
SAS/OR® 14.1 User’s Guide:
Mathematical Programming
The Linear Programming
Solver

This document is an individual chapter from SAS/OR® 14.1 User’s Guide: Mathematical Programming.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2015. SAS/OR® 14.1 User’s Guide: Mathematical
Programming. Cary, NC: SAS Institute Inc.

SAS/OR® 14.1 User’s Guide: Mathematical Programming

Copyright © 2015, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute
Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time
you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is
illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic
piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software
developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or
disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as
applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S.
federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision
serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The
Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

July 2015

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Chapter 7

The Linear Programming Solver

Contents
Overview: LP Solver . 256
Getting Started: LP Solver . 256
Syntax: LP Solver . 259

Functional Summary . 259
LP Solver Options . 260

Details: LP Solver . 266
Presolve . 266
Pricing Strategies for the Primal and Dual Simplex Algorithms 266
The Network Simplex Algorithm . 266
The Interior Point Algorithm . 267
Iteration Log for the Primal and Dual Simplex Algorithms 269
Iteration Log for the Network Simplex Algorithm 270
Iteration Log for the Interior Point Algorithm . 271
Iteration Log for the Crossover Algorithm . 271
Concurrent LP . 272
Parallel Processing . 272
Problem Statistics . 272
Variable and Constraint Status . 273
Irreducible Infeasible Set . 274
Macro Variable _OROPTMODEL_ . 275

Examples: LP Solver . 278
Example 7.1: Diet Problem . 278
Example 7.2: Reoptimizing the Diet Problem Using BASIS=WARMSTART 280
Example 7.3: Two-Person Zero-Sum Game . 289
Example 7.4: Finding an Irreducible Infeasible Set 292
Example 7.5: Using the Network Simplex Algorithm 295
Example 7.6: Migration to OPTMODEL: Generalized Networks 303
Example 7.7: Migration to OPTMODEL: Maximum Flow 307
Example 7.8: Migration to OPTMODEL: Production, Inventory, Distribution 310
Example 7.9: Migration to OPTMODEL: Shortest Path 318

References . 321

256 F Chapter 7: The Linear Programming Solver

Overview: LP Solver
The OPTMODEL procedure provides a framework for specifying and solving linear programs (LPs). A
standard linear program has the following formulation:

min cTx
subject to Ax f�;D;�g b

l � x � u

where

x 2 Rn is the vector of decision variables
A 2 Rm�n is the matrix of constraints
c 2 Rn is the vector of objective function coefficients
b 2 Rm is the vector of constraints right-hand sides (RHS)
l 2 Rn is the vector of lower bounds on variables
u 2 Rn is the vector of upper bounds on variables

The following LP algorithms are available in the OPTMODEL procedure:

� primal simplex algorithm

� dual simplex algorithm

� network simplex algorithm

� interior point algorithm

The primal and dual simplex algorithms implement the two-phase simplex method. In phase I, the algorithm
tries to find a feasible solution. If no feasible solution is found, the LP is infeasible; otherwise, the algorithm
enters phase II to solve the original LP. The network simplex algorithm extracts a network substructure,
solves this using network simplex, and then constructs an advanced basis to feed to either primal or dual
simplex. The interior point algorithm implements a primal-dual predictor-corrector interior point algorithm.
If any of the decision variables are constrained to be integer-valued, then the relaxed version of the problem
is solved.

Getting Started: LP Solver
The following example illustrates how you can use the OPTMODEL procedure to solve linear programs.
Suppose you want to solve the following problem:

max x1 C x2 C x3

subject to 3x1 C 2x2 � x3 � 1

�2x1 � 3x2 C 2x3 � 1

x1; x2; x3 � 0

Getting Started: LP Solver F 257

You can use the following statements to call the OPTMODEL procedure for solving linear programs:

proc optmodel;
var x{i in 1..3} >= 0;
max f = x[1] + x[2] + x[3];
con c1: 3*x[1] + 2*x[2] - x[3] <= 1;
con c2: -2*x[1] - 3*x[2] + 2*x[3] <= 1;
solve with lp / algorithm = ps presolver = none logfreq = 1;
print x;

quit;

The optimal solution and the optimal objective value are displayed in Figure 7.1.

Figure 7.1 Solution Summary

The OPTMODEL ProcedureThe OPTMODEL Procedure

Problem Summary

Objective Sense Maximization

Objective Function f

Objective Type Linear

Number of Variables 3

Bounded Above 0

Bounded Below 3

Bounded Below and Above 0

Free 0

Fixed 0

Number of Constraints 2

Linear LE (<=) 2

Linear EQ (=) 0

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 6

Performance Information

Execution Mode Single-Machine

Number of Threads 1

258 F Chapter 7: The Linear Programming Solver

Figure 7.1 continued

Solution Summary

Solver LP

Algorithm Primal Simplex

Objective Function f

Solution Status Optimal

Objective Value 8

Primal Infeasibility 0

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 4

Presolve Time 0.00

Solution Time 0.00

[1] x

1 0

2 3

3 5

The iteration log displaying problem statistics, progress of the solution, and the optimal objective value is
shown in Figure 7.2.

Figure 7.2 Log

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 3 variables (0 free, 0 fixed).

NOTE: The problem has 2 linear constraints (2 LE, 0 EQ, 0 GE, 0 range).

NOTE: The problem has 6 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The LP presolver value NONE is applied.

NOTE: The LP solver is called.

NOTE: The Primal Simplex algorithm is used.

 Objective Entering Leaving

 Phase Iteration Value Time Variable Variable

 P 1 1 0.000000E+00 0

 P 2 2 0.000000E+00 0 x[3] c2 (S)

 P 2 3 5.000000E-01 0 x[2] c1 (S)

 P 2 4 8.000000E+00 0

NOTE: Optimal.

NOTE: Objective = 8.

NOTE: The Primal Simplex solve time is 0.00 seconds.

Syntax: LP Solver F 259

Syntax: LP Solver
The following statement is available in the OPTMODEL procedure:

SOLVE WITH LP < / options > ;

Functional Summary
Table 7.1 summarizes the list of options available for the SOLVE WITH LP statement, classified by function.

Table 7.1 Options for the LP Solver
Description Option
Solver Options
Specifies the type of algorithm ALGORITHM=
Specifies the type of algorithm called after network
simplex

ALGORITHM2=

Enables or disables IIS detection IIS=
Presolve Option
Specifies the type of presolve PRESOLVER=
Controls the dualization of the problem DUALIZE=
Control Options
Specifies the feasibility tolerance FEASTOL=
Specifies the frequency of printing solution progress LOGFREQ=
Specifies the detail of solution progress printed in log LOGLEVEL=
Specifies the maximum number of iterations MAXITER=
Specifies the time limit for the optimization process MAXTIME=
Specifies the optimality tolerance OPTTOL=
Specifies units of CPU time or real time TIMETYPE=
Simplex Algorithm Options
Specifies the type of initial basis BASIS=
Specifies the type of pricing strategy PRICETYPE=
Specifies the queue size for determining entering
variable

QUEUESIZE=

Enables or disables scaling of the problem SCALE=
Specifies the initial seed for the random number
generator

SEED=

Interior Point Algorithm Options
Enables or disables interior crossover CROSSOVER=
Specifies the stopping criterion based on duality gap STOP_DG=
Specifies the stopping criterion based on dual
infeasibility

STOP_DI=

Specifies the stopping criterion based on primal
infeasibility

STOP_PI=

260 F Chapter 7: The Linear Programming Solver

Table 7.1 (continued)
Description Option
Decomposition Algorithm Options
Enables decomposition algorithm and specifies general
control options

DECOMP=()

Specifies options for the master problem DECOMP_MASTER=()
Specifies options for the subproblem DECOMP_SUBPROB=()

LP Solver Options
This section describes the options recognized by the LP solver. These options can be specified after a forward
slash (/) in the SOLVE statement, provided that the LP solver is explicitly specified using a WITH clause.

If the LP solver terminates before reaching an optimal solution, an intermediate solution is available. You can
access this solution by using the .sol variable suffix in the OPTMODEL procedure. See the section “Suffixes”
on page 134 for details.

Solver Options

IIS=number j string
specifies whether the LP solver attempts to identify a set of constraints and variables that form an
irreducible infeasible set (IIS). Table 7.2 describes the valid values of the IIS= option.

Table 7.2 Values for IIS= Option
number string Description

0 OFF Disables IIS detection.
1 ON Enables IIS detection.

If an IIS is found, information about the infeasibilities can be found in the .status values of the
constraints and variables. The default value of this option is OFF. See the section “Irreducible
Infeasible Set” on page 274 for details about the IIS= option. See “Suffixes” on page 134 for details
about the .status suffix.

ALGORITHM=option

SOLVER=option

SOL=option
specifies one of the following LP algorithms:

Option Description
PRIMAL (PS) Uses primal simplex algorithm.
DUAL (DS) Uses dual simplex algorithm.
NETWORK (NS) Uses network simplex algorithm.
INTERIORPOINT (IP) Uses interior point algorithm.
CONCURRENT (CON) Uses several different algorithms

in parallel.

LP Solver Options F 261

The valid abbreviated value for each option is indicated in parentheses. By default, the dual simplex
algorithm is used.

ALGORITHM2=option

SOLVER2=option
specifies one of the following LP algorithms if ALGORITHM=NS:

Option Description
PRIMAL (PS) Uses primal simplex algorithm (after network sim-

plex).
DUAL (DS) Uses dual simplex algorithm (after network simplex).

The valid abbreviated value for each option is indicated in parentheses. By default, the LP solver
decides which algorithm is best to use after calling the network simplex algorithm on the extracted
network.

Presolve Options

PRESOLVER=number | string
specifies one of the following presolve options:

number string Description
–1 AUTOMATIC Applies presolver by using default settings.
0 NONE Disables the presolver.
1 BASIC Performs basic presolve such as removing empty

rows,
columns, and fixed variables.

2 MODERATE Performs basic presolve and applies other inexpensive
presolve techniques.

3 AGGRESSIVE Performs moderate presolve and applies other
aggressive (but expensive) presolve techniques.

The default option is AUTOMATIC. See the section “Presolve” on page 266 for details.

DUALIZE=number | string
controls the dualization of the problem:

number string Description
–1 AUTOMATIC The presolver uses a heuristic to decide whether to

dualize the problem or not.
0 OFF Disables dualization. The optimization problem is

solved in the form that you specify.
1 ON The presolver formulates the dual of the linear opti-

mization problem.

262 F Chapter 7: The Linear Programming Solver

Dualization is usually helpful for problems that have many more constraints than variables. You can
use this option with all simplex algorithms in the SOLVE WITH LP statement, but it is most effective
with the primal and dual simplex algorithms.

The default option is AUTOMATIC.

Control Options

FEASTOL=�
specifies the feasibility tolerance, � 2[1E–9, 1E–4], for determining the feasibility of a variable. The
default value is 1E–6.

LOGFREQ=k

PRINTFREQ=k
specifies that the printing of the solution progress to the iteration log is to occur after every k iterations.
The print frequency, k , is an integer between zero and the largest four-byte signed integer, which is
231 � 1.

The value k = 0 disables the printing of the progress of the solution. If the primal or dual simplex
algorithms are used, the default value of this option is determined dynamically according to the problem
size. If the network simplex algorithm is used, the default value of this option is 10,000. If the interior
point algorithm is used, the default value of this option is 1.

LOGLEVEL=number | string

PRINTLEVEL2=number | string
controls the amount of information displayed in the SAS log by the LP solver, from a short description
of presolve information and summary to details at each iteration. Table 7.7 describes the valid values
for this option.

Table 7.7 Values for LOGLEVEL= Option
number string Description

0 NONE Turns off all solver-related messages to SAS log.
1 BASIC Displays a solver summary after stopping.
2 MODERATE Prints a solver summary and an iteration log by

using the interval dictated by the LOGFREQ= op-
tion.

3 AGGRESSIVE Prints a detailed solver summary and an itera-
tion log by using the interval dictated by the
LOGFREQ= option.

The default value is MODERATE.

MAXITER=k
specifies the maximum number of iterations. The value k can be any integer between one and the
largest four-byte signed integer, which is 231 � 1. If you do not specify this option, the procedure
does not stop based on the number of iterations performed. For network simplex, this iteration limit
corresponds to the algorithm called after network simplex (either primal or dual simplex).

LP Solver Options F 263

MAXTIME=t
specifies an upper limit of t units of time for the optimization process, including problem generation
time and solution time. The value of the TIMETYPE= option determines the type of units used. If you
do not specify the MAXTIME= option, the solver does not stop based on the amount of time elapsed.
The value of t can be any positive number; the default value is the positive number that has the largest
absolute value that can be represented in your operating environment.

OPTTOL=�
specifies the optimality tolerance, � 2 [1E–9, 1E–4], for declaring optimality. The default value is
1E–6.

TIMETYPE=number j string
specifies the units of time used by the MAXTIME= option and reported by the PRESOLVE_TIME
and SOLUTION_TIME terms in the _OROPTMODEL_ macro variable. Table 7.8 describes the valid
values of the TIMETYPE= option.

Table 7.8 Values for TIMETYPE= Option
number string Description

0 CPU Specifies units of CPU time.
1 REAL Specifies units of real time.

The “Optimization Statistics” table, an output of the OPTMODEL procedure if you specify PRINT-
LEVEL=2 in the PROC OPTMODEL statement, also includes the same time units for Presolver Time
and Solver Time. The other times (such as Problem Generation Time) in the “Optimization Statistics”
table are also in the same units.

The default value of the TIMETYPE= option depends on the algorithm used and on various options.
When the solver is used with distributed or multithreaded processing, then by default TIMETYPE=
REAL. Otherwise, by default TIMETYPE= CPU. Table 7.9 describes the detailed logic for determining
the default; the first context in the table that applies determines the default value. The NTHREADS= and
NODES= options are specified in the PERFORMANCE statement of the OPTMODEL procedure. For
more information about the NTHREADS= and NODES= options, see the section “PERFORMANCE
Statement” on page 21 in Chapter 4, “Shared Concepts and Topics.”

Table 7.9 Default Value for TIMETYPE= Option
Context Default
Solver is invoked in an OPTMODEL COFOR loop REAL
NODES= value is nonzero for the decomposition algorithm REAL
NTHREADS= value is greater than 1 and NODES=0 for the de-
composition algorithm

REAL

NTHREADS= value is greater than 1 and ALGORITHM=IP or
ALGORITHM=CON

REAL

Otherwise CPU

264 F Chapter 7: The Linear Programming Solver

Simplex Algorithm Options

BASIS=number | string
specifies the following options for generating an initial basis:

number string Description
0 CRASH Generate an initial basis by using crash

techniques (Maros 2003). The procedure creates a
triangular basic matrix consisting of both decision
variables and slack variables.

1 SLACK Generate an initial basis by using all slack variables.
2 WARMSTART Start the primal and dual simplex algorithms with the

available basis.

The default option is determined automatically based on the problem structure. For network simplex,
this option has no effect.

PRICETYPE=number | string
specifies one of the following pricing strategies for the primal and dual simplex algorithms:

number string Description
0 HYBRID Use hybrid Devex and steepest-edge pricing

strategies. Available for primal simplex algorithm
only.

1 PARTIAL Use partial pricing strategy. Optionally, you can
specify QUEUESIZE=. Available for primal
simplex algorithm only.

2 FULL Use the most negative reduced cost pricing strategy.
3 DEVEX Use Devex pricing strategy.
4 STEEPESTEDGE Use steepest-edge pricing strategy.

