
SAS/OR® 14.3 User’s Guide
Mathematical Programming
The Nonlinear
Programming Solver



This document is an individual chapter from SAS/OR® 14.3 User’s Guide: Mathematical Programming.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2017. SAS/OR® 14.3 User’s Guide: Mathematical
Programming. Cary, NC: SAS Institute Inc.

SAS/OR® 14.3 User’s Guide: Mathematical Programming

Copyright © 2017, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute
Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time
you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is
illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic
piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software
developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or
disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as
applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S.
federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision
serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The
Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

September 2017

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SAS software may be provided with certain third-party software, including but not limited to open-source software, which is
licensed under its applicable third-party software license agreement. For license information about third-party software distributed
with SAS software, refer to http://support.sas.com/thirdpartylicenses.

http://support.sas.com/thirdpartylicenses


Chapter 10

The Nonlinear Programming Solver
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Overview: NLP Solver
The sparse nonlinear programming (NLP) solver is a component of the OPTMODEL procedure that can solve
optimization problems containing both nonlinear equality and inequality constraints. The general nonlinear
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optimization problem can be defined as

minimize f .x/

subject to hi .x/ D 0; i 2 E D f1; 2; : : : ; pg
gi .x/ � 0; i 2 I D f1; 2; : : : ; qg
l � x � u

where x 2 Rn is the vector of the decision variables; f W Rn 7! R is the objective function; h W Rn 7! Rp

is the vector of equality constraints—that is, h D .h1; : : : ; hp/; g W Rn 7! Rq is the vector of inequality
constraints—that is, g D .g1; : : : ; gq/; and l; u 2 Rn are the vectors of the lower and upper bounds,
respectively, on the decision variables.

It is assumed that the functions f; hi , and gi are twice continuously differentiable. Any point that satisfies
the constraints of the NLP problem is called a feasible point, and the set of all those points forms the feasible
region of the NLP problem—that is, F D fx 2 Rn W h.x/ D 0; g.x/ � 0; l � x � ug.

The NLP problem can have a unique minimum or many different minima, depending on the type of functions
involved. If the objective function is convex, the equality constraint functions are linear, and the inequality
constraint functions are concave, then the NLP problem is called a convex program and has a unique minimum.
All other types of NLP problems are called nonconvex and can contain more than one minimum, usually
called local minima. The solution that achieves the lowest objective value of all local minima is called the
global minimum or global solution of the NLP problem. The NLP solver can find the unique minimum of
convex programs and a local minimum of a general NLP problem. In addition, the solver is equipped with
specific options that enable it to locate the global minimum or a good approximation of it, for those problems
that contain many local minima.

The NLP solver implements the following primal-dual methods for finding a local minimum:

� interior point trust-region line-search algorithm

� active-set trust-region line-search algorithm

Both methods can solve small-, medium-, and large-scale optimization problems efficiently and robustly.
These methods use exact first and second derivatives to calculate search directions. The memory requirements
of both algorithms are reduced dramatically because only nonzero elements of matrices are stored. Conver-
gence of both algorithms is achieved by using a trust-region line-search framework that guides the iterations
towards the optimal solution. If a trust-region subproblem fails to provide a suitable step of improvement, a
line-search is then used to fine tune the trust-region radius and ensure sufficient decrease in objective function
and constraint violations.

The interior point technique implements a primal-dual interior point algorithm in which barrier functions
are used to ensure that the algorithm remains feasible with respect to the bound constraints. Interior point
methods are extremely useful when the optimization problem contains many inequality constraints and you
suspect that most of these constraints will be satisfied as strict inequalities at the optimal solution.

The active-set technique implements an active-set algorithm in which only the inequality constraints that
are satisfied as equalities, together with the original equality constraints, are considered. Once that set of
constraints is identified, active-set algorithms typically converge faster than interior point algorithms. They
converge faster because the size and the complexity of the original optimization problem can be reduced if
only few constraints need to be considered.
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For optimization problems that contain many local optima, the NLP solver can be run in multistart mode. If
the multistart mode is specified, the solver samples the feasible region and generates a number of starting
points. Then the local solvers can be called from each of those starting points to converge to different local
optima. The local minimum with the smallest objective value is then reported back to the user as the optimal
solution.

The NLP solver implements many powerful features that are obtained from recent research in the field
of nonlinear optimization algorithms (Akrotirianakis and Rustem 2005; Armand, Gilbert, and Jan-Jégou
2002; Erway, Gill, and Griffin 2007; Forsgren and Gill 1998; Vanderbei 1999; Wächter and Biegler 2006;
Yamashita 1998). The term primal-dual means that the algorithm iteratively generates better approximations
of the decision variables x (usually called primal variables) in addition to the dual variables (also referred
to as Lagrange multipliers). At every iteration, the algorithm uses a modified Newton’s method to solve a
system of nonlinear equations. The modifications made to Newton’s method are implicitly controlled by
the current trust-region radius. The solution of that system provides the direction and the steps along which
the next approximation of the local minimum is searched. The active-set algorithm ensures that the primal
iterations are always within their bounds—that is, l � xk � u, for every iteration k. However, the interior
approach relaxes this condition by using slack variables, and intermediate iterations might be infeasible.

Finally, for parameter estimation problems such as least squares, maximum likelihood, or Bayesian estimation
problems, the NLP solver can calculate the covariance matrix after it successfully obtains parameter estimates.

Getting Started: NLP Solver
The NLP solver consists of two techniques that can solve a wide class of optimization problems efficiently
and robustly. In this section two examples that introduce the two techniques of NLP are presented. The
examples also introduce basic features of the modeling language of PROC OPTMODEL that is used to define
the optimization problem.

The NLP solver can be invoked using the SOLVE statement,

SOLVE WITH NLP < / options > ;

where options specify the technique name, termination criteria, and how to display the results in the iteration
log. For a detailed description of the options, see the section “NLP Solver Options” on page 490.

A Simple Problem

Consider the following simple example of a nonlinear optimization problem:

minimize f .x/ D .x1 C 3x2 C x3/
2 C 4.x1 � x2/

2

subject to x1 C x2 C x3 D 1

6x2 C 4x3 � x
3
1 � 3 � 0

xi � 0; i D 1; 2; 3

The problem consists of a quadratic objective function, a linear equality constraint, and a nonlinear inequality
constraint. The goal is to find a local minimum, starting from the point x0 D .0:1; 0:7; 0:2/. You can use the
following call to PROC OPTMODEL to find a local minimum:
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proc optmodel;
var x{1..3} >= 0;
minimize f = (x[1] + 3*x[2] + x[3])**2 + 4*(x[1] - x[2])**2;

con constr1: sum{i in 1..3}x[i] = 1;
con constr2: 6*x[2] + 4*x[3] - x[1]**3 - 3 >= 0;

/* starting point */
x[1] = 0.1;
x[2] = 0.7;
x[3] = 0.2;

solve with NLP;
print x;

quit;

Because no options have been specified, the default solver (INTERIORPOINT) is used to solve the problem.
The SAS output displays a detailed summary of the problem along with the status of the solver at termination,
the total number of iterations required, and the value of the objective function at the best feasible solution
that was found. The summaries and the returned solution are shown in Figure 10.1.

Figure 10.1 Problem Summary, Solution Summary, and the Returned Solution

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function f

Objective Type Quadratic

Number of Variables 3

Bounded Above 0

Bounded Below 3

Bounded Below and Above 0

Free 0

Fixed 0

Number of Constraints 2

Linear LE (<=) 0

Linear EQ (=) 1

Linear GE (>=) 0

Linear Range 0

Nonlinear LE (<=) 0

Nonlinear EQ (=) 0

Nonlinear GE (>=) 1

Nonlinear Range 0
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Figure 10.1 continued

Solution Summary

Solver NLP

Algorithm Interior Point

Objective Function f

Solution Status Best Feasible

Objective Value 1.0000158715

Optimality Error 0.1041603358

Infeasibility 2.4921244E-8

Iterations 5

Presolve Time 0.00

Solution Time 0.01

[1] x

1 0.0000162497

2 0.0000039553

3 0.9999798200

The SAS log shown in Figure 10.2 displays a brief summary of the problem being solved, followed by the
iterations that are generated by the solver.

Figure 10.2 Progress of the Algorithm as Shown in the Log

NOTE: Problem generation will use 4 threads.                                    

NOTE: The problem has 3 variables (0 free, 0 fixed).                            

NOTE: The problem has 1 linear constraints (0 LE, 1 EQ, 0 GE, 0 range).         

NOTE: The problem has 3 linear constraint coefficients.                         

NOTE: The problem has 1 nonlinear constraints (0 LE, 0 EQ, 1 GE, 0 range).      

NOTE: The OPTMODEL presolver removed 0 variables, 0 linear constraints, and 0   

      nonlinear constraints.                                                    

NOTE: Using analytic derivatives for objective.                                 

NOTE: Using analytic derivatives for nonlinear constraints.                     

NOTE: The NLP solver is called.                                                 

NOTE: The Interior Point algorithm is used.                                     

                        Objective                          Optimality           

           Iter             Value     Infeasibility             Error           

              0        7.20000000                 0        6.40213404           

              1        1.22115550        0.00042385        0.00500000           

              2        1.00188693        0.00003290        0.00480263           

              3        1.00275609        0.00002123        0.00005000           

              4        1.00001702   0.0000000252254        0.00187172           

              5        1.00001738   0.0000000250883   0.0000005000000           

NOTE: Optimal.                                                                  

NOTE: Objective = 1.000017384.                                                  

NOTE: Objective of the best feasible solution found = 1.0000158715.             

NOTE: The best feasible solution found is returned.                             

NOTE: To return the local optimal solution found, set the SOLTYPE= option to 0. 
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A Larger Optimization Problem

Consider the following larger optimization problem:

minimize f .x/ D
P1000
iD1 xiyi C

1
2

P5
jD1 z

2
j

subject to xk C yk C
P5
jD1 zj D 5; for k D 1; 2; : : : ; 1000P1000

iD1 .xi C yi /C
P5
jD1 zj � 6

�1 � xi � 1; i D 1; 2; : : : ; 1000

�1 � yi � 1; i D 1; 2; : : : ; 1000

0 � zi � 2; i D 1; 2; : : : ; 5

The problem consists of a quadratic objective function, 1,000 linear equality constraints, and a linear
inequality constraint. There are also 2,005 variables. The goal is to find a local minimum by using the
ACTIVESET technique. This can be accomplished by issuing the following call to PROC OPTMODEL:

proc optmodel;
number n = 1000;
number b = 5;
var x{1..n} >= -1 <= 1 init 0.99;
var y{1..n} >= -1 <= 1 init -0.99;
var z{1..b} >= 0 <= 2 init 0.5;
minimize f = sum {i in 1..n} x[i] * y[i] + sum {j in 1..b} 0.5 * z[j]^2;
con cons1{k in 1..n}: x[k] + y[k] + sum {j in 1..b} z[j] = b;
con cons2: sum {i in 1..n} (x[i] + y[i]) + sum {j in 1..b} z[j] >= b + 1;
solve with NLP / algorithm=activeset logfreq=10;

quit;

The SAS output displays a detailed summary of the problem along with the status of the solver at termination,
the total number of iterations required, and the value of the objective function at the local minimum. The
summaries are shown in Figure 10.3.
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Figure 10.3 Problem Summary and Solution Summary

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function f

Objective Type Quadratic

Number of Variables 2005

Bounded Above 0

Bounded Below 0

Bounded Below and Above 2005

Free 0

Fixed 0

Number of Constraints 1001

Linear LE (<=) 0

Linear EQ (=) 1000

Linear GE (>=) 1

Linear Range 0

Solution Summary

Solver NLP

Algorithm Active Set

Objective Function f

Solution Status Optimal

Objective Value -996.4999999

Optimality Error 1.7873798E-8

Infeasibility 2.139622E-12

Iterations 11

Presolve Time 0.00

Solution Time 0.09

The SAS log shown in Figure 10.4 displays a brief summary of the problem that is being solved, followed by
the iterations that are generated by the solver.
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Figure 10.4 Progress of the Algorithm as Shown in the Log

NOTE: Problem generation will use 4 threads.                                    

NOTE: The problem has 2005 variables (0 free, 0 fixed).                         

NOTE: The problem has 1001 linear constraints (0 LE, 1000 EQ, 1 GE, 0 range).   

