
SAS/OR® 14.1 User’s Guide:
Local Search Optimization
The GA Procedure

This document is an individual chapter from SAS/OR® 14.1 User’s Guide: Local Search Optimization.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2015. SAS/OR® 14.1 User’s Guide: Local Search
Optimization. Cary, NC: SAS Institute Inc.

SAS/OR® 14.1 User’s Guide: Local Search Optimization

Copyright © 2015, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute
Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time
you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is
illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic
piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software
developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or
disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as
applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S.
federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision
serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The
Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

July 2015

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Chapter 4

The GA Procedure

Contents
Overview: GA Procedure . 78
Getting Started: GA Procedure . 80

Initializing the Problem Data . 81
Choosing the Problem Encoding . 83
Setting the Objective Function . 84
Controlling the Selection Process . 84
Setting Crossover Parameters . 85
Setting Mutation Parameters . 86
Creating the Initial Generation . 86
Monitoring Progress and Reporting Results . 87
A Simple Example . 87

Syntax: GA Procedure . 89
PROC GA Statement . 90
ContinueFor Call . 92
Cross Call . 93
Dynamic_array Call . 93
EvaluateLC Call . 94
GetDimensions Call . 95
GetObjValues Call . 95
GetSolutions Call . 95
Initialize Call . 96
MarkPareto Call . 97
Mutate Call . 98
Objective Function . 99
PackBits Call . 100
Programming Statements . 101
ReadChild Call . 102
ReadCompare Call . 103
ReadMember Call . 103
ReadParent Call . 104
ReEvaluate Call . 104
SetBounds Call . 105
SetCompareRoutine Call . 105
SetCross Call . 105
SetCrossProb Call . 106
SetCrossRoutine Call . 107

78 F Chapter 4: The GA Procedure

SetElite Call . 107
SetEncoding Call . 107
SetFinalize Call . 108
SetMut Call . 108
SetMutProb Call . 109
SetMutRoutine Call . 109
SetObj Call . 110
SetObjFunc Call . 110
SetProperty Call . 111
SetSel Call . 111
SetUpdateRoutine Call . 112
ShellSort Call . 112
Shuffle Call . 113
UnpackBits Function . 113
UpdateSolutions Call . 113
WriteChild Call . 114
WriteMember Call . 114

Details: GA Procedure . 115
Using Multisegment Encoding . 115
Using Standard Genetic Operators and Objective Functions 116
Defining a User Fitness Comparison Routine . 124
Defining User Genetic Operators . 126
Defining a User Update Routine . 128
Defining an Objective Function . 130
Defining a User Initialization Routine . 131
Specifying the Selection Strategy . 132
Incorporating Heuristics and Local Optimizations 133
Handling Constraints . 133
Optimizing Multiple Objectives . 135

Examples: GA Procedure . 136
Example 4.1: Traveling Salesman Problem with Local Optimization 136
Example 4.2: Nonlinear Objective with Constraints Using Repair Mechanism 140
Example 4.3: Quadratic Objective with Linear Constraints 143

References . 150

Overview: GA Procedure
Genetic algorithms are a family of local search algorithms that seek optimal solutions to problems by applying
the principles of natural selection and evolution. Genetic algorithms can be applied to almost any optimization
problem and are especially useful for problems where other calculus-based techniques do not work, such
as when the objective function has many local optima, when it is not differentiable or continuous, or when
solution elements are constrained to be integers or sequences. In most cases genetic algorithms require more

Overview: GA Procedure F 79

computation than specialized techniques that take advantage of specific problem structures or characteristics.
However, for optimization problems with no such techniques available, genetic algorithms provide a robust
general method of solution.

In general, genetic algorithms use some variation of the following procedure to search for an optimal solution:

initialization: An initial population of solutions is randomly generated, and the
objective function is evaluated for each member of this initial
generation.

selection: Individual members of the current generation are chosen stochas-
tically either to parent the next generation or to be passed on to
it, such that those members who are the fittest are more likely to
be selected. A solution’s fitness is based on its objective value,
with better objective values reflecting higher fitness.

crossover: Some of the selected solutions are passed to a crossover oper-
ator. The crossover operator combines two or more parents to
produce new offspring solutions for the next generation. The
crossover operator tends to produce new offspring that retain the
common characteristics of the parent solutions, while combining
the other traits in new ways. In this way new areas of the search
space are explored, hopefully while retaining optimal solution
characteristics.

mutation: Some of the next-generation solutions are passed to a mutation
operator, which introduces random variations in the solutions.
The purpose of the mutation operator is to ensure that the solution
space is adequately searched to prevent premature convergence
to a local optimum.

repeat: The current generation of solutions is replaced by the new gener-
ation. If the stopping criterion is not satisfied, the process returns
to the selection phase.

The crossover and mutation operators are commonly called genetic operators. Selection and crossover
distinguish genetic algorithms from a purely random search and direct the algorithm toward finding an
optimum. Mutation is designed to ensure diversity in the search to prevent premature convergence to a local
optimum.

There are many ways to implement the general strategy just outlined, and it is also possible to combine
the genetic algorithm approach with other heuristic solution improvement techniques. In the traditional
genetic algorithm, the solutions space is composed of bit strings, mapped to an objective function, and the
genetic operators are modeled after biological processes. Although there is a theoretical foundation for the
convergence of genetic algorithms formulated in this way, in practice most problems do not fit naturally into
this paradigm. Modern research has shown that optimizations can be set up by using the natural solution
domain (for example, a real vector or integer sequence) and applying crossover and mutation operators
analogous to the traditional genetic operators, but more appropriate to the natural formulation of the problem.
This is the approach, sometimes called evolutionary computing, taken in the GA procedure. It enables you
to model your problem by using a variety of solution forms including sequences, integer or real vectors,

80 F Chapter 4: The GA Procedure

Boolean encodings, and combinations of these. The GA procedure also provides you with a choice of genetic
operators appropriate for these encodings, while permitting you to write your own.

The GA procedure enables you to implement the basic genetic algorithm by default, and to employ other
advanced techniques to handle constraints, accelerate convergence, and perform multiobjective optimizations.
These advanced techniques are discussed in the section “Details: GA Procedure” on page 115.

Although genetic algorithms have been demonstrated to work well for a variety of problems, there is
no guarantee of convergence to a global optimum. Also, the convergence of genetic algorithms can be
sensitive to the choice of genetic operators, mutation probability, and selection criteria, so that some initial
experimentation and fine-tuning of these parameters is often required.

Getting Started: GA Procedure
The optimization problem is described by using programming statements, which initialize problem data and
specify the objective, genetic operators, and other optimization parameters. The programming statements are
executed once, and are followed by a RUN statement to begin the optimization process. The GA procedure
enables you to define subroutines and designate them to be called during the optimization process to calculate
objective functions, perform genetic mutation or crossover operations, or monitor and control the optimization.
All variables created within a subroutine are local to that routine; to access a global variable defined within
the GA procedure, the subroutine must have a parameter with the same name as the variable.

To set up a genetic algorithm optimization, your program needs to perform the following steps:

1. Initialize the problem data, such as cost coefficients and parameter limits.

2. Specify five basic optimization parameters:

� Encoding: the general structure and form of the solution

� Objective: the function to be optimized

� Selection: how members of the current solution generation are chosen
to propagate the next generation

� Crossover: how the attributes of parent solutions are combined to
produce new offspring solutions

� Mutation: how random variation is introduced into the new offspring
solutions to maintain genetic diversity

3. Generate a population of solutions for the initial generation.

4. Control the execution of the algorithm and record your results.

The following sections discuss each of these items in detail.

Initializing the Problem Data F 81

Initializing the Problem Data
The GA procedure offers great flexibility in how you initialize the problem data. Either you can read data
from SAS data sets that are created from other SAS procedures and DATA steps, or you can initialize the
data with programming statements.

In the PROC GA statement, you can specify up to five data sets to be read with the DATAn= option, where n is
a number from 1 to 5, that can be used to initialize parameters and data vectors applicable to the optimization
problem. For example, weights and rewards for a knapsack problem could be stored in the variables WEIGHT
and REWARD in a SAS data set. If you specify the data set with a DATA1= option, the arrays WEIGHT and
REWARD are initialized at the start of the procedure and are available for computing the objective function
and evaluating the constraints with program statements. You could store the number of items and weight
limit constraint in another data set, as illustrated in the sample programming statements that follow:

data input1;
input weight reward;
datalines;

1 5
2 3
4 7
1 2
8 3
6 9
2 6
4 3
...
;

data input2;
input nitems limit;
datalines;

10 20
;

proc ga data1 = input1 /* creates arrays weight and reward */
data2 = input2; /* creates variables nitems and limit */

function objective(selected[*], reward[*], nitems);
array x[1] /nosym;
call dynamic_array(x, nitems);
call ReadMember(selected,1,x);
obj = 0;
do i=1 to nitems;

obj = obj + reward[x[i]];
end;
return(obj);

endsub;

[Other statements follow]

82 F Chapter 4: The GA Procedure

With these statements, the DATA1= option first establishes the arrays weight and reward from the data set
input1, and the DATA2= option causes the variables nitems and limit to be created and initialized from the
data set input2. The reward array and the nitems variable are then used in the objective function.

For convenience in initializing two-dimensional data such as matrices, the GA procedure provides you with
the MATRIXn= option, where n is a number from 1 to 5. A two-dimensional array is created within the
GA procedure with the same name as the option, containing the numeric data in the specified data set. For
example, a table of distances between cities for a traveling salesman problem could be stored as a SAS data
set, and a MATRIX1= option specifying that data set would cause a two-dimensional array named MATRIX1
to be created containing the data at the start of the GA procedure. This is illustrated in the following program:

data distance;
input d1-d10;
datalines;

0 5 3 1 2 ...
5 0 4 2 6 ...
3 4 0 1 3 ...
...
;

proc ga matrix1 = distance;
ncities = 10;
call SetEncoding('S10');
call SetObj('TSP','distances',matrix1);

[Other statements follow]

In this example, the data set distance is used to create a two-dimensional array matrix1, where matrix1Œi; j �

is the distance from city i to city j. The GA procedure provides a simple traveling salesman Problem (TSP)
objective function, which is specified by the user with the SetObj call. The distances between locations
are specified with the distances property of the TSP objective, which is set in the call to be matrix1. Note
that when a MATRIXn= option is used, the names of variables in the data set are not transferred to the GA
procedure as they are with a DATAn= option; only the numeric data are transferred.

You can also initialize problem data with programming statements. The programming statements in the GA
procedure are executed before the optimization process begins. The variables created and initialized can be
used and modified as the optimization progresses. The programming statement syntax is much like the SAS
DATA step, with a few differences (see the section “Syntax: GA Procedure” on page 89). Special calls are
described in the next sections that enable you to specify the objective function and genetic operators, and to
monitor and control the optimization process. In the following program, a two-dimensional matrix is set up
with programming statements to provide the distances for a 10-city symmetric traveling salesman problem,
between locations specified in a SAS data set:

data positions;
input x y;
datalines;

100 230
50 20
150 100
...
;

Choosing the Problem Encoding F 83

proc ga data1 = positions;

call SetEncoding('S10');
ncities = 10;

array distance[10,10] /nosym;

do i = 1 to ncities;
do j = 1 to i;

distance[i,j] = sqrt((x[i]-x[j])**2 + (y[i] - y[j])**2);
distance[j,i] = distance[i,j];

end;
end;

call SetObj('TSP','distances', distance);

In this example, the DATA1= option creates arrays x and y containing the coordinates of the cities in an x-y
grid, read in from the positions data set. An ARRAY programming statement creates a matrix of distances
between cities, and the loops calculate Euclidean distances from the position data. The ARRAY statement is
used to create internal data vectors and matrices. It is similar to the ARRAY statement used in the SAS DATA
step, but the /NOSYM option is used in this example to set up the array without links to other variables. This
option enables the array elements to be indexed more efficiently and the array to be passed efficiently to
subroutines. You should use the /NOSYM option whenever you are creating an array that might be passed as
an argument to a function or call routine.

Choosing the Problem Encoding
Problem encoding refers to the structure or type of solution space that is to be optimized, such as real-valued
fixed-length vectors or integer sequences. The GA procedure offers encoding options appropriate to several
types of optimization problems. You specify the problem encoding with a SetEncoding CALL statement,

call SetEncoding(‘encoding’);

where the encoding string is a letter followed by a number, which specifies the type of encoding and the
number of elements. The permitted letters and corresponding types of encoding are as follows:

R or r: real-valued vector. This type of encoding is used for general non-linear optimization problems.

I or i: integer-valued vector. This encoding is used for integer-valued problems. The integer size is 32
bits, which imposes a maximum value of 2,147,483,647 and a minimum value of –2,147,483,648
for any element of the vector. The integer vector encoding can also be used to represent bit vectors,
where the 0–1 value of each bit in the integer vector is treated as a separate element. An example
might be an assignment problem, where the positions within the vector represent different tasks,
and the integer values represent different machines or other resources that might be applied to
each task.

B or b: Boolean vector. Each element represents one true/false value.

S or s: sequence or permutation. In this encoding, each solution is composed of a sequence of integers
ranging from 1 to the number of elements, with different solutions distinguished by different

84 F Chapter 4: The GA Procedure

orderings of the elements. This encoding is commonly used for routing problems such as the
traveling salesman problem or for scheduling problems.

For example, the following statement specifies a 10-element integer vector encoding:

call SetEncoding('I10');

For problems where the solution form requires more than one type of encoding, you can specify multiple
encodings in the encoding string. For example, if you want to optimize the scheduling of 10 tasks and the
assignment of resources to each task, you could use a segmented encoding, as follows:

call SetEncoding('I10S10');

Here the I10 (10-element integer vector) is assigned to the first segment, and represents the resource
assignment. The S10 (10-element sequence) is assigned to a second segment, and represents the sequence
of tasks. The use of segmented encodings is described in the section “Using Multisegment Encoding” on
page 115.

Setting the Objective Function
Before executing a genetic algorithm, you must specify the objective function to be optimized. Either you
can define a function in your GA procedure input and designate it to be your objective function with the
SetObjFunc call, or you can specify an objective function that the GA procedure provides with a SetObj call.
The GA procedure currently supports the traveling salesman problem objective.

Controlling the Selection Process
There are two competing factors that need to be balanced in the selection process: selective pressure and
genetic diversity. Selective pressure, the tendency to select only the best members of the current generation
to propagate to the next, is required to direct the genetic algorithm to an optimum. Genetic diversity, the
maintenance of a diverse solution population, is also required to ensure that the solution space is adequately
searched, especially in the earlier stages of the optimization process. Too much selective pressure can
lower the genetic diversity so that the global optimum is overlooked and the genetic algorithm converges
prematurely. Yet, with too little selective pressure, the genetic algorithm might not converge to an optimum in
a reasonable time. A proper balance between the selective pressure and genetic diversity must be maintained
for the genetic algorithm to converge in a reasonable time to a global optimum.

The GA procedure uses a standard technique for the selection process commonly known as tournament
selection. In general, the tournament selection process randomly chooses a group of members from the
current population, compares their fitness, and selects the fittest from the group to propagate to the next
generation. Tournament selection is one of the fastest selection methods, and it offers good control over the
selection pressure.

You can control the selective pressure by specifying the tournament size, the number of members chosen
to compete in each tournament. This number should be 2 or greater, with 2 implying the weakest selection
pressure. Tournament sizes from 2 to 10 have been successfully applied to various genetic algorithm

Setting Crossover Parameters F 85

optimizations, with sizes over 4 or 5 considered to represent strong selective pressure. This selection option
is chosen with the following SetSel call:

call SetSel(‘tournament’, ‘size’, size);

where size is the desired tournament size.

For tournament size of 2, you can further weaken the selective pressure by specifying a probability for
selecting the most fit solution from the 2 competing solutions. By default this probability is 1, but the GA
procedure permits you to set it to a value between 0.5 (equivalent to pure random selection) and 1. This
selection option is chosen with the following SetSel call:

call SetSel(‘duel’, ‘pbest’, bestprob);

where bestprob is the probability for choosing the most fit solution. This option can prove useful when
conventional tournament selection tends to result in premature convergence.

One potential problem with tournament selection is that it does not guarantee that the best solution in the
current generation is passed on to the next. To resolve this problem, the GA procedure enables you to specify
an elite parameter, which ensures that the very best solutions are passed on to the next generation unchanged
by mutation or crossover. Use the SetElite call:

call SetElite(elite);

where elite is an integer greater than or equal to 0. The GA procedure preserves the elite best solutions in the
current generation and ensures that they are passed on to the next generation unchanged. When writing out
the final solution population, the first elite members are the best of the generation and are sorted by their
fitness, such that the fittest is first. By default, if you do not call SetElite in your program, an elite value of 1
is used. Setting the elite parameter to a higher number accelerates the convergence of the genetic algorithm;
however, it can also lead to premature convergence before reaching a global optimum, so it should be used
with care.

If you do not call SetSel in your input, then the default behavior for the GA procedure is to use tournament
selection with size 2.

Setting Crossover Parameters
There are two crossover parameters that need to be specified: the crossover probability and the crossover
operator. Members of the current generation that have passed the selection process either go to the crossover
operator or are passed unchanged into the next generation, according to the crossover probability. To set the
probability, you use a SetCrossProb call:

call SetCrossProb(prob);

where prob is a real number between 0 and 1. A value of 1 implies that the crossover operator is always
applied, while 0 effectively turns off crossover. If you do not explicitly set the crossover probability with this
call, a default value of 0 is used.

The GA procedure enables you to choose your crossover operator from several standard crossover operators
appropriate for each type of encoding, or to code your own crossover operator as a subroutine. To specify
one of the crossover operators provided by the GA procedure, use a SetCross call. See the section “Crossover
Operators” on page 116 for more detail on the available operators. To supply your own operator, use a
SetCrossRoutine call:

86 F Chapter 4: The GA Procedure

call SetCrossRoutine(‘routine’);

where routine is the name of your crossover subroutine. See the section “Defining User Genetic Operators”
on page 126 for a description of defining genetic operators with user subroutines. If the crossover probability
is greater than 0, you must use a SetCross or SetCrossRoutine call to set the crossover operator.

