
SAS/OR® 14.1 User’s Guide:
Mathematical Programming
The OPTMODEL
Procedure

This document is an individual chapter from SAS/OR® 14.1 User’s Guide: Mathematical Programming.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2015. SAS/OR® 14.1 User’s Guide: Mathematical
Programming. Cary, NC: SAS Institute Inc.

SAS/OR® 14.1 User’s Guide: Mathematical Programming

Copyright © 2015, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute
Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time
you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is
illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic
piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software
developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or
disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as
applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S.
federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision
serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The
Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

July 2015

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Chapter 5

The OPTMODEL Procedure

Contents
Overview: OPTMODEL Procedure . 28
Getting Started: OPTMODEL Procedure . 29

An Unconstrained Optimization Example . 30
The Rosenbrock Problem . 33
A Transportation Problem . 34

Syntax: OPTMODEL Procedure . 36
Functional Summary . 38
PROC OPTMODEL Statement . 40
Declaration Statements . 44
Programming Statements . 53

Details: OPTMODEL Procedure . 95
Named Parameters . 95
Indexing . 95
Types . 97
Names . 98
Parameters . 98
Expressions . 99
Identifier Expressions . 102
Function Expressions . 102
Index Sets . 103
OPTMODEL Expression Extensions . 104
Conditions of Optimality . 114
Data Set Input/Output . 117
Control Flow . 121
Formatted Output . 121
ODS Table and Variable Names . 124
Constraints . 130
Suffixes . 134
Integer Variable Suffixes . 137
Dual Values . 138
Reduced Costs . 144
Presolver . 145
Model Update . 145
Multiple Subproblems . 150
Multiple Solutions . 151
Problem Symbols . 152

28 F Chapter 5: The OPTMODEL Procedure

OPTMODEL Options . 153
Automatic Differentiation . 154
Conversions . 155
FCMP Routines . 156
More on Index Sets . 159
Threaded and Distributed Processing . 160
Macro Variable _OROPTMODEL_ . 161
Rewriting PROC NLP Models for PROC OPTMODEL 163

Examples: OPTMODEL Procedure . 166
Example 5.1: Matrix Square Root . 166
Example 5.2: Reading From and Creating a Data Set 167
Example 5.3: Model Construction . 169
Example 5.4: Set Manipulation . 173
Example 5.5: Multiple Subproblems . 174
Example 5.6: Traveling Salesman Problem . 178
Example 5.7: Sparse Modeling . 182
Example 5.8: Chemical Equilibrium . 188

References . 192

Overview: OPTMODEL Procedure
The OPTMODEL procedure includes the powerful OPTMODEL modeling language and state-of-the-art
solvers for several classes of mathematical programming problems. The problems and their solvers are listed
in Table 5.1.

Table 5.1 Solvers in PROC OPTMODEL

Problem Solver
Constraint programming CLP
Linear programming LP
Mixed integer linear programming MILP
Network algorithms Network
General nonlinear programming NLP
Quadratic programming QP

The OPTMODEL modeling language provides a modeling environment tailored to building, solving, and
maintaining optimization models. This makes the process of translating the symbolic formulation of an
optimization model into OPTMODEL virtually transparent since the modeling language mimics the symbolic
algebra of the formulation as closely as possible. The OPTMODEL language also streamlines and simplifies
the critical process of populating optimization models with data from SAS data sets. All of this transparency
produces models that are more easily inspected for completeness and correctness, more easily corrected, and
more easily modified, whether through structural changes or through the substitution of new data for old.

Getting Started: OPTMODEL Procedure F 29

In addition to invoking optimization solvers directly with PROC OPTMODEL as already mentioned, you can
use the OPTMODEL language purely as a modeling facility. You can save optimization models built with the
OPTMODEL language in SAS data sets that can be submitted to other SAS/OR optimization procedures. In
general, the OPTMODEL language serves as a common point of access for many of the SAS/OR optimization
capabilities, whether providing both modeling and solver access or acting as a modeling interface for other
optimization procedures.

For details and examples of the problems addressed and corresponding solvers, please see the dedicated chap-
ters in this book. This chapter aims to give you a comprehensive understanding of the OPTMODEL procedure
by discussing the framework provided by the OPTMODEL modeling language. For additional examples
that demonstrate the features of the OPTMODEL procedure, see SAS/OR User’s Guide: Mathematical
Programming Examples.

The OPTMODEL modeling language features automatic differentiation, advanced flow control, optimization-
oriented syntax (parameters, variables, arrays, constraints, objective functions), dynamic model generation,
model-data separation, and transparent access to SAS data sets.

Getting Started: OPTMODEL Procedure
Optimization or mathematical programming is a search for a maximum or minimum of an objective function
(also called a cost function), where search variables are restricted to particular constraints. Constraints are
said to define a feasible region (see Figure 5.1).

Figure 5.1 Examples of Feasible Regions

A more rigorous general formulation of such problems is as follows.

Let

f W S ! R

be a real-valued function. Find x� such that

� x� 2 S

30 F Chapter 5: The OPTMODEL Procedure

� f .x�/ � f .x/; 8x 2 S

Note that the formulation is for the minimum of f and that the maximum of f is simply the negation of the
minimum of �f .

Here, function f is the objective function, and the variable in the objective function is called the optimization
variable (or decision variable). S is the feasible region. Typically S is a subset of the Euclidean space Rn

specified by the set of constraints, which are often a set of equalities (=) or inequalities (�;�) that every
element in S is required to satisfy simultaneously. For the special case where S D Rn, the problem is an
unconstrained optimization. An element x of S is called a feasible solution to the optimization problem, and
the value f .x/ is called the objective value. A feasible solution x� that minimizes the objective function is
called an optimal solution to the optimization problem, and the corresponding objective value is called the
optimal value.

In mathematics, special notation is used to denote an optimization problem. Generally, you can write an
optimization problem as follows:

minimize f .x/

subject to x 2 S

Normally, an empty body of constraint (the part after “subject to”) implies that the optimization is un-
constrained (that is, the feasible region is the whole space Rn). The optimal solution (x�) is denoted
as

x� D argmin
x2S

f .x/

The optimal value (f .x�/) is denoted as

f .x�/ D min
x2S

f .x/

Optimization problems can be classified by the forms (linear, quadratic, nonlinear, and so on) of the functions
in the objective and constraints. For example, a problem is said to be linearly constrained if the functions
in the constraints are linear. A linear programming problem is a linearly constrained problem with a linear
objective function. A nonlinear programming problem occurs where some function in the objective or
constraints is nonlinear, and so on.

An Unconstrained Optimization Example
An unconstrained optimization problem formulation is simply

minimize f .x/

For example, suppose you wanted to find the minimum value of this polynomial:

z.x; y/ D x2 � x � 2y � xy C y2

An Unconstrained Optimization Example F 31

You can compactly specify and solve the optimization problem by using the OPTMODEL modeling language.
Here is the program:

/* invoke procedure */
proc optmodel;

var x, y; /* declare variables */

/* objective function */
min z=x**2 - x - 2*y - x*y + y**2;

/* now run the solver */
solve;

print x y;
quit;

This program produces the output in Figure 5.2.

Figure 5.2 Optimizing a Simple Polynomial

The OPTMODEL ProcedureThe OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function z

Objective Type Quadratic

Number of Variables 2

Bounded Above 0

Bounded Below 0

Bounded Below and Above 0

Free 2

Fixed 0

Number of Constraints 0

Constraint Coefficients 0

Performance Information

Execution Mode Single-Machine

Number of Threads 4

32 F Chapter 5: The OPTMODEL Procedure

Figure 5.2 continued

Solution Summary

Solver QP

Algorithm Interior Point

Objective Function z

Solution Status Optimal

Objective Value -2.333333333

Primal Infeasibility 0

Dual Infeasibility 6.861556E-17

Bound Infeasibility 0

Duality Gap 0

Complementarity 0

Iterations 0

Presolve Time 0.00

Solution Time 0.02

x y

1.3333 1.6667

In PROC OPTMODEL you specify the mathematical formulas that describe the behavior of the optimization
problem that you want to solve. In the preceding example there were two independent variables in the
polynomial, x and y. These are the optimization variables of the problem. In PROC OPTMODEL you declare
optimization variables with the VAR statement. The formula that defines the quantity that you are seeking
to optimize is called the objective function, or objective. The solver varies the values of the optimization
variables when searching for an optimal value for the objective.

In the preceding example the objective function is named z, declared with the MIN statement. The keyword
MIN is an abbreviation for MINIMIZE. The expression that follows the equal sign (=) in the MIN statement
defines the function to be minimized in terms of the optimization variables.

The VAR and MIN statements are just two of the many available PROC OPTMODEL declaration and
programming statements. PROC OPTMODEL processes all such statements interactively, meaning that each
statement is processed as soon as it is complete.

After PROC OPTMODEL has completed processing of declaration and programming statements, it processes
the SOLVE statement, which submits the problem to a solver and prints a summary of the results. The PRINT
statement displays the optimal values of the optimization variables x and y found by the solver.

It is worth noting that PROC OPTMODEL does not use a RUN statement but instead operates on an
interactive basis throughout. You can continue to interact with PROC OPTMODEL even after invoking a
solver. For example, you could modify the problem and issue another SOLVE statement (see the section
“Model Update” on page 145).

The Rosenbrock Problem F 33

The Rosenbrock Problem
You can use parameters to produce a clear formulation of a problem. Consider the Rosenbrock problem,

minimize f .x1; x2/ D ˛ .x2 � x21/
2
C .1 � x1/

2

where ˛ D 100 is a parameter (constant), x1 and x2 are optimization variables (whose values are to be
determined), and f .x1; x2/ is an objective function.

Here is a PROC OPTMODEL program that solves the Rosenbrock problem:

proc optmodel;
number alpha = 100; /* declare parameter */
var x {1..2}; /* declare variables */
/* objective function */
min f = alpha*(x[2] - x[1]**2)**2 +

(1 - x[1])**2;
/* now run the solver */
solve;

print x;
quit;

The PROC OPTMODEL output is shown in Figure 5.3.

Figure 5.3 Rosenbrock Function Results

The OPTMODEL ProcedureThe OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function f

Objective Type Nonlinear

Number of Variables 2

Bounded Above 0

Bounded Below 0

Bounded Below and Above 0

Free 2

Fixed 0

Number of Constraints 0

Performance Information

Execution Mode Single-Machine

Number of Threads 4

34 F Chapter 5: The OPTMODEL Procedure

Figure 5.3 continued

Solution Summary

Solver NLP

Algorithm Interior Point

Objective Function f

Solution Status Optimal

Objective Value 8.204873E-23

Optimality Error 9.704881E-11

Infeasibility 0

Iterations 14

Presolve Time 0.00

Solution Time 0.00

[1] x

1 1

2 1

A Transportation Problem
You can easily translate the symbolic formulation of a problem into the OPTMODEL procedure. Consider
the transportation problem, which is mathematically modeled as the following linear programming problem:

minimize
X

i2O;j2D

cijxij

subject to
X
j2D

xij D ai ; 8i 2 O .SUPPLY/X
i2O

xij D bj ; 8j 2 D .DEMAND/

xij � 0; 8.i; j / 2 O �D

where O is the set of origins, D is the set of destinations, cij is the cost to transport one unit from i to j, ai is
the supply of origin i, bj is the demand of destination j, and xij is the decision variable for the amount of
shipment from i to j.

Here is a very simple example. The cities in the set O of origins are Detroit and Pittsburgh. The cities in the
set D of destinations are Boston and New York. The cost matrix, supply, and demand are shown in Table 5.2.

Table 5.2 A Transportation Problem

Boston New York Supply
Detroit 30 20 200

Pittsburgh 40 10 100
Demand 150 150

A Transportation Problem F 35

The problem is compactly and clearly formulated and solved by using the OPTMODEL procedure with the
following statements:

proc optmodel;
/* specify parameters */
set O={'Detroit','Pittsburgh'};
set D={'Boston','New York'};
number c{O,D}=[30 20

40 10];
number a{O}=[200 100];
number b{D}=[150 150];
/* model description */
var x{O,D} >= 0;
min total_cost = sum{i in O, j in D}c[i,j]*x[i,j];
constraint supply{i in O}: sum{j in D}x[i,j]=a[i];
constraint demand{j in D}: sum{i in O}x[i,j]=b[j];
/* solve and output */
solve;
print x;

The output is shown in Figure 5.4.

Figure 5.4 Solution to the Transportation Problem

The OPTMODEL ProcedureThe OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function total_cost

Objective Type Linear

Number of Variables 4

Bounded Above 0

Bounded Below 4

Bounded Below and Above 0

Free 0

Fixed 0

Number of Constraints 4

Linear LE (<=) 0

Linear EQ (=) 4

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 8

Performance Information

Execution Mode Single-Machine

Number of Threads 1

36 F Chapter 5: The OPTMODEL Procedure

Figure 5.4 continued

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function total_cost

Solution Status Optimal

Objective Value 6500

Primal Infeasibility 0

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 0

Presolve Time 0.00

Solution Time 0.00

x

Boston
New
York

Detroit 150 50

Pittsburgh 0 100

Syntax: OPTMODEL Procedure
PROC OPTMODEL statements are divided into three categories: the PROC statement, the declaration
statements, and the programming statements. The PROC statement invokes the procedure and sets initial
option values. The declaration statements declare optimization model components. The programming
statements read and write data, invoke the solver, and print results. In the following text, the statements are
listed in the order in which they are grouped, with declaration statements first.

NOTE: Solver specific options are described in the individual chapters that correspond to the solvers.

Syntax: OPTMODEL Procedure F 37

PROC OPTMODEL options ;

Declaration Statements:
CONSTRAINT constraints ;
IMPVAR optimization expression declarations ;
MAX objective ;
MIN objective ;
NUMBER parameter declarations ;
PROBLEM problem declaration ;
SET Œ < types > � parameter declarations ;
STRING parameter declarations ;
VAR variable declarations ;

Programming Statements:
Assignment parameter = expression ;
CALL name Œ (expressions) � ;
CLOSEFILE files ;
COFOR { index-set } statement ;
CONTINUE ;
CREATE DATA SAS-data-set FROM columns ;
DO ; statements ; END ;
DO variable = specifications ; statements ; END ;
DO UNTIL (logic) ; statements ; END ;
DO WHILE (logic) ; statements ; END ;
DROP constraint ;
EXPAND name Œ / options � ;
FILE file ;
FIX variable Œ = expression � ;
FOR { index-set } statement ;
IF logic THEN statement ; Œ ELSE statement � ;
LEAVE ;
.null statement/ ;
PERFORMANCE options ;
PRINT print items ;
PROFILE Œ mode � options ;
PUT put items ;
QUIT ;
READ DATA SAS-data-set INTO columns ;
RESET OPTIONS options ;
RESTORE constraint ;
SAVE MPS SAS-data-set Œ OBJECTIVE name � Œ NOOBJECTIVE � ;
SAVE QPS SAS-data-set Œ OBJECTIVE name � Œ NOOBJECTIVE � ;
SOLVE Œ WITH solver � Œ OBJECTIVE name � Œ NOOBJECTIVE � Œ RELAXINT � Œ / options � ;
STOP ;
SUBMIT arguments Œ / options � ;
UNFIX variable Œ = expression � ;
USE PROBLEM problem ;

38 F Chapter 5: The OPTMODEL Procedure

Functional Summary
The statements and options available with PROC OPTMODEL are summarized by purpose in Table 5.3.

Table 5.3 Functional Summary

Description Statement Option

Declaration Statements:
Declares a constraint CONSTRAINT
Declares optimization expressions IMPVAR
Declares a maximization objective MAX
Declares a minimization objective MIN
Declares a number type parameter NUMBER
Declares a problem PROBLEM
Declares a set type parameter SET
Declares a string type parameter STRING
Declares optimization variables VAR

Programming Statements:
Assigns a value to a variable or parameter =
Invokes a library subroutine CALL
Closes the opened file CLOSEFILE
Executes the statement repeatedly with support for
concurrent solver invocations

COFOR

Terminates one iteration of a loop statement CONTINUE
Creates a new SAS data set and copies data into
it from PROC OPTMODEL parameters and vari-
ables

CREATE DATA

Groups a sequence of statements together as a sin-
gle statement

DO

Executes statements repeatedly DO (iterative)
Executes statements repeatedly until some condi-
tion is satisfied

DO UNTIL

Executes statements repeatedly as long as some
condition is satisfied

DO WHILE

Ignores the specified constraint DROP
Prints the specified constraint, variable, or objec-
tive declaration expressions after expanding aggre-
gation operators, and so on

EXPAND

Selects a file for the PUT statement FILE
Treats a variable as fixed in value FIX
Executes the statement repeatedly FOR
Executes the statement conditionally IF
Terminates the execution of the entire loop body LEAVE
Null statement ;
Controls parallel execution PERFORMANCE

Functional Summary F 39

Description Statement Option

Outputs string and numeric data PRINT
Provides timing and execution count information
for statements and declarations

PROFILE

Writes text data to the current output file PUT
Terminates the PROC OPTMODEL session QUIT
Reads data from a SAS data set into PROC OPT-
MODEL parameters and variables

READ DATA

Sets PROC OPTMODEL option values or restores
them to their defaults

RESET OPTIONS

Adds a constraint that was previously dropped
back into the model

RESTORE

Saves the structure and coefficients for a linear
programming model into a SAS data set

SAVE MPS

Saves the structure and coefficients for a quadratic
programming model into a SAS data set

SAVE QPS

Invokes a PROC OPTMODEL solver SOLVE
Halts the execution of all statements that contain it STOP
Submits SAS code for execution SUBMIT
Reverses the effect of FIX statement UNFIX
Selects the current problem USE PROBLEM

PROC OPTMODEL Options:
Specifies the accuracy for nonlinear constraints PROC OPTMODEL CDIGITS=
Specifies the maximum number of error messages
displayed

PROC OPTMODEL ERRORLIMIT=

Specifies the method used to approximate numeric
derivatives

PROC OPTMODEL FD=

Specifies the accuracy for the objective function PROC OPTMODEL FDIGITS=
Forces finite differences to be used for nonlinear
equations

PROC OPTMODEL FORCEFD=

Enables the OPTMODEL presolver for the CLP,
LP, MILP, and QP solvers

PROC OPTMODEL FORCEPRESOLVE=

Passes initial values for variables to the solver PROC OPTMODEL INITVAR/NOINITVAR
Specifies the tolerance for rounding the bounds on
integer and binary variables

PROC OPTMODEL INTFUZZ=

Specifies the maximum length for MPS row and
column labels

PROC OPTMODEL MAXLABLEN=

Checks missing values PROC OPTMODEL MISSCHECK/NOMISSCHECK
Specifies the maximum number of non-error mes-
sages displayed

PROC OPTMODEL MSGLIMIT=

Specifies the number of digits to display PROC OPTMODEL PDIGITS=
Adjusts how two-dimensional array is displayed PROC OPTMODEL PMATRIX=
Specifies the type of presolve performed by the
PROC OPTMODEL presolver

PROC OPTMODEL PRESOLVER=

40 F Chapter 5: The OPTMODEL Procedure

Description Statement Option

Specifies the tolerance, enabling the PROC OPT-
MODEL presolver to remove slightly infeasible
constraints

PROC OPTMODEL PRESTOL=

Enables or disables printing summary PROC OPTMODEL PRINTLEVEL=
Specifies the width to display numeric columns PROC OPTMODEL PWIDTH=
Specifies the smallest difference that is permitted
by the PROC OPTMODEL presolver between the
upper and lower bounds of an unfixed variable

PROC OPTMODEL VARFUZZ=

PROC OPTMODEL Statement
PROC OPTMODEL Œ options � ;

The PROC OPTMODEL statement invokes the OPTMODEL procedure. You can specify options to control
how the optimization model is processed and how results are displayed. You can specify the following
options (these options can also be specified in the RESET OPTIONS statement).

CDIGITS=number
specifies the expected number of decimal digits of accuracy for nonlinear constraints. The value can
be fractional. PROC OPTMODEL uses this option to choose a step length when numeric derivative
approximations are required to evaluate the Jacobian of nonlinear constraints. The default value
depends on your operating environment. It is assumed that constraint values are accurate to the limits
of machine precision.

See the section “Automatic Differentiation” on page 154 for more information about numeric derivative
approximations.

ERRORLIMIT=number | NONE
specifies the maximum number of error messages that can be displayed during SOLVE statement
processing. Specifying a value of number in the range 1 to 231 � 1 sets a specific limit. Specifying
ERRORLIMIT=NONE removes any existing limit. The default value is 10.

NOTE: Some errors abort processing immediately.

FD=FORWARD | CENTRAL
selects the method used to approximate numeric derivatives when analytic derivatives are unavailable.
Most solvers require the derivatives of the objective and constraints. You can specify the following
values:

FORWARD uses forward differences.

CENTRAL uses central differences.

By default, FD=FORWARD. For more information about numeric derivative approximations, see the
section “Automatic Differentiation” on page 154.

PROC OPTMODEL Statement F 41

FDIGITS=number
specifies the expected number of decimal digits of accuracy for the objective function. The value can
be fractional. PROC OPTMODEL uses the value to choose a step length when numeric derivatives
are required. The default value depends on your operating environment. It is assumed that objective
function values are accurate to the limits of machine precision.

For more information about numeric derivative approximations, see the section “Automatic Differenti-
ation” on page 154.

FORCEFD=NONE | OBJ | CON | ALL
forces PROC OPTMODEL to use finite differences instead of analytic derivatives for the specified set
of nonlinear expressions. This option can be useful with FCMP functions to provide more control over
derivative computation. You can specify the following values:

ALL restricts all derivative computations to use finite differences.

CON restricts derivative computations for the nonlinear constraint expressions and any
IMPVAR expressions they reference to use finite differences.

NONE requests analytic derivatives where they are available.

OBJ restricts derivative computations for the objective and any IMPVAR expressions it
references to use finite differences.

By default, FORCEFD=NONE.

FORCEPRESOLVE=number | string
specifies whether PROC OPTMODEL can use the OPTMODEL presolver with the CLP, LP, MILP,
and QP solvers. By default, the OPTMODEL presolver is disabled when PROC OPTMODEL solves
linear problems or problems with predicates, or when the CLP, LP, MILP, or QP solver is specified in
the SOLVE statement. Table 5.4 shows the valid values for this option.

Table 5.4 Values for the FORCEPRESOLVE= Option
number string Description

0 OFF Restores the default behavior.
1 ON Enables PROC OPTMODEL to use the OPT-

MODEL presolver when the CLP, LP, MILP, or
QP solver is specified in the SOLVE statement.

By default, FORCEPRESOLVE=0.

INITVAR | NOINITVAR
selects whether or not to pass initial values for variables to the solver when the SOLVE statement is
executed. INITVAR enables the current variable values to be passed. NOINITVAR causes the solver
to be invoked without any specific initial values for variables. The INITVAR option is the default.

The CLP, LP, and QP solvers always ignore initial values. The NLP solvers attempt to use specified
initial values. The MILP solver uses initial values only if the PRIMALIN option is specified.

42 F Chapter 5: The OPTMODEL Procedure

INTFUZZ=number
specifies the tolerance for rounding the bounds on integer and binary variables to integer values.
Bounds that differ from an integer by at most number are rounded to that integer. Otherwise, lower
bounds are rounded up to the next greater integer and upper bounds are rounded down to the next
lesser integer. The value of number can range between 0 and 0.5. The default value is 0.00001.

MAXLABLEN=number
specifies the maximum length for MPS row and column labels. The allowed range is 8 to 256. This
option can also be used to control the length of row and column names displayed by solvers, such as
those found in the LP solver iteration log. See also the description of the .label suffix in the section
“Suffixes” on page 134. By default, MAXLABLEN=32.

MISSCHECK | NOMISSCHECK
enables detailed checking of missing values in expressions. MISSCHECK requests that PROC
OPTMODEL produce a message each time it evaluates an arithmetic operation or function that has
missing value operands (except when the operation or function specifically supports missing values).
The MISSCHECK option can increase processing time. NOMISSCHECK turns off this detailed
reporting. NOMISSCHECK is the default.

MSGLIMIT=number | NONE
specifies the maximum number of messages about certain issues that can be displayed during processing
of a single top-level statement, such as a SOLVE or FOR statement. Specifying a value of number in
the range 0 to 231 � 1 sets a specific limit. Specifying MSGLIMIT=NONE removes any existing limit.
The default value is 25.

The limit is applied to notes and warnings for the following issues:

� arithmetic evaluation issues, such as division by zero

� function evaluation issues, such as invalid arguments

� problem generation and PROC OPTMODEL presolver issues

� duplicate members in set constructor and literal expressions

� string concatenation results truncated to the maximum string length

� duplicate READ DATA keys

� truncated data set column labels for the CREATE DATA statement

� misspelled keywords for an option value specified using a string expression

� unrecognized file specifications in the CLOSEFILE statement

NOTE: Because of complications of concurrent execution, PROC OPTMODEL might display more or
fewer messages than the limit when you use a COFOR statement.

PDIGITS=number
requests that the PRINT statement display number significant digitsfor numeric columns for which no
format is specified. The value can range from 1 to 9. By default, PDIGITS=5.

PMATRIX=number
adjusts the density evaluation of a two-dimensional array to affect how it is displayed. The value
number scales the total number of nonempty array elements and is used by the PRINT statement
to evaluate whether a two-dimensional array is “sparse” or “dense.” Tables that contain a single

PROC OPTMODEL Statement F 43

two-dimensional array are printed in list form if they are sparse and in matrix form if they are dense.
Any nonnegative value can be assigned to number . Specifying a value for the PMATRIX= option that
is less than 1 causes the list form to be used in more cases, whereas specifying a value greater than 1
causes the matrix form to be used in more cases. If the value is 0, then the list form is always used. For
more information, see the section “PRINT Statement” on page 75. By default, PMATRIX=1.

PRESOLVER=number | string
specifies the type of presolve that the OPTMODEL presolver performs. Table 5.5 shows the valid
values of this option.

Table 5.5 Values for the PRESOLVER= Option
number string Description

–1 AUTOMATIC Applies presolver using default setting.
0 NONE Disables presolver.
1 BASIC Performs minimal processing, only substituting

fixed variables and removing empty feasible con-
straints.

2 MODERATE Applies a higher level of presolve processing.
3 AGGRESSIVE Applies the highest level of presolve processing.

The OPTMODEL presolver tightens variable bounds and eliminates redundant constraints. In general,
this tightening improves the performance of any solver. Higher levels of presolve processing allow
more tightening and substitution passes, but might take more time to execute. The AUTOMATIC
option is intermediate between the MODERATE and AGGRESSIVE levels.

NOTE: The OPTMODEL presolver is normally bypassed when PROC OPTMODEL uses the CLP,
LP, QP, MILP, or network solver and when the SAVE MPS and SAVE QPS statements execute. The
FORCEPRESOLVE= option enables the OPTMODEL presolver to be used with the CLP, LP, QP, and
MILP solvers. PROC OPTMODEL always bypasses the OPTMODEL presolver when you specify
certain solver options. For more information, see the chapter for the relevant solver in this book.

PRESTOL=number
provides a tolerance so that slightly infeasible constraints can be eliminated by the OPTMODEL
presolver. If the magnitude of the infeasibility is no greater than num.jXj C 1/, where X is the value of
the original bound, then the empty constraint is removed from the presolved problem. OPTMODEL’s
presolver does not print messages about infeasible constraints and variable bounds when the infeasibility
is within the PRESTOL tolerance. The value of PRESTOL can range between 0 and 0.1; the default
value is 1E–12.

PRINTLEVEL=number
controls the level of listing output during a SOLVE or COFOR command. The Output Delivery System
(ODS) tables printed at each level are listed in Table 5.6. Some solvers can produce additional tables;
see the individual solver chapters for more information.

Table 5.6 Values for the PRINTLEVEL= Option
number Description

0 Disables all tables.

44 F Chapter 5: The OPTMODEL Procedure

number Description
1 Prints COFOR Performance Information, Problem Summary, Performance

Information, and Solution Summary.
2 Prints COFOR Performance Information, Problem Summary, Performance

Information, Solution Summary, Methods of Derivative Computation (for
NLP solvers), Solver Options, Optimization Statistics, and solver-specific
ODS tables.

For more information about the ODS tables produced by PROC OPTMODEL, see the section “ODS
Table and Variable Names” on page 124.

PWIDTH=number
sets the width used by the PRINT statement to display numeric columns when no format is specified.
The smallest value number can take is the value of the PDIGITS= option plus 7; the largest value
number can take is 16. The default value is equal to the value of the PDIGITS= option plus 7.

VARFUZZ=number
specifies the smallest difference that is permitted by the OPTMODEL presolver between the upper and
lower bounds of an unfixed variable. If the difference is smaller than number , then the variable isfixed
to the average of the upper and lower bounds before it is presented to the solver. Any nonnegative
value can be assigned to number ; the default value is 0.

Declaration Statements
The declaration statements define the parameters, variables, constraints, and objectives that describe a PROC
OPTMODEL optimization model. Declarations in the PROC OPTMODEL input are saved for later use.
Unlike programming statements, declarations cannot be nested in other statements. Declaration statements
are terminated by a semicolon.

Many declaration attributes, such as variable bounds, are defined using expressions. Expressions in declara-
tions are handled symbolically and are resolved as needed. In particular, expressions are generally reevaluated
when one of the parameter values they use has been changed.

CONSTRAINT Declaration

CONSTRAINT constraint Œ , . . . constraint � ;

CON constraint Œ , . . . constraint � ;

The constraint declaration defines one or more constraints on expressions in terms of the optimization
variables. You can specify multiple constraint declaration statements.

Constraints can have an upper bound, a lower bound, or both bounds. The allowed forms are as follows:

Œ name Œ { index-set } � : � expression = expression
declares an equality constraint or, when an index-set is specified, a family of equality
constraints. The solver attempts to assign values to the optimization variables to make the
two expressions equal.

Declaration Statements F 45

Œ name Œ { index-set } � : � expression �= expression
declares a disequality constraint or, when an index-set is specified, a family of disequality
constraints. The solver attempts to assign values to the optimization variables to make the
two expressions unequal. The CLP solver must be used with this type of constraint.

Œ name Œ { index-set } � : � expression relation expression
declares an inequality constraint that has a single upper or lower bound. index-set declares
a family of inequality constraints. relation is the <=, <, >=, or > operator. When relation
is the <= operator, the solver tries to assign optimization variable values so that the value
of the left expression is less than or equal to the value of the right expression. When
relation is the < operator, the solver tries to assign optimization variable values so that the
value of the left expression is less than the value of the right expression. When relation is
the >= operator, the solver tries to assign optimization variable values so that the value
of the left expression is greater than or equal to the value of the right expression. When
relation is the > operator, the solver tries to assign optimization variable values so that the
value of the left expression is greater than the value of the right expression. The CLP
solver must be used when the < or > operator is specified.

Œ name Œ { index-set } � : � bound relation body relation bound
declares an inequality constraint that is bounded on both sides, called a range constraint.
index-set declares a family of range constraints. relation is the <=, <, >=, or > operator.
Both relation operators must match in direction. If the <= or < operator is used in the
first position, then a <= or < operator must be used in the second position. If the >= or >
operator is used in the first position, then a >= or > operator must be used in the second
position. The first bound expression defines the lower bound (if the <= or < operator is
used) or the upper bound (if the >= or > operator is used). The second bound defines the
upper bound (if the <= or < operator is used) or the lower bound (if the >= or > operator
is used). The solver tries to assign optimization variables so that the value of the body
expression is in the range between the upper and lower bounds. The CLP solver must be
used when the < or > operator is specified.

Œ name Œ { index-set } � : � predicate
declares a predicate constraint for the CLP solver. See the section “Predicates” on
page 202 in Chapter 6, “The Constraint Programming Solver,” for a description of the
syntax and meaning of predicates.

NOTE: You can use the alternate forms from Table 5.10 for the relational operators.

name defines the name for the constraint. Use the name to reference constraint attributes, such as the bounds,
elsewhere in the PROC OPTMODEL model. If no name is provided, then a default name is created of the
form _ACON_[n], where n is an integer. See the section “Constraints” on page 130 for more information.

Here is a simple example that defines a constraint with a lower bound:

proc optmodel;
var x, y;
number low;
con a: x+y >= low;

46 F Chapter 5: The OPTMODEL Procedure

The following example adds an upper bound:

var x, y;
number low;
con a: low <= x+y <= low+10;

Indexed families of constraints can be defined by specifying an index-set after the name. Any dummy
parameters that are declared in the index-set can be referenced in the expressions that define the constraint.
A particular member of an indexed family can be specified by using an identifier-expression with a bracketed
index list, in the same fashion as array parameters and variables. For example, the following statements
create an indexed family of constraints named incr:

proc optmodel;
number n;
var x{1..n}
/* require nondecreasing x values */
con incr{i in 1..n-1}: x[i+1] >= x[i];

The CON statement in the example creates constraints incr[1] through incr[n–1].

Constraint expressions cannot be defined using functions that return different values each time they are called.
See the section “Indexing” on page 95 for details.

IMPVAR Declaration

IMPVAR impvar-decl Œ , . . . impvar-decl � ;

The IMPVAR declaration specifies one or more names that refer to optimization expressions in the model.
The declared name is called an implicit variable. An implicit variable is useful for structuring models so that
complex expressions do not need to be repeated each time they are used. The value of an implicit variable
needs to be computed only once instead of at each place where the original expression is used, which helps
reduce computational overhead. Implicit variables are evaluated without intervention from the solver.

Multiple IMPVAR declarations are allowed. The names of implicit variables must be distinct from other
model declarations, such as variables and constraints. Implicit variables can be used in model expressions in
the same places where ordinary variables are allowed.

This is the syntax for an impvar-decl:

name Œ { index-set } � = expression

Each impvar-decl declares a name for an implicit variable. The name can be followed by an index-set
specification to declare a family of implicit variables. The expression that the name refers to follows. Dummy
parameters that are declared in the index-set specification can be used in the expression. The expression
can refer to other model components, including variables, the current implicit variable, and other implicit
variables.

As an example, in the following model statements the implicit variable total_weight is used in multiple
constraints to set a limit on various product quantities, represented by locations in array x:

impvar total_weight = sum{p in PRODUCTS} Weight[p]*x[p];

con prod1_limit: Weight['Prod1'] * x['Prod1'] <= 0.3 * total_weight;
con prod2_limit: Weight['Prod2'] * x['Prod2'] <= 0.25 * total_weight;

Declaration Statements F 47

MAX and MIN Objective Declarations

MAX name Œ { index-set } � = expression ;

MIN name Œ { index-set } � = expression ;

The MAX or MIN declaration specifies an objective for the solver. The name names the objective function
for later reference. When a non-array objective declaration is read, the declaration becomes the new objective
of the current problem, replacing any previous objective. The solver maximizes an objective that is specified
with the MAX keyword and minimizes an objective that is specified with the MIN keyword. An objective is
not allowed to have the same name as a parameter or variable. Multiple objectives are permitted, but the
solver processes only one objective at a time.

expression specifies the numeric function to maximize or minimize in terms of the optimization-variables.
Specify an index-set to declare a family of objectives. Dummy parameters declared in the index-set
specification can be used in the following expression.

Objectives can also be used as implicit variables. When used in an expression, an objective name refers to
the current value of the named objective function. The value of an unsuffixed objective name can depend
on the value of optimization variables, so objective names cannot be used in constant expressions such as
variable bounds. You can reference objective names in objective or constraint expressions. For example, the
following statements declare two objective names, q and l, which are immediately referred to in the objective
declaration of z and the declarations of the constraints.

proc optmodel;
var x, y;
min q=(x+y)**2;
max l=x+2*y;
min z=q+l;
con c1: q<=4;
con c2: l>=2;

Objectives cannot be defined using functions that return different values each time they are called. See the
section “Indexing” on page 95 for details.

NUMBER, STRING, and SET Parameter Declarations

NUMBER parameter-decl Œ , . . . parameter-decl � ;

STRING parameter-decl Œ , . . . parameter-decl � ;

SET Œ < scalar-type, . . . scalar-type > � parameter-decl Œ , . . . parameter-decl � ;

Parameters provide names for constants. Parameters are declared by specifying the parameter type followed
by a list of parameter names. Declarations of parameters that have NUMBER or STRING types start with a
scalar-type specification:

NUMBER | NUM ;

STRING | STR ;

The NUM and STR keywords are abbreviations for the NUMBER and STRING keywords, respectively.

The declaration of a parameter that has the set type begins with a set-type specification:

SET Œ < scalar-type, . . . scalar-type > � ;

48 F Chapter 5: The OPTMODEL Procedure

In a set-type declaration, the SET keyword is followed by a list of scalar-type items that specify the member
type. A set with scalar members is specified with a single scalar-type item. A set with tuple members has a
scalar-type item for each tuple element. The scalar-type items specify the types of the elements at each tuple
position.

If the SET keyword is not followed by a list of scalar-type items, then the set type is determined from the type
of the initialization expression. The declared type defaults to SET<NUMBER> if no initialization expression
is given or if the expression type cannot be determined.

For any parameter type, the type declaration is followed by a list of parameter-decl items that specify the
names of the parameters to declare. In a parameter-decl item the parameter name can be followed by an
optional index specification and any necessary options, as follows:

name Œ { index-set } � Œ parameter-options �

The parameter name and index-set can be followed by a list of parameter-options. Dummy parameters
declared in the index-set can be used in the parameter-options. The parameter options can be specified with
the following forms:

= expression
provides an explicit value for each parameter location. In this case the parameter acts like
an alias for the expression value.

INIT expression
specifies a default value that is used when a parameter value is required but no other value
has been supplied. For example:

number n init 1;
set s init {'a', 'b', 'c'};

PROC OPTMODEL evaluates the expression for each parameter location the first time the
parameter needs to be resolved. The expression is not used when the parameter already
has a value.

= [initializers]
provides a compact means to define the values for an array, in which each array location
value can be individually specified by the initializers.

INIT [initializers]
provides a compact means to define multiple default values for an array. Each array
location value can be individually specified by the initializers. With this option the array
values can still be updated outside the declaration.

The =expression parameter option defines a parameter value by using a formula. The formula can refer to
other parameters. The parameter value is updated when the referenced parameters change. The following
example shows the effects of the update:

proc optmodel;
number n;
set<number> s = 1..n;
number a{s};
n = 3;
a[1] = 2; /* OK */

Declaration Statements F 49

a[7] = 19; /* error, 7 is not in s */
n = 10;
a[7] = 19; /* OK now */

In the preceding example the value of set s is resolved for each use of array a that has an index. For the first
use of a[7], the value 7 is not a member of the set s. However, the value 7 is a member of s at the second use
of a[7].

The INIT expression parameter option specifies a default value for a parameter. The following example
shows the usage of this option:

proc optmodel;
num a{i in 1..2} init i**2;
a[1] = 2;
put a[*]=;

When the value of a parameter is needed but no other value has been supplied, the default value specified by
INIT expression is used, as shown in Figure 5.5.

Figure 5.5 INIT Option: Output

a[1]=2 a[2]=4

NOTE: Parameter values can also be read from files or specified with assignment statements. However, the
value of a parameter that is assigned with the =expression or =[initializers] forms can be changed only by
modifying the parameters used in the defining expressions. Parameter values specified by the INIT option
can be reassigned freely.

Initializing Arrays
Arrays can be initialized with the =[initializers] or INIT [initializers] forms. These forms are convenient when
array location values need to be individually specified. The forms behave the same way, except that the INIT
[initializers] form allows the array values to be modified after the declaration. These forms of initialization
are used in the following statements:

proc optmodel;
number a{1..3} = [5 4 7];
number b{1..3} INIT [5 4 7];
put a[*]=;
b[1] = 1;
put b[*]=;

Each array location receives a different value, as shown in Figure 5.6. The displayed values for b are a
combination of the default values from the declaration and the assigned value in the statements.

