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Overview: LP Procedure
The LP procedure solves linear programs, integer programs, and mixed-integer programs. It also performs
parametric programming, range analysis, and reports on solution sensitivity to changes in the right-hand-side
constants and price coefficients.

The LP procedure provides various control options and solution strategies. It also provides the functionality
to produce various kinds of intermediate and final solution information. The procedure’s interactive features
enable you to take control of the problem solving process. During linear or integer iterations, for example,
you can stop the procedure at intermediate stages and examine current results. If necessary, you can change
options or strategies and resume the execution of the procedure.

The LP procedure is used to optimize a linear function subject to linear and integer constraints. Specifically,
the LP procedure solves the general mixed-integer program of the form
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minimize cT x

subject to Ax f�;D;�g b

` � x � u

xi is integer; i 2 S

where

� A is an m � n matrix of technological coefficients

� b is an m � 1 matrix of right-hand-side (RHS) constants

� c is an n � 1 matrix of objective function coefficients

� x is an n � 1 matrix of structural variables

� l is an n � 1 matrix of lower bounds on x

� u is an n � 1 matrix of upper bounds on x

� S is a subset of the set of indices f1; : : : ; ng

Linear programs (when S is empty) are denoted by (LP). For these problems, the procedure employs the
two-phase revised simplex method, which uses the Bartels-Golub update of the LU decomposed basis matrix
to pivot between feasible solutions (Bartels 1971). In phase 1, PROC LP finds a basic feasible solution
to (LP), while in phase 2, PROC LP finds an optimal solution, xopt . The procedure implicitly handles
unrestricted variables, lower-bounded variables, upper-bounded variables, and ranges on constraints. When
no explicit lower bounds are specified, PROC LP assumes that all variables are bounded below by zero.

When a variable is specified as an integer variable, S has at least one element. The procedure then uses the
branch-and-bound technique for optimization.

The relaxed problem (the problem with no integer constraints) is solved initially using the primal algorithm
described previously. Constraints are added in defining the subsequent descendant problems in the branch-
and-bound tree. These problems are then solved using the dual simplex algorithm. Dual pivots are referred to
as phase 3 pivots.

The preprocessing option enables the procedure to identify redundant and infeasible constraints, fix variables,
and reduce the feasible region before solving a problem. For linear programs, the option often can reduce the
number of constraints and variables, leading to a quicker elapsed solution time and improved reliability. For
integer programs, it often reduces the gap between an integer program and its relaxed linear program, which
will likely lead to a reduced branch-and-bound tree and a quicker CPU time. In general, it provides users an
alternative to solving large, complicated operations research problems.

The LP procedure can also analyze the sensitivity of the solution xopt to changes in both the objective
function and the right-hand-side constants. There are three techniques available for this analysis: sensitivity
analysis, parametric programming, and range analysis. Sensitivity analysis enables you to examine the size
of a perturbation to the right-hand-side or objective vector by an arbitrary change vector for which the basis
of the current optimal solution remains optimal.

Parametric programming, on the other hand, enables you to specify the size of the perturbation beforehand
and examine how the optimal solution changes as the desired perturbation is realized. With this technique,
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the procedure pivots to maintain optimality as the right-hand-side or objective vector is perturbed beyond
the range for which the current solution is optimal. Range analysis is used to examine the range of each
right-hand-side value or objective coefficient for which the basis of the current optimal solution remains
optimal.

The LP procedure can also save both primal and dual solutions, the current tableau, and the branch-and-bound
tree in SAS data sets. This enables you to generate solution reports and perform additional analyses with the
SAS System. Although PROC LP reports solutions, this feature is particularly useful for reporting solutions
in formats tailored to your specific needs. Saving computational results in a data set also enables you to
continue executing a problem not solved because of insufficient time or other computational problems.

The LP procedure uses the Output Delivery System (ODS), a SAS subsystem that provides capabilities for
displaying and controlling the output from SAS procedures. ODS enables you to modify the headers, column
names, data formats, and layouts of the output tables in PROC LP.

There are no restrictions on the problem size in the LP procedure. The number of constraints and variables in
a problem that PROC LP can solve depends on the host platform, the available memory, and the available
disk space for utility data sets.

You can also solve LP problems by using the OPTLP procedure. The OPTLP procedure requires a linear
program to be specified using a SAS data set that adheres to the MPS format, a widely accepted format in the
optimization community. You can use the MPSOUT= option in the LP procedure to convert typical PROC
LP format data sets into MPS-format SAS data sets.

Getting Started: LP Procedure
PROC LP expects the definition of one or more linear, integer, or mixed-integer programs in an input data set.
There are two formats, a dense format and a sparse format, for this data set.

In the dense format, a model is expressed in a similar way as it is formulated. Each SAS variable corresponds
to a model’s column, and each SAS observation corresponds to a model’s row. A SAS variable in the input
data set is one of the following:

� a type variable

� an id variable

� a structural variable

� a right-hand-side variable

� a right-hand-side sensitivity analysis variable or

� a range variable



An Introductory Example F 167

The type variable tells PROC LP how to interpret the observation as a part of the mathematical programming
problem. It identifies and classifies objectives, constraints, and the rows that contain information of variables
like types, bounds, and so on. PROC LP recognizes the following keywords as values for the type variable:
MIN, MAX, EQ, LE, GE, SOSEQ, SOSLE, UNRSTRT, LOWERBD, UPPERBD, FIXED, INTEGER,
BINARY, BASIC, PRICESEN, and FREE. The values of the id variable are the names of the rows in the
model. The other variables identify and classify the columns with numerical values.

The sparse format to PROC LP is designed to enable you to specify only the nonzero coefficients in the
description of linear programs, integer programs, and mixed-integer programs. The SAS data set that
describes the sparse model must contain at least four SAS variables:

� a type variable

� a column variable

� a row variable and

� a coefficient variable

Each observation in the data set associates a type with a row or a column, or defines a coefficient or a
numerical value in the model, or both. In addition to the keywords in the dense format, PROC LP also
recognizes the keywords RHS, RHSSEN, and RANGE as values of the type variable. The values of the row
and column variables are the names of the rows and columns in the model. The values of the coefficient
variables give the coefficients or other numerical data. The SAS data set can contain multiple pairs of row
and coefficient variables. In this way, more information about the model can be specified in each observation
in the data set. See the section “Sparse Data Input Format” on page 197 for further discussion.

With both the dense and sparse formats for model specification, the observation order is not important. This
feature is particularly useful when using the sparse model input.

An Introductory Example
A simple blending problem illustrates the dense and sparse input formats and the use of PROC LP. A step
in refining crude oil into finished oil products involves a distillation process that splits crude into various
streams. Suppose there are three types of crude available: Arabian light, Arabian heavy, and Brega. These
types of crude are distilled into light naphtha, intermediate naphtha, and heating oil. These in turn are blended
into jet fuel using one of two recipes. What amounts of the three crudes maximize the profit from producing
jet fuel? A formulation to answer this question is as follows:

maximize � 175 a_light � 165 a_heavy � 205 bregaC 300 jet_1C 300 jet_2
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subject to :035 a_lightC :03 a_heavyC :045 brega D naphthal
:1 a_lightC :075 a_heavyC :135 brega D naphthai
:39 a_lightC :3 a_heavyC :43 brega D heatingo

:3 naphthaiC :7 heatingo D jet_1
:2 naphthalC :8 heatingo D jet_2

a_light � 110

a_heavy � 165

brega � 80

a_light; a_heavy; brega; naphthai;
naphthal; heatingo; jet_1; jet_2 � 0

The following data set gives the representation of this formulation. Notice that the variable names are the
structural variables, the rows are the constraints, and the coefficients are given as the values for the structural
variables.

data;
input _id_ $17.

a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2
_type_ $ _rhs_;

datalines;
profit -175 -165 -205 0 0 0 300 300 max .
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 eq 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0 eq 0
heating_o_conv .390 .300 .430 0 0 -1 0 0 eq 0
recipe_1 0 0 0 0 .3 .7 -1 0 eq 0
recipe_2 0 0 0 .2 0 .8 0 -1 eq 0
available 110 165 80 . . . . . upperbd .
;

The same model can be specified in the sparse format, as follows. This format enables you to omit the zero
coefficients.

data;
format _type_ $8. _col_ $8. _row_ $16. ;
input _type_ $ _col_ $ _row_ $ _coef_ ;
datalines;

max . profit .
eq . napha_l_conv .
eq . napha_i_conv .
eq . heating_oil_conv .
eq . recipe_1 .
eq . recipe_2 .
upperbd . available .
. a_light profit -175
. a_light napha_l_conv .035
. a_light napha_i_conv .100
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. a_light heating_oil_conv .390

. a_light available 110

. a_heavy profit -165

. a_heavy napha_l_conv .030

. a_heavy napha_i_conv .075

. a_heavy heating_oil_conv .300

. a_heavy available 165

. brega profit -205

. brega napha_l_conv .045

. brega napha_i_conv .135

. brega heating_oil_conv .430

. brega available 80

. naphthal napha_l_conv -1

. naphthal recipe_2 .2

. naphthai napha_i_conv -1

. naphthai recipe_1 .3

. heatingo heating_oil_conv -1

. heatingo recipe_1 .7

. heatingo recipe_2 .8

. jet_1 profit 300

. jet_1 recipe_1 -1

. jet_2 profit 300

. jet_2 recipe_2 -1

. _rhs_ recipe_1 0
;

Because the input order of the model into PROC LP is unimportant, this model can be specified in sparse
input in arbitrary row order. Example 4.2 in the section “Examples: LP Procedure” on page 228 demonstrates
this.

The dense and sparse forms of model input give you flexibility to generate models using the SAS language.
The dense form of the model is solved with the statements

proc lp;
run;

The sparse form is solved with the statements

proc lp sparsedata;
run;

Example 4.1 and Example 4.2 in the section “Examples: LP Procedure” on page 228 continue with this
problem.

Problem Input

As default, PROC LP uses the most recently created SAS data set as the problem input data set. However,
if you want to input the problem from a specific SAS data set, use the DATA= option. For example, if the
previous dense form data set has the name DENSE, the PROC LP statements can be written as

proc lp data=dense;
run;
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Problem Definition Statements

In the previous dense form data set, the _ID_, _TYPE_, and _RHS_ variables are special variables in PROC
LP. They stand for id variable, type variable, and right-hand-side variable. If you replace those variable
names with, for example, ROWNAME, TYPE, and RHS, you need the problem definition statements (ID,
TYPE and RHS) in PROC LP:

proc lp;
id rowname;
type type;
rhs rhs;

run;

Other special variables for the dense format are _RHSSEN_ and _RANGE_, which identify the vectors
for the right-hand-side sensitivity and range analyses. The corresponding statements are the RHSSEN and
RANGE statements. (Notice that a variable name can be identical to a statement name.)

In the same way, if you replace the variables _COL_, _ROW_, _TYPE_, and _COEF_ in the previous sparse
form data set by COLUMN, ROW, TYPE, and COEF, you need the problem definition statements (COL,
ROW, TYPE, and COEF) in PROC LP.

proc lp sparsedata;
col column;
row row;
type type;
coef coef;

run;

In the sparse form data set, the value ‘_RHS_’ under the variable _COL_ is a special column name, which
represents the model’s right-hand-side column. If you replace it by a value ‘R’, the PROC LP statements
would be

proc lp sparsedata;
rhs r;

run;

Other special column names for the sparse format are ‘_RHSSEN_’ and ‘_RANGE_’. The corresponding
statements are the RHSSEN and RANGE statements.

PROC LP is case insensitive to variable names and all character values, including the row and column names
in the sparse format. The order of the problem definition statements is not important.

For the dense format, a model’s row names appear as character values in a SAS data set. For the sparse
format, both the row and the column names of the model appear as character values in the data set. Thus,
you can put spaces or other special characters in the names. When referring to these names in the problem
definition statement or other LP statements, you must use single or double quotes around them. For example,
if you replace ‘_RHS_’ by ‘R H S’ in the previous sparse form data set, the PROC LP statements would
become
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proc lp sparsedata;
rhs "r h s";

run;

LP Options

The specifications SPARSEDATA and DATA= in the previous examples are PROC LP options. PROC LP
options include

� data set options

� display control options

� interactive control options

� preprocessing control options

� branch-and-bound control options

� sensitivity/parametric/ranging control options

� simplex algorithm control options

Interactive Processing

Interactive control options include READPAUSE, ENDPAUSE, and so forth. You can run PROC LP
interactively using those options. For example, for the blending problem example in the dense form, you can
first pause the procedure before iterations start with the READPAUSE option. The PROC LP statements are

proc lp readpause;
run;

When the procedure pauses, you run the PRINT statement to display the initial technological matrix and
see if the input is correct. Then you run the PIVOT statement to do one simplex pivot and pause. After that
you use the SHOW statement to check the current solution status. Then you apply the RESET statement
to tell the procedure to stop as soon as it finds a solution. Now you use the RUN statement to continue the
execution. When the procedure stops, you run the PRINT statement again to do a price range analysis and
QUIT the procedure. Use a SAS %PUT statement to display the contents of PROC LP’s macro variable,
_ORLP_, which contains iterations and solution information. What follows are the complete statements in
batch mode:

proc lp readpause;
run;
print matrix(,); /* display all rows and columns. */
pivot;
show status;
reset endpause;
run;
print rangeprice;
quit;
%put &_orlp_;

NOTE: You can force PROC LP to pause during iterations by using the CTRL-BREAK key.



172 F Chapter 4: The LP Procedure

An Integer Programming Example
The following is a simple mixed-integer programming problem. Details can be found in Example 4.8 in the
section “Examples: LP Procedure” on page 228.

data;
format _row_ $10.;
input _row_ $ choco gumdr ichoco igumdr _type_ $ _rhs_;
datalines;

object .25 .75 -100 -75 max .
cooking 15 40 0 0 le 27000
color 0 56.25 0 0 le 27000
package 18.75 0 0 0 le 27000
condiments 12 50 0 0 le 27000
chocolate 1 0 -10000 0 le 0
gum 0 1 0 -10000 le 0
only_one 0 0 1 1 eq 1
binary . . 1 2 binary .
;

The row with ‘binary’ type indicates that this problem is a mixed-integer program and all the integer variables
are binary. The integer values of the row set an ordering for PROC LP to pick the branching variable when
VARSELECT=PRIOR is chosen. Smaller values will have higher priorities. The _ROW_ variable here is an
alias of the _ID_ variable.

This problem can be solved with the following statements:

proc lp canselect=lifo backtrack=obj varselect=far endpause;
run;
quit;
%put &_orlp_;

The options CANSELECT=, BACKTRACK=, and VARSELECT= specify the rules for picking the next
active problem and the rule to choose the branching variable. In this example, the values LIFO, OBJ and FAR
serve as the default values, so the three options can be omitted from the PROC LP statement. The following
is the output from the %PUT statement:

STATUS=SUCCESSFUL PHASE=3 OBJECTIVE=285 P_FEAS=YES D_FEAS=YES INT_ITER=3
INT_FEAS=2 ACTIVE=0 INT_BEST=285 PHASE1_ITER=0 PHASE2_ITER=5
PHASE3_ITER=5

Preprocessing

Using the PREPROCESS= option, you can apply the preprocessing techniques to pre-solve and then solve
the preceding mixed-integer program:
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proc lp preprocess=1 endpause;
run;
quit;
%put &_orlp_;

The preprocessing statistics are written to the SAS log file as follows:

NOTE: Preprocessing 1 ...
NOTE: 2 upper bounds decreased.
NOTE: 2 coefficients reduced.
NOTE: Preprocessing 2 ...
NOTE: 2 constraints eliminated.
NOTE: Preprocessing done.

The new output _ORLP_ is as follows:

STATUS=SUCCESSFUL PHASE=3 OBJECTIVE=285 P_FEAS=YES D_FEAS=YES INT_ITER=0
INT_FEAS=1 ACTIVE=0 INT_BEST=285 PHASE1_ITER=0 PHASE2_ITER=5
PHASE3_ITER=0

In this example, the number of integer iterations (INT_ITER=) is zero, which means that the preprocessing
has reduced the gap between the relaxed linear problem and the mixed-integer program to zero.

An MPS Format to Sparse Format Conversion Example
If your model input is in MPS input format, you can convert it to the sparse input format of PROC LP using
the SAS macro function SASMPSXS. For example, if your have an MPS file called MODEL.MPS and it is
stored in the directory C:\OR on a PC, the following program can help you to convert the file and solve the
problem.

%sasmpsxs(mpsfile="c:\or\model.mps",lpdata=lp);

data;
set lp;
retain i 1;
if _type_="FREE" and i=1 then

do;
_type_="MIN";
i=0;

end;
run;

proc lp sparsedata;
run;
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In the MPS input format, all objective functions, price change rows, and free rows have the type ‘N’. The
SASMPSXS macro marks them as ‘FREE’ rows. After the conversion, you must run a DATA step to identify
the objective rows and price change rows. In this example, assume that the problem is one of minimization
and the first ‘FREE’ row is an objective row.

Syntax: LP Procedure
Below are statements used in PROC LP, listed in alphabetical order as they appear in the text that follows.

PROC LP options ;
COEF variables ;
COL variable ;
ID variable(s) ;
IPIVOT ; ;
PIVOT ; ;
PRINT options ;
QUIT options ;
RANGE variable ;
RESET options ;
RHS variables ;
RHSSEN variables ;
ROW variable(s) ;
RUN ; ;
SHOW options ;
TYPE variable ;
VAR variables ;

The TYPE, ID (or ROW), VAR, RHS, RHSSEN, and RANGE statements are used for identifying variables
in the problem data set when the model is in the dense input format. In the dense input format, a model’s
variables appear as variables in the problem data set. The TYPE, ID (or ROW), and RHS statements can be
omitted if the input data set contains variables _TYPE_, _ID_ (or _ROW_), and _RHS_; otherwise, they must
be used. The VAR statement is optional. When it is omitted, PROC LP treats all numeric variables that are
not explicitly or implicitly included in RHS, RHSSEN, and RANGE statements as structural variables. The
RHSSEN and RANGE statements are optional statements for sensitivity and range analyses. They can be
omitted if the input data set contains the _RHSSEN_ and _RANGE_ variables.

The TYPE, COL, ROW (or ID), COEF, RHS, RHSSEN, and RANGE statements are used for identifying
variables in the problem data set when the model is in the sparse input format. In the sparse input format, a
model’s rows and columns appear as observations in the problem data set. The TYPE, COL, ROW (or ID),
and COEF statements can be omitted if the input data set contains the _TYPE_ and _COL_ variables, as well
as variables beginning with the prefixes _ROW (or _ID) and _COEF. Otherwise, they must be used. The
RHS, RHSSEN, and RANGE statements identify the corresponding columns in the model. These statements
can be omitted if there are observations that contain the RHS, RHSSEN, and RANGE types or the _RHS_,
_RHSSEN_, and _RANGE_ column values.

The SHOW, RESET, PRINT, QUIT, PIVOT, IPIVOT, and RUN statements are especially useful when
executing PROC LP interactively. However, they can also be used in batch mode.
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Functional Summary
The statements and options available with PROC LP are summarized by purpose in the following table.

Table 4.1 Functional Summary

Description Statement Option

Interactive Statements:
Perform one integer pivot and pause IPIVOT
Perform one simplex pivot and pause PIVOT
Display information at current iteration PRINT
Terminate processing immediately QUIT
Reset options specified RESET
Start or resume optimization RUN
Show settings of options SHOW

Variable Lists:
Variables that contain coefficients (sparse) COEF
Variable that contains column names (sparse) COL
Alias for the ROW statement ID
Variable (column) that contains the range constant
for the dense (sparse) format

RANGE

Variables (columns) that contains RHS constants
for the dense (sparse) format

RHS

Variables (columns) that define RHS change vec-
tors for the dense (sparse) format

RHSSEN

Variable that contains names of constraints and
objective functions (names of rows) for the dense
(sparse) format

ROW

Variable that contains the type of each observation TYPE
Structural variables (dense) VAR

Data Set Options:
Active nodes input data set PROC LP ACTIVEIN=
Active nodes output data set PROC LP ACTIVEOUT=
Input data set PROC LP DATA=
Dual output data set PROC LP DUALOUT=
Primal input data set PROC LP PRIMALIN=
Primal output data set PROC LP PRIMALOUT=
Sparse format data input flag PROC LP SPARSEDATA
Tableau output data set PROC LP TABLEAUOUT=
Convert sparse or dense format input data set into
MPS-format output data set

PROC LP MPSOUT=
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Description Statement Option

Display Control Options:
Display iteration log PROC LP FLOW
Nonzero tolerance displaying PROC LP FUZZ=
Inverse of FLOW option PROC LP NOFLOW
Inverse of PARAPRINT option PROC LP NOPARAPRINT
Omit some displaying PROC LP NOPRINT
Inverse of TABLEAUPRINT PROC LP NOTABLEAUPRINT
Parametric programming displaying PROC LP PARAPRINT
Inverse of NOPRINT PROC LP PRINT
Iteration frequency of display PROC LP PRINTFREQ=
Level of display desired PROC LP PRINTLEVEL=
Display the final tableau PROC LP TABLEAUPRINT

Interactive Control Options:
Pause before displaying the solution PROC LP ENDPAUSE
Pause after first feasible solution PROC LP FEASIBLEPAUSE
Pause frequency of integer solutions PROC LP IFEASIBLEPAUSE=
Pause frequency of integer iterations PROC LP IPAUSE=
Inverse of ENDPAUSE PROC LP NOENDPAUSE
Inverse of FEASIBLEPAUSE PROC LP NOFEASIBLEPAUSE
Pause frequency of iterations PROC LP PAUSE=
Pause if within specified proximity PROC LP PROXIMITYPAUSE=
Pause after data are read PROC LP READPAUSE

Preprocessing Control Options:
Do not perform preprocessing PROC LP NOPREPROCESS
Preprocessing error tolerance PROC LP PEPSILON=
Limit preprocessing iterations PROC LP PMAXIT=
Perform preprocessing techniques PROC LP PREPROCESS

Branch-and-Bound (BB) Control Options:
Perform automatic node selection technique PROC LP AUTO
Backtrack strategy to be used PROC LP BACKTRACK=
Branch on binary variables first PROC LP BINFST
Active node selection strategy PROC LP CANSELECT=
Comprehensive node selection control parameter PROC LP CONTROL=
Backtrack related technique PROC LP DELTAIT=
Measure for pruning BB tree PROC LP DOBJECTIVE=
Integer tolerance PROC LP IEPSILON=
Limit integer iterations PROC LP IMAXIT=
Measure for pruning BB tree PROC LP IOBJECTIVE=
Order of two branched nodes in adding to BB tree PROC LP LIFOTYPE=
Inverse of AUTO PROC LP NOAUTO
Inverse of BINFST PROC LP NOBINFST
Inverse of POSTPROCESS PROC LP NOPOSTPROCESS
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Description Statement Option

Limit number of branching variables PROC LP PENALTYDEPTH=
Measure for pruning BB tree PROC LP POBJECTIVE=
Perform variables fixing technique PROC LP POSTPROCESS
Percentage used in updating WOBJECTIVE PROC LP PWOBJECTIVE=
Compression algorithm for storing active nodes PROC LP TREETYPE=
Branching variable selection strategy PROC LP VARSELECT=
Delay examination of some active nodes PROC LP WOBJECTIVE=

Sensitivity/Parametric/Ranging Control Options:
Inverse of RANGEPRICE PROC LP NORANGEPRICE
Inverse of RANGERHS PROC LP NORANGERHS
Limit perturbation of the price vector PROC LP PRICEPHI=
Range analysis on the price coefficients PROC LP RANGEPRICE
Range analysis on the RHS vector PROC LP RANGERHS
Limit perturbation of the RHS vector PROC LP RHSPHI=

Simplex Algorithm Control Options:
Use devex method PROC LP DEVEX
General error tolerance PROC LP EPSILON=
Perform goal programming PROC LP GOALPROGRAM
Largest number used in computation PROC LP INFINITY=
Reinversion frequency PROC LP INVFREQ=
Reinversion tolerance PROC LP INVTOL=
Simultaneously set MAXIT1, MAXIT2, MAXIT3
and IMAXIT values

PROC LP MAXIT=

Limit phase 1 iterations PROC LP MAXIT1=
Limit phase 2 iterations PROC LP MAXIT2=
Limit phase 3 iterations PROC LP MAXIT3=
Inverse of devex PROC LP NODEVEX
Restore basis after parametric programming PROC LP PARARESTORE
Weight of the phase 2 objective function in phase 1 PROC LP PHASEMIX=
Multiple pricing strategy PROC LP PRICETYPE=
Number of columns to subset in multiple pricing PROC LP PRICE=
Limit the number of iterations randomly selecting
each entering variable during phase 1

PROC LP RANDOMPRICEMULT=

Zero tolerance in ratio test PROC LP REPSILON=
Scaling type to be performed PROC LP SCALE=
Zero tolerance in LU decomposition PROC LP SMALL=
Time pause limit PROC LP TIME=
Control pivoting during LU decomposition PROC LP U=

RESET Statement Options:
The RESET statement supports the same options as the PROC LP statement except for
the DATA=, PRIMALIN=, and ACTIVEIN= options, and supports the following additional
options:
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Description Statement Option

New variable lower bound during phase 3 RESET LOWER=
New variable upper bound during phase 3 RESET UPPER=

PRINT Statement Options:
Display the best integer solution PRINT BEST
Display variable summary for specified columns PRINT COLUMN
Display variable summary and price sensitivity
analysis for specified columns

PRINT COLUMN / SENSITIVITY

Display variable summary for integer variables PRINT INTEGER
Display variable summary for nonzero integer vari-
ables

PRINT INTEGER_NONZEROS

Display variable summary for integer variables
with zero activity

PRINT INTEGER_ZEROS

Display submatrix for specified rows and columns PRINT MATRIX
Display formatted submatrix for specified rows
and columns

PRINT MATRIX / PICTURE

Display variable summary for continuous variables PRINT NONINTEGER
Display variable summary for nonzero continuous
variables

PRINT NONINTEGER_NONZEROS

Display variable summary for variables with
nonzero activity

PRINT NONZEROS

Display price sensitivity analysis or price paramet-
ric programming

PRINT PRICESEN

Display price range analysis PRINT RANGEPRICE
Display RHS range analysis PRINT RANGERHS
Display RHS sensitivity analysis or RHS paramet-
ric programming

PRINT RHSSEN

Display constraint summary for specified rows PRINT ROW
Display constraint summary and RHS sensitivity
analysis for specified rows

PRINT ROW / SENSITIVITY

Display solution, variable, and constraint sum-
maries

PRINT SOLUTION

Display current tableau PRINT TABLEAU
Display variables with zero activity PRINT ZEROS

SHOW Statement Options:
Display options applied SHOW OPTIONS
Display status of the current solution SHOW STATUS

QUIT Statement Option:
Save the defined output data sets and then termi-
nate PROC LP

QUIT / SAVE
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PROC LP Statement
PROC LP options ;

This statement invokes the procedure. The following options can appear in the PROC LP statement.

Data Set Options

ACTIVEIN=SAS-data-set
names the SAS data set containing the active nodes in a branch-and-bound tree that is to be used to
restart an integer program.

ACTIVEOUT=SAS-data-set
names the SAS data set in which to save the current branch-and-bound tree of active nodes.

DATA=SAS-data-set
names the SAS data set containing the problem data. If the DATA= option is not specified, PROC LP
uses the most recently created SAS data set.

DUALOUT=SAS-data-set
names the SAS data set that contains the current dual solution (shadow prices) on termination of PROC
LP. This data set contains the current dual solution only if PROC LP terminates successfully.

MPSOUT=SAS-data-set
names the SAS data set that contains converted sparse or dense format input data in MPS format.
Invoking this option directs the LP procedure to halt before attempting optimization. For more
information about the MPS-format SAS data set, see Chapter 17, “The MPS-Format SAS Data Set”
(SAS/OR User’s Guide: Mathematical Programming).

PRIMALIN=SAS-data-set
names the SAS data set that contains a feasible solution to the problem defined by the DATA= data set.
The data set specified in the PRIMALIN= option should have the same format as a data set saved using
the PRIMALOUT= option. Specifying the PRIMALIN= option is particularly useful for continuing
iteration on a problem previously attempted. It is also useful for performing sensitivity analysis on a
previously solved problem.

PRIMALOUT=SAS-data-set
names the SAS data set that contains the current primal solution when PROC LP terminates.

SPARSEDATA
tells PROC LP that the data are in the sparse input format. If this option is not specified, PROC LP
assumes that the data are in the dense input format. See the section “Sparse Data Input Format” on
page 197 for information about the sparse input format.

TABLEAUOUT=SAS-data-set
names the SAS data set in which to save the final tableau.
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Display Control Options

FLOW
requests that a journal of pivot information (the Iteration Log) be displayed after every PRINTFREQ=
iterations. This includes the names of the variables entering and leaving the basis, the reduced cost of
the entering variable, and the current objective value.

FUZZ=e
displays all numbers within e of zero as zeros. The default value is 1.0E�10.

NOFLOW
is the inverse of the FLOW option.

NOPARAPRINT
is the inverse of the PARAPRINT option.

NOPRINT
suppresses the display of the Variable, Constraint, and Sensitivity Analysis summaries. This option is
equivalent to the PRINTLEVEL=0 option.

NOTABLEAUPRINT
is the inverse of the TABLEAUPRINT option.

PARAPRINT
indicates that the solution be displayed at each pivot when performing parametric programming.

PRINT
is the inverse of the NOPRINT option.

PRINTFREQ=m
indicates that after every mth iteration, a line in the (Integer) Iteration Log be displayed. The default
value is 1.

PRINTLEVEL=i
indicates the amount of displaying that the procedure should perform.

PRINTLEVEL=-2 only messages to the SAS log are displayed

PRINTLEVEL=-1 is equivalent to NOPRINT unless the problem is infeasible. If it is infea-
sible, the infeasible rows are displayed in the Constraint Summary along
with the Infeasible Information Summary.

PRINTLEVEL=0 is identical to NOPRINT

PRINTLEVEL=1 all output is displayed

The default value is 1.

TABLEAUPRINT
indicates that the final tableau be displayed.
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Interactive Control Options

ENDPAUSE
requests that PROC LP pause before displaying the solution. When this pause occurs, you can enter
the RESET, SHOW, PRINT, RUN, and QUIT statements.

FEASIBLEPAUSE
requests that PROC LP pause after a feasible (not necessarily integer feasible) solution has been found.
At a pause, you can enter the RESET, SHOW, PRINT, PIVOT, RUN, and QUIT statements.

IFEASIBLEPAUSE=n
requests that PROC LP pause after every n integer feasible solutions. At a pause, you can enter the
RESET, SHOW, PRINT, IPIVOT, PIVOT, RUN, and QUIT statements. The default value is 99999999.

IPAUSE=n
requests that PROC LP pause after every n integer iterations. At a pause, you can enter RESET, SHOW,
PRINT, IPIVOT, PIVOT, RUN, and QUIT statements. The default value is 99999999.

NOENDPAUSE
is the inverse of the ENDPAUSE option.

NOFEASIBLEPAUSE
is the inverse of the FEASIBLEPAUSE option.

PAUSE=n
requests that PROC LP pause after every n iterations. At a pause, you can enter the RESET, SHOW,
PRINT, IPIVOT, PIVOT, RUN, and QUIT statements. The default value is 99999999.

PROXIMITYPAUSE=r
causes the procedure to pause if at least one integer feasible solution has been found and the objective
value of the current best integer solution can be determined to be within r units of the optimal integer
solution. This distance, called proximity, is also displayed on the Integer Iteration Log. Note that the
proximity is calculated using the minimum (maximum if the problem is maximization) objective value
among the nodes that remain to be explored in the branch-and-bound tree as a bound on the value
of the optimal integer solution. Following the first PROXIMITYPAUSE= pause, in order to avoid a
pause at every iteration thereafter, it is recommended that you reduce this measure through the use of a
RESET statement. Otherwise, if any other option or statement that causes the procedure to pause is
used while the PROXIMITYPAUSE= option is in effect, pause interferences may occur. When this
pause occurs, you can enter the RESET, SHOW, PRINT, IPIVOT, PIVOT, RUN, and QUIT statements.
The default value is 0.