After initialization, you can reset any of the crossover parameters or their properties during the optimization
process by calling one of the preceding routines from a user update routine. This makes it possible to adapt
the crossover operators as desired in the optimization process.

Setting Mutation Parameters
There are two mutation parameters: the mutation probability and the mutation operator. Members of the next
generation are chosen to undergo mutation with the mutation probability you specify. To set the mutation
probability, you use a SetMutProb call:

call SetMutProb(prob);

where prob is a real number between 0 and 1. This probability is usually fairly low (0.05 or less), since
mutation tends to slow the convergence of the genetic algorithm. If you do not explicitly set the mutation
probability with this call, a default value of 0 is used.

The GA procedure enables you to choose your mutation operator from several standard mutation operators
appropriate for each type of encoding, or to code your own mutation operator as a subroutine. To specify
one of the mutation operators provided by the GA procedure, use a SetMut call. See the section “Mutation
Operators” on page 122 for more detail on the available operators. To supply your own operator, use a
SetMutRoutine call:

call SetMutRoutine(‘routine’);

where routine is the name of your mutation subroutine. See the section “Defining User Genetic Operators”
on page 126 for a description of defining genetic operators with user subroutines. If the mutation probability
is greater than 0, you must use a SetMut or SetMutRoutine call to set the mutation operator.

After initialization, you can reset any of the mutation parameters or their properties during the optimization
process by calling one of the preceding routines from a user update routine. This makes it possible to adapt
the mutation operators to create more or less diversity as needed in the optimization process.

Creating the Initial Generation
The last step in the initialization for the genetic algorithm optimization is to create the initial solution
population, the first generation. The GA procedure provides you with the Initialize call to accomplish this
task. The procedure provides several options for initializing the first population or reinitializing the solution
population during the optimization process. For example, you can specify a data set in the FIRSTGEN=
option of the PROC GA statement to be read to populate the initial generation, and use the initialize call:

call Initialize(‘_dataset_’, PopulationSize);

Other possible initialization options include generating solutions uniformly distributed over the solution
domain, executing a user-defined initialization routine, carrying over a portion of the previous population (for

Monitoring Progress and Reporting Results F 87

reinitialization), or any combination of those actions. See the section “Initialize Call” on page 96 for a full
explanation of initialization actions.

Monitoring Progress and Reporting Results
The GA procedure enables your program to monitor and alter parameters during the optimization process
and record final results.

If a data set is specified in the LASTGEN= option of the PROC GA statement, then the last generation of
solutions is written to the data set. See the section “PROC GA Statement” on page 90 for a description of the
data set created by the LASTGEN= option.

You can define a subroutine and designate it to be called at each iteration in an update phase, which occurs
after the evaluation phase and before selection, crossover, and mutation. Your subroutine can check solution
values and update and store variables you have defined, adjust any of the optimization parameters such as the
mutation probability or elite value, or check termination criteria and end the optimization process. An update
routine can be especially helpful in implementing advanced techniques such as multiobjective optimization.
You can specify an update subroutine with a SetUpdateRoutine call:

call SetUpdateRoutine(‘routine’);

where routine is the name of your subroutine to be executed at each iteration.

You can set the maximum number of iterations permitted for the optimization process with the MAXITER=
option in the PROC GA statement. If none is specified, a default value of 500 iterations is used. You can also
control the number of iterations dynamically in your program by using the ContinueFor call:

call ContinueFor(n);

where n is the number of iterations to permit beyond the current iteration. A value of 0 ends the optimization
process at the current iteration. One common way this call might be used is to include it in the logic of an
update subroutine declared in the SetUpdateRoutine call. The update subroutine could check the objective
values and end the optimization process when the optimal value of the objective function has not improved
for a specific number of iterations. A ContinueFor call overrides an iteration limit set with the MAXITER=
option.

To perform post processing of the optimization data, you can use a SetFinalize call to instruct the GA
procedure to call a subroutine you have defined, after the last iteration:

call SetFinalize(‘routine’);

where routine is the name of a subroutine you have defined. Your finalize subroutine could perform some
post processing tasks, such as applying heuristics or a local optimization technique to try to improve the final
solution.

A Simple Example
The example that follows illustrates the application of genetic algorithms to function optimization over a
real-valued domain. It finds the minimum of the Shubert function:

88 F Chapter 4: The GA Procedure

"
5X

iD1

i cos Œ.i C 1/x1 C i �

#"
5X

iD1

i cos Œ.i C 1/x2 C i �

#

where �10 � xi � 10 for i D 1; 2.

proc ga seed = 12 maxiter = 30;
/* the objective function to be optimized */
function shubert(selected[*]);

array x[2] /nosym;
call ReadMember(selected,1,x);
x1 = x[1];
x2 = x[2];
sum1 = 0;
do i = 1 to 5;

sum1 = sum1 + i * cos((i+1)* x1 + i);
end;
sum2 = 0;
do i = 1 to 5;

sum2 = sum2 + i * cos((i+1) * x2 + i);
end;
result = sum1 * sum2;
return(result);

endsub;
/* Set the problem encoding */
call SetEncoding('R2');
/* Set upper and lower bounds on the solution components */
array LowerBound[2] /nosym (-10 -10);
array UpperBound[2] /nosym (10 10);
call SetBounds(LowerBound, UpperBound);
/* Set the objective function */
call SetObjFunc('shubert',0);
/* Set the crossover parameters */
call SetCrossProb(0.65);
call SetCross('Heuristic');
/* Set the mutation parameters */
call SetMutProb(0.15);
array del[2] /nosym (0.2 0.2);
call SetMut('Delta','nchange', 1, 'delta',del);
/* Set the selection criteria */
call SetSel('tournament','size', 2);
call SetElite(2);
/* Initialize the first generation, with 120 random solutions */
call Initialize('DEFAULT',120);
/* Now execute the Genetic Algorithm */
run;
quit;

At the beginning of the program, the PROC GA statement sets the initial random number seed and sets the
maximum number of iterations to 30.

A routine to compute the objective function (function shubert) is then defined. This function is called
by the GA procedure once for each member of the solution population at each iteration. Note that the GA
procedure passes the array selected as the first parameter of the function, and the function uses that array to

Syntax: GA Procedure F 89

obtain the selected solution elements with a ReadMember call, which places the solution in the array x. The
second parameter of the ReadMember call is 1, specifying that segment 1 of the solution be returned, which
in this case is the only segment. The programming statements that follow compute the value of the objective
function and return it to the GA procedure.

After the function definition, the ‘R2’ passed to the SetEncoding call specifies that solutions are single-
segment, with that segment containing two elements that are real-valued. Next, a lower bound of –10 and an
upper bound of 10 are set for each solution element with the SetBounds call. The SetObjFunc call specifies
the previously defined Shubert function as the objective function for the optimization; the second parameter
value of 0 indicates that a minimum is desired. The SetCrossProb call sets the crossover probability to 0.65,
which means that, on average, 65% of the solutions passing the selection phase will undergo the crossover
operation. The crossover operator is set to the heuristic operator by the SetCross call. Similarly, the mutation
probability is set to 0.15 with the SetMutProb call, and the delta operator is set as the mutation operator with
the SetMut call. The selection criteria are then set: a conventional tournament of size 2 is specified with
SetSel call, and an elite value of 2 is specified with the SetElite call. The elite value implies that the best
two solutions of each generation are always carried over to the next generation unchanged by mutation or
crossover. The last step before beginning the optimization is the Initialize call. This call sets the population
size at 120, and specifies the default initialization strategy for the first population. For real encoding, this
means that an initial population randomly distributed between the upper and lower bounds specified in the
SetBounds call is generated. Finally, when the RUN statement is encountered, the GA procedure begins the
optimization process. It iterates through 30 generations, as set by the MAXITER= option.

The Shubert function has 760 local minima, 18 of which are global minima, with a minimum of –186.73. If
you experiment with different random seeds with the SEED= option, PROC GA generally converges to a
different global minimum each time. Figure 4.1 shows the output for the chosen seed.

Figure 4.1 Shubert Function Example Output

PROC GA Optimum ValuesPROC GA Optimum Values

Objective

-186.7309031

Solution

Element Value

1 -7.708309818

2 -0.800371886

Syntax: GA Procedure
To initialize your data and describe your model, you use programming statements with a syntax similar to the
SAS DATA step, augmented with some special function calls to communicate with the genetic algorithm
optimizer. Most of the programming statements used in the SAS DATA step can be used in the GA procedure,
and these are described fully in the SAS Statements: Reference and Base SAS documentation. Following is
an alphabetical list of the statements and special function calls used.

90 F Chapter 4: The GA Procedure

PROC GA options ;
ContinueFor Call ;
Cross Call ;
Dynamic_array Call ;
EvaluateLC Call ;
GetDimensions Call ;
GetObjValues Call ;
GetSolutions Call ;
Initialize Call ;
MarkPareto Call ;
Mutate Call ;
Objective Call ;
PackBits Call ;
Program Statements ;
ReadChild Call ;
ReadCompare Call ;
ReadMember Call ;
ReadParent Call ;
ReEvaluate Call ;
SetBounds Call ;
SetCross Call ;
SetCrossProb Call ;
SetCrossRoutine Call ;
SetElite Call ;
SetEncoding Call ;
SetFinalize Call ;
SetMut Call ;
SetMutProb Call ;
SetMutRoutine Call ;
SetObj Call ;
SetObjFunc Call ;
SetProperty Call ;
SetSel Call ;
SetUpdateRoutine Call ;
ShellSort Call ;
Shuffle Call ;
UnpackBits Function ;
UpdateSolutions Call ;
WriteChild Call ;
WriteMember Call ;

PROC GA Statement
PROC GA options ;

The PROC GA statement invokes the GA procedure. The following options are used with the PROC GA
statement.

PROC GA Statement F 91

DATAn=SAS-data-set
specifies a data set containing data required to specify the problem, where n is an integer from 1 to
5. The data set is read and variables created matching the variables of the data set. If the data set has
more than one observation, then the newly created variables are vector arrays with the size equal to the
number of observations.

FIRSTGEN=SAS-data-set
specifies a SAS data set containing the initial solution generation. Different segments in the solution
should be identified by variable names consisting of a letter followed by numbers representing the
elements in the segments, in alphabetical order. For example, if the first segment of the solution uses
real encoding and contains 10 elements, it should be represented by the numeric variables A1, A2, . . . ,
A10. A second segment with integer encoding and five elements would be specified in the variables
B1, B2, . . . , B5. For Boolean encoding each Boolean element is represented by one variable in the
data set, and for sequence encoding each position in the sequence is represented by one variable. If the
data set contains a field named OBJECTIVE, then the value of that field becomes the objective value
for that solution at initialization time (overriding the value computed by the input objective function),
unless the field value is a missing value. The FIRSTGEN= and LASTGEN= options are designed
to work together, so that a data set generated from a run of the GA procedure with a LASTGEN=
option set can be specified in the FIRSTGEN= option of a subsequent run of the GA procedure, to
continue the optimization from where it finished. If the number of observations in the data set is less
than the population size specified in the Initialize call, additional members are generated as specified
in the Initialize call to complete the population. This feature makes it easy to seed an initial randomly
generated population with chosen superior solutions generated by heuristics or a previous run of the
GA procedure. If the data set contains more observations than the population size, the population is
filled starting at the first observation, and the additional observations are not used.

LASTGEN=SAS-data-set
specifies a SAS data set into which the final solution generation is written. Different segments in the
solution are identified by variable names consisting of a letter followed by numbers representing the
elements in the segments, in alphabetical order. For example, if the first segment of the solution uses
real encoding and contains 10 elements, it would be represented by the numeric variables A1, A2, . . . ,
A10. A second segment with integer encoding and five elements would be specified in the variables B1,
B2, . . . , B5. For Boolean encoding each Boolean element is represented by one variable in the data set,
and for sequence encoding each position in the sequence is represented by one variable. In addition
to the solutions elements, the final objective value for each solution is output in the OBJECTIVE
variable. The FIRSTGEN= and LASTGEN= options are designed to work together, so that a data set
generated with a LASTGEN= option can be specified in the FIRSTGEN= option of a later run of the
GA procedure.

LIBRARY=library-list
specifies a library or group of libraries for the procedure to search to resolve subroutine or function calls.
The libraries can be created by using PROC FCMP and PROC PROTO. This option supplements the
action of the CMPLIB= SAS option, but it permits you to designate libraries specific to this procedure
invocation. Use the libref.catalog format to specify the two-level name of the library; library-list
can be either a single library, a range of library names, or a list of libraries. The following examples
demonstrate the use of the LIBRARY= option.

proc ga library = sasuser.xlib;
proc ga library = xlib1-xlib5;

92 F Chapter 4: The GA Procedure

proc ga library = (sasuser.xlib xlib1-xlib5 work.example);

MATRIXn=SAS-data-set
specifies a data set containing two-dimensional matrix data, where n is an integer from 1 to 5. A
two-dimensional numeric array with the same name as the option is created and initialized from the
data set. This option is provided to facilitate the input of tabular data to be used in setting up the
optimization problem. Examples of data that might be provided by this option include a distance
matrix for a traveling salesman problem or a matrix of coefficients for linear constraints.

MAXITER=n
specifies the maximum number of iterations to permit for the optimization process. A ContinueFor call
overrides a limit set by this option.

NOVALIDATE=n
controls the amount of solution validity checking performed by the procedure. By default, the procedure
verifies that valid solutions are being supplied at initialization and when the solution population is
being updated by genetic operators or other user actions. If a solution segment has elements that
exceed bounds set by a SetBounds call, those elements will be reset to the bound and a warning will
be issued. If a solution segment contains other illegal values, an error will be signaled. This action is
useful for maintaining the validity of the optimization and avoiding some errors that are often difficult
to trace. However, this activity does consume CPU time, and you might want to use a strategy where
you generate infeasible solutions at initialization or via genetic operators and then repair the solutions
later in an update or objective routine. The NOVALIDATE= option enables you to do so, by turning off
the validation checks. If n is 1, validation is turned off for initialization only, and if n is 2, validation is
turned off for update only. If n is 3, all solution validity checking is turned off.

NOVALIDATEWARNING=n
controls the output of warning messages related to solution validation checking. Depending on the
value of the NOVALIDATE= option, warning messages will be issued when the procedure repairs
initial or updated solution segments to fit within bounds set with the SetBounds call. If n is 1, validation
warnings are turned off for initialization only; and if n is 2, validation warnings are turned off for
update only. If n is 3, all solution validation warnings are turned off.

SEED=n
specifies an initial seed to begin random number generation. This option is provided for reproducibility
of results. If it is not specified, or if it is set to 0, a seed is chosen based on the system clock. The
SEED value should be a nonnegative integer less than 231 � 1.

ContinueFor Call
call ContinueFor (niter) ;

The ContinueFor call sets the number of additional iterations for the genetic algorithm optimization. The
input to the ContinueFor subroutine is as follows:

niter specifies that the optimization continue for niter more iterations.
To stop at the current iteration, set niter to 0.

Dynamic_array Call F 93

Cross Call
call Cross (selected, seg, type< , parameter1, parameter2, . . . >) ;

The Cross call executes a genetic crossover operator from within a user subroutine. The inputs to the
subroutine are as follows:

selected is an array that specifies the solutions to be crossed.

seg is the desired segment of the solution to which the crossover opera-
tor should be applied.

type is the type of crossover operator to apply, which also determines
the number and type of parameters expected.

parameter1-n are optional parameters applicable to some operators.

The accepted values for type and the corresponding parameters are summarized in Table 4.2.

Table 4.2 Crossover Operator Types
Type Encodings Parameters
‘arithmetic’ real, integer
‘cycle’ sequence
‘heuristic’ real
‘null’ all encodings
‘order’ sequence
‘pmatch’ sequence
‘simple’ real, integer, Boolean alpha
‘twopoint’ real, integer, Boolean alpha
‘uniform’ real, integer, Boolean alpha, p

The parameters are as follows:

alpha is a number such that 0 < alpha � 1.
p is a probability such that 0 < p � 0:5.

The Cross call should be made only from within a user crossover subroutine. The precise action of these
crossover operators is described in the section “Crossover Operators” on page 116.

Dynamic_array Call
call Dynamic_array (arrayname, dim1< , dim2, . . . , dim6 >) ;

The Dynamic_array call allocates a numeric array. The inputs to the Dynamic_array call are as follows:

arrayname is a previously declared array, whose dimensions are to be re-
allocated.

dim1 is the size of the first dimension.

dim2,. . . ,dim6 are optional. Up to six dimensions can be specified.

94 F Chapter 4: The GA Procedure

The Dynamic_array call is normally used to allocate working arrays when the required size of the array
is data-dependent. It is often useful in user routines for genetic operators or objective functions to avoid
hard-coding array dimensions that might depend on segment length or population size. The array to be
allocated must first be declared in an ARRAY statement with the expected number of dimensions, as in the
following example:

subroutine sub(nx, ny);
array x[1] /nosym;
call dynamic_array(x, nx);
array xy[1,1] /nosym;
call dynamic_array(xy, nx, ny);
...

EvaluateLC Call
call EvaluateLC (lc, results, sum, selected, seg< , child >) ;

The EvaluateLC call evaluates linear constraints. The inputs to the EvaluateLC subroutine are as follows:

lc is a two-dimensional array representing the linear constraints.

results is a numeric array to receive the magnitude of the constraint viola-
tion for each linear constraint.

sum is a variable to receive the sum of the constraint violations over all
the constraints.

selected is an array identifying the selected solution.

seg is the segment of the solution to which the linear constraints apply.

child is an optional parameter, and should be specified only when Evalu-
ateLC is called from a user crossover operator.