Figure 5.6 Array Initialization

a[1]=5 a[2]=4 a[3]=7
b[1]=1 b[2]=4 b[3]=7

50 F Chapter 5: The OPTMODEL Procedure

Each initializer takes the following form:

Œ [index] � value

The value specifies the value of an array location and can be a numeric or string constant, a set literal, or an
expression enclosed in parentheses.

In array initializers, string constants can be specified using quoted strings. When the string text follows the
rules for a SAS name, the text can also be specified without quotation marks. String constants that begin with
a digit, contain blanks, or contain other special characters must be specified with a quoted string.

As an example, the following statements define an array parameter that could be used to map numeric days
of the week to text strings:

proc optmodel;
string dn{1..5} =

[Monday Tuesday Wednesday Thursday Friday];

The optional index in square brackets specifies the index of the array location to initialize. The index specifies
one or more numeric or string subscripts. The subscripts allow the same syntactic forms as the value items.
Commas can be used to separate index subscripts. For example, location a[1,’abc’] of an array a could be
specified with the index [1 abc]. The following example initializes just the diagonal locations in a square
array:

proc optmodel;
number m{1..3,1..3} = [[1 1] 0.1 [2 2] 0.2 [3 3] 0.3];

An index does not need to specify all the subscripts of an array location. If the index begins with a comma,
then only the rightmost subscripts of the index need to be specified. The preceding subscripts are supplied
from the index that was used by the preceding initializer . This can simplify the initialization of arrays that are
indexed by multiple subscripts. For example, you can add new entries to the matrix of the previous example
by using the following statements:

proc optmodel;
number m{1..3,1..3} = [[1 1] 0.1 [,3] 1

[2 2] 0.2 [,3] 2
[3 3] 0.3];

The spacing shows the layout of the example array. The previous example was updated by initializing two
more values at m[1,3] and m[2,3].

If an index is omitted, then the next location in the order of the array’s index set is initialized. If the index set
has multiple index-set-items, then the rightmost indices are updated before indices to the left are updated. At
the beginning of the initializer list, the rightmost index is the first member of the index set. The index set
must use a range expression to avoid unpredictable results when an index value is omitted.

The initializers can be followed by commas. The use of commas has no effect on the initialization. The
comma can be used to clarify layout. For example, the comma could separate rows in a matrix.

Not every array location needs to be initialized. The locations without an explicit initializer are set to zero for
numeric arrays, set to an empty string for string arrays, and set to an empty set for set arrays.

NOTE: An array location must not be initialized more than once during the processing of the initializer list.

Declaration Statements F 51

PROBLEM Declaration

PROBLEM name Œ { index-set } � Œ FROM problem-id � Œ INCLUDE problem-items � ;

Problems are declared with the PROBLEM declaration. Problem declarations track an objective, a set of
included variables and constraints, and some status information that is associated with the variables and
constraints. The problem name can optionally be followed by an index-set to create a family of problems.
When a problem is first used (via the USE PROBLEM statement), the specifications from the optional FROM
and INCLUDE clauses create the initial set of included variables, constraints, and the problem objective. An
empty problem is created if neither clause is specified. The clauses are applied only when the problem is first
used with the USE PROBLEM statement.

The FROM clause specifies an existing problem from which to copy the set of included symbols. The
problem-id is an identifier expression. The dropped and fixed status for these symbols in the specified
problem is also copied.

The INCLUDE clause specifies a list of variables, constraints, and objectives to include in the problem. These
items are included with default status (unfixed and undropped) which overrides the status from the FROM
clause, if it exists. Each item is specified with one of the following forms:

identifier-expression
includes the specified items in the problem. The identifier-expression can be a symbol
name or an array symbol with explicit index. If an array symbol is used without an index,
then all array elements are included.

{ index-set } identifier-expression
includes the specified subset of items in the problem. The item specified by the identifier-
expression is added to the problem for each member of the index-set . The dummy
parameters from the index-set can be used in the indexing of the identifier-expression. If
the identifier-expression is an array symbol without indexing, then the index-set provides
the indices for the included locations.

You can use the FROM and INCLUDE clauses to designate the initial objective for a problem. The objective
is copied from the problem designated by the FROM clause, if present. Then the INCLUDE clause, if any, is
applied, and the last objective specified becomes the initial objective.

The following statements declare some problems with a variable x and different objectives to illustrate some
of the ways of including model components. Note that the statements use the predeclared problem _START_
to avoid resetting the objective in prob2 when the objective z3 is declared.

proc optmodel;
problem prob1;
use problem prob1;
var x >= 0; /* included in prob1 */
min z1 = (x-1)**2; /* included in prob1 */
expand; /* prob1 contains x, z1 */

problem prob2 from prob1;
use problem prob2; /* includes x, z1 */
min z2 = (x-2)**2; /* resets prob2 objective to z2 */
expand; /* prob2 contains x, z2 */

use problem _start_; /* don't modify prob2 */

52 F Chapter 5: The OPTMODEL Procedure

min z3 = (x-3)**2;
problem prob3 include x z3;
use problem prob3;
expand; /* prob3 contains x, z3 */

See the section “Multiple Subproblems” on page 150 for more details about problem processing.

VAR Declaration

VAR var-decl Œ , . . . var-decl � ;

The VAR statement declares one or more optimization variables. Multiple VAR statements are permitted. A
variable is not allowed to have the same name as a parameter or constraint.

Each var-decl specifies a variable name. The name can be followed by an array index-set specification and
then variable options. Dummy parameters declared in the index set specification can be used in the following
variable options.

Here is the syntax for a var-decl:

name Œ { index-set } � Œ var-options �

For example, the following statements declare a group of 100 variables, x[1]–x[100]:

proc optmodel;
var x{1..100};

Here are the available variable options:

INIT expression
sets an initial value for the variable. The expression is used only the first time the value is
required. If no initial value is specified, then 0 is used by default.

>= expression
sets a lower bound for the variable value. The default lower bound is �1, or 0 if the
BINARY option is used.

<= expression
sets an upper bound for the variable value. The default upper bound is1, or 1 if the
BINARY option is used.

INTEGER
requests that the solver assign the variable an integer value.

BINARY
requests that the solver assign the variable an integer value within default bounds of 0 to
1.

For example, the following statements declare a variable that has an initial value of 0.5. The variable is
bounded by 0 and 1:

proc optmodel;
var x init 0.5 >= 0 <= 1;

Programming Statements F 53

The values of the bounds can be determined later by using suffixed references to the variable. For example,
the upper bound for variable x can be referred to as x.ub. In addition, the bounds options can be overridden
by explicit assignment to the suffixed variable name. Suffixes are described further in the section “Suffixes”
on page 134. Note that the bounds for integer and binary variables are rounded to integers according to the
value that you specify in the PROC OPTMODEL option INTFUZZ=.

When used in an expression, an unsuffixed variable name refers to the current value of the variable. Unsuffixed
variables are not allowed in the expressions for options that define variable bounds or initial values. Such
expressions have values that must be fixed during execution of the solver.

Programming Statements
PROC OPTMODEL supports several programming statements. You can perform various actions with these
statements, such as reading or writing data sets, setting parameter values, generating text output, or invoking
a solver.

Statements are read from the input and are executed immediately when complete. Certain statements can
contain one or more substatements. The execution of substatements is held until the statements that contain
them are submitted. Parameter values that are used by expressions in programming statements are resolved
when the statement is executed; this resolution might cause errors to be detected. For example, the use of
undefined parameters is detected during resolution of the symbolic expressions from declarations.

A statement is terminated by a semicolon. The positions at which semicolons are placed are shown explicitly
in the following statement syntax descriptions.

The programming statements can be grouped into the categories shown in Table 5.7.

Table 5.7 Types of Programming Statements in PROC
OPTMODEL

Control Looping General Input/Output Model
DO COFOR Assignment CLOSEFILE DROP
IF CONTINUE CALL CREATE DATA EXPAND
Null (;) DO Iterative PERFORMANCE FILE FIX
QUIT DO UNTIL PROFILE PRINT RESTORE
STOP DO WHILE RESET OPTIONS PUT SOLVE

FOR SUBMIT READ DATA UNFIX
LEAVE SAVE MPS USE PROBLEM

SAVE QPS

Assignment Statement

identifier-expression = expression ;

The assignment statement assigns a variable or parameter value. The type of the target identifier-expression
must match the type of the right-hand-side expression.

54 F Chapter 5: The OPTMODEL Procedure

For example, the following statements set the current value for variable x to 3:

proc optmodel;
var x;
x = 3;

NOTE: Parameters that were declared with the equal sign (=) initialization forms must not be reassigned a
value with an assignment statement. If this occurs, PROC OPTMODEL reports an error.

CALL Statement

CALL name (argument-1 Œ , . . . argument-n �) ;

The CALL statement invokes the named library subroutine. The values that are determined for each argument
expression are passed to the subroutine when the subroutine is invoked. The subroutine can update the
values of PROC OPTMODEL parameters and variables when an argument is an identifier-expression (see
the section “Identifier Expressions” on page 102). For example, the following statements set the parameter
array a to a random permutation of 1 to 4:

proc optmodel;
number a{i in 1..4} init i;
number seed init -1;
call ranperm(seed, a[1], a[2], a[3], a[4]);

NOTE: The maximum length of the string value returned from an output argument is equal to the character
length of the argument before the call. An undefined STRING parameter that is used as an output argument
has a character length of 8.

For a list of CALL routines, see SAS Functions and CALL Routines: Reference. You can also call subroutines
that are compiled by the FCMP procedure. For more information, see the section “FCMP Routines” on
page 156.

CLOSEFILE Statement

CLOSEFILE file-specifications ;

The CLOSEFILE statement closes files that were opened by the FILE statement. Each file is specified
by a logical name, a physical filename in quotation marks, or an expression enclosed in parentheses that
evaluates to a physical filename. See the section “FILE Statement” on page 71 for more information about
file specifications.

The following example shows how the CLOSEFILE statement is used with a logical filename:

filename greet 'hello.txt';
proc optmodel;

file greet;
put 'Hi!';
closefile greet;

Generally you must close a file with a CLOSEFILE statement before external programs can access the file.
However, any open files are automatically closed when PROC OPTMODEL terminates.

Programming Statements F 55

COFOR Statement

COFOR { index-set } statement ;

The COFOR statement executes its statement for each member of the specified index-set , similar to how the
FOR statement executes. However, in a COFOR statement, PROC OPTMODEL can execute the SOLVE
statement concurrently with other statements. The execution of the COFOR substatement is interleaved
between loop iterations so that other iterations can be processed while an iteration waits for a SOLVE
statement to complete. Multiple solvers can run concurrently. This interleaving is managed so that in many
cases a FOR loop can be replaced by a COFOR loop to achieve concurrency with minimal or no other
changes to the code.

The following code shows a simple example:

proc optmodel printlevel=0;
var x {1..6} >= 0;

minimize z = sum {j in 1..6} x[j];

con a1: x[1] + x[2] + x[3] <= 4;
con a2: x[4] + x[5] + x[6] <= 6;
con a3: x[1] + x[4] >= 5;
con a4: x[2] + x[5] >= 2;
con a5: x[3] + x[6] >= 3;

cofor{i in 3..5} do;
fix x[1]=i;
solve;
put i= x[1]= _solution_status_=;

end;

Figure 5.7 shows the PROC OPTMODEL output. The order of the output from different iterations can vary
between runs, depending on the order in which the SOLVE statements complete. A FOR statement could
have been used instead of COFOR; the FOR statement would produce a consistent output order but only one
solver would execute at a time. Note that because the solver execution in this example is trivial, the benefits
from concurrency are limited.

Figure 5.7 A Simple COFOR Loop

i=4 x[1]=4 _SOLUTION_STATUS_=OPTIMAL
i=5 x[1]=5 _SOLUTION_STATUS_=INFEASIBLE
i=3 x[1]=3 _SOLUTION_STATUS_=OPTIMAL

A COFOR statement can contain other control and looping statements, including nested COFOR loops. The
maximum number of threads that can be used is controlled by the PERFORMANCE statement and SAS
options that are in effect when the outermost COFOR loop is entered, as described in the section “Threaded
and Distributed Processing” on page 160. The outermost COFOR statement allocates threads for execution
on the computer that is running PROC OPTMODEL. When a PERFORMANCE statement is in effect
that requests distributed computing, the outermost COFOR statement also creates a distributed execution
environment that has the specified number of compute nodes. Solvers within the COFOR loop can then run
remotely in single-machine mode on the compute nodes (as shown in the solver output).

56 F Chapter 5: The OPTMODEL Procedure

The COFOR statement supports simultaneous processing of several SOLVE statements. Processing proceeds
through the iteration body statements as it would through a FOR loop until a SOLVE statement that uses the
CLP, LP, MILP, network, NLP, or QP solver is executed. After the problem is generated, the solver starts
processing in a background thread (or remote computing node in the distributed case) and the COFOR loop
switches execution to another iteration of the loop, assuming enough threads and iterations are available.
(Note that you need at least two threads on the computer that is running the COFOR loop to enable overlap
of statement execution with solver execution.) Execution could switch to an existing iteration where the
solver has completed. Alternatively, a new iteration of a COFOR loop could be started. All output from an
iteration, except within a SUBMIT block, is displayed together after the iteration has completed. Output
from a SUBMIT block is displayed as the block is executed.

A COFOR loop can contain PERFORMANCE statements. These statements affect SOLVE statements that
are executed subsequently in the same iteration but not those in other iterations. When a COFOR statement is
running in distributed mode, the default value of the NTHREADS= option in the PERFORMANCE statement
is the number of threads per compute node, as determined when the outermost COFOR loop starts. Otherwise
the default value of the NTHREADS= option is 1. Executing SOLVE statements in the background by using
a single thread usually provides the best performance on a single computer.

Each iteration of a COFOR loop begins execution by setting default performance options. In effect, each
iteration of a COFOR loop begins with an implicit PERFORMANCE statement,

performance parallelmode=<outer-mode> <details>;

where PARALLELMODE=<outer-mode> and <details> represent the PARALLELMODE= and DETAILS
options, if any, in the PERFORMANCE statement in effect at the start of the COFOR loop. The NTHREADS=
option is set to its default value. The following example shows how performance options are inherited:

performance nodes=10 nthreads=16
parallelmode=nondeterministic;

cofor {iter in ITERSET} do;
/* implicit statement, uses default NTHREADS=16 */

* performance parallelmode=nondeterministic;

/* set up problem */
. . .

/* runs with NTHREADS=16, nondeterministic */
solve with lp/algorithm=con;

/* change problem */
. . .

/* reset NTHREADS=, default PARALLELMODE=DETERMINISTIC */
performance nthreads=8;

/* runs with NTHREADS=8, deterministic */
solve with lp/algorithm=ip;

end;

/* the PERFORMANCE statement preceding the COFOR resumes effect */

The order in which the solvers complete is unpredictable. So it is usually not useful for a problem that is
solved within an iteration to depend on the results of SOLVE statements that are executed in other iterations of

Programming Statements F 57

the COFOR loop. It is advisable to limit global parameter updates to operations where order is not important,
such as accumulating counts, sums, or unions or writing mutually exclusive subsets of an array. It is possible
to execute multiple SOLVE statements within a loop iteration, and subsequent solver invocations within an
iteration can use results from prior solvers in the same iteration.

In many cases, a COFOR loop iteration solves a specialized version of a common problem structure. This
requires it to modify problem attributes that are also used in other iterations, such as coefficient values or the
fixed status of variables. Changes to problem attributes are not made visible to other iterations of a COFOR
loop in order to avoid confusing behavior due to interleaved execution. For example, the value printed for x[1]
in Figure 5.7 is the local value for the iteration, not the most recent global value. Changes to these attributes
create or update a copy of the value that is local to the iteration. These attribute values along with the local
dummy parameters provide a local context for the iteration.

The following problem attributes are automatically made local to the modifying iteration when they are
changed within a COFOR loop:

� the current problem, selected by USE PROBLEM

� the value of variables and their suffix values

� the fixed status of variables

� the constraint suffix values

� the dropped status of constraints

� the .LABEL suffix

� NUMBER, STRING, and SET parameters that determine values that are used in the bounds or body
expressions of problem declarations (CONSTRAINT, IMPVAR, MIN, MAX, or VAR)

� NUMBER, STRING, and SET parameters that determine values that are used in solver arguments
within the same outermost COFOR loop

� the predeclared string parameters _SOLVER_OPTIONS_ and _solver_OPTIONS_ (for each solver)

To illustrate these rules, consider the following code, which uses the NLP solver to solve a MINLP portfolio
optimization problem by selecting random subsets of the assets to optimize:

proc optmodel printlevel=0;
/* assets and related parameters */
set ASSETS;
num return {ASSETS};
num cov {ASSETS, ASSETS} init 0;
read data means into ASSETS=[_n_] return;
read data covdata into [asset1 asset2] cov cov[asset2,asset1]=cov;
num riskLimit init 0.00025;
num minThreshold init 0.1;
num numTrials = 10;

/* number of random trials */
set TRIALS = 1..numTrials;

58 F Chapter 5: The OPTMODEL Procedure

/* declare NLP problem for fixed set of assets */
set ASSETS_THIS;
var AssetPropVar {ASSETS} >= minThreshold <= 1;
max ExpectedReturn = sum {i in ASSETS} return[i] * AssetPropVar[i];
con RiskBound:

sum {i in ASSETS_THIS, j in ASSETS_THIS}
cov[i,j] * AssetPropVar[i] * AssetPropVar[j] <= riskLimit;

con TotalPortfolio:
sum {asset in ASSETS} AssetPropVar[asset] = 1;

/* parameters to track best solution */
num infinity = constant('BIG');
num best_objective init -infinity;
set INCUMBENT;

/* iterate over trials */
num start {TRIALS};
num finish {TRIALS};
num overall_start;
overall_start = time();
call streaminit(1);
cofor {trial in TRIALS} do;

start[trial] = time() - overall_start;
put;
put trial=;
ASSETS_THIS = {i in ASSETS: rand('UNIFORM') < 0.5};
put ASSETS_THIS=;
for {i in ASSETS diff ASSETS_THIS}

fix AssetPropVar[i] = 0;
solve with NLP / logfreq=0;
put _solution_status_=;
if _solution_status_ ne 'INFEASIBLE' then do;

if best_objective < ExpectedReturn then do;
best_objective = ExpectedReturn;
INCUMBENT = ASSETS_THIS;

end;
end;
finish[trial] = time() - overall_start;

end;

put best_objective= INCUMBENT=;
create data ganttdata from [trial] e_start=start e_finish=finish;

proc gantt data=ganttdata;
id trial;
chart / compress nolegend nojobnum mindate=0 top height=1.8;

run;

All the COFOR loop iterations use the same problem, _START_. However, the changes to the problem are
local to the iteration that makes them. For example, the FIX statement does not affect variables in other
iterations. The value of the ASSETS_THIS parameter is used by the RiskBound constraint, so the change to
it is local. Because AssetPropVar is a VAR, the changes to its value are also local.

Programming Statements F 59

On the other hand, the values of the best_objective and INCUMBENT parameters do not affect any problem
declarations. Therefore, their global values are used, enabling the code in the COFOR loop to select and
save the best result. Similarly, the start and finish parameters are not used in the problem and allow the
overlapping of iterations to be illustrated. Figure 5.8 from the GANTT procedure shows how the iterations
have overlapped execution times.

Figure 5.8 Overlapped COFOR Iterations

Changes to problem attributes from completed iterations are made visible after the loop is finished. They
appear in the context that contained the COFOR statement. If multiple iterations modify the same problem
attribute value, then the value from the iteration that completed last is the one made visible.

The LEAVE statement can be used to terminate execution of a COFOR loop. This completes the current
iteration of the COFOR loop. The currently active solvers for the COFOR loop are terminated, and the output
of the incomplete iterations is discarded. The CONTINUE statement within a COFOR loop can also be used
to complete the current iteration, but it has no effect on other iterations.

Using the LEAVE statement to terminate is useful, for example, when a sufficiently good solution is found
for a problem. The preceding code has been modified as follows to keep generating solutions until a time
limit is reached. The code sets a time limit and then executes the LEAVE statement to stop processing when
the limit is exceeded. The COFOR loop uses a very large iteration range to allow it to run indefinitely.

60 F Chapter 5: The OPTMODEL Procedure

proc optmodel printlevel=0;
set ASSETS;
num return {ASSETS};
num cov {ASSETS, ASSETS} init 0;
read data means into ASSETS=[_n_] return;
read data covdata into [asset1 asset2] cov cov[asset2,asset1]=cov;
num riskLimit init 0.00025;
num minThreshold init 0.1;

/* declare NLP problem for fixed set of assets */
set ASSETS_THIS;
var AssetPropVar {ASSETS} >= minThreshold <= 1;
max ExpectedReturn = sum {i in ASSETS} return[i] * AssetPropVar[i];
con RiskBound:

sum {i in ASSETS_THIS, j in ASSETS_THIS}
cov[i,j] * AssetPropVar[i] * AssetPropVar[j] <= riskLimit;

con TotalPortfolio:
sum {asset in ASSETS} AssetPropVar[asset] = 1;

num infinity = constant('BIG');
num best_objective init -infinity;
set INCUMBENT;

/* run for 30 seconds */
num last_time;
last_time = time() + 30;
num n_trials init 0;
call streaminit(1);
cofor {trial in 1..1e9} do;

put;
put trial=;
ASSETS_THIS = {i in ASSETS: rand('UNIFORM') < 0.5};
put ASSETS_THIS=;
for {i in ASSETS diff ASSETS_THIS} fix AssetPropVar[i] = 0;
solve with NLP / logfreq=0;
put _solution_status_=;
if _solution_status_ ne 'INFEASIBLE' then do;

if best_objective < ExpectedReturn then do;
best_objective = ExpectedReturn;
INCUMBENT = ASSETS_THIS;

end;
end;
n_trials = n_trials + 1;
if time() >= last_time then leave;

end;

put n_trials=;
put best_objective= INCUMBENT=;

quit;

Programming Statements F 61

CONTINUE Statement

CONTINUE ;

The CONTINUE statement terminates the current iteration of the loop statement (iterative DO, DO UNTIL,
DO WHILE, FOR, or COFOR) that immediately contains the CONTINUE statement. Execution resumes at
the start of the loop after checking WHILE or UNTIL tests. The FOR, COFOR, or iterative DO loops apply
new iteration values.

CREATE DATA Statement

CREATE DATA SAS-data-set FROM Œ [key-columns] Œ = key-set � � columns ;

The CREATE DATA statement creates a new SAS data set and copies data into it from PROC OPTMODEL
parameters and variables. The CREATE DATA statement can create a data set with a single observation or a
data set with observations for every location in one or more arrays. The data set is closed after the execution
of the CREATE DATA statement.

The arguments to the CREATE DATA statement are as follows:

SAS-data-set
specifies the output data set name and options. You can specify the data set name and
options directly or as the string value of an expression enclosed in parentheses.

key-columns
declares index values and their corresponding data set variables. The values are used to
index array locations in columns.

key-set
specifies a set of index values for the key-columns.

columns
specifies data set variables as well as the PROC OPTMODEL source data for the variables.

Each column or key-column defines output data set variables and a data source for a column. For example,
the following statement generates the output SAS data set resdata from the PROC OPTMODEL array opt,
which is indexed by the set indset:

create data resdata from [solns]=indset opt;

The output data set variable solns contains the index elements in indset.

Columns
Columns can have the following forms:

identifier-expression Œ / options �
transfers data from the PROC OPTMODEL parameter or variable specified by the
identifier-expression. The output data set variable has the same name as the name
part of the identifier-expression (see the section “Identifier Expressions” on page 102). If
the identifier-expression refers to an array, then the index can be omitted when it matches
the key-columns. The options enable formats and labels to be associated with the data
set variable. See the section “Column Options” on page 63 for more information. The
following example creates a data set with the variables m and n:

62 F Chapter 5: The OPTMODEL Procedure

proc optmodel;
number m = 7, n = 5;
create data example from m n;

name = expression Œ / options �
transfers the value of a PROC OPTMODEL expression to the output data set variable
name. The expression is reevaluated for each observation. If the expression contains any
operators or function calls, then it must be enclosed in parentheses. If the expression is
an identifier-expression that refers to an array, then the index can be omitted if it matches
the key-columns. The options enable formats and labels to be associated with the data
set variable. See the section “Column Options” on page 63 for more information. The
following example creates a data set with the variable ratio:

proc optmodel;
number m = 7, n = 5;
create data example from ratio=(m/n);

COL(name-expression) = expression Œ / options �
transfers the value of a PROC OPTMODEL expression to the output data set variable
named by the string expression name-expression. The PROC OPTMODEL expression is
reevaluated for each observation. If this expression contains any operators or function
calls, then it must be enclosed in parentheses. If the PROC OPTMODEL expression is an
identifier-expression that refers to an array, then the index can be omitted if it matches
the key-columns. The options enable formats and labels to be associated with the data
set variable. See the section “Column Options” on page 63 for more information. The
following example uses the COL expression to form the variable s5:

proc optmodel;
number m = 7, n = 5;
create data example from col("s"||n)=(m+n);

{ index-set } < columns >
performs the transfers by iterating each column specified by < columns > for each member
of the index set . If there are n columns and m index set members, then n �m columns
are generated. The dummy parameters from the index set can be used in the columns
to generate distinct output data set variable names in the iterated columns, using COL
expressions. The columns are expanded when the CREATE DATA statement is executed,
before any output is performed. This form of columns cannot be nested. In other words,
the following form of columns is NOT allowed:

{ index-set } < { index-set } < columns > >

The following example demonstrates the use of the iterated columns form:

proc optmodel;
set<string> alph = {'a', 'b', 'c'};
var x{1..3, alph} init 2;
create data example from [i]=(1..3)

{j in alph}<col("x"||j)=x[i,j]>;

The data set created by these statements is shown in Figure 5.9.

Programming Statements F 63

Figure 5.9 CREATE DATA with COL Expression

Obs i xa xb xc

1 1 2 2 2

2 2 2 2 2

3 3 2 2 2

NOTE: When no key-columns are specified, the output data set has a single observation.

The following statements incorporate several of the preceding examples to create and print a data set by using
PROC OPTMODEL parameters:

proc optmodel;
number m = 7, n = 5;
create data example from m n ratio=(m/n) col("s"||n)=(m+n);

proc print;
run;

The output from the PRINT procedure is shown in Figure 5.10.

Figure 5.10 CREATE DATA for Single Observation

Obs m n ratio s5

1 7 5 1.4 12

Column Options
Each column or key-column that defines a data set variable can be followed by zero or more of the following
modifiers:

FORMAT=format.
associates a format with the current column.

INFORMAT=informat.
associates an informat with the current column.

LABEL=’label’
associates a label with the current column. The label can be specified by a quoted string
or an expression in parentheses.

LENGTH=length
specifies a length for the current column. The length can be specified by a numeric
constant or a parenthesized expression. The range for character variables is 1 to 32,767
bytes. The range for numeric variables depends on the operating environment and has a
minimum of 2 or 3.

TRANSCODE=YES j NO
specifies whether character variables can be transcoded. The default value is YES. See
the TRANSCODE=option of the ATTRIB statement in SAS Statements: Reference for
more information.

The following statements demonstrate the use of column options, including the use of multiple options for a
single column:

64 F Chapter 5: The OPTMODEL Procedure

proc optmodel;
num sq{i in 1..10} = i*i;
create data squares from [i/format=hex2./length=3] sq/format=6.2;

proc print;
run;

The output from the PRINT procedure is shown in Figure 5.11.

Figure 5.11 CREATE DATA with Column Options

Obs i sq

1 01 1.00

2 02 4.00

3 03 9.00

4 04 16.00

5 05 25.00

6 06 36.00

7 07 49.00

8 08 64.00

9 09 81.00

10 0A 100.00

Key Columns
Key-columns declare index values that enable multiple observations to be written from array columns. An
observation is created for each unique index value combination. The index values supply the index for array
columns that do not have an explicit index.

Key-columns define the data set variables where the index value elements are written. They can also declare
local dummy parameters for use in expressions in the columns. Key-columns are syntactically similar to
columns, but are more restricted in form. The following forms of key-columns are allowed:

name Œ / options �
transfers an index element value to the data set variable name. A local dummy parameter,
name, is declared to hold the index element value. The options enable formats and labels
to be associated with the data set variable. See the section “Column Options” on page 63
for more information.

COL(name-expression) Œ = index-name � Œ / options �
transfers an index element value to the data set variable named by the string-valued name-
expression. The argument index-name optionally declares a local dummy parameter to
hold the index element value. The options enable formats and labels to be associated with
the data set variable. See the section “Column Options” on page 63 for more information.

A key-set in the CREATE DATA statement explicitly specifies the set of index values. key-set can be
specified as a set expression, although it must be enclosed in parentheses if it contains any function calls
or operators. key-set can also be specified as an index set expression, in which case the index-set dummy
parameters override any dummy parameters that are declared in the key-columns items. The following
statements create a data set from the PROC OPTMODEL parameter m, a matrix whose only nonzero entries
are located at (1, 1) and (4, 1):

Programming Statements F 65

proc optmodel;
number m{1..5, 1..3} = [[1 1] 1 [4 1] 1];
create data example

from [i j] = {setof{i in 1..2}<i**2>, {1, 2}} m;

proc print data=example noobs;
run;

The dummy parameter i in the SETOF expression takes precedence over the dummy parameter i declared in
the key-columns item. The output from these statements is shown in Figure 5.12.

Figure 5.12 CREATE: key-set with SETOF Aggregation Expression

i j m

1 1 1

1 2 0

4 1 1

4 2 0

If no key-set is specified, then the set of index values is formed from the union of the index sets of the
implicitly indexed columns. The number of index elements for each implicitly indexed array must match the
number of key-columns. The type of each index element (string versus numeric) must match the element of
the same position in other implicit indices.

The arrays for implicitly indexed columns in a CREATE DATA statement do not need to have identical index
sets. A missing value is supplied for the value of an implicitly indexed array location when the implied index
value is not in the array’s index set.

In the following statements, the key-set is unspecified. The set of index values is f1; 2; 3g, which is the union
of the index sets of x and y. These index sets are not identical, so missing values are supplied when necessary.
The results of these statements are shown in Figure 5.13.

proc optmodel;
number x{1..2} init 2;
var y{2..3} init 3;
create data exdata from [keycol] x y;

proc print;
run;

Figure 5.13 CREATE: Unspecified key-set

Obs keycol x y

1 1 2 .

2 2 2 3

3 3 . 3

The types of the output data set variables match the types of the source values. The output variable type for a
key-columns matches the corresponding element type in the index value tuple. A numeric element matches
a NUMERIC data set variable, while a string element matches a CHAR variable. For regular columns
the source expression type determines the output data set variable type. A numeric expression produces a
NUMERIC variable, while a string expression produces a CHAR variable.

66 F Chapter 5: The OPTMODEL Procedure

Lengths of character variables in the output data set are determined automatically. The length is set to
accommodate the longest string value output in that column.

You can use the iterated columns form to output selected rows of multiple arrays, assigning a different
data set variable to each column. For example, the following statements output the last two rows of the
two-dimensional array, a, along with corresponding elements of the one-dimensional array, b:

proc optmodel;
num m = 3; /* number of rows/observations */
num n = 4; /* number of columns in a */
num a{i in 1..m, j in 1..n} = i*j; /* compute a */
num b{i in 1..m} = i**2; /* compute b */
set<num> subset = 2..m; /* used to omit first row */
create data out

from [i]=subset {j in 1..n}<col("a"||j)=a[i,j]> b;

The preceding statements create a data set out, which has m � 1 observations and n C 2 variables. The
variables are named i, a1 through an, and b, as shown in Figure 5.14.

Figure 5.14 CREATE DATA Set: The Iterated Column Form

Obs i a1 a2 a3 a4 b

1 2 2 4 6 8 4

2 3 3 6 9 12 9

See the section “Data Set Input/Output” on page 117 for more examples of using the CREATE DATA
statement.

DO Statement

DO ; statements ; END ;

The DO statement groups a sequence of statements together as a single statement. Each statement within the
list is executed sequentially. The DO statement can be used for grouping with the IF, FOR, and COFOR
statements.

DO Statement, Iterative

DO name = specification-1 Œ , . . . specification-n � ; statements ; END ;

The iterative DO statement assigns the values from the sequence of specification items to a previously
declared parameter or variable, name. The specified statement sequence is executed after each assignment.
This statement corresponds to the iterative DO statement of the DATA step.

Each specification provides either a single number or a single string value, or a sequence of such values.
Each specification takes the following form:

expression Œ WHILE(logic-expression) j UNTIL(logic-expression) �

The expression in the specification provides a single value or set of values to assign to the target name.
Multiple values can be provided for the loop by giving multiple specification items that are separated by
commas. For example, the following statements output the values 1, 3, and 5:

Programming Statements F 67

proc optmodel;
number i;
do i=1,3,5;

put i;
end;

In this case, the same effect can be achieved with a single range expression in place of the explicit list of
values, as in the following statements:

proc optmodel;
number i;
do i=1 to 5 by 2;

put 'value of i assigned by the DO loop = ' i;
i=i**2;
put 'value of i assigned in the body of the loop = ' i;

end;

The output of these statements is shown in Figure 5.15.

Figure 5.15 DO Loop: Name Parameter Unaffected

value of i assigned by the DO loop = 1
value of i assigned in the body of the loop = 1
value of i assigned by the DO loop = 3
value of i assigned in the body of the loop = 9
value of i assigned by the DO loop = 5
value of i assigned in the body of the loop = 25

Unlike the DATA step, a range expression requires the limit to be specified. Additionally the BY part, if any,
must follow the limit expression. Moreover, although the name parameter can be reassigned in the body of
the loop, the sequence of values that is assigned by the DO loop is unaffected.

The argument expression can also be an expression that returns a set of numbers or strings. For example,
the following statements produce the same sequence of values for i as the previous statements but use a set
parameter value:

proc optmodel;
set s = {1,3,5};
number i;
do i = s;

put i;
end;

Each specification can include a WHILE or UNTIL clause. A WHILE or UNTIL clause applies to the
expression that immediately precedes the clause. The sequence that is specified by an expression can be
terminated early by a WHILE or UNTIL clause. A WHILE logic-expression is evaluated for each sequence
value before the nested statements. If the logic-expression returns a false (zero or missing) value, then the
current sequence is terminated immediately. An UNTIL logic-expression is evaluated for each sequence value
after the nested statements. The sequence from the current specification is terminated if the logic-expression
returns a true value (nonzero and nonmissing). After early termination of a sequence due to a WHILE or
UNTIL expression, the DO loop execution continues with the next specification, if any.

68 F Chapter 5: The OPTMODEL Procedure

To demonstrate use of the WHILE clause, the following statements output the values 1, 2, and 3. In this case
the sequence of values from the set s is stopped when the value of i reaches 4.

proc optmodel;
set s = {1,2,3,4,5};
number i;
do i = s while(i NE 4);

put i;
end;

DO UNTIL Statement

DO UNTIL (logic-expression) ; statements ; END ;

The DO UNTIL loop executes the specified sequence of statements repeatedly until the logic-expression,
evaluated after the statements, returns true (a nonmissing nonzero value).

For example, the following statements output the values 1 and 2:

proc optmodel;
number i;
i = 1;
do until (i=3);

put i;
i=i+1;

end;

Multiple criteria can be introduced using expression operators, as in the following example:

do until (i=3 and j=7);

For a list of expression operators, see Table 5.10.

DO WHILE Statement

DO WHILE (logic-expression) ; statements ; END ;

The DO WHILE loop executes the specified sequence of statements repeatedly as long as the logic-expression,
evaluated before the statements, returns true (a nonmissing nonzero value).

For example, the following statements output the values 1 and 2:

proc optmodel;
number i;
i = 1;
do while (i<3);

put i;
i=i+1;

end;

Multiple criteria can be introduced using expression operators, as in the following example:

do while (i<3 and j<7);

For a list of expression operators, see Table 5.10.

Programming Statements F 69

DROP Statement

DROP identifier-list ;

The DROP statement causes the solver to ignore a list of constraints, constraint arrays, or constraint array
locations. The space-delimited identifier-list specifies the names of the dropped constraints. Each constraint,
constraint array, or constraint array location is named by an identifier-expression. An entire constraint array
is dropped if an identifier-expression omits the index for an array name.

The following example statements use the DROP statement:

proc optmodel;
var x{1..10};
con c1: x[1] + x[2] <= 3;
con disp{i in 1..9}: x[i+1] >= x[i] + 0.1;

drop c1; /* drops the c1 constraint */
drop disp[5]; /* drops just disp[5] */
drop disp; /* drops all disp constraints */

The constraint can be added back to the model with the RESTORE statement.

The following line drops both the c1 and disp[5] constraints:

drop c1 disp[5];

EXPAND Statement

EXPAND Œ identifier-expression � Œ / options � ;

The EXPAND statement prints the specified constraint, variable, implicit variable, or objective declaration
expressions in the current problem after expanding aggregation operators, substituting the current value for
parameters and indices, and resolving constant subexpressions. identifier-expression is the name of a variable,
objective, or constraint. If the name is omitted and no options are specified, then all variables, objectives,
implicit variables, and undropped constraints in the current problem are printed. The following statements
show an example EXPAND statement:

proc optmodel;
number n=2;
var x{1..n};
min z1=sum{i in 1..n}(x[i]-i)**2;
max z2=sum{i in 1..n}(i-x[i])**3;
con c{i in 1..n}: x[i]>=0;
fix x[2]=3;
expand;

These statements produce the output in Figure 5.16.

Figure 5.16 EXPAND Statement Output

Var x[1]
Fix x[2] = 3
Maximize z2=(-x[1] + 1)**3 + (-x[2] + 2)**3
Constraint c[1]: x[1] >= 0
Constraint c[2]: x[2] >= 0

70 F Chapter 5: The OPTMODEL Procedure

Specifying an identifier-expression restricts output to the specified declaration. A non-array name prints only
the specified item. If an array name is used with a specific index, then information for the specified array
location is output. Using an array name without an index restricts output to all locations in the array.

You can use the following options to further control the EXPAND statement output:

SOLVE
causes the EXPAND statement to print the variables, objectives, and constraints in the
same form that would be seen by the solver if a SOLVE statement were executed. This
includes any transformations by the PROC OPTMODEL presolver (see the section
“Presolver” on page 145). In this form any fixed variables are replaced by their values.
Unless an identifier-expression specifies a particular non-array item or array location,
the EXPAND output is restricted to only the variables, the constraints, and the current
problem objective.

The following options restrict the types of declarations output when no specific non-array item or array
location is requested. By default, all types of declarations are output. Only the requested declaration types
are output when one or more of the following options are used.

CONSTRAINT | CON
requests the output of undropped constraints.

FIX
requests the output of fixed variables. These variables might have been fixed by the FIX
statement (or by the presolver if the SOLVE option is specified). The FIX option can also
be used in combination with the name of a variable array to display just the fixed elements
of the array.

IIS
restricts the display to items found in the irreducible infeasible set (IIS) after the most
recent SOLVE performed by the LP solver with the IIS=ON option. The IIS option for
the EXPAND statement can also be used in combination with the name of a variable or
constraint array to display only the elements of the array in the IIS. For more information
about IIS, see the section “Irreducible Infeasible Set” on page 274.

IMPVAR
requests the output of implicit variables referenced in the current problem.

OBJECTIVE | OBJ
requests the output of objectives used in the current problem. This includes the current
problem objective and any objectives referenced as implicit variables.

OMITTED requests the output of variables that are referenced by problem equations but were not
included in the current USE PROBLEM instance. The OPTMODEL procedure omits
these variables from the generated problem.

VAR
requests the output of unfixed variables. The VAR option can also be used in combination
with the name of a variable array to display just the unfixed elements of the array.

For example, you can see the effect of a FIX statement on the problem that is presented to the solver by using
the SOLVE option. You can modify the previous example as follows:

Programming Statements F 71

proc optmodel;
number n=2;
var x{1..n};
min z1=sum{i in 1..n}(x[i]-i)**2;
max z2=sum{i in 1..n}(i-x[i])**3;
con c{i in 1..n}: x[i]>=0;
fix x[2]=3;
expand / solve;

These statements produce the output in Figure 5.17.

