
SAS/OR® 14.1 User’s Guide:
Mathematical Programming
Legacy Procedures
The NETFLOW Procedure

This document is an individual chapter from SAS/OR® 14.1 User’s Guide: Mathematical Programming Legacy Procedures.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2015. SAS/OR® 14.1 User’s Guide: Mathematical
Programming Legacy Procedures. Cary, NC: SAS Institute Inc.

SAS/OR® 14.1 User’s Guide: Mathematical Programming Legacy Procedures

Copyright © 2015, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute
Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time
you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is
illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic
piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software
developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or
disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as
applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S.
federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision
serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The
Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

July 2015

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Chapter 5

The NETFLOW Procedure

Contents
Overview: NETFLOW Procedure . 299

Introduction . 299
Network Models . 300
Side Constraints . 301
Advantages of Network Models over LP Models . 306
Mathematical Description of NPSC . 307
Flow Conservation Constraints . 308
Nonarc Variables . 308
Warm Starts . 309

Getting Started: NETFLOW Procedure . 310
Introductory Example . 311

Syntax: NETFLOW Procedure . 317
Functional Summary . 317
Interactivity . 322
PROC NETFLOW Statement . 324
CAPACITY Statement . 336
COEF Statement . 337
COLUMN Statement . 337
CONOPT Statement . 337
COST Statement . 338
DEMAND Statement . 338
HEADNODE Statement . 338
ID Statement . 338
LO Statement . 339
MULT Statement . 339
NAME Statement . 339
NODE Statement . 339
PIVOT Statement . 340
PRINT Statement . 340
QUIT Statement . 346
RESET Statement . 346
RHS Statement . 366
ROW Statement . 366
RUN Statement . 367
SAVE Statement . 367
SHOW Statement . 369

298 F Chapter 5: The NETFLOW Procedure

SUPDEM Statement . 373
SUPPLY Statement . 373
TAILNODE Statement . 373
TYPE Statement . 373
VAR Statement . 375

Details: NETFLOW Procedure . 376
Input Data Sets . 376
Output Data Sets . 384
Converting Any PROC NETFLOW Format to an MPS-Format SAS Data Set 387
Case Sensitivity . 387
Loop Arcs . 388
Multiple Arcs . 388
Pricing Strategies . 388
Dual Variables, Reduced Costs, and Status . 392
The Working Basis Matrix . 393
Flow and Value Bounds . 394
Tightening Bounds and Side Constraints . 394
Reasons for Infeasibility . 395
Missing S Supply and Missing D Demand Values . 396
Balancing Total Supply and Total Demand . 400
Warm Starts . 401
How to Make the Data Read of PROC NETFLOW More Efficient 404
Macro Variable _ORNETFL . 409
Memory Limit . 411

The Interior Point Algorithm: NETFLOW Procedure . 412
Introduction . 412
Network Models: Interior Point Algorithm . 413
Linear Programming Models: Interior Point Algorithm 423

Generalized Networks: NETFLOW Procedure . 444
What Is a Generalized Network? . 444
How to Specify Data for Arc Multipliers . 446

Using the EXCESS= Option in Pure Networks: NETFLOW Procedure 449
Handling Excess Supply or Demand . 450
Handling Missing Supply and Demand Simultaneously 451
Maximum Flow Problems . 452
Handling Supply and Demand Ranges . 455

Using the EXCESS= Option in Generalized Networks: NETFLOW Procedure 456
How Generalized Networks Differ from Pure Networks 456
The EXCESS=SUPPLY Option . 457
The EXCESS=DEMAND Option . 459

Examples: NETFLOW Procedure . 461
Example 5.1: Shortest Path Problem . 461
Example 5.2: Minimum Cost Flow Problem . 464
Example 5.3: Using a Warm Start . 467

Overview: NETFLOW Procedure F 299

Example 5.4: Production, Inventory, Distribution Problem 468
Example 5.5: Using an Unconstrained Solution Warm Start 477
Example 5.6: Adding Side Constraints, Using a Warm Start 483
Example 5.7: Using a Constrained Solution Warm Start 491
Example 5.8: Nonarc Variables in the Side Constraints 498
Example 5.9: Pure Networks: Using the EXCESS= Option 507
Example 5.10: Maximum Flow Problem . 511
Example 5.11: Generalized Networks: Using the EXCESS= Option 514
Example 5.12: Generalized Networks: Maximum Flow Problem 517
Example 5.13: Machine Loading Problem . 519
Example 5.14: Generalized Networks: Distribution Problem 522
Example 5.15: Converting to an MPS-Format SAS Data Set 525
Example 5.16: Migration to OPTMODEL: Generalized Networks 527
Example 5.17: Migration to OPTMODEL: Maximum Flow 530
Example 5.18: Migration to OPTMODEL: Production, Inventory, Distribution 532
Example 5.19: Migration to OPTMODEL: Shortest Path 534

References . 536

Overview: NETFLOW Procedure

Introduction
Constrained network models can be used to describe a wide variety of real-world applications ranging from
production, inventory, and distribution problems to financial applications. These problems can be solved with
the NETFLOW procedure.

These models are conceptually easy since they are based on network diagrams that represent the problem
pictorially. PROC NETFLOW accepts the network specification in a format that is particularly suited to
networks. This not only simplifies problem description but also aids in the interpretation of the solution.

Certain algebraic features of networks are exploited by a specialized version of the simplex method so
that solution times are reduced. Another optimization algorithm, the interior point algorithm, has been
implemented in PROC NETFLOW and can be used as an alternative to the simplex algorithm to solve
network problems.

Should PROC NETFLOW detect there are no arcs and nodes in the model’s data, (that is, there is no network
component), it assumes it is dealing with a linear programming (LP) problem. The interior point algorithm is
automatically selected to perform the optimization.

You can also solve LP problems by using the OPTLP procedure. The OPTLP procedure requires a linear
program to be specified by using a SAS data set that adheres to the MPS format, a widely accepted format in
the optimization community. You can use the MPSOUT= option in the NETFLOW procedure to convert
typical PROC NETFLOW format data sets into MPS-format SAS data sets.

300 F Chapter 5: The NETFLOW Procedure

Network Models
A network consists of a collection of nodes joined by a collection of arcs. The arcs connect nodes and convey
flow of one or more commodities that are supplied at supply nodes and demanded at demand nodes in the
network. Each arc has a cost per unit of flow, a flow capacity, and a lower flow bound associated with it. An
important concept in network modeling is conservation of flow.

Conservation of flow means that the total flow in arcs directed toward a node, plus the supply at the node,
minus the demand at the node, equals the total flow in arcs directed away from the node.

A network and its associated data can be described in SAS data sets. PROC NETFLOW uses this description
and finds the flow through each arc in the network that minimizes the total cost of flow, meets the demand at
demand nodes using the supply at supply nodes so that the flow through each arc is on or between the arc’s
lower flow bound and its capacity, and satisfies the conservation of flow.

One class of network models is the production-inventory-distribution problem. The diagram in Figure 5.1
illustrates this problem. The subscripts on the Production, Inventory, and Sales nodes indicate the time
period. Notice that if you replicate sections of the model, the notion of time can be included.

Figure 5.1 Production-Inventory-Distribution Problem

Salesi�1 Salesi SalesiC1

Inventoryi�1 Inventoryi InventoryiC1

Productioni�1 Productioni ProductioniC1

Stock on hand Stock at end

In this type of model, the nodes can represent a wide variety of facilities. Several examples are suppliers,
spot markets, importers, farmers, manufacturers, factories, parts of a plant, production lines, waste disposal
facilities, workstations, warehouses, coolstores, depots, wholesalers, export markets, ports, rail junctions,
airports, road intersections, cities, regions, shops, customers, and consumers. The diversity of this selection
demonstrates the richness of potential applications of this model.

Depending upon the interpretation of the nodes, the objectives of the modeling exercise can vary widely.
Some common types of objectives are

� to reduce collection or purchase costs of raw materials

� to reduce inventory holding or backorder costs. Warehouses and other storage facilities sometimes
have capacities, and there can be limits on the amount of goods that can be placed on backorder.

Side Constraints F 301

� to decide where facilities should be located and what the capacity of these should be. Network models
have been used to help decide where factories, hospitals, ambulance and fire stations, oil and water
wells, and schools should be sited.

� to determine the assignment of resources (machines, production capability, workforce) to tasks,
schedules, classes, or files

� to determine the optimal distribution of goods or services. This usually means minimizing transporta-
tion costs, and reducing time in transit or distances covered.

� to find the shortest path from one location to another

� to ensure that demands (for example, production requirements, market demands, contractual obliga-
tions) are met

� to maximize profits from the sale of products or the charge for services

� to maximize production by identifying bottlenecks

Some specific applications are

� car distribution models. These help determine which models and numbers of cars should be manufac-
tured in which factories and where to distribute cars from these factories to zones in the United States
in order to meet customer demand at least cost.

� models in the timber industry. These help determine when to plant and mill forests, schedule production
of pulp, paper and wood products, and distribute products for sale or export.

� military applications. The nodes can be theatres, bases, ammunition dumps, logistical suppliers, or
radar installations. Some models are used to find the best ways to mobilize personnel and supplies and
to evacuate the wounded in the least amount of time.

� communications applications. The nodes can be telephone exchanges, transmission lines, satellite
links, and consumers. In a model of an electrical grid, the nodes can be transformers, powerstations,
watersheds, reservoirs, dams, and consumers. Of concern might be the effect of high loads or outages.

Side Constraints
Often all the details of a problem cannot be specified in a network model alone. In many of these cases,
these details can be represented by the addition of side constraints to the model. Side constraints are a linear
function of arc variables (variables containing flow through an arc) and nonarc variables (variables that are
not part of the network). This enhancement to the basic network model allows for very general problems. In
fact, any linear program can be represented with network models having these types of side constraints. The
examples that follow help to clarify the notion of side constraints.

PROC NETFLOW enables you to specify side constraints. The data for a side constraint consist of coefficients
of arcs and coefficients of nonarc variables, a constraint type (that is, �, =, or �) and a right-hand-side
value (rhs). A nonarc variable has a name, an objective function coefficient analogous to an arc cost, an
upper bound analogous to an arc capacity, and a lower bound analogous to an arc lower flow bound. PROC

302 F Chapter 5: The NETFLOW Procedure

NETFLOW finds the flow through the network and the values of any nonarc variables that minimize the total
cost of the solution. Flow conservation is met, flow through each arc is on or between the arc’s lower flow
bound and capacity, the value of each nonarc variable is on or between the nonarc’s lower and upper bounds,
and the side constraints are satisfied. Note that, since many linear programs have large embedded networks,
PROC NETFLOW is an attractive alternative to the LP procedure in many cases.

In order for arcs to be specified in side constraints, they must be named. By default, PROC NETFLOW
names arcs using the names of the nodes at the head and tail of the arc. An arc is named with its tail node
name followed by an underscore and its head node name. For example, an arc from node from to node to is
called from_to.

Proportionality Constraints

Side constraints in network models fall into several categories that have special structure. They are frequently
used when the flow through an arc must be proportional to the flow through another arc. Such constraints
are called proportionality constraints and are useful in models where production is subject to refining or
modification into different materials. The amount of each output, or any waste, evaporation, or reduction can
be specified as a proportion of input.

Typically the arcs near the supply nodes carry raw materials and the arcs near the demand nodes carry
refined products. For example, in a model of the milling industry, the flow through some arcs may represent
quantities of wheat. After the wheat is processed, the flow through other arcs might be flour. For others it
might be bran. The side constraints model the relationship between the amount of flour or bran produced as
a proportion of the amount of wheat milled. Some of the wheat can end up as neither flour, bran, nor any
useful product, so this waste is drained away via arcs to a waste node.

Figure 5.2 Proportionality Constraints

Wheat Mill

Flour

Bran

Other

1.0 0.2

0.3

0.5

Consider the network fragment in Figure 5.2. The arc Wheat_Mill conveys the wheat milled. The cost of flow
on this arc is the milling cost. The capacity of this arc is the capacity of the mill. The lower flow bound on
this arc is the minimum quantity that must be milled for the mill to operate economically. The constraints

0:3Wheat_Mill � Mill_FlourD 0:0

0:2Wheat_Mill � Mill_BranD 0:0

Side Constraints F 303

force every unit of wheat that is milled to produce 0.3 units of flour and 0.2 units of bran. Note that it is not
necessary to specify the constraint

0:5Wheat_Mill � Mill_OtherD 0:0

since flow conservation implies that any flow that does not traverse through Mill_Flour or Mill_Bran must
be conveyed through Mill_Other. And, computationally, it is better if this constraint is not specified, since
there is one less side constraint and fewer problems with numerical precision. Notice that the sum of the
proportions must equal 1.0 exactly; otherwise, flow conservation is violated.

Blending Constraints

Blending or quality constraints can also influence the recipes or proportions of ingredients that are mixed.
For example, different raw materials can have different properties. In an application of the oil industry, the
amount of products that are obtained could be different for each type of crude oil. Furthermore, fuel might
have a minimum octane requirement or limited sulphur or lead content, so that a blending of crudes is needed
to produce the product.

The network fragment in Figure 5.3 shows an example of this.

Figure 5.3 Blending Constraints

USA

MidEast

Port Refinery

Gasoline

Diesel

Other

5 units/
liter

4 units/
liter

4.75 units/
liter

The arcs MidEast_Port and USA_Port convey crude oil from the two sources. The arc Port_Refinery
represents refining while the arcs Refinery_Gasoline and Refinery_Diesel carry the gas and diesel produced.
The proportionality constraints

0:4Port_Refinery � Refinery_GasolineD 0:0

0:2Port_Refinery � Refinery_DieselD 0:0

capture the restrictions for producing gasoline and diesel from crude. Suppose that, if only crude from the
Middle East is used, the resulting diesel would contain 5 units of sulphur per liter. If only crude from the

304 F Chapter 5: The NETFLOW Procedure

USA is used, the resulting diesel would contain 4 units of sulphur per liter. Diesel can have at most 4.75
units of sulphur per liter. Some crude from the USA must be used if Middle East crude is used in order to
meet the 4.75 sulphur per liter limit. The side constraint to model this requirement is

5MidEast_PortC4USA_Port �4:75Port_Refinery � 0:0

Since Port_Refinery = MidEast_Port C USA_Port, flow conservation allows this constraint to be simplified
to

1MidEast_Port �3USA_Port � 0.0

If, for example, 120 units of crude from the Middle East is used, then at least 40 units of crude from the USA
must be used. The preceding constraint is simplified because you assume that the sulphur concentration of
diesel is proportional to the sulphur concentration of the crude mix. If this is not the case, the relation

0:2Port_Refinery = Refinery_Diesel

is used to obtain

5MidEast_PortC4USA_Port �4:75 .1:0=0:2 Refinery_Diesel/ � 0:0

which equals

5MidEast_PortC4USA_Port �23:75Refinery_Diesel � 0.0

An example similar to this Oil Industry problem is solved in the section “Introductory Example” on page 311.

Multicommodity Problems

Side constraints are also used in models in which there are capacities on transportation or some other
shared resource, or there are limits on overall production or demand in multicommodity, multidivisional or
multiperiod problems. Each commodity, division or period can have a separate network coupled to one main
system by the side constraints. Side constraints are used to combine the outputs of subdivisions of a problem
(either commodities, outputs in distinct time periods, or different process streams) to meet overall demands
or to limit overall production or expenditures. This method is more desirable than doing separate local
optimizations for individual commodity, process, or time networks and then trying to establish relationships
between each when determining an overall policy if the global constraint is not satisfied. Of course, to make
models more realistic, side constraints may be necessary in the local problems.

Side Constraints F 305

Figure 5.4 Multicommodity Problem

Factorycom2

Factorycom1

City2com2

City1com2

City2com1

City1com1

Commodity 1

Commodity 2

Figure 5.4 shows two network fragments. They represent identical production and distribution sites of two
different commodities. Suffix com1 represents commodity 1 and suffix com2 represents commodity 2. The
nodes Factorycom1 and Factorycom2 model the same factory, and nodes City1com1 and City1com2 model
the same location, city 1. Similarly, City2com1 and City2com2 are the same location, city 2. Suppose that
commodity 1 occupies 2 cubic meters, commodity 2 occupies 3 cubic meters, the truck dispatched to city 1
has a capacity of 200 cubic meters, and the truck dispatched to city 2 has a capacity of 250 cubic meters.
How much of each commodity can be loaded onto each truck? The side constraints for this case are

2Factorycom1_City1com1C3Factorycom2_City1com2 � 200

2Factorycom1_City2com1C3Factorycom2_City2com2 � 250

Large Modeling Strategy

In many cases, the flow through an arc might actually represent the flow or movement of a commodity from
place to place or from time period to time period. However, sometimes an arc is included in the network as a
method of capturing some aspect of the problem that you would not normally think of as part of a network
model. For example, in a multiprocess, multiproduct model (Figure 5.5), there might be subnetworks for
each process and each product. The subnetworks can be joined together by a set of arcs that have flows that
represent the amount of product j produced by process i. To model an upper limit constraint on the total
amount of product j that can be produced, direct all arcs carrying product j to a single node and from there
through a single arc. The capacity of this arc is the upper limit of product j production. It is preferable to
model this structure in the network rather than to include it in the side constraints because the efficiency of
the optimizer is affected less by a reasonable increase in the size of the network.

306 F Chapter 5: The NETFLOW Procedure

Figure 5.5 Multiprocess, Multiproduct Example

Capacity of
Process 2

Process 2 subnetwork

Capacity of
Process 1

Process 1 subnetwork

Capacity is upper limit of
Product 2 production

Product 2 subnetwork

Capacity is upper limit of
Product 1 production

Product 1 subnetwork

It is often a good strategy when starting a project to use a small network formulation and then use that model
as a framework upon which to add detail. For example, in the multiprocess, multiproduct model, you might
start with the network depicted in Figure 5.5. Then, for example, the process subnetwork can be enhanced
to include the distribution of products. Other phases of the operation could be included by adding more
subnetworks. Initially, these subnetworks can be single nodes, but in subsequent studies they can be expanded
to include greater detail.

The NETFLOW procedure accepts the side constraints in the same dense and sparse formats that the LP
procedure provides. Although PROC LP can solve network problems, the NETFLOW procedure generally
solves network flow problems more efficiently than PROC LP.

Advantages of Network Models over LP Models
Many linear programming problems have large embedded network structures. Such problems often result
when modeling manufacturing processes, transportation or distribution networks, or resource allocation, or
when deciding where to locate facilities. Often, some commodity is to be moved from place to place, so the
more natural formulation in many applications is that of a constrained network rather than a linear program.

Using a network diagram to visualize a problem makes it possible to capture the important relationships in an
easily understood picture form. The network diagram aids the communication between model builder and
model user, making it easier to comprehend how the model is structured, how it can be changed, and how
results can be interpreted.

If a network structure is embedded in a linear program, the problem is a network programming problem with
side constraints (NPSC). When the network part of the problem is large compared to the nonnetwork part,
especially if the number of side constraints is small, it is worthwhile to exploit this structure in the solution
process. This is what PROC NETFLOW does. It uses a variant of the revised primal simplex algorithm that
exploits the network structure to reduce solution time.

Mathematical Description of NPSC F 307

Mathematical Description of NPSC
If a network programming problem with side constraints has n nodes, a arcs, g nonarc variables, and k side
constraints, then the formal statement of the problem solved by PROC NETFLOW is

minimize cT x C dT z

subject to Fx D b

Hx CQz �;D;� r

l � x � u

m � z � v

where

� c is the a � 1 arc variable objective function coefficient vector (the cost vector)

� x is the a � 1 arc variable value vector (the flow vector)

� d is the g � 1 nonarc variable objective function coefficient vector

� z is the g � 1 nonarc variable value vector

� F is the n � a node-arc incidence matrix of the network, where

Fi;j D

8<:
�1; if arc j is directed from node i
1; if arc j is directed toward node i
0; otherwise

� b is the n � 1 node supply/demand vector, where

bi D

8<:
s; if node i has supply capability of s units of flow
�d; if node i has demand of d units of flow
0; if node i is a trans-shipment node

� H is the k � a side constraint coefficient matrix for arc variables, where Hi;j is the coefficient of arc j
in the ith side constraint

� Q is the k � g side constraint coefficient matrix for nonarc variables, where Qi;j is the coefficient of
nonarc j in the ith side constraint

� r is the k � 1 side constraint right-hand-side vector

� l is the a � 1 arc lower flow bound vector

� u is the a � 1 arc capacity vector

� m is the g � 1 nonarc variable lower bound vector

� v is the g � 1 nonarc variable upper bound vector

308 F Chapter 5: The NETFLOW Procedure

Flow Conservation Constraints
The constraints Fx D b are referred to as the nodal flow conservation constraints. These constraints
algebraically state that the sum of the flow through arcs directed toward a node plus that node’s supply, if any,
equals the sum of the flow through arcs directed away from that node plus that node’s demand, if any. The
flow conservation constraints are implicit in the network model and should not be specified explicitly in side
constraint data when using PROC NETFLOW. The constrained problems most amenable to being solved by
the NETFLOW procedure are those that, after the removal of the flow conservation constraints, have very
few constraints. PROC NETFLOW is superior to linear programming optimizers when the network part of
the problem is significantly larger than the nonnetwork part.

The NETFLOW procedure can also be used to solve an unconstrained network problem, that is, one in which
H, Q, d, r, and z do not exist.

Nonarc Variables
If the constrained problem to be solved has no nonarc variables, then Q, d, and z do not exist. However,
nonarc variables can be used to simplify side constraints. For example, if a sum of flows appears in many
constraints, it may be worthwhile to equate this expression with a nonarc variable and use this in the other
constraints. By assigning a nonarc variable a nonzero objective function, it is then possible to incur a cost for
using resources above some lowest feasible limit. Similarly, a profit (a negative objective function coefficient
value) can be made if all available resources are not used.

In some models, nonarc variables are used in constraints to absorb excess resources or supply needed
resources. Then, either the excess resource can be used or the needed resource can be supplied to another
component of the model.

For example, consider a multicommodity problem of making television sets that have either 19- or 25-inch
screens. In their manufacture, 3 and 4 chips, respectively, are used. Production occurs at 2 factories during
March and April. The supplier of chips can supply only 2600 chips to factory 1 and 3750 chips to factory 2
each month. The names of arcs are in the form Prodn_s_m, where n is the factory number, s is the screen
size, and m is the month. For example, Prod1_25_Apr is the arc that conveys the number of 25-inch TVs
produced in factory 1 during April. You might have to determine similar systematic naming schemes for
your application.

As described, the constraints are

3Prod1_19_MarC4Prod1_25_Mar � 2600

3Prod2_19_MarC4Prod2_25_Mar � 3750

3Prod1_19_AprC4Prod1_25_Apr � 2600

3Prod2_19_AprC4Prod2_25_Apr � 3750

Warm Starts F 309

If there are chips that could be obtained for use in March but not used for production in March, why not keep
these unused chips until April? Furthermore, if the March excess chips at factory 1 could be used either at
factory 1 or factory 2 in April, the model becomes

3Prod1_19_MarC4Prod1_25_MarCF1_Unused_MarD 2600

3Prod2_19_MarC4Prod2_25_MarCF2_Unused_MarD 3750

3Prod1_19_AprC4Prod1_25_Apr � F1_Kept_Since_MarD 2600

3Prod2_19_AprC4Prod2_25_Apr � F2_Kept_Since_MarD 3750

F1_Unused_MarC F2_Unused_Mar (continued)

� F1_Kept_Since_Mar � F2_Kept_Since_Mar � 0.0

where F1_Kept_Since_Mar is the number of chips used during April at factory 1 that were obtained in March
at either factory 1 or factory 2 and F2_Kept_Since_Mar is the number of chips used during April at factory 2
that were obtained in March. The last constraint ensures that the number of chips used during April that were
obtained in March does not exceed the number of chips not used in March. There may be a cost to hold chips
in inventory. This can be modeled having a positive objective function coefficient for the nonarc variables
F1_Kept_Since_Mar and F2_Kept_Since_Mar. Moreover, nonarc variable upper bounds represent an upper
limit on the number of chips that can be held in inventory between March and April.

See Example 5.4 through Example 5.8 for a series of examples that use this TV problem. The use of nonarc
variables as described previously is illustrated.

Warm Starts
If you have a problem that has already been partially solved and is to be solved further to obtain a better,
optimal solution, information describing the solution now available may be used as an initial solution. This is
called warm starting the optimization, and the supplied solution data are called the warm start.

Some data can be changed between the time when a warm start is created and when it is used as a warm
start for a subsequent PROC NETFLOW run. Elements in the arc variable cost vector, the nonarc variable
objective function coefficient vector, and sometimes capacities, upper value bounds, and side constraint data
can be changed between PROC NETFLOW calls. See the section “Warm Starts” on page 401. Also, see
Example 5.4 through Example 5.8 (the TV problem) for a series of examples that show the use of warm
starts.

310 F Chapter 5: The NETFLOW Procedure

Getting Started: NETFLOW Procedure
To solve network programming problems with side constraints using PROC NETFLOW, you save a repre-
sentation of the network and the side constraints in three SAS data sets. These data sets are then passed to
PROC NETFLOW for solution. There are various forms that a problem’s data can take. You can use any one
or a combination of several of these forms.

The NODEDATA= data set contains the names of the supply and demand nodes and the supply or demand
associated with each. These are the elements in the column vector b in problem (NPSC).

The ARCDATA= data set contains information about the variables of the problem. Usually these are arcs, but
there can also be data related to nonarc variables in the ARCDATA= data set.

An arc is identified by the names of its tail node (where it originates) and head node (where it is directed).
Each observation can be used to identify an arc in the network and, optionally, the cost per flow unit across
the arc, the arc’s capacity, lower flow bound, and name. These data are associated with the matrix F and the
vectors c, l, and u in problem (NPSC).

NOTE: Although F is a node-arc incidence matrix, it is specified in the ARCDATA= data set by arc
definitions.

In addition, the ARCDATA= data set can be used to specify information about nonarc variables, including
objective function coefficients, lower and upper value bounds, and names. These data are the elements of the
vectors d, m, and v in problem (NPSC). Data for an arc or nonarc variable can be given in more than one
observation.

Supply and demand data also can be specified in the ARCDATA= data set. In such a case, the NODEDATA=
data set may not be needed.

The CONDATA= data set describes the side constraints and their right-hand sides. These data are elements
of the matrices H and Q and the vector r. Constraint types are also specified in the CONDATA= data set.
You can include in this data set upper bound values or capacities, lower flow or value bounds, and costs or
objective function coefficients. It is possible to give all information about some or all nonarc variables in the
CONDATA= data set.

An arc is identified in this data set by its name. If you specify an arc’s name in the ARCDATA= data set, then
this name is used to associate data in the CONDATA= data set with that arc. Each arc also has a default name
that is the name of the tail and head node of the arc concatenated together and separated by an underscore
character; tail_head, for example.

If you use the dense side constraint input format (described in the section “CONDATA= Data Set” on
page 376) and want to use the default arc names, these arc names are names of SAS variables in the VAR list
of the CONDATA= data set.

If you use the sparse side constraint input format (see the section “CONDATA= Data Set” on page 376)
and want to use the default arc names, these arc names are values of the COLUMN list SAS variable of the
CONDATA= data set.

Introductory Example F 311

The execution of PROC NETFLOW has three stages. In the preliminary (zeroth) stage, the data are read
from the NODEDATA= data set, the ARCDATA= data set, and the CONDATA= data set. Error checking is
performed, and an initial basic feasible solution is found. If an unconstrained solution warm start is being
used, then an initial basic feasible solution is obtained by reading additional data containing that information
in the NODEDATA= data set and the ARCDATA= data set. In this case, only constraint data and nonarc
variable data are read from the CONDATA= data set.

In the first stage, an optimal solution to the network flow problem neglecting any side constraints is found.
The primal and dual solutions for this relaxed problem can be saved in the ARCOUT= data set and the
NODEOUT= data set, respectively. These data sets are named in the PROC NETFLOW, RESET, and SAVE
statements.

In the second stage, an optimal solution to the network flow problem with side constraints is found. The
primal and dual solutions for this side constrained problem are saved in the CONOUT= data set and the
DUALOUT= data set, respectively. These data sets are also named in the PROC NETFLOW, RESET, and
SAVE statements.

If a constrained solution warm start is being used, PROC NETFLOW does not perform the zeroth and
first stages. This warm start can be obtained by reading basis data containing additional information in the
NODEDATA= data set (also called the DUALIN= data set) and the ARCDATA= data set.

If warm starts are to be used in future optimizations, the FUTURE1 and FUTURE2 options must be used in
addition to specifying names for the data sets that contain the primal and dual solutions in stages one and two.
Then, most of the information necessary for restarting problems is available in the output data sets containing
the primal and dual solutions of both the relaxed and side constrained network programs.

Introductory Example
Consider the following trans-shipment problem for an oil company. Crude oil is shipped to refineries where it
is processed into gasoline and diesel fuel. The gasoline and diesel fuel are then distributed to service stations.
At each stage, there are shipping, processing, and distribution costs. Also, there are lower flow bounds and
capacities.

In addition, there are two sets of side constraints. The first set is that two times the crude from the Middle
East cannot exceed the throughput of a refinery plus 15 units. (The phrase “plus 15 units” that finishes the
last sentence is used to enable some side constraints in this example to have a nonzero rhs.) The second set
of constraints are necessary to model the situation that one unit of crude mix processed at a refinery yields
three-fourths of a unit of gasoline and one-fourth of a unit of diesel fuel.

Because there are two products that are not independent in the way in which they flow through the network, a
network programming problem with side constraints is an appropriate model for this example (see Figure 5.6).
The side constraints are used to model the limitations on the amount of Middle Eastern crude that can be
processed by each refinery and the conversion proportions of crude to gasoline and diesel fuel.

312 F Chapter 5: The NETFLOW Procedure

Figure 5.6 Oil Industry Example

u.s.a. refinery2

middle east refinery1

r2

r1

ref2 diesel

ref2 gas

ref1 diesel

ref1 gas

servstn2

diesel

servstn2
gas

servstn1

diesel

servstn1
gas

To solve this problem with PROC NETFLOW, save a representation of the model in three SAS data sets. In
the NODEDATA= data set, you name the supply and demand nodes and give the associated supplies and
demands. To distinguish demand nodes from supply nodes, specify demands as negative quantities. For the
oil example, the NODEDATA= data set can be saved as follows:

title 'Oil Industry Example';
title3 'Setting Up Nodedata = Noded For Proc Netflow';
data noded;

input _node_&$15. _sd_;
datalines;

middle east 100
u.s.a. 80
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;

The ARCDATA= data set contains the rest of the information about the network. Each observation in the
data set identifies an arc in the network and gives the cost per flow unit across the arc, the capacities of the
arc, the lower bound on flow across the arc, and the name of the arc.

Introductory Example F 313

title3 'Setting Up Arcdata = Arcd1 For Proc Netflow';
data arcd1;

input _from_&$11. _to_&$15. _cost_ _capac_ _lo_ _name_ $;
datalines;

middle east refinery 1 63 95 20 m_e_ref1
middle east refinery 2 81 80 10 m_e_ref2
u.s.a. refinery 1 55 . . .
u.s.a. refinery 2 49 . . .
refinery 1 r1 200 175 50 thruput1
refinery 2 r2 220 100 35 thruput2
r1 ref1 gas . 140 . r1_gas
r1 ref1 diesel . 75 . .
r2 ref2 gas . 100 . r2_gas
r2 ref2 diesel . 75 . .
ref1 gas servstn1 gas 15 70 . .
ref1 gas servstn2 gas 22 60 . .
ref1 diesel servstn1 diesel 18 . . .
ref1 diesel servstn2 diesel 17 . . .
ref2 gas servstn1 gas 17 35 5 .
ref2 gas servstn2 gas 31 . . .
ref2 diesel servstn1 diesel 36 . . .
ref2 diesel servstn2 diesel 23 . . .
;

Finally, the CONDATA= data set contains the side constraints for the model.

title3 'Setting Up Condata = Cond1 For Proc Netflow';
data cond1;

input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas
type $ _rhs_;

datalines;
-2 . 1 . . . >= -15
. -2 . . 1 . GE -15
. . -3 4 . . EQ 0
. . . . -3 4 = 0
;

Note that the SAS variable names in the CONDATA= data set are the names of arcs given in the ARCDATA=
data set. These are the arcs that have nonzero constraint coefficients in side constraints. For example, the
proportionality constraint that specifies that one unit of crude at each refinery yields three-fourths of a unit
of gasoline and one-fourth of a unit of diesel fuel is given for REFINERY 1 in the third observation and for
REFINERY 2 in the last observation. The third observation requires that each unit of flow on arc THRUPUT1
equals three-fourths of a unit of flow on arc R1_GAS. Because all crude processed at REFINERY 1 flows
through THRUPUT1 and all gasoline produced at REFINERY 1 flows through R1_GAS, the constraint models
the situation. It proceeds similarly for REFINERY 2 in the last observation.

314 F Chapter 5: The NETFLOW Procedure

To find the minimum cost flow through the network that satisfies the supplies, demands, and side constraints,
invoke PROC NETFLOW as follows:

proc netflow
nodedata=noded /* the supply and demand data */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* the solution data set */
run;

The following messages, which appear on the SAS log, summarize the model as read by PROC NETFLOW
and note the progress toward a solution:

NOTE: Number of nodes= 14 .

NOTE: Number of supply nodes= 2 .

NOTE: Number of demand nodes= 4 .

NOTE: Total supply= 180 , total demand= 180 .

NOTE: Number of arcs= 18 .

NOTE: Number of iterations performed (neglecting any constraints)= 14 .

NOTE: Of these, 0 were degenerate.

NOTE: Optimum (neglecting any constraints) found.

NOTE: Minimal total cost= 50600 .

NOTE: Number of <= side constraints= 0 .

NOTE: Number of == side constraints= 2 .

NOTE: Number of >= side constraints= 2 .

NOTE: Number of arc and nonarc variable side constraint coefficients= 8 .

NOTE: Number of iterations, optimizing with constraints= 4 .

NOTE: Of these, 0 were degenerate.

NOTE: Optimum reached.

NOTE: Minimal total cost= 50875 .

NOTE: The data set WORK.SOLUTION has 18 observations and 14 variables.

Introductory Example F 315

Unlike PROC LP, which displays the solution and other information as output, PROC NETFLOW saves the
optimum in output SAS data sets that you specify. For this example, the solution is saved in the SOLUTION
data set. It can be displayed with the PRINT procedure as

proc print data=solution;
var _from_ _to_ _cost_ _capac_ _lo_ _name_

supply _demand_ _flow_ _fcost_ _rcost_;
sum _fcost_;
title3 'Constrained Optimum';
run;

Figure 5.7 CONOUT=SOLUTION

Constrained OptimumConstrained Optimum

Obs _from_ _to_ _cost_ _capac_ _lo_ _name_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_ _RCOST_

1 refinery 1 r1 200 175 50 thruput1 . . 145.00 29000.00 .

2 refinery 2 r2 220 100 35 thruput2 . . 35.00 7700.00 29

3 r1 ref1 diesel 0 75 0 . . 36.25 0.00 .

4 r1 ref1 gas 0 140 0 r1_gas . . 108.75 0.00 .

5 r2 ref2 diesel 0 75 0 . . 8.75 0.00 .

6 r2 ref2 gas 0 100 0 r2_gas . . 26.25 0.00 .

7 middle east refinery 1 63 95 20 m_e_ref1 100 . 80.00 5040.00 .

8 u.s.a. refinery 1 55 99999999 0 80 . 65.00 3575.00 .

9 middle east refinery 2 81 80 10 m_e_ref2 100 . 20.00 1620.00 .

10 u.s.a. refinery 2 49 99999999 0 80 . 15.00 735.00 .

11 ref1 diesel servstn1 diesel 18 99999999 0 . 30 30.00 540.00 .

12 ref2 diesel servstn1 diesel 36 99999999 0 . 30 0.00 0.00 12

13 ref1 gas servstn1 gas 15 70 0 . 95 68.75 1031.25 .

14 ref2 gas servstn1 gas 17 35 5 . 95 26.25 446.25 .

15 ref1 diesel servstn2 diesel 17 99999999 0 . 15 6.25 106.25 .

16 ref2 diesel servstn2 diesel 23 99999999 0 . 15 8.75 201.25 .

17 ref1 gas servstn2 gas 22 60 0 . 40 40.00 880.00 .

18 ref2 gas servstn2 gas 31 99999999 0 . 40 0.00 0.00 7

50875.00

Notice that, in CONOUT=SOLUTION (Figure 5.7), the optimal flow through each arc in the network is given
in the variable named _FLOW_, and the cost of flow through each arc is given in the variable _FCOST_.

316 F Chapter 5: The NETFLOW Procedure

Figure 5.8 Oil Industry Solution

u.s.a. refinery2

middle east refinery1

r2

r1

ref2 diesel

ref2 gas

ref1 diesel

ref1 gas

servstn2

diesel

servstn2
gas

servstn1

diesel

servstn1
gas

80

100

15

80

20

65

35

145

8:75

26:25

36:25

108:75

68:75

8:75

30

40 26:25

6:25

�95

�30

�40

�15

Syntax: NETFLOW Procedure F 317

Syntax: NETFLOW Procedure
Below are statements used in PROC NETFLOW, listed in alphabetical order as they appear in the text that
follows.

PROC NETFLOW options ;
CAPACITY variable ;
COEF variables ;
COLUMN variable ;
CONOPT ; ;
COST variable ;
DEMAND variable ;
HEADNODE variable ;
ID variables ;
LO variable ;
NAME variable ;
NODE variable ;
PIVOT ; ;
PRINT options ;
QUIT ; ;
RESET options ;
RHS variables ;
ROW variables ;
RUN ; ;
SAVE options ;
SHOW options ;
SUPDEM variable ;
SUPPLY variable ;
TAILNODE variable ;
TYPE variable ;
VAR variables ;

Functional Summary
The following table outlines the options available for the NETFLOW procedure classified by function.

Table 5.1 Functional Summary

Description Statement Option

Input Data Set Options:
Arcs input data set PROC NETFLOW ARCDATA=
Nodes input data set PROC NETFLOW NODEDATA=
Constraint input data set PROC NETFLOW CONDATA=

Output Data Set Options:
Unconstrained primal solution data set PROC NETFLOW ARCOUT=

318 F Chapter 5: The NETFLOW Procedure

Description Statement Option

Unconstrained dual solution data set PROC NETFLOW NODEOUT=
Constrained primal solution data set PROC NETFLOW CONOUT=
Constrained dual solution data set PROC NETFLOW DUALOUT=
Convert sparse or dense format input data set into
MPS format output data set

PROC NETFLOW MPSOUT=

Data Set Read Options:
CONDATA has sparse data format PROC NETFLOW SPARSECONDATA
Default constraint type PROC NETFLOW DEFCONTYPE=
Special COLUMN variable value PROC NETFLOW TYPEOBS=
Special COLUMN variable value PROC NETFLOW RHSOBS=
Used to interpret arc and nonarc variable names PROC NETFLOW NAMECTRL=
No new nonarc variables PROC NETFLOW SAME_NONARC_DATA
No nonarc data in ARCDATA PROC NETFLOW ARCS_ONLY_ARCDATA
Data for an arc found once in ARCDATA PROC NETFLOW ARC_SINGLE_OBS
Data for a constraint found once in CONDATA PROC NETFLOW CON_SINGLE_OBS
Data for a coefficient found once in CONDATA PROC NETFLOW NON_REPLIC=
Data are grouped, exploited during data read PROC NETFLOW GROUPED=

Problem Size Specification Options:
Approximate number of nodes PROC NETFLOW NNODES=
Approximate number of arcs PROC NETFLOW NARCS=
Approximate number of nonarc variables PROC NETFLOW NNAS=
Approximate number of coefficients PROC NETFLOW NCOEFS=
Approximate number of constraints PROC NETFLOW NCONS=

Network Options:
Default arc cost PROC NETFLOW DEFCOST=
Default arc capacity PROC NETFLOW DEFCAPACITY=
Default arc lower flow bound PROC NETFLOW DEFMINFLOW=
Network’s only supply node PROC NETFLOW SOURCE=
SOURCE’s supply capability PROC NETFLOW SUPPLY=
Network’s only demand node PROC NETFLOW SINK=
SINK’s demand PROC NETFLOW DEMAND=
Convey excess supply/demand through network PROC NETFLOW THRUNET
Find maximal flow between SOURCE and SINK PROC NETFLOW MAXFLOW
Cost of bypass arc for MAXFLOW problem PROC NETFLOW BYPASSDIVIDE=
Find shortest path from SOURCE to SINK PROC NETFLOW SHORTPATH
Specify generalized networks PROC NETFLOW GENNET
Specify excess demand or supply PROC NETFLOW EXCESS=

Memory Control Options:
Issue memory usage messages to SAS log PROC NETFLOW MEMREP
Number of bytes to use for main memory PROC NETFLOW BYTES=
Proportion of memory for arrays PROC NETFLOW COREFACTOR=

Functional Summary F 319

Description Statement Option

Memory allocated for LU factors PROC NETFLOW DWIA=
Linked list for updated column PROC NETFLOW SPARSEP2
Use 2-dimensional array for basis matrix PROC NETFLOW INVD_2D
Maximum bytes for a single array PROC NETFLOW MAXARRAYBYTES=

Simplex Options:
Use big-M instead of two-phase method, stage 1 RESET BIGM1
Use Big-M instead of two-phase method, stage 2 RESET BIGM2
Anti-cycling option RESET CYCLEMULT1=
Interchange first nonkey with leaving key arc RESET INTFIRST
Controls working basis matrix inversions RESET INVFREQ=
Maximum number of L row operations allowed
before refactorization

RESET MAXL=

Maximum number of LU factor column updates RESET MAXLUUPDATES=
Anti-cycling option RESET MINBLOCK1=
Use first eligible leaving variable, stage 1 RESET LRATIO1
Use first eligible leaving variable, stage 2 RESET LRATIO2
Negates INTFIRST RESET NOINTFIRST
Negates LRATIO1 RESET NOLRATIO1
Negates LRATIO2 RESET NOLRATIO2
Negates PERTURB1 RESET NOPERTURB1
Anti-cycling option RESET PERTURB1
Controls working basis matrix refactorization RESET REFACTFREQ=
Use two-phase instead of big-M method, stage 1 RESET TWOPHASE1
Use two-phase instead of big-M method, stage 2 RESET TWOPHASE2
Pivot element selection parameter RESET U=
Zero tolerance, stage 1 RESET ZERO1=
Zero tolerance, stage 2 RESET ZERO2=
Zero tolerance, real number comparisons RESET ZEROTOL=

Pricing Options:
Frequency of dual value calculation RESET DUALFREQ=
Pricing strategy, stage 1 RESET PRICETYPE1=
Pricing strategy, stage 2 RESET PRICETYPE2=
Used when P1SCAN=PARTIAL RESET P1NPARTIAL=
Controls search for entering candidate, stage 1 RESET P1SCAN=
Used when P2SCAN=PARTIAL RESET P2NPARTIAL=
Controls search for entering candidate, stage 2 RESET P2SCAN=
Initial queue size, stage 1 RESET QSIZE1=
Initial queue size, stage 2 RESET QSIZE2=
Used when Q1FILLSCAN=PARTIAL RESET Q1FILLNPARTIAL=
Controls scan when filling queue, stage 1 RESET Q1FILLSCAN=
Used when Q2FILLSCAN=PARTIAL RESET Q2FILLNPARTIAL=
Controls scan when filling queue, stage 2 RESET Q2FILLSCAN=
Queue size reduction factor, stage 1 RESET REDUCEQSIZE1=

320 F Chapter 5: The NETFLOW Procedure

Description Statement Option

Queue size reduction factor, stage 2 RESET REDUCEQSIZE2=
Frequency of refreshing queue, stage 1 RESET REFRESHQ1=
Frequency of refreshing queue, stage 2 RESET REFRESHQ2=

Optimization Termination Options:
Pause after stage 1; do not start stage 2 RESET ENDPAUSE1
Pause when feasible, stage 1 RESET FEASIBLEPAUSE1
Pause when feasible, stage 2 RESET FEASIBLEPAUSE2
Maximum number of iterations, stage 1 RESET MAXIT1=
Maximum number of iterations, stage 2 RESET MAXIT2=
Negates ENDPAUSE1 RESET NOENDPAUSE1
Negates FEASIBLEPAUSE1 RESET NOFEASIBLEPAUSE1
Negates FEASIBLEPAUSE2 RESET NOFEASIBLEPAUSE2
Pause every PAUSE1 iterations, stage 1 RESET PAUSE1=
Pause every PAUSE2 iterations, stage 2 RESET PAUSE2=

Interior Point Algorithm Options:
Use interior point algorithm PROC NETFLOW INTPOINT
Factorization method RESET FACT_METHOD=
Allowed amount of dual infeasibility RESET TOLDINF=
Allowed amount of primal infeasibility RESET TOLPINF=
Allowed total amount of dual infeasibility RESET TOLTOTDINF=
Allowed total amount of primal infeasibility RESET TOLTOTPINF=
Cut-off tolerance for Cholesky factorization RESET CHOLTINYTOL=
Density threshold for Cholesky processing RESET DENSETHR=
Step-length multiplier RESET PDSTEPMULT=
Preprocessing type RESET PRSLTYPE=
Print optimization progress on SAS log RESET PRINTLEVEL2=

Interior Point Stopping Criteria Options:
Maximum number of interior point iterations RESET MAXITERB=
Primal-dual (duality) gap tolerance RESET PDGAPTOL=
Stop because of complementarity RESET STOP_C=
Stop because of duality gap RESET STOP_DG=
Stop because of infeasb RESET STOP_IB=
Stop because of infeasc RESET STOP_IC=
Stop because of infeasd RESET STOP_ID=
Stop because of complementarity RESET AND_STOP_C=
Stop because of duality gap RESET AND_STOP_DG=
Stop because of infeasb RESET AND_STOP_IB=
Stop because of infeasc RESET AND_STOP_IC=
Stop because of infeasd RESET AND_STOP_ID=
Stop because of complementarity RESET KEEPGOING_C=
Stop because of duality gap RESET KEEPGOING_DG=
Stop because of infeasb RESET KEEPGOING_IB=

Functional Summary F 321

Description Statement Option

Stop because of infeasc RESET KEEPGOING_IC=
Stop because of infeasd RESET KEEPGOING_ID=
Stop because of complementarity RESET AND_KEEPGOING_C=
Stop because of duality gap RESET AND_KEEPGOING_DG=
Stop because of infeasb RESET AND_KEEPGOING_IB=
Stop because of infeasc RESET AND_KEEPGOING_IC=
Stop because of infeasd RESET AND_KEEPGOING_ID=

PRINT Statement Options:
Display everything PRINT PROBLEM
Display arc information PRINT ARCS
Display nonarc variable information PRINT NONARCS
Display variable information PRINT VARIABLES
Display constraint information PRINT CONSTRAINTS
Display information for some arcs PRINT SOME_ARCS
Display information for some nonarc variables PRINT SOME_NONARCS
Display information for some variables PRINT SOME_VARIABLES
Display information for some constraints PRINT SOME_CONS
Display information for some constraints associ-
ated with some arcs

PRINT CON_ARCS

Display information for some constraints associ-
ated with some nonarc variables

PRINT CON_NONARCS

Display information for some constraints associ-
ated with some variables

PRINT CON_VARIABLES

PRINT Statement Qualifiers:
Produce a short report PRINT / SHORT
Produce a long report PRINT / LONG
Display arcs/variables with zero flow/value PRINT / ZERO
Display arcs/variables with nonzero flow/value PRINT / NONZERO
Display basic arcs/variables PRINT / BASIC
Display nonbasic arcs/variables PRINT / NONBASIC

SHOW Statement Options:
Show problem, optimization status SHOW STATUS
Show network model parameters SHOW NETSTMT
Show data sets that have been or will be created SHOW DATASETS
Show options that pause optimization SHOW PAUSE
Show simplex algorithm options SHOW SIMPLEX
Show pricing strategy options SHOW PRICING
Show miscellaneous options SHOW MISC

SHOW Statement Qualifiers:
Display information only on relevant options SHOW / RELEVANT
Display options for current stage only SHOW / STAGE

322 F Chapter 5: The NETFLOW Procedure

Description Statement Option

Miscellaneous Options:
Infinity value PROC NETFLOW INFINITY=
Scale constraint row, nonarc variable column coef-
ficients, or both

PROC NETFLOW SCALE=

Maximization instead of minimization PROC NETFLOW MAXIMIZE
Use warm start solution PROC NETFLOW WARM
All-artificial starting solution PROC NETFLOW ALLART
Output complete basis information to ARCOUT=
and NODEOUT= data sets

RESET FUTURE1

Output complete basis information to CONOUT=
and DUALOUT= data sets

RESET FUTURE2

Turn off infeasibility or optimality flags RESET MOREOPT
Negates FUTURE1 RESET NOFUTURE1
Negates FUTURE2 RESET NOFUTURE2
Negates SCRATCH RESET NOSCRATCH
Negates ZTOL1 RESET NOZTOL1
Negates ZTOL2 RESET NOZTOL2
Write optimization time to SAS log RESET OPTIM_TIMER
No stage 1 optimization; do stage 2 optimization RESET SCRATCH
Suppress similar SAS log messages RESET VERBOSE=
Use zero tolerance, stage 1 RESET ZTOL1
Use zero tolerance, stage 2 RESET ZTOL2

Interactivity
PROC NETFLOW can be used interactively. You begin by giving the PROC NETFLOW statement, and you
must specify the ARCDATA= data set. The CONDATA= data set must also be specified if the problem has
side constraints. If necessary, specify the NODEDATA= data set.

The variable lists should be given next. If you have variables in the input data sets that have special names
(for example, a variable in the ARCDATA= data set named _TAIL_ that has tail nodes of arcs as values), it
may not be necessary to have many or any variable lists.

The CONOPT, PIVOT, PRINT, QUIT, SAVE, SHOW, RESET, and RUN statements follow and can be listed
in any order. The CONOPT and QUIT statements can be used only once. The others can be used as many
times as needed.

Use the RESET or SAVE statement to change the names of the output data sets. With RESET, you can also
indicate the reasons why optimization should stop (for example, you can indicate the maximum number of
stage 1 or stage 2 iterations that can be performed). PROC NETFLOW then has a chance to either execute
the next statement, or, if the next statement is one that PROC NETFLOW does not recognize (the next PROC
or DATA step in the SAS session), do any allowed optimization and finish. If no new statement has been

Interactivity F 323

submitted, you are prompted for one. Some options of the RESET statement enable you to control aspects of
the primal simplex algorithm. Specifying certain values for these options can reduce the time it takes to solve
a problem. Note that any of the RESET options can be specified in the PROC NETFLOW statement.

The RUN statement starts or resumes optimization. The PIVOT statement makes PROC NETFLOW perform
one simplex iteration. The QUIT statement immediately stops PROC NETFLOW. The CONOPT statement
forces PROC NETFLOW to consider constraints when it next performs optimization. The SAVE statement
has options that enable you to name output data sets; information about the current solution is put in these
output data sets. Use the SHOW statement if you want to examine the values of options of other statements.
Information about the amount of optimization that has been done and the STATUS of the current solution can
also be displayed using the SHOW statement.

The PRINT statement instructs PROC NETFLOW to display parts of the problem. PRINT ARCS produces
information on all arcs. PRINT SOME_ARCS limits this output to a subset of arcs. There are similar PRINT
statements for nonarc variables and constraints:

print nonarcs;
print some_nonarcs;
print constraints;
print some_cons;

PRINT CON_ARCS enables you to limit constraint information that is obtained to members of a set of arcs
that have nonzero constraint coefficients in a set of constraints. PRINT CON_NONARCS is the corresponding
statement for nonarc variables.

For example, an interactive PROC NETFLOW run might look something like this:

proc netflow arcdata=data set
other options;

variable list specifications; /* if necessary */
reset options;
print options; /* look at problem */
run; /* do some optimization */
/* suppose that optimization stopped for */
/* some reason or you manually stopped it */
print options; /* look at the current solution */
save options; /* keep current solution */
show options; /* look at settings */
reset options; /* change some settings, those that */

/* caused optimization to stop */
run; /* do more optimization */
print options; /* look at the optimal solution */
save options; /* keep optimal solution */

If you are interested only in finding the optimal solution, have used SAS variables that have special names in
the input data sets, and want to use default settings for everything, then the following statement is all you
need:

PROC NETFLOW ARCDATA= data set ;

324 F Chapter 5: The NETFLOW Procedure

PROC NETFLOW Statement
PROC NETFLOW options ;

This statement invokes the procedure. The following options and the options listed with the RESET statement
can appear in the PROC NETFLOW statement.

Data Set Options

This section briefly describes all the input and output data sets used by PROC NETFLOW. The ARCDATA=
data set, NODEDATA= data set, and CONDATA= data set can contain SAS variables that have special names,
for instance _CAPAC_, _COST_, and _HEAD_. PROC NETFLOW looks for such variables if you do not
give explicit variable list specifications. If a SAS variable with a special name is found and that SAS variable
is not in another variable list specification, PROC NETFLOW determines that values of the SAS variable are
to be interpreted in a special way. By using SAS variables that have special names, you may not need to have
any variable list specifications.

ARCDATA=SAS-data-set
names the data set that contains arc and, optionally, nonarc variable information and nodal sup-
ply/demand data. The ARCDATA= data set must be specified in all PROC NETFLOW statements.

ARCOUT=SAS-data-set

AOUT=SAS-data-set
names the output data set that receives all arc and nonarc variable data, including flows or values, and
other information concerning the unconstrained optimal solution. The supply and demand information
can also be found in the ARCOUT= data set. Once optimization that considers side constraints starts,
you are not able to obtain an ARCOUT= data set. Instead, use the CONOUT= data set to get the current
solution. See the section “ARCOUT= and CONOUT= Data Sets” on page 384 for more information.

CONDATA=SAS-data-set
names the data set that contains the side constraint data. The data set can also contain other data such
as arc costs, capacities, lower flow bounds, nonarc variable upper and lower bounds, and objective
function coefficients. PROC NETFLOW needs a CONDATA= data set to solve a constrained problem
or a linear programming problem. See the section “CONDATA= Data Set” on page 376 for more
information.

CONOUT=SAS-data-set

COUT=SAS-data-set
names the output data set that receives an optimal primal solution to the problem obtained by performing
optimization that considers the side constraints. See the section “ARCOUT= and CONOUT= Data
Sets” on page 384 for more information.

DUALOUT=SAS-data-set

DOUT=SAS-data-set
names the output data set that receives an optimal dual solution to the problem obtained by performing
optimization that considers the side constraints. See the section “NODEOUT= and DUALOUT= Data
Sets” on page 385 for more information.

PROC NETFLOW Statement F 325

NODEDATA=SAS-data-set

DUALIN=SAS-data-set
names the data set that contains the node supply and demand specifications. You do not need
observations in the NODEDATA= data set for trans-shipment nodes. (Trans-shipment nodes neither
supply nor demand flow.) All nodes are assumed to be trans-shipment nodes unless supply or demand
data indicate otherwise. It is acceptable for some arcs to be directed toward supply nodes or away from
demand nodes.

The use of the NODEDATA= data set is optional in the PROC NETFLOW statement provided that, if
the NODEDATA= data set is not used, supply and demand details are specified by other means. Other
means include using the MAXFLOW or SHORTPATH option, SUPPLY or DEMAND list variables
(or both) in the ARCDATA= data set, and the SOURCE=, SUPPLY=, SINK=, or DEMAND= option
in the PROC NETFLOW statement.

NODEOUT=SAS-data-set
names the output data set that receives all information about nodes (supply and demand and nodal dual
variable values) and other information concerning the optimal solution found by the optimizer when
neglecting side constraints. Once optimization that considers side constraints starts, you are not able
to obtain a NODEOUT= data set. Instead, use the DUALOUT= data set to get the current solution
dual information. See the section “NODEOUT= and DUALOUT= Data Sets” on page 385 for a more
complete description.

MPSOUT=SAS-data-set
names the SAS data set that contains converted sparse or dense format input data in MPS format.
Invoking this option directs the NETFLOW procedure to halt before attempting optimization. For
more information about the MPSOUT= option, see the section “Converting Any PROC NETFLOW
Format to an MPS-Format SAS Data Set” on page 387. For more information about the MPS-format
SAS data set, see Chapter 17, “The MPS-Format SAS Data Set” (SAS/OR User’s Guide: Mathematical
Programming),.

General Options

The following is a list of options you can use with PROC NETFLOW. The options are listed in alphabetical
order.

ALLART
indicates that PROC NETFLOW uses an all artificial initial solution (Kennington and Helgason
1980, p. 68) instead of the default good path method for determining an initial solution (Kennington
and Helgason 1980, p. 245). The ALLART initial solution is generally not as good; more iterations
are usually required before the optimal solution is obtained. However, because less time is used when
setting up an ALLART start, it can offset the added expenditure of CPU time in later computations.

ARCS_ONLY_ARCDATA
indicates that data for only arcs are in the ARCDATA= data set. When PROC NETFLOW reads
the data in ARCDATA= data set, memory would not be wasted to receive data for nonarc variables.
The read might then be performed faster. See the section “How to Make the Data Read of PROC
NETFLOW More Efficient” on page 404.

326 F Chapter 5: The NETFLOW Procedure

ARC_SINGLE_OBS
indicates that for all arcs and nonarc variables, data for each arc or nonarc variable is found in only one
observation of the ARCDATA= data set. When reading the data in the ARCDATA= data set, PROC
NETFLOW knows that the data in an observation is for an arc or a nonarc variable that has not had
data previously read that needs to be checked for consistency. The read might then be performed faster.

If you specify ARC_SINGLE_OBS, PROC NETFLOW automatically works as if GROUPED=ARCDATA
is also specified. See the section “How to Make the Data Read of PROC NETFLOW More Efficient”
on page 404.

BYPASSDIVIDE=b

BYPASSDIV=b

BPD=b
should be used only when the MAXFLOW option has been specified; that is, PROC NETFLOW is
solving a maximal flow problem. PROC NETFLOW prepares to solve maximal flow problems by
setting up a bypass arc. This arc is directed from the SOURCE to the SINK and will eventually convey
flow equal to INFINITY minus the maximal flow through the network. The cost of the bypass arc must
be expensive enough to drive flow through the network, rather than through the bypass arc. However,
the cost of the bypass arc must be less than the cost of artificial variables (otherwise these might have
nonzero optimal value and a false infeasibility error will result). Also, the cost of the bypass arc must
be greater than the eventual total cost of the maximal flow, which can be nonzero if some network arcs
have nonzero costs. The cost of the bypass is set to the value of the INFINITY= option. Valid values
for the BYPASSDIVIDE= option must be greater than or equal to 1.1.

If there are no nonzero costs of arcs in the MAXFLOW problem, the cost of the bypass arc is set to
1.0 (-1.0 if maximizing) if you do not specify the BYPASSDIVIDE= option. The reduced costs in the
ARCOUT= data set and the CONOUT= data set will correctly reflect the value that would be added to
the maximal flow if the capacity of the arc is increased by one unit. If there are nonzero costs, or if
you specify the BYPASSDIVIDE= option, the reduced costs may be contaminated by the cost of the
bypass arc and no economic interpretation can be given to reduced cost values. The default value for
the BYPASSDIVIDE= option (in the presence of nonzero arc costs) is 100.0.

BYTES=b
indicates the size of the main working memory (in bytes) that PROC NETFLOW will allocate. The
default value for the BYTES= option is near to the number of bytes of the largest contiguous memory
that can be allocated for this purpose. The working memory is used to store all the arrays and buffers
used by PROC NETFLOW. If this memory has a size smaller than what is required to store all arrays
and buffers, PROC NETFLOW uses various schemes that page information between memory and disk.

PROC NETFLOW uses more memory than the main working memory. The additional memory
requirements cannot be determined at the time when the main working memory is allocated. For
example, every time an output data set is created, some additional memory is required. Do not specify
a value for the BYTES= option equal to the size of available memory.

CON_SINGLE_OBS
improves how the CONDATA= data set is read. How it works depends on whether the CONDATA has
a dense or sparse format.

If CONDATA has the dense format, specifying CON_SINGLE_OBS indicates that, for each constraint,
data can be found in only one observation of CONDATA.

PROC NETFLOW Statement F 327

If CONDATA has a sparse format, and data for each arc and nonarc variable can be found in only
one observation of CONDATA, then specify the CON_SINGLE_OBS option. If there are n SAS
variables in the ROW and COEF list, then each arc or nonarc can have at most n constraint coefficients
in the model. See the section “How to Make the Data Read of PROC NETFLOW More Efficient” on
page 404.

COREFACTOR=c

CF=c
enables you to specify the maximum proportion of memory to be used by the arrays frequently
accessed by PROC NETFLOW. PROC NETFLOW strives to maintain all information required during
optimization in core. If the amount of available memory is not great enough to store the arrays
completely in core, either initially or as memory requirements grow, PROC NETFLOW can change
the memory management scheme it uses. Large problems can still be solved. When necessary, PROC
NETFLOW transfers data from random access memory (RAM) or core that can be accessed quickly
but is of limited size to slower access large capacity disk memory. This is called paging.

Some of the arrays and buffers used during constrained optimization either vary in size, are not required
as frequently as other arrays, or are not required throughout the simplex iteration. Let a be the amount
of memory in bytes required to store frequently accessed arrays of nonvarying size. Specify the
MEMREP option in the PROC NETFLOW statement to get the value for a and a report of memory
usage. If the size of the main working memory BYTES=b multiplied by COREFACTOR=c is greater
than a, PROC NETFLOW keeps the frequently accessed arrays of nonvarying size resident in core
throughout the optimization. If the other arrays cannot fit into core, they are paged in and out of the
remaining part of the main working memory.

If b multiplied by c is less than a, PROC NETFLOW uses a different memory scheme. The working
memory is used to store only the arrays needed in the part of the algorithm being executed. If necessary,
these arrays are read from disk into the main working area. Paging, if required, is done for all these
arrays, and sometimes information is written back to disk at the end of that part of the algorithm. This
memory scheme is not as fast as the other memory schemes. However, problems can be solved with
memory that is too small to store every array.

PROC NETFLOW is capable of solving very large problems in a modest amount of available memory.
However, as more time is spent doing input/output operations, the speed of PROC NETFLOW
decreases. It is important to choose the value of the COREFACTOR= option carefully. If the value is
too small, the memory scheme that needs to be used might not be as efficient as another that could have
been used had a larger value been specified. If the value is too large, too much of the main working
memory is occupied by the frequently accessed, nonvarying sized arrays, leaving too little for the
other arrays. The amount of input/output operations for these other arrays can be so high that another
memory scheme might have been used more beneficially.

The valid values of COREFACTOR=c are between 0.0 and 0.95, inclusive. The default value for c is
0.75 when there are over 200 side constraints, and 0.9 when there is only one side constraint. When
the problem has between 2 and 200 constraints, the value of c lies between the two points (1, 0.9) and
(201, 0.75).

DEFCAPACITY=c

DC=c
requests that the default arc capacity and the default nonarc variable value upper bound be c. If this
option is not specified, then DEFCAPACITY= INFINITY.

328 F Chapter 5: The NETFLOW Procedure

DEFCONTYPE=c

DEFTYPE=c

DCT=c
specifies the default constraint type. This default constraint type is either less than or equal to or is the
type indicated by DEFCONTYPE=c. Valid values for this option are

LE, le, <D for less than or equal to

EQ, eq, = for equal to

GE, ge, >D for greater than or equal to

The values do not need to be enclosed in quotes.

DEFCOST=c
requests that the default arc cost and the default nonarc variable objective function coefficient be c. If
this option is not specified, then DEFCOST=0.0.

DEFMINFLOW=m

DMF=m
requests that the default lower flow bound through arcs and the default lower value bound of nonarc
variables be m. If a value is not specified, then DEFMINFLOW=0.0.

DEMAND=d
specifies the demand at the SINK node specified by the SINK= option. The DEMAND= option
should be used only if the SINK= option is given in the PROC NETFLOW statement and neither the
SHORTPATH option nor the MAXFLOW option is specified. If you are solving a minimum cost
network problem and the SINK= option is used to identify the sink node, but the DEMAND= option is
not specified, then the demand at the sink node is made equal to the network’s total supply.

DWIA=i
controls the initial amount of memory to be allocated to store the LU factors of the working basis
matrix. DWIA stands for DW initial allocation and i is the number of nonzeros and matrix row
operations in the LU factors that can be stored in this memory. Due to fill-in in the U factor and the
growth in the number of row operations, it is often necessary to move information about elements of a
particular row or column to another location in the memory allocated for the LU factors. This process
leaves some memory temporarily unoccupied. Therefore, DWIA=i must be greater than the memory
required to store only the LU factors.

Occasionally, it is necessary to compress the U factor so that it again occupies contiguous memory.
Specifying too large a value for DWIA means that more memory is required by PROC NETFLOW.
This might cause more expensive memory mechanisms to be used than if a smaller but adequate
value had been specified for DWIA=. Specifying too small a value for the DWIA= option can make
time-consuming compressions more numerous. The default value for the DWIA= option is eight times
the number of side constraints.

EXCESS=option
enables you to specify how to handle excess supply or demand in a network, if it exists.

For pure networks EXCESS=ARCS and EXCESS=SLACKS are valid options. By default EX-
CESS=ARCS is used. Note that if you specify EXCESS=SLACKS, then the interior point solver is

PROC NETFLOW Statement F 329

used and you need to specify the output data set using the CONOUT= data set. For more details see
the section “Using the EXCESS= Option in Pure Networks: NETFLOW Procedure” on page 449.

For generalized networks you can either specify EXCESS=DEMAND or EXCESS=SUPPLY to
indicate that the network has excess demand or excess supply, respectively. For more details see the
section “Using the EXCESS= Option in Generalized Networks: NETFLOW Procedure” on page 456.

GENNET
This option is necessary if you need to solve a generalized network flow problem and there are no arc
multipliers specified in the ARCDATA= data set.

GROUPED=grouped
PROC NETFLOW can take a much shorter time to read data if the data have been grouped prior to
the PROC NETFLOW call. This enables PROC NETFLOW to conclude that, for instance, a new
NAME list variable value seen in an ARCDATA= data set grouped by the values of the NAME list
variable before PROC NETFLOW was called is new. PROC NETFLOW does not need to check that
the NAME has been read in a previous observation. See the section “How to Make the Data Read of
PROC NETFLOW More Efficient” on page 404.

� GROUPED=ARCDATA indicates that the ARCDATA= data set has been grouped by values of
the NAME list variable. If _NAME_ is the name of the NAME list variable, you could use PROC
SORT DATA=ARCDATA; BY _NAME_; prior to calling PROC NETFLOW. Technically, you do
not have to sort the data, only ensure that all similar values of the NAME list variable are grouped
together. If you specify the ARCS_ONLY_ARCDATA option, PROC NETFLOW automatically
works as if GROUPED=ARCDATA is also specified.

� GROUPED=CONDATA indicates that the CONDATA= data set has been grouped.
If the CONDATA= data set has a dense format, GROUPED=CONDATA indicates that the
CONDATA= data set has been grouped by values of the ROW list variable. If _ROW_ is the
name of the ROW list variable, you could use PROC SORT DATA=CONDATA; BY _ROW_;
prior to calling PROC NETFLOW. Technically, you do not have to sort the data, only en-
sure that all similar values of the ROW list variable are grouped together. If you specify the
CON_SINGLE_OBS option, or if there is no ROW list variable, PROC NETFLOW automatically
works as if GROUPED=CONDATA has been specified.
If the CONDATA= data set has the sparse format, GROUPED=CONDATA indicates that the
CONDATA= data set has been grouped by values of the COLUMN list variable. If _COL_ is
the name of the COLUMN list variable, you could use PROC SORT DATA=CONDATA; BY
COL; prior to calling PROC NETFLOW. Technically, you do not have to sort the data, only
ensure that all similar values of the COLUMN list variable are grouped together.

