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The Mixed Integer Linear Programming Solver

Contents
Overview: MILP Solver . . . . . . . . . . . .. e 323
Getting Started: MILP Solver . . . . . . . . .. . ... 324
Syntax: MILP Solver . . . . . . . . . . . e 325
Functional Summary . . . . . . . .. . L 325
MILP Solver Options . . . . . . . . . o oo v ittt 327
Details: MILP Solver . . . . . . . . . . e 337
Branch-and-Bound Algorithm . . . . . . . . ... oL Lo o 337
Controlling the Branch-and-Bound Algorithm . . . . . ... ... ... ... .... 338
Presolve and Probing . . . . . . . . . . ... 340
Cutting Planes . . . . . . . . . . ... 340
Primal Heuristics . . . . . . . . .. ... 341
Parallel Processing . . . . . . . . . . . e 342
NodeLog . . . . . . . o e 342
Problem Statistics . . . . . . ... 343
Macro Variable _OROPTMODEL_ . . . . . . . . . . . .. . . 344
Examples: MILP Solver . . . . . . .. . ... .. . 347
Example 8.1: Scheduling . . . . ... .. ... ... ... 347
Example 8.2: Multicommodity Transshipment Problem with Fixed Charges . . . . . 350
Example 8.3: Facility Location . . . . . .. ... ... ... ... ... ....... 356
Example 8.4: Traveling Salesman Problem . . . . . . . ... ... ... ....... 366
References . . . . . . . . . . . . 372

Overview: MILP Solver

The OPTMODEL procedure provides a framework for specifying and solving mixed integer linear programs
(MILPs). A standard mixed integer linear program has the formulation

min ¢!'x

subjectto Ax {>,=,<} b (MILP)
I<x<u
xi €Z Vie S

where
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x € R is the vector of structural variables

A € R™" isthe matrix of technological coefficients

c € R is the vector of objective function coefficients

b € R™ is the vector of constraints right-hand sides (RHS)
1 € R is the vector of lower bounds on variables

u € R is the vector of upper bounds on variables

S is a nonempty subset of the set {1...,n} of indices

The MILP solver, available in the OPTMODEL procedure, implements an linear-programming-based branch-
and-cut algorithm. This divide-and-conquer approach attempts to solve the original problem by solving
linear programming relaxations of a sequence of smaller subproblems. The MILP solver also implements
advanced techniques such as presolving, generating cutting planes, and applying primal heuristics to improve
the efficiency of the overall algorithm.

The MILP solver provides various control options and solution strategies. In particular, you can enable,
disable, or set levels for the advanced techniques previously mentioned. It is also possible to input an
incumbent solution; see the section “Warm Start Option” on page 327 for details.

Getting Started: MILP Solver

The following example illustrates how you can use the OPTMODEL procedure to solve mixed integer linear
programs. For more examples, see the section “Examples: MILP Solver” on page 347. Suppose you want to
solve the following problem:

min 2x1 — 3xp —  4dx3
s.t. — 2x — 3x3 > =5 (R1)
X1 + X2 +  2x3 < 4 (R2)
X1 + 2x + 3x3 < 7 (R3)
X1, X2, X3 > 0
X1, X2, X3 e”Z

You can use the following statements to call the OPTMODEL procedure for solving mixed integer linear
programs:

proc optmodel;
var x{1..3} >= 0 integer;

min £ = 2%*x[1] - 3*x[2] - 4*x[3];

con rl: -2xx[2] - 3*x[3] >= -5;
con r2: x[1] + x[2] + 2*x[3] <= 4;
con r3: x[1] + 2+*x[2] + 3*x[3] <= 7;

solve with milp / presolver = automatic heuristics = automatic;
print x;
quit;
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The PRESOLVER= and HEURISTICS= options specify the levels for presolving and applying heuristics,
respectively. In this example, each option is set to its default value, AUTOMATIC, meaning that the solver
automatically determines the appropriate levels for presolve and heuristics.

The optimal value of x is shown in Figure 8.1.

Figure 8.1 Solution Output
The OPTMODEL Procedure
1 x
10

2 1
3 1

The solution summary stored in the macro variable _OROPTMODEL_ can be viewed by issuing the following
statement:
$put & OROPTMODEL_;

This statement produces the output shown in Figure 8.2.

Figure 8.2 Macro Output

STATUS=0K ALGORITHM=BAC SOLUTION_ STATUS=OPTIMAL OBJECTIVE=-7 RELATIVE GAP=0
ABSOLUTE GAP=0 PRIMAL INFEASIBILITY=0 BOUND_ INFEASIBILITY=0

INTEGER INFEASIBILITY=0 BEST BOUND=-7 NODES=1 ITERATIONS=4 PRESOLVE TIME=0.00
SOLUTION TIME=0.00

Syntax: MILP Solver

The following statement is available in the OPTMODEL procedure:
SOLVE WITH MILP </ options> ;

Functional Summary
Table 8.1 summarizes the options available for the SOLVE WITH MILP statement, classified by function.

Table 8.1 Options for the MILP Solver

Description Option
Presolve Option

Specifies the type of presolve PRESOLVER=
Warm Start Option

Specifies the input primal solution (warm start) PRIMALIN
Control Options

Specifies the stopping criterion based on absolute objective gap ABSOBJGAP=
Specifies the cutoff value for node removal CUTOFF=

Emphasizes feasibility or optimality EMPHASIS=
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Table 8.1 (continued)

Description Option

Specifies the maximum violation on variables and constraints =~ FEASTOL=
Specifies the maximum allowed difference between an integer INTTOL=
variable’s value and an integer

Specifies the frequency of printing the node log LOGFREQ=
Specifies the detail of solution progress printed in log LOGLEVEL=
Specifies the maximum number of nodes to be processed MAXNODES=
Specifies the maximum number of solutions to be found MAXSOLS=
Specifies the time limit for the optimization process MAXTIME=

Specifies the tolerance used in determining the optimality of OPTTOL=
nodes in the branch-and-bound tree

Specifies whether to enable or disable parallel processing of the PARALLEL=
branch-and-cut algorithm

Specifies the probing level PROBE=
Specifies the stopping criterion based on relative objective gap RELOBJGAP=
Specifies the scale of the problem matrix SCALE=
Specifies the initial seed for the random number generator SEED=
Specifies the stopping criterion based on target objective value TARGET=
Specifies whether time units are CPU time or real time TIMETYPE=
Heuristics Option

Specifies the primal heuristics level HEURISTICS=
Search Options

Specifies the level of conflict search CONFLICTSEARCH=
Specifies the node selection strategy NODESEL=
Enables use of variable priorities PRIORITY=
Specifies the restarting strategy RESTARTS=

Specifies the number of simplex iterations performed on each STRONGITER=
variable in strong branching strategy

Specifies the number of candidates for strong branching STRONGLEN=
Specifies the level of symmetry detection SYMMETRY=
Specifies the rule for selecting branching variable VARSEL=

Cut Options

Specifies the cut level for all cuts ALLCUTS=
Specifies the clique cut level CUTCLIQUE=
Specifies the flow cover cut level CUTFLOWCOVER=
Specifies the flow path cut level CUTFLOWPATH=
Specifies the Gomory cut level CUTGOMORY=
Specifies the generalized upper bound (GUB) cover cut level CUTGUB=
Specifies the implied bounds cut level CUTIMPLIED=
Specifies the knapsack cover cut level CUTKNAPSACK=
Specifies the lift-and-project cut level CUTLAP=
Specifies the mixed lifted 0-1 cut level CUTMILIFTED=
Specifies the mixed integer rounding (MIR) cut level CUTMIR=
Specifies the row multiplier factor for cuts CUTSFACTOR=
Specifies the overall cut aggressiveness CUTSTRATEGY=

Specifies the zero-half cut level CUTZEROHALF=
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Table 8.1 (continued)
Description Option
Decomposition Algorithm Options
Enables decomposition algorithm and specifies general control DECOMP=()

options

Specifies options for the master problem DECOMP_MASTER=()

Specifies options for the master problem solved as a MILP DECOMP_MASTER_IP=()

Specifies options for the subproblem DECOMP_SUBPROB=()
MILP Solver Options

This section describes the options that are recognized by the MILP solver in PROC OPTMODEL. These
options can be specified after a forward slash (/) in the SOLVE statement, provided that the MILP solver is
explicitly specified using a WITH clause. For example, the following line could appear in PROC OPTMODEL
statements:

solve with milp / allcuts=aggressive maxnodes=10000 primalin;

Presolve Option

PRESOLVER=number | string
specifies a presolve string or its corresponding value number, as listed in Table 8.2.