NOTE: The problem has 9005 linear constraint coefficients.                      

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).      

NOTE: The OPTMODEL presolver removed 0 variables, 0 linear constraints, and 0   

      nonlinear constraints.                                                    

NOTE: Using analytic derivatives for objective.                                 

NOTE: Using 2 threads for nonlinear evaluation.                                 

NOTE: The NLP solver is called.                                                 

NOTE: The Active Set algorithm is used.                                         

                        Objective                          Optimality           

           Iter             Value     Infeasibility             Error           

              0     -979.47500000        3.50000000        0.50000000           

             10     -996.50073232        0.00073242   0.0000000024556           

             11     -996.49999990  2.6645352591E-14   0.0000000004084           

NOTE: Optimal.                                                                  

NOTE: Objective = -996.4999999.                                                 

An Optimization Problem with Many Local Minima

Consider the following optimization problem:

minimizef .x/ D esin.50x/ C sin.60ey/C sin.70 sin.x//C sin.sin.80y//
� sin.10.x C y//C .x2 C y2/=4

subject to �1 � x � 1

�1 � y � 1

The objective function is highly nonlinear and contains many local minima. The NLP solver provides you
with the option of searching the feasible region and identifying local minima of better quality. This is
achieved by writing the following SAS program:

proc optmodel;
var x >= -1 <= 1;
var y >= -1 <= 1;
min f = exp(sin(50*x)) + sin(60*exp(y)) + sin(70*sin(x)) + sin(sin(80*y))

- sin(10*(x+y)) + (x^2+y^2)/4;
solve with nlp / multistart=(maxstarts=30) seed=94245;

quit;

The MULTISTART=() option is specified, which directs the algorithm to start the local solver from many
different starting points. The SAS log is shown in Figure 10.5.
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Figure 10.5 Progress of the Algorithm as Shown in the Log

NOTE: Problem generation will use 4 threads.                                    

NOTE: The problem has 2 variables (0 free, 0 fixed).                            

NOTE: The problem has 0 linear constraints (0 LE, 0 EQ, 0 GE, 0 range).         

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).      

NOTE: The OPTMODEL presolver removed 0 variables, 0 linear constraints, and 0   

      nonlinear constraints.                                                    

NOTE: Using analytic derivatives for objective.                                 

NOTE: The NLP solver is called.                                                 

NOTE: The Interior Point algorithm is used.                                     

NOTE: The MULTISTART option is enabled.                                         

NOTE: The deterministic parallel mode is enabled.                               

NOTE: The Multistart algorithm is executing in single-machine mode.             

NOTE: The Multistart algorithm is using up to 4 threads.                        

NOTE: Random number seed 94245 is used.                                         

                    Best       Local  Optimality    Infeasi-  Local  Local      

      Start    Objective   Objective       Error      bility  Iters  Status     

          1   -1.8567821  -1.8567821        5E-7           0      3  Optimal    

          2   -2.9390086  -2.9390086        5E-7           0      3  Optimal    

          3   -3.3068686  -3.3068686        5E-7           0      3  Optimal    

          4   -3.3068686  -1.9014527  6.14439E-7  6.14439E-7      4  Optimal    

          5   -3.3068686  -2.2355863        5E-7           0      3  Optimal    

          6   -3.3068686  -1.5173191        5E-7           0      4  Optimal    

          7   -3.3068686  -0.4808983        5E-7           0      4  Optimal    

          8   -3.3068686   -2.076195        5E-7           0      4  Optimal    

          9   -3.3068686  -2.6561783        5E-7           0      3  Optimal    

         10   -3.3068686  -2.1930943        5E-7           0      5  Optimal    

         11   -3.3068686  -0.5926643        5E-7           0      4  Optimal    

         12   -3.3068686  -0.4033346        5E-7           0      3  Optimal    

         13   -3.3068686  -2.0402058        5E-7           0      4  Optimal    

         14   -3.3068686  -0.7857749        5E-7           0      5  Optimal    

         15   -3.3068686  -2.9525781        5E-7           0      4  Optimal    

         16 * -3.3068686  -1.3289057        5E-7           0      4  Optimal    

         17   -3.3068686  -1.5650191        5E-7           0      7  Optimal    

         18   -3.3068686  -2.4632393        5E-7           0      3  Optimal    

         19   -3.3068686   -1.404132        5E-7           0      3  Optimal    

         20   -3.3068686  -2.4541355        5E-7           0      4  Optimal    

         21   -3.3068686  -2.5171432        5E-7           0      5  Optimal    

         22   -3.3068686  -1.3559281  8.74345E-7  8.74345E-7      3  Optimal    

         23   -3.3068686   -1.031811        5E-7           0      4  Optimal    

         24   -3.3068686  -1.0823455        5E-7           0      5  Optimal    

         25   -3.3068686  -0.6723829        5E-7           0      4  Optimal    

         26   -3.3068686  -1.2265443        5E-7           0      4  Optimal    

         27   -3.3068686  -2.8503167        5E-7           0      5  Optimal    

         28   -3.3068686  -0.6391886        5E-7           0      4  Optimal    

         29   -3.3068686  -0.9393803        5E-7           0      4  Optimal    

         30   -3.3068686  -0.5519164        5E-7           0      3  Optimal    

NOTE: The Multistart algorithm generated 320 sample points.                     

NOTE: 30 distinct local optima were found.                                      

NOTE: The best objective value found by local solver = -3.306868647.            
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Figure 10.5 continued

NOTE: The solution found by local solver with objective = -3.306868647 was      

      returned.                                                                 

The SAS log presents additional information when the MULTISTART=() option is specified. The first column
counts the number of restarts of the local solver. The second column records the best local optimum that
has been found so far, and the third through sixth columns record the local optimum to which the solver has
converged. The final column records the status of the local solver at every iteration.

The SAS output is shown in Figure 10.6.

Figure 10.6 Problem Summary and Solution Summary

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function f

Objective Type Nonlinear

Number of Variables 2

Bounded Above 0

Bounded Below 0

Bounded Below and Above 2

Free 0

Fixed 0

Number of Constraints 0

Solution Summary

Solver Multistart NLP

Algorithm Interior Point

Objective Function f

Solution Status Optimal

Objective Value -3.306868647

Number of Starts 30

Number of Sample Points 480

Number of Distinct Optima 28

Random Seed Used 94245

Optimality Error 5E-7

Infeasibility 0

Presolve Time 0.00

Solution Time 5.52
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A Least Squares Estimation Problem for a Regression Model

The following data are used to build a regression model:

data samples;
input x1 x2 y;
datalines;

4 8 43.71
62 5 351.29
81 62 2878.91
85 75 3591.59
65 54 2058.71
96 84 4487.87
98 29 1773.52
36 33 767.57
30 91 1637.66
3 59 215.28

62 57 2067.42
11 48 394.11
66 21 932.84
68 24 1069.21
95 30 1770.78
34 14 368.51
86 81 3902.27
37 49 1115.67
46 80 2136.92
87 72 3537.84
;

Suppose you want to compute the parameters in your regression model based on the preceding data, and the
model is

L.a; b; c/ D a � x1C b � x2C c � x1 � x2

where a; b; c are the parameters that need to be found.

The following PROC OPTMODEL call specifies the least squares problem for the regression model:

/* Reqression model with interactive term: y = a*x1 + b*x2 + c*x1*x2 */
proc optmodel;

set obs;
num x1{obs}, x2{obs}, y{obs};
num mycov{i in 1.._nvar_, j in 1..i};
var a, b, c;
read data samples into obs=[_n_] x1 x2 y;
impvar Err{i in obs} = y[i] - (a*x1[i]+b*x2[i]+c*x1[i]*x2[i]);
min f = sum{i in obs} Err[i]^2;
solve with nlp/covest=(cov=5 covout=mycov);
print mycov;
print a b c;

quit;

The solution is displayed in Figure 10.7.
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Figure 10.7 Least Squares Problem Estimation Results

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function f

Objective Type Quadratic

Number of Variables 3

Bounded Above 0

Bounded Below 0

Bounded Below and Above 0

Free 3

Fixed 0

Number of Constraints 0

Solution Summary

Solver NLP

Algorithm Interior Point

Objective Function f

Solution Status Optimal

Objective Value 7.1862967833

Optimality Error 9.640908E-10

Infeasibility 0

Iterations 17

Presolve Time 0.00

Solution Time 0.02

mycov

1 2 3

1 0.0000047825

2 -.0000000996 0.0000032426

3 -.0000000676 -.0000000442 0.0000000017

a b c

3.0113 2.0033 0.4998
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Syntax: NLP Solver
The following PROC OPTMODEL statement is available for the NLP solver:

SOLVE WITH NLP < / options > ;

Functional Summary
Table 10.1 summarizes the options that can be used with the SOLVE WITH NLP statement.

Table 10.1 Options for the NLP Solver

Description Option
Covariance Matrix Options and Suboptions
Requests that the NLP solver compute a covariance COVEST=()
matrix

Specifies an absolute singularity criterion for matrix ASINGULAR=
inversion
Specifies the type of covariance matrix COV=
Specifies the name of the output covariance matrix COVOUT=
Specifies the tolerance for deciding whether a matrix is COVSING=
singular
Specifies a relative singularity criterion for matrix inversion MSINGULAR=
Specifies a number for calculating the divisor for the NDF=
covariance matrix when VARDEF=DF
Specifies a number for calculating the scale factor for the NTERMS=
covariance matrix
Specifies a scalar factor for computing the covariance matrix SIGSQ=
Specifies the divisor for calculating the covariance matrix VARDEF=

Miscellaneous Option
Specifies the seed to use to generate random numbers SEED=
Multistart Options
Directs the local solver to start from multiple initial points MULTISTART=()

Specifies the maximum range of values that each variable BNDRANGE=
can take during the sampling process
Specifies the tolerance for local optima to be considered DISTTOL=
distinct
Specifies the amount of printing solution progress in LOGLEVEL=
multistart mode
Specifies the time limit in multistart mode MAXTIME=
Specifies the maximum number of starting points to be MAXSTARTS=
used by the multistart algorithm

Optimization Option
Specifies the optimization technique ALGORITHM=
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Table 10.1 Options for the NLP Solver (continued)

Description Option
Output Options
Specifies the frequency of printing solution progress (local
solvers)

LOGFREQ=

Specifies the allowable types of output solution SOLTYPE=
Solver Options
Specifies the feasibility tolerance FEASTOL=
Specifies the type of Hessian used by the solver HESSTYPE=
Enables or disables IIS detection with respect to linear con-
straints and variable bounds

IIS=

Specifies the maximum number of iterations MAXITER=
Specifies the time limit for the optimization process MAXTIME=
Specifies the upper limit on the objective OBJLIMIT=
Specifies the convergence tolerance OPTTOL=
Specifies units of CPU time or real time TIMETYPE=

NLP Solver Options
This section describes the options that are recognized by the NLP solver. These options can be specified
after a forward slash (/) in the SOLVE statement, provided that the NLP solver is explicitly specified using a
WITH clause.

Covariance Matrix Options

COVEST=(suboptions)
requests that the NLP solver produce a covariance matrix. When this option is applied, the following
PROC OPTMODEL options are automatically set: PRESOLVER=NONE and SOLTYPE=0. For more
information, see the section “Covariance Matrix” on page 503.

You can specify the following suboptions:

ASINGULAR=asing
specifies an absolute singularity criterion for measuring the singularity of the Hessian and
crossproduct Jacobian and their projected forms, which might have to be inverted to compute the
covariance matrix. The value of asing can be any number between the machine precision and the
largest positive number representable in your operating environment. The default is the square
root of the machine precision. For more information, see the section “Covariance Matrix” on
page 503.

COV=number | string
specifies one of six formulas for computing the covariance matrix. The formula that is used
depends on the type of objective (MIN or LSQ) that is specified. Table 10.2 describes the
valid values for this option and their corresponding formulas, where nterms is the value of the
NTERMS= option and MIN, LSQ, and other symbols are defined in the section “Covariance
Matrix” on page 503.



NLP Solver Options F 491

Table 10.2 Values of COV= Option

number string MIN Objective LSQ Objective

1 M .nterms=d/G�1JJ.f /G�1 .nterms=d/G�1VG�1

2 H .nterms=d/G�1 �2G�1

3 J .1=d/W �1 �2JJ.f /�1

4 B .1=d/G�1WG�1 �2G�1JJ.f /G�1

5 E .nterms=d/JJ.f /�1 .1=d/V �1

6 U .nterms=d/W �1JJ.f /W �1 .nterms=d/JJ.f /�1VJJ.f /�1

For MAX type problems, the covariance matrix is converted to MIN type by using negative
Hessian, Jacobian, and function values in the computation. For more information, see the section
“Covariance Matrix” on page 503.