� GROUPED=BOTH indicates that both GROUPED=ARCDATA and GROUPED=CONDATA are
TRUE.

� GROUPED=NONE indicates that the data sets have not been grouped, that is, neither
GROUPED=ARCDATA nor GROUPED=CONDATA is TRUE. This is the default, but it is
much better if GROUPED=ARCDATA, or GROUPED=CONDATA, or GROUPED=BOTH.

A data set like

... _XXXXX_
bbb

330 F Chapter 5: The NETFLOW Procedure

bbb
aaa
ccc
ccc

is a candidate for the GROUPED= option. Similar values are grouped together. When PROC
NETFLOW is reading the ith observation, either the value of the _XXXXX_ variable is the same as
the .i � 1/st (that is, the previous observation’s) _XXXXX_ value, or it is a new _XXXXX_ value not
seen in any previous observation. This also means that if the ith _XXXXX_ value is different from
the .i � 1/st _XXXXX_ value, the value of the .i � 1/st _XXXXX_ variable will not be seen in any
observations i; i C 1; : : : .

INFINITY=i

INF=i
is the largest number used by PROC NETFLOW in computations. A number too small can adversely
affect the solution process. You should avoid specifying an enormous value for the INFINITY= option
because numerical roundoff errors can result. If a value is not specified, then INFINITY=99999999.
The INFINITY= option cannot be assigned a value less than 9999.

INTPOINT
indicates that the interior point algorithm is to be used. The INTPOINT option must be specified if
you want the interior point algorithm to be used for solving network problems, otherwise the simplex
algorithm is used instead. For linear programming problems (problems with no network component),
PROC NETFLOW must use the interior point algorithm, so you need not specify the INTPOINT
option.

INVD_2D
controls the way in which the inverse of the working basis matrix is stored. How this matrix is stored
affects computations as well as how the working basis or its inverse is updated. The working basis
matrix is defined in the section “Details: NETFLOW Procedure” on page 376. If INVD_2D is specified,
the working basis matrix inverse is stored as a matrix. Typically, this memory scheme is best when
there are few side constraints or when the working basis is dense.

If INVD_2D is not specified, lower (L) and upper (U) factors of the working basis matrix are used.
U is an upper triangular matrix and L is a lower triangular matrix corresponding to a sequence of
elementary matrix row operations. The sparsity-exploiting variant of the Bartels-Golub decomposition
is used to update the LU factors. This scheme works well when the side constraint coefficient matrix is
sparse or when many side constraints are nonbinding.

MAXARRAYBYTES=m
specifies the maximum number of bytes an individual array can occupy. This option is of most use
when solving large problems and the amount of available memory is insufficient to store all arrays at
once. Specifying the MAXARRAYBYTES= option ensures that arrays that need a large amount of
memory do not consume too much memory at the expense of other arrays.

There is one array that contains information about nodes and the network basis spanning tree description.
This tree description enables computations involving the network part of the basis to be performed
very quickly and is the reason why PROC NETFLOW is more suited to solving constrained network
problems than PROC LP. It is beneficial that this array be stored in core when possible, otherwise this
array must be paged, slowing down the computations. Try not to specify a MAXARRAYBYTES=m

PROC NETFLOW Statement F 331

value smaller than the amount of memory needed to store the main node array. You are told what
this memory amount is on the SAS log if you specify the MEMREP option in the PROC NETFLOW
statement.

MAXFLOW

MF
specifies that PROC NETFLOW solve a maximum flow problem. In this case, the PROC NETFLOW
procedure finds the maximum flow from the node specified by the SOURCE= option to the node
specified by the SINK= option. PROC NETFLOW automatically assigns an INFINITY= option supply
to the SOURCE= option node and the SINK= option is assigned the INFINITY= option demand. In
this way, the MAXFLOW option sets up a maximum flow problem as an equivalent minimum cost
problem.
You can use the MAXFLOW option when solving any flow problem (not necessarily a maximum flow
problem) when the network has one supply node (with infinite supply) and one demand node (with
infinite demand). The MAXFLOW option can be used in conjunction with all other options (except
SHORTPATH, SUPPLY=, and DEMAND=) and capabilities of PROC NETFLOW.

MAXIMIZE

MAX
specifies that PROC NETFLOW find the maximum cost flow through the network. If both the
MAXIMIZE and the SHORTPATH options are specified, the solution obtained is the longest path
between the SOURCE= and SINK= nodes. Similarly, MAXIMIZE and MAXFLOW together cause
PROC NETFLOW to find the minimum flow between these two nodes; this is zero if there are no
nonzero lower flow bounds.

MEMREP
indicates that information on the memory usage and paging schemes (if necessary) is reported by
PROC NETFLOW on the SAS log. As optimization proceeds, you are informed of any changes in the
memory requirements and schemes used by PROC NETFLOW.

NAMECTRL=i
is used to interpret arc and nonarc variable names in the CONDATA= data set.

In the ARCDATA= data set, an arc is identified by its tail and head node. In the CONDATA= data set,
arcs are identified by names. You can give a name to an arc by having a NAME list specification that
indicates a SAS variable in the ARCDATA= data set that has names of arcs as values.

PROC NETFLOW requires arcs that have information about them in the CONDATA= data set to have
names, but arcs that do not have information about them in the CONDATA= data set can also have
names. Unlike a nonarc variable whose name uniquely identifies it, an arc can have several different
names. An arc has a default name in the form tail_head, that is, the name of the arc’s tail node followed
by an underscore and the name of the arc’s head node.

In the CONDATA= data set, if the dense data format is used, (described in the section “CONDATA=
Data Set” on page 376) a name of an arc or a nonarc variable is the name of a SAS variable listed in
the VAR list specification. If the sparse data format of the CONDATA= data set is used, a name of an
arc or a nonarc variable is a value of the SAS variable listed in the COLUMN list specification.

The NAMECTRL= option is used when a name of an arc or nonarc variable in the CONDATA= data
set (either a VAR list SAS variable name or value of the COLUMN list SAS variable) is in the form
tail_head and there exists an arc with these end nodes. If tail_head has not already been tagged as

332 F Chapter 5: The NETFLOW Procedure

belonging to an arc or nonarc variable in the ARCDATA= data set, PROC NETFLOW needs to know
whether tail_head is the name of the arc or the name of a nonarc variable.

If you specify NAMECTRL=1, a name that is not defined in the ARCDATA= data set is assumed to
be the name of a nonarc variable. NAMECTRL=2 treats tail_head as the name of the arc with these
endnodes, provided no other name is used to associate data in the CONDATA= data set with this arc. If
the arc does have other names that appear in the CONDATA= data set, tail_head is assumed to be the
name of a nonarc variable. If you specify NAMECTRL=3, tail_head is assumed to be a name of the
arc with these end nodes, whether the arc has other names or not. The default value of NAMECTRL is
3. Note that if you use the dense side constraint input format, the default arc name tail_head is not
recognized (regardless of the NAMECTRL value) unless the head node and tail node names contain no
lowercase letters.

If the dense format is used for the CONDATA= data set, the SAS System converts SAS variable names
in a SAS program to uppercase. The VAR list variable names are uppercased. Because of this, PROC
NETFLOW automatically uppercases names of arcs and nonarc variables (the values of the NAME
list variable) in the ARCDATA= data set. The names of arcs and nonarc variables (the values of the
NAME list variable) appear uppercased in the ARCOUT= data set and the CONOUT= data set, and in
the PRINT statement output.

Also, if the dense format is used for the CONDATA= data set, be careful with default arc names
(names in the form tailnode_headnode). Node names (values in the TAILNODE and HEADNODE
list variables) in the ARCDATA= data set are not uppercased by PROC NETFLOW. Consider the
following code:

data arcdata;
input _from_ $ _to_ $ _name $;
datalines;

from to1 .
from to2 arc2
TAIL TO3 .
;
data densecon;

input from_to1 from_to2 arc2 tail_to3;
datalines;

2 3 3 5
;
proc netflow

arcdata=arcdata condata=densecon;
run;

The SAS System does not uppercase character string values. PROC NETFLOW never uppercases
node names, so the arcs in observations 1, 2, and 3 in the preceding ARCDATA= data set have the
default names “from_to1”, “from_to2”, and “TAIL_TO3”, respectively. When the dense format of the
CONDATA= data set is used, PROC NETFLOW does uppercase values of the NAME list variable, so
the name of the arc in the second observation of the ARCDATA= data set is “ARC2”. Thus, the second
arc has two names: its default “from_to2” and the other that was specified “ARC2”.

As the SAS System does uppercase program code, you must think of the input statement

input from_to1 from_to2 arc2 tail_to3;

PROC NETFLOW Statement F 333

as really being

INPUT FROM_TO1 FROM_TO2 ARC2 TAIL_TO3;

The SAS variables named “FROM_TO1” and “FROM_TO2” are not associated with any of the arcs
in the preceding ARCDATA= data set. The values “FROM_TO1” and “FROM_TO2” are different
from all of the arc names “from_to1”, “from_to2”, “TAIL_TO3”, and “ARC2”. “FROM_TO1” and
“FROM_TO2” could end up being the names of two nonarc variables. It is sometimes useful to specify
PRINT NONARCS; before commencing optimization to ensure that the model is correct (has the right
set of nonarc variables).

The SAS variable named “ARC2” is the name of the second arc in the ARCDATA= data set, even
though the name specified in the ARCDATA= data set looks like “arc2”. The SAS variable named
“TAIL_TO3” is the default name of the third arc in the ARCDATA= data set.

NARCS=n
specifies the approximate number of arcs. See the section “How to Make the Data Read of PROC
NETFLOW More Efficient” on page 404.

NCOEFS=n
specifies the approximate number of constraint coefficients. See the section “How to Make the Data
Read of PROC NETFLOW More Efficient” on page 404.

NCONS=n
specifies the approximate number of constraints. See the section “How to Make the Data Read of
PROC NETFLOW More Efficient” on page 404.

NNAS=n
specifies the approximate number of nonarc variables. See the section “How to Make the Data Read of
PROC NETFLOW More Efficient” on page 404.

NNODES=n
specifies the approximate number of nodes. See the section “How to Make the Data Read of PROC
NETFLOW More Efficient” on page 404.

NON_REPLIC=non_replic
prevents PROC NETFLOW from doing unnecessary checks of data previously read.

� NON_REPLIC=COEFS indicates that each constraint coefficient is specified once in the CON-
DATA= data set.

� NON_REPLIC=NONE indicates that constraint coefficients can be specified more than once in
the CONDATA= data set. NON_REPLIC=NONE is the default.

See the section “How to Make the Data Read of PROC NETFLOW More Efficient” on page 404.

RHSOBS=charstr
specifies the keyword that identifies a right-hand-side observation when using the sparse format for
data in the CONDATA= data set. The keyword is expected as a value of the SAS variable in the
CONDATA= data set named in the COLUMN list specification. The default value of the RHSOBS=
option is _RHS_ or _rhs_. If charstr is not a valid SAS variable name, enclose it in single quotes.

334 F Chapter 5: The NETFLOW Procedure

SAME_NONARC_DATA

SND
If all nonarc variable data are given in the ARCDATA= data set, or if the problem has no nonarc
variables, the unconstrained warm start can be read more quickly if the option SAME_NONARC_DATA
is specified. SAME_NONARC_DATA indicates that any nonconstraint nonarc variable data in the
CONDATA= data set is to be ignored. Only side constraint data in the CONDATA= data set are read.

If you use an unconstrained warm start and SAME_NONARC_DATA is not specified, any nonarc
variable objective function coefficient, upper bound, or lower bound can be changed. Any nonarc
variable data in the CONDATA= data set overrides (without warning messages) corresponding data
in the ARCDATA= data set. You can possibly introduce new nonarc variables to the problem, that is,
nonarc variables that were not in the problem when the warm start was generated.

SAME_NONARC_DATA should be specified if nonarc variable data in the CONDATA= data set are
to be deliberately ignored. Consider

proc netflow options arcdata=arc0 nodedata=node0
condata=con0

/* this data set has nonarc variable */
/* objective function coefficient data */

future1 arcout=arc1 nodeout=node1;
run;

data arc2;
reset arc1; /* this data set has nonarc variable obs */
if _cost_<50.0 then _cost_=_cost_*1.25;

/* some objective coefficients of nonarc */
/* variable might be changed */

proc netflow options
warm arcdata=arc2 nodedata=node1
condata=con0 same_nonarc_data

/* This data set has old nonarc variable */
/* obj, fn. coefficients. same_nonarc_data */
/* indicates that the "new" coefs in the */
/* arcdata=arc2 are to be used. */

run;

SCALE=scale
indicates that the side constraints are to be scaled. Scaling is useful when some coefficients of a
constraint or nonarc variable are either much larger or much smaller than other coefficients. Scaling
might make all coefficients have values that have a smaller range, and this can make computations
more stable numerically. Try the SCALE= option if PROC NETFLOW is unable to solve a problem
because of numerical instability. Specify

� SCALE=ROW, SCALE=CON, or SCALE=CONSTRAINT if the largest absolute value of
coefficients in each constraint is about 1.0

� SCALE=COL, SCALE=COLUMN, or SCALE=NONARC if nonarc variable columns are scaled
so that the absolute value of the largest constraint coefficient of a nonarc variable is near to 1

PROC NETFLOW Statement F 335

� SCALE=BOTH if the largest absolute value of coefficients in each constraint, and the absolute
value of the largest constraint coefficient of a nonarc variable is near to 1. This is the default.

� SCALE=NONE if no scaling should be done

SHORTPATH

SP
specifies that PROC NETFLOW solve a shortest path problem. The NETFLOW procedure finds the
shortest path between the nodes specified in the SOURCE= option and the SINK= option. The costs
of arcs are their lengths. PROC NETFLOW automatically assigns a supply of one flow unit to the
SOURCE= node, and the SINK= node is assigned to have a one flow unit demand. In this way, the
SHORTPATH option sets up a shortest path problem as an equivalent minimum cost problem.

If a network has one supply node (with supply of one unit) and one demand node (with demand of one
unit), you could specify the SHORTPATH option, with the SOURCE= and SINK= nodes, even if the
problem is not a shortest path problem. You then should not provide any supply or demand data in the
NODEDATA= data set or the ARCDATA= data set.

SINK=sinkname

SINKNODE=sinkname
identifies the demand node. The SINK= option is useful when you specify the MAXFLOW option or
the SHORTPATH option and need to specify toward which node the shortest path or maximum flow is
directed. The SINK= option also can be used when a minimum cost problem has only one demand
node. Rather than having this information in the ARCDATA= data set or the NODEDATA= data set,
use the SINK= option with an accompanying DEMAND= specification for this node. The SINK=
option must be the name of a head node of at least one arc; thus, it must have a character value. If the
value of the SINK= option is not a valid SAS character variable name, it must be enclosed in single
quotes and can contain embedded blanks.

SOURCE=sourcename

SOURCENODE=sourcename
identifies a supply node. The SOURCE= option is useful when you specify the MAXFLOW or
the SHORTPATH option and need to specify from which node the shortest path or maximum flow
originates. The SOURCE= option also can be used when a minimum cost problem has only one supply
node. Rather than having this information in the ARCDATA= data set or the NODEDATA= data
set, use the SOURCE= option with an accompanying SUPPLY= amount of supply at this node. The
SOURCE= option must be the name of a tail node of at least one arc; thus, it must have a character
value. If the value of the SOURCE= option is not a valid SAS character variable name, it must be
enclosed in single quotes and can contain embedded blanks.

SPARSECONDATA

SCDATA
indicates that the CONDATA= data set has data in the sparse data format. Otherwise, it is assumed that
the data are in the dense format.

NOTE: If the SPARSECONDATA option is not specified, and you are running SAS software Version
6 or you have specified options validvarname=v6;, all NAME list variable values in the ARCDATA=
data set are uppercased. See the section “Case Sensitivity” on page 387.

336 F Chapter 5: The NETFLOW Procedure

SPARSEP2

SP2
indicates that the new column of the working basis matrix that replaces another column be held in
a linked list. If the SPARSEP2 option is not specified, a one-dimensional array is used to store this
column’s information, that can contain elements that are 0.0 and use more memory than the linked list.
The linked list mechanism requires more work if the column has numerous nonzero elements in many
iterations. Otherwise, it is superior. Sometimes, specifying SPARSEP2 is beneficial when the side
constrained coefficient matrix is very sparse or when some paging is necessary.

SUPPLY=s
specifies the supply at the source node specified by the SOURCE= option. The SUPPLY= option
should be used only if the SOURCE= option is given in the PROC NETFLOW statement and neither
the SHORTPATH option nor the MAXFLOW option is specified. If you are solving a minimum cost
network problem and the SOURCE= option is used to identify the source node and the SUPPLY=
option is not specified, then by default the supply at the source node is made equal to the network’s
total demand.

THRUNET
tells PROC NETFLOW to force through the network any excess supply (the amount by which total
supply exceeds total demand) or any excess demand (the amount by which total demand exceeds
total supply) as is required. If a network problem has unequal total supply and total demand and the
THRUNET option is not specified, PROC NETFLOW drains away the excess supply or excess demand
in an optimal manner. The consequences of specifying or not specifying THRUNET are discussed in
the section “Balancing Total Supply and Total Demand” on page 400.

TYPEOBS=charstr
specifies the keyword that identifies a type observation when using the sparse format for data in the
CONDATA= data set. The keyword is expected as a value of the SAS variable in the CONDATA= data
set named in the COLUMN list specification. The default value of the TYPEOBS= option is _TYPE_
or _type_. If charstr is not a valid SAS variable name, enclose it in single quotes.

WARM
indicates that the NODEDATA= data set or the DUALIN= data set and the ARCDATA= data set
contain extra information of a warm start to be used by PROC NETFLOW. See the section “Warm
Starts” on page 401.

CAPACITY Statement
CAPACITY variable ;

CAPAC variable ;

UPPERBD variable ;

The CAPACITY statement identifies the SAS variable in the ARCDATA= data set that contains the maximum
feasible flow or capacity of the network arcs. If an observation contains nonarc variable information, the
CAPACITY list variable is the upper value bound for the nonarc variable named in the NAME list variable
in that observation. The CAPACITY list variable must have numeric values. It is not necessary to have a
CAPACITY statement if the name of the SAS variable is _CAPAC_, _UPPER_, _UPPERBD, or _HI_.

COEF Statement F 337

COEF Statement
COEF variables ;

The COEF list is used with the sparse input format of the CONDATA= data set. The COEF list can contain
more than one SAS variable, each of which must have numeric values. If the COEF statement is not specified,
the CONDATA= data set is searched and SAS variables with names beginning with _COE are used. The
number of SAS variables in the COEF list must be no greater than the number of SAS variables in the ROW
list.

The values of the COEF list variables in an observation can be interpreted differently than these variables’
values in other observations. The values can be coefficients in the side constraints, costs and objective
function coefficients, bound data, constraint type data, or rhs data. If the COLUMN list variable has a value
that is a name of an arc or nonarc variable, the ith COEF list variable is associated with the constraint or
special row name named in the ith ROW list variable. Otherwise, the COEF list variables indicate type values,
rhs values, or missing values.

COLUMN Statement
COLUMN variable ;

The COLUMN list is used with the sparse input format of side constraints. This list consists of one SAS
variable in the CONDATA= data set that has as values the names of arc variables, nonarc variables, or missing
values. Some, if not all of these values, also can be values of the NAME list variables of the ARCDATA=
data set. The COLUMN list variable can have other special values (refer to the TYPEOBS= and RHSOBS=
options). If the COLUMN list is not specified after the PROC NETFLOW statement, the CONDATA= data
set is searched and a SAS variable named _COLUMN_ is used. The COLUMN list variable must have
character values.

CONOPT Statement
CONOPT ;

The CONOPT statement has no options. It is equivalent to specifying RESET SCRATCH;. The CONOPT
statement should be used before stage 2 optimization commences. It indicates that the optimization performed
next should consider the side constraints.

Usually, the optimal unconstrained network solution is used as a starting solution for constrained optimization.
Finding the unconstrained optimum usually reduces the amount of stage 2 optimization. Furthermore, the
unconstrained optimum is almost always “closer” to the constrained optimum than the initial basic solution
determined before any optimization is performed. However, as the optimum is approached during stage
1 optimization, the flow change candidates become scarcer and a solution good enough to start stage 2
optimization may already be at hand. You should then specify the CONOPT statement.

338 F Chapter 5: The NETFLOW Procedure

COST Statement
COST variable ;

OBJFN variable ;

The COST statement identifies the SAS variable in the ARCDATA= data set that contains the per unit flow
cost through an arc. If an observation contains nonarc variable information, the value of the COST list
variable is the objective function coefficient of the nonarc variable named in the NAME list variable in
that observation. The COST list variable must have numeric values. It is not necessary to specify a COST
statement if the name of the SAS variable is _COST_ or _LENGTH_.

DEMAND Statement
DEMAND variable ;

The DEMAND statement identifies the SAS variable in the ARCDATA= data set that contains the demand
at the node named in the corresponding HEADNODE list variable. The DEMAND list variable must have
numeric values. It is not necessary to have a DEMAND statement if the name of this SAS variable is
DEMAND.

HEADNODE Statement
HEADNODE variable ;

HEAD variable ;

TONODE variable ;

TO variable ;

The HEADNODE statement specifies the SAS variable that must be present in the ARCDATA= data set
that contains the names of nodes toward which arcs are directed. It is not necessary to have a HEADNODE
statement if the name of the SAS variable is _HEAD_ or _TO_. The HEADNODE variable must have
character values.

ID Statement
ID variables ;

The ID statement specifies SAS variables containing values for pre- and post-optimal processing and analysis.
These variables are not processed by PROC NETFLOW but are read by the procedure and written in the
ARCOUT= and CONOUT= data sets and the output of PRINT statements. For example, imagine a network
used to model a distribution system. The SAS variables listed on the ID statement can contain information
on type of vehicle, transportation mode, condition of road, time to complete journey, name of driver, or other
ancillary information useful for report writing or describing facets of the operation that do not have bearing
on the optimization. The ID variables can be character, numeric, or both.

LO Statement F 339

If no ID list is specified, the procedure forms an ID list of all SAS variables not included in any other implicit
or explicit list specification. If the ID list is specified, any SAS variables in the ARCDATA= data set not in
any list are dropped and do not appear in the ARCOUT= or CONOUT= data sets, or in the PRINT statement
output.

LO Statement
LO variable ;

LOWERBD variable ;

MINFLOW variable ;

The LO statement identifies the SAS variable in the ARCDATA= data set that contains the minimum feasible
flow or lower flow bound for arcs in the network. If an observation contains nonarc variable information, the
LO list variable has the value of the lower bound for the nonarc variable named in the NAME list variable.
The LO list variables must have numeric values. It is not necessary to have a LO statement if the name of this
SAS variable is _LOWER_, _LO_, _LOWERBD, or _MINFLOW.

MULT Statement
MULT variables ;

MULTIPLIER variables ;

The MULT statement identifies the SAS variable in the ARCDATA= data set associated with the values of
arc multipliers in the network. These values must be positive real numbers. It is not necessary to have a
MULT statement if the name of this SAS variable is _MULT_.

NAME Statement
NAME variable ;

ARCNAME variable ;

VARNAME variable ;

Each arc and nonarc variable that has data in the CONDATA= data set must have a unique name. This
variable is identified in the ARCDATA= data set. The NAME list variable must have character values (see
the NAMECTRL= option in the PROC NETFLOW statement for more information). It is not necessary to
have a NAME statement if the name of this SAS variable is _NAME_.

NODE Statement
NODE variable ;

The NODE list variable, which must be present in the NODEDATA= data set, has names of nodes as values.
These values must also be values of the TAILNODE list variable, the HEADNODE list variable, or both. If

340 F Chapter 5: The NETFLOW Procedure

this list is not explicitly specified, the NODEDATA= data set is searched for a SAS variable with the name
NODE. The NODE list variable must have character values.

PIVOT Statement
PIVOT ;

The PIVOT statement has no options. It indicates that one simplex iteration is to be performed. The PIVOT
statement forces a simplex iteration to be performed in spite of the continued presence of any reasons or
solution conditions that caused optimization to be halted. For example, if the number of iterations performed
exceeds the value of the MAXIT1= or MAXIT2= option and you issue a PIVOT statement, the iteration
is performed even though the MAXIT1= or MAXIT2= value has not yet been changed using a RESET
statement.

PRINT Statement
PRINT options / qualifiers ;

The options available with the PRINT statement of PROC NETFLOW are summarized by purpose in the
following table.

Table 5.2 Functional Summary, PRINT Statement

Description Statement Option

PRINT Statement Options:
Display everything PRINT PROBLEM
Display arc information PRINT ARCS
Display nonarc variable information PRINT NONARCS
Display variable information PRINT VARIABLES
Display constraint information PRINT CONSTRAINTS
Display information for some arcs PRINT SOME_ARCS
Display information for some nonarc variables PRINT SOME_NONARCS
Display information for some variables PRINT SOME_VARIABLES
Display information for some constraints PRINT SOME_CONS
Display information for some constraints associ-
ated with some arcs

PRINT CON_ARCS

Display information for some constraints associ-
ated with some nonarc variables

PRINT CON_NONARCS

Display information for some constraints associ-
ated with some variables

PRINT CON_VARIABLES

PRINT Statement Qualifiers:
Produce a short report PRINT / SHORT
Produce a long report PRINT / LONG
Display arcs/variables with zero flow/value PRINT / ZERO

PRINT Statement F 341

Description Statement Option

Display arcs/variables with nonzero flow/value PRINT / NONZERO
Display basic arcs/variables PRINT / BASIC
Display nonbasic arcs/variables PRINT / NONBASIC

The PRINT statement enables you to examine part or all of the problem. You can limit the amount of
information displayed when a PRINT statement is processed by specifying PRINT statement options. The
name of the PRINT option indicates what part of the problem is to be examined. If no options are specified,
or PRINT PROBLEM is specified, information about the entire problem is produced.

The amount of displayed information can be limited further by following any PRINT statement options with
a slash (/) and one or more of the qualifiers SHORT or LONG, ZERO or NONZERO, BASIC or NONBASIC.

Some of the PRINT statement options require you to specify a list of some type of entity, thereby enabling
you to indicate what entities are of interest. The entities of interest are the ones you want to display. These
entities might be tail node names, head node names, nonarc variable names, or constraint names. The entity
list is made up of one or more of the following constructs. Each construct can add none, one, or more entities
to the set of entities to be displayed.

� _ALL_
Display all entities in the required list.

� entity
Display the named entity that is interesting.

� entity1 - entity2 (one hyphen)
entity1 -- entity2 (two hyphens)
entity1 - CHARACTER - entity2 or
entity1 - CHAR - entity2
Both entity1 and entity2 have names made up of the same character string prefix followed by a numeric
suffix. The suffixes of both entity1 and entity2 have the same number of numerals but can have different
values. A specification of entity1 - entity2 indicates that all entities with the same prefix and suffixes
with values on or between the suffixes of entity1 and entity2 are to be put in the set of entities to be
displayed. The numeric suffix of both entity1 and entity2 can be followed by a character string. For
example, _OBS07_ - _OBS13_ is a valid construct of the forms entity1 - entity2.

� part_of_entity_name:
Display all entities in the required list that have names beginning with the character string preceding
the colon.

The following options can appear in the PRINT statement:

ARCS
indicates that you want to have displayed information about all arcs.

342 F Chapter 5: The NETFLOW Procedure

SOME_ARCS (taillist,headlist)
is similar to the statement PRINT ARCS except that, instead of displaying information about all arcs,
only arcs directed from nodes in a specified set of tail nodes to nodes in a specified set of head nodes
are included. The nodes or node constructs belonging to the taillist list are separated by blanks. The
nodes or node constructs belonging to the headlist list are also separated by blanks. The lists are
separated by a comma.

NONARCS

VARIABLES
indicates that information is to be displayed about all nonarc variables.

SOME_NONARCS (nonarclist)
is similar to the PRINT NONARCS statement except that, instead of displaying information about all
nonarc variables, only those belonging to a specified set of nonarc variables have information displayed.
The nonarc variables or nonarc variable constructs belonging to the nonarclist list are separated by
blanks.

CONSTRAINTS
indicates that you want to have displayed information about all constraint coefficients.

SOME_CONS (conlist)
displays information for coefficients in a specified set of constraints. The constraints or constraint
constructs belonging to the conlist list are separated by blanks.

CON_ARCS (taillist, headlist)
is similar to the PRINT SOME_CONS (conlist) statement except that, instead of displaying information
about all coefficients in specified constraints, information about only those coefficients that are
associated with arcs directed from a set of specified tail nodes toward a set of specified head nodes is
displayed. The constraints or constraint constructs belonging to the conlist list are separated by blanks;
so too are the nodes or node constructs belonging to the taillist list and the nodes or node constructs
belonging to the headlist list. The lists are separated by commas.

CON_NONARCS (conlist, nonarclist)

CON_VARIABLES (conlist, variablelist)
is similar to the PRINT SOME_CONS (conlist) statement except that, instead of displaying information
about all coefficients in specified constraints, information about only those coefficients that are
associated with nonarc variables in a specified set is displayed. The constraints or constraint constructs
belonging to the conlist list are separated by blanks. The nonarc variables or nonarc variable constructs
belonging to the nonarclist list are separated by blanks. The lists are separated by a comma.

PROBLEM
is equivalent to the statement PRINT ARCS NONARCS CONSTRAINTS.

Following a slash (/), the qualifiers SHORT or LONG, ZERO or NONZERO, BASIC or NONBASIC
can appear in any PRINT statement. These qualifiers are described below.

PRINT Statement F 343

� BASIC
Only rows that are associated with arcs or nonarc variables that are basic are displayed. The

STATUS column values are KEY_ARC BASIC or NONKEY ARC BASIC for arcs, and
NONKEY_BASIC for nonarc variables.

� LONG
All table columns are displayed (the default when no qualifier is used).

� NONBASIC
Only rows that are associated with arcs or nonarc variables that are nonbasic are displayed. The

STATUS column values are LOWERBD NONBASIC or UPPERBD NONBASIC.

� NONZERO
Only rows that have nonzero _FLOW_ column values (nonzero arc flows, nonzero nonarc

variable values) are displayed.

� SHORT
The table columns are _N_, _FROM_, _TO_, _COST_, _CAPAC_, _LO_, _NAME_, and

FLOW, or the names of the SAS variables specified in the corresponding variable lists (TAILN-
ODE, HEADNODE, COST, CAPACITY, LO, and NAME lists). _COEF_ or the name of the
SAS variable in the COEF list specification will head a column when the SHORT qualifier is
used in PRINT CONSTRAINTS, SOME_CONS, CON_ARCS, or CON_NONARCS.

� ZERO
Only rows that have zero _FLOW_ column values (zero arc flows, zero nonarc variable values)
are displayed.

The default qualifiers are BASIC, NONBASIC, ZERO, NONZERO, and LONG.

Displaying Information On All Constraints

In the oil refinery problem, if you had entered

print constraints;

after the RUN statement, the output in Figure 5.9 would have been produced.

Displaying Information About Selected Arcs

In the oil refinery problem, if you had entered

print some_arcs(refin:,_all_)/short;

after the RUN statement, the output in Figure 5.10 would have been produced.

344 F Chapter 5: The NETFLOW Procedure

Figure 5.9 PRINT CONSTRAINTS

Constrained Optimum

The NETFLOW Procedure

Constrained Optimum

The NETFLOW Procedure

N _CON_ _type_ _rhs_ _name_ _from_ _to_ _cost_ _capac_ _lo_ _SUPPLY_ _DEMAND_ _FLOW_ _COEF_

1 _OBS1_ GE -15 m_e_ref1 middle
east

refinery
1

63 95 20 100 . 80 -2

2 _OBS1_ GE -15 thruput1 refinery 1 r1 200 175 50 . . 145 1

3 _OBS2_ GE -15 m_e_ref2 middle
east

refinery
2

81 80 10 100 . 20 -2

4 _OBS2_ GE -15 thruput2 refinery 2 r2 220 100 35 . . 35 1

5 _OBS3_ EQ 0 thruput1 refinery 1 r1 200 175 50 . . 145 -3

6 _OBS3_ EQ 0 r1_gas r1 ref1 gas 0 140 0 . . 108.75 4

7 _OBS4_ EQ 0 thruput2 refinery 2 r2 220 100 35 . . 35 -3

8 _OBS4_ EQ 0 r2_gas r2 ref2 gas 0 100 0 . . 26.25 4

N _FCOST_ _RCOST_ _STATUS_

1 5040 . KEY_ARC BASIC

2 29000 . KEY_ARC BASIC

3 1620 . NONKEY ARC
BASIC

4 7700 29 LOWERBD
NONBASIC

5 29000 . KEY_ARC BASIC

6 0 . KEY_ARC BASIC

7 7700 29 LOWERBD
NONBASIC

8 0 . KEY_ARC BASIC

Figure 5.10 PRINT SOME_ARCS

Constrained Optimum

The NETFLOW Procedure

Constrained Optimum

The NETFLOW Procedure

N _from_ _to_ _cost_ _capac_ _lo_ _name_ _FLOW_

1 refinery 1 r1 200 175 50 thruput1 145

2 refinery 2 r2 220 100 35 thruput2 35

Displaying Information About Selected Constraints

In the oil refinery problem, if you had entered

print some_cons(_obs3_-_obs4_)/nonzero short;

after the RUN statement, the output in Figure 5.11 would have been produced.

PRINT Statement F 345

Figure 5.11 PRINT SOME_CONS

Constrained Optimum

The NETFLOW Procedure

Constrained Optimum

The NETFLOW Procedure

N _CON_ _type_ _rhs_ _name_ _from_ _to_ _cost_ _capac_ _lo_ _FLOW_ _COEF_

1 _OBS3_ EQ 0 thruput1 refinery 1 r1 200 175 50 145 -3

2 _OBS3_ EQ 0 r1_gas r1 ref1 gas 0 140 0 108.75 4

3 _OBS4_ EQ 0 thruput2 refinery 2 r2 220 100 35 35 -3

4 _OBS4_ EQ 0 r2_gas r2 ref2 gas 0 100 0 26.25 4

If you had entered

print con_arcs(_all_,r1 r2,_all_)/short;

after the RUN statement, the output in Figure 5.12 would have been produced. Constraint information about
arcs directed from selected tail nodes is displayed.

Figure 5.12 PRINT CON_ARCS

Constrained Optimum

The NETFLOW Procedure

Constrained Optimum

The NETFLOW Procedure

N _CON_ _type_ _rhs_ _name_ _from_ _to_ _cost_ _capac_ _lo_ _FLOW_ _COEF_

1 _OBS3_ EQ 0 r1_gas r1 ref1 gas 0 140 0 108.75 4

2 _OBS4_ EQ 0 r2_gas r2 ref2 gas 0 100 0 26.25 4

Cautions

This subsection has two parts; the first part is applicable if you are running Version 7 or later of the SAS
System, and the second part is applicable if you are running Version 6. You can get later versions to “act”
like Version 6 by specifying

options validvarname=v6;

For Version 7 onward, PROC NETFLOW strictly respects case sensitivity. The PRINT statements of PROC
NETFLOW that require lists of entities will work properly only if the entities have the same case as in the
input data sets. Entities that contain blanks must be enclosed in single or double quotes. For example,

print some_arcs (_all_,"Ref1 Gas");

In this example, a head node of an arc in the model is “Ref1 Gas” (without the quotes). If you omit the
quotes, PROC NETFLOW issues a message on the SAS log:

WARNING: The node Ref1 in the list of head nodes in the PRINT
SOME_ARCS or PRINT CON_ARCS is not a node in the
problem. This statement will be ignored.

346 F Chapter 5: The NETFLOW Procedure

If you had specified

print some_arcs (_all_,"ref1 Gas");

(note the small r), you would have been warned

WARNING: The node ref1 Gas in the list of head nodes in the PRINT
SOME_ARCS or PRINT CON_ARCS is not a node in the
problem. This statement will be ignored.

If you are running Version 6, or if you are running a later version and you have specified

options validvarname=v6;

when information is parsed to procedures, the SAS System converts the text that makes up statements into
uppercase. The PRINT statements of PROC NETFLOW that require lists of entities will work properly only
if the entities are uppercase in the input data sets. If you do not want this uppercasing to occur, you must
enclose the entity in single or double quotes.

print some_arcs('lowercase tail','lowercase head');
print some_cons('factory07'-'factory12');
print some_cons('_factory07_'-'_factory12_');
print some_nonarcs("CO2 content":);

Entities that contain blanks must be enclosed in single or double quotes.

QUIT Statement
QUIT ;

The QUIT statement indicates that PROC NETFLOW is to be terminated immediately. The solution is not
saved in the current output data sets. The QUIT statement has no options.

RESET Statement
RESET options ;

SET options ;

The RESET statement is used to change options after PROC NETFLOW has started execution. Any of the
following options can appear in the PROC NETFLOW statement.

Another name for the RESET statement is SET. You can use RESET when you are resetting options and SET
when you are setting options for the first time. The following options fall roughly into five categories:

� output data set specifications

� options that indicate conditions under which optimization is to be halted temporarily, giving you an
opportunity to use PROC NETFLOW interactively

RESET Statement F 347

� options that control aspects of the operation of the network primal simplex optimization

� options that control the pricing strategies of the network simplex optimizer

� miscellaneous options

If you want to examine the setting of any options, use the SHOW statement. If you are interested in looking
at only those options that fall into a particular category, the SHOW statement has options that enable you to
do this.

The execution of PROC NETFLOW has three stages. In stage zero the problem data are read from the
NODEDATA=, ARCDATA=, and CONDATA= data sets. If a warm start is not available, an initial basic
feasible solution is found. Some options of the PROC NETFLOW statement control what occurs in stage
zero. By the time the first RESET statement is processed, stage zero has already been completed.

In the first stage, an optimal solution to the network flow problem neglecting any side constraints is found.
The primal and dual solutions for this relaxed problem can be saved in the ARCOUT= data set and the
NODEOUT= data set, respectively.

In the second stage, the side constraints are examined and some initializations occur. Some preliminary work
is also needed to commence optimization that considers the constraints. An optimal solution to the network
flow problem with side constraints is found. The primal and dual solutions for this side-constrained problem
are saved in the CONOUT= data set and the DUALOUT= data set, respectively.

Many options in the RESET statement have the same name except that they have as a suffix the numeral 1 or
2. Such options have much the same purpose, but option1 controls what occurs during the first stage when
optimizing the network neglecting any side constraints and option2 controls what occurs in the second stage
when PROC NETFLOW is performing constrained optimization.

Some options can be turned off by the option prefixed by the word NO. For example, FEASIBLEPAUSE1
may have been specified in a RESET statement and in a later RESET statement, you can specify NOFEASI-
BLEPAUSE1. In a later RESET statement, you can respecify FEASIBLEPAUSE1 and, in this way, toggle
this option.

The options available with the RESET statement are summarized by purpose in the following table.

Table 5.3 Functional Summary, RESET Statement

Description Statement Option

Output Data Set Options:
Unconstrained primal solution data set RESET ARCOUT=
Unconstrained dual solution data set RESET NODEOUT=
Constrained primal solution data set RESET CONOUT=
Constrained dual solution data set RESET DUALOUT=

Simplex Options:
Use big-M instead of two-phase method, stage 1 RESET BIGM1
Use Big-M instead of two-phase method, stage 2 RESET BIGM2
Anti-cycling option RESET CYCLEMULT1=
Interchange first nonkey with leaving key arc RESET INTFIRST

348 F Chapter 5: The NETFLOW Procedure

Description Statement Option

Controls working basis matrix inversions RESET INVFREQ=
Maximum number of L row operations allowed
before refactorization

RESET MAXL=

Maximum number of LU factor column updates RESET MAXLUUPDATES=
Anti-cycling option RESET MINBLOCK1=
Use first eligible leaving variable, stage 1 RESET LRATIO1
Use first eligible leaving variable, stage 2 RESET LRATIO2
Negates INTFIRST RESET NOINTFIRST
Negates LRATIO1 RESET NOLRATIO1
Negates LRATIO2 RESET NOLRATIO2
Negates PERTURB1 RESET NOPERTURB1
Anti-cycling option RESET PERTURB1
Controls working basis matrix refactorization RESET REFACTFREQ=
Use two-phase instead of big-M method, stage 1 RESET TWOPHASE1
Use two-phase instead of big-M method, stage 2 RESET TWOPHASE2
Pivot element selection parameter RESET U=
Zero tolerance, stage 1 RESET ZERO1=
Zero tolerance, stage 2 RESET ZERO2=
Zero tolerance, real number comparisons RESET ZEROTOL=

Pricing Options:
Frequency of dual value calculation RESET DUALFREQ=
Pricing strategy, stage 1 RESET PRICETYPE1=
Pricing strategy, stage 2 RESET PRICETYPE2=
Used when P1SCAN=PARTIAL RESET P1NPARTIAL=
Controls search for entering candidate, stage 1 RESET P1SCAN=
Used when P2SCAN=PARTIAL RESET P2NPARTIAL=
Controls search for entering candidate, stage 2 RESET P2SCAN=
Initial queue size, stage 1 RESET QSIZE1=
Initial queue size, stage 2 RESET QSIZE2=
Used when Q1FILLSCAN=PARTIAL RESET Q1FILLNPARTIAL=
Controls scan when filling queue, stage 1 RESET Q1FILLSCAN=
Used when Q2FILLSCAN=PARTIAL RESET Q2FILLNPARTIAL=
Controls scan when filling queue, stage 2 RESET Q2FILLSCAN=
Queue size reduction factor, stage 1 RESET REDUCEQSIZE1=
Queue size reduction factor, stage 2 RESET REDUCEQSIZE2=
Frequency of refreshing queue, stage 1 RESET REFRESHQ1=
Frequency of refreshing queue, stage 2 RESET REFRESHQ2=

Optimization Termination Options:
Pause after stage 1; do not start stage 2 RESET ENDPAUSE1
Pause when feasible, stage 1 RESET FEASIBLEPAUSE1
Pause when feasible, stage 2 RESET FEASIBLEPAUSE2
Maximum number of iterations, stage 1 RESET MAXIT1=
Maximum number of iterations, stage 2 RESET MAXIT2=

RESET Statement F 349

Description Statement Option

Negates ENDPAUSE1 RESET NOENDPAUSE1
Negates FEASIBLEPAUSE1 RESET NOFEASIBLEPAUSE1
Negates FEASIBLEPAUSE2 RESET NOFEASIBLEPAUSE2
Pause every PAUSE1 iterations, stage 1 RESET PAUSE1=
Pause every PAUSE2 iterations, stage 2 RESET PAUSE2=

Interior Point Algorithm Options:
Factorization method RESET FACT_METHOD=
Allowed amount of dual infeasibility RESET TOLDINF=
Allowed amount of primal infeasibility RESET TOLPINF=
Allowed total amount of dual infeasibility RESET TOLTOTDINF=
Allowed total amount of primal infeasibility RESET TOLTOTPINF=
Cut-off tolerance for Cholesky factorization RESET CHOLTINYTOL=
Density threshold for Cholesky processing RESET DENSETHR=
Step-length multiplier RESET PDSTEPMULT=
Preprocessing type RESET PRSLTYPE=
Print optimization progress on SAS log RESET PRINTLEVEL2=

Interior Point Stopping Criteria Options:
Maximum number of interior point iterations RESET MAXITERB=
Primal-dual (duality) gap tolerance RESET PDGAPTOL=
Stop because of complementarity RESET STOP_C=
Stop because of duality gap RESET STOP_DG=
Stop because of infeasb RESET STOP_IB=
Stop because of infeasc RESET STOP_IC=
Stop because of infeasd RESET STOP_ID=
Stop because of complementarity RESET AND_STOP_C=
Stop because of duality gap RESET AND_STOP_DG=
Stop because of infeasb RESET AND_STOP_IB=
Stop because of infeasc RESET AND_STOP_IC=
Stop because of infeasd RESET AND_STOP_ID=
Stop because of complementarity RESET KEEPGOING_C=
Stop because of duality gap RESET KEEPGOING_DG=
Stop because of infeasb RESET KEEPGOING_IB=
Stop because of infeasc RESET KEEPGOING_IC=
Stop because of infeasd RESET KEEPGOING_ID=
Stop because of complementarity RESET AND_KEEPGOING_C=
Stop because of duality gap RESET AND_KEEPGOING_DG=
Stop because of infeasb RESET AND_KEEPGOING_IB=
Stop because of infeasc RESET AND_KEEPGOING_IC=
Stop because of infeasd RESET AND_KEEPGOING_ID=

Miscellaneous Options:
Output complete basis information to ARCOUT=
and NODEOUT= data sets

RESET FUTURE1

350 F Chapter 5: The NETFLOW Procedure

Description Statement Option

Output complete basis information to CONOUT=
and DUALOUT= data sets

RESET FUTURE2

Turn off infeasibility or optimality flags RESET MOREOPT
Negates FUTURE1 RESET NOFUTURE1
Negates FUTURE2 RESET NOFUTURE2
Negates SCRATCH RESET NOSCRATCH
Negates ZTOL1 RESET NOZTOL1
Negates ZTOL2 RESET NOZTOL2
Write optimization time to SAS log RESET OPTIM_TIMER
No stage 1 optimization; do stage 2 optimization RESET SCRATCH
Suppress similar SAS log messages RESET VERBOSE=
Use zero tolerance, stage 1 RESET ZTOL1
Use zero tolerance, stage 2 RESET ZTOL2

Output Data Set Specifications

In a RESET statement, you can specify an ARCOUT= data set, a NODEOUT= data set, a CONOUT= data
set, or a DUALOUT= data set. You are advised to specify these output data sets early because if you make
a syntax error when using PROC NETFLOW interactively or, for some other reason, PROC NETFLOW
encounters or does something unexpected, these data sets will contain information about the solution that was
reached. If you had specified the FUTURE1 or FUTURE2 option in a RESET statement, PROC NETFLOW
may be able to resume optimization in a subsequent run.

You can turn off these current output data set specifications by specifying ARCOUT=NULL, NODE-
OUT=NULL, CONOUT=NULL, or DUALOUT=NULL.

If PROC NETFLOW is outputting observations to an output data set and you want this to stop, press the keys
used to stop SAS procedures. PROC NETFLOW waits, if necessary, and then executes the next statement.

ARCOUT=SAS-data-set

AOUT=SAS-data-set
names the output data set that receives all information concerning arc and nonarc variables, including
flows and other information concerning the current solution and the supply and demand information.
The current solution is the latest solution found by the optimizer when the optimization neglecting side
constraints is halted or the unconstrained optimum is reached.

You can specify an ARCOUT= data set in any RESET statement before the unconstrained optimum
is found (even at commencement). Once the unconstrained optimum has been reached, use the
SAVE statement to produce observations in an ARCOUT= data set. Once optimization that considers
constraints starts, you will be unable to obtain an ARCOUT= data set. Instead, use a CONOUT= data
set to get the current solution. See the section “ARCOUT= and CONOUT= Data Sets” on page 384
for more information.

RESET Statement F 351

CONOUT=SAS-data-set

COUT=SAS-data-set
names the output data set that contains the primal solution obtained after optimization considering side
constraints reaches the optimal solution. You can specify a CONOUT= data set in any RESET statement
before the constrained optimum is found (even at commencement or while optimizing neglecting
constraints). Once the constrained optimum has been reached, or during stage 2 optimization, use the
SAVE statement to produce observations in a CONOUT= data set. See the section “ARCOUT= and
CONOUT= Data Sets” on page 384 for more information.

DUALOUT=SAS-data-set

DOUT=SAS-data-set
names the output data set that contains the dual solution obtained after doing optimization that
considers side constraints reaches the optimal solution. You can specify a DUALOUT= data set in
any RESET statement before the constrained optimum is found (even at commencement or while
optimizing neglecting constraints). Once the constrained optimum has been reached, or during stage
2 optimization, use the SAVE statement to produce observations in a DUALOUT= data set. See the
section “NODEOUT= and DUALOUT= Data Sets” on page 385 for more information.

NODEOUT=SAS-data-set

NOUT=SAS-data-set
names the output data set that receives all information about nodes (supply/demand and nodal dual
variable values) and other information concerning the unconstrained optimal solution.

You can specify a NODEOUT= data set in any RESET statement before the unconstrained optimum is found
(even at commencement). Once the unconstrained optimum has been reached, or during stage 1 optimization,
use the SAVE statement to produce observations in a NODEOUT= data set. Once optimization that considers
constraints starts, you will not be able to obtain a NODEOUT= data set. Instead use a DUALOUT= data set
to get the current solution. See the section “NODEOUT= and DUALOUT= Data Sets” on page 385 for more
information.

Options to Halt Optimization

The following options indicate conditions when optimization is to be halted. You then have a chance to use
PROC NETFLOW interactively. If the NETFLOW procedure is optimizing and you want optimization to
halt immediately, press the CTRL-BREAK key combination used to stop SAS procedures. Doing this is
equivalent to PROC NETFLOW finding that some prespecified condition of the current solution under which
optimization should stop has occurred.

If optimization does halt, you may need to change the conditions for when optimization should stop again. For
example, if the number of iterations exceeded MAXIT2, use the RESET statement to specify a larger value
for the MAXIT2= option before the next RUN statement. Otherwise, PROC NETFLOW will immediately
find that the number of iterations still exceeds MAXIT2 and halt without doing any additional optimization.

ENDPAUSE1
indicates that PROC NETFLOW will pause after the unconstrained optimal solution has been obtained
and information about this solution has been output to the current ARCOUT= data set, NODEOUT=
data set, or both. The procedure then executes the next statement, or waits if no subsequent statement
has been specified.

352 F Chapter 5: The NETFLOW Procedure

FEASIBLEPAUSE1

FP1
indicates that unconstrained optimization should stop once a feasible solution is reached. PROC
NETFLOW checks for feasibility every 10 iterations. A solution is feasible if there are no artificial
arcs having nonzero flow assigned to be conveyed through them. The presence of artificial arcs
with nonzero flows means that the current solution does not satisfy all the nodal flow conservation
constraints implicit in network problems.

MAXIT1=m
specifies the maximum number of primal simplex iterations PROC NETFLOW is to perform in stage 1.
The default value for the MAXIT1= option is 1000. If MAXIT1=m iterations are performed and you
want to continue unconstrained optimization, reset MAXIT1= to a number larger than the number of
iterations already performed and issue another RUN statement.

NOENDPAUSE1

NOEP1
negates the ENDPAUSE1 option.

NOFEASIBLEPAUSE1

NOFP1
negates the FEASIBLEPAUSE1 option.

PAUSE1=p
indicates that PROC NETFLOW will halt unconstrained optimization and pause when the remainder
of the number of stage 1 iterations divided by the value of the PAUSE1= option is zero. If present,
the next statement is executed; if not, the procedure waits for the next statement to be specified. The
default value for PAUSE1= is 999999.

FEASIBLEPAUSE2

FP2

NOFEASIBLEPAUSE2

NOFP2

PAUSE2=p

MAXIT2=m
are the stage 2 constrained optimization counterparts of the options described previously and having as
a suffix the numeral 1.

Options Controlling the Network Simplex Optimization

BIGM1

NOTWOPHASE1

TWOPHASE1

NOBIGM1
BIGM1 indicates that the “big-M” approach to optimization is used. Artificial variables are treated like
real arcs, slacks, surpluses and nonarc variables. Artificials have very expensive costs. BIGM1 is the
default.

RESET Statement F 353

TWOPHASE1 indicates that the two-phase approach is used instead of the big-M approach. At first,
artificial variables are the only variables to have nonzero objective function coefficients. An artificial
variable’s objective function coefficient is temporarily set to 1 and PROC NETFLOW minimizes.
When all artificial variables have zero value, PROC NETFLOW has found a feasible solution, and
phase 2 commences. Arcs and nonarc variables have their real costs and objective function coefficients.

Before all artificial variables are driven to have zero value, you can toggle between the big-M and the
two-phase approaches by specifying BIGM1 or TWOPHASE1 in a RESET statement. The option
NOTWOPHASE1 is synonymous with BIGM1, and NOBIGM1 is synonymous with TWOPHASE1.

CYCLEMULT1=c

MINBLOCK1=m

NOPERTURB1

PERTURB1
In an effort to reduce the number of iterations performed when the problem is highly degenerate, PROC
NETFLOW has in stage 1 optimization adopted an algorithm outlined in Ryan and Osborne (1988).

If the number of consecutive degenerate pivots (those with no progress toward the optimum) performed
equals the value of the CYCLEMULT1= option times the number of nodes, the arcs that were “blocking”
(can leave the basis) are added to a list. In subsequent iterations, of the arcs that now can leave the
basis, the one chosen to leave is an arc on the list of arcs that could have left in the previous iteration.
In other words, preference is given to arcs that “block” many iterations. After several iterations, the list
is cleared.

If the number of blocking arcs is less than the value of the MINBLOCK1= option, a list is not kept.
Otherwise, if PERTURB1 is specified, the arc flows are perturbed by a random quantity, so that arcs on
the list that block subsequent iterations are chosen to leave the basis randomly. Although perturbation
often pays off, it is computationally expensive. Periodically, PROC NETFLOW has to clear out the
lists and un-perturb the solution. You can specify NOPERTURB1 to prevent perturbation.

Defaults are CYCLEMULT1=0.15, MINBLOCK1=2, and NOPERTURB1.

LRATIO1
specifies the type of ratio test to use in determining which arc leaves the basis in stage 1. In some
iterations, more than one arc is eligible to leave the basis. Of those arcs that can leave the basis, the
leaving arc is the first encountered by the algorithm if the LRATIO1 option is specified. Specifying the
LRATIO1 option can decrease the chance of cycling but can increase solution times. The alternative to
the LRATIO1 option is the NOLRATIO1 option, which is the default.

LRATIO2
specifies the type of ratio test to use in determining what leaves the basis in stage 2. In some iterations,
more than one arc, constraint slack, surplus, or nonarc variable is eligible to leave the basis. If the
LRATIO2 option is specified, the leaving arc, constraint slack, surplus, or nonarc variable is the one
that is eligible to leave the basis first encountered by the algorithm. Specifying the LRATIO2 option
can decrease the chance of cycling but can increase solution times. The alternative to the LRATIO2
option is the NOLRATIO2 option, which is the default.

NOLRATIO1
specifies the type of ratio test to use in determining which arc leaves the basis in stage 1. If the
NOLRATIO1 option is specified, of those arcs that can leave the basis, the leaving arc has the
minimum (maximum) cost if the leaving arc is to be nonbasic with flow capacity equal to its capacity

354 F Chapter 5: The NETFLOW Procedure

(lower flow bound). If more than one possible leaving arc has the minimum (maximum) cost, the first
such arc encountered is chosen. Specifying the NOLRATIO1 option can decrease solution times, but
can increase the chance of cycling. The alternative to the NOLRATIO1 option is the LRATIO1 option.
The NOLRATIO1 option is the default.

NOLRATIO2
specifies the type of ratio test to use in determining which arc leaves the basis in stage 2. If the
NOLRATIO2 option is specified, the leaving arc, constraint slack, surplus, or nonarc variable is the
one eligible to leave the basis with the minimum (maximum) cost or objective function coefficient if
the leaving arc, constraint slack or nonarc variable is to be nonbasic with flow or value equal to its
capacity or upper value bound (lower flow or value bound), respectively. If several possible leaving
arcs, constraint slacks, surpluses, or nonarc variables have the minimum (maximum) cost or objective
function coefficient, then the first encountered is chosen. Specifying the NOLRATIO2 option can
decrease solution times, but can increase the chance of cycling. The alternative to the NOLRATIO2
option is the LRATIO2 option. The NOLRATIO2 option is the default.

Options Applicable to Constrained Optimization

The INVFREQ= option is relevant only if INVD_2D is specified in the PROC NETFLOW statement; that
is, the inverse of the working basis matrix is being stored and processed as a two-dimensional array. The
REFACTFREQ=, U=, MAXLUUPDATES=, and MAXL= options are relevant if the INVD_2D option is not
specified in the PROC NETFLOW statement; that is, if the working basis matrix is LU factored.

BIGM2

NOTWOPHASE2

TWOPHASE2

NOBIGM2
are the stage 2 constrained optimization counterparts of the options BIGM1, NOTWOPHASE1,
TWOPHASE1, and NOBIGM1.

The TWOPHASE2 option is often better than the BIGM2 option when the problem has many side
constraints.

INVFREQ=n
recalculates the working basis matrix inverse whenever n iterations have been performed where n
is the value of the INVFREQ= option. Although a relatively expensive task, it is prudent to do as
roundoff errors accumulate, especially affecting the elements of this matrix inverse. The default is
INVFREQ=50. The INVFREQ= option should be used only if the INVD_2D option is specified in the
PROC NETFLOW statement.

INTFIRST
In some iterations, it is found that what must leave the basis is an arc that is part of the spanning tree
representation of the network part of the basis (called a key arc). It is necessary to interchange another
basic arc not part of the tree (called a nonkey arc) with the tree arc that leaves to permit the basis
update to be performed efficiently. Specifying the INTFIRST option indicates that of the nonkey arcs
eligible to be swapped with the leaving key arc, the one chosen to do so is the first encountered by the
algorithm. If the INTFIRST option is not specified, all such arcs are examined and the one with the
best cost is chosen.

RESET Statement F 355

The terms key and nonkey are used because the algorithm used by PROC NETFLOW for network
optimization considering side constraints (GUB-based, Primal Partitioning, or Factorization) is a
variant of an algorithm originally developed to solve linear programming problems with generalized
upper bounding constraints. The terms key and nonkey were coined then. The STATUS SAS variable
in the ARCOUT= and CONOUT= data sets and the STATUS column in tables produced when PRINT
statements are processed indicate whether basic arcs are key or nonkey. Basic nonarc variables are
always nonkey.

MAXL=m
If the working basis matrix is LU factored, U is an upper triangular matrix and L is a lower triangular
matrix corresponding to a sequence of elementary matrix row operations required to change the working
basis matrix into U. L and U enable substitution techniques to be used to solve the linear systems of the
simplex algorithm. Among other things, the LU processing strives to keep the number of L elementary
matrix row operation matrices small. A buildup in the number of these could indicate that fill-in is
becoming excessive and the computations involving L and U will be hampered. Refactorization should
be performed to restore U sparsity and reduce L information. When the number of L matrix row
operations exceeds the value of the MAXL= option, a refactorization is done rather than one or more
updates. The default value for MAXL= is 10 times the number of side constraints. The MAXL= option
should not be used if INVD_2D is specified in the PROC NETFLOW statement.

MAXLUUPDATES=m
MLUU=m

In some iterations, PROC NETFLOW must either perform a series of single column updates or a
complete refactorization of the working basis matrix. More than one column of the working basis
matrix must change before the next simplex iteration can begin. The single column updates can often
be done faster than a complete refactorization, especially if few updates are necessary, the working
basis matrix is sparse, or a refactorization has been performed recently. If the number of columns
that must change is less than the value specified in the MAXLUUPDATES= option, the updates are
attempted; otherwise, a refactorization is done. Refactorization also occurs if the sum of the number
of columns that must be changed and the number of LU updates done since the last refactorization
exceeds the value of the REFACTFREQ= option. The MAXLUUPDATES= option should not be used
if the INVD_2D option is specified in the PROC NETFLOW statement.

In some iterations, a series of single column updates are not able to complete the changes required for
a working basis matrix because, ideally, all columns should change at once. If the update cannot be
completed, PROC NETFLOW performs a refactorization. The default value is 5.

NOINTFIRST
indicates that of the arcs eligible to be swapped with the leaving arc, the one chosen to do so has the
best cost. See the INTFIRST option.

REFACTFREQ=r
RFF=r

specifies the maximum number of L and U updates between refactorization of the working basis
matrix to reinitialize LU factors. In most iterations, one or several Bartels-Golub updates can be
performed. An update is performed more quickly than a complete refactorization. However, after a
series of updates, the sparsity of the U factor is degraded. A refactorization is necessary to regain
sparsity and to make subsequent computations and updates more efficient. The default value is 50.
The REFACTFREQ= option should not be used if INVD_2D is specified in the PROC NETFLOW
statement.

356 F Chapter 5: The NETFLOW Procedure

U=u
controls the choice of pivot during LU decomposition or Bartels-Golub update. When searching for
a pivot, any element less than the value of the U= option times the largest element in its matrix row
is excluded, or matrix rows are interchanged to improve numerical stability. The U= option should
have values on or between ZERO2 and 1.0. Decreasing the value of the U= option biases the algorithm
toward maintaining sparsity at the expense of numerical stability and vice-versa. Reid (1975) suggests
that the value of 0.01 is acceptable and this is the default for the U= option. This option should not be
used if INVD_2D is specified in the PROC NETFLOW statement.

Pricing Strategy Options

There are three main types of pricing strategies:

� PRICETYPEx=NOQ

� PRICETYPEx=BLAND

� PRICETYPEx=Q

The one that usually performs better than the others is PRICETYPEx=Q, so this is the default.

Because the pricing strategy takes a lot of computational time, you should experiment with the following
options to find the optimum specification. These options influence how the pricing step of the simplex
iteration is performed. See the section “Pricing Strategies” on page 388 for further information.

PRICETYPEx=BLAND or PTYPEx=BLAND

PRICETYPEx=NOQ or PTYPEx=NOQ

� PxSCAN=BEST

� PxSCAN=FIRST

� PxSCAN=PARTIAL and PxNPARTIAL=p

PRICETYPEx=Q or PTYPEx=Q
QSIZEx=q or Qx=q
REFRESHQx=r
REDUCEQSIZEx=r
REDUCEQx=r

� PxSCAN=BEST

� PxSCAN=FIRST

� PxSCAN=PARTIAL and PxNPARTIAL=p

� QxFILLSCAN=BEST

� QxFILLSCAN=FIRST

� QxFILLSCAN=PARTIAL and QxFILLNPARTIAL=q

For stage 2 optimization, you can specify P2SCAN=ANY, which is used in conjunction with the DUAL-
FREQ= option.

RESET Statement F 357

Miscellaneous Options

FUTURE1
signals that PROC NETFLOW must output extra observations to the NODEOUT= and ARCOUT= data
sets. These observations contain information about the solution found by doing optimization neglecting
any side constraints. These two data sets then can be used as the NODEDATA= and ARCDATA= data
sets, respectively, in subsequent PROC NETFLOW runs with the WARM option specified. See the
section “Warm Starts” on page 401.

FUTURE2
signals that PROC NETFLOW must output extra observations to the DUALOUT= and CONOUT= data
sets. These observations contain information about the solution found by optimization that considers
side constraints. These two data sets can then be used as the NODEDATA= data set (also called the
DUALIN= data set) and the ARCDATA= data sets, respectively, in subsequent PROC NETFLOW runs
with the WARM option specified. See the section “Warm Starts” on page 401.

MOREOPT
The MOREOPT option turns off all optimality and infeasibility flags that may have been raised. Unless
this is done, PROC NETFLOW will not do any optimization when a RUN statement is specified.

If PROC NETFLOW determines that the problem is infeasible, it will not do any more optimization
unless you specify MOREOPT in a RESET statement. At the same time, you can try resetting options
(particularly zero tolerances) in the hope that the infeasibility was raised incorrectly.

Consider the following example:

proc netflow
nodedata=noded /* supply and demand data */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* output the solution */
run;

/* Netflow states that the problem is infeasible. */
/* You suspect that the zero tolerance is too large */

reset zero2=1.0e-10 moreopt;
run;

/* Netflow will attempt more optimization. */
/* After this, if it reports that the problem is */
/* infeasible, the problem really might be infeasible */

If PROC NETFLOW finds an optimal solution, you might want to do additional optimization to confirm that
an optimum has really been reached. Specify the MOREOPT option in a RESET statement. Reset options,
but in this case tighten zero tolerances.

NOFUTURE1
negates the FUTURE1 option.

NOFUTURE2
negates the FUTURE2 option.

358 F Chapter 5: The NETFLOW Procedure

NOSCRATCH
negates the SCRATCH option.

NOZTOL1
indicates that the majority of tests for roundoff error should not be done. Specifying the NOZTOL1
option and obtaining the same optimal solution as when the NOZTOL1 option is not specified in the
PROC NETFLOW statement (or the ZTOL1 option is specified), verifies that the zero tolerances were
not too high. Roundoff error checks that are critical to the successful functioning of PROC NETFLOW
and any related readjustments are always done.

NOZTOL2
indicates that the majority of tests for roundoff error are not to be done during an optimization that
considers side constraints. The reasons for specifying the NOZTOL2 option are the same as those for
specifying the NOZTOL1 option for stage 1 optimization (see the NOZTOL1 option).

OPTIM_TIMER
indicates that the procedure is to issue a message to the SAS log giving the CPU time spent doing
optimization. This includes the time spent preprocessing, performing optimization, and postprocessing.
Not counted in that time is the rest of the procedure execution, which includes reading the data and
creating output SAS data sets.

The time spent optimizing can be small compared to the total CPU time used by the procedure. This is
especially true when the problem is quite small (e.g., fewer than 10,000 variables).

SCRATCH
specifies that you do not want PROC NETFLOW to enter or continue stage 1 of the algorithm. Rather
than specify RESET SCRATCH, you can use the CONOPT statement.

VERBOSE=v
limits the number of similar messages that are displayed on the SAS log.

For example, when reading the ARCDATA= data set, PROC NETFLOW might have cause to issue the
following message many times:

ERROR: The HEAD list variable value in obs i in ARCDATA is
missing and the TAIL list variable value of this obs
is nonmissing. This is an incomplete arc specification.

If there are many observations that have this fault, messages that are similar are issued for only the first
VERBOSE= such observations. After the ARCDATA= data set has been read, PROC NETFLOW will
issue the message

NOTE: More messages similar to the ones immediately above
could have been issued but were suppressed as
VERBOSE=v.

If observations in the ARCDATA= data set have this error, PROC NETFLOW stops and you have
to fix the data. Imagine that this error is only a warning and PROC NETFLOW proceeded to other
operations such as reading the CONDATA= data set. If PROC NETFLOW finds there are numerous
errors when reading that data set, the number of messages issued to the SAS log are also limited by the
VERBOSE= option.

RESET Statement F 359

If you have a problem with a large number of side constraints and for some reason you stop stage 2
optimization early, PROC NETFLOW indicates that constraints are violated by the current solution.
Specifying VERBOSE=v allows at most v violated constraints to be written to the log. If there are
more, these are not displayed.

When PROC NETFLOW finishes and messages have been suppressed, the message

NOTE: To see all messages, specify VERBOSE=vmin.

is issued. The value of vmin is the smallest value that should be specified for the VERBOSE= option
so that all messages are displayed if PROC NETFLOW is run again with the same data and everything
else (except the VERBOSE= option) unchanged. No messages are suppressed.

The default value for the VERBOSE= option is 12.

ZERO1=z

Z1=z
specifies the zero tolerance level in stage 1. If the NOZTOL1 option is not specified, values within
z of zero are set to 0.0, where z is the value of the ZERO1= option. Flows close to the lower flow
bound or capacity of arcs are reassigned those exact values. Two values are deemed to be close if one
is within z of the other. The default value for the ZERO1= option is 0.000001. Any value specified for
the ZERO1= option that is < 0.0 or > 0.0001 is invalid.