The default option is determined automatically based on the problem structure. For the network simplex
algorithm, this option applies only to the algorithm specified by the ALGORITHM2= option. See the
section “Pricing Strategies for the Primal and Dual Simplex Algorithms” on page 266 for details.

QUEUESIZE=k
specifies the queue size, k 2 Œ1; n�, where n is the number of decision variables. This queue is used for
finding an entering variable in the simplex iteration. The default value is chosen adaptively based on
the number of decision variables. This option is used only when PRICETYPE=PARTIAL.

SCALE=number | string
specifies one of the following scaling options:

number string Description
0 NONE Disable scaling.
–1 AUTOMATIC Automatically apply scaling procedure if necessary.

The default option is AUTOMATIC.

LP Solver Options F 265

SEED=number
specifies the initial seed for the random number generator. Because the seed affects the perturbation
in the simplex algorithms, the result might be a different optimal solution and a different solver path,
but the effect is usually negligible. The value of number can be any positive integer up to the largest
four-byte signed integer, which is 231 � 1. By default, SEED=100.

Interior Point Algorithm Options

CROSSOVER=number | string
specifies whether to convert the interior point solution to a basic simplex solution. The values of this
option are:

number string Description
0 OFF Disable crossover.
1 ON Apply the crossover algorithm to the interior point

solution.

If the interior point algorithm terminates with a solution, the crossover algorithm uses the interior
point solution to create an initial basic solution. After performing primal fixing and dual fixing, the
crossover algorithm calls a simplex algorithm to locate an optimal basic solution. The default value of
the CROSSOVER= option is ON.

STOP_DG=ı
specifies the desired relative duality gap, ı 2[1E–9, 1E–4]. This is the relative difference between the
primal and dual objective function values and is the primary solution quality parameter. The default
value is 1E–6. See the section “The Interior Point Algorithm” on page 267 for details.

STOP_DI=ˇ
specifies the maximum allowed relative dual constraints violation, ˇ 2 [1E–9, 1E–4]. The default
value is 1E–6. See the section “The Interior Point Algorithm” on page 267 for details.

STOP_PI=˛
specifies the maximum allowed relative bound and primal constraints violation, ˛ 2[1E–9, 1E–4]. The
default value is 1E–6. See the section “The Interior Point Algorithm” on page 267 for details.

Decomposition Algorithm Options

The following options are available for the decomposition algorithm in the LP solver. For information about
the decomposition algorithm, see Chapter 15, “The Decomposition Algorithm.”

DECOMP=(options)
enables the decomposition algorithm and specifies overall control options for the algorithm. For more
information about this option, see Chapter 15, “The Decomposition Algorithm.”

DECOMP_MASTER=(options)
specifies options for the master problem. For more information about this option, see Chapter 15, “The
Decomposition Algorithm.”

266 F Chapter 7: The Linear Programming Solver

DECOMP_SUBPROB=(options)
specifies option for the subproblem. For more information about this option, see Chapter 15, “The
Decomposition Algorithm.”

Details: LP Solver

Presolve
Presolve in the simplex LP algorithms of PROC OPTMODEL uses a variety of techniques to reduce the
problem size, improve numerical stability, and detect infeasibility or unboundedness (Andersen and Andersen
1995; Gondzio 1997). During presolve, redundant constraints and variables are identified and removed.
Presolve can further reduce the problem size by substituting variables. Variable substitution is a very effective
technique, but it might occasionally increase the number of nonzero entries in the constraint matrix.

In most cases, using presolve is very helpful in reducing solution times. You can enable presolve at different
levels or disable it by specifying the PRESOLVER= option.

Pricing Strategies for the Primal and Dual Simplex Algorithms
Several pricing strategies for the primal and dual simplex algorithms are available. Pricing strategies
determine which variable enters the basis at each simplex pivot. These can be controlled by specifying the
PRICETYPE= option.

The primal simplex algorithm has the following five pricing strategies:

PARTIAL scans a queue of decision variables to find an entering variable. You can optionally
specify the QUEUESIZE= option to control the length of this queue.

FULL uses Dantzig’s most violated reduced cost rule (Dantzig 1963). It compares the
reduced cost of all decision variables, and selects the variable with the most violated
reduced cost as the entering variable.

DEVEX implements the Devex pricing strategy developed by Harris (1973).

STEEPESTEDGE uses the steepest-edge pricing strategy developed by Forrest and Goldfarb (1992).

HYBRID uses a hybrid of the Devex and steepest-edge pricing strategies.

The dual simplex algorithm has only three pricing strategies available: FULL, DEVEX, and STEEPEST-
EDGE.

The Network Simplex Algorithm
The network simplex algorithm in PROC OPTMODEL attempts to leverage the speed of the network simplex
algorithm to more efficiently solve linear programs by using the following process:

The Interior Point Algorithm F 267

1. It heuristically extracts the largest possible network substructure from the original problem.

2. It uses the network simplex algorithm to solve for an optimal solution to this substructure.

3. It uses this solution to construct an advanced basis to warm-start either the primal or dual simplex
algorithm on the original linear programming problem.

The network simplex algorithm is a specialized version of the simplex algorithm that uses spanning-tree
bases to more efficiently solve linear programming problems that have a pure network form. Such LPs can
be modeled using a formulation over a directed graph, as a minimum-cost flow problem. Let G D .N;A/ be
a directed graph, where N denotes the nodes and A denotes the arcs of the graph. The decision variable xij

denotes the amount of flow sent from node i to node j. The cost per unit of flow on the arcs is designated by
cij , and the amount of flow sent across each arc is bounded to be within Œlij ; uij �. The demand (or supply) at
each node is designated as bi , where bi > 0 denotes a supply node and bi < 0 denotes a demand node. The
corresponding linear programming problem is as follows:

min
P

.i;j /2A cijxij

subject to
P

.i;j /2A xij �
P

.j;i/2A xj i D bi 8i 2 N

xij � uij 8.i; j / 2 A

xij � lij 8.i; j / 2 A:

The network simplex algorithm used in PROC OPTMODEL is the primal network simplex algorithm. This
algorithm finds the optimal primal feasible solution and a dual solution that satisfies complementary slackness.
Sometimes the directed graph G is disconnected. In this case, the problem can be decomposed into its weakly
connected components, and each minimum-cost flow problem can be solved separately. After solving each
component, the optimal basis for the network substructure is augmented with the non-network variables and
constraints from the original problem. This advanced basis is then used as a starting point for the primal or
dual simplex method. The solver automatically selects the algorithm to use after network simplex. However,
you can override this selection with the ALGORITHM2= option.

The network simplex algorithm can be more efficient than the other algorithms on problems that have a large
network substructure. The size of this network structure can be seen in the log.

The Interior Point Algorithm
The interior point LP algorithm in PROC OPTMODEL implements an infeasible primal-dual predictor-
corrector interior point algorithm. To illustrate the algorithm and the concepts of duality and dual infeasibility,
consider the following LP formulation (the primal):

min cTx
subject to Ax � b

x � 0

The corresponding dual is as follows:

max bTy
subject to ATy C w D c

y � 0
w � 0

where y 2 Rm refers to the vector of dual variables and w 2 Rn refers to the vector of dual slack variables.

268 F Chapter 7: The Linear Programming Solver

The dual makes an important contribution to the certificate of optimality for the primal. The primal and
dual constraints combined with complementarity conditions define the first-order optimality conditions, also
known as KKT (Karush-Kuhn-Tucker) conditions, which can be stated as follows:

Ax � s D b .Primal Feasibility/
ATyC w D c .Dual Feasibility/

WXe D 0 .Complementarity/
SYe D 0 .Complementarity/

x; y; w; s � 0

where e � .1; : : : ; 1/T of appropriate dimension and s 2 Rm is the vector of primal slack variables.

NOTE: Slack variables (the s vector) are automatically introduced by the algorithm when necessary; it is
therefore recommended that you not introduce any slack variables explicitly. This enables the algorithm to
handle slack variables much more efficiently.

The letters X; Y;W; and S denote matrices with corresponding x, y, w, and s on the main diagonal and zero
elsewhere, as in the following example:

X �

26664
x1 0 � � � 0

0 x2 � � � 0
:::

:::
: : :

:::

0 0 � � � xn

37775
If .x�; y�;w�; s�/ is a solution of the previously defined system of equations representing the KKT conditions,
then x� is also an optimal solution to the original LP model.

At each iteration the interior point algorithm solves a large, sparse system of linear equations as follows:�
Y�1S A
AT �X�1W

� �
�y
�x

�
D

�
„

‚

�
where �x and �y denote the vector of search directions in the primal and dual spaces, respectively; ‚ and
„ constitute the vector of the right-hand sides.

The preceding system is known as the reduced KKT system. The interior point algorithm uses a precondi-
tioned quasi-minimum residual algorithm to solve this system of equations efficiently.

An important feature of the interior point algorithm is that it takes full advantage of the sparsity in the
constraint matrix, thereby enabling it to efficiently solve large-scale linear programs.

The interior point algorithm works simultaneously in the primal and dual spaces. It attains optimality when
both primal and dual feasibility are achieved and when complementarity conditions hold. Therefore it is of
interest to observe the following four measures:

� Relative primal infeasibility measure ˛:

˛ D
kAx � b � sk2
kbk2 C 1

Iteration Log for the Primal and Dual Simplex Algorithms F 269

� Relative dual infeasibility measure ˇ:

ˇ D
kc �ATy � wk2
kck2 C 1

� Relative duality gap ı:

ı D
jcTx � bTyj
jcTxj C 1

� Absolute complementarity
 :

 D

nX
iD1

xiwi C

mX
iD1

yisi

where kvk2 is the Euclidean norm of the vector v. These measures are displayed in the iteration log.

Iteration Log for the Primal and Dual Simplex Algorithms
The primal and dual simplex algorithms implement a two-phase simplex algorithm. Phase I finds a feasible
solution, which phase II improves to an optimal solution.

When LOGFREQ=1, the following information is printed in the iteration log:

Algorithm indicates which simplex method is running by printing the letter P (primal) or D (dual).

Phase indicates whether the algorithm is in phase I or phase II of the simplex method.

Iteration indicates the iteration number.

Objective Value indicates the current amount of infeasibility in phase I and the primal objective value of
the current solution in phase II.

Time indicates the time elapsed (in seconds).

Entering Variable indicates the entering pivot variable. A slack variable that enters the basis is indicated
by the corresponding row name followed by “(S)”. If the entering nonbasic variable
has distinct and finite lower and upper bounds, then a “bound swap” can take place in
the primal simplex method.

Leaving Variable indicates the leaving pivot variable. A slack variable that leaves the basis is indicated
by the corresponding row name followed by “(S)”. The leaving variable is the same as
the entering variable if a bound swap has taken place.

When you omit the LOGFREQ= option or specify a value larger than 1, only the algorithm, phase, iteration,
objective value, and time information is printed in the iteration log.

The behavior of objective values in the iteration log depends on both the current phase and the chosen
algorithm. In phase I, both simplex methods have artificial objective values that decrease to 0 when a
feasible solution is found. For the dual simplex method, phase II maintains a dual feasible solution, so a
minimization problem has increasing objective values in the iteration log. For the primal simplex method,

270 F Chapter 7: The Linear Programming Solver

phase II maintains a primal feasible solution, so a minimization problem has decreasing objective values in
the iteration log.

During the solution process, some elements of the LP model might be perturbed to improve performance. In
this case the objective values that are printed correspond to the perturbed problem. After reaching optimality
for the perturbed problem, the LP solver solves the original problem by switching from the primal simplex
method to the dual simplex method (or from the dual simplex method to the primal simplex method). Because
the problem might be perturbed again, this process can result in several changes between the two algorithms.

Iteration Log for the Network Simplex Algorithm
After finding the embedded network and formulating the appropriate relaxation, the network simplex
algorithm uses a primal network simplex algorithm. In the case of a connected network, with one (weakly
connected) component, the log will show the progress of the simplex algorithm. The following information
is displayed in the iteration log:

Iteration indicates the iteration number.

PrimalObj indicates the primal objective value of the current solution.

Primal Infeas indicates the maximum primal infeasibility of the current solution.

Time indicates the time spent on the current component by network simplex.

The frequency of the simplex iteration log is controlled by the LOGFREQ= option. The default value of the
LOGFREQ= option is 10,000.

If the network relaxation is disconnected, the information in the iteration log shows progress at the component
level. The following information is displayed in the iteration log:

Component indicates the component number being processed.

Nodes indicates the number of nodes in this component.

Arcs indicates the number of arcs in this component.

Iterations indicates the number of simplex iterations needed to solve this component.

Time indicates the time spent so far in network simplex.

The frequency of the component iteration log is controlled by the LOGFREQ= option. In this case, the
default value of the LOGFREQ= option is determined by the size of the network.

The LOGLEVEL= option adjusts the amount of detail shown. By default, LOGLEVEL=MODERATE
and reports as in the preceding description. If LOGLEVEL=NONE, no information is shown. If
LOGLEVEL=BASIC, the only information shown is a summary of the network relaxation and the time spent
solving the relaxation. If LOGLEVEL=AGGRESSIVE, in the case of one component, the log displays as
in the preceding description; in the case of multiple components, for each component, a separate simplex
iteration log is displayed.

Iteration Log for the Interior Point Algorithm F 271

Iteration Log for the Interior Point Algorithm
The interior point algorithm implements an infeasible primal-dual predictor-corrector interior point algorithm.
The following information is displayed in the iteration log:

Iter indicates the iteration number

Complement indicates the (absolute) complementarity

Duality Gap indicates the (relative) duality gap

Primal Infeas indicates the (relative) primal infeasibility measure

Bound Infeas indicates the (relative) bound infeasibility measure

Dual Infeas indicates the (relative) dual infeasibility measure

Time indicates the time elapsed (in seconds).

If the sequence of solutions converges to an optimal solution of the problem, you should see all columns
in the iteration log converge to zero or very close to zero. If they do not, it can be the result of insufficient
iterations being performed to reach optimality. In this case, you might need to increase the value specified in
the option MAXITER= or MAXTIME=. If the complementarity and/or the duality gap do not converge, the
problem might be infeasible or unbounded. If the infeasibility columns do not converge, the problem might
be infeasible.

Iteration Log for the Crossover Algorithm
The crossover algorithm takes an optimal solution from the interior point algorithm and transforms it into
an optimal basic solution. The iterations of the crossover algorithm are similar to simplex iterations; this
similarity is reflected in the format of the iteration logs.

When LOGFREQ=1, the following information is printed in the iteration log:

Phase indicates whether the primal crossover (PC) or dual crossover (DC) technique is used.

Iteration indicates the iteration number.

Objective Value indicates the total amount by which the superbasic variables are off their bound. This
value decreases to 0 as the crossover algorithm progresses.

Time indicates the time elapsed (in seconds).

Entering Variable indicates the entering pivot variable. A slack variable that enters the basis is indicated
by the corresponding row name followed by “(S)”.

Leaving Variable indicates the leaving pivot variable. A slack variable that leaves the basis is indicated by
the corresponding row name followed by “(S)”.

When you omit the LOGFREQ= option or specify a value greater than 1, only the phase, iteration, objective
value, and time information are printed in the iteration log.

After all the superbasic variables have been eliminated, the crossover algorithm continues with regular primal
or dual simplex iterations.