The EvaluateLC routine can be called from a user crossover operator, mutation operator, or objective function
to determine if a solution violates linear inequality constraints of the form Ax � b. For n linear constraints
in m variables, the lc array should have dimension n � .mC 1/. For each linear constraint i D 1; : : : ; n,
lcŒi; j � D AŒi; j � for j D 1; : : : ; m, and lcŒi; mC 1� D bŒi �. The results array should be one-dimensional
with size n. The EvaluateLC call fills in the elements of results such that

resultsŒi � D

8̂̂<̂
:̂

0; if
mP

jD1

AŒi; j �xŒj � � bŒi �

mP
jD1

AŒi; j �xŒj � � bŒi �; otherwise

In the variable sum, the EvaluateLC call returns the value
Pn

iD1 resultsŒi �. Note that sum � 0, and sum=0
implies that no constraints are violated. When you call EvaluateLC from your user routine, the selected
parameter of the EvaluateLC call must be the same as the first parameter passed to your user routine to
properly identify the solution to be checked. The seg parameter identifies which segment of the solution

GetDimensions Call F 95

should be checked. Real, integer, or Boolean encodings can be checked with this routine. If EvaluateLC is
called from a user crossover operator, the child parameter must be specified to indicate which offspring is to
be checked. The value child = 1 requests the first offspring, child = 2 requests the second, and so on.

GetDimensions Call
call GetDimensions (source, dest) ;

The GetDimensions call gets the dimensions of an array variable. The inputs to the GetDimensions subroutine
are as follows:

source is the array variable whose dimensions are desired.

dest is an array to receive the dimensions of source.

The GetDimensions subroutine is used to get the dimensions of an array passed into a user subroutine. The
input dest should be an array of one dimension, with at least as many elements as there are dimensions in
source (a maximum of 6). Any extra elements in dest are filled with zeros.

GetObjValues Call
call GetObjValues (dest, n) ;

The GetObjValues call retrieves objective function values from the current solution generation. The inputs to
the GetObjValues subroutine are as follows:

dest is an array to receive the objective values.

n is the number of objective values to get.
The GetObjValues subroutine is used to retrieve the objective values for the current solution generation. It
can be called from a user update routine or finalize routine. If it is called from a finalize routine, and if the
elite parameter from a SetElite call is 1 or greater, then the first elite members of the population are the
fittest of the population, and they are sorted in order, starting with the most fit. The input dest should be a
dimensioned variable, with dimension greater than or equal to n.

GetSolutions Call
call GetSolutions (sol, n, seg) ;

The GetSolutions call retrieves solutions from the current generation. The inputs to the GetSolutions
subroutine are as follows:

sol is an array to receive the solution elements.

n is the number of solutions to get.

seg is the segment of the solution to retrieve.
The GetSolutions subroutine is used to retrieve solutions from the current generation. You would normally
call it from an update or finalize subroutine for post processing or analysis. If the elite parameter has been
set with a SetElite call, then the first elite members of the population are the fittest, and they are sorted

96 F Chapter 4: The GA Procedure

in order, starting with the most fit. The sol variable should have two dimensions, with the first dimension
representing the solution number, and the second representing the element within the solution. For example,
if the encoding of the problem was I10, then solŒ2; 3� would be the value of the third element of the second
solution in the current population. For real, integer, Boolean, and sequence encoding, each solution element
is mapped to the corresponding element of the sol array. The seg parameter specifies the solution segment
desired. For example, if the encoding was set in the SetEncoding call to ‘R10I5’, then segment 1 is R10 and
segment 2 is I5.

Initialize Call
call Initialize (option, size < ,option, size > . . .) ;

The Initialize call creates the initial solution generation. The inputs to the Initialize subroutine are as follows:

option is a string that specifies an initialization option.

size is the number of solutions to create by using a given option.
The Initialize subrou-

tine must be called to create the first solution generation, and can be used to reinitialize a solution population
during the optimization process. The available options and their effect are as follows:

‘_uniform_’ generate uniformly distributed solutions —for integer and real en-
coded segments for which SetBounds has been called, segment
elements will be uniformly distributed between the upper and lower
bounds. If no bounds have been specified for an integer or real
encoded segment, then the elements will be set to 0. For Boolean
encoded segments the elements will be randomly assigned 0 or
1, and for sequence encoded segments random sequences will be
generated.

‘_dataset_’ read solutions from the data set specified in a FIRSTGEN= option.
If the data set has more observations than requested, the extra
observations are ignored.

‘default’ read solutions from the data set specified in a FIRSTGEN= option,
if one was specified. If none was specified or the data set has
fewer observations than requested, fill in the remaining solution
population by using the ‘_uniform_’ option.

‘_retain_’ bring forward the best solutions from the current generation. This
option cannot be used for the first initialization.

‘user-
routine’

Any string not matching the preceding options is interpreted to be a
user-defined initialization routine. See the section “Defining a User
Initialization Routine” on page 131 for information about defining
an initialization subroutine.

After the Initialize call, the current solution population size is the sum of the population sizes specified for
each option. The following rules also apply to the option specifications:

1. All options must be literal quoted strings.

MarkPareto Call F 97

2. No option type can be specified more than once in the same Initialize call. No more than one user
initialization routine can be specified.

3. ‘default’ cannot be specified in combination with the ‘_uniform_’ or ‘_dataset_’ options.

4. If the ‘_uniform_’ option is specified, the solution encoding must include at least one segment that is
either Boolean or sequential, or that has bounds specified with a SetBounds call.

MarkPareto Call
call MarkPareto (result, n, objectives, minmax) ;

The MarkPareto call identifies the Pareto-optimal set from a population of solutions. The inputs to the
MarkPareto call are as follows:

result is a one-dimensional array to accept the results of the evaluation. Its
size should be the same as the size of the population being evaluated;
resultŒi � D 1 if solution i is Pareto optimal, and 0 otherwise.

n is a variable to receive the number of Pareto-optimal solutions.

objectives is a two-dimensional array that contains the multiple objective
values for each solution. It should be dimensioned Œp; q�, where p
is the size of the population, and q is greater than or equal to the
number of objectives to be considered.

minmax is a one-dimensional array to specify how the objective values are
to be used. It should be of size q, where q is greater than or equal
to the number of objectives to be considered. minmaxŒk� D �1

if objective k is to be minimized, minmaxŒk� D 1 if objective k
is to be maximized, minmaxŒk� D 0 if objective k is not to be
considered, and minmaxŒk� D �2 designates an objective that
prevents the member from being considered for Pareto optimality
if it is nonzero.

The MarkPareto call is used to identify the Pareto-optimal subset from a population of solutions. See the
section “Optimizing Multiple Objectives” on page 135 for a full discussion of Pareto optimality. MarkPareto
can be called from a user update routine, which is called after the individual solution objective values have
been calculated and before selection takes place. To make best use of this routine, in your encoding you need
to set up a segment to record all the objective values you intend to use in the Pareto-optimal set evaluation. In
a user objective function, you should calculate the multiple objectives and write them to the chosen segment.
In an update routine (designated with a SetUpdateRoutine call), you can use a GetSolutions call to retrieve
these segments, and then pass them to a MarkPareto call. The following statements shows how this could be
done:

subroutine update(popsize);

array objectives[1,1] /nosym;
call dynamic_array(objectives, popsize, 3);

array pareto[1] /nosym;

98 F Chapter 4: The GA Procedure

call dynamic_array(pareto, popsize);

array minmax[3] /nosym (1 -1 0);

call GetSolutions(objectives, popsize, 2);

call MarkPareto(pareto, npareto, objectives, minmax);

do i = 1 to popsize;
objectives[i,3] = pareto[i];

end;

call UpdateSolutions(objectives, popsize, 2);

call SetElite(npareto);

endsub;

This is an example of a user update routine that might be used in a multiobjective optimization problem. It
is assumed that a user objective function has calculated two different objectives and placed their values in
the first two elements of segment 2 of the problem encoding. The first objective is to be maximized, and
the second is to be minimized. Segment 2 has three elements, and the third element is used to mark the
Pareto-optimal solutions. After dynamically allocating the necessary arrays from the popsize (population
size) parameter, the update routine first retrieves the current solutions into the objectives array with the
GetSolutions call. It then passes the objectives array directly to the MarkPareto call to perform the Pareto-
optimal evaluations. Note that the minmax array directs the MarkPareto call to maximize the first element,
minimize the second, and ignore the third. After the MarkPareto call, the update routine writes the results
back to the third element of the objectives array, and writes the objectives array back to the solution population
with the UpdateSolutions call. This marks the solutions that compose the Pareto-optimal set. The update
routine then sets the elite parameter equal to the number of Pareto-optimal solutions with the SetElite call. It is
assumed that the user has provided a fitness comparison function (designated with a SetCompareRoutine call)
that always selects a Pareto-optimal solution over a non-Pareto-optimal one, so the elite setting guarantees
that all the Pareto-optimal solutions are retained from generation to generation. Example 4.3 illustrates the
use of the MarkPareto call.

Mutate Call
call Mutate (selected, seg, type< , parameter1, parameter2, . . . >) ;

The Mutate call executes a genetic mutation operator from within a user subroutine. The inputs to the
subroutine are as follows:

selected is an array that specifies the solution to be mutated.

seg is the desired segment of the solution to which the mutation should
be applied.

type is the type of mutation operator to apply, which also determines the
number and type of parameters expected.

parameter1-
n

are optional parameters applicable to some operators.

Objective Function F 99

The accepted values for type and the corresponding parameters are summarized in Table 4.3.

Table 4.3 Mutation Operator Types
Type Encodings Parameters
‘delta’ real, integer delta

n
‘invert’ sequence
‘swap’ sequence n
‘uniform’ real, integer, Boolean np

The parameters are as follows:

delta is a vector of delta values for each component of the solution, used
only for the Delta mutation operator.

n specifies the number of solution elements that should be mutated
for the Delta operator, and the number of swaps that should be
made for the Swap operator.

np specifies the number of solution elements that should be mutated,
if np is integer; specifies the mutation probability for each solution
element if 0 < np < 1.

The Mutate call should be made only from within a user mutation subroutine. The precise action of these
mutation operators is described in the section “Mutation Operators” on page 122.

Objective Function
r = Objective (selected, seg, type< , parameter1, parameter2, . . . >) ;

The Objective call evaluates a standard objective function from within a user subroutine. The inputs to the
function are as follows:

selected is an array that specifies the solution to be evaluated.

seg is the desired segment of the solution to be evaluated.

type is objective function name, which also determines the number and
type of parameters expected.

parameter1-
n

are optional parameters applicable to particular objective functions.

The accepted values for type and the corresponding parameters are summarized in Table 4.4.

Table 4.4 Objective Function Types
type encodings parameters
‘TSP’ sequence distances

100 F Chapter 4: The GA Procedure

The parameters are as follows:

distances is a matrix of distances between locations, such that
distancesŒi; j � is the distance between location i and j.

The Objective call should be made only from within a user objective function. The precise actions of the
standard objective functions are described in the section “Objective Functions” on page 124.

PackBits Call
call PackBits (array, start, width, value) ;

The PackBits call writes bits to a packed integer array. The inputs to the PackBits subroutine are as follows:

array is an array to which the value is to be assigned.

start is the starting position for the bit assignments.

width is the number of bits to assign.

value is the value to be assigned to the bits. For a single bit, this should
be 0 or 1.

The PackBits subroutine facilitates the assignment of bit values into an integer array, effectively using the
integer array as an array of bits. One common use for this routine is within a user genetic operator subroutine
to pack bit values into an integer vector solution segment. The bit values assigned with the PackBits call can
be retrieved with the UnpackBits function.

The start parameter is the lowest desired bit position in the bit vector, where the least significant bit of value
is to be stored. The start parameter can range in value from 1 to maxbits, where maxbits is the product of 32
times the number of elements in the integer array.

The width parameter is the number of bits of value to be stored. It is bounded by 0 < width < .maxbits �

start C 1/ and must also not exceed 32.

Bits not within the range defined by start and width are not changed. If the magnitude of value is too large to
express in width bits, then the width least significant bits of value are transferred. The following program
fragment, which might occur in a mutation subroutine, first reads a selected solution segment into s with
the ReadMember call and then overwrites the first and second least significant bits of the solution with ones
before writing it back to the current generation.

array s[2];
call ReadMember(selected, seg, s);
...
/* intervening code */
...
call PackBits(s, 1, 2, 3);/* start = 1, width = 2,

* value = 3 = binary 11

*/
call WriteMember(selected, seg, s);

Programming Statements F 101

Programming Statements
This section lists the programming statements used to initialize the model, code the objective function, and
control the optimization process in the GA procedure. It documents the differences between programming
statements in the GA procedure and programming statements in the DATA step. The syntax of programming
statements used in PROC GA is identical to that of programming statements used in the FCMP procedure.

Most of the programming statements that can be used in the SAS DATA step can also be used in the GA
procedure. See the SAS Statements: Reference or BASE SAS documentation for a description of the SAS
programming statements.

variable = expression;
variable + expression;
arrayvar[subscript] = expression;
ABORT;
CALL subroutine < (parameter-1 <, ...parameter-n >) >;
DELETE;
DO program-statements; END;
DO variable = expression TO expression <BY expression>;

program-statements; END;
DO WHILE expression ;

program-statements; END;
DO UNTIL expression ;

program-statements; END;
GOTO statement_label ;
IF expression THEN program-statement;

<ELSE program-statement>;
PUT < variable(s)> <@ | @@> ;
RETURN <(expression)>;
SELECT <(select-expression)>;

WHEN-1 (expression-1 <. . . ,expression-n>)program-statement ;
<WHEN-n (expression-1 <. . . ,expression-n>)program-statement ;>
<OTHERWISE program-statement ;>

STOP;
SUBSTR(variable, index, length) = expression;

For the most part, the SAS programming statements work as they do in the SAS DATA step as documented
in the SAS Statements: Reference. However, there are several differences that should be noted.

� The ABORT statement does not permit any arguments.

� The DO statement does not permit a character index variable. Thus

do i = 1,2,3;

is supported; however,

do i = ’A’,’B’,’C’;

is not.

102 F Chapter 4: The GA Procedure

� The PUT statement, used mostly for program debugging in PROC GA, supports only some of the
features of the DATA step PUT statement, and has some new features that the DATA step PUT statement
does not:

– The PROC GA PUT statement does not support line pointers, factored lists, iteration factors,
overprinting, _INFILE_, the colon (:) format modifier, or “$”.

– The PROC GA PUT statement does support expressions, but the expression must be enclosed
inside parentheses. For example, the following statement displays the square root of x: put

(sqrt(x));

– The PROC GA PUT statement permits an array name without subscripts. The statement PUT A;

prints all the elements of array A. The statement PUT A=; prints the elements of array A with
each value labeled with the name of the element variable.

– The PROC GA PUT statement supports the print item _PDV_ to print a formatted listing of all
variables in the program. For example, the following statement displays a more readable listing
of the variables than the _all_ print item: put _pdv_;

� The WHEN and OTHERWISE statements permit more than one target statement. That is, DO/END
groups are not necessary for multiple-statement WHENs. For example, the following syntax is valid:

SELECT;
WHEN (exp1) stmt1;

stmt2;
WHEN (exp2) stmt3;

stmt4;
END;

ReadChild Call
call ReadChild (selected, seg, n, values) ;

The ReadChild call reads a segment from a selected child solution into an array, within a user crossover
operator. The inputs to the ReadChild subroutine are as follows:

selected specifies the family (parents and children) obtained from the selec-
tion process.

seg specifies the solution segment to be read.

n specifies the child in the family from which to read the solution
segment.

values specifies an array to receive the solution elements.

The ReadChild call is used to obtain the solution values for manipulation within a user crossover operator
subroutine. Normally it is needed only if you need to augment the action of a GA procedure-supplied
crossover operator. You might need to make modifications to satisfy constraints, for example. The selected
parameter is passed into the user subroutine by the GA procedure. The seg parameter is the desired segment
of the solution to be obtained. Segments, which correspond to different encodings in the encoding string, are
numbered, starting from 1 as the first segment. The parameter n should be 1 to get the first child and 2 for the
second. The parameter values is an array, which should be dimensioned large enough to contain the segment’s

ReadCompare Call F 103

encoding. For example, the following subroutine illustrates how you could use the Read/WriteChild calls to
modify offspring generated with a standard genetic operator:

call SetEncoding('R5');

subroutine cross(selected[*]);

/* generate offspring with arithmetic crossover operator */
call CrossArithmetic(selected, 1); /* here 1 refers to segment 1*/

array child1[5];
array child2[5];

/* get elements of first child solution */
call ReadChild(selected, 1, 1, child1);

/* get elements of second child solution values */
call ReadChild(selected, 1, 2, child2);

...
/* code to modify elements in child1 and child2 */
...

call WriteChild(selected,1,1,child1);
call WriteChild(selected,1,2,child2);

ReadCompare Call
call ReadCompare (selected, seg, n, values) ;

The ReadCompare call reads a segment from a selected solution into an array, within a user fitness comparison
subroutine. The inputs to the ReadCompare subroutine are as follows:

selected specifies the pair of solutions to be compared, obtained from the
selection process.

seg specifies the solution segment to be read.

n specifies the solution (1 or 2) from which to read the segment.

values specifies an array to receive the solution elements.

The ReadCompare call is used to obtain the solution values for manipulation within a user fitness comparison
subroutine, which can be designated in a SetCompareRoutine call.

ReadMember Call
call ReadMember (selected, seg, destination) ;

The ReadMember call reads the selected solution into an array for a user objective function or mutation
operator.

104 F Chapter 4: The GA Procedure

The inputs to the ReadMember subroutine are as follows:

selected is a parameter passed to the user subroutine by the GA procedure,
which points to the selected solution.

seg specifies which segment of the solution to retrieve.

destination specifies an array in which to store the solution elements.

The ReadMember call is used within a user objective function or mutation operator to obtain the elements of
a selected solution and write them into a specified vector. They can then be used to compute an objective
value, or in the case of a mutation operator, manipulated and written back out with a WriteMember call.

ReadParent Call
call ReadParent (selected, seg, n, destination) ;

The ReadParent call reads selected solution elements into an array in a user crossover subroutine. The inputs
to the ReadParent subroutine are as follows:

selected is a parameter passed to the user subroutine by the GA procedure,
which points to the selected solution family.

seg is the segment of the desired parent solution to be obtained.

n is the number of the parent, starting at 1.

destination is an array in which to store the solution elements.
The ReadParent subroutine is called inside a user crossover operator subroutine to obtain the elements of
selected parent solutions. Normally you would then manipulate and combine the elements of the two parents
and use a WriteChild call to create the child offspring and complete the action of the crossover operator.