ZERO2=z

Z2=z
specifies the zero tolerance level in stage 2. If the NOZTOL2 option is not specified, values within
z of zero are set to 0.0, where z is the value of the ZERO2= option. Flows close to the lower flow
bound or capacity of arcs are reassigned those exact values. If there are nonarc variables, values close
to the lower or upper value bound of nonarc variables are reassigned those exact values. Two values
are deemed to be close if one is within z of the other. The default value for the ZERO2= option is
0.000001. Any value specified for the ZERO2= option that is < 0.0 or > 0.0001 is invalid.

ZEROTOL=z
specifies the zero tolerance used when PROC NETFLOW must compare any real number with another
real number, or zero. For example, if x and y are real numbers, then for x to be considered greater than
y, x must be at least y C z. The ZEROTOL= option is used throughout any PROC NETFLOW run.

ZEROTOL=z controls the way PROC NETFLOW performs all double precision comparisons; that is,
whether a double precision number is equal to, not equal to, greater than (or equal to), or less than (or
equal to) zero or some other double precision number. A double precision number is deemed to be the
same as another such value if the absolute difference between them is less than or equal to the value of
the ZEROTOL= option.

The default value for the ZEROTOL= option is 1.0E�14. You can specify the ZEROTOL= option in
the NETFLOW or RESET statement. Valid values for the ZEROTOL= option must be > 0.0 and <
0.0001. Do not specify a value too close to zero as this defeats the purpose of the ZEROTOL= option.
Neither should the value be too large, as comparisons might be incorrectly performed.

The ZEROTOL= option is different from the ZERO1= and ZERO2= options in that ZERO1= and
ZERO2= options work when determining whether optimality has been reached, whether an entry in the
updated column in the ratio test of the simplex method is zero, whether a flow is the same as the arc’s

360 F Chapter 5: The NETFLOW Procedure

capacity or lower bound, or whether the value of a nonarc variable is at a bound. The ZEROTOL=
option is used in all other general double precision number comparisons.

ZTOL1
indicates that all tests for roundoff error are performed during stage 1 optimization. Any alterations are
carried out. The opposite of the ZTOL1 option is the NOZTOL1 option.

ZTOL2
indicates that all tests for roundoff error are performed during stage 2 optimization. Any alterations are
carried out. The opposite of the ZTOL2 option is the NOZTOL2 option.

Interior Point Algorithm Options

FACT_METHOD=f
enables you to choose the type of algorithm used to factorize and solve the main linear systems at each
iteration of the interior point algorithm.

FACT_METHOD=LEFT_LOOKING is new for SAS 9.1.2. It uses algorithms described in George,
Liu, and Ng (2001). Left looking is one of the main methods used to perform Cholesky optimization
and, along with some recently developed implementation approaches, can be faster and require less
memory than other algorithms.

Specify FACT_METHOD=USE_OLD if you want the procedure to use the only factorization available
prior to SAS 9.1.2.

TOLDINF=t

RTOLDINF=t
specifies the allowed amount of dual infeasibility. In the section “Interior Point Algorithmic Details”
on page 424, the vector infeasd is defined. If all elements of this vector are � t , the solution is
deemed feasible. infeasd is replaced by a zero vector, making computations faster. This option is the
dual equivalent to the TOLPINF= option. Valid values for t are greater than 1.0E�12. The default is
1.0E�7.

TOLPINF=t

RTOLPINF=t
specifies the allowed amount of primal infeasibility. This option is the primal equivalent to the
TOLDINF= option. In the section “Interior Point: Upper Bounds” on page 431, the vector infeasb is
defined. In the section “Interior Point Algorithmic Details” on page 424, the vector infeasc is defined.
If all elements in these vectors are � t , the solution is deemed feasible. infeasb and infeasc are
replaced by zero vectors, making computations faster. Increasing the value of the TOLPINF= option
too much can lead to instability, but a modest increase can give the algorithm added flexibility and
decrease the iteration count. Valid values for t are greater than 1.0E�12. The default is 1.0E�7.

TOLTOTDINF=t

RTOLTOTDINF=t
specifies the allowed total amount of dual infeasibility. In the section “Interior Point Algorithmic
Details” on page 424, the vector infeasd is defined. If

Pn
iD1 infeasdi � t , the solution is deemed

feasible. infeasd is replaced by a zero vector, making computations faster. This option is the dual
equivalent to the TOLTOTPINF= option. Valid values for t are greater than 1.0E�12. The default is
1.0E�7.

RESET Statement F 361

TOLTOTPINF=t

RTOLTOTPINF=t
specifies the allowed total amount of primal infeasibility. This option is the primal equivalent to
the TOLTOTDINF= option. In the section “Interior Point: Upper Bounds” on page 431, the vector
infeasb is defined. In the section “Interior Point Algorithmic Details” on page 424, the vector infeasc

is defined. If
Pn

iD1 infeasbi � t and
Pm

iD1 infeasci � t , the solution is deemed feasible. infeasb

and infeasc are replaced by zero vectors, making computations faster. Increasing the value of the
TOLTOTPINF= option too much can lead to instability, but a modest increase can give the algorithm
added flexibility and decrease the iteration count. Valid values for t are greater than 1.0E�12. The
default is 1.0E�7.

CHOLTINYTOL=c

RCHOLTINYTOL=c
specifies the cut-off tolerance for Cholesky factorization of the A‚A�1. If a diagonal value drops
below c, the row is essentially treated as dependent and is ignored in the factorization. Valid values for
c are between 1.0E�30 and 1.0E�6. The default value is 1.0E�8.

DENSETHR=d

RDENSETHR=d
specifies the density threshold for Cholesky processing. When the symbolic factorization encounters
a column of L that has DENSETHR= proportion of nonzeros and the remaining part of L is at least
12 � 12, the remainder of L is treated as dense. In practice, the lower right part of the Cholesky
triangular factor L is quite dense and it can be computationally more efficient to treat it as 100% dense.
The default value for d is 0.7. A specification of d � 0.0 causes all dense processing; d � 1.0 causes
all sparse processing.

PDSTEPMULT=p

RPDSTEPMULT=p
specifies the step-length multiplier. The maximum feasible step-length chosen by the Primal-Dual with
Predictor-Corrector algorithm is multiplied by the value of the PDSTEPMULT= option. This number
must be less than 1 to avoid moving beyond the barrier. An actual step length greater than 1 indicates
numerical difficulties. Valid values for p are between 0.01 and 0.999999. The default value is 0.99995.

In the section “Interior Point Algorithmic Details” on page 424, the solution of the next iteration is
obtained by moving along a direction from the current iteration’s solution:

.xkC1; ykC1; skC1/ D .xk; yk; sk/C ˛.�xk; �yk; �sk/

where ˛ is the maximum feasible step-length chosen by the interior point algorithm. If ˛ � 1, then ˛
is reduced slightly by multiplying it by p. ˛ is a value as large as possible but � 1:0 and not so large
that an xkC1

i or skC1
i of some variable i is “too close” to zero.

PRSLTYPE=p

IPRSLTYPE=p
Preprocessing the linear programming problem often succeeds in allowing some variables and con-
straints to be temporarily eliminated from the LP that must be solved. This reduces the solution
time and possibly also the chance that the optimizer will run into numerical difficulties. The task of
preprocessing is inexpensive to do.

You control how much preprocessing to do by specifying PRSLTYPE=p, where p can be –1, 0, 1, 2, or 3.

362 F Chapter 5: The NETFLOW Procedure

–1 Do not perform preprocessing. For most problems, specifying
PRSLTYPE= –1 is not recommended.

0 Given upper and lower bounds on each variable, the greatest and least
contribution to the row activity of each variable is computed. If these are
within the limits set by the upper and lower bounds on the row activity, then
the row is redundant and can be discarded. Try to tighten the bounds on any
of the variables it can. For example, if all coefficients in a constraint are
positive and all variables have zero lower bounds, then the row’s smallest
contribution is zero. If the rhs value of this constraint is zero, then if the
constraint type is = or �, all the variables in that constraint can be fixed to
zero. These variables and the constraint can be removed. If the constraint
type is�, the constraint is redundant. If the rhs is negative and the constraint
is �, the problem is infeasible. If just one variable in a row is not fixed,
use the row to impose an implicit upper or lower bound on the variable and
then eliminate the row. The preprocessor also tries to tighten the bounds on
constraint right-hand sides.

1 When there are exactly two unfixed variables with coefficients in an equality
constraint, solve for one in terms of the other. The problem will have one
less variable. The new matrix will have at least two fewer coefficients and
one less constraint. In other constraints where both variables appear, two
coefs are combined into one. PRSLTYPE=0 reductions are also done.

2 It may be possible to determine that an equality constraint is not constraining
a variable. That is, if all variables are nonnegative, then x �

P
i yi D

0 does not constrain x, since it must be nonnegative if all the yi ’s are
nonnegative. In this case, eliminate x by subtracting this equation from all
others containing x. This is useful when the only other entry for x is in
the objective function. Perform this reduction if there is at most one other
nonobjective coefficient. PRSLTYPE=0 reductions are also done.

3 All possible reductions are performed. PRSLTYPE=3 is the default.

Preprocessing is iterative. As variables are fixed and eliminated, and constraints are found to be redundant
and they too are eliminated, and as variable bounds and constraint right-hand sides are tightened, the LP to
be optimized is modified to reflect these changes. Another iteration of preprocessing of the modified LP may
reveal more variables and constraints that can be eliminated.

PRINTLEVEL2=p
is used when you want to see PROC NETFLOW’s progress to the optimum. PROC NETFLOW will
produce a table on the SAS log. A row of the table is generated during each iteration and may consist
of values of

� the affine step complementarity

� the complementarity of the solution for the next iteration

� the total bound infeasibility
Pn

iD1 infeasbi (see the infeasb array in the section “Interior Point:
Upper Bounds” on page 431)

� the total constraint infeasibility
Pm

iD1 infeasci (see the infeasc array in the section “Interior
Point Algorithmic Details” on page 424)

RESET Statement F 363

� the total dual infeasibility
Pn

iD1 infeasdi (see the infeasd array in the section “Interior Point
Algorithmic Details” on page 424)

As optimization progresses, the values in all columns should converge to zero. If you specify PRINT-
LEVEL2=2, all columns will appear in the table. If PRINTLEVEL2=1 is specified, only the affine step
complementarity and the complementarity of the solution for the next iteration will appear. Some time
is saved by not calculating the infeasibility values.

Interior Point Algorithm Options: Stopping Criteria

MAXITERB=m

IMAXITERB=m
specifies the maximum number of iterations of the interior point algorithm that can be performed. The
default value for m is 100. One of the most remarkable aspects of the interior point algorithm is that for
most problems, it usually needs to do a small number of iterations, no matter the size of the problem.

PDGAPTOL=p

RPDGAPTOL=p
specifies the primal-dual gap or duality gap tolerance. Duality gap is defined in the section “Interior
Point Algorithmic Details” on page 424. If the relative gap .duality gap=.cT x// between the primal
and dual objectives is smaller than the value of the PDGAPTOL= option and both the primal and
dual problems are feasible, then PROC NETFLOW stops optimization with a solution that is deemed
optimal. Valid values for p are between 1.0E�12 and 1.0E�1. The default is 1.0E�7.

STOP_C=s
is used to determine whether optimization should stop. At the beginning of each iteration, if
complementarity (the value of the Complem-ity column in the table produced when you specify
PRINTLEVEL2=1 or PRINTLEVEL2=2) is � s, optimization will stop. This option is discussed in
the section “Stopping Criteria” on page 428.

STOP_DG=s
is used to determine whether optimization should stop. At the beginning of each iteration, if the duality
gap (the value of the Duality_gap column in the table produced when you specify PRINTLEVEL2=1
or PRINTLEVEL2=2) is � s, optimization will stop. This option is discussed in the section “Stopping
Criteria” on page 428.

STOP_IB=s
is used to determine whether optimization should stop. At the beginning of each iteration, if total
bound infeasibility

Pn
iD1 infeasbi (see the infeasb array in the section “Interior Point: Upper Bounds”

on page 431; this value appears in the Tot_infeasb column in the table produced when you specify
PRINTLEVEL2=1 or PRINTLEVEL2=2) is � s, optimization will stop. This option is discussed in
the section “Stopping Criteria” on page 428.

STOP_IC=s
is used to determine whether optimization should stop. At the beginning of each iteration, if total
constraint infeasibility

Pm
iD1 infeasci (see the infeasc array in the section “Interior Point Algorithmic

Details” on page 424; this value appears in the Tot_infeasc column in the table produced when you
specify PRINTLEVEL2=2) is � s, optimization will stop. This option is discussed in the section
“Stopping Criteria” on page 428.

364 F Chapter 5: The NETFLOW Procedure

STOP_ID=s
is used to determine whether optimization should stop. At the beginning of each iteration, if total dual
infeasibility

Pn
iD1 infeasdi (see the infeasd array in the section “Interior Point Algorithmic Details”

on page 424; this value appears in the Tot_infeasd column in the table produced when you specify
PRINTLEVEL2=2) is � s, optimization will stop. This option is discussed in the section “Stopping
Criteria” on page 428.

AND_STOP_C=s
is used to determine whether optimization should stop. At the beginning of each iteration, if complemen-
tarity (the value of the Complem-ity column in the table produced when you specify PRINTLEVEL2=1
or PRINTLEVEL2=2) is � s, and the conditions related to other AND_STOP parameters are also
satisfied, optimization will stop. This option is discussed in the section “Stopping Criteria” on page 428.

AND_STOP_DG=s
is used to determine whether optimization should stop. At the beginning of each iteration, if the duality
gap (the value of the Duality_gap column in the table produced when you specify PRINTLEVEL2=1
or PRINTLEVEL2=2) is � s, and the conditions related to other AND_STOP parameters are also
satisfied, optimization will stop. This option is discussed in the section “Stopping Criteria” on page 428.

AND_STOP_IB=s
is used to determine whether optimization should stop. At the beginning of each iteration, if total
bound infeasibility

Pn
iD1 infeasbi (see the infeasb array in the section “Interior Point: Upper Bounds”

on page 431; this value appears in the Tot_infeasb column in the table produced when you specify
PRINTLEVEL2=1 or PRINTLEVEL2=2) is � s, and the conditions related to other AND_STOP
parameters are also satisfied, optimization will stop. This option is discussed in the section “Stopping
Criteria” on page 428.

AND_STOP_IC=s
is used to determine whether optimization should stop. At the beginning of each iteration, if total
constraint infeasibility

Pm
iD1 infeasci (see the infeasc array in the section “Interior Point Algorithmic

Details” on page 424; this value appears in the Tot_infeasc column in the table produced when you
specify PRINTLEVEL2=2) is � s, and the conditions related to other AND_STOP parameters are
also satisfied, optimization will stop. This option is discussed in the section “Stopping Criteria” on
page 428.

AND_STOP_ID=s
is used to determine whether optimization should stop. At the beginning of each iteration, if total
dual infeasibility

Pn
iD1 infeasdi (see the infeasd array in the section “Interior Point Algorithmic

Details” on page 424; this value appears in the Tot_infeasd column in the table produced when you
specify PRINTLEVEL2=2) is � s, and the conditions related to other AND_STOP parameters are
also satisfied, optimization will stop. This option is discussed in the section “Stopping Criteria” on
page 428.

KEEPGOING_C=s
is used to determine whether optimization should stop. If a stopping condition is met, if complementar-
ity (the value of the Complem-ity column in the table produced when you specify PRINTLEVEL2=1
or PRINTLEVEL2=2) is > s, optimization will continue. This option is discussed in the section
“Stopping Criteria” on page 428.

RESET Statement F 365

KEEPGOING_DG=s
is used to determine whether optimization should stop. If a stopping condition is met, if the duality gap
(the value of the Duality_gap column in the table produced when you specify PRINTLEVEL2=1 or
PRINTLEVEL2=2) is > s, optimization will continue. This option is discussed in the section “Stopping
Criteria” on page 428.

KEEPGOING_IB=s
is used to determine whether optimization should stop. If a stopping condition is met, if total bound
infeasibility

Pn
iD1 infeasbi (see the infeasb array in the section “Interior Point: Upper Bounds” on

page 431; this value appears in the Tot_infeasb column in the table produced when you specify
PRINTLEVEL2=1 or PRINTLEVEL2=2) is > s, optimization will continue. This option is discussed
in the section “Stopping Criteria” on page 428.

KEEPGOING_IC=s
is used to determine whether optimization should stop. If a stopping condition is met, if total constraint
infeasibility

Pm
iD1 infeasci (see the infeasc array in the section “Interior Point Algorithmic Details”

on page 424; this value appears in the Tot_infeasc column in the table produced when you specify
PRINTLEVEL2=2) is > s, optimization will continue. This option is discussed in the section “Stopping
Criteria” on page 428.

KEEPGOING_ID=s
is used to determine whether optimization should stop. If a stopping condition is met, if total dual
infeasibility

Pn
iD1 infeasdi (see the infeasd array in the section “Interior Point Algorithmic Details”

on page 424; this value appears in the Tot_infeasd column in the table produced when you specify
PRINTLEVEL2=2) is > s, optimization will continue. This option is discussed in the section “Stopping
Criteria” on page 428.

AND_KEEPGOING_C=s
is used to determine whether optimization should stop. If a stopping condition is met, if complementar-
ity (the value of the Complem-ity column in the table produced when you specify PRINTLEVEL2=1
or PRINTLEVEL2=2) is > s, and the conditions related to other AND_KEEPGOING parameters are
also satisfied, optimization will continue. This option is discussed in the section “Stopping Criteria”
on page 428.

AND_KEEPGOING_DG=s
is used to determine whether optimization should stop. If a stopping condition is met, if the duality
gap (the value of the Duality_gap column in the table produced when you specify PRINTLEVEL2=1
or PRINTLEVEL2=2) is > s, and the conditions related to other AND_KEEPGOING parameters are
also satisfied, optimization will continue. This option is discussed in the section “Stopping Criteria”
on page 428.

AND_KEEPGOING_IB=s
is used to determine whether optimization should stop. If a stopping condition is met, if total bound
infeasibility

Pn
iD1 infeasbi (see the infeasb array in the section “Interior Point: Upper Bounds” on

page 431; this value appears in the Tot_infeasb column in the table produced when you specify
PRINTLEVEL2=2) is > s, and the conditions related to other AND_KEEPGOING parameters are
also satisfied, optimization will continue. This option is discussed in the section “Stopping Criteria”
on page 428.

366 F Chapter 5: The NETFLOW Procedure

AND_KEEPGOING_IC=s
is used to determine whether optimization should stop. If a stopping condition is met, if total constraint
infeasibility

Pm
iD1 infeasci (see the infeasc array in the section “Interior Point Algorithmic Details”

on page 424; this value appears in the Tot_infeasc column in the table produced when you specify
PRINTLEVEL2=2) is > s, and the conditions related to other AND_KEEPGOING parameters are
also satisfied, optimization will continue. This option is discussed in the section “Stopping Criteria”
on page 428.

AND_KEEPGOING_ID=s
is used to determine whether optimization should stop. If a stopping condition is met, if total dual
infeasibility

Pn
iD1 infeasdi (see the infeasd array in the section “Interior Point Algorithmic Details”

on page 424; this value appears in the Tot_infeasd column in the table produced when you specify
PRINTLEVEL2=2) is > s, and the conditions related to other AND_KEEPGOING parameters are
also satisfied, optimization will continue. This option is discussed in the section “Stopping Criteria”
on page 428.

RHS Statement
RHS variable ;

The RHS variable list is used when the dense format of the CONDATA= data set is used. The values of the
SAS variable specified in the RHS list are constraint right-hand-side values. If the RHS list is not specified,
the CONDATA= data set is searched and a SAS variable with the name _RHS_ is used. If there is no RHS
list and no SAS variable named _RHS_, all constraints are assumed to have zero right-hand-side values. The
RHS list variable must have numeric values.

ROW Statement
ROW variables ;

The ROW list is used when either the sparse or the dense format of side constraints is being used. SAS
variables in the ROW list have values that are constraint or special row names. The SAS variables in the
ROW list must have character values.

If the dense data format is used, there must be only one SAS variable in this list. In this case, if a ROW list is
not specified, the CONDATA= data set is searched and the SAS variable with the name _ROW_ or _CON_ is
used.

If the sparse data format is used and the ROW statement is not specified, the CONDATA= data set is searched
and SAS variables with names beginning with _ROW or _CON are used. The number of SAS variables in the
ROW list must not be less than the number of SAS variables in the COEF list. The ith ROW list variable is
paired with the ith COEF list variable. If the number of ROW list variables is greater than the number of
COEF list variables, the last ROW list variables have no COEF partner. These ROW list variables that have
no corresponding COEF list variable are used in observations that have a TYPE list variable value. All ROW
list variable values are tagged as having the type indicated. If there is no TYPE list variable, all ROW list
variable values are constraint names.

SAVE Statement F 367

RUN Statement
RUN ;

The RUN statement causes optimization to be started or resumed. The RUN statement has no options. If
PROC NETFLOW is called and is not terminated because of an error or a QUIT statement, and you have not
used a RUN statement, a RUN statement is assumed implicitly as the last statement of PROC NETFLOW.
Therefore, PROC NETFLOW always performs optimization and saves the obtained (optimal) solution in the
current output data sets.

SAVE Statement
SAVE options ;

The options available with the SAVE statement of PROC NETFLOW are summarized by purpose in the
following table.

Table 5.5 Functional Summary, SAVE Statement

Description Statement Option

Output Data Set Options:
Unconstrained primal solution data set SAVE ARCOUT=
Unconstrained dual solution data set SAVE NODEOUT=
Constrained primal solution data set SAVE CONOUT=
Constrained dual solution data set SAVE DUALOUT=

The SAVE statement can be used to specify output data sets and create observations in these data sets. Use
the SAVE statement if no optimization is to be performed before these output data sets are created.

The SAVE statement must be used to save solutions in data sets if there is no more optimization to do. If
more optimization is to be performed, after which you want to save the solution, then do one of the following:

� Submit a RUN statement followed by a SAVE statement.

� Use the PROC NETFLOW or RESET statement to specify current output data sets. After optimization,
output data sets are created and observations are automatically sent to the current output data sets.

368 F Chapter 5: The NETFLOW Procedure

Consider the following example:

proc netflow options; lists;
reset maxit1=10 maxit2=25

arcout=arcout0 nodeout=nodeout0
conout=conout0 dualout=dualout0;

run;
/* Stage 1 optimization stops after iteration 10. */
/* No output data sets are created yet. */
save arcout=arcout1 nodeout=nodeout1;
/* arcout1 and nodeout1 are created. */
reset arcout=arcout2 maxit1=999999;
run;
/* The stage 1 optimum is reached. */
/* Arcout2 and nodeout0 are created. */
/* Arcout0 is not created as arcout=arcout2 over- */
/* rides the arcout=arcout0 specified earlier. */
/* Stage 2 optimization stops after 25 iterations */
/* as MAXIT2=25 was specified. */
save conout=conout1;
/* Conout1 is created. */
reset maxit2=999999 dualout=null;
run;
/* The stage 2 optimum is reached. */
/* Conout0 is created. */
/* No dualout is created as the last NETFLOW or */
/* reset statements dualout=data set specification*/
/* was dualout=null. */

The data sets specified in the PROC NETFLOW and RESET statements are created when an optimal solution
is found. The data sets specified in SAVE statements are created immediately.

The data sets in the preceding example are all distinct, but this need not be the case. The only exception
to this is that the ARCOUT= data set and the NODEOUT= data set (or the CONOUT= data set and the
DUALOUT= data set) that are being created at the same time must be distinct. Use the SHOW DATASETS
statement to examine what data sets are current and when they were created.

The following options can appear in the SAVE statement:

ARCOUT=SAS-data-set (or AOUT=SAS-data-set)

NODEOUT=SAS-data-set (or NOUT=SAS-data-set)

CONOUT=SAS-data-set (or COUT=SAS-data-set)

DUALOUT=SAS-data-set (or DOUT=SAS-data-set)

SHOW Statement F 369

SHOW Statement
SHOW options / qualifiers ;

The options available with the SHOW statement of PROC NETFLOW are summarized by purpose in the
following table.

Table 5.6 Functional Summary, SHOW Statement

Description Statement Option

SHOW Statement Options:
Show problem, optimization status SHOW STATUS
Show network model parameters SHOW NETSTMT
Show data sets that have been or will be created SHOW DATASETS
Show options that pause optimization SHOW PAUSE
Show simplex algorithm options SHOW SIMPLEX
Show pricing strategy options SHOW PRICING
Show miscellaneous options SHOW MISC

SHOW Statement Qualifiers:
Display information only on relevant options SHOW / RELEVANT
Display options for current stage only SHOW / STAGE

The SHOW statement enables you to examine the status of the problem and values of the RESET statement
options. All output of the SHOW statement appears on the SAS log. The amount of information displayed
when a SHOW statement is processed can be limited if some of the options of the SHOW statement are
specified. These options indicate whether the problem status or a specific category of the RESET options is
of interest. If no options are specified, the problem status and information on all RESET statement options in
every category is displayed. The amount of displayed information can be limited further by following any
SHOW statement options with a slash (/) and one or both qualifiers, RELEVANT and STAGE.

STATUS
produces one of the following optimization status reports, whichever is applicable. The warning
messages are issued only if the network or entire problem is infeasible.

NOTE: Optimization Status.
Optimization has not started yet.

NOTE: Optimization Status.
Optimizing network (ignoring any side constraints).
Number of iterations=17
Of these, 3 were degenerate

WARNING: This optimization has detected that the network is
infeasible.

NOTE: Optimization Status.

370 F Chapter 5: The NETFLOW Procedure

Found network optimum (ignoring side constraints)
Number of iterations=23
Of these, 8 were degenerate

NOTE: Optimization Status.
Optimizing side constrained network.
Number of iterations=27
Of these, 9 were degenerate

WARNING: This optimization has detected that the problem is
infeasible.

NOTE: Optimization Status.
Found side constrained network optimum
Number of iterations=6
Of these, 0 were degenerate

DATASETS
produces a report on output data sets.

NOTE: Current output SAS data sets
No output data sets have been specified

NOTE: Current output SAS data sets
ARCOUT=libname.memname
NODEOUT=libname.memname
CONOUT=libname.memname
DUALOUT=libname.memname

NOTE: Other SAS data sets specified in previous ARCOUT=, NODEOUT=,
CONOUT=, or DUALOUT=.
libname.memname

.

.

.

NOTE: Current output SAS data sets (SHOW DATASETS)
libname.memname

.

.

.
NOTE: SAS data sets specified as ARCOUT= NODEOUT= CONOUT= or

DUALOUT= data sets in previous PROC NETFLOW, SET, RESET
and SAVE statements.
The number following the data set specification was the
iteration number when observations were placed into the
data set.
libname.memname iteration_number

. .

. .

. .

SHOW Statement F 371

PAUSE
produces a report on the current settings of options used to make optimization pause.

NOTE: Options and parameters that stop optimization for reasons
other than infeasibility or optimality (SHOW PAUSE)
FEASIBLEPAUSE1=FALSE
ENDPAUSE1=FALSE
PAUSE1=999999
MAXIT1=1000
FEASIBLEPAUSE2=FALSE
PAUSE2=999999
MAXIT2=999999

SIMPLEX
produces the following:

NOTE: Options and parameters that control the primal simplex
network algorithm (excluding those that affect the
pricing strategies) (SHOW SIMPLEX)
LRATIO1=FALSE
BIGM1=NOTWOPHASE1=TRUE, TWOPHASE1=NOBIGM1=FALSE
CYCLEMULT1=0.15
PERTURB1=FALSE
MINBLOCK1=2
INTFIRST=TRUE
LRATIO2=FALSE
BIGM2=NOTWOPHASE2=TRUE, TWOPHASE2=NOBIGM2=FALSE
REFACTFREQ=50
U=0.1
MAXLUUPDATES=6
MAXL=40

PRICING
produces the following:

NOTE: Options and parameters that control the primal simplex
network algorithm pricing strategies (SHOW PRICING)
PRICETYPE1=Q
P1SCAN=FIRST
P1NPARTIAL=10
Q1FILLSCAN=FIRST
QSIZE1=24
REFRESHQ1=0.75
REDUCEQSIZE1=1
Q1FILLNPARTIAL=10
PRICETYPE2=Q
P2SCAN=FIRST
P2NPARTIAL=10
DUALFREQ=4
Q2FILLSCAN=FIRST
QSIZE2=24
REFRESHQ2=0.75
REDUCEQSIZE2=1
Q2FILLNPARTIAL=10

372 F Chapter 5: The NETFLOW Procedure

MISC
produces the following:

NOTE: Miscellaneous options and parameters (SHOW MISC)
VERBOSE=12
ZTOL1=TRUE
ZERO1=1E-6
FUTURE1=FALSE
ZTOL2=TRUE
ZERO2=1E-6
FUTURE2=FALSE

Following a slash (/), the qualifiers below can appear in any SHOW statement.

RELEVANT
indicates that you want information only on relevant options of the RESET statement. The following
will not be displayed if / RELEVANT is specified:

� information on noncurrent data sets

� the options that control the reasons why stage 1 optimization should be halted and the options
that control the simplex algorithm during stage 1 optimization, if the unconstrained optimum has
been reached or constrained optimization has been performed

� if P1SCAN=BEST or P1SCAN=FIRST, the P1NPARTIAL= option is irrelevant

� if PRICETYPE1=BLAND or PRICETYPE1=NOQ, the options QSIZE1=, Q1FILLSCAN=,
REFRESHQ1=, and REDUCEQSIZE1= are irrelevant

� if Q1FILLSCAN=BEST or Q1FILLSCAN=FIRST, the Q1FILLNPARTIAL= option is irrelevant

� the options that control the reasons stage 2 optimization should be halted, the options that control
the simplex algorithm during stage 2 optimization, if the constrained optimum has been reached

� if P2SCAN=BEST or P2SCAN=FIRST, the P2NPARTIAL= option is irrelevant

� if PRICETYPE2=BLAND or PRICETYPE2=NOQ, the options QSIZE2=, Q2FILLSCAN=,
REFRESHQ2=, and REDUCEQSIZE2= are irrelevant

� if Q2FILLSCAN=BEST or Q2FILLSCAN=FIRST, the Q2FILLNPARTIAL= option is irrelevant

STAGE
indicates that you want to examine only the options that affect the optimization that is performed if
a RUN statement is executed next. Before any optimization has been done, only stage 2 options are
displayed if the problem has side constraints and the SCRATCH option is used, or if the CONOPT
statement is specified. Otherwise, stage 1 options are displayed. If still optimizing neglecting
constraints, only stage 1 options will be displayed. If the unconstrained optimum has been reached and
optimization that considers constraints has not been performed, stage 1 options are displayed. If the
problem has constraints, stage 2 options are displayed. If any optimization that considers constraints
has been performed, only stage 2 options are displayed.

SUPDEM Statement F 373

SUPDEM Statement
SUPDEM variable ;

The SAS variable in this list, which must be present in the NODEDATA= data set, contains supply and
demand information for the nodes in the NODE list. A positive SUPDEM list variable value s .s > 0/

denotes that the node named in the NODE list variable can supply s units of flow. A negative SUPDEM list
variable value �d .d > 0/ means that this node demands d units of flow. If a SAS variable is not explicitly
specified, a SAS variable with the name _SUPDEM_ or _SD_ in the NODEDATA= data set is used as the
SUPDEM variable. If a node is a transshipment node (neither a supply nor a demand node), an observation
associated with this node need not be present in the NODEDATA= data set. If present, the SUPDEM list
variable value must be zero or a missing value.

SUPPLY Statement
SUPPLY variable ;

The SUPPLY statement identifies the SAS variable in the ARCDATA= data set that contains the supply at the
node named in that observation’s TAILNODE list variable. If a tail node does not supply flow, use zero or a
missing value for the observation’s SUPPLY list variable value. If a tail node has supply capability, a missing
value indicates that the supply quantity is given in another observation. It is not necessary to have a SUPPLY
statement if the name of this SAS variable is _SUPPLY_.

TAILNODE Statement
TAILNODE variable ;

TAIL variable ;

FROMNODE variable ;

FROM variable ;

The TAILNODE statement specifies the SAS variable that must be present in the ARCDATA= data set that
has as values the names of tail nodes of arcs. The TAILNODE variable must have character values. It is not
necessary to have a TAILNODE statement if the name of the SAS variable is _TAIL_ or _FROM_. If the
TAILNODE list variable value is missing, it is assumed that the observation of ARCDATA= data set contains
information concerning a nonarc variable.

TYPE Statement
TYPE variable ;

CONTYPE variable ;

The TYPE list, which is optional, names the variable that has as values keywords that indicate either the
constraint type for each constraint or the type of special rows in the CONDATA= data set. The values of

374 F Chapter 5: The NETFLOW Procedure

the TYPE list variable also indicate, in each observation of the CONDATA= data set, how values of the
VAR or COEF list variables are to be interpreted and how the type of each constraint or special row name
is determined. If the TYPE list is not specified, the CONDATA= data set is searched and a SAS variable
with the name _TYPE_ is used. Valid keywords for the TYPE variable are given below. If there is no TYPE
statement and no other method is used to furnish type information (see the DEFCONTYPE= option), all
constraints are assumed to be of the type “less than or equal to” and no special rows are used. The TYPE list
variable must have character values and can be used when the data in the CONDATA= data set is in either the
sparse or the dense format. If the TYPE list variable value has a * as its first character, the observation is
ignored because it is a comment observation.

TYPE List Variable Values

The following are valid TYPE list variable values. The letters in boldface denote the characters that PROC
NETFLOW uses to determine what type the value suggests. You need to have at least these characters. In the
following list, the minimal TYPE list variable values have additional characters to aid you in remembering
these values.

< less than or equal to (�)
= equal to (=)
> greater than or equal to (�)
CAPAC capacity
COST cost
EQ equal to
FREE free row (used only for linear programs solved by interior point)
GAIN gain in arc flow (generalized networks)
GE greater than or equal to
LE less than or equal to
LOSS loss in arc flow (generalized networks)
LOWERBD lower flow or value bound
LOWblank lower flow or value bound
MAXIMIZE maximize (opposite of cost)
MINIMIZE minimize (same as cost)
MULT value of arc multiplier (generalized networks)
OBJECTIVE objective function (same as cost)
RHS rhs of constraint
TYPE type of constraint
UPPCOST reserved for future use
UNREST unrestricted variable (used only for linear programs solved by inte-

rior point)
UPPER upper value bound or capacity; second letter must not be N

VAR Statement F 375

The valid TYPE list variable values in function order are

� LE less than or equal to (�)

� EQ equal to (=)

� GE greater than or equal to (�)

� COST
MINIMIZE
MAXIMIZE
OBJECTIVE
cost or objective function coefficient

� CAPAC
UPPER
capacity or upper value bound

� LOWERBD
LOWblank
lower flow or value bound

� RHS rhs of constraint

� TYPE type of constraint

� MULT
GAIN
LOSS
value of arc multiplier in a generalized network

A TYPE list variable value that has the first character � causes the observation to be treated as a comment. If
the first character is a negative sign, then � is the type. If the first character is a zero, then = is the type. If the
first character is a positive number, then � is the type.

VAR Statement
VAR variables ;

The VAR variable list is used when the dense data format is used. The names of these SAS variables are
also names of the arc and nonarc variables that have data in the CONDATA= data set. If no explicit VAR
list is specified, all numeric variables not on other lists are put onto the VAR list. The VAR list variables
must have numeric values. The values of the VAR list variables in some observations can be interpreted
differently than in other observations. The values can be coefficients in the side constraints, costs and
objective function coefficients, or bound data. How these numeric values are interpreted depends on the value
of each observation’s TYPE or ROW list variable value. If there are no TYPE list variables, the VAR list
variable values are all assumed to be side constraint coefficients.

376 F Chapter 5: The NETFLOW Procedure

Details: NETFLOW Procedure

Input Data Sets
PROC NETFLOW is designed so that there are as few rules as possible that you must obey when inputting a
problem’s data. Raw data are acceptable. This should cut the amount of processing required to groom the
data before it is input to PROC NETFLOW. Data formats are so flexible that, due to space restrictions, all
possible forms for a problem’s data are not shown here. Try any reasonable form for your problem’s data; it
should be acceptable. PROC NETFLOW will outline its objections.

There are several ways to supply the same piece of data. You do not have to restrict yourself to using any
particular one. If you use several ways, PROC NETFLOW checks that the data are consistent each time
the data are encountered. After all input data sets have been read, data are merged so that the problem is
described completely. The order of the observations is not important in any of the input data sets.

ARCDATA= Data Set

See the section “Getting Started: NETFLOW Procedure” on page 310 and the section “Introductory Example”
on page 311 for a description of this input data set.

NOTE: Information for an arc or nonarc variable can be specified in more than one observation. For example,
consider an arc directed from node A toward node B that has a cost of 50, capacity of 100, and lower flow
bound of 10 flow units. Some possible observations in the ARCDATA= data set may be

TAIL _HEAD_ _COST_ _CAPAC_ _LO_
A B 50 . .
A B . 100 .
A B . . 10
A B 50 100 .
A B . 100 10
A B 50 . 10
A B 50 100 10

Similarly, for a nonarc variable with upperbd=100, lowerbd=10, and objective function coefficient=50, the
TAIL and _HEAD_ values are missing.

CONDATA= Data Set

Regardless of whether the data in the CONDATA= data set is in the sparse or dense format, you will receive
a warning if PROC NETFLOW finds a constraint row that has no coefficients. You will also be warned if any
nonarc variable has no constraint coefficients.

Dense Input Format

If the dense format is used, most SAS variables in the CONDATA= data set belong to the VAR list and
have names of arc and nonarc variables. These names can be values of the NAME list SAS variables in the
ARCDATA= data set, or names of nonarc variables, or names in the form tail_head, or any combination of
these three forms. Names in the form tail_head are default arc names, and if you use them, you must specify

Input Data Sets F 377

node names in the ARCDATA= data set (values of the TAILNODE and HEADNODE list SAS variables)
using no lowercase letters.

There can be three other variables in the CONDATA= data set, belonging, respectively, to the ROW, TYPE,
and RHS lists. the section “Introductory Example” on page 311 uses the dense data format.

Consider the SAS code that creates a dense format CONDATA= data set that has data for three constraints.
This data set was used in the section “Introductory Example” on page 311.

data cond1;
input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas

type $ _rhs_;
datalines;

-2 . 1 . . . >= -15
. -2 . . 1 . GE -15
. . -3 4 . . EQ 0
. . . . -3 4 = 0

;

You can use nonconstraint type values to furnish data on costs, capacities, lower flow bounds (and, if there
are nonarc variables, objective function coefficients and upper and lower bounds). You need not have such (or
as much) data in the ARCDATA= data set. The first three observations in the following data set are examples
of observations that provide cost, capacity and lower bound data.

data cond1b;
input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas

type $ _rhs_;
datalines;

63 81 200 . 220 . cost .
95 80 175 140 100 100 capac .
20 10 50 . 35 . lo .
-2 . 1 . . . >= -15
. -2 . . 1 . GE -15
. . -3 4 . . EQ 0
. . . . -3 4 = 0

;

If a ROW list variable is used, the data for a constraint can be spread over more than one observation. To
illustrate, the data for the first constraint, (which is called con1), and the cost and capacity data (in special
rows called costrow and caprow, respectively) are spread over more than one observation in the following
data set.

data cond1c;
input _row_ $

m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas
type $ _rhs_;

datalines;
costrow 63
costrow . 81 200 . . . cost .
. 220 . cost .
caprow capac .
caprow 95 . 175 . 100 100 . .
caprow . 80 175 140
lorow 20 10 50 . 35 . lo .

378 F Chapter 5: The NETFLOW Procedure

con1 -2 . 1
con1 >= -15
con2 . -2 . . 1 . GE -15
con3 . . -3 4 . . EQ 0
con4 -3 4 = 0
;

Using both ROW and TYPE lists, you can use special row names. Examples of these are “costrow” and
“caprow” in the last data set. It should be restated that in any of the input data sets of PROC NETFLOW, the
order of the observations does not matter. However, the CONDATA= data set can be read more quickly if
PROC NETFLOW knows what type of constraint or special row a ROW list variable value is. For example,
when the first observation is read, PROC NETFLOW does not know whether costrow is a constraint or
special row and how to interpret the value 63 for the arc with the name m_e_ref1. When PROC NETFLOW
reads the second observation, it learns that costrow has type cost and that the values 81 and 200 are costs.
When the entire CONDATA= data set has been read, PROC NETFLOW knows the type of all special rows
and constraints. Data that PROC NETFLOW had to set aside (such as the first observation 63 value and
the costrow ROW list variable value, which at the time had unknown type, but is then known to be a cost
special row) is reprocessed. During this second pass, if a ROW list variable value has unassigned constraint
or special row type, it is treated as a constraint with DEFCONTYPE= (or DEFCONTYPE= default) type.
Associated VAR list variable values as coefficients of that constraint.

Sparse Input Format

The side constraints usually become sparse as the problem size increases. When the sparse data format of the
CONDATA= data set is used, only nonzero constraint coefficients must be specified. Remember to specify
the SPARSECONDATA option in the PROC NETFLOW statement. With the sparse method of specifying
constraint information, the names of arc and nonarc variables do not have to be valid SAS variable names.

A sparse format CONDATA= data set for the oil industry example in the section “Introductory Example” on
page 311 is displayed in the following code.

title 'Setting Up Condata = Cond2 for PROC NETFLOW';
data cond2;

input _column_ $ _row1 $ _coef1 _row2 $ _coef2 ;
datalines;

m_e_ref1 con1 -2 . .
m_e_ref2 con2 -2 . .
thruput1 con1 1 con3 -3
r1_gas . . con3 4
thruput2 con2 1 con4 -3
r2_gas . . con4 4
type con1 1 con2 1
type con3 0 con4 0
rhs con1 -15 con2 -15
;

Recall that the COLUMN list variable values “_type_” and “_rhs_” are the default values of the TYPEOBS=
and RHSOBS= options. Also, the default rhs value of constraints (con3 and con4) is zero. The third to last
observation has the value “_type_” for the COLUMN list variable. The _ROW1 variable value is con1, and
the _COEF1_ variable has the value 1. This indicates that the constraint con1 is greater than or equal to type
(because the value 1 is greater than zero). Similarly, the data in the second to last observation’s _ROW2 and
_COEF2 variables indicate that con2 is an equality constraint (0 equals zero).

An alternative, using a TYPE list variable is as follows:

Input Data Sets F 379

title 'Setting Up Condata = Cond3 for PROC NETFLOW';
data cond3;

input _column_ $ _row1 $ _coef1 _row2 $ _coef2 _type_ $;
datalines;

m_e_ref1 con1 -2 . . >=
m_e_ref2 con2 -2 . . .
thruput1 con1 1 con3 -3 .
r1_gas . . con3 4 .
thruput2 con2 1 con4 -3 .
r2_gas . . con4 4 .
. con3 . con4 . eq
. con1 -15 con2 -15 ge
;

If the COLUMN list variable is missing in a particular observation (the last two observations in the data set
cond3, for instance), the constraints named in the ROW list variables all have the constraint type indicated by
the value in the TYPE list variable. It is for this type of observation that you are allowed more ROW list
variables than COEF list variables. If corresponding COEF list variables are not missing (for example, the
last observation in the data set cond3), these values are the rhs values of those constraints. Therefore, you
can specify both constraint type and rhs in the same observation.

As in the previous CONDATA= data set, if the COLUMN list variable is an arc or nonarc variable, the
COEF list variable values are coefficient values for that arc or nonarc variable in the constraints indicated
in the corresponding ROW list variables. If in this same observation, the TYPE list variable contains a
constraint type, all constraints named in the ROW list variables in that observation have this constraint type
(for example, the first observation in the data set cond3). Therefore, you can specify both constraint type and
coefficient information in the same observation.

Also note that DEFCONTYPE=EQ could have been specified, saving you from having to include in the data
that CON3 and CON4 are of this type.

In the oil industry example, arc costs, capacities, and lower flow bounds are presented in the ARCDATA=
data set. Alternatively, you could have used the following input data sets.

title3 'Setting Up Arcdata = Arcd2 for PROC NETFLOW';
data arcd2;

input _from_&$11. _to_&$15. ;
datalines;

middle east refinery 1
middle east refinery 2
u.s.a. refinery 1
u.s.a. refinery 2
refinery 1 r1
refinery 2 r2
r1 ref1 gas
r1 ref1 diesel
r2 ref2 gas
r2 ref2 diesel
ref1 gas servstn1 gas
ref1 gas servstn2 gas
ref1 diesel servstn1 diesel
ref1 diesel servstn2 diesel
ref2 gas servstn1 gas

380 F Chapter 5: The NETFLOW Procedure

ref2 gas servstn2 gas
ref2 diesel servstn1 diesel
ref2 diesel servstn2 diesel
;
title 'Setting Up Condata = Cond4 for PROC NETFLOW';
data cond4;

input _column_&$27. _row1 $ _coef1 _row2 $ _coef2 _type_ $;
datalines;

. con1 -15 con2 -15 ge

. costrow . . . cost

. . . caprow . capac
middle east_refinery 1 con1 -2 . . .
middle east_refinery 2 con2 -2 . . .
refinery 1_r1 con1 1 con3 -3 .
r1_ref1 gas . . con3 4 =
refinery 2_r2 con2 1 con4 -3 .
r2_ref2 gas . . con4 4 eq
middle east_refinery 1 costrow 63 caprow 95 .
middle east_refinery 2 costrow 81 caprow 80 .
u.s.a._refinery 1 costrow 55 . . .
u.s.a._refinery 2 costrow 49 . . .
refinery 1_r1 costrow 200 caprow 175 .
refinery 2_r2 costrow 220 caprow 100 .
r1_ref1 gas . . caprow 140 .
r1_ref1 diesel . . caprow 75 .
r2_ref2 gas . . caprow 100 .
r2_ref2 diesel . . caprow 75 .
ref1 gas_servstn1 gas costrow 15 caprow 70 .
ref1 gas_servstn2 gas costrow 22 caprow 60 .
ref1 diesel_servstn1 diesel costrow 18 . . .
ref1 diesel_servstn2 diesel costrow 17 . . .
ref2 gas_servstn1 gas costrow 17 caprow 35 .
ref2 gas_servstn2 gas costrow 31 . . .
ref2 diesel_servstn1 diesel costrow 36 . . .
ref2 diesel_servstn2 diesel costrow 23 . . .
middle east_refinery 1 . 20 . . lo
middle east_refinery 2 . 10 . . lo
refinery 1_r1 . 50 . . lo
refinery 2_r2 . 35 . . lo
ref2 gas_servstn1 gas . 5 . . lo
;

The first observation in the cond4 data set defines con1 and con2 as greater than or equal to (�) constraints
that both (by coincidence) have rhs values of -15. The second observation defines the special row costrow as
a cost row. When costrow is a ROW list variable value, the associated COEF list variable value is interpreted
as a cost or objective function coefficient. PROC NETFLOW has to do less work if constraint names and
special rows are defined in observations near the top of a data set, but this is not a strict requirement. The
fourth to ninth observations contain constraint coefficient data. Observations 7 and 9 have TYPE list variable
values that indicate that constraints con3 and con4 are equality constraints. The last five observations contain
lower flow bound data. Observations that have an arc or nonarc variable name in the COLUMN list variable,
a nonconstraint type TYPE list variable value, and a value in (one of) the COEF list variables are valid.

The following data set is equivalent to the cond4 data set.

Input Data Sets F 381

title 'Setting Up Condata = Cond5 for PROC NETFLOW';
data cond5;

input _column_&$27. _row1 $ _coef1 _row2 $ _coef2 _type_ $;
datalines;

middle east_refinery 1 con1 -2 costrow 63 .
middle east_refinery 2 con2 -2 lorow 10 .
refinery 1_r1 . . con3 -3 =
r1_ref1 gas caprow 140 con3 4 .
refinery 2_r2 con2 1 con4 -3 .
r2_ref2 gas . . con4 4 eq
. CON1 -15 CON2 -15 GE
ref2 diesel_servstn1 diesel . 36 costrow . cost
. . . caprow . capac
. lorow . . . lo
middle east_refinery 1 caprow 95 lorow 20 .
middle east_refinery 2 caprow 80 costrow 81 .
u.s.a._refinery 1 . . . 55 cost
u.s.a._refinery 2 costrow 49 . . .
refinery 1_r1 con1 1 caprow 175 .
refinery 1_r1 lorow 50 costrow 200 .
refinery 2_r2 costrow 220 caprow 100 .
refinery 2_r2 . 35 . . lo
r1_ref1 diesel caprow2 75 . . capac
r2_ref2 gas . . caprow 100 .
r2_ref2 diesel caprow2 75 . . .
ref1 gas_servstn1 gas costrow 15 caprow 70 .
ref1 gas_servstn2 gas caprow2 60 costrow 22 .
ref1 diesel_servstn1 diesel . . costrow 18 .
ref1 diesel_servstn2 diesel costrow 17 . . .
ref2 gas_servstn1 gas costrow 17 lorow 5 .
ref2 gas_servstn1 gas . . caprow2 35 .
ref2 gas_servstn2 gas . 31 . . cost
ref2 diesel_servstn2 diesel . . costrow 23 .
;

If you have data for a linear programming program that has an embedded network, the steps required to
change that data into a form that is acceptable by PROC NETFLOW are

1. Identify the nodal flow conservation constraints. The coefficient matrix of these constraints (a submatrix
of the LP’s constraint coefficient matrix) has only two nonzero elements in each column, -1 and 1.

2. Assign a node to each nodal flow conservation constraint.

3. The rhs values of conservation constraints are the corresponding node’s supplies and demands. Use
this information to create a NODEDATA= data set.

4. Assign an arc to each column of the flow conservation constraint coefficient matrix. The arc is directed
from the node associated with the row that has the 1 element in it and directed toward to the node
associated with the row that has the �1 element in it. Set up an ARCDATA= data set that has two SAS
variables. This data set could resemble ARCDATA=arcd2. These will eventually be the TAILNODE
and HEADNODE list variables when PROC NETFLOW is used. Each observation consists of the tail
and head node of each arc.

382 F Chapter 5: The NETFLOW Procedure

5. Remove from the data of the linear program all data concerning the nodal flow conservation constraints.

6. Put the remaining data into a CONDATA= data set. This data set will probably resemble CON-
DATA=cond4 or CONDATA=cond5.

The Sparse Format Summary

The following list illustrates possible CONDATA= data set observation sparse formats. a1, b1, b2, b3 and c1
have as a _COLUMN_ variable value either the name of an arc (possibly in the form tail_head) or the name
of a nonarc variable.

� If there is no TYPE list variable in the CONDATA= data set, the problem must be constrained and
there is no nonconstraint data in the CONDATA= data set.

COLUMN _ROWx_ _COEFx_ _ROWy_
(no _COEFy_)
(may not be
in CONDATA)

a1 variable constraint lhs coef +------------+
a2 _TYPE_ or constraint -1 0 1 | |

TYPEOBS= | |
a3 _RHS_ or constraint rhs value | constraint |

RHSOBS= or | or |
missing | missing |

a4 _TYPE_ or constraint missing | |
TYPEOBS= | |

a5 _RHS_ or constraint missing | |
RHSOBS= or +------------+
missing

Observations of the form a4 and a5 serve no useful purpose but are still allowed to make problem
generation easier.

� If there are no ROW list variables in the data set, the problem has no constraints and the information is
nonconstraint data. There must be a TYPE list variable and only one COEF list variable in this case.
The COLUMN list variable has as values the names of arcs or nonarc variables and must not have
missing values or special row names as values.

COLUMN _TYPE_ _COEFx_

b1 variable UPPERBD capacity
b2 variable LOWERBD lower flow
b3 variable COST cost

� Using a TYPE list variable for constraint data implies the following:

COLUMN _TYPE_ _ROWx_ _COEFx_ _ROWy_
(no _COEFy_)
(may not be
in CONDATA)

c1 variable missing +-----+ lhs coef +------------+

Input Data Sets F 383

c2 _TYPE_ or missing | c | -1 0 1 | |
TYPEOBS= | o | | |

c3 _RHS_ or missing | n | rhs value | constraint |
missing | s | | or |
or RHSOBS= | t | | missing |

c4 variable con type | r | lhs coef | |
c5 _RHS_ or con type | a | rhs value | |

missing | i | | |
or RHSOBS= | n | | |

c6 missing TYPE | t | -1 0 1 | |
c7 missing RHS +-----+ rhs value +------------+

If the observation is of the form c4 or c5, and the _COEFx_ values are missing, the constraint is
assigned the type data specified in the _TYPE_ variable.

� Using a TYPE list variable for arc and nonarc variable data implies the following:

COLUMN _TYPE_ _ROWx_ _COEFx_ _ROWy_
(no _COEFy_)
(may not be
in CONDATA)

+---------+ +---------+ +---------+
d1 variable | UPPERBD | | missing | capacity | missing |
d2 variable | LOWERBD | | or | lowerflow | or |
d3 variable | COST | | special | cost | special |

		row		row
		name		name
	+---------+			

d4 missing | | | special | | |
| | | row | | |
+---------+ | name | +---------+

d5 variable missing | | value that missing
| |is interpreted
| |according to
+---------+ _ROWx_

Observations with form d1 to d5 can have ROW list variable values. Observation d4 must have
ROW list variable values. The ROW value is put into the ROW name tree so that when dealing with
observation d4 or d5, the COEF list variable value is interpreted according to the type of ROW list
variable value. For example, the following three observations define the _ROWx_ variable values
up_row, lo_row and co_row as being an upper value bound row, lower value bound row, and cost row,
respectively.

COLUMN _TYPE_ _ROWx_ _COEFx_

. UPPERBD up_row .
variable_a LOWERBD lo_row lower flow
variable_b COST co_row cost

PROC NETFLOW is now able to correctly interpret the following observation:

384 F Chapter 5: The NETFLOW Procedure

COLUMN _TYPE_ _ROW1_ _COEF1_ _ROW2_ _COEF2_ _ROW3_ _COEF3_

var_c . up_row upval lo_row loval co_row cost

If the TYPE list variable value is a constraint type and the value of the COLUMN list variable equals
the value of the TYPEOBS= option or the default value _TYPE_, the TYPE list variable value is
ignored.

NODEDATA= Data Set

See the section “Getting Started: NETFLOW Procedure” on page 310 and the section “Introductory Example”
on page 311 for a description of this input data set.

Output Data Sets
The procedure determines the flow that should pass through each arc as well as the value assigned to each
nonarc variable. The goal is that the minimum flow bounds, capacities, lower and upper value bounds, and
side constraints are not violated. This goal is reached when total cost incurred by such a flow pattern and
value assignment is feasible and optimal. The solution found must also conserve flow at each node.

The ARCOUT= data set contains a solution obtained when performing optimization that does not consider
any constraints. The NODEOUT= data set contains nodal dual variable information for this type of solution.
You can choose to have PROC NETFLOW create the ARCOUT= data set and the NODEOUT= data set and
save the optimum of the network or the nodal dual variable values before any optimization that considers the
side constraints is performed.

If there are side constraints, the CONOUT= data set can be produced and contains a solution obtained
after performing optimization that considers constraints. The DUALOUT= data set contains dual variable
information for nodes and side constraints from the solution obtained after optimization that considers the
constraints. The CONOUT= data set and DUALOUT= data set can be used to save the constrained optimal
solution.

ARCOUT= and CONOUT= Data Sets

The ARCOUT= and CONOUT= data sets contain the same variables. Furthermore, the variables in the
output data sets depend on whether or not the problem has a network component.

If the problem has a network component, the variables and their possible values in an observation are as
follows:

FROM a tail node of an arc. This is a missing value if an observation has
information about a nonarc variable.

TO a head node of an arc. This is a missing value if an observation
has information about a nonarc variable.

COST the cost of an arc or the objective function coefficient of a nonarc
variable

CAPAC the capacity of an arc or upper value bound of a nonarc variable
LO the lower flow bound of an arc or lower value bound of a nonarc

variable

Output Data Sets F 385

NAME a name of an arc or nonarc variable
SUPPLY the supply of the tail node of the arc in the observation. This is a

missing value if an observation has information about a nonarc
variable.

DEMAND the demand of the head node of the arc in the observation. This is
a missing value if an observation has information about a nonarc
variable.

FLOW the flow through the arc or value of the nonarc variable
FCOST flow cost, the product of _COST_ and _FLOW_
RCOST the reduced cost of the arc or nonarc variable
ANUMB the number of the arc (positive) or nonarc variable (nonpositive);

used for warm starting PROC NETFLOW
TNUMB the number of the tail node in the network basis spanning tree;

used for warm starting PROC NETFLOW
STATUS the status of the arc or nonarc variable

If the problem does not have a network component, the variables and their possible values in an observation
are as follows:

OBJFN the objective function coefficient of a variable
_UPPERBD the upper value bound of a variable
_LOWERBD the lower value bound of a variable
NAME the name of a variable
VALUE the value of the variable
FCOST objective function value for that variable; the product of _OBJFN_

and _VALUE_

The variables present in the ARCDATA= data set are present in an ARCOUT= data set or a CONOUT=
data set. For example, if there is a variable called tail in the ARCDATA= data set and you specified the SAS
variable list

from tail;

then tail is a variable in the ARCOUT= and CONOUT= data sets instead of _FROM_. Any ID list variables
also appear in the ARCOUT= and CONOUT= data sets.

NODEOUT= and DUALOUT= Data Sets

There are two types of observations in the NODEOUT= and DUALOUT= data sets. One type of observation
contains information about a node. These are called type N observations. There is one such observation of
this type for each node. The _NODE_ variable has a name of a node, and the _CON_ variable values in these
observations are missing values.

The other type of observation contains information about constraints. These are called the type C observations.
There is one such observation for each constraint. The _CON_ variable has a name of a constraint, and the
NODE variable values in these observations are missing values.

386 F Chapter 5: The NETFLOW Procedure

Many of the variables in the NODEOUT= and DUALOUT= data sets contain information used to warm
start PROC NETFLOW. The variables _NODE_, _SD_, _DUAL_, _VALUE_, _RHS_, _TYPE_, and _CON_
contain information that might be of interest to you.

The NODEOUT= and DUALOUT= data sets look similar, as the same variables are in both. These variables
and their values in an observation of each type are

NODE Type N: the node name
Type C: a missing value

SD Type N: the supply (positive) or demand (negative) of the node
Type C: a missing value

DUAL Type N: the dual variable value of the node in _NODE_
Type C: the dual variable value of the constraint named in _CON_

NNUMB Type N: the number of the node named in _NODE_
Type C: the number of the constraint named in _CON_

PRED Type N: the predecessor in the network basis spanning tree of the
node named in _NODE_
Type C: the number of the node toward which the arc with number
in _ARCID_ is directed, or the constraint number associated with
the slack, surplus, or artificial variable basic in this row

TRAV Type N: the traversal thread label of the node named in _NODE_
Type C: a missing value

SCESS Type N: the number of successors (including itself) in the network
basis spanning tree of the node named in _NODE_
Type C: a missing value

ARCID Type N: if _ARCID_ is nonnegative, _ARCID_ is the number of
the network basis spanning tree arc directed from the node with
number _PRED_ to the node named in _NODE_. If _ARCID_
is negative, minus _ARCID_ is the number of the network basis
spanning tree arc directed from the node named in _NODE_ to
the node with number _PRED_.
Type C: if _ARCID_ is positive, _ARCID_ is the number of the
arc basic in a constraint row. If nonpositive, minus _ARCID_ is
the number of the nonarc variable basic in a constraint row.

FLOW Type N: the flow minus the lower flow bound of the arc _ARCID_
Type C: the flow minus lower flow bound of the arc _ARCID_ or
value lower bound of the nonarc variable value minus _ARCID_

FBQ Type N: If _FBQ_ is positive, then _FBQ_ is the subscript in arc
length arrays of the first arc directed toward the node named in
NODE. PROC NETFLOW’s arc length arrays are sorted so that
data of arcs directed toward the same head node are together. If
FBQ is negative, no arcs are directed toward the node named in
NODE. Arcs directed toward node i have subscripts in the arc
length arrays between observations FBQ(i) and (FBQ(i C 1))�1,
inclusive.
Type C: a missing value

VALUE Type N: a missing value
Type C: the lhs value (the sum of the products of coefficient and
flows or values) of the constraint named in _CON_

Converting Any PROC NETFLOW Format to an MPS-Format SAS Data Set F 387

RHS Type N: a missing value
Type C: the rhs value of the constraint named in _CON_

TYPE Type N: a missing value
Type C: the type of the constraint named in _CON_

CON Type N: a missing value
Type C: the name of the constraint

If specified in variable lists, the variables in the input data sets are used instead of some of the previous
variables. These variables are specified in the NODE, SUPDEM, RHS, TYPE, and ROW (if there is only
one variable in the ROW list) lists and are used instead of _NODE_, _SD_, _RHS_, _TYPE_, and _CON_,
respectively.

MPSOUT= Data Set

The MPSOUT= data set contains problem data converted from a PROC NETFLOW format into an MPS-
format SAS data set. The six fields, FIELD1 to FIELD6, in the MPSOUT= data set correspond to the six
columns in MPS standard. For more information about the MPS-format SAS data set, see Chapter 17, “The
MPS-Format SAS Data Set” (SAS/OR User’s Guide: Mathematical Programming).

Converting Any PROC NETFLOW Format to an MPS-Format SAS Data Set
The MPSOUT= option enables you to convert an input data set for the NETFLOW procedure into an
MPS-format SAS data set. The converted data set is readable by the OPTLP procedure.

The conversion can handle linear programs and network flow formulations. If you specify a network flow
formulation, it will be converted into an equivalent linear program. When multiple objective row names are
present, rows with the name encountered first are combined into the objective row. The remaining rows are
marked as free rows.

For information about how the contents of the MPS-format SAS data set are interpreted, see Chapter 17,
“The MPS-Format SAS Data Set” (SAS/OR User’s Guide: Mathematical Programming).

For an example demonstrating the use of the MPSOUT= option, see Example 5.15. For examples that
demonstrate how to migrate to the OPTMODEL procedure, see the section “Examples: NETFLOW Procedure”
on page 461.

Case Sensitivity
Whenever the NETFLOW procedure has to compare character strings, whether they are node names, arc
names, nonarc names, or constraint names, if the two strings have different lengths, or on a character by
character basis the character is different or has different cases, PROC NETFLOW judges the character strings
to be different.

Not only is this rule enforced when one or both character strings are obtained as values of SAS variables in
PROC NETFLOW’s input data sets, it also should be obeyed if one or both character strings were originally
SAS variable names, or were obtained as the values of options or statements parsed to PROC NETFLOW.

388 F Chapter 5: The NETFLOW Procedure

For example, if the network has only one node that has supply capability, or if you are solving a MAXFLOW
or SHORTPATH problem, you can indicate that node using the SOURCE= option.

If you specify

proc netflow source=NotableNode

then PROC NETFLOW looks for a value of the TAILNODE list variable that is NotableNode.

Version 6 of the SAS System converts text that makes up statements into uppercase. The name of the node
searched for would be NOTABLENODE, even if this was your SAS code:

proc netflow source=NotableNode

If you want PROC NETFLOW to behave as it did in Version 6, specify

options validvarname=v6;

If the SPARSECONDATA option is not specified, and you are running SAS software Version 6 or have
specified options validvarname=v6; using a later version, all NAME list variable values in the ARCDATA=
data set are uppercased. This is because the SAS System has uppercased all SAS variable names, particularly
those in the VAR list of the CONDATA= data set.

Entities that contain blanks must be enclosed in single or double quotes.

See the section “Cautions” on page 345 for additional discussion of case sensitivity.

Loop Arcs
When using the primal simplex network algorithm, loop arcs (arcs directed toward nodes from which they
originate) are prohibited. Rather, introduce a dummy intermediate node in loop arcs. For example, replace
arc (A,A) with (A,B) and (B,A). B is the name of a new node, and it must be distinct for each loop arc.

Multiple Arcs
Multiple arcs with the same tail and head nodes are prohibited. PROC NETFLOW checks to ensure there are
no such arcs before proceeding with the optimization. Introduce a new dummy intermediate node in multiple
arcs. This node must be distinct for each multiple arc. For example, if some network has three arcs directed
from node A toward node B, then replace one of these three with arcs (A,C) and (C,B) and replace another
one with (A,D) and (D,B). C and D are new nodes added to the network.

Pricing Strategies
The pricing strategy is the part of the simplex iteration that selects the nonbasic arc, constraint slack, surplus,
or nonarc variable that should have a flow or value change, and perhaps enter the basis so that the total cost
incurred is improved.

Pricing Strategies F 389

The pricing mechanism takes a large amount of computational effort, so it is important to use the appropriate
pricing strategy for the problem under study. As in other large scale mathematical programming software,
network codes can spend more than half of their execution time performing simplex iterations in the pricing
step. Some compromise must be made between using a fast strategy and improving the quality of the flow or
value change candidate selection, although more simplex iterations may need to be executed.

The configuration of the problem to be optimized has a great effect on the choice of strategy. If a problem is to
be run repeatedly, experimentation on that problem to determine which scheme is best may prove worthwhile.
The best pricing strategy to use when there is a large amount of work to do (for example, when a cold start is
used) may not be appropriate when there is little work required to reach the optimum (such as when a warm
start is used). If paging is necessary, then a pricing strategy that reduces the number of simplex iterations
performed might have the advantage. The proportion of time spent doing the pricing step during stage 1
optimization is usually less than the same proportion when doing stage 2 optimization. Therefore, it is more
important to choose a stage 2 pricing strategy that causes fewer, but not necessarily the fewest, iterations to
be executed.

There are many similarities between the pricing strategies for optimizing an unconstrained problem (or when
constraints are temporarily ignored) and the pricing mechanisms for optimizing considering constraints. To
prevent repetition, options have a suffix or embedded x. Replace x with 1 for optimization without constraint
consideration and 2 for optimization with constraint consideration.

There are three main types of pricing strategies:

� PRICETYPEx=NOQ

� PRICETYPEx=BLAND

� PRICETYPEx=Q

The pricing strategy that usually performs better than the others is PRICETYPEx=Q. For this reason,
PRICETYPEx=Q is the default.

PRICETYPEx=NOQ

PRICETYPEx=NOQ is the least complex pricing strategy, but it is nevertheless quite efficient. In contrast to
the specification of PRICETYPEx=Q, a candidate queue is not set up.

The PxSCAN= option controls the amount of additional candidate selection work done to find a better
candidate after an eligible candidate has been found.

If PxSCAN=FIRST is specified, the search for candidates finishes when the first eligible candidate is found,
with this exception: if a node has more than one eligible arc directed toward it, the best such arc is chosen.

If PxSCAN=BEST is specified, everything that is nonbasic is examined, and the best candidate of all is
chosen.

If PxSCAN=PARTIAL is specified, once an eligible candidate is found, the scan continues for another
PxNPARTIAL= cycles in the hope that during the additional scan, a better candidate is found. Examining all
nonbasic arcs directed toward a single node is counted as only one cycle.

If PxSCAN=FIRST or PxSCAN=PARTIAL is specified, the scan for entering candidates starts where the last
iteration’s search left off. For example, if the last iteration’s scan terminated after examining arcs that are
directed toward the node with internal number i, the next iteration’s scan starts by examining arcs directed

390 F Chapter 5: The NETFLOW Procedure

toward the node with internal number i C 1. If i is the largest node number, next iterations scan begins by
scanning arcs directed toward node 1 (during stage 1) or scanning constraint slack or surplus variables, if any,
or nonarc variables, if any, (during stage 2). During stage 2, if the scan terminated after examining the slack
or surplus of constraint i, next iterations scan starts by examining the slack or surplus of the constraint with
the internal number greater than i that has such a logical variable. If the scan terminated after examining the
nonarc variable i, the next iterations scan starts by examining the nonarc variable with internal number i C 1,
(or arcs directed to the node with the smallest internal number if the nonarc variable with the greatest number
has been examined). This is termed a wraparound search.

