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Overview: Network Solver
The network solver includes a number of graph theory, combinatorial optimization, and network analysis
algorithms. The algorithm classes are listed in Table 9.1.

Table 9.1 Algorithm Classes in the Network solver

Algorithm Class SOLVE WITH NETWORK Option
Biconnected components BICONNECTEDCOMPONENTS
Maximal cliques CLIQUE=
Connected components CONNECTEDCOMPONENTS=
Cycle detection CYCLE=
Linear assignment (matching) LINEARASSIGNMENT
Minimum-cost network flow MINCOSTFLOW
Minimum cut MINCUT=
Minimum spanning tree MINSPANTREE
Shortest path SHORTESTPATH=
Transitive closure TRANSITIVECLOSURE
Traveling salesman TSP=

You can use the network solver to analyze relationships between entities. These relationships are typically
defined by using a graph. A graph, G D .N;A/, is defined over a set N of nodes, and a set A of links. A node
is an abstract representation of some entity (or object), and an arc defines some relationship (or connection)
between two nodes. The terms node and vertex are often interchanged in describing an entity. The term arc is
often interchanged with the term edge or link in describing a relationship.

Unlike other solvers that PROC OPTMODEL uses, the network solver operates directly on arrays and sets.
You do not need to explicitly define variables, constraints, and objectives to use the network solver. PROC
OPTMODEL declares the appropriate objects internally as needed. You specify the names of arrays and sets
that define your inputs and outputs as options in the SOLVE WITH NETWORK statement.

Getting Started: Network Solver
This section shows an introductory example for getting started with the network solver. For more information
about the expected input formats and the various algorithms available, see the sections “Details: Network
Solver” on page 388 and “Examples: Network Solver” on page 452.

Consider the following road network between a SAS employee’s home in Raleigh, NC, and the SAS
headquarters in Cary, NC.

In this road network (graph), the links are the roads and the nodes are intersections between roads. For each
road, you assign a link attribute in the parameter time_to_travel to describe the number of minutes that it
takes to drive from one node to another. The following data were collected using Google Maps (Google
2011):
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data LinkSetInRoadNC10am;
input start_inter $1-20 end_inter $20-40 miles miles_per_hour;
datalines;

614CapitalBlvd Capital/WadeAve 0.6 25
614CapitalBlvd Capital/US70W 0.6 25
614CapitalBlvd Capital/US440W 3.0 45
Capital/WadeAve WadeAve/RaleighExpy 3.0 40
Capital/US70W US70W/US440W 3.2 60
US70W/US440W US440W/RaleighExpy 2.7 60
Capital/US440W US440W/RaleighExpy 6.7 60
US440W/RaleighExpy RaleighExpy/US40W 3.0 60
WadeAve/RaleighExpy RaleighExpy/US40W 3.0 60
RaleighExpy/US40W US40W/HarrisonAve 1.3 55
US40W/HarrisonAve SASCampusDrive 0.5 25
;

Using the network solver, you want to find the route that yields the shortest path between home (614 Capital
Blvd) and the SAS headquarters (SAS Campus Drive). This can be done by using the SHORTESTPATH=
option as follows:

proc optmodel;
set<str,str> LINKS;
num miles{LINKS};
num miles_per_hour{LINKS};
num time_to_travel{<i,j> in LINKS} = miles[i,j]/ miles_per_hour[i,j] * 60;
read data LinkSetInRoadNC10am into

LINKS=[start_inter end_inter]
miles miles_per_hour

;
/* You can compute paths between many pairs of source and destination,

so these parameters are declared as sets */
set HOME = /"614CapitalBlvd"/;
set WORK = /"SASCampusDrive"/;

/* The path is stored as a set of: Start, End, Sequence, Tail, Head */
set<str,str,num,str,str> PATH;

solve with network /
links = ( weight = time_to_travel )
shortpath = ( source = HOME

sink = WORK )
out = ( sppaths = PATH )

;
create data ShortPath from [s t order start_inter end_inter]=PATH

time_to_travel[start_inter,end_inter];
quit;

For more information about shortest path algorithms in the network solver, see the section “Shortest Path” on
page 426. Figure 9.1 displays the output data set ShortPath, which shows the best route to take to minimize
travel time at 10:00 a.m. This route is also shown in Google Maps in Figure 9.2.
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Figure 9.1 Shortest Path for Road Network at 10:00 A.M.

order start_inter end_inter time_to_travel

1 614CapitalBlvd Capital/WadeAve 1.4400

2 Capital/WadeAve WadeAve/RaleighExpy 4.5000

3 WadeAve/RaleighExpy RaleighExpy/US40W 3.0000

4 RaleighExpy/US40W US40W/HarrisonAve 1.4182

5 US40W/HarrisonAve SASCampusDrive 1.2000

11.5582

Figure 9.2 Shortest Path for Road Network at 10:00 A.M. in Google Maps

Now suppose that it is rush hour (5:00 p.m.) and the time to traverse the roads has changed because of traffic
patterns. You want to find the route that is the shortest path for going home from SAS headquarters under
different speed assumptions due to traffic.

The following statements are similar to the first network solver run, except that one miles_per_hour value is
modified and the SOURCE= and SINK= option values are reversed:
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proc optmodel;
set<str,str> LINKS;
num miles{LINKS};
num miles_per_hour{LINKS};
num time_to_travel{<i,j> in LINKS} = miles[i,j]/ miles_per_hour[i,j] * 60;
read data LinkSetInRoadNC10am into

LINKS=[start_inter end_inter]
miles miles_per_hour

;
/* high traffic */
miles_per_hour['Capital/WadeAve','WadeAve/RaleighExpy'] = 25;

/* You can compute paths between many pairs of source and destination,
so these parameters are declared as sets */

set HOME = /"614CapitalBlvd"/;
set WORK = /"SASCampusDrive"/;

/* The path is stored as a set of: Start, End, Sequence, Tail, Head */
set<str,str,num,str,str> PATH;

solve with network /
links = ( weight = time_to_travel )
shortpath = ( source = WORK

sink = HOME )
out = ( sppaths = PATH )

;
create data ShortPath from [s t order start_inter end_inter]=PATH

time_to_travel[start_inter,end_inter];
quit;

Now, the output data set ShortPath, shown in Figure 9.3, shows the best route for going home at 5:00 p.m.
Because the traffic on Wade Avenue is usually heavy at this time of day, the route home is different from the
route to work.

Figure 9.3 Shortest Path for Road Network at 5:00 P.M.

order start_inter end_inter time_to_travel

1 US40W/HarrisonAve SASCampusDrive 1.2000

2 RaleighExpy/US40W US40W/HarrisonAve 1.4182

3 US440W/RaleighExpy RaleighExpy/US40W 3.0000

4 US70W/US440W US440W/RaleighExpy 2.7000

5 Capital/US70W US70W/US440W 3.2000

6 614CapitalBlvd Capital/US70W 1.4400

12.9582
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This new route is shown in Google Maps in Figure 9.4.

Figure 9.4 Shortest Path for Road Network at 5:00 P.M. in Google Maps
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Syntax: Network Solver
SOLVE WITH NETWORK /

General and Diagnostic Options:
< GRAPH_DIRECTION=DIRECTED | UNDIRECTED >
< INCLUDE_SELFLINK >
< LOGFREQ=number >
< LOGLEVEL=number | string >
< MAXTIME=number >
< NTHREADS=number >
< TIMETYPE=number | string >

Data Input and Output Options:
< LINKS=( suboptions ) >
< NODES=( suboptions ) >
< OUT=( suboptions ) >
< SUBGRAPH=( suboptions ) >

Algorithm Options:
< BICONNECTEDCOMPONENTS< =() > >
< CLIQUE< =( suboption ) > >
< CONNECTEDCOMPONENTS< =( suboption ) > >
< CYCLE< =( suboptions ) > >
< LINEARASSIGNMENT< =() > >
< MINCOSTFLOW< =() > >
< MINCUT< =( suboptions ) > >
< MINSPANTREE< =() > >
< SHORTESTPATH< =( suboptions ) > >
< TRANSITIVECLOSURE< =() > >
< TSP< =( suboptions ) > > ;

There are three types of SOLVE WITH NETWORK statement options:

� General and diagnostic options have the same meaning for multiple algorithms.

� Data input and output options, such as the LINKS=, NODES=, and OUT= options, control the names
of the sets and variables that the network solver uses to build the graph and that the algorithms use for
output.

� Algorithm options select an algorithm to run, and where available, provide further algorithm-specific
configuration directives.

The section “Functional Summary” on page 373 provides a quick reference for each of the suboptions for
each option. Each option is then described in more detail in its own section, in alphabetical order.

Functional Summary
Table 9.2 summarizes the options and suboptions available in the SOLVE WITH NETWORK statement.
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Table 9.2 Functional Summary of SOLVE WITH NETWORK
Options

Description Option
Suboption

General Options
Specifies directed or undirected graphs GRAPH_DIRECTION=
Includes self links in the graph definition INCLUDE_SELFLINK=
Specifies the iteration log frequency LOGFREQ=
Controls the amount of information that is displayed in the SAS log LOGLEVEL=
Specifies the maximum time spent calculating results MAXTIME=
Specifies the number for threads to use for threaded processing NTHREADS=
Specifies whether time units are in CPU time or real time TIMETYPE=
Input and Output Options
Groups link-indexed data LINKS=()

Names a set of links to include in the graph definition even if no
weights or bounds are available for them

INCLUDE=

Specifies the flow lower bound for each link LOWER=
Specifies the flow upper bound for each link UPPER=
Specifies link weights WEIGHT=

Groups node-indexed data NODES=()
Names a set of nodes to include in the graph definition even if no
weights are available for them

INCLUDE=

Specifies node supply lower bounds in the minimum-cost network
flow problem

LOWER=

Specifies node supply upper bounds in the minimum-cost network
flow problem

UPPER=

Specifies node weights WEIGHT=
Specifies the input sets that enable you to solve a problem over a
subgraph

SUBGRAPH=()

Specifies the subset of links to use LINKS=
Specifies the subset of nodes to use NODES=

Specifies the output sets or arrays for each algorithm (see Table 9.4
for which OUT= suboptions you can specify for each algorithm)

OUT=()

Specifies the output set for articulation points ARTPOINTS=
Specifies the output set for linear assignment ASSIGNMENTS=
Specifies the array to contain the biconnected component of each
link

BICONCOMP=

Specifies the output set for cliques CLIQUES=
Specifies the set to contain the pairs .u; v/ of nodes where v is
reachable from u

CLOSURE=

Specifies the output array for connected components CONCOMP=
Specifies the output set for the cut-sets for minimum cuts CUTSETS=
Specifies the output set for cycles CYCLES=
Specifies the output array for the flow on each link FLOW=
Specifies the output set for the minimum spanning tree (forest) FOREST=
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Table 9.2 (continued)

Description Option
Suboption

Specifies the output set for the links that remain after the
SUBGRAPH= option is applied

LINKS=

Specifies the output set for the nodes that remain after the
SUBGRAPH= option is applied

NODES=

Specifies the output array for the node order in the traveling
salesman problem

ORDER=

Specifies the output set for the partitions for minimum cuts PARTITIONS=
Specifies the set to contain the link sequence for each path SPPATHS=
Specifies the numeric array to contain the path weight for each
source and sink node pair

SPWEIGHTS=

Specifies the output set for the tour in the traveling salesman
problem

TOUR=

Algorithm Options and Suboptions
Finds biconnected components and articulation points of an
undirected input graph

BICONNECTEDCOMPONENTS

Finds maximal cliques in the input graph CLIQUE=
Specifies the maximum number of cliques to return MAXCLIQUES=

Finds the connected components of the input graph CONNECTEDCOMPONENTS=
Specifies the algorithm to use for calculating connected
components

ALGORITHM=

Finds the cycles (or the existence of a cycle) in the input graph CYCLE=
Specifies the algorithm to use in enumerating cycles ALGORITHM=
Specifies the maximum number of cycles to return MAXCYCLES=
Specifies the maximum link count for the cycles to return MAXLENGTH=
Specifies the maximum link weight for the cycles to return MAXLINKWEIGHT=
Specifies the maximum sum of node weights to allow in a cycle MAXNODEWEIGHT=
Specifies the minimum link count for the cycles to return MINLENGTH=
Specifies the minimum link weight for the cycles to return MINLINKWEIGHT=
Specifies the minimum node weight for the cycles to return MINNODEWEIGHT=

Solves the minimal-cost linear assignment problem LINEARASSIGNMENT
Solves the minimum-cost network flow problem MINCOSTFLOW
Finds the minimum link-weighted cut of an input graph MINCUT=

Specifies the maximum number of cuts to return from the algorithm MAXCUTS=
Specifies the maximum weight of each cut to return from the
algorithm

MAXWEIGHT=

Solves the minimum link-weighted spanning tree problem on an input
graph

MINSPANTREE

Calculates shortest paths between sets of nodes on the input graph SHORTESTPATH=
Specifies the maximum path weight MAXPATHWEIGHT=
Specifies the set of sink nodes SINK=
Specifies the set of source nodes SOURCE=

Calculates the transitive closure of an input graph TRANSITIVECLOSURE
Solves the traveling salesman problem TSP=
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Table 9.2 (continued)

Description Option
Suboption

Requests that the stopping criterion be based on the absolute
objective gap

ABSOBJGAP=

Specifies the cutoff value for branch-and-bound node removal CUTOFF=
Specifies the level of cutting planes to be generated by the network
solver

CUTSTRATEGY=

Specifies the initial and primal heuristics level HEURISTICS=
Specifies the maximum number of branch-and-bound nodes to be
processed

MAXNODES=

Specifies the maximum number of feasible tours to be identified MAXSOLS=
Specifies whether to use a mixed integer linear programming solver MILP=
Requests that the stopping criterion be based on relative objective
gap

RELOBJGAP=

Requests that the stopping criterion be based on the target objective
value

TARGET=

Table 9.3 lists the valid GRAPH_DIRECTION= values for each algorithm option in the SOLVE WITH
NETWORK statement.

Table 9.3 Supported Graph Directions by Algorithm

Direction
Algorithm Undirected Directed
BICONNECTEDCOMPONENTS x
CLIQUE x
CONNECTEDCOMPONENTS x x
CYCLE x x
LINEARASSIGNMENT x
MINCOSTFLOW x
MINCUT x
MINSPANTREE x
SHORTESTPATH x x
TRANSITIVECLOSURE x x
TSP x x

Table 9.4 indicates, for each algorithm option in the SOLVE WITH NETWORK statement, which output
options you can specify, and what their types can be. The types vary depending on whether nodes are of type
STRING or NUMBER.
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Table 9.4 Output Suboptions and Types by Algorithm

Algorithm Option
OUT= Suboption OPTMODEL Type

BICONNECTEDCOMPONENTS
ARTPOINTS= SET<STRING> or SET<NUMBER>
BICONCOMP= NUMBER indexed over links (<NUMBER,NUMBER> or

<STRING,STRING>)
CLIQUE=

CLIQUES= SET<NUMBER,NUMBER> or SET<NUMBER,STRING>
CONNECTEDCOMPONENTS=

CONCOMP= NUMBER indexed over nodes (NUMBER or STRING)
CYCLE=

CYCLES= SET<NUMBER,NUMBER,NUMBER> or
SET<NUMBER,NUMBER,STRING>

LINEARASSIGNMENT
ASSIGNMENTS= SET<NUMBER,NUMBER> or SET<STRING,STRING>

MINCOSTFLOW
FLOW= NUMBER indexed over links (<NUMBER,NUMBER> or

<STRING,STRING>)
MINCUT=

CUTSETS= SET<NUMBER,NUMBER,NUMBER> or
SET<NUMBER,STRING,STRING>

PARTITIONS= SET<NUMBER,NUMBER> or SET<NUMBER,STRING>
MINSPANTREE

FOREST= SET<NUMBER,NUMBER> or SET<STRING,STRING>
SHORTESTPATH=

SPPATHS= SET<NUMBER,NUMBER,NUMBER,NUMBER,NUMBER> or
SET<STRING,STRING,NUMBER,STRING,STRING>

SPWEIGHTS= NUMBER indexed over sink and source node pairs
(<NUMBER,NUMBER> or <STRING,STRING>)

TRANSITIVECLOSURE
CLOSURE= SET<NUMBER,NUMBER> or SET<STRING,STRING>

TSP=
ORDER= NUMBER indexed over nodes (NUMBER or STRING)
TOUR= SET<NUMBER,NUMBER> or SET<STRING,STRING>

SOLVE WITH NETWORK Statement
SOLVE WITH NETWORK / < options > ;

The SOLVE WITH NETWORK statement invokes the network solver. You can specify the following options
to define various processing and diagnostic controls, the graph input and output, and the algorithm to run:
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General Options

You can specify the following general options, which have the same meaning for multiple algorithms.

GRAPH_DIRECTION=DIRECTED | UNDIRECTED

DIRECTION=DIRECTED | UNDIRECTED
specifies directed or undirected graphs.

Table 9.5 Values for the GRAPH_DIRECTION= Option

Option Value Description

DIRECTED Requests a directed graph. In a directed graph, each link
.i; j / has a direction that defines how something (for exam-
ple, information) might flow over that link. In link .i; j /,
information flows from node i to node j (i ! j ). The node
i is called the source (tail) node, and node j is called the
sink (head) node.

UNDIRECTED Requests an undirected graph. In an undirected graph, each
link fi; j g has no direction and information can flow in
either direction. That is, fi; j g D fj; ig.

By default, GRAPH_DIRECTION=UNDIRECTED.

INCLUDE_SELFLINK
includes self links in the graph definition—for example, .i; i/—when an input graph is read. By
default, when the network solver reads the LINKS= data, it removes all self links.

LOGFREQ=number
controls the frequency with which an algorithm reports progress from its underlying solver. This
setting is recognized by the traveling salesman problem and minimum-cost flow algorithms. You can
set number to 0 to turn off log updates from underlying algorithms.

LOGLEVEL=number | string
controls the amount of information that is displayed in the SAS log. This setting sets the log level for
all algorithms. Table 9.6 describes the valid values for this option.

Table 9.6 Values for LOGLEVEL= Option

number string Description

0 NONE Turns off all procedure-related messages in the
SAS log

1 BASIC Displays a basic summary of the input, output, and
algorithmic processing

2 MODERATE Displays a summary of the input, output, and algo-
rithmic processing

3 AGGRESSIVE Displays a detailed summary of the input, output,
and algorithmic processing
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By default, LOGLEVEL=BASIC.

MAXTIME=number
specifies the maximum time spent calculating results. The type of time (either CPU time or real time) is
determined by the value of the TIMETYPE= option. The value of number can be any positive number;
the default value is the positive number that has the largest absolute value that can be represented in
your operating environment. The clique, cycle, minimum-cost network flow, and traveling salesman
problem algorithms recognize the MAXTIME= option.

NTHREADS=number
specifies the number for threads to use for threaded processing. The CYCLE ALGORITHM=BUILD
algorithm can use threaded processing. The value of number must be an integer between 1 and 256,
inclusive. The default is the value of the OPTMODEL NTHREADS= option.

TIMETYPE=number | string
specifies whether CPU time or real time is used for measuring solution times. This affects the
MAXTIME= option for each applicable algorithm. Table 9.7 describes the valid values of the
TIMETYPE= option.

Table 9.7 Values for TIMETYPE= Option

number string Description

0 CPU Specifies units of CPU time
1 REAL Specifies units of real time

By default, TIMETYPE=REAL.

