I ——
6sas

SAS/OR" 13.2 User’s Guide:
Mathematical Programming
Legacy Procedures

The NLP Procedure

This document is an individual chapter from SAS/OR® 13.2 User’s Guide: Mathematical Programming Legacy Procedures.

The correct bibliographic citation for the complete manual is as follows: SAS Institute Inc. 2014. SAS/OR® 13.2 User’s Guide:
Mathematical Programming Legacy Procedures. Cary, NC: SAS Institute Inc.

Copyright © 2014, SAS Institute Inc., Cary, NC, USA
All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute
Inc.

For a Web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time
you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is
illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic
piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software
developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication or
disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as
applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a) and DFAR 227.7202-4 and, to the extent required under U.S.
federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision
serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The
Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
August 2014

SAS provides a complete selection of books and electronic products to help customers use SAS® software to its fullest potential. For
more information about our offerings, visit support.sas.com/bookstore or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Gain Greater Insight into Your
SAS® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.

@ support.sas.com/bookstore §Sas
(€ D)

for additional books and resources. THE POWER TO KNOW.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies. © 2013 SAS Institute Inc. All rights reserved. S107969US.0613

Chapter 7

The NLP Procedure

Contents
Overview: NLP Procedure i 544
Getting Started: NLP Procedure 546
Introductory Examples 546
Syntax: NLP Procedure 556
Functional Summary L 556
PROCNLP Statement i ittt 559
ARRAY Statement e e e e 577
BOUNDS Statement ittt e e e e e e e e 578
BY Statement e 578
CRPJAC Statement et e e e e e 579
DECVAR Statement 0 e e e e e e 580
GRADIENT Statement o v it e e e e e e e 580
HESSIAN Statement ot e e e 581
INCLUDE Statement ittt ettt e e e e 581
JACNLC Statement oo ittt e e e e 582
JACOBIAN Statement ittt et 582
LABEL Statement e e e 583
LINCON Statement v v v vt e ettt e e e e 584
MATRIX Statement o e e e e e e 584
MIN, MAX, and LSQ Statements 586
MINQUAD and MAXQUAD Statements 586
NLINCON Statement oo v v vt et ettt e e e e 588
PROFILE Statement ittt et e 589
Program Statementso 590
Details: NLP Procedure e 594
Criteria for Optimality 594
Optimization Algorithms 597
Finite-Difference Approximations of Derivatives 607
Hessian and CRP Jacobian Scaling 609
Testing the Gradient Specification 609
Termination Criteria 610
Active Set Methods oL 611
Feasible Starting Pointo 613
Line-Search Methods e 613
Restricting the Step Length 614
Computational Problems 0 L o 615

544 4 Chapter 7: The NLP Procedure

Covariance MatriX it e e 618
Inputand Output Data Sets e 621
Displayed Output. L 629
Missing Values 631
Computational Resources L 632
Memory Limit 634
Rewriting NLP Models for PROC OPTMODEL 634
Examples: NLP Procedure 642
Example 7.1: Usingthe DATA=Option. 642
Example 7.2: Using the INQUAD=Option 644
Example 7.3: Using the INEST=Option 645
Example 7.4: Restarting an Optimization 647
Example 7.5: Approximate Standard Errors oL oL 648
Example 7.6: Maximum Likelihood Weibull Estimation 653
Example 7.7: Simple Pooling Problem 660
Example 7.8: Chemical Equilibrium 669
Example 7.9: Minimize Total Delay ina Network 675
References 680

Overview: NLP Procedure

The NLP (nonlinear programming) procedure offers a set of optimization techniques for minimizing or
maximizing a continuous nonlinear function f(x) of n decision variables, x = (x1,...,x,)T with lower
and upper bound, linear and nonlinear, equality and inequality constraints. This can be expressed as solving

minxenn f(x)

subject to ¢;(x) =0, i=1,...,m,
ci(x) >0, i=me+1,....m
l,-fx,-fu,-, i=1,...,n

where f is the objective function, the ¢;’s are the nonlinear functions, and the /;’s and u;’s are the lower and
upper bounds. Problems of this type are found in many settings ranging from optimal control to maximum
likelihood estimation.

The NLP procedure provides a number of algorithms for solving this problem that take advantage of a special
structure on the objective function and constraints. One example is the quadratic programming problem,

min (max) f(x) = %xTGx +glx+b
subject to ¢j(x) =0, i=1,...,me

where G is an n X n symmetric matrix, g = (g1, ..., gn)T is a vector, b is a scalar, and the ¢; (x)’s are linear
functions.

Another example is the least squares problem:

min f) =@+ + [P}

subject to ¢j(x) =0, i=1,...,me

Overview: NLP Procedure 4 545

where the ¢; (x)’s are linear functions, and f(x), ..., f;(x) are nonlinear functions of x.

The following problems are handled by PROC NLP:

* quadratic programming with an option for sparse problems
* unconstrained minimization/maximization
* constrained minimization/maximization

* linear complementarity problem
The following optimization techniques are supported in PROC NLP:

* Quadratic Active Set Technique

* Trust Region Method

* Newton-Raphson Method with Line Search
* Newton-Raphson Method with Ridging

¢ Quasi-Newton Methods

* Double Dogleg Method

* Conjugate Gradient Methods

* Nelder-Mead Simplex Method

* Levenberg-Marquardt Method

* Hybrid Quasi-Newton Methods
These optimization techniques require a continuous objective function f, and all but one (NMSIMP) require
continuous first-order derivatives of the objective function f. Some of the techniques also require continuous
second-order derivatives. There are three ways to compute derivatives in PROC NLP:

* analytically (using a special derivative compiler), the default method

* via finite-difference approximations

* via user-supplied exact or approximate numerical functions
Nonlinear programs can be input into the procedure in various ways. The objective, constraint, and derivative
functions are specified using the programming statements of PROC NLP. In addition, information in SAS

data sets can be used to define the structure of objectives and constraints as well as specify constants used in
objectives, constraints and derivatives.

PROC NLP uses data sets to input various pieces of information:

546 4 Chapter 7: The NLP Procedure

* The DATA= data set enables you to specify data shared by all functions involved in a least squares
problem.

* The INQUAD= data set contains the arrays appearing in a quadratic programming problem.

* The INEST= data set specifies initial values for the decision variables, the values of constants that are
referred to in the program statements, and simple boundary and general linear constraints.

* The MODEL-= data set specifies a model (functions, constraints, derivatives) saved at a previous
execution of the NLP procedure.

PROC NLP uses data sets to output various results:

e The OUTEST= data set saves the values of the decision variables, the derivatives, the solution, and the
covariance matrix at the solution.

* The OUT= output data set contains variables generated in the program statements defining the objective
function as well as selected variables of the DATA= input data set, if available.

* The OUTMODEL-= data set saves the programming statements. It can be used to input a model in the
MODEL-= input data set.

Getting Started: NLP Procedure

The NLP procedure solves general nonlinear programs. It has several optimizers that are tuned to best
perform on a particular class of problems. Guidelines for choosing a particular optimizer for a problem can
be found in the section “Optimization Algorithms” on page 597.

Regardless of the selected optimizer, it is necessary to specify an objective function and constraints that the
optimal solution must satisfy. In PROC NLP, the objective function and the constraints are specified using
SAS programming statements that are similar to those used in the SAS DATA step. Some of the differences
are discussed in the section ‘“Program Statements” on page 590 and in the section “ARRAY Statement” on
page 577. As with any programming language, there are many different ways to specify the same problem.
Some are more economical than others.

Introductory Examples

The following introductory examples illustrate how to get started using the NLP procedure.

An Unconstrained Problem

Consider the simple example of minimizing the Rosenbrock function (Rosenbrock 1960):

F) = 301000)2+ (1 - x)?)

= JUR@+ AL x =)

Introductory Examples 4 547

The minimum function value is f(x*) = 0 at x* = (1, 1). This problem does not have any constraints.

The following statements can be used to solve this problem:

proc nlp;

min f;

decvar x1 x2;

fl = 10 » (x2 - x1 *x x1);

f2 = 1 - x1;

£f = .5 % (f1 ~ £1 + £2 » £2);
run;

The MIN statement identifies the symbol £ that characterizes the objective function in terms of £1 and £2,
and the DECVAR statement names the decision variables x1 and x2. Because there is no explicit optimizing
algorithm option specified (TECH=), PROC NLP uses the Newton-Raphson method with ridging, the default
algorithm when there are no constraints.

A better way to solve this problem is to take advantage of the fact that f is a sum of squares of f; and f>
and to treat it as a least squares problem. Using the LSQ statement instead of the MIN statement tells the
procedure that this is a least squares problem, which results in the use of one of the specialized algorithms
for solving least squares problems (for example, Levenberg-Marquardt).

proc nlp;
1sq f1 £2;
decvar x1 x2;
fl = 10 » (x2 - x1 *x x1);
f2 = 1 - x1;
run;

The LSQ statement results in the minimization of a function that is the sum of squares of functions that
appear in the LSQ statement. The least squares specification is preferred because it enables the procedure to
exploit the structure in the problem for numerical stability and performance.

PROC NLP displays the iteration history and the solution to this least squares problem as shown in Figure 7.1.
It shows that the solution has x; = 1 and x, = 1. As expected in an unconstrained problem, the gradient at
the solution is very close to 0.

Figure 7.1 Least Squares Minimization
PROC NLP: Least Squares Minimization
Levenberg-Marquardt Optimization

Scaling Update of More (1978)

Parameter Estimates 2
Functions (Observations) 2

Optimization Start
Active Constraints 0 Objective Function 0.5545849354
Max Abs Gradient Element 16.982372536 Radius 299.60285345

548 4 Chapter 7: The NLP Procedure

Figure 7.1 continued

Ratio

Between

Actual

Objective Max Abs and

Function Active Objective Function Gradient Predicted

Iteration Restarts Calls Constraints Function Change Element Lambda Change
1 0 2 0 0.04596 0.5086 6.0635 0 0.917

2 0 3 0 4.1662E-30 0.0460 2.89E-15 0 1.000

Optimization Results

Iterations 2 Function Calls 4
Jacobian Calls 3 Active Constraints 0
Objective Function 4.166172E-30 Max Abs Gradient Element 2.88658E-15
Lambda 0 Actual Over Pred Change 1
Radius 0.6063486947

ABSGCONYV convergence criterion satisfied.
PROC NLP: Least Squares Minimization

Optimization Results
Parameter Estimates

Gradient
Objective
N Parameter Estimate Function
1 x1 1.000000 -2.88658E-15
2 x2 1.000000 0

Value of Objective Function = 4.166172E-30

Boundary Constraints on the Decision Variables

Bounds on the decision variables can be used. Suppose, for example, that it is necessary to constrain the
decision variables in the previous example to be less than 0.5. That can be done by adding a BOUNDS
statement.

proc nlp;
1sq £f1 £2;
decvar x1 x2;
bounds x1-x2 <= .5;
fl = 10 » (x2 - x1 * x1);
f2 =1 - x1;
run;

Introductory Examples 4 549

The solution in Figure 7.2 shows that the decision variables meet the constraint bounds.

Figure 7.2 Least Squares with Bounds Solution
PROC NLP: Least Squares Minimization

Levenberg-Marquardt Optimization

PROC NLP: Least Squares Minimization

Optimization Results
Parameter Estimates

Gradient Active
Objective Bound
N Parameter Estimate Function Constraint

1 x1 0.500000 -0.500000 Upper BC
2 x2 0.250000 0

Linear Constraints on the Decision Variables

More general linear equality or inequality constraints of the form

n
Zaijxj{§|=|2}bi fori =1,...,m
j=1

can be specified in a LINCON statement. For example, suppose that in addition to the bounds constraints on
the decision variables it is necessary to guarantee that the sum x; + x» is less than or equal to 0.6. That can
be achieved by adding a LINCON statement:

proc nlp;
1sq £f1 £2;
decvar x1 x2;
bounds x1-x2 <= .5;
lincon x1 + x2 <= .6;
fl = 10 » (x2 - x1 » x1);
f2 =1 - x1;

run;

The output in Figure 7.3 displays the iteration history and the convergence criterion.

Figure 7.3 Least Squares with Bounds and Linear Constraints lteration History

PROC NLP: Least Squares Minimization

Value of Objective Function = 0.3453874109
PROC NLP: Least Squares Minimization

Levenberg-Marquardt Optimization

Parameter Estimates 2
Functions (Observations) 2
Lower Bounds 0
Upper Bounds 2
Linear Constraints 1

550 4 Chapter 7: The NLP Procedure

Figure 7.3 continued

Optimization Start

Active Constraints (+) 0 Objective Function 0.3453874109
Max Abs Gradient Element 5.6534063515 Radius 69.030770145
Ratio
Between
Actual
Objective Max Abs and
Function Active Objective Function Gradient Predicted
Iteration Restarts Calls Constraints Function Change Element Lambda Change
1 0 5 0' 0.16789 0.1775 04576 166.9 0.522
2 1 7 1 0.16672 0.00117 0.2190 0.00471 0.0117
3 1 8 1 0.16658 0.000140 0.000508 0 0.998
4 1 9 1 0.16658 7.52E-10 9.253E-7 0 0.998

Optimization Results

Iterations 4 Function Calls 10
Jacobian Calls 6 Active Constraints 1
Objective Function 0.1665792899 Max Abs Gradient Element 9.2529401E-7
Lambda 0 Actual Over Pred Change 0.9981767757
Radius 0.0000776394

GCONV convergence criterion satisfied.

Figure 7.4 shows that the solution satisfies the linear constraint. Note that the procedure displays the active
constraints (the constraints that are tight) at optimality.

Figure 7.4 Least Squares with Bounds and Linear Constraints Solution
PROC NLP: Least Squares Minimization
Scaling Update of More (1978)
PROC NLP: Least Squares Minimization

Optimization Results
Parameter Estimates

Gradient
Objective
N Parameter Estimate Function
1 x1 0.423645 -0.312000
2 x2 0.176355 -0.312000

Linear Constraints Evaluated at Solution
1 ACT 8.3267E-17 = 0.6000 - 1.0000 * x1 - 1.0000 * x2

Introductory Examples 4 551

Nonlinear Constraints on the Decision Variables

More general nonlinear equality or inequality constraints can be specified using an NLINCON statement.
Consider the least squares problem with the additional constraint

x%—2x220

This constraint is specified by a new function c1 constrained to be greater than or equal to 0 in the NLINCON
statement. The function c1 is defined in the programming statements.

proc nlp tech=QUANEW,;
min f;
decvar xl1 x2;
bounds x1-x2 <= .5;
lincon x1 + x2 <= .6;
nlincon cl >= 0;

cl

x1l » x1 - 2 % x2;

f1l 10 » (x2 - x1 » x1);
f2 =1 - x1;

£=.54% (£1 « £f1 + £2 % £2);
run;

552 4 Chapter 7: The NLP Procedure

Figure 7.5 shows the iteration history, and Figure 7.6 shows the solution to this problem.

Figure 7.5 Least Squares with Bounds, Linear and Nonlinear Constraints, lteration History
PROC NLP: Nonlinear Minimization

Dual Quasi-Newton Optimization
Modified VMCWD Algorithm of Powell (1978, 1982)
Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)
Lagrange Multiplier Update of Powell(1982)

Parameter Estimates 2

Lower Bounds 0
Upper Bounds 2
Linear Constraints 1

Nonlinear Constraints 1

Optimization Start
Objective Function 2.750048788 Maximum Constraint Violation 0
Maximum Gradient of the Lagran Func 19.528027002

Maximum

Gradient

Element

Maximum Predicted of the

Function Objective Constraint Function Step Lagrange

Iteration Restarts Calls Function Violation Reduction Size Function

1 0 9 121827 0 0.8823 0.437 5.845

2 0 10 0.78787 0 0.5262 1.000 2.616

3 0 12 0.72214 0 0.2500 0.147 2.849

4 0 13 0.55450 0 0.1977 1.000 2.509

5 0 14 0.42378 0 0.2537 1.000 0.789

6 0 16 0.39842 0 0.1574 0.114 0.760

7 0 18 0.35979 0 0.0649 0.366 0.320

8 0 19 035429 0 0.0548 1.000 1.683

9 0 20 0.33415 0 0.00758 1.000 0.119

10 0 21 0.33026 0 0.000455 1.000 0.121

1 0 22 0.33005 0 0.000044 1.000 0.00221

12 0 23 0.33003 0 5.683E-8 1.000 0.00012

Optimization Results

Iterations 12 Function Calls 24
Gradient Calls 15 Active Constraints 0
Objective Function 0.330030744 Maximum Constraint Violation 0
Maximum Projected Gradient 3.0494342639 Value Lagrange Function 0.330030744

Maximum Gradient of the Lagran Func 3.0494342639 Slope of Search Direction -5.683122E-8

Introductory Examples 4 553

Figure 7.6 Least Squares with Bounds, Linear and Nonlinear Constraints, Solution
PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Gradient Gradient
Objective Lagrange

N Parameter Estimate Function Function
1 x1 0.246953 0.753017 -0.000013854
2 x2 0.030493 -3.049292 -0.000003421

Value of Objective Function = 0.3300307303

Value of Lagrange Function = 0.3300307155

Linear Constraints Evaluated at Solution
1 0.32255 = 0.6000 - 1.0000 * x1 - 1.0000 * x2

Values of Nonlinear Constraints

Lagrange
Constraint Value Residual Multiplier

[2] c1_G 9.699E-9 9.699E-9 1.5246 Active NLIC

Not all of the optimization methods support nonlinear constraints. In particular the Levenberg-Marquardt
method, the default for LSQ, does not support nonlinear constraints. (For more information about the
particular algorithms, see the section “Optimization Algorithms” on page 597.) The Quasi-Newton method is
the prime choice for solving nonlinear programs with nonlinear constraints. The option TECH=QUANEW in
the PROC NLP statement causes the Quasi-Newton method to be used.

A Simple Maximum Likelihood Example

The following is a very simple example of a maximum likelihood estimation problem with the log likelihood
function:

1(.0) = ~log(o) — 5 (1’

The maximum likelihood estimates of the parameters 1 and o form the solution to
max Li(w, o
max > li(.0)
1

where

li(1,0) = ~log(o) 5 (1

o

In the following DATA step, values for x are input into SAS data set X; this data set provides the values of x;.

554 4 Chapter 7: The NLP Procedure

data x;
input x Q@;
datalines;
13457

In the following statements, the DATA=X specification drives the building of the objective function. When
each observation in the DATA=X data set is read, a new term /; (i, o) using the value of x; is added to the
objective function LOGLIK specified in the MAX statement.

proc nlp data=x vardef=n covariance=h pcov phes;
profile mean sigma / alpha=.5 .1 .05 .01;
max loglik;
parms mean=0, sigma=1,;
bounds sigma > le-12;
loglik=-0.5%* ((x—-mean) /sigma) **2-log (sigma) ;
run;

After a few iterations of the default Newton-Raphson optimization algorithm, PROC NLP produces the
results shown in Figure 7.7.
Figure 7.7 Maximum Likelihood Estimates
PROC NLP: Nonlinear Maximization

Optimization Results
Parameter Estimates

Gradient
Approx Approx Objective
N Parameter Estimate Std Err tValue Pr>|f Function

1 mean 4.000000 0.894427 4.472136 0.006566 -1.33149E-10
2 sigma 2.000000 0.632456 3.162278 0.025031 5.6064147E-9

Value of Objective Function =-5.965735903

In unconstrained maximization, the gradient (that is, the vector of first derivatives) at the solution must be
very close to zero and the Hessian matrix at the solution (that is, the matrix of second derivatives) must have
nonpositive eigenvalues. The Hessian matrix is displayed in Figure 7.8.

Figure 7.8 Hessian Matrix
PROC NLP: Nonlinear Maximization

Hessian Matrix
mean sigma
mean -1.250000003 1.331489E-10
sigma 1.331489E-10 -2.500000014

Determinant = 3.1250000245

Matrix has Only Negative Eigenvalues

Introductory Examples 4 555

Under reasonable assumptions, the approximate standard errors of the estimates are the square roots of
the diagonal elements of the covariance matrix of the parameter estimates, which (because of the COV=H
specification) is the same as the inverse of the Hessian matrix. The covariance matrix is shown in Figure 7.9.

Figure 7.9 Covariance Matrix
PROC NLP: Nonlinear Maximization

Covariance Matrix 2:
H = (NOBS/d) inv(G)

mean sigma

mean 0.7999999982 4.260766E-11

sigma 4.260766E-11 0.3999999978

Factor sigm =1

Determinant = 0.3199999975

Matrix has 2 Positive Eigenvalue(s)

The PROFILE statement computes the values of the profile likelihood confidence limits on SIGMA and
MEAN, as shown in Figure 7.10.

N N NN 2 O a a|lZ

Figure 7.10 Confidence Limits
PROC NLP: Nonlinear Maximization

Wald and PL Confidence Limits

Profile Likelihood Wald Confidence
Limits

Parameter Estimate Alpha Confidence Limits

mean 4.000000 0.500000 3.384431 4.615569
mean . 0.100000 2.305716 5.694284
mean . 0.050000 1.849538 6.150462
mean . 0.010000 0.670351 7.329649
sigma 2.000000 0.500000 1.638972 2.516078
sigma . 0.100000 1.283506 3.748633
sigma . 0.050000 1.195936 4.358321

sigma . 0.010000 1.052584 6.064107

3.396718
2.528798
2.246955
1.696108
1.573415
0.959703
0.760410
0.370903

4.603282
5.471202
5.753045
6.303892
2.426585
3.040297
3.239590
3.629097

556 4 Chapter 7: The NLP Procedure

Syntax: NLP Procedure

Below are statements used in PROC NLP, listed in alphabetical order as they appear in the text that follows.

PROC NLP options ;
ARRAY function names ;
BOUNDS boundary constraints ;
BY variables ;
CRPJAC variables ;
DECVAR function names ;
GRADIENT variables ;
HESSIAN variables ;
INCLUDE model files ;
JACNLC variables ;
JACOBIAN function names ;
LABEL decision variable labels ;
LINCON linear constraints ;
MATRIX matrix specification ;
MIN, MAX, or LSQ function names ;
MINQUAD or MAXQUAD matrix, vector, or number ;
NLINCON nonlinear constraints ;
PROFILE profile specification ;
Program Statements ; ;

Functional Summary
The following table outlines the options in PROC NLP classified by function.

Table 7.1 Functional Summary

Description Statement Option
Input Data Set Options:

Input data set PROC NLP DATA=
Initial values and constraints PROC NLP INEST=
Quadratic objective function PROC NLP INQUAD=
Program statements PROC NLP MODEL=
Skip missing value observations PROC NLP NOMISS
Output Data Set Options:

Variables and derivatives PROC NLP OUT=

Result parameter values PROC NLP OUTEST=
Program statements PROC NLP OUTMODEL=
Combine various OUT. .. statements PROC NLP OUTALL
CRP Jacobian in the OUTEST= data set PROC NLP OUTCRPJAC
Derivatives in the OUT= data set PROC NLP OUTDER=

Functional Summary 4 557

Description Statement Option

Grid in the OUTEST= data set PROC NLP OUTGRID
Hessian in the OUTEST= data set PROC NLP OUTHESSIAN
Iterative output in the OUTEST= data set PROC NLP OUTITER
Jacobian in the OUTEST= data set PROC NLP OUTIJAC

NLC Jacobian in the OUTEST= data set PROC NLP OUTNLCJAC
Time in the OUTEST= data set PROC NLP OUTTIME
Optimization Options:

Minimization method PROCNLP TECH=
Update technique PROC NLP UPDATE=
Version of optimization technique PROC NLP VERSION=
Line-search method PROC NLP LINESEARCH=
Line-search precision PROC NLP LSPRECISION=
Type of Hessian scaling PROCNLP HESCAL=
Start for approximated Hessian PROC NLP INHESSIAN=
Iteration number for update restart PROC NLP RESTART=
Initial Value Options:

Produce best grid points PROC NLP BEST=
Infeasible points in grid search PROC NLP INFEASIBLE
Pseudorandom initial values PROC NLP RANDOM=
Constant initial values PROC NLP INITIAL=
Derivative Options:

Finite-difference derivatives PROC NLP FD=
Finite-difference derivatives PROC NLP FDHESSIAN=
Compute finite-difference interval PROCNLP FDINT=

Use only diagonal of Hessian PROC NLP DIAHES

Test gradient specification PROCNLP GRADCHECK=
Constraint Options:

Range for active constraints PROC NLP LCEPSILON=
LM tolerance for deactivating PROCNLP LCDEACT=
Tolerance for dependent constraints PROC NLP LCSINGULAR=
Sum all observations for continuous functions NLINCON /SUMOBS
Evaluate each observation for continuous functions NLINCON /EVERYOBS
Termination Criteria Options:

Maximum number of function calls PROC NLP MAXFUNC=
Maximum number of iterations PROC NLP MAXITER=
Minimum number of iterations PROC NLP MINITER=
Upper limit on real time PROCNLP MAXTIME=
Absolute function convergence criterion PROC NLP ABSCONV=
Absolute function convergence criterion PROC NLP ABSFCONV=
Absolute gradient convergence criterion PROCNLP ABSGCONV=

558 4 Chapter 7: The NLP Procedure

Description Statement Option
Absolute parameter convergence criterion PROC NLP ABSXCONV=
Relative function convergence criterion PROC NLP FCONV=
Relative function convergence criterion PROC NLP FCONV2=
Relative gradient convergence criterion PROCNLP GCONV=
Relative gradient convergence criterion PROCNLP GCONV2=
Relative parameter convergence criterion PROC NLP XCONV=
Used in FCONYV, GCONY criterion PROC NLP FSIZE=

Used in XCONYV criterion PROC NLP XSIZE=
Covariance Matrix Options:

Type of covariance matrix PROCNLP COV=

o2 factor of COV matrix PROC NLP SIGSQ=
Determine factor of COV matrix PROC NLP VARDEF=
Absolute singularity for inertia PROC NLP ASINGULAR=
Relative M singularity for inertia PROC NLP MSINGULAR=
Relative V singularity for inertia PROCNLP VSINGULAR=
Threshold for Moore-Penrose inverse PROC NLP G4=
Tolerance for singular COV matrix PROCNLP COVSING=
Profile confidence limits PROCNLP CLPARM=
Printed Output Options:

Display (almost) all printed output PROCNLP PALL
Suppress all printed output PROC NLP NOPRINT
Reduce some default output PROC NLP PSHORT
Reduce most default output PROC NLP PSUMMARY
Display initial values and gradients PROC NLP PINIT
Display optimization history PROC NLP PHISTORY
Display Jacobian matrix PROC NLP PJACOBI
Display crossproduct Jacobian matrix PROC NLP PCRPJAC
Display Hessian matrix PROC NLP PHESSIAN
Display Jacobian of nonlinear constraints PROC NLP PNLCJAC
Display values of grid points PROC NLP PGRID
Display values of functions in LSQ, MIN, MAX PROC NLP PFUNCTION
Display approximate standard errors PROC NLP PSTDERR
Display covariance matrix PROCNLP PCOV
Display eigenvalues for covariance matrix PROC NLP PEIGVAL
Print code evaluation problems PROC NLP PERROR
Print measures of real time PROC NLP PTIME
Display model program, variables PROC NLP LIST

Display compiled model program PROCNLP LISTCODE
Step Length Options:

Damped steps in line search PROC NLP DAMPSTEP=
Maximum trust region radius PROC NLP MAXSTEP=
Initial trust region radius PROC NLP INSTEP=

PROC NLP Statement 4 559

Description Statement Option

Profile Point and Confidence Interval Options:

Factor relating discrepancy function to y? quantile PROFILE FFACTOR=
Scale for y values written to OUTEST= data set PROFILE FORCHI=
Upper bound for confidence limit search PROFILE FEASRATIO=
Write all confidence limit parameter estimates to PROFILE OUTTABLE
OUTEST= data set

Miscellaneous Options:
Number of accurate digits in objective function PROC NLP FDIGITS=
Number of accurate digits in nonlinear constraints PROC NLP CDIGITS=

General singularity criterion PROC NLP SINGULAR=
Do not compute inertia of matrices PROC NLP NOEIGNUM
Check optimality in neighborhood PROC NLP OPTCHECK=

PROC NLP Statement
PROC NLP options ;

This statement invokes the NLP procedure. The following options are used with the PROC NLP statement.

ABSCONV=r

ABSTOL=r
specifies an absolute function convergence criterion. For minimization (maximization), termination
requires f(x%)) < (>) r. The default value of ABSCONV is the negative (positive) square root of the
largest double precision value.

ABSFCONV=r 1]

ABSFTOL=r[n]
specifies an absolute function convergence criterion. For all techniques except NMSIMP, termination
requires a small change of the function value in successive iterations:

fED) — f®) <7

For the NMSIMP technique the same formula is used, but x¥) is defined as the vertex with the lowest
function value, and x ¥~ is defined as the vertex with the highest function value in the simplex. The
default value is r = 0. The optional integer value n specifies the number of successive iterations for
which the criterion must be satisfied before the process can be terminated.

560 4 Chapter 7: The NLP Procedure

ABSGCONV=r(n]

ABSGTOL=r[n]
specifies the absolute gradient convergence criterion. Termination requires the maximum absolute
gradient element to be small:
max|g; (x©)] < r
J

This criterion is not used by the NMSIMP technique. The default value is r=1E—5. The optional
integer value n specifies the number of successive iterations for which the criterion must be satisfied
before the process can be terminated.

ABSXCONV=rn]

ABSXTOL=r[n]
specifies the absolute parameter convergence criterion. For all techniques except NMSIMP, termination
requires a small Euclidean distance between successive parameter vectors:

| x® =2 D <

For the NMSIMP technique, termination requires either a small length o®) of the vertices of a restart
simplex
a® <

or a small simplex size
where the simplex size § (k) is defined as the L distance of the simplex vertex y(k) with the smallest
function value to the other n simplex points x l(k) % y(k)

k
59 = 3 12 =@,
xXi#y

The default value is r=1E—4 for the COBYLA NMSIMP technique, r=1E—8 for the standard NMSIMP
technique, and =0 otherwise. The optional integer value n specifies the number of successive iterations
for which the criterion must be satisfied before the process can be terminated.

ASINGULAR=r

ASING=r
specifies an absolute singularity criterion for measuring singularity of Hessian and crossproduct
Jacobian and their projected forms, which may have to be converted to compute the covariance matrix.
The default is the square root of the smallest positive double precision value. For more information,
see the section “Covariance Matrix” on page 618.

BEST=i
produces the i best grid points only. This option not only restricts the output, it also can significantly
reduce the computation time needed for sorting the grid point information.

CDIGITS=r
specifies the number of accurate digits in nonlinear constraint evaluations. Fractional values such as
CDIGITS=4.7 are allowed. The default value is r = —log;(€), where € is the machine precision.

The value of r is used to compute the interval length / for the computation of finite-difference
approximations of the Jacobian matrix of nonlinear constraints.

PROC NLP Statement 4 561

CLPARM= PL | WALD | BOTH
is similar to but not the same as that used by other SAS procedures. Using CLPARM=BOTH is
equivalent to specifying

PROFILE / ALPHA=0.5 0.1 0.05 0.01 OUTTABLE;

The CLPARM=BOTH option specifies that profile confidence limits (PL CLs) for all parameters and
fora = .5,.1,.05, .01 are computed and displayed or written to the OUTEST= data set. Computing
the profile confidence limits for all parameters can be very expensive and should be avoided when a
difficult optimization problem or one with many parameters is solved. The OUTTABLE option is valid
only when an OUTEST= data set is specified in the PROC NLP statement. For CLPARM=BOTH,
the table of displayed output contains the Wald confidence limits computed from the standard errors
as well as the P CLs. The Wald confidence limits are not computed (displayed or written to the
OUTEST= data set) unless the approximate covariance matrix of parameters is computed.

COV=1|2|3|4|5|6|M|H|J|B|E|U

COVARIANCE=1|2|3|4|5|6|M|H|J|B|E|U
specifies one of six formulas for computing the covariance matrix. For more information, see the
section “Covariance Matrix” on page 618.

COVSING=r
specifies a threshold r > 0 that determines whether the eigenvalues of a singular Hessian matrix
or crossproduct Jacobian matrix are considered to be zero. For more information, see the section
“Covariance Matrix” on page 618.

DAMPSTEP[=r]
DS[=r]
specifies that the initial step length value a‘© for each line search (used by the QUANEW, HYQUAN,

CONGRA, or NEWRAP technique) cannot be larger than r times the step length value used in the
former iteration. If the DAMPSTEP option is specified but r is not specified, the default is r=2. The
DAMPSTEP=r option can prevent the line-search algorithm from repeatedly stepping into regions
where some objective functions are difficult to compute or where they could lead to floating point
overflows during the computation of objective functions and their derivatives. The DAMPSTEP=r
option can save time-costly function calls during the line searches of objective functions that result in
very small steps. For more information, see the section “Restricting the Step Length” on page 614.

DATA=SAS-data-set
allows variables from the specified data set to be used in the specification of the objective function f.
For more information, see the section “DATA= Input Data Set” on page 621.

DIAHES

specifies that only the diagonal of the Hessian or crossproduct Jacobian is used. This saves function
evaluations but may slow the convergence process considerably. Note that the DIAHES option refers to
both the Hessian and the crossproduct Jacobian when using the LSQ statement. When derivatives are
specified using the HESSIAN or CRPJAC statement, these statements must refer only to the n diagonal
derivative elements (otherwise, the n(n 4+ 1)/2 derivatives of the lower triangle must be specified).
The DIAHES option is ignored if a quadratic programming with a constant Hessian is specified by
TECH=QUADAS or TECH=LICOMP.

562 4 Chapter 7: The NLP Procedure

FCONV=r[n]

FTOL=r [n]
specifies the relative function convergence criterion. For all techniques except NMSIMP, termination
requires a small relative change of the function value in successive iterations:

fGO) — e
max(| f(x*—D)|, FSIZE) —

where FSIZE is defined by the FSIZE= option. For the NMSIMP technique, the same formula is used,
but x%) is defined as the vertex with the lowest function value, and x*~1) is defined as the vertex
with the highest function value in the simplex. The default value is r = 10-FDIGITS \here FDIGITS
is the value of the FDIGITS= option. The optional integer value n specifies the number of successive
iterations for which the criterion must be satisfied before the process can be terminated.

FCONV2=r[n]

FTOL2=r[n]
FCONV2= option specifies another function convergence criterion. For least squares problems and all
techniques except NMSIMP, termination requires a small predicted reduction

df O ~ F(x®) = r(x® 4 5
of the objective function. The predicted reduction
Aro = 0T _ L or g w0
2

— (k)

1
Lot
2

< r

4

is based on approximating the objective function f by the first two terms of the Taylor series and

substituting the Newton step
sk — _G(k)—lg(k)

For the NMSIMP technique, termination requires a small standard deviation of the function values of
the n 4+ 1 simplex vertices xl(k), [=0,...,n,

1 _
\/n @) = T @) <
1

where f (x k)y = # Yuf (xl(k)). If there are n,.; boundary constraints active at x®) | the mean and
standard deviation are computed only for the n + 1 — 1, unconstrained vertices. The default value is
r=1E—6 for the NMSIMP technique and the QUANEW technique with nonlinear constraints, and r=0
otherwise. The optional integer value n specifies the number of successive iterations for which the
criterion must be satisfied before the process can be terminated.

FD[=FORWARD | CENTRAL | number]
specifies that all derivatives be computed using finite-difference approximations. The following
specifications are permitted:

PROC NLP Statement 4 563

FD=FORWARD uses forward differences.
FD=CENTRAL uses central differences.

FD=number uses central differences for the initial and final evaluations of the gradient, Jacobian,
and Hessian. During iteration, start with forward differences and switch to a
corresponding central-difference formula during the iteration process when one of
the following two criteria is satisfied:

* The absolute maximum gradient element is less than or equal to number times
the ABSGCONYV threshold.

* The term left of the GCONYV criterion is less than or equal to max(1.0E —
6, numberx GCONYV threshold). The 1.0E—6 ensures that the switch is done,
even if you set the GCONYV threshold to zero.

FD is equivalent to FD=100.

Note that the FD and FDHESSIAN options cannot apply at the same time. The FDHESSIAN option is
ignored when only first-order derivatives are used, for example, when the LSQ statement is used and
the HESSIAN is not explicitly needed (displayed or written to a data set). For more information, see
the section “Finite-Difference Approximations of Derivatives” on page 607.

FDHESSIAN[=FORWARD | CENTRAL]
FDHES[=FORWARD | CENTRAL]
FDH[=FORWARD | CENTRAL]

specifies that second-order derivatives be computed using finite-difference approximations based on
evaluations of the gradients.

FDHESSIAN=FORWARD uses forward differences.

FDHESSIAN=CENTRAL uses central differences.

FDHESSIAN uses forward differences for the Hessian except
for the initial and final output.

Note that the FD and FDHESSIAN options cannot apply at the same time. For more information, see
the section “Finite-Difference Approximations of Derivatives” on page 607

FDIGITS=r
specifies the number of accurate digits in evaluations of the objective function. Fractional values
such as FDIGITS=4.7 are allowed. The default value is r = —log;(€), where € is the machine

precision. The value of r is used to compute the interval length & for the computation of finite-
difference approximations of the derivatives of the objective function and for the default value of the
FCONV= option.

FDINT=OBJ | CON | ALL
specifies how the finite-difference intervals /4 should be computed. For FDINT=0BJ, the interval &
is based on the behavior of the objective function; for FDINT=CON, the interval / is based on the
behavior of the nonlinear constraints functions; and for FDINT=ALL, the interval / is based on the
behavior of the objective function and the nonlinear constraints functions. For more information, see
the section “Finite-Difference Approximations of Derivatives” on page 607.

564 4 Chapter 7: The NLP Procedure

FSIZE=r
specifies the FSIZE parameter of the relative function and relative gradient termination criteria. The
default value is r = 0. For more details, refer to the FCONV= and GCONV= options.

Gd=n
is used when the covariance matrix is singular. The value n > 0 determines which generalized inverse
is computed. The default value of n is 60. For more information, see the section “Covariance Matrix”
on page 618.