Figure 5.17 Expansion with Fixed Variable

Var x[1] >= 0
Fix x[2] = 3
Maximize z2=(-x[1] + 1)**3 - 1

Compare the results in Figure 5.17 to those in Figure 5.16. The constraint c[1] has been converted to a
variable bound. The subexpression that uses the fixed variable has been resolved to a constant.

FILE Statement

FILE file-specification Œ LRECL=value � ;

The FILE statement selects the current output file for the PUT statement. By default PUT output is sent to the
SAS log. Use the FILE statement to manage a group of output files. The specified file is opened for output if
it is not already open. The output file remains open until it is closed with the CLOSEFILE statement.

file-specification names the output file. It can use any of the following forms:

’external-file’
specifies the physical name of an external file in quotation marks. The interpretation of
the filename depends on the operating environment.

file-name
specifies the logical name associated with a file by the FILENAME statement or by the
operating environment. The names PRINT and LOG are reserved to refer to the SAS
listing and log files, respectively.

NOTE: Details about the FILENAME statement can be found in SAS Statements: Refer-
ence.

(expression)
specifies an expression that evaluates to a string that contains the physical name of an
external file.

The LRECL= option sets the line length of the output file. The LRECL= option is ignored if the file is already
open or if the PRINT or LOG file is specified.

72 F Chapter 5: The OPTMODEL Procedure

The LRECL= value can be specified in these forms:

integer
specifies the desired line length.

identifier-expression
specifies the name of a numeric parameter that contains the length.

(expression)
specifies a numeric expression in parentheses that returns the line length.

The LRECL= value cannot exceed the largest four-byte signed integer, which is 231 � 1.

The following example shows how to use the FILE statement to handle multiple files:

proc optmodel;
file 'file.txt' lrecl=80; /* opens file.txt */
put 'This is line 1 of file.txt.';
file print; /* selects the listing */
put 'This goes to the listing.';
file 'file.txt'; /* reselects file.txt */
put 'This is line 2 of file.txt.';
closefile 'file.txt'; /* closes file.txt */
file log; /* selects the SAS log */
put 'This goes to the log.';

/* using expression to open and write a collection of files */
str ofile;
num i;
num l = 40;
do i = 1 to 3;

ofile = ('file' || i || '.txt');
file (ofile) lrecl=(l*i);
put ('This goes to ' || ofile);
closefile (ofile);

end;

The following statements illustrate the usefulness of using a logical name associated with a file by FILENAME
statement:

proc optmodel;
/* assigns a logical name to file.txt */
/* see FILENAME statement in */
/* SAS Statements: Reference */
filename myfile 'file.txt' mod;

file myfile;
put 'This is line 3 of file.txt.';
closefile myfile;
file myfile;
put 'This is line 4 of file.txt.';
closefile myfile;

Notice that the FILENAME statement opens the file referenced for append. Therefore, new data are appended
to the end every time the logical name, myfile, is used in the FILE statement.

Programming Statements F 73

FIX Statement

FIX identifier-list Œ = (expression) � ;

The FIX statement causes the solver to treat a list of variables, variable arrays, or variable array locations as
fixed in value. The identifier-list consists of one or more variable names separated by spaces. Each member
of the identifier-list is fixed to the same expression. For example, the following statements fix the variables x
and y to 3:

proc optmodel;
var x, y;
num a = 2;
fix x y=(a+1);

A variable is specified with an identifier-expression (see the section “Identifier Expressions” on page 102).
An entire variable array is fixed if the identifier-expression names an array without providing an index. A
new value can be specified with the expression. If the expression is a constant, then the parentheses can be
omitted. For example, the following statements fix all locations in array x to 0 except x[10], which is fixed to
1:

proc optmodel;
var x{1..10};
fix x = 0;
fix x[10] = 1;

If expression is omitted, the variable is fixed at its current value. For example, you can fix some variables to
be their optimal values after the SOLVE statement is invoked. NOTE: The fixed value is equal to the current
value for a fixed variable. The fixed value is updated if a new value is assigned to a fixed variable.

The effect of FIX can be reversed by using the UNFIX statement.

FOR Statement

FOR { index-set } statement ;

The FOR statement executes its substatement for each member of the specified index-set . The index set can
declare local dummy parameters. You can reference the value of these parameters in the substatement. For
example, consider the following statements:

proc optmodel;
for {i in 1..2, j in {'a', 'b'}} put i= j=;

These statements produce the output in Figure 5.18.

Figure 5.18 FOR Statement Output

i=1 j=a
i=1 j=b
i=2 j=a
i=2 j=b

As another example, the following statements set the current values for variable x to random values between
0 and 1:

74 F Chapter 5: The OPTMODEL Procedure

proc optmodel;
var x{1..10};
for {i in 1..10}

x[i] = ranuni(-1);

Multiple statements can be controlled by specifying a DO statement group for the substatement.

CAUTION: Avoid modifying the parameters that are used by the FOR or COFOR statement index set from
within the substatement. The set value that is used for the left-most index set item is not affected by such
changes. However, the effect of parameter changes on later index set items cannot be predicted.

IF Statement

IF logic-expression THEN statement Œ ELSE statement � ;

The IF statement evaluates the logical expression and then conditionally executes the THEN or ELSE
substatements. The substatement that follows the THEN keyword is executed when the logical expression
result is nonmissing and nonzero. The ELSE substatement, if any, is executed when the logical expression
result is a missing value or zero. The ELSE part is optional and must immediately follow the THEN
substatement. When IF statements are nested, an ELSE is always matched to the nearest incomplete
unmatched IF-THEN. Multiple statements can be controlled by using DO statements with the THEN or
ELSE substatements.

NOTE: When an IF-THEN statement is used without an ELSE substatement, substatements of the IF
statement are executed when possible as they are entered. Under certain circumstances, such as when an
IF statement is nested in a FOR loop, the statement is not executed during interactive input until the next
statement is seen. By following the IF-THEN statement with an extra semicolon, you can cause it to be
executed upon submission, since the extra semicolon is handled as a null statement.

LEAVE Statement

LEAVE ;

The LEAVE statement terminates the execution of the entire loop body (iterative DO, DO UNTIL, DO
WHILE, FOR, or COFOR) that immediately contains the LEAVE statement. Execution resumes at the
statement that follows the loop. The following example demonstrates a simple use of the LEAVE statement:

proc optmodel;
number i, j;
do i = 1..5;

do j = 1..4;
if i >= 3 and j = 2 then leave;

end;
print i j;
end;

The results from these statements are displayed in Figure 5.19.

Figure 5.19 LEAVE Statement Output

i j

1 4

Programming Statements F 75

Figure 5.19 continued

i j

2 4

i j

3 2

i j

4 2

i j

5 2

For values of i equal to 1 or 2, the inner loop continues uninterrupted, leaving j with a value of 4. For values
of i equal to 3, 4, or 5, the inner loop terminates early, leaving j with a value of 2.

Null Statement

;

The null statement is treated as a statement in the PROC OPTMODEL syntax, but its execution has no effect.
It can be used as a placeholder statement.

PERFORMANCE Statement

PERFORMANCE options ;

The PERFORMANCE statement controls the multithreaded and distributed execution features of PROC
OPTMODEL and its solvers. The options that you specify in the PERFORMANCE statement are applied
each time the statement is executed; they replace any previously specified options. For details about the
options available for the PERFORMANCE statement, see the section “PERFORMANCE Statement” on
page 21.

Within a COFOR loop, the PERFORMANCE statement controls solvers that are executed subsequently in
the same COFOR iteration. The PERFORMANCE statement cannot specify distributed computing options
in this context. If the COFOR loop is running in distributed mode, the options affect the solver as it runs
in single-machine mode on the remote computing node. In distributed mode, the default NTHREADS=
option value is equal to the number of threads on a node in the distributed computing environment. If the
COFOR loop is running in multithreaded mode, the options affect execution of the solver on the machine that
is running PROC OPTMODEL. In multithreaded mode, the default NTHREADS= option value is 1. In either
mode, the NTHREADS= option value is limited to the number of threads in the COFOR loop execution
environment.

PRINT Statement

PRINT print-items ;

The PRINT statement outputs string and numeric data in tabular form. The statement specifies a list of arrays
or other data items to print. Multiple items can be output together as data columns in the same table.

76 F Chapter 5: The OPTMODEL Procedure

If no format is specified, the PRINT statement handles the details of formatting automatically (see the section
“Formatted Output” on page 121 for details). The default format for a numerical column is the fixed-point
format (w.d format), which is chosen based on the values of the PDIGITS= and PWIDTH= options (see the
section “PROC OPTMODEL Statement” on page 40) and on the values in the column. The PRINT statement
uses scientific notation (the Ew. format) when a value is too large or too small to display in fixed format. The
default format for a character column is the $w. format, where the width is set to be the length of the longest
string (ignoring trailing blanks) in the column.

print-item can be specified in the following forms:

identifier-expression Œ format �
specifies a data item to output. identifier-expression can name an array. In that case all
defined array locations are output. format specifies a SAS format that overrides the default
format.

(expression) Œ format �
specifies a data value to output. format specifies a SAS format that overrides the default
format.

{ index-set } identifier-expression Œ format �
specifies a data item to output under the control of an index set . The item is printed as if
it were an array with the specified set of indices. This form can be used to print a subset
of the locations in an array, such as a single column. If the identifier-expression names an
array, then the indices of the array must match the indices of the index-set . The format
argument specifies a SAS format that overrides the default format.

{ index-set } (expression) Œ format �
specifies a data item to output under the control of an index set . The item is printed as if
it were an array with the specified set of indices. In this form the expression is evaluated
for each member of the index-set to create the array values for output. format specifies a
SAS format that overrides the default format.

string
specifies a string value to print.

PAGE
specifies a page break.

The following example demonstrates the use of several print-item forms:

proc optmodel;
num x = 4.3;
var y{j in 1..4} init j*3.68;
print y; /* identifier-expression */
print (x * .265) dollar6.2; /* (expression) [format] */
print {i in 2..4} y; /* {index-set} identifier-expression */
print {i in 1..3}(i + i*.2345692) best7.;

/* {index-set} (expression) [format] */
print "Line 1"; /* string */

The output is displayed in Figure 5.20.

Programming Statements F 77

Figure 5.20 Print-item Forms

[1] y

1 3.68

2 7.36

3 11.04

4 14.72

$1.14

[1] y

2 7.36

3 11.04

4 14.72

[1]

1 1.23457

2 2.46914

3 3.70371

Line 1

Adjacent print items that have similar indexing are grouped together and output in the same table. Items have
similar indexing if they specify arrays that have the same number of indices and have matching index types
(numeric versus string). Nonarray items are considered to have the same indexing as other nonarray items.
The resulting table has a column for each array index followed by a column for each print item value. This
format is called list form. For example, the following statements produce a list form table:

proc optmodel;
num a{i in 1..3} = i*i;
num b{i in 3..5} = 4*i;
print a b;

These statements produce the listing output in Figure 5.21.

Figure 5.21 List Form PRINT Table

[1] a b

1 1

2 4

3 9 12

4 16

5 20

The array index columns show the set of valid index values for the print items in the table. The array index
column for the ith index is labeled [i]. There is a row for each combination of index values that was used.
The index values are displayed in sorted ascending order.

The data columns show the array values that correspond to the index values in each row. If a particular array
index is invalid or the array location is undefined, then the corresponding table entry is displayed as blank

78 F Chapter 5: The OPTMODEL Procedure

for numeric arrays and as an empty string for string arrays. If the print items are scalar, then the table has a
single row and no array index columns.

If a table contains a single array print item, the array is two-dimensional (has two indices), and the array
is dense enough, then the array is shown in matrix form. In this format there is a single index column that
contains the row index values. The label of this column is blank. This column is followed by a column for
every unique column index value for the array. The latter columns are labeled by the column value. These
columns contain the array values for that particular array column. Table entries that correspond to array
locations that have invalid or undefined combinations of row and column indices are blank or (for strings)
printed as an empty string.

The following statements generate a simple example of matrix output:

proc optmodel;
print {i in 1..6, j in i..6} (i*10+j);

The PRINT statement produces the output in Figure 5.22.

Figure 5.22 Matrix Form PRINT Table

1 2 3 4 5 6

1 11 12 13 14 15 16

2 22 23 24 25 26

3 33 34 35 36

4 44 45 46

5 55 56

6 66

The PRINT statement prints single two-dimensional arrays in the form that uses fewer table cells (headings
are ignored). Sparse arrays are normally printed in list form, and dense arrays are normally printed in matrix
form. In a PROC OPTMODEL statement, the PMATRIX= option enables you to tune how the PRINT
statement displays a two-dimensional array. The value of this option scales the total number of nonempty
array elements, which is used to compute the tables cells needed for list form display. Specifying values for
the PMATRIX= option less than 1 causes the list form to be used in more cases, while specifying values
greater than 1 causes the matrix form to be used in more cases. If the value is 0, then the list form is always
used. The default value of the PMATRIX= option is 1. Changing the default can be done with the RESET
OPTIONS statement.

The following statements illustrate how the PMATRIX= option affects the display of the PRINT statement:

proc optmodel;
num a{i in 1..6, i..i} = i;
num b{i in 1..3, j in 1..3} = i*j;
print a;
print b;
reset options pmatrix=3;
print a;
reset options pmatrix=0.5;
print b;

The output is shown in Figure 5.23.

Programming Statements F 79

Figure 5.23 PRINT Statement: Effects of PMATRIX= Option

[1] [2] a

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

b

1 2 3

1 1 2 3

2 2 4 6

3 3 6 9

a

1 2 3 4 5 6

1 1

2 2

3 3

4 4

5 5

6 6

[1] [2] b

1 1 1

1 2 2

1 3 3

2 1 2

2 2 4

2 3 6

3 1 3

3 2 6

3 3 9

From Figure 5.23, you can see that, by default, the PRINT statement tries to make the display compact.
However, you can change the default by using the PMATRIX= option.

PROFILE Statement

PROFILE Œ mode � options ;

The PROFILE statement controls the PROC OPTMODEL profiler, which enables you to collect and display
timing and execution count information for PROC OPTMODEL processing. The profiler can be very useful
for finding bottlenecks during execution, such as constraints that require large amounts of time during
problem generation. When the profiler is enabled, PROC OPTMODEL records the time for processing a
declaration, the time for executing statements, and the number of times that statements are executed. See
“Example 5.7: Sparse Modeling” on page 182 for an example use of the PROFILE statement.

80 F Chapter 5: The OPTMODEL Procedure

The mode argument specifies the action that the PROFILE statement performs. You can use the following
values for mode:

ON
enables the profiler. Data are collected until the profiler is disabled or PROC OPTMODEL
terminates. The profiler is also enabled when no mode is specified in a PROFILE
statement.

OFF
disables the profiler. Note that the profiler is disabled when PROC OPTMODEL begins
execution.

PRINT
prints the current accumulated profiler data. Items for declarations and statements are
displayed in a table in descending order of their net time. Accumulated data are printed
automatically when PROC OPTMODEL terminates.

The options control how PROC OPTMODEL collects and displays profiler information. Here are the valid
options:

PERCENT=number
restricts the output for PROFILE PRINT to items whose net times account for at least the specified
percentage of total profiled time, total time�number=100. Items that have smaller times are aggregated
into a single item at the end of the table. You can set this option before the display of profile data, and
it does not affect the data collection. The value of number can range from 0 to 100. The default value
is 1.

RESET
discards accumulated profiler data when the PROFILE statement completes execution. Accumulated
data are retained until they are explicitly reset.

STMTDEPTH=number | ALL
allows collection of profiler data for nested statements. With the default option, STMTDEPTH=1,
profiler data are collected only for top-level statements. The elapsed time for nested statement timing
is included in the top-level statement timing. For example, time for a top-level FOR statement
would include the execution of its substatement. Use the STMTDEPTH= option to profile the nested
statements individually. The value number specifies the maximum nesting depth at which to profile
statements individually. The nesting depth of a top-level statement is 1. Otherwise the nesting depth of
a statement is one more than the nesting depth of the statement that encloses it, such as a DO, IF, or
FOR statement.

For a PROFILE statement within a DO block or DO loop, the statement depth value is interpreted
relative to the enclosing DO statement. For example, specifying STMTDEPTH=1 within a DO block
causes the top-level statements of the DO block to be profiled. The STMTDEPTH= option is reset to
its previous value when the enclosing DO statement completes execution.

The value of number can be an integer between 1 and 32,767. Using the ALL keyword is equivalent
to specifying 32,767. Note that profiler timing can add significant overhead. Use a small number to
minimize overhead.

The elapsed time that is required to process an item includes the processing of other profiled items that
it depends on. For example, the processing of a constraint during problem generation might require the

Programming Statements F 81

evaluation of parameter values. The PROFILE statement reports net time so that the total of profiled times
represents actual processing time.

The equation that is used to compute net time is

net time D elapsed time � nested time � wait time

Elapsed time is the elapsed clock time this is required for processing an item. Nested time is the total of the
elapsed times that are spent within the same thread to process other profiled items, such as substatements or
declaration values. Wait time represents the time that a single thread is allocated but idle because it is waiting
for other threads to perform the required processing. The total of net times can exceed the elapsed wall clock
time when multiple threads are used.

PUT Statement

PUT Œ put-items � Œ @ j@@ � ;

The PUT statement writes text data to the current output file. The syntax of the PUT statement in PROC
OPTMODEL is similar to the syntax of the PROC IML and DATA step PUT statements. The PUT statement
contains a list of items that specify data for output and provide instructions for formatting the data.

The current output file is initially the SAS log. This can be overridden with the FILE statement. An output
file can be closed with the CLOSEFILE statement.

Normally the PUT statement outputs the current line after processing all items. Final @ or @@ operators
suppress this automatic line output and cause the current column position to be retained for use in the next
PUT statement.

put-item can take any of the following forms.

identifier-expression Œ = � Œ format �
outputs the value of the parameter or variable that is specified by the identifier-expression.
The equal sign (=) causes a name for the location to be printed before each location value.

Normally each item value is printed in a default format. Any leading and trailing blanks
in the formatted value are removed, and the value is followed by a blank space. When an
explicit format is specified, the value is printed within the width determined by the format.

name[*] Œ .suffix � Œ = � Œ format �
outputs each defined location value for an array parameter. The array name is specified as
in the identifier-expression form except that the index list is replaced by an asterisk (*).
The equal sign (=) causes a name for the location to be printed before each location value
along with the actual index values to be substituted for the asterisk.

Each item value normally prints in a default format. Any leading and trailing blanks in
the formatted value are removed, and the value is followed by a blank space. When an
explicit format is specified, the value is printed within the width determined by the format.

(expression) Œ = � Œ format �
outputs the value of the expression enclosed in parentheses. This produces similar results
to the identifier-expression form except that the equal sign (=) uses the expression to form
the name.

’quoted-string’
copies the string to the output file.

82 F Chapter 5: The OPTMODEL Procedure

@integer | identifier-expression | (expression) sets the absolute column position within the current line.
The literal or expression value determines the new column position.

+integer |identifier-expression|(expression) sets the relative column position within the current line. The
literal or expression value determines the amount to update the column position.

/
outputs the current line and moves to the first column of the next line.

PAGE
outputs any pending line data and moves to the top of the next page.

QUIT Statement

QUIT ;

The QUIT statement terminates the OPTMODEL execution. The statement is executed immediately, so it
cannot be a nested statement. A QUIT statement is implied when a DATA or PROC statement is read.

READ DATA Statement

READ DATA SAS-data-set Œ NOMISS � INTO Œ Œ set-name = � [read-key-columns] � Œ read-columns � ;

The READ DATA statement reads data from a SAS data set into PROC OPTMODEL parameter and variable
locations. The arguments to the READ DATA statement are as follows:

SAS-data-set
specifies the input data set name and options. You can specify the data set name and
options directly or as the string value of an expression enclosed in parentheses.

set-name
specifies a set parameter in which to save the set of observation key values read from the
input data set.

read-key-columns
provide the index values for array destinations.

read-columns
specify the data values to read and the destination locations.

The following example uses the READ DATA statement to copy data set variables j and k from the SAS data
set indata into parameters of the same name. The READ= data set option specifies a password.

proc optmodel;
number j, k;
read data indata(read=secret) into j k;

Key Columns
If any read-key-columns are specified, then the READ DATA statement reads all observations from the input
data set. If no read-key-columns are specified, then only the first observation of the data set is read. The data
set is closed after reading the requested information.

Each read-key-column declares a local dummy parameter and specifies a data set variable that supplies the
column value. The values of the specified data set variables from each observation are combined into a key

Programming Statements F 83

tuple. This combination is known as the observation key. The observation key is used to index array locations
specified by the read-columns items. The observation key is expected to be unique for each observation read
from the data set.

The syntax for a read-key-column is as follows:

name Œ = source-name � Œ / trim-option �

A read-key-column creates a local dummy parameter named name that holds an element of the observation
key tuple. The dummy parameter can be used in subsequent read-columns items to reference the element
value. If a source-name is given, then it specifies the data set variable that supplies the value. Otherwise the
source data set variable has the same name as the dummy parameter, name. Use the special data set variable
name _N_ to refer to the number identification of the observations.

You can specify a set-name to save the set of observation keys into a set parameter. If the observation key
consists of a single scalar value, then the set member type must match the scalar type. Otherwise the set
member type must be a tuple with element types that match the corresponding observation key element types.

The READ DATA statement initially assigns an empty set to the target set-name parameter. As observations
are read, a tuple for each observation key is added to the set. A set used to index an array destination in the
read-columns can be read at the same time as the array values. Consider a data set, invdata, created by the
following statements:

data invdata;
input item $ invcount;
datalines;

table 100
sofa 250
chair 80
;

The following statements read the data set invdata, which has two variables, item and invcount. The READ
DATA statement constructs a set of inventory items, Items. At the same time, the parameter location
invcount[item] is assigned the value of the data set variable invcount in the corresponding observation.

proc optmodel;
set<string> Items;
number invcount{Items};
read data invdata into Items=[item] invcount;
print invcount;

The output of these statements is shown in Figure 5.24.

Figure 5.24 READ DATA Statement: Key Column

[1] invcount

chair 80

sofa 250

table 100

When observations are read, the values of data set variables are copied to parameter locations. Numeric
values are copied unchanged. For character values, trim-option controls how leading and trailing blanks are
processed. trim-option is ignored when the value type is numeric. Specify any of the following keywords for
trim-option:

84 F Chapter 5: The OPTMODEL Procedure

TRIM j TR
removes leading and trailing blanks from the data set value. This is the default behavior.

LTRIM j LT
removes only leading blanks from the data set value.

RTRIM j RT
removes only trailing blanks from the data set value.

NOTRIM j NT
copies the data set value with no changes.

Columns
read-columns specify data set variables to read and PROC OPTMODEL parameter locations to which to
assign the values. The types of the input data set variables must match the types of the parameters. Array
parameters can be implicitly or explicitly indexed by the observation key values.

Normally, missing values from the data set are assigned to the parameters that are specified in the read-
columns. The NOMISS keyword suppresses the assignment of missing values, leaving the corresponding
parameter locations unchanged. Note that the parameter location does not need to have a valid index in this
case. This permits a single statement to read data into multiple arrays that have different index sets.

read-columns have the following forms:

identifier-expression Œ = name j COL(name-expression) � Œ / trim-option �
transfers an input data set variable to a target parameter or variable. identifier-expression
specifies the target. If the identifier-expression specifies an array without an explicit
index, then the observation key provides an implicit index. The name of the input data
set variable can be specified with a name or a COL expression. Otherwise the data set
variable name is given by the name part of the identifier-expression. For COL expressions,
the string-valued name-expression is evaluated to determine the data set variable name.
trim-option controls removal of leading and trailing blanks in the incoming data. For
example, the following statements read the data set variables column1 and column2 from
the data set exdata into the PROC OPTMODEL parameters p and q, respectively. The
observation numbers in exdata are read into the set indx, which indexes p and q.

data exdata;
input column1 column2;
datalines;

1 2
3 4
;

proc optmodel;
number n init 2;
set<num> indx;
number p{indx}, q{indx};
read data exdata into

indx=[_N_] p=column1 q=col("column"||n);
print p q;

The output is shown in Figure 5.25.

Programming Statements F 85

Figure 5.25 READ DATA Statement: Identifier Expressions

[1] p q

1 1 2

2 3 4

{ index-set } < read-columns >
performs the transfers by iterating each column specified by <read-columns> for each
member of the index-set . If there are n columns and m index set members, then n �m
columns are generated. The dummy parameters from the index set can be used in the
columns to generate distinct input data set variable names in the iterated columns, using
COL expressions. The columns are expanded when the READ DATA statement is
executed, before any observations are read. This form of read-columns cannot be nested.
In other words, the following form of read-columns is NOT allowed:

{ index-set } < { index-set } < read-columns > >

An example that demonstrates the use of the iterated column read-option follows.

You can use an iterated column read-option to read multiple data set variables into the same array. For
example, a data set might store an entire row of array data in a group of data set variables. The following
statements demonstrate how to read a data set that contains demand data divided by day:

data dmnd;
input loc $ day1 day2 day3 day4 day5;
datalines;

East 1.1 2.3 1.3 3.6 4.7
West 7.0 2.1 6.1 5.8 3.2
;

proc optmodel;
set DOW = 1..5; /* days of week, 1=Monday, 5=Friday */
set<string> LOCS; /* locations */
number demand{LOCS, DOW};
read data dmnd

into LOCS=[loc]
{d in DOW} < demand[loc, d]=col("day"||d) >;

print demand;

These statements read a set of demand variables named DAY1–DAY5 from each observation, filling in the
two-dimensional array demand. The output is shown in Figure 5.26.

Figure 5.26 Demand Data

demand

1 2 3 4 5

East 1.1 2.3 1.3 3.6 4.7

West 7.0 2.1 6.1 5.8 3.2

86 F Chapter 5: The OPTMODEL Procedure

RESET OPTIONS Statement

RESET OPTIONS options ;

RESET OPTION options ;

The RESET OPTIONS statement sets PROC OPTMODEL option values or restores them to their defaults.
Options can be specified by using the same syntax as in the PROC OPTMODEL statement. The RESET
OPTIONS statement provides two extensions to the option syntax. If an option normally requires a value
(specified with an equal sign (=) operator), then specifying the option name alone resets it to its default
value. You can also specify an expression enclosed in parentheses in place of a literal value. See the section
“OPTMODEL Options” on page 153 for an example.

The RESET OPTIONS statement can be placed inside loops or conditional statements. The statement is
applied each time it is executed.

RESTORE Statement

RESTORE identifier-list ;

The RESTORE statement adds a list of constraints, constraint arrays, or constraint array locations that were
dropped by the DROP statement back into the solver model, or includes constraints in a problem where
they were not previously present. The space-delimited identifier-list specifies the names of the constraints.
Each constraint, constraint array, or constraint array location is named by an identifier-expression. An entire
constraint array is restored if an identifier-expression omits the index from an array name. For example, the
following statements declare a constraint array and then drop it:

con c{i in 1..4}: x[i] + y[i] <=1;
drop c;

The following statement restores the first constraint:

restore c[1];

The following statement restores the second and third constraints:

restore c[2] c[3];

If you want to restore all of the constraints, you can submit the following statement:

restore c;

SAVE MPS Statement

SAVE MPS SAS-data-set Œ (OBJECTIVE j OBJ) name � Œ (NOOBJECTIVE j NOOBJ) � ;

The SAVE MPS statement saves the structure and coefficients for a linear programming model into a SAS
data set. This data set can be used as input data for the OPTLP or OPTMILP procedure.

NOTE: The OPTMODEL presolver (see the section “Presolver” on page 145) is automatically bypassed so
that the statement saves the original model without eliminating fixed variables, tightening bounds, and so on.

The SAS-data-set argument specifies the output data set name and options. You can specify the data set
name and options directly or as the string value of an expression enclosed in parentheses. The output data set
uses the MPS format described in Chapter 17, “The MPS-Format SAS Data Set.” The generated data set
contains observations that define different parts of the linear program.

Programming Statements F 87

Variables, constraints, and objectives are referenced in the data set by using label text from the corresponding
.label suffix value. The default text is based on the name in the model. See the section “Suffixes” on page 134
for more details. Labels are limited by default to 32 characters and are abbreviated to fit. You can change
the maximum length for labels by using the MAXLABLEN= option. When needed, a programmatically
generated number is added to labels to avoid duplication.

If the OBJECTIVE keyword is used, the objective name becomes the current problem objective. If the
NOOBJECTIVE keyword is used or the current problem does not have an objective, then the data set includes
a default constant zero objective. Otherwise, the current problem objective is included in the data set.

When an integer variable has been assigned a nondefault branching priority or direction, the MPS data set
includes a BRANCH section. See Chapter 17, “The MPS-Format SAS Data Set,” for more details.

The following statements show an example of the SAVE MPS statement. The model is specified using the
OPTMODEL procedure. Then it is saved as the MPS data set MPSData, as shown in Figure 5.27. Next,
PROC OPTLP is used to solve the resulting linear program.

proc optmodel;
var x >= 0, y >= 0;
con c: x >= y;
con bx: x <= 2;
con by: y <= 1;
min obj=0.5*x-y;
save mps MPSData;

quit;

proc optlp data=MPSData pout=PrimalOut dout=DualOut;
run;

Figure 5.27 The MPS Data Set Generated by SAVE MPS Statement

Obs FIELD1 FIELD2 FIELD3 FIELD4 FIELD5 FIELD6

1 NAME MPSData . .

2 ROWS . .

3 N obj . .

4 G c . .

5 L bx . .

6 L by . .

7 COLUMNS . .

8 x obj 0.5 c 1

9 x bx 1.0 .

10 y obj -1.0 c -1

11 y by 1.0 .

12 RHS . .

13 .RHS. bx 2.0 .

14 .RHS. by 1.0 .

15 ENDATA . .

88 F Chapter 5: The OPTMODEL Procedure

SAVE QPS Statement

SAVE QPS SAS-data-set Œ (OBJECTIVE j OBJ) name � Œ (NOOBJECTIVE j NOOBJ) � ;

The SAVE QPS statement saves the structure and coefficients for a quadratic programming model into a SAS
data set. This data set can be used as input data for the OPTQP procedure.

NOTE: The OPTMODEL presolver (see the section “Presolver” on page 145) is automatically bypassed so
that the statement saves the original model without eliminating fixed variables, tightening bounds, and so on.

The SAS-data-set argument specifies the output data set name and options. You can specify the data set
name and options directly or as the string value of an expression enclosed in parentheses. The output data
set uses the QPS format described in Chapter 17. The generated data set contains observations that define
different parts of the quadratic program.

Variables, constraints, and objectives are referenced in the data set by using label text from the corresponding
.label suffix value. The default text is based on the name in the model. See the section “Suffixes” on page 134
for more details. Labels are limited by default to 32 characters and are abbreviated to fit. You can change
the maximum length for labels by using the MAXLABLEN= option. When needed, a programmatically
generated number is added to labels to avoid duplication.

If the OBJECTIVE keyword is used, the objective name becomes the current problem objective. If the
NOOBJECTIVE keyword is used or the current problem does not have an objective, then the data set includes
a default constant zero objective. Otherwise, the current problem objective is included in the data set. The
quadratic coefficients of the objective function appear in the QSECTION section of the output data set.

The following statements show an example of the SAVE QPS statement. The model is specified using the
OPTMODEL procedure. Then it is saved as the QPS data set QPSData, as shown in Figure 5.28. Next,
PROC OPTQP is used to solve the resulting quadratic program.

proc optmodel;
var x{1..2} >= 0;

min z = 2*x[1] + 3 * x[2] + x[1]**2 + 10*x[2]**2
+ 2.5*x[1]*x[2];

con c1: x[1] - x[2] <= 1;
con c2: x[1] + 2*x[2] >= 100;
save qps QPSData;

quit;

proc optqp data=QPSData pout=PrimalOut dout=DualOut;
run;

Programming Statements F 89

Figure 5.28 QPS Data Set Generated by the SAVE QPS Statement

Obs FIELD1 FIELD2 FIELD3 FIELD4 FIELD5 FIELD6

1 NAME QPSData . .

2 ROWS . .

3 N z . .

4 L c1 . .

5 G c2 . .

6 COLUMNS . .

7 x[1] z 2.0 c1 1

8 x[1] c2 1.0 .

9 x[2] z 3.0 c1 -1

10 x[2] c2 2.0 .

11 RHS . .

12 .RHS. c1 1.0 .

13 .RHS. c2 100.0 .

14 QSECTION . .

15 x[1] x[1] 2.0 .

16 x[1] x[2] 2.5 .

17 x[2] x[2] 20.0 .

18 ENDATA . .

SOLVE Statement

SOLVE Œ WITH solver � Œ (OBJECTIVE | OBJ) name � Œ (NOOBJECTIVE | NOOBJ) � Œ RELAXINT �
Œ / options � ;

The SOLVE statement invokes a PROC OPTMODEL solver. The current model is first resolved to the
numeric form that is required by the solver. The resolved model and possibly the current values of any
optimization variables are passed to the solver. After the solver finishes executing, the SOLVE statement
prints a short table that shows a summary of results from the solver (see the section “ODS Table and Variable
Names” on page 124) and updates the _OROPTMODEL_ macro variable.

Here are the arguments to the SOLVE statement:

solver
selects the named solver: CLP, LP, MILP, NETWORK, NLP, or QP (see corresponding
chapters in this book for details). If you do not specify a WITH clause, PROC OPT-
MODEL chooses a solver that depends on the problem type. Table 5.8 lists the default
solver for each problem type.1

1The OPTMODEL procedure never uses the network solver as a default. If the QP solver detects nonconvexity (nonconcavity)
for a minimization (maximization) problem, then PROC OPTMODEL calls the NLP solver instead.

90 F Chapter 5: The OPTMODEL Procedure

Table 5.8 Default Solvers and Algorithms in PROC OPTMODEL

Problem Solver Algorithm
Constraint programming CLP Constraint propagation and backtracking search
Linear programming LP Dual simplex
Mixed integer linear programming MILP Branch-and-cut
General nonlinear programming NLP Interior point NLP
Quadratic programming QP Interior point QP

name
specifies the objective to use. This sets the current objective for the problem. You can
abbreviate the OBJECTIVE keyword as OBJ. If this argument is not specified, then the
problem objective is unchanged.

NOOBJECTIVE requests that the solver ignore the current objective for the problem and use a constant
zero objective instead. This keyword enables the solver to process the current model as a
feasibility problem. You can abbreviate the NOOBJECTIVE keyword as NOOBJ.

RELAXINT requests that any integral variables be relaxed to be continuous. RELAXINT can be used
with linear and nonlinear problems in addition to any solver.

options specifies solver options. You can specify solver options directly only when you use the
WITH clause. A list of the options available with the solver is provided in the individual
chapters that describe each solver. Table 5.9 lists the available option types. You can use
an expression in parentheses in place of a literal option value for numeric and keyword
options. A string expression is matched to a keyword. OPTMODEL parameters that are
changed by the solver must be specified by a parameter or array option.

Table 5.9 Solver Option Types

Type Syntax Example
Boolean option | NOoption solve with nlp / NOMULTISTART;
Keyword option=name solve with lp / ALGORITHM=PS;
Numeric option=number solve with nlp / OPTTOL=1E–4;
Parameter option=identifier-expression solve with network / links=(INCLUDE=LINKS) concomp;
Array option=array-name Œ .suffix � solve with network / links=(WEIGHT=WEIGHT) tsp;

The SOLVE statement uses the value of the predeclared _SOLVER_OPTIONS_ and _solver_OPTIONS_
string parameters to provide default solver options. Any options that are specified by these parameters are
added before options that are specified in the SOLVE statement, with options from _SOLVER_OPTIONS_
appearing first. These options are included even when the SOLVE statement does not contain a WITH clause
to specify a solver; in this case, solver is the name of the default solver as shown in Table 5.8.

Initially the predeclared string parameters _SOLVER_OPTIONS_ and _solver_OPTIONS_ (for each solver)
are empty strings, but you can assign them. You must use keywords or literal values to specify option values
in these strings. Redundant white space is allowed. For example, the following statements set up some simple
defaults:

Programming Statements F 91

_SOLVER_OPTIONS_ = "MAXTIME = 600"; /* options for all solvers */
_LP_OPTIONS_ = "PRESOLVER=AGGRESSIVE"; /* options for LP solver */

Optimization techniques that use initial values obtain them from the current values of the optimization
variables unless the NOINITVAR option is specified. When the solver finishes executing, the current value of
each optimization variable is replaced by the optimal value found by the solver. These values can then be
used as the initial values for subsequent solver invocations.

NOTE: If a solver fails, any currently pending statement is stopped and processing continues with the next
complete statement read from the input. For example, if a SOLVE statement that is enclosed in a DO group
(see the section “DO Statement” on page 66) fails, then the subsequent statements in the group are not
executed and processing resumes at the point immediately following the DO group. Neither an infeasible
result, an unbounded result, nor reaching an iteration limit is considered to be a solver failure.

NOTE: The information that appears in the macro variable _OROPTMODEL_ (see the section “Macro
Variable _OROPTMODEL_” on page 161) varies by solver.

NOTE: The RELAXINT keyword is applied immediately before the problem is passed to the solver, after
any processing by the PROC OPTMODEL presolver. So the problem presented to the solver might not be
equivalent to the one produced by setting the .RELAX suffix of all variables to a nonzero value. In particular,
the bounds of integer variables are still adjusted to be integral, and PROC OPTMODEL’s presolver might use
integrality to tighten bounds further.

STOP Statement

STOP ;

The STOP statement halts the execution of all statements that contain it, including DO statements and other
control or looping statements. Execution continues with the next top-level source statement. The following
statements demonstrate a simple use of the STOP statement:

proc optmodel;
number i, j;
do i = 1..5;

do j = 1..4;
if i = 3 and j = 2 then stop;

end;
end;
print i j;

The output is shown in Figure 5.29.

Figure 5.29 STOP Statement: Output

i j

3 2

When the counters i and j reach 3 and 2, respectively, the STOP statement terminates both loops. Execution
continues with the PRINT statement.

92 F Chapter 5: The OPTMODEL Procedure

SUBMIT Statement

SUBMIT arguments Œ / options � ;

SAS statements ;

ENDSUBMIT ;

The SUBMIT statement allows SAS code to be executed before PROC OPTMODEL processing continues.
For example, you can use the SUBMIT statement to invoke other SAS procedures to perform analysis or to
display results. The following statements use PROC SORT to order a list of nodes by decreasing priority; the
nodes can be used for further processing:

proc optmodel;
set<str> NODES;
num priority{NODES};

/* set up priority data... */

/* sort nodes by descending priority */
create data temppri from [id] priority;
submit;

proc sort;
by descending priority;

run;
endsubmit;

/* load nodes by priority */
str nodesByPri{i in 1..card(NODES)};
read data temppri into [_n_] nodesByPri=id;

/* use the sorted list... */

The SUBMIT statement must appear as the last or only statement on a line. It is followed by lines of SAS
statements, terminated by the ENDSUBMIT statement on a line of its own. The SAS statements between the
SUBMIT and ENDSUBMIT statements are referred to as a SUBMIT block. The SUBMIT block is sent to
the SAS language processor each time the SUBMIT statement is executed.

The SUBMIT block can include SAS global statements and procedure and invocations. Macros are not
expanded until the SUBMIT block is executed. So you can change macro variables to modify the behavior of
the SUBMIT block each time it is processed.

The arguments list specifies macro variables to initialize in the SUBMIT block environment before the
SUBMIT block is executed. List items are separated by spaces. Each of the arguments takes one of the
following forms:

name
copies the value of the PROC OPTMODEL parameter name to the macro variable that
has the same name.

name = identifier-expression
copies the value of the PROC OPTMODEL parameter specified by identifier-expression
to the macro variable name.

name = number | “string” | ‘string’
copies the value of the specified number or string constant to the macro variable name.