ReEvaluate Call
call ReEvaluate (< index >) ;

The ReEvaluate call reruns the evaluation phase of the genetic algorithm. The inputs to the ReEvaluate
subroutine are as follows:

index is a numeric scalar or array that specifies the indices of the solutions
to be updated. The indices correspond to the order of the solutions
obtained from a GetSolutions call.

The ReEvaluate call recomputes the objective values for the current generation. You do not normally need to
use this call, because the GA procedure evaluates the objective function during the optimization process in
the evaluation phase. This subroutine should be called from a user update or finalize routine if a parameter
that affects the objective value or solution is changed. The optional index parameter enables you to restrict
the recomputation to the solution or subset of solutions specified. If the index parameter is not supplied, then
the objective values of all the solutions will be recomputed.

For example, you might have a user objective function that can perform an additional local optimization if a
particular parameter is set. If your update routine changes that parameter, then you should call the ReEvaluate
subroutine to update the solutions and objective function values.

SetBounds Call F 105

SetBounds Call
call SetBounds (lower, upper < , seg >) ;

The SetBounds call sets constant upper and lower bounds. The inputs to the SetBounds subroutine are as
follows:

lower is a lower bound for the solution components.

upper is an upper bound for the solution components.

seg is optional, and specifies a segment of the solution to which the
bounds apply. If seg is not specified, then it defaults to a value of 1.

The SetBounds subroutine is used to establish upper and lower bounds on the solution space. It applies only
to integer and real encoding. For multiple segment encoding, use the seg parameter to specify a segment other
than the first. upper and lower must be arrays, with the same dimension as the encoding size. SetBounds
must be called for all integer or real encoded segments to which you apply the Uniform mutation operator.
The action of the standard mutation and crossover operators supplied by the GA procedure is automatically
modified so that the bounds established by a SetBounds call are respected. For an integer encoded segment,
only integer values are allowed for the upper and lower bounds.

SetCompareRoutine Call
call SetCompareRoutine (’routine’) ;

The SetCompareRoutine call installs a user function to compare the fitness of solutions. The input to the
SetCompareRoutine subroutine is as follows:

routine is the name of a function you have defined, which is called when
necessary to compare the fitness of solutions. This parameter must
be a string literal; a variable is not accepted.

The SetCompareRoutine call enables you to designate a function you have defined to be used in the selection
process when comparing the fitness of two solutions. The selector options that involve ranking solutions
by fitness, including tournament and duel selection, will use the designated function instead of comparing
the objective values directly. If the SetCompareRoutine is not called, or if it is called with an input value of
‘default’, then the objective function value will be used to compare solution fitness. The SetCompareRoutine
call provides you with a way to factor multiple fitness criteria into the selection process. See the section
“Defining a User Fitness Comparison Routine” on page 124 for a full description of how the fitness comparison
routine should be structured and what it should return. You can use this feature to implement multiobjective
optimization and other advanced optimization strategies.

SetCross Call
call SetCross (type< , seg >< , pname, pvalue >< , pname, pvalue >. . .) ;

The SetCross call sets the crossover operator. The inputs to the SetCross subroutine are as follows:

106 F Chapter 4: The GA Procedure

type is the name of the crossover operator to be applied.

seg is optional, and specifies a segment of the solution to which the
operator should be applied. If seg is not specified, then it defaults
to a value of 1. seg needs to be specified only if multisegment
encoding is used.

pname is optional, and specifies the name of a particular property to be set
for the crossover operator.

pvalue specifies the value to be assigned to the corresponding property
name.

The SetCross routine is used to assign a standard crossover operator. For multisegment encoding, the operator
can be assigned to a particular solution segment with the seg parameter; otherwise a default segment of 1
is assumed. You can set different crossover operators for different segments with multiple SetCross calls.
When a crossover event occurs, all segments in the parent solutions for which a crossover operator has been
designated will undergo crossover. If more than one SetCross call is made for the same segment, then the last
call nullifies any previous call for that segment. Also, a SetCrossRoutine call nullifies all previous SetCross
calls, and a SetCross call nullifies a previous SetCrossRoutine call. Properties for the chosen crossover
operator can be set with optional pname-pvalue pairs. It is also possible to set or reset operator properties
with a SetProperty call.

The accepted values for type and the corresponding properties are summarized in Table 4.5. See the section
“Crossover Operators” on page 116 for a full description of the available operators.

Table 4.5 Crossover Operator Types and Properties
type encodings properties
‘arithmetic’ real, integer
‘cycle’ sequence
‘heuristic’ real
‘order’ sequence
‘pmatch’ sequence
‘simple’ real, integer, Boolean ‘alpha’
‘twopoint’ real, integer, Boolean ‘alpha’
‘uniform’ real, integer, Boolean ‘alpha’, ‘p’

SetCrossProb Call
call SetCrossProb (p) ;

The SetCrossProb call sets the crossover probability. The input to the SetCrossProb subroutine is as follows:

p is the crossover probability.

The SetCrossProb subroutine is used to set the crossover probability for the genetic algorithm optimization
process. The crossover probability p should be between 0 and 1. Typical values for this parameter range from
0.6 to 1.0. The crossover probability will be overridden if required by a SetElite call. The elite solutions are
passed on to the next generation without undergoing crossover, regardless of the crossover probability.

SetCrossRoutine Call F 107

SetCrossRoutine Call
call SetCrossRoutine (’routine’< , nparents, nchildren >) ;

The SetCrossRoutine call installs a user subroutine for the crossover operator. The inputs to the SetCrossRou-
tine subroutine are as follows:

routine is the name of a subroutine you have defined, which is called when
the mutation operator is applied. This parameter must be a string
literal; a variable is not accepted.

nparents is optional, and specifies the number of parent solutions the operator
requires. If not specified, 2 is assumed.

nchildren is optional, and specifies the number of children solutions the oper-
ator will generate. If not specified, 2 is assumed.

SetElite Call
call SetElite (elite) ;

The SetElite call sets the number of best solutions to pass to the next generation. The input to the SetElite
subroutine is as follows:

elite is the number of best solutions to be passed unmodified from the
current solution generation to the next.

The SetElite subroutine is used to ensure that the best solutions encountered in the optimization are not lost
by the random selection process. In pure tournament selection, although better solutions are more likely to be
selected, it is also possible that any given solution will not be chosen to participate in a tournament, and even
if it is selected, it might be modified by crossover or mutation. The SetElite call modifies the optimization
process such that the best elite solutions in the current population are exactly preserved and passed on to the
next generation. This behavior is observed regardless of the crossover or mutation settings. When a SetElite
call is made, the first elite solutions in the population retrieved by a GetSolutions call or output to a data set
are the fittest, and these elite solutions are sorted so that the most fit is first. In general, using the SetElite
call speeds the convergence of the optimization process. However, it can also lead to premature convergence
before a true global optimum is reached. If no SetElite call is made, a default elite value of 1 is used by the
GA procedure to make sure that the best solution encountered in the optimization process is never lost.

SetEncoding Call
call SetEncoding (encoding) ;

The SetEncoding call specifies the problem encoding. The input to the SetEncoding subroutine is as follows:

encoding is a string used to specify the form of the solution.

The SetEncoding subroutine is used to establish the type of problem solution encoding. The encoding
parameter should be a string of letter-number pairs, where the letter determines the type of encoding: I
for integer, R for real-valued, S for sequences, and B for Boolean values. Each letter is followed by a
number to indicate the number of components for that encoding. Multiple letter-number pairs can be used to

108 F Chapter 4: The GA Procedure

specify a multisegment encoding. For example, the following call specifies that solutions be in the form of a
10-member integer vector:

call SetEncoding('I10');

The following call specifies that solutions have a 5-component integer segment and a 10-component real-
valued segment:

call SetEncoding('I5R10');

See the section “Using Multisegment Encoding” on page 115 for details about using multisegment encoding.

SetFinalize Call
call SetFinalize (’routine’) ;

The SetFinalize call designates a user subroutine to perform post processing at the end of the optimization
process. The input to the SetFinalize subroutine is as follows:

routine is the name of a subroutine you have defined, which is called when
the optimization process ends. This parameter must be a string
literal; a variable is not accepted.

The SetFinalize subroutine enables you to define a subroutine to be called at the end of the optimization
process. You might use this subroutine to perform additional refinements of the best solution, or you could
generate and write out additional data for plots or reports.

SetMut Call
call SetMut type< , seg >< , pname, pvalue >< , pname, pvalue >. . .) ;

The SetMut call sets the mutation operator. The inputs to the SetMut subroutine are as follows:

type is the name of the mutation operator to be applied.

seg is optional, and specifies a segment of the solution to which the
operator should be applied. If seg is not specified, then it defaults
to a value of 1. seg needs to be specified only if multisegment
encoding is used.

pname is optional, and specifies the name of a particular property to be set
for the mutation operator.

pvalue specifies the value to be assigned to the corresponding property
name.

The SetMut routine is used to assign a standard mutation operator. For multisegment encoding, the operator
can be assigned to a particular solution segment with the seg parameter; otherwise a default segment of
1 is assumed. You can set different mutation operators for different segments with multiple SetMut calls.

SetMutProb Call F 109

When a mutation event occurs, all the operators will applied to the same solution. If more than one SetMut
call is made for the same segment, then the last call nullifies any previous call for that segment. Also, a
SetMutRoutine call nullifies all previous SetMut calls, and a SetMut call nullifies a previous SetMutRoutine
call. Properties for the chosen mutation operator can be set with optional pname-pvalue pairs. It is also
possible to set or reset operator properties with a SetProperty call.

The accepted values for type and the corresponding properties are summarized in Table 4.6. See the section
“Mutation Operators” on page 122 for a full description of the available operators.

Table 4.6 Mutation Operator Types and Properties
type encodings properties
’delta’ real, integer ‘delta’

‘nchange’
’invert’ sequence
’null’ all encodings
’swap’ sequence ‘nswap’
’uniform’ real, integer, Boolean ‘nchange’

‘pchange’

SetMutProb Call
call SetMutProb (p) ;

The SetMutProb call sets the mutation probability. The input to the SetMutProb subroutine is as follows:

p is the mutation probability.

The SetMutProb subroutine is used to set the mutation probability for the genetic algorithm optimization.
The probability p should be a number between 0 and 1, and is interpreted as the probability that a solution in
the next generation should have the mutation operator applied to it. If a SetElite call has been made, then the
elite solutions do not undergo mutation. Generally, a high mutation probability degrades the convergence of
the genetic algorithm optimization, but some level of mutation is required to assure a thorough search and
avoid premature convergence before the global optimum is found. Typical values for p are near 0.05 or less.

SetMutRoutine Call
call SetMutRoutine (’routine’) ;

The SetMutRoutine call installs a user subroutine for the mutation operator. The input to the SetMutRoutine
subroutine is as follows:

routine is the name of a subroutine you have defined, which is called when
the mutation operator is applied. This parameter must be a string
literal; a variable is not accepted.

The SetMutRoutine call enables you to designate a subroutine you have defined to be used for the mutation
operator. Your subroutine will be called whenever the mutation operation is performed. See the section
“Defining User Genetic Operators” on page 126 for more information about defining a mutation operator.

110 F Chapter 4: The GA Procedure

SetObj Call
call SetObj (type, minmax, < , seg >< , pname, pvalue >< , pname, pvalue >. . .) ;

The SetObj call sets the objective function. The inputs to the SetObj subroutine are as follows:

type is the name of the objective function to be used.

minmax is an indicator to maximize or minimize the objective. A value
of 0 is used to specify a minimization, and a value of 1 to specify
maximizing the objective.

seg is optional, and specifies a segment of the solution to which the
objective function should be applied. If seg is not specified, then it
defaults to a value of 1. seg needs to be specified only if multiseg-
ment encoding is used.

pname is optional, and specifies the name of a particular property to be set
for the objective function.

pvalue specifies the value to be assigned to the corresponding property
name.

The SetObj routine is

used to assign a procedure-supplied objective function. For multisegment encoding, the objective can be
assigned to a particular solution segment with the seg parameter; otherwise a default segment of 1 is assumed.
If more than one SetObj call is made, then the last call nullifies any previous call. Also, a SetObjFunc call
nullifies all previous SetObj calls, and a SetObj call nullifies a previous SetObjFunc call. Properties for the
chosen objective can be set with optional pname-pvalue pairs. It is also possible to set or reset objective
properties with a SetProperty call.

The accepted values for type and the corresponding properties are summarized in Table 4.7. See the section
“Objective Functions” on page 124 for a full description of the available objectives.

Table 4.7 Objective Function Types and Properties
type encodings properties
’TSP’ real, integer ‘distances’

SetObjFunc Call
call SetObjFunc (’fname’, minmax) ;

The SetObjFunc call sets the objective to a user-defined function. The inputs to the SetObjFunc subroutine
are as follows:

fname is the name of a user objective function. This parameter must be a
literal string.

minmax is set to 0 to minimize the objective, 1 to maximize.

The SetObjFunc subroutine is used to designate a user function to be the objective for the optimization
process. The SetObjFunc call accepts a literal string only for the function name; you cannot use a variable
or expression. See the section “Defining an Objective Function” on page 130 for more information about

SetProperty Call F 111

defining your own objective function. If multiple SetObjFunc calls are made, only the last one is in effect;
the last call nullifies any previous SetObjFunc or SetObj calls.

SetProperty Call
call SetProperty (optype < , seg >, pname, pvalue < , pname, pvalue >. . .) ;

The SetProperty call modifies properties of genetic operators, objective functions, and selectors. The inputs
to the SetProperty subroutine are as follows:

optype is the type of operator. It should have a value of ‘cross’ for a
crossover operator, ‘mut’ for a mutation operator, ‘obj’ for an
objective function, or ‘sel’ for a selector.

seg is optional, used only for mutation and crossover operators, and
specifies the segment in which the operator resides. It is necessary
only for multisegment encoding. The default value if seg is not
specified is 1.

pname specifies the name of a particular property to be set.

pvalue specifies the value to be assigned to the corresponding property
name. Multiple property name-value pairs can be supplied in a
SetProperty call.

The SetProperty call is used to set or modify properties of a genetic operator, objective function, or a selector.
It can be called anytime during the optimization process to dynamically adapt optimization parameters. For
example, you might call SetProperty from a user update routine to reduce the magnitude of the delta vector
of a delta mutation operator as the optimization progresses to an optimum.

SetSel Call
call SetSel (selector < , pname, pvalue >< , pname, pvalue >. . .) ;

The SetSel call sets the selection parameters. The inputs to the SetSel subroutine are as follows:

selector is the type of selection strategy to be used.

pname is optional, and specifies the name of a particular property to be set
for the selector operator.

pvalue specifies the value to be assigned to the corresponding property
name.

The SetSel call is used to specify a selector for the regeneration process, which selects members of the current
generation to be propagated to the next. Generally, selection is based on solution fitness, with the fittest
solutions more likely to be selected.

The supported values for selector and the corresponding selector properties and their default values are
summarized in Table 4.8. See the section “Specifying the Selection Strategy” on page 132 for a full
description of the available selectors and their properties.

112 F Chapter 4: The GA Procedure

Table 4.8 Selectors and Properties
Selector Properties Default values
’tournament’ ‘size’ 2
’duel’ ‘pbest’ 0.8

SetUpdateRoutine Call
call SetUpdateRoutine (’routine’) ;

The SetUpdateRoutine call designates a control subroutine to be called at each iteration. The input to the
SetUpdateRoutine subroutine is as follows:

routine is the name of a subroutine you have defined that is called once
during each iteration of the optimization process. This parameter
must be a string literal; a variable is not accepted.

The SetUpdate subroutine enables you to define a subroutine to be called at each iteration of the optimization
process, in order to monitor the progress of the genetic algorithm, adjust optimization parameters, or perform
calculations that depend on the population as a whole. The specified routine is called once at each iteration,
just before the selection process and after the evaluation phase. See the section “Defining a User Update
Routine” on page 128 for a discussion of how an update routine might be used.

ShellSort Call
call ShellSort (x, < , by<, descend > >) ;

The ShellSort call sorts a numeric array. The inputs to the ShellSort subroutine are as follows:

x is a one or two dimensional array to be sorted.

by is an optional numeric scalar or array that specifies the columns by
which the array is to be sorted. If not specified, column 1 is the
default.

descend is an optional numeric scalar or array used to specify which columns
in the by parameter are to be in descending order. Any columns not
specified in a descend parameter will be in ascending order.

The ShellSort subroutine sorts the x array by the columns specified in the by parameter, with the first column
having highest precedence, and subsequent columns applied within the preceding by groups. Sorting will be
done in ascending order for each column unless that column is also specified in the descend parameter. In
general the ShellSort routine does not preserve the original order in case of ties. For example, the following
statements sort an array x into ascending order with respect to the first column, and sort groups with the same
first column value by descending order of third column values:

array x[100, 3] /nosym;

...

Shuffle Call F 113

array by[2] /nosym;
by[1] = 1;
by[2] = 3;
descend = 3;
call ShellSort(x, by, descend);

Shuffle Call
call Shuffle (x) ;

The Shuffle call randomly reorders a numeric array. The input to the Shuffle subroutine is as follows:

x is a numeric array to be randomly shuffled.

The Shuffle subroutine randomly rearranges the elements of the x array. One example of where it might be
used is in a user-supplied initialization routine, to generate a random sequence-encoded solution segment.

UnpackBits Function
r = UnpackBits (source, start, width) ;

The UnpackBits call retrieves bit values from a packed integer array. The inputs to the UnpackBits function
are as follows:

source is an array containing the packed bit values.

start is the starting bit, with the lowest bit starting at 1.

width is the number of bits to retrieve. A value of 1 retrieves a single bit.
The UnpackBits function facilitates the extraction of bit values from arbitrary locations in an integer array.
One common use for it is to retrieve bit values from an integer solution segment in a user objective or genetic
operator routine. The return value, start, and width parameters are consistent with the PackBits call, which
you can use to store bit values to an integer array.

The start parameter is the lowest desired bit position in the bit vector, corresponding to the least significant
bit of the return value. The start parameter can range in value from 1 to maxbits, where maxbits is the product
of 32 times the number of elements in the integer array.

The width parameter is the number of bits to be read into the return value from the array. It is bounded by
0 < width < .maxbits � start C 1/, and must also not exceed 32.