By default, COV=2.

COVOUT=parameter
specifies the name of the parameter that contains the output covariance matrix. Because a
covariance matrix is symmetric, you should declare the covariance matrix as either a lower-
triangular matrix or a square matrix with indexes starting from 1. For example:

num mycov{i in 1..N, j in 1..i}; /* a lower triangular matrix */

or

num mycov{i in 1..N, j in 1..N}; /* a square matrix */

where N is the number of variables.

Depending on the type of output covariance matrix, the solver updates either the lower-triangular
matrix or the full square matrix. If you declare the covariance matrix as neither a lower-triangular
matrix nor a square matrix, or if the indexes do not start from 1, the NLP solver issues an error
message. You can use the CREATE DATA statement to output the results to a SAS data set. For
more information, see the section “Covariance Matrix” on page 503.

COVSING=covsing
specifies a threshold, covsing > 0, that determines whether to consider the eigenvalues of a
matrix to be 0. The value of covsing can be any number between the machine precision and the
largest positive number representable in your operating environment. The default is set internally
by the algorithm. For more information, see the section “Covariance Matrix” on page 503.

MSINGULAR=msing
specifies a relative singularity criterion msing > 0 for measuring the singularity of the Hessian
and crossproduct Jacobian and their projected forms. The value of msing can be any number
between machine precision and the largest positive number representable in your operating
environment. The default is 1E–12. For more information, see the section “Covariance Matrix”
on page 503.
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NDF=ndf
specifies a number to be used in calculating the divisor d, which is used in calculating the
covariance matrix when VARDEF=DF. The value of ndf can be any positive integer up to the
largest four-byte signed integer, which is 231 � 1. The default is the number of optimization
variables in the objective function. For more information, see the section “Covariance Matrix” on
page 503.

NTERMS=nterms
specifies a number to be used in calculating the scale factor for the covariance matrix, as shown
in Table 10.2. The value of nterms can be any positive integer up to the largest four-byte signed
integer, which is 231�1. The default is the number of nonconstant terms in the objective function.
For more information, see the section “Covariance Matrix” on page 503.

SIGSQ=sq
specifies a real scalar factor, sq > 0, for computing the covariance matrix. The value of sq can be
any number between the machine precision and the largest positive number representable in your
operating environment. For more information, see the section “Covariance Matrix” on page 503.

VARDEF=DF | N
controls how the divisor d is calculated. This divisor is used in calculating the covariance matrix
and approximate standard errors. The value of d also depends on the values of the NDF= and
NTERMS= options, ndf and nterms, respectively, as follows:

d D

�
max.1; nterms � ndf / for VARDEF=DF
nterms for VARDEF=N

By default, VARDEF=DF if the SIGSQ= option is not specified; otherwise, by default
VARDEF=N. For more information, see the section “Covariance Matrix” on page 503.

Miscellaneous Option

SEED=N
specifies a positive integer to be used as the seed for generating random number sequences. You can
use this option to replicate results from different runs.

Multistart Options

MULTISTART=(suboptions)

MS=(suboptions)
enables multistart mode. In this mode, the local solver solves the problem from multiple starting
points, possibly finding a better local minimum as a result. This option is disabled by default. For
more information about multistart mode, see the section “Multistart” on page 502.

You can specify the following suboptions:

BNDRANGE=M
defines the range from which each variable can take values during the sampling process. This
option affects only the sampling process that determines starting points for the local solver. It
does not affect the bounds of the original nonlinear optimization problem. More specifically, if
the ith variable xi has lower and upper bounds `i and ui , respectively (that is, `i � xi � ui ),
then an initial point is generated by a sampling process as follows:
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For each sample point x, the ith coordinate xi is generated so that the following bounds hold,
where x0i is the default starting point or a specified starting point:

li � xi � ui if li and ui are both finite
li � xi � li CM if only li is finite
ui �M � xi � ui if only ui is finite
x0i �M=2 � xi � x

0
i CM=2 otherwise

The default value is 200 in a shared-memory computing environment and 1,000 in a distributed
computing environment.

DISTTOL=�
defines the tolerance by which two optimal points are considered distinct. Optimal points are
considered distinct if the Euclidean distance between them is at least �. The default is 1.0E–6.

LOGLEVEL=number

PRINTLEVEL=number
defines the amount of information that the multistart algorithm displays in the SAS log. Table 10.3
describes the valid values of this suboption.

Table 10.3 Values for LOGLEVEL= Suboption

number Description
0 Turns off all solver-related messages to SAS log
1 Displays multistart summary information when

the algorithm terminates
2 Displays multistart iteration log and summary

information when the algorithm terminates
3 Displays the same information as LOGLEVEL=2

and might display additional information

By default, LOGLEVEL=2.

MAXTIME=T
defines the maximum allowable time T (in seconds) for the NLP solver to locate the best local
optimum in multistart mode. The value of the TIMETYPE= option determines the type of units
that are used. The time that is specified by the MAXTIME= suboption is checked only once
after the completion of the local solver. Because the local solver might be called many times, the
maximum time that is specified for multistart is recommended to be greater than the maximum
time specified for the local solver. If you do not specify this option, the multistart algorithm does
not stop based on the amount of time elapsed.

MAXSTARTS=N
defines the maximum number of starting points to be used for local optimization. That is, there
will be no more than N local optimization calls in the multistart algorithm. You can specify N to
be any nonnegative integer. When N = 0, the algorithm uses the default value of this option. In
a shared-memory computing environment, the default value is 100. In a distributed computing
environment, the default value is a number proportional to the number of threads across all the
grid nodes (usually more than 100).
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Optimization Options

ALGORITHM=keyword

TECHNIQUE=keyword

TECH=keyword

SOLVER=keyword
specifies the optimization technique to be used to solve the problem. The following keywords are valid:

INTERIORPOINT
uses a primal-dual interior point method. This technique is recommended for both small- and
large-scale nonlinear optimization problems. This is the preferred solver if the problem includes
a large number of inactive constraints.

ACTIVESET
uses a primal-dual active-set method. This technique is recommended for both small- and large-
scale nonlinear optimization problems. This is the preferred solver if the problem includes only
bound constraints or if the optimal active set can be quickly determined by the solver.

CONCURRENT (experimental)
runs the INTERIORPOINT and ACTIVESET techniques in parallel, with one thread using the
INTERIORPOINT technique and the other thread using the ACTIVESET technique. The solution
is returned by the first method that terminates.

The default is INTERIORPOINT.

Output Options

LOGFREQ=N

PRINTFREQ=N
specifies how often the iterations are displayed in the SAS log. N should be an integer between zero
and the largest four-byte, signed integer, which is 231 � 1. If N � 1, the solver prints only those
iterations that are a multiple of N. If N D 0, no iteration is displayed in the log. The default value is 1.

SOLTYPE=0 j 1
specifies whether the NLP solver should return only a solution that is locally optimal. If SOLTYPE=0,
the solver returns a locally optimal solution, provided it locates one. If SOLTYPE=1, the solver returns
the best feasible solution found, provided its objective value is better than that of the locally optimal
solution found. The default is 1.

Solver Options

FEASTOL=�
defines the feasible tolerance. The solver will exit if the constraint violation is less than FEASTOL and
the scaled optimality conditions are less than OPTTOL. The default is �=1E–6.

HESSTYPE=FULL j PRODUCT
specifies the type of Hessian to be used by the solver. The valid keywords for this option are FULL
and PRODUCT. If HESSTYPE=FULL, the solver uses a full Hessian. If HESSTYPE=PRODUCT, the
solver uses only Hessian-vector products, not the full Hessian. When the solver uses only Hessian-
vector products to find a search direction, it usually uses much less memory, especially when the



NLP Solver Options F 495

problem is large and the Hessian is not sparse. On the other hand, when the full Hessian is used, the
algorithm can create a better preconditioner to solve the problem in less CPU time. The default is
FULL.

IIS=number j string
specifies whether the NLP solver attempts to identify a set of linear constraints and variables that form
an irreducible infeasible set (IIS). Table 10.4 describes the valid values of the IIS= option.

Table 10.4 Values for IIS= Option

number string Description
0 OFF Disables IIS detection.
1 ON Enables IIS detection.

The default is OFF.

Note that when the IIS= option is enabled, all the other NLP solver options are ignored except the
following:

FEASTOL= LOGFREQ=
LOGLEVEL= MAXITER=
MAXTIME= TIMETYPE=

The NLP solver ignores nonlinear constraints, if any, and invokes the LP solver’s algorithm to attempt
to identify an IIS. If an IIS is found, information about the infeasibilities can be found in the .status
suffix values of the constraints and variables. For more information about the IIS= option, see the
section “Irreducible Infeasible Set” on page 271 of Chapter 7, “The Linear Programming Solver.” Also
see Example 10.7 for an example that demonstrates the use of the IIS= option of the NLP solver.

MAXITER=N
specifies that the solver take at most N major iterations to determine an optimum of the NLP problem.
The value of N is an integer between zero and the largest four-byte, signed integer, which is 231 � 1.
A major iteration in NLP consists of finding a descent direction and a step size along which the next
approximation of the optimum resides. The default is 5,000 iterations.

MAXTIME=t
specifies an upper limit of t units of time for the optimization process, including problem generation
time and solution time. The value of the TIMETYPE= option determines the type of units used. If you
do not specify the MAXTIME= option, the solver does not stop based on the amount of time elapsed.
The value of t can be any positive number; the default value is the positive number that has the largest
absolute value that can be represented in your operating environment.

OBJLIMIT=M
specifies an upper limit on the magnitude of the objective value. For a minimization problem, the
algorithm terminates when the objective value becomes less than –M; for a maximization problem, the
algorithm stops when the objective value exceeds M. The algorithm stopping implies that either the
problem is unbounded or the algorithm diverges. If optimization were allowed to continue, numerical
difficulty might be encountered. The default is M=1EC20. The minimum acceptable value of M is
1EC8. If the specified value of M is less than 1EC8, the value is reset to the default value 1EC20.
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OPTTOL=�

RELOPTTOL=�
defines the measure by which you can decide whether the current iterate is an acceptable approximation
of a local minimum. The value of this option is a positive real number. The NLP solver determines that
the current iterate is a local minimum when the norm of the scaled vector of the optimality conditions
is less than � and the true constraint violation is less than FEASTOL. The default is �=1E–6.

TIMETYPE=number j string
specifies the units of time used by the MAXTIME= option and reported by the PRESOLVE_TIME and
SOLUTION_TIME terms in the _OROPTMODEL_ macro variable. Table 10.6 describes the valid
values of the TIMETYPE= option.

Table 10.6 Values for TIMETYPE= Option

number string Description
0 CPU Specifies units of CPU time
1 REAL Specifies units of real time

The “Optimization Statistics” table, an output of PROC OPTMODEL if you specify PRINTLEVEL=2
in the PROC OPTMODEL statement, also includes the same time units for Presolver Time and Solver
Time. The other times (such as Problem Generation Time) in the “Optimization Statistics” table are
also in the same units.

The default value of the TIMETYPE= option depends on various options. When the solver is used with
distributed or multithreaded processing, then by default TIMETYPE= REAL. Otherwise, by default
TIMETYPE= CPU. Table 10.7 describes the detailed logic for determining the default; the first context
in the table that applies determines the default value.

Table 10.7 Default Value for TIMETYPE= Option

Context Default
Solver is invoked in an OPTMODEL COFOR loop REAL
NODES= value is nonzero for multistart mode REAL
NTHREADS= value is greater than 1 REAL
NTHREADS= 1 CPU

Details: NLP Solver
This section presents a brief discussion about the algorithmic details of the NLP solver. First, the notation is
defined. Next, an introduction to the fundamental ideas in constrained optimization is presented; the main
point of the second section is to present the necessary and sufficient optimality conditions, which play a
central role in all optimization algorithms. The section concludes with a general overview of primal-dual
interior point and active-set algorithms for nonlinear optimization. A detailed treatment of the preceding
topics can be found in Nocedal and Wright (1999), Wright (1997), and Forsgren, Gill, and Wright (2002).
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Basic Definitions and Notation
The gradient of a function f W Rn 7! R is the vector of all the first partial derivatives of f and is denoted by

rf .x/ D

�
@f

@x1
;
@f

@x2
; : : : ;

@f

@xn

�T

where the superscript T denotes the transpose of a vector.