272 F Chapter 7: The Linear Programming Solver

Concurrent LP
The ALGORITHM=CON option starts several different linear optimization algorithms in parallel in a
single-machine mode. The LP solver automatically determines which algorithms to run and how many
threads to assign to each algorithm. If sufficient resources are available, the solver runs all four standard
algorithms. When the first algorithm finishes, the LP solver returns the results from that algorithm and
terminates any other algorithms that are still running. If you specify a value of DETERMINISTIC for
the PARALLELMODE= option in the PERFORMANCE statement in the OPTMODEL procedure, the
algorithm for which the results are returned is not necessarily the one that finished first. The LP solver
deterministically selects the algorithm for which the results are returned. For more information about the
PERFORMANCE statement, see the section “PERFORMANCE Statement” on page 21. Regardless of which
mode (deterministic or nondeterministic) is in effect, terminating algorithms that are still running might take
a significant amount of time.

During concurrent optimization, the procedure displays the iteration log for the dual simplex algorithm. See
the section “Iteration Log for the Primal and Dual Simplex Algorithms” on page 269 for more information
about this iteration log. Upon termination, the solver displays the iteration log for the algorithm that finishes
first, unless the dual simplex algorithm finishes first. If you specify LOGLEVEL=AGGRESSIVE, the LP
solver displays the iteration logs for all algorithms that were run concurrently.

If you specify PRINTLEVEL=2 in the PROC OPTMODEL statement and ALGORITHM=CON in the
SOLVE WITH LP statement, the LP solver produces an ODS table called ConcurrentSummary. This table
contains a summary of the solution statuses of all algorithms that are run concurrently.

Parallel Processing
The interior point and concurrent LP algorithms can be run in single-machine mode (in single-machine mode,
the computation is executed by multiple threads on a single computer). The decomposition algorithm can
be run in either single-machine or distributed mode (in distributed mode, the computation is executed on
multiple computing nodes in a distributed computing environment).

NOTE: Distributed mode requires SAS High-Performance Optimization.

You can specify options for parallel processing in the PERFORMANCE statement, which is documented in
the section “PERFORMANCE Statement” on page 21 in Chapter 4, “Shared Concepts and Topics.”

Problem Statistics
Optimizers can encounter difficulty when solving poorly formulated models. Information about data
magnitude provides a simple gauge to determine how well a model is formulated. For example, a model
whose constraint matrix contains one very large entry (on the order of 109) can cause difficulty when the
remaining entries are single-digit numbers. The PRINTLEVEL=2 option in the OPTMODEL procedure
causes the ODS table “ProblemStatistics” to be generated when the LP solver is called. This table provides
basic data magnitude information that enables you to improve the formulation of your models.

The example output in Figure 7.3 demonstrates the contents of the ODS table “ProblemStatistics.”

Variable and Constraint Status F 273

Figure 7.3 ODS Table ProblemStatistics

The OPTMODEL ProcedureThe OPTMODEL Procedure

Problem Statistics

Number of Constraint Matrix Nonzeros 6

Maximum Constraint Matrix Coefficient 3

Minimum Constraint Matrix Coefficient 1

Average Constraint Matrix Coefficient 2.1666666667

Number of Objective Nonzeros 3

Maximum Objective Coefficient 1

Minimum Objective Coefficient 1

Average Objective Coefficient 1

Number of RHS Nonzeros 2

Maximum RHS 1

Minimum RHS 1

Average RHS 1

Maximum Number of Nonzeros per Column 2

Minimum Number of Nonzeros per Column 2

Average Number of Nonzeros per Column 2

Maximum Number of Nonzeros per Row 3

Minimum Number of Nonzeros per Row 3

Average Number of Nonzeros per Row 3

Variable and Constraint Status
Upon termination of the LP solver, the .status suffix of each decision variable and constraint stores information
about the status of that variable or constraint. For more information about suffixes in the OPTMODEL
procedure, see the section “Suffixes” on page 134.

Variable Status

The .status suffix of a decision variable specifies the status of that decision variable. The suffix can take one
of the following values:

B basic variable

L nonbasic variable at its lower bound

U nonbasic variable at its upper bound

F free variable

A superbasic variable (a nonbasic variable that has a value strictly between its bounds)

I LP model infeasible (all decision variables have .status equal to I)

274 F Chapter 7: The Linear Programming Solver

For the interior point algorithm with IIS= OFF, .status is blank.

The following values can appear only if IIS= ON. See the section “Irreducible Infeasible Set” on page 274
for details.

I_L the lower bound of the variable is needed for the IIS

I_U the upper bound of the variable is needed for the IIS

I_F both bounds of the variable are needed for the IIS (the variable is fixed or has conflicting bounds)

Constraint Status

The .status suffix of a constraint specifies the status of the slack variable for that constraint. The suffix can
take one of the following values:

B basic variable

L nonbasic variable at its lower bound

U nonbasic variable at its upper bound

F free variable

A superbasic variable (a nonbasic variable that has a value strictly between its bounds)

I LP model infeasible (all decision variables have .status equal to I)

The following values can appear only if option IIS= ON. See the section “Irreducible Infeasible Set” on
page 274 for details.

I_L the “GE” (�) condition of the constraint is needed for the IIS

I_U the “LE” (�) condition of the constraint is needed for the IIS

I_F both conditions of the constraint are needed for the IIS (the constraint is an equality or a range constraint
with conflicting bounds)

Irreducible Infeasible Set
For a linear programming problem, an irreducible infeasible set (IIS) is an infeasible subset of constraints and
variable bounds that will become feasible if any single constraint or variable bound is removed. It is possible
to have more than one IIS in an infeasible LP. Identifying an IIS can help isolate the structural infeasibility in
an LP.

The presolver in the LP algorithms can detect infeasibility, but it identifies only the variable bound or
constraint that triggers the infeasibility.

The IIS=ON option directs the LP solver to search for an IIS in a specified LP. You should specify the
OPTMODEL option PRESOLVER=NONE when you specify IIS=ON; otherwise the IIS results can be
incomplete. The LP solver does not apply the LP presolver to the problem during the IIS search. If the LP
solver detects an IIS, it updates the .status suffix of the decision variables and constraints, and then it stops.
The number of iterations that are reported in the macro variable and the ODS table is the total number of

Macro Variable _OROPTMODEL_ F 275

simplex iterations. This total includes the initial LP solve and all subsequent iterations during the constraint
deletion phase.

The IIS= option can add special values to the .status suffixes of variables and constraints. (For more
information, see the section “Variable and Constraint Status” on page 273.) For constraints, a status of “I_L”,
“I_U”, or “I_F” indicates that the “GE” (�), “LE” (�), or “EQ” (=) constraint, respectively, is part of the IIS.
For range constraints, a status of “I_L” or “I_U” indicates that the lower or upper bound, respectively, of
the constraint is needed for the IIS, and “I_F” indicates that the bounds in the constraint are conflicting. For
variables, a status of “I_L”, “I_U”, or “I_F” indicates that the lower, upper, or both bounds, respectively, of
the variable are needed for the IIS. From this information, you can identify both the names of the constraints
(variables) in the IIS and the corresponding bound where infeasibility occurs.

Making any one of the constraints or variable bounds in the IIS nonbinding removes the infeasibility from
the IIS. In some cases, changing a right-hand side or bound by a finite amount removes the infeasibility.
However, the only way to guarantee removal of the infeasibility is to set the appropriate right-hand side or
bound to1 or �1. Because it is possible for an LP to have multiple irreducible infeasible sets, simply
removing the infeasibility from one set might not make the entire problem feasible. To make the entire
problem feasible, you can specify IIS=ON and rerun the LP solver after removing the infeasibility from an
IIS. Repeating this process until the LP solver no longer detects an IIS results in a feasible problem. This
approach to infeasibility repair can produce different end problems depending on which right-hand sides and
bounds you choose to relax.

The IIS= option in the LP solver uses two different methods to identify an IIS:

1. Based on the result of the initial solve, the sensitivity filter removes several constraints and variable
bounds immediately while still maintaining infeasibility. This phase is quick and dramatically reduces
the size of the IIS.

2. Next, the deletion filter removes each remaining constraint and variable bound one by one to check
which of them are needed to obtain an infeasible system. This second phase is more time consuming,
but it ensures that the IIS set that the LP solver returns is indeed irreducible. The progress of the
deletion filter is reported at regular intervals. The sensitivity filter might be called again during the
deletion filter to improve performance.

See Example 7.4 for an example that demonstrates the use of the IIS= option in locating and removing
infeasibilities.

Macro Variable _OROPTMODEL_
The OPTMODEL procedure always creates and initializes a SAS macro called _OROPTMODEL_. This
variable contains a character string. After each PROC OROPTMODEL run, you can examine this macro by
specifying %put &_OROPTMODEL_; and check the execution of the most recently invoked solver from the
value of the macro variable. The various terms of the variable after the LP solver is called are interpreted as
follows.

STATUS
indicates the solver status at termination. It can take one of the following values:

276 F Chapter 7: The Linear Programming Solver

OK The solver terminated normally.

SYNTAX_ERROR Incorrect syntax was used.

DATA_ERROR The input data were inconsistent.

OUT_OF_MEMORY Insufficient memory was allocated to the procedure.

IO_ERROR A problem occurred in reading or writing data.

SEMANTIC_ERROR An evaluation error, such as an invalid operand type, occurred.

ERROR The status cannot be classified into any of the preceding categories.

ALGORITHM
indicates the algorithm that produces the solution data in the macro variable. This term appears only
when STATUS=OK. It can take one of the following values:

PS The primal simplex algorithm produced the solution data.

DS The dual simplex algorithm produced the solution data.

NS The network simplex algorithm produced the solution data.

IP The interior point algorithm produced the solution data.

DECOMP The decomposition algorithm produced the solution data.

When you run algorithms concurrently (ALGORITHM=CON), this term indicates which algorithm is
the first to terminate.

SOLUTION_STATUS
indicates the solution status at termination. It can take one of the following values:

OPTIMAL The solution is optimal.

CONDITIONAL_OPTIMAL The solution is optimal, but some infeasibilities (primal,
dual or bound) exceed tolerances due to scaling or pre-
processing.

FEASIBLE The problem is feasible.

INFEASIBLE The problem is infeasible.

UNBOUNDED The problem is unbounded.

INFEASIBLE_OR_UNBOUNDED The problem is infeasible or unbounded.

BAD_PROBLEM_TYPE The problem type is unsupported by the solver.

ITERATION_LIMIT_REACHED The maximum allowable number of iterations was
reached.

TIME_LIMIT_REACHED The solver reached its execution time limit.

FUNCTION_CALL_LIMIT_REACHED The solver reached its limit on function evaluations.

INTERRUPTED The solver was interrupted externally.

FAILED The solver failed to converge, possibly due to numerical
issues.

Macro Variable _OROPTMODEL_ F 277

When SOLUTION_STATUS has a value of OPTIMAL, CONDITIONAL_OPTIMAL, ITERA-
TION_LIMIT_REACHED, or TIME_LIMIT_REACHED, all terms of the _OROPTMODEL_ macro
variable are present; for other values of SOLUTION_STATUS, some terms do not appear.

OBJECTIVE
indicates the objective value obtained by the solver at termination.

PRIMAL_INFEASIBILITY
indicates, for the primal simplex and dual simplex algorithms, the maximum (absolute) violation of
the primal constraints by the primal solution. For the interior point algorithm, this term indicates the
relative violation of the primal constraints by the primal solution.

DUAL_INFEASIBILITY
indicates, for the primal simplex and dual simplex algorithms, the maximum (absolute) violation of the
dual constraints by the dual solution. For the interior point algorithm, this term indicates the relative
violation of the dual constraints by the dual solution.

BOUND_INFEASIBILITY
indicates, for the primal simplex and dual simplex algorithms, the maximum (absolute) violation of the
lower or upper bounds by the primal solution. For the interior point algorithm, this term indicates the
relative violation of the lower or upper bounds by the primal solution.

DUALITY_GAP
indicates the (relative) duality gap. This term appears only if the option ALGO-
RITHM=INTERIORPOINT is specified in the SOLVE statement.

COMPLEMENTARITY
indicates the (absolute) complementarity. This term appears only if the option ALGO-
RITHM=INTERIORPOINT is specified in the SOLVE statement.

ITERATIONS
indicates the number of iterations taken to solve the problem. When the network simplex algorithm is
used, this term indicates the number of network simplex iterations taken to solve the network relaxation.
When crossover is enabled, this term indicates the number of interior point iterations taken to solve the
problem.

ITERATIONS2
indicates the number of simplex iterations performed by the secondary algorithm. The network simplex
algorithm selects the secondary algorithm automatically unless a value has been specified for the
ALGORITHM2= option. When crossover is enabled, the secondary algorithm is selected automatically.
This term appears only if the network simplex algorithm is used or if crossover is enabled.

PRESOLVE_TIME
indicates the time (in seconds) used in preprocessing.

SOLUTION_TIME
indicates the time (in seconds) taken to solve the problem, including preprocessing time.

NOTE: The time reported in PRESOLVE_TIME and SOLUTION_TIME is either CPU time or real time.
The type is determined by the TIMETYPE= option.

278 F Chapter 7: The Linear Programming Solver

When SOLUTION_STATUS has a value of OPTIMAL, CONDITIONAL_OPTIMAL, ITERA-
TION_LIMIT_REACHED, or TIME_LIMIT_REACHED, all terms of the _OROPTMODEL_ macro
variable are present; for other values of SOLUTION_STATUS, some terms do not appear.

Examples: LP Solver

Example 7.1: Diet Problem
Consider the problem of diet optimization. There are six different foods: bread, milk, cheese, potato, fish,
and yogurt. The cost and nutrition values per unit are displayed in Table 7.14.

Table 7.14 Cost and Nutrition Values
Bread Milk Cheese Potato Fish Yogurt

Cost 2.0 3.5 8.0 1.5 11.0 1.0
Protein, g 4.0 8.0 7.0 1.3 8.0 9.2

Fat, g 1.0 5.0 9.0 0.1 7.0 1.0
Carbohydrates, g 15.0 11.7 0.4 22.6 0.0 17.0

Calories 90 120 106 97 130 180

The following SAS code creates the data set fooddata of Table 7.14:

data fooddata;
infile datalines;
input name $ cost prot fat carb cal;
datalines;

Bread 2 4 1 15 90
Milk 3.5 8 5 11.7 120
Cheese 8 7 9 0.4 106
Potato 1.5 1.3 0.1 22.6 97
Fish 11 8 7 0 130
Yogurt 1 9.2 1 17 180
;

The objective is to find a minimum-cost diet that contains at least 300 calories, not more than 10 grams of
protein, not less than 10 grams of carbohydrates, and not less than 8 grams of fat. In addition, the diet should
contain at least 0.5 unit of fish and no more than 1 unit of milk.

You can model the problem and solve it by using PROC OPTMODEL as follows:

proc optmodel;
/* declare index set */
set<str> FOOD;

/* declare variables */
var diet{FOOD} >= 0;

/* objective function */

Example 7.1: Diet Problem F 279

num cost{FOOD};
min f=sum{i in FOOD}cost[i]*diet[i];

/* constraints */
num prot{FOOD};
num fat{FOOD};
num carb{FOOD};
num cal{FOOD};
num min_cal, max_prot, min_carb, min_fat;
con cal_con: sum{i in FOOD}cal[i]*diet[i] >= 300;
con prot_con: sum{i in FOOD}prot[i]*diet[i] <= 10;
con carb_con: sum{i in FOOD}carb[i]*diet[i] >= 10;
con fat_con: sum{i in FOOD}fat[i]*diet[i] >= 8;

/* read parameters */
read data fooddata into FOOD=[name] cost prot fat carb cal;

/* bounds on variables */
diet['Fish'].lb = 0.5;
diet['Milk'].ub = 1.0;

/* solve and print the optimal solution */
solve with lp/logfreq=1; /* print each iteration to log */
print diet;

The optimal solution and the optimal objective value are displayed in Output 7.1.1.