GCONV=r[n]
GTOL=r[n]
specifies the relative gradient convergence criterion. For all techniques except the CONGRA and
NMSIMP techniques, termination requires that the normalized predicted function reduction is small:

gx®) TGP 1g(x8)) -
max(| f(x®)|, FSIZE)

where FSIZE is defined by the FSIZE= option. For the CONGRA technique (where a reliable Hessian
estimate G is not available),

lg®) 13 1 s:®) Il -,
I §(x®) — g(x®=D) || max(| f(x®)|, FSIZE) ~

is used. This criterion is not used by the NMSIMP technique. The default value is r=1E—8. The
optional integer value n specifies the number of successive iterations for which the criterion must be
satisfied before the process can be terminated.

GCONV2=r(n]
GTOL2=r[n]
GCONV2= option specifies another relative gradient convergence criterion,

(&)
N 77C 1)

J / k (k) —
f(x())Gj,j

This option is valid only when using the TRUREG, LEVMAR, NRRIDG, and NEWRAP techniques
on least squares problems. The default value is r = 0. The optional integer value n specifies the
number of successive iterations for which the criterion must be satisfied before the process can be
terminated.

GRADCHECK[= NONE | FAST | DETAIL]

GC[= NONE | FAST | DETAIL]

Specifying GRADCHECK=DETAIL computes a test vector and test matrix to check whether the
gradient g specified by a GRADIENT statement (or indirectly by a JACOBIAN statement) is appropriate
for the function f computed by the program statements. If the specification of the first derivatives
is correct, the elements of the test vector and test matrix should be relatively small. For very large
optimization problems, the algorithm can be too expensive in terms of computer time and memory. If
the GRADCHECK option is not specified, a fast derivative test identical to the GRADCHECK=FAST
specification is performed by default. It is possible to suppress the default derivative test by specifying
GRADCHECK=NONE. For more information, see the section “Testing the Gradient Specification” on
page 609.

PROC NLP Statement 4 565

HESCAL=0|1]2]|3

HS=0|1|2|3
specifies the scaling version of the Hessian or crossproduct Jacobian matrix used in NRRIDG,
TRUREG, LEVMAR, NEWRAP, or DBLDOG optimization. If the value of the HESCAL= option
is not equal to zero, the first iteration and each restart iteration sets the diagonal scaling matrix

D© = diag(d?):
d® = \/max(IG?|.)

where Gi((z)‘) are the diagonal elements of the Hessian or crossproduct Jacobian matrix. In all other

iterations, the diagonal scaling matrix D(©® = diag(dl.(o)) is updated depending on the HESCAL=
option:

HESCAL=0 specifies that no scaling is done
HESCAL=1 specifies the Moré (1978) scaling update:

dl.(k-H) = max (di(k), \/max(|Gl.(§)|, 6))

HESCAL=2 specifies the Dennis, Gay, and Welsch (1981) scaling update:

dl.(k+1) = max (0.6dl-(k), maX(|G(k-)|, 6))

i,
HESCAL=3 specifies that d; is reset in each iteration:

(k+1) _ (k)
d = ymax(|G;;’],€)
where € is the relative machine precision. The default value is HESCAL=1 for LEVMAR minimization
and HESCAL=0 otherwise. Scaling of the Hessian or crossproduct Jacobian matrix can be time-
consuming in the case where general linear constraints are active.

INEST=SAS-data-set
INVAR=SAS-data-set

ESTDATA=SAS-data-set
can be used to specify the initial values of the parameters defined in a DECVAR statement as well as
simple boundary constraints and general linear constraints. The INEST= data set can contain additional
variables with names corresponding to constants used in the program statements. At the beginning of
each run of PROC NLP, the values of the constants are read from the PARMS observation, initializing
the constants in the program statements. For more information, see the section “INEST= Input Data
Set” on page 621.

INFEASIBLE

IFP
specifies that the function values of both feasible and infeasible grid points are to be computed,
displayed, and written to the OUTEST= data set, although only the feasible grid points are candidates
for the starting point x(?). This option enables you to explore the shape of the objective function of
points surrounding the feasible region. For the output, the grid points are sorted first with decreasing
values of the maximum constraint violation. Points with the same value of the maximum constraint

566 4 Chapter 7: The NLP Procedure

violation are then sorted with increasing (minimization) or decreasing (maximization) value of the
objective function. Using the BEST= option restricts only the number of best grid points in the
displayed output, not those in the data set. The INFEASIBLE option affects both the displayed output
and the output saved to the OUTEST= data set. The OUTGRID option can be used to write the
grid points and their function values to an OUTEST= data set. After small modifications (deleting
unneeded information), this data set can be used with the G3D procedure of SAS/GRAPH to generate
a three-dimensional surface plot of the objective function depending on two selected parameters. For
more information on grids, see the section “DECVAR Statement” on page 580.

INHESSIAN[=r]

INHESS[=r]
specifies how the initial estimate of the approximate Hessian is defined for the quasi-Newton techniques
QUANEW, DBLDOG, and HYQUAN. There are two alternatives:

* The = r specification is not used: the initial estimate of the approximate Hessian is set to the
true Hessian or crossproduct Jacobian at x©,

* The = r specification is used: the initial estimate of the approximate Hessian is set to the multiple
of the identity matrix r/.

By default, if INHESSIAN=r is not specified, the initial estimate of the approximate Hessian is set to
the multiple of the identity matrix I, where the scalar r is computed from the magnitude of the initial
gradient. For most applications, this is a sufficiently good first approximation.

INITIAL=r
specifies a value r as the common initial value for all parameters for which no other initial value
assignments by the DECVAR statement or an INEST= data set are made.

INQUAD=SAS-data-set
can be used to specify (the nonzero elements of) the matrix H, the vector g, and the scalar c of a
quadratic programming problem, f(x) = %XTH x + g7 x + c. This option cannot be used together
with the NLINCON statement. Two forms (dense and sparse) of the INQUAD= data set can be used.
For more information, see the section “INQUAD= Input Data Set” on page 622.

INSTEP=r
For highly nonlinear objective functions, such as the EXP function, the default initial radius of the
trust region algorithms TRUREG, DBLDOG, or LEVMAR or the default step length of the line-search
algorithms can result in arithmetic overflows. If this occurs, decreasing values of 0 < r < 1 should
be specified, such as INSTEP=1E—1, INSTEP=1E—2, INSTEP=1E—4, and so on, until the iteration
starts successfully.

* For trust region algorithms (TRUREG, DBLDOG, LEVMAR), the INSTEP= option specifies a
factor r > O for the initial radius A of the trust region. The default initial trust region radius is
the length of the scaled gradient. This step corresponds to the default radius factor of r = 1.

* For line-search algorithms (NEWRAP, CONGRA, QUANEW, HYQUAN), the INSTEP= option
specifies an upper bound for the initial step length for the line search during the first five iterations.
The default initial step lengthis r = 1.

* For the Nelder-Mead simplex algorithm (NMSIMP), the INSTEP=r option defines the size of the
initial simplex.

For more details, see the section “Computational Problems” on page 615.

PROC NLP Statement 4 567

LCDEACT=r

LCD=r
specifies a threshold r for the Lagrange multiplier that decides whether an active inequality constraint
remains active or can be deactivated. For a maximization (minimization), an active inequality constraint
can be deactivated only if its Lagrange multiplier is greater (less) than the threshold value r. For
maximization, » must be greater than zero; for minimization, » must be smaller than zero. The default

value is
r = £ min(0.01, max(0.1 x ABSGCONV, 0.001 x gmax®))

where the + stands for maximization, the — for minimization, ABSGCONYV is the value of the absolute
gradient criterion, and gmax®) is the maximum absolute element of the (projected) gradient g®) or
zT gt

LCEPSILON=r
LCEPS=r

LCE=r
specifies the range r > 0 for active and violated boundary and linear constraints. During the
optimization process, the introduction of rounding errors can force PROC NLP to increase the value of
r by a factor of 10, 100, If this happens it is indicated by a message written to the log. For more
information, see the section “Linear Complementarity (LICOMP)” on page 601.

LCSINGULAR=r

LCSING=r

LCS=r
specifies a criterion » > 0 used in the update of the QR decomposition that decides whether an active
constraint is linearly dependent on a set of other active constraints. The default value is r=1E—8. The
larger r becomes, the more the active constraints are recognized as being linearly dependent. If the
value of r is larger than 0.1, it is reset to 0.1.

LINESEARCH=i
LIS=i
specifies the line-search method for the CONGRA, QUANEW, HYQUAN, and NEWRAP opti-

mization techniques. Refer to Fletcher (1987) for an introduction to line-search techniques. The
value of i can be 1,...,8. For CONGRA, QUANEW, and NEWRAP, the default value is i=2. A
special line-search method is the default for the least squares technique HYQUAN that is based on an
algorithm developed by Lindstrom and Wedin (1984). Although it needs more memory, this default
line-search method sometimes works better with large least squares problems. However, by specifying
LIS=i,i =1,...,8, itis possible to use one of the standard techniques with HY QUAN.

LIS=1 specifies a line-search method that needs the same number of function and gradient
calls for cubic interpolation and cubic extrapolation.

LIS=2 specifies a line-search method that needs more function than gradient calls for
quadratic and cubic interpolation and cubic extrapolation; this method is imple-
mented as shown in Fletcher (1987) and can be modified to an exact line search by
using the LSPRECISION= option.

LIS=3 specifies a line-search method that needs the same number of function and gradient
calls for cubic interpolation and cubic extrapolation; this method is implemented as

568 4 Chapter 7: The NLP Procedure

LIST

shown in Fletcher (1987) and can be modified to an exact line search by using the
LSPRECISION= option.

LIS=4 specifies a line-search method that needs the same number of function and gradient
calls for stepwise extrapolation and cubic interpolation.

LIS=5 specifies a line-search method that is a modified version of LIS=4.

LIS=6 specifies golden section line search (Polak 1971), which uses only function values

for linear approximation.

LIS=7 specifies bisection line search (Polak 1971), which uses only function values for
linear approximation.

LIS=8 specifies the Armijo line-search technique (Polak 1971), which uses only function
values for linear approximation.

displays the model program and variable lists. The LIST option is a debugging feature and is not
normally needed. This output is not included in either the default output or the output specified by the
PALL option.

LISTCODE

displays the derivative tables and the compiled program code. The LISTCODE option is a debugging
feature and is not normally needed. This output is not included in either the default output or the output
specified by the PALL option. The option is similar to that used in MODEL procedure in SAS/ETS
software.

LSPRECISION=r
LSP=r

specifies the degree of accuracy that should be obtained by the line-search algorithms LIS=2 and LIS=3.

Usually an imprecise line search is inexpensive and sufficient for convergence to the optimum. For
difficult optimization problems, a more precise and expensive line search may be necessary (Fletcher
1987). The second (default for NEWRAP, QUANEW, and CONGRA) and third line-search methods
approach exact line search for small LSPRECISION= values. In the presence of numerical problems,
it is advised to decrease the LSPRECISION= value to obtain a more precise line search. The default
values are as follows:

TECH= UPDATE= LSP default
QUANEW DBFGS, BFGS r=04
QUANEW DDFP, DFP r=0.06

HYQUAN DBFGS r=0.1
HYQUAN DDFP r=0.06
CONGRA all r=0.1
NEWRAP no update r=09

For more details, refer to Fletcher (1987).

PROC NLP Statement 4 569

MAXFUNC-=i

MAXFU=i
specifies the maximum number i of function calls in the optimization process. The default values are

*» TRUREG, LEVMAR, NRRIDG, NEWRAP: 125
* QUANEW, HYQUAN, DBLDOG: 500

* CONGRA, QUADAS: 1000

* NMSIMP: 3000

Note that the optimization can be terminated only after completing a full iteration. Therefore, the
number of function calls that are actually performed can exceed the number that is specified by the
MAXFUNC= option.

MAXITER=i [n]
MAXIT=i [1]
specifies the maximum number i of iterations in the optimization process. The default values are:

* TRUREG, LEVMAR, NRRIDG, NEWRAP: 50
* QUANEW, HYQUAN, DBLDOG: 200

* CONGRA, QUADAS: 400

* NMSIMP: 1000

This default value is valid also when i is specified as a missing value. The optional second value n
is valid only for TECH=QUANEW with nonlinear constraints. It specifies an upper bound # for the
number of iterations of an algorithm used to reduce the violation of nonlinear constraints at a starting
point. The default value is n=20.

MAXSTEP=r[n]
specifies an upper bound for the step length of the line-search algorithms during the first » iterations. By
default, r is the largest double precision value and 7 is the largest integer available. Setting this option
can increase the speed of convergence for TECH=CONGRA, TECH=QUANEW, TECH=HYQUAN,
and TECH=NEWRAP.

MAXTIME=r

specifies an upper limit of r seconds of real time for the optimization process. The default value is
the largest floating point double representation of the computer. Note that the time specified by the
MAXTIME-= option is checked only once at the end of each iteration. Therefore, the actual running
time of the PROC NLP job may be longer than that specified by the MAXTIME= option. The actual
running time includes the rest of the time needed to finish the iteration, time for the output of the
(temporary) results, and (if required) the time for saving the results in an OUTEST= data set. Using the
MAXTIME-= option with a permanent OUTEST= data set enables you to separate large optimization
problems into a series of smaller problems that need smaller amounts of real time.

MINITER=i

MINIT=i
specifies the minimum number of iterations. The default value is zero. If more iterations than are
actually needed are requested for convergence to a stationary point, the optimization algorithms can
behave strangely. For example, the effect of rounding errors can prevent the algorithm from continuing
for the required number of iterations.

570 4 Chapter 7: The NLP Procedure

MODEL=model-name, model-list
MOD=model-name, model-list

MODFILE=model-name, model-list
reads the program statements from one or more input model files created by previous PROC NLP steps
using the OUTMODEL-= option. If it is necessary to include the program code at a special location in
newly written code, the INCLUDE statement can be used instead of using the MODEL= option. Using
both the MODEL= option and the INCLUDE statement with the same model file will include the
same model twice, which can produce different results than including it once. The MODEL= option is
similar to the option used in PROC MODEL in SAS/ETS software.

MSINGULAR=r

MSING=r
specifies a relative singularity criterion r > 0 for measuring singularity of Hessian and crossproduct
Jacobian and their projected forms. The default value is 1E—12 if the SINGULAR= option is not
specified and max (10 x €, 1E — 4 x SINGULAR) otherwise. For more information, see the section
“Covariance Matrix” on page 618.

NOEIGNUM
suppresses the computation and output of the determinant and the inertia of the Hessian, crossproduct
Jacobian, and covariance matrices. The inertia of a symmetric matrix are the numbers of negative,
positive, and zero eigenvalues. For large applications, the NOEIGNUM option can save computer time.

NOMISS
is valid only for those variables of the DATA= data set that are referred to in program statements. If the
NOMISS option is specified, observations with any missing value for those variables are skipped. If
the NOMISS option is not specified, the missing value may result in a missing value of the objective
function, implying that the corresponding BY group of data is not processed.

NOPRINT

NOP
suppresses the output.

OPTCHECK]=r]
computes the function values f(x;) of a grid of points x; in a small neighborhood of x*. The x; are
located in a ball of radius r about x*. If the OPTCHECK option is specified without r, the default
value is 7 = 0.1 at the starting point and r = 0.01 at the terminating point. If a point x;" is found with
a better function value than f'(x*), then optimization is restarted at x;‘. For more information on grids,
see the section “DECVAR Statement” on page 580.

OUT=SAS-data-set
creates an output data set that contains those variables of a DATA= input data set referred to in the
program statements plus additional variables computed by performing the program statements of the
objective function, derivatives, and nonlinear constraints. The OUT= data set can also contain first-
and second-order derivatives of these variables if the OUTDER= option is specified. The variables and
derivatives are evaluated at x*; for TECH=NONE, they are evaluated at X0,

PROC NLP Statement 4 571

OUTALL
If an OUTEST= data set is specified, this option sets the OUTHESSIAN option if the MIN or MAX
statement is used. If the LSQ statement is used, the OUTALL option sets the OUTCRPJAC option.
If nonlinear constraints are specified using the NLINCON statement, the OUTALL option sets the
OUTNLCIJAC option.

OUTCRPJAC
If an OUTEST= data set is specified, the crossproduct Jacobian matrix of the m functions composing
the least squares function is written to the OUTEST= data set.

OUTDER=0|1]|2
specifies whether or not derivatives are written to the OUT= data set. For OUTDER=2, first- and
second-order derivatives are written to the data set; for OUTDER=1, only first-order derivatives are
written; for OUTDER=0, no derivatives are written to the data set. The default value is OUTDER=0.
Derivatives are evaluated at x*.

OUTEST=SAS-data-set

OUTVAR=SAS-data-set
creates an output data set that contains the results of the optimization. This is useful for reporting and
for restarting the optimization in a subsequent execution of the procedure. Information in the data set
can include parameter estimates, gradient values, constraint information, Lagrangian values, Hessian
values, Jacobian values, covariance, standard errors, and confidence intervals.

OUTGRID
writes the grid points and their function values to the OUTEST= data set. By default, only the feasible
grid points are saved; however, if the INFEASIBLE option is specified, all feasible and infeasible grid
points are saved. Note that the BEST= option does not affect the output of grid points to the OUTEST=
data set. For more information on grids, see the section “DECVAR Statement” on page 580.

OUTHESSIAN
OUTHES
writes the Hessian matrix of the objective function to the OUTEST= data set. If the Hessian

matrix is computed for some other reason (if, for example, the PHESSIAN option is specified), the
OUTHESSIAN option is set by default.

OUTITER
writes during each iteration the parameter estimates, the value of the objective function, the gradient (if
available), and (if OUTTIME is specified) the time in seconds from the start of the optimization to the
OUTEST= data set.

OUTJAC
writes the Jacobian matrix of the m functions composing the least squares function to the OUTEST=
data set. If the PJACOBI option is specified, the OUTJAC option is set by default.

OUTMODEL=model-name
OUTMOD=model-name

OUTM=model-name
specifies the name of an output model file to which the program statements are to be written. The
program statements of this file can be included into the program statements of a succeeding PROC NLP
run using the MODEL= option or the INCLUDE program statement. The OUTMODEL= option is

572 4 Chapter 7: The NLP Procedure

similar to the option used in PROC MODEL in SAS/ETS software. Note that the following statements
are not part of the program code that is written to an OUTMODEL= data set: MIN, MAX, LSQ,
MINQUAD, MAXQUAD, DECVAR, BOUNDS, BY, CRPJAC, GRADIENT, HESSIAN, JACNLC,
JACOBIAN, LABEL, LINCON, MATRIX, and NLINCON.

OUTNLCJAC
If an OUTEST= data set is specified, the Jacobian matrix of the nonlinear constraint functions specified
by the NLINCON statement is written to the OUTEST= data set. If the Jacobian matrix of the
nonlinear constraint functions is computed for some other reason (if, for example, the PNLCJAC
option is specified), the OUTNLCJAC option is set by default.

OUTTIME
is used if an OUTEST= data set is specified and if the OUTITER option is specified. If OUTTIME is
specified, the time in seconds from the start of the optimization to the start of each iteration is written
to the OUTEST= data set.

PALL

ALL
displays all optional output except the output generated by the PSTDERR, PCOV, LIST, or LISTCODE
option.

PCOV
displays the covariance matrix specified by the COV= option. The PCOV option is set automatically if
the PALL and COV= options are set.

PCRPJAC

PJTJ
displays the n x n crossproduct Jacobian matrix J 7 J. If the PALL option is specified and the LSQ
statement is used, this option is set automatically. If general linear constraints are active at the solution,
the projected crossproduct Jacobian matrix is also displayed.

PEIGVAL
displays the distribution of eigenvalues if a G4 inverse is computed for the covariance matrix. The
PEIGVAL option is useful for observing which eigenvalues of the matrix are recognized as zero
eigenvalues when the generalized inverse is computed, and it is the basis for setting the COVSING=
option in a subsequent execution of PROC NLP. For more information, see the section “Covariance
Matrix” on page 618.

PERROR
specifies additional output for such applications where the program code for objective function or
nonlinear constraints cannot be evaluated during the iteration process. The PERROR option is set by
default during the evaluations at the starting point but not during the optimization process.

PFUNCTION
displays the values of all functions specified in a LSQ, MIN, or MAX statement for each observation
read from the DATA= input data set. The PALL option sets the PEUNCTION option automatically.

PROC NLP Statement 4 573

PGRID
displays the function values from the grid search. For more information on grids, see the section
“DECVAR Statement” on page 580.

PHESSIAN

PHES
displays the n x n Hessian matrix G. If the PALL option is specified and the MIN or MAX statement
is used, this option is set automatically. If general linear constraints are active at the solution, the
projected Hessian matrix is also displayed.

PHISTORY

PHIS
displays the optimization history. No optimization history is displayed for TECH=LICOMP. This
output is included in both the default output and the output specified by the PALL option.

PINIT

PIN
displays the initial values and derivatives (if available). This output is included in both the default
output and the output specified by the PALL option.

PJACOBI

PJAC
displays the m x n Jacobian matrix J. Because of the memory requirement for large least squares
problems, this option is not invoked when using the PALL option.

PNLCJAC
displays the Jacobian matrix of nonlinear constraints specified by the NLINCON statement. The
PNLCIJAC option is set automatically if the PALL option is specified.

PSHORT
SHORT

PSH
restricts the amount of default output. If PSHORT is specified, then

* The initial values are not displayed.

* The listing of constraints is not displayed.

e If there is more than one function in the MIN, MAX, or LSQ statement, their values are not
displayed.

* If the GRADCHECK option is used, only the test vector is displayed.

PSTDERR

STDERR

SE
computes standard errors that are defined as square roots of the diagonal elements of the covariance
matrix. The ¢ values and probabilities > |¢| are displayed together with the approximate standard
errors. The type of covariance matrix must be specified using the COV= option. The SIGSQ= option,
the VARDEF= option, and the special variables _NOBS_ and _DF_ defined in the program statements
can be used to define a scalar factor o2 of the covariance matrix and the approximate standard errors.
For more information, see the section “Covariance Matrix™ on page 618.

574 4 Chapter 7: The NLP Procedure

PSUMMARY
SUMMARY

SUM

restricts the amount of default displayed output to a short form of iteration history and notes, warnings,
and errors.

PTIME
specifies the output of four different but partially overlapping differences of real time:

* total running time

* total time for the evaluation of objective function, nonlinear constraints, and derivatives: shows
the total time spent executing the programming statements specifying the objective function,
derivatives, and nonlinear constraints, and (if necessary) their first- and second-order derivatives.
This is the total time needed for code evaluation before, during, and after iterating.

* total time for optimization: shows the total time spent iterating.

* time for some CMP parsing: shows the time needed for parsing the program statements and its
derivatives. In most applications this is a negligible number, but for applications that contain
ARRAY statements or DO loops or use an optimization technique with analytic second-order
derivatives, it can be considerable.

RANDOM=i

specifies a positive integer as a seed value for the pseudorandom number generator. Pseudorandom
numbers are used as the initial value x(©).

RESTART=i
REST=i

specifies that the QUANEW, HYQUAN, or CONGRA algorithm is restarted with a steepest de-
scent/ascent search direction after at most i > O iterations. Default values are as follows:

* CONGRA with UPDATE=PB: restart is done automatically so specification of i is not used
* CONGRA with UPDATE#PB: i = min(10n, 80), where n is the number of parameters
* QUANEW, HYQUAN: i is the largest integer available

SIGSQ=s¢q
specifies a scalar factor sq > 0 for computing the covariance matrix. If the SIGSQ= option is specified,
VARDEF=N is the default. For more information, see the section “Covariance Matrix” on page 618.

SINGULAR=r
SING=r

specifies the singularity criterion » > 0 for the inversion of the Hessian matrix and crossprod-
uct Jacobian. The default value is 1E—8. For more information, refer to the MSINGULAR= and
VSINGULAR= options.

PROC NLP Statement 4 575

TECH=name

TECHNIQUE=name
specifies the optimization technique. Valid values for it are as follows:

* CONGRA
chooses one of four different conjugate gradient optimization algorithms, which can be more
precisely specified with the UPDATE= option and modified with the LINESEARCH= option.
When this option is selected, UPDATE=PB by default. For n > 400, CONGRA is the default
optimization technique.

* DBLDOG
performs a version of double dogleg optimization, which can be more precisely specified with
the UPDATE= option. When this option is selected, UPDATE=DBFGS by default.

* HYQUAN
chooses one of three different hybrid quasi-Newton optimization algorithms which can be more
precisely defined with the VERSION= option and modified with the LINESEARCH= option. By
default, VERSION=2 and UPDATE=DBFGS.

* LEVMAR
performs the Levenberg-Marquardt minimization. For n < 40, this is the default minimization
technique for least squares problems.

* LICOMP
solves a quadratic program as a linear complementarity problem.

* NMSIMP
performs the Nelder-Mead simplex optimization method.

* NONE
does not perform any optimization. This option can be used
— to do grid search without optimization
— to compute and display derivatives and covariance matrices which cannot be obtained

efficiently with any of the optimization techniques

* NEWRAP
performs the Newton-Raphson optimization technique. The algorithm combines a line-search
algorithm with ridging. The line-search algorithm LINESEARCH=2 is the default.

* NRRIDG
performs the Newton-Raphson optimization technique. For n < 40 and non-linear least squares,
this is the default.

* QUADAS
performs a special quadratic version of the active set strategy.

* QUANEW
chooses one of four quasi-Newton optimization algorithms which can be defined more precisely
with the UPDATE= option and modified with the LINESEARCH= option. This is the default for
40 < n < 400 or if there are nonlinear constraints.

* TRUREG
performs the trust region optimization technique.

576 4 Chapter 7: The NLP Procedure

UPDATE=method

UPD=method
specifies the update method for the (dual) quasi-Newton, double dogleg, hybrid quasi-Newton, or
conjugate gradient optimization technique. Not every update method can be used with each optimizer.
For more information, see the section “Optimization Algorithms” on page 597. Valid values for method
are as follows:

BFGS performs the original BFGS (Broyden, Fletcher, Goldfarb, & Shanno) update of the inverse
Hessian matrix.

DBFGS performs the dual BFGS (Broyden, Fletcher, Goldfarb, & Shanno) update of the Cholesky
factor of the Hessian matrix.

DDFP performs the dual DFP (Davidon, Fletcher, & Powell) update of the Cholesky factor of the
Hessian matrix.

DFP performs the original DFP (Davidon, Fletcher, & Powell) update of the inverse Hessian
matrix.

PB performs the automatic restart update method of Powell (1977) and Beale (1972).

FR performs the Fletcher-Reeves update (Fletcher 1987).

PR performs the Polak-Ribiere update (Fletcher 1987).

CD performs a conjugate-descent update of Fletcher (1987).

VARDEF=DF | N
specifies the divisor d used in the calculation of the covariance matrix and approximate standard errors.
If the SIGSQ= option is not specified, the default value is VARDEF=DF; otherwise, VARDEF=N is
the default. For more information, see the section “Covariance Matrix” on page 618.

VERSION=1]2|3

VS=1|2|3
specifies the version of the hybrid quasi-Newton optimization technique or the version of the quasi-
Newton optimization technique with nonlinear constraints.

For the hybrid quasi-Newton optimization technique,

VS=1 specifies version HY 1 of Fletcher and Xu (1987).
VS=2 specifies version HY2 of Fletcher and Xu (1987).
VS=3 specifies version HY3 of Fletcher and Xu (1987).

For the quasi-Newton optimization technique with nonlinear constraints,

VS=1 specifies update of the i vector like Powell (1978a, b) (update like VF02AD).
VS=2 specifies update of the u vector like Powell (1982b) (update like VMCWD).

In both cases, the default value is VS=2.

ARRAY Statement 4 577

VSINGULAR=r

VSING=r
specifies a relative singularity criterion r > 0 for measuring singularity of Hessian and crossproduct
Jacobian and their projected forms, which may have to be converted to compute the covariance matrix.
The default value is 1E—8 if the SINGULAR= option is not specified and the value of SINGULAR
otherwise. For more information, see the section “Covariance Matrix” on page 618.

XCONV=r[n]
XTOL=r[n]
specifies the relative parameter convergence criterion. For all techniques except NMSIMP, termination
requires a small relative parameter change in subsequent iterations:
magy [¢9) D)
0 D =7
max(|x], x| XSIZE)

For the NMSIMP technique, the same formula is used, but x(k) is defined as the vertex with the lowest

J
function value and xﬁk_l) is defined as the vertex with the highest function value in the simplex. The

default value is r=1E—8 for the NMSIMP technique and r=0 otherwise. The optional integer value n
specifies the number of successive iterations for which the criterion must be satisfied before the process
can be terminated.

XSIZE=r
specifies the parameter r > 0 of the relative parameter termination criterion. The default value is
r = 0. For more details, see the XCONV= option.

ARRAY Statement

ARRAY arrayname [dimensions] [$] [variables and constants] ; ;

The ARRAY statement is similar to, but not the same as, the ARRAY statement in the SAS DATA step. The
ARRAY statement is used to associate a name (of no more than eight characters) with a list of variables
and constants. The array name is used with subscripts in the program to refer to the array elements. The
following code illustrates this:

array r[8] rl-r8;

do i =1 to 8;
r[i] = O;
end;

The ARRAY statement does not support all the features of the DATA step ARRAY statement. It cannot
be used to give initial values to array elements. Implicit indexing of variables cannot be used; all array
references must have explicit subscript expressions. Only exact array dimensions are allowed; lower-bound
specifications are not supported and a maximum of six dimensions is allowed.

On the other hand, the ARRAY statement does allow both variables and constants to be used as array elements.
(Constant array elements cannot have values assigned to them.) Both dimension specification and the list of

578 4 Chapter 7: The NLP Procedure

elements are optional, but at least one must be given. When the list of elements is not given or fewer elements
than the size of the array are listed, array variables are created by suffixing element numbers to the array
name to complete the element list.

BOUNDS Statement
BOUNDS b con[,b con...];

where b_con is given in one of the following formats:

* number operator parameter_list operator number
e number operator parameter_list

* parameter_list operator number

and operator is <, <,>,>, or =.

Boundary constraints are specified with a BOUNDS statement. One- or two-sided boundary constraints are
allowed. The list of boundary constraints are separated by commas. For example,

bounds 0 <= al-a9 X <=1, -1 <= c2-c5;
bounds bl-bl0 y >= 0;

More than one BOUNDS statement can be used. If more than one lower (upper) bound for the same parameter
is specified, the maximum (minimum) of these is taken. If the maximum /; of all lower bounds is larger
than the minimum of all upper bounds u ; for the same variable x ;, the boundary constraint is replaced by
Xxj = 1; = min(u ;) defined by the minimum of all upper bounds specified for x ;.

BY Statement
BY variables ;

A BY statement can be used with PROC NLP to obtain separate analyses on DATA= data set observations
in groups defined by the BY variables. That means, for values of the TECH= option other than NONE, an
optimization problem is solved for each BY group separately. When a BY statement appears, the procedure
expects the input DATA= data set to be sorted in order of the BY variables. If the input data set is not sorted
in ascending order, it is necessary to use one of the following alternatives:

* Use the SORT procedure with a similar BY statement to sort the data.

* Use the BY statement option NOTSORTED or DESCENDING in the BY statement for the NLP
procedure. As a cautionary note, the NOTSORTED option does not mean that the data are unsorted
but rather that the data are arranged in groups (according to values of the BY variables) and that these
groups are not necessarily in alphabetical or increasing numeric order.

CRPJAC Statement 4 579

* Use the DATASETS procedure (in Base SAS software) to create an index on the BY variables.

For more information on the BY statement, refer to the discussion in SAS Language Reference: Concepts.
For more information on the DATASETS procedure, refer to the SAS Procedures Guide.

CRPJAC Statement
CRPJAC variables ;

The CRPJAC statement defines the crossproduct Jacobian matrix J 7 J used in solving least squares problems.
For more information, see the section “Derivatives” on page 596. If the DIAHES option is not specified, the
CRPJAC statement lists 72(n + 1)/2 variable names, which correspond to the elements (J 7 J) jks» J = kof
the lower triangle of the symmetric crossproduct Jacobian matrix listed by rows. For example, the statements

1sq £f1-£3;
decvar x1-x3;
crpjac jjl-3jjé;

correspond to the crossproduct Jacobian matrix

JJI1 JJ2 JJ4
JTy =1\ JJ2 JJ3 JJS
JJ4 JJ5 JJ6

If the DIAHES option is specified, only the n diagonal elements must be listed in the CRPJAC statement. The
n rows and n columns of the crossproduct Jacobian matrix must be in the same order as the n corresponding
parameter names listed in the DECVAR statement. To specify the values of nonzero derivatives, the variables
specified in the CRPJAC statement have to be defined at the left-hand side of algebraic expressions in
programming statements. For example, consider the Rosenbrock function:

proc nlp tech=levmar;
1sq f1 £2;
decvar x1 x2;
gradient gl g2;
crpjac cpjl-cpj3;

f1 = 10 » (x2 - x1 * x1);

£2 =1 - x1;

gl = =200 » x1 » (x2 - x1 x x1) - (1 - x1);
g2 = 100 » (x2 - x1 * x1);

cpjl = 400 » x1 » x1 + 1 ;
cpj2 = -200 *» x1;
cpj3 = 100;

run;

580 4 Chapter 7: The NLP Procedure

DECVAR Statement

DECVAR name_list [=numbers] [, name_list [=numbers] ...] ;

VAR name_list [=numbers] [, name_list [=numbers] ...] ;

PARMS name_list [=numbers] [, name_list [=numbers] ...] ;
PARAMETERS name_list [=numbers] [, name_list [=numbers] ...] ;

The DECVAR statement lists the names of the n > 0 decision variables and specifies grid search and initial
values for an iterative optimization process. The decision variables listed in the DECVAR statement cannot
also be used in the MIN, MAX, MINQUAD, MAXQUAD, LSQ, GRADIENT, HESSIAN, JACOBIAN,
CRPJAC, or NLINCON statement.

The DECVAR statement contains a list of decision variable names (not separated by commas) optionally
followed by an equals sign and a list of numbers. If the number list consists of only one number, this number
defines the initial value for all the decision variables listed to the left of the equals sign.

If the number list consists of more than one number, these numbers specify the grid locations for each of the
decision variables listed left of the equals sign. The TO and BY keywords can be used to specify a number
list for a grid search. When a grid of points is specified with a DECVAR statement, PROC NLP computes the
objective function value at each grid point and chooses the best (feasible) grid point as a starting point for the
optimization process. The use of the BEST= option is recommended to save computing time and memory for
the storing and sorting of all grid point information. Usually only feasible grid points are included in the grid
search. If the specified grid contains points located outside the feasible region and you are interested in the
function values at those points, it is possible to use the INFEASIBLE option to compute (and display) their
function values as well.

GRADIENT Statement
GRADIENT variables ;

The GRADIENT statement defines the gradient vector which contains the first-order derivatives of the
objective function f with respect to x1, ..., x,. For more information, see the section “Derivatives” on
page 596. To specify the values of nonzero derivatives, the variables specified in the GRADIENT statement
must be defined on the left-hand side of algebraic expressions in programming statements. For example,
consider the Rosenbrock function:

proc nlp tech=congra;
min y;
decvar x1 x2;
gradient gl g2;
yl = 10 » (x2 - x1 * x1);

y2 =1 - x1;

y = .5 % (yl » yl + y2 * y2);

gl = =200 * x1 » (x2 - x1 » x1) - (1 - x1);
g2 = 100 » (x2 - x1 * x1);

run;

HESSIAN Statement 4 581

HESSIAN Statement
HESSIAN variables ;

The HESSIAN statement defines the Hessian matrix G containing the second-order derivatives of the objective
function f with respect to x, . .., x,. For more information, see the section “Derivatives” on page 596.

If the DIAHES option is not specified, the HESSIAN statement lists n(n + 1)/2 variable names which
correspond to the elements G, j > k, of the lower triangle of the symmetric Hessian matrix listed by
rows. For example, the statements

min f£;
decvar x1 - x3;
hessian gl-g6;

correspond to the Hessian matrix

Gl G2 G4 02f/9x2 0%f/0x10xy 02 f/0x10x3
G=| G2 G3 G5 | =| 8f/oxa0x1 2f/0x2 0*f/9x20x3
G4 G5 G6 02 f/dx30x1 92 f)0xsdxs 92 f)0x2

If the DIAHES option is specified, only the n diagonal elements must be listed in the HESSIAN statement.
The n rows and n columns of the Hessian matrix G must correspond to the order of the n parameter names
listed in the DECVAR statement. To specify the values of nonzero derivatives, the variables specified in
the HESSIAN statement must be defined on the left-hand side of algebraic expressions in the programming
statements. For example, consider the Rosenbrock function:

proc nlp tech=nrridg;
min f£;
decvar x1 x2;
gradient gl g2;
hessian hl-h3;
fl = 10 » (x2 - x1 » x1);
f2 1 - x1;
£f = .5 (£1 » £f1 + £2 » £2);

gl = =200 * x1 * (x2 - x1 « x1) - (1 - x1);
g2 = 100 » (x2 - x1 * x1);
hl = =200 (x2 - 3 * x1 * x1) + 1;
h2 = -200 * x1;
h3 = 100;
run;
INCLUDE Statement

INCLUDE modée! files ;

The INCLUDE statement can be used to append model code to the current model code. The contents of
included model files, created using the OUTMODEL-= option, are inserted into the model program at the
position in which the INCLUDE statement appears.

582 4 Chapter 7: The NLP Procedure

JACNLC Statement
JACNLC variables ;
The JACNLC statement defines the Jacobian matrix for the system of constraint functions c1(x), ..., cpme(X).
The statements list the mc X n variable names which correspond to the elements CJ; j,i = 1,...,mc; j =
1,...,n, of the Jacobian matrix by rows.