Table 8.2 Values for PRESOLVER= Option

number  string Description
-1 AUTOMATIC Applies the default level of presolve processing
0 NONE Disables presolver
1 BASIC Performs minimal presolve processing
2 MODERATE Applies a higher level of presolve processing
3 AGGRESSIVE  Applies the highest level of presolve processing

The default value is AUTOMATIC.

Warm Start Option

PRIMALIN

enables you to input a starting solution in PROC OPTMODEL before invoking the MILP solver.
Adding the PRIMALIN option to the SOLVE statement requests that the MILP solver use the current
variable values as a starting solution (warm start). If the MILP solver finds that the input solution is
feasible, then the input solution provides an incumbent solution and a bound for the branch-and-bound
algorithm. If the solution is not feasible, the MILP solver tries to repair it. It is possible to set a variable
value to the missing value ‘.’ to mark a variable for repair. When it is difficult to find a good integer
feasible solution for a problem, warm start can reduce solution time significantly.
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NOTE: If the MILP solver produces a feasible solution, the variable values from that run can be
used as the warm start solution for a subsequent run. If the warm start solution is not feasible for the
subsequent run, the solver automatically tries to repair it.

Control Options

ABSOBJGAP=number
specifies a stopping criterion. When the absolute difference between the best integer objective and the
best bound on the objective function value falls below the value of number, the MILP solver stops.
The value of number can be any nonnegative number; the default value is 1E-6.

CUTOFF=number
cuts off any nodes in a minimization (maximization) problem with an objective value at or above
(below) number. The value of number can be any number; the default value is the positive (negative)
number that has the largest absolute value representable in your operating environment.

EMPHASIS=number | string
specifies a search emphasis string or its corresponding value number as listed in Table 8.3.

Table 8.3 Values for EMPHASIS= Option

number  string Description
0 BALANCE Performs a balanced search
1 OPTIMAL Emphasizes optimality over feasibility
2 FEASIBLE Emphasizes feasibility over optimality

The default value is BALANCE.

FEASTOL=number
specifies the tolerance used to check the feasibility of a solution. This tolerance applies both to the
maximum violation of bounds on variables and to the difference between the right-hand sides and
left-hand sides of constraints. The value of number can be any value between (and including) 1E—4
and 1E-9. The default value is 1E-6.

If the MILP solver fails to find a feasible solution within this tolerance but does find a solution with
a slightly larger violation, then the solver ends with a solution status of OPTIMAL_COND (see the
section “Macro Variable _OROPTMODEL_ ” on page 344).

INTTOL=number
specifies the amount by which an integer variable value can differ from an integer and still be considered
integer feasible. The value of number can be any number between 0.0 and 0.5. The MILP solver
attempts to find an optimal solution whose integer infeasibility is less than number. If you assign a
value smaller than 1E-10 to number and the best solution found by the solver has integer infeasibility
between number and 1E—10, then the solver terminates with a solution status of OPTIMAL_COND
(see the section “Macro Variable _OROPTMODEL_ ” on page 344). The default value is 1E-5.
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LOGFREQ=number

PRINTFREQ=number
specifies how often information is printed in the node log. The value of number can be any nonnegative
number up to the largest four-byte signed integer, which is 23! — 1. The default value of number is
100. If number is set to 0, then the node log is disabled. If number is positive, then an entry is made in
the node log at the first node, at the last node, and at intervals dictated by the value of number. An
entry is also made each time a better integer solution is found.

LOGLEVEL=number | string

PRINTLEVEL2=number | string
controls the amount of information displayed in the SAS log by the MILP solver, from a short
description of presolve information and summary to details at each node. Table 8.4 describes the valid
values for this option.

Table 8.4 Values for LOGLEVEL= Option

number  string Description
0 NONE Turns off all solver-related messages to SAS log
1 BASIC Displays a solver summary after stopping

2 MODERATE Prints a solver summary and a node log by using
the interval dictated by the LOGFREQ= option

3 AGGRESSIVE  Prints a detailed solver summary and a node log
by using the interval dictated by the LOGFREQ=
option

The default value is MODERATE.

MAXNODES=number
specifies the maximum number of branch-and-bound nodes to be processed. The value of number can
be any nonnegative integer up to the largest four-byte signed integer, which is 231 — 1. The default
value of number is 23! — 1.

MAXSOLS=number
specifies a stopping criterion. If number solutions have been found, then the solver stops. The value of
number can be any positive integer up to the largest four-byte signed integer, which is 23! — 1. The
default value of number is 23! — 1.

MAXTIME=t¢
specifies an upper limit of ¢ units of time for the optimization process, including problem generation
time and solution time. The value of the TIMETYPE= option determines the type of units used. If you
do not specify the MAXTIME= option, the solver does not stop based on the amount of time elapsed.
The value of f can be any positive number; the default value is the positive number that has the largest
absolute value that can be represented in your operating environment.

OPTTOL=number
specifies the tolerance used to determine the optimality of nodes in the branch-and-bound tree. The
value of number can be any value between (and including) 1E—4 and 1E-9. The default is 1E-6.
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PARALLEL=number | string
indicates whether to enable parallel processing of the branch-and-cut algorithm. Table 8.5 describes
the valid values of the PARALLEL= option.

Table 8.5 Values for PARALLEL= Option

number  string Description
0 OFF Disables parallel processing of the branch-and-cut algorithm
1 ON Enables parallel processing of the branch-and-cut algorithm

The default value is 0. You can specify options for controlling parallel processing in the PERFOR-
MANCE statement, which is documented in the section “PERFORMANCE Statement” on page 23
in Chapter 4, “Shared Concepts and Topics.” The PARALLEL= option is ignored when the solver is
invoked inside a COFOR loop of the OPTMODEL procedure.

PROBE=number | string
specifies a probing string or its corresponding value number, as listed in Table 8.6.

Table 8.6 Values for PROBE= Option

number  string Description
-1 AUTOMATIC Uses the probing strategy determined by the MILP solver
0 NONE Disables probing
1 MODERATE Uses probing moderately
2 AGGRESSIVE  Uses probing aggressively

The default value is AUTOMATIC.

RELOBJGAP=number
specifies a stopping criterion based on the best integer objective (BestInteger) and the best bound on
the objective function value (BestBound). The relative objective gap is equal to

| BestInteger — BestBound | / (1IE—10 + | BestBound |)

When this value becomes smaller than the specified gap size number, the MILP solver stops. The
value of number can be any nonnegative number; the default value is 1E—4.

SCALE=option
indicates whether to scale the problem matrix. SCALE= can take either of the values AUTOMATIC
(-1) and NONE (0). SCALE=AUTOMATIC scales the matrix as determined by the MILP solver;
SCALE=NONE disables scaling. The default value is AUTOMATIC.

SEED=number
specifies the initial seed of the random number generator. This option affects the perturbation in the
simplex solvers; thus it might result in a different optimal solution and a different solver path. This
option usually has a significant, but unpredictable, effect on the solution time. The value of number
can be any positive integer up to the largest four-byte signed integer, which is 23! — 1. The default
value of the seed is 100.
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TARGET=number
specifies a stopping criterion for minimization (maximization) problems. If the best integer objective
is better than or equal to number, the solver stops. The value of number can be any number; the
default value is the negative (positive) number that has the largest absolute value representable in your
operating environment.