Programming Statements F 93

name = (expression)
copies the result of evaluating expression to the macro variable name.

The following statements use a SUBMIT argument to modify the output each time the SUBMIT block is
invoked:

for {i in 1..5}
submit a=i;
%put Value of a is &a..;
endsubmit;

The options in the SUBMIT statement are used to retrieve status information after a SUBMIT block is
executed. Each item in the space-delimited options list has one of the following forms:

OK = identifier-expression
specifies a PROC OPTMODEL numeric parameter location, identifier-expression, that
is updated to indicate the success of the SUBMIT block execution. The location is set
to 1 if execution is successful or 0 if errors are detected. PROC OPTMODEL continues
execution when the SUBMIT block encounters errors only if the OK= option is specified.

OUT Œ = � output-argument
specifies a single output-argument for retrieving macro variable values from the SUBMIT
block environment after each execution of the block.

OUT Œ = � (output-argument)
specifies a list of space-delimited output-arguments for retrieving macro variable values
from the SUBMIT block environment after the block is executed.

Each output-argument item specifies a macro variable to copy out of the SUBMIT block environment after
the block is executed. Each item takes one of the following two forms:

identifier-expression
copies the macro variable specified by the name portion of the identifier-expression into
the PROC OPTMODEL parameter location specified by identifier-expression.

identifier-expression = name
copies the macro variable specified by name into the PROC OPTMODEL parameter
location specified by identifier-expression.

The following statements show how to use the options in the SUBMIT statement to retrieve the result of a
SUBMIT block execution:

proc optmodel;
num success, syscc;
submit / OK = success out syscc;

data example;
set notfound;

j = i*i;
run;

endsubmit;
print success syscc;

The DATA step fails, so the success parameter is set to 0 and syscc is set to the error code in the &SYSCC
macro variable. The output is shown in Figure 5.30.

94 F Chapter 5: The OPTMODEL Procedure

Figure 5.30 SUBMIT Statement Error Handling

success syscc

0 1012

NOTE: The SUBMIT block runs in an environment that is nested in the environment that the OPTMODEL
procedure is running in. Resources from the PROC OPTMODEL environment are initially visible in the
nested environment. However, the nested environment can have its own local values for options, LIBNAME
librefs, FILENAME filerefs, titles, footnotes, and macros. For example, the nested environment has its own
global macro scope, which can hide macros visible in the outer environment. The output-arguments of the
SUBMIT statement options can retrieve the values of macros defined in this scope.

NOTE: A SUBMIT block can reset the ODS environment of the OPTMODEL procedure. For example, the
ODS SELECT and EXCLUDE lists could be cleared after the SUBMIT block executes.

NOTE: A SUBMIT statement can appear only in open code. An error message is displayed if the SUBMIT
statement is read from a macro. You can avoid this limitation by placing the SUBMIT statement, SUBMIT
block, and ENDSUBMIT in a separate file and by using the %INCLUDE statement to include the file in the
macro.

UNFIX Statement

UNFIX identifier-list Œ = (expression) � ;

The UNFIX statement reverses the effect of FIX statements. The solver can vary the specified variables,
variable arrays, or variable array locations specified by identifier-list . The identifier-list consists of one or
more variable names separated by spaces.

Each variable name in the identifier-list is an identifier expression (see the section “Identifier Expressions”
on page 102). The UNFIX statement affects an entire variable array if the identifier expression omits the
index from an array name. The expression specifies a new initial value that is stored in each element of the
identifier-list .

The following example demonstrates the UNFIX command:

proc optmodel;
var x{1..3};
fix x; /* fixes entire array to 0 */
unfix x[1]; /* x[1] can now be varied again */
unfix x[2] = 2; /* x[2] is given an initial value 2 */

/* and can be varied now */
unfix x; /* all x indices can now be varied */

After the following statements are executed, the variables x[1] and x[2] are not fixed. They each hold the
value 4. The variable x[3] is fixed at a value of 2.

proc optmodel;
var x{1..3} init 2;
num a = 1;
fix x;
unfix x[1] x[2]=(a+3);

Details: OPTMODEL Procedure F 95

USE PROBLEM Statement

USE PROBLEM identifier-expression ;

The USE PROBLEM programming statement makes the problem specified by the identifier-expression be the
current problem. If the problem has not been previously used, the problem is created using the PROBLEM
declaration corresponding to the name. The problem must have been previously declared.

Details: OPTMODEL Procedure

Named Parameters
In the example described in the section “An Unconstrained Optimization Example” on page 30, all the
numeric constants that describe the behavior of the objective function were specified directly in the objective
expression. This is a valid way to formulate the objective expression. However, in many cases it is
inconvenient to specify the numeric constants directly. Direct specification of numeric constants can also hide
the structure of the problem that is being solved. The objective expression text would need to be modified
when the numeric values in the problem change. This can be very inconvenient with large models.

In PROC OPTMODEL, you can create named numeric values that behave as constants in expressions. These
named values are called parameters. You can write an expression by using mnemonic parameter names in
place of numeric literals. This produces a clearer formulation of the optimization problem. You can easily
modify the values of parameters, define them in terms of other parameters, or read them from a SAS data set.

The model from this same example can be reformulated in a more general polynomial form, as follows:

data coeff;
input c_xx c_x c_y c_xy c_yy;
datalines;
1 -1 -2 -1 1
;

proc optmodel;
var x, y;
number c_xx, c_x, c_y, c_xy, c_yy;
read data coeff into c_xx c_x c_y c_xy c_yy;
min z=c_xx*x**2 + c_x*x + c_y*y + c_xy*x*y + c_yy*y**2;
solve;

These statements read the coefficients from a data set, COEFF. The NUMBER statement declares the
parameters. The READ DATA statement reads the parameters from the data set. You can apply this model
easily to coefficients that you have generated by various means.

Indexing
Many models have large numbers of variables or parameters that can be categorized into families of similar
purpose or behavior. Such families of items can be compactly represented in PROC OPTMODEL by using
indexing. You can use indexing to assign each item in such families to a separate value location.

96 F Chapter 5: The OPTMODEL Procedure

PROC OPTMODEL indexing is similar to array indexing in the DATA step, but it is more flexible. Index
values can be numbers or strings, and are not required to fit into some rigid sequence. PROC OPTMODEL
indexing is based on index sets, described further in the section “Index Sets” on page 103. For example, the
following statement declares an indexed parameter:

number p{1..3};

The construct that follows the parameter name p, “{1..3},” is a simple index set that uses a range expression
(see “Range Expression” on page 109). The index set contains the numeric members 1, 2, and 3. The
parameter has distinct value locations for each of the index set members. The first such location is referenced
as p[1], the second as p[2], and the third as p[3].

The following statements show an example of indexing:

proc optmodel;
number p{1..3};
p[1]=5;
p[2]=7;
p[3]=9;
put p[*]=;

The preceding statements produce a line such as the one shown in Figure 5.31 in the log.

Figure 5.31 Indexed Parameter Output

p[1]=5 p[2]=7 p[3]=9

Index sets can also specify local dummy parameters. A dummy parameter can be used as an operand in the
expressions that are controlled by the index set. For example, the assignment statements in the preceding
statements could be replaced by an initialization in the parameter declaration, as follows:

number p{i in 1..3} init 3 + 2*i;

The initialization value of the parameter location p[1] is evaluated with the value of the local dummy parameter
i equal to 1. So the initialization expression 3 + 2*i evaluates to 5. Similarly for location p[2], the value of i is
2 and the initialization expression evaluates to 7.

The OPTMODEL modeling language supports aggregation operators that combine values of an expression
where a local dummy parameter (or parameters) ranges over the members of a set. For example, the SUM
aggregation operator combines expression values by adding them together. The following statements output
21, since p[1] + p[2] + p[3] = 5 + 7 + 9 = 21:

proc optmodel;
number p{i in 1..3} init 3 + 2*i;
put (sum{i in 1..3} p[i]);

Aggregation operators like SUM are especially useful in objective expressions because they can combine a
large number of similar expressions into a compact representation. As an example, the following statements
define a trivial least squares problem:

proc optmodel;
number n init 100000;
var x{1..n};
min z = sum{i in 1..n}(x[i] - log(i))**2;
solve;

Types F 97

The objective function in this case is

z D

nX
iD1

.xi � log i/2

Effectively, the objective expression expands to the following large expression:

min z = (x[1] - log(1))**2
+ (x[2] - log(2))**2
. . .
+ (x[99999] - log(99999))**2
+ (x[100000] - log(100000))**2;

Even though the problem has 100,000 variables, the aggregation operator SUM enables a compact objective
expression.

NOTE: PROC OPTMODEL classifies as mathematically impure any function that returns a different value
each time it is called. The RAND function, for example, falls into this category. PROC OPTMODEL
disallows impure functions inside array index sets, objectives, and constraint expressions. The values of
expressions that are specified in the declaration of a parameter are resolved in a nondeterministic order during
threaded problem generation. Therefore, the values are also nondeterministic when these expressions use
impure functions.

Types
In PROC OPTMODEL, parameters and expressions can have numeric or character values. These correspond
to the elementary types named NUMBER and STRING, respectively. The NUMBER type is the same as
the SAS data set numeric type. The NUMBER type includes support for missing values. The STRING type
corresponds to the SAS character type, except that strings can have lengths up to a maximum of 65,534
characters (versus 32,767 for SAS character-type variables). The length for a STRING can change as needed.
The NUMBER and STRING types together are called the scalar types. You can abbreviate the type names as
NUM and STR, respectively.

PROC OPTMODEL also supports set types for parameters and expressions. Sets represent collections of
values of a member type, which can be a NUMBER, a STRING, or a vector of scalars (the latter is called a
tuple and described in the following paragraphs). Members of a set all have the same member type. Members
that have the same value are stored only once. For example, PROC OPTMODEL stores the set 2, 2, 2 as the
set 2.

Specify a set of numbers with SET<NUMBER>. Similarly, specify a set of strings as SET<STRING>.

A set can also contain a collection of tuples, all of the same fixed length. A tuple is an ordered collection that
contains a fixed number of elements. Each element in a tuple contains a scalar value. In PROC OPTMODEL,
tuples of length 1 are equivalent to scalars. Two tuples have equal values if the elements at corresponding
positions in each tuple have the same value. Within a set of tuples, the element type at a particular position
in each tuple is the same for all set members. The element types are part of the set type. For example, the
following statement declares parts as a set of tuples that have a string in the first element position and a
number in the second element position and then initializes its elements to be <R 1>, <R 2>, <C 1>, and
<C 2>.

98 F Chapter 5: The OPTMODEL Procedure

set<string,number> parts = /<R 1> <R 2> <C 1> <C 2>/;

To create a compact model, use sets to take advantage of the structure of the problem being modeled. For
example, a model might contain various values that specify attributes for each member of a group of suppliers.
You could create a set that contains members that represent each supplier. You can then model the attribute
values by using arrays that are indexed by members of the set.

The section “Parameters” on page 98 has more details and examples.

Names
Names are used in the OPTMODEL modeling language to refer to various entities such as parameters or
variables. Names must follow the usual rules for SAS names. Names can be up to 32 characters long and are
not case sensitive. They must be declared before they are used.

Avoid declarations with names that begin with an underscore (_). These names can have special uses in
PROC OPTMODEL.

Parameters
In the OPTMODEL modeling language, parameters are named locations that hold constant values. Parameter
declarations specify the parameter type followed by a list of parameter names to declare. For example, the
following statement declares numeric parameters named a and b:

number a, b;

Similarly, the following statements declare a set s of strings, a set n of numbers, and a set sn of tuples:

set<string> s;
set<number> n;
set<string, number> sn;

You can assign values to parameters in various ways. A parameter can be assigned a value with an assignment
statement. For example, the following statements assign values to the parameter s, n, and sn in the preceding
declaration:

s = {'a', 'b', 'c'};
n = {1, 2, 3};
sn = {<'a',1>, <'b',2>, <'c',3>};

Parameter values can also be assigned using a READ DATA statement (see the section “READ DATA
Statement” on page 82).

A parameter declaration can provide an explicit value. To specify the value, follow the parameter name with
an equal sign (=) and an expression. The value expression can be written in terms of other parameters. The
declared parameter takes on a new value each time a parameter that is used in the expression changes. This
automatic value update is shown in the following example:

Expressions F 99

proc optmodel;
number pi=4*atan(1);
number r;
number circum=2*pi*r;
r=1;
put circum; /* prints 6.2831853072 */
r=2;
put circum; /* prints 12.566370614 */

The automatic update of parameter values makes it easy to perform “what if” analysis since, after the solver
finds a solution, you can change parameters and reinvoke the solver. You can easily examine the effects of
the changes on the optimal values.

If you declare a set parameter that has only the SET type specifier, then the element type is determined from
the initialization expression. If the initialization expression is omitted or if the expression is an empty set,
then the set type defaults to SET<NUMBER>. For example, the following statement implicitly declares s1
as a set of numbers:

set s1;

The following statement declares s2 as a set of strings:

set s2 = {'A'};

You can declare an array parameter by following the parameter name with an index set specification (see the
section “Index Sets” on page 103). For example, declare an array of 10 numbers as follows:

number c{1..10};

Individual locations of a parameter array can be referred to with an indexing expression. For example, you
can refer to the third location of parameter c as c[3]. Array index sets cannot be specified using a function
such as RAND that returns a different value each time it is called.

Parameter names must be declared before they are used. Nonarray names become available at the end of the
parameter declaration item. Array names become available after the index set specification. The latter case
permits some forms of recursion in the optional initialization expression that can be supplied for a parameter.

You do not need to assign values to parameters before they are referenced. Most information in PROC
OPTMODEL is stored symbolically and resolved when necessary. Values are resolved in certain statements.
For example, PROC OPTMODEL resolves a parameter used in the objective during the execution of a
SOLVE statement. If no value is available during resolution, then an error is diagnosed.

Expressions
Expressions are grouped into three categories based on the types of values they can produce: logical, set, and
scalar (that is, numeric or character).

Logical expressions test for a Boolean (true or false) condition. As in the DATA step, logical operators
produce a value equal to either 0 or 1. A value of 0 represents a false condition, while a value of 1 represents
a true condition.

Logical expression operators are not allowed in certain contexts due to syntactic considerations. For example,
in the VAR statement a logical operator might indicate the start of an option. Enclose a logical expression

100 F Chapter 5: The OPTMODEL Procedure

in parentheses to use it in such contexts. The difference is illustrated by the output (Figure 5.32) of the
following statements, where two variables, x and y, are declared with initial values. The PRINT statement
and the EXPAND statement are used to check the initial values and the variable bounds, respectively.

proc optmodel;
var x init 0.5 >= 0 <= 1;
var y init (0.5 >= 0) <= 1;
print x y;
expand;

Figure 5.32 Logical Expression in the VAR Statement

x y

0.5 1

Var x >= 0 <= 1
Var y <= 1

Contexts that expect a logical expression also accept numeric expressions. In such cases zero or missing
values are interpreted as false, and all nonzero nonmissing numeric values are interpreted as true.

Set expressions return a set value. PROC OPTMODEL supports a number of operators that create and
manipulate sets. See the section “OPTMODEL Expression Extensions” on page 104 for a description of the
various set expressions. Index-set syntax is described in the section “Index Sets” on page 103.

Scalar expressions are similar to the expressions in the DATA step except for PROC OPTMODEL extensions.
PROC OPTMODEL provides an IF expression (described in the section “IF-THEN/ELSE Expression” on
page 106). String lengths are assigned dynamically, so there is generally no padding or truncation of string
values.

Table 5.10 shows the expression operators from lower to higher precedence (a higher precedence is given a
larger number). Operators that have higher precedence are applied in compound expressions before operators
that have lower precedence. The table also gives the order of evaluation that is applied when multiple
operators of the same precedence are used together. Operators available in both PROC OPTMODEL and the
DATA step have compatible precedences, except that in PROC OPTMODEL the NOT operator has a lower
precedence than the relational operators. This means that, for example, NOT 1 < 2 is equal to NOT (1 < 2)

(which is 0), rather than (NOT 1) < 2 (which is 1).

Table 5.10 Expression Operator Table
Precedence Associativity Operator Alternates
Logic Expression Operators

1 Left to right OR | !

2 Unary OR{index-set}
AND{index-set}

3 Left to right AND &

4 Unary NOT � ˆ :

5 Left to right < LT

> GT

<= LE

>= GE

= EQ

�= NE ˆ= :=

Expressions F 101

Table 5.10 (continued)
Precedence Associativity Operator Alternates

6 Left to right IN

NOT IN

7 Left to right WITHIN

NOT WITHIN

Set Expression Operators
11 IF l THEN s1 ELSE s2

12 Left to right UNION

DIFF

SYMDIFF

13 Unary UNION{index-set}
14 Left to right INTER

15 Unary INTER{index-set}
16 Left to right CROSS

17 Unary SETOF{index-set}
Right to left .. TO

.. e BY TO e BY

Scalar Expression Operators
21 IF l THEN e

IF l THEN e1 ELSE e2

22 Left to right || !!

23 Left to right + -

24 Unary SUM{index-set}
PROD{index-set}
MIN{index-set}
MAX{index-set}

25 Left to right * /

26 Unary + -

Right to left ><

<>

** ˆ

Primary expressions are the individual operands that are combined using the expression operators. Simple
primary expressions can represent constants or named parameter and variable values. More complex primary
expressions can be used to call functions or construct sets.

Table 5.11 Primary Expression Table
Expression Description
identifier-expression Parameter/variable reference; see the section “Identi-

fier Expressions” on page 102
name (arg-list) Function call; arg-list is 0 or more expressions sepa-

rated by commas
n Numeric constant
. or .c Missing value constant
“string” or ‘string’ String constant

102 F Chapter 5: The OPTMODEL Procedure

Table 5.11 (continued)
Expression Description
{ member-list } Set constructor; member-list is 0 or more scalar ex-

pressions or tuple expressions separated by commas
{ index-set } Index set expression; returns the set of all index set

members
/ members / Set literal expression; compactly specifies a simple

set value
(expression) Expression enclosed in parentheses
< expr-list > Tuple expression; used with set operations; contains

one or more scalar expressions separated by commas

Identifier Expressions
Use an identifier-expression to refer to a variable, objective, constraint, parameter or problem location in
expressions or initializations. This is the syntax for identifier-expressions:

name Œ [expression-1 Œ, . . . expression-n �] � Œ . suffix Œ [expression] � �

To refer to a location in an array, follow the array name with a list of scalar expressions in square brackets ([
]). The expression values are compared to the index set that was used to declare name. If there is more than
one expression, then the values are formed into a tuple. The expression values for a valid array location must
match a member of the array’s index set. For example, the following statements define a parameter array A
that has two valid indices that match the tuples <1,2> and <3,4>:

proc optmodel;
set<number, number> ISET = {<1,2>, <3,4>};
number A{ISET};
a[1,2] = 0; /* OK */
a[3,2] = 0; /* invalid index */

The first assignment is valid with this definition of the index set, but the second fails because <3,2> is not a
member of the set parameter ISET.

Specify a suffix to refer to auxiliary locations for variables or objectives. For more information, see the
section “Suffixes” on page 134. Certain suffixes can be followed by a numeric index expression that selects
a particular solution saved by the SOLVE statement. For more information about solution indices, see the
section “Multiple Solutions” on page 151.

Function Expressions
Most functions that can be invoked from the DATA step or the %SYSFUNC macro can be used in PROC
OPTMODEL expressions. Certain functions are specific to the DATA step and cannot be used in PROC
OPTMODEL. Functions specific to the DATA step include these:

� functions in the LAG, DIF, and DIM families

Index Sets F 103

� functions that access the DATA step program data vector

� functions that access symbol attributes

The CALL statement can invoke SAS library subroutines. These subroutines can read and update the values
of the parameters and variables that are used as arguments. See the section “CALL Statement” on page 54
for an example.

OPTMODEL arrays can be passed to SAS library functions and subroutines using the argument syntax:

OF array-name[*] Œ . suffix �

The array-name is the name of an array symbol. The optional suffix allows auxiliary values to be referenced,
as described in section “Suffixes” on page 134.

The OF argument form is resolved into a sequence of arguments, one for each index in the array. The array
elements appear in order of the array’s index set. The OF array form is a compact alternative to listing the
array elements explicitly.

As an example, the following statements use the CALL SORTN function to sort the elements of a numeric
array:

proc optmodel;
number original{i in 1..8} = sin(i);
number sorted{i in 1..8} init original[i];
call sortn(of sorted[*]);
print original sorted;

The output is shown in Figure 5.33. Eight arguments are passed to the SORTN routine. The original column
shows the original order, and the sorted column has the sorted order.

Figure 5.33 Sorting Using an OF Array Argument

[1] original sorted

1 0.84147 -0.95892

2 0.90930 -0.75680

3 0.14112 -0.27942

4 -0.75680 0.14112

5 -0.95892 0.65699

6 -0.27942 0.84147

7 0.65699 0.90930

8 0.98936 0.98936

Index Sets
An index set represents a set of combinations of members from the component set expressions. The index set
notation is used in PROC OPTMODEL to describe collections of valid array indices and to specify sets of
values with which to perform an operation. Index sets can declare local dummy parameters and can further
restrict the set of combinations by a selection expression.

104 F Chapter 5: The OPTMODEL Procedure

In an index-set specification, the index set consists of one or more index-set-items that are separated by
commas. Each index-set-item can include local dummy parameter declarations. An optional selection
expression follows the list of index-set-items. The following syntax, which describes an index set, usually
appears in braces ({}):

index-set-item Œ, . . . index-set-item � Œ : logic-expression �

index-set-item has these forms:

set-expression
name IN set-expression
< name-1 Œ, . . . name-n � > IN set-expression

Names that precede the IN keyword in index-set-items declare local dummy parameter names. Dummy
parameters correspond to the dummy index variables in mathematical expressions. For example, the following
statements output the number 385:

proc optmodel;
put (sum{i in 1..10} i**2);

The preceding statements evaluate this summation:

10X
iD1

i2 D 385

In both the statements and the summation, the index name is i.

The last form of index-set-item in the list can be modified to use the SLICE expression implicitly. See the
section “More on Index Sets” on page 159 for details.

Array index sets cannot be defined using functions that return different values each time the functions are
called. See the section “Indexing” on page 95 for details.

OPTMODEL Expression Extensions
PROC OPTMODEL defines several new types of expressions for the manipulation of sets. Aggregation
operators combine values of an expression that is evaluated over the members of an index set. Other operators
create new sets by combining existing sets, or they test relationships between sets. PROC OPTMODEL
also supports an IF expression operator that can conditionally evaluate expressions. These and other such
expressions are described in this section.

AND Aggregation Expression

AND { index-set } logic-expression

The AND aggregation operator evaluates the logical expression logic-expression jointly for each member of
the index set index-set . The index set enumeration finishes early if the logic-expression evaluation produces
a false value (zero or missing). The expression returns 0 if a false value is found or returns 1 otherwise. The
following statements demonstrate both a true and a false result:

OPTMODEL Expression Extensions F 105

proc optmodel;
put (and{i in 1..5} i < 10); /* returns 1 */
put (and{i in 1..5} i NE 3); /* returns 0 */

CARD Function

CARD (set-expression)

The CARD function returns the number of members of its set operand. For example, the following statements
produce the output 3 since the set has 3 members:

proc optmodel;
put (card(1..3));

CROSS Expression

set-expression-1 CROSS set-expression-2

The CROSS expression returns the crossproduct of its set operands. The result is the set of tuples formed by
concatenating the tuple value of each member of the left operand with the tuple value of each member of the
right operand. Scalar set members are treated as tuples of length 1. The following statements demonstrate the
CROSS operator:

proc optmodel;
set s1 = 1..2;
set<string> s2 = {'a', 'b'};
set<number, string> s3=s1 cross s2;
put 's3 is ' s3;
set<number, string, number> s4 = s3 cross 4..5;
put 's4 is ' s4;

This code produces the output in Figure 5.34.

Figure 5.34 CROSS Expression Output

s3 is {<1,'a'>,<1,'b'>,<2,'a'>,<2,'b'>}
s4 is {<1,'a',4>,<1,'a',5>,<1,'b',4>,<1,'b',5>,<2,'a',4>,<2,'a',5>,<2,'b',4>,<2,
'b',5>}

DIFF Expression

set-expression-1 DIFF set-expression-2

The DIFF operator returns a set that contains the set difference of the left and right operands. The result set
contains values that are members of the left operand but not members of the right operand. The operands
must have compatible set types. The following statements evaluate and print a set difference:

proc optmodel;
put ({1,3} diff {2,3}); /* outputs {1} */

106 F Chapter 5: The OPTMODEL Procedure

IF-THEN/ELSE Expression

IF logic-expression THEN expression-2 Œ ELSE expression-3 �

The IF-THEN/ELSE expression evaluates the logical expression logic-expression and returns the result of
evaluating the second or third operand expression according to the logical test result. If the logic-expression is
true (nonzero and nonmissing), then the result of evaluating expression-2 is returned. If the logic-expression
is false (zero or missing), then the result of evaluating expression-3 is returned. The other subexpression that
is not selected is not evaluated.

An ELSE clause is matched during parsing with the nearest IF-THEN clause that does not have a matching
ELSE. The ELSE clause can be omitted for numeric expressions; the resulting IF-THEN is handled as if a
default ELSE 0 clause were supplied.

Use the IF-THEN/ELSE expression to handle special cases in models. For example, an inventory model
based on discrete time periods might require special handling for the first or last period. In the following
example the initial inventory for the first period is assumed to be fixed:

proc optmodel;
number T;
var inv{1..T}, order{1..T};
number sell{1..T};
number inv0;
. . .
/* balance inventory flow */
con iflow{i in 1..T}:

inv[i] = order[i] - sell[i] +
if i=1 then inv0 else inv[i-1];

. . .

The IF-THEN/ELSE expression in the example models the initial inventory for a time period i. Usually the
inventory value is the inventory at the end of the previous period, but for the first time period the inventory
value is given by the inv0 parameter. The iflow constraints are linear because the IF-THEN/ELSE test
subexpression does not depend on variables and the other subexpressions are linear.

IF-THEN/ELSE can be used as either a set expression or a scalar expression. The type of expression depends
on the subexpression between the THEN and ELSE keywords. The type used affects the parsing of the
subexpression that follows the ELSE keyword because the set form has a lower operator precedence. For
example, the following two expressions are equivalent because the numeric IF-THEN/ELSE has a higher
precedence than the range operator (..):

IF logic THEN 1 ELSE 2 .. 3

(IF logic THEN 1 ELSE 2) .. 3

But the set form of IF-THEN/ELSE has lower precedence than the range expression operator. So the
following two expressions are equivalent:

IF logic THEN 1 .. 2 ELSE 3 .. 4

IF logic THEN (1 .. 2) ELSE (3 .. 4)

The IF-THEN and IF-THEN/ELSE operators always have higher precedence than the logic operators. So, for
example, the following two expressions are equivalent:

OPTMODEL Expression Extensions F 107

IF logic THEN numeric1 < numeric2

(IF logic THEN numeric1) < numeric2

It is best to use parentheses when in doubt about precedence.

IN Expression

expression IN set-expression

expression NOT IN set-expression

The IN expression returns 1 if the value of the left operand is a member of the right operand set. Otherwise,
the IN expression returns 0. The NOT IN operator logically negates the returned value. Unlike the DATA step,
the right operand is an arbitrary set expression. The left operand can be a tuple expression. The following
example demonstrates the IN and NOT IN operators:

proc optmodel;
set s = 1..10;
put (5 in s); /* outputs 1 */
put (-1 not in s); /* outputs 1 */
set<num, str> t = {<1,'a'>, <2,'b'>, <2,'c'>};
put (<2, 'b'> in t); /* outputs 1 */
put (<1, 'b'> in t); /* outputs 0 */

Index Set Expression

{ index-set }

The index set expression returns the set of members of an index set. This expression is distinguished from a
set constructor (see the section “Set Constructor Expression” on page 110) because it contains a list of set
expressions.

The following statements use an index set with a selection expression that excludes the value 3:

proc optmodel;
put ({i in 1..5 : i NE 3}); /* outputs {1,2,4,5} */

INTER Expression

set-expression-1 INTER set-expression-2

The INTER operator returns a set that contains the intersection of the left and right operands. This is the set
that contains values that are members of both operand sets. The operands must have compatible set types.

The following statements evaluate and print a set intersection:

proc optmodel;
put ({1,3} inter {2,3}); /* outputs {3} */

108 F Chapter 5: The OPTMODEL Procedure

INTER Aggregation Expression

INTER { index-set } set-expression

The INTER aggregation operator evaluates the set-expression for each member of the index set index-set .
The result is the set that contains the intersection of the set of values that were returned by the set-expression
for each member of the index set. An empty index set causes an expression evaluation error.

The following statements use the INTER aggregation operator to compute the value of {1,2,3,4} \ {2,3,4,5}
\ {3,4,5,6}:

proc optmodel;
put (inter{i in 1..3} i..i+3); /* outputs {3,4} */

MAX Aggregation Expression

MAX { index-set } expression

The MAX aggregation operator evaluates the numeric expression expression for each member of the index
set index-set . The result is the maximum of the values that are returned by the expression. Missing values
are handled with the SAS numeric sort order; a missing value is treated as smaller than any nonmissing
value. If the index set is empty, then the result is the negative number that has the largest absolute value
representable on the machine.

The following example produces the output 0.5:

proc optmodel;
put (max{i in 2..5} 1/i);

MIN Aggregation Expression

MIN { index-set } expression

The MIN aggregation operator evaluates the numeric expression expression for each member of the index set
index-set . The result is the minimum of the values that are returned by the expression. Missing values are
handled with the SAS numeric sort order; a missing value is treated as smaller than any nonmissing value. If
the index set is empty, then the result is the largest positive number representable on the machine.

The following example produces the output 0.2:

proc optmodel;
put (min{i in 2..5} 1/i);

OR Aggregation Expression

OR { index-set } logic-expression

The OR aggregation operator evaluates the logical expression logic-expression for each member of the index
set index-set . The index set enumeration finishes early if the logic-expression evaluation produces a true
value (nonzero and nonmissing). The result is 1 if a true value is found, or 0 otherwise. The following
statements demonstrate both a true and a false result:

OPTMODEL Expression Extensions F 109

proc optmodel;
put (or{i in 1..5} i = 2); /* returns 1 */
put (or{i in 1..5} i = 7); /* returns 0 */

PROD Aggregation Expression

PROD { index-set } expression

The PROD aggregation operator evaluates the numeric expression expression for each member of the index
set index-set . The result is the product of the values that are returned by the expression. This operator is
analogous to the

Q
operator used in mathematical notation. If the index set is empty, then the result is 1.

The following example uses the PROD operator to evaluate a factorial:

proc optmodel;
number n = 5;
put (prod{i in 1..n} i); /* outputs 120 */

Range Expression

expression-1 .. expression-n Œ BY expression �

The range expression returns the set of numbers from the specified arithmetic progression. The sequence
proceeds from the left operand value up to the right operand limit. The increment between numbers is 1
unless a different value is specified with a BY clause. If the increment is negative, then the progression is
from the left operand down to the right operand limit. The result can be an empty set.

For compatibility with the DATA step iterative DO loop construct, the keyword TO can substitute for the
range (..) operator.

The limit value is not included in the resulting set unless it belongs in the arithmetic progression. For example,
the following range expression does not include 30:

proc optmodel;
put (10..30 by 7); /* outputs {10,17,24} */

The actual numbers that the range expression “f..l by i” produces are in the arithmetic sequence

f; f C i; f C 2i; : : : ; f C ni

where

n D

�
l � f

i
C
p
�

�
and � represents the relative machine precision. The limit is adjusted to avoid arithmetic roundoff errors.

PROC OPTMODEL represents the set specified by a range expression compactly when the value is stored in
a parameter location, used as a set operand of an IN or NOT IN expression, used by an iterative DO loop, or
used in an index set. For example, the following expression is evaluated efficiently:

999998.5 IN 1..1000000000

110 F Chapter 5: The OPTMODEL Procedure

Set Constructor Expression

{ Œ expression-1 Œ , . . . expression-n � � }

The set constructor expression returns the set of the expressions in the member list. Duplicated values are
added to the set only once. A warning message is produced when duplicates are detected. The constructor
expression consists of zero or more subexpressions of the same scalar type or of tuple expressions that match
in length and in element types.

The following statements output a three-member set and warn about the duplicated value 2:

proc optmodel;
put ({1,2,3,2}); /* outputs {1,2,3} */

The following example produces a three-member set of tuples, using PROC OPTMODEL parameters and
variables. The output is displayed in Figure 5.35.

proc optmodel;
number m = 3, n = 4;
var x{1..4} init 1;
string y = 'c';
put ({<'a', x[3]>, <'b', m>, <y, m/n>});

Figure 5.35 Set Constructor Expression Output

{<'a',1>,<'b',3>,<'c',0.75>}

Set Literal Expression

/ members /

The set literal expression provides compact specification of simple set values. It is equivalent in function to
the set constructor expression but minimizes typing for sets that contain numeric and string constant values.
The set members are specified by members, which are literal values. As with the set constructor expression,
each member must have the same type.

The following statement specifies a simple numeric set:

/1 2.5 4/

The set contains the members 1, 2.5, and 4. A string set could be specified as follows:

/Miami 'San Francisco' Seattle 'Washington, D.C.'/

This set contains the strings ’Miami’, ’San Francisco’, ’Seattle’, and ’Washington, D.C.’. You
can specify string values in set literals without quotation marks when the text follows the rules for a SAS
name. Strings that begin with a digit or contain blanks or other special characters must be specified with
quotation marks.

Specify tuple members of a set by enclosing the tuple elements within angle brackets (<elements>). The
tuple elements can be specified with numeric and string literals. The following example includes the tuple
elements <’New York’, 4.5> and <’Chicago’, -5.7>:

/<'New York' 4.5> <Chicago -5.7>/

OPTMODEL Expression Extensions F 111

SETOF Aggregation Expression

SETOF { index-set } expression

The SETOF aggregation operator evaluates the expression expression for each member of the index set
index-set . The result is the set that is formed by collecting the values returned by the operand expression.
The operand can be a tuple expression. For example, the following statements produce a set of tuples of
numbers with their squared and cubed values:

proc optmodel;
put (setof{i in 1..3}<i, i*i, i**3>);

Figure 5.36 shows the displayed output.

Figure 5.36 SETOF Aggregation Expression Output

{<1,1,1>,<2,4,8>,<3,9,27>}

SLICE Expression

SLICE (< element-1, . . . element-n > , set-expression)

The SLICE expression produces a new set by selecting members in the operand set that match a pattern tuple.
The pattern tuple is specified by the element list in angle brackets. Each element in the pattern tuple must
specify a numeric or string expression. The expressions are used to match the values of the corresponding
elements in the operand set member tuples. You can also specify an element by using an asterisk (*). The
sequence of element values that correspond to asterisk positions in each matching tuple is combined into a
tuple of the result set. At least one asterisk element must be specified.

The following statements demonstrate the SLICE expression:

proc optmodel;
put (slice(<1,*>, {<1,3>, <1,0>, <3,1>}));
put (slice(<*,2,*>, {<1,2,3>, <2,4,3>, <2,2,5>}));

These statements produce the output in Figure 5.37.

Figure 5.37 SLICE Expression Output

{3,0}
{<1,3>,<2,5>}

For the first PUT statement, <1,*> matches set members <1,3> and <1,0> but not <3,1>. The second element
of each matching set tuple, corresponding to the asterisk element, becomes the value of the resulting set
member. In the second PUT statement, the values of the first and third elements of the operand set member
tuple are combined into a two-position tuple in the result set.

The following statements use the SLICE expression to help compute the transitive closure of a set of tuples
representing a relation by using Warshall’s algorithm. In these statements the set parameter dep represents a
direct dependency relation.

112 F Chapter 5: The OPTMODEL Procedure

proc optmodel;
set<str,str> dep = {<'B','A'>, <'C','B'>, <'D','C'>};
set<str,str> cl;
set<str> cn;
cl = dep;
cn = (setof{<i,j> in dep} i) inter (setof{<i,j> in dep} j);
for {node in cn}

cl = cl union (slice(<*,node>,cl) cross slice(<node,*>,cl));
put cl;

The local dummy parameter node in the FOR statement iterates over the set cn of possible intermediate
nodes that can connect relations transitively. At the end of each FOR iteration, the set parameter cl contains
all tuples from the original set in addition to all transitive tuples found in the current or previous iterations.

The output in Figure 5.38 includes the indirect and direct transitive dependencies from the set dep.

Figure 5.38 Warshall’s Algorithm Output

{<'B','A'>,<'C','B'>,<'D','C'>,<'C','A'>,<'D','B'>,<'D','A'>}

A special form of index-set-item uses the SLICE expression implicitly. See the section “More on Index Sets”
on page 159 for details.

SUM Aggregation Expression

SUM { index-set } expression

The SUM aggregation operator evaluates the numeric expression expression for each member in the index
set index-set . The result is the sum of the values that are returned by the expression. If the index set is empty,
then the result is 0. This operator is analogous to the

P
operator that is used in mathematical notation. The

following statements demonstrate the use of the SUM aggregation operator:

proc optmodel;
put (sum {i in 1..10} i); /* outputs 55 */

SYMDIFF Expression

set-expression-1 SYMDIFF set-expression-2

The SYMDIFF expression returns the symmetric set difference of the left and right operands. The result set
contains values that are members of either the left or right operand but are not members of both operands.
The operands must have compatible set types.

The following example demonstrates a symmetric difference:

proc optmodel;
put ({1,3} symdiff {2,3}); /* outputs {1,2} */

OPTMODEL Expression Extensions F 113

Tuple Expression

< expression-1, . . . expression-n >

A tuple expression represents the value of a member in a set of tuples. Each scalar subexpression inside
the angle brackets represents the value of a tuple element. This form is used only with IN, SETOF, and set
constructor expressions.

The following statements demonstrate the tuple expression:

proc optmodel;
put (<1,2,3> in setof{i in 1..2}<i,i+1,i+2>);
put ({<1,'a'>, <2,'b'>} cross {<3,'c'>, <4,'d'>});

The first PUT statement checks whether the tuple <1, 2, 3> is a member of a set of tuples. The second PUT
statement outputs the crossproduct of two sets of tuples that are constructed by the set constructor.

These statements produce the output in Figure 5.39.

Figure 5.39 Tuple Expression Output

1
{<1,'a',3,'c'>,<1,'a',4,'d'>,<2,'b',3,'c'>,<2,'b',4,'d'>}

UNION Expression

set-expression-1 UNION set-expression-2

The UNION expression returns the set union of the left and right operands. The result set contains values that
are members of either the left or right operand. The operands must have compatible set types. The following
example performs a set union:

proc optmodel;
put ({1,3} union {2,3}); /* outputs {1,3,2} */

UNION Aggregation Expression

UNION { index-set } set-expression

The UNION aggregation expression evaluates the set-expression for each member of the index set index-set .
The result is the set union of the values that are returned by the set-expression. If the index set is empty, then
the result is an empty set.

The following statements demonstrate a UNION aggregation. The output is the value of {1,2,3,4} [{2,3,4,5}
[{3,4,5,6}.

proc optmodel;
put (union{i in 1..3} i..i+3); /* outputs {1,2,3,4,5,6} */

WITHIN Expression

set-expression-1 WITHIN set-expression-2

set-expression NOT WITHIN set-expression

114 F Chapter 5: The OPTMODEL Procedure

The WITHIN expression returns 1 if the left operand set is a subset of the right operand set and returns 0
otherwise. (That is, the operator returns true if every member of the left operand set is a member of the
right operand set.) The NOT WITHIN form logically negates the result value. The following statements
demonstrate the WITHIN and NOT WITHIN operators:

proc optmodel;
put ({1,3} within {2,3}); /* outputs 0 */
put ({1,3} not within {2,3}); /* outputs 1 */
put ({1,3} within {1,2,3}); /* outputs 1 */

Conditions of Optimality

Linear Programming

A standard linear program has the following formulation:

minimize cT x
subject to Ax � b

x � 0

where

x 2 Rn is the vector of decision variables
A 2 Rm�n is the matrix of constraints
c 2 Rn is the vector of objective function coefficients
b 2 Rm is the vector of constraints right-hand sides (RHS)

This formulation is called the primal problem. The corresponding dual problem (see the section “Dual Values”
on page 138) is

maximize bT y
subject to AT y � c

y � 0

where y 2 Rm is the vector of dual variables.