Input and Output Options

The following options enable you to specify the graph to run algorithms on. These options take array and set
names. They are known as identifier expressions in Chapter 5, “The OPTMODEL Procedure.” Also see
Table 9.4 for semantic requirements and the section “Input Data for the Network Solver” on page 388 for use
cases.

LINKS=( suboptions )
groups link-indexed data. For more information, see the section “Input Data for the Network Solver”
on page 388.

You can specify the following suboptions:

INCLUDE=set-name
names a set of links to include in the graph definition even if no weights or bounds are available
for them. For more information, see “Example 9.1: Articulation Points in a Terrorist Network” on
page 452. The set must be numeric, and it must be indexed over a subset of the links of the graph.

LOWER=array-name
specifies the flow lower bound for each link. The array must be numeric, and it must be indexed
over a subset of the inks of the graph.
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UPPER=array-name
specifies the flow upper bound for each link. The array must be numeric, and it must be indexed
over a subset of the links of the graph.

WEIGHT=array-name
specifies link weights. The array must be numeric, and it must be indexed over a subset of the
links of the graph. If you specify this suboption, then any link that does not appear in the index
set of the WEIGHT= array has weight 0. If you do not specify this suboption, then every link has
weight 1.

NODES=( suboptions )
groups node-indexed data. For more information, see the section “Input Data for the Network Solver”
on page 388.

You can specify the following suboptions:

INCLUDE=set-name
names a set of nodes to include in the graph definition even if no weights are available for them.
For more information, see the section “Connected Components” on page 403.

LOWER=array-name
specifies node supply lower bounds in the minimum-cost network flow problem. The array must
be numeric, and it must be indexed over a subset of the nodes of the graph. For more information,
see the section “Minimum-Cost Network Flow” on page 414.

UPPER=array-name
specifies node supply upper bounds in the minimum-cost network flow problem. The array must
be numeric, and it must be indexed over a subset of the nodes of the graph. For more information,
see the section “Minimum-Cost Network Flow” on page 414.

WEIGHT=array-name
specifies node weights. The array must be numeric, and it must be indexed over a subset of the
nodes of the graph. For more information, see the section “Cycle” on page 407.

OUT=( suboptions )
specifies the output sets or arrays for each algorithm (see Table 9.4 for which OUT= suboptions you
can specify for each algorithm). You can use some of these options (even if you do not invoke any
algorithm) to see the filtering outcome that is produced by the SUBGRAPH= option.

If you do not specify a suboption that matches the algorithm option in the statement, the algorithm
runs and only updates the objective.

If you specify a suboption that does not match the algorithm option in the statement, OPTMODEL
issues a warning.

When you declare arrays that are indexed over nodes, over links, or over sets of nodes or links, you
must use the same type you used in your node definition.

See the various algorithm sections for examples of the use of these OUT= suboptions.
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ARTPOINTS=set-name
specifies the output set for articulation points. Each element of the set represents a node ID. This
suboption is used with the BICONNECTEDCOMPONENTS algorithm option.

ASSIGNMENTS=set-name
specifies the output set for linear assignment. This suboption is used with the LINEARASSIGN-
MENT algorithm option.

BICONCOMP=array-name
specifies the array to contain the biconnected component of each link. This suboption is used
with the BICONNECTEDCOMPONENTS algorithm option.

CLIQUES=set-name
specifies the output set for cliques. Each tuple of the set represents clique ID and node ID. This
suboption is used with the CLIQUE= algorithm option.

CLOSURE=set-name
specifies the set to contain the pairs .u; v/ of nodes where v is reachable from u. This suboption
is used with the TRANSITIVECLOSURE algorithm option.

CONCOMP=array-name
specifies the output array for connected components. This suboption is used with the CONNECT-
EDCOMPONENTS= algorithm option.

CUTSETS=set-name
specifies the output set for the cut-sets for minimum cuts. Each tuple of the set represents the cut
ID, the tail node ID, and the head node ID. This suboption is used with the MINCUT= algorithm
option.

CYCLES=set-name
specifies the output set for cycles. Each tuple of the set represents a cycle ID, the order within
that cycle, and the node ID. This suboption is used with the CYCLE= algorithm option.

FLOW=array-name
specifies the output array for the flow on each link. This suboption is used with the MINCOST-
FLOW algorithm option.

FOREST=set-name
specifies the output set for the minimum spanning tree (forest). This suboption is used with the
MINSPANTREE algorithm option.

LINKS=set-name
specifies the output set for the links that remain after the SUBGRAPH= option is applied. Each
tuple of the set represents tail and head nodes, followed by a sequence of numbers that correspond
to the attributes that you provide in the LINKS= suboptions. The length of the tuples must be
the number of attributes that you specify plus 2 (for the tail and head node information). The
options that you specify in the LINKS= option will appear in the output in the following order:
WEIGHT=, LOWER=, and UPPER=. For an example, see Figure 9.12 in “Solving over Subsets
of Nodes and Links (Filters)” on page 391.



382 F Chapter 9: The Network Solver

NODES=set-name
specifies the output set for the nodes that remain after the SUBGRAPH= option is applied. Each
tuple of the set represents a node, followed by a sequence of numbers that correspond to the
attributes that you provide in the NODES= suboptions. The length of the tuples must be the
number of attributes that you specify plus 1 (for node information). The options that you specify
in the NODES= option will appear in the output in the following order: WEIGHT=, LOWER=,
and UPPER=. For an example, see the section “Minimum-Cost Network Flow with Flexible
Supply and Demand” on page 418.

ORDER=array-name
specifies the numeric array to contain the position of each node within the optimal tour. This
suboption is used with the TSP= algorithm option.

PARTITIONS=set-name
specifies the output set for the partitions for minimum cuts. The set contains, for each partition,
the node IDs in the smaller of the two subsets. Each tuple of the set represents a cut ID and a
node ID. This suboption is used with the MINCUT= algorithm option.

SPPATHS=set-name
specifies the set to contain the link sequence for each path. Each tuple of the set represents a
source node ID, a sink node ID, a sequence number, a tail node ID, and a head node ID. This
suboption is used with the SHORTESTPATH= algorithm option.

SPWEIGHTS=array-name
specifies the numeric array to contain the path weight for each source and sink node pair. This
suboption is used with the SHORTESTPATH= algorithm option.

TOUR=set-name
specifies the output set for the tour in the traveling salesman problem. This suboption is used
with the TSP= algorithm option.

SUBGRAPH=( suboptions )
specifies the input sets that enable you to solve a problem over a subgraph. For more information, see
the section “Input Data for the Network Solver” on page 388.

You can specify the following suboptions:

LINKS=set-name
specifies the subset of links to use. If you specify a node pair that is not referenced in any of the
suboptions of the LINKS= option, then the network solver returns an error.

NODES=set-name
specifies the subset of nodes to use. If you specify a node that is not referenced in any of the
suboptions of the LINKS= option or the NODES= option, then the network solver returns an
error.
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Algorithm Options

BICONNECTEDCOMPONENTS< =() >

BICONCOMP< =() >
finds biconnected components and articulation points of an undirected input graph. For more informa-
tion, see the section “Biconnected Components and Articulation Points” on page 397.

CLIQUE< =( suboption ) >
finds maximal cliques in the input graph. For more information, see the section “Clique” on page 400.

You can specify the following suboption:

MAXCLIQUES=number | ALL
specifies the maximum number of cliques to return. You can specify number as an integer in the
range 1 to 231 � 1, inclusive. ALL represents the maximum value, 231 � 1. The default is 1.

CONNECTEDCOMPONENTS< =( suboption ) >

CONCOMP< =( suboption ) >
finds the connected components of the input graph. For more information, see the section “Connected
Components” on page 403.

You can specify the following suboption:

ALGORITHM=AUTOMATIC | DFS | UNIONFIND
specifies the algorithm to use for calculating connected components. Table 9.8 describes the valid
values for this option.

Table 9.8 Values for the ALGORITHM= Option

Option Value Description

AUTOMATIC Automatically determines the algorithm for connected com-
ponents

DFS Uses the depth-first search algorithm for connected compo-
nents

UNIONFIND Uses the union-find algorithm for connected components.
You can use ALGORITHM=UNIONFIND only with undi-
rected graphs.

By default, ALGORITHM=UNIONFIND for undirected graphs, and ALGORITHM=DFS for
directed graphs.

CYCLE< =( suboptions ) >
finds the cycles (or the existence of a cycle) in the input graph. For more information, see the section
“Cycle” on page 407.

You can specify the following suboptions in the CYCLE= option:
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ALGORITHM=BACKTRACK | BUILD
specifies the algorithm to use in enumerating cycles. Table 9.9 lists the valid values for this
option.

Table 9.9 Values for the ALGORITHM= Option

Option Value Description

BACKTRACK Uses a backtracking algorithm based on Johnson (1975)
BUILD Uses a building algorithm based on Liu and Wang (2006)

By default, ALGORITHM=BACKTRACK for MAXLENGTH= values greater than 20; other-
wise, ALGORITHM=BUILD.

MAXCYCLES=number | ALL
specifies the maximum number of cycles to return. You can specify number as an integer in the
range 1 to 231 � 1, inclusive. ALL represents the maximum value, 231 � 1. The default is 1.

MAXLENGTH=number
specifies the maximum number of links to allow in a cycle. Any cycle whose length is greater
than number is removed from the results. You can specify number as an integer in the range 1 to
231 � 1, inclusive. The default is the maximum value, 231 � 1. By default, nothing is removed
from the results.

MAXLINKWEIGHT=number
specifies the maximum sum of link weights to allow in a cycle. Any cycle whose sum of link
weights is greater than number is removed from the results. The default is the positive number
that has the largest absolute value that can be represented in your operating environment. By
default, nothing is filtered.

MAXNODEWEIGHT=number
specifies the maximum sum of node weights to allow in a cycle. Any cycle whose sum of node
weights is greater than number is removed from the results. The default is the positive number
that has the largest absolute value that can be represented in your operating environment. By
default, nothing is filtered.

MINLENGTH=number
specifies the minimum number of links to allow in a cycle. Any cycle that has fewer links than
number is removed from the results. You can specify number as an integer in the range 1 to
231 � 1, inclusive. The default is 1. By default, only self-loops are filtered.

MINLINKWEIGHT=number
specifies the minimum sum of link weights to allow in a cycle. Any cycle whose sum of link
weights is less than number is removed from the results. The default the negative number that
has the largest absolute value that can be represented in your operating environment. By default,
nothing is filtered.

MINNODEWEIGHT=number
specifies the minimum sum of node weights to allow in a cycle. Any cycle whose sum of node
weights is less than number is removed from the results. The default is the negative number that
has the largest absolute value that can be represented in your operating environment. By default,
nothing is filtered.
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LINEARASSIGNMENT< =() >

LAP< =() >
solves the minimal-cost linear assignment problem. In graph terms, this problem is also known as
the minimum link-weighted matching problem on a bipartite directed graph. The input data (the
cost matrix) are defined as a directed graph by specifying the LINKS= option in the SOLVE WITH
NETWORK statement, where the costs are defined as link weights. Internally, the graph is treated as a
bipartite directed graph.

For more information, see the section “Linear Assignment (Matching)” on page 413.

MINCOSTFLOW< =() >

MCF< =() >
solves the minimum-cost network flow problem.

For more information, see the section “Minimum-Cost Network Flow” on page 414.

MINCUT< =( suboptions ) >
finds the minimum link-weighted cut of an input graph. For more information, see the section
“Minimum Cut” on page 420. You can specify the following suboptions in the MINCUT= option:

MAXCUTS=number
specifies the maximum number of cuts to return from the algorithm. The minimal cut and any
others found during the search, up to number , are returned. By default, MAXCUTS=1.

MAXWEIGHT=number
specifies the maximum weight of the cuts to return from the algorithm. Only cuts that have
weight less than or equal to number are returned. The default is the positive number that has the
largest absolute value that can be represented in your operating environment.

MINSPANTREE< =() >

MST< =() >
solves the minimum link-weighted spanning tree problem on an input graph. For more information,
see the section “Minimum Spanning Tree” on page 424.

SHORTESTPATH< =( suboptions ) >

SHORTPATH< =( suboptions ) >
calculates shortest paths between sets of nodes on the input graph. For more information, see the
section “Shortest Path” on page 426.

You can specify the following suboptions:

MAXPATHWEIGHT=number
specifies the maximum path weight.

Any shortest path whose sum of link weights is greater than number is removed from the results.
The default is the positive number that has the largest absolute value that can be represented in
your operating environment, which causes no paths to be removed from the results.

SINK=set-name
specifies the set of sink nodes.
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SOURCE=set-name
specifies the set of source nodes.

TRANSITIVECLOSURE< =() >

TRANSCL< =() >
calculates the transitive closure of an input graph. For more information, see the section “Transitive
Closure” on page 439.

TSP< =( suboptions ) >
solves the traveling salesman problem. For more information, see the section “Traveling Salesman
Problem” on page 442.

The algorithm that is used to solve this problem is built around the same method that is used in PROC
OPTMILP: a branch-and-cut algorithm. Many of the following suboptions are the same as those
described for the OPTMILP procedure in Chapter 13, “The OPTMILP Procedure.”

You can specify the following suboptions:

ABSOBJGAP=number
specifies a stopping criterion. When the absolute difference between the best integer objective
and the objective of the best remaining branch-and-bound node becomes less than the value of
number , the solver stops. The value of number can be any nonnegative number. By default,
ABSOBJGAP=1E–6.

CUTOFF=number
cuts off any branch-and-bound nodes in a minimization problem that has an objective value that
is greater than number . The value of number can be any number.

The default value is the positive number that has the largest absolute value that can be represented
in your operating environment.

CUTSTRATEGY=number | string
specifies the level of cutting planes to be generated by the network solver. TSP-specific cutting
planes are always generated. Table 9.10 describes the valid values for this option.

Table 9.10 Values for CUTSTRATEGY= Option

number string Description

–1 AUTOMATIC Generates cutting planes based on a strategy deter-
mined by the mixed integer linear programming
solver

0 NONE Disables generation of mixed integer programming
cutting planes (some TSP-specific cutting planes
are still active for validity)

1 MODERATE Uses a moderate cut strategy
2 AGGRESSIVE Uses an aggressive cut strategy

By default, CUTSTRATEGY=NONE.
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HEURISTICS=number | string
controls the level of initial and primal heuristics that the network solver applies. This level
determines how frequently the network solver applies primal heuristics during the branch-and-
bound tree search. It also affects the maximum number of iterations that are allowed in iterative
heuristics. Some computationally expensive heuristics might be disabled by the solver at less
aggressive levels. Table 9.11 lists the valid values for this option.

Table 9.11 Values for HEURISTICS= Option

number string Description

–1 AUTOMATIC Applies the default level of heuristics
0 NONE Disables all initial and primal heuristics
1 BASIC Applies basic initial and primal heuristics at low frequency
2 MODERATE Applies most initial and primal heuristics at moderate fre-

quency
3 AGGRESSIVE Applies all initial primal heuristics at high frequency

By default, HEURISTICS=AUTOMATIC.

MAXNODES=number
specifies the maximum number of branch-and-bound nodes to be processed. The value of number
can be any nonnegative integer up to the largest four-byte signed integer, which is 231 � 1.

By default, MAXNODES=231 � 1.

MAXSOLS=number
specifies the maximum number of feasible tours to be identified. If number solutions have been
found, then the solver stops. The value of number can be any positive integer up to the largest
four-byte signed integer, which is 231 � 1.

By default, MAXSOLS=231 � 1.

MILP=number | string
specifies whether to use a mixed integer linear programming (MILP) solver for solving the
traveling salesman problem. The MILP solver attempts to find the overall best TSP tour by using
a branch-and-bound based algorithm. This algorithm can be expensive for large-scale problems.
If MILP=FALSE, then the network solver uses its initial heuristics to find a feasible, but not
necessarily optimal, tour as quickly as possible. Table 9.12 describes the valid values for this
option.

Table 9.12 Values for MILP= Option

number string Description

1 TRUE Uses a mixed integer linear programming solver
0 FALSE Does not use a mixed integer linear programming solver

By default, MILP=TRUE.
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RELOBJGAP=number
specifies a stopping criterion that is based on the best integer objective (BestInteger) and the
objective of the best remaining node (BestBound). The relative objective gap is equal to

jBestInteger � BestBoundj= .1E�10 C jBestBoundj/

When this value becomes less than the specified gap size number , the solver stops. The value of
number can be any nonnegative number.

By default, RELOBJGAP=1E–4.

TARGET=number
specifies a stopping criterion for minimization problems. If the best integer objective is better
than or equal to number , the solver stops. The value of number can be any number.

By default, TARGET is the negative number that has the largest absolute value that can be
represented in your operating environment.

Details: Network Solver
The network solver uses a collection of specialized algorithms that optimize specific types of common
problems. When you use the network solver, you specify variable arrays, numeric arrays, and sets, both to
define an instance and to get solutions, without explicitly formulating objectives and constraints.

Input Data for the Network Solver
This section describes how you can import and export node, link, and problem data from and to SAS data sets
and how you can solve problems over a subgraph without changing your original sets. The section “Graph
Input Data” on page 388 describes how to load node and link data in some common formats. The section
“Solving over Subsets of Nodes and Links (Filters)” on page 391 describes subgraphs and how to access the
objective value of a network problem.

Graph Input Data

This section describes how to input a graph for analysis by the network solver. Because PROC OPTMODEL
uses node and link attributes that are indexed over the sets of nodes and links, you need to provide only
node and link attributes. PROC OPTMODEL infers the graph from the attributes you provide. When a
documented default value exists for the attribute of a link or a node, you need to provide only the values that
differ from the default. For example, the section “Minimum-Cost Network Flow” on page 414 assumes that
the link flow upper bound is1. You need to specify only the finite upper bounds.

Consider the directed graph shown in Figure 9.5.
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Figure 9.5 A Simple Directed Graph
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Each node and link has associated attributes: a node label and a link weight.

None of the algorithms in PROC OPTMODEL support Null Graphs, i.e., graphs with 0 nodes. PROC
OPTMODEL will usually raise a semantic error and stop processing any remaining statements in a block if
after processing its inputs it determines that the graph is null. If the graph definition itself is not null, but
the graph to be passed to the solver after applying the SUBGRAPH= option is null, then the predeclared
parameter _SOLUTION_STATUS_ will be set to NULL_GRAPH. For more information, see “Solving over
Subsets of Nodes and Links (Filters)” on page 391.

Data Indexed by Nodes or Links

Nodes often represent entities, and links represent relationships between these entities. Therefore, it is
common to store a graph as a link-indexed table. When nodes have attributes beyond their name (label),
these attributes are stored in a node-indexed table. This section covers the more complex link-indexed case.
The node-indexed case is essentially identical to this one, except that the PROC OPTMODEL set has tuple
length of one when node-indexed data are read, whereas the PROC OPTMODEL set has tuple length two
when link-indexed data are read.

Let G D .N;A/ define a graph with a set N of nodes and a set A of links. A link is an ordered pair of nodes.
Each node is defined by using either numeric or string labels.

The directed graph G shown in Figure 9.5 can be represented by the following links data set LinkSetIn:

data LinkSetIn;
input from $ to $ weight @@;
datalines;

A B 1 A C 2 A D 4 B C 1 B E 2
B F 5 C E 1 D E 1 E D 1 E F 2
F G 6 G H 1 G I 1 H G 2 H I 3
;

The following statements read in this graph and print the resulting links and nodes sets. These statements do
not run any algorithms, so the resulting output contains only the input graph.
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proc optmodel;
set<str,str> LINKS;
set NODES = union{<ni,nj> in LINKS} {ni,nj};
num weight{LINKS};

read data LinkSetIn into LINKS=[from to] weight;

print weight;
put NODES=; /* computed automatically by OPTMODEL */

quit;

The network solver preserves the node order of each link that you provide, even in cases where the link
is traversed in the opposite order, such as in paths or tours. For an example, see the tour .1; 4; 2; 3; 5/ in
Figure 9.8.