PRICETYPEx=Q

If PRICETYPEx=Q, a queue is set up. Candidates currently on the queue are tested at each iteration and
either enter the basis or are removed from the queue. The size of the queue can be specified by using the
QSIZEx= option. The default value for QSIZE1= is

QSIZE1=number of arcs/200
if (QSIZE1<24) QSIZE1=24
else if (QSIZE1>100) QSIZE1=100

The default value for QSIZE2= is

QSIZE2=(number of arcs+number of nonarc variables)/200
if (QSIZE2<24) QSIZE2=24
else if (QSIZE2>100) QSIZE2=100

controls the amount of additional candidate selection work done to find a better candidate after an eligible
candidate has been found in the queue.

If you specify PxSCAN=BEST, the best eligible candidate found is removed from the queue. It can sustain a
flow or value change and possibly enter the basis.

If you specify PxSCAN=FIRST, the first eligible candidate found is removed from the queue, and possibly
sustains a flow or value change and enters the basis.

If you specify PxSCAN=PARTIAL, PxNPARTIAL= can then be also specified. After an eligible candidate
has been found, PxNPARTIAL= more queue members are examined and the best of the eligible candidates
found is chosen.

When PxSCAN=FIRST or PxSCAN=PARTIAL, the scan of the queue is wraparound. When the member last
added to the queue has been examined, the scan continues from the member that was first added to the queue.

When the queue is empty, or after QSIZEx= times REFRESHQx= iterations have been executed since
the queue was last refreshed, new candidates are found and put onto the queue. Valid values for the
REFRESHQx= options are greater than 0.0 and less than or equal to 1.0. The default for REFRESHQx is 0.75.
If the scan cannot find enough candidates to fill the queue, the procedure reduces the value of QSIZEx=. If
qfound is the number of candidates found, the new QSIZEx= value is qfound C ..old QSIZEx � qfound/�
REDUCEQSIZEx /. Valid values of the REDUCEQSIZEx= option are between 0.0 and 1.0, inclusive. The
default for REDUCEQSIZEx= is 1.0.

The QxFILLSCAN= option controls the amount of additional candidate selection work performed to find
better candidates to put into the queue after the queue has been filled.

Pricing Strategies F 391

If you specify QxFILLSCAN=FIRST, the nonbasic arcs, and during stage 2 optimization, nonbasic constraint
slack and surplus variables, and nonbasic nonarc variables are scanned; the scan stops when the queue is
filled. If a node has more than one eligible arc directed toward it, the best such arc is put onto the queue.
QxFILLSCAN=FIRST is the default.

If QxFILLSCAN=BEST is specified, everything that is nonbasic is scanned and the best eligible candidates
are used to fill the queue.

If QxFILLSCAN=PARTIAL is specified, after the queue is full, the scan continues for another
QxFILLNPARTIAL= cycles in the hope that during the additional scan, better candidates are found
to replace other candidates previously put onto the queue. QxFILLNPARTIAL=10 is the default. If
QxFILLSCAN=FIRST or QxFILLSCAN=PARTIAL, the scan starts where the previous iteration ended; that
is, it is wraparound.

In the following section, dual variables and reduced costs are explained. These help PROC NETFLOW
determine whether an arc, constraint slack, surplus, or nonarc variable should have a flow or value change.
P2SCAN=ANY and the DUALFREQ= option can be specified to control stage 2 pricing, and how often dual
variables and reduced costs are calculated.

What usually happens when PRICETYPE2=Q is specified is that before the first iteration, the queue is filled
with nonbasic variables that are eligible to enter the basis. At the start of each iteration, a candidate on the
queue is examined and its reduced cost is calculated to ensure that it is still eligible to enter the basis. If it is
ineligible to enter the basis, it is removed from the queue and another candidate on the queue is examined,
until a candidate on the queue is found that can enter the basis. When this happens, a minor iteration occurs.
If there are no candidates left on the queue, or several iterations have been performed since the queue was
refreshed, new nonbasic variables that are eligible to enter the basis are found and are placed on the queue.
When this occurs, the iteration is termed a major iteration. Dual variables are calculated or maintained every
iteration.

During most optimizations, if a variable is put onto the queue during a major iteration, it usually remains
eligible to enter the basis in later minor iterations. Specifying P2SCAN=ANY indicates that PROC NET-
FLOW should choose any candidate on the queue and use that as the entering variable. Reduced costs are not
calculated. It is simply hoped that the chosen candidate is eligible. Sometimes, a candidate on the queue is
chosen that has become ineligible and the optimization takes “a step backward” rather than “a step forward”
toward the optimum. However, the disadvantages of incurring an occasional step backwards and the possible
danger of never converging to the optimum are offset by not having to calculate reduced costs and, more
importantly, not having to maintain dual variable values. The calculation of dual variables is one of two large
linear equation systems that must be solved each iteration in the simplex iteration.

If P2SCAN=ANY is specified, dual variables are calculated after DUALFREQ= iterations have been
performed since they were last calculated. These are used to calculate the reduced costs of all the candidates
currently on the queue. Any candidate found to be ineligible to enter the basis is removed from the queue.
DUALFREQ=4 is the default.

Once again, the practice of not maintaining correct dual variable values is dangerous because backward
steps are allowed, so the optimization is not guaranteed to converge to the optimum. However, if PROC
NETFLOW does not run forever, it can find the optimum much more quickly than when the P2SCAN=
option is not ANY. Before concluding that any solution is optimal, PROC NETFLOW calculates true dual
variable values and reduced costs and uses these to verify that the optimum is really at hand.

Whether P2SCAN=ANY is specified or not, dual variables are always calculated at the start of major
iterations.

392 F Chapter 5: The NETFLOW Procedure

PRICETYPEx=BLAND

PRICETYPEx=BLAND is equivalent to specifying in the PROC NETFLOW or RESET statement all three
options PRICETYPEx=NOQ, PxSCAN=FIRST, and LRATIOx, and the scans are not wraparound. Bland
(1977) proved that this pivot rule prevents the simplex algorithm from cycling. However, because the pivots
concentrate on the lower indexed arcs, constraint slack, surplus, and nonarc variables, optimization with
PRICETYPEx=BLAND can make the optimization execute slowly.

Dual Variables, Reduced Costs, and Status
During optimization, dual variables and reduced costs are used to determine whether an arc, constraint slack,
surplus, or nonarc variable should have a flow or value change. The ARCOUT= and CONOUT= data sets
each have a variable called _RCOST_ that contains reduced cost values. In the CONOUT= data set, this
variable also has the reduced costs of nonarc variables. For an arc, the reduced cost is the amount that would
be added to the total cost if that arc were made to convey one more unit of flow. For a nonarc variable, the
reduced cost is the amount that would be added to the total cost if the value currently assigned to that nonarc
variable were increased by one.

During the optimization of a minimization problem, if an arc has a positive reduced cost, PROC NETFLOW
takes steps to decrease the flow through it. If an arc has a negative reduced cost, PROC NETFLOW takes
steps to increase the flow through it. At optimality, the reduced costs of arcs with flow at their respective lower
bounds are nonnegative; otherwise, the optimizer would have tried to increase the flow, thereby decreasing the
total cost. The _STATUS_ of each such nonbasic arc is LOWERBD NONBASIC. The reduced costs of arcs
with flow at capacity are nonpositive. The _STATUS_ of each such nonbasic arc is UPPERBD NONBASIC.
Even though it would decrease total cost, the optimizer cannot increase the flows through such arcs because
of the capacity bound. Similar arguments apply for nonarc variables.

The reduced cost is also the amount that would be subtracted from the total cost if that arc was made to
convey one less unit of flow. Similarly, a reduced cost is the amount subtracted from the total cost if the value
currently assigned to that nonarc variable is decreased by one.

The dual variables and reduced costs can be used to detect whether multiple optimal solutions exist. A zero
reduced cost of a nonbasic arc indicates the existence of multiple optimal solutions. A zero reduced cost
indicates, by definition, that the flow through such arcs can be changed with zero change to the total cost.
(Basic arcs and basic nonarc variables technically have zero reduced costs. A missing value is used for these
so that reduced costs of nonbasic arcs and nonbasic nonarc variables that are zero are highlighted.)

The range over which costs can vary before the present solution becomes nonoptimal can be determined
through examination of the reduced costs. For any nonbasic arc with assigned flow equal to its lower bound,
the amount by which the cost must be decreased before it becomes profitable for this arc to convey additional
flow is the value of its reduced cost. The cost reduction necessary for a nonbasic arc currently assigned
capacity flow to undergo a worthwhile flow decrease is the absolute value of its reduced cost. In both cases,
this minimum cost reduction changes the reduced cost to zero. Any further reduction promotes a possible
basis change.

The reduced cost of an arc .t; h/ is rct;h D ct;h � �t C �h where �i is the dual value for node i and ct;h is
the cost of the arc with tail node t and head node h.

The Working Basis Matrix F 393

If the problem has side constraints and arc .t; h/ has nonzero lhs coefficients, then the following term must
be subtracted from rct;h :X

i

condual iHi;.t;h/

where condual i is the dual variable of constraint i, and Hi;.t;h/ is the coefficient of arc .t; h/ in constraint i.

If dn is the objective function coefficient of nonarc variable n, the reduced cost is rcn D dn �P
i condual iQi;n, where Qi;n is the coefficient of nonarc variable n in constraint i.

The Working Basis Matrix
Let T be the basis matrix of NPSC. The following partitioning is done:

T=
�

A B
C D

�

where

� n is the number of nodes.

� k is the number of side constraints.

� A .n � n/ is the network component of the basis. Most of the columns of this matrix are columns of
the problem’s node-arc incidence matrix. The arcs associated with columns of A, called key basic
variables or key arcs, form a spanning tree. The data structures of the spanning tree of this submatrix
of the basis T enable the computations involving T and the manner in which T is updated to be very
efficient, especially those dealing with A (or A�1).

� C .k � n/ are the key arcs’ side constraint coefficient columns.

� B .n � k/ are the node-arc incidence matrix columns of the nontree arcs. The columns of B having
nonzero elements are associated with basic nonspanning tree arcs.

� D .k � k/ are the constraint coefficient columns of nonkey basic variables. Nonkey basic variables not
only include nontree basic arcs but also basic slack, surplus, artificial, or nonarc variables.

It is more convenient to factor T by block triangular matrices P and M , such that P D TM. The matrices
P and M are used instead of T because they are less burdensome to work with. You can perform block
substitution when solving the simplex iteration linear systems of equations

P=
�

A 0
C Dw

�

394 F Chapter 5: The NETFLOW Procedure

M=
�

I �A�1B
0 I

�

where Dw D D � CA�1B and is called the working basis matrix.

To perform block substitution, you need the tree data structure of the A matrix, and also the C, B, and Dw
matrices. Because the C matrix consists of columns of the constraint coefficient matrix, the maintenance of
C from iteration to iteration simply entails changing information specifying which columns of the constraint
coefficient matrix compose C.

The A�1B matrix is usually very sparse. Fortunately, the information in A�1B can be initialized easily using
the tree structures. In most iterations, only one column is replaced by a new one. The values of the elements
of the new column may already be known from preceding steps of the simplex iteration.

The working basis matrix is the submatrix that presents the most computational complexity. However, PROC
NETFLOW usually can use classical simplex pivot techniques. In many iterations, only one column of Dw
changes. Sometimes it is not necessary to update Dw or its inverse at all.

If INVD_2D is specified in the PROC NETFLOW statement, only one row and one column may need to be
changed in the D�1

w before the next simplex iteration can begin. The new contents of the changed column are
already known. The new elements of the row that changes are influenced by the contents of a row of A�1B
that is very sparse.

If INVD_2D is not specified in the PROC NETFLOW statement, the Bartels-Golub update can be used to
update the LU factors of Dw. The choice must be made whether to perform a series of updates (how many
depends on the number of nonzeros in a row of A�1B), or refactorization.

Flow and Value Bounds
The capacity and lower flow bound of an arc can be equal. Negative arc capacities and lower flow bounds are
permitted. If both arc capacities and lower flow bounds are negative, the lower flow bound must be at least as
negative as the capacity. An arc (A,B) that has a negative flow of �f units can be interpreted as an arc that
conveys f units of flow from node B to node A.

The upper and lower value bounds of a nonarc variable can be equal. Negative upper and lower bounds are
permitted. If both are negative, the lower bound must be at least as negative as the upper bound.

Tightening Bounds and Side Constraints
If any piece of data is furnished to PROC NETFLOW more than once, PROC NETFLOW checks for
consistency so that no conflict exists concerning the data values. For example, if the cost of some arc is
seen to be one value and as more data are read, the cost of the same arc is seen to be another value, PROC
NETFLOW issues an error message on the SAS log and stops. There are two exceptions:

� The bounds of arcs and nonarc variables are made as tight as possible. If several different values are
given for the lower flow bound of an arc, the greatest value is used. If several different values are given

Reasons for Infeasibility F 395

for the lower bound of a nonarc variable, the greatest value is used. If several different values are given
for the capacity of an arc, the smallest value is used. If several different values are given for the upper
bound of a nonarc variable, the smallest value is used.

� Several values can be given for inequality constraint right-hand sides. For a particular constraint, the
lowest rhs value is used for the rhs if the constraint is of less than or equal to type. For a particular
constraint, the greatest rhs value is used for the rhs if the constraint is of greater than or equal to type.

Reasons for Infeasibility
Before optimization commences, PROC NETFLOW tests to ensure that the problem is not infeasible by
ensuring that, with respect to supplies, demands, and arc flow bounds, flow conservation can be obeyed at
each node.

� Let IN be the sum of lower flow bounds of arcs directed toward a node plus the node’s supply. Let
OUT be the sum of capacities of arcs directed from that node plus the node’s demand. If IN exceeds
OUT, not enough flow can leave the node.

� Let OUT be the sum of lower flow bounds of arcs directed from a node plus the node’s demand. Let
IN be the total capacity of arcs directed toward the node plus the node’s supply. If OUT exceeds IN,
not enough flow can arrive at the node.

Reasons why a network problem can be infeasible are similar to those previously mentioned but apply to a
set of nodes rather than for an individual node. Consider the network illustrated in Figure 5.13.

Figure 5.13 An Infeasible Network

NODE_1----------------->NODE_2
/ capac=55 \

/ lo=50 \
/ \
/ \

/ \
NODE_3 NODE_4

supply=100 \ / demand=120
\ /
\ /
\ capac=62 /
\ lo=60 /
NODE_5----------------->NODE_6

The demand of NODE_4 is 120. That can never be satisfied because the maximal flow through arcs (NODE_1,
NODE_2) and (NODE_5, NODE_6) is 117. More specifically, the implicit supply of NODE_2 and NODE_6
is only 117, which is insufficient to satisfy the demand of other nodes (real or implicit) in the network.

Furthermore, the lower flow bounds of arcs (NODE_1, NODE_2) and (NODE_5, NODE_6) are greater than
the flow that can reach the tail nodes of these arcs, that, by coincidence, is the total supply of the network.
The implicit demand of nodes NODE_1 and NODE_5 is 110, which is greater than the amount of flow that
can reach these nodes.

396 F Chapter 5: The NETFLOW Procedure

When PROC NETFLOW detects that the problem is infeasible, it indicates why the solution, obtained after
optimization stopped, is infeasible. It can report that the solution cannot obey flow conservation constraints
and which nodes these conservation constraints are associated with. If applicable, the side constraints that
the solution violates are also output.

If stage 1 optimization obtains a feasible solution to the network, stage 2 optimization can determine that the
problem is infeasible and note that some flow conservation constraint is broken while all side constraints
are satisfied. The infeasibility messages issued by PROC NETFLOW pertain to why the current solution is
infeasible, not quite the same as the reasons why the problem is infeasible. However, the messages highlight
areas in the problem where the infeasibility can be tracked down. If the problem is infeasible, make PROC
NETFLOW do a stage 1 unconstrained optimization by removing the CONDATA= data set specification in
the PROC NETFLOW statement. If a feasible network solution is found, then the side constraints are the
source of the infeasibility in the problem.

Missing S Supply and Missing D Demand Values
In some models, you may want a node to be either a supply or demand node but you want the node to
supply or demand the optimal number of flow units. To indicate that a node is such a supply node, use a
missing S value in the SUPPLY list variable in the ARCDATA= data set or the SUPDEM list variable in
the NODEDATA= data set. To indicate that a node is such a demand node, use a missing D value in the
DEMAND list variable in the ARCDATA= data set or the SUPDEM list variable in the NODEDATA= data
set.

Suppose the oil example in the section “Introductory Example” on page 311 is changed so that crude oil can
be obtained from either the Middle East or U.S.A. in any amounts. You should specify that the node “middle
east” is a supply node, but you do not want to stipulate that it supplies 100 units, as before. The node “u.s.a.”
should also remain a supply node, but you do not want to stipulate that it supplies 80 units. You must specify
that these nodes have missing S supply capabilities.

title 'Oil Industry Example';
title3 'Crude Oil can come from anywhere';
data miss_s;

missing S;
input _node_&$15. _sd_;
datalines;

middle east S
u.s.a. S
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;

The following PROC NETFLOW run uses the same ARCDATA= and CONDATA= data sets used in the
section “Introductory Example” on page 311.

proc netflow
nodedata=miss_s /* the supply (missing S) and */

/* demand data */
arcdata=arcd1 /* the arc descriptions */

Missing S Supply and Missing D Demand Values F 397

condata=cond1 /* the side constraints */
conout=solution; /* the solution data set */
run;

print some_arcs('middle east' 'u.s.a.',_all_)/short;

proc print;
sum _fcost_;
run;

The following messages appear on the SAS log:

NOTE: Number of nodes= 14 .

NOTE: All supply nodes have unspecified (.S) supply capability. Number of these

 nodes= 2 .

NOTE: Number of demand nodes= 4 .

NOTE: Total supply= 0 , total demand= 180 .

NOTE: Number of arcs= 18 .

NOTE: Number of iterations performed (neglecting any constraints)= 15 .

NOTE: Of these, 0 were degenerate.

NOTE: Optimum (neglecting any constraints) found.

NOTE: Minimal total cost= 50040 .

NOTE: Number of <= side constraints= 0 .

NOTE: Number of == side constraints= 2 .

NOTE: Number of >= side constraints= 2 .

NOTE: Number of arc and nonarc variable side constraint coefficients= 8 .

NOTE: Number of iterations, optimizing with constraints= 3 .

NOTE: Of these, 0 were degenerate.

NOTE: Optimum reached.

NOTE: Minimal total cost= 50075 .

NOTE: The data set WORK.SOLUTION has 18 observations and 14 variables.

The PRINT statement reports the arcs directed away from the supply nodes, shown in Figure 5.14. The
amount of crude obtained from the Middle East and U.S.A. is 30 and 150 units, respectively.

Figure 5.14 Print Statement, Oil Example, Missing S Supplies

Oil Industry Example

Crude Oil can come from anywhere

The NETFLOW Procedure

Oil Industry Example

Crude Oil can come from anywhere

The NETFLOW Procedure

N _from_ _to_ _cost_ _capac_ _lo_ _name_ _FLOW_

1 middle east refinery 1 63 95 20 m_e_ref1 20

2 u.s.a. refinery 1 55 99999999 0 125

3 middle east refinery 2 81 80 10 m_e_ref2 10

4 u.s.a. refinery 2 49 99999999 0 25

The CONOUT= data set is shown in Figure 5.15.

398 F Chapter 5: The NETFLOW Procedure

Figure 5.15 Missing S SUPDEM Values in NODEDATA

Obs _from_ _to_ _cost_ _capac_ _lo_ _name_ _SUPPLY_ _DEMAND_

1 refinery 1 r1 200 175 50 thruput1 . .

2 refinery 2 r2 220 100 35 thruput2 . .

3 r1 ref1 diesel 0 75 0 . .

4 r1 ref1 gas 0 140 0 r1_gas . .

5 r2 ref2 diesel 0 75 0 . .

6 r2 ref2 gas 0 100 0 r2_gas . .

7 middle east refinery 1 63 95 20 m_e_ref1 S .

8 u.s.a. refinery 1 55 99999999 0 S .

9 middle east refinery 2 81 80 10 m_e_ref2 S .

10 u.s.a. refinery 2 49 99999999 0 S .

11 ref1 diesel servstn1 diesel 18 99999999 0 . 30

12 ref2 diesel servstn1 diesel 36 99999999 0 . 30

13 ref1 gas servstn1 gas 15 70 0 . 95

14 ref2 gas servstn1 gas 17 35 5 . 95

15 ref1 diesel servstn2 diesel 17 99999999 0 . 15

16 ref2 diesel servstn2 diesel 23 99999999 0 . 15

17 ref1 gas servstn2 gas 22 60 0 . 40

18 ref2 gas servstn2 gas 31 99999999 0 . 40

Obs _FLOW_ _FCOST_ _RCOST_ _ANUMB_ _TNUMB_ _STATUS_

1 145.00 29000.00 . 7 2 KEY_ARC BASIC

2 35.00 7700.00 17 8 3 LOWERBD NONBASIC

3 36.25 0.00 . 10 5 KEY_ARC BASIC

4 108.75 0.00 . 9 5 KEY_ARC BASIC

5 8.75 0.00 . 12 6 KEY_ARC BASIC

6 26.25 0.00 . 11 6 KEY_ARC BASIC

7 20.00 1260.00 8 2 1 LOWERBD NONBASIC

8 125.00 6875.00 . 3 4 KEY_ARC BASIC

9 10.00 810.00 32 4 1 LOWERBD NONBASIC

10 25.00 1225.00 . 5 4 KEY_ARC BASIC

11 30.00 540.00 . 17 8 KEY_ARC BASIC

12 0.00 0.00 12 18 10 LOWERBD NONBASIC

13 68.75 1031.25 . 13 7 KEY_ARC BASIC

14 26.25 446.25 . 14 9 NONKEY ARC BASIC

15 6.25 106.25 . 19 8 KEY_ARC BASIC

16 8.75 201.25 . 20 10 KEY_ARC BASIC

17 40.00 880.00 . 15 7 KEY_ARC BASIC

18 0.00 0.00 7 16 9 LOWERBD NONBASIC

50075.00

The optimal supplies of nodes “middle east” and “u.s.a.” are 30 and 150 units, respectively. For this example,
the same optimal solution is obtained if these nodes had supplies less than these values (each supplies 1
unit, for example) and the THRUNET option was specified in the PROC NETFLOW statement. With the
THRUNET option active, when total supply exceeds total demand, the specified nonmissing demand values
are the lowest number of flow units that must be absorbed by the corresponding node. This is demonstrated

Missing S Supply and Missing D Demand Values F 399

in the following PROC NETFLOW run. The missing S is most useful when nodes are to supply optimal
numbers of flow units and it turns out that for some nodes, the optimal supply is 0.

data miss_s_x;
missing S;
input _node_&$15. _sd_;
datalines;

middle east 1
u.s.a. 1
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;

proc netflow
thrunet
nodedata=miss_s_x /* No supply (missing S) */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* the solution data set */
run;

print some_arcs('middle east' 'u.s.a.',_all_)/short;

proc print;
sum _fcost_;
run;

The following messages appear on the SAS log. Note that the Total supply= 2, not 0 as in the last run.

NOTE: Number of nodes= 14 .

NOTE: Number of supply nodes= 2 .

NOTE: Number of demand nodes= 4 .

NOTE: Total supply= 2 , total demand= 180 .

NOTE: Number of arcs= 18 .

NOTE: Number of iterations performed (neglecting any constraints)= 20 .

NOTE: Of these, 1 were degenerate.

NOTE: Optimum (neglecting any constraints) found.

NOTE: Minimal total cost= 50040 .

NOTE: Number of <= side constraints= 0 .

NOTE: Number of == side constraints= 2 .

NOTE: Number of >= side constraints= 2 .

NOTE: Number of arc and nonarc variable side constraint coefficients= 8 .

NOTE: Number of iterations, optimizing with constraints= 3 .

NOTE: Of these, 0 were degenerate.

NOTE: Optimum reached.

NOTE: Minimal total cost= 50075 .

NOTE: The data set WORK.SOLUTION has 18 observations and 14 variables.

The PRINT statement and the CONDATA= data set are very similar; the supplies of the supply nodes are 1,
not missing S. Otherwise, the solutions are identical.

If total supply exceeds total demand, any missing S values are ignored. If total demand exceeds total supply,
any missing D values are ignored.

400 F Chapter 5: The NETFLOW Procedure

Balancing Total Supply and Total Demand

When Total Supply Exceeds Total Demand

When total supply of a network problem exceeds total demand, PROC NETFLOW can add an extra node
(called the excess node) to the problem and set the demand at that node equal to the difference between total
supply and total demand. There are three ways that this excess node can be joined to the network. All three
ways entail PROC NETFLOW generating a set of arcs (henceforth referred to as the generated arcs) that are
directed toward the excess node. The total amount of flow in generated arcs equals the demand of the excess
node. The generated arcs originate from one of three sets of nodes.

When you specify the THRUNET option, the set of nodes that generated arcs originate from are all demand
nodes, even those demand nodes with unspecified demand capability. You indicate that a node has unspecified
demand capability by using a missing D value instead of an actual value for demand data (discussed in the
section “Missing S Supply and Missing D Demand Values” on page 396). The value specified as the demand
of a demand node is in effect a lower bound of the number of flow units that node can actually demand. For
missing D demand nodes, this lower bound is zero.

If you do not specify the THRUNET option, the way in which the excess node is joined to the network
depends on whether there are demand nodes with unspecified demand capability (nodes with missing D
demand).

If there are missing D demand nodes, these nodes are the set of nodes that generated arcs originate from.
The value specified as the demand of a demand node, if not missing D, is the number of flow units that node
actually demands. For a missing D demand node, the actual demand of that node may be zero or greater.

If there are no missing D demand nodes, the set of nodes that generated arcs originate from are the set of
supply nodes. The value specified as the supply of a supply node is in effect an upper bound of the number of
flow units that node can actually supply. For missing S supply nodes (discussed in the section “Missing S
Supply and Missing D Demand Values” on page 396), this upper bound is zero, so missing S nodes when
total supply exceeds total demand are transshipment nodes, nodes that neither supply nor demand flow.

When Total Supply Is Less Than Total Demand

When total supply of a network problem is less than total demand, PROC NETFLOW can add an extra node
(called the excess node) to the problem and set the supply at that node equal to the difference between total
demand and total supply. There are three ways that this excess node can be joined to the network. All three
ways entail PROC NETFLOW generating a set of arcs (henceforth referred to as the generated arcs) that
originate from the excess node. The total amount of flow in generated arcs equals the supply of the excess
node. The generated arcs are directed toward one of three sets of nodes.

When you specify the THRUNET option, the set of nodes that generated arcs are directed toward are all
supply nodes, even those supply nodes with unspecified supply capability. You indicate that a node has
unspecified supply capability by using a missing S value instead of an actual value for supply data (discussed
in the section “Missing S Supply and Missing D Demand Values” on page 396). The value specified as the
supply of a supply node is in effect a lower bound of the number of flow units that node can actually supply.
For missing S supply nodes, this lower bound is zero.

If you do not specify the THRUNET option, the way in which the excess node is joined to the network
depends on whether there are supply nodes with unspecified supply capability (nodes with missing S supply).

Warm Starts F 401

If there are missing S supply nodes, these nodes are the set of nodes that generated arcs are directed toward.
The value specified as the supply of a supply node, if not missing S, is the number of flow units that node
actually supplies. For a missing S supply node, the actual supply of that node may be zero or greater.

If there are no missing S supply nodes, the set of nodes that generated arcs are directed toward are the set
of demand nodes. The value specified as the demand of a demand node is in effect an upper bound of the
number of flow units that node can actually demand. For missing D demand nodes, (discussed in the section
“Missing S Supply and Missing D Demand Values” on page 396), this upper bound is zero, so missing D
nodes when total supply is less than total demand are transshipment nodes, nodes that neither supply nor
demand flow.

Warm Starts
Using a warm start can increase the overall speed of PROC NETFLOW when it is used repetitively on
problems with similar structure. It is most beneficial when a solution of a previous optimization is close to
the optimum of the same network with some of its parameters, for example, arc costs, changed. Whether
a problem is changed or not, a nonoptimal solution resulting from a previous optimization can be used to
restart optimization, thereby saving PROC NETFLOW from having to repeat work to reach the warm start
already available.

Time also is saved in the data structure initialization part of the NETFLOW procedure’s execution. Information
about the previous optimal solution, particularly concerning the size of the problem, a description of the basis
spanning tree structure, and what is basic in constraint rows, is known. Information about which nonbasic
arcs have capacity flow and which nonbasic nonarc variables are at their respective upper bounds also makes
up part of the warm start. The procedure can place arc data into the internal arc length arrays in precisely
defined locations, in order of ascending head node internal number. It is not necessary to have multiple passes
through the data because literals such as node, nonarc variable, arc, constraint, and special row names are
defined and meaning is attached to each. This also saves a considerable amount of memory. None of the
pre-optimization feasibility checks need be repeated.

Warm starts also are useful if you want to determine the effect of arcs being closed to carrying flow. The
costs of these arcs are set high enough to ensure that the next optimal solution never has flow through them.
Similarly, the effect of opening arcs can be determined by changing the cost of such arcs from an extreme to
a reasonable value.

Specify the FUTURE1 or FUTURE2 option to ensure that additional data about a solution to be used as
a warm start are output to output data sets. If the FUTURE1 option is specified, extra observations with
information on what is to be the warm start are set up for the NODEOUT= and ARCOUT= data sets. The
warm start solution in these data sets is a solution obtained after optimization neglecting side constraints.
Any cost list variable value in the ARCOUT= data set (and, if there are side constraints, any constraint data in
the CONDATA= data set) can be changed before the solution is used as a warm start in a subsequent PROC
NETFLOW run. Any nonarc variable data in the CONDATA= data set can be changed at this time as well.
New nonarc variables not present in the original problem when the warm start was generated can also be
added to the CONDATA= data set before the problem is warm started.

If the FUTURE2 option is specified, extra variables containing information on what will be the warm start
solution are set up for the DUALOUT= and CONOUT= data sets. The warm start solution in these data sets
is obtained after optimization that considers side constraints has been performed. Part of the warm start is

402 F Chapter 5: The NETFLOW Procedure

concerned with the constraint part of the basis. Only cost list variable values in the CONOUT= data set can
be changed before the solution is used as a warm start in a subsequent PROC NETFLOW run.

If a primal simplex optimization is to use a warm start, the WARM option must be specified in the PROC
NETFLOW statement. Otherwise, the primal simplex network algorithm processes the data for a cold start
and the extra information is not used.

The ARCDATA= data set is either the ARCOUT= data set from a previous run of PROC NETFLOW with
the FUTURE1 option specified (if an unconstrained warm start is used) or the CONOUT= data set from a
previous run of PROC NETFLOW with the FUTURE2 option specified (if the warm start was obtained after
optimization that considers side constraints was used).

The NODEDATA= data set is the NODEOUT= data set from a previous run of PROC NETFLOW with FU-
TURE1 specified if an unconstrained warm start is being used. Otherwise, the DUALIN= is the DUALOUT=
data sets from a previous run of PROC NETFLOW with FUTURE2 specified, if the warm start was obtained
after optimization that considers side constraints was used.

You never need to alter the NODEOUT= data set or the DUALOUT= data set between the time they are
generated and when they are used as a warm start. The results would be unpredictable if incorrect changes
were made to these data sets, or if a NODEDATA= or a DUALIN= data set were used with an ARCDATA=
data set of a different solution.

It is possible, and often useful, to specify WARM and either FUTURE1 or FUTURE2, or both, in the same
PROC NETFLOW statement if a new warm start is to be generated from the present warm start.

The extent of the changes allowed to a primal simplex warm start between the time it is generated and when it
is used depends on whether the warm start describes an unconstrained or constrained solution. The following
list describes parts of a constrained or an unconstrained warm start that can be altered:

� COST list variable values

� the value of an arc’s capacity, as long as the new capacity value is not less than the lower flow bound
or the flow through the arc

� any nonarc variable information, in an unconstrained warm start

� for an unconstrained warm start, any side constraint data

The changes that can be made in constraint data for a constrained warm start are more restrictive than those
for an unconstrained warm start. The lhs coefficients, type, and rhs value of a constraint can be changed as
long as that constraint’s slack, surplus, or artificial variable is basic. The constraint name cannot be changed.

Example of a Warm Start

The following sample SAS session demonstrates how the warm start facilities are used to obtain optimal
solutions to an unconstrained network where some arc cost changes occur or optimization is halted before
the optimum is found.

/* data already in data sets node0 and arc0 */
proc netflow

nodedata=node0 /* if supply_demand information */
/* is in this SAS data set */

arcdata=arc0;

Warm Starts F 403

/* variable list specifications go here */
/* assume that they are not necessary here */
/* if they are, they must be included in */
/* all the PROC NETFLOW calls that follow */

reset
future1
nodeout=node2 /* nodeout and arcout are necessary */

/* when FUTURE1 is used */
arcout=arc1;

proc print
data=arc1; /* display the optimal solution */

proc fsedit
data=arc1; /* change some arc costs */

data arc2;
reset arc1;

oldflow=_flow_;
oldfc=_fcost_;

/* make duplicates of the flow and flowcost*/
/* variables. If a id list was explicitly */
/* specified, add oldflow and oldfc to this*/
/* list so that they appear in subsequently*/
/* created arcout= data sets */

The following PROC NETFLOW uses the warm start created previously, performs 250 stage 2 iterations
and saves that solution, which (as FUTURE1, ARCOUT=, and NODEOUT= are specified) can be used as a
warm start in another PROC NETFLOW run.

proc netflow
warm
nodedata=node2
arcdata=arc2;

reset
maxit1=250
future1;

run;
save

nodeout=savelib.node3
arcout=savelib.arc3;

/* optimization halted because 250 iterations */
/* were performed to resume optimization, */
/* possibly in another session (the output */
/* data sets were saved in a SAS library */
/* called savelib) */

Using the latest warm start, PROC NETFLOW is re-invoked to find the optimal solution.

proc netflow
warm
nodedata=savelib.node3
arcdata=savelib.arc3;

reset
future1
nodeout=node4
arcout=arc4;

run;

404 F Chapter 5: The NETFLOW Procedure

If this problem has constraints with data in a data set called CON0, then in each of the previous PROC
NETFLOW statements, specify CONDATA=CON0. Between PROC NETFLOW runs, you can change
constraint data. In each of the RESET statements, you could specify the CONOUT= data set to save the last
(possibly optimal) solution reached by the optimizer if it reaches stage 2. You could specify FUTURE2 and
the DUALOUT= data set to generate a constrained warm start.

proc netflow
warm
nodedata=node4
arcdata=arc4
condata=con0;

reset
maxit2=125 /* optional, here as a reason why */

/* optimum will not be obtained */
scratch /* optional, but warm start might be good */

/* enough to start stage 2 optimization */
future2

run;
/* optimization halted after 125 stage 2 iterations */

save dualout=dual1 conout=conout1;

Stage 2 optimization halted before optimum was reached. Now you can make cost and nonarc variable
objective function coefficient changes. Then to restart optimization, use

proc netflow
warm
condata=con0

/* NB. NETFLOW reads constraint data only */
dualin=dual1
arcdata=con1;

reset
future2
dualout=dual2
conout=con2;

run;

How to Make the Data Read of PROC NETFLOW More Efficient
This section contains information useful when you want to solve large constrained network problems.
However, much of this information is also useful if you have a large linear programming problem. All
of the options described in this section that are not directly applicable to networks (options such as
ARCS_ONLY_ARCDATA, ARC_SINGLE_OBS, NNODES=, and NARCS=) can be specified to improve
the speed at which LP data are read.

Large Constrained Network Problems

Many of the models presented to PROC NETFLOW are enormous. They can be considered large by linear
programming standards; problems with thousands of variables and constraints. When dealing with side

How to Make the Data Read of PROC NETFLOW More Efficient F 405

constrained network programming problems, models can have not only a linear programming component of
that magnitude, but also a larger, possibly much larger, network component.

The majority of a network problem’s decision variables are arcs. Like an LP decision variable, an arc has
an objective function coefficient, upper and lower value bounds, and a name. Arcs can have coefficients
in constraints. Therefore, an arc is quite similar to an LP variable and places the same memory demands
on optimization software as an LP variable. But a typical network model has many more arcs and nonarc
variables than the typical LP model has variables. And arcs have tail and head nodes. Storing and processing
node names require huge amounts of memory. To make matters worse, node names occupy memory at times
when a large amount of other data should also reside in memory.

While memory requirements are lower for a model with embedded network component compared with the
equivalent LP once optimization starts, the same is usually not true during the data read. Even though nodal
flow conservation constraints in the LP should not be specified in the constrained network formulation, the
memory requirements to read the latter are greater because each arc (unlike an LP variable) originates at one
node, and is directed toward another.

Paging

PROC NETFLOW has facilities to read data when the available memory is insufficient to store all the data at
once. PROC NETFLOW does this by allocating memory for different purposes, for example, to store an
array or receive data read from an input SAS data set. After that memory has filled, the information is sent to
disk and PROC NETFLOW can resume filling that memory with new information. Often, information must
be retrieved from disk so that data previously read can be examined or checked for consistency. Sometimes,
to prevent any data from being lost, or to retain any changes made to the information in memory, the contents
of the memory must be sent to disk before other information can take its place. This process of swapping
information to and from disk is called paging. Paging can be very time-consuming, so it is crucial to minimize
the amount of paging performed.

There are several steps you can take to make PROC NETFLOW read the data of network and linear
programming models more efficiently, particularly when memory is scarce and the amount of paging must be
reduced. PROC NETFLOW will then be able to tackle large problems in what can be considered reasonable
amounts of time.

The Order of Observations

PROC NETFLOW is quite flexible in the ways data can be supplied to it. Data can be given by any reasonable
means. PROC NETFLOW has convenient defaults that can save you work when generating the data. There
can be several ways to supply the same piece of data, and some pieces of data can be given more than once.
PROC NETFLOW reads everything, then merges it all together. However, this flexibility and convenience
come at a price; PROC NETFLOW may not assume the data has a characteristic that, if possessed by the
data, could save time and memory during the data read. There are several options that indicate the data has
some exploitable characteristic.

For example, an arc cost can be specified once or several times in the ARCDATA= or CONDATA= data set,
or both. Every time it is given in ARCDATA, a check is made to ensure that the new value is the same as
any corresponding value read in a previous observation of ARCDATA. Every time it is given in CONDATA,
a check is made to ensure that the new value is the same as the value read in a previous observation of
CONDATA, or previously in ARCDATA. It would save PROC NETFLOW time if it knew that arc cost data
would be encountered only once while reading ARCDATA, so performing the time-consuming check for

406 F Chapter 5: The NETFLOW Procedure

consistency would not be necessary. Also, if you indicate that CONDATA contains data for constraints only,
PROC NETFLOW will not expect any arc information, so memory will not be allocated to receive such
data while reading CONDATA. This memory is used for other purposes and this might lead to a reduction
in paging. If applicable, use the ARC_SINGLE_OBS or the CON_SINGLE_OBS option, or both, and the
NON_REPLIC=COEFS specification to improve how ARCDATA and CONDATA are read.

PROC NETFLOW allows the observations in input data sets to be in any order. However, major time savings
can result if you are prepared to order observations in particular ways. Time spent by the SORT procedure to
sort the input data sets, particularly the CONDATA= data set, may be more than made up for when PROC
NETFLOW reads them, because PROC NETFLOW has in memory information possibly used when the
previous observation was read. PROC NETFLOW can assume a piece of data is either similar to that of the
last observation read or is new. In the first case, valuable information such as an arc or a nonarc variable
number or a constraint number is retained from the previous observation. In the last case, checking the data
with what has been read previously is not necessary.

Even if you do not sort the CONDATA= data set, grouping observations that contain data for the same arc or
nonarc variable or the same row pays off. PROC NETFLOW establishes whether an observation being read
is similar to the observation just read.

Practically, several input data sets for PROC NETFLOW might have this characteristic, because it is natural
for data for each constraint to be grouped together (dense format of CONDATA) or data for each column to
be grouped together (sparse format of CONDATA). If data for each arc or nonarc is spread over more than
one observation of the ARCDATA= data set, it is natural to group these observations together.

Use the GROUPED= option to indicate whether observations of the ARCDATA= data set, CONDATA= data
set, or both are grouped in a way that can be exploited during data read.

Time is saved if the type data for each row appears near the top of the CONDATA= data set, especially if it
has the sparse format. Otherwise, when reading an observation, if PROC NETFLOW does not know if a
row is a constraint or special row, the data are set aside. Once the data set has been completely read, PROC
NETFLOW must reprocess the data it set aside. By then, it knows the type of each constraint or row or, if its
type was not provided, it is assumed to have a default type.

Better Memory Utilization

In order for PROC NETFLOW to make better utilization of available memory, you can now specify options
that indicate the approximate size of the model. PROC NETFLOW then knows what to expect. For example,
if you indicate that the problem has no nonarc variables, PROC NETFLOW will not allocate memory to store
nonarc data. That memory is utilized better for other purposes. Memory is often allocated to receive or store
data of some type. If you indicate that the model does not have much data of a particular type, the memory
that would otherwise have been allocated to receive or store that data can be used to receive or store data of
another type.

� NNODES= approximate number of nodes

� NARCS= approximate number of arcs

� NNAS= approximate number of nonarc variables or LP variables

� NCONS= approximate number of constraints

� NCOEFS= approximate number of constraint coefficients

How to Make the Data Read of PROC NETFLOW More Efficient F 407

These options will sometimes be referred to as Nxxxx= options.

You do not need to specify all these options for the model, but the more you do, the better. If you do not
specify some or all of these options, PROC NETFLOW guesses the size of the problem by using what it
already knows about the model. Sometimes PROC NETFLOW guesses the size of the model by looking at
the number of observations in the ARCDATA= and CONDATA= data sets. However, PROC NETFLOW
uses rough rules of thumb; that typical models are proportioned in certain ways (for example, if there are
constraints, then arcs and nonarcs usually have 5 constraint coefficients). If your model has an unusual shape
or structure, you are encouraged to use these options.

If you do use the options and you do not know the exact values to specify, overestimate the values. For
example, if you specify NARCS=10000 but the model has 10100 arcs, when dealing with the last 100 arcs,
PROC NETFLOW might have to page out data for 10000 arcs each time one of the last arcs must be dealt
with. Memory could have been allocated for all 10100 arcs without affecting (much) the rest of the data read,
so NARCS=10000 could be more of a hindrance than a help.

The point of these Nxxxx= options is to indicate the model size when PROC NETFLOW does not know it.
When PROC NETFLOW knows the “real” value, that value is used instead of Nxxxx= .

When PROC NETFLOW is given a constrained solution warm start, PROC NETFLOW knows from the
warm start information all model size parameters, so Nxxxx= options are not used. When an unconstrained
warm start is used and the SAME_NONARC_DATA is specified, PROC NETFLOW knows the number of
nonarc variables, so that is used instead of the value of the NNAS= option.

ARCS_ONLY_ARCDATA indicates that data for only arcs are in the ARCDATA= data set. Memory would
not be wasted to receive data for nonarc and LP variables.

Use the memory usage parameters:

� The BYTES= option specifies the size of PROC NETFLOW main working memory in number of
bytes.

� The MAXARRAYBYTES= option specifies the maximum number of bytes that an array can occupy.

� The MEMREP option indicates that memory usage report is to be displayed on the SAS log.

Specifying the BYTES= parameter is particularly important. Specify as large a number as possible, but not
such a large number of bytes that will cause PROC NETFLOW (rather, the SAS System running underneath
PROC NETFLOW) to run out of memory. Use the MAXARRAYBYTES= option if the model is very
large or “disproportionate.” Try increasing or decreasing the MAXARRAYBYTES= option. Limiting
the amount of memory for use by big arrays is good if they would take up too much memory to the
detriment of smaller arrays, buffers, and other things that require memory. However, too small a value of
the MAXARRAYBYTES= option might cause PROC NETFLOW to page a big array excessively. Never
specify a value for the MAXARRAYBYTES= option that is smaller than the main node length array.
PROC NETFLOW reports the size of this array on the SAS log if you specify the MEMREP option. The
MAXARRAYBYTES= option influences paging not only in the data read, but also during optimization. It is
often better if optimization is performed as fast as possible, even if the read is made slower as a consequence.

408 F Chapter 5: The NETFLOW Procedure

Use Defaults to Reduce the Amount of Data

Use as much as possible the parameters that specify default values. For example, if there are several arcs
with the same cost value c, use DEFCOST=c for arcs that have that cost. Use missing values in the COST
variable in ARCDATA instead of c. PROC NETFLOW ignores missing values, but must read, store, and
process nonmissing values, even if they are equal to a default option or could have been equal to a default
parameter had it been specified. Sometimes, using default parameters makes the need for some SAS variables
in the ARCDATA= and CONDATA= data sets no longer necessary, or reduces the quantity of data that must
be read. The default options are

� DEFCOST= default cost of arcs, objective function of nonarc variables or LP variables

� DEFMINFLOW= default lower flow bound of arcs, lower bound of nonarc variables or LP variables

� DEFCAPACITY= default capacity of arcs, upper bound of nonarc variables or LP variables

� DEFCONTYPE=LE DEFCONTYPE= <=
DEFCONTYPE=EQ DEFCONTYPE= =
DEFCONTYPE=GE DEFCONTYPE= >= (default constraint type)

The default options themselves have defaults. For example, you do not need to specify DEFCOST=0 in the
PROC NETFLOW statement. You should still have missing values in the COST variable in ARCDATA for
arcs that have zero costs.

If the network has only one supply node, one demand node, or both, use

� SOURCE= name of single node that has supply capability

� SUPPLY= the amount of supply at SOURCE

� SINK= name of single node that demands flow

� DEMAND= the amount of flow SINK demands

Do not specify that a constraint has zero right-hand-side values. That is the default. The only time it might be
practical to specify a zero rhs is in observations of CONDATA read early so that PROC NETFLOW can infer
that a row is a constraint. This could prevent coefficient data from being put aside because PROC NETFLOW
did not know the row was a constraint.

Names of Things

To cut data read time and memory requirements, reduce the number of bytes in the longest node name,
longest arc name, and longest constraint name to 8 bytes or less. The longer a name, the more bytes must be
stored and compared with other names.

If an arc has no constraint coefficients, do not give it a name in the NAME list variable in the ARCDATA=
data set. Names for such arcs serve no purpose.

PROC NETFLOW can have a default name for each arc. If an arc is directed from node tailname toward
node headname, the default name for that arc is tailname_headname. If you do not want PROC NETFLOW
to use these default arc names, specify NAMECTRL=1. Otherwise, PROC NETFLOW must use memory for
storing node names and these node names must be searched often.

Macro Variable _ORNETFL F 409

If you want to use the default tailname_headname name, that is, NAMECTRL=2 or NAMECTRL=3, do
not use underscores in node names. If a CONDATA has a dense format and has a variable in the VAR list
A_B_C_D, or if the value A_B_C_D is encountered as a value of the COLUMN list variable when reading
CONDATA that has the sparse format, PROC NETFLOW first looks for a node named A. If it finds it, it
looks for a node called B_C_D. It then looks for a node with the name A_B and possibly a node with name
C_D. A search for a node named A_B_C and possibly a node named D is done. Underscores could have
caused PROC NETFLOW to look unnecessarily for nonexistent nodes. Searching for node names can be
expensive, and the amount of memory to store node names large. It might be better to assign the arc name
A_B_C_D directly to an arc by having that value as a NAME list variable value for that arc in ARCDATA
and specify NAMECTRL=1.

Other Ways to Speed Up Data Reads

Use warm starts as much as possible.

� WARM indicates that the input SAS data sets contain a warm start.

The data read of a warm start is much faster than a cold start data read. The model size is known before the
read starts. The observations of the NODEDATA= or DUALIN= data sets have observations ordered by node
name and constraint name. Information is stored directly in the data structures used by PROC NETFLOW.
For a cold start, much of preprocessing must be performed before the information can be stored in the same
way. And using a warm start can greatly reduce the time PROC NETFLOW spends doing optimization.

� SAME_NONARC_DATA is an option that excludes data from processing.

This option indicates that the warm start nonarc variable data in ARCDATA is read and any nonarc variable
data in CONDATA is to be ignored. Use this option if it is applicable, or when CONDATA has no nonarc
variable data, or such data are duplicated in ARCDATA. ARCDATA is always read before CONDATA.

Arcs and nonarc variables can have associated with them values or quantities that have no bearing with the
optimization. This information is given in ARCDATA in the ID list variables. For example, in a distribution
problem, information such as truck number and driver’s name can be associated with each arc. This is useful
when a solution is saved in an output SAS data set. However, PROC NETFLOW needs to reserve memory to
process this information when data are being read. For large problems when memory is scarce, it might be
better to remove ancillary data from ARCDATA. After PROC NETFLOW runs, use SAS software to merge
this information into the output data sets that contain the optimal solution.

Macro Variable _ORNETFL
The NETFLOW procedure creates and initializes a SAS macro variable called _ORNETFL. After exiting the
procedure, you can use %put &_ORNETFL; to view details about the optimization.

When the network simplex method is used, the value of _ORNETFL consists of the following parts:

� ERROR_STATUS, indicating the existence or absence of any errors

� OPT_STATUS, the stage of the optimization, or what solution has been found

410 F Chapter 5: The NETFLOW Procedure

Ideally, at the end of a PROC NETFLOW run in which the network simplex method is used, _ORNETFL has
the following value:

ERROR_STATUS=OK OPT_STATUS=OPTIMAL OBJECTIVE=x
SOLUTION=OPTIMAL

At the end of a PROC NETFLOW run in which the interior point algorithm is used, _ORNETFL should have
the following value:

ERROR_STATUS=OK SOLUTION=OPTIMAL OBJECTIVE=x
ITERATIONS=x ITERATING_TIME=x SOLUTION_TIME=x

Nontrailing blank characters that are unnecessary are removed. If the preprocessor detects that a problem
with a network component is infeasible, and you specify that the interior point algorithm should be used,
_ORNETFL has the following value:

ERROR_STATUS=OK SOLUTION=INFEASIBLE
ITERATIONS=0 ITERATING_TIME=0 SOLUTION_TIME=0

The same value is assigned to the _ORNETFL macro variable if the preprocessor detects that an LP problem
is infeasible.

Table 5.11 lists alternate values for the _ORNETFL value parts.

Table 5.11 PROC NETFLOW _ORNETFL Macro Values

Keyword Value Meaning

ERROR_STATUS OK No errors
MEMORY Memory request failed
IO Input/output error
DATA Error in the data
BUG Error with PROC NETFLOW
SEMANTIC Semantic error
SYNTAX Syntax error
UNKNOWN Unknown error

OPT_STATUS START No optimization has been done
STAGE_1 Performing stage 1 optimization
UNCON_OPT Reached unconstrained optimum,

but there are side constraints
STAGE_2 Performing stage 2 optimization
OPTIMAL Reached the optimum

OBJECTIVE objective Total cost or profit
MINFLOW minflow If MAXFLOW and MAXIMIZE

are specified at the same time

Memory Limit F 411

Keyword Value Meaning

MAXFLOW maxflow If MAXFLOW is specified
SHORTEST_PATH shortpath If SHORTPATH is specified
LONGEST_PATH longpath If SHORTPATH and MAXIMIZE

are specified at the same time
SOLUTION NONOPTIMAL More optimization is required

STAGE_2_REQUIRED Reached unconstrained optimum,
stage 2 optimization is required

OPTIMAL Have determined the optimum
INFEASIBLE Infeasible; no solution exists
UNRESOLVED_OPTIMALITY
_OR_FEASIBILITY

The optimization process stops
before optimality or infeasibility
can be proven.

MAXITERB_OPTION
_STOPPED_OPTIMIZATION

The interior point algorithm stops
after performing maximal
number of iterations specified by
the MAXITERB= option

Memory Limit
The system option MEMSIZE sets a limit on the amount of memory used by the SAS System. If you
do not specify a value for this option, then the SAS System sets a default memory limit. Your operating
environment determines the actual size of the default memory limit, which is sufficient for many applications.
However, to solve most realistic optimization problems, the NETFLOW procedure might require more
memory. Increasing the memory limit can reduce the chance of an out-of-memory condition.

NOTE: The MEMSIZE system option is not available in some operating environments. See the documentation
for your operating environment for more information.

You can specify -MEMSIZE 0 to indicate all available memory should be used, but this setting should be used
with caution. In most operating environments, it is better to specify an adequate amount of memory than to
specify -MEMSIZE 0. For example, if you are running PROC OPTLP to solve LP problems with only a few
hundred thousand variables and constraints, -MEMSIZE 500M might be sufficient to enable the procedure to
run without an out-of-memory condition. When problems have millions of variables, -MEMSIZE 1000M or
higher might be needed. These are “rules of thumb”—problems with atypical structure, density, or other
characteristics can increase the optimizer’s memory requirements.

The MEMSIZE option can be specified at system invocation, on the SAS command line, or in a configuration
file. The syntax is described in the SAS Companion for your operating environment.

To report a procedure’s memory consumption, you can use the FULLSTIMER option. The syntax is described
in the SAS Companion for your operating environment.

412 F Chapter 5: The NETFLOW Procedure

The Interior Point Algorithm: NETFLOW Procedure

Introduction
The simplex algorithm, developed shortly after World War II, was the main method used to solve linear
programming problems. Over the last fifteen years, the interior point algorithm has been developed to also
solve linear programming problems. From the start it showed great theoretical promise, and considerable
research in the area resulted in practical implementations that performed competitively with the simplex
algorithm. More recently, interior point algorithms have evolved to become superior to the simplex algorithm,
in general, especially when the problems are large.

The interior point algorithm has been implemented in PROC NETFLOW. This algorithm can be used to
solve linear programs as well as network problems. When PROC NETFLOW detects that the problem has
no network component, it automatically invokes the interior point algorithm to solve the problem. The data
required by PROC NETFLOW for a linear program resembles the data for nonarc variables and constraints
for constrained network problems.

If PROC NETFLOW does detect a network component to the problem (the problem has arcs), you must
specify the option INTPOINT in the PROC NETFLOW statement if you want to use the interior point algo-
rithm. PROC NETFLOW first converts the constrained network model into an equivalent linear programming
formulation, solves that, then converts the LP back to the network model. These models remain conceptually
easy since they are based on network diagrams that represent the problem pictorially. This procedure accepts
the network specification in a format that is particularly suited to networks. This not only simplifies problem
description but also aids in the interpretation of the solution. The conversions to and from the equivalent LP
are done “behind the scenes.”

There are many variations of interior point algorithms. PROC NETFLOW uses the Primal-Dual with
Predictor-Corrector algorithm. This algorithm and related theory can be found in the texts by Roos, Terlaky,
and Vial (1997), Wright (1997), and Ye (1996).

The remainder of this section is split into two parts. In the first part, how you use PROC NETFLOW’s interior
point algorithm to solve network problems is described. In the second part, using PROC NETFLOW to
solve linear programming problems (its interior point algorithm must be used) is described. Both parts are
organized similarly:

� The way data are supplied to PROC NETFLOW is outlined in a “Getting Started” subsection.

� An “Introductory Example” is solved to demonstrate how the data are set up, how PROC NETFLOW
is used to compute the solution, and how the optimum is saved.

� More sophisticated ways to use PROC NETFLOW interactively are detailed in an “Interactivity”
subsection.

� A “Functional Summary” lists the statements and options that can be used to control PROC NETFLOW.
Of particular interest are the options used to control the optimizer, and the way the solution is saved
into output data sets or is displayed.

The Linear Programs section has additional subsections:

Network Models: Interior Point Algorithm F 413

� “Mathematical Description of LP”

� “Interior Point Algorithmic Details,” a brief theory of the algorithm containing information about the
options that can be specified to control the interior point algorithm.

� “Syntax” subsection, which is a subset of the syntax when the simplex algorithm is used. Gone are the
statements and lists relevant only when the simplex algorithm is used.

Network Models: Interior Point Algorithm
The data required by PROC NETFLOW for a network problem is identical whether the simplex algorithm or
the interior point algorithm is used as the optimizer. By default, the simplex algorithm is used for problems
with a network component. To use the interior point algorithm, all you need to do is specify the INTPOINT
option in the PROC NETFLOW statement. You can optionally specify some options that control the interior
point algorithm, of which there are only a few. The interior point algorithm is remarkably robust when
reasonable choices are made during the design and implementation, so it does not need to be tuned to the
same extent as the simplex algorithm.

When to Use INTPOINT: Network Models: Interior Point Algorithm

PROC NETFLOW uses the primal simplex network algorithm and the primal partitioning algorithm to solve
constrained network problems. These algorithms are fast, since they take advantage of algebraic properties of
the network component of the problem.

If the network component of the model is large compared to the side constraint component, PROC NET-
FLOW’s optimizer can store what would otherwise be a large matrix as a spanning tree computer data
structure. Computations involving the spanning tree data structure can be performed much faster than those
using matrices. Only the nonnetwork part of the problem, hopefully quite small, needs to be manipulated by
PROC NETFLOW as matrices.

In contrast, LP optimizers must contend with matrices that can be large for large problems. Arithmetic
operations on matrices often accumulate rounding errors that cause difficulties for the algorithm. So in
addition to the performance improvements, network optimization is generally more numerically stable than
LP optimization.

The nodal flow conservation constraints do not need to be specified in the network model. They are implied
by the network structure. However, flow conservation constraints do make up the data for the equivalent LP
model. If you have an LP that is small after the flow conservation constraints are removed, that problem is a
definite candidate for solution by PROC NETFLOW’s specialized simplex method.

However, some constrained network problems are solved more quickly by the interior point algorithm than
the network optimizer in PROC NETFLOW. Usually, they have a large number of side constraints or nonarc
variables. These models are more like LPs than network problems. The network component of the problem is
so small that PROC NETFLOW’s network simplex method cannot recoup the effort to exploit that component
rather than treat the whole problem as an LP. If this is the case, it is worthwhile to get PROC NETFLOW
to convert a constrained network problem to the equivalent LP and use its interior point algorithm. This
conversion must be done before any optimization has been performed (specify the INTPOINT option in the
PROC NETFLOW statement).

Even though some network problems are better solved by converting them to an LP, the input data and the
output solution are more conveniently maintained as networks. You retain the advantages of casting problems

414 F Chapter 5: The NETFLOW Procedure

as networks: ease of problem generation and expansion when more detail is required. The model and optimal
solutions are easy to understand, as a network can be drawn.

Getting Started: Network Models: Interior Point Algorithm

To solve network programming problems with side constraints using PROC NETFLOW, you save a repre-
sentation of the network and the side constraints in three SAS data sets. These data sets are then passed to
PROC NETFLOW for solution. There are various forms that a problem’s data can take. You can use any one
or a combination of several of these forms.

The NODEDATA= data set contains the names of the supply and demand nodes and the supply or demand
associated with each. These are the elements in the column vector b in problem (NPSC).

The ARCDATA= data set contains information about the variables of the problem. Usually these are arcs, but
there can also be data related to nonarc variables in the ARCDATA= data set. If there are no arcs, this is a
linear programming problem.

An arc is identified by the names of its tail node (where it originates) and head node (where it is directed).
Each observation can be used to identify an arc in the network and, optionally, the cost per flow unit across
the arc, the arc’s lower flow bound, capacity, and name. These data are associated with the matrix F and the
vectors c, l, and u in problem (NPSC).

NOTE: Although F is a node-arc incidence matrix, it is specified in the ARCDATA= data set by arc definitions.
Do not explicitly specify these flow conservation constraints as constraints of the problem.

In addition, the ARCDATA= data set can be used to specify information about nonarc variables, including
objective function coefficients, lower and upper value bounds, and names. These data are the elements of the
vectors d, m, and v in problem (NPSC). Data for an arc or nonarc variable can be given in more than one
observation.

Supply and demand data also can be specified in the ARCDATA= data set. In such a case, the NODEDATA=
data set may not be needed.

The CONDATA= data set describes the side constraints and their right-hand sides. These data are elements
of the matrices H and Q and the vector r. Constraint types are also specified in the CONDATA= data set.
You can include in this data set upper bound values or capacities, lower flow or value bounds, and costs or
objective function coefficients. It is possible to give all information about some or all nonarc variables in the
CONDATA= data set.

An arc or nonarc variable is identified in this data set by its name. If you specify an arc’s name in the
ARCDATA= data set, then this name is used to associate data in the CONDATA= data set with that arc. Each
arc also has a default name that is the name of the tail and head node of the arc concatenated together and
separated by an underscore character; tail_head, for example.

Network Models: Interior Point Algorithm F 415

If you use the dense side constraint input format and want to use the default arc names, these arc names are
names of SAS variables in the VAR list of the CONDATA= data set.

If you use the sparse side constraint input format (also described later) and want to use the default arc names,
these arc names are values of the COLUMN list SAS variable of the CONDATA= data set.

When using the interior point algorithm, the execution of PROC NETFLOW has two stages. In the pre-
liminary (zeroth) stage, the data are read from the NODEDATA= data set, the ARCDATA= data set, and
the CONDATA= data set. Error checking is performed. The model is converted into an equivalent linear
program.

In the next stage, the linear program is preprocessed. This is optional but highly recommended. Preprocessing
analyzes the model and tries to determine before optimization whether variables can be “fixed” to their
optimal values. Knowing that, the model can be modified and these variables dropped out. It can be
determined that some constraints are redundant. Sometimes, preprocessing succeeds in reducing the size of
the problem, thereby making the subsequent optimization easier and faster.

The optimal solution to the linear program is then found. The linear program is converted back to the original
constrained network problem, and the optimum for this is derived from the optimum of the equivalent linear
program. If the problem was preprocessed, the model is now post-processed, where fixed variables are
reintroduced. The solution can be saved in the CONOUT= data set. This data set is also named in the PROC
NETFLOW, RESET, and SAVE statements.

The interior point algorithm cannot efficiently be warm started, so options such as FUTURE1 and FUTURE2
options are irrelevant.

Introductory Example: Network Models: Interior Point Algorithm

Consider the following transshipment problem for an oil company in the section “Introductory Example” on
page 311. Recall that crude oil is shipped to refineries where it is processed into gasoline and diesel fuel. The
gasoline and diesel fuel are then distributed to service stations. At each stage there are shipping, processing,
and distribution costs. Also, there are lower flow bounds and capacities. In addition, there are side constraints
to model crude mix stipulations, and model the limitations on the amount of Middle Eastern crude that can be
processed by each refinery and the conversion proportions of crude to gasoline and diesel fuel. The network
diagram is reproduced in Figure 5.16.

416 F Chapter 5: The NETFLOW Procedure

Figure 5.16 Oil Industry Example

u.s.a. refinery2

middle east refinery1

r2

r1

ref2 diesel

ref2 gas

ref1 diesel

ref1 gas

servstn2

diesel

servstn2
gas

servstn1

diesel

servstn1
gas

To solve this problem with PROC NETFLOW, a representation of the model is saved in three SAS data sets
that are identical to the data sets supplied to PROC NETFLOW when the simplex algorithm was used.

To find the minimum cost flow through the network that satisfies the supplies, demands, and side constraints,
invoke PROC NETFLOW as follows:

proc netflow
intpoint /* <<<--- Interior Point used */
nodedata=noded /* the supply and demand data */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* the solution data set */

run;

The following messages, which appear on the SAS log, summarize the model as read by PROC NETFLOW
and note the progress toward a solution:

Network Models: Interior Point Algorithm F 417

NOTE: Number of nodes= 14 .

NOTE: Number of supply nodes= 2 .

NOTE: Number of demand nodes= 4 .

NOTE: Total supply= 180 , total demand= 180 .

NOTE: Number of arcs= 18 .

NOTE: Number of <= side constraints= 0 .

NOTE: Number of == side constraints= 2 .

NOTE: Number of >= side constraints= 2 .

NOTE: Number of side constraint coefficients= 8 .

NOTE: The following messages relate to the equivalent Linear Programming

 problem solved by the Interior Point algorithm.

NOTE: Number of <= constraints= 0 .

NOTE: Number of == constraints= 16 .

NOTE: Number of >= constraints= 2 .

NOTE: Number of constraint coefficients= 44 .

NOTE: Number of variables= 18 .

NOTE: After preprocessing, number of <= constraints= 0.

NOTE: After preprocessing, number of == constraints= 3.

NOTE: After preprocessing, number of >= constraints= 2.

NOTE: The preprocessor eliminated 13 constraints from the problem.

NOTE: The preprocessor eliminated 33 constraint coefficients from the problem.

NOTE: After preprocessing, number of variables= 5.

NOTE: The preprocessor eliminated 13 variables from the problem.

NOTE: 4 columns, 0 rows and 4 coefficients were added to the problem to handle

 unrestricted variables, variables that are split, and constraint slack or

 surplus variables.

NOTE: There are 10 sub-diagonal nonzeroes in the unfactored A Atranspose matrix.

NOTE: The 5 factor nodes make up 1 supernodes

NOTE: There are 0 nonzero sub-rows or sub-columns outside the supernodal

 triangular regions along the factors leading diagonal.

NOTE: Bound feasibility attained by iteration 1.

NOTE: Dual feasibility attained by iteration 1.

NOTE: Constraint feasibility attained by iteration 1.

NOTE: The Primal-Dual Predictor-Corrector Interior Point algorithm performed 6

 iterations.

NOTE: Optimum reached.

NOTE: Objective= 50875.

NOTE: The data set WORK.SOLUTION has 18 observations and 10 variables.

The first set of messages provide statistics on the size of the equivalent linear programming problem. The
number of variables may not equal the number of arcs if the problem has nonarc variables. This example has
none. To convert a network to an equivalent LP problem, a flow conservation constraint must be created for
each node (including an excess or bypass node, if required). This explains why the number of equality side
constraints and the number of constraint coefficients change when the interior point algorithm is used.

418 F Chapter 5: The NETFLOW Procedure

If the preprocessor was successful in decreasing the problem size, some messages will report how well it did.
In this example, the model size was cut in half!

The following set of messages describe aspects of the interior point algorithm. Of particular interest are
those concerned with the Cholesky factorization of AAT where A is the coefficient matrix of the final LP. It
is crucial to preorder the rows and columns of this matrix to prevent fill-in and reduce the number of row
operations to undertake the factorization. See the section “Interior Point Algorithmic Details” on page 424
for more explanation.

Unlike PROC LP, which displays the solution and other information as output, PROC NETFLOW saves the
optimum in output SAS data sets you specify. For this example, the solution is saved in the SOLUTION data
set. It can be displayed with PROC PRINT as

proc print data=solution;
var _from_ _to_ _cost_ _capac_ _lo_ _name_

supply _demand_ _flow_ _fcost_ ;
sum _fcost_;
title3 'Constrained Optimum';

run;

Figure 5.17 CONOUT=SOLUTION

Constrained OptimumConstrained Optimum

Obs _from_ _to_ _cost_ _capac_ _lo_ _name_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 refinery 1 r1 200 175 50 thruput1 . . 145.000 29000.00

2 refinery 2 r2 220 100 35 thruput2 . . 35.000 7700.00

3 r1 ref1 diesel 0 75 0 . . 36.250 0.00

4 r1 ref1 gas 0 140 0 r1_gas . . 108.750 0.00

5 r2 ref2 diesel 0 75 0 . . 8.750 0.00

6 r2 ref2 gas 0 100 0 r2_gas . . 26.250 0.00

7 middle east refinery 1 63 95 20 m_e_ref1 100 . 80.000 5040.00

8 u.s.a. refinery 1 55 99999999 0 80 . 65.000 3575.00

9 middle east refinery 2 81 80 10 m_e_ref2 100 . 20.000 1620.00

10 u.s.a. refinery 2 49 99999999 0 80 . 15.000 735.00

11 ref1 diesel servstn1 diesel 18 99999999 0 . 30 30.000 540.00

12 ref2 diesel servstn1 diesel 36 99999999 0 . 30 0.000 0.00

13 ref1 gas servstn1 gas 15 70 0 . 95 68.750 1031.25

14 ref2 gas servstn1 gas 17 35 5 . 95 26.250 446.25

15 ref1 diesel servstn2 diesel 17 99999999 0 . 15 6.250 106.25

16 ref2 diesel servstn2 diesel 23 99999999 0 . 15 8.750 201.25

17 ref1 gas servstn2 gas 22 60 0 . 40 40.000 880.00

18 ref2 gas servstn2 gas 31 99999999 0 . 40 0.000 0.00

50875.00

Notice that, in the solution data set (Figure 5.17), the optimal flow through each arc in the network is given in
the variable named _FLOW_, and the cost of flow through each arc is given in the variable _FCOST_. As
expected, the minimal total cost of the solution found by the interior point algorithm is equal to the minimal
total cost of the solution found by the simplex algorithm. In this example, the solutions are the same (within
several significant digits), but sometimes the solutions can be different.