READPAUSE
requests that PROC LP pause after the data have been read and the initial basis inverted. When this
pause occurs, you can enter the RESET, SHOW, PRINT, IPIVOT, PIVOT, RUN, and QUIT statements.

Preprocessing Control Options

NOPREPROCESS
is the inverse of the PREPROCESS option.
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PEPSILON=e
specifies a positive number close to zero. This value is an error tolerance in the preprocessing. If the
value is too small, any marginal changes may cause the preprocessing to repeat itself. However, if the
value is too large, it may alter the optimal solution or falsely claim that the problem is infeasible. The
default value is 1.0E�8.

PMAXIT=n
performs at most n preprocessings. Preprocessing repeats itself if it improves some bounds or fixes
some variables. However when a problem is large and dense, each preprocessing may take a significant
amount of CPU time. This option limits the number of preprocessings PROC LP performs. It can also
reduce the build-up of round-off errors. The default value is 100.

PREPROCESS
performs preprocessing techniques. See the section “Preprocessing” on page 205 for further discussion.

Branch-and-Bound Algorithm Control Options

AUTO, AUTO(m,n)
automatically sets and adjusts the value of the CONTROL= option. Initially, it sets CONTROL=0.70,
concentrating on finding an integer feasible solution or an upper bound. When an upper bound is found,
it sets CONTROL=0.5, concentrating on efficiency and lower bound improvement. When the number
of active problems exceeds m, it starts to gradually increase the value of the CONTROL= option to
keep the size of active problems under control. When total active problems exceed n, CONTROL=1
will keep the active problems from growing further. You can alter the automatic process by resetting
the value of the CONTROL= option interactively.

The default values of m and n are 20000 and 250000, respectively. You can change the two values
according to your computer’s space and memory capacities.

BACKTRACK=rule
specifies the rule used to choose the next active problem when backtracking is required. One of the
following can be specified:

� BACKTRACK=LIFO

� BACKTRACK=FIFO

� BACKTRACK=OBJ

� BACKTRACK=PROJECT

� BACKTRACK=PSEUDOC

� BACKTRACK=ERROR

The default value is OBJ. See the section “Integer Programming” on page 206 for further discussion.

BINFST
requests that PROC LP branch on binary variables first when integer and binary variables are present.
The reasoning behind this is that a subproblem will usually be fathomed or found integer feasible after
less than 20% of its variables have been fixed. Considering binary variables first attempts to reduce the
size of the branch-and-bound tree. It is a heuristic technique.
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CANSELECT=rule
specifies the rule used to choose the next active problem when backtracking is not required or used.
One of the following can be specified:

� CANSELECT=LIFO

� CANSELECT=FIFO

� CANSELECT=OBJ

� CANSELECT=PROJECT

� CANSELECT=PSEUDOC

� CANSELECT=ERROR

The default value is LIFO. See the section “Integer Programming” on page 206 for further discussion.

CONTROL=r
specifies a number between 0 and 1. This option combines CANSELECT= and other rules to choose
the next active problem. It takes into consideration three factors: efficiency, improving lower bounds,
and improving upper bounds. When r is close to 0, PROC LP concentrates on improving lower
bounds (upper bounds for maximization). However, the efficiency per integer iteration is usually the
worst. When r is close to 1, PROC LP concentrates on improving upper bounds (lower bounds for
maximization). In addition, the growth of active problems will be controlled and stopped at r = 1.
When its value is around 0.5, PROC LP will be in the most efficient state in terms of CPU time and
integer number of iterations. The CONTROL= option will be automatically adjusted when the AUTO
option is applied.

DELTAIT=r
is used to modify the exploration of the branch-and-bound tree. If more than r integer iterations have
occurred since the last integer solution was found, then the procedure uses the backtrack strategy in
choosing the next node to be explored. The default value is 3 times the number of integer variables.

DOBJECTIVE=r
specifies that PROC LP should discard active nodes that cannot lead to an integer solution with the
objective at least as small (or as large for maximizations) as the objective of the relaxed problem plus
(minus) r . The default value isC1.

IEPSILON=e
requests that PROC LP consider an integer variable as having an integer value if its value is within e
units of an integer. The default value is 1.0E�7.

IMAXIT=n
performs at most n integer iterations. The default value is 100.

IOBJECTIVE=r
specifies that PROC LP should discard active nodes unless the node could lead to an integer solu-
tion with the objective smaller (or larger for maximizations) than r . The default value is C1 for
minimization (�1 for maximization).
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LIFOTYPE=c
specifies the order in which to add the two newly branched active nodes to the LIFO list.

LIFOTYPE=0 add the node with minimum penalty first

LIFOTYPE=1 add the node with maximum penalty first

LIFOTYPE=2 add the node resulting from adding xi � dx
opt .k/ie first

LIFOTYPE=3 add the node resulting from adding xi � bx
opt .k/ic first

The default value is 0.

NOAUTO
is the inverse of the AUTO option.

NOBINFST
is the inverse of the BINFST option.

NOPOSTPROCESS
is the inverse of the POSTPROCESS option.

PENALTYDEPTH=m
requests that PROC LP examine m variables as branching candidates when VARSELECT=PENALTY.
If the PENALTYDEPTH= option is not specified when VARSELECT=PENALTY, then all of the
variables are considered branching candidates. The default value is the number of integer variables.
See the section “Integer Programming” on page 206 for further discussion.

POBJECTIVE=r
specifies that PROC LP should discard active nodes that cannot lead to an integer solution with
objective at least as small as oC j o j � r (at least as large as o � j o j � r for maximizations) where o
is the objective of the relaxed noninteger constrained problem. The default value isC1.

POSTPROCESS
attempts to fix binary variables globally based on the relationships among the reduced cost and objective
value of the relaxed problem and the objective value of the current best integer feasible solution.

PWOBJECTIVE=r
specifies a percentage for use in the automatic update of the WOBJECTIVE= option. If the WOBJEC-
TIVE= option is not specified in PROC LP, then when an integer feasible solution is found, the value
of the option is updated to be b + q � r where b is the best bound on the value of the optimal integer
solution and q is the current proximity. Note that for maximizations, b - q � r is used. The default
value is 0.95.

TREETYPE=i
specifies a data compression algorithm.

TREETYPE=0 no data compression

TREETYPE=1 Huffman coding compression routines

TREETYPE=2 adaptive Huffman coding compression routines

TREETYPE=3 adaptive arithmetic coding compression routines
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For IP or MIP problems, the basis and bounds information of each active node is saved to a utility file.
When the number of active nodes increases, the size of the utility file becomes larger and larger. If
PROC LP runs into a disk problem, like “disk full . . . ” or “writing failure . . . ”, you can use this option
to compress the utility file. For more information on the data compression routines, refer to Nelson
(1992). The default value is 0.

VARSELECT=rule
specifies the rule used to choose the branching variable on an integer iteration.

� VARSELECT=CLOSE

� VARSELECT=PRIOR

� VARSELECT=PSEUDOC

� VARSELECT=FAR

� VARSELECT=PRICE

� VARSELECT=PENALTY

The default value is FAR. See the section “Integer Programming” on page 206 for further discussion.

WOBJECTIVE=r
specifies that PROC LP should delay examination of active nodes that cannot lead to an integer solution
with objective at least as small (as large for maximizations) as r , until all other active nodes have been
explored. The default value isC1 for minimization (�1 for maximization).

Sensitivity/Parametric/Ranging Control Options

NORANGEPRICE
is the inverse of the RANGEPRICE option.

NORANGERHS
is the inverse of the RANGERHS option.

PRICEPHI=ˆ
specifies the limit for parametric programming when perturbing the price vector. See the section
“Parametric Programming” on page 216 for further discussion. See Example 4.5 for an illustration of
this option.

RANGEPRICE
indicates that range analysis is to be performed on the price coefficients. See the section “Range
Analysis” on page 215 for further discussion.

RANGERHS
indicates that range analysis is to be performed on the right-hand-side vector. See the section “Range
Analysis” on page 215 for further discussion.

RHSPHI=ˆ
specifies the limit for parametric programming when perturbing the right-hand-side vector. See the
section “Parametric Programming” on page 216 for further discussion.
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Simplex Algorithm Control Options

DEVEX
indicates that the devex method of weighting the reduced costs be used in pricing (Harris 1975).

EPSILON=e
specifies a positive number close to zero. It is used in the following instances:

During phase 1, if the sum of the basic artificial variables is within e of zero, the current solution is
considered feasible. If this sum is not exactly zero, then there are artificial variables within e of zero in
the current solution. In this case, a note is displayed on the SAS log.

During phase 1, if all reduced costs are � e for nonbasic variables at their lower bounds and � e
for nonbasic variables at their upper bounds and the sum of infeasibilities is greater than e, then the
problem is considered infeasible. If the maximum reduced cost is within e of zero, a note is displayed
on the SAS log.

During phase 2, if all reduced costs are � e for nonbasic variables at their lower bounds and � e for
nonbasic variables at their upper bounds, then the current solution is considered optimal.

During phases 1, 2, and 3, the EPSILON= option is also used to test if the denominator is different
from zero before performing the ratio test to determine which basic variable should leave the basis.

The default value is 1.0E�8.

GOALPROGRAM
specifies that multiple objectives in the input data set are to be treated as sequential objectives in a
goal-programming model. The value of the right-hand-side variable in the objective row gives the
priority of the objective. Lower numbers have higher priority.

INFINITY=r
specifies the largest number PROC LP uses in computation. The INFINITY= option is used to
determine when a problem has an unbounded variable value. The default value is the largest double
precision number. 1

INVFREQ=m
reinverts the current basis matrix after m major and minor iterations. The default value is 100.

INVTOL=r
reinverts the current basis matrix if the largest element in absolute value in the decomposed basis
matrix is greater than r . If after reinversion this condition still holds, then the value of the INVTOL=
option is increased by a factor of 10 and a note indicating this modification is displayed on the SAS
log. When r is frequently exceeded, this may be an indication of a numerically unstable problem. The
default value is 1000.

MAXIT=n
simultaneously sets the values of the MAXIT1=, MAXIT2=, MAXIT3=, and IMAXIT= options.

MAXIT1=n
performs at most n � 0 phase 1 iterations. The default value is 100.

1This value is system dependent.
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MAXIT2=n
performs at most n � 0 phase 2 iterations. If MAXIT2=0, then only phase 1 is entered so that on
successful termination PROC LP will have found a feasible, but not necessarily optimal, solution. The
default value is 100.

MAXIT3=n
performs at most n � 0 phase 3 iterations. All dual pivots are counted as phase 3 pivots. The default
value is 99999999.

NODEVEX
is the inverse of the DEVEX option.

PARARESTORE
indicates that following a parametric programming analysis, PROC LP should restore the basis.

PHASEMIX=r
specifies a number between 0 and 1. When the number is positive, PROC LP tries to improve the
objective function of phase 2 during phase 1. The PHASEMIX= option is a weight factor of the phase 2
objective function in phase 1. The default value is 0.

PRICE=m
specifies the number of columns to subset when multiple pricing is used in selecting the column to enter
the basis (Greenberg 1978). The type of suboptimization used is determined by the PRICETYPE=
option. See the section “Pricing” on page 204 for a description of this process.

PRICETYPE=pricetype
specifies the type of multiple pricing to be performed. If this option is specified and the PRICE= option
is not specified, then PRICE= is assumed to be 10. Valid values for the PRICETYPE= option are

� PRICETYPE=COMPLETE

� PRICETYPE=DYNAMIC

� PRICETYPE=NONE

� PRICETYPE=PARTIAL

The default value is PARTIAL. See the section “Pricing” on page 204 for a description of this process.

RANDOMPRICEMULT=r
specifies a number between 0 and 1. This option sets a limit, in phase 1, on the number of iterations
when PROC LP will randomly pick the entering variables. The limit equals r times the number of
nonbasic variables, or the number of basic variables, whichever is smaller. The default value of the
RANDOMPRICEMULT= option is 0.01.

REPSILON=e
specifies a positive number close to zero. The REPSILON= option is used in the ratio test to determine
which basic variable is to leave the basis. The default value is 1.0E�10.
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SCALE=scale
specifies the type of scaling to be used. Valid values for the SCALE= option are

� SCALE=BOTH

� SCALE=COLUMN

� SCALE=NONE

� SCALE=ROW

The default value is BOTH. See the section “Scaling” on page 205 for further discussion.

SMALL=e
specifies a positive number close to zero. Any element in a matrix with a value less than e is set to
zero. The default value is machine dependent.

TIME=t
checks at each iteration to see if t seconds have elapsed since PROC LP began. If more than t seconds
have elapsed, the procedure pauses and displays the current solution. The default value is 120 seconds.

U=r
enables PROC LP to control the choice of pivots during LU decomposition and updating the basis
matrix. The variable r should take values between EPSILON and 1.0 because small values of r bias
the algorithm toward maintaining sparsity at the expense of numerical stability and vice versa. The
more sparse the decomposed basis is, the less time each iteration takes. The default value is 0.1.

COEF Statement
COEF variables ;

For the sparse input format, the COEF statement specifies the numeric variables in the problem data set that
contain the coefficients in the model. The value of the coefficient variable in a given observation is the value
of the coefficient in the column and row specified in the COLUMN and ROW variables in that observation.
For multiple ROW variables, the LP procedure maps the ROW variables to the COEF variables on the basis
of their order in the COEF and ROW statements. There must be the same number of COEF variables as ROW
variables. If the COEF statement is omitted, the procedure looks for the default variable names that have the
prefix _COEF.

COL Statement
COL variable ;

For the sparse input format, the COL statement specifies a character variable in the problem data set that
contains the names of the columns in the model. Columns in the model are either structural variables,
right-hand-side vectors, right-hand-side change vectors, or a range vector. The COL variable must be a
character variable. If the COL statement is omitted, the LP procedure looks for the default variable name
_COL_.
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ID Statement
ID variable(s) ;

For the dense input format, the ID statement specifies a character variable in the problem data set that contains
a name for each constraint coefficients row, objective coefficients row, and variable definition row. If the ID
statement is omitted, the LP procedure looks for the default variable name, _ID_. If this variable is not in
the problem data set, the procedure assigns the default name _OBSxx_ to each row, where xx specifies the
observation number in the problem data set.

For the sparse input format, the ID statement specifies the character variables in the problem data set that
contain the names of the rows in the model. Rows in the model are one of the following types: constraints,
objective functions, bounding rows, or variable describing rows. The ID variables must be character variables.
There must be the same number of ID variables as variables specified in the COEF statement. If the ID
statement is omitted, the LP procedure looks for the default variable names having the prefix _ID.

NOTE: The ID statement is an alias for the ROW statement.

IPIVOT Statement
IPIVOT ;

The IPIVOT statement causes the LP procedure to execute one integer branch-and-bound pivot and pause. If
you use the IPIVOT statement while the PROXIMITYPAUSE= option is in effect, pause interferences may
occur. To avoid such interferences, you must either reset the PROXIMITYPAUSE value or submit IPIVOT;
RUN; instead of IPIVOT;.

PIVOT Statement
PIVOT ;

The PIVOT statement causes the LP procedure to execute one simplex pivot and pause.

PRINT Statement
PRINT options ;

The PRINT statement is useful for displaying part of a solution summary, examining intermediate tableaus,
performing sensitivity analysis, and using parametric programming. In the options, the colnames and
rownames lists can be empty, in which case the LP procedure displays tables with all columns or rows, or
both. If a column name or a row name has spaces or other special characters in it, the name must be enclosed
in single or double quotes when it appears in the argument.
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The options that can be used with this statement are as follows.

BEST
displays a Solution, Variable, and Constraint Summary for the best integer solution found.

COLUMN(colnames) / SENSITIVITY
displays a Variable Summary containing the logical and structural variables listed in the colnames
list. If the / SENSITIVITY option is included, then sensitivity analysis is performed on the price
coefficients for the listed colnames structural variables.

INTEGER
displays a Variable Summary containing only the integer variables.

INTEGER_NONZEROS
displays a Variable Summary containing only the integer variables with nonzero activity.

INTEGER_ZEROS
displays a Variable Summary containing only the integer variables with zero activity.

MATRIX(rownames,colnames) / PICTURE
displays the submatrix of the matrix of constraint coefficients defined by the rownames and colnames
lists. If the / PICTURE option is included, then the formatted submatrix is displayed. The format used
is summarized in Table 4.2.

Table 4.2 Format Summary

Condition on the Coefficient x Symbols Printed
abs(x) = 0 “ ”

0 < abs(x) < .000001 sgn(x) “Z”
.000001 � abs(x) < .00001 sgn(x) “Y”
.00001 � abs(x) < .0001 sgn(x) “X”
.0001 � abs(x) < .001 sgn(x) “W”
.001 � abs(x) < .01 sgn(x) “V”
.01 � abs(x) < .1 sgn(x) “U”
.1 � abs(x) < 1 sgn(x) “T”

abs(x) = 1 sgn(x) “1”
1 < abs(x) < 10 sgn(x) “A”

10 � abs(x) < 100 sgn(x) “B”
100 � abs(x) < 1000 sgn(x) “C”

1000 � abs(x) < 10000 sgn(x) “D”
10000 � abs(x) < 100000 sgn(x) “E”

100000 � abs(x) < 1.0E06 sgn(x) “F”

NONINTEGER
displays a Variable Summary containing only the continuous variables.

NONINTEGER_NONZEROS
displays a Variable Summary containing only the continuous variables with nonzero activity.
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NONZEROS
displays a Variable Summary containing only the variables with nonzero activity.

PRICESEN
displays the results of parametric programming for the current value of the PRICEPHI= option, the
price coefficients, and all of the price change vectors.

RANGEPRICE
performs range analysis on the price coefficients.

RANGERHS
performs range analysis on the right-hand-side vector.

RHSSEN
displays the results of parametric programming for the current value of the RHSPHI= option, the
right-hand-side coefficients, and all of the right-hand-side change vectors.

ROW(rownames) / SENSITIVITY
displays a constraint summary containing the rows listed in the rowname list. If the / SENSITIVITY
option is included, then sensitivity analysis is performed on the right-hand-side coefficients for the
listed rownames.

SOLUTION
displays the Solution Summary, including the Variable Summary and the Constraint Summary.

TABLEAU
displays the current tableau.

ZEROS
displays a Variable Summary containing only the variables with zero activity. This may be useful in
the analysis of ON/OFF, ZERO/ONE, scheduling, and assignment applications.

QUIT Statement
QUIT options ;

The QUIT statement causes the LP procedure to terminate processing immediately. No further displaying is
performed and no output data sets are created.

The QUIT/SAVE statement causes the LP procedure to save the output data sets, defined in the PROC LP
statement or in the RESET statement, and then terminate the procedure.

RANGE Statement
RANGE variable ;

For the dense input format, the RANGE statement identifies the variable in the problem data set that contains
the range coefficients. These coefficients enable you to specify the feasible range of a row. For example, if
the ith row is

aT x � bi
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and the range coefficient for this row is ri > 0, then all values of x that satisfy

bi � ri � a
T x � bi

are feasible for this row. Table 4.3 shows the bounds on a row as a function of the row type and the sign on a
nonmissing range coefficient r.

Table 4.3 Interpretation of the Range Coefficient

Bounds
r _TYPE_ Lower Upper
¤ 0 LE b � jr j b
¤ 0 GE b b C jr j

> 0 EQ b b C r

< 0 EQ b C r b

If you include a range variable in the model and have a missing value or zero for it in a constraint row, then
that constraint is treated as if no range variable had been included.

If the RANGE statement is omitted, the LP procedure assumes that the variable named _RANGE_ contains
the range coefficients.

For the sparse input format, the RANGE statement gives the name of a column in the problem data set that
contains the range constants. If the RANGE statement is omitted, then the LP procedure assumes that the
column named _RANGE_ or the column with the ‘RANGE’ keyword in the problem data set contains the
range constants.

RESET Statement
RESET options ;

The RESET statement is used to change options after the LP procedure has started execution.

All of the options that can be set in the PROC LP statement can also be reset with the RESET statement,
except for the DATA=, the PRIMALIN=, and the ACTIVEIN= options. In addition to the options available
with the PROC LP statement, the following two options can be used.

LOWER(colnames)=n;
During phase 3, this sets the lower bound on all of the structural variables listed in the colnames list to
an integer value n. This may contaminate the branch-and-bound tree. All nodes that descend from the
current problem have lower bounds that may be different from those input in the problem data set.

UPPER(colnames)=n;
During phase 3, this sets the upper bound on all of the structural variables listed in the colnames list to
an integer value n. This may contaminate the branch-and-bound tree. All nodes that descend from the
current problem have upper bounds that may be different from those input in the problem data set.

Note that the LOWER= and UPPER= options only apply to phase 3 for integer problems. Therefore,
they should only be applied once the integer iterations have started; if they are applied before then,
they will be ignored.
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RHS Statement
RHS variables ;

For the dense input format, the RHS statement identifies variables in the problem data set that contain the
right-hand-side constants of the linear program. Only numeric variables can be specified. If more than
one variable is included in the RHS statement, the LP procedure assumes that problems for several linear
programs are defined in the problem data set. A new linear program is defined for each variable in the RHS
list. If the RHS statement is omitted, the procedure assumes that a variable named _RHS_ contains the
right-hand-side constants.

For the sparse input format, the RHS statement gives the names of one or more columns in the problem
data set that are to be considered as right-hand-side constants. If the RHS statement is omitted, then the LP
procedure assumes that the column named _RHS_ or columns with the ‘RHS’ keyword in the problem data
set contain the right-hand-side constants. See the section “Sparse Data Input Format” on page 197 for further
discussion.

As default, the LP procedure assumes that the RHS constant is a zero vector for the dense and sparse input
formats.

RHSSEN Statement
RHSSEN variables ;

For the dense input format, the RHSSEN statement identifies variables in the problem data set that define
change vectors for examining the sensitivity of the optimal solution to changes in the RHS constants. If the
RHSSEN statement is omitted, then the LP procedure assumes that a variable named _RHSSEN_ contains a
right-hand-side change vector.

For the sparse input format, the RHSSEN statement gives the names of one or more columns in the problem
data set that are to be considered as change vectors. If the RHSSEN statement is omitted, then the LP
procedure assumes that the column named _RHSSEN_ or columns with the ‘RHSSEN’ keyword in the
problem data set contain the right-hand-side change vectors. For further information, see the section “Sparse
Data Input Format” on page 197, the section “Right-Hand-Side Sensitivity Analysis” on page 213, and the
section “Right-Hand-Side Parametric Programming” on page 216.

ROW Statement
ROW variable(s) ;

For the dense input format, the ROW statement specifies a character variable in the problem data set that
contains a name for each row of constraint coefficients, each row of objective coefficients and each variable
describing row. If the ROW statement is omitted, the LP procedure looks for the default variable name,
_ROW_. If there is no such variable in the problem data set, the procedure assigns the default name _OBSxx_
to each row, where xx specifies the observation number in the problem data set.

For the sparse input format, the ROW statement specifies the character variables in the problem data set that
contain the names of the rows in the model. Rows in the model are one of the following types: constraints,
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objective functions, bounding rows, or variable describing rows. The ROW variables must be character
variables. There must be the same number of ROW variables as variables specified in the COEF statement.
If the ROW statement is omitted, the LP procedure looks for the default variable names having the prefix
_ROW.

RUN Statement
RUN ;

The RUN statement causes optimization to be started or resumed.

The TITLE or OPTIONS statement should not appear between PROC LP and RUN statements.

SHOW Statement
SHOW options ;

The SHOW statement specifies that the LP procedure display either the current options or the current solution
status on the SAS log.

OPTIONS
requests that the current options be displayed on the SAS log.

STATUS
requests that the status of the current solution be displayed on the SAS log.

TYPE Statement
TYPE variable ;

The TYPE statement specifies a character variable in the problem data set that contains the type identifier
for each observation. This variable has keyword values that specify how the LP procedure should interpret
the observation. If the TYPE statement is omitted, the procedure assumes that a variable named _TYPE_
contains the type keywords.

For the dense input format, the type variable identifies the constraint and objective rows and rows that contain
information about the variables. The type variable should have nonmissing values in all observations.

For the sparse input format, the type variable identifies a model’s rows and columns. In an observation, a
nonmissing type is associated with either a row or a column. If there are many columns sharing the same type,
you can define a row of that type. Then, any nonmissing values in that row set the types of the corresponding
columns.

The following are valid values for the TYPE variable in an observation:

MIN contains the price coefficients of an objective row, for example, c
in the problem (MIP), to be minimized.

MAX contains the price coefficients of an objective row, for example, c,
to be maximized.
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EQ .D/ contains coefficients of an equality constrained row.
LE .�/ contains coefficients of an inequality, less than or equal to, con-

strained row.
GE .�/ contains coefficients of an inequality, greater than or equal to,

constrained row.
SOSEQ identifies the row as specifying a special ordered set. The variables

flagged in this row are members of a set exactly one of which
must be above its lower bound in the optimal solution. Note that
variables in this type of special ordered set must be integer.

SOSLE identifies the row as specifying a special ordered set. The variables
flagged in this row are members of a set in which only one can be
above its lower bound in the optimal solution.

UNRSTRT
UNRSTRCT

identifies those structural variables to be considered as unre-
stricted variables. These are variables for which `i D �1

and ui D C1. Any variable that has a 1 in this observation
is considered an unrestricted variable.

LOWERBD identifies lower bounds on the structural variables. If all structural
variables are to be nonnegative, that is, `i D 0, then you do not
need to include an observation with the ‘LOWERBD’ keyword
in a variable specified in the TYPE statement. Missing values
for variables in a lower-bound row indicate that the variable has
lower bound equal to zero.
NOTE: A variable with lower or upper bounds cannot be identi-
fied as unrestricted.

UPPERBD identifies upper bounds ui on the structural variables. For each
structural variable that is to have an upper bound ui D C1, the
observation must contain a missing value or the current value
of INFINITY. All other values are interpreted as upper bounds,
including 0.

FIXED identifies variables that have fixed values. A nonmissing value in
a row with ‘FIXED’ type keyword gives the constant value of that
variable.

INTEGER identifies variables that are integer-constrained. In a feasible
solution, these variables must have integer values. A missing
value in a row with ‘INTEGER’ type keyword indicates that the
variable is not integer-constrained. The value of variables in
the ‘INTEGER’ row gives an ordering to the integer-constrained
variables that is used when the VARSELECT= option equals
PRIOR.
NOTE: Every integer-constrained variable must have an upper
bound defined in a row with type ‘UPPERBD’. See the section
“Controlling the Branch-and-Bound Search” on page 209 for fur-
ther discussion.
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BINARY identifies variables that are constrained to be either 0 or 1. This is
equivalent to specifying that the variable is an integer variable and
has a lower bound of 0 and an upper bound of 1. A missing value
in a row with ‘BINARY’ type keyword indicates that the variable
is not constrained to be 0 or 1. The value of variables in the
‘BINARY’ row gives an ordering to the integer-constrained vari-
ables that is used when the VARSELECT= option equals PRIOR.
See the section “Controlling the Branch-and-Bound Search” on
page 209 for further discussion.

BASIC identifies variables that form an initial basic feasible solution.
A missing value in a row with ‘BASIC’ type indicates that the
variable is not basic.

PRICESEN identifies a vector that is used to evaluate the sensitivity of the op-
timal solution to changes in the objective function. See the section
“Price Sensitivity Analysis” on page 214 and the section “Price
Parametric Programming” on page 217 for further discussion.

FREE identifies a nonbinding constraint. Any number of FREE con-
straints can appear in a problem data set.

RHS identifies a right-hand-side column in the sparse input format.
This replaces the RHS statement. It is useful when converting the
MPS format into the sparse format of PROC LP. See the section
“Converting Standard MPS Format to Sparse Format” on page 200
for more information.

RHSSEN identifies a right-hand-side sensitivity analysis vector in the sparse
input format. This replaces the RHSSEN statement. It is useful
when converting the MPS format into the sparse format of PROC
LP. See the section “Converting Standard MPS Format to Sparse
Format” on page 200 for more information.

RANGE identifies a range vector in the sparse input format. This replaces
the RANGE statement. It is useful when converting the MPS
format into the sparse format of PROC LP. See the section “Con-
verting Standard MPS Format to Sparse Format” on page 200 for
more information.

VAR Statement
VAR variables ;

For the dense input format, the VAR statement identifies variables in the problem data set that are to be
interpreted as structural variables in the linear program. Only numeric variables can be specified. If no VAR
statement is specified, the LP procedure uses all numeric variables not included in an RHS or RHSSEN
statement as structural variables.
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Details: LP Procedure

Missing Values
The LP procedure treats missing values as missing in all rows except those that identify either upper or lower
bounds on structural variables. If the row is an upper-bound row, then the type identifier is ‘UPPERBD’ and
the LP procedure treats missing values asC1. If the row is a lower-bound row, then the type identifier is
‘LOWERBD’ and the LP procedure treats missing values as 0, except for the variables that are identified as
‘UNRSTRT’.

Dense Data Input Format
In the dense format, a model is expressed in a similar way as it is formulated. Each SAS variable corresponds
to a model’s column and each SAS observation corresponds to a model’s row. A SAS variable in the input
data set is one of the following:

� a type variable

� an id variable

� a structural variable

� a right-hand-side variable

� a right-hand-side sensitivity analysis variable

� a range variable

The type variable tells PROC LP how to interpret the observation as a part of the mathematical programming
problem. It identifies and classifies objectives, constraints, and the rows that contain information of variables
like types, bounds, and so on. PROC LP recognizes the following keywords as values for the type variable:
MIN, MAX, EQ, LE, GE, SOSEQ, SOSLE, UNRSTRT, LOWERBD, UPPERBD, FIXED, INTEGER,
BINARY, BASIC, PRICESEN, and FREE. The values of the id variable are the names of the rows in the
model. The other variables identify and classify the columns with numerical values.

The TYPE, ID (or ROW), and RHS statements can be omitted if the input data set contains variables _TYPE_,
_ID_ (or _ROW_), and _RHS_; otherwise, they must be used. The VAR statement is optional. When it is not
specified, PROC LP uses as structural variables all numeric variables not explicitly or implicitly included
in statement lists. The RHSSEN and RANGE statements are optional statements for sensitivity and range
analyses. They can be omitted if the input data set contains the _RHSSEN_ and _RANGE_ variables.

Sparse Data Input Format
The sparse format to PROC LP is designed to enable you to specify only the nonzero coefficients in the
description of linear programs, integer programs, and mixed-integer programs. The SAS data set that
describes the sparse model must contain at least four SAS variables:
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� a type variable

� a column variable

� a row variable

� a coefficient variable

Each observation in the data set associates a type with a row or column, and defines a coefficient or numerical
value in the model. The value of the type variable is a keyword that tells PROC LP how to interpret the
observation. In addition to the keywords in the dense format, PROC LP also recognizes the keywords RHS,
RHSSEN, and RANGE as values of the type variable. Table 4.5 shows the keywords that are recognized by
PROC LP and in which variables can appear in the problem data set.

The values of the row and column variables are the names of the rows and columns in the model. The values
of the coefficient variables define basic coefficients and lower and upper bounds, and identify model variables
with types BASIC, FIXED, BINARY, and INTEGER. All character values in the sparse data input format are
case insensitive.

The SAS data set can contain multiple pairs of rows and coefficient variables. In this way, more information
about the model can be specified in each observation in the data set. See Example 4.2 for details.

Table 4.5 Variable Keywords Used in the Problem Data Set

TYPE (_TYPE_) COL (_COL_)
MIN
MAX
EQ
LE
GE
SOSEQ
SOSLE
UNRSTRT
LOWERBD
UPPERBD
FIXED
INTEGER
BINARY
BASIC
PRICESEN
FREE
RHS _RHS_
RHSSEN _RHSSEN_
RANGE _RANGE_
�xxxxxxx
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Follow these rules for sparse data input:

� The order of the observations is unimportant.

� Each unique column name appearing in the COL variable defines a unique column in the model.

� Each unique row name appearing in the ROW variable defines a unique row in the model.

� The type of the row is identified when an observation in which the row name appears (in a ROW
variable) has type MIN, MAX, LE, GE, EQ, SOSLE, SOSEQ, LOWERBD, UPPERBD, UNRSTRT,
FIXED, BINARY, INTEGER, BASIC, FREE, or PRICESEN.

