
SAS/OR® 14.2 User’s Guide:
Mathematical Programming
The Decomposition
Algorithm

This document is an individual chapter from SAS/OR® 14.2 User’s Guide: Mathematical Programming.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2016. SAS/OR® 14.2 User’s Guide: Mathematical
Programming. Cary, NC: SAS Institute Inc.

SAS/OR® 14.2 User’s Guide: Mathematical Programming

Copyright © 2016, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute
Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time
you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is
illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic
piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software
developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or
disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as
applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S.
federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision
serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The
Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

November 2016

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SAS software may be provided with certain third-party software, including but not limited to open-source software, which is
licensed under its applicable third-party software license agreement. For license information about third-party software distributed
with SAS software, refer to http://support.sas.com/thirdpartylicenses.

http://support.sas.com/thirdpartylicenses

Chapter 15

The Decomposition Algorithm

Contents
Overview: Decomposition Algorithm . 716
Getting Started: Decomposition Algorithm . 718

Solving a MILP with DECOMP and PROC OPTMODEL 718
Solving a MILP with DECOMP and PROC OPTMILP 720

Syntax: Decomposition Algorithm . 721
Decomposition Algorithm Options in the PROC OPTLP Statement or the SOLVE

WITH LP Statement in PROC OPTMODEL 722
Decomposition Algorithm Options in the PROC OPTMILP Statement or the SOLVE

WITH MILP Statement in PROC OPTMODEL 723
DECOMP Statement . 726
DECOMP_MASTER Statement . 732
DECOMP_MASTER_IP Statement . 734
DECOMP_SUBPROB Statement . 736

Details: Decomposition Algorithm . 741
Data Input . 741
Decomposition Algorithm . 742
Parallel Processing . 743
Special Case: Identical Blocks and Ryan-Foster Branching 743
Log for the Decomposition Algorithm . 747

Examples: Decomposition Algorithm . 749
Example 15.1: Multicommodity Flow Problem and METHOD=NETWORK 749
Example 15.2: Generalized Assignment Problem . 755
Example 15.3: Block-Diagonal Structure and METHOD=CONCOMP in Single-

Machine Mode . 762
Example 15.4: Block-Diagonal Structure and METHOD=CONCOMP in Distributed

Mode . 766
Example 15.5: Block-Angular Structure and METHOD=AUTO 769
Example 15.6: Bin Packing Problem . 773
Example 15.7: Resource Allocation Problem . 778
Example 15.8: Vehicle Routing Problem . 791
Example 15.9: ATM Cash Management in Single-Machine Mode 797
Example 15.10: ATM Cash Management in Distributed Mode 808
Example 15.11: Kidney Donor Exchange and METHOD=SET 811

References . 818

716 F Chapter 15: The Decomposition Algorithm

Overview: Decomposition Algorithm
The SAS/OR decomposition algorithm (DECOMP) provides an alternative method of solving linear programs
(LPs) and mixed integer linear programs (MILPs) by exploiting the ability to efficiently solve a relaxation of
the original problem. The algorithm is available as an option in the OPTMODEL, OPTLP, and OPTMILP
procedures and is based on the methodology described in Galati (2009).

A standard linear or mixed integer linear program has the formulation

minimize c>x C f>y
subject to Dx C By f�;D;�g d (master)

Ax f�;D;�g b (subproblem)
x � x � x

y � y � y
xi 2 Z i 2 Sx

yi 2 Z i 2 Sy

where

x 2 Rn is the vector of structural variables
y 2 Rs is the vector of master-only structural variables
c 2 Rn is the vector of objective function coefficients that are associated with variables x
f 2 Rs is the vector of objective function coefficients that are associated with variables y
D 2 Rt�n is the matrix of master constraint coefficients that are associated with variables x
B 2 Rt�s is the matrix of master constraint coefficients that are associated with variables y
A 2 Rm�n is the matrix of subproblem constraint coefficients
d 2 Rt is the vector of master constraints’ right-hand sides
b 2 Rm is the vector of subproblem constraints’ right-hand sides
x 2 Rn is the vector of lower bounds on variables x
x 2 Rn is the vector of upper bounds on variables x
y 2 Rs is the vector of lower bounds on variables y
y 2 Rs is the vector of upper bounds on variables y
Sx is a subset of the set f1; : : : ; ng of indices on variables x
Sy is a subset of the set f1; : : : ; sg of indices on variables y

You can form a relaxation of the preceding mathematical program by removing the master constraints, which
are defined by the matrices D and B. The resulting constraint system, defined by the matrix A, forms the
subproblem, which can often be solved much more efficiently than the entire original problem. This is one of
the key motivators for using the decomposition algorithm.

The decomposition algorithm works by finding convex combinations of extreme points of the subproblem
polyhedron that satisfy the constraints defined in the master. For MILP subproblems, the strength of the
relaxation is another important motivator for using this method. If the subproblem polyhedron defines feasible
solutions that are close to the original feasible space, the chance of success for the algorithm increases.

Overview: Decomposition Algorithm F 717

The region that defines the subproblem space is often separable. That is, the formulation of the preceding
mathematical program can be written in block-angular form as

minimize c1x1 C c2x2 C � � � C c�x� C f>y
subject to D1x1 C D2x2 C � � � C D�x� C By f�;D;�g d

A1x1 f�;D;�g b1

A2x2 f�;D;�g b2
: : : f�;D;�g

:::

A�x� f�;D;�g b�

x � x � x
y � y � y

xi 2 Z i 2 Sx
yi 2 Z i 2 Sy

where K D f1; : : : ; �g defines a partition of the constraints (and variables) into independent subproblems
(blocks) such that A D ŒA1 : : :A� �, D D ŒD1 : : :D� �, c D Œc1 : : : c� �, b D Œb1 : : : b� �, x D Œx1 : : : x� �,
x D Œx1 : : : x� �, and x D Œx1 : : : x� �. This type of structure is relatively common in modeling mathematical
programs. For example, consider a model that defines a workplace that has separate departmental restrictions
(defined as the subproblem constraints), which are coupled together by a company-wide budget across
departments (defined as the master constraint). By relaxing the budget (master) constraint, the decomposition
algorithm can take advantage of the fact that the decoupled subproblems are separable, and it can process
them in parallel. A special case of block-angular form, called block-diagonal form, occurs when the set of
master constraints is empty. In this special case, the subproblem matrices define the entire original problem.

An important indicator of a problem that is well suited for decomposition is the amount by which the
subproblems cover the original problem with respect to both variables and constraints in the original
presolved model. This value, which is expressed as a percentage of the original model, is known as the
coverage. For LPs, the decomposition algorithm usually performs better than standard approaches only if
the subproblems cover a significant amount of the original problem. For MILPs, the correlation between
performance and coverage is more difficult to determine, because the strength of the subproblem with
respect to integrality is not always proportional to the size of the system. Regardless, it is unlikely that the
decomposition algorithm will outperform more standard methods (such as branch-and-cut) in problems that
have small coverage.

The primary input and output for the decomposition algorithm are identical to those that are needed and
produced by the OPTLP, OPTMILP, and OPTMODEL procedures. For more information, see the following
sections:

� “Data Input and Output” on page 583 in Chapter 12, “The OPTLP Procedure”

� “Data Input and Output” on page 641 in Chapter 13, “The OPTMILP Procedure”

� “Details: LP Solver” on page 264 in Chapter 7, “The Linear Programming Solver”

� “Details: MILP Solver” on page 335 in Chapter 8, “The Mixed Integer Linear Programming Solver”

The only additional input that can be provided for the decomposition algorithm is an explicit definition of the
partition of the subproblem constraints. The following section gives a simple example of providing this input
for both PROC OPTMILP and PROC OPTMODEL.

718 F Chapter 15: The Decomposition Algorithm

Getting Started: Decomposition Algorithm
This example illustrates how you can use the decomposition algorithm to solve a simple mixed integer linear
program. Suppose you want to solve the following problem:

maximize x11 C 2x21 C x31 C x22 C x32
subject to x11 C x12 � 1 (m)

5x11 C 7x21 C 4x31 � 11 (s1)
x12 C 2x22 C x32 � 2 (s2)

xij 2 f0; 1g i 2 f1; 2; 3g; j 2 f1; 2g

It is obvious from the structure of the problem that if constraint m is removed, then the remaining constraints
s1 and s2 decompose into two independent subproblems. The next two sections describe how to solve
this MILP by using the decomposition algorithm in the OPTMODEL procedure and OPTMILP procedure,
respectively.

Solving a MILP with DECOMP and PROC OPTMODEL
The following statements use the OPTMODEL procedure and the decomposition algorithm to solve the
MILP:

proc optmodel;
var x{i in 1..3, j in 1..2} binary;

max f = x[1,1] + 2*x[2,1] + x[3,1]
+ x[2,2] + x[3,2];

con m : x[1,1] + x[1,2] >= 1;
con s1: 5*x[1,1] + 7*x[2,1] + 4*x[3,1] <= 11;
con s2: x[1,2] + 2*x[2,2] + x[3,2] <= 2;

s1.block = 0;
s2.block = 1;

solve with milp / presolver=none decomp=(logfreq=1);
print x;

quit;

Solving a MILP with DECOMP and PROC OPTMODEL F 719

Here, the PRESOLVER=NONE option is used, because otherwise the presolver solves this small instance
without invoking any solver. The solution summary and optimal solution are displayed in Figure 15.1.

Figure 15.1 Solution Summary and Optimal Solution

The OPTMODEL ProcedureThe OPTMODEL Procedure

Solution Summary

Solver MILP

Algorithm Decomposition

Objective Function f

Solution Status Optimal

Objective Value 4

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 0

Bound Infeasibility 0

Integer Infeasibility 0

Best Bound 4

Nodes 1

Iterations 1

Presolve Time 0.00

Solution Time 0.02

x

1 2

1 0 1

2 1 0

3 1 1

720 F Chapter 15: The Decomposition Algorithm

The iteration log, which displays the problem statistics, the progress of the solution, and the optimal objective
value, is shown in Figure 15.2.

Figure 15.2 Log

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 6 variables (0 free, 0 fixed).

NOTE: The problem has 6 binary and 0 integer variables.

NOTE: The problem has 3 linear constraints (2 LE, 0 EQ, 1 GE, 0 range).

NOTE: The problem has 8 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The MILP presolver value NONE is applied.

NOTE: The MILP solver is called.

NOTE: The Decomposition algorithm is used.

NOTE: The Decomposition algorithm is executing in single-machine mode.

NOTE: The DECOMP method value USER is applied.

NOTE: The number of block threads has been reduced to 2 threads.

NOTE: The problem has a decomposable structure with 2 blocks. The largest block covers 33.33%

 of the constraints in the problem.

NOTE: The decomposition subproblems cover 6 (100%) variables and 2 (66.67%) constraints.

NOTE: The deterministic parallel mode is enabled.

NOTE: The Decomposition algorithm is using up to 4 threads.

 Iter Best Master Best LP IP CPU Real

 Bound Objective Integer Gap Gap Time Time

 1 4.0000 . 4.0000 . 0.00% 0 0

 Node Active Sols Best Best Gap CPU Real

 Integer Bound Time Time

 0 0 2 4.0000 4.0000 0.00% 0 0

NOTE: The Decomposition algorithm used 4 threads.

NOTE: The Decomposition algorithm time is 0.01 seconds.

NOTE: Optimal.

NOTE: Objective = 4.

Solving a MILP with DECOMP and PROC OPTMILP
Alternatively, to solve the MILP with the OPTMILP procedure, create a corresponding SAS data set that uses
the mathematical programming system (MPS) format as follows:

data mpsdata;
input field1 $ field2 $ field3 $ field4 field5 $ field6;
datalines;

NAME . mpsdata . . .
ROWS
MAX f
G m
L s1
L s2

Syntax: Decomposition Algorithm F 721

COLUMNS
. .MRK0000 'MARKER' . 'INTORG' .
. x[1,1] f 1 m 1
. x[1,1] s1 5 . .
. x[2,1] f 2 s1 7
. x[3,1] f 1 s1 4
. x[1,2] m 1 s2 1
. x[2,2] f 1 s2 2
. x[3,2] f 1 s2 1
. .MRK0001 'MARKER' . 'INTEND' .
RHS
. .RHS. m 1 . .
. .RHS. s1 11 . .
. .RHS. s2 2 . .
BOUNDS
UP .BOUNDS. x[1,1] 1 . .
UP .BOUNDS. x[2,1] 1 . .
UP .BOUNDS. x[3,1] 1 . .
UP .BOUNDS. x[1,2] 1 . .
UP .BOUNDS. x[2,2] 1 . .
UP .BOUNDS. x[3,2] 1 . .
ENDATA
;

Next, use the following SAS data set to define the subproblem blocks:

data blocks;
input _row_ $ _block_;
datalines;

s1 0
s2 1
;

Now, you can use the following OPTMILP statements to solve this MILP:

proc optmilp
data = mpsdata
presolver = none;
decomp

logfreq = 1
blocks = blocks;

run;

Syntax: Decomposition Algorithm
You can specify the decomposition algorithm either by using options in a SOLVE statement in the OPT-
MODEL procedure or by using statements in the OPTLP and OPTMILP procedures. Except for the fact
that you use SOLVE statement options in PROC OPTMODEL or you use statements in PROC OPTLP and
PROC OPTMILP, the syntax is identical.

The following decomposition algorithm options are available in the SOLVE statement in the OPTMODEL
procedure:

722 F Chapter 15: The Decomposition Algorithm

SOLVE WITH LP / < options >
< DECOMP< =(decomp-options) > >
< DECOMP_MASTER=(< decomp-master-options >) >
< DECOMP_SUBPROB=(< decomp-subprob-options >) > ;

SOLVE WITH MILP / < options >
< DECOMP< =(decomp-options) > >
< DECOMP_MASTER=(< decomp-master-options >) >
< DECOMP_MASTER_IP=(< decomp-master-ip-options >) >
< DECOMP_SUBPROB=(< decomp-subprob-options >) > ;

The following statements are available in the OPTLP procedure:

PROC OPTLP < options > ;
DECOMP < decomp-options > ;
DECOMP_MASTER < decomp-master-options > ;
DECOMP_SUBPROB < decomp-subprob-options > ;

The following statements are available in the OPTMILP procedure:

PROC OPTMILP < options > ;
DECOMP < decomp-options > ;
DECOMP_MASTER < decomp-master-options > ;
DECOMP_MASTER_IP < decomp-master-ip-options > ;
DECOMP_SUBPROB < decomp-subprob-options > ;

Decomposition Algorithm Options in the PROC OPTLP Statement or the
SOLVE WITH LP Statement in PROC OPTMODEL
To solve a linear program, you can specify the decomposition algorithm in a SOLVE WITH LP statement in
the OPTMODEL procedure or in a PROC OPTLP statement in the OPTLP procedure. To control the overall
decomposition algorithm, you can specify one or more of the LP solver options that are shown in Table 15.1.
(As indicated, you can specify some options only in the PROC OPTLP statement.)

The options in Table 15.1 control the overall process flow for solving a linear program, and they are equivalent
to the options that are used in PROC OPTLP and PROC OPTMODEL with standard methods. These options
are called main solver options in this chapter. They are described in detail in the section “Syntax: LP Solver”
on page 257 in Chapter 7, “The Linear Programming Solver,” and the section “Syntax: OPTLP Procedure”
on page 575 in Chapter 12, “The OPTLP Procedure.” The DUALIZE= option has a different default when
you use the decomposition algorithm, as shown in Table 15.1.

Table 15.1 LP Options in the PROC OPTLP Statement or
SOLVE WITH LP Statement

Description option Different
Default

Data Set Options (OPTLP procedure only)
Specifies the input data set DATA=
Specifies the dual solution output data set DUALOUT=
Specifies whether the model is a maximization or mini-
mization problem

OBJSENSE=

Specifies the primal solution output data set PRIMALOUT=

PROC OPTMILP Statement or SOLVE WITH MILP Statement F 723

Table 15.1 (continued)

Description option Different
Default

Saves output data sets only if optimal SAVE_ONLY_IF_OPTIMAL
Presolve Options
Controls the dualization of the problem DUALIZE= OFF
Specifies the type of presolve PRESOLVER=
Control Options
Specifies the feasibility tolerance FEASTOL=
Specifies how frequently to print the solution progress LOGFREQ=
Specifies the level of detail of solution progress to print in
the log

LOGLEVEL=

Specifies the maximum number of iterations MAXITER=
Specifies the time limit for the optimization process MAXTIME=
Specifies the optimality tolerance OPTTOL=
Enables or disables printing summary (OPTLP procedure
only)

PRINTLEVEL=

Specifies whether time units are CPU time or real time TIMETYPE=
Algorithm Options
Enables or disables scaling of the problem SCALE=

Decomposition Algorithm Options in the PROC OPTMILP Statement or the
SOLVE WITH MILP Statement in PROC OPTMODEL
To solve a mixed integer linear program, you can specify the decomposition algorithm in a SOLVE WITH
MILP statement in the OPTMODEL procedure or in a PROC OPTMILP statement in the OPTMILP
procedure. To control the overall decomposition algorithm, you can specify one or more of the MILP solver
options shown in Table 15.2. (As indicated, you can specify some options only in the PROC OPTMILP
statement.)

The options in Table 15.2 control the overall process flow for solving a mixed integer linear program, and
they are equivalent to the options that are used in the OPTMILP and OPTMODEL procedures with standard
methods. These options are called main solver options in this chapter. They are described in detail in the
section “Syntax: MILP Solver” on page 323 and the section “Syntax: OPTMILP Procedure” on page 629.

The HYBRID= option in the DECOMP statement indicates the processing mode for the root node of
the branch-and-bound search tree. When HYBRID=ON, the root node is first processed using standard
MILP techniques, as described in the section “Details: MILP Solver” on page 335. The default setting
for the decomposition algorithm is HYBRID=OFF. In this case, the root processing is done solely by the
decomposition algorithm, and several of the direct MILP options are ignored. These options are indicated in
Table 15.2 in the column Ignored HYBRID=OFF.

724 F Chapter 15: The Decomposition Algorithm

Table 15.2 MILP Options in the PROC OPTMILP Statement or
SOLVE WITH MILP Statement

Description option Ignored
HYBRID=OFF

Data Set Options (OPTMILP procedure only)
Specifies the input data set DATA=
Specifies the constraint activities output data set DUALOUT=
Specifies whether the model is a maximization or minimization
problem

OBJSENSE=

Specifies the primal solution input data set (warm start) PRIMALIN=
Specifies the primal solution output data set PRIMALOUT=
Presolve Option
Specifies the type of presolve PRESOLVER=
Control Options
Specifies the stopping criterion based on an absolute objective
gap

ABSOBJGAP=

Emphasizes feasibility or optimality EMPHASIS= X
Specifies the maximum violation of variables and constraints FEASTOL=
Specifies the maximum allowed difference between an integer
variable’s value and an integer

INTTOL=

Specifies how frequently to print the node log LOGFREQ=
Specifies the level of detail of solution progress to print in the
log

LOGLEVEL=

Specifies the maximum number of nodes to be processed MAXNODES=
Specifies the maximum number of solutions to be found MAXSOLS=
Specifies the time limit for the optimization process MAXTIME=
Specifies the tolerance used in determining the optimality of
nodes in the branch-and-bound tree

OPTTOL=

Uses the input primal solution (warm start) (OPTMODEL
procedure only)

PRIMALIN

Enables or disables printing summary (OPTMILP procedure
only)

PRINTLEVEL=

Specifies the probing level PROBE=
Specifies the stopping criterion based on a relative objective
gap

RELOBJGAP=

Specifies the scale of the problem matrix SCALE=
Specifies the initial seed for the random number generator SEED= X
Specifies the stopping criterion based on target objective value TARGET= X
Specifies whether time units are CPU time or real time TIMETYPE=
Heuristics Option
Specifies the primal heuristics level HEURISTICS=
Search Options
Specifies the number of pricing iterations performed on each
variable in the strong branching strategy

STRONGITER=

Specifies the number of candidates for strong branching STRONGLEN=
Specifies the level of symmetry detection SYMMETRY=

PROC OPTMILP Statement or SOLVE WITH MILP Statement F 725

Table 15.2 (continued)

Description option Ignored
HYBRID=OFF

Specifies the rule for selecting the branching variable VARSEL=
Cut Options
Specifies the cut level for all cuts ALLCUTS= X
Specifies the clique cut level CUTCLIQUE= X
Specifies the flow cover cut level CUTFLOWCOVER= X
Specifies the flow path cut level CUTFLOWPATH= X
Specifies the Gomory cut level CUTGOMORY= X
Specifies the generalized upper bound (GUB) cover cut level CUTGUB= X
Specifies the implied bounds cut level CUTIMPLIED= X
Specifies the knapsack cover cut level CUTKNAPSACK= X
Specifies the lift-and-project cut level CUTLAP= X
Specifies the mixed lifted 0-1 cut level CUTMILIFTED= X
Specifies the mixed integer rounding (MIR) cut level CUTMIR= X
Specifies the multicommodity network flow cut level CUTMULTICOMMODITY= X
Specifies the row multiplier factor for cuts CUTSFACTOR= X
Specifies the overall cut aggressiveness CUTSTRATEGY= X
Specifies the zero-half cut level CUTZEROHALF= X

The following search options, listed in Table 15.2, have a different interpretation from what is described in
the MILP solver sections.

LOGFREQ=number

PRINTFREQ=number
specifies how often information is printed in the node log. The value of number can be any nonnegative
integer up to the largest four-byte signed integer, which is 231 � 1. The default value is 10. If you set
number to 0, then the node log is disabled. If number is positive, then an entry is made in the node log
at the first node, at the last node, and at intervals dictated by the value of number . An entry is also
made in the node log each time the solver finds a better integer solution or improved bound.

STRONGITER=number | AUTOMATIC
specifies the number of pricing iterations that are performed for each variable in the candidate list
when you use the strong branching variable selection strategy. The value of number can be any
positive integer up to the largest four-byte signed integer, which is 231 � 1. If you specify the
keyword AUTOMATIC or the value –1, the MILP solver uses the default value, which is calculated
automatically.

The following search option, listed in Table 15.2, has a different set of options from what is described in the
MILP solver sections.

VARSEL=number | string
specifies the rule for selecting the branching variable. The values of string and the corresponding
values of number are listed in Table 15.3.

726 F Chapter 15: The Decomposition Algorithm

Table 15.3 Values for VARSEL= Option

number string Description
–1 AUTOMATIC Uses automatic branching variable selection.
0 MAXINFEAS Selects the variable in the original compact formu-

lation with maximum infeasibility.
2 PSEUDO Selects the variable in the original compact formu-

lation that maximizes the weighted up and down
pseudocosts.

3 STRONG Selects the variable in the original compact formu-
lation that maximizes the estimated improvement
in the objective value based on strong branching.

4 RYANFOSTER When appropriate, uses a specialized branching
rule known as Ryan-Foster branching.

The default value is AUTOMATIC. For more information about variable selection, see the sections
“Variable Selection” on page 645 and “Special Case: Identical Blocks and Ryan-Foster Branching” on
page 743.

DECOMP Statement
DECOMP < decomp-options > ;

The DECOMP statement controls the overall decomposition algorithm.

Table 15.4 summarizes the decomp-options available in the DECOMP statement. These options control the
overall decomposition algorithm process flow during the solution of an LP or a MILP. (As indicated, you can
specify the data set options only in the OPTLP or OPTMILP procedure, and you can specify some control
options only for a MILP.)

Table 15.4 Options in the DECOMP Statement

Description decomp-option
Data Set Options (OPTLP and OPTMILP procedures only)
Specifies the blocks input data set BLOCKS=
Control Options
Specifies the stopping criterion based on an absolute objective gap ABSOBJGAP=
Specifies the frequency of removing ineffective columns from the master
LP

COMPRESSFREQ=

Specifies whether or not to first process the root node by using standard
MILP techniques

HYBRID=

Specifies whether to initialize the columns by solving each block with the
original cost vector

INITVARS=

Specifies the level of detail of solution progress to print in the log LOGLEVEL=
Specifies the maximum number of blocks to allow MAXBLOCKS=
Specifies the maximum number of new columns to allow into the master
each pass

MAXCOLSPASS=

DECOMP Statement F 727

Table 15.4 (continued)

Description decomp-option
Specifies the maximum amount of time spent in the decomposition algo-
rithm

MAXTIME=

Specifies the decomposition algorithm method METHOD=
Specifies the number of blocks to search for by using METHOD=AUTO NBLOCKS=
Specifies the number of block threads to use in the decomposition algorithm NTHREADS=
Specifies the stopping criterion based on relative objective gap RELOBJGAP=
Control Options (MILP only)
Specifies how frequently to print the continuous iteration log LOGFREQ=
Specifies whether the master problem is solved as a MILP with the current
set of columns at the beginning of phase II

MASTER_IP_BEG=

Specifies whether the master problem is solved as a MILP with the current
set of columns at the end of phase II

MASTER_IP_END=

Specifies the frequency of solving the master problem as a MILP with the
current set of columns

MASTER_IP_FREQ=

Specifies the maximum number of outer iterations for the decomposition
algorithm

MAXITER=

The following list describes the decomp-options in detail.

ABSOBJGAP=number
specifies a stopping criterion for the continuous bound of the decomposition. When the absolute
difference between the master objective and the best dual bound falls below the value of number , the
decomposition algorithm stops adding columns. The value of number can be any nonnegative number.
The default value is the value of the OPTTOL= main solver option.

BLOCKS=SAS-data-set
specifies (for OPTLP and OPTMILP procedures only) the input data set that contains block definitions
to use in the decomposition algorithm if METHOD=USER. See the section “The BLOCKS= Data
Set in PROC OPTMILP and PROC OPTLP” on page 741 for more information. To specify blocks in
PROC OPTMODEL, use the .block constraint suffix instead (see the section “The .block Constraint
Suffix in PROC OPTMODEL” on page 742).

COMPRESSFREQ=number
removes ineffective columns from the master LP after every number of iterations. The frequency,
number , is an integer between 0 and the largest four-byte signed integer, which is 231 � 1. The default
value is 0.