For example, the statements

nlincon cl-c3;
decvar x1-x2;
jacnlc cjl-cj6;

correspond to the Jacobian matrix

cJ1 CJ2 8c1/8x1
CJ = CJ3 CJ4 = 862/8)61
CJ5 CJo 803/3)61

8(’1/8)(2
86‘2/8)62
303/8)62

The mc rows of the Jacobian matrix must be in the same order as the mc corresponding names of nonlinear
constraints listed in the NLINCON statement. The n columns of the Jacobian matrix must be in the same
order as the n corresponding parameter names listed in the DECVAR statement. To specify the values of
nonzero derivatives, the variables specified in the JACNLC statement must be defined on the left-hand side of

algebraic expressions in programming statements.
For example,
array cd[3,4] cdl-cdl2;

nlincon cl-c3 >= 0;
jacnlc cdl-cdl2;

cl =8 - x1 » X1 - x2 * X2 - x3 * x3 - x4 x x4 -

x1l + %2 - x3 + x4;
c2

x1l + x4;

10 - x1 » X1 — 2 » X2 * X2 — x3 * X3 - 2 » x4 * x4 +

c3 =5 -2 x x1 » X2 — X2 * X2 — X3 *» x3 - 2 * x1 + x2 + x4;

cd[l,1]= -1 - 2 * x1; cd[1l,2]=1 - 2 * x2;
cd[1l,3]= -1 - 2 * x3; cd[l,4]=1 - 2 * x4;
cd[2,1]= 1 - 2 * x1; cd[2,2]= -4 * x2;
cd[2,3]= -2 * x3; cd[2,4]=1 - 4 *x x4;
cd[3,1]= -2 - 4 * x1; cd[3,2]=1 - 2 * x2;
cd[3,3]= -2 * x3; cd[3,4]= 1;

JACOBIAN Statement
JACOBIAN variables ;

The JACOBIAN statement defines the JACOBIAN matrix J for a system of objective functions. For more

information, see the section “Derivatives” on page 596.

LABEL Statement 4 583

The JACOBIAN statement lists 7 X n variable names that correspond to the elements J; j,i = 1,...,m; j =
1,...,n, of the Jacobian matrix listed by rows.

For example, the statements

1sq £f1-£3;
decvar x1 x2;
jacobian jl1-j6;

correspond to the Jacobian matrix

J1 J2 8f1/8x1 afi/axz
J=1| J3 J4 | =| af/ox1 9fa/0x>
J5 J6 8]5/8x1 8]3/8x2

The m rows of the Jacobian matrix must correspond to the order of the m function names listed in the MIN,
MAX, or LSQ statement. The n columns of the Jacobian matrix must correspond to the order of the n
decision variables listed in the DECVAR statement. To specify the values of nonzero derivatives, the variables
specified in the JACOBIAN statement must be defined on the left-hand side of algebraic expressions in
programming statements.

For example, consider the Rosenbrock function:

proc nlp tech=levmar;
array jl[2,2] jl-j4;
1sq £f1 £2;
decvar x1 x2;
jacobian jl1-3j4;

fl = 10 » (x2 - x1 » x1);

f2 = 1 - x1;

j[1,1] = =20 » x1;

jl[1,2] = 10;

jl2,1] = -1;

jl2,2] = 0; /* is not needed */
run;

The JACOBIAN statement is useful only if more than one objective function is given in the MIN, MAX, or
LSQ statement, or if a DATA= input data set specifies more than one function. If the MIN, MAX, or LSQ
statement contains only one objective function and no DATA= input data set is used, the JACOBIAN and
GRADIENT statements are equivalent. In the case of least squares minimization, the crossproduct Jacobian
is used as an approximate Hessian matrix.

LABEL Statement
LABEL variable="label’ [,variable="label’...] ;

The LABEL statement can be used to assign labels (up to 40 characters) to the decision variables listed in the
DECVAR statement. The INEST= data set can also be used to assign labels. The labels are attached to the
output and are used in an OUTEST= data set.

584 4 Chapter 7: The NLP Procedure

LINCON Statement
LINCON [/ con[, !l con...];

where [_con is given in one of the following formats:

* linear_term operator number

* number operator linear_term

and linear_term is of the following form:
< +4|— >< numberx > variable < +|— < number* > variable... >

The value of operator can be one of the following: <, <,>,>, or =.

The LINCON statement specifies equality or inequality constraints

n
Zaijxj{§|=|2}bi fori =1,...,m
Jj=1

separated by commas. For example, the constraint 4x; — 3x = 0 is expressed as

decvar x1 x2;
lincon 4 * x1 - 3 * x2 = 0;

and the constraints
10x1 — x5 > 10

X1+ 5x2 > 15
are expressed as
decvar x1 x2;

lincon 10 <= 10 * x1 - x2,
x1l + 5 x x2 >= 15;

MATRIX Statement

MATRIX M_name pattern_definitions ;

The MATRIX statement defines a matrix H and the vector g, which can be given in the MINQUAD or
MAXQUAD statement. The matrix H and vector g are initialized to zero, so that only the nonzero elements
are given. The five different forms of the MATRIX statement are illustrated with the following example:

100 10 1 0 |
10 100 10 1 2

H = 1 10 100 10 £§= 1 3 ¢=0
0 1 10 100 4

MATRIX Statement 4 585

Each MATRIX statement first names the matrix or vector and then lists its elements. If more than one
MATRIX statement is given for the same matrix, the later definitions override the earlier ones.

The rows and columns in matrix H and vector g correspond to the order of decision variables in the DECVAR
statement.

* Full Matrix Definition: The MATRIX statement consists of H_name or g_name followed by an
equals sign and all (nonredundant) numerical values of the matrix H or vector g. Assuming symmetry,
only the elements of the lower triangular part of the matrix H must be listed. This specification should
be used mainly for small problems with almost dense H matrices.

MATRIX H= 100

10 100

1 10 100

0 1 10 100;
MATRIX G= 1 2 3 4;

* Band-diagonal Matrix Definition: This form of pattern definition is useful if the H matrix has
(almost) constant band-diagonal structure. The MATRIX statement consists of H_name followed by
empty brackets [,], an equals sign, and a list of numbers to be assigned to the diagonal and successive
subdiagonals.

MATRIX H[,]= 100 10 1;
MATRIX G= 1 2 3 4;

» Sparse Matrix Definitions: In each of the following three specification types, the H_name or g_name
is followed by a list of pattern definitions separated by commas. Each pattern definition consists of a
location specification in brackets on the left side of an equals sign that is followed by a list of numbers.

— (Sub)Diagonalwise: This form of pattern definition is useful if the H matrix contains nonzero
elements along diagonals or subdiagonals. The starting location is specified by an index pair in
brackets [i, j]. The expression k * num on the right-hand side specifies that num is assigned
to the elements [i, j],...,[i + k — 1, j + k — 1] in a diagonal direction of the H matrix. The
special case k = 1 can be used to assign values to single nonzero element locations in H.

MATRIX H [1,1]= 4 % 100,
[2,1]1= 3 * 10,
[3,1]1= 2 * 1;

MATRIX G [1,1]=1 2 3 4;

— Columnwise Starting in Diagonal: This form of pattern definition is useful if the H matrix
contains nonzero elements columnwise starting in the diagonal. The starting location is specified
by only one index j in brackets [, j]. The k numbers at the right-hand side are assigned to the
elements [/, j],...,[min(j + k — 1,n), j].

MATRIX H [,1]= 100 10 1,
[,2]= 100 10 1,
[,3]= 100 10,
[,4]= 100;

MATRIX G [,1]1=1 2 3 4;

586 4 Chapter 7: The NLP Procedure

— Rowwise Starting in First Column: This form of pattern definition is useful if the H matrix
contains nonzero elements rowwise ending in the diagonal. The starting location is specified
by only one index i in brackets [7,]. The k numbers at the right-hand side are assigned to the
elements [i, 1],..., [{, min(k,7)].

MATRIX H [1,]= 100,
[2,1= 10 100,
[3,]= 1 10 100,
[4,]= 0 1 10 100;
MATRIX G [1,]=1 2 3 4;

MIN, MAX, and LSQ Statements
MIN variables ;
MAX variables ;
LSQ variables ;

The MIN, MAX, or LSQ statement specifies the objective functions. Only one of the three statements can
be used at a time and at least one must be given. The MIN and LSQ statements are for minimizing the
objective function, and the MAX statement is for maximizing the objective function. The MIN, MAX, or
LSQ statement lists one or more variables naming the objective functions f;,i = 1,...,m (later defined by
SAS program code).

o If the MIN or MAX statement lists m function names fi,..., fm, the objective function f is

[=>"f

i=1

o If the LSQ statement lists m function names f1, ..., fn, the objective function f is

Fo =33)

i=1

Note that the LSQ statement can be used only if TECH=LEVMAR or TECH=HYQUAN.

MINQUAD and MAXQUAD Statements
MINQUAD H_name [, g name [, c number]];
MAXQUAD H_name [, g name [, c_number]] ;

The MINQUAD and MAXQUAD statements specify the matrix H, vector g, and scalar ¢ that define a
quadratic objective function. The MINQUAD statement is for minimizing the objective function and the
MAXQUAD statement is for maximizing the objective function.

MINQUAD and MAXQUAD Statements 4 587

The rows and columns in H and g correspond to the order of decision variables given in the DECVAR
statement. Specifying the objective function with a MINQUAD or MAXQUAD statement indirectly defines
the analytic derivatives for the objective function. Therefore, statements specifying derivatives are not valid
in these cases. Also, only use these statements when TECH=LICOMP or TECH=QUADAS and no nonlinear
constraints are imposed.

There are three ways of using the MINQUAD or MAXQUAD statement:

» Using ARRAY Statements:
The names H_name and g_name specified in the MINQUAD or MAXQUAD statement can be used in
ARRAY statements. This specification is mainly for small problems with almost dense H matrices.

proc nlp pall;
array h[2,2] .4 0
0 4;
minquad h, -100;
decvar x1 x2 = -1;
bounds 2 <= x1 <= 50,
-50 <= x2 <= 50;
lincon 10 <= 10 * x1 - x2;
run;

» Using Elementwise Setting:
The names H_name and g_name specified in the MINQUAD or MAXQUAD statement can be
followed directly by one-dimensional indices specifying the corresponding elements of the matrix
H and vector g. These element names can be used on the left side of numerical assignments. The
one-dimensional index value / following H_name, which corresponds to the element H;;, is computed
byl = (i — 1)n+ j,i > j. The matrix H and vector g are initialized to zero, so that only the nonzero
elements must be given. This specification is efficient for small problems with sparse H matrices.

proc nlp pall;
minquad h, -100;
decvar x1 x2;
bounds 2 <= x1 <= 50,
-50 <= x2 <= 50;
lincon 10 <= 10 * x1 - x2;
hl = .4; hd = 4;
run;

* Using MATRIX Statements:
The names H_name and g_name specified in the MINQUAD or MAXQUAD statement can be used
in MATRIX statements. There are different ways to specify the nonzero elements of the matrix H
and vector g by MATRIX statements. The following example illustrates one way to use the MATRIX
statement.

proc nlp all;
matrix h[l,1] = .4 4;
minquad h, -100;
decvar x1 x2 = -1;

588 4 Chapter 7: The NLP Procedure

bounds 2 <= x1 <= 50,
-50 <= x2 <= 50;
lincon 10 <= 10 * x1 - x2;
run;

NLINCON Statement
NLINCON nicon [, nicon ...] [/ option] ;
NLC nicon [, nicon ...] [/ option] ;

where nlcon is given in one of the following formats:

* number operator variable_list operator number
* number operator variable_list

* variable_list operator number

and operator is <, <, >, >, or =. The value of option can be SUMOBS or EVERYOBS.

General nonlinear equality and inequality constraints are specified with the NLINCON statement. The syntax
of the NLINCON statement is similar to that of the BOUNDS statement with two small additions:

* The BOUNDS statement can contain only the names of decision variables. The NLINCON statement
can also contain the names of continuous functions of the decision variables. These functions must be
computed in the program statements, and since they can depend on the values of some of the variables
in the DATA= data set, there are two possibilities:

— If the continuous functions should be summed across all observations read from the DATA= data
set, the NLINCON statement must be terminated by the / SUMOBS option.

— If the continuous functions should be evaluated separately for each observation in the data set,
the NLINCON statement must be terminated by the / EVERYOBS option. One constraint is
generated for each observation in the data set.

* If the continuous function should be evaluated only once for the entire data set, the NLINCON
statement has the same form as the BOUNDS statement. If this constraint does depend on the values
of variables in the DATA= data set, it is evaluated using the data of the first observation.

One- or two-sided constraints can be specified in the NLINCON statement. However, equality constraints
must be one-sided. The pairs of operators (<,<=) and (>,>=) are treated in the same way.

These three statements require the values of the three functions vy, vz, v3 to be between zero and ten, and
they are equivalent:

PROFILE Statement 4 589

nlincon 0 <= v1-v3,
vl-v3 <= 10;

nlincon 0 <= vl-v3 <= 10;

nlincon 10 >= v1-v3 >= 0;

Also, consider the Rosen-Suzuki problem. It has three nonlinear inequality constraints:

8 —x7—Xx3—X3—X5—x1 +X2— X3+ x4

10 — x7 — 2x5 —x3 —2x3 4 x1 + x4

IV v v

5-2x7 — x5 —x3—2x1 + X2+ x4
These are specified as

nlincon cl-c3 >= 0;

cl =8 - x1 » x1 - x2 » x2 - x3 * x3 - x4 * x4 -
x1l + x2 - x3 + x4;
c2 = 10 - x1 * x1 — 2 * X2 * x2 — X3 * x3 — 2 » x4 x x4 +
x1l + x4;
5 -2 % x1 » x1 — x2 * x2 — x3 » x3 - 2 » x1 + x2 + x4;

c3

NOTE: QUANEW and NMSIMP are the only optimization subroutines that support the NLINCON statement.

PROFILE Statement
PROFILE parms [/[ALPHA= values] [options]] ;
where parms is given in the format pnam_1 pnam_2 ... pnam_n, and values is the list of o values in (0,1).

The PROFILE statement

* writes the (x, y) coordinates of profile points for each of the listed parameters to the OUTEST= data
set

* displays, or writes to the OUTEST= data set, the profile likelihood confidence limits (PL CLs) for
the listed parameters for the specified o values. If the approximate standard errors are available, the
corresponding Wald confidence limits can be computed.

When computing the profile points or likelihood profile confidence intervals, PROC NLP assumes that a
maximization of the log likelihood function is desired. Each point of the profile and each endpoint of the
confidence interval is computed by solving corresponding nonlinear optimization problems.

590 4 Chapter 7: The NLP Procedure

The keyword PROFILE must be followed by the names of parameters for which the profile or the PL CLs
should be computed. If the parameter name list is empty, the profiles and PL CLs for all parameters are
computed. Then, optionally, the « values follow. The list of « values may contain TO and BY keywords.
Each element must satisfy 0 < o < 1. The following is an example:

profile 111-115 ul-u5 c /
alpha= .9 to .1 by -.1 .09 to .01 by -.01;

Duplicate « values or values outside (0, 1) are automatically eliminated from the list.

A number of additional options can be specified.

FFACTOR=r specifies the factor relating the discrepancy function f(6) to the y? quantile. The
default value is r = 2.

FORCHI=F | CHI defines the scale for the y values written to the OUTEST= data set. For FORCHI=F,
the y values are scaled to the values of the log likelihood function f = f(0);
for FORCHI=CHI, the y values are scaled so that y = y2. The default value is
FORCHI=F.

FEASRATIO=r specifies a factor of the Wald confidence limit (or an approximation of it if standard
errors are not computed) defining an upper bound for the search for confidence limits.
In general, the range of x values in the profile graph is between r = 1 and r = 2 times
the length of the corresponding Wald interval. For many examples, the y? quantiles
corresponding to small o values define a y level y — %ql (1 —), which is too far away
from y to be reached by y(x) for x within the range of twice the Wald confidence
limit. The search for an intersection with such a y level at a practically infinite value of
x can be computationally expensive. A smaller value for r can speed up computation
time by restricting the search for confidence limits to a region closer to X. The default
value of r = 1000 practically disables the FEASRATIO= option.

OUTTABLE specifies that the complete set 6 of parameter estimates rather than only x = 0;
for each confidence limit is written to the OUTEST= data set. This output can be
helpful for further analyses on how small changes in x = 6; affect the changes in the

Oii #J.

For some applications, it may be computationally less expensive to compute the PL confidence limits for a
few parameters than to compute the approximate covariance matrix of many parameters, which is the basis
for the Wald confidence limits. However, the computation of the profile of the discrepancy function and the
corresponding CLs in general will be much more time-consuming than that of the Wald CLs.

Program Statements

This section lists the program statements used to code the objective function and nonlinear constraints and
their derivatives, and it documents the differences between program statements in the NLP procedure and
program statements in the DATA step. The syntax of program statements used in PROC NLP is identical to
that used in the CALIS, GENMOD, and MODEL procedures (refer to the SAS/ETS User’s Guide).

Most of the program statements which can be used in the SAS DATA step can also be used in the NLP
procedure. See the SAS Language Guide or base SAS documentation for a description of the SAS program

statements.

ABORT;
CALL name [(expression [, expression...]) [;
DELETE;
DO [variable = expression
[TO expression | [BY expression |

[, expression [TO expression | [BY expression | ...

)
[WHILE expression | [UNTIL expression [;
END;
GOTO statement_label,
IF expression;
IF expression THEN program_statement,;
ELSE program_statement;
variable = expression,;
variable + expression;
LINK statement_label,
pUT [variable] [=] [...];

RETURN;

SELECT [(expression) 1;

STOP;

SUBSTR (variable, index, length) = expression;

WHEN (expression) program_statement;
OTHERWISE program_statement,

Program Statements 4 591

For the most part, the

SAS program statements work as they do in the SAS DATA step as documented in the SAS Language Guide.
However, there are several differences that should be noted.

* The ABORT statement does not allow any arguments.

¢ The DO statement does not allow a character index variable. Thus

do 1 =1,2,3;

is supported; however,

1S not.

doizlAI,/BI,IC/;

* The PUT statement, used mostly for program debugging in PROC NLP, supports only some of the
features of the DATA step PUT statement, and has some new features that the DATA step PUT statement
does not:

— The PROC NLP PUT statement does not support line pointers, factored lists, iteration factors,
overprinting, _INFILE_, the colon (:) format modifier, or “$”.

— The PROC NLP PUT statement does support expressions, but the expression must be enclosed
inside of parentheses. For example, the following statement displays the square root of x: put
(sqrt (x));

— The PROC NLP PUT statement supports the print item _PDV_ to print a formatted listing of all
variables in the program. For example, the following statement displays a more readable listing
of the variables than the _all_ print item: put _pdv_;

592 4 Chapter 7: The NLP Procedure

* The WHEN and OTHERWISE statements allow more than one target statement. That is, DO/END
groups are not necessary for multiple statement WHENS. For example, the following syntax is valid:

SELECT;

WHEN (expl) stmtl;
stmt2;

WHEN (exp2) stmi3;
stmt4;

END;

It is recommended to keep some kind of order in the input of NLP, that is, between the statements that define
decision variables and constraints and the program code used to specify objective functions and derivatives.

Use of Special Variables in Program Code

Except for the quadratic programming techniques (QUADAS and LICOMP) that do not execute program state-
ments during the iteration process, several special variables in the program code can be used to communicate
with PROC NLP in special situations:

* _OBS_ If a DATA= input data set is used, it is possible to access a variable _OBS_ which contains
the number of the observation processed from the data set. You should not change the content of the
OBS variable. This variable enables you to modify the programming statements depending on the
observation number processed in the DATA= input data set. For example, to set variable A to 1 when
observation 10 is processed, and otherwise to 2, it is possible to specify

IF _OBS_ = 10 THEN A=1; ELSE A=2;

* _ITER_ This variable is set by PROC NLP, and it contains the number of the current iteration of
the optimization technique as it is displayed in the optimization history. You should not change the
content of the _ITER_ variable. It is possible to read the value of this variable in order to modify the
programming statements depending on the iteration number processed. For example, to display the
content of the variables A, B, and C when there are more than 100 iterations processed, it is possible to
use

IF _ITER_ > 100 THEN PUT A B C;

* _DPROC_ This variable is set by PROC NLP to indicate whether the code is called only to obtain the
values of the m objective functions f; (_ DPROC_=0) or whether specified derivatives (defined by the
GRADIENT, JACOBIAN, CRPJAC, or HESSIAN statement) also have to be computed (_DPROC_=1).
You should not change the content of the _DPROC_ variable. Checking the _DPROC_ variable makes
it possible to save computer time by not performing derivative code that is not needed by the current
call. In particular, when a DATA= input data set is used, the code is processed many times to compute
only the function values. If the programming statements in the program contain the specification of
computationally expensive first- and second-order derivatives, you can put the derivative code in an IF
statement that is processed only if _DPROC_ is not zero.

* _INDF_ The _INDF_ variable is set by PROC NLP to inform you of the source of calls to the function
or derivative programming.

Program Statements 4 593

INDF=0 indicates the first function call in a grid search. This is also the first call evaluating the
programming statements if there is a grid search defined by grid values in the DECVAR statement.

INDF=1 indicates further function calls in a grid search.

INDF=2 indicates the call for the feasible starting point. This is also the first call evaluating the
programming statements if there is no grid search defined.

INDF=3 indicates calls from a gradient-checking algorithm.

INDF=4 indicates calls from the minimization algorithm. The _ITER_ variable contains the
iteration number.

INDF=5 If the active set algorithm leaves the feasible region (due to rounding errors), an algorithm
tries to return it into the feasible region; _INDF_=5 indicates a call that is done when such a step
is successful.

INDF=6 indicates calls from a factorial test subroutine that tests the neighborhood of a point x for
optimality.
INDF=7, 8 indicates calls from subroutines needed to compute finite-difference derivatives using

only values of the objective function. No nonlinear constraints are evaluated.

INDF=9 indicates calls from subroutines needed to compute second-order finite-difference deriva-
tives using analytic (specified) first-order derivatives. No nonlinear constraints are evaluated.

INDF=10 indicates calls where only the nonlinear constraints but no objective function are needed.
The analytic derivatives of the nonlinear constraints are computed.

INDF=11 indicates calls where only the nonlinear constraints but no objective function are needed.
The analytic derivatives of the nonlinear constraints are not computed.

INDF=-1 indicates the last call at the final solution.
You should not change the content of the _INDF_ variable.
e _LIST_ You can set the _LIST_ variable to control the output during the iteration process:

LIST=0 is equivalent to the NOPRINT option. It suppresses all output.

LIST=1 is equivalent to the PSUMMARY but not the PHISTORY option. The optimization start
and termination messages are displayed. However, the PSUMMARY option suppresses the
output of the iteration history.

LIST=2 is equivalent to the PSHORT option or to a combination of the PSUMMARY and PHIS-
TORY options. The optimization start information, the iteration history, and termination message
are displayed.

LIST=3 is equivalent to not PSUMMARY, not PSHORT, and not PALL. The optimization start
information, the iteration history, and the termination message are displayed.

LIST=4 is equivalent to the PALL option. The extended optimization start information (also
containing settings of termination criteria and other control parameters) is displayed.

LIST =5 In addition to the iteration history, the vector x® of parameter estimates is displayed for
each iteration k.

LIST=6 In addition to the iteration history, the vector x) of parameter estimates and the gradient
g% (if available) of the objective function are displayed for each iteration k.

594 4 Chapter 7: The NLP Procedure

It is possible to set the _LIST_ variable in the program code to obtain more or less output in each
iteration of the optimization process. For example,

IF _ITER = 11 THEN _LIST =5;
ELSE IF _ITER > 11 THEN _LIST =1;
ELSE _LIST =3;

* _TOOBIG_ The value of _TOOBIG_ is initialized to 0 by PROC NLP, but you can set it to 1 during
the iteration, indicating problems evaluating the program statements. The objective function and
derivatives must be computable at the starting point. However, during the iteration it is possible to set
the _TOOBIG_ variable to 1, indicating that the programming statements (computing the value of
the objective function or the specified derivatives) cannot be performed for the current value of xy.
Some of the optimization techniques check the value of _TOOBIG_ and try to modify the parameter
estimates so that the objective function (or derivatives) can be computed in a following trial.

* _NOBS_ The value of the _NOBS_ variable is initialized by PROC NLP to the product of the number
of functions mfun specified in the MIN, MAX or LSQ statement and the number of valid observations
nobs in the current BY group of the DATA= input data set. The value of the _NOBS_ variable is used
for computing the scalar factor of the covariance matrix (see the COV=, VARDEF=, and SIGSQ=
options). If you reset the value of the _NOBS_ variable, the value that is available at the end of the
iteration is used by PROC NLP to compute the scalar factor of the covariance matrix.

* _DF_ The value of the _DF_ variable is initialized by PROC NLP to the number n of parameters
specified in the DECVAR statement. The value of the _DF_ variable is used for computing the scalar
factor d of the covariance matrix (see the COV=, VARDEF=, and SIGSQ= options). If you reset the
value of the _DF __ variable, the value that is available at the end of the iteration is used by PROC NLP
to compute the scalar factor of the covariance matrix.

* _LASTF_ In each iteration (except the first one), the value of the _LASTF_ variable is set by PROC
NLP to the final value of the objective function that was achieved during the last iteration. This value
should agree with the value that is displayed in the iteration history and that is written in the OUTEST=
data set when the OUTITER option is specified.

Details: NLP Procedure

Criteria for Optimality
PROC NLP solves

minyerr f(x)
subject to ¢i(x) =0, i =1,...,me
ci(x) =0, i=me+1,....,m

where f is the objective function and the ¢;’s are the constraint functions.

Criteria for Optimality 4 595

A point x is feasible if it satisfies all the constraints. The feasible region G is the set of all the feasible points.
A feasible point x* is a global solution of the preceding problem if no point in G has a smaller function value
than f(x*). A feasible point x* is a local solution of the problem if there exists some open neighborhood
surrounding x* in that no point has a smaller function value than f(x*). Nonlinear programming algorithms
cannot consistently find global minima. All the algorithms in PROC NLP find a local minimum for this
problem. If you need to check whether the obtained solution is a global minimum, you may have to run
PROC NLP with different starting points obtained either at random or by selecting a point on a grid that
contains G.

Every local minimizer x* of this problem satisfies the following local optimality conditions:

* The gradient (vector of first derivatives) g(x*) = V f(x™*) of the objective function f (projected toward
the feasible region if the problem is constrained) at the point x* is zero.

« The Hessian (matrix of second derivatives) G(x*) = V2 f(x*) of the objective function f (projected
toward the feasible region G in the constrained case) at the point x™* is positive definite.

Most of the optimization algorithms in PROC NLP use iterative techniques that result in a sequence of points
x%, ..., x", ..., that converges to a local solution x*. At the solution, PROC NLP performs tests to confirm

that the (projected) gradient is close to zero and that the (projected) Hessian matrix is positive definite.

Karush-Kuhn-Tucker Conditions
An important tool in the analysis and design of algorithms in constrained optimization is the Lagrangian
function, a linear combination of the objective function and the constraints:

L(x,A) = f(x) = D hici(x)

i=1

The coefficients A; are called Lagrange multipliers. This tool makes it possible to state necessary and
sufficient conditions for a local minimum. The various algorithms in PROC NLP create sequences of points,
each of which is closer than the previous one to satisfying these conditions.

Assuming that the functions f and ¢; are twice continuously differentiable, the point x* is a local minimum
of the nonlinear programming problem, if there exists a vector A* = (A}, ..., A}) that meets the following
conditions.
1. First-order Karush-Kuhn-Tucker conditions:

ci(x*) =0, i=1,...,me

ci(x*) >0, AF >0, Afci(x*) =0, i=m.+1,....m

ViL(x*,A*) =0

2. Second-order conditions: Each nonzero vector y € R" that satisfies

i=1,...,mg

T (x*) =
Y Vxci(x™) =0 Vie{me+1,....m: 17 >0}

also satisfies
yIVZL(x*,A*)y >0

Most of the algorithms to solve this problem attempt to find a combination of vectors x and A for which the
gradient of the Lagrangian function with respect to x is zero.

596 4 Chapter 7: The NLP Procedure

Derivatives

The first- and second-order conditions of optimality are based on first and second derivatives of the objective
function f and the constraints c; .

The gradient vector contains the first derivatives of the objective function f with respect to the parameters
X1,..., Xy, as follows:

a
e =V = (1)

J

The n x n symmetric Hessian matrix contains the second derivatives of the objective function f with respect

to the parameters x1, ..., X5, as follows:
82
60 = V210 = (511
0x j 0xg

For least squares problems, the m x n Jacobian matrix contains the first-order derivatives of the m objective
functions f; (x) with respect to the parameters x1, ..., X5, as follows:

dafi
J(x>=<Vf1,...,me>=(af)

J
In the case of least squares problems, the crossproduct Jacobian

m
JTJ = (Z o i)
= dx;j Oxg
is used as an approximate Hessian matrix. It is a very good approximation of the Hessian if the residuals at
the solution are “small.” (If the residuals are not sufficiently small at the solution, this approach may result in
slow convergence.) The fact that it is possible to obtain Hessian approximations for this problem that do not
require any computation of second derivatives means that least squares algorithms are more efficient than

unconstrained optimization algorithms. Using the vector f(x) = (f1(x),..., fm(x))T of function values,
PROC NLP computes the gradient g(x) by

g(x) =JT(x) f(x)

The mc x n Jacobian matrix contains the first-order derivatives of the mc nonlinear constraint functions
ci(x),i =1,..., mc, with respect to the parameters x1, . .., X, as follows:

dc;
CI(x) = (Ve ... Veme) = (a;)
J

PROC NLP provides three ways to compute derivatives:

* It computes analytical first- and second-order derivatives of the objective function f with respect to the
n variables x ;.

* It computes first- and second-order finite-difference approximations to the derivatives. For more
information, see the section “Finite-Difference Approximations of Derivatives” on page 607.

* The user supplies formulas for analytical or numerical first- and second-order derivatives of the
objective function in the GRADIENT, JACOBIAN, CRPJAC, and HESSIAN statements. The JACNLC
statement can be used to specify the derivatives for the nonlinear constraints.

Optimization Algorithms 4 597

Optimization Algorithms

There are three groups of optimization techniques available in PROC NLP. A particular optimizer can be
selected with the TECH= option in the PROC NLP statement.

Table 7.2 Karush-Kuhn-Tucker Conditions

Algorithm TECH=
Linear Complementarity Problem LICOMP
Quadratic Active Set Technique QUADAS
Trust-Region Method TRUREG
Newton-Raphson Method with Line Search NEWRAP
Newton-Raphson Method with Ridging NRRIDG
Quasi-Newton Methods (DBFGS, DDFP, BFGS, DFP) QUANEW
Double Dogleg Method (DBFGS, DDFP) DBLDOG
Conjugate Gradient Methods (PB, FR, PR, CD) CONGRA
Nelder-Mead Simplex Method NMSIMP
Levenberg-Marquardt Method LEVMAR
Hybrid Quasi-Newton Methods (DBFGS, DDFP) HYQUAN

Since no single optimization technique is invariably superior to others, PROC NLP provides a variety
of optimization techniques that work well in various circumstances. However, it is possible to devise
problems for which none of the techniques in PROC NLP can find the correct solution. Moreover, nonlinear
optimization can be computationally expensive in terms of time and memory, so care must be taken when
matching an algorithm to a problem.

All optimization techniques in PROC NLP use O(n?) memory except the conjugate gradient methods, which
use only O(n) memory and are designed to optimize problems with many variables. Since the techniques are
iterative, they require the repeated computation of

the function value (optimization criterion)

the gradient vector (first-order partial derivatives)

for some techniques, the (approximate) Hessian matrix (second-order partial derivatives)

values of linear and nonlinear constraints

the first-order partial derivatives (Jacobian) of nonlinear constraints

However, since each of the optimizers requires different derivatives and supports different types of constraints,
some computational efficiencies can be gained. The following table shows, for each optimization technique,
which derivatives are needed (FOD: first-order derivatives; SOD: second-order derivatives) and what kinds of
constraints (BC: boundary constraints; LIC: linear constraints; NLC: nonlinear constraints) are supported.

598 4 Chapter 7: The NLP Procedure

Algorithm FOD SOD BC LIC NLC

LICOMP - - X X -
QUADAS - - X X -
TRUREG X X X X -
NEWRAP X X X X -
NRRIDG X X X X -
QUANEW X - X X X
DBLDOG X - X X -
CONGRA X - X X -
NMSIMP - - X X X
LEVMAR X - X X -
HYQUAN X - X X -

Preparation for Using Optimization Algorithms

It is rare that a problem is submitted to an optimization algorithm “as is.” By making a few changes in your
problem, you can reduce its complexity, which would increase the chance of convergence and save execution
time.

* Whenever possible, use linear functions instead of nonlinear functions. PROC NLP will reward you
with faster and more accurate solutions.

* Most optimization algorithms are based on quadratic approximations to nonlinear functions. You
should try to avoid the use of functions that cannot be properly approximated by quadratic functions.
Try to avoid the use of rational functions.

For example, the constraint

sin(x)
x+1

should be replaced by the equivalent constraint

>0

sin(x)(x +1) >0

and the constraint

x+1

should be replaced by the equivalent constraint

sin(x) 1

sin(x) —-(x+1) =0
* Try to avoid the use of exponential functions, if possible.

* If you can reduce the complexity of your function by the addition of a small number of variables, it
may help the algorithm avoid stationary points.

* Provide the best starting point you can. A good starting point leads to better quadratic approximations
and faster convergence.

Optimization Algorithms 4 599

Choosing an Optimization Algorithm

The factors that go into choosing a particular optimizer for a particular problem are complex and may involve
trial and error. Several things must be taken into account. First, the structure of the problem has to be
considered: Is it quadratic? least squares? Does it have linear or nonlinear constraints? Next, it is important
to consider the type of derivatives of the objective function and the constraints that are needed and whether
these are analytically tractable or not. This section provides some guidelines for making the right choices.

For many optimization problems, computing the gradient takes more computer time than computing the
function value, and computing the Hessian sometimes takes much more computer time and memory than
computing the gradient, especially when there are many decision variables. Optimization techniques that do
not use the Hessian usually require more iterations than techniques that do use Hessian approximations (such
as finite differences or BFGS update) and so are often slower. Techniques that do not use Hessians at all tend
to be slow and less reliable.

The derivative compiler is not efficient in the computation of second-order derivatives. For large problems,
memory and computer time can be saved by programming your own derivatives using the GRADIENT,
JACOBIAN, CRPJAC, HESSIAN, and JACNLC statements. If you are not able to specify first- and second-
order derivatives of the objective function, you can rely on finite-difference gradients and Hessian update
formulas. This combination is frequently used and works very well for small and medium problems. For
large problems, you are advised not to use an optimization technique that requires the computation of second
derivatives.

The following provides some guidance for matching an algorithm to a particular problem.

* Quadratic Programming

— QUADAS
- LICOMP

* General Nonlinear Optimization

— Nonlinear Constraints

* Small Problems: NMSIMP
Not suitable for highly nonlinear problems or for problems with n > 20.

+ Medium Problems: QUANEW

— Only Linear Constraints

* Small Problems: TRUREG (NEWRAP, NRRIDG)
(n < 40) where the Hessian matrix is not expensive to compute. Sometimes NRRIDG can
be faster than TRUREG, but TRUREG can be more stable. NRRIDG needs only one matrix
with n(n + 1)/2 double words; TRUREG and NEWRAP need two such matrices.

+ Medium Problems: QUANEW (DBLDOG)
(n < 200) where the objective function and the gradient are much faster to evaluate than
the Hessian. QUANEW and DBLDOG in general need more iterations than TRUREG,
NRRIDG, and NEWRAP, but each iteration can be much faster. QUANEW and DBLDOG
need only the gradient to update an approximate Hessian. QUANEW and DBLDOG need
slightly less memory than TRUREG or NEWRAP (essentially one matrix with n(n + 1)/2
double words).

600 4 Chapter 7: The NLP Procedure

+ Large Problems: CONGRA
(n > 200) where the objective function and the gradient can be computed much faster than
the Hessian and where too much memory is needed to store the (approximate) Hessian.
CONGRA in general needs more iterations than QUANEW or DBLDOG, but each iteration
can be much faster. Since CONGRA needs only a factor of n double-word memory, many
large applications of PROC NLP can be solved only by CONGRA.

No Derivatives: NMSIMP
(n < 20) where derivatives are not continuous or are very difficult to compute.

* Least Squares Minimization

— Small Problems: LEVMAR (HYQUAN)
(n < 60) where the crossproduct Jacobian matrix is inexpensive to compute. In general, LEV-
MAR is more reliable, but there are problems with high residuals where HY QUAN can be faster
than LEVMAR.

— Medium Problems: QUANEW (DBLDOG)
(n < 200) where the objective function and the gradient are much faster to evaluate than the
crossproduct Jacobian. QUANEW and DBLDOG in general need more iterations than LEVMAR
or HYQUAN, but each iteration can be much faster.

— Large Problems: CONGRA
— No Derivatives: NMSIMP

Quadratic Programming Method

The QUADAS and LICOMP algorithms can be used to minimize or maximize a quadratic objective function,
1
flx)= ExTGx + ng +¢, with GT=¢G

subject to linear or boundary constraints

Ax>b or [j<x; <uj

where x = (x1,...,x,)7, g = (g1,....82)T, G is an n x n symmetric matrix, A is an m x n matrix of
general linear constraints, and b = (by, ..., b,)T . The value of ¢ modifies only the value of the objective
function, not its derivatives, and the location of the optimizer x* does not depend on the value of the
constant term c. For QUADAS or LICOMP, the objective function must be specified using the MINQUAD or
MAXQUAD statement or using an INQUAD= data set.

In this case, derivatives do not need to be specified because the gradient vector
Vix)=Gx+g

and the n x n Hessian matrix
Vif(x)=G

are easily obtained from the data input.

Simple boundary and general linear constraints can be specified using the BOUNDS or LINCON statement
or an INQUAD= or INEST= data set.

Optimization Algorithms 4 601

General Quadratic Programming (QUADAS)

The QUADAS algorithm is an active set method that iteratively updates the QT decomposition of the matrix
Ay of active linear constraints and the Cholesky factor of the projected Hessian Z Z G Z}, simultaneously.
The update of active boundary and linear constraints is done separately; refer to Gill et al. (1984). Here Q is
an N free X N free Orthogonal matrix composed of vectors spanning the null space Z of Ay in its first 71 free — 1 ¢
columns and range space Y in its last 1 4. columns; 7 is an 7 4. X n 4 triangular matrix of special form,
tij = 0fori <n — j, where n . is the number of free parameters (n minus the number of active boundary
constraints), and 7 4. is the number of active linear constraints. The Cholesky factor of the projected Hessian
matrix Z kTGZ r and the QT decomposition are updated simultaneously when the active set changes.

Linear Complementarity (LICOMP)

The LICOMP technique solves a quadratic problem as a linear complementarity problem. It can be used only
if G is positive (negative) semidefinite for minimization (maximization) and if the parameters are restricted
to be positive.