The Hessian matrix of f, denoted by r2f .x/, or simply by H.x/, is an n � n symmetric matrix whose .i; j /
element is the second partial derivative of f .x/ with respect to xi and xj . That is, Hi;j .x/ D

@2f .x/
@xi@xj

.

Consider the vector function, c W Rn 7! RpCq , whose first p elements are the equality constraint
functions hi .x/; i D 1; 2; : : : ; p, and whose last q elements are the inequality constraint functions
gi .x/; i D 1; 2; : : : ; q. That is,

c.x/ D .h.x/ W g.x//T D .h1.x/; : : : ; hp.x/ W g1.x/; : : : ; gq.x//
T

The .p C q/ � n matrix whose ith row is the gradient of the ith element of c.x/ is called the Jacobian matrix
of c.x/ (or simply the Jacobian of the NLP problem) and is denoted by J.x/. You can also use Jh.x/ to
denote the p � n Jacobian matrix of the equality constraints and use Jg.x/ to denote the q � n Jacobian
matrix of the inequality constraints.

Constrained Optimization
A function that plays a pivotal role in establishing conditions that characterize a local minimum of an NLP
problem is the Lagrangian function L.x; y; z/, which is defined as

L.x; y; z/ D f .x/ �
X
i2E

yihi .x/ �
X
i2I

zigi .x/

Note that the Lagrangian function can be seen as a linear combination of the objective and constraint functions.
The coefficients of the constraints, yi ; i 2 E , and zi ; i 2 I, are called the Lagrange multipliers or dual
variables. At a feasible point Ox, an inequality constraint is called active if it is satisfied as an equality—that is,
gi . Ox/ D 0. The set of active constraints at a feasible point Ox is then defined as the union of the index set of
the equality constraints, E , and the indices of those inequality constraints that are active at Ox; that is,

A. Ox/ D E [ fi 2 I W gi . Ox/ D 0g

An important condition that is assumed to hold in the majority of optimization algorithms is the so-called
linear independence constraint qualification (LICQ). The LICQ states that at any feasible point Ox, the
gradients of all the active constraints are linearly independent. The main purpose of the LICQ is to ensure
that the set of constraints is well-defined in a way that there are no redundant constraints or in a way that
there are no constraints defined such that their gradients are always equal to zero.
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The First-Order Necessary Optimality Conditions

If x� is a local minimum of the NLP problem and the LICQ holds at x�, then there are vectors of Lagrange
multipliers y� and z�, with components y�i ; i 2 E , and z�i ; i 2 I, respectively, such that the following
conditions are satisfied:

rxL.x�; y�; z�/ D 0

hi .x
�/ D 0; i 2 E

gi .x
�/ � 0; i 2 I
z�i � 0; i 2 I

z�i gi .x
�/ D 0; i 2 I

where rxL.x�; y�; z�/ is the gradient of the Lagrangian function with respect to x, defined as

rxL.x�; y�; z�/ D rf .x/ �
X
i2E

yirhi .x/ �
X
i2I

zirgi .x/

The preceding conditions are often called the Karush-Kuhn-Tucker (KKT) conditions. The last group of
equations (zigi .x/ D 0; i 2 I ) is called the complementarity condition. Its main aim is to try to force the
Lagrange multipliers, z�i , of the inactive inequalities (that is, those inequalities with gi .x�/ > 0) to zero.

The KKT conditions describe the way the first derivatives of the objective and constraints are related at a
local minimum x�. However, they are not enough to fully characterize a local minimum. The second-order
optimality conditions attempt to fulfill this aim by examining the curvature of the Hessian matrix of the
Lagrangian function at a point that satisfies the KKT conditions.

The Second-Order Necessary Optimality Condition

Let x� be a local minimum of the NLP problem, and let y� and z� be the corresponding Lagrange multipliers
that satisfy the first-order optimality conditions. Then dTr2xL.x�; y�; z�/d � 0 for all nonzero vectors d
that satisfy the following conditions:

1. rhT
i .x
�/d D 0, 8i 2 E

2. rgT
i .x
�/d D 0, 8i 2 A.x�/ \ I, such that z�i > 0

3. rgT
i .x
�/d � 0, 8i 2 A.x�/ \ I, such that z�i D 0

The second-order necessary optimality condition states that, at a local minimum, the curvature of the
Lagrangian function along the directions that satisfy the preceding conditions must be nonnegative.

Interior Point Algorithm
Primal-dual interior point methods can be classified into two categories: feasible and infeasible. The first
category requires that the starting point and all subsequent iterations of the algorithm strictly satisfy all the
inequality constraints. The second category relaxes those requirements and allows the iterations to violate
some or all of the inequality constraints during the course of the minimization procedure. The NLP solver
implements an infeasible algorithm; this section concentrates on that type of algorithm.
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To make the notation less cluttered and the fundamentals of interior point methods easier to understand,
consider without loss of generality the following simpler NLP problem:

minimize f .x/

subject to gi .x/ � 0; i 2 I D f1; 2; : : : ; qg

Note that the equality and bound constraints have been omitted from the preceding problem. Initially, slack
variables are added to the inequality constraints, giving rise to the problem

minimize f .x/

subject to gi .x/ � si D 0; i 2 I
s � 0

where s D .s1; : : : ; sq/
T is the vector of slack variables, which are required to be nonnegative. Next, all

the nonnegativity constraints on the slack variables are eliminated by being incorporated into the objective
function, by means of a logarithmic function. This gives rise to the equality-constrained NLP problem

minimize B.x; s/ D f .x/ � �
P
i2I ln.si /

subject to gi .x/ � si D 0; i 2 I

where � is a positive parameter. The nonnegativity constraints on the slack variables are implicitly enforced
by the logarithmic functions, since the logarithmic function prohibits s from taking zero or negative values.

Next, the equality constraints can be absorbed by using a quadratic penalty function to obtain the following:

minimize M.x; s/ D f .x/C
1

2�
kg.x/ � sk22 � �

P
i2I ln.si /

The preceding unconstrained problem is often called the penalty-barrier subproblem. Depending on the size
of the parameter �, a local minimum of the barrier problem provides an approximation to the local minimum
of the original NLP problem. The smaller the size of �, the better the approximation becomes. Infeasible
primal-dual interior point algorithms repeatedly solve the penalty-barrier problem for different values of �
that progressively go to zero, in order to get as close as possible to a local minimum of the original NLP
problem.

An unconstrained minimizer of the penalty-barrier problem must satisfy the equations

rf .x/ � J.x/Tz D 0

z � �S�1e D 0

where z D �.g.x/ � s/=�; J.x/ is the Jacobian matrix of the vector function g.x/, S is the diagonal matrix
whose elements are the elements of the vector s (that is, S D diagfs1; : : : ; sqg), and e is a vector of all ones.
Multiplying the second equation by S and adding the definition of z as a third equation produces the following
equivalent nonlinear system:

F �.x; s; z/ D

0@ rf .x/ � J.x/TzSz � e

g.x/ � s C �z

1A D 0
Note that if � D 0, the preceding conditions represent the optimality conditions of the original optimization
problem, after adding slack variables. One of the main aims of the algorithm is to gradually reduce the
value of � to zero, so that it converges to a local optimum of the original NLP problem. The rate by which
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� approaches zero affects the overall efficiency of the algorithm. Algorithms that treat z as an additional
variable are considered primal-dual, while those that enforce the definition of z D �.g.x/ � s/=� at each
iteration are consider purely primal approaches.

At iteration k, the infeasible primal-dual interior point algorithm approximately solves the preceding system
by using Newton’s method. The Newton system is24 HL.x

k; zk/ 0 �J.xk/T

0 Zk Sk

J.xk/ �I �I

3524 �xk

�sk

�zk

35 D �
24 rxf .xk/ � J.xk/Tz��e C Skzk

g.xk/ � sk C �zk

35
where HL is the Hessian matrix of the Lagrangian function L.x; z/ D f .x/ � zTg.x/ of the original NLP
problem; that is,

HL.x; z/ D r
2f .x/ �

X
i2I

zir
2gi .x/

The solution .�xk; �sk; �zk/ of the Newton system provides a direction to move from the current iteration
.xk; sk; zk/ to the next,

.xkC1; skC1; zkC1/ D .xk; sk; zk/C ˛.�xk; �sk; �zk/

where ˛ is the step length along the Newton direction. The step length is determined through a line-search
procedure that ensures sufficient decrease of a merit function based on the augmented Lagrangian function
of the barrier problem. The role of the merit function and the line-search procedure is to ensure that the
objective and the infeasibility reduce sufficiently at every iteration and that the iterations approach a local
minimum of the original NLP problem.

Active-Set Method
Active-set methods differ from interior point methods in that no barrier term is used to ensure that the
algorithm remains interior with respect to the inequality constraints. Instead, attempts are made to learn
the true active set. For simplicity, use the same initial slack formulation used by the interior point method
description,

minimize f .x/

subject to gi .x/ � si D 0; i 2 I
s � 0

where s D .s1; : : : ; sq/
T is the vector of slack variables, which are required to be nonnegative. Begin by

absorbing the equality constraints as before into a penalty function, but keep the slack bound constraints
explicitly:

minimize M.x; s/ D f .x/C
1

2�
kg.x/ � sk22

subject to s � 0

where � is a positive parameter. Given a solution pair .x.�/; s.�// for the preceding problem, you can define
the active-set projection matrix P as follows:

Pij D

�
1 if i D j and si .�/ D 0
0 otherwise.
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Then .x.�/; s.�// is also a solution of the equality constraint subproblem:

minimize M.x; s/ D f .x/C
1

2�
kg.x/ � sk22

subject to Ps D 0:

The minimizer of the preceding subproblem must be a stationary point of the Lagrangian function

L�.x; s; z/ D f .x/C
1

2�
kg.x/ � sk22 � z

TPs

which gives the optimality equations

rxL�.x; s; z/ D rf .x/ � J.x/T y D 0

rsL�.x; s; z/ D y � P T z D 0

D Ps D 0

where y D �.g.x/ � s/=�. Using the second equation, you can simplify the preceding equations to get the
following optimality conditions for the bound-constrained penalty subproblem:

rf .x/ � J.x/TP T z D 0

P.g.x/ � s/C �z D 0

P s D 0

Using the third equation directly, you can reduce the system further to

rf .x/ � J.x/TP T z D 0

Pg.x/C �z D 0

At iteration k, the primal-dual active-set algorithm approximately solves the preceding system by using
Newton’s method. The Newton system is�

HL.x
k; zk/ �JT

A
JA �I

� �
�xk

�zk

�
D �

�
rxf .x

k/ � JT
A z

Pg.xk/C �zk

�
where JA D PJ.xk/ andHL denotes the Hessian of the Lagrangian function f .x/�zTPg.x/. The solution
.�xk; �zk/ of the Newton system provides a direction to move from the current iteration .xk; sk; zk/ to the
next,

.xkC1; zkC1/ D .xk; zk/C ˛.�xk; �zk/

where ˛ is the step length along the Newton direction. The corresponding slack variable update skC1 is
defined as the solution to the following subproblem whose solution can be computed analytically:

minimize M.xkC1; s/ D f .x/C
1

2�
kg.xkC1/ � sk22

subject to s � 0

The step length ˛ is then determined in a similar manner to the preceding interior point approach. At each
iteration, the definition of the active-set projection matrix P is updated with respect to the new value of the
constraint function g.xkC1/. For large-scale NLP, the computational bottleneck typically arises in seeking to
solve the Newton system. Thus active-set methods can achieve substantial computational savings when the
size of JA is much smaller than J.x/; however, convergence can be slow if the active-set estimate changes
combinatorially. Further, the active-set algorithm is often the superior algorithm when only bound constraints
are present. In practice, both the interior point and active-set approach incorporate more sophisticated merit
functions than those described in the preceding sections; however, their description is beyond the scope of
this document. See Gill and Robinson (2010) for further reading.
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Multistart
Frequently, nonlinear optimization problems contain many local minima because the objective or the
constraints are nonconvex functions. The quality of different local minima is measured by the objective value
achieved at those points. For example, if x�1 and x�2 are two distinct local minima and f .x�1 / � f .x

�
2 /, then

x�1 is said to be of better quality than x�2 . The NLP solver provides a mechanism that can locate local minima
of better quality by starting the local solver multiple times from different initial points. By doing so, the local
solver can converge to different local minima. The local minimum with the lowest objective value is then
reported back to the user.