HYBRID=number | string
specifies whether to first process the root node by using standard MILP techniques, as described in the
section “Details: MILP Solver” on page 335.

Table 15.5 describes the valid values of the HYBRID= option.

Table 15.5 Values for HYBRID= Option

number string Description
0 OFF Disables root processing by standard MILP techniques.

728 F Chapter 15: The Decomposition Algorithm

Table 15.5 (continued)

number string Description
1 ON Enables root processing by standard MILP techniques.

The default is OFF.

INITVARS=number | string
specifies whether to initialize the columns by using the original cost vector to solve each block.

Table 15.6 describes the valid values of the INITVARS= option.

Table 15.6 Values for INITVARS= Option

number string Description
0 OFF Disables initializing the columns by using the original cost

vector to solve each block.
1 ON Enables initializing the columns by using the original cost

vector to solve each block.

This option must be set to ON when used with METHOD=CONCOMP. The default is ON.

LOGFREQ=number
specifies (for MILP problems only) how often to print information in the continuous iteration log. The
value of number can be any nonnegative number up to the largest four-byte signed integer, which is
231 � 1. The default value of number is 10. If number is set to 0, then the iteration log is disabled. If
number is positive, then an entry is made in the log at the first iteration, at the last iteration, and at
intervals that are dictated by the value of number . An entry is also made each time a better integer
solution or improved bound is found.

LOGLEVEL=number | string
controls the amount of information that is displayed in the SAS log by the decomposition algorithm.
Table 15.7 and Table 15.8 provide the valid values for this option and a description of what is displayed
in the log when an LP and a MILP, respectively, is solved.

Table 15.7 Values for LOGLEVEL= Option for an LP

number string Description
–1 AUTOMATIC Prints the continuous iteration log at the interval dictated

by the LOGFREQ= main solver option.
0 NONE Turns off printing of all of the decomposition algorithm

messages to the SAS log.
1 BASIC Prints the continuous iteration log at the interval dictated

by the LOGFREQ= main solver option.
2 MODERATE Prints the continuous iteration log and summary infor-

mation for each iteration at the interval dictated by the
LOGFREQ= main solver option.

DECOMP Statement F 729

Table 15.7 (continued)

number string Description
3 AGGRESSIVE Prints the continuous iteration log and detailed infor-

mation for each iteration at the interval dictated by the
LOGFREQ= main solver option.

Table 15.8 Values for LOGLEVEL= Option for a MILP

number string Description
–1 AUTOMATIC Prints the continuous iteration log for the root node at the

interval dictated by the LOGFREQ= option in the DE-
COMP statement. Prints the branch-and-bound node log
at the interval dictated by the LOGFREQ= main solver
option.

0 NONE Turns off printing of all of the decomposition algorithm
messages to the SAS log.

1 BASIC Prints the continuous iteration log for each branch-and-
bound node at the interval dictated by the LOGFREQ=
option in the DECOMP statement.

2 MODERATE Prints the continuous iteration log and summary informa-
tion for each iteration of each branch-and-bound node at
the interval dictated by the LOGFREQ= option in the DE-
COMP statement.

3 AGGRESSIVE Prints the continuous iteration log and detailed information
for each iteration of each branch-and-bound node at the in-
terval dictated by the LOGFREQ= option in the DECOMP
statement.

The default is AUTOMATIC for both LPs and MILPs.

MASTER_IP_BEG=number | string
specifies (for MILP problems only) whether the master problem is solved as a MILP with the current
set of columns at the beginning of phase II. Table 15.9 describes the valid values of the MAS-
TER_IP_BEG= option.

Table 15.9 Values for MASTER_IP_BEG= Option

number string Description
0 OFF Disables solving the master as a MILP at the beginning of phase II.
1 ON Enables solving the master as a MILP at the beginning of phase II.

The default is ON in the root node and automatically determines whether to call the heuristic in the
branch-and-bound tree.

730 F Chapter 15: The Decomposition Algorithm

MASTER_IP_END=number | string
specifies (for MILP problems only) whether the master problem is solved as a MILP with the current
set of columns at the end of phase II. Table 15.10 describes the valid values of the MASTER_IP_END=
option.

Table 15.10 Values for MASTER_IP_END= Option

number string Description
0 OFF Disables solving the master as a MILP at the end of phase II.
1 ON Enables solving the master as a MILP at the end of phase II.

The default is ON in the root node and automatically determines whether to call the heuristic in the
branch-and-bound tree.

MASTER_IP_FREQ=number
solves the master problem (for MILP problems only) as a MILP with the current set of columns after
every number iterations. The frequency, number , is an integer between 0 and the largest four-byte
signed integer, which is 231 � 1. The default is 10 in the root node and 0 elsewhere.

MAXBLOCKS=number
specifies the maximum number of blocks to allow. If the defined number of blocks exceeds number ,
the algorithm creates superblocks using a very simple round-robin scheme. The value of number can
be any positive number; the default value is the positive number that has the largest absolute value that
can be represented in your operating environment.

MAXCOLSPASS=number
specifies the maximum number of new columns to allow into the master at each pass. This option is
disabled on the initial pass if INITVARS=1. The value of number can be any positive number; the
default value is the positive number that has the largest absolute value that can be represented in your
operating environment.

MAXITER=number
specifies (for MILP problems only) the maximum number of outer iterations for the decomposition
algorithm. The value number can be any integer between 1 and the largest four-byte signed integer,
which is 231 � 1. If you do not specify this option, the procedure does not stop based on the number of
iterations performed.

MAXTIME=number
specifies an upper limit of number seconds of time for the decomposition algorithm. The value of the
TIMETYPE= main solver option determines the type of units used. If you do not specify this option,
the procedure does not stop based on the amount of time elapsed. The value of number can be any
positive number; the default value is the positive number that has the largest absolute value that can be
represented in your operating environment.

METHOD=string
specifies the decomposition algorithm method as shown in Table 15.11.

DECOMP Statement F 731

Table 15.11 Values for METHOD= Option

string Description
AUTO The algorithm attempts to find a block-angular structure in

the constraint matrix by using matrix-stretching techniques
similar to what is described in Grcar (1990) and Aykanat,
Pinar, and Çatalyürek (2004). The NBLOCKS= option
specifies the number of blocks into which the algorithm
attempts to decompose the constraint matrix. If the algo-
rithm fails to find a decomposition, the MILP solver is
called directly.

CONCOMP The algorithm attempts to find a block-diagonal (not block-
angular) structure in the constraint matrix. Unless your
problem separates into completely independent problems
with no linking constraints, this method finds only one
block and hence is equivalent to calling the MILP solver
directly.

NETWORK The algorithm attempts to find an embedded network simi-
lar to what is described in the section “The Network Sim-
plex Algorithm” on page 264. The weakly connected com-
ponents of this network are used as the blocks.

SET The algorithm attempts to find a set partitioning or set
covering structure in the constraint matrix and defines this
as the master (linking) constraints. The weakly connected
components of the remaining constraints are used as the
blocks.

USER The user defines which rows belong to which blocks (sub-
problems). In PROC OPTMODEL, use the .block con-
straint suffix. In PROC OPTLP and PROC OPTMILP, use
the BLOCKS= data set instead.

The default is USER if blocks are defined and AUTO otherwise.

NBLOCKS=number
specifies the initial number of blocks to search for when you specify METHOD=AUTO. If the algorithm
is unable to find a block-angular structure that contains this number of blocks, it repeatedly attempts
to find an appropriate structure that contains half the previously attempted number of blocks. If the
algorithm fails to find a decomposition that contains at least two blocks, then the standard MILP solver
is called directly. The value of number can be any positive number less than or equal to the number
of rows in the presolved model; the default value is the number of block threads that are used for
processing. In single-machine mode, this is equivalent to the value of the NTHREADS= option in the
DECOMP statement. In distributed mode, this is equivalent to the number of compute nodes that you
specify in the NODES= option in the PERFORMANCE statement times the number of threads that
you specify for each compute node. For more information about parallel execution, see the section
“Parallel Processing” on page 743.

732 F Chapter 15: The Decomposition Algorithm

NTHREADS=number
specifies the number of block threads to use in the decomposition algorithm. The value of the
NTHREADS= option in the PERFORMANCE statement, which is described in the section “PERFOR-
MANCE Statement” on page 19, serves as the overall capacity for the number of active threads that
can run at one time. By default, the number of block threads is t D min.p; d; b/, where p is the value
of the NTHREADS= option in the PERFORMANCE statement, d is the value of the NTHREADS=
option in the DECOMP statement, and b is the number of blocks that the decomposition algorithm sets
of finds.

RELOBJGAP=number
specifies the relative objective gap as a stopping criterion. The relative objective gap is based on the
master objective (MasterObjective) and the best dual bound (BestBound); it is equal to

jMasterObjective � BestBoundj= .1E�10 C jBestBoundj/

When this value becomes smaller than the specified gap size number , the decomposition algorithm
stops adding columns. The value of number can be any nonnegative number. For LP, the default value
is 0; for MILP, the default value is 1e-4.

DECOMP_MASTER Statement
DECOMP_MASTER < decomp-master-options > ;

MASTER < decomp-master-options > ;

The DECOMP_MASTER statement controls the master problem.

Table 15.12 summarizes the options available in the DECOMP_MASTER statement. These options control
the master LP solver in the decomposition algorithm during the solution of an LP or a MILP. (As indicated,
you can specify the PRINTLEVEL= option only in the OPTLP procedure.) For descriptions of these options,
see the section “LP Solver Options” on page 258 in Chapter 7, “The Linear Programming Solver,” and the
section “PROC OPTLP Statement” on page 576 in Chapter 12, “The OPTLP Procedure.” Some options have
different defaults when you use the decomposition algorithm, as indicated in Table 15.12.

Table 15.12 Options in the DECOMP_MASTER Statement

Description decomp-master-option Different
Default

Algorithm Option
Specifies the master algorithm ALGORITHM= PS†

Presolve Option
Controls the dualization of the problem DUALIZE= OFF
Specifies, for the first master solve only, the type of pre-
solve

INITPRESOLVER=

Specifies the type of presolve PRESOLVER= NONE (ALGO-
RITHM=PS) †

Control Options
Specifies the feasibility tolerance FEASTOL= 1E–7
Specifies how frequently to print the solution progress LOGFREQ=

DECOMP_MASTER Statement F 733

Table 15.12 (continued)

Description decomp-master-option Different
Default

Specifies the level of detail of solution progress to print in
the log

LOGLEVEL=

Specifies the maximum number of iterations MAXITER=
Specifies the time limit for the optimization process MAXTIME=
Specifies the number of threads to use in the master solver NTHREADS=
Specifies the optimality tolerance OPTTOL= 1E–7
Enables or disables printing summary (OPTLP procedure
only)

PRINTLEVEL=

Specifies whether time units are CPU time or real time TIMETYPE=
Specifies the type of initial basis BASIS= WARMSTART

(ALGORITHM=PS)†

Specifies the type of pricing strategy PRICETYPE=
Specifies the queue size for determining the entering vari-
able

QUEUESIZE=

Enables or disables scaling of the problem SCALE=
Specifies the initial seed for the random number generator SEED=
Interior Point Algorithm Options
Enables or disables interior crossover CROSSOVER=
Specifies the stopping criterion based on a duality gap STOP_DG=
Specifies the stopping criterion based on dual infeasibility STOP_DI=
Specifies the stopping criterion based on primal infeasibil-
ity

STOP_PI=

† The different defaults (ALGORITHM=PS, PRESOLVER=NONE, and BASIS=WARMSTART) are motivated by the fact that

primal feasibility of the master problem is preserved when columns are added, so a warm start from the previous optimal basis tends

to be more efficient than solving the master from scratch in each iteration.

The following options, listed in Table 15.12, are specific to the DECOMP_MASTER statement and are not
described in the LP solver sections.

INITPRESOLVER=number | string

INITPRESOL=number | string
specifies, for the first master solve only, presolve conditions as shown in Table 15.13.

Table 15.13 Values for INITPRESOLVER= Option

number string Description
–1 AUTOMATIC Applies the default level of presolve processing.
0 NONE Disables presolver.
1 BASIC Performs minimal presolve processing.
2 MODERATE Applies a higher level of presolve processing.
3 AGGRESSIVE Applies the highest level of presolve processing.

The default is AUTOMATIC.

734 F Chapter 15: The Decomposition Algorithm

NTHREADS=number
specifies the number of threads to use in the master solver (if the selected solver method supports
multithreading). The value of the NTHREADS= option in the PERFORMANCE statement, which
is described in the section “PERFORMANCE Statement” on page 19, serves as the overall capacity
for the number of active threads that can run at one time. By default, the number of master threads is
t D min.p;m/, where p is the value of the NTHREADS= option in the PERFORMANCE statement
and m is the value of the NTHREADS= option in the DECOMP_MASTER statement.

DECOMP_MASTER_IP Statement
DECOMP_MASTER_IP < decomp-master-ip-options > ;

MASTER_IP < decomp-master-ip-options > ;

For mixed integer linear programming problems, the DECOMP_MASTER_IP statement controls the (re-
stricted) master problem, which is solved as a MILP with the current set of columns in an effort to obtain an
integer-feasible solution.

Table 15.14 summarizes the options available in the DECOMP_MASTER_IP statement. These options
control the MILP solver that is used to solve the integer version of the master problem. For descriptions
of these options, see the section “MILP Solver Options” on page 325 in Chapter 8, “The Mixed Integer
Linear Programming Solver,” and the section “PROC OPTMILP Statement” on page 630 in Chapter 13,
“The OPTMILP Procedure.” Some options have different defaults when you use the decomposition algorithm,
as shown in Table 15.14.

Table 15.14 Options in the DECOMP_MASTER_IP Statement

Description decomp-master-ip-option Different
Default

Presolve Option
Specifies the type of presolve PRESOLVER=
Control Options
Specifies the stopping criterion based on an absolute objec-
tive gap

ABSOBJGAP=

Specifies the cutoff value for node removal CUTOFF=
Emphasizes feasibility or optimality EMPHASIS=
Specifies the maximum violation on variables and con-
straints

FEASTOL= 1E–7

Specifies the maximum allowed difference between an
integer variable’s value and an integer

INTTOL=

Specifies how frequently to print the node log LOGFREQ=
Specifies the level of detail of solution progress to print in
the log

LOGLEVEL=

Specifies the maximum number of nodes to be processed MAXNODES=†

Specifies the maximum number of solutions to be found MAXSOLS=
Specifies the time limit for the optimization process MAXTIME=
Specifies the number of threads to use in the master integer
solver

NTHREADS=

Specifies the tolerance used when deciding on the optimal-
ity of nodes in the branch-and-bound tree

OPTTOL= 1E–7

DECOMP_MASTER_IP Statement F 735

Table 15.14 (continued)

Description decomp-master-ip-option Different
Default

Specifies whether to use the previous best primal solution
as a warm start

PRIMALIN=

Specifies the probing level PROBE=
Specifies the stopping criterion based on a relative objective
gap

RELOBJGAP= 0.01

Specifies the scale of the problem matrix SCALE=
Specifies the stopping criterion based on the target objec-
tive value

TARGET=

Specifies whether time units are CPU time or real time TIMETYPE=
Heuristics Option
Specifies the primal heuristics level HEURISTICS=
Search Options
Specifies the level of conflict search CONFLICTSEARCH=
Specifies the node selection strategy NODESEL=
Specifies the restarting strategy RESTARTS=
Specifies the initial seed for the random number generator SEED=
Specifies the number of simplex iterations performed on
each variable in strong branching strategy

STRONGITER=

Specifies the number of candidates for strong branching STRONGLEN=
Specifies the level of symmetry detection SYMMETRY=
Specifies the rule for selecting branching variable VARSEL=
Cut Options
Specifies the cut level for all cuts ALLCUTS=
Specifies the clique cut level CUTCLIQUE=
Specifies the flow cover cut level CUTFLOWCOVER=
Specifies the flow path cut level CUTFLOWPATH=
Specifies the Gomory cut level CUTGOMORY=
Specifies the generalized upper bound (GUB) cover cut
level

CUTGUB=

Specifies the implied bounds cut level CUTIMPLIED=
Specifies the knapsack cover cut level CUTKNAPSACK=
Specifies the lift-and-project cut level CUTLAP=
Specifies the mixed lifted 0-1 cut level CUTMILIFTED=
Specifies the mixed integer rounding (MIR) cut level CUTMIR=
Specifies the multicommodity network flow cut level CUTMULTICOMMODITY=
Specifies the row multiplier factor for cuts CUTSFACTOR=
Specifies the overall cut aggressiveness CUTSTRATEGY=
Specifies the zero-half cut level CUTZEROHALF=

† MAXNODES=100000 in the root node, and MAXNODES=10000 in nodes that are not the root.

The following options are listed in Table 15.14 but are not described in the MILP solver sections. These
options are specific to the DECOMP_MASTER_IP statement.

736 F Chapter 15: The Decomposition Algorithm

NTHREADS=number
specifies the number of threads to use in the master integer solver (if the selected solver method supports
multithreading). The value of the NTHREADS= option in the PERFORMANCE statement, which
is described in the section “PERFORMANCE Statement” on page 19, serves as the overall capacity
for the number of active threads that can run at one time. By default, the number of master integer
threads is t D min.p;m/, where p is the value of the NTHREADS= option in the PERFORMANCE
statement and m is the value of the NTHREADS= option in the DECOMP_MASTER_IP statement.

PRIMALIN=number | string

PIN=number | string
specifies whether the MILP solver is to use the previous best solution’s variables values as a starting
solution (warm start). If the MILP solver finds that the input solution is feasible, then the input solution
provides an incumbent solution and a bound for the branch-and-bound algorithm. If the solution is not
feasible, the MILP solver tries to repair it. When it is difficult to find a good integer-feasible solution
for a problem, warm start can reduce solution time significantly. Table 15.15 describes the valid values
of the PRIMALIN= option.

Table 15.15 Values for PRIMALIN= Option

number string Description
0 OFF Ignores the previous solution.
1 ON Starts from the previous solution.

The default is ON.

DECOMP_SUBPROB Statement
DECOMP_SUBPROB < decomp-subprob-options > ;

SUBPROB < decomp-subprob-options > ;

The DECOMP_SUBPROB statement controls the subproblem.

Table 15.16 summarizes the options available for the decomposition algorithm in the DECOMP_SUBPROB
statement when the subproblem algorithm chosen is an LP algorithm. (As indicated, you can specify the
PRINTLEVEL= option only in the OPTLP procedure.) For descriptions of these options, see the section
“LP Solver Options” on page 258 in Chapter 7, “The Linear Programming Solver,” and the section “PROC
OPTLP Statement” on page 576 in Chapter 12, “The OPTLP Procedure.” Some options have different
defaults when you use the decomposition algorithm, as shown in Table 15.16.

Table 15.16 Options in the DECOMP_SUBPROB Statement
Used with an LP Algorithm

Description decomp-subprob-option Different
Default

Algorithm Option
Specifies the subproblem algorithm ALGORITHM= PS (METHOD=USER)

NETWORK_PURE
(METHOD=NETWORK)†

DECOMP_SUBPROB Statement F 737

Table 15.16 (continued)

Description decomp-subprob-option Different
Default

Presolve Option
Controls the dualization of the problem DUALIZE= OFF
Specifies, for the first subproblem solve only, the
type of presolve

INITPRESOLVER=

Specifies the type of presolve PRESOLVER= NONE
(ALGORITHM=PS)†

Control Options
Specifies the feasibility tolerance FEASTOL= 1E–7
Specifies how frequently to print the solution
progress

LOGFREQ=

Specifies the level of detail of solution progress to
print in the log

LOGLEVEL=

Specifies the maximum number of iterations MAXITER=
Specifies the time limit for the optimization pro-
cess

MAXTIME=

Specifies the number of threads to use in the sub-
problem solver

NTHREADS=

Specifies the optimality tolerance OPTTOL= 1E–7
Enables or disables printing summary (OPTLP
procedure only)

PRINTLEVEL=

Specifies the initial seed for the random number
generator

SEED=

Specifies whether time units are CPU time or real
time

TIMETYPE=

Simplex Algorithm Options
Specifies the type of initial basis BASIS= WARMSTART

(ALGORITHM=PS)†

Specifies the type of pricing strategy PRICETYPE=
Specifies the queue size for determining entering
variable

QUEUESIZE=

Enables or disables scaling of the problem SCALE=
Interior Point Algorithm Options
Enables or disables interior crossover CROSSOVER=
Specifies the stopping criterion based on duality
gap

STOP_DG=

Specifies the stopping criterion based on dual in-
feasibility

STOP_DI=

Specifies the stopping criterion based on primal
infeasibility

STOP_PI=

† When METHOD=USER is specified in the DECOMP statement, ALGORITHM=PS, PRESOLVER=NONE, and BA-

SIS=WARMSTART by default. These defaults are motivated by the fact that primal feasibility of the subproblem is preserved when

the objective is changed, so a warm start from the previous optimal basis tends to be more efficient than solving the subproblem from

scratch in each iteration. When METHOD=NETWORK, ALGORITHM=NETWORK_PURE by default because each subproblem

is a pure network, causing the specialized pure network solver to usually be the most efficient choice.

738 F Chapter 15: The Decomposition Algorithm

Table 15.17 summarizes the options available in the DECOMP_SUBPROB statement when the subproblem
algorithm chosen is a MILP algorithm. When the subproblem consists of multiple blocks (a block-diagonal
structure), these settings apply to all subproblems. For descriptions of these options, see the section “MILP
Solver Options” on page 325 in Chapter 8, “The Mixed Integer Linear Programming Solver,” and the section
“PROC OPTMILP Statement” on page 630 in Chapter 13, “The OPTMILP Procedure.”

Table 15.17 Options in the DECOMP_SUBPROB Statement
Used with a MILP Algorithm

Description decomp-subprob-option Different
Default

Algorithm Option
Specifies the subproblem algorithm ALGORITHM=
Presolve Option
Specifies, for the first subproblem solve only, the
type of presolve

INITPRESOLVER=

Specifies the type of presolve PRESOLVER=
Control Options
Specifies the stopping criterion based on absolute
objective gap

ABSOBJGAP=

Emphasizes feasibility or optimality EMPHASIS=
Specifies the maximum violation on variables and
constraints

FEASTOL= 1E–7

Specifies the maximum allowed difference be-
tween an integer variable’s value and an integer

INTTOL=

Specifies how frequently to print the node log LOGFREQ=
Specifies the level of detail of solution progress to
print in the log

LOGLEVEL=

Specifies the maximum number of nodes to be
processed

MAXNODES=

Specifies the maximum number of solutions to be
found

MAXSOLS=

Specifies the time limit for the optimization pro-
cess

MAXTIME=

Specifies the number of threads to use in the sub-
problem solver

NTHREADS=

Specifies the tolerance used when deciding on the
optimality of nodes in the branch-and-bound tree

OPTTOL= 1E–7

Specifies whether to use the previous best primal
solution as a warm start

PRIMALIN=

Specifies the probing level PROBE=
Specifies the stopping criterion based on relative
objective gap

RELOBJGAP=

Specifies the scale of the problem matrix SCALE=
Specifies the stopping criterion based on target
objective value

TARGET=

Specifies whether time units are CPU time or real
time

TIMETYPE=

DECOMP_SUBPROB Statement F 739

Table 15.17 (continued)

Description decomp-subprob-option Different
Default

Heuristics Option
Specifies the primal heuristics level HEURISTICS=
Search Options
Specifies the level of conflict search CONFLICTSEARCH=
Specifies the node selection strategy NODESEL=
Specifies the restarting strategy RESTARTS=
Specifies the initial seed for the random number
generator

SEED=

Specifies the number of simplex iterations per-
formed on each variable in strong branching strat-
egy

STRONGITER=

Specifies the number of candidates for strong
branching

STRONGLEN=

Specifies the level of symmetry detection SYMMETRY=
Specifies the rule for selecting branching variable VARSEL=
Cut Options
Specifies the cut level for all cuts ALLCUTS=
Specifies the clique cut level CUTCLIQUE=
Specifies the flow cover cut level CUTFLOWCOVER=
Specifies the flow path cut level CUTFLOWPATH=
Specifies the Gomory cut level CUTGOMORY=
Specifies the generalized upper bound (GUB)
cover cut level

CUTGUB=

Specifies the implied bounds cut level CUTIMPLIED=
Specifies the knapsack cover cut level CUTKNAPSACK=
Specifies the lift-and-project cut level CUTLAP=
Specifies the mixed lifted 0-1 cut level CUTMILIFTED=
Specifies the mixed integer rounding (MIR) cut
level

CUTMIR=

Specifies the multicommodity network flow cut
level

CUTMULTICOMMODITY=

Specifies the row multiplier factor for cuts CUTSFACTOR=
Specifies the overall cut aggressiveness CUTSTRATEGY=
Specifies the zero-half cut level CUTZEROHALF=

The following options, listed in Table 15.16 and Table 15.17, are specific to the DECOMP_SUBPROB
statement and are not described in the LP or MILP solver sections.

740 F Chapter 15: The Decomposition Algorithm

ALGORITHM=string

SOLVER=string

SOL=string
specifies one of the algorithms shown in Table 15.18 (the valid abbreviated value for each string is
shown in parentheses).

Table 15.18 Values for ALGORITHM= Option

string Description
PRIMAL (PS) Uses the primal simplex algorithm.
DUAL (DS) Uses the dual simplex algorithm.
NETWORK (NS) Uses the network simplex algorithm.
NETWORK_PURE (NSPURE) Uses the network simplex algorithm for pure networks.
INTERIORPOINT (IP) Uses the interior point algorithm.
MILP Uses the mixed integer linear solver.

The default is NETWORK_PURE if METHOD=NETWORK, MILP for mixed integer linear program-
ming subproblems, or PS for linear programming subproblems.

INITPRESOLVER=number | string

INITPRESOL=number | string
specifies, for the first subproblem solve only, presolve conditions as listed in Table 15.19.