� The type of each row must be identified at least once. If a row is given a type more than once, the
multiple definitions must be identical.

� When there are multiple rows named in an observation (that is, when there are multiple ROW variables),
the TYPE variable applies to each row named in the observation.

� The type of a column is identified when an observation in which the column name but no row name
appears has the type LOWERBD, UPPERBD, UNRSTRT, FIXED, BINARY, INTEGER, BASIC,
RHS, RHSSEN, or RANGE. A column type can also be identified in an observation in which both
column and row names appear and the row name has one of the preceding types.

� Each column is assumed to be a structural column in the model unless the column is identified as a
right-hand-side vector, a right-hand-side change vector, or a range vector. A column can be identified
as one of these types using either the keywords RHS, RHSSEN, or RANGE in the TYPE variable,
the special column names _RHS_, _RHSSEN_, or _RANGE_, or the RHS, RHSSEN, or RANGE
statements following the PROC LP statement.

� A TYPE variable beginning with the character � causes the observation to be interpreted as a comment.

When the column names appear in the Variable Summary in the PROC LP output, they are listed in
alphabetical order. The row names appear in the order in which they appear in the problem data set.

Converting Any PROC LP Format to an MPS-Format SAS Data Set
The MPSOUT= option enables you to convert an input data set for the LP procedure into an MPS-format
SAS data set. The converted data set is readable by the OPTLP and OPTMILP procedures.

The conversion can handle both linear and mixed integer linear programs. The _TYPE_ values for sensitivity
analysis (PRICESEN), parametric programming (RHSSEN), and input basis (BASIS) are dropped. When
multiple objective rows are present, only the first row is marked as the objective row. The remaining rows are
marked as free rows. When multiple right-hand side (RHS) columns are present, only the first RHS column
is processed. Constraints with a _TYPE_ value of SOSEQ or SOSLE are ignored. The MPSOUT= option
does not output branching priorities specified for the VARSELECT=PRIOR option to a BRANCH section in
the MPS-format SAS data set.

For information about how the contents of the MPS-format SAS data set are interpreted, see Chapter 17,
“The MPS-Format SAS Data Set” (SAS/OR User’s Guide: Mathematical Programming). For examples that
demonstrate the use of the MPSOUT= option and migration to the OPTMODEL procedure, see the section
“Examples: LP Procedure” on page 228.
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Converting Standard MPS Format to Sparse Format
The MPS input format was introduced by IBM as a way of specifying data for linear and integer programs.
Before you can solve a linear program specified in the MPS input format by using the LP procedure, the data
must be converted to the sparse format of the LP procedure. If you want to solve a linear program specified
in the sparse LP format by using the OPTLP procedure, you must convert the data into an MPS-format SAS
data set. This section describes how to perform both conversions.

SASMPSXS is a SAS macro function that converts the standard MPS format to the sparse format of the LP
procedure. The following is an example of the MPS format:

NAME EXAMPLE

* THIS IS DATA FOR THE PRODUCT MIX PROBLEM.
ROWS
N PROFIT
L STAMP
L ASSEMB
L FINISH
N CHNROW
N PRICE

COLUMNS
DESK STAMP 3.00000 ASSEMB 10.00000
DESK FINISH 10.00000 PROFIT 95.00000
DESK PRICE 175.00000
CHAIR STAMP 1.50000 ASSEMB 6.00000
CHAIR FINISH 8.00000 PROFIT 41.00000
CHAIR PRICE 95.00000
CABINET STAMP 2.00000 ASSEMB 8.00000
CABINET FINISH 8.00000 PROFIT 84.00000
CABINET PRICE 145.00000
BOOKCSE STAMP 2.00000 ASSEMB 7.00000
BOOKCSE FINISH 7.00000 PROFIT 76.00000
BOOKCSE PRICE 130.00000 CHNROW 1.00000

RHS
TIME STAMP 800.00000 ASSEMB 1200.0000
TIME FINISH 800.00000

RANGES
T1 ASSEMB 900.00000

BOUNDS
UP CHAIR 75.00000
LO BOOKCSE 50.00000

ENDATA

In this example, the company tries to find an optimal product mix of four items: a DESK, a CHAIR, a
CABINET, and a BOOKCASE. Each item is processed in a stamping department (STAMP), an assembly
department (ASSEMB), and a finishing department (FINISH). The time each item requires in each department
is given in the input data. Because of resource limitations, each department has an upper limit on the time
available for processing. Furthermore, because of labor constraints, the assembly department must work at
least 300 hours. Finally, marketing tells you not to make more than 75 chairs, to make at least 50 bookcases,
and to find the range over which the selling price of a bookcase can vary without changing the optimal
product mix.
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The SASMPSXS macro function uses MPSFILE=‘FILENAME’ as an argument to read an MPS input file. It
then converts the file and saves the conversion to a default SAS data set, PROB. The FILENAME should
include the path.

Running the following statements on the preceding example

%sasmpsxs(mpsfile='filename');

proc print data=prob;
run;

produces the sparse input form of the LP procedure:

OBS _TYPE_ _COL_ _ROW1_ _COEF1_ _ROW2_ _COEF2_

1 *OW . .
2 FREE PROFIT . .
3 LE STAMP . .
4 LE ASSEMB . .
5 LE FINISH . .
6 FREE CHNROW . .
7 FREE PRICE . .
8 *OL MNS . .
9 DESK STAMP 3.0 ASSEMB 10
10 DESK FINISH 10.0 PROFIT 95
11 DESK PRICE 175.0 .
12 CHAIR STAMP 1.5 ASSEMB 6
13 CHAIR FINISH 8.0 PROFIT 41
14 CHAIR PRICE 95.0 .
15 CABINET STAMP 2.0 ASSEMB 8
16 CABINET FINISH 8.0 PROFIT 84
17 CABINET PRICE 145.0 .
18 BOOKCSE STAMP 2 ASSEMB 7
19 BOOKCSE FINISH 7 PROFIT 76
20 BOOKCSE PRICE 130 CHNROW 1
21 *HS . .
22 RHS TIME STAMP 800 ASSEMB 1200
23 RHS TIME FINISH 800 .
24 *AN ES . .
25 RANGE T1 ASSEMB 900 .
26 *OU DS . .
27 UPPERBDD CHAIR UP 75 .
28 LOWERBDD BOOKCSE LO 50 .

SASMPSXS recognizes four MPS row types: E, L, G, and N. It converts them into types EQ, LE, GE, and
FREE. Since objective rows, price change rows and free rows all share the same type N in the MPS format,
you need a DATA step to assign proper types to the objective rows and price change rows.
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data;
set prob;
if _type_='free' and _row1_='profit' then _type_='max';
if _type_='free' and _row1_='chnrow' then _type_='pricesen';

run;

proc lp sparsedata;
run;

In the MPS format, the variable types include LO, UP, FX, FR, MI, and BV. The SASMPSXS macro converts
them into types LOWERBD, UPPERBD, FIXED, UNRESTRICTED, -INFINITY, and BINARY, respectively.
Occasionally, you may need to define your own variable types, in which case, you must add corresponding
type handling entries in the SASMPSXS.SAS program and use the SAS %INCLUDE macro to include the
file at the beginning of your program. The SASMPSXS macro function can be found in the SAS sample
library. Information on the MPS format can be obtained from Murtagh (1981).

SASMPSXS can take no arguments, or it can take one or two arguments. If no arguments are present,
SASMPSXS assumes that the MPS input file has been saved to a SAS data set named RAW. The macro then
takes information from that data set and converts it into the sparse form of the LP procedure. The RAW data
set should have the following six variables:

data RAW;
infile ...;
input field1 $ 2-3 field2 $ 5-12

field3 $ 15-22 field4 25-36
field5 $ 40-47 field6 50-61;

...
run;

If the preceding MPS input data set has a name other than RAW, you can use MPSDATA=SAS-data-set as
an argument in the SASMPSXS macro function. If you want the converted sparse form data set to have a
name other than PROB, you can use LPDATA=SAS-data-set as an argument. The order of the arguments in
the SASMPSXS macro function is not important.

The Reduced Costs, Dual Activities, and Current Tableau
The evaluation of reduced costs and the dual activities is independent of problem structure. For a basic
solution, let B be the matrix composed of the basic columns of A and let N be the matrix composed of the
nonbasic columns of A. The reduced cost associated with the ith variable is

.cT
� cT

BB
�1A/i

and the dual activity of the jth row is

.cT
BB
�1/j
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The Current Tableau is a section displayed when you specify either the TABLEAUPRINT option in the
PROC LP statement or the TABLEAU option in the PRINT statement. The output contains a row for each
basic variable and a column for each nonbasic variable. In addition, there is a row for the reduced costs and a
column for the product

B�1b

This column is labeled INV(B)*R. The body of the tableau contains the matrix

B�1N

Macro Variable _ORLP_
The LP procedure defines a macro variable named _ORLP_. This variable contains a character string
that indicates the status of the procedure. It is set whenever the user gets control, at breakpoints, and at
procedure termination. The form of the _ORLP_ character string is STATUS= PHASE= OBJECTIVE=
P_FEAS= D_FEAS= INT_ITER= INT_FEAS= ACTIVE= INT_BEST= PHASE1_ITER= PHASE2_ITER=
PHASE3_ITER=. The terms are interpreted as follows:

STATUS= the status of the current solution

PHASE= the phase the procedure is in (1, 2, or 3)

OBJECTIVE= the current objective value

P_FEAS= whether the current solution is primal feasible

D_FEAS= whether the current solution is dual feasible

INT_ITER= the number of integer iterations performed

INT_FEAS= the number of integer feasible solutions found

ACTIVE= the number of active nodes in the current branch-and-bound
tree

INT_BEST= the best integer objective value found

PHASE1_ITER= the number of iterations performed in phase 1

PHASE2_ITER= the number of iterations performed in phase 2

PHASE3_ITER= the number of iterations performed in phase 3
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Table 4.7 shows the possible values for the nonnumeric terms in the string.

Table 4.7 Possible Values for Nonnumeric Terms

STATUS= P_FEAS= D_FEAS=
SUCCESSFUL YES YES
UNBOUNDED NO NO
INFEASIBLE
MAX_TIME
MAX_ITER
PIVOT
BREAK
INT_FEASIBLE
INT_INFEASIBLE
INT_MAX_ITER
PAUSE
FEASIBLEPAUSE
IPAUSE
PROXIMITYPAUSE
ACTIVE
RELAXED
FATHOMED
IPIVOT
UNSTABLE
SINGULAR
MEMORY_ERROR
IO_ERROR
SYNTAX_ERROR
SEMANTIC_ERROR
BADDATA_ERROR
UNKNOWN_ERROR

This information can be used when PROC LP is one step in a larger program that needs to identify how the
LP procedure terminated. Because _ORLP_ is a standard SAS macro variable, it can be used in the ways that
all macro variables can be used (see the SAS Guide to Macro Processing).

Pricing
PROC LP performs multiple pricing when determining which variable will enter the basis at each pivot
(Greenberg 1978). This heuristic can shorten execution time in many problems. The specifics of the multiple
pricing algorithm depend on the value of the PRICETYPE= option. However, in general, when some form of
multiple pricing is used, during the first iteration PROC LP places the PRICE= nonbasic columns yielding the
greatest marginal improvement to the objective function in a candidate list. This list identifies a subproblem
of the original. On subsequent iterations, only the reduced costs for the nonbasic variables in the candidate
list are calculated. This accounts for the potential time savings. When either the candidate list is empty or the
subproblem is optimal, a new candidate list must be identified and the process repeats. Because identification
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of the subproblem requires pricing the complete problem, an iteration in which this occurs is called a major
iteration. A minor iteration is an iteration in which only the subproblem is to be priced.

The value of the PRICETYPE= option determines the type of multiple pricing that is to be used. The types
of multiple pricing include partial suboptimization (PRICETYPE=PARTIAL), complete suboptimization
(PRICETYPE=COMPLETE), and complete suboptimization with dynamically varying the value of the
PRICE= option (PRICETYPE=DYNAMIC).

When partial suboptimization is used, in each minor iteration the nonbasic column in the subproblem yielding
the greatest marginal improvement to the objective is brought into the basis and removed from the candidate
list. The candidate list now has one less entry. At each subsequent iteration, another column from the
subproblem is brought into the basis and removed from the candidate list. When there are either no remaining
candidates or the remaining candidates do not improve the objective, the subproblem is abandoned and a
major iteration is performed. If the objective cannot be improved on a major iteration, the current solution is
optimal and PROC LP terminates.

Complete suboptimization is identical to partial suboptimization with one exception. When a nonbasic
column from the subproblem is brought into the basis, it is replaced in the candidate list by the basic column
that is leaving the basis. As a result, the candidate list does not diminish at each iteration.

When PRICETYPE=DYNAMIC, complete suboptimization is performed, but the value of the PRICE= option
changes so that the ratio of minor to major iterations is within two units of the PRICE= option.

These heuristics can shorten execution time for small values of the PRICE= option. Care should be exercised
in choosing a value from the PRICE= option because too large a value can use more time than if pricing were
not used.

Scaling
Based on the SCALE= option specified, the procedure scales the coefficients of both the constraints and objec-
tive rows before iterating. This technique can improve the numerical stability of an ill-conditioned problem.
If you want to modify the default matrix scaling used, which is SCALE=BOTH, use the SCALE=COLUMN,
SCALE=ROW, or SCALE=NONE option in the PROC LP statement. If SCALE=BOTH, the matrix coef-
ficients are scaled so that the largest element in absolute value in each row or column equals 1. They are
scaled by columns first and then by rows. If SCALE=COLUMN (ROW), the matrix coefficients are scaled so
that the largest element in absolute value in each column (row) equals 1. If SCALE=NONE, no scaling is
performed.

Preprocessing
With the preprocessing option, you can identify redundant and infeasible constraints, improve lower and
upper bounds of variables, fix variable values and improve coefficients and RHS values before solving a
problem. Preprocessing can be applied to LP, IP and MIP problems. For an LP problem, it may significantly
reduce the problem size. For an IP or MIP problem, it can often reduce the gap between the optimal solution
and the solution of the relaxed problem, which could lead to a smaller search tree in the branch-and-bound
algorithm. As a result, the CPU time may be reduced on many problems. Although there is no guarantee that
preprocessing will always yield a faster solution, it does provide a highly effective approach to solving large
and difficult problems.
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Preprocessing is especially useful when the original problem causes numerical difficulties to PROC LP. Since
preprocessing could identify redundant constraints and tighten lower and upper bounds of variables, the
reformulated problem may eliminate the numerical difficulties in practice.

When a constraint is identified as redundant, its type is marked as ‘FREE’ in the Constraint Summary. If
a variable is fixed, its type is marked as ‘FIXED’ in the Variables Summary. If a constraint is identified as
infeasible, PROC LP stops immediately and displays the constraint name in the SAS log file. This capability
sometimes gives valuable insight into the model or the formulation and helps establish if the model is
reasonable and the formulation is correct.

For a large and dense problem, preprocessing may take a longer time for each iteration. To limit the number
of preprocessings, use the PMAXIT= option. To stop any further preprocessings during the preprocessing
stage, press the CTRL-BREAK key. PROC LP will enter phase 1 at the end of the current iteration.

Integer Programming
Formulations of mathematical programs often require that some of the decision variables take only integer
values. Consider the formulation

minimize cT x

subject to Ax f�;D;�g b

` � x � u

xi is integer; i 2 S

The set of indices S identifies those variables that must take only integer values. When S does not contain all
of the integers between 1 and n, inclusive, this problem is called a mixed-integer program (MIP). Otherwise,
it is known as an integer program. Let xopt (MIP) denote an optimal solution to (MIP). An integer variable
with bounds between 0 and 1 is also called a binary variable.

Specifying the Problem

An integer or mixed-integer problem can be solved with PROC LP. To solve this problem, you must identify
the integer variables. You can do this with a row in the input data set that has the keyword ‘INTEGER’ for
the type variable. Any variable that has a nonmissing and nonzero value for this row is interpreted as an
integer variable. It is important to note that integer variables must have upper bounds explicitly defined using
the ‘UPPERBD’ keyword. The values in the ‘INTEGER’ row not only identify those variables that must be
integers, but they also give an ordering to the integer variables that can be used in the solution technique.

You can follow the same steps to identify binary variables. For the binary variables, there is no need to supply
any upper bounds.

Following the rules of sparse data input format, you can also identify individual integer or binary variables.

The Branch-and-Bound Technique

The branch-and-bound approach is used to solve integer and mixed-integer problems. The following
discussion outlines the approach and explains how to use several options to control the procedure.
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The branch-and-bound technique solves an integer program by solving a sequence of linear programs. The
sequence can be represented by a tree, with each node in the tree being identified with a linear program that
is derived from the problems on the path leading to the root of the tree. The root of the tree is identified with
a linear program that is identical to (MIP), except that S is empty. This relaxed version of (MIP), called
(LP(0)), can be written as

xopt .0/ D min cT x

subject to Ax f�;D;�g b

` � x � u

The branch-and-bound approach generates linear programs along the nodes of the tree using the following
scheme. Consider xopt .0/, the optimal solution to (LP(0)). If xopt .0/i is integer for all i 2 S , then xopt .0/

is optimal in (MIP). Suppose for some i 2 S , xopt .0/i is nonintegral. In that case, define two new problems
(LP(1)) and (LP(2)), descendants of the parent problem (LP(0)). The problem (LP(1)) is identical to (LP(0))
except for the additional constraint

xi � bx
opt .0/ic

and the problem (LP(2)) is identical to (LP(0)) except for the additional constraint

xi � dx
opt .0/ie

The notation dye means the smallest integer greater than or equal to y, and the notation byc means the largest
integer less than or equal to y. Note that the two new problems do not have xopt .0/ as a feasible solution, but
because the solution to (MIP) must satisfy one of the preceding constraints, xopt

i (MIP) must satisfy one of
the new constraints. The two problems thus defined are called active nodes in the branch-and-bound tree, and
the variable xi is called the branching variable.

Next, the algorithm chooses one of the problems associated with an active node and attempts to solve it using
the dual simplex algorithm. The problem may be infeasible, in which case the problem is dropped. If it can
be solved, and it in turn does not have an integer solution (that is, a solution for which xi is integer for all
i 2 S), then it defines two new problems. These new problems each contain all of the constraints of the
parent problems plus the appropriate additional one.

Branching continues in this manner until either there are no active nodes or an integer solution is found. When
an integer solution is found, its objective value provides a bound for the objective of (MIP). In particular, if z
is the objective value of the current best integer solution, then any active problems whose parent problem
has objective value � z can be discarded (assuming that the problem is a minimization). This can be done
because all problems that descend from this parent will also have objective value � z. This technique is
known as fathoming. When there are no active nodes remaining to be solved, the current integer solution is
optimal in (MIP). If no integer solution has been found, then (MIP) is (integer) infeasible.

It is important to realize that integer programs are NP-complete. Roughly speaking, this means that the effort
required to solve them grows exponentially with the size of the problem. For example, a problem with 10
binary variables can, in the worst case, generate 210 D 1024 nodes in the branch-and-bound tree. A problem
with 20 binary variables can, in the worst case, generate 220 D 1048576 nodes in the branch-and-bound tree.
Although the algorithm is unlikely to have to generate every single possible node, the need to explore even a
small fraction of the potential number of nodes for a large problem can be resource intensive.
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The Integer Iteration Log

To help monitor the growth of the branch-and-bound tree, the LP procedure reports on the status of each
problem that is solved. The report, displayed in the Integer Iteration Log, can be used to reconstruct the
branch-and-bound tree. Each row in the report describes the results of the attempted solution of the linear
program at a node in the tree. In the following discussion, a problem on a given line in the log is called the
current problem. The following columns are displayed in the report:

Iter identifies the number of the branch-and-bound iteration.

Problem identifies how the current problem fits in the branch-and-
bound tree.

Condition reports the result of the attempted solution of the current
problem. Values for Condition are:

� ACTIVE: The current problem was solved successfully.

� INFEASIBLE: The current problem is infeasible.

� FATHOMED: The current problem cannot lead to an
improved integer solution and therefore it is dropped.

� SINGULAR: A singular basis was encountered in at-
tempting to solve the current problem. Solution of this
relaxed problem is suspended and will be attempted
later if necessary.

� SUBOPTIMAL: The current problem has an integer
feasible solution.

Objective reports the objective value of the current problem.

Branched names the variable that is branched in subtrees defined by the
descendants of this problem.

Value gives the current value of the variable named in the column
labeled Branched.

Sinfeas gives the sum of the integer infeasibilities in the optimal
solution to the current problem.

Active reports the total number of nodes currently active in the
branch-and-bound tree.

Proximity reports the gap between the best integer solution and the
current lower (upper for maximizations) bound of all active
nodes.

To reconstruct the branch-and-bound tree from this report, consider the interpretation of iteration j. If Iter=j
and Problem=k, then the problem solved on iteration j is identical to the problem solved on iteration j k j
with an additional constraint. If k > 0, then the constraint is an upper bound on the variable named in the
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Branched column on iteration j k j. If k < 0, then the constraint is a lower bound on that variable. The value
of the bound can be obtained from the value of Value in iteration j k j as described in the previous section.

Example 4.8 in the section “Examples: LP Procedure” on page 228 shows an Integer Iteration Log in its
output.

Controlling the Branch-and-Bound Search

There are several options you can use to control branching. This is accomplished by controlling the program’s
choice of the branching variable and of the next active node. In the discussion that follows, let

fi .k/ D x
opt .k/i � bx

opt .k/ic

where xopt .k/ is the optimal solution to the problem solved in iteration k.

The CANSELECT= option directs the choice of the next active node. Valid keywords for this option include
LIFO, FIFO, OBJ, PROJECT, PSEUDOC, and ERROR. The following list describes the action that each of
these causes when the procedure must choose for solution a problem from the list of active nodes.

LIFO chooses the last problem added to the tree of active nodes. This search has the effect of a
depth-first search of the branch-and-bound tree.

FIFO chooses the first node added to the tree of active nodes. This search has the effect of a
breadth-first search of the branch-and-bound tree.

OBJ chooses the problem whose parent has the smallest (largest if the problem is a maximiza-
tion) objective value.

PROJECT chooses the problem with the largest (smallest if the problem is a maximization) projected
objective value. The projected objective value is evaluated using the sum of integer
infeasibilities, s.k/, associated with an active node (LP(k)), defined by

s.k/ D
X
i2S

minffi .k/; 1 � fi .k/g

An empirical measure of the rate of increase (decrease) in the objective value is defined as

� D .z� � z.0//=s.0/

where

� z.k/ is the optimal objective value for (LP(k))

� z� is the objective value of the current best integer solution

The projected objective value for problems (LP(k C 1)) and (LP(k C 2)) is defined as

z.k/C �s.k/
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PSEUDOC chooses the problem with the largest (least if the problem is a maximization) projected
pseudocost) The projected pseudocost is evaluated using the weighted sum of infeasibili-
ties sw.k/ associated with an active problem (LP(k)), defined by

sw.k/ D
X
i2S

minfdi .k/fi .k/; ui .k/.1 � fi .k//g

The weights ui and di are initially equal to the absolute value of the ith objective coef-
ficient and are updated at each integer iteration. They are modified by examining the
empirical marginal change in the objective as additional constraints are placed on the
variables in S along the path from (LP(0)) to a node associated with an integer feasible
solution. In particular, if the definition of problems (LP(k C 1)) and (LP(k C 2)) from
parent (LP(k)) involve the addition of constraints xi � bx

opt .k/ic and xi � dx
opt .k/ie,

respectively, and one of them is on a path to an integer feasible solution, then only one of
the following is true:

di .k/ D .z.k C 1/ � z.k//=fi .k/

ui .k/ D .z.k C 2/ � z.k//=.1 � fi .k//

Note the similarity between sw.k/ and s.k/. The weighted quantity sw.k/ accounts to
some extent for the influence of the objective function. The projected pseudocost for
problems (LP(k C 1)) and (LP(k C 2)) is defined as

zw.k/ � z.k/C sw.k/

ERROR chooses the problem with the largest error. The error associated with problems (LP(kC1))
and (LP(k C 2)) is defined as

.z� � zw.k//=.z
�
� z.k//

The BACKTRACK= option controls the search for the next problem. This option can take the same values as
the CANSELECT= option. In addition to the case outlined under the DELTAIT= option, backtracking is
required as follows based on the CANSELECT= option in effect:

� If CANSELECT=LIFO and there is no active node in the portion of the active tree currently under
exploration with a bound better than the value of WOBJECTIVE=, then the procedure must backtrack.

� If CANSELECT=FIFO, PROJECT, PSEUDOC, or ERROR and the bound corresponding to the node
under consideration is not better than the value of WOBJECTIVE=, then the procedure must backtrack.

The default value is OBJ.

The VARSELECT= option directs the choice of branching variable. Valid keywords for this option include
CLOSE, FAR, PRIOR, PSEUDOC, PRICE, and PENALTY. The following list describes the action that each
of these causes when xopt .k/, an optimal solution of problem (LP(k)), is used to define active problems
(LP(k C 1)) and (LP(k C 2)).
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CLOSE chooses as branching variable the variable xi such that i minimizes

fminffi .k/; 1 � fi .k/g j i 2 S and

IEPSILON � fi .k/ � 1 � IEPSILONg

FAR chooses as branching variable the variable xi such that i maximizes

fminffi .k/; 1 � fi .k/g j i 2 S and

IEPSILON � fi .k/ � 1 � IEPSILONg

PRIOR chooses as branching variable xi such that i 2 S , xopt .k/i is nonintegral, and variable xi

has the minimum value in the INTEGER row in the input data set. This choice for the
VARSELECT= option is recommended when you have enough insight into the model to
identify those integer variables that have the most significant effect on the objective value.

PENALTY chooses as branching variable xi such that i 2 S and a bound on the increase in the
objective of (LP(k)) (penalty) resulting from adding the constraint

xi � bx
opt .k/ic or xi � dx

opt .k/ie

is maximized. The bound is calculated without pivoting using techniques of sensitivity
analysis (Garfinkel and Nemhauser 1972). Because the cost of calculating the maximum
penalty can be large if S is large, you may want to limit the number of variables in S
for which the penalty is calculated. The penalty is calculated for PENALTYDEPTH=
variables in S .

PRICE chooses as branching variable xi such that i 2 S , xopt .k/i is nonintegral, and variable xi

has the minimum price coefficient (maximum for maximization).

PSEUDOC chooses as branching variable the variable xi such that i maximizes

fminfdifi .k/; ui .1 � fi .k//g j i 2 S and

IEPSILON � fi .k/ � 1 � IEPSILONg

The weights ui and di are initially equal to the absolute value of the ith objective co-
efficient and are updated whenever an integer feasible solution is encountered. See the
discussion on the CANSELECT= option for details on the method of updating the weights.

Customizing Search Heuristics

Often a good heuristic for searching the branch-and-bound tree of a problem can be found. You are tempted
to continue using this heuristic when the problem data changes but the problem structure remains constant.
The ability to reset procedure options interactively enables you to experiment with search techniques in an
attempt to identify approaches that perform well. Then you can easily reapply these techniques to subsequent
problems.

For example, the PIP branch-and-bound strategy (Crowder, Johnson, and Padberg 1983) describes one such
heuristic. The following program uses a similar strategy. Here, the OBJ rule (choose the active node with
least parent objective function in the case of a minimization problem) is used for selecting the next active
node to be solved until an integer feasible solution is found. Once such a solution is found, the search
procedure is changed to the LIFO rule: choose the problem most recently placed in the list of active nodes.
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proc lp canselect=obj ifeasiblepause=1;
run;

reset canselect=lifo ifeasiblepause=9999999;
run;

Further Discussion on AUTO and CONTROL= options

Consider a minimization problem. At each integer iteration, PROC LP will select a node to solve from a
pool of active nodes. The best bound strategy ( CANSELECT=OBJ) will pick the node with the smallest
projected objective value. This strategy improves the lower bound of the integer program and usually takes
fewer integer iterations. One disadvantage is that PROC LP must recalculate the inverse of the basis matrix at
almost every integer iteration; such recalculation is relatively expensive. Another disadvantage is that this
strategy does not pay attention to improving the upper bound of the integer program. Thus the number of
active nodes tends to grow rapidly if PROC LP cannot quickly find an optimal integer solution.

On the other hand, the LIFO strategy is very efficient and does not need to calculate the inverse of the basis
matrix unless the previous node is fathomed. It is a depth-first strategy so it tends to find an integer feasible
solution quickly. However, this strategy will pick nodes locally and usually will take longer integer iterations
than the best bound strategy.

There is another strategy that is often overlooked. Here it is called the best upper bound strategy. With
this strategy, each time you select an active node, instead of picking the node with the smallest projected
objective value, you select the one with the largest projected objective value. This strategy is as efficient as
the LIFO strategy. Moreover, it selects active nodes globally. This strategy tries to improve the upper bound
of the integer program by searching for new integer feasible solutions. It also fathoms active nodes quickly
and keeps the total number of active nodes below the current level. A disadvantage is that this strategy may
evaluate more nodes that do not have any potential in finding an optimal integer solution.

The best bound strategy has the advantage of improving the lower bound. The LIFO strategy has the
advantages of efficiency and finding a local integer feasible solution. The best upper bound strategy has
the advantages of keeping the size of active nodes under control and at the same time trying to identify any
potential integer feasible solution globally.

Although the best bound strategy is generally preferred, in some instances other strategies may be more
effective. For example, if you have found an integer optimal solution but you do not know it, you still have to
enumerate all possible active nodes. Then the three strategies will basically take the same number of integer
iterations after an optimal solution is found but not yet identified. Since the LIFO and best upper bound
strategies are very efficient per integer iteration, both will outperform the best bound strategy.

Since no one strategy suits all situations, a hybrid strategy has been developed to increase applicability. The
CONTROL= option combines the above three strategies naturally and provides a simple control parameter in
[0, 1] dealing with different integer programming problems and different solution situations. The AUTO
option automatically sets and adjusts the CONTROL= parameter so that you do not need to know any problem
structure or decide a node selection strategy in advance.

Since the LIFO strategy is less costly, you should use it as much as possible in the combinations. The
following process is called a diving process. Starting from an active node, apply the LIFO strategy as much
as you can until the current node becomes feasible or is fathomed, or exceeds a preset limit. During this
process, there is no inverse matrix calculation involved except for the first node. When the diving process is
over, apply one of the three strategies to select the next starting node. One set of combinations is called a
cycle.
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The control parameter r controls the frequency of the three strategies being applied and the depth of the
diving process in a cycle. It starts with a pure best bound strategy at r=0, and then gradually increases the
frequency of the diving processes and their depths as r increases. At r=0.5, one cycle contains a best bound
strategy plus a full diving process. After r=0.5, the number of the diving processes will gradually increase
in a cycle. In addition, the best upper bound strategy will join the cycle. As r continues to increase, the
frequency of the best upper bound strategy will increase. At r=1, it becomes a pure best upper bound strategy.

The AUTO option will automatically adjust the value of the CONTROL= option. At the start, it sets
CONTROL=0.7, which emphasizes finding an upper bound. After an integer feasible solution is found, it sets
CONTROL=0.5, which emphasizes efficiency and lower bound improvement. When the number of active
nodes grows over the default or user defined limit m, the number indicates that a better upper bound is needed.
The AUTO option will start to increase the value of CONTROL= from 0.5. If the size of the active nodes
continues to grow, so will the value of the CONTROL= option. When the size of active nodes reaches to the
default or user-defined limit n, CONTROL= will be set to 1. At this moment, the growth of active nodes is
stopped. When the size of active nodes reduces, AUTO will decrease the value of CONTROL= option.

You can use other strategies to improve the lower bound by setting CANSELECT= to other options.

Saving and Restoring the List of Active Nodes

The list of active nodes can be saved in a SAS data set for use at a subsequent invocation of PROC LP. The
ACTIVEOUT= option in the PROC LP statement names the data set into which the current list of active nodes
is saved when the procedure terminates due to an error termination condition. Examples of such conditions
are time limit exceeded, integer iterations exceeded, and phase 3 iterations exceeded. The ACTIVEIN=
option in the PROC LP statement names a data set that can be used to initialize the list of active nodes. To
achieve the greatest benefit when restarting PROC LP, use the PRIMALOUT= and PRIMALIN= options in
conjunction with the ACTIVEOUT= and ACTIVEIN= options. See Example 4.10 in the section “Examples:
LP Procedure” on page 228 for an illustration.