The multistart feature consists of two phases. In the first phase, the entire feasible region is explored by
generating sample points from a uniform distribution. The aim of this phase is to place at least one sample
point in the region of attraction of every local minimum. Here the region of attraction of a local minimum is
defined as the set of feasible points that, when used as starting points, enable a local solver to converge to
that local minimum.

During the second phase, a subset of the sample points generated in the first phase is chosen by applying a
clustering technique. The goal of the clustering technique is to group the initial sample points around the
local minima and allow only a single local optimization to start from each cluster or group. The clustering
technique aims to reduce computation time by sparing the work of unnecessarily starting multiple local
optimizations within the region of attraction of the same local minimum.

The number of starting points is critical to the time spent by the solver to find a good local minimum. You
can specify the maximum number of starting points by using the MAXSTARTS= suboption. If this option
is not specified, the solver determines the minimum number of starting points that can provide reasonable
evidence that a good local minimum will be found.

Many optimization problems contain variables with infinite upper or lower bounds. These variables can
cause the sampling procedure to generate points that are not useful for locating different local minima. The
efficiency of the sampling procedure can be increased by reducing the range of these variables by using the
BNDRANGE= suboption. This option forces the sampling procedure to generate points that are in a smaller
interval, thereby increasing the efficiency of the solver to converge to a local optimum.

The multistart feature is compatible with the PERFORMANCE statement in the OPTMODEL procedure.
See Chapter 4, “Shared Concepts and Topics,” for more information about the PERFORMANCE statement.
The multistart feature currently supports only the DETERMINISTIC value for the PARALLELMODE=
option in the PERFORMANCE statement. To ensure reproducible results, specify a nonzero value for the
SEED= option.

Accessing the Starting Point That Leads to the Best Local Optimum

The starting point that leads to the best local optimum can be accessed by using the .msinit suffix in PROC
OPTMODEL. In some cases, the knowledge of that starting point might be useful. For example, you can
run the local solver again but this time providing as initial point the one that is stored in .msinit. This way
the multistart explores a different part of the feasible region and might discover a local optimum of better
quality than those found in previous runs. The use of the suffix .msinit is demonstrated in Example 10.5.
For more information about suffixes in PROC OPTMODEL, see “Suffixes” on page 132 in Chapter 5, “The
OPTMODEL Procedure.”
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Covariance Matrix
You must specify the COVEST=() option to compute an approximate covariance matrix for the parameter
estimates under asymptotic theory for least squares, maximum likelihood, or Bayesian estimation, with or
without corrections for degrees of freedom as specified in the VARDEF= option.

The standard form of this class of the problems is one of following:

� least squares (LSQ): minf .x/ D s
Pm
iD1 f

2
i .x/

� minimum or maximum (MIN/MAX): optf .x/ D s
Pm
iD1 fi .x/

For example, two groups of six different forms of covariance matrices (and therefore approximate standard
errors) can be computed corresponding to the following two situations, where TERMS is an index set.

� LSQ: The objective function consists solely of a positively scaled sum of squared terms, which means
that least squares estimates are being computed:

minf .x/ D s
X

.i;j /2TERMS
f 2ij .x/

where s > 0.

� MIN or MAX: The MIN or MAX declaration is specified, and the objective is not in least squares
form. Together, these characteristics mean that maximum likelihood or Bayesian estimates are being
computed:

optf .x/ D s
X

.i;j /2TERMS
fij .x/

where opt is either min or max and s is arbitrary.

In the preceding section, TERMS is used to denote an arbitrary index set. For example, if your problem is

min z D 0:5
X
i2I
.g21Œi �C g

2
2Œi �/

then TERMS = f.i; j / W i 2 I and j 2 f1; 2gg, where I is the index set of input data. The following rules
apply when you specify your objective function:

� The terms fij .x/ can be either IMPVAR expressions or constant expressions (expressions that do not
depend on variables). The i and j values can be partitioned among observation and function indices as
needed. Any number of indices can be used, including non-array indices to implicit variables.

� The nonconstant terms are defined by using the IMPVAR declaration. Each nonconstant IMPVAR
element can be referenced at most once in the objective.

� The objective consists of a scaled sum of terms (or squared terms for least squares). The scaling, shown
as s in the preceding equations, consists of outer multiplication or division by constants of the unscaled
sum of terms (or squared terms for least squares). The unary C or � operators can also be used for
scaling.
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� Least squares objectives require the scaling to be positive (s > 0). The individual fij values are scaled
by
p
2s by PROC OPTMODEL.

� Objectives that are not least squares allow arbitrary scaling. The scale value is distributed to the fij
values.

� The summation of terms (or squared terms for least squares) is constructed with the binaryC, SUM,
and IF-THEN-ELSE operators (where IF-THEN-ELSE must have a first operand that does not depend
on variables). The operands can be terms or a summation of terms (or squared terms for least squares).

� A squared term is specified as term^2 or term**2.

� The default value of the NTERMS= option is determined by counting the nonconstant terms. The
constant terms do not contribute to the covariance matrix.

The following PROC OPTMODEL statements demonstrate these rules:

var x{VARS};
impvar g{OBS} = ...; /* expression involves x */
impvar h{OBS} = ...; /* expression involves x */

/* This objective is okay. */
min z1 = sum{i in OBS} (g[i] + h[i]);

/* This objective is okay. */
min z2 = 0.5*sum{i in OBS} (g[i]^2 + h[i]^2);

/* This objective is okay. It demonstrates multiple levels of scaling. */
min z3 = 3*(sum{i in OBS} (g[i]^2 + h[i]^2))/2;

/* This objective is okay. */
min z4 = (sum{i in OBS} (g[i]^2 + h[i]^2))/2;

Note that the following statements are not accepted:

/* This objective causes an error because individual scaling is not allowed. */
/* (division applies to inner term) */
min z5 = sum{i in OBS} (g[i]^2 + h[i]^2)/2;

/* This objective causes an error because individual scaling is not allowed. */
min z6 = sum{i in OBS} 0.5*g[i]^2;

/* This objective causes an error because the element g[1] is repeated. */
min z7 = g[1] + sum{i in OBS} g[i];

The covariance matrix is always positive semidefinite. For MAX type problems, the covariance matrix is
converted to MIN type by using negative Hessian, Jacobian, and function values in the computation. You can
use the following options to check for a rank deficiency of the covariance matrix:

� The ASINGULAR= and MSINGULAR= options enable you to set two singularity criteria for the
inversion of the matrix A that is needed to compute the covariance matrix, when A is either the Hessian
or one of the crossproduct Jacobian matrices. The singularity criterion that is used for the inversion is

jdj;j j � max.asing;msing �max.jA1;1j; : : : ; jAn;nj//
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where dj;j is the diagonal pivot of the matrix A, and asing and msing are the specified values of the
ASINGULAR= and MSINGULAR= options, respectively.

� If the matrix A is found to be singular, the NLP solver computes a generalized inverse that satisfies
Moore-Penrose conditions. The generalized inverse is computed using the computationally expensive
but numerically stable eigenvalue decomposition, A D ZƒZT , where Z is the orthogonal matrix of
eigenvectors and ƒ is the diagonal matrix of eigenvalues, ƒ D diag.�1; : : : ; �n/. The generalized
inverse of A is set to

A� D Zƒ�ZT

where the diagonal matrix ƒ� D diag.��1 ; : : : ; �
�
n / is defined as follows, where covsing is the

specified value of the COVSING= option:

��i D

�
1=�i if j�i j > covsing
0 if j�i j � covsing

If the COVSING= option is not specified, then the default is max.asing;msing �
max.jA1;1j; : : : ; jAn;nj//, where asing and msing are the specified values of the ASINGULAR= and
MSINGULAR= options, respectively.

For problems of the MIN or LSQ type, the matrices that are used to compute the covariance matrix are

G D r2f .x/

J.f / D .rf1; : : : ;rfm/ D

�
@fi

@xj

�
JJ.f / D J.f /T J.f /

V D J.f /T diag.f 2i /J.f /

W D J.f /T .diag.fi //�1J.f /

where fi is defined in the standard form of the covariance matrix problem. Note that when some fi are 0,
.diag.fi //�1 is computed as a generalized inverse.

For unconstrained minimization, the formulas of the six types of covariance matrices are given in Table 10.2.
The value of d in the table depends on the VARDEF= option and the values of the NDF= and NTERMS=
options, ndf and nterms, respectively, as follows:

d D

�
max.1; nterms � ndf / for VARDEF=DF
nterms for VARDEF=N

The value of �2 depends on the specification of the SIGSQ= option and on the value of d,

�2 D

�
sq � nterms=d if SIGSQ=sq is specified
2f .x�/=d if SIGSQ= is not specified

where f .x�/ is the value of the objective function at the optimal solution x�.

Because of the analytic definition, in exact arithmetic the covariance matrix is positive semidefinite at the
solution. A warning message is issued if numerical computation does not result in a positive semidefinite
matrix. This can happen because round-off error is introduced or the incorrect type of covariance matrix for a
specified problem is selected.
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Iteration Log for the Local Solver
The iteration log for the local solver provides detailed information about progress towards a locally optimal
solution. This log appears when multistart mode is disabled.

The following information is displayed in the log:

Iter indicates the iteration number.

Objective Value indicates the objective function value.

Infeasibility indicates the maximum value out of all constraint violations.

Optimality Error indicates the relative optimality error (see the section “Solver Termination Criterion” on
page 507).

Iteration Log for Multistart
When the MULTISTART=() option is specified, the iteration log differs from that of the local solver. More
specifically, when a value of 2 is specified for the LOGLEVEL= suboption, the following information is
displayed in the log:

Start indicates the index number of each local optimization run. The following indicator can
appear beside this number to provide additional information about the run:

* indicates the local optimization started from a user-supplied point.

Best Objective indicates the value of the objective function at the best local solution found so far.

Local Objective indicates the value of the objective function obtained at the solution returned by the local
solver.

Infeasibility indicates the infeasibility error at the solution returned by the local solver.

Optimality Error indicates the optimality error at the solution returned by the local solver.

Local Iters indicates the number of iterations taken by the local solver.

Local Status indicates the solution status of the local solver. Several different values can appear in this
column:

OPTIMAL indicates that the local solver found a locally optimal solution.

BESTFEASIBLE indicates that the local solver returned the best feasible point found.
See the SOLTYPE= option for more information.

INFEASIBLE indicates that the local solver converged to a point that might be
infeasible.

LOCALINFEAS indicates that the local solver converged to a point of minimal local
infeasibility.
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UNBOUNDED indicates that the local solver determined that the problem is un-
bounded.

ITERLIMIT indicates that the local solver reached the maximum number of
iterations and could not find a locally optimal solution.

TIMELIMIT indicates that the local solver reached the maximum allowable time
and could not find a locally optimal solution.

ABORTED indicates that the local solver terminated due to a user interrupt.

FUNEVALERR indicates that the local solver encountered a function evaluation error.

NUMERICERR indicates that the local solver encountered a numerical error other
than a function evaluation error.

INTERNALERR indicates that the local solver encountered a solver system error.

OUTMEMORY indicates that the local solver ran out of memory.

FAILED indicates a general failure of the local solver in the absence of any
other error.

Solver Termination Criterion
Because badly scaled problems can lead to slow convergence, the NLP solver dynamically rescales both the
objective and constraint functions adaptively as needed. The optimality conditions are always stated with
respect to the rescaled NLP. However, because typically you are most interested in the constraint violation
of the original NLP, and not the internal scaled variant, you always work with respect to the true constraint
violation. Thus, the solver terminates when both of the following conditions are true:

� The norm of the optimality conditions of the scaled NLP is less than the user-defined or default
tolerance (OPTTOL= option).

� The norm of the constraint violation of the original NLP is less than the user-defined feasibility
tolerance (FEASTOL= option).

More specifically, if

F.x; s; z/ D .rxf .x/ � J.x/
Tz; Sz; g.x/ � s/T

is the vector of the optimality conditions of the rescaled NLP problem, then the solver terminates when

k F.x; s; z/ k� OPTTOL.1C k.x; s/k/

and the maximum constraint violation is less than FEASTOL.
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Solver Termination Messages
Upon termination, the solver produces the following messages in the log:

Optimal
The solver has successfully found a local solution to the optimization problem.