Output 7.1.1 Optimal Solution to the Diet Problem

The OPTMODEL ProcedureThe OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function f

Objective Type Linear

Number of Variables 6

Bounded Above 0

Bounded Below 5

Bounded Below and Above 1

Free 0

Fixed 0

Number of Constraints 4

Linear LE (<=) 1

Linear EQ (=) 0

Linear GE (>=) 3

Linear Range 0

Constraint Coefficients 23

280 F Chapter 7: The Linear Programming Solver

Output 7.1.1 continued

Performance Information

Execution Mode Single-Machine

Number of Threads 1

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function f

Solution Status Optimal

Objective Value 12.081337881

Primal Infeasibility 0

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 6

Presolve Time 0.00

Solution Time 0.00

[1] diet

Bread 0.000000

Cheese 0.449499

Fish 0.500000

Milk 0.053599

Potato 1.865168

Yogurt 0.000000

Example 7.2: Reoptimizing the Diet Problem Using BASIS=WARMSTART
After an LP is solved, you might want to change a set of the parameters of the LP and solve the problem again.
This can be done efficiently in PROC OPTMODEL. The warm start technique uses the optimal solution of
the solved LP as a starting point and solves the modified LP problem faster than it can be solved again from
scratch. This example illustrates reoptimizing the diet problem described in Example 7.1.

Assume the optimal solution is found by the SOLVE statement. Instead of quitting the OPTMODEL
procedure, you can continue to solve several variations of the original problem.

Suppose the cost of cheese increases from 8 to 10 per unit and the cost of fish decreases from 11 to 7 per
serving unit. You can change the parameters and solve the modified problem by submitting the following
code:

cost['Cheese']=10; cost['Fish']=7;
solve with lp/presolver=none

basis=warmstart
algorithm=ps
logfreq=1;

print diet;

Example 7.2: Reoptimizing the Diet Problem Using BASIS=WARMSTART F 281

Note that the primal simplex algorithm is preferred because the primal solution to the last-solved LP is still
feasible for the modified problem in this case. The solutions to the original diet problem and the modified
problem are shown in Output 7.2.1.

Output 7.2.1 Optimal Solutions to the Original Diet Problem and the Diet Problem with Modified Objective
Function

The OPTMODEL ProcedureThe OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function f

Objective Type Linear

Number of Variables 6

Bounded Above 0

Bounded Below 5

Bounded Below and Above 1

Free 0

Fixed 0

Number of Constraints 4

Linear LE (<=) 1

Linear EQ (=) 0

Linear GE (>=) 3

Linear Range 0

Constraint Coefficients 23

Performance Information

Execution Mode Single-Machine

Number of Threads 1

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function f

Solution Status Optimal

Objective Value 12.081337881

Primal Infeasibility 0

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 6

Presolve Time 0.00

Solution Time 0.00

282 F Chapter 7: The Linear Programming Solver

Output 7.2.1 continued

[1] diet

Bread 0.000000

Cheese 0.449499

Fish 0.500000

Milk 0.053599

Potato 1.865168

Yogurt 0.000000

Problem Summary

Objective Sense Minimization

Objective Function f

Objective Type Linear

Number of Variables 6

Bounded Above 0

Bounded Below 5

Bounded Below and Above 1

Free 0

Fixed 0

Number of Constraints 4

Linear LE (<=) 1

Linear EQ (=) 0

Linear GE (>=) 3

Linear Range 0

Constraint Coefficients 23

Performance Information

Execution Mode Single-Machine

Number of Threads 1

Solution Summary

Solver LP

Algorithm Primal Simplex

Objective Function f

Solution Status Optimal

Objective Value 10.980335514

Primal Infeasibility 0

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 1

Presolve Time 0.00

Solution Time 0.00

Example 7.2: Reoptimizing the Diet Problem Using BASIS=WARMSTART F 283

Output 7.2.1 continued

[1] diet

Bread 0.000000

Cheese 0.449499

Fish 0.500000

Milk 0.053599

Potato 1.865168

Yogurt 0.000000

The following iteration log indicates that it takes the LP solver no more iterations to solve the modified
problem by using BASIS=WARMSTART, since the optimal solution to the original problem remains optimal
after the objective function is changed.

284 F Chapter 7: The Linear Programming Solver

Output 7.2.2 Log

NOTE: There were 6 observations read from the data set WORK.FOODDATA.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 6 variables (0 free, 0 fixed).

NOTE: The problem has 4 linear constraints (1 LE, 0 EQ, 3 GE, 0 range).

NOTE: The problem has 23 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The LP presolver value AUTOMATIC is applied.

NOTE: The LP presolver removed 0 variables and 0 constraints.

NOTE: The LP presolver removed 0 constraint coefficients.

NOTE: The presolved problem has 6 variables, 4 constraints, and 23 constraint

 coefficients.

NOTE: The LP solver is called.

NOTE: The Dual Simplex algorithm is used.

 Objective

 Phase Iteration Value Time

 D 1 1 0.000000E+00 0

 D 2 2 5.500000E+00 0

 D 2 6 1.208134E+01 0

NOTE: Optimal.

NOTE: Objective = 12.081337881.

NOTE: The Dual Simplex solve time is 0.00 seconds.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 6 variables (0 free, 0 fixed).

NOTE: The problem has 4 linear constraints (1 LE, 0 EQ, 3 GE, 0 range).

NOTE: The problem has 23 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The LP presolver value NONE is applied.

NOTE: The LP solver is called.

NOTE: The Primal Simplex algorithm is used.

 Objective Entering Leaving

 Phase Iteration Value Time Variable Variable

 P 2 1 1.098034E+01 0

NOTE: Optimal.

NOTE: Objective = 10.980335514.

NOTE: The Primal Simplex solve time is 0.00 seconds.

Next, restore the original coefficients of the objective function and consider the case that you need a diet that
supplies at least 150 calories. You can change the parameters and solve the modified problem by submitting
the following code:

cost['Cheese']=8; cost['Fish']=11;cal_con.lb=150;
solve with lp/presolver=none

basis=warmstart
algorithm=ds
logfreq=1;

print diet;

Example 7.2: Reoptimizing the Diet Problem Using BASIS=WARMSTART F 285

Note that the dual simplex algorithm is preferred because the dual solution to the last-solved LP is still
feasible for the modified problem in this case. The solution is shown in Output 7.2.3.

Output 7.2.3 Optimal Solution to the Diet Problem with Modified RHS

The OPTMODEL ProcedureThe OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function f

Objective Type Linear

Number of Variables 6

Bounded Above 0

Bounded Below 5

Bounded Below and Above 1

Free 0

Fixed 0

Number of Constraints 4

Linear LE (<=) 1

Linear EQ (=) 0

Linear GE (>=) 3

Linear Range 0

Constraint Coefficients 23

Performance Information

Execution Mode Single-Machine

Number of Threads 1

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function f

Solution Status Optimal

Objective Value 9.1744131985

Primal Infeasibility 0

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 2

Presolve Time 0.00

Solution Time 0.00

286 F Chapter 7: The Linear Programming Solver

Output 7.2.3 continued

[1] diet

Bread 0.00000

Cheese 0.18481

Fish 0.50000

Milk 0.56440

Potato 0.14702

Yogurt 0.00000

The following iteration log indicates that it takes the LP solver just one more phase II iteration to solve the
modified problem by using BASIS=WARMSTART.

Output 7.2.4 Log

NOTE: There were 6 observations read from the data set WORK.FOODDATA.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 6 variables (0 free, 0 fixed).

NOTE: The problem has 4 linear constraints (1 LE, 0 EQ, 3 GE, 0 range).

NOTE: The problem has 23 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 6 variables (0 free, 0 fixed).

NOTE: The problem has 4 linear constraints (1 LE, 0 EQ, 3 GE, 0 range).

NOTE: The problem has 23 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The LP presolver value NONE is applied.

NOTE: The LP solver is called.

NOTE: The Dual Simplex algorithm is used.

 Objective Entering Leaving

 Phase Iteration Value Time Variable Variable

 D 2 1 8.813205E+00 0 cal_con (S)

 carb_con (S)

 D 2 2 9.174413E+00 0

NOTE: Optimal.

NOTE: Objective = 9.1744131985.

NOTE: The Dual Simplex solve time is 0.00 seconds.

Example 7.2: Reoptimizing the Diet Problem Using BASIS=WARMSTART F 287

Next, restore the original constraint on calories and consider the case that you need a diet that supplies no
more than 550 mg of sodium per day. The following row is appended to Table 7.14.

Bread Milk Cheese Potato Fish Yogurt
sodium, mg 148 122 337 186 56 132

You can change the parameters, add the new constraint, and solve the modified problem by submitting the
following code:

cal_con.lb=300;
num sod{FOOD}=[148 122 337 186 56 132];
con sodium: sum{i in FOOD}sod[i]*diet[i] <= 550;
solve with lp/presolver=none

basis=warmstart
logfreq=1;

print diet;

The solution is shown in Output 7.2.5.

Output 7.2.5 Optimal Solution to the Diet Problem with Additional Constraint

The OPTMODEL ProcedureThe OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function f

Objective Type Linear

Number of Variables 6

Bounded Above 0

Bounded Below 5

Bounded Below and Above 1

Free 0

Fixed 0

Number of Constraints 5

Linear LE (<=) 2

Linear EQ (=) 0

Linear GE (>=) 3

Linear Range 0

Constraint Coefficients 29

Performance Information

Execution Mode Single-Machine

Number of Threads 1

288 F Chapter 7: The Linear Programming Solver

Output 7.2.5 continued

Solution Summary

Solver LP

Algorithm Dual Simplex

Objective Function f

Solution Status Optimal

Objective Value 12.081337881

Primal Infeasibility 0

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 1

Presolve Time 0.00

Solution Time 0.00

[1] diet

Bread 0.000000

Cheese 0.449499

Fish 0.500000

Milk 0.053599

Potato 1.865168

Yogurt 0.000000

Example 7.3: Two-Person Zero-Sum Game F 289

The following iteration log indicates that it takes the LP solver no more iterations to solve the modified
problem by using the BASIS=WARMSTART option, since the optimal solution to the original problem
remains optimal after one more constraint is added.

Output 7.2.6 Log

NOTE: There were 6 observations read from the data set WORK.FOODDATA.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 6 variables (0 free, 0 fixed).

NOTE: The problem has 4 linear constraints (1 LE, 0 EQ, 3 GE, 0 range).

NOTE: The problem has 23 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 6 variables (0 free, 0 fixed).

NOTE: The problem has 5 linear constraints (2 LE, 0 EQ, 3 GE, 0 range).

NOTE: The problem has 29 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The LP presolver value NONE is applied.

NOTE: The LP solver is called.

NOTE: The Dual Simplex algorithm is used.

 Objective Entering Leaving

 Phase Iteration Value Time Variable Variable

 D 2 1 1.208134E+01 0

NOTE: Optimal.

NOTE: Objective = 12.081337881.

NOTE: The Dual Simplex solve time is 0.00 seconds.

Example 7.3: Two-Person Zero-Sum Game
Consider a two-person zero-sum game (where one person wins what the other person loses). The players
make moves simultaneously, and each has a choice of actions. There is a payoff matrix that indicates the
amount one player gives to the other under each combination of actions:

Player II plays j
1 2 3 4

Player I plays i
1

2

3

0@ �5 3 1 8

5 5 4 6

�4 6 0 5

1A
If player I makes move i and player II makes move j, then player I wins (and player II loses) aij . What is the
best strategy for the two players to adopt? This example is simple enough to be analyzed from observation.
Suppose player I plays 1 or 3; the best response of player II is to play 1. In both cases, player I loses and
player II wins. So the best action for player I is to play 2. In this case, the best response for player II is to
play 3, which minimizes the loss. In this case, (2, 3) is a pure-strategy Nash equilibrium in this game.

For illustration, consider the following mixed strategy case. Assume that player I selects i with probability
pi ; i D 1; 2; 3, and player II selects j with probability qj ; j D 1; 2; 3; 4. Consider player II’s problem of
minimizing the maximum expected payout:

290 F Chapter 7: The Linear Programming Solver

min
q

8<:max
i

4X
jD1

aij qj

9=; subject to
4X

jD1

qij D 1; q � 0

This is equivalent to

min
q;v

v subject to
4X

jD1

aij qj � v 8 i

4X
jD1

qj D 1

q � 0

The problem can be transformed into a more standard format by making a simple change of variables:
xj D qj =v. The preceding LP formulation now becomes

min
x;v

v subject to
4X

jD1

aijxj � 1 8 i

4X
jD1

xj D 1=v

q � 0

which is equivalent to

max
x

4X
jD1

xj subject to Ax � 1; x � 0

where A is the payoff matrix and 1 is a vector of 1’s. It turns out that the corresponding optimization problem
from player I’s perspective can be obtained by solving the dual problem, which can be written as

min
y

3X
iD1

yi subject to ATy � 1; y � 0

You can model the problem and solve it by using PROC OPTMODEL as follows:

proc optmodel;
num a{1..3, 1..4}=[-5 3 1 8

5 5 4 6
-4 6 0 5];

var x{1..4} >= 0;
max f = sum{i in 1..4}x[i];
con c{i in 1..3}: sum{j in 1..4}a[i,j]*x[j] <= 1;
solve with lp / algorithm = ps presolver = none logfreq = 1;
print x;
print c.dual;

quit;

The optimal solution is displayed in Output 7.3.1.

Example 7.3: Two-Person Zero-Sum Game F 291

Output 7.3.1 Optimal Solutions to the Two-Person Zero-Sum Game

The OPTMODEL ProcedureThe OPTMODEL Procedure

Problem Summary

Objective Sense Maximization

Objective Function f

Objective Type Linear

Number of Variables 4

Bounded Above 0

Bounded Below 4

Bounded Below and Above 0

Free 0

Fixed 0

Number of Constraints 3

Linear LE (<=) 3

Linear EQ (=) 0

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 11

Performance Information

Execution Mode Single-Machine

Number of Threads 1

Solution Summary

Solver LP

Algorithm Primal Simplex

Objective Function f

Solution Status Optimal

Objective Value 0.25

Primal Infeasibility 0

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 3

Presolve Time 0.00

Solution Time 0.00

[1] x

1 0.00

2 0.00

3 0.25

4 0.00

292 F Chapter 7: The Linear Programming Solver

Output 7.3.1 continued

[1] c.DUAL

1 0.00

2 0.25

3 0.00

The optimal solution x� D .0; 0; 0:25; 0/ with an optimal value of 0.25. Therefore the optimal strategy for
player II is q� D x�=0:25 D .0; 0; 1; 0/. You can check the optimal solution of the dual problem by using
the constraint suffix “.dual”. So y� D .0; 0:25; 0/ and player I’s optimal strategy is (0, 1, 0). The solution is
consistent with our intuition from observation.

Example 7.4: Finding an Irreducible Infeasible Set
This example demonstrates the use of the IIS= option to locate an irreducible infeasible set. Suppose you
want to solve a linear program that has the following simple formulation:

min x1 C x2 C x3 .cost/
subject to x1 C x2 � 10 .con1/

x1 C x3 � 4 .con2/
4 � x2 C x3 � 5 .con3/

x1; x2 � 0

0 � x3 � 3

It is easy to verify that the following three constraints (or rows) and one variable (or column) bound form an
IIS for this problem:

x1 C x2 � 10 .con1/
x1 C x3 � 4 .con2/

x2 C x3 � 5 .con3/
x3 � 0

You can formulate the problem and call the LP solver by using the following statements:

proc optmodel presolver=none;
/* declare variables */
var x{1..3} >=0;

/* upper bound on variable x[3] */
x[3].ub = 3;

/* objective function */
min obj = x[1] + x[2] + x[3];

/* constraints */
con c1: x[1] + x[2] >= 10;

Example 7.4: Finding an Irreducible Infeasible Set F 293

con c2: x[1] + x[3] <= 4;
con c3: 4 <= x[2] + x[3] <= 5;

solve with lp / iis = on;

print x.status;
print c1.status c2.status c3.status;

The notes printed in the log appear in Output 7.4.1.