Table 15.19 Values for INITPRESOLVER= Option

number string Description
–1 AUTOMATIC Applies the default level of presolve processing
0 NONE Disables presolver
1 BASIC Performs minimal presolve processing
2 MODERATE Applies a higher level of presolve processing
3 AGGRESSIVE Applies the highest level of presolve processing

The default is AUTOMATIC.

NTHREADS=number
specifies the number of threads to use in the subproblem solver (if the selected solver method supports
multithreading). The value of the NTHREADS= option in the PERFORMANCE statement, which
is described in the section “PERFORMANCE Statement” on page 19, serves as the overall capacity
for the number of active threads that can run at one time. By default, the number of subproblem
threads is t D max.1;min.s; bp=nc/, where s is the value of the NTHREADS= option in the
DECOMP_SUBPROB statement, p is the value of the NTHREADS= option in the PERFORMANCE
statement, n D max.1; bd=mc/ is the number of blocks being processed simultaneously, d is the
number of block threads, and m is the number of compute nodes (which can be more than one, when
you run the decomposition algorithm in distributed mode).

Details: Decomposition Algorithm F 741

PRIMALIN=number | string

PIN=number | string
specifies (for MILP problems only) whether the MILP solver is to use the values of the previous best
solution’s variables as a starting solution (warm start). If the MILP solver finds that the input solution is
feasible, then the input solution provides an incumbent solution and a bound for the branch-and-bound
algorithm. If the solution is not feasible, the MILP solver tries to repair it. When it is difficult to
find a good integer-feasible solution for a problem, warm start can reduce solution time significantly.
Table 15.20 describes the valid values of the PRIMALIN= option.

Table 15.20 Values for PRIMALIN= Option

number string Description
0 OFF Ignores the previous solution.
1 ON Starts from the previous solution.

The default is ON.

Details: Decomposition Algorithm

Data Input
This subsection describes the format for describing the partition of the constraint system that defines the
subproblem blocks. In the OPTLP and OPTMILP procedures, partitioning is done by using a data set
specified in the BLOCKS= data option in the DECOMP statement. In PROC OPTMODEL, partitioning is
done by using the .block suffix on constraints.

The blocks must be disjoint with respect to variables. If two blocks contain a nonzero coefficient for the same
variable, the decomposition algorithm produces an error that contains information about where the blocks
overlap.

The BLOCKS= Data Set in PROC OPTMILP and PROC OPTLP

The BLOCKS= data set has two required variables:

ROW
specifies the constraint (row) names of the problem. The values should be a subset of the row names in
the DATA= data set for the current problem.

BLOCK
specifies the numeric block identifier for each constraint in the problem. A missing observation or
missing value indicates a master (linking) constraint that does not appear in any block. Listing the
linking constraints is optional. The block identifiers must start from 0 and be consecutive.

See the section “Solving a MILP with DECOMP and PROC OPTMILP” on page 720 for an example of
using this BLOCKS= data set with PROC OPTMILP.

742 F Chapter 15: The Decomposition Algorithm

The .block Constraint Suffix in PROC OPTMODEL

The .block constraint suffix specifies the numeric block identifier for each constraint in the problem. The
block identifiers do not need to start from 0, nor do they need to be consecutive. Master (linking) constraints
can be identified by using a missing value. Listing the linking constraints is optional.

See the section “Solving a MILP with DECOMP and PROC OPTMODEL” on page 718 for an example of
using the .block constraint suffix with PROC OPTMODEL.

Decomposition Algorithm
The decomposition algorithm for LPs is based on the original Dantzig-Wolfe method (Dantzig and Wolfe
1960). Embedding this method in the context of a branch-and-bound algorithm for MILPs is described in
Barnhart et al. (1998) and is often referred to as branch-and-price. The design of a framework that allows
for building a generic branch-and-price solver that requires only the original (compact) formulation and
the constraint partition was first proposed independently by Ralphs and Galati (2006) and Vanderbeck and
Savelsbergh (2006). This method is also commonly referred to as column generation, although the algorithm
implemented here is only one specific variant of this wider class of algorithms.

The algorithm setup starts by forming various components that are used iteratively during the solver process.
These components include the master problem (controlled by options in the DECOMP_MASTER statement),
one subproblem for each block (controlled by options in the DECOMP_SUBPROB statement) and, for
MILPs, the integer version of the master problem (controlled by options in the DECOMP_MASTER_IP
statement).

The master problem is a linear program that is defined over a potentially large number of variables that
represent the weights of a convex combination. The points in the convex combination satisfy the constraints
that are defined in the subproblem. The master constraints of the original problem are enforced in this
reformulated space. In this sense, the decomposition algorithm takes the intersection of two polyhedra:
one defined by original master constraints and one defined by the subproblem constraints. Since the set of
variables needed to define the intersection of the polyhedra can be large, the algorithm works on a restricted
subset and generates only those variables (columns) that have good potential with respect to feasibility and
optimality. This generation is done by using the dual information that is obtained by solving the master
problem to price out new variables. These new variables are generated by solving the subproblems over
the appropriate cost vector (the reduced cost in the original space). This generation is similar to the revised
simplex method, except that the variable space is exponentially large and therefore is generated implicitly by
solving an optimization problem. This idea of generating variables as needed is the reason why this method
is often referred to as column generation.

Similar to the two-phase simplex algorithm, the algorithm first introduces slack variables and solves a phase
I problem to find a feasible solution. After the algorithm finds a feasible solution, it switches to a phase II
problem to search for an optimal solution. The process of solving the master to generate pricing information
and then solving one or more subproblems to generate candidate variables is repeated until there are no
longer any improving variables and the method has converged.

For MILPs, this process is then used as a bounding method in a branch-and-bound algorithm, as described
in the section “Branch-and-Bound Algorithm” on page 643. The strength of the subproblem polyhedron
is one of the key reasons why decomposition can often solve problems that the standard branch-and-cut
algorithm cannot solve in a reasonable amount of time. Since the points used in the convex combination are
solutions (extreme points) of the subproblem (typically a MILP itself), then the bounds obtained can often be

Parallel Processing F 743

much stronger than the bounds obtained from standard branch-and-bound methods that are based on the LP
relaxation. The subproblem polyhedron intersected with the continuous master polyhedron can provide a
very good approximation of the true convex hull of the original integer program.

For more information about the algorithm process flow and the framework design, see Galati (2009).

Parallel Processing
At each iteration of the decomposition method, the subproblem is solved to minimize the reduced cost that
is derived from the dual information that solving the master problem provides. As discussed in the section
“Overview: Decomposition Algorithm” on page 716, the subproblem often has a block-diagonal structure
that enables the solver to process each block independently.

You can run the decomposition algorithm in either a single-machine or a distributed computing environment.
In single-machine mode, the computation is executed by multiple threads on a single computer. You can
specify options for parallel execution in the PERFORMANCE statement, which is documented in the section
“PERFORMANCE Statement” on page 19 of Chapter 4, “Shared Concepts and Topics.” You can control the
number of threads that are used by specifying the NTHREADS= option in the PERFORMANCE statement.
In distributed mode, the computation is executed in a distributed computing environment. You can control the
number of grid nodes (machines) that are used by specifying the NODES= option in the PERFORMANCE
statement. The decomposition algorithm supports only the deterministic mode of the PARALLELMODE=
option in the PERFORMANCE statement. The default mode of operation is single-machine mode, in which
the number of concurrent threads is based on the number of CPUs (cores) on the machine (subject to any
configuration limitations of the system).

The specified number of threads is used at each iteration to determine the number of blocks to be processed
simultaneously. This same value also determines the number of threads to use for solving the master
(continuous and integer) problem if the selected solver method supports multithreading. To avoid contention,
the number of threads that are allocated to each subproblem solve is 1 (unless the number of blocks to process
is less than the number of threads).

In addition, in each subcomponent statement you can use the NTHREADS= option to specify the number of
threads to use for that solver.

NOTE: Distributed mode requires SAS High-Performance Optimization.

Special Case: Identical Blocks and Ryan-Foster Branching
In the special case of a set partitioning master problem and identical blocks, the underlying algorithm
is automatically adjusted to reduce symmetry and improve overall performance. Identical blocks are
subproblems (see the section “Overview: Decomposition Algorithm” on page 716) that have equivalent
feasible regions (and optima) when they are projected. Algebraically, this means that

A1 D A2 D : : : D A�

D1 D D2 D : : : D D�

c1 D c2 D : : : D c�

b1 D b2 D : : : D b�

x1 D x2 D : : : D x�

x1 D x2 D : : : D x�

744 F Chapter 15: The Decomposition Algorithm

A set partitioning problem is a specific type of integer programming model in which each constraint represents
choosing exactly one member of a set. These constraints are often referred to as assignment constraints.
The linear relaxation of a set partitioning problem enables an algorithm to choose fractional parts of several
members of some set such that they sum to 1. Algebraically, this means Ax D 1, where all the coefficients in
A are 0 or 1.

The performance of algorithms that use a branch-and-bound method can suffer when the formulation contains
substructures that are symmetric. In this context, symmetric means that an assignment of solutions can be
arbitrarily permuted for some component without affecting the optimality of that solution. For example, if

x11 D 1 x12 D 0 x21 D 0 x22 D 1

and

x11 D 0 x12 D 1 x21 D 1 x22 D 0

are both optimal, then these solutions, xij , are considered symmetric on index j. That is, you can interchange
j D 1 and j D 2 without affecting the optimality of the solution. The presence of identical blocks in a
mathematical program is an obvious case in which symmetry can hurt performance. In order to overcome
this handicap, the decomposition algorithm aggregates the identical blocks into one block when it forms
the Dantzig-Wolfe master problem. If the Dantzig-Wolfe master problem is a set partitioning model, the
algorithm uses a specialized branching rule known as Ryan-Foster branching. If the original master model
(after aggregation) is equivalent to the identity matrix, this guarantees that the Dantzig-Wolfe master problem
is of the appropriate form. For more information about the aggregate formulation and Ryan-Foster branching,
see Barnhart et al. (1998).

Suppose you want to solve the following problem:

maximize x11 C 2x21 C x31 C x12 C 2x22 C x32
subject to x11 C x12 D 1 (m1)

x21 C x22 D 1 (m2)
5x11 C 7x21 C 4x31 � 11 (s1)

5x12 C 7x22 C 4x32 � 11 (s2)
xij 2 f0; 1g i 2 f1; 2; 3g; j 2 f1; 2g

If constraints m1 and m2 are removed, then the remaining constraints s1 and s2 decompose into two
independent and identical subproblems. In addition, constraints m1 and m2 form a set partitioning master
problem.

Special Case: Identical Blocks and Ryan-Foster Branching F 745

The following statements use the OPTMODEL procedure and the decomposition algorithm to solve the
preceding problem:

proc optmodel;
var x{i in 1..3, j in 1..2} binary;

max f = x[1,1] + 2*x[2,1] + x[3,1] +
x[1,2] + 2*x[2,2] + x[3,2];

con m1: x[1,1] + x[1,2] = 1;
con m2: x[2,1] + x[2,2] = 1;
con s1: 5*x[1,1] + 7*x[2,1] + 4*x[3,1] <= 11;
con s2: 5*x[1,2] + 7*x[2,2] + 4*x[3,2] <= 11;

s1.block = 0;
s2.block = 1;

solve with milp / presolver=none decomp=(logfreq=1);
print x;

quit;

Here, the PRESOLVER=NONE option is used again, because otherwise the presolver solves this small
instance without invoking any solver. The solution summary and optimal solution are displayed in Figure 15.3.

Figure 15.3 Solution Summary and Optimal Solution

The OPTMODEL ProcedureThe OPTMODEL Procedure

Solution Summary

Solver MILP

Algorithm Decomposition

Objective Function f

Solution Status Optimal

Objective Value 5

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 0

Bound Infeasibility 0

Integer Infeasibility 0

Best Bound 5

Nodes 1

Iterations 2

Presolve Time 0.00

Solution Time 0.01

x

1 2

1 1 0

2 0 1

3 1 1

746 F Chapter 15: The Decomposition Algorithm

The iteration log, which displays the problem statistics, the progress of the solution, and the optimal objective
value, is shown in Figure 15.4.

Figure 15.4 Log

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 6 variables (0 free, 0 fixed).

NOTE: The problem has 6 binary and 0 integer variables.

NOTE: The problem has 4 linear constraints (2 LE, 2 EQ, 0 GE, 0 range).

NOTE: The problem has 10 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The MILP presolver value NONE is applied.

NOTE: The MILP solver is called.

NOTE: The Decomposition algorithm is used.

NOTE: The Decomposition algorithm is executing in single-machine mode.

NOTE: The DECOMP method value USER is applied.

NOTE: All blocks are identical and the master model is set partitioning.

NOTE: The Decomposition algorithm is using an aggregate formulation and Ryan-Foster branching.

NOTE: The number of block threads has been reduced to 1 threads.

NOTE: The problem has a decomposable structure with 2 blocks. The largest block covers 25% of

 the constraints in the problem.

NOTE: The decomposition subproblems cover 6 (100%) variables and 2 (50%) constraints.

NOTE: The deterministic parallel mode is enabled.

NOTE: The Decomposition algorithm is using up to 4 threads.

 Iter Best Master Best LP IP CPU Real

 Bound Objective Integer Gap Gap Time Time

 . 6.0000 5.0000 5.0000 16.67% 16.67% 0 0

 1 6.0000 5.0000 5.0000 16.67% 16.67% 0 0

 2 5.0000 5.0000 5.0000 0.00% 0.00% 0 0

 Node Active Sols Best Best Gap CPU Real

 Integer Bound Time Time

 0 0 1 5.0000 5.0000 0.00% 0 0

NOTE: The Decomposition algorithm used 4 threads.

NOTE: The Decomposition algorithm time is 0.01 seconds.

NOTE: Optimal.

NOTE: Objective = 5.

The decomposition solver recognizes that the original master model is of the appropriate form and that each
block is identical. It formulates the aggregate master and uses Ryan-Foster branching to solve the model.

In the presence of identical blocks, under certain circumstances, the aggregate formulation can also be used
with a set covering master formulation. A set covering problem is an integer programming model in which
each constraint represents choosing at least one member of a set. Algebraically, this means Ax � 1, where all
the coefficients in A are 0 or 1. Aggregate formulation and Ryan-Foster branching can be used if there exists
an optimal solution, x�, that is binding at equality (Ax� D 1). If you can guarantee such a condition, you can
greatly improve performance by explicitly using VARSEL=RYANFOSTER as a MILP main solver option.
The decomposition algorithm usually performs better when it uses a set covering formulation as opposed to a
set partitioning formulation, because it is usually easier to find integer feasible solutions. If the models are
equivalent, using the set covering formulation is recommended. For two examples, see Example 15.6, which
shows the bin packing problem, and Example 15.8, which shows the vehicle routing problem.

Log for the Decomposition Algorithm F 747

Similarly, a set packing problem is an integer programming model in which each constraint represents
choosing at most one member of a set. Algebraically, this means Ax � 1, where all the coefficients in
A are 0 or 1. Aggregate formulation and Ryan-Foster branching can be used if there exists an optimal
solution, x�, that is binding at equality (Ax� D 1). In this case, using VARSEL=RYANFOSTER can
improve performance. Alternatively, you can transform any set packing model into a set partitioning model
by introducing a zero-cost slack variable for each packing constraint. See Example 15.11, which shows an
application that optimizes a kidney donor exchange.

The decomposition algorithm automatically searches for identical blocks and the appropriate set partitioning
master formulation. If it finds this structure, the algorithm automatically generates the aggregate formulation
and uses Ryan-Foster branching. The aggregate model needs to process only one block at each subproblem
iteration. Therefore, parallel processing (in which multiple blocks are processed simultaneously), as described
in the section “Parallel Processing” on page 743, cannot improve performance. For this reason, when the
decomposition algorithm runs in distributed mode, it does not create the aggregate formulation, nor does it
use Ryan-Foster branching, even if the blocks are found to be identical.

Log for the Decomposition Algorithm
The following subsections describe what to expect in the SAS log when you run the decomposition algorithm.

Setup Information in the SAS Log

In the setup phase of the algorithm, information about the method you choose and the structure of the model
is written to the SAS log. One of the most important pieces of information displayed in the log is the number
of disjoint blocks and the coverage of those blocks with respect to both variables and constraints in the
original presolved model. As explained in the section “Overview: Decomposition Algorithm” on page 716,
the decomposition algorithm usually performs better than standard approaches only if the subproblems cover
a significant amount of the original problem. However, this is not always a straightforward indicator for
MILPs, because the strength of the subproblem with respect to integrality is not always proportional to the
size of the system.

After the structural information is written to the log, the algorithm begins and the iteration log is displayed.

Iteration Log for LPs

When the decomposition algorithm solves LPs, the iteration log shows the progress of convergence in finding
the appropriate set of columns in the reformulated space.

The following information is written to the iteration log:

Iter indicates the iteration number.

Best Bound indicates the best dual bound found so far.

Master Objective indicates the current amount of infeasibility in phase I and the primal objective value of
the current solution in phase II.

Gap indicates the relative difference between the master objective and the best known dual
bound. This indicates how close the algorithm is to convergence. If the relative gap is
greater than 1000%, then the absolute gap is written.

748 F Chapter 15: The Decomposition Algorithm

CPU Time indicates the CPU time elapsed (in seconds).

Real Time indicates the real time elapsed (in seconds).

Entries are made in the log at a frequency that is specified in the LOGFREQ= option. If LOGFREQ=0, then
the iteration log is disabled. If the LOGFREQ= value is positive, then an entry is made in the log at the first
iteration, at the last iteration, and at intervals that are specified by the LOGFREQ= value. An entry is also
made each time an improved bound is found.

The behavior of objective values in the iteration log depends on both the current phase and on which solver
you choose. In phase I, the master formulation has an artificial objective value that decreases to 0 when a
feasible solution is found. In phase II, the decomposition algorithm maintains a primal feasible solution, so a
minimization problem has decreasing objective values in the iteration log.

When you specify LOGLEVEL=MODERATE or LOGLEVEL=AGGRESSIVE in the DECOMP statement,
information about the subproblem solves is written before each iteration line.

Iteration Log for MILPs

When the decomposition algorithm solves MILPs, the iteration log shows the progress of convergence in
finding the appropriate set of columns in the reformulated space, in addition to the global convergence of the
branch-and-bound algorithm for finding an optimal integer solution.

You can control the amount of information at each node by using the LOGLEVEL= option in the DECOMP
statement. By default, the continuous iteration log for the root node is written at the interval specified in
the LOGFREQ= option in the DECOMP statement. Then the branch-and-bound node log is written at the
interval specified in the LOGFREQ= main solver option.

When the algorithm solves MILPs, the continuous iteration log is similar to the iteration log described in the
section “Iteration Log for LPs” on page 747 except that information about integer-feasible solutions is also
displayed. The following information is printed in the continuous iteration log when the algorithm solves
MILPs:

Iter indicates the iteration number.

Best Bound indicates the best dual bound found so far.

Master Objective indicates the current amount of infeasibility in phase I and the primal objective value of
the current solution in phase II.

Best Integer indicates the objective of the best integer-feasible solution found so far.

LP Gap indicates the relative difference between the master objective and the best known dual
bound. This indicates how close the algorithm for this particular node is to convergence.
If the relative gap is greater than 1000%, then the absolute gap is displayed.

IP Gap indicates the relative difference between the best integer and the best known dual bound.
This indicates how close the branch-and-bound algorithm is to convergence. If the
relative gap is greater than 1000%, then the absolute gap is displayed.

CPU Time indicates the CPU time elapsed (in seconds).

Real Time indicates the real time elapsed (in seconds).

After the root node is complete, the algorithm then moves into the branch-and-bound phase. By default, it
displays the branch-and-bound node log and suppresses the continuous iteration log.

Examples: Decomposition Algorithm F 749

The following information is printed in the branch-and-bound node log when the algorithm solves MILPs:

Node indicates the sequence number of the current node in the search tree.

Active indicates the current number of active nodes in the branch-and-bound tree.

Sols indicates the number of feasible solutions found so far.

Best Integer indicates the objective of the best integer-feasible solution found so far.

Best Bound indicates the best dual bound found so far.

Gap indicates the relative difference between the best integer and the best known dual bound.
This indicates how close the branch-and-bound algorithm is to convergence. If the
relative gap is greater than 1000%, then the absolute gap is displayed.

CPU Time indicates the CPU time elapsed (in seconds).

Real Time indicates the real time elapsed (in seconds).

If the LOGLEVEL= option in the DECOMP statement is set to BASIC, MODERATE or AGGRESSIVE,
then the continuous iteration log is displayed for each branch-and-bound node at the interval specified in the
LOGFREQ= option in the DECOMP statement.

Additional information can be displayed to the log by specifying the LOGLEVEL= option in each of the algo-
rithmic component statements (DECOMP_MASTER, DECOMP_MASTER_IP, and DECOMP_SUBPROB).
By default, the individual component log levels are all disabled.

Examples: Decomposition Algorithm

Example 15.1: Multicommodity Flow Problem and METHOD=NETWORK
This example demonstrates how to use the decomposition algorithm to find a minimum-cost multicommodity
flow (MMCF) in a directed network. This type of problem was motivation for the development of the original
Dantzig-Wolfe decomposition method (Dantzig and Wolfe 1960).

Let G D .N;A/ be a directed graph, and let K be a set of commodities. For each link .i; j / 2 A and each
commodity k, associate a cost per unit of flow, designated by ckij . The demand (or supply) at each node i 2 N
for commodity k is designated as bki , where bki � 0 denotes a supply node and bki < 0 denotes a demand
node. Define decision variables xkij that denote the amount of commodity k sent from node i and node j. The
amount of total flow, across all commodities, that can be sent across each link is bounded above by uij .

750 F Chapter 15: The Decomposition Algorithm

The problem can be modeled as a linear programming problem as follows:

minimize
X

.i;j /2A

X
k2K

ckijx
k
ij

subject to
X
k2K

xkij � uij .i; j / 2 A (Capacity)X
.i;j /2A

xkij �
X

.j;i/2A

xkji D b
k
i i 2 N; k 2 K (Balance)

xkij � 0 .i; j / 2 A; k 2 K

In this formulation, The Capacity constraints limit the total flow across all commodities on each arc. The
Balance constraints ensure that the flow of commodities leaving each supply node and entering each demand
node are balanced.

Consider the directed graph in Figure 15.5 which appears in Ahuja, Magnanti, and Orlin (1993).

Figure 15.5 Example Network with Two Commodities

110 2 −10

3 4

520 6 −20

(c = 1, u = 5)

(5, 30)

(1, 10)

(5, 30)

(1, 30)(1, 30)

(5, 30)

The goal in this example is to minimize the total cost of sending two commodities across the network while
satisfying all supplies and demands and respecting arc capacities. If there were no arc capacities linking the
two commodities, you could solve a separate minimum-cost network flow problem for each commodity one
at a time.

Example 15.1: Multicommodity Flow Problem and METHOD=NETWORK F 751

The following data set arc_comm_data provides the cost ckij of sending a unit of commodity k along arc
.i; j /:

data arc_comm_data;
input k i j cost;
datalines;

1 1 2 1
1 1 3 5
1 5 3 1
1 5 6 5
1 3 4 1
1 4 2 5
1 4 6 1
2 1 2 1
2 1 3 5
2 5 3 1
2 5 6 5
2 3 4 1
2 4 2 5
2 4 6 1
;

Next, the data set arc_data provides the capacity uij for each arc:

data arc_data;
input i j capacity;
datalines;

1 2 5
1 3 30
5 3 30
5 6 30
3 4 10
4 2 30
4 6 30
;

data supply_data;
input k i supply;
datalines;

1 1 10
1 2 -10
2 5 20
2 6 -20
;

The following PROC OPTMODEL statements find the minimum-cost multicommodity flow:

proc optmodel;
set <num,num,num> ARC_COMM;
num cost {ARC_COMM};
read data arc_comm_data into ARC_COMM=[i j k] cost;

set ARCS = setof {<i,j,k> in ARC_COMM} <i,j>;
set COMMODITIES = setof {<i,j,k> in ARC_COMM} k;
set NODES = union {<i,j> in ARCS} {i,j};

752 F Chapter 15: The Decomposition Algorithm

num arcCapacity {ARCS};
read data arc_data into [i j] arcCapacity=capacity;

num supply {NODES, COMMODITIES} init 0;
read data supply_data into [i k] supply;

var Flow {<i,j,k> in ARC_COMM} >= 0;
min TotalCost =

sum {<i,j,k> in ARC_COMM} cost[i,j,k] * Flow[i,j,k];
con Balance {i in NODES, k in COMMODITIES}:

sum {<(i),j,(k)> in ARC_COMM} Flow[i,j,k]
- sum {<j,(i),(k)> in ARC_COMM} Flow[j,i,k] = supply[i,k];

con Capacity {<i,j> in ARCS}:
sum {<(i),(j),k> in ARC_COMM} Flow[i,j,k] <= arcCapacity[i,j];

Because each Balance constraint involves variables for only one commodity, a decomposition by commodity
is a natural choice. In both the OPTLP and OPTMILP procedures, the block identifiers must be consecutive
integers starting from 0. In PROC OPTMODEL, the block identifiers only need to be numeric. The following
FOR loop populates the .block constraint suffix with block identifier k for commodity k:

for{i in NODES, k in COMMODITIES}
Balance[i,k].block = k;

The .block constraint suffix for the linking Capacity constraints is left missing, so these constraints become
part of the master problem.

The following SOLVE statement uses the DECOMP option to invoke the decomposition algorithm:

solve with LP / presolver=none decomp subprob=(algorithm=nspure);
print Flow;

quit;

Here, the PRESOLVER=NONE option is used, because otherwise the presolver solves this small instance
without invoking any solver. Because each subproblem is a pure network flow problem, you can use the
ALGORITHM=NSPURE option in the SUBPROB= option to request that a network simplex algorithm for
pure networks be used instead of the default algorithm, which for linear programming subproblems is primal
simplex.

It turns out for this example that if you specify METHOD=NETWORK (instead of the default
METHOD=USER) in the DECOMP option, the network extractor finds the same blocks, one per com-
modity. To invoke the METHOD=NETWORK option, simply change the SOLVE statement as follows:

solve with LP / presolver=none decomp=(method=network);

In this case, the default subproblem solver is NSPURE.