Sensitivity Analysis
Sensitivity analysis is a technique for examining the effects of changes in model parameters on the optimal
solution. The analysis enables you to examine the size of a perturbation to the right-hand-side or objective
vector by an arbitrary change vector for which the basis of the current optimal solution remains optimal.

NOTE: When sensitivity analysis is performed on integer-constrained problems, the integer variables are
fixed at the value they obtained in the integer optimal solution. Therefore, care must be used when interpreting
the results of such analyses. Care must also be taken when preprocessing is enabled, because preprocessing
usually alters the original formulation.

Right-Hand-Side Sensitivity Analysis

Consider the problem .lpr.�//:

xopt .�/ D min cT x

subject to Ax f�;D;�g b C �r

` � x � u

where r is a right-hand-side change vector.
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Let xopt .�/ denote an optimal basic feasible solution to .lpr.�//. PROC LP can be used to examine the
effects of changes in � on the solution xopt .0/ of problem .lpr.0// . For the basic solution xopt .0/, let B be
the matrix composed of the basic columns of A and let N be the matrix composed of the nonbasic columns of
A. For the basis matrix B, the basic components of xopt .0/, written as xopt .0/B , can be expressed as

xopt .0/B D B
�1.b �Nxopt .0/N /

Furthermore, because xopt .0/ is feasible,

`B � B
�1.b �Nxopt .0/N / � uB

where `B is a column vector of the lower bounds on the structural basic variables, and uB is a column vector
of the upper bounds on the structural basic variables. For each right-hand-side change vector r identified in
the RHSSEN statement, PROC LP finds an interval Œ�min; �max� such that

`B � B
�1.b C �r �Nxopt .0/N / � uB

for � 2 Œ�min; �max�. Furthermore, because changes in the right-hand side do not affect the reduced costs,
for � 2 Œ�min; �max�;

xopt .�/T D ..B�1.b C �r �Nxopt .0/N //
T ; xopt .0/TN /

is optimal in .lpr.�//.

For � D �min and � D �max , PROC LP reports the following:

� the names of the leaving variables

� the value of the optimal objective in the modified problems

� the RHS values in the modified problems

� the solution status, reduced costs and activities in the modified problems

The leaving variable identifies the basic variable xi that first reaches either the lower bound `i or the upper
bound ui as � reaches �min or �max . This is the basic variable that would leave the basis to maintain primal
feasibility. Multiple RHSSEN variables can appear in a problem data set.

Price Sensitivity Analysis

Consider the problem .lpp.�//:

xopt .�/ D min.c C �r/T x
subject to Ax f�;D;�g b

` � x � u

where r is a price change vector.

Let xopt .�/ denote an optimal basic feasible solution to .lpp.�//. PROC LP can be used to examine the
effects of changes in � on the solution xopt .0/ of problem .lpp.0//. For the basic solution xopt .0/, let B be
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the matrix composed of the basic columns of A and let N be the matrix composed of the nonbasic columns of
A. For basis matrix B, the reduced cost associated with the ith variable can be written as

rci .�/ D ..c C �r/
T
N � .c C �r/

T
BB
�1N/i

where .c C �r/N and .c C �r/B is a partition of the vector of price coefficients into nonbasic and basic
components. Because xopt .0/ is optimal in .lpp.0//, the reduced costs satisfy

rci .�/ � 0

if the nonbasic variable in column i is at its lower bound, and

rci .�/ � 0

if the nonbasic variable in column i is at its upper bound.

For each price coefficient change vector r identified with the keyword PRICESEN in the TYPE variable,
PROC LP finds an interval Œ�min; �max� such that for � 2 Œ�min; �max�,

rci .�/ � 0

if the nonbasic variable in column i is at its lower bound, and

rci .�/ � 0

if the nonbasic variable in column i is at its upper bound. Because changes in the price coefficients do not
affect feasibility, for � 2 Œ�min; �max�, xopt .�/ is optimal in .lpp.�//. For � D �min and � D �max ,
PROC LP reports the following:

� the names of entering variables

� the value of the optimal objective in the modified problems

� the price coefficients in the modified problems

� the solution status, reduced costs, and activities in the modified problems

The entering variable identifies the variable whose reduced cost first goes to zero as � reaches �min or �max .
This is the nonbasic variable that would enter the basis to maintain optimality (dual feasibility). Multiple
PRICESEN variables may appear in a problem data set.

Range Analysis
Range analysis is sensitivity analysis for specific change vectors. As with the sensitivity analysis case, care
must be used in interpreting the results of range analysis when the problem has integers or the preprocessing
option is enabled.
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Right-Hand-Side Range Analysis

The effects on the optimal solution of changes in each right-hand-side value can be studied using the
RANGERHS option in the PROC LP or RESET statement. This option results in sensitivity analysis for the
m right-hand-side change vectors specified by the columns of the m �m identity matrix.

Price Range Analysis

The effects on the optimal solution of changes in each price coefficient can be studied using the
RANGEPRICE option in the PROC LP or RESET statement. This option results in sensitivity analysis for
the n price change vectors specified by the rows of the n � n identity matrix.

Parametric Programming
Sensitivity analysis and range analysis examine how the optimal solution behaves with respect to perturbations
of model parameter values. These approaches assume that the basis at optimality is not allowed to change.
When greater flexibility is desired and a change of basis is acceptable, parametric programming can be used.

As with the sensitivity analysis case, care must be used in interpreting the results of parametric programming
when the problem has integers or the preprocessing option is enabled.

Right-Hand-Side Parametric Programming

As discussed in the section “Right-Hand-Side Sensitivity Analysis” on page 213, for each right-hand-side
change vector r, PROC LP finds an interval Œ�min; �max� such that for � 2 Œ�min; �max�;

xopt .�/T D ..B�1.b C �r �Nxopt .0/N //
T ; xopt .0/TN /

is optimal in .lpr.�// for the fixed basis B. Leaving variables that inhibit further changes in � without a
change in the basis B are associated with the quantities �min and �max . By specifying RHSPHI=ˆ in either
the PROC LP statement or the RESET statement, you can examine the solution xopt .�/ as � increases or
decreases from 0 to ˆ.

When RHSPHI=ˆ is specified, the procedure first finds the interval Œ�min; �max� as described previously.
Then, if ˆ 2 Œ�min; �max�, no further investigation is needed. However, if ˆ > �max or ˆ < �min, then
the procedure attempts to solve the new problem .lpr.ˆ//. To accomplish this, it pivots the leaving variable
out of the basis while maintaining dual feasibility. If this new solution is primal feasible in .lpr.ˆ//, no
further investigation is needed; otherwise, the procedure identifies the new leaving variable and pivots it out
of the basis, again maintaining dual feasibility. Dual pivoting continues in this manner until a solution that is
primal feasible in .lpr.ˆ// is identified. Because dual feasibility is maintained at each pivot, the .lpr.ˆ//
primal feasible solution is optimal.

At each pivot, the procedure reports on the variables that enter and leave the basis, the current range of � ,
and the objective value. When xopt .ˆ/ is found, it is displayed. If you want the solution xopt .�/ at each
pivot, then specify the PARAPRINT option in either the PROC LP or the RESET statement.
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Price Parametric Programming

As discussed in the section “Price Sensitivity Analysis” on page 214, for each price change vector r, PROC
LP finds an interval Œ�min; �max� such that for each � 2 Œ�min; �max�,

rci .�/ D ..c C �r/
T
N � .c C �r/

T
BB
�1N/i

satisfies the conditions for optimality in .lpp.�// for the fixed basis B. Entering variables that inhibit further
changes in � without a change in the basis B are associated with the quantities �min and �max . By specifying
PRICEPHI=ˆ in either the PROC LP statement or the RESET statement, you can examine the solution
xopt .�/ as � increases or decreases from 0 to ˆ.

When PRICEPHI=ˆ is specified, the procedure first finds the interval Œ�min; �max�, as described previously.
Then, if ˆ 2 Œ�min; �max�, no further investigation is needed. However, if ˆ > �max or ˆ < �min, the
procedure attempts to solve the new problem .lpp.ˆ//. To accomplish this, it pivots the entering variable
into the basis while maintaining primal feasibility. If this new solution is dual feasible in .lpp.ˆ//, no further
investigation is needed; otherwise, the procedure identifies the new entering variable and pivots it into the
basis, again maintaining primal feasibility. Pivoting continues in this manner until a solution that is dual
feasible in .lpp.ˆ// is identified. Because primal feasibility is maintained at each pivot, the .lpp.ˆ// dual
feasible solution is optimal.

At each pivot, the procedure reports on the variables that enter and leave the basis, the current range of � ,
and the objective value. When xopt .ˆ/ is found, it is displayed. If you want the solution xopt .�/ at each
pivot, then specify the PARAPRINT option in either the PROC LP or the RESET statement.

Interactive Facilities
The interactive features of the LP procedure enable you to examine intermediate results, perform sensitivity
analysis, parametric programming, and range analysis, and control the solution process.

Controlling Interactive Features

You can gain control of the LP procedure for interactive processing by setting a breakpoint or pressing the
CTRL-BREAK key combination, or when certain error conditions are encountered:

� when a feasible solution is found

� at each pivot of the simplex algorithm

� when an integer feasible solution is found

� at each integer pivot of the branch-and-bound algorithm

� after the data are read but before iteration begins

� after at least one integer feasible solution has been found which is within desirable proximity of
optimality

� after the problem has been solved but before results are displayed
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When the LP procedure pauses, you can enter any of the interactive statements RESET, PIVOT, IPIVOT,
PRINT, SHOW, QUIT, and RUN.

Breakpoints are set using the FEASIBLEPAUSE, PAUSE=, IFEASIBLEPAUSE=, IPAUSE=, PROXIMITY-
PAUSE=, READPAUSE, and ENDPAUSE options. The LP procedure displays a message on the SAS log
when it gives you control because of encountering one of these breakpoints.

During phase 1, 2, or 3, the CTRL-BREAK key pauses the LP procedure and releases the control at the
beginning of the next iteration.

The error conditions, which usually cause the LP procedure to pause, include time limit exceeded, phase 1
iterations exceeded, phase 2 iterations exceeded, phase 3 iterations exceeded, and integer iterations exceeded.
You can use the RESET statement to reset the option that caused the error condition.

The PIVOT and IPIVOT statements result in control being returned to you after a single simplex algorithm
pivot and an integer pivot. The PRINT and SHOW statements display current solution information and return
control to you. On the other hand, the QUIT statement requests that you leave the LP procedure immediately.
If you want to quit but save output data sets, then type QUIT/SAVE. The RUN statement requests the LP
procedure to continue its execution immediately.

Displaying Intermediate Results

Once you have control of the procedure, you can examine the current values of the options and the status of
the problem being solved using the SHOW statement. All displaying done by the SHOW statement goes to
the SAS log.

Details about the current status of the solution are obtained using the PRINT statement. The various display
options enable you to examine parts of the variable and constraint summaries, display the current tableau,
perform sensitivity analysis on the current solution, and perform range analysis.

Interactive Facilities in Batch Mode

All of the interactive statements can be used when processing in batch mode. This is particularly convenient
when the interactive facilities are used to combine different search strategies in solving integer problems.

Sensitivity Analysis

Two features that enhance the ability to perform sensitivity analysis need further explanation. When you
specify /SENSITIVITY in a PRINT COLUMN(colnames) statement, the LP procedure defines a new change
row to use in sensitivity analysis and parametric programming. This new change row has a +1 entry for each
variable listed in the PRINT statement. This enables you to define new change rows interactively.

When you specify /SENSITIVITY in a PRINT ROW (rownames) statement, the LP procedure defines a new
change column to use in sensitivity analysis and parametric programming. This new change column has a
+1 entry for each right-hand-side coefficient listed in the PRINT statement. This enables you to define new
change columns interactively.

In addition, you can interactively change the RHSPHI= and PRICEPHI= options using the RESET statement.
This enables you to perform parametric programming interactively.
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Memory Management
There are no restrictions on the problem size in the LP procedure. The number of constraints and variables in
a problem that PROC LP can solve depends on the host platform, the available memory, and the available
disk space for utility data sets.

Memory usage is affected by a great many factors including the density of the technological coefficient
matrix, the model structure, and the density of the decomposed basis matrix. The algorithm requires that the
decomposed basis fit completely in memory. Any additional memory is used for nonbasic columns. The
partition between the decomposed basis and the nonbasic columns is dynamic so that as the inverse grows,
which typically happens as iterations proceed, more memory is available to it and less is available for the
nonbasic columns.

The LP procedure determines the initial size of the decomposed basis matrix. If the area used is too small,
PROC LP must spend time compressing this matrix, which degrades performance. If PROC LP must
compress the decomposed basis matrix on the average more than 15 times per iteration, then the size of the
memory devoted to the basis is increased. If the work area cannot be made large enough to invert the basis, an
error return occurs. On the other hand, if PROC LP compresses the decomposed basis matrix on the average
once every other iteration, then memory devoted to the decomposed basis is decreased, freeing memory for
the nonbasic columns.

For many models, memory constraints are not a problem because both the decomposed basis and all the
nonbasic columns will have no problem fitting. However, when the models become large relative to the
available memory, the algorithm tries to adjust memory distribution in order to solve the problem. In the
worst cases, only one nonbasic column fits in memory with the decomposed basis matrix.

Problems involving memory use can occur when solving mixed-integer problems. Data associated with each
node in the branch-and-bound tree must be kept in memory. As the tree grows, competition for memory
by the decomposed basis, the nonbasic columns, and the branch-and-bound tree may become critical. If
the situation becomes critical, the procedure automatically switches to branching strategies that use less
memory. However, it is possible to reach a point where no further processing is possible. In this case, PROC
LP terminates on a memory error.

Output Data Sets
The LP procedure can optionally produce five output data sets. These are the ACTIVEOUT=, PRIMALOUT=,
DUALOUT=, TABLEAUOUT=, and MPSOUT= data sets. Each contains two variables that identify the
particular problem in the input data set. These variables are

_OBJ_ID_ identifies the objective function ID.

_RHS_ID_ identifies the right-hand-side variable.

Additionally, each data set contains other variables, which are discussed below.
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ACTIVEOUT= Data Set

The ACTIVEOUT= data set contains a representation of the current active branch-and-bound tree. You can
use this data set to initialize the branch-and-bound tree to continue iterations on an incompletely solved
problem. Each active node in the tree generates two observations in this data set. The first is a ‘LOWERBD’
observation that is used to reconstruct the lower-bound constraints on the currently described active node.
The second is an ‘UPPERBD’ observation that is used to reconstruct the upper-bound constraints on the
currently described active node. In addition to these, an observation that describes the current best integer
solution is included. The data set contains the following variables:

_STATUS_ contains the keywords LOWERBD, UPPERBD, and INTBEST for identifying the type of
observation.

_PROB_ contains the problem number for the current observation.

_OBJECT_ contains the objective value of the parent problem that generated the current observation’s
problem.

_SINFEA_ contains the sum of the integer infeasibilities of the current observation’s problem.

_PROJEC_ contains the data needed for CANSELECT=PROJECT when the branch-and-bound tree
is read using the ACTIVEIN= option.

_PSEUDO_ contains the data needed for CANSELECT=PSEUDOC when the branch-and-bound tree
is read using the ACTIVEIN= option.

INTEGER VARIABLES Integer-constrained structural variables are also included in the ACTIVEOUT=
data set. For each observation, these variables contain values for defining the active node
in the branch-and-bound tree.

PRIMALOUT= Data Set

The PRIMALOUT= data set contains the current primal solution. If the problem has integer-constrained
variables, the PRIMALOUT= data set contains the current best integer feasible solution. If none have been
found, the PRIMALOUT= data set contains the relaxed solution. In addition to _OBJ_ID_ and _RHS_ID_,
the data set contains the following variables:

_VAR_ identifies the variable name.

_TYPE_ identifies the type of the variable as specified in the input data set. Artificial variables are
labeled as type ‘ARTIFCL’.

_STATUS_ identifies whether the variable is basic, nonbasic, or at an upper bound in the current
solution.

_LBOUND_ contains the input lower bound on the variable unless the variable is integer-constrained
and an integer solution is given. In this case, _LBOUND_ contains the lower bound on
the variable needed to realize the integer solution on subsequent calls to PROC LP when
using the PRIMALIN= option.

_VALUE_ identifies the value of the variable in the current solution or the current best integer feasible
solution.

_UBOUND_ contains the input upper bound on the variable unless the variable is integer-constrained
and an integer solution is given. In this case, _UBOUND_ contains the upper bound on
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the variable needed to realize the integer solution on subsequent calls to PROC LP when
using the PRIMALIN= option.

_PRICE_ contains the input price coefficient of the variable.

_R_COST_ identifies the value of the reduced cost in the current solution. Example 4.3 in the section
“Examples: LP Procedure” on page 228 shows a typical PRIMALOUT= data set. Note
that it is necessary to include the information on objective function and right-hand side in
order to distinguish problems in multiple problem data sets.

DUALOUT= Data Set

The DUALOUT= data set contains the dual solution for the current solution. If the problem has integer-
constrained variables, the DUALOUT= data set contains the dual for the current best integer solution, if any.
Otherwise it contains the dual for the relaxed solution. In addition to _OBJ_ID_ and _RHS_ID_, it contains
the following variables:

_ROW_ID_ identifies the row or constraint name.

_TYPE_ identifies the type of the row as specified in the input data set.

_RHS_ gives the value of the right-hand side on input.

_L_RHS_ gives the lower bound for the row evaluated from the input right-hand-side value, the
TYPE of the row, and the value of the RANGE variable for the row.

_VALUE_ gives the value of the row, at optimality, excluding logical variables.

_U_RHS_ gives the upper bound for the row evaluated from the input right-hand-side value, the
TYPE of the row, and the value of the RANGE variable for the row.

_DUAL_ gives the value of the dual variable associated with the row.

TABLEAUOUT= Data Set

The TABLEAUOUT= data set contains the current tableau. Each observation, except for the first, corresponds
to a basic variable in the solution. The observation labeled R_COSTS contains the reduced costs cT

N �

cT
BB
�1N . In addition to _OBJ_ID_ and _RHS_ID_, it contains the following variables:

_BASIC_ gives the names of the basic variables in the solution.

INVB_R gives the values of B�1r , where r is the right-hand-side vector.

STRUCTURAL VARIABLES give the values in the tableau, namely B�1A .

MPSOUT= Data Set

The MPSOUT= data set contains problem data converted from a PROC LP format into an MPS-format SAS
data set. The six fields, FIELD1 to FIELD6, in the MPSOUT= data set correspond to the six columns in MPS
standard. For more information about the MPS-format SAS data set, see Chapter 17, “The MPS-Format SAS
Data Set” (SAS/OR User’s Guide: Mathematical Programming).
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Input Data Sets
In addition to the DATA= input data set, PROC LP recognizes the ACTIVEIN= and the PRIMALIN= data
sets.

ACTIVEIN= Data Set

The ACTIVEIN= data set contains a representation of the current active tree. The format is identical to that
of the ACTIVEOUT= data set.

PRIMALIN= Data Set

The format of the PRIMALIN= data set is identical to the PRIMALOUT= data set. PROC LP uses the
PRIMALIN= data set to identify variables at their upper bounds in the current solution and variables that are
basic in the current solution.

You can add observations to the end of the problem data set if they define cost (right-hand-side) sensitivity
change vectors and have PRICESEN (RHSSEN) types. This enables you to solve a problem, save the solution
in a SAS data set, and perform sensitivity analysis later. You can also use the PRIMALIN= data set to restart
problems that have not been completely solved or to which new variables have been added.

Displayed Output
The output from the LP procedure is discussed in the following six sections:

� Problem Summary

� Solution Summary including a Variable Summary and a Constraint Summary

� Infeasible Information Summary

� RHS Sensitivity Analysis Summary (the RHS Range Analysis Summary is not discussed)

� Price Sensitivity Analysis Summary (the Price Range Analysis Summary is not discussed)

� Iteration Log

For integer-constrained problems, the procedure also displays an Integer Iteration Log. The description of
this Log can be found in the section “Integer Programming” on page 206. When you request that the tableau
be displayed, the procedure displays the Current Tableau. The description of this can be found in the section
“The Reduced Costs, Dual Activities, and Current Tableau” on page 202.

A problem data set can contain a set of constraints with several right-hand sides and several objective
functions. PROC LP considers each combination of right-hand side and objective function as defining a new
linear programming problem and solves each, performing all specified sensitivity analysis on each problem.
For each problem defined, PROC LP displays a new sequence of output sections. Example 4.1 in the section
“Examples: LP Procedure” on page 228 discusses each of these elements.

The LP procedure produces the following displayed output by default.
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The Problem Summary

The problem summary includes the

� type of optimization and the name of the objective row (as identified by the ID or ROW variable)

� name of the SAS variable that contains the right-hand-side constants

� name of the SAS variable that contains the type keywords

� density of the coefficient matrix (the ratio of the number of nonzero elements to the number of total
elements) after the slack and surplus variables have been appended

� number of each type of variable in the mathematical program

� number of each type of constraint in the mathematical program

The Solution Summary

The solution summary includes the

� termination status of the procedure

� objective value of the current solution

� number of phase 1 iterations that were completed

� number of phase 2 iterations that were completed

� number of phase 3 iterations that were completed

� number of integer iterations that were completed

� number of integer feasible solutions that were found

� number of initial basic feasible variables identified

� time used in solving the problem excluding reading the data and displaying the solution

� number of inversions of the basis matrix

� current value of several of the options

The Variable Summary

The variable summary includes the

� column number associated with each structural or logical variable in the problem

� name of each structural or logical variable in the problem. (PROC LP gives the logical variables the
name of the constraint ID. If no ID variable is specified, the procedure names the logical variable
_OBSn_, where n is the observation that describes the constraint.)
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� variable’s status in the current solution. The status can be BASIC, DEGEN, ALTER, blank, LOWBD,
or UPPBD, depending upon whether the variable is a basic variable, a degenerate variable (that is, a
basic variable whose activity is at its input lower bound), a nonbasic variable that can be brought into
the basis to define an alternate optimal solution, a nonbasic variable at its default lower bound 0, a
nonbasic variable at its lower bound, or a nonbasic variable at its upper bound.

� type of variable (whether it is logical or structural, and, if structural, its bound type, or other value
restriction). See Example 4.1 for a list of possible types in the variable summary.

� value of the objective coefficient associated with each variable

� activity of the variable in the current solution

� variable’s reduced cost in the current solution

The Constraint Summary

The constraint summary includes the

� constraint row number and its ID

� kind of constraint (whether it is an OBJECTIVE, LE, EQ, GE, RANGELE, RANGEEQ, RANGEGE,
or FREE row)

� number of the slack or surplus variable associated with the constraint row

� value of the right-hand-side constant associated with the constraint row

� current activity of the row (excluding logical variables)

� current activity of the dual variable (shadow price) associated with the constraint row

The Infeasible Information Summary

The infeasible information summary includes the

� name of the infeasible row or variable

� current activity for the row or variable

� type of the row or variable

� value of right-hand-side constant

� name of each nonzero and nonmissing variable in the row

� activity and upper and lower bounds for the variable
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The RHS Sensitivity Analysis Summary

The RHS sensitivity analysis summary includes the

� value of �min

� leaving variable when � D �min

� objective value when � D �min

� value of �max

� leaving variable when � D �max

� objective value when � D �max

� column number and name of each logical and structural variable

� variable’s status when � 2 Œ�min; �max�

� variable’s reduced cost when � 2 Œ�min; �max�

� value of right-hand-side constant when � D �min

� activity of the variable when � D �min

� value of right-hand-side constant when � D �max

� activity of the variable when � D �max

The Price Sensitivity Analysis Summary

The price sensitivity analysis summary includes the

� value of �min

� entering variable when � D �min

� objective value when � D �min

� value of �max

� entering variable when � D �max

� objective value when � D �max

� column number and name of each logical and structural variable

� variable’s status when � 2 Œ�min; �max�

� activity of the variable when � 2 Œ�min; �max�

� price of the variable when � D �min

� variable’s reduced cost when � D �min

� price of the variable when � D �max

� variable’s reduced cost when � D �max
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The Iteration Log

The iteration log includes the

� phase number

� iteration number in each phase

� name of the leaving variable

� name of the entering variable

� variable’s reduced cost

� objective value

ODS Table and Variable Names
PROC LP assigns a name to each table it creates. You can use these names to select output tables when using
the Output Delivery System (ODS).

Table 4.9 ODS Tables Produced in PROC LP
Table Name Description Statement/Option
ProblemSummary Problem summary Default
SolutionSummary Solution summary Default
VariableSummary Variable summary Default
ConstraintSummary Constraint summary Default
IterationLog Iteration log FLOW
IntegerIterationLog Integer iteration log Default
PriceSensitivitySummary Price sensitivity analysis sum-

mary
Default, PRINT PRICESEN, or PRINT
COLUMN/SENSITIVITY

PriceActivities Price activities at �min and
�max

Default, PRINT PRICESEN, or PRINT
COLUMN/SENSITIVITY

PriceActivity Price activity at �min or �max PRICEPHI= and PARAPRINT
PriceParametricLog Price parametric program-

ming log
PRICEPHI=

PriceRangeSummary Price range analysis RANGEPRICE or PRINT RANGEPRICE
RhsSensitivitySummary RHS sensitivity analysis sum-

mary
Default, PRINT RHSSEN, or PRINT
ROW/SENSITIVITY

RhsActivities RHS activities at �min and
�max

Default, PRINT RHSSEN, or PRINT
ROW/SENSITIVITY

RhsActivity RHS activity at �min or �max RHSPHI= and PARAPRINT
RhsParametricLog RHS parametric programming

log
RHSPHI=

RhsRangeSummary RHS range analysis RANGERHS or PRINT RANGERHS
InfeasibilitySummary Infeasible row or variable sum-

mary
Default
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Table 4.9 (continued)
Table Name Description Statement/Option
InfeasibilityActivity Variable activity in an infeasi-

ble row
Default

CurrentTableau Current tableau TABLEAUPRINT or PRINT TABLEAU
Matrix Technological matrix PRINT MATRIX
MatrixPicture Technological matrix picture PRINT MATRIX/PICTURE
MatrixPictureLegend Technological matrix picture

legend
PRINT MATRIX/PICTURE

The following table lists the variable names of the preceding tables used in the ODS template of the LP
procedure.

Table 4.10 Variable Names for the ODS Tables Produced in
PROC LP

Table Name Variables
VariableSummary VarName, Status, Type, Price, Activity, ReducedCost
ConstraintSummary Row, RowName, Type, SSCol, Rhs, Activity, Dual
IterationLog Phase, Iteration, EnterVar, EnterCol, LeaveVar, LeaveCol, ReducedCost, Obj-

Value
IntegerIterationLog Iteration, Problem, Condition, Objective, Branch, Value, SumOfInfeas, Active,

Proximity
PriceActivities Col, VarName, Status, Activity, MinPrice, MinReducedCost, MaxPrice, MaxRe-

ducedCost
PriceActivity Col, VarName, Status, Activity, Price, ReducedCost
PriceParametricLog LeaveVar, LeaveCol, EnterVar, EnterCol, ObjValue, CurrentPhi
PriceRangeSummary Col, VarName, MinPrice, MinEnterVar, MinObj, MaxPrice, MaxEnterVar,

MaxObj
RhsActivities Col, VarName, Status, ReducedCost, MinRhs, MinActivity, MaxRhs, MaxActiv-

ity
RhsActivity Col, VarName, Status, ReducedCost, Rhs, Activity,
RhsParametricLog LeaveVar, LeaveCol, EnterVar, EnterCol, ObjValue, CurrentPhi
RhsRangeSummary RowName, MinRhs, MinLeaveVar, MinObj, MaxRhs, MaxLeaveVar, MaxObj
InfeasibilityActivity VarName, Coefficient, Activity, Lower, Upper

Memory Limit
The system option MEMSIZE sets a limit on the amount of memory used by the SAS System. If you do not
specify a value for this option, then the SAS System sets a default memory limit. Your operating environment
determines the actual size of the default memory limit, which is sufficient for many applications. However, to
solve most realistic optimization problems, the LP procedure might require more memory. Increasing the
memory limit can reduce the chance of an out-of-memory condition.
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NOTE: The MEMSIZE system option is not available in some operating environments. See the documentation
for your operating environment for more information.

You can specify -MEMSIZE 0 to indicate all available memory should be used, but this setting should be
used with caution. In most operating environments, it is better to specify an adequate amount of memory than
to specify -MEMSIZE 0. For example, if you are running PROC OPTLP to solve LP problems with only a
few hundred thousand variables and constraints, -MEMSIZE 500M might be sufficient to allow the procedure
to run without an out-of-memory condition. When problems have millions of variables, -MEMSIZE 1000M
or higher might be needed. These are “rules of thumb”—problems with atypical structure, density, or other
characteristics can increase the optimizer’s memory requirements.

The MEMSIZE option can be specified at system invocation, on the SAS command line, or in a configuration
file. The syntax is described in the SAS Companion book for your operating system.

To report a procedure’s memory consumption, you can use the FULLSTIMER option. The syntax is described
in the SAS Companion book for your operating system.

Examples: LP Procedure
The following examples illustrate some of the capabilities of PROC LP. These examples, together with the
other SAS/OR examples, can be found in the SAS sample library. A description of the features of PROC LP
as shown in the examples are

� Example 4.1 shows dense input format.

� Example 4.2 shows sparse input format.

� Example 4.3 uses the RANGEPRICE option to show you the range over which each objective coefficient
can vary without changing the variables in the basis.

� Example 4.4 shows more sensitivity analysis and restarting a problem.

� Example 4.5 shows parametric programming.

� Example 4.6 shows special ordered sets.

� Example 4.7 shows goal programming.

� Example 4.8 shows integer programming.

� Example 4.9 shows an infeasible problem.

� Example 4.10 shows restarting integer programs.

� Example 4.11 controls the search of the branch-and-bound tree.

� Example 4.12 shows matrix generation and report writing for an assignment problem.

� Example 4.13 shows matrix generation and report writing for a scheduling problem.

� Example 4.14 shows a multicommodity transshipment problem.
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� Example 4.15 shows migration to PROC OPTLP via the MPSOUT= option.

� Example 4.16 shows migration to PROC OPTMODEL.

� Example 4.17 shows migration to PROC OPTMODEL.

Example 4.1: An Oil Blending Problem
The blending problem presented in the introduction is a good example for demonstrating some of the features
of the LP procedure. Recall that a step in refining crude oil into finished oil products involves a distillation
process that splits crude into various streams. Suppose that there are three types of crude available: Arabian
light, Arabian heavy, and Brega. These are distilled into light naphtha, intermediate naphtha, and heating oil.
Using one of two recipes, these in turn are blended into jet fuel.

Assume that you can sell as much fuel as is produced. What production strategy maximizes the profit from jet
fuel sales? The following SAS code demonstrates a way of answering this question using linear programming.
The SAS data set is a representation of the formulation for this model given in the introductory section.

data;
input _row_ $17.

a_light a_heavy brega naphthal naphthai heatingo jet_1
jet_2 _type_ $ _rhs_;

datalines;
profit -175 -165 -205 0 0 0 300 300 max .
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 eq 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0 eq 0
heating_o_conv .390 .300 .430 0 0 -1 0 0 eq 0
recipe_1 0 0 0 0 .3 .7 -1 0 eq 0
recipe_2 0 0 0 .2 0 .8 0 -1 eq 0
available 110 165 80 . . . . . upperbd .
;

The _ROW_ variable contains the names of the rows in the model; the variables A_LIGHT to JET_2 are
the names of the structural variables in the model; the _TYPE_ variable contains the keywords that tell
the LP procedure how to interpret each row in the model; and the _RHS_ variable gives the value of the
right-hand-side constants.