Output 7.4.1 Finding an IIS: Log

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 3 variables (0 free, 0 fixed).

NOTE: The problem has 3 linear constraints (1 LE, 0 EQ, 1 GE, 1 range).

NOTE: The problem has 6 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The IIS= option is enabled.

 Objective

 Phase Iteration Value Time

 P 1 1 1.400000E+01 0

 P 1 3 1.000000E+00 0

NOTE: Applying the IIS sensitivity filter.

NOTE: The sensitivity filter removed 1 constraints and 3 variable bounds.

NOTE: Applying the IIS deletion filter.

NOTE: Processing constraints.

 Processed Removed Time

 0 0 0

 1 0 0

 2 0 0

 3 0 0

NOTE: Processing variable bounds.

 Processed Removed Time

 0 0 0

 1 0 0

 2 0 0

 3 0 0

NOTE: The deletion filter removed 0 constraints and 0 variable bounds.

NOTE: The IIS= option found this problem to be infeasible.

NOTE: The IIS= option found an irreducible infeasible set with 1 variables and

 3 constraints.

NOTE: The IIS solve time is 0.00 seconds.

The output of the PRINT statements appears in Output 7.4.2. The value of the .status suffix for the variables
x[1] and x[2] is missing, so the variable bounds for x[1] and x[2] are not in the IIS.

294 F Chapter 7: The Linear Programming Solver

Output 7.4.2 Solution Summary, Variable Status, and Constraint Status

The OPTMODEL ProcedureThe OPTMODEL Procedure

Solution Summary

Solver LP

Algorithm IIS

Objective Function obj

Solution Status Infeasible

Iterations 13

Presolve Time 0.00

Solution Time 0.00

[1] x.STATUS

1

2

3 I_L

c1.STATUS c2.STATUS c3.STATUS

I_L I_U I_U

The value of c3.status is I_U, which indicates that x2Cx3 � 5 is an element of the IIS. The original constraint
is c3, a range constraint with a lower bound of 4. If you choose to remove the constraint x2 C x3 � 5, you
can change the value of c3.ub to the largest positive number representable in your operating environment.
You can specify this number by using the CONSTANT function.

The modified LP problem is specified and solved by adding the following lines to the original PROC
OPTMODEL call.

/* relax upper bound on constraint c3 */
c3.ub = constant('BIG');

solve with lp / iis = on;

Because one element of the IIS has been removed, the modified LP problem should no longer contain the
infeasible set. Due to the size of this problem, there should be no additional irreducible infeasible sets.

The notes shown in Output 7.4.3 are printed to the log.

Example 7.5: Using the Network Simplex Algorithm F 295

Output 7.4.3 Infeasibility Removed: Log

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 3 variables (0 free, 0 fixed).

NOTE: The problem has 3 linear constraints (1 LE, 0 EQ, 2 GE, 0 range).

NOTE: The problem has 6 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The IIS= option is enabled.

 Objective

 Phase Iteration Value Time

 P 1 1 1.400000E+01 0

 P 1 3 0.000000E+00 0

NOTE: The IIS= option found this problem to be feasible.

NOTE: The IIS solve time is 0.00 seconds.

The solution summary and primal solution are displayed in Output 7.4.4.

Output 7.4.4 Infeasibility Removed: Solution

The OPTMODEL ProcedureThe OPTMODEL Procedure

Solution Summary

Solver LP

Algorithm IIS

Objective Function obj

Solution Status Feasible

Iterations 3

Presolve Time 0.00

Solution Time 0.00

Example 7.5: Using the Network Simplex Algorithm
This example demonstrates how you can use the network simplex algorithm to find the minimum-cost flow in
a directed graph. Consider the directed graph in Figure 7.4, which appears in Ahuja, Magnanti, and Orlin
(1993).

296 F Chapter 7: The Linear Programming Solver

Figure 7.4 Minimum-Cost Network Flow Problem: Data

2

20

6

0

1b = 10 3

0

5

0

8 −10

4

−5

7

−15

(2, 15)

(1, 10)

(0, 10)

(c = 6, u = 10)

(1, 5)

(4, 10)

(5, 10)

(2, 20)

(7, 15)

(8, 10)

(9, 15)

You can use the following SAS statements to create the input data sets nodedata and arcdata:

data nodedata;
input _node_ $ _sd_;
datalines;

1 10
2 20
3 0
4 -5
5 0
6 0
7 -15
8 -10
;

data arcdata;
input _tail_ $ _head_ $ _lo_ _capac_ _cost_;
datalines;

1 4 0 15 2
2 1 0 10 1
2 3 0 10 0
2 6 0 10 6
3 4 0 5 1
3 5 0 10 4
4 7 0 10 5
5 6 0 20 2
5 7 0 15 7
6 8 0 10 8
7 8 0 15 9
;

Example 7.5: Using the Network Simplex Algorithm F 297

You can use the following call to PROC OPTMODEL to find the minimum-cost flow:

proc optmodel;
set <str> NODES;
num supply_demand {NODES};

set <str,str> ARCS;
num arcLower {ARCS};
num arcUpper {ARCS};
num arcCost {ARCS};

read data arcdata into ARCS=[_tail_ _head_]
arcLower=_lo_ arcUpper=_capac_ arcCost=_cost_;

read data nodedata into NODES=[_node_] supply_demand=_sd_;

var flow {<i,j> in ARCS} >= arcLower[i,j] <= arcUpper[i,j];
min obj = sum {<i,j> in ARCS} arcCost[i,j] * flow[i,j];
con balance {i in NODES}:

sum {<(i),j> in ARCS} flow[i,j] - sum {<j,(i)> in ARCS} flow[j,i]
= supply_demand[i];

solve with lp / algorithm=ns scale=none logfreq=1;
print flow;

quit;
%put &_OROPTMODEL_;

The optimal solution is displayed in Output 7.5.1.

Output 7.5.1 Network Simplex Algorithm: Primal Solution Output

The OPTMODEL ProcedureThe OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function obj

Objective Type Linear

Number of Variables 11

Bounded Above 0

Bounded Below 0

Bounded Below and Above 11

Free 0

Fixed 0

Number of Constraints 8

Linear LE (<=) 0

Linear EQ (=) 8

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 22

298 F Chapter 7: The Linear Programming Solver

Output 7.5.1 continued

Performance Information

Execution Mode Single-Machine

Number of Threads 1

Solution Summary

Solver LP

Algorithm Network Simplex

Objective Function obj

Solution Status Optimal

Objective Value 270

Primal Infeasibility 0

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 8

Iterations2 0

Presolve Time 0.00

Solution Time 0.00

[1] [2] flow

1 4 10

2 1 0

2 3 10

2 6 10

3 4 5

3 5 5

4 7 10

5 6 0

5 7 5

6 8 10

7 8 0

The optimal solution is represented graphically in Figure 7.5.

Figure 7.5 Minimum-Cost Network Flow Problem: Optimal Solution

2 6

1 3 5 8

4 7

10

0

10

10

5

5

10

0

5

10

0

Example 7.5: Using the Network Simplex Algorithm F 299

The iteration log is displayed in Output 7.5.2.

Output 7.5.2 Log: Solution Progress

NOTE: There were 11 observations read from the data set WORK.ARCDATA.

NOTE: There were 8 observations read from the data set WORK.NODEDATA.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 11 variables (0 free, 0 fixed).

NOTE: The problem has 8 linear constraints (0 LE, 8 EQ, 0 GE, 0 range).

NOTE: The problem has 22 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The problem is a pure network instance; PRESOLVER=NONE is used.

NOTE: The LP presolver value NONE is applied.

NOTE: The LP solver is called.

NOTE: The Network Simplex algorithm is used.

NOTE: The network has 8 rows (100.00%), 11 columns (100.00%), and 1 component.

NOTE: The network extraction and setup time is 0.00 seconds.

 Primal Primal Dual

 Iteration Objective Infeasibility Infeasibility Time

 1 0.000000E+00 2.000000E+01 8.900000E+01 0.00

 2 0.000000E+00 2.000000E+01 8.900000E+01 0.00

 3 5.000000E+00 1.500000E+01 8.400000E+01 0.00

 4 5.000000E+00 1.500000E+01 8.300000E+01 0.00

 5 7.500000E+01 1.500000E+01 8.300000E+01 0.00

 6 7.500000E+01 1.500000E+01 7.900000E+01 0.00

 7 1.300000E+02 1.000000E+01 7.600000E+01 0.00

 8 2.700000E+02 0.000000E+00 0.000000E+00 0.00

NOTE: The Network Simplex solve time is 0.00 seconds.

NOTE: The total Network Simplex solve time is 0.00 seconds.

NOTE: Optimal.

NOTE: Objective = 270.

NOTE: The PROCEDURE OPTMODEL printed pages 1-2.

STATUS=OK ALGORITHM=NS SOLUTION_STATUS=OPTIMAL OBJECTIVE=270

PRIMAL_INFEASIBILITY=0 DUAL_INFEASIBILITY=0 BOUND_INFEASIBILITY=0 ITERATIONS=8

ITERATIONS2=0 PRESOLVE_TIME=0.00 SOLUTION_TIME=0.00

Now, suppose there is a budget on the flow that comes out of arc 2: the total arc cost of flow that comes out
of arc 2 cannot exceed 50. You can use the following call to PROC OPTMODEL to find the minimum-cost
flow:

proc optmodel;
set <str> NODES;
num supply_demand {NODES};

set <str,str> ARCS;
num arcLower {ARCS};
num arcUpper {ARCS};
num arcCost {ARCS};

read data arcdata into ARCS=[_tail_ _head_]

300 F Chapter 7: The Linear Programming Solver

arcLower=_lo_ arcUpper=_capac_ arcCost=_cost_;
read data nodedata into NODES=[_node_] supply_demand=_sd_;

var flow {<i,j> in ARCS} >= arcLower[i,j] <= arcUpper[i,j];
min obj = sum {<i,j> in ARCS} arcCost[i,j] * flow[i,j];
con balance {i in NODES}:

sum {<(i),j> in ARCS} flow[i,j] - sum {<j,(i)> in ARCS} flow[j,i]
= supply_demand[i];

con budgetOn2:
sum {<i,j> in ARCS: i='2'} arcCost[i,j] * flow[i,j] <= 50;

solve with lp / algorithm=ns scale=none logfreq=1;
print flow;

quit;
%put &_OROPTMODEL_;

The optimal solution is displayed in Output 7.5.3.

Output 7.5.3 Network Simplex Algorithm: Primal Solution Output

The OPTMODEL ProcedureThe OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function obj

Objective Type Linear

Number of Variables 11

Bounded Above 0

Bounded Below 0

Bounded Below and Above 11

Free 0

Fixed 0

Number of Constraints 9

Linear LE (<=) 1

Linear EQ (=) 8

Linear GE (>=) 0

Linear Range 0

Constraint Coefficients 24

Performance Information

Execution Mode Single-Machine

Number of Threads 1

Example 7.5: Using the Network Simplex Algorithm F 301

Output 7.5.3 continued

Solution Summary

Solver LP

Algorithm Network Simplex

Objective Function obj

Solution Status Optimal

Objective Value 274

Primal Infeasibility 0

Dual Infeasibility 0

Bound Infeasibility 0

Iterations 7

Iterations2 2

Presolve Time 0.00

Solution Time 0.00

[1] [2] flow

1 4 12

2 1 2

2 3 10

2 6 8

3 4 3

3 5 7

4 7 10

5 6 2

5 7 5

6 8 10

7 8 0

The optimal solution is represented graphically in Figure 7.6.

Figure 7.6 Minimum-Cost Network Flow Problem: Optimal Solution (with
Budget Constraint)

2 6

1 3 5 8

4 7

12

2

10

8

3

7

10

2

5

10

0

The iteration log is displayed in Output 7.5.4. Note that the network simplex algorithm extracts a subnetwork
in this case.

302 F Chapter 7: The Linear Programming Solver

Output 7.5.4 Log: Solution Progress

NOTE: There were 11 observations read from the data set WORK.ARCDATA.

NOTE: There were 8 observations read from the data set WORK.NODEDATA.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 11 variables (0 free, 0 fixed).

NOTE: The problem has 9 linear constraints (1 LE, 8 EQ, 0 GE, 0 range).

NOTE: The problem has 24 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The LP presolver value AUTOMATIC is applied.

NOTE: The LP presolver removed 4 variables and 4 constraints.

NOTE: The LP presolver removed 7 constraint coefficients.

NOTE: The presolved problem has 7 variables, 5 constraints, and 17 constraint

 coefficients.

NOTE: The LP solver is called.

NOTE: The Network Simplex algorithm is used.

NOTE: The network has 4 rows (80.00%), 7 columns (100.00%), and 1 component.

NOTE: The network extraction and setup time is 0.00 seconds.

 Primal Primal Dual

 Iteration Objective Infeasibility Infeasibility Time

 1 8.015000E+01 1.006000E+01 5.500000E+01 0.00

 2 1.053000E+02 5.030000E+00 5.400000E+01 0.00

 3 1.053000E+02 5.030000E+00 5.400000E+01 0.00

 4 1.353000E+02 3.000000E-02 4.900000E+01 0.00

 5 1.356300E+02 0.000000E+00 4.700000E+01 0.00

 6 1.356300E+02 0.000000E+00 0.000000E+00 0.00

 7 2.700000E+02 0.000000E+00 0.000000E+00 0.00

NOTE: The Network Simplex solve time is 0.00 seconds.

NOTE: The total Network Simplex solve time is 0.00 seconds.

NOTE: The Dual Simplex algorithm is used.

 Objective Entering Leaving

 Phase Iteration Value Time Variable Variable

 D 2 1 2.700000E+02 0 flow['5','6']

 budgetOn2 (S)

 D 2 2 2.740000E+02 0

NOTE: Optimal.

NOTE: Objective = 274.

NOTE: The Simplex solve time is 0.00 seconds.

NOTE: The PROCEDURE OPTMODEL printed pages 4-5.