The vectors x and y are optimal to the primal and dual problems, respectively, only if there exist primal slack
variables s D Ax � b and dual slack variables w D AT y � c such that the following Karush-Kuhn-Tucker
(KKT) conditions are satisfied:

AxC s D b; x � 0; s � 0
AT yC w D c; y � 0; w � 0

sT y D 0

wT x D 0

The first line of equations defines primal feasibility, the second line of equations defines dual feasibility, and
the last two equations are called the complementary slackness conditions.

Conditions of Optimality F 115

Nonlinear Programming

To facilitate discussion of optimality conditions in nonlinear programming, you write the general form of
nonlinear optimization problems by grouping the equality constraints and inequality constraints. You also
write all the general nonlinear inequality constraints and bound constraints in one form as “�” inequality
constraints. Thus, you have the following formulation:

minimize
x2Rn

f .x/

subject to ci .x/ D 0; i 2 E
ci .x/ � 0; i 2 I

where E is the set of indices of the equality constraints, I is the set of indices of the inequality constraints,
and m D jE j C jIj.

A point x is feasible if it satisfies all the constraints ci .x/ D 0; i 2 E and ci .x/ � 0; i 2 I. The feasible
region F consists of all the feasible points. In unconstrained cases, the feasible region F is the entire Rn

space.

A feasible point x� is a local solution of the problem if there exists a neighborhood N of x� such that

f .x/ � f .x�/ for al l x 2 N \ F

Further, a feasible point x� is a strict local solution if strict inequality holds in the preceding case; that is,

f .x/ > f .x�/ for al l x 2 N \ F

A feasible point x� is a global solution of the problem if no point in F has a smaller function value than
f .x�); that is,

f .x/ � f .x�/ for al l x 2 F

Unconstrained Optimization
The following conditions hold true for unconstrained optimization problems:

� First-order necessary conditions: If x� is a local solution and f .x/ is continuously differentiable in
some neighborhood of x�, then

rf .x�/ D 0

� Second-order necessary conditions: If x� is a local solution and f .x/ is twice continuously differ-
entiable in some neighborhood of x�, then r2f .x�/ is positive semidefinite.

� Second-order sufficient conditions: If f .x/ is twice continuously differentiable in some neighbor-
hood of x�, rf .x�/ D 0, and r2f .x�/ is positive definite, then x� is a strict local solution.

116 F Chapter 5: The OPTMODEL Procedure

Constrained Optimization
For constrained optimization problems, the Lagrangian function is defined as follows:

L.x; �/ D f .x/ �
X
i2E[I

�ici .x/

where �i ; i 2 E [I, are called Lagrange multipliers. rxL.x; �/ is used to denote the gradient of the
Lagrangian function with respect to x, and r2xL.x; �/ is used to denote the Hessian of the Lagrangian
function with respect to x. The active set at a feasible point x is defined as

A.x/ D E [fi 2 I W ci .x/ D 0g

You also need the following definition before you can state the first-order and second-order necessary
conditions:

� Linear independence constraint qualification and regular point: A point x is said to satisfy the
linear independence constraint qualification if the gradients of active constraints

rci .x/; i 2 A.x/

are linearly independent. Such a point x is called a regular point.

You now state the theorems that are essential in the analysis and design of algorithms for constrained
optimization:

� First-order necessary conditions: Suppose that x� is a local minimum and also a regular point. If
f .x/ and ci .x/; i 2 E [I, are continuously differentiable, there exist Lagrange multipliers �� 2 Rm

such that the following conditions hold:

rxL.x
�; ��/ D rf .x�/ �

X
i2E[I

��i rci .x
�/ D 0

ci .x
�/ D 0; i 2 E

ci .x
�/ � 0; i 2 I
��i � 0; i 2 I

��i ci .x
�/ D 0; i 2 I

The preceding conditions are often known as the Karush-Kuhn-Tucker conditions, or KKT conditions
for short.

� Second-order necessary conditions: Suppose that x� is a local minimum and also a regular point.
Let �� be the Lagrange multipliers that satisfy the KKT conditions. If f .x/ and ci .x/; i 2 E [I, are
twice continuously differentiable, the following conditions hold:

zTr2xL.x
�; ��/z � 0

for all z 2 Rn that satisfy

rci .x
�/T z D 0; i 2 A.x�/

Data Set Input/Output F 117

� Second-order sufficient conditions: Suppose there exist a point x� and some Lagrange multipliers
�� such that the KKT conditions are satisfied. If

zTr2xL.x
�; ��/z > 0

for all z 2 Rn that satisfy

rci .x
�/T z D 0; i 2 A.x�/

then x� is a strict local solution.

Note that the set of all such z’s forms the null space of the matrix
�
rci .x

�/T
�
i2A.x�/

. Thus, you
can search for strict local solutions by numerically checking the Hessian of the Lagrangian function
projected onto the null space. For a rigorous treatment of the optimality conditions, see Fletcher (1987)
and Nocedal and Wright (1999).

Data Set Input/Output
You can use the CREATE DATA and READ DATA statements to exchange PROC OPTMODEL data
with SAS data sets. The statements can move data into and out of PROC OPTMODEL parameters and
variables. For example, the following statements use a CREATE DATA statement to save the results from an
optimization into a data set:

proc optmodel;
var x;
min z = (x-5)**2;
solve;
create data optdata from xopt=x z;

These statements write a single observation into the data set OPTDATA. The data set contains two variables,
xopt and z, and the values contain the optimized values of the PROC OPTMODEL variable x and objective z,
respectively. The statement “xopt=x” renames the variable x to xopt.

The group of values held by a data set variable in different observations of a data set is referred to as a column.
The READ DATA and CREATE DATA statements specify a set of columns for a data set and define how data
are to be transferred between the columns and PROC OPTMODEL parameters.

Columns in square brackets ([]) are handled specially. Such columns are called key columns. Key columns
specify element values that provide an implicit index for subsequent array columns. The following example
uses key columns with the CREATE DATA statement to write out variable values from an array:

proc optmodel;
set LOCS = {'New York', 'Washington', 'Boston'}; /* locations */
set DOW = 1..7; /* day of week */
var s{LOCS, DOW} init 1;
create data soldata from [location day_of_week]={LOCS, DOW} sale=s;

In this case the optimization variable s is initialized to a value of 1 and is indexed by values from the set
parameters LOCS and DOW. The output data set contains an observation for each combination of values
in these sets. The output data set contains three variables, location, day_of_week, and sale. The data set
variables location and day_of_week save the index element values for the optimization variable s that is
written in each observation. The data set created is shown in Figure 5.40.

118 F Chapter 5: The OPTMODEL Procedure

Figure 5.40 Data Sets Created

Data Set: SOLDATAData Set: SOLDATA

Obs location day_of_week sale

1 New York 1 1

2 New York 2 1

3 New York 3 1

4 New York 4 1

5 New York 5 1

6 New York 6 1

7 New York 7 1

8 Washington 1 1

9 Washington 2 1

10 Washington 3 1

11 Washington 4 1

12 Washington 5 1

13 Washington 6 1

14 Washington 7 1

15 Boston 1 1

16 Boston 2 1

17 Boston 3 1

18 Boston 4 1

19 Boston 5 1

20 Boston 6 1

21 Boston 7 1

Note that the key columns in the preceding example do not name existing PROC OPTMODEL variables. They
create new local dummy parameters, location and day_of_week, in the same manner as dummy parameters in
index sets. These local parameters can be used in subsequent columns. For example, the following statements
demonstrate how to use a key column value in an expression for a later column value:

proc optmodel;
create data tab

from [i]=(1..10)
Square=(i*i) Cube=(i*i*i);

These statements create a data set that has 10 observations that hold squares and cubes of the numbers from 1
to 10. The key column variable here is named i and is explicitly assigned the values from 1 to 10, while the
data set variables Square and Cube hold the square and cube, respectively, of the corresponding value of i.

In the preceding example the key column values are simply the numbers from 1 to 10. The value is the same
as the observation number, so the variable i is redundant. You can remove the data set variable for a key
column via the DROP data set option, as follows:

proc optmodel;
create data tab2 (drop=i)

from [i] =(1..10)
Square=(i*i) Cube=(i*i*i);

Data Set Input/Output F 119

The local parameters declared by key columns receive their values in various ways. For a READ DATA
statement, the key column values come from the data set variables for the column. In a CREATE DATA
statement, the values can be defined explicitly, as shown in the previous example. Otherwise, the CREATE
DATA statement generates a set of values that combines the index sets of array columns that need implicit
indexing. The statements that produce the output in Figure 5.40 demonstrate implicit indexing.

Use a suffix (“Suffixes” on page 134) to read or write auxiliary values, such as variable bounds or constraint
duals. For example, consider the following statements:

data pdat;
input p $ maxprod cost;
datalines;

ABQ 12 0.7
MIA 9 0.6
CHI 14 0.5
run;

proc optmodel;
set<string> plants;
var prod{plants} >= 0;
number cost{plants};
read data pdat into plants=[p] prod.ub=maxprod cost;

The statement “plants=[p]” in the READ DATA statement declares p as a key column and instructs PROC
OPTMODEL to store the set of plant names from the data set variable p into the set parameter plants. The
statement assigns the upper bound for the variable prod indexed by p to be the value of the data set variable
maxprod. The cost parameter location indexed by p is also assigned to be the value of the data set variable
cost.

The target variables prod and cost in the preceding example use implicit indexing. Indexing can also be
performed explicitly. The following version of the READ DATA statement makes the indices explicit:

read data pdat into plants=[p] prod[p].ub=maxprod cost[p];

Explicit indexing is useful when array indices need to be transformed from the key column values in the data
set. For example, the following statements reverse the order in which elements from the data set are stored in
an array:

data abcd;
input letter $ @@;
datalines;

a b c d
;

proc optmodel;
set<num> subscripts=1..4;
string letter{subscripts};
read data abcd into [_N_] letter[5-_N_];
print letter;

The output from this example appears in Figure 5.41.

120 F Chapter 5: The OPTMODEL Procedure

Figure 5.41 READ DATA Statement: Explicit Indexing

[1] letter

1 d

2 c

3 b

4 a

The following example demonstrates the use of explicit indexing to save sequential subsets of an array in
individual data sets:

data revdata;
input month rev @@;
datalines;

1 200 2 345 3 362 4 958
5 659 6 804 7 487 8 146
9 683 10 732 11 652 12 469
;

proc optmodel;
set m = 1..3;
var revenue{1..12};
read data revdata into [_N_] revenue=rev;
create data qtr1 from [month]=m revenue[month];
create data qtr2 from [month]=m revenue[month+3];
create data qtr3 from [month]=m revenue[month+6];
create data qtr4 from [month]=m revenue[month+9];

Each CREATE DATA statement generates a data set that represents one quarter of the year. Each data set
contains the variables month and revenue. The data set qtr2 is shown in Figure 5.42.

Figure 5.42 CREATE DATA Statement: Explicit Indexing

Obs month revenue

1 1 958

2 2 659

3 3 804

Data set names and options that are used in PROC OPTMODEL statements can also be generated dynamically,
by using an expression in parentheses to specify the name and options. The expression must evaluate to a
string value with the following form:

Œ libref . � member Œ (options) �

Dynamic data set names are useful for processing data sets inside looping statements such as a FOR statement,
particularly when the loop contains a SOLVE statement. You can replace the multiple CREATE DATA
statements in the previous example with a single statement in a loop:

Control Flow F 121

proc optmodel;
set m = 1..3;
var revenue{1..12};
read data revdata into [_N_] revenue=rev;
for {q in 1..4}

create data ("qtr" || q)
from [month]=m revenue[month+(q-1)*3];

Control Flow
Most of the control flow statements in PROC OPTMODEL are familiar to users of the DATA step or the IML
procedure. PROC OPTMODEL supports the IF statement, DO blocks, the iterative DO statement, the DO
WHILE statement, and the DO UNTIL statement. You can also use the CONTINUE, LEAVE, and STOP
statements to modify control flow.

PROC OPTMODEL adds the FOR statement. This statement is similar in operation to an iterative DO loop.
However, the iteration is performed over the members of an index set. This form is convenient for iteration
over all the locations in an array, since the valid array indices are also defined using an index set. For example,
the following statements initialize the array parameter A, indexed by i and j, to random values sampled from a
normal distribution with mean 0 and variance 1:

proc optmodel;
set R=1..10;
set C=1..5;
number A{R, C};
for {i in R, j in C}

A[i, j]=rannor(-1);

The FOR statement provides a convenient way to perform a statement such as the preceding assignment
statement for each member of a set.

Formatted Output
PROC OPTMODEL provides two primary means of producing formatted output. The PUT statement
provides output of data values with detailed format control. The PRINT statement handles arrays and
produces formatted output in tabular form.

The PUT statement is similar in syntax to the PUT statement in the DATA step and in PROC IML. The
PUT statement can output data to the SAS log, the SAS listing, or an external file. Arguments to the PUT
statement specify the data to output and provide instructions for formatting. The PUT statement provides
enough control to create reports within PROC OPTMODEL. However, typically the PUT statement is used
to produce output for debugging or to quickly check data values.

122 F Chapter 5: The OPTMODEL Procedure

The following example demonstrates some features of the PUT statement:

proc optmodel;
number a=1.7, b=2.8;
set s={a,b};
put a b; /* list output */
put a= b=; /* named output */
put 'Value A: ' a 8.1 @30 'Value B: ' b 8.; /* formatted */
string str='Ratio (A/B) is:';
put str (a/b); /* strings and expressions */
put s=; /* named set output */

These statements produce the output in Figure 5.43.

Figure 5.43 PUT Statement Output

1.7 2.8
a=1.7 b=2.8
Value A: 1.7 Value B: 3
Ratio (A/B) is: 0.6071428571
s={1.7,2.8}

The first PUT statement demonstrates list output. The numeric data values are output in a default format,
BEST12., with leading and trailing blanks removed. A blank space is inserted after each data value is output.
The second PUT statement uses the equal sign (=) to request that the variable name be output along with the
regular list output.

The third PUT statement demonstrates formatted output. It uses the @ operator to position the output in a
specific column. This style of output can be used in report generation. The format specification “8.” causes
the displayed value of parameter b to be rounded.

The fourth PUT statement shows the output of a string value, str. It also outputs the value of an expression
enclosed in parentheses. The final PUT statement outputs a set along with its name.

The default destination for PUT statement output is the SAS log. The FILE and CLOSEFILE statements can
be used to send output to the SAS listing or to an external data file. Multiple files can be open at the same
time. The FILE statement selects the current destination for PUT statement output, and the CLOSEFILE
statement closes the corresponding file. See the section “FILE Statement” on page 71 for more details.

The PRINT statement is designed to output numeric and string data in the form of tables. The PRINT
statement handles the details of formatting automatically. However, the output format can be overridden by
PROC OPTMODEL options and through Output Delivery System (ODS) facilities.

The PRINT statement can output array data in a table form that contains a row for each combination of array
index values. This form uses columns to display the array index values for each row and uses other columns
to display the value of each requested data item. The following statements demonstrate the table form:

proc optmodel;
number square{i in 0..5} = i*i;
number recip{i in 1..5} = 1/i;
print square recip;

The PRINT statement produces the output in Figure 5.44.

Formatted Output F 123

Figure 5.44 PRINT Statement Output (List Form)

[1] square recip

0 0

1 1 1.00000

2 4 0.50000

3 9 0.33333

4 16 0.25000

5 25 0.20000

The first table column, labeled “[1],” contains the index values for the parameters square and recip. The
columns that are labeled “square” and “recip” contain the parameter values for each array index. For example,
the last row corresponds to the index 5 and the value in the last column is 0.2, which is the value of recip[5].

Note that the first row of the table contains no value in the recip column. Parameter location recip[0] does not
have a valid index, so no value is printed. The PRINT statement does not display variables that are undefined
or have invalid indices. This permits arrays that have similar indexing to be printed together. The sets of
defined indices in the arrays are combined to generate the set of indices shown in the table.

Also note that the PRINT statement has assigned formats and widths that differ between the square and recip
columns. The PRINT statement assigns a default fixed-point format to produce the best overall output for
each data column. The format that is selected depends on the PDIGITS= and PWIDTH= options.

The PDIGITS= and PWIDTH= options specify the desired significant digits and formatted width, respectively.
If the range of magnitudes is large enough that no suitable format can be found, then the data item is displayed
in scientific format. The table in the preceding example displays the last column with five decimal places in
order to display the five significant digits that were requested by the default PDIGITS= value. The square
column, on the other hand, does not need any decimal places.

The PRINT statement can also display two-dimensional arrays in matrix form. If the list following the PRINT
statement contains only a single array that has two index elements, then the array is displayed in matrix
form when it is sufficiently dense (otherwise the display is in table form). In this form the left-most column
contains the values of the first index element. The remaining columns correspond to and are labeled by the
values of the second index element. The following statements print an example of matrix form:

proc optmodel;
set R=1..6;
set C=1..4;
number a{i in R, j in C} = 10*i+j;
print a;

The PRINT statement produces the output in Figure 5.45.

124 F Chapter 5: The OPTMODEL Procedure

Figure 5.45 PRINT Statement Output (Matrix Form)

a

1 2 3 4

1 11 12 13 14

2 21 22 23 24

3 31 32 33 34

4 41 42 43 44

5 51 52 53 54

6 61 62 63 64

In the example the first index element ranges from 1 to 6 and corresponds to the table rows. The second index
element ranges from 1 to 4 and corresponds to the table columns. Array values can be found based on the
row and column values. For example, the value of parameter a[3,2] is 32. This location is found in the table
in the row labeled “3” and the column labeled “2.”

ODS Table and Variable Names
PROC OPTMODEL assigns a name to each table it creates. You can use these names to reference the table
when you use the Output Delivery System (ODS) to select tables and create output data sets. The names of
tables common to all solvers are listed in Table 5.12. Some solvers can generate additional tables; see the
individual solver chapters for more information. For more information about ODS, see SAS Output Delivery
System: User’s Guide.

Table 5.12 ODS Tables Produced in PROC OPTMODEL

ODS Table Name Description Statement/Option
CoforPerfInfo List of COFOR statement perfor-

mance options and their values
COFOR

DerivMethods List of derivatives used by the solver,
including the method of computation

SOLVE

OptStatistics Solver-dependent description of the
resources required for solution, in-
cluding function evaluations and
solver time

SOLVE

PrintTable Specified parameter or variable val-
ues

PRINT

ProblemSummary Description of objective, variables,
and constraints

SOLVE

ProfileInfo Detailed timing of statements and
declarations

PROFILE

SolutionSummary Overview of solution, including
solver-dependent solution quality
values

SOLVE

SolverOptions List of solver options and their values SOLVE
PerformanceInfo List of solver performance options

and their values
SOLVE

Timing Detailed solution timing PERFORMANCE / DE-
TAILS

ODS Table and Variable Names F 125

To guarantee that ODS output data sets contain information from all executed statements, use the PERSIST=
option in the ODS OUTPUT statement. For details, see SAS Output Delivery System: User’s Guide.
NOTE: The SUBMIT statement resets ODS SELECT and EXCLUDE lists.

Table 5.13 lists the variable names of the preceding tables used in the ODS template of the OPTMODEL
procedure.

Table 5.13 Variable Names for the ODS Tables Produced in PROC OPTMODEL

ODS Table Name Variables
CoforPerfInfo Label1, cValue1, and nValue1
DerivMethods Label1, cValue1, and nValue1
OptStatistics Label1, cValue1, and nValue1
PrintTable (matrix form) ROW, COL1 – COLn
PrintTable (table form) COL1 – COLn, identifier-expression(_suffix)
ProblemSummary Label1, cValue1, and nValue1
ProfileInfo Item, Line, Column, Count, NetTime, WaitTime, and

PctTime
SolutionSummary Label1, cValue1, and nValue1
SolverOptions Label1, cValue1, nValue1, cValue2, and nValue2
PerformanceInfo Label1, cValue1, and nValue1
Timing Label1, cValue1, nValue1, cValue2, and nValue2

The PRINT statement produces an ODS table named PrintTable. The variable names that are used depend
on the display format used. See the section “Formatted Output” on page 121 for details about choosing the
display format.

For the PRINT statement with table format, the columns that display array indices are named COL1–COLn,
where n is the number of index elements. Columns that display values from identifier expressions are named
using the expression’s name and suffix. The identifier name becomes the output variable name if no suffix is
used. Otherwise the variable name is formed by appending an underscore (_) and the suffix to the identifier
name. Columns that display the value of expressions are named COLn, where n is the column number in the
table.

For the PRINT statement with matrix format, the first column has the variable name ROW. The remaining
columns are named COL1–COLn, where n is the number of distinct column indices. When an ODS table
displays values from identifier expressions, a label is generated based on the expression’s name and suffix, as
described for column names in the case of table format.

The PRINTLEVEL= option controls the ODS tables produced by the SOLVE and COFOR statements. When
PRINTLEVEL=0, the statements produce no ODS tables. When PRINTLEVEL=1, the SOLVE statement pro-
duces the ODS tables ProblemSummary, SolutionSummary, and PerformanceInfo. When PRINTLEVEL=2,
the SOLVE statement produces the ODS tables ProblemSummary, SolverOptions, DerivMethods, Solution-
Summary, OptStatistics, and PerformanceInfo. When PRINTLEVEL=1 or 2, the COFOR statement produces
the ODS table CoforPerfInfo.

126 F Chapter 5: The OPTMODEL Procedure

The PERFORMANCE statement controls additional ODS tables that can be produced by the SOLVE and
COFOR statements. The PerformanceInfo table displays PERFORMANCE statement options that are used
by the SOLVE statement. The CoforPerfInfo table displays PERFORMANCE statement options that are
used by the COFOR statement. If you specify the DETAILS option in the PERFORMANCE statement, then
the SOLVE statement also produces the ODS table Timing. The COFOR statement uses the DETAILS option
to set default performance options with each loop iteration.

The following statements generate several ODS tables and write each table to a SAS data set:

proc optmodel printlevel=2;
ods output PrintTable=expt ProblemSummary=exps DerivMethods=exdm

SolverOptions=exso SolutionSummary=exss OptStatistics=exos
Timing=exti;

performance details;
var x{1..2} >= 0;
min z = 2*x[1] + 3 * x[2] + x[1]**2 + 10*x[2]**2

+ 2.5*x[1]*x[2] + x[1]**3;
con c1: x[1] - x[2] <= 1;
con c2: x[1] + 2*x[2] >= 100;
solve;
print x;

The data set expt contains the PrintTable table and is shown in Figure 5.46. The variable names are COL1
and x.

Figure 5.46 PrintTable ODS Table

PrintTablePrintTable

Obs COL1 x

1 1 10.448

2 2 44.776

The data set exps contains the ProblemSummary table and is shown in Figure 5.47. The variable names
are Label1, cValue1, and nValue1. The rows describe the instance, and the description depends on the form
of the problem. In most solvers, the rows describe the objective function, variables, and constraints. In the
network solver, the rows describe the number of nodes, the number of edges, the directedness of the graph,
and the type of problem solved over the graph.

ODS Table and Variable Names F 127

Figure 5.47 ProblemSummary ODS Table

ProblemSummaryProblemSummary

Obs Label1 cValue1 nValue1

1 Objective Sense Minimization .

2 Objective Function z .

3 Objective Type Nonlinear .

4 .

5 Number of Variables 2 2.000000

6 Bounded Above 0 0

7 Bounded Below 2 2.000000

8 Bounded Below and Above 0 0

9 Free 0 0

10 Fixed 0 0

11 .

12 Number of Constraints 2 2.000000

13 Linear LE (<=) 1 1.000000

14 Linear EQ (=) 0 0

15 Linear GE (>=) 1 1.000000

16 Linear Range 0 0

The data set exso contains the SolverOptions table and is shown in Figure 5.48. The variable names are
Label1, cValue1, nValue1, cValue2, and nValue2. The rows, which depend on the solver called by PROC
OPTMODEL, list the values taken by each of the solver options. The presence of an asterisk (*) next to an
option indicates that a value has been specified for that option.

Figure 5.48 SolverOptions ODS Table

SolverOptionsSolverOptions

Obs Label1 cValue1 nValue1 cValue2 nValue2

1 ALGORITHM INTERIORPOINT . .

2 FEASTOL 1E-6 0.000001000 .

3 HESSTYPE FULL . .

4 LOGFREQ 1 1.000000 .

5 MAXITER 5000 5000.000000 .

6 MAXTIME I I .

7 OBJLIMIT 1E20 1E20 .

8 OPTTOL 1E-6 0.000001000 .

9 SOLTYPE 1 1.000000 .

10 TIMETYPE REAL . .

128 F Chapter 5: The OPTMODEL Procedure

The data set exdm contains the DerivMethods table, which displays the methods of derivative computation,
and is shown in Figure 5.49. The variable names are Label1, cValue1, and nValue1. The rows, which depend
on the derivatives used by the solver, specify the method used to calculate each derivative.

Figure 5.49 DerivMethods ODS Table

DerivMethodsDerivMethods

Obs Label1 cValue1 nValue1

1 Objective Gradient Analytic Formulas .

2 Objective Hessian Analytic Formulas .

The data set exss contains the SolutionSummary table and is shown in Figure 5.50. The variable names are
Label1, cValue1, and nValue1. The rows give an overview of the solution, including the solver chosen, the
objective value, and the solution status. Depending on the values returned by the solver, the SolutionSummary
table might also include some solution quality values such as optimality error and infeasibility. The values
in the SolutionSummary table appear in the _OROPTMODEL_ macro variable; each solver chapter has a
section that describes the solver’s contribution to this macro variable.

Figure 5.50 SolutionSummary ODS Table

SolutionSummarySolutionSummary

Obs Label1 cValue1 nValue1

1 Solver NLP .

2 Algorithm Interior Point .

3 Objective Function z .

4 Solution Status Optimal .

5 Objective Value 22623.347101 22623

6 .

7 Optimality Error 5E-7 0.000000500

8 Infeasibility 0 0

9 .

10 Iterations 5 5.000000

11 Presolve Time 0.00 0.000175

12 Solution Time 0.01 0.006376

The data set exos contains the OptStatistics table, which displays the optimization statistics, and is shown in
Figure 5.51. The variable names are Label1, cValue1, and nValue1. The rows, which depend on the solver
called by PROC OPTMODEL, describe the amount of time and the function evaluations that are used by
the solver and associated processing. Times are displayed in seconds of clock or CPU time according to the
value of the TIMETYPE= option that is used by the solver.

ODS Table and Variable Names F 129

Figure 5.51 OptStatistics ODS Table

OptStatisticsOptStatistics

Obs Label1 cValue1 nValue1

1 Function Evaluations 28 28.000000

2 Gradient Evaluations 28 28.000000

3 Hessian Evaluations 6 6.000000

4 Problem Generation Time 0.00 0.000398

5 Code Generation Time 0.01 0.007144

6 Presolve Time 0.00 0.000175

7 Solution Time 0.01 0.006376

8 Total Time 0.07 0.074679

Problem generation is the process of combining the model with the data into a format that solvers can
use. This includes computing equation coefficients, but it does not include reading data or evaluating other
programming statements. Code generation is compiles code for nonlinear equations in the model and
performs other analysis that is needed prior to solver evaluations. The time required for problem generation
will be negligible if the model contains only linear equations. The presolve time in this table includes the
time used by the PROC OPTMODEL presolver and any presolver that is part of the solver. Solution time
is the sum of the times used by the presolvers and the solver. The presolve and solution times also appear
in the SolutionSummary table. The OptStatistics table includes a total time, which is the sum of times for
problem generation, code generation, solution, and overhead in the SOLVE statement. Overhead includes
solver setup, postprocessing, and ODS table output.

The Timing table provides an alternate breakdown of SOLVE statement timing. Times in this table are shown
in seconds of clock time. The data set exti, which is shown in Figure 5.52, contains the Timing table data
and statistics. The variable names are Label1, cValue1, nValue1, cValue2, and nValue2. The values present
depend on the solver and on the context of the SOLVE statement.

Figure 5.52 Timing ODS Table

TimingTiming

Obs Label1 cValue1 nValue1 cValue2 nValue2

1 Problem Generation 0.0003975585 0.00 0.0053228127 0.53%

2 OPTMODEL Presolver 0.0001746318 0.00 0.0023381017 0.23%

3 Solver Initialization 0.0603277548 0.06 0.8077133928 80.77%

4 Code Generation 0.0071441545 0.01 0.0956513183 9.57%

5 Solver 0.0062017029 0.01 0.0830330661 8.30%

6 Solver Postprocessing 0.0004437537 0.00 0.0059413085 0.59%

Some of the Timing table values have already been described for the OptStatistics table. Solver initialization
time is overhead in the SOLVE statement before the solver starts. Solver time includes execution of the solver
and its associated preprocessor, if any. Solver postprocessing time is overhead in the SOLVE statement after
the solver has completed. Several table values appear only for a SOLVE statement called within a COFOR
loop. These values are shown in Table 5.14.

130 F Chapter 5: The OPTMODEL Procedure

Table 5.14 Solver Timing Values for COFOR Loops

Label Description
Waiting for Multiple Threads Time waiting for the required number of threads

to become available on the client machine when
NTHREADS > 1

Waiting for Grid Time waiting for the distributed computing environ-
ment to become ready to accept a new problem

Sending to Grid Time to transmit a solver problem description to the
distributed computing environment

Receiving from Grid Time to receive solver results from the distributed com-
puting environment

Waiting after Solver Time between solver completion and the resumption of
the SOLVE statement for processing the results

Grid Overhead Time required for processing in the distributed comput-
ing environment that is not included in the preceding
times

Constraints
You can add constraints to a PROC OPTMODEL model. The solver tries to satisfy the specified constraints
while minimizing or maximizing the objective.

Constraints in PROC OPTMODEL have names. By using the name, you can examine various attributes of
the constraint, such as the dual value that is returned by the solver (see the section “Suffixes” on page 134 for
details). A constraint is not allowed to have the same name as any other model component.

PROC OPTMODEL provides a default name if none is supplied by the constraint declaration. The predefined
array _ACON_ provides names for otherwise anonymous constraints. The predefined numeric parameter
NACON contains the number of such constraints. The constraints are assigned integer indices in sequence,
so _ACON_[1] refers to the first unnamed constraint declared, while _ACON_[_NACON_] refers to the newest.

Consider the following example of a simple model that has a constraint:

proc optmodel;
var x, y;
min r = x**2 + y**2;
con c: x+y >= 1;
solve;
print x y;

Without the constraint named c, the solver would find the point x D y D 0 that has an objective value of 0.
However, the constraint makes this point infeasible. The resulting output is shown in Figure 5.53.

Constraints F 131

Figure 5.53 Constrained Model Solution

Problem Summary

Objective Sense Minimization

Objective Function r

Objective Type Quadratic

Number of Variables 2

Bounded Above 0

Bounded Below 0

Bounded Below and Above 0

Free 2

Fixed 0

Number of Constraints 1

Linear LE (<=) 0

Linear EQ (=) 0

Linear GE (>=) 1

Linear Range 0

Constraint Coefficients 2

Performance Information

Execution Mode Single-Machine

Number of Threads 4

Solution Summary

Solver QP

Algorithm Interior Point

Objective Function r

Solution Status Optimal

Objective Value 0.4999995397

Primal Infeasibility 2.3014762E-7

Dual Infeasibility 2.3570226E-7

Bound Infeasibility 0

Duality Gap 1.9575231E-7

Complementarity 0

Iterations 3

Presolve Time 0.00

Solution Time 0.01

x y

0.5 0.5

The solver has found the point where the objective function is minimized in the region x C y � 1. This is
actually on the border of the region: the constraint c is active (see the section “Dual Values” on page 138 for
details).

132 F Chapter 5: The OPTMODEL Procedure

In the preceding example the constraint c had only a lower bound. You can specify constraints that have
both upper and lower bounds. For example, replacing the constraint c in the previous example would further
restrict the feasible region:

con c: 3 >= x+y >= 1;

PROC OPTMODEL standardizes constraints to collect the expression terms that depend on variables and
to separate the expression terms that are constant. When there is a single equality or inequality operator,
the separable constant terms are moved to the right operand while the variable terms are moved to the left
operand. For range constraints, the separable constant terms from the middle expression are subtracted from
the lower and upper bounds. You can see the standardized constraints with the use of the EXPAND statement
in the following example. Consider the following PROC OPTMODEL statements:

proc optmodel;
var x{1..3};
con b: sum{i in 1..3}(x[i] - i) = 0;
expand b;

These statements produce an optimization problem with the following constraint:

(x[1] - 1) + (x[2] - 2) + (x[3] - 3) = 0

The EXPAND statement produces the output in Figure 5.54.

Figure 5.54 Expansion of a Standardized Constraint

Constraint b: x[1] + x[2] + x[3] = 6

Here the i separable constant terms in the operand of the SUM operation were moved to the right-hand side
of the constraint. The sum of these i values is 6.

After standardization the constraint expression that contains all the variables is called the body of the
constraint. You can reference the current value of the body expression by attaching the .body suffix to the
constraint name. Similarly, the upper and lower bound expressions can be referenced by using the .ub and .lb
suffixes, respectively. (See the section “Suffixes” on page 134 for more information.)

As a result of standardization, the value of a body expression depends on how the corresponding constraint is
entered. The following example demonstrates how using equivalent relational syntax can result in different
.body values:

proc optmodel;
var x init 1;
con c1: x**2 <= 5;
con c2: 5 >= x**2;
con c3: -x**2 >= -5;
con c4: -5 <= -x**2;
expand;
print c1.body c2.body c3.body c4.body;

The EXPAND and PRINT statements produce the output in Figure 5.55.

Constraints F 133

Figure 5.55 Expansion and Body Values of Standardized Constraints

Var x
Constraint c1: x**2 <= 5
Constraint c2: -x**2 >= -5
Constraint c3: -x**2 >= -5
Constraint c4: --x**2 <= 5

c1.BODY c2.BODY c3.BODY c4.BODY

1 -1 -1 1

CAUTION: Each constraint has an associated dual value (see “Dual Values” on page 138). As a result of
standardization, the sign of a dual value depends in some instances on the way in which the corresponding
constraint is entered into PROC OPTMODEL. In the case of a minimization objective with one-sided
constraint g.x/ � L, avoid entering the constraint as L � g.x/. For example, the following statements
produce a value of 2:

proc optmodel;
var x;
min o1 = x**2;
con c1: x >= 1;
solve;
print (c1.dual);

Replacing the constraint as follows results in a value of –2:

con c1: 1 <= x;

In the case of a maximization objective with the one-sided constraint g.x/ � U , avoid entering the constraint
as U � g.x/.

When a constraint has variables on both sides, the sign of the dual value depends on the direction of the
inequality. For example, you can enter the following constraint:

con c1: x**5 - y + 8 <= 5*x + y**2;

This is a � constraint, so c1.dual is nonpositive. If you enter the same constraint as follows, then c1.dual is
nonnegative:

con c1: 5*x + y**2 >= x**5 - y + 8;

It is also important to note that the signs of the dual values are negated in the case of maximization. The
following statements output a value of 2:

proc optmodel;
var x;
min o1 = x**2;
con c1: 1 <= x <= 2;
solve;
print (c1.dual);

Changing the objective function as follows yields the same value of x, but c1.dual now holds the value –2:

max o1 = -x**2;

134 F Chapter 5: The OPTMODEL Procedure

NOTE: A simple bound constraint on a decision variable x can be entered either by using a CONSTRAINT
declaration or by assigning values to x.lb and x.ub. If you require dual values for simple bound constraints,
use the CONSTRAINT declaration.

Constraints that are specified using relational operators can be linear or nonlinear. PROC OPTMODEL
determines the type of constraint automatically by examining the form of the body expression. Subexpressions
that do not involve variables are treated as constants. Constant subexpressions that are multiplied by or added
to linear subexpressions produce new linear subexpressions. For example, constraint A in the following
statements is linear:

proc optmodel;
var x{1..3};
con A: 0.5*(x[1]-x[2]) + x[3] >= 0;

Suffixes
Use suffixes with identifier-expressions to retrieve and modify various auxiliary values maintained by the
solver. The values of the suffixes can come from expressions in the declaration of the name that is suffixed.
For example, the following declaration of variable v provides the values of several suffixes of v at the same
time:

var v >= 0 <= 2 init 1;

The values of the suffixes also come from the solver or from values assigned by assignment or READ DATA
statements (see an example in the section “Data Set Input/Output” on page 117).

You must use suffixes with names of the appropriate type. For example, the .dual suffix cannot be used with
the name of an objective. In particular, local dummy parameter names cannot have suffixes.

Table 5.15 shows the names of the available suffixes.

Table 5.15 Suffix Names
Name Kind Suffix Modifiable Description
any .name No Name text for any non-dummy symbol
Constraint .active No Active status in current problem
Constraint .block Yes Block ID for decomposition
Constraint .body No Current constraint body value
Constraint .dual No Dual value from the solver
Constraint .label Yes Label text for the solver
Constraint .lb Yes Current lower bound
Constraint .status Yes Status information from solver
Constraint .ub Yes Current upper bound
Implicit Variable .sol No Current solution value
Objective .active No Active status in current problem
Objective .sol No Current objective value
Objective .label Yes Label text for the solver
Problem .active No Active status of problem
Problem .label Yes Label text for the solver

Suffixes F 135

Table 5.15 (continued)
Name Kind Suffix Modifiable Description
Variable .active No Active status in current problem
Variable .direction Yes Branching direction for MILP
Variable .dual No Alias for .rc
Variable .fixed No Fixed status
Variable .label Yes Label text for the solver
Variable .lb Yes Lower bound
Variable .msinit No Numeric value at the best starting point re-

ported by multistart solver
Variable .priority Yes Branching priority for MILP and CLP
Variable .rc No Reduced cost (LP) or gradient of Lagrangian

function
Variable .relax Yes Relaxation of integrality restriction
Variable .sol No Current variable value
Variable .sol[i] Yes Saved solution value
Variable .status Yes Status information from solver
Variable .ub Yes Upper bound

The .sol suffix for a variable, implicit variable, or objective can be used within a declaration to reference the
current value of the symbol. It is treated as a constant in such cases. The value is independent of the current
problem. When the OPTMODEL procedure processes a SOLVE statement, the value is fixed at the start
of the SOLVE statement. The .sol suffix can be followed by a positive integer solution index to refer to a
particular solution that the SOLVE statement returns. See the section “Multiple Solutions” on page 151 for
more information about accessing multiple solutions from the solver. Each problem tracks saved solution
values separately. Outside of declarations, a variable, implicit variable, or objective name with the .sol suffix
and no solution index is equivalent to the unsuffixed name.

The .status suffix reports status information from the solver. Currently, only the LP solver provides status
information. The .status suffix takes on the same character values that are found in the _STATUS_ variable of
the PRIMALOUT and DUALOUT data sets for the OPTLP procedure, including values set by the IIS= option.
See the section “Variable and Constraint Status” on page 273 and the section “Irreducible Infeasible Set” on
page 274, both in Chapter 7, “The Linear Programming Solver,” for more information. For other solvers, the
.status values default to a single blank character.

If you choose to modify the .status suffix for a variable or constraint, the assigned suffix value can be a single
character or an empty string. The LP solver rejects invalid status characters. Blank or empty strings are
treated as new row or column entries for the purpose of “warm starting” the solver.

The .active suffix reports the current activity status for names in the problem. The value is 1 if the element is
active or 0 otherwise. A PROBLEM name is considered active if it is the current problem (that is, it was
selected by the most recent USE PROBLEM statement). A constraint is considered active if it is included in
the current problem and not dropped. An objective is considered active if it is the selected objective for the
current problem. A variable is considered active if it is included in the current problem, independent of the
fixed status.