The log output in Figure 9.6 shows the nodes that are read from the input link data set. In this example PROC
OPTMODEL computed the node set N (NODES) from its definition when it was needed. The ODS output in
Figure 9.7 shows the weights that are read from the input link data set, which is indexed by link. PUT is used
for NODES because PROC OPTMODEL sets are basic types such as number and string. Thus, you use PUT
to quickly inspect a set value. In contrast, you use PRINT to inspect an array, such as weight.

Figure 9.6 Node Set Printout of a Simple Directed Graph

NOTE: There were 15 observations read from the data set WORK.LINKSETIN.         

NODES={'A','B','C','D','E','F','G','H','I'}                                     

Figure 9.7 Link Set of a Simple Directed Graph That Includes Weights
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As described in the GRAPH_DIRECTION= option, if the graph is undirected, the from and to labels are
interchangeable. If you define this graph as undirected, then reciprocal links (for example, D ! E and
E ! D) are treated as the same link, and duplicates are removed. The network solver takes the first
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occurrence of the link and ignores the others. By default, GRAPH_DIRECTION=UNDIRECTED, so to
declare the graph as undirected you can just omit this option.

After you read the data into PROC OPTMODEL sets, you pass link information to the solver by using the
LINKS= option. Node input is analogous to link input. You pass node information to the solver by using the
NODES= option.

The INCLUDE= suboption is especially useful for algorithms that depend only on the graph topology, (such
as the connected components algorithm). If an algorithm requires a node or link property and that property is
not defined for a node or link that is added by the INCLUDE= suboption, the algorithm will not run.

Matrix Input Data

The contents of a table can be represented as a graph. The relationships between two sets of nodes, N1 and
N2, can be represented by a jN1j by jN2j incidence matrix A, in which N1 is the set of rows and N2 is the
set of columns.

To read a matrix that is stored in a data set into PROC OPTMODEL, you need to take two extra steps:

1. Determine the name of each numeric variable that you want to use. PROC CONTENTS can be useful
for this task.

2. Use an iterated READ DATA statement.

For more information, see “Example 9.3: Linear Assignment Problem for Minimizing Relay Times” on
page 459.

Solving over Subsets of Nodes and Links (Filters)
You can solve a problem over a subgraph without declaring new link and node sets. You can specify the
LINKS= and NODES= suboptions of the SUBGRAPH= option to filter nodes and links before PROC
OPTMODEL builds and solves the instance. If you want to see the resulting subgraph, you can specify the
LINKS= and NODES= suboptions of the OUT= option. If you just want to produce a subgraph, you do not
need to invoke an algorithm.

You can keep all the input and output arrays defined over the original graph and define a subgraph by providing
any combination of the LINKS= and NODES= suboptions of the SUBGRAPH= option. If you specify either
of the suboptions of the SUBGRAPH= option, then union semantics apply. PROC OPTMODEL uses the
following rules:

� Only the links that are included in the set named in the LINKS= option are used to create the instance.

� Only the nodes that appear either in the NODES= suboption of the SUBGRAPH= option or that appear
as the head or tail of a link in the LINKS= suboption are used to create the instance.

� A node or a link that appears only in the SUBGRAPH= option, but not in the original graph, is
discarded. To add nodes or links that do not have attributes, see the INCLUDE= suboption of the
LINKS= and NODE= options.
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If the value of the LOGLEVEL= suboption is equal to or greater than 3, PROC OPTMODEL issues a
message for each of the nodes and links that it discards until the number of messages issued during problem
generation reaches the value of the MSGLIMIT= option in the PROC OPTMODEL statement. If the value of
the LOGLEVEL= suboption is greater than 0, PROC OPTMODEL also issues a summary that shows the
total count of discarded nodes and links from each input array or set.

The following statements call PROC OPTMODEL and declare a five-node complete undirected graph; a
subset of links that contains all links between nodes 1, 2, 3, and 4; and a subset of nodes that contains nodes
3, 4, and 5:

proc optmodel;
set NODES = 1..5;
set LINKS = {vi in NODES, vj in NODES: vi < vj};
num distance {<vi,vj> in LINKS} = 10*vi + vj;

set <num,num> TOUR;

/* Build a link set using only nodes 1..4 nodes */
set <num,num> LINKS_BETWEEN_1234 = {vi in 1..3, vj in (vi+1)..4};
/* Build a node subset consisting of nodes 3..5 */
set NODES_345 = 3..5;

After the sets are declared, the statements in the following steps solve several traveling salesman problems
(TSPs) on subgraphs. For more information about TSPs, see the section “Traveling Salesman Problem” on
page 442.

1. The first SOLVE statement solves a TSP on the original graph. Note that the links in the tour (see
Figure 9.8) are returned with the same orientation that you provide in the input. For example, the
second step on the tour goes from node 4 to node 2 using link .2; 4/. This guarantees that you do not
need to do extra processing of output to check for link orientation. You can just use the output directly.

/* Implicit network 1: solve over nodes 1..5 -- The original network*/
solve with NETWORK /

links=( weight=distance )
out=( tour=TOUR )
tsp

;
put TOUR=;

As shown in Figure 9.8, all links implied by the WEIGHT= suboption of the LINKS= option become
part of the graph.
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Figure 9.8 SOLVE WITH NETWORK Log: Traveling Salesman Tour of an Unfiltered Graph

NOTE: The number of nodes in the input graph is 5.                              
NOTE: The number of links in the input graph is 10.                             
NOTE: The network solver is called.                                             
NOTE: Processing the traveling salesman problem.                                
NOTE: The initial TSP heuristics found a tour with cost 111 using 0.04 (cpu:    
      0.00) seconds.                                                            
NOTE: The MILP presolver value NONE is applied.                                 
NOTE: The MILP solver is called.                                                
NOTE: The Branch and Cut algorithm is used.                                     
NOTE: Optimal.                                                                  
NOTE: Objective = 111.                                                          
NOTE: Processing the traveling salesman problem used 0.09 (cpu: 0.00) seconds.  
TOUR={<1,4>,<2,4>,<2,3>,<3,5>,<1,5>}                                            

To access the objective value of a network problem, use the _OROPTMODEL_NUM_ predefined
array. The network solver ignores the _OBJ_ predefined symbol, which is part of the current named
problem. The current named problem is independent of the network solver, because the network
solver uses sets and numeric arrays for input and output. For more information, see the sections
“Multiple Subproblems” on page 148 and “Solver Status Parameters” on page 159 in Chapter 5, “The
OPTMODEL Procedure.”

put _OROPTMODEL_NUM_['OBJECTIVE'];

2. The next SOLVE statement solves a TSP on the subgraph that is defined by the link set
LINKS_BETWEEN_1234.

/* Filter on LINKS: solve over nodes 1..4 */
solve with NETWORK /

links=( weight=distance )
subgraph=( links=LINKS_BETWEEN_1234 )
out=( tour=TOUR )
tsp

;
put TOUR=;

As shown in Figure 9.9, the network solver now ignores node 5.
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Figure 9.9 SOLVE WITH NETWORK Log: Traveling Salesman Tour over Nodes N D f1; 2; 3; 4g

111                                                                             
NOTE: The SUBGRAPH= option filtered 4 elements from 'distance.'                 
NOTE: The number of nodes in the input graph is 4.                              
NOTE: The number of links in the input graph is 6.                              
NOTE: The network solver is called.                                             
NOTE: Processing the traveling salesman problem.                                
NOTE: The initial TSP heuristics found a tour with cost 74 using 0.00 (cpu:     
      0.00) seconds.                                                            
NOTE: The MILP presolver value NONE is applied.                                 
NOTE: The MILP solver is called.                                                
NOTE: The Branch and Cut algorithm is used.                                     
NOTE: Optimal.                                                                  
NOTE: Objective = 74.                                                           
NOTE: Processing the traveling salesman problem used 0.00 (cpu: 0.00) seconds.  
TOUR={<1,3>,<2,3>,<2,4>,<1,4>}                                                  

3. The next SOLVE statement solves a TSP on the subgraph that is defined by the node set NODES_345.

/* Filter on NODES: solve over nodes 3..5 */
solve with NETWORK /

links=( weight=distance )
subgraph=( nodes=NODES_345 )
out=( tour=TOUR )
tsp

;
put TOUR=;

As shown in Figure 9.10, the network solver now ignores nodes 1 and 2, along with any links incident
to them.

Figure 9.10 SOLVE WITH NETWORK Log: Traveling Salesman Tour over Nodes N D f3; 4; 5g

NOTE: The SUBGRAPH= option filtered 7 elements from 'distance.'                 
NOTE: The number of nodes in the input graph is 3.                              
NOTE: The number of links in the input graph is 3.                              
NOTE: The network solver is called.                                             
NOTE: Processing the traveling salesman problem.                                
NOTE: The initial TSP heuristics found a tour with cost 114 using 0.00 (cpu:    
      0.00) seconds.                                                            
NOTE: Optimal.                                                                  
NOTE: Objective = 114.                                                          
NOTE: Processing the traveling salesman problem used 0.00 (cpu: 0.00) seconds.  
TOUR={<3,4>,<4,5>,<3,5>}                                                        

4. The next SOLVE statement attempts to solve a TSP on the subgraph that is defined by the node set
NODES_345 and the link set that is defined by the links on the nodes f1; 2; 3; 4g. This subgraph creates
an infeasible instance because the links f.1; 5/; .2; 5/; .3; 5/; .4; 5/g that were defined in the original
graph have been filtered out. Thus, node 5 is disconnected and no tour can exist.
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/* Explicit nodes and links: semantic error over nodes 1..5

* Links <u,5> are undefined and no documented default exists. */
solve with NETWORK /

links=( weight=distance )
subgraph=( nodes=NODES_345 links=LINKS_BETWEEN_1234 )
out=( tour=TOUR )
tsp

;

As shown in Figure 9.11, the network solver identifies that no tour exists over the surviving nodes and
links.

Figure 9.11 SOLVE WITH NETWORK Log: Infeasible Traveling Salesman Problem after Filtering

NOTE: The SUBGRAPH= option filtered 4 elements from 'distance.'                 
NOTE: The number of nodes in the input graph is 5.                              
NOTE: The number of links in the input graph is 6.                              
NOTE: The number of singleton nodes in the input graph is 1.                    
NOTE: The network solver is called.                                             
NOTE: Processing the traveling salesman problem.                                
NOTE: Infeasible.                                                               
NOTE: Processing the traveling salesman problem used 0.00 (cpu: 0.00) seconds.  

5. The last SOLVE statement uses the LINKS= suboption of the OUT= option to capture exactly which
nodes and links were generated and with which attributes. In this case, because the only attribute
defined is link weight, the set LINKS_OUT has tuples of length three.

/* make room for tail, head, and weight */
set<num,num,num> LINKS_OUT;
solve with NETWORK /

links=( weight=distance )
subgraph=( nodes=NODES_345 links=LINKS_BETWEEN_1234 )
out=( tour=TOUR links=LINKS_OUT )
tsp

;
put LINKS_OUT=;

quit;

As shown in Figure 9.12, the network solver can return the graph after filtering. This feature can
sometimes help you identify why you might get counterintuitive results.

Figure 9.12 SOLVE WITH NETWORK Log: Remaining Links after Filtering

NOTE: The SUBGRAPH= option filtered 4 elements from 'distance.'                 
NOTE: The number of nodes in the input graph is 5.                              
NOTE: The number of links in the input graph is 6.                              
NOTE: The number of singleton nodes in the input graph is 1.                    
NOTE: The network solver is called.                                             
NOTE: Processing the traveling salesman problem.                                
NOTE: Infeasible.                                                               
NOTE: Processing the traveling salesman problem used 0.00 (cpu: 0.00) seconds.  
LINKS_OUT={<1,2,12>,<1,3,13>,<1,4,14>,<2,3,23>,<2,4,24>,<3,4,34>}               
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Numeric Limitations
Extremely large or extremely small numerical values might cause computational difficulties for some of the
algorithms in the network solver. For this reason, each algorithm restricts the magnitude of the data values
to a particular threshold number. If the user data values exceed this threshold, the network solver issues an
error message. The value of the threshold limit is different for each algorithm and depends on the operating
environment. The threshold limits are listed in Table 9.13, where M is defined as the largest absolute value
representable in your operating environment.

Table 9.13 Threshold Limits by Algorithm

Graph Links Graph Nodes
Algorithm weight lower upper weight lower upper
CYCLE

p
M

p
M

LINEARASSIGNMENT
p
M

MINCOSTFLOW 1e15 1e15 1e15 1e15 1e15
MINCUT

p
M

MINSPANTREE
p
M

SHORTESTPATH
p
M

TSP 1e20

To obtain these limits, use the SAS CONSTANT function. For example, the following PROC OPTMODEL
code assigns

p
M to a variable x and prints that value to the log:

proc optmodel;
num c = constant('SQRTBIG');
put c=;

quit;

Missing Values

A missing value has no valid interpretation for most of the algorithms in the network solver. If the user
data contain a missing value, the network solver issues an error message. There is only one exception: the
minimum-cost network flow algorithm interprets a missing value in the lower or upper bound option as the
default bound value. For more information about this algorithm, see the section “Minimum-Cost Network
Flow” on page 414.

Negative Link Weights

For certain algorithms in the network solver, a negative link weight is not allowed. The following algorithms
issue an error message if a negative link weight is provided:

� MINCUT
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Biconnected Components and Articulation Points
A biconnected component of a graph G D .N;A/ is a connected subgraph that cannot be broken into
disconnected pieces by deleting any single node (and its incident links). An articulation point is a node
of a graph whose removal would cause an increase in the number of connected components. Articulation
points can be important when you analyze any graph that represents a communications network. Consider an
articulation point i 2 N which, if removed, disconnects the graph into two components C 1 and C 2. All paths
in G between some nodes in C 1 and some nodes in C 2 must pass through node i. In this sense, articulation
points are critical to communication. Examples of where articulation points are important are airline hubs,
electric circuits, network wires, protein bonds, traffic routers, and numerous other industrial applications.

In the network solver, you can find biconnected components and articulation points of an input graph by
invoking the BICONNECTEDCOMPONENTS option. This algorithm works only with undirected graphs.

The results for the biconnected components algorithm are written to the link-indexed numeric array that is
specified in the BICONCOMP= suboption of the OUT= option. For each link in the links array, the value in
this array identifies its component. The component identifiers are numbered sequentially starting from 1. The
articulation points are written to the set that is specified in the ARTPOINTS= suboption of the OUT= option.

The algorithm that the network solver uses to compute biconnected components is a variant of depth-first
search (Tarjan 1972). This algorithm runs in time O.jN j C jAj/ and therefore should scale to very large
graphs.

Biconnected Components of a Simple Undirected Graph

This section illustrates the use of the biconnected components algorithm on the simple undirected graph G
that is shown in Figure 9.13.

Figure 9.13 A Simple Undirected Graph G
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The undirected graph G can be represented by the links data set LinkSetInBiCC as follows:

data LinkSetInBiCC;
input from $ to $ @@;
datalines;

A B A F A G B C B D
B E C D E F G I G H
H I
;

The following statements calculate the biconnected components and articulation points and output the results
in the data sets LinkSetOut and NodeSetOut:

proc optmodel;
set<str,str> LINKS;
read data LinkSetInBiCC into LINKS=[from to];
set NODES = union{<i,j> in LINKS} {i,j};
num bicomponent{LINKS};
set<str> ARTPOINTS;

solve with NETWORK /
loglevel = moderate
links = (include=LINKS)
biconcomp
out = (biconcomp=bicomponent artpoints=ARTPOINTS)

;

print bicomponent;
put ARTPOINTS;
create data LinkSetOut from [from to] biconcomp=bicomponent;
create data NodeSetOut from [node]=ARTPOINTS artpoint=1;

quit;

The data set LinkSetOut now contains the biconnected components of the input graph, as shown in Figure 9.14.

Figure 9.14 Biconnected Components of a Simple Undirected Graph
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In addition, the data set NodeSetOut contains the articulation points of the input graph, as shown in
Figure 9.15.
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Figure 9.15 Articulation Points of a Simple Undirected Graph
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The biconnected components are shown graphically in Figure 9.16 and Figure 9.17.

Figure 9.16 Biconnected Components C 1 and C 2
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Figure 9.17 Biconnected Components C 3 and C 4
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For a more detailed example, see “Example 9.1: Articulation Points in a Terrorist Network” on page 452.

Clique
A clique of a graph G D .N;A/ is an induced subgraph that is a complete graph. Every node in a clique is
connected to every other node in that clique. A maximal clique is a clique that is not a subset of the nodes of
any larger clique. That is, it is a set C of nodes such that every pair of nodes in C is connected by a link and
every node not in C is missing a link to at least one node in C. The number of maximal cliques in a particular
graph can be very large and can grow exponentially with every node added. Finding cliques in graphs has
applications in numerous industries including bioinformatics, social networks, electrical engineering, and
chemistry.

You can find the maximal cliques of an input graph by invoking the CLIQUE= option. The clique algorithm
works only with undirected graphs.

The results for the clique algorithm are written to the set that is specified in the CLIQUES= suboption of the
OUT= option. Each node of each clique is listed in the set along with a clique ID (the first argument of the
tuple) to identify the clique to which it belongs. A node can appear multiple times in this set if it belongs to
multiple cliques.

The algorithm that the network solver uses to compute maximal cliques is a variant of the Bron-Kerbosch
algorithm (Bron and Kerbosch 1973; Harley 2003). Enumerating all maximal cliques is NP-hard, so this
algorithm typically does not scale to very large graphs.

Maximal Cliques of a Simple Undirected Graph

This section illustrates the use of the clique algorithm on the simple undirected graph G that is shown in
Figure 9.18.

Figure 9.18 A Simple Undirected Graph G

1
0

3

2
5

4

7
6

9

8

The undirected graph G can be represented by the following links data set LinkSetIn:
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data LinkSetIn;
input from to @@;
datalines;

0 1 0 2 0 3 0 4 0 5
0 6 1 2 1 3 1 4 2 3
2 4 2 5 2 6 2 7 2 8
3 4 5 6 7 8 8 9
;

The following statements calculate the maximal cliques, output the results in the data set Cliques, and use the
CARD function and SLICE operator as a convenient way to compute the clique sizes, which are output to a
data set called CliqueSizes:

proc optmodel;
set<num,num> LINKS;
read data LinkSetIn into LINKS=[from to];
set<num,num> CLIQUES;

solve with NETWORK /
links = (include=LINKS)
clique = (maxcliques=all)
out = (cliques=CLIQUES)

;

put CLIQUES;
create data Cliques from [clique node]=CLIQUES;
num num_cliques = card(setof {<cid,node> in CLIQUES} cid);
set CLIQUE_IDS = 1..num_cliques;
num size {cid in CLIQUE_IDS} = card(slice(<cid,*>, CLIQUES));
create data CliqueSizes from [clique] size;

quit;

The data set Cliques now contains the maximal cliques of the input graph; it is shown in Figure 9.19.

Figure 9.19 Maximal Cliques of a Simple Undirected Graph
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In addition, the data set CliqueSizes contains the number of nodes in each clique; it is shown in Figure 9.20.

Figure 9.20 Sizes of Maximal Cliques of a Simple Undirected Graph
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The maximal cliques are shown graphically in Figure 9.21 and Figure 9.22.