UpdateSolutions Call
call UpdateSolutions (sol, n, seg) ;

The UpdateSolutions call updates the current solution population. The inputs to the UpdateSolutions
subroutine are as follows:

114 F Chapter 4: The GA Procedure

sol is an array containing the replacement solution elements.

n is the number of solutions to update.

seg is the segment of the solution to replace.

The UpdateSolutions subroutine is used to replace the values of the selected solution segment with new
values computed in an update routine. The update routine can be designated in a SetUpdateRoutine call. The
UpdateSolutions call is often used to implement advanced strategies such as marking Pareto-optimal sets or
employing local optimizations. The sol parameter should have 2 dimensions. The first dimension represents
the solution number, and should have a value of n or greater. The second dimension represents the element
within the solution seg, and should be equal to the segment size.

WriteChild Call
call WriteChild (selected, seg, n, source) ;

The WriteChild call assigns values to a selected child solution from within a user crossover operator. The
inputs to the WriteChild subroutine are as follows:

selected is an array specifying the selected family of solutions. The se-
lected array is normally passed into the user subroutine that calls
WriteChild, and should be passed unaltered to WriteChild.

seg is the segment to which the elements are to be written.

n is the child within the family to which the elements are to be written.
A value of 1 is for the first child, 2 for the second, and so on.

source is an array containing the values to be written.

The WriteChild subroutine is called inside a user crossover operator subroutine to assign to the elements of a
selected child solution. It is normally used to complete the action of the crossover operator.

WriteMember Call
call WriteMember (selected, seg, source) ;

The WriteMember call assigns values to a selected solution from within a user objective function or mutation
operator. The inputs to the WriteMember subroutine are as follows:

selected is an array specifying the selected family of solutions. The se-
lected array is normally passed into the user subroutine that calls
WriteMember, and should be passed unaltered to WriteMember.

seg is the segment to which the elements are to be written.

source is an array containing the values to be written.

The WriteMember subroutine is called inside a user objective function or mutation operator subroutine to
assign values to the elements of a selected solution. It is normally used to complete the action of the objective
function or mutation operator.

Details: GA Procedure F 115

Details: GA Procedure

Using Multisegment Encoding
The GA procedure enables you to represent problems with solutions consisting of mixed parameter types by
using multisegment encoding. Solutions can contain multiple segments, where each segment is a vector of
one particular parameter type. Multiple segments can also be used to store additional information you want
to keep for each solution for user objective functions or genetic operators. The utility functions provided by
the GA procedure give you full access to read from and write to individual solution segments you define.

Segments are set up with a SetEncoding call. The input parameter to this call is a string consisting of
letter-number pairs, with each pair describing the type and number of elements in one segment. The permitted
letters and corresponding encodings are as follows:

R or r specifies real encoding. The elements of the solution segment are real numbers. One common
problem where this encoding is used is nonlinear function optimization over the real domain.

I or i specifies integer encoding. The elements of the solution segment are integers. Examples of where
this encoding might be used include assignment problems where the integers represent which
resources are assigned to particular tasks, or problems involving real variables that are constrained
to be integers.

B or b specifies Boolean encoding. The elements of the solution consist of binary (0 or 1) bits. This type
of encoding might be used, for example, to represent variables in a variable selection problem, or
inclusion of particular items in a 0/1 knapsack problem.

S or s specifies sequence encoding. The segment consists of randomly ordered sequences of integers
ranging from 1 to the number of elements. For example, [2, 4, 5, 1, 3] is an example of S5 encoding,
as is [5, 3, 2, 1, 4]. Sequence encoding is a natural way to represent routing optimizations like the
traveling salesman problem, or any problem optimizing permutations of parameters.

Suppose the problem is to optimize the scheduling of 20 tasks, and for each task you need to choose one
machine out of a set of appropriate machines for each task. The natural encoding for that problem could be
set up with the following call:

call SetEncoding('I20S20');

This call specifies a two-segment solution encoding, with segment 1 (I20) an integer vector representing the
machine assignment for each task, and segment 2 (S20) representing the sequence of tasks.

When you use multisegment encoding, you must specify the segment parameter in SetMut or SetCross calls
to specify an operator in a segment other than the first one. If you code your own operator subroutines,
you can use utility functions provided by the GA procedure to extract and write out values to individual
segments of the solution, and routines provided by the GA procedure to perform standard genetic crossover
and mutation operations on selected segments. See the section “Using Standard Genetic Operators and
Objective Functions” on page 116 for a discussion of the operators provided by the GA procedure. See the
section “Defining User Genetic Operators” on page 126 and the section “Defining an Objective Function” on
page 130 for details of defining user routines.

116 F Chapter 4: The GA Procedure

Using Standard Genetic Operators and Objective Functions
The GA procedure includes a set of objective functions and crossover and mutation operators, and also
enables you to define your own with a subroutine. The standard operators and objectives that are provided for
each encoding type are summarized in Table 4.9.

Table 4.9 Standard Genetic Operators for Each Encoding

Encoding Crossover Mutation Objective

real arithmetic delta
heuristic null
null uniform
simple
twopoint
uniform

integer arithmetic delta
null null
simple uniform
twopoint
uniform

Boolean simple null
null uniform
twopoint
uniform

sequence cycle invert TSP
null null
order swap
pmatch

The following sections describe the standard genetic operators and objectives and how to invoke them.

Crossover Operators

Arithmetic
This operator is defined for real and integer encoding. It treats the solution segment as a vector, and computes
offspring of parents P and Q as

child1 D aP C .1 � a/Q

child2 D aQC .1 � a/P

where a is a random number between 0 and 1 generated by the GA procedure. For integer encoding, each
component is rounded to the nearest integer. It has the advantage that it always produces feasible offspring
for a convex solution space. A disadvantage of this operator is that it tends to produce offspring toward the
interior of the search region, so it might not work if the optimum lies on or near the search region boundary.
For single-segment encoding, you can specify the use of this operator with the call

call SetCross(‘Arithmetic’);

Using Standard Genetic Operators and Objective Functions F 117

For multisegment encoding, you can specify the segment to which the operator should be applied with the
call

call SetCross(‘Arithmetic’, segment);

From within a user crossover subroutine, you can use the call

call Cross(selected, segment, ‘Arithmetic’);

where selected is the selection parameter passed to your subroutine, and segment is the segment to which the
arithmetic crossover operator is to be applied.

Cycle
This operator is defined for sequence encoding. It produces offspring such that the position of each element
value in the offspring comes from one of the parents. For example, consider parents P and Q,

P D Œ1; 2; 3; 4; 5; 6; 7; 8; 9�

Q D Œ8; 7; 9; 3; 4; 1; 2; 5; 6�

For the first child, pick the first element from the first parent:

child1 D Œ1; :; :; :; :; :; :; :; :�

To maintain the condition that the position of each element value must come from one of the parents, the
position of the ‘8’ value must come from P , because the ‘8’ position in Q is already taken by the ‘1’ in
child1:

child1 D Œ1; :; :; :; :; :; :; 8; :�

Now the position of ‘5’ must come from P , and so on until the process returns to the first position:

child1 D Œ1; :; 3; 4; 5; 6; :; 8; 9�

At this point, choose the remaining element positions from Q:

child1 D Œ1; 7; 3; 4; 5; 6; 2; 8; 9�

For the second child, starting with the first element from the second parent, similar logic produces

child2 D Œ8; 2; 9; 3; 4; 1; 7; 5; 6�

This operator is most useful when the absolute position of the elements is of most importance to the objective
value. For single-segment encoding, you can specify this operator with the call

call SetCross(‘Cycle’);

For multisegment encoding, you can specify the segment to which the operator should be applied with the
call

call SetCross(‘Cycle’, segment);

From within a user crossover subroutine, you can use the use the call

call Cross(selected, segment, ‘Cycle’);

where selected is the selection parameter passed to your subroutine, and segment is the segment to which the
cycle crossover operator is to be applied.

118 F Chapter 4: The GA Procedure

Heuristic
This operator is defined for real encoding. It treats the solution segments as real vectors. It computes the first
offspring from two parents P and Q, where Q is the parent with the best objective value, as

child1 D a.Q � P /CQ

child2 D aQC .1 � a/P

where a is a random number between 0 and 1 generated by the GA procedure. The first child is a projection,
and the second child is a convex combination, as with the arithmetic operator. This operator is unusual in
that it uses the objective value. It has the advantage of directing the search in a promising direction, and
automatically fine-tuning the search in an area where solutions are clustered. If the solution space has upper
and lower bound constraints, the offspring are checked against the bounds, and any component outside its
bound is set equal to that bound. The heuristic operator performs best when the objective function is smooth,
and might not work well if the objective function or its first derivative is discontinuous.

For single-segment encoding, you can specify this operator with the call

call SetCross(‘Heuristic’);

For multisegment encoding, you can specify the segment to which the operator should be applied with the
call

call SetCross(‘Heuristic’, segment);

From within a user crossover subroutine, you can use the call

call Cross(selected, segment, ‘Heuristic’);

where selected is the selection parameter passed to your subroutine, and segment is the segment to which the
heuristic crossover operator is to be applied.

Null
This operator is used to specify that no crossover operator be applied. It is not usually necessary to specify
the null operator, except when you want to cancel a previous operator selection. You can specify the null
operator with the call

call SetCross(‘null’);

For multisegment encoding, you can specify a segment to which the operator should be applied with the call

call SetCross(‘null’, segment);

Order
This operator is defined for sequence encoding. It produces offspring by transferring a randomly chosen
subsequence of random length and position from one parent, and filling the remaining positions according
to the order from the other parent. For parents P and Q, first choose two random cutpoints to define a
subsequence:

P D Œ1; 2; j3; 4; 5; 6; j7; 8; 9�

Q D Œ8; 7; j9; 3; 4; 1; j2; 5; 6�

child1 D Œ:; :; 3; 4; 5; 6; :; :; :�

child2 D Œ:; :; 9; 3; 4; 1; :; :; :�

Starting at the second cutpoint and cycling back to the beginning, the elements of Q in order are as follows:

Using Standard Genetic Operators and Objective Functions F 119

2 5 6 8 7 9 3 4 1

After removing 3, 4, 5 and 6, which have already been placed in child1, you have the following entries:

2 8 7 9 1

Placing these back in order starting at the second cutpoint yields the following sequence:

child1 D Œ9; 1; 3; 4; 5; 6; 2; 8; 7�

Applying this logic to child2 yields the following sequence:

child2 D Œ5; 6; 9; 3; 4; 1; 7; 8; 2�

This operator maintains the similarity of the relative order, or adjacency, of the sequence elements of the
parents. It is especially effective for circular path-oriented optimizations, such as the traveling salesman
problem. For single-segment encoding, you can specify this operator with the call

call SetCross(‘Order’);

For multisegment encoding, you can specify the segment to which the operator should be applied with the
call

call SetCross(‘Order’, segment);

From within a user crossover subroutine, you can use the call

call Cross(selected, segment, ‘Order’);

where selected is the selection parameter passed to your subroutine, and segment is the segment to which the
order crossover operator is to be applied.

Pmatch
The partial match operator is defined for sequence encoding. It produces offspring by transferring a
subsequence from one parent, and filling the remaining positions in a way consistent with the position and
ordering in the other parent. Start with two parents and randomly chosen cutpoints as indicated:

P D Œ1; 2; j3; 4; 5; 6; j7; 8; 9�

Q D Œ8; 7; j9; 3; 4; 1; j2; 5; 6�

The first step is to cross the selected subsegments as follows (note that ‘.’ indicates positions yet to be
determined):

child1 D Œ:; :; 9; 3; 4; 1; :; :; :�

child2 D Œ:; :; 3; 4; 5; 6; :; :; :�

Next, define a mapping according to the two selected subsegments:

9-3, 3-4, 4-5, 1-6

120 F Chapter 4: The GA Procedure

Then, fill in the positions where there is no conflict from the corresponding parent, as follows:

child1 D Œ:; 2; 9; 3; 4; 1; 7; 8; :�

child2 D Œ8; 7; 3; 4; 5; 6; 2; :; :�

Last, fill in the remaining positions from the subsequence mapping. In this case, for the first child, 1! 6

and 9! 3, 3! 4, 4! 5, and for the second child, 5! 4, 4! 3, 3! 9, and 6! 1.

child1 D Œ6; 2; 9; 3; 4; 1; 7; 8; 5�

child2 D Œ8; 7; 3; 4; 5; 6; 2; 9; 1�

This operator tends to maintain similarity of both the absolute position and relative ordering of the sequence
elements, it and is useful for a wide range of sequencing problems. For single-segment encoding, you can
specify this operator with the call

call SetCross(‘Pmatch’);

For multisegment encoding, you can specify the segment to which the operator should be applied with the
call

call SetCross(‘Pmatch’, segment);

From within a user crossover subroutine, you can use the call

call Cross(selected, segment, ‘Pmatch’);

where selected is the selection parameter passed to your subroutine, and segment is the segment to which the
Pmatch crossover operator is to be applied.

Simple
This operator is defined for integer, real, and Boolean encoding. It has one property, alpha. This operator
performs the following action: a position k within an encoding of length n is chosen at random, such that
1 � k < n. Then for parents P and Q, the offspring are as follows:

child1 D ŒP1; P2; : : : ; Pk; QkC1; QkC2; : : : ; Qn�

child2 D ŒQ1; Q2; : : : ; Qk; PkC1; PkC2; : : : ; Pn�

For integer and real encoding, you can specify an additional alpha property of value a, where 0 < a � 1. It
modifies the offspring as follows:

pi D aPi C .1 � a/Qi ; i D k C 1; k C 2; : : : ; n

qi D aQi C .1 � a/Pi ; i D k C 1; k C 2; : : : ; n

child1 D ŒP1; P2; : : : ; Pk; qkC1; qkC2; : : : ; qn�

child2 D ŒQ1; Q2; : : : ; Qk; pkC1; pkC2; : : : ; pn�

For integer encoding, the elements are then rounded to the nearest integer. For Boolean encoding, the a

parameter is ignored, and is effectively 1.

For single-segment encoding, you can specify this operator with the call

call SetCross(‘Simple’, ‘alpha’, a);

Using Standard Genetic Operators and Objective Functions F 121

For multisegment encoding, you can specify the segment to which the operator should be applied with the
call

call SetCross(‘Simple’, segment, ‘alpha’, a);

From within a user crossover subroutine, you can use

call Cross(selected, segment, ‘Simple’, a);

where selected is the selection passed to your subroutine, and segment is the segment to which the simple
crossover operator is to be applied.

Twopoint
This operator is defined for integer, real, and Boolean encoding of length n � 3, and has one property, alpha .
Two positions, k1 and k2, are chosen at random, such that 1 � k1 < k2 < n. Element values between those
positions are swapped between parents. For parents Q and P , the offspring are as follows:

child1 D ŒP1; P2; : : : ; Pk1; Qk1C1; : : : ; Qk2; Pk2C1; : : : ; Pn�

child2 D ŒQ1; Q2; : : : ; Qk1; Pk1C1; : : : ; Pk2; Qk2C1; : : : ; Qn�

For integer and real encoding, you can specify an additional alpha property of value a, where 0 < a � 1. It
modifies the offspring as follows:

pi D aPi C .1 � a/Qi ; i D k1C 1; k1C 2; : : : ; k2

qi D aQi C .1 � a/Pi ; i D k1C 1; k1C 2; : : : ; k2

child1 D ŒP1; P2; : : : ; Pk1; qk1C1; : : : ; qk2; Pk2C1; : : : ; Pn�

child2 D ŒQ1; Q2; : : : ; Qk1; pk1C1; : : : ; pk2; Qk2C1; : : : ; Qn�

Note that small values of a reduce the difference between the offspring and parents. For Boolean encoding, a

is always 1. For single-segment encoding, you can specify the use of this operator with the call

call SetCross(‘Twopoint’, ‘alpha’, a);

For multisegment encoding, you can specify the segment to which the operator should be applied with the
call

call SetCross(selected, segment, ‘Twopoint’, ‘alpha’, a);

From within a user crossover subroutine, you can use the call

call Cross(selected, segment, ‘Twopoint’, a);

where selected is the selection passed to your subroutine, and seg is the segment to which the two-point
crossover operator is to be applied.

Uniform
This operator is defined for integer, real, and Boolean encoding of length n � 3, and has two properties,
alpha and p, where 0 < alpha � 1 and 0 < p � 0:5. For alpha D a and parents S and T , offspring s and t

are generated such that

si D

�
aTi C .1 � a/Si ; with probability p
Si ; otherwise

122 F Chapter 4: The GA Procedure

ti D

�
aSi C .1 � a/Ti ; with probability p
Ti ; otherwise

Note that alpha and p determine how much interchange there is between parents. Lower values of alpha and
p imply less change between offspring and parents. For Boolean encoding, alpha is always assigned to be 1.
If you do not specify alpha , it defaults to a value of 1. If you do not specify p, it defaults to a value of 0.5.

For single-segment encoding, you can specify the use of this operator with the call

call SetCross(‘Uniform’, ‘alpha’, a, ‘p’, p);

For multisegment encoding, you can specify the segment to which the operator should be applied with the
call

call SetCross(‘Uniform’, segment, ‘alpha’, a, ‘p’, p);

From within a user crossover subroutine, you can use the call

call Cross(selected, seg, ‘Uniform’, a, p);

where selected is the selection parameter passed to your crossover subroutine, and seg is the segment to which
the uniform crossover operator is to be applied. In both cases, if the encoding is Boolean, the a parameter is
ignored, and a is effectively 1.

Mutation Operators

Delta
This operator is defined for integer and real encoding. It has two properties, delta and nchange. It first
chooses n elements of the solution at random, where n is the value of the nchange property, and then
perturbs each chosen element by a fixed amount, set by d , the value of the delta property. d must be an
array with the same length as the encoding. A randomly chosen element k of the solution S is modified such
that

Sk 2 fSk � dk; Sk C dkg

If upper and lower bounds are specified with a SetBounds call, then Sk is adjusted as necessary to fit within
the bounds. This operator gives you the ability to fine-tune the search by modifying the magnitude of the
delta property. One possible strategy is to start with larger d values, and then reduce them as the search
progresses and begins to converge to an optimum. This operator is also useful if the optimum is known to be
on or near a boundary, in which case d can be set large enough to always perturb the solution element to a
boundary. For single-segment encoding, you can specify this operator with the call

call SetMut(‘delta’, ‘nchange’, n, ‘delta’, d);

For multisegment encoding, you can specify the segment to which the operator should be applied with the
call

call SetMut(‘delta’, segment, ‘nchange’, n, ‘delta’, d);

You can invoke this operator on a solution segment from within a user mutation subroutine with the call

call Mutate(selected, segment, ‘delta’, d, n);

where selected is the selection parameter passed into the subroutine.