The .fixed suffix reports the fixed status of a variable. The value is 1 if the variable is fixed using the FIX
statement for the current problem or 0 otherwise. Variables that are not included in the current problem are
treated as unfixed.

136 F Chapter 5: The OPTMODEL Procedure

The .msinit suffix reports the numeric value of a variable at the best starting point, as reported by the NLP
solver when the MULTISTART option is specified. If the solver does not report a best starting point, then
the value is missing. The value is tracked independently for each problem to support multiple subproblems.
See the section “Multistart” on page 512 in Chapter 10, “The Nonlinear Programming Solver,” for more
information.

The .block suffix identifies the subproblem for constraints when used with the METHOD=USER option
of the decomposition algorithm. The value must be numeric and is initially assigned a missing value. A
constraint with a missing value for the .block suffix is part of the master problem. Otherwise constraints
belong to the same subproblem if and only if they have the same .block suffix values. See Chapter 15, “The
Decomposition Algorithm,” for more information.

The .label suffix represents the text passed to the solver to identify a variable, constraint, or objective. Some
solvers can display this label in their output. The maximum text length passed to the solver is controlled by
the MAXLABLEN= option. The default text is based on the name in the model, abbreviated to fit within
MAXLABLEN. For example, a model variable x[1] would be labeled “x[1]”. This label text can be reassigned.
The .label suffix value is also used to create MPS labels stored in the output data set for the SAVE MPS and
SAVE QPS statements.

The .name suffix represents the name of a symbol as a text string. The .name suffix can be used with any
declared name except for local dummy parameters. This suffix is primarily useful when applied to problem
symbols (see the section “Problem Symbols” on page 152), since the .name suffix returns the name of
the referenced symbol, not the problem symbol name. The name text is based on the name in the model,
abbreviated to fit in 256 characters.

Suffixed names can be used wherever a parameter name is accepted, provided only the value is required.
However, you are not allowed to change the value of certain suffixes. Table 5.15 marks these suffixes as not
modifiable. Suffixed names that are used as a target in an assignment or READ DATA statement must be
modifiable.

The following statements formulate a trivial linear programming problem. The objective value is unbounded,
which is reported after the execution of the SOLVE statement. The PRINT statements illustrate the corre-
sponding default auxiliary values. This is shown in Figure 5.56.

proc optmodel;
var x, y;
min z = x + y;
con c: x + 2*y <= 3;
solve;
print x.lb x.ub x.status x.sol;
print y.lb y.ub y.status y.sol;
print c.lb c.ub c.body c.dual;

Figure 5.56 Using a Suffix: Retrieving Auxiliary Values

x.LB x.UB x.STATUS x.SOL

-1.7977E+308 1.7977E+308 I 0

y.LB y.UB y.STATUS y.SOL

-1.7977E+308 1.7977E+308 I 0

c.LB c.UB c.BODY c.DUAL

-1.7977E+308 3 0 .

Integer Variable Suffixes F 137

Next, continue to submit the following statements to change the default bounds and solve again. The output
is shown in Figure 5.57.

x.lb=0;
y.lb=0;
c.lb=1;
solve;
print x.lb x.ub x.status x.sol;
print y.lb y.ub y.status y.sol;
print c.lb c.ub c.body c.dual;

Figure 5.57 Using a Suffix: Modifying Auxiliary Values

x.LB x.UB x.STATUS x.SOL

0 1.7977E+308 L 0

y.LB y.UB y.STATUS y.SOL

0 1.7977E+308 B 0.5

c.LB c.UB c.BODY c.DUAL

1 3 1 0.5

NOTE: Spaces are significant. The form NAME. TAG is treated as a SAS format name followed by the tag
name, not as a suffixed identifier. The forms NAME.TAG, NAME . TAG, and NAME .TAG (note the location
of spaces) are interpreted as suffixed references.

Integer Variable Suffixes
The suffixes .relax, .priority, and .direction are applicable to integer variables.

For an integer variable x, setting x.relax to a nonzero, nonmissing value relaxes the integrality restriction.
The value of x.relax is read as either 1 or 0, depending on whether or not integrality is relaxed. This suffix is
ignored for noninteger variables.

The value that is contained in x.priority sets the priority of an integer variable x for use with branching in
the MILP solver or selection in the CLP solvers. This value can be any nonnegative, nonmissing number.
The default value is 0, which indicates default branching priority. Variables with positive .priority values are
assigned greater priority than the default. Variables with the highest .priority values are assigned the highest
priority. Variables with the same .priority value are assigned the same branching priority.

The value of x.direction assigns a branching direction to an integer variable x. This value should be an integer
in the range –1 to 3. A noninteger value in this range is rounded on assignment. The default value is 0. The
significance of each integer is found in Table 5.16.

138 F Chapter 5: The OPTMODEL Procedure

Table 5.16 Branching Directions

Value Direction
–1 Round down to nearest integer
0 Default
1 Round up to nearest integer
2 Round to nearest integer
3 Round to closest presolved bound

Suppose the solver branches next on an integer variable x whose last LP relaxation solution is 3.3. Suppose
also that after passing through the presolver, the lower bound of x is 0 and the upper bound of x is 10. If the
value in x.direction is –1 or 2, then the solver sets x to 3 for the next iteration. If the value in x.direction is 1,
then the solver sets x to 4. If the value in x.direction is 3, then the solver sets x to 0.

The MPS data set created by the SAVE MPS statement (“SAVE MPS Statement” on page 86) includes a
BRANCH section if any nondefault .priority or .direction values have been specified for integer variables.

Dual Values
A dual value is associated with each constraint. To access the dual value of a constraint, use the constraint
name followed by the suffix .dual.

For linear programming problems, the dual value associated with a constraint is also known as the dual price
(also called the shadow price). The shadow price is usually interpreted economically as the rate at which the
optimal value changes with respect to a change in some right-hand side that represents a resource supply or
demand requirement.

For nonlinear programming problems, the dual values correspond to the values of the optimal Lagrange
multipliers. For more details about duality in nonlinear programming, see Bazaraa, Sherali, and Shetty
(1993).

From the dual value associated with the constraint, you can also tell whether the constraint is active or not. A
constraint is said to be active (tight at a point) if it holds with equality at that point. It can be informative to
identify active constraints at the optimal point and check their corresponding dual values. Relaxing the active
constraints might improve the objective value.

Background on Duality in Mathematical Programming

For a minimization problem, there exists an associated problem with the following property: any feasible
solution to the associated problem provides a lower bound for the original problem, and conversely any
feasible solution to the original problem provides an upper bound for the associated problem. The original
and the associated problems are referred to as the primal and the dual problem, respectively. More specifically,
consider the primal problem,

minimize
x

f .x/

subject to ci .x/ D 0; i 2 E
ci .x/ � 0; i 2 L
ci .x/ � 0; i 2 G

Dual Values F 139

where E , L, and G denote the sets of equality, � inequality, and � inequality constraints, respectively.
Variables x 2 Rn are called the primal variables. The Lagrangian function of the primal problem is defined as

L.x; �; �; �/ D f .x/ �
X
i2E

�ici .x/ �
X
i2L

�ici .x/ �
X
i2G

�ici .x/

where �i 2 R, �i � 0, and �i � 0. By convention, the Lagrange multipliers for inequality constraints have
to be nonnegative. Hence �, ��, and � correspond to the Lagrange multipliers in the preceding Lagrangian
function. It can be seen that the Lagrangian function is a linear combination of the objective function and
constraints of the primal problem.

The Lagrangian function plays a fundamental role in nonlinear programming. It is used to define the
optimality conditions that characterize a local minimum of the primal problem. It is also used to formulate
the dual problem of the preceding primal problem. To this end, consider the following dual function:

d.�; �; �/ D inf
x
L.x; �; �; �/

The dual problem is defined as

maximize
�;�;�

d.�; �; �/

subject to � � 0

� � 0:

The variables �, �, and � are called the dual variables. Note that the dual variables associated with the
equality constraints (�) are free, whereas those associated with � inequality constraints (�) have to be
nonpositive and those associated with � inequality constraints (�) have to be nonnegative.

The relation between the primal and the dual problems provides a nice connection between the optimal
solutions of the problems. Suppose x� is an optimal solution of the primal problem and .��; ��; ��/ is an
optimal solution of the dual problem. The difference between the objective values of the primal and dual
problems, ı D f .x�/ � d.��; ��; ��/ � 0, is called the duality gap. For some restricted class of convex
nonlinear programming problems, both the primal and the dual problems have an optimal solution and the
optimal objective values are equal—that is, the duality gap ı D 0. In such cases, the optimal values of the
dual variables correspond to the optimal Lagrange multipliers of the primal problem with the correct signs.

A maximization problem is treated analogously to a minimization problem. For the maximization problem

maximize
x

f .x/

subject to ci .x/ D 0; i 2 E
ci .x/ � 0; i 2 L
ci .x/ � 0; i 2 G;

the dual problem is

minimize
�;�;�

d.�; �; �/

subject to � � 0

� � 0:

where the dual function is defined as d.�; �; �/ D sup
x

L.x; �; �; �/ and the Lagrangian function

L.x; �; �; �/ is defined the same as earlier. In this case, �, �, and �� correspond to the Lagrange multipliers
in L.x; �; �; �/.

140 F Chapter 5: The OPTMODEL Procedure

Minimization Problems

For inequality constraints in minimization problems, a positive optimal dual value indicates that the associated
� inequality constraint is active at the solution, and a negative optimal dual value indicates that the associated
� inequality constraint is active at the solution. In PROC OPTMODEL, the optimal dual value for a range
constraint (a constraint with both upper and lower bounds) is the sum of the dual values associated with the
upper and lower inequalities. Since only one of the two inequalities can be active, the sign of the optimal
dual value, if nonzero, identifies which one is active.

For equality constraints in minimization problems, the optimal dual values are unrestricted in sign. A positive
optimal dual value for an equality constraint implies that, starting close enough to the primal solution, the
same optimum could be found if the equality constraint were replaced with a � inequality constraint. A
negative optimal dual value for an equality constraint implies that the same optimum could be found if the
equality constraint were replaced with a � inequality constraint.

The following is an example where simple linear programming is considered:

proc optmodel;
var x, y;
min z = 6*x + 7*y;
con

4*x + y >= 5,
-x - 3*y <= -4,
x + y <= 4;

solve;
print x y;
expand _ACON_ ;
print _ACON_.dual _ACON_.body;

The PRINT statements generate the output shown in Figure 5.58.

Figure 5.58 Dual Values in Minimization Problem: Display

Problem Summary

Objective Sense Minimization

Objective Function z

Objective Type Linear

Number of Variables 2

Bounded Above 0

Bounded Below 0

Bounded Below and Above 0

Free 2

Fixed 0

Number of Constraints 3

Linear LE (<=) 2

Linear EQ (=) 0

Linear GE (>=) 1

Linear Range 0

Constraint Coefficients 6

Dual Values F 141

Figure 5.58 continued

Performance Information

Execution Mode Single-Machine

Number of Threads 1

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function z

Solution Status Optimal

Objective Value 13

Primal Infeasibility 0

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 4

Presolve Time 0.00

Solution Time 0.00

x y

1 1

Constraint _ACON_[1]: 4*x + y >= 5
Constraint _ACON_[2]: - x - 3*y <= -4
Constraint _ACON_[3]: x + y <= 4

[1] _ACON_.DUAL _ACON_.BODY

1 1 5

2 -2 -4

3 0 2

It can be seen that the first and second constraints are active, with dual values 1 and –2. Continue to submit
the following statements. Notice how the objective value is changed in Figure 5.59.

ACON[1].lb = _ACON_[1].lb - 1;
solve;
ACON[2].ub = _ACON_[2].ub + 1;
solve;

142 F Chapter 5: The OPTMODEL Procedure

Figure 5.59 Dual Values in Minimization Problem: Interpretation

Problem Summary

Objective Sense Minimization

Objective Function z

Objective Type Linear

Number of Variables 2

Bounded Above 0

Bounded Below 0

Bounded Below and Above 0

Free 2

Fixed 0

Number of Constraints 3

Linear LE (<=) 2

Linear EQ (=) 0

Linear GE (>=) 1

Linear Range 0

Constraint Coefficients 6

Performance Information

Execution Mode Single-Machine

Number of Threads 1

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function z

Solution Status Optimal

Objective Value 12

Primal Infeasibility 0

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 4

Presolve Time 0.00

Solution Time 0.00

Dual Values F 143

Figure 5.59 continued

Problem Summary

Objective Sense Minimization

Objective Function z

Objective Type Linear

Number of Variables 2

Bounded Above 0

Bounded Below 0

Bounded Below and Above 0

Free 2

Fixed 0

Number of Constraints 3

Linear LE (<=) 2

Linear EQ (=) 0

Linear GE (>=) 1

Linear Range 0

Constraint Coefficients 6

Performance Information

Execution Mode Single-Machine

Number of Threads 1

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function z

Solution Status Optimal

Objective Value 10

Primal Infeasibility 0

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 4

Presolve Time 0.00

Solution Time 0.00

The change is just as the dual values imply. After the first constraint is relaxed by one unit, the objective
value is improved by one unit. For the second constraint, the relaxation and improvement are one unit and
two units, respectively.

NOTE: The signs of dual values produced by PROC OPTMODEL depend, in some instances, on the way in
which the corresponding constraints are entered. See the section “Constraints” on page 130 for details.

144 F Chapter 5: The OPTMODEL Procedure

Maximization Problems

For inequality constraints in maximization problems, a positive optimal dual value indicates that the associated
� inequality constraint is active at the solution, and a negative optimal dual value indicates that the associated
� inequality constraint is active at the solution. The optimal dual value for a range constraint is the sum of
the dual values associated with the upper and lower inequalities. The sign of the optimal dual value identifies
which inequality is active.

For equality constraints in maximization problems, the optimal dual values are unrestricted in sign. A positive
optimal dual value for an equality constraint implies that, starting close enough to the primal solution, the
same optimum could be found if the equality constraint were replaced with a � inequality constraint. A
negative optimal dual value for an equality constraint implies that the same optimum could be found if the
equality constraint were replaced with a � inequality constraint.

CAUTION: The signs of dual values produced by PROC OPTMODEL depend, in some instances, on the way
in which the corresponding constraints are entered. See the section “Constraints” on page 130 for details.

Reduced Costs
In linear programming problems, each variable has a corresponding reduced cost. To access the reduced cost
of a variable, add the suffix .rc or .dual to the variable name. These two suffixes are interchangeable.

The reduced cost of a variable is the rate at which the objective value changes when the value of that variable
changes. At optimality, basic variables have a reduced cost of zero; a nonbasic variable with zero reduced
cost indicates the existence of multiple optimal solutions.

In nonlinear programming problems, the reduced cost interpretation does not apply. The .dual and .rc variable
suffixes represent the gradient of the Lagrangian function, computed using the values returned by the solver.

The following example illustrates the use of the .rc suffix:

proc optmodel;
var x >= 0, y >= 0, z >= 0;
max cost = 4*x + 3*y - 5*z;
con

-x + y + 5*z <= 15,
3*x - 2*y - z <= 12,
2*x + 4*y + 2*z <= 16;

solve;
print x y z;
print x.rc y.rc z.rc;

The PRINT statements generate the output shown in Figure 5.60.

Figure 5.60 Reduced Cost in Maximization Problem: Display

x y z

5 1.5 0

x.RC y.RC z.RC

0 0 -6.5

Presolver F 145

In this example, x and y are basic variables, while z is nonbasic. The reduced cost of z is –6.5, which implies
that increasing z from 0 to 1 decreases the optimal value from 24.5 to 18.

Presolver
PROC OPTMODEL includes a simple presolver that processes linear constraints to produce tighter bounds
on variables. The presolver can reduce the number of variables and constraints that are presented to the solver.
These changes can result in reduced solution times.

Linear constraints that involve only a single variable are converted into variable bounds. The presolver then
eliminates redundant linear constraints for which variable bounds force the constraint to always be satisfied.
Tightly bounded variables where upper and lower bounds are within the range specified by the VARFUZZ=
option (see the section “PROC OPTMODEL Statement” on page 40) are automatically fixed to the average
of the bounds. The presolver also eliminates variables that are fixed by the user or by the presolver.

The presolver can infer tighter variable bounds from linear constraints when all variables in the constraint
or all but one variable have known bounds. For example, when given the following PROC OPTMODEL
declarations, the presolver can determine the bound y � 4:

proc optmodel;
var x >= 3;
var y;
con c: x + y <= 7;

The presolver makes multiple passes and rechecks linear constraints after bounds are tightened for the
referenced variables. The number of passes is controlled by the PRESOLVER= option. After the passes are
finished, the presolver attempts to fix the value of all variables that are not used in the updated objective
and constraints. The current value of such a variable is used if the value lies between the variable’s upper
and lower bounds. Otherwise, the value is adjusted to the nearer bound. The value of an integer variable is
rounded before being checked against its bounds.

In some cases the solver might perform better without the presolve transformations, so almost all such trans-
formations are unavailable when the option PRESOLVER=BASIC is specified. However, the presolver still
eliminates variables that have values that have been fixed by the FIX statement. To disable the OPTMODEL
presolver entirely, use PRESOLVER=NONE. The solver assigns values to any unused, unfixed variables
when the option PRESOLVER=NONE is specified.

Model Update
The PROC OPTMODEL modeling language provides several means of modifying a model after it is first
specified. You can change the parameter values of the model. You can add new model components. The
FIX and UNFIX statements can fix variables to specified values or rescind previously fixed values. The
DROP and RESTORE statements can deactivate and reactivate constraints. See also the section “Multiple
Subproblems” on page 150 for information on how to maintain multiple models.

To illustrate how these statements work, reconsider the following example from the section “Constraints” on
page 130:

146 F Chapter 5: The OPTMODEL Procedure

proc optmodel;
var x, y;
min r = x**2 + y**2;
con c: x+y >= 1;
solve;
print x y;

As described previously, the solver finds the optimal point x = y = 0.5 with r = 0.5. You can see the effect of
the constraint c on the solution by temporarily removing it. You can add the following statements:

drop c;
solve;
print x y;

This change produces the output in Figure 5.61.

Figure 5.61 Solution with Dropped Constraint

Problem Summary

Objective Sense Minimization

Objective Function r

Objective Type Quadratic

Number of Variables 2

Bounded Above 0

Bounded Below 0

Bounded Below and Above 0

Free 2

Fixed 0

Number of Constraints 0

Constraint Coefficients 0

Performance Information

Execution Mode Single-Machine

Number of Threads 4

Model Update F 147

Figure 5.61 continued

Solution Summary

Solver QP

Algorithm Interior Point

Objective Function r

Solution Status Optimal

Objective Value 0

Primal Infeasibility 0

Dual Infeasibility 0

Bound Infeasibility 0

Duality Gap 0

Complementarity 0

Iterations 0

Presolve Time 0.00

Solution Time 0.00

x y

0 0

The optimal point is x D y D 0, as expected.

You can restore the constraint c with the RESTORE statement, and you can also investigate the effect of
forcing the value of variable x to 0.3. This requires the following statements:

restore c;
fix x=0.3;
solve;
print x y c.dual;

This produces the output in Figure 5.62.

148 F Chapter 5: The OPTMODEL Procedure

Figure 5.62 Solution with Fixed Variable

Problem Summary

Objective Sense Minimization

Objective Function r

Objective Type Quadratic

Number of Variables 2

Bounded Above 0

Bounded Below 0

Bounded Below and Above 0

Free 1

Fixed 1

Number of Constraints 1

Linear LE (<=) 0

Linear EQ (=) 0

Linear GE (>=) 1

Linear Range 0

Constraint Coefficients 2

Performance Information

Execution Mode Single-Machine

Number of Threads 4

Solution Summary

Solver QP

Algorithm Interior Point

Objective Function r

Solution Status Optimal

Objective Value 0.58

Primal Infeasibility 0

Dual Infeasibility 0

Bound Infeasibility 0

Duality Gap 0

Complementarity 0

Iterations 0

Presolve Time 0.00

Solution Time 0.01

x y c.DUAL

0.3 0.7 1.4

The variable x still has the value that was defined in the FIX statement. The objective value has increased
by 0.08 from its constrained optimum 0.5 (see Figure 5.53). The constraint c is active, as confirmed by the
positive dual value.

Model Update F 149

You can return to the original optimization problem by allowing the solver to vary variable x with the UNFIX
statement, as follows:

unfix x;
solve;
print x y c.dual;

This produces the output in Figure 5.63. The model was returned to its original conditions.

Figure 5.63 Solution with Original Model

Problem Summary

Objective Sense Minimization

Objective Function r

Objective Type Quadratic

Number of Variables 2

Bounded Above 0

Bounded Below 0

Bounded Below and Above 0

Free 2

Fixed 0

Number of Constraints 1

Linear LE (<=) 0

Linear EQ (=) 0

Linear GE (>=) 1

Linear Range 0

Constraint Coefficients 2

Performance Information

Execution Mode Single-Machine

Number of Threads 4

Solution Summary

Solver QP

Algorithm Interior Point

Objective Function r

Solution Status Optimal

Objective Value 0.4999995397

Primal Infeasibility 2.3014762E-7

Dual Infeasibility 2.3570226E-7

Bound Infeasibility 0

Duality Gap 1.9575231E-7

Complementarity 0

Iterations 3

Presolve Time 0.00

Solution Time 0.01

150 F Chapter 5: The OPTMODEL Procedure

Figure 5.63 continued

x y c.DUAL

0.5 0.5 1

Multiple Subproblems
The OPTMODEL procedure enables multiple models to be manipulated easily by using named problems to
switch the active model components. Problems keep track of an objective, a set of included variables and
constraints, and some status information that is associated with the variables and constraints. Other data,
such as parameter values, bounds, and the current value of variables, are shared by all problems.

Problems are declared with the PROBLEM declaration. You can easily switch between problems by using
the USE PROBLEM statement. The USE PROBLEM statement makes the specified problem become the
current problem. The various statements that generate problem data, such as SOLVE, EXPAND, and SAVE
MPS, always operate using the model components included in the current problem.

A problem declaration can specify the problem’s initial objective by copying it from the problem named in a
FROM clause or by including the objective symbol. This objective can be overridden while the problem is
current by declaring a new non-array objective or by executing programming statements that specify a new
objective.

Variables can also be included when the problem is current by declaring them or by using the FIX or UNFIX
statement. Similarly, constraints can be included when the problem is current by declaring them or by using
the RESTORE or DROP statement. There is no way to exclude a variable or constraint item after it has been
included in a problem, although the variable or constraint can be fixed or dropped.

Variables that are declared but not included in a problem are treated as constants when a problem is generated,
while constraints that are declared but not included are ignored. The solver does not update the values and
status for these model components.

A problem also tracks certain other status information that is associated with its included symbols, and this
information can be changed without affecting other problems. This information includes the fixed status
for variables, and the dropped status for constraints. The following additional data that are tracked by the
problem are available through variable and constraint suffixes:

� var.STATUS (including IIS status)

� var.SOL[i] (for each solution i)

� var.MSINIT

� var.RC

� var.DUAL (alias of var.RC)

� var.FIXED

� con.STATUS (including IIS status)

� con.DUAL

� con.BLOCK

Multiple Solutions F 151

The initial problem when OPTMODEL starts is predeclared with the name _START_. This problem can be
reinstated again (after other USE PROBLEM statements) with the statement

use problem _start_;

See “Example 5.5: Multiple Subproblems” on page 174 for example statements that use multiple subproblems.

Multiple Solutions
When a solver finishes, it reports zero or more solutions for the optimization variables of the current problem.
Each solution assigns a value to each of the variables in the problem. The SOLVE statement saves these
solutions with the current problem. The first reported solution, if any, is also copied into the optimization
variables. The number of solutions is available in the predeclared numeric parameter _NSOL_.

NOTE: The network solver does not require optimization variables and has its own conventions for returning
multiple solutions.

You can access the solutions that are saved with the problem by adding a solution index to the .sol suffix
of the variable name. For example, x.sol[2] would reference the second solution saved for variable x in the
current problem. Both the variable name and the suffix can be indexed. For example, assign[3,7].sol[1] refers
to the first solution for the array variable element assign[3,7]. The solution index must be an integer in the
range 1 to _NSOL_.

The following example illustrates the processing of multiple solutions from the CLP solver:

proc optmodel printlevel=0;
var x{1..2} integer >= 1 <= 3;
con c: alldiff(x);
solve with clp / allsolns;
print _NSOL_;
print {j in 1..2, i in 1.._NSOL_} x[j].sol[i];
create data solout from [sol]={i in 1.._NSOL_}

{j in 1..2} <col("x"||j)=x[j].sol[i]> ;

This program produces the output in Figure 5.64. It also creates a data set, solout, which has each solution in
a separate observation.

Figure 5.64 Processing Multiple Solutions

NSOL

6

x.SOL

1 2 3 4 5 6

1 1 1 2 2 3 3

2 2 3 1 3 1 2

152 F Chapter 5: The OPTMODEL Procedure

Problem Symbols
The OPTMODEL procedure declares a number of symbols that are aliases for model components in the
current problem. These symbols allow the model components to be accessed uniformly. These symbols are
described in Table 5.17.

Table 5.17 Problem Symbols

Symbol Indexing Description
NVAR Number of variables
VAR {1.._NVAR_} Variable array
NCON Number of constraints
CON {1.._NCON_} Constraint array
_S_NVAR_ Number of presolved variables
_S_VAR_ {1.._S_VAR_} Presolved variable array
_S_NCON_ Number of presolved constraints
_S_CON_ {1.._S_CON_} Presolved constraint array
OBJ Current objective
PROBLEM Current problem

If the table specifies indexing, then the corresponding symbol is accessed as an array. For example, if the
problem includes two variables, x and y, then the value of _NVAR_ is 2 and the current variable values
can be accessed as _var_[1] and _var_[2]. The problem variables prefixed with _S are restricted to model
components in the problem after processing by the OPTMODEL presolver.

The following statements define a simple linear programming model and then use the problem symbols to
print out some of the problem results. The .name suffix is used in the PRINT statements to display the actual
variable and constraint names. Any of the suffixes that apply to a model component can be applied to the
corresponding generic symbol.

proc optmodel printlevel=0;
var x1 >= 0, x2 >= 0, x3 >= 0, x4 >= 0, x5 >= 0;

minimize z = x1 + x2 + x3 + x4;

con a1: x1 + x2 + x3 <= 4;
con a2: x4 + x5 <= 6;
con a3: x1 + x4 >= 5;
con a4: x2 + x5 >= 2;
con a5: x3 >= 3;

solve with lp;

print _var_.name _var_ _var_.rc _var_.status;
print _con_.name _con_.lb _con_.body _con_.ub _con_.dual _con_.status;

The PRINT statement output is shown in Figure 5.65.

OPTMODEL Options F 153

Figure 5.65 Problem Symbol Output

[1] _VAR_.NAME _VAR_ _VAR_.RC _VAR_.STATUS

1 x1 1 0 B

2 x2 0 1 L

3 x3 3 0 B

4 x4 4 0 B

5 x5 2 0 B

[1] _CON_.NAME _CON_.LB _CON_.BODY _CON_.UB _CON_.DUAL _CON_.STATUS

1 a1 -1.7977E308 4 4.0000E+00 0 L

2 a2 -1.7977E308 6 6.0000E+00 0 B

3 a3 5 5 1.7977E+308 1 U

4 a4 2 2 1.7977E+308 0 U

5 a5 3 3 1.7977E+308 1 U

OPTMODEL Options
All PROC OPTMODEL options can be specified in the PROC statement (see the section “PROC OPTMODEL
Statement” on page 40 for more information). However, it is sometimes necessary to change options after
other PROC OPTMODEL statements have been executed. For example, if an optimization technique had
trouble with convergence, then it might be useful to vary the PRESOLVER= option value. This can be done
with the RESET OPTIONS statement.

The RESET OPTIONS statement accepts options in the same form used by the PROC OPTMODEL statement.
The RESET OPTIONS statement is also able to reset option values and to change options programmatically.
For example, the following statements print the value of parameter n at various precisions:

proc optmodel;
number n = 1/7;
for {i in 1..9 by 4}
do;

reset options pdigits=(i);
print n;

end;
reset options pdigits; /* reset to default */

The output generated is shown in Figure 5.66. The RESET OPTIONS statement in the DO loop sets the
PDIGITS option to the value of i. The final RESET OPTIONS statement restores the default option value,
because the value was omitted.

Figure 5.66 Changing the PDIGITS Option Value

n

0.1

n

0.14286

n

0.142857143

154 F Chapter 5: The OPTMODEL Procedure

Automatic Differentiation
PROC OPTMODEL automatically generates statements to evaluate the derivatives for most objective
expressions and nonlinear constraints. PROC OPTMODEL generates analytic derivatives for objective and
constraint expressions written in terms of the procedure’s mathematical operators and most standard SAS
library functions.

NOTE: Some functions, such as ABS, FLOOR, and SIGN, and some operators, such as IF-THEN, <>
(maximum operator), and >< (minimum operator), must be used carefully in modeling expressions because
functions that include such components are not continuously differentiable or even continuous.

Expressions that reference user-defined functions or some SAS library functions might require numerical
approximation of derivatives. PROC OPTMODEL uses either forward-difference approximation or central-
difference approximation as specified by the FD= option (see the section “PROC OPTMODEL Statement”
on page 40).

NOTE: The numerical gradient approximations are significantly slower than automatically generated deriva-
tives when the number of optimization variables is large.

Forward-Difference Approximations

The FD=FORWARD option requests the use of forward-difference derivative approximations. For a function
f of n variables, the first-order derivatives are approximated by

gi D
@f

@xi
D
f .x C eihi / � f .x/

hi

Notice that up to n additional function calls are needed here. The step lengths hi , i D 1; : : : ; n, are based on
the assumed function precision, DIGITS:

hi D 10
�DIGITS=2.1C jxi j/

You can use the FDIGITS= option to specify the function precision, DIGITS, for the objective function. For
constraints, use the CDIGITS= option.

The second-order derivatives are approximated by using up to n.nC 3/=2 extra function calls (Dennis and
Schnabel 1983, pp. 80, 104):

@2f

@x2i
D

f .x C hiei / � 2f .x/C f .x � hiei /

h2i

@2f

@xi@xj
D

f .x C hiei C hj ej / � f .x C hiei / � f .x C hj ej /C f .x/

hihj

Notice that the diagonal of the Hessian uses a central-difference approximation (Abramowitz and Stegun
1972, p. 884). The step lengths are

hi D 10
�DIGITS=3.1C jxi j/

Conversions F 155

Central-Difference Approximations

The FD=CENTRAL option requests the use of central-difference derivative approximations. Generally,
central-difference approximations are more accurate than forward-difference approximations, but they require
more function evaluations. For a function f of n variables, the first-order derivatives are approximated by

gi D
@f

@xi
D
f .x C eihi / � f .x � eihi /

2hi

Notice that up to 2n additional function calls are needed here. The step lengths hi , i D 1; : : : ; n, are based
on the assumed function precision, DIGITS:

hi D 10
�DIGITS=3.1C jxi j/

You can use the FDIGITS= option to specify the function precision, DIGITS, for the objective function. For
constraints, use the CDIGITS= option.

The second-order derivatives are approximated by using up to 2n.nC 1/ extra function calls (Abramowitz
and Stegun 1972, p. 884):

@2f

@x2i
D
�f .x C 2hiei /C 16f .x C hiei / � 30f .x/C 16f .x � hiei / � f .x � 2hiei /

12h2i

@2f

@xi@xj
D

f .x C hiei C hj ej / � f .x C hiei � hj ej / � f .x � hiei C hj ej /C f .x � hiei � hj ej /

4hihj

The step lengths are

hi D 10
�DIGITS=3.1C jxi j/

Conversions
Numeric values are implicitly converted to strings when needed for function arguments or operands to the
string concatenation operator (||). A warning message is generated when the conversion is applied to a
function argument. The conversion uses BEST12. format. Unlike the DATA step, the conversion trims
blanks.

Implicit conversion of strings to numbers is not permitted. Use the INPUT function to explicitly perform
such conversions.

156 F Chapter 5: The OPTMODEL Procedure

FCMP Routines
The OPTMODEL procedure can call functions and subroutines that are compiled by the FCMP procedure.
You can use FCMP functions wherever a function expression is allowed in PROC OPTMODEL. Use the
CALL statement to call FCMP subroutines. The following example defines a function in the FCMP procedure
and calls it within PROC OPTMODEL:

proc fcmp outlib=work.funcs.test;
/* arithmetic geometric mean */
function agm(a0, b0);

a=a0; b = b0;
if a<=0 or b<=0 then return(0);
do until(a - b < a/1e12);

a1 = 0.5*a + 0.5*b;
b1 = sqrt(a*b);
a = a1; b = b1;

end;
return(a);

endsub;
run;

/* libraries must be specified with the CMPLIB option */
option cmplib=work.funcs;

proc optmodel;
print (agm(1,2));

/* find x where agm(1,x) == 23 */
var x init 1;
num c = 23;
min z=(agm(1,x)-c)^2;
solve;
print x;

FCMP subroutines can return data by updating OPTMODEL numeric and string parameters, which are
passed as arguments in a CALL statement. These arguments are declared using the OUTARGS statement
in the PROC FCMP subroutine definition. The OPTMODEL argument must be specified with an identifier
expression. The following code shows a simple example of output arguments. The maximum length of
output strings from OUTARGS arguments is restricted to the argument length before the call, as described in
the section “CALL Statement” on page 54.

proc fcmp outlib=work.funcs.test;
subroutine do_sqr(x, sq, text $);

outargs sq, text;
sq = x*x;
text = 'This is an example of output arguments';

endsub;
run;

option cmplib=work.funcs;

proc optmodel;

FCMP Routines F 157

string s init repeat(' ', 79); /* reserve 80 bytes */
number n;
call do_sqr(7, n, s);
print s n;

This code produces the output in Figure 5.67.

Figure 5.67 FCMP Output Arguments

s n

This is an example of output arguments 49

You can pass OPTMODEL arrays to FCMP functions and subroutines that accept matrix arguments. The array
must match the type and dimensions of the FCMP argument declaration. The argument in the OPTMODEL
CALL statement must be specified using the following syntax:

array-name Œ . suffix �

The following code passes a constant matrix to an FCMP function. The array coeff contains the coefficients
of a polynomial, which in this case defines a simple quadratic formula, x2 � 2x C 1.

proc fcmp outlib=work.funcs.test;
function evalpoly(x, coeff[*]);

z = 0;
do i = dim1(coeff) to 1 by -1;

z = z * x + coeff[i];
end;
return (z);

endsub;
run;

option cmplib=work.funcs;

proc optmodel;
num coeff{1..3} = [1, -2, 1];
var x;
min z=evalpoly(x, coeff);
solve;
print x;

An array that is used as a matrix argument must be indexed like an FCMP matrix. In other words, the array
index set must be specified as the crossproduct of one or more range expressions (such as 1..N) where the
lower bound and step size are 1. Set parameters that are used for indexing must contain a crossproduct of
ranges, but the element order is not important. The following code shows some examples of suitable and
unsuitable array declarations:

proc fcmp outlib=work.funcs.test;
subroutine mattest(x[*]);

put x[1]=;
endsub;
subroutine mattest2(x[*,*]);

put x[1,1]=;
endsub;

run;

158 F Chapter 5: The OPTMODEL Procedure

option cmplib=work.funcs;

proc optmodel;
/* the following arrays can be used as matrices */
num N init 3;
num mat1{1..N} init 0;
call mattest(mat1); /* OK */
set S1 = 1..5;
num mat2{S1} init 0;
call mattest(mat2); /* OK */
set S2 = {S1,S1};
num mat3{S2} init 0;
call mattest2(mat3); /* OK */
num mat4{S1 cross S1} init 0;
call mattest2(mat4); /* OK */
num L init 1;
num mat5{L..N} init 0;
call mattest(mat5); /* OK */
set S3 init S1;
num mat6{S3} init 0;
call mattest(mat6); /* OK */

/* some errors are detected at execution time */
S3 = 2..5;
call mattest(mat6); /* ERROR: lower bound not 1 */
S3 = {1, 3, 4, 5};
call mattest(mat6); /* ERROR: missing index 2 */
L = 0;
call mattest(mat5); /* ERROR: lower bound not 1 */

/* the following arrays cannot be used as matrices */
num arr1{1..10 by 3}; /* step size is not 1 */
call mattest(arr1); /* ERROR */
num arr2{i in 1..N, j in 1..N: j >= i}; /* selection expression used */
call mattest2(arr2); /* ERROR */
num arr3{i in 1..N, j in 1..i}; /* index dependency on 'i' */
call mattest2(arr3); /* ERROR */

Not all PROC FCMP functionality is compatible with PROC OPTMODEL; in particular, the following FCMP
functions are not supported and should not be called within your FCMP function definitions: READ_ARRAY,
WRITE_ARRAY, RUN_MACRO, and RUN_SASFILE. In many cases, OPTMODEL capabilities can replace
these functions. Matrix arguments can be used in place of the READ_ARRAY function by using the READ
DATA statement to load the matrix in PROC OPTMODEL. Similarly, you can replace the WRITE_ARRAY
function in an FCMP subroutine by copying the matrix to an output argument and using the OPTMODEL
procedure to write the matrix. You can use the SUBMIT statement in place of the RUN_MACRO and
RUN_SASFILE functions.

The SAS CMPLIB= system option specifies where to look for previously compiled functions and subroutines.
For more information about the CMPLIB= system option, see SAS System Options: Reference. FCMP
functions can be used in distributed mode with the NLP multistart solver. The needed PROC FCMP compiled
routines are automatically packaged and distributed. For more information about the multistart solver, see
Chapter 10, “The Nonlinear Programming Solver,” in this book.

More on Index Sets F 159

NOTE: Distributed mode requires SAS High-Performance Optimization.

PROC OPTMODEL uses derivatives values that are provided by FCMP when they are available. FCMP can-
not provide derivatives with respect to array arguments, so PROC OPTMODEL must use finite differences to
compute these derivatives. Also, if the CMPOPT= SAS system option specifies the FUNCDIFFERENCING
value, then PROC OPTMODEL uses its own finite differencing for FCMP functions.

More on Index Sets
Dummy parameters behave like parameters but are assigned values only when an index set is evaluated. You
can reference the declared dummy parameters from index set expressions that follow the index set item. You
can also reference the dummy parameters in the expression or statement controlled by the index set. As the
members of the set expression of an index set item are enumerated, the element values of the members are
assigned to the local dummy parameters.

The number of names in a dummy parameter declaration must match the element length of the corresponding
set expression in the index set item. A single name is allowed when the set member type is scalar (numeric or
string). If the set members are tuples that have n > 1 elements, then n names are required between the angle
brackets (< >) that precede the IN keyword.

Multiple index set items in an index set are nominally processed in a left-to-right order. That is, a set
expression from an index set item is evaluated as though the index set items that precede it have already been
evaluated. The left-hand index set items can assign values to local dummy parameters that are used by the set
expressions that follow them. After each member from the set expression is enumerated, any index set items
to the right are reevaluated as needed. The actual order in which index set items are evaluated can vary, if
necessary, to allow more efficient enumeration. PROC OPTMODEL generates the same set of values in any
case, although possibly in a different order than strict left-to-right evaluation.

You can view the element combinations that are generated from an index set as tuples. This is especially true
for index set expressions (see the section “Index Set Expression” on page 107). However, in most cases no
tuple set is actually formed, and the element values are assigned only to local dummy parameters.

You can specify a selection expression following a colon (:). The index set generates only those combinations
of values for which the selection expression is true. For example, the following statements produce a set of
upper triangular indices:

proc optmodel;
put (setof {i in 1..3, j in 1..3 : j >= i} <i, j>);

These statements produce the output in Figure 5.68.

