SAS/OR® 14.3 User's Guide Mathematical Programming The OPTQP Procedure This document is an individual chapter from SAS/OR® 14.3 User's Guide: Mathematical Programming. The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2017. SAS/OR® 14.3 User's Guide: Mathematical Programming. Cary, NC: SAS Institute Inc. #### SAS/OR® 14.3 User's Guide: Mathematical Programming Copyright © 2017, SAS Institute Inc., Cary, NC, USA All Rights Reserved. Produced in the United States of America. **For a hard-copy book**: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc. For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this publication. The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted materials. Your support of others' rights is appreciated. **U.S. Government License Rights; Restricted Rights:** The Software and its documentation is commercial computer software developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The Government's rights in Software and documentation shall be only those set forth in this Agreement. SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414 September 2017 $SAS^{@}$ and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. @ indicates USA registration. Other brand and product names are trademarks of their respective companies. SAS software may be provided with certain third-party software, including but not limited to open-source software, which is licensed under its applicable third-party software license agreement. For license information about third-party software distributed with SAS software, refer to http://support.sas.com/thirdpartylicenses. # Chapter 14 # The OPTQP Procedure #### **Contents** | Overview: OPTQP Procedure | 673 | |---|-----| | Getting Started: OPTQP Procedure | 675 | | Syntax: OPTQP Procedure | 679 | | Functional Summary | 680 | | PROC OPTQP Statement | 680 | | Details: OPTQP Procedure | 684 | | Output Data Sets | 684 | | Interior Point Algorithm: Overview | 686 | | Iteration Log for the OPTQP Procedure | 688 | | ODS Tables | 688 | | Irreducible Infeasible Set | 692 | | Macro Variable _OROPTQP | 693 | | Examples: OPTQP Procedure | 694 | | Example 14.1: Linear Least Squares Problem | 695 | | Example 14.2: Portfolio Optimization | 697 | | Example 14.3: Portfolio Selection with Transactions | 700 | | References | 702 | # **Overview: OPTQP Procedure** The OPTQP procedure solves quadratic programs—problems with quadratic objective function and a collection of linear constraints, including lower or upper bounds (or both) on the decision variables. Mathematically, a quadratic programming (QP) problem can be stated as follows: $$\label{eq:linear_equation} \begin{aligned} \min \quad & \frac{1}{2} \, x^T Q x + c^T x \\ \text{subject to} \quad & A x \; \{ \geq, =, \leq \} \; b \\ & l \leq x \leq u \end{aligned}$$ where Q is the quadratic (also known as Hessian) matrix $\mathbb{R}^{m \times n}$ is the constraints matrix \mathbb{R}^n is the vector of decision variables $\in \mathbb{R}^n$ is the vector of linear objective function coefficients \mathbf{c} \mathbb{R}^{m} is the vector of constraints' right-hand sides (RHS) \in 1 is the vector of lower bounds on the decision variables \in \in \mathbb{R}^n is the vector of upper bounds on the decision variables u The quadratic matrix \mathbf{Q} is assumed to be symmetric; that is, $$q_{ij} = q_{ji}, \quad \forall i, j = 1, \dots, n$$ Indeed, it is easy to show that even if $\mathbf{Q} \neq \mathbf{Q}^T$, the simple modification $$\tilde{\mathbf{Q}} = \frac{1}{2}(\mathbf{Q} + \mathbf{Q}^{\mathrm{T}})$$ produces an equivalent formulation $\mathbf{x}^T\mathbf{Q}\mathbf{x} \equiv \mathbf{x}^T\tilde{\mathbf{Q}}\mathbf{x}$; hence symmetry is assumed. When you specify a quadratic matrix, it suffices to list only lower triangular coefficients. In addition to being symmetric, **Q** is also required to be positive semidefinite, $$\mathbf{x}^{\mathrm{T}}\mathbf{Q}\mathbf{x} \ge 0, \quad \forall \mathbf{x} \in \mathbb{R}^n$$ for minimization type of models; it is required to be negative semidefinite for the maximization type of models. Convexity can come as a result of a matrix-matrix multiplication $$Q = LL^T$$ or as a consequence of physical laws, and so on. See Figure 14.1 for examples of convex, concave, and nonconvex objective functions. Figure 14.1 Examples of Convex, Concave, and Nonconvex Objective Functions The order of constraints is insignificant. Some or all components of l or u (lower and upper bounds, respectively) can be omitted. # **Getting Started: OPTQP Procedure** Consider a small illustrative example. Suppose you want to minimize a two-variable quadratic function $f(x_1, x_2)$ on the nonnegative quadrant, subject to two constraints: min $$2x_1 + 3x_2 + x_1^2 + 10x_2^2 + 2.5x_1x_2$$ subject to $x_1 - x_2 \le 1$ $x_1 + 2x_2 \ge 100$ $x_1 \ge 0$ $x_2 \ge 0$ The linear objective function coefficients, vector of right-hand sides, and lower and upper bounds are identified immediately as $$\mathbf{c} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 100 \end{bmatrix}, \quad \mathbf{l} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} +\infty \\ +\infty \end{bmatrix}$$ Carefully construct the quadratic matrix **Q**. Observe that you can use symmetry to separate the main-diagonal and off-diagonal elements: $$\frac{1}{2}\mathbf{x}^{\mathrm{T}}\mathbf{Q}\mathbf{x} \equiv \frac{1}{2}\sum_{i,j=1}^{n} x_{i} q_{ij} x_{j} = \frac{1}{2}\sum_{i=1}^{n} q_{ii} x_{i}^{2} + \sum_{i>j} x_{i} q_{ij} x_{j}$$ The first expression $$\frac{1}{2} \sum_{i=1}^{n} q_{ii} x_i^2$$ sums the main-diagonal elements. Thus, in this case you have $$q_{11} = 2$$, $q_{22} = 20$ Notice that the main-diagonal values are doubled in order to accommodate the 1/2 factor. Now the second term $$\sum_{i>j} x_i \ q_{ij} \ x_j$$ sums the off-diagonal elements in the strict lower triangular part of the matrix. The only off-diagonal $(x_i \ x_j, \ i \neq j)$ term in the objective function is 2.5 $x_1 \ x_2$, so you have $$q_{21} = 2.5$$ Notice that you do not need to specify the upper triangular part of the quadratic matrix. Finally, the matrix of constraints is as follows: $$\mathbf{A} = \left[\begin{array}{cc} 1 & -1 \\ 1 & 2 \end{array} \right]$$ The SAS input data set with a quadratic programming system (QPS) format for the preceding problem can be expressed in the following manner: ``` data gsdata; input field1 $ field2 $ field3 $ field4 field5 $ field6 @; datalines; NAME EXAMPLE ROWS OBJ N L R1 R2 COLUMNS X1 R1 1.0 R2 1.0 OBJ 2.0 X1 2.0 X2 R1 -1.0 R2 X2 OBJ 3.0 RHS R1 1.0 RHS RHS R2 100 RANGES BOUNDS QUADOBJ X1 X1 2.0 2.5 X1 X2 X2 X2 20 ENDATA ``` For more details about the QPS-format data set, see Chapter 17, "The MPS-Format SAS Data Set." Alternatively, if you have a QPS-format flat file named gs.qps, then the following call to the SAS macro %MPS2SASD translates that file into a SAS data set, named gsdata: ``` %mps2sasd(mpsfile =gs.qps, outdata = gsdata); ``` **NOTE:** The SAS macro %MPS2SASD is provided in SAS/OR software. For more information, see "Converting an MPS/QPS-Format File: %MPS2SASD" on page 824. You can use the following call to PROC OPTQP: ``` proc optqp data=gsdata primalout = gspout dualout = gsdout; run; ``` The procedure output is displayed in Figure 14.2. Figure 14.2 Procedure Output #### The OPTQP Procedure | Problem Summary | | | | | | |---------------------------------|--------------|--|--|--|--| | Problem Name | EXAMPLE | | | | | | Objective Sense | Minimization | | | | | | Objective Function | OBJ | | | | | | RHS | RHS | | | | | | | | | | | | | Number of Variables | 2 | | | | | | Bounded Above | 0 | | | | | | Bounded Below | 2 | | | | | | Bounded Above and Below | 0 | | | | | | Free | 0 | | | | | | Fixed | 0 | | | | | | | | | | | | | Number of Constraints | 2 | | | | | | LE (<=) | 1 | | | | | | EQ (=) | 0 | | | | | | GE (>=) | 1 | | | | | | Range | 0 | | | | | | | | | | | | | Constraint Coefficients | 4 | | | | | | | | | | | | | Hessian Diagonal Elements | 2 | | | | | | Hessian Elements Below Diagonal | 1 | | | | | Figure 14.2 continued | Solution Summary | | | | | |----------------------------|----------------|--|--|--| | Solver | QP | | | | | Algorithm | Interior Point | | | | | Objective Function | OBJ | | | | | Solution Status | Optimal | | | | | Objective Value | 15018.000051 | | | | | | | | | | | Primal Infeasibility | 0 | | | | | Dual Infeasibility | 0 | | | | | Bound Infeasibility | y 0 | | | | | Duality Gap | 8.3025547E-9 | | | | | Complementarity | 0 | | | | | | | | | | | Iterations | 4 | | | | | Presolve Time | 0.00 | | | | | Solution Time | 0.02 | | | | | | | | | |
The optimal primal solution is displayed in Figure 14.3. Figure 14.3 Optimal Solution | Obs | | RHS | Variable
Name | Variable
Type | Linear
Objective
Coefficient | | Upper
Bound | Variable
Value | Variable
Status | |-----|-----|-----|------------------|------------------|------------------------------------|---|----------------|-------------------|--------------------| | 1 | OBJ | RHS | X1 | N | 2 | 0 | 1.7977E308 | 34.0000 | 0 | | 2 | OBJ | RHS | X2 | N | 3 | 0 | 1.7977E308 | 33.0000 | 0 | The SAS log shown in Figure 14.4 provides information about the problem, convergence information after each iteration, and the optimal objective value. #### Figure 14.4 Iteration Log ``` NOTE: The problem EXAMPLE has 2 variables (0 free, 0 fixed). NOTE: The problem has 2 constraints (1 LE, 0 EQ, 1 GE, 0 range). NOTE: The problem has 4 constraint coefficients. NOTE: The objective function has 2 Hessian diagonal elements and 1 Hessian elements above the diagonal. NOTE: The QP presolver value AUTOMATIC is applied. NOTE: The QP presolver removed 0 variables and 0 constraints. NOTE: The QP presolver removed 0 constraint coefficients. NOTE: The presolved problem has 2 variables, 2 constraints, and 4 constraint coefficients. NOTE: The OP solver is called. NOTE: The Interior Point algorithm is used. NOTE: The deterministic parallel mode is enabled. NOTE: The Interior Point algorithm is using up to 4 threads. Primal Bound Dual Iter Complement Duality Gap Infeas Infeas Infeas Time 0 4.4604E+03 2.6380E-01 1.7962E-02 1.8143E+00 2.7770E-14 1 1.3043E+02 8.2721E-03 1.7962E-04 1.8143E-02 8.7274E-15 0 2 1.3042E+00 8.3006E-05 1.7970E-06 1.8151E-04 9.8968E-15 Λ 3 1.3043E-02 8.3017E-07 1.7970E-08 1.8151E-06 1.9375E-14 0 4 0.0000E+00 8.3026E-09 1.9527E-09 1.8151E-08 3.5928E-07 0 NOTE: Optimal. NOTE: Objective = 15018.000051. NOTE: The Interior Point solve time is 0.00 seconds. NOTE: There were 20 observations read from the data set WORK.GSDATA. NOTE: The data set WORK.GSPOUT has 2 observations and 9 variables. NOTE: The data set WORK.GSDOUT has 2 observations and 10 variables. ``` See the section "Interior Point Algorithm: Overview" on page 686 and the section "Iteration Log for the OPTQP Procedure" on page 688 for more details about convergence information given by the iteration log. # **Syntax: OPTQP Procedure** The following statements are available in the OPTQP procedure: PROC OPTQP < options > ; ## **Functional Summary** Table 14.1 outlines the options available for the OPTQP procedure classified by function. Table 14.1 Options in the OPTQP Procedure | Description | Option | |---|---------------| | Data Table Options | | | Specifies a QPS-format input data set | DATA= | | Specifies a dual solution output data set | DUALOUT= | | Specifies whether the QP model is a maximization or mini- | OBJSENSE= | | mization problem | | | Specifies the primal solution output data set | PRIMALOUT= | | Solver Options | | | Enables or disables IIS detection | IIS= | | Control Options | | | Specifies the stopping criterion based on duality gap | DUALITYGAP= | | Specifies the dual feasibility tolerance | DUALTOL= | | Specifies how often to print the solution progress | LOGFREQ= | | Specifies how much solution progress detail to print in log | LOGLEVEL= | | Specifies the maximum number of iterations | MAXITER= | | Specifies the time limit for the optimization process | MAXTIME= | | Specifies the maximum number of threads | NTHREADS= | | Specifies the parallel processing mode | PARALLELMODE= | | Specifies the type of presolve | PRESOLVER= | | Specifies the primal feasibility tolerance | PRIMALTOL= | | Enables or disables printing summary | PRINTLEVEL= | | Specifies units of CPU time or real time | TIMETYPE= | #### **PROC OPTQP Statement** The following options can be specified in the PROC OPTQP statement. #### **DATA**=SAS-data-set specifies the input SAS data set. This data set can also be created from a QPS-format flat file by using the SAS macro %MPS2SASD. If the DATA= option is not specified, PROC OPTQP uses the most recently created SAS data set. See Chapter 17, "The MPS-Format SAS Data Set," for more details. #### **DUALITYGAP=** δ specifies the desired relative duality gap, $\delta \in [1E-9, 1E-4]$. This is the relative difference between the primal and dual objective function values and is the primary solution quality parameter. For more information, see the section "Interior Point Algorithm: Overview" on page 686. The default value is 1E-6. #### **DUALOUT=**SAS-data-set #### DOUT=SAS-data-set specifies the output data set to contain the dual solution. For more information, see the section "Output Data Sets" on page 684. #### **DUALTOL**= β #### $OPTTOL=\beta$ specifies the maximum relative dual constraints violation, $\beta \in [1E-9, 1E-4]$. For more information, see the section "Interior Point Algorithm: Overview" on page 686. The default value is 1E-6. #### IIS=FALSE | TRUE specifies whether to attempt to identify a set of constraints and variables that form an irreducible infeasible set (IIS). You can specify the following values: **FALSE** disables IIS detection. **TRUE** enables IIS detection. If an IIS is found, information about infeasible constraints or variable bounds is written to the data sets that are specified in the DUALOUT= and PRIMALOUT= options. For more information, see the section "Irreducible Infeasible Set" on page 692. By default, IIS=FALSE. #### LOGFREQ=k #### PRINTFREQ=k prints the solution progress to the iteration log after every k iterations, where k is an integer between 0 and the largest four-byte, signed integer, which is $2^{31} - 1$. The value k = 0 suppresses printing of the progress of the solution. By default, LOGFREQ=1. #### LOGLEVEL=NONE | BASIC | MODERATE | AGGRESSIVE #### PRINTLEVEL2=NONE | BASIC | MODERATE | AGGRESSIVE controls the amount of information displayed in the SAS log. You can specify the following values: **NONE** turns off all solver-related messages in the SAS log. **BASIC** displays a solver summary after stopping. **MODERATE** prints a solver summary