Figure 9.21 Maximal Cliques C 1 and C 2
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Figure 9.22 Maximal Cliques C 3 and C 4
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Connected Components
A connected component of a graph is a set of nodes that are all reachable from each other. That is, if two
nodes are in the same component, then there exists a path between them. For a directed graph, there are two
types of components: a strongly connected component has a directed path between any two nodes, and a
weakly connected component ignores direction and requires only that a path exist between any two nodes.

In the network solver, you can invoke connected components by using the CONNECTEDCOMPONENTS=
option.

There are two main algorithms for finding connected components in an undirected graph: a depth-first search
algorithm (ALGORITHM=DFS) and a union-find algorithm (ALGORITHM=UNIONFIND). For a graph
G D .N;A/, both algorithms run in time O.jN j C jAj/ and can usually scale to very large graphs. The
default is the union-find algorithm. For directed graphs, only the depth-first search algorithm is available.

The results of the connected components algorithm are written to the node-indexed numeric array that you
specify in the CONCOMP= suboption of the OUT= option. For each node in the set, the value of this array
identifies its component. The component identifiers are numbered sequentially starting from 1.

Connected Components of a Simple Undirected Graph

This section illustrates the use of the connected components algorithm on the simple undirected graph G that
is shown in Figure 9.23.

Figure 9.23 A Simple Undirected Graph G
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The undirected graph G can be represented by the following links data set, LinkSetIn:

data LinkSetIn;
input from $ to $ @@;
datalines;

A B A C B C C H D E D F D G F E G I K L
;

The following statements calculate the connected components and output the results in the data set Node-
SetOut:
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proc optmodel;
set<str,str> LINKS;
read data LinkSetIn into LINKS=[from to];
set NODES = union {<i,j> in LINKS} {i,j};
num component{NODES};

solve with NETWORK /
links = (include=LINKS)
concomp
out = (concomp=component)

;

print component;
create data NodeSetOut from [node] concomp=component;

quit;

The data set NodeSetOut contains the connected components of the input graph and is shown in Figure 9.24.

Figure 9.24 Connected Components of a Simple Undirected Graph
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Notice that the graph is defined by using only the links array. As seen in Figure 9.23, this graph also contains
a singleton node labeled J, which has no associated links. By definition, this node defines its own component.
But because the input graph was defined by using only the links array, node J did not show up in the results
data set. To define a graph by using nodes that have no associated links, you should also define the input
nodes set. In this case, you can define a nodes data set NodeSetIn as follows:

data NodeSetIn;
input node $ @@;
datalines;

A B C D E F G H I J K L
;

You could also have defined the set directly in PROC OPTMODEL, but in this case, a separate data set nicely
preserves the independence between the model and the data.

Now, when you calculate the connected components, you define the input graph by using both the nodes
input data set and the links input data set:
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proc optmodel;
set<str,str> LINKS;
read data LinkSetIn into LINKS=[from to];
set<str> NODES;
read data NodeSetIn into NODES=[node];
num component{NODES};

solve with NETWORK /
links = (include=LINKS)
nodes = (include=NODES)
concomp
out = (concomp=component)

;

print component;
create data NodeSetOut from [node] concomp=component;

quit;

The resulting data set, NodeSetOut, includes the singleton node J as its own component, as shown in
Figure 9.25.

Figure 9.25 Connected Components of a Simple Undirected Graph
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Connected Components of a Simple Directed Graph

This section illustrates the use of the connected components algorithm on the simple directed graph G that is
shown in Figure 9.26.
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Figure 9.26 A Simple Directed Graph G
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The directed graph G can be represented by the following links data set, LinkSetIn:

data LinkSetIn;
input from $ to $ @@;
datalines;

A B B C B E B F C G
C D D C D H E A E F
F G G F H G H D
;

The following statements calculate the connected components and output the results in the data set Node-
SetOut:

proc optmodel;
set<str,str> LINKS;
read data LinkSetIn into LINKS=[from to];
set NODES = union {<i,j> in LINKS} {i,j};
num component{NODES};

solve with NETWORK /
graph_direction = directed
links = (include=LINKS)
concomp
out = (concomp=component)

;

print component;
create data NodeSetOut from [node] concomp=component;

quit;
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The data set NodeSetOut, shown in Figure 9.27, now contains the connected components of the input graph.

Figure 9.27 Connected Components of a Simple Directed Graph
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The connected components are represented graphically in Figure 9.28.

Figure 9.28 Strongly Connected Components of Graph G
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Cycle
A path in a graph is a sequence of nodes, each of which has a link to the next node in the sequence. An
elementary cycle is a path in which the start node and end node are the same and otherwise no node appears
more than once in the sequence.

In the network solver, you can find you can find (or just count) the elementary cycles of an input graph by
invoking the CYCLE= algorithm option. To find the cycles and report them in a set, use the CYCLES=
suboption in the OUT= option. You do not need to use the CYCLES= suboption to simply count the cycles.
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For undirected graphs, each link represents two directed links. For this reason, the following cycles are
filtered out: trivial cycles (A! B ! A) and duplicate cycles that are found by traversing a cycle in both
directions (A! B ! C ! A and A! C ! B ! A).

The results of the cycle detection algorithm are written to the set that you specify in the CYCLES= suboption
in the OUT= option. Each node of each cycle is listed in the CYCLES= set along with a cycle ID (the first
argument of the tuple) to identify the cycle to which it belongs. The second argument of the tuple defines the
order (sequence) of the node in the cycle.

The algorithm that the network solver uses to compute all cycles when the value of the MAXLENGTH=
option is greater than 20 is a variant of the algorithm in Johnson (1975) (ALGORITHM=BACKTRACK).
This algorithm runs in time O..jN j C jAj/.c C 1//, where c is the number of elementary cycles in the graph.
So the algorithm should scale to large graphs that contain few cycles. However, some graphs can have a very
large number of cycles, so the algorithm might not scale. The default when the value of the MAXLENGTH=
option is less than or equal to 20 is described in Liu and Wang (2006) (ALGORITHM=BUILD). This
algorithm is typically much faster than the backtracking algorithm when the length of the cycles is sufficiently
restricted.

If MAXCYCLES=ALL and there are many cycles, the CYCLES= set can become very large. It might be
beneficial to check the number of cycles before you try to create the CYCLES= set. By default, MAXCY-
CLES=1, so the algorithm returns the first cycle that it finds and stops processing. This should run relatively
quickly. For large-scale graphs, the MINLINKWEIGHT= and MAXLINKWEIGHT= suboptions might
increase the computation time.

Cycle Detection of a Simple Directed Graph

This section provides a simple example of using the cycle detection algorithm on the simple directed graph
G that is shown in Figure 9.29. Two other examples are “Example 9.2: Cycle Detection for Kidney Donor
Exchange” on page 454, which shows the use of cycle detection for optimizing a kidney donor exchange, and
“Example 9.6: Transitive Closure for Identification of Circular Dependencies in a Bug Tracking System” on
page 467, which shows an application of cycle detection to dependencies between bug reports.

Figure 9.29 A Simple Directed Graph G
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The directed graph G can be represented by the following links data set, LinkSetIn:

data LinkSetIn;
input from $ to $ @@;
datalines;

A B A E B C C A C D
D E D F E B E C F E
;

The following statements check whether the graph has a cycle:

proc optmodel;
set<str,str> LINKS;
read data LinkSetIn into LINKS=[from to];
set<num,num,str> CYCLES;

solve with NETWORK /
graph_direction = directed
links = (include=LINKS)
cycle = (maxcycles=1)

;
quit;

The result is written to the log of the procedure, as shown in Figure 9.30.

Figure 9.30 Network Solver Log: Check the Existence of a Cycle in a Simple Directed Graph

NOTE: There were 10 observations read from the data set WORK.LINKSETIN.         

NOTE: The number of nodes in the input graph is 6.                              

NOTE: The number of links in the input graph is 10.                             

NOTE: The network solver is called.                                             

NOTE: Processing cycle detection.                                               

NOTE: Required number of cycles found. You can increase this value using the    

      MAXCYCLES= option.                                                        

NOTE: The algorithm found 1 cycles.                                             

NOTE: Processing cycle detection used 0.00 (cpu: 0.00) seconds.                 

The following statements count the number of cycles in the graph:

proc optmodel;
set<str,str> LINKS;
read data LinkSetIn into LINKS=[from to];
set<num,num,str> CYCLES;

solve with NETWORK /
graph_direction = directed
links = (include=LINKS)
cycle = (maxcycles=all)

;
quit;

The result is written to the log of the procedure, as shown in Figure 9.31.
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Figure 9.31 Network Solver Log: Count the Number of Cycles in a Simple Directed Graph

NOTE: There were 10 observations read from the data set WORK.LINKSETIN.         

NOTE: The number of nodes in the input graph is 6.                              

NOTE: The number of links in the input graph is 10.                             

NOTE: The network solver is called.                                             

NOTE: Processing cycle detection.                                               

NOTE: The algorithm found 7 cycles.                                             

NOTE: Processing cycle detection used 0.00 (cpu: 0.00) seconds.                 

The following statements return the first cycle found in the graph:

proc optmodel;
set<str,str> LINKS;
read data LinkSetIn into LINKS=[from to];
set<num,num,str> CYCLES;

solve with NETWORK /
graph_direction = directed
links = (include=LINKS)
cycle = (maxcycles=1)
out = (cycles=CYCLES)

;

put CYCLES;
create data Cycles from [cycle order node]=CYCLES;

quit;

The data set Cycles now contains the first cycle found in the input graph; it is shown in Figure 9.32.

Figure 9.32 First Cycle Found in a Simple Directed Graph
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The first cycle that is found in the input graph is shown graphically in Figure 9.33.
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Figure 9.33 A! B ! C ! A
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The following statements return all the cycles in the graph:

proc optmodel;
set<str,str> LINKS;
read data LinkSetIn into LINKS=[from to];
set<num,num,str> CYCLES;

solve with NETWORK /
graph_direction = directed
links = (include=LINKS)
cycle = (maxcycles=all)
out = (cycles=CYCLES)

;

put CYCLES;
create data Cycles from [cycle order node]=CYCLES;

quit;

The data set Cycles now contains all the cycles in the input graph; it is shown in Figure 9.34.

Figure 9.34 All Cycles in a Simple Directed Graph
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The six additional cycles are shown graphically in Figure 9.35 through Figure 9.37.

Figure 9.35 Cycles
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Figure 9.36 Cycles
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Figure 9.37 Cycles
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Linear Assignment (Matching)
The linear assignment problem (LAP) is a fundamental problem in combinatorial optimization that involves
assigning workers to tasks at minimal costs. In graph theoretic terms, the LAP is equivalent to finding a
minimum-weight matching in a weighted bipartite directed graph. In a bipartite graph, the nodes can be
divided into two disjoint sets S (workers) and T (tasks) such that every link connects a node in S to a node in T.
That is, the node sets S and T are independent. The concept of assigning workers to tasks can be generalized
to the assignment of any abstract object from one group to some abstract object from a second group.

The linear assignment problem can be formulated as an integer programming optimization problem. The
form of the problem depends on the sizes of the two input sets, S and T. Let A represent the set of possible
assignments between sets S and T. In the bipartite graph, these assignments are the links. If jS j � jT j, then
the following optimization problem is solved:

minimize
X

.i;j /2A

cijxij

subject to
X

.i;j /2A

xij � 1 i 2 S

X
.i;j /2A

xij D 1 j 2 T

xij 2 f0; 1g .i; j / 2 A

This model allows for some elements of set S (workers) to go unassigned (if jS j > jT j).
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If jS j < jT j, then the following optimization problem is solved:

minimize
X

.i;j /2A

cijxij

subject to
X

.i;j /2A

xij D 1 i 2 S

X
.i;j /2A

xij � 1 j 2 T

xij 2 f0; 1g .i; j / 2 A

This model allows for some elements of set T (tasks) to go unassigned.

In the network solver, you can invoke the linear assignment problem solver by using the LINEARASSIGN-
MENT option. The algorithm that the network solver uses for solving a LAP is based on augmentation of
shortest paths (Jonker and Volgenant 1987). This algorithm can be applied as long as the graph is bipartite.

The resulting assignment (or matching) is contained in the set that is specified in the ASSIGNMENTS=
suboption of the OUT= option.

For a detailed example, see “Example 9.3: Linear Assignment Problem for Minimizing Relay Times” on
page 459.

Minimum-Cost Network Flow
The minimum-cost network flow problem (MCF) is a fundamental problem in network analysis that involves
sending flow over a network at minimal cost. Let G D .N;A/ be a directed graph. For each link .i; j / 2 A,
associate a cost per unit of flow, designated by cij . The demand (or supply) at each node i 2 N is designated
as bi , where bi � 0 denotes a supply node and bi < 0 denotes a demand node. These values must be within
Œbli ; b

u
i �. Define decision variables xij that denote the amount of flow sent from node i to node j. The amount

of flow that can be sent across each link is bounded to be within Œlij ; uij �. The problem can be modeled as a
linear programming problem as follows:

minimize
X

.i;j /2A

cijxij

subject to bli �
X

.i;j /2A

xij �
X

.j;i/2A

xj i � b
u
i i 2 N

lij � xij � uij .i; j / 2 A

When bi D bli D b
u
i for all nodes i 2 N , the problem is called a standard network flow problem. For these

problems, the sum of the supplies and demands must be equal to 0 to ensure that a feasible solution exists.

In the network solver, you can invoke the minimum-cost network flow solver by using the MINCOSTFLOW
option.

The algorithm that the network solver uses for solving MCF is a variant of the primal network simplex
algorithm (Ahuja, Magnanti, and Orlin 1993). Sometimes the directed graph G is disconnected. In this case,
the problem is first decomposed into its weakly connected components, and then each minimum-cost flow
problem is solved separately.
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The input for the network is the standard graph input, which is described in the section “Input Data for the
Network Solver” on page 388. The MCF option uses the following suboptions of the LINKS= input option
that specify link-indexed numeric arrays:

� The WEIGHT= suboption defines the link cost cij per unit of flow. (The default is 0, but if the
WEIGHT= suboption is not specified, then the default is 1.)

� The LOWER= suboption defines the link flow lower bound lij . (The default is 0.)

� The UPPER= suboption defines the link flow upper bound uij . (The default is1.)

The MCF option uses the following suboptions of the NODES= option. The parameter of each suboption
is a numeric array that is positive for supply nodes and negative for demand nodes. To specify fixed node
supplies and demands, use only the LOWER= suboption.

� The LOWER= suboption defines the node supply lower bounds. (The default is 0.)

� The UPPER= suboption defines the node supply upper bounds. (The default is1, but if the UPPER=
option is not specified, then the upper bounds are set equal to the lower bounds).

The resulting optimal flow through the network is written to the link-indexed numeric array that is specified
in the FLOW= suboption of the OUT= option in the SOLVE WITH NETWORK statement.

Minimum Cost Network Flow for a Simple Directed Graph

The following example demonstrates how to use the network simplex algorithm to find a minimum-cost flow
in a directed graph. Consider the directed graph in Figure 9.38, which appears in Ahuja, Magnanti, and Orlin
(1993).

Figure 9.38 Minimum-Cost Network Flow Problem: Data
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The directed graph G can be represented by the following links data set LinkSetIn and nodes data set
NodeSetIn:
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data LinkSetIn;
input from to weight upper;
datalines;

1 4 2 15
2 1 1 10
2 3 0 10
2 6 6 10
3 4 1 5
3 5 4 10
4 7 5 10
5 6 2 20
5 7 7 15
6 8 8 10
7 8 9 15
;

data NodeSetIn;
input node supply;
datalines;

1 10
2 20
4 -5
7 -15
8 -10
;

You can use the following call to the network solver to find a minimum-cost flow:

proc optmodel;
set <num,num> LINKS;
num cost{LINKS};
num upper{LINKS};
read data LinkSetIn into LINKS=[from to] cost=weight upper;
set NODES = union {<i,j> in LINKS} {i,j};
num supply{NODES} init 0;
read data NodeSetIn into [node] supply;
num flow{LINKS};

solve with network /
loglevel = moderate
logfreq = 1
graph_direction = directed
links = (upper=upper weight=cost)
nodes = (lower=supply)
mcf
out = (flow=flow)

;

print flow;
create data LinkSetOut from [from to] upper cost flow;

quit;
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The progress of the procedure is shown in Figure 9.39.

Figure 9.39 Network Solver Log for Minimum-Cost Network Flow

NOTE: There were 11 observations read from the data set WORK.LINKSETIN.         

NOTE: There were 5 observations read from the data set WORK.NODESETIN.          

NOTE: The number of nodes in the input graph is 8.                              

NOTE: The number of links in the input graph is 11.                             

NOTE: The network solver is called.                                             

NOTE: Processing the minimum-cost network flow problem.                         

NOTE: The network has 1 connected component.                                    

                        Primal         Primal           Dual                    

      Iteration      Objective  Infeasibility  Infeasibility     Time           

              1   0.000000E+00   2.000000E+01   8.900000E+01     0.00           

              2   0.000000E+00   2.000000E+01   8.900000E+01     0.00           

              3   5.000000E+00   1.500000E+01   8.400000E+01     0.00           

              4   5.000000E+00   1.500000E+01   8.300000E+01     0.00           

              5   7.500000E+01   1.500000E+01   8.300000E+01     0.00           

              6   7.500000E+01   1.500000E+01   7.900000E+01     0.00           

              7   1.300000E+02   1.000000E+01   7.600000E+01     0.00           

              8   2.700000E+02   0.000000E+00   0.000000E+00     0.00           

NOTE: The Network Simplex solve time is 0.00 seconds.                           

NOTE: Objective = 270.                                                          

NOTE: Processing the minimum-cost network flow problem used 0.00 (cpu: 0.00)    

      seconds.                                                                  

NOTE: The data set WORK.LINKSETOUT has 11 observations and 5 variables.         

The optimal solution is displayed in Figure 9.40.

Figure 9.40 Minimum-Cost Network Flow Problem: Optimal Solution
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The optimal solution is represented graphically in Figure 9.41.

Figure 9.41 Minimum-Cost Network Flow Problem: Optimal Solution
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Minimum-Cost Network Flow with Flexible Supply and Demand

Using the same directed graph shown in Figure 9.38, this example demonstrates a network that has a flexible
supply and demand. Consider the following adjustments to the node bounds:

� Node 1 has an infinite supply, but it still requires at least 10 units to be sent.

� Node 4 is a throughput node that can now handle an infinite amount of demand.

� Node 8 has a flexible demand. It requires between 6 and 10 units.

You use the special missing values (.I) to represent infinity and (.M) to represent minus infinity. The adjusted
node bounds can be represented by the following nodes data set:

data NodeSetIn;
input node lower upper;
datalines;

1 10 .I
2 20 20
4 .M -5
7 -15 -15
8 -10 -6
;

You can use the following call to PROC OPTMODEL to find a minimum-cost flow:

proc optmodel;
set <num,num> LINKS;
num cost{LINKS};
num upper{LINKS};

read data LinkSetIn into LINKS=[from to] cost=weight upper;
set <num> NODES;
num supply{NODES};
num supplyUB{NODES}; /* also demand lower bound, if negative */

read data NodeSetIn into NODES=[node] supply=lower supplyUB=upper;
num flow{LINKS};



Minimum-Cost Network Flow F 419

solve with NETWORK /
direction = directed
links = ( upper = upper weight = cost )
nodes = ( lower = supply upper = supplyUB )
mcf
out = ( flow = flow )

;
print flow;
create data LinkSetOut from [from to] upper cost flow;

quit;

The progress of the procedure is shown in Figure 9.42.