Example 15.1: Multicommodity Flow Problem and METHOD=NETWORK F 753

The optimal solution and solution summary are displayed in Output 15.1.1.

Output 15.1.1 Solution Summary and Optimal Solution

The OPTMODEL ProcedureThe OPTMODEL Procedure

Solution Summary

Solver LP

Algorithm Decomposition

Objective Function TotalCost

Solution Status Optimal

Objective Value 150

Primal Infeasibility 0

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 3

Presolve Time 0.00

Solution Time 0.00

[1] [2] [3] Flow

1 2 1 5

1 2 2 0

1 3 1 5

1 3 2 0

3 4 1 5

3 4 2 5

4 2 1 5

4 2 2 0

4 6 1 0

4 6 2 5

5 3 1 0

5 3 2 5

5 6 1 0

5 6 2 15

754 F Chapter 15: The Decomposition Algorithm

The optimal solution is shown on the network in Figure 15.6.

Figure 15.6 Optimal Flow on Network with Two Commodities

110 2 −10

3 4

520 6 −20

(c = 1, u = 5)

(5, 30)

(1, 10)

(5, 30)

(1, 30)(1, 30)

(5, 30)

5

5

5 5

5

55

15

Example 15.2: Generalized Assignment Problem F 755

The iteration log, which contains the problem statistics, the progress of the solution, and the optimal objective
value, is shown in Output 15.1.2.

Output 15.1.2 Log

NOTE: There were 14 observations read from the data set WORK.ARC_COMM_DATA.

NOTE: There were 7 observations read from the data set WORK.ARC_DATA.

NOTE: There were 4 observations read from the data set WORK.SUPPLY_DATA.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 14 variables (0 free, 0 fixed).

NOTE: The problem has 19 linear constraints (7 LE, 12 EQ, 0 GE, 0 range).

NOTE: The problem has 42 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The LP presolver value NONE is applied.

NOTE: The LP solver is called.

NOTE: The Decomposition algorithm is used.

NOTE: The Decomposition algorithm is executing in single-machine mode.

NOTE: The DECOMP method value USER is applied.

NOTE: The number of block threads has been reduced to 2 threads.

NOTE: The problem has a decomposable structure with 2 blocks. The largest block covers 31.58%

 of the constraints in the problem.

NOTE: The decomposition subproblems cover 14 (100%) variables and 12 (63.16%) constraints.

NOTE: The deterministic parallel mode is enabled.

NOTE: The Decomposition algorithm is using up to 4 threads.

 Iter Best Master Gap CPU Real

 Bound Objective Time Time

NOTE: Starting phase 1.

 1 0.0000 1.0000 1.00e+00 0.0 0.0

 2 0.0000 0.0000 0.00% 0.0 0.0

NOTE: Starting phase 2.

 3 150.0000 150.0000 0.00% 0.0 0.0

NOTE: The Decomposition algorithm used 2 threads.

NOTE: The Decomposition algorithm time is 0.00 seconds.

NOTE: Optimal.

NOTE: Objective = 150.

Example 15.2: Generalized Assignment Problem
The generalized assignment problem (GAP) is that of finding a maximum profit assignment from n tasks
to m machines such that each task is assigned to precisely one machine subject to capacity restrictions on
the machines. With each possible assignment, associate a binary variable xij , which, if set to 1, indicates
that machine i is assigned to task j. For ease of notation, define two index sets M D f1; : : : ; mg and

756 F Chapter 15: The Decomposition Algorithm

N D f1; : : : ; ng. A GAP can be formulated as a MILP as follows:

maximize
X
i2M

X
j2N

pijxij

subject to
X
i2M

xij D 1 j 2 N (Assignment)X
j2N

wijxij � bi i 2M (Knapsack)

xij 2 f0; 1g i 2M; j 2 N

In this formulation, Assignment constraints ensure that each task is assigned to exactly one machine.
Knapsack constraints ensure that for each machine, the capacity restrictions are met.

Consider the following example taken from Koch et al. (2011) with n D 24 tasks to be assigned to m D 8
machines. The data set profit_data provides the profit for assigning a particular task to a particular machine:

%let NumTasks = 24;
%let NumMachines = 8;

data profit_data;
input p1-p&NumTasks;
datalines;

25 23 20 16 19 22 20 16 15 22 15 21 20 23 20 22 19 25 25 24 21 17 23 17
16 19 22 22 19 23 17 24 15 24 18 19 20 24 25 25 19 24 18 21 16 25 15 20
20 18 23 23 23 17 19 16 24 24 17 23 19 22 23 25 23 18 19 24 20 17 23 23
16 16 15 23 15 15 25 22 17 20 19 16 17 17 20 17 17 18 16 18 15 25 22 17
17 23 21 20 24 22 25 17 22 20 16 22 21 23 24 15 22 25 18 19 19 17 22 23
24 21 23 17 21 19 19 17 18 24 15 15 17 18 15 24 19 21 23 24 17 20 16 21
18 21 22 23 22 15 18 15 21 22 15 23 21 25 25 23 20 16 25 17 15 15 18 16
19 24 18 17 21 18 24 25 18 23 21 15 24 23 18 18 23 23 16 20 20 19 25 21
;

The data set weight_data provides the amount of resources used by a particular task when assigned to a
particular machine:

data weight_data;
input w1-w&NumTasks;
datalines;

8 18 22 5 11 11 22 11 17 22 11 20 13 13 7 22 15 22 24 8 8 24 18 8
24 14 11 15 24 8 10 15 19 25 6 13 10 25 19 24 13 12 5 18 10 24 8 5
22 22 21 22 13 16 21 5 25 13 12 9 24 6 22 24 11 21 11 14 12 10 20 6
13 8 19 12 19 18 10 21 5 9 11 9 22 8 12 13 9 25 19 24 22 6 19 14
25 16 13 5 11 8 7 8 25 20 24 20 11 6 10 10 6 22 10 10 13 21 5 19
19 19 5 11 22 24 18 11 6 13 24 24 22 6 22 5 14 6 16 11 6 8 18 10
24 10 9 10 6 15 7 13 20 8 7 9 24 9 21 9 11 19 10 5 23 20 5 21
6 9 9 5 12 10 16 15 19 18 20 18 16 21 11 12 22 16 21 25 7 14 16 10

;

Example 15.2: Generalized Assignment Problem F 757

Finally, the data set capacity_data provides the resource capacity for each machine:

data capacity_data;
input b @@;
datalines;

36 35 38 34 32 34 31 34
;

The following PROC OPTMODEL statements read in the data and define the necessary sets and parameters:

proc optmodel;
/* declare index sets */
set TASKS = 1..&NumTasks;
set MACHINES = 1..&NumMachines;

/* declare parameters */
num profit {MACHINES, TASKS};
num weight {MACHINES, TASKS};
num capacity {MACHINES};

/* read data sets to populate data */
read data profit_data into [i=_n_] {j in TASKS} <profit[i,j]=col('p'||j)>;
read data weight_data into [i=_n_] {j in TASKS} <weight[i,j]=col('w'||j)>;
read data capacity_data into [_n_] capacity=b;

The following statements declare the optimization model:

/* declare decision variables */
var Assign {MACHINES, TASKS} binary;

/* declare objective */
max TotalProfit =

sum {i in MACHINES, j in TASKS} profit[i,j] * Assign[i,j];

/* declare constraints */
con Assignment {j in TASKS}:

sum {i in MACHINES} Assign[i,j] = 1;

con Knapsack {i in MACHINES}:
sum {j in TASKS} weight[i,j] * Assign[i,j] <= capacity[i];

The following statements use two different decompositions to solve the problem. The first decomposition
defines each Assignment constraint as a block and uses the pure network simplex solver for the subproblem.
The second decomposition defines each Knapsack constraint as a block and uses the MILP solver for the
subproblem.

/* each Assignment constraint defines a block */
for{j in TASKS}

Assignment[j].block = j;

solve with milp / logfreq=1000
decomp
decomp_subprob=(algorithm=nspure);

758 F Chapter 15: The Decomposition Algorithm

/* each Knapsack constraint defines a block */
for{j in TASKS}

Assignment[j].block = .;
for{i in MACHINES}

Knapsack[i].block = i;

solve with milp / decomp;
quit;

The solution summaries are displayed in Output 15.2.1.

Output 15.2.1 Solution Summaries

The OPTMODEL ProcedureThe OPTMODEL Procedure

Solution Summary

Solver MILP

Algorithm Decomposition

Objective Function TotalProfit

Solution Status Optimal

Objective Value 563

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 4.440892E-16

Bound Infeasibility 4.440892E-16

Integer Infeasibility 4.440892E-16

Best Bound 563

Nodes 943

Iterations 2858

Presolve Time 0.00

Solution Time 2.77

Solution Summary

Solver MILP

Algorithm Decomposition

Objective Function TotalProfit

Solution Status Optimal

Objective Value 563

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 0

Bound Infeasibility 0

Integer Infeasibility 0

Best Bound 563

Nodes 3

Iterations 78

Presolve Time 0.00

Solution Time 0.16

Example 15.2: Generalized Assignment Problem F 759

The iteration log for both decompositions is shown in Output 15.2.2. This example is interesting because
it shows the tradeoff between the strength of the relaxation and the difficulty of its resolution. In the first
decomposition, the subproblems are totally unimodular and can be solved trivially. Consequently, each
iteration of the decomposition algorithm is very fast. However, the bound obtained is as weak as the bound
found in direct methods (the LP bound). The weaker bound leads to the need to enumerate more nodes
overall. Alternatively, in the second decomposition, the subproblem is the knapsack problem, which is solved
using MILP. In this case, the bound is much tighter and the problem solves in very few nodes. The tradeoff,
of course, is that each iteration takes longer because solving the knapsack problem is not trivial. Another
interesting aspect of this problem is that the subproblem coverage in the second decomposition is much
smaller than that of the first decomposition. However, when dealing with MILP, it is not always the size of
the coverage that determines the overall effectiveness of a particular choice of decomposition.

760 F Chapter 15: The Decomposition Algorithm

Output 15.2.2 Log

NOTE: There were 8 observations read from the data set WORK.PROFIT_DATA.

NOTE: There were 8 observations read from the data set WORK.WEIGHT_DATA.

NOTE: There were 8 observations read from the data set WORK.CAPACITY_DATA.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 192 variables (0 free, 0 fixed).

NOTE: The problem has 192 binary and 0 integer variables.

NOTE: The problem has 32 linear constraints (8 LE, 24 EQ, 0 GE, 0 range).

NOTE: The problem has 384 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The MILP presolver value AUTOMATIC is applied.

NOTE: The MILP presolver removed 0 variables and 0 constraints.

NOTE: The MILP presolver removed 0 constraint coefficients.

NOTE: The MILP presolver modified 5 constraint coefficients.

NOTE: The presolved problem has 192 variables, 32 constraints, and 384 constraint coefficients.

NOTE: The MILP solver is called.

NOTE: The Decomposition algorithm is used.

NOTE: The Decomposition algorithm is executing in single-machine mode.

NOTE: The DECOMP method value USER is applied.

WARNING: The subproblem solver chosen is an LP solver but at least one block has integer

 variables.

NOTE: The problem has a decomposable structure with 24 blocks. The largest block covers 3.125%

 of the constraints in the problem.

NOTE: The decomposition subproblems cover 192 (100%) variables and 24 (75%) constraints.

NOTE: The deterministic parallel mode is enabled.

NOTE: The Decomposition algorithm is using up to 4 threads.

 Iter Best Master Best LP IP CPU Real

 Bound Objective Integer Gap Gap Time Time

 . 574.0000 559.0836 552.0000 2.60% 3.83% 0 0

 5 568.6281 568.6281 562.0000 0.00% 1.17% 0 0

NOTE: Starting branch and bound.

 Node Active Sols Best Best Gap CPU Real

 Integer Bound Time Time

 0 1 8 562.0000 568.6281 1.17% 0 0

 942 0 9 563.0000 563.0000 0.00% 2 2

NOTE: The Decomposition algorithm used 4 threads.

NOTE: The Decomposition algorithm time is 2.77 seconds.

NOTE: Optimal.

NOTE: Objective = 563.

NOTE: The MILP presolver value AUTOMATIC is applied.

NOTE: The MILP presolver removed 0 variables and 0 constraints.

NOTE: The MILP presolver removed 0 constraint coefficients.

NOTE: The MILP presolver modified 5 constraint coefficients.

NOTE: The presolved problem has 192 variables, 32 constraints, and 384 constraint coefficients.

NOTE: The MILP solver is called.

NOTE: The Decomposition algorithm is used.

NOTE: The Decomposition algorithm is executing in single-machine mode.

NOTE: The DECOMP method value USER is applied.

NOTE: The problem has a decomposable structure with 8 blocks. The largest block covers 3.125%

 of the constraints in the problem.

Example 15.2: Generalized Assignment Problem F 761

Output 15.2.2 continued

NOTE: The decomposition subproblems cover 192 (100%) variables and 8 (25%) constraints.

NOTE: The deterministic parallel mode is enabled.

NOTE: The Decomposition algorithm is using up to 4 threads.

 Iter Best Master Best LP IP CPU Real

 Bound Objective Integer Gap Gap Time Time

 . 820.0000 474.0000 474.0000 42.20% 42.20% 0 0

 1 820.0000 474.0000 474.0000 42.20% 42.20% 0 0

 3 755.0000 474.0000 474.0000 37.22% 37.22% 0 0

 7 755.0000 558.0000 558.0000 26.09% 26.09% 0 0

 8 672.5366 558.0000 558.0000 17.03% 17.03% 0 0

 9 641.0000 558.0000 558.0000 12.95% 12.95% 0 0

 . 641.0000 558.0000 558.0000 12.95% 12.95% 0 0

 10 611.5000 558.0000 558.0000 8.75% 8.75% 0 0

 11 592.5000 558.0000 558.0000 5.82% 5.82% 0 0

 13 578.5000 558.0000 558.0000 3.54% 3.54% 0 0

 14 575.0000 558.0000 558.0000 2.96% 2.96% 0 0

 16 575.0000 563.0000 563.0000 2.09% 2.09% 0 0

 17 568.8000 563.0000 563.0000 1.02% 1.02% 0 0

 19 567.1429 563.0000 563.0000 0.73% 0.73% 0 0

 . 567.1429 563.0000 563.0000 0.73% 0.73% 0 0

 20 567.1429 563.0000 563.0000 0.73% 0.73% 0 0

 22 566.3333 563.3333 563.0000 0.53% 0.59% 0 0

 23 564.5000 564.0000 563.0000 0.09% 0.27% 0 0

 25 564.0000 564.0000 563.0000 0.00% 0.18% 0 0

NOTE: Starting branch and bound.

 Node Active Sols Best Best Gap CPU Real

 Integer Bound Time Time

 0 1 9 563.0000 564.0000 0.18% 0 0

 2 0 9 563.0000 563.0000 0.00% 0 0

NOTE: The Decomposition algorithm used 4 threads.

NOTE: The Decomposition algorithm time is 0.16 seconds.

NOTE: Optimal.

NOTE: Objective = 563.

762 F Chapter 15: The Decomposition Algorithm

Example 15.3: Block-Diagonal Structure and METHOD=CONCOMP in
Single-Machine Mode

This example demonstrates how you can use the METHOD=CONCOMP option in the DECOMP statement
to execute the decomposition algorithm in single-machine mode.

Consider a mixed integer linear program that is defined by the MPS data set mpsdata. In this case, the
structure of the model is unknown and only the MPS data set is provided to you.

The following PROC OPTMILP statements solve the problem by using standard methods:

proc optmilp
data = mpsdata;

run;

The solution summary is shown in Output 15.3.1.

Output 15.3.1 Solution Summary

The OPTMILP ProcedureThe OPTMILP Procedure

Solution Summary

Solver MILP

Algorithm Branch and Cut

Objective Function R0001298

Solution Status Optimal

Objective Value 120

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 2.436717E-12

Bound Infeasibility 1.218359E-12

Integer Infeasibility 5.830891E-13

Best Bound 120

Nodes 411

Iterations 43886

Presolve Time 0.01

Solution Time 1.25

Example 15.3: Block-Diagonal Structure and METHOD=CONCOMP in Single-Machine Mode F 763

The iteration log, which contains the problem statistics and the progress of the solution, is shown in
Output 15.3.2.

Output 15.3.2 Log

NOTE: The problem MPSDATA has 388 variables (36 binary, 0 integer, 1 free, 0 fixed).

NOTE: The problem has 1297 constraints (630 LE, 37 EQ, 630 GE, 0 range).

NOTE: The problem has 4204 constraint coefficients.

NOTE: The MILP presolver value AUTOMATIC is applied.

NOTE: The MILP presolver removed 37 variables and 37 constraints.

NOTE: The MILP presolver removed 424 constraint coefficients.

NOTE: The MILP presolver modified 0 constraint coefficients.

NOTE: The presolved problem has 351 variables, 1260 constraints, and 3780 constraint

 coefficients.

NOTE: The MILP solver is called.

NOTE: The parallel Branch and Cut algorithm is used.

NOTE: The Branch and Cut algorithm is using up to 4 threads.

NOTE: The problem has a decomposable structure with 4 blocks. The largest block covers 25.08%

 of the constraints in the problem. The DECOMP option with METHOD=CONCOMP is recommended

 for solving problems with this structure.

 Node Active Sols BestInteger BestBound Gap Time

 0 1 2 161.0000000 0 161.0 0

 0 1 2 161.0000000 91.4479396 76.06% 0

 0 1 2 161.0000000 111.7932692 44.02% 1

 0 1 2 161.0000000 111.7932692 44.02% 1

NOTE: The MILP presolver is applied again.

 0 1 3 128.0000000 111.7932692 14.50% 1

 0 1 4 127.0000000 112.1093044 13.28% 1

NOTE: The MILP solver added 1 cuts with 5 cut coefficients at the root.

 100 61 4 127.0000000 114.5492939 10.87% 1

 112 67 5 123.0000000 114.5492939 7.38% 1

 160 79 6 120.0000000 115.6638620 3.75% 1

 200 75 6 120.0000000 116.6697531 2.85% 1

 300 59 6 120.0000000 117.9348837 1.75% 1

 400 5 6 120.0000000 119.4594595 0.45% 1

 410 0 6 120.0000000 120.0000000 0.00% 1

NOTE: Optimal.

NOTE: Objective = 120.

NOTE: There were 6215 observations read from the data set WORK.MPSDATA.

764 F Chapter 15: The Decomposition Algorithm

A note in the log suggests that you can use the decomposition algorithm because of the structure of the
problem. The following PROC OPTMILP statements use the METHOD=CONCOMP option in the DECOMP
statement in single-machine mode. The PERFORMANCE statement specifies the number of threads to use.

proc optmilp
data = mpsdata;
decomp

loglevel = 2
method = concomp;

performance
nthreads = 4;

run;

The performance information and solution summary are displayed in Output 15.3.3.

Output 15.3.3 Performance Information and Solution Summary

The OPTMILP ProcedureThe OPTMILP Procedure

Performance Information

Execution Mode Single-Machine

Number of Threads 4

Solution Summary

Solver MILP

Algorithm Decomposition

Objective Function R0001298

Solution Status Optimal

Objective Value 120

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 2.442491E-15

Bound Infeasibility 8.881784E-16

Integer Infeasibility 4.440892E-16

Best Bound 120

Nodes 1

Iterations 1

Presolve Time 0.01

Solution Time 0.60

The iteration log, which contains the problem statistics and the progress of the solution, is shown in
Output 15.3.4. When you specify NTHREADS=4 in the PERFORMANCE statement in single-machine
mode, each block is processed simultaneously on each of four threads.

Example 15.3: Block-Diagonal Structure and METHOD=CONCOMP in Single-Machine Mode F 765

Output 15.3.4 Log

NOTE: The OPTMILP procedure is executing in single-machine mode.

NOTE: The problem MPSDATA has 388 variables (36 binary, 0 integer, 1 free, 0 fixed).

NOTE: The problem has 1297 constraints (630 LE, 37 EQ, 630 GE, 0 range).

NOTE: The problem has 4204 constraint coefficients.

NOTE: The MILP presolver value AUTOMATIC is applied.

NOTE: The MILP presolver removed 37 variables and 37 constraints.

NOTE: The MILP presolver removed 424 constraint coefficients.

NOTE: The MILP presolver modified 0 constraint coefficients.

NOTE: The presolved problem has 351 variables, 1260 constraints, and 3780 constraint

 coefficients.

NOTE: The MILP solver is called.

NOTE: The Decomposition algorithm is used.

NOTE: The DECOMP method value CONCOMP is applied.

NOTE: The problem has a decomposable structure with 4 blocks. The largest block covers 25.08%

 of the constraints in the problem.

NOTE: The decomposition subproblems cover 351 (100%) variables and 1260 (100%) constraints.

NOTE: Block 1 has 88 (25.07%) variables and 316 (25.08%) constraints.

NOTE: Block 2 has 88 (25.07%) variables and 316 (25.08%) constraints.

NOTE: Block 3 has 88 (25.07%) variables and 316 (25.08%) constraints.

NOTE: Block 4 has 87 (24.79%) variables and 312 (24.76%) constraints.

NOTE: The deterministic parallel mode is enabled.

NOTE: The Decomposition algorithm is using up to 4 threads.

NOTE: --

NOTE: Starting to process node 0.

NOTE: --

NOTE: Using a starting solution with objective value 161 to provide initial columns.

NOTE: Using a starting solution with objective value 231 to provide initial columns.

NOTE: The initial column pool using the starting solution contains 8 columns.

NOTE: The subproblem solver for 4 blocks at iteration 0 is starting.

NOTE: The subproblem solver for 4 blocks used 0.57 (cpu: 1.62) seconds.

NOTE: The initial column pool after generating initial variables contains 12 columns.

 Iter Best Master Best LP IP CPU Real

 Bound Objective Integer Gap Gap Time Time

NOTE: The master solver at iteration 1 is starting.

NOTE: The master solver used 0.00 (cpu: 0.00) seconds and 0 iterations.

 1 120.0000 120.0000 120.0000 0.00% 0.00% 1 0

NOTE: The number of active nodes is 0.

NOTE: The objective value of the best integer feasible solution is 120.0000 and the best bound

 is 120.0000.

NOTE: The Decomposition algorithm used 4 threads.

NOTE: The Decomposition algorithm time is 0.60 seconds.

NOTE: Optimal.

NOTE: Objective = 120.

NOTE: There were 6215 observations read from the data set WORK.MPSDATA.

In this case, the solver finds that after presolve, the constraint matrix decomposes into block-diagonal
form. That is, all the constraints are covered by subproblem blocks, leaving the set of master constraints
empty. Because there are no coupling constraints, the problem decomposes into four completely independent

766 F Chapter 15: The Decomposition Algorithm

problems. If you specify LOGLEVEL=2 in the DECOMP statement, the log displays the size of each block.
The blocks in this case are nicely balanced, allowing parallel execution to be efficient.

Example 15.4: Block-Diagonal Structure and METHOD=CONCOMP in
Distributed Mode

This example demonstrates how you can use the METHOD=CONCOMP option in the DECOMP statement
to execute the decomposition algorithm in distributed mode.

As in Example 15.3, consider a mixed integer linear program that is defined by the MPS data set mpsdata. In
this case, the structure of the model is unknown and only the MPS data set is provided to you.

The following PROC OPTMILP statements use the METHOD=CONCOMP option in distributed mode. The
PERFORMANCE statement specifies the numbers of threads and nodes to use.

proc optmilp
data = mpsdata;
decomp

loglevel = 2
method = concomp;

performance
details
nthreads = 1
nodes = 4;

run;

The performance information is displayed in Output 15.4.1.

Output 15.4.1 Performance Information

Performance Information

Host Node << your grid host >>

Execution Mode Distributed

Number of Compute Nodes 4

Number of Threads per Node 1

Example 15.4: Block-Diagonal Structure and METHOD=CONCOMP in Distributed Mode F 767

The solution summary is displayed in Output 15.4.2.

Output 15.4.2 Solution Summary

The OPTMILP ProcedureThe OPTMILP Procedure

Solution Summary

Solver MILP

Algorithm Decomposition

Objective Function R0001298

Solution Status Optimal

Objective Value 120

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 1.110223E-15

Bound Infeasibility 6.661338E-16

Integer Infeasibility 0

Best Bound 120

Nodes 1

Iterations 1

Presolve Time 0.01

Solution Time 0.51

The iteration log, which contains the problem statistics and the progress of the solution, is shown in
Output 15.4.3. When you specify NODES=4 and NTHREADS=1 in the PERFORMANCE statement in
distributed mode, each block is processed simultaneously on each of four grid nodes.

768 F Chapter 15: The Decomposition Algorithm

Output 15.4.3 Log

NOTE: The problem MPSDATA has 388 variables (36 binary, 0 integer, 1 free, 0 fixed).

NOTE: The problem has 1297 constraints (630 LE, 37 EQ, 630 GE, 0 range).

NOTE: The problem has 4204 constraint coefficients.

NOTE: The OPTMILP procedure is executing in the distributed computing environment with 4 worker

 nodes.

NOTE: The MILP presolver value AUTOMATIC is applied.

NOTE: The MILP presolver removed 37 variables and 37 constraints.

NOTE: The MILP presolver removed 424 constraint coefficients.

NOTE: The MILP presolver modified 0 constraint coefficients.

NOTE: The presolved problem has 351 variables, 1260 constraints, and 3780 constraint

 coefficients.

NOTE: The MILP solver is called.

NOTE: The Decomposition algorithm is used.

NOTE: The DECOMP method value CONCOMP is applied.

NOTE: The problem has a decomposable structure with 4 blocks. The largest block covers 25.08%

 of the constraints in the problem.

NOTE: The decomposition subproblems cover 351 (100%) variables and 1260 (100%) constraints.

NOTE: Block 1 has 88 (25.07%) variables and 316 (25.08%) constraints.

NOTE: Block 2 has 88 (25.07%) variables and 316 (25.08%) constraints.