This technique finds a point that meets the Karush-Kuhn-Tucker conditions by solving the linear complemen-
tary problem

w=Mz+gq

with constraints

(3] =[5 e[

Only the LCEPSILON= option can be used to specify a tolerance used in computations.

General Nonlinear Optimization

Trust-Region Optimization (TRUREG)
The trust region method uses the gradient g(x®)) and Hessian matrix G(x*)) and thus requires that the
objective function f(x) have continuous first- and second-order derivatives inside the feasible region.

The trust region method iteratively optimizes a quadratic approximation to the nonlinear objective function
within a hyperelliptic trust region with radius A that constrains the step length corresponding to the quality
of the quadratic approximation. The trust region method is implemented using Dennis, Gay, and Welsch
(1981), Gay (1983).

The trust region method performs well for small to medium problems and does not require many function,
gradient, and Hessian calls. If the computation of the Hessian matrix is computationally expensive, use the
UPDATE-= option for update formulas (that gradually build the second-order information in the Hessian).
For larger problems, the conjugate gradient algorithm may be more appropriate.

Newton-Raphson Optimization With Line-Search (NEWRAP)

The NEWRAP technique uses the gradient g(x (k)) and Hessian matrix G(x (k)) and thus requires that the
objective function have continuous first- and second-order derivatives inside the feasible region. If second-
order derivatives are computed efficiently and precisely, the NEWRAP method may perform well for medium
to large problems, and it does not need many function, gradient, and Hessian calls.

602 4 Chapter 7: The NLP Procedure

This algorithm uses a pure Newton step when the Hessian is positive definite and when the Newton step
reduces the value of the objective function successfully. Otherwise, a combination of ridging and line search
is done to compute successful steps. If the Hessian is not positive definite, a multiple of the identity matrix is
added to the Hessian matrix to make it positive definite (Eskow and Schnabel 1991).

In each iteration, a line search is done along the search direction to find an approximate optimum of the
objective function. The default line-search method uses quadratic interpolation and cubic extrapolation
(LIS=2).

Newton-Raphson Ridge Optimization (NRRIDG)
The NRRIDG technique uses the gradient g(x®) and Hessian matrix G (x®)) and thus requires that the
objective function have continuous first- and second-order derivatives inside the feasible region.

This algorithm uses a pure Newton step when the Hessian is positive definite and when the Newton step
reduces the value of the objective function successfully. If at least one of these two conditions is not satisfied,
a multiple of the identity matrix is added to the Hessian matrix. If this algorithm is used for least squares
problems, it performs a ridged Gauss-Newton minimization.

The NRRIDG method performs well for small to medium problems and does not need many function,
gradient, and Hessian calls. However, if the computation of the Hessian matrix is computationally expensive,
one of the (dual) quasi-Newton or conjugate gradient algorithms may be more efficient.

Since NRRIDG uses an orthogonal decomposition of the approximate Hessian, each iteration of NRRIDG
can be slower than that of NEWRAP, which works with Cholesky decomposition. However, usually NRRIDG
needs fewer iterations than NEWRAP.

Quasi-Newton Optimization (QUANEW)

The (dual) quasi-Newton method uses the gradient g(x*)) and does not need to compute second-order
derivatives since they are approximated. It works well for medium to moderately large optimization problems
where the objective function and the gradient are much faster to compute than the Hessian, but in general it
requires more iterations than the techniques TRUREG, NEWRAP, and NRRIDG, which compute second-
order derivatives.

The QUANEW algorithm depends on whether or not there are nonlinear constraints.

Unconstrained or Linearly Constrained Problems If there are no nonlinear constraints, QUANEW is
either

* the original quasi-Newton algorithm that updates an approximation of the inverse Hessian, or

* the dual quasi-Newton algorithm that updates the Cholesky factor of an approximate Hessian (default),

depending on the value of the UPDATE= option. For problems with general linear inequality constraints, the
dual quasi-Newton methods can be more efficient than the original ones.

Four update formulas can be specified with the UPDATE= option:

DBFGS performs the dual BFGS (Broyden, Fletcher, Goldfarb, & Shanno) update of the Cholesky
factor of the Hessian matrix. This is the default.
DDFP performs the dual DFP (Davidon, Fletcher, & Powell) update of the Cholesky factor of

the Hessian matrix.

Optimization Algorithms 4 603

BFGS performs the original BFGS (Broyden, Fletcher, Goldfarb, & Shanno) update of the
inverse Hessian matrix.

DFP performs the original DFP (Davidon, Fletcher, & Powell) update of the inverse Hessian
matrix.

In each iteration, a line search is done along the search direction to find an approximate optimum. The default
line-search method uses quadratic interpolation and cubic extrapolation to obtain a step length « satisfying
the Goldstein conditions. One of the Goldstein conditions can be violated if the feasible region defines an
upper limit of the step length. Violating the left-side Goldstein condition can affect the positive definiteness
of the quasi-Newton update. In those cases, either the update is skipped or the iterations are restarted with an
identity matrix resulting in the steepest descent or ascent search direction. Line-search algorithms other than
the default one can be specified with the LINESEARCH= option.

Nonlinearly Constrained Problems The algorithm used for nonlinearly constrained quasi-Newton op-
timization is an efficient modification of Powell’s (1978a, 1982b) Variable Metric Constrained WatchDog
(VMCWD) algorithm. A similar but older algorithm (VF02AD) is part of the Harwell library. Both VMCWD
and VFO2AD use Fletcher’s VEO2AD algorithm (part of the Harwell library) for positive-definite quadratic
programming. The PROC NLP QUANEW implementation uses a quadratic programming subroutine that
updates and downdates the approximation of the Cholesky factor when the active set changes. The nonlinear
QUANEW algorithm is not a feasible-point algorithm, and the value of the objective function need not
decrease (minimization) or increase (maximization) monotonically. Instead, the algorithm tries to reduce a
linear combination of the objective function and constraint violations, called the merit function.

The following are similarities and differences between this algorithm and the VMCWD algorithm:

* A modification of this algorithm can be performed by specifying VERSION=1, which replaces the
update of the Lagrange vector p with the original update of Powell (1978a, b) that is used in VFO2AD.
This can be helpful for some applications with linearly dependent active constraints.

* If the VERSION option is not specified or if VERSION=2 is specified, the evaluation of the Lagrange
vector u is performed in the same way as Powell (1982b) describes.

* Instead of updating an approximate Hessian matrix, this algorithm uses the dual BFGS (or DFP) update
that updates the Cholesky factor of an approximate Hessian. If the condition of the updated matrix gets
too bad, a restart is done with a positive diagonal matrix. At the end of the first iteration after each
restart, the Cholesky factor is scaled.

* The Cholesky factor is loaded into the quadratic programming subroutine, automatically ensuring
positive definiteness of the problem. During the quadratic programming step, the Cholesky factor of
the projected Hessian matrix Z Z GZ; and the QT decomposition are updated simultaneously when
the active set changes. Refer to Gill et al. (1984) for more information.

* The line-search strategy is very similar to that of Powell (1982b). However, this algorithm does not
call for derivatives during the line search, so the algorithm generally needs fewer derivative calls than
function calls. VMCWD always requires the same number of derivative and function calls. Sometimes
Powell’s line-search method uses steps that are too long. In these cases, use the INSTEP= option to
restrict the step length .

604 4 Chapter 7: The NLP Procedure

* The watchdog strategy is similar to that of Powell (1982b); however, it does not return automatically
after a fixed number of iterations to a former better point. A return here is further delayed if the
observed function reduction is close to the expected function reduction of the quadratic model.

* The Powell termination criterion still is used (as FCONV?2) but the QUANEW implementation uses
two additional termination criteria (GCONYV and ABSGCONYV).

The nonlinear QUANEW algorithm needs the Jacobian matrix of the first-order derivatives (constraints
normals) of the constraints CJ(x).

You can specify two update formulas with the UPDATE= option:

DBFGS performs the dual BFGS update of the Cholesky factor of the Hessian matrix. This is the
default.
DDFP performs the dual DFP update of the Cholesky factor of the Hessian matrix.

This algorithm uses its own line-search technique. No options or parameters (except the INSTEP= option)
controlling the line search in the other algorithms apply here. In several applications, large steps in the first
iterations were troublesome. You can use the INSTEP= option to impose an upper bound for the step length
o during the first five iterations. You may also use the INHESSIAN= option to specify a different starting
approximation for the Hessian. Choosing simply the INHESSIAN option will use the Cholesky factor of a
(possibly ridged) finite-difference approximation of the Hessian to initialize the quasi-Newton update process.
The values of the LCSINGULAR=, LCEPSILON=, and LCDEACT= options, which control the processing
of linear and boundary constraints, are valid only for the quadratic programming subroutine used in each
iteration of the nonlinear constraints QUANEW algorithm.

Double Dogleg Optimization (DBLDOG)
The double dogleg optimization method combines the ideas of the quasi-Newton and trust region methods.
The double dogleg algorithm computes in each iteration the step 5% as a linear combination of the steepest

descent or ascent search direction s§k) g‘):

s® = alsgk) + azsgk)

and a quasi-Newton search direction s

The step is requested to remain within a prespecified trust region radius; refer to Fletcher (1987, p. 107).
Thus, the DBLDOG subroutine uses the dual quasi-Newton update but does not perform a line search. Two
update formulas can be specified with the UPDATE= option:

DBFGS performs the dual BFGS (Broyden, Fletcher, Goldfarb, & Shanno) update of the Cholesky
factor of the Hessian matrix. This is the default.
DDFP performs the dual DFP (Davidon, Fletcher, & Powell) update of the Cholesky factor of

the Hessian matrix.

The double dogleg optimization technique works well for medium to moderately large optimization problems
where the objective function and the gradient are much faster to compute than the Hessian. The implemen-
tation is based on Dennis and Mei (1979) and Gay (1983) but is extended for dealing with boundary and
linear constraints. DBLDOG generally needs more iterations than the techniques TRUREG, NEWRAP, or
NRRIDG that need second-order derivatives, but each of the DBLDOG iterations is computationally cheap.
Furthermore, DBLDOG needs only gradient calls for the update of the Cholesky factor of an approximate
Hessian.

Optimization Algorithms 4 605

Conjugate Gradient Optimization (CONGRA)

Second-order derivatives are not used by CONGRA. The CONGRA algorithm can be expensive in function
and gradient calls but needs only O(n) memory for unconstrained optimization. In general, many iterations
are needed to obtain a precise solution, but each of the CONGRA iterations is computationally cheap. Four
different update formulas for generating the conjugate directions can be specified using the UPDATE= option:

PB performs the automatic restart update method of Powell (1977) and Beale (1972). This is
the default.

FR performs the Fletcher-Reeves update (Fletcher 1987).

PR performs the Polak-Ribiere update (Fletcher 1987).

CD performs a conjugate-descent update of Fletcher (1987).

The default value is UPDATE=PB, since it behaved best in most test examples. You are advised to avoid the
option UPDATE=CD, a it behaved worst in most test examples.

The CONGRA subroutine should be used for optimization problems with large n. For the unconstrained
or boundary constrained case, CONGRA needs only O(n) bytes of working memory, whereas all other
optimization methods require order O(n?) bytes of working memory. During n successive iterations,
uninterrupted by restarts or changes in the working set, the conjugate gradient algorithm computes a cycle of
n conjugate search directions. In each iteration, a line search is done along the search direction to find an
approximate optimum of the objective function. The default line-search method uses quadratic interpolation
and cubic extrapolation to obtain a step length « satisfying the Goldstein conditions. One of the Goldstein
conditions can be violated if the feasible region defines an upper limit for the step length. Other line-search
algorithms can be specified with the LINESEARCH= option.

Nelder-Mead Simplex Optimization (NMSIMP)

The Nelder-Mead simplex method does not use any derivatives and does not assume that the objective
function has continuous derivatives. The objective function itself needs to be continuous. This technique
requires a large number of function evaluations. It is unlikely to give accurate results for n >> 40.

Depending on the kind of constraints, one of the following Nelder-Mead simplex algorithms is used:

* unconstrained or only boundary constrained problems

The original Nelder-Mead simplex algorithm is implemented and extended to boundary constraints.
This algorithm does not compute the objective for infeasible points. This algorithm is automatically
invoked if the LINCON or NLINCON statement is not specified.

* general linearly constrained or nonlinearly constrained problems

A slightly modified version of Powell’s (1992) COBYLA (Constrained Optimization BY Linear
Approximations) implementation is used. This algorithm is automatically invoked if either the LINCON
or the NLINCON statement is specified.

The original Nelder-Mead algorithm cannot be used for general linear or nonlinear constraints but can be
faster for the unconstrained or boundary constrained case. The original Nelder-Mead algorithm changes the
shape of the simplex adapting the nonlinearities of the objective function which contributes to an increased
speed of convergence. The two NMSIMP subroutines use special sets of termination criteria. For more
details, refer to the section “Termination Criteria” on page 610.

606 4 Chapter 7: The NLP Procedure

Powell’s COBYLA Algorithm (COBYLA)

Powell’s COBYLA algorithm is a sequential trust region algorithm (originally with a monotonically decreas-
ing radius p of a spherical trust region) that tries to maintain a regular-shaped simplex over the iterations. A
small modification was made to the original algorithm that permits an increase of the trust region radius p
in special situations. A sequence of iterations is performed with a constant trust region radius p until the
computed objective function reduction is much less than the predicted reduction. Then, the trust region radius
p is reduced. The trust region radius is increased only if the computed function reduction is relatively close
to the predicted reduction and the simplex is well-shaped. The start radius pye, and the final radius penq
can be specified using ppc,=INSTEP and p.,q=ABSXTOL. The convergence to small values of pc,4 (high
precision) may take many calls of the function and constraint modules and may result in numerical problems.
There are two main reasons for the slow convergence of the COBYLA algorithm:

* Only linear approximations of the objective and constraint functions are used locally.

* Maintaining the regular-shaped simplex and not adapting its shape to nonlinearities yields very small
simplices for highly nonlinear functions (for example, fourth-order polynomials).

Nonlinear Least Squares Optimization

Levenberg-Marquardt Least Squares Method (LEVMAR)
The Levenberg-Marquardt method is a modification of the trust region method for nonlinear least squares
problems and is implemented as in Moré (1978).

This is the recommended algorithm for small to medium least squares problems. Large least squares
problems can be transformed into minimization problems, which can be processed with conjugate gradient or
(dual) quasi-Newton techniques. In each iteration, LEVMAR solves a quadratically constrained quadratic
minimization problem that restricts the step to stay at the surface of or inside an n- dimensional elliptical
(or spherical) trust region. In each iteration, LEVMAR uses the crossproduct Jacobian matrix J TJ asan
approximate Hessian matrix.

Hybrid Quasi-Newton Least Squares Methods (HYQUAN)

In each iteration of one of the Fletcher and Xu (1987) (refer also to Al-Baali and Fletcher (1985,1986))
hybrid quasi-Newton methods, a criterion is used to decide whether a Gauss-Newton or a dual quasi-Newton
search direction is appropriate. The VERSION= option can be used to choose one of three criteria (HY1,
HY?2, HY3) proposed by Fletcher and Xu (1987). The default is VERSION=2; that is, HY?2. In each iteration,
HYQUAN computes the crossproduct Jacobian (used for the Gauss-Newton step), updates the Cholesky
factor of an approximate Hessian (used for the quasi-Newton step), and does a line search to compute an
approximate minimum along the search direction. The default line-search technique used by HYQUAN
is especially designed for least squares problems (refer to Lindstrom and Wedin (1984) and Al-Baali and
Fletcher (1986)). Using the LINESEARCH= option you can choose a different line-search algorithm than
the default one.

Two update formulas can be specified with the UPDATE= option:

DBFGS performs the dual BFGS (Broyden, Fletcher, Goldfarb, and Shanno) update of the
Cholesky factor of the Hessian matrix. This is the default.
DDFP performs the dual DFP (Davidon, Fletcher, and Powell) update of the Cholesky factor of

the Hessian matrix.

Finite-Difference Approximations of Derivatives 4 607

The HYQUAN subroutine needs about the same amount of working memory as the LEVMAR algorithm. In
most applications, LEVMAR seems to be superior to HYQUAN, and using HYQUAN is recommended only
when problems are experienced with the performance of LEVMAR.

Finite-Difference Approximations of Derivatives

The FD= and FDHESSIAN= options specify the use of finite-difference approximations of the deriva-
tives. The FD= option specifies that all derivatives are approximated using function evaluations, and the
FDHESSIAN= option specifies that second-order derivatives are approximated using gradient evaluations.

Computing derivatives by finite-difference approximations can be very time-consuming, especially for second-
order derivatives based only on values of the objective function (FD= option). If analytical derivatives are
difficult to obtain (for example, if a function is computed by an iterative process), you might consider one of
the optimization techniques that uses first-order derivatives only (TECH=QUANEW, TECH=DBLDOG, or
TECH=CONGRA).

Forward-Difference Approximations
The forward-difference derivative approximations consume less computer time but are usually not as precise
as those using central-difference formulas.

¢ First-order derivatives: n additional function calls are needed:

_0f _ f(x+hiei) = f(x)
gl_axi_ h;

» Second-order derivatives based on function calls only (Dennis and Schnabel 1983, p. 80, 104): for
dense Hessian, n(n 4 3)/2 additional function calls are needed:

P/ fx+hiei+hje;)— f(x+hie))— f(x +hje;) + f(x)
ax,‘axj' - hj

» Second-order derivatives based on gradient calls (Dennis and Schnabel 1983, p. 103): n additional
gradient calls are needed:

3P f _ gilxt+hjej) —gi(x) N gj(x +hje))—gj(x)
0x; 0x 2h; 2h;

Central-Difference Approximations
 First-order derivatives: 2n additional function calls are needed:

- % _ f(x + hiej) — f(x — hje;)
a 0x; B 2h;

* Second-order derivatives based on function calls only (Abramowitz and Stegun 1972, p. 884): for
dense Hessian, 2n(n + 1) additional function calls are needed:

608 4 Chapter 7: The NLP Procedure

f = f(x 4 2hie) +16f(x + hiei) = 30f(x) + 16f(x — hie;) — f(x —2hie;)
x? 1252
32f _ f(x+hje; +hje;)— f(x +hije; —hje;)— f(x —hie; +hje;) + f(x —hje; —hje;)
0x; 0x 4hih

» Second-order derivatives based on gradient: 2n additional gradient calls are needed:

*f _ gilx+hje;) —gi(x—hje;) n gj(x + hje;) — g (x —hje;)
0x; 0x 4h 4h;

The FDIGITS= and CDIGITS= options can be used for specifying the number of accurate digits in the
evaluation of objective function and nonlinear constraints. These specifications are helpful in determining an
appropriate interval length £ to be used in the finite-difference formulas.

The FDINT= option specifies whether the finite-difference intervals / should be computed using an algorithm
of Gill, Murray, Saunders, and Wright (1983) or based only on the information of the FDIGITS= and
CDIGITS= options. For FDINT=0BJ, the interval / is based on the behavior of the objective function;
for FDINT=CON, the interval 4 is based on the behavior of the nonlinear constraints functions; and for
FDINT=ALL, the interval / is based on the behaviors of both the objective function and the nonlinear
constraints functions. Note that the algorithm of Gill, Murray, Saunders, and Wright (1983) to compute the
finite-difference intervals /1 ; can be very expensive in the number of function calls. If the FDINT= option is
specified, it is currently performed twice, the first time before the optimization process starts and the second
time after the optimization terminates.

If FDINT= is not specified, the step lengths /1, j = 1, ..., n, are defined as follows:

* for the forward-difference approximation of first-order derivatives using function calls and second-order
derivatives using gradient calls: h; = 2/7;(1 + |x;|),

* for the forward-difference approximation of second-order derivatives that use only function calls and
all central-difference formulas: 4; = 3/1,(1 + |x;|),

where 7 is defined using the FDIGITS= option:

o If the number of accurate digits is specified with FDIGITS=r, n is set to 107"

» If FDIGITS= is not specified, 7 is set to the machine precision €.

For FDINT=0BJ and FDINT=ALL, the FDIGITS= specification is used in computing the forward and
central finite-difference intervals.

If the problem has nonlinear constraints and the FD= option is specified, the first-order formulas are used
to compute finite-difference approximations of the Jacobian matrix JC(x). You can use the CDIGITS=
option to specify the number of accurate digits in the constraint evaluations to define the step lengths 4,
j =1,...,n. For FDINT=CON and FDINT=ALL, the CDIGITS= specification is used in computing the
forward and central finite-difference intervals.

Hessian and CRP Jacobian Scaling 4 609

NOTE: If you are unable to specify analytic derivatives and the finite-difference approximations provided
by PROC NLP are not good enough to solve your problem, you may program better finite-difference
approximations using the GRADIENT, JACOBIAN, CRPJAC, or HESSIAN statement and the program
statements.

Hessian and CRP Jacobian Scaling

The rows and columns of the Hessian and crossproduct Jacobian matrix can be scaled when using the trust
region, Newton-Raphson, double dogleg, and Levenberg-Marquardt optimization techniques. Each element
G;,j,i,j =1,...,n,is divided by the scaling factor d; x d;, where the scaling vector d = (d1,...,dy) is
iteratively updated in a way specified by the HESCAL=i option, as follows:

i = 0 No scaling is done (equivalent to d; = 1).

i # 0 First iteration and each restart iteration:

4 = \/max(IG?],)

N

i =1 refer to Moré (1978):

d*) = max (dl.(k), Jmax(IGH), e))

i = 2 refer to Dennis, Gay, and Welsch (1981):

d*) = max (O.6dl.(k), ,/max(|Gl."§)|,e))

i = 3 d; is reset in each iteration:

dl-(k+1) = max(|G-(k.)|,e)

i,i

where € is the relative machine precision or, equivalently, the largest double precision value that when added
to 1 results in 1.

Testing the Gradient Specification

There are three main ways to check the correctness of derivative specifications:

* Specify the FD= or FDHESSIAN= option in the PROC NLP statement to compute finite-difference
approximations of first- and second-order derivatives. In many applications, the finite-difference
approximations are computed with high precision and do not differ too much from the derivatives that
are computed by specified formulas.

* Specify the GRADCHECK option in the PROC NLP statement to compute and display a test vector
and a test matrix of the gradient values at the starting point x© by the method of Wolfe (1982). If you
do not specify the GRADCHECK option, a fast derivative test identical to the GRADCHECK=FAST
specification is done by default.

610 4 Chapter 7: The NLP Procedure

* If the default analytical derivative compiler is used or if derivatives are specified using the GRADIENT
or JACOBIAN statement, the gradient or Jacobian computed at the initial point x© is tested by
default using finite-difference approximations. In some examples, the relative test can show significant
differences between the two forms of derivatives, resulting in a warning message indicating that the
specified derivatives could be wrong, even if they are correct. This happens especially in cases where
the magnitude of the gradient at the starting point x© is small.

The algorithm of Wolfe (1982) is used to check whether the gradient g(x) specified by a GRADIENT
statement (or indirectly by a JACOBIAN statement) is appropriate for the objective function f(x) specified
by the program statements.

Using function and gradient evaluations in the neighborhood of the starting point x© | second derivatives are
approximated by finite-difference formulas. Forward differences of gradient values are used to approximate
the Hessian element G j,

_ gix +de) —g;(x)

Gir~ H;
jk Jjk S
where § is a small step length and e = (0,...,0,1,0,...,0)7 is the unit vector along the kth coordinate
axis. The test vector s, with
2 flx+38ej)— f(x)
sj=Hjj— : —g;(x)

))

contains the differences between two sets of finite-difference approximations for the diagonal elements of the
Hessian matrix

Gjj =P fxD)/ox3, j=1,....n

The test matrix A H contains the absolute differences of symmetric elements in the approximate Hessian
|Hjr — Hyjl, j.k =1,...,n, generated by forward differences of the gradient elements.

If the specification of the first derivatives is correct, the elements of the test vector and test matrix should
be relatively small. The location of large elements in the test matrix points to erroneous coordinates in the
gradient specification. For very large optimization problems, this algorithm can be too expensive in terms of
computer time and memory.

Termination Criteria

All optimization techniques stop iterating at x¥) if at least one of a set of termination criteria is satisfied.
PROC NLP also terminates if the point x %) s fully constrained by #n linearly independent active linear or
boundary constraints, and all Lagrange multiplier estimates of active inequality constraints are greater than a
small negative tolerance.

Since the Nelder-Mead simplex algorithm does not use derivatives, no termination criterion is available based
on the gradient of the objective function. Powell’s COBYLA algorithm uses only one more termination
criterion. COBYLA is a trust region algorithm that sequentially reduces the radius p of a spherical trust
region from a start radius ppe, = INSTEP to the final radius pc,q = ABSXTOL. The default value is peng =
1E—4. The convergence to small values of p.,q (high precision) may take many calls of the function and
constraint modules and may result in numerical problems.

Active Set Methods 4 611

In some applications, the small default value of the ABSGCONV= criterion is too difficult to satisfy for some
of the optimization techniques. This occurs most often when finite-difference approximations of derivatives
are used.

The default setting for the GCONV= option sometimes leads to early termination far from the location of the
optimum. This is especially true for the special form of this criterion used in the CONGRA optimization.

The QUANEW algorithm for nonlinearly constrained optimization does not monotonically reduce the value
of either the objective function or some kind of merit function which combines objective and constraint
functions. Furthermore, the algorithm uses the watchdog technique with backtracking (Chamberlain et al.
1982). Therefore, no termination criteria were implemented that are based on the values (x or f) of successive
iterations. In addition to the criteria used by all optimization techniques, three more termination criteria are
currently available. They are based on satisfying the Karush-Kuhn-Tucker conditions, which require that the
gradient of the Lagrange function is zero at the optimal point (x*, 1*):

Vi L(x*, %) =0

For more information, refer to the section “Criteria for Optimality” on page 594.

Active Set Methods

The parameter vector x € R" may be subject to a set of m linear equality and inequality constraints:

n
> aijjxj =b;, i=1,...,me
j=1

n

Za,-jxj >b;, i=me+1,....m
Jj=1

The coefficients a;; and right-hand sides b; of the equality and inequality constraints are collected in the
m X n matrix A and the m—vector b.

The m linear constraints define a feasible region G in R” that must contain the point x* that minimizes the
problem. If the feasible region G is empty, no solution to the optimization problem exists.

All optimization techniques in PROC NLP (except those processing nonlinear constraints) are active set
methods. The iteration starts with a feasible point x(?), which either is provided by the user or can be
computed by the Schittkowski and Stoer (1979) algorithm implemented in PROC NLP. The algorithm then
moves from one feasible point x*~1 to a better feasible point x®) along a feasible search direction s

NG I N (O (0 SN 0 B

Theoretically, the path of points x%®) never leaves the feasible region G of the optimization problem, but
it can hit its boundaries. The active set A%) of point x*) is defined as the index set of all linear equality
constraints and those inequality constraints that are satisfied at x%®) _If no constraint is active for x®), the
point is located in the interior of G, and the active set A% is empty. If the point x*) in iteration k hits the
boundary of inequality constraint i, this constraint i becomes active and is added to A Each equality or
active inequality constraint reduces the dimension (degrees of freedom) of the optimization problem.

612 4 Chapter 7: The NLP Procedure

In practice, the active constraints can be satisfied only with finite precision. The LCEPSILON=r option
specifies the range for active and violated linear constraints. If the point x®) satisfies the condition

n
Z a,-jxﬁ-k) —bi| <t
Jj=1

where t = r x (|b;| + 1), the constraint i is recognized as an active constraint. Otherwise, the constraint
i is either an inactive inequality or a violated inequality or equality constraint. Due to rounding errors in
computing the projected search direction, error can be accumulated so that an iterate x &) steps out of the
feasible region. In those cases, PROC NLP may try to pull the iterate x®) into the feasible region. However,
in some cases the algorithm needs to increase the feasible region by increasing the LCEPSILON=r value. If
this happens it is indicated by a message displayed in the log output.

If you cannot expect an improvement in the value of the objective function by moving from an active
constraint back into the interior of the feasible region, you use this inequality constraint as an equality
constraint in the next iteration. That means the active set A%*+1) still contains the constraint i. Otherwise
you release the active inequality constraint and increase the dimension of the optimization problem in the
next iteration.

A serious numerical problem can arise when some of the active constraints become (nearly) linearly dependent.
Linearly dependent equality constraints are removed before entering the optimization. You can use the
LCSINGULAR= option to specify a criterion r used in the update of the QR decomposition that decides
whether an active constraint is linearly dependent relative to a set of other active constraints.

If the final parameter set x* is subjected to 1, linear equality or active inequality constraints, the QR
decomposition of the n X n 4. matrix AT of the linear constraints is computed by AT = OR, where Q is
an n x n orthogonal matrix and R is an n X n4.; upper triangular matrix. The n columns of matrix Q can
be separated into two matrices, Q = [Y, Z], where Y contains the first n ,.; orthogonal columns of Q and Z
contains the last n — 11,4, orthogonal columns of Q. The n X (n — n4.¢) column-orthogonal matrix Z is also
called the nullspace matrix of the active linear constraints AT Then —n act columns of the n x (n — n4¢t)
matrix Z form a basis orthogonal to the rows of the 1 ,.; X n matrix A.

At the end of the iteration process, the PROC NLP can display the projected gradient
gz=2"g

In the case of boundary constrained optimization, the elements of the projected gradient correspond to
the gradient elements of the free parameters. A necessary condition for x* to be a local minimum of the
optimization problem is

gz(x*)=Z"Tg(x*) =0
The symmetric 71 g0 X 1 40¢ matrix
Gz=2TGz

is called a projected Hessian matrix. A second-order necessary condition for x* to be a local minimizer
requires that the projected Hessian matrix is positive semidefinite. If available, the projected gradient and
projected Hessian matrix can be displayed and written in an OUTEST= data set.

Those elements of the ng,¢; vector of first-order estimates of Lagrange multipliers

A= (AAT) 1AzzT¢

Feasible Starting Point 4 613

which correspond to active inequality constraints indicate whether an improvement of the objective function
can be obtained by releasing this active constraint. For minimization (maximization), a significant negative
(positive) Lagrange multiplier indicates that a possible reduction (increase) of the objective function can be
obtained by releasing this active linear constraint. The LCDEACT=r option can be used to specify a threshold
r for the Lagrange multiplier that decides whether an active inequality constraint remains active or can be
deactivated. The Lagrange multipliers are displayed (and written in an OUTEST= data set) only if linear
constraints are active at the solution x*. (In the case of boundary-constrained optimization, the Lagrange
multipliers for active lower (upper) constraints are the negative (positive) gradient elements corresponding to
the active parameters.)

Feasible Starting Point

Two algorithms are used to obtain a feasible starting point.

* When only boundary constraints are specified:

— If the parameter x;, 1 < j < n, violates a two-sided boundary constraint (or an equality
constraint) /; < x; < u;, the parameter is given a new value inside the feasible interval, as
follows:

lj, ifujflj
Xj=9 li+iu; =1, ifuj—1;<4
i+ 15(uj—1), ifu;—1; >4

— If the parameter x;, 1 < j < n, violates a one-sided boundary constraint /; < x; orx; < u;,
the parameter is given a new value near the violated boundary, as follows:

L +max(1,%lj), ifx; <1
X; =
u; —max(l,%uj), ifx; >u;

* When general linear constraints are specified, the algorithm of Schittkowski and Stoer (1979) computes
a feasible point, which may be quite far from a user-specified infeasible point.

Line-Search Methods

In each iteration k, the (dual) quasi-Newton, hybrid quasi-Newton, conjugate gradient, and Newton-Raphson
minimization techniques use iterative line-search algorithms that try to optimize a linear, quadratic, or cubic
approximation of f along a feasible descent search direction s*)

R N (0 N (O (S S (O B

by computing an approximately optimal scalar a®),

Therefore, a line-search algorithm is an iterative process that optimizes a nonlinear function f = f(«)
of one parameter (o) within each iteration k of the optimization technique, which itself tries to optimize a

614 4 Chapter 7: The NLP Procedure

linear or quadratic approximation of the nonlinear objective function f = f(x) of n parameters x. Since the
outside iteration process is based only on the approximation of the objective function, the inside iteration of
the line-search algorithm does not have to be perfect. Usually, the choice of « significantly reduces (in a
minimization) the objective function. Criteria often used for termination of line-search algorithms are the
Goldstein conditions (refer to Fletcher (1987)).

Various line-search algorithms can be selected using the LINESEARCH= option. The line-search method
LINESEARCH=2 seems to be superior when function evaluation consumes significantly less computation
time than gradient evaluation. Therefore, LINESEARCH=2 is the default value for Newton-Raphson, (dual)
quasi-Newton, and conjugate gradient optimizations.

A special default line-search algorithm for TECH=HYQUAN is useful only for least squares problems and
cannot be chosen by the LINESEARCH= option. This method uses three columns of the m x n Jacobian
matrix, which for large m can require more memory than using the algorithms designated by LINESEARCH=1
through LINESEARCH=8.

The line-search methods LINESEARCH=2 and LINESEARCH=3 can be modified to exact line search by
using the LSPRECISION= option (specifying the o parameter in Fletcher (1987)). The line-search methods
LINESEARCH=1, LINESEARCH=2, and LINESEARCH=3 satisfy the left-hand-side and right-hand-side
Goldstein conditions (refer to Fletcher (1987)). When derivatives are available, the line-search methods
LINESEARCH=6, LINESEARCH=7, and LINESEARCH=8 try to satisfy the right-hand-side Goldstein
condition; if derivatives are not available, these line-search algorithms use only function calls.

Restricting the Step Length

Almost all line-search algorithms use iterative extrapolation techniques which can easily lead them to
(feasible) points where the objective function f is no longer defined. (e.g., resulting in indefinite matrices
for ML estimation) or difficult to compute (e.g., resulting in floating point overflows). Therefore, PROC
NLP provides options restricting the step length « or trust region radius A, especially during the first main
iterations.

The inner product g7 s of the gradient g and the search direction s is the slope of f(«) = f(x +as) along the
search direction s. The default starting value a©® = ¢*:9 ip each line-search algorithm (mingsq f(x+as))
during the main iteration k is computed in three steps:

1. The first step uses either the difference df = | f®) — £&=D)| of the function values during the last

two consecutive iterations or the final step length value - of the last iteration k — 1 to compute a first

value of ago).

* Not using the DAMPSTEP=r option:
step, if 0.1 < step < 10
o =1 10, ifstep> 10
0.1, ifstep <0.1
with
df/|gTs|, if|gTs| > emax(100df, 1)

step =
1, otherwise

Computational Problems 4 615

This value of a§o) can be too large and lead to a difficult or impossible function evaluation,

especially for highly nonlinear functions such as the EXP function.

* Using the DAMPSTEP=r option:

oe§0) = min(1, ro-)

The initial value for the new step length can be no larger than r times the final step length o~ of
the previous iteration. The default value is r = 2.

2. During the first five iterations, the second step enables you to reduce ago) to a smaller starting value

ozéo) using the INSTEP=r option:

océo) = min(aio), r)
After more than five iterations, ago) 18 set to ago).

3. The third step can further reduce the step length by

ago) = min(ago), min(10, u))

where u is the maximum length of a step inside the feasible region.

The INSTEP=r option lets you specify a smaller or larger radius A of the trust region used in the first iteration
of the trust region, double dogleg, and Levenberg-Marquardt algorithms. The default initial trust region
radius A is the length of the scaled gradient (Moré 1978). This step corresponds to the default radius factor
of r = 1. In most practical applications of the TRUREG, DBLDOG, and LEVMAR algorithms, this choice
is successful. However, for bad initial values and highly nonlinear objective functions (such as the EXP
function), the default start radius can result in arithmetic overflows. If this happens, you may try decreasing
values of INSTEP=r, 0 < r < 1, until the iteration starts successfully. A small factor r also affects the trust
region radius A®+D of the next steps because the radius is changed in each iteration by a factor 0 < ¢ < 4,
depending on the ratio p expressing the goodness of quadratic function approximation. Reducing the radius
A corresponds to increasing the ridge parameter A, producing smaller steps directed more closely toward the
(negative) gradient direction.

Computational Problems
First Iteration Overflows

If you use bad initial values for the parameters, the computation of the value of the objective function (and
its derivatives) can lead to arithmetic overflows in the first iteration. The line-search algorithms that work
with cubic extrapolation are especially sensitive to arithmetic overflows. If an overflow occurs with an
optimization technique that uses line search, you can use the INSTEP= option to reduce the length of the first
trial step during the line search of the first five iterations or use the DAMPSTEP or MAXSTEP= option to
restrict the step length of the initial « in subsequent iterations. If an arithmetic overflow occurs in the first
iteration of the trust region, double dogleg, or Levenberg-Marquardt algorithm, you can use the INSTEP=
option to reduce the default trust region radius of the first iteration. You can also change the minimization
technique or the line-search method. If none of these methods helps, consider the following actions:

* scale the parameters

616 4 Chapter 7: The NLP Procedure

 provide better initial values
* use boundary constraints to avoid the region where overflows may happen

* change the algorithm (specified in program statements) which computes the objective function

Problems in Evaluating the Objective Function

The starting point x(®) must be a point that can be evaluated by all the functions involved in your problem.
However, during optimization the optimizer may iterate to a point x¥) where the objective function or
nonlinear constraint functions and their derivatives cannot be evaluated. If you can identify the problematic
region, you can prevent the algorithm from reaching it by adding another constraint to the problem. Another
possibility is a modification of the objective function that will produce a large, undesired function value. As a
result, the optimization algorithm reduces the step length and stays closer to the point that has been evaluated
successfully in the previous iteration. For more information, refer to the section “Missing Values in Program
Statements” on page 631.

Problems with Quasi-Newton Methods for Nonlinear Constraints

The sequential quadratic programming algorithm in QUANEW, which is used for solving nonlinearly
constrained problems, can have problems updating the Lagrange multiplier vector w. This usually results in
very high values of the Lagrangian function and in watchdog restarts indicated in the iteration history. If this
happens, there are three actions you can try:

* By default, the Lagrange vector u is evaluated in the same way as Powell (1982b) describes. This
corresponds to VERSION=2. By specifying VERSION=1, a modification of this algorithm replaces
the update of the Lagrange vector u with the original update of Powell (1978a, b), which is used in
VF02AD.