Figure 5.68 Upper Triangular Index Set

{<1,1>,<1,2>,<1,3>,<2,2>,<2,3>,<3,3>}

You can use the left-to-right evaluation of index set items to express the previous set more compactly. The
following statements produce the same output as the previous statements:

160 F Chapter 5: The OPTMODEL Procedure

proc optmodel;
put ({i in 1..3, i..3});

In this example, the first time the second index set item is evaluated, the value of the dummy parameter i is 1,
so the item produces the set {1,2,3}. At the second evaluation the value of i is 2, so the second item produces
the set {2,3}. At the final evaluation the value of i is 3, so the second item produces the set {3}.

In many cases it is useful to combine the SLICE operator with index sets. A special form of index set item
uses the SLICE operator implicitly. Normally an index set item that is applied to a set of tuples of length
greater than one must be of the form

< name-1 Œ , . . . name-n � > IN set-expression

In the special form, one or more of the name elements are replaced by expressions. The expressions select
tuple elements by using the SLICE operator. An expression that consists of a single name must be enclosed
in parentheses to distinguish it from a dummy parameter. The remaining names are the dummy parameters
for the index set item that is applied to the SLICE result. The following example demonstrates the use of
implicit set slicing:

proc optmodel;
number N = 3;
set<num,str> S = {<1,'a'>,<2,'b'>,<3,'a'>,<4,'b'>};
put ({i in 1..N, <(i),j> in S});
put ({i in 1..N, j in slice(<i,*>, S)});

The two PUT statements in this example are equivalent.

Threaded and Distributed Processing
The OPTMODEL procedure can take advantage of the multiple CPUs that are available in many computers.
PROC OPTMODEL automatically uses multithreaded execution to divide problem generation among the
multiple CPUs of the computer that is running the procedure. Hessian and Jacobian matrix evaluation is auto-
matically parallelized across threads of execution on multiple CPUs. The COFOR statement enables solvers
to concurrently execute in background threads on multiple CPUs, overlapping with PROC OPTMODEL
statement processing. Parallel execution can decrease the amount of clock time required to perform a task,
although the total CPU time required might increase.

If you use the PERFORMANCE statement and specify an NTHREADS= option, and the statement does not
request distributed computing, then threading in the OPTMODEL procedure is controlled by the statement’s
NTHREADS= option. Otherwise, threading in the OPTMODEL procedure is controlled by the following
SAS system options:

CPUCOUNT=number | ACTUAL
specifies the maximum number of CPUs that can be used.

THREADS | NOTHREADS
enables or disables the use of threading.

Good performance is usually obtained with the default option settings (THREADS and CPU-
COUNT=ACTUAL). See the option descriptions in SAS System Options: Reference for more details.

Macro Variable _OROPTMODEL_ F 161

The PERFORMANCE statement and the SAS system options set the maximum number of threads. The
number of threads that PROC OPTMODEL actually uses depends on the characteristics of the problem that
is being solved. In particular, threading is not used when the problem is simple enough that threading offers
no advantage.

The COFOR statement and certain solver features can use distributed computing when the PERFORMANCE
statement specifies a distributed computing environment. Distributed computing provides the most benefit
when a computational process can be structured so that it includes a large number of nontrivial subprocesses
that can be executed independently.

NOTE: Distributed computing mode requires SAS High-Performance Optimization.

Macro Variable _OROPTMODEL_
The OPTMODEL procedure creates a macro variable named _OROPTMODEL_. You can inspect the
execution of the most recently invoked solver from the value of the macro variable. The macro variable is
defined at the start of the procedure and updated after each SOLVE statement is executed. The OPTMODEL
procedure also updates the macro variable when an error is detected.

The _OROPTMODEL_ value is a string that consists of several “KEYWORD=value” items in sequence,
separated by blanks; for example:

STATUS=OK ALGORITHM=DS SOLUTION_STATUS=OPTIMAL OBJECTIVE=119302.04331
PRIMAL_INFEASIBILITY=3.552714E-13 DUAL_INFEASIBILITY=2.273737E-13
BOUND_INFEASIBILITY=0 ITERATIONS=82 PRESOLVE_TIME=0.02 SOLUTION_TIME=0.05

The information contained in _OROPTMODEL_ varies according to which solver was last called. For lists
of keywords and possible values, see the individual solver chapters.

If a value has not been computed, then the corresponding element is not included in the value of the macro
variable. When PROC OPTMODEL starts, for example, the macro variable value is set to “STATUS=OK”
because no SOLVE statement has been executed. If the STATUS= indicates an error, then the other values
from the solver might not be available, depending on when the error occurred.

Solver Status Parameters

In addition to creating the macro variable _OROPTMODEL_, the OPTMODEL procedure creates several
predeclared parameters to provide simple access to solver status values. These parameters are declared as
follows:

string _STATUS_;
string _SOLUTION_STATUS_;
set<string> _OROPTMODEL_STR_KEYS_;
set<string> _OROPTMODEL_NUM_KEYS_;
string _OROPTMODEL_STR_{_OROPTMODEL_STR_KEYS_};
number _OROPTMODEL_NUM_{_OROPTMODEL_NUM_KEYS_};

The value of _STATUS_ is equal to the STATUS= component of the _OROPTMODEL_ macro variable. The
value of _STATUS_ is initially “OK”. The value is updated during the SOLVE statement and after statement
execution errors.

162 F Chapter 5: The OPTMODEL Procedure

The value of _SOLUTION_STATUS_ is equal to the SOLUTION_STATUS= component of the _OROPT-
MODEL_ macro variable. The value is initially an empty string. The value is updated during the SOLVE
statement.

You can use the remaining status parameters to access all the components of the _OROPTMODEL_ macro
variable. The following statements demonstrate these parameters:

proc optmodel printlevel=0;
var x init 1 >= 0.001;
min z=sin(x)/x;
solve;
for {k in /STATUS SOLUTION_STATUS ALGORITHM/}

put _OROPTMODEL_STR_[k]=;
for {k in /OBJECTIVE ITERATIONS/}

put _OROPTMODEL_NUM_[k]=;

These statements produce the output in Figure 5.69.

Figure 5.69 Solver Status Parameters

_OROPTMODEL_STR_[STATUS]=OK
_OROPTMODEL_STR_[SOLUTION_STATUS]=OPTIMAL
_OROPTMODEL_STR_[ALGORITHM]=IP
_OROPTMODEL_NUM_[OBJECTIVE]=-0.217233628
_OROPTMODEL_NUM_[ITERATIONS]=3

The _OROPTMODEL_STR_ array contains the same character component values that are found in the
OROPTMODEL macro variable. Specify the component name as the array index. For example, the
indices “STATUS” and “SOLUTION_STATUS” select array elements that hold the STATUS= and SOLU-
TION_STATUS= component values, respectively. The set _OROPTMODEL_STR_KEYS_ contains the
component indices that you can use with _OROPTMODEL_STR_. The OPTMODEL procedure updates
the _OROPTMODEL_STR_ and _OROPTMODEL_STR_KEYS_ parameters during the execution of the
SOLVE statement and after any execution errors occur.

The _OROPTMODEL_NUM_ array contains the numeric component values that are displayed in the
OROPTMODEL macro variable. For example, the index “OBJECTIVE” selects the array element that
holds the objective value when a solution is available. The set _OROPTMODEL_NUM_KEYS_ contains the
component indices that you can use with _OROPTMODEL_NUM_. The OPTMODEL procedure updates
the _OROPTMODEL_NUM_ and _OROPTMODEL_NUM_KEYS_ parameters during the execution of the
SOLVE statement and after any execution errors occur.

Macro and Statement Evaluation Order

PROC OPTMODEL reads a complete statement, such as a DO statement, before executing any code in it.
But macro language statements are processed as the code is read. So you must be careful when using the
OROPTMODEL macro variable in code that involves SOLVE statements nested in loops or DO statements.
The following statements demonstrate one example of this behavior:

Rewriting PROC NLP Models for PROC OPTMODEL F 163

proc optmodel;
var x, y;
min z=x**2 + (x*y-1)**2;
for {n in 1..3} do;

fix x=n;
solve;
%put Line 1 &_OROPTMODEL_;
put 'Line 2 ' (symget("_OROPTMODEL_"));

end;
quit;

In the preceding statements the %PUT statement is executed once, before any SOLVE statements are executed.
It displays PROC OPTMODEL’s initial setting of the macro variable. But the PUT statement is executed
after each SOLVE statement and indicates the expected solution status.

Rewriting PROC NLP Models for PROC OPTMODEL
This section describes techniques for converting PROC NLP models to PROC OPTMODEL models. Exam-
ple 5.8 also demonstrates how to rewrite a PROC NLP model for use with PROC OPTMODEL.

To illustrate the basics, consider the following first version of the PROC NLP model for the example “Simple
Pooling Problem” in Chapter 6, “The NLP Procedure” (SAS/OR User’s Guide: Mathematical Programming
Legacy Procedures):

proc nlp all;
parms amountx amounty amounta amountb amountc

pooltox pooltoy ctox ctoy pools = 1;
bounds 0 <= amountx amounty amounta amountb amountc,

amountx <= 100,
amounty <= 200,

0 <= pooltox pooltoy ctox ctoy,
1 <= pools <= 3;

lincon amounta + amountb = pooltox + pooltoy,
pooltox + ctox = amountx,
pooltoy + ctoy = amounty,
ctox + ctoy = amountc;

nlincon nlc1-nlc2 >= 0.,
nlc3 = 0.;

max f;
costa = 6; costb = 16; costc = 10;
costx = 9; costy = 15;
f = costx * amountx + costy * amounty

- costa * amounta - costb * amountb - costc * amountc;
nlc1 = 2.5 * amountx - pools * pooltox - 2. * ctox;
nlc2 = 1.5 * amounty - pools * pooltoy - 2. * ctoy;
nlc3 = 3 * amounta + amountb - pools * (amounta + amountb);

run;

These statements define a model that has bounds, linear constraints, nonlinear constraints, and a simple
objective function. The following statements are a straightforward conversion of the PROC NLP statements
to PROC OPTMODEL form:

164 F Chapter 5: The OPTMODEL Procedure

proc optmodel;
var amountx init 1 >= 0 <= 100,

amounty init 1 >= 0 <= 200;
var amounta init 1 >= 0,

amountb init 1 >= 0,
amountc init 1 >= 0;

var pooltox init 1 >= 0,
pooltoy init 1 >= 0;

var ctox init 1 >= 0,
ctoy init 1 >= 0;

var pools init 1 >=1 <= 3;
con amounta + amountb = pooltox + pooltoy,

pooltox + ctox = amountx,
pooltoy + ctoy = amounty,
ctox + ctoy = amountc;

number costa, costb, costc, costx, costy;
costa = 6; costb = 16; costc = 10;
costx = 9; costy = 15;
max f = costx * amountx + costy * amounty

- costa * amounta - costb * amountb - costc * amountc;
con nlc1: 2.5 * amountx - pools * pooltox - 2. * ctox >= 0,

nlc2: 1.5 * amounty - pools * pooltoy - 2. * ctoy >= 0,
nlc3: 3 * amounta + amountb - pools * (amounta + amountb)

= 0;
solve;
print amountx amounty amounta amountb amountc

pooltox pooltoy ctox ctoy pools;

The PROC OPTMODEL variable declarations are split into individual declarations because PROC OPT-
MODEL does not permit name lists in its declarations. In the OPTMODEL procedure, you specify variable
bounds as part of the variable declaration instead of in a separate BOUNDS statement. The PROC NLP
statements are as follows:

parms amountx amounty amounta amountb amountc
pooltox pooltoy ctox ctoy pools = 1;

bounds 0 <= amountx amounty amounta amountb amountc,
amountx <= 100,
amounty <= 200,

0 <= pooltox pooltoy ctox ctoy,
1 <= pools <= 3;

The following PROC OPTMODEL statements are equivalent to the preceding PROC NLP statements:

var amountx init 1 >= 0 <= 100,
amounty init 1 >= 0 <= 200;

var amounta init 1 >= 0,
amountb init 1 >= 0,
amountc init 1 >= 0;

var pooltox init 1 >= 0,
pooltoy init 1 >= 0;

var ctox init 1 >= 0,
ctoy init 1 >= 0;

var pools init 1 >= 1 <= 3;

Rewriting PROC NLP Models for PROC OPTMODEL F 165

The linear constraints are declared in the PROC NLP model by using the following statement:

lincon amounta + amountb = pooltox + pooltoy,
pooltox + ctox = amountx,
pooltoy + ctoy = amounty,
ctox + ctoy = amountc;

The following linear constraint declarations in the PROC OPTMODEL model are quite similar to the PROC
NLP LINCON declarations:

con amounta + amountb = pooltox + pooltoy,
pooltox + ctox = amountx,
pooltoy + ctoy = amounty,
ctox + ctoy = amountc;

But PROC OPTMODEL provides much more flexibility in defining linear constraints. For example, a
coefficient can be a named parameter or any other expression that evaluates to a constant.

The cost parameters are declared explicitly in the PROC OPTMODEL model. Unlike the DATA step or the
NLP procedure, PROC OPTMODEL requires names to be declared before they are used. There are multiple
ways to set the values of these parameters. The preceding example uses assignments. You could make the
values part of the declaration by using the INIT expression clause or the = expression clause. You could also
read the values from a data set by using the READ DATA statement.

In the original PROC NLP statements, the assignment to a parameter such as costa occurs every time
the objective function is evaluated. However, the assignment occurs just once in the PROC OPTMODEL
statements, when the assignment statement is processed. This works because the values are constant. But the
PROC OPTMODEL statements permit the parameters to be reassigned later so that you can interactively
modify the model.

The following statements define the objective f in the PROC NLP model:

max f;
. . .
f = costx * amountx + costy * amounty

- costa * amounta - costb * amountb - costc * amountc;

The PROC OPTMODEL version of the objective is defined by using the same expression text, as follows:

max f = costx * amountx + costy * amounty
- costa * amounta - costb * amountb - costc * amountc;

But the MAX statement and the assignment to the name f in the PROC NLP statements are combined in
PROC OPTMODEL. There are advantages and disadvantages to this approach. The PROC OPTMODEL
formulation is much closer to the mathematical formulation of the model. However, if multiple intermediate
variables are used to structure the objective, then multiple IMPVAR declarations are required.

In the PROC NLP model, the nonlinear constraints use the following syntax:

nlincon nlc1-nlc2 >= 0.,
nlc3 = 0.;

. . .
nlc1 = 2.5 * amountx - pools * pooltox - 2. * ctox;
nlc2 = 1.5 * amounty - pools * pooltoy - 2. * ctoy;
nlc3 = 3 * amounta + amountb - pools * (amounta + amountb);

166 F Chapter 5: The OPTMODEL Procedure

In the PROC OPTMODEL model, the equivalent statements are as follows:

con nlc1: 2.5 * amountx - pools * pooltox - 2. * ctox >= 0,
nlc2: 1.5 * amounty - pools * pooltoy - 2. * ctoy >= 0,
nlc3: 3 * amounta + amountb - pools * (amounta + amountb)

= 0;

The nonlinear constraints in PROC OPTMODEL use the same syntax as linear constraints. In fact, if the
variable pools were declared as a parameter, then all the preceding constraints would be linear. The nonlinear
constraint in PROC OPTMODEL combines the NLINCON statement of PROC NLP with the assignment in
the PROC NLP statements. Objective names can be used in nonlinear constraint expressions to structure the
formula as they are in objective expressions,

The PROC OPTMODEL model does not use a RUN statement to invoke the solver. Instead the solver
is invoked interactively by the SOLVE statement in PROC OPTMODEL. By default, the OPTMODEL
procedure prints much less information about the optimization process. Generally this information consists of
messages from the solver (such as the termination reason) and a short status display. The PROC OPTMODEL
statements add a PRINT statement in order to display the variable estimates from the solver.

Examples: OPTMODEL Procedure

Example 5.1: Matrix Square Root
This example demonstrates the use of PROC OPTMODEL array parameters and variables. The following
statements create a randomized positive definite symmetric matrix and define an optimization model to find
the matrix square root of the generated matrix:

proc optmodel;
number n = 5; /* size of matrix */
/* random original array */
number A{1..n, 1..n} = 10 - 20*rand('UNIFORM');
/* compute upper triangle of the

* symmetric matrix A*transpose(A) */
/* should be positive def unless A is singular */
number P{i in 1..n, j in i..n};
for {i in 1..n, j in i..n}

P[i,j] = sum{k in 1..n} A[i,k]*A[j,k];
/* coefficients of square root array

* (upper triangle of symmetric matrix) */
var q{i in 1..n, i..n};
/* The default initial value q[i,j]=0 is

* a local minimum of the objective,

* so you must move it away from that point. */
q[1,1] = 1;
/* minimize difference of square of q from P */
min r = sum{i in 1..n, j in i..n}

(sum{k in 1..i} q[k,i]*q[k,j]
+ sum{k in i+1..j} q[i,k]*q[k,j]
+ sum{k in j+1..n} q[i,k]*q[j,k]
- P[i,j])**2;

solve;
print q;

Example 5.2: Reading From and Creating a Data Set F 167

These statements define a random array A of size n � n. The product P is defined as the matrix product
AAT . The product is symmetric, so the declaration of the parameter P gives it upper triangular indexing. The
matrix represented by P should be positive definite unless A is singular. But singularity is unlikely because
of the random generation of A. If P is positive definite, then it has a well-defined square root, Q, such that
P D QQT .

The objective r simply minimizes the sum of squares of the coefficients as

r D
X

1�i�j�n

R2i;j

where R D QQT � P . (This technique for computing matrix square roots is intended only for the
demonstration of PROC OPTMODEL capabilities. Better methods exist.)

Output 5.1.1 shows part of the output from running these statements. The values that are actually displayed
depend on the random numbers generated.

Output 5.1.1 Matrix Square Root Results

q

1 2 3 4 5

1 -0.10556 -7.03961 8.64638 1.89284 -8.28542

2 5.23609 0.64462 -6.63339 6.71074

3 -1.61894 -7.31865 1.14428

4 3.76627 0.32063

5 4.93412

Example 5.2: Reading From and Creating a Data Set
This example demonstrates how to use the READ DATA statement to read parameters from a SAS data set.
The objective is the Bard function, which is the following least squares problem with I D f1; 2; : : : ; 15g:

f .x/ D
1

2

X
k2I

�
yk �

�
x1 C

k

vkx2 C wkx3

��2
x D .x1; x2; x3/; y D .y1; y2; : : : ; y15/

where vk D 16 � k, wk D min.k; vk/ (k 2 I), and

y D .0:14; 0:18; 0:22; 0:25; 0:29; 0:32; 0:35; 0:39; 0:37; 0:58; 0:73; 0:96; 1:34; 2:10; 4:39/

The minimum function value f .x�/ D 4.107E–3 is at the point .0:08; 1:13; 2:34/. The starting point
x0 D .1; 1; 1/ is used. This problem is identical to the example “Using the DATA= Option” in Chapter 6,
“The NLP Procedure” (SAS/OR User’s Guide: Mathematical Programming Legacy Procedures). The
following statements use the READ DATA statement to input parameter values and the CREATE DATA
statement to save the solution in a SAS data set:

168 F Chapter 5: The OPTMODEL Procedure

data bard;
input y @@;
datalines;

.14 .18 .22 .25 .29 .32 .35 .39

.37 .58 .73 .96 1.34 2.10 4.39
;
proc optmodel;

set I = 1..15;
number y{I};
read data bard into [_n_] y;
number v{k in I} = 16 - k;
number w{k in I} = min(k, v[k]);
var x{1..3} init 1;
min f = 0.5*

sum{k in I}
(y[k] - (x[1] + k /

(v[k]*x[2] + w[k]*x[3])))**2;
solve;
print x;
create data xdata from [i] xd=x;

In these statements the values for parameter y are read from the BARD data set. The set I indexes the terms
of the objective in addition to the y array.

The preceding statements define two utility parameters that contain coefficients used in the objective function.
These coefficients could have been defined in the expression for the objective, f, but it was convenient to give
them names and simplify the objective expression.

The result is shown in Output 5.2.1.

Output 5.2.1 Bard Function Solution

[1] x

1 0.08241

2 1.13303

3 2.34370

The final CREATE DATA statement saves the solution values determined by the solver into the data set
XDATA. The data set contains an observation for each x index. Each observation contains two variables. The
output variable i contains the index, while xd contains the value for the indexed entry in the array x. The
resulting data can be seen by using the PRINT procedure as follows:

proc print data=xdata;
run;

The output from PROC PRINT is shown in Output 5.2.2.

Output 5.2.2 Output Data Set Contents

Obs i xd

1 1 0.08241

2 2 1.13303

3 3 2.34370

Example 5.3: Model Construction F 169

Example 5.3: Model Construction
This example uses PROC OPTMODEL features to simplify the construction of a mathematically formulated
model. The model is based on the example “An Assignment Problem” in Chapter 4, “The LP Procedure”
(SAS/OR User’s Guide: Mathematical Programming Legacy Procedures). A single invocation of PROC
OPTMODEL replaces several steps in the PROC LP statements.

The model assigns production of various grades of cloth to a set of machines in order to maximize profit while
meeting customer demand. Each machine has different capacities to produce the various grades of cloth.
(See the PROC LP example “An Assignment Problem” for more details.) The mathematical formulation,
where xijk represents the amount of cloth of grade j to produce on machine k for customer i, follows:

max
P
ijk rijkxijk

subject to
P
k xijk D dij for all i and jP
ij cjkxijk � ak for all k

xijk � 0 for all i; j; and k

The OBJECT, DEMAND, and RESOURCE data sets are the same as in the PROC LP example. A new data
set, GRADE, is added to help separate the data from the model.

title 'An Assignment Problem';

data grade(drop=i);
do i = 1 to 6;

grade = 'grade'||put(i,1.);
output;

end;
run;

data object;
input machine customer

grade1 grade2 grade3 grade4 grade5 grade6;
datalines;

1 1 102 140 105 105 125 148
1 2 115 133 118 118 143 166
1 3 70 108 83 83 88 86
1 4 79 117 87 87 107 105
1 5 77 115 90 90 105 148
2 1 123 150 125 124 154 .
2 2 130 157 132 131 166 .
2 3 103 130 115 114 129 .
2 4 101 128 108 107 137 .
2 5 118 145 130 129 154 .
3 1 83 . . 97 122 147
3 2 119 . . 133 163 180
3 3 67 . . 91 101 101
3 4 85 . . 104 129 129
3 5 90 . . 114 134 179
4 1 108 121 79 . 112 132
4 2 121 132 92 . 130 150

170 F Chapter 5: The OPTMODEL Procedure

4 3 78 91 59 . 77 72
4 4 100 113 76 . 109 104
4 5 96 109 77 . 105 145
;

data demand;
input customer

grade1 grade2 grade3 grade4 grade5 grade6;
datalines;

1 100 100 150 150 175 250
2 300 125 300 275 310 325
3 400 0 400 500 340 0
4 250 0 750 750 0 0
5 0 600 300 0 210 360
;

data resource;
input machine

grade1 grade2 grade3 grade4 grade5 grade6 avail;
datalines;

1 .250 .275 .300 .350 .310 .295 744
2 .300 .300 .305 .315 .320 . 244
3 .350 . . .320 .315 .300 790
4 .280 .275 .260 . .250 .295 672
;

The following PROC OPTMODEL statements read the data sets, build the linear programming model, solve
the model, and output the optimal solution to a SAS data set called SOLUTION:

proc optmodel;
/* declare index sets */
set CUSTOMERS;
set <str> GRADES;
set MACHINES;

/* declare parameters */
num return {CUSTOMERS, GRADES, MACHINES} init 0;
num demand {CUSTOMERS, GRADES};
num cost {GRADES, MACHINES} init 0;
num avail {MACHINES};

/* read the set of grades */
read data grade into GRADES=[grade];

/* read the set of customers and their demands */
read data demand

into CUSTOMERS=[customer]
{j in GRADES} <demand[customer,j]=col(j)>;

/* read the set of machines, costs, and availability */
read data resource nomiss

into MACHINES=[machine]
{j in GRADES} <cost[j,machine]=col(j)>
avail;

Example 5.3: Model Construction F 171

/* read objective data */
read data object nomiss

into [machine customer]
{j in GRADES} <return[customer,j,machine]=col(j)>;

/* declare the model */
var AmountProduced {CUSTOMERS, GRADES, MACHINES} >= 0;
max TotalReturn = sum {i in CUSTOMERS, j in GRADES, k in MACHINES}

return[i,j,k] * AmountProduced[i,j,k];
con req_demand {i in CUSTOMERS, j in GRADES}:

sum {k in MACHINES} AmountProduced[i,j,k] = demand[i,j];
con req_avail {k in MACHINES}:

sum {i in CUSTOMERS, j in GRADES}
cost[j,k] * AmountProduced[i,j,k] <= avail[k];

/* call the solver and save the results */
solve;
create data solution

from [customer grade machine] = {i in CUSTOMERS, j in GRADES,
k in MACHINES: AmountProduced[i,j,k].sol ne 0}

amount=AmountProduced;

/* print optimal solution */
print AmountProduced;

quit;

The statements use both numeric (NUM) and character (STR) index sets, which are populated from the
corresponding data set variables in the READ DATA statements. The OPTMODEL parameters can be either
single-dimensional (AVAIL) or multiple-dimensional (COST, DEMAND, RETURN). The RETURN and
COST parameters are given initial values of 0, and the NOMISS option in the READ DATA statement tells
PROC OPTMODEL to read only the nonmissing values from the input data sets. The model declaration
is nearly identical to the mathematical formulation. The logical condition AmountProduced[i,j,k].sol

ne 0 in the CREATE DATA statement ensures that only the nonzero parts of the solution appear in the
SOLUTION data set. In the PROC LP example, the creation of this data set required postprocessing of the
PROC LP output data set.

The solver produces the following problem summary and solution summary:

172 F Chapter 5: The OPTMODEL Procedure

Output 5.3.1 LP Solver Result

An Assignment ProblemAn Assignment Problem

Problem Summary

Objective Sense Maximization

Objective Function TotalReturn

Objective Type Linear

Number of Variables 120

Bounded Above 0

Bounded Below 120

Bounded Below and Above 0

Free 0

Fixed 0

Number of Constraints 34

Linear LE (<=) 4

Linear EQ (=) 30

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 220

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function TotalReturn

Solution Status Optimal

Objective Value 871426.03763

Primal Infeasibility 0

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 59

Presolve Time 0.00

Solution Time 0.00

The SOLUTION data set can be processed by PROC TABULATE as follows to create a compact representation
of the solution:

proc tabulate data=solution;
class customer grade machine;
var amount;
table (machine*customer), (grade*amount=''*sum='');

run;

These statements produce the table shown in Output 5.3.2.

Example 5.4: Set Manipulation F 173

Output 5.3.2 An Assignment Problem

An Assignment ProblemAn Assignment Problem

grade

grade1 grade2 grade3 grade4 grade5 grade6

machine customer

1 1 . 100.00 150.00 150.00 175.00 250.00

2 . . 300.00 . . .

3 . . 256.72 210.31 . .

4 . . 750.00 . . .

5 . 92.27

2 3 . . 143.28 . 340.00 .

5 . . 300.00 . . .

3 2 . . . 275.00 310.00 325.00

3 . . . 289.69 . .

4 . . . 750.00 . .

5 210.00 360.00

4 1 100.00

2 300.00 125.00

3 400.00

4 250.00

5 . 507.73

Example 5.4: Set Manipulation
This example demonstrates PROC OPTMODEL set manipulation operators. These operators are used to
compute the set of primes up to a given limit. This example does not solve an optimization problem, but
similar set manipulation could be used to set up an optimization model. Here are the statements:

proc optmodel;
number maxprime; /* largest number to consider */
set composites =

union {i in 3..sqrt(maxprime) by 2} i*i..maxprime by 2*i;
set primes = {2} union (3..maxprime by 2 diff composites);
maxprime = 500;
put primes;

The set composites contains the odd composite numbers up to the value of the parameter maxprime. The even
numbers are excluded here to reduce execution time and memory requirements. The UNION aggregation
operation is used in the definition to combine the sets of odd multiples of i for i D 3; 5; : : :. Any composite
number less than the value of the parameter maxprime has a divisor �

p
maxprime, so the range of i can be

limited. The set of multiples of i can also be started at i � i since smaller multiples are found in the set of
multiples for a smaller index.

You can then define the set primes. The odd primes are determined by using the DIFF operator to remove the
composites from the set of odd numbers no greater than the parameter maxprime. The UNION operator adds
the single even prime, 2, to the resulting set of primes.

The PUT statement produces the result in Output 5.4.1.

174 F Chapter 5: The OPTMODEL Procedure

Output 5.4.1 Primes less than or equal to 500

{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,
107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,
223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,
337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,
457,461,463,467,479,487,491,499}

Note that you were able to delay the definition of the value of the parameter maxprime until just before the
PUT statement. Since the defining expressions of the SET declarations are handled symbolically, the value
of maxprime is not necessary until you need the value of the set primes. Because the sets composites and
primes are defined symbolically, their values reflect any changes to the parameter maxprime. You can see
this update by appending the following statements to the preceding statements:

maxprime = 50;
put primes;

The additional statements produce the results in Output 5.4.2. The value of the set primes has been recomputed
to reflect the change to the parameter maxprime.

Output 5.4.2 Primes less than or equal to 50

{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47}

Example 5.5: Multiple Subproblems
Many important optimization problems cannot be solved directly using a standard solver, either because the
problem has constraints that cannot be modeled directly or because the resulting model would be too large to
be practical. For these types of problems, you can use PROC OPTMODEL to synthesize solution methods
by using a combination of the existing solvers and the modeling language programming constructions. This
example demonstrates the use of multiple subproblems to solve the cutting stock problem.

The cutting stock problem determines how to efficiently cut raw stock into finished widths based on the
demands for the final product. Consider the example from page 195 of Chvátal (1983), where raw stock has
a width of 100 inches and the demands are shown in Table 5.18.

Table 5.18 Cutting Stock Demand

Finished Width Demand
45 inches 97
35 inches 610
31 inches 395
14 inches 211

A portion of the demand can be satisfied using a cutting pattern. For example, with the demands in Table 5.18
a possible pattern cuts one final of width 35 inches, one final of width 31 inches, and two finals of width 14
inches. This gives:

100 D 0 � 45C 1 � 35C 1 � 31C 2 � 14C waste:

Example 5.5: Multiple Subproblems F 175

The cutting stock problem can be formulated as follows, where xj represents the number of times pattern j
appears, aij represents the number of times demand item i appears in pattern j, di is the demand for item i,
wi is the width of item i, N represents the set of patterns, M represents the set of items, and W is the width of
the raw stock:

minimize
P
j2N xj

subject to
P
j2N aijxj � di for all i 2M

xj integer; � 0 for all j 2 N

Also for each feasible pattern j you must have:X
i2M

wiaij � W

The difficulty with this formulation is that the number of patterns can be very large, with too many columns
xj to solve efficiently. But you can use column generation, as described on page 198 of Chvátal (1983), to
generate a smaller set of useful patterns, starting from an initial feasible set.

The dual variables, �i , of the demand constraints are used to price out the columns. From linear programming
(LP) duality theory, a column that improves the primal solution must have a negative reduced cost. For this
problem the reduced cost for column xj is

1 �
X
i2M

�iaij

Using this observation produces a knapsack subproblem:

minimize 1 �
P
i2M �iai

subject to
P
i2M wiai � W

ai integer; � 0 for all j 2 N

where the objective is equivalent to:

maximize
P
i2M �iai

The pattern is useful if the associated reduced cost is negative:

1 �
X
i2M

�ia
�
i < 0

So you can use the following steps to generate the patterns and solve the cutting stock problem:

1. Initialize a set of trivial (one item) patterns.

2. Solve the problem using the LP solver.

3. Minimize the reduced cost using a knapsack solver.

176 F Chapter 5: The OPTMODEL Procedure

4. Include the new pattern if the reduced cost is negative.

5. Repeat steps 2 through 4 until there are no more negative reduced cost patterns.

These steps are implemented in the following statements. Since adding columns preserves primal feasibility,
the statements use the primal simplex solver to take advantage of a warm start. The statements also solve the
LP relaxation of the problem, but you want the integer solution. So the statements finish by using the MILP
solver with the integer restriction applied. The result is not guaranteed to be optimal, but lower and upper
bounds can be provided for the optimal objective.

/* cutting-stock problem */
/* uses delayed column generation from

Chvatal's Linear Programming (1983), page 198 */

%macro csp(capacity);
proc optmodel printlevel=0;

/* declare parameters and sets */
num capacity = &capacity;
set ITEMS;
num demand {ITEMS};
num width {ITEMS};
num num_patterns init card(ITEMS);
set PATTERNS = 1..num_patterns;
num a {ITEMS, PATTERNS};
num c {ITEMS} init 0;
num epsilon = 1E-6;

/* read input data */
read data indata into ITEMS=[_N_] demand width;

/* generate trivial initial columns */
for {i in ITEMS, j in PATTERNS}

a[i,j] = (if (i = j) then floor(capacity/width[i]) else 0);

/* define master problem */
var x {PATTERNS} >= 0 integer;
minimize NumberOfRaws = sum {j in PATTERNS} x[j];
con demand_con {i in ITEMS}:

sum {j in PATTERNS} a[i,j] * x[j] >= demand[i];
problem Master include x NumberOfRaws demand_con;

/* define column generation subproblem */
var y {ITEMS} >= 0 integer;
maximize KnapsackObjective = sum {i in ITEMS} c[i] * y[i];
con knapsack_con:

sum {i in ITEMS} width[i] * y[i] <= capacity;
problem Knapsack include y KnapsackObjective knapsack_con;

/* main loop */
do while (1);

print _page_ a;

/* master problem */

Example 5.5: Multiple Subproblems F 177

/* minimize sum_j x[j]
subj. to sum_j a[i,j] * x[j] >= demand[i]

x[j] >= 0 and integer */
use problem Master;
put "solve master problem";
solve with lp relaxint /

presolver=none solver=ps basis=warmstart printfreq=1;
print x;
print demand_con.dual;
for {i in ITEMS} c[i] = demand_con[i].dual;

/* knapsack problem */
/* maximize sum_i c[i] * y[i]

subj. to sum_i width[i] * y[i] <= capacity
y[i] >= 0 and integer */

use problem Knapsack;
put "solve column generation subproblem";
solve with milp / printfreq=0;
for {i in ITEMS} y[i] = round(y[i]);
print y;
print KnapsackObjective;

if KnapsackObjective <= 1 + epsilon then leave;

/* include new pattern */
num_patterns = num_patterns + 1;
for {i in ITEMS} a[i,num_patterns] = y[i];

end;

/* solve IP, using rounded-up LP solution as warm start */
use problem Master;
for {j in PATTERNS} x[j] = ceil(x[j].sol);
put "solve (restricted) master problem as IP";
solve with milp / primalin;

/* cleanup solution and save to output data set */
for {j in PATTERNS} x[j] = round(x[j].sol);
create data solution from [pattern]={j in PATTERNS: x[j] > 0}

raws=x {i in ITEMS} <col('i'||i)=a[i,j]>;
quit;
%mend csp;

/* Chvatal, p.199 */
data indata;

input demand width;
datalines;

78 25.5
40 22.5
30 20
30 15
;
run;
%csp(91)
/* LP solution is integer */

178 F Chapter 5: The OPTMODEL Procedure

/* Chvatal, p.195 */
data indata;

input demand width;
datalines;

97 45
610 36
395 31
211 14
;
run;
%csp(100)
/* LP solution is fractional */

The contents of the output data set for the second problem instance are shown in Output 5.5.1.

Output 5.5.1 Cutting Stock Solution

Obs pattern raws i1 i2 i3 i4

1 1 49 2 0 0 0

2 2 100 0 2 0 0

3 5 106 0 2 0 2

4 6 198 0 1 2 0

Example 5.6: Traveling Salesman Problem
This example demonstrates the use of the SUBMIT statement to execute a block of SAS statements from
within a PROC OPTMODEL session. In this case, the SUBMIT block calls the GPLOT procedure to
display intermediate results during the solution of an instance of the traveling salesman problem (TSP). The
problem is described in Example 8.4. For an example of how to use PROC OPTNET to solve the TSP,
see “Traveling Salesman Problem Applied to a Simple Directed Graph” (Chapter 2, SAS/OR User’s Guide:
Network Optimization Algorithms).

The following DATA step converts a TSPLIB instance of type EUC_2D into a SAS data set that contains the
coordinates of the vertices:

/* convert the TSPLIB instance into a data set */
data tspData(drop=H);

infile "&tsplib";
input H $1. @;
if H not in ('N','T','C','D','E');
input @1 var1-var3;

run;

The following macro generates plots of the solution and objective value:

Example 5.6: Traveling Salesman Problem F 179

%macro plotTSP;
/* create Annotate data set to draw subtours */
data anno(drop=xi yi xj yj);

%SYSTEM(2, 2, 2);
set solData(keep=xi yi xj yj);
%LINE(xi, yi, xj, yj, *, 1, 1);

run;

title1 h=2 "TSP: Iter = &i, Objective = &&obj&i";
title2;

proc gplot data=tspData anno=anno;
axis1 label=none;
symbol1 value=dot interpol=none
pointlabel=("#var1" nodropcollisions height=1) cv=black;
plot var3*var2 / haxis=axis1 vaxis=axis1;

run;
quit;

%mend plotTSP;

%annomac;

The following PROC OPTMODEL statements solve the TSP by using the subtour formulation and iteratively
adding subtour constraints. The SUBMIT statement calls the %plotTSP macro to plot the solution and
objective value at each stage.

/* iterative solution using the subtour formulation */
proc optmodel;

set VERTICES;
set EDGES = {i in VERTICES, j in VERTICES: i > j};
num xc {VERTICES};
num yc {VERTICES};

num numsubtour init 0;
set SUBTOUR {1..numsubtour};

/* read in the instance and customer coordinates (xc, yc) */
read data tspData into VERTICES=[var1] xc=var2 yc=var3;

/* the cost is the euclidean distance rounded to the nearest integer */
num c {<i,j> in EDGES}

init floor(sqrt(((xc[i]-xc[j])**2 + (yc[i]-yc[j])**2)) + 0.5);

var x {EDGES} binary;

/* minimize the total cost */
min obj =

sum {<i,j> in EDGES} c[i,j] * x[i,j];

/* each vertex has exactly one in-edge and one out-edge */
con two_match {i in VERTICES}:

sum {j in VERTICES: i > j} x[i,j]
+ sum {j in VERTICES: i < j} x[j,i] = 2;

180 F Chapter 5: The OPTMODEL Procedure

/* no subtours (these constraints are generated dynamically) */
con subtour_elim {s in 1..numsubtour}:

sum {<i,j> in EDGES: (i in SUBTOUR[s] and j not in SUBTOUR[s])
or (i not in SUBTOUR[s] and j in SUBTOUR[s])} x[i,j] >= 2;

/* this starts the algorithm to find violated subtours */
set <num,num> EDGES1;
set INITVERTICES = setof{<i,j> in EDGES1} i;
set VERTICES1;
set NEIGHBORS;
set <num,num> CLOSURE;
num component {INITVERTICES};
num numcomp init 2;
num iter init 1;
call symput('i',trim(left(put(round(iter),best.))));
num numiters init 1;

/* initial solve with just matching constraints */
solve;
call symput(compress('obj'||put(iter,best.)),

trim(left(put(round(obj),best.))));

/* create a data set for use by PROC GPLOT */
create data solData from

[i j]={<i,j> in EDGES: x[i,j].sol > 0.5}
xi=xc[i] yi=yc[i] xj=xc[j] yj=yc[j];

submit;
%plotTSP;

endsubmit;
/* while the solution is disconnected, continue */
do while (numcomp > 1);

iter = iter + 1;
call symput('i',trim(left(put(round(iter),best.))));

/* find connected components of support graph */
EDGES1 = {<i,j> in EDGES: round(x[i,j].sol) = 1};
EDGES1 = EDGES1 union {setof {<i,j> in EDGES1} <j,i>};
VERTICES1 = INITVERTICES;
CLOSURE = EDGES1;

for {i in INITVERTICES} component[i] = 0;
for {i in VERTICES1} do;

NEIGHBORS = slice(<i,*>,CLOSURE);
CLOSURE = CLOSURE union (NEIGHBORS cross NEIGHBORS);

end;

numcomp = 0;
do while (card(VERTICES1) > 0);

numcomp = numcomp + 1;
for {i in VERTICES1} do;

NEIGHBORS = slice(<i,*>,CLOSURE);
for {j in NEIGHBORS} component[j] = numcomp;

Example 5.6: Traveling Salesman Problem F 181

VERTICES1 = VERTICES1 diff NEIGHBORS;
leave;

end;
end;

if numcomp = 1 then leave;

numiters = iter;
numsubtour = numsubtour + numcomp;
for {comp in 1..numcomp} do;

SUBTOUR[numsubtour-numcomp+comp]
= {i in VERTICES: component[i] = comp};

end;

solve;
call symput(compress('obj'||put(iter,best.)),

trim(left(put(round(obj),best.))));

/* create a data set for use by PROC GPLOT */
create data solData from

[i j]={<i,j> in EDGES: x[i,j].sol > 0.5}
xi=xc[i] yi=yc[i] xj=xc[j] yj=yc[j];

call symput('numiters',put(numiters,best.));
submit;

%plotTSP;
endsubmit;

end;
quit;

The plot in Output 5.6.1 shows the solution and objective value at each stage. Each stage restricts some
subset of subtours. When you reach the final stage, you have a valid tour.