Figure 9.42 PROC OPTMODEL Log for Minimum-Cost Network Flow

NOTE: There were 11 observations read from the data set WORK.LINKSETIN.         

NOTE: There were 5 observations read from the data set WORK.NODESETIN.          

NOTE: The number of nodes in the input graph is 8.                              

NOTE: The number of links in the input graph is 11.                             

NOTE: The network solver is called.                                             

NOTE: Processing the minimum-cost network flow problem.                         

NOTE: Objective = 226.                                                          

NOTE: Processing the minimum-cost network flow problem used 0.00 (cpu: 0.00)    

      seconds.                                                                  

NOTE: The data set WORK.LINKSETOUT has 11 observations and 5 variables.         

The optimal solution is displayed in Figure 9.43.

Figure 9.43 Minimum-Cost Network Flow Problem: Optimal Solution
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The optimal solution is represented graphically in Figure 9.44.
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Figure 9.44 Minimum-Cost Network Flow Problem: Optimal Solution
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Minimum Cut
A cut is a partition of the nodes of a graph into two disjoint subsets. The cut-set is the set of links whose from
and to nodes are in different subsets of the partition. A minimum cut of an undirected graph is a cut whose
cut-set has the smallest link metric, which is measured as follows: For an unweighted graph, the link metric
is the number of links in the cut-set. For a weighted graph, the link metric is the sum of the link weights in
the cut-set.

In the network solver, you can invoke the minimum cut algorithm by using the MINCUT= option. This
algorithm can be used only on undirected graphs.

If the value of the MAXCUTS= suboption is greater than 1, then the algorithm can return more than one set
of cuts. The resulting cuts can be described in terms of partitions of the nodes of the graph or the links in the
cut-sets. The example in the next section illustrates several ways to manipulate the output from the minimum
cut algorithm. The node partition is specified in the PARTITIONS= suboption of the OUT= option in the
SOLVE WITH NETWORK statement. Each tuple in this set has a cut ID and a node. PROC OPTMODEL
provides only the smaller of the two subsets that form each partition. You can use the DIFF set operator to
get the complement of each partition. The cut-set is specified in the CUTSETS= suboption of the OUT=
option. This set contains the cut ID and the corresponding list of links.

The network solver uses the Stoer-Wagner algorithm (Stoer and Wagner 1997) to compute the minimum cuts.
This algorithm runs in time O.jN jjAj C jN j2 log jN j/.

Minimum Cut for a Simple Undirected Graph

As a simple example, consider the weighted undirected graph in Figure 9.45.
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Figure 9.45 A Simple Undirected Graph
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The links data set can be represented as follows:

data LinkSetIn;
input from to weight @@;
datalines;

1 2 2 1 5 3 2 3 3 2 5 2 2 6 2
3 4 4 3 7 2 4 7 2 4 8 2 5 6 3
6 7 1 7 8 3
;
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The following statements calculate minimum cuts in the graph and output the results in the data set MinCut:

proc optmodel;
set<num,num> LINKS;
num weight{LINKS};
read data LinkSetIn into LINKS=[from to] weight;
set<num> NODES = union {<i,j> in LINKS} {i,j};
set<num,num> PARTITIONS;
set<num,num,num> CUTSETS;

solve with NETWORK /
loglevel = moderate
links = (weight=weight)
mincut = (maxcuts=3)
out = (partitions=PARTITIONS cutsets=CUTSETS)

;
set CUTS = setof {<cut,i,j> in CUTSETS} cut;
num minCutWeight {cut in CUTS} = sum {<(cut),i,j> in CUTSETS} weight[i,j];
print minCutWeight;

for { cut in CUTS }
put "Cut ID: " cut

"Partition: " ( slice( <cut,*>, PARTITIONS ) )
"and " ( NODES diff slice( <cut,*>, PARTITIONS ) )
"Cut: " ( slice( <cut,*,*>, CUTSETS ) )
"Weight: " minCutWeight[cut];

create data MinCut from [mincut from to]=CUTSETS weight[from,to];
num partition {cut in CUTS, node in NODES} =

if <cut,node> in PARTITIONS then 0 else 1;
create data NodeSetOut from [cut node]={CUTS, NODES} partition;

quit;

The progress of the procedure is shown in Figure 9.46.

Figure 9.46 Network Solver Log for Minimum Cut

NOTE: There were 12 observations read from the data set WORK.LINKSETIN.         

NOTE: The number of nodes in the input graph is 8.                              

NOTE: The number of links in the input graph is 12.                             

NOTE: The network solver is called.                                             

NOTE: Processing the minimum-cut problem.                                       

NOTE: The minimum-cut algorithm found 3 cuts.                                   

NOTE: Objective = 4.                                                            

NOTE: Processing the minimum-cut problem used 0.00 (cpu: 0.00) seconds.         

Cut ID: 1 Partition: {3,4,7,8} and {1,2,5,6} Cut: {<2,3>,<6,7>} Weight: 4       

Cut ID: 2 Partition: {8} and {1,2,5,3,6,4,7} Cut: {<4,8>,<7,8>} Weight: 5       

Cut ID: 3 Partition: {1} and {2,5,3,6,4,7,8} Cut: {<1,2>,<1,5>} Weight: 5       

NOTE: The data set WORK.MINCUT has 6 observations and 4 variables.              

NOTE: The data set WORK.NODESETOUT has 24 observations and 3 variables.         
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The data set NodeSetOut now contains the partition of the nodes for each cut, shown in Figure 9.47.

Figure 9.47 Minimum Cut Node Partition
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The data set MinCut contains the links in the cut-sets for each cut. This data set is shown in Figure 9.48,
which also shows each cut separately.

Figure 9.48 Minimum Cut-sets
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Figure 9.48 continued
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Minimum Spanning Tree
A spanning tree of a connected undirected graph is a subgraph that is a tree that connects all the nodes
together. When weights have been assigned to the links, a minimum spanning tree (MST) is a spanning tree
whose sum of link weights is less than or equal to the sum of link weights of every other spanning tree. More
generally, any undirected graph (not necessarily connected) has a minimum spanning forest, which is a union
of minimum spanning trees of its connected components.

In the network solver, you can invoke the minimum spanning tree algorithm by using the MINSPANTREE
option. This algorithm can be used only on undirected graphs.

The resulting minimum spanning tree is contained in the set that is specified in the FOREST= suboption of
the OUT= option in the SOLVE WITH NETWORK statement.

The network solver uses Kruskal’s algorithm (Kruskal 1956) to compute the minimum spanning tree. This
algorithm runs in time O.jAj log jN j/ and therefore should scale to very large graphs.

Minimum Spanning Tree for a Simple Undirected Graph

As a simple example, consider the weighted undirected graph in Figure 9.49.
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Figure 9.49 A Simple Undirected Graph
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The links data set can be represented as follows:

data LinkSetIn;
input from $ to $ weight @@;
datalines;

A B 7 A D 5 B C 8 B D 9 B E 7
C E 5 D E 15 D F 6 E F 8 E G 9
F G 11 H I 1 I J 3 H J 2
;

The following statements calculate a minimum spanning forest and output the results in the data set MinSpan-
Forest:

proc optmodel;
set<str,str> LINKS;
num weight{LINKS};
read data LinkSetIn into LINKS=[from to] weight;
set<str,str> FOREST;

solve with NETWORK /
links = (weight=weight)
minspantree
out = (forest=FOREST)

;

put FOREST;
create data MinSpanForest from [from to]=FOREST weight;

quit;

The data set MinSpanForest now contains the links that belong to a minimum spanning forest, which is
shown in Figure 9.50.
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Figure 9.50 Minimum Spanning Forest
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The minimal cost links are shown in green in Figure 9.51.

Figure 9.51 Minimum Spanning Forest
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For a more detailed example, see “Example 9.5: Minimum Spanning Tree for Computer Network Topology”
on page 465.

Shortest Path
A shortest path between two nodes u and v in a graph is a path that starts at u and ends at v and has the lowest
total link weight. The starting node is called the source node, and the ending node is called the sink node.

In the network solver, you can calculate shortest paths by using the SHORTESTPATH= option.

By default, the network solver finds shortest paths for all pairs. That is, it finds a shortest path for each
possible combination of source and sink nodes. Alternatively, you can use the SOURCE= suboption to
fix a particular source node and find shortest paths from the fixed source node to all possible sink nodes.
Conversely, by using the SINK= suboption, you can fix a sink node and find shortest paths from all possible
source nodes to the fixed sink node. By using both suboptions together, you can request one particular
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shortest path for a specific source-sink pair. In addition, you can use the SOURCE= and SINK= suboptions
to define a list of source-sink pairs to process. The following sections show examples of these suboptions.

Which algorithm the network solver uses to find shortest paths depends on the data. The algorithm and
run-time complexity for each graph type is shown in Table 9.14.

Table 9.14 Algorithms for Shortest Paths

Graph Type Algorithm Complexity (per Source Node)

Unweighted Breadth-first search O.jN j C jAj/

Weighted (nonnegative) Dijkstra’s algorithm O.jN j log jN j C jAj/
Weighted (positive and negative allowed) Bellman-Ford algorithm O.jN jjAj/

Details for each algorithm can be found in Ahuja, Magnanti, and Orlin (1993).

For weighted graphs, the algorithm uses the parameter that is specified in the WEIGHT= suboption of the
LINKS= option to evaluate a path’s total weight (cost).

Outputs

The shortest path algorithm produces up to two outputs. The output set that you specify in the SPPATHS=
suboption of the OUT= option contains the links of a shortest path for each source-sink pair combination.
The output parameter that you specify in the SPWEIGHTS= suboption of the OUT= option contains the total
weight for the shortest path for each source-sink pair combination.

SPPATHS= Set
The SPPATHS= set contains the links present in the shortest path for each source-sink pair.

The individual links in this set always appear in the order that you provide. If you provide link .u; v/ and
solve a shortest path problem on an undirected graph, and that path visits node v before node u, then this set
will contain link .u; v/, not link .v; u/, which is not part of the network. This approach simplifies indexing
throughout your model.

For large graphs and a large requested number of source-sink pairs, this set can be extremely large. For
extremely large graphs, generating the output can sometimes take longer than computing the shortest paths.
For example, using the US road network data for the state of New York, the data contain a directed graph that
has 264,346 nodes. Finding the shortest path for all pairs from only one source node results in 140,969,120
observations, which is a set of size 11 GB. Finding shortest paths for all pairs from all nodes would produce
an enormous set.

The SPPATHS= set contains the following tuple members:

1. the source node of this shortest path

2. the sink node of this shortest path

3. for this source-sink pair, the order of this link in a shortest path

4. the tail node of this link in a shortest path

5. the head node of this link in a shortest path
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SPWEIGHTS= Array
This array contains the total weight for the shortest path for each of the source-sink pairs.

Shortest Paths for All Pairs

This example illustrates the use of the shortest path algorithm for all source-sink pairs on the simple undirected
graph G that is shown in Figure 9.52.

Figure 9.52 A Simple Undirected Graph G
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The undirected graph G can be represented by the following links data set, LinkSetIn:

data LinkSetIn;
input from $ to $ weight @@;
datalines;

A B 3 A C 2 A D 6 A E 4 B D 5
B F 5 C E 1 D E 2 D F 1 E F 4
;
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The following statements calculate shortest paths for all source-sink pairs:

proc optmodel;
set <str,str> LINKS;
num weight{LINKS};
read data LinkSetIn into LINKS=[from to] weight;
set <str,str,num,str,str> PATHS; /* source, sink, order, from, to */
set NODES = union{<i,j> in LINKS} {i,j};
num path_length{NODES, NODES};

solve with NETWORK /
links = (weight=weight)
shortpath
out = (sppaths=PATHS spweights=path_length)

;

put PATHS;
print path_length;
create data ShortPathP from [source sink order from to]=PATHS

weight[from,to];
create data ShortPathW from [source sink]

path_weight=path_length;
quit;

The data set ShortPathP contains the shortest paths and is shown in Figure 9.53.
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Figure 9.53 All-Pairs Shortest Paths
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E B 1 C E 1

E B 2 A C 2

E B 3 A B 3

E C 1 C E 1

E D 1 D E 2

E F 1 D E 2
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F A 2 D E 2
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F C 3 C E 1

F D 1 D F 1

F E 1 D F 1

F E 2 D E 2

The data set ShortPathW contains the path weight for the shortest paths of each source-sink pair and is shown
in Figure 9.54.
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Figure 9.54 All-Pairs Shortest Paths Summary
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Shortest Paths for a Subset of Source-Sink Pairs

This section illustrates the use of the SOURCE= and SINK= suboptions and the shortest path algorithm to
calculate shortest paths for a subset of source-sink pairs. If S denotes the nodes in the SOURCE= set and T
denotes the nodes in the SINK= set, the network solver calculates all the source-sink pairs in the crossproduct
of these two sets.

For example, the following statements calculate a shortest path for the four combinations of source-sink pairs
in S � T D fA;C g � fB;F g:

proc optmodel;
set <str,str> LINKS;
num weight{LINKS};
read data LinkSetIn into LINKS=[from to] weight;
set <str,str,num,str,str> PATHS; /* source, sink, order, from, to */
set SOURCES = / A C /;
set SINKS = / B F /;

solve with NETWORK /
links = (weight=weight)
shortpath = (source=SOURCES sink=SINKS)
out = (sppaths=PATHS)

;

put PATHS;
create data ShortPath from [source sink order from to]=PATHS weight[from,to];

quit;
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The data set ShortPath contains the shortest paths and is shown in Figure 9.55.

Figure 9.55 Shortest Paths for a Subset of Source-Sink Pairs
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source sink order from to weight
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A F 3 D E 2
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C B 1 A C 2

C B 2 A B 3

C F 1 C E 1

C F 2 D E 2

C F 3 D F 1

Shortest Paths for a Subset of Source or Sink Pairs

This section illustrates the use of the shortest path algorithm to calculate shortest paths between a subset of
source (or sink) nodes and all other sink (or source) nodes.

In this case, you designate the subset of source (or sink) nodes in the node set by specifying the SOURCE=
(or SINK=) suboption. By specifying only one of the suboptions, you indicate that you want the network
solver to calculate all pairs from a subset of source nodes (or to calculate all pairs to a subset of sink nodes).

For example, the following statements calculate all the shortest paths from nodes B and E.:

proc optmodel;
set <str,str> LINKS;
num weight{LINKS};
read data LinkSetIn into LINKS=[from to] weight;
set <str,str,num,str,str> PATHS; /* source, sink, order, from, to */
set SOURCES = / B E /;

solve with NETWORK /
links = (weight=weight)
shortpath = (source=SOURCES)
out = (sppaths=PATHS)

;

put PATHS;
create data ShortPath from [source sink order from to]=PATHS weight[from,to];

quit;

The data set ShortPath contains the shortest paths and is shown in Figure 9.56.
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Figure 9.56 Shortest Paths for a Subset of Source Pairs
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E F 2 D F 1

Conversely, the following statements calculate all the shortest paths to nodes B and E.:

proc optmodel;
set <str,str> LINKS;
num weight{LINKS};
read data LinkSetIn into LINKS=[from to] weight;
set <str,str,num,str,str> PATHS; /* source, sink, order, from, to */
set SINKS = / B E /;

solve with NETWORK /
links = (weight=weight)
shortpath = (sink=SINKS)
out = (sppaths=PATHS)

;

put PATHS;
create data ShortPath from [source sink order from to]=PATHS weight[from,to];

quit;

The data set ShortPath contains the shortest paths and is shown in Figure 9.57.
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Figure 9.57 Shortest Paths for a Subset of Sink Pairs
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Shortest Paths for One Source-Sink Pair

This section illustrates the use of the shortest path algorithm to calculate shortest paths between one source-
sink pair by using the SOURCE= and SINK= suboptions.

The following statements calculate a shortest path between node C and node F:

proc optmodel;
set <str,str> LINKS;
num weight{LINKS};
read data LinkSetIn into LINKS=[from to] weight;
set <str,str,num,str,str> PATHS; /* source, sink, order, from, to */
set SOURCES = / C /;
set SINKS = / F /;

solve with NETWORK /
links = (weight=weight)
shortpath = (source=SOURCES sink=SINKS)
out = (sppaths=PATHS)

;

put PATHS;
create data ShortPath from [source sink order from to]=PATHS weight[from,to];

quit;

The data set ShortPath contains this shortest path and is shown in Figure 9.58.
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Figure 9.58 Shortest Paths for One Source-Sink Pair
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The shortest path is shown graphically in Figure 9.59.

Figure 9.59 Shortest Path between Nodes C and F
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Shortest Paths with Auxiliary Weight Calculation

This section illustrates the use of the shortest path algorithm, where auxiliary weights are used to calculate
the shortest paths between all source-sink pairs.

Consider a links data set in which the auxiliary weight is a counter for each link:
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data LinkSetIn;
input from $ to $ weight count @@;
datalines;

A B 3 1 A C 2 1 A D 6 1 A E 4 1 B D 5 1
B F 5 1 C E 1 1 D E 2 1 D F 1 1 E F 4 1
;

The following statements calculate shortest paths for all source-sink pairs:

proc optmodel;
set <str,str> LINKS;
num weight{LINKS};
num count{LINKS};
read data LinkSetIn into LINKS=[from to] weight count;
set <str,str,num,str,str> PATHS; /* source, sink, order, from, to */
set NODES = union{<i,j> in LINKS} {i,j};
num path_length{i in NODES, j in NODES: i ~= j};

solve with NETWORK /
links = (weight=weight)
shortpath
out = (sppaths=PATHS spweights=path_length)

;

put PATHS;
num path_weight2{source in NODES, sink in NODES: source ~= sink} =

sum {<(source),(sink),order,from,to> in PATHS} count[from,to];
print path_length path_weight2;
create data ShortPathW from [source sink]

path_weight=path_length path_weight2;
quit;

The data set ShortPathW contains the total path weight for shortest paths in each source-sink pair and is
shown in Figure 9.60. Because the variable count in LinkSetIn has a value of 1 for all links, the value in the
output data set variable path_weights2 contains the number of links in each shortest path.
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Figure 9.60 Shortest Paths Including Auxiliary Weights in Calculation

ShortPathW

source sink path_weight path_weight2

A B 3 1

A C 2 1
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A E 3 2

A F 6 4
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C A 2 1
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D C 3 2

source sink path_weight path_weight2

D E 2 1
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E A 3 2

E B 6 3

E C 1 1

E D 2 1

E F 3 2

F A 6 4

F B 5 1

F C 4 3

F D 1 1

F E 3 2

The section “Getting Started: Network Solver” on page 368 shows an example of using the shortest path
algorithm to minimize travel to and from work based on traffic conditions.

Shortest Paths with Negative Link Weights

This section illustrates the use of the shortest path algorithm on a simple directed graph G with negative link
weights, shown in Figure 9.61.
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Figure 9.61 A Simple Directed Graph G with Negative Link Weights
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The following statements call PROC OPTMODEL and declare the directed graph G by using set and array
literals. For more information about literals, see the section “NUMBER, STRING, and SET Parameter
Declarations” on page 43 in Chapter 5, “The OPTMODEL Procedure.”

proc optmodel;
set LINKS = / <A B> <A C> <B C> <B D> <B E> <D B> <D C> <E D> /;
num weight{LINKS} init [ -1 4 3 2 2 1 5 -3 ];

The next statements declare a set of the correct type for path output and calculate the shortest paths between
source node E and sink node B:

set NODES = union{<i,j> in LINKS} {i,j};
/* Use the type (in this case, STRING) of NODES but leave PATHS empty */
set PATHS init {NODES,NODES,/0/,NODES,NODES:0};
set SOURCE = /E/, SINK = /B/;
solve with NETWORK /

links = ( weight = weight )
direction = directed
shortpath = ( source = SOURCE sink = SINK )
out = ( sppaths = PATHS )

;
put "Path and Weight: " (setof{<s,t,i,u,v> in PATHS} <u,v,weight[u,v]> );

As shown in Figure 9.62, the network solver identifies a shortest path that has negative weights.
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Figure 9.62 SOLVE WITH NETWORK Log: Shortest Paths with Negative Link Weights

NOTE: The number of nodes in the input graph is 5.                              
NOTE: The number of links in the input graph is 8.                              
NOTE: The network solver is called.                                             
NOTE: Processing the shortest paths problem.                                    
NOTE: Processing the shortest paths problem used 0.00 (cpu: 0.00) seconds.      
Path and Weight: {<'E','D',-3>,<'D','B',1>}                                     

If you reduce the weight on link .B;E/ from 2 units to 1 unit, there is a negative weight cycle (E ! D !