TIMETYPE=string | number
specifies the units of time used by the MAXTIME= option and reported by the PRESOLVE_TIME
and SOLUTION_TIME terms in the _OROPTMODEL_ macro variable. Table 8.7 describes the valid
values of the TIMETYPE= option.

Table 8.7 Values for TIMETYPE= Option

number  string Description
0 CPU Specifies units of CPU time
1 REAL Specifies units of real time

The “Optimization Statistics” table, an output of PROC OPTMODEL if you specify PRINTLEVEL=2
in the PROC OPTMODEL statement, also includes the same time units for Presolver Time and Solver
Time. The other times (such as Problem Generation Time) in the “Optimization Statistics” table are
also in the same units.

The default value of the TIMETYPE= option depends on the algorithm used and on various options.
When the solver is used with distributed or multithreaded processing, then by default TIMETYPE=
REAL. Otherwise, by default TIMETYPE= CPU. Table 8.8 describes the detailed logic for determining
the default; the first context in the table that applies determines the default value. The NTHREADS= and
NODES= options are specified in the PERFORMANCE statement of the OPTMODEL procedure. For
more information about the NTHREADS= and NODES= options, see the section “PERFORMANCE
Statement” on page 23 in Chapter 4, “Shared Concepts and Topics.”

Table 8.8 Default Value for TIMETYPE= Option

Context Default
Solver is invoked in an OPTMODEL COFOR loop REAL
NODES-= value is nonzero for the decomposition algorithm REAL

NTHREADS= value is greater than 1 and NODES=0 for the de- REAL
composition algorithm

NTHREADS= value is greater than 1 and PARALLEL=0ON REAL
Otherwise CPU

Heuristics Option

HEURISTICS=number | string
controls the level of primal heuristics applied by the MILP solver. This level determines how frequently
primal heuristics are applied during the branch-and-bound tree search. It also affects the maximum
number of iterations allowed in iterative heuristics. Some computationally expensive heuristics might
be disabled by the solver at less aggressive levels. The values of string and the corresponding values of
number are listed in Table 8.9.



332 4 Chapter 8: The Mixed Integer Linear Programming Solver

Table 8.9 Values for HEURISTICS= Option

number  string Description
-1 AUTOMATIC Applies default level of heuristics, similar to MODERATE
0 NONE Disables all primal heuristics
1 BASIC Applies basic primal heuristics at low frequency
2 MODERATE Applies most primal heuristics at moderate frequency
3 AGGRESSIVE  Applies all primal heuristics at high frequency

Setting HEURISTICS=NONE does not disable the heuristics that repair an infeasible input solution
that is specified by using the PRIMALIN option.

The default value is AUTOMATIC. For details about primal heuristics, see the section “Primal
Heuristics” on page 341.

Search Options

CONFLICTSEARCH=number | string
specifies the level of conflict search performed by the MILP solver. Conflict finds clauses resulting
from infeasible subproblems that arise in the search tree. The values of string and the corresponding
values of number are listed in Table 8.10.

Table 8.10 Values for CONFLICTSEARCH= Option

number  string Description
-1 AUTOMATIC Performs conflict search based on a strategy deter-
mined by the MILP solver
0 NONE Disables conflict search
1 MODERATE Performs a moderate conflict search

2 AGGRESSIVE  Performs an aggressive conflict search

The default value is AUTOMATIC.

NODESEL=number | string
specifies the node selection strategy string or its corresponding value number as listed in Table 8.11.

Table 8.11 Values for NODESEL= Option

number  string Description
-1 AUTOMATIC Uses automatic node selection
0 BESTBOUND Chooses the node with the best relaxed objective

(best-bound-first strategy)
1 BESTESTIMATE  Chooses the node with the best estimate of the in-
teger objective value (best-estimate-first strategy)
2 DEPTH Chooses the most recently created node (depth-
first strategy)
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The default value is AUTOMATIC. For details about node selection, see the section
“Node Selection” on page 338.

PRIORITY=0 | 1
indicates whether to use specified branching priorities for integer variables. PRIORITY=0 ignores
variable priorities; PRIORITY=1 uses priorities when they exist. The default value is 1. See the section
“Branching Priorities” on page 340 for details.

RESTARTS=number | string
specifies the strategy for restarting the processing of the root node. The values of string and the
corresponding values of number are listed in Table 8.12.

Table 8.12 Values for RESTARTS= Option

number  string Description
-1 AUTOMATIC Uses a restarting strategy determined by the MILP
solver
0 NONE Disables restarting
1 BASIC Uses a basic restarting strategy
2 MODERATE Uses a moderate restarting strategy
3 AGGRESSIVE  Uses an aggressive restarting strategy

The default value is AUTOMATIC.

STRONGITER=number | AUTOMATIC
specifies the number of simplex iterations performed for each variable in the candidate list when the
strong branching variable selection strategy is used. The value of number can be any positive integer
up to the largest four-byte signed integer, which is 23! — 1. If you specify the keyword AUTOMATIC
or the value —1, the MILP solver uses the default value; this value is calculated automatically.

STRONGLEN=number | AUTOMATIC
specifies the number of candidates used when the strong branching variable selection strategy is
performed. The value of number can be any positive integer up to the largest four-byte signed integer,
which is 231 — 1. If you specify the keyword AUTOMATIC or the value —1, the MILP solver uses the
default value; this value is calculated automatically.

SYMMETRY=number | string
specifies the level of symmetry detection. Symmetry detection identifies groups of equivalent decision
variables and uses this information to solve the problem more efficiently. The values of string and the
corresponding values of number are listed in Table 8.13.

Table 8.13 Values for SYMMETRY= Option
number  string Description
-1 AUTOMATIC Performs symmetry detection based on a strategy
that is determined by the MILP solver
NONE Disables symmetry detection
BASIC Performs a basic symmetry detection
MODERATE Performs a moderate symmetry detection
AGGRESSIVE  Performs an aggressive symmetry detection

W N = O
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The default value is AUTOMATIC. For more information about symmetry detection, see (Ostrowski
2008).

VARSEL=number | string
specifies the rule for selecting the branching variable. The values of string and the corresponding
values of number are listed in Table 8.14.

Table 8.14 Values for VARSEL= Option
number  string Description
-1 AUTOMATIC Uses automatic branching variable selection

0 MAXINFEAS Chooses the variable with maximum infeasibility
1 MININFEAS Chooses the variable with minimum infeasibility
2 PSEUDO Chooses a branching variable based on pseudocost
3 STRONG Uses strong branching variable selection strategy

The default value is AUTOMATIC. For details about variable selection, see the section “Variable
Selection” on page 339.

Cut Options

Table 8.15 describes the string and number values for the cut options in the OPTMODEL procedure.

Table 8.15 Values for Individual Cut Options

number  string Description
-1 AUTOMATIC Generates cutting planes based on a strategy deter-
mined by the MILP solver
0 NONE Disables generation of cutting planes

1 MODERATE Uses a moderate cut strategy
2 AGGRESSIVE  Uses an aggressive cut strategy

You can specify the CUTSTRATEGY= option to set the overall aggressiveness of the cut generation in
the MILP solver. Alternatively, you can use the ALLCUTS= option to set all cut types to the same level.
You can override the ALLCUTS= value by using the options that correspond to particular cut types. For
example, if you want the MILP solver to generate only Gomory cuts, specify ALLCUTS=NONE and
CUTGOMORY=AUTOMATIC. If you want to generate all cuts aggressively but generate no lift-and-project
cuts, set ALLCUTS=AGGRESSIVE and CUTLAP=NONE.