STATUS=OK ALGORITHM=NS SOLUTION_STATUS=OPTIMAL OBJECTIVE=274

PRIMAL_INFEASIBILITY=0 DUAL_INFEASIBILITY=0 BOUND_INFEASIBILITY=0 ITERATIONS=7

ITERATIONS2=2 PRESOLVE_TIME=0.00 SOLUTION_TIME=0.00

Example 7.6: Migration to OPTMODEL: Generalized Networks F 303

Example 7.6: Migration to OPTMODEL: Generalized Networks
The following example shows how to use PROC OPTMODEL to solve the example “Generalized Networks:
Using the EXCESS= Option” in Chapter 5, “The NETFLOW Procedure” (SAS/OR User’s Guide: Mathe-
matical Programming Legacy Procedures). The input data sets are the same as in the PROC NETFLOW
example.

title 'Generalized Networks';

data garcs;
input _from_ $ _to_ $ _cost_ _mult_;
datalines;

s1 d1 1 .
s1 d2 8 .
s2 d1 4 2
s2 d2 2 2
s2 d3 1 2
s3 d2 5 0.5
s3 d3 4 0.5
;

data gnodes;
input _node_ $ _sd_ ;
datalines;

s1 5
s2 20
s3 10
d1 -5
d2 -10
d3 -20
;

The following PROC OPTMODEL statements read the data sets, build the linear programming model, solve
the model, and output the optimal solution to a SAS data set called GNETOUT:

proc optmodel;
set <str> NODES;
num _sd_ {NODES} init 0;
read data gnodes into NODES=[_node_] _sd_;

set <str,str> ARCS;
num _lo_ {ARCS} init 0;
num _capac_ {ARCS} init .;
num _cost_ {ARCS};
num _mult_ {ARCS} init 1;
read data garcs nomiss into ARCS=[_from_ _to_] _cost_ _mult_;
NODES = NODES union (union {<i,j> in ARCS} {i,j});

304 F Chapter 7: The Linear Programming Solver

var Flow {<i,j> in ARCS} >= _lo_[i,j];
min obj = sum {<i,j> in ARCS} _cost_[i,j] * Flow[i,j];
con balance {i in NODES}: sum {<(i),j> in ARCS} Flow[i,j]

- sum {<j,(i)> in ARCS} _mult_[j,i] * Flow[j,i] = _sd_[i];

num infinity = constant('BIG');
/* change equality constraint to le constraint for supply nodes */
for {i in NODES: _sd_[i] > 0} balance[i].lb = -infinity;

solve;

num _supply_ {<i,j> in ARCS} = (if _sd_[i] ne 0 then _sd_[i] else .);
num _demand_ {<i,j> in ARCS} = (if _sd_[j] ne 0 then -_sd_[j] else .);
num _fcost_ {<i,j> in ARCS} = _cost_[i,j] * Flow[i,j].sol;

create data gnetout from [_from_ _to_]
cost _capac_ _lo_ _mult_ _supply_ _demand_ _flow_=Flow _fcost_;

quit;

To solve a generalized network flow problem, the usual balance constraint is altered to include the arc
multiplier “_mult_[i,j]” in the second sum. The balance constraint is initially declared as an equality, but to
mimic the EXCESS=SUPPLY option in PROC NETFLOW, the sense of this constraint is changed to “�” by
relaxing the constraint’s lower bound for supply nodes. The output data set is displayed in Output 7.6.1.

Output 7.6.1 Optimal Solution with Excess Supply

Obs _from_ _to_ _cost_ _capac_ _lo_ _mult_ _supply_ _demand_ _flow_ _fcost_

1 s1 d1 1 . 0 1.0 5 5 5 5

2 s1 d2 8 . 0 1.0 5 10 0 0

3 s2 d1 4 . 0 2.0 20 5 0 0

4 s2 d2 2 . 0 2.0 20 10 5 10

5 s2 d3 1 . 0 2.0 20 20 10 10

6 s3 d2 5 . 0 0.5 10 10 0 0

7 s3 d3 4 . 0 0.5 10 20 0 0

The log is displayed in Output 7.6.2.

Example 7.6: Migration to OPTMODEL: Generalized Networks F 305

Output 7.6.2 OPTMODEL Log

NOTE: There were 6 observations read from the data set WORK.GNODES.

NOTE: There were 7 observations read from the data set WORK.GARCS.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 7 variables (0 free, 0 fixed).

NOTE: The problem has 6 linear constraints (3 LE, 3 EQ, 0 GE, 0 range).

NOTE: The problem has 14 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The OPTMODEL presolver is disabled for linear problems.

NOTE: The LP presolver value AUTOMATIC is applied.

NOTE: The LP presolver removed 2 variables and 2 constraints.

NOTE: The LP presolver removed 4 constraint coefficients.

NOTE: The presolved problem has 5 variables, 4 constraints, and 10 constraint

 coefficients.

NOTE: The LP solver is called.

NOTE: The Dual Simplex algorithm is used.

 Objective

 Phase Iteration Value Time

 D 1 1 0.000000E+00 0

 D 2 2 1.500000E+01 0

 D 2 3 2.500000E+01 0

NOTE: Optimal.

NOTE: Objective = 25.

NOTE: The Dual Simplex solve time is 0.00 seconds.

NOTE: The data set WORK.GNETOUT has 7 observations and 10 variables.

Now consider the previous example but with a slight modification to the arc multipliers, as in the PROC
NETFLOW example:

data garcs1;
input _from_ $ _to_ $ _cost_ _mult_;
datalines;

s1 d1 1 0.5
s1 d2 8 0.5
s2 d1 4 .
s2 d2 2 .
s2 d3 1 .
s3 d2 5 0.5
s3 d3 4 0.5
;

The following PROC OPTMODEL statements are identical to the preceding example, except for the balance
constraint. The balance constraint is still initially declared as an equality, but to mimic the PROC NETFLOW
EXCESS=DEMAND option, the sense of this constraint is changed to “�” by relaxing the constraint’s upper
bound for demand nodes.

306 F Chapter 7: The Linear Programming Solver

proc optmodel;
set <str> NODES;
num _sd_ {NODES} init 0;
read data gnodes into NODES=[_node_] _sd_;

set <str,str> ARCS;
num _lo_ {ARCS} init 0;
num _capac_ {ARCS} init .;
num _cost_ {ARCS};
num _mult_ {ARCS} init 1;
read data garcs1 nomiss into ARCS=[_from_ _to_] _cost_ _mult_;
NODES = NODES union (union {<i,j> in ARCS} {i,j});

var Flow {<i,j> in ARCS} >= _lo_[i,j];
for {<i,j> in ARCS: _capac_[i,j] ne .} Flow[i,j].ub = _capac_[i,j];
min obj = sum {<i,j> in ARCS} _cost_[i,j] * Flow[i,j];
con balance {i in NODES}: sum {<(i),j> in ARCS} Flow[i,j]

- sum {<j,(i)> in ARCS} _mult_[j,i] * Flow[j,i] = _sd_[i];

num infinity = constant('BIG');
/* change equality constraint to ge constraint */
for {i in NODES: _sd_[i] < 0} balance[i].ub = infinity;

solve;

num _supply_ {<i,j> in ARCS} = (if _sd_[i] ne 0 then _sd_[i] else .);
num _demand_ {<i,j> in ARCS} = (if _sd_[j] ne 0 then -_sd_[j] else .);
num _fcost_ {<i,j> in ARCS} = _cost_[i,j] * Flow[i,j].sol;

create data gnetout1 from [_from_ _to_]
cost _capac_ _lo_ _mult_ _supply_ _demand_ _flow_=Flow _fcost_;

quit;

The output data set is displayed in Output 7.6.3.

Output 7.6.3 Optimal Solution with Excess Demand

Obs _from_ _to_ _cost_ _capac_ _lo_ _mult_ _supply_ _demand_ _flow_ _fcost_

1 s1 d1 1 . 0 0.5 5 5 5 5

2 s1 d2 8 . 0 0.5 5 10 0 0

3 s2 d1 4 . 0 1.0 20 5 0 0

4 s2 d2 2 . 0 1.0 20 10 5 10

5 s2 d3 1 . 0 1.0 20 20 15 15

6 s3 d2 5 . 0 0.5 10 10 0 0

7 s3 d3 4 . 0 0.5 10 20 10 40

The log is displayed in Output 7.6.4.

Example 7.7: Migration to OPTMODEL: Maximum Flow F 307

Output 7.6.4 OPTMODEL Log

NOTE: There were 6 observations read from the data set WORK.GNODES.

NOTE: There were 7 observations read from the data set WORK.GARCS1.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 7 variables (0 free, 0 fixed).

NOTE: The problem has 6 linear constraints (0 LE, 3 EQ, 3 GE, 0 range).

NOTE: The problem has 14 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The OPTMODEL presolver is disabled for linear problems.

NOTE: The LP presolver value AUTOMATIC is applied.

NOTE: The LP presolver removed 2 variables and 2 constraints.

NOTE: The LP presolver removed 4 constraint coefficients.

NOTE: The presolved problem has 5 variables, 4 constraints, and 10 constraint

 coefficients.

NOTE: The LP solver is called.

NOTE: The Dual Simplex algorithm is used.

 Objective

 Phase Iteration Value Time

 D 1 1 0.000000E+00 0

 D 2 2 4.997000E+01 0

 D 2 4 7.000000E+01 0

NOTE: Optimal.

NOTE: Objective = 70.

NOTE: The Dual Simplex solve time is 0.00 seconds.

NOTE: The data set WORK.GNETOUT1 has 7 observations and 10 variables.

NOTE: The PROCEDURE OPTMODEL printed pages 7-8.

Example 7.7: Migration to OPTMODEL: Maximum Flow
The following example shows how to use PROC OPTMODEL to solve the example “Maximum Flow
Problem” in Chapter 5, “The NETFLOW Procedure” (SAS/OR User’s Guide: Mathematical Programming
Legacy Procedures). The input data set is the same as in that example.

title 'Maximum Flow Problem';

data arcs;
input _from_ $ _to_ $ _cost_ _capac_;
datalines;

S a . .
S b . .
a c 1 7
b c 2 9
a d 3 5
b d 4 8
c e 5 15
d f 6 20
e g 7 11

308 F Chapter 7: The Linear Programming Solver

f g 8 6
e h 9 12
f h 10 4
g T . .
h T . .
;

The following PROC OPTMODEL statements read the data sets, build the linear programming model, solve
the model, and output the optimal solution to a SAS data set called GOUT3:

proc optmodel;
str source = 'S';
str sink = 'T';

set <str> NODES;
num _supdem_ {i in NODES} = (if i in {source, sink} then . else 0);

set <str,str> ARCS;
num _lo_ {ARCS} init 0;
num _capac_ {ARCS} init .;
num _cost_ {ARCS} init 0;
read data arcs nomiss into ARCS=[_from_ _to_] _cost_ _capac_;
NODES = (union {<i,j> in ARCS} {i,j});

var Flow {<i,j> in ARCS} >= _lo_[i,j];
for {<i,j> in ARCS: _capac_[i,j] ne .} Flow[i,j].ub = _capac_[i,j];
max obj = sum {<i,j> in ARCS: j = sink} Flow[i,j];
con balance {i in NODES diff {source, sink}}:

sum {<(i),j> in ARCS} Flow[i,j]
- sum {<j,(i)> in ARCS} Flow[j,i] = _supdem_[i];

solve;

num _supply_ {<i,j> in ARCS} =
(if _supdem_[i] ne 0 then _supdem_[i] else .);

num _demand_ {<i,j> in ARCS} =
(if _supdem_[j] ne 0 then -_supdem_[j] else .);

num _fcost_ {<i,j> in ARCS} = _cost_[i,j] * Flow[i,j].sol;

create data gout3 from [_from_ _to_]
cost _capac_ _lo_ _supply_ _demand_ _flow_=Flow _fcost_;

quit;

To solve a maximum flow problem, you solve a network flow problem that has a zero supply or demand at
all nodes other than the source and sink nodes, as specified in the declaration of the _SUPDEM_ numeric
parameter and the balance constraint. The objective declaration uses the logical condition J = SINK to
maximize the flow into the sink node. The output data set is displayed in Output 7.7.1.

Example 7.7: Migration to OPTMODEL: Maximum Flow F 309

Output 7.7.1 Optimal Solution

Obs _from_ _to_ _cost_ _capac_ _lo_ _supply_ _demand_ _flow_ _fcost_

1 S a 0 . 0 . . 12 0

2 S b 0 . 0 . . 13 0

3 a c 1 7 0 . . 7 7

4 b c 2 9 0 . . 8 16

5 a d 3 5 0 . . 5 15

6 b d 4 8 0 . . 5 20

7 c e 5 15 0 . . 15 75

8 d f 6 20 0 . . 10 60

9 e g 7 11 0 . . 3 21

10 f g 8 6 0 . . 6 48

11 e h 9 12 0 . . 12 108

12 f h 10 4 0 . . 4 40

13 g T 0 . 0 . . 9 0

14 h T 0 . 0 . . 16 0

The log is displayed in Output 7.7.2.

Output 7.7.2 OPTMODEL Log

NOTE: There were 14 observations read from the data set WORK.ARCS.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 14 variables (0 free, 0 fixed).

NOTE: The problem has 8 linear constraints (0 LE, 8 EQ, 0 GE, 0 range).

NOTE: The problem has 24 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The OPTMODEL presolver is disabled for linear problems.

NOTE: The problem is a pure network instance. The ALGORITHM=NETWORK option is

 recommended for solving problems with this structure.

NOTE: The LP presolver value AUTOMATIC is applied.

NOTE: The LP presolver removed 10 variables and 6 constraints.

NOTE: The LP presolver removed 20 constraint coefficients.

NOTE: The presolved problem has 4 variables, 2 constraints, and 4 constraint

 coefficients.

NOTE: The LP solver is called.

NOTE: The Dual Simplex algorithm is used.

 Objective

 Phase Iteration Value Time

 D 1 1 0.000000E+00 0

 D 2 2 2.500000E+01 0

 P 2 5 2.500000E+01 0

NOTE: Optimal.

NOTE: Objective = 25.

NOTE: The Dual Simplex solve time is 0.00 seconds.

NOTE: The data set WORK.GOUT3 has 14 observations and 9 variables.

NOTE: The PROCEDURE OPTMODEL printed pages 10-11.

310 F Chapter 7: The Linear Programming Solver

Example 7.8: Migration to OPTMODEL: Production, Inventory, Distribution
The following example shows how to use PROC OPTMODEL to solve the example “Production, Inventory,
Distribution Problem” in Chapter 5, “The NETFLOW Procedure” (SAS/OR User’s Guide: Mathematical
Programming Legacy Procedures). The input data sets are the same as in that example.

title 'Minimum-Cost Flow Problem';
title2 'Production Planning/Inventory/Distribution';

data node0;
input _node_ $ _supdem_ ;
datalines;

fact1_1 1000
fact2_1 850
fact1_2 1000
fact2_2 1500
shop1_1 -900
shop2_1 -900
shop1_2 -900
shop2_2 -1450
;

data arc0;
input _tail_ $ _head_ $ _cost_ _capac_ _lo_

diagonal factory key_id $10. mth_made $ _name_&$17.;
datalines;

fact1_1 f1_mar_1 127.9 500 50 19 1 production March prod f1 19 mar
fact1_1 f1_apr_1 78.6 600 50 19 1 production April prod f1 19 apl
fact1_1 f1_may_1 95.1 400 50 19 1 production May .
f1_mar_1 f1_apr_1 15 50 . 19 1 storage March .
f1_apr_1 f1_may_1 12 50 . 19 1 storage April .
f1_apr_1 f1_mar_1 28 20 . 19 1 backorder April back f1 19 apl
f1_may_1 f1_apr_1 28 20 . 19 1 backorder May back f1 19 may
f1_mar_1 f2_mar_1 11 . . 19 . f1_to_2 March .
f1_apr_1 f2_apr_1 11 . . 19 . f1_to_2 April .
f1_may_1 f2_may_1 16 . . 19 . f1_to_2 May .
f1_mar_1 shop1_1 -327.65 250 . 19 1 sales March .
f1_apr_1 shop1_1 -300 250 . 19 1 sales April .
f1_may_1 shop1_1 -285 250 . 19 1 sales May .
f1_mar_1 shop2_1 -362.74 250 . 19 1 sales March .
f1_apr_1 shop2_1 -300 250 . 19 1 sales April .
f1_may_1 shop2_1 -245 250 . 19 1 sales May .
fact2_1 f2_mar_1 88.0 450 35 19 2 production March prod f2 19 mar
fact2_1 f2_apr_1 62.4 480 35 19 2 production April prod f2 19 apl
fact2_1 f2_may_1 133.8 250 35 19 2 production May .
f2_mar_1 f2_apr_1 18 30 . 19 2 storage March .
f2_apr_1 f2_may_1 20 30 . 19 2 storage April .
f2_apr_1 f2_mar_1 17 15 . 19 2 backorder April back f2 19 apl
f2_may_1 f2_apr_1 25 15 . 19 2 backorder May back f2 19 may
f2_mar_1 f1_mar_1 10 40 . 19 . f2_to_1 March .
f2_apr_1 f1_apr_1 11 40 . 19 . f2_to_1 April .
f2_may_1 f1_may_1 13 40 . 19 . f2_to_1 May .

