 04JAN04 13JAN04 0 0 04JAN04 13JAN04

9 14JAN04 23JAN04 0 0 14JAN04 23JAN04

10 29JAN04 07FEB04 5 5 24JAN04 02FEB04

11 24JAN04 07FEB04 0 0 24JAN04 07FEB04

12 08FEB04 12FEB04 0 0 08FEB04 12FEB04

13 13FEB04 13FEB04 0 0 13FEB04 13FEB04

14 13FEB04 13FEB04 20 20 24JAN04 24JAN04

As the project progresses, you have to account for the actual progress of the project and schedule the
unfinished activities accordingly. You can do so by specifying actual start or actual finish times (or both)
for activities that have already finished or are in progress. Progress information can also be specified using
percent complete or remaining duration values. Assume that current information has been incorporated into
the ACTUAL data set, shown in Output 4.13.2. The variables sdate and fdate contain the actual start and
finish times of the activities, and rdur specifies the number of days of work that are still remaining for the
activity to be completed, and pctc specifies the percent of work that has been completed for that activity.

192 F Chapter 4: The CPM Procedure

Output 4.13.2 Progress Data Set ACTUAL

Progress Update and Target Schedules
Progress Data

Obs task sdate fdate pctc rdur

1 Approve Plan 01DEC2003 05DEC2003 . .

2 Drawings 06DEC2003 16DEC2003 . .

3 Study Market 05DEC2003 . 100 .

4 Write Specs 07DEC2003 12DEC2003 . .

5 Prototype

6 Mkt. Strat. 10DEC2003 . . 3

7 Materials

8 Facility

9 Init. Prod.

10 Evaluate

11 Test Market

12 Changes

13 Production

14 Marketing

The following statements invoke PROC CPM after merging the progress data with the Schedule data set. The
NOAUTOUPDT option is specified so that only those activities that have explicit progress information are
assumed to have started. The resulting Schedule data set contains the new variables A_START, A_FINISH,
A_DUR, and STATUS; this data set is displayed in Output 4.13.3. The activity ‘Mkt. Strat.’, which has
rdur=‘3’ in Output 4.13.2, has an early finish time (December 21, 2003) that is three days after TIMENOW.
The S_VAR and F_VAR variables show the amount of slippage in the start and finish times (predicted on the
basis of the current schedule) as compared to the baseline schedule.

* merge the baseline information with progress update;
data widgact;

merge actual widgbase;
run;

proc cpm data=widgact holidata=holidays
out=widgnupd date='1dec03'd;

activity task;
succ succ1 succ2 succ3;
duration days;
holiday holiday / holifin=(holifin);
baseline / compare=early;
actual / a_start=sdate a_finish=fdate timenow='19dec03'd

remdur=rdur pctcomp=pctc noautoupdt;
run;

Example 4.13: Progress Update and Target Schedules F 193

Output 4.13.3 Comparison of Schedules: NOAUTOUPDT

Progress Update and Target Schedules
Updated Schedule vs. Target Schedule: NOAUTOUPDT

Obs task succ1 succ2 succ3 days STATUS A_DUR A_START A_FINISH E_START

1 Approve Plan Drawings Study Market Write Specs 5 Completed 5 01DEC03 05DEC03 01DEC03

2 Drawings Prototype 10 Completed 11 06DEC03 16DEC03 06DEC03

3 Study Market Mkt. Strat. 5 Completed 5 05DEC03 09DEC03 05DEC03

4 Write Specs Prototype 5 Completed 6 07DEC03 12DEC03 07DEC03

5 Prototype Materials Facility 15 Pending . . . 19DEC03

6 Mkt. Strat. Test Market Marketing 10 In Progress . 10DEC03 . 10DEC03

7 Materials Init. Prod. 10 Pending . . . 07JAN04

8 Facility Init. Prod. 10 Pending . . . 07JAN04

9 Init. Prod. Test Market Marketing Evaluate 10 Pending . . . 17JAN04

10 Evaluate Changes 10 Pending . . . 27JAN04

11 Test Market Changes 15 Pending . . . 27JAN04

12 Changes Production 5 Pending . . . 11FEB04

13 Production 0 Pending . . . 16FEB04

14 Marketing 0 Pending . . . 27JAN04

Obs E_FINISH L_START L_FINISH T_FLOAT F_FLOAT B_START B_FINISH S_VAR F_VAR

1 05DEC03 01DEC03 05DEC03 0 0 01DEC03 05DEC03 0 0

2 16DEC03 06DEC03 16DEC03 0 0 06DEC03 15DEC03 0 1

3 09DEC03 05DEC03 09DEC03 0 0 06DEC03 10DEC03 -1 -1

4 12DEC03 07DEC03 12DEC03 0 0 06DEC03 10DEC03 1 2

5 06JAN04 19DEC03 06JAN04 0 0 16DEC03 03JAN04 3 3

6 21DEC03 10DEC03 21DEC03 0 0 11DEC03 20DEC03 -1 1

7 16JAN04 07JAN04 16JAN04 0 0 04JAN04 13JAN04 3 3

8 16JAN04 07JAN04 16JAN04 0 0 04JAN04 13JAN04 3 3

9 26JAN04 17JAN04 26JAN04 0 0 14JAN04 23JAN04 3 3

10 05FEB04 01FEB04 10FEB04 5 5 24JAN04 02FEB04 3 3

11 10FEB04 27JAN04 10FEB04 0 0 24JAN04 07FEB04 3 3

12 15FEB04 11FEB04 15FEB04 0 0 08FEB04 12FEB04 3 3

13 16FEB04 16FEB04 16FEB04 0 0 13FEB04 13FEB04 3 3

14 27JAN04 16FEB04 16FEB04 20 20 24JAN04 24JAN04 3 3

In order for you to see the effect of the AUTOUPDT option, the same project information is used with the
AUTOUPDT option in the ACTUAL statement. Output 4.13.4 displays the resulting schedule. With the
AUTOUPDT option (which is, in fact, the default option), PROC CPM uses the progress information and
the precedence information to automatically fill in the actual start and finish information for activities that
should have finished or started before TIMENOW. The activity ‘Prototype’ has no progress information
in WIDGACT, but it is assumed to have an actual start date of December 17, 2003. This option is useful
when there are several activities that take place according to the plan and only a few occur out of sequence;
then it is sufficient to enter progress information only for the activities that did not follow the plan. The
SHOWFLOAT option, also used in this invocation of PROC CPM, enables activities that are completed or
in progress to have float; in other words, the late start schedule for activities in progress is not fixed by the
progress information. Thus, the activity ‘Study Market’ has L_START=‘08JAN04’ instead of ‘05DEC03’, as
in the earlier invocation of PROC CPM (without the SHOWFLOAT option). The following invocation of
PROC CPM produces Output 4.13.4:

194 F Chapter 4: The CPM Procedure

proc cpm data=widgact holidata=holidays
out=widgupdt date='1dec03'd;

activity task;
succ succ1 succ2 succ3;
duration days;
holiday holiday / holifin=(holifin);
baseline / compare=early;
actual / as=sdate af=fdate timenow='19dec03'd

remdur=rdur pctcomp=pctc
autoupdt showfloat;

run;

Output 4.13.4 Comparison of Schedules: AUTOUPDT

Progress Update and Target Schedules
Updated Schedule vs. Target Schedule: AUTOUPDT

Obs task succ1 succ2 succ3 days STATUS A_DUR A_START A_FINISH E_START

1 Approve Plan Drawings Study Market Write Specs 5 Completed 5 01DEC03 05DEC03 01DEC03

2 Drawings Prototype 10 Completed 11 06DEC03 16DEC03 06DEC03

3 Study Market Mkt. Strat. 5 Completed 5 05DEC03 09DEC03 05DEC03

4 Write Specs Prototype 5 Completed 6 07DEC03 12DEC03 07DEC03

5 Prototype Materials Facility 15 In Progress . 17DEC03 . 17DEC03

6 Mkt. Strat. Test Market Marketing 10 In Progress . 10DEC03 . 10DEC03

7 Materials Init. Prod. 10 Pending . . . 05JAN04

8 Facility Init. Prod. 10 Pending . . . 05JAN04

9 Init. Prod. Test Market Marketing Evaluate 10 Pending . . . 15JAN04

10 Evaluate Changes 10 Pending . . . 25JAN04

11 Test Market Changes 15 Pending . . . 25JAN04

12 Changes Production 5 Pending . . . 09FEB04

13 Production 0 Pending . . . 14FEB04

14 Marketing 0 Pending . . . 25JAN04

Obs E_FINISH L_START L_FINISH T_FLOAT F_FLOAT B_START B_FINISH S_VAR F_VAR

1 05DEC03 01DEC03 05DEC03 0 -1 01DEC03 05DEC03 0 0

2 16DEC03 06DEC03 16DEC03 0 0 06DEC03 15DEC03 0 1

3 09DEC03 08JAN04 12JAN04 30 0 06DEC03 10DEC03 -1 -1

4 12DEC03 11DEC03 16DEC03 4 4 06DEC03 10DEC03 1 2

5 04JAN04 17DEC03 04JAN04 0 0 16DEC03 03JAN04 1 1

6 21DEC03 13JAN04 24JAN04 30 30 11DEC03 20DEC03 -1 1

7 14JAN04 05JAN04 14JAN04 0 0 04JAN04 13JAN04 1 1

8 14JAN04 05JAN04 14JAN04 0 0 04JAN04 13JAN04 1 1

9 24JAN04 15JAN04 24JAN04 0 0 14JAN04 23JAN04 1 1

10 03FEB04 30JAN04 08FEB04 5 5 24JAN04 02FEB04 1 1

11 08FEB04 25JAN04 08FEB04 0 0 24JAN04 07FEB04 1 1

12 13FEB04 09FEB04 13FEB04 0 0 08FEB04 12FEB04 1 1

13 14FEB04 14FEB04 14FEB04 0 0 13FEB04 13FEB04 1 1

14 25JAN04 14FEB04 14FEB04 20 20 24JAN04 24JAN04 1 1

Example 4.14: Summarizing Resource Utilization F 195

Example 4.14: Summarizing Resource Utilization
This example shows how you can use the RESOURCE statement in conjunction with the RESOURCEOUT=
option to summarize resource utilization. The example assumes that Engineer is a resource category and the
project network (in AOA format) along with resource requirements for each activity is in a SAS data set, as
displayed in Output 4.14.1.

Output 4.14.1 Resource Utilization: WIDGRES

Summarizing Resource Utilization
Activity Data Set

Obs task days tail head engineer

1 Approve Plan 5 1 2 2

2 Drawings 10 2 3 1

3 Study Market 5 2 4 1

4 Write Specs 5 2 3 2

5 Prototype 15 3 5 4

6 Mkt. Strat. 10 4 6 .

7 Materials 10 5 7 .

8 Facility 10 5 7 2

9 Init. Prod. 10 7 8 4

10 Evaluate 10 8 9 1

11 Test Market 15 6 9 .

12 Changes 5 9 10 2

13 Production 0 10 11 4

14 Marketing 0 6 12 .

15 Dummy 0 8 6 .

Output 4.14.2 Resource Utilization: HOLDATA

Summarizing Resource Utilization
Holidays Data Set HOLDATA

Obs hol name

1 25DEC03 Christmas

2 01JAN04 New Year

In the following program, PROC CPM is invoked with the RESOURCE statement identifying the resource
for which usage information is required. The project is scheduled only on weekdays, and holiday information
is included through the Holiday data set, HOLDATA, which identifies two holidays, one for Christmas and
one for New Year’s Day. Output 4.14.2 shows the Holiday data set.

The program saves the resource usage information in a data set named ROUT, which is displayed in Out-
put 4.14.3. Two variables, Eengineer and Lengineer, denote the usage of the resource engineer corresponding
to the early and late start schedules, respectively. Note the naming convention for the variables in the resource
usage data set: A prefix (E for Early and L for Late) is followed by the name of the resource variable, engineer.
Note also that the data set contains only observations corresponding to weekdays; by default, the _TIME_
variable in the resource usage output data set increases by one unit interval of the default calendar for every

196 F Chapter 4: The CPM Procedure

observation. Further, the MAXDATE= option is used in the RESOURCE statement to get resource usage
information only for the month of December.

proc cpm date='1dec03'd interval=weekday
resourceout=rout data=widgres
holidata=holdata;

id task;
tailnode tail;
duration days;
headnode head;
resource engineer / maxdate='31dec03'd;
holiday hol;
run;

Output 4.14.3 Resource Utilization: Resource Usage Data Set

Summarizing Resource Utilization
Resource Usage

Obs _TIME_ Eengineer Lengineer

1 01DEC03 2 2

2 02DEC03 2 2

3 03DEC03 2 2

4 04DEC03 2 2

5 05DEC03 2 2

6 08DEC03 4 1

7 09DEC03 4 1

8 10DEC03 4 1

9 11DEC03 4 1

10 12DEC03 4 1

11 15DEC03 1 3

12 16DEC03 1 3

13 17DEC03 1 3

14 18DEC03 1 3

15 19DEC03 1 3

16 22DEC03 4 4

17 23DEC03 4 4

18 24DEC03 4 4

19 26DEC03 4 4

20 29DEC03 4 4

21 30DEC03 4 4

22 31DEC03 4 4

Example 4.14: Summarizing Resource Utilization F 197

This data set can be used as input for any type of resource utilization report. In this example, the resource
usage for the month of December is presented in two ways: on a calendar and in a chart. The following
program prints the calendar and bar chart:

/* format the Engineer variables */
proc format;

picture efmt other='9 ESS Eng.';
picture lfmt other='9 LSS Eng.';

proc calendar legend weekdays
data=rout holidata=holdata;

id _time_;
var eengineer lengineer;
format eengineer efmt. lengineer lfmt.;
holiday hol;
holiname name;

proc chart data=rout;
hbar _time_/sumvar=eengineer discrete;
hbar _time_/sumvar=lengineer discrete;
run;

198 F Chapter 4: The CPM Procedure

Output 4.14.4 Calendar Showing Resource Usage

Summarizing Resource Utilization
Resource Usage

 | |
 | December 2003 |
 | |
 |---|
 | Monday | Tuesday | Wednesday | Thursday | Friday |
 |-----------+-----------+-----------+-----------+-----------|
 | 1 | 2 | 3 | 4 | 5 |
 | | | | | |
 | 2 ESS Eng | 2 ESS Eng | 2 ESS Eng | 2 ESS Eng | 2 ESS Eng |
 | 2 LSS Eng | 2 LSS Eng | 2 LSS Eng | 2 LSS Eng | 2 LSS Eng |
 |-----------+-----------+-----------+-----------+-----------|
 | 8 | 9 | 10 | 11 | 12 |
 | | | | | |
 | 4 ESS Eng | 4 ESS Eng | 4 ESS Eng | 4 ESS Eng | 4 ESS Eng |
 | 1 LSS Eng | 1 LSS Eng | 1 LSS Eng | 1 LSS Eng | 1 LSS Eng |
 |-----------+-----------+-----------+-----------+-----------|
 | 15 | 16 | 17 | 18 | 19 |
 | | | | | |
 | 1 ESS Eng | 1 ESS Eng | 1 ESS Eng | 1 ESS Eng | 1 ESS Eng |
 | 3 LSS Eng | 3 LSS Eng | 3 LSS Eng | 3 LSS Eng | 3 LSS Eng |
 |-----------+-----------+-----------+-----------+-----------|
 | 22 | 23 | 24 | 25 | 26 |
 | | | |*Christmas*| |
 | 4 ESS Eng | 4 ESS Eng | 4 ESS Eng | | 4 ESS Eng |
 | 4 LSS Eng | 4 LSS Eng | 4 LSS Eng | | 4 LSS Eng |
 |-----------+-----------+-----------+-----------+-----------|
 | 29 | 30 | 31 | | |
 | | | | | |
 | 4 ESS Eng | 4 ESS Eng | 4 ESS Eng | | |
 | 4 LSS Eng | 4 LSS Eng | 4 LSS Eng | | |

 | Legend |
 | |
 | ESS Usage of engineer |
 | LSS Usage of engineer |

Example 4.14: Summarizing Resource Utilization F 199

Output 4.14.5 Bar Chart for Early Start Usage

Summarizing Resource Utilization
Resource Usage

 Period Identifier ESS Usage of en
 Sum
 |
 01DEC03 |******************** 2.000000
 02DEC03 |******************** 2.000000
 03DEC03 |******************** 2.000000
 04DEC03 |******************** 2.000000
 05DEC03 |******************** 2.000000
 08DEC03 |** 4.000000
 09DEC03 |** 4.000000
 10DEC03 |** 4.000000
 11DEC03 |** 4.000000
 12DEC03 |** 4.000000
 15DEC03 |********** 1.000000
 16DEC03 |********** 1.000000
 17DEC03 |********** 1.000000
 18DEC03 |********** 1.000000
 19DEC03 |********** 1.000000
 22DEC03 |** 4.000000
 23DEC03 |** 4.000000
 24DEC03 |** 4.000000
 26DEC03 |** 4.000000
 29DEC03 |** 4.000000
 30DEC03 |** 4.000000
 31DEC03 |** 4.000000
 |
 ----------+---------+---------+---------+
 1 2 3 4

 ESS Usage of engineer

200 F Chapter 4: The CPM Procedure

Output 4.14.6 Bar Chart for Late Start Usage

Summarizing Resource Utilization
Resource Usage

 Period Identifier LSS Usage of en
 Sum
 |
 01DEC03 |******************** 2.000000
 02DEC03 |******************** 2.000000
 03DEC03 |******************** 2.000000
 04DEC03 |******************** 2.000000
 05DEC03 |******************** 2.000000
 08DEC03 |********** 1.000000
 09DEC03 |********** 1.000000
 10DEC03 |********** 1.000000
 11DEC03 |********** 1.000000
 12DEC03 |********** 1.000000
 15DEC03 |****************************** 3.000000
 16DEC03 |****************************** 3.000000
 17DEC03 |****************************** 3.000000
 18DEC03 |****************************** 3.000000
 19DEC03 |****************************** 3.000000
 22DEC03 |** 4.000000
 23DEC03 |** 4.000000
 24DEC03 |** 4.000000
 26DEC03 |** 4.000000
 29DEC03 |** 4.000000
 30DEC03 |** 4.000000
 31DEC03 |** 4.000000
 |
 ----------+---------+---------+---------+
 1 2 3 4

 LSS Usage of engineer

Charts such as those shown in Output 4.14.4 through Output 4.14.6 can be used to compare different schedules
with respect to resource usage.

Example 4.15: Resource Allocation F 201

Example 4.15: Resource Allocation
In the previous example, a summary of the resource utilization is obtained. Suppose that you want to schedule
the project subject to constraints on the availability of ENGINEERS. The activity data, as in Example 4.14,
are assumed to be in a data set named WIDGRES. The resource variable, engineer, specifies the number of
engineers needed per day for each activity in the project. In addition to the resource engineer, a consumable
resource engcost is computed at a daily rate of 200 for each unit of resource engineer used per day. The
following DATA step uses the Activity data set from Example 4.14 to create a new Activity data set that
includes the resource engcost.

data widgres;
set widgres;
if engineer ^= . then engcost = engineer * 200;
run;

Now suppose that the availability of the resource engineer and the total outlay for engcost is saved in a data
set named WIDGRIN, displayed in Output 4.15.1.

Output 4.15.1 Resource Availability Data Set

Resource Allocation
Data Set WIDGRIN

Obs per otype engineer engcost

1 . restype 1 2

2 . suplevel 1 .

3 01DEC03 reslevel 3 40000

4 26DEC03 reslevel 4 .

In the data set WIDGRIN, the first observation indicates that engineer is a replenishable resource, while
engcost is a consumable resource. The second observation indicates that an extra engineer is available,
if necessary. The remaining observations indicate the availability profile starting from December 1, 2003.
PROC CPM is then used to schedule the project to start on December 1, 2003, subject to the availability as
specified.

proc cpm date='01dec03'd interval=weekday
data=widgres holidata=holdata resin=widgrin
out=widgschd resout=widgrout;

tailnode tail;
duration days;
headnode head;
holiday hol;
resource engineer engcost / period=per obstype=otype

schedrule=shortdur
delayanalysis;

id task;
run;

202 F Chapter 4: The CPM Procedure

Output 4.15.2 Resource Constrained Schedule: Rule = SHORTDUR

Resource Allocation
Resource Constrained Schedule: Rule = SHORTDUR

Obs tail head days task engineer engcost S_START S_FINISH E_START E_FINISH

1 1 2 5 Approve Plan 2 400 01DEC03 05DEC03 01DEC03 05DEC03

2 2 3 10 Drawings 1 200 15DEC03 29DEC03 08DEC03 19DEC03

3 2 4 5 Study Market 1 200 08DEC03 12DEC03 08DEC03 12DEC03

4 2 3 5 Write Specs 2 400 08DEC03 12DEC03 08DEC03 12DEC03

5 3 5 15 Prototype 4 800 30DEC03 20JAN04 22DEC03 13JAN04

6 4 6 10 Mkt. Strat. . . 15DEC03 29DEC03 15DEC03 29DEC03

7 5 7 10 Materials . . 21JAN04 03FEB04 14JAN04 27JAN04

8 5 7 10 Facility 2 400 21JAN04 03FEB04 14JAN04 27JAN04

9 7 8 10 Init. Prod. 4 800 04FEB04 17FEB04 28JAN04 10FEB04

10 8 9 10 Evaluate 1 200 18FEB04 02MAR04 11FEB04 24FEB04

11 6 9 15 Test Market . . 18FEB04 09MAR04 11FEB04 02MAR04

12 9 10 5 Changes 2 400 10MAR04 16MAR04 03MAR04 09MAR04

13 10 11 0 Production 4 800 17MAR04 17MAR04 10MAR04 10MAR04

14 6 12 0 Marketing . . 18FEB04 18FEB04 11FEB04 11FEB04

15 8 6 0 Dummy . . 18FEB04 18FEB04 11FEB04 11FEB04

Obs L_START L_FINISH R_DELAY DELAY_R SUPPL_R

1 01DEC03 05DEC03 0

2 08DEC03 19DEC03 5 engineer

3 21JAN04 27JAN04 0

4 15DEC03 19DEC03 0

5 22DEC03 13JAN04 0

6 28JAN04 10FEB04 0

7 14JAN04 27JAN04 0

8 14JAN04 27JAN04 0

9 28JAN04 10FEB04 0

10 18FEB04 02MAR04 0

11 11FEB04 02MAR04 0

12 03MAR04 09MAR04 0

13 10MAR04 10MAR04 0

14 10MAR04 10MAR04 0

15 11FEB04 11FEB04 0

Example 4.15: Resource Allocation F 203

In the first invocation of PROC CPM, the scheduling rule used for ordering the activities to be scheduled at a
given time is specified to be SHORTDUR. The data set WIDGSCHD, displayed in Output 4.15.2, contains the
resource constrained start and finish times in the variables S_START and S_FINISH. On December 8, three
activities can be scheduled, all of which require the resource engineer. Using the scheduling rule specified,
PROC CPM schedules the activities with the shortest durations first; thus, the activity ‘Drawings’ is delayed
by five working days, until December 15, 2003.

The DELAYANALYSIS option in the RESOURCE statement helps analyze the cause of the delay by adding
three new variables to the Schedule data set, R_DELAY, DELAY_R, and SUPPL_R. In this example, the
R_DELAY and DELAY_R variables indicate that there is a delay of five days in the activity ‘Drawings’ due to
the resource engineer. Such information helps to pinpoint the source of resource insufficiency, if any.

Other activities that follow ‘Drawings’ also have S_START>E_START, but the slippage in these activities
is not caused by resource insufficiency, it is due to their predecessors being delayed. The entire project is
delayed by five working days due to resource constraints (the maximum value of S_FINISH is 17MAR04,
while the maximum value of E_FINISH is 10MAR04).

In this invocation, the DELAY= option is not specified; therefore, the supplementary level of resource is not
used, since the primary levels of resources are found to be sufficient to schedule the project by delaying some
of the activities.

The data set WIDGROUT, displayed in Output 4.15.3, contains variables Rengineer and Aengineer in addition
to the variables Eengineer and Lengineer. The variable Rengineer denotes the usage of the resource engineer
corresponding to the resource-constrained schedule, and Aengineer denotes the remaining level of the
resource after resource allocation. For the consumable resource engcost, the variables Eengcost, Lengcost,
and Rengcost indicate the rate of usage per unit routinterval (which defaults to INTERVAL=WEEKDAY, in
this case) at the start of the time interval specified in the variable _TIME_. The variable Aengcost denotes the
amount of money available at the beginning of the time specified in the _TIME_ variable.

204 F Chapter 4: The CPM Procedure

Output 4.15.3 Resource Usage: Rule = SHORTDUR

Resource Allocation
Usage Profiles for Constrained Schedule: Rule = SHORTDUR

O
b
s

_
T
I
M
E
_

E
e
n
g
i
n
e
e
r

L
e
n
g
i
n
e
e
r

R
e
n
g
i
n
e
e
r

A
e
n
g
i
n
e
e
r

E
e
n
g
c
o
s
t

L
e
n
g
c
o
s
t

R
e
n
g
c
o
s
t

A
e
n
g
c
o
s
t

1 01DEC03 2 2 2 1 400 400 400 40000

2 02DEC03 2 2 2 1 400 400 400 39600

3 03DEC03 2 2 2 1 400 400 400 39200

4 04DEC03 2 2 2 1 400 400 400 38800

5 05DEC03 2 2 2 1 400 400 400 38400

6 08DEC03 4 1 3 0 800 200 600 38000

7 09DEC03 4 1 3 0 800 200 600 37400

8 10DEC03 4 1 3 0 800 200 600 36800

9 11DEC03 4 1 3 0 800 200 600 36200

10 12DEC03 4 1 3 0 800 200 600 35600

11 15DEC03 1 3 1 2 200 600 200 35000

12 16DEC03 1 3 1 2 200 600 200 34800

13 17DEC03 1 3 1 2 200 600 200 34600

14 18DEC03 1 3 1 2 200 600 200 34400

15 19DEC03 1 3 1 2 200 600 200 34200

16 22DEC03 4 4 1 2 800 800 200 34000

17 23DEC03 4 4 1 2 800 800 200 33800

18 24DEC03 4 4 1 2 800 800 200 33600

19 26DEC03 4 4 1 3 800 800 200 33400

20 29DEC03 4 4 1 3 800 800 200 33200

21 30DEC03 4 4 4 0 800 800 800 33000

22 31DEC03 4 4 4 0 800 800 800 32200

23 02JAN04 4 4 4 0 800 800 800 31400

24 05JAN04 4 4 4 0 800 800 800 30600

25 06JAN04 4 4 4 0 800 800 800 29800

26 07JAN04 4 4 4 0 800 800 800 29000

27 08JAN04 4 4 4 0 800 800 800 28200

28 09JAN04 4 4 4 0 800 800 800 27400

29 12JAN04 4 4 4 0 800 800 800 26600

30 13JAN04 4 4 4 0 800 800 800 25800

31 14JAN04 2 2 4 0 400 400 800 25000

32 15JAN04 2 2 4 0 400 400 800 24200

33 16JAN04 2 2 4 0 400 400 800 23400

34 19JAN04 2 2 4 0 400 400 800 22600

35 20JAN04 2 2 4 0 400 400 800 21800

36 21JAN04 2 3 2 2 400 600 400 21000

37 22JAN04 2 3 2 2 400 600 400 20600

38 23JAN04 2 3 2 2 400 600 400 20200

39 26JAN04 2 3 2 2 400 600 400 19800

40 27JAN04 2 3 2 2 400 600 400 19400

Example 4.15: Resource Allocation F 205

Output 4.15.3 continued

Resource Allocation
Usage Profiles for Constrained Schedule: Rule = SHORTDUR

O
b
s

_
T
I
M
E
_

E
e
n
g
i
n
e
e
r

L
e
n
g
i
n
e
e
r

R
e
n
g
i
n
e
e
r

A
e
n
g
i
n
e
e
r

E
e
n
g
c
o
s
t

L
e
n
g
c
o
s
t

R
e
n
g
c
o
s
t

A
e
n
g
c
o
s
t

41 28JAN04 4 4 2 2 800 800 400 19000

42 29JAN04 4 4 2 2 800 800 400 18600

43 30JAN04 4 4 2 2 800 800 400 18200

44 02FEB04 4 4 2 2 800 800 400 17800

45 03FEB04 4 4 2 2 800 800 400 17400

46 04FEB04 4 4 4 0 800 800 800 17000

47 05FEB04 4 4 4 0 800 800 800 16200

48 06FEB04 4 4 4 0 800 800 800 15400

49 09FEB04 4 4 4 0 800 800 800 14600

50 10FEB04 4 4 4 0 800 800 800 13800

51 11FEB04 1 0 4 0 200 0 800 13000

52 12FEB04 1 0 4 0 200 0 800 12200

53 13FEB04 1 0 4 0 200 0 800 11400

54 16FEB04 1 0 4 0 200 0 800 10600

55 17FEB04 1 0 4 0 200 0 800 9800

56 18FEB04 1 1 1 3 200 200 200 9000

57 19FEB04 1 1 1 3 200 200 200 8800

58 20FEB04 1 1 1 3 200 200 200 8600

59 23FEB04 1 1 1 3 200 200 200 8400

60 24FEB04 1 1 1 3 200 200 200 8200

61 25FEB04 0 1 1 3 0 200 200 8000

62 26FEB04 0 1 1 3 0 200 200 7800

63 27FEB04 0 1 1 3 0 200 200 7600

64 01MAR04 0 1 1 3 0 200 200 7400

65 02MAR04 0 1 1 3 0 200 200 7200

66 03MAR04 2 2 0 4 400 400 0 7000

67 04MAR04 2 2 0 4 400 400 0 7000

68 05MAR04 2 2 0 4 400 400 0 7000

69 08MAR04 2 2 0 4 400 400 0 7000

70 09MAR04 2 2 0 4 400 400 0 7000

71 10MAR04 0 0 2 2 0 0 400 7000

72 11MAR04 0 0 2 2 0 0 400 6600

73 12MAR04 0 0 2 2 0 0 400 6200

74 15MAR04 0 0 2 2 0 0 400 5800

75 16MAR04 0 0 2 2 0 0 400 5400

76 17MAR04 0 0 0 4 0 0 0 5000

206 F Chapter 4: The CPM Procedure

The second invocation of PROC CPM uses a different scheduling rule (LST, which is the default scheduling
rule). Ties are broken using the L_START times for the activities. In this example, this rule results in a
shorter project schedule. The schedule and the resource usage data sets are displayed in Output 4.15.4 and
Output 4.15.5, respectively. Once again the variables DELAY_R and R_DELAY indicate that the resource
engineer caused the activity ‘Study Market’ (‘Prototype’) to be delayed by five days (three days). However,
the entire project is delayed only by three working days because the activity ‘Study Market’ is not a
critical activity, and delaying it by five days did not affect the project completion time. Even with the
resource delay of 5 days, this activity is scheduled earlier (S_START=15DEC03) than its latest start time
(L_START=21JAN04).

proc cpm date='01dec03'd
interval=weekday
data=widgres
resin=widgrin
holidata=holdata
out=widgsch2
resout=widgrou2;

tailnode tail;
duration days;
headnode head;
holiday hol;
resource engineer engcost / period=per

obstype=otype
schedrule=lst
delayanalysis;

id task;
run;