NOTE: Block 3 has 88 (25.07%) variables and 316 (25.08%) constraints.

NOTE: Block 4 has 87 (24.79%) variables and 312 (24.76%) constraints.

NOTE: --

NOTE: Starting to process node 0.

NOTE: --

NOTE: Using a starting solution with objective value 161 to provide initial columns.

NOTE: Using a starting solution with objective value 231 to provide initial columns.

NOTE: The initial column pool using the starting solution contains 8 columns.

NOTE: The subproblem solver for 4 blocks at iteration 0 is starting.

NOTE: The subproblem solver for 4 blocks used 0.44 (cpu: 0.00) seconds.

NOTE: The initial column pool after generating initial variables contains 12 columns.

 Iter Best Master Best LP IP Real

 Bound Objective Integer Gap Gap Time

NOTE: The master solver at iteration 1 is starting.

NOTE: The master solver used 0.00 (cpu: 0.00) seconds and 0 iterations.

 1 120.0000 120.0000 120.0000 0.00% 0.00% 0

NOTE: The number of active nodes is 0.

NOTE: The objective value of the best integer feasible solution is 120.0000 and the best bound

 is 120.0000.

NOTE: The Decomposition algorithm time is 0.45 seconds.

NOTE: Optimal.

NOTE: Objective = 120.

NOTE: The data set WORK.PERFINFO has 4 observations and 3 variables.

NOTE: There were 6215 observations read from the data set WORK.MPSDATA.

Example 15.5: Block-Angular Structure and METHOD=AUTO F 769

Example 15.5: Block-Angular Structure and METHOD=AUTO
This example demonstrates how you can use the METHOD=AUTO option in the DECOMP statement to
execute the decomposition algorithm.

As in Example 15.3, consider a mixed integer linear program that is defined by the MPS data set mpsdata. In
this case, the structure of the model is unknown and only the MPS data set is provided to you.

The following PROC OPTMILP statements attempt to solve the problem by using standard methods and a
60-second time limit:

proc optmilp
maxtime = 60
data = mpsdata;

run;

The solution summary is shown in Output 15.5.1.

Output 15.5.1 Solution Summary

The OPTMILP ProcedureThe OPTMILP Procedure

Solution Summary

Solver MILP

Algorithm Branch and Cut

Objective Function Total_Profit

Solution Status Time Limit Reached

Objective Value 6151.1464479

Relative Gap 0.147309208

Absolute Gap 1062.6601344

Primal Infeasibility 1.110223E-16

Bound Infeasibility 0

Integer Infeasibility 0

Best Bound 7213.8065823

Nodes 1

Iterations 53841

Presolve Time 0.45

Solution Time 59.97

The iteration log, which contains the problem statistics and the progress of the solution, is shown in
Output 15.5.2.

770 F Chapter 15: The Decomposition Algorithm

Output 15.5.2 Log

NOTE: The problem MPSDATA has 52638 variables (16038 binary, 0 integer, 0 free, 0 fixed).

NOTE: The problem has 3949 constraints (3339 LE, 0 EQ, 610 GE, 0 range).

NOTE: The problem has 148866 constraint coefficients.

NOTE: The MILP presolver value AUTOMATIC is applied.

NOTE: The MILP presolver removed 0 variables and 734 constraints.

NOTE: The MILP presolver removed 17616 constraint coefficients.

NOTE: The MILP presolver modified 0 constraint coefficients.

NOTE: The presolved problem has 52638 variables, 3215 constraints, and 131250 constraint

 coefficients.

NOTE: The MILP solver is called.

NOTE: The parallel Branch and Cut algorithm is used.

NOTE: The Branch and Cut algorithm is using up to 4 threads.

 Node Active Sols BestInteger BestBound Gap Time

 0 1 1 6151.1464479 8590.4503508 28.40% 0

 0 1 1 6151.1464479 7342.1209242 16.22% 0

 0 1 1 6151.1464479 7333.0599660 16.12% 5

 0 1 1 6151.1464479 7299.1470524 15.73% 12

 0 1 1 6151.1464479 7271.1658086 15.40% 23

 0 1 1 6151.1464479 7243.9619216 15.09% 37

 0 1 1 6151.1464479 7213.8065823 14.73% 54

NOTE: The MILP solver added 6610 cuts with 148311 cut coefficients at the root.

NOTE: Real time limit reached.

NOTE: Objective of the best integer solution found = 6151.1464479.

NOTE: There were 159467 observations read from the data set WORK.MPSDATA.

Standard MILP techniques struggle to solve the problem within the specified time limit. The default
decomposition method (METHOD=AUTO) attempts to find a block-angular structure by using the matrix-
stretching techniques that are described in Grcar (1990) and Aykanat, Pinar, and Çatalyürek (2004).

proc optmilp
data = mpsdata;
decomp

method = auto;
run;

The solution summary is displayed in Output 15.5.3.

Example 15.5: Block-Angular Structure and METHOD=AUTO F 771

Output 15.5.3 Solution Summary

The OPTMILP ProcedureThe OPTMILP Procedure

Solution Summary

Solver MILP

Algorithm Decomposition

Objective Function Total_Profit

Solution Status Optimal within Relative Gap

Objective Value 6972.3309356

Relative Gap 7.5001596E-9

Absolute Gap 0.0000522936

Primal Infeasibility 4.773959E-14

Bound Infeasibility 9.0032635E-8

Integer Infeasibility 9.769963E-15

Best Bound 6972.3309879

Nodes 1

Iterations 5

Presolve Time 0.44

Solution Time 26.02

772 F Chapter 15: The Decomposition Algorithm

The iteration log, which contains the problem statistics and the progress of the solution, is shown in
Output 15.5.4.

Output 15.5.4 Log

NOTE: The OPTMILP procedure is executing in single-machine mode.

NOTE: The problem MPSDATA has 52638 variables (16038 binary, 0 integer, 0 free, 0 fixed).

NOTE: The problem has 3949 constraints (3339 LE, 0 EQ, 610 GE, 0 range).

NOTE: The problem has 148866 constraint coefficients.

NOTE: The MILP presolver value AUTOMATIC is applied.

NOTE: The MILP presolver removed 0 variables and 734 constraints.

NOTE: The MILP presolver removed 17616 constraint coefficients.

NOTE: The MILP presolver modified 0 constraint coefficients.

NOTE: The presolved problem has 52638 variables, 3215 constraints, and 131250 constraint

 coefficients.

NOTE: The MILP solver is called.

NOTE: The Decomposition algorithm is used.

NOTE: The DECOMP method value AUTO is applied.

NOTE: The automated method will attempt to find block-angular form with 4 blocks.

NOTE: The problem has a decomposable structure with 610 blocks. The largest block covers

 0.2488% of the constraints in the problem.

NOTE: The decomposition subproblems cover 52638 (100%) variables and 3207 (99.75%) constraints.

NOTE: The deterministic parallel mode is enabled.

NOTE: The Decomposition algorithm is using up to 4 threads.

 Iter Best Master Best LP IP CPU Real

 Bound Objective Integer Gap Gap Time Time

 . 7963.9760 6457.0911 6457.0911 18.92% 18.92% 15 8

 2 7048.5826 6457.0911 6457.0911 8.39% 8.39% 30 12

 4 7022.4659 6961.7914 6961.7914 0.86% 0.86% 67 24

 5 6972.3310 6972.3309 6972.3309 0.00% 0.00% 71 25

 Node Active Sols Best Best Gap CPU Real

 Integer Bound Time Time

 0 0 4 6972.3309 6972.3310 0.00% 71 25

NOTE: The Decomposition algorithm used 4 threads.

NOTE: The Decomposition algorithm time is 25.48 seconds.

NOTE: Optimal within relative gap.

NOTE: Objective = 6972.3309356.

NOTE: There were 159467 observations read from the data set WORK.MPSDATA.

As stated in the log, the automated method attempts to find a balanced block-angular form that contains
four blocks (the same setting is used by default in the NTHREADS= option). The algorithm successfully
finds such a decomposition and then further decomposes each block into its weakly connected components,
resulting in 610 blocks and more than 99% subproblem coverage.

Example 15.6: Bin Packing Problem F 773

Example 15.6: Bin Packing Problem
The bin packing problem (BPP) finds the minimum number of capacitated bins that are needed to store a
set of products of varying size. Define a set P of products, their sizes sp, and a set B D f1; : : : ; jP jg of
candidate bins, each having capacity C. Let xpb be a binary variable that, if set to 1, indicates that product p
is assigned to bin b. In addition, let yb be a binary variable that, if set to 1, indicates that bin b is used.

A BPP can be formulated as a MILP as follows:

minimize
X
b2B

yb

subject to
X
b2B

xpb D 1 p 2 P (Assignment)X
p2P

spxpb � Cyb b 2 B (Capacity)

xpb 2 f0; 1g p 2 P; b 2 B

yb 2 f0; 1g b 2 B

In this formulation, the Assignment constraints ensure that each product is assigned to exactly one bin. The
Capacity constraints ensure that the capacity restrictions are met for each bin. In addition, these constraints
enforce the condition that if any product is assigned to bin b, then yb must be positive.

In this formulation, the bin identifier is arbitrary. For example, in any solution, the assignments to bin 1
can be swapped with the assignments to bin 2 without affecting feasibility or the objective value. Consider
a decomposition by bin, where the Assignment constraints form the master problem and the Capacity
constraints form identical subproblems. As described in the section “Special Case: Identical Blocks and
Ryan-Foster Branching” on page 743, this is a situation in which an aggregate formulation and Ryan-Foster
branching can greatly improve performance by reducing symmetry.

Consider a series of University of North Carolina basketball games that are recorded on a DVR. The following
data set, dvr, provides the name of each game in the column opponent and the size of that game in gigabytes
(GB) as it resides on the DVR in the column size:

/* game, size (in GBs) */
data dvr;

input opponent $ size;
datalines;

Clemson 1.36
Clemson2 1.97
Duke 2.76
Duke2 2.52
FSU 2.56
FSU2 2.34
GT 1.49
GT2 1.12
IN 1.45
KY 1.42
Loyola 1.42
MD 1.33
MD2 2.71

774 F Chapter 15: The Decomposition Algorithm

Miami 1.22
NCSU 2.52
NCSU2 2.54
UConn 1.25
VA 2.33
VA2 2.48
VT 1.41
Vermont 1.28
WM 1.25
WM2 1.23
Wake 1.61
;

The goal is to use the fewest DVDs on which to store the games for safekeeping. Each DVD can hold
4.38GB reforded data. The problem can be formulated as a bin packing problem and solved by using PROC
OPTMODEL and the decomposition algorithm. The following PROC OPTMODEL statements read in the
data, declare the optimization model, and use the decomposition algorithm to solve it:

proc optmodel;
/* read the product and size data */
set <str> PRODUCTS;
num size {PRODUCTS};
read data dvr into PRODUCTS=[opponent] size;

/* 4.38 GBs per DVD */
num binsize = 4.38;

/* the number of products is a trivial upper bound on the
number of bins needed */

num upperbound init card(PRODUCTS);
set BINS = 1..upperbound;

/* Assign[p,b] = 1, if product p is assigned to bin b */
var Assign {PRODUCTS, BINS} binary;
/* UseBin[b] = 1, if bin b is used */
var UseBin {BINS} binary;

/* minimize number of bins used */
min Objective = sum {b in BINS} UseBin[b];

/* assign each product to exactly one bin */
con Assignment {p in PRODUCTS}:

sum {b in BINS} Assign[p,b] = 1;

/* Capacity constraint on each bin (and definition of UseBin) */
con Capacity {b in BINS}:

sum {p in PRODUCTS} size[p] * Assign[p,b] <= binsize * UseBin[b];

/* decompose by bin (subproblem is a knapsack problem) */
for {b in BINS} Capacity[b].block = b;

/* solve using decomp (aggregate formulation) */
solve with milp / decomp;

Example 15.6: Bin Packing Problem F 775

The following OPTMODEL statements create a sequential numbering of the bins and then output to the data
set dvd the optimal assignments of games to bins:

/* create a map from arbitrary bin number to sequential bin number */
num binId init 1;
num binMap {BINS};
for {b in BINS: UseBin[b].sol > 0.5} do;

binMap[b] = binId;
binId = binId + 1;

end;

/* create map of product to bin from solution */
num bin {PRODUCTS};
for {p in PRODUCTS} do;

for {b in BINS: Assign[p,b].sol > 0.5} do;
bin[p] = binMap[b];
leave;

end;
end;

/* create solution data */
create data dvd from [product] bin size;

quit;

The solution summary is displayed in Output 15.6.1.

Output 15.6.1 Solution Summary

The OPTMODEL ProcedureThe OPTMODEL Procedure

Solution Summary

Solver MILP

Algorithm Decomposition

Objective Function Objective

Solution Status Optimal

Objective Value 11

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 2.220446E-15

Bound Infeasibility 2.220446E-15

Integer Infeasibility 2.220446E-15

Best Bound 11

Nodes 1

Iterations 27

Presolve Time 0.01

Solution Time 0.06

776 F Chapter 15: The Decomposition Algorithm

The iteration log is displayed in Output 15.6.2.

Output 15.6.2 Log

NOTE: There were 24 observations read from the data set WORK.DVR.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 600 variables (0 free, 0 fixed).

NOTE: The problem has 600 binary and 0 integer variables.

NOTE: The problem has 48 linear constraints (24 LE, 24 EQ, 0 GE, 0 range).

NOTE: The problem has 1176 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The MILP presolver value AUTOMATIC is applied.

NOTE: The MILP presolver removed 0 variables and 0 constraints.

NOTE: The MILP presolver removed 0 constraint coefficients.

NOTE: The MILP presolver modified 384 constraint coefficients.

NOTE: The presolved problem has 600 variables, 48 constraints, and 1176 constraint coefficients.

NOTE: The MILP solver is called.

NOTE: The Decomposition algorithm is used.

NOTE: The Decomposition algorithm is executing in single-machine mode.

NOTE: The DECOMP method value USER is applied.

NOTE: All blocks are identical and the master model is set partitioning.

NOTE: The Decomposition algorithm is using an aggregate formulation and Ryan-Foster branching.

NOTE: The number of block threads has been reduced to 1 threads.

NOTE: The problem has a decomposable structure with 24 blocks. The largest block covers 2.083%

 of the constraints in the problem.

NOTE: The decomposition subproblems cover 600 (100%) variables and 24 (50%) constraints.

NOTE: The deterministic parallel mode is enabled.

NOTE: The Decomposition algorithm is using up to 4 threads.

 Iter Best Master Best LP IP CPU Real

 Bound Objective Integer Gap Gap Time Time

 . 0.0000 11.0000 11.0000 1.10e+01 1.10e+01 0 0

 . 0.0000 11.0000 11.0000 1.10e+01 1.10e+01 0 0

 10 0.0000 11.0000 11.0000 1.10e+01 1.10e+01 0 0

 . 0.0000 11.0000 11.0000 1.10e+01 1.10e+01 0 0

 20 0.0000 11.0000 11.0000 1.10e+01 1.10e+01 0 0

 27 11.0000 11.0000 11.0000 0.00% 0.00% 0 0

 Node Active Sols Best Best Gap CPU Real

 Integer Bound Time Time

 0 0 2 11.0000 11.0000 0.00% 0 0

NOTE: The Decomposition algorithm used 4 threads.

NOTE: The Decomposition algorithm time is 0.06 seconds.

NOTE: Optimal.

NOTE: Objective = 11.

NOTE: The data set WORK.DVD has 24 observations and 3 variables.

Example 15.6: Bin Packing Problem F 777

The following call to PROC SORT sorts the assignments by bin:

proc sort data=dvd;
by bin;

run;

The optimal assignments from the output data set dvd are displayed in Figure 15.7.

Figure 15.7 Optimal Assignment of Games to DVDs

bin=1

product size

VT 1.41

WM2 1.23

Wake 1.61

bin 4.25

bin=2

product size

Duke2 2.52

UConn 1.25

bin 3.77

bin=3

product size

Miami 1.22

VA2 2.48

bin 3.70

bin=4

product size

MD 1.33

VA 2.33

bin 3.66

bin=5

product size

Loyola 1.42

NCSU2 2.54

bin 3.96

bin=6

product size

KY 1.42

NCSU 2.52

bin 3.94

778 F Chapter 15: The Decomposition Algorithm

Figure 15.7 continued

bin=7

product size

IN 1.45

MD2 2.71

bin 4.16

bin=8

product size

Clemson 1.36

GT 1.49

GT2 1.12

bin 3.97

bin=9

product size

Clemson2 1.97

FSU2 2.34

bin 4.31

bin=10

product size

FSU 2.56

WM 1.25

bin 3.81

bin=11

product size

Duke 2.76

Vermont 1.28

bin 4.04

43.57

In this example, the objective function ensures that there exists an optimal solution that never assigns a
product to more than one bin. Therefore, you could instead model the Assignment constraint as an inequality
rather than an equality. In this case, the best performance would come from forcing the use of an aggregate
formulation and Ryan-Foster branching by specifying the option VARSEL=RYANFOSTER. An example of
doing this is shown in Example 15.8.

Example 15.7: Resource Allocation Problem
This example describes a model for selecting tasks to be run on a shared resource (Gamrath 2010). Consider
a set I of tasks and a resource capacity C. Each item i 2 I has a profit pi , a resource utilization level
wi , a starting period si , and an ending period ei . The time horizon that is considered is from the earliest
starting time to the latest ending time of all tasks. With each task, associate a binary variable xi , which, if
set to 1, indicates that the task is running from its start time until just before its end time. A task consumes
capacity if it is running. The goal is to select which tasks to run in order to maximize profit while not

Example 15.7: Resource Allocation Problem F 779

exceeding the shared resource capacity. Let S D fsi j i 2 I g define the set of start times for all tasks, and let
Ls D fi 2 I j si � s < eig define the set of tasks that are running at each start time s 2 S . You can model
the problem as a mixed integer linear programming problem as follows:

maximize
X
i2I

pixi

subject to
X
i2Ls

wixi � C s 2 S (CapacityCon)

xi 2 f0; 1g i 2 I

In this formulation, CapacityCon constraints ensure that the running tasks do not exceed the resource capacity.
To illustrate, consider the following five-task example with data: pi D .6; 8; 5; 9; 8/, wi D .8; 5; 3; 4; 3/,
si D .1; 3; 5; 7; 8/, ei D .5; 8; 9; 17; 10/, and C D 10. The formulation leads to a constraint matrix that has
a staircase structure that is determined by tasks coming online and offline:

maximize 6x1 C 8x2 C 5x3 C 9x4 C 8x5
subject to 8x1 � 10

8x1 C 5x2 � 10

5x2 C 3x3 � 10

5x2 C 3x3 C 4x4 � 10

3x3 C 4x4 C 3x5 � 10

xi 2 f0; 1g i 2 I

Lagrangian Decomposition

This formulation clearly has no decomposable structure. However, you can use a common modeling technique
known as Lagrangian decomposition to bring the model into block-angular form. Lagrangian decomposition
works by first partitioning the constraints into blocks. Then, each original variable is split into multiple copies
of itself, one copy for each block in which the variable has a nonzero coefficient in the constraint matrix.
Constraints are added to enforce the equality of each copy of the original variable. Then, you can write the
original constraints in block-angular form by using the duplicate variables.

To apply Lagrangian decomposition to the resource allocation problem, define a set B of blocks and let Sb
define the set of start times for a given block b, such that S D [b2BSb . Given this partition of start times, let
Bi define the set of blocks in which task i 2 I is scheduled to be running. Now, for each task i 2 I , define
duplicate variables xbi for each b 2 Bi . Let mi define the minimum block index for each class of variable
that represents task i. You can now model the problem in block-angular form as follows:

maximize
X
i2I

pix
mi

i

subject to xbi D x
mi

i i 2 I; b 2 Bi n fmig (LinkDupVarsCon)X
i2Ls

wix
b
i � C b 2 B; s 2 Sb (CapacityCon)

xbi 2 f0; 1g i 2 I; b 2 Bi

780 F Chapter 15: The Decomposition Algorithm

In this formulation, the LinkDupVarsCon constraints ensure that the duplicate variables are equal to the
original variables. Now, the five-task example has been transformed from a staircase structure to a block-
angular structure:

maximize 6x11 C 8x12 C 5x23 C 9x24 C 8x35
subject to x12 � x22 D 0

x23 � x33 D 0

x24 � x34 D 0

8x11 � 10

8x11 C 5x12 � 10

5x22 C 3x23 � 10

5x22 C 3x23 C 4x24 � 10

3x33 C 4x34 C 3x35 � 10

xbi 2 f0; 1g i 2 I; b 2 Bi

To see how to apply Lagrangian decomposition in PROC OPTMODEL, consider the data set TaskData from
Caprara, Furini, and Malaguti (2010), which consists of jI j D 2,916 tasks:

data TaskData;
input profit weight start end;
datalines;

99 92 1 9
56 30 1 3
39 73 1 20
86 76 1 9
...
24 94 768 769
95 40 768 769
66 17 768 769
18 48 768 769
97 23 768 769
;

Using the MILP Solver Directly in PROC OPTMODEL

The following PROC OPTMODEL statements read in the data and solve the original staircase formulation by
calling the MILP solver directly:

%macro SetupData(task_data=, capacity=);
set TASKS;
num capacity=&capacity;
num profit{TASKS}, weight{TASKS}, start{TASKS}, end{TASKS};

read data &task_data into TASKS=[_n_] profit weight start end;
/* the set of start times */

set STARTS = setof{i in TASKS} start[i];
/* the set of tasks i that are active at a given start time s */
set TASKS_START{s in STARTS}

= {i in TASKS: start[i] <= s < end[i]};
%mend SetupData;

Example 15.7: Resource Allocation Problem F 781

%macro ResourceAllocation_Direct(task_data=, capacity=);
proc optmodel;

%SetupData(task_data=&task_data,capacity=&capacity);

/* select task i to come online from period [start to end) */
var x{TASKS} binary;

/* maximize the total profit of running tasks */
max TotalProfit = sum{i in TASKS} profit[i] * x[i];

/* enforce that the shared resource capacity is not exceeded */
con CapacityCon{s in STARTS}:

sum{i in TASKS_START[s]} weight[i] * x[i] <= capacity;

solve with milp / maxtime=200 logfreq=10000;
quit;

%mend ResourceAllocation_Direct;

%ResourceAllocation_Direct(task_data=TaskData, capacity=100);

The problem summary and solution summary are displayed in Output 15.7.1.

Output 15.7.1 Problem Summary and Solution Summary

The OPTMODEL ProcedureThe OPTMODEL Procedure

Problem Summary

Objective Sense Maximization

Objective Function TotalProfit

Objective Type Linear

Number of Variables 2916

Bounded Above 0

Bounded Below 0

Bounded Below and Above 2916

Free 0

Fixed 0

Binary 2916

Integer 0

Number of Constraints 768

Linear LE (<=) 768

Linear EQ (=) 0

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 23236

782 F Chapter 15: The Decomposition Algorithm

Output 15.7.1 continued

Solution Summary

Solver MILP

Algorithm Branch and Cut

Objective Function TotalProfit

Solution Status Optimal within Relative Gap

Objective Value 40982.000014

Relative Gap 0.0000999552

Absolute Gap 4.0967714873

Primal Infeasibility 5.115908E-13

Bound Infeasibility 4.8218031E-7

Integer Infeasibility 7.6885912E-7

Best Bound 40986.096786

Nodes 129662

Iterations 3551900

Presolve Time 0.11

Solution Time 153.32

The iteration log, which contains the problem statistics, the progress of the solution, and the optimal objective
value, is shown in Output 15.7.2.

Example 15.7: Resource Allocation Problem F 783

Output 15.7.2 Log

NOTE: There were 2916 observations read from the data set WORK.TASKDATA.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 2916 variables (0 free, 0 fixed).

NOTE: The problem has 2916 binary and 0 integer variables.

NOTE: The problem has 768 linear constraints (768 LE, 0 EQ, 0 GE, 0 range).

NOTE: The problem has 23236 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The remaining solution time after problem generation and solver initialization is 199.71

 seconds.

NOTE: The MILP presolver value AUTOMATIC is applied.

NOTE: The MILP presolver removed 1021 variables and 126 constraints.

NOTE: The MILP presolver removed 12544 constraint coefficients.

NOTE: The MILP presolver modified 987 constraint coefficients.

NOTE: The presolved problem has 1895 variables, 642 constraints, and 10692 constraint

 coefficients.

NOTE: The MILP solver is called.

NOTE: The parallel Branch and Cut algorithm is used.

NOTE: The Branch and Cut algorithm is using up to 4 threads.

 Node Active Sols BestInteger BestBound Gap Time

 0 1 3 33939.0000000 109181 68.91% 0

 0 1 3 33939.0000000 45862.9249030 26.00% 0

 0 1 7 39381.0000000 43471.6068311 9.41% 0

 0 1 7 39381.0000000 42707.3723942 7.79% 0

 0 1 7 39381.0000000 42240.0006312 6.77% 0

 0 1 7 39381.0000000 41971.7026684 6.17% 1

 0 1 7 39381.0000000 41737.8969132 5.65% 1

 0 1 7 39381.0000000 41603.2939984 5.34% 1

 0 1 7 39381.0000000 41478.6012550 5.06% 1

 0 1 7 39381.0000000 41401.0205505 4.88% 2

 0 1 10 40529.0000000 41353.6781791 1.99% 2

 0 1 10 40529.0000000 41308.3158743 1.89% 2

 0 1 10 40529.0000000 41283.7860243 1.83% 2

 0 1 10 40529.0000000 41249.2286916 1.75% 2

 0 1 10 40529.0000000 41214.1686704 1.66% 3

 0 1 10 40529.0000000 41194.7210000 1.62% 3

 0 1 10 40529.0000000 41185.0495041 1.59% 3

 0 1 10 40529.0000000 41175.1362201 1.57% 3

 0 1 10 40529.0000000 41165.0194368 1.55% 3

 0 1 10 40529.0000000 41153.8227330 1.52% 3

NOTE: The MILP solver added 818 cuts with 10628 cut coefficients at the root.