The structural variables are interpreted as the quantity of each type of constituent or finished product. For
example, the value of A_HEAVY in the solution is the amount of Arabian heavy crude to buy while the
value of JET_1 in the solution is the amount of recipe 1 jet fuel that is produced. As discussed previously,
the values given in the model data set are the technological coefficients whose interpretation depends on
the model. In this example, the coefficient -175 in the PROFIT row for the variable A_LIGHT gives a cost
coefficient (because the row with _ROW_=PROFIT has _TYPE_=MAX) for the structural variable A_LIGHT.
This means that for each unit of Arabian heavy crude purchased, a cost of 175 units is incurred.

The coefficients 0.035, 0.100, and 0.390 for the A_LIGHT variable give the percentages of each unit of
Arabian light crude that is distilled into the light naphtha, intermediate naphtha, and heating oil components.
The 110 value in the row _ROW_=AVAILABLE gives the quantity of Arabian light that is available.
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PROC LP produces the following Problem Summary output. Included in the summary is an identification of
the objective, defined by the first observation of the problem data set; the right-hand-side variable, defined by
the variable _RHS_; and the type identifier, defined by the variable _TYPE_. See Output 4.1.1.

Output 4.1.1 Problem Summary for the Oil Blending Problem

The LP ProcedureThe LP Procedure

Problem Summary

Objective Function Max profit

Rhs Variable _rhs_

Type Variable _type_

Problem Density (%) 45.00

Variables Number

Non-negative 5

Upper Bounded 3

Total 8

Constraints Number

EQ 5

Objective 1

Total 6

The next section of output (Output 4.1.2) contains the Solution Summary, which indicates whether or not an
optimal solution was found. In this example, the procedure terminates successfully (with an optimal solution),
with 1544 as the value of the objective function. Also included in this section of output is the number of
phase 1 and phase 2 iterations, the number of variables used in the initial basic feasible solution, and the time
used to solve the problem. For several options specified in the PROC LP statement, the current option values
are also displayed.
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Output 4.1.2 Solution Summary for the Oil Blending Problem

The LP ProcedureThe LP Procedure

Solution Summary

Terminated Successfully

Objective Value 1544

Phase 1 Iterations 0

Phase 2 Iterations 4

Phase 3 Iterations 0

Integer Iterations 0

Integer Solutions 0

Initial Basic Feasible Variables 5

Time Used (seconds) 0

Number of Inversions 3

Epsilon 1E-8

Infinity 1.797693E308

Maximum Phase 1 Iterations 100

Maximum Phase 2 Iterations 100

Maximum Phase 3 Iterations 99999999

Maximum Integer Iterations 100

Time Limit (seconds) 120

The next section of output (Output 4.1.3) contains the Variable Summary. A line is displayed for each
variable in the mathematical program with the variable name, the status of the variable in the solution, the
type of variable, the variable’s price coefficient, the activity of the variable in the solution, and the reduced
cost for the variable. The status of a variable can be

BASIC if the variable is a basic variable in the solution.

DEGEN if the variable is a basic variable whose activity is at its input
lower bound.

ALTER if the variable is nonbasic and is basic in an alternate optimal
solution.

LOWBD if the variable is nonbasic and is at its lower bound.

UPPBD if the variable is nonbasic and is at its upper bound.
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The TYPE column shows how PROC LP interprets the variable in the problem data set. Types include the
following:

NON-NEG if the variable is a nonnegative variable with lower bound 0
and upper boundC1.

LOWERBD if the variable has a lower bound specified in a LOWERBD
observation and upper boundC1.

UPPERBD if the variable has an upper bound that is less thanC1 and
lower bound 0. This upper bound is specified in an UPPERBD
observation.

UPLOWBD if the variable has a lower bound specified in a LOWERBD
observation and an upper bound specified in an UPPERBD
observation.

INTEGER if the variable is constrained to take integer values. If this is
the case, then it must also be upper and lower bounded.

BINARY if the variable is constrained to take value 0 or 1.

UNRSTRT if the variable is an unrestricted variable having bounds of
�1 andC1.

SLACK if the variable is a slack variable that PROC LP has appended
to a LE constraint. For variables of this type, the variable
name is the same as the name of the constraint (given in
the ROW variable) for which this variable is the slack. A
nonzero slack variable indicates that the constraint is not tight.
The slack is the amount by which the right-hand side of the
constraint exceeds the left-hand side.

SURPLUS if the variable is a surplus variable that PROC LP has ap-
pended to a GE constraint. For variables of this type, the
variable name is the same as the name of the constraint (given
in the ROW variable) for which this variable is the surplus. A
nonzero surplus variable indicates that the constraint is not
tight. The surplus is the amount by which the left-hand side
of the constraint exceeds the right-hand side.

The Variable Summary gives the value of the structural variables at optimality. In this example, it tells you
how to produce the jet fuel to maximize your profit. You should buy 110 units of A_LIGHT and 80 units
of BREGA. These are used to make 7.45 units of NAPHTHAL, 21.8 units of NAPHTHAI, and 77.3 units of
HEATINGO. These in turn are used to make 60.65 units of JET_1 using recipe 1 and 63.33 units of JET_2
using recipe 2.
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Output 4.1.3 Variable Summary for the Oil Blending Problem

The LP ProcedureThe LP Procedure

Variable Summary

Col Variable Name Status Type Price Activity
Reduced

Cost

1 a_light UPPBD UPPERBD -175 110 11.6

2 a_heavy UPPERBD -165 0 -21.45

3 brega UPPBD UPPERBD -205 80 3.35

4 naphthal BASIC NON-NEG 0 7.45 0

5 naphthai BASIC NON-NEG 0 21.8 0

6 heatingo BASIC NON-NEG 0 77.3 0

7 jet_1 BASIC NON-NEG 300 60.65 0

8 jet_2 BASIC NON-NEG 300 63.33 0

The reduced cost associated with each nonbasic variable is the marginal value of that variable if it is brought
into the basis. In other words, the objective function value would (assuming no constraints were violated)
increase by the reduced cost of a nonbasic variable if that variable’s value increased by one. Similarly, the
objective function value would (assuming no constraints were violated) decrease by the reduced cost of a
nonbasic variable if that variable’s value were decreased by one. Basic variables always have a zero reduced
cost. At optimality, for a maximization problem, nonbasic variables that are not at an upper bound have
nonpositive reduced costs (for example, A_HEAVY has a reduced cost of -21.45). The objective would
decrease if they were to increase beyond their optimal values. Nonbasic variables at upper bounds have
nonnegative reduced costs, showing that increasing the upper bound (if the reduced cost is not zero) does not
decrease the objective. For a nonbasic variable at its upper bound, the reduced cost is the marginal value of
increasing its upper bound, often called its shadow price.

For minimization problems, the definition of reduced costs remains the same but the conditions for optimality
change. For example, at optimality the reduced costs of all non-upper-bounded variables are nonnegative,
and the reduced costs of upper-bounded variables at their upper bound are nonpositive.

The next section of output (Output 4.1.4) contains the Constraint Summary. For each constraint row, free row,
and objective row, a line is displayed in the Constraint Summary. Included on the line are the constraint name,
the row type, the slack or surplus variable associated with the row, the right-hand-side constant associated
with the row, the activity of the row (not including the activity of the slack and surplus variables), and the
dual activity (shadow prices).

A dual variable is associated with each constraint row. At optimality, the value of this variable, the dual
activity, tells you the marginal value of the right-hand-side constant. For each unit increase in the right-hand-
side constant, the objective changes by this amount. This quantity is also known as the shadow price. For
example, the marginal value for the right-hand-side constant of constraint HEATING_O_CONV is -450.
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Output 4.1.4 Constraint Summary for the Oil Blending Problem

The LP ProcedureThe LP Procedure

Constraint Summary

Row Constraint Name Type
S/S
Col Rhs Activity

Dual
Activity

1 profit OBJECTVE . 0 1544 .

2 naphtha_l_conv EQ . 0 0 -60

3 naphtha_i_conv EQ . 0 0 -90

4 heating_o_conv EQ . 0 0 -450

5 recipe_1 EQ . 0 0 -300

6 recipe_2 EQ . 0 0 -300

Example 4.2: A Sparse View of the Oil Blending Problem
Typically, mathematical programming models are very sparse. This means that only a small percentage of the
coefficients are nonzero. The sparse problem input is ideal for these models. The oil blending problem in the
section “An Introductory Example” on page 167 has a sparse form. This example shows the same problem in
a sparse form with the data given in a different order. In addition to representing the problem in a concise
form, the sparse format

� allows long column names

� enables easy matrix generation (see Example 4.12, Example 4.13, and Example 4.14)

� is compatible with MPS sparse format

The model in the sparse format is solved by invoking PROC LP with the SPARSEDATA option as follows.

data oil;
format _type_ $8. _col_ $14. _row_ $16. ;
input _type_ $ _col_ $ _row_ $ _coef_ ;

datalines;
max . profit .
. arabian_light profit -175
. arabian_heavy profit -165
. brega profit -205
. jet_1 profit 300
. jet_2 profit 300
eq . napha_l_conv .
. arabian_light napha_l_conv .035
. arabian_heavy napha_l_conv .030
. brega napha_l_conv .045
. naphtha_light napha_l_conv -1
eq . napha_i_conv .
. arabian_light napha_i_conv .100
. arabian_heavy napha_i_conv .075
. brega napha_i_conv .135
. naphtha_inter napha_i_conv -1
eq . heating_oil_conv .



Example 4.2: A Sparse View of the Oil Blending Problem F 235

. arabian_light heating_oil_conv .390

. arabian_heavy heating_oil_conv .300

. brega heating_oil_conv .430

. heating_oil heating_oil_conv -1
eq . recipe_1 .
. naphtha_inter recipe_1 .3
. heating_oil recipe_1 .7
eq . recipe_2 .
. jet_1 recipe_1 -1
. naphtha_light recipe_2 .2
. heating_oil recipe_2 .8
. jet_2 recipe_2 -1
. _rhs_ profit 0
upperbd . available .
. arabian_light available 110
. arabian_heavy available 165
. brega available 80
;

proc lp SPARSEDATA;
run;

The output from PROC LP follows.

Output 4.2.1 Output for the Sparse Oil Blending Problem

The LP ProcedureThe LP Procedure

Problem Summary

Objective Function Max profit

Rhs Variable _rhs_

Type Variable _type_

Problem Density (%) 45.00

Variables Number

Non-negative 5

Upper Bounded 3

Total 8

Constraints Number

EQ 5

Objective 1

Total 6
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The LP ProcedureThe LP Procedure

Solution Summary

Terminated Successfully

Objective Value 1544

Phase 1 Iterations 0

Phase 2 Iterations 5

Phase 3 Iterations 0

Integer Iterations 0

Integer Solutions 0

Initial Basic Feasible Variables 5

Time Used (seconds) 0

Number of Inversions 3

Epsilon 1E-8

Infinity 1.797693E308

Maximum Phase 1 Iterations 100

Maximum Phase 2 Iterations 100

Maximum Phase 3 Iterations 99999999

Maximum Integer Iterations 100

Time Limit (seconds) 120

The LP ProcedureThe LP Procedure

Variable Summary

Col Variable Name Status Type Price Activity
Reduced

Cost

1 arabian_heavy UPPERBD -165 0 -21.45

2 arabian_light UPPBD UPPERBD -175 110 11.6

3 brega UPPBD UPPERBD -205 80 3.35

4 heating_oil BASIC NON-NEG 0 77.3 0

5 jet_1 BASIC NON-NEG 300 60.65 0

6 jet_2 BASIC NON-NEG 300 63.33 0

7 naphtha_inter BASIC NON-NEG 0 21.8 0

8 naphtha_light BASIC NON-NEG 0 7.45 0

The LP ProcedureThe LP Procedure

Constraint Summary

Row Constraint Name Type
S/S
Col Rhs Activity

Dual
Activity

1 profit OBJECTVE . 0 1544 .

2 napha_l_conv EQ . 0 0 -60

3 napha_i_conv EQ . 0 0 -90

4 heating_oil_conv EQ . 0 0 -450

5 recipe_1 EQ . 0 0 -300

6 recipe_2 EQ . 0 0 -300
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Example 4.3: Sensitivity Analysis: Changes in Objective Coefficients
Simple solution of a linear program is often not enough. A manager needs to evaluate how sensitive the
solution is to changing assumptions. The LP procedure provides several tools that are useful for “what if,” or
sensitivity, analysis. One tool studies the effects of changes in the objective coefficients.

For example, in the oil blending problem, the cost of crude and the selling price of jet fuel can be highly
variable. If you want to know the range over which each objective coefficient can vary without changing the
variables in the basis, you can use the RANGEPRICE option in the PROC LP statement.

proc lp data=oil sparsedata
rangeprice primalout=solution;

run;

In addition to the Problem and Solution summaries, the LP procedure produces a Price Range Summary,
shown in Output 4.3.1.

For each structural variable, the upper and lower ranges of the price (objective function coefficient) and
the objective value are shown. The blocking variables, those variables that would enter the basis if the
objective coefficient were perturbed further, are also given. For example, the output shows that if the cost of
ARABIAN_LIGHT crude were to increase from 175 to 186.6 per unit (remember that you are maximizing
profit so the ARABIAN_LIGHT objective coefficient would decrease from -175 to -186.6), then it would
become optimal to use less of this crude for any fractional increase in its cost. Increasing the unit cost to
186.6 would drive its reduced cost to zero. Any additional increase would drive its reduced cost negative
and would destroy the optimality conditions; thus, you would want to use less of it in your processing. The
output shows that, at the point where the reduced cost is zero, you would only be realizing a profit of 268 =
1544 - (110 � 11.6) and that ARABIAN_LIGHT enters the basis, that is, leaves its upper bound. On the
other hand, if the cost of ARABIAN_HEAVY were to decrease to 143.55, you would want to stop using the
formulation of 110 units of ARABIAN_LIGHT and 80 units of BREGA and switch to a production scheme
that included ARABIAN_HEAVY, in which case the profit would increase from the 1544 level.
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Output 4.3.1 Price Range Summary for the Oil Blending Problem

The LP ProcedureThe LP Procedure

Problem Summary

Objective Function Max profit

Rhs Variable _rhs_

Type Variable _type_

Problem Density (%) 45.00

Variables Number

Non-negative 5

Upper Bounded 3

Total 8

Constraints Number

EQ 5

Objective 1

Total 6

Solution Summary

Terminated Successfully

Objective Value 1544

Phase 1 Iterations 0

Phase 2 Iterations 5

Phase 3 Iterations 0

Integer Iterations 0

Integer Solutions 0

Initial Basic Feasible Variables 5

Time Used (seconds) 0

Number of Inversions 3

Epsilon 1E-8

Infinity 1.797693E308

Maximum Phase 1 Iterations 100

Maximum Phase 2 Iterations 100

Maximum Phase 3 Iterations 99999999

Maximum Integer Iterations 100

Time Limit (seconds) 120
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Output 4.3.1 continued

Variable Summary

Col Variable Name Status Type Price Activity
Reduced

Cost

1 arabian_heavy UPPERBD -165 0 -21.45

2 arabian_light UPPBD UPPERBD -175 110 11.6

3 brega UPPBD UPPERBD -205 80 3.35

4 heating_oil BASIC NON-NEG 0 77.3 0

5 jet_1 BASIC NON-NEG 300 60.65 0

6 jet_2 BASIC NON-NEG 300 63.33 0

7 naphtha_inter BASIC NON-NEG 0 21.8 0

8 naphtha_light BASIC NON-NEG 0 7.45 0

Constraint Summary

Row Constraint Name Type
S/S
Col Rhs Activity

Dual
Activity

1 profit OBJECTVE . 0 1544 .

2 napha_l_conv EQ . 0 0 -60

3 napha_i_conv EQ . 0 0 -90

4 heating_oil_conv EQ . 0 0 -450

5 recipe_1 EQ . 0 0 -300

6 recipe_2 EQ . 0 0 -300

Price Range Analysis

Minimum Phi Maximum Phi

Col Variable Name Price Entering Objective Price Entering Objective

1 arabian_heavy -INFINITY . 1544 -143.55 arabian_heavy 1544

2 arabian_light -186.6 arabian_light 268 INFINITY . INFINITY

3 brega -208.35 brega 1276 INFINITY . INFINITY

4 heating_oil -7.790698 brega 941.77907 71.5 arabian_heavy 7070.95

5 jet_1 290.19034 brega 949.04392 392.25806 arabian_heavy 7139.4516

6 jet_2 290.50992 brega 942.99292 387.19512 arabian_heavy 7066.0671

7 naphtha_inter -24.81481 brega 1003.037 286 arabian_heavy 7778.8

8 naphtha_light -74.44444 brega 989.38889 715 arabian_heavy 6870.75

Note that in the PROC LP statement, the PRIMALOUT= SOLUTION option was given. This caused the
procedure to save the optimal solution in a SAS data set named SOLUTION. This data set can be used to
perform further analysis on the problem without having to restart the solution process. Example 4.4 shows
how this is done. A display of the data follows in Output 4.3.2.
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Output 4.3.2 The PRIMALOUT= Data Set for the Oil Blending Problem

Obs _OBJ_ID_ _RHS_ID_ _VAR_ _TYPE_ _STATUS_ _LBOUND_ _VALUE_

1 profit _rhs_ arabian_heavy UPPERBD 0 0.00

2 profit _rhs_ arabian_light UPPERBD _UPPER_ 0 110.00

3 profit _rhs_ brega UPPERBD _UPPER_ 0 80.00

4 profit _rhs_ heating_oil NON-NEG _BASIC_ 0 77.30

5 profit _rhs_ jet_1 NON-NEG _BASIC_ 0 60.65

6 profit _rhs_ jet_2 NON-NEG _BASIC_ 0 63.33

7 profit _rhs_ naphtha_inter NON-NEG _BASIC_ 0 21.80

8 profit _rhs_ naphtha_light NON-NEG _BASIC_ 0 7.45

9 profit _rhs_ PHASE_1_OBJECTIV OBJECT _DEGEN_ 0 0.00

10 profit _rhs_ profit OBJECT _BASIC_ 0 1544.00

Obs _UBOUND_ _PRICE_ _R_COST_

1 165 -165 -21.45

2 110 -175 11.60

3 80 -205 3.35

4 1.7977E308 0 0.00

5 1.7977E308 300 0.00

6 1.7977E308 300 0.00

7 1.7977E308 0 -0.00

8 1.7977E308 0 0.00

9 0 0 0.00

10 1.7977E308 0 0.00

Example 4.4: Additional Sensitivity Analysis
The objective coefficient ranging analysis, discussed in the last example, is useful for assessing the effects
of changing costs and returns on the optimal solution if each objective function coefficient is modified in
isolation. However, this is often not the case.

Suppose you anticipate that the cost of crude will be increasing and you want to examine how that will affect
your optimal production plans. Furthermore, you estimate that if the price of ARABIAN_LIGHT goes up by
1 unit, then the price of ARABIAN_HEAVY will rise by 1.2 units and the price of BREGA will increase by
1.5 units. However, you plan on passing some of your increased overhead on to your jet fuel customers, and
you decide to increase the price of jet fuel 1 unit for each unit of increased cost of ARABIAN_LIGHT.

An examination of the solution sensitivity to changes in the cost of crude is a two-step process. First, add
the information on the proportional rates of change in the crude costs and the jet fuel price to the problem
data set. Then, invoke the LP procedure. The following program accomplishes this. First, it adds a new row,
named CHANGE, to the model. It gives this row a type of PRICESEN. That tells PROC LP to perform
objective function coefficient sensitivity analysis using the given rates of change. The program then invokes
PROC LP to perform the analysis. Notice that the PRIMALIN= SOLUTION option is used in the PROC LP
statement. This tells the LP procedure to use the saved solution. Although it is not necessary to do this, it
will eliminate the need for PROC LP to re-solve the problem and can save computing time.
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data sen;
format _type_ $8. _col_ $14. _row_ $6.;
input _type_ $ _col_ $ _row_ $ _coef_;
datalines;

pricesen . change .
. arabian_light change 1
. arabian_heavy change 1.2
. brega change 1.5
. jet_1 change -1
. jet_2 change -1
;

data;
set oil sen;

run;

proc lp sparsedata primalin=solution;
run;

Output 4.4.1 shows the range over which the current basic solution remains optimal so that the current
production plan need not change. The objective coefficients are modified by adding � times the change vector
given in the SEN data set, where � ranges from a minimum of -4.15891 to a maximum of 29.72973. At the
minimum value of �, the profit decreases to 1103.073. This value of � corresponds to an increase in the cost
of ARABIAN_HEAVY to 169.99 (namely, �175 + � � 1.2), ARABIAN_LIGHT to 179.16 (D �175 + � �
1), and BREGA to 211.24 (D �205 + � � 1.5), and corresponds to an increase in the price of JET_1 and
JET_2 to 304.16 (= 300 + � � (-1)). These values can be found in the Price column under the section labeled
Minimum Phi.

Output 4.4.1 The Price Sensitivity Analysis Summary for the Oil Blending Problem

The LP ProcedureThe LP Procedure

Problem Summary

Objective Function Max profit

Rhs Variable _rhs_

Type Variable _type_

Problem Density (%) 45.00

Variables Number

Non-negative 5

Upper Bounded 3

Total 8

Constraints Number

EQ 5

Objective 1

Total 6
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Output 4.4.1 continued

Solution Summary

Terminated Successfully

Objective Value 1544

Phase 1 Iterations 0

Phase 2 Iterations 0

Phase 3 Iterations 0

Integer Iterations 0

Integer Solutions 0

Initial Basic Feasible Variables 7

Time Used (seconds) 0

Number of Inversions 2

Epsilon 1E-8

Infinity 1.797693E308

Maximum Phase 1 Iterations 100

Maximum Phase 2 Iterations 100

Maximum Phase 3 Iterations 99999999

Maximum Integer Iterations 100

Time Limit (seconds) 120

Variable Summary

Col Variable Name Status Type Price Activity
Reduced

Cost

1 arabian_heavy UPPERBD -165 0 -21.45

2 arabian_light UPPBD UPPERBD -175 110 11.6

3 brega UPPBD UPPERBD -205 80 3.35

4 heating_oil BASIC NON-NEG 0 77.3 0

5 jet_1 BASIC NON-NEG 300 60.65 0

6 jet_2 BASIC NON-NEG 300 63.33 0

7 naphtha_inter BASIC NON-NEG 0 21.8 0

8 naphtha_light BASIC NON-NEG 0 7.45 0

Constraint Summary

Row Constraint Name Type
S/S
Col Rhs Activity

Dual
Activity

1 profit OBJECTVE . 0 1544 .

2 napha_l_conv EQ . 0 0 -60

3 napha_i_conv EQ . 0 0 -90

4 heating_oil_conv EQ . 0 0 -450

5 recipe_1 EQ . 0 0 -300

6 recipe_2 EQ . 0 0 -300
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Output 4.4.1 continued

The LP ProcedureThe LP Procedure

Price Sensitivity Analysis
Summary

Sensitivity Vector change

Minimum Phi -4.158907511

Entering Variable brega

Optimal Objective 1103.0726257

Maximum Phi 29.72972973

Entering Variable arabian_heavy

Optimal Objective 4695.9459459

Minimum Phi Maximum Phi

Col Variable Name Status Activity Price
Reduced

Cost Price
Reduced

Cost

1 arabian_heavy 0 -169.9907 -24.45065 -129.3243 0

2 arabian_light UPPBD 110 -179.1589 10.027933 -145.2703 22.837838

3 brega UPPBD 80 -211.2384 0 -160.4054 27.297297

4 heating_oil BASIC 77.3 0 0 0 0

5 jet_1 BASIC 60.65 304.15891 0 270.27027 0

6 jet_2 BASIC 63.33 304.15891 0 270.27027 0

7 naphtha_inter BASIC 21.8 0 0 0 0

8 naphtha_light BASIC 7.45 0 0 0 0

The Price Sensitivity Analysis Summary also shows the effects of lowering the cost of crude and lowering the
price of jet fuel. In particular, at the maximum � of 29.72973, the current optimal production plan yields a
profit of 4695.95. Any increase or decrease in � beyond the limits given results in a change in the production
plan. More precisely, the columns that constitute the basis change.

Example 4.5: Price Parametric Programming for the Oil Blending Problem
This example continues to examine the effects of a change in the cost of crude and the selling price of jet
fuel. Suppose that you know the cost of ARABIAN_LIGHT crude is likely to increase 30 units, with the
effects on oil and fuel prices as described in Example 4.4. The analysis in the last example only accounted
for an increase of a little over 4 units (because the minimum � was -4.15891). Because an increase in the
cost of ARABIAN_LIGHT beyond 4.15891 units requires a change in the optimal basis, it may also require
a change in the optimal production strategy. This type of analysis, where you want to find how the solution
changes with changes in the objective function coefficients or right-hand-side vector, is called parametric
programming.
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You can answer this question by using the PRICEPHI= option in the PROC LP statement. The following
program instructs PROC LP to continually increase the cost of the crudes and the return from jet fuel using
the ratios given previously, until the cost of ARABIAN_LIGHT increases at least 30 units.

proc lp sparsedata primalin=solution pricephi=-30;
run;

The PRICEPHI= option in the PROC LP statement tells PROC LP to perform parametric programming on
any price change vectors specified in the problem data set. The value of the PRICEPHI= option tells PROC
LP how far to change the value of � and in what direction. A specification of PRICEPHI=-30 tells PROC LP
to continue pivoting until the problem has objective function equal to (original objective function value) � 30
� (change vector).

Output 4.5.1 shows the result of this analysis. The first page is the Price Sensitivity Analysis Summary, as
discussed in Example 4.4. The next page is an accounting for the change in basis as a result of decreasing
� beyond -4.1589. It shows that BREGA left the basis at an upper bound and entered the basis at a lower
bound. The interpretation of these basis changes can be difficult (Hadley 1962; Dantzig 1963).

The last page of output shows the optimal solution at the displayed value of �, namely -30.6878. At an
increase of 30.6878 units in the cost of ARABIAN_LIGHT and the related changes to the other crudes and
the jet fuel, it is optimal to modify the production of jet fuel as shown in the activity column. Although this
plan is optimal, it results in a profit of 0. This may suggest that the ratio of a unit increase in the price of jet
fuel per unit increase in the cost of ARABIAN_LIGHT is lower than desirable.

Output 4.5.1 Price Parametric Programming for the Oil Blending Problem

The LP ProcedureThe LP Procedure

Problem Summary

Objective Function Max profit

Rhs Variable _rhs_

Type Variable _type_

Problem Density (%) 45.00

Variables Number

Non-negative 5

Upper Bounded 3

Total 8

Constraints Number

EQ 5

Objective 1

Total 6
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Output 4.5.1 continued

Solution Summary

Terminated Successfully

Objective Value 1544

Phase 1 Iterations 0

Phase 2 Iterations 0

Phase 3 Iterations 0

Integer Iterations 0

Integer Solutions 0

Initial Basic Feasible Variables 7

Time Used (seconds) 0

Number of Inversions 2

Epsilon 1E-8

Infinity 1.797693E308

Maximum Phase 1 Iterations 100

Maximum Phase 2 Iterations 100

Maximum Phase 3 Iterations 99999999

Maximum Integer Iterations 100

Time Limit (seconds) 120

Variable Summary

Col Variable Name Status Type Price Activity
Reduced

Cost

1 arabian_heavy UPPERBD -165 0 -21.45

2 arabian_light UPPBD UPPERBD -175 110 11.6

3 brega UPPBD UPPERBD -205 80 3.35

4 heating_oil BASIC NON-NEG 0 77.3 0

5 jet_1 BASIC NON-NEG 300 60.65 0

6 jet_2 BASIC NON-NEG 300 63.33 0

7 naphtha_inter BASIC NON-NEG 0 21.8 0

8 naphtha_light BASIC NON-NEG 0 7.45 0

Constraint Summary

Row Constraint Name Type
S/S
Col Rhs Activity

Dual
Activity

1 profit OBJECTVE . 0 1544 .

2 napha_l_conv EQ . 0 0 -60

3 napha_i_conv EQ . 0 0 -90

4 heating_oil_conv EQ . 0 0 -450

5 recipe_1 EQ . 0 0 -300

6 recipe_2 EQ . 0 0 -300
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Output 4.5.1 continued

The LP ProcedureThe LP Procedure

Price Sensitivity Analysis
Summary

Sensitivity Vector change

Minimum Phi -4.158907511

Entering Variable brega

Optimal Objective 1103.0726257

Maximum Phi 29.72972973

Entering Variable arabian_heavy

Optimal Objective 4695.9459459

Minimum Phi Maximum Phi

Col Variable Name Status Activity Price
Reduced

Cost Price
Reduced

Cost

1 arabian_heavy 0 -169.9907 -24.45065 -129.3243 0

2 arabian_light UPPBD 110 -179.1589 10.027933 -145.2703 22.837838

3 brega UPPBD 80 -211.2384 0 -160.4054 27.297297

4 heating_oil BASIC 77.3 0 0 0 0

5 jet_1 BASIC 60.65 304.15891 0 270.27027 0

6 jet_2 BASIC 63.33 304.15891 0 270.27027 0

7 naphtha_inter BASIC 21.8 0 0 0 0

8 naphtha_light BASIC 7.45 0 0 0 0

The LP ProcedureThe LP Procedure

Price Parametric Programming Log

Sensitivity Vector change

Leaving Variable
Entering
Variable Objective

Current
Phi

brega brega 1103.0726 -4.158908

The LP ProcedureThe LP Procedure

Price Sensitivity Analysis
Summary

Sensitivity Vector change

Minimum Phi -30.68783069

Entering Variable arabian_light

Optimal Objective 0
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Output 4.5.1 continued

Minimum Phi

Col Variable Name Status Activity Price
Reduced

Cost

1 arabian_heavy 0 -201.8254 -43.59127

2 arabian_light ALTER 110 -205.6878 0

3 brega 0 -251.0317 -21.36905

4 heating_oil BASIC 42.9 0 0

5 jet_1 BASIC 33.33 330.68783 0

6 jet_2 BASIC 35.09 330.68783 0

7 naphtha_inter BASIC 11 0 0

8 naphtha_light BASIC 3.85 0 0

What is the optimal return if � is exactly -30? Because the change in the objective is linear as a function of �,
you can calculate the objective for any value of � between those given by linear interpolation. For example,
for any � between -4.1589 and -30.6878, the optimal objective value is

� � .1103:0726 � 0/=.�4:1589 � 30:6878/C b

where

b D 30:6878 � .1103:0726 � 0/=.�4:1589 � 30:6878/

For � D-30, this is 28.5988.

Example 4.6: Special Ordered Sets and the Oil Blending Problem
Often managers want to evaluate the cost of making a choice among alternatives. In particular, they want to
make the most profitable choice. Suppose that only one oil crude can be used in the production process. This
identifies a set of variables of which only one can be above its lower bound. This additional restriction could
be included in the model by adding a binary integer variable for each of the three crudes. Constraints would
be needed that would drive the appropriate binary variable to 1 whenever the corresponding crude is used in
the production process. Then a constraint limiting the total of these variables to only one would be added. A
similar formulation for a fixed charge problem is shown in Example 4.8.

The SOSLE type implicitly does this. The following DATA step adds a row to the model that identifies which
variables are in the set. The SOSLE type tells the LP procedure that only one of the variables in this set can
be above its lower bound. If you use the SOSEQ type, it tells PROC LP that exactly one of the variables in
the set must be above its lower bound. Only integer variables can be in an SOSEQ set.
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data special;
format _type_ $6. _col_ $14. _row_ $8. ;
input _type_ $ _col_ $ _row_ $ _coef_;
datalines;

SOSLE . special .
. arabian_light special 1
. arabian_heavy special 1
. brega special 1
;

data;
set oil special;

run;

proc lp sparsedata;
run;

Output 4.6.1 includes an Integer Iteration Log. This log shows the progress that PROC LP is making in
solving the problem. This is discussed in some detail in Example 4.8.

Output 4.6.1 The Oil Blending Problem with a Special Ordered Set

The LP ProcedureThe LP Procedure

Problem Summary

Objective Function Max profit

Rhs Variable _rhs_

Type Variable _type_

Problem Density (%) 45.00

Variables Number

Non-negative 5

Upper Bounded 3

Total 8

Constraints Number

EQ 5

Objective 1

Total 6

Integer Iteration Log

Iter Problem Condition Objective Branched Value Sinfeas Active Proximity

1 0 ACTIVE 1544 arabian_light 110 0 2 .