Conditionally optimal solution found
The solver is sufficiently close to a local solution, but it has difficulty in completely satisfying the
user-defined optimality tolerance. This can happen when the line search finds very small steps that
result in very slight progress of the algorithm. It can also happen when the prespecified tolerance is too
strict for the optimization problem at hand.

Maximum number of iterations reached
The solver could not find a local optimum in the prespecified number of iterations.

Maximum specified time reached
The solver could not find a local optimum in the prespecified maximum real time for the optimization
process.

Did not converge
The solver could not satisfy the optimality conditions and failed to converge.

Problem might be unbounded
The objective function takes arbitrarily large values, and the optimality conditions fail to be satisfied.
This can happen when the problem is unconstrained or when the problem is constrained and the feasible
region is not bounded.

Problem might be infeasible
The solver cannot identify a point in the feasible region.

Problem is infeasible
The solver detects that the problem is infeasible.

Out of memory
The problem is so large that the solver requires more memory to solve the problem.

Problem solved by the OPTMODEL presolver
The problem was solved by the OPTMODEL presolver.

Macro Variable _OROPTMODEL_
The OPTMODEL procedure always creates and initializes a SAS macro variable called _OROPTMODEL_,
which contains a character string. After each PROC OPTMODEL run, you can examine this macro variable
by specifying %put &_OROPTMODEL_; and check the execution of the most recently invoked solver from the
value of the macro variable. After the NLP solver is called, the various terms of the variable are interpreted
as follows:
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STATUS
indicates the solver status at termination. It can take one of the following values:

OK The solver terminated normally.

SYNTAX_ERROR The use of syntax is incorrect.

DATA_ERROR The input data are inconsistent.

OUT_OF_MEMORY Insufficient memory was allocated to the procedure.

IO_ERROR A problem in reading or writing of data has occurred.

SEMANTIC_ERROR An evaluation error, such as an invalid operand type, has occurred.

ERROR The status cannot be classified into any of the preceding categories.

ALGORITHM
indicates the algorithm that produced the solution data in the macro variable. This term only appears
when STATUS=OK. It can take one of the following values:

IP The interior point algorithm produced the solution data.

AS The active-set algorithm produced the solution data.

When running algorithms concurrently (ALGORITHM=CONCURRENT), this term indicates which
algorithm was the first to terminate.

SOLUTION_STATUS
indicates the solution status at termination. It can take one of the following values:

OPTIMAL The solution is optimal.

CONDITIONAL_OPTIMAL The optimality of the solution cannot be proven.

BEST_FEASIBLE The solution returned is the best feasible solution. This
solution status indicates that the algorithm has converged
to a local optimum but a feasible (not locally optimal)
solution with a better objective value has been found and
hence is returned.

INFEASIBLE The problem is infeasible.

UNBOUNDED The problem might be unbounded.

INFEASIBLE_OR_UNBOUNDED The problem is infeasible or unbounded.

BAD_PROBLEM_TYPE The problem type is not supported by the solver.

ITERATION_LIMIT_REACHED The maximum allowable number of iterations has been
reached.

TIME_LIMIT_REACHED The solver reached its execution time limit.

FAILED The solver failed to converge, possibly due to numerical
issues.
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OBJECTIVE
indicates the objective value that is obtained by the solver at termination.

NUMSTARTS
indicates the number of starting points. This term appears only in multistart mode.

SAMPLE_POINTS
indicates the number of points that are evaluated in the sampling phase. This term appears only in
multistart mode.

DISTINCT_OPTIMA
indicates the number of distinct local optima that the solver finds. This term appears only in multistart
mode.

SEED
indicates the seed value that is used to initialize the solver. This term appears only in multistart mode.

INFEASIBILITY
indicates the level of infeasibility of the constraints at the solution.

OPTIMALITY_ERROR
indicates the norm of the optimality conditions at the solution. See the section “Solver Termination
Criterion” on page 507 for details.

ITERATIONS
indicates the number of iterations required to solve the problem.

PRESOLVE_TIME
indicates the real time taken for preprocessing (seconds).

SOLUTION_TIME
indicates the real time taken by the solver to perform iterations for solving the problem (seconds).

NOTE: The time that is reported in PRESOLVE_TIME and SOLUTION_TIME is either CPU time or real
time. The type is determined by the TIMETYPE= option.
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Examples: NLP Solver

Example 10.1: Solving Highly Nonlinear Optimization Problems
This example demonstrates the use of the NLP solver to solve the following highly nonlinear optimization
problem, which appears in Hock and Schittkowski (1981):

minimize f .x/ D 0:4.x1=x7/
0:67 C 0:4.x2=x8/

0:67 C 10 � x1 � x2
subject to 1 � 0:0588x5x7 � 0:1x1 � 0

1 � 0:0588x6x8 � 0:1x1 � 0:1x2 � 0

1 � 4x3=x5 � 2=.x
0:71
3 x5/ � 0:0588x7=x

1:3
3 � 0

1 � 4x4=x6 � 2=.x
0:71
4 x6/ � 0:0588x8=x

1:3
4 � 0

0:1 � f .x/ � 4:2

0:1 � xi � 10; i D 1; 2; : : : ; 8

The initial point used is x0 D .6; 3; 0:4; 0:2; 6; 6; 1; 0:5/. You can call the NLP solver within PROC
OPTMODEL to solve the problem by writing the following SAS statements:

proc optmodel;
var x{1..8} >= 0.1 <= 10;

min f = 0.4*(x[1]/x[7])^0.67 + 0.4*(x[2]/x[8])^0.67 + 10 - x[1] - x[2];

con c1: 1 - 0.0588*x[5]*x[7] - 0.1*x[1] >= 0;
con c2: 1 - 0.0588*x[6]*x[8] - 0.1*x[1] - 0.1*x[2] >= 0;
con c3: 1 - 4*x[3]/x[5] - 2/(x[3]^0.71*x[5]) - 0.0588*x[7]/x[3]^1.3 >= 0;
con c4: 1 - 4*x[4]/x[6] - 2/(x[4]^0.71*x[6]) - 0.0588*x[8]/x[4]^1.3 >= 0;
con c5: 0.1 <= f <= 4.2;

/* starting point */
x[1] = 6;
x[2] = 3;
x[3] = 0.4;
x[4] = 0.2;
x[5] = 6;
x[6] = 6;
x[7] = 1;
x[8] = 0.5;

solve with nlp / algorithm=activeset;
print x;

quit;

The summaries and the solution are shown in Output 10.1.1.
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Output 10.1.1 Summaries and the Returned Solution

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function f

Objective Type Nonlinear

Number of Variables 8

Bounded Above 0

Bounded Below 0

Bounded Below and Above 8

Free 0

Fixed 0

Number of Constraints 5

Linear LE (<=) 0

Linear EQ (=) 0

Linear GE (>=) 0

Linear Range 0

Nonlinear LE (<=) 0

Nonlinear EQ (=) 0

Nonlinear GE (>=) 4

Nonlinear Range 1

Solution Summary

Solver NLP

Algorithm Active Set

Objective Function f

Solution Status Optimal

Objective Value 3.9511635269

Optimality Error 1.0716936E-8

Infeasibility 2.0230985E-8

Iterations 24

Presolve Time 0.00

Solution Time 0.02

[1] x

1 6.46511

2 2.23271

3 0.66740

4 0.59576

5 5.93268

6 5.52723

7 1.01332

8 0.40067
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Example 10.2: Solving Unconstrained and Bound-Constrained Optimization
Problems

Although the NLP techniques are suited for solving generally constrained nonlinear optimization problems,
these techniques can also be used to solve unconstrained and bound-constrained problems efficiently. This
example considers the relatively large nonlinear optimization problems

minimizef .x/ D
n�1X
iD1

.�4xi C 3:0/C

n�1X
iD1

.x2i C x
2
n/
2

and

minimize f .x/ D
Pn�1
iD1 cos.�:5xiC1 � x2i /

subject to 1 � xi � 2; i D 1; : : : ; n

with n D 100; 000. These problems are unconstrained and bound-constrained, respectively.

For large-scale problems, the default memory limit might be too small, which can lead to out-of-memory
status. To prevent this occurrence, it is recommended that you set a larger memory size. See the section
“Memory Limit” on page 19 for more information.

To solve the first problem, you can write the following statements:

proc optmodel;
number N=100000;
var x{1..N} init 1.0;

minimize f = sum {i in 1..N - 1} (-4 * x[i] + 3.0) +
sum {i in 1..N - 1} (x[i]^2 + x[N]^2)^2;

solve with nlp;
quit;

The problem and solution summaries are shown in Output 10.2.1.
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Output 10.2.1 Problem Summary and Solution Summary

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function f

Objective Type Nonlinear

Number of Variables 100000

Bounded Above 0

Bounded Below 0

Bounded Below and Above 0

Free 100000

Fixed 0

Number of Constraints 0

Solution Summary

Solver NLP

Algorithm Interior Point

Objective Function f

Solution Status Optimal

Objective Value 0

Optimality Error 1.007493E-14

Infeasibility 0

Iterations 16

Presolve Time 0.00

Solution Time 1.23

To solve the second problem, you can write the following statements (here the active-set method is specifically
selected):

proc optmodel;
number N=100000;
var x{1..N} >= 1 <= 2;

minimize f = sum {i in 1..N - 1} cos(-0.5*x[i+1] - x[i]^2);

solve with nlp / algorithm=activeset;
quit;

The problem and solution summaries are shown in Output 10.2.2.
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Output 10.2.2 Problem Summary and Solution Summary

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function f

Objective Type Nonlinear

Number of Variables 100000

Bounded Above 0

Bounded Below 0

Bounded Below and Above 100000

Free 0

Fixed 0

Number of Constraints 0

Solution Summary

Solver NLP

Algorithm Active Set

Objective Function f

Solution Status Optimal

Objective Value -99999

Optimality Error 1.2704389E-8

Infeasibility 0

Iterations 5

Presolve Time 0.00

Solution Time 1.34

Example 10.3: Solving NLP Problems with Range Constraints
Some constraints have both lower and upper bounds (that is, a � g.x/ � b). These constraints are called
range constraints. The NLP solver can handle range constraints in an efficient way. Consider the following
NLP problem, taken from Hock and Schittkowski (1981),

minimize f .x/ D 5:35.x3/
2 C 0:83x1x5 C 37:29x1 � 40792:141

subject to 0 � a1 C a2x2x5 C a3x1x4 � a4x3x5 � 92

0 � a5 C a6x2x5 C a7x1x2 C a8x
2
3 � 90 � 20

0 � a9 C a10x3x5 C a11x1x3 C a12x3x4 � 20 � 5

78 � x1 � 102

33 � x2 � 45

27 � xi � 45; i D 3; 4; 5

where the values of the parameters ai ; i D 1; 2; : : : ; 12, are shown in Table 10.8.
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Table 10.8 Data for Example 3

i ai i ai i ai
1 85.334407 5 80.51249 9 9.300961
2 0.0056858 6 0.0071317 10 0.0047026
3 0.0006262 7 0.0029955 11 0.0012547
4 0.0022053 8 0.0021813 12 0.0019085

The initial point used is x0 D .78; 33; 27; 27; 27/. You can call the NLP solver within PROC OPTMODEL
to solve this problem by writing the following statements:

proc optmodel;
number l {1..5} = [78 33 27 27 27];
number u {1..5} = [102 45 45 45 45];

number a {1..12} =
[85.334407 0.0056858 0.0006262 0.0022053
80.51249 0.0071317 0.0029955 0.0021813
9.300961 0.0047026 0.0012547 0.0019085];

var x {j in 1..5} >= l[j] <= u[j];

minimize f = 5.35*x[3]^2 + 0.83*x[1]*x[5] + 37.29*x[1]
- 40792.141;

con constr1:
0 <= a[1] + a[2]*x[2]*x[5] + a[3]*x[1]*x[4] -

a[4]*x[3]*x[5] <= 92;
con constr2:

0 <= a[5] + a[6]*x[2]*x[5] + a[7]*x[1]*x[2] +
a[8]*x[3]^2 - 90 <= 20;

con constr3:
0 <= a[9] + a[10]*x[3]*x[5] + a[11]*x[1]*x[3] +

a[12]*x[3]*x[4] - 20 <= 5;

x[1] = 78;
x[2] = 33;
x[3] = 27;
x[4] = 27;
x[5] = 27;

solve with nlp / algorithm=activeset;
print x;

quit;

The summaries and solution are shown in Output 10.3.1.
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Output 10.3.1 Summaries and the Optimal Solution

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function f

Objective Type Quadratic

Number of Variables 5

Bounded Above 0

Bounded Below 0

Bounded Below and Above 5

Free 0

Fixed 0

Number of Constraints 3

Linear LE (<=) 0

Linear EQ (=) 0

Linear GE (>=) 0

Linear Range 0

Nonlinear LE (<=) 0

Nonlinear EQ (=) 0

Nonlinear GE (>=) 0

Nonlinear Range 3

Solution Summary

Solver NLP

Algorithm Active Set

Objective Function f

Solution Status Optimal

Objective Value -30689.17754

Optimality Error 1.5501373E-9

Infeasibility 0

Iterations 41

Presolve Time 0.00

Solution Time 0.03

[1] x

1 78.000

2 33.000

3 29.995

4 45.000

5 36.776
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Example 10.4: Solving Large-Scale NLP Problems
The following example is a selected large-scale problem from the CUTEr test set (Gould, Orban, and Toint
2003) that has 20,400 variables, 20,400 lower bounds, and 9,996 linear equality constraints. This problem
was selected to provide an idea of the size of problem that the NLP solver is capable of solving. In general,
the maximum size of nonlinear optimization problems that can be solved with the NLP solver is controlled
less by the number of variables and more by the density of the first and second derivatives of the nonlinear
objective and constraint functions.