Network Models: Interior Point Algorithm F 419

Figure 5.18 Oil Industry Solution

u.s.a. refinery2

middle east refinery1

r2

r1

ref2 diesel

ref2 gas

ref1 diesel

ref1 gas

servstn2

diesel

servstn2
gas

servstn1

diesel

servstn1
gas

80

100

15

80

20

65

35

145

8:75

26:25

36:25

108:75

68:75

8:75

30

40 26:25

6:25

�95

�30

�40

�15

Interactivity: Network Models: Interior Point Algorithm

PROC NETFLOW can be used interactively. You begin by giving the PROC NETFLOW statement with
INTPOINT specified, and you must specify the ARCDATA= data set. The CONDATA= data set must also be
specified if the problem has side constraints. If necessary, specify the NODEDATA= data set.

The variable lists should be given next. If you have variables in the input data sets that have special names
(for example, a variable in the ARCDATA= data set named _TAIL_ that has tail nodes of arcs as values), it
may not be necessary to have many or any variable lists.

So far, this is the same as when the simplex algorithm is used, except the INTPOINT option is specified in
the PROC NETFLOW statement. The PRINT, QUIT, SAVE, SHOW, RESET, and RUN statements follow
and can be listed in any order. The QUIT statements can be used only once. The others can be used as many
times as needed.

The CONOPT and PIVOT statements are not relevant to the interior point algorithm and should not be used.

Use the RESET or SAVE statement to change the name of the output data set. There is only one output data
set, the CONOUT= data set. With the RESET statement, you can also indicate the reasons why optimization
should stop (for example, you can indicate the maximum number of iterations that can be performed). PROC
NETFLOW then has a chance to either execute the next statement, or, if the next statement is one that
PROC NETFLOW does not recognize (the next PROC or DATA step in the SAS session), do any allowed
optimization and finish. If no new statement has been submitted, you are prompted for one. Some options of
the RESET statement enable you to control aspects of the interior point algorithm. Specifying certain values

420 F Chapter 5: The NETFLOW Procedure

for these options can reduce the time it takes to solve a problem. Note that any of the RESET options can be
specified in the PROC NETFLOW statement.

The RUN statement starts optimization. Once the optimization has started, it runs until the optimum is
reached. The RUN statement should be specified at most once.

The QUIT statement immediately stops PROC NETFLOW. The SAVE statement has options that enable
you to name the output data set; information about the current solution is put in this output data set. Use the
SHOW statement if you want to examine the values of options of other statements. Information about the
amount of optimization that has been done and the STATUS of the current solution can also be displayed
using the SHOW statement.

The PRINT statement makes PROC NETFLOW display parts of the problem. The way the PRINT statements
are specified are identical whether the interior point algorithm or the simplex algorithm is used, however
there are minor differences in what is displayed for each arc, nonarc variable or constraint coefficient.

PRINT ARCS produces information on all arcs. PRINT SOME_ARCS limits this output to a subset of arcs.
There are similar PRINT statements for nonarc variables and constraints:

PRINT NONARCS;
PRINT SOME_NONARCS;
PRINT CONSTRAINTS;
PRINT SOME_CONS;

PRINT CON_ARCS enables you to limit constraint information that is obtained to members of a set of
arcs and that have nonzero constraint coefficients in a set of constraints. PRINT CON_NONARCS is the
corresponding statement for nonarc variables.

For example, an interactive PROC NETFLOW run might look something like this:

proc netflow
intpoint /* use the Interior Point algorithm */
arcdata=data set
other options;

variable list specifications; /* if necessary */
reset options;
print options; /* look at problem */

run; /* do the optimization */
print options; /* look at the optimal solution */
save options; /* keep optimal solution */

If you are interested only in finding the optimal solution, have used SAS variables that have special names in
the input data sets, and want to use default settings for everything, then the following statement is all you
need.

proc netflow intpoint arcdata= data set ;

Functional Summary: Network Models, Interior Point Algorithm

The following table outlines the options available for the NETFLOW procedure when the interior point
algorithm is being used, classified by function.

Network Models: Interior Point Algorithm F 421

Table 5.12 Functional Summary, Network Models

Description Statement Option

Input Data Set Options:
Arcs input data set PROC NETFLOW ARCDATA=
Nodes input data set PROC NETFLOW NODEDATA=
Constraint input data set PROC NETFLOW CONDATA=

Output Data Set Option:
Constrained solution data set PROC NETFLOW CONOUT=

Data Set Read Options:
CONDATA has sparse data format PROC NETFLOW SPARSECONDATA
Default constraint type PROC NETFLOW DEFCONTYPE=
Special COLUMN variable value PROC NETFLOW TYPEOBS=
Special COLUMN variable value PROC NETFLOW RHSOBS=
Used to interpret arc and nonarc variable names PROC NETFLOW NAMECTRL=
No new nonarc variables PROC NETFLOW SAME_NONARC_DATA
No nonarc data in ARCDATA PROC NETFLOW ARCS_ONLY_ARCDATA
Data for an arc found once in ARCDATA PROC NETFLOW ARC_SINGLE_OBS
Data for a constraint found once in CONDATA PROC NETFLOW CON_SINGLE_OBS
Data for a coefficient found once in CONDATA PROC NETFLOW NON_REPLIC=
Data are grouped, exploited during data read PROC NETFLOW GROUPED=

Problem Size Specification Options:
Approximate number of nodes PROC NETFLOW NNODES=
Approximate number of arcs PROC NETFLOW NARCS=
Approximate number of nonarc variables PROC NETFLOW NNAS=
Approximate number of coefficients PROC NETFLOW NCOEFS=
Approximate number of constraints PROC NETFLOW NCONS=

Network Options:
Default arc cost PROC NETFLOW DEFCOST=
Default arc capacity PROC NETFLOW DEFCAPACITY=
Default arc lower flow bound PROC NETFLOW DEFMINFLOW=
Network’s only supply node PROC NETFLOW SOURCE=
SOURCE’s supply capability PROC NETFLOW SUPPLY=
Network’s only demand node PROC NETFLOW SINK=
SINK’s demand PROC NETFLOW DEMAND=
Convey excess supply/demand through network PROC NETFLOW THRUNET
Find maximal flow between SOURCE and SINK PROC NETFLOW MAXFLOW
Cost of bypass arc for MAXFLOW problem PROC NETFLOW BYPASSDIVIDE=
Find shortest path from SOURCE to SINK PROC NETFLOW SHORTPATH

Memory Control Options:
Issue memory usage messages to SAS log PROC NETFLOW MEMREP

422 F Chapter 5: The NETFLOW Procedure

Description Statement Option

Number of bytes to use for main memory PROC NETFLOW BYTES=
Proportion of memory for arrays PROC NETFLOW COREFACTOR=
Maximum bytes for a single array PROC NETFLOW MAXARRAYBYTES=

Interior Point Algorithm Options:
Use interior point algorithm PROC NETFLOW INTPOINT
Factorization method RESET FACT_METHOD=
Allowed amount of dual infeasibility RESET TOLDINF=
Allowed amount of primal infeasibility RESET TOLPINF=
Allowed total amount of dual infeasibility RESET TOLTOTDINF=
Allowed total amount of primal infeasibility RESET TOLTOTPINF=
Cut-off tolerance for Cholesky factorization RESET CHOLTINYTOL=
Density threshold for Cholesky processing RESET DENSETHR=
Step-length multiplier RESET PDSTEPMULT=
Preprocessing type RESET PRSLTYPE=
Print optimization progress on SAS log RESET PRINTLEVEL2=
Write optimization time to SAS log RESET OPTIM_TIMER

Interior Point Stopping Criteria Options:
Maximum number of interior point iterations RESET MAXITERB=
Primal-dual (duality) gap tolerance RESET PDGAPTOL=
Stop because of complementarity RESET STOP_C=
Stop because of duality gap RESET STOP_DG=
Stop because of infeasb RESET STOP_IB=
Stop because of infeasc RESET STOP_IC=
Stop because of infeasd RESET STOP_ID=
Stop because of complementarity RESET AND_STOP_C=
Stop because of duality gap RESET AND_STOP_DG=
Stop because of infeasb RESET AND_STOP_IB=
Stop because of infeasc RESET AND_STOP_IC=
Stop because of infeasd RESET AND_STOP_ID=
Stop because of complementarity RESET KEEPGOING_C=
Stop because of duality gap RESET KEEPGOING_DG=
Stop because of infeasb RESET KEEPGOING_IB=
Stop because of infeasc RESET KEEPGOING_IC=
Stop because of infeasd RESET KEEPGOING_ID=
Stop because of complementarity RESET AND_KEEPGOING_C=
Stop because of duality gap RESET AND_KEEPGOING_DG=
Stop because of infeasb RESET AND_KEEPGOING_IB=
Stop because of infeasc RESET AND_KEEPGOING_IC=
Stop because of infeasd RESET AND_KEEPGOING_ID=
PRINT Statement Options:
Display everything PRINT PROBLEM
Display arc information PRINT ARCS
Display nonarc variable information PRINT NONARCS

Linear Programming Models: Interior Point Algorithm F 423

Description Statement Option

Display variable information PRINT VARIABLES
Display constraint information PRINT CONSTRAINTS
Display information for some arcs PRINT SOME_ARCS
Display information for some nonarc variables PRINT SOME_NONARCS
Display information for some variables PRINT SOME_VARIABLES
Display information for some constraints PRINT SOME_CONS
Display information for some constraints associ-
ated with some arcs

PRINT CON_ARCS

Display information for some constraints associ-
ated with some nonarc variables

PRINT CON_NONARCS

Display information for some constraints associ-
ated with some variables

PRINT CON_VARIABLES

PRINT Statement Qualifiers:
Produce a short report PRINT / SHORT
Produce a long report PRINT / LONG
Display arcs/variables with zero flow/value PRINT / ZERO
Display arcs/variables with nonzero flow/value PRINT / NONZERO

SHOW Statement Options:
Show problem, optimization status SHOW STATUS
Show network model parameters SHOW NETSTMT
Show data sets that have been or will be created SHOW DATASETS

Miscellaneous Options:
Infinity value PROC NETFLOW INFINITY=
Scale constraint row, nonarc variable column coef-
ficients, or both

PROC NETFLOW SCALE=

Maximization instead of minimization PROC NETFLOW MAXIMIZE

Linear Programming Models: Interior Point Algorithm
By default, the interior point algorithm is used for problems without a network component, that is, a linear
programming problem. You do not need to specify the INTPOINT option in the PROC NETFLOW statement
(although you will do no harm if you do).

Data for a linear programming problem resembles the data for side constraints and nonarc variables supplied
to PROC NETFLOW when solving a constrained network problem. It is also very similar to the data required
by the LP procedure.

424 F Chapter 5: The NETFLOW Procedure

Mathematical Description of LP

If the network component of NPSC is removed, the result is the mathematical description of the linear
programming problem. If an LP has g variables, and k constraints, then the formal statement of the problem
solved by PROC NETFLOW is

minimize dT z

subject to Qz f�;D;�g r

m � z � v

where

� d is the g � 1 objective function coefficient vector

� z is the g � 1 variable value vector

� Q is the k � g constraint coefficient matrix for variables, where Qi;j is the coefficient of variable j in
the ith constraint

� r is the k � 1 side constraint right-hand-side vector

� m is the g � 1 variable value lower bound vector

� v is the g � 1 variable value upper bound vector

Interior Point Algorithmic Details

After preprocessing, the linear program to be solved is

minimize cT x

subject to Ax D b

x � 0

This is the primal problem. The matrices d, z, and Q of NPSC have been renamed c, x, and A respectively, as
these symbols are by convention used more, the problem to be solved is different from the original because of
preprocessing, and there has been a change of primal variable to transform the LP into one whose variables
have zero lower bounds. To simplify the algebra here, assume that variables have infinite bounds, and
constraints are equalities. (Interior point algorithms do efficiently handle finite bounds, and it is easy to
introduce primal slack variables to change inequalities into equalities.) The problem has n variables; i is a
variable number, k is an iteration number, and if used as a subscript or superscript it denotes “of iteration k”.

There exists an equivalent problem, the dual problem, stated as

maximize bT y

subject to AT y C s D c

s � 0

where y are dual variables, and s are dual constraint slacks.

Linear Programming Models: Interior Point Algorithm F 425

The interior point algorithm solves the system of equations to satisfy the Karush-Kuhn-Tucker (KKT)
conditions for optimality:

Ax D b

AT y C s D c

xT s D 0

x � 0

s � 0

These are the conditions for feasibility, with the complementarity condition xT s D 0 added. Complementarity
forces the optimal objectives of the primal and dual to be equal, cT xopt D b

T yopt , as

0 D xT
optsopt D s

T
optxopt D .c � A

T yopt /
T xopt

D cT xopt � y
T
opt .Axopt / D c

T xopt � b
T yopt

Before the optimum is reached, a solution .x; y; s/ may not satisfy the KKT conditions:

� Primal constraints may be violated, infeasc D b � Ax ¤ 0.

� Dual constraints may be violated, infeasd D c � A
T y � s ¤ 0.

� Complementarity may not be satisfied, xT s D cT x � bT y ¤ 0.

This is called the duality gap.

The interior point algorithm works by using Newton’s method to find a direction to move .�xk; �yk; �sk/

from the current solution .xk; yk; sk/ toward a better solution:

.xkC1; ykC1; skC1/ D .xk; yk; sk/C ˛.�xk; �yk; �sk/

where ˛ is the step length and is assigned a value as large as possible but � 1:0 and not so large that an xkC1
i

or skC1
i is “too close” to zero. The direction in which to move is found using the following:

A�xk
D �infeasc

AT�yk
C�sk

D �infeasd

Sk�xk
CXk�sk

D �XkSke

where S D diag.s/, X D diag.x/, and e is a vector with all elements equal to 1.

426 F Chapter 5: The NETFLOW Procedure

To greatly improve performance, the third equation is changed to

Sk�xk
CXk�sk

D �XkSke C �k�ke

where �k D 1=nX
kSke, the average complementarity, and 0 � �k � 1:

The effect now is to find a direction in which to move to reduce infeasibilities and to reduce the comple-
mentarity toward zero, but if any xk

i s
k
i is too close to zero, it is “nudged out” to �, and any xk

i s
k
i that is

larger than � is “nudged into” �. A �k close to or equal to 0.0 biases a direction toward the optimum, and
a value for �k close to or equal to 1.0 “centers” the direction toward a point where all pairwise products
xk

i s
k
i D �. Such points make up the central path in the interior. Although centering directions make little, if

any, progress in reducing � and moving the solution closer to the optimum, substantial progress toward the
optimum can usually be made in the next iteration.

The central path is crucial to why the interior point algorithm is so efficient. This path “guides” the algorithm
to the optimum through the interior of feasible space. Without centering, the algorithm would find a series of
solutions near each other close to the boundary of feasible space. Step lengths along the direction would be
small and many more iterations would probably be required to reach the optimum.

The calculation of the direction is the most time-consuming step of the interior point algorithm. Assume the
kth iteration is being performed, so the subscript and superscript k can be dropped from the algebra:

A�x D �infeasc

AT�y C�s D �infeasd

S�x CX�s D �XSe C ��e

Rearranging the second equation,

�s D �infeasd � A
T�y

Rearranging the third equation,

�s D X�1.�S�x �XSe C ��e/

�s D �‚�x � Se CX�1��e

where ‚ D SX�1:

Equating these two expressions for �s and rearranging,

�‚�x � Se CX�1��e D �infeasd � A
T�y

�‚�x D Se �X�1��e � infeasd � A
T�y

�x D ‚�1.�Se CX�1��e C infeasd C A
T�y/

�x D �C‚�1AT�y

where � D ‚�1.�Se CX�1��e C infeasd /:

Linear Programming Models: Interior Point Algorithm F 427

Substituting into the first direction equation,

A�x D �infeasc

A.�C‚�1AT�y/ D �infeasc

A‚�1AT�y D �infeasc � A�

�y D .A‚�1AT /�1.�infeasc � A�/

‚, �, �y, �x and �s are calculated in that order. The hardest term is the factorization of the .A‚�1AT /

matrix to determine �y. Fortunately, although the values of .A‚�1AT / are different for each iteration, the
locations of the nonzeros in this matrix remain fixed; the nonzero locations are the same as those in the
matrix .AAT /. This is due to ‚�1 D XS�1 being a diagonal matrix, which has the effect of merely scaling
the columns of .AAT /.

The fact that the nonzeros in A‚�1AT have a constant pattern is exploited by all interior point algorithms,
and is a major reason for their excellent performance. Before iterations begin, AAT is examined and its rows
and columns are permuted so that during Cholesky Factorization, the number of fill-ins created is smaller.
A list of arithmetic operations to perform the factorization is saved in concise computer data structures
(working with memory locations rather than actual numerical values). This is called symbolic factorization.
During iterations, when memory has been initialized with numerical values, the operations list is performed
sequentially. Determining how the factorization should be performed again and again is unnecessary.

The Primal-Dual Predictor-Corrector Interior Point Algorithm

The variant of the interior point algorithm implemented in PROC NETFLOW is a Primal-Dual Predictor-
Corrector interior point algorithm. At first, Newton’s method is used to find a direction to move
.�xk

aff ; �y
k
aff ; �s

k
aff /, but calculated as if � is zero, that is, a step with no centering, known as an affine

step:

A�xk
aff D �infeasc

AT�yk
aff C�s

k
aff D �infeasd

Sk�xk
aff CX

k�sk
aff D �X

kSke

.xk
aff ; y

k
aff ; s

k
aff / D .x

k; yk; sk/C ˛.�xk
aff ; �y

k
aff ; �s

k
aff /

where ˛ is the step length as before.

Complementarity xT s is calculated at .xk
aff ; y

k
aff ; s

k
aff / and compared with the complementarity at the starting

point .xk; yk; sk/, and the success of the affine step is gauged. If the affine step was successful in reducing
the complementarity by a substantial amount, the need for centering is not great, and the value of �k in
the following linear system is assigned a value close to zero. If, however, the affine step was unsuccessful,
centering would be beneficial, and the value of �k in the following linear system is assigned a value closer to
1.0. The value of �k is therefore adaptively altered depending on the progress made toward the optimum.

428 F Chapter 5: The NETFLOW Procedure

A second linear system is solved to determine a centering vector .�xk
c ; �y

k
c ; �s

k
c / from .xk

aff ; y
k
aff ; s

k
aff / W

A�xk
c D 0

AT�yk
c C�s

k
c D 0

Sk�xk
c CX

k�sk
c D �X

kSke

Sk�xk
CXk�sk

D �Xk
aff S

k
aff e C �k�ke

Then

.�xk; �yk; �sk/ D .�xk
aff ; �y

k
aff ; �s

k
aff /C .�x

k
c ; �y

k
c ; �s

k
c /

.xkC1; ykC1; skC1/ D .xk; yk; sk/C ˛.�xk; �yk; �sk/

where, as before, ˛ is the step length assigned a value as large as possible but not so large that an xkC1
i or

skC1
i is “too close” to zero.

Although the Predictor-Corrector variant entails solving two linear system instead of one, fewer iterations
are usually required to reach the optimum. The additional overhead of calculating the second linear system
is small, as the factorization of the .A‚�1AT / matrix has already been performed to solve the first linear
system.

Stopping Criteria

There are several reasons why PROC NETFLOW stops interior point optimization. Optimization stops when

� the number of iteration equals MAXITERB=m

� the relative gap .duality gap=.cT x// between the primal and dual objectives is smaller than the value
of the PDGAPTOL= option, and both the primal and dual problems are feasible. Duality gap is defined
in the section “Interior Point Algorithmic Details” on page 424.

PROC NETFLOW may stop optimization when it detects that the rate at which the complementarity or
dualitygap is being reduced is too slow, that is, there are consecutive iterations when the complementarity or
duality gap has stopped getting smaller and the infeasibilities, if nonzero, have also stalled. Sometimes, this
indicates the problem is infeasible.

The reasons to stop optimization outlined in the previous paragraph will be termed the usual stopping
conditions in the following explanation.

However, when solving some problems, especially if the problems are large, the usual stopping criteria
are inappropriate. PROC NETFLOW might stop prematurely. If it were allowed to perform additional
optimization, a better solution would be found. On other occasions, PROC NETFLOW might do too much
work. A sufficiently good solution might be reached several iterations before PROC NETFLOW eventually
stops.

You can see PROC NETFLOW’s progress to the optimum by specifying PRINTLEVEL2=2. PROC NET-
FLOW will produce a table on the SAS log. A row of the table is generated during each iteration and consists
of values of the affine step complementarity, the complementarity of the solution for the next iteration, the

Linear Programming Models: Interior Point Algorithm F 429

total bound infeasibility
Pn

iD1 infeasbi (see the infeasb array in the section “Interior Point: Upper Bounds”
on page 431), the total constraint infeasibility

Pm
iD1 infeasci (see the infeasc array in the section “Interior

Point Algorithmic Details” on page 424), and the total dual infeasibility
Pn

iD1 infeasdi (see the infeasd

array in the section “Interior Point Algorithmic Details” on page 424). As optimization progresses, the values
in all columns should converge to zero.

To tailor stopping criteria to your problem, you can use two sets of parameters: the STOP_x and the KEEPGO-
ING_x parameters. The STOP_x parameters (STOP_C, STOP_DG, STOP_IB, STOP_IC, and STOP_ID) are
used to test for some condition at the beginning of each iteration and if met, to stop immediately. The KEEP-
GOING_x parameters (KEEPGOING_C, KEEPGOING_DG, KEEPGOING_IB, KEEPGOING_IC, and
KEEPGOING_ID) are used when PROC NETFLOW would ordinarily stop but does not if some conditions
are not met.

For the sake of conciseness, a set of options will be referred to as the part of the option name they have in
common followed by the suffix x. For example, STOP_C, STOP_DG, STOP_IB, STOP_IC, and STOP_ID
will collectively be referred to as STOP_x.

At the beginning of each iteration, PROC NETFLOW will test whether complementarity is � STOP_C
(provided you have specified a STOP_C parameter) and if it is, PROC NETFLOW will stop. If the duality
gap is � STOP_DG (provided you have specified a STOP_DG parameter), PROC NETFLOW will stop
immediately. This is also true for the other STOP_x parameters that are related to infeasibilities, STOP_IB,
STOP_IC, and STOP_ID.

For example, if you want PROC NETFLOW to stop optimizing for the usual stopping conditions, plus the
additional condition, complementarity � 100 or duality gap � 0.001, then use

proc netflow stop_c=100 stop_dg=0.001

If you want PROC NETFLOW to stop optimizing for the usual stopping conditions, plus the additional
condition, complementarity � 1000 and duality gap � 0.001 and constraint infeasibility � 0.0001, then use

proc netflow
and_stop_c=1000 and_stop_dg=0.01 and_stop_ic=0.0001

Unlike the STOP_x parameters that cause PROC NETFLOW to stop when any one of them is satis-
fied, the corresponding AND_STOP_x parameters (AND_STOP_C, AND_STOP_DG, AND_STOP_IB,
AND_STOP_IC, and AND_STOP_ID) cause PROC NETFLOW to stop only if all (more precisely, all that
are specified) options are satisfied. For example, if PROC NETFLOW should stop when

� complementarity � 100 or duality gap � 0.001 or

� complementarity � 1000 and duality gap � 0.001 and constraint infeasibility � 0.000

then use

proc netflow
stop_c=100 stop_dg=0.001
and_stop_c=1000 and_stop_dg=0.01 and_stop_ic=0.0001

Just as the STOP_x parameters have AND_STOP_x partners, the KEEPGOING_x parameters have
AND_KEEPGOING_x partners. The role of the KEEPGOING_x and AND_KEEPGOING_x parame-
ters is to prevent optimization from stopping too early, even though a usual stopping criterion is met. When
PROC NETFLOW detects that it should stop for a usual stopping condition, it performs the following tests:

430 F Chapter 5: The NETFLOW Procedure

� It will test whether complementarity is > KEEPGOING_C (provided you have specified a KEEPGO-
ING_C parameter), and if it is, PROC NETFLOW will perform more optimization.

� Otherwise, PROC NETFLOW will then test whether the primal-dual gap is > KEEPGOING_DG
(provided you have specified a KEEPGOING_DG parameter), and if it is, PROC NETFLOW will
perform more optimization.

� Otherwise, PROC NETFLOW will then test whether the total bound infeasibility
Pn

iD1 infeasbi >

KEEPGOING_IB (provided you have specified a KEEPGOING_IB parameter), and if it is, PROC
NETFLOW will perform more optimization.

� Otherwise, PROC NETFLOW will then test whether the total constraint infeasibility
Pm

iD1 infeasci >

KEEPGOING_IC (provided you have specified a KEEPGOING_IC parameter), and if it is, PROC
NETFLOW will perform more optimization.

� Otherwise, PROC NETFLOW will then test whether the total dual infeasibility
Pn

iD1 infeasdi >

KEEPGOING_ID (provided you have specified a KEEPGOING_ID parameter), and if it is, PROC
NETFLOW will perform more optimization.

� Otherwise it will test whether complementarity is > AND_KEEPGOING_C (provided you have speci-
fied an AND_KEEPGOING_C parameter), and the primal-dual gap is > AND_KEEPGOING_DG
(provided you have specified an AND_KEEPGOING_DG parameter), and the total bound infeasibilityPn

iD1 infeasbi > AND_KEEPGOING_IB (provided you have specified an AND_KEEPGOING_IB
parameter), and the total constraint infeasibility

Pm
iD1 infeasci > AND_KEEPGOING_IC (pro-

vided you have specified an AND_KEEPGOING_IC parameter) and the total dual infeasibilityPn
iD1 infeasdi > AND_KEEPGOING_ID (provided you have specified an AND_KEEPGOING_ID

parameter), and if it is, PROC NETFLOW will perform more optimization.

If all these tests to decide whether more optimization should be performed are false, optimization is stopped.

For example,

proc netflow
stop_c=1000
and_stop_c=2000 and_stop_dg=0.01
and_stop_ib=1 and_stop_ic=1 and_stop_id=1
keepgoing_c=1500
and_keepgoing_c=2500 and_keepgoing_dg=0.05
and_keepgoing_ib=1 and_keepgoing_ic=1 and_keepgoing_id=1

At the beginning of each iteration, PROC NETFLOW will stop if

� complementarity � 1000 or

� complementarity � 2000 and duality gap � 0.01 and the total bound, constraint, and dual infeasibilities
are each � 1

When PROC NETFLOW determines it should stop because a usual stopping condition is met, it will stop
only if

� complementarity � 1500 or

� complementarity � 2500 and duality gap � 0.05 and the total bound, constraint, and dual infeasibilities
are each � 1

Linear Programming Models: Interior Point Algorithm F 431

Interior Point: Upper Bounds

If the LP model had upper bounds (0 � x � u where u is the upper bound vector), then the primal and dual
problems, the duality gap, and the KKT conditions would have to be expanded.

The primal linear program to be solved is

minimize cT x

subject to Ax D b

0 � x � u

where 0 � x � u is split into x � 0 and x � u. Let z be primal slack so that x C z D u, and associate dual
variables w with these constraints. The interior point algorithm solves the system of equations to satisfy the
Karush-Kuhn-Tucker (KKT) conditions for optimality:

Ax D b

x C z D u

AT y C s � w D c

xT s D 0

zTw D 0

x; s; z; w � 0

These are the conditions for feasibility, with the complementarity conditions xT s D 0 and zTw D 0

added. Complementarity forces the optimal objectives of the primal and dual to be equal, cT xopt D

bT yopt � u
Twopt , as

0 D zT
optwopt D .u � xopt /

Twopt D u
Twopt � x

T
optwopt

0 D xT
optsopt D s

T
optxopt D .c � A

T yopt C wopt /
T xopt

D cT xopt � y
T
opt .Axopt /C wopt /

T xopt D c
T xopt � b

T yopt C u
Twopt

Before the optimum is reached, a solution .x; y; s; z; w/ might not satisfy the KKT conditions:

� Primal bound constraints may be violated, infeasb D u � x � z ¤ 0.

� Primal constraints may be violated, infeasc D b � Ax ¤ 0.

� Dual constraints may be violated, infeasd D c � A
T y � s C w ¤ 0.

� Complementarity conditions may not be satisfied, xT s ¤ 0 and zTw ¤ 0.

The calculations of the interior point algorithm can easily be derived in a fashion similar to calculations for
when an LP has no upper bounds. See the paper by Lustig, Marsten, and Shanno (1992). An important
point is that upper bounds can be handled by specializing the algorithm and not by generating the constraints
x C z D u and adding these to the main primal constraints Ax D b.

432 F Chapter 5: The NETFLOW Procedure

Getting Started: Linear Programming Models: Interior Point Algorithm

To solve linear programming problem using PROC NETFLOW, you save a representation of the variables
and the constraints in one or two SAS data sets. These data sets are then passed to PROC NETFLOW for
solution. There are various forms that a problem’s data can take. You can use any one or a combination of
several of these forms.

The ARCDATA= data set contains information about the variables of the problem. Although this data set is
called ARCDATA, it contains data for no arcs. Instead, all data in this data set are related to variables.

The ARCDATA= data set can be used to specify information about variables, including objective function
coefficients, lower and upper value bounds, and names. These data are the elements of the vectors d, m, and v
in problem (NPSC). Data for a variable can be given in more than one observation.

When the data for a constrained network problem is being provided, the ARCDATA= data set always contains
information necessary for arcs, their tail and head nodes, and optionally the supply and demand information
of these nodes. When the data for a linear programming problem is being provided, none of this information
is present, as the model has no arcs. This is the way PROC NETFLOW decides which type of problem it is
to solve.

PROC NETFLOW was originally designed to solve models with networks, so an ARCDATA= data set is
always expected. If an ARCDATA= data set is not specified, by default the last data set created before PROC
NETFLOW is invoked is assumed to be an ARCDATA= data set. However, these characteristics of PROC
NETFLOW are not helpful when a linear programming problem is being solved and all data are provided in
a single data set specified by the CONDATA= data set, and that data set is not the last data set created before
PROC NETFLOW starts. In this case, you must specify that an ARCDATA= data set and a CONDATA= data
set are both equal to the input data set. PROC NETFLOW then knows that a linear programming problem is
to be solved, and the data reside in one data set.

The CONDATA= data set describes the constraints and their right-hand sides. These data are elements of the
matrix Q and the vector r.

Constraint types are also specified in the CONDATA= data set. You can include in this data set variable data
such as upper bound values, lower value bounds, and objective function coefficients. It is possible to give all
information about some or all variables in the CONDATA= data set.

A variable is identified in this data set by its name. If you specify a variable’s name in the ARCDATA= data
set, then this name is used to associate data in the CONDATA= data set with that variable.

If you use the dense constraint input format, these variable names are names of SAS variables in the VAR list
of the CONDATA= data set.

If you use the sparse constraint input format, these variable names are values of the COLUMN list SAS
variable of CONDATA= data set.

When using the interior point algorithm, the execution of PROC NETFLOW has two stages. In the preliminary
(zeroth) stage, the data are read from the ARCDATA= data set (if used) and the CONDATA= data set. Error
checking is performed. In the next stage, the linear program is preprocessed, then the optimal solution to the
linear program is found. The solution is saved in the CONOUT= data set. This data set is also named in the
PROC NETFLOW, RESET, and SAVE statements.

See the section “Getting Started: Network Models: Interior Point Algorithm” on page 414 for a fuller
description of the stages of the interior point algorithm.

Linear Programming Models: Interior Point Algorithm F 433

Introductory Example: Linear Programming Models: Interior Point Algorithm

Consider the linear programming problem in the section “An Introductory Example” on page 167 in the
chapter on the LP procedure.

data dcon1;
input _id_ $17.

a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2
type $ _rhs_;

datalines;
profit -175 -165 -205 0 0 0 300 300 max .
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 eq 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0 eq 0
heating_o_conv .390 .300 .430 0 0 -1 0 0 eq 0
recipe_1 0 0 0 0 .3 .7 -1 0 eq 0
recipe_2 0 0 0 .2 0 .8 0 -1 eq 0
available 110 165 80 upperbd .
;

To find the minimum cost solution and to examine all or parts of the optimum, you use PRINT statements.

� print problem/short; outputs information for all variables and all constraint coefficients. See Fig-
ure 5.19.

� print some_variables(j:)/short; is information about a set of variables, (in this case, those with names
that start with the character string preceding the colon). See Figure 5.20.

� print some_cons(recipe_1)/short; is information about a set of constraints (here, that set only has
one member, the constraint called recipe_1). See Figure 5.21.

� print con_variables(_all_,brega)/short; lists the constraint information for a set of variables (here,
that set only has one member, the variable called brega). See Figure 5.22.

� print con_variables(recipe:,n: jet_1)/short; coefficient information for those in a set of constraints
belonging to a set of variables. See Figure 5.23.

proc netflow
arcdata=dcon1
condata=dcon1
conout=solutn1;

run;
print problem/short;

print some_variables(j:)/short;
print some_cons(recipe_1)/short;
print con_variables(_all_,brega)/short;
print con_variables(recipe:,n: jet_1)/short;

The following messages, which appear on the SAS log, summarize the model as read by PROC NETFLOW
and note the progress toward a solution:

434 F Chapter 5: The NETFLOW Procedure

NOTE: ARCDATA (or the last data set created if ARCDATA was not specified) and

 CONDATA are the same data set WORK.DCON1 so will assume a Linear

 Programming problem is to be solved.

NOTE: Number of variables= 8 .

NOTE: Number of <= constraints= 0 .

NOTE: Number of == constraints= 5 .

NOTE: Number of >= constraints= 0 .

NOTE: Number of constraint coefficients= 18 .

NOTE: After preprocessing, number of <= constraints= 0.

NOTE: After preprocessing, number of == constraints= 0.

NOTE: After preprocessing, number of >= constraints= 0.

NOTE: The preprocessor eliminated 5 constraints from the problem.

NOTE: The preprocessor eliminated 18 constraint coefficients from the problem.

NOTE: After preprocessing, number of variables= 0.

NOTE: The preprocessor eliminated 8 variables from the problem.

NOTE: The optimum has been determined by the Preprocessor.

NOTE: Objective= 1544.

NOTE: The data set WORK.SOLUTN1 has 8 observations and 6 variables.

Figure 5.19 PRINT PROBLEM/SHORT;

The NETFLOW ProcedureThe NETFLOW Procedure

N _NAME_ _OBJFN_ _UPPERBD _LOWERBD _VALUE_

1 a_heavy -165 165 0 0

2 a_light -175 110 0 110

3 brega -205 80 0 80

4 heatingo 0 99999999 0 77.3

5 jet_1 300 99999999 0 60.65

6 jet_2 300 99999999 0 63.33

7 naphthai 0 99999999 0 21.8

8 naphthal 0 99999999 0 7.45

Linear Programming Models: Interior Point Algorithm F 435

Figure 5.19 continued

The NETFLOW ProcedureThe NETFLOW Procedure

N _id_ _type_ _rhs_ _NAME_ _OBJFN_ _UPPERBD _LOWERBD _VALUE_ _COEF_

1 heating_o_conv EQ 0 a_light -175 110 0 110 0.39

2 heating_o_conv EQ 0 a_heavy -165 165 0 0 0.3

3 heating_o_conv EQ 0 brega -205 80 0 80 0.43

4 heating_o_conv EQ 0 heatingo 0 99999999 0 77.3 -1

5 naphtha_i_conv EQ 0 a_light -175 110 0 110 0.1

6 naphtha_i_conv EQ 0 a_heavy -165 165 0 0 0.075

7 naphtha_i_conv EQ 0 brega -205 80 0 80 0.135

8 naphtha_i_conv EQ 0 naphthai 0 99999999 0 21.8 -1

9 naphtha_l_conv EQ 0 a_light -175 110 0 110 0.035

10 naphtha_l_conv EQ 0 a_heavy -165 165 0 0 0.03

11 naphtha_l_conv EQ 0 brega -205 80 0 80 0.045

12 naphtha_l_conv EQ 0 naphthal 0 99999999 0 7.45 -1

13 recipe_1 EQ 0 naphthai 0 99999999 0 21.8 0.3

14 recipe_1 EQ 0 heatingo 0 99999999 0 77.3 0.7

15 recipe_1 EQ 0 jet_1 300 99999999 0 60.65 -1

16 recipe_2 EQ 0 naphthal 0 99999999 0 7.45 0.2

17 recipe_2 EQ 0 heatingo 0 99999999 0 77.3 0.8

18 recipe_2 EQ 0 jet_2 300 99999999 0 63.33 -1

Figure 5.20 PRINT SOME_VARIABLES(J:)/SHORT;

The NETFLOW ProcedureThe NETFLOW Procedure

N _NAME_ _OBJFN_ _UPPERBD _LOWERBD _VALUE_

1 jet_1 300 99999999 0 60.65

2 jet_2 300 99999999 0 63.33

Figure 5.21 PRINT SOME_CONS(RECIPE_1)/SHORT;

The NETFLOW ProcedureThe NETFLOW Procedure

N _id_ _type_ _rhs_ _NAME_ _OBJFN_ _UPPERBD _LOWERBD _VALUE_ _COEF_

1 recipe_1 EQ 0 naphthai 0 99999999 0 21.8 0.3

2 recipe_1 EQ 0 heatingo 0 99999999 0 77.3 0.7

3 recipe_1 EQ 0 jet_1 300 99999999 0 60.65 -1

Figure 5.22 PRINT CON_VARIABLES(_ALL_,BREGA)/SHORT;

The NETFLOW ProcedureThe NETFLOW Procedure

N _id_ _type_ _rhs_ _NAME_ _OBJFN_ _UPPERBD _LOWERBD _VALUE_ _COEF_

1 heating_o_conv EQ 0 brega -205 80 0 80 0.43

2 naphtha_i_conv EQ 0 brega -205 80 0 80 0.135

3 naphtha_l_conv EQ 0 brega -205 80 0 80 0.045

436 F Chapter 5: The NETFLOW Procedure

Figure 5.23 PRINT CON_VARIABLES(RECIPE:,N: JET_1)/SHORT;

The NETFLOW ProcedureThe NETFLOW Procedure

N _id_ _type_ _rhs_ _NAME_ _OBJFN_ _UPPERBD _LOWERBD _VALUE_ _COEF_

1 recipe_1 EQ 0 naphthai 0 99999999 0 21.8 0.3

2 recipe_1 EQ 0 jet_1 300 99999999 0 60.65 -1

3 recipe_2 EQ 0 naphthal 0 99999999 0 7.45 0.2

Unlike PROC LP, which displays the solution and other information as output, PROC NETFLOW saves the
optimum in output SAS data sets you specify. For this example, the solution is saved in the SOLUTN1 data
set. It can be displayed with PROC PRINT as

proc print data=solutn1;
var _name_ _objfn_ _upperbd _lowerbd _value_ _fcost_;
sum _fcost_;
title3 'LP Optimum';

run;

Notice, in the CONOUT=SOLUTN1 (Figure 5.24), the optimal value through each variable in the linear
program is given in the variable named _VALUE_, and the cost of value for each variable is given in the
variable _FCOST_.

Figure 5.24 CONOUT=SOLUTN1

LP OptimumLP Optimum

Obs _NAME_ _OBJFN_ _UPPERBD _LOWERBD _VALUE_ _FCOST_

1 a_heavy -165 165 0 0.00 0

2 a_light -175 110 0 110.00 -19250

3 brega -205 80 0 80.00 -16400

4 heatingo 0 99999999 0 77.30 0

5 jet_1 300 99999999 0 60.65 18195

6 jet_2 300 99999999 0 63.33 18999

7 naphthai 0 99999999 0 21.80 0

8 naphthal 0 99999999 0 7.45 0

1544

The same model can be specified in the sparse format as in the following scon2 data set. This format enables
you to omit the zero coefficients.

data scon2;
format _type_ $8. _col_ $8. _row_ $16. ;
input _type_ $ _col_ $ _row_ $ _coef_;
datalines;

max . profit .
eq . napha_l_conv .
eq . napha_i_conv .
eq . heating_oil_conv .
eq . recipe_1 .
eq . recipe_2 .
upperbd . available .

Linear Programming Models: Interior Point Algorithm F 437

. a_light profit -175

. a_light napha_l_conv .035

. a_light napha_i_conv .100

. a_light heating_oil_conv .390

. a_light available 110

. a_heavy profit -165

. a_heavy napha_l_conv .030

. a_heavy napha_i_conv .075

. a_heavy heating_oil_conv .300

. a_heavy available 165

. brega profit -205

. brega napha_l_conv .045

. brega napha_i_conv .135

. brega heating_oil_conv .430

. brega available 80

. naphthal napha_l_conv -1

. naphthal recipe_2 .2

. naphthai napha_i_conv -1

. naphthai recipe_1 .3

. heatingo heating_oil_conv -1

. heatingo recipe_1 .7

. heatingo recipe_2 .8

. jet_1 profit 300

. jet_1 recipe_1 -1

. jet_2 profit 300

. jet_2 recipe_2 -1
;

To find the minimum cost solution, invoke PROC NETFLOW (note the SPARSECONDATA option which
must be specified) as follows:

proc netflow
sparsecondata
condata=scon2
conout=solutn2;

run;

A data set that is used as an ARCDATA= data set can be initialized as follows:

data vars3;
input _name_ $ profit available;
datalines;

a_heavy -165 165
a_light -175 110
brega -205 80
heatingo 0 .
jet_1 300 .
jet_2 300 .
naphthai 0 .
naphthal 0 .
;

The following CONDATA= data set is the original dense format CONDATA= dcon1 data set with the
variable information removed. (You could have left some or all of that information in CONDATA as PROC
NETFLOW “merges” data, but doing that and checking for consistency uses time.)

438 F Chapter 5: The NETFLOW Procedure

data dcon3;
input _id_ $17.

a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2
type $ _rhs_;

datalines;
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 eq 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0 eq 0
heating_o_conv .390 .300 .430 0 0 -1 0 0 eq 0
recipe_1 0 0 0 0 .3 .7 -1 0 eq 0
recipe_2 0 0 0 .2 0 .8 0 -1 eq 0
;

It is important to note that it is now necessary to specify the MAXIMIZE option; otherwise, PROC NETFLOW
will optimize to the minimum (which, incidentally, has a total objective = -3539.25). You must indicate that
the SAS variable profit in the ARCDATA=vars3 data set has values that are objective function coefficients,
by specifying the OBJFN statement. The UPPERBD must be specified as the SAS variable available that has
as values upper bounds.

proc netflow
maximize /* ***** necessary ***** */
arcdata=vars3
condata=dcon3
conout=solutn3;

objfn profit;
upperbd available;
run;

The ARCDATA=vars3 data set can become more concise by noting that the model variables heatingo,
naphthai, and naphthal have zero objective function coefficients (the default) and default upper bounds, so
those observations need not be present.

data vars4;
input _name_ $ profit available;
datalines;

a_heavy -165 165
a_light -175 110
brega -205 80
jet_1 300 .
jet_2 300 .
;

The CONDATA=dcon3 data set can become more concise by noting that all the constraints have the same
type (eq) and zero (the default) rhs values. This model is a good candidate for using the DEFCONTYPE=
option.

The DEFCONTYPE= option can be useful not only when all constraints have the same type as is the
case here, but also when most constraints have the same type, or if you prefer to change the default type
from � to = or �. The essential constraint type data in CONDATA= data set is that which overrides the
DEFCONTYPE= type you specified.

Linear Programming Models: Interior Point Algorithm F 439

data dcon4;
input _id_ $17.

a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2;

datalines;
naphtha_l_conv .035 .030 .045 -1 0 0 0 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0
heating_o_conv .390 .300 .430 0 0 -1 0 0
recipe_1 0 0 0 0 .3 .7 -1 0
recipe_2 0 0 0 .2 0 .8 0 -1
;
proc netflow

maximize defcontype=eq
arcdata=vars3
condata=dcon3
conout=solutn3;

objfn profit;
upperbd available;
run;

Several different ways of using an ARCDATA= data set and a sparse format CONDATA= data set for this
linear program follow. The following CONDATA= data set is the result of removing the profit and available
data from the original sparse format CONDATA=scon2 data set.

data scon5;
format _type_ $8. _col_ $8. _row_ $16. ;
input _type_ $ _col_ $ _row_ $ _coef_;
datalines;

eq . napha_l_conv .
eq . napha_i_conv .
eq . heating_oil_conv .
eq . recipe_1 .
eq . recipe_2 .
. a_light napha_l_conv .035
. a_light napha_i_conv .100
. a_light heating_oil_conv .390
. a_heavy napha_l_conv .030
. a_heavy napha_i_conv .075
. a_heavy heating_oil_conv .300
. brega napha_l_conv .045
. brega napha_i_conv .135
. brega heating_oil_conv .430
. naphthal napha_l_conv -1
. naphthal recipe_2 .2
. naphthai napha_i_conv -1
. naphthai recipe_1 .3
. heatingo heating_oil_conv -1
. heatingo recipe_1 .7
. heatingo recipe_2 .8
. jet_1 recipe_1 -1
. jet_2 recipe_2 -1
;

440 F Chapter 5: The NETFLOW Procedure

proc netflow
maximize
sparsecondata
arcdata=vars3 /* or arcdata=vars4 */
condata=scon5
conout=solutn5;

objfn profit;
upperbd available;
run;

The CONDATA=scon5 data set can become more concise by noting that all the constraints have the same type
(eq) and zero (the default) rhs values. Use the DEFCONTYPE= option again. Once the first 5 observations
of the CONDATA=scon5 data set are removed, the _type_ SAS variable has values that are missing in the
remaining observations. Therefore, this SAS variable can be removed.

data scon6;
input _col_ $ _row_&$16. _coef_;
datalines;

a_light napha_l_conv .035
a_light napha_i_conv .100
a_light heating_oil_conv .390
a_heavy napha_l_conv .030
a_heavy napha_i_conv .075
a_heavy heating_oil_conv .300
brega napha_l_conv .045
brega napha_i_conv .135
brega heating_oil_conv .430
naphthal napha_l_conv -1
naphthal recipe_2 .2
naphthai napha_i_conv -1
naphthai recipe_1 .3
heatingo heating_oil_conv -1
heatingo recipe_1 .7
heatingo recipe_2 .8
jet_1 recipe_1 -1
jet_2 recipe_2 -1
;
proc netflow

maximize
defcontype=eq
sparsecondata
arcdata=vars3 /* or arcdata=vars4 */
condata=scon6
conout=solutn6;

objfn profit;
upperbd available;
run;

Linear Programming Models: Interior Point Algorithm F 441

Interactivity: Linear Programming Models: Interior Point algorithm

PROC NETFLOW can be used interactively. You begin by giving the PROC NETFLOW statement, and you
must specify the CONDATA= data set. If necessary, specify the ARCDATA= data set.

The variable lists should be given next. If you have variables in the input data sets that have special names
(for example, a variable in the ARCDATA= data set named _COST_ that has objective function coefficients
as values), it may not be necessary to have many or any variable lists.

The PRINT, QUIT, SAVE, SHOW, RESET, and RUN statements follow and can be listed in any order. The
QUIT statements can be used only once. The others can be used as many times as needed.

The CONOPT and PIVOT are not relevant to the interior point algorithm and should not be used.

Use the RESET or SAVE statement to change the name of the output data set. There is only one output data
set, the CONOUT= data set. With the RESET statement, you can also indicate the reasons why optimization
should stop, (for example, you can indicate the maximum number of iterations that can be performed).
PROC NETFLOW then has a chance to either execute the next statement or, if the next statement is one that
PROC NETFLOW does not recognize (the next PROC or DATA step in the SAS session), do any allowed
optimization and finish. If no new statement has been submitted, you are prompted for one. Some options of
the RESET statement enable you to control aspects of the interior point algorithm. Specifying certain values
for these options can reduce the time it takes to solve a problem. Note that any of the RESET options can be
specified in the PROC NETFLOW statement.

The RUN statement starts optimization. Once the optimization has started, it runs until the optimum is
reached. The RUN statement should be specified at most once.

The QUIT statement immediately stops PROC NETFLOW. The SAVE statement has options that enable you
to name the output data set; information about the current solution is saved in this output data set. Use the
SHOW statement if you want to examine the values of options of other statements. Information about the
amount of optimization that has been done and the STATUS of the current solution can also be displayed
using the SHOW statement.

The PRINT statement instructs PROC NETFLOW to display parts of the problem. The ways the PRINT
statements are specified are identical whether the interior point algorithm or the simplex algorithm is used;
however, there are minor differences in what is displayed for each variable or constraint coefficient.

PRINT VARIABLES produces information on all arcs. PRINT SOME_VARIABLES limits this output to a
subset of variables. There are similar PRINT statements for constraints:

PRINT CONSTRAINTS;
PRINT SOME_CONS;

PRINT CON_VARIABLES enables you to limit constraint information that is obtained to members of a set
of variables that have nonzero constraint coefficients in a set of constraints.

442 F Chapter 5: The NETFLOW Procedure

For example, an interactive PROC NETFLOW run might look something like this:

proc netflow
condata=data set
other options;

variable list specifications; /* if necessary */
reset options;
print options; /* look at problem */

run; /* do some optimization */
print options; /* look at the optimal solution */
save options; /* keep optimal solution */

If you are interested only in finding the optimal solution, have used SAS variables that have special names in
the input data sets, and want to use default setting for everything, then the following statement is all you need:

proc netflow condata= data set ;

Functional Summary: Linear Programming Models: Interior Point Algorithm

* The following table outlines the options available for the NETFLOW procedure when the interior point
algorithm is being used to solve a linear programming problem, classified by function.

Table 5.13 Functional Summary, Linear Programming Models

Description Statement Option

Input Data Set Options:
Arcs input data set PROC NETFLOW ARCDATA=
Constraint input data set PROC NETFLOW CONDATA=

Output Data Set Option:
Solution data set PROC NETFLOW CONOUT=

Data Set Read Options:
CONDATA has sparse data format PROC NETFLOW SPARSECONDATA
Default constraint type PROC NETFLOW DEFCONTYPE=
Special COLUMN variable value PROC NETFLOW TYPEOBS=
Special COLUMN variable value PROC NETFLOW RHSOBS=
Data for a constraint found once in CONDATA PROC NETFLOW CON_SINGLE_OBS
Data for a coefficient found once in CONDATA PROC NETFLOW NON_REPLIC=
Data are grouped, exploited during data read PROC NETFLOW GROUPED=

Problem Size Specification Options:
Approximate number of variables PROC NETFLOW NNAS=
Approximate number of coefficients PROC NETFLOW NCOEFS=
Approximate number of constraints PROC NETFLOW NCONS=

Linear Programming Models: Interior Point Algorithm F 443

Description Statement Option

Network Options:
Default variable objective function coefficient PROC NETFLOW DEFCOST=
Default variable upper bound PROC NETFLOW DEFCAPACITY=
Default variable lower bound PROC NETFLOW DEFMINFLOW=

Memory Control Options:
Issue memory usage messages to SAS log PROC NETFLOW MEMREP
Number of bytes to use for main memory PROC NETFLOW BYTES=
Proportion of memory for arrays PROC NETFLOW COREFACTOR=
maximum bytes for a single array PROC NETFLOW MAXARRAYBYTES=

Interior Point Algorithm Options:
Use interior point algorithm PROC NETFLOW INTPOINT
Factorization method RESET FACT_METHOD=
Allowed amount of dual infeasibility RESET TOLDINF=
Allowed amount of primal infeasibility RESET TOLPINF=
Allowed total amount of dual infeasibility RESET TOLTOTDINF=
Allowed total amount of primal infeasibility RESET TOLTOTPINF=
Cut-off tolerance for Cholesky factorization RESET CHOLTINYTOL=
Density threshold for Cholesky processing RESET DENSETHR=
Step-length multiplier RESET PDSTEPMULT=
Preprocessing type RESET PRSLTYPE=
Print optimization progress on SAS log RESET PRINTLEVEL2=
Write optimization time to SAS log RESET OPTIM_TIMER

Interior Point Stopping Criteria Options:
Maximum number of interior point iterations RESET MAXITERB=
Primal-dual (duality) gap tolerance RESET PDGAPTOL=
Stop because of complementarity RESET STOP_C=
Stop because of duality gap RESET STOP_DG=
Stop because of infeasb RESET STOP_IB=
Stop because of infeasc RESET STOP_IC=
Stop because of infeasd RESET STOP_ID=
Stop because of complementarity RESET AND_STOP_C=
Stop because of duality gap RESET AND_STOP_DG=
Stop because of infeasb RESET AND_STOP_IB=
Stop because of infeasc RESET AND_STOP_IC=
Stop because of infeasd RESET AND_STOP_ID=
Stop because of complementarity RESET KEEPGOING_C=
Stop because of duality gap RESET KEEPGOING_DG=
Stop because of infeasb RESET KEEPGOING_IB=
Stop because of infeasc RESET KEEPGOING_IC=
Stop because of infeasd RESET KEEPGOING_ID=
Stop because of complementarity RESET AND_KEEPGOING_C=
Stop because of duality gap RESET AND_KEEPGOING_DG=

444 F Chapter 5: The NETFLOW Procedure

Description Statement Option

Stop because of infeasb RESET AND_KEEPGOING_IB=
Stop because of infeasc RESET AND_KEEPGOING_IC=
Stop because of infeasd RESET AND_KEEPGOING_ID=

PRINT Statement Options:
Display everything PRINT PROBLEM
Display variable information PRINT VARIABLES
Display constraint information PRINT CONSTRAINTS
Display information for some variables PRINT SOME_VARIABLES
Display information for some constraints PRINT SOME_CONS
Display information for some constraints associ-
ated with some variables

PRINT CON_VARIABLES

PRINT Statement Qualifiers:
Produce a short report PRINT / SHORT
Produce a long report PRINT / LONG
Display arcs/variables with zero flow/value PRINT / ZERO
Display arcs/variables with nonzero flow/value PRINT / NONZERO

SHOW Statement Options:
Show problem, optimization status SHOW STATUS
Show LP model parameters SHOW NETSTMT
Show data sets that have been or will be created SHOW DATASETS

Miscellaneous Options:
Infinity value PROC NETFLOW INFINITY=
Scale constraint row, variable column coefficients,
or both

PROC NETFLOW SCALE=

Maximization instead of minimization PROC NETFLOW MAXIMIZE

Generalized Networks: NETFLOW Procedure
In this section we introduce how to use the NETFLOW procedure to solve generalized network programming
problems.

What Is a Generalized Network?
It is well known that in a pure network the sum of flows entering an arc is equal to the sum of flows leaving
it. However, in a generalized network there may be a gain or a loss as flow traverses an arc. Each arc has a
multiplier to represent these gains or losses.

To illustrate what is meant, consider the network shown in Figure 5.25.

What Is a Generalized Network? F 445

Figure 5.25 Generalized Network Example

You can think of this as a network representing a supply node (N1), trans-shipment nodes (N2, N3), and
demand nodes (N4, N5). As indicated by the legend, the number below a node represents its supdem value.
Above each arc is its name, followed by the arc cost and arc multiplier in parentheses. The lower and upper
bounds on flow allowed to enter an arc are represented in square brackets below it. When no bounds are
specified (as in Figure 5.25), they are assumed to be [0, 99999999].

Now consider the node pair (N1,N2). The information on arcA1 says that it costs 2 per unit of flow to traverse
it, and for each unit of flow entering the arc, four units get accumulated at node N2. The corresponding
component in the objective function is two times the flow through arc A1 leaving node N1, not two times the
flow through arc A1 arriving at node N2.

A commonly encountered example of a generalized network is in power generation: as electricity is
transmitted over wires, there is some unavoidable loss along the way. This loss is represented by a multiplier
less than 1.0.

Arc multipliers need not always be less than 1.0. For instance, in financial models, a flow through an arc
could represent money in a bank account earning interest. In that case, the arc would have a multiplier greater
than 1.0.

Generalized networks offer convenience when flow commodity changes. For a pure network, care must be
taken to ensure the flow commodity is the same throughout the entire model. For example, in a model to
determine how sugar should be grown, refined, packaged, and sold, the flow commodity might be kilograms
of sugar, and all numerical parameters throughout the model (all supplies, arc costs, capacities, bounds,
demands, etc.) must be in terms of kilograms of sugar. Some arcs might correspond to the movement of

446 F Chapter 5: The NETFLOW Procedure

5-kilogram bags of sugar. If a generalized network formulation is used, the arc that represents packaging
could be given a multiplier of 0.2, so flow through arcs that convey flow corresponding to bags of sugar will
have arc costs in terms of dollars per bag, and capacities, bounds, demands, etc. in terms of number of bags.

In the following sections we describe in detail how to provide data for arc multipliers, how to deal with
excess supply or demand in pure and generalized networks, how to model maximum flow problems, and how
to handle networks with missing supply and demand nodes, and ranges on supply and demand.

How to Specify Data for Arc Multipliers
If you are familiar with using the NETFLOW procedure to solve pure network problems, then solving
generalized network problems is fairly simple. You just need to provide the additional data for the arc
multipliers. Arcs by default have a multiplier of 1.0, so you only need to provide arc multipliers that are not
equal to 1.0. You can specify the arc multiplier data in either or both of the ARCDATA= and CONDATA= data
sets. The procedure scans the SAS variables in the ARCDATA= data set, and if it finds a name _MULT_ (or
a similar name with letters of different case), then it assumes that the SAS variable contains data for arc
multipliers. CONDATA= is scanned for special type values that indicates data are arc multipliers.

The rest of this section describes the various ways in which you can specify data for the arc multipliers. The
network in Figure 5.25 is used for illustration.

All Arc Multiplier Data in the ARCDATA= Data Set

You can specify all the arc multiplier data in the ARCDATA= data set. The following code creates the input
SAS data sets:

/**
* *
* Generalized Networks: *
* How to Specify Data for Arc Multipliers *
* *
**/

/* All Arc Multiplier Data in the ARCDATA= Data Set */

data nodes;
input _node_ $ _sd_ ;

datalines;
N1 22
N4 -30
N5 -10
;

data arcs;
input _from_ $ _to_ $ _cost_ _mult_;

datalines;
N1 N2 2 4
N1 N3 10 0.5
N2 N4 0 1
N2 N5 7 3
N3 N2 12 2
N3 N5 10 2
N5 N4 55 0.9
;

How to Specify Data for Arc Multipliers F 447

Let us first look at the data for this problem. There is a variable named _mult_ in the ARCDATA= data set, so
PROC NETFLOW assumes it represents the arc multipliers. The SAS variable _sd_ represents the supdem
value of a node. A positive or missing S value indicates supply, and a negative or missing D value indicates
demand.

The optimal solution can be obtained from the CONOUT= data set. Note that you need to specify the
CONOUT= data set even if the network has no side constraints; you cannot use the ARCOUT= data set.

You can use the following SAS code to run PROC NETFLOW:

title1 'The NETFLOW Procedure';
proc netflow

bytes = 100000
nodedata = nodes
arcdata = arcs
conout = solution;

run;

The optimal solution is displayed in Output 5.26.

Figure 5.26 Output of the Example Problem

The NETFLOW ProcedureThe NETFLOW Procedure

Obs _from_ _to_ _cost_ _CAPAC_ _LO_ _mult_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 N1 N2 2 99999999 0 4.0 22 . 6.0000 12.000

2 N3 N2 12 99999999 0 2.0 . . 3.0000 36.000

3 N1 N3 10 99999999 0 0.5 22 . 16.0000 160.000

4 N2 N4 0 99999999 0 1.0 . 30 30.0000 0.000

5 N5 N4 55 99999999 0 0.9 . 30 -0.0000 -0.000

6 N2 N5 7 99999999 0 3.0 . 10 0.0000 0.000

7 N3 N5 10 99999999 0 2.0 . 10 5.0000 50.000

All Arc Multiplier Data in CONDATA= Data Set

Let us now solve the same problem, but with all the arc multipliers specified in the CONDATA= data set. The
CONDATA= data set can have either a sparse format or a dense format. The following code illustrates the
dense format representation:

data arcs1b;
input _from_ $ _to_ $ _cost_;

datalines;
N1 N2 2
N1 N3 10
N2 N4 0
N2 N5 7
N3 N2 12
N3 N5 10
N5 N4 55
;

data MUdense;
input _type_ $ N1_N2 N1_N3 N2_N4 N2_N5 N3_N2 N3_N5 N5_N4;

datalines;
mult 4.0 0.5 1.0 0.3 2.0 2.0 0.9
;

448 F Chapter 5: The NETFLOW Procedure

You can use the following SAS code to obtain the solution:

proc netflow
gennet
nodedata = nodes
arcdata = arcs1b
condata = MUdense
conout = soln1b;

run;

Note that the GENNET option has been specified in the call to PROC NETFLOW. This option is necessary
when the network is generalized and there are no arc multiplier data in the ARCDATA= data set. If this option
is not specified, then the procedure assumes that the network is pure (without arc multipliers) and sets up the
excess supply node and the excess arcs.

The sparse format representation is as follows:

data MUsparse;
input _type_ $ _col_ $ _coef_;

datalines;
mult N1_N2 4.0
mult N1_N3 0.5
mult N2_N4 1.0
mult N2_N5 0.3
mult N3_N2 2.0
mult N3_N5 2.0
mult N5_N4 0.9
;

You can use the following SAS code to obtain the solution:

proc netflow
gennet sparsecondata
nodedata = nodes
arcdata = arcs1b
condata = MUsparse
conout = soln1c;

run;

Note that you need to specify the SPARSECONDATA option in the call to PROC NETFLOW.

Arc Multiplier Data in Both ARCDATA= and CONDATA= Data Sets

You can also provide some multiplier data in the ARCDATA= data set, and the rest in the CONDATA= data set
as follows:

Using the EXCESS= Option in Pure Networks: NETFLOW Procedure F 449

data arcs1c;
input _from_ $ _to_ $ _cost_ _mult_;

datalines;
N1 N2 2 4
N1 N3 10 .5
N2 N4 0 .
N2 N5 7 .
N3 N2 12 .
N3 N5 10 .
N5 N4 55 .
;
data MUdense1;

input _type_ $ N2_N4 N2_N5 N3_N2 N3_N5 N5_N4;
datalines;
mult 1.0 0.3 2.0 2.0 0.9
;

The procedure merges the data when all the input data sets have been read.

Specifying Arc Multiplier Data Using a List Statement

You can also specify the name of the multiplier variable in the list statement MULT, or MULTIPLIER. For
example, if the name of the variable is lossrate, then use the following:

proc netflow
...
;
mult lossrate;
run;

You may also use MULT, GAIN, or LOSS (or similar names with letters of different case) as a value of the
TYPE list SAS variable.

Using the EXCESS= Option in Pure Networks: NETFLOW
Procedure
In this section we describe how to use the EXCESS= option to solve a wide variety of problems. These
include the following:

� networks with excess supply or demand

� networks containing nodes with unknown supply and demand values

� maximum flow problems

� networks with nodes having supply and demand ranges

450 F Chapter 5: The NETFLOW Procedure

Handling Excess Supply or Demand
The supdem value of a node can be specified in the following formats:

� in the NODEDATA= data set, using the _supdem_ or _sd_ list variable

� in the ARCDATA= data set, using the _SUPPLY_ and _DEMAND_ list variables

If there is only one supply (demand) node, then use the SOURCE= (SINK=) option to refer to it, and use the
SUPPLY= (DEMAND=) option to specify its supdem value.

To ensure feasibility, there are different methods by which flow can be added to or drained from the network.
This extra flow can be added to or drained from the network at either the supply or demand nodes. The
EXCESS= option is used to address such instances.

For pure networks there are two valid values that can be specified for the EXCESS= option: EXCESS=ARCS
and EXCESS=SLACKS.

EXCESS=ARCS is the default value. An extra node, referred to as _EXCESS_, is added to the network and
is connected to the actual network by “excess” arcs.

� If total supply exceeds total demand, then _EXCESS_ is an extra demand node with demand equal to
total supply minus total demand.

– If the THRUNET option is specified, the “excess” arcs are directed away from any actual demand
node (even nodes with missing D demand) and toward _EXCESS_.

– Or else if there are demand nodes with missing D demands, the “excess” arcs are directed away
from these nodes and toward _EXCESS_.

– Or else the “excess” arcs are directed away from the supply nodes and toward _EXCESS_.

� If the total demand exceeds the total supply, then _EXCESS_ is an extra supply node with supply
equal to the total demand minus the total supply.

– If the THRUNET option is specified, the “excess” arcs are directed away from _EXCESS_ and
toward any actual supply node (even nodes with missing S supply.)

– Or else if there are supply nodes with missing S supplies, the “excess” arcs are directed away
from _EXCESS_ and toward these nodes.

– Or else the “excess” arcs are directed away from _EXCESS_ and toward the demand nodes.

The node _EXCESS_ and the associated arcs are created to ensure that the problem presented to the optimizer
has a total supply equal to the total demand. They are neither displayed in the optimal solution nor saved in
any output SAS data set.

If EXCESS=SLACKS is specified, then slack variables are created for some flow conservation constraints
instead of having the node _EXCESS_ and “excess” arcs. The flow conservation constraint (which was an
inequality) is now converted to an equality with the addition of the slack variable. Alternatively, you can
think of these slacks as arcs with one of their end nodes missing — they are directed from a node but not
toward any other node (or directed toward a node but not from any other node). Figure 5.27 presents a clearer
picture of this.

Handling Missing Supply and Demand Simultaneously F 451

Figure 5.27 EXCESS=SLACKS, Total Supply Exceeds Total Demand, THRUNET Not Specified, No Nodes
with Missing Demand

NOTE: When you specify EXCESS=SLACKS, the interior point solver is used. The output SAS data set
needs to be specified by the CONOUT= data set, even if side constraints are not present. Also, when you
specify the EXCESS=SLACKS option, the size of the model submitted to the optimizer is smaller than with
EXCESS=ARCS since it no longer has the _EXCESS_ node and the excess arcs associated with it.

Handling Missing Supply and Demand Simultaneously
Another feature in the NETFLOW procedure is that it enables you to specify a network containing both nodes
with missing S supply values and nodes with missing D demand values. This feature is a powerful modeling
tool, and we show in the later sections how to use it to formulate and solve maximum flow problems and
network models with range constraints on supply and demand.

Whenever a network is detected to have both nodes with missing S supply values and nodes with missing D
demand values, a special value of the EXCESS= option is assigned internally by the procedure; any value you
specify for the EXCESS= option is overridden. The procedure solves the problem in the following manner:

� Nodes with positive (negative) supdem values supply (demand) the exact amount of flow specified.