Using Standard Genetic Operators and Objective Functions F 123

Invert
This operator is defined for sequence encoding. It picks two locations at random and reverses the order
of elements between them. This operator is most often applied to the traveling salesman problem. For
single-segment encoding, you can specify this operator with the call

call SetMut(‘invert’);

For multisegment encoding, you can specify the segment to which the operator should be applied with the
call

call SetMut(‘invert’, segment);

You can invoke this operator on a solution segment from within a user mutation subroutine with the call

call Mutate(selected, segment, ‘invert’);

where selected is the selection parameter passed into the subroutine.

Null
This operator is used to specify that no mutation operator be applied. It is not usually necessary to specify
the null operator, except when you want to cancel a previous operator selection. You can specify the null
operator with the call

call SetMut(‘null’);

For multisegment encoding, you can specify a segment to which the operator should be applied with

call SetMut(‘null’, segment);

Swap
This operator is defined for sequence problem encoding. It picks two random locations in the solution vector
and swaps their values. You can also specify that multiple swaps be made for each mutation, by setting the
nswap property. For single-segment encoding, you can specify the swap operator with the call

call SetMut(‘swap’, ‘nswap’, n);

where n is the number of swaps for each mutation. For multisegment encoding, you can specify the segment
to which the operator should be applied with the call

call SetMut(‘swap’, segment, ‘nswap’, n);

You can invoke this operator on a solution segment from within a user mutation subroutine with the call

call Mutate(selected, segment, ‘swap’, n);

where selected is the selection parameter passed into the subroutine.

Uniform
This operator is defined for Boolean encoding or for real or integer encoding with upper and lower bounds
specified with a SetBounds call. To apply this operator, a position k is randomly chosen within the solution
S , and Sk is modified to a random value between the upper and lower bounds for element k. There are two
properties you can specify, nchange and pchange. If you set the nchange property to n, the operator
is applied to n locations. If you set the pchange property to a value p, where 0 < p < 1, the operator is
applied at each position with probability p. Only the last property setting is active, overriding any previous

124 F Chapter 4: The GA Procedure

settings. If no property is set, a default nchange value of 1 is used. You can specify this operator with one
of the following two calls:

call SetMut(‘uniform’, ‘nchange’, n);

call SetMut(‘uniform’, ‘pchange’, p);

For multisegment encoding, you can specify the segment to which the operator should be applied with the
call

call SetMut(‘uniform’, segment, ‘nchange’, n);

You can invoke this operator on a solution segment from within a user mutation subroutine by using one of
the following statements, where selected is the selection parameter passed into the subroutine:

call Mutate(selected, segment, ‘uniform’, n);

call Mutate(selected, segment, ‘uniform’, p);

This operator can prove especially useful in early stages of the optimization, since it tends to distribute
solutions widely across the search space, and to avoid premature convergence to a local optimum. However,
in later stages of an optimization, when the search needs to be fine-tuned to home in on an optimum, the
uniform operator can hinder the optimization.

Objective Functions

TSP
The TSP objective calculates the value of the traveling salesman problem objective. It has one property,
distances, which is a two-dimensional array representing distances between locations. If distances D d ,
then d[i,j] is the distance between location i and location j.

Defining a User Fitness Comparison Routine
Most of the selection techniques used in this procedure require comparisons of fitness to decide which
solutions should be propagated into the next generation. Normally fitness is directly related to the solution
objective value, with the better objective value indicating the higher fitness. However, sometimes it is useful
to base fitness on multiple criteria, not just a single calculated objective value. Doing so enables you to solve
multiobjective optimization problems, or to find optima that also satisfy secondary objectives. For example,
for a multiobjective problem you might want to find a set of construction schedules that simultaneously
minimize completion time and minimize cost, so that you can examine the tradeoff between the two objectives
and choose a schedule that best meets your needs. You might also have a scheduling problem where there is
more than one solution that meets your primary objective, but you would like to converge on the one that also
provides adequate worker breaks, or minimizes overtime. One single-valued objective function might not be
adequate to express these preferences.

You can define a function and designate that function to be used for comparing the fitness of two competing
solutions with the call

call SetCompareRoutine(‘routine’);

where routine is the name of the function you have defined. The function name must be a quoted string. The
first parameter of the function, designated the selection parameter, must be a numeric array. The procedure

Defining a User Fitness Comparison Routine F 125

calls your compare function whenever it needs to compare the fitness of two solutions. Your function can
also have an arbitrary number of additional parameters, whose names and data types should match variables
defined in the global portion of your input. When the procedure calls your function, the selection parameter
will be filled in with information identifying which solutions are to be compared, and any other parameters
will be filled in with the corresponding global symbol values. Your function should not alter the selection
parameter in any way, but pass it unchanged into a ReadCompare Call to obtain the solution elements your
program needs to compare the fitness. If solution 1 has higher fitness than solution 2, then your function
should return a positive number. If solution 2 is more fit than solution 1, then a negative number should be
returned. If the two solutions have the same fitness then a value of 0 might be returned. Following is a simple
example of a fitness comparison function.

/* This function is designed to maximize a

* primary and secondary objective. The objectives

* are stored in segment 2 of the encoding. If

* the difference in primary objective is less than

* the value of delta, then the secondary objective

* is used to determine the fitness

*/
function compare2(selected[*], delta);

/* arrays to hold solution elements */
array member1[2] /nosym;
array member2[2] /nosym;

/* read segment 2 of solution 1 into member1 */
call ReadCompare(selected, 2, 1, member1);

/* read segment 2 of solution 2 into member2 */
call ReadCompare(selected, 2, 2, member2);

/* element 1 contains the primary objective value, */
/* element 2 contains a secondary objective value */

/* if objective 1 is nearly the same, then use */
/* objective 2 to compare the fitness */
if(abs(member1[1] - member2[1]) < delta) then do;

/* primary objectives are nearly the same, check secondary */
if(member1[2] > member2[2]) then

return(1);
if(member2[2] > member1[2]) then

return(-1);
end;

/* base fitness on primary objective */
if(member1[1] > member2[1]) then

return(1);
if(member2[1] > member1[1]) then

return(-1);

/* all objectives are the same, return 0 */
return(0);
endsub;

126 F Chapter 4: The GA Procedure

/* in global scope of the input */
delta = 0.01;
call SetCompareRoutine('compare2');

For an example of a comparison routine used in a multiobjective optimization, see Example 4.3.

Defining User Genetic Operators
You can define new genetic operators with subroutines. The GA procedure calls your subroutine when it
is necessary to perform mutation or crossover operations. You can designate that a subroutine be used for
crossover with the call

call SetCrossRoutine(‘routine’);

where routine is the name of the subroutine you have defined. Similarly, you can designate a subroutine for
the mutation operator with the call

call SetMutRoutine(‘routine’);

The subroutine name must be a quoted string. The first parameter of the crossover or mutation subroutine
you define must be a numeric array. When the GA procedure calls your subroutine, it passes information
in the first parameter, referred to as the selection parameter, which designates the selected members for the
operation. You should not alter the selection parameter in any way, but pass it unchanged into special utility
routines provided by the GA procedure in order to obtain the solution elements and write them to the selected
members. You can define as many other parameters to your subroutine as you need; they are filled in with
values from variables of the same name created in the global portion of your program. Any array parameters
must be numeric and of the type /NOSYMBOLS.

For a crossover subroutine, use the ReadParent call to get the elements of the selected parents into arrays
that you can then manipulate with programming statements. The results can be written to the designated
offspring with a WriteChild call. The following code is an example of a crossover subroutine. The subroutine
creates two new offspring from two selected parents by switching the odd-numbered elements between the
two parents.

/* single-segment integer encoding of size 10 */
call SetEncoding('I10');

/* encoding size is 10 */
n = 10;

subroutine swapodd(selected[*], n);
array child1[1] /nosym;
array child2[1] /nosym;

/* reallocate child arrays to right size */
call dynamic_array(child1,n);
call dynamic_array(child2,n);

/* read segment 1 from parent 1 into child1 */
call ReadParent(selected, 1, 1, child1);

Defining User Genetic Operators F 127

/* read segment 1 from parent 2 into child2 */
call ReadParent(selected, 1, 2, child2);

/* swap the odd elements in the solution */
do i = 1 to n by 2;

temp = child1[i];
child1[i] = child2[i];
child2[i] = temp;

end;

/* write offspring out to selected children */
call WriteChild(selected, 1, 1, child1);
call WriteChild(selected, 1, 2, child2);

endsub;

/* designate swapodd as the crossover routine */
call SetCrossRoutine('swapodd');

The next sample program illustrates a crossover routine that might be used for multisegment mixed integer
and sequence encoding. The subroutine uses the standard Simple crossover operator for the integer segment,
and the Pmatch operator for the sequence-encoded segment.

/* Solution has 2 segments, integer I5 and sequence S5 */
call SetEncoding('I5S5');

/* alpha parameter for Simple crossover operator */
alpha = 1;

subroutine mixedIS(selected[*], alpha);

/* execute simple operator on segment 1 */
call Cross(selected, 1, 'Simple', alpha);

/* execute pmatch operator on segment 2 */
call Cross(selected, 2, 'Pmatch');

endsub;

call SetCrossRoutine('mixedIS');

For a mutation subroutine, use a ReadMember call to obtain the elements of the solution selected to be
mutated, and use a WriteMember call to write the mutated elements back to the solution. For example, the
following statements define a mutation subroutine that swaps two adjacent elements at a randomly chosen
position in a sequence:

/* Solution has 1 segment, sequence S10 */
call SetEncoding('S10');

n = 10;

subroutine swap2(selected[*], n);

128 F Chapter 4: The GA Procedure

/* declare an array for working memory */
array member[1] /nosym;

/* allocate array to required length */
call dynamic_array(member, n);

/* read segment 1 of selected member into array */
call ReadMember(selected,1,member);

/* generate random number between 0 and 1 */
r = rand('uniform');

/* convert r to integer between 1 and n-1 */
i = int(r * (n - 1)) + 1;

/* swap element values */
temp = member[i];
member[i] = member[i+1];
member[i+1] = temp;

/* write result back out to solution */
call WriteMember(selected,1,member);

endsub;

/* Set the mutation routine to swap2 */
call SetMutRoutine('swap2');

Defining a User Update Routine
The GA procedure enables you to define a routine that is to be called at each generation in the optimization
process, after the designated objective function has been evaluated for each solution, before the selection
process takes place. Some of the tasks that can be handled with an update routine include evaluating global
solution fitness criteria, logging intermediate optimization progress, evaluating termination criteria and
stopping the optimization, modifying the properties of the genetic operators to intensify or diversify the
search process, or even to reinitialize portions of the solution population. You can designate a user update
function with the call

call SetUpdateRoutine(‘name’);

where name is the name of the routine you have defined.

The parameters defined for the update routine must correspond to variables of the same name established in
the global portion of your procedure input. If you desire to update a parameter and have that update retained
across generations, that parameter must also be declared in an OUTARGS statement in the update routine
definition. The following program snippet illustrates how a user might specify an update routine that monitors
the best objective value at each generation and terminates the optimization when no improvement is seen
after a specified number of iterations.

Defining a User Update Routine F 129

subroutine no_improvement_terminator(iteration,
saved_value,
nsame,
same_limit,
populationSize);

outargs iteration, saved_value, nsame;

array objValues[1] /nosym;

/* dynamically allocate array to fit populationSize */
call dynamic_array(objValues, populationSize);

/* read in current objective values */
call GetObjValues(objValues, populationSize);

/* find best value */
current_best = objValues[1];
do i = 2 to populationSize;

/* for a minimization problem, use < here */
if(objValues[i] > current_best) then

current_best = objValues[i];
end;

if iteration > 0 then do;
/* for a minimization problem, use < here */
if current_best > saved_value then do;

/* reset same value counter */
nsame = 1;
saved_value = current_best;

end;
else do;

/* increment same value counter */
nsame = nsame + 1;
/* if counter equals limit, then make this the last generation */
if nsame >= same_limit then

call ContinueFor(0);
end;

end;
else do;

saved_value = current_best;
nsame = 1;

end;

iteration = iteration + 1;

endsub;

iteration = 0;
saved_value = 0;
nsame = 0;
/* terminate when no improvement after 30 generations */
same_limit = 30;
populationSize = 100;
call SetUpdateRoutine('no_improvement_terminator');

130 F Chapter 4: The GA Procedure

From within a user update routine you can use a GetObjValues call to get the current solution objective
values, a GetSolutions call to get the current solution population, an UpdateSolutions call to reset solution
values, a ReEvaluate call to recompute objective values, or an Initialize call to reinitialize and resize the
solution population.

Defining an Objective Function
The GA procedure enables you to specify your objective to be optimized with a function you create, or as
a standard objective function that the GA procedure provides. Currently the only standard objective you
can specify without writing an objective function is the traveling salesman problem, which can be specified
with a SetObj call. In the future, other objective functions will be added. You can designate a user objective
function with the call

call SetObjFunc(‘name’, minmax);

where name is the name of the function you have defined, and minmax is set to 0 to specify a minimum or 1
to specify a maximum.

A user objective function must have a numeric array as its first parameter. When the GA procedure calls your
function, it passes an array in the first parameter that specifies the selected solution, which is referred to as the
selection parameter. The selection parameter must not be altered in any way by your function. Your function
should pass the selection parameter to a ReadMember call to read the elements of the selected solution into
an array. Your function can then access this array to compute an objective value, which it must return. As
with the genetic operator routines, you can define additional arguments to your objective function, and the
GA procedure passes in variables with corresponding names that you have created in your global program.
For example, the following statements set up an objective function that minimizes the sum of the squares of
the solution elements:

call SetEncoding('R5');

n = 5;

function sumsq(selected[*], n);

/* set up a scratch array to hold solution elements */
array x[1] /nosym;

/* allocate x to hold all solution elements */
call dynamic_array(x, n);

/* read members of the selected solution into x */
call ReadMember(selected, 1, x);

/* compute the sum of the squares */
sum = 0;
do i = 1 to n;

sq = x[i] * x[i];
sum = sum + sq;

end;

Defining a User Initialization Routine F 131

/* return the objective value */
return(sum);

endsub;

call SetObjFunc('sumsq', 0);

In this example, the function SUMSQ is defined, and the SetObjFunc call establishes it as the objective function.
The 0 for the second parameter of the SetObjFunc call indicates that the objective should be minimized. Note
that the second parameter to the SUMSQ function, n, is defined in the procedure, and the value assigned to it
there is passed into the function.

Defining a User Initialization Routine
For problems with simple constant bounds or simple sequencing problems it is not necessary to define a user
initialization subroutine; simply specify ‘DEFAULT’ in the Initialize call. Defining a routine is necessary
only if you need to satisfy more complicated constraints or apply some initial heuristics or local optimizations.
A user initialization routine is specified with an Initialize call, as follows:

call Initialize(‘name’, size);

where name is the name of your initialize routine. The first parameter of the subroutine you define must be a
numeric array. When the GA procedure calls your subroutine, it passes information in the first parameter,
referred to as the selection parameter, which designates the member selected for initialization. Your subroutine
should generate one solution and write the values of the solution elements with a WriteMember call, using the
selection parameter passed to your subroutine. The random number functions from BASE SAS are available
to your subroutine, if needed. You can define as many other parameters to your subroutine as you need; they
are filled in with values from variables of the same name created in your global program. The array used to
write the generated solution to the population must be numeric and declared with the /NOSYMBOLS option,
as well as any arrays passed as parameters into your subroutine.

The following sample statements illustrate how to define an initialization routine. The feasible region is a
triangle with vertices (0,0), (0,1) and (1,1).

call SetEncoding('R2');

/* set vertices of triangle (0,0), (0,1), and (1,1) */
array vertex1[2] /nosym (0,0);
array vertex2[2] /nosym (0,1);
array vertex3[2] /nosym (1,1);

subroutine triangle(selected[*], vertex1[2], vertex2[2], vertex3[2]);

array x[2] /nosym;

/* select 3 random numbers 0 < r < 1 */
r1 = rand('uniform');
r2 = rand('uniform');
r3 = rand('uniform');

/* normalize so r1 + r2 + r3 = 1 */
sumr = r1 + r2 + r3;

132 F Chapter 4: The GA Procedure

r1 = r1 / sumr;
r2 = r2 / sumr;
r3 = r3 / sumr;

/* form a convex combination of vertices in x */
do i = 1 to 2;

x[i] = r1 * vertex1[i] + r2 * vertex2[i] + r3 * vertex3[i];
end;

/* write x out to the selected population member, to segment 1 */
call WriteMember(selected, 1, x);
endsub;

[other programming statements]

call Initialize('triangle',100);

In this example, the triangle initialization subroutine generates a solution that is a random convex combination
of three points, which places it in the interior of the triangular region defined by the points. Note the use of
the BASE SAS RAND() function to get random numbers uniformly distributed between 0 and 1. The random
numbers are then normalized so that their sum is 1. In the loop, they are used to compute a convex linear
combination of the vertices, and the WriteMember call writes the solution to the selected population member.
The encoding specified a single segment, so the WriteMember call specifies segment 1 as the target. When
the GA procedure executes the Initialize call, it executes the triangle routine 100 times, once for each member
of the initial population.

Specifying the Selection Strategy
There are a number of different strategies that can employed to select the most fit solutions from a population
to be propagated into the next solution generation. Regardless of the strategy chosen, the user must try set the
selection properties to maintain a productive balance between selection pressure and preservation of diversity.
Enough selective pressure must be maintained to drive the algorithm toward an optimum in a reasonable
time, but too much selective pressure will eliminate the diversity of the population too quickly and lead to
premature convergence to a suboptimal solution. One effective technique is to start the optimization process
at a lower selective pressure, and increase it as the optimization continues. You can easily do this in the GA
procedure by modifying the selection strategy with a SetProperty call inside an update routine. A description
of the selection strategies and their properties follows.