For large-scale problems, the default memory limit might be too small, which can lead to out-of-memory
status. To prevent this occurrence, it is recommended that you set a larger memory size. See the section
“Memory Limit” on page 19 for more information.

proc optmodel;
num nx = 100;
num ny = 100;

var x {1..nx, 0..ny+1} >= 0;
var y {0..nx+1, 1..ny} >= 0;

min f = (
sum {i in 1..nx-1, j in 1..ny-1} (x[i,j] - 1)^2

+ sum {i in 1..nx-1, j in 1..ny-1} (y[i,j] - 1)^2
+ sum {i in 1..nx-1} (x[i,ny] - 1)^2
+ sum {j in 1..ny-1} (y[nx,j] - 1)^2
) / 2;

con con1 {i in 2..nx-1, j in 2..ny-1}:
(x[i,j] - x[i-1,j]) + (y[i,j] - y[i,j-1]) = 1;

con con2 {i in 2..nx-1}:
x[i,0] + (x[i,1] - x[i-1,1]) + y[i,1] = 1;

con con3 {i in 2..nx-1}:
x[i,ny+1] + (x[i,ny] - x[i-1,ny]) - y[i,ny-1] = 1;

con con4 {j in 2..ny-1}:
y[0,j] + (y[1,j] - y[1,j-1]) + x[1,j] = 1;

con con5 {j in 2..ny-1}:
y[nx+1,j] + (y[nx,j] - y[nx,j-1]) - x[nx-1,j] = 1;

for {i in 1..nx-1} x[i,ny].lb = 1;
for {j in 1..ny-1} y[nx,j].lb = 1;

solve with nlp;
quit;

The problem and solution summaries are shown in Output 10.4.1.
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Output 10.4.1 Problem Summary and Solution Summary

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function f

Objective Type Quadratic

Number of Variables 20400

Bounded Above 0

Bounded Below 20400

Bounded Below and Above 0

Free 0

Fixed 0

Number of Constraints 9996

Linear LE (<=) 0

Linear EQ (=) 9996

Linear GE (>=) 0

Linear Range 0

Solution Summary

Solver NLP

Algorithm Interior Point

Objective Function f

Solution Status Optimal

Objective Value 6237011.7807

Optimality Error 5E-9

Infeasibility 3.9355328E-9

Iterations 7

Presolve Time 0.01

Solution Time 3.76
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Example 10.5: Solving NLP Problems That Have Several Local Minima
Some NLP problems contain many local minima. By default, the NLP solver converges to a single local
minimum. However, the NLP solver can search the feasible region for other local minima. After it completes
the search, it returns the point where the objective function achieves its minimum value. (This point might
not be a local minimum; see the SOLTYPE= option for more details.) Consider the following example, taken
from Hock and Schittkowski (1981):

minimize f .x/ D .x1 � 1/
2 C .x1 � x2/

2 C .x2 � x3/
3 C .x3 � x4/

4 C .x4 � x5/
4

subject to x1 C x
2
2 C x

3
3 D 2C 3

p
2

x2 C x4 � x
2
3 D �2C 2

p
2

x1x5 D 2

�5 � xi � 5; i D 1; : : : ; 5

The following statements call the NLP solver to search the feasible region for different local minima. The
PERFORMANCE statement requests that the multistart algorithm use up to four threads. The SEED= option
is specified for reproducibility, but it is not required in running the multistart algorithm.

proc optmodel;
var x{i in 1..5} >= -5 <= 5 init -2;

min f=(x[1] - 1)^2 + (x[1] - x[2])^2 + (x[2] - x[3])^3 +
(x[3] - x[4])^4 + (x[4] - x[5])^4;

con g1: x[1] + x[2]^2 + x[3]^3 = 2 + 3*sqrt(2);
con g2: x[2] + x[4] - x[3]^2 = -2 + 2*sqrt(2);
con g3: x[1]*x[5] = 2;

performance nthreads=4;
solve with nlp/multistart=(maxstarts=10) seed=1234;
print x.msinit x;

quit;

The PRINT statement prints the starting point (x.msinit) that led to the best local solution and the best local
solution (x) that the NLP solver found in multistart mode. The SAS log is shown in Output 10.5.1.
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Output 10.5.1 Progress of the Algorithm as Shown in the Log

NOTE: Problem generation will use 4 threads.                                    

NOTE: The problem has 5 variables (0 free, 0 fixed).                            

NOTE: The problem has 0 linear constraints (0 LE, 0 EQ, 0 GE, 0 range).         

NOTE: The problem has 3 nonlinear constraints (0 LE, 3 EQ, 0 GE, 0 range).      

NOTE: The OPTMODEL presolver removed 0 variables, 0 linear constraints, and 0   

      nonlinear constraints.                                                    

NOTE: Using analytic derivatives for objective.                                 

NOTE: Using analytic derivatives for nonlinear constraints.                     

NOTE: The NLP solver is called.                                                 

NOTE: The Interior Point algorithm is used.                                     

NOTE: The MULTISTART option is enabled.                                         

NOTE: The deterministic parallel mode is enabled.                               

NOTE: The Multistart algorithm is executing in single-machine mode.             

NOTE: The Multistart algorithm is using up to 4 threads.                        

NOTE: Random number seed 1234 is used.                                          

                    Best       Local  Optimality    Infeasi-  Local  Local      

      Start    Objective   Objective       Error      bility  Iters  Status     

          1   607.035801  607.035801  8.62585E-7  8.62585E-7      7  Optimal    

          2   607.035512  607.035512  2.81991E-7  5.88394E-9      7  Optimal    

          3   52.9025715  52.9025715  1.19564E-7  9.15987E-8      7  Optimal    

          4   52.9025715  52.9025732  2.33145E-7  6.49822E-8     12  Optimal    

          5 * 52.9025715  607.035793  5.31528E-7  4.33395E-7      8  Optimal    

          6   52.9025715  64.8740008  9.28969E-7  4.13679E-7      5  Optimal    

          7   27.8719072  27.8719072  5.97668E-7   3.5121E-7      6  Optimal    

          8   0.02931086  0.02931086        5E-7  3.07614E-7      9  Optimal    

          9   0.02931086  27.8719066  7.42875E-7  4.73862E-7      6  Optimal    

         10   0.02931082  0.02931082        5E-7  1.39119E-7     11  Optimal    

NOTE: The Multistart algorithm generated 800 sample points.                     

NOTE: 6 distinct local optima were found.                                       

NOTE: The best objective value found by local solver = 0.0293108217.            

NOTE: The solution found by local solver with objective = 0.0293108217 was      

      returned.                                                                 

The first column in the log indicates the index of the current starting point. An additional indicator (*) can
appear after the index to provide more information about the optimization run that started from the current
point. For more information, see the section “Iteration Log for Multistart” on page 506. The second column
records the best objective that has been found so far. Columns 3 to 6 report the objective value, optimality
error, infeasibility, and number of iterations that the local solver returned when it was started from the current
starting point. Finally, the last column records the status of the local solver—namely, whether it was able to
converge to a local optimum from the current starting point.

The summaries and solution are shown in Output 10.5.2. Note that the best local solution was found by
starting the local solver from a point at x.msinit.
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Output 10.5.2 Summaries and the Optimal Solution

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function f

Objective Type Nonlinear

Number of Variables 5

Bounded Above 0

Bounded Below 0

Bounded Below and Above 5

Free 0

Fixed 0

Number of Constraints 3

Linear LE (<=) 0

Linear EQ (=) 0

Linear GE (>=) 0

Linear Range 0

Nonlinear LE (<=) 0

Nonlinear EQ (=) 3

Nonlinear GE (>=) 0

Nonlinear Range 0

Solution Summary

Solver Multistart NLP

Algorithm Interior Point

Objective Function f

Solution Status Optimal

Objective Value 0.0293108597

Number of Starts 10

Number of Sample Points 800

Number of Distinct Optima 5

Random Seed Used 1234

Optimality Error 5E-7

Infeasibility 3.0761363E-7

Presolve Time 0.00

Solution Time 3.54

[1] x.MSINIT x

1 -0.23856 1.1166

2 2.93912 1.2204

3 1.08486 1.5378

4 -1.11094 1.9728

5 1.80540 1.7911
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Alternatively, the following SAS statements show how you can add the NODES= option in the PERFOR-
MANCE statement to run this example in distributed mode.

NOTE: SAS High-Performance Optimization software must be installed before you can invoke the MULTI-
START option in distributed mode.

proc optmodel;
var x{i in 1..5} >= -5 <= 5 init -2;

min f=(x[1] - 1)^2 + (x[1] - x[2])^2 + (x[2] - x[3])^3 +
(x[3] - x[4])^4 + (x[4] - x[5])^4;

con g1: x[1] + x[2]^2 + x[3]^3 = 2 + 3*sqrt(2);
con g2: x[2] + x[4] - x[3]^2 = -2 + 2*sqrt(2);
con g3: x[1]*x[5] = 2;

performance nodes=4 nthreads=4;
solve with nlp/multistart=(maxstarts=10) seed=1234;
print x;

quit;

The SAS log is displayed in Output 10.5.3.
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Output 10.5.3 Progress of the Algorithm as Shown in the Log

NOTE: Problem generation will use 4 threads.                                    

NOTE: The problem has 5 variables (0 free, 0 fixed).                            

NOTE: The problem has 0 linear constraints (0 LE, 0 EQ, 0 GE, 0 range).         

NOTE: The problem has 3 nonlinear constraints (0 LE, 3 EQ, 0 GE, 0 range).      

NOTE: The OPTMODEL presolver removed 0 variables, 0 linear constraints, and 0   

      nonlinear constraints.                                                    

NOTE: Using analytic derivatives for objective.                                 

NOTE: Using analytic derivatives for nonlinear constraints.                     

NOTE: The NLP solver is called.                                                 

NOTE: The Interior Point algorithm is used.                                     

NOTE: The MULTISTART option is enabled.                                         

NOTE: The Multistart algorithm is executing in the distributed computing        

      environment with 4 worker nodes.                                          

NOTE: The Multistart algorithm is using up to 4 threads.                        

NOTE: Random number seed 1234 is used.                                          

                    Best       Local  Optimality    Infeasi-  Local  Local      

      Start    Objective   Objective       Error      bility  Iters  Status     

          1   607.035521  607.035521  4.17297E-7  4.17297E-7      8  Optimal    

          2   52.9025015  52.9025015  9.03254E-7  9.03254E-7      5  Optimal    

          3   0.02931083  0.02931083  2.53217E-7  3.54155E-9     10  Optimal    

          4   0.02931083  607.035871  8.43836E-7  8.43836E-7      8  Optimal    

          5   0.02931083  52.9025785  4.76385E-8  1.40303E-8      7  Optimal    

          6   0.02931083  52.9025792  2.39856E-7  2.84012E-8      7  Optimal    

          7   0.02931083  52.9026134  4.08103E-7  4.08103E-7      8  Optimal    

          8   0.02931083  52.9025794  6.69221E-8  3.26907E-9      8  Optimal    

          9   0.02931083  64.8739968  2.99586E-7  1.19421E-7      8  Optimal    

         10   0.02931083  52.9026071  3.70891E-7  3.70891E-7     11  Optimal    

NOTE: The Multistart algorithm generated 1600 sample points.                    