Example 7.8: Migration to OPTMODEL: Production, Inventory, Distribution F 311

f2_mar_1 shop1_1 -297.4 250 . 19 2 sales March .
f2_apr_1 shop1_1 -290 250 . 19 2 sales April .
f2_may_1 shop1_1 -292 250 . 19 2 sales May .
f2_mar_1 shop2_1 -272.7 250 . 19 2 sales March .
f2_apr_1 shop2_1 -312 250 . 19 2 sales April .
f2_may_1 shop2_1 -299 250 . 19 2 sales May .
fact1_2 f1_mar_2 217.9 400 40 25 1 production March prod f1 25 mar
fact1_2 f1_apr_2 174.5 550 50 25 1 production April prod f1 25 apl
fact1_2 f1_may_2 133.3 350 40 25 1 production May .
f1_mar_2 f1_apr_2 20 40 . 25 1 storage March .
f1_apr_2 f1_may_2 18 40 . 25 1 storage April .
f1_apr_2 f1_mar_2 32 30 . 25 1 backorder April back f1 25 apl
f1_may_2 f1_apr_2 41 15 . 25 1 backorder May back f1 25 may
f1_mar_2 f2_mar_2 23 . . 25 . f1_to_2 March .
f1_apr_2 f2_apr_2 23 . . 25 . f1_to_2 April .
f1_may_2 f2_may_2 26 . . 25 . f1_to_2 May .
f1_mar_2 shop1_2 -559.76 . . 25 1 sales March .
f1_apr_2 shop1_2 -524.28 . . 25 1 sales April .
f1_may_2 shop1_2 -475.02 . . 25 1 sales May .
f1_mar_2 shop2_2 -623.89 . . 25 1 sales March .
f1_apr_2 shop2_2 -549.68 . . 25 1 sales April .
f1_may_2 shop2_2 -460.00 . . 25 1 sales May .
fact2_2 f2_mar_2 182.0 650 35 25 2 production March prod f2 25 mar
fact2_2 f2_apr_2 196.7 680 35 25 2 production April prod f2 25 apl
fact2_2 f2_may_2 201.4 550 35 25 2 production May .
f2_mar_2 f2_apr_2 28 50 . 25 2 storage March .
f2_apr_2 f2_may_2 38 50 . 25 2 storage April .
f2_apr_2 f2_mar_2 31 15 . 25 2 backorder April back f2 25 apl
f2_may_2 f2_apr_2 54 15 . 25 2 backorder May back f2 25 may
f2_mar_2 f1_mar_2 20 25 . 25 . f2_to_1 March .
f2_apr_2 f1_apr_2 21 25 . 25 . f2_to_1 April .
f2_may_2 f1_may_2 43 25 . 25 . f2_to_1 May .
f2_mar_2 shop1_2 -567.83 500 . 25 2 sales March .
f2_apr_2 shop1_2 -542.19 500 . 25 2 sales April .
f2_may_2 shop1_2 -461.56 500 . 25 2 sales May .
f2_mar_2 shop2_2 -542.83 500 . 25 2 sales March .
f2_apr_2 shop2_2 -559.19 500 . 25 2 sales April .
f2_may_2 shop2_2 -489.06 500 . 25 2 sales May .
;

The following PROC OPTMODEL statements read the data sets, build the linear programming model, solve
the model, and output the optimal solution to SAS data sets called ARC1 and NODE2:

proc optmodel;
set <str> NODES;
num _supdem_ {NODES} init 0;
read data node0 into NODES=[_node_] _supdem_;

set <str,str> ARCS;
num _lo_ {ARCS} init 0;
num _capac_ {ARCS} init .;
num _cost_ {ARCS};
num diagonal {ARCS};
num factory {ARCS};

312 F Chapter 7: The Linear Programming Solver

str key_id {ARCS};
str mth_made {ARCS};
str _name_ {ARCS};
read data arc0 nomiss into ARCS=[_tail_ _head_] _lo_ _capac_ _cost_

diagonal factory key_id mth_made _name_;
NODES = NODES union (union {<i,j> in ARCS} {i,j});

var Flow {<i,j> in ARCS} >= _lo_[i,j];
for {<i,j> in ARCS: _capac_[i,j] ne .} Flow[i,j].ub = _capac_[i,j];
min obj = sum {<i,j> in ARCS} _cost_[i,j] * Flow[i,j];
con balance {i in NODES}: sum {<(i),j> in ARCS} Flow[i,j]

- sum {<j,(i)> in ARCS} Flow[j,i] = _supdem_[i];

num infinity = constant('BIG');
num excess = sum {i in NODES} _supdem_[i];
if (excess > 0) then do;

/* change equality constraint to le constraint for supply nodes */
for {i in NODES: _supdem_[i] > 0} balance[i].lb = -infinity;

end;
else if (excess < 0) then do;

/* change equality constraint to ge constraint for demand nodes */
for {i in NODES: _supdem_[i] < 0} balance[i].ub = infinity;

end;

solve;

num _supply_ {<i,j> in ARCS} =
(if _supdem_[i] ne 0 then _supdem_[i] else .);

num _demand_ {<i,j> in ARCS} =
(if _supdem_[j] ne 0 then -_supdem_[j] else .);

num _fcost_ {<i,j> in ARCS} = _cost_[i,j] * Flow[i,j].sol;

create data arc1 from [_tail_ _head_]
cost _capac_ _lo_ _name_ _supply_ _demand_ _flow_=Flow _fcost_
rcost =

(if Flow[_tail_,_head_].rc ne 0 then Flow[_tail_,_head_].rc else .)
status = Flow.status diagonal factory key_id mth_made;

create data node2 from [_node_]
supdem = (if _supdem_[_node_] ne 0 then _supdem_[_node_] else .)
dual = balance.dual;

quit;

Example 7.8: Migration to OPTMODEL: Production, Inventory, Distribution F 313

The PROC OPTMODEL statements use both single-dimensional (NODES) and multiple-dimensional (ARCS)
index sets, which are populated from the corresponding data set variables in the READ DATA statements.
The _SUPDEM_, _LO_, and _CAPAC_ parameters are given initial values, and the NOMISS option in the
READ DATA statement tells PROC OPTMODEL to read only the nonmissing values from the input data
set. The balance constraint is initially declared as an equality, but depending on the total supply or demand,
the sense of this constraint is changed to “�” or “�” by relaxing the constraint’s lower or upper bound,
respectively. The ARC1 output data set contains most of the same information as in the NETFLOW example,
including reduced cost, basis status, and dual values. The _ANUMB_ and _TNUMB_ values do not apply
here.

The PROC PRINT statements are similar to the PROC NETFLOW example:

options ls=80 ps=54;
proc print data=arc1 heading=h width=min;

var _tail_ _head_ _cost_ _capac_ _lo_ _name_
supply _demand_ _flow_ _fcost_;
sum _fcost_;

run;
proc print data=arc1 heading=h width=min;

var _rcost_ _status_ diagonal factory key_id mth_made;
run;
proc print data=node2;
run;

The output data sets are displayed in Output 7.8.1.

314 F Chapter 7: The Linear Programming Solver

Output 7.8.1 Output Data Sets

Obs _tail_ _head_ _cost_ _capac_ _lo_ _name_ _supply_ _demand_ _flow_ _fcost_

1 fact1_1 f1_mar_1 127.90 500 50 prod f1 19 mar 1000 . 345 44125.50

2 fact1_1 f1_apr_1 78.60 600 50 prod f1 19 apl 1000 . 600 47160.00

3 fact1_1 f1_may_1 95.10 400 50 1000 . 50 4755.00

4 f1_mar_1 f1_apr_1 15.00 50 0 . . 0 0.00

5 f1_apr_1 f1_may_1 12.00 50 0 . . 50 600.00

6 f1_apr_1 f1_mar_1 28.00 20 0 back f1 19 apl . . 20 560.00

7 f1_may_1 f1_apr_1 28.00 20 0 back f1 19 may . . 0 0.00

8 f1_mar_1 f2_mar_1 11.00 . 0 . . 0 0.00

9 f1_apr_1 f2_apr_1 11.00 . 0 . . 30 330.00

10 f1_may_1 f2_may_1 16.00 . 0 . . 100 1600.00

11 f1_mar_1 shop1_1 -327.65 250 0 . 900 155 -50785.75

12 f1_apr_1 shop1_1 -300.00 250 0 . 900 250 -75000.00

13 f1_may_1 shop1_1 -285.00 250 0 . 900 0 0.00

14 f1_mar_1 shop2_1 -362.74 250 0 . 900 250 -90685.00

15 f1_apr_1 shop2_1 -300.00 250 0 . 900 250 -75000.00

16 f1_may_1 shop2_1 -245.00 250 0 . 900 0 0.00

17 fact2_1 f2_mar_1 88.00 450 35 prod f2 19 mar 850 . 290 25520.00

18 fact2_1 f2_apr_1 62.40 480 35 prod f2 19 apl 850 . 480 29952.00

19 fact2_1 f2_may_1 133.80 250 35 850 . 35 4683.00

20 f2_mar_1 f2_apr_1 18.00 30 0 . . 0 0.00

21 f2_apr_1 f2_may_1 20.00 30 0 . . 15 300.00

22 f2_apr_1 f2_mar_1 17.00 15 0 back f2 19 apl . . 0 0.00

23 f2_may_1 f2_apr_1 25.00 15 0 back f2 19 may . . 0 0.00

24 f2_mar_1 f1_mar_1 10.00 40 0 . . 40 400.00

25 f2_apr_1 f1_apr_1 11.00 40 0 . . 0 0.00

26 f2_may_1 f1_may_1 13.00 40 0 . . 0 0.00

27 f2_mar_1 shop1_1 -297.40 250 0 . 900 250 -74350.00

28 f2_apr_1 shop1_1 -290.00 250 0 . 900 245 -71050.00

29 f2_may_1 shop1_1 -292.00 250 0 . 900 0 0.00

30 f2_mar_1 shop2_1 -272.70 250 0 . 900 0 0.00

31 f2_apr_1 shop2_1 -312.00 250 0 . 900 250 -78000.00

32 f2_may_1 shop2_1 -299.00 250 0 . 900 150 -44850.00

33 fact1_2 f1_mar_2 217.90 400 40 prod f1 25 mar 1000 . 400 87160.00

34 fact1_2 f1_apr_2 174.50 550 50 prod f1 25 apl 1000 . 550 95975.00

35 fact1_2 f1_may_2 133.30 350 40 1000 . 40 5332.00

36 f1_mar_2 f1_apr_2 20.00 40 0 . . 0 0.00

37 f1_apr_2 f1_may_2 18.00 40 0 . . 0 0.00

38 f1_apr_2 f1_mar_2 32.00 30 0 back f1 25 apl . . 30 960.00

39 f1_may_2 f1_apr_2 41.00 15 0 back f1 25 may . . 15 615.00

40 f1_mar_2 f2_mar_2 23.00 . 0 . . 0 0.00

41 f1_apr_2 f2_apr_2 23.00 . 0 . . 0 0.00

42 f1_may_2 f2_may_2 26.00 . 0 . . 0 0.00

43 f1_mar_2 shop1_2 -559.76 . 0 . 900 0 0.00

44 f1_apr_2 shop1_2 -524.28 . 0 . 900 0 0.00

45 f1_may_2 shop1_2 -475.02 . 0 . 900 25 -11875.50

46 f1_mar_2 shop2_2 -623.89 . 0 . 1450 455 -283869.95

47 f1_apr_2 shop2_2 -549.68 . 0 . 1450 535 -294078.80

48 f1_may_2 shop2_2 -460.00 . 0 . 1450 0 0.00

Example 7.8: Migration to OPTMODEL: Production, Inventory, Distribution F 315

Output 7.8.1 continued

Obs _tail_ _head_ _cost_ _capac_ _lo_ _name_ _supply_ _demand_ _flow_ _fcost_

49 fact2_2 f2_mar_2 182.00 650 35 prod f2 25 mar 1500 . 645 117390.00

50 fact2_2 f2_apr_2 196.70 680 35 prod f2 25 apl 1500 . 680 133756.00

51 fact2_2 f2_may_2 201.40 550 35 1500 . 35 7049.00

52 f2_mar_2 f2_apr_2 28.00 50 0 . . 0 0.00

53 f2_apr_2 f2_may_2 38.00 50 0 . . 0 0.00

54 f2_apr_2 f2_mar_2 31.00 15 0 back f2 25 apl . . 0 0.00

55 f2_may_2 f2_apr_2 54.00 15 0 back f2 25 may . . 15 810.00

56 f2_mar_2 f1_mar_2 20.00 25 0 . . 25 500.00

57 f2_apr_2 f1_apr_2 21.00 25 0 . . 0 0.00

58 f2_may_2 f1_may_2 43.00 25 0 . . 0 0.00

59 f2_mar_2 shop1_2 -567.83 500 0 . 900 500 -283915.00

60 f2_apr_2 shop1_2 -542.19 500 0 . 900 375 -203321.25

61 f2_may_2 shop1_2 -461.56 500 0 . 900 0 0.00

62 f2_mar_2 shop2_2 -542.83 500 0 . 1450 120 -65139.60

63 f2_apr_2 shop2_2 -559.19 500 0 . 1450 320 -178940.80

64 f2_may_2 shop2_2 -489.06 500 0 . 1450 20 -9781.20

-1281110.35

316 F Chapter 7: The Linear Programming Solver

Output 7.8.1 continued

Obs _rcost_ _status_ diagonal factory key_id mth_made

1 . B 19 1 production March

2 -0.65 U 19 1 production April

3 0.85 L 19 1 production May

4 63.65 L 19 1 storage March

5 -3.00 U 19 1 storage April

6 -20.65 U 19 1 backorder April

7 43.00 L 19 1 backorder May

8 50.90 L 19 . f1_to_2 March

9 . B 19 . f1_to_2 April

10 . B 19 . f1_to_2 May

11 . B 19 1 sales March

12 -21.00 U 19 1 sales April

13 9.00 L 19 1 sales May

14 -46.09 U 19 1 sales March

15 -32.00 U 19 1 sales April

16 38.00 L 19 1 sales May

17 . B 19 2 production March

18 -27.85 U 19 2 production April

19 23.55 L 19 2 production May

20 15.75 L 19 2 storage March

21 . B 19 2 storage April

22 19.25 L 19 2 backorder April

23 45.00 L 19 2 backorder May

24 -29.90 U 19 . f2_to_1 March

25 22.00 L 19 . f2_to_1 April

26 29.00 L 19 . f2_to_1 May

27 -9.65 U 19 2 sales March

28 . B 19 2 sales April

29 18.00 L 19 2 sales May

30 4.05 L 19 2 sales March

31 -33.00 U 19 2 sales April

32 . B 19 2 sales May

33 -45.16 U 25 1 production March

34 -14.35 U 25 1 production April

35 2.11 L 25 1 production May

36 94.21 L 25 1 storage March

37 75.66 L 25 1 storage April

38 -42.21 U 25 1 backorder April

39 -16.66 U 25 1 backorder May

40 104.06 L 25 . f1_to_2 March

41 13.49 L 25 . f1_to_2 April

42 28.96 L 25 . f1_to_2 May

43 47.13 L 25 1 sales March

44 8.40 L 25 1 sales April

45 . B 25 1 sales May

46 . B 25 1 sales March

47 . B 25 1 sales April

48 32.02 L 25 1 sales May

Example 7.8: Migration to OPTMODEL: Production, Inventory, Distribution F 317

Output 7.8.1 continued

Obs _rcost_ _status_ diagonal factory key_id mth_made

49 . B 25 2 production March

50 -1.66 U 25 2 production April

51 73.17 L 25 2 production May

52 11.64 L 25 2 storage March

53 108.13 L 25 2 storage April

54 47.36 L 25 2 backorder April

55 -16.13 U 25 2 backorder May

56 -61.06 U 25 . f2_to_1 March

57 30.51 L 25 . f2_to_1 April

58 40.04 L 25 . f2_to_1 May

59 -42.00 U 25 2 sales March

60 . B 25 2 sales April

61 10.50 L 25 2 sales May

62 . B 25 2 sales March

63 . B 25 2 sales April

64 . B 25 2 sales May

Obs _node_ _supdem_ _dual_

1 fact1_1 1000 0.00

2 fact2_1 850 0.00

3 fact1_2 1000 0.00

4 fact2_2 1500 0.00

5 shop1_1 -900 199.75

6 shop2_1 -900 188.75

7 shop1_2 -900 343.83

8 shop2_2 -1450 360.83

9 f1_mar_1 . -127.90

10 f1_apr_1 . -79.25

11 f1_may_1 . -94.25

12 f2_mar_1 . -88.00

13 f2_apr_1 . -90.25

14 f2_may_1 . -110.25

15 f1_mar_2 . -263.06

16 f1_apr_2 . -188.85

17 f1_may_2 . -131.19

18 f2_mar_2 . -182.00

19 f2_apr_2 . -198.36

20 f2_may_2 . -128.23

The log is displayed in Output 7.8.2.