Tournament Selector

This selector has one property, size. The selector repeats the following process until the next generation of
solutions has been specified: randomly choose a small subset of the current population, and then select the
most fit from that subset. The selection pressure is controlled by the size of the subset chosen, specified by
the size property. Tournament sizes from 2 to 10 have been successfully applied to various genetic algorithm
optimizations, with sizes over 4 or 5 considered to represent strong selective pressure. If the size property is
not set by the user, it defaults to a value of 2. The Duel selector is a modification of this selector that permits
further lowering of selection pressure.

Incorporating Heuristics and Local Optimizations F 133

With this selector the objective value is normally used to compare the fitness of competing solutions, with
better objective values corresponding to higher fitness. However, there are techniques for multiple objective
optimization and constraint handling that use more complicated criteria than just the objective value. See the
section “Optimizing Multiple Objectives” on page 135 for further discussion of this topic. You can set your
own fitness comparison routine to implement those techniques with the SetCompareRoutine call, and that
routine will be used by the tournament selector to compare solution fitness. For a simple single-objective
problem you normally do not need to specify a special fitness comparison routine, unless have a secondary
objective you might want to use to break a tie.

Duel Selector

This selector has one property, bprob. It operates in the same manner as the Tournament selector with
tournament size 2, except it permits you to reduce selection pressure further by specifying a probability,
bprob, for selecting the most fit solution from the pair. The bprob property is assigned a default value of
0.8, but you can change it to a value between 0.5 (corresponding to pure random selection) and 1. By default,
solution fitness is compared by comparing the solution objective values. However, you can also set your own
fitness comparison routine with the SetCompareRoutine call. See the tournament selector for a discussion of
when you would need to specify a special fitness comparison routine.

Incorporating Heuristics and Local Optimizations
It is often effective to combine the genetic algorithm technique and other local optimizations or heuristic
improvements. This can be done within the GA procedure by incorporating a local optimization into a user
objective function and returning an improved objective value. Either your user objective function can replace
the original solution with the optimized one, or you can leave the solution unchanged, replacing it with the
optimized one only at the final iteration.

Replacing the original solution with the locally optimized one speeds convergence, but it also increases the
risk of converging prematurely. If you choose to do so, you can modify the solution by writing the changed
solution back to the population with a WriteMember call. You could also consider replacing the original
solution with some probability p. For some problems, values of p from 0.05 to 0.15 have been shown to
significantly improve convergence while avoiding premature convergence to a local optimum. This technique
is illustrated in Example 4.1.

Handling Constraints
Practical optimization problems usually involve constraints, which can make the problems harder to solve.
Constraints are handled in genetic algorithms in several ways.

Encoding Strategy

The simplest approach is to set the problem encoding, genetic operators, and initialization such that the
constraints are automatically satisfied. Fixed constant bounds are easily handled in this manner in the GA
procedure with the SetBounds call. The default initialization process and genetic operators provided by the
GA procedure automatically respect bounds specified in this manner. For some types of constraints, you
might be able to create a direct mapping from a constrained solution domain to a second domain with simple

134 F Chapter 4: The GA Procedure

constant bounds. You could then define your genetic operator to map the solution into the second domain,
apply one of the standard genetic operators, and then map the result back to the original domain.

If the problem contains equality constraints, you should try to transform the problem to eliminate the equality
constraints and reduce the number of variables. This strategy is opposite from what is usually done in
linear programming, where inequality constraints are turned into equality constraints by the addition of slack
variables.

Repair Strategy

If the constraints are more complex and cannot be easily satisfied automatically by the genetic operators, you
might be able to employ a repair strategy: check the solution and modify it to satisfy the constraints. The
check and repair can be done in a user genetic operator when the solution is generated, or it can be done in
the evaluation phase in a user objective function. Possible strategies for making a repair inside an objective
function include projecting the solution onto the constraint boundary; while inside a genetic operator you
might try adjusting an operator parameter until the constraint is satisfied. If you do the repair in the objective
function, you should compute the objective value after performing the repair. You can write the repaired
solution back out to the population with a WriteMember call from a user objective function or mutation
subroutine, and with a WriteChild call from within a crossover subroutine. Example 4.2 illustrates the use of
the repair strategy.

Penalty Strategy

Another technique is to permit solutions to violate constraints, but also to impose a fitness penalty that
causes the population to evolve toward satisfying constraints as well as optimizing the objective. One way of
employing this strategy is to simply add a penalty term to the objective function, but this approach should be
used with care, because it is not always obvious how to construct the penalty function in a way that does not
bias the optimization of the desired objective.

Direct Comparison Strategy

Using tournament selection opens another possibility for handling constraints. Define a fitness comparison
routine (designated in a SetCompareRoutine call) that employs the following logic:

1 If neither solution is feasible, choose the one closest to satisfying the constraints.

2 If one solution is feasible, and the other is not, choose the feasible one.

3 If both solutions are feasible, choose the one with the best objective value.

This strategy has the advantage that the objective function does not have to be calculated for infeasible
solutions. To implement this method, you need to provide a measure of constraint violation and compute it in
a user objective function; this value can be used in the first comparison step outlined previously. For linear
constraints, the GA procedure provides the EvaluateLC call for this purpose. The technique works best when
the solution space normally contains a significant number of solutions that satisfy the constraints. Otherwise
it is possible that a single feasible solution might quickly dominate the population. In such cases, a better
approach might be the following Bicriteria Comparison Strategy.

Optimizing Multiple Objectives F 135

Bicriteria Comparison Strategy

A variation of the direct comparison strategy that has proved effective in many applications is the multiobjec-
tive, bicriteria approach. This strategy involves adding a second objective function, which is the magnitude of
the constraint violation. Based on the original and constraint violation objective functions, a Pareto-optimal
set of solutions is evolved in the population, and the Pareto-optimal set is evolved toward zero constraint
violation. This technique is illustrated in Example 4.3. See the section “Optimizing Multiple Objectives” on
page 135 for a full discussion of Pareto optimality and how to apply this technique.

Optimizing Multiple Objectives
Many practical optimization problems involve more than one objective criteria, where the decision maker
needs to examine trade-offs between conflicting objectives. With traditional optimization methods, these
problems are often handled by aggregating multiple objectives into a single scalar objective, usually accom-
plished by some linear weighting of the multiple criteria. Other approaches involve turning objectives into
constraints. One disadvantage of this strategy is that many separate optimizations with different weighting
factors or constraints need to be performed to examine the trade-offs between different objectives. Genetic
algorithms enable you to attack multiobjective problems directly, in order to evolve a set of solutions in one
run of the optimization process instead of solving multiple separate problems.

This approach seeks to evolve the Pareto-optimal set: the set of solutions such that for each solution, all the
objective criteria cannot be simultaneously improved. This is expressed mathematically by the concept of
Pareto optimality. A Pareto-optimal set is the set of all nondominated solutions, according to the following
definition of dominated:

For an n-objective minimizing optimization problem, for each objective function fi , a solution p is dominated
by q if

fi .p/ � fi .q/ for all i D 1; : : : ; n and fj .p/ > fj .q/ for some j D 1; : : : ; n

The following is one strategy that can be employed in the GA procedure to evolve a set of Pareto-optimal
solutions to a multiobjective optimization problem:

user objective function: Define and specify a user objective function in a SetObjFunc call that computes
each of the objective criteria and stores the objective values in one single solution segment.

user update routine: Define and specify a user update routine in a SetUpdateRoutine call that examines
the entire solution population and marks those in the Pareto-optimal set. This can be done with the
MarkPareto call provided by the GA procedure. Also, set the elite parameter equal to the number of
Pareto-optimal solutions found.

selection criteria: Define a fitness comparison routine that favors the least dominated solutions, and
designate it in a SetCompareRoutine call. For selecting between two solutions when neither solution
dominates the other, your routine can check a secondary criterion to direct the search to the area of
ultimate interest.

The multiple objective values are recorded in one segment to enable the use of the MarkPareto call provided
by the GA procedure. Setting the elite selection parameter to the size of the Pareto-optimal set, in conjunction
with the comparison criteria, guarantees that the Pareto-optimal set in each generation is preserved to the
next.

136 F Chapter 4: The GA Procedure

The secondary comparison criterion can be used to ensure that the final Pareto-optimal set is distributed in the
area of ultimate interest. For example, for the Bicriteria Constraint Strategy described previously, the actual
area of interest is where there is zero constraint violation, which is the second objective. The secondary
comparison criterion in that case is to minimize the value of the constraint violation objective. After enough
iterations, the population should evolve to the point that the best solution to the bicriteria problem is also the
best solution to the original constrained problem, and the other Pareto-optimal solutions can be examined to
analyze the sensitivity of the optimum solution to the constraints. For other types of problems, you might
need to implement a more complicated secondary comparison criterion to avoid “crowding” of solutions
about some arbitrary point, and ensure the evolved Pareto-optimal set is distributed over a range of objective
values.

Examples: GA Procedure

Example 4.1: Traveling Salesman Problem with Local Optimization
This example illustrates the use of the GA procedure to solve a traveling salesman problem (TSP); it combines
a genetic algorithm with a local optimization strategy. The procedure finds the shortest tour of 20 locations
randomly oriented on a two-dimensional x-y plane, where 0 � x � 1 and 0 � y � 1. The location
coordinates are input in the following DATA step:

/* 20 random locations for a Traveling Salesman Problem */
data locations;

input x y;
datalines;

0.0333692 0.9925079
0.6020896 0.0168807
0.1532083 0.7020444
0.3181124 0.1469288
0.1878440 0.8679120
0.9786112 0.4925364
0.7918010 0.7943144
0.5145329 0.0363478
0.5500754 0.8324617
0.3893757 0.6635483
0.9641841 0.6400201
0.7718126 0.5463923
0.7549037 0.4584584
0.2837881 0.7733415
0.3308411 0.1974851
0.7977221 0.1193149
0.3221207 0.7930478
0.9201035 0.1186234
0.2397964 0.1448552
0.3967470 0.6716172
;

Example 4.1: Traveling Salesman Problem with Local Optimization F 137

First, the GA procedure is run with no local optimizations applied:

proc ga data1 = locations seed = 5554;
call SetEncoding('S20');
ncities = 20;
array distances[20,20] /nosym;
do i = 1 to 20;

do j = 1 to i;
distances[i,j] = sqrt((x[i] - x[j])**2 + (y[i] - y[j])**2);
distances[j,i] = distances[i,j];

end;
end;
call SetObj('TSP',0,'distances', distances);
call SetCross('Order');
call SetMut('Invert');
call SetMutProb(0.05);
call SetCrossProb(0.8);
call SetElite(1);
call Initialize('DEFAULT',200);
call ContinueFor(140);

run;

The PROC GA statement uses a DATA1= option to get the contents of the locations data set, which creates
array variables x and y from the corresponding fields of the data set. A solution will be represented as a
circular tour, modeled as a 20-element sequence of locations, which is set up with the SetEncoding call. The
array variable distances is created, and the loop initializes distances from the x and y location coordinates
such that distancesŒi; j � is the Euclidean distance between location i and j. Next, the SetObj call specifies
that the GA procedure use the included TSP objective function with the distances array. Then, the genetic
operators are specified, with SetCross for the crossover operator and SetMut for the mutation operator. Since
the crossover probability and mutation probability are not explicitly set in this example, the default values of
1 and 0.05, respectively, are used. The selection parameters are not explicitly set (with SetSel and SetElite
calls), so by default, a tournament of size 2 is used, and an elite parameter of 1 is used. Next, the Initialize
call specifies default initialization (random sequences) and a population size of 100. The ContinueFor call
specifies a run of 220 iterations. This value is a result of experimentation, after it was determined that the
solution did not improve with more iterations. The output of this run of PROC GA is given in Output 4.1.1.

Output 4.1.1 Simple Traveling Salesman Problem

PROC GA Optimum ValuesPROC GA Optimum Values

Objective

3.7465311323

138 F Chapter 4: The GA Procedure

Output 4.1.1 continued

Solution

Element Value

1 12

2 13

3 18

4 16

5 2

6 8

7 15

8 4

9 19

10 3

11 1

12 5

13 14

14 17

15 10

16 20

17 9

18 7

19 11

20 6

The following program illustrates how the problem can be solved in fewer iterations by employing a local
optimization. Inside the user objective function, before computing the objective value, every adjacent
pair of cities in the tour is checked to determine if reversing the pair order would improve the objective
value. For a pair of locations Si and SiC1, this means comparing the distance traversed by the subsequence
fSi�1; Si ; SiC1; SiC2g to the distance traversed by the subsequence fSi�1; SiC1; Si ; SiC2g, with appropriate
wrap-around at the endpoints of the sequence. If the distance for the swapped pair is smaller than the original
pair, then the reversal is done, and the improved solution is written back to the population.

proc ga data1 = locations seed = 5554;
call SetEncoding('S20');
ncities = 20;
array distances[20,20] /nosym;
do i = 1 to 20;

do j = 1 to i;
distances[i,j] = sqrt((x[i] - x[j])**2 + (y[i] - y[j])**2);
distances[j,i] = distances[i,j];

end;
end;
/* Objective function with local optimization */
function TSPSwap(selected[*],ncities,distances[*,*]);
array s[1] /nosym;
call dynamic_array(s,ncities);
call ReadMember(selected,1,s);

Example 4.1: Traveling Salesman Problem with Local Optimization F 139

/* First try to improve solution by swapping adjacent cities */
do i = 1 to ncities;

city1 = s[i];
inext = 1 + mod(i,ncities);
city2 = s[inext];
if i=1 then

before = s[ncities];
else

before = s[i-1];
after = s[1 + mod(inext,ncities)];

if (distances[before,city1]+distances[city2,after]) >
(distances[before,city2]+distances[city1,after]) then do;
s[i] = city2;
s[inext] = city1;

end;
end;
call WriteMember(selected,1,s);
/* Now compute distance of tour */
distance = distances[s[ncities],s[1]];
do i = 1 to (ncities - 1);

distance + distances[s[i],s[i+1]];
end;
return(distance);
endsub;
call SetObjFunc('TSPSwap',0);
call SetCross('Order');
call SetMut('Invert');
call SetMutProb(0.05);
call SetCrossProb(0.8);
call SetElite(1);
call Initialize('DEFAULT',200);
call ContinueFor(35);

run;

The output after 85 iterations is given in Output 4.1.2.

Output 4.1.2 Traveling Salesman Problem with Local Optimization

PROC GA Optimum ValuesPROC GA Optimum Values

Objective

3.7465311323

140 F Chapter 4: The GA Procedure

Output 4.1.2 continued

Solution

Element Value

1 13

2 18

3 16

4 2

5 8

6 15

7 4

8 19

9 3

10 1

11 5

12 14

13 17

14 10

15 20

16 9

17 7

18 11

19 6

20 12

Since all tours are circular, the actual starting point does not matter, and this solution is equivalent to that
reached with the simple approach without local optimization. It is reached after only 85 iterations, versus
220 with the simple approach.

NOTE: For an example of how to use PROC OPTNET to solve the TSP, see the “Examples” section in
Chapter 2, “The OPTNET Procedure” (SAS/OR User’s Guide: Network Optimization Algorithms).

Example 4.2: Nonlinear Objective with Constraints Using Repair Mechanism
This example illustrates the use of a repair mechanism to satisfy problem constraints. The problem is to
minimize the six-hump camel-back function (Michalewicz 1996, Appendix B):

f .x/ D

4 � 2:1x2

1 C
x4

1

3

!
x2

1 C x1x2 C
�
�4C 4x2

2

�
x2

2

where x is within the triangle with vertices V1 D .�2; 0/, V2 D .0; 2/, and V3 D .2;�2/. The problem
formulation takes advantage of the fact that all feasible solutions can be expressed as a convex combination
of V1, V2, and V3 in the following form:

x D aV1 C bV2 C cV3

In this form, a, b, and c are nonnegative coefficients and satisfy the following linear equality constraint:

aC b C c D 1

Example 4.2: Nonlinear Objective with Constraints Using Repair Mechanism F 141

Therefore, the solution encoding ‘R3’ is used with the three elements corresponding to the values of a, b, and
c. Note that this strategy can be generalized to any solution domain that can be specified by a convex hull.
An additional ‘R2’ segment is also created to store the corresponding x value. In the following program,
FUNCTION SIXHUMP computes the objective value. Lower and upper bounds of 0 and 1, respectively,
are used to ensure that solution elements are nonnegative. Violations of the linear equality constraint are fixed
by a simple repair strategy, implemented in FUNCTION SIXHUMP: the sum of the solution elements is
computed, and each element is divided by the sum, so that the sum of the new elements is 1. For the special
case of all elements equal to 0, equal values are assigned to the solution elements.

proc ga seed = 555;
call SetEncoding('R3R2');
npoints = 3;
array cvxhull[3,2] /nosym (-2 0

0 2
2 -2);

/* Objective function */
function sixhump(selected[*],cvxhull[*,*],npoints);

/* Function has global minimum value of -1.0316

* at x = {-0.0898 0.7126} and

* x = { 0.0898 -0.7126}

*/
array w[1] /nosym;
call dynamic_array(w,npoints);
array x[2] /nosym;
call ReadMember(selected,1,w);
/* make sure that weights add up to 1 */
sum = 0;
do i = 1 to npoints;

sum + w[i];
end;
/* if all weights 0, then reinitialize */
if sum=0 then do;

sum = npoints;
do i = 1 to npoints;

w[i] = 1;
end;

end;
/* re-normalize weights */
do i = 1 to npoints;

w[i] = w[i] / sum;
end;
call WriteMember(selected,1,w);
/* convert weights to x-coordinate form */
x[1] = 0;
x[2] = 0;
do i = 1 to npoints;

x[1] + w[i] * cvxhull[i,1];
x[2] + w[i] * cvxhull[i,2];

end;
/* write out x coordinates to second segment */
call WriteMember(selected,2,x);
/* compute objective value */
r = (4 - 2.1*x[1]**2 + x[1]**4/3)*x[1]**2 + x[1]*x[2] +

142 F Chapter 4: The GA Procedure

(-4 + 4*x[2]**2)*x[2]**2;
return(r);

endsub;
call SetObjFunc('sixhump',0);
array lower[1] /nosym;
array upper[1] /nosym;
call dynamic_array(lower, npoints);
call dynamic_array(upper, npoints);
do i = 1 to npoints;

lower[i] = 0;
upper[i] = 1;

end;
call SetBounds(lower, upper, 1);
array delta[3] /nosym (0.01 0.01 0.01);
call SetMut('delta', 'nchange', 1, 'delta', delta);
call SetMutProb(0.05);
call SetCross('Twopoint', 'alpha', 0.9);
call SetCrossProb(0.8);
call SetSel('tournament', 'size', 2);
call SetElite(3);
call Initialize('DEFAULT', 200);
call ContinueFor(200);
run;

Note that this problem uses the standard genetic operators and default initialization, even though they generate
solutions that violate the constraints. This is possible because all solutions are passed into the user objective
function for evaluation, where they are repaired to fit the constraints. The output is shown in Output 4.2.1.