� Nodes with missing S supply (missing D demand) values supply (demand) flow quantities that are
determined by optimization.

Figure 5.28 displays how the slack variables are set up by the procedure internally. These variables are
neither a part of the input data set nor displayed in any output SAS data set or printed output.

452 F Chapter 5: The NETFLOW Procedure

Figure 5.28 A Network with Both Missing S Supply and Missing D Demand Nodes

Maximum Flow Problems
The maximum flow problem (MFP) can be stated as follows: Given a directed graph G D .N;A/ with
capacity uij � 0 on each arc .i; j / 2 A, a source node s and a sink node t, find the maximum flow that can
go from s to t, while obeying the flow conservation constraints at each node. You can solve such problems
using the MAXFLOW option in the call to PROC NETFLOW.

Ordinarily many, if not all, arcs in an MFP network have capacities, and it is common that these arcs have
zero costs. However, the NETFLOW procedure enables you to have nonzero costs to influence the optimal
solution in cases where multiple maximum flow patterns are known to exist.

The following two subsections explain the role of the EXCESS= option in solving pure and generalized
maximum flow problems.

The EXCESS=ARCS Option

Consider a maximum flow problem involving a pure network. Assume that you do not explicitly specify
the EXCESS= option (the EXCESS=ARCS option is used by the procedure by default). The NETFLOW
procedure sets up the problem in the following manner:

1. The source node is assigned a supdem value equal to INFINITY�1.

2. The sink node is assigned a supdem value equal to �(INFINITY�1).

3. If there is no existing arc between the source node and the sink node, an arc called the bypass arc
directed from the source node to the sink node is added.

Maximum Flow Problems F 453

4. If there is an existing arc between the source node and the sink node, a dummy node is used to break
up what would have been a single bypass arc: source —> sink gets transformed into two arcs, source
—> dummy —> sink.

5. If you are maximizing, then the cost of the bypass arc(s) is equal to �1 if all other arcs have zero costs;
otherwise the cost of the bypass arc(s) is equal to �(INFINITY / BYPASSDIV).

6. If you are minimizing, then the cost of the bypass arc(s) is equal to 1 if all other arcs have zero costs;
otherwise the cost of the bypass arc(s) is equal to INFINITY / BYPASSDIV.

You can specify the value of the INFINITY= option in the procedure statement, or you can use the default
value of 99999999. You can also specify the BYPASSDIV= option. The default value for the BYPASSDIV=
option is 100.

This scenario is depicted in Figure 5.29. Since the cost of the bypass arc is unattractive, the optimization
process minimizes the flow through it, thereby maximizing the flow through the real network. See the first
subsection in Example 5.10 for an illustration.

Figure 5.29 Pure Maximum Flow Problem, EXCESS=ARCS Option Specified

This method of setting up a maximum flow problem does come with a drawback. It is likely to produce
incorrect results if the following occur:

� the maximum flow is greater than INFINITY�1, or

� the cost of the bypass arc is insufficiently unattractive to ensure that the entire flow traverses the real
network and not through the bypass arc

Additionally, numbers of large magnitude can cause problems during optimization, including numerical
instability and loss of precision. In the next section, we explain how to overcome these difficulties when
solving maximum flow problems.

454 F Chapter 5: The NETFLOW Procedure

The EXCESS=SLACKS Option

Assume you have a pure maximum flow problem and you specify the EXCESS=SLACKS option. The
NETFLOW procedure sets up the problem in the following manner:

� The source node is assigned a missing S supply value.

� The sink node is assigned a missing D demand value.

Since this network contains a node with a missing S supply value and a node with a missing D demand
value, we have a situation similar to the one described in the section “Handling Missing Supply and Demand
Simultaneously” on page 451. Both of these nodes have slack variables. Usually, slack variables have zero
objective function coefficients, but because the MAXFLOW option is specified, one of the slack variables
must be attractive enough to make it worthwhile for flow to traverse the network. Figure 5.30 presents the
scenario clearly.

If you are maximizing, then the objective function coefficient of the slack variable associated with the sink
node is �1 if all other arcs have zero costs. Otherwise it is �(INFINITY / BYPASSDIV). If you are minimizing,
then the objective function coefficient of the slack variable associated with the sink node is 1 if all arcs
have zero costs. Otherwise it is INFINITY / BYPASSDIV. See the second subsection in Example 5.10 for an
illustration of the EXCESS=SLACKS option in pure maximum flow problems.

NOTE: If the MAXFLOW option is not specified, these slack variables assume zero objective function
coefficients, and the MFP may not be solved properly.

Figure 5.30 Pure Maximum Flow Problem with EXCESS=SLACKS Option Specified

When you use the MAXFLOW option, the procedure sets up the problem in such a way that maximum flow
traverses the network. This enables you to transform certain types of problems into maximum flow problems.
One such instance is when you have a network where the amount of flow that is supplied or demanded falls
within a range of values. The following section describes how to solve such problems.

Handling Supply and Demand Ranges F 455

Handling Supply and Demand Ranges
Consider the scenario depicted by Figure 5.31, where the supply and demand nodes have ranges; i.e., the
amounts they can supply or demand are constrained to be within certain lower and upper bounds.

Figure 5.31 Network with Ranges on Supplies and Demands

To model this situation, you first need to add a supply node with missing S supply value (the Y node in
Figure 5.32) and a demand node with missing D demand value (the Z node in Figure 5.32). The bounds
on the supply and demand nodes get transformed into upper/lower bounds on the arcs that connect them to
nodes Y and Z, respectively. It might be necessary to have costs for these arcs to make it worthwhile for
flow to traverse them, and subsequently to traverse the actual network. In practice, these costs represent
procurement costs, profit from sales, etc.

456 F Chapter 5: The NETFLOW Procedure

Figure 5.32 Network with Ranges of Supplies and Demands: Transformed Model

You could set up all your network models in this fashion, not only in scenarios in which there are supply and
demand ranges. For instance, this modeling technique could be used under the following conditions:

� if there are no ranges

� if the network is generalized, and you do not know whether to specify EXCESS=SUPPLY or EX-
CESS=DEMAND

� if some of the lower bounds are zero or some capacities are infinite, in which case you simply do not
specify the capacity

Using the EXCESS= Option in Generalized Networks:
NETFLOW Procedure
In this section we briefly describe how to use the EXCESS= option in generalized networks. We provide
simple scenarios to enable you to understand what happens internally in the solver when different values for
the EXCESS= option are specified.

Total Supply and Total Demand: How Generalized Networks Differ from
Pure Networks
For a pure network, it is easy to check for excess supply or excess demand. If the sum of positive supdem
values exceeds (is less than) the absolute value of the sum of negative supdem values, then the network has
excess supply (demand).

However, in a generalized network you need to specify whether the network should have excess supply
or excess demand. To do that you can specify the option EXCESS=SUPPLY or EXCESS=DEMAND,
respectively.

The EXCESS=SUPPLY Option F 457

Although the total supply and total demand of a generalized network can be determined, you may not know
beforehand if excess flow must be added to, removed from, or left unused by the network. For example,
consider a simple network, one consisting of two nodes, A and B, connected by a single arc, A —> B.
Suppose the supply of node A is 10 and the demand of node B is 30. If this is a pure network, then the
network solved must be either _EXCESS_ —> A —> B if the THRUNET option is not specified and the
flow through the arc between A and B is 30 units, or A —> B <— _EXCESS_ if the THRUNET option is
specified and the flow through the arc from A to B is 10 units. _EXCESS_ is the name of an extra node
that is set up by the procedure behind the scenes, and in both cases it would have a supply capacity of 20
units, which is the flow through the excess arc. However, if the network is generalized, and the arc from A
to B has a multiplier of 3.0, then the flow through the arc from A to B would be 10 units, and the network
would be feasible without any excess node and arcs. Indeed, no excess node and arcs would be created, even
though total supply and total demand are unequal. Therefore, once the NETFLOW procedure detects that the
network has arc multipliers that are not 1.0, it might not set up the excess node and the excess arcs.

In Example 5.11 we illustrate the use of the EXCESS= option to solve generalized networks that have total
supply equal to total demand, but have arcs with varying multipliers.

In the section “Handling Missing Supply and Demand Simultaneously” on page 451, we discuss the case
where a network has both nodes with missing S supply values and nodes with missing D demand values.
In the next two subsections we analyze scenarios where a network has nodes with either missing S supply
values or missing D demand values, but not both.

The EXCESS=SUPPLY Option
If you specify the EXCESS=SUPPLY option, then there are three possible scenarios to deal with:

Case 1: No Node with Missing D Demand, THRUNET Not Specified (see Figure 5.33)
Drain the excess supply from all supply nodes.

Figure 5.33 Nodes with Missing S Supply, THRUNET Specified

458 F Chapter 5: The NETFLOW Procedure

Case 2: Some Nodes with Missing D Demand, THRUNET Not Specified (see Figure 5.34)
Drain the excess supply from nodes that have missing D demand values. If a node has a missing D
demand value, then the amount it demands is determined by optimization. For a demand node with
negative supdem value, that value negated is equal to the sum of flows on all actual arcs directed
toward that node.

Figure 5.34 Nodes with Missing D Demand

Case 3: THRUNET Specified (see Figure 5.35)
Drain the excess supply from all demand nodes. If a node has a negative supdem value, that value
negated is the lower bound on the sum of flows on all actual arcs directed toward that node. If a
node has a missing D demand value, then the amount it demands is determined by optimization.

Figure 5.35 Nodes with Missing D Demand, THRUNET Specified

The EXCESS=DEMAND Option F 459

The EXCESS=DEMAND Option
If you specify the EXCESS=DEMAND option, then there are three possible scenarios to deal with:

Case 1: No Node with Missing S Supply, THRUNET Not Specified (see Figure 5.36)
Supply the excess demand to all demand nodes directly.

Figure 5.36 Nodes with Missing D Demand

Case 2: Some Nodes with Missing S Supply, THRUNET Not Specified (see Figure 5.37)
Supply the excess demand by the nodes that have a missing S supply value. If a node has a missing
S supply value, then the amount it supplies is determined by optimization. For a supply node with a
positive supdem value, that value is equal to the sum of flows on all actual arcs directed away from
that node.

460 F Chapter 5: The NETFLOW Procedure

Figure 5.37 Nodes with Missing S Supply

Case 3: THRUNET Specified (see Figure 5.38)
Supply the excess demand by all supply nodes. If a node has a positive supdem value, that value is
the lower bound on the sum of flows on all actual arcs directed away from that node. If a node has a
missing S supply value, then the amount it supplies is determined by optimization.

Figure 5.38 Nodes with Missing S Supply, THRUNET Specified

Examples: NETFLOW Procedure F 461

Examples: NETFLOW Procedure
The following examples illustrate some of the capabilities of PROC NETFLOW. These examples, together
with the other SAS/OR examples, can be found in the SAS sample library.

Example 5.1: Shortest Path Problem
Whole pineapples are served in a restaurant in London. To ensure freshness, the pineapples are purchased
in Hawaii and air freighted from Honolulu to Heathrow in London. The network diagram in Figure 5.39
outlines the different routes that the pineapples could take.

The cost to freight a pineapple is known for each arc. You can use PROC NETFLOW to determine what routes
should be used to minimize total shipping cost. The shortest path is the least cost path that all pineapples
should use. The SHORTPATH option indicates this type of network problem.

Figure 5.39 Pineapple Routes: Shortest Path Problem

Honolulu

Los Angeles

San Francisco

Chicago

Atlanta

New York

Boston

Heathrow
London

105

75

65

45

56 71

48

63 44

57

88

65

76

The SINK= option value HEATHROW LONDON is not a valid SAS variable name so it must be enclosed in
single quotes. The TAILNODE list variable is FFROM. Because the name of this variable is not _TAIL_ or
FROM, the TAILNODE list must be specified in the PROC NETFLOW statement. The HEADNODE list
must also be explicitly specified because the variable that belongs to this list does not have the name _HEAD_
or _TO_, but is TTO.

462 F Chapter 5: The NETFLOW Procedure

title 'Shortest Path Problem';
title2 'How to get Hawaiian Pineapples to a London Restaurant';
data aircost1;

input ffrom&$13. tto&$15. _cost_ ;
datalines;

Honolulu Chicago 105
Honolulu San Francisco 75
Honolulu Los Angeles 68
Chicago Boston 45
Chicago New York 56
San Francisco Boston 71
San Francisco New York 48
San Francisco Atlanta 63
Los Angeles New York 44
Los Angeles Atlanta 57
Boston Heathrow London 88
New York Heathrow London 65
Atlanta Heathrow London 76
;

proc netflow
shortpath
sourcenode=Honolulu
sinknode='Heathrow London' /* Quotes for embedded blank */
ARCDATA=aircost1
arcout=spath;
tail ffrom;
head tto;

run;

proc print data=spath;
sum _fcost_;

run;

The length at optimality is written to the SAS log as

NOTE: Number of nodes= 8 .

NOTE: Number of arcs= 13 .

NOTE: Number of iterations performed (neglecting any constraints)= 5 .

NOTE: Of these, 3 were degenerate.

NOTE: Optimum (neglecting any constraints) found.

NOTE: Shortest path= 177 .

NOTE: The data set WORK.SPATH has 13 observations and 13 variables.

Example 5.1: Shortest Path Problem F 463

The output data set ARCOUT=SPATH in Output 5.1.1 shows that the best route for the pineapples is from
Honolulu to Los Angeles to New York to Heathrow London.

Output 5.1.1 ARCOUT=SPATH

Shortest Path Problem
How to get Hawaiian Pineapples to a London Restaurant

Shortest Path Problem
How to get Hawaiian Pineapples to a London Restaurant

Obs ffrom tto _cost_ _CAPAC_ _LO_ _SUPPLY_ _DEMAND_

1 San Francisco Atlanta 63 99999999 0 . .

2 Los Angeles Atlanta 57 99999999 0 . .

3 Chicago Boston 45 99999999 0 . .

4 San Francisco Boston 71 99999999 0 . .

5 Honolulu Chicago 105 99999999 0 1 .

6 Boston Heathrow London 88 99999999 0 . 1

7 New York Heathrow London 65 99999999 0 . 1

8 Atlanta Heathrow London 76 99999999 0 . 1

9 Honolulu Los Angeles 68 99999999 0 1 .

10 Chicago New York 56 99999999 0 . .

11 San Francisco New York 48 99999999 0 . .

12 Los Angeles New York 44 99999999 0 . .

13 Honolulu San Francisco 75 99999999 0 1 .

Obs _FLOW_ _FCOST_ _RCOST_ _ANUMB_ _TNUMB_ _STATUS_

1 0 0 37 9 3 LOWERBD NONBASIC

2 0 0 24 10 4 LOWERBD NONBASIC

3 0 0 49 4 2 LOWERBD NONBASIC

4 0 0 45 5 3 LOWERBD NONBASIC

5 0 0 . 1 1 KEY_ARC BASIC

6 0 0 12 11 5 LOWERBD NONBASIC

7 1 65 . 12 6 KEY_ARC BASIC

8 0 0 . 13 7 KEY_ARC BASIC

9 1 68 . 3 1 KEY_ARC BASIC

10 0 0 49 6 2 LOWERBD NONBASIC

11 0 0 11 7 3 LOWERBD NONBASIC

12 1 44 . 8 4 KEY_ARC BASIC

13 0 0 . 2 1 KEY_ARC BASIC

177

464 F Chapter 5: The NETFLOW Procedure

Example 5.2: Minimum Cost Flow Problem
You can continue to use the pineapple example in Example 5.1 by supposing that the airlines now stipulate
that no more than 350 pineapples per week can be handled in any single leg of the journey. The restaurant
uses 500 pineapples each week. How many pineapples should take each route between Hawaii and London?

You will probably have more minimum cost flow problems because they are more general than maximal flow
and shortest path problems. A shortest path formulation is no longer valid because the sink node does not
demand one flow unit.

All arcs have the same capacity of 350 pineapples. Because of this, the DEFCAPACITY= option can be speci-
fied in the PROC NETFLOW statement, rather than having a CAPACITY list variable in ARCDATA=aircost1.
You can have a CAPACITY list variable, but the value of this variable would be 350 in all observations, so
using the DEFCAPACITY= option is more convenient. You would have to use the CAPACITY list variable if
arcs had differing capacities. You can use both the DEFCAPACITY= option and a CAPACITY list variable.

There is only one supply node and one demand node. These can be named in the SOURCE= and SINK=
options. DEMAND=500 is specified for the restaurant demand. There is no need to specify SUPPLY=500,
as this is assumed.

title 'Minimum Cost Flow Problem';
title2 'How to get Hawaiian Pineapples to a London Restaurant';
proc netflow

defcapacity=350
sourcenode='Honolulu'
sinknode='Heathrow London' /* Quotes for embedded blank */
demand=500

arcdata=aircost1
arcout=arcout1
nodeout=nodeout1;

tail ffrom;
head tto;

set future1;
run;
quit;

proc print data=arcout1;sum _fcost_;run;

proc print data=nodeout1;
run;

Example 5.2: Minimum Cost Flow Problem F 465

The following notes appear on the SAS log:

NOTE: SOURCENODE was assigned supply of the total network demand= 500 .

NOTE: Number of nodes= 8 .

NOTE: Number of supply nodes= 1 .

NOTE: Number of demand nodes= 1 .

NOTE: Total supply= 500 , total demand= 500 .

NOTE: Number of arcs= 13 .

NOTE: Number of iterations performed (neglecting any constraints)= 8 .

NOTE: Of these, 4 were degenerate.

NOTE: Optimum (neglecting any constraints) found.

NOTE: Minimal total cost= 93750 .

NOTE: The data set WORK.ARCOUT1 has 13 observations and 13 variables.

NOTE: The data set WORK.NODEOUT1 has 9 observations and 10 variables.

Figure 5.40 Pineapple Routes: Minimum Cost Flow Solution

Honolulu

Los Angeles

San Francisco

Chicago

Atlanta

New York

Boston

Heathrow
London

150

350

150

200

150

350

150

The routes and numbers of pineapples in each arc can be seen in the output data set ARCOUT=arcout1 in
Output 5.2.1. NODEOUT=NODEOUT1 is shown in Output 5.2.2.

466 F Chapter 5: The NETFLOW Procedure

Output 5.2.1 ARCOUT=ARCOUT1

Obs ffrom tto _cost_ _CAPAC_ _LO_ _SUPPLY_ _DEMAND_

1 San Francisco Atlanta 63 350 0 . .

2 Los Angeles Atlanta 57 350 0 . .

3 Chicago Boston 45 350 0 . .

4 San Francisco Boston 71 350 0 . .

5 Honolulu Chicago 105 350 0 500 .

6 Boston Heathrow London 88 350 0 . 500

7 New York Heathrow London 65 350 0 . 500

8 Atlanta Heathrow London 76 350 0 . 500

9 Honolulu Los Angeles 68 350 0 500 .

10 Chicago New York 56 350 0 . .

11 San Francisco New York 48 350 0 . .

12 Los Angeles New York 44 350 0 . .

13 Honolulu San Francisco 75 350 0 500 .

Obs _FLOW_ _FCOST_ _RCOST_ _ANUMB_ _TNUMB_ _STATUS_

1 0 0 2 9 3 LOWERBD NONBASIC

2 150 8550 . 10 4 KEY_ARC BASIC

3 0 0 4 4 2 LOWERBD NONBASIC

4 0 0 . 5 3 KEY_ARC BASIC

5 0 0 . 1 1 KEY_ARC BASIC

6 0 0 22 11 5 LOWERBD NONBASIC

7 350 22750 -24 12 6 UPPERBD NONBASIC

8 150 11400 . 13 7 KEY_ARC BASIC

9 350 23800 -11 3 1 UPPERBD NONBASIC

10 0 0 38 6 2 LOWERBD NONBASIC

11 150 7200 . 7 3 KEY_ARC BASIC

12 200 8800 . 8 4 KEY_ARC BASIC

13 150 11250 . 2 1 KEY_ARC BASIC

93750

Output 5.2.2 NODEOUT=NODEOUT1

Obs _NODE_ _SUPDEM_ _DUAL_ _NNUMB_ _PRED_ _TRAV_ _SCESS_ _ARCID_ _FLOW_ _FBQ_

1 _ROOT_ 0 0 9 0 1 0 -1 81 -14

2 Atlanta . -136 7 4 8 2 10 150 9

3 Boston . -146 5 3 2 1 5 0 4

4 Chicago . -105 2 1 9 1 1 0 1

5 Heathrow London -500 -212 8 7 5 1 13 150 11

6 Honolulu 500 0 1 9 3 8 -14 0 -1

7 Los Angeles . -79 4 6 7 3 -8 200 3

8 New York . -123 6 3 4 4 7 150 6

9 San Francisco . -75 3 1 6 6 2 150 2

Example 5.3: Using a Warm Start F 467

Example 5.3: Using a Warm Start
Suppose that the airlines state that the freight cost per pineapple in flights that leave Chicago has been reduced
by 30. How many pineapples should take each route between Hawaii and London? This example illustrates
how PROC NETFLOW uses a warm start.

In Example 5.2, the RESET statement of PROC NETFLOW is used to specify FUTURE1. A NODEOUT=
data set is also specified. The warm start information is saved in the arcout1 and nodeout1 data sets.

In the following DATA step, the costs, reduced costs, and flows in the arcout1 data set are saved in variables
called oldcost, oldflow, and oldfc. These variables form an implicit ID list in the following PROC NETFLOW
run and will appear in ARCOUT=arcout2. Thus, it is easy to compare the previous optimum and the new
optimum.

title 'Minimum Cost Flow Problem - Warm Start';
title2 'How to get Hawaiian Pineapples to a London Restaurant';
data aircost2;

set arcout1;
oldcost=_cost_;
oldflow=_flow_;
oldfc=_fcost_;
if ffrom='Chicago' then _cost_=_cost_-30;

proc netflow
warm

arcdata=aircost2
nodedata=nodeout1
arcout=arcout2;

tail ffrom;
head tto;
run;
quit;

proc print data=arcout2;
var ffrom tto _cost_ oldcost _capac_ _lo_

flow oldflow _fcost_ oldfc;
sum _fcost_ oldfc;

run;

468 F Chapter 5: The NETFLOW Procedure

The following notes appear on the SAS log:

NOTE: Number of nodes= 8 .

NOTE: Number of supply nodes= 1 .

NOTE: Number of demand nodes= 1 .

NOTE: The greater of total supply and total demand= 500 .

NOTE: Number of iterations performed (neglecting any constraints)= 3 .

NOTE: Of these, 1 were degenerate.

NOTE: Optimum (neglecting any constraints) found.

NOTE: Minimal total cost= 93150 .

NOTE: The data set WORK.ARCOUT2 has 13 observations and 16 variables.

ARCOUT=arcout2 is shown in Output 5.3.1.

Output 5.3.1 ARCOUT=ARCOUT2

Obs ffrom tto _cost_ oldcost _CAPAC_ _LO_ _FLOW_ oldflow _FCOST_ oldfc

1 San Francisco Atlanta 63 63 350 0 0 0 0 0

2 Los Angeles Atlanta 57 57 350 0 0 150 0 8550

3 Chicago Boston 15 45 350 0 150 0 2250 0

4 San Francisco Boston 71 71 350 0 0 0 0 0

5 Honolulu Chicago 105 105 350 0 150 0 15750 0

6 Boston Heathrow London 88 88 350 0 150 0 13200 0

7 New York Heathrow London 65 65 350 0 350 350 22750 22750

8 Atlanta Heathrow London 76 76 350 0 0 150 0 11400

9 Honolulu Los Angeles 68 68 350 0 350 350 23800 23800

10 Chicago New York 26 56 350 0 0 0 0 0

11 San Francisco New York 48 48 350 0 0 150 0 7200

12 Los Angeles New York 44 44 350 0 350 200 15400 8800

13 Honolulu San Francisco 75 75 350 0 0 150 0 11250

93150 93750

Example 5.4: Production, Inventory, Distribution Problem
Example 5.4 through Example 5.8 use data from a company that produces two sizes of televisions in order to
illustrate variations in the use the NETFLOW procedure. The company makes televisions with a diagonal
screen measurement of either 19 inches or 25 inches. These televisions are made between March and May
at both of the company’s two factories. Each factory has a limit on the total number of televisions of each
screen dimension that can be made during those months.

The televisions are distributed to one of two shops, stored at the factory where they were made and sold later,
or shipped to the other factory. Some sets can be used to fill backorders from the previous months. Each
shop demands a number of each type of TV for the months of March through May. The following network in
Figure 5.41 illustrates the model. Arc costs can be interpreted as production costs, storage costs, backorder
penalty costs, inter-factory transportation costs, and sales profits. The arcs can have capacities and lower flow
bounds.

Example 5.4: Production, Inventory, Distribution Problem F 469

Figure 5.41 TV Problem

Production

Inventory and
Backorders

Inter-factory

Distribution

fact2

f2_may

f2_apl

f2_mar

fact1

f1_may

f1_apl

f1_mar

shop2

shop1

There are two similarly structured networks, one for the 19-inch televisions and the other for the 25-inch
screen TVs. The minimum cost production, inventory, and distribution plan for both TV types can be
determined in the same run of PROC NETFLOW. To ensure that node names are unambiguous, the names of
nodes in the 19-inch network have suffix _1, and the node names in the 25-inch network have suffix _2.

The FUTURE1 option is specified because further processing could be required. Information concerning
an optimal solution is retained so it can be used to warm start later optimizations. Warm start information
is mostly in variables named _NNUMB_, _PRED_, _TRAV_, _SCESS_, _ARCID_, and _FBQ_ and in
observations for nodes named _EXCESS_ and _ROOT_, that are in the NODEOUT=NODE2 output data set.
(PROC NETFLOW uses similar devices to store warm start information in the DUALOUT= data set when
the FUTURE2 option is specified.) Variables _ANUMB_ and _TNUMB_ and observations for arcs directed
from or toward a node called _EXCESS_ are present in ARCOUT=arc1. (PROC NETFLOW uses similar
devices to store warm start information in the CONOUT= data set when the FUTURE2 option is specified.)

The following code shows how to save the problem data in data sets and solve the model with PROC
NETFLOW.

470 F Chapter 5: The NETFLOW Procedure

title 'Minimum Cost Flow problem';
title2 'Production Planning/Inventory/Distribution';
data node0;

input _node_ $ _supdem_ ;
datalines;

fact1_1 1000
fact2_1 850
fact1_2 1000
fact2_2 1500
shop1_1 -900
shop2_1 -900
shop1_2 -900
shop2_2 -1450
;

data arc0;
input _tail_ $ _head_ $ _cost_ _capac_ _lo_ diagonal factory

key_id $10. mth_made $ _name_&$17. ;
datalines;

fact1_1 f1_mar_1 127.9 500 50 19 1 production March prod f1 19 mar
fact1_1 f1_apr_1 78.6 600 50 19 1 production April prod f1 19 apl
fact1_1 f1_may_1 95.1 400 50 19 1 production May .
f1_mar_1 f1_apr_1 15 50 . 19 1 storage March .
f1_apr_1 f1_may_1 12 50 . 19 1 storage April .
f1_apr_1 f1_mar_1 28 20 . 19 1 backorder April back f1 19 apl
f1_may_1 f1_apr_1 28 20 . 19 1 backorder May back f1 19 may
f1_mar_1 f2_mar_1 11 . . 19 . f1_to_2 March .
f1_apr_1 f2_apr_1 11 . . 19 . f1_to_2 April .
f1_may_1 f2_may_1 16 . . 19 . f1_to_2 May .
f1_mar_1 shop1_1 -327.65 250 . 19 1 sales March .
f1_apr_1 shop1_1 -300 250 . 19 1 sales April .
f1_may_1 shop1_1 -285 250 . 19 1 sales May .
f1_mar_1 shop2_1 -362.74 250 . 19 1 sales March .
f1_apr_1 shop2_1 -300 250 . 19 1 sales April .
f1_may_1 shop2_1 -245 250 . 19 1 sales May .
fact2_1 f2_mar_1 88.0 450 35 19 2 production March prod f2 19 mar
fact2_1 f2_apr_1 62.4 480 35 19 2 production April prod f2 19 apl
fact2_1 f2_may_1 133.8 250 35 19 2 production May .
f2_mar_1 f2_apr_1 18 30 . 19 2 storage March .
f2_apr_1 f2_may_1 20 30 . 19 2 storage April .
f2_apr_1 f2_mar_1 17 15 . 19 2 backorder April back f2 19 apl
f2_may_1 f2_apr_1 25 15 . 19 2 backorder May back f2 19 may
f2_mar_1 f1_mar_1 10 40 . 19 . f2_to_1 March .
f2_apr_1 f1_apr_1 11 40 . 19 . f2_to_1 April .
f2_may_1 f1_may_1 13 40 . 19 . f2_to_1 May .
f2_mar_1 shop1_1 -297.4 250 . 19 2 sales March .
f2_apr_1 shop1_1 -290 250 . 19 2 sales April .
f2_may_1 shop1_1 -292 250 . 19 2 sales May .
f2_mar_1 shop2_1 -272.7 250 . 19 2 sales March .
f2_apr_1 shop2_1 -312 250 . 19 2 sales April .
f2_may_1 shop2_1 -299 250 . 19 2 sales May .
fact1_2 f1_mar_2 217.9 400 40 25 1 production March prod f1 25 mar
fact1_2 f1_apr_2 174.5 550 50 25 1 production April prod f1 25 apl
fact1_2 f1_may_2 133.3 350 40 25 1 production May .
f1_mar_2 f1_apr_2 20 40 . 25 1 storage March .

Example 5.4: Production, Inventory, Distribution Problem F 471

f1_apr_2 f1_may_2 18 40 . 25 1 storage April .
f1_apr_2 f1_mar_2 32 30 . 25 1 backorder April back f1 25 apl
f1_may_2 f1_apr_2 41 15 . 25 1 backorder May back f1 25 may
f1_mar_2 f2_mar_2 23 . . 25 . f1_to_2 March .
f1_apr_2 f2_apr_2 23 . . 25 . f1_to_2 April .
f1_may_2 f2_may_2 26 . . 25 . f1_to_2 May .
f1_mar_2 shop1_2 -559.76 . . 25 1 sales March .
f1_apr_2 shop1_2 -524.28 . . 25 1 sales April .
f1_may_2 shop1_2 -475.02 . . 25 1 sales May .
f1_mar_2 shop2_2 -623.89 . . 25 1 sales March .
f1_apr_2 shop2_2 -549.68 . . 25 1 sales April .
f1_may_2 shop2_2 -460.00 . . 25 1 sales May .
fact2_2 f2_mar_2 182.0 650 35 25 2 production March prod f2 25 mar
fact2_2 f2_apr_2 196.7 680 35 25 2 production April prod f2 25 apl
fact2_2 f2_may_2 201.4 550 35 25 2 production May .
f2_mar_2 f2_apr_2 28 50 . 25 2 storage March .
f2_apr_2 f2_may_2 38 50 . 25 2 storage April .
f2_apr_2 f2_mar_2 31 15 . 25 2 backorder April back f2 25 apl
f2_may_2 f2_apr_2 54 15 . 25 2 backorder May back f2 25 may
f2_mar_2 f1_mar_2 20 25 . 25 . f2_to_1 March .
f2_apr_2 f1_apr_2 21 25 . 25 . f2_to_1 April .
f2_may_2 f1_may_2 43 25 . 25 . f2_to_1 May .
f2_mar_2 shop1_2 -567.83 500 . 25 2 sales March .
f2_apr_2 shop1_2 -542.19 500 . 25 2 sales April .
f2_may_2 shop1_2 -461.56 500 . 25 2 sales May .
f2_mar_2 shop2_2 -542.83 500 . 25 2 sales March .
f2_apr_2 shop2_2 -559.19 500 . 25 2 sales April .
f2_may_2 shop2_2 -489.06 500 . 25 2 sales May .
;

proc netflow
nodedata=node0
arcdata=arc0;

set future1
nodeout=node2
arcout=arc1;
run;
quit;

options ls=80 ps = 50;
proc print data=arc1 heading=h width=min;
var _tail_ _head_ _cost_ _capac_ _lo_ _name_ _supply_ _demand_ _flow_ _fcost_;
sum _fcost_;
run;

options ls=80 ps = 50;
proc print data=arc1 heading=h width=min;
var _rcost_ _anumb_ _tnumb_ _status_ diagonal factory key_id mth_made;
run;

proc print data=node2;
run;

472 F Chapter 5: The NETFLOW Procedure

The following notes appear on the SAS log:

NOTE: Number of nodes= 20 .

NOTE: Number of supply nodes= 4 .

NOTE: Number of demand nodes= 4 .

NOTE: Total supply= 4350 , total demand= 4150 .

NOTE: Number of arcs= 64 .

NOTE: Number of iterations performed (neglecting any constraints)= 75 .

NOTE: Of these, 1 were degenerate.

NOTE: Optimum (neglecting any constraints) found.

NOTE: Minimal total cost= -1281110.35 .

NOTE: The data set WORK.ARC1 has 68 observations and 18 variables.

NOTE: The data set WORK.NODE2 has 22 observations and 10 variables.

The solution is given in the NODEOUT=node2 and ARCOUT=arc1 data sets. In the ARCOUT= data set,
shown in Output 5.4.1 and Output 5.4.2, the variables diagonal, factory, key_id, and mth_made form an
implicit ID list. The diagonal variable has one of two values, 19 or 25. factory also has one of two values, 1
or 2, to denote the factory where either production or storage occurs, from where TVs are either sold to shops
or satisfy backorders. PRODUCTION, STORAGE, SALES, and BACKORDER are values of the key_id
variable.

Other values of this variable, F1_TO_2 and F2_TO_1, are used when flow through arcs represents the
transportation of TVs between factories. The mth_made variable has values MARCH, APRIL, and MAY,
the months when TVs that are modeled as flow through an arc were made (assuming that no televisions are
stored for more than one month and none manufactured in May are used to fill March backorders).

These ID variables can be used after the PROC NETFLOW run to produce reports and perform analysis on
particular parts of the company’s operation. For example, reports can be generated for production numbers for
each factory; optimal sales figures for each shop; and how many TVs should be stored, used to fill backorders,
sent to the other factory, or any combination of these, for TVs with a particular screen, those produced in a
particular month, or both.

Example 5.4: Production, Inventory, Distribution Problem F 473

Output 5.4.1 ARCOUT=ARC1

Obs _tail_ _head_ _cost_ _capac_ _lo_ _name_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 fact1_1 _EXCESS_ 0.00 99999999 0 1000 200 5 0.00

2 fact2_1 _EXCESS_ 0.00 99999999 0 850 200 45 0.00

3 fact1_2 _EXCESS_ 0.00 99999999 0 1000 200 10 0.00

4 fact2_2 _EXCESS_ 0.00 99999999 0 1500 200 140 0.00

5 fact1_1 f1_apr_1 78.60 600 50 prod f1 19 apl 1000 . 600 47160.00

6 f1_mar_1 f1_apr_1 15.00 50 0 . . 0 0.00

7 f1_may_1 f1_apr_1 28.00 20 0 back f1 19 may . . 0 0.00

8 f2_apr_1 f1_apr_1 11.00 40 0 . . 0 0.00

9 fact1_2 f1_apr_2 174.50 550 50 prod f1 25 apl 1000 . 550 95975.00

10 f1_mar_2 f1_apr_2 20.00 40 0 . . 0 0.00

11 f1_may_2 f1_apr_2 41.00 15 0 back f1 25 may . . 15 615.00

12 f2_apr_2 f1_apr_2 21.00 25 0 . . 0 0.00

13 fact1_1 f1_mar_1 127.90 500 50 prod f1 19 mar 1000 . 345 44125.50

14 f1_apr_1 f1_mar_1 28.00 20 0 back f1 19 apl . . 20 560.00

15 f2_mar_1 f1_mar_1 10.00 40 0 . . 40 400.00

16 fact1_2 f1_mar_2 217.90 400 40 prod f1 25 mar 1000 . 400 87160.00

17 f1_apr_2 f1_mar_2 32.00 30 0 back f1 25 apl . . 30 960.00

18 f2_mar_2 f1_mar_2 20.00 25 0 . . 25 500.00

19 fact1_1 f1_may_1 95.10 400 50 1000 . 50 4755.00

20 f1_apr_1 f1_may_1 12.00 50 0 . . 50 600.00

21 f2_may_1 f1_may_1 13.00 40 0 . . 0 0.00

22 fact1_2 f1_may_2 133.30 350 40 1000 . 40 5332.00

23 f1_apr_2 f1_may_2 18.00 40 0 . . 0 0.00

24 f2_may_2 f1_may_2 43.00 25 0 . . 0 0.00

25 f1_apr_1 f2_apr_1 11.00 99999999 0 . . 30 330.00

26 fact2_1 f2_apr_1 62.40 480 35 prod f2 19 apl 850 . 480 29952.00

27 f2_mar_1 f2_apr_1 18.00 30 0 . . 0 0.00

28 f2_may_1 f2_apr_1 25.00 15 0 back f2 19 may . . 0 0.00

29 f1_apr_2 f2_apr_2 23.00 99999999 0 . . 0 0.00

30 fact2_2 f2_apr_2 196.70 680 35 prod f2 25 apl 1500 . 680 133756.00

31 f2_mar_2 f2_apr_2 28.00 50 0 . . 0 0.00

32 f2_may_2 f2_apr_2 54.00 15 0 back f2 25 may . . 15 810.00

33 f1_mar_1 f2_mar_1 11.00 99999999 0 . . 0 0.00

34 fact2_1 f2_mar_1 88.00 450 35 prod f2 19 mar 850 . 290 25520.00

35 f2_apr_1 f2_mar_1 17.00 15 0 back f2 19 apl . . 0 0.00

36 f1_mar_2 f2_mar_2 23.00 99999999 0 . . 0 0.00

37 fact2_2 f2_mar_2 182.00 650 35 prod f2 25 mar 1500 . 645 117390.00

38 f2_apr_2 f2_mar_2 31.00 15 0 back f2 25 apl . . 0 0.00

39 f1_may_1 f2_may_1 16.00 99999999 0 . . 100 1600.00

40 fact2_1 f2_may_1 133.80 250 35 850 . 35 4683.00

41 f2_apr_1 f2_may_1 20.00 30 0 . . 15 300.00

42 f1_may_2 f2_may_2 26.00 99999999 0 . . 0 0.00

43 fact2_2 f2_may_2 201.40 550 35 1500 . 35 7049.00

44 f2_apr_2 f2_may_2 38.00 50 0 . . 0 0.00

45 f1_mar_1 shop1_1 -327.65 250 0 . 900 155 -50785.75

46 f1_apr_1 shop1_1 -300.00 250 0 . 900 250 -75000.00

47 f1_may_1 shop1_1 -285.00 250 0 . 900 0 0.00

48 f2_mar_1 shop1_1 -297.40 250 0 . 900 250 -74350.00

474 F Chapter 5: The NETFLOW Procedure

Output 5.4.1 continued

Obs _tail_ _head_ _cost_ _capac_ _lo_ _name_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

49 f2_apr_1 shop1_1 -290.00 250 0 . 900 245 -71050.00

50 f2_may_1 shop1_1 -292.00 250 0 . 900 0 0.00

51 f1_mar_2 shop1_2 -559.76 99999999 0 . 900 0 0.00

52 f1_apr_2 shop1_2 -524.28 99999999 0 . 900 0 0.00

53 f1_may_2 shop1_2 -475.02 99999999 0 . 900 25 -11875.50

54 f2_mar_2 shop1_2 -567.83 500 0 . 900 500 -283915.00

55 f2_apr_2 shop1_2 -542.19 500 0 . 900 375 -203321.25

56 f2_may_2 shop1_2 -461.56 500 0 . 900 0 0.00

57 f1_mar_1 shop2_1 -362.74 250 0 . 900 250 -90685.00

58 f1_apr_1 shop2_1 -300.00 250 0 . 900 250 -75000.00

59 f1_may_1 shop2_1 -245.00 250 0 . 900 0 0.00

60 f2_mar_1 shop2_1 -272.70 250 0 . 900 0 0.00

61 f2_apr_1 shop2_1 -312.00 250 0 . 900 250 -78000.00

62 f2_may_1 shop2_1 -299.00 250 0 . 900 150 -44850.00

63 f1_mar_2 shop2_2 -623.89 99999999 0 . 1450 455 -283869.95

64 f1_apr_2 shop2_2 -549.68 99999999 0 . 1450 535 -294078.80

65 f1_may_2 shop2_2 -460.00 99999999 0 . 1450 0 0.00

66 f2_mar_2 shop2_2 -542.83 500 0 . 1450 120 -65139.60

67 f2_apr_2 shop2_2 -559.19 500 0 . 1450 320 -178940.80

68 f2_may_2 shop2_2 -489.06 500 0 . 1450 20 -9781.20

-1281110.35

Example 5.4: Production, Inventory, Distribution Problem F 475

Output 5.4.2 ARCOUT=ARC1 (continued)

Obs _RCOST_ _ANUMB_ _TNUMB_ _STATUS_ diagonal factory key_id mth_made

1 . 65 1 KEY_ARC BASIC . .

2 . 66 10 KEY_ARC BASIC . .

3 . 67 11 KEY_ARC BASIC . .

4 . 68 20 KEY_ARC BASIC . .

5 -0.650 4 1 UPPERBD NONBASIC 19 1 production April

6 63.650 5 2 LOWERBD NONBASIC 19 1 storage March

7 43.000 6 4 LOWERBD NONBASIC 19 1 backorder May

8 22.000 7 6 LOWERBD NONBASIC 19 . f2_to_1 April

9 -14.350 36 11 UPPERBD NONBASIC 25 1 production April

10 94.210 37 12 LOWERBD NONBASIC 25 1 storage March

11 -16.660 38 14 UPPERBD NONBASIC 25 1 backorder May

12 30.510 39 16 LOWERBD NONBASIC 25 . f2_to_1 April

13 . 1 1 KEY_ARC BASIC 19 1 production March

14 -20.650 2 3 UPPERBD NONBASIC 19 1 backorder April

15 -29.900 3 5 UPPERBD NONBASIC 19 . f2_to_1 March

16 -45.160 33 11 UPPERBD NONBASIC 25 1 production March

17 -42.210 34 13 UPPERBD NONBASIC 25 1 backorder April

18 -61.060 35 15 UPPERBD NONBASIC 25 . f2_to_1 March

19 0.850 8 1 LOWERBD NONBASIC 19 1 production May

20 -3.000 9 3 UPPERBD NONBASIC 19 1 storage April

21 29.000 10 7 LOWERBD NONBASIC 19 . f2_to_1 May

22 2.110 40 11 LOWERBD NONBASIC 25 1 production May

23 75.660 41 13 LOWERBD NONBASIC 25 1 storage April

24 40.040 42 17 LOWERBD NONBASIC 25 . f2_to_1 May

25 . 14 3 KEY_ARC BASIC 19 . f1_to_2 April

26 -27.850 15 10 UPPERBD NONBASIC 19 2 production April

27 15.750 16 5 LOWERBD NONBASIC 19 2 storage March

28 45.000 17 7 LOWERBD NONBASIC 19 2 backorder May

29 13.490 46 13 LOWERBD NONBASIC 25 . f1_to_2 April

30 -1.660 47 20 UPPERBD NONBASIC 25 2 production April

31 11.640 48 15 LOWERBD NONBASIC 25 2 storage March

32 -16.130 49 17 UPPERBD NONBASIC 25 2 backorder May

33 50.900 11 2 LOWERBD NONBASIC 19 . f1_to_2 March

34 . 12 10 KEY_ARC BASIC 19 2 production March

35 19.250 13 6 LOWERBD NONBASIC 19 2 backorder April

36 104.060 43 12 LOWERBD NONBASIC 25 . f1_to_2 March

37 . 44 20 KEY_ARC BASIC 25 2 production March

38 47.360 45 16 LOWERBD NONBASIC 25 2 backorder April

39 . 18 4 KEY_ARC BASIC 19 . f1_to_2 May

40 23.550 19 10 LOWERBD NONBASIC 19 2 production May

41 . 20 6 KEY_ARC BASIC 19 2 storage April

42 28.960 50 14 LOWERBD NONBASIC 25 . f1_to_2 May

43 73.170 51 20 LOWERBD NONBASIC 25 2 production May

44 108.130 52 16 LOWERBD NONBASIC 25 2 storage April

45 . 21 2 KEY_ARC BASIC 19 1 sales March

46 -21.000 22 3 UPPERBD NONBASIC 19 1 sales April

47 9.000 23 4 LOWERBD NONBASIC 19 1 sales May

48 -9.650 24 5 UPPERBD NONBASIC 19 2 sales March

476 F Chapter 5: The NETFLOW Procedure

Output 5.4.2 continued

Obs _RCOST_ _ANUMB_ _TNUMB_ _STATUS_ diagonal factory key_id mth_made

49 . 25 6 KEY_ARC BASIC 19 2 sales April

50 18.000 26 7 LOWERBD NONBASIC 19 2 sales May

51 47.130 53 12 LOWERBD NONBASIC 25 1 sales March

52 8.400 54 13 LOWERBD NONBASIC 25 1 sales April

53 . 55 14 KEY_ARC BASIC 25 1 sales May

54 -42.000 56 15 UPPERBD NONBASIC 25 2 sales March

55 . 57 16 KEY_ARC BASIC 25 2 sales April

56 10.500 58 17 LOWERBD NONBASIC 25 2 sales May

57 -46.090 27 2 UPPERBD NONBASIC 19 1 sales March

58 -32.000 28 3 UPPERBD NONBASIC 19 1 sales April

59 38.000 29 4 LOWERBD NONBASIC 19 1 sales May

60 4.050 30 5 LOWERBD NONBASIC 19 2 sales March

61 -33.000 31 6 UPPERBD NONBASIC 19 2 sales April

62 . 32 7 KEY_ARC BASIC 19 2 sales May

63 . 59 12 KEY_ARC BASIC 25 1 sales March

64 . 60 13 KEY_ARC BASIC 25 1 sales April

65 32.020 61 14 LOWERBD NONBASIC 25 1 sales May

66 . 62 15 KEY_ARC BASIC 25 2 sales March

67 . 63 16 KEY_ARC BASIC 25 2 sales April

68 . 64 17 KEY_ARC BASIC 25 2 sales May

Output 5.4.3 NODEOUT=NODE2

Obs _node_ _supdem_ _DUAL_ _NNUMB_ _PRED_ _TRAV_ _SCESS_ _ARCID_ _FLOW_ _FBQ_

1 _ROOT_ 238 0.00 22 0 8 0 3 166 -69

2 _EXCESS_ -200 -100000198.75 21 1 11 13 65 5 65

3 f1_apr_1 . -100000278.00 3 6 7 1 -14 30 4

4 f1_apr_2 . -100000387.60 13 19 17 1 -60 535 36

5 f1_mar_1 . -100000326.65 2 8 1 15 -21 155 1

6 f1_mar_2 . -100000461.81 12 19 13 1 -59 455 33

7 f1_may_1 . -100000293.00 4 7 2 1 -18 100 8

8 f1_may_2 . -100000329.94 14 18 12 1 -55 25 40

9 f2_apr_1 . -100000289.00 6 8 3 5 -25 245 14

10 f2_apr_2 . -100000397.11 16 19 18 3 -63 320 46

11 f2_mar_1 . -100000286.75 5 10 22 1 12 255 11

12 f2_mar_2 . -100000380.75 15 20 19 8 44 610 43

13 f2_may_1 . -100000309.00 7 6 9 3 20 15 18

14 f2_may_2 . -100000326.98 17 19 10 1 -64 20 50

15 fact1_1 1000 -100000198.75 1 2 21 14 -1 295 -1

16 fact1_2 1000 -100000198.75 11 21 20 1 -67 10 -33

17 fact2_1 850 -100000198.75 10 21 5 2 -66 45 -33

18 fact2_2 1500 -100000198.75 20 21 15 9 -68 140 -65

19 shop1_1 -900 -99999999.00 8 22 6 21 0 0 21

20 shop1_2 -900 -99999854.92 18 16 14 2 57 375 53

21 shop2_1 -900 -100000010.00 9 7 4 1 32 150 27

22 shop2_2 -1450 -99999837.92 19 15 16 7 62 120 59

Example 5.5: Using an Unconstrained Solution Warm Start F 477

Example 5.5: Using an Unconstrained Solution Warm Start
This example examines the effect of changing some of the arc costs. The backorder penalty costs are increased
by twenty percent. The sales profit of 25-inch TVs sent to the shops in May is increased by thirty units. The
backorder penalty costs of 25-inch TVs manufactured in May for April consumption is decreased by thirty
units. The production cost of 19- and 25-inch TVs made in May are decreased by five units and twenty units,
respectively. How does the optimal solution of the network after these arc cost alterations compare with the
optimum of the original network? If you want to use the warm start facilities of PROC NETFLOW to solve
this undefined problem, specify the WARM option. Notice that the FUTURE1 option was specified in the
last PROC NETFLOW run.

The following SAS statements produce the new NODEOUT= and ARCOUT= data sets.

title 'Minimum Cost Flow problem- Unconstrained Warm Start';
title2 'Production Planning/Inventory/Distribution';
data arc2;

set arc1;
oldcost=_cost_;
oldfc=_fcost_;
oldflow=_flow_;
if key_id='backorder'

then _cost_=_cost_*1.2;
else if _tail_='f2_may_2' then _cost_=_cost_-30;

if key_id='production' & mth_made='May' then
if diagonal=19 then _cost_=_cost_-5;

else _cost_=_cost_-20;

proc netflow
warm future1
nodedata=node2
arcdata=arc2
nodeout=node3
arcout=arc3;
run;
quit;

options ls=80 ps = 50;
proc print data=arc3 heading=h width=min;
sum _fcost_;
var _tail_ _head_ _capac_ _lo_ _supply_ _demand_ _name_ _cost_ _flow_ _fcost_;
run;

options ls=80 ps = 50;
proc print data=arc3 heading=h width=min;
sum oldfc;
var oldcost oldflow oldfc diagonal factory key_id mth_made _anumb_ _tnumb_;
run;

proc print data=node3;
run;

478 F Chapter 5: The NETFLOW Procedure

The following notes appear on the SAS log:

NOTE: Number of nodes= 21 .

NOTE: Number of supply nodes= 4 .

NOTE: Number of demand nodes= 5 .

NOTE: The greater of total supply and total demand= 4350 .

NOTE: Number of iterations performed (neglecting any constraints)= 8 .

NOTE: Of these, 0 were degenerate.

NOTE: Optimum (neglecting any constraints) found.

NOTE: Minimal total cost= -1285086.45 .

NOTE: The data set WORK.ARC3 has 68 observations and 21 variables.

NOTE: The data set WORK.NODE3 has 22 observations and 10 variables.

The solution is displayed in Output 5.5.1 and Output 5.5.2. The associated NODEOUT data set is in
Output 5.5.3.

Example 5.5: Using an Unconstrained Solution Warm Start F 479

Output 5.5.1 ARCOUT=ARC3

Obs _tail_ _head_ _capac_ _lo_ _SUPPLY_ _DEMAND_ _name_ _cost_ _FLOW_ _FCOST_

1 fact1_1 _EXCESS_ 99999999 0 1000 200 0.00 5 0.00

2 fact2_1 _EXCESS_ 99999999 0 850 200 0.00 45 0.00

3 fact1_2 _EXCESS_ 99999999 0 1000 200 0.00 0 0.00

4 fact2_2 _EXCESS_ 99999999 0 1500 200 0.00 150 0.00

5 fact1_1 f1_apr_1 600 50 1000 . prod f1 19 apl 78.60 540 42444.00

6 f1_mar_1 f1_apr_1 50 0 . . 15.00 0 0.00

7 f1_may_1 f1_apr_1 20 0 . . back f1 19 may 33.60 0 0.00

8 f2_apr_1 f1_apr_1 40 0 . . 11.00 0 0.00

9 fact1_2 f1_apr_2 550 50 1000 . prod f1 25 apl 174.50 250 43625.00

10 f1_mar_2 f1_apr_2 40 0 . . 20.00 0 0.00

11 f1_may_2 f1_apr_2 15 0 . . back f1 25 may 49.20 15 738.00

12 f2_apr_2 f1_apr_2 25 0 . . 21.00 0 0.00

13 fact1_1 f1_mar_1 500 50 1000 . prod f1 19 mar 127.90 340 43486.00

14 f1_apr_1 f1_mar_1 20 0 . . back f1 19 apl 33.60 20 672.00

15 f2_mar_1 f1_mar_1 40 0 . . 10.00 40 400.00

16 fact1_2 f1_mar_2 400 40 1000 . prod f1 25 mar 217.90 400 87160.00

17 f1_apr_2 f1_mar_2 30 0 . . back f1 25 apl 38.40 30 1152.00

18 f2_mar_2 f1_mar_2 25 0 . . 20.00 25 500.00

19 fact1_1 f1_may_1 400 50 1000 . 90.10 115 10361.50

20 f1_apr_1 f1_may_1 50 0 . . 12.00 0 0.00

21 f2_may_1 f1_may_1 40 0 . . 13.00 0 0.00

22 fact1_2 f1_may_2 350 40 1000 . 113.30 350 39655.00

23 f1_apr_2 f1_may_2 40 0 . . 18.00 0 0.00

24 f2_may_2 f1_may_2 25 0 . . 13.00 0 0.00

25 f1_apr_1 f2_apr_1 99999999 0 . . 11.00 20 220.00

26 fact2_1 f2_apr_1 480 35 850 . prod f2 19 apl 62.40 480 29952.00

27 f2_mar_1 f2_apr_1 30 0 . . 18.00 0 0.00

28 f2_may_1 f2_apr_1 15 0 . . back f2 19 may 30.00 0 0.00

29 f1_apr_2 f2_apr_2 99999999 0 . . 23.00 0 0.00

30 fact2_2 f2_apr_2 680 35 1500 . prod f2 25 apl 196.70 680 133756.00

31 f2_mar_2 f2_apr_2 50 0 . . 28.00 0 0.00

32 f2_may_2 f2_apr_2 15 0 . . back f2 25 may 64.80 0 0.00

33 f1_mar_1 f2_mar_1 99999999 0 . . 11.00 0 0.00

34 fact2_1 f2_mar_1 450 35 850 . prod f2 19 mar 88.00 290 25520.00

35 f2_apr_1 f2_mar_1 15 0 . . back f2 19 apl 20.40 0 0.00

36 f1_mar_2 f2_mar_2 99999999 0 . . 23.00 0 0.00

37 fact2_2 f2_mar_2 650 35 1500 . prod f2 25 mar 182.00 635 115570.00

38 f2_apr_2 f2_mar_2 15 0 . . back f2 25 apl 37.20 0 0.00

39 f1_may_1 f2_may_1 99999999 0 . . 16.00 115 1840.00

40 fact2_1 f2_may_1 250 35 850 . 128.80 35 4508.00

41 f2_apr_1 f2_may_1 30 0 . . 20.00 0 0.00

42 f1_may_2 f2_may_2 99999999 0 . . 26.00 335 8710.00

43 fact2_2 f2_may_2 550 35 1500 . 181.40 35 6349.00

44 f2_apr_2 f2_may_2 50 0 . . 38.00 0 0.00

45 f1_mar_1 shop1_1 250 0 . 900 -327.65 150 -49147.50

46 f1_apr_1 shop1_1 250 0 . 900 -300.00 250 -75000.00

47 f1_may_1 shop1_1 250 0 . 900 -285.00 0 0.00

48 f2_mar_1 shop1_1 250 0 . 900 -297.40 250 -74350.00

480 F Chapter 5: The NETFLOW Procedure

Output 5.5.1 continued

Obs _tail_ _head_ _capac_ _lo_ _SUPPLY_ _DEMAND_ _name_ _cost_ _FLOW_ _FCOST_

49 f2_apr_1 shop1_1 250 0 . 900 -290.00 250 -72500.00

50 f2_may_1 shop1_1 250 0 . 900 -292.00 0 0.00

51 f1_mar_2 shop1_2 99999999 0 . 900 -559.76 0 0.00

52 f1_apr_2 shop1_2 99999999 0 . 900 -524.28 0 0.00

53 f1_may_2 shop1_2 99999999 0 . 900 -475.02 0 0.00

54 f2_mar_2 shop1_2 500 0 . 900 -567.83 500 -283915.00

55 f2_apr_2 shop1_2 500 0 . 900 -542.19 400 -216876.00

56 f2_may_2 shop1_2 500 0 . 900 -491.56 0 0.00

57 f1_mar_1 shop2_1 250 0 . 900 -362.74 250 -90685.00

58 f1_apr_1 shop2_1 250 0 . 900 -300.00 250 -75000.00

59 f1_may_1 shop2_1 250 0 . 900 -245.00 0 0.00

60 f2_mar_1 shop2_1 250 0 . 900 -272.70 0 0.00

61 f2_apr_1 shop2_1 250 0 . 900 -312.00 250 -78000.00

62 f2_may_1 shop2_1 250 0 . 900 -299.00 150 -44850.00

63 f1_mar_2 shop2_2 99999999 0 . 1450 -623.89 455 -283869.95

64 f1_apr_2 shop2_2 99999999 0 . 1450 -549.68 235 -129174.80

65 f1_may_2 shop2_2 99999999 0 . 1450 -460.00 0 0.00

66 f2_mar_2 shop2_2 500 0 . 1450 -542.83 110 -59711.30

67 f2_apr_2 shop2_2 500 0 . 1450 -559.19 280 -156573.20

68 f2_may_2 shop2_2 500 0 . 1450 -519.06 370 -192052.20

-1285086.45

Example 5.5: Using an Unconstrained Solution Warm Start F 481

Output 5.5.2 ARCOUT=ARC3 (continued)

Obs oldcost oldflow oldfc diagonal factory key_id mth_made _ANUMB_ _TNUMB_

1 0.00 5 0.00 . . 65 1

2 0.00 45 0.00 . . 66 10

3 0.00 10 0.00 . . 67 11

4 0.00 140 0.00 . . 68 20

5 78.60 600 47160.00 19 1 production April 4 1

6 15.00 0 0.00 19 1 storage March 5 2

7 28.00 0 0.00 19 1 backorder May 6 4

8 11.00 0 0.00 19 . f2_to_1 April 7 6

9 174.50 550 95975.00 25 1 production April 36 11

10 20.00 0 0.00 25 1 storage March 37 12

11 41.00 15 615.00 25 1 backorder May 38 14

12 21.00 0 0.00 25 . f2_to_1 April 39 16

13 127.90 345 44125.50 19 1 production March 1 1

14 28.00 20 560.00 19 1 backorder April 2 3

15 10.00 40 400.00 19 . f2_to_1 March 3 5

16 217.90 400 87160.00 25 1 production March 33 11

17 32.00 30 960.00 25 1 backorder April 34 13

18 20.00 25 500.00 25 . f2_to_1 March 35 15

19 95.10 50 4755.00 19 1 production May 8 1

20 12.00 50 600.00 19 1 storage April 9 3

21 13.00 0 0.00 19 . f2_to_1 May 10 7

22 133.30 40 5332.00 25 1 production May 40 11

23 18.00 0 0.00 25 1 storage April 41 13

24 43.00 0 0.00 25 . f2_to_1 May 42 17

25 11.00 30 330.00 19 . f1_to_2 April 14 3

26 62.40 480 29952.00 19 2 production April 15 10

27 18.00 0 0.00 19 2 storage March 16 5

28 25.00 0 0.00 19 2 backorder May 17 7

29 23.00 0 0.00 25 . f1_to_2 April 46 13

30 196.70 680 133756.00 25 2 production April 47 20

31 28.00 0 0.00 25 2 storage March 48 15

32 54.00 15 810.00 25 2 backorder May 49 17

33 11.00 0 0.00 19 . f1_to_2 March 11 2

34 88.00 290 25520.00 19 2 production March 12 10

35 17.00 0 0.00 19 2 backorder April 13 6

36 23.00 0 0.00 25 . f1_to_2 March 43 12

37 182.00 645 117390.00 25 2 production March 44 20

38 31.00 0 0.00 25 2 backorder April 45 16

39 16.00 100 1600.00 19 . f1_to_2 May 18 4

40 133.80 35 4683.00 19 2 production May 19 10

41 20.00 15 300.00 19 2 storage April 20 6

42 26.00 0 0.00 25 . f1_to_2 May 50 14

43 201.40 35 7049.00 25 2 production May 51 20

44 38.00 0 0.00 25 2 storage April 52 16

45 -327.65 155 -50785.75 19 1 sales March 21 2

46 -300.00 250 -75000.00 19 1 sales April 22 3

47 -285.00 0 0.00 19 1 sales May 23 4

48 -297.40 250 -74350.00 19 2 sales March 24 5

482 F Chapter 5: The NETFLOW Procedure

Output 5.5.2 continued

Obs oldcost oldflow oldfc diagonal factory key_id mth_made _ANUMB_ _TNUMB_

49 -290.00 245 -71050.00 19 2 sales April 25 6

50 -292.00 0 0.00 19 2 sales May 26 7

51 -559.76 0 0.00 25 1 sales March 53 12

52 -524.28 0 0.00 25 1 sales April 54 13

53 -475.02 25 -11875.50 25 1 sales May 55 14

54 -567.83 500 -283915.00 25 2 sales March 56 15

55 -542.19 375 -203321.25 25 2 sales April 57 16

56 -461.56 0 0.00 25 2 sales May 58 17

57 -362.74 250 -90685.00 19 1 sales March 27 2

58 -300.00 250 -75000.00 19 1 sales April 28 3

59 -245.00 0 0.00 19 1 sales May 29 4

60 -272.70 0 0.00 19 2 sales March 30 5

61 -312.00 250 -78000.00 19 2 sales April 31 6

62 -299.00 150 -44850.00 19 2 sales May 32 7

63 -623.89 455 -283869.95 25 1 sales March 59 12

64 -549.68 535 -294078.80 25 1 sales April 60 13

65 -460.00 0 0.00 25 1 sales May 61 14

66 -542.83 120 -65139.60 25 2 sales March 62 15

67 -559.19 320 -178940.80 25 2 sales April 63 16

68 -489.06 20 -9781.20 25 2 sales May 64 17

-1281110.35

Output 5.5.3 NODEOUT=NODE3

Obs _node_ _supdem_ _DUAL_ _NNUMB_ _PRED_ _TRAV_ _SCESS_ _ARCID_ _FLOW_ _FBQ_

1 _ROOT_ 238 0.00 22 0 8 0 3 166 -69

2 _EXCESS_ -200 -100000198.75 21 1 20 13 65 5 65

3 f1_apr_1 . -100000277.35 3 1 6 2 4 490 4

4 f1_apr_2 . -100000387.60 13 19 11 2 -60 235 36

5 f1_mar_1 . -100000326.65 2 8 1 20 -21 150 1

6 f1_mar_2 . -100000461.81 12 19 13 1 -59 455 33

7 f1_may_1 . -100000288.85 4 1 7 3 8 65 8

8 f1_may_2 . -100000330.98 14 17 10 1 -50 335 40

9 f2_apr_1 . -100000288.35 6 3 4 1 14 20 14

10 f2_apr_2 . -100000397.11 16 19 18 2 -63 280 46

11 f2_mar_1 . -100000286.75 5 10 22 1 12 255 11

12 f2_mar_2 . -100000380.75 15 20 19 9 44 600 43

13 f2_may_1 . -100000304.85 7 4 9 2 18 115 18

14 f2_may_2 . -100000356.98 17 19 14 2 -64 370 50

15 fact1_1 1000 -100000198.75 1 2 3 19 -1 290 -1

16 fact1_2 1000 -100000213.10 11 13 17 1 -36 200 -33

17 fact2_1 850 -100000198.75 10 21 5 2 -66 45 -33

18 fact2_2 1500 -100000198.75 20 21 15 10 -68 150 -65

19 shop1_1 -900 -99999999.00 8 22 2 21 0 0 21

20 shop1_2 -900 -99999854.92 18 16 12 1 57 400 53

21 shop2_1 -900 -100000005.85 9 7 21 1 32 150 27

22 shop2_2 -1450 -99999837.92 19 15 16 8 62 110 59

Example 5.6: Adding Side Constraints, Using a Warm Start F 483

Example 5.6: Adding Side Constraints, Using a Warm Start
The manufacturer of Gizmo chips, which are parts needed to make televisions, can supply only 2600 chips
to factory 1 and 3750 chips to factory 2 in time for production in each of the months of March and April.
However, Gizmo chips will not be in short supply in May. Three chips are required to make each 19-inch TV
while the 25-inch TVs require four chips each. To limit the production of televisions produced at factory 1 in
March so that the TVs have the correct number of chips, a side constraint called FACT1 MAR GIZMO is
used. The form of this constraint is

3 * prod f1 19 mar + 4 * prod f1 25 mar <= 2600

“prod f1 19 mar” is the name of the arc directed from the node fact1_1 toward node f1_mar_1 and, in the
previous constraint, designates the flow assigned to this arc. The ARCDATA= and ARCOUT= data sets have
arc names in a variable called _name_.

The other side constraints (shown below) are called FACT2 MAR GIZMO , FACT1 APL GIZMO, and
FACT2 APL GIZMO.

3 * prod f2 19 mar + 4 * prod f2 25 mar <= 3750
3 * prod f1 19 apl + 4 * prod f1 25 apl <= 2600
3 * prod f2 19 apl + 4 * prod f2 25 apl <= 3750

To maintain customer goodwill, the total number of backorders is not to exceed 50 sets. The side constraint
TOTAL BACKORDER that models this restriction is:

back f1 19 apl + back f1 25 apl +
back f2 19 apl + back f2 25 apl +
back f1 19 may + back f1 25 may +
back f2 19 may + back f2 25 may <= 50

The sparse CONDATA= data set format is used. All side constraints are less than or equal type. Because this
is the default type value for the DEFCONTYPE= option, type information is not necessary in the following
CONDATA=CON3. Also, DEFCONTYPE= <= does not have to be specified in the PROC NETFLOW
statement that follows. Notice that the _column_ variable value CHIP/BO LIMIT indicates that an observation
of the CON3 data set contains rhs information. Therefore, specify RHSOBS=‘CHIP/BO LIMIT’.

title 'Adding Side Constraints and Using a Warm Start';
title2 'Production Planning/Inventory/Distribution';
data con3;

input _column_ &$14. _row_ &$15. _coef_ ;
datalines;

prod f1 19 mar FACT1 MAR GIZMO 3
prod f1 25 mar FACT1 MAR GIZMO 4
CHIP/BO LIMIT FACT1 MAR GIZMO 2600
prod f2 19 mar FACT2 MAR GIZMO 3
prod f2 25 mar FACT2 MAR GIZMO 4
CHIP/BO LIMIT FACT2 MAR GIZMO 3750
prod f1 19 apl FACT1 APL GIZMO 3
prod f1 25 apl FACT1 APL GIZMO 4

484 F Chapter 5: The NETFLOW Procedure

CHIP/BO LIMIT FACT1 APL GIZMO 2600
prod f2 19 apl FACT2 APL GIZMO 3
prod f2 25 apl FACT2 APL GIZMO 4
CHIP/BO LIMIT FACT2 APL GIZMO 3750
back f1 19 apl TOTAL BACKORDER 1
back f1 25 apl TOTAL BACKORDER 1
back f2 19 apl TOTAL BACKORDER 1
back f2 25 apl TOTAL BACKORDER 1
back f1 19 may TOTAL BACKORDER 1
back f1 25 may TOTAL BACKORDER 1
back f2 19 may TOTAL BACKORDER 1
back f2 25 may TOTAL BACKORDER 1
CHIP/BO LIMIT TOTAL BACKORDER 50
;

The four pairs of data sets that follow can be used as ARCDATA= and NODEDATA= data sets in the
following PROC NETFLOW run. The set used depends on which cost information the arcs are to have and
whether a warm start is to be used.