 752 1 11 40853.0000000 41076.1893357 0.54% 5

 1465 592 12 40903.0000000 41055.5067662 0.37% 6

 1564 658 13 40914.0000000 41054.1851036 0.34% 6

 3277 1732 14 40963.0000000 41045.4373855 0.20% 7

 3281 1729 15 40964.0000000 41045.4373855 0.20% 7

 10000 3998 15 40964.0000000 41044.1396022 0.20% 18

 20000 9809 15 40964.0000000 41033.4071499 0.17% 27

 30000 15103 15 40964.0000000 41023.5417503 0.15% 36

 33343 16845 16 40971.0000000 41021.5552077 0.12% 39

784 F Chapter 15: The Decomposition Algorithm

Output 15.7.2 continued

 33619 16893 17 40973.0000000 41021.3406838 0.12% 39

 40000 18398 17 40973.0000000 41018.8636274 0.11% 47

 50000 22198 17 40973.0000000 41014.9703110 0.10% 57

 54183 23437 18 40977.0000000 41013.6202123 0.09% 61

 60000 24202 18 40977.0000000 41011.8964359 0.09% 68

 62884 24752 19 40979.0000066 41010.7989163 0.08% 72

 70000 25588 19 40979.0000066 41008.8252277 0.07% 82

 80000 26782 19 40979.0000066 41006.2477373 0.07% 93

 90000 27395 19 40979.0000066 41003.0110719 0.06% 104

 91889 26968 20 40982.0000142 41002.3004032 0.05% 106

 100000 25223 20 40982.0000142 40998.8500082 0.04% 119

 110000 21074 20 40982.0000142 40995.4661017 0.03% 131

 120000 12837 20 40982.0000142 40991.3529800 0.02% 143

 129661 3724 20 40982.0000142 40986.0967856 0.01% 153

NOTE: Optimal within relative gap.

NOTE: Objective = 40982.000014.

Using the Decomposition Algorithm in PROC OPTMODEL

To transform this data into block-angular form, first sort the task data to help reduce the number of duplicate
variables that are needed in the reformulation as follows:

proc sort data=TaskData;
by start end;

run;

Then, create the partition of constraints into blocks of size block_size as follows:

%macro ResourceAllocation_Decomp(task_data=, capacity=, block_size=);
proc optmodel;

%SetupData(task_data=&task_data,capacity=&capacity);
/* partition into blocks of size blocks_size */
num block_size = &block_size;
num num_blocks = ceil(card(TASKS) / block_size);
set BLOCKS = 1..num_blocks;

/* the set of starts s for which task i is active */
set STARTS_TASK{i in TASKS} = {s in STARTS: start[i] <= s < end[i]};

/* partition the start times into blocks of size block_size */
set STARTS_BLOCK{BLOCKS} init {};
num block_id init 1;
num block_count init 0;
for{s in STARTS} do;

STARTS_BLOCK[block_id] = STARTS_BLOCK[block_id] union {s};
block_count = block_count + 1;
if(mod(block_count, block_size) = 0) then

block_id = block_id + 1;
end;

Example 15.7: Resource Allocation Problem F 785

Then, use the following PROC OPTMODEL statements to define the block-angular formulation and solve
the problem by using the decomposition algorithm, the PRESOLVER=BASIC option, and block_size=20.
Because this reformulation is equivalent to the original staircase formulation, disabling some of the advanced
presolver techniques ensures that the model maintains block-angularity.

/* blocks in which task i is online */
set BLOCKS_TASK{i in TASKS} =

{b in BLOCKS: card(STARTS_BLOCK[b] inter STARTS_TASK[i]) > 0};

/* minimum block id in which task i is online */
num min_block{i in TASKS} = min{b in BLOCKS_TASK[i]} b;

/* select task i to come online from period [start to end)
in each block */

var x{i in TASKS, b in BLOCKS_TASK[i]} binary;

/* maximize the total profit of running tasks */
max TotalProfit = sum{i in TASKS} profit[i] * x[i,min_block[i]];

/* enforce that task selection is consistent across blocks */
con LinkDupVarsCon{i in TASKS, b in BLOCKS_TASK[i] diff {min_block[i]}}:

x[i,b] = x[i,min_block[i]];

/* enforce that the shared resource capacity is not exceeded */
con CapacityCon{b in BLOCKS, s in STARTS_BLOCK[b]}:

sum{i in TASKS_START[s]} weight[i] * x[i,b] <= capacity;

/* define blocks for decomposition algorithm */
for{b in BLOCKS, s in STARTS_BLOCK[b]} CapacityCon[b,s].block = b;

solve with milp / presolver=basic decomp;
quit;

%mend ResourceAllocation_Decomp;

%ResourceAllocation_Decomp(task_data=TaskData, capacity=100, block_size=20);

The problem summary and solution summary are displayed in Output 15.7.3. Compared to the original
formulation, the numbers of variables and constraints are increased by the number of duplicate variables.

786 F Chapter 15: The Decomposition Algorithm

Output 15.7.3 Problem Summary and Solution Summary

The OPTMODEL ProcedureThe OPTMODEL Procedure

Problem Summary

Objective Sense Maximization

Objective Function TotalProfit

Objective Type Linear

Number of Variables 3924

Bounded Above 0

Bounded Below 0

Bounded Below and Above 3924

Free 0

Fixed 0

Binary 3924

Integer 0

Number of Constraints 1776

Linear LE (<=) 768

Linear EQ (=) 1008

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 25252

Solution Summary

Solver MILP

Algorithm Decomposition

Objective Function TotalProfit

Solution Status Optimal

Objective Value 40982

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 0

Bound Infeasibility 0

Integer Infeasibility 0

Best Bound 40982

Nodes 11

Iterations 244

Presolve Time 0.02

Solution Time 71.10

The iteration log, which contains the problem statistics, the progress of the solution, and the optimal objective
value, is shown in Output 15.7.4.

Example 15.7: Resource Allocation Problem F 787

Output 15.7.4 Log

NOTE: There were 2916 observations read from the data set WORK.TASKDATA.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 3924 variables (0 free, 0 fixed).

NOTE: The problem has 3924 binary and 0 integer variables.

NOTE: The problem has 1776 linear constraints (768 LE, 1008 EQ, 0 GE, 0 range).

NOTE: The problem has 25252 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The MILP presolver value BASIC is applied.

NOTE: The MILP presolver removed 4 variables and 0 constraints.

NOTE: The MILP presolver removed 23 constraint coefficients.

NOTE: The MILP presolver modified 7297 constraint coefficients.

NOTE: The presolved problem has 3920 variables, 1776 constraints, and 25229 constraint

 coefficients.

NOTE: The MILP solver is called.

NOTE: The Decomposition algorithm is used.

NOTE: The Decomposition algorithm is executing in single-machine mode.

NOTE: The DECOMP method value USER is applied.

NOTE: The problem has a decomposable structure with 39 blocks. The largest block covers 1.126%

 of the constraints in the problem.

NOTE: The decomposition subproblems cover 3920 (100%) variables and 768 (43.24%) constraints.

NOTE: The deterministic parallel mode is enabled.

NOTE: The Decomposition algorithm is using up to 4 threads.

 Iter Best Master Best LP IP CPU Real

 Bound Objective Integer Gap Gap Time Time

 . 44109.0001 37886.0000 37886.0000 14.11% 14.11% 1 0

 5 44109.0001 37921.0000 37921.0000 14.03% 14.03% 2 0

 8 44109.0001 37975.0000 37975.0000 13.91% 13.91% 2 1

 10 44109.0001 37975.0000 38359.0000 13.91% 13.04% 2 1

 13 44109.0001 38576.0000 38576.0000 12.54% 12.54% 3 1

 14 44109.0001 38766.0000 38766.0000 12.11% 12.11% 4 1

 17 44109.0001 38998.0000 38998.0000 11.59% 11.59% 5 2

 19 44109.0001 39116.0000 39116.0000 11.32% 11.32% 6 2

 . 44109.0001 39116.0000 39116.0000 11.32% 11.32% 6 2

 20 44109.0001 39116.0000 39116.0000 11.32% 11.32% 7 2

 23 44109.0001 39387.0000 39387.0000 10.71% 10.71% 8 3

 27 44109.0001 39640.0000 39640.0000 10.13% 10.13% 11 4

 30 44109.0001 39640.0000 39640.0000 10.13% 10.13% 14 5

 32 44109.0001 39875.0000 39875.0000 9.60% 9.60% 15 6

 34 44109.0001 40234.0000 40234.0000 8.79% 8.79% 17 6

 38 44109.0001 40432.0000 40432.0000 8.34% 8.34% 20 7

 . 44109.0001 40444.6667 40432.0000 8.31% 8.34% 22 8

 40 44109.0001 40444.6667 40432.0000 8.31% 8.34% 23 8

 41 43804.1905 40469.5876 40432.0000 7.61% 7.70% 26 9

 42 43568.3397 40485.0769 40432.0000 7.08% 7.20% 28 9

 44 43520.3873 40519.6329 40432.0000 6.90% 7.10% 32 11

 50 43520.3873 40613.9510 40646.0000 6.68% 6.60% 43 14

 53 43520.3873 40683.0000 40673.0000 6.52% 6.54% 45 15

 60 43520.3873 40775.2500 40761.0000 6.31% 6.34% 56 18

 61 41862.0101 40775.2500 40761.0000 2.60% 2.63% 59 19

788 F Chapter 15: The Decomposition Algorithm

Output 15.7.4 continued

 62 41750.9747 40775.2500 40761.0000 2.34% 2.37% 61 20

 70 41750.9747 40866.7778 40761.0000 2.12% 2.37% 71 23

 80 41750.9747 40982.0833 40969.0000 1.84% 1.87% 80 26

 90 41750.9747 40990.5833 40969.0000 1.82% 1.87% 84 28

 100 41058.2505 40997.5833 40969.0000 0.15% 0.22% 87 29

 101 41045.4173 40997.5833 40969.0000 0.12% 0.19% 88 29

 102 41039.2509 40997.5833 40969.0000 0.10% 0.17% 89 29

 103 41023.9176 40997.5833 40969.0000 0.06% 0.13% 89 29

 106 40997.5841 40997.5833 40969.0000 0.00% 0.07% 90 30

 . 40997.5841 40997.5833 40978.0000 0.00% 0.05% 90 30

NOTE: Starting branch and bound.

 Node Active Sols Best Best Gap CPU Real

 Integer Bound Time Time

 0 1 70 40978.0000 40997.5841 0.05% 90 30

 6 2 71 40982.0000 40988.5840 0.02% 184 61

 10 0 71 40982.0000 40982.0000 0.00% 213 71

NOTE: The Decomposition algorithm used 4 threads.

NOTE: The Decomposition algorithm time is 71.02 seconds.

NOTE: Optimal.

NOTE: Objective = 40982.

The Trade-Off between Coverage and Subproblem Difficulty

The reformulation of this resource allocation problem provides a nice example of the potential trade-offs in
modeling a problem for use with the decomposition algorithm. As seen in Example 15.2, the strength of the
bound is an important factor in the overall performance of the algorithm, but it is not always correlated to the
magnitude of the subproblem coverage. In the current example, the block size determines the number of
blocks. Moreover, it determines the number of linking variables that are needed in the reformulation. At
one extreme, if the block size is set to be jS j, then the number of blocks is 1, and the number of copies of
original variables is 0. Using one block would be equivalent to the original staircase formulation and would
not yield a model conducive to decomposition. As the number of blocks is increased, the number of linking
variables increases (the size of the master problem), the strength of the decomposition bound decreases, and
the difficulty of solving the subproblems decreases. In addition, as the number of blocks and their relative
difficulty change, the efficient utilization of your machine’s parallel architecture can be affected.

The previous section used a block size of 20. The following statement calls the decomposition algorithm and
uses a block size of 80:

%ResourceAllocation_Decomp(task_data=TaskData, capacity=100, block_size=80);

Example 15.7: Resource Allocation Problem F 789

The solution summary is displayed in Output 15.7.5.

Output 15.7.5 Solution Summary

The OPTMODEL ProcedureThe OPTMODEL Procedure

Solution Summary

Solver MILP

Algorithm Decomposition

Objective Function TotalProfit

Solution Status Optimal within Relative Gap

Objective Value 40982

Relative Gap 8.6861236E-9

Absolute Gap 0.0003559747

Primal Infeasibility 0

Bound Infeasibility 0

Integer Infeasibility 0

Best Bound 40982.000356

Nodes 1

Iterations 42

Presolve Time 0.03

Solution Time 32.41

The iteration log, which contains the problem statistics, the progress of the solution, and the optimal objective
value, is shown in Output 15.7.6.

This version of the model provides a stronger initial bound and solves to optimality in the root node.

790 F Chapter 15: The Decomposition Algorithm

Output 15.7.6 Log

NOTE: There were 2916 observations read from the data set WORK.TASKDATA.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 3151 variables (0 free, 0 fixed).

NOTE: The problem has 3151 binary and 0 integer variables.

NOTE: The problem has 1003 linear constraints (768 LE, 235 EQ, 0 GE, 0 range).

NOTE: The problem has 23706 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The MILP presolver value BASIC is applied.

NOTE: The MILP presolver removed 5 variables and 0 constraints.

NOTE: The MILP presolver removed 29 constraint coefficients.

NOTE: The MILP presolver modified 7295 constraint coefficients.

NOTE: The presolved problem has 3146 variables, 1003 constraints, and 23677 constraint

 coefficients.

NOTE: The MILP solver is called.

NOTE: The Decomposition algorithm is used.

NOTE: The Decomposition algorithm is executing in single-machine mode.

NOTE: The DECOMP method value USER is applied.

NOTE: The problem has a decomposable structure with 10 blocks. The largest block covers 7.976%

 of the constraints in the problem.

NOTE: The decomposition subproblems cover 3146 (100%) variables and 768 (76.57%) constraints.

NOTE: The deterministic parallel mode is enabled.

NOTE: The Decomposition algorithm is using up to 4 threads.

 Iter Best Master Best LP IP CPU Real

 Bound Objective Integer Gap Gap Time Time

 . 41762.0001 37638.0000 37638.0000 9.88% 9.88% 3 1

 6 41762.0001 37867.0000 37867.0000 9.33% 9.33% 13 4

 8 41762.0001 38324.0000 38324.0000 8.23% 8.23% 17 5

 . 41762.0001 38324.0000 38324.0000 8.23% 8.23% 19 6

 10 41762.0001 38324.0000 38324.0000 8.23% 8.23% 21 7

 13 41762.0001 40526.0000 40526.0000 2.96% 2.96% 23 8

 . 41762.0001 40564.0000 40564.0000 2.87% 2.87% 40 14

 20 41762.0001 40564.0000 40564.0000 2.87% 2.87% 45 15

 22 41762.0001 40695.0000 40695.0000 2.55% 2.55% 51 17

 24 41762.0001 40804.0000 40804.0000 2.29% 2.29% 54 18

 26 41660.8888 40804.0000 40804.0000 2.06% 2.06% 60 19

 27 41588.8224 40804.0000 40804.0000 1.89% 1.89% 63 20

 30 41588.8224 40918.0000 40918.0000 1.61% 1.61% 70 23

 31 41469.6530 40918.0000 40918.0000 1.33% 1.33% 74 24

 32 41307.1787 40918.0000 40918.0000 0.94% 0.94% 77 25

 36 41307.1787 40939.0000 40939.0000 0.89% 0.89% 86 28

 38 41307.1787 40982.0000 40982.0000 0.79% 0.79% 89 29

 . 41307.1787 40982.0000 40982.0000 0.79% 0.79% 90 29

 40 41307.1787 40982.0000 40982.0000 0.79% 0.79% 93 30

 41 41068.0001 40982.0000 40982.0000 0.21% 0.21% 96 31

 42 40982.0004 40982.0000 40982.0000 0.00% 0.00% 97 32

 Node Active Sols Best Best Gap CPU Real

 Integer Bound Time Time

 0 0 44 40982.0000 40982.0004 0.00% 97 32

NOTE: The Decomposition algorithm used 4 threads.

Example 15.8: Vehicle Routing Problem F 791

Output 15.7.6 continued

NOTE: The Decomposition algorithm time is 32.34 seconds.

NOTE: Optimal within relative gap.

NOTE: Objective = 40982.

Example 15.8: Vehicle Routing Problem
The vehicle routing problem (VRP) finds a minimum-cost routing of a fixed number of vehicles to service
the demands of a set of customers. Define a set C D f2; : : : ; jC j C 1g of customers, and a demand, dc , for
each customer c. Let N D C [f1g be the set of nodes, including the vehicle depot, which are designated as
node i D 1. Let A D N �N be the set of arcs, V be the set of vehicles (each of which has capacity L), and
cij be the travel time from node i to node j.

Let yik be a binary variable that, if set to 1, indicates that node i is visited by vehicle k. Let zijk be a binary
variable that, if set to 1, indicates that arc .i; j / is traversed by vehicle k, and let xijk be a continuous variable
that denotes the amount of product (flow) on arc .i; j / that is carried by vehicle k.

A VRP can be formulated as a MILP as follows:

minimize
X

.i;j /2A

X
k2V

cij zijk

subject to
X
k2V

yik � 1 i 2 C (Assignment)X
.i;j /2A

zijk D yik i 2 N; k 2 V (LeaveNode)

X
.j;i/2A

zj ik D yik i 2 N; k 2 V (EnterNode)

X
.j;i/2A

xj ik �
X

.i;j /2A

xijk D diyik i 2 C; k 2 V (FlowBalance)

xijk � Lzijk .i; j / 2 A; k 2 V (VehicleCapacity)

y1k D 1 k 2 V (Depot)

xijk � 0 .i; j / 2 A; k 2 V

yik 2 f0; 1g i 2 N; k 2 V

zijk 2 f0; 1g .i; j / 2 A; k 2 V

In this formulation, the Assignment constraints ensure that each customer is serviced by at least one vehicle.
The objective function ensures that there exists an optimal solution that never assigns a customer to more
than one vehicle. The LeaveNode and EnterNode constraints enforce the condition that if node i is visited by
vehicle k, then vehicle k must use exactly one arc that enters node i and one arc that leaves node i. Conversely,
if node i is not visited by vehicle k, then no arcs that enter or leave node i can be used by vehicle k. The
FlowBalance constraints define flow conservation at each node for each vehicle. That is, if a node i is visited
by vehicle k, then the amount of product from vehicle k that enters and leaves that node must equal the
demand at that node. Conversely, if node i is not visited by vehicle k, then the amount of product from vehicle
k that enters and leaves that node must be 0. The VehicleCapacity constraints enforce the condition that the
amount of product in each vehicle must always be less than or equal to the vehicle capacity L. Finally, the
Depot constraints enforce the condition that each vehicle must start and end at the depot node.

792 F Chapter 15: The Decomposition Algorithm

In this formulation, the vehicle identifier is arbitrary. Consider a decomposition by vehicle, where the
Assignment constraints form the master problem and all other constraints form identical routing subproblems.
As described in the section “Special Case: Identical Blocks and Ryan-Foster Branching” on page 743, this
is a situation in which an aggregate formulation can greatly improve performance by reducing symmetry.
Because you know that there exists an optimal solution that satisfies the master Assignment constraints at
equality, you can force the use of Ryan-Foster branching by specifying the option VARSEL=RYANFOSTER.

VRPLIB, located at http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/index.htm,
is a set of benchmark instances of the VRP. The following data set, vrpdata, represents an instance from
VRPLIB that has 22 nodes and eight vehicles (P-n22-k8.vrp), which was originally described in Augerat
et al. (1995). The data set lists each node, its coordinates, and its demand.

/* number of vehicles available */
%let num_vehicles = 8;
/* capacity of each vehicle */
%let capacity = 3000;
/* node, x coordinate, y coordinate, demand */
data vrpdata;

input node x y demand;
datalines;

1 145 215 0
2 151 264 1100
3 159 261 700
4 130 254 800
5 128 252 1400
6 163 247 2100
7 146 246 400
8 161 242 800
9 142 239 100
10 163 236 500
11 148 232 600
12 128 231 1200
13 156 217 1300
14 129 214 1300
15 146 208 300
16 164 208 900
17 141 206 2100
18 147 193 1000
19 164 193 900
20 129 189 2500
21 155 185 1800
22 139 182 700
;

The following PROC OPTMODEL statements read in the data, declare the optimization model, and use the
decomposition algorithm to solve it:

proc optmodel;
/* read the node location and demand data */
set NODES;
num x {NODES};
num y {NODES};
num demand {NODES};
num capacity = &capacity;

http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/index.htm

Example 15.8: Vehicle Routing Problem F 793

num num_vehicles = &num_vehicles;
read data vrpdata into NODES=[node] x y demand;
set ARCS = {i in NODES, j in NODES: i ne j};
set VEHICLES = 1..num_vehicles;

/* define the depot as node 1 */
num depot = 1;

/* define the arc cost as the rounded Euclidean distance */
num cost {<i,j> in ARCS} = round(sqrt((x[i]-x[j])^2 + (y[i]-y[j])^2));

/* Flow[i,j,k] is the amount of demand carried on arc (i,j) by vehicle k */
var Flow {ARCS, VEHICLES} >= 0 <= capacity;
/* UseNode[i,k] = 1, if and only if node i is serviced by vehicle k */
var UseNode {NODES, VEHICLES} binary;
/* UseArc[i,j,k] = 1, if and only if arc (i,j) is traversed by vehicle k */
var UseArc {ARCS, VEHICLES} binary;

/* minimize the total distance traversed */
min TotalCost = sum {<i,j> in ARCS, k in VEHICLES} cost[i,j] * UseArc[i,j,k];

/* each non-depot node must be serviced by at least one vehicle */
con Assignment {i in NODES diff {depot}}:

sum {k in VEHICLES} UseNode[i,k] >= 1;

/* each vehicle must start at the depot node */
for{k in VEHICLES} fix UseNode[depot,k] = 1;

/* some vehicle k traverses an arc that leaves node i
if and only if UseNode[i,k] = 1 */

con LeaveNode {i in NODES, k in VEHICLES}:
sum {<(i),j> in ARCS} UseArc[i,j,k] = UseNode[i,k];

/* some vehicle k traverses an arc that enters node i
if and only if UseNode[i,k] = 1 */

con EnterNode {i in NODES, k in VEHICLES}:
sum {<j,(i)> in ARCS} UseArc[j,i,k] = UseNode[i,k];

/* the amount of demand supplied by vehicle k to node i must equal demand
if UseNode[i,k] = 1; otherwise, it must equal 0 */

con FlowBalance {i in NODES diff {depot}, k in VEHICLES}:
sum {<j,(i)> in ARCS} Flow[j,i,k] - sum {<(i),j> in ARCS} Flow[i,j,k]
= demand[i] * UseNode[i,k];

/* if UseArc[i,j,k] = 1, then the flow on arc (i,j) must be at most capacity
if UseArc[i,j,k] = 0, then no flow is allowed on arc (i,j) */

con VehicleCapacity {<i,j> in ARCS, k in VEHICLES}:
Flow[i,j,k] <= Flow[i,j,k].ub * UseArc[i,j,k];

/* decomp by vehicle */
for {i in NODES, k in VEHICLES} do;

LeaveNode[i,k].block = k;
EnterNode[i,k].block = k;

end;

794 F Chapter 15: The Decomposition Algorithm

for {i in NODES diff {depot}, k in VEHICLES} FlowBalance[i,k].block = k;
for {<i,j> in ARCS, k in VEHICLES} VehicleCapacity[i,j,k].block = k;

/* solve using decomp (aggregate formulation) */
solve with MILP / varsel=ryanfoster decomp=(logfreq=20);

The following OPTMODEL statements create node and edge data for the optimal routing:

/* create solution data set */
str color {k in VEHICLES} =

['red' 'green' 'blue' 'black' 'orange' 'gray' 'maroon' 'purple'];
create data node_data from [i] x y;
create data edge_data from [i j k]=

{<i,j> in ARCS, k in VEHICLES: UseArc[i,j,k].sol > 0.5}
x1=x[i] y1=y[i] x2=x[j] y2=y[j] linecolor=color[k];

quit;

The solution summary is displayed in Output 15.8.1.

Output 15.8.1 Solution Summary

The OPTMODEL ProcedureThe OPTMODEL Procedure

Solution Summary

Solver MILP

Algorithm Decomposition

Objective Function TotalCost

Solution Status Optimal

Objective Value 603

Relative Gap 0

Absolute Gap 0

Primal Infeasibility 1.182343E-11

Bound Infeasibility 1.182343E-11

Integer Infeasibility 4.218847E-15

Best Bound 603

Nodes 1

Iterations 75

Presolve Time 0.08

Solution Time 26.56

The iteration log is displayed in Output 15.8.2.

Example 15.8: Vehicle Routing Problem F 795

Output 15.8.2 Log

NOTE: There were 22 observations read from the data set WORK.VRPDATA.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 7568 variables (0 free, 8 fixed).

NOTE: The problem has 3872 binary and 0 integer variables.

NOTE: The problem has 4237 linear constraints (3696 LE, 520 EQ, 21 GE, 0 range).

NOTE: The problem has 22528 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The MILP presolver value AUTOMATIC is applied.

NOTE: The MILP presolver removed 8 variables and 0 constraints.

NOTE: The MILP presolver removed 16 constraint coefficients.

NOTE: The MILP presolver modified 0 constraint coefficients.

NOTE: The presolved problem has 7560 variables, 4237 constraints, and 22512 constraint

 coefficients.

NOTE: The MILP solver is called.

NOTE: The Decomposition algorithm is used.

NOTE: The Decomposition algorithm is executing in single-machine mode.

NOTE: The DECOMP method value USER is applied.

NOTE: All blocks are identical and the master model is set covering.

WARNING: The master model is not a set partitioning and VARSEL=RYANFOSTER. The objective

 function must ensure that there exists at least one optimal solution that fulfills all

 of the master constraints at equality.

NOTE: The Decomposition algorithm is using an aggregate formulation and Ryan-Foster branching.

NOTE: The number of block threads has been reduced to 1 threads.