* You can use the INSTEP= option to impose an upper bound for the step length « during the first five
iterations.

* You can use the INHESSIAN= option to specify a different starting approximation for the Hessian.
Choosing only the INHESSIAN option will use the Cholesky factor of a (possibly ridged) finite-
difference approximation of the Hessian to initialize the quasi-Newton update process.

Other Convergence Difficulties

There are a number of things to try if the optimizer fails to converge.

* Check the derivative specification:
If derivatives are specified by using the GRADIENT, HESSIAN, JACOBIAN, CRPJAC, or JACNLC
statement, you can compare the specified derivatives with those computed by finite-difference approxi-
mations (specifying the FD and FDHESSIAN option). Use the GRADCHECK option to check if the
gradient g is correct. For more information, refer to the section “Testing the Gradient Specification” on
page 609.

Computational Problems 4 617

» Forward-difference derivatives specified with the FD= or FDHESSIAN= option may not be precise
enough to satisfy strong gradient termination criteria. You may need to specify the more expensive
central-difference formulas or use analytical derivatives. The finite-difference intervals may be too
small or too big and the finite-difference derivatives may be erroneous. You can specify the FDINT=
option to compute better finite-difference intervals.

* Change the optimization technique:
For example, if you use the default TECH=LEVMAR, you can

— change to TECH=QUANEW or to TECH=NRRIDG

— run some iterations with TECH=CONGRA, write the results in an OUTEST= data set, and use
them as initial values specified by an INEST= data set in a second run with a different TECH=
technique

* Change or modify the update technique and the line-search algorithm:
This method applies only to TECH=QUANEW, TECH=HYQUAN, or TECH=CONGRA. For example,
if you use the default update formula and the default line-search algorithm, you can

— change the update formula with the UPDATE= option
— change the line-search algorithm with the LINESEARCH= option

— specify a more precise line search with the LSPRECISION= option, if you use LINESEARCH=2
or LINESEARCH=3

* Change the initial values by using a grid search specification to obtain a set of good feasible starting
values.

Convergence to Stationary Point

The (projected) gradient at a stationary point is zero and that results in a zero step length. The stopping
criteria are satisfied.

There are two ways to avoid this situation:

* Use the DECVAR statement to specify a grid of feasible starting points.

* Use the OPTCHECK= option to avoid terminating at the stationary point.

The signs of the eigenvalues of the (reduced) Hessian matrix contain information regarding a stationary point:

« If all eigenvalues are positive, the Hessian matrix is positive definite and the point is a minimum point.

* If some of the eigenvalues are positive and all remaining eigenvalues are zero, the Hessian matrix is
positive semidefinite and the point is a minimum or saddle point.

* If all eigenvalues are negative, the Hessian matrix is negative definite and the point is a maximum
point.

* If some of the eigenvalues are negative and all remaining eigenvalues are zero, the Hessian matrix is
negative semidefinite and the point is a maximum or saddle point.

* If all eigenvalues are zero, the point can be a minimum, maximum, or saddle point.

618 4 Chapter 7: The NLP Procedure

Precision of Solution

In some applications, PROC NLP may result in parameter estimates that are not precise enough. Usually
this means that the procedure terminated too early at a point too far from the optimal point. The termination
criteria define the size of the termination region around the optimal point. Any point inside this region can
be accepted for terminating the optimization process. The default values of the termination criteria are set
to satisfy a reasonable compromise between the computational effort (computer time) and the precision of
the computed estimates for the most common applications. However, there are a number of circumstances
where the default values of the termination criteria specify a region that is either too large or too small. If the
termination region is too large, it can contain points with low precision. In such cases, you should inspect the
log or list output to find the message stating which termination criterion terminated the optimization process.
In many applications, you can obtain a solution with higher precision by simply using the old parameter
estimates as starting values in a subsequent run where you specify a smaller value for the termination criterion
that was satisfied at the previous run.

If the termination region is too small, the optimization process may take longer to find a point inside such a
region or may not even find such a point due to rounding errors in function values and derivatives. This can
easily happen in applications where finite-difference approximations of derivatives are used and the GCONV
and ABSGCONYV termination criteria are too small to respect rounding errors in the gradient values.

Covariance Matrix

The COV= option must be specified to compute an approximate covariance matrix for the parameter estimates
under asymptotic theory for least squares, maximum-likelihood, or Bayesian estimation, with or without
corrections for degrees of freedom as specified by the VARDEF= option.

Two groups of six different forms of covariance matrices (and therefore approximate standard errors) can be

computed corresponding to the following two situations:

* The LSQ statement is specified, which means that least squares estimates are being computed:
m
min f(x) = Y fZ(x)
i=1

* The MIN or MAX statement is specified, which means that maximum-likelihood or Bayesian estimates
are being computed:

opt f(x) =) fi(x)

i=1

where opt is either min or max.

In either case, the following matrices are used:

G =V?f(x)

afi
JF) = (V fioer oV fon) = (aj;)

JICf) = J(HTIS)

Covariance Matrix 4 619

v = J(f) diag(f2)J(f)
W = J(f)Tdiag(fl-T)J(f)

where
fT _{o, if i =0
I | 1/f;, otherwise
For unconstrained minimization, or when none of the final parameter estimates are subjected to linear equality
or active inequality constraints, the formulas of the six types of covariance matrices are as follows:

Table 7.3 Central-Difference Approximations

Cov MIN or MAX Statement LSQ Statement
1 M (NOBS_/d)G'JJ(f)G™! (NOBS_/d)G~'vG—1
2 H (_NOBS_/d)G™! o2G~1
3 7 (1/dyw—1 o2JJ(f)7!
4 B (1/d)G'wG™! o2G~1IJ(f)G!
5 E (_NOBS_/d)JJ(f) ! (1/d)v—1
6 U (NOBS_/d)WLJJ(f)yWw~1 (LNOBS_/d)JJ(f)"VIJ(f) !

The value of d depends on the VARDEF= option and on the value of the _'NOBS_ variable:

max(1,_NOBS_— _DF_), for VARDEF=DF

d = _NOBS._, for VARDEF=N

where _DF__ is either set in the program statements or set by default to n (the number of parameters) and
NOBS is either set in the program statements or set by default to nobs x mfun, where nobs is the number of
observations in the data set and mfun is the number of functions listed in the LSQ, MIN, or MAX statement.

The value 02 depends on the specification of the SIGSQ= option and on the value of d:

o2 =) 4% _NOBS_/d, if SIGSQ=sq is specified
] 2f(x%)/d, if SIGSQ= is not specified

where f(x*) is the value of the objective function at the optimal parameter estimates x*.

The two groups of formulas distinguish between two situations:

* For least squares estimates, the error variance can be estimated from the objective function value and
is used in three of the six different forms of covariance matrices. If you have an independent estimate
of the error variance, you can specify it with the SIGSQ= option.

* For maximum-likelihood or Bayesian estimates, the objective function should be the logarithm of the
likelihood or of the posterior density when using the MAX statement.

620 4 Chapter 7: The NLP Procedure

For minimization, the inversion of the matrices in these formulas is done so that negative eigenvalues are
considered zero, resulting always in a positive semidefinite covariance matrix.

In small samples, estimates of the covariance matrix based on asymptotic theory are often too small and
should be used with caution.

If the final parameter estimates are subjected to n4.; > 0 linear equality or active linear inequality constraints,
the formulas of the covariance matrices are modified similar to Gallant (1987) and Cramer (1986, p. 38) and
additionally generalized for applications with singular matrices. In the constrained case, the value of d used
in the scalar factor o2 is defined by

max(1, _NOBS_ — _DF_+n,.), for VARDEF=DF

d= _NOBS_, for VARDEF=N

where 7 4. 18 the number of active constraints and _INOBS_ is set as in the unconstrained case.

For minimization, the covariance matrix should be positive definite; for maximization it should be negative
definite. There are several options available to check for a rank deficiency of the covariance matrix:

* The ASINGULAR=, MSINGULAR=, and VSINGULAR= options can be used to set three singularity
criteria for the inversion of the matrix A needed to compute the covariance matrix, when A is either the
Hessian or one of the crossproduct Jacobian matrices. The singularity criterion used for the inversion is

|dj, ;| < max(ASING, VSING x |Aj, ;|, MSING x max(|A1,1],...,|Annl))

where d; ; is the diagonal pivot of the matrix A, and ASING, VSING and MSING are the specified
values of the ASINGULAR=, VSINGULAR=, and MSINGULAR= options. The default values are

— ASING: the square root of the smallest positive double precision value

— MSING: 1E—12 if the SINGULAR= option is not specified and max(10 x ¢, 1E — 4 x
SINGULAR) otherwise, where € is the machine precision

— VSING: 1E-8 if the SINGULAR= option is not specified and the value of SINGULAR otherwise

NOTE: In many cases, a normalized matrix D~! 4D~ is decomposed and the singularity criteria are
modified correspondingly.

* If the matrix A is found singular in the first step, a generalized inverse is computed. Depending on the
G4= option, a generalized inverse is computed that satisfies either all four or only two Moore-Penrose
conditions. If the number of parameters n of the application is less than or equal to G4=i, a G4
inverse is computed; otherwise only a G2 inverse is computed. The G4 inverse is computed by (the
computationally very expensive but numerically stable) eigenvalue decomposition; the G2 inverse is
computed by Gauss transformation. The G4 inverse is computed using the eigenvalue decomposition
A = ZAZT, where Z is the orthogonal matrix of eigenvectors and A is the diagonal matrix of
eigenvalues, A = diag(A1,...,A,). If the PEIGVAL option is specified, the eigenvalues A; are
displayed. The G4 inverse of A is set to

A= =2zA"ZT
where the diagonal matrix A~ = diag(A], ..., A;)) is defined using the COVSING= option:
P 1/A;, if|Aj| > COVSING
700, if [A;| < COVSING

If the COVSING= option is not specified, the nr smallest eigenvalues are set to zero, where nr is the
number of rank deficiencies found in the first step.

Input and Output Data Sets 4 621

For optimization techniques that do not use second-order derivatives, the covariance matrix is usually
computed using finite-difference approximations of the derivatives. By specifying TECH=NONE, any of the
covariance matrices can be computed using analytical derivatives. The covariance matrix specified by the
COV= option can be displayed (using the PCOV option) and is written to the OUTEST= data set.

Input and Output Data Sets
DATA= Input Data Set

The DATA= data set is used only to specify an objective function f that is a combination of m other functions
fi. For each function f;, i = 1,...,m, listed in a MAX, MIN, or LSQ statement, each observation I,
[=1,...,nobs, in the DATA= data set defines a specific function f;; that is evaluated by substituting the
values of the variables of this observation into the program statements. If the MAX or MIN statement is
used, the m x nobs specific functions f;; are added to a single objective function f. If the LSQ statement is
used, the sum-of-squares f of the m x nobs specific functions f;; is minimized. The NOMISS option causes
observations with missing values to be skipped.

INEST= Input Data Set

The INEST= (or INVAR=, or ESTDATA=) input data set can be used to specify the initial values of the
parameters defined in a DECVAR statement as well as boundary constraints and the more general linear

constraints which could be imposed on these parameters. This form of input is similar to the dense format
input used in PROC LP.

The variables of the INEST= data set are

* acharacter variable _TYPE_ that indicates the type of the observation
* n numeric variables with the parameter names used in the DECVAR statement
* the BY variables that are used in a DATA= input data set

* a numeric variable _RHS_ specifying the right-hand-side constants (needed only if linear constraints
are used)

* additional variables with names corresponding to constants used in the program statements

The content of the _TYPE_ variable defines the meaning of the observation of the INEST= data set. PROC
NLP recognizes the following _TYPE_ values:

* PARMS, which specifies initial values for parameters. Additional variables can contain the values
of constants that are referred to in program statements. The values of the constants in the PARMS
observation initialize the constants in the program statements.

* UPPERBD | UB, which specifies upper bounds. A missing value indicates that no upper bound is
specified for the parameter.

* LOWERBD | LB, which specifies lower bounds. A missing value indicates that no lower bound is
specified for the parameter.

622 4 Chapter 7: The NLP Procedure

* LE | <= | <, which specifies linear constraint »_ jaijxj = b;. The n parameter values contain the
coefficients a;;, and the _RHS_ variable contains the right-hand side b;. Missing values indicate zeros.

* GE | >= | >, which specifies linear constraint) jaijXj = b;. The n parameter values contain the
coefficients a;;, and the _RHS_ variable contains the right-hand side b;. Missing values indicate zeros.

* EQ | =, which specifies linear constraint) jaijxj = b;. The n parameter values contain the
coefficients a;;, and the _RHS_ variable contains the right-hand side b;. Missing values indicate zeros.

The constraints specified in an INEST= data set are added to the constraints specified in the BOUNDS and
LINCON statements. You can use an OUTEST= data set as an INEST= data set in a subsequent run of
PROC NLP. However, be aware that the OUTEST= data set also contains the boundary and general linear
constraints specified in the previous run of PROC NLP. When you are using this OUTEST= data set without
changes as an INEST= data set, PROC NLP adds the constraints from the data set to the constraints specified
by a BOUNDS and LINCON statement. Although PROC NLP automatically eliminates multiple identical
constraints you should avoid specifying the same constraint twice.

INQUAD= Input Data Set

Two types of INQUAD= data sets can be used to specify the objective function of a quadratic programming
problem for TECH=QUADAS or TECH=LICOMP,

1
f(x) = ExTGx +g¢lx+¢, with GT =G

The dense INQUAD= data set must contain all numerical values of the symmetric matrix G, the vector g, and
the scalar c. Using the sparse INQUAD= data set enables you to specify only the nonzero positions in matrix
G and vector g. Those locations that are not set by the sparse INQUAD= data set are assumed to be zero.

Dense INQUAD= Data Set
A dense INQUAD-= data set must contain two character variables, _"TYPE_ and _NAME_, and at least n
numeric variables whose names are the parameter names. The _TYPE_ variable takes the following values:

* QUAD lists the n values of the row of the G matrix that is defined by the parameter name used in the
_NAME _ variable.

* LINEAR lists the n values of the g vector.

¢ CONST sets the value of the scalar ¢ and cannot contain different numerical values; however, it could
contain up to n — 1 missing values.

* PARMS specifies initial values for parameters.
» UPPERBD | UB specifies upper bounds. A missing value indicates that no upper bound is specified.
* LOWERBD | LB specifies lower bounds. A missing value indicates that no lower bound is specified.

* LE | <= | < specifies linear constraint) _; a;;x; < b;. The n parameter values contain the coefficients
ajj, and the _RHS_ variable contains the right-hand side b;. Missing values indicate zeros.

* GE | >=|> specifies linear constraint)| jaijxj = b;. The n parameter values contain the coefficients
aij, and the _RHS_ variable contains the right-hand side b;. Missing values indicate zeros.

Input and Output Data Sets 4 623

* EQ | = specifies linear constraint) jaijxj = b;. The n parameter values contain the coefficients a;;,
and the _RHS_ variable contains the right-hand side b;. Missing values indicate zeros.

Constraints specified in a dense INQUAD= data set are added to the constraints specified in BOUNDS and
LINCON statements.

Sparse INQUAD= Data Set
A sparse INQUAD= data set must contain three character variables _"TYPE_, _ROW_, and _COL_, and one
numeric variable _"VALUE_. The _TYPE_ variable can assume two values:

* QUAD specifies that the _ROW_ and _COL_ variables define the row and column locations of the
values in the G matrix.

* LINEAR specifies that the _ROW_ variable defines the row locations of the values in the g vector. The
COL variable is not used.

Using both the MODEL= option and the INCLUDE statement with the same model file will include the file
twice (erroneous in most cases).

OUT= Output Data Set

The OUT= data set contains those variables of a DATA= input data set that are referred to in the program
statements and additional variables computed by the program statements for the objective function. Specifying
the NOMISS option enables you to skip observations with missing values in variables used in the program
statements. The OUT= data set can also contain first- and second-order derivatives of these variables if the
OUTDER-= option is specified. The variables and derivatives are the final parameter estimates x* or (for
TECH=NONE) the initial value x°.

The variables of the OUT= data set are

 the BY variables and all other variables that are used in a DATA= input data set and referred to in the
program code

* avariable _OBS_ containing the number of observations read from a DATA= input data set, where
the counting is restarted with the start of each BY group. If there is no DATA= input data set, then
OBS=1.

* acharacter variable _TYPE_ naming the type of the observation
* the parameter variables listed in the DECVAR statement

* the function variables listed in the MIN, MAX, or LSQ statement
* all other variables computed in the program statements

* the character variable _'WRT_ (if OUTDER=1) containing the with respect to variable for which the
first-order derivatives are written in the function variables

* the two character variables _WRT1_ and _WRT2_ (if OUTDER=2) containing the two with respect to
variables for which the first- and second-order derivatives are written in the function variables

624 4 Chapter 7: The NLP Procedure

OUTEST= Output Data Set

The OUTEST= or OUTVAR= output data set saves the optimization solution of PROC NLP. You can use the
OUTEST= or OUTVAR= data set as follows:

* to save the values of the objective function on grid points to examine, for example, surface plots using
PROC G3D (use the OUTGRID option)

* to avoid any costly computation of analytical (first- or second-order) derivatives during optimization
when they are needed only upon termination. In this case a two-step approach is recommended:

1. In a first execution, the optimization is done; that is, optimal parameter estimates are computed,
and the results are saved in an OUTEST= data set.

2. In a subsequent execution, the optimal parameter estimates in the previous OUTEST= data set
are read in an INEST= data set and used with TECH=NONE to compute further results, such as
analytical second-order derivatives or some kind of covariance matrix.

* to restart the procedure using parameter estimates as initial values

* to split a time-consuming optimization problem into a series of smaller problems using intermediate
results as initial values in subsequent runs. (Refer to the MAXTIME=, MAXIT=, and MAXFUNC=
options to trigger stopping.)

* to write the value of the objective function, the parameter estimates, the time in seconds starting at the
beginning of the optimization process and (if available) the gradient to the OUTEST= data set during
the iterations. After the PROC NLP run is completed, the convergence progress can be inspected by
graphically displaying the iterative information. (Refer to the OUTITER option.)

The variables of the OUTEST= data set are

 the BY variables that are used in a DATA= input data set
* acharacter variable _"TECH_ naming the optimization technique used
* acharacter variable _TYPE_ specifying the type of the observation

* acharacter variable _NAME_ naming the observation. For a linear constraint, the _.NAME_ variable
indicates whether the constraint is active at the solution. For the initial observations, the _NAME_
variable indicates if the number in the _RHS_ variable corresponds to the number of positive, negative,
or zero eigenvalues.

* n numeric variables with the parameter names used in the DECVAR statement. These variables
contain a point x of the parameter space, lower or upper bound constraints, or the coefficients of linear
constraints.

* anumeric variable _RHS__ (right-hand side) that is used for the right-hand-side value b; of a linear
constraint or for the value f = f(x) of the objective function at a point x of the parameter space

* anumeric variable _ITER_ that is zero for initial values, equal to the iteration number for the OUTITER
output, and missing for the result output

Input and Output Data Sets 4 625

The _TYPE_ variable identifies how to interpret the observation. If _TYPE_ is

* PARMS then parameter-named variables contain the coordinates of the resulting point x*. The _RHS_
variable contains f(x*).

« INITIAL then parameter-named variables contain the feasible starting point x(?). The _RHS_ variable
contains f'(x(®).

* GRIDPNT then (if the OUTGRID option is specified) parameter-named variables contain the coordi-
nates of any point x¥) used in the grid search. The _RHS_ variable contains f(x®).

* GRAD then parameter-named variables contain the gradient at the initial or final estimates.

* STDERR then parameter-named variables contain the approximate standard errors (square roots of the
diagonal elements of the covariance matrix) if the COV= option is specified.

* _NOBS_ then (if the COV= option is specified) all parameter variables contain the value of _NOBS_
used in computing the o2 value in the formula of the covariance matrix.

* UPPERBD | UB then (if there are boundary constraints) the parameter variables contain the upper
bounds.

* LOWERBD | LB then (if there are boundary constraints) the parameter variables contain the lower
bounds.

* NACTBC then all parameter variables contain the number 7, of active boundary constraints at the
solution x*.

* ACTBC then (if there are active boundary constraints) the observation indicate which parameters are
actively constrained, as follows:

NAME=GE the active lower bounds
NAME=LE the active upper bounds
NAME=EQ the active equality constraints

* NACTLC then all parameter variables contain the number n,;. of active linear constraints that are
recognized as linearly independent.

* NLDACTLC then all parameter variables contain the number of active linear constraints that are
recognized as linearly dependent.

* LE then (if there are linear constraints) the observation contains the ith linear constraint) _ ; a;jx; < b;.
The parameter variables contain the coefficients a;;, j = 1,...,n, and the _RHS_ variable contains
b; . If the constraint i is active at the solution x*, then _NAME_=ACTLC or _.NAME_=LDACTLC.

* GE then (if there are linear constraints) the observation contains the ith linear constraint) _ ; a;;x; > b;.
The parameter variables contain the coefficients a;;, j = 1,...,n, and the _RHS_ variable contains
b;. If the constraint i is active at the solution x*, then _NAME_=ACTLC or _.NAME_=LDACTLC.

* EQ then (if there are linear constraints) the observation contains the ith linear constraint) _ ; a;;x; = b;.
The parameter variables contain the coefficients a;;, j = 1,...,n, the _RHS_ variable contains b;,
and _ZNAME_=ACTLC or _NAME_=LDACTLC.

626 4 Chapter 7: The NLP Procedure

* LAGRANGE then (if at least one of the linear constraints is an equality constraint or an active inequality
constraint) the observation contains the vector of Lagrange multipliers. The Lagrange multipliers of
active boundary constraints are listed first followed by those of active linear constraints and those of
active nonlinear constraints. Lagrange multipliers are available only for the set of linearly independent
active constraints.

* PROJGRAD then (if there are linear constraints) the observation contains the n — n 4. values of the
projected gradient gz = ZT g in the variables corresponding to the first 1 — 1 .; parameters.

* JACOBIAN then (if the PJACOBI or OUTJAC option is specified) the m observations contain the m
rows of the m x n Jacobian matrix. The RHS_variable contains the row number [,/ =1, ..., m.

* HESSIAN then the first n observations contain the n rows of the (symmetric) Hessian matrix. The
RHS variable contains the row number j, j = 1,...,n, and the _NAME_ variable contains the
corresponding parameter name.

* PROJHESS then the first n — n 4. observations contain the n — n 4. rows of the projected Hessian
matrix Z7 GZ. The RHS_ variable contains the row number Jj,j =1,...,n—ngy, and the _NAME_
variable is blank.

* CRPJAC then the first n observations contain the n rows of the (symmetric) crossproduct Jacobian
matrix at the solution. The _RHS_ variable contains the row numberj, j = 1,...,n, and the _NAME_
variable contains the corresponding parameter name.

* PROJCRPIJ then the first n — n,4.¢ observations contain the n — 1 ,.; rows of the projected crossproduct
Jacobian matrix Z7 J Ty)Z. The _RHS_ variable contains the row numberj, j = 1,...,n — ngey,
and the _NAME _ variable is blank.

* COVI1, COV2, COV3, COV4, COVS, or COV6 then (depending on the COV= option) the first n
observations contain the n rows of the (symmetric) covariance matrix of the parameter estimates. The
RHS variable contains the row number j, j = 1,...,n, and the _NAME_ variable contains the
corresponding parameter name.

« DETERMIN contains the determinant det = a x 10? of the matrix specified by the value of the
_NAME _ variable where a is the value of the first variable in the DECVAR statement and b is in
RHS.

* NEIGPOS, NEIGNEG, or NEIGZER then the _RHS_ variable contains the number of positive,
negative, or zero eigenvalues of the matrix specified by the value of the _NAME_ variable.

¢ COVRANK then the RHS_ variable contains the rank of the covariance matrix.
e SIGSQ then the _RHS_ variable contains the scalar factor of the covariance matrix.

* _TIME_ then (if the OUTITER option is specified) the _RHS_ variable contains the number of seconds
passed since the start of the optimization.

* TERMINAT then if optimization terminated at a point satisfying one of the termination crite-
ria, an abbreviation of the corresponding criteria is given to the _'NAME_ variable. Otherwise
NAME=PROBLEMS.

Input and Output Data Sets 4 627

If for some reason the procedure does not terminate successfully (for example, no feasible initial values can
be computed or the function value or derivatives at the starting point cannot be computed), the OUTEST=
data set may contain only part of the observations (usually only the PARMS and GRAD observation).

NOTE: Generally you can use an OUTEST= data set as an INEST= data set in a further run of PROC NLP.
However, be aware that the OUTEST= data set also contains the boundary and general linear constraints
specified in the previous run of PROC NLP. When you are using this OUTEST= data set without changes as an
INEST= data set, PROC NLP adds the constraints from the data set to the constraints specified by a BOUNDS
or LINCON statement. Although PROC NLP automatically eliminates multiple identical constraints you
should avoid specifying the same constraint twice.

Output of Profiles

The following observations are written to the OUTEST= data set only when the PROFILE statement or

CLPARM option is specified.

Table 7.4 Output of Profiles

TYPE _NAME_ _RHS_ Meaning of Observation
PLC_LOW parname yvalue coordinates of lower CL for «
PLC_UPP parname yvalue coordinates of upper CL for «
WALD_CL LOWER yvalue lower Wald CL for o in _ALPHA _
WALD CL UPPER yvalue upper Wald CL for @ in _ALPHA _

PL_CL LOWER yvalue lower PL CL for @ in _ALPHA_
PL_CL UPPER yvalue upper PL CL for o in _ALPHA_
PROFILE L(THETA) missing y value corresponding to x
in following _'NAME_=THETA
PROFILE THETA missing x value corresponding to y

in previous _NAME_=L(THETA)

Assume that the PROFILE statement specifies n, parameters and n, confidence levels. For CLPARM,

np=nandnyg = 4.

* _TYPE_=PLC_LOW and _TYPE_=PLC_UPP:

If the CLPARM-= option or the PROFILE statement with the OUTTABLE option is specified, then the
complete set 6 of parameter estimates (rather than only the confidence limit x =) is written to the
OUTEST= data set for each side of the confidence interval. This output may be helpful for further
analyses on how small changes in x = 0; affect the changes in the other 6;,i # j. The _ALPHA_
variable contains the corresponding value of «. There should be no more than 2n4n ,, observations. If
the confidence limit cannot be computed, the corresponding observation is not available.

» _TYPE_=WALD_CL:

If CLPARM=WALD, CLPARM=BOTH, or the PROFILE statement with « values is specified, then
the Wald confidence limits are written to the OUTEST= data set for each of the default or specified
values of @. The _ALPHA_ variable contains the corresponding value of «. There should be 2n,,

observations.

628 4 Chapter 7: The NLP Procedure

* _TYPE_=PL_CL:
If CLPARM=PL, CLPARM=BOTH, or the PROFILE statement with o values is specified, then the PL
confidence limits are written to the OUTEST= data set for each of the default or specified values of «.
The _ALPHA_ variable contains the corresponding values of «. There should be 2n, observations;
some observations may have missing values.

* _TYPE_=PROFILE:
If CLPARM=PL, CLPARM=BOTH, or the CLPARM-= statement with or without « values is specified,
then a set of (x, y) point coordinates in two adjacent observations with _NAME_=L(THETA) (y value)
and _NAME_=THETA (x value) is written to the OUTEST= data set. The _RHS_ and _ ALPHA_
variables are not used (are set to missing). The number of observations depends on the difficulty of the
optimization problems.

OUTMODEL= Output Data Set

The program statements for objective functions, nonlinear constraints, and derivatives can be saved into
an OUTMODEL= output data set. This data set can be used in an INCLUDE program statement or as a
MODEL-= input data set in subsequent calls of PROC NLP. The OUTMODEL= option is similar to the option
used in PROC MODEL in SAS/ETS software.

Storing Programs in Model Files

Models can be saved to and recalled from SAS catalog files. SAS catalogs are special files which can store
many kinds of data structures as separate units in one SAS file. Each separate unit is called an entry, and
each entry has an entry type that identifies its structure to the SAS system.

In general, to save a model, use the OUTMODEL=name option in the PROC NLP statement, where name is
specified as libref.catalog.entry, libref.entry, or entry. The libref, catalog, and entry names must be valid SAS
names no more than 8 characters long. The catalog name is restricted to 7 characters on the CMS operating
system. If not given, the catalog name defaults to MODELS, and the libref defaults to WORK. The entry
type is always MODEL. Thus, OUTMODEL=X writes the model to the file WORK.MODELS.X.MODEL.

The MODEL= option is used to read in a model. A list of model files can be specified in the MODEL=
option, and a range of names with numeric suffixes can be given, as in MODEL=(MODEL1-MODEL10).
When more than one model file is given, the list must be placed in parentheses, as in MODEL=(A B C). If
more than one model file is specified, the files are combined in the order listed in the MODEL= option.

When the MODEL-= option is specified in the PROC NLP statement and model definition statements are also
given later in the PROC NLP step, the model files are read in first, in the order listed, and the model program
specified in the PROC NLP step is appended after the model program read from the MODEL= files.

The INCLUDE statement can be used to append model code to the current model code. The contents of the
model files are inserted into the current model at the position where the INCLUDE statement appears.

Note that the following statements are not part of the program code that is written to an OUTMODEL=
data set: MIN, MAX, LSQ, MINQUAD, MAXQUAD, DECVAR, BOUNDS, BY, CRPJAC, GRADIENT,
HESSIAN, JACNLC, JACOBIAN, LABEL, LINCON, MATRIX, and NLINCON.

Displayed Output 4 629

Displayed Output

Procedure Initialization

After the procedure has processed the problem, it displays summary information about the problem and
the options that you have selected. It may also display a list of linearly dependent constraints and other
information about the constraints and parameters.

Optimization Start
At the start of optimization the procedure displays

* the number of constraints that are active at the starting point, or more precisely, the number of
constraints that are currently members of the working set. If this number is followed by a plus sign,
there are more active constraints, of which at least one is temporarily released from the working set
due to negative Lagrange multipliers.

* the value of the objective function at the starting point
* if the (projected) gradient is available, the value of the largest absolute (projected) gradient element

* for the TRUREG and LEVMAR subroutines, the initial radius of the trust region around the starting
point

Iteration History

In general, the iteration history consists of one line of output containing the most important information for
each iteration. The iteration-extensive Nelder-Mead simplex method, however, displays only one line for
several internal iterations. This technique skips the output for some iterations because

» some of the termination tests (size and standard deviation) are rather time-consuming compared to the
simplex operations and are done once every five simplex operations

* the resulting history output is smaller

The _LIST_ variable (refer to the section “Program Statements” on page 590) also enables you to display the
parameter estimates x®) and the gradient g% in all or some selected iterations k.

The iteration history always includes the following (the words in parentheses indicate the column header
output):

e the iteration number (iter)

¢ the number of iteration restarts (nrest)

 the number of function calls (nfun)

¢ the number of active constraints (act)

* the value of the optimization criterion (optcrit)

* the difference between adjacent function values (difcrit)

* the maximum of the absolute (projected) gradient components (maxgrad)

630 4 Chapter 7: The NLP Procedure

An apostrophe trailing the number of active constraints indicates that at least one of the active constraints
was released from the active set due to a significant Lagrange multiplier.

The optimization history is displayed by default because it is important to check for possible convergence
problems.

Optimization Termination
The output of the optimization history ends with a short output of information concerning the optimization
result:

* the number of constraints that are active at the final point, or more precisely, the number of constraints
that are currently members of the working set. When this number is followed by a plus sign, it indicates
that there are more active constraints of which at least one is temporarily released from the working set
due to negative Lagrange multipliers.

* the value of the objective function at the final point
* if the (projected) gradient is available, the value of the largest absolute (projected) gradient element

* other information that is specific for the optimization technique

The NOPRINT option suppresses all output to the list file and only errors, warnings, and notes are displayed
to the log file. The PALL option sets a large group of some of the commonly used specific displaying
options, the PSHORT option suppresses some, and the PSUMMARY option suppresses almost all of the
default output. The following table summarizes the correspondence between the general and the specific
print options.

Table 7.5 Optimization Termination

Output Options PALL default PSHORT PSUMMARY Output

y y y y Summary of optimization

y y y n Parameter estimates

y y y n Gradient of objective func
PHISTORY y y y n Iteration history
PINIT y y n n Setting of initial values

y y n n Listing of constraints
PGRID y n n n Results of grid search
PNLCIJAC y n n n Jacobian nonlin. constr.
PFUNCTION y n n n Values of functions
PEIGVAL y n n n Eigenvalue distribution
PCRPJAC y n n n Crossproduct Jacobian
PHESSIAN y n n n Hessian matrix
PSTDERR y n n n Approx. standard errors
PCOV y n n n Covariance matrices
PJACOBI n n n n Jacobian
LIST n n n n Model program, variables
LISTCODE n n n n Compiled model program

Missing Values 4 631

Convergence Status

Upon termination, the NLP procedure creates an ODS table called “ConvergenceStatus.” You can use this
name to reference the table when using the Output Delivery System (ODS) to select tables and create output
data sets. Within the “ConvergenceStatus” table there are two variables, “Status” and “Reason,” which
contain the status of the optimization run. For the “Status” variable, a value of zero indicates that one of the
convergence criteria is satisfied; a nonzero value indicates otherwise. In all cases, an explicit interpretation of
the status code is displayed as a string stored in the “Reason” variable. For more information about ODS, see
SAS Output Delivery System: User’s Guide.

Missing Values
Missing Values in Program Statements

There is one very important reason for using missing values in program statements specifying the values
of the objective functions and derivatives: it may not be possible to evaluate the program statements for a
particular point x. For example, the extrapolation formula of one of the line-search algorithms may generate
large x values for which the EXP function cannot be evaluated without floating point overflow. The compiler
of the program statements may check for such situations automatically, but it would be safer if you check the
feasibility of your program statements. In some cases, the specification of boundary or linear constraints for
parameters can avoid such situations. In many other cases, you can indicate that x is a bad point simply by
returning a missing value for the objective function. In such cases the optimization algorithms in PROC NLP
shorten the step length o or reduce the trust region radius so that the next point will be closer to the point that
was already successfully evaluated at the last iteration. Note that the starting point x© must be a point for
which the program statements can be evaluated.

Missing Values in Input Data Sets

Observations with missing values in the DATA= data set for variables used in the objective function can
lead to a missing value of the objective function implying that the corresponding BY group of data is not
processed. The NOMISS option can be used to skip those observations of the DATA= data set for which
relevant variables have missing values. Relevant variables are those that are referred to in program statements.

There can be different reasons to include observations with missing values in the INEST= data set. The
value of the _RHS_ variable is not used in some cases and can be missing. Missing values for the variables
corresponding to parameters in the _TYPE_ variable are as follows:

* PARMS observations cause those parameters to have initial values assigned by the DECVAR statement
or by the RANDOM= or INITIAL= option.

» UPPERBD or LOWERBD observations cause those parameters to be unconstrained by upper or lower
bounds.

* LE, GE, or EQ observations cause those parameters to have zero values in the constraint.

In general, missing values are treated as zeros.

632 4 Chapter 7: The NLP Procedure

Computational Resources

Since nonlinear optimization is an iterative process that depends on many factors, it is difficult to estimate
how much computer time is necessary to compute an optimal solution satisfying one of the termination
criteria. The MAXTIME=, MAXITER=, and MAXFUNC-= options can be used to restrict the amount of real
time, the number of iterations, and the number of function calls in a single run of PROC NLP.

In each iteration &, the NRRIDG and LEVMAR techniques use symmetric Householder transformations to
decompose the n x n Hessian (crossproduct Jacobian) matrix G,

G=Vvirv, v orthogonal, T tridiagonal
to compute the (Newton) search direction s:
s = —G(k_l)g(k) , k=1,2,3,...

The QUADAS, TRUREG, NEWRAP, and HYQUAN techniques use the Cholesky decomposition to solve
the same linear system while computing the search direction. The QUANEW, DBLDOG, CONGRA, and
NMSIMP techniques do not need to invert or decompose a Hessian or crossproduct Jacobian matrix and thus
require fewer computational resources then the first group of techniques.

The larger the problem, the more time is spent computing function values and derivatives. Therefore, many
researchers compare optimization techniques by counting and comparing the respective numbers of function,
gradient, and Hessian (crossproduct Jacobian) evaluations. You can save computer time and memory by
specifying derivatives (using the GRADIENT, JACOBIAN, CRPJAC, or HESSIAN statement) since you
will typically produce a more efficient representation than the internal derivative compiler.

Finite-difference approximations of the derivatives are expensive since they require additional function or
gradient calls.

¢ Forward-difference formulas:

— First-order derivatives: n additional function calls are needed.

— Second-order derivatives based on function calls only: for a dense Hessian, n(n + 3)/2 additional
function calls are needed.

— Second-order derivatives based on gradient calls: n additional gradient calls are needed.
* Central-difference formulas:

— First-order derivatives: 2n additional function calls are needed.

— Second-order derivatives based on function calls only: for a dense Hessian, 2n(n + 1) additional
function calls are needed.

— Second-order derivatives based on gradient: 2n additional gradient calls are needed.

Many applications need considerably more time for computing second-order derivatives (Hessian matrix) than
for first-order derivatives (gradient). In such cases, a (dual) quasi-Newton or conjugate gradient technique is
recommended, which does not require second-order derivatives.

The following table shows for each optimization technique which derivatives are needed (FOD: first-order
derivatives; SOD: second-order derivatives), what kinds of constraints are supported (BC: boundary con-
straints; LIC: linear constraints), and the minimal memory (number of double floating point numbers)
required. For various reasons, there are additionally about 7n + m double floating point numbers needed.

Computational Resources 4 633

Quadratic Programming FOD SOD BC LIC Memory
LICOMP - - X x 18n+3nn
QUADAS - - X x ln+2nn/2
General Optimization FOD SOD BC LIC Memory

TRUREG X X X X 4n+2nn/2
NEWRAP X X X X 2n+2nn/2
NRRIDG X X X X 6n+4+nn/2
QUANEW X - X X In+4+nn/2
DBLDOG X X X Tn+nn/2
CONGRA X - X X 3n

NMSIMP - - X X 4n+nn

Least Squares FOD SOD BC LIC Memory
LEVMAR X - X X 6n+nn/2
HYQUAN X - X X 2n+nn/2+4+3m

Notes:

* Here, n denotes the number of parameters, nn the squared number of parameters, and nn/2 =
nn+1)/2.