B ! E). The Bellman-Ford algorithm catches this and produces an error, as shown in Figure 9.63.

weight['B','E'] = 1;
solve with NETWORK /

links = (weight=weight)
direction = directed
shortpath = ( source = SOURCE sink = SINK )
out = ( sppaths = PATHS )

;
put _SOLUTION_STATUS_=;

quit;

Figure 9.63 SOLVE WITH NETWORK Log: Negative Weight Cycle

NOTE: The number of nodes in the input graph is 5.                              
NOTE: The number of links in the input graph is 8.                              
NOTE: The network solver is called.                                             
NOTE: Processing the shortest paths problem.                                    
ERROR: The graph contains a negative weight cycle.                              
NOTE: Processing the shortest paths problem used 0.00 (cpu: 0.00) seconds.      
_SOLUTION_STATUS_=BAD_PROBLEM_TYPE                                              

Transitive Closure
The transitive closure of a graph G is a graph GT D .N;AT / such that for all i; j 2 N there is a link
.i; j / 2 AT if and only if there exists a path from i to j in G.

The transitive closure of a graph can help you efficiently answer questions about reachability. Suppose you
want to answer the question of whether you can get from node i to node j in the original graph G. Given
the transitive closure GT of G, you can simply check for the existence of link .i; j / to answer the question.
Transitive closure has many applications, including speeding up the processing of structured query languages,
which are often used in databases.

In the network solver, you can invoke the transitive closure algorithm by using the TRANSITIVECLOSURE
option.

The results for the transitive closure algorithm are written to the set that is specified in the CLOSURE=
suboption of the OUT= option.

The algorithm that the network solver uses to compute transitive closure is a sparse version of the Floyd-
Warshall algorithm (Cormen, Leiserson, and Rivest 1990). This algorithm runs in timeO.jN j3/ and therefore
might not scale to very large graphs.
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Transitive Closure of a Simple Directed Graph

This example illustrates the use of the transitive closure algorithm on the simple directed graph G that is
shown in Figure 9.64.

Figure 9.64 A Simple Directed Graph G
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The directed graph G can be represented by the links data set LinkSetIn as follows:

data LinkSetIn;
input from $ to $ @@;
datalines;

B C B D C B D A D C
;

The following statements calculate the transitive closure and output the results in the data set TransClosure:

proc optmodel;
set<str,str> LINKS;
read data LinkSetIn into LINKS=[from to];
set<str,str> CAN_REACH;

solve with NETWORK /
graph_direction = directed
links = ( include = LINKS )
transcl
out = ( closure = CAN_REACH )

;

put CAN_REACH;
create data TransClosure from [from to]=CAN_REACH;

quit;

The data set TransClosure contains the transitive closure of G and is shown in Figure 9.65.
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Figure 9.65 Transitive Closure of a Simple Directed Graph
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The transitive closure of G is shown graphically in Figure 9.66.

Figure 9.66 Transitive Closure of G

A

C

B

D

For a more detailed example, see Example 9.6.



442 F Chapter 9: The Network Solver

Traveling Salesman Problem
The traveling salesman problem (TSP) finds a minimum-cost tour in an undirected graph, G, that has a node
set, N, and a link set, A. A path in a graph is a sequence of nodes, each of which has a link to the next
node in the sequence. An elementary cycle is a path in which the start node and end node are the same and
otherwise no node appears more than once in the sequence. A Hamiltonian cycle (or tour) is an elementary
cycle that visits every node. In solving the TSP, then, the goal is to find a Hamiltonian cycle of minimum
total cost, where the total cost is the sum of the costs of the links in the tour. Associated with each link
.i; j / 2 A are a binary variable xij , which indicates whether link xij is part of the tour, and a cost cij . Let
ı.S/ D f.i; j / 2 A j i 2 S; j … Sg. Then an integer linear programming formulation of the TSP (for an
undirected graph G) is as follows:

minimize
X

.i;j /2A

cijxij

subject to
X

.i;j /2ı.i/

xi;j D 2 i 2 N .two_match/X
.i;j /2ı.S/

xij � 2 S � N; 2 � jS j � jN j � 1 .subtour_elim/

xij 2 f0; 1g .i; j / 2 A

The equations (two_match) are the matching constraints, which ensure that each node has degree two in the
subgraph. The inequalities (subtour_elim) are the subtour elimination constraints (SECs), which enforce
connectivity.

For a directed graph, G, the same formulation and solution approach is used on an expanded graph G0, as
described in Kumar and Li (1994). The network solver takes care of the construction of the expanded graph
and returns the solution in terms of the original input graph.

In practical terms, you can think of the TSP in the context of a routing problem in which each node is a city
and the links are roads that connect those cities. If you know the distance between each pair of cities, the
goal is to find the shortest possible route that visits each city exactly once and returns to the starting city. The
TSP has applications in planning, logistics, manufacturing, genomics, and many other areas.

In the network solver, you can invoke the traveling salesman problem solver by using the TSP= option.

The algorithm that the network solver uses for solving a TSP is based on a variant of the branch-and-cut
process described in Applegate et al. (2006).

The resulting tour is represented in two ways: in the numeric array that is specified in the ORDER= suboption
of the OUT= option, the tour is specified as a sequence of nodes; in the set that is specified in the TOUR=
suboption of the OUT= option, the tour is specified as a list of links in the optimal tour.

Traveling Salesman Problem Applied to a Simple Undirected Graph

As a simple example, consider the weighted undirected graph in Figure 9.67.
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Figure 9.67 A Simple Undirected Graph
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You can represent the links data set as follows:

data LinkSetIn;
input from $ to $ weight @@;
datalines;

A B 1.0 A C 1.0 A D 1.5 B C 2.0 B D 4.0
B E 3.0 C D 3.0 C F 3.0 C H 4.0 D E 1.5
D F 3.0 D G 4.0 E F 1.0 E G 1.0 F G 2.0
F H 4.0 H I 3.0 I J 1.0 C J 5.0 F J 3.0
F I 1.0 H J 1.0
;

The following statements calculate an optimal traveling salesman tour and output the results in the data sets
TSPTour and NodeSetOut:

proc optmodel;
set<str,str> EDGES;
set<str> NODES = union{<i,j> in EDGES} {i,j};
num weight{EDGES};
read data LinkSetIn into EDGES=[from to] weight;
num tsp_order{NODES};
set<str,str> TOUR;

solve with NETWORK /
loglevel = moderate
links = (weight=weight)
tsp
out = (order=tsp_order tour=TOUR)

;
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put TOUR;
print {<i,j> in TOUR} weight;
print tsp_order;
create data NodeSetOut from [node] tsp_order;
create data TSPTour from [from to]=TOUR weight;

quit;

The progress of the procedure is shown in Figure 9.68.

Figure 9.68 Network Solver Log: Optimal Traveling Salesman Tour of a Simple Undirected Graph

NOTE: There were 22 observations read from the data set WORK.LINKSETIN.         

NOTE: The number of nodes in the input graph is 10.                             

NOTE: The number of links in the input graph is 22.                             

NOTE: The network solver is called.                                             

NOTE: Processing the traveling salesman problem.                                

NOTE: The initial TSP heuristics found a tour with cost 16 using 0.00 (cpu:     

      0.00) seconds.                                                            

NOTE: The MILP presolver value NONE is applied.                                 

NOTE: The MILP solver is called.                                                

NOTE: The Branch and Cut algorithm is used.                                     

          Node   Active   Sols    BestInteger      BestBound      Gap    Time   

             0        1      1     16.0000000     15.5005000    3.22%       0   

             0        0      1     16.0000000     16.0000000    0.00%       0   

NOTE: Optimal.                                                                  

NOTE: Objective = 16.                                                           

NOTE: Processing the traveling salesman problem used 0.00 (cpu: 0.00) seconds.  

{<'A','B'>,<'B','C'>,<'C','H'>,<'H','J'>,<'I','J'>,<'F','I'>,<'F','G'>,<'E','G'>

,<'D','E'>,<'A','D'>}                                                           

NOTE: The data set WORK.NODESETOUT has 10 observations and 2 variables.         

NOTE: The data set WORK.TSPTOUR has 10 observations and 3 variables.            

The data set NodeSetOut now contains a sequence of nodes in the optimal tour and is shown in Figure 9.69.

Figure 9.69 Nodes in the Optimal Traveling Salesman Tour
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The data set TSPTour now contains the links in the optimal tour and is shown in Figure 9.70.
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Figure 9.70 Links in the Optimal Traveling Salesman Tour
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The minimum-cost links are shown in green in Figure 9.71.

Figure 9.71 Optimal Traveling Salesman Tour
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Traveling Salesman Problem Applied to a Simple Directed Graph

As another simple example, consider the weighted directed graph in Figure 9.72. In this graph it might not be
possible to travel directly between a pair of nodes in both directions, or the cost of traveling directly between
two nodes might depend on the direction of travel.
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Figure 9.72 A Simple Directed Graph
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You can represent the links data set as follows:

data LinkSetIn;
input from $ to $ weight @@;
datalines;

A B 2.0 A C 1.0 A E 4.0
B A 1.0 B C 2.0 B D 1.0 B E 1.0
C B 2.0 C D 3.0
D A 1.0 D C 1.0 D E 2.0
E A 2.0 E D 1.0
;

The following statements, which are identical to those in the undirected example above except for the SOLVE
statement clause DIRECTION=DIRECTED, calculate an optimal traveling salesman tour (on a directed
graph) and output the results in the data sets TSPTour and NodeSetOut:

proc optmodel;
set<str,str> EDGES;
set<str> NODES = union{<i,j> in EDGES} {i,j};
num weight{EDGES};
read data LinkSetIn into EDGES=[from to] weight;
num tsp_order{NODES};
set<str,str> TOUR;

solve with NETWORK /
loglevel = moderate
links = (weight=weight)
direction = directed
tsp
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out = (order=tsp_order tour=TOUR)
;

put TOUR;
print {<i,j> in TOUR} weight;
print tsp_order;
create data NodeSetOut from [node] tsp_order;
create data TSPTour from [from to]=TOUR weight;

quit;

The progress of the procedure is shown in Figure 9.73.

Figure 9.73 Network Solver Log: Optimal Traveling Salesman Tour of a Simple Directed Graph

NOTE: There were 14 observations read from the data set WORK.LINKSETIN.         

NOTE: The number of nodes in the input graph is 5.                              

NOTE: The number of links in the input graph is 14.                             

NOTE: The network solver is called.                                             

NOTE: The TSP solver is starting using an augmented symmetric graph with 10     

      nodes and 19 links.                                                       

NOTE: Processing the traveling salesman problem.                                

NOTE: The initial TSP heuristics found a tour with cost 6 using 0.00 (cpu:      

      0.00) seconds.                                                            

NOTE: The MILP presolver value NONE is applied.                                 

NOTE: The MILP solver is called.                                                

NOTE: The Branch and Cut algorithm is used.                                     

          Node   Active   Sols    BestInteger      BestBound      Gap    Time   

             0        1      1      6.0000000      5.9001000    1.69%       0   

             0        0      1      6.0000000      6.0000000    0.00%       0   

NOTE: Optimal.                                                                  

NOTE: Objective = 6.                                                            

NOTE: Processing the traveling salesman problem used 0.00 (cpu: 0.00) seconds.  

{<'A','C'>,<'C','B'>,<'B','E'>,<'E','D'>,<'D','A'>}                             

NOTE: The data set WORK.NODESETOUT has 5 observations and 2 variables.          

NOTE: The data set WORK.TSPTOUR has 5 observations and 3 variables.             

The data set NodeSetOut now contains a sequence of nodes in the optimal tour and is shown in Figure 9.74.

Figure 9.74 Nodes in the Optimal Traveling Salesman Tour

node tsp_order

A 1

C 2

B 3

E 4

D 5

The data set TSPTour now contains the links in the optimal tour and is shown in Figure 9.75.
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Figure 9.75 Links in the Optimal Traveling Salesman Tour
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The minimum-cost links are shown in green in Figure 9.76.

Figure 9.76 Optimal Traveling Salesman Tour
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Macro Variable _OROPTMODEL_
PROC OPTMODEL always creates and initializes a SAS macro variable called _OROPTMODEL_, which
contains a character string. After each PROC OPTMODEL run, you can examine this macro variable by
specifying %put &_OROPTMODEL_; and check the execution of the most recently invoked solver from the
value of the macro variable.

Each keyword and value pair in _OROPTMODEL_ also appears in two other places: the PROC OPTMODEL
automatic arrays _OROPTMODEL_NUM_ and _OROPTMODEL_STR_; and the ODS tables ProblemSum-
mary and SolutionSummary, which appear after a SOLVE statement, unless you set the PRINTLEVEL=
option to NONE. You can use these variables to obtain details about the solution even if you do not specify
an output destination in the OUT= option.

After the solver is called, the various keywords in the variable are interpreted as follows:
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STATUS
indicates the solver status at termination. It can take one of the following values:

OK The solver terminated normally.

SYNTAX_ERROR The use of syntax is incorrect.

DATA_ERROR The input data is inconsistent.

OUT_OF_MEMORY Insufficient memory was allocated to the procedure.

IO_ERROR A problem in reading or writing of data has occurred.

SEMANTIC_ERROR An evaluation error, such as an invalid operand type, has occurred.

ERROR The status cannot be classified into any of the preceding categories.

SOLUTION_STATUS
indicates the solution status at termination. It can take one of the following values:

ABORT_NOSOL The solver was stopped by the user and did not find a
solution.

ABORT_SOL The solver was stopped by the user but still found a solu-
tion.

BAD_PROBLEM_TYPE The problem type is not supported by the solver.

CONDITIONAL_OPTIMAL The optimality of the solution cannot be proven.

ERROR The algorithm encountered an error.

FAIL_NOSOL The solver stopped due to errors and did not find a solu-
tion.

FAIL_SOL The solver stopped due to errors but still found a solution.

FAILED The solver failed to converge, possibly due to numerical
issues.

HEURISTIC_NOSOL The solver used only heuristics and did not find a solution.

HEURISTIC_SOL The solver used only heuristics and found a solution.

INFEASIBLE The problem is infeasible.

INFEASIBLE_OR_UNBOUNDED The problem is infeasible or unbounded.

INTERRUPTED The solver was interrupted by the system or the user
before completing its work.

ITERATION_LIMIT_REACHED The solver reached the maximum number of iterations
that is specified in the MAXITER= option.

NODE_LIM_NOSOL The solver reached the maximum number of nodes spec-
ified in the MAXNODES= option and did not find a
solution.

NODE_LIM_SOL The solver reached the maximum number of nodes speci-
fied in the MAXNODES= option and found a solution.

NULL_GRAPH The graph was null (it had 0 nodes) after PROC OPT-
MODEL processed the SUBGRAPH= option.

OK The algorithm terminated normally.
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OPTIMAL The solution is optimal.

OPTIMAL_AGAP The solution is optimal within the absolute gap that is
specified in the ABSOBJGAP= option.

OPTIMAL_COND The solution is optimal, but some infeasibilities (primal,
bound, or integer) exceed tolerances because of scaling.

OPTIMAL_RGAP The solution is optimal within the relative gap that is
specified in the RELOBJGAP= option.

OUTMEM_NOSOL The solver ran out of memory and either did not find a
solution or failed to output the solution due to insufficient
memory.

OUTMEM_SOL The solver ran out of memory but still found a solution.

SOLUTION_LIM The solver reached the maximum number of solutions
specified in the MAXCLIQUES=, MAXCYCLES=, or
MAXSOLS= option.

TARGET The solution is not worse than the target that is specified
in the TARGET= option.

TIME_LIM_NOSOL The solver reached the execution time limit specified in
the MAXTIME= option and did not find a solution.

TIME_LIM_SOL The solver reached the execution time limit specified in
the MAXTIME= option and found a solution.

TIME_LIMIT_REACHED The solver reached its execution time limit.

UNBOUNDED The problem is unbounded.

PROBLEM_TYPE
indicates the type of problem solved. It can take one of the following values:

BICONCOMP Biconnected components

CLIQUE Maximal cliques

CONCOMP Connected components

CYCLE Cycle detection

LAP Linear assignment (matching)

MCF Minimum-cost network flow

MINCUT Minimum cut

MST Minimum spanning tree

SHORTPATH Shortest path

TRANSCL Transitive closure

TSP Traveling salesman

NONE This value is used when you do not specify an algorithm
to run.
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OBJECTIVE
indicates the objective value that is obtained by the solver at termination. For problem classes that do
not have an explicit objective, such as cycle, the value of this keyword within the _OROPTMODEL_
macro variable is missing (.).

RELATIVE_GAP
indicates the relative gap between the best integer objective (BestInteger) and the best bound on the
objective function value (BestBound) upon termination of the MILP solver. The relative gap is equal to

jBestInteger � BestBoundj= .1E�10 C jBestBoundj/

ABSOLUTE_GAP
indicates the absolute gap between the best integer objective (BestInteger) and the best bound on the
objective function value (BestBound) upon termination of the MILP solver. The absolute gap is equal
to jBestInteger � BestBoundj.

PRIMAL_INFEASIBILITY
indicates the maximum (absolute) violation of the primal constraints by the solution.

BOUND_INFEASIBILITY
indicates the maximum (absolute) violation by the solution of the lower or upper bounds (or both).

INTEGER_INFEASIBILITY
indicates the maximum (absolute) violation of the integrality of integer variables returned by the MILP
solver.

BEST_BOUND
indicates the best bound on the objective function value at termination. A missing value indicates that
the MILP solver was not able to obtain such a bound.

NODES
indicates the number of nodes enumerated by the MILP solver by using the branch-and-bound algo-
rithm.

ITERATIONS
indicates the number of simplex iterations taken to solve the problem.

PRESOLVE_TIME
indicates the time (in seconds) used in preprocessing.

SOLUTION_TIME
indicates the time (in seconds) taken to solve the problem, including preprocessing time.

NOTE: The time reported in PRESOLVE_TIME and SOLUTION_TIME is either CPU time or real time.
The type is determined by the TIMETYPE= option.

When SOLUTION_STATUS has a value of OPTIMAL, CONDITIONAL_OPTIMAL, ITERA-
TION_LIMIT_REACHED, or TIME_LIMIT_REACHED, all terms of the _OROPTMODEL_ macro
variable are present; for other values of SOLUTION_STATUS, some terms do not appear.
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The following keywords within the _OROPTMODEL_ macro variable appear only with certain algorithms.
The keywords convey information about the number of solutions each algorithm found:

NUM_ARTICULATION_POINTS
indicates the number of articulation points found. This term appears only for biconnected components.

NUM_CLIQUES
indicates the number of cliques found. This term appears only for clique.