2 -1 SUBOPTIMAL 1276 . . . 1 268

3 1 FATHOMED 268 . . . 0 .
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Output 4.6.1 continued

Solution Summary

Integer Optimal Solution

Objective Value 1276

Phase 1 Iterations 0

Phase 2 Iterations 5

Phase 3 Iterations 0

Integer Iterations 3

Integer Solutions 1

Initial Basic Feasible Variables 5

Time Used (seconds) 0

Number of Inversions 5

Epsilon 1E-8

Infinity 1.797693E308

Maximum Phase 1 Iterations 100

Maximum Phase 2 Iterations 100

Maximum Phase 3 Iterations 99999999

Maximum Integer Iterations 100

Time Limit (seconds) 120

Variable Summary

Col Variable Name Status Type Price Activity
Reduced

Cost

1 arabian_heavy UPPERBD -165 0 -21.45

2 arabian_light UPPBD UPPERBD -175 110 11.6

3 brega UPPERBD -205 0 3.35

4 heating_oil BASIC NON-NEG 0 42.9 0

5 jet_1 BASIC NON-NEG 300 33.33 0

6 jet_2 BASIC NON-NEG 300 35.09 0

7 naphtha_inter BASIC NON-NEG 0 11 0

8 naphtha_light BASIC NON-NEG 0 3.85 0

Constraint Summary

Row Constraint Name Type
S/S
Col Rhs Activity

Dual
Activity

1 profit OBJECTVE . 0 1276 .

2 napha_l_conv EQ . 0 0 -60

3 napha_i_conv EQ . 0 0 -90

4 heating_oil_conv EQ . 0 0 -450

5 recipe_1 EQ . 0 0 -300

6 recipe_2 EQ . 0 0 -300

The solution shows that only the ARABIAN_LIGHT crude is purchased. The requirement that only one
crude be used in the production is met, and the profit is 1276. This tells you that the value of purchasing
crude from an additional source, namely BREGA, is worth 1544 � 1276 = 268.
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Example 4.7: Goal-Programming a Product Mix Problem
This example shows how to use PROC LP to solve a linear goal-programming problem. PROC LP has the
ability to solve a series of linear programs, each with a new objective function. These objective functions are
ordered by priority. The first step is to solve a linear program with the highest priority objective function
constrained only by the formal constraints in the model. Then, the problem with the next highest priority
objective function is solved, constrained by the formal constraints in the model and by the value that the
highest priority objective function realized. That is, the second problem optimizes the second highest priority
objective function among the alternate optimal solutions to the first optimization problem. The process
continues until a linear program is solved for each of the objectives.

This technique is useful for differentiating among alternate optimal solutions to a linear program. It also
fits into the formal paradigm presented in goal programming. In goal programming, the objective functions
typically take on the role of driving a linear function of the structural variables to meet a target level as closely
as possible. The details of this can be found in many books on the subject, including Ignizio (1976).

Consider the following problem taken from Ignizio (1976). A small paint company manufactures two types
of paint, latex and enamel. In production, the company uses 10 hours of labor to produce 100 gallons of latex
and 15 hours of labor to produce 100 gallons of enamel. Without hiring outside help or requiring overtime,
the company has 40 hours of labor available each week. Furthermore, each paint generates a profit at the rate
of $1.00 per gallon. The company has the following objectives listed in decreasing priority:

� avoid the use of overtime

� achieve a weekly profit of $1000

� produce at least 700 gallons of enamel paint each week

The program to solve this problem follows.

data object;
input _row_ $ latex enamel n1 n2 n3 p1 p2 p3 _type_ $ _rhs_;
datalines;

overtime . . . . . 1 . . min 1
profit . . . 1 . . . . min 2
enamel . . . . 1 . . . min 3
overtime 10 15 1 . . -1 . . eq 40
profit 100 100 . 1 . . -1 . eq 1000
enamel . 1 . . 1 . . -1 eq 7
;

proc lp data=object goalprogram;
run;
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The data set called OBJECT contains the model. Its first three observations are the objective rows, and the
next three observations are the constraints. The values in the right-hand-side variable _RHS_ in the objective
rows give the priority of the objectives. The objective in the first observation with _ROW_=‘OVERTIME’ has
the highest priority, the objective named PROFIT has the next highest, and the objective named ENAMEL
has the lowest. Note that the value of the right-hand-side variable determines the priority, not the order, in the
data set.

Because this example is set in the formal goal-programming scheme, the model has structural variables
representing negative (n1, n2, and n3) and positive (p1, p2, and p3) deviations from target levels. For
example, n1+p1 is the deviation from the objective of avoiding the use of overtime and underusing the normal
work time, namely using exactly 40 work hours. The other objectives are handled similarly.

Notice that the PROC LP statement includes the GOALPROGRAM option. Without this option, the procedure
would solve three separate problems: one for each of the three objective functions. In that case, however, the
procedure would not constrain the second and third programs using the results of the preceding programs;
also, the values 1, 2, and 3 for _RHS_ in the objective rows would have no effect.

Output 4.7.1 shows the solution of the goal program, apparently as three linear program outputs. However,
examination of the constraint summaries in the second and third problems shows that the constraints labeled
by the objectives OVERTIME and PROFIT have type FIXEDOBJ. This indicates that these objective rows
have become constraints in the subsequent problems.

Output 4.7.1 Goal Programming

The LP ProcedureThe LP Procedure

Problem Summary

Objective Function Min overtime

Rhs Variable _rhs_

Type Variable _type_

Problem Density (%) 45.83

Variables Number

Non-negative 8

Total 8

Constraints Number

EQ 3

Objective 3

Total 6
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Output 4.7.1 continued

Solution Summary

Terminated Successfully

Objective Value 0

Phase 1 Iterations 2

Phase 2 Iterations 0

Phase 3 Iterations 0

Integer Iterations 0

Integer Solutions 0

Initial Basic Feasible Variables 7

Time Used (seconds) 0

Number of Inversions 2

Epsilon 1E-8

Infinity 1.797693E308

Maximum Phase 1 Iterations 100

Maximum Phase 2 Iterations 100

Maximum Phase 3 Iterations 99999999

Maximum Integer Iterations 100

Time Limit (seconds) 120

Variable Summary

Col
Variable
Name Status Type Price Activity

Reduced
Cost

1 latex ALTER NON-NEG 0 0 0

2 enamel ALTER NON-NEG 0 0 0

3 n1 BASIC NON-NEG 0 40 0

4 n2 BASIC NON-NEG 0 1000 0

5 n3 BASIC NON-NEG 0 7 0

6 p1 NON-NEG 1 0 1

7 p2 ALTER NON-NEG 0 0 0

8 p3 ALTER NON-NEG 0 0 0

Constraint Summary

Row
Constraint
Name Type

S/S
Col Rhs Activity

Dual
Activity

1 overtime OBJECTVE . 0 0 .

2 profit FREE_OBJ . 0 1000 .

3 enamel FREE_OBJ . 0 7 .

4 overtime EQ . 40 40 0

5 profit EQ . 1000 1000 0

6 enamel EQ . 7 7 0
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Output 4.7.1 continued

Problem Summary

Objective Function Min profit

Rhs Variable _rhs_

Type Variable _type_

Problem Density (%) 45.83

Variables Number

Non-negative 8

Total 8

Constraints Number

EQ 3

Objective 3

Total 6

Solution Summary

Terminated Successfully

Objective Value 600

Phase 1 Iterations 0

Phase 2 Iterations 3

Phase 3 Iterations 0

Integer Iterations 0

Integer Solutions 0

Initial Basic Feasible Variables 7

Time Used (seconds) 0

Number of Inversions 5

Epsilon 1E-8

Infinity 1.797693E308

Maximum Phase 1 Iterations 100

Maximum Phase 2 Iterations 100

Maximum Phase 3 Iterations 99999999

Maximum Integer Iterations 100

Time Limit (seconds) 120
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Output 4.7.1 continued

Variable Summary

Col
Variable
Name Status Type Price Activity

Reduced
Cost

1 latex BASIC NON-NEG 0 4 0

2 enamel NON-NEG 0 0 50

3 n1 NON-NEG 0 0 10

4 n2 BASIC NON-NEG 1 600 0

5 n3 BASIC NON-NEG 0 7 0

6 p1 DEGEN NON-NEG 0 0 0

7 p2 NON-NEG 0 0 1

8 p3 ALTER NON-NEG 0 0 0

Constraint Summary

Row
Constraint
Name Type

S/S
Col Rhs Activity

Dual
Activity

1 overtime FIXEDOBJ . 0 0 .

2 profit OBJECTVE . 0 600 .

3 enamel FREE_OBJ . 0 7 .

4 overtime EQ . 40 40 -10

5 profit EQ . 1000 1000 1

6 enamel EQ . 7 7 0

Problem Summary

Objective Function Min enamel

Rhs Variable _rhs_

Type Variable _type_

Problem Density (%) 45.83

Variables Number

Non-negative 8

Total 8

Constraints Number

EQ 3

Objective 3

Total 6
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Output 4.7.1 continued

Solution Summary

Terminated Successfully

Objective Value 7

Phase 1 Iterations 0

Phase 2 Iterations 1

Phase 3 Iterations 0

Integer Iterations 0

Integer Solutions 0

Initial Basic Feasible Variables 7

Time Used (seconds) 0

Number of Inversions 8

Epsilon 1E-8

Infinity 1.797693E308

Maximum Phase 1 Iterations 100

Maximum Phase 2 Iterations 100

Maximum Phase 3 Iterations 99999999

Maximum Integer Iterations 100

Time Limit (seconds) 120

Variable Summary

Col
Variable
Name Status Type Price Activity

Reduced
Cost

1 latex BASIC NON-NEG 0 4 0

2 enamel DEGEN NON-NEG 0 0 0

3 n1 NON-NEG 0 0 0.2

4 n2 BASIC NON-NEG 0 600 0

5 n3 BASIC NON-NEG 1 7 0

6 p1 DEGEN NON-NEG 0 0 0

7 p2 NON-NEG 0 0 0.02

8 p3 NON-NEG 0 0 1

Constraint Summary

Row
Constraint
Name Type

S/S
Col Rhs Activity

Dual
Activity

1 overtime FIXEDOBJ . 0 0 .

2 profit FIXEDOBJ . 0 600 .

3 enamel OBJECTVE . 0 7 .

4 overtime EQ . 40 40 -0.2

5 profit EQ . 1000 1000 0.02

6 enamel EQ . 7 7 1
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The solution to the last linear program shows a value of 4 for the variable LATEX and a value of 0 for the
variable ENAMEL. This tells you that the solution to the linear goal program is to produce 400 gallons of
latex and no enamel paint.

The values of the objective functions in the three linear programs tell you whether you can achieve the three
objectives. The activities of the constraints labeled OVERTIME, PROFIT, and ENAMEL tell you values of
the three linear program objectives. Because the first linear programming objective OVERTIME is 0, the
highest priority objective, which is to avoid using additional labor, is accomplished. However, because the
second and third objectives are nonzero, the second and third priority objectives are not satisfied completely.
The PROFIT objective is 600. Because the PROFIT objective is to minimize the negative deviation from
the profit constraint, this means that a profit of only 400 = 1000 � 600 is realized. Similarly, the ENAMEL
objective is 7, indicating that there is a negative deviation from the ENAMEL target of 7 units.

Example 4.8: A Simple Integer Program
Recall the linear programming problem presented in Chapter 3, “Introduction to Optimization” (SAS/OR
User’s Guide: Mathematical Programming). In that problem, a firm produces two products, chocolates
and gumdrops, that are processed by four processes: cooking, color/flavor, condiments, and packaging.
The objective is to determine the product mix that maximizes the profit to the firm while not exceeding
manufacturing capacities. The problem is extended to demonstrate a use of integer-constrained variables.

Suppose that you must manufacture only one of the two products. In addition, there is a setup cost of 100 if
you make the chocolates and 75 if you make the gumdrops. To identify which product will maximize profit,
you define two zero-one integer variables, ICHOCO and IGUMDR, and you also define two new constraints,
CHOCOLATE and GUM. The constraint labeled CHOCOLATE forces ICHOCO to equal one when chocolates
are manufactured. Similarly, the constraint labeled GUM forces IGUMDR to equal 1 when gumdrops are
manufactured. Also, you should include a constraint labeled ONLY_ONE that requires the sum of ICHOCO
and IGUMDR to equal 1. (Note that this could be accomplished more simply by including ICHOCO and
IGUMDR in a SOSEQ set.) Since ICHOCO and IGUMDR are integer variables, this constraint eliminates
the possibility of both products being manufactured. Notice the coefficients -10000, which are used to force
ICHOCO or IGUMDR to 1 whenever CHOCO and GUMDR are nonzero. This technique, which is often used
in integer programming, can cause severe numerical problems. If this driving coefficient is too large, then
arithmetic overflows and underflow may result. If the driving coefficient is too small, then the integer variable
may not be driven to 1 as desired by the modeler.

The objective coefficients of the integer variables ICHOCO and IGUMDR are the negatives of the setup costs
for the two products. The following is the data set that describes this problem and the call to PROC LP to
solve it:
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data;
format _row_ $10. ;
input _row_ $ choco gumdr ichoco igumdr _type_ $ _rhs_;
datalines;

object .25 .75 -100 -75 max .
cooking 15 40 0 0 le 27000
color 0 56.25 0 0 le 27000
package 18.75 0 0 0 le 27000
condiments 12 50 0 0 le 27000
chocolate 1 0 -10000 0 le 0
gum 0 1 0 -10000 le 0
only_one 0 0 1 1 eq 1
binary . . 1 2 binary .
;

proc lp;
run;

The solution shows that gumdrops are produced. See Output 4.8.1.

Output 4.8.1 Summaries and an Integer Programming Iteration Log

The LP ProcedureThe LP Procedure

Problem Summary

Objective Function Max object

Rhs Variable _rhs_

Type Variable _type_

Problem Density (%) 25.71

Variables Number

Non-negative 2

Binary 2

Slack 6

Total 10

Constraints Number

LE 6

EQ 1

Objective 1

Total 8

Integer Iteration Log

Iter Problem Condition Objective Branched Value Sinfeas Active Proximity

1 0 ACTIVE 397.5 ichoco 0.1 0.2 2 .

2 -1 SUBOPTIMAL 260 . . . 1 70

3 1 SUBOPTIMAL 285 . . . 0 .
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Output 4.8.1 continued

Solution Summary

Integer Optimal Solution

Objective Value 285

Phase 1 Iterations 0

Phase 2 Iterations 5

Phase 3 Iterations 5

Integer Iterations 3

Integer Solutions 2

Initial Basic Feasible Variables 9

Time Used (seconds) 0

Number of Inversions 5

Epsilon 1E-8

Infinity 1.797693E308

Maximum Phase 1 Iterations 100

Maximum Phase 2 Iterations 100

Maximum Phase 3 Iterations 99999999

Maximum Integer Iterations 100

Time Limit (seconds) 120

Variable Summary

Col
Variable
Name Status Type Price Activity

Reduced
Cost

1 choco DEGEN NON-NEG 0.25 0 0

2 gumdr BASIC NON-NEG 0.75 480 0

3 ichoco BINARY -100 0 2475

4 igumdr BASIC BINARY -75 1 0

5 cooking BASIC SLACK 0 7800 0

6 color SLACK 0 0 -0.013333

7 package BASIC SLACK 0 27000 0

8 condiments BASIC SLACK 0 3000 0

9 chocolate SLACK 0 0 -0.25

10 gum BASIC SLACK 0 9520 0

Constraint Summary

Row
Constraint
Name Type

S/S
Col Rhs Activity

Dual
Activity

1 object OBJECTVE . 0 285 .

2 cooking LE 5 27000 19200 0

3 color LE 6 27000 27000 0.0133333

4 package LE 7 27000 0 0

5 condiments LE 8 27000 24000 0

6 chocolate LE 9 0 0 0.25

7 gum LE 10 0 -9520 0

8 only_one EQ . 1 1 -75



Example 4.9: An Infeasible Problem F 259

The branch-and-bound tree can be reconstructed from the information contained in the integer iteration
log. The column labeled Iter numbers the integer iterations. The column labeled Problem identifies the
Iter number of the parent problem from which the current problem is defined. For example, Iter=2 has
Problem=-1. This means that problem 2 is a direct descendant of problem 1. Furthermore, because problem 1
branched on ICHOCO, you know that problem 2 is identical to problem 1 with an additional constraint on
variable ICHOCO. The minus sign in the Problem=-1 in Iter=2 tells you that the new constraint on variable
ICHOCO is a lower bound. Moreover, because Value=0.1 in Iter=1, you know that ICHOCO=0.1 in Iter=1
so that the added constraint in Iter=2 is ICHOCO � d0:1e. In this way, the information in the log can
be used to reconstruct the branch-and-bound tree. In fact, when you save an ACTIVEOUT= data set, it
contains information in this format that is used to reconstruct the tree when you restart a problem using the
ACTIVEIN= data set. See Example 4.10.

Note that if you defined a SOSEQ special ordered set containing the variables CHOCO and GUMDR, the
integer variables ICHOCO and IGUMDR and the three associated constraints would not have been needed.

Example 4.9: An Infeasible Problem
This is an example of the Infeasible Information Summary that is displayed when an infeasible problem is
encountered. Consider the following problem:

max x C y C z C w

subject to x C 3y C 2z C 4w � 5

3x C y C 2z C w � 4

5x C 3y C 3z C 3w D 9

x; y; z; w � 0

Examination of this problem reveals that it is unsolvable. Consequently, PROC LP identifies it as infeasible.
The following program attempts to solve it.

data infeas;
format _id_ $6.;
input _id_ $ x1-x4 _type_ $ _rhs_;
datalines;

profit 1 1 1 1 max .
const1 1 3 2 4 le 5
const2 3 1 2 1 le 4
const3 5 3 3 3 eq 9
;
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The results are shown in Output 4.9.1.

Output 4.9.1 The Solution of an Infeasible Problem

The LP ProcedureThe LP Procedure

Problem Summary

Objective Function Max profit

Rhs Variable _rhs_

Type Variable _type_

Problem Density (%) 77.78

Variables Number

Non-negative 4

Slack 2

Total 6

Constraints Number

LE 2

EQ 1

Objective 1

Total 4

ERROR: Infeasible problem. Note the constraints in the constraint summary
that are identified as infeasible. If none of the constraints are
flagged then check the implicit bounds on the variables.
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The LP ProcedureThe LP Procedure

Solution Summary

Infeasible Problem

Objective Value 2.5

Phase 1 Iterations 2

Phase 2 Iterations 0

Phase 3 Iterations 0

Integer Iterations 0

Integer Solutions 0

Initial Basic Feasible Variables 5

Time Used (seconds) 0

Number of Inversions 2

Epsilon 1E-8

Infinity 1.797693E308

Maximum Phase 1 Iterations 100

Maximum Phase 2 Iterations 100

Maximum Phase 3 Iterations 99999999

Maximum Integer Iterations 100

Time Limit (seconds) 120

The LP ProcedureThe LP Procedure

Variable Summary

Col
Variable
Name Status Type Price Activity

Reduced
Cost

1 x1 BASIC NON-NEG 1 0.75 0

2 x2 BASIC NON-NEG 1 1.75 0

3 x3 NON-NEG 1 0 0.5

4 x4 NON-NEG 1 0 0

*INF* const1 BASIC SLACK 0 -1 0

6 const2 SLACK 0 0 0.5

The LP ProcedureThe LP Procedure

Constraint Summary

Row
Constraint
Name Type

S/S
Col Rhs Activity

Dual
Activity

1 profit OBJECTVE . 0 2.5 .

*INF* const1 LE 5 5 6 0

3 const2 LE 6 4 4 -0.5

4 const3 EQ . 9 9 0.5
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The LP ProcedureThe LP Procedure

Infeasible Information
Summary

Infeasible Row const1

Constraint Activity 6

Row Type LE

Rhs Data 5

Variable Coefficient Activity
Lower
Bound

Upper
Bound

x1 1 0.75 0 INFINITY

x2 3 1.75 0 INFINITY

x3 2 0 0 INFINITY

x4 4 0 0 INFINITY

Note the information given in the Infeasible Information Summary for the infeasible row CONST1. It shows
that the inequality row CONST1 with right-hand side 5 was found to be infeasible with activity 6. The
summary also shows each variable that has a nonzero coefficient in that row and its activity level at the
infeasibility. Examination of these model parameters might give you a clue as to the cause of infeasibility,
such as an incorrectly entered coefficient or right-hand-side value.

Example 4.10: Restarting an Integer Program
The following example is attributed to Haldi (Garfinkel and Nemhauser 1972) and is used in the literature
as a test problem. Notice that the ACTIVEOUT= and the PRIMALOUT= options are used when invoking
PROC LP. These cause the LP procedure to save the primal solution in the data set named P and the active
tree in the data set named A. If the procedure fails to find an optimal integer solution on the initial call, it can
be called later using the A and P data sets as starting information.

data haldi10;
input x1-x12 _type_ $ _rhs_;
datalines;
0 0 0 0 0 0 1 1 1 1 1 1 MAX .
9 7 16 8 24 5 3 7 8 4 6 5 LE 110

12 6 6 2 20 8 4 6 3 1 5 8 LE 95
15 5 12 4 4 5 5 5 6 2 1 5 LE 80
18 4 4 18 28 1 6 4 2 9 7 1 LE 100

-12 0 0 0 0 0 1 0 0 0 0 0 LE 0
0 -15 0 0 0 0 0 1 0 0 0 0 LE 0
0 0 -12 0 0 0 0 0 1 0 0 0 LE 0
0 0 0 -10 0 0 0 0 0 1 0 0 LE 0
0 0 0 0 -11 0 0 0 0 0 1 0 LE 0
0 0 0 0 0 -11 0 0 0 0 0 1 LE 0
1 1 1 1 1 1 1000 1000 1000 1000 1000 1000 UPPERBD .
1 2 3 4 5 6 7 8 9 10 11 12 INTEGER .
;
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The ACTIVEOUT= data set contains a representation of the current active problems in the branch-and-bound
tree. The PRIMALOUT= data set contains a representation of the solution to the current problem. These two
can be used to restore the procedure to an equivalent state to the one it was in when it stopped.

The results from the call to PROC LP is shown in Output 4.10.1. Notice that the procedure performed 100
iterations and then terminated on maximum integer iterations. This is because, by default, IMAXIT=100.
The procedure reports the current best integer solution.

Output 4.10.1 Output from the HALDI10 Problem

The LP ProcedureThe LP Procedure

Problem Summary

Objective Function Max _OBS1_

Rhs Variable _rhs_

Type Variable _type_

Problem Density (%) 31.82

Variables Number

Integer 6

Binary 6

Slack 10

Total 22

Constraints Number

LE 10

Objective 1

Total 11
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The LP ProcedureThe LP Procedure

Integer Iteration Log

Iter Problem Condition Objective Branched Value Sinfeas Active Proximity

1 0 ACTIVE 18.709524 x9 1.543 1.11905 2 .

2 1 ACTIVE 18.467723 x12 9.371 0.88948 3 .

3 2 ACTIVE 18.460133 x8 0.539 1.04883 4 .

4 -3 ACTIVE 18.453638 x12 8.683 1.12993 5 .

5 4 ACTIVE 18.439678 x10 7.448 1.20125 6 .

6 5 ACTIVE 18.403728 x6 0.645 1.3643 7 .

7 -6 ACTIVE 18.048289 x4 0.7 1.18395 8 .

8 -7 ACTIVE 17.679087 x8 1.833 0.52644 9 .

9 8 ACTIVE 17.52 x10 6.667 0.70111 10 .

10 9 ACTIVE 17.190085 x12 7.551 1.37615 11 .

11 -10 ACTIVE 17.02 x1 0.085 0.255 12 .

12 11 ACTIVE 16.748 x11 0.748 0.47 13 .

13 -12 ACTIVE 16.509091 x9 0.509 0.69091 14 .

14 13 ACTIVE 16.261333 x11 1.261 0.44267 15 .

15 14 ACTIVE 16 x3 0.297 0.45455 16 .

16 15 ACTIVE 16 x5 0.091 0.15758 16 .

17 -16 INFEASIBLE -0.4 . . . 15 .

18 -15 ACTIVE 11.781818 x10 1.782 0.37576 15 .

19 18 ACTIVE 11 x5 0.091 0.15758 15 .

20 -19 INFEASIBLE -6.4 . . . 14 .

21 -14 ACTIVE 11.963636 x5 0.182 0.28485 14 .

22 -21 INFEASIBLE -4.4 . . . 13 .

23 -13 ACTIVE 15.281818 x10 4.282 0.52273 13 .

24 23 ACTIVE 15.041333 x5 0.095 0.286 14 .

25 -24 INFEASIBLE -2.9 . . . 13 .

26 24 INFEASIBLE 14 . . . 12 .

27 12 ACTIVE 16 x3 0.083 0.15 13 .

28 -27 ACTIVE 15.277778 x9 0.278 0.34444 14 .

29 -28 ACTIVE 13.833333 x10 3.833 0.23333 14 .

30 29 ACTIVE 13 x2 0.4 0.4 15 .

31 30 INFEASIBLE 12 . . . 14 .

32 -30 SUBOPTIMAL 10 . . . 13 8

33 28 ACTIVE 15 x2 0.067 0.06667 13 8

34 -33 SUBOPTIMAL 12 . . . 12 6

35 27 ACTIVE 15 x2 0.067 0.06667 12 6

36 -35 SUBOPTIMAL 15 . . . 11 3

37 -11 FATHOMED 14.275 . . . 10 3

38 10 ACTIVE 16.804848 x1 0.158 0.50313 11 3

39 -38 FATHOMED 14.784 . . . 10 3

40 38 ACTIVE 16.40381 x11 1.404 0.68143 11 3

41 -40 ACTIVE 16.367677 x10 5.368 0.69949 12 3

42 41 ACTIVE 16.113203 x11 2.374 1.00059 12 3

43 42 ACTIVE 16 x5 0.182 0.33182 12 3

44 -43 FATHOMED 13.822222 . . . 11 3

45 -41 FATHOMED 12.642424 . . . 10 3

46 40 ACTIVE 16 x5 0.229 0.37857 10 3



Example 4.10: Restarting an Integer Program F 265

The LP Procedure

Integer Iteration Log

Iter Problem Condition Objective Branched Value Sinfeas Active Proximity

47 46 FATHOMED 15 . . . 9 3

48 -9 ACTIVE 17.453333 x7 0.453 0.64111 10 3

49 48 ACTIVE 17.35619 x11 0.356 0.53857 11 3

50 49 ACTIVE 17 x5 0.121 0.27143 12 3

51 50 ACTIVE 17 x3 0.083 0.15 13 3

52 -51 FATHOMED 15.933333 . . . 12 3

53 51 ACTIVE 16 x2 0.067 0.06667 12 3

54 -53 SUBOPTIMAL 16 . . . 8 2

55 -8 ACTIVE 17.655399 x12 7.721 0.56127 9 2

56 55 ACTIVE 17.519375 x10 6.56 0.76125 10 2

57 56 ACTIVE 17.256874 x2 0.265 0.67388 11 2

58 57 INFEASIBLE 17.167622 . . . 10 2

59 -57 FATHOMED 16.521755 . . . 9 2

60 -56 FATHOMED 17.03125 . . . 8 2

61 -55 ACTIVE 17.342857 x9 0.343 0.50476 8 2

62 61 ACTIVE 17.2225 x7 0.16 0.37333 9 2

63 62 ACTIVE 17.1875 x8 2.188 0.33333 9 2

64 63 ACTIVE 17.153651 x11 0.154 0.30095 10 2

65 -64 FATHOMED 12.381818 . . . 9 2

66 64 ACTIVE 17 x2 0.133 0.18571 9 2

67 -66 FATHOMED 13 . . . 8 2

68 -62 FATHOMED 14.2 . . . 7 2

69 7 FATHOMED 15.428583 . . . 6 2

70 6 FATHOMED 16.75599 . . . 5 2

71 -5 ACTIVE 17.25974 x6 0.727 0.82078 5 2

72 -71 FATHOMED 17.142857 . . . 4 2

73 -4 ACTIVE 18.078095 x4 0.792 0.70511 5 2

74 -73 ACTIVE 17.662338 x10 7.505 0.91299 5 2

75 74 ACTIVE 17.301299 x9 0.301 0.57489 5 2

76 75 ACTIVE 17.210909 x7 0.211 0.47697 5 2

77 76 FATHOMED 17.164773 . . . 4 2

78 73 FATHOMED 12.872727 . . . 3 2

79 3 ACTIVE 18.368316 x10 7.602 1.20052 4 2

80 79 ACTIVE 18.198323 x7 1.506 1.85351 5 2

81 80 ACTIVE 18.069847 x12 8.517 1.67277 6 2

82 -81 ACTIVE 17.910909 x4 0.7 0.73015 7 2

83 -82 ACTIVE 17.790909 x7 0.791 0.54015 8 2

84 -83 ACTIVE 17.701299 x9 0.701 0.62229 8 2

85 84 ACTIVE 17.17619 x6 0.818 0.45736 8 2

86 -85 ACTIVE 17.146667 x11 0.147 0.24333 8 2

87 86 ACTIVE 17 x1 0.167 0.16667 8 2

88 87 INFEASIBLE 16 . . . 7 2

89 83 ACTIVE 17.58 x11 0.58 0.73788 8 2

90 -89 FATHOMED 17.114286 . . . 7 2

91 -80 ACTIVE 18.044048 x12 8.542 1.71158 8 2

92 91 ACTIVE 17.954536 x11 0.477 1.90457 9 2
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The LP Procedure

Integer Iteration Log

Iter Problem Condition Objective Branched Value Sinfeas Active Proximity

93 92 ACTIVE 17.875084 x4 0.678 1.16624 10 2

94 93 FATHOMED 13.818182 . . . 9 2

95 -93 ACTIVE 17.231221 x6 0.727 0.76182 9 2

96 -95 FATHOMED 17.085714 . . . 8 2

97 -92 FATHOMED 17.723058 . . . 7 2

98 -91 FATHOMED 16.378788 . . . 6 2

99 89 ACTIVE 17 x6 0.818 0.26515 6 2

100 -99 ACTIVE 17 x3 0.083 0.08333 6 2

WARNING: The maximum number of integer iterations has been exceeded. Increase
this limit with the 'IMAXIT=' option on the RESET statement.

The LP ProcedureThe LP Procedure

Solution Summary

Terminated on MaximumInteger Iterations
Integer Feasible Solution

Objective Value 16

Phase 1 Iterations 0

Phase 2 Iterations 13

Phase 3 Iterations 161

Integer Iterations 100

Integer Solutions 4

Initial Basic Feasible Variables 12

Time Used (seconds) 0

Number of Inversions 37

Epsilon 1E-8

Infinity 1.797693E308

Maximum Phase 1 Iterations 100

Maximum Phase 2 Iterations 100

Maximum Phase 3 Iterations 99999999

Maximum Integer Iterations 100

Time Limit (seconds) 120
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The LP ProcedureThe LP Procedure

Variable Summary

Col
Variable
Name Status Type Price Activity

Reduced
Cost

1 x1 DEGEN BINARY 0 0 0

2 x2 ALTER BINARY 0 1 0

3 x3 BINARY 0 0 12

4 x4 ALTER BINARY 0 1 0

5 x5 ALTER BINARY 0 0 0

6 x6 ALTER BINARY 0 1 0

7 x7 INTEGER 1 0 1

8 x8 INTEGER 1 1 1

9 x9 DEGEN INTEGER 1 0 0

10 x10 INTEGER 1 7 1

11 x11 INTEGER 1 0 1

12 x12 INTEGER 1 8 1

13 _OBS2_ BASIC SLACK 0 15 0

14 _OBS3_ BASIC SLACK 0 2 0

15 _OBS4_ BASIC SLACK 0 7 0

16 _OBS5_ BASIC SLACK 0 2 0

17 _OBS6_ ALTER SLACK 0 0 0

18 _OBS7_ BASIC SLACK 0 14 0

19 _OBS8_ SLACK 0 0 -1

20 _OBS9_ BASIC SLACK 0 3 0

21 _OBS10_ DEGEN SLACK 0 0 0

22 _OBS11_ BASIC SLACK 0 3 0

The LP ProcedureThe LP Procedure

Constraint Summary

Row
Constraint
Name Type

S/S
Col Rhs Activity

Dual
Activity

1 _OBS1_ OBJECTVE . 0 16 .