and an iteration log by using the interval specified in the LOGFREQ= option. **AGGRESSIVE** prints a detailed solver summary and an iteration log by using the interval specified in the LOGFREQ= option. By default, LOGLEVEL=MODERATE. #### **MAXITER**=*k* specifies the maximum number of predictor-corrector iterations performed by the interior point algorithm (see the section "Interior Point Algorithm: Overview" on page 686). The value k is an integer between 1 and the largest four-byte, signed integer, which is $2^{31} - 1$. If you do not specify this option, the procedure does not stop based on the number of iterations performed. #### MAXTIME=t specifies an upper limit of *t* seconds of time for reading in the data and performing the optimization process. The value of the TIMETYPE= option determines the type of units used. If you do not specify this option, the procedure does not stop based on the amount of time elapsed. The value of *t* can be any positive number; the default value is the positive number that has the largest absolute value that can be represented in your operating environment. #### NTHREADS=k #### **NUMTHREADS**=k specifies the number of threads that PROC OPTQP can use, where *k* can be any integer between 1 and 256, inclusive. This option overrides the THREADS | NOTHREADS SAS system option. The default value of this option is the value of the CPUCOUNT= SAS system option. Specifying *k* as a number greater than the actual number of available cores might result in reduced performance. Specifying a high value for *k* does not guarantee shorter solution time; the actual change in solution time depends on the computing hardware and the scalability of the underlying algorithms in PROC OPTQP. In some circumstances, PROC OPTQP might use fewer than *k* threads because the procedure's internal algorithms have determined that a smaller number is preferable. #### OBJSENSE=MIN | MAX specifies whether the QP model is a minimization or maximization problem. You can specify the following values: MIN treat the QP model as a minimization problem. MAX treat the QP model as a maximization problem. Alternatively, you can specify the objective sense in the input data set; for more information, see the section "ROWS Section" on page 817. This option supersedes any objective sense that is specified in the input data set. If the objective sense is not specified anywhere, then PROC OPTQP interprets and solves the quadratic program as a minimization problem. #### PARALLELMODE=DETERMINISTIC | NONDETERMINISTIC specifies the parallel processing mode. This mode determines the solution results that are obtained from running the same model with the same option values on the same platform multiple times. You can specify the following values: **DETERMINISTIC** requires algorithms to produce the same results every time. **NONDETERMINISTIC** permits algorithms to produce different solution results. This mode requires less synchronization and might attain better performance than DETERMIN- ISTIC mode. By default, PARALLELMODE=DETERMINISTIC. PRESOLVER=AUTOMATIC | NONE | BASIC | MODERATE | AGGRESSIVE PRESOL=AUTOMATIC | NONE | BASIC | MODERATE | AGGRESSIVE specifies the presolve level. You can specify the following values: **AUTOMATIC** applies the presolver by using default setting. **NONE** disables the presolver. **BASIC** applies the basic presolver. **MODERATE** applies the moderate presolver. **AGGRESSIVE** applies the aggressive presolver. By default, PRESOLVER=AUTOMATIC. #### PRIMALOUT=SAS-data-set #### POUT=SAS-data-set specifies the output data set to contain the primal solution. For more information, see the section "Output Data Sets" on page 684. #### PRIMALTOL= α #### FEASTOL= α specifies the maximum relative bound and primal constraints violation,
$\alpha \in [1E-9, 1E-4]$. For more information, see the section "Interior Point Algorithm: Overview" on page 686. The default value is 1E-6. #### PRINTLEVEL=0 | 1 | 2 specifies whether to print summary Output Delivery System (ODS) tables of the problem and solution. You can specify the following values: - **0** does not produce or print any ODS tables. - 1 produces and prints the following ODS tables: ProblemSummary, SolutionSummary, and optional OutputCasTables. - **2** produces and prints the following ODS tables: ProblemSummary, SolutionSummary, ProblemStatistics, Timing, and optional OutputCasTables. For more information about the ODS tables that PROC OPTQP creates, see the section "ODS Tables" on page 688. By default, PRINTLEVEL=1. #### TIMETYPE=CPU | REAL specifies whether CPU time or real time is used for the MAXTIME= option and the _OROPTQP_ macro variable in a PROC OPTQP call. You can specify the following values: **CPU** specifies that units are in CPU time. **REAL** specifies that units are in real time. The default value of the TIMETYPE= option depends on the value of the NTHREADS= option. If you specify a value greater than 1 for the NTHREADS= option, the default value of the TIMETYPE= option is REAL. If you specify a value of 1 for the NTHREADS= option, the default value of the TIMETYPE= option is CPU. ## **Output Data Sets** This section describes the PRIMALOUT= and DUALOUT= output data sets. #### **Definitions of Variables in the PRIMALOUT= Data Set** The PRIMALOUT= data set contains the primal solution to the quadratic programming (QP) model. The variables in the data set have the following names and meanings. #### _OBJ_ID_ specifies the name of the objective function. Naming objective functions is particularly useful when there are multiple objective functions, in which case each objective function has a unique name. See the section "ROWS Section" on page 817 for details. **NOTE:** PROC OPTQP does not support simultaneous optimization of multiple objective functions in this release. #### RHS ID specifies the name of the variable that contains the right-hand-side value of each constraint. See the section "RHS Section (Optional)" on page 819 for details. #### VAR specifies the name of the decision variable. #### TYPE specifies the type of the decision variable. _TYPE_ can take one of the following values: - N nonnegative variable - D bounded variable (with both lower and upper bound) - F free variable - X fixed variable - O other (with either lower or upper bound) #### **OBJCOEF** specifies the coefficient of the decision variable in the linear component of the objective function. #### _LBOUND specifies the lower bound on the decision variable. #### UBOUND specifies the upper bound on the decision variable. #### VALUE specifies the value of the decision variable. #### STATUS specifies the status of the decision variable. _STATUS_ can indicate one of the following two cases: - O The OP problem is optimal. - I The QP problem could be infeasible or unbounded, or PROC OPTQP was not able to solve the problem. The following values can appear only if IIS=ON. See the section "Irreducible Infeasible Set" on page 692 for details. - I L The lower bound of the variable is needed for the IIS. - I_U The upper bound of the variable is needed for the IIS. - I_F Both bounds of the variable are needed for the IIS (the variable is fixed or has conflicting bounds). #### Definitions of Variables in the DUALOUT= Data Set The DUALOUT= data set contains the dual solution to the QP