NUM_COMPONENTS
indicates the number of components that match the definitions of the corresponding problem class.
This term appears only for connected components and biconnected components.

NUM_CYCLES
indicates the number of cycles found that satisfy the criteria you provide. This term appears only for
cycles.

Examples: Network Solver

Example 9.1: Articulation Points in a Terrorist Network
This example considers the terrorist communications network from the attacks on the United States on
September 11, 2001, described in Krebs 2002. Figure 9.77 shows this network, which was constructed after
the attacks, based on collected intelligence information.
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Figure 9.77 Terrorist Communications Network from 9/11
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The full network data include 153 links. The following statements show a small subset to illustrate the use of
the BICONNECTEDCOMPONENTS option in this context:

data LinkSetInTerror911;
input from & $32. to & $32.;
datalines;

Abu Zubeida Djamal Beghal
Jean-Marc Grandvisir Djamal Beghal
Nizar Trabelsi Djamal Beghal
Abu Walid Djamal Beghal
Abu Qatada Djamal Beghal
Zacarias Moussaoui Djamal Beghal
Jerome Courtaillier Djamal Beghal
Kamel Daoudi Djamal Beghal
Abu Walid Kamel Daoudi
Abu Walid Abu Qatada
Kamel Daoudi Zacarias Moussaoui
Kamel Daoudi Jerome Courtaillier
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... more lines ...

Nawaf Alhazmi Khalid Al-Mihdhar
Osama Awadallah Khalid Al-Mihdhar
Abdussattar Shaikh Khalid Al-Mihdhar
Abdussattar Shaikh Osama Awadallah
;

Suppose that this communications network had been discovered before the attack on 9/11. If the investigators’
goal was to disrupt the flow of communication between different groups within the organization, then they
would want to focus on the people who are articulation points in the network.

To find the articulation points, use the following statements:

proc optmodel;
set<str,str> LINKS;
read data LinkSetInTerror911 into LINKS=[from to];
set NODES = union{<i,j> in LINKS} {i,j};
set<str> ARTPOINTS;

solve with NETWORK /
links = (include=LINKS)
biconcomp
out = (artpoints=ARTPOINTS)

;

put ARTPOINTS;
create data ArtPoints from [node]=ARTPOINTS artpoint=1;

quit;

The data set ArtPoints contains members of the network who are articulation points. Focusing investigations
on cutting off these particular members could have caused a great deal of disruption in the terrorists’ ability
to communicate when formulating the attack.

Output 9.1.1 Articulation Points of Terrorist Communications Network from 9/11

node artpoint

Djamal Beghal 1

Zacarias Moussaoui 1

Essid Sami Ben Khemais 1

Mohamed Atta 1

Mamoun Darkazanli 1

Nawaf Alhazmi 1

Example 9.2: Cycle Detection for Kidney Donor Exchange
This example looks at an application of cycle detection to help create a kidney donor exchange. Suppose
someone needs a kidney transplant and a family member is willing to donate one. If the donor and recipient
are incompatible (because of blood types, tissue mismatch, and so on), the transplant cannot happen. Now
suppose two donor-recipient pairs i and j are in this situation, but donor i is compatible with recipient j
and donor j is compatible with recipient i. Then two transplants can take place in a two-way swap, shown
graphically in Figure 9.78. More generally, an n-way swap can be performed involving n donors and n
recipients (Willingham 2009).
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Figure 9.78 Kidney Donor Exchange Two-Way Swap
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To model this problem, define a directed graph as follows. Each node is an incompatible donor-recipient
pair. Link .i; j / exists if the donor from node i is compatible with the recipient from node j, as shown in
Figure 9.79. The link weight is a measure of the quality of the match. By introducing dummy links whose
weight is 0, you can also include altruistic donors who have no recipients or recipients who have no donors.
The idea is to find a maximum-weight node-disjoint union of directed cycles. You want the union to be
node-disjoint so that no kidney is donated more than once, and you want cycles so that the donor from node i
donates a kidney if and only if the recipient from node i receives a kidney.

Without any other constraints, the problem could be solved as a linear assignment problem, as described in
the section “Linear Assignment (Matching)” on page 413. But doing so would allow arbitrarily long cycles
in the solution. Because of practical considerations (such as travel) and to mitigate risk, each cycle must have
no more than L links. The kidney exchange problem is to find a maximum-weight node-disjoint union of
short directed cycles.

One way to solve this problem is to explicitly generate all cycles whose length is at most L and then solve
a set packing problem. You can use PROC OPTMODEL to generate the cycles, formulate the set packing
problem, call the mixed integer linear programming solver, and output the optimal solution.

The following DATA step sets up the problem, first creating a random graph on n nodes with link probability
p and Uniform(0,1) weight:

/* create random graph on n nodes with arc probability p
and uniform(0,1) weight */

%let n = 100;
%let p = 0.02;
data LinkSetIn;

call streaminit(1);
do from = 0 to &n - 1;

do to = 0 to &n - 1;
if from eq to then continue;
else if rand('UNIFORM') < &p then do;

weight = rand('UNIFORM');
output;

end;
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end;
end;

run;

The following statements declare parameters and then read the input data:

%let max_length = 10;
proc optmodel;

/* declare index sets and parameters, and read data */
set <num,num> ARCS;
num weight {ARCS};
read data LinkSetIn into ARCS=[from to] weight;
set<num,num,num> ID_ORDER_NODE;

The following statements use the network solver to generate all cycles whose length is greater than or equal
to 2 and less than or equal to 10:

/* generate all cycles with 2 <= length <= max_length */
solve with NETWORK /

loglevel = moderate
graph_direction = directed
links = (include=ARCS)
cycle = (maxcycles=all minlength=2 maxlength=&max_length)
out = (cycles=ID_ORDER_NODE)

;

The network solver finds 395 cycles of the appropriate length, as shown in Output 9.2.1.

Output 9.2.1 Cycles for Kidney Donor Exchange Network Solver Log

NOTE: There were 208 observations read from the data set WORK.LINKSETIN.        
NOTE: The number of nodes in the input graph is 98.                             
NOTE: The number of links in the input graph is 208.                            
NOTE: The network solver is called.                                             
NOTE: Processing cycle detection using 4 threads.                               
NOTE: Processing cycle detection using the build algorithm.                     
NOTE: The algorithm found 395 cycles.                                           
NOTE: Processing cycle detection used 0.00 (cpu: 0.00) seconds.                 

From the resulting set ID_ORDER_NODE, use the following statements to convert to one tuple per cycle-arc
combination:

/* extract <cid,from,to> triples from <cid,order,node> triples */
set <num,num,num> ID_FROM_TO init {};
num last init ., from, to;
for {<cid,order,node> in ID_ORDER_NODE} do;

from = last;
to = node;
last = to;
if order ne 1 then ID_FROM_TO = ID_FROM_TO union {<cid,from,to>};

end;

Given the set of cycles, you can now formulate a mixed integer linear program (MILP) to maximize the total
cycle weight. Let C be the set of cycles of appropriate length, Nc be the set of nodes in cycle c, Ac be the set
of links in cycle c, and wij be the link weight for link .i; j /. Define a binary decision variable xc . Set xc to 1
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if cycle c is used in the solution; otherwise, set it to 0. Then, the following MILP defines the problem that
you want to solve (to maximize the quality of the kidney exchange):

maximize
X
c2C

0@ X
.i;j /2Ac

wij

1A xc
subject to

X
c2C Wi2Nc

xc � 1 i 2 N .incomp_pair/

xc 2 f0; 1g c 2 C

The constraint (incomp_pair) ensures that each node (incompatible pair) in the graph is intersected at most
once. That is, a donor can donate a kidney only once. You can use PROC OPTMODEL to solve this mixed
integer linear programming problem as follows:

/* solve set packing problem to find maximum weight node-disjoint union
of short directed cycles */

set CYCLES = setof {<c,i,j> in ID_FROM_TO} c;
set ARCS_c {c in CYCLES} = setof {<(c),i,j> in ID_FROM_TO} <i,j>;
set NODES_c {c in CYCLES} = union {<i,j> in ARCS_c[c]} {i,j};
set NODES = union {c in CYCLES} NODES_c[c];
num cycle_weight {c in CYCLES} = sum {<i,j> in ARCS_c[c]} weight[i,j];

/* UseCycle[c] = 1 if cycle c is used, 0 otherwise */
var UseCycle {CYCLES} binary;

/* declare objective */
max TotalWeight

= sum {c in CYCLES} cycle_weight[c] * UseCycle[c];

/* each node appears in at most one cycle */
con node_packing {i in NODES}:

sum {c in CYCLES: i in NODES_c[c]} UseCycle[c] <= 1;

/* call solver */
solve with milp;

/* output optimal solution */
create data Solution from [c]={c in CYCLES: UseCycle[c].sol > 0.5}

cycle_weight;
quit;
%put &_OROPTMODEL_;

PROC OPTMODEL solves the problem by using the mixed integer linear programming solver. As shown in
Output 9.2.2, it was able to find a total weight (quality level) of 24.85.
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Output 9.2.2 Cycles for Kidney Donor Exchange MILP Solver Log

NOTE: Problem generation will use 4 threads.                                    
NOTE: The problem has 395 variables (0 free, 0 fixed).                          
NOTE: The problem has 395 binary and 0 integer variables.                       
NOTE: The problem has 64 linear constraints (64 LE, 0 EQ, 0 GE, 0 range).       
NOTE: The problem has 3431 linear constraint coefficients.                      
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).      
NOTE: The MILP presolver value AUTOMATIC is applied.                            
NOTE: The MILP presolver removed 125 variables and 30 constraints.              
NOTE: The MILP presolver removed 1669 constraint coefficients.                  
NOTE: The MILP presolver modified 0 constraint coefficients.                    
NOTE: The presolved problem has 270 variables, 34 constraints, and 1762         
      constraint coefficients.                                                  
NOTE: The MILP solver is called.                                                
NOTE: The parallel Branch and Cut algorithm is used.                            
NOTE: The Branch and Cut algorithm is using up to 4 threads.                    
          Node   Active   Sols    BestInteger      BestBound      Gap    Time   
             0        1      3     20.6710373   1147.4221881   98.20%       0   
             0        1      3     20.6710373     25.4194215   18.68%       0   
             0        1      3     20.6710373     25.2577476   18.16%       0   
             0        1      3     20.6710373     25.0811160   17.58%       0   
             0        1      3     20.6710373     25.0320888   17.42%       0   
             0        1      4     24.8508554     24.8508554    0.00%       0   
             0        0      4     24.8508554     24.8508554    0.00%       0   
NOTE: The MILP solver added 14 cuts with 1220 cut coefficients at the root.     
NOTE: Optimal.                                                                  
NOTE: Objective = 24.850855395.                                                 
NOTE: The data set WORK.SOLUTION has 7 observations and 2 variables.            
STATUS=OK ALGORITHM=BAC SOLUTION_STATUS=OPTIMAL OBJECTIVE=24.850855395          
RELATIVE_GAP=0 ABSOLUTE_GAP=0 PRIMAL_INFEASIBILITY=3.330669E-15                 
BOUND_INFEASIBILITY=3.330669E-15 INTEGER_INFEASIBILITY=5.551115E-15             
BEST_BOUND=24.850855395 NODES=1 ITERATIONS=124 PRESOLVE_TIME=0.01               
SOLUTION_TIME=0.03                                                              

The data set Solution, shown in Output 9.2.3, now contains the cycles that define the best exchange and their
associated weight (quality).

Output 9.2.3 Maximum Quality Solution for Kidney Donor Exchange

c cycle_weight

29 4.35416

117 4.97483

213 4.34026

274 5.08435

289 1.72530

294 2.42954

388 1.94241
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Example 9.3: Linear Assignment Problem for Minimizing Relay Times
A swimming coach needs to assign male and female swimmers to each leg of a medley relay team; each
swimmer in the relay uses a different stroke (backstroke, breaststroke, butterfly, or freestyle). The swimmers’
best times for each stroke are stored in a SAS data set. The LINEARASSIGNMENT option evaluates the
times and matches strokes and swimmers to find the lowest relay time.

The data are stored in matrix format, where the row identifier is the swimmer’s name (variable name) and
each swimming stroke is a column (variables back, breast, fly, and free). In the following DATA step, the
relay times are split into two categories, male (M) and female (F):

data RelayTimes;
input name $ sex $ back breast fly free;
datalines;

Sue F 35.1 36.7 28.3 36.1
Karen F 34.6 32.6 26.9 26.2
Jan F 31.3 33.9 27.1 31.2
Andrea F 28.6 34.1 29.1 30.3
Carol F 32.9 32.2 26.6 24.0
Ellen F 27.8 32.5 27.8 27.0
Jim M 26.3 27.6 23.5 22.4
Mike M 29.0 24.0 27.9 25.4
Sam M 27.2 33.8 25.2 24.1
Clayton M 27.0 29.2 23.0 21.9
;

The following statements solve the linear assignment problem for both male and female relay teams:

proc contents data=RelayTimes
out=stroke_data(rename=(name=stroke) where=(type=1));

run;

proc optmodel;
set <str> STROKES;
read data stroke_data into STROKES=[stroke];
set <str> SWIMMERS;
str sex {SWIMMERS};
num time {SWIMMERS, STROKES};
read data RelayTimes into SWIMMERS=[name] sex

{stroke in STROKES} <time[name,stroke]=col(stroke)>;
set FEMALES = {i in SWIMMERS: sex[i] = 'F'};
set FNODES = FEMALES union STROKES;
set MALES = {i in SWIMMERS: sex[i] = 'M'};
set MNODES = MALES union STROKES;
set <str,str> PAIRS;

solve with NETWORK /
graph_direction = directed
links = (weight=time)
subgraph = (nodes=FNODES)
lap
out = (assignments=PAIRS)

;
put PAIRS;
create data LinearAssignF from [name assign]=PAIRS sex[name] cost=time;
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solve with NETWORK /
graph_direction = directed
links = (weight=time)
subgraph = (nodes=MNODES)
lap
out = (assignments=PAIRS)

;
put PAIRS;
create data LinearAssignM from [name assign]=PAIRS sex[name] cost=time;

quit;

The progress of the two SOLVE WITH NETWORK calls is shown in Output 9.3.1.

Output 9.3.1 Network Solver Log: Linear Assignment for Swim Times

NOTE: The data set WORK.STROKE_DATA has 4 observations and 41 variables.        

NOTE: There were 4 observations read from the data set WORK.STROKE_DATA.        

NOTE: There were 10 observations read from the data set WORK.RELAYTIMES.        

NOTE: The SUBGRAPH= option filtered 16 elements from 'time.'                    

NOTE: The number of nodes in the input graph is 10.                             

NOTE: The number of links in the input graph is 24.                             

NOTE: The network solver is called.                                             

NOTE: Processing the linear assignment problem.                                 

NOTE: Objective = 111.5.                                                        

NOTE: Processing the linear assignment problem used 0.00 (cpu: 0.00) seconds.   

{<'Karen','breast'>,<'Jan','fly'>,<'Carol','free'>,<'Ellen','back'>}            

NOTE: The data set WORK.LINEARASSIGNF has 4 observations and 4 variables.       

NOTE: The SUBGRAPH= option filtered 24 elements from 'time.'                    

NOTE: The number of nodes in the input graph is 8.                              

NOTE: The number of links in the input graph is 16.                             

NOTE: The network solver is called.                                             

NOTE: Processing the linear assignment problem.                                 

NOTE: Objective = 96.6.                                                         

NOTE: Processing the linear assignment problem used 0.00 (cpu: 0.00) seconds.   

{<'Jim','free'>,<'Mike','breast'>,<'Sam','back'>,<'Clayton','fly'>}             

NOTE: The data set WORK.LINEARASSIGNM has 4 observations and 4 variables.       

The data sets LinearAssignF and LinearAssignM contain the optimal assignments. Note that in the case of the
female data, there are more people (set S) than there are strokes (set T). Therefore, the solver allows for some
members of S to remain unassigned.

Output 9.3.2 Optimal Assignments for Best Female Swim Times

name assign sex cost

Karen breast F 32.6

Jan fly F 27.1

Carol free F 24.0

Ellen back F 27.8

111.5
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Output 9.3.3 Optimal Assignments for Best Male Swim Times

name assign sex cost

Jim free M 22.4

Mike breast M 24.0

Sam back M 27.2

Clayton fly M 23.0

96.6

Example 9.4: Linear Assignment Problem, Sparse Format versus Dense
Format

This example looks at the problem of assigning swimmers to legs of a medley relay based on their best stroke
times. Certain swimmers are not eligible to perform certain strokes, because they do not excel at these strokes.
A missing (.) value in the data matrix identifies an ineligible assignment. For example:

data RelayTimesMatrix;
input name $ sex $ back breast fly free;
datalines;

Sue F . 36.7 28.3 36.1
Karen F 34.6 . . 26.2
Jan F 31.3 . 27.1 .
Andrea F 28.6 . 29.1 .
Carol F 32.9 . 26.6 .
;

The linear assignment problem can also be interpreted as the minimum-weight matching in a bipartite directed
graph. The eligible assignments define links between the rows (swimmers) and the columns (strokes), as in
Figure 9.80.
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Figure 9.80 Bipartite Graph for Linear Assignment Problem
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You can represent the same data in RelayTimesMatrix by using a links data set as follows:

data RelayTimesLinks;
input name $ attr $ cost;
datalines;

Sue breast 36.7
Sue fly 28.3
Sue free 36.1
Karen back 34.6
Karen free 26.2
Jan back 31.3
Jan fly 27.1
Andrea back 28.6
Andrea fly 29.1
Carol back 32.9
Carol fly 26.6
;

This graph must be bipartite (such that S and T are disjoint). If it is not, the network solver returns an error.

Now, you can use either input format to solve the same problem, as follows:
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proc contents data=RelayTimesMatrix
out=stroke_data(rename=(name=stroke) where=(type=1));

run;

proc optmodel;
set <str> STROKES;
read data stroke_data into STROKES=[stroke];
set <str> SWIMMERS;
str sex {SWIMMERS};
num time {SWIMMERS, STROKES};
read data RelayTimesMatrix into SWIMMERS=[name]

sex
{stroke in STROKES} <time[name,stroke]=col(stroke)>;

set SWIMMERS_STROKES =
{name in SWIMMERS, stroke in STROKES: time[name,stroke] ne .};

set <str,str> PAIRS;

solve with NETWORK /
graph_direction = directed
links = (weight=time)
subgraph = (links=SWIMMERS_STROKES)
lap
out = (assignments=PAIRS)

;

put PAIRS;
create data LinearAssignMatrix from [name assign]=PAIRS

sex[name] cost=time;
quit;

proc sql;
create table stroke_data as
select distinct attr as stroke
from RelayTimesLinks;

quit;

proc optmodel;
set <str> STROKES;
read data stroke_data into STROKES=[stroke];
set <str> SWIMMERS;
str sex {SWIMMERS};
set <str,str> SWIMMERS_STROKES;
num time {SWIMMERS_STROKES};
read data RelayTimesLinks into SWIMMERS_STROKES=[name attr] time=cost;
set <str,str> PAIRS;

solve with NETWORK /
graph_direction = directed
links = (weight=time)
lap
out = (assignments=PAIRS)

;
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put PAIRS;
create data LinearAssignLinks from [name attr]=PAIRS cost=time;

quit;

The data sets LinearAssignMatrix and LinearAssignLinks now contain the optimal assignments, as shown in
Output 9.4.1 and Output 9.4.2.