2 _OBS2_ LE 13 110 95 0

3 _OBS3_ LE 14 95 93 0

4 _OBS4_ LE 15 80 73 0

5 _OBS5_ LE 16 100 98 0

6 _OBS6_ LE 17 0 0 0

7 _OBS7_ LE 18 0 -14 0

8 _OBS8_ LE 19 0 0 1

9 _OBS9_ LE 20 0 -3 0

10 _OBS10_ LE 21 0 0 0

11 _OBS11_ LE 22 0 -3 0
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To continue with the solution of this problem, invoke PROC LP with the ACTIVEIN= and PRIMALIN=
options and reset the IMAXIT= option. This restores the branch-and-bound tree and simplifies calculating a
basic feasible solution from which to start processing.

proc lp data=haldi10 activein=a primalin=p imaxit=250;
run;

The procedure picks up iterating from a equivalent state to where it left off. The problem will still not be
solved when IMAXIT=250 occurs.

Example 4.11: Alternative Search of the Branch-and-Bound Tree
In this example, the HALDI10 problem from Example 4.10 is solved. However, here the default strategy for
searching the branch-and-bound tree is modified. By default, the search strategy has VARSELECT=FAR.
This means that when searching for an integer variable on which to branch, the procedure uses the one that
has a value farthest from an integer value. An alternative strategy has VARSELECT=PENALTY. This strategy
causes PROC LP to look at the cost, in terms of the objective function, of branching on an integer variable.
The procedure looks at PENALTYDEPTH= integer variables before choosing the one with the largest cost.
This is a much more expensive strategy (in terms of execution time) than the VARSELECT=FAR strategy,
but it can be beneficial if fewer integer iterations must be done to find an optimal solution.

proc lp data=haldi10 varselect=penalty;
run;

Compare the number of integer iterations needed to solve the problem using this heuristic with the default
strategy used in Example 4.10. In this example, the difference is profound; in general, solution times can
vary significantly with the search technique. See Output 4.11.1.
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Output 4.11.1 Summaries and an Integer Programming Iteration Log: Using VARSELECT=PENALTY

The LP ProcedureThe LP Procedure

Problem Summary

Objective Function Max _OBS1_

Rhs Variable _rhs_

Type Variable _type_

Problem Density (%) 31.82

Variables Number

Integer 6

Binary 6

Slack 10

Total 22

Constraints Number

LE 10

Objective 1

Total 11
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Output 4.11.1 continued

Integer Iteration Log

Iter Problem Condition Objective Branched Value Sinfeas Active Proximity

1 0 ACTIVE 18.709524 x4 0.8 1.11905 2 .

2 1 ACTIVE 16.585187 x1 0.447 2.33824 3 .

3 2 ACTIVE 14.86157 x5 0.221 2.09584 4 .

4 3 ACTIVE 14.807195 x2 0.897 1.31729 5 .

5 -4 ACTIVE 14.753205 x8 14.58 0.61538 6 .

6 5 ACTIVE 14.730078 x6 0.043 0.79446 7 .

7 -6 ACTIVE 13.755102 x3 0.051 0.58163 8 .

8 -7 ACTIVE 11.6 x8 11.6 0.4 9 .

9 8 ACTIVE 11.6 x12 0.6 0.4 10 .

10 -9 ACTIVE 11.6 x8 10.6 0.4 11 .

11 10 ACTIVE 11.6 x12 1.6 0.4 12 .

12 -11 ACTIVE 11.6 x8 9.6 0.4 13 .

13 12 ACTIVE 11.6 x12 2.6 0.4 14 .

14 -13 ACTIVE 11.571429 x9 0.143 0.57143 15 .

15 14 ACTIVE 11.5 x8 8.5 0.5 16 .

16 -15 INFEASIBLE 9 . . . 15 .

17 15 ACTIVE 11.375 x12 3.375 0.375 16 .

18 -17 ACTIVE 11.166667 x8 7.167 0.16667 17 .

19 18 ACTIVE 11.125 x12 4.125 0.125 18 .

20 19 SUBOPTIMAL 11 . . . 7 7

21 7 ACTIVE 13.5 x8 13.5 0.5 8 7

22 -21 INFEASIBLE 11 . . . 7 7

23 21 ACTIVE 13.375 x12 0.375 0.375 8 7

24 -23 ACTIVE 13.166667 x8 12.17 0.16667 9 7

25 24 ACTIVE 13.125 x12 1.125 0.125 10 7

26 25 SUBOPTIMAL 13 . . . 4 5

27 6 ACTIVE 14.535714 x3 0.045 0.50893 5 5

28 -27 FATHOMED 12.625 . . . 4 5

29 27 SUBOPTIMAL 14 . . . 1 4

30 -1 ACTIVE 18.309524 x3 0.129 1.31905 2 4

31 30 ACTIVE 17.67723 x6 0.886 0.43662 3 4

32 31 ACTIVE 15.485156 x2 0.777 1.50833 4 4

33 -32 ACTIVE 15.2625 x1 0.121 1.38333 4 4

34 33 ACTIVE 15.085106 x10 3.532 0.91489 4 4

35 34 FATHOMED 14.857143 . . . 3 4

36 32 FATHOMED 11.212121 . . . 2 4

37 -31 ACTIVE 17.56338 x10 7.93 0.43662 3 4

38 37 ACTIVE 17.225962 x8 2.38 0.69231 4 4

39 38 ACTIVE 17.221818 x1 0.016 0.37111 5 4

40 -39 FATHOMED 14.43662 . . . 4 4

41 39 ACTIVE 17.172375 x2 0.133 0.31948 5 4

42 41 ACTIVE 16.890196 x5 0.086 0.19608 6 4

43 42 ACTIVE 16.75 x12 9.75 0.25 7 4

44 -43 SUBOPTIMAL 15 . . . 6 3

45 43 SUBOPTIMAL 16 . . . 3 2

46 -38 FATHOMED 17.138028 . . . 2 2
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Output 4.11.1 continued

Integer Iteration Log

Iter Problem Condition Objective Branched Value Sinfeas Active Proximity

47 -37 SUBOPTIMAL 17 . . . 1 1

48 -30 FATHOMED 16.566667 . . . 0 .

Solution Summary

Integer Optimal Solution

Objective Value 17

Phase 1 Iterations 0

Phase 2 Iterations 13

Phase 3 Iterations 79

Integer Iterations 48

Integer Solutions 6

Initial Basic Feasible Variables 12

Time Used (seconds) 0

Number of Inversions 17

Epsilon 1E-8

Infinity 1.797693E308

Maximum Phase 1 Iterations 100

Maximum Phase 2 Iterations 100

Maximum Phase 3 Iterations 99999999

Maximum Integer Iterations 100

Time Limit (seconds) 120
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Output 4.11.1 continued

Variable Summary

Col
Variable
Name Status Type Price Activity

Reduced
Cost

1 x1 DEGEN BINARY 0 0 0

2 x2 BINARY 0 0 -4

3 x3 BINARY 0 0 -4

4 x4 BINARY 0 1 -18

5 x5 DEGEN BINARY 0 0 0

6 x6 BINARY 0 1 -1

7 x7 INTEGER 1 0 -6.5

8 x8 INTEGER 1 0 -3

9 x9 INTEGER 1 0 -1

10 x10 INTEGER 1 8 -8

11 x11 INTEGER 1 0 -8.545455

12 x12 BASIC INTEGER 1 9 0

13 _OBS2_ BASIC SLACK 0 20 0

14 _OBS3_ BASIC SLACK 0 5 0

15 _OBS4_ BASIC SLACK 0 10 0

16 _OBS5_ SLACK 0 0 -1

17 _OBS6_ SLACK 0 0 -1.5

18 _OBS7_ DEGEN SLACK 0 0 0

19 _OBS8_ DEGEN SLACK 0 0 0

20 _OBS9_ BASIC SLACK 0 2 0

21 _OBS10_ SLACK 0 0 -2.545455

22 _OBS11_ BASIC SLACK 0 2 0

Constraint Summary

Row
Constraint
Name Type

S/S
Col Rhs Activity

Dual
Activity

1 _OBS1_ OBJECTVE . 0 17 .

2 _OBS2_ LE 13 110 90 0

3 _OBS3_ LE 14 95 90 0

4 _OBS4_ LE 15 80 70 0

5 _OBS5_ LE 16 100 100 1

6 _OBS6_ LE 17 0 0 1.5

7 _OBS7_ LE 18 0 0 0

8 _OBS8_ LE 19 0 0 0

9 _OBS9_ LE 20 0 -2 0

10 _OBS10_ LE 21 0 0 2.5454545

11 _OBS11_ LE 22 0 -2 0

Although the VARSELECT=PENALTY strategy works well in this example, there is no guarantee that it will
work well with your model. Experimentation with various strategies is necessary to find the one that works
well with your model and data, particularly if a model is solved repeatedly with few changes to either the
structure or the data.
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Example 4.12: An Assignment Problem
This example departs somewhat from the emphasis of previous ones. Typically, linear programming models
are large, have considerable structure, and are solved with some regularity. Some form of automatic model
building, or matrix generation as it is commonly called, is a useful aid. The sparse input format provides a
great deal of flexibility in model specification so that, in many cases, the DATA step can be used to generate
the matrix.

The following assignment problem illustrates some techniques in matrix generation. In this example, you
have four machines that can produce any of six grades of cloth, and you have five customers that demand
various amounts of each grade of cloth. The return from supplying a customer with a demanded grade
depends on the machine on which the cloth was made. In addition, the machine capacity depends both upon
the specific machine used and the grade of cloth made.

To formulate this problem, let i denote customer, j denote grade, and k denote machine. Then let xijk denote
the amount of cloth of grade j made on machine k for customer i; let rijk denote the return from selling
one unit of grade j cloth made on machine k to customer i; let dij denote the demand for grade j cloth by
customer i; let cjk denote the number of units of machine k required to produce one unit of grade j cloth; and
let ak denote the number of units of machine k available. Then, you get

max
P

ijk rijkxijk

subject to
P

k xijk D dij for all i and jP
ij cjkxijk � ak for all k

xijk � 0 for all i; j and k

The data are saved in three data sets. The OBJECT data set contains the returns for satisfying demand, the
DEMAND data set contains the amounts demanded, and the RESOURCE data set contains the conversion
factors for each grade and the total amounts of machine resources available.

title 'An Assignment Problem';

data object;
input machine customer

grade1 grade2 grade3 grade4 grade5 grade6;
datalines;

1 1 102 140 105 105 125 148
1 2 115 133 118 118 143 166
1 3 70 108 83 83 88 86
1 4 79 117 87 87 107 105
1 5 77 115 90 90 105 148
2 1 123 150 125 124 154 .
2 2 130 157 132 131 166 .
2 3 103 130 115 114 129 .
2 4 101 128 108 107 137 .
2 5 118 145 130 129 154 .
3 1 83 . . 97 122 147
3 2 119 . . 133 163 180
3 3 67 . . 91 101 101
3 4 85 . . 104 129 129
3 5 90 . . 114 134 179
4 1 108 121 79 . 112 132
4 2 121 132 92 . 130 150
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4 3 78 91 59 . 77 72
4 4 100 113 76 . 109 104
4 5 96 109 77 . 105 145
;

data demand;
input customer

grade1 grade2 grade3 grade4 grade5 grade6;
datalines;

1 100 100 150 150 175 250
2 300 125 300 275 310 325
3 400 0 400 500 340 0
4 250 0 750 750 0 0
5 0 600 300 0 210 360
;

data resource;
input machine

grade1 grade2 grade3 grade4 grade5 grade6 avail;
datalines;

1 .250 .275 .300 .350 .310 .295 744
2 .300 .300 .305 .315 .320 . 244
3 .350 . . .320 .315 .300 790
4 .280 .275 .260 . .250 .295 672
;

The linear program is built using the DATA step. The model is saved in a SAS data set in the sparse input
format for PROC LP. Each section of the following DATA step generates a piece of the linear program. The
first section generates the objective function; the next section generates the demand constraints; and the last
section generates the machine resource availability constraints.

/* build the linear programming model */

data model;
array grade{6} grade1-grade6;
length _type_ $ 8 _row_ $ 8 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;

ncust=5;
nmach=4;
ngrade=6;

/* generate the objective function */

_type_='MAX';
_row_='OBJ';
do k=1 to nmach;

do i=1 to ncust;
link readobj; /* read the objective coefficient data */
do j=1 to ngrade;

if grade{j}^=. then do;
_col_='X'||put(i,1.)||put(j,1.)||put(k,1.);
_coef_=grade{j};
output;
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end;
end;

end;
end;

/* generate the demand constraints */

do i=1 to ncust;
link readdmd; /* read the demand data */
do j=1 to ngrade;

if grade{j}^=. then do;
_type_='EQ';
_row_='DEMAND'||put(i,1.)||put(j,1.);
_col_='_RHS_';
_coef_=grade{j};
output;
_type_=' ';
do k=1 to nmach;

_col_='X'||put(i,1.)||put(j,1.)||put(k,1.);
_coef_=1.0;
output;

end;
end;

end;
end;

/* generate the machine constraints */

do k=1 to nmach;
link readres; /* read the machine data */
_type_='LE';
_row_='MACHINE'||put(k,1.);
_col_='_RHS_';
_coef_=avail;
output;
_type_=' ';
do i=1 to ncust;

do j=1 to ngrade;
if grade{j}^=. then do;

_col_='X'||put(i,1.)||put(j,1.)||put(k,1.);
_coef_=grade{j};
output;
end;

end;
end;

end;

readobj: set object;
return;
readdmd: set demand;
return;
readres: set resource;
return;
run;
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With the model built and saved in a data set, it is ready for solution using PROC LP. The following program
solves the model and saves the solution in the data set called PRIMAL:

/* solve the linear program */

proc lp data=model sparsedata noprint primalout=primal;
run;

The following output is produced by PROC LP.

Output 4.12.1 An Assignment Problem

An Assignment Problem

The LP Procedure

An Assignment Problem

The LP Procedure

Problem Summary

Objective Function Max OBJ

Rhs Variable _RHS_

Type Variable _type_

Problem Density (%) 5.31

Variables Number

Non-negative 120

Slack 4

Total 124

Constraints Number

LE 4

EQ 30

Objective 1

Total 35
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Output 4.12.1 continued

Solution Summary

Terminated Successfully

Objective Value 871426.03763

Phase 1 Iterations 0

Phase 2 Iterations 40

Phase 3 Iterations 0

Integer Iterations 0

Integer Solutions 0

Initial Basic Feasible Variables 36

Time Used (seconds) 0

Number of Inversions 3

Epsilon 1E-8

Infinity 1.797693E308

Maximum Phase 1 Iterations 100

Maximum Phase 2 Iterations 100

Maximum Phase 3 Iterations 99999999

Maximum Integer Iterations 100

Time Limit (seconds) 120

The solution is prepared for reporting using the DATA step, and a report is written using PROC TABULATE.

/* report the solution */

data solution;
set primal;
keep customer grade machine amount;
if substr(_var_,1,1)='X' then do;

if _value_^=0 then do;
customer = substr(_var_,2,1);
grade = substr(_var_,3,1);
machine = substr(_var_,4,1);
amount = _value_;
output;

end;
end;

run;

proc tabulate data=solution;
class customer grade machine;
var amount;
table (machine*customer), (grade*amount);

run;
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The report shown in Output 4.12.2 gives the assignment of customer, grade of cloth, and machine that
maximizes the return and does not violate the machine resource availability.

Output 4.12.2 An Assignment Problem

An Assignment ProblemAn Assignment Problem

grade

1 2 3 4 5 6

amount amount amount amount amount amount

Sum Sum Sum Sum Sum Sum

machine customer

1 1 . 100.00 150.00 150.00 175.00 250.00

2 . . 300.00 . . .

3 . . 256.72 210.31 . .

4 . . 750.00 . . .

5 . 92.27 . . . .

2 3 . . 143.28 . 340.00 .

5 . . 300.00 . . .

3 2 . . . 275.00 310.00 325.00

3 . . . 289.69 . .

4 . . . 750.00 . .

5 . . . . 210.00 360.00

4 1 100.00 . . . . .

2 300.00 125.00 . . . .

3 400.00 . . . . .

4 250.00 . . . . .

5 . 507.73 . . . .

Example 4.13: A Scheduling Problem
Scheduling is an application area where techniques in model generation can be valuable. Problems involving
scheduling are often solved with integer programming and are similar to assignment problems. In this
example, you have eight one-hour time slots in each of five days. You have to assign four people to these
time slots so that each slot is covered on every day. You allow the people to specify preference data for each
slot on each day. In addition, there are constraints that must be satisfied:

� Each person has some slots for which they are unavailable.

� Each person must have either slot 4 or 5 off for lunch.

� Each person can work only two time slots in a row.

� Each person can work only a specified number of hours in the week.

To formulate this problem, let i denote person, j denote time slot, and k denote day. Then, let xijk D 1 if
person i is assigned to time slot j on day k, and 0 otherwise; let pijk denote the preference of person i for slot
j on day k; and let hi denote the number of hours in a week that person i will work. Then, you get
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max
P

ijk pijkxijk

subject to
P

i xijk D 1 for all j and k
xi4k C xi5k � 1 for all i and k
xi;`;k C xi;`C1;k C xi;`C2;k � 2 for all i and k; and ` D 1; : : : ; 6P

jk xijk � hi for all i
xijk D 0 or 1 for all i and k such that pijk > 0;

otherwise xijk D 0

To solve this problem, create a data set that has the hours and preference data for each individual, time slot,
and day. A 10 represents the most desirable time slot, and a 1 represents the least desirable time slot. In
addition, a 0 indicates that the time slot is not available.

data raw;
input name $ hour slot mon tue wed thu fri;
datalines;

marc 20 1 10 10 10 10 10
marc 20 2 9 9 9 9 9
marc 20 3 8 8 8 8 8
marc 20 4 1 1 1 1 1
marc 20 5 1 1 1 1 1
marc 20 6 1 1 1 1 1
marc 20 7 1 1 1 1 1
marc 20 8 1 1 1 1 1
mike 20 1 10 9 8 7 6
mike 20 2 10 9 8 7 6
mike 20 3 10 9 8 7 6
mike 20 4 10 3 3 3 3
mike 20 5 1 1 1 1 1
mike 20 6 1 2 3 4 5
mike 20 7 1 2 3 4 5
mike 20 8 1 2 3 4 5
bill 20 1 10 10 10 10 10
bill 20 2 9 9 9 9 9
bill 20 3 8 8 8 8 8
bill 20 4 0 0 0 0 0
bill 20 5 1 1 1 1 1
bill 20 6 1 1 1 1 1
bill 20 7 1 1 1 1 1
bill 20 8 1 1 1 1 1
bob 20 1 10 9 8 7 6
bob 20 2 10 9 8 7 6
bob 20 3 10 9 8 7 6
bob 20 4 10 3 3 3 3
bob 20 5 1 1 1 1 1
bob 20 6 1 2 3 4 5
bob 20 7 1 2 3 4 5
bob 20 8 1 2 3 4 5
;
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These data are read by the following DATA step, and an integer program is built to solve the problem. The
model is saved in the data set named MODEL. First, the objective function is built using the data saved in
the RAW data set. Then, the constraints requiring a person to be working in each time slot are built. Next,
the constraints allowing each person time for lunch are added. Then, the constraints restricting people to
only two consecutive hours are added. Next, the constraints limiting the time that any one person works in a
week are added. Finally, the constraints allowing a person to be assigned only to a time slot for which he is
available are added. The code to build each of these constraints follows the formulation closely.

data model;
array workweek{5} mon tue wed thu fri;
array hours{4} hours1 hours2 hours3 hours4;
retain hours1-hours4;

set raw end=eof;

length _row_ $ 8 _col_ $ 8 _type_ $ 8;
keep _type_ _col_ _row_ _coef_;

if name='marc' then i=1;
else if name='mike' then i=2;
else if name='bill' then i=3;
else if name='bob' then i=4;

hours{i}=hour;

/* build the objective function */

do k=1 to 5;
_col_='x'||put(i,1.)||put(slot,1.)||put(k,1.);

_row_='object';
_coef_=workweek{k} * 1000;
output;
_row_='upper';
if workweek{k}^=0 then _coef_=1;
output;
_row_='integer';
_coef_=1;
output;

end;

/* build the rest of the model */

if eof then do;
_coef_=.;
_col_=' ';
_type_='upper';
_row_='upper';
output;
_type_='max';
_row_='object';
output;
_type_='int';
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_row_='integer';
output;

/* every hour 1 person working */

do j=1 to 8;
do k=1 to 5;

_row_='work'||put(j,1.)||put(k,1.);
_type_='eq';
_col_='_RHS_';
_coef_=1;
output;
_coef_=1;
_type_=' ';
do i=1 to 4;

_col_='x'||put(i,1.)||put(j,1.)||put(k,1.);
output;

end;
end;

end;

/* each person has a lunch */

do i=1 to 4;
do k=1 to 5;

_row_='lunch'||put(i,1.)||put(k,1.);
_type_='le';
_col_='_RHS_';
_coef_=1;
output;
_coef_=1;
_type_=' ';
_col_='x'||put(i,1.)||'4'||put(k,1.);
output;
_col_='x'||put(i,1.)||'5'||put(k,1.);
output;

end;
end;

/* work at most 2 slots in a row */

do i=1 to 4;
do k=1 to 5;

do l=1 to 6;
_row_='seq'||put(i,1.)||put(k,1.)||put(l,1.);
_type_='le';
_col_='_RHS_';
_coef_=2;
output;

_coef_=1;
_type_=' ';

do j=0 to 2;
_col_='x'||put(i,1.)||put(l+j,1.)||put(k,1.);
output;
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end;
end;

end;
end;

/* work at most n hours in a week */

do i=1 to 4;
_row_='capacit'||put(i,1.);
_type_='le';
_col_='_RHS_';
_coef_=hours{i};
output;
_coef_=1;
_type_=' ';
do j=1 to 8;

do k=1 to 5;
_col_='x'||put(i,1.)||put(j,1.)||put(k,1.);
output;

end;
end;

end;
end;
run;

The model saved in the data set named MODEL is in the sparse format. The constraint that requires one
person to work in time slot 1 on day 2 is named WORK12; it is

P
i xi12 D 1.

The following model is saved in the MODEL data set (which has 1387 observations).

_TYPE_ _COL_ _ROW_ _COEF_

eq _RHS_ work12 1
x112 work12 1
x212 work12 1
x312 work12 1
x412 work12 1

The model is solved using the LP procedure. The option PRIMALOUT=SOLUTION causes PROC LP to
save the primal solution in the data set named SOLUTION.

/* solve the linear program */

proc lp sparsedata noprint primalout=solution
time=1000 maxit1=1000 maxit2=1000;

run;
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The following DATA step takes the solution data set SOLUTION and generates a report data set named
REPORT. It translates the variable names xijk so that a more meaningful report can be written. Then, the
PROC TABULATE procedure is used to display a schedule showing how the eight time slots are covered for
the week.

/* report the solution */
title 'Reported Solution';

data report;
set solution;
keep name slot mon tue wed thu fri;
if substr(_var_,1,1)='x' then do;

if _value_>0 then do;
n=substr(_var_,2,1);
slot=substr(_var_,3,1);
d=substr(_var_,4,1);
if n='1' then name='marc';
else if n='2' then name='mike';
else if n='3' then name='bill';
else name='bob';
if d='1' then mon=1;
else if d='2' then tue=1;
else if d='3' then wed=1;
else if d='4' then thu=1;
else fri=1;
output;

end;
end;

run;

proc format;
value xfmt 1=' xxx ';

run;

proc tabulate data=report;
class name slot;
var mon--fri;
table (slot * name), (mon tue wed thu fri)*sum=' '*f=xfmt.

/misstext=' ';
run;



284 F Chapter 4: The LP Procedure

Output 4.13.1 from PROC TABULATE summarizes the schedule. Notice that the constraint requiring that a
person be assigned to each possible time slot on each day is satisfied.

Output 4.13.1 A Scheduling Problem

Reported SolutionReported Solution

mon tue wed thu fri

slot name

1 bill xxx xxx xxx xxx xxx

2 bob xxx

marc xxx xxx xxx xxx

3 bob xxx

marc xxx xxx xxx

mike xxx

4 mike xxx xxx xxx xxx xxx

5 bob xxx xxx xxx xxx xxx

6 bob xxx xxx

marc xxx

mike xxx xxx

7 bill xxx

bob xxx

mike xxx xxx xxx

8 bill xxx

bob xxx

mike xxx xxx xxx

Recall that PROC LP puts a character string in the macro variable _ORLP_ that describes the characteristics
of the solution on termination. This string can be parsed using macro functions and the information obtained
can be used in report writing. The variable can be written to the log with the command

%put &_orlp_;

which produces Figure 4.1.

Figure 4.1 _ORLP_ Macro Variable

STATUS=SUCCESSFUL PHASE=3 OBJECTIVE=211000 P_FEAS=YES D_FEAS=YES
INT_ITER=0 INT_FEAS=1 ACTIVE=0 INT_BEST=211000 PHASE1_ITER=34
PHASE2_ITER=51 PHASE3_ITER=0

From this you learn, for example, that at termination the solution is integer optimal and has an objective
value of 211000.
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Example 4.14: A Multicommodity Transshipment Problem with Fixed Charges
The following example illustrates a DATA step program for generating a linear program to solve a multicom-
modity network flow model that has fixed charges. Consider a network consisting of the following nodes:
farm-a, farm-b, farm-c, Chicago, St. Louis, and New York. You can ship four commodities from each farm
to Chicago or St. Louis and from Chicago or St. Louis to New York. The following table shows the unit
shipping cost for each of the four commodities across each of the arcs. The table also shows the supply
(positive numbers) at each of the from nodes and the demand (negative numbers) at each of the to nodes. The
fixed charge is a fixed cost for shipping any nonzero amount across an arc. For example, if any amount of
any of the four commodities is sent from farm-c to St. Louis, then a fixed charge of 75 units is added to the
shipping cost.

Table 4.13 Farms to Cities Network Problem

Unit Shipping Supply and Demand Fixed
From To Cost Charge
Node Node 1 2 3 4 1 2 3 4

farm-a Chicago 20 15 17 22 100 100 40 . 100
farm-b Chicago 15 15 15 30 100 200 50 50 75
farm-c Chicago 30 30 10 10 40 100 75 100 100
farm-a StLouis 30 25 27 22 . . . . 150
farm-c StLouis 10 9 11 10 . . . . 75
Chicago NY 75 75 75 75 -150 -200 -50 -75 200
StLouis NY 80 80 80 80 . . . . 200

The following program is designed to take the data in the form given in the preceding table. It builds the node
arc incidence matrix for a network given in this form and adds integer variables to capture the fixed charge
using the type of constraints discussed in Example 4.8. The program solves the model using PROC LP, saves
the solution in the PRIMALOUT= data set named SOLUTION, and displays the solution. The DATA step
can be easily modified to handle larger problems with similar structure.

title 'Multi-commodity Transshipment Problem with Fixed-Charges';
%macro dooversd;

_coef_=sd{_i_};
if sd{_i_}>0 then do; /* the node is a supply node */

_row_=from||' commodity'||put(_i_,2.);
if from^=' ' then output;
end;

else if sd{_i_}<0 then do; /* the node is a demand node */
_row_=to||' commodity'||put(_i_,2.);
if to^=' ' then output;

end;
else if from^=' ' & to^=' ' then do; /* a transshipment node */

_coef_=0;
_row_=from||' commodity'||put(_i_,2.); output;
_row_=to ||' commodity'||put(_i_,2.); output;

end;
%mend dooversd;
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%macro dooverc;
_col_=arc||' commodity'||put(_i_,2.);
if from^=' ' & to^=' ' then do; /* add node arc incidence matrix */

_type_='le'; _row_=from||' commodity'||put(_i_,2.);
_coef_=1; output;
_row_=to ||' commodity'||put(_i_,2.);
_coef_=-1; output;
_type_=' '; _row_='obj';
_coef_=c{_i_}; output;
/* add fixed charge variables */
_type_='le'; _row_=arc;
_coef_=1; output;
_col_='_rhs_';
_type_=' ';
_coef_=0; output;
_col_=arc||'fx';
_coef_=-M; output;
_row_='int';
_coef_=1; output;
_row_='obj';
_coef_=fx; output;
_row_='upper';
_coef_=1; output;

end;
%mend dooverc;

data network;
retain M 1.0e6;
length _col_ $ 22 _row_ $ 22;
keep _type_ _col_ _row_ _coef_ ;
array sd sd1-sd4;
array c c1-c4;

input arc $10. from $ to $ c1 c2 c3 c4 sd1 sd2 sd3 sd4 fx;

/* for the first observation define some of the rows */

if _n_=1 then do;
_type_='upperbd'; _row_='upper'; output;
_type_='lowerbd'; _row_='lower'; output;
_type_='min'; _row_='obj'; output;
_type_='integer'; _row_='int'; output;

end;

_col_='_rhs_'; _type_='le';

do _i_ = 1 to dim(sd);
%dooversd;

end;
do _i_ = 1 to dim(c);

%dooverc;
end;
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datalines;
a-Chicago farm-a Chicago 20 15 17 22 100 100 40 . 100
b-Chicago farm-b Chicago 15 15 15 30 100 200 50 50 75
c-Chicago farm-c Chicago 30 30 10 10 40 100 75 100 100
a-StLouis farm-a StLouis 30 25 27 22 . . . . 150
c-StLouis farm-c StLouis 10 9 11 10 . . . . 75
Chicago-NY Chicago NY 75 75 75 75 -150 -200 -50 -75 200
StLous-NY StLouis NY 80 80 80 80 . . . . 200
;

/* solve the model */

proc lp sparsedata pout=solution noprint;
run;

/* print the solution */

data;
set solution;
rename _var_=arc _value_=amount;
if _value_^=0 & _type_='NON-NEG';

run;

proc print;
id arc;
var amount;

run;

The results from this example are shown in Output 4.14.1. The NOPRINT option in the PROC LP statement
suppresses the Variable and Constraint Summary sections. This is useful when solving large models for
which a report program is available. Here, the solution is saved in data set SOLUTION and reported using
PROC PRINT. The solution shows the amount that is shipped over each arc.

Output 4.14.1 Multicommodity Transshipment Problem with Fixed Charges

Multi-commodity Transshipment Problem with Fixed-ChargesMulti-commodity Transshipment Problem with Fixed-Charges

arc amount

a-Chicago  commodity 1 10

b-Chicago  commodity 1 100

b-Chicago  commodity 2 100

c-Chicago  commodity 3 50

c-Chicago  commodity 4 75

c-StLouis  commodity 1 40

c-StLouis  commodity 2 100

Chicago-NY commodity 1 110

Chicago-NY commodity 2 100

Chicago-NY commodity 3 50

Chicago-NY commodity 4 75

StLous-NY  commodity 1 40

StLous-NY  commodity 2 100
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Example 4.15: Converting to an MPS-Format SAS Data Set
This example demonstrates the use of the MPSOUT= option to convert problem data in PROC LP input
format into an MPS-format SAS data set for use with the OPTLP procedure.

Consider the oil blending problem introduced in the section “An Introductory Example” on page 167.
Suppose you have saved the problem data in dense format by using the following DATA step:

data exdata;
input _id_ $17. a_light a_heavy brega naphthal naphthai

heatingo jet_1 jet_2 _type_ $ _rhs_;
datalines;
profit -175 -165 -205 0 0 0 300 300 max .
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 eq 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0 eq 0
heating_o_conv .390 .300 .430 0 0 -1 0 0 eq 0
recipe_1 0 0 0 0 .3 .7 -1 0 eq 0
recipe_2 0 0 0 .2 0 .8 0 -1 eq 0
available 110 165 80 . . . . . upperbd .
;

If you decide to solve the problem by using the OPTLP procedure, you will need to convert the data set
exdata from dense format to MPS format. You can accomplish this by using the following statements:

proc lp data=exdata mpsout=mpsdata;
run;
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The MPS-format SAS data set mpsdata is shown in Output 4.15.1.