model. Information about the objective rows of the QP problems is not included. The variables in the data set have the following names and meanings. #### _OBJ_ID_ specifies the name of the objective function. Naming objective functions is particularly useful when there are multiple objective functions, in which case each objective function has a unique name. See the section "ROWS Section" on page 817 for details. **NOTE:** PROC OPTQP does not support simultaneous optimization of multiple objective functions in this release. #### RHS ID specifies the name of the variable that contains the right-hand-side value of each constraint. See the section "RHS Section (Optional)" on page 819 for details. #### ROW specifies the name of the constraint. See the section "ROWS Section" on page 817 for details. #### TYPE_ specifies the type of the constraint. _TYPE_ can take one of the following values: - L "less than or equals" constraint - E equality constraint - G "greater than or equals" constraint - R ranged constraint (both "less than or equals" and "greater than or equals") See the sections "ROWS Section" on page 817 and "RANGES Section (Optional)" on page 820 for details. specifies the value of the right-hand side of the constraint. It takes a missing value for a ranged constraint. #### _L_RHS_ specifies the lower bound of a ranged constraint. It takes a missing value for a non-ranged constraint. #### U RHS specifies the upper bound of a ranged constraint. It takes a missing value for a non-ranged constraint. #### _VALUE_ specifies the value of the dual variable associated with the constraint. #### _STATUS_ specifies the status of the constraint. _STATUS_ can indicate one of the following two cases: - O The QP problem is optimal. - I The QP problem could be infeasible or unbounded, or PROC OPTQP was not able to solve the problem. The following values can appear only if option IIS=ON. See the section "Irreducible Infeasible Set" on page 692 for details. - I_L The "GE" (\geq) condition of the constraint is needed for the IIS. - I_U The "LE" (\leq) condition of the constraint is needed for the IIS. - I_F Both conditions of the constraint are needed for the IIS (the constraint is an equality or a range constraint with conflicting bounds). #### **ACTIVITY** specifies the value of a constraint. In other words, the value of _ACTIVITY_ for the *i*th constraint is equal to $\mathbf{a}_i^{\mathrm{T}}\mathbf{x}$, where \mathbf{a}_i refers to the *i*th row of the constraints matrix and \mathbf{x} denotes the vector of current decision variable values. # **Interior Point Algorithm: Overview** The interior point solver in PROC OPTQP implements an infeasible primal-dual predictor-corrector interior point algorithm. To illustrate the algorithm and the concepts of duality and dual infeasibility, consider the following QP formulation (the primal): $$\begin{aligned} & & \text{min} & & \frac{1}{2} x^{\mathrm{T}} Q x + c^{\mathrm{T}} x \\ & \text{subject to} & & & A x \geq b \\ & & & & x \geq 0 \end{aligned}$$ The corresponding dual is as follows: where $\mathbf{y} \in \mathbb{R}^m$ refers to the vector of dual variables and $\mathbf{w} \in \mathbb{R}^n$ refers to the vector of slack variables in the dual problem. The dual makes an important contribution to the certificate of optimality for the primal. The primal and dual constraints combined with complementarity conditions define the first-order optimality conditions, also known as KKT (Karush-Kuhn-Tucker) conditions, which can be stated as follows: $$\begin{array}{rcl} Ax-s & = & b & (primal \ feasibility) \\ -Qx+A^Ty+w & = & c & (dual \ feasibility) \\ WXe & = & 0 & (complementarity) \\ SYe & = & 0 & (complementarity) \\ x,\ y,\ w,\ s & \geq & 0 \end{array}$$ where $\mathbf{e} \equiv (1, \dots, 1)^{\mathrm{T}}$ is of appropriate dimension and $\mathbf{s} \in \mathbb{R}^m$ is the vector of primal slack variables. **NOTE:** Slack variables (the *s* vector) are automatically introduced by the solver when necessary; it is therefore recommended that you not introduce any slack variables explicitly. This enables the solver to handle slack variables much more efficiently. The letters X, Y, W, and S denote matrices with corresponding x, y, w, and s on the main diagonal and zero elsewhere, as in the following example: $$\mathbf{X} \equiv \left[\begin{array}{cccc} x_1 & 0 & \cdots & 0 \\ 0 & x_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x_n \end{array} \right]$$ If (x^*, y^*, w^*, s^*) is a solution of the previously defined system of equations that represent the KKT conditions, then x^* is also an optimal solution to the original QP model. At each iteration the interior point algorithm solves a large, sparse system of linear equations as follows: $$\left[\begin{array}{cc} \mathbf{Y}^{-1}\mathbf{S} & \mathbf{A} \\ \mathbf{A}^{\mathrm{T}} & -\mathbf{Q} - \mathbf{X}^{-1}\mathbf{W} \end{array}\right] \left[\begin{array}{c} \Delta \mathbf{y} \\ \Delta \mathbf{x} \end{array}\right] = \left[\begin{array}{c} \boldsymbol{\Xi} \\ \boldsymbol{\Theta} \end{array}\right]$$ where Δx and Δy denote the vector of *search directions* in the primal and dual spaces, respectively, and Θ and Ξ constitute the vector of the right-hand sides. The preceding system is known as the reduced KKT system. PROC OPTQP uses a preconditioned quasi-minimum residual algorithm to solve this system of equations efficiently. An important feature of the interior point solver is that it takes full advantage of the sparsity in the constraint and quadratic matrices, thereby enabling it to efficiently solve large-scale quadratic programs. The interior point algorithm works simultaneously in the primal and dual spaces. It attains optimality when both primal and dual feasibility are achieved and when complementarity conditions hold. Therefore, it is of interest to observe the following four measures where $\|v\|_2$ is the Euclidean norm of the vector v: • relative primal infeasibility measure α : $$\alpha = \frac{\|\mathbf{A}\mathbf{x} - \mathbf{b} - \mathbf{s}\|_2}{\|\mathbf{b}\|_2 + 1}$$ • relative dual infeasibility measure β : $$\beta = \frac{\|\mathbf{Q}\mathbf{x} + \mathbf{c} - \mathbf{A}^{\mathsf{T}}\mathbf{y} - \mathbf{w}\|_{2}}{\|\mathbf{c}\|_{2} + 1}$$ • relative duality gap δ : $$\delta = \frac{|\mathbf{x}^T\mathbf{Q}\mathbf{x} + \mathbf{c}^T\mathbf{x} -