NOTE: The problem has a decomposable structure with 8 blocks. The largest block covers 12.44%

 of the constraints in the problem.

NOTE: The decomposition subproblems cover 7560 (100%) variables and 4216 (99.5%) constraints.

NOTE: The deterministic parallel mode is enabled.

NOTE: The Decomposition algorithm is using up to 4 threads.

 Iter Best Master Best LP IP CPU Real

 Bound Objective Integer Gap Gap Time Time

NOTE: Starting phase 1.

 1 0.0000 20.0000 . 2.00e+01 . 0 0

 20 0.0000 0.6667 . 6.67e-01 . 2 2

 29 0.0000 0.0000 . 0.00% . 3 3

NOTE: Starting phase 2.

 . 112.0000 939.1111 979.0000 738.49% 774.11% 3 3

 . 112.0000 721.2000 787.0000 543.93% 602.68% 6 5

 40 112.0000 721.2000 787.0000 543.93% 602.68% 6 5

 48 167.4748 636.7500 787.0000 280.21% 369.92% 9 8

 49 215.2500 636.7500 787.0000 195.82% 265.62% 10 8

 50 303.2000 632.0000 787.0000 108.44% 159.56% 10 8

 53 350.2420 631.1852 651.0000 80.21% 85.87% 11 9

 54 372.8330 629.0444 651.0000 68.72% 74.61% 11 9

 55 439.3023 628.1429 651.0000 42.99% 48.19% 13 10

 56 483.4272 628.0000 651.0000 29.91% 34.66% 14 11

 60 483.4272 617.0000 651.0000 27.63% 34.66% 16 13

 62 504.5272 615.2308 651.0000 21.94% 29.03% 18 14

 63 518.7273 614.2424 651.0000 18.41% 25.50% 19 15

 64 551.0764 613.0667 651.0000 11.25% 18.13% 20 15

796 F Chapter 15: The Decomposition Algorithm

Output 15.8.2 continued

 65 565.4661 608.5909 651.0000 7.63% 15.13% 21 16

 66 569.9636 608.3636 651.0000 6.74% 14.22% 22 17

 67 572.6429 607.9000 651.0000 6.16% 13.68% 23 18

 71 582.6667 604.0000 604.0000 3.66% 3.66% 29 21

 72 588.0000 604.0000 604.0000 2.72% 2.72% 31 22

 73 597.1667 603.8333 604.0000 1.12% 1.14% 34 24

 75 603.0000 603.0000 603.0000 0.00% 0.00% 37 26

 Node Active Sols Best Best Gap CPU Real

 Integer Bound Time Time

 0 0 6 603.0000 603.0000 0.00% 37 26

NOTE: The Decomposition algorithm used 4 threads.

NOTE: The Decomposition algorithm time is 26.37 seconds.

NOTE: Optimal.

NOTE: Objective = 603.

NOTE: The data set WORK.NODE_DATA has 22 observations and 3 variables.

NOTE: The data set WORK.EDGE_DATA has 29 observations and 8 variables.

The following DATA step and call to PROC SGPLOT generate a plot of the optimal routing. The plot is
displayed in Figure 15.8.3.

data sganno(drop=i j);
retain drawspace "datavalue" linethickness 1;
set edge_data;
function = 'line';

run;

proc sgplot data=node_data sganno=sganno;
scatter x=x y=y / datalabel=i;
xaxis display=none;
yaxis display=none;

run;

Example 15.9: ATM Cash Management in Single-Machine Mode F 797

Output 15.8.3 Optimal Routing

Example 15.9: ATM Cash Management in Single-Machine Mode
This example describes an optimization model that is used in the management of cash flow for a bank’s
automated teller machine (ATM) network. The goal of the model is to determine a replenishment schedule
for the bank to use in allocating cash inventory at its branches when servicing a preassigned subset of ATMs.
Given a history of withdrawals per day for each ATM, the bank can use SAS forecasting tools to predict the
expected cash need. The modeling of this prediction depends on various seasonal factors, including the days
of the week, weeks of the month, holidays, typical salary disbursement days, location of the ATMs, and other
demographic data. The prediction is a parametric mixture of models whose parameters depend on each ATM.

The optimization model performs a polynomial regression that minimizes the error (measured by the L1
norm) between the predicted and actual withdrawals. The parameter settings in the regression determine the
replenishment policy. The amount of cash that is allocated to each day is subject to a budget constraint. In
addition, a constraint for each ATM limits the number of days that a cash-out (a situation in which the cash
flow is less than the predicted withdrawal) can occur. The goal is to determine a policy for cash distribution
that balances the predicted inventory levels while satisfying the budget and cash-out constraints. By keeping

798 F Chapter 15: The Decomposition Algorithm

too much cash on hand for ATM fulfillment, the bank loses an investment opportunity. Moreover, regulatory
agencies in many countries enforce a minimum cash reserve ratio at branch banks; according to regulatory
policy, the cash in ATMs or in transit does not contribute toward this threshold.

Mixed Integer Nonlinear Programming Formulation

The most natural formulation for this model is in the form of a mixed integer nonlinear program (MINLP).
Let A denote the set of ATMs and D denote the set of days that are used in the training data. The predictive
model fit is defined by the following data for each ATM a on each day d: cad ; cxad ; c

y

ad
; cz
ad

, and cu
ad

. The
model-fitting parameters define the variables .xa; ya; ua/ for each ATM that, when applied to the predictive
model, estimate the necessary cash flow per day per ATM. In addition, define a surrogate variable fad for
each ATM on each day that defines the cash inventory (replenished from the branch) minus withdrawals.
The variable fad also represents the error in the regression model. Let Bd define the budget per day, Ka
define the limit on cash-outs per ATM, and wad define the historical withdrawals at a particular ATM on a
particular day. Then the following MINLP models this problem:

minimize
X
a2A

X
d2D

jfad j

subject to cxadxa C c
y

ad
yaC

czadxaya C c
u
adua C cad � wad D fad a 2 A; d 2 D (CashFlowDefCon)X
a2A

.fad C wad / � Bd d 2 D (BudgetCon)

jfd 2 D j fad < 0gj � Ka a 2 A (CashOutLimitCon)

xa; ya 2 Œ0; 1� a 2 A

ua � 0 a 2 A

fad � �wad a 2 A; d 2 D

The CashFlowDefCon constraint defines the surrogate variable fad , which gives the estimated net cash flow.
The BudgetCon and CashOutLimitCon constraints ensure that the solution satisfies the budget and cash-out
constraints, respectively.

To express this model in a more standard form, you can first use some standard model reformulations to
linearize the absolute value and the CashOutLimitCon constraint.

Linearization of Absolute Value
A well-known reformulation for linearizing the absolute value of a variable is to introduce one variable for
each side of the absolute value. The following systems are equivalent:

minimize jyj

subject to Ay � b

is equivalent to
minimize yC C y�

subject to A.yC � y�/ � b

yC; y� � 0

Example 15.9: ATM Cash Management in Single-Machine Mode F 799

Let f C
ad

and f �
ad

represent the positive and negative parts, respectively, of the net cash flow fad . Then you
can rewrite the model, removing the absolute value, as the following:

minimize
X
a2A

X
d2D

�
f C
ad
C f �ad

�
subject to cxadxa C c

y

ad
yaC

czadxaya C c
u
adua C cad � wad D f

C

ad
� f �ad a 2 A; d 2 DX

a2A

�
f C
ad
� f �ad C wad

�
� Bd d 2 D

jfd 2 D j .f C
ad
� f �ad / < 0gj � Ka a 2 A

xa; ya 2 Œ0; 1� a 2 A

ua � 0 a 2 A

f C
ad
� 0 a 2 A; d 2 D

f �ad 2 Œ0; wad � a 2 A; d 2 D

Modeling the Cash-Out Constraints
To count the number of times a cash-out occurs, you need to introduce a binary variable to keep track of
when this event occurs. Let vad be an indicator variable that takes the value 1 when the net cash flow is
negative. You can model the implication f �

ad
> 0) vad D 1, or its contrapositive vad D 0) f �

ad
� 0,

by adding the constraint

f �ad � wadvad a 2 A; d 2 D

Now you can model the cash-out constraint by counting the number of days that the net-cash flow is negative
for each ATM, as follows:X

d2D

vad � Ka a 2 A

The MINLP model can now be written as follows:

minimize
X
a2A

X
d2D

�
f C
ad
C f �ad

�
subject to cxadxa C c

y

ad
yaC

czadxaya C c
u
adua C cad � wad D f

C

ad
� f �ad a 2 A; d 2 DX

a2A

�
f C
ad
� f �ad C wad

�
� Bd d 2 D

f �ad � wadvad a 2 A; d 2 DX
d2D

vad � Ka a 2 A

xa; ya 2 Œ0; 1� a 2 A

ua � 0 a 2 A

f C
ad
� 0 a 2 A; d 2 D

f �ad 2 Œ0; wad � a 2 A; d 2 D

vad 2 f0; 1g a 2 A; d 2 D

800 F Chapter 15: The Decomposition Algorithm

This MINLP is difficult to solve, in part because the prediction function is not convex. Another approach is
to use mixed integer linear programming (MILP) to formulate an approximation of the problem, as described
in the next section.

Mixed Integer Linear Programming Approximation

Because the predictive model is a forecast, finding the optimal parameters that are based on nondeterministic
data is not of primary importance. Rather, you want to provide as good a solution as possible in a reasonable
amount of time. So using MILP to approximate the MINLP is perfectly acceptable. In the original problem
you have products of two continuous variables that are both bounded by 0 (lower bound) and 1 (upper bound).
This arrangement enables you to create an approximate linear model by using a few standard modeling
reformulations.

Discretization of Continuous Variables
The first step is to discretize one of the continuous variables xa. The goal is to transform the product xaya of
a continuous variable and another continuous variable instead to the product of a continuous variable and a
binary variable. This transformation enables you to linearize the product form.

You must assume some level of approximation by defining a binary variable (from some discrete set) for each
possible setting of the continuous variable For example, if you let n D 10, then you allow x to be chosen
from the set f0:0; 0:1; 0:2; 0:3; :::; 1:0g. Let T D f0; 1; 2; :::; ng represent the possible steps and ct D t=n.
Then you apply the following transformation to variable xa:X

t2T

ctxat D xaX
t2T

xat D 1

xat 2 f0; 1g t 2 T

Example 15.9: ATM Cash Management in Single-Machine Mode F 801

The MINLP model can now be approximated as the following:

minimize
X
a2A

X
d2D

�
f C
ad
C f �ad

�
subject to cxad

X
t2T

ctxat C c
y

ad
yaC

czad

X
t2T

ctxatya C c
u
adua C cad � wad D f

C

ad
� f �ad a 2 A; d 2 DX

t2T

xat D 1 a 2 AX
a2A

�
f C
ad
� f �ad C wad

�
� Bd d 2 D

f �ad � wadvad a 2 A; d 2 DX
d2D

vad � Ka a 2 A

ya 2 Œ0; 1� a 2 A

ua � 0 a 2 A

f C
ad
� 0 a 2 A; d 2 D

f �ad 2 Œ0; wad � a 2 A; d 2 D

vad 2 f0; 1g a 2 A; d 2 D

xat 2 f0; 1g a 2 A; t 2 T

Linearization of Products
You still need to linearize the product terms xatya in the cash flow constraint. Because these terms are
products of a bounded continuous variable and a binary variable, you can linearize them by introducing
for each product another variable, zat , which serves as a surrogate. In general, you know the following
relationship between the original variables and their surrogates:

zt D xty t 2 TP
t2T xt D 1

xt 2 f0; 1g t 2 T

y 2 Œ0; 1�

is equivalent to

zt � 0 t 2 T

zt � xt t 2 TP
t2T xt D 1P
t2T zt D y

xt 2 f0; 1g t 2 T

y 2 Œ0; 1�

802 F Chapter 15: The Decomposition Algorithm

Using this relationship to replace each product form, you now can write the problem as an approximate MILP
as follows:

minimize
X
a2A

X
d2D

�
f C
ad
C f �ad

�
subject to cxad

X
t2T

ctxat C c
y

ad
yaC

czad

X
t2T

ctzat C c
u
adua C cad � wad D f

C

ad
� f �ad a 2 A; d 2 DX

t2T

xat D 1 a 2 AX
a2A

�
f C
ad
� f �ad C wad

�
� Bd d 2 D (BudgetCon)

f �ad � wadvad a 2 A; d 2 DX
d2D

vad � Ka a 2 A

zat � xat a 2 A; t 2 TX
t2T

zat D ya a 2 A

zat � 0 a 2 A; t 2 T

ya 2 Œ0; 1� a 2 A

ua � 0 a 2 A

f C
ad
� 0 a 2 A; d 2 D

f �ad 2 Œ0; wad � a 2 A; d 2 D

vad 2 f0; 1g a 2 A; d 2 D

xat 2 f0; 1g a 2 A; t 2 T

PROC OPTMODEL Code

Because it is difficult to solve the MINLP model directly, the approximate MILP formulation is attractive.
Unfortunately, the approximate MILP is much larger than the associated MINLP. Direct methods for solving
this MILP do not work well. However, the problem is nicely suited for the decomposition algorithm.

When you examine the structure of the MILP model, you see clearly that the constraints can be easily
decomposed by ATM. In fact, the only set of constraints that involve decision variables across ATMs is the
BudgetCon constraint. That is, if you relax the budget constraint, you are left with independent blocks of
constraints, one for each ATM.

To show how this is done in PROC OPTMODEL, consider the following data sets, which describe an example
that tracks 20 ATMs over a period of 100 days. This particular example was submitted to MIPLIB 2010,
which is a collection of difficult MILPs in the public domain (Koch et al. 2011).

Example 15.9: ATM Cash Management in Single-Machine Mode F 803

The first data set, budget_data, provides the cash budget on each particular day:

data budget_data;
input d $ budget;
datalines;

DATE0 70079
DATE1 66418
DATE10 52656
DATE11 50439
DATE12 58688
DATE13 45002
DATE14 52369
...
;

The second data set, cashout_data, provides the limit on the number of cash-outs that are allowed at each
ATM:

data cashout_data;
input a $ cashOutLimit;
datalines;

ATM0 31
ATM1 24
ATM2 41
ATM3 43
ATM4 29
ATM5 24
ATM6 52
ATM7 44
ATM8 35
ATM9 48
ATM10 31
ATM11 47
ATM12 26
ATM13 34
ATM14 29
ATM15 32
ATM16 33
ATM17 32
ATM18 43
ATM19 28
;

The final data set, polyfit_data, provides the polynomial fit coefficients for each ATM on each date. It also
provides the historical cash withdrawals.

data polyfit_data;
input a $ d $ cx cy cz cu c withdrawal;
datalines;

ATM0 DATE0 2822 1984 -1984 1045 1373 780
ATM0 DATE1 1337 2530 -2530 1510 174 2351
ATM0 DATE2 2685 -67 67 145 2820 2288

804 F Chapter 15: The Decomposition Algorithm

ATM0 DATE3 -595 -3135 3135 581 3319 1357
...
ATM19 DATE96 -734 3392 -3392 162 1648 914
ATM19 DATE97 -1062 969 -969 444 1746 2264
ATM19 DATE98 7676 2308 -2308 59 1388 972
ATM19 DATE99 3062 1308 -1308 1080 654 698
;

The following PROC OPTMODEL statements read in the data and define the necessary sets and parameters:

proc optmodel;
set<str> DATES;
set<str> ATMS;

/* cash budget per date */
num budget{DATES};

/* maximum number of cash-outs allowed at each atm */
num cashOutLimit{ATMS};

/* historical withdrawal amount per atm each date */
num withdrawal{ATMS, DATES};

/* polynomial fit coefficients for predicted cash flow needed */
num c {ATMS, DATES};
num cx{ATMS, DATES};
num cy{ATMS, DATES};
num cz{ATMS, DATES};
num cu{ATMS, DATES};

/* number of points used in approximation of continuous range */
num nSteps = 10;
set STEPS = {0..nSteps};

read data budget_data into DATES=[d] budget;
read data cashout_data into ATMS=[a] cashOutLimit;
read data polyfit_data into [a d] cx cy cz cu c withdrawal;

The following statements declare the variables:

var x{ATMS,STEPS} binary;
var v{ATMS,DATES} binary;
var z{ATMS,STEPS} >= 0 <= 1;
var y{ATMS} >= 0 <= 1;
var u{ATMS} >= 0;
var fPlus{ATMS,DATES} >= 0;
var fMinus{a in ATMS, d in DATES} >= 0 <= withdrawal[a,d];

The following statements declare the objective and the constraints:

min CashFlowDiff =
sum{a in ATMS, d in DATES} (fPlus[a,d] + fMinus[a,d]);

con BudgetCon{d in DATES}:
sum{a in ATMS} (fPlus[a,d] - fMinus[a,d] + withdrawal[a,d])

<= budget[d];

Example 15.9: ATM Cash Management in Single-Machine Mode F 805

con CashFlowDefCon{a in ATMS, d in DATES}:
cx[a,d] * sum{t in STEPS} (t/nSteps) * x[a,t] +
cy[a,d] * y[a] +
cz[a,d] * sum{t in STEPS} (t/nSteps) * z[a,t] +
cu[a,d] * u[a] +
c[a,d] - withdrawal[a,d] = fPlus[a,d] - fMinus[a,d];

con PickOneStepCon{a in ATMS}:
sum{t in STEPS} x[a,t] = 1;

con CashOutLinkCon{a in ATMS, d in DATES}:
fMinus[a,d] <= withdrawal[a,d] * v[a,d];

con CashOutLimitCon{a in ATMS}:
sum{d in DATES} v[a,d] <= cashOutLimit[a];

con Linear1Con{a in ATMS, t in STEPS}:
z[a,t] <= x[a,t];

con Linear2Con{a in ATMS}:
sum{t in STEPS} z[a,t] = y[a];

The following statements define the block decomposition by ATM. The .block suffix expects numeric
indices, whereas the SET<STR> ATMS statement declares a set of strings. You can create a mapping from the
string identifier to a numeric identifier as follows:

/* create numeric block index */
num blockIndex {ATMS};
num index init 0;
for{a in ATMS} do;

blockIndex[a] = index;
index = index + 1;

end;

Then, each constraint can be added to its associated ATM block as follows:

/* define blocks for each ATM */
for{a in ATMS} do;

PickOneStepCon[a].block = blockIndex[a];
CashOutLimitCon[a].block = blockIndex[a];
Linear2Con[a].block = blockIndex[a];
for{d in DATES} do;

CashFlowDefCon[a,d].block = blockIndex[a];
CashOutLinkCon[a,d].block = blockIndex[a];

end;
for{t in STEPS}

Linear1Con[a,t].block = blockIndex[a];
end;

806 F Chapter 15: The Decomposition Algorithm

The budget constraint links all the ATMs, and it remains in the master problem. Finally, the following
statements use the decomposition algorithm to solve the problem to within 1% of proven optimality:

/* set the number of threads and get performance details */
performance details nthreads=4;

/* solve with the decomposition algorithm */
solve with milp / relobjgap=0.01 decomp;

quit;

The solution summary, performance information, and procedure task timing tables are displayed in Out-
put 15.9.1.

Output 15.9.1 Performance Information, Solution Summary, and Task Timing Tables

The OPTMODEL ProcedureThe OPTMODEL Procedure

Performance Information

Execution Mode Single-Machine

Number of Threads 4

Solution Summary

Solver MILP

Algorithm Decomposition

Objective Function CashFlowDiff

Solution Status Optimal within Relative Gap

Objective Value 2466251.7897

Relative Gap 0.009267066

Absolute Gap 22645.064717

Primal Infeasibility 1.227818E-11

Bound Infeasibility 0

Integer Infeasibility 0

Best Bound 2443606.725

Nodes 1

Iterations 11

Presolve Time 2.10

Solution Time 71.23

Procedure Task Timing

Task
Time

(sec.) Time

Problem Generation 0.03 0.04%

Solver Initialization 0.09 0.12%

Code Generation 0.00 0.00%

Solver 71.23 99.83%

Solver Postprocessing 0.00 0.00%

The iteration log, which contains the problem statistics, the progress of the solution, and the optimal objective
value, is shown in Output 15.9.2.

Example 15.9: ATM Cash Management in Single-Machine Mode F 807

Output 15.9.2 Log

NOTE: There were 100 observations read from the data set WORK.BUDGET_DATA.

NOTE: There were 20 observations read from the data set WORK.CASHOUT_DATA.

NOTE: There were 2000 observations read from the data set WORK.POLYFIT_DATA.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 6480 variables (0 free, 0 fixed).

NOTE: The problem has 2220 binary and 0 integer variables.

NOTE: The problem has 4380 linear constraints (2340 LE, 2040 EQ, 0 GE, 0 range).

NOTE: The problem has 58878 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The MILP presolver value AUTOMATIC is applied.

NOTE: The MILP presolver removed 551 variables and 383 constraints.

NOTE: The MILP presolver removed 1297 constraint coefficients.

NOTE: The MILP presolver modified 0 constraint coefficients.

NOTE: The presolved problem has 5929 variables, 3997 constraints, and 57581 constraint

 coefficients.

NOTE: The MILP solver is called.

NOTE: The Decomposition algorithm is used.

NOTE: The Decomposition algorithm is executing in single-machine mode.

NOTE: The DECOMP method value USER is applied.

NOTE: The problem has a decomposable structure with 20 blocks. The largest block covers 5.129%

 of the constraints in the problem.

NOTE: The decomposition subproblems cover 5929 (100%) variables and 3897 (97.5%) constraints.

NOTE: The deterministic parallel mode is enabled.

NOTE: The Decomposition algorithm is using up to 4 threads.

 Iter Best Master Best LP IP CPU Real

 Bound Objective Integer Gap Gap Time Time

NOTE: Starting phase 1.

 1 0.0000 1.1767 . 1.18e+00 . 41 15

 2 0.0000 0.0000 . 0.00% . 41 15

NOTE: Starting phase 2.

 3 2.4432e+06 2.7375e+06 . 12.05% . 69 25

 7 2.4436e+06 2.4916e+06 2.4918e+06 1.96% 1.97% 102 43

 10 2.4436e+06 2.4631e+06 2.4663e+06 0.80% 0.93% 156 67

NOTE: The Decomposition algorithm stopped on the integer RELOBJGAP= option.

 11 2.4436e+06 2.4631e+06 2.4663e+06 0.80% 0.93% 156 67

 Node Active Sols Best Best Gap CPU Real

 Integer Bound Time Time

 0 0 5 2.4663e+06 2.4436e+06 0.93% 156 67

NOTE: The Decomposition algorithm used 4 threads.

NOTE: The Decomposition algorithm time is 67.76 seconds.

NOTE: Optimal within relative gap.

NOTE: Objective = 2466251.7897.

808 F Chapter 15: The Decomposition Algorithm

Example 15.10: ATM Cash Management in Distributed Mode
This section illustrates how you can use PROC OPTMODEL and the decomposition algorithm in distributed
mode. The problem is the same as the one described in Example 15.9 for managing the cash flow of an ATM
network. The only difference between single-machine and distributed mode is that the PERFORMANCE
statement specifies the number of threads to use in single-machine mode or the number of threads and nodes
to use in distributed mode.

The following statement changes the operating mode to distributed mode:

/* set the number of nodes and threads and get performance details */
performance details nodes=5 nthreads=4;

The performance information is displayed in Output 15.10.1. When you specify NODES=5 and
NTHREADS=4 in the PERFORMANCE statement in distributed mode, each grid node processes up
to four threads simultaneously.

Output 15.10.1 Performance Information

Performance Information

Host Node << your grid host >

Execution Mode Distributed

Number of Compute Nodes 5

Number of Threads per Node 4

The solution summary and procedure task timing tables are displayed in Output 15.10.2.

Example 15.10: ATM Cash Management in Distributed Mode F 809

Output 15.10.2 Solution Summary and Task Timing Tables

The OPTMODEL ProcedureThe OPTMODEL Procedure

Solution Summary

Solver MILP

Algorithm Decomposition

Objective Function CashFlowDiff

Solution Status Optimal within Relative Gap

Objective Value 2484384.0185

Relative Gap 0.0086886133

Absolute Gap 21399.916357

Primal Infeasibility 1.364242E-12

Bound Infeasibility 4.440892E-16

Integer Infeasibility 8.881784E-16

Best Bound 2462984.1022

Nodes 1

Iterations 6

Presolve Time 2.11

Solution Time 20.68

Procedure Task Timing

Task
Time

(sec.) Time

Problem Generation 0.03 0.15%

Solver Initialization 0.06 0.26%

Code Generation 0.00 0.00%

Solver 21.12 99.56%

Solver Postprocessing 0.01 0.03%

The iteration log, which contains the problem statistics, the progress of the solution, and the optimal objective
value, is shown in Output 15.10.3.

810 F Chapter 15: The Decomposition Algorithm

Output 15.10.3 Log

NOTE: There were 100 observations read from the data set WORK.BUDGET_DATA.

NOTE: There were 20 observations read from the data set WORK.CASHOUT_DATA.

NOTE: There were 2000 observations read from the data set WORK.POLYFIT_DATA.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 6480 variables (0 free, 0 fixed).

NOTE: The problem has 2220 binary and 0 integer variables.

NOTE: The problem has 4380 linear constraints (2340 LE, 2040 EQ, 0 GE, 0 range).

NOTE: The problem has 58878 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The MILP presolver value AUTOMATIC is applied.

NOTE: The MILP presolver removed 551 variables and 383 constraints.

NOTE: The MILP presolver removed 1297 constraint coefficients.

NOTE: The MILP presolver modified 0 constraint coefficients.

NOTE: The presolved problem has 5929 variables, 3997 constraints, and 57581 constraint

 coefficients.

NOTE: The MILP solver is called.

NOTE: The Decomposition algorithm is used.

NOTE: The Decomposition algorithm is executing in the distributed computing environment with 5

 worker nodes.

NOTE: The DECOMP method value USER is applied.

NOTE: The problem has a decomposable structure with 20 blocks. The largest block covers 5.129%

 of the constraints in the problem.

NOTE: The decomposition subproblems cover 5929 (100%) variables and 3897 (97.5%) constraints.