182 F Chapter 5: The OPTMODEL Procedure

Output 5.6.1 Iterative Solution of Traveling Salesman Problem

Example 5.7: Sparse Modeling
This example demonstrates how to rewrite certain models for more efficient processing. Sometimes optimiza-
tion models that run out of memory during problem generation can be rewritten to take advantage of sparsity
to use memory more efficiently. This often occurs when a large array is modeled in a dense format but most
of its entries are zeros. Usually, the array provides problem coefficients or it contains optimization variables.

The model for this example solves the facility location problem that is described in Example 8.3. This
example is concerned with the resources that are required for PROC OPTMODEL problem generation and
solver initialization. So the size of the problem has been increased, but the model has also been modified to
make it easier to solve. In order to handle the larger problem size, the model eliminates a large number of the
potential assignments of customers to facilities based on distance, making the problem sparse.

The following code generates a random instance of the facility location problem:

Example 5.7: Sparse Modeling F 183

%let NumCustomers = 1500;
%let NumSites = 250;
%let SiteCapacity = 50;
%let MaxDemand = 10;
%let xmax = 200;
%let ymax = 100;
%let seed = 938;

/* generate random customer locations */
data cdata(drop=i);

length name $8;
call streaminit(&seed);
do i = 1 to &NumCustomers;

name = compress('C'||put(i,best.));
x = rand('UNIFORM') * &xmax;
y = rand('UNIFORM') * &ymax;
demand = 1;
output;

end;
run;

/* generate random site locations and fixed charge */
data sdata(drop=i);

length name $8;
call streaminit(&seed);
do i = 1 to &NumSites;

name = compress('SITE'||put(i,best.));
x = rand('UNIFORM') * &xmax;
y = rand('UNIFORM') * &ymax;
fixed_charge = 300 * (abs(&xmax/2-x)/&xmax + abs(&ymax/2-y)/&ymax);
output;

end;
run;

The following code uses a dense version of the facility location model. This model is equivalent to the model
from Example 8.3 except for the added constraint distance_at_most_30. This constraint eliminates from
consideration the assignment of customers to facilities over long distances by forcing the corresponding
Assign variables to 0.

proc optmodel;
performance details;
profile on percent=0.1;
set <str> CUSTOMERS;
set <str> SITES init {};

/* x and y coordinates of CUSTOMERS and SITES */
num x {CUSTOMERS union SITES};
num y {CUSTOMERS union SITES};
num demand {CUSTOMERS};
num fixed_charge {SITES};

/* distance from customer i to site j */
num dist {i in CUSTOMERS, j in SITES}

184 F Chapter 5: The OPTMODEL Procedure

= sqrt((x[i] - x[j])^2 + (y[i] - y[j])^2);

read data cdata into CUSTOMERS=[name] x y demand;
read data sdata into SITES=[name] x y fixed_charge;

var Assign {CUSTOMERS, SITES} binary;
var Build {SITES} binary;

min CostNoFixedCharge
= sum {i in CUSTOMERS, j in SITES} dist[i,j] * Assign[i,j];

min CostFixedCharge
= CostNoFixedCharge + sum {j in SITES} fixed_charge[j] * Build[j];

/* each customer assigned to exactly one site */
con assign_def {i in CUSTOMERS}:

sum {j in SITES} Assign[i,j] = 1;

/* if customer i assigned to site j, then facility must be built at j */
con link {i in CUSTOMERS, j in SITES}:

Assign[i,j] <= Build[j];

/* each site can handle at most &SiteCapacity demand */
con capacity {j in SITES}:

sum {i in CUSTOMERS} demand[i] * Assign[i,j] <=
&SiteCapacity * Build[j];

/* do not assign customer to site more than 30 units away */
con distance_at_most_30 {i in CUSTOMERS, j in SITES: dist[i,j] > 30}:

Assign[i,j] = 0;

/* solve the MILP */
solve with milp/timetype=real;

quit;

If you inspect the log after running the preceding code, then you will see that the MILP presolver has pruned
down the problem size considerably. If you also run the code with the SAS option FULLSTIMER enabled
on a 64-bit system, then you will notice that about 1.3GB of memory is required for the PROC OPTMODEL
step when you are running on a single CPU.

The solution and timing results for the dense model are shown in Output 5.7.1. The PERFORMANCE
DETAILS statement from the model requests display of the task timing table for the SOLVE statement. The
PROFILE ON statement requests further timing details, including evaluation time for declarations used by
problem generation.

Example 5.7: Sparse Modeling F 185

Output 5.7.1 Dense Model Results

Solution Summary

Solver MILP

Algorithm Branch and Cut

Objective Function CostFixedCharge

Solution Status Optimal within Relative Gap

Objective Value 18001.14035

Relative Gap 0.000098081

Absolute Gap 1.7653963848

Primal Infeasibility 1.14871E-12

Bound Infeasibility 9.9999999E-7

Integer Infeasibility 1E-6

Best Bound 17999.374954

Nodes 5

Iterations 40131

Presolve Time 1.20

Solution Time 62.73

Procedure Task Timing

Task
Time

(sec.) Time

Problem Generation 4.57 6.64%

Solver Initialization 0.90 1.30%

Code Generation 0.06 0.08%

Presolve 1.20 1.75%

Root Node Processing 50.70 73.62%

Branch And Cut 9.32 13.54%

Synchronization 0.20 0.30%

Idle 1.13 1.64%

Other Tasks 0.17 0.25%

Solver Postprocessing 0.62 0.89%

Profile Information

Item Line Col.
Execution

Count
Net Time

(sec.)
Wait Time

(sec.)
% Total

Time

SOLVE 3546 4 1 64.85 2.17 85.9%

Constraint distance_at_most_30 3542 8 5.59 0.00 7.4%

Constraint link 3533 8 3.22 0.00 4.3%

Number dist 3514 8 0.52 0.00 0.7%

Constraint capacity 3537 8 0.38 0.00 0.5%

Min CostNoFixedCharge 3523 8 0.37 0.00 0.5%

Var Assign 3520 8 0.29 0.00 0.4%

Constraint assign_def 3529 8 0.28 0.00 0.4%

Other profiled items 0.01 0.00 0.0%

Note: Total profiled time is 75.51 seconds.

186 F Chapter 5: The OPTMODEL Procedure

The best approach for reducing the memory requirements is to eliminate the Assign variables that are always
going to be 0. This is accomplished in the following sparse version of the code. Instead of indexing Assign
over the crossproduct of CUSTOMERS and SITES, now the code defines a new set of pairs that satisfy the
distance requirement, CUSTOMERS_SITES. This set replaces the constraint distance_at_most_30 in the
dense model. The objective and constraints have been modified to use the new indexing scheme, with implicit
set slicing (as described in the section “More on Index Sets” on page 159) for constraints assign_def and
capacity.

proc optmodel;
performance details;
profile on percent=0.1;
set <str> CUSTOMERS;
set <str> SITES init {};

/* x and y coordinates of CUSTOMERS and SITES */
num x {CUSTOMERS union SITES};
num y {CUSTOMERS union SITES};
num demand {CUSTOMERS};
num fixed_charge {SITES};

/* distance from customer i to site j */
num dist {i in CUSTOMERS, j in SITES}

= sqrt((x[i] - x[j])^2 + (y[i] - y[j])^2);

read data cdata into CUSTOMERS=[name] x y demand;
read data sdata into SITES=[name] x y fixed_charge;

set CUSTOMERS_SITES = {i in CUSTOMERS, j in SITES: dist[i,j] <= 30};
var Assign {CUSTOMERS_SITES} binary;
var Build {SITES} binary;

min CostNoFixedCharge
= sum {<i,j> in CUSTOMERS_SITES} dist[i,j] * Assign[i,j];

min CostFixedCharge
= CostNoFixedCharge + sum {j in SITES} fixed_charge[j] * Build[j];

/* each customer assigned to exactly one site */
con assign_def {i in CUSTOMERS}:

sum {<(i),j> in CUSTOMERS_SITES} Assign[i,j] = 1;

/* if customer i assigned to site j, then facility must be built at j */
con link {<i,j> in CUSTOMERS_SITES}:

Assign[i,j] <= Build[j];

/* each site can handle at most &SiteCapacity demand */
con capacity {j in SITES}:

sum {<i,(j)> in CUSTOMERS_SITES} demand[i] * Assign[i,j] <=
&SiteCapacity * Build[j];

/* solve the MILP */
solve with milp/timetype=real;

quit;

Example 5.7: Sparse Modeling F 187

The log from running the preceding code shows that the MILP presolver does not find anything to improve
with this version of the model. On a 64-bit system, the FULLSTIMER option shows that memory requirements
have been reduced to about 580MB when you are running on a single CPU, less than half the requirements of
the previous model.

The solution and timing results for the dense model are shown in Output 5.7.2. Note that the dense model
(Output 5.7.1) and the sparse model (Output 5.7.2) are equivalent after presolver processing and generate the
same result using similar amounts of solver time. On the other hand, problem generation time is significantly
reduced as are other times including presolve time. Both models used the solver option TIMETYPE=REAL
so that all times are reported in seconds of real time. You can see from the “Profile Information” table that
the overhead associated with problem declarations has been significantly reduced.

Output 5.7.2 Sparse Model Results

Solution Summary

Solver MILP

Algorithm Branch and Cut

Objective Function CostFixedCharge

Solution Status Optimal within Relative Gap

Objective Value 18001.14035

Relative Gap 0.000098081

Absolute Gap 1.7653963848

Primal Infeasibility 1.14871E-12

Bound Infeasibility 9.9999999E-7

Integer Infeasibility 1E-6

Best Bound 17999.374954

Nodes 5

Iterations 40131

Presolve Time 0.29

Solution Time 60.60

Procedure Task Timing

Task
Time

(sec.) Time

Problem Generation 1.19 1.92%

Solver Initialization 0.10 0.17%

Code Generation 0.00 0.01%

Presolve 0.29 0.47%

Root Node Processing 49.82 80.44%

Branch And Cut 9.02 14.57%

Synchronization 0.20 0.32%

Idle 1.10 1.77%

Other Tasks 0.17 0.28%

Solver Postprocessing 0.04 0.06%

188 F Chapter 5: The OPTMODEL Procedure

Output 5.7.2 continued

Profile Information

Item Line Col.
Execution

Count
Net Time

(sec.)
Wait Time

(sec.)
% Total

Time

SOLVE 3596 4 1 60.79 0.12 97.5%

Number dist 3567 8 0.49 0.00 0.8%

Set CUSTOMERS_SITES 3573 8 0.46 0.00 0.7%

Constraint link 3587 8 0.35 0.00 0.6%

Constraint assign_def 3583 8 0.08 0.00 0.1%

Constraint capacity 3591 8 0.07 0.00 0.1%

Other profiled items 0.08 0.00 0.1%

Note: Total profiled time is 62.32 seconds.

Example 5.8: Chemical Equilibrium
This example illustrates how to convert PROC NLP code that handles arrays into PROC OPTMODEL form.
The following PROC NLP model finds an equilibrium state for a mixture of chemicals. The same model is
used in “Example 7.8: Chemical Equilibrium” in Chapter 6, “The NLP Procedure” (SAS/OR User’s Guide:
Mathematical Programming Legacy Procedures).

proc nlp tech=tr pall;
array c[10] -6.089 -17.164 -34.054 -5.914 -24.721

-14.986 -24.100 -10.708 -26.662 -22.179;
array x[10] x1-x10;
min y;
parms x1-x10 = .1;
bounds 1.e-6 <= x1-x10;
lincon 2. = x1 + 2. * x2 + 2. * x3 + x6 + x10,

1. = x4 + 2. * x5 + x6 + x7,
1. = x3 + x7 + x8 + 2. * x9 + x10;

s = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10;
y = 0.;
do j = 1 to 10;

y = y + x[j] * (c[j] + log(x[j] / s));
end;

run;

The following statements show a corresponding PROC OPTMODEL model:

proc optmodel;
set CMP = 1..10;
number c{CMP} = [-6.089 -17.164 -34.054 -5.914 -24.721

-14.986 -24.100 -10.708 -26.662 -22.179];
var x{CMP} init 0.1 >= 1.e-6;
con 2. = x[1] + 2. * x[2] + 2. * x[3] + x[6] + x[10],

1. = x[4] + 2. * x[5] + x[6] + x[7],
1. = x[3] + x[7] + x[8] + 2. * x[9] + x[10];

/* replace the variable s in the PROC NLP model */
impvar s = sum{i in CMP} x[i];
min y = sum{j in CMP} x[j] * (c[j] + log(x[j] / s));
solve;
print x y;

Example 5.8: Chemical Equilibrium F 189

The PROC OPTMODEL model uses the set CMP to represent the set of compounds, which are numbered 1
to 10 in the example. The array c was initialized by using the equivalent PROC OPTMODEL syntax. The
individual array locations could also have been initialized by assignment or by READ DATA statements.

The VAR declaration for variable x combines the VAR and BOUNDS statements of the PROC NLP model.
The index set of the array is based on the set of compounds CMP to simplify changes to the model.

The linear constraints are similar in form to the PROC NLP model. However, the PROC OPTMODEL
version uses the array form of the variable names because it treats arrays as distinct variables, not as aliases
of lists of scalar variables.

The implicit variable s replaces the intermediate variable of the same name in the PROC NLP model. This
is an example of translating an intermediate variable from the other models to PROC OPTMODEL. An
alternative way is to use an additional constraint for every intermediate variable. Instead of declaring objective
s as in the preceding statements, you can use the following statements:

. . .
var s;
con s = sum{i in CMP} x[i];
. . .

Note that this alternative formulation passes an extra variable and constraint to the solver. This formulation
can sometimes be solved more efficiently, depending on the characteristics of the model.

The PROC OPTMODEL version uses a SUM operator over the set CMP, which enhances the flexibility of
the model to accommodate possible changes in the set of compounds.

In the PROC NLP model, the objective function y is determined by an explicit loop. The DO loop in PROC
NLP is replaced by a SUM aggregation operation in PROC OPTMODEL. The accumulation in the PROC
NLP model is now performed by PROC OPTMODEL by using the SUM operator.

This PROC OPTMODEL model can be generalized further. Note that the array initialization and constraints
assume a fixed set of compounds. You can rewrite the model to handle an arbitrary number of compounds
and chemical elements. The new model loads the linear constraint coefficients from a data set along with the
objective coefficients for the parameter c, as follows:

data comp;
input c a_1 a_2 a_3;
datalines;

-6.089 1 0 0
-17.164 2 0 0
-34.054 2 0 1
-5.914 0 1 0
-24.721 0 2 0
-14.986 1 1 0
-24.100 0 1 1
-10.708 0 0 1
-26.662 0 0 2
-22.179 1 0 1
;

data atom;
input b @@;
datalines;

190 F Chapter 5: The OPTMODEL Procedure

2. 1. 1.
;

proc optmodel;
set CMP;
set ELT;
number c{CMP};
number a{ELT,CMP};
number b{ELT};
read data atom into ELT=[_n_] b;
read data comp into CMP=[_n_]

c {i in ELT} < a[i,_n_]=col("a_"||i) >;
var x{CMP} init 0.1 >= 1.e-6;
con bal{i in ELT}: b[i] = sum{j in CMP} a[i,j]*x[j];
impvar s = sum{i in CMP} x[i];
min y = sum{j in CMP} x[j] * (c[j] + log(x[j] / s));
print a b;
solve;
print x;

This version adds coefficients for the linear constraints to the COMP data set. The data set variable a_n
represents the number of atoms in the compound for element n. The READ DATA statement for COMP uses
the iterated column syntax to read each of the data set variables a_n into the appropriate location in the array
a. In this example the expanded data set variable names are a_1, a_2, and a_3.

The preceding version also adds a new set, ELT, of chemical elements and a numeric parameter, b, that
represents the left-hand side of the linear constraints. The data values for the parameters ELT and b are read
from the data set ATOM. The model can handle varying sets of chemical elements because of this extra data
set and the new parameters.

The linear constraints have been converted to a single, indexed family of constraints. One constraint is applied
for each chemical element in the set ELT. The constraint expression uses a simple form that applies generally
to linear constraints. The following PRINT statement in the model shows the values that are read from the
data sets to define the linear constraints:

print a b;

The PRINT statements in the model produce the results shown in Output 5.8.1.

Output 5.8.1 PROC OPTMODEL Output

a

1 2 3 4 5 6 7 8 9 10

1 1 2 2 0 0 1 0 0 0 1

2 0 0 0 1 2 1 1 0 0 0

3 0 0 1 0 0 0 1 1 2 1

[1] b

1 2

2 1

3 1

Example 5.8: Chemical Equilibrium F 191

Output 5.8.1 continued

[1] x

1 0.04066848

2 0.14773067

3 0.78315260

4 0.00141459

5 0.48524616

6 0.00069358

7 0.02739955

8 0.01794757

9 0.03731444

10 0.09687143

In the preceding model, the chemical elements and compounds are designated by numbers. So in the PRINT
output, for example, the row that is labeled “3” represents the amount of the compound H2O. PROC
OPTMODEL is capable of using more symbolic strings to designate array indices. The following version of
the model uses strings to index arrays:

data comp;
input name $ c a_h a_n a_o;
datalines;

H -6.089 1 0 0
H2 -17.164 2 0 0
H2O -34.054 2 0 1
N -5.914 0 1 0
N2 -24.721 0 2 0
NH -14.986 1 1 0
NO -24.100 0 1 1
O -10.708 0 0 1
O2 -26.662 0 0 2
OH -22.179 1 0 1
;
data atom;

input name $ b;
datalines;

H 2.
N 1.
O 1.
;
proc optmodel;

set<string> CMP;
set<string> ELT;
number c{CMP};
number a{ELT,CMP};
number b{ELT};
read data atom into ELT=[name] b;
read data comp into CMP=[name]

c {i in ELT} < a[i,name]=col("a_"||i) >;
var x{CMP} init 0.1 >= 1.e-6;
con bal{i in ELT}: b[i] = sum{j in CMP} a[i,j]*x[j];
impvar s = sum{i in CMP} x[i];
min y = sum{j in CMP} x[j] * (c[j] + log(x[j] / s));
solve;
print x;

192 F Chapter 5: The OPTMODEL Procedure

In this model, the sets CMP and ELT are now sets of strings. The data sets provide the names of the compounds
and elements. The names of the data set variables for atom counts in the data set COMP now include the
chemical element symbol as part of their spelling. For example, the atom count for element H (hydrogen)
is named a_h. Note that these changes did not require any modification to the specifications of the linear
constraints or of the objective.

The PRINT statement in the preceding statements produces the results shown in Output 5.8.2. The indices of
variable x are now strings that represent the actual compounds.

Output 5.8.2 PROC OPTMODEL Output with Strings

[1] x

H 0.04066848

H2 0.14773067

H2O 0.78315260

N 0.00141459

N2 0.48524616

NH 0.00069358

NO 0.02739955

O 0.01794757

O2 0.03731444

OH 0.09687143

References

Abramowitz, M., and Stegun, I. A., eds. (1972). Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. 10th printing. New York: Dover.

Bazaraa, M. S., Sherali, H. D., and Shetty, C. M. (1993). Nonlinear Programming: Theory and Algorithms.
New York: John Wiley & Sons.

Chvátal, V. (1983). Linear Programming. New York: W. H. Freeman.

Dennis, J. E., and Schnabel, R. B. (1983). Numerical Methods for Unconstrained Optimization and Nonlinear
Equations. Englewood Cliffs, NJ: Prentice-Hall.

Fletcher, R. (1987). Practical Methods of Optimization. 2nd ed. Chichester, UK: John Wiley & Sons.

Nocedal, J., and Wright, S. J. (1999). Numerical Optimization. New York: Springer-Verlag.

Subject Index

aggregation operators
OPTMODEL procedure, 96

Bard function, 167

CLOSEFILE statement
OPTMODEL procedure, 122

columns, 117
complementarity

OPTMODEL procedure, 114
constraint bodies

OPTMODEL procedure, 132
constraint declaration

OPTMODEL procedure, 44
constraints

OPTMODEL procedure, 30, 130
control flow

OPTMODEL procedure, 121
conversions

OPTMODEL procedure, 155

data set input/output
OPTMODEL procedure, 117

declaration statements
OPTMODEL procedure, 44

dual value
OPTMODEL procedure, 138

expressions
OPTMODEL procedure, 99

FCMP routines
OPTMODEL procedure, 156

feasible region, 115
OPTMODEL procedure, 30

feasible solution, 115
OPTMODEL procedure, 30

FILE statement
OPTMODEL procedure, 122

first-order necessary conditions
local minimum, 116

FOR statement
OPTMODEL procedure, 121

formatted output
OPTMODEL procedure, 121

function expressions
OPTMODEL procedure, 102

functional summary
OPTMODEL procedure, 38

global solution, 115

identifier expressions
OPTMODEL procedure, 102

IF expression, 106
impure functions

OPTMODEL procedure, 97
index sets, 96

implicit set slicing, 160
index-set-item, 104
OPTMODEL procedure, 103

integer variables
OPTMODEL procedure, 137

intermediate variable, 189

Karush-Kuhn-Tucker conditions, 116
key columns, 117, 119
key set, 64

Lagrange multipliers, 116
Lagrangian function, 116
linear programming

OPTMODEL procedure, 30
list form

PRINT statement, 77
local minimum

first-order necessary conditions, 116
second-order necessary conditions, 116

local solution, 115

macro variable
OROPTMODEL, 161

matrix form
PRINT statement, 78

migration to PROC OPTMODEL
from PROC NLP, 163

model update
OPTMODEL procedure, 145

MPS format, 86
multiple solutions

OPTMODEL procedure, 151
multiple subproblems

OPTMODEL procedure, 150

objective declarations
OPTMODEL procedure, 32, 47

objective functions
OPTMODEL procedure, 30, 32, 47

objective value

OPTMODEL procedure, 30
objectives

OPTMODEL procedure, 32
ODS table names

OPTMODEL procedure, 124
ODS variable names

OPTMODEL procedure, 125
operators

OPTMODEL procedure, 100
optimal solution

OPTMODEL procedure, 30
optimal value

OPTMODEL procedure, 30
optimality conditions

OPTMODEL procedure, 114
optimization modeling language, 28
optimization variable

OPTMODEL procedure, 30
optimization variables

OPTMODEL procedure, 32
OPTMODEL examples

chemical equilibrium, 188
matrix square root, 166
model construction, 169
multiple subproblems, 174
reading from and creating a data set, 167
set manipulation, 173
sparse modeling, 182
SUBMIT statement, 178
traveling salesman problem, 178

OPTMODEL expression extensions, 104
aggregation expression, 108

OPTMODEL procedure
aggregation operators, 96
CLOSEFILE statement, 122
complementarity, 114
constraint bodies, 132
constraints, 130
control flow, 121
conversions, 155
data set input/output, 117
declaration statements, 44
dual value, 138
expressions, 99
FCMP routines, 156
feasible region, 115
feasible solution, 115
FILE statement, 122
first-order necessary conditions, 116
FOR statement, 121
formatted output, 121
function expressions, 102
functional summary, 38
global solution, 115

identifier expressions, 102
impure functions, 97
index sets, 103
integer variables, 137
Karush-Kuhn-Tucker conditions, 116
Lagrange multipliers, 116
Lagrangian function, 116
local solution, 115
macro variable _OROPTMODEL_, 161
model update, 145
multiple solutions, 151
multiple subproblems, 150
objective declarations, 32, 47
ODS table names, 124
ODS variable names, 125
operators, 100
optimality conditions, 114
optimization variables, 32
options classified by function, 38
_OROPTMODEL_NUM_KEYS_ parameter, 161
_OROPTMODEL_NUM_ parameter, 161
_OROPTMODEL_STR_KEYS_ parameter, 161
_OROPTMODEL_STR_ parameter, 161
overview, 28
parameters, 47, 95
presolver, 145
primary expressions, 101
PRINT statement, 122
programming statements, 53
PUT statement, 121
range constraints, 140
reduced costs, 144
RESET OPTIONS statement, 153
second-order necessary conditions, 116
second-order sufficient conditions, 117
_SOLUTION_STATUS_ parameter, 161
STATUS parameter, 161
strict local solution, 115
suffix names, 132, 134
table of syntax elements, 38
threaded and distributed processing, 160
variable declaration, 32, 52

_OROPTMODEL_NUM_KEYS_ parameter
OPTMODEL procedure, 161

_OROPTMODEL_NUM_ parameter
OPTMODEL procedure, 161

_OROPTMODEL_STR_KEYS_ parameter
OPTMODEL procedure, 161

_OROPTMODEL_STR_ parameter
OPTMODEL procedure, 161

overview
OPTMODEL procedure, 28

parameters, 98

initialization, 99
OPTMODEL procedure, 47, 95
_OROPTMODEL_NUM_KEYS_ parameter, 161
_OROPTMODEL_NUM_ parameter, 161
_OROPTMODEL_STR_KEYS_ parameter, 161
_OROPTMODEL_STR_ parameter, 161
parameter declarations, 47
parameter options, 48
_SOLUTION_STATUS_ parameter, 161
STATUS parameter, 161

PDIGITS= option, 123
primary expressions

OPTMODEL procedure, 101
PRINT statement

list form, 77
matrix form, 78
OPTMODEL procedure, 122

programming statements
control, 53
general, 53
input/output, 53
looping, 53
model, 53
OPTMODEL procedure, 53

PUT statement
OPTMODEL procedure, 121

PWIDTH= option, 123

QPS format, 88

range constraints
OPTMODEL procedure, 140

READ DATA statement
trim option, 83

reduced costs
OPTMODEL procedure, 144

RESET OPTIONS statement
OPTMODEL procedure, 153

scalar types, 47, 97
second-order necessary conditions, 116

local minimum, 116
second-order sufficient conditions, 117

strict local minimum, 117
set types, 47
_SOLUTION_STATUS_ parameter

OPTMODEL procedure, 161
STATUS parameter

OPTMODEL procedure, 161
strict local minimum

second-order sufficient conditions, 117
strict local solution, 115
suffix names

OPTMODEL procedure, 132, 134
suffixes, 119, 134

threaded and distributed processing
OPTMODEL procedure, 160

trim option
READ DATA statement, 83

tuples, 97

unconstrained optimization
OPTMODEL procedure, 30

variable declaration
OPTMODEL procedure, 32, 52

Syntax Index

AND aggregation expression
OPTMODEL expression extensions, 104

assignment statement
OPTMODEL procedure, 53

CALL statement
OPTMODEL procedure, 54

CARD function
OPTMODEL expression extensions, 105

CDIGITS= option
PROC OPTMODEL statement, 40

CLOSEFILE statement
OPTMODEL procedure, 54

COFOR statement
OPTMODEL procedure, 55

COL keyword
CREATE DATA statement, 62, 64
READ DATA statement, 84

CONSTRAINT option
EXPAND statement, 70

CONSTRAINT statement
OPTMODEL procedure, 44

CONTINUE statement
OPTMODEL procedure, 61

CREATE DATA statement
COL keyword, 62, 64
OPTMODEL procedure, 61

CROSS expression
OPTMODEL expression extensions, 105

DIFF expression
OPTMODEL expression extensions, 105

DO statement
END keyword, 66
OPTMODEL procedure, 66

DO statement, iterative
END keyword, 66
OPTMODEL procedure, 66
UNTIL keyword, 66
WHILE keyword, 66

DO UNTIL statement
END keyword, 68
OPTMODEL procedure, 68

DO WHILE statement
END keyword, 68
OPTMODEL procedure, 68

DROP statement
OPTMODEL procedure, 69

ELSE keyword
IF statement, 74

END keyword
DO statement, 66
DO statement, iterative, 66
DO UNTIL statement, 68
DO WHILE statement, 68

ERRORLIMIT= option
PROC OPTMODEL statement, 40

EXPAND statement
CONSTRAINT option, 70
FIX option, 70
IIS option, 70
IMPVAR option, 70
OBJECTIVE option, 70
OMITTED option, 70
OPTMODEL procedure, 69
SOLVE option, 70
VAR option, 70

FD= option
PROC OPTMODEL statement, 40

FDIGITS= option
PROC OPTMODEL statement, 41

FILE statement
OPTMODEL procedure, 71

FIX option
EXPAND statement, 70

FIX statement
OPTMODEL procedure, 73

FOR statement
OPTMODEL procedure, 73

FORCEFD= option
PROC OPTMODEL statement, 41

FORCEPRESOLVE= option
PROC OPTMODEL statement, 41

function expressions
OF keyword, 103

IF expression
OPTMODEL expression extensions, 106

IF statement
ELSE keyword, 74
OPTMODEL procedure, 74
THEN keyword, 74

IIS option
EXPAND statement, 70

IMPVAR option
EXPAND statement, 70

IMPVAR statement
OPTMODEL procedure, 46

IN expression
OPTMODEL expression extensions, 107

IN keyword
index sets, 104

index sets
IN keyword, 104
index set expression, 107
index-set-item, 104

INIT keyword
NUMBER statement, 48
SET statement, 48
STRING statement, 48
VAR statement, 52

INITVAR option
PROC OPTMODEL statement, 41

INTER aggregation expression
OPTMODEL expression extensions, 108

INTER expression
OPTMODEL expression extensions, 107

INTFUZZ= option
PROC OPTMODEL statement, 42

INTO keyword
READ DATA statement, 82

LEAVE statement
OPTMODEL procedure, 74

LTRIM option
READ DATA statement, 84

MAX aggregation expression
OPTMODEL expression extensions, 108

MAX statement
OPTMODEL procedure, 47

MAXLABLEN= option
PROC OPTMODEL statement, 42

MIN aggregation expression
OPTMODEL expression extensions, 108

MIN statement
OPTMODEL procedure, 47

MISSCHECK option
PROC OPTMODEL statement, 42

MSGLIMIT= option
PROC OPTMODEL statement, 42

NOINITVAR option
PROC OPTMODEL statement, 41

NOMISSCHECK option
PROC OPTMODEL statement, 42

NOOBJECTIVE keyword
SOLVE statement, 89

NOTRIM option
READ DATA statement, 84

null statement

OPTMODEL procedure, 75
NUMBER statement

INIT keyword, 48
OPTMODEL procedure, 47

OBJECTIVE keyword
SOLVE statement, 89

OBJECTIVE option
EXPAND statement, 70

OF keyword
function expressions, 103

OMITTED option
EXPAND statement, 70

OPTMODEL expression extensions
AND aggregation expression, 104
CARD function, 105
CROSS expression, 105
DIFF expression, 105
IF expression, 106
IN expression, 107
index set expression, 107
INTER aggregation expression, 108
INTER expression, 107
MAX aggregation expression, 108
MIN aggregation expression, 108
OR aggregation expression, 108
PROD aggregation expression, 109
range expression, 109
set constructor expression, 110
set literal expression, 110
SETOF aggregation expression, 111
SLICE expression, 111
SUM aggregation expression, 112
SYMDIFF expression, 112
tuple expression, 113
UNION aggregation expression, 113
UNION expression, 113
WITHIN expression, 113

OPTMODEL Procedure, 36
OPTMODEL procedure

assignment statement, 53
CALL statement, 54
CLOSEFILE statement, 54
COFOR statement, 55
CONSTRAINT statement, 44
CONTINUE statement, 61
CREATE DATA statement, 61
DO statement, 66
DO statement, iterative, 66
DO UNTIL statement, 68
DO WHILE statement, 68
DROP statement, 69
EXPAND statement, 69
FILE statement, 71

FIX statement, 73
FOR statement, 73
IF statement, 74
IMPVAR statement, 46
LEAVE statement, 74
MAX statement, 47
MIN statement, 47
null statement, 75
NUMBER statement, 47
PERFORMANCE statement, 75
PRINT statement, 75
PROFILE statement, 79
PUT statement, 81
QUIT Statement, 82
READ DATA statement, 82
RESET OPTIONS statement, 86
RESTORE statement, 86
SAVE MPS statement, 86
SAVE QPS statement, 88
SET statement, 47
SOLVE statement, 89
STOP statement, 91
STRING statement, 47
SUBMIT statement, 92
UNFIX statement, 94
USE PROBLEM statement, 95
VAR statement, 52

OR aggregation expression
OPTMODEL expression extensions, 108

PAGE keyword
PRINT statement, 76
PUT statement, 82

PDIGITS= option
PROC OPTMODEL statement, 42

PERFORMANCE statement
OPTMODEL procedure, 75

PMATRIX= option
PROC OPTMODEL statement, 42

PRESOLVER= option
PROC OPTMODEL statement, 43

PRESTOL= option
PROC OPTMODEL statement, 43

PRINT statement
OPTMODEL procedure, 75
PAGE keyword, 76

PRINTLEVEL= option
PROC OPTMODEL statement, 43

PROC OPTMODEL statement
statement options, 40

PROD aggregation expression
OPTMODEL expression extensions, 109

PUT statement
PAGE keyword, 82

PWIDTH= option
PROC OPTMODEL statement, 44

QUIT Statement
OPTMODEL procedure, 82

range expression
OPTMODEL expression extensions, 109

READ DATA statement
COL keyword, 84
INTO keyword, 82
LTRIM option, 84
NOTRIM option, 84
OPTMODEL procedure, 82
RTRIM option, 84
TRIM option, 84

RELAXINT keyword
SOLVE statement, 89

RESET OPTIONS statement
OPTMODEL procedure, 86

RESTORE statement
OPTMODEL procedure, 86

RTRIM option
READ DATA statement, 84

SAVE MPS statement
OPTMODEL procedure, 86

SAVE QPS statement
OPTMODEL procedure, 88

set constructor expression
OPTMODEL expression extensions, 110

set literal expression
OPTMODEL expression extensions, 110

SET statement
INIT keyword, 48
OPTMODEL procedure, 47

SETOF aggregation expression
OPTMODEL expression extensions, 111

SLICE expression
OPTMODEL expression extensions, 111

SOLVE option
EXPAND statement, 70

SOLVE statement
NOOBJECTIVE keyword, 89
OBJECTIVE keyword, 89
OPTMODEL procedure, 89
RELAXINT keyword, 89
WITH keyword, 89

STOP statement
OPTMODEL procedure, 91

STRING statement
INIT keyword, 48
OPTMODEL procedure, 47

SUBMIT statement
OPTMODEL procedure, 92

SUM aggregation expression
OPTMODEL expression extensions, 112

SYMDIFF expression
OPTMODEL expression extensions, 112

THEN keyword
IF statement, 74

TRIM option
READ DATA statement, 84

tuple expression
OPTMODEL expression extensions, 113

UNFIX statement
OPTMODEL procedure, 94

UNION aggregation expression
OPTMODEL expression extensions, 113

UNION expression
OPTMODEL expression extensions, 113

UNTIL keyword
DO statement, iterative, 66

USE PROBLEM statement
OPTMODEL procedure, 95

VAR option
EXPAND statement, 70

VAR statement
INIT keyword, 52
OPTMODEL procedure, 52

VARFUZZ= option
PROC OPTMODEL statement, 44

WHILE keyword
DO statement, iterative, 66

WITH keyword
SOLVE statement, 89

WITHIN expression
OPTMODEL expression extensions, 113

	The OPTMODEL Procedure
	Overview: OPTMODEL Procedure
	Getting Started: OPTMODEL Procedure
	An Unconstrained Optimization Example
	The Rosenbrock Problem
	A Transportation Problem

	Syntax: OPTMODEL Procedure
	Functional Summary
	PROC OPTMODEL Statement
	Declaration Statements
	CONSTRAINT Declaration
	IMPVAR Declaration
	MAX and MIN Objective Declarations
	NUMBER, STRING, and SET Parameter Declarations
	PROBLEM Declaration
	VAR Declaration

	Programming Statements
	Assignment Statement
	CALL Statement
	CLOSEFILE Statement
	COFOR Statement
	CONTINUE Statement
	CREATE DATA Statement
	DO Statement
	DO Statement, Iterative
	DO UNTIL Statement
	DO WHILE Statement
	DROP Statement
	EXPAND Statement
	FILE Statement
	FIX Statement
	FOR Statement
	IF Statement
	LEAVE Statement
	Null Statement
	PERFORMANCE Statement
	PRINT Statement
	PROFILE Statement
	PUT Statement
	QUIT Statement
	READ DATA Statement
	RESET OPTIONS Statement
	RESTORE Statement
	SAVE MPS Statement
	SAVE QPS Statement
	SOLVE Statement
	STOP Statement
	SUBMIT Statement
	UNFIX Statement
	USE PROBLEM Statement

	Details: OPTMODEL Procedure
	Named Parameters
	Indexing
	Types
	Names
	Parameters
	Expressions
	Identifier Expressions
	Function Expressions
	Index Sets
	OPTMODEL Expression Extensions
	AND Aggregation Expression
	CARD Function
	CROSS Expression
	DIFF Expression
	IF-THEN/ELSE Expression
	IN Expression
	Index Set Expression
	INTER Expression
	INTER Aggregation Expression
	MAX Aggregation Expression
	MIN Aggregation Expression
	OR Aggregation Expression
	PROD Aggregation Expression
	Range Expression
	Set Constructor Expression
	Set Literal Expression
	SETOF Aggregation Expression
	SLICE Expression
	SUM Aggregation Expression
	SYMDIFF Expression
	Tuple Expression
	UNION Expression
	UNION Aggregation Expression
	WITHIN Expression

	Conditions of Optimality
	Linear Programming
	Nonlinear Programming

	Data Set Input/Output
	Control Flow
	Formatted Output
	ODS Table and Variable Names
	Constraints
	Suffixes
	Integer Variable Suffixes
	Dual Values
	Background on Duality in Mathematical Programming
	Minimization Problems
	Maximization Problems

	Reduced Costs
	Presolver
	Model Update
	Multiple Subproblems
	Multiple Solutions
	Problem Symbols
	OPTMODEL Options
	Automatic Differentiation
	Forward-Difference Approximations
	Central-Difference Approximations

	Conversions
	FCMP Routines
	More on Index Sets
	Threaded and Distributed Processing
	Macro Variable _OROPTMODEL_
	Solver Status Parameters
	Macro and Statement Evaluation Order

	Rewriting PROC NLP Models for PROC OPTMODEL

	Examples: OPTMODEL Procedure
	Example 5.1: Matrix Square Root
	Example 5.2: Reading From and Creating a Data Set
	Example 5.3: Model Construction
	Example 5.4: Set Manipulation
	Example 5.5: Multiple Subproblems
	Example 5.6: Traveling Salesman Problem
	Example 5.7: Sparse Modeling
	Example 5.8: Chemical Equilibrium

	References

	Subject Index
	Syntax Index