ARCDATA=arc0 NODEDATA=node0
ARCDATA=arc1 NODEDATA=node2
ARCDATA=arc2 NODEDATA=node2
ARCDATA=arc3 NODEDATA=node3

arc0, node0, arc1, and node2 were created in Example 5.4. The first two data sets are the original input
data sets. arc1 and node2 were the ARCOUT= and NODEOUT= data sets of a PROC NETFLOW run with
FUTURE1 specified. Now, if you use arc1 and node2 as the ARCDATA= data set and NODEDATA= data
set in a PROC NETFLOW run, you can specify WARM, as these data sets contain additional information
describing a warm start.

In Example 5.5, arc2 was created by modifying arc1 to reflect different arc costs. arc2 and node2 can also be
used as the ARCDATA= and NODEDATA= data sets in a PROC NETFLOW run. Again, specify WARM,
as these data sets contain additional information describing a warm start. This start, however, contains the
optimal basis using the original costs.

If you are going to continue optimization using the changed arc costs, it is probably best to use arc3 and
node3 as the ARCDATA= and NODEDATA= data sets. These data sets, created in Example 5.6 by PROC
NETFLOW when the FUTURE1 option was specified, contain an optimal basis that can be used as a warm
start.

PROC NETFLOW is used to find the changed cost network solution that obeys the chip limit and backorder
side constraints. The FUTURE2 option is specified in case further processing is required. An explicit ID list
has also been specified so that the variables oldcost, oldfc and oldflow do not appear in the subsequent output
data sets.

Example 5.6: Adding Side Constraints, Using a Warm Start F 485

proc netflow
nodedata=node3 arcdata=arc3 warm
condata=con3 sparsecondata rhsobs='CHIP/BO LIMIT'
future2 dualout=dual4 conout=con4;

id diagonal factory key_id mth_made;
run;
quit;

proc print data=con4 heading=h width=min;
sum _fcost_;
var _tail_ _head_ _cost_ _capac_ _lo_ _name_ _supply_ _demand_ _flow_ _fcost_;
run;

proc print data=con4 heading=h width=min;
var _rcost_ _anumb_ _tnumb_ _status_ diagonal factory key_id mth_made;
run;

proc print data=dual4;
run;

The following messages appear on the SAS log:

NOTE: The following 3 variables in ARCDATA do not belong to any SAS variable

 list. These will be ignored.

 oldcost

 oldfc

 oldflow

NOTE: Number of nodes= 21 .

NOTE: Number of supply nodes= 4 .

NOTE: Number of demand nodes= 5 .

NOTE: The greater of total supply and total demand= 4350 .

NOTE: Number of iterations performed (neglecting any constraints)= 1 .

NOTE: Of these, 0 were degenerate.

NOTE: Optimum (neglecting any constraints) found.

NOTE: Minimal total cost= -1285086.45 .

NOTE: Number of <= side constraints= 5 .

NOTE: Number of == side constraints= 0 .

NOTE: Number of >= side constraints= 0 .

NOTE: Number of arc and nonarc variable side constraint coefficients= 16 .

NOTE: Number of iterations, optimizing with constraints= 14 .

NOTE: Of these, 1 were degenerate.

NOTE: Optimum reached.

NOTE: Minimal total cost= -1282708.625 .

NOTE: The data set WORK.CON4 has 68 observations and 18 variables.

NOTE: The data set WORK.DUAL4 has 27 observations and 14 variables.

486 F Chapter 5: The NETFLOW Procedure

Output 5.6.1 CONOUT=CON4

Obs _tail_ _head_ _cost_ _capac_ _lo_ _name_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 fact1_1 _EXCESS_ 0.00 99999999 0 1000 200 5.000 0.00

2 fact2_1 _EXCESS_ 0.00 99999999 0 850 200 45.000 0.00

3 fact1_2 _EXCESS_ 0.00 99999999 0 1000 200 0.000 0.00

4 fact2_2 _EXCESS_ 0.00 99999999 0 1500 200 150.000 0.00

5 fact1_1 f1_apr_1 78.60 600 50 prod f1 19 apl 1000 . 533.333 41920.00

6 f1_mar_1 f1_apr_1 15.00 50 0 . . 0.000 0.00

7 f1_may_1 f1_apr_1 33.60 20 0 back f1 19 may . . 0.000 0.00

8 f2_apr_1 f1_apr_1 11.00 40 0 . . 0.000 0.00

9 fact1_2 f1_apr_2 174.50 550 50 prod f1 25 apl 1000 . 250.000 43625.00

10 f1_mar_2 f1_apr_2 20.00 40 0 . . 0.000 0.00

11 f1_may_2 f1_apr_2 49.20 15 0 back f1 25 may . . 0.000 0.00

12 f2_apr_2 f1_apr_2 21.00 25 0 . . 0.000 0.00

13 fact1_1 f1_mar_1 127.90 500 50 prod f1 19 mar 1000 . 333.333 42633.33

14 f1_apr_1 f1_mar_1 33.60 20 0 back f1 19 apl . . 20.000 672.00

15 f2_mar_1 f1_mar_1 10.00 40 0 . . 40.000 400.00

16 fact1_2 f1_mar_2 217.90 400 40 prod f1 25 mar 1000 . 400.000 87160.00

17 f1_apr_2 f1_mar_2 38.40 30 0 back f1 25 apl . . 30.000 1152.00

18 f2_mar_2 f1_mar_2 20.00 25 0 . . 25.000 500.00

19 fact1_1 f1_may_1 90.10 400 50 1000 . 128.333 11562.83

20 f1_apr_1 f1_may_1 12.00 50 0 . . 0.000 0.00

21 f2_may_1 f1_may_1 13.00 40 0 . . 0.000 0.00

22 fact1_2 f1_may_2 113.30 350 40 1000 . 350.000 39655.00

23 f1_apr_2 f1_may_2 18.00 40 0 . . 0.000 0.00

24 f2_may_2 f1_may_2 13.00 25 0 . . 0.000 0.00

25 f1_apr_1 f2_apr_1 11.00 99999999 0 . . 13.333 146.67

26 fact2_1 f2_apr_1 62.40 480 35 prod f2 19 apl 850 . 480.000 29952.00

27 f2_mar_1 f2_apr_1 18.00 30 0 . . 0.000 0.00

28 f2_may_1 f2_apr_1 30.00 15 0 back f2 19 may . . 0.000 0.00

29 f1_apr_2 f2_apr_2 23.00 99999999 0 . . 0.000 0.00

30 fact2_2 f2_apr_2 196.70 680 35 prod f2 25 apl 1500 . 577.500 113594.25

31 f2_mar_2 f2_apr_2 28.00 50 0 . . 0.000 0.00

32 f2_may_2 f2_apr_2 64.80 15 0 back f2 25 may . . 0.000 0.00

33 f1_mar_1 f2_mar_1 11.00 99999999 0 . . 0.000 0.00

34 fact2_1 f2_mar_1 88.00 450 35 prod f2 19 mar 850 . 290.000 25520.00

35 f2_apr_1 f2_mar_1 20.40 15 0 back f2 19 apl . . 0.000 0.00

36 f1_mar_2 f2_mar_2 23.00 99999999 0 . . 0.000 0.00

37 fact2_2 f2_mar_2 182.00 650 35 prod f2 25 mar 1500 . 650.000 118300.00

38 f2_apr_2 f2_mar_2 37.20 15 0 back f2 25 apl . . 0.000 0.00

39 f1_may_1 f2_may_1 16.00 99999999 0 . . 115.000 1840.00

40 fact2_1 f2_may_1 128.80 250 35 850 . 35.000 4508.00

41 f2_apr_1 f2_may_1 20.00 30 0 . . 0.000 0.00

42 f1_may_2 f2_may_2 26.00 99999999 0 . . 350.000 9100.00

43 fact2_2 f2_may_2 181.40 550 35 1500 . 122.500 22221.50

44 f2_apr_2 f2_may_2 38.00 50 0 . . 0.000 0.00

45 f1_mar_1 shop1_1 -327.65 250 0 . 900 143.333 -46963.17

46 f1_apr_1 shop1_1 -300.00 250 0 . 900 250.000 -75000.00

47 f1_may_1 shop1_1 -285.00 250 0 . 900 13.333 -3800.00

48 f2_mar_1 shop1_1 -297.40 250 0 . 900 250.000 -74350.00

Example 5.6: Adding Side Constraints, Using a Warm Start F 487

Output 5.6.1 continued

Obs _tail_ _head_ _cost_ _capac_ _lo_ _name_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

49 f2_apr_1 shop1_1 -290.00 250 0 . 900 243.333 -70566.67

50 f2_may_1 shop1_1 -292.00 250 0 . 900 0.000 0.00

51 f1_mar_2 shop1_2 -559.76 99999999 0 . 900 0.000 0.00

52 f1_apr_2 shop1_2 -524.28 99999999 0 . 900 0.000 0.00

53 f1_may_2 shop1_2 -475.02 99999999 0 . 900 0.000 0.00

54 f2_mar_2 shop1_2 -567.83 500 0 . 900 500.000 -283915.00

55 f2_apr_2 shop1_2 -542.19 500 0 . 900 400.000 -216876.00

56 f2_may_2 shop1_2 -491.56 500 0 . 900 0.000 0.00

57 f1_mar_1 shop2_1 -362.74 250 0 . 900 250.000 -90685.00

58 f1_apr_1 shop2_1 -300.00 250 0 . 900 250.000 -75000.00

59 f1_may_1 shop2_1 -245.00 250 0 . 900 0.000 0.00

60 f2_mar_1 shop2_1 -272.70 250 0 . 900 0.000 0.00

61 f2_apr_1 shop2_1 -312.00 250 0 . 900 250.000 -78000.00

62 f2_may_1 shop2_1 -299.00 250 0 . 900 150.000 -44850.00

63 f1_mar_2 shop2_2 -623.89 99999999 0 . 1450 455.000 -283869.95

64 f1_apr_2 shop2_2 -549.68 99999999 0 . 1450 220.000 -120929.60

65 f1_may_2 shop2_2 -460.00 99999999 0 . 1450 0.000 0.00

66 f2_mar_2 shop2_2 -542.83 500 0 . 1450 125.000 -67853.75

67 f2_apr_2 shop2_2 -559.19 500 0 . 1450 177.500 -99256.23

68 f2_may_2 shop2_2 -519.06 500 0 . 1450 472.500 -245255.85

-1282708.63

488 F Chapter 5: The NETFLOW Procedure

Output 5.6.2 CONOUT=CON4 (continued)

Obs _RCOST_ _ANUMB_ _TNUMB_ _STATUS_ diagonal factory key_id mth_made

1 . 65 1 KEY_ARC BASIC . .

2 . 66 10 KEY_ARC BASIC . .

3 30.187 67 11 LOWERBD NONBASIC . .

4 . 68 20 KEY_ARC BASIC . .

5 . 4 1 KEY_ARC BASIC 19 1 production April

6 63.650 5 2 LOWERBD NONBASIC 19 1 storage March

7 54.650 6 4 LOWERBD NONBASIC 19 1 backorder May

8 22.000 7 6 LOWERBD NONBASIC 19 . f2_to_1 April

9 . 36 11 KEY_ARC BASIC 25 1 production April

10 94.210 37 12 LOWERBD NONBASIC 25 1 storage March

11 7.630 38 14 LOWERBD NONBASIC 25 1 backorder May

12 30.510 39 16 LOWERBD NONBASIC 25 . f2_to_1 April

13 . 1 1 KEY_ARC BASIC 19 1 production March

14 . 2 3 NONKEY ARC BASIC 19 1 backorder April

15 -34.750 3 5 UPPERBD NONBASIC 19 . f2_to_1 March

16 -31.677 33 11 UPPERBD NONBASIC 25 1 production March

17 -20.760 34 13 UPPERBD NONBASIC 25 1 backorder April

18 -61.060 35 15 UPPERBD NONBASIC 25 . f2_to_1 March

19 . 8 1 KEY_ARC BASIC 19 1 production May

20 6.000 9 3 LOWERBD NONBASIC 19 1 storage April

21 29.000 10 7 LOWERBD NONBASIC 19 . f2_to_1 May

22 -11.913 40 11 UPPERBD NONBASIC 25 1 production May

23 74.620 41 13 LOWERBD NONBASIC 25 1 storage April

24 39.000 42 17 LOWERBD NONBASIC 25 . f2_to_1 May

25 . 14 3 KEY_ARC BASIC 19 . f1_to_2 April

26 -14.077 15 10 UPPERBD NONBASIC 19 2 production April

27 10.900 16 5 LOWERBD NONBASIC 19 2 storage March

28 56.050 17 7 LOWERBD NONBASIC 19 2 backorder May

29 13.490 46 13 LOWERBD NONBASIC 25 . f1_to_2 April

30 . 47 20 KEY_ARC BASIC 25 2 production April

31 11.640 48 15 LOWERBD NONBASIC 25 2 storage March

32 39.720 49 17 LOWERBD NONBASIC 25 2 backorder May

33 55.750 11 2 LOWERBD NONBASIC 19 . f1_to_2 March

34 . 12 10 KEY_ARC BASIC 19 2 production March

35 42.550 13 6 LOWERBD NONBASIC 19 2 backorder April

36 104.060 43 12 LOWERBD NONBASIC 25 . f1_to_2 March

37 -23.170 44 20 UPPERBD NONBASIC 25 2 production March

38 68.610 45 16 LOWERBD NONBASIC 25 2 backorder April

39 . 18 4 KEY_ARC BASIC 19 . f1_to_2 May

40 22.700 19 10 LOWERBD NONBASIC 19 2 production May

41 9.000 20 6 LOWERBD NONBASIC 19 2 storage April

42 . 50 14 KEY_ARC BASIC 25 . f1_to_2 May

43 . 51 20 NONKEY ARC BASIC 25 2 production May

44 78.130 52 16 LOWERBD NONBASIC 25 2 storage April

45 . 21 2 KEY_ARC BASIC 19 1 sales March

46 -21.000 22 3 UPPERBD NONBASIC 19 1 sales April

47 . 23 4 NONKEY ARC BASIC 19 1 sales May

48 -14.500 24 5 UPPERBD NONBASIC 19 2 sales March

Example 5.6: Adding Side Constraints, Using a Warm Start F 489

Output 5.6.2 continued

Obs _RCOST_ _ANUMB_ _TNUMB_ _STATUS_ diagonal factory key_id mth_made

49 . 25 6 NONKEY ARC BASIC 19 2 sales April

50 9.000 26 7 LOWERBD NONBASIC 19 2 sales May

51 47.130 53 12 LOWERBD NONBASIC 25 1 sales March

52 8.400 54 13 LOWERBD NONBASIC 25 1 sales April

53 1.040 55 14 LOWERBD NONBASIC 25 1 sales May

54 -42.000 56 15 UPPERBD NONBASIC 25 2 sales March

55 . 57 16 KEY_ARC BASIC 25 2 sales April

56 10.500 58 17 LOWERBD NONBASIC 25 2 sales May

57 -37.090 27 2 UPPERBD NONBASIC 19 1 sales March

58 -23.000 28 3 UPPERBD NONBASIC 19 1 sales April

59 38.000 29 4 LOWERBD NONBASIC 19 1 sales May

60 8.200 30 5 LOWERBD NONBASIC 19 2 sales March

61 -24.000 31 6 UPPERBD NONBASIC 19 2 sales April

62 . 32 7 KEY_ARC BASIC 19 2 sales May

63 . 59 12 KEY_ARC BASIC 25 1 sales March

64 . 60 13 KEY_ARC BASIC 25 1 sales April

65 33.060 61 14 LOWERBD NONBASIC 25 1 sales May

66 . 62 15 KEY_ARC BASIC 25 2 sales March

67 . 63 16 KEY_ARC BASIC 25 2 sales April

68 . 64 17 KEY_ARC BASIC 25 2 sales May

490 F Chapter 5: The NETFLOW Procedure

Output 5.6.3 DUALOUT=DUAL4

Obs _node_ _supdem_ _DUAL_ _NNUMB_ _PRED_ _TRAV_ _SCESS_ _ARCID_

1 _ROOT_ 238 0.00 22 0 8 5 3

2 _EXCESS_ -200 -100000193.90 21 1 20 13 65

3 f1_apr_1 . -100000278.00 3 1 6 2 4

4 f1_apr_2 . -100000405.92 13 19 11 2 -60

5 f1_mar_1 . -100000326.65 2 8 1 20 -21

6 f1_mar_2 . -100000480.13 12 19 13 1 -59

7 f1_may_1 . -100000284.00 4 1 7 3 8

8 f1_may_2 . -100000349.30 14 17 15 1 -50

9 f2_apr_1 . -100000289.00 6 3 4 1 14

10 f2_apr_2 . -100000415.43 16 20 18 9 47

11 f2_mar_1 . -100000281.90 5 10 3 1 12

12 f2_mar_2 . -100000399.07 15 19 10 1 -62

13 f2_may_1 . -100000300.00 7 4 9 2 18

14 f2_may_2 . -100000375.30 17 19 14 2 -64

15 fact1_1 1000 -100000193.90 1 2 21 19 -1

16 fact1_2 1000 -100000224.09 11 13 17 1 -36

17 fact2_1 850 -100000193.90 10 21 5 2 -66

18 fact2_2 1500 -100000193.90 20 21 16 10 -68

19 shop1_1 -900 -99999999.00 8 22 2 21 0

20 shop1_2 -900 -99999873.24 18 16 19 1 57

21 shop2_1 -900 -100000001.00 9 7 22 1 32

22 shop2_2 -1450 -99999856.24 19 16 12 7 63

23 . -1.83 2 8 . . 25

Obs _FLOW_ _FBQ_ _VALUE_ _RHS_ _TYPE_ _row_

1 166.000 -69 0 75

2 5.000 65 . .

3 483.333 4 . .

4 220.000 36 . .

5 143.333 1 . .

6 455.000 33 . .

7 78.333 8 . .

8 350.000 40 . .

9 13.333 14 . .

10 542.500 46 . .

11 255.000 11 . .

12 125.000 43 . .

13 115.000 18 . .

14 472.500 50 . .

15 283.333 -1 . .

16 200.000 -33 . .

17 45.000 -33 . .

18 150.000 -65 . .

19 0.000 21 . .

20 400.000 53 . .

21 150.000 27 . .

22 177.500 59 . .

23 243.333 . 2600 2600 LE FACT1 APL GIZMO

Example 5.7: Using a Constrained Solution Warm Start F 491

Output 5.6.3 continued

Obs _node_ _supdem_ _DUAL_ _NNUMB_ _PRED_ _TRAV_ _SCESS_ _ARCID_

24 . -1.62 0 8 . . 23

25 . -6.21 3 17 . . 51

26 . 0.00 1 1 . 1 .

27 . -15.05 4 2 . . 2

Obs _FLOW_ _FBQ_ _VALUE_ _RHS_ _TYPE_ _row_

24 13.333 . 2600 2600 LE FACT1 MAR GIZMO

25 87.500 . 3750 3750 LE FACT2 APL GIZMO

26 280.000 . 3470 3750 LE FACT2 MAR GIZMO

27 20.000 . 50 50 LE TOTAL BACKORDER

Example 5.7: Using a Constrained Solution Warm Start
Suppose the 25-inch screen TVs produced at factory 1 in May can be sold at either shop with an increased
profit of 40 dollars each. What is the new optimal solution? Because only arc costs have been changed,
information about the present solution in DUALOUT=dual4 and CONOUT=con4 can be used as a warm start
in the following PROC NETFLOW run. It is still necessary to specify CONDATA=con3 SPARSECONDATA
RHSOBS=‘CHIP/BO LIMIT’, since the CONDATA= data set is always read.

title 'Using a Constrained Solution Warm Start';
title2 'Production Planning/Inventory/Distribution';
data new_con4;

set con4;
oldcost=_cost_;
oldflow=_flow_;
oldfc=_fcost_;
if _tail_='f1_may_2'

& (_head_='shop1_2' | _head_='shop2_2')
then _cost_=_cost_-40;

run;

proc netflow
warm
arcdata=new_con4
dualin=dual4
condata=con3
sparsecondata
rhsobs='CHIP/BO LIMIT'
dualout=dual5
conout=con5;

run;
quit;

proc print data=con5 heading=h width=min;
sum _fcost_;
var _tail_ _head_ _capac_ _lo_ _supply_ _demand_ _name_ _cost_ _flow_ _fcost_;
run;

492 F Chapter 5: The NETFLOW Procedure

proc print data=con5 heading=h width=min;
sum oldfc;
var oldcost oldflow oldfc diagonal factory key_id mth_made _anumb_ _tnumb_;

run;

proc print data=dual5;
run;

The following messages appear on the SAS log:

NOTE: The following 1 variables in NODEDATA do not belong to any SAS variable

 list. These will be ignored.

 VALUE

NOTE: Number of nodes= 21 .

NOTE: Number of supply nodes= 4 .

NOTE: Number of demand nodes= 5 .

NOTE: The greater of total supply and total demand= 4350 .

NOTE: Number of <= side constraints= 5 .

NOTE: Number of == side constraints= 0 .

NOTE: Number of >= side constraints= 0 .

NOTE: Number of arc and nonarc variable side constraint coefficients= 16 .

NOTE: Number of iterations, optimizing with constraints= 6 .

NOTE: Of these, 0 were degenerate.

NOTE: Optimum reached.

NOTE: Minimal total cost= -1295661.8 .

NOTE: The data set WORK.CON5 has 68 observations and 21 variables.

NOTE: The data set WORK.DUAL5 has 25 observations and 14 variables.

Example 5.7: Using a Constrained Solution Warm Start F 493

Output 5.7.1 CONOUT=CON5

Obs _tail_ _head_ _capac_ _lo_ _SUPPLY_ _DEMAND_ _name_ _cost_ _FLOW_ _FCOST_

1 fact1_1 _EXCESS_ 99999999 0 1000 200 0.00 5.000 0.00

2 fact2_1 _EXCESS_ 99999999 0 850 200 0.00 45.000 0.00

3 fact1_2 _EXCESS_ 99999999 0 1000 200 0.00 0.000 0.00

4 fact2_2 _EXCESS_ 99999999 0 1500 200 0.00 150.000 0.00

5 fact1_1 f1_apr_1 600 50 1000 . prod f1 19 apl 78.60 533.333 41920.00

6 f1_mar_1 f1_apr_1 50 0 . . 15.00 0.000 0.00

7 f1_may_1 f1_apr_1 20 0 . . back f1 19 may 33.60 0.000 0.00

8 f2_apr_1 f1_apr_1 40 0 . . 11.00 0.000 0.00

9 fact1_2 f1_apr_2 550 50 1000 . prod f1 25 apl 174.50 250.000 43625.00

10 f1_mar_2 f1_apr_2 40 0 . . 20.00 0.000 0.00

11 f1_may_2 f1_apr_2 15 0 . . back f1 25 may 49.20 0.000 0.00

12 f2_apr_2 f1_apr_2 25 0 . . 21.00 0.000 0.00

13 fact1_1 f1_mar_1 500 50 1000 . prod f1 19 mar 127.90 333.333 42633.33

14 f1_apr_1 f1_mar_1 20 0 . . back f1 19 apl 33.60 20.000 672.00

15 f2_mar_1 f1_mar_1 40 0 . . 10.00 40.000 400.00

16 fact1_2 f1_mar_2 400 40 1000 . prod f1 25 mar 217.90 400.000 87160.00

17 f1_apr_2 f1_mar_2 30 0 . . back f1 25 apl 38.40 30.000 1152.00

18 f2_mar_2 f1_mar_2 25 0 . . 20.00 25.000 500.00

19 fact1_1 f1_may_1 400 50 1000 . 90.10 128.333 11562.83

20 f1_apr_1 f1_may_1 50 0 . . 12.00 0.000 0.00

21 f2_may_1 f1_may_1 40 0 . . 13.00 0.000 0.00

22 fact1_2 f1_may_2 350 40 1000 . 113.30 350.000 39655.00

23 f1_apr_2 f1_may_2 40 0 . . 18.00 0.000 0.00

24 f2_may_2 f1_may_2 25 0 . . 13.00 0.000 0.00

25 f1_apr_1 f2_apr_1 99999999 0 . . 11.00 13.333 146.67

26 fact2_1 f2_apr_1 480 35 850 . prod f2 19 apl 62.40 480.000 29952.00

27 f2_mar_1 f2_apr_1 30 0 . . 18.00 0.000 0.00

28 f2_may_1 f2_apr_1 15 0 . . back f2 19 may 30.00 0.000 0.00

29 f1_apr_2 f2_apr_2 99999999 0 . . 23.00 0.000 0.00

30 fact2_2 f2_apr_2 680 35 1500 . prod f2 25 apl 196.70 550.000 108185.00

31 f2_mar_2 f2_apr_2 50 0 . . 28.00 0.000 0.00

32 f2_may_2 f2_apr_2 15 0 . . back f2 25 may 64.80 0.000 0.00

33 f1_mar_1 f2_mar_1 99999999 0 . . 11.00 0.000 0.00

34 fact2_1 f2_mar_1 450 35 850 . prod f2 19 mar 88.00 290.000 25520.00

35 f2_apr_1 f2_mar_1 15 0 . . back f2 19 apl 20.40 0.000 0.00

36 f1_mar_2 f2_mar_2 99999999 0 . . 23.00 0.000 0.00

37 fact2_2 f2_mar_2 650 35 1500 . prod f2 25 mar 182.00 650.000 118300.00

38 f2_apr_2 f2_mar_2 15 0 . . back f2 25 apl 37.20 0.000 0.00

39 f1_may_1 f2_may_1 99999999 0 . . 16.00 115.000 1840.00

40 fact2_1 f2_may_1 250 35 850 . 128.80 35.000 4508.00

41 f2_apr_1 f2_may_1 30 0 . . 20.00 0.000 0.00

42 f1_may_2 f2_may_2 99999999 0 . . 26.00 0.000 0.00

43 fact2_2 f2_may_2 550 35 1500 . 181.40 150.000 27210.00

44 f2_apr_2 f2_may_2 50 0 . . 38.00 0.000 0.00

45 f1_mar_1 shop1_1 250 0 . 900 -327.65 143.333 -46963.17

46 f1_apr_1 shop1_1 250 0 . 900 -300.00 250.000 -75000.00

47 f1_may_1 shop1_1 250 0 . 900 -285.00 13.333 -3800.00

48 f2_mar_1 shop1_1 250 0 . 900 -297.40 250.000 -74350.00

494 F Chapter 5: The NETFLOW Procedure

Output 5.7.1 continued

Obs _tail_ _head_ _capac_ _lo_ _SUPPLY_ _DEMAND_ _name_ _cost_ _FLOW_ _FCOST_

49 f2_apr_1 shop1_1 250 0 . 900 -290.00 243.333 -70566.67

50 f2_may_1 shop1_1 250 0 . 900 -292.00 0.000 0.00

51 f1_mar_2 shop1_2 99999999 0 . 900 -559.76 0.000 0.00

52 f1_apr_2 shop1_2 99999999 0 . 900 -524.28 0.000 0.00

53 f1_may_2 shop1_2 99999999 0 . 900 -515.02 350.000 -180257.00

54 f2_mar_2 shop1_2 500 0 . 900 -567.83 500.000 -283915.00

55 f2_apr_2 shop1_2 500 0 . 900 -542.19 50.000 -27109.50

56 f2_may_2 shop1_2 500 0 . 900 -491.56 0.000 0.00

57 f1_mar_1 shop2_1 250 0 . 900 -362.74 250.000 -90685.00

58 f1_apr_1 shop2_1 250 0 . 900 -300.00 250.000 -75000.00

59 f1_may_1 shop2_1 250 0 . 900 -245.00 0.000 0.00

60 f2_mar_1 shop2_1 250 0 . 900 -272.70 0.000 0.00

61 f2_apr_1 shop2_1 250 0 . 900 -312.00 250.000 -78000.00

62 f2_may_1 shop2_1 250 0 . 900 -299.00 150.000 -44850.00

63 f1_mar_2 shop2_2 99999999 0 . 1450 -623.89 455.000 -283869.95

64 f1_apr_2 shop2_2 99999999 0 . 1450 -549.68 220.000 -120929.60

65 f1_may_2 shop2_2 99999999 0 . 1450 -500.00 0.000 0.00

66 f2_mar_2 shop2_2 500 0 . 1450 -542.83 125.000 -67853.75

67 f2_apr_2 shop2_2 500 0 . 1450 -559.19 500.000 -279595.00

68 f2_may_2 shop2_2 500 0 . 1450 -519.06 150.000 -77859.00

-1295661.80

Example 5.7: Using a Constrained Solution Warm Start F 495

Output 5.7.2 CONOUT=CON5 (continued)

Obs oldcost oldflow oldfc diagonal factory key_id mth_made _ANUMB_ _TNUMB_

1 0.00 5.000 0.00 . . 65 1

2 0.00 45.000 0.00 . . 66 10

3 0.00 0.000 0.00 . . 67 11

4 0.00 150.000 0.00 . . 68 20

5 78.60 533.333 41920.00 19 1 production April 4 1

6 15.00 0.000 0.00 19 1 storage March 5 2

7 33.60 0.000 0.00 19 1 backorder May 6 4

8 11.00 0.000 0.00 19 . f2_to_1 April 7 6

9 174.50 250.000 43625.00 25 1 production April 36 11

10 20.00 0.000 0.00 25 1 storage March 37 12

11 49.20 0.000 0.00 25 1 backorder May 38 14

12 21.00 0.000 0.00 25 . f2_to_1 April 39 16

13 127.90 333.333 42633.33 19 1 production March 1 1

14 33.60 20.000 672.00 19 1 backorder April 2 3

15 10.00 40.000 400.00 19 . f2_to_1 March 3 5

16 217.90 400.000 87160.00 25 1 production March 33 11

17 38.40 30.000 1152.00 25 1 backorder April 34 13

18 20.00 25.000 500.00 25 . f2_to_1 March 35 15

19 90.10 128.333 11562.83 19 1 production May 8 1

20 12.00 0.000 0.00 19 1 storage April 9 3

21 13.00 0.000 0.00 19 . f2_to_1 May 10 7

22 113.30 350.000 39655.00 25 1 production May 40 11

23 18.00 0.000 0.00 25 1 storage April 41 13

24 13.00 0.000 0.00 25 . f2_to_1 May 42 17

25 11.00 13.333 146.67 19 . f1_to_2 April 14 3

26 62.40 480.000 29952.00 19 2 production April 15 10

27 18.00 0.000 0.00 19 2 storage March 16 5

28 30.00 0.000 0.00 19 2 backorder May 17 7

29 23.00 0.000 0.00 25 . f1_to_2 April 46 13

30 196.70 577.500 113594.25 25 2 production April 47 20

31 28.00 0.000 0.00 25 2 storage March 48 15

32 64.80 0.000 0.00 25 2 backorder May 49 17

33 11.00 0.000 0.00 19 . f1_to_2 March 11 2

34 88.00 290.000 25520.00 19 2 production March 12 10

35 20.40 0.000 0.00 19 2 backorder April 13 6

36 23.00 0.000 0.00 25 . f1_to_2 March 43 12

37 182.00 650.000 118300.00 25 2 production March 44 20

38 37.20 0.000 0.00 25 2 backorder April 45 16

39 16.00 115.000 1840.00 19 . f1_to_2 May 18 4

40 128.80 35.000 4508.00 19 2 production May 19 10

41 20.00 0.000 0.00 19 2 storage April 20 6

42 26.00 350.000 9100.00 25 . f1_to_2 May 50 14

43 181.40 122.500 22221.50 25 2 production May 51 20

44 38.00 0.000 0.00 25 2 storage April 52 16

45 -327.65 143.333 -46963.17 19 1 sales March 21 2

46 -300.00 250.000 -75000.00 19 1 sales April 22 3

47 -285.00 13.333 -3800.00 19 1 sales May 23 4

48 -297.40 250.000 -74350.00 19 2 sales March 24 5

496 F Chapter 5: The NETFLOW Procedure

Output 5.7.2 continued

Obs oldcost oldflow oldfc diagonal factory key_id mth_made _ANUMB_ _TNUMB_

49 -290.00 243.333 -70566.67 19 2 sales April 25 6

50 -292.00 0.000 0.00 19 2 sales May 26 7

51 -559.76 0.000 0.00 25 1 sales March 53 12

52 -524.28 0.000 0.00 25 1 sales April 54 13

53 -475.02 0.000 0.00 25 1 sales May 55 14

54 -567.83 500.000 -283915.00 25 2 sales March 56 15

55 -542.19 400.000 -216876.00 25 2 sales April 57 16

56 -491.56 0.000 0.00 25 2 sales May 58 17

57 -362.74 250.000 -90685.00 19 1 sales March 27 2

58 -300.00 250.000 -75000.00 19 1 sales April 28 3

59 -245.00 0.000 0.00 19 1 sales May 29 4

60 -272.70 0.000 0.00 19 2 sales March 30 5

61 -312.00 250.000 -78000.00 19 2 sales April 31 6

62 -299.00 150.000 -44850.00 19 2 sales May 32 7

63 -623.89 455.000 -283869.95 25 1 sales March 59 12

64 -549.68 220.000 -120929.60 25 1 sales April 60 13

65 -460.00 0.000 0.00 25 1 sales May 61 14

66 -542.83 125.000 -67853.75 25 2 sales March 62 15

67 -559.19 177.500 -99256.23 25 2 sales April 63 16

68 -519.06 472.500 -245255.85 25 2 sales May 64 17

-1282708.63

Example 5.7: Using a Constrained Solution Warm Start F 497

Output 5.7.3 DUALOUT=DUAL5

Obs _node_ _supdem_ _DUAL_ _NNUMB_ _PRED_ _TRAV_ _SCESS_ _ARCID_ _FLOW_

1 f1_apr_1 . -100000278.00 3 1 6 2 4 483.333

2 f1_apr_2 . -100000405.92 13 19 11 2 -60 220.000

3 f1_mar_1 . -100000326.65 2 8 1 20 -21 143.333

4 f1_mar_2 . -100000480.13 12 19 13 1 -59 455.000

5 f1_may_1 . -100000284.00 4 1 7 3 8 78.333

6 f1_may_2 . -100000363.43 14 18 10 1 -55 350.000

7 f2_apr_1 . -100000289.00 6 3 4 1 14 13.333

8 f2_apr_2 . -100000390.60 16 20 18 3 47 515.000

9 f2_mar_1 . -100000281.90 5 10 3 1 12 255.000

10 f2_mar_2 . -100000399.07 15 19 16 1 -62 125.000

11 f2_may_1 . -100000300.00 7 4 9 2 18 115.000

12 f2_may_2 . -100000375.30 17 20 19 6 51 115.000

13 fact1_1 1000 -100000193.90 1 2 21 19 -1 283.333

14 fact1_2 1000 -100000224.09 11 13 15 1 -36 200.000

15 fact2_1 850 -100000193.90 10 21 5 2 -66 45.000

16 fact2_2 1500 -100000193.90 20 21 17 10 -68 150.000

17 shop1_1 -900 -99999999.00 8 22 2 21 0 0.000

18 shop1_2 -900 -99999848.41 18 16 14 2 57 50.000

19 shop2_1 -900 -100000001.00 9 7 22 1 32 150.000

20 shop2_2 -1450 -99999856.24 19 17 12 5 64 150.000

21 . -1.83 2 8 . . 25 243.333

22 . -1.62 0 8 . . 23 13.333

23 . 0.00 3 3 . 3 . 110.000

Obs _FBQ_ _VALUE_ _RHS_ _TYPE_ _row_

1 4 . .

2 36 . .

3 1 . .

4 33 . .

5 8 . .

6 40 . .

7 14 . .

8 46 . .

9 11 . .

10 43 . .

11 18 . .

12 50 . .

13 -1 . .

14 -33 . .

15 -33 . .

16 -65 . .

17 21 . .

18 53 . .

19 27 . .

20 59 . .

21 . 2600 2600 LE FACT1 APL GIZMO

22 . 2600 2600 LE FACT1 MAR GIZMO

23 . 3640 3750 LE FACT2 APL GIZMO

498 F Chapter 5: The NETFLOW Procedure

Output 5.7.3 continued

Obs _node_ _supdem_ _DUAL_ _NNUMB_ _PRED_ _TRAV_ _SCESS_ _ARCID_ _FLOW_

24 . 0.00 1 1 . 1 . 280.000

25 . -15.05 4 2 . . 2 20.000

Obs _FBQ_ _VALUE_ _RHS_ _TYPE_ _row_

24 . 3470 3750 LE FACT2 MAR GIZMO

25 . 50 50 LE TOTAL BACKORDER

Example 5.8: Nonarc Variables in the Side Constraints
Notice in DUALOUT=dual5 from Example 5.7 the FACT2 MAR GIZMO constraint (observation 24) has a
VALUE of 3470, which is not equal to the _RHS_ of this constraint. Not all of the 3750 chips that can be
supplied to factory 2 for March production are used. It is suggested that all the possible chips be obtained in
March and those not used be saved for April production. Because chips must be kept in an air-controlled
environment, it costs 1 dollar to store each chip purchased in March until April. The maximum number of
chips that can be stored in this environment at each factory is 150. In addition, a search of the parts inventory
at factory 1 turned up 15 chips available for their March production.

Nonarc variables are used in the side constraints that handle the limitations of supply of Gizmo chips. A
nonarc variable called “f1 unused chips” has as a value the number of chips that are not used at factory 1 in
March. Another nonarc variable, “f2 unused chips”, has as a value the number of chips that are not used at
factory 2 in March. “f1 chips from mar” has as a value the number of chips left over from March used for
production at factory 1 in April. Similarly, “f2 chips from mar” has as a value the number of chips left over
from March used for April production at factory 2 in April. The last two nonarc variables have objective
function coefficients of 1 and upper bounds of 150. The Gizmo side constraints are

3*prod f1 19 mar + 4*prod f1 25 mar + f1 unused chips = 2615
3*prod f2 19 apl + 4*prod f2 25 apl + f2 unused chips = 3750
3*prod f1 19 apl + 4*prod f1 25 apl - f1 chips from mar = 2600
3*prod f2 19 apl + 4*prod f2 25 apl - f2 chips from mar = 3750
f1 unused chips + f2 unused chips -
f1 chips from mar - f2 chips from mar >= 0

The last side constraint states that the number of chips not used in March is not less than the number of chips
left over from March and used in April. Here, this constraint is called CHIP LEFTOVER.

The following SAS code creates a new data set containing constraint data. It seems that most of the constraints
are now equalities, so you specify DEFCONTYPE=EQ in the PROC NETFLOW statements from now on
and provide constraint type data for constraints that are not “equal to” type, using the default TYPEOBS
value _TYPE_ as the _COLUMN_ variable value to indicate observations that contain constraint type data.
Also, from now on, the default RHSOBS value is used.

Example 5.8: Nonarc Variables in the Side Constraints F 499

title 'Nonarc Variables in the Side Constraints';
title2 'Production Planning/Inventory/Distribution';
data con6;

input _column_ &$17. _row_ &$15. _coef_ ;
datalines;

prod f1 19 mar FACT1 MAR GIZMO 3
prod f1 25 mar FACT1 MAR GIZMO 4
f1 unused chips FACT1 MAR GIZMO 1
RHS FACT1 MAR GIZMO 2615
prod f2 19 mar FACT2 MAR GIZMO 3
prod f2 25 mar FACT2 MAR GIZMO 4
f2 unused chips FACT2 MAR GIZMO 1
RHS FACT2 MAR GIZMO 3750
prod f1 19 apl FACT1 APL GIZMO 3
prod f1 25 apl FACT1 APL GIZMO 4
f1 chips from mar FACT1 APL GIZMO -1
RHS FACT1 APL GIZMO 2600
prod f2 19 apl FACT2 APL GIZMO 3
prod f2 25 apl FACT2 APL GIZMO 4
f2 chips from mar FACT2 APL GIZMO -1
RHS FACT2 APL GIZMO 3750
f1 unused chips CHIP LEFTOVER 1
f2 unused chips CHIP LEFTOVER 1
f1 chips from mar CHIP LEFTOVER -1
f2 chips from mar CHIP LEFTOVER -1
TYPE CHIP LEFTOVER 1
back f1 19 apl TOTAL BACKORDER 1
back f1 25 apl TOTAL BACKORDER 1
back f2 19 apl TOTAL BACKORDER 1
back f2 25 apl TOTAL BACKORDER 1
back f1 19 may TOTAL BACKORDER 1
back f1 25 may TOTAL BACKORDER 1
back f2 19 may TOTAL BACKORDER 1
back f2 25 may TOTAL BACKORDER 1
TYPE TOTAL BACKORDER -1
RHS TOTAL BACKORDER 50
;

The nonarc variables “f1 chips from mar” and “f2 chips from mar” have objective function coefficients of
1 and upper bounds of 150. There are various ways in which this information can be furnished to PROC
NETFLOW. If there were a TYPE list variable in the CONDATA= data set, observations could be in the form

COLUMN _TYPE_ _ROW_ _COEF_
f1 chips from mar objfn . 1
f1 chips from mar upperbd . 150
f2 chips from mar objfn . 1
f2 chips from mar upperbd . 150

500 F Chapter 5: The NETFLOW Procedure

It is desirable to assign ID list variable values to all the nonarc variables:

data arc6;
set con5;
drop oldcost oldfc oldflow _flow_ _fcost_ _status_ _rcost_;

data arc6_b;
length key_id $10;
input _name_ &$17. _cost_ _capac_ factory key_id $;
datalines;

f1 unused chips . . 1 chips
f2 unused chips . . 2 chips
f1 chips from mar 1 150 1 chips
f2 chips from mar 1 150 2 chips
;

proc append force nowarn
base=arc6 data=arc6_b;

run;

proc netflow
nodedata=node0 arcdata=arc6
condata=con6 defcontype=eq sparsecondata
dualout=dual7 conout=con7;

run;

print nonarcs/short;

The following messages appear on the SAS log:

NOTE: Number of nodes= 21 .

NOTE: Number of supply nodes= 4 .

NOTE: Number of demand nodes= 5 .

NOTE: Total supply= 4350 , total demand= 4350 .

NOTE: Number of arcs= 68 .

NOTE: Number of nonarc variables= 4 .

NOTE: Number of iterations performed (neglecting any constraints)= 69 .

NOTE: Of these, 1 were degenerate.

NOTE: Optimum (neglecting any constraints) found.

NOTE: Minimal total cost= -1295730.8 .

NOTE: Number of <= side constraints= 1 .

NOTE: Number of == side constraints= 4 .

NOTE: Number of >= side constraints= 1 .

NOTE: Number of arc and nonarc variable side constraint coefficients= 24 .

NOTE: Number of iterations, optimizing with constraints= 13 .

NOTE: Of these, 2 were degenerate.

NOTE: Optimum reached.

NOTE: Minimal total cost= -1295542.742 .

NOTE: The data set WORK.CON7 has 68 observations and 18 variables.

NOTE: The data set WORK.DUAL7 has 26 observations and 14 variables.

Example 5.8: Nonarc Variables in the Side Constraints F 501

The output in Output 5.8.1 is produced by

print nonarcs/short ;

Output 5.8.1 Output of PRINT NONARCS/SHORT;

Nonarc Variables in the Side Constraints
Production Planning/Inventory/Distribution

The NETFLOW Procedure

Nonarc Variables in the Side Constraints
Production Planning/Inventory/Distribution

The NETFLOW Procedure

N _name_ _cost_ _capac_ _lo_ _VALUE_

1 f1 chips from mar 1 150 0 20

2 f1 unused chips 0 99999999 0 0

3 f2 chips from mar 1 150 0 0

4 f2 unused chips 0 99999999 0 280

The optimal solution data sets, CONOUT=CON7 in Output 5.8.2 and Output 5.8.3 and DUALOUT=DUAL7
in Output 5.8.4 follow.

proc print data=con7;
sum _fcost_;

proc print data=dual7;

502 F Chapter 5: The NETFLOW Procedure

Output 5.8.2 CONOUT=CON7

Nonarc Variables in the Side Constraints
Production Planning/Inventory/Distribution
Nonarc Variables in the Side Constraints
Production Planning/Inventory/Distribution

Obs _tail_ _head_ _cost_ _capac_ _lo_ _name_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 fact1_1 f1_apr_1 78.60 600 50 prod f1 19 apl 1000 . 540.000 42444.00

2 f1_mar_1 f1_apr_1 15.00 50 0 . . 0.000 0.00

3 f1_may_1 f1_apr_1 33.60 20 0 back f1 19 may . . 0.000 0.00

4 f2_apr_1 f1_apr_1 11.00 40 0 . . 0.000 0.00

5 fact1_2 f1_apr_2 174.50 550 50 prod f1 25 apl 1000 . 250.000 43625.00

6 f1_mar_2 f1_apr_2 20.00 40 0 . . 0.000 0.00

7 f1_may_2 f1_apr_2 49.20 15 0 back f1 25 may . . 0.000 0.00

8 f2_apr_2 f1_apr_2 21.00 25 0 . . 25.000 525.00

9 fact1_1 f1_mar_1 127.90 500 50 prod f1 19 mar 1000 . 338.333 43272.83

10 f1_apr_1 f1_mar_1 33.60 20 0 back f1 19 apl . . 20.000 672.00

11 f2_mar_1 f1_mar_1 10.00 40 0 . . 40.000 400.00

12 fact1_2 f1_mar_2 217.90 400 40 prod f1 25 mar 1000 . 400.000 87160.00

13 f1_apr_2 f1_mar_2 38.40 30 0 back f1 25 apl . . 30.000 1152.00

14 f2_mar_2 f1_mar_2 20.00 25 0 . . 25.000 500.00

15 fact1_1 f1_may_1 90.10 400 50 1000 . 116.667 10511.67

16 f1_apr_1 f1_may_1 12.00 50 0 . . 0.000 0.00

17 f2_may_1 f1_may_1 13.00 40 0 . . 0.000 0.00

18 fact1_2 f1_may_2 113.30 350 40 1000 . 350.000 39655.00

19 f1_apr_2 f1_may_2 18.00 40 0 . . 0.000 0.00

20 f2_may_2 f1_may_2 13.00 25 0 . . 0.000 0.00

21 f1_apr_1 f2_apr_1 11.00 99999999 0 . . 20.000 220.00

22 fact2_1 f2_apr_1 62.40 480 35 prod f2 19 apl 850 . 480.000 29952.00

23 f2_mar_1 f2_apr_1 18.00 30 0 . . 0.000 0.00

24 f2_may_1 f2_apr_1 30.00 15 0 back f2 19 may . . 0.000 0.00

25 f1_apr_2 f2_apr_2 23.00 99999999 0 . . 0.000 0.00

26 fact2_2 f2_apr_2 196.70 680 35 prod f2 25 apl 1500 . 577.500 113594.25

27 f2_mar_2 f2_apr_2 28.00 50 0 . . 0.000 0.00

28 f2_may_2 f2_apr_2 64.80 15 0 back f2 25 may . . 0.000 0.00

29 f1_mar_1 f2_mar_1 11.00 99999999 0 . . 0.000 0.00

30 fact2_1 f2_mar_1 88.00 450 35 prod f2 19 mar 850 . 290.000 25520.00

31 f2_apr_1 f2_mar_1 20.40 15 0 back f2 19 apl . . 0.000 0.00

32 f1_mar_2 f2_mar_2 23.00 99999999 0 . . 0.000 0.00

33 fact2_2 f2_mar_2 182.00 650 35 prod f2 25 mar 1500 . 650.000 118300.00

34 f2_apr_2 f2_mar_2 37.20 15 0 back f2 25 apl . . 0.000 0.00

35 f1_may_1 f2_may_1 16.00 99999999 0 . . 115.000 1840.00

36 fact2_1 f2_may_1 128.80 250 35 850 . 35.000 4508.00

37 f2_apr_1 f2_may_1 20.00 30 0 . . 0.000 0.00

38 f1_may_2 f2_may_2 26.00 99999999 0 . . 0.000 0.00

39 fact2_2 f2_may_2 181.40 550 35 1500 . 122.500 22221.50

40 f2_apr_2 f2_may_2 38.00 50 0 . . 0.000 0.00

41 f1_mar_1 shop1_1 -327.65 250 0 . 900 148.333 -48601.42

42 f1_apr_1 shop1_1 -300.00 250 0 . 900 250.000 -75000.00

43 f1_may_1 shop1_1 -285.00 250 0 . 900 1.667 -475.00

44 f2_mar_1 shop1_1 -297.40 250 0 . 900 250.000 -74350.00

45 f2_apr_1 shop1_1 -290.00 250 0 . 900 250.000 -72500.00

46 f2_may_1 shop1_1 -292.00 250 0 . 900 0.000 0.00

Example 5.8: Nonarc Variables in the Side Constraints F 503

Output 5.8.2 continued

Nonarc Variables in the Side Constraints
Production Planning/Inventory/Distribution

Obs _tail_ _head_ _cost_ _capac_ _lo_ _name_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

47 f1_mar_2 shop1_2 -559.76 99999999 0 . 900 0.000 0.00

48 f1_apr_2 shop1_2 -524.28 99999999 0 . 900 0.000 0.00

49 f1_may_2 shop1_2 -515.02 99999999 0 . 900 347.500 -178969.45

50 f2_mar_2 shop1_2 -567.83 500 0 . 900 500.000 -283915.00

51 f2_apr_2 shop1_2 -542.19 500 0 . 900 52.500 -28464.98

52 f2_may_2 shop1_2 -491.56 500 0 . 900 0.000 0.00

53 f1_mar_1 shop2_1 -362.74 250 0 . 900 250.000 -90685.00

54 f1_apr_1 shop2_1 -300.00 250 0 . 900 250.000 -75000.00

55 f1_may_1 shop2_1 -245.00 250 0 . 900 0.000 0.00

56 f2_mar_1 shop2_1 -272.70 250 0 . 900 0.000 0.00

57 f2_apr_1 shop2_1 -312.00 250 0 . 900 250.000 -78000.00

58 f2_may_1 shop2_1 -299.00 250 0 . 900 150.000 -44850.00

59 f1_mar_2 shop2_2 -623.89 99999999 0 . 1450 455.000 -283869.95

60 f1_apr_2 shop2_2 -549.68 99999999 0 . 1450 245.000 -134671.60

61 f1_may_2 shop2_2 -500.00 99999999 0 . 1450 2.500 -1250.00

62 f2_mar_2 shop2_2 -542.83 500 0 . 1450 125.000 -67853.75

63 f2_apr_2 shop2_2 -559.19 500 0 . 1450 500.000 -279595.00

64 f2_may_2 shop2_2 -519.06 500 0 . 1450 122.500 -63584.85

65 1.00 150 0 f1 chips from mar . . 20.000 20.00

66 0.00 99999999 0 f1 unused chips . . 0.000 0.00

67 1.00 150 0 f2 chips from mar . . 0.000 0.00

68 0.00 99999999 0 f2 unused chips . . 280.000 0.00

-1295542.74

504 F Chapter 5: The NETFLOW Procedure

Output 5.8.3 CONOUT=CON7 (continued)

Nonarc Variables in the Side Constraints
Production Planning/Inventory/Distribution
Nonarc Variables in the Side Constraints
Production Planning/Inventory/Distribution

Obs _RCOST_ _ANUMB_ _TNUMB_ _STATUS_ diagonal factory key_id mth_made

1 . 5 1 KEY_ARC BASIC 19 1 production April

2 66.150 6 7 LOWERBD NONBASIC 19 1 storage March

3 42.580 7 8 LOWERBD NONBASIC 19 1 backorder May

4 22.000 8 9 LOWERBD NONBASIC 19 . f2_to_1 April

5 . 19 4 KEY_ARC BASIC 25 1 production April

6 94.210 20 11 LOWERBD NONBASIC 25 1 storage March

7 . 21 12 NONKEY ARC BASIC 25 1 backorder May

8 -1.510 22 13 UPPERBD NONBASIC 25 . f2_to_1 April

9 . 9 1 KEY_ARC BASIC 19 1 production March

10 -17.070 10 6 UPPERBD NONBASIC 19 1 backorder April

11 -34.750 11 14 UPPERBD NONBASIC 19 . f2_to_1 March

12 -28.343 23 4 UPPERBD NONBASIC 25 1 production March

13 -35.330 24 10 UPPERBD NONBASIC 25 1 backorder April

14 -61.060 25 15 UPPERBD NONBASIC 25 . f2_to_1 March

15 . 12 1 KEY_ARC BASIC 19 1 production May

16 3.500 13 6 LOWERBD NONBASIC 19 1 storage April

17 29.000 14 16 LOWERBD NONBASIC 19 . f2_to_1 May

18 -15.520 26 4 UPPERBD NONBASIC 25 1 production May

19 67.680 27 10 LOWERBD NONBASIC 25 1 storage April

20 32.060 28 17 LOWERBD NONBASIC 25 . f2_to_1 May

21 . 15 6 KEY_ARC BASIC 19 . f1_to_2 April

22 -35.592 16 3 UPPERBD NONBASIC 19 2 production April

23 13.400 17 14 LOWERBD NONBASIC 19 2 storage March

24 43.980 18 16 LOWERBD NONBASIC 19 2 backorder May

25 45.510 29 10 LOWERBD NONBASIC 25 . f1_to_2 April

26 . 30 5 KEY_ARC BASIC 25 2 production April

27 43.660 31 15 LOWERBD NONBASIC 25 2 storage March

28 57.170 32 17 LOWERBD NONBASIC 25 2 backorder May

29 55.750 33 7 LOWERBD NONBASIC 19 . f1_to_2 March

30 . 34 3 KEY_ARC BASIC 19 2 production March

31 25.480 35 9 LOWERBD NONBASIC 19 2 backorder April

32 104.060 36 11 LOWERBD NONBASIC 25 . f1_to_2 March

33 -23.170 37 5 UPPERBD NONBASIC 25 2 production March

34 22.020 38 13 LOWERBD NONBASIC 25 2 backorder April

35 . 39 8 KEY_ARC BASIC 19 . f1_to_2 May

36 22.700 40 3 LOWERBD NONBASIC 19 2 production May

37 6.500 41 9 LOWERBD NONBASIC 19 2 storage April

38 6.940 42 12 LOWERBD NONBASIC 25 . f1_to_2 May

39 . 43 5 KEY_ARC BASIC 25 2 production May

40 46.110 44 13 LOWERBD NONBASIC 25 2 storage April

41 . 45 7 KEY_ARC BASIC 19 1 sales March

42 -23.500 46 6 UPPERBD NONBASIC 19 1 sales April

43 . 47 8 NONKEY ARC BASIC 19 1 sales May

44 -14.500 48 14 UPPERBD NONBASIC 19 2 sales March

45 -2.500 49 9 UPPERBD NONBASIC 19 2 sales April

46 9.000 50 16 LOWERBD NONBASIC 19 2 sales May

Example 5.8: Nonarc Variables in the Side Constraints F 505

Output 5.8.3 continued

Nonarc Variables in the Side Constraints
Production Planning/Inventory/Distribution

Obs _RCOST_ _ANUMB_ _TNUMB_ _STATUS_ diagonal factory key_id mth_made

47 79.150 51 11 LOWERBD NONBASIC 25 1 sales March

48 40.420 52 10 LOWERBD NONBASIC 25 1 sales April

49 . 53 12 KEY_ARC BASIC 25 1 sales May

50 -9.980 54 15 UPPERBD NONBASIC 25 2 sales March

51 . 55 13 KEY_ARC BASIC 25 2 sales April

52 42.520 56 17 LOWERBD NONBASIC 25 2 sales May

53 -37.090 57 7 UPPERBD NONBASIC 19 1 sales March

54 -25.500 58 6 UPPERBD NONBASIC 19 1 sales April

55 38.000 59 8 LOWERBD NONBASIC 19 1 sales May

56 8.200 60 14 LOWERBD NONBASIC 19 2 sales March

57 -26.500 61 9 UPPERBD NONBASIC 19 2 sales April

58 . 62 16 KEY_ARC BASIC 19 2 sales May

59 . 63 11 KEY_ARC BASIC 25 1 sales March

60 . 64 10 KEY_ARC BASIC 25 1 sales April

61 . 65 12 NONKEY ARC BASIC 25 1 sales May

62 . 66 15 KEY_ARC BASIC 25 2 sales March

63 -32.020 67 13 UPPERBD NONBASIC 25 2 sales April

64 . 68 17 KEY_ARC BASIC 25 2 sales May

65 . -2 . NONKEY BASIC . 1 chips

66 1.617 0 . LOWERBD NONBASIC . 1 chips

67 2.797 -3 . LOWERBD NONBASIC . 2 chips

68 . -1 . NONKEY BASIC . 2 chips

506 F Chapter 5: The NETFLOW Procedure

Output 5.8.4 DUALOUT=DUAL7

Nonarc Variables in the Side Constraints
Production Planning/Inventory/Distribution
Nonarc Variables in the Side Constraints
Production Planning/Inventory/Distribution

Obs _node_ _supdem_ _DUAL_ _NNUMB_ _PRED_ _TRAV_ _SCESS_ _ARCID_ _FLOW_

1 f1_apr_1 . -100000275.50 6 1 9 2 5 490.000

2 f1_apr_2 . -100000405.92 10 21 4 2 -64 245.000

3 f1_mar_1 . -100000326.65 7 18 1 20 -45 148.333

4 f1_mar_2 . -100000480.13 11 21 15 1 -63 455.000

5 f1_may_1 . -100000284.00 8 1 16 3 12 66.667

6 f1_may_2 . -100000356.24 12 19 6 1 -53 347.500

7 f2_apr_1 . -100000286.50 9 6 8 1 15 20.000

8 f2_apr_2 . -100000383.41 13 5 19 3 30 542.500

9 f2_mar_1 . -100000281.90 14 3 5 1 34 255.000

10 f2_mar_2 . -100000399.07 15 21 10 1 -66 125.000

11 f2_may_1 . -100000300.00 16 8 20 2 39 115.000

12 f2_may_2 . -100000375.30 17 5 21 6 43 87.500

13 fact1_1 1000 -100000193.90 1 7 2 19 -9 288.333

14 fact1_2 1000 -100000227.42 4 10 13 1 -19 200.000

15 fact2_1 850 -100000193.90 3 2 14 2 -2 45.000

16 fact2_2 1500 -100000193.90 5 2 17 10 -4 150.000

17 shop1_1 -900 -99999999.00 18 22 7 21 0 0.000

18 shop1_2 -900 -99999841.22 19 13 12 2 55 52.500

19 shop2_1 -900 -100000001.00 20 16 22 1 62 150.000

20 shop2_2 -1450 -99999856.24 21 17 11 5 68 122.500

21 . 0.00 4 4 . 4 . 260.000

22 . -1.00 2 2 . . -2 20.000

Obs _FBQ_ _VALUE_ _RHS_ _TYPE_ _row_

1 5 . .

2 19 . .

3 9 . .

4 23 . .

5 12 . .

6 26 . .

7 15 . .

8 29 . .

9 33 . .

10 36 . .

11 39 . .

12 42 . .

13 -1 . .

14 -5 . .

15 -5 . .

16 -5 . .

17 45 . .

18 51 . .

19 57 . .

20 63 . .

21 . 260 0 GE CHIP LEFTOVER

22 . 2600 2600 EQ FACT1 APL GIZMO

Example 5.9: Pure Networks: Using the EXCESS= Option F 507

Output 5.8.4 continued

Nonarc Variables in the Side Constraints
Production Planning/Inventory/Distribution

Obs _node_ _supdem_ _DUAL_ _NNUMB_ _PRED_ _TRAV_ _SCESS_ _ARCID_ _FLOW_

23 . -1.62 0 18 . . 47 1.667

24 . 1.80 3 21 . . 65 2.500

25 . 0.00 1 1 . . -1 280.000

26 . -0.48 5 10 . . 21 0.000

Obs _FBQ_ _VALUE_ _RHS_ _TYPE_ _row_

23 . 2615 2615 EQ FACT1 MAR GIZMO

24 . 3750 3750 EQ FACT2 APL GIZMO

25 . 3750 3750 EQ FACT2 MAR GIZMO

26 . 50 50 LE TOTAL BACKORDER

The optimal value of the nonarc variable “f2 unused chips” is 280. This means that although there are 3750
chips that can be used at factory 2 in March, only 3470 are used. As the optimal value of “f1 unused chips” is
zero, all chips available for production in March at factory 1 are used. The nonarc variable “f2 chips from
mar” also has zero optimal value. This means that the April production at factory 2 does not need any chips
that could have been held in inventory since March. However, the nonarc variable “f1 chips from mar” has
value of 20. Thus, 3490 chips should be ordered for factory 2 in March. Twenty of these chips should be held
in inventory until April, then sent to factory 1.

Example 5.9: Pure Networks: Using the EXCESS= Option
In this example we illustrate the use of the EXCESS= option for various scenarios in pure networks. Consider
a simple network as shown in Output 5.9.1. The positive numbers on the nodes correspond to supply and the
negative numbers correspond to demand. The numbers on the arcs indicate costs.

Transportation Problem, Total Supply < Total Demand

We first analyze a simple transportation problem where total demand exceeds total supply, as seen in
Output 5.9.1. The EXCESS=SLACKS option is illustrated first.

508 F Chapter 5: The NETFLOW Procedure

Output 5.9.1 Transportation Problem

The following SAS code creates the input data sets.

data parcs;
input _from_ $ _to_ $ _cost_;

datalines;
s1 d1 1
s1 d2 8
s2 d1 4
s2 d2 2
;

data SleD;
input _node_ $ _sd_;

datalines;
s1 1
s2 10
d1 -10
d2 -5
;

Example 5.9: Pure Networks: Using the EXCESS= Option F 509

You can solve the problem using the following call to PROC NETFLOW:

title1 'The NETFLOW Procedure';
proc netflow

excess = slacks
arcdata = parcs
nodedata = SleD
conout = solex1;

run;

Since the EXCESS=SLACKS option is specified, the interior point method is used for optimization. Accord-
ingly, the CONOUT= data set is specified. The optimal solution is displayed in Output 5.9.2.

Output 5.9.2 Supply < Demand

The NETFLOW ProcedureThe NETFLOW Procedure

Obs _from_ _to_ _cost_ _CAPAC_ _LO_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 s1 d1 1 99999999 0 1 10 1 1

2 s2 d1 4 99999999 0 10 10 5 20

3 s1 d2 8 99999999 0 1 5 0 0

4 s2 d2 2 99999999 0 10 5 5 10

The solution with the THRUNET option specified is displayed in Output 5.9.3.

title1 'The NETFLOW Procedure';
proc netflow

thrunet
excess = slacks
arcdata = parcs
nodedata = SleD
conout = solex1t;

run;

Output 5.9.3 Supply < Demand, THRUNET Specified

The NETFLOW ProcedureThe NETFLOW Procedure

Obs _from_ _to_ _cost_ _CAPAC_ _LO_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 s1 d1 1 99999999 0 1 10 5 5

2 s2 d1 4 99999999 0 10 10 5 20

3 s1 d2 8 99999999 0 1 5 0 0

4 s2 d2 2 99999999 0 10 5 5 10

NOTE: If you want to use the network simplex solver instead, you need to specify the EXCESS=ARCS
option and, accordingly, the ARCOUT= data set.

Missing D Demand

As shown in Output 5.9.4, node D1 has a missing D demand value.

510 F Chapter 5: The NETFLOW Procedure

Output 5.9.4 Missing D Demand

The following code creates the node data set:

data node_missingD1;
input _node_ $ _sd_;
missing D;

datalines;
s1 1
s2 10
d1 D
d2 -1
;

You can use the following call to PROC NETFLOW to solve the problem:

title1 'The NETFLOW Procedure';
proc netflow

excess = slacks
arcdata = parcs
nodedata = node_missingD1
conout = solex1b;

run;

Example 5.10: Maximum Flow Problem F 511

The optimal solution is displayed in Output 5.9.5. As you can see, the flow balance at nodes with nonmissing
supdem values is maintained. In other words, if a node has a nonmissing supply (demand) value, then the
sum of flows out of (into) that node is equal to its supdem value.

Output 5.9.5 THRUNET Not Specified

The NETFLOW ProcedureThe NETFLOW Procedure

Obs _from_ _to_ _cost_ _CAPAC_ _LO_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 s1 d1 1 99999999 0 1 D 1 1

2 s2 d1 4 99999999 0 10 D 9 36

3 s1 d2 8 99999999 0 1 1 0 0

4 s2 d2 2 99999999 0 10 1 1 2

Missing D Demand, THRUNET Specified

Consider the previous example, but with the THRUNET option specified.

title1 'The NETFLOW Procedure';
proc netflow

thrunet
excess = slacks
arcdata = parcs
nodedata = node_missingD1
conout = solex1c;

run;

The optimal solution is displayed in Output 5.9.6. By specifying the THRUNET option, we have actually
obtained the minimum-cost flow through the network, while maintaining flow balance at the nodes with
nonmissing supply values.

Output 5.9.6 Missing D Demand, THRUNET Specified

The NETFLOW ProcedureThe NETFLOW Procedure

Obs _from_ _to_ _cost_ _CAPAC_ _LO_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 s1 d1 1 99999999 0 1 D 1 1

2 s2 d1 4 99999999 0 10 D 0 0

3 s1 d2 8 99999999 0 1 1 0 0

4 s2 d2 2 99999999 0 10 1 10 20

NOTE: The case with missing S supply values is similar to the case with missing D demand values.

Example 5.10: Maximum Flow Problem
Consider the maximum flow problem depicted in Output 5.10.1. The maximum flow between nodes S and T
is to be determined. The minimum arc flow and arc capacities are specified as lower and upper bounds in
square brackets, respectively.

512 F Chapter 5: The NETFLOW Procedure

Output 5.10.1 Maximum Flow Problem Example

You can solve the problem using either EXCESS=ARCS or EXCESS=SLACKS. Consider using the EX-
CESS=ARCS option first. You can use the following SAS code to create the input data set:

data arcs;
input _from_ $ _to_ $ _cost_ _capac_;

datalines;
S a . .
S b . .
a c 1 7
b c 2 9
a d 3 5
b d 4 8
c e 5 15
d f 6 20
e g 7 11
f g 8 6
e h 9 12
f h 10 4
g T . .
h T . .
;

You can use the following call to PROC NETFLOW to solve the problem:

title1 'The NETFLOW Procedure';
proc netflow

intpoint
maxflow
excess = arcs
arcdata = arcs
source = S sink = T
conout = gout3;

run;

With the EXCESS=ARCS option specified, the problem gets transformed internally to the one depicted in
Output 5.10.2. Note that there is an additional arc from the source node to the sink node.

Example 5.10: Maximum Flow Problem F 513

Output 5.10.2 Maximum Flow Problem, EXCESS=ARCS Option Specified

The output SAS data set is displayed in Output 5.10.3.

Output 5.10.3 Maximum Flow Problem, EXCESS=ARCS Option Specified

The NETFLOW ProcedureThe NETFLOW Procedure

Obs _from_ _to_ _cost_ _capac_ _LO_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 g T 0 99999999 0 . 99999998 16.9996 0.0000

2 h T 0 99999999 0 . 99999998 8.0004 0.0000

3 S a 0 99999999 0 99999998 . 11.9951 0.0000

4 S b 0 99999999 0 99999998 . 13.0049 0.0000

5 a c 1 7 0 . . 6.9952 6.9952

6 b c 2 9 0 . . 8.0048 16.0097

7 a d 3 5 0 . . 4.9999 14.9998

8 b d 4 8 0 . . 5.0001 20.0002

9 c e 5 15 0 . . 15.0000 75.0000

10 d f 6 20 0 . . 10.0000 60.0000

11 e g 7 11 0 . . 10.9996 76.9975

12 f g 8 6 0 . . 6.0000 48.0000

13 e h 9 12 0 . . 4.0004 36.0032

14 f h 10 4 0 . . 4.0000 40.0000

You can solve the same maximum flow problem, but this time with EXCESS=SLACKS specified. The SAS
code is as follows:

title1 'The NETFLOW Procedure';
proc netflow

intpoint
excess = slacks
arcdata = arcs
source = S sink = T
maxflow
conout = gout3b;

run;

514 F Chapter 5: The NETFLOW Procedure

With the EXCESS=SLACKS option specified, the problem gets transformed internally to the one depicted in
Figure 5.10.4. Note that the source node and sink node each have a single-ended “excess” arc attached to
them.