NOTE: The deterministic parallel mode is enabled.

NOTE: The Decomposition algorithm is using up to 4 threads.

 Iter Best Master Best LP IP Real

 Bound Objective Integer Gap Gap Time

NOTE: Starting phase 1.

 1 0.0000 1.1767 . 1.18e+00 . 7

 2 0.0000 0.0000 . 0.00% . 7

NOTE: Starting phase 2.

 3 2.4432e+06 2.5911e+06 . 6.06% . 10

 4 2.4511e+06 2.4851e+06 . 1.39% . 12

 5 2.4630e+06 2.4642e+06 . 0.05% . 15

NOTE: The Decomposition algorithm stopped on the continuous RELOBJGAP= option.

 . 2.4630e+06 2.4632e+06 2.4844e+06 0.01% 0.87% 15

NOTE: The Decomposition algorithm stopped on the integer RELOBJGAP= option.

 Node Active Sols Best Best Gap Real

 Integer Bound Time

 0 0 1 2.4844e+06 2.4630e+06 0.87% 15

NOTE: The Decomposition algorithm used 4 threads.

NOTE: The Decomposition algorithm time is 15.41 seconds.

NOTE: Optimal within relative gap.

NOTE: Objective = 2484384.0185.

NOTE: The data set WORK.PERFINFO has 4 observations and 3 variables.

Notice how this iteration log differs from the iteration log from single-machine mode in Example 15.9. In
distributed mode, the processing is done on multiple grid machines, as opposed to being done on one client

Example 15.11: Kidney Donor Exchange and METHOD=SET F 811

machine in single-machine mode. In this example, the grid machines and the client machine have different
operating systems, and some numerical rounding off leads to different paths in the search space. When you
compare two runs on different operating systems (or that use different compilers), this behavior is expected.

Example 15.11: Kidney Donor Exchange and METHOD=SET
This example looks at an application of integer programming to help create a kidney donor exchange. Suppose
someone needs a kidney transplant and a family member is willing to donate a kidney. If the donor and
recipient are incompatible (because of conflicting blood types, tissue mismatch, and so on), the transplant
cannot proceed. Now suppose two donor-recipient pairs, A and B, are in this same situation, but donor A is
compatible with recipient B and donor B is compatible with recipient A. Then two transplants can take place
in a two-way swap, which is shown graphically in Figure 15.8.

Figure 15.8 Kidney Donor Exchange Two-Way Swap

donor A

recipient A

pair A

donor B

pair B

recipient B

More generally, an n-way swap that involves n donors and n recipients can be performed (Willingham 2009).
To model this problem, define a directed graph as follows. Each node is an incompatible donor-recipient
pair. Link .i; j / exists if the donor from node i is compatible with the recipient from node j. Let N define the
set of nodes and A define the set of arcs. The link weight, wij , is a measure of the quality of the match. By
introducing dummy links whose weight is 0, you can also include altruistic donors who have no recipients or
recipients who have no donors. The idea is to find a maximum-weight node-disjoint union of directed cycles.
You want the union to be node-disjoint so that no kidney is donated more than once, and you want cycles so
that the donor from node i gives up a kidney if and only if the recipient from node i receives a kidney.

Without any other constraints, the problem could be solved as a linear assignment problem. But doing so
would allow arbitrarily long cycles in the solution. Because of practical considerations (such as travel) and
to mitigate risk, each cycle must have no more than L links. The kidney exchange problem is to find a
maximum-weight node-disjoint union of short directed cycles.

Define an index set M D f1; : : : ; jN j=2g of candidate disjoint unions of short cycles (called matchings). Let
xijm be a binary variable, which, if set to 1, indicates that arc .i; j / is in a matching m. Let yim be a binary
variable that, if set to 1, indicates that node i is covered by matching m. In addition, let si be a binary slack
variable that, if set to 1, indicates that node i is not covered by any matching.

812 F Chapter 15: The Decomposition Algorithm

The kidney donor exchange can be formulated as a MILP as follows:

maximize
X

.i;j /2A

X
m2M

wijxijm

subject to
X
m2M

yim C si D 1 i 2 N (Packing)X
.i;j /2A

xijm D yim i 2 N; m 2M (Donate)

X
.i;j /2A

xijm D yjm j 2 N; m 2M (Receive)

X
.i;j /2A

xijm � L m 2M (Cardinality)

xijm 2 f0; 1g .i; j / 2 A; m 2M

yim 2 f0; 1g i 2 N; m 2M

si 2 f0; 1g i 2 N

In this formulation, the Packing constraints ensure that each node is covered by at most one matching. The
Donate and Receive constraints enforce the condition that if node i is covered by matching m, then the
matching m must use exactly one arc that leaves node i (Donate) and one arc that enters node i (Receive).
Conversely, if node i is not covered by matching m, then no arcs that enter or leave node i can be used by
matching m. The Cardinality constraints enforce the condition that the number of arcs in matching m must
not exceed L.

In this formulation, the matching identifier is arbitrary. Because it is not necessary to cover each incompatible
donor-recipient pair (node), the Packing constraints can be modeled by using set partitioning constraints
and the slack variable s. Consider a decomposition by matching, in which the Packing constraints form the
master problem and all other constraints form identical matching subproblems. As described in the section
“Special Case: Identical Blocks and Ryan-Foster Branching” on page 743, this is a situation in which an
aggregate formulation and Ryan-Foster branching can greatly improve performance by reducing symmetry.

The following DATA step sets up the problem, first creating a random graph on n nodes with link probability
p and Uniform(0,1) weight:

/* create random graph on n nodes with arc probability p
and uniform(0,1) weight */

%let n = 100;
%let p = 0.02;
data ArcData;

do i = 0 to &n - 1;
do j = 0 to &n - 1;

if i eq j then continue;
else if ranuni(1) < &p then do;

weight = ranuni(2);
output;

end;
end;

end;
run;

Example 15.11: Kidney Donor Exchange and METHOD=SET F 813

In this case, you can specify METHOD=SET and let the decomposition algorithm automatically detect the
set partitioning master constraints (Packing) and each independent matching subproblem. The following
PROC OPTMODEL statements read in the data, declare the optimization model, and use the decomposition
algorithm to solve it:

%let max_length = 10;
proc optmodel;

set <num,num> ARCS;
num weight {ARCS};
read data ArcData into ARCS=[i j] weight;
print weight;
set NODES = union {<i,j> in ARCS} {i,j};
set MATCHINGS = 1..card(NODES)/2;

/* UseNode[i,m] = 1 if node i is used in matching m, 0 otherwise */
var UseNode {NODES, MATCHINGS} binary;

/* UseArc[i,j,m] = 1 if arc (i,j) is used in matching m, 0 otherwise */
var UseArc {ARCS, MATCHINGS} binary;

/* maximize total weight of arcs used */
max TotalWeight

= sum {<i,j> in ARCS, m in MATCHINGS} weight[i,j] * UseArc[i,j,m];

/* each node appears in at most one matching */
/* rewrite as set partitioning (so decomp uses identical blocks)

sum{} x <= 1 => sum{} x + s = 1, s >= 0 with no associated cost */
var Slack {NODES} binary;
con Packing {i in NODES}:

sum {m in MATCHINGS} UseNode[i,m] + Slack[i] = 1;

/* at most one recipient for each donor */
con Donate {i in NODES, m in MATCHINGS}:

sum {<(i),j> in ARCS} UseArc[i,j,m] = UseNode[i,m];

/* at most one donor for each recipient */
con Receive {j in NODES, m in MATCHINGS}:

sum {<i,(j)> in ARCS} UseArc[i,j,m] = UseNode[j,m];

/* exclude long matchings */
con Cardinality {m in MATCHINGS}:

sum {<i,j> in ARCS} UseArc[i,j,m] <= &max_length;

/* automatically decompose using METHOD=SET */
solve with milp / presolver=basic decomp=(method=set);

/* save solution to a data set */
create data Solution from

[m i j]={m in MATCHINGS, <i,j> in ARCS: UseArc[i,j,m].sol > 0.5}
weight[i,j];

quit;

814 F Chapter 15: The Decomposition Algorithm

In this case, the PRESOLVER=BASIC option ensures that the model maintains its specified symmetry,
enabling the algorithm to use the aggregate formulation and Ryan-Foster branching. The solution summary
is displayed in Output 15.11.1.

Output 15.11.1 Solution Summary

The OPTMODEL ProcedureThe OPTMODEL Procedure

Solution Summary

Solver MILP

Algorithm Decomposition

Objective Function TotalWeight

Solution Status Optimal within Relative Gap

Objective Value 26.020287142

Relative Gap 2.976491E-14

Absolute Gap 7.744916E-13

Primal Infeasibility 6.439294E-15

Bound Infeasibility 2.220446E-16

Integer Infeasibility 6.439294E-15

Best Bound 26.020287142

Nodes 19

Iterations 122

Presolve Time 0.01

Solution Time 20.38

The iteration log is displayed in Output 15.11.2.

Example 15.11: Kidney Donor Exchange and METHOD=SET F 815

Output 15.11.2 Log

NOTE: There were 194 observations read from the data set WORK.ARCDATA.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 14065 variables (0 free, 0 fixed).

NOTE: The problem has 14065 binary and 0 integer variables.

NOTE: The problem has 9457 linear constraints (48 LE, 9409 EQ, 0 GE, 0 range).

NOTE: The problem has 42001 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The MILP presolver value BASIC is applied.

NOTE: The MILP presolver removed 4786 variables and 3298 constraints.

NOTE: The MILP presolver removed 14290 constraint coefficients.

NOTE: The MILP presolver modified 0 constraint coefficients.

NOTE: The presolved problem has 9279 variables, 6159 constraints, and 27711 constraint

 coefficients.

NOTE: The MILP solver is called.

NOTE: The Decomposition algorithm is used.

NOTE: The Decomposition algorithm is executing in single-machine mode.

NOTE: The DECOMP method value SET is applied.

NOTE: All blocks are identical and the master model is set partitioning.

NOTE: The Decomposition algorithm is using an aggregate formulation and Ryan-Foster branching.

NOTE: The number of block threads has been reduced to 1 threads.

NOTE: The problem has a decomposable structure with 48 blocks. The largest block covers 2.062%

 of the constraints in the problem.

NOTE: The decomposition subproblems cover 9216 (99.32%) variables and 6096 (98.98%) constraints.

NOTE: The deterministic parallel mode is enabled.

NOTE: The Decomposition algorithm is using up to 4 threads.

 Iter Best Master Best LP IP CPU Real

 Bound Objective Integer Gap Gap Time Time

 . 390.3703 9.2503 9.2503 97.63% 97.63% 0 0

 1 388.4992 9.2503 9.2503 97.62% 97.62% 0 0

 2 382.6496 10.9240 10.9240 97.15% 97.15% 0 0

 3 364.9174 10.9240 10.9240 97.01% 97.01% 0 0

 4 364.9174 17.6847 17.6847 95.15% 95.15% 0 0

 5 358.4853 18.1796 18.1796 94.93% 94.93% 0 0

 6 355.4761 18.1796 18.1796 94.89% 94.89% 0 0

 7 353.5691 18.1796 18.1796 94.86% 94.86% 0 0

 9 300.4913 22.2123 22.2123 92.61% 92.61% 1 1

 . 300.4913 22.2123 22.2123 92.61% 92.61% 1 1

 10 233.9333 22.2123 22.2123 90.50% 90.50% 1 1

 12 191.4106 23.5193 22.2123 87.71% 88.40% 1 1

 15 168.4258 23.5193 22.2123 86.04% 86.81% 1 1

 16 164.2073 23.5193 22.2123 85.68% 86.47% 1 1

 17 147.5824 23.5193 22.2123 84.06% 84.95% 1 1

 18 138.4915 23.5193 22.2123 83.02% 83.96% 1 1

 . 138.4915 24.2756 22.2123 82.47% 83.96% 1 1

 20 138.4915 24.2756 22.2123 82.47% 83.96% 1 1

 22 138.4915 24.4032 23.4381 82.38% 83.08% 1 2

 23 129.0374 25.1702 23.4381 80.49% 81.84% 1 2

 24 116.2406 25.1702 23.4381 78.35% 79.84% 1 2

 25 115.8350 25.2058 23.4381 78.24% 79.77% 1 2

816 F Chapter 15: The Decomposition Algorithm

Output 15.11.2 continued

 28 110.4562 25.8779 23.4381 76.57% 78.78% 2 2

 29 83.1756 25.8779 23.4381 68.89% 71.82% 2 2

 30 80.5193 25.8779 23.4381 67.86% 70.89% 2 2

 32 76.7777 26.1712 23.4381 65.91% 69.47% 2 2

 33 70.8012 26.4989 23.4381 62.57% 66.90% 2 2

 35 58.5371 26.6339 23.4381 54.50% 59.96% 2 2

 36 52.6388 26.7220 23.4381 49.24% 55.47% 2 2

 37 52.1538 26.7220 23.4381 48.76% 55.06% 2 2

 38 37.4461 26.7220 23.4381 28.64% 37.41% 2 2

 . 37.4461 26.7444 25.6243 28.58% 31.57% 2 3

 40 34.2505 26.7444 25.6243 21.92% 25.19% 3 3

 43 33.1436 26.7804 25.6243 19.20% 22.69% 3 3

 44 26.7804 26.7804 25.6243 0.00% 4.32% 3 3

NOTE: Starting branch and bound.

 Node Active Sols Best Best Gap CPU Real

 Integer Bound Time Time

 0 1 9 25.6243 26.7804 4.32% 3 3

 1 3 10 25.6852 26.7804 4.09% 9 9

 3 5 11 26.0203 26.6301 2.29% 10 10

 10 8 11 26.0203 26.1928 0.66% 18 18

 18 0 11 26.0203 26.0203 0.00% 20 20

NOTE: The Decomposition algorithm used 4 threads.

NOTE: The Decomposition algorithm time is 20.31 seconds.

NOTE: Optimal within relative gap.

NOTE: Objective = 26.020287142.

NOTE: The data set WORK.SOLUTION has 42 observations and 4 variables.

The solution is a set of arcs that define a union of short directed cycles (matchings). The following call
to PROC OPTNET extracts the corresponding cycles from the list of arcs and outputs them to the data set
Cycles:

proc optnet
direction = directed
data_links = Solution;
data_links_var

from = i
to = j;

cycle
mode = all_cycles
out = Cycles;

run;

For more information about PROC OPTNET, see SAS/OR User’s Guide: Network Optimization Algorithms.
Alternatively, you can extract the cycles by using the SOLVE WITH NETWORK statement in PROC
OPTMODEL (see Chapter 9, “The Network Solver”). The optimal donor exchanges from the output data set
Cycles are displayed in Figure 15.9.

Example 15.11: Kidney Donor Exchange and METHOD=SET F 817

Figure 15.9 Optimal Donor Exchanges

cycle=1

order node

1 5

2 19

3 56

4 12

5 33

6 70

7 63

8 43

9 15

10 5

cycle=2

order node

1 13

2 74

3 65

4 41

5 59

6 50

7 49

8 98

9 13

cycle=3

order node

1 16

2 91

3 17

4 57

5 87

6 72

7 64

8 22

9 88

10 16

818 F Chapter 15: The Decomposition Algorithm

Figure 15.9 continued

cycle=4

order node

1 8

2 32

3 79

4 71

5 69

6 26

7 9

8 18

9 95

10 35

11 8

cycle=5

order node

1 52

2 77

3 94

4 81

5 52

cycle=6

order node

1 24

2 92

3 24

References

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows: Theory, Algorithms, and Applications.
Englewood Cliffs, NJ: Prentice-Hall.

Augerat, P., Belenguer, J. M., Benavent, E., Corberán, A., Naddef, D., and Rinaldi, G. (1995). Computational
Results with a Branch and Cut Code for the Capacitated Vehicle Routing Problem. Technical Report
949-M, Université Joseph Fourier, Grenoble.

Aykanat, C., Pinar, A., and Çatalyürek, Ü. V. (2004). “Permuting Sparse Rectangular Matrices into Block-
Diagonal Form.” SIAM Journal on Scientific Computing 25:1860–1879.

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., and Vance, P. H. (1998). “Branch-
and-Price: Column Generation for Solving Huge Integer Programs.” Operations Research 46:316–329.

Caprara, A., Furini, F., and Malaguti, E. (2010). Exact Algorithms for the Temporal Knapsack Problem.
Technical Report OR-10-7, Department of Electronics, Computer Science, and Systems, University of
Bologna.

References F 819

Dantzig, G. B., and Wolfe, P. (1960). “Decomposition Principle for Linear Programs.” Operations Research
8:101–111. http://www.jstor.org/stable/167547.

Galati, M. V. (2009). “Decomposition in Integer Linear Programming.” Ph.D. diss., Lehigh University.

Gamrath, G. (2010). “Generic Branch-Cut-and-Price.” Diploma thesis, Technische Universität Berlin.

Grcar, J. F. (1990). Matrix Stretching for Linear Equations. Technical Report SAND90-8723, Sandia
National Laboratories.

Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R. E., Danna, E., Gamrath, G.,
Gleixner, A. M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Steffy, D. E., and Wolter,
K. (2011). “MIPLIB 2010: Mixed Integer Programming Library Version 5.” Mathematical Programming
Computation 3:103–163. http://dx.doi.org/10.1007/s12532-011-0025-9.

Ralphs, T. K., and Galati, M. V. (2006). “Decomposition and Dynamic Cut Generation in Integer Linear
Programming.” Mathematical Programming 106:261–285. http://dx.doi.org/10.1007/S10107-
005-0606-3.

Vanderbeck, F., and Savelsbergh, M. W. P. (2006). “A Generic View of Dantzig-Wolfe Decomposition in
Mixed Integer Programming.” Operations Research Letters 34:296–306. http://dx.doi.org/10.
1016/j.orl.2005.05.009.

Willingham, V. (2009). “Massive Transplant Effort Pairs 13 Kidneys to 13 Patients.” CNN Health. Accessed
March 16, 2011. http://www.cnn.com/2009/HEALTH/12/14/kidney.transplant/index.
html.

http://www.jstor.org/stable/167547
http://dx.doi.org/10.1007/s12532-011-0025-9
http://dx.doi.org/10.1007/S10107-005-0606-3
http://dx.doi.org/10.1007/S10107-005-0606-3
http://dx.doi.org/10.1016/j.orl.2005.05.009
http://dx.doi.org/10.1016/j.orl.2005.05.009
http://www.cnn.com/2009/HEALTH/12/14/kidney.transplant/index.html
http://www.cnn.com/2009/HEALTH/12/14/kidney.transplant/index.html

Subject Index

algorithm, 740

BLOCK variable
BLOCKS= data set, 741

block-angular structure
decomposition algorithm, 717, 769, 779, 784

block-diagonal structure
decomposition algorithm, 717, 738, 743, 762

block-diagonal structure in distributed mode
decomposition algorithm, 766

blocks
decomposition algorithm, 717, 741

BLOCKS= data set
blocks, 741
DECOMP statement, 741
decomposition algorithm, 741
variables, 741

branch-and-price
decomposition algorithm, 742

column generation
decomposition algorithm, 742

coverage
decomposition algorithm, 717, 747, 759, 788

Dantzig-Wolfe method
decomposition algorithm, 742

DECOMP statement
BLOCKS= data set, 741
definitions of BLOCKS= data set variables, 741

decomposition algorithm
block-angular structure, 717, 769, 779, 784
block-diagonal structure, 717, 738, 743, 762
block-diagonal structure in distributed mode, 766
blocks, 717, 741
BLOCKS= data set, 741
branch-and-price, 742
column generation, 742
coverage, 717, 747, 759, 788
Dantzig-Wolfe method, 742
decomposition algorithm, 742
details, 741
examples, 749
introductory example, 718
Lagrangian decomposition, 779, 780
master problem, 716, 717, 742
overview, 716
pricing out variables, 742
relaxation, 716, 759

Ryan-Foster branching, 744
separable region, 717
set covering, 746
set packing, 747
set partitioning, 744
subproblem, 716, 718, 741, 742

decomposition algorithm examples
ATM cash management in distributed mode, 808
ATM cash management in single-machine mode,

797
bin packing problem, 773
block-angular structure, 769
block-diagonal structure, 762
block-diagonal structure in distributed mode, 766
generalized assignment problem, 755
kidney donor exchange, 811
multicommodity flow, 749
resource allocation, 778
vehicle routing problem, 791

Lagrangian decomposition
decomposition algorithm, 779, 780

master problem
decomposition algorithm, 716, 717, 742

method, 730

OPTMODEL procedure, DECOMP algorithm
method, 730

OPTMODEL procedure, DECOMP_SUBPROB
algorithm

algorithm, 740

parallel processing
parallel processing, 743

pricing out variables
decomposition algorithm, 742

relaxation
decomposition algorithm, 716, 759

ROW variable
BLOCKS= data set, 741

Ryan-Foster branching
decomposition algorithm, 744

separable region
decomposition algorithm, 717

set covering
decomposition algorithm, 746

set packing
decomposition algorithm, 747

set partitioning
decomposition algorithm, 744

subproblem
decomposition algorithm, 716, 718, 741, 742

Syntax Index

ABSOBJGAP= option
DECOMP statement, 727

ALGORITHM= option
DECOMP_SUBPROB statement, 740

BLOCKS= option
DECOMP statement, 727

COMPRESSFREQ= option
DECOMP statement, 727

DECOMP_MASTER_IP statement
DECOMP option, 734

DECOMP_MASTER statement
DECOMP option, 732

DECOMP option
DECOMP_MASTER_IP statement, 734
DECOMP_MASTER statement, 732
DECOMP statement, 726
DECOMP_SUBPROB statement, 736
syntax, 721

DECOMP statement
ABSOBJGAP= option, 727
BLOCKS= option, 727
COMPRESSFREQ= option, 727
DECOMP option, 726
HYBRID= option, 727
INITVARS= option, 728
LOGFREQ= option, 728
LOGLEVEL= option, 728
MASTER_IP_BEG= option, 729
MASTER_IP_END= option, 730
MASTER_IP_FREQ= option, 730
MAXBLOCKS= option, 730
MAXCOLSPASS= option, 730
MAXITER= option, 730
MAXTIME= option, 730
METHOD= option, 730
NBLOCKS= option, 731
NTHREADS= option, 732
RELOBJGAP= option, 732

DECOMP_SUBPROB statement
DECOMP option, 736

DECOMP_MASTER statement
INITPRESOLVER= option, 733
NTHREADS= option, 734

DECOMP_MASTER_IP statement
NTHREADS= option, 736
PRIMALIN= option, 736

DECOMP_SUBPROB statement
ALGORITHM= option, 740
INITPRESOLVER= option, 740
NTHREADS= option, 740
PRIMALIN= option, 741
SOL= option, 740
SOLVER= option, 740

HYBRID= option
DECOMP statement, 727

INITPRESOLVER= option
DECOMP_MASTER statement, 733
DECOMP_SUBPROB statement, 740

INITVARS= option
DECOMP statement, 728

LOGFREQ= option
DECOMP statement, 728
PROC OPTMILP statement, 725

LOGLEVEL= option
DECOMP statement, 728

MASTER_IP_BEG= option
DECOMP statement, 729

MASTER_IP_END= option
DECOMP statement, 730

MASTER_IP_FREQ= option
DECOMP statement, 730

MAXBLOCKS= option
DECOMP statement, 730

MAXCOLSPASS= option
DECOMP statement, 730

MAXITER= option
DECOMP statement, 730

MAXTIME= option
DECOMP statement, 730

METHOD= option
DECOMP statement, 730

NBLOCKS= option
DECOMP statement, 731

NTHREADS= option
DECOMP statement, 732
DECOMP_MASTER statement, 734
DECOMP_MASTER_IP statement, 736
DECOMP_SUBPROB statement, 740

PRIMALIN= option

DECOMP_MASTER_IP statement, 736
DECOMP_SUBPROB statement, 741

PRINTFREQ= option
PROC OPTMILP statement, 725

PROC OPTMILP statement
LOGFREQ= option, 725
PRINTFREQ= option, 725
STRONGITER= option, 725
VARSEL= option, 725

RELOBJGAP= option
DECOMP statement, 732

SOL= option
DECOMP_SUBPROB statement, 740

SOLVER= option
DECOMP_SUBPROB statement, 740

STRONGITER= option
PROC OPTMILP statement, 725

VARSEL= option
PROC OPTMILP statement, 725

	The Decomposition Algorithm
	Overview: Decomposition Algorithm
	Getting Started: Decomposition Algorithm
	Solving a MILP with DECOMP and PROC OPTMODEL
	Solving a MILP with DECOMP and PROC OPTMILP

	Syntax: Decomposition Algorithm
	Decomposition Algorithm Options in the PROC OPTLP Statement or the SOLVE WITH LP Statement in PROC OPTMODEL
	Decomposition Algorithm Options in the PROC OPTMILP Statement or the SOLVE WITH MILP Statement in PROC OPTMODEL
	DECOMP Statement
	DECOMP_MASTER Statement
	DECOMP_MASTER_IP Statement
	DECOMP_SUBPROB Statement

	Details: Decomposition Algorithm
	Data Input
	Decomposition Algorithm
	Parallel Processing
	Special Case: Identical Blocks and Ryan-Foster Branching
	Log for the Decomposition Algorithm

	Examples: Decomposition Algorithm
	Example 15.1: Multicommodity Flow Problem and METHOD=NETWORK
	Example 15.2: Generalized Assignment Problem
	Example 15.3: Block-Diagonal Structure and METHOD=CONCOMP in Single-Machine Mode
	Example 15.4: Block-Diagonal Structure and METHOD=CONCOMP in Distributed Mode
	Example 15.5: Block-Angular Structure and METHOD=AUTO
	Example 15.6: Bin Packing Problem
	Example 15.7: Resource Allocation Problem
	Example 15.8: Vehicle Routing Problem
	Example 15.9: ATM Cash Management in Single-Machine Mode
	Example 15.10: ATM Cash Management in Distributed Mode
	Example 15.11: Kidney Donor Exchange and METHOD=SET

	References

	Subject Index
	Syntax Index