* The value of m is the product of the number of functions specified in the MIN, MAX, or LSQ statement
and the maximum number of observations in each BY group of a DATA= input data set. The following
table also contains the number v of variables in the DATA= data set that are used in the program
statements.

* For a diagonal Hessian matrix, the nn/2 term in QUADAS, TRUREG, NEWRAP, and NRRIDG is
replaced by n.

 If the TRUREG, NRRIDG, or NEWRAP method is used to minimize a least squares problem, the
second derivatives are replaced by the crossproduct Jacobian matrix.

* The memory needed by the TECH=NONE specification depends on the output specifications (typically,
it needs 3n 4 nn/2 double floating point numbers and an additional mn if the Jacobian matrix is
required).

The total amount of memory needed to run an optimization technique consists of the technique-specific
memory listed in the preceding table, plus additional blocks of memory as shown in the following table.

double int long 8byte
Basic Requirement n+m n 3n n4+m
DATA= data set v - - v
JACOBIAN statement m(n + 2) - - -
CRPJAC statement nn/2 - - -
HESSIAN statement nn/2 - - -
COV= option 2x)nn/2+n - - -
Scaling vector n - - -
BOUNDS statement 2n n - -
Bounds in INEST= 2n - - -

LINCON and TRUREG c¢(n+ 1) +nn+nn/2+4+4n 3c - -
LINCON and other cn+1)4+nn+2nn/2+4n 3c - -

634 4 Chapter 7: The NLP Procedure

Notes:

* For TECH=LICOMP, the total amount of memory needed for the linear or boundary constrained case
is 18(n + ¢) + 3(n + ¢)(n + ¢), where c is the number of constraints.

* The amount of memory needed to specify derivatives with a GRADIENT, JACOBIAN, CRPJAC,
or HESSIAN statement (shown in this table) is small compared to that needed for using the internal
function compiler to compute the derivatives. This is especially so for second-order derivatives.

 If the CONGRA technique is used, specifying the GRADCHECK=DETAIL option requires an addi-
tional nn /2 double floating point numbers to store the finite-difference Hessian matrix.

Memory Limit

The system option MEMSIZE sets a limit on the amount of memory used by the SAS System. If you do not
specify a value for this option, then the SAS System sets a default memory limit. Your operating environment
determines the actual size of the default memory limit, which is sufficient for many applications. However, to
solve most realistic optimization problems, the NLP procedure might require more memory. Increasing the
memory limit can reduce the chance of an out-of-memory condition.

NOTE: The MEMSIZE system option is not available in some operating environments. See the documentation
for your operating environment for more information.

You can specify -MEMSIZE 0 to indicate all available memory should be used, but this setting should be used
with caution. In most operating environments, it is better to specify an adequate amount of memory than to
specify -MEMSIZE 0. For example, if you are running PROC OPTLP to solve LP problems with only a few
hundred thousand variables and constraints, -MEMSIZE 500M might be sufficient to enable the procedure to
run without an out-of-memory condition. When problems have millions of variables, -MEMSIZE 1000M or
higher might be needed. These are “rules of thumb”—problems with atypical structure, density, or other
characteristics can increase the optimizer’s memory requirements.

The MEMSIZE option can be specified at system invocation, on the SAS command line, or in a configuration
file. The syntax is described in the SAS Companion for your operating environment.

To report a procedure’s memory consumption, you can use the FULLSTIMER option. The syntax is described
in the SAS Companion for your operating environment.

Rewriting NLP Models for PROC OPTMODEL

This section covers techniques for converting NLP procedure models to OPTMODEL procedure models.
For information about the OPTMODEL procedure, see Chapter 5, “The OPTMODEL Procedure” (SAS/OR
User’s Guide: Mathematical Programming).

To illustrate the basics, consider the following first version of the NLP model for Example 7.7:

Rewriting NLP Models for PROC OPTMODEL 4 635

[hkkhkhkhhkhhhhhhkhhkhkhdhhkhhhhhhhdkhhhkhhhhhkdkdkhhhhhhhkkdkkhkhhhhkkkkkkkkrkx/
/* Rewriting NLP Models for PROC OPTMODEL */
[hkkhhkhhhkhhhkhkhhhkhhhhkhkhhhhkhhkhhhhhhhkhhhkhhhkhhhkkhhkhhkkhhkkhkkkkkkk/

proc nlp all;
parms amountx amounty amounta amountb amountc
pooltox pooltoy ctox ctoy pools = 1;
bounds 0 <= amountx amounty amounta amountb amountc,
amountx <= 100,
amounty <= 200,
0 <= pooltox pooltoy ctox ctoy,
1 <= pools <= 3;
lincon amounta + amountb = pooltox + pooltoy,

pooltox + ctox = amountx,
pooltoy + ctoy = amounty,
ctox + ctoy = amountc;
nlincon nlcl-nlc2 >= 0.,
nle3 = 0.;
max f;

costa = 6; costb 16; costc = 10;
costx = 9; costy 15;
f = costx * amountx + costy * amounty
— costa * amounta - costb * amountb - costc * amountc;
nlcl = 2.5 * amountx — pools * pooltox - 2. * ctox;
nlc2 1.5 x» amounty - pools * pooltoy - 2. * ctoy;
nlc3 3 % amounta + amountb - pools * (amounta + amountb);
run;

These statements define a model that has bounds, linear constraints, nonlinear constraints, and a simple
objective function. The following statements are a straightforward conversion of the PROC NLP statements
to PROC OPTMODEL form:

proc optmodel;
var amountx init

A
1]

100,
200;

A
[}

amounty init
var amounta init
amountb init

~

amountc init

~.

~

var pooltox init
pooltoy init
var ctox init 1 >= 0,
ctoy init 1 >= 0;
var pools init 1 >=1 <= 3;

R R RRRRR
v
[}
Ocoooooo

~.

con amounta + amountb = pooltox + pooltoy,

pooltox + ctox = amountx,

pooltoy + ctoy = amounty,

ctox + ctoy = amountc;
number costa, costb, costc, costx, costy;
6; costb = 16; costc = 10;
costx 9; costy = 15;
max f = costx x amountx + costy * amounty

— costa * amounta - costb * amountb - costc * amountc;

con nlcl: 2.5 * amountx — pools * pooltox - 2. x ctox >= 0,

costa

636 4 Chapter 7: The NLP Procedure

nlc2: 1.5 * amounty - pools * pooltoy — 2. x ctoy >= 0,
nlc3: 3 * amounta + amountb - pools * (amounta + amountb)
= 0;
solve;
print amountx amounty amounta amountb amountc
pooltox pooltoy ctox ctoy pools;

The PROC OPTMODEL variable declarations are split into individual declarations because PROC OPT-
MODEL does not permit name lists in its declarations. In the OPTMODEL procedure, variable bounds are
part of the variable declaration instead of a separate BOUNDS statement. The PROC NLP statements are as
follows:

parms amountx amounty amounta amountb amountc
pooltox pooltoy ctox ctoy pools = 1;

bounds 0 <= amountx amounty amounta amountb amountc,

amountx <= 100,

amounty <= 200,

pooltox pooltoy ctox ctoy,

pools <= 3;

= O
A A
nn

The following PROC OPTMODEL statements are equivalent to the PROC NLP statements:

var amountx init <= 100,

amounty init <= 200;
var amounta init
amountb init
amountc init
var pooltox init
pooltoy init
var ctox init 1 >= 0,
ctoy init 1 >= 0;
var pools init 1 >= 1 <= 3;

H R RRRRR
v
1]
Oo0oooooo
N

’

The linear constraints are declared in the NLP model with the following statement:

lincon amounta + amountb = pooltox + pooltoy,
pooltox + ctox = amountx,
pooltoy + ctoy = amounty,
ctox + ctoy = amountc;

The following linear constraint declarations in the PROC OPTMODEL model are quite similar to the PROC
NLP LINCON declarations:

con amounta + amountb = pooltox + pooltoy,
pooltox + ctox = amountx,
pooltoy + ctoy amounty,
ctox + ctoy = amountc;

Rewriting NLP Models for PROC OPTMODEL 4 637

But PROC OPTMODEL provides much more flexibility in defining linear constraints. For example, coeffi-
cients can be named parameters or any other expression that evaluates to a constant.

The cost parameters are declared explicitly in the PROC OPTMODEL model. Unlike the DATA step or
PROC NLP, PROC OPTMODEL requires names to be declared before they are used. There are multiple
ways to set the values of these parameters. The preceding example used assignments. The values could have
been made part of the declaration by using the INIT expression clause or the = expression clause. The values
could also have been read from a data set with the READ DATA statement.

Note in the original NLP statements that the assignment to a parameter such as costa occurs every time the
objective function is evaluated. However, the assignment occurs just once in the PROC OPTMODEL code,
when the assignment statement is processed. This works because the values are constant. But the PROC
OPTMODEL statements permit the parameters to be reassigned later to interactively modify the model.

The following statements define the objective f in the NLP model:

max f;

f = costx * amountx + costy * amounty
— costa * amounta - costb * amountb - costc * amountc;

The PROC OPTMODEL version of the objective is defined with the same expression text, as follows:

max £ = costx *x amountx + costy * amounty
— costa * amounta - costb * amountb - costc * amountc;

But in PROC OPTMODEL the MAX statement and the assignment to the name f in the PROC NLP
statements are combined. There are advantages and disadvantages to this approach. The PROC OPTMODEL
formulation is much closer to the mathematical formulation of the model. However, if there are multiple
intermediate variables being used to structure the objective, then multiple IMPVAR declarations are required.

In the PROC NLP model the nonlinear constraints use the following syntax:

nlincon nlcl-nlc2 >= 0.,

nle3 = 0.;
nlcl = 2.5 * amountx - pools * pooltox — 2. * ctox;
nlc2 = 1.5 * amounty - pools * pooltoy - 2. * ctoy;
nlc3 = 3 * amounta + amountb - pools * (amounta + amountb);

In the PROC OPTMODEL model the equivalent statements are as follows:

con nlcl: 2.5 * amountx - pools * pooltox - 2. * ctox >= 0,
nlc2: 1.5 * amounty - pools * pooltoy — 2. * ctoy >= 0,
nlc3: 3 * amounta + amountb - pools * (amounta + amountb)

= 0;

The nonlinear constraints in PROC OPTMODEL use the same syntax as linear constraints. In fact, if the
variable pools were declared as a parameter, then all the preceding constraints would be linear. The nonlinear

638 4 Chapter 7: The NLP Procedure

constraint in PROC OPTMODEL combines the NLINCON statement of PROC NLP with the assignment in
the PROC NLP statements. As in objective expressions, objective names can be used in nonlinear constraint
expressions to structure the formula.

The PROC OPTMODEL model does not use a RUN statement to invoke the solver. Instead the solver
is invoked interactively by the SOLVE statement in PROC OPTMODEL. By default, the OPTMODEL
procedure prints much less data about the optimization process. Generally these data consist of messages
from the solver (such as the termination reason) in addition to a short status display. The PROC OPTMODEL
statements add a PRINT statement in order to display the variable estimates from the solver.

The model for Example 7.8 illustrates how to convert PROC NLP statements that handle arrays into PROC
OPTMODEL form. The PROC NLP model is as follows:

proc nlp tech=tr pall,;
array c[10] -6.089 -17.164 -34.054 -5.914 -24.721
-14.986 -24.100 -10.708 -26.662 -22.179;
array x[10] x1-x10;
min y;
parms x1-x10 = .1;
bounds 1l.e-6 <= x1-x10;
xl + 2. » x2 + 2. » x3 + x6 + x10,

lincon 2.

1. = x4 + 2. » x5 + x6 + x7,
1. = x3 + x7 + x8 + 2. » x9 + x10;
s = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10;

y =0.;
do j =1 to 10;
y =y + x[3] * (c[3] + log(x[3j] / s));
end;
run;

The model finds an equilibrium state for a mixture of chemicals. The following statements show a corre-
sponding PROC OPTMODEL model:

proc optmodel;
set CMP = 1..10;
number c{CMP} = [-6.089 -17.164 -34.054 -5.914 -24.721
-14.986 -24.100 -10.708 -26.662 -22.179];
var x{CMP} init 0.1 >= 1l.e-6;
con 2. = x[1] + 2. * x[2] + 2. * x[3] + x[6] + x[10],
1. x[4] + 2. * x[5] + x[6] + x[7],
1. x[3] + x[7] + x[8] + 2. » x[9] + x[10];
/* replace the variable s in the NLP model */

impvar s = sum{i in CMP} x[i];

min y = sum{j in CMP} x[3j] * (c[j] + log(x[3j]l / s));
solve;

print x y;

The PROC OPTMODEL model uses the set CMP to represent the set of compounds, which are numbered 1
to 10 in the example. The array ¢ was initialized by using the equivalent PROC OPTMODEL syntax. The
individual array locations could also have been initialized by assignment or READ DATA statements.

The VAR declaration for variable x combines the VAR and BOUNDS statements of the PROC NLP model.
The index set of the array is based on the set of compounds CMP, to simplify changes to the model.

The linear constraints are similar in form to the PROC NLP model. However, the PROC OPTMODEL

Rewriting NLP Models for PROC OPTMODEL 4 639

version uses the array form of the variable names because the OPTMODEL procedure treats arrays as distinct
variables, not as aliases of lists of scalar variables.

The implicit variable s replaces the intermediate variable of the same name in the PROC NLP model. This
is an example of translating an intermediate variable from the other models to PROC OPTMODEL. An
alternative way is to use an additional constraint for every intermediate variable. In the preceding statements,
instead of declaring objective s, you can use the following statements:

var s;
con s = sum{i in CMP} x[i];

Note that this alternative formulation passes an extra variable and constraint to the solver. This formulation
can sometimes be solved more efficiently, depending on the characteristics of the model.

The PROC OPTMODEL version uses a SUM operator over the set CMP, which enhances the flexibility of
the model to accommodate possible changes in the set of compounds.

In the PROC NLP model the objective function y is determined by an explicit loop. With PROC OPTMODEL,
the DO loop is replaced by a SUM aggregation operation. The accumulation in the PROC NLP model is now
performed by PROC OPTMODEL with the SUM operator.

This PROC OPTMODEL model can be further generalized. Note that the array initialization and constraints
assume a fixed set of compounds. You can rewrite the model to handle an arbitrary number of compounds
and chemical elements. The new model loads the linear constraint coefficients from a data set along with the
objective coefficients for the parameter c, as follows:

data comp;

input ¢ a_1 a_2 a_3;

datalines;
-6.089 10
-17.164
-34.054
-5.914
-24.721
-14.986
-24.100
-10.708
-26.662
-22.179

R OOOROONND
oOookr DMK OO
PR NRPRPOOOHROO

’

data atom;
input b QQ;
datalines;
2. 1. 1.

’

proc optmodel;
set CMP;
set ELT,;
number c{CMP};

640 4 Chapter 7: The NLP Procedure

number a{ELT,CMP};
number b{ELT};
read data atom into ELT=[_n_] b;
read data comp into CMP=[_n_]
¢ {i in ELT} < a[i,_n]=col("a_"||1i) >;
var x{CMP} init 0.1 >= 1l.e-6;
con bal{i in ELT}: b[i] = sum{j in CMP} ali, jl*x[j];
impvar s = sum{i in CMP} x[i];
min y = sum{j in CMP} x[j] * (c[j] + log(x[j]l / s));
print a b;
solve;
print x;

This version adds coefficients for the linear constraints to the COMP data set. The data set variable a_n
represents the number of atoms in the compound for element n. The READ DATA statement for COMP uses

the iterated column syntax to read each of the data set variables a_n into the appropriate location in the array
a. In this example the expanded data set variable names are a_1, a_2, and a_3.

The preceding version also adds a new set, ELT, of chemical elements and a numeric parameter, b, that
represents the left-hand side of the linear constraints. The data values for the parameters ELT and b are read
from the data set ATOM. The model can handle varying sets of chemical elements because of this extra data
set and the new parameters.

The linear constraints have been converted to a single indexed family of constraints. One constraint is applied
for each chemical element in the set ELT. The constraint expression uses a simple form that applies generally
to linear constraints. The following PRINT statement in the model shows the values read from the data sets
to define the linear constraints:

print a b;

The PRINT statements in the model produce the results shown in Output 7.11.

Figure 7.11 PROC OPTMODEL Output
The OPTMODEL Procedure

a
12345678910
1122001000 1
2000121100 O
3001000112 1

b
1 2
2 1
3 1

Rewriting NLP Models for PROC OPTMODEL 4 641

Figure 7.11 continued

—
-
[}

W 0 N O Ul A WIN =

10

X
0.04066848
0.14773067
0.78315260
0.00141459
0.48524616
0.00069358
0.02739955
0.01794757
0.03731444
0.09687143

In the preceding model the chemical elements and compounds are designated by numbers. So in the PRINT
output, for example, the row that is labeled “3” represents the amount of the compound H>O. PROC
OPTMODEL is capable of using more symbolic strings to designate array indices. The following version of
the model uses strings to index arrays:

da

H
H2
H2
N
N2
NH
NO
o)
02
OH
7

da

H
N
o

’

input name $ c a_h a_n a_o;

R OOOROODMNMDNDHR
O o0OoOoOkrRr DMK OODO
R NRPRPFPLPOOOHKODO

ta comp;
datalines;
-6.089
-17.164
o -34.054
-5.914
-24.721
-14.986
-24.100
-10.708
—-26.662
-22.179
ta atom;
input name $ b;
datalines;
2.
1.
1.

proc optmodel;

set<string> CMP;

set<string> ELT;

number c{CMP};

number a{ELT,CMP};

number b{ELT};

read data atom into ELT=[name] b;
read data comp into CMP=[name]

c {i in ELT} <

var x{CMP} init 0.1 >= 1l.e-6;
con bal{i in ELT}: b[i] = sum{j in CMP} ali, jl*x[]j];

impvar s

sum{i in CMP} x[i];

al[i,name]l=col("a_"||i) >;

642 4 Chapter 7: The NLP Procedure

min y = sum{j in CMP} x[j] * (c[j] + log(x[j]l / s));
solve;
print x;

In this model, the sets CMP and ELT are now sets of strings. The data sets provide the names of the compounds
and elements. The names of the data set variables for atom counts in the data set COMP now include the
chemical element symbol as part of their spelling. For example, the atom count for element H (hydrogen)
is named a_h. Note that these changes did not require any modification to the specifications of the linear
constraints or the objective.

The PRINT statement in the preceding statements produces the results shown in Output 7.12. The indices of
variable x are now strings that represent the actual compounds.

Figure 7.12 PROC OPTMODEL Output with Strings
The OPTMODEL Procedure

[1] x
H 0.04066848
H2 0.14773067
H20 0.78315260
N 0.00141459
N2 0.48524616
NH 0.00069358
NO 0.02739955
O 0.01794757
02 0.03731444
OH 0.09687143

Examples: NLP Procedure

Example 7.1: Using the DATA= Option

This example illustrates the use of the DATA= option. The Bard function (refer to Moré, Garbow, and
Hillstrom (1981)) is a least squares problem with n = 3 parameters and m = 15 functions f:

15
S = éki_‘,l R, x = (,xx3)
where

Jie(x) =y — (X1 + u—k)

VX2 + WrX3
with up = k, vy = 16 — k, wr = min(ug, vg), and

y = (.14,.18, .22, .25, .29, .32, .35, .39, .37, .58, .73, .96, 1.34,2.10, 4.39)

Example 7.1: Using the DATA= Option 4 643

The minimum function value f(x*) = 4.107E—3 is at the point (0.08, 1.13,2.34). The starting point
x% = (1,1, 1) is used. The following is the naive way of specifying the objective function.

proc nlp tech=levmar;

lsq yl-yl5;
parms x1-x3
tmpl 15 =«

=1;
x2 + min(1,15) * x3;

yl = 0.14 - (x1 + 1 / tmpl);
tmpl = 14 * x2 + min(2,14) * x3;
y2 = 0.18 - (x1 + 2 / tmpl);
tmpl = 13 * x2 + min(3,13) * x3;
y3 = 0.22 - (x1 + 3 / tmpl);
tmpl = 12 * x2 + min(4,12) * x3;
y4d = 0.25 - (x1 + 4 / tmpl);
tmpl = 11 * x2 + min(5,11) * x3;
y5 = 0.29 - (x1 + 5 / tmpl);
tmpl = 10 * x2 + min(6,10) * x3;
y6 = 0.32 - (x1 + 6 / tmpl);
tmpl = 9 * x2 + min(7,9) * x3;
y7 = 0.35 = (x1 + 7 / tmpl);
tmpl = 8 * x2 + min(8,8) * x3;
y8 = 0.39 - (x1 + 8 / tmpl);
tmpl = 7 * x2 + min(9,7) * x3;
y9 = 0.37 - (x1 + 9 / tmpl);
tmpl = 6 * x2 + min(10,6) * x3;
yl0 = 0.58 - (x1 + 10 / tmpl);
tmpl = 5 x x2 + min(11,5) * x3;
yll = 0.73 - (x1 + 11 / tmpl);
tmpl = 4 * x2 + min(12,4) * x3;
yl2 = 0.96 - (x1 + 12 / tmpl);
tmpl = 3 * x2 + min(13,3) * x3;
yl3 = 1.34 - (x1 + 13 / tmpl);
tmpl = 2 * x2 + min(14,2) * x3;
yld = 2,10 - (x1 + 14 / tmpl);
tmpl = 1 * x2 + min(15,1) * x3;
yl5 = 4.39 - (x1 + 15 / tmpl);
run;

A more economical way to program this problem uses the DATA= option to input the 15 terms in f(x).

data bard;
input r QQ@;
wl =16. - _n_;
w2 = min(_n_ , 16. - _n);
datalines;
.14 .18 .22 .25 .29 .32 .35
.37 .58 .73 .96 1.34 2.10 4.39

proc nlp data=bard tech=levmar;

1sq y;
parms x1-x3

=1.;

.39

644 4 Chapter 7: The NLP Procedure

y=r - (x1 + _obs_ / (wl * x2 + w2 * x3));
run;

Another way you can specify the objective function uses the ARRAY statement and an explicit do loop, as in
the following code.

proc nlp tech=levmar;
array r[15] .14 .18 .22 .25 .29 .32 .35 .39 .37 .58
.73 .96 1.34 2.10 4.39 ;
array y[15] yl-yl5;
1sq yl-y15;
parms x1-x3 = 1.;
do i =1 to 15;
wl = 16. - i;
w2 = min(i , wl);
w3 = wl *» x2 + w2 *x x3;
y[i] = r[i] - (x1 + i / w3);
end;
run;

Example 7.2: Using the INQUAD= Option

This example illustrates the INQUAD= option for specifying a quadratic programming problem:
1
min f(x) = 5xTGx +gl'x+¢, with GT =G

Suppose that c = —100, G = diag(.4,4) and 2 < x; < 50, —50 < xp < 50, and 10 < 10x; — x>5.

You specify the constant ¢ and the Hessian G in the data set QUADI1. Notice that the _TYPE_ variable
contains the keywords that identify how the procedure should interpret the observations.

data quadl;
input _type_ $ _name_ $ x1 x2;
datalines;

const . -100 -100

quad x1 0.4 0

quad x2 0 4

You specify the QUADI1 data set with the INQUAD= option. Notice that the names of the variables in the
QUADI data set and the _NAME_ variable match the names of the parameters in the PARMS statement.

proc nlp inquad=quadl all;
min ;
parms x1 x2 = -1;
bounds 2 <= x1 <= 50,
=50 <= x2 <= 50;
lincon 10 <= 10 * x1 - x2;
run;

Alternatively, you can use a sparse format for specifying the G matrix, eliminating the zeros. You use the
special variables _ROW_, _COL_, and _VALUE_ to give the nonzero row and column names and value.

Example 7.3: Using the INEST=Option 4 645

data quad2;
input _type_ $ _row_ $ _col_ $ _value_;
datalines;

const . . -100

quad x1 x1 0.4

quad x2 x2 4

You can also include the constraints in the QUAD data set. Notice how the _TYPE_ variable contains
keywords that identify how the procedure is to interpret the values in each observation.

data quad3;
input _type_ $ _name_ $ x1 x2 _rhs_;
datalines;

const . -100 -100

quad x1 0.02 0

quad x2 0.00 2

parms . -1 -1

lowerbd . 2 -50

upperbd . 50 50 .

ge . 10 -1 10

4

proc nlp inquad=quad3;
min ;
parms x1 x2;

run;

Example 7.3: Using the INEST=Option

This example illustrates the use of the INEST= option for specifying a starting point and linear constraints.
You name a data set with the INEST= option. The format of this data set is similar to the format of the QUAD
data set described in the previous example.

Consider the Hock and Schittkowski (1981) Problem # 24
(1 —3)2 =93

min f(x) =

2743
subject to:
0 = x1,x2
0 < .57735x1 — x»
0 < x1+4+1.732x,
6 > x1+1.732x,

with minimum function value f(x*) = —1 at x* = (3, +/3). The feasible starting point is x° = (1,.5).

646 4 Chapter 7: The NLP Procedure

You can specify this model in PROC NLP as follows:

proc nlp tech=trureg outest=res;

min y;
parms x1 = 1,
x2 = .5;
bounds 0 <= x1-x2;
lincon .57735 * x1 - x2 >= 0,

x1l + 1.732 » x2 >= O,
-x1 1.732 *» x2 >= -6;
y = (((x1 = 3)**2 = 9.) * x2%x3) / (27 * sqrt(3));
run;

Note that none of the data for this model are in a data set. Alternatively, you can save the starting point (1, .5)
and the linear constraints in a data set. Notice that the _TYPE_ variable contains keywords that identify
how the procedure is to interpret each of the observations and that the parameters in the problems X1 and
X2 are variables in the data set. The observation with _TYPE_=LOWERBD gives the lower bounds on the
parameters. The observation with _TYPE_=GE gives the coefficients for the first constraint. Similarly, the
subsequent observations contain specifications for the other constraints. Also notice that the special variable
RHS contains the right-hand-side values.

data bettsl (type=est);
input _type_ $ x1 x2 _rhs_;

datalines;
parms 1 .5
lowerbd O 0
ge .57735 -1
ge 1 1.732 .
le 1 1.732 6

Now you can solve this problem with the following code. Notice that you specify the objective function and
the parameters.

proc nlp inest=bettsl tech=trureg;

min y;

parms x1 x2;

y = (((x1 = 3)**2 — 9) * x2%x*3) / (27 * sqrt(3));
run;

You can even include any constants used in the program statements in the INEST= data set. In the following
code the variables A, B, C, and D contain some of the constants used in calculating the objective function Y.

data betts2 (type=est);

input _type_ $ x1 x2 _rhs__ a b c d;
datalines;
parms 1 .5 . 3 9 27 3
lowerbd O 0 .
ge .57735 -1 0
ge 1 1.732 0
le 1 1.732 6

Notice that in the program statement for calculating Y, the constants are replaced by the A, B, C, and D
variables.

Example 7.4: Restarting an Optimization 4 647

proc nlp inest=betts2 tech=trureg;

min y;

parms x1 x2;

Yy = (((x1 - a)**2 — b) * x2%xx3) / (c * sqrt(d));
run;

Example 7.4: Restarting an Optimization

This example shows how you can restart an optimization problem using the OUTEST=, INEST=, OUT-
MODEL=, and MODEL-= options and how to save output into an OUT= data set. The least squares solution
of the Rosenbrock function using the trust region method is used.

The following code solves the problem and saves the model in the MODEL data set and the solution in the
EST and OUT]1 data sets.

proc nlp tech=trureg outmodel=model outest=est out=outl;

1sq yl1 y2;
parms x1 = -1.2 ,
x2 = 1.;
yl = 10. » (x2 - x1 * x1);

y2 = 1. - x1;

run;

proc print data=outl;
run;

The final parameter estimates x* = (1, 1) and the values of the functions f; =Y1 and f, =Y2 are written
into an OUT= data set, shown in Output 7.4.1. Since OUTDER=0 is the default, the OUT= data set does not
contain the Jacobian matrix.

Output 7.4.1 Solution in an OUT= Data Set

Obs _OBS_ _TYPE_ y1 y2 x2 x1
1 1 0 3.3307E-16 1 1

Next, the procedure reads the optimal parameter estimates from the EST data set and the model from the
MODEL data set. It does not do any optimization (TECH=NONE), but it saves the Jacobian matrix to the
OUT=0UT?2 data set because of the option OUTDER=1. It also displays the Jacobian matrix because of the
option PJAC; the Jacobian matrix is shown in Output 7.4.2. Output 7.4.3 shows the contents of the OUT2
data set, which also contains the Jacobian matrix.

proc nlp tech=none model=model inest=est out=out2 outder=1 pjac PHISTORY;
1sq yl1 y2;
parms x1 x2;

run;

proc print data=out2;
run;

648 4 Chapter 7: The NLP Procedure

Output 7.4.2 Jacobian Matrix Output
PROC NLP: Least Squares Minimization

Jacobian
Matrix

x1 x2
20 10
-1 0

Output 7.4.3 Jacobian Matrix in an OUT= Data Set

Obs OBS_ TYPE_ y1y2 WRT_ x2 x1

1 1 00 11
2 1 ANALYTIC 10 0 x2 11
3 1 ANALYTIC -20 -1 x1 11

Example 7.5: Approximate Standard Errors

The NLP procedure provides a variety of ways for estimating parameters in nonlinear statistical models and
for obtaining approximate standard errors and covariance matrices for the estimators. These methods are
illustrated by estimating the mean of a random sample from a normal distribution with mean w and standard
deviation o. The simplicity of the example makes it easy to compare the results of different methods in NLP
with the usual estimator, the sample mean.

The following data step is used:

data x;

input x QQ@;
datalines;
13457

’

The standard error of the mean, computed with n — 1 degrees of freedom, is 1. The usual maximum-likelihood
approximation to the standard error of the mean, using a variance divisor of n rather than n — 1, is 0.894427.

The sample mean is a least squares estimator, so it can be computed using an LSQ statement. Moreover,
since this model is linear, the Hessian matrix and crossproduct Jacobian matrix are identical, and all three
versions of the COV= option yield the same variance and standard error of the mean. Note that COV=j means
that the crossproduct Jacobian is used. This is chosen because it requires the least computation.

proc nlp data=x cov=j pstderr pshort PHISTORY;
lsq resid;
parms mean=0;
resid=x-mean;

run;

The results are the same as the usual estimates.

Example 7.5: Approximate Standard Errors 4 649

Output 7.5.1 Parameter Estimates
PROC NLP: Least Squares Minimization

Optimization Results
Parameter Estimates

Gradient

Approx Approx Objective

N Parameter Estimate Std Err tValue Pr> |t Function
1 mean 4.000000 1.000000 4.000000 0.016130 0

Value of Objective Function =10

PROC NLP can also compute maximum-likelihood estimates of w and o. In this case it is convenient to
minimize the negative log likelihood. To get correct standard errors for maximume-likelihood estimators, the
SIGSQ=1 option is required. The following program shows COV=1 but the output that follows has COV=2
and COV=3.

proc nlp data=x cov=1l sigsq=1 pstderr phes pcov pshort;
min nloglik;
parms mean=0, sigma=1l;
bounds le-12 < sigma;
nloglik=.5% ((x-mean) /sigma) **2 + log(sigma);
run;

The variance divisor is n instead of n — 1, so the standard error of the mean is 0.894427 instead of 1. The
standard error of the mean is the same with all six types of covariance matrix, but the standard error of the
standard deviation varies. The sampling distribution of the standard deviation depends on the higher moments
of the population distribution, so different methods of estimation can produce markedly different estimates of
the standard error of the standard deviation.

650 4 Chapter 7: The NLP Procedure

Output 7.5.2 shows the output when COV=1, Output 7.5.3 shows the output when COV=2, and Output 7.5.4
shows the output when COV=3.
Output 7.5.2 Solution for COV=1
PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Gradient
Approx Approx Objective
N Parameter Estimate Std Err tValue Pr>|i Function

4.000000 0.894427 4.472136 0.006566 1.33149E-10
2.000000 0.458258 4.364358 0.007260 -5.606415E-9

1 mean

2 sigma
Value of Objective Function = 5.9657359028

Hessian Matrix
mean sigma
mean 1.2500000028 -1.33149E-10
sigma -1.33149E-10 2.500000014

Determinant = 3.1250000245
Matrix has Only Positive Eigenvalues
Covariance Matrix 1:
M = (NOBS/d) inv(G) JJ(f) inv(G)
mean sigma

mean 0.8 1.980107E-11
sigma 1.980107E-11 0.2099999991

Factor sigm =1
Determinant = 0.1679999993

Matrix has Only Positive Eigenvalues

Output 7.5.3 Solution for COV=2
PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Gradient
Approx Approx Objective
N Parameter Estimate Std Err tValue Pr> |t Function

4.000000 0.894427 4.472136 0.006566 1.33149E-10
2.000000 0.632456 3.162278 0.025031 -5.606415E-9

1 mean
2 sigma

Example 7.5: Approximate Standard Errors 4 651

Output 7.5.3 continued
Value of Objective Function = 5.9657359028

Hessian Matrix
mean sigma
mean 1.2500000028 -1.33149E-10
sigma -1.33149E-10 2.500000014

Determinant = 3.1250000245
Matrix has Only Positive Eigenvalues
Covariance Matrix 2:
H = (NOBS/d) inv(G)
mean sigma

mean 0.7999999982 4.260766E-11
sigma 4.260766E-11 0.3999999978

Factor sigm =1
Determinant = 0.3199999975

Matrix has Only Positive Eigenvalues

Output 7.5.4 Solution for COV=3
PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Gradient
Approx Approx Objective
N Parameter Estimate Std Err tValue Pr>|f Function

1 mean 4.000000 0.509136 7.856442 0.000537 1.301733E-10
2 sigma 2.000000 0.419936 4.762634 0.005048 -5.940302E-9

Value of Objective Function = 5.9657359028

Hessian Matrix
mean sigma
mean 1.2500000028 -1.33149E-10
sigma -1.33149E-10 2.500000014

Determinant = 3.1250000245
Matrix has Only Positive Eigenvalues

Covariance Matrix 3: J = (1/d)
inv(W)

mean sigma
mean 0.2592197879 1.062283E-11
sigma 1.062283E-11 0.1763460041

652 4 Chapter 7: The NLP Procedure

Under normality, the maximum-likelihood estimators of i and o are independent, as indicated by the
diagonal Hessian matrix in the previous example. Hence, the maximum-likelihood estimate of p can be
obtained by using any fixed value for o, such as 1. However, if the fixed value of o differs from the actual
maximum-likelihood estimate (in this case 2), the model is misspecified and the standard errors obtained with
COV=2 or COV=3 are incorrect. It is therefore necessary to use COV=1, which yields consistent estimates
of the standard errors under a variety of forms of misspecification of the error distribution.

Output 7.5.4 continued

Factor sigm = 0.2

Determinant = 0.0457123738

Matrix has Only Positive Eigenvalues

proc nlp data=x cov=1l sigsqg=1 pstderr pcov pshort;

min sqresid;
parms mean=0;

sqresid=.5* (x—mean) x*2;

run;

This formulation produces the same standard error of the mean, 0.894427 (see Output 7.5.5).

The maximum-likelihood formulation with fixed o is actually a least squares problem. The objective function,
parameter estimates, and Hessian matrix are the same as those in the first example in this section using the
LSQ statement. However, the Jacobian matrix is different, each row being multiplied by twice the residual.
To treat this formulation as a least squares problem, the SIGSQ=1 option can be omitted. But since the
Jacobian is not the same as in the formulation using the LSQ statement, the COV=1 | M and COV=3 | J
options, which use the Jacobian, do not yield correct standard errors. The correct standard error is obtained

Output 7.5.5 Solution for Fixed o and COV=1

PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Gradient

Approx Approx Objective
N Parameter Estimate Std Err tValue Pr> |t Function

1 mean 4.000000 0.894427 4.472136 0.006566
Value of Objective Function =10

Covariance
Matrix 1:
M = (NOBS/d)
inv(G) JJ(f)
inv(G)
mean

mean 0.8

Factor sigm =1

with COV=2 | H, which uses only the Hessian matrix:

0

Example 7.6: Maximum Likelihood Weibull Estimation 4 653

proc nlp data=x cov=2 pstderr pcov pshort;

min sqresid;

parms mean=0;

sqresid=.5% (x—mean) x*2;
run;

The results are the same as in the first example.

Output 7.5.6 Solution for Fixed o and COV=2
PROC NLP: Nonlinear Minimization

N Parameter Estimate Std Err
4.000000 0.500000 8.000000 0.001324 0

1 mean

Optimization Results
Parameter Estimates

Gradient
Approx Objective
Pr > |t| Function

Approx
t Value

Value of Objective Function =10

Covariance
Matrix 2:
H = (NOBS/d)
inv(G)
mean

mean 0.25

Factor sigm = 1.25

In summary, to obtain appropriate standard errors for least squares estimates, you can use the LSQ statement
with any of the COV= options, or you can use the MIN statement with COV=2. To obtain appropriate
standard errors for maximum-likelihood estimates, you can use the MIN statement with the negative log
likelihood or the MAX statement with the log likelihood, and in either case you can use any of the COV=
options provided that you specify SIGSQ=1. You can also use a log-likelihood function with a misspecified
scale parameter provided that you use SIGSQ=1 and COV=1. For nonlinear models, all of these methods
yield approximations based on asymptotic theory, and should therefore be interpreted cautiously.

Example 7.6: Maximum Likelihood Weibull Estimation

Two-Parameter Weibull Estimation

The following data are taken from Lawless (1982, p. 193) and represent the number of days it took rats
painted with a carcinogen to develop carcinoma. The last two observations are censored data from a group of

19 rats:
data pike;
input days cens @Q;
datalines;
143 0 164 0 188 0 188
190 0 192 0 206 O 209
213 0 216 0 220 0 227
230 0 234 0 246 0 265
304 0 216 1 244 1

O O O o

654 4 Chapter 7: The NLP Procedure

Suppose that you want to show how to compute the maximum likelihood estimates of the scale parameter
o (o in Lawless), the shape parameter ¢ (8 in Lawless), and the location parameter 6 (u in Lawless). The
observed likelihood function of the three-parameter Weibull transformation (Lawless 1982, p. 191) is

m i__e c—1 P i—‘e c
ona= 2159 fieo-(5))

ieD i=1

and the log likelihood is

p L c
1(8,0,¢c) =mlogc —mclogo + (c — 1) Zlog(li —6) _Z (ll 9)

g
ieD i=1

The log likelihood function can be evaluated only for 0 > 0, ¢ > 0, and # < min; #;. In the estimation
process, you must enforce these conditions using lower and upper boundary constraints. The three-parameter
Weibull estimation can be numerically difficult, and it usually pays off to provide good initial estimates.
Therefore, you first estimate o and ¢ of the two-parameter Weibull distribution for constant 6 = 0. You then
use the optimal parameters ¢ and ¢ as starting values for the three-parameter Weibull estimation.