Output 4.2.1 Nonlinear Objective with Constraints Using Repair Mechanism

PROC GA Optimum ValuesPROC GA Optimum Values

Objective

-1.031617314

Solution

Segment Element Value

1 1 0.2439660392

1 2 0.5561415112

1 3 0.1998924497

2 1 -0.088147179

2 2 0.712498123

This objective function has a global minimum at �1:0316, at two different points: .x1; x2/ D

.�0:0898; 0:7126/ and .x1; x2/ D .0:0898;�0:7126/. The genetic algorithm can converge to either of
these minima, depending on the random number seed set by the SEED= option.

Example 4.3: Quadratic Objective with Linear Constraints, Using Bicriteria Approach F 143

Example 4.3: Quadratic Objective with Linear Constraints, Using Bicriteria
Approach

This example (Floudas and Pardalos 1992) illustrates the bicriteria approach to handling constraints. The
problem has nine linear constraints and a quadratic objective function.

Minimize

f .x/ D 5

4X
iD1

xi � 5

4X
iD1

x2
i �

13X
iD5

xi

subject to

2x1 C 2x2 C x10 C x11 � 10

2x1 C 2x3 C x10 C x12 � 10

2x1 C 2x3 C x11 C x12 � 10

�8x1 C x10 � 0

�8x2 C x11 � 0

�8x3 C x12 � 0

�2x4 � x5 C x10 � 0

�2x6 � x7 C x11 � 0

�2x8 � x9 C x12 � 0

and

0 � xi � 1; i D 1; 2; : : : ; 9

0 � xi � 100; i D 10; 11; 12

0 � x13 � 1

In this example, the linear constraint coefficients are specified in the SAS data set lincon and passed to the
GA procedure with the MATRIX1= option. The upper and lower bounds are specified in the bounds data set
specified with a DATA1= option, which creates the array variables upper and lower, matching the variables
in the data set.

/* Input linear constraint matrix */
data lincon;

input A1-A13 b;
datalines;

2 2 0 0 0 0 0 0 0 1 1 0 0 10
2 0 2 0 0 0 0 0 0 1 0 1 0 10
2 0 2 0 0 0 0 0 0 0 1 1 0 10

-8 0 0 0 0 0 0 0 0 1 0 0 0 0
0 -8 0 0 0 0 0 0 0 0 1 0 0 0
0 0 -8 0 0 0 0 0 0 0 0 1 0 0
0 0 0 -2 -1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 -2 -1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 -2 -1 0 0 1 0 0

;

/* Input lower and upper bounds */
data bounds;

144 F Chapter 4: The GA Procedure

input lower upper;
datalines;

0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
0 100
0 100
0 100
0 1
;

proc ga lastgen = out matrix1 = lincon seed = 555555
data1 = bounds novalidate = 3;

Note also that the LASTGEN= option is used to designate a data set to store the final solution generation.

In the following statements, the solution encoding is specified, and a user function is defined and designated
as the objective function.

call SetEncoding('R13R3');
nvar = 13;
ncon = 9;
function quad(selected[*], matrix1[*,*], nvar, ncon);

array x[1] /nosym;

array r[3] /nosym;

array violations[1] /nosym;

call dynamic_array(x, nvar);

call dynamic_array(violations, ncon);

call ReadMember(selected,1,x);

sum1 = 0;

do i = 1 to 4;

sum1 + x[i] - x[i] * x[i];

end;

sum2 = 0;

do i = 5 to 13;

sum2 + x[i];

Example 4.3: Quadratic Objective with Linear Constraints, Using Bicriteria Approach F 145

end;

obj = 5 * sum1 - sum2;

call EvaluateLC(matrix1,violations,sumvio,selected,1);

r[1] = obj;

r[2] = sumvio;

call WriteMember(selected,2,r);

return(obj);

endsub;

call SetObjFunc('quad',0);

The SetEncoding call specifies two real-valued segments. The first segment, R13, holds the 13 variables, and
the second segment, R3, holds the two objective criteria and the marker for Pareto optimality. As described
in the section “Defining an Objective Function” on page 130, the first parameter of the objective function
is a numeric array that designates which member of the solution population is to be evaluated. When the
quad function is called by the GA procedure during the optimization process, the matrix1, nvar, and ncon
parameters receive the values of the corresponding global variables; nvar is set to the number of variables,
and ncon is set to the number of linear constraints. The function computes the original objective as the first
objective criterion, and the magnitude of constraint violation as the second. With the first dynamic_array call,
it allocates a working array, x, large enough to hold the number of variables, and a second array, violations,
large enough to tabulate each constraint violation. The ReadMember call fills x with the elements of the
first segment of the solution, and then the function computes the original objective f .x/. The EvaluateLC
call is used to compute the linear constraint violation. The objective and sum of the constraint violations
are then stored in the array r, and written back to the second segment of the solution with the WriteMember
call. Note that the third element of r is not modified, because that element of the segment is used to store the
Pareto-optimality mark, which cannot be determined until all the solutions have been evaluated.

Next, a user routine is defined and designated to be an update routine. This routine is called once at each
iteration, after all the solutions have been evaluated with the quad function. The following program illustrates
this:

subroutine update(popsize);

/* find pareto-optimal set */

array minmax[3] /nosym (-1 -1 0);

array results[1,1] /nosym;

array scratch[1] /nosym;

call dynamic_array(scratch, popsize);

call dynamic_array(results,popsize,3);

146 F Chapter 4: The GA Procedure

/* read original and constraint objectives, stored in

* solution segment 2, into array */

call GetSolutions(results,popsize,2);

/* mark the pareto-optimal set */

call MarkPareto(scratch, npareto,results, minmax);

/* transfer the results to the solution segment */

do i = 1 to popsize;

results[i,3] = scratch[i];

end;

/* write updated segment 2 back into solution population */

call UpdateSolutions(results,popsize,2);

/* Set Elite parameter to preserve the first 15 pareto-optimal

* solutions */

if npareto < 16 then

call SetElite(npareto);

else

call SetElite(15);

endsub;

call SetUpdateRoutine('update');

This subroutine has one parameter, popsize, defined within the GA procedure, which is expected to be the
population size. The working arrays results, scratch, and minmax are declared. The minmax array is to be
passed to a MarkPareto call, and is initialized to specify that the first two elements (the original objective
and constraint violation) are to be minimized and the third element is not to be considered. The results and
scratch arrays are then dynamically allocated to the dimensions required by the population size.

Next, the results array is filled with the second segment of the solution population, with the GetSolutions
call. The minmax and results arrays are passed as inputs to the MarkPareto call, which returns the number of
Pareto optimal solutions in the npareto variable. The MarkPareto call also sets the elements of the scratch
array to 1 if the corresponding solution is Pareto-optimal, and to 0 otherwise. The next loop then records the
results in the scratch array in the third column of the results array, effectively marking the Pareto-optimal
solutions. The updated solution segments are written back to the population with the UpdateSolutions call.

The final step in the update routine is to set the elite selection parameter to guarantee the survival of at least a
minimum of 15 of the fittest (Pareto-optimal) solutions through the selection process.

Example 4.3: Quadratic Objective with Linear Constraints, Using Bicriteria Approach F 147

With the following statements, a routine is defined and designated as a fitness comparison routine with a
SetCompareRoutine call. This routine works in combination with the update routine to evolve the solution
population toward Pareto optimality and constraint satisfaction.

function paretocomp(selected[*]);

array member1[3] /nosym;

array member2[3] /nosym;

call ReadCompare(selected,2,1, member1);

call ReadCompare(selected,2,2, member2);

/* if one member is in the pareto-optimal set

* and the other is not, then it is the

* most fit */

if(member1[3] > member2[3]) then

return(1);

if(member2[3] > member1[3]) then

return(-1);

/* if both are in the pareto-optimal set, then

* the one with the lowest constraint violation

* is the most fit */

if(member1[3] = 1) then do;

if member1[2] <= member2[2] then

return(1);

return(-1);

end;

/* if neither is in the pareto-optimal set, then

* take the one that dominates the other */

if (member1[2] <= member2[2]) &

(member1[1] <= member2[1]) then

return(1);

148 F Chapter 4: The GA Procedure

if (member2[2] <= member1[2]) &

(member2[1] <= member1[1]) then

return(-1);

/* if neither dominates, then consider fitness to be

* the same */

return(0);

endsub;

call SetSel('tournament', 'size', 2);

call SetCompareRoutine('paretocomp');

The PARETOCOMP subroutine is called in the selection process to compare the fitness of two competing
solutions. The first parameter, selected, designates the two solutions to be compared.

The ReadCompare calls retrieve the second segments of the two solutions, where the objective criteria are
stored, and writes the segments into the member1 and member2 arrays. The logic that follows first checks
for the case where only one solution is Pareto optimal, and returns it. If both the solutions are Pareto optimal,
then the one with the smallest constraint violation is chosen. If neither solution is Pareto optimal, then the
dominant solution is chosen, if one exists. If neither solution is dominant, then no preference is indicated.
After the function is defined, it is designated as a fitness comparison routine with the SetCompareRoutine
call.

Next, subroutines are defined and designated as user crossover and mutation operators:

/* set up crossover parameters */

subroutine Cross1(selected[*], alpha);

call Cross(selected,1,'twopoint', alpha);

endsub;

call SetCrossRoutine('Cross1',2,2);

alpha = 0.5;

call SetCrossProb(0.8);

/* set up mutation parameters */

subroutine Mut1(selected[*], delta[*]);

call Mutate(selected,1,'delta',delta,1);

endsub;

Example 4.3: Quadratic Objective with Linear Constraints, Using Bicriteria Approach F 149

call SetMutRoutine('Mut1');

array delta[13] /nosym (.5 .5 .5 .5 .5 .5 .5 .5 .5 10 10 10 .1);

call SetMutProb(0.05);

These routines execute the standard genetic operators twopoint for crossover and delta for mutation; see the
section “Using Standard Genetic Operators and Objective Functions” on page 116 for a description of each.
The alpha and delta variables defined in the procedure are passed as parameters to the user operators, and the
crossover and mutation probabilities are set with the SetCrossProb and SetMutProb calls.

At this point, the GA procedure is directed to initialize the first population and begin the optimization process:

/* Initialize first population */

call SetBounds(lower, upper);

popsize = 100;

call Initialize('DEFAULT',popsize);

call ContinueFor(500);

run;

First, the upper and lower bounds are established with values in the lower and upper array variables, which
were set up by the DATA1= option in the PROC GA statement. The SetBounds call sets the bounds for the
first segment, which is the default if none is specified in the call. The desired population size of 100 is stored
in the popsize variable, so it will be passed to the update subroutine as the popsize parameter. The Initialize
call specifies the default initialization, which generates values randomly distributed between the lower and
upper bounds for the first encoding segment. Since no bounds were specified for the second segment, it is
filled with zeros. The ContinueFor call sets the requested number of iterations to 500, and the RUN statement
ends the GA procedure input and begins the optimization process. The output of the procedure is shown in
Output 4.3.1.

Output 4.3.1 Bicriteria Constraint Handling Example Output

Bicriteria Constraint Handling Example

PROC GA Optimum Values

Bicriteria Constraint Handling Example

PROC GA Optimum Values

Objective

-14.99871988

150 F Chapter 4: The GA Procedure

Output 4.3.1 continued

Solution

Segment Element Value

1 1 1

1 2 0.9999997423

1 3 0.9999991741

1 4 0.9999997454

1 5 0.9999982195

1 6 1

1 7 0.9999674484

1 8 0.9999961238

1 9 0.9999691145

1 10 2.9999914332

1 11 2.9999103023

1 12 2.9988939259

1 13 1

2 1 -14.99871988

2 2 0

2 3 1

The minimum value of f .x/ is �15 at x� D .1; 1; 1; 1; 1; 1; 1; 1; 1; 3; 3; 3; 1/.

References

Floudas, C. A., and Pardalos, P. M. (1992). Recent Advances in Global Optimization. Princeton, NJ: Princeton
University Press.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs. New York: Springer-
Verlag.

Subject Index

bicriteria comparison strategy, 135

choosing problem encoding, 83
constraints, 133

bicriteria comparison strategy, 135
direct comparison strategy, 134
encoding strategy, 133
penalty strategy, 134
repair strategy, 134

controlling selection process, 84
creating initial generation, 86
crossover operators, 116

defining
fitness comparison routine, 124
genetic operators, 126
initialization routine, 131
objective functions, 130
update routine, 128

direct comparison strategy, 134
duel selector, 133

encoding strategy, 133

fitness comparison routine
defining, 124

GA procedure
debugging options, 102
overview, 78
program statements, 101

genetic algorithms, 78
genetic operators, 116

defining, 126

heuristics, 133

initialization routine
defining, 131

initializing problem data, 81

local optimizations, 133

monitoring progress, 87
multiple objectives, 135
multisegment encoding, 115
mutation operators, 122

objective functions, 116, 124
defining, 130

overview
GA procedure, 78

penalty strategy, 134
program statements

GA procedure, 101

repair strategy, 134
reporting results, 87

selection strategy, 132
setting crossover parameters, 85
setting mutation parameters, 86
setting objective function, 84

tournament selector, 132

update routine
defining, 128

Syntax Index

ABORT statement
GA program statements, 101

DATAn= option
PROC GA statement, 91

DO statement
GA program statements, 101

FIRSTGEN= option
PROC GA statement, 91

GA procedure
ContinueFor Call, 92
Cross call, 93
dynamic_array, 93
EvaluateLC, 94
GetDimensions, 95
GetObjValues, 95
GetSolutions Call, 95
Initialize Call, 96
MarkPareto Call, 97
Mutate Call, 98
Objective Call, 99
PackBits Call, 100
PROC GA statement, 90
ReadChild Call, 102
ReadCompare Call, 103
ReadMember Call, 103
ReadParent Call, 104
ReEvaluate Call, 104
SetBounds Call, 105
SetCross Call, 105
SetCrossProb Call, 106
SetCrossRoutine Call, 107
SetElite Call, 107
SetEncoding Call, 107
SetFinalize Call, 108
SetMut Call, 108
SetMutProb Call, 109
SetMutRoutine Call, 105, 109
SetObj Call, 110
SetObjFunc Call, 110
SetProperty Call, 111
SetSel Call, 111
SetUpdateRoutine Call, 112
ShellSort Call, 112
Shuffle Call, 113
UnpackBits Function, 113
UpdateSolutions Call, 113

WriteChild Call, 114
WriteMember Call, 114

LASTGEN= option
PROC GA statement, 91

LIBRARY= option
PROC GA statement, 91

MATRIXn= option
PROC GA statement, 92

NITER= option
PROC GA statement, 92

NOVALIDATE= option
PROC GA statement, 92

NOVALIDATEWARNING= option
PROC GA statement, 92

OTHERWISE statement
GA program statements, 102

PROC GA statement, see GA procedure
statement options, 90

PUT statement
GA program statements, 102

SEED= option
PROC GA statement, 92

SELECT statement
GA program statements, 102

WHEN statement
GA program statements, 102

	The GA Procedure
	Overview: GA Procedure
	Getting Started: GA Procedure
	Initializing the Problem Data
	Choosing the Problem Encoding
	Setting the Objective Function
	Controlling the Selection Process
	Setting Crossover Parameters
	Setting Mutation Parameters
	Creating the Initial Generation
	Monitoring Progress and Reporting Results
	A Simple Example

	Syntax: GA Procedure
	PROC GA Statement
	ContinueFor Call
	Cross Call
	Dynamic_array Call
	EvaluateLC Call
	GetDimensions Call
	GetObjValues Call
	GetSolutions Call
	Initialize Call
	MarkPareto Call
	Mutate Call
	Objective Function
	PackBits Call
	Programming Statements
	ReadChild Call
	ReadCompare Call
	ReadMember Call
	ReadParent Call
	ReEvaluate Call
	SetBounds Call
	SetCompareRoutine Call
	SetCross Call
	SetCrossProb Call
	SetCrossRoutine Call
	SetElite Call
	SetEncoding Call
	SetFinalize Call
	SetMut Call
	SetMutProb Call
	SetMutRoutine Call
	SetObj Call
	SetObjFunc Call
	SetProperty Call
	SetSel Call
	SetUpdateRoutine Call
	ShellSort Call
	Shuffle Call
	UnpackBits Function
	UpdateSolutions Call
	WriteChild Call
	WriteMember Call

	Details: GA Procedure
	Using Multisegment Encoding
	Using Standard Genetic Operators and Objective Functions
	Defining a User Fitness Comparison Routine
	Defining User Genetic Operators
	Defining a User Update Routine
	Defining an Objective Function
	Defining a User Initialization Routine
	Specifying the Selection Strategy
	Incorporating Heuristics and Local Optimizations
	Handling Constraints
	Optimizing Multiple Objectives

	Examples: GA Procedure
	Example 4.1: Traveling Salesman Problem with Local Optimization
	Example 4.2: Nonlinear Objective with Constraints Using Repair Mechanism
	Example 4.3: Quadratic Objective with Linear Constraints, Using Bicriteria Approach

	References

	Subject Index
	Syntax Index