Output 9.4.1 Optimal Assignments for Swim Times (Dense Input)

name assign sex cost

Sue breast F 36.7

Karen free F 26.2

Andrea back F 28.6

Carol fly F 26.6

118.1

Output 9.4.2 Optimal Assignments for Swim Times (Sparse Input)

name attr cost

Sue breast 36.7

Karen free 26.2

Andrea back 28.6

Carol fly 26.6

118.1

The optimal assignments are shown graphically in Figure 9.81.
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Figure 9.81 Optimal Assignments for Swim Times
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For large problems where a number of links are forbidden, the sparse format can be faster and can save a
great deal of memory. Consider an example that uses the dense format with 15,000 columns (jS j D 15; 000)
and 4,000 rows (jT j D 4; 000). To store the dense matrix in memory, the network solver needs to allocate
approximately jS j � jT j � 8=1024=1024 D 457 MB. If the data have mostly ineligible links, then the sparse
(graph) format is much more efficient with respect to memory. For example, if the data have only 5% of the
eligible links (15; 000 � 4; 000 � 0:05 D 3; 000; 000), then the dense storage would still need 457 MB. The
sparse storage for the same example needs approximately jS j � jT j � 0:05 � 12=1024=1024 D 34 MB. If the
problem is fully dense (all links are eligible), then the dense format is more efficient.

Example 9.5: Minimum Spanning Tree for Computer Network Topology
Consider the problem of designing a small network of computers in an office. In designing the network, the
goal is to make sure that each machine in the office can reach every other machine. To accomplish this goal,
Ethernet lines must be constructed and run between the machines. The construction costs for each possible
link are based approximately on distance and are shown in Figure 9.82. Besides distance, the costs also
reflect some restrictions due to physical boundaries. To connect all the machines in the office at minimal cost,
you need to find a minimum spanning tree on the network of possible links.
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Figure 9.82 Potential Office Computer Network
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Define the link data set as follows:

data LinkSetInCompNet;
input from $ to $ weight @@;
datalines;

A B 1.0 A C 1.0 A D 1.5 B C 2.0 B D 4.0
B E 3.0 C D 3.0 C F 3.0 C H 4.0 D E 1.5
D F 3.0 D G 4.0 E F 1.0 E G 1.0 F G 2.0
F H 4.0 H I 1.0 I J 1.0
;

The following statements find a minimum spanning tree:

proc optmodel;
set<str,str> LINKS;
num weight{LINKS};
read data LinkSetInCompNet into LINKS=[from to] weight;
set<str,str> FOREST;

solve with NETWORK /
links = (weight=weight)
minspantree
out = (forest=FOREST)

;

put FOREST;
put (sum {<i,j> in FOREST} weight[i,j]);
create data MinSpanTree from [from to]=FOREST weight;

quit;



Example 9.6: Transitive Closure for Identification of Circular Dependencies F 467

Output 9.5.1 shows the resulting data set MinSpanTree, which is displayed graphically in Figure 9.83 with
the minimal cost links shown in green.

Figure 9.83 Minimum Spanning Tree for Office Computer Network
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Output 9.5.1 Minimum Spanning Tree of a Computer Network Topology

from to weight

I J 1.0

A C 1.0

E F 1.0

E G 1.0

H I 1.0

A B 1.0

D E 1.5

A D 1.5

C H 4.0

13.0

Example 9.6: Transitive Closure for Identification of Circular Dependencies in
a Bug Tracking System

Most software bug tracking systems have some notion of duplicate bugs in which one bug is declared to be
the same as another bug. If bug A is considered a duplicate (DUP) of bug B, then a fix for B would also fix A.
You can represent the DUPs in a bug tracking system as a directed graph where you add a link A! B if A is
a DUP of B.

The bug tracking system needs to check for two situations when users declare a bug to be a DUP. The first
situation is called a circular dependence. Consider bugs A, B, C, and D in the tracking system. The first user
declares that A is a DUP of B and that C is a DUP of D. Then, a second user declares that B is a DUP of C,
and a third user declares that D is a DUP of A. You now have a circular dependence, and no primary bug is
defined on which the development team should focus. You can easily see this circular dependence in the
graph representation, because A! B ! C ! D ! A. Finding such circular dependencies can be done
using cycle detection, which is described in the section “Cycle” on page 407. However, the second situation
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that needs to be checked is more general. If a user declares that A is a DUP of B and another user declares
that B is a DUP of C, this chain of duplicates is already an issue. The bug tracking system needs to provide
one primary bug to which the rest of the bugs are duplicated. The existence of these chains can be identified
by calculating the transitive closure of the directed graph that is defined by the DUP links.

Given the original directed graph G (defined by the DUP links) and its transitive closure GT , any link in GT

that is not in G exists because of some chain that is present in G.

Consider the following data that define some duplicated bugs (called defects) in a small sample of the bug
tracking system:

data DefectLinks;
input defectId $ linkedDefect $ linkType $ when datetime16.;
format when datetime16.;
datalines;

D0096978 S0711218 DUPTO 20OCT10:00:00:00
S0152674 S0153280 DUPTO 30MAY02:00:00:00
S0153280 S0153307 DUPTO 30MAY02:00:00:00
S0153307 S0152674 DUPTO 30MAY02:00:00:00
S0162973 S0162978 DUPTO 29NOV10:16:13:16
S0162978 S0165405 DUPTO 29NOV10:16:13:16
S0325026 S0575748 DUPTO 01JUN10:00:00:00
S0347945 S0346582 DUPTO 03MAR06:00:00:00
S0350596 S0346582 DUPTO 21MAR06:00:00:00
S0539744 S0643230 DUPTO 10MAY10:00:00:00
S0575748 S0643230 DUPTO 15JUN10:00:00:00
S0629984 S0643230 DUPTO 01JUN10:00:00:00
;

The following statements calculate cycles in addition to the transitive closure of the graph G that is defined
by the duplicated defects in DefectLinks. The output data set Cycles contains any circular dependencies, and
the data set TransClosure contains the transitive closure GT . To identify the chains, you can use PROC SQL
to identify the links in GT that are not in G.

proc optmodel;
set<str,str> LINKS;
read data DefectLinks into LINKS=[defectId linkedDefect];
set<num,num,str> CYCLES;
set<str,str> CLOSURE;

solve with NETWORK /
loglevel = moderate
graph_direction = directed
links = (include=LINKS)
cycle = (maxcycles=1)
out = (cycles=CYCLES)

;

put CYCLES;
create data Cycles from [cycle order node]=CYCLES;
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solve with NETWORK /
loglevel = moderate
graph_direction = directed
links = (include=LINKS)
transitive_closure
out = (closure=CLOSURE)

;

put CLOSURE;
create data TransClosure from [defectId linkedDefect]=CLOSURE;

quit;

proc sql;
create table Chains as
select defectId, linkedDefect from TransClosure

except
select defectId, linkedDefect from DefectLinks;

quit;

The progress of the procedure is shown in Output 9.6.1.

Output 9.6.1 Network Solver Log: Transitive Closure for Identification of Circular Dependencies in a Bug
Tracking System

NOTE: There were 12 observations read from the data set WORK.DEFECTLINKS.       

NOTE: The number of nodes in the input graph is 16.                             

NOTE: The number of links in the input graph is 12.                             

NOTE: The network solver is called.                                             

NOTE: Processing cycle detection.                                               

NOTE: Processing cycle detection using the backtrack algorithm.                 

NOTE: Required number of cycles found. You can increase this value using the    

      MAXCYCLES= option.                                                        

NOTE: The algorithm found 1 cycles.                                             

NOTE: Processing cycle detection used 0.00 (cpu: 0.00) seconds.                 

{<1,1,'S0152674'>,<1,2,'S0153280'>,<1,3,'S0153307'>,<1,4,'S0152674'>}           

NOTE: The data set WORK.CYCLES has 4 observations and 3 variables.              

NOTE: The number of nodes in the input graph is 16.                             

NOTE: The number of links in the input graph is 12.                             

NOTE: The network solver is called.                                             

NOTE: Processing the transitive closure.                                        

NOTE: Processing the transitive closure used 0.00 (cpu: 0.00) seconds.          

{<'D0096978','S0711218'>,<'S0152674','S0153280'>,<'S0153280','S0153307'>,<      

'S0153307','S0152674'>,<'S0162973','S0162978'>,<'S0162978','S0165405'>,<        

'S0325026','S0575748'>,<'S0347945','S0346582'>,<'S0350596','S0346582'>,<        

'S0539744','S0643230'>,<'S0575748','S0643230'>,<'S0629984','S0643230'>,<        

'S0153280','S0152674'>,<'S0162973','S0165405'>,<'S0325026','S0643230'>,<        

'S0153307','S0153280'>,<'S0153280','S0153280'>,<'S0152674','S0152674'>,<        

'S0152674','S0153307'>,<'S0153307','S0153307'>}                                 

NOTE: The data set WORK.TRANSCLOSURE has 20 observations and 2 variables.       

NOTE: Table WORK.CHAINS created, with 8 rows and 2 columns.                     
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The data set Cycles contains one case of a circular dependence in which the DUPs start and end at S0152674.

Output 9.6.2 Cycle in Bug Tracking System

cycle order node

1 1 S0152674

1 2 S0153280

1 3 S0153307

1 4 S0152674

The data set Chains contains the chains in the bug tracking system that come from the links in GT that are
not in G.

Output 9.6.3 Chains in Bug Tracking System

defectId linkedDefect

S0152674 S0152674

S0152674 S0153307

S0153280 S0152674

S0153280 S0153280

S0153307 S0153280

S0153307 S0153307

S0162973 S0165405

S0325026 S0643230

Example 9.7: Traveling Salesman Tour of US Capital Cities
Consider a cross-country trip where you want to travel the fewest miles to visit all the capital cities in all US
states (and the District of Columbia) except Alaska and Hawaii. Finding the optimal route is an instance of
the traveling salesman problem, which is described in the section “Traveling Salesman Problem” on page 442.

The following PROC SQL statements use the built-in data set mapsgfk.uscity to generate a list of the capital
cities and their latitude and longitude:

/* get a list of the state capitals (with lat and long) */
proc sql;

create table Cities as
select unique statecode as state, city, lat, long

from mapsgfk.uscity
where capital='Y' and statecode not in ('AK' 'PR' 'HI');

quit;
data Cities;

set Cities;
if city='Nashville-Davidson' then city='Nashville';
city = trim(city) || ", " || state;

run;

From this list, you can generate a links data set, CitiesDist, that contains the distances (in miles) between
each pair of cities. The distances are calculated by using the SAS function GEODIST.
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/* create a list of all the possible pairs of cities */
proc sql;

create table CitiesDist as
select

a.city as city1, a.lat as lat1, a.long as long1,
b.city as city2, b.lat as lat2, b.long as long2,
geodist(lat1, long1, lat2, long2, 'DM') as distance
from Cities as a, Cities as b
where a.city < b.city;

quit;

The following PROC OPTMODEL statements find the optimal tour of all the capital cities:

/* find optimal tour by using the network solver */
proc optmodel;

set<str,str> CAPPAIRS;
set<str> CAPITALS = union {<i,j> in CAPPAIRS} {i,j};
num distance{i in CAPITALS, j in CAPITALS: i < j};
read data CitiesDist into CAPPAIRS=[city1 city2] distance;
set<str,str> TOUR;
num order{CAPITALS};

solve with NETWORK /
loglevel = moderate
links = (weight=distance)
tsp
out = (order=order tour=TOUR)

;

put (sum{<i,j> in TOUR} distance[i,j]);
/* create tour-ordered pairs (rather than input-ordered pairs) */
str CAPbyOrder{1..card(CAPITALS)};
for {i in CAPITALS} CAPbyOrder[order[i]] = i;
set TSPEDGES init

setof{i in 2..card(CAPITALS)} <CAPbyOrder[i-1],CAPbyOrder[i]>
union {<CAPbyOrder[card(CAPITALS)],CAPbyOrder[1]>};

num distance2{<i,j> in TSPEDGES} =
if i < j then distance[i,j] else distance[j,i];

create data TSPTourNodes from [node] tsp_order=order;
create data TSPTourLinks from [city1 city2]=TSPEDGES distance=distance2;

quit;
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The progress of the procedure is shown in Output 9.7.1. The total mileage that is needed to optimally tour the
capital cities is 10,634.56 miles.

Output 9.7.1 Network Solver Log: Traveling Salesman Tour of US Capital Cities

NOTE: There were 1176 observations read from the data set WORK.CITIESDIST.      

NOTE: The number of nodes in the input graph is 49.                             

NOTE: The number of links in the input graph is 1176.                           

NOTE: The network solver is called.                                             

NOTE: Processing the traveling salesman problem.                                

NOTE: The initial TSP heuristics found a tour with cost 10634.55864 using 0.05  

      (cpu: 0.05) seconds.                                                      

NOTE: The MILP presolver value NONE is applied.                                 

NOTE: The MILP solver is called.                                                

NOTE: The Branch and Cut algorithm is used.                                     

          Node   Active   Sols    BestInteger      BestBound      Gap    Time   

             0        1      1  10634.5586396  10054.6847818    5.77%       0   

             0        1      1  10634.5586396  10256.2184934    3.69%       0   

             0        1      1  10634.5586396  10278.5431514    3.46%       0   

             0        1      1  10634.5586396  10283.0873973    3.42%       0   

             0        1      1  10634.5586396  10289.7757357    3.35%       0   

             0        1      1  10634.5586396  10299.6797133    3.25%       0   

             0        1      1  10634.5586396  10354.3869100    2.71%       0   

             0        1      1  10634.5586396  10360.6409912    2.64%       0   

             0        1      1  10634.5586396  10365.2194331    2.60%       0   

             0        1      1  10634.5586396  10391.0855453    2.34%       0   

             0        1      1  10634.5586396  10490.9447210    1.37%       0   

             0        1      1  10634.5586396  10529.9406250    0.99%       0   

             0        1      1  10634.5586396  10576.8888997    0.55%       0   

             0        1      1  10634.5586396  10624.8114193    0.09%       0   

             0        1      1  10634.5586396  10625.8115641    0.08%       0   

             0        1      2  10634.5586396  10634.5586396    0.00%       0   

             0        0      2  10634.5586396  10634.5586396    0.00%       0   

NOTE: The MILP solver added 16 cuts with 5417 cut coefficients at the root.     

NOTE: Optimal.                                                                  

NOTE: Objective = 10634.55864.                                                  

NOTE: Processing the traveling salesman problem used 0.06 (cpu: 0.06) seconds.  

10634.55864                                                                     

NOTE: The data set WORK.TSPTOURNODES has 49 observations and 2 variables.       

NOTE: The data set WORK.TSPTOURLINKS has 49 observations and 3 variables.       

The following PROC GPROJECT and PROC GMAP statements produce a graphical display of the solution:

/* merge latitude and longitude */
proc sql;

/* merge in the lat & long for city1 */
create table TSPTourLinksAnno1 as
select unique TSPTourLinks.*, cities.lat as lat1, cities.long as long1

from TSPTourLinks left join cities
on TSPTourLinks.city1=cities.city;

/* merge in the lat & long for city2 */
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create table TSPTourLinksAnno2 as
select unique TSPTourLinksAnno1.*, cities.lat as lat2, cities.long as long2

from TSPTourLinksAnno1 left join cities
on TSPTourLinksAnno1.city2=cities.city;

quit;

/* create the annotated data set to draw the path on the map */
data anno_path;

set TSPTourLinksAnno2;
length function color $8;
xsys='2'; ysys='2'; hsys='3'; when='a'; anno_flag=1;
function='move';
long = long1;
lat = lat1;
output;
function='draw';
color='blue'; size=0.8;
long = long2;
lat = lat2;
output;

run;

/* get a map of only the contiguous 48 states */
data states;

set mapsgfk.us_states (where=(statecode not in ('HI' 'AK' 'PR')));
run;

data combined;
set states anno_path;

run;

/* project the map and annotate the data */
proc gproject data=combined out=combined eastlong latlong degrees dupok;

id state;
run;

data states anno_path;
set combined;
if anno_flag=1 then output anno_path;
else output states;

run;

/* get a list of the endpoints locations */
proc sql;

create table anno_dots as
select unique x, y from anno_path;

quit;

/* create the final annotate data set */
data anno_dots;

set anno_dots;
length function color $8;
xsys='2'; ysys='2'; when='a'; hsys='3';
function='pie';
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rotate=360; size=0.8; style='psolid'; color="red";
output;
style='pempty'; color="black";
output;

run;

/* generate the map with GMAP */
pattern1 v=s c=cxccffcc repeat=100;
proc gmap data=states map=states anno=anno_path all;

id state;
choro state / levels=1 nolegend coutline=black

anno=anno_dots des='' name="tsp";
run;

The minimal cost tour through the capital cities is shown on the US map in Output 9.7.2.

Output 9.7.2 Optimal Traveling Salesman Tour of US Capital Cities

The data set TSPTourLinks contains the links in the optimal tour. To display the links in the order in which
they are to be visited, you can use the following DATA step:

/* create the directed optimal tour */
data TSPTourLinksDirected(drop=next);

set TSPTourLinks;
retain next;
if _N_ ne 1 and city1 ne next then do;

city2 = city1;
city1 = next;

end;
next = city2;

run;

The data set TSPTourLinksDirected is shown in Figure 9.84.
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Figure 9.84 Links in the Optimal Traveling Salesman Tour

city1 city2 distance

Montgomery, AL Tallahassee, FL 178.61

Tallahassee, FL Columbia, SC 310.51

Columbia, SC Raleigh, NC 182.88

Raleigh, NC Richmond, VA 139.23

Richmond, VA Washington, DC 95.37

Washington, DC Annapolis, MD 29.88

Annapolis, MD Dover, DE 53.51

Dover, DE Trenton, NJ 84.11

Trenton, NJ Hartford, CT 151.57

Hartford, CT Providence, RI 65.85

Providence, RI Boston, MA 41.12

Boston, MA Concord, NH 63.50

Concord, NH Augusta, ME 116.35

Augusta, ME Montpelier, VT 138.74

Montpelier, VT Albany, NY 125.89

Albany, NY Harrisburg, PA 230.93

Harrisburg, PA Charleston, WV 286.99

Charleston, WV Columbus, OH 133.22

Columbus, OH Lansing, MI 207.72

Lansing, MI Madison, WI 247.04

Madison, WI Saint Paul, MN 224.82

Saint Paul, MN Bismarck, ND 392.57

Bismarck, ND Pierre, SD 169.85

Pierre, SD Cheyenne, WY 318.32

Cheyenne, WY Denver, CO 97.06

city1 city2 distance

Denver, CO Salt Lake City, UT 371.82

Salt Lake City, UT Helena, MT 402.78

Helena, MT Boise, ID 289.56

Boise, ID Olympia, WA 402.79

Olympia, WA Salem, OR 144.87

Salem, OR Sacramento, CA 446.26

Sacramento, CA Carson City, NV 101.43

Carson City, NV Phoenix, AZ 582.48

Phoenix, AZ Santa Fe, NM 382.38

Santa Fe, NM Oklahoma City, OK 474.50

Oklahoma City, OK Austin, TX 358.70

Austin, TX Baton Rouge, LA 393.80

Baton Rouge, LA Jackson, MS 139.66

Jackson, MS Little Rock, AR 207.92

Little Rock, AR Jefferson City, MO 264.25

Jefferson City, MO Topeka, KS 191.94

Topeka, KS Lincoln, NE 131.80

Lincoln, NE Des Moines, IA 168.70

Des Moines, IA Springfield, IL 242.44

Springfield, IL Indianapolis, IN 185.57

Indianapolis, IN Frankfort, KY 128.38

Frankfort, KY Nashville, TN 175.56

Nashville, TN Atlanta, GA 215.10

Atlanta, GA Montgomery, AL 146.26

10,634.56
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