Output 4.15.1 Data Set mpsdata

Obs FIELD1 FIELD2 FIELD3 FIELD4 FIELD5 FIELD6

1 NAME PROBLEM . .

2 ROWS . .

3 MAX profit . .

4 E naphtha_l_conv . .

5 E naphtha_i_conv . .

6 E heating_o_conv . .

7 E recipe_1 . .

8 E recipe_2 . .

9 COLUMNS . .

10 a_light profit -175.000 naphtha_l_conv 0.035

11 a_light naphtha_i_conv 0.100 heating_o_conv 0.390

12 a_heavy profit -165.000 naphtha_l_conv 0.030

13 a_heavy naphtha_i_conv 0.075 heating_o_conv 0.300

14 brega profit -205.000 naphtha_l_conv 0.045

15 brega naphtha_i_conv 0.135 heating_o_conv 0.430

16 naphthal naphtha_l_conv -1.000 recipe_2 0.200

17 naphthai naphtha_i_conv -1.000 recipe_1 0.300

18 heatingo heating_o_conv -1.000 recipe_1 0.700

19 heatingo recipe_2 0.800 .

20 jet_1 profit 300.000 recipe_1 -1.000

21 jet_2 profit 300.000 recipe_2 -1.000

22 BOUNDS . .

23 UP .BOUNDS. a_light 110.000 .

24 UP .BOUNDS. a_heavy 165.000 .

25 UP .BOUNDS. brega 80.000 .

26 ENDATA . .

Now that the problem data are in MPS format, you can solve the problem by using the OPTLP procedure.
For more information, see Chapter 12, “The OPTLP Procedure” (SAS/OR User’s Guide: Mathematical
Programming).
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Example 4.16: Migration to OPTMODEL: Assignment
The following example shows how to solve Example 4.12 using PROC OPTMODEL. The OBJECT, DE-
MAND, and RESOURCE data sets are the same as in that example. A new data set, GRADE, is added to aid
in separating the data from the model.

title 'An Assignment Problem';

data grade(drop=i);
do i = 1 to 6;

grade = 'grade'||put(i,1.);
output;

end;
run;

The following PROC OPTMODEL statements read the data sets, build the linear programming model, solve
the model, and output the optimal solution to a SAS data set called SOLUTION:

proc optmodel;
/* declare index sets */
set CUSTOMERS;
set <str> GRADES;
set MACHINES;

/* declare parameters */
num return {CUSTOMERS, GRADES, MACHINES} init 0;
num demand {CUSTOMERS, GRADES};
num cost {GRADES, MACHINES} init 0;
num avail {MACHINES};

/* read the set of grades */
read data grade into GRADES=[grade];

/* read the set of customers and their demands */
read data demand

into CUSTOMERS=[customer]
{j in GRADES} <demand[customer,j]=col(j)>;

/* read the set of machines, costs, and availability */
read data resource nomiss

into MACHINES=[machine]
{j in GRADES} <cost[j,machine]=col(j)>
avail;

/* read objective data */
read data object nomiss

into [machine customer]
{j in GRADES} <return[customer,j,machine]=col(j)>;
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/* declare the model */
var AmountProduced {CUSTOMERS, GRADES, MACHINES} >= 0;
max TotalReturn = sum {i in CUSTOMERS, j in GRADES, k in MACHINES}

return[i,j,k] * AmountProduced[i,j,k];
con req_demand {i in CUSTOMERS, j in GRADES}:

sum {k in MACHINES} AmountProduced[i,j,k] = demand[i,j];
con req_avail {k in MACHINES}:

sum {i in CUSTOMERS, j in GRADES}
cost[j,k] * AmountProduced[i,j,k] <= avail[k];

/* call the solver and save the results */
solve;
create data solution

from [customer grade machine] = {i in CUSTOMERS, j in GRADES,
k in MACHINES: AmountProduced[i,j,k].sol ne 0}

amount=AmountProduced;

/* print optimal solution */
print AmountProduced;

quit;

The statements use both numeric (NUM) and character (STR) index sets, which are populated from the
corresponding data set variables in the READ DATA statements. The OPTMODEL parameters can be either
single-dimensional (AVAIL) or multiple-dimensional (COST, DEMAND, RETURN). The RETURN and
COST parameters are given initial values of 0, and the NOMISS option in the READ DATA statement tells
OPTMODEL to read only the nonmissing values from the input data sets. The model declaration is nearly
identical to the mathematical formulation. The logical condition AmountProduced[i,j,k].sol ne 0 in
the CREATE DATA statement makes sure that only the nonzero parts of the solution appear in the SOLUTION
data set. In Example 4.12, the creation of this data set required postprocessing of the PROC LP output data
set.

The main point is that the PROC OPTMODEL statements are much easier to read and maintain than the
corresponding DATA step statements required for PROC LP.

The SOLUTION data set can be processed by PROC TABULATE as follows to create a compact representation
of the solution:

proc tabulate data=solution;
class customer grade machine;
var amount;
table (machine*customer), (grade*amount=''*sum='');

run;
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The output is the same as Output 4.12.2. The log is displayed in Output 4.16.1.

Output 4.16.1 OPTMODEL Log

NOTE: There were 6 observations read from the data set WORK.GRADE.              

NOTE: There were 5 observations read from the data set WORK.DEMAND.             

NOTE: There were 4 observations read from the data set WORK.RESOURCE.           

NOTE: There were 20 observations read from the data set WORK.OBJECT.            

NOTE: Problem generation will use 4 threads.                                    

NOTE: The problem has 120 variables (0 free, 0 fixed).                          

NOTE: The problem has 34 linear constraints (4 LE, 30 EQ, 0 GE, 0 range).       

NOTE: The problem has 220 linear constraint coefficients.                       

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).      

NOTE: The OPTMODEL presolver is disabled for linear problems.                   

NOTE: The LP presolver value AUTOMATIC is applied.                              

NOTE: The LP presolver removed 43 variables and 7 constraints.                  

NOTE: The LP presolver removed 66 constraint coefficients.                      

NOTE: The presolved problem has 77 variables, 27 constraints, and 154           

      constraint coefficients.                                                  

NOTE: The LP solver is called.                                                  

NOTE: The Dual Simplex algorithm is used.                                       

                           Objective                                            

      Phase Iteration        Value         Time                                 

       D 1          1    0.000000E+00         0                                 

       D 2          2    2.753237E+06         0                                 

       D 2         55    8.714553E+05         0                                 

       D 2         59    8.714260E+05         0                                 

NOTE: Optimal.                                                                  

NOTE: Objective = 871426.03763.                                                 

NOTE: The Dual Simplex solve time is 0.00 seconds.                              

NOTE: The data set WORK.SOLUTION has 26 observations and 4 variables.           
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Example 4.17: Migration to OPTMODEL: Multicommodity Transshipment
The following example shows how to solve Example 4.14 using PROC OPTMODEL. Three data sets contain
the input data used in that example.

title 'Multicommodity Transshipment Problem with Fixed Charges';

data commodity_data;
do c = 1 to 4;

output;
end;

run;

data arc_data;
input from $ to $ c1 c2 c3 c4 fx;
datalines;

farm-a Chicago 20 15 17 22 100
farm-b Chicago 15 15 15 30 75
farm-c Chicago 30 30 10 10 100
farm-a StLouis 30 25 27 22 150
farm-c StLouis 10 9 11 10 75
Chicago NY 75 75 75 75 200
StLouis NY 80 80 80 80 200
;
run;

data supply_data;
input node $ sd1 sd2 sd3 sd4;
datalines;

farm-a 100 100 40 .
farm-b 100 200 50 50
farm-c 40 100 75 100
NY -150 -200 -50 -75
;
run;

The following PROC OPTMODEL statements read the data sets, print the input parameters, build the
mixed-integer linear programming model, solve the model, and output the optimal solution to a SAS data set
called SOLUTION:

proc optmodel;
set COMMODITIES;
read data commodity_data into COMMODITIES=[c];

set <str,str> ARCS;
num unit_cost {ARCS, COMMODITIES};
num fixed_charge {ARCS};
read data arc_data into ARCS=[from to] {c in COMMODITIES}

<unit_cost[from,to,c]=col('c'||c)> fixed_charge=fx;
print unit_cost fixed_charge;

set <str> NODES = union {<i,j> in ARCS} {i,j};
num supply {NODES, COMMODITIES} init 0;
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read data supply_data nomiss into [node] {c in COMMODITIES}
<supply[node,c]=col('sd'||c)>;

print supply;

var AmountShipped {ARCS, c in COMMODITIES} >= 0 <= sum {i in NODES}
max(supply[i,c],0);

/* UseArc[i,j] = 1 if arc (i,j) is used, 0 otherwise */
var UseArc {ARCS} binary;

/* TotalCost = variable costs + fixed charges */
min TotalCost = sum {<i,j> in ARCS, c in COMMODITIES}

unit_cost[i,j,c] * AmountShipped[i,j,c]
+ sum {<i,j> in ARCS} fixed_charge[i,j] * UseArc[i,j];

con flow_balance {i in NODES, c in COMMODITIES}:
sum {<(i),j> in ARCS} AmountShipped[i,j,c] -
sum {<j,(i)> in ARCS} AmountShipped[j,i,c] <= supply[i,c];

/* if AmountShipped[i,j,c] > 0 then UseArc[i,j] = 1 */
con fixed_charge_def {<i,j> in ARCS, c in COMMODITIES}:

AmountShipped[i,j,c] <= AmountShipped[i,j,c].ub * UseArc[i,j];

solve;

print AmountShipped;

create data solution from [from to commodity]={<i,j> in ARCS,
c in COMMODITIES: AmountShipped[i,j,c].sol ne 0} amount=AmountShipped;

quit;

Although Example 4.14 used M = 1.0e6 in the FIXED_CHARGE_DEF constraint that links the continu-
ous variable to the binary variable, it is numerically preferable to use a smaller, data-dependent value.
Here, the upper bound on AmountShipped[i,j,c] is used instead. This upper bound is calculated
in the first VAR statement as the sum of all positive supplies for commodity c. The logical condition
AmountShipped[i,j,k].sol ne 0 in the CREATE DATA statement makes sure that only the nonzero
parts of the solution appear in the SOLUTION data set.

The optimal solution is the same as in Output 4.14.1. The log is displayed in Output 4.17.1.
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Output 4.17.1 OPTMODEL Log

NOTE: There were 4 observations read from the data set WORK.COMMODITY_DATA.     

NOTE: There were 7 observations read from the data set WORK.ARC_DATA.           

NOTE: There were 4 observations read from the data set WORK.SUPPLY_DATA.        

NOTE: Problem generation will use 4 threads.                                    

NOTE: The problem has 35 variables (0 free, 0 fixed).                           

NOTE: The problem has 7 binary and 0 integer variables.                         

NOTE: The problem has 52 linear constraints (52 LE, 0 EQ, 0 GE, 0 range).       

NOTE: The problem has 112 linear constraint coefficients.                       

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).      

NOTE: The OPTMODEL presolver is disabled for linear problems.                   

NOTE: The MILP presolver value AUTOMATIC is applied.                            

NOTE: The MILP presolver removed 8 variables and 16 constraints.                

NOTE: The MILP presolver removed 30 constraint coefficients.                    

NOTE: The MILP presolver modified 22 constraint coefficients.                   

NOTE: The presolved problem has 27 variables, 36 constraints, and 82 constraint 

      coefficients.                                                             

NOTE: The MILP solver is called.                                                

NOTE: The parallel Branch and Cut algorithm is used.                            

NOTE: The Branch and Cut algorithm is using up to 4 threads.                    

          Node  Active    Sols    BestInteger      BestBound      Gap    Time   

             0       1       1  42850.0000000  35825.0000000   19.61%       0   

             0       1       1  42850.0000000  42635.0000000    0.50%       0   

             0       1       1  42850.0000000  42635.0000000    0.50%       0   

             0       1       1  42850.0000000  42635.0000000    0.50%       0   

NOTE: The MILP presolver is applied again.                                      

             0       1       1  42850.0000000  42707.5433526    0.33%       0   

NOTE: The MILP presolver is applied again.                                      

             0       1       2  42825.0000000  42707.5433526    0.28%       0   

             0       1       2  42825.0000000  42825.0000000    0.00%       0   

             0       0       2  42825.0000000  42825.0000000    0.00%       0   

NOTE: Optimal.                                                                  

NOTE: Objective = 42825.                                                        

NOTE: The data set WORK.SOLUTION has 13 observations and 4 variables.           

References

Bartels, R. (1971). “A Stabilization of the Simplex Method.” Numerical Mathematics 16:414–434.

Bland, R. G. (1977). “New Finite Pivoting Rules for the Simplex Method.” Mathematics of Operations
Research 2:103–107.

Breau, R., and Burdet, C. A. (1974). “Branch and Bound Experiments in Zero-One Programming.” Mathe-
matical Programming Study 2:1–50.

Crowder, H., Johnson, E. L., and Padberg, M. W. (1983). “Solving Large-Scale Zero-One Linear Programming
Problems.” Operations Research 31:803–834.



296 F Chapter 4: The LP Procedure

Dantzig, G. B. (1963). Linear Programming and Extensions. Princeton, NJ: Princeton University Press.

Garfinkel, R. S., and Nemhauser, G. L. (1972). Integer Programming. New York: John Wiley & Sons.

Greenberg, H. J. (1978). “Pivot Selection Tactics.” In Design and Implementation of Optimization Software,
edited by H. J. Greenberg, 143–174. Leiden, Netherlands: Sijthoff & Noordhoff.

Hadley, G. (1962). Linear Programming. Reading, MA: Addison-Wesley.

Harris, P. M. J. (1975). “Pivot Selection Methods of the Devex LP Code.” Mathematical Programming Study
4:30–57.

Ignizio, J. P. (1976). Goal Programming and Extensions. Lexington, MA: D. C. Heath.

Murtagh, B. A. (1981). Advanced Linear Programming: Computation and Practice. New York: McGraw-
Hill.

Nelson, M. (1992). The Data Compression Book. New York: M&T Books.

Reid, J. K. (1975). A Sparsity-Exploiting Variant of the Bartels-Golub Decomposition for Linear Pro-
gramming Bases. Technical Report Harwell CSS 20, Atomic Energy Research Establishment, Harwell,
UK.

Reid, J. K. (1976). Fortran Subroutines for Handling Sparse Linear Programming Bases. Technical Report
Harwell AERE R 8269, Atomic Energy Research Establishment, Harwell, UK.

Savelsbergh, M. W. P. (1994). “Preprocessing and Probing Techniques for Mixed Integer Programming
Problems.” ORSA Journal on Computing 6:445–454.

Taha, H. A. (1975). Integer Programming. New York: Academic Press.



Subject Index

backtracking rules
LP procedure, 182, 210

branch-and-bound, 206
branching variable, 210, 211
breadth-first search, 209
control options, 182, 209
depth-first search, 209

coefficients
LP procedure, 188

columns
LP procedure, 188

complete pricing
LP procedure, 187

constraint summary
LP procedure, 224, 233

current tableau
LP procedure, 203

data compression
LP procedure, 184

dense input format
LP procedure, 166

devex method, 186
displayed output

LP procedure, 180, 189, 222–225
dual activities

LP procedure, 202
dynamic pricing

LP procedure, 187

examples, see LP examples

functional summary
LP procedure, 175

goal-programming model, 186

infeasibility
LP procedure, 180, 205, 224

infeasible information summary
LP procedure, 224

infinity
LP procedure, 186

input data sets
LP procedure, 179, 222

integer iteration log, 208
integer programs, 164, 206
interactive processing

LP procedure, 171, 181, 217, 218
iteration log

integer iteration log (LP), 208
LP procedure, 180, 226

linear programming problems, 164
Bartels-Golub update, 165

LP examples, 228
assignment problem, 273
assignment problem (OPTMODEL), 290
blending problem, 167, 229
branch-and-bound search, 268
converting PROC LP format to MPS format, 288
fixed charges, 285, 293
goal programming, 250
infeasibilities, 259
integer program, 256
introductory example, 167
mixed-integer program, 172
MPS file conversion, 173
multicommodity transshipment problem, 285
multicommodity transshipment problem

(OPTMODEL), 293
preprocessing, 172
price parametric programming, 243
price sensitivity analysis, 237
product mix problem, 250
range analysis, 240
restarting a problem, 240
restarting an integer program, 262
scheduling problem, 278
sparse data format, 234
special ordered sets, 247

LP procedure
backtracking rules, 182, 210
branch-and-bound, 182, 206, 209
coefficients, 188
columns, 188
complete pricing, 187
constraint summary, 224, 233
current tableau, 203
customizing search heuristics, 211
data compression, 184
data set options, 179
dense format, 166
details, 197
devex method, 186
displayed output, 180, 189, 222–226



dual activities, 202
dynamic pricing, 187
functional summary, 175
infeasible information summary, 224
input data sets, 179, 222
integer iteration log, 208
integer programs, 206
interactive processing, 171, 181, 217, 218
introductory example, 167
iteration log, 180, 226
memory limit, 227
memory requirements, 219
missing values, 197
mixed-integer programs, 206
MPS file conversion, 173, 200
multiple pricing, 187, 204
ODS table names, 226
ODS variable names, 226, 227
options classified by function, 175
_ORLP_ macro variable, 203
output data sets, 179, 219–221
Output Delivery System (ODS), 226
overview, 164
parametric programming, 185, 216, 218
partial pricing, 187
pause processing, 181
preprocessing, 172, 181, 205, 206
price parametric programming, 217
price sensitivity analysis, 214, 225
pricing strategies, 204
problem definition statements, 170
problem input, 169
problem summary, 223, 230
projected objective value, 209
projected pseudocost, 210
range analysis, 185, 215
range coefficient, 191
reduced costs, 202
reset options, 192
right-hand-side constants, 193
right-hand-side parametric programming, 216
right-hand-side sensitivity analysis, 213, 225
rows, 189, 193
scaling input data, 188, 205
sensitivity analysis, 185, 213, 218
simplex algorithm control options, 186
solution summary, 223, 230
sparse format, 167, 179, 197
suppress printing, 180
syntax skeleton, 174
table of syntax elements, 175
terminate processing, 191
tolerance, 180, 182, 183, 186–188
TYPE variable, 194, 198, 232

variables, 166, 167, 196, 220, 221, 223, 231

macro variable
_ORLP_, 203
ORLP, 203

memory requirements
LP procedure, 219

migration to PROC OPTMODEL
from PROC LP, 290, 293

missing values
LP procedure, 197

mixed-integer programs, 164
form of, 164
LP procedure, 206

MPS file conversion
LP procedure, 173, 200

multiple pricing
LP procedure, 187, 204

objective function
LP procedure, 165

ODS variable names
LP procedure, 227

options classified by function, see functional summary
_ORLP_ macro variable, 203
output data sets

LP procedure, 179, 219–221
Output Delivery System (ODS)

LP procedure, 226
overview

LP procedure, 164

parametric control options
LP procedure, 185

parametric programming, 185, 216, 218
partial pricing

LP procedure, 187
pause processing

LP procedure, 181
preprocessing

LP procedure, 172, 181, 205, 206
price parametric programming, 217
price sensitivity analysis, 214, 225
pricing strategies

LP procedure, 204
problem definition statements

LP procedure, 170
problem summary

LP procedure, 223, 230
projected objective value

LP procedure, 209
projected pseudocost

LP procedure, 210

range analysis, 185, 215



range coefficient
LP procedure, 191

ranging control options
LP procedure, 185

reduced costs
LP procedure, 202

right-hand-side constants
LP procedure, 193

right-hand-side parametric programming, 216
right-hand-side sensitivity analysis, 213, 225
rows

LP procedure, 189, 193

scaling input data
LP procedure, 188, 205

sensitivity analysis, 213, 218
sensitivity control options

LP procedure, 185
simplex algorithm control options

LP procedure, 186
solution summary

LP procedure, 223, 230
sparse input format

LP procedure, 167, 179, 197
special ordered set, 195
syntax skeleton

LP procedure, 174

table of syntax elements, see functional summary
tableau

display current, 203
tolerance

LP procedure, 180, 182, 183, 186–188
TYPE variable

LP procedure, 194, 198, 232

variables
LP procedure, 196, 220, 221, 223, 231





Syntax Index

ACTIVEIN= option
PROC LP statement, 179, 213, 222

ACTIVEOUT= option
PROC LP statement, 179, 213, 220

AUTO option
PROC LP statement, 182, 212, 213

BACKTRACK= option
PROC LP statement, 182, 210

BASIC keyword
TYPE variable (LP), 196

BEST option
PRINT statement (LP), 190

BINARY keyword
TYPE variable (LP), 196

BINFST option
PROC LP statement, 182

BOTH keyword
SCALE= option (LP), 188, 205

CANSELECT= option
PROC LP statement, 183, 209, 212, 213

CLOSE keyword
VARSELECT= option (LP), 185, 211

COEF statement
LP procedure, 188

COL statement
LP procedure, 188

COLUMN keyword
SCALE= option (LP), 188, 205

COLUMN option
PRINT statement (LP), 190

COMPLETE keyword
PRICETYPE= option (LP), 187, 205

CONTROL= option
PROC LP statement, 182, 183, 212, 213

DATA= option
PROC LP statement, 179

DELTAIT= option
PROC LP statement, 183

DEVEX option
PROC LP statement, 186

DOBJECTIVE= option
PROC LP statement, 183

DUALOUT= option
PROC LP statement, 179, 221

DYNAMIC keyword
PRICETYPE= option (LP), 187, 205

ENDPAUSE option
PROC LP statement, 181, 218

EPSILON= option
PROC LP statement, 186

EQ keyword
TYPE variable (LP), 195

ERROR keyword
BACKTRACK= option (LP), 182
CANSELECT= option (LP), 183, 210

FAR keyword
VARSELECT= option (LP), 185, 211

FEASIBLEPAUSE option
PROC LP statement, 181, 218

FIFO keyword
BACKTRACK= option (LP), 182
CANSELECT= option (LP), 183, 209

FIXED keyword
TYPE variable (LP), 195, 206

FLOW option
PROC LP statement, 180

FREE keyword
TYPE variable (LP), 196, 206

FUZZ= option
PROC LP statement, 180

GE keyword
TYPE variable (LP), 195

GOALPROGRAM option
PROC LP statement, 186

ID statement
LP procedure, 189

IEPSILON= option
PROC LP statement, 183

IFEASIBLEPAUSE= option
PROC LP statement, 181, 218

IMAXIT= option
PROC LP statement, 183

INFINITY= option
PROC LP statement, 186

INTEGER keyword
TYPE variable (LP), 195, 206

INTEGER_NONZEROS option
PRINT statement (LP), 190

INTEGER option
PRINT statement (LP), 190

INTEGER_ZEROS option
PRINT statement (LP), 190



INVFREQ= option
PROC LP statement, 186

INVTOL= option
PROC LP statement, 186

IOBJECTIVE= option
PROC LP statement, 183

IPAUSE= option
PROC LP statement, 181, 218

IPIVOT statement
LP procedure, 189, 218

LE keyword
TYPE variable (LP), 195

LIFO keyword
BACKTRACK= option (LP), 182
CANSELECT= option (LP), 183, 209, 212

LIFOTYPE= option
PROC LP statement, 184

LOWER= option
RESET statement (LP), 192

LOWERBD keyword
TYPE variable (LP), 195

LP procedure, 174
COEF statement, 188
COL statement, 188
ID statement, 189
IPIVOT statement, 189
PIVOT statement, 189
PRINT statement, 189
PROC LP statement, 179
QUIT statement, 191
RANGE statement, 191
RESET statement, 192
RHS statement, 193
RHSSEN statement, 193
ROW statement, 193
RUN statement, 194
SHOW statement, 194
TYPE statement, 194
VAR statement, 196

MATRIX option
PRINT statement (LP), 190

MAX keyword
TYPE variable (LP), 194

MAXIT1= option
PROC LP statement, 186

MAXIT2= option
PROC LP statement, 187

MAXIT3= option
PROC LP statement, 187

MAXIT= option
PROC LP statement, 186

MIN keyword

TYPE variable (LP), 194
MPSOUT= option

PROC LP statement, 179, 199, 221

NOAUTO option
PROC LP statement, 184

NOBINFST option
PROC LP statement, 184

NODEVEX option
PROC LP statement, 187

NOENDPAUSE option
PROC LP statement, 181

NOFEASIBLEPAUSE option
PROC LP statement, 181

NOFLOW option
PROC LP statement, 180

NONE keyword
PRICETYPE= option (LP), 187
SCALE= option (LP), 188, 205

NONINTEGER_NONZEROS option
PRINT statement (LP), 190

NONINTEGER option
PRINT statement (LP), 190

NONZEROS option
PRINT statement (LP), 191

NOPARAPRINT option
PROC LP statement, 180

NOPOSTPROCESS option
PROC LP statement, 184

NOPREPROCESS option
PROC LP statement, 181

NOPRINT option
PROC LP statement, 180

NORANGEPRICE option
PROC LP statement, 185

NORANGERHS option
PROC LP statement, 185

NOTABLEAUPRINT option
PROC LP statement, 180

OBJ keyword
BACKTRACK= option (LP), 182
CANSELECT= option (LP), 183, 209, 212

OPTIONS option
SHOW statement (LP), 194

PARAPRINT option
PROC LP statement, 180, 216, 217

PARARESTORE option
PROC LP statement, 187

PARTIAL keyword
PRICETYPE= option (LP), 187, 205

PAUSE= option
PROC LP statement, 181, 218

PENALTY keyword



VARSELECT= option (LP), 184, 185, 211
PENALTYDEPTH= option

PROC LP statement, 184, 211
PEPSILON= option

PROC LP statement, 182
PHASEMIX= option

PROC LP statement, 187
PICTURE option

PRINT statement (LP), 190
PIVOT statement

LP procedure, 189, 218
PMAXIT= option

PROC LP statement, 182, 206
POBJECTIVE= option

PROC LP statement, 184
POSTPROCESS option

PROC LP statement, 184
PREPROCESS option

PROC LP statement, 182
PRICE keyword

VARSELECT= option (LP), 185, 211
PRICE= option

PROC LP statement, 187, 204
PRICEPHI= option

PROC LP statement, 185, 191, 217, 218
PRICESEN keyword

TYPE variable (LP), 196, 215
PRICESEN option

PRINT statement (LP), 191
PRICETYPE= option

PROC LP statement, 187, 204
PRIMALIN= option

PROC LP statement, 179, 213, 222
PRIMALOUT= option

PROC LP statement, 179, 213, 220
PRINT option

PROC LP statement, 180
PRINT statement

LP procedure, 189, 218
PRINTFREQ= option

PROC LP statement, 180
PRINTLEVEL= option

PROC LP statement, 180
PRIOR keyword

VARSELECT= option (LP), 185, 211
PROC LP statement, see LP procedure

branch-and-bound control options, 182
data set options, 179
display control options, 180
interactive control options, 181
parametric control options, 185
preprocessing control options, 181
ranging control options, 185
sensitivity control options, 185

simplex algorithm control options, 186
PROJECT keyword

BACKTRACK= option (LP), 182
CANSELECT= option (LP), 183, 209

PROXIMITYPAUSE= option
PROC LP statement, 181, 189, 218

PSEUDOC keyword
BACKTRACK= option (LP), 182
CANSELECT= option (LP), 183, 210
VARSELECT= option (LP), 185, 211

PWOBJECTIVE= option
PROC LP statement, 184

QUIT statement
LP procedure, 191, 218

RANDOMPRICEMULT= option
PROC LP statement, 187

RANGE keyword
TYPE variable (LP), 196

RANGE statement
LP procedure, 191

RANGEPRICE option
PRINT statement (LP), 191
PROC LP statement, 185, 216

RANGERHS option
PRINT statement (LP), 191
PROC LP statement, 185, 216

READPAUSE option
PROC LP statement, 181, 218

REPSILON= option
PROC LP statement, 187

RESET statement
LP procedure, 192, 218

RHS keyword
TYPE variable (LP), 196

RHS statement
LP procedure, 193

RHSPHI= option
PROC LP statement, 185, 191, 216, 218

RHSSEN keyword
TYPE variable (LP), 196

RHSSEN option
PRINT statement (LP), 191

RHSSEN statement
LP procedure, 193, 214

ROW keyword
SCALE= option (LP), 188, 205

ROW option
PRINT statement (LP), 191

ROW statement
LP procedure, 193

RUN statement
LP procedure, 194, 218



SASMPSXS macro function, 173, 200
SAVE option

QUIT statement (LP), 191
SCALE= option

PROC LP statement, 188, 205
SENSITIVITY option

PRINT statement (LP), 190, 191, 218
SHOW statement

LP procedure, 194, 218
SMALL= option

PROC LP statement, 188
SOLUTION option

PRINT statement (LP), 191
SOSEQ keyword

TYPE variable (LP), 195
SOSLE keyword

TYPE variable (LP), 195
SPARSEDATA option

PROC LP statement, 179
STATUS option

SHOW statement (LP), 194

TABLEAU option
PRINT statement (LP), 191, 203

TABLEAUOUT= option
PROC LP statement, 179, 221

TABLEAUPRINT option
PROC LP statement, 180, 203

TIME= option
PROC LP statement, 188

TREETYPE= option
PROC LP statement, 184

TYPE statement
LP procedure, 194

U= option
PROC LP statement, 188

UNRSTRT keyword
TYPE variable (LP), 195

UPPER= option
RESET statement (LP), 192

UPPERBD keyword
TYPE variable (LP), 195, 206

VAR statement
LP procedure, 196

VARSELECT= option
PROC LP statement, 184, 185, 210

WOBJECTIVE= option
PROC LP statement, 184, 185

ZEROS option
PRINT statement (LP), 191


	The LP Procedure
	Overview: LP Procedure
	Getting Started: LP Procedure
	An Introductory Example
	An Integer Programming Example
	An MPS Format to Sparse Format Conversion Example

	Syntax: LP Procedure
	Functional Summary
	PROC LP Statement
	COEF Statement
	COL Statement
	ID Statement
	IPIVOT Statement
	PIVOT Statement
	PRINT Statement
	QUIT Statement
	RANGE Statement
	RESET Statement
	RHS Statement
	RHSSEN Statement
	ROW Statement
	RUN Statement
	SHOW Statement
	TYPE Statement
	VAR Statement

	Details: LP Procedure
	Missing Values
	Dense Data Input Format
	Sparse Data Input Format
	Converting Any PROC LP Format to an MPS-Format SAS Data Set
	Converting Standard MPS Format to Sparse Format
	The Reduced Costs, Dual Activities, and Current Tableau
	Macro Variable _ORLP_
	Pricing
	Scaling
	Preprocessing
	Integer Programming
	Sensitivity Analysis
	Range Analysis
	Parametric Programming
	Interactive Facilities
	Memory Management
	Output Data Sets
	Input Data Sets
	Displayed Output
	ODS Table and Variable Names
	Memory Limit

	Examples: LP Procedure
	Example 4.1: An Oil Blending Problem
	Example 4.2: A Sparse View of the Oil Blending Problem
	Example 4.3: Sensitivity Analysis: Changes in Objective Coefficients
	Example 4.4: Additional Sensitivity Analysis
	Example 4.5: Price Parametric Programming for the Oil Blending Problem
	Example 4.6: Special Ordered Sets and the Oil Blending Problem
	Example 4.7: Goal-Programming a Product Mix Problem
	Example 4.8: A Simple Integer Program
	Example 4.9: An Infeasible Problem
	Example 4.10: Restarting an Integer Program
	Example 4.11: Alternative Search of the Branch-and-Bound Tree
	Example 4.12: An Assignment Problem
	Example 4.13: A Scheduling Problem
	Example 4.14: A Multicommodity Transshipment Problem with Fixed Charges
	Example 4.15: Converting to an MPS-Format SAS Data Set
	Example 4.16: Migration to OPTMODEL: Assignment
	Example 4.17: Migration to OPTMODEL: Multicommodity Transshipment

	References

	Subject Index
	Syntax Index