ALLCUTS=number | string
provides a shorthand way of setting all the cuts-related options in one setting. In other words, ALL-
CUTS=number is equivalent to setting each of the individual cuts parameters to the same value
number. Thus, ALLCUTS=-1 has the effect of setting CUTCLIQUE=-1, CUTFLOWCOVER=-1,
CUTFLOWPATH=-1, ..., CUTMIR=-1, and CUTZEROHALF=-1. Table 8.15 lists the values that
can be assigned to option and number. In addition, you can override levels for individual cuts with the
CUTCLIQUE=, CUTFLOWCOVER=, CUTFLOWPATH=, CUTGOMORY=, CUTGUB=, CUTIM-
PLIED=, CUTKNAPSACK=, CUTLAP=, CUTMILIFTED=, CUTMIR=, and CUTZEROHALF=
options. If the ALLCUTS= option is not specified, then all the cuts-related options are either at their
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individually specified values (if the corresponding option is specified) or at their default values (if that
option is not specified).

CUTCLIQUE=number | string
specifies the level of clique cuts that are generated by the MILP solver. Table 8.15 lists the values that
can be assigned to option and number. The CUTCLIQUE= option overrides the ALLCUTS= option.
The default value is AUTOMATIC.

CUTFLOWCOVER=number | string
specifies the level of flow cover cuts that are generated by the MILP solver. Table 8.15 lists the
values that can be assigned to option and number. The CUTFLOWCOVER= option overrides the
ALLCUTS= option. The default value is AUTOMATIC.

CUTFLOWPATH=number | string
specifies the level of flow path cuts that are generated by the MILP solver. Table 8.15 lists the values
that can be assigned to option and number. The CUTFLOWPATH= option overrides the ALLCUTS=
option. The default value is AUTOMATIC.

CUTGOMORY=number | string
specifies the level of Gomory cuts that are generated by the MILP solver. Table 8.15 lists the values
that can be assigned to option and number. The CUTGOMORY = option overrides the ALLCUTS=
option. The default value is AUTOMATIC.

CUTGUB=number | string
specifies the level of generalized upper bound (GUB) cover cuts that are generated by the MILP solver.
Table 8.15 lists the values that can be assigned to option and number. The CUTGUB= option overrides
the ALLCUTS= option. The default value is AUTOMATIC.

CUTIMPLIED=number | string
specifies the level of implied bound cuts that are generated by the MILP solver. Table 8.15 lists
the values that can be assigned to option and number. The CUTIMPLIED= option overrides the
ALLCUTS= option. The default value is AUTOMATIC.

CUTKNAPSACK=number | string
specifies the level of knapsack cover cuts that are generated by the MILP solver. Table 8.15 lists
the values that can be assigned to option and number. The CUTKNAPSACK= option overrides the
ALLCUTS= option. The default value is AUTOMATIC.

CUTLAP=number | string
specifies the level of lift-and-project (LAP) cuts that are generated by the MILP solver. Table 8.15 lists
the values that can be assigned to option and number. The CUTLAP= option overrides the ALLCUTS=
option. The default value is NONE.

CUTMILIFTED=number | string
specifies the level of mixed lifted 0-1 cuts that are generated by the MILP solver. Table 8.15 lists
the values that can be assigned to option and number. The CUTMILIFTED= option overrides the
ALLCUTS= option. The default value is AUTOMATIC.



336 4 Chapter 8: The Mixed Integer Linear Programming Solver

CUTMIR=number | string
specifies the level of mixed integer rounding (MIR) cuts that are generated by the MILP solver.
Table 8.15 lists the values that can be assigned to option and number. The CUTMIR= option overrides
the ALLCUTS= option. The default value is AUTOMATIC.

CUTSFACTOR=number
specifies a row multiplier factor for cuts. The number of cuts that are added is limited to number times
the original number of rows. The value of number can be any nonnegative number less than or equal
to 100; the default value is automatically calculated by the MILP solver.

CUTSTRATEGY=number | string

CUTS=number | string
specifies the overall aggressiveness of the cut generation in the solver. Setting a nondefault value
adjusts a number of cut parameters such that the cut generation is basic, moderate, or aggressive
compared to the default value.

CUTZEROHALF=number | string
specifies the level of zero-half cuts that are generated by the MILP solver. Table 8.15 lists the values
that can be assigned to option and number. The CUTZEROHALF= option overrides the ALLCUTS=
option. The default value is AUTOMATIC.

Decomposition Algorithm Options

The following options are available for the decomposition algorithm in the MILP solver. For information
about the decomposition algorithm, see Chapter 15, “The Decomposition Algorithm.”

DECOMP=(options)
enables the decomposition algorithm and specifies overall control options for the algorithm. For more
information about this option, see Chapter 15, “The Decomposition Algorithm.”

DECOMP_MASTER=(options)
specifies options for the master problem. For more information about this option, see Chapter 15, “The
Decomposition Algorithm.”

DECOMP_MASTER_IP=(options)
specifies options for the (restricted) master problem solved as a MILP with the current set of columns in
an effort to obtain an integer feasible solution. For more information about this option, see Chapter 15,
“The Decomposition Algorithm.”

DECOMP_SUBPROB=(options)
specifies option for the subproblem. For more information about this option, see Chapter 15, “The
Decomposition Algorithm.”
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Details: MILP Solver

Branch-and-Bound Algorithm

The branch-and-bound algorithm, first proposed by Land and Doig (1960), is an effective approach to solving
mixed integer linear programs. The following discussion outlines the approach and explains how to enhance
its progress by using several advanced techniques.

The branch-and-bound algorithm solves a mixed integer linear program by dividing the search space and
generating a sequence of subproblems. The search space of a mixed integer linear program can be represented
by a tree. Each node in the tree is identified with a subproblem derived from previous subproblems on the
path that leads to the root of the tree. The subproblem (MILP®) associated with the root is identical to the
original problem, which is called (MILP), given in the section “Overview: MILP Solver” on page 323.

The linear programming relaxation (LP?) of (MILP®) can be written as

min c¢l'x

subjectto Ax {>,=,<}Db
I<x<u

The branch-and-bound algorithm generates subproblems along the nodes of the tree by using the following
scheme. Consider x°, the optimal solution to (LP?), which is usually obtained by using the dual simplex
algorithm. If )E? is an integer for all i € S, then x° is an optimal solution to (MILP). Suppose that for some
i €S, )?lp is nonintegral. In that case the algorithm defines two new subproblems (MILP') and (MILP?),
descendants of the parent subproblem (MILP?). The subproblem (MILP!) is identical to (MILP?) except for
the additional constraint

xi < %]
and the subproblem (MILP?) is identical to (MILP?) except for the additional constraint

xi = [%]]

The notation | y | represents the largest integer that is less than or equal to y, and the notation [y ] represents
the smallest integer that is greater than or equal to y. The two preceding constraints can be handled by
modifying the bounds of the variable x; rather than by explicitly adding the constraints to the constraint
matrix. The two new subproblems do not have X as a feasible solution, but the integer solution to (MILP)
must satisfy one of the preceding constraints. The two subproblems thus defined are called active nodes in
the branch-and-bound tree, and the variable x; is called the branching variable.

In the next step the branch-and-bound algorithm chooses one of the active nodes and attempts to solve the
linear programming relaxation of that subproblem. The relaxation might be infeasible, in which case the
subproblem is dropped (fathomed). If the subproblem can be solved and the solution is integer feasible
(that is, x; is an integer for all i € §), then its objective value provides an upper bound for the objective
value in the minimization problem (MILP); if the solution is not integer feasible, then it defines two new
subproblems. Branching continues in this manner until there are no active nodes. At this point the best
integer solution found is an optimal solution for (MILP). If no integer solution has been found, then (MILP)
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is integer infeasible. You can specify other criteria to stop the branch-and-bound algorithm before it processes
all the active nodes; see the section “Controlling the Branch-and-Bound Algorithm” on page 338 for details.