318 F Chapter 7: The Linear Programming Solver

Output 7.8.2 OPTMODEL Log

NOTE: There were 8 observations read from the data set WORK.NODE0.

NOTE: There were 64 observations read from the data set WORK.ARC0.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 64 variables (0 free, 0 fixed).

NOTE: The problem has 20 linear constraints (4 LE, 16 EQ, 0 GE, 0 range).

NOTE: The problem has 128 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The OPTMODEL presolver is disabled for linear problems.

NOTE: The LP presolver value AUTOMATIC is applied.

NOTE: The LP presolver removed 0 variables and 0 constraints.

NOTE: The LP presolver removed 0 constraint coefficients.

NOTE: The presolved problem has 64 variables, 20 constraints, and 128

 constraint coefficients.

NOTE: The LP solver is called.

NOTE: The Dual Simplex algorithm is used.

 Objective

 Phase Iteration Value Time

 D 1 1 0.000000E+00 0

 D 2 2 -4.020320E+06 0

 D 2 32 -1.281110E+06 0

NOTE: Optimal.

NOTE: Objective = -1281110.35.

NOTE: The Dual Simplex solve time is 0.00 seconds.

NOTE: The data set WORK.ARC1 has 64 observations and 16 variables.

NOTE: The data set WORK.NODE2 has 20 observations and 3 variables.

NOTE: The PROCEDURE OPTMODEL printed pages 13-14.

Example 7.9: Migration to OPTMODEL: Shortest Path
The following example shows how to use PROC OPTMODEL to solve the example “Shortest Path Problem”
in Chapter 5, “The NETFLOW Procedure” (SAS/OR User’s Guide: Mathematical Programming Legacy
Procedures). The input data set is the same as in that example.

title 'Shortest Path Problem';
title2 'How to get Hawaiian Pineapples to a London Restaurant';

data aircost1;
input ffrom&$13. tto&$15. _cost_;
datalines;

Honolulu Chicago 105
Honolulu San Francisco 75
Honolulu Los Angeles 68
Chicago Boston 45
Chicago New York 56
San Francisco Boston 71
San Francisco New York 48
San Francisco Atlanta 63
Los Angeles New York 44

Example 7.9: Migration to OPTMODEL: Shortest Path F 319

Los Angeles Atlanta 57
Boston Heathrow London 88
New York Heathrow London 65
Atlanta Heathrow London 76
;

The following PROC OPTMODEL statements read the data sets, build the linear programming model, solve
the model, and output the optimal solution to a SAS data set called SPATH:

proc optmodel;
str sourcenode = 'Honolulu';
str sinknode = 'Heathrow London';

set <str> NODES;
num _supdem_ {i in NODES} = (if i = sourcenode then 1

else if i = sinknode then -1 else 0);

set <str,str> ARCS;
num _lo_ {ARCS} init 0;
num _capac_ {ARCS} init .;
num _cost_ {ARCS};
read data aircost1 into ARCS=[ffrom tto] _cost_;
NODES = (union {<i,j> in ARCS} {i,j});

var Flow {<i,j> in ARCS} >= _lo_[i,j];
min obj = sum {<i,j> in ARCS} _cost_[i,j] * Flow[i,j];
con balance {i in NODES}: sum {<(i),j> in ARCS} Flow[i,j]

- sum {<j,(i)> in ARCS} Flow[j,i] = _supdem_[i];
solve;

num _supply_ {<i,j> in ARCS} =
(if _supdem_[i] ne 0 then _supdem_[i] else .);

num _demand_ {<i,j> in ARCS} =
(if _supdem_[j] ne 0 then -_supdem_[j] else .);

num _fcost_ {<i,j> in ARCS} = _cost_[i,j] * Flow[i,j].sol;

create data spath from [ffrom tto]
cost _capac_ _lo_ _supply_ _demand_ _flow_=Flow _fcost_
rcost=(if Flow[ffrom,tto].rc ne 0 then Flow[ffrom,tto].rc else .)
status=Flow.status;

quit;

The statements use both single-dimensional (NODES) and multiple-dimensional (ARCS) index sets. The
ARCS index set is populated from the ffrom and tto data set variables in the READ DATA statement. To solve
a shortest path problem, you solve a minimum-cost network flow problem that has a supply of one unit at
the source node, a demand of one unit at the sink node, and zero supply or demand at all other nodes, as
specified in the declaration of the _SUPDEM_ numeric parameter. The SPATH output data set contains most
of the same information as in the PROC NETFLOW example, including reduced cost and basis status. The
ANUMB and _TNUMB_ values do not apply here.

320 F Chapter 7: The Linear Programming Solver

The PROC PRINT statements are similar to the PROC NETFLOW example:

proc print data=spath;
sum _fcost_;

run;

The output is displayed in Output 7.9.1.

Output 7.9.1 Output Data Set

Obs ffrom tto _cost_ _capac_ _lo_ _supply_ _demand_ _flow_ _fcost_ _rcost_ _status_

1 Honolulu Chicago 105 . 0 1 . 0 0 . B

2 Honolulu San Francisco 75 . 0 1 . 0 0 . B

3 Honolulu Los Angeles 68 . 0 1 . 1 68 . B

4 Chicago Boston 45 . 0 . . 0 0 61 L

5 Chicago New York 56 . 0 . . 0 0 49 L

6 San Francisco Boston 71 . 0 . . 0 0 57 L

7 San Francisco New York 48 . 0 . . 0 0 11 L

8 San Francisco Atlanta 63 . 0 . . 0 0 37 L

9 Los Angeles New York 44 . 0 . . 1 44 . B

10 Los Angeles Atlanta 57 . 0 . . 0 0 24 L

11 Boston Heathrow London 88 . 0 . 1 0 0 . B

12 New York Heathrow London 65 . 0 . 1 1 65 . B

13 Atlanta Heathrow London 76 . 0 . 1 0 0 . B

177

The log is displayed in Output 7.9.2.

Output 7.9.2 OPTMODEL Log

NOTE: There were 13 observations read from the data set WORK.AIRCOST1.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 13 variables (0 free, 0 fixed).

NOTE: The problem has 8 linear constraints (0 LE, 8 EQ, 0 GE, 0 range).

NOTE: The problem has 26 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The OPTMODEL presolver is disabled for linear problems.

NOTE: The problem is a pure network instance. The ALGORITHM=NETWORK option is

 recommended for solving problems with this structure.

NOTE: The LP presolver value AUTOMATIC is applied.

NOTE: The LP presolver removed all variables and constraints.

NOTE: Optimal.

NOTE: Objective = 177.

NOTE: The data set WORK.SPATH has 13 observations and 11 variables.

NOTE: The PROCEDURE OPTMODEL printed pages 16-17.

References F 321

References

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows: Theory, Algorithms, and Applications.
Englewood Cliffs, NJ: Prentice-Hall.

Andersen, E. D., and Andersen, K. D. (1995). “Presolving in Linear Programming.” Mathematical
Programming 71:221–245.

Dantzig, G. B. (1963). Linear Programming and Extensions. Princeton, NJ: Princeton University Press.

Forrest, J. J., and Goldfarb, D. (1992). “Steepest-Edge Simplex Algorithms for Linear Programming.”
Mathematical Programming 5:1–28.

Gondzio, J. (1997). “Presolve Analysis of Linear Programs Prior to Applying an Interior Point Method.”
INFORMS Journal on Computing 9:73–91.

Harris, P. M. J. (1973). “Pivot Selection Methods in the Devex LP Code.” Mathematical Programming
57:341–374.

Maros, I. (2003). Computational Techniques of the Simplex Method. Boston: Kluwer Academic.

Subject Index

algorithm, 260

basis, 264

concurrent LP, 272
constraint status

LP solver, 273

decomposition algorithm
LP solver, 265

dualization, 261

feasibility tolerance, 262

IIS option
OPTMODEL procedure, LP solver, 274

irreducible infeasible set
OPTMODEL procedure, LP solver, 274

iteration log
crossover algorithm, 271
interior point algorithm, 271
LP solver, 269–271
network simplex algorithm, 270
primal and dual simplex algorithms, 269

linear programming, see also OPTMODEL procedure
LP solver

concurrent LP, 272
constraint status, 273
iteration log, 269–271
problem statistics, 272
variable status, 273

LP solver examples
diet problem, 278
finding an irreducible infeasible set, 292
generalized networks, 303
maximum flow, 307
production, inventory, distribution, 310
shortest path, 318
two-person zero-sum game, 289
using the network simplex algorithm, 295

macro variable
OROPTMODEL, 275

migration to PROC OPTMODEL
from PROC NETFLOW, 303, 307, 310, 318

OPTMODEL procedure
dualization, 261

OPTMODEL procedure, LP solver

algorithm2, 261
basis, 264
feasibility tolerance, 262
functional summary, 259
IIS option, 274
introductory example, 256
macro variable _OROPTMODEL_, 275
network simplex algorithm, 266
preprocessing, 261
presolver, 261
pricing, 264
queue size, 264
scaling, 264
solver, 260

OROPTMODEL macro variable, 275

presolver, 261
pricing, 264

queue size, 264

random seed, 265

scaling, 264
SOLVE WITH LP statement

crossover, 265
dual infeasibility, 265
duality gap, 265
primal infeasibility, 265

variable status
LP solver, 273

Syntax Index

ALGORITHM2= option
SOLVE WITH LP statement, 261

ALGORITHM= option
SOLVE WITH LP statement, 260

BASIS= option
SOLVE WITH LP statement, 264

CROSSOVER= option
SOLVE WITH LP statement, 265

DECOMP_MASTER=() option
SOLVE WITH LP statement, 265

DECOMP=() option
SOLVE WITH LP statement, 265

DECOMP_SUBPROB=() option
SOLVE WITH LP statement, 266

DUALIZE= option
SOLVE WITH LP statement, 261

FEASTOL= option
SOLVE WITH LP statement, 262

IIS= option
SOLVE WITH LP statement, 260

LOGFREQ= option
SOLVE WITH LP statement, 262

LOGLEVEL= option
SOLVE WITH LP statement, 262

MAXITER= option
SOLVE WITH LP statement, 262

MAXTIME= option
SOLVE WITH LP statement, 263

OPTMODEL procedure, LP solver
syntax, 259

OPTTOL= option
SOLVE WITH LP statement, 263

PRESOLVER= option
SOLVE WITH LP statement, 261

PRICETYPE= option
SOLVE WITH LP statement, 264

PRINTFREQ= option
SOLVE WITH LP statement, 262

PRINTLEVEL2= option
SOLVE WITH LP statement, 262

QUEUESIZE= option
SOLVE WITH LP statement, 264

SCALE= option
SOLVE WITH LP statement, 264

SEED= option
SOLVE WITH LP statement, 265

SOL= option
SOLVE WITH LP statement, 260

SOLVE WITH LP statement
ALGORITHM2= option, 261
ALGORITHM= option, 260
BASIS= option, 264
CROSSOVER= option, 265
DECOMP_MASTER=() option, 265
DECOMP=() option, 265
DECOMP_SUBPROB=() option, 266
DUALIZE= option, 261
FEASTOL= option, 262
IIS= option, 260
LOGFREQ= option, 262
LOGLEVEL= option, 262
MAXITER= option, 262
MAXTIME= option, 263
OPTTOL= option, 263
PRESOLVER= option, 261
PRICETYPE= option, 264
PRINTFREQ= option, 262
PRINTLEVEL2= option, 262
QUEUESIZE= option, 264
SCALE= option, 264
SEED= option, 265
SOL= option, 260
SOLVER2= option, 261
SOLVER= option, 260
STOP_DG= option, 265
STOP_DI= option, 265
STOP_PI= option, 265
TIMETYPE= option, 263

SOLVER2= option
SOLVE WITH LP statement, 261

SOLVER= option
SOLVE WITH LP statement, 260

STOP_DG= option
SOLVE WITH LP statement, 265

STOP_DI= option
SOLVE WITH LP statement, 265

STOP_PI= option

SOLVE WITH LP statement, 265

TIMETYPE= option
SOLVE WITH LP statement, 263

	The Linear Programming Solver
	Overview: LP Solver
	Getting Started: LP Solver
	Syntax: LP Solver
	Functional Summary
	LP Solver Options

	Details: LP Solver
	Presolve
	Pricing Strategies for the Primal and Dual Simplex Algorithms
	The Network Simplex Algorithm
	The Interior Point Algorithm
	Iteration Log for the Primal and Dual Simplex Algorithms
	Iteration Log for the Network Simplex Algorithm
	Iteration Log for the Interior Point Algorithm
	Iteration Log for the Crossover Algorithm
	Concurrent LP
	Parallel Processing
	Problem Statistics
	Variable and Constraint Status
	Irreducible Infeasible Set
	Macro Variable _OROPTMODEL_

	Examples: LP Solver
	Example 7.1: Diet Problem
	Example 7.2: Reoptimizing the Diet Problem Using BASIS=WARMSTART
	Example 7.3: Two-Person Zero-Sum Game
	Example 7.4: Finding an Irreducible Infeasible Set
	Example 7.5: Using the Network Simplex Algorithm
	Example 7.6: Migration to OPTMODEL: Generalized Networks
	Example 7.7: Migration to OPTMODEL: Maximum Flow
	Example 7.8: Migration to OPTMODEL: Production, Inventory, Distribution
	Example 7.9: Migration to OPTMODEL: Shortest Path

	References

	Subject Index
	Syntax Index