Although the use of an INEST= data set is not really necessary for this simple example, it illustrates how it is
used to specify starting values and lower boundary constraints:

data parl (type=est);
keep _type_ sig c theta;
type='parms'; sig = .5;

c = .5; theta = 0; output;
type='lb'; sig = 1.0e-6;
c = 1.0e-6; theta = .; output;

run;

Example 7.6: Maximum Likelihood Weibull Estimation 4 655

The following PROC NLP call specifies the maximization of the log likelihood function for the two-parameter
Weibull estimation for constant § = 0:

proc nlp data=pike tech=tr inest=parl outest=oparl
outmodel=model cov=2 vardef=n pcov phes;
max logf;
parms sig c;
profile sig ¢ / alpha = .9 to .1 by -.1 .09 to .01 by -.01;

x_th = days - theta;
s = - (x_th / sig)*x*c;
if cens=0 then s + log(c) - cxlog(sig) + (c-1)x*log(x_th);
logf = s;
run;

After a few iterations you obtain the solution given in Output 7.6.1.

Output 7.6.1 Optimization Results
PROC NLP: Nonlinear Maximization

Optimization Results
Parameter Estimates

Gradient

Approx Approx Objective

N Parameter Estimate Std Err t Value Pr> |t Function
1 sig 234.318611 9.645908 24.292021 9.050475E-16 1.3372183E-9
2c 6.083147 1.068229 5.694611 0.000017269 -7.859278E-9

Value of Objective Function = -88.23273515

656 4 Chapter 7: The NLP Procedure

Since the gradient has only small elements and the Hessian (shown in Output 7.6.2) is negative definite (has
only negative eigenvalues), the solution defines an isolated maximum point.

Output 7.6.2 Hessian Matrix at x*
PROC NLP: Nonlinear Maximization

Hessian Matrix
sig c
sig -0.011457556 0.0257527577
c 0.0257527577 -0.934221388

Determinant = 0.0100406894

Matrix has Only Negative Eigenvalues

The square roots of the diagonal elements of the approximate covariance matrix of parameter estimates are
the approximate standard errors (ASE’s). The covariance matrix is given in Output 7.6.3.

Output 7.6.3 Covariance Matrix
PROC NLP: Nonlinear Maximization

Covariance Matrix 2:
H = (NOBS/d) inv(G)

sig c

sig 93.043549863 2.5648395794

c 25648395794 1.141112488
Factor sigm =1

Determinant = 99.594754608

Matrix has 2 Positive Eigenvalue(s)

Example 7.6: Maximum Likelihood Weibull Estimation 4 657

The confidence limits in Output 7.6.4 correspond to the o values in the PROFILE statement.

Output 7.6.4 Confidence Limits
PROC NLP: Nonlinear Maximization

Wald and PL Confidence Limits

Profile Likelihood Wald Confidence

Parameter Estimate Alpha Confidence Limits Limits

sig 234.318611 0.900000 233.111324 235.532695 233.106494 235.530729
sig . 0.800000 231.886549 236.772876 231.874849 236.762374
sig . 0.700000 230.623280 238.063824 230.601846 238.035377
sig . 0.600000 229.292797 239.436639 229.260292 239.376931
sig . 0.500000 227.855829 240.935290 227.812545 240.824678
sig . 0.400000 226.251597 242.629201 226.200410 242.436813
sig . 0.300000 224.372260 244.643392 224.321270 244.315953
sig . 0.200000 221.984557 247.278423 221.956882 246.680341
sig . 0.100000 218.390824 251.394102 218.452504 250.184719
sig . 0.090000 217.884162 251.987489 217.964960 250.672263
sig . 0.080000 217.326988 252.645278 217.431654 251.205569
sig . 0.070000 216.708814 253.383546 216.841087 251.796136
sig . 0.060000 216.008815 254.228034 216.176649 252.460574
sig . 0.050000 215.199301 255.215496 215.412978 253.224245
sig . 0.040000 214.230116 256.411041 214.508337 254.128885
sig . 0.030000 213.020874 257.935686 213.386118 255.251105
sig . 0.020000 211.369067 260.066128 211.878873 256.758350
sig 0.010000 208.671091 263.687174 209.472398 259.164825

6.083147 0.900000 5.950029 6.217752 5948912 6.217382
. 0.800000 5.815559 6.355576 5.812514 6.353780
. 0.700000 5.677909 6.499187 5.671537 6.494757
. 0.600000 5.534275 6.651789 5.522967 6.643327
. 0.500000 5.380952 6.817880 5.362638 6.803656
. 0.400000 5.212344 7.004485 5.184103 6.982191
. 0300000 5.018784 7.225733 4.975999 7.190295
. 0.200000 4.776379 7.506166 4.714157 7.452137
. 0.100000 4.431310 7.931669 4.326067 7.840227
. 0.090000 4.382687 7.991457 4.272075 7.894220
. 0.080000 4.327815 8.056628 4.213014 7.953280
. 0.070000 4.270773 8.129238 4.147612 8.018682
. 0.060000 4.207130 8.211221 4.074029 8.092265
. 0.050000 4.134675 8306218 3.989457 8.176837
. 0.040000 4.049531 8418782 3.889274 8.277021
. 0.030000 3.945037 8559677 3.764994 8.401300
. 0.020000 3.805759 8.749130 3.598076 8.568219
. 0.010000 3.588814 9.056751 3.331572 8.834722

N NN NNDNDNNDNNDNNDNNDNNDNNNNNNN S @ a0 a0C0Ea@Ea@E@@@@@@@@aaalZz

0O 0 0 0 0 0 0 0 0 0 0 0 0 00000

658 4 Chapter 7: The NLP Procedure

Three-Parameter Weibull Estimation

You now prepare for the three-parameter Weibull estimation by using PROC UNIVARIATE to obtain the
smallest data value for the upper boundary constraint for 6. For this small problem, you can do this much
more simply by just using a value slightly smaller than the minimum data value 143.

/* Calculate upper bound for theta parameter =*/
proc univariate data=pike noprint;

var days;

output out=stats n=nobs min=minx range=range;
run;

data stats;
set stats;
keep _type_ theta;

/* 1. write parms observation *x/

theta = minx - .1 * range;
if theta < 0 then theta = 0;
type = 'parms';

output;

/* 2. write ub observation */
theta = minx * (1 - le-4);
type = 'ub';
output;

run;

The data set PAR2 specifies the starting values and the lower and upper bounds for the three-parameter
Weibull problem:

proc sort data=oparl;

by _type_;
run;

data par2 (type=est);

merge oparl (drop=theta) stats;

by _type_;

keep _type_ sig c theta;

if _type in ('parms' 'lowerbd' 'ub');
run;

The following PROC NLP call uses the MODEL= input data set containing the log likelihood function that
was saved during the two-parameter Weibull estimation:

proc nlp data=pike tech=tr inest=par2 outest=opar2
model=model cov=2 vardef=n pcov phes;
max logf;
parms sig c theta;
profile sig ¢ theta / alpha = .5 .1 .05 .01;
run;

Example 7.6: Maximum Likelihood Weibull Estimation 4 659

After a few iterations, you obtain the solution given in Output 7.6.5.

Output 7.6.5 Optimization Results
PROC NLP: Nonlinear Maximization

Optimization Results
Parameter Estimates

Gradient

Approx Approx Objective

N Parameter Estimate Std Err tValue Pr>|f Function
1 sig 108.382632 32.573219 3.327354 0.003540 -7.403602E-9
2c 2.711474 1.058755 2.561003 0.019108 -0.000001148
3 theta 122.026036 28.692260 4.252925 0.000430 -0.000000160

Value of Objective Function = -87.32424712

From inspecting the first- and second-order derivatives at the optimal solution, you can verify that you have
obtained an isolated maximum point. The Hessian matrix is shown in Output 7.6.6.
Output 7.6.6 Hessian Matrix
PROC NLP: Nonlinear Maximization

Hessian Matrix

sig c theta
sig -0.010639974 0.0453887849 -0.010033749
c 0.0453887849 -4.078687944 -0.083026333
theta -0.010033749 -0.083026333 -0.014752091

Determinant = 0.0000502116

Matrix has Only Negative Eigenvalues

The square roots of the diagonal elements of the approximate covariance matrix of parameter estimates are
the approximate standard errors. The covariance matrix is given in Output 7.6.7.

Output 7.6.7 Covariance Matrix

PROC NLP: Nonlinear Maximization

Covariance Matrix 2: H = (NOBS/d) inv(G)
sig c theta
sig 1061.025982 29.92625548 -890.0932211
c 29.92625548 1.1209709237 -26.66351895
theta -890.0932211 -26.66351895 823.25594666

Factor sigm =1
Determinant = 19915.719564

Matrix has 3 Positive Eigenvalue(s)

660 4 Chapter 7: The NLP Procedure

The difference between the Wald and profile CLs for parameter PHI2 are remarkable, especially for the upper
95% and 99% limits, as shown in Output 7.6.8.

Output 7.6.8 Confidence Limits
PROC NLP: Nonlinear Maximization

Wald and PL Confidence Limits

Profile Likelihood Wald Confidence

N Parameter Estimate Alpha Confidence Limits Limits

1 sig 108.381969 0.500000 91.811550 141.564599 86.412463 130.351475
1 sig . 0.100000 76.502367 . 54.805733 161.958205
1 sig . 0.050000 72.215888 . 44.541946 172.221992
1 sig . 0.010000 64.262383 . 24.481957 192.281981
2c 2.711456 0.500000 2.139297 3.704051 1.997356 3.425555
2c . 0.100000 1.574162 9.250080 0.970007 4.452904
2c . 0.050000 1.424853 19.536314 0.636392 4.786520
2c . 0.010000 1.163097 19.560763 -0.015640 5.438552
3 theta 122.026662 0.500000 91.027154 135.095457 102.674832 141.378492
3 theta . 0.100000 . 141.833768 74.834057 142.985700
3 theta . 0.050000 . 142.512603 65.793205 142.985700
3 theta . 0.010000 . 142.967407 48.123372 142.985700

Example 7.7: Simple Pooling Problem

The following optimization problem is discussed in Haverly (1978) and in Liebman et al. (1986, pp. 127-128).
Two liquid chemicals, X and Y, are produced by the pooling and blending of three input liquid chemicals, A,
B, and C. You know the sulfur impurity amounts of the input chemicals, and you have to respect upper limits
of the sulfur impurity amounts of the output chemicals. The sulfur concentrations and the prices of the input
and output chemicals are:

* Chemical A: Concentration = 3%, Price= $6
* Chemical B: Concentration = 1%, Price= $16
* Chemical C: Concentration = 2%, Price= $10
* Chemical X: Concentration < 2.5%, Price= $9
e Chemical Y: Concentration < 1.5%, Price= $15
The problem is complicated by the fact that the two input chemicals A and B are available only as a mixture

(they are either shipped together or stored together). Because the amounts of A and B are unknown, the sulfur
concentration of the mixture is also unknown.

Example 7.7: Simple Pooling Problem 4 661

A 3%S
for$ 6 Pool to X
<25%S
Pool | pooltoY Blend X " for$9
1% S X <100
B—ors 167 CioX =
Blend Y <15%S
en for $ 15
c_2%S CioY Y < 200
for $ 10

You know customers will buy no more than 100 units of X and 200 units of Y. The problem is determining
how to operate the pooling and blending of the chemicals to maximize the profit. The objective function for
the profit is

profit = cost(x) x amount(x) + cost(y) x amount(y)

— cost(a) x amount(a) — cost(b) x amount(b) — cost(c) x amount(c)

There are three groups of constraints:

1. The first group of constraint functions is the mass balance restrictions illustrated by the graph. These
are four linear equality constraints:
* amount(a) + amount(b) = pool_to_x + pool_to_y
* pool_to_x + c_to_x = amount(x)
* pool_to_y + c_to_y = amount(y)
e amount(c) = c_to_x + c_to_y
2. You introduce a new variable, pool_s, that represents the sulfur concentration of the pool. Using
pool _s and the sulfur concentration of C (2%), you obtain two nonlinear inequality constraints for the
sulfur concentrations of X and Y, one linear equality constraint for the sulfur balance, and lower and
upper boundary restrictions for pool_s:
* pool_s X pool_to_x + 2 c_to_x < 2.5 amount(x)
* pool_s X pool_to_y + 2 c_to_y < 1.5 amount(y)
* 3amount(a) + 1 amount(b) = pool_s x (amount(a) + amount(b))

e 1 <pool_s <3

662 4 Chapter 7: The NLP Procedure

3. The last group assembles the remaining boundary constraints. First, you do not want to produce more
than you can sell; and finally, all variables must be nonnegative:

e amount(x) <100, amount(y) < 200
* amount(a), amount(b), amount(c), amount(x), amount(y) > 0

* pool_to_zx, pool_to_y, c_to_x,c_to_y >0

There exist several local optima to this problem that can be found by specifying different starting points.
Using the starting point with all variables equal to 1 (specified with a PARMS statement), PROC NLP finds a
solution with profit = 400:

proc nlp all;
parms amountx amounty amounta amountb amountc
pooltox pooltoy ctox ctoy pools = 1;
bounds 0 <= amountx amounty amounta amountb amountc,
amountx <= 100,
amounty <= 200,
0 <= pooltox pooltoy ctox ctoy,
1 <= pools <= 3;
lincon amounta + amountb = pooltox + pooltoy,
pooltox + ctox = amountx,
pooltoy + ctoy = amounty,
ctox + ctoy amountc;
nlincon nlcl-nlc2 >= 0.,

nle3 = 0.;
max f;
costa = 6; costb = 16; costc = 10;
costx = 9; costy = 15;

f = costx * amountx + costy * amounty
— costa * amounta - costb * amountb - costc * amountc;
nlcl = 2.5 * amountx - pools * pooltox — 2. * ctox;
nlc2 = 1.5 * amounty - pools * pooltoy - 2. * ctoy;
nlc3 = 3 * amounta + amountb - pools * (amounta + amountb);
run;

The specified starting point was not feasible with respect to the linear equality constraints; therefore, a starting
point is generated that satisfies linear and boundary constraints. Output 7.7.1 gives the starting parameter
estimates.

Example 7.7: Simple Pooling Problem 4 663

Output 7.7.1 Starting Estimates
PROC NLP: Nonlinear Maximization

Optimization Start
Parameter Estimates

Gradient Gradient Lower Upper
Objective Lagrange Bound Bound

N Parameter Estimate Function Function Constraint Constraint
1 amountx 1.363636 9.000000 -0.843698 0 100.000000
2 amounty 1.363636 15.000000 -0.111882 0 200.000000
3 amounta 0.818182 -6.000000 -0.430733 0
4 amountb 0.818182 -16.000000 -0.542615 0
5 amountc 1.090909 -10.000000 0.017768 0
6 pooltox 0.818182 0 -0.669628 0
7 pooltoy 0.818182 0 -0.303720 0
8 ctox 0.545455 0 -0.174070 0
9 ctoy 0.545455 0 0.191838 0 .
10 pools 2.000000 0 0.068372 1.000000 3.000000

Value of Objective Function = 3.8181818182

Value of Lagrange Function = -2.866739915
PROC NLP: Nonlinear Maximization

Optimization Results
Parameter Estimates

Gradient Gradient Active
Objective Lagrange Bound

N Parameter Estimate Function Function Constraint

1 amountx -1.40474E-11 9.000000 0 Lower BC

2 amounty 200.000000 15.000000 -8.88178E-16 Upper BC

3 amounta 5.561161E-16 -6.000000 0 Lower BC

4 amountb 100.000000 -16.000000 1.065814E-14

5 amountc 100.000000 -10.000000 -1.77636E-15

6 pooltox 7.024225E-12 0 0 Lower BC

7 pooltoy 100.000000 0 1.776357E-15

8 ctox -2.10716E-11 0 1.776357E-15 Lower BC LinDep
9 ctoy 100.000000 0 5.329071E-15

10 pools 1.000000 0 4.973799E-14 Lower BC LinDep

The starting point satisfies the four equality constraints, as shown in Output 7.7.2. The nonlinear constraints
are given in Output 7.7.3.

Output 7.7.2 Linear Constraints
PROC NLP: Nonlinear Maximization

Linear Constraints
1 2.2204E-16 : ACT 0 == + 1.0000 * amounta + 1.0000 * amountb - 1.0000 * pooltox - 1.0000 * pooltoy
2 0 : ACT 0 == - 1.0000 * amountx + 1.0000 * pooltox + 1.0000 * ctox
3 -1.11E-16 : ACT 0 == - 1.0000 * amounty + 1.0000 * pooltoy + 1.0000 * ctoy
4 -111E-16 : ACT 0 == - 1.0000 * amountc + 1.0000 * ctox + 1.0000 * ctoy

664 4 Chapter 7: The NLP Procedure

[
[
[

Output 7.7.3 Nonlinear Constraints
PROC NLP: Nonlinear Maximization

Values of Nonlinear Constraints

Lagrange

Constraint Value Residual Multiplier
5] nlc3 0 0
6] nlc1l_G 06818 0.6818
7] nlc2_G -0.6818 -0.6818

4.9441 Active NLEC

-9.8046 Violat. NLIC

PROC NLP: Nonlinear Maximization

Values of Nonlinear Constraints

Lagrange

Constraint Value Residual Multiplier
[5] nle3 1.11E-15 1.11E-15
[6] nlc1_G 431E-16 4.31E-16

71 nlc2_G 0 0

6.0000 Active NLEC
. Active NLIC LinDep
-6.0000 Active NLIC

Output 7.7.4 shows the settings of some important PROC NLP options.

Output 7.7.4 Options

PROC NLP: Nonlinear Maximization

Minimum lterations

Maximum Iterations

Maximum Function Calls

Iterations Reducing Constraint Violation
ABSGCONYV Gradient Criterion

GCONV Gradient Criterion

ABSFCONV Function Criterion

FCONV Function Criterion

FCONV2 Function Criterion

FSIZE Parameter

ABSXCONYV Parameter Change Criterion
XCONYV Parameter Change Criterion
XSIZE Parameter

ABSCONV Function Criterion

Line Search Method

Starting Alpha for Line Search

Line Search Precision LSPRECISION
DAMPSTEP Parameter for Line Search
FD Derivatives: Accurate Digits in Obj.F
FD Derivatives: Accurate Digits in NLCon
Singularity Tolerance (SINGULAR)
Constraint Precision (LCEPS)

Linearly Dependent Constraints (LCSING)
Releasing Active Constraints (LCDEACT)

0

200

500

20

0.00001

1E-8

0
2.220446E-16
1E-6

0

0

0

0
1.340781E154
2

1

0.4

15.653559775
15.653559775
1E-8
1E-8
1E-8

Example 7.7: Simple Pooling Problem 4 665

The iteration history, given in Output 7.7.5, does not show any problems.

Output 7.7.5 lteration History
PROC NLP: Nonlinear Maximization

Dual Quasi-Newton Optimization
Modified VMCWD Algorithm of Powell (1978, 1982)
Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)

Lagrange Multiplier Update of Powell(1982)

Maximum

Gradient

Element

Maximum Predicted of the

Function Objective Constraint Function Step Lagrange

Iteration Restarts Calls Function Violation Reduction Size Function

1 0 19 -1.42400 0.00962 6.9131 1.000 0.783

2! 0 20 2.77026 0.0166 5.3770 1.000 2.629

3 0 21 7.08706 0.1409 7.1965 1.000 9.452

4" 0 22 11.41264 0.0583 15.5769 1.000 23.390

5' 0 23 24.84607 1.78E-15 496.1 1.000 147.6

6 0 24 378.22829 147.4 3316.8 1.000 840.4

7' 0 25 307.56787 50.9338 607.9 1.000 27.143

8" 0 26 347.24475 1.8328 21.9882 1.000 28.482

9' 0 27 349.49273 0.00915 7.1826 1.000 28.289

10 0 28 356.58291 0.1083 50.2554 1.000 27.479

1" 0 29 388.70709 24280 24.7997 1.000 21.114

12 0 30 389.30094 0.0157 10.0473 1.000 18.647

13" 0 31 399.19199 0.7996 11.1866 1.000 0.416

14" 0 32 400.00000 0.0128 0.1534 1.000 0.00087

15" 0 33 400.00000 7.38E-11 2.43E-10 1.000 365E-12

Optimization Results

Iterations 15 Function Calls 34
Gradient Calls 18 Active Constraints 10
Objective Function 400 Maximum Constraint Violation 7.381118E-11
Maximum Projected Gradient 0 Value Lagrange Function -400
Maximum Gradient of the Lagran Func 4.973799E-14 Slope of Search Direction -2.43334E-10

FCONV?2 convergence criterion satisfied.

The optimal solution in Output 7.7.6 shows that to obtain the maximum profit of $400, you need only to
produce the maximum 200 units of blending Y and no units of blending X.

666 4 Chapter 7: The NLP Procedure

W ® N O U A WN = |Z

-
o

Parameter
amountx
amounty
amounta
amountb
amountc
pooltox
pooltoy
ctox
ctoy
pools

Output 7.7.6 Optimization Solution
PROC NLP: Nonlinear Maximization

Optimization Results

Parameter Estimates

Gradient
Objective
Estimate Function

-1.40474E-11 9.000000
200.000000 15.000000
5.561161E-16 -6.000000

100.000000 -16.000000
100.000000 -10.000000
7.024225E-12 0
100.000000 0
-2.10716E-11 0
100.000000 0
1.000000 0

Gradient Active
Lagrange Bound
Function Constraint

0 Lower BC
-8.88178E-16 Upper BC

0 Lower BC
1.065814E-14
-1.77636E-15

0 Lower BC
1.776357E-15
1.776357E-15 Lower BC LinDep
5.329071E-15
4.973799E-14 Lower BC LinDep

Value of Objective Function = 400

Value of Lagrange Function = 400

The constraints are satisfied at the solution, as shown in Output 7.7.7

Output 7.7.7 Linear and Nonlinear Constraints at the Solution
PROC NLP: Nonlinear Maximization

Linear Constraints Evaluated at Solution

*

*

*

*

amountb - 1.0000 * pooltox - 1.0000 * pooltoy
pooltox + 1.0000 * ctox
pooltoy + 1.0000 * ctoy
ctox + 1.0000 * ctoy

Values of Nonlinear Constraints

1 ACT 0 = 0 + 1.0000 * amounta + 1.0000
2 ACT 3.8975E-17 = 0 - 1.0000 * amountx + 1.0000
3 ACT 0 =0 - 1.0000 * amounty + 1.0000
4 ACT 0 =0 - 1.0000 * amountc + 1.0000
Constraint
[5] nlc3 1.11E-15 1.11E-15
[6] nlc1_G 431E-16 4.31E-16
[71 nlc2_G 0 0

Lagrange

Value Residual Multiplier

6.0000 Active NLEC
. Active NLIC LinDep
-6.0000 Active NLIC

Linearly Dependent
Active Boundary
Constraints

Parameter N Kind

ctox 8 Lower BC

pools 10 Lower BC

Example 7.7: Simple Pooling Problem 4 667

Output 7.7.7 continued

Linearly
Dependent
Gradients of
Active Nonlinear
Constraints

Parameter N
nlc3 6

The same problem can be specified in many different ways. For example, the following specification uses an
INEST= data set containing the values of the starting point and of the constants COST, COSTB, COSTC,
COSTX, COSTY, CA, CB, CC, and CD:

data initl (type=est);
input _type_ $ amountx amounty amounta amountb
amountc pooltox pooltoy ctox ctoy pools
rhs costa costb costc costx costy
ca cb cc cd;
datalines;
parms 1111111111
6 16 10 9 15 2.5 1.5 2. 3.

4

proc nlp inest=initl all;
parms amountx amounty amounta amountb amountc
pooltox pooltoy ctox ctoy pools;
bounds 0 <= amountx amounty amounta amountb amountc,
amountx <= 100,
amounty <= 200,
0 <= pooltox pooltoy ctox ctoy,
1 <= pools <= 3;
lincon amounta + amountb = pooltox + pooltoy,
pooltox + ctox = amountx,
pooltoy + ctoy = amounty,

ctox + ctoy = amountc;
nlincon nlcl-nlc2 >= 0.,
nlec3 = 0.;

max f;
f = costx * amountx + costy * amounty
— costa * amounta - costb * amountb - costc * amountc;
nlcl = ca * amountx - pools * pooltox - cc * ctox;
nlc2
nlc3
run;

cb * amounty - pools * pooltoy - cc * ctoy;
cd * amounta + amountb - pools * (amounta + amountb);

The third specification uses an INEST= data set containing the boundary and linear constraints in addition to
the values of the starting point and of the constants. This specification also writes the model specification
into an OUTMOD-= data set:

data init2 (type=est);
input _type_ $ amountx amounty amounta amountb amountc
pooltox pooltoy ctox ctoy pools
rhs costa costb costc costx costy;

668 4 Chapter 7: The NLP Procedure

datalines;
parms 1 1 1 1 1 1 1 1 1 1
. 6 16 10 9 15 2.51.5 2 3
lowerbd 0 0O 0 0 O 0 0 0 0 1
upperbd 100 200 3
eq . .1 1 . -1 -1
0 .
eq 1 -1 -1
0 e
eq . io -1 -1
0 P
eq1 . . -1 -1
0

’

proc nlp inest=init2 outmod=model all;
parms amountx amounty amounta amountb amountc
pooltox pooltoy ctox ctoy pools;
nlincon nlcl-nlc2 >= 0.,
nle3 = 0.;
max f;
f = costx * amountx + costy * amounty
— costa * amounta - costb * amountb - costc * amountc;
nlcl = 2.5 * amountx - pools * pooltox - 2. * ctox;
nlc2 1.5 * amounty - pools * pooltoy - 2. * ctoy;
nlc3 = 3 * amounta + amountb - pools * (amounta + amountb);
run;

The fourth specification not only reads the INEST=INIT2 data set, it also uses the model specification from
the MODEL data set that was generated in the last specification. The PROC NLP call now contains only the
defining variable statements:

proc nlp inest=init2 model=model all;
parms amountx amounty amounta amountb amountc
pooltox pooltoy ctox ctoy pools;
nlincon nlcl-nlc2 >= 0.,
nle3 = 0.;
max f;
run;

All four specifications start with the same starting point of all variables equal to 1 and generate the same
results. However, there exist several local optima to this problem, as is pointed out in Liebman et al. (1986,
p- 130).

proc nlp inest=init2 model=model all;
parms amountx amounty amounta amountb amountc
pooltox pooltoy ctox ctoy = O,

pools = 2;
nlincon nlcl-nlc2 >= 0.,
nlec3 = 0.;
max f;

run;

Example 7.8: Chemical Equilibrium 4 669

This starting point with all variables equal to O is accepted as a local solution with profit = 0, which
minimizes rather than maximizes the profit.

Example 7.8: Chemical Equilibrium

The following example is used in many test libraries for nonlinear programming and was taken originally
from Bracken and McCormick (1968).

The problem is to determine the composition of a mixture of various chemicals satisfying its chemical
equilibrium state. The second law of thermodynamics implies that a mixture of chemicals satisfies its
chemical equilibrium state (at a constant temperature and pressure) when the free energy of the mixture is
reduced to a minimum. Therefore the composition of the chemicals satisfying its chemical equilibrium state
can be found by minimizing the function of the free energy of the mixture.

Notation:
number of chemical elements in the mixture
n number of compounds in the mixture
xj number of moles for compoundj, j =1,...,n
s total number of moles in the mixture (s = Y 7_; x;)

a;j number of atoms of element i in a molecule of compound j
b; atomic weight of element i in the mixture

Constraints for the Mixture:

* The number of moles must be positive:

x;j>0, j=1,...,n

e There are m mass balance relationships,
n
E a,-jxj:bi, i=1,....m
j=1

Objective Function: Total Free Energy of Mixture

n

=3 x [cj +1n (%f)]

J=1

FO

where F°/RT is the model standard free energy function for the jth compound (found in tables) and P is the
total pressure in atmospheres.

with

670 4 Chapter 7: The NLP Procedure

Minimization Problem:

Determine the parameters x ; that minimize the objective function f(x) subject to the nonnegativity and
linear balance constraints.

Numeric Example:

Determine the equilibrium composition of compound %N2H4 + %02 at temperature 7 = 3500°K and
pressure P = 750psi.

Jj Compound (F°/RT); cj H 0

1 H -10.021 -6.089 1

2 H, -21.096 -17.164 2

3 H,O -37.986 -34.054 2 1

4 N -9.846 -5914 1

5 N> -28.653 -24.721 2

6 NH -18918 -14.986 1 1

7 NO -28.032 -24.100 1 1

8 o -14.640 -10.708 1

9 0, -30.594 -26.662 2
10 OH -26.111 -22.179 1 1

Example Specification:

proc nlp tech=tr pall;
array c[10] -6.089 -17.164 -34.054 -5.914 -24.721
-14.986 -24.100 -10.708 -26.662 -22.179;
array x[10] x1-x10;
min y;
parms x1-x10 = .1;
bounds 1l.e-6 <= x1-x10;

lincon 2. = x1 + 2. *» x2 + 2. * x3 + x6 + x10,
1. = x4 + 2. » x5 + x6 + x7,
1. = %x3 + x7 + x8 + 2. x x9 + x10;
s = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10;
y =0.;
do j =1 to 10;
y =y + x[3] * (c[j] + log(x[j]l / s));
end;

run;

Example 7.8: Chemical Equilibrium 4 671

Displayed Output:

The iteration history given in Output 7.8.1 does not show any problems.

Output 7.8.1 lteration History
PROC NLP: Nonlinear Minimization

Trust Region Optimization

Without Parameter Scaling

Objective Max Abs Trust
Function Active Objective Function Gradient Region
Iteration Restarts Calls Constraints Function Change Element Lambda Radius
1 0 2 3 ' -47.33412 22790 6.0765 2456 1.000
2 0 3 3 ' -47.70043 03663 85592 0.908 0.418
3 0 4 3 -47.73074 0.0303 6.4942 0 0.359
4 0 5 3 -47.73275 0.00201 4.7606 0 0.118
5 0 6 3 -47.73554 0.00279 3.2125 0 0.0168
6 0 7 3 -47.74223 0.00669 1.9552 110.6 0.00271
7 0 8 3 -47.75048 0.00825 1.1157 102.9 0.00563
8 0 9 3 -47.75876 0.00828 0.4165 3.787 0.0116
9 0 10 3 -47.76101 0.00224 0.0716 0 0.0121
10 0 11 3 -47.76109 0.000083 0.00238 0 0.0111
1 0 12 3 -47.76109 9.609E-8 2.733E-6 0 0.00248
Optimization Results
Iterations 11 Function Calls 13
Hessian Calls 12 Active Constraints 3
Objective Function -47.76109086 Max Abs Gradient Element 1.8637498E-6
Lambda 0 Actual Over Pred Change 0
Radius 0.0024776027

GCONV convergence criterion satisfied.

672 4 Chapter 7: The NLP Procedure

Output 7.8.2 lists the optimal parameters with the gradient.

Output 7.8.2 Optimization Results
PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Gradient

Objective
N Parameter Estimate Function
1 x1 0.040668 -9.785055
2 x2 0.147730 -19.570110
3 x3 0.783153 -34.792170
4 x4 0.001414 -12.968921
5 x5 0.485247 -25.937841
6 x6 0.000693 -22.753976
7 x7 0.027399 -28.190984
8 x8 0.017947 -15.222060
9 x9 0.037314 -30.444120
10 x10 0.096871 -25.007115

Value of Objective Function = -47.76109086

The three equality constraints are satisfied at the solution, as shown in Output 7.8.3.

Output 7.8.3 Linear Constraints at Solution
PROC NLP: Nonlinear Minimization

Linear Constraints Evaluated at Solution
2.0000 - 1.0000 * x1 - 2.0000 * x2 - 2.0000 * x3 - 1.0000 * x6 - 1.0000 * x10
1.0000 - 1.0000 * x4 - 2.0000 * x5 - 1.0000 * x6 - 1.0000 * x7
1.0000 - 1.0000 * x3 - 1.0000 * x7 - 1.0000 * x8 - 2.0000 * x9 - 1.0000 * x10

1 ACT 4.8572E-16
2 ACT 2.8796E-16
3 ACT 1.1102E-16

Example 7.8: Chemical Equilibrium 4 673

The Lagrange multipliers are given in Output 7.8.4.

Output 7.8.4 Lagrange Multipliers
PROC NLP: Nonlinear Minimization

First Order Lagrange Multipliers

Lagrange

Active Constraint Multiplier
Linear EC [1] 9.785055
Linear EC [2] 12.968921
Linear EC [3] 15.222060

The elements of the projected gradient must be small to satisfy a necessary first-order optimality condition.
The projected gradient is given in Output 7.8.5.

Output 7.8.5 Projected Gradient
PROC NLP: Nonlinear Minimization

Projected Gradient

Free Projected
Dimension Gradient

4.5770097E-9
6.868334E-10
-7.283017E-9
-0.000001864
-0.000001434
-0.000001361
-0.000000294

N o A WN =

674 4 Chapter 7: The NLP Procedure

The projected Hessian matrix shown in Output 7.8.6 is positive definite, satisfying the second-order optimality
condition.

Output 7.8.6 Projected Hessian Matrix
PROC NLP: Nonlinear Minimization

Projected Hessian Matrix

X1 X2 X3 X4 X5 X6 X7
X1 20.903196985 -0.122067474 2.6480263467 3.3439156526 -1.373829641 -1.491808185 1.1462413516
X2 -0.122067474 565.97299938 106.54631863 -83.7084843 -37.43971036 -36.20703737 -16.635529
X3 2.6480263467 106.54631863 1052.3567179 -115.230587 182.89278895 175.97949593 -57.04158208
X4 3.3439156526 -83.7084843 -115.230587 37.529977667 -4.621642366 -4.574152161 10.306551561
X5 -1.373829641 -37.43971036 182.89278895 -4.621642366 79.326057844 22.960487404 -12.69831637
X6 -1.491808185 -36.20703737 175.97949593 -4.574152161 22.960487404 66.669897023 -8.121228758
X7 1.1462413516 -16.635529 -57.04158208 10.306551561 -12.69831637 -8.121228758 14.690478023

The following PROC NLP call uses a specified analytical gradient and the Hessian matrix is computed by
finite-difference approximations based on the analytic gradient:

proc nlp tech=tr fdhessian all;
array c[10] -6.089 -17.164 -34.054 -5.914 -24.721
-14.986 -24.100 -10.708 -26.662 -22.179;
array x[10] x1-x10;
array g[10] gl-glO0;

min y;
parms x1-x10 = .1;
bounds 1l.e-6 <= x1-x10;
lincon 2. = x1 + 2. » x2 + 2. *» x3 + x6 + x10,
1. = x4 + 2. » x5 + x6 + x7,
1. = x3 + x7 + x8 + 2. » x9 + x10;
s = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10;
y =0.;

do j =1 to 10;
y =y + x[3] * (c[3] + log(x[3j] / s));
gljl = cl3] + log(x[j]l / s);
end;
run;

The results are almost identical to those of the previous run.

Example 7.9: Minimize Total Delay in a Network 4 675

Example 7.9: Minimize Total Delay in a Network

The following example is taken from the user’s guide of GINO (Liebman et al. 1986). A simple network of
five roads (arcs) can be illustrated by the path diagram:

Figure 7.13 Simple Road Network

The five roads connect four intersections illustrated by numbered nodes. Each minute F vehicles enter and
leave the network. Arc (i, j) refers to the road from intersection i to intersection j, and the parameter x;;
refers to the flow from i to j. The law that traffic flowing into each intersection j must also flow out is
described by the linear equality constraint

E Xij = E xXji, Jj=1...,n
i i

In general, roads also have an upper capacity, which is the number of vehicles which can be handled per
minute. The upper limits ¢;; can be enforced by boundary constraints

0<xjj<cij, i,j=1,....n

Finding the maximum flow through a network is equivalent to solving a simple linear optimization problem,
and for large problems, PROC LP or PROC NETFLOW can be used. The objective function is

max f = X4 + X34

and the constraints are

X13 = X32+ X34
X12 +X32 = X24

X12 +X13 = Xo4 + X34
0 <Xx12,x32,x34 = 10
0<x13,x24 = 30

676 4 Chapter 7: The NLP Procedure

The three linear equality constraints are linearly dependent. One of them is deleted automatically by the
PROC NLP subroutines. Even though the default technique is used for this small example, any optimization
subroutine can be used.

proc nlp all initial=.5;
max y;
parms x12 x13 x32 x24 x34;
bounds x12 <= 10,

x13 <= 30,
x32 <= 10,
x24 <= 30,
x34 <= 10;

/* what flows into an intersection must flow out =*/
lincon x13 = x32 + x34,
x12 + x32 = x24,
x24 + x34 = x12 + x13;
y = %24 + x34 + 0x*x12 + 0xx13 + 0%x32;
run;

The iteration history is given in Output 7.9.1, and the optimal solution is given in Output 7.9.2.

Output 7.9.1 lteration History
PROC NLP: Nonlinear Maximization

Newton-Raphson Ridge Optimization

Without Parameter Scaling

Ratio

Between

Actual

Objective Max Abs and

Function Active Objective Function Gradient Predicted

Iteration Restarts Calls Constraints Function Change Element Ridge Change
1* 0 2 4 20.25000 19.2500 0.5774 0.0313 0.860

2 0 3 5 30.00000 9.7500 0 0.0313 1.683

Optimization Results

Iterations 2 Function Calls 4
Hessian Calls 3 Active Constraints 5
Objective Function 30 Max Abs Gradient Element 0
Ridge 0 Actual Over Pred Change 1.6834532374

All parameters are actively constrained. Optimization cannot proceed.