Output 5.10.4 Maximum Flow Problem, EXCESS=SLACKS Option Specified

The solution, as displayed in Output 5.10.5, is the same as before. Note that the _SUPPLY_ value of the
source node Y has changed from 99999998 to missing S, and the _DEMAND_value of the sink node Z has
changed from �99999998 to missing D.

Output 5.10.5 Maximal Flow Problem

The NETFLOW ProcedureThe NETFLOW Procedure

Obs _from_ _to_ _cost_ _capac_ _LO_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 g T 0 99999999 0 . D 16.9993 0.0000

2 h T 0 99999999 0 . D 8.0007 0.0000

3 S a 0 99999999 0 S . 11.9867 0.0000

4 S b 0 99999999 0 S . 13.0133 0.0000

5 a c 1 7 0 . . 6.9868 6.9868

6 b c 2 9 0 . . 8.0132 16.0264

7 a d 3 5 0 . . 4.9999 14.9998

8 b d 4 8 0 . . 5.0001 20.0002

9 c e 5 15 0 . . 15.0000 75.0000

10 d f 6 20 0 . . 10.0000 60.0000

11 e g 7 11 0 . . 10.9993 76.9953

12 f g 8 6 0 . . 6.0000 48.0000

13 e h 9 12 0 . . 4.0007 36.0061

14 f h 10 4 0 . . 4.0000 40.0000

Example 5.11: Generalized Networks: Using the EXCESS= Option
For generalized networks you can specify either EXCESS=SUPPLY or EXCESS=DEMAND to indicate
which nodal flow conservation constraints have slack variables associated with them. The default option is
EXCESS=NONE.

Example 5.11: Generalized Networks: Using the EXCESS= Option F 515

Using the EXCESS=SUPPLY Option

Consider the simple network shown in Output 5.11.1. As you can see, the sum of positive supdem values
(35) is equal to the absolute sum of the negative ones. However, the arcs connecting the supply and demand
nodes have varying arc multipliers. Let us now solve the problem using the EXCESS=SUPPLY option.

Output 5.11.1 Generalized Network: Supply = Demand

You can use the following SAS code to create the input data sets:

data garcs;
input _from_ $ _to_ $ _cost_ _mult_;

datalines;
s1 d1 1 .
s1 d2 8 .
s2 d1 4 2
s2 d2 2 2
s2 d3 1 2
s3 d2 5 0.5
s3 d3 4 0.5
;

516 F Chapter 5: The NETFLOW Procedure

data gnodes;
input _node_ $ _sd_ ;

datalines;
s1 5
s2 20
s3 10
d1 -5
d2 -10
d3 -20
;

To solve the problem, use the following call to PROC NETFLOW:

title1 'The NETFLOW Procedure';
proc netflow

arcdata = garcs
nodedata = gnodes
excess = supply
conout = gnetout;

run;

The optimal solution is displayed in Output 5.11.2.

Output 5.11.2 Optimal Solution Obtained Using the EXCESS=SUPPLY Option

The NETFLOW ProcedureThe NETFLOW Procedure

Obs _from_ _to_ _cost_ _CAPAC_ _LO_ _mult_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 s1 d1 1 99999999 0 1.0 5 5 5 5

2 s2 d1 4 99999999 0 2.0 20 5 0 0

3 s1 d2 8 99999999 0 1.0 5 10 0 0

4 s2 d2 2 99999999 0 2.0 20 10 5 10

5 s3 d2 5 99999999 0 0.5 10 10 0 0

6 s2 d3 1 99999999 0 2.0 20 20 10 10

7 s3 d3 4 99999999 0 0.5 10 20 0 0

NOTE: If you do not specify the EXCESS= option, or if you specify the EXCESS=DEMAND option, the
procedure will declare the problem infeasible. Therefore, in case of real-life problems, you would need to
have a little more detail about how the arc multipliers end up affecting the network — whether they tend to
create excess demand or excess supply.

Using the EXCESS=DEMAND Option

Consider the previous example but with a slight modification: the arcs out of node S1 have multipliers of 0.5,
and the arcs out of node S2 have multipliers of 1. You can use the following SAS code to create the input arc
data set:

Example 5.12: Generalized Networks: Maximum Flow Problem F 517

data garcs1;
input _from_ $ _to_ $ _cost_ _mult_;

datalines;
s1 d1 1 0.5
s1 d2 8 0.5
s2 d1 4 .
s2 d2 2 .
s2 d3 1 .
s3 d2 5 0.5
s3 d3 4 0.5
;

Note that the node data set remains unchanged. You can use the following call to PROC NETFLOW to solve
the problem:

title1 'The NETFLOW Procedure';
proc netflow

arcdata = garcs1
nodedata = gnodes
excess = demand
conout = gnetout1;

run;

The optimal solution is displayed in Output 5.11.3.

Output 5.11.3 Optimal Solution Obtained Using the EXCESS=DEMAND Option

The NETFLOW ProcedureThe NETFLOW Procedure

Obs _from_ _to_ _cost_ _CAPAC_ _LO_ _mult_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 s1 d1 1 99999999 0 0.5 5 5 5.0000 5.0000

2 s2 d1 4 99999999 0 1.0 20 5 0.0000 0.0000

3 s1 d2 8 99999999 0 0.5 5 10 0.0000 0.0000

4 s2 d2 2 99999999 0 1.0 20 10 5.0000 10.0000

5 s3 d2 5 99999999 0 0.5 10 10 0.0000 0.0000

6 s2 d3 1 99999999 0 1.0 20 20 15.0000 15.0000

7 s3 d3 4 99999999 0 0.5 10 20 10.0000 40.0000

Example 5.12: Generalized Networks: Maximum Flow Problem
Consider the generalized network displayed in Output 5.12.1. Lower and upper bounds of the flow are
displayed in parentheses above the arc, and cost and multiplier, where applicable, are indicated in square
brackets below the arc.

518 F Chapter 5: The NETFLOW Procedure

Output 5.12.1 Generalized Maximum Flow Problem

You can enter the data for the problem using the following SAS code:

data garcsM;
input _from_ $ _to_ $ _upper_ _mult_;

datalines;
A B 2 .
A C 2 .
C B 1 .
B D 1 .
C D 2 .
C E 1 3
D E 1 2
E F 5 .
D F 2 .
;

Use the following call to PROC NETFLOW:

title1 'The NETFLOW Procedure';
proc netflow

arcdata = garcsM
maxflow
source = A sink = F
conout = gmfpout;

run;

The optimal solution is displayed in Output 5.12.2.

Example 5.13: Machine Loading Problem F 519

Output 5.12.2 Generalized Maximum Flow Problem: Optimal Solution

The NETFLOW ProcedureThe NETFLOW Procedure

Obs _from_ _to_ _COST_ _upper_ _LO_ _mult_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 A B 0 2 0 1 S . 1.00000 0

2 C B 0 1 0 1 . . 0.00000 0

3 A C 0 2 0 1 S . 2.00000 0

4 B D 0 1 0 1 . . 1.00000 0

5 C D 0 2 0 1 . . 1.00000 0

6 C E 0 1 0 3 . . 1.00000 0

7 D E 0 1 0 2 . . 1.00000 0

8 E F 0 5 0 1 . D 5.00000 0

9 D F 0 2 0 1 . D 1.00000 0

Example 5.13: Machine Loading Problem
Machine loading problems arise in a variety of applications. Consider a simple instance as described in
Ahuja, Magnanti, and Orlin (1993). Assume you need to schedule the production of three products, P1 –
P3, on four machines, M1 – M4. Suppose that machine 1 and machine 2 are each available for 40 hours
and machine 3 and machine 4 are each available for 50 hours. Also, any of the machines can produce any
product. The per-unit processing time and production cost for each product on each machine are indicated in
Table 5.14.

Table 5.14 Processing Times
and Production
Costs

M1 M2 M3 M4
P1 1 2 2 3
P2 2 3 2 1
P3 3 1 2 4

M1 M2 M3 M4
P1 4 3 3 1
P2 0.5 2 0.5 3
P3 2 5 1 5

The problem is to satisfy the demands for the three products at minimum cost.

You can model this problem as a generalized network as shown in Output 5.13.1. The network has three
product nodes with demands indicated by positive supdem values and four machine nodes with availabilities
(in hours) indicated by negative supdem values. The multiplier on an arc between a machine and a product
indicates the hours of machine capacity needed to produce one unit of the product.

520 F Chapter 5: The NETFLOW Procedure

Output 5.13.1 Machine Loading Problem

Example 5.13: Machine Loading Problem F 521

You can create the input data sets with the following SAS code:

data mlarcs;
input _from_ $ _to_ $ _cost_ _mult_;

datalines;
P1 M1 4 .
P1 M2 3 2
P1 M3 3 2
P1 M4 1 3
P2 M1 .5 2
P2 M2 2 3
P2 M3 .5 2
P2 M4 3 1
P3 M1 2 3
P3 M2 5 .
P3 M3 1 2
P3 M4 .5 4
;

data mlnodes;
input _node_ $ _sd_;

datalines;
P1 10
P2 5
P3 10
M1 -40
M2 -40
M3 -50
M4 -50
;

You can solve the problem using the following call to PROC NETFLOW:

title1 'The NETFLOW Procedure';
proc netflow

excess = demand
arcdata = mlarcs
nodedata = mlnodes
conout = mlsol;

run;

The optimal solution, as displayed in Output 5.13.2, can be interpreted as follows:

� Product 1: 10 units on machine 4

� Product 2: 3 units on machine 1, and 2 units on machine 3

� Product 3: 5 units on machine 3, and 5 units on machine 4

522 F Chapter 5: The NETFLOW Procedure

Output 5.13.2 Optimum Solution to the Machine Loading Problem

The NETFLOW ProcedureThe NETFLOW Procedure

Obs _from_ _to_ _cost_ _CAPAC_ _LO_ _mult_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 P1 M1 4.0 99999999 0 1 10 40 0.00000 0.00000

2 P2 M1 0.5 99999999 0 2 5 40 3.67856 1.83928

3 P3 M1 2.0 99999999 0 3 10 40 0.00000 0.00000

4 P1 M2 3.0 99999999 0 2 10 40 0.00000 0.00000

5 P2 M2 2.0 99999999 0 3 5 40 0.00000 0.00000

6 P3 M2 5.0 99999999 0 1 10 40 0.00000 0.00000

7 P1 M3 3.0 99999999 0 2 10 50 0.00000 0.00000

8 P2 M3 0.5 99999999 0 2 5 50 1.32144 0.66072

9 P3 M3 1.0 99999999 0 2 10 50 5.00000 5.00000

10 P1 M4 1.0 99999999 0 3 10 50 10.0000 10.0000

11 P2 M4 3.0 99999999 0 1 5 50 0.00000 0.00000

12 P3 M4 0.5 99999999 0 4 10 50 5.00000 2.50000

Example 5.14: Generalized Networks: Distribution Problem
Consider a distribution problem (from Jensen and Bard 2003) with three supply plants (S1 – S3) and five
demand points (D1 – D5). Further information about the problem is as follows:

S1 To be closed. Entire inventory must be shipped or sold to scrap. The scrap value is $5 per unit.

S2 Maximum production of 300 units with manufacturing cost of $10 per unit.

S3 The production in regular time amounts to 200 units and must be shipped. An additional 100 units can
be produced using overtime at $14 per unit.

D1 Fixed demand of 200 units must be met.

D2 Contracted demand of 300 units. An additional 100 units can be sold at $20 per unit.

D3 Minimum demand of 200 units. An additional 100 units can be sold at $20 per unit. Additional units
can be procured from D4 at $4 per unit. There is a 5% “shipping loss” on the arc connecting these two
nodes.

D4 Fixed demand of 150 units must be met.

D5 100 units left over from previous shipments. No firm demand, but up to 250 units can be sold at $25
per unit.

Additionally, there is a 5% “shipping loss” on each of the arcs between supply and demand nodes.

You can model this scenario as a generalized network. Since there are both fixed and varying supply and
demand supdem values, you can transform this to a case where you need to address missing supply and
demand simultaneously. As seen from Output 5.14.1, we have added two artificial nodes, Y and Z, with
missing S supply value and missing D demand value, respectively. The extra production capability is depicted
by arcs from node Y to the corresponding supply nodes, and the extra revenue generation capability of the
demand points (and scrap revenue for S1) is depicted by arcs to node Z.

Example 5.14: Generalized Networks: Distribution Problem F 523

Output 5.14.1 Distribution Problem

The following SAS data set has the complete information about the arc costs, multipliers, and node supdem
values:

data dnodes;
input _node_ $ _sd_ ;
missing S D;

datalines;
S1 700
S2 0
S3 200
D1 -200
D2 -300
D3 -200
D4 -150
D5 100
Y S
Z D
;

data darcs;
input _from_ $ _to_ $ _cost_ _capac_ _mult_;

datalines;
S1 D1 3 200 0.95
S1 D2 3 200 0.95
S1 D3 6 200 0.95
S1 D4 7 200 0.95
S2 D1 7 200 0.95
S2 D2 2 200 0.95

524 F Chapter 5: The NETFLOW Procedure

S2 D4 5 200 0.95
S3 D2 6 200 0.95
S3 D4 4 200 0.95
S3 D5 7 200 0.95
D4 D3 4 200 0.95
Y S2 10 300 .
Y S3 14 100 .
S1 Z -5 700 .
D2 Z -20 100 .
D3 Z -20 100 .
D5 Z -25 250 .
;

You can solve this problem by using the following call to PROC NETFLOW:

title1 'The NETFLOW Procedure';
proc netflow

nodedata = dnodes
arcdata = darcs
conout = dsol;

run;

The optimal solution is displayed in Output 5.14.2.

Output 5.14.2 Distribution Problem: Optimal Solution

The NETFLOW ProcedureThe NETFLOW Procedure

Obs _from_ _to_ _cost_ _capac_ _LO_ _mult_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 S1 D1 3 200 0 0.95 700 200 200.000 600.00

2 S2 D1 7 200 0 0.95 . 200 10.526 73.68

3 S1 D2 3 200 0 0.95 700 300 200.000 600.00

4 S2 D2 2 200 0 0.95 . 300 200.000 400.00

5 S3 D2 6 200 0 0.95 200 300 21.053 126.32

6 S1 D3 6 200 0 0.95 700 200 200.000 1200.00

7 D4 D3 4 200 0 0.95 . 200 10.526 42.11

8 S1 D4 7 200 0 0.95 700 150 100.000 700.00

9 S2 D4 5 200 0 0.95 . 150 47.922 239.61

10 S3 D4 4 200 0 0.95 200 150 21.053 84.21

11 S3 D5 7 200 0 0.95 200 . 157.895 1105.26

12 Y S2 10 300 0 1.00 S . 258.449 2584.49

13 Y S3 14 100 0 1.00 S . 0.000 0.00

14 S1 Z -5 700 0 1.00 700 D 0.000 0.00

15 D2 Z -20 100 0 1.00 . D 100.000 -2000.00

16 D3 Z -20 100 0 1.00 . D 0.000 0.00

17 D5 Z -25 250 0 1.00 100 D 250.000 -6250.00

-494.32

Example 5.15: Converting to an MPS-Format SAS Data Set F 525

Example 5.15: Converting to an MPS-Format SAS Data Set
This example demonstrates the use of the MPSOUT= option to convert a problem data set in PROC
NETFLOW input format into an MPS-format SAS data set for use with the OPTLP procedure.

Suppose you want to solve a linear program with the following formulation:

min 2x1 � 3x2 � 4x3

subject to � 2x2 � 3x3 � �5

x1 C x2 C 2x3 � 4

x1 C 2x2 C 3x3 � 7

0 � x1 � 10

0 � x2 � 15

0 � x3 � 20

You can save the LP in dense format by using the following DATA step:

data exdata;
input x1 x2 x3 _type_ $ _rhs_;

datalines;
2 -3 -4 min .
. -2 -3 >= -5
1 1 2 <= 6
1 2 3 >= 7
10 15 20 upperbd .
;

If you decide to solve the problem by using the OPTLP procedure, you need to convert the data set exdata
from dense format to MPS format. You can accomplish this by using the following statements:

/* convert to MPS format */

proc netflow condata=exdata mpsout=mpsdata bytes=100000;
run;

The MPS-format SAS data set mpsdata is shown in Output 5.15.1.

526 F Chapter 5: The NETFLOW Procedure

Output 5.15.1 Data Set mpsdata

The NETFLOW ProcedureThe NETFLOW Procedure

Obs field1 field2 field3 field4 field5 field6

1 NAME modname . .

2 ROWS . .

3 MIN objfn . .

4 G _OBS2_ . .

5 L _OBS3_ . .

6 G _OBS4_ . .

7 COLUMNS . .

8 x1 objfn 2 _OBS3_ 1

9 x1 _OBS4_ 1 .

10 x2 objfn -3 _OBS2_ -2

11 x2 _OBS3_ 1 _OBS4_ 2

12 x3 objfn -4 _OBS2_ -3

13 x3 _OBS3_ 2 _OBS4_ 3

14 RHS . .

15 _OBS2_ -5 _OBS3_ 6

16 _OBS4_ 7 .

17 BOUNDS . .

18 UP bdsvect x1 10 .

19 UP bdsvect x2 15 .

20 UP bdsvect x3 20 .

21 ENDATA . .

The constraint names _OBS2_, _OBS3_, and _OBS4_ are generated by the NETFLOW procedure. If you
want to provide your own constraint names, use the ROW list variable in the CONOUT= data set. If you
specify the problem data in sparse format instead of dense format, the MPSOUT= option produces the same
MPS-format SAS data set shown in the preceding output.

Now that the problem data are in MPS format, you can solve the problem by using the OPTLP procedure.
For more information, see Chapter 12, “The OPTLP Procedure” (SAS/OR User’s Guide: Mathematical
Programming).

Example 5.16: Migration to OPTMODEL: Generalized Networks F 527

Example 5.16: Migration to OPTMODEL: Generalized Networks
The following example shows how to solve Example 5.11 using PROC OPTMODEL. The input data sets are
the same as in that example.

The following PROC OPTMODEL statements read the data sets, build the linear programming model, solve
the model, and output the optimal solution to a SAS data set called GNETOUT:

proc optmodel;
set <str> NODES;
num _sd_ {NODES} init 0;
read data gnodes into NODES=[_node_] _sd_;

set <str,str> ARCS;
num _lo_ {ARCS} init 0;
num _capac_ {ARCS} init .;
num _cost_ {ARCS};
num _mult_ {ARCS} init 1;
read data garcs nomiss into ARCS=[_from_ _to_] _cost_ _mult_;
NODES = NODES union (union {<i,j> in ARCS} {i,j});

var Flow {<i,j> in ARCS} >= _lo_[i,j];
min obj = sum {<i,j> in ARCS} _cost_[i,j] * Flow[i,j];
con balance {i in NODES}: sum {<(i),j> in ARCS} Flow[i,j]

- sum {<j,(i)> in ARCS} _mult_[j,i] * Flow[j,i] = _sd_[i];

num infinity = constant('BIG');
/* change equality constraint to le constraint for supply nodes */
for {i in NODES: _sd_[i] > 0} balance[i].lb = -infinity;

solve;

num _supply_ {<i,j> in ARCS} = (if _sd_[i] ne 0 then _sd_[i] else .);
num _demand_ {<i,j> in ARCS} = (if _sd_[j] ne 0 then -_sd_[j] else .);
num _fcost_ {<i,j> in ARCS} = _cost_[i,j] * Flow[i,j].sol;

create data gnetout from [_from_ _to_]
cost _capac_ _lo_ _mult_ _supply_ _demand_ _flow_=Flow _fcost_;

quit;

To solve a generalized network flow problem, the usual balance constraint is altered to include the arc
multiplier “_mult_[j,i]” in the second sum. The balance constraint is initially declared as an equality, but
to mimic the PROC NETFLOW EXCESS=SUPPLY option, the sense of this constraint is changed to “�”
by relaxing the constraint’s lower bound for supply nodes. The output data set contains the same optimal
solution as Output 5.11.2. The log is displayed in Output 5.16.1.

528 F Chapter 5: The NETFLOW Procedure

Output 5.16.1 OPTMODEL Log

NOTE: There were 6 observations read from the data set WORK.GNODES.

NOTE: There were 7 observations read from the data set WORK.GARCS.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 7 variables (0 free, 0 fixed).

NOTE: The problem has 6 linear constraints (3 LE, 3 EQ, 0 GE, 0 range).

NOTE: The problem has 14 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The OPTMODEL presolver is disabled for linear problems.

NOTE: The LP presolver value AUTOMATIC is applied.

NOTE: The LP presolver removed 2 variables and 2 constraints.

NOTE: The LP presolver removed 4 constraint coefficients.

NOTE: The presolved problem has 5 variables, 4 constraints, and 10 constraint

 coefficients.

NOTE: The LP solver is called.

NOTE: The Dual Simplex algorithm is used.

 Objective

 Phase Iteration Value Time

 D 1 1 0.000000E+00 0

 D 2 2 1.500000E+01 0

 D 2 3 2.500000E+01 0

NOTE: Optimal.

NOTE: Objective = 25.

NOTE: The Dual Simplex solve time is 0.00 seconds.

NOTE: The data set WORK.GNETOUT has 7 observations and 10 variables.

Now consider the previous example but with a slight modification to the arc multipliers, as in Example 5.11.

data garcs1;
input _from_ $ _to_ $ _cost_ _mult_;
datalines;

s1 d1 1 0.5
s1 d2 8 0.5
s2 d1 4 .
s2 d2 2 .
s2 d3 1 .
s3 d2 5 0.5
s3 d3 4 0.5
;

Example 5.16: Migration to OPTMODEL: Generalized Networks F 529

The following PROC OPTMODEL statements are identical to the preceding statements, except for the balance
constraint. It is still initially declared as an equality, but to mimic the PROC NETFLOW EXCESS=DEMAND
option, the sense of this constraint is changed to “�” by relaxing the constraint’s upper bound for demand
nodes.

proc optmodel;
set <str> NODES;
num _sd_ {NODES} init 0;
read data gnodes into NODES=[_node_] _sd_;

set <str,str> ARCS;
num _lo_ {ARCS} init 0;
num _capac_ {ARCS} init .;
num _cost_ {ARCS};
num _mult_ {ARCS} init 1;
read data garcs1 nomiss into ARCS=[_from_ _to_] _cost_ _mult_;
NODES = NODES union (union {<i,j> in ARCS} {i,j});

var Flow {<i,j> in ARCS} >= _lo_[i,j];
for {<i,j> in ARCS: _capac_[i,j] ne .} Flow[i,j].ub = _capac_[i,j];
min obj = sum {<i,j> in ARCS} _cost_[i,j] * Flow[i,j];
con balance {i in NODES}: sum {<(i),j> in ARCS} Flow[i,j]

- sum {<j,(i)> in ARCS} _mult_[j,i] * Flow[j,i] = _sd_[i];

num infinity = constant('BIG');
/* change equality constraint to ge constraint */
for {i in NODES: _sd_[i] < 0} balance[i].ub = infinity;

solve;

num _supply_ {<i,j> in ARCS} = (if _sd_[i] ne 0 then _sd_[i] else .);
num _demand_ {<i,j> in ARCS} = (if _sd_[j] ne 0 then -_sd_[j] else .);
num _fcost_ {<i,j> in ARCS} = _cost_[i,j] * Flow[i,j].sol;

create data gnetout1 from [_from_ _to_]
cost _capac_ _lo_ _mult_ _supply_ _demand_ _flow_=Flow _fcost_;

quit;

The output data set contains the same optimal solution as Output 5.11.3. The log is displayed in Output 5.16.2.

530 F Chapter 5: The NETFLOW Procedure

Output 5.16.2 OPTMODEL Log

NOTE: There were 6 observations read from the data set WORK.GNODES.

NOTE: There were 7 observations read from the data set WORK.GARCS1.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 7 variables (0 free, 0 fixed).

NOTE: The problem has 6 linear constraints (0 LE, 3 EQ, 3 GE, 0 range).

NOTE: The problem has 14 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The OPTMODEL presolver is disabled for linear problems.

NOTE: The LP presolver value AUTOMATIC is applied.

NOTE: The LP presolver removed 2 variables and 2 constraints.

NOTE: The LP presolver removed 4 constraint coefficients.

NOTE: The presolved problem has 5 variables, 4 constraints, and 10 constraint

 coefficients.

NOTE: The LP solver is called.

NOTE: The Dual Simplex algorithm is used.

 Objective

 Phase Iteration Value Time

 D 1 1 0.000000E+00 0

 D 2 2 4.997000E+01 0

 D 2 4 7.000000E+01 0

NOTE: Optimal.

NOTE: Objective = 70.

NOTE: The Dual Simplex solve time is 0.00 seconds.

NOTE: The data set WORK.GNETOUT1 has 7 observations and 10 variables.

Example 5.17: Migration to OPTMODEL: Maximum Flow
The following example shows how to solve Example 5.10 using PROC OPTMODEL. The input data set is
the same as in that example.

The following PROC OPTMODEL statements read the data sets, build the linear programming model, solve
the model, and output the optimal solution to a SAS data set called GOUT3:

proc optmodel;
str source = 'S';
str sink = 'T';

set <str> NODES;
num _supdem_ {i in NODES} = (if i in {source, sink} then . else 0);

set <str,str> ARCS;
num _lo_ {ARCS} init 0;
num _capac_ {ARCS} init .;
num _cost_ {ARCS} init 0;
read data arcs nomiss into ARCS=[_from_ _to_] _cost_ _capac_;
NODES = (union {<i,j> in ARCS} {i,j});

var Flow {<i,j> in ARCS} >= _lo_[i,j];
for {<i,j> in ARCS: _capac_[i,j] ne .} Flow[i,j].ub = _capac_[i,j];

Example 5.17: Migration to OPTMODEL: Maximum Flow F 531

max obj = sum {<i,j> in ARCS: j = sink} Flow[i,j];
con balance {i in NODES diff {source, sink}}:

sum {<(i),j> in ARCS} Flow[i,j]
- sum {<j,(i)> in ARCS} Flow[j,i] = _supdem_[i];

solve;

num _supply_ {<i,j> in ARCS} =
(if _supdem_[i] ne 0 then _supdem_[i] else .);

num _demand_ {<i,j> in ARCS} =
(if _supdem_[j] ne 0 then -_supdem_[j] else .);

num _fcost_ {<i,j> in ARCS} = _cost_[i,j] * Flow[i,j].sol;

create data gout3 from [_from_ _to_]
cost _capac_ _lo_ _supply_ _demand_ _flow_=Flow _fcost_;

quit;

To solve a maximum flow problem, you solve a network flow problem that has a zero supply or demand at
all nodes other than the source and sink nodes, as specified in the declaration of the _SUPDEM_ numeric
parameter and the balance constraint. The objective declaration uses the logical condition J = SINK to
maximize the flow into the sink node. The output data set contains the same optimal solution as Output 5.10.3.
The log is displayed in Output 5.17.1.

Output 5.17.1 OPTMODEL Log

NOTE: There were 14 observations read from the data set WORK.ARCS.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 14 variables (0 free, 0 fixed).

NOTE: The problem has 8 linear constraints (0 LE, 8 EQ, 0 GE, 0 range).

NOTE: The problem has 24 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The OPTMODEL presolver is disabled for linear problems.

NOTE: The problem is a pure network instance. The ALGORITHM=NETWORK option is

 recommended for solving problems with this structure.

NOTE: The LP presolver value AUTOMATIC is applied.

NOTE: The LP presolver removed 10 variables and 6 constraints.

NOTE: The LP presolver removed 20 constraint coefficients.

NOTE: The presolved problem has 4 variables, 2 constraints, and 4 constraint

 coefficients.

NOTE: The LP solver is called.

NOTE: The Dual Simplex algorithm is used.

 Objective

 Phase Iteration Value Time

 D 1 1 0.000000E+00 0

 D 2 2 2.500000E+01 0

 P 2 5 2.500000E+01 0

NOTE: Optimal.

NOTE: Objective = 25.

NOTE: The Dual Simplex solve time is 0.00 seconds.

NOTE: The data set WORK.GOUT3 has 14 observations and 9 variables.

532 F Chapter 5: The NETFLOW Procedure

Example 5.18: Migration to OPTMODEL: Production, Inventory, Distribution
The following example shows how to solve Example 5.4 using PROC OPTMODEL. The input data sets are
the same as in that example.

The following PROC OPTMODEL code read the data sets, build the linear programming model, solve the
model, and output the optimal solution to SAS data sets called ARC1 and NODE2:

proc optmodel;
set <str> NODES;
num _supdem_ {NODES} init 0;
read data node0 into NODES=[_node_] _supdem_;

set <str,str> ARCS;
num _lo_ {ARCS} init 0;
num _capac_ {ARCS} init .;
num _cost_ {ARCS};
num diagonal {ARCS};
num factory {ARCS};
str key_id {ARCS};
str mth_made {ARCS};
str _name_ {ARCS};
read data arc0 nomiss into ARCS=[_tail_ _head_] _lo_ _capac_ _cost_

diagonal factory key_id mth_made _name_;
NODES = NODES union (union {<i,j> in ARCS} {i,j});

var Flow {<i,j> in ARCS} >= _lo_[i,j];
for {<i,j> in ARCS: _capac_[i,j] ne .} Flow[i,j].ub = _capac_[i,j];
min obj = sum {<i,j> in ARCS} _cost_[i,j] * Flow[i,j];
con balance {i in NODES}:

sum {<(i),j> in ARCS} Flow[i,j]
- sum {<j,(i)> in ARCS} Flow[j,i] = _supdem_[i];

num infinity = constant('BIG');
num excess = sum {i in NODES} _supdem_[i];
if (excess > 0) then do;

/* change equality constraint to le constraint for supply nodes */
for {i in NODES: _supdem_[i] > 0} balance[i].lb = -infinity;

end;
else if (excess < 0) then do;

/* change equality constraint to ge constraint for demand nodes */
for {i in NODES: _supdem_[i] < 0} balance[i].ub = infinity;

end;

solve;

num _supply_ {<i,j> in ARCS} =
(if _supdem_[i] ne 0 then _supdem_[i] else .);

num _demand_ {<i,j> in ARCS} =

Example 5.18: Migration to OPTMODEL: Production, Inventory, Distribution F 533

(if _supdem_[j] ne 0 then -_supdem_[j] else .);
num _fcost_ {<i,j> in ARCS} = _cost_[i,j] * Flow[i,j].sol;

create data arc1 from [_tail_ _head_]
cost _capac_ _lo_ _name_ _supply_ _demand_ _flow_=Flow _fcost_
rcost =

(if Flow[_tail_,_head_].rc ne 0 then Flow[_tail_,_head_].rc else .)
status = Flow.status diagonal factory key_id mth_made;

create data node2 from [_node_]
supdem = (if _supdem_[_node_] ne 0 then _supdem_[_node_] else .)
dual = balance.dual;

quit;

The statements use both single-dimensional (NODES) and multiple-dimensional (ARCS) index sets, which
are populated from the corresponding data set variables in the READ DATA statements. The _SUPDEM_,
LO, and _CAPAC_ parameters are given initial values, and the NOMISS option in the READ DATA
statement tells OPTMODEL to read only the nonmissing values from the input data set. The balance
constraint is initially declared as an equality, but depending on the total supply or demand, the sense of this
constraint is changed to “�” or “�” by relaxing the constraint’s lower or upper bound, respectively. The
ARC1 output data set contains most of the same information as in Example 5.4, including reduced cost, basis
status, and dual values. The _ANUMB_ and _TNUMB_ values do not apply here.

The PROC PRINT statements are similar to Example 5.4.

options ls=80 ps=54;
proc print data=arc1 heading=h width=min;

var _tail_ _head_ _cost_ _capac_ _lo_ _name_
supply _demand_ _flow_ _fcost_;
sum _fcost_;

run;
proc print data=arc1 heading=h width=min;

var _rcost_ _status_ diagonal factory key_id mth_made;
run;
proc print data=node2;
run;

The output data sets contain the same optimal solution as Output 5.4.1, Output 5.4.2, and Output 5.4.3. The
log is displayed in Output 5.18.1.

534 F Chapter 5: The NETFLOW Procedure

Output 5.18.1 OPTMODEL Log

NOTE: There were 8 observations read from the data set WORK.NODE0.

NOTE: There were 64 observations read from the data set WORK.ARC0.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 64 variables (0 free, 0 fixed).

NOTE: The problem has 20 linear constraints (4 LE, 16 EQ, 0 GE, 0 range).

NOTE: The problem has 128 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The OPTMODEL presolver is disabled for linear problems.

NOTE: The LP presolver value AUTOMATIC is applied.

NOTE: The LP presolver removed 0 variables and 0 constraints.

NOTE: The LP presolver removed 0 constraint coefficients.

NOTE: The presolved problem has 64 variables, 20 constraints, and 128

 constraint coefficients.

NOTE: The LP solver is called.

NOTE: The Dual Simplex algorithm is used.

 Objective

 Phase Iteration Value Time

 D 1 1 0.000000E+00 0

 D 2 2 -4.020320E+06 0

 D 2 32 -1.281110E+06 0

NOTE: Optimal.

NOTE: Objective = -1281110.35.

NOTE: The Dual Simplex solve time is 0.00 seconds.

NOTE: The data set WORK.ARC1 has 64 observations and 16 variables.

NOTE: The data set WORK.NODE2 has 20 observations and 3 variables.

Example 5.19: Migration to OPTMODEL: Shortest Path
The following example shows how to solve Example 5.1 using PROC OPTMODEL. The input data set is the
same as in that example.

The following PROC OPTMODEL statements read the data sets, build the linear programming model, solve
the model, and output the optimal solution to a SAS data set called SPATH:

proc optmodel;
str sourcenode = 'Honolulu';
str sinknode = 'Heathrow London';

set <str> NODES;
num _supdem_ {i in NODES} = (if i = sourcenode then 1

else if i = sinknode then -1 else 0);

set <str,str> ARCS;
num _lo_ {ARCS} init 0;
num _capac_ {ARCS} init .;
num _cost_ {ARCS};
read data aircost1 into ARCS=[ffrom tto] _cost_;
NODES = (union {<i,j> in ARCS} {i,j});

Example 5.19: Migration to OPTMODEL: Shortest Path F 535

var Flow {<i,j> in ARCS} >= _lo_[i,j];
min obj = sum {<i,j> in ARCS} _cost_[i,j] * Flow[i,j];
con balance {i in NODES}: sum {<(i),j> in ARCS} Flow[i,j]

- sum {<j,(i)> in ARCS} Flow[j,i] = _supdem_[i];
solve;

num _supply_ {<i,j> in ARCS} =
(if _supdem_[i] ne 0 then _supdem_[i] else .);

num _demand_ {<i,j> in ARCS} =
(if _supdem_[j] ne 0 then -_supdem_[j] else .);

num _fcost_ {<i,j> in ARCS} = _cost_[i,j] * Flow[i,j].sol;

create data spath from [ffrom tto]
cost _capac_ _lo_ _supply_ _demand_ _flow_=Flow _fcost_
rcost = (if Flow[ffrom,tto].rc ne 0 then Flow[ffrom,tto].rc else .)
status = Flow.status;

quit;

The statements use both single-dimensional (NODES) and multiple-dimensional (ARCS) index sets. The
ARCS data set is populated from the ffrom and tto data set variables in the READ DATA statement. To solve
a shortest path problem, you solve a minimum-cost network-flow problem that has a supply of one unit at
the source node, a demand of one unit at the sink node, and zero supply or demand at all other nodes, as
specified in the declaration of the _SUPDEM_ numeric parameter. The SPATH output data set contains most
of the same information as in Example 5.1, including reduced cost and basis status. The _ANUMB_ and
TNUMB values do not apply here.

The PROC PRINT statements are similar to Example 5.1.

proc print data=spath;
sum _fcost_;

run;

The output data set contains the same optimal solution as Output 5.1.1. The log is displayed in Output 5.19.1.

Output 5.19.1 OPTMODEL Log

NOTE: There were 13 observations read from the data set WORK.AIRCOST1.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 13 variables (0 free, 0 fixed).

NOTE: The problem has 8 linear constraints (0 LE, 8 EQ, 0 GE, 0 range).

NOTE: The problem has 26 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The OPTMODEL presolver is disabled for linear problems.

NOTE: The problem is a pure network instance. The ALGORITHM=NETWORK option is

 recommended for solving problems with this structure.

NOTE: The LP presolver value AUTOMATIC is applied.

NOTE: The LP presolver removed all variables and constraints.

NOTE: Optimal.

NOTE: Objective = 177.

NOTE: The data set WORK.SPATH has 13 observations and 11 variables.

536 F Chapter 5: The NETFLOW Procedure

References

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows: Theory, Algorithms, and Applications.
Englewood Cliffs, NJ: Prentice-Hall.

Bland, R. G. (1977). “New Finite Pivoting Rules for the Simplex Method.” Mathematics of Operations
Research 2:103–107.

George, J. A., Liu, J. W., and Ng, E. (2001). “Computer Solution of Positive Definite Systems.” Unpublished
manuscript available from authors.

Jensen, P. A., and Bard, J. F. (2003). Operations Research Models and Methods. Hoboken, NJ: John Wiley &
Sons.

Kearney, T. D. (1990). “A Tutorial on the NETFLOW Procedure in SAS/OR.” In Proceedings of the
Fifteenth Annual SAS Users Group International Conference, 97–108. Cary, NC: SAS Institute Inc.
http://www.sascommunity.org/sugi/SUGI90/Sugi-90-15%20Kearney.pdf.

Kennington, J. L., and Helgason, R. V. (1980). Algorithms for Networking Programming. New York:
Wiley-Interscience.

Lustig, I. J., Marsten, R. E., and Shanno, D. F. (1992). “On Implementing Mehrotra’s Predictor-Corrector
Interior-Point Method for Linear Programming.” SIAM Journal on Optimization 2:435–449.

Reid, J. K. (1975). A Sparsity-Exploiting Variant of the Bartels-Golub Decomposition for Linear Pro-
gramming Bases. Technical Report Harwell CSS 20, Atomic Energy Research Establishment, Harwell,
UK.

Roos, C., Terlaky, T., and Vial, J. (1997). Theory and Algorithms for Linear Optimization. Chichester, UK:
John Wiley & Sons.

Ryan, D. M., and Osborne, M. R. (1988). “On the Solution of Highly Degenerate Linear Programmes.”
Mathematical Programming 41:385–392.

Wright, S. J. (1997). Primal-Dual Interior-Point Methods. Philadelphia: SIAM.

Ye, Y. (1996). Interior Point Algorithms: Theory and Analysis. New York: John Wiley & Sons.

http://www.sascommunity.org/sugi/SUGI90/Sugi-90-15%20Kearney.pdf

Subject Index

arc capacity
NETFLOW procedure, 336

arc names
NETFLOW procedure, 331, 339

balancing network problems
NETFLOW procedure, 336

Bartels-Golub decomposition, 330, 355, 356, 394
big-M method, 352
blending constraints

NETFLOW procedure, 303
bypass arc

NETFLOW procedure, 326

case sensitivity
NETFLOW procedure, 332, 345, 387

central path
NETFLOW procedure, 426

coefficients
NETFLOW procedure, 337

columns
NETFLOW procedure, 337

complementarity
NETFLOW procedure, 425

costs
NETFLOW procedure, 338

cycling
NETFLOW procedure, 353, 354, 392

demands
NETFLOW procedure, 338

dense input format
NETFLOW procedure, 310, 375, 376, 406, 409

displayed output
NETFLOW procedure, 340

dual problem
NETFLOW procedure, 424

dual variables
NETFLOW procedure, 392, 424

duality gap
NETFLOW procedure, 425

efficiency
NETFLOW procedure, 404–409

embedded networks
NETFLOW procedure, 381

examples, see NETFLOW examples
excess node

NETFLOW procedure, 400

flow conservation constraints
NETFLOW procedure, 300, 308, 413

functional summary
NETFLOW procedure, 317

infeasibility
NETFLOW procedure, 395

infinity
NETFLOW procedure, 330

initial basic feasible solution
NETFLOW procedure, 325

input data sets
NETFLOW procedure, 324, 376

interactive processing
NETFLOW procedure, 322

interior point algorithm
network problems, 413
options (NETFLOW), 360

Karush-Kuhn-Tucker conditions
NETFLOW procedure, 431

linear programming problems
NETFLOW procedure, 306

loop arcs
NETFLOW procedure, 388

lower bounds
NETFLOW procedure, 339

macro variable
_ORNETFL, 409

maximum flow problem
NETFLOW procedure, 331

memory requirements
NETFLOW procedure, 326–328, 330, 331,

404–409
migration to PROC OPTMODEL

from PROC NETFLOW, 527, 530, 532, 534
missing values

NETFLOW procedure, 396
multicommodity problems

NETFLOW procedure, 304
multiple arcs

NETFLOW procedure, 388

NETFLOW examples, 461
constrained solution, 491
converting PROC NETFLOW format to MPS

format, 525

distribution problem, 468
distribution problem (OPTMODEL), 532
generalized networks (OPTMODEL), 527
inventory problem, 468
inventory problem (OPTMODEL), 532
maximum flow (OPTMODEL), 530
minimum cost flow, 464
nonarc variables, 498
production problem, 468
production problem (OPTMODEL), 532
shortest path problem, 461
shortest path problem (OPTMODEL), 534
side constraints, 483, 498
unconstrained solution, 477
warm start, 467, 477, 483, 491

NETFLOW procedure
arc capacity, 336
arc names, 310, 313, 331, 339
balancing supply and demand, 336, 400
Bartels-Golub decomposition, 330, 355, 356, 394
big-M method, 352
blending constraints, 303
bypass arc, 326
case sensitivity, 332, 345, 387
central path, 426
coefficients, 337
columns, 337
complementarity, 425
costs, 338
cycling, 353, 354, 392
data set options, 324
default arc capacity, 327
default arc cost, 328
default constraint type, 328
default lower flow bound, 328
default options, 408
demands, 328, 338
dense format, 306, 310, 375, 376, 406, 409
details, 376
dual variables, 392, 424
duality gap, 425
efficiency, 404–409
embedded networks, 381
excess node, 400
flow conservation constraints, 300, 308, 413
functional summary, 317
infeasibility, 395
infinity, 330
initial basic feasible solution, 325
input data sets, 324, 376
interactive processing, 322
interior point algorithm, 412
interior point options, 360
introductory example, 311

Karush-Kuhn-Tucker conditions, 431
key arc, 354
linear programming, 306
loop arcs, 388
lower bounds, 339
macro variable _ORNETFL, 409
major iteration, 391
maximum cost flow, 331
maximum flow problem, 331
memory limit, 411
memory requirements, 326–328, 330, 331,

404–409
minor iteration, 391
missing supply and missing demand, 396
multicommodity problems, 304
multiple arcs, 388
network models, 300
network problems, 413
nonarc variables, 308
nonkey arc, 354
NPSC, 307
options classified by function, 317
output data sets, 324, 325, 350, 384
overview, 299
pivot, 340
preprocessing, 361
pricing strategies, 356, 388
printing cautions, 345
printing options, 340
production-inventory-distribution problem, 300
proportionality constraints, 302
ratio test, 353, 354
reduced costs, 392
scaling input data, 334
shortest path problem, 335
side constraints, 301, 307, 394
sink nodes, 335
source nodes, 335
sparse format, 306, 310, 335, 378, 382, 406, 409
stages, 347
status, 392
stopping criteria, 428
supplies, 336
syntax skeleton, 317
table of syntax elements, 317
termination criteria, 363, 428
tightening bounds, 394
TYPE variable, 373
warm starts, 309, 336, 401, 402, 409
working basis matrix, 328, 330, 336, 354, 393
wraparound search, 390

network models, 300
network problems

interior point algorithm, 413

nonarc variables
NETFLOW procedure, 308

NPSC
NETFLOW procedure, 307

objective function
NETFLOW procedure, 307, 424

options classified by function, see functional summary
_ORNETFL macro variable, 409
output data sets

NETFLOW procedure, 324, 325, 350, 384
overview

NETFLOW procedure, 299

preprocessing
NETFLOW procedure, 361

pricing strategies
NETFLOW procedure, 356, 388

production-inventory-distribution problem, 300
proportionality constraints

NETFLOW procedure, 302

ratio test
NETFLOW procedure, 353, 354

reduced costs
NETFLOW procedure, 392

scaling input data
NETFLOW procedure, 334

shortest path problem
NETFLOW procedure, 335

side constraints
NETFLOW procedure, 301, 307

sink nodes
NETFLOW procedure, 335

source nodes
NETFLOW procedure, 335

sparse input format
NETFLOW procedure, 310, 335, 378, 406, 409
summary (NETFLOW), 382

supplies
NETFLOW procedure, 336

syntax skeleton
NETFLOW procedure, 317

table of syntax elements, see functional summary
termination criteria

NETFLOW procedure, 363, 428
TYPE variable

NETFLOW procedure, 373

warm starts
NETFLOW procedure, 309, 336, 401, 402, 409

working basis matrix
NETFLOW procedure, 328, 330, 336, 354, 393

wraparound search
NETFLOW procedure, 390

Syntax Index

ALLART option
PROC NETFLOW statement, 325

AND_KEEPGOING_C= option
RESET statement (NETFLOW), 365

AND_KEEPGOING_DG= option
RESET statement (NETFLOW), 365

AND_KEEPGOING_IB= option
RESET statement (NETFLOW), 365

AND_KEEPGOING_IC= option
RESET statement (NETFLOW), 366

AND_KEEPGOING_ID= option
RESET statement (NETFLOW), 366

AND_STOP_C= option
RESET statement (NETFLOW), 364

AND_STOP_DG= option
RESET statement (NETFLOW), 364

AND_STOP_IB= option
RESET statement (NETFLOW), 364

AND_STOP_IC= option
RESET statement (NETFLOW), 364

AND_STOP_ID= option
RESET statement (NETFLOW), 364

ANY keyword
PxSCAN= option (NETFLOW), 391

AOUT= option, see ARCOUT= option, see
ARCOUT= option

ARCDATA keyword
GROUPED= option (NETFLOW), 329

ARCDATA= option
PROC NETFLOW statement, 310, 311, 324, 376

ARCNAME statement, see NAME statement
ARCOUT= option

PROC NETFLOW statement, 311, 324, 384
RESET statement (NETFLOW), 350

ARCS option
PRINT statement (NETFLOW), 341

ARC_SINGLE_OBS option
PROC NETFLOW statement, 326

ARCS_ONLY_ARCDATA option
PROC NETFLOW statement, 325, 407

BASIC option
PRINT statement (NETFLOW), 343

BEST keyword
PxSCAN= option (NETFLOW), 356, 389, 390
QxFILLSCAN= option (NETFLOW), 356, 391

BIGM1 option
RESET statement (NETFLOW), 352

BIGM2 option
RESET statement (NETFLOW), 354

BLAND keyword
PRICETYPEx= option (NETFLOW), 356, 389,

392
BOTH keyword

GROUPED= option (NETFLOW), 329
SCALE= option (NETFLOW), 335

BPD= option, see BYPASSDIVIDE= option
BYPASSDIV= option, see BYPASSDIVIDE= option
BYPASSDIVIDE= option

PROC NETFLOW statement, 326
BYTES= option

PROC NETFLOW statement, 326, 407

CAPAC keyword
TYPE variable (NETFLOW), 374

CAPAC statement, see CAPACITY statement
CAPACITY statement

NETFLOW procedure, 336
CF= option, see COREFACTOR= option
CHOLTINYTOL= option

RESET statement (NETFLOW), 361
COEF statement

NETFLOW procedure, 337
COEFS keyword

NON_REPLIC= option (NETFLOW), 333
COL keyword

SCALE= option (NETFLOW), 334
COLUMN keyword

SCALE= option (NETFLOW), 334
COLUMN statement

NETFLOW procedure, 337
CON keyword

SCALE= option (NETFLOW), 334
CON_ARCS option

PRINT statement (NETFLOW), 342
CONDATA keyword

GROUPED= option (NETFLOW), 329
CONDATA= option

PROC NETFLOW statement, 310, 311, 324, 376
CON_NONARCS option

PRINT statement (NETFLOW), 342
CONOPT statement

NETFLOW procedure, 337
CONOUT= option

PROC NETFLOW statement, 311, 324, 384
RESET statement (NETFLOW), 351

CON_SINGLE_OBS option
PROC NETFLOW statement, 326

CONSTRAINT keyword
SCALE= option (NETFLOW), 334

CONSTRAINTS option
PRINT statement (NETFLOW), 342

CONTYPE statement, see TYPE statement
CON_VARIABLES option

PRINT statement (NETFLOW), 342
COREFACTOR= option

PROC NETFLOW statement, 327
COST keyword

TYPE variable (NETFLOW), 374
COST statement

NETFLOW procedure, 338
COUT= option, see CONOUT= option, see

CONOUT= option
CYCLEMULT1= option

RESET statement (NETFLOW), 353

DATASETS option
SHOW statement (NETFLOW), 370

DC= option, see DEFCAPACITY= option
DCT= option, see DEFCONTYPE= option
DEFCAPACITY= option

PROC NETFLOW statement, 327, 408
DEFCONTYPE= option

PROC NETFLOW statement, 328, 408
DEFCOST= option

PROC NETFLOW statement, 328, 408
DEFMINFLOW= option

PROC NETFLOW statement, 328, 408
DEFTYPE= option, see DEFCONTYPE= option
DEMAND statement

NETFLOW procedure, 338
DEMAND= option

PROC NETFLOW statement, 328, 408
DENSETHR= option

RESET statement (NETFLOW), 361
DMF= option, see DEFMINFLOW= option
DOUT= option, see DUALOUT= option, see

DUALOUT= option
DUALFREQ= option

RESET statement (NETFLOW), 391
DUALIN= option, see NODEDATA= option
DUALOUT= option

PROC NETFLOW statement, 311, 324, 385
RESET statement (NETFLOW), 351

DWIA= option
PROC NETFLOW statement, 328

ENDPAUSE1 option
RESET statement (NETFLOW), 351

EQ keyword

TYPE variable (NETFLOW), 374
EXCESS= option

PROC NETFLOW statement, 328

FACT_METHOD= option
RESET statement (NETFLOW), 360

FEASIBLEPAUSE1 option
RESET statement (NETFLOW), 352

FEASIBLEPAUSE2 option
RESET statement (NETFLOW), 352

FIRST keyword
PxSCAN= option (NETFLOW), 356, 389, 390
QxFILLSCAN= option (NETFLOW), 356, 391

FP1 option, see FEASIBLEPAUSE1 option
FP2 option, see FEASIBLEPAUSE2 option
FREE keyword

TYPE variable (NETFLOW), 374
FROM statement, see TAILNODE statement
FROMNODE statement, see TAILNODE statement
FUTURE1 option

PROC NETFLOW statement, 401
RESET statement (NETFLOW), 357

FUTURE2 option
PROC NETFLOW statement, 401
RESET statement (NETFLOW), 357

GAIN keyword
TYPE variable (NETFLOW), 374

GE keyword
TYPE variable (NETFLOW), 374

GENNET option
PROC NETFLOW statement, 329

GROUPED= option
PROC NETFLOW statement, 329, 406

HEAD statement, see HEADNODE statement
HEADNODE statement

NETFLOW procedure, 338

ID statement
NETFLOW procedure, 338

IMAXITERB= option, see MAXITERB= option
INF= option, see INFINITY= option
INFINITY= option

PROC NETFLOW statement, 330
INTFIRST option

RESET statement (NETFLOW), 354
INTPOINT option

PROC NETFLOW statement, 413
RESET statement (NETFLOW), 330

INVD_2D option
PROC NETFLOW statement, 330, 394

INVFREQ= option
RESET statement (NETFLOW), 354

IPRSLTYPE= option, see PRSLTYPE= option

KEEPGOING_C= option
RESET statement (NETFLOW), 364

KEEPGOING_DG= option
RESET statement (NETFLOW), 365

KEEPGOING_IB= option
RESET statement (NETFLOW), 365

KEEPGOING_IC= option
RESET statement (NETFLOW), 365

KEEPGOING_ID= option
RESET statement (NETFLOW), 365

LE keyword
TYPE variable (NETFLOW), 374

LO statement
NETFLOW procedure, 339

LONG option
PRINT statement (NETFLOW), 343

LOSS keyword
TYPE variable (NETFLOW), 374

LOW keyword
TYPE variable (NETFLOW), 374

LOWERBD keyword
TYPE variable (NETFLOW), 374

LOWERBD statement, see LO statement
LRATIO1 option

RESET statement (NETFLOW), 353
LRATIO2 option

RESET statement (NETFLOW), 353

MAX option, see MAXIMIZE option
MAXARRAYBYTES= option

PROC NETFLOW statement, 330, 407
MAXFLOW option

PROC NETFLOW statement, 331
MAXIMIZE keyword

TYPE variable (NETFLOW), 374
MAXIMIZE option

PROC NETFLOW statement, 331
MAXIT1= option

RESET statement (NETFLOW), 352
MAXIT2= option

RESET statement (NETFLOW), 352
MAXITERB= option

PROC NETFLOW statement, 428
RESET statement (NETFLOW), 363

MAXL= option
RESET statement (NETFLOW), 355

MAXLUUPDATES= option
RESET statement (NETFLOW), 355

MEMREP option
PROC NETFLOW statement, 331, 407

MF option, see MAXFLOW option
MINBLOCK1= option

RESET statement (NETFLOW), 353

MINFLOW statement, see LO statement
MINIMIZE keyword

TYPE variable (NETFLOW), 374
MISC option

SHOW statement (NETFLOW), 372
MLUU= option, see MAXLUUPDATES= option
MOREOPT option

RESET statement (NETFLOW), 357
MPSOUT= option

PROC NETFLOW statement, 325, 387
MULT keyword

TYPE variable (NETFLOW), 374
MULT statement

NETFLOW procedure, 339
MULTIPLIER statement, see MULT statement

NAME statement
NETFLOW procedure, 339

NAMECTRL= option
PROC NETFLOW statement, 331

NARCS= option
PROC NETFLOW statement, 333, 406

NCOEFS= option
PROC NETFLOW statement, 333, 406

NCONS= option
PROC NETFLOW statement, 333, 406

NETFLOW procedure, 317
CAPACITY statement, 336
COEF statement, 337
PROC NETFLOW statement, 324
RESET statement, 346
RHS statement, 366
ROW statement, 366
RUN statement, 367
SAVE statement, 367
SHOW statement, 369
SUPDEM statement, 373
SUPPLY statement, 373
TAILNODE statement, 373
TYPE statement, 373
VAR statement, 375

NNAS= option
PROC NETFLOW statement, 333, 406

NNODES= option
PROC NETFLOW statement, 333, 406

NOBIGM1 option, see TWOPHASE1 option
NOBIGM2 option, see TWOPHASE2 option
NODE statement

NETFLOW procedure, 339
NODEDATA= option

PROC NETFLOW statement, 310, 311, 325
NODEOUT= option

PROC NETFLOW statement, 311, 325, 385
RESET statement (NETFLOW), 351

NOENDPAUSE1 option
RESET statement (NETFLOW), 352

NOEP1 option, see NOENDPAUSE1 option
NOFEASIBLEPAUSE1 option

RESET statement (NETFLOW), 352
NOFEASIBLEPAUSE2 option

RESET statement (NETFLOW), 352
NOFP1 option, see NOFEASIBLEPAUSE1 option
NOFP2 option, see NOFEASIBLEPAUSE2 option
NOFUTURE1 option

RESET statement (NETFLOW), 357
NOFUTURE2 option

RESET statement (NETFLOW), 357
NOINTFIRST option

RESET statement (NETFLOW), 355
NOLRATIO1 option

RESET statement (NETFLOW), 353
NOLRATIO2 option

RESET statement (NETFLOW), 354
NONARC keyword

SCALE= option (NETFLOW), 334
NONARCS option

PRINT statement (NETFLOW), 342
NONBASIC option

PRINT statement (NETFLOW), 343
NONE keyword

GROUPED= option (NETFLOW), 329
NON_REPLIC= option (NETFLOW), 333
SCALE= option (NETFLOW), 335

NON_REPLIC= option
PROC NETFLOW statement, 333

NONZERO option
PRINT statement (NETFLOW), 343

NOPERTURB1 option
RESET statement (NETFLOW), 353

NOQ keyword
PRICETYPEx= option (NETFLOW), 356, 389

NOSCRATCH option
RESET statement (NETFLOW), 358

NOTWOPHASE1 option, see BIGM1 option
NOTWOPHASE2 option, see BIGM2 option
NOUT= option, see NODEOUT= option
NOZTOL1 option

RESET statement (NETFLOW), 358
NOZTOL2 option

RESET statement (NETFLOW), 358

OBJECTIVE keyword
TYPE variable (NETFLOW), 374

OBJFN statement, see COST statement
OPTIM_TIMER option

RESET statement (NETFLOW), 358

PARTIAL keyword

PxSCAN= option (NETFLOW), 356, 389, 390
QxFILLSCAN= option (NETFLOW), 356, 391

PAUSE option
SHOW statement (NETFLOW), 371

PAUSE1= option
RESET statement (NETFLOW), 352

PAUSE2= option
RESET statement (NETFLOW), 352

PDGAPTOL= option
PROC NETFLOW statement, 428
RESET statement (NETFLOW), 363

PDSTEPMULT= option
RESET statement (NETFLOW), 361

PERTURB1 option
RESET statement (NETFLOW), 353

PIVOT statement
NETFLOW procedure, 340

PRICETYPEx= option
RESET statement (NETFLOW), 356, 372, 389,

390, 392
PRICING option

SHOW statement (NETFLOW), 371
PRINT statement

NETFLOW procedure, 340
PRINTLEVEL2= option

PROC NETFLOW statement, 428
RESET statement (NETFLOW), 362

PROBLEM option
PRINT statement (NETFLOW), 342

PROC NETFLOW statement, see NETFLOW
procedure

data set options, 324
general options, 325

PRSLTYPE= option
RESET statement (NETFLOW), 361

PTYPEx= option, see PRICETYPEx= option
PxNPARTIAL= option

RESET statement (NETFLOW), 356, 372, 389,
390

PxSCAN= option
PROC NETFLOW statement, 389
RESET statement (NETFLOW), 356, 372, 390,

391

Q keyword
PRICETYPEx= option (NETFLOW), 356, 389,

390
QSIZEx= option

RESET statement (NETFLOW), 356, 372, 390
QUIT statement

NETFLOW procedure, 346
Qx= option, see QSIZEx= option
QxFILLNPARTIAL= option

RESET statement (NETFLOW), 356, 372, 391

QxFILLSCAN= option
RESET statement (NETFLOW), 356, 372, 390

RCHOLTINYTOL= option, see CHOLTINYTOL=
option

RDENSETHR= option, see DENSETHR= option
REDUCEQSIZEx= option

RESET statement (NETFLOW), 356, 372, 390
REDUCEQx= option

RESET statement (NETFLOW), 356
REFACTFREQ= option

RESET statement (NETFLOW), 355
REFRESHQx= option

RESET statement (NETFLOW), 356, 372, 390
RELEVANT option

SHOW statement (NETFLOW), 372
RESET statement

NETFLOW procedure, 346
RFF= option, see REFACTFREQ= option
RHS keyword

TYPE variable (NETFLOW), 374
RHS statement

NETFLOW procedure, 366
RHSOBS= option

PROC NETFLOW statement, 333
ROW keyword

SCALE= option (NETFLOW), 334
ROW statement

NETFLOW procedure, 366
RPDGAPTOL= option, see PDGAPTOL= option
RPDSTEPMULT= option, see PDSTEPMULT= option
RTOLDINF= option, see TOLDINF= option
RTOLPINF= option, see TOLPINF= option
RTOLTOTDINF= option, see TOLTOTDINF= option
RTOLTOTPINF= option, see TOLTOTPINF= option
RUN statement

NETFLOW procedure, 367

SAME_NONARC_DATA option
PROC NETFLOW statement, 334

SAME_NONARC_DATA option
PROC NETFLOW statement, 407, 409

SAVE statement
NETFLOW procedure, 367

SCALE= option
PROC NETFLOW statement, 334

SCDATA option, see SPARSECONDATA option
SCRATCH option

RESET statement (NETFLOW), 358
SET statement, see RESET statement
SHORT option

PRINT statement (NETFLOW), 343
SHORTPATH option

PROC NETFLOW statement, 335

SHOW statement
NETFLOW procedure, 369

SIMPLEX option
SHOW statement (NETFLOW), 371

SINK= option
PROC NETFLOW statement, 335, 408

SINKNODE= option, see SINK= option
SND option, see SAME_NONARC_DATA option
SOME_ARCS option

PRINT statement (NETFLOW), 342
SOME_CONS option

PRINT statement (NETFLOW), 342
SOME_NONARCS option

PRINT statement (NETFLOW), 342
SOME_VARIABLES option

PRINT statement (NETFLOW), 342
SOURCE= option

PROC NETFLOW statement, 335, 408
SOURCENODE= option, see SOURCE= option
SP option, see SHORTPATH option
SP2 option, see SPARSEP2 option
SPARSECONDATA option

PROC NETFLOW statement, 335, 378
SPARSEP2 option

PROC NETFLOW statement, 336
STAGE option

SHOW statement (NETFLOW), 372
STATUS option

SHOW statement (NETFLOW), 369
STOP_C= option

RESET statement (NETFLOW), 363
STOP_DG= option

RESET statement (NETFLOW), 363
STOP_IB= option

RESET statement (NETFLOW), 363
STOP_IC= option

RESET statement (NETFLOW), 363
STOP_ID= option

RESET statement (NETFLOW), 364
SUPDEM statement

NETFLOW procedure, 373
SUPPLY statement

NETFLOW procedure, 373
SUPPLY= option

PROC NETFLOW statement, 336, 408

TAIL statement, see TAILNODE statement
TAILNODE statement

NETFLOW procedure, 373
THRUNET option

PROC NETFLOW statement, 336, 400
TO statement, see HEADNODE statement
TOLDINF= option

RESET statement (NETFLOW), 360

TOLPINF= option
RESET statement (NETFLOW), 360

TOLTOTDINF= option
RESET statement (NETFLOW), 360

TOLTOTPINF= option
RESET statement (NETFLOW), 361

TONODE statement, see HEADNODE statement
TWOPHASE1 option

RESET statement (NETFLOW), 352
TWOPHASE2 option

RESET statement (NETFLOW), 354
TYPE keyword

TYPE variable (NETFLOW), 374
TYPE statement

NETFLOW procedure, 373
TYPEOBS= option

PROC NETFLOW statement, 336

U= option
RESET statement (NETFLOW), 356

UNREST keyword
TYPE variable (NETFLOW), 374

UPPCOST keyword
TYPE variable (NETFLOW), 374

UPPER keyword
TYPE variable (NETFLOW), 374

UPPERBD statement, see CAPACITY statement

VAR statement
NETFLOW procedure, 375

VARIABLES option
PRINT statement (NETFLOW), 342

VARNAME statement, see NAME statement
VERBOSE= option

RESET statement (NETFLOW), 358

WARM option
PROC NETFLOW statement, 336, 402, 409

Z1= option, see ZERO1= option
Z2= option, see ZERO2= option
ZERO option

PRINT statement (NETFLOW), 343
ZERO1= option

RESET statement (NETFLOW), 359
ZERO2= option

RESET statement (NETFLOW), 359
ZEROTOL= option

RESET statement (NETFLOW), 359
ZTOL1 option

RESET statement (NETFLOW), 360
ZTOL2 option

RESET statement (NETFLOW), 360

	The NETFLOW Procedure
	Overview: NETFLOW Procedure
	Introduction
	Network Models
	Side Constraints
	Advantages of Network Models over LP Models
	Mathematical Description of NPSC
	Flow Conservation Constraints
	Nonarc Variables
	Warm Starts

	Getting Started: NETFLOW Procedure
	Introductory Example

	Syntax: NETFLOW Procedure
	Functional Summary
	Interactivity
	PROC NETFLOW Statement
	CAPACITY Statement
	COEF Statement
	COLUMN Statement
	CONOPT Statement
	COST Statement
	DEMAND Statement
	HEADNODE Statement
	ID Statement
	LO Statement
	MULT Statement
	NAME Statement
	NODE Statement
	PIVOT Statement
	PRINT Statement
	QUIT Statement
	RESET Statement
	RHS Statement
	ROW Statement
	RUN Statement
	SAVE Statement
	SHOW Statement
	SUPDEM Statement
	SUPPLY Statement
	TAILNODE Statement
	TYPE Statement
	VAR Statement

	Details: NETFLOW Procedure
	Input Data Sets
	Output Data Sets
	Converting Any PROC NETFLOW Format to an MPS-Format SAS Data Set
	Case Sensitivity
	Loop Arcs
	Multiple Arcs
	Pricing Strategies
	Dual Variables, Reduced Costs, and Status
	The Working Basis Matrix
	Flow and Value Bounds
	Tightening Bounds and Side Constraints
	Reasons for Infeasibility
	Missing S Supply and Missing D Demand Values
	Balancing Total Supply and Total Demand
	Warm Starts
	How to Make the Data Read of PROC NETFLOW More Efficient
	Macro Variable _ORNETFL
	Memory Limit

	The Interior Point Algorithm: NETFLOW Procedure
	Introduction
	Network Models: Interior Point Algorithm
	Linear Programming Models: Interior Point Algorithm

	Generalized Networks: NETFLOW Procedure
	What Is a Generalized Network?
	How to Specify Data for Arc Multipliers

	Using the EXCESS= Option in Pure Networks: NETFLOW Procedure
	Handling Excess Supply or Demand
	Handling Missing Supply and Demand Simultaneously
	Maximum Flow Problems
	Handling Supply and Demand Ranges

	Using the EXCESS= Option in Generalized Networks: NETFLOW Procedure
	Total Supply and Total Demand: How Generalized Networks Differ from Pure Networks
	The EXCESS=SUPPLY Option
	The EXCESS=DEMAND Option

	Examples: NETFLOW Procedure
	Example 5.1: Shortest Path Problem
	Example 5.2: Minimum Cost Flow Problem
	Example 5.3: Using a Warm Start
	Example 5.4: Production, Inventory, Distribution Problem
	Example 5.5: Using an Unconstrained Solution Warm Start
	Example 5.6: Adding Side Constraints, Using a Warm Start
	Example 5.7: Using a Constrained Solution Warm Start
	Example 5.8: Nonarc Variables in the Side Constraints
	Example 5.9: Pure Networks: Using the EXCESS= Option
	Example 5.10: Maximum Flow Problem
	Example 5.11: Generalized Networks: Using the EXCESS= Option
	Example 5.12: Generalized Networks: Maximum Flow Problem
	Example 5.13: Machine Loading Problem
	Example 5.14: Generalized Networks: Distribution Problem
	Example 5.15: Converting to an MPS-Format SAS Data Set
	Example 5.16: Migration to OPTMODEL: Generalized Networks
	Example 5.17: Migration to OPTMODEL: Maximum Flow
	Example 5.18: Migration to OPTMODEL: Production, Inventory, Distribution
	Example 5.19: Migration to OPTMODEL: Shortest Path

	References

	Subject Index
	Syntax Index