Example 4.15: Resource Allocation F 207

Output 4.15.4 Resource Constrained Schedule: Rule = LST

Resource Allocation
Resource Constrained Schedule: Rule = LST

Obs tail head days task engineer engcost S_START S_FINISH E_START E_FINISH

1 1 2 5 Approve Plan 2 400 01DEC03 05DEC03 01DEC03 05DEC03

2 2 3 10 Drawings 1 200 08DEC03 19DEC03 08DEC03 19DEC03

3 2 4 5 Study Market 1 200 15DEC03 19DEC03 08DEC03 12DEC03

4 2 3 5 Write Specs 2 400 08DEC03 12DEC03 08DEC03 12DEC03

5 3 5 15 Prototype 4 800 26DEC03 16JAN04 22DEC03 13JAN04

6 4 6 10 Mkt. Strat. . . 22DEC03 06JAN04 15DEC03 29DEC03

7 5 7 10 Materials . . 19JAN04 30JAN04 14JAN04 27JAN04

8 5 7 10 Facility 2 400 19JAN04 30JAN04 14JAN04 27JAN04

9 7 8 10 Init. Prod. 4 800 02FEB04 13FEB04 28JAN04 10FEB04

10 8 9 10 Evaluate 1 200 16FEB04 27FEB04 11FEB04 24FEB04

11 6 9 15 Test Market . . 16FEB04 05MAR04 11FEB04 02MAR04

12 9 10 5 Changes 2 400 08MAR04 12MAR04 03MAR04 09MAR04

13 10 11 0 Production 4 800 15MAR04 15MAR04 10MAR04 10MAR04

14 6 12 0 Marketing . . 16FEB04 16FEB04 11FEB04 11FEB04

15 8 6 0 Dummy . . 16FEB04 16FEB04 11FEB04 11FEB04

Obs L_START L_FINISH R_DELAY DELAY_R SUPPL_R

1 01DEC03 05DEC03 0

2 08DEC03 19DEC03 0

3 21JAN04 27JAN04 5 engineer

4 15DEC03 19DEC03 0

5 22DEC03 13JAN04 3 engineer

6 28JAN04 10FEB04 0

7 14JAN04 27JAN04 0

8 14JAN04 27JAN04 0

9 28JAN04 10FEB04 0

10 18FEB04 02MAR04 0

11 11FEB04 02MAR04 0

12 03MAR04 09MAR04 0

13 10MAR04 10MAR04 0

14 10MAR04 10MAR04 0

15 11FEB04 11FEB04 0

208 F Chapter 4: The CPM Procedure

Output 4.15.5 Resource Usage: Rule = LST

Resource Allocation
Usage Profiles for Constrained Schedule: Rule = LST

O
b
s

_
T
I
M
E
_

E
e
n
g
i
n
e
e
r

L
e
n
g
i
n
e
e
r

R
e
n
g
i
n
e
e
r

A
e
n
g
i
n
e
e
r

E
e
n
g
c
o
s
t

L
e
n
g
c
o
s
t

R
e
n
g
c
o
s
t

A
e
n
g
c
o
s
t

1 01DEC03 2 2 2 1 400 400 400 40000

2 02DEC03 2 2 2 1 400 400 400 39600

3 03DEC03 2 2 2 1 400 400 400 39200

4 04DEC03 2 2 2 1 400 400 400 38800

5 05DEC03 2 2 2 1 400 400 400 38400

6 08DEC03 4 1 3 0 800 200 600 38000

7 09DEC03 4 1 3 0 800 200 600 37400

8 10DEC03 4 1 3 0 800 200 600 36800

9 11DEC03 4 1 3 0 800 200 600 36200

10 12DEC03 4 1 3 0 800 200 600 35600

11 15DEC03 1 3 2 1 200 600 400 35000

12 16DEC03 1 3 2 1 200 600 400 34600

13 17DEC03 1 3 2 1 200 600 400 34200

14 18DEC03 1 3 2 1 200 600 400 33800

15 19DEC03 1 3 2 1 200 600 400 33400

16 22DEC03 4 4 0 3 800 800 0 33000

17 23DEC03 4 4 0 3 800 800 0 33000

18 24DEC03 4 4 0 3 800 800 0 33000

19 26DEC03 4 4 4 0 800 800 800 33000

20 29DEC03 4 4 4 0 800 800 800 32200

21 30DEC03 4 4 4 0 800 800 800 31400

22 31DEC03 4 4 4 0 800 800 800 30600

23 02JAN04 4 4 4 0 800 800 800 29800

24 05JAN04 4 4 4 0 800 800 800 29000

25 06JAN04 4 4 4 0 800 800 800 28200

26 07JAN04 4 4 4 0 800 800 800 27400

27 08JAN04 4 4 4 0 800 800 800 26600

28 09JAN04 4 4 4 0 800 800 800 25800

29 12JAN04 4 4 4 0 800 800 800 25000

30 13JAN04 4 4 4 0 800 800 800 24200

31 14JAN04 2 2 4 0 400 400 800 23400

32 15JAN04 2 2 4 0 400 400 800 22600

33 16JAN04 2 2 4 0 400 400 800 21800

34 19JAN04 2 2 2 2 400 400 400 21000

35 20JAN04 2 2 2 2 400 400 400 20600

36 21JAN04 2 3 2 2 400 600 400 20200

37 22JAN04 2 3 2 2 400 600 400 19800

38 23JAN04 2 3 2 2 400 600 400 19400

39 26JAN04 2 3 2 2 400 600 400 19000

40 27JAN04 2 3 2 2 400 600 400 18600

Example 4.15: Resource Allocation F 209

Output 4.15.5 continued

Resource Allocation
Usage Profiles for Constrained Schedule: Rule = LST

O
b
s

_
T
I
M
E
_

E
e
n
g
i
n
e
e
r

L
e
n
g
i
n
e
e
r

R
e
n
g
i
n
e
e
r

A
e
n
g
i
n
e
e
r

E
e
n
g
c
o
s
t

L
e
n
g
c
o
s
t

R
e
n
g
c
o
s
t

A
e
n
g
c
o
s
t

41 28JAN04 4 4 2 2 800 800 400 18200

42 29JAN04 4 4 2 2 800 800 400 17800

43 30JAN04 4 4 2 2 800 800 400 17400

44 02FEB04 4 4 4 0 800 800 800 17000

45 03FEB04 4 4 4 0 800 800 800 16200

46 04FEB04 4 4 4 0 800 800 800 15400

47 05FEB04 4 4 4 0 800 800 800 14600

48 06FEB04 4 4 4 0 800 800 800 13800

49 09FEB04 4 4 4 0 800 800 800 13000

50 10FEB04 4 4 4 0 800 800 800 12200

51 11FEB04 1 0 4 0 200 0 800 11400

52 12FEB04 1 0 4 0 200 0 800 10600

53 13FEB04 1 0 4 0 200 0 800 9800

54 16FEB04 1 0 1 3 200 0 200 9000

55 17FEB04 1 0 1 3 200 0 200 8800

56 18FEB04 1 1 1 3 200 200 200 8600

57 19FEB04 1 1 1 3 200 200 200 8400

58 20FEB04 1 1 1 3 200 200 200 8200

59 23FEB04 1 1 1 3 200 200 200 8000

60 24FEB04 1 1 1 3 200 200 200 7800

61 25FEB04 0 1 1 3 0 200 200 7600

62 26FEB04 0 1 1 3 0 200 200 7400

63 27FEB04 0 1 1 3 0 200 200 7200

64 01MAR04 0 1 0 4 0 200 0 7000

65 02MAR04 0 1 0 4 0 200 0 7000

66 03MAR04 2 2 0 4 400 400 0 7000

67 04MAR04 2 2 0 4 400 400 0 7000

68 05MAR04 2 2 0 4 400 400 0 7000

69 08MAR04 2 2 2 2 400 400 400 7000

70 09MAR04 2 2 2 2 400 400 400 6600

71 10MAR04 0 0 2 2 0 0 400 6200

72 11MAR04 0 0 2 2 0 0 400 5800

73 12MAR04 0 0 2 2 0 0 400 5400

74 15MAR04 0 0 0 4 0 0 0 5000

210 F Chapter 4: The CPM Procedure

Example 4.16: Using Supplementary Resources
In this example, the same project as in Example 4.15 is scheduled with a specification of DELAY=0. This
indicates to PROC CPM that a supplementary level of resources is to be used if an activity cannot be
scheduled to start on or before its latest start time (as computed in the unconstrained case). The schedule
data and resource usage data are saved in the data sets WIDGO16 and WIDGRO16, respectively. They are
displayed in Output 4.16.1 and Output 4.16.2, respectively.

title 'Using Supplementary Resources';
proc cpm date='01dec03'd interval=weekday

data=widgres holidata=holdata resin=widgrin
out=widgo16 resout=widgro16;

tailnode tail;
duration days;
headnode head;
holiday hol;
resource engineer engcost / period=per obstype=otype

cumusage
delay=0
delayanalysis
routnobreak;

id task;
run;

To analyze the results of the resource constrained scheduling, you must examine both output data sets,
WIDGRO16 and WIDGO16. The negative values for Aengineer in observation numbers 22 through 25 of the
Usage data set WIDGRO16 indicate the amount of supplementary resource that is needed on December 22,
23, 24, and 25, to complete the project without delaying any activity beyond its latest start time. Examination
of the SUPPL_R variable in the Schedule data set WIDGO16 indicates that the activity, ‘Prototype’, is
scheduled to start on December 22 by using a supplementary level of the resource engineer.

The supplementary level is used only if the activity would otherwise get delayed beyond L_START + DELAY.
Thus, the activity ‘Study Market’ is delayed by five days (S_START = ‘15DEC03’) and scheduled later than
its early start time (E_START = ‘08DEC03’), even though a supplementary level of the resource could have
been used to start the activity earlier, because the activity’s L_START time is equal to ‘21JAN04’ and DELAY
= 0.

Further, note the use of the option CUMUSAGE in the RESOURCE statement, requesting that cumulative
resource usage be saved in the Usage data set for consumable resources. Thus, for the consumable resource
engcost, the procedure saves the cumulative resource usage in the variables Eengcost, Lengcost, and
Rengcost, respectively. For instance, Eengcost in a given observation specifies the cumulative value of
engcost for the early start schedule through the end of the previous day.

Example 4.16: Using Supplementary Resources F 211

Output 4.16.1 Resource-Constrained Schedule: Supplementary Resource

Using Supplementary Resources
Resource Constrained Schedule

Obs tail head days task engineer engcost S_START S_FINISH E_START E_FINISH

1 1 2 5 Approve Plan 2 400 01DEC03 05DEC03 01DEC03 05DEC03

2 2 3 10 Drawings 1 200 08DEC03 19DEC03 08DEC03 19DEC03

3 2 4 5 Study Market 1 200 15DEC03 19DEC03 08DEC03 12DEC03

4 2 3 5 Write Specs 2 400 08DEC03 12DEC03 08DEC03 12DEC03

5 3 5 15 Prototype 4 800 22DEC03 13JAN04 22DEC03 13JAN04

6 4 6 10 Mkt. Strat. . . 22DEC03 06JAN04 15DEC03 29DEC03

7 5 7 10 Materials . . 14JAN04 27JAN04 14JAN04 27JAN04

8 5 7 10 Facility 2 400 14JAN04 27JAN04 14JAN04 27JAN04

9 7 8 10 Init. Prod. 4 800 28JAN04 10FEB04 28JAN04 10FEB04

10 8 9 10 Evaluate 1 200 11FEB04 24FEB04 11FEB04 24FEB04

11 6 9 15 Test Market . . 11FEB04 02MAR04 11FEB04 02MAR04

12 9 10 5 Changes 2 400 03MAR04 09MAR04 03MAR04 09MAR04

13 10 11 0 Production 4 800 10MAR04 10MAR04 10MAR04 10MAR04

14 6 12 0 Marketing . . 11FEB04 11FEB04 11FEB04 11FEB04

15 8 6 0 Dummy . . 11FEB04 11FEB04 11FEB04 11FEB04

Obs L_START L_FINISH R_DELAY DELAY_R SUPPL_R

1 01DEC03 05DEC03 0

2 08DEC03 19DEC03 0

3 21JAN04 27JAN04 5 engineer

4 15DEC03 19DEC03 0

5 22DEC03 13JAN04 0 engineer

6 28JAN04 10FEB04 0

7 14JAN04 27JAN04 0

8 14JAN04 27JAN04 0

9 28JAN04 10FEB04 0

10 18FEB04 02MAR04 0

11 11FEB04 02MAR04 0

12 03MAR04 09MAR04 0

13 10MAR04 10MAR04 0

14 10MAR04 10MAR04 0

15 11FEB04 11FEB04 0

This example also illustrates the use of the ROUTNOBREAK option to produce a resource usage output
data set that does not have any breaks for holidays. Thus, the output data set WIDGRO16 has observations
corresponding to holidays and weekends, unlike the corresponding resource output data sets in Example 4.15.
Note that for consumable resources with cumulative usage there is no accumulation of the resource on
holidays; thus, the cumulative value of engcost at the beginning of the 7th and 8th of December equals the
value for the beginning of the 6th of December. For the resource engineer, however, the resource is assumed
to be tied to the activity in progress even across holidays or weekends that are spanned by the activity’s
duration. For example, both activities ‘Drawings’ and ‘Write Specs’ start on December 8, 2003, requiring
one and two engineers, respectively. The ‘Write Specs’ activity finishes on the 12th, freeing up two engineers,
whereas ‘Drawings’ finishes only on the 19th of December. Thus, the data set WIDGRO16 has Rengineer
equal to ‘3’ from 8DEC03 to 12DEC03 and then equal to ‘1’ on the 13th and 14th of December. Another
engineer is required by the activity ‘Study Market’ from December 15, 2003; thus, the total usage from
15DEC03 to 19DEC03 is ‘2’.

212 F Chapter 4: The CPM Procedure

Output 4.16.2 Resource Usage: Supplementary Resources

Using Supplementary Resources
Usage Profiles for Constrained Schedule

O
b
s

_
T
I
M
E
_

E
e
n
g
i
n
e
e
r

L
e
n
g
i
n
e
e
r

R
e
n
g
i
n
e
e
r

A
e
n
g
i
n
e
e
r

E
e
n
g
c
o
s
t

L
e
n
g
c
o
s
t

R
e
n
g
c
o
s
t

A
e
n
g
c
o
s
t

1 01DEC03 2 2 2 1 0 0 0 40000

2 02DEC03 2 2 2 1 400 400 400 39600

3 03DEC03 2 2 2 1 800 800 800 39200

4 04DEC03 2 2 2 1 1200 1200 1200 38800

5 05DEC03 2 2 2 1 1600 1600 1600 38400

6 06DEC03 0 0 0 3 2000 2000 2000 38000

7 07DEC03 0 0 0 3 2000 2000 2000 38000

8 08DEC03 4 1 3 0 2000 2000 2000 38000

9 09DEC03 4 1 3 0 2800 2200 2600 37400

10 10DEC03 4 1 3 0 3600 2400 3200 36800

11 11DEC03 4 1 3 0 4400 2600 3800 36200

12 12DEC03 4 1 3 0 5200 2800 4400 35600

13 13DEC03 1 1 1 2 6000 3000 5000 35000

14 14DEC03 1 1 1 2 6000 3000 5000 35000

15 15DEC03 1 3 2 1 6000 3000 5000 35000

16 16DEC03 1 3 2 1 6200 3600 5400 34600

17 17DEC03 1 3 2 1 6400 4200 5800 34200

18 18DEC03 1 3 2 1 6600 4800 6200 33800

19 19DEC03 1 3 2 1 6800 5400 6600 33400

20 20DEC03 0 0 0 3 7000 6000 7000 33000

21 21DEC03 0 0 0 3 7000 6000 7000 33000

22 22DEC03 4 4 4 -1 7000 6000 7000 33000

23 23DEC03 4 4 4 -1 7800 6800 7800 32200

24 24DEC03 4 4 4 -1 8600 7600 8600 31400

25 25DEC03 4 4 4 -1 9400 8400 9400 30600

26 26DEC03 4 4 4 0 9400 8400 9400 30600

27 27DEC03 4 4 4 0 10200 9200 10200 29800

28 28DEC03 4 4 4 0 10200 9200 10200 29800

29 29DEC03 4 4 4 0 10200 9200 10200 29800

30 30DEC03 4 4 4 0 11000 10000 11000 29000

31 31DEC03 4 4 4 0 11800 10800 11800 28200

32 01JAN04 4 4 4 0 12600 11600 12600 27400

33 02JAN04 4 4 4 0 12600 11600 12600 27400

34 03JAN04 4 4 4 0 13400 12400 13400 26600

35 04JAN04 4 4 4 0 13400 12400 13400 26600

36 05JAN04 4 4 4 0 13400 12400 13400 26600

37 06JAN04 4 4 4 0 14200 13200 14200 25800

38 07JAN04 4 4 4 0 15000 14000 15000 25000

39 08JAN04 4 4 4 0 15800 14800 15800 24200

40 09JAN04 4 4 4 0 16600 15600 16600 23400

Example 4.16: Using Supplementary Resources F 213

Output 4.16.2 continued

Using Supplementary Resources
Usage Profiles for Constrained Schedule

O
b
s

_
T
I
M
E
_

E
e
n
g
i
n
e
e
r

L
e
n
g
i
n
e
e
r

R
e
n
g
i
n
e
e
r

A
e
n
g
i
n
e
e
r

E
e
n
g
c
o
s
t

L
e
n
g
c
o
s
t

R
e
n
g
c
o
s
t

A
e
n
g
c
o
s
t

41 10JAN04 4 4 4 0 17400 16400 17400 22600

42 11JAN04 4 4 4 0 17400 16400 17400 22600

43 12JAN04 4 4 4 0 17400 16400 17400 22600

44 13JAN04 4 4 4 0 18200 17200 18200 21800

45 14JAN04 2 2 2 2 19000 18000 19000 21000

46 15JAN04 2 2 2 2 19400 18400 19400 20600

47 16JAN04 2 2 2 2 19800 18800 19800 20200

48 17JAN04 2 2 2 2 20200 19200 20200 19800

49 18JAN04 2 2 2 2 20200 19200 20200 19800

50 19JAN04 2 2 2 2 20200 19200 20200 19800

51 20JAN04 2 2 2 2 20600 19600 20600 19400

52 21JAN04 2 3 2 2 21000 20000 21000 19000

53 22JAN04 2 3 2 2 21400 20600 21400 18600

54 23JAN04 2 3 2 2 21800 21200 21800 18200

55 24JAN04 2 3 2 2 22200 21800 22200 17800

56 25JAN04 2 3 2 2 22200 21800 22200 17800

57 26JAN04 2 3 2 2 22200 21800 22200 17800

58 27JAN04 2 3 2 2 22600 22400 22600 17400

59 28JAN04 4 4 4 0 23000 23000 23000 17000

60 29JAN04 4 4 4 0 23800 23800 23800 16200

61 30JAN04 4 4 4 0 24600 24600 24600 15400

62 31JAN04 4 4 4 0 25400 25400 25400 14600

63 01FEB04 4 4 4 0 25400 25400 25400 14600

64 02FEB04 4 4 4 0 25400 25400 25400 14600

65 03FEB04 4 4 4 0 26200 26200 26200 13800

66 04FEB04 4 4 4 0 27000 27000 27000 13000

67 05FEB04 4 4 4 0 27800 27800 27800 12200

68 06FEB04 4 4 4 0 28600 28600 28600 11400

69 07FEB04 4 4 4 0 29400 29400 29400 10600

70 08FEB04 4 4 4 0 29400 29400 29400 10600

71 09FEB04 4 4 4 0 29400 29400 29400 10600

72 10FEB04 4 4 4 0 30200 30200 30200 9800

73 11FEB04 1 0 1 3 31000 31000 31000 9000

74 12FEB04 1 0 1 3 31200 31000 31200 8800

75 13FEB04 1 0 1 3 31400 31000 31400 8600

76 14FEB04 1 0 1 3 31600 31000 31600 8400

77 15FEB04 1 0 1 3 31600 31000 31600 8400

78 16FEB04 1 0 1 3 31600 31000 31600 8400

79 17FEB04 1 0 1 3 31800 31000 31800 8200

80 18FEB04 1 1 1 3 32000 31000 32000 8000

214 F Chapter 4: The CPM Procedure

Output 4.16.2 continued

Using Supplementary Resources
Usage Profiles for Constrained Schedule

O
b
s

_
T
I
M
E
_

E
e
n
g
i
n
e
e
r

L
e
n
g
i
n
e
e
r

R
e
n
g
i
n
e
e
r

A
e
n
g
i
n
e
e
r

E
e
n
g
c
o
s
t

L
e
n
g
c
o
s
t

R
e
n
g
c
o
s
t

A
e
n
g
c
o
s
t

81 19FEB04 1 1 1 3 32200 31200 32200 7800

82 20FEB04 1 1 1 3 32400 31400 32400 7600

83 21FEB04 1 1 1 3 32600 31600 32600 7400

84 22FEB04 1 1 1 3 32600 31600 32600 7400

85 23FEB04 1 1 1 3 32600 31600 32600 7400

86 24FEB04 1 1 1 3 32800 31800 32800 7200

87 25FEB04 0 1 0 4 33000 32000 33000 7000

88 26FEB04 0 1 0 4 33000 32200 33000 7000

89 27FEB04 0 1 0 4 33000 32400 33000 7000

90 28FEB04 0 1 0 4 33000 32600 33000 7000

91 29FEB04 0 1 0 4 33000 32600 33000 7000

92 01MAR04 0 1 0 4 33000 32600 33000 7000

93 02MAR04 0 1 0 4 33000 32800 33000 7000

94 03MAR04 2 2 2 2 33000 33000 33000 7000

95 04MAR04 2 2 2 2 33400 33400 33400 6600

96 05MAR04 2 2 2 2 33800 33800 33800 6200

97 06MAR04 2 2 2 2 34200 34200 34200 5800

98 07MAR04 2 2 2 2 34200 34200 34200 5800

99 08MAR04 2 2 2 2 34200 34200 34200 5800

100 09MAR04 2 2 2 2 34600 34600 34600 5400

101 10MAR04 0 0 0 4 35000 35000 35000 5000

Example 4.17: INFEASDIAGNOSTIC Option and Aggregate Resource Type
The INFEASDIAGNOSTIC option instructs PROC CPM to continue scheduling even when resources are
insufficient. When PROC CPM schedules subject to resource constraints, it stops the scheduling process
when it cannot find sufficient resources (primary or supplementary) for an activity before the activity’s latest
possible start time (L_START C DELAY). In this case, you may want to determine which resources are
needed to schedule all the activities and when the deficiencies occur. The INFEASDIAGNOSTIC option is
equivalent to specifying infinite supplementary levels for all the resources under consideration; the DELAY=
value is assumed to equal the default value of +INFINITY, unless it is specified otherwise.

The INFEASDIAGNOSTIC option is particularly useful when there are several resources involved and when
project completion time is critical. You want things to be done on time, even if it means using supplementary
resources or overtime resources; rather than trying to juggle activities around to try to fit available resource
profiles, you want to determine the level of resources needed to accomplish tasks within a given time frame.

Example 4.17: INFEASDIAGNOSTIC Option and Aggregate Resource Type F 215

For the WIDGET manufacturing project, let us assume that there are four resources: a design engineer, a
market analyst, a production engineer, and money. The resource requirements for the different activities are
saved in a data set, WIDGR17, and displayed in Output 4.17.1. Of these resources, suppose that the design
engineer is the resource that is most crucial in terms of his availability; perhaps he is an outside contractor
and you do not have control over his availability. You need to determine the project schedule subject to the
constraints on the resource deseng. Output 4.17.2 displays the RESOURCEIN= data set, RESIN17.

Output 4.17.1 Data Set WIDGR17

Use of the INFEASDIAGNOSTIC Option
Data Set WIDGR17

Obs task days tail head deseng mktan prodeng money

1 Approve Plan 5 1 2 1 1 1 200

2 Drawings 10 2 3 1 . 1 100

3 Study Market 5 2 4 . 1 1 100

4 Write Specs 5 2 3 1 . 1 150

5 Prototype 15 3 5 1 . 1 300

6 Mkt. Strat. 10 4 6 . 1 . 150

7 Materials 10 5 7 . . . 300

8 Facility 10 5 7 . . 1 500

9 Init. Prod. 10 7 8 . . . 250

10 Evaluate 10 8 9 1 . . 150

11 Test Market 15 6 9 . 1 . 200

12 Changes 5 9 10 1 . 1 200

13 Production 0 10 11 1 . 1 600

14 Marketing 0 6 12 . 1 . .

15 Dummy 0 8 6

Output 4.17.2 Resourcein Data Set RESIN17

Use of the INFEASDIAGNOSTIC Option
Data Set RESIN17

Obs per otype deseng mktan prodeng money

1 . restype 1 1 1 4

2 01DEC03 reslevel 1 . 1 .

In the first invocation of PROC CPM, the project is scheduled subject to resource constraints on the single
resource variable deseng. Output 4.17.3 displays the resulting Schedule data set WIDGO17S, which shows
that the project is delayed by five days because of this resource. The project finish time has been delayed
only by five days, even though R_DELAY=‘10’ for activity ‘Write Specs’. This is due to the fact that there
was a float of five days present in this activity.

proc cpm date='01dec03'd interval=weekday
data=widgr17 holidata=holdata resin=resin17
out=widgo17s;

tailnode tail;
duration days;
headnode head;

216 F Chapter 4: The CPM Procedure

holiday hol;
resource deseng / period=per obstype=otype

delayanalysis;
id task;
run;

Output 4.17.3 Resource-Constrained Schedule: Single Resource

Use of the INFEASDIAGNOSTIC Option
Resource Constrained Schedule: Single Resource

Obs tail head days task deseng S_START S_FINISH E_START E_FINISH L_START

1 1 2 5 Approve Plan 1 01DEC03 05DEC03 01DEC03 05DEC03 01DEC03

2 2 3 10 Drawings 1 08DEC03 19DEC03 08DEC03 19DEC03 08DEC03

3 2 4 5 Study Market . 08DEC03 12DEC03 08DEC03 12DEC03 21JAN04

4 2 3 5 Write Specs 1 22DEC03 29DEC03 08DEC03 12DEC03 15DEC03

5 3 5 15 Prototype 1 30DEC03 20JAN04 22DEC03 13JAN04 22DEC03

6 4 6 10 Mkt. Strat. . 15DEC03 29DEC03 15DEC03 29DEC03 28JAN04

7 5 7 10 Materials . 21JAN04 03FEB04 14JAN04 27JAN04 14JAN04

8 5 7 10 Facility . 21JAN04 03FEB04 14JAN04 27JAN04 14JAN04

9 7 8 10 Init. Prod. . 04FEB04 17FEB04 28JAN04 10FEB04 28JAN04

10 8 9 10 Evaluate 1 18FEB04 02MAR04 11FEB04 24FEB04 18FEB04

11 6 9 15 Test Market . 18FEB04 09MAR04 11FEB04 02MAR04 11FEB04

12 9 10 5 Changes 1 10MAR04 16MAR04 03MAR04 09MAR04 03MAR04

13 10 11 0 Production 1 17MAR04 17MAR04 10MAR04 10MAR04 10MAR04

14 6 12 0 Marketing . 18FEB04 18FEB04 11FEB04 11FEB04 10MAR04

15 8 6 0 Dummy . 18FEB04 18FEB04 11FEB04 11FEB04 11FEB04

Obs L_FINISH R_DELAY DELAY_R SUPPL_R

1 05DEC03 0

2 19DEC03 0

3 27JAN04 0

4 19DEC03 10 deseng

5 13JAN04 0

6 10FEB04 0

7 27JAN04 0

8 27JAN04 0

9 10FEB04 0

10 02MAR04 0

11 02MAR04 0

12 09MAR04 0

13 10MAR04 0

14 10MAR04 0

15 11FEB04 0

Now suppose that you have one production engineer available, but you could obtain more if needed. You do
not want to delay the project more than five days (the delay caused by deseng). The second invocation of
PROC CPM sets a maximum delay of five days on the activities and specifies all four resources along with
the INFEASDIAGNOSTIC option. The resource availability data set (printed in Output 4.17.2) has missing
values for the resources mktan and money. Further, the resource money is defined to be a consumable
aggregate resource (its value is ‘4’ in the first observation). Thus, this resource is used by the CPM procedure

Example 4.17: INFEASDIAGNOSTIC Option and Aggregate Resource Type F 217

only for aggregation purposes and is not considered as a constraining resource during the scheduling process.
The INFEASDIAGNOSTIC option enables CPM to assume an infinite supplementary level for all the
constraining resources, and the procedure draws upon this infinite reserve, if necessary, to schedule the
project with only five days of delay. In other words, PROC CPM assumes that there is an infinite supply of
supplementary levels for all the relevant resources. Thus, if at any point in the scheduling process it finds that
an activity does not have enough resources and it cannot be postponed any further, it schedules the activity
ignoring the insufficiency of the resources.

proc cpm date='01dec03'd interval=weekday
data=widgr17 holidata=holdata resin=resin17
out=widgo17m resout=widgro17;

tailnode tail;
duration days;
headnode head;
holiday hol;
resource deseng prodeng mktan money / period=per obstype=otype

delayanalysis
delay=5
infeasdiagnostic
cumusage
rcprofile avprofile;

id task;
run;

The Schedule data set WIDGO17M (for multiple resources) in Output 4.17.4 shows the new resource-
constrained schedule. With a maximum delay of five days the procedure schedules the activity ‘Study Market’
on January 21, 2004, using an extra production engineer as indicated by the SUPPL_R variable. Note that
the SUPPL_R variable indicates the first resource in the resource list that was used beyond its primary level.
Note also that it is possible to schedule the activities with only one production engineer, but the project would
be delayed by more than five days.

The Usage data set, displayed in Output 4.17.5, shows the amount of resources required on each day
of the project. The data set contains usage and remaining resource information only for the resource-
constrained schedule because PROC CPM was invoked with the RCPROFILE and AVPROFILE options in
the RESOURCE statement. The availability profile contains only missing values for the resource money
because it was used only for aggregation purposes. Further, since this resource is a consumable resource as
per the RESOURCEIN= data set, and since the CUMUSAGE option is specified, the value for Rmoney in
each observation indicates the cumulative amount of money that would be needed through the beginning of
the date specified in that observation if the resource constrained schedule were followed.

For the other resources, the availability profile in the Usage data set contains negative values for all the
resources that were insufficient on any given day. This feature is useful for diagnosing the level of insufficiency
of any resource; you can determine the problem areas by examining the availability profile for the different
resources. Thus, the negative values for the resource availability profile Aprodeng indicate that, in order for
the project to be scheduled as desired, you need an extra production engineer between the 21st and 27th of
January, 2004. The negative values for Amktan indicate the days when a market analyst is needed for the
project.

218 F Chapter 4: The CPM Procedure

Output 4.17.4 Resource-Constrained Schedule: Multiple Resources

Use of the INFEASDIAGNOSTIC Option
Resource Constrained Schedule: Multiple Resources

Obs tail head days task deseng prodeng mktan money S_START S_FINISH E_START

1 1 2 5 Approve Plan 1 1 1 200 01DEC03 05DEC03 01DEC03

2 2 3 10 Drawings 1 1 . 100 08DEC03 19DEC03 08DEC03

3 2 4 5 Study Market . 1 1 100 21JAN04 27JAN04 08DEC03

4 2 3 5 Write Specs 1 1 . 150 22DEC03 29DEC03 08DEC03

5 3 5 15 Prototype 1 1 . 300 30DEC03 20JAN04 22DEC03

6 4 6 10 Mkt. Strat. . . 1 150 28JAN04 10FEB04 15DEC03

7 5 7 10 Materials . . . 300 21JAN04 03FEB04 14JAN04

8 5 7 10 Facility . 1 . 500 21JAN04 03FEB04 14JAN04

9 7 8 10 Init. Prod. . . . 250 04FEB04 17FEB04 28JAN04

10 8 9 10 Evaluate 1 . . 150 18FEB04 02MAR04 11FEB04

11 6 9 15 Test Market . . 1 200 18FEB04 09MAR04 11FEB04

12 9 10 5 Changes 1 1 . 200 10MAR04 16MAR04 03MAR04

13 10 11 0 Production 1 1 . 600 17MAR04 17MAR04 10MAR04

14 6 12 0 Marketing . . 1 . 18FEB04 18FEB04 11FEB04

15 8 6 0 Dummy 18FEB04 18FEB04 11FEB04

Obs E_FINISH L_START L_FINISH R_DELAY DELAY_R SUPPL_R

1 05DEC03 01DEC03 05DEC03 0 mktan

2 19DEC03 08DEC03 19DEC03 0

3 12DEC03 21JAN04 27JAN04 30 prodeng prodeng

4 12DEC03 15DEC03 19DEC03 10 deseng

5 13JAN04 22DEC03 13JAN04 0

6 29DEC03 28JAN04 10FEB04 0 mktan

7 27JAN04 14JAN04 27JAN04 0

8 27JAN04 14JAN04 27JAN04 0

9 10FEB04 28JAN04 10FEB04 0

10 24FEB04 18FEB04 02MAR04 0

11 02MAR04 11FEB04 02MAR04 0 mktan

12 09MAR04 03MAR04 09MAR04 0

13 10MAR04 10MAR04 10MAR04 0

14 11FEB04 10MAR04 10MAR04 0

15 11FEB04 11FEB04 11FEB04 0

Example 4.17: INFEASDIAGNOSTIC Option and Aggregate Resource Type F 219

Output 4.17.5 Resource Usage: Multiple Resources

Use of the INFEASDIAGNOSTIC Option
Usage Profile: Multiple Resources

Obs _TIME_ Rdeseng Adeseng Rprodeng Aprodeng Rmktan Amktan Rmoney Amoney

1 01DEC03 1 0 1 0 1 -1 0 .

2 02DEC03 1 0 1 0 1 -1 200 .

3 03DEC03 1 0 1 0 1 -1 400 .

4 04DEC03 1 0 1 0 1 -1 600 .

5 05DEC03 1 0 1 0 1 -1 800 .

6 08DEC03 1 0 1 0 0 0 1000 .

7 09DEC03 1 0 1 0 0 0 1100 .

8 10DEC03 1 0 1 0 0 0 1200 .

9 11DEC03 1 0 1 0 0 0 1300 .

10 12DEC03 1 0 1 0 0 0 1400 .

11 15DEC03 1 0 1 0 0 0 1500 .

12 16DEC03 1 0 1 0 0 0 1600 .

13 17DEC03 1 0 1 0 0 0 1700 .

14 18DEC03 1 0 1 0 0 0 1800 .

15 19DEC03 1 0 1 0 0 0 1900 .

16 22DEC03 1 0 1 0 0 0 2000 .

17 23DEC03 1 0 1 0 0 0 2150 .

18 24DEC03 1 0 1 0 0 0 2300 .

19 26DEC03 1 0 1 0 0 0 2450 .

20 29DEC03 1 0 1 0 0 0 2600 .

21 30DEC03 1 0 1 0 0 0 2750 .

22 31DEC03 1 0 1 0 0 0 3050 .

23 02JAN04 1 0 1 0 0 0 3350 .

24 05JAN04 1 0 1 0 0 0 3650 .

25 06JAN04 1 0 1 0 0 0 3950 .

26 07JAN04 1 0 1 0 0 0 4250 .

27 08JAN04 1 0 1 0 0 0 4550 .

28 09JAN04 1 0 1 0 0 0 4850 .

29 12JAN04 1 0 1 0 0 0 5150 .

30 13JAN04 1 0 1 0 0 0 5450 .

31 14JAN04 1 0 1 0 0 0 5750 .

32 15JAN04 1 0 1 0 0 0 6050 .

33 16JAN04 1 0 1 0 0 0 6350 .

34 19JAN04 1 0 1 0 0 0 6650 .

35 20JAN04 1 0 1 0 0 0 6950 .

36 21JAN04 0 1 2 -1 1 -1 7250 .

37 22JAN04 0 1 2 -1 1 -1 8150 .

38 23JAN04 0 1 2 -1 1 -1 9050 .

39 26JAN04 0 1 2 -1 1 -1 9950 .

40 27JAN04 0 1 2 -1 1 -1 10850 .

41 28JAN04 0 1 1 0 1 -1 11750 .

42 29JAN04 0 1 1 0 1 -1 12700 .

43 30JAN04 0 1 1 0 1 -1 13650 .

44 02FEB04 0 1 1 0 1 -1 14600 .

45 03FEB04 0 1 1 0 1 -1 15550 .

46 04FEB04 0 1 0 1 1 -1 16500 .

220 F Chapter 4: The CPM Procedure

Output 4.17.5 continued

Use of the INFEASDIAGNOSTIC Option
Usage Profile: Multiple Resources

Obs _TIME_ Rdeseng Adeseng Rprodeng Aprodeng Rmktan Amktan Rmoney Amoney

47 05FEB04 0 1 0 1 1 -1 16900 .

48 06FEB04 0 1 0 1 1 -1 17300 .

49 09FEB04 0 1 0 1 1 -1 17700 .

50 10FEB04 0 1 0 1 1 -1 18100 .

51 11FEB04 0 1 0 1 0 0 18500 .

52 12FEB04 0 1 0 1 0 0 18750 .

53 13FEB04 0 1 0 1 0 0 19000 .

54 16FEB04 0 1 0 1 0 0 19250 .

55 17FEB04 0 1 0 1 0 0 19500 .

56 18FEB04 1 0 0 1 1 -1 19750 .

57 19FEB04 1 0 0 1 1 -1 20100 .

58 20FEB04 1 0 0 1 1 -1 20450 .

59 23FEB04 1 0 0 1 1 -1 20800 .

60 24FEB04 1 0 0 1 1 -1 21150 .

61 25FEB04 1 0 0 1 1 -1 21500 .

62 26FEB04 1 0 0 1 1 -1 21850 .

63 27FEB04 1 0 0 1 1 -1 22200 .

64 01MAR04 1 0 0 1 1 -1 22550 .

65 02MAR04 1 0 0 1 1 -1 22900 .

66 03MAR04 0 1 0 1 1 -1 23250 .

67 04MAR04 0 1 0 1 1 -1 23450 .

68 05MAR04 0 1 0 1 1 -1 23650 .

69 08MAR04 0 1 0 1 1 -1 23850 .

70 09MAR04 0 1 0 1 1 -1 24050 .

71 10MAR04 1 0 1 0 0 0 24250 .

72 11MAR04 1 0 1 0 0 0 24450 .

73 12MAR04 1 0 1 0 0 0 24650 .

74 15MAR04 1 0 1 0 0 0 24850 .

75 16MAR04 1 0 1 0 0 0 25050 .

76 17MAR04 0 1 0 1 0 0 25250 .

Example 4.18: Variable Activity Delay F 221

Example 4.18: Variable Activity Delay
In Example 4.17, the DELAY= option is used to specify a maximum amount of delay that is allowed for all
activities in the project. In some situations it may be reasonable to set the delay for each activity based on
some characteristic pertaining to the activity. For example, consider the data in Example 4.17 with a slightly
different scenario. Suppose that no delay is allowed in activities that require a production engineer. Data set
WIDGR18, displayed in Output 4.18.1, is obtained from WIDGR17 using the following simple DATA step.

data widgr18;
set widgr17;
if prodeng ^= . then adelay = 0;
else adelay = 5;
run;

title 'Variable Activity Delay';
title2 'Data Set WIDGR18';
proc print;

run;

Output 4.18.1 Activity Data Set WIDGR18

Variable Activity Delay
Data Set WIDGR18

Obs task days tail head deseng mktan prodeng money adelay

1 Approve Plan 5 1 2 1 1 1 200 0

2 Drawings 10 2 3 1 . 1 100 0

3 Study Market 5 2 4 . 1 1 100 0

4 Write Specs 5 2 3 1 . 1 150 0

5 Prototype 15 3 5 1 . 1 300 0

6 Mkt. Strat. 10 4 6 . 1 . 150 5

7 Materials 10 5 7 . . . 300 5

8 Facility 10 5 7 . . 1 500 0

9 Init. Prod. 10 7 8 . . . 250 5

10 Evaluate 10 8 9 1 . . 150 5

11 Test Market 15 6 9 . 1 . 200 5

12 Changes 5 9 10 1 . 1 200 0

13 Production 0 10 11 1 . 1 600 0

14 Marketing 0 6 12 . 1 . . 5

15 Dummy 0 8 6 5

222 F Chapter 4: The CPM Procedure

PROC CPM is invoked with the ACTDELAY=ADELAY option in the RESOURCE statement. The IN-
FEASDIAGNOSTIC option is also used to enable the procedure to schedule activities even if resources are
insufficient. The output data sets are displayed in Output 4.18.2 and Output 4.18.3.

data resin17;
input per & date7. otype $

deseng mktan prodeng money;
format per date7.;
datalines;

. restype 1 1 1 4
01dec03 reslevel 1 . 1 .
;

data holdata;
format hol date7. name $9. ;
input hol & date7. name & ;
datalines;

25dec03 Christmas
01jan04 New Year
;

proc cpm date='01dec03'd
interval=weekday
data=widgr18
holidata=holdata
resin=resin17
out=widgo18
resout=widgro18;

tailnode tail;
duration days;
headnode head;
holiday hol;
resource deseng prodeng mktan money / period=per

obstype=otype
delayanalysis
actdelay=adelay
infeasdiagnostic
rcs avl t_float
cumusage;

id task;
run;

Example 4.18: Variable Activity Delay F 223

Output 4.18.2 Resource-Constrained Schedule: Variable Activity Delay

Variable Activity Delay
Resource Constrained Schedule

Obs tail head days task adelay deseng prodeng mktan money S_START S_FINISH E_START

1 1 2 5 Approve Plan 0 1 1 1 200 01DEC03 05DEC03 01DEC03

2 2 3 10 Drawings 0 1 1 . 100 08DEC03 19DEC03 08DEC03

3 2 4 5 Study Market 0 . 1 1 100 14JAN04 20JAN04 08DEC03

4 2 3 5 Write Specs 0 1 1 . 150 08DEC03 12DEC03 08DEC03

5 3 5 15 Prototype 0 1 1 . 300 22DEC03 13JAN04 22DEC03

6 4 6 10 Mkt. Strat. 5 . . 1 150 21JAN04 03FEB04 15DEC03

7 5 7 10 Materials 5 . . . 300 14JAN04 27JAN04 14JAN04

8 5 7 10 Facility 0 . 1 . 500 14JAN04 27JAN04 14JAN04

9 7 8 10 Init. Prod. 5 . . . 250 28JAN04 10FEB04 28JAN04

10 8 9 10 Evaluate 5 1 . . 150 11FEB04 24FEB04 11FEB04

11 6 9 15 Test Market 5 . . 1 200 11FEB04 02MAR04 11FEB04

12 9 10 5 Changes 0 1 1 . 200 03MAR04 09MAR04 03MAR04

13 10 11 0 Production 0 1 1 . 600 10MAR04 10MAR04 10MAR04

14 6 12 0 Marketing 5 . . 1 . 11FEB04 11FEB04 11FEB04

15 8 6 0 Dummy 5 11FEB04 11FEB04 11FEB04

Obs E_FINISH L_START L_FINISH T_FLOAT R_DELAY DELAY_R SUPPL_R

1 05DEC03 01DEC03 05DEC03 0 0 mktan

2 19DEC03 08DEC03 19DEC03 0 0

3 12DEC03 21JAN04 27JAN04 30 25 prodeng prodeng

4 12DEC03 15DEC03 19DEC03 5 0 deseng

5 13JAN04 22DEC03 13JAN04 0 0

6 29DEC03 28JAN04 10FEB04 30 0 mktan

7 27JAN04 14JAN04 27JAN04 0 0

8 27JAN04 14JAN04 27JAN04 0 0

9 10FEB04 28JAN04 10FEB04 0 0

10 24FEB04 18FEB04 02MAR04 5 0

11 02MAR04 11FEB04 02MAR04 0 0 mktan

12 09MAR04 03MAR04 09MAR04 0 0

13 10MAR04 10MAR04 10MAR04 0 0

14 11FEB04 10MAR04 10MAR04 20 0

15 11FEB04 11FEB04 11FEB04 0 0

224 F Chapter 4: The CPM Procedure

Output 4.18.3 Resource Usage

Variable Activity Delay
Usage Profile

Obs _TIME_ Rdeseng Adeseng Rprodeng Aprodeng Rmktan Amktan Rmoney Amoney

1 01DEC03 1 0 1 0 1 -1 0 .

2 02DEC03 1 0 1 0 1 -1 200 .

3 03DEC03 1 0 1 0 1 -1 400 .

4 04DEC03 1 0 1 0 1 -1 600 .

5 05DEC03 1 0 1 0 1 -1 800 .

6 08DEC03 2 -1 2 -1 0 0 1000 .

7 09DEC03 2 -1 2 -1 0 0 1250 .

8 10DEC03 2 -1 2 -1 0 0 1500 .

9 11DEC03 2 -1 2 -1 0 0 1750 .

10 12DEC03 2 -1 2 -1 0 0 2000 .

11 15DEC03 1 0 1 0 0 0 2250 .

12 16DEC03 1 0 1 0 0 0 2350 .

13 17DEC03 1 0 1 0 0 0 2450 .

14 18DEC03 1 0 1 0 0 0 2550 .

15 19DEC03 1 0 1 0 0 0 2650 .

16 22DEC03 1 0 1 0 0 0 2750 .

17 23DEC03 1 0 1 0 0 0 3050 .

18 24DEC03 1 0 1 0 0 0 3350 .

19 26DEC03 1 0 1 0 0 0 3650 .

20 29DEC03 1 0 1 0 0 0 3950 .

21 30DEC03 1 0 1 0 0 0 4250 .

22 31DEC03 1 0 1 0 0 0 4550 .

23 02JAN04 1 0 1 0 0 0 4850 .

24 05JAN04 1 0 1 0 0 0 5150 .

25 06JAN04 1 0 1 0 0 0 5450 .

26 07JAN04 1 0 1 0 0 0 5750 .

27 08JAN04 1 0 1 0 0 0 6050 .

28 09JAN04 1 0 1 0 0 0 6350 .

29 12JAN04 1 0 1 0 0 0 6650 .

30 13JAN04 1 0 1 0 0 0 6950 .

31 14JAN04 0 1 2 -1 1 -1 7250 .

32 15JAN04 0 1 2 -1 1 -1 8150 .

33 16JAN04 0 1 2 -1 1 -1 9050 .

34 19JAN04 0 1 2 -1 1 -1 9950 .

35 20JAN04 0 1 2 -1 1 -1 10850 .

36 21JAN04 0 1 1 0 1 -1 11750 .

37 22JAN04 0 1 1 0 1 -1 12700 .

38 23JAN04 0 1 1 0 1 -1 13650 .

39 26JAN04 0 1 1 0 1 -1 14600 .

40 27JAN04 0 1 1 0 1 -1 15550 .

41 28JAN04 0 1 0 1 1 -1 16500 .

42 29JAN04 0 1 0 1 1 -1 16900 .

43 30JAN04 0 1 0 1 1 -1 17300 .

44 02FEB04 0 1 0 1 1 -1 17700 .

45 03FEB04 0 1 0 1 1 -1 18100 .

46 04FEB04 0 1 0 1 0 0 18500 .

Example 4.18: Variable Activity Delay F 225

Output 4.18.3 continued

Variable Activity Delay
Usage Profile

Obs _TIME_ Rdeseng Adeseng Rprodeng Aprodeng Rmktan Amktan Rmoney Amoney

47 05FEB04 0 1 0 1 0 0 18750 .

48 06FEB04 0 1 0 1 0 0 19000 .

49 09FEB04 0 1 0 1 0 0 19250 .

50 10FEB04 0 1 0 1 0 0 19500 .

51 11FEB04 1 0 0 1 1 -1 19750 .

52 12FEB04 1 0 0 1 1 -1 20100 .

53 13FEB04 1 0 0 1 1 -1 20450 .

54 16FEB04 1 0 0 1 1 -1 20800 .

55 17FEB04 1 0 0 1 1 -1 21150 .

56 18FEB04 1 0 0 1 1 -1 21500 .

57 19FEB04 1 0 0 1 1 -1 21850 .

58 20FEB04 1 0 0 1 1 -1 22200 .

59 23FEB04 1 0 0 1 1 -1 22550 .

60 24FEB04 1 0 0 1 1 -1 22900 .

61 25FEB04 0 1 0 1 1 -1 23250 .

62 26FEB04 0 1 0 1 1 -1 23450 .

63 27FEB04 0 1 0 1 1 -1 23650 .

64 01MAR04 0 1 0 1 1 -1 23850 .

65 02MAR04 0 1 0 1 1 -1 24050 .

66 03MAR04 1 0 1 0 0 0 24250 .

67 04MAR04 1 0 1 0 0 0 24450 .

68 05MAR04 1 0 1 0 0 0 24650 .

69 08MAR04 1 0 1 0 0 0 24850 .

70 09MAR04 1 0 1 0 0 0 25050 .

71 10MAR04 0 1 0 1 0 0 25250 .

Note from the Schedule data set that the activity ‘Study Market’ is scheduled to start on January 14, 2004,
even though (L_STARTC adelay)=21JAN04. This is due to the fact that at every time interval, the scheduling
algorithm looks ahead in time to detect any increase in the primary level of the resource; if the future resource
profile indicates that the procedure will need to use supplementary levels anyway, the activity will not be
forced to wait until (L_STARTC DELAY). (To force the activity to wait until its latest allowed start time, use
the AWAITDELAY option). The DELAYANALYSIS variables indicate that a supplementary level of the
resource prodeng is needed to schedule the activity on 14JAN03. The variable SUPPL_R identifies only one
supplementary resource that is needed for the activity. In fact, examination of the resource requirements for
the activity and the RESOURCEOUT data set shows that an extra market analyst is also needed between
the 14th and 20th of January to schedule this activity. Likewise, the activities ‘Write Specs’ and ‘Drawings’
require a design engineer and a production engineer; both these activities start on the 8th of December. The
RESOURCEOUT data set indicates that an extra design engineer and an extra production engineer are needed
from the 8th to the 12th of December.

226 F Chapter 4: The CPM Procedure

The next invocation of PROC CPM illustrates the use of the ACTDELAY variable to force the resource-
constrained schedule to coincide with the early start schedule. The following DATA step uses the Schedule
data set WIDGO18 to set an activity delay variable (actdel) to be equal to �T_FLOAT. PROC CPM is then
invoked with the ACTDELAY variable equal to actdel and the INFEASDIAGNOSTIC option. This forces
all activities to be scheduled on or before (L_STARTC actdel), which happens to be equal to E_START; thus
all activities are scheduled to start at their early start time. The resulting Schedule data set is displayed in
Output 4.18.4. Though this is an extreme case, a similar technique could be used selectively to set the delay
value for each activity (or some of the activities) to depend on the unconstrained schedule or the T_FLOAT
value. If both the DELAY= and ACTDELAY= options are specified, the DELAY= value is used to set the
activity delay values for activities that have missing values for the ACTDELAY variable.

Note also that in this invocation of PROC CPM, the BASELINE statement is used to compare the early start
schedule and the resource constrained schedule. The S_VAR and F_VAR variables are 0 for all the activities,
as is to be expected (since all activities are forced to start as per the early start schedule).

data negdelay;
set widgo18;
actdel=-t_float;
run;

proc cpm date='01dec03'd
interval=weekday
data=negdelay
holidata=holdata
resin=resin17
out=widgo18n;

tailnode tail;
duration days;
headnode head;
holiday hol;
resource deseng prodeng mktan money / period=per

obstype=otype
delayanalysis
actdelay=actdel
infeasdiagnostic;

baseline / set=early compare=resource;
id task;
run;

Example 4.18: Variable Activity Delay F 227

Output 4.18.4 Resource-Constrained Schedule: Activity Delay = - (T_FLOAT)

Variable Activity Delay
Resource Constrained Schedule
Activity Delay = - (T_FLOAT)

O
b
s

t
a
i
l

h
e
a
d

d
a
y
s

t
a
s
k

a
c
t
d
e
l

d
e
s
e
n
g

p
r
o
d
e
n
g

m
k
t
a
n

m
o
n
e
y

S
_
S
T
A
R
T

S
_
F
I
N
I
S
H

E
_
S
T
A
R
T

1 1 2 5 Approve Plan 0 1 1 1 200 01DEC03 05DEC03 01DEC03

2 2 3 10 Drawings 0 1 1 . 100 08DEC03 19DEC03 08DEC03

3 2 4 5 Study Market -30 . 1 1 100 08DEC03 12DEC03 08DEC03

4 2 3 5 Write Specs -5 1 1 . 150 08DEC03 12DEC03 08DEC03

5 3 5 15 Prototype 0 1 1 . 300 22DEC03 13JAN04 22DEC03

6 4 6 10 Mkt. Strat. -30 . . 1 150 15DEC03 29DEC03 15DEC03

7 5 7 10 Materials 0 . . . 300 14JAN04 27JAN04 14JAN04

8 5 7 10 Facility 0 . 1 . 500 14JAN04 27JAN04 14JAN04

9 7 8 10 Init. Prod. 0 . . . 250 28JAN04 10FEB04 28JAN04

10 8 9 10 Evaluate -5 1 . . 150 11FEB04 24FEB04 11FEB04

11 6 9 15 Test Market 0 . . 1 200 11FEB04 02MAR04 11FEB04

12 9 10 5 Changes 0 1 1 . 200 03MAR04 09MAR04 03MAR04

13 10 11 0 Production 0 1 1 . 600 10MAR04 10MAR04 10MAR04

14 6 12 0 Marketing -20 . . 1 . 11FEB04 11FEB04 11FEB04

15 8 6 0 Dummy 0 11FEB04 11FEB04 11FEB04

O
b
s

E
_
F
I
N
I
S
H

L
_
S
T
A
R
T

L
_
F
I
N
I
S
H

R
_
D
E
L
A
Y

D
E
L
A
Y
_
R

S
U
P
P
L
_
R

B
_
S
T
A
R
T

B
_
F
I
N
I
S
H

S
_
V
A
R

F
_
V
A
R

1 05DEC03 01DEC03 05DEC03 0 mktan 01DEC03 05DEC03 0 0

2 19DEC03 08DEC03 19DEC03 0 08DEC03 19DEC03 0 0

3 12DEC03 21JAN04 27JAN04 0 prodeng 08DEC03 12DEC03 0 0

4 12DEC03 15DEC03 19DEC03 0 deseng 08DEC03 12DEC03 0 0

5 13JAN04 22DEC03 13JAN04 0 22DEC03 13JAN04 0 0

6 29DEC03 28JAN04 10FEB04 0 mktan 15DEC03 29DEC03 0 0

7 27JAN04 14JAN04 27JAN04 0 14JAN04 27JAN04 0 0

8 27JAN04 14JAN04 27JAN04 0 14JAN04 27JAN04 0 0

9 10FEB04 28JAN04 10FEB04 0 28JAN04 10FEB04 0 0

10 24FEB04 18FEB04 02MAR04 0 11FEB04 24FEB04 0 0

11 02MAR04 11FEB04 02MAR04 0 mktan 11FEB04 02MAR04 0 0

12 09MAR04 03MAR04 09MAR04 0 03MAR04 09MAR04 0 0

13 10MAR04 10MAR04 10MAR04 0 10MAR04 10MAR04 0 0

14 11FEB04 10MAR04 10MAR04 0 11FEB04 11FEB04 0 0

15 11FEB04 11FEB04 11FEB04 0 11FEB04 11FEB04 0 0

228 F Chapter 4: The CPM Procedure

Example 4.19: Activity Splitting
This example illustrates the use of activity splitting to help reduce project duration. By default, PROC CPM
assumes that an activity cannot be interrupted once it is started (except for holidays and weekends). During
resource-constrained scheduling, it is possible for a noncritical activity to be scheduled first, and at a later
time a critical activity may be held waiting for a resource to be freed by this less critical activity. In such
situations, you way want to allow noncritical activities to be preempted by critical ones. PROC CPM enables
you to specify, selectively, the activities that can be split into segments, the minimum length of each segment,
and the maximum number of segments per activity.

The data set WIDGR19, displayed in Output 4.19.1, contains the widget network in AON format with two
resources: prodman and hrdware. Suppose the production manager is required to oversee certain activities,
as indicated by a ‘1’ in the prodman column. hrdware denotes some piece of equipment that is required by
the activity ‘Drawings’ (perhaps a plotter to produce the engineering drawings). The variable minseg denotes
the minimum length of the split segments for each activity. Missing values for this variable are set to default
values (one-fifth of the activity’s duration). The Resource data set WIDGRIN, displayed in Output 4.19.2,
indicates that both resources are replenishable, there is one production manager available from December 1,
and the hardware is unavailable on the 10th and 11th of December (perhaps it is scheduled for maintenance
or has been reserved for some other project).

Output 4.19.1 Activity Splitting: Activity Data Set

Activity Splitting
Project Data

Obs task days succ prodman hrdware minseg

1 Approve Plan 5 Drawings 1 . .

2 Approve Plan 5 Study Market 1 . .

3 Approve Plan 5 Write Specs 1 . .

4 Drawings 10 Prototype . 1 1

5 Study Market 5 Mkt. Strat. . . .

6 Write Specs 5 Prototype . . .

7 Prototype 15 Materials 1 . .

8 Prototype 15 Facility 1 . .

9 Mkt. Strat. 10 Test Market 1 . 1

10 Mkt. Strat. 10 Marketing 1 . 1

11 Materials 10 Init. Prod. . . .

12 Facility 10 Init. Prod. . . .

13 Init. Prod. 10 Test Market 1 . .

14 Init. Prod. 10 Marketing 1 . .

15 Init. Prod. 10 Evaluate 1 . .

16 Evaluate 10 Changes 1 . .

17 Test Market 15 Changes . . .

18 Changes 5 Production . . .

19 Production 0 1 . .

20 Marketing 0 . . .

Example 4.19: Activity Splitting F 229

Output 4.19.2 Activity Splitting: Resource Availability Data Set

Activity Splitting
Resource Availability Data Set

Obs per otype prodman hrdware

1 . restype 1 1

2 01DEC03 reslevel 1 1

3 10DEC03 reslevel . 0

4 12DEC03 reslevel . 1

The project is first scheduled without allowing any of the activities to be split. The Schedule data set SCHED,
displayed in Output 4.19.3, indicates that the project has been delayed by one week (five working days, since
maximum S_FINISH = ‘17MAR04’ while maximum E_FINISH = ‘10MAR04’). The activity ‘Drawings’ has
been postponed to start after the equipment has been serviced (or used by the other project), and the activity
‘Prototype’ (which is actually a critical activity) cannot start on schedule because the production manager is
tied up with the noncritical activity ‘Mkt. Strat.’.

proc cpm date='01dec03'd
data=widgr19 resin=widgrin
holidata=holdata
out=sched resout=rout
interval=weekday collapse;

activity task;
duration days;
successor succ;
holiday hol;
resource prodman hrdware / period=per obstype=otype

t_float f_float rcs avl;
run;

230 F Chapter 4: The CPM Procedure

Output 4.19.3 Project Schedule: Splitting Not Allowed

Activity Splitting
Project Schedule: Splitting not Allowed

Obs task succ days prodman hrdware S_START S_FINISH E_START E_FINISH

1 Approve Plan Drawings 5 1 . 01DEC03 05DEC03 01DEC03 05DEC03

2 Drawings Prototype 10 . 1 12DEC03 26DEC03 08DEC03 19DEC03

3 Study Market Mkt. Strat. 5 . . 08DEC03 12DEC03 08DEC03 12DEC03

4 Write Specs Prototype 5 . . 08DEC03 12DEC03 08DEC03 12DEC03

5 Prototype Materials 15 1 . 30DEC03 20JAN04 22DEC03 13JAN04

6 Mkt. Strat. Test Market 10 1 . 15DEC03 29DEC03 15DEC03 29DEC03

7 Materials Init. Prod. 10 . . 21JAN04 03FEB04 14JAN04 27JAN04

8 Facility Init. Prod. 10 . . 21JAN04 03FEB04 14JAN04 27JAN04

9 Init. Prod. Test Market 10 1 . 04FEB04 17FEB04 28JAN04 10FEB04

10 Evaluate Changes 10 1 . 18FEB04 02MAR04 11FEB04 24FEB04

11 Test Market Changes 15 . . 18FEB04 09MAR04 11FEB04 02MAR04

12 Changes Production 5 . . 10MAR04 16MAR04 03MAR04 09MAR04

13 Production 0 1 . 17MAR04 17MAR04 10MAR04 10MAR04

14 Marketing 0 . . 18FEB04 18FEB04 11FEB04 11FEB04

Obs L_START L_FINISH T_FLOAT F_FLOAT

1 01DEC03 05DEC03 0 0

2 08DEC03 19DEC03 0 0

3 21JAN04 27JAN04 30 0

4 15DEC03 19DEC03 5 5

5 22DEC03 13JAN04 0 0

6 28JAN04 10FEB04 30 30

7 14JAN04 27JAN04 0 0

8 14JAN04 27JAN04 0 0

9 28JAN04 10FEB04 0 0

10 18FEB04 02MAR04 5 5

11 11FEB04 02MAR04 0 0

12 03MAR04 09MAR04 0 0

13 10MAR04 10MAR04 0 0

14 10MAR04 10MAR04 20 20

Example 4.19: Activity Splitting F 231

In the second invocation of PROC CPM, the MINSEGMTDUR= option is used in the RESOURCE statement
to identify the variable minseg to the procedure. This enables the algorithm to split the ‘Drawings’ activity
so that some of it is done before December 10, 2003, and the rest is scheduled to start on December 12, 2003.
Likewise, the production manager is allocated to the activity ‘Mkt. Strat.’ on December 15, 2003. On the
24th of December the activity ‘Prototype’ demands the production manager, and since preemption is allowed,
the earlier activity ‘Mkt. Strat.’, which is less critical than ‘Prototype’, is temporarily halted and is resumed
on the 16th of January after the completion of ‘Prototype’ on the 15th of January. The Schedule data set,
displayed in Output 4.19.4, contains separate observations for each segment of the split activities as indicated
by the variable SEGMT_NO. The project duration has been reduced by three working days, by allowing
appropriate activities to be split.

proc cpm date='01dec03'd
data=widgr19
holidata=holdata resin=widgrin
out=spltschd resout=spltrout
interval=weekday collapse;

activity task;
duration days;
successor succ;
holiday hol;
resource prodman hrdware / period=per obstype=otype

minsegmtdur=minseg
rcs avl;

id task;
run;

232 F Chapter 4: The CPM Procedure

Output 4.19.4 Project Schedule: Splitting Allowed

Activity Splitting
Project Schedule: Splitting Allowed

Obs task succ SEGMT_NO days prodman hrdware

1 Approve Plan Drawings . 5 1 .

2 Drawings Prototype . 10 . 1

3 Drawings Prototype 1 2 . 1

4 Drawings Prototype 2 8 . 1

5 Study Market Mkt. Strat. . 5 . .

6 Write Specs Prototype . 5 . .

7 Prototype Materials . 15 1 .

8 Mkt. Strat. Test Market . 10 1 .

9 Mkt. Strat. Test Market 1 7 1 .

10 Mkt. Strat. Test Market 2 3 1 .

11 Materials Init. Prod. . 10 . .

12 Facility Init. Prod. . 10 . .

13 Init. Prod. Test Market . 10 1 .

14 Evaluate Changes . 10 1 .

15 Test Market Changes . 15 . .

16 Changes Production . 5 . .

17 Production . 0 1 .

18 Marketing . 0 . .

Obs S_START S_FINISH E_START E_FINISH L_START L_FINISH

1 01DEC03 05DEC03 01DEC03 05DEC03 01DEC03 05DEC03

2 08DEC03 23DEC03 08DEC03 19DEC03 08DEC03 19DEC03

3 08DEC03 09DEC03 08DEC03 19DEC03 08DEC03 19DEC03

4 12DEC03 23DEC03 08DEC03 19DEC03 08DEC03 19DEC03

5 08DEC03 12DEC03 08DEC03 12DEC03 21JAN04 27JAN04

6 08DEC03 12DEC03 08DEC03 12DEC03 15DEC03 19DEC03

7 24DEC03 15JAN04 22DEC03 13JAN04 22DEC03 13JAN04

8 15DEC03 20JAN04 15DEC03 29DEC03 28JAN04 10FEB04

9 15DEC03 23DEC03 15DEC03 29DEC03 28JAN04 10FEB04

10 16JAN04 20JAN04 15DEC03 29DEC03 28JAN04 10FEB04

11 16JAN04 29JAN04 14JAN04 27JAN04 14JAN04 27JAN04

12 16JAN04 29JAN04 14JAN04 27JAN04 14JAN04 27JAN04

13 30JAN04 12FEB04 28JAN04 10FEB04 28JAN04 10FEB04

14 13FEB04 26FEB04 11FEB04 24FEB04 18FEB04 02MAR04

15 13FEB04 04MAR04 11FEB04 02MAR04 11FEB04 02MAR04

16 05MAR04 11MAR04 03MAR04 09MAR04 03MAR04 09MAR04

17 12MAR04 12MAR04 10MAR04 10MAR04 10MAR04 10MAR04

18 13FEB04 13FEB04 11FEB04 11FEB04 10MAR04 10MAR04

Example 4.20: Alternate Resources F 233

Example 4.20: Alternate Resources
Some projects may have two or more resource types that are interchangeable; if one resource is insufficient,
the other one can be used in its place. To illustrate the use of alternate resources, consider the widget
manufacturing example with the data in AON format as shown in Output 4.20.1. As in Example 4.17,
suppose there are two types of engineers, a design engineer and a production engineer. In addition, there is a
generic pool of engineers, denoted by the variable engpool. The resource requirements for each category are
specified in the data set WIDGR20.

Output 4.20.1 Alternate Resources: Activity Data Set

Scheduling with Alternate Resources
Data Set WIDGR20

Obs task days succ deseng prodeng engpool

1 Approve Plan 5 Drawings 1 1 .

2 Approve Plan 5 Study Market 1 1 .

3 Approve Plan 5 Write Specs 1 1 .

4 Drawings 10 Prototype 1 1 .

5 Study Market 5 Mkt. Strat. . 1 .

6 Write Specs 5 Prototype 1 1 .

7 Prototype 15 Materials 1 1 1

8 Prototype 15 Facility 1 1 1

9 Mkt. Strat. 10 Test Market . . .

10 Mkt. Strat. 10 Marketing . . .

11 Materials 10 Init. Prod. . . .

12 Facility 10 Init. Prod. . 1 2

13 Init. Prod. 10 Test Market . . 2

14 Init. Prod. 10 Marketing . . 2

15 Init. Prod. 10 Evaluate . . 2

16 Evaluate 10 Changes 1 . .

17 Test Market 15 Changes . . .

18 Changes 5 Production 1 1 .

19 Production 0 . . .

20 Marketing 0 . . .

Output 4.20.2 Alternate Resources: RESOURCEIN Data Set

Scheduling with Alternate Resources
Data Set RESIN20

Obs per otype resid deseng prodeng engpool

1 . restype 1 1 1

2 . altprty deseng . 1 2

3 . altprty prodeng . . 1

4 . suplevel 1 1 .

5 01DEC03 reslevel 1 1 4

234 F Chapter 4: The CPM Procedure

The resource availability data set RESIN20, displayed in Output 4.20.2, identifies all three resources as
replenishable resources and indicates a primary as well as a supplementary level of availability. A new
variable resid in the data set is used to identify resources in observations 2 and 3 that can be substituted for
deseng and prodeng, respectively. These observations have the value ‘altprty’ for the OBSTYPE variable
and indicate a priority for the substitution. For example, observation number 2 indicates that if deseng is
unavailable, the procedure can use prodeng, and if even that is insufficient, it can draw from the engineering
resource pool engpool. To trigger the substitution of resources, use the RESID= option in the RESOURCE
statement.

Output 4.20.3 Alternate Resources Not Used

Scheduling with Alternate Resources
Alternate Resources not used

Obs task succ days deseng prodeng engpool S_START S_FINISH

1 Approve Plan Drawings 5 1 1 . 01DEC03 05DEC03

2 Drawings Prototype 10 1 1 . 08DEC03 19DEC03

3 Study Market Mkt. Strat. 5 . 1 . 04FEB04 10FEB04

4 Write Specs Prototype 5 1 1 . 22DEC03 29DEC03

5 Prototype Materials 15 1 1 1 30DEC03 20JAN04

6 Mkt. Strat. Test Market 10 . . . 11FEB04 24FEB04

7 Materials Init. Prod. 10 . . . 21JAN04 03FEB04

8 Facility Init. Prod. 10 . 1 2 21JAN04 03FEB04

9 Init. Prod. Test Market 10 . . 2 04FEB04 17FEB04

10 Evaluate Changes 10 1 . . 18FEB04 02MAR04

11 Test Market Changes 15 . . . 25FEB04 16MAR04

12 Changes Production 5 1 1 . 17MAR04 23MAR04

13 Production 0 . . . 24MAR04 24MAR04

14 Marketing 0 . . . 25FEB04 25FEB04

Obs E_START E_FINISH L_START L_FINISH R_DELAY DELAY_R SUPPL_R

1 01DEC03 05DEC03 01DEC03 05DEC03 0

2 08DEC03 19DEC03 08DEC03 19DEC03 0

3 08DEC03 12DEC03 21JAN04 27JAN04 40 prodeng

4 08DEC03 12DEC03 15DEC03 19DEC03 10 deseng

5 22DEC03 13JAN04 22DEC03 13JAN04 0

6 15DEC03 29DEC03 28JAN04 10FEB04 0

7 14JAN04 27JAN04 14JAN04 27JAN04 0

8 14JAN04 27JAN04 14JAN04 27JAN04 0

9 28JAN04 10FEB04 28JAN04 10FEB04 0

10 11FEB04 24FEB04 18FEB04 02MAR04 0

11 11FEB04 02MAR04 11FEB04 02MAR04 0

12 03MAR04 09MAR04 03MAR04 09MAR04 0

13 10MAR04 10MAR04 10MAR04 10MAR04 0

14 11FEB04 11FEB04 10MAR04 10MAR04 0

Example 4.20: Alternate Resources F 235

First, PROC CPM is invoked without reference to the RESID variable. The procedure ignores observations
2 and 3 in the RESOURCEIN data set (a message is written to the log), and the project is scheduled using
the available resources; the supplementary level is not used because the project can be scheduled using only
the primary resources by delaying it a few days. The project completion time is March 24, 2004 (see the
schedule displayed in Output 4.20.3). The following program shows the invocation of PROC CPM.

proc cpm date='01dec03'd
interval=weekday collapse
data=widgr20 resin=resin20 holidata=holdata
out=widgo20 resout=widgro20;

activity task;
duration days;
successor succ;
holiday hol;
resource deseng prodeng engpool / period=per

obstype=otype
delayanalysis
rcs avl;

run;

Next, PROC CPM is invoked with the RESID= option, and the resulting Schedule data set is displayed in
Output 4.20.4. The new schedule shows that the project completion time (10MAR04) has been reduced by
two weeks as a result of using alternate resources.

236 F Chapter 4: The CPM Procedure

Output 4.20.4 Alternate Resources Used

Scheduling with Alternate Resources
Alternate Resources Reduce Project Completion Time

Obs task succ days deseng prodeng engpool Udeseng Uprodeng Uengpool S_START

1 Approve Plan Drawings 5 1 1 . 1 1 . 01DEC03

2 Drawings Prototype 10 1 1 . 1 1 . 08DEC03

3 Study Market Mkt. Strat. 5 . 1 . . . 1 08DEC03

4 Write Specs Prototype 5 1 1 . . . 2 08DEC03

5 Prototype Materials 15 1 1 1 1 1 1 22DEC03

6 Mkt. Strat. Test Market 10 15DEC03

7 Materials Init. Prod. 10 14JAN04

8 Facility Init. Prod. 10 . 1 2 . 1 2 14JAN04

9 Init. Prod. Test Market 10 . . 2 . . 2 28JAN04

10 Evaluate Changes 10 1 . . 1 . . 11FEB04

11 Test Market Changes 15 11FEB04

12 Changes Production 5 1 1 . 1 1 . 03MAR04

13 Production 0 10MAR04

14 Marketing 0 11FEB04

Obs S_FINISH E_START E_FINISH L_START L_FINISH R_DELAY DELAY_R SUPPL_R

1 05DEC03 01DEC03 05DEC03 01DEC03 05DEC03 0

2 19DEC03 08DEC03 19DEC03 08DEC03 19DEC03 0

3 12DEC03 08DEC03 12DEC03 21JAN04 27JAN04 0

4 12DEC03 08DEC03 12DEC03 15DEC03 19DEC03 0

5 13JAN04 22DEC03 13JAN04 22DEC03 13JAN04 0

6 29DEC03 15DEC03 29DEC03 28JAN04 10FEB04 0

7 27JAN04 14JAN04 27JAN04 14JAN04 27JAN04 0

8 27JAN04 14JAN04 27JAN04 14JAN04 27JAN04 0

9 10FEB04 28JAN04 10FEB04 28JAN04 10FEB04 0

10 24FEB04 11FEB04 24FEB04 18FEB04 02MAR04 0

11 02MAR04 11FEB04 02MAR04 11FEB04 02MAR04 0

12 09MAR04 03MAR04 09MAR04 03MAR04 09MAR04 0

13 10MAR04 10MAR04 10MAR04 10MAR04 10MAR04 0

14 11FEB04 11FEB04 11FEB04 10MAR04 10MAR04 0

Example 4.20: Alternate Resources F 237

When resource substitution is allowed, the procedure adds a new variable prefixed by a ‘U’ for each resource
variable; this new variable specifies the actual resources used for each activity (as opposed to the resource
required). The activity ‘Study Market’ requires one production engineer who is tied up with the activity
‘Drawings’ on the 8th of December. Since resource substitution is allowed, the procedure uses an engineer
from engpool as indicated by a missing value for Uprodeng and a ‘1’ for Uengpool in the third observation.
Likewise, the activity ‘Write Specs’ is scheduled by substituting one engineer from engpool for a design
engineer and one for a production engineer to obtain Udeseng=‘.’, Uprodeng=‘.’, and Uengpool=2 in obser-
vation number 4. It is evident from the project finish date (S_FINISH=L_FINISH=‘10MAR04’) that resource
substitution has enabled the project to be completed without any delay. In fact, the DELAYANALYSIS
variables indicate that there is no delay in any of the activities (R_DELAY=0 and DELAY_R=‘ ’ for all
activities). Note also that supplementary levels are not used (SUPPL_R=‘ ’) for any of the resources (recall
that use of supplementary levels is triggered by the specification of a finite value for DELAY).

The following program produced Output 4.20.4:

proc cpm date='01dec03'd
interval=weekday collapse
data=widgr20 resin=resin20 holidata=holdata
out=widgalt resout=widralt;

activity task;
duration days;
successor succ;
holiday hol;
resource deseng prodeng engpool / period=per

obstype=otype
delayanalysis
resid=resid
rcs avl;

run;

The next two invocations of PROC CPM illustrate the use of both supplementary as well as alternate resources.
Note from the output data set, displayed in Output 4.20.5, that once again the project is completed without
any delay. Note also that the activity ‘Write Specs’ has used a supplementary resource whereas ‘Study
Market’ has used an alternate resource. By default, when the DELAY= option is used, it forces the procedure
to use supplementary resources before alternate resources. To invert this order so that alternate resources are
used before supplementary resources, use the ALTBEFORESUP option in the RESOURCE statement, as
illustrated in the second invocation of CPM in the following code. The resulting schedule is displayed in
Output 4.20.6; this schedule is, in fact, the same as the schedule displayed in Output 4.20.4, obtained without
the DELAY=0 and the ALTBEFORESUP options.

238 F Chapter 4: The CPM Procedure

/* Invoke CPM with the DELAY=0 option */
proc cpm date='01dec03'd

interval=weekday collapse
data=widgr20 resin=resin20 holidata=holdata
out=widgdsup resout=widrdsup;

activity task;
duration days;
successor succ;
holiday hol;
resource deseng prodeng engpool / period=per

obstype=otype
delayanalysis
delay=0
resid=resid
rcs avl;

run;

/* Invoke CPM with the DELAY=0 and ALTBEFORESUP options */
proc cpm date='01dec03'd

interval=weekday collapse
data=widgr20 resin=resin20 holidata=holdata
out=widgdsup resout=widrdsup;

activity task;
duration days;
successor succ;
holiday hol;
resource deseng prodeng engpool / period=per

obstype=otype
delayanalysis
delay=0
resid=resid altbeforesup
rcs avl;

run;

Example 4.20: Alternate Resources F 239

Output 4.20.5 Supplementary Resources Used Before Alternate Resources

Scheduling with Alternate Resources
DELAY=0, Supplementary Resources Used instead of Alternate

Obs task succ days deseng prodeng engpool Udeseng Uprodeng Uengpool S_START

1 Approve Plan Drawings 5 1 1 . 1 1 . 01DEC03

2 Drawings Prototype 10 1 1 . 1 1 . 08DEC03

3 Study Market Mkt. Strat. 5 . 1 . . . 1 08DEC03

4 Write Specs Prototype 5 1 1 . . . 2 08DEC03

5 Prototype Materials 15 1 1 1 1 1 1 22DEC03

6 Mkt. Strat. Test Market 10 15DEC03

7 Materials Init. Prod. 10 14JAN04

8 Facility Init. Prod. 10 . 1 2 . 1 2 14JAN04

9 Init. Prod. Test Market 10 . . 2 . . 2 28JAN04

10 Evaluate Changes 10 1 . . 1 . . 11FEB04

11 Test Market Changes 15 11FEB04

12 Changes Production 5 1 1 . 1 1 . 03MAR04

13 Production 0 10MAR04

14 Marketing 0 11FEB04

Obs S_FINISH E_START E_FINISH L_START L_FINISH R_DELAY DELAY_R SUPPL_R

1 05DEC03 01DEC03 05DEC03 01DEC03 05DEC03 0

2 19DEC03 08DEC03 19DEC03 08DEC03 19DEC03 0

3 12DEC03 08DEC03 12DEC03 21JAN04 27JAN04 0

4 12DEC03 08DEC03 12DEC03 15DEC03 19DEC03 0

5 13JAN04 22DEC03 13JAN04 22DEC03 13JAN04 0

6 29DEC03 15DEC03 29DEC03 28JAN04 10FEB04 0

7 27JAN04 14JAN04 27JAN04 14JAN04 27JAN04 0

8 27JAN04 14JAN04 27JAN04 14JAN04 27JAN04 0

9 10FEB04 28JAN04 10FEB04 28JAN04 10FEB04 0

10 24FEB04 11FEB04 24FEB04 18FEB04 02MAR04 0

11 02MAR04 11FEB04 02MAR04 11FEB04 02MAR04 0

12 09MAR04 03MAR04 09MAR04 03MAR04 09MAR04 0

13 10MAR04 10MAR04 10MAR04 10MAR04 10MAR04 0

14 11FEB04 11FEB04 11FEB04 10MAR04 10MAR04 0

240 F Chapter 4: The CPM Procedure

Output 4.20.6 Alternate Resources Used Before Supplementary Resources

Scheduling with Alternate Resources
DELAY=0, Alternate Resources Used instead of Supplementary

Obs task succ days deseng prodeng engpool Udeseng Uprodeng Uengpool S_START

1 Approve Plan Drawings 5 1 1 . 1 1 . 01DEC03

2 Drawings Prototype 10 1 1 . 1 1 . 08DEC03

3 Study Market Mkt. Strat. 5 . 1 . . . 1 08DEC03

4 Write Specs Prototype 5 1 1 . . . 2 08DEC03

5 Prototype Materials 15 1 1 1 1 1 1 22DEC03

6 Mkt. Strat. Test Market 10 15DEC03

7 Materials Init. Prod. 10 14JAN04

8 Facility Init. Prod. 10 . 1 2 . 1 2 14JAN04

9 Init. Prod. Test Market 10 . . 2 . . 2 28JAN04

10 Evaluate Changes 10 1 . . 1 . . 11FEB04

11 Test Market Changes 15 11FEB04

12 Changes Production 5 1 1 . 1 1 . 03MAR04

13 Production 0 10MAR04

14 Marketing 0 11FEB04

Obs S_FINISH E_START E_FINISH L_START L_FINISH R_DELAY DELAY_R SUPPL_R

1 05DEC03 01DEC03 05DEC03 01DEC03 05DEC03 0

2 19DEC03 08DEC03 19DEC03 08DEC03 19DEC03 0

3 12DEC03 08DEC03 12DEC03 21JAN04 27JAN04 0

4 12DEC03 08DEC03 12DEC03 15DEC03 19DEC03 0

5 13JAN04 22DEC03 13JAN04 22DEC03 13JAN04 0

6 29DEC03 15DEC03 29DEC03 28JAN04 10FEB04 0

7 27JAN04 14JAN04 27JAN04 14JAN04 27JAN04 0

8 27JAN04 14JAN04 27JAN04 14JAN04 27JAN04 0

9 10FEB04 28JAN04 10FEB04 28JAN04 10FEB04 0

10 24FEB04 11FEB04 24FEB04 18FEB04 02MAR04 0

11 02MAR04 11FEB04 02MAR04 11FEB04 02MAR04 0

12 09MAR04 03MAR04 09MAR04 03MAR04 09MAR04 0

13 10MAR04 10MAR04 10MAR04 10MAR04 10MAR04 0

14 11FEB04 11FEB04 11FEB04 10MAR04 10MAR04 0

Example 4.21: PERT Assumptions and Calculations F 241

Example 4.21: PERT Assumptions and Calculations
This example illustrates the PERT statistical approach. Throughout this chapter, it has been assumed that
the activity duration times are precise values determined uniquely. In practice, however, each activity is
subject to a number of chance sources of variation and it is impossible to know, a priori, the duration of the
activity. The PERT statistical approach is used to include uncertainty about durations in scheduling. For
a detailed discussion about various assumptions, techniques, and cautions related to the PERT approach,
refer to Moder, Phillips, and Davis (1983) and Elmaghraby (1977). A simple model is used here to illustrate
how PROC CPM can incorporate some of these ideas. A more detailed example can be found in SAS/OR
Software: Project Management Examples.

Consider the widget manufacturing example. To perform PERT analysis, you need to provide three estimates
of activity duration: a pessimistic estimate (tp), an optimistic estimate (to), and a modal estimate (tm). These
three estimates are used to obtain a weighted average that is assumed to be a reasonable estimate of the
activity duration. The time estimates for the activities must be independent for the analysis to be considered
valid. Furthermore, the distribution of activity duration times is purely hypothetical, as no statistical sampling
is likely to be feasible on projects of a unique nature to be accomplished at some indeterminate time in the
future. Often, the time estimates used are based on past experience with similar projects.

To derive the formula for the mean, you must assume some functional form for the unknown distribution.
The well-known Beta distribution is commonly used, as it has the desirable properties of being contained
inside a finite interval and can be symmetric or skewed, depending on the location of the mode relative to the
optimistic and pessimistic estimates. A linear approximation of the exact formula for the mean of the beta
distribution weights the three time estimates as follows:

(tp + (4*tm) + to) / 6

The following program saves the network (AOA format) from Example 4.2 with three estimates of activity
durations in a SAS data set. The DATA step also calculates the weighted average duration for each activity.
Following the DATA step, PROC CPM is invoked to produce the schedule plotted on a Gantt chart in
Output 4.21.1. The E_FINISH time for the final activity in the project contains the mean project completion
time based on the duration estimates that are used.

242 F Chapter 4: The CPM Procedure

title 'PERT Assumptions and Calculations';
/* Activity-on-Arc representation of the project

with three duration estimates */
data widgpert;

format task $12. ;
input task & tail head tm tp to;
dur = (tp + 4*tm + to) / 6;
datalines;

Approve Plan 1 2 5 7 3
Drawings 2 3 10 11 6
Study Market 2 4 5 7 3
Write Specs 2 3 5 7 3
Prototype 3 5 15 12 9
Mkt. Strat. 4 6 10 11 9
Materials 5 7 10 12 8
Facility 5 7 10 11 9
Init. Prod. 7 8 10 12 8
Evaluate 8 9 9 13 8
Test Market 6 9 14 15 13
Changes 9 10 5 6 4
Production 10 11 0 0 0
Marketing 6 12 0 0 0
Dummy 8 6 0 0 0
;

proc cpm data=widgpert out=sched
date='1dec03'd;

tailnode tail;
headnode head;
duration dur;
id task;
run;

proc sort;
by e_start;
run;

Some words of caution are worth mentioning with regard to the traditional PERT approach. The estimate
of the mean project duration obtained in this instance always underestimates the true value since the length
of a critical path is a convex function of the activity durations. The original PERT model developed by
Malcolm et al. (1959) provides a way to estimate the variance of the project duration as well as calculating the
probabilities of meeting certain target dates and so forth. Their analysis relies on an implicit assumption that
you may ignore all activities that are not on the critical path in the deterministic problem that is derived by
setting the activity durations equal to the mean value of their distributions. It then applies the Central Limit
Theorem to the duration of this critical path and interprets the result as pertaining to the project duration.

Example 4.21: PERT Assumptions and Calculations F 243

Output 4.21.1 PERT Statistical Estimates: Gantt Chart

However, when the activity durations are random variables, each path of the project network is a likely
candidate to be the critical path. Every outcome of the activity durations could result in a different longest
path. Furthermore, there could be several dependent paths in the network in the sense that they share at least
one common arc. Thus, in the most general case, the length of a longest path would be the maximum of a set
of, possibly dependent, random variables. Evaluating or approximating the distribution of the longest path,
even under very specific distributional assumptions on the activity durations is not a very easy problem. It is
not surprising that this topic is the subject of much research.

In view of the inaccuracies that can stem from the original PERT assumptions, many people prefer to resort
to the use of Monte Carlo Simulation. Van Slyke (1963) made the first attempt at straightforward simulation
to analyze the distribution of the critical path. Refer to Elmaghraby (1977) for a detailed synopsis of the
pitfalls of making traditional PERT assumptions and for an introduction to simulation techniques for activity
networks.

244 F Chapter 4: The CPM Procedure

Example 4.22: Scheduling Course - Teacher Combinations
This example demonstrates the use of PROC CPM for a typical scheduling problem that may not necessarily
fit into a conventional project management scenario. Such problems abound in practice and can usually be
solved using a mathematical programming model. Here, the problem is modeled as a resource-allocation
problem using PROC CPM, illustrating the richness of the modeling environment that is available with the
SAS System. (Refer also to Kulkarni (1991) and SAS/OR Software: Project Management Examples for
another example of course scheduling using PROC CPM.)

A committee for academically gifted children wishes to conduct some special classes on weekends. There
are four subjects that are to be taught and a number of teachers available to teach them. Only certain
course-teacher combinations are allowed. There is a constraint on the number of rooms that are available and
some teachers may not be able to teach at certain times. Possible class times are one-hour periods between
9 a.m. and 12 noon on Saturdays and Sundays. The goal is to determine a feasible schedule of classes
specifying the teacher that is to teach each class.

Suppose that there are four courses, c1, c2, c3, and c4, and three teachers, t1, t2, and t3. There are several
ways of modeling this problem; one possible way is to form distinct classes for each possible course-teacher
combination and treat each of these as a distinct activity that needs to be scheduled. For example, if course c1
can be taught by teachers t1, t2, and t3, define three activities, ‘c1t1’, ‘c1t2’, and ‘c1t3’. The resources for
this problem are the courses, the teachers, and the number of rooms. In particular, the resources needed for a
particular activity, say, ‘c1t3’, are c1 and t3.

The following constraints are imposed:

� Course 1 can be taught by Teachers 1, 2, and 3; Course 2 can be taught by Teachers 1 and 3; Course 3
can be taught by Teachers 1, 2, and 3; and Course 4 can be taught by Teachers 1 and 2.

� The total number of classes taught at any time cannot exceed NROOMS.

� Class ‘citj’ (if such a course-teacher combination is allowed) can be taught only at times when teacher
tj is available.

� At any given time, a teacher can teach only one class.

� At any given time, only one class is to be taught for any given course.

The following program uses PROC CPM to schedule the classes. The schedule is obtained in terms of
unformatted numeric values; the times 1, 2, 3, 4, 5, and 6 are interpreted as the six different time slots that
are possible, namely, Saturday 9, 10, and 11 a.m. and Sunday 9, 10, and 11 a.m.

The data set CLASSES is the Activity data set, and it indicates the possible course-teacher combinations and
identifies the specific room, teacher, and course as the resources required. For each activity, the duration is
1 unit. Note that, in this example, there are no precedence constraints between the activities; the resource
availability dictates the schedule entirely. However, there may be situations (such as prerequisite courses)
that impose precedence constraints.

The Resource data set, RESOURCE, specifies resource availabilities. The period variable, per, indicates the
time period from which resources are available. Since only one class corresponding to a given course is to be
taught at a given time, the availability for c1 – c4 is specified as ‘1’. Teacher 2 is available only on Sunday;

Example 4.22: Scheduling Course - Teacher Combinations F 245

thus, specify the availability of t2 to be 1 from time period 4. The total number of rooms available at a given
time is three. Thus, no more than three classes can be scheduled at a given time.

In the invocation of PROC CPM, the STOPDATE= option is used in the RESOURCE statement, thus
restricting resource constrained scheduling to the first six time periods. Not all of the specified activities may
be scheduled within the time available, in which case the unscheduled activities represent course-teacher
combinations that are not feasible under the given conditions. The schedule obtained by PROC CPM is
saved in a data set that is displayed, in Output 4.22.1, after formatting the activity names and the schedule
times appropriately. Note that, in this example, all the course-teacher combinations are scheduled within the
two-day time period.

title 'Scheduling Course / Teacher Combinations';
data classes;

input class $ succ $ dur c1-c4 t1-t3 nrooms;
datalines;

c1t1 . 1 1 . . . 1 . . 1
c1t2 . 1 1 1 . 1
c1t3 . 1 1 1 1
c2t1 . 1 . 1 . . 1 . . 1
c2t3 . 1 . 1 1 1
c3t1 . 1 . . 1 . 1 . . 1
c3t2 . 1 . . 1 . . 1 . 1
c3t3 . 1 . . 1 . . . 1 1
c4t1 . 1 . . . 1 1 . . 1
c4t2 . 1 . . . 1 . 1 . 1
;

data resource;
input per c1-c4 t1-t3 nrooms;
datalines;

1 1 1 1 1 1 . 1 3
4 1 . .
;

proc cpm data=classes out=sched
resin=resource;

activity class;
duration dur;
successor succ;
resource c1-c4 t1-t3 nrooms / period=per stopdate=6;
run;

proc format;
value classtim

1 = 'Saturday 9:00-10:00'
2 = 'Saturday 10:00-11:00'
3 = 'Saturday 11:00-12:00'
4 = 'Sunday 9:00-10:00'
5 = 'Sunday 10:00-11:00'
6 = 'Sunday 11:00-12:00'
7 = 'Not Scheduled'
;

value $classt

246 F Chapter 4: The CPM Procedure

c1t1 = 'Class 1, Teacher 1'
c1t2 = 'Class 1, Teacher 2'
c1t3 = 'Class 1, Teacher 3'
c2t1 = 'Class 2, Teacher 1'
c2t2 = 'Class 2, Teacher 2'
c2t3 = 'Class 2, Teacher 3'
c3t1 = 'Class 3, Teacher 1'
c3t2 = 'Class 3, Teacher 2'
c3t3 = 'Class 3, Teacher 3'
c4t1 = 'Class 4, Teacher 1'
c4t2 = 'Class 4, Teacher 2'
c4t3 = 'Class 4, Teacher 3'
;

data schedtim;
set sched;
format classtim classtim.;
format class $classt.;
if (s_start <= 6) then classtim = s_start;
else classtim = 7;
run;

title2 'Schedule of Classes';
proc print;

id class;
var classtim;
run;

Output 4.22.1 Class Schedule

Scheduling Course / Teacher Combinations
Schedule of Classes

class classtim

Class 1, Teacher 1 Saturday 9:00-10:00

Class 1, Teacher 2 Sunday 9:00-10:00

Class 1, Teacher 3 Saturday 10:00-11:00

Class 2, Teacher 1 Saturday 10:00-11:00

Class 2, Teacher 3 Saturday 9:00-10:00

Class 3, Teacher 1 Saturday 11:00-12:00

Class 3, Teacher 2 Sunday 10:00-11:00

Class 3, Teacher 3 Sunday 9:00-10:00

Class 4, Teacher 1 Sunday 9:00-10:00

Class 4, Teacher 2 Sunday 11:00-12:00

There may be several other constraints that you want to impose on the courses scheduled. These can usually
be modeled suitably by changing the resource availability profile. For example, suppose that you want to
schedule more classes at 10 a.m. and fewer at other times. The following program creates a new Resource
data set, RESOURC2, that changes the number of rooms available. Again, PROC CPM is invoked with the
STOPDATE= option, and the resulting schedule is displayed in Output 4.22.2. The schedule can also be
displayed graphically using the NETDRAW procedure, as illustrated in a similar problem in Example 9.16 in
Chapter 9, “The NETDRAW Procedure.”

Example 4.22: Scheduling Course - Teacher Combinations F 247

data resourc2;
input per c1-c4 t1-t3 nrooms;
datalines;

1 1 1 1 1 1 . 1 1
2 3
3 2
4 1 . 1
5 3
;

proc cpm data=classes out=sched2
resin=resourc2;

activity class;
duration dur;
successor succ;
resource c1-c4 t1-t3 nrooms / period=per stopdate=6;
run;

data schedtim;
set sched2;
format classtim classtim.;
format class $classt.;
if (s_start <= 6) then classtim = s_start;
else classtim = 7;
run;

title2 'Alternate Schedule with Additional Constraints';
proc print;

id class;
var classtim;
run;

Output 4.22.2 Alternate Class Schedule

Scheduling Course / Teacher Combinations
Alternate Schedule with Additional Constraints

class classtim

Class 1, Teacher 1 Saturday 9:00-10:00

Class 1, Teacher 2 Sunday 9:00-10:00

Class 1, Teacher 3 Saturday 10:00-11:00

Class 2, Teacher 1 Saturday 10:00-11:00

Class 2, Teacher 3 Saturday 11:00-12:00

Class 3, Teacher 1 Saturday 11:00-12:00

Class 3, Teacher 2 Sunday 10:00-11:00

Class 3, Teacher 3 Sunday 11:00-12:00

Class 4, Teacher 1 Sunday 10:00-11:00

Class 4, Teacher 2 Sunday 11:00-12:00

248 F Chapter 4: The CPM Procedure

Example 4.23: Multiproject Scheduling
This example illustrates multiproject scheduling. Consider a Survey project that contains three phases, Plan,
Prepare, and Implement, with each phase containing more than one activity. You can consider each phase of
the project as a subproject within the master project, Survey. Each subproject in turn contains the lowest
level activities, also referred to as the leaf tasks. The Activity data set, containing the task durations, project
hierarchy, and the precedence constraints, is displayed in Output 4.23.1.

The PROJECT and ACTIVITY variables together define the project hierarchy using the parent/child rela-
tionship. Thus, the subproject, ‘Plan’, contains the two leaf tasks, ‘plan sur’ and ‘design q’. Precedence
constraints are specified between leaf tasks as well as between subprojects. For example, the subproject
‘Prepare’ is followed by the subproject ‘Implement’. Durations are specified for all the tasks in the project,
except for the master project ‘Survey’.

In addition to the Activity data set, define a Holiday data set, also displayed in Output 4.23.1.

Output 4.23.1 Survey Project

Survey Project
Activity Data Set SURVEY

Obs id activity duration succ1 succ2 succ3 project

1 Plan Survey plan sur 4 hire per design q Plan

2 Hire Personnel hire per 5 trn per Prepare

3 Design Questionnaire design q 3 trn per select h print q Plan

4 Train Personnel trn per 3 Prepare

5 Select Households select h 3 Prepare

6 Print Questionnaire print q 4 Prepare

7 Conduct Survey cond sur 10 analyze Implement

8 Analyze Results analyze 6 Implement

9 Plan Plan 6 Survey

10 Prepare Prepare 8 Implement Survey

11 Implement Implement 18 Survey

12 Survey Project Survey .

Survey Project
Holiday Data Set HOLIDATA

Obs hol

1 09APR04

Example 4.23: Multiproject Scheduling F 249

The following statements invoke PROC CPM with a PROJECT statement identifying the parent task for each
subtask in the Survey project. The calendar followed is a weekday calendar with a holiday defined on April
9, 2004. The ORDERALL option on the PROJECT statement creates the ordering variables ES_ASC and
LS_ASC in the Schedule data set, and the ADDWBS option creates a work breakdown structure code for the
project. The Schedule data set is displayed in Output 4.23.2, after being sorted by the variable ES_ASC.

The PROJ_DUR variable is missing for all the leaf tasks, and it contains the project duration for the supertasks.
The project duration is computed as the span of all the subtasks of the supertask. The PROJ_LEV variable
specifies the level of the subtask within the tree defining the project hierarchy, starting with the level ‘0’ for
the master project (or the root), ‘Survey’. The variable WBS_CODE contains the Work Breakdown Structure
code defined by the CPM procedure using the project hierarchy.

proc cpm data=survey date='29mar04'd out=survout1
interval=weekday holidata=holidata;

activity activity;
successor succ1-succ3;
duration duration;
id id;
holiday hol;
project project / orderall addwbs;
run;

proc sort;
by es_asc;
run;

title 'Conducting a Market Survey';
title2 'Early and Late Start Schedule';
proc print;

run;

250 F Chapter 4: The CPM Procedure

Output 4.23.2 Survey Project Schedule

Conducting a Market Survey
Early and Late Start Schedule

O
b
s

p
r
o
j
e
c
t

P
R
O
J
_
D
U
R

P
R
O
J
_
L
E
V

W
B
S
_
C
O
D
E

a
c
t
i
v
i
t
y

s
u
c
c
1

s
u
c
c
2

s
u
c
c
3

d
u
r
a
t
i
o
n

1 28 0 0 Survey .

2 Survey 7 1 0.0 Plan 6

3 Plan . 2 0.0.0 plan sur hire per design q 4

4 Plan . 2 0.0.1 design q trn per select h print q 3

5 Survey 8 1 0.1 Prepare Implement 8

6 Prepare . 2 0.1.0 hire per trn per 5

7 Prepare . 2 0.1.2 select h 3

8 Prepare . 2 0.1.3 print q 4

9 Prepare . 2 0.1.1 trn per 3

10 Survey 16 1 0.2 Implement 18

11 Implement . 2 0.2.0 cond sur analyze 10

12 Implement . 2 0.2.1 analyze 6

O
b
s

i
d

E
_
S
T
A
R
T

E
_
F
I
N
I
S
H

L
_
S
T
A
R
T

L
_
F
I
N
I
S
H

T
_
F
L
O
A
T

F
_
F
L
O
A
T

E
S
_
A
S
C

L
S
_
A
S
C

1 Survey Project 29MAR04 06MAY04 29MAR04 06MAY04 0 0 0 0

2 Plan 29MAR04 06APR04 29MAR04 07APR04 1 1 1 1

3 Plan Survey 29MAR04 01APR04 29MAR04 01APR04 0 0 2 2

4 Design Questionnaire 02APR04 06APR04 05APR04 07APR04 1 0 3 3

5 Prepare 02APR04 14APR04 02APR04 14APR04 0 0 4 4

6 Hire Personnel 02APR04 08APR04 02APR04 08APR04 0 0 5 5

7 Select Households 07APR04 12APR04 12APR04 14APR04 2 2 6 8

8 Print Questionnaire 07APR04 13APR04 08APR04 14APR04 1 1 7 6

9 Train Personnel 12APR04 14APR04 12APR04 14APR04 0 0 8 7

10 Implement 15APR04 06MAY04 15APR04 06MAY04 0 0 9 9

11 Conduct Survey 15APR04 28APR04 15APR04 28APR04 0 0 10 10

12 Analyze Results 29APR04 06MAY04 29APR04 06MAY04 0 0 11 11

Example 4.23: Multiproject Scheduling F 251

Next, a Gantt chart of the master project schedule is produced with the subtasks of each project indented
under the parent task. To produce the required indentation, prefix the Activity description (saved in the
variable id) by a suitable number of blanks using a simple DATA step. The following program shows the
DATA step and the invocation of the GANTT procedure; the resulting Gantt chart is plotted in Output 4.23.3.
Note the precedence constraints between the two supertasks ‘Prepare’ and ‘Implement’.

data gant;
length id $26.;
set survout1;
if proj_lev=1 then id=" "||id;
else if proj_lev=2 then id=" "||id;
run;

goptions hpos=80 vpos=43;
title c=black h=2 'Conducting a Market Survey';
title2 c=black h=1.5 'Project Schedule';

proc gantt graphics data=gant holidata=holidata;
chart / holiday=(hol)

interval=weekday
skip=2 height=1.8
nojobnum
compress noextrange
activity=activity succ=(succ1-succ3)
cprec=cyan cmile=magenta
caxis=black;

id id;
run;

252 F Chapter 4: The CPM Procedure

Output 4.23.3 Gantt Chart of Schedule

PROJ_LEV, WBS_CODE, and other project-related variables can be used to display selected information
about specific subprojects, summary information about subprojects at a given level of the hierarchy, and more.
For example, the following statements display the summary schedule of the first level subtasks of the Survey
project (Output 4.23.4).

title 'Market Survey';
title2 'Summary Schedule';
proc print data=survout1;

where proj_lev=1;
id activity;
var proj_dur duration e_start--t_float;
run;

Example 4.23: Multiproject Scheduling F 253

Output 4.23.4 Survey Project Summary

Market Survey
Summary Schedule

activity PROJ_DUR duration E_START E_FINISH L_START L_FINISH T_FLOAT

Plan 7 6 29MAR04 06APR04 29MAR04 07APR04 1

Prepare 8 8 02APR04 14APR04 02APR04 14APR04 0

Implement 16 18 15APR04 06MAY04 15APR04 06MAY04 0

The variable WBS_CODE in the Schedule data set (see Output 4.23.2) contains the Work Breakdown structure
code defined by the CPM procedure. This code is defined to be ‘0.1’ for the subproject ‘Prepare’. Thus,
the values of WBS_CODE for all subtasks of this subproject are prefixed by ‘0.1’. To produce reports for
the subproject ‘Prepare’, you can use a simple WHERE clause to subset the required observations from the
Schedule data set, as shown in the following statements.

title 'Market Survey';
title2 'Sub-Project Schedule';
proc print data=survout1;

where substr(WBS_CODE,1,3) = "0.1";
id activity;
var project--activity duration e_start--t_float;
run;

Output 4.23.5 Subproject Schedule

Market Survey
Sub-Project Schedule

activity project PROJ_DUR PROJ_LEV WBS_CODE activity duration E_START E_FINISH

Prepare Survey 8 1 0.1 Prepare 8 02APR04 14APR04

hire per Prepare . 2 0.1.0 hire per 5 02APR04 08APR04

select h Prepare . 2 0.1.2 select h 3 07APR04 12APR04

print q Prepare . 2 0.1.3 print q 4 07APR04 13APR04

trn per Prepare . 2 0.1.1 trn per 3 12APR04 14APR04

activity L_START L_FINISH T_FLOAT

Prepare 02APR04 14APR04 0

hire per 02APR04 08APR04 0

select h 12APR04 14APR04 2

print q 08APR04 14APR04 1

trn per 12APR04 14APR04 0

In the first invocation of PROC CPM, the Survey project is scheduled with only a specification for the project
start date. Continuing, this example shows how you can impose additional constraints on the master project
or on the individual subprojects.

254 F Chapter 4: The CPM Procedure

First, suppose that you impose a FINISHBEFORE constraint on the Survey project by specifying the FBDATE
to be May 10, 2004. The following program schedules the project with a project start and finish specification.
The resulting summary schedule for the subprojects is shown in Output 4.23.6. The late finish time of the
project is the 7th of May because there is a weekend on the 8th and 9th of May, 2004.

proc cpm data=survey date='29mar04'd out=survout2
interval=weekday holidata=holidata
fbdate='10may04'd; /* project finish date */

activity activity;
successor succ1-succ3;
duration duration;
id id;
holiday hol;
project project / orderall addwbs;
run;

title 'Market Survey';
title2 'Summary Schedule: FBDATE Option';
proc print data=survout2;

where proj_lev=1; /* First level subprojects */
id activity;
var proj_dur duration e_start--t_float;
run;

Output 4.23.6 Summary Schedule: FBDATE Option

Market Survey
Summary Schedule: FBDATE Option

activity PROJ_DUR duration E_START E_FINISH L_START L_FINISH T_FLOAT

Plan 7 6 29MAR04 06APR04 30MAR04 08APR04 2

Prepare 8 8 02APR04 14APR04 05APR04 15APR04 1

Implement 16 18 15APR04 06MAY04 16APR04 07MAY04 1

The procedure computes the backward pass of the schedule starting from the project finish date. Thus, the
critical path is computed in the context of the entire project. If you want to obtain individual critical paths for
each subproject, use the SEPCRIT option on the PROJECT statement. You can see the effect of this option in
Output 4.23.7: all the subprojects have T_FLOAT = ‘0’.

proc cpm data=survey date='29mar04'd out=survout3
interval=weekday holidata=holidata fbdate='10may04'd;

activity activity;
successor succ1-succ3;
duration duration;
id id;
holiday hol;
project project / orderall addwbs sepcrit;
run;

title 'Market Survey';

Example 4.23: Multiproject Scheduling F 255

title2 'Summary Schedule: FBDATE and SEPCRIT Options';
proc print data=survout3;

where proj_lev=1;
id activity;
var proj_dur duration e_start--t_float;

run;

Output 4.23.7 Summary Schedule: FBDATE and SEPCRIT Options

Market Survey
Summary Schedule: FBDATE and SEPCRIT Options

activity PROJ_DUR duration E_START E_FINISH L_START L_FINISH T_FLOAT

Plan 7 6 29MAR04 06APR04 29MAR04 06APR04 0

Prepare 8 8 02APR04 14APR04 02APR04 14APR04 0

Implement 16 18 15APR04 06MAY04 15APR04 06MAY04 0

Now, suppose that, in addition to imposing a FINISHBEFORE constraint on the entire project, the project
manager for each subproject specifies a desired duration for his or her subproject. In the present example,
the variable duration has values ‘6’, ‘8’, and ‘18’ for the three subprojects. By default these values are
not used in either the backward or forward pass, even though they may represent desired durations for the
corresponding subprojects. You can specify the USEPROJDUR option on the PROJECT statement to indicate
that the procedure should use these specified durations to determine the late finish schedule for each of the
subprojects. In other words, if the USEPROJDUR option is specified, the late finish for each subproject is
constrained to be less than or equal to

E_STARTC duration

and this value is used during the backward pass.

The summary schedule resulting from the use of the USEPROJDUR option is shown in Output 4.23.8. Note
the difference in the schedules in Output 4.23.7 and Output 4.23.8. In Output 4.23.7, the computed project
duration, PROJ_DUR, is used to set an upper bound on the late finish time of each subproject, while in
Output 4.23.8, the specified project duration is used for the same purpose. Here, only the summary schedules
are displayed; the effect of the two options on the subtasks within each subproject can be seen by displaying
the entire schedule in each case. A Gantt chart of the entire project is displayed in Output 4.23.9.

proc cpm data=survey date='29mar04'd out=survout4
interval=weekday holidata=holidata fbdate='10may04'd;

activity activity;
successor succ1-succ3;
duration duration;
id id;
holiday hol;
project project / orderall addwbs useprojdur;
run;

title 'Market Survey';
title2 'Summary Schedule: FBDATE and USEPROJDUR Options';

256 F Chapter 4: The CPM Procedure

proc print data=survout4;
where proj_lev=1;
id activity;
var proj_dur duration e_start--t_float;

run;

Output 4.23.8 Summary Schedule: FBDATE and USEPROJDUR Options

Market Survey
Summary Schedule: FBDATE and USEPROJDUR Options

activity PROJ_DUR duration E_START E_FINISH L_START L_FINISH T_FLOAT

Plan 7 6 29MAR04 06APR04 26MAR04 05APR04 -1

Prepare 8 8 02APR04 14APR04 02APR04 14APR04 0

Implement 16 18 15APR04 06MAY04 16APR04 07MAY04 1

data gant4;
length id $26.;
set survout4;
if proj_lev=1 then id=" "||id;
else if proj_lev=2 then id=" "||id;
run;

proc sort;
by es_asc;
run;

goptions hpos=80 vpos=43;
title h=2 'Market Survey';
title2 h=1.5 'Project Schedule: FBDATE and USEPROJDUR Options';
proc gantt graphics data=gant4 holidata=holidata;

chart / holiday=(hol)
interval=weekday
skip=2 scale=1.5 height=1.8
nojobnum
compress noextrange
activity=activity succ=(succ1-succ3)
cprec=cyan cmile=magenta
caxis=black
;

id id;
run;

Example 4.23: Multiproject Scheduling F 257

Output 4.23.9 Gantt Chart of Schedule

The project schedule is further affected by the presence of any alignment dates on the individual activities or
subprojects. For example, if the implementation phase of the project has a deadline of May 5, 2004, you can
specify an alignment date and type variable with the appropriate values for the subproject ‘Implement’, as
follows, and invoke PROC CPM with the ALIGNDATE and ALIGNTYPE statements, to obtain the new
schedule, displayed in Output 4.23.10.

data survey2;
format aldate date7.;
set survey;
if activity="Implement" then do;

altype="fle";
aldate='5may04'd;

end;
run;

258 F Chapter 4: The CPM Procedure

proc cpm data=survey2 date='29mar04'd out=survout5
interval=weekday holidata=holidata
fbdate='10jun04'd;

activity activity;
successor succ1-succ3;
duration duration;
id id;
holiday hol;
project project / orderall addwbs sepcrit useprojdur;
aligntype altype;
aligndate aldate;
run;

title 'Market Survey';
title2 'USEPROJDUR option and Alignment date';
proc print;

where proj_lev=1;
id activity;
var proj_dur duration e_start--t_float;
run;

Output 4.23.10 USEPROJDUR option and Alignment Date

Market Survey
USEPROJDUR option and Alignment date

activity PROJ_DUR duration E_START E_FINISH L_START L_FINISH T_FLOAT

Plan 7 6 29MAR04 06APR04 26MAR04 05APR04 -1

Prepare 8 8 02APR04 14APR04 01APR04 13APR04 -1

Implement 16 18 15APR04 06MAY04 14APR04 05MAY04 -1

Example 4.24: Resource-Driven Durations and Resource Calendars
This example illustrates the effect of resource-driven durations and resource calendars on the schedule of a
project involving multiple resources.

In projects that use manpower as a resource, the same activity may require different amounts of work from
different people. Also, the work schedules and vacations may differ for each individual person. All of these
factors may cause the schedules for the different resources used by the activity to differ from each other.

Consider a software project requiring two resources: a programmer and a tester. A network diagram
displaying the activities and their precedence relationships is shown in Output 4.24.1.

Example 4.24: Resource-Driven Durations and Resource Calendars F 259

Output 4.24.1 Software Project Network

Some of the activities in this project have a fixed duration, requiring the same length of time from both
resources; others require a different number of days from the programmer and the tester. Further, some
activities require only a fraction of the resource; for example, ‘Documentation’ requires only 20 percent of
the programmer’s time for a total of two man-days. The activities in the project, their durations (if fixed)
in days, the total work required (if resource-driven) in days, the precedence constraints, and the resource
requirements are displayed in Output 4.24.2. There are two observations for some of the activities (‘Product
Design’ and ‘Documentation’) which require different amounts of work from each resource.

260 F Chapter 4: The CPM Procedure

Output 4.24.2 Project Data

Software Development
Activity Data Set SOFTWARE

Activity act s1 s2 dur mandays Programmer Tester

Plans & Reqts 1 2 3 2 . 1.0 1.0

Product Design 2 4 5 . 3 1.0 .

Product Design 2 . . . 1 . 1.0

Test Plan 3 6 7 3 . . 1.0

Documentation 4 9 . . 2 0.2 .

Documentation 4 . . . 1 . 0.5

Code 5 8 . 10 . 0.8 .

Test Data 6 8 . 5 . . 0.5

Test Routines 7 8 . 5 . . 0.5

Test Product 8 9 . 6 . 0.5 1.0

Finish 9 . . 0 . . .

The following statements invoke PROC CPM with a WORK= specification on the RESOURCE statement,
which identifies (in number of man-days, in this case) the amount of work required from each resource used
by an activity. If the WORK variable has a missing value, the activity in that observation is assumed to have
a fixed duration. The project is scheduled to start on April 12, 2004, and the activities are assumed to follow
a five-day work week. Unlike fixed-duration scheduling, each resource used by an activity could have a
different schedule; an activity is assumed to be finished only when all of its resources have finished working
on it.

proc cpm data=software out=sftout ressched=rsftout
date='12apr04'd interval=weekday resout=rout;

act act;
succ s1 s2;
dur dur;
res Programmer Tester / work=mandays

rschedid=Activity;
id Activity;

run;

The individual resource schedules, as well as each activity’s combined schedule, are saved in a Resource
Schedule data set, RSFTOUT, requested by the RESSCHED= option on the CPM statement. This output data
set (displayed in Output 4.24.3) is very similar to the Schedule data set and contains the activity variable and
all the relevant schedule variables (E_START, E_FINISH, L_START, and so forth).

Example 4.24: Resource-Driven Durations and Resource Calendars F 261

Output 4.24.3 Resource Schedule Data Set

Software Development
Resource Schedule Data Set RSFTOUT

A
c
t
i
v
i
t
y

a
c
t

R
E
S
O
U
R
C
E

D
U
R
_
T
Y
P
E

d
u
r

m
a
n
d
a
y
s

R
_
R
A
T
E

E
_
S
T
A
R
T

E
_
F
I
N
I
S
H

L
_
S
T
A
R
T

L
_
F
I
N
I
S
H

Plans & Reqts 1 2 . . 12APR04 13APR04 12APR04 13APR04

Plans & Reqts 1 Programmer FIXED 2 . 1.0 12APR04 13APR04 12APR04 13APR04

Plans & Reqts 1 Tester FIXED 2 . 1.0 12APR04 13APR04 12APR04 13APR04

Product Design 2 3 . . 14APR04 16APR04 14APR04 16APR04

Product Design 2 Programmer RDRIVEN 3 3 1.0 14APR04 16APR04 14APR04 16APR04

Product Design 2 Tester RDRIVEN 1 1 1.0 14APR04 14APR04 16APR04 16APR04

Test Plan 3 3 . . 14APR04 16APR04 21APR04 23APR04

Test Plan 3 Tester FIXED 3 . 1.0 14APR04 16APR04 21APR04 23APR04

Documentation 4 10 . . 19APR04 30APR04 27APR04 10MAY04

Documentation 4 Programmer RDRIVEN 10 2 0.2 19APR04 30APR04 27APR04 10MAY04

Documentation 4 Tester RDRIVEN 2 1 0.5 19APR04 20APR04 07MAY04 10MAY04

Code 5 10 . . 19APR04 30APR04 19APR04 30APR04

Code 5 Programmer FIXED 10 . 0.8 19APR04 30APR04 19APR04 30APR04

Test Data 6 5 . . 19APR04 23APR04 26APR04 30APR04

Test Data 6 Tester FIXED 5 . 0.5 19APR04 23APR04 26APR04 30APR04

Test Routines 7 5 . . 19APR04 23APR04 26APR04 30APR04

Test Routines 7 Tester FIXED 5 . 0.5 19APR04 23APR04 26APR04 30APR04

Test Product 8 6 . . 03MAY04 10MAY04 03MAY04 10MAY04

Test Product 8 Programmer FIXED 6 . 0.5 03MAY04 10MAY04 03MAY04 10MAY04

Test Product 8 Tester FIXED 6 . 1.0 03MAY04 10MAY04 03MAY04 10MAY04

Finish 9 0 . . 11MAY04 11MAY04 11MAY04 11MAY04

For each activity in the project, the Resource Schedule data set contains the schedule for the entire activity as
well as the schedule for each resource used by the activity. The variable RESOURCE identifies the name of
the resource to which the observation refers and has missing values for observations that refer to the entire
activity’s schedule. The value of the variable DUR_TYPE indicates whether the resource drives the activity’s
duration (‘RDRIVEN’) or not (‘FIXED’).

The DURATION variable, dur, indicates the duration of the activity for the resource identified in that
observation. For resources that are of the driving type, the WORK variable, mandays, shows the total
amount of work (in units of the INTERVAL parameter) required by the resource for the activity in that
observation. The variable R_RATE shows the rate of usage of the resource for the relevant activity. For driving
resources, the variable dur is computed as (mandays / R_RATE). Thus, for the Activity, ‘Documentation’, the
programmer requires 10 days to complete 2 man-days of work at a rate of 20 percent per day, while the tester
works at a rate of 50 percent requiring 2 days to complete 1 man-day of work.

262 F Chapter 4: The CPM Procedure

pattern1 c=green v=s; /* duration of a non-critical activity */
pattern2 c=green v=e; /* slack time for a noncrit. activity */
pattern3 c=red v=s; /* duration of a critical activity */
pattern4 c=magenta v=e; /* slack time for a supercrit. activity */
pattern5 c=magenta v=s; /* duration of a supercrit. activity */
pattern6 c=cyan v=s; /* actual duration of an activity */
pattern7 c=black v=e; /* break due to a holiday */
pattern8 c=blue v=s; /* resource schedule of activity */
pattern9 c=brown v=s; /* baseline schedule of activity */

title h=2 'Software Development';
title2 h=1.5 'Project Schedule';

A Gantt chart of the schedules for each resource is plotted in Output 4.24.4.

Output 4.24.4 Software Project Schedule

Example 4.24: Resource-Driven Durations and Resource Calendars F 263

The daily utilization of the resources is also saved in a data set, ROUT, displayed in Output 4.24.5. The
resource usage data set indicates that you need more than one tester on some days with both the early schedule
(on the 14th, 19th, and 20th of April) and the late schedule (on the 7th and 10th of May).

Output 4.24.5 Resource Usage Data

Software Development
Resource Usage Data Set ROUT

Obs _TIME_ EProgrammer LProgrammer ETester LTester

1 12APR04 1.0 1.0 1.0 1.0

2 13APR04 1.0 1.0 1.0 1.0

3 14APR04 1.0 1.0 2.0 0.0

4 15APR04 1.0 1.0 1.0 0.0

5 16APR04 1.0 1.0 1.0 1.0

6 19APR04 1.0 0.8 1.5 0.0

7 20APR04 1.0 0.8 1.5 0.0

8 21APR04 1.0 0.8 1.0 1.0

9 22APR04 1.0 0.8 1.0 1.0

10 23APR04 1.0 0.8 1.0 1.0

11 26APR04 1.0 0.8 0.0 1.0

12 27APR04 1.0 1.0 0.0 1.0

13 28APR04 1.0 1.0 0.0 1.0

14 29APR04 1.0 1.0 0.0 1.0

15 30APR04 1.0 1.0 0.0 1.0

16 03MAY04 0.5 0.7 1.0 1.0

17 04MAY04 0.5 0.7 1.0 1.0

18 05MAY04 0.5 0.7 1.0 1.0

19 06MAY04 0.5 0.7 1.0 1.0

20 07MAY04 0.5 0.7 1.0 1.5

21 10MAY04 0.5 0.7 1.0 1.5

22 11MAY04 0.0 0.0 0.0 0.0

264 F Chapter 4: The CPM Procedure

Suppose now that you have only one tester and one programmer. You can determine a resource-constrained
schedule using PROC CPM (as in the fixed duration case) by specifying a resource availability data set,
RESIN (Output 4.24.6).

Output 4.24.6 Resource Availability Data

Software Development
Resource Availability Data Set

Obs per otype Programmer Tester

1 12APR04 reslevel 1 1

The following statements invoke PROC CPM, and the resulting Resource Schedule data set is displayed
in Output 4.24.7. The ADDCAL option on the RESOURCE statement creates a variable in the Resource
Schedule data set which identifies the activity or resource calendar. The project still finishes on May 11,
but some of the activities (‘Test Plan’, ‘Documentation’, ‘Test Data’, and ‘Test Routines’) are delayed. The
resource-constrained schedule is plotted on a Gantt chart in Output 4.24.8; both resources follow the same
weekday calendar.

proc cpm data=software resin=resin
out=sftout1 resout=rout1
rsched=rsftout1
date='12apr04'd interval=weekday;

act act;
succ s1 s2;
dur dur;
res Programmer Tester / work=mandays addcal

obstype=otype
period=per
rschedid=Activity;

id Activity;
run;

Example 4.24: Resource-Driven Durations and Resource Calendars F 265

Output 4.24.7 Resource-Constrained Schedule: Common Calendar

Software Development
Resource Constrained Schedule: Common Resource Calendar

Activity act _CAL_ RESOURCE DUR_TYPE dur mandays R_RATE S_START S_FINISH

Plans & Reqts 1 0 2 . . 12APR04 13APR04

Plans & Reqts 1 0 Programmer FIXED 2 . 1.0 12APR04 13APR04

Plans & Reqts 1 0 Tester FIXED 2 . 1.0 12APR04 13APR04

Product Design 2 0 3 . . 14APR04 16APR04

Product Design 2 0 Programmer RDRIVEN 3 3 1.0 14APR04 16APR04

Product Design 2 0 Tester RDRIVEN 1 1 1.0 14APR04 14APR04

Test Plan 3 0 3 . . 15APR04 19APR04

Test Plan 3 0 Tester FIXED 3 . 1.0 15APR04 19APR04

Documentation 4 0 10 . . 27APR04 10MAY04

Documentation 4 0 Programmer RDRIVEN 10 2 0.2 27APR04 10MAY04

Documentation 4 0 Tester RDRIVEN 2 1 0.5 27APR04 28APR04

Code 5 0 10 . . 19APR04 30APR04

Code 5 0 Programmer FIXED 10 . 0.8 19APR04 30APR04

Test Data 6 0 5 . . 20APR04 26APR04

Test Data 6 0 Tester FIXED 5 . 0.5 20APR04 26APR04

Test Routines 7 0 5 . . 20APR04 26APR04

Test Routines 7 0 Tester FIXED 5 . 0.5 20APR04 26APR04

Test Product 8 0 6 . . 03MAY04 10MAY04

Test Product 8 0 Programmer FIXED 6 . 0.5 03MAY04 10MAY04

Test Product 8 0 Tester FIXED 6 . 1.0 03MAY04 10MAY04

Finish 9 0 0 . . 11MAY04 11MAY04

Activity E_START E_FINISH L_START L_FINISH

Plans & Reqts 12APR04 13APR04 12APR04 13APR04

Plans & Reqts 12APR04 13APR04 12APR04 13APR04

Plans & Reqts 12APR04 13APR04 12APR04 13APR04

Product Design 14APR04 16APR04 14APR04 16APR04

Product Design 14APR04 16APR04 14APR04 16APR04

Product Design 14APR04 14APR04 16APR04 16APR04

Test Plan 14APR04 16APR04 21APR04 23APR04

Test Plan 14APR04 16APR04 21APR04 23APR04

Documentation 19APR04 30APR04 27APR04 10MAY04

Documentation 19APR04 30APR04 27APR04 10MAY04

Documentation 19APR04 20APR04 07MAY04 10MAY04

Code 19APR04 30APR04 19APR04 30APR04

Code 19APR04 30APR04 19APR04 30APR04

Test Data 19APR04 23APR04 26APR04 30APR04

Test Data 19APR04 23APR04 26APR04 30APR04

Test Routines 19APR04 23APR04 26APR04 30APR04

Test Routines 19APR04 23APR04 26APR04 30APR04

Test Product 03MAY04 10MAY04 03MAY04 10MAY04

Test Product 03MAY04 10MAY04 03MAY04 10MAY04

Test Product 03MAY04 10MAY04 03MAY04 10MAY04

Finish 11MAY04 11MAY04 11MAY04 11MAY04

266 F Chapter 4: The CPM Procedure

Output 4.24.8 Resource-Constrained Schedule

Now suppose that the tester switches to part-time employment, working only four days a week. Thus, the two
resources have different calendars. To determine the effect this change has on the project schedule, define
a calendar data set identifying calendar ‘1’ as having a holiday on Friday (see Output 4.24.9). In a new
resource availability data set (also displayed in Output 4.24.9), associate calendar ‘1’ with the resource Tester
and calendar ‘0’ with the resource Programmer. ‘0’ refers to the default calendar, which is the weekday
calendar for this project (since INTERVAL = WEEKDAY).

Example 4.24: Resource-Driven Durations and Resource Calendars F 267

Output 4.24.9 Resource and Calendar Data

Software Development
Calendar Data Set CALENDAR

Obs _cal_ _fri_

1 1 holiday

Resource Data Set RESIN2

Obs per otype Programmer Tester

1 . calendar 0 1

2 12APR04 reslevel 1 1

Next, invoke PROC CPM, as shown in the following statements, with the Activity, Resource, and Calendar
data sets to obtain the revised schedule, plotted in Output 4.24.10. The project is delayed by two days because
of the TESTER’s shorter work week, which is illustrated by the longer holiday breaks in the TESTER’s
schedule bars. The new resource constrained schedule is displayed in Output 4.24.11.

proc cpm data=software resin=resin2
caledata=calendar
out=sftout2 rsched=rsftout2
resout=rout2
date='12apr04'd interval=weekday;

act act;
succ s1 s2;
dur dur;
res Programmer Tester / work=mandays addcal

obstype=otype
period=per
rschedid=Activity;

id Activity;
run;

268 F Chapter 4: The CPM Procedure

Output 4.24.10 Resource-Constrained Schedule

Example 4.24: Resource-Driven Durations and Resource Calendars F 269

Output 4.24.11 Resource-Constrained Schedule: Multiple Calendars

Software Development
Resource Constrained Schedule: Multiple Resource Calendars

Activity act _CAL_ RESOURCE DUR_TYPE dur mandays R_RATE S_START S_FINISH

Plans & Reqts 1 0 2 . . 12APR04 13APR04

Plans & Reqts 1 0 Programmer FIXED 2 . 1.0 12APR04 13APR04

Plans & Reqts 1 1 Tester FIXED 2 . 1.0 12APR04 13APR04

Product Design 2 0 3 . . 14APR04 16APR04

Product Design 2 0 Programmer RDRIVEN 3 3 1.0 14APR04 16APR04

Product Design 2 1 Tester RDRIVEN 1 1 1.0 14APR04 14APR04

Test Plan 3 0 3 . . 15APR04 20APR04

Test Plan 3 1 Tester FIXED 3 . 1.0 15APR04 20APR04

Documentation 4 0 10 . . 29APR04 12MAY04

Documentation 4 0 Programmer RDRIVEN 10 2 0.2 29APR04 12MAY04

Documentation 4 1 Tester RDRIVEN 2 1 0.5 29APR04 03MAY04

Code 5 0 10 . . 19APR04 30APR04

Code 5 0 Programmer FIXED 10 . 0.8 19APR04 30APR04

Test Data 6 0 5 . . 21APR04 28APR04

Test Data 6 1 Tester FIXED 5 . 0.5 21APR04 28APR04

Test Routines 7 0 5 . . 21APR04 28APR04

Test Routines 7 1 Tester FIXED 5 . 0.5 21APR04 28APR04

Test Product 8 0 6 . . 04MAY04 12MAY04

Test Product 8 0 Programmer FIXED 6 . 0.5 04MAY04 11MAY04

Test Product 8 1 Tester FIXED 6 . 1.0 04MAY04 12MAY04

Finish 9 0 0 . . 13MAY04 13MAY04

Activity E_START E_FINISH L_START L_FINISH

Plans & Reqts 12APR04 13APR04 12APR04 13APR04

Plans & Reqts 12APR04 13APR04 12APR04 13APR04

Plans & Reqts 12APR04 13APR04 12APR04 13APR04

Product Design 14APR04 16APR04 14APR04 16APR04

Product Design 14APR04 16APR04 14APR04 16APR04

Product Design 14APR04 14APR04 15APR04 15APR04

Test Plan 14APR04 19APR04 19APR04 21APR04

Test Plan 14APR04 19APR04 19APR04 21APR04

Documentation 19APR04 30APR04 28APR04 11MAY04

Documentation 19APR04 30APR04 28APR04 11MAY04

Documentation 19APR04 20APR04 10MAY04 11MAY04

Code 19APR04 30APR04 19APR04 30APR04

Code 19APR04 30APR04 19APR04 30APR04

Test Data 20APR04 27APR04 22APR04 30APR04

Test Data 20APR04 27APR04 22APR04 29APR04

Test Routines 20APR04 27APR04 22APR04 30APR04

Test Routines 20APR04 27APR04 22APR04 29APR04

Test Product 03MAY04 11MAY04 03MAY04 11MAY04

Test Product 03MAY04 10MAY04 04MAY04 11MAY04

Test Product 03MAY04 11MAY04 03MAY04 11MAY04

Finish 12MAY04 12MAY04 12MAY04 12MAY04

270 F Chapter 4: The CPM Procedure

Example 4.25: Resource-Driven Durations and Alternate Resources
Consider the software project defined in Example 4.24 but now the project requires a single resource: a
programmer. A network diagram displaying the activities and their precedence relationships is shown in
Output 4.24.1, as part of the same example.

Some of the activities in this project have a fixed duration, requiring a fixed length of time from a programmer.
Other activities specify the amount of work required in terms of man-days; for these activities, the length of
the task will depend on the number of programmers (or rate) that is assigned to the task. The activities in
the project, their durations (if fixed) or the total work required (if resource-driven) in days, the precedence
constraints, and the resource requirements are displayed in Output 4.25.1.

Suppose that you have only one programmer assigned to the project. You can determine a resource-constrained
schedule using PROC CPM by specifying a resource availability data set, resin (also in Output 4.25.1). The
Resource data set indicates that the resource Programmer is a driving resource whenever the WORK variable
has a valid value.

Output 4.25.1 Project Data

Software Development
Activity Data Set SOFTWARE

Activity act s1 s2 dur mandays Programmer

Plans & Reqts 1 2 3 2 . 1

Product Design 2 4 5 . 3 1

Test Plan 3 6 7 3 . .

Documentation 4 9 . 1 2 1

Code 5 8 . 1 10 1

Test Data 6 8 . 5 . .

Test Routines 7 8 . 5 . .

Test Product 8 9 . 6 . 1

Finish 9 . . 0 . .

Software Development
Resource Availability Data Set

Obs per otype Programmer

1 . resrcdur 1

2 12APR04 reslevel 1

Example 4.25: Resource-Driven Durations and Alternate Resources F 271

The following statements invoke PROC CPM with a WORK= specification on the RESOURCE statement,
which identifies (in number of man-days, in this case) the amount of work required from the resource
Programmer for each activity. If the WORK variable has a missing value, the activity in that observation
is assumed to have a fixed duration. The project is scheduled to start on April 12, 2004, and the activities
are assumed to follow a five-day work week. The resulting schedule is displayed in Output 4.25.2. For
each activity in the project, the value of the variable DUR_TYPE indicates whether the resource drives the
activity’s duration (‘RDRIVEN’) or not (‘FIXED’).

proc cpm data=software
out=sftout1 resout=rout1
rsched=rsftout1
resin=resin
date='12apr04'd interval=weekday;

act act;
succ s1 s2;
dur dur;
res Programmer / work=mandays

obstype=otype
period=per
rschedid=Activity;

id Activity;
run;

title 'Software Development';
title2 'Resource Constrained Schedule: Single Programmer';
proc print data=rsftout1 heading=h;

id Activity;
run;

272 F Chapter 4: The CPM Procedure

Output 4.25.2 Resource Schedule

Software Development
Resource Constrained Schedule: Single Programmer

Activity act RESOURCE DUR_TYPE dur mandays R_RATE S_START S_FINISH

Plans & Reqts 1 2 . . 12APR04 13APR04

Plans & Reqts 1 Programmer FIXED 2 . 1 12APR04 13APR04

Product Design 2 3 . . 14APR04 16APR04

Product Design 2 Programmer RDRIVEN 3 3 1 14APR04 16APR04

Test Plan 3 3 . . 14APR04 16APR04

Documentation 4 1 . . 11MAY04 12MAY04

Documentation 4 Programmer RDRIVEN 2 2 1 11MAY04 12MAY04

Code 5 1 . . 19APR04 30APR04

Code 5 Programmer RDRIVEN 10 10 1 19APR04 30APR04

Test Data 6 5 . . 19APR04 23APR04

Test Routines 7 5 . . 19APR04 23APR04

Test Product 8 6 . . 03MAY04 10MAY04

Test Product 8 Programmer FIXED 6 . 1 03MAY04 10MAY04

Finish 9 0 . . 13MAY04 13MAY04

Activity E_START E_FINISH L_START L_FINISH

Plans & Reqts 12APR04 13APR04 12APR04 13APR04

Plans & Reqts 12APR04 13APR04 12APR04 13APR04

Product Design 14APR04 16APR04 14APR04 16APR04

Product Design 14APR04 16APR04 14APR04 16APR04

Test Plan 14APR04 16APR04 21APR04 23APR04

Documentation 19APR04 20APR04 07MAY04 10MAY04

Documentation 19APR04 20APR04 07MAY04 10MAY04

Code 19APR04 30APR04 19APR04 30APR04

Code 19APR04 30APR04 19APR04 30APR04

Test Data 19APR04 23APR04 26APR04 30APR04

Test Routines 19APR04 23APR04 26APR04 30APR04

Test Product 03MAY04 10MAY04 03MAY04 10MAY04

Test Product 03MAY04 10MAY04 03MAY04 10MAY04

Finish 11MAY04 11MAY04 11MAY04 11MAY04

The following statements invoke PROC GANTT to display a Gantt chart of the schedule in Output 4.25.3.
The activity, ‘Documentation’, is delayed until May 11, 2004, because there is only one programmer available
to the project.

title h=2.5 'Software Development';
title2 h=1.5 'Resource Constrained Schedule: Single Programmer';
proc gantt graphics data=sftout1;

id Activity Programmer;
chart / compress scale=3 increment=4 interval=weekday

height=2.8 nojobnum nolegend between=5
act=act succ=(s1 s2)
cprec=cyan
caxis=black
;

run;

Example 4.25: Resource-Driven Durations and Alternate Resources F 273

Output 4.25.3 Resource-Constrained Schedule: Single Programmer

Next, suppose that you have two programmers assigned to your project and you can use either one of them
for a given task, depending on their availability. To model this scenario, specify Chris and John as alternate
resources that can be substituted for the resource Programmer. The Resource data set, resin2, printed in
Output 4.25.4, indicates that Chris and John are alternates for Programmer. Specifying an availability of ‘0’
for the resource Programmer ensures that the procedure will assign one of the two programmers, Chris or
John, to each task.

The second observation in the data set resin2 indicates two different rates of substitution for the alternate
resources. A value less than 1 indicates that the alternate resource is more efficient than the primary resource,
while a value greater than 1 indicates that the alternate resource is less efficient. For fixed-duration activities,
the use of the alternate resource changes the rate of utilization of the resource, while for a resource-driven
activity, it changes the duration of the resource. The data set resin specifies that John is twice as efficient as
the primary resource Programmer while Chris takes one and a half times as long as the generic resource to
accomplish a task.

274 F Chapter 4: The CPM Procedure

Output 4.25.4 Alternate Programmers

Resource Data Set RESIN2

Obs per otype resid Programmer Chris John

1 . resrcdur 1 1.0 1.0

2 . altrate Programmer . 1.5 0.5

3 12APR04 reslevel . 1.0 1.0

The following statements invoke PROC CPM with the new Resource data set and a modified Activity data
set that includes the newly added resource variables, Chris and John. You can see the effects of the alternate
resource specifications in the Resource Schedule data set, printed in Output 4.25.5. The activity ‘Product
Design’ that takes 3 days of time from a generic programmer actually takes 4.5 days because the programmer
used is Chris, who is substituted at a rate of 1.5. On the other hand, the programmer John efficiently completes
the task, ‘Documentation’, in only 1 day, instead of the planned 2 days for a generic programmer. Note
also that the start and finish times are specified as SAS datetime values because the substitution of alternate
resources results in some of the resource durations being fractional.

data software2;
set software;
Chris = .;
John = .;
run;

proc cpm data=software2 out=sftout2 rsched=rsftout2
resin=resin2
date='12apr04'd interval=weekday resout=rout2;

act act;
succ s1 s2;
dur dur;
res Programmer Chris John / work=mandays

obstype=otype
period=per
resid=resid
rschedid=Activity;

id Activity;
run;

Example 4.25: Resource-Driven Durations and Alternate Resources F 275

Output 4.25.5 Resource Schedule with Alternate Programmers

Software Development
Resource Constrained Schedule

Alternate Resources at Varying Rates

Activity act RESOURCE DUR_TYPE dur mandays R_RATE S_START

Plans & Reqts 1 2.0 . . 12APR04:00:00:00

Plans & Reqts 1 Programmer FIXED 2.0 . 1.0 .

Plans & Reqts 1 John FIXED 2.0 . 0.5 12APR04:00:00:00

Product Design 2 3.0 . . 14APR04:00:00:00

Product Design 2 Programmer RDRIVEN 3.0 3.0 1.0 .

Product Design 2 Chris RDRIVEN 4.5 4.5 1.0 14APR04:00:00:00

Test Plan 3 3.0 . . 14APR04:00:00:00

Documentation 4 1.0 . . 20APR04:12:00:00

Documentation 4 Programmer RDRIVEN 2.0 2.0 1.0 .

Documentation 4 John RDRIVEN 1.0 1.0 1.0 20APR04:12:00:00

Code 5 1.0 . . 20APR04:12:00:00

Code 5 Programmer RDRIVEN 10.0 10.0 1.0 .

Code 5 Chris RDRIVEN 15.0 15.0 1.0 20APR04:12:00:00

Test Data 6 5.0 . . 19APR04:00:00:00

Test Routines 7 5.0 . . 19APR04:00:00:00

Test Product 8 6.0 . . 11MAY04:12:00:00

Test Product 8 Programmer FIXED 6.0 . 1.0 .

Test Product 8 John FIXED 6.0 . 0.5 11MAY04:12:00:00

Finish 9 0.0 . . 19MAY04:12:00:00

Activity S_FINISH E_START E_FINISH

Plans & Reqts 13APR04:23:59:59 12APR04:00:00:00 13APR04:23:59:59

Plans & Reqts . 12APR04:00:00:00 13APR04:23:59:59

Plans & Reqts 13APR04:23:59:59 . .

Product Design 20APR04:11:59:59 14APR04:00:00:00 16APR04:23:59:59

Product Design . 14APR04:00:00:00 16APR04:23:59:59

Product Design 20APR04:11:59:59 . .

Test Plan 16APR04:23:59:59 14APR04:00:00:00 16APR04:23:59:59

Documentation 21APR04:11:59:59 19APR04:00:00:00 20APR04:23:59:59

Documentation . 19APR04:00:00:00 20APR04:23:59:59

Documentation 21APR04:11:59:59 . .

Code 11MAY04:11:59:59 19APR04:00:00:00 30APR04:23:59:59

Code . 19APR04:00:00:00 30APR04:23:59:59

Code 11MAY04:11:59:59 . .

Test Data 23APR04:23:59:59 19APR04:00:00:00 23APR04:23:59:59

Test Routines 23APR04:23:59:59 19APR04:00:00:00 23APR04:23:59:59

Test Product 19MAY04:11:59:59 03MAY04:00:00:00 10MAY04:23:59:59

Test Product . 03MAY04:00:00:00 10MAY04:23:59:59

Test Product 19MAY04:11:59:59 . .

Finish 19MAY04:12:00:00 11MAY04:00:00:00 11MAY04:00:00:00

276 F Chapter 4: The CPM Procedure

Example 4.26: Multiple Alternate Resources
This example illustrates the use of the MULTIPLEALTERNATES option. The Activity data set printed in
Output 4.26.1 is a slightly modified version of the data set in Example 4.25. The difference is in the resource
requirement for the first activity in the project. The ‘Plans and Requirements’ task requires 2 programmers.
By default, when alternate resources are used, the CPM procedures cannot use multiple alternate resources to
substitute for any given resource. In this example, however, you would like the procedure to use both Chris
and John for the first task. The Resource data set resmult is also printed in Output 4.26.1, showing that both
Chris and John are alternates that can be substituted at the same rate as the primary resource.

Output 4.26.1 Multiple Alternates

Software Development
Use of Multiple Alternate Resources

Activity Data Set

Obs Activity dur mandays act s1 s2 Programmer Chris John

1 Plans & Reqts 2 . 1 2 3 2 . .

2 Product Design . 3 2 4 5 1 . .

3 Test Plan 3 . 3 6 7 . . .

4 Documentation 1 2 4 9 . 1 . .

5 Code 1 10 5 8 . 1 . .

6 Test Data 5 . 6 8

7 Test Routines 5 . 7 8

8 Test Product 6 . 8 9 . 1 . .

9 Finish 0 . 9

Software Development
Use of Multiple Alternate Resources

Resource Data Set

Obs per otype resid Programmer Chris John

1 . resrcdur 1 1 1

2 . altrate Programmer . 1 1

3 12APR04 reslevel . 1 1

To enable PROC CPM to use multiple alternates, use the MULTIPLEALTERNATES option, as shown in the
following invocation:

proc cpm data=softmult out=sftmult rsched=rsftmult
resin=resmult
date='12apr04'd interval=weekday resout=routmult;

act act;
succ s1 s2;
dur dur;
res Programmer Chris John / work=mandays

obstype=otype
period=per resid=resid
multiplealternates
rschedid=Activity;

id Activity;
run;

The resulting schedule is printed in Output 4.26.2. Note that both programmers are used for the activity
‘Plans and Reqts’.

Example 4.26: Multiple Alternate Resources F 277

Output 4.26.2 Multiple Alternates: Resource Schedule Data Set

Software Development
Use of Multiple Alternate Resources

Resource Constrained Schedule

Activity act RESOURCE DUR_TYPE dur mandays R_RATE S_START S_FINISH

Plans & Reqts 1 2 . . 12APR04 13APR04

Plans & Reqts 1 Programmer FIXED 2 . 2 . .

Plans & Reqts 1 John FIXED 2 . 1 12APR04 13APR04

Plans & Reqts 1 Chris FIXED 2 . 1 12APR04 13APR04

Product Design 2 3 . . 14APR04 16APR04

Product Design 2 Programmer RDRIVEN 3 3 1 . .

Product Design 2 Chris RDRIVEN 3 3 1 14APR04 16APR04

Test Plan 3 3 . . 14APR04 16APR04

Documentation 4 1 . . 19APR04 20APR04

Documentation 4 Programmer RDRIVEN 2 2 1 . .

Documentation 4 John RDRIVEN 2 2 1 19APR04 20APR04

Code 5 1 . . 19APR04 30APR04

Code 5 Programmer RDRIVEN 10 10 1 . .

Code 5 Chris RDRIVEN 10 10 1 19APR04 30APR04

Test Data 6 5 . . 19APR04 23APR04

Test Routines 7 5 . . 19APR04 23APR04

Test Product 8 6 . . 03MAY04 10MAY04

Test Product 8 Programmer FIXED 6 . 1 . .

Test Product 8 Chris FIXED 6 . 1 03MAY04 10MAY04

Finish 9 0 . . 11MAY04 11MAY04

Activity E_START E_FINISH L_START L_FINISH

Plans & Reqts 12APR04 13APR04 12APR04 13APR04

Plans & Reqts 12APR04 13APR04 12APR04 13APR04

Plans & Reqts

Plans & Reqts

Product Design 14APR04 16APR04 14APR04 16APR04

Product Design 14APR04 16APR04 14APR04 16APR04

Product Design

Test Plan 14APR04 16APR04 21APR04 23APR04

Documentation 19APR04 20APR04 07MAY04 10MAY04

Documentation 19APR04 20APR04 07MAY04 10MAY04

Documentation

Code 19APR04 30APR04 19APR04 30APR04

Code 19APR04 30APR04 19APR04 30APR04

Code

Test Data 19APR04 23APR04 26APR04 30APR04

Test Routines 19APR04 23APR04 26APR04 30APR04

Test Product 03MAY04 10MAY04 03MAY04 10MAY04

Test Product 03MAY04 10MAY04 03MAY04 10MAY04

Test Product

Finish 11MAY04 11MAY04 11MAY04 11MAY04

278 F Chapter 4: The CPM Procedure

Example 4.27: Auxiliary Resources and Alternate Resources
This example illustrates the use of Auxiliary resources. In the earlier examples, the use of alternate resources
enabled the allocation of either John or Chris to the programming tasks. Now, suppose that each of the
programmers has a different tester, and whenever a particular programmer is scheduled for a given task, his
tester also needs to allocate some part of his or her time, say 50 percent, to the same task. To model such a
scenario, specify Tester1 and Tester2 as auxiliary resources for Chris and John, respectively. The Activity
and Resource data sets are printed in Output 4.27.1. Unlike the earlier examples, all the activities are of
fixed-duration.

data software;
input Activity & $15. dur act s1 s2 Programmer;

datalines;
Plans & Reqts 2 1 2 3 1
Product Design 3 2 4 5 1
Test Plan 3 3 6 7 .
Documentation 3 4 9 . 1
Code 10 5 8 . 1
Test Data 5 6 8 . .
Test Routines 5 7 8 . .
Test Product 6 8 9 . 1
Finish 0 9 . . .
;

data softaux;
set software;
Chris = .;
John = .;
Tester1 = .;
Tester2 = .;
run;

data resaux;
input per date7. otype $ resid $ 18-27 Programmer Chris John

Tester1 Tester2;
format per date7.;
datalines;

. altrate Programmer . 1 1 . .

. auxres Chris5 .

. auxres John5
12apr04 reslevel . . 1 1 1 1
;

Example 4.27: Auxiliary Resources and Alternate Resources F 279

Output 4.27.1 Auxiliary Resources: Input Data Sets

Software Development
Alternate and Auxiliary Resources

Activity Data Set

Obs Activity dur act s1 s2 Programmer Chris John Tester1 Tester2

1 Plans & Reqts 2 1 2 3 1

2 Product Design 3 2 4 5 1

3 Test Plan 3 3 6 7

4 Documentation 3 4 9 . 1

5 Code 10 5 8 . 1

6 Test Data 5 6 8

7 Test Routines 5 7 8

8 Test Product 6 8 9 . 1

9 Finish 0 9

Software Development
Alternate and Auxiliary Resources

Resource Data Set

Obs per otype resid Programmer Chris John Tester1 Tester2

1 . altrate Programmer . 1 1 . .

2 . auxres Chris . . . 0.5 .

3 . auxres John 0.5

4 12APR04 reslevel . 1 1 1.0 1.0

The following statements invoke PROC CPM with the appropriate data sets and resource variables. The
resulting schedule is printed in Output 4.27.2. Note the auxiliary resources that have been included in the
schedule corresponding to each primary resource: Tester1 whenever Chris is used, and Tester2 whenever
John is allocated.

proc cpm data=softaux out=sftaux rsched=rsftaux resin=resaux
date='12apr04'd interval=weekday resout=raux;

act act;
succ s1 s2;
dur dur;
res Programmer Chris John Tester1 Tester2 /

obstype=otype
period=per resid=resid
multalt rschedid=Activity;

id Activity;
run;

280 F Chapter 4: The CPM Procedure

Output 4.27.2 Auxiliary Resources: Resource Schedule Data Set

Software Development: Alternate and Auxiliary Resources

Resource Schedule Data Set

Activity act RESOURCE DUR_TYPE dur _WORK_ R_RATE S_START S_FINISH

Plans & Reqts 1 2 . . 12APR04 13APR04

Plans & Reqts 1 Programmer FIXED 2 . 1.0 . .

Plans & Reqts 1 Tester1 FIXED 2 . 0.5 12APR04 13APR04

Plans & Reqts 1 Chris FIXED 2 . 1.0 12APR04 13APR04

Product Design 2 3 . . 14APR04 16APR04

Product Design 2 Programmer FIXED 3 . 1.0 . .

Product Design 2 Tester1 FIXED 3 . 0.5 14APR04 16APR04

Product Design 2 Chris FIXED 3 . 1.0 14APR04 16APR04

Test Plan 3 3 . . 14APR04 16APR04

Documentation 4 3 . . 19APR04 21APR04

Documentation 4 Programmer FIXED 3 . 1.0 . .

Documentation 4 Tester2 FIXED 3 . 0.5 19APR04 21APR04

Documentation 4 John FIXED 3 . 1.0 19APR04 21APR04

Code 5 10 . . 19APR04 30APR04

Code 5 Programmer FIXED 10 . 1.0 . .

Code 5 Tester1 FIXED 10 . 0.5 19APR04 30APR04

Code 5 Chris FIXED 10 . 1.0 19APR04 30APR04

Test Data 6 5 . . 19APR04 23APR04

Test Routines 7 5 . . 19APR04 23APR04

Test Product 8 6 . . 03MAY04 10MAY04

Test Product 8 Programmer FIXED 6 . 1.0 . .

Activity E_START E_FINISH L_START L_FINISH

Plans & Reqts 12APR04 13APR04 12APR04 13APR04

Plans & Reqts 12APR04 13APR04 12APR04 13APR04

Plans & Reqts

Plans & Reqts

Product Design 14APR04 16APR04 14APR04 16APR04

Product Design 14APR04 16APR04 14APR04 16APR04

Product Design

Product Design

Test Plan 14APR04 16APR04 21APR04 23APR04

Documentation 19APR04 21APR04 06MAY04 10MAY04

Documentation 19APR04 21APR04 06MAY04 10MAY04

Documentation

Documentation

Code 19APR04 30APR04 19APR04 30APR04

Code 19APR04 30APR04 19APR04 30APR04

Code

Code

Test Data 19APR04 23APR04 26APR04 30APR04

Test Routines 19APR04 23APR04 26APR04 30APR04

Test Product 03MAY04 10MAY04 03MAY04 10MAY04

Test Product 03MAY04 10MAY04 03MAY04 10MAY04

Example 4.28: Use of the SETFINISHMILESTONE Option F 281

Output 4.27.2 continued

Software Development: Alternate and Auxiliary Resources

Resource Schedule Data Set

Activity act RESOURCE DUR_TYPE dur _WORK_ R_RATE S_START S_FINISH

Test Product 8 Tester1 FIXED 6 . 0.5 03MAY04 10MAY04

Test Product 8 Chris FIXED 6 . 1.0 03MAY04 10MAY04

Finish 9 0 . . 11MAY04 11MAY04

Activity E_START E_FINISH L_START L_FINISH

Test Product

Test Product

Finish 11MAY04 11MAY04 11MAY04 11MAY04

Example 4.28: Use of the SETFINISHMILESTONE Option
A simple activity network is used to illustrate the use of the SETFINISHMILESTONE option in a couple of
different scenarios.

The following DATA step reads the project network in AON format into a SAS data set named tasks. The
data set (printed in Output 4.28.1) contains an Activity variable (act), a Successor variable (succ), a Lag
variable (lag), and a Duration variable (dur). There are several milestones linked to other activities through
different types of precedence constraints. The data set also contains some alignment constraints as specified
by the variables target and trgttype. The treatment of the milestones will vary depending on the presence or
absence of the alignment constraints. The data set also contains two variables that indicate the expected early
schedule dates for the milestones corresponding to two different invocations of PROC CPM: the variable
notrgtmd corresponds to the non-aligned schedule and the variable miledate corresponds to an invocation
with the ALIGNDATE statement (the values for these variables are explained later).

282 F Chapter 4: The CPM Procedure

data tasks;
format act $7. succ $7. lag $4. target date7.

trgttype $3. miledate date7. notrgtmd date7. ;
input act & succ & lag $ dur target & date7.

trgttype $ miledate & date7. notrgtmd & date7. ;
datalines;

Task 0 Mile 1 ss_0 1 26Jan04 SGE . .
Mile 1 Task 2 . 0 . . 26Jan04 26Jan04
Task 2 . . 1
Task 3 Mile 4 . 1
Mile 4 . . 0 . . 26Jan04 26Jan04
Task 5 Mile 6 . 1
Mile 6 Mile 7 FS_1 0 . . 26Jan04 26Jan04
Mile 7 . . 0 . . 27Jan04 27Jan04
Task 8 Mile 9 SS_3 1
Mile 9 Mile 10 . 0 . . 29Jan04 29Jan04
Mile 10 . . 0 . . 29Jan04 29Jan04
Task 11 Mile 12 . 2
Mile 12 Mile 13 FS_1 0 28Jan04 SGE 28Jan04 27Jan04
Mile 13 . . 0 . . 29Jan04 28Jan04
;

Output 4.28.1 Input Data Set

Schedule with option SETFINISHMILESTONE
Input Data Set

Obs act succ lag target trgttype miledate notrgtmd dur

1 Task 0 Mile 1 ss_0 26JAN04 SGE . . 1

2 Mile 1 Task 2 . 26JAN04 26JAN04 0

3 Task 2 . . . 1

4 Task 3 Mile 4 . . . 1

5 Mile 4 . 26JAN04 26JAN04 0

6 Task 5 Mile 6 . . . 1

7 Mile 6 Mile 7 FS_1 . 26JAN04 26JAN04 0

8 Mile 7 . 27JAN04 27JAN04 0

9 Task 8 Mile 9 SS_3 . . . 1

10 Mile 9 Mile 10 . 29JAN04 29JAN04 0

11 Mile 10 . 29JAN04 29JAN04 0

12 Task 11 Mile 12 . . . 2

13 Mile 12 Mile 13 FS_1 28JAN04 SGE 28JAN04 27JAN04 0

14 Mile 13 . 29JAN04 28JAN04 0

Example 4.28: Use of the SETFINISHMILESTONE Option F 283

Output 4.28.2 Default Schedule

Schedule with option SETFINISHMILESTONE
Default Schedule

O
b
s

a
c
t

s
u
c
c

d
u
r

l
a
g

n
o
t
r
g
t
m
d

E
_
S
T
A
R
T

E
_
F
I
N
I
S
H

L
_
S
T
A
R
T

L
_
F
I
N
I
S
H

T
_
F
L
O
A
T

F
_
F
L
O
A
T

1 Task 0 Mile 1 1 ss_0 . 26JAN04 26JAN04 28JAN04 28JAN04 2 0

2 Mile 1 Task 2 0 26JAN04 26JAN04 26JAN04 28JAN04 28JAN04 2 0

3 Task 2 1 . 26JAN04 26JAN04 28JAN04 28JAN04 2 2

4 Task 3 Mile 4 1 . 26JAN04 26JAN04 28JAN04 28JAN04 2 0

5 Mile 4 0 26JAN04 27JAN04 27JAN04 29JAN04 29JAN04 2 2

6 Task 5 Mile 6 1 . 26JAN04 26JAN04 27JAN04 27JAN04 1 0

7 Mile 6 Mile 7 0 FS_1 26JAN04 27JAN04 27JAN04 28JAN04 28JAN04 1 0

8 Mile 7 0 27JAN04 28JAN04 28JAN04 29JAN04 29JAN04 1 1

9 Task 8 Mile 9 1 SS_3 . 26JAN04 26JAN04 26JAN04 26JAN04 0 0

10 Mile 9 Mile 10 0 29JAN04 29JAN04 29JAN04 29JAN04 29JAN04 0 0

11 Mile 10 0 29JAN04 29JAN04 29JAN04 29JAN04 29JAN04 0 0

12 Task 11 Mile 12 2 . 26JAN04 27JAN04 26JAN04 27JAN04 0 0

13 Mile 12 Mile 13 0 FS_1 27JAN04 28JAN04 28JAN04 28JAN04 28JAN04 0 0

14 Mile 13 0 28JAN04 29JAN04 29JAN04 29JAN04 29JAN04 0 0

First, the CPM procedure is invoked with the default treatment of milestones. The resulting schedule is
printed in Output 4.28.2. Note the dates for the milestones. Compare these dates with the values of the early
finish dates of the immediate predecessors.

The default behavior of the CPM procedure defines the start times for milestones to be at the beginning of the
day after the predecessor task (with a standard FS_0 relationship) ends. Thus, for example, the activity, ‘Mile
4’ has E_START=27JAN04 because its predecessor, ‘Task 3’, has E_FINISH=26JAN04. The interpretation
for these dates are that the early finish corresponds to the end of the day, while the early start of the milestone
‘Mile 4’ corresponds to the beginning of the day. However, in some situations you may want the milestone to
be scheduled at the same time as the end of the predecessor activity. In other words, you may wish the early
start time of the milestone ‘Mile 4’ to be displayed as 26JAN04, with the interpretation that this time actually
denotes the end of the day, rather than the beginning. See the section “Finish Milestones” on page 100 for
details about the treatment of milestones. In the current example, the variable notrgtmd contains the desired
milestone schedule dates corresponding to this special treatment of milestones. To obtain these desired dates,
you must use the SETFINISHMILESTONE option.

284 F Chapter 4: The CPM Procedure

/* Schedule the project */
proc cpm data=tasks out=out0

collapse interval=day
date='26jan04'd;

activity act;
successor succ /lag=(lag);
duration dur;
id lag notrgtmd;
run;

title2 'Default Schedule';
proc print; run;

Next, the CPM procedure is invoked with the option SETFINISHMILESTONE and the resulting schedule
is printed in Output 4.28.3. Not all milestones are defined to denote the end of the displayed date; such
milestones are referred to as finish milestone. The variables EFINMILE and LFINMILE indicate if the
milestone is a finish milestone or not, corresponding to the early or late schedule, respectively. For example,
the milestone ‘Mile 12’ has E_FINISH = 27JAN04 and the value of EFINMILE is ‘1’, indicating that the
activity finishes at the end of the day on January 27, 2004. The milestone ‘Mile 13’ (with a finish-to-start lag
of 1 day) finishes at the end of the day on January 28, 2004. In fact, as the late finish schedule indicates, the
value of L_FINISH for ‘Mile 13’ (and the project finish time) is the end of the day on 28JAN04. Both the
variables EFINMILE and LFINMILE have the same values for all the activities in this example.

proc cpm data=tasks out=out1
collapse interval=day
date='26jan04'd
setfinishmilestone;

activity act;
successor succ /lag=(lag);
duration dur;
id lag notrgtmd;
run;

title 'Schedule with option SETFINISHMILESTONE';
title2 'No Target Dates';
proc print heading=v;

id act;
var succ lag dur notrgtmd e_start e_finish

l_start l_finish efinmile lfinmile;
run;

Example 4.28: Use of the SETFINISHMILESTONE Option F 285

Output 4.28.3 Schedule with SETFINISHMILESTONE Option

Schedule with option SETFINISHMILESTONE
No Target Dates

a
c
t

s
u
c
c

l
a
g

d
u
r

n
o
t
r
g
t
m
d

E
_
S
T
A
R
T

E
_
F
I
N
I
S
H

L
_
S
T
A
R
T

L
_
F
I
N
I
S
H

E
F
I
N
M
I
L
E

L
F
I
N
M
I
L
E

Task 0 Mile 1 ss_0 1 . 26JAN04 26JAN04 28JAN04 28JAN04 . .

Mile 1 Task 2 0 26JAN04 26JAN04 26JAN04 28JAN04 28JAN04 . .

Task 2 1 . 26JAN04 26JAN04 28JAN04 28JAN04 . .

Task 3 Mile 4 1 . 26JAN04 26JAN04 28JAN04 28JAN04 . .

Mile 4 0 26JAN04 26JAN04 26JAN04 28JAN04 28JAN04 1 1

Task 5 Mile 6 1 . 26JAN04 26JAN04 27JAN04 27JAN04 . .

Mile 6 Mile 7 FS_1 0 26JAN04 26JAN04 26JAN04 27JAN04 27JAN04 1 1

Mile 7 0 27JAN04 27JAN04 27JAN04 28JAN04 28JAN04 1 1

Task 8 Mile 9 SS_3 1 . 26JAN04 26JAN04 26JAN04 26JAN04 . .

Mile 9 Mile 10 0 29JAN04 29JAN04 29JAN04 29JAN04 29JAN04 . .

Mile 10 0 29JAN04 29JAN04 29JAN04 29JAN04 29JAN04 . .

Task 11 Mile 12 2 . 26JAN04 27JAN04 26JAN04 27JAN04 . .

Mile 12 Mile 13 FS_1 0 27JAN04 27JAN04 27JAN04 27JAN04 27JAN04 1 1

Mile 13 0 28JAN04 28JAN04 28JAN04 28JAN04 28JAN04 1 1

The next invocation of CPM illustrates the effect of alignment constraints on the milestones. As explained
in the section “Finish Milestones” on page 100, imposing an alignment constraint of type SGE on a
milestone may change it from a finish milestone to a start milestone (default behavior) as far as the early
schedule of the project is concerned. In the following program, the CPM procedure is invoked with the
SETFINISHMILESTONE option and the ALIGNDATE and ALIGNTYPE statements. The resulting schedule
is printed in Output 4.28.4. The early schedule of the milestones should now correspond to the values in the
variable miledate. Note also that the activities ‘Mile 12’ and ‘Mile 13’ are no longer finish milestones, as
indicated by missing values for the variable EFINMILE. The ‘SGE’ alignment constraint with a target date of
28JAN04 moves the milestone ‘Mile 12’ to the beginning of January 28, 2004, instead of the end of January
27, 2004.

proc cpm data=tasks out=out2
collapse
interval=day
date='26jan04'd
setfinishmilestone;

activity act;
successor succ /lag=(lag);
duration dur;
aligndate target;
aligntype trgttype;
id target trgttype lag miledate;
run;

286 F Chapter 4: The CPM Procedure

title 'Schedule with option SETFINISHMILESTONE';
title2 'Target Dates change Early Schedule for some Milestones';
proc print heading=v;

id act;
var succ lag target trgttype miledate e_start e_finish

l_start l_finish efinmile lfinmile;
run;

Output 4.28.4 Effect of Alignment Constraints

Schedule with option SETFINISHMILESTONE
Target Dates change Early Schedule for some Milestones

a
c
t

s
u
c
c

l
a
g

t
a
r
g
e
t

t
r
g
t
t
y
p
e

m
i
l
e
d
a
t
e

E
_
S
T
A
R
T

E
_
F
I
N
I
S
H

L
_
S
T
A
R
T

L
_
F
I
N
I
S
H

E
F
I
N
M
I
L
E

L
F
I
N
M
I
L
E

Task 0 Mile 1 ss_0 26JAN04 SGE . 26JAN04 26JAN04 28JAN04 28JAN04 . .

Mile 1 Task 2 . 26JAN04 26JAN04 26JAN04 28JAN04 28JAN04 . .

Task 2 . . 26JAN04 26JAN04 28JAN04 28JAN04 . .

Task 3 Mile 4 . . 26JAN04 26JAN04 28JAN04 28JAN04 . .

Mile 4 . 26JAN04 26JAN04 26JAN04 28JAN04 28JAN04 1 1

Task 5 Mile 6 . . 26JAN04 26JAN04 27JAN04 27JAN04 . .

Mile 6 Mile 7 FS_1 . 26JAN04 26JAN04 26JAN04 27JAN04 27JAN04 1 1

Mile 7 . 27JAN04 27JAN04 27JAN04 28JAN04 28JAN04 1 1

Task 8 Mile 9 SS_3 . . 26JAN04 26JAN04 26JAN04 26JAN04 . .

Mile 9 Mile 10 . 29JAN04 29JAN04 29JAN04 29JAN04 29JAN04 . .

Mile 10 . 29JAN04 29JAN04 29JAN04 29JAN04 29JAN04 . .

Task 11 Mile 12 . . 26JAN04 27JAN04 26JAN04 27JAN04 . .

Mile 12 Mile 13 FS_1 28JAN04 SGE 28JAN04 28JAN04 28JAN04 27JAN04 27JAN04 . 1

Mile 13 . 29JAN04 29JAN04 29JAN04 28JAN04 28JAN04 . 1

The interpretation of the start and finish times for a milestone depends on whether it is a start milestone or
a finish milestone. By default, all milestones are start milestones and are assumed to be scheduled at the
beginning of the date specified in the start or finish time variable. As such, PROC GANTT displays these
milestones at the start of the corresponding days on the Gantt chart. However, if a milestone is a finish
milestone then it may not be displayed correctly on the Gantt chart, depending on the scale of the display.

In this example, PROC GANTT is used to display the schedule produced in Output 4.28.4. Recall that the
schedule is saved in the data set out2. First, PROC GANTT is invoked without any modifications to the
schedule data set. The resulting Gantt chart is displayed in Output 4.28.5. The finish milestones (with values
of EFINMILE = ‘1’) are not plotted correctly. For example, ‘Mile 6’ is plotted at the beginning instead of
the end of the schedule bar for the predecessor activity, ‘Act 5’. To correct this problem, you can adjust the
schedule variables for the finish milestones and plot the new values, as illustrated by the second invocation of
PROC GANTT. The corrected Gantt chart is displayed in Output 4.28.6.

Example 4.28: Use of the SETFINISHMILESTONE Option F 287

title h=1.5 'Schedule with option SETFINISHMILESTONE and ALIGNDATE';
title2 'Gantt Chart of Early Schedule without adjustment';
proc gantt data=out2(drop=l_:);

chart / compress act=act succ=succ lag=lag
scale=7 height=1.7
cprec=cyan cmile=magenta
caxis=black
dur=dur nojobnum nolegend;

id act succ lag e_start efinmile;
run;

/* Save adjusted E_START and E_FINISH times for finish
milestones */
data temp;
set out2;
format estart efinish date7.;
estart = e_start;
efinish = e_finish;
if efinmile then do;

estart=estart+1;
efinish=efinish+1;
end;

run;

/* Plot the adjusted start and finish times for the
early schedule */

title h=1.5 'Schedule with option SETFINISHMILESTONE and ALIGNDATE';
title2 'Gantt Chart of Early Schedule after adjustment';
proc gantt data=temp(drop=l_:);

chart / compress act=act succ=succ lag=lag
scale=7 height=1.7
es=estart ef=efinish
cprec=cyan cmile=magenta
caxis=black
dur=dur nojobnum nolegend;

id act succ lag e_start efinmile;
run;

288 F Chapter 4: The CPM Procedure

Output 4.28.5 Gantt Chart of Unadjusted Schedule

Example 4.29: Negative Resource Requirements F 289

Output 4.28.6 Gantt Chart of Adjusted Schedule

Example 4.29: Negative Resource Requirements
This example illustrates the use of negative resource requirements and the MILESTONERESOURCE option.
Consider the production of boxed greeting cards that need to be shipped on trucks with a given capacity.
Suppose there are three trucks with a capacity of 10,000 boxes of cards each. Suppose also that the boxes
are produced at the rate of 5,000 boxes a day by the box-creating activity, ‘First Order’ with a duration of 6
days, and requiring the use of a machine, say resource Mach1. The activity data set OneOrder, displayed in
Output 4.29.1, represents the activities that are to be scheduled. The “Schedule Truck i” task (i = 1, 2, 3) is
represented as a milestone to denote the point in time when the required number of boxes are available from
the production line. The variable numboxes denotes the number of boxes that are produced by the machine,
or delivered by the trucks. The Resource data set OneMachine, displayed in Output 4.29.2, defines the
resource numboxes as a consumable resource and the resources Mach1 and trucks as replenishable resources.

290 F Chapter 4: The CPM Procedure

Output 4.29.1 Activity Data Set

Negative Resource Requirements
Activity Data Set OneOrder

Obs Activity succ Duration Mach1 numboxes trucks

1 First Order 6 1 -5000 .

2 Sched truck1 Delivery 1 0 . 10000 .

3 Sched truck2 Delivery 2 0 . 10000 .

4 Sched truck3 Delivery 3 0 . 10000 .

5 Delivery 1 2 . . 1

6 Delivery 2 2 . . 1

7 Delivery 3 2 . . 1

Output 4.29.2 Resource Data Set

Negative Resource Requirements
Resource Data Set OneMachine

Obs per obstype Mach1 numboxes trucks

1 . restype 1 2 1

2 15AUG04 reslevel 1 . 1

The following statements invoke the CPM procedure to schedule the production of the boxed greeting cards.
The option MILESTONERESOURCE indicates that milestones can consume resources. In this case, the
milestones representing the scheduling of the trucks are scheduled only when 10,000 boxes of greeting cards
are available. The resulting schedule is displayed in Output 4.29.3 using PROC GANTT, and the resource
usage data set is displayed in Output 4.29.4.

proc cpm data=OneOrder resin=OneMachine
out=OneSched rsched=OneRsch resout=OneRout
date='15aug04'd;

act activity;
succ succ;
duration duration;
resource Mach1 numboxes trucks / period=per

obstype=obstype
milestoneresource;

run;

proc sort data=OneSched;
by s_start;
run;

title h=2 'Negative Resource Requirements';
title2 h=1.5 'Truck Schedule';
proc gantt data=OneSched (drop=e_: l_:) ;

chart / act=activity succ=succ duration=duration
cmile=red

Example 4.29: Negative Resource Requirements F 291

cprec=blue height=1.8
nolegend nojobnum;

id activity duration;
run;

title2 'Resource Usage Data Set';
proc print data=OneRout;

id _time_;
run;

Output 4.29.3 Gantt Chart of Schedule

292 F Chapter 4: The CPM Procedure

The resulting Gantt chart shows the schedule of the trucks, which is staggered according to the production
rate of the machine that produces the cards. In other words, the trucks are scheduled at intervals of 2 days.
The Resource Usage data set shows the production/consumption rate of the boxes for each day of the project.

Output 4.29.4 Resource Usage Data Set

Resource Usage Data Set

TIME EMach1 LMach1 RMach1 AMach1 Enumboxes Lnumboxes Rnumboxes Anumboxes

15AUG04 1 1 1 0 25000 -5000 -5000 0

16AUG04 1 1 1 0 -5000 -5000 -5000 5000

17AUG04 1 1 1 0 -5000 -5000 5000 10000

18AUG04 1 1 1 0 -5000 -5000 -5000 5000

19AUG04 1 1 1 0 -5000 25000 5000 10000

20AUG04 1 1 1 0 -5000 -5000 -5000 5000

21AUG04 0 0 0 1 0 0 10000 10000

22AUG04 0 0 0 1 0 0 0 0

23AUG04 0 0 0 1 0 0 0 0

TIME Etrucks Ltrucks Rtrucks Atrucks

15AUG04 3 0 0 1

16AUG04 3 0 0 1

17AUG04 0 0 1 0

18AUG04 0 0 1 0

19AUG04 0 3 1 0

20AUG04 0 3 1 0

21AUG04 0 0 1 0

22AUG04 0 0 1 0

23AUG04 0 0 0 1

Example 4.30: Auxiliary Resources and Negative Requirements
This example extends the production scenario in the previous example to two separate orders of the greeting
cards. Suppose also that the machine used in Example 4.29 is to be replaced by a faster machine that is
scheduled to come on-line on August 24, 2004. This scheduling problem is modeled using alternate resources
Mach1 and Mach2 for a primary resource Machine. Each of the alternate resources produces the auxiliary
resource numboxes; the rate of production depends on which machine is used.

The Activity data set TwoOrders, displayed in Output 4.30.1, now contains additional activities corresponding
to the second order of greeting cards. The resource requirement corresponding to the machine needed for the
production is now represented in terms of the generic machine resource, Machine. The resource data set,
TwoMachines, displayed in Output 4.30.2, specifies Mach1 and Mach2 as alternate resources for Machine
and the resource numboxes as an auxiliary resource produced at the rate of 5,000 by Mach1 and 10,000 by
Mach2. Observations 5 and 6 indicate that the first machine is available from August 15 and is then replaced
by the second machine on August 24, 2004.

Example 4.30: Auxiliary Resources and Negative Requirements F 293

Output 4.30.1 Activity Data Set

Auxiliary Resources
Activity Data Set TwoOrder

O
b
s

A
c
t
i
v
i
t
y

s
u
c
c

D
u
r
a
t
i
o
n

M
a
c
h
i
n
e

M
a
c
h
1

M
a
c
h
2

n
u
m
b
o
x
e
s

t
r
u
c
k
s

_
p
a
t
t
e
r
n

1 First Order 6 1 1

2 Sched truck1 Delivery 1 0 . . . 10000 . 1

3 Sched truck2 Delivery 2 0 . . . 10000 . 1

4 Sched truck3 Delivery 3 0 . . . 10000 . 1

5 Delivery 1 2 1 1

6 Delivery 2 2 1 1

7 Delivery 3 2 1 1

8 Second Order 6 1 2

9 Sched truck4 Delivery 4 0 . . . 10000 . 2

10 Sched truck5 Delivery 5 0 . . . 10000 . 2

11 Sched truck6 Delivery 6 0 . . . 10000 . 2

12 Delivery 4 2 1 2

13 Delivery 5 2 1 2

14 Delivery 6 2 1 2

Output 4.30.2 Resource Data Set

Auxiliary Resources
Resource Data Set TwoMachines

Obs per obstype resid Machine Mach1 Mach2 numboxes trucks

1 . restype 1 1 1 2 1

2 . altrate Machine . 1 1 . .

3 . auxres Mach1 . . . -5000 .

4 . auxres Mach2 . . . -10000 .

5 15AUG04 reslevel . 1 . . 3

6 24AUG04 reslevel . 0 1 . .

The following statements invoke the CPM procedure to schedule the production of the two orders of boxed
greeting cards and display the schedule (in Output 4.30.3) using PROC GANTT. Note that PROC GANTT
is invoked with the PATTERN= option indicating that the schedules should be drawn using the pattern
statements corresponding to the variable _pattern in the activity data set. In addition, the CTEXTCOLS=
option indicates that the color of the text should match the color of the schedule bars.

294 F Chapter 4: The CPM Procedure

proc cpm data=TwoOrders resin=TwoMachines
out=TwoSched rsched=TwoRsched resout=TwoRout
date='15aug04'd;

act activity;
succ succ;
duration duration;
resource Machine Mach1 Mach2 numboxes trucks / period=per

obstype=obstype
resid=resid
milestoneresource;

id _pattern;
run;

proc sort data=TwoSched;
by s_start;
run;

pattern1 v=s c=red;
pattern2 v=s c=green;

title h=2 'Auxiliary Resources';
title2 h=1.5 'Truck Schedule: Fixed Activity Durations';
proc gantt data=TwoSched(drop=e_: l:);

chart / act=activity succ=succ duration=duration
nolegend nojobnum compress pattern=_pattern
ctextcols=id cprec=blue scale=4 height=1.5;

id activity ;
run;

title2 'Resource Usage Data set: Fixed Activity Durations';
proc print data=TwoRout;

id _time_;
run;

Example 4.30: Auxiliary Resources and Negative Requirements F 295

Output 4.30.3 Gantt Chart of Schedule

The Gantt chart shows that the trucks corresponding to the second order of greeting cards depart at a faster
rate (every day) than the ones corresponding to the first order (every 2 days). The faster delivery is enabled
by the use of the faster machine for the second order. Note also that the activity ‘Second Order’ continues
for a total of 6 days, even though the order is filled within the first 3 days. This is due to the fact that the
activity is defined to have a fixed duration. The resource usage data set, displayed in Output 4.30.4 shows
that 10,000 boxes are produced each day for 6 days, causing an inventory build up of 30,000 boxes at the end
of the production schedule.

296 F Chapter 4: The CPM Procedure

Output 4.30.4 Resource Usage Data Set

Auxiliary Resources
Resource Usage Data set: Fixed Activity Durations

TIME EMachine LMachine RMachine AMachine EMach1 LMach1 RMach1 AMach1 EMach2 LMach2 RMach2

15AUG04 2 2 0 0 0 0 1 0 0 0 0

16AUG04 2 2 0 0 0 0 1 0 0 0 0

17AUG04 2 2 0 0 0 0 1 0 0 0 0

18AUG04 2 2 0 0 0 0 1 0 0 0 0

19AUG04 2 2 0 0 0 0 1 0 0 0 0

20AUG04 2 2 0 0 0 0 1 0 0 0 0

21AUG04 0 0 0 0 0 0 0 1 0 0 0

22AUG04 0 0 0 0 0 0 0 1 0 0 0

23AUG04 0 0 0 0 0 0 0 1 0 0 0

24AUG04 0 0 0 0 0 0 0 0 0 0 1

25AUG04 0 0 0 0 0 0 0 0 0 0 1

26AUG04 0 0 0 0 0 0 0 0 0 0 1

27AUG04 0 0 0 0 0 0 0 0 0 0 1

28AUG04 0 0 0 0 0 0 0 0 0 0 1

29AUG04 0 0 0 0 0 0 0 0 0 0 1

30AUG04 0 0 0 0 0 0 0 0 0 0 0

TIME AMach2 Enumboxes Lnumboxes Rnumboxes Anumboxes Etrucks Ltrucks Rtrucks Atrucks

15AUG04 0 60000 0 -5000 0 6 0 0 3

16AUG04 0 0 0 -5000 5000 6 0 0 3

17AUG04 0 0 0 5000 10000 0 0 1 2

18AUG04 0 0 0 -5000 5000 0 0 1 2

19AUG04 0 0 60000 5000 10000 0 6 1 2

20AUG04 0 0 0 -5000 5000 0 6 1 2

21AUG04 0 0 0 10000 10000 0 0 1 2

22AUG04 0 0 0 0 0 0 0 1 2

23AUG04 0 0 0 0 0 0 0 0 3

24AUG04 0 0 0 -10000 0 0 0 0 3

25AUG04 0 0 0 0 10000 0 0 1 2

26AUG04 0 0 0 0 10000 0 0 2 1

27AUG04 0 0 0 0 10000 0 0 2 1

28AUG04 0 0 0 -10000 10000 0 0 1 2

29AUG04 0 0 0 -10000 20000 0 0 0 3

30AUG04 1 0 0 0 30000 0 0 0 3

Example 4.31: Resource-Driven Durations and Negative Requirements
A more realistic model for the truck scheduling example can be built if the activities ‘First Order’ and
‘Second Order’ are defined to be resource driven. In other words, specify the total amount of work (6 days of
work) that is needed from the activity at a pre-specified rate (of 5,000 boxes per day), and allow the choice
of machine to dictate the duration of the activity. This modified model is illustrated by the activity data
set, TwoOrdersRD, and resource data set, TwoMachinesRD, printed in Output 4.31.1 and Output 4.31.1,
respectively. The two orders for greeting cards have a work specification of 6 days if the generic machine

Example 4.31: Resource-Driven Durations and Negative Requirements F 297

Machine (which produces 5,000 boxes a day) is used. The resource data set has a new observation with value
‘resrcdur’ for the variable obstype. This observation specifies that the resources Machine, Mach1 and Mach2
drive the durations of activities that require them. The third observation in this data set specifies that the
second machine is twice as fast as the first one, indicated by the fact that the alternate rate is 0.5. This implies
that using the second machine will reduce the activity’s duration by 50 percent.

Output 4.31.1 Activity Data Set

Resource-Driven Durations
Activity Data Set TwoOrdersRD

O
b
s

A
c
t
i
v
i
t
y

s
u
c
c

D
u
r
a
t
i
o
n

w
o
r
k

M
a
c
h
i
n
e

M
a
c
h
1

M
a
c
h
2

n
u
m
b
o
x
e
s

t
r
u
c
k
s

_
p
a
t
t
e
r
n

1 First Order 1 6 1 1

2 Sched truck1 Delivery 1 0 10000 . 1

3 Sched truck2 Delivery 2 0 10000 . 1

4 Sched truck3 Delivery 3 0 10000 . 1

5 Delivery 1 2 1 1

6 Delivery 2 2 1 1

7 Delivery 3 2 1 1

8 Second Order 1 6 1 2

9 Sched truck4 Delivery 4 0 10000 . 2

10 Sched truck5 Delivery 5 0 10000 . 2

11 Sched truck6 Delivery 6 0 10000 . 2

12 Delivery 4 2 1 2

13 Delivery 5 2 1 2

14 Delivery 6 2 1 2

Output 4.31.2 Resource Data Set

Resource-Driven Durations
Resource Data Set TwoMachinesRD

Obs per obstype resid Machine Mach1 Mach2 numboxes trucks

1 . resrcdur 1 1 1.0 . .

2 . restype 1 1 1.0 2 1

3 . altrate Machine . 1 0.5 . .

4 . auxres Mach1 . . . -5000 .

5 . auxres Mach2 . . . -10000 .

6 15AUG04 reslevel . 1 . . 3

7 24AUG04 reslevel . 0 1.0 . .

298 F Chapter 4: The CPM Procedure

The following statements invoke PROC CPM with the additional specification of the WORK= option. Once
again, the CPM procedure allocates one of the two machines for the production, depending on the availability.
The Gantt chart is displayed in Output 4.31.3 and the resource usage data set is printed in Output 4.31.4. As
before, the trucks for the first order depart every second day requiring a total of 6 days, while the second
order is completed in 3 days. Also, using a resource-driven duration model allows the second activity to be
completed in 3 days instead of 6 days, as in the previous example. The resource usage data set indicates that
production is stopped as soon as the two orders are filled, avoiding excess inventory.

proc cpm data=TwoOrdersRD resin=TwoMachinesRD
out=TwoSchedRD rsched=TwoRschedRD resout=TwoRoutRD
date='15aug04'd;

act activity;
succ succ;
duration duration;
resource Machine Mach1 Mach2 numboxes trucks / period=per

obstype=obstype
resid=resid work=work
milestoneresource;

id _pattern;
run;

proc sort data=TwoSchedRD;
by s_start;
run;

pattern1 v=s c=red;
pattern2 v=s c=green;

title h=2 'Resource-Driven Durations';
title2 h=1.5 'Truck Schedule';
proc gantt data=TwoSchedRD(drop=e_: l:);

chart / act=activity succ=succ duration=duration
nolegend nojobnum compress pattern=_pattern
ctextcols=id cprec=blue scale=4 height=1.4;

id activity ;
run;

title2 'Resource Usage Data Set';
proc print data=TwoRoutRD;

id _time_;
run;

Example 4.31: Resource-Driven Durations and Negative Requirements F 299

Output 4.31.3 Gantt Chart of Schedule

300 F Chapter 4: The CPM Procedure

Output 4.31.4 Resource Usage Data Set

Resource-Driven Durations
Resource Usage Data Set

TIME EMachine LMachine RMachine AMachine EMach1 LMach1 RMach1 AMach1 EMach2 LMach2 RMach2

15AUG04 2 2 0 0 0 0 1 0 0 0 0

16AUG04 2 2 0 0 0 0 1 0 0 0 0

17AUG04 2 2 0 0 0 0 1 0 0 0 0

18AUG04 2 2 0 0 0 0 1 0 0 0 0

19AUG04 2 2 0 0 0 0 1 0 0 0 0

20AUG04 2 2 0 0 0 0 1 0 0 0 0

21AUG04 0 0 0 0 0 0 0 1 0 0 0

22AUG04 0 0 0 0 0 0 0 1 0 0 0

23AUG04 0 0 0 0 0 0 0 1 0 0 0

24AUG04 0 0 0 0 0 0 0 0 0 0 1

25AUG04 0 0 0 0 0 0 0 0 0 0 1

26AUG04 0 0 0 0 0 0 0 0 0 0 1

27AUG04 0 0 0 0 0 0 0 0 0 0 0

28AUG04 0 0 0 0 0 0 0 0 0 0 0

29AUG04 0 0 0 0 0 0 0 0 0 0 0

TIME AMach2 Enumboxes Lnumboxes Rnumboxes Anumboxes Etrucks Ltrucks Rtrucks Atrucks

15AUG04 0 60000 0 -5000 0 6 0 0 3

16AUG04 0 0 0 -5000 5000 6 0 0 3

17AUG04 0 0 0 5000 10000 0 0 1 2

18AUG04 0 0 0 -5000 5000 0 0 1 2

19AUG04 0 0 60000 5000 10000 0 6 1 2

20AUG04 0 0 0 -5000 5000 0 6 1 2

21AUG04 0 0 0 10000 10000 0 0 1 2

22AUG04 0 0 0 0 0 0 0 1 2

23AUG04 0 0 0 0 0 0 0 0 3

24AUG04 0 0 0 -10000 0 0 0 0 3

25AUG04 0 0 0 0 10000 0 0 1 2

26AUG04 0 0 0 0 10000 0 0 2 1

27AUG04 1 0 0 10000 10000 0 0 2 1

28AUG04 1 0 0 0 0 0 0 1 2

29AUG04 1 0 0 0 0 0 0 0 3

Statement and Option Cross-Reference Tables F 301

Statement and Option Cross-Reference Tables
The next two tables reference the statements and options in the CPM procedure that are illustrated by the
examples in this section.

Table 4.13 Statements and Options Specified in Examples
2.1–2.17

Statement 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
ACTIVITY X X X X X X X X X X
ACTUAL X
ALIGNDATE X
ALIGNTYPE X
BASELINE X
CALID X
DURATION X X X X X X X X X X X X X X X X X
HEADNODE X X X X X X X X
HOLIDAY X X X X X X X X
ID X X X X X X X X X X
RESOURCE X X X X
SUCCESSOR X X X X X X X X X
TAILNODE X X X X X X X X
Option 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
A_FINISH X
ALAGCAL= X
A_START= X
AUTOUPDT X
AVPROFILE X
CALEDATA= X X X
COLLAPSE X
COMPARE= X
CUMUSAGE X X
DATA= X X X X X X X X X X X X X X X X X
DATE= X X X X X X X X X X X X X X X X X
DAYLENGTH= X X X
DAYSTART= X
DELAY= X X
DELAYANALYSIS X X X
FBDATE= X
HOLIDATA= X X X X X X X X
HOLIDUR= X X
HOLIFIN= X X X X
INFEASDIAGNOSTIC X
INTERVAL= X X X X X X X X X X X X X
LAG= X
MAXDATE= X
NOAUTOUPDT X
OBSTYPE= X X X
OUT= X X X X X X X X X X X X
PCTCOMP= X
PERIOD= X X X
RCPROFILE X
REMDUR= X

302 F Chapter 4: The CPM Procedure

Table 4.13 (continued)

RESOURCEIN= X X X
RESOURCEOUT= X X X X
ROUTNOBREAK X
SCHEDRULE= X
SET= X
SHOWFLOAT X
TIMENOW= X
WORKDATA= X X
XFERVARS X

Table 4.14 Statements and Options Specified in Examples
2.18–2.31

Statement 18 19 20 21 22 23 24 25 26 27 28 29 30 31
ACTIVITY X X X X X X X X X X X X
ALIGNDATE X X
ALIGNTYPE X X
BASELINE X
DURATION X X X X X X X X X X X X X X
HEADNODE X X
HOLIDAY X X X X
ID X X X X X X X X X X
PROJECT X
RESOURCE X X X X X X X X X X X
SUCCESSOR X X X X X X X X X X X X
TAILNODE X X
Option 18 19 20 21 22 23 24 25 26 27 28 29 30 31
ACTDELAY= X
ADDCAL X
ADDWBS X
ALTBEFORESUP X
AVPROFILE X X X
CALEDATA= X
COLLAPSE X X X
COMPARE= X
CUMUSAGE X
DATA= X X X X X X X X X X X X X X
DATE= X X X X X X X X X X X X X
DELAY= X
DELAYANALYSIS X X
FBDATE= X
F_FLOAT X
HOLIDATA= X X X X
INFEASDIAGNOSTIC X
INTERVAL= X X X X X X X X X
LAG= X
MILESTONERESOURCE X X X
MINSEGMTDUR= X
MULTIPLEALTERNATES X X
OBSTYPE= X X X X X X X X X X
ORDERALL X

References F 303

Table 4.14 (continued)

OUT= X X X X X X X X X X X X X X
PERIOD= X X X X X X X X X X X
RCPROFILE X X X
RESID= X X X X X X
RESOURCEIN= X X X X X X X X X X X
RESOURCEOUT= X X X X X X X X X X
RESOURCESCHED= X X X X X X X
ROUTNOBREAK
RSCHEDID= X X X X
SEPCRIT X
SET= X
SETFINISHMILESTONE X
STOPDATE= X
T_FLOAT X X
USEPROJDUR X
WORK= X X X X

References

Davis, E. W. (1973). “Project Scheduling under Resource Constraints: Historical Review and Categorization
of Procedures.” AIIE Transactions 5:297–313.

Elmaghraby, S. E. (1977). Activity Networks: Project Planning and Control by Network Models. New York:
John Wiley & Sons.

Horowitz, E., and Sahni, S. (1976). Fundamentals of Data Structures. Potomac, MD: Computer Science
Press.

Kulkarni, R. (1991). “Scheduling with the CPM Procedure.” In Proceedings of the Sixteenth Annual
SAS Users Group International Conference, 700–714. Cary, NC: SAS Institute Inc. http://www.
sascommunity.org/sugi/SUGI91/Sugi-91-118%20Kulkarni.pdf.

Malcolm, D. G., Roseboom, J. H., Clark, C. E., and Fazar, W. (1959). “Applications of a Technique for R
and D Program Evaluation (PERT).” Operations Research 7:646–669.

Minieka, E. (1978). Optimization Algorithms for Networks and Graphs. New York: Marcel Dekker.

Moder, J. J., Phillips, C. R., and Davis, E. W. (1983). Project Management with CPM, PERT, and Precedence
Diagramming. New York: Van Nostrand Reinhold.

SAS Institute Inc. (1993). SAS/OR Software: Project Management Examples. Cary, NC: SAS Institute Inc.

Van Slyke, R. M. (1963). “Monte Carlo Methods and the PERT Problem.” Operations Research 11:839–860.

Wiest, J. D. (1967). “A Heuristic Model for Scheduling Large Projects with Limited Resources.” Management
Science 13:359–377.

http://www.sascommunity.org/sugi/SUGI91/Sugi-91-118%20Kulkarni.pdf
http://www.sascommunity.org/sugi/SUGI91/Sugi-91-118%20Kulkarni.pdf

Subject Index

ACTDELAY variable
Activity data set (CPM), 83, 226

activity align types, 75
activity calendar, 77, 177
Activity data set

CPM procedure, 57, 59, 68
missing values, 139
resource requirement specification (CPM), 120
variables, 137

activity delay
analysis, 84, 101, 203
and supplementary resources, 123
example (CPM), 217, 221, 222, 226
specification, 83, 84
wait until, 84

activity duration, see duration
activity information, see Activity data set

additional variables, 80
Activity-on-Arc

network diagram, 58
specification, CPM procedure, 78, 93

Activity-on-Edge, see Activity-on-Arc
Activity-on-Node

network diagram, 59
specification, CPM procedure, 72, 92

Activity-on-Vertex, see Activity-on-Node
activity splitting

at TIMENOW (CPM), 74, 114, 125
CPM procedure, 86, 87, 91, 124, 125
example (CPM), 228
maximum number of segments, 86
minimum duration of segment, 87
option to allow default, 91

activity status
setting in CPM procedure, 102

ACTIVITY variable
Activity data set (CPM), 72

ACTIVITYPRTY variable
Activity data set (CPM), 83

actual schedule
CPM procedure, 72, 112–114
example (CPM), 190
finish times (CPM), 73
start times (CPM), 73

add activity records
CPM procedure, 67

A_DUR variable
Schedule data set (CPM), 101, 112, 113, 192

A_FINISH variable
Activity data set (CPM), 73, 96, 112
Schedule data set (CPM), 101, 102, 112, 113, 192

AFINMILE variable
Schedule data set (CPM), 101

ALIGNDATE variable
Activity data set (CPM), 75, 96, 98, 99

alignment constraints
CPM procedure, 75, 98, 99

ALIGNTYPE variable
Activity data set (CPM), 75, 98, 99

alternate resources
CPM procedure, 83, 87, 89, 125, 126
example (CPM), 233

AOA, see Activity-on-Arc
AOE, see Activity-on-Arc
AON, see Activity-on-Node
AOV, see Activity-on-Node
arrow diagramming method, see Activity-on-Arc
A_START variable

Activity data set (CPM), 73, 96, 112
Schedule data set (CPM), 101, 102, 112, 113, 192

auxiliary resources
CPM procedure, 129
example (CPM), 292, 296

baseline schedule
comparing, 76, 111, 226
setting, 76, 77, 190
specifying, 76, 77, 111
updating, 77

B_FINISH variable
Activity data set (CPM), 76
Schedule data set (CPM), 77, 190

break and shift information
discussion, CPM procedure, 103–107, 111

B_START variable
Activity data set (CPM), 76
Schedule data set (CPM), 77, 190

CAL variable, see CALID variable
Activity data set (CPM), 77
Calendar data set (CPM), 77
Holiday data set (CPM), 77
Resource Schedule data set (CPM), 83

Calendar data set
calendars example (CPM), 105
CPM procedure, 57, 67, 103, 105, 170, 174
missing values, 139

variables, 137
calendar information, see Calendar data set
calendars, see Calendar data set, see Holiday data set,

see holidays, see multiple calendars and
holidays, see Workday data set

associated with activity, 61
default, CPM procedure, 104
discussion, 103–107, 111
in Usage data set, 130
length of workday (CPM), 68, 96, 104, 105
multiple calendars, 103–107, 111
start of workday (CPM), 68, 96, 104
work shifts, 104
work unit specification (CPM), 69

CALID variable
Activity data set (CPM), 77, 103, 104
Calendar data set (CPM), 77, 103–106
example (CPM), 177, 181
Holiday data set (CPM), 77, 103, 104, 106, 107

common working calendar, 89
comparison of schedules, 76
computer resource requirements

CPM procedure, 70, 141
consumable resource, 117
CPM, see critical path method
CPM examples

activity splitting, 228
Activity-on-Arc format, 148
Activity-on-Node format, 144
alternate resources, 233
analyzing resource delay, 201
auxiliary resources, 292, 296
basic project schedule, 142
changing length of workday, 161
changing start of workday, 161
course scheduling, 244
finish milestone, 281
incorporating actual schedule, 190
infeasibility diagnostics, 214
meeting project deadlines, 151
multiproject scheduling, 248
negative resource requirements, 289, 292, 296
nonstandard precedence constraints, 183
PERT analysis, 241
resource calendars, 258, 296
resource-driven durations, 258, 296
resource-constrained scheduling, 201
saving a target schedule, 190
scheduling around holidays, 163
scheduling courses, 244
scheduling only on weekdays, 157
scheduling over nonstandard day and week, 169,

174
setting activity delay, 221

setting project finish date, 151
setting project start date, 145
substitutable resources, 233
summarizing resources used by project, 195
supplementary resources, 210
time-constrained scheduling, 188
TIMENOW option, 190
use of PROC CALENDAR to print schedule, 153

CPM procedure
Activity data set, 68
Activity-on-Arc, 58
Activity-on-Node, 59
actual schedule, 72
add activity records, 67
alternate resources, 125
auxiliary resources, 129
baseline schedules, 111
Calendar data set, 67, 103, 105
computer resource requirements, 70, 141
default calendar, 104
definitions of Schedule data set variables,

101–103
details, 94
duration specification, 96
finish milestone, 100, 101
float times, 95
formatting details, 141
functional summary, 63
Holiday data set, 69, 103, 106, 107
input data sets, 137
missing values, treatment of, 139
multiple alternates, 127
multiple calendars, 103–107, 111
multiproject scheduling, 133–136
negative resource requirements, 121
options classified by function, 63
output data sets, 101, 129, 133
overview, 57
precedence relationships, 97, 98
progress updating, 111–114
progress variables, 72, 112, 113
random activity durations, 243
resource allocation, 115, 116, 118–127, 130–133
Resource data set, 70, 116
resource-driven durations, 128
Resource Schedule data set, 71
resource usage, 131
SAS date, time, and datetime values, 68, 96, 97,

107, 141
Schedule data set, 70, 101–103
scheduling subject to precedence constraints, 95,

96
serial-parallel scheduling method, 121, 122
specifying resource requirements, 120, 121

syntax skeleton, 63
table of syntax elements, 63
target schedules, 111
time-constrained scheduling, 98, 99
Usage data set, 71
variables, 101, 137
Workday data set, 72, 103, 104

CPM procedure
macro variable _ORCPM_, 136

CPU requirement, see computer resource requirements
critical activities

CPM procedure, 60, 61, 95, 99, 103
critical path, 95, 103
critical path method, 58
critical path method (CPM), 60
cumulative resource usage, 84
current time, see TIMENOW
cycles

definition, CPM procedure, 96

data storage requirements, see computer resource
requirements

day
length of, 68, 96, 104, 105, 162
start of, 68, 96, 104, 105, 162

deadlines
finish-before date, 68

default calendar
CPM procedure, 77, 104, 177

delay diagnostics, see activity delay
DELAY_R variable

Schedule data set (CPM), 84, 101, 203
delete duplicate observations, 68
diagnose resource infeasibilities, see infeasibility

diagnostics
D_LENGTH variable

Calendar data set (CPM), 105
duplicate observations

deleting (CPM), 68
DUR variable, see DURATION variable

Resource Schedule data set (CPM), 133
duration

calculated, 78
estimates of, 241
multiplier, CPM procedure, 69
resource-driven, 92, 101, 114
specification, CPM procedure, 78, 96
units, CPM procedure, 61, 69, 96, 157

DURATION variable
Activity data set (CPM), 78, 114, 115

DUR_TYPE variable
Resource Schedule data set (CPM), 133

early start schedule computation, see schedule
computation

E_FINISH variable
Schedule data set (CPM), 61, 85, 95, 101, 102

EFINMILE variable
Schedule data set (CPM), 101

errors
CPM procedure, 136, 139

ES_ASC variable
Schedule data set (CPM), 80

ES_DESC variable
Schedule data set (CPM), 80

E_START variable
Schedule data set (CPM), 61, 85, 95, 99, 101, 102

examples, see CPM examples
statement and option cross-reference tables

(CPM), 301–303

F_FLOAT variable
Schedule data set (CPM), 61, 85, 101, 102

finish-before date
CPM procedure, 68

finish milestone
CPM procedure, 100, 101
example (CPM), 281

finish times
computation of, CPM procedure, 95
interpretation of, CPM procedure, 96

FINISH variable
Activity data set (CPM), 78

float
free, 61, 95, 102
total, 61, 95, 103

forced finish, see time constraints
forced start, see time constraints
formatting

details, CPM procedure, 141
free float, see float
FRI variable

Calendar data set (CPM), 105
functional summary

CPM procedure, 63
F_VAR variable

Schedule data set (CPM), 76, 192, 226

HEAD variable
Activity data set (CPM), 78

Holiday data set
CPM procedure, 57, 69, 79, 103, 106, 107, 163,

174
holidays example (CPM), 107
missing values, 139
treatment of holiday related variables, 79
variables, 137

holiday information, see Holiday data set
HOLIDAY variable

Holiday data set (CPM), 79, 106
holidays, see Holiday data set

defining, 79
durations, 79
finish times, 79
scheduling around, 61
start times, 79

HOLIDUR variable
Holiday data set (CPM), 79, 106

HOLIFIN variable
Holiday data set (CPM), 79, 106

ID variables
Activity data set (CPM), 80

independent resource scheduling, 86, 124
infeasibility diagnostics

CPM procedure, 86, 123, 214
input data sets, see Activity data set, see Calendar data

set, see Holiday data set, see Resource data
set, see Workday data set

CPM procedure, 57, 137

lag types, 92, 98
LAG variables, see nonstandard precedence

relationships
Activity data set (CPM), 92
example (CPM), 183

late start schedule computation, see schedule
computation

L_FINISH variable
Schedule data set (CPM), 61, 86, 95, 101, 102

LFINMILE variable
Schedule data set (CPM), 101

loop, see cycles
LS_ASC variable

Schedule data set (CPM), 80, 81
LS_DESC variable

Schedule data set (CPM), 80
L_START variable

Schedule data set (CPM), 61, 86, 95, 99, 101, 102

macro variable
ORCPM, 136

mandatory time constraints, see time constraints
maximum number of observations (CPM), 87
MAXNSEGMT variable

Activity data set (CPM), 86
memory requirements, see computer resource

requirements
milestones

set finish (CPM), 71
MINSEGMTDUR variable

Activity data set (CPM), 87
missing values

CPM procedure, 139

MON variable
Calendar data set (CPM), 105

multiple alternates
CPM procedure, 87, 127

multiple calendars and holidays
common working calendar, 89
CPM procedure, 103–107, 111
example (CPM), 174
scheduling during common working times, 89

multiproject scheduling, 133–136
example (CPM), 248

negative requirements
specifying, CPM procedure, 121

negative resource requirements
example (CPM), 289, 292, 296

network diagrams, see NETDRAW procedure
Activity-on-Arc, 58
Activity-on-Node, 59

nonstandard precedence relationships
CPM procedure, 97, 98
example (CPM), 183
lag calendar, 92, 93, 184, 185
lag duration, 92
lag types, 92
lag variables, 92, 183
specification, CPM procedure, 92, 93

OBSTYPE variable
Resource data set (CPM), 88, 116

OBS_TYPE variable
Usage data set (CPM), 83

options classified by function, see functional summary
ORCPM macro variable, 136
output data sets, see Resource Schedule data set, see

Schedule data set, see Usage data set
CPM procedure, 57

overview
CPM procedure, 57

PCTCOMP variable
Activity data set (CPM), 74, 112, 192

PCT_COMP variable
Schedule data set (CPM), 73

percent complete, 74, 112
PERIOD variable

Resource data set (CPM), 88, 96, 116
precedence diagramming method, see

Activity-on-Node
precedence relationships

CPM procedure, 97, 98
scheduling subject to, 95, 96

problem size specification
CPM procedure, 141
number of activities (CPM), 69

number of adjacencies (CPM), 69
resource requirement array (CPM), 70
size of symbolic table (CPM), 69
utility data sets (CPM), 70, 141

progress updating
allow nonzero float, 74, 113
automatic updating of progress information, 73,

113, 192, 193
CPM procedure, 111–114
current time, 74, 112
estimate percent completion time, 73
example (CPM), 190
interrupt activities in progress, 74, 114
resource allocation during, 125
specifying information, 72–74

progress variables, 112
CPM procedure, 72, 112, 113

PROJ_DUR variable
Schedule data set (CPM), 136

project
definition, 58
finish date, 68, 95, 151
introductory example, 59
schedule comparison, 76
start date, 68, 95, 146, 151

project progress, see progress updating
PROJECT variable

Activity data set (CPM), 80, 133
Schedule data set (CPM, 136

PROJ_LEV variable
Schedule data set (CPM), 136

R_DELAY variable
Schedule data set (CPM), 84, 101, 203

remaining duration, 74, 112
REMDUR variable

Activity data set (CPM), 74, 192
replenishable resource, 117
RESID variable

Resource data set (CPM), 89, 116
resource allocation, see resource allocation control,

115, 116, 118–127, 130–133
activity splitting, 124, 125, 228
actual dates, 125
alternate resources, 118, 125, 126, 128, 233
analyzing infeasibilities, 86, 123, 214
auxiliary resources, 129
effect of the TIMENOW option, 125
example (CPM), 201
multiple alternates, 127
negative resource requirements, 121
progress updating, 125
resource availability profile, 119
resource calendars, 258

resource dictionary, 116
resource-driven durations, 124, 128
resource levels, 116
resource priority, 116, 118, 123
resource usage variables, 130
scheduling method, 121–123
scheduling rule, 90, 122, 201
secondary scheduling rule, 91, 122
specifying resource requirements, 120, 121
substitutable resources, 118, 125
supplementary levels, 116, 118
supplementary resources, 123

resource allocation control
activity-splitting options, 86, 87, 91
alternate resources, 83, 87, 89
checking levels needed, 86
cutoff date, 91
options related to, 83, 84, 86, 87, 89–91
scheduling rules, 90, 91

resource calendars
example (CPM), 258

resource constraints, see resource allocation
Resource data set

alternate resource specification, 126
CPM procedure, 57, 70, 116, 201
missing values, 139
multiple alternates, 127
observation type, 88
resource specification example (CPM), 119
variables, 116, 137

resource-driven durations, 92, 101, 114
and resource allocation (CPM), 124
CPM procedure, 128
example (CPM), 258, 296

resource infeasibilities, 86, 123, 214, 216, 222, 226
resource requirements

specifying, CPM procedure, 120, 121
Resource Schedule data set

CPM procedure, 57, 71
resource type

consumable, 117, 201
replenishable, 117

resource usage, see Usage data set
CPM procedure, 115, 131
cumulative usage, 84, 131
cumulative usage example, 210, 217
daily usage, 131
example of reports, 197
variables in Usage data set, 130

RESOURCE variables
Activity data set (CPM), 82, 120
example (CPM), 195
Resource data set (CPM), 82, 116
Resource Schedule data set (CPM), 133

R_RATE variable
Resource Schedule data set (CPM), 133

RSCHEDID variables
Activity data set (CPM), 90
Resource Schedule data set (CPM), 90

SAS data sets
CPM procedure, 57

SAS date, time, and datetime values
CPM procedure, 68, 96, 97, 107, 141

SAT variable
Calendar data set (CPM), 105

schedule computation
finish milestone, 100
multiproject, 135
nonstandard precedence constraints, 98
progress updating, 113
resource constraints, 121–123
standard precedence constraints, 95
time constraints, 98, 99

Schedule data set
CPM procedure, 57, 60, 70, 101–103, 126
multiproject, 136
options to control, 68, 72, 84–86, 88, 89, 91, 92
progress variables, 114
resources used, 126, 237
sort variables, 80, 81, 136, 249
variables, 61, 101–103, 114, 125, 126

schedule information, see Schedule data set
scheduling

around weekends and holidays, 61, 157, 161, 163,
169

rule for breaking ties, 91
rule for ordering activities, 90, 122, 123
serial parallel method, CPM procedure, 121, 122

secondary levels of resource
CPM procedure, 123

segments, see activity splitting
SEGMT_NO variable

Schedule data set (CPM), 103, 125, 231
serial-parallel scheduling method

CPM procedure, 121, 122
S_FINISH variable

Schedule data set (CPM), 101, 102, 125
SFINMILE variable

Schedule data set (CPM), 101
shift variables, see Workday data set
slack time, see float
sort variables

Schedule data set (CPM), 80, 81, 136, 249
split activities, see activity splitting
SS_ASC variable

Schedule data set (CPM), 80, 81
SS_DESC variable

Schedule data set (CPM), 80
S_START variable

Schedule data set (CPM), 101, 102, 125
start times

interpretation of, CPM procedure, 96
START variable

Activity data set (CPM), 78
STATUS variable

Resource Schedule data set (CPM), 133
Schedule data set (CPM), 101, 102, 114, 192

subprojects, see multiproject scheduling
individual critical paths for (CPM), 81
ordering activities within (CPM), 80, 81

substitutable resources, see alternate resources
SUCCESSOR variables

Activity data set (CPM), 92
SUN variable

Calendar data set (CPM), 105
supercritical activities

definition of, 95, 99
example of, 189

supplementary resources
CPM procedure, 123
example (CPM), 210
infinite levels, 214

SUPPL_R variable
Schedule data set (CPM), 84, 101, 203

S_VAR variable
Schedule data set (CPM), 76, 192, 226

syntax skeleton
CPM procedure, 63

table of syntax elements, see functional summary
TAIL variable

Activity data set (CPM), 93
target schedule, see baseline schedule
T_FLOAT variable

Schedule data set (CPM), 61, 91, 101, 103
THU variable

Calendar data set (CPM), 105
time-constrained scheduling

CPM procedure, 75, 96, 98, 99
example (CPM), 188

time constraints
activity align dates (CPM), 75, 188
activity align types (CPM), 75, 188
fix finish time (CPM), 69
Mandatory Finish, MF, 99, 189
Mandatory Start, MS, 99, 189
project finish date (CPM), 68, 69, 95
project start date (CPM), 68, 95
scheduling subject to, 98, 99

TIME variable

Usage data set (CPM), 83, 86–88, 90, 91,
130–132

TIMENOW, 74, see progress updating
allow activity splitting at, 74

total float, see float
TUE variable

Calendar data set (CPM), 105

units of duration
CPM procedure, 61

Usage data set
CPM procedure, 57, 71, 129, 131, 195, 197
description, 129, 130
options, 83–90
rate of usage, 83, 91
resource usage and availability profile, 131
total usage, 83, 91
variables, 129, 131, 132

variables
format of (CPM), 141
list of, CPM procedure, 137
treatment of missing values (CPM), 139

warning
suppress displaying (CPM), 72

WBS, 81, 82
WBS_CODE variable

Schedule data set (CPM), 82
WED variable

Calendar data set (CPM), 105
weekends and non-worked days

scheduling around, 61
WORK variable

Activity data set (CPM), 92, 114, 115
WORK variable

Resource Schedule data set (CPM), 133
workday

length of, 68, 96, 104, 105, 162
start of, 68, 96, 104, 105, 162

Workday data set
CPM procedure, 57, 72, 103, 104, 174
missing values, 139
shift variables, 104
variables, 137
work shift example (CPM), 104

workshift information, see Workday data set

Syntax Index

ACT statement, see ACTIVITY statement
ACTDELAY= option

RESOURCE statement (CPM), 83, 123, 222
ACTIVITY statement

CPM procedure, 59, 72, 144
ACTIVITYPRTY= option

RESOURCE statement (CPM), 83
ACTPRTY keyword

SCHEDRULE= option (CPM), 90, 122
ACTPRTY= option, see ACTIVITYPRTY= option
ACTUAL keyword

COMPARE= option (CPM), 76
SET= option (CPM), 77
UPDATE= option (CPM), 77

ACTUAL statement
CPM procedure, 72, 190

ADATE statement, see ALIGNDATE statement
ADDACT option

PROC CPM statement, 67
ADDALLACT option, see ADDACT option
ADDCAL option

RESOURCE statement (CPM), 83
ADDWBS option, see WBSCODE option
AF= option, see A_FINISH= option
A_FINISH= option

ACTUAL statement (CPM), 73, 192
AGGREGATEPARENTRES option

PROJECT statement (CPM), 80
AGGREGATEP_RES option, see

AGGREGATEPARENTRES option
AGGREGPR option, see AGGREGATEPARENTRES

option
ALAGCAL= option

SUCCESSOR statement (CPM), 92, 185
ALIGN statement, see ALIGNTYPE statement
ALIGNDATE statement

CPM procedure, 75, 188
ALIGNTYPE statement

CPM procedure, 75, 188
ALL option, see ORDERALL option

RESOURCE statement (CPM), 83, 130
ALTBEFORESUP option

RESOURCE statement (CPM), 83, 237
ALTPRTY keyword

OBSTYPE variable (CPM), 88, 89, 116, 118, 125
ALTRATE keyword

OBSTYPE variable (CPM), 88, 89, 116, 118, 125
APPEND option

RESOURCE statement (CPM), 83
APPENDINTXRATE option, see APPEND option
APPENDRATEXINT option, see APPEND option
APPENDUSAGE option, see APPEND option
AROUTCAL= option

RESOURCE statement (CPM), 83, 130
AS= option, see A_START= option
A_START= option

ACTUAL statement (CPM), 73, 192
ATYPE statement, see ALIGNTYPE statement
AUTOUPDT option

ACTUAL statement (CPM), 73, 113, 193
AUXRES keyword

OBSTYPE variable (CPM), 88, 89, 116, 118, 129
AVL option, see AVPROFILE option
AVP option, see AVPROFILE option
AVPROFILE option

RESOURCE statement (CPM), 84, 130, 217
AWAITDELAY option

RESOURCE statement (CPM), 84

BASELINE statement
CPM procedure, 76, 190

BF= option, see B_FINISH= option
B_FINISH= option

BASELINE statement (CPM), 76
BS= option, see B_START= option
B_START= option

BASELINE statement (CPM), 76

CALEDATA= option
PROC CPM statement, 67

CALENDAR keyword
OBSTYPE variable (CPM), 88, 116, 118

CALENDAR= option, see CALEDATA= option, see
CALEDATA= option

CALID statement
CPM procedure, 77, 177

COLLAPSE option
PROC CPM statement, 68, 183

COMPARE= option
BASELINE statement (CPM), 76, 192

CPM procedure, 63
ACTIVITY statement, 59, 72
ACTUAL statement, 72, 190
ALIGNDATE statement, 75, 188
ALIGNTYPE statement, 75, 188
BASELINE statement, 76, 190
CALID statement, 77, 177, 181

DURATION statement, 58, 59, 78
HEADNODE statement, 58, 78
HOLIDAY statement, 79
ID statement, 80
PROC CPM statement, 67
PROJECT statement, 80
RESOURCE statement, 82, 195
SUCCESSOR statement, 59, 92
TAILNODE statement, 58, 93

CUMUSAGE option
RESOURCE statement (CPM), 84, 131, 210

CURRDATE= option, see TIMENOW= option

DATA= option
PROC CPM statement, 68, 146

DATE statement, see ALIGNDATE statement
DATE= option

PROC CPM statement, 68, 95, 146
DAY keyword

INTERVAL= option (CPM), 69
ROUTINTERVAL= option (CPM), 90

DAYLENGTH= option
PROC CPM statement, 68, 96, 161

DAYSTART= option
PROC CPM statement, 68, 161

DELAY= option
RESOURCE statement (CPM), 84, 123, 210

DELAYANALYSIS option
RESOURCE statement (CPM), 84, 101, 201

DELAYLST keyword
SCHEDRULE= option (CPM), 90, 122

DESC option, see DESCENDING option
DESCENDING option

PROJECT statement (CPM), 80
DTDAY keyword

INTERVAL= option (CPM), 69
ROUTINTERVAL= option (CPM), 90

DTHOUR keyword
INTERVAL= option (CPM), 69
ROUTINTERVAL= option (CPM), 90

DTMINUTE keyword
INTERVAL= option (CPM), 69
ROUTINTERVAL= option (CPM), 90

DTMONTH keyword
INTERVAL= option (CPM, 96
INTERVAL= option (CPM), 69
ROUTINTERVAL= option (CPM), 90

DTQTR keyword
INTERVAL= option (CPM, 96
INTERVAL= option (CPM), 69
ROUTINTERVAL= option (CPM), 90

DTSECOND keyword
INTERVAL= option (CPM), 69
ROUTINTERVAL= option (CPM), 90

DTWEEK keyword
INTERVAL= option (CPM, 96
INTERVAL= option (CPM), 69
ROUTINTERVAL= option (CPM), 90

DTWRKDAY keyword
INTERVAL= option (CPM), 69, 96
ROUTINTERVAL= option (CPM), 90

DTYEAR keyword
INTERVAL= option (CPM, 96
INTERVAL= option (CPM), 69
ROUTINTERVAL= option (CPM), 90

DUR statement, see DURATION statement
DURATION statement

CPM procedure, 58, 59, 78, 144

EARLY keyword
COMPARE= option (CPM), 76
SET= option (CPM), 77
UPDATE= option (CPM), 77

ESO option, see ESORDER option
ESORDER option

PROJECT statement (CPM), 80
ESP option, see ESPROFILE option
ESPROFILE option

RESOURCE statement (CPM), 85, 130
ESS option, see ESPROFILE option
E_START option

RESOURCE statement (CPM), 85
ESTIMATEPCTC option

ACTUAL statement (CPM), 73
ESTPCTC option, see ESTIMATEPCTC option
ESTPCTCOMP option, see ESTIMATEPCTC option
ESTPROG option, see ESTIMATEPCTC option
EXCLUNSCHED option

RESOURCE statement (CPM), 85
EXPAND option, see ADDACT option

FBDATE= option
PROC CPM statement, 68, 95, 151

FEQ keyword
ALIGNTYPE variable (CPM), 75

FF keyword
LAG variable (CPM), 93

F_FLOAT option
RESOURCE statement (CPM), 85, 229

FGE keyword
ALIGNTYPE variable (CPM), 75

FILLMISSING option, see FILLUNSCHED option
FILLUNSCHED option

RESOURCE statement (CPM), 85
FINISH= option

DURATION statement (CPM), 78
FINISHBEFORE option

PROC CPM statement, 69

FIXASTART option
ACTUAL statement (CPM), 73

FIXFINISH option
PROC CPM statement, 69

FLE keyword
ALIGNTYPE variable (CPM), 75

FROM statement, see TAILNODE statement
FS keyword

LAG variable (CPM), 93

HDURATION= option, see HOLIDUR= option
HEAD statement, see HEADNODE statement
HEADNODE statement

CPM procedure, 58, 78, 148
HOLIDATA= option

PROC CPM statement, 69, 163
HOLIDAY statement

CPM procedure, 79, 163
HOLIDAY= option, see HOLIDATA= option
HOLIDAYS statement, see HOLIDAY statement
HOLIDUR= option

HOLIDAY statement (CPM), 79, 163
HOLIEND= option, see HOLIFIN= option
HOLIFIN= option

HOLIDAY statement (CPM), 79, 163
HOUR keyword

INTERVAL= option (CPM), 69
ROUTINTERVAL= option (CPM), 90

ID statement
CPM procedure, 80, 146

IGNOREPARENTRES option
PROJECT statement (CPM), 81

IGNOREPR option, see IGNOREPARENTRES option
IGNOREP_RES option, see IGNOREPARENTRES

option
INCLUNSCHED option

RESOURCE statement (CPM), 85
INDEPALLOC option, see INDEPENDENTALLOC

option
INDEPENDENTALLOC option

RESOURCE statement (CPM), 86, 124
INFEASDIAG option, see INFEASDIAGNOSTIC

option
INFEASDIAGNOSTIC option

RESOURCE statement (CPM), 86, 123, 132, 214
INTERVAL= option

PROC CPM statement, 68, 69, 96, 97, 157
INTPER= option

PROC CPM statement, 69
INTUSAGE option, see TOTUSAGE option
INTXRATE option, see TOTUSAGE option

LAG= option
SUCCESSOR statement (CPM), 92, 93, 97, 183

LATE keyword
COMPARE= option (CPM), 76
SET= option (CPM), 77
UPDATE= option (CPM), 77

LFT keyword
SCHEDRULE= option (CPM), 90, 122

LSO option, see LSORDER option
LSORDER option

PROJECT statement (CPM), 81
LSP option, see LSPROFILE option
LSPROFILE option

RESOURCE statement (CPM), 86, 130
LSS option, see LSPROFILE option
LST keyword

SCHEDRULE= option (CPM), 90, 123
L_START option

RESOURCE statement (CPM), 86

MAXDATE= option
RESOURCE statement (CPM), 86, 130, 196

MAXNSEG= option, see MAXNSEGMT= option
MAXNSEGMT= option

RESOURCE statement (CPM), 86, 91, 124
MAXOBS= option

RESOURCE statement (CPM), 87
MF keyword

ALIGNTYPE variable (CPM), 75
MILESTONENORESOURCE

RESOURCE statement (CPM), 87
MILESTONERESOURCE

RESOURCE statement (CPM), 87
MINARATE keyword

OBSTYPE variable (CPM), 88, 116, 118, 127
MINDATE= option

RESOURCE statement (CPM), 87, 130
MINSEGD= option, see MINSEGMTDUR= option
MINSEGMTDUR= option

RESOURCE statement (CPM), 87, 91, 124, 231
MINUTE keyword

INTERVAL= option (CPM), 69
ROUTINTERVAL= option (CPM), 90

MONTH keyword
INTERVAL= option (CPM), 69
ROUTINTERVAL= option (CPM), 90

MS keyword
ALIGNTYPE variable (CPM), 75

MULTALT keyword
OBSTYPE variable (CPM), 88, 116, 118, 127

MULTALT option, see MULTIPLEALTERNATES
option

MULTIPLEALTERNATES option
RESOURCE statement (CPM), 87, 126, 127

NACTS= option

PROC CPM statement, 69
NADJ= option

PROC CPM statement, 69
NLAGCAL= option

SUCCESSOR statement (CPM), 93
NNODES= option

PROC CPM statement, 69
NOAUTOUPDT option

ACTUAL statement (CPM), 73, 113, 192
NOE_START option

RESOURCE statement (CPM), 88
NOF_FLOAT option

RESOURCE statement (CPM), 88
NOL_START option

RESOURCE statement (CPM), 88
NORESOURCEVARS option

RESOURCE statement (CPM), 88
NORESVARS option, see NORESOURCEVARS

option
NORESVARSOUT option, see NORESOURCEVARS

option
NOT_FLOAT option

RESOURCE statement (CPM), 88
NOUTIL option

PROC CPM statement, 70
NRESREQ= option

PROC CPM statement, 70
NROUTCAL= option

RESOURCE statement (CPM), 88, 130

OBSTYPE= option
RESOURCE statement (CPM), 88, 201

ORDERALL option
PROJECT statement (CPM), 81

OUT= option
PROC CPM statement, 70, 148

OVERRIDEDUR option
DURATION statement (CPM), 78

PARENT statement, see PROJECT statement
PCOMP= option, see PCTCOMP= option
PCTCOMP= option

ACTUAL statement (CPM), 74, 192
PCTCOMPLETE= option, see PCTCOMP= option
PER= option, see PERIOD= option
PERIOD= option

RESOURCE statement (CPM), 88, 201
PROC CPM statement, see CPM procedure

statement options, 67
PROJECT statement

CPM procedure, 80

QTR keyword
INTERVAL= option (CPM), 69
ROUTINTERVAL= option (CPM), 90

RATEXINT option, see TOTUSAGE option
RCI option, see RESCALINTERSECT option
RCP option, see RCPROFILE option
RCPROFILE option

RESOURCE statement (CPM), 89, 130, 217
RCS option, see RCPROFILE option
RDUR= option, see REMDUR= option
RDURATION= option, see REMDUR= option
REMDUR= option

ACTUAL statement (CPM), 74, 192
RES statement, see RESOURCE statement
RESCALINT option, see RESCALINTERSECT

option
RESCALINTERSECT option

RESOURCE statement (CPM), 89
RESID= option

RESOURCE statement (CPM), 89, 235
RESIN= option, see RESOURCEIN= option
RESLEVEL keyword

OBSTYPE variable (CPM), 88, 116, 117
RESLEVEL= option, see RESOURCEIN= option
RESOURCE keyword

COMPARE= option (CPM), 76
SET= option (CPM), 77
UPDATE= option (CPM), 77

RESOURCE statement
CPM procedure, 82, 195

RESOURCEIN= option
PROC CPM statement, 70, 201

RESOURCEOUT= option
PROC CPM statement, 71, 195

RESOURCESCHED= option
PROC CPM statement, 71

RESOURCEVARS option
RESOURCE statement (CPM), 89

RESOUT= option, see RESOURCEOUT= option
RESPRTY keyword

OBSTYPE variable (CPM), 88, 116, 118
SCHEDRULE= option (CPM), 90, 123

RESRCDUR keyword
OBSTYPE variable (CPM), 88, 116, 118

RESSCHED= option, see RESOURCESCHED=
option

RESTYPE keyword
OBSTYPE variable (CPM), 88, 116, 117

RESUSAGE keyword
OBSTYPE variable (CPM), 88, 116, 117

RESUSAGE= option, see RESOURCEOUT= option
RESVARSOUT option, see RESOURCEVARS option
RIN= option, see RESOURCEIN= option
ROUT= option, see RESOURCEOUT= option
ROUTCONT option, see ROUTNOBREAK option
ROUTINTERVAL= option

RESOURCE statement (CPM), 90, 130

ROUTINTPER= option
RESOURCE statement (CPM), 90, 130, 131

ROUTNOBREAK option
RESOURCE statement (CPM), 90, 130, 210

RSCHDORD option, see RSCHEDORDER option
RSCHDWBS option, see RSCHEDWBS option
RSCHED= option, see RESOURCESCHED= option
RSCHEDID= option

RESOURCE statement (CPM), 90
RSCHEDORDER option

PROJECT statement (CPM), 81
RSCHEDULE= option, see RESOURCESCHED=

option
RSCHEDWBS option

PROJECT statement (CPM), 81
RSID= option, see RSCHEDID= option
RSORDER option, see RSCHEDORDER option
RSWBS option, see RSCHEDWBS option
RULE2= option, see SCHEDRULE2= option
RULE= option, see SCHEDRULE= option

SCHEDRULE2= option
RESOURCE statement (CPM), 91, 122

SCHEDRULE= option
RESOURCE statement (CPM), 90, 122, 201

SECOND keyword
INTERVAL= option (CPM), 69
ROUTINTERVAL= option (CPM), 90

SEPCRIT option
PROJECT statement (CPM), 81

SEQ keyword
ALIGNTYPE variable (CPM), 75

SET= option
BASELINE statement (CPM), 77, 190

SETFINISH= option
RESOURCE statement (CPM), 91

SETFINISHMILESTONE option
PROC CPM statement, 71

SF keyword
LAG variable (CPM), 93

SGE keyword
ALIGNTYPE variable (CPM), 75

SHORTDUR keyword
SCHEDRULE= option (CPM), 90, 123

SHOWFLOAT option
ACTUAL statement (CPM), 74, 113, 193

SLE keyword
ALIGNTYPE variable (CPM), 75

SLIPINF option, see DELAYANALYSIS option
SPLITFLAG option

RESOURCE statement (CPM), 91
SS keyword

LAG variable (CPM), 93
SSO option, see SSORDER option

SSORDER option
PROJECT statement (CPM), 81

START= option
DURATION statement (CPM), 78

STEP= option, see ROUTINTPER= option
STEPINT= option, see ROUTINTERVAL= option
STEPSIZE= option, see ROUTINTPER= option
STOPDATE= option

RESOURCE statement (CPM), 91, 245
SUCC statement, see SUCCESSOR statement
SUCCESSOR statement

CPM procedure, 59, 92, 144
SUPLEVEL keyword

OBSTYPE variable (CPM), 88, 116, 118
SUPPRESSOBSWARN option

PROC CPM statement, 72

TAIL statement, see TAILNODE statement
TAILNODE statement

CPM procedure, 58, 93, 148
T_FLOAT option

RESOURCE statement (CPM), 91, 229
TIMENOW= option

ACTUAL statement (CPM), 74, 192
TIMENOWSPLT option

ACTUAL statement (CPM), 74, 114
TO statement, see HEADNODE statement
TOTUSAGE option

RESOURCE statement (CPM), 91

UNSCHEDMISS option
RESOURCE statement (CPM), 92

UPDATE= option
BASELINE statement (CPM), 77

UPDTUNSCHED option
RESOURCE statement (CPM), 92

USEPROJDUR option
PROJECT statement (CPM), 82

USEPROJDURSPEC option, see USEPROJDUR
option

USESPECDUR option, see USEPROJDUR option

WBS option, see WBSCODE option
WBSCODE option

PROJECT statement (CPM), 82
WEEK keyword

INTERVAL= option (CPM), 69
ROUTINTERVAL= option (CPM), 90

WEEKDAY keyword
INTERVAL= option (CPM), 69
ROUTINTERVAL= option (CPM), 90

WORK= option
RESOURCE statement (CPM), 92

WORKDATA= option
PROC CPM statement, 72, 174

WORKDAY keyword
INTERVAL= option (CPM), 69, 96
ROUTINTERVAL= option (CPM), 90

WORKDAY= option, see WORKDATA= option

XFERVARS option
PROC CPM statement, 72, 188

YEAR keyword
INTERVAL= option (CPM), 69
ROUTINTERVAL= option (CPM), 90

	The CPM Procedure
	Overview: CPM Procedure
	Getting Started: CPM Procedure
	Syntax: CPM Procedure
	Functional Summary
	PROC CPM Statement
	ACTIVITY Statement
	ACTUAL Statement
	ALIGNDATE Statement
	ALIGNTYPE Statement
	BASELINE Statement
	CALID Statement
	DURATION Statement
	HEADNODE Statement
	HOLIDAY Statement
	ID Statement
	PROJECT Statement
	RESOURCE Statement
	SUCCESSOR Statement
	TAILNODE Statement

	Details: CPM Procedure
	Scheduling Subject to Precedence Constraints
	Using the INTERVAL= Option
	Nonstandard Precedence Relationships
	Time-Constrained Scheduling
	Finish Milestones
	OUT= Schedule Data Set
	Multiple Calendars
	Baseline and Target Schedules
	Progress Updating
	Resource-Driven Durations and Resource Calendars
	Resource Usage and Allocation
	RESOURCEOUT= Usage Data Set
	RESOURCESCHED= Resource Schedule Data Set
	Multiproject Scheduling
	Macro Variable _ORCPM_
	Input Data Sets and Related Variables
	Missing Values in Input Data Sets
	FORMAT Specification
	Computer Resource Requirements

	Examples: CPM Procedure
	Example 4.1: Activity-on-Node Representation
	Example 4.2: Activity-on-Arc Representation
	Example 4.3: Meeting Project Deadlines
	Example 4.4: Displaying the Schedule on a Calendar
	Example 4.5: Precedence Gantt Chart
	Example 4.6: Changing Duration Units
	Example 4.7: Controlling the Project Calendar
	Example 4.8: Scheduling around Holidays
	Example 4.9: CALEDATA and WORKDATA Data Sets
	Example 4.10: Multiple Calendars
	Example 4.11: Nonstandard Relationships
	Example 4.12: Activity Time Constraints
	Example 4.13: Progress Update and Target Schedules
	Example 4.14: Summarizing Resource Utilization
	Example 4.15: Resource Allocation
	Example 4.16: Using Supplementary Resources
	Example 4.17: INFEASDIAGNOSTIC Option and Aggregate Resource Type
	Example 4.18: Variable Activity Delay
	Example 4.19: Activity Splitting
	Example 4.20: Alternate Resources
	Example 4.21: PERT Assumptions and Calculations
	Example 4.22: Scheduling Course - Teacher Combinations
	Example 4.23: Multiproject Scheduling
	Example 4.24: Resource-Driven Durations and Resource Calendars
	Example 4.25: Resource-Driven Durations and Alternate Resources
	Example 4.26: Multiple Alternate Resources
	Example 4.27: Auxiliary Resources and Alternate Resources
	Example 4.28: Use of the SETFINISHMILESTONE Option
	Example 4.29: Negative Resource Requirements
	Example 4.30: Auxiliary Resources and Negative Requirements
	Example 4.31: Resource-Driven Durations and Negative Requirements
	Statement and Option Cross-Reference Tables

	References

	Subject Index
	Syntax Index