Upper bounds from integer feasible solutions can be used to fathom or cut off active nodes. Since the
objective value of an optimal solution cannot be greater than an upper bound, active nodes with lower bounds
higher than an existing upper bound can be safely deleted. In particular, if z is the objective value of the
current best integer solution, then any active subproblems whose relaxed objective value is greater than or
equal to z can be discarded.

It is important to realize that mixed integer linear programs are non-deterministic polynomial-time hard
(NP-hard). Roughly speaking, this means that the effort required to solve a mixed integer linear program
grows exponentially with the size of the problem. For example, a problem with 10 binary variables can
generate in the worst case 2! = 1,024 nodes in the branch-and-bound tree. A problem with 20 binary
variables can generate in the worst case 22° = 1,048, 576 nodes in the branch-and-bound tree. Although
it is unlikely that the branch-and-bound algorithm has to generate every single possible node, the need to
explore even a small fraction of the potential number of nodes for a large problem can be resource-intensive.

A number of techniques can speed up the search progress of the branch-and-bound algorithm. Heuristics
are used to find feasible solutions, which can improve the upper bounds on solutions of mixed integer linear
programs. Cutting planes can reduce the search space and thus improve the lower bounds on solutions of
mixed integer linear programs. When using cutting planes, the branch-and-bound algorithm is also called the
branch-and-cut algorithm. Preprocessing can reduce problem size and improve problem solvability. The
MILP solver in PROC OPTMODEL employs various heuristics, cutting planes, preprocessing, and other
techniques, which you can control through corresponding options.

Controlling the Branch-and-Bound Algorithm

There are numerous strategies that can be used to control the branch-and-bound search (see Linderoth and
Savelsbergh 1998, Achterberg, Koch, and Martin 2005). The MILP solver in PROC OPTMODEL implements
the most widely used strategies and provides several options that enable you to direct the choice of the next
active node and of the branching variable. In the discussion that follows, let (LPX) be the linear programming
relaxation of subproblem (MILPk). Also, let

filk) = x¥ — |xF]

where x* is the optimal solution to the relaxation problem (LPk) solved at node k.

Node Selection

The NODESEL-= option specifies the strategy used to select the next active node. The valid keywords for this
option are AUTOMATIC, BESTBOUND, BESTESTIMATE, and DEPTH. The following list describes the
strategy associated with each keyword:

AUTOMATIC enables the MILP solver to choose the best node selection strategy based on problem
characteristics and search progress. This is the default setting.

BESTBOUND chooses the node with the smallest (or largest, in the case of a maximization problem)
relaxed objective value. The best-bound strategy tends to reduce the number of nodes
to be processed and can improve lower bounds quickly. However, if there is no good
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upper bound, the number of active nodes can be large. This can result in the solver
running out of memory.

BESTESTIMATE chooses the node with the smallest (or largest, in the case of a maximization problem)
objective value of the estimated integer solution. Besides improving lower bounds,
the best-estimate strategy also attempts to process nodes that can yield good feasible
solutions.

DEPTH chooses the node that is deepest in the search tree. Depth-first search is effective in
locating feasible solutions, since such solutions are usually deep in the search tree.
Compared to the costs of the best-bound and best-estimate strategies, the cost of
solving LP relaxations is less in the depth-first strategy. The number of active nodes is
generally small, but it is possible that the depth-first search will remain in a portion
of the search tree with no good integer solutions. This occurrence is computationally
expensive.

Variable Selection

The VARSEL= option specifies the strategy used to select the next branching variable. The valid keywords
for this option are AUTOMATIC, MAXINFEAS, MININFEAS, PSEUDOQO, and STRONG. The following list
describes the action taken in each case when x* , a relaxed optimal solution of (MILPk ), is used to define two
active subproblems. In the following list, “INTTOL” refers to the value assigned using the INTTOL= option.
For details about the INTTOL= option, see the section “Control Options” on page 328.

AUTOMATIC enables the MILP solver to choose the best variable selection strategy based on problem
characteristics and search progress. This is the default setting.

MAXINFEAS chooses as the branching variable the variable x; such that i maximizes
{min{ f; (k),1 — fi(k)} | i € S and
INTTOL < f;(k) <1—INTTOL}
MININFEAS chooses as the branching variable the variable x; such that i minimizes
{min{ fi(k),1 — fi(k)}|i € S and
INTTOL < f;(k) <1—INTTOL}

PSEUDO chooses as the branching variable the variable x; such that i maximizes the weighted up
and down pseudocosts. Pseudocost branching attempts to branch on significant variables
first, quickly improving lower bounds. Pseudocost branching estimates significance based
on historical information; however, this approach might not be accurate for future search.

STRONG chooses as the branching variable the variable x; such that i maximizes the estimated
improvement in the objective value. Strong branching first generates a list of candidates,
then branches on each candidate and records the improvement in the objective value.
The candidate with the largest improvement is chosen as the branching variable. Strong
branching can be effective for combinatorial problems, but it is usually computationally
expensive.
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Branching Priorities

In some cases, it is possible to speed up the branch-and-bound algorithm by branching on variables in a
specific order. You can accomplish this in PROC OPTMODEL by attaching branching priorities to the integer
variables in your model by using the .priority suffix. More information about this suffix is available in the
section “Integer Variable Suffixes” on page 136 in Chapter 5. For an example in which branching priorities
are used, see Example 8.3.

Presolve and Probing

The MILP solver in PROC OPTMODEL includes a variety of presolve techniques to reduce problem
size, improve numerical stability, and detect infeasibility or unboundedness (Andersen and Andersen 1995;
Gondzio 1997). During presolve, redundant constraints and variables are identified and removed. Presolve
can further reduce the problem size by substituting variables. Variable substitution is a very effective
technique, but it might occasionally increase the number of nonzero entries in the constraint matrix. Presolve
might also modify the constraint coefficients to tighten the formulation of the problem.

In most cases, using presolve is very helpful in reducing solution times. You can enable presolve at different
levels by specifying the PRESOLVER= option.

Probing is a technique that tentatively sets each binary variable to O or 1, then explores the logical conse-
quences (Savelsbergh 1994). Probing can expedite the solution of a difficult problem by fixing variables and
improving the model. However, probing is often computationally expensive and can significantly increase the
solution time in some cases. You can enable probing at different levels by specifying the PROBE= option.

Cutting Planes

The feasible region of every linear program forms a polyhedron. Every polyhedron in n-space can be
written as a finite number of half-spaces (equivalently, inequalities). In the notation used in this chapter, this
polyhedron is defined by the set @ = {x € R” | Ax < b,l < x < u}. After you add the restriction that
some variables must be integral, the set of feasible solutions, 7 = {x € Q | x; € Z Vi € S}, no longer
forms a polyhedron.

The convex hull of a set X is the minimal convex set that contains X. In solving a mixed integer linear program,
in order to take advantage of LP-based algorithms you want to find the convex hull, conv(F), of F. If you
can find conv(F) and describe it compactly, then you can solve a mixed integer linear program with a linear
programming solver. This is generally very difficult, so you must be satisfied with finding an approximation.
Typically, the better the approximation, the more efficiently the LP-based branch-and-bound algorithm can
perform.

As described in the section “Branch-and-Bound Algorithm” on page 337, the branch-and-bound algorithm
begins by solving the linear programming relaxation over the polyhedron Q. Clearly, O contains the convex
hull of the feasible region of the original integer program; that is, conv(F) € Q.

Cutting plane techniques are used to tighten the linear relaxation to better approximate conv(F). Assume
you are given a solution x to some intermediate linear relaxation during the branch-and-bound algorithm. A
cut, or valid inequality (7x < 7?), is some half-space with the following characteristics:

* The half-space contains conv(F); that is, every integer feasible solution is feasible for the cut (7x <
0
v, Vx € F).
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» The half-space does not contain the current solution x; that is, X is not feasible for the cut (mx > 710).