Example 7.9: Minimize Total Delay in a Network 4 677

Output 7.9.2 Optimization Results
PROC NLP: Nonlinear Maximization

Optimization Results
Parameter Estimates

Gradient Active
Objective Bound
N Parameter Estimate Function Constraint

1 x12 10.000000 0 Upper BC
2 x13 20.000000 0
3 x32 10.000000 0 Upper BC
4 x24 20.000000 1.000000
5 x34 10.000000 1.000000 Upper BC

Value of Objective Function = 30

Finding a traffic pattern that minimizes the total delay to move F vehicles per minute from node 1 to node 4
introduces nonlinearities that, in turn, demand nonlinear optimization techniques. As traffic volume increases,
speed decreases. Let #;; be the travel time on arc (i, j) and assume that the following formulas describe the
travel time as decreasing functions of the amount of traffic:

t1z = 54 0.1x12/(1 —x12/10)
i3 = x13/(1—x13/30)

t3a = 14 x32/(1 —x32/10)
t2a = Xx24/(1 —x24/30)

132 = 54 0.1x34/(1 — x34/10)

These formulas use the road capacities (upper bounds), assuming F' = 5 vehicles per minute have to be
moved through the network. The objective function is now

min f = t12X12 + 113X13 + 132X32 + 124X24 + 134X34

and the constraints are

X13 = X32 + X34
X12+X32 = Xoq
X4 +Xx3¢ = F=5
0 <Xx12.x32,x34 = 10
0=<x13,x24 = 30

678 4 Chapter 7: The NLP Procedure

Again, the default algorithm is used:

proc nlp all initial=.5;
min y;
parms x12 x13 x32 x24 x34;
bounds x12 x13 x32 x24 x34 >= 0;
lincon x13 = x32 + x34, /% flow in = flow out */

x12 + x32 = x24,
x24 + x34 = 5; /* = £ = desired flow */
tl2 =5+ .1 » x12 / (1 - x12 / 10);
t13 = x13 / (1 - x13 / 30);
t32 =1 + x32 / (1 - x32 / 10);
t24 = x24 / (1 - x24 / 30);

t34 =5+ .1 » x34 / (1 - x34 / 10);
y = t12%x12 + t13xx13 + t32%x32 + t24*x24 + t34xx34;
run;

The iteration history is given in Output 7.9.3, and the optimal solution is given in Output 7.9.4.

Output 7.9.3 lteration History
PROC NLP: Nonlinear Minimization

Newton-Raphson Ridge Optimization

Without Parameter Scaling

Ratio

Between

Actual

Objective Max Abs and

Function Active Objective Function Gradient Predicted

Iteration Restarts Calls Constraints Function Change Element Ridge Change
1 0 2 4 4030303 0.3433 4.44E-16 0 0.508

Optimization Results

Iterations 1 Function Calls 3
Hessian Calls 2 Active Constraints 4
Objective Function 40.303030303 Max Abs Gradient Element 4.440892E-16
Ridge 0 Actual Over Pred Change 0.5083585587

ABSGCONV convergence criterion satisfied.

Example 7.9: Minimize Total Delay in a Network 4 679

Output 7.9.4 Optimization Results
PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Gradient Active
Objective Bound

N Parameter Estimate Function Constraint
1 x12 2.500000 5.777778
2 x13 2.500000 5.702479
3 x32 1.114018E-17 1.000000 Lower BC
4 x24 2.500000 5.702479
5 x34 2.500000 5.777778

Value of Objective Function = 40.303030303

The active constraints and corresponding Lagrange multiplier estimates (costs) are given in Output 7.9.5 and
Output 7.9.6, respectively.

Output 7.9.5 Linear Constraints at Solution
PROC NLP: Nonlinear Minimization
Linear Constraints Evaluated at Solution
1 ACT 4.4409E-16 0 + 1.0000 * x13 - 1.0000 * x32 - 1.0000 * x34

2 ACT 4.4409E-16 0 + 1.0000 * x12 + 1.0000 * x32 - 1.0000 * x24
3 ACT 0 = -5.0000 + 1.0000 * x24 + 1.0000 * x34

Output 7.9.6 Lagrange Multipliers at Solution
PROC NLP: Nonlinear Minimization

First Order Lagrange Multipliers

Lagrange

Active Constraint Multiplier
Lower BC x32 0.924702
Linear EC [1] 5.702479
Linear EC [2] 5.777778

Linear EC [3] 11.480257

680 4 Chapter 7: The NLP Procedure

Output 7.9.7 shows that the projected gradient is very small, satisfying the first-order optimality criterion.

Output 7.9.7 Projected Gradient at Solution
PROC NLP: Nonlinear Minimization

Projected Gradient

Free Projected
Dimension Gradient

1 4.440892E-16

The projected Hessian matrix (shown in Output 7.9.8) is positive definite, satisfying the second-order
optimality criterion.

Output 7.9.8 Projected Hessian at Solution
PROC NLP: Nonlinear Minimization

Projected
Hessian Matrix

X1
X1 1.535309013

References

Abramowitz, M. and Stegun, 1. A. (1972), Handbook of Mathematical Functions, New York: Dover
Publications.

Al-Baali, M. and Fletcher, R. (1985), “Variational Methods for Nonlinear Least Squares,” Journal of the
Operations Research Society, 36, 405-421.

Al-Baali, M. and Fletcher, R. (1986), “An Efficient Line Search for Nonlinear Least Squares,” Journal of
Optimization Theory and Applications, 48, 359-377.

Bard, Y. (1974), Nonlinear Parameter Estimation, New York: Academic Press.

Beale, E. M. L. (1972), “A Derivation of Conjugate Gradients,” in F. A. Lootsma, ed., Numerical Methods
for Nonlinear Optimization, London: Academic Press.

Betts, J. T. (1977), “An Accelerated Multiplier Method for Nonlinear Programming,” Journal of Optimization
Theory and Applications, 21, 137-174.

Bracken, J. and McCormick, G. P. (1968), Selected Applications of Nonlinear Programming, New York:
John Wiley & Sons.

Chamberlain, R. M., Powell, M. J. D., Lemarechal, C., and Pedersen, H. C. (1982), “The Watchdog Technique
for Forcing Convergence in Algorithms for Constrained Optimization,” Mathematical Programming, 16,
1-17.

Cramer, J. S. (1986), Econometric Applications of Maximum Likelihood Methods, Cambridge: Cambridge
University Press.

References 4 681

Dennis, J. E., Gay, D. M., and Welsch, R. E. (1981), “An Adaptive Nonlinear Least-Squares Algorithm,”
ACM Transactions on Mathematical Software, 7, 348-368.

Dennis, J. E. and Mei, H. H. W. (1979), “Two New Unconstrained Optimization Algorithms Which Use
Function and Gradient Values,” Journal of Optimization Theory and Applications, 28, 453-482.

Dennis, J. E. and Schnabel, R. B. (1983), Numerical Methods for Unconstrained Optimization and Nonlinear
Equations, Englewood Cliffs, NJ: Prentice-Hall.

Eskow, E. and Schnabel, R. B. (1991), “Algorithm 695: Software for a New Modified Cholesky Factorization,”
ACM Transactions on Mathematical Software, 17, 306-312.

Fletcher, R. (1987), Practical Methods of Optimization, 2nd Edition, Chichester, UK: John Wiley & Sons.

Fletcher, R. and Powell, M. J. D. (1963), “A Rapidly Convergent Descent Method for Minimization,”
Computer Journal, 6, 163—-168.

Fletcher, R. and Xu, C. (1987), “Hybrid Methods for Nonlinear Least Squares,” Journal of Numerical
Analysis, 7, 371-389.

Gallant, A. R. (1987), Nonlinear Statistical Models, New York: John Wiley & Sons.

Gay, D. M. (1983), “Subroutines for Unconstrained Minimization,” ACM Transactions on Mathematical
Software, 9, 503-524.

George, J. A. and Liu, J. W. (1981), Computer Solutions of Large Sparse Positive Definite Systems, Englewood
Cliffs, NJ: Prentice-Hall.

Gill, E. P, Murray, W., Saunders, M. A., and Wright, M. H. (1983), “Computing Forward-Difference Intervals
for Numerical Optimization,” SIAM Journal on Scientific and Statistical Computing, 4, 310-321.

Gill, E. P, Murray, W., Saunders, M. A., and Wright, M. H. (1984), “Procedures for Optimization Problems
with a Mixture of Bounds and General Linear Constraints,” ACM Transactions on Mathematical Software,
10, 282-298.

Gill, P. E., Murray, W., and Wright, M. H. (1981), Practical Optimization, New York: Academic Press.

Goldfeld, S. M., Quandt, R. E., and Trotter, H. F. (1966), “Maximisation by Quadratic Hill-Climbing,”
Econometrica, 34, 541-551.

Hambleton, R. K., Swaminathan, H., and Rogers, H. J. (1991), Fundamentals of Item Response Theory,
Newbury Park, CA: Sage Publications.

Hartmann, W. M. (1992a), Applications of Nonlinear Optimization with PROC NLP and SAS/IML Software,
Technical report, SAS Institute Inc., Cary, NC.

Hartmann, W. M. (1992b), Nonlinear Optimization in IML, Releases 6.08, 6.09, 6.10, Technical report, SAS
Institute Inc., Cary, NC.

Haverly, C. A. (1978), “Studies of the Behavior of Recursion for the Pooling Problem,” SIGMAP Bulletin,
Association for Computing Machinery, 25, 19-28.

Hock, W. and Schittkowski, K. (1981), Test Examples for Nonlinear Programming Codes, volume 187 of
Lecture Notes in Economics and Mathematical Systems, Berlin: Springer-Verlag.

682 4 Chapter 7: The NLP Procedure

Jennrich, R. I. and Sampson, P. F. (1968), “Application of Stepwise Regression to Nonlinear Estimation,”
Technometrics, 10, 63=72.

Lawless, J. F. (1982), Statistical Methods and Methods for Lifetime Data, New York: John Wiley & Sons.

Liebman, J., Lasdon, L., Schrage, L., and Waren, A. (1986), Modeling and Optimization with GINO, Redwood
City, CA: Scientific Press.

Lindstrom, P. and Wedin, P. A. (1984), “A New Line-Search Algorithm for Nonlinear Least-Squares Problems,”
Mathematical Programming, 29, 268-296.

Moré, J. J. (1978), “The Levenberg-Marquardt Algorithm: Implementation and Theory,” in G. A. Watson,
ed., Lecture Notes in Mathematics, volume 30, 105-116, Berlin: Springer-Verlag.

Moré, J. J., Garbow, B. S., and Hillstrom, K. E. (1981), “Testing Unconstrained Optimization Software,”
ACM Transactions on Mathematical Software, 7, 17-41.

Moré, J. J. and Sorensen, D. C. (1983), “Computing a Trust-Region Step,” SIAM Journal on Scientific and
Statistical Computing, 4, 553-572.

Moré, J. J. and Wright, S. J. (1993), Optimization Software Guide, Philadelphia: STAM.

Murtagh, B. A. and Saunders, M. A. (1983), MINOS 5.0 User’s Guide, Technical Report SOL 83-20, Stanford
University.

Nelder, J. A. and Mead, R. (1965), “A Simplex Method for Function Minimization,” Computer Journal, 7,
308-313.

Polak, E. (1971), Computational Methods in Optimization, New York: Academic Press.

Powell, M. J. D. (1977), “Restart Procedures for the Conjugate Gradient Method,” Mathematical Program-
ming, 12, 241-254.

Powell, M. J. D. (1978a), “Algorithms for Nonlinear Constraints That Use Lagrangian Functions,” Mathemat-
ical Programming, 14, 224-248.

Powell, M. J. D. (1978b), “A Fast Algorithm for Nonlinearly Constrained Optimization Calculations,” in
G. A. Watson, ed., Lecture Notes in Mathematics, volume 630, 144-175, Berlin: Springer-Verlag.

Powell, M. J. D. (1982a), “Extensions to Subroutine VFO2AD,” in R. F. Drenick and F. Kozin, eds., Systems
Modeling and Optimization, Lecture Notes in Control and Information Sciences, volume 38, 529-538,
Berlin: Springer-Verlag.

Powell, M. J. D. (1982b), VMCWD: A Fortran Subroutine for Constrained Optimization, Technical Report
DAMTP 1982/NA4, Cambridge University.

Powell, M. J. D. (1992), “A Direct Search Optimization Method That Models the Objective and Constraint
Functions by Linear Interpolation,” DAMTP/NAS.

Rosenbrock, H. H. (1960), “An Automatic Method for Finding the Greatest or Least Value of a Function,”
Computer Journal, 3, 175-184.

Schittkowski, K. (1980), Nonlinear Programming Codes—Information, Tests, Performance, volume 183 of
Lecture Notes in Economics and Mathematical Systems, Berlin: Springer-Verlag.

References 4 683

Schittkowski, K. (1987), More Test Examples for Nonlinear Programming Codes, volume 282 of Lecture
Notes in Economics and Mathematical Systems, Berlin: Springer-Verlag.

Schittkowski, K. and Stoer, J. (1979), “A Factorization Method for the Solution of Constrained Linear Least
Squares Problems Allowing Subsequent Data Changes,” Numerische Mathematik, 31, 431-463.

Stewart, G. W. (1967), “A Modification of Davidon’s Minimization Method to Accept Difference Approxi-
mations of Derivatives,” Journal of the Association for Computing Machinery, 14, 72-83.

Wedin, P. A. and Lindstrom, P. (1987), Methods and Software for Nonlinear Least Squares Problems,
Technical Report Report No. UMINF 133.87, University of Umea.

Whitaker, D., Triggs, C. M., and John, J. A. (1990), “Construction of Block Designs Using Mathematical
Programming,” Journal of the Royal Statistical Society, Series B, 52, 497-503.

Wolfe, P. (1982), “Checking the Calculation of Gradients,” ACM Transactions on Mathematical Software, 8,
337-343.

Subject Index

active set methods, 611
quadratic programming, 575, 601

Bard function, 642
BFGS update method, 576
boundary constraints

NLP procedure, 578

Cholesky factor, 603
COBYLA algorithm, 605, 606, 610
computational problems

NLP procedure, 615-617
computational resources

NLP procedure, 632, 633
confidence intervals, 589

output options, 627

profile confidence limits, 561
conjugate-descent update method, 576
conjugate gradient methods, 575, 605
covariance matrix, 561, 618, 626

displaying, 572
crossproduct Jacobian matrix, 579, 626

definition, 596

displaying, 572

saving, 571

derivatives, 596

computing, 545, 596

finite differences, 607
DFP update method, 576
displayed output

NLP procedure, 629, 630
double dogleg method, 575, 604
dual BFGS update method, 576
dual DFP update method, 576

examples, see NLP examples

feasible region, 595
feasible solution, 595
finite-difference approximations
central differences, 607
computation of, 563
forward differences, 607
NLP procedure, 562, 563
second-order derivatives, 563
first-order conditions
local minimum, 595
Fletcher-Reeves update method, 576

function convergence
NLP procedure, 559

functional summary
NLP procedure, 556

global solution, 595
Goldstein conditions, 603, 605, 614
gradient vector
checking correctness, 609
convergence, 560
definition, 596
local optimality conditions, 595
projected gradient, 612
specifying, 580
grid points, 560, 570, 571

Hessian matrix, 626
definition, 596
displaying, 573
finite-difference approximations, 563, 607
initial estimate, 566
local optimality conditions, 595
projected, 612
saving, 571
scaling, 565, 609
specifying, 581
update method, 576
hybrid quasi-Newton methods, 575, 576, 606

input data sets
NLP procedure, 545, 621, 622
intermediate variable, 639

Jacobian matrix, 626
constraint functions, 582
definition, 596
displaying, 573
objective functions, 582
saving, 571, 572
scaling, 609

Karush-Kuhn-Tucker conditions, 595, 611
Kuhn-Tucker conditions, see Karush-Kuhn-Tucker
conditions

labels

assigning to decision variables, 583
Lagrange multipliers, 595, 612, 626
Lagrangian function, 595

least squares problems unconstrained optimization, 546

definition of, 544 NLP procedure

optimization algorithms, 600 active set methods, 601, 611
Levenberg-Marquardt minimization, 575 boundary constraints, 578

least squares method, 606 choosing an optimization algorithm, 599
line-search methods, 567, 613 computational problems, 615-617

step length, 561, 569 computational resources, 632, 633
linear complementarity problem, 575 conjugate gradient methods, 605

quadratic programming, 601 convergence difficulties, 616, 617
linear constraints convergence status, 631

NLP procedure, 584 covariance matrix, 561, 572, 618, 620, 626
linearly constrained optimization, 602 crossproduct Jacobian, 596, 626
local minimum debugging options, 568, 591

first-order conditions, 595 derivatives, 596

second-order conditions, 595 display function values, 572, 573
local solution, 595 displayed output, 572, 629, 630

double dogleg method, 604

matrix eigenvalue tolerance, 561

definition (NLP), 585 feasible region, 595
maximum likelihood Weibull estimation feasible solution, 595

using PROC NLP, 653 feasible starting point, 613
merit function, 603 finite-difference approximations, 562, 563, 607
migration to PROC OPTMODEL first-order conditions, 595

from PROC NLP, 634 function convergence, 559, 562
missing values functional summary, 556

NLP procedure, 570, 631 global solution, 595
Moore-Penrose conditions, 620 Goldstein conditions, 603, 605, 614

gradient, 564, 596
gradient convergence, 560, 564
grid points, 560

Nelder-Mead simplex method, 575, 605
Newton-Raphson method, 575

W%th li.ne .search, 601 Hessian, 566, 596, 607, 626
with ridging, 602 Hessian scaling, 565, 609
NLP examp}es, 642 Hessian update method, 576
approximate standard errors, 648 initial values, 566, 573, 621
Bard .functlon, 642 input data sets, 545, 621, 622
blending problem, 660 iteration history, 629
boundary constraints, 548 Jacobian, 596, 626
chemical equilibrium, 669 Karush-Kuhn-Tucker conditions, 595

covariance matrix, 648 Lagrange multipliers, 595, 626
Hock and Schittkowski problem, 645 Lagrangian function, 595
introductory examples, 546-549, 551, 553 least squares problems, 600

l?ast Squarcs problem, 547, 642 Levenberg-Marquardt method, 606
linear constraints, 549, 645 limiting function calls, 569
maximum likelihood Weibull estimation, 653 limiting number of iterations, 569
maximum-likelihood estimates, 553, 649 line-search methods, 567, 613
migration to PROC OPTMODEL, 634
nonlinear constraints, 550, 551
nonlinear network problem, 675
quadratic programming problem, 644
restarting an optimization, 647
Rosenbrock function, 647

starting point, 645

linear complementarity, 601

linear constraints, 584, 602

local optimality conditions, 595
local solution, 595

memory limit, 634

memory requirements, 597

e i missing values, 570, 631

statlstlcatl analysis, 648 Nelder-Mead simplex method, 605
trust region method, 647 Newton-Raphson method, 601, 602

nonlinear constraints, 580, 603
optimality criteria, 594

optimization algorithms, 575, 597
optimization history, 573

options classified by function, 556
output data sets, 546, 570, 571, 623, 624, 628
overview, 544

parameter convergence, 560, 577
precision, 560, 563, 608, 618
predicted reduction convergence, 562
profile confidence limits, 561
program statements, 590

projected gradient, 626

projected Hessian matrix, 626
quadratic programming, 599, 600, 603
quasi-Newton methods, 602, 606
rank of covariance matrix, 626
restricting output, 573, 574
restricting step length, 614
second-order conditions, 595
singularity criterion, 560, 570, 577
stationary point, 617

step length, 561

storing model files, 628

suppress printing, 570

table of syntax elements, 556
termination criteria, 610

time limit, 569

trust region method, 601

TYPE variable, 621-623, 625, 627, 628
unconstrained optimization, 602
variables, 621

nonlinear optimization, 544, see NLP procedure

algorithms, 597

computational problems, 615

conjugate gradient methods, 605

feasible starting point, 613

hybrid quasi-Newton methods, 606
Levenberg-Marquardt method, 606
Nelder-Mead simplex method, 605
Newton-Raphson method with line search, 601
Newton-Raphson method with ridging, 602
nonlinear constraints, 580, 588, 603
optimization algorithms, 599
quasi-Newton method, 602

trust region method, 601

objective function

NLP procedure, 544, 554, 586

optimality criteria, 594
optimization

double dogleg method, 604
linear constraints, 602
nonlinear constraints, 603

unconstrained, 602

optimization algorithms
least squares problems, 600
NLP procedure, 575, 597
nonlinear optimization, 599
quadratic programming, 599, 600

options classified by function, see functional summary

output data sets

NLP procedure, 546, 570, 571, 623, 624, 628
overview

NLP procedure, 544

Polak-Ribiere update method, 576
Powell-Beale update method, 576
precision
nonlinear constraints, 560, 608
objective function, 563, 608
profile confidence limits, 589
parameters for, 561
program statements
NLP procedure, 590
projected gradient, 612, 626
projected Hessian matrix, 612, 626

quadratic programming, 566, 603
active set methods, 601
definition, 544
linear complementarity problem, 601
optimization algorithms, 599, 600
specifying the objective function, 586
quasi-Newton methods, 575, 576, 602

random numbers

seed, 574
Rosenbrock function, 546, 579-581, 583
Rosen-Suzuki problem, 589

second-order conditions
local minimum, 595
second-order derivatives
finite-difference approximations, 563
singularity, 574, 620
absolute singularity criterion, 560
relative singularity criterion, 570, 577
standard errors
computing, 573
step length, 614
syntax skeleton
NLP procedure, 556

table of syntax elements, see functional summary
termination criteria, 610
absolute function convergence, 559
absolute gradient convergence, 560
absolute parameter convergence, 560

number of function calls, 569
number of iterations, 569
predicted reduction convergence, 562
relative function convergence, 562
relative gradient convergence, 564
relative parameter convergence, 577
time limit, 569

trust region methods, 575

TYPE variable
NLP procedure, 621-623, 625, 627, 628

unconstrained optimization, 602

VF02AD algorithm, 603
VMCWD algorithm, 603

‘Wald confidence limits, 589, 590

Syntax Index

ABORT statement

NLP program statements, 591
ABSCONV= option

PROC NLP statement, 559
ABSFCONV= option

PROC NLP statement, 559
ABSFTOL= option, see ABSFCONV= option
ABSGCONV= option

PROC NLP statement, 560, 604, 611, 618
ABSGTOL-= option, see ABSGCONV= option
ABSTOL= option, see ABSCONV= option
ABSXCONV= option

PROC NLP statement, 560
ABSXTOL= option, see ABSXCONV= option
ACTBC keyword

TYPE variable (NLP), 625
ALL keyword

FDINT= option (NLP), 563
ALL option, see PALL option
ARRAY statement

NLP procedure, 577
ASING= option, see ASINGULAR= option
ASINGULAR= option

PROC NLP statement, 560, 620

BEST= option

PROC NLP statement, 560, 580
BFGS keyword

UPDATE-= option (NLP), 576, 603
BOTH keyword

CLPARM-= option (NLP), 561
BOUNDS statement

NLP procedure, 578, 588, 600
BY statement

NLP procedure, 578

CD keyword

UPDATE-= option (NLP), 576, 605
CDIGITS= option

PROC NLP statement, 560, 608
CENTRAL keyword

FD= option (NLP), 562

FDHESSIAN= option (NLP), 563
CHI keyword

FORCHI= option (NLP), 590
CLPARM-= option

PROC NLP statement, 561, 627
CON keyword

FDINT= option (NLP), 563

CONGRA keyword

TECH= option (NLP), 575, 600, 605, 611
CONST keyword

TYPE variable (NLP), 622
COV= option

PROC NLP statement, 561, 618
COVARIANCE-= option, see COV= option
COVRANK keyword

TYPE variable (NLP), 626
COVSING= option

PROC NLP statement, 561, 620
COVx keyword

TYPE variable (NLP), 626
CRPJAC keyword

TYPE variable (NLP), 626
CRPJAC statement

NLP procedure, 579, 599, 609

DAMPSTEP= option

PROC NLP statement, 561, 614, 615
DATA= option

PROC NLP statement, 561, 621
DBFGS keyword

UPDATE-= option (NLP), 576, 602, 604, 606
DBLDOG keyword

TECH= option (NLP), 575, 599, 600, 604, 615
DDFP keyword

UPDATE-= option (NLP), 576, 602, 604, 606
DECVAR statement

NLP procedure, 580, 617
DESCENDING option

BY statement (NLP), 578
DETAIL keyword

GRADCHECK-= option (NLP), 564, 609
DETERMIN keyword

TYPE variable (NLP), 626
DF keyword

VARDEF-= option (NLP), 576
DFP keyword

UPDATE-= option (NLP), 576, 603
DIAHES option

PROC NLP statement, 561, 579, 581
DO statement

NLP program statements, 591
DS=option, see DAMPSTEP= option

EQ keyword
TYPE variable (NLP), 622, 623, 625
ESTDATA= option, see INEST= option

EVERYOBS option
NLINCON statement (NLP), 588

F keyword

FORCHI= option (NLP), 590
FAST keyword

GRADCHECK= option (NLP), 564, 609
FCONV= option

PROC NLP statement, 562
FCONV2= option

PROC NLP statement, 562, 604
FD= option

PROC NLP statement, 562, 607, 609
FDH= option, see FDHESSIAN= option
FDHES= option, see FDHESSIAN= option
FDHESSIAN= option

PROC NLP statement, 563, 607, 609
FDIGITS= option

PROC NLP statement, 563, 608
FDINT= option

PROC NLP statement, 563, 608, 617
FEASRATIO= option

PROFILE statement (NLP), 590
FFACTOR= option

PROFILE statement (NLP), 590
FORCHI= option

PROFILE statement (NLP), 590
FORWARD keyword

FD= option (NLP), 562

FDHESSIAN= option (NLP), 563
FR keyword

UPDATE-= option (NLP), 576, 605
FSIZE= option

PROC NLP statement, 564
FTOL= option, see FCONV= option
FTOLL2= option, see FTOL2= option

G4= option

PROC NLP statement, 564, 620
GC= option, see GRADCHECK= option
GCONV= option

PROC NLP statement, 564, 604, 611, 618
GCONV2= option

PROC NLP statement, 564
GE keyword

TYPE variable (NLP), 622, 625
GRAD keyword

TYPE variable (NLP), 625
GRADCHECK-= option

PROC NLP statement, 564, 609
GRADIENT statement

NLP procedure, 580, 583, 599, 609, 610
GRIDPNT keyword

TYPE variable (NLP), 625

GTOL= option, see GCONV= option
GTOLL2= option, see GTOL2= option

HESCAL-= option
PROC NLP statement, 565, 609
HESSIAN keyword
TYPE variable (NLP), 626
HESSIAN statement
NLP procedure, 581, 599, 609
HS= option, see HESCAL= option
HYQUAN keyword
TECH= option (NLP), 575, 600, 606, 614

IFP option, see INFEASIBLE option
INCLUDE statement

NLP procedure, 570, 581, 628
INEST= option

PROC NLP statement, 565, 583, 600, 621, 622,

627

INFEASIBLE option

PROC NLP statement, 565, 580
INHESS= option, see INHESSIAN= option
INHESSIAN= option

PROC NLP statement, 566, 604, 616
INITIAL keyword

TYPE variable (NLP), 625
INITIAL= option

PROC NLP statement, 566
INQUAD-= option

PROC NLP statement, 566, 600, 622, 623
INSTEP= option

PROC NLP statement, 566, 603, 615, 616
INVAR= option, see INEST= option

JACNLC statement

NLP procedure, 582, 599
JACOBIAN keyword

TYPE variable (NLP), 626
JACOBIAN statement

NLP procedure, 582, 599, 609, 610

LABEL statement

NLP procedure, 583
LAGRANGE keyword

TYPE variable (NLP), 626
LB keyword

TYPE variable (NLP), 621, 622, 625
LCD= option, see LCDEACT= option
LCDEACT= option

PROC NLP statement, 567, 604, 613
LCE= option, see LCEPSILON= option
LCEPS= option, see LCEPSILON= option
LCEPSILON-= option

PROC NLP statement, 567, 601, 604, 612
LCS= option, see LCSINGULAR= option

LCSING= option, see LCSINGULAR= option PROC NLP statement, 570, 628

LCSINGULAR= option MODFILE= option, see MODEL= option
PROC NLP statement, 567, 604, 612 MSING= option, see MSINGULAR= option
LE keyword MSINGULAR= option
TYPE variable (NLP), 622, 625 PROC NLP statement, 570, 620
LEVMAR keyword
TECH= option (NLP), 575, 600, 606, 615 N keyword
LICOMP keyword VARDEF-= option (NLP), 576
TECH= option (NLP), 575, 599, 601, 622 NACTBC keyword
LINCON statement TYPE variable (NLP), 625
NLP procedure, 600, 605 NACTLC keyword
LINEAR keyword TYPE variable (NLP), 625
TYPE variable (NLP), 622, 623 NEIGNEG keyword
LINESEARCH= option TYPE variable (NLP), 626
PROC NLP statement, 567, 605, 606, 614 NEIGPOS keyword
LIS= option, see LINESEARCH= option TYPE variable (NLP), 626
LIST option NEIGZER keyword
PROC NLP statement, 568, 630 TYPE variable (NLP), 626
LISTCODE option NEWRAP keyword
PROC NLP statement, 568, 630 TECH= option (NLP), 575, 599, 601
LOWERBD keyword NLC statement, see NLINCON statement
TYPE variable (NLP), 621, 622, 625 NLDACTLC keyword
LSP= option, see LSPRECISION= option TYPE variable (NLP), 625
LSPRECISION= option NLINCON statement
PROC NLP statement, 568, 614 NLP procedure, 588, 605
LSQ statement NLP procedure
NLP procedure, 586 ARRAY statement, 577
BOUNDS statement, 578, 588, 600
MATRIX statement BY statement, 578
NLP procedure, 584 CRPIJAC statement, 579, 599, 609
MAX statement DECVAR statement, 580
NLP procedure, 586 GRADIENT statement, 580, 583, 599, 609, 610
MAXFU= option, see MAXFUNC= option HESSIAN statement, 581, 599, 609
MAXFUNC= option INCLUDE statement, 570, 581, 628
PROC NLP statement, 569, 632 JACNLC statement, 582, 599
MAXIT= option, see NLP procedure, MAXITER= JACOBIAN statement, 582, 599, 609, 610
option LABEL statement, 583
MAXITER= option LINCON statement, 584, 600, 605
PROC NLP statement, 569, 632 LSQ statement, 586
MAXQUAD statement MATRIX statement, 584
NLP procedure, 586, 600 MAX statement, 586
MAXSTEP= option MAXQUAD statement, 586, 600
PROC NLP statement, 569, 615 MIN statement, 586
MAXTIME= option MINQUAD statement, 586, 600
PROC NLP statement, 569, 632 NLINCON statement, 588, 605
MIN statement PROC NLP statement, 559
NLP procedure, 586 PROFILE statement, 589, 627
MINIT= option, see MINITER= option NMSIMP keyword
MINITER= option TECH= option, 605
PROC NLP statement, 569 TECH= option (NLP), 575, 599, 600
MINQUAD statement _NOBS_ keyword
NLP procedure, 586, 600 TYPE variable (NLP), 625
MOD-= option, see MODEL= option NOEIGNUM option

MODEL= option PROC NLP statement, 570

NOMISS option

PROC NLP statement, 570, 621, 631
NONE keyword

GRADCHECK= option (NLP), 564

TECH= option (NLP), 575
NOP option, see NOPRINT option
NOPRINT option

PROC NLP statement, 570, 630
NOTSORTED option

BY statement (NLP), 578
NRRIDG keyword

TECH= option (NLP), 575, 599, 602

OBJ keyword

FDINT= option (NLP), 563
OPTCHECK-= option

PROC NLP statement, 570, 617
OTHERWISE statement

NLP program statements, 592
OUT= option

PROC NLP statement, 570, 623
OUTALL option

PROC NLP statement, 571
OUTCRPJAC option

PROC NLP statement, 571
OUTDER= option

PROC NLP statement, 571, 623
OUTEST= option

PROC NLP statement, 571, 583, 624, 627
OUTGRID option

PROC NLP statement, 571
OUTHES option, see OUTHESSIAN option
OUTHESSIAN option

PROC NLP statement, 571
OUTITER option

PROC NLP statement, 571
OUTIJAC option

PROC NLP statement, 571
OUTM-= option, see OUTMODEL= option
OUTMOD= option, see OUTMODEL= option
OUTMODEL-= option

PROC NLP statement, 571, 581, 628
OUTNCIJAC option

PROC NLP statement, 572
OUTTABLE option

PROFILE statement (NLP), 590
OUTTIME option

PROC NLP statement, 572
OUTVAR= option, see OUTEST= option

PALL option

PROC NLP statement, 572, 630
PARAMETERS statement, see DECVAR statement
PARMS keyword

TYPE variable (NLP), 621, 622, 625
PARMS statement, see DECVAR statement
PB keyword

UPDATE-= option (NLP), 576, 605
PCOV option

PROC NLP statement, 572, 630
PCRPJAC option

PROC NLP statement, 572, 630
PEIGVAL option

PROC NLP statement, 572, 620, 630
PERROR option

PROC NLP statement, 572
PFUNCTION option

PROC NLP statement, 572, 630
PGRID option

PROC NLP statement, 573, 630
PHES option, see PHESSIAN option
PHESSIAN option

PROC NLP statement, 573, 630
PHIS option, see PHISTORY option
PHISTORY option

PROC NLP statement, 573, 630
PIN option, see PINIT option
PINIT option

PROC NLP statement, 573, 630
PJAC option, see PJACOBI option
PJACOBI option

PROC NLP statement, 573, 630
PJTJ option, see PCRPJAC option
PL keyword

CLPARM-= option (NLP), 561
PL_CL keyword

TYPE variable (NLP), 628
PLC_LOW keyword

TYPE variable (NLP), 627
PLC_UPP keyword

TYPE variable (NLP), 627
PNLCJAC option

PROC NLP statement, 573, 630
PR keyword

UPDATE-= option (NLP), 576, 605
PROC NLP statement, see NLP procedure

statement options, 559
PROFILE keyword

TYPE variable (NLP), 628
PROFILE statement

NLP procedure, 589, 627
PROJCRPJ keyword

TYPE variable (NLP), 626
PROJGRAD keyword

TYPE variable (NLP), 626
PROJHESS keyword

TYPE variable (NLP), 626
PSH option, see PSHORT option

PSHORT option

PROC NLP statement, 573, 630
PSTDERR option

PROC NLP statement, 573, 630
PSUMMARY option

PROC NLP statement, 574, 630
PTIME option

PROC NLP statement, 574
PUT statement

NLP program statements, 591

QUAD keyword
TYPE variable (NLP), 622, 623
QUADAS keyword
TECH= option (NLP), 575, 599, 601, 622
QUANEW keyword
TECH= option (NLP), 575, 599, 600, 602—-604,
611, 616

RANDOM-= option

PROC NLP statement, 574
REST= option, see RESTART= option
RESTART= option

PROC NLP statement, 574

SE option, see PSTDERR option
SELECT statement
NLP program statements, 592
SHORT option, see NLP procedure, PSHORT option
SIGSQ keyword
TYPE variable (NLP), 626
SIGSQ= option
PROC NLP statement, 574, 619
SING= option, see SINGULAR= option
SINGULAR= option
PROC NLP statement, 574
STDERR keyword
TYPE variable (NLP), 625
STDERR option, see PSTDERR option
SUM option
PSUMMARY option, 574
SUMMARY option, see PSUMMARY option
SUMOBS option
NLINCON statement (NLP), 588

TECH= option

PROC NLP statement, 575, 617
TECHNIQUE-= option, see TECH= option
TERMINAT keyword

TYPE variable (NLP), 626
TIME keyword

TYPE variable (NLP), 626
TRUREG keyword

TECH= option (NLP), 575, 599, 601, 615

UB keyword

TYPE variable (NLP), 621, 622, 625
UPD-= option, see UPDATE= option
UPDATE-= option

PROC NLP statement, 576, 601, 602
UPPERBD keyword

TYPE variable (NLP), 621, 622, 625

VAR statement, see NLP procedure, DECVAR
statement

VARDEF-= option

PROC NLP statement, 576, 618
VERSION= option

PROC NLP statement, 576, 603, 606, 616
VS= option, see VERSION= option
VSING= option, see VSINGULAR= option
VSINGULAR= option

PROC NLP statement, 577, 620

WALD keyword

CLPARM-= option (NLP), 561
WALD_CL keyword

TYPE variable (NLP), 627
WHEN statement

NLP program statements, 592

XCONV=option

PROC NLP statement, 577
XSIZE= option

PROC NLP statement, 577
XTOL= option, see XCONV= option

	The NLP Procedure
	Overview: NLP Procedure
	Getting Started: NLP Procedure
	Introductory Examples

	Syntax: NLP Procedure
	Functional Summary
	PROC NLP Statement
	ARRAY Statement
	BOUNDS Statement
	BY Statement
	CRPJAC Statement
	DECVAR Statement
	GRADIENT Statement
	HESSIAN Statement
	INCLUDE Statement
	JACNLC Statement
	JACOBIAN Statement
	LABEL Statement
	LINCON Statement
	MATRIX Statement
	MIN, MAX, and LSQ Statements
	MINQUAD and MAXQUAD Statements
	NLINCON Statement
	PROFILE Statement
	Program Statements

	Details: NLP Procedure
	Criteria for Optimality
	Optimization Algorithms
	Finite-Difference Approximations of Derivatives
	Hessian and CRP Jacobian Scaling
	Testing the Gradient Specification
	Termination Criteria
	Active Set Methods
	Feasible Starting Point
	Line-Search Methods
	Restricting the Step Length
	Computational Problems
	Covariance Matrix
	Input and Output Data Sets
	Displayed Output
	Missing Values
	Computational Resources
	Memory Limit
	Rewriting NLP Models for PROC OPTMODEL

	Examples: NLP Procedure
	Example 7.1: Using the DATA= Option
	Example 7.2: Using the INQUAD= Option
	Example 7.3: Using the INEST=Option
	Example 7.4: Restarting an Optimization
	Example 7.5: Approximate Standard Errors
	Example 7.6: Maximum Likelihood Weibull Estimation
	Example 7.7: Simple Pooling Problem
	Example 7.8: Chemical Equilibrium
	Example 7.9: Minimize Total Delay in a Network

	References

	Subject Index
	Syntax Index