NOTE: 7 distinct local optima were found.                                       

NOTE: The best objective value found by local solver = 0.0293108314.            

NOTE: The solution found by local solver with objective = 0.0293108314 was      

      returned.                                                                 

Output 10.5.4 shows the summaries and solution. Note that the “Performance Information” table shows that
four computing nodes with four threads on each node are used in distributed mode.
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Output 10.5.4 Summaries and the Optimal Solution

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function f

Objective Type Nonlinear

Number of Variables 5

Bounded Above 0

Bounded Below 0

Bounded Below and Above 5

Free 0

Fixed 0

Number of Constraints 3

Linear LE (<=) 0

Linear EQ (=) 0

Linear GE (>=) 0

Linear Range 0

Nonlinear LE (<=) 0

Nonlinear EQ (=) 3

Nonlinear GE (>=) 0

Nonlinear Range 0

Performance Information

Host Node << your grid host >>

Execution Mode Distributed

Number of Compute Nodes 4

Number of Threads per Node 4

Solution Summary

Solver Multistart NLP

Algorithm Interior Point

Objective Function f

Solution Status Optimal

Objective Value 0.0293108314

Number of Starts 10

Number of Sample Points 1600

Number of Distinct Optima 7

Random Seed Used 1234

Optimality Error 2.5321667E-7

Infeasibility 3.5415495E-9

Presolve Time 0.00

Solution Time 1.96
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Output 10.5.4 continued

[1] x

1 1.1167

2 1.2204

3 1.5378

4 1.9727

5 1.7911

Example 10.6: Maximum Likelihood Weibull Estimation
The following data are taken from Lawless (1982, p. 193) and represent the number of days that it took rats
that were painted with a carcinogen to develop carcinoma. The last two observations are censored data from
a group of 19 rats.

data pike;
input days cens @@;
datalines;

143 0 164 0 188 0 188 0
190 0 192 0 206 0 209 0
213 0 216 0 220 0 227 0
230 0 234 0 246 0 265 0
304 0 216 1 244 1
;

Suppose you want to compute the maximum likelihood estimates of the scale parameter � (˛ in Lawless),
the shape parameter c (ˇ in Lawless), and the location parameter � (� in Lawless). The observed likelihood
function of the three-parameter Weibull transformation (Lawless 1982, p. 191) is

L.�; �; c/ D
cm

�m

Y
i2D

�
ti � �

�

�c�1 nY
iD1

exp
�
�

�
ti � �

�

�c�

where n is the number of individuals involved in the experiment, D is the set of individuals whose lifetimes
are observed, m D jDj, and ti is defined by the data set. Then the log-likelihood function is

l.�; �; c/ D m log c �mc log � C .c � 1/
X
i2D

log.ti � �/ �
nX
iD1

�
ti � �

�

�c
For c < 1, the logarithmic terms become infinite as � "mini2D.ti /. That is, l.�; �; c/ is unbounded. Thus
our interest is restricted to c values greater than or equal to 1. Further, for the logarithmic terms to be defined,
it is required that � > 0 and � < mini2D.ti /.

The following PROC OPTMODEL call specifies the maximization of the log-likelihood function for the
three-parameter Weibull estimation:

proc optmodel;
set OBS;
num days {OBS};
num cens {OBS};
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read data pike into OBS=[_N_] days cens;
var sig >= 1.0e-6 init 10;
var c >= 1.0e-6 init 10;
var theta >= 0 <= min {i in OBS: cens[i] = 0} days[i] init 10;

impvar fi {i in OBS} =
(if cens[i] = 0 then

log(c) - c * log(sig) + (c - 1) * log(days[i] - theta)
)

- ((days[i] - theta) / sig)^c;
max logf = sum {i in OBS} fi[i];

set VARS = 1.._NVAR_;
num mycov {i in VARS, j in 1..i};
solve with NLP / covest=(cov=2 covout=mycov);
print sig c theta;
print mycov;
create data covdata from [i j]={i in VARS, j in 1..i}

var_i=_VAR_[i].name var_j=_VAR_[j].name mycov;
num std_error {i in VARS} = sqrt(mycov[i,i]);
num t_stat {i in VARS} = _VAR_[i].sol / std_error[i];
num p_value {i in VARS} = 2 * (1 - cdf('T', t_stat[i], card(OBS)));
print _VAR_.name _VAR_ std_error t_stat p_value;

quit;

The solution is displayed in Output 10.6.1. The solution that the NLP solver obtains closely matches the
local maximum �� D 122, �� D 108:4, and c� D 2:712 that are given in Lawless (1982, p. 193).

Output 10.6.1 Three-Parameter Weibull Estimation Results

The OPTMODEL Procedure

Problem Summary

Objective Sense Maximization

Objective Function logf

Objective Type Nonlinear

Number of Variables 3

Bounded Above 0

Bounded Below 2

Bounded Below and Above 1

Free 0

Fixed 0

Number of Constraints 0
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Output 10.6.1 continued

Solution Summary

Solver NLP

Algorithm Interior Point

Objective Function logf

Solution Status Optimal

Objective Value -87.32424712

Optimality Error 5E-7

Infeasibility 0

Iterations 17

Presolve Time 0.00

Solution Time 0.02

sig c theta

108.38 2.7115 122.03

mycov

1 2 3

1 1259.9592

2 35.5372 1.3311

3 -1056.9770 -31.6627 977.6083

[1] _VAR_.NAME _VAR_ std_error t_stat p_value

1 sig 108.3827 35.4959 3.0534 0.0065396

2 c 2.7115 1.1538 2.3501 0.0297234

3 theta 122.0260 31.2667 3.9027 0.0009568

Example 10.7: Finding an Irreducible Infeasible Set
This example demonstrates the use of the IIS= option to locate an irreducible infeasible set. Suppose you
have the following nonlinear programming problem:

minimize x41 C x42 C x43
subject to x1 C x2 � 10 .c1/

x1 C x3 � 4 .c2/
4 � x2 C x3 � 5 .c3/

x21 C x3 � 5 .c4/
x1; x2 � 0

0 � x3 � 3
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It is easy to verify that the following three linear constraints and one variable bound form an IIS for this
problem:

x1 C x2 � 10 .c1/
x1 C x3 � 4 .c2/

x2 C x3 � 5 .c3/
x3 � 0

You can formulate the problem and call the NLP solver by using the following statements:

proc optmodel;
/* declare variables */
var x{1..3} >= 0;

/* upper bound on variable x[3] */
x[3].ub = 3;

/* objective function */
min f = x[1]^4 + x[2]^4 + x[3]^4;

/* constraints */
con c1: x[1] + x[2] >= 10;
con c2: x[1] + x[3] <= 4;
con c3: 4 <= x[2] + x[3] <= 5;
con c4: x[1]^2 + x[3] <= 5;

solve with nlp / iis = on;

print x.status;
print c1.status c2.status c3.status;

quit;

The SAS log output is shown in Output 10.7.1. Note that the PROC OPTMODEL presolver is disabled
because the IIS= option is enabled. Also, a warning message is displayed to alert the user that the nonlinear
constraints are ignored for the purpose of detecting an IIS.
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Output 10.7.1 Finding an IIS: Original Problem

NOTE: The OPTMODEL presolver is disabled when the IIS= option is enabled.       

NOTE: Problem generation will use 4 threads.                                    

NOTE: The problem has 3 variables (0 free, 0 fixed).                            

NOTE: The problem has 3 linear constraints (1 LE, 0 EQ, 1 GE, 1 range).         

NOTE: The problem has 6 linear constraint coefficients.                         

NOTE: The problem has 1 nonlinear constraints (1 LE, 0 EQ, 0 GE, 0 range).      

WARNING: The nonlinear constraints are ignored because the IIS= option is       

         enabled.                                                               

NOTE: The NLP solver is called.                                                 

NOTE: The LP solver is called.                                                  

NOTE: The IIS= option is enabled.                                               

                           Objective                                            

      Phase Iteration        Value         Time                                 

       P 1          1    6.000000E+00         0                                 

       P 1          3    9.998343E-01         0                                 

NOTE: Applying the IIS sensitivity filter.                                      

NOTE: The sensitivity filter removed 1 constraints and 3 variable bounds.       

NOTE: Applying the IIS deletion filter.                                         

NOTE: Processing constraints.                                                   

      Processed     Removed      Time                                           

              0           0         0                                           

              1           0         0                                           

              2           0         0                                           

              3           0         0                                           

NOTE: Processing variable bounds.                                               

      Processed     Removed      Time                                           

              0           0         0                                           

              1           0         0                                           

              2           0         0                                           

              3           0         0                                           

NOTE: The deletion filter removed 0 constraints and 0 variable bounds.          

NOTE: The IIS= option found this problem to be infeasible.                      

NOTE: The IIS= option found an irreducible infeasible set with 1 variables and  

      3 constraints.                                                            

NOTE: The IIS solve time is 0.00 seconds.                                       

The “Solution Summary” table and the output of the PRINT statements appear in Output 10.7.2.
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Output 10.7.2 Solution Summary and PRINT Statement Output

The OPTMODEL Procedure

Solution Summary

Solver NLP

Algorithm IIS

Objective Function f

Solution Status Infeasible

Iterations 14

Iterations2 0

Presolve Time 0.00

Solution Time 0.01

[1] x.STATUS

1

2

3 I_L

c1.STATUS c2.STATUS c3.STATUS

I_L I_U I_U

The “Solution Summary” table shows that the problem is infeasible. As you can see, the lower bound of
variable x3, the lower bound of constraint c1, and the upper bounds of constraints c2 and c3 form an IIS.

Making any of the components in the preceding IIS nonbinding removes the infeasibility from the IIS.
Because there could be multiple IISs, you would want to remove the infeasibility from the preceding IIS and
call the NLP solver with the IIS= option enabled again to see whether there is any other IIS. The following
statements show how to modify the original PROC OPTMODEL statements to set the upper bound of
constraint c3 to infinity, represented by CONSTANT(’BIG’), and invoke the NLP IIS detection:

/* relax upper bound on constraint c3 */
c3.ub = constant('BIG');

solve with nlp / iis = on;

print x.status;
print c1.status c2.status c3.status;

The SAS log output for the modified problem is shown in Output 10.7.3.
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Output 10.7.3 Finding an IIS: Modified Problem

NOTE: The OPTMODEL presolver is disabled when the IIS= option is enabled.       

NOTE: Problem generation will use 4 threads.                                    

NOTE: The problem has 3 variables (0 free, 0 fixed).                            

NOTE: The problem has 3 linear constraints (1 LE, 0 EQ, 2 GE, 0 range).         

NOTE: The problem has 6 linear constraint coefficients.                         

NOTE: The problem has 1 nonlinear constraints (1 LE, 0 EQ, 0 GE, 0 range).      

WARNING: The nonlinear constraints are ignored because the IIS= option is       

         enabled.                                                               

NOTE: The NLP solver is called.                                                 

NOTE: The LP solver is called.                                                  

NOTE: The IIS= option is enabled.                                               

                           Objective                                            

      Phase Iteration        Value         Time                                 

       P 1          1    1.400000E+01         0                                 

       P 1          3    0.000000E+00         0                                 

NOTE: The IIS= option found this problem to be feasible.                        

NOTE: The IIS solve time is 0.00 seconds.                                       

The “Solution Summary” table and the output of the PRINT statements appear in Output 10.7.4. As you can
see, both the variable status and constraint status tables are empty. There is no other IIS, and the problem
becomes feasible.

Output 10.7.4 Solution Summary and PRINT Statement Output

The OPTMODEL Procedure

Solution Summary

Solver NLP

Algorithm IIS

Objective Function f

Solution Status Feasible

Iterations 3

Iterations2 0

Presolve Time 0.00

Solution Time 0.00

[1] x.STATUS

1

2

3

c1.STATUS c2.STATUS c3.STATUS
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