Cutting planes were first made popular by Dantzig, Fulkerson, and Johnson (1954) in their work on the
traveling salesman problem. The two major classifications of cutting planes are generic cuts and structured
cuts. Generic cuts are based solely on algebraic arguments and can be applied to any relaxation of any integer
program. Structured cuts are specific to certain structures that can be found in some relaxations of the mixed
integer linear program. These structures are automatically discovered during the cut initialization phase of the
MILP solver. Table 8.16 lists the various types of cutting planes that are built into the MILP solver. Included
in each type are algorithms for numerous variations based on different relaxations and lifting techniques.
For a survey of cutting plane techniques for mixed integer programming, see Marchand et al. (1999). For a
survey of lifting techniques, see Atamturk (2004).

Table 8.16 Cutting Planes in the MILP Solver
Generic Cutting Planes Structured Cutting Planes

Gomory mixed integer Cliques

Lift-and-project Flow cover

Mixed integer rounding  Flow path

Mixed lifted 0-1 Generalized upper bound cover
Zero-half Implied bound

Knapsack cover

You can set levels for individual cuts by using the CUTCLIQUE=, CUTFLOWCOVER=, CUTFLOWPATH=,
CUTGOMORY=, CUTGUB=, CUTIMPLIED=, CUTKNAPSACK=, CUTLAP=, CUTMILIFTED=, CUT-
MIR=, and CUTZEROHALF-= options. The valid levels for these options are listed in Table 8.15.

The cut level determines the internal strategy that is used by the MILP solver for generating the cutting planes.
The strategy consists of several factors, including how frequently the cut search is called, the number of cuts
allowed, and the aggressiveness of the search algorithms.

Sophisticated cutting planes, such as those included in the MILP solver, can take a great deal of CPU time.
Usually, additional tightening of the relaxation helps speed up the overall process because it provides better
bounds for the branch-and-bound tree and helps guide the LP solver toward integer solutions. In rare cases,
shutting off cutting planes completely might lead to faster overall run times.

The default settings of the MILP solver have been tuned to work well for most instances. However, problem-
specific expertise might suggest adjusting one or more of the strategies. These options give you that flexibility.

Primal Heuristics

Primal heuristics, an important component of the MILP solver in PROC OPTMODEL, are applied during the
branch-and-bound algorithm. They are used to find integer feasible solutions early in the search tree, thereby
improving the upper bound for a minimization problem. Primal heuristics play a role that is complementary
to cutting planes in reducing the gap between the upper and lower bounds, thus reducing the size of the
branch-and-bound tree.

Applying primal heuristics in the branch-and-bound algorithm assists in the following areas:
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* finding a good upper bound early in the tree search (this can lead to earlier fathoming, resulting in
fewer subproblems to be processed)

* locating a reasonably good feasible solution when that is sufficient (sometimes a reasonably good
feasible solution is the best the solver can produce within certain time or resource limits)

* providing upper bounds for some bound-tightening techniques

The MILP solver implements several heuristic methodologies. Some algorithms, such as rounding and
iterative rounding (diving) heuristics, attempt to construct an integer feasible solution by using fractional
solutions to the continuous relaxation at each node of the branch-and-cut tree. Other algorithms start with an
incumbent solution and attempt to find a better solution within a neighborhood of the current best solution.

The HEURISTICS= option enables you to control the level of primal heuristics that are applied by the MILP
solver. This level determines how frequently primal heuristics are applied during the tree search. Some
expensive heuristics might be disabled by the solver at less aggressive levels. Setting the HEURISTICS=
option to a lower level also reduces the maximum number of iterations that are allowed in iterative heuristics.
The valid values for this option are listed in Table 8.9.

Parallel Processing

The branch-and-cut algorithm can be run in single-machine mode (in single-machine mode, the computation
is executed by multiple threads on a single computer). To enable parallel processing of the branch-and-cut
algorithm, you need to specify PARALLEL=1 in the MILP solver invocation.

The decomposition algorithm can be run in either single-machine or distributed mode (in distributed mode,
the computation is executed on multiple computing nodes in a distributed computing environment).

NOTE: Distributed mode requires SAS High-Performance Optimization.

You can specify options for parallel processing in the PERFORMANCE statement, which is documented in
the section “PERFORMANCE Statement” on page 23 in Chapter 4, “Shared Concepts and Topics.”

Node Log
The following information about the status of the branch-and-bound algorithm is printed in the node log:
Node indicates the sequence number of the current node in the search tree.
Active indicates the current number of active nodes in the branch-and-bound tree.
Sols indicates the number of feasible solutions found so far.
BestInteger indicates the best upper bound (assuming minimization) found so far.
BestBound indicates the best lower bound (assuming minimization) found so far.
Gap indicates the relative gap between BestInteger and BestBound, displayed as a percentage.

If the relative gap is larger than 1,000, then the absolute gap is displayed. If no active
nodes remain, the value of Gap is 0.

Time indicates the elapsed real time.
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The LOGFREQ= option can be used to control the amount of information printed in the node log. By default
a new entry is included in the log at the first node, at the last node, and at 100-node intervals. A new entry is
also included each time a better integer solution is found. The LOGFREQ= option enables you to change the
interval between entries in the node log. Figure 8.3 shows a sample node log.

Figure 8.3 Sample Node Log

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 10 variables (0 free, 0 fixed).

NOTE: The problem has 0 binary and 10 integer variables.

NOTE: The problem has 2 linear constraints (2 LE, 0 EQ, 0 GE, O range).

NOTE: The problem has 20 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, O GE, O range).

NOTE: The OPTMODEL presolver is disabled for linear problems.

NOTE: The MILP presolver value AUTOMATIC is applied.

NOTE: The MILP presolver removed O variables and O constraints.

NOTE: The MILP presolver removed O constraint coefficients.

NOTE: The MILP presolver modified O constraint coefficients.

NOTE: The presolved problem has 10 variables, 2 constraints, and 20 constraint
coefficients.

NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 3 85.0000000 178.0000000 52.25% 0
0 1 3 85.0000000 88.0955497 3.51% 0
0 1 3 85.0000000 88.0955497 3.51% 0
0 1 3 85.0000000 88.0955497 3.51% 0

NOTE: The MILP presolver is applied again.

0 1 3 85.0000000 88.0955497 3.51% 0
0 1 3 85.0000000 88.0955497 3.51% 0
0 1 3 85.0000000 88.0626822 3.48% 0
0 1 3 85.0000000 87.8820655 3.28% 0
0 1 4 85.0000000 87.8539763 3.25% 0
0 1 4 85.0000000 87.7208690 3.10% 0
0 1 4 85.0000000 87.7180302 3.10% 0
0 1 4 85.0000000 87.7133502 3.09% 0
0 1 4 85.0000000 87.7128245 3.09% 0
0 1 4 85.0000000 87.7124806 3.09% 0
NOTE: The MILP solver added 2 cuts with 8 cut coefficients at the root.
5 3 5 87.0000000 87.0000000 0.00% 0

NOTE: Optimal.
NOTE: Objective = 87.

Problem Statistics

Optimizers can encounter difficulty when solving poorly formulated models. Information about data
magnitude provides a simple gauge to determine how well a model is formulated. For example, a model
whose constraint matrix contains one very large entry (on the order of 10%) can cause difficulty when the
remaining entries are single-digit numbers. The PRINTLEVEL=2 option in the OPTMODEL procedure
causes the ODS table ProblemStatistics to be generated when the MILP solver is called. This table provides
basic data magnitude information that enables you to improve the formulation of your models.

The example output in Figure 8.4 demonstrates the contents of the ODS table ProblemStatistics.
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Figure 8.4 ODS Table ProblemStatistics

ProblemStatistics

Obs Label1 cValuel nValuel
1 Number of Constraint Matrix Nonzeros 8 8.000000
2 Maximum Constraint Matrix Coefficient 3 3.000000
3 Minimum Constraint Matrix Coefficient 1 1.000000
4 Average Constraint Matrix Coefficient 1.875 1.875000
5 .
6 Number of Objective Nonzeros 3 3.000000
7 Maximum Objective Coefficient 4 4.000000
8 Minimum Objective Coefficient 2 2.000000
9 Average Objective Coefficient 3 3.000000
10 ’
11 Number of RHS Nonzeros 3 3.000000
12 Maximum RHS 7 7.000000
13 Minimum RHS 4 4.000000
14 Average RHS 5.3333333333 5.333333
15 .
16 Maximum Number of Nonzeros per Column 3 3.000000
17 Minimum Number of Nonzeros per Column 2 2.000000
18 Average Number of Nonzeros per Column 2 2.000000
19 .
20 Maximum Number of Nonzeros per Row 3 3.000000
21 Minimum Number of Nonzeros per Row 2 2.000000
22 Average Number of Nonzeros per Row 2 2.000000

The variable names in the ODS table ProblemStatistics are Labell, cValuel, and nValuel.

Macro Variable _OROPTMODEL_

The OPTMODEL procedure defines a macro variable named _OROPTMODEL._. This variable contains a
character string that indicates the status of the solver upon termination. The contents of the macro variable
depend on which solver was invoked. For the MILP solver, the various terms of _OROPTMODEL _ are
interpreted as follows.

STATUS
indicates the solver status at termination. It can take one of the following values:

OK The solver terminated normally.
SYNTAX_ERROR Syntax was used incorrectly.
DATA_ERROR The input data was inconsistent.

OUT_OF_MEMORY Insufficient memory was allocated to the solver.
I0O_ERROR A problem occurred in reading or writing data.
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SEMANTIC_ERROR An evaluation error, such as an invalid operand type, was found.
ERROR The status cannot be classified into any of the preceding categories.

ALGORITHM
indicates the algorithm that produced the solution data in the macro variable. This term only appears

when STATUS=O0K. It can take one of the following values:

BAC The branch-and-cut algorithm produced the solution data.
DECOMP The decomposition algorithm produced the solution data.

SOLUTION_STATUS
indicates the solution status at termination. It can take one of the following values:

OPTIMAL The solution is optimal.

OPTIMAL_AGAP The solution is optimal within the absolute gap specified by the
ABSOBJGAP= option.

OPTIMAL_RGAP The solution is optimal within the relative gap specified by the
RELOBJGAP= option.

OPTIMAL_COND The solution is optimal, but some infeasibilities (primal, bound,

or integer) exceed tolerances due to scaling or choice of small
INTTOL= value.

TARGET The solution is not worse than the target specified by the TAR-
GET= option.

INFEASIBLE The problem is infeasible.

UNBOUNDED The problem is unbounded.

INFEASIBLE_OR_UNBOUNDED The problem is infeasible or unbounded.

BAD_PROBLEM_TYPE The problem type is unsupported by solver.

SOLUTION_LIM The solver reached the maximum number of solutions specified
by the MAXSOLS= option.

NODE_LIM_SOL The solver reached the maximum number of nodes specified by
the MAXNODES= option and found a solution.

NODE_LIM_NOSOL The solver reached the maximum number of nodes specified by
the MAXNODES= option and did not find a solution.

TIME_LIM_SOL The solver reached the execution time limit specified by the
MAXTIME= option and found a solution.

TIME_LIM_NOSOL The solver reached the execution time limit specified by the
MAXTIME-= option and did not find a solution.

ABORT_SOL The solver was stopped by user but still found a solution.

ABORT_NOSOL The solver was stopped by user and did not find a solution.

OUTMEM_SOL The solver ran out of memory but still found a solution.
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OUTMEM_NOSOL The solver ran out of memory and either did not find a solution
or failed to output the solution due to insufficient memory.
FAIL_SOL The solver stopped due to errors but still found a solution.
FAIL_NOSOL The solver stopped due to errors and did not find a solution.
OBJECTIVE

indicates the objective value obtained by the solver at termination.

RELATIVE_GAP
indicates the relative gap between the best integer objective (BestInteger) and the best bound on the
objective function value (BestBound) upon termination of the MILP solver. The relative gap is equal to

| BestInteger — BestBound | / (IE—10 + | BestBound |)

ABSOLUTE_GAP
indicates the absolute gap between the best integer objective (BestInteger) and the best bound on the
objective function value (BestBound) upon termination of the MILP solver. The absolute gap is equal
to | BestInteger — BestBound |.

PRIMAL_INFEASIBILITY
indicates the maximum (absolute) violation of the primal constraints by the solution.

BOUND_INFEASIBILITY
indicates the maximum (absolute) violation by the solution of the lower or upper bounds (or both).

INTEGER_INFEASIBILITY
indicates the maximum (absolute) violation of the integrality of integer variables returned by the MILP
solver.

BEST_BOUND
indicates the best bound on the objective function value at termination. A missing value indicates that
the MILP solver was not able to obtain such a bound.

NODES
indicates the number of nodes enumerated by the MILP solver by using the branch-and-bound algo-
rithm.

ITERATIONS
indicates the number of simplex iterations taken to solve the problem.

PRESOLVE_TIME
indicates the time (in seconds) used in preprocessing.

SOLUTION_TIME
indicates the time (in seconds) taken to solve the problem, including preprocessing time.

NOTE: The time reported in PRESOLVE_TIME and SOLUTION_TIME is either CPU time or real time.
The type is determined by the TIMETYPE= option.

When SOLUTION_STATUS has a value of OPTIMAL, CONDITIONAL_OPTIMAL, ITERA-
TION_LIMIT_REACHED, or TIME_LIMIT_REACHED, all terms of the _OROPTMODEL_ macro
variable are present; for other values of SOLUTION_STATUS, some terms do not appear.
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Examples: MILP Solver

This section contains examples that illustrate the options and syntax of the MILP solver in PROC OPT-
MODEL. Example 8.1 illustrates the use of PROC OPTMODEL to solve an employee scheduling problem.
Example 8.2 discusses a multicommodity transshipment problem with fixed charges. Example 8.3 demon-
strates how to warm start the MILP solver. Example 8.4 shows the solution of an instance of the traveling
salesman problem in PROC OPTMODEL. Other examples of mixed integer linear programs, along with
example SAS code, are given in Chapter 13.

Example 8.1: Scheduling

The following example has been adapted from the example “A Scheduling Problem” in Chapter 5, “The LP
Procedure” (SAS/OR User’s Guide: Mathematical Programming Legacy Procedures).

Scheduling is a common application area in which mixed integer linear programming techniques are used. In
this example, you have eight one-hour time slots in each of five days. You have to assign four employees to
these time slots so that each slot is covered every day. You allow the employees to specify preference data for
each slot on each day. In addition, the following constraints must be satisfied:

* Each employee has some time slots for which he or she is unavailable (OneEmpPerSlot).
* Each employee must have either time slot 4 or time slot 5 off for lunch (EmpMustHaveLunch).
» Each employee can work at most two time slots in a row (AtMost2ConSlots).

* Each employee can work only a specified number of hours in the week (WeeklyHoursLimit).

To formulate this problem, let i denote a person, j denote a time slot, and k denote a day. Then, let x;;; = 1
if person i is assigned to time slot j on day k, and O otherwise. Let p;;x denote the preference of person i
for slot j on day k. Let h; denote the number of hours in a week that person i will work. The formulation of
this problem follows:

max Z PijkXijk

ijk

s.t. injk = 1 Vjk (OneEmpPerSlot)
x§~4k + Xisk < 1 Vik (EmpMustHaveLunch)
Xigk T Xigv1k T Xigy2k = 2 Vik,andl <6 (AtMost2ConSlots)
Z Xijk < h; Vi (WeeklyHoursLimit)
jk
Xijk =0 Vl,],k s.t. pijk>0
Xijk G{O,l} Vi,j,k

The following data set preferences gives the preferences for each individual, time slot, and day. A 10
represents the most desirable time slot, and a 1 represents the least desirable time slot. In addition, a 0
indicates that the time slot is not available. The data set maxhours gives the maximum number of hours each
employee can work per week.
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data preferences;
input name $ slot mon tue wed thu fri;

datalines;
marc 1 10 10 10 10 10
marc 2 9 9 9 9 9
marc 3 8 8 8 8 8
marc 4 1 1 1 1 1
marc 5 1 1 1 1 1
marc 6 1 1 1 1 1
marc 7 1 1 1 1 1
marc 8 1 1 1 1 1
mike 1 10 9 8 7 6
mike 2 10 9 8 7 6
mike 3 10 9 8 7 6
mike 4 10 3 3 3 3
mike 5 1 1 1 1 1
mike 6 1 2 3 4 5
mike 7 1 2 3 4 5
mike 8 1 2 3 4 5
bill 1 10 10 10 10 10
bill 2 9 9 9 9 9
bill 3 8 8 8 8 8
bill 4 0O 0 0 O O
bill 5 1 1 1 1 1
bill 6 1 1 1 1 1
bill 7 1 1 1 1 1
bill 8 1 1 1 1 1
bob 1 10 9 8 7 6
bob 2 10 9 8 7 6
bob 3 10 9 8 7 6
bob 4 10 3 3 3 3
bob 5 1 1 1 1 1
bob 6 1 2 3 4 5
bob 7 1 2 3 4 5
bob 8 1 2 3 4 5

4

data maxhours;
input name $ hour;

datalines;
marc 20
mike 20
bill 20
bob 20

’

Using PROC OPTMODEL, you can model and solve the scheduling problem as follows:
proc optmodel;

/* read in the preferences and max hours from the data sets */
set <string,num> DailyEmployeeSlots;
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set <string> Employees;

set <num> TimeSlots (setof {<name, slot> in DailyEmployeeSlots} slot);
set <string> WeekDays = {"mon", "tue", "wed","thu","fri"};

num WeeklyMaxHours {Employees};
num PreferenceWeights{DailyEmployeeSlots, Weekdays};
num NSlots = card(TimeSlots);

read data preferences into DailyEmployeeSlots=[name slot]
{day in Weekdays} <PreferenceWeights[name, slot,day] = col (day)>;
read data maxhours into Employees=[name] WeeklyMaxHours=hour;

/* declare the binary assignment variable x[i, j, k] */
var Assign{<name, slot> in DailyEmployeeSlots, day in Weekdays} binary;

/* for each p[i,j, k] = 0, fix x[i,j, k] = 0 */
for {<name,slot> in DailyEmployeeSlots, day in Weekdays:
PreferenceWeights[name, slot,day] = 0}
fix Assign[name, slot,day] = O;

/* declare the objective function =*/
max TotalPreferenceWeight =
sum{<name, slot> in DailyEmployeeSlots, day in Weekdays}
PreferenceWeights[name, slot,day] * Assign[name, slot,day];

/* declare the constraints x/
con OneEmpPerSlot{slot in TimeSlots, day in Weekdays}:
sum{name in Employees} Assign[name, slot,day] = 1;

con EmpMustHaveLunch{name in Employees, day in Weekdays}:
Assign[name, 4,day] + Assign[name, 5,day] <= 1;

con AtMost2ConsSlots{name in Employees, start in 1..NSlots-2,
day in Weekdays}:
Assign[name, start,day] + Assign[name, start+1l,day]
+ Assign|[name, start+2,day] <= 2 ;

con WeeklyHoursLimit{name in Employees}:
sum{slot in TimeSlots, day in Weekdays} Assign[name, slot, day]
<= WeeklyMaxHours [name];

/* solve the model */
solve with milp;

/* clean up the solution %/
for {<name,slot> in DailyEmployeeSlots, day in Weekdays}
Assign[name, slot,day] = round(Assign[name, slot,day], le-6);

create data report from [name slot]={<name,slot> in DailyEmployeeSlots:
max {day in Weekdays} Assign|[name, slot,day] > 0}
{day in Weekdays} <col (day)=(if Assign[name,slot,day] > 0
then Assign[name, slot,day] else .)>;
quit;
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The following statements demonstrate how to use the TABULATE procedure to display a schedule that shows
how the eight time slots are covered for the week:

title 'Reported Solution'’;
proc format;
value xfmt 1=' xxx '
run;
proc tabulate data=report;
class name slot;
var mon——fri;
table (slot * name), (mon tue wed thu fri)*sum=' 'xf=xfmt.
/misstext=' ';
run;

The output from the preceding code is displayed in Output 8.1.1.

Output 8.1.1 Scheduling Reported Solution
Reported Solution
mon tue wed thu fri

slot name
1 marc XXX XXX XXX XXX XXX

2 marc XXX XXX XXX XXX
mike  xxx
3 bill XXX XXX

mike XXX XXX XXX
4 bob XXX XXX XXX

mike XXX XXX

5 bill XXX XXX XXX XXX
bob XXX

6 bob XXX XXX
mike XXX XXX XXX

7 bob XXX XXX XXX XXX
mike XXX

8 bob XXX XXX XXX
mike XXX XXX

Example 8.2: Multicommodity Transshipment Problem with Fixed Charges

The following example has been adapted from the example “A Multicommodity Transshipment Problem
with Fixed Charges” in Chapter 5, “The LP Procedure” (SAS/OR User’s Guide: Mathematical Programming
Legacy Procedures).

This example illustrates the use of PROC OPTMODEL to generate a mixed integer linear program to solve
a multicommodity network flow model with fixed charges. Consider a network with nodes N, arcs A, and
a set C of commodities to be shipped between the nodes. The commodities are defined in the data set
COMMODITY_DATA, as follows:
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title 'Multicommodity Transshipment Problem with Fixed Charges';

data commodity_ data;
do c =1 to 4;
output;
end;
run;

Shipping cost s;j is for each of the four commodities ¢ across each of the arcs (7, j). In addition, there is a
fixed charge f;; for the use of each arc (i, j). The shipping costs and fixed charges are defined in the data set
ARC_DATA, as follows:

data arc_data;
input from $ to $ cl c2 c3 c4d £x;
datalines;
farm-a Chicago 20 15 17 22 100
farm-b Chicago 15 15 15 30 75
farm-c Chicago 30 30 10 10 100
farm—-a StLouis 30 25 27 22 150
farm-c StLouis 10 9 11 10 75

Chicago NY 75 75 75 75 200
StLouis NY 80 80 80 80 200
run;

The supply (positive numbers) or demand (negative numbers) d;. at each of the nodes for each commodity ¢
is shown in the data set SUPPLY_DATA, as follows:

data supply_data;
input node $ sdl sd2 sd3 sd4;
datalines;
farm-a 100 100 40 .
farm-b 100 200 50 50
farm-c 40 100 75 100
NY -150 -200 -50 -75
run;
Let x;jc define the flow of commodity c across arc (7, j). Let y;; = 1 if arc (7, j) is used, and O otherwise.
Since the total flow on an arc (i, j ) must be at most the total demand across all nodes k € N, you can define
the trivial upper bound u; ;. as

Xije Suije = Y (—dic)

keN|dk.<0

This model can be represented using the following mixed integer linear program:
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min Z Zsijcxijc+ Z Jijyij

(i,j)eAceC (i,j)eA

s.t. Z Xije — Z Xjic = dic Vie NceC (balance_con)
JENI(,j)eA JENI(j,i)eA
Xije < ujjcyij Y(@,j)€ A ceC (fixed_charge_con)
Xije > 0 V(i,j)e A,ceC
yij €{0,1} V(i,j)e A

Constraint (balance_con) ensures conservation of flow for both supply and demand. Constraint
(fixed_charge_con) models the fixed charge cost by forcing y;; = 1 if x;;c > 0 for some commodity
ceC.

The PROC OPTMODEL statements follow:

proc optmodel;
set COMMODITIES;