\mathbf{b}^T\mathbf{y}|}{|\frac{1}{2}\mathbf{x}^T\mathbf{Q}\mathbf{x} + \mathbf{c}^T\mathbf{x}| + 1}$$ • absolute complementarity γ : $$\gamma = \sum_{i=1}^{n} x_i w_i + \sum_{i=1}^{m} y_i s_i$$ These measures are displayed in the iteration log. ## **Iteration Log for the OPTQP Procedure** The interior point solver in PROC OPTQP implements an infeasible primal-dual predictor-corrector interior point algorithm. The following information is displayed in the iteration log: Iter indicates the iteration number. Complement indicates the (absolute) complementarity. **Duality Gap** indicates the (relative) duality gap. Primal Infeas indicates the (relative) primal infeasibility measure. **Bound Infeas** indicates the (relative) bound infeasibility measure. **Dual Infeas** indicates the (relative) dual infeasibility measure. Time indicates the time elapsed (in seconds). If the sequence of solutions converges to an optimal solution of the problem, you should see all columns in the iteration log converge to zero or very close to zero. Nonconvergence can be the result of insufficient iterations being performed to reach optimality. In this case, you might need to increase the value that you specify in the MAXITER= or MAXTIME= option. If the complementarity or the duality gap does not converge, the problem might be infeasible or unbounded. If the infeasibility columns do not converge, the problem might be infeasible. #### **ODS Tables** PROC OPTOP creates two Output Delivery System (ODS) tables by default: the ProblemSummary table is a summary of the input QP problem, and the SolutionSummary table is a brief summary of the solution status. You can use ODS table names to select tables and create output data sets. For more information about ODS, see the SAS Output Delivery System: User's Guide. If you specify a value of 2 for the PRINTLEVEL= option, then the ProblemStatistics table is produced. This table contains information about the problem data. See the section "Problem Statistics" on page 692 for more information. Table 14.2 lists all the ODS tables that can be produced by the OPTQP procedure, along with the statement and option specifications required to produce each table. Table 14.2 ODS Tables Produced by PROC OPTQP | ODS Table Name | Description | Statement | Option | |--------------------------|-----------------------------------|------------|------------------------| | ProblemSummary | Summary of the input QP problem | PROC OPTQP | PRINTLEVEL=1 (default) | | SolutionSummary | Summary of the solution status | PROC OPTQP | PRINTLEVEL=1 (default) | | ProblemStatistics | Description of input problem data | PROC OPTQP | PRINTLEVEL=2 | | Timing | Summary of time consumption | PROC OPTQP | PRINTLEVEL=2 | A typical output of PROC OPTQP is shown in Output 14.5. Figure 14.5 Typical OPTQP Output #### The OPTQP Procedure | Problem Summary | | | | | |---------------------------------|--------------|--|--|--| | Problem Name | BANDM | | | | | Objective Sense | Minimization | | | | | Objective Function | 1 | | | | | RHS | ZZZZ0001 | | | | | Number of Variables | 472 | | | | | Bounded Above | 0 | | | | | Bounded Below | 472 | | | | | Bounded Above and Below | 0 | | | | | Free | 0 | | | | | Fixed | 0 | | | | | | | | | | | Number of Constraints | 305 | | | | | LE (<=) | 0 | | | | | EQ (=) | 305 | | | | | GE (>=) | 0 | | | | | Range | 0 | | | | | Constraint Coefficients | 2494 | | | | | Hessian Diagonal Elements | 25 | | | | | Hessian Elements Below Diagonal | l 16 | | | | Figure 14.5 continued | Solution Summary | | | | | | |----------------------------|----------------|--|--|--|--| | Solver | QP | | | | | | Algorithm | Interior Point | | | | | | Objective Function | 1 | | | | | | Solution Status | Optimal | | | | | | Objective Value | 16352.342037 | | | | | | | | | | | | | Primal Infeasibility | 2.627791E-11 | | | | | | Dual Infeasibility | 8.144725E-16 | | | | | | Bound Infeasibility | 0 | | | | | | Duality Gap | 1.592006E-10 | | | | | | Complementarity | 1.376135E-7 | | | | | | | | | | | | | Iterations | 22 | | | | | | Presolve Time | 0.00 | | | | | | Solution Time | 0.04 | | | | | | | | | | | | You can create output data sets from these tables by using the ODS OUTPUT statement. This can be useful, for example, when you want to create a report to summarize multiple PROC OPTQP runs. The output data sets that correspond to the preceding output are shown in Output 14.6, where you can also find (in the row following the heading of each data set in the display) the variable names that are used in the table definition (template) of each table. Figure 14.6 ODS Output Data Sets ## **Problem Summary** | Obs | Label1 | cValue1 | nValue1 | |-----|--------------------------------|--------------|-------------| | 1 | Problem Name | BANDM | | | 2 | Objective Sense | Minimization | | | 3 | Objective Function | 1 | | | 4 | RHS | ZZZZ0001 | | | 5 | | | | | 6 | Number of Variables | 472 | 472.000000 | | 7 | Bounded Above | 0 | 0 | | 8 | Bounded Below | 472 | 472.000000 | | 9 | Bounded Above and Below | 0 | 0 | | 10 | Free | 0 | 0 | | 11 | Fixed | 0 | 0 | | 12 | | | | | 13 | Number of Constraints | 305 | 305.000000 | | 14 | LE (<=) | 0 | 0 | | 15 | EQ (=) | 305 | 305.000000 | | 16 | GE (>=) | 0 | 0 | | 17 | Range | 0 | 0 | | 18 | | | | | 19 | Constraint Coefficients | 2494 | 2494.000000 | | 20 | | | | | 21 | Hessian Diagonal Elements | 25 | 25.000000 | | 22 | Hessian Elements Below Diagona | al 16 | 16.000000 | # **Solution Summary** | Obs | Label1 | cValue1 | nValue1 | |-----|----------------------|----------------|--------------| | 1 | Solver | QP | | | 2 | Algorithm | Interior Point | | | 3 | Objective Function | 1 | | | 4 | Solution Status | Optimal | | | 5 | Objective Value | 16352.342037 | 16352 | | 6 | | | | | 7 | Primal Infeasibility | 2.627791E-11 | 2.627791E-11 | | 8 | Dual Infeasibility | 8.144725E-16 | 8.144725E-16 | | 9 | Bound Infeasibility | 0 | 0 | | 10 | Duality Gap | 1.592006E-10 | 1.592006E-10 | | 11 | Complementarity | 1.376135E-7 | 0.000000138 | | 12 | | | | | 13 | Iterations | 22 | 22.000000 | | 14 | Presolve Time | 0.00 | 0 | | 15 | Solution Time | 0.04 | 0.040799 | ## **Problem Statistics** Optimizers can encounter difficulty when solving poorly formulated models. Information about data magnitude provides a simple gauge to determine how well a model is formulated. For example, a model whose constraint matrix contains one very large entry (on the order of 10^9) can cause difficulty when the remaining entries are single-digit numbers. The PRINTLEVEL=2 option in the OPTQP procedure causes the ODS table ProblemStatistics to be generated. This table provides basic data magnitude information that enables you to improve the formulation of your models. The example output in Output 14.7 demonstrates the contents of the ODS table ProblemStatistics. Figure 14.7 ODS Table ProblemStatistics #### The OPTQP Procedure | Problem Statistics | | |--|------| | Number of Constraint Matrix Nonzeros | 4 | | Maximum Constraint Matrix Coefficient | 2 | | Minimum Constraint Matrix Coefficient | 1 | | Average Constraint Matrix Coefficient | 1.25 | | Number of Linear Objective Nonzeros | 2 | | Maximum Linear Objective Coefficient | 3 | | Minimum Linear Objective Coefficient | 2 | | Average Linear Objective Coefficient | 2.5 | | Number of Nonzeros Below Diagonal in the Hessian | 1 | | Number of Diagonal Nonzeros in the Hessian | 2 | | Maximum Hessian Coefficient | 20 | | Minimum Hessian Coefficient | 2 | | Average Hessian Coefficient | 6.75 | | Number of RHS Nonzeros | 2 | | Maximum RHS | 100 | | Minimum RHS | 1 | | Average RHS | 50.5 | | Maximum Number of Nonzeros per Column | 2 | | Minimum Number of Nonzeros per Column | 2 | | Average Number of Nonzeros per Column | 2 | | Maximum Number of Nonzeros per Row | 2 | | Minimum Number of Nonzeros per Row | 2 | | Average Number of Nonzeros per Row | 2 | #### Irreducible Infeasible Set For a quadratic programming problem, an irreducible infeasible set (IIS) is an infeasible subset of constraints and variable bounds that becomes feasible if any single constraint or variable bound is removed. It is possible to have more than one IIS in an infeasible QP. Identifying an IIS can help isolate the structural infeasibility in a QP. The IIS=ON option directs the OPTQP procedure to search for an IIS in a specified QP. Whether a quadratic programming problem is feasible or infeasible is determined by its constraints and variable bounds, which have nothing to do with its objective function. When you specify the IIS=ON option, the OPTQP procedure treats this problem as a linear programming problem by ignoring its objective function. Then finding IIS is the same as what PROC OPTLP does with the IIS=ON option. See the section "Irreducible Infeasible Set" on page 584 in Chapter 12, "The OPTLP Procedure," for more information about the irreducible infeasible set. ## Macro Variable _OROPTQP_ The OPTQP procedure defines a macro variable named _OROPTQP_. This variable contains a character string that indicates the status of the procedure. The various terms of the variable are interpreted as follows. #### **STATUS** indicates the solver status at termination. It can take one of the following values: OK The procedure terminated normally. SYNTAX_ERROR Incorrect syntax was used. DATA_ERROR The input data were inconsistent. OUT_OF_MEMORY Insufficient memory was allocated to the procedure. IO_ERROR A problem occurred in reading or writing data. ERROR The status cannot be classified into any of the preceding categories. #### **ALGORITHM** indicates the algorithm that produced the solution data in the macro variable. This term appears only when STATUS=OK. It can take the following value: IP The interior point algorithm produced the solution data. #### **SOLUTION STATUS** indicates the solution status at termination. It can take one
of the following values: OPTIMAL The solution is optimal. CONDITIONAL OPTIMAL The solution is optimal, but some infeasibilities (primal, dual or bound) exceed tolerances due to scaling or preprocessing. INFEASIBLE The problem is infeasible. UNBOUNDED The problem is unbounded. INFEASIBLE_OR_UNBOUNDED The problem is infeasible or unbounded. ITERATION_LIMIT_REACHED The maximum allowable number of iterations was reached. TIME_LIMIT_REACHED The maximum time limit was reached. ABORTED The solver was interrupted externally. NONCONVEX The quadratic matrix is nonconvex (minimization). NONCONCAVE The quadratic matrix is nonconcave (maximization). #### **OBJECTIVE** indicates the objective value obtained by the solver at termination. #### PRIMAL INFEASIBILITY indicates the (relative) infeasibility of the primal constraints at the solution. For more information, see the section "Interior Point Algorithm: Overview" on page 686. #### **DUAL INFEASIBILITY** indicates the (relative) infeasibility of the dual constraints at the solution. For more information, see the section "Interior Point Algorithm: Overview" on page 686. #### **BOUND INFEASIBILITY** indicates the (relative) violation by the solution of the lower or upper bounds (or both). For more information, see the section "Interior Point Algorithm: Overview" on page 686. #### **DUALITY_GAP** indicates the (relative) duality gap. For more information, see the section "Interior Point Algorithm: Overview" on page 686. #### COMPLEMENTARITY indicates the (absolute) complementarity at the solution. For more information, see the section "Interior Point Algorithm: Overview" on page 686. #### **ITERATIONS** indicates the number of iterations taken to solve the problem. #### PRESOLVE_TIME indicates the time (in seconds) taken for preprocessing. #### **SOLUTION TIME** indicates the time (in seconds) taken to solve the problem, including preprocessing time. **NOTE:** The time that is reported in PRESOLVE_TIME and SOLUTION_TIME is either CPU time or real time. The type is determined by the TIMETYPE= option. # **Examples: OPTQP Procedure** This section contains examples that illustrate the use of the OPTQP procedure. Example 14.1 illustrates how to model a linear least squares problem and solve it by using PROC OPTQP. Example 14.2 and Example 14.3 explain in detail how to model the portfolio optimization and selection problems. The linear least squares problem arises in the context of determining a solution to an overdetermined set of linear equations. In practice, these equations could arise in data fitting and estimation problems. An overdetermined system of linear equations can be defined as $$Ax = b$$ where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$, and m > n. Since this system usually does not have a solution, you need to be satisfied with some sort of approximate solution. The most widely used approximation is the least squares solution, which minimizes $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$. This problem is called a least squares problem for the following reason. Let A, x, and b be defined as previously. Let $k_i(x)$ be the kth component of the vector Ax - b: $$k_i(x) = a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n - b_i, i = 1, 2, \dots, m$$ By definition of the Euclidean norm, the objective function can be expressed as follows: $$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} = \sum_{i=1}^{m} k_{i}(x)^{2}$$ Therefore, the function you minimize is the sum of squares of m terms $k_i(x)$; hence the term least squares. The following example is an illustration of the *linear* least squares problem; that is, each of the terms k_i is a linear function of x. Consider the following least squares problem defined by $$\mathbf{A} = \begin{bmatrix} 4 & 0 \\ -1 & 1 \\ 3 & 2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$ This translates to the following set of linear equations: $$4x_1 = 1$$, $-x_1 + x_2 = 0$, $3x_1 + 2x_2 = 1$ The corresponding least squares problem is minimize $$(4x_1 - 1)^2 + (-x_1 + x_2)^2 + (3x_1 + 2x_2 - 1)^2$$ The preceding objective function can be expanded to minimize $$26x_1^2 + 5x_2^2 + 10x_1x_2 - 14x_1 - 4x_2 + 2$$ In addition, you impose the following constraint so that the equation $3x_1 + 2x_2 = 1$ is satisfied within a tolerance of 0.1: $$0.9 < 3x_1 + 2x_2 < 1.1$$ You can create the QPS-format input data set by using the following SAS statements: ``` data 1sdata; input field1 $ field2 $ field3 $ field4 field5 $ field6 @; datalines; NAME LEASTSQ ROWS OBJ N EQ3 COLUMNS . OBJ -14 X1 EQ3 X2 OBJ EQ3 2 -4 RHS . OBJ RHS -2 EQ3 0.9 RANGES . EQ3 RNG 0.2 BOUNDS . FR BND1 X1 BND1 X2 FR QUADOBJ X1 X1 52 X1 X2 10 X2 X2 10 ENDATA ``` The decision variables x_1 and x_2 are free, so they have bound type FR in the BOUNDS section of the QPS-format data set. You can use the following SAS statements to solve the least squares problem: ``` proc optqp data=lsdata printlevel = 0 primalout = lspout; run; ``` The optimal solution is displayed in Output 14.1.1. Output 14.1.1 Solution to the Least Squares Problem #### **Primal Solution** | Objective
Function
Obs ID | RHS | | | | Lower Bound | | Variable
Value | | |---------------------------------|-----|----|---|-----|-------------|------------|-------------------|---| | 1 OBJ | RHS | X1 | F | -14 | -1.7977E308 | 1.7977E308 | 0.23810 | 0 | | 2 OBJ | RHS | X2 | F | -4 | -1.7977E308 | 1.7977E308 | 0.16190 | 0 | The iteration log is shown in Output 14.1.2. #### Output 14.1.2 Iteration Log ``` NOTE: The problem LEASTSQ has 2 variables (2 free, 0 fixed). NOTE: The problem has 1 constraints (0 LE, 0 EQ, 0 GE, 1 range). NOTE: The problem has 2 constraint coefficients. NOTE: The objective function has 2 Hessian diagonal elements and 1 Hessian elements above the diagonal. NOTE: The QP presolver value AUTOMATIC is applied. NOTE: The QP presolver removed 0 variables and 0 constraints. NOTE: The QP presolver removed 0 constraint coefficients. NOTE: The presolved problem has 2 variables, 1 constraints, and 2 constraint coefficients. NOTE: The OP solver is called. NOTE: The Interior Point algorithm is used. NOTE: The deterministic parallel mode is enabled. NOTE: The Interior Point algorithm is using up to 4 threads. Primal Bound Dual Iter Complement Duality Gap Infeas Infeas Infeas Time 0 4.4635E-02 7.3436E-03 1.2741E-12 1.1785E-01 4.8074E-14 1 6.0962E-03 2.0162E-03 1.1813E-11 1.1785E-03 4.9674E-16 0 2 2.0205E-04 6.7545E-05 1.1113E-10 2.4631E-05 6.2541E-17 Ω 3 2.0975E-06 7.0139E-07 1.3791E-11 2.4631E-07 3.3605E-17 0 4 1.8029E-06 5.5869E-07 1.3791E-11 2.0900E-07 1.3713E-07 0 5 0.0000E+00 9.4105E-08 2.7318E-13 2.0900E-09 6.2816E-08 0 NOTE: Optimal. NOTE: Objective = 0.0095238095. NOTE: The Interior Point solve time is 0.00 seconds. NOTE: There were 19 observations read from the data set WORK.LSDATA. NOTE: The data set WORK.LSPOUT has 2 observations and 9 variables. ``` # **Example 14.2: Portfolio Optimization** Consider a portfolio optimization example. The two competing goals of investment are (1) long-term growth of capital and (2) low risk. A good portfolio grows steadily without wild fluctuations in value. The Markowitz model is an optimization model for balancing the return and risk of a portfolio. The decision variables are the amounts invested in each asset. The objective is to minimize the variance of the portfolio's total return, subject to the constraints that (1) the expected growth of the portfolio reaches at least some target level and (2) you do not invest more capital than you have. Let x_1, \ldots, x_n be the amount invested in each asset, \mathcal{B} be the amount of capital you have, \mathbf{R} be the random vector of asset returns over some period, and \mathbf{r} be the expected value of \mathbf{R} . Let G be the minimum growth you hope to obtain, and \mathcal{C} be the covariance matrix of \mathbf{R} . The objective function is $\operatorname{Var}\left(\sum_{i=1}^n x_i R_i\right)$, which can be equivalently denoted as $\mathbf{x}^T \mathcal{C} \mathbf{x}$. Assume, for example, n = 4. Let $\mathcal{B} = 10,000$, G = 1000, $\mathbf{r} = [0.05, -0.2, 0.15, 0.30]$, and $$C = \begin{bmatrix} 0.08 & -0.05 & -0.05 & -0.05 \\ -0.05 & 0.16 & -0.02 & -0.02 \\ -0.05 & -0.02 & 0.35 & 0.06 \\ -0.05 & -0.02 & 0.06 & 0.35 \end{bmatrix}$$ The QP formulation can be written as follows: $$\begin{array}{lll} \min & 0.08x_1^2 - 0.1x_1x_2 - 0.1x_1x_3 - 0.1x_1x_4 + 0.16x_2^2 \\ & -0.04x_2x_3 - 0.04x_2x_4 + 0.35x_3^2 + 0.12x_3x_4 + 0.35x_4^2 \end{array}$$ subject to (budget) $$x_1 + x_2 + x_3 + x_4 & \leq & 10000 \\ (\text{growth}) & 0.05x_1 - 0.2x_2 + 0.15x_3 + 0.30x_4 & \geq & 1000 \\ & & x_1, x_2, x_3, x_4 & \geq & 0 \end{array}$$ The corresponding QPS-format input data set is as follows: ``` data portdata; input field1 $ field2 $ field3 $ field4 field5 $ field6 @; datalines; NAME PORT ROWS N OBJ.FUNC . BUDGET L G GROWTH COLUMNS . BUDGET 1.0 GROWTH 0.05 BUDGET 1.0 GROWTH -.20 BUDGET 1.0 GROWTH 0.15 BUDGET 1.0 GROWTH 0.30 X1 X2 BUDGET BUDGET х3 X4 RHS BUDGET 10000 RHS RHS GROWTH 1000 RANGES . BOUNDS . QUADOBJ . 0.16 X1 X1 X2 X1 -.10 -.10 X1 х3 X1 X4 -.10 X2 X2 0.32 X2 х3 -.04 X2 X4 -.04 х3 х3 0.70 х3 X4 0.12 X4 0.70 X4 ENDATA . ``` Use the following SAS statements to solve the problem: ``` proc optqp data=portdata primalout = portpout printlevel = 0 dualout = portdout; run; ``` The optimal solution is shown in Output 14.2.1. Output 14.2.1 Portfolio Optimization # The OPTQP Procedure Primal Solution | Obs | | RHS
ID | Variable
Name | Variable
Type | Linear
Objective
Coefficient | | Upper
Bound | Variable
Value | Variable
Status | |-----|----------|-----------|------------------|------------------|------------------------------------|---|----------------|-------------------|--------------------| | 1 | OBJ.FUNC | RHS | X1 | N | 0 | 0 | 1.7977E308 | 3452.86 | 0 | | 2 | OBJ.FUNC | RHS | X2 | N
 0 | 0 | 1.7977E308 | 0.00 | 0 | | 3 | OBJ.FUNC | RHS | X3 | N | 0 | 0 | 1.7977E308 | 1068.81 | 0 | | 4 | OBJ.FUNC | RHS | X4 | N | 0 | 0 | 1.7977E308 | 2223.45 | 0 | Thus, the minimum variance portfolio that earns an expected return of at least 10% is $x_1 = 3452.86$, $x_2 = 0$, $x_3 = 1068.81$, $x_4 = 2223.45$. Asset 2 gets nothing, because its expected return is -20% and its covariance with the other assets is not sufficiently negative for it to bring any diversification benefits. What if you drop the nonnegativity assumption? You need to update the BOUNDS section in the existing QPS-format data set to indicate that the decision variables are free. | RANGES . | | • | • | • | | |----------|-------|-----------|---|---|--| | BOUNDS . | | | | | | | FR | BND1 | X1 | | | | | FR | BND1 | X2 | • | | | | FR | BND1 | х3 | | | | | FR | BND1 | X4 | • | | | | QUAD | OBJ . | | • | • | | | | | | | | | Financially, that means you are allowed to short-sell—that is, sell low-mean-return assets and use the proceeds to invest in high-mean-return assets. In other words, you put a negative portfolio weight in low-mean assets and "more than 100%" in high-mean assets. You can see in the optimal solution displayed in Output 14.2.2 that the decision variable x_2 , denoting Asset 2, is equal to -1563.61, which means short sale of that asset. Output 14.2.2 Portfolio Optimization with Short-Sale Option #### The OPTQP Procedure **Primal Solution** | Obs | | RHS
ID | Variable
Name | Variable
Type | • | Lower Bound | Upper
Bound | Variable
Value | | |-----|----------|-----------|------------------|------------------|---|-------------|----------------|-------------------|---| | 1 | OBJ.FUNC | RHS | X1 | F | 0 | -1.7977E308 | 1.7977E308 | 1684.35 | 0 | | 2 | OBJ.FUNC | RHS | X2 | F | 0 | -1.7977E308 | 1.7977E308 | -1563.61 | 0 | | 3 | OBJ.FUNC | RHS | X3 | F | 0 | -1.7977E308 | 1.7977E308 | 682.51 | 0 | | 4 | OBJ.FUNC | RHS | X4 | F | 0 | -1.7977E308 | 1.7977E308 | 1668.95 | 0 | # **Example 14.3: Portfolio Selection with Transactions** Consider a portfolio selection problem with a slight modification. You are now required to take into account the current position and transaction costs associated with buying and selling assets. The objective is to find the minimum variance portfolio. In order to understand the scenario better, consider the following data. You are given three assets. The current holding of the three assets is denoted by the vector c = [200, 300,500], the amount of asset bought and sold is denoted by b_i and s_i , respectively, and the net investment in each asset is denoted by x_i and is defined by the following relation: $$x_i - b_i + s_i = c_i, i = 1, 2, 3$$ Suppose you pay a transaction fee of 0.01 every time you buy or sell. Let the covariance matrix \mathcal{C} be defined $$C = \begin{bmatrix} 0.027489 & -0.00874 & -0.00015 \\ -0.00874 & 0.109449 & -0.00012 \\ -0.00015 & -0.00012 & 0.000766 \end{bmatrix}$$ Assume that you hope to obtain at least 12% growth. Let $\mathbf{r} = [1.109048, 1.169048, 1.074286]$ be the vector of expected return on the three assets, and let \mathcal{B} =1000 be the available funds. Mathematically, this problem can be written in the following manner: The QPS-format input data set is as follows: ``` data potrdata; input field1 $ field2 $ field3 $ field4 field5 $ field6 @; datalines; POTRAN NAME ROWS OBJ.FUNC . N RETURN . G E BUDGET E BALANC1 . E BALANC2 BALANC3 . E COLUMNS . X1 RETURN 1.109048 BUDGET X1 BALANC1 1.0 . X2 RETURN 1.169048 BUDGET 1.0 X1 1.0 X2 1.0 BALANC2 1.074286 BUDGET х3 RETURN 1.0 х3 BALANC3 1.0 BALANC1 -1.0 BALANC2 -1.0 BALANC3 -1.0 BALANC1 1.0 BALANC2 1.0 B1 BUDGET .01 B2 BUDGET .01 BUDGET .01 BUDGET .01 BUDGET .01 в3 S1 S2 S3 BUDGET .01 BALANC3 1.0 RHS RHS RETURN 1120 RHS BUDGET 1000 BALANC1 200 BALANC2 300 BALANC3 500 RHS RHS RHS RANGES BOUNDS . QUADOBJ . X1 X1 X1 X2 X1 X3 X2 X2 X2 0.054978 -.01748 -.0003 0.218898 X2 х3 -.00024 х3 х3 0.001532 ENDATA ``` Use the following SAS statements to solve the problem: ``` proc optqp data=potrdata primalout = potrpout printlevel = 0 dualout = potrdout; run; ``` The optimal solution is displayed in Output 14.3.1. Output 14.3.1 Portfolio Selection with Transactions # The OPTQP Procedure Primal Solution | Obs | Objective
Function | | | Variable | Linear
Objective
Coefficient | | Upper
Bound | Variable | Variable
Status | |-----|-----------------------|-----|------|----------|------------------------------------|--------|----------------|----------|--------------------| | Obs | טו | ID | Name | Туре | Coemcient | Bouria | Bound | value | Status | | 1 | OBJ.FUNC | RHS | X1 | N | 0 | 0 | 1.7977E308 | 397.584 | 0 | | 2 | OBJ.FUNC | RHS | X2 | N | 0 | 0 | 1.7977E308 | 406.115 | 0 | | 3 | OBJ.FUNC | RHS | X3 | N | 0 | 0 | 1.7977E308 | 190.165 | 0 | | 4 | OBJ.FUNC | RHS | B1 | N | 0 | 0 | 1.7977E308 | 197.584 | 0 | | 5 | OBJ.FUNC | RHS | B2 | N | 0 | 0 | 1.7977E308 | 106.115 | 0 | | 6 | OBJ.FUNC | RHS | B3 | N | 0 | 0 | 1.7977E308 | 0.000 | 0 | | 7 | OBJ.FUNC | RHS | S1 | N | 0 | 0 | 1.7977E308 | 0.000 | 0 | | 8 | OBJ.FUNC | RHS | S2 | N | 0 | 0 | 1.7977E308 | 0.000 | 0 | | 9 | OBJ.FUNC | RHS | S3 | N | 0 | 0 | 1.7977E308 | 309.835 | 0 | ## References - Freund, R. W. (1991). "On Polynomial Preconditioning and Asymptotic Convergence Factors for Indefinite Hermitian Matrices." *Linear Algebra and Its Applications* 154–156:259–288. - Freund, R. W., and Jarre, F. (1997). "A QMR-Based Interior Point Algorithm for Solving Linear Programs." *Mathematical Programming* 76:183–210. - Freund, R. W., and Nachtigal, N. M. (1996). "QMRPACK: A Package of QMR Algorithms." *ACM Transactions on Mathematical Software* 22:46–77. - Vanderbei, R. J. (1999). "LOQO: An Interior Point Code for Quadratic Programming." *Optimization Methods and Software* 11:451–484. - Wright, S. J. (1997). Primal-Dual Interior-Point Methods. Philadelphia: SIAM. # Subject Index | _ACTIVITY_ variable | linear least squares, 695 | |--------------------------------|---| | DUALOUT= data set, 686 | Markowitz model, 697 | | | portfolio optimization, 697 | | DUALOUT= data set | portfolio selection with transactions, 700 | | OPTQP procedure, 685, 686 | short-sell, 699 | | variables, 685, 686 | OPTQP procedure | | н а | output data sets, 684 | | IIS | definitions of DUALOUT= data set variables, | | PROC OPTQP statement, 681 | 685, 686 | | IIS option | definitions of DUALOUT=data set variables, 685, | | OPTQP procedure, 692 | 686 | | interior point algorithm | definitions of PRIMALOUT= data set variables, | | complementarity, 688 | 684, 685 | | dual infeasibility, 681, 687 | DUALOUT= data set, 685, 686 | | duality gap, 680, 688 | examples, 694 | | overview, 686 | functional summary, 680 | | primal infeasibility, 683, 687 | IIS option, 692 | | stopping criteria, 687 | interior point algorithm, 686 | | iteration log | iteration log, 688 | | LOGFREQ= option, 681 | %MPS2SASD macro, 677, 680 | | LOGLEVEL= option, 681 | ODS table names, 688 | | OPTQP procedure, 688 | options, 680 | | stopping criteria, 687 | _OROPTQP_ macro variable, 693 | | _LBOUND_ variable | overview, 673 | | PRIMALOUT= data set, 684 | PRIMALOUT= data set, 684, 685 | | _L_RHS_ variable | QPS format, 676 | | DUALOUT= data set, 686 | quadratic programming, 673 | | DOALOGI = data set, 000 | syntax, 679 | | %MPS2SASD | overview | | MPS2SASD, 677, 680 | OPTQP procedure, 673 | | OROPTQP | | | _OROPTQP_, 693 | positive semidefinite matrix, 674 | | | PRIMALOUT= data set | | _VAR_ variable | OPTQP procedure, 684, 685 | | PRIMALOUT= data set, 684 | variables, 684, 685 | | _OBJ_ID_ variable | PROC OPTQP statement | | DUALOUT= data set, 685 | dual infeasibility, 681 | | PRIMALOUT= data set, 684 | dual output data set, 681 | | ODS | duality gap, 680 | | ODS table names, 689 | IIS, 681 | | PRINTLEVEL= option, 683 | input data table, 680 | | problem statistics, 692 | log frequency, 681 | | ODS table names | log level, 681 | | OPTQP procedure, 688 | maximum iteration, 681 | | OPTQP examples | maximum time, 682 | | covariance matrix, 697 | number of threads, 682 | | data fitting, 695 | objective sense, 682 | | estimation, 695 | ODS print level, 683 | parallel mode, 682 presolver level, 682 primal infeasibility, 683 time type, 683 quadratic programming overview, 673 quadratic matrix, 674 _RHS_ variable DUALOUT= data set, 686 _RHS_ID_ variable DUALOUT= data set, 685 PRIMALOUT= data set, 684 _ROW_ variable DUALOUT= data set, 685 _STATUS_ variable DUALOUT= data set, 686 PRIMALOUT= data set, 685 _TYPE_ variable DUALOUT= data set, 685 PRIMALOUT= data set, 684 _UBOUND_ variable PRIMALOUT= data set, 684 _U_RHS_ variable DUALOUT= data set, 686 _VALUE_ variable DUALOUT= data set, 686 PRIMALOUT= data set, 685 _VAR_ variable PRIMALOUT= data set, 684 # Syntax Index | DATA= option | |-----------------------------| | PROC OPTQP statement, 680 | | DUALITYGAP= option | | PROC OPTQP statement, 680 | | DUALOUT= option | | PROC OPTQP statement, 681 | | DUALTOL= option | | PROC OPTQP statement, 681 | | Those of TQT statement, our | | FEASTOL= option | | PROC OPTQP statement, 683 | | | | IIS= option | | PROC OPTQP statement, 681 | | | | LOGFREQ= option | | PROC OPTQP statement, 681 | | LOGLEVEL= option | | PROC OPTQP statement, 681 | | Those of 1Q1 statement, oof | | MAXITER= option | | PROC OPTQP statement, 681 | | MAXTIME= option | | PROC OPTQP statement, 682 | | 1 ROC Of 1Q1 statement, 082 | | NTHREADS= option | | PROC OPTQP statement, 682 | | NUMTHREADS= option | | PROC OPTQP statement, 682 | | r ROC OF TQF statement, 082 | | OBJSENSE= option | | PROC OPTQP statement, 682 | | OPTQP procedure, 679 | | OPTTOL= option | | PROC OPTQP statement, 681 | | PROC OPTQP statement, 081 | | PARALLELMODE= option | | PROC OPTQP statement, 682 | | PRESOLVER= option | | <u> •</u> | | PROC OPTQP statement, 682 | | PRIMALOUT= option | | PROC OPTQP statement, 683 | | PRIMALTOL=
option | | PROC OPTQP statement, 683 | | PRINTFREQ= option | | PROC OPTQP statement, 681 | | PRINTLEVEL2= option | | PROC OPTQP statement, 681 | | PRINTLEVEL= option | PROC OPTQP statement, 683 PROC OPTQP statement DATA= option, 680 DUALITYGAP= option, 680 DUALOUT= option, 681 DUALTOL= option, 681 FEASTOL= option, 683 IIS= option, 681 LOGFREQ= option, 681 LOGLEVEL= option, 681 MAXITER= option, 681 MAXTIME= option, 682 NTHREADS= option, 682 NUMTHREADS= option, 682 OBJSENSE= option, 682 OPTTOL= option, 681 PARALLELMODE= option, 682 PRESOLVER= option, 682 PRIMALOUT= option, 683 PRIMALTOL= option, 683 PRINTFREQ= option, 681 PRINTLEVEL2= option, 681 PRINTLEVEL= option, 683 TIMETYPE= option, 683 TIMETYPE= option PROC OPTQP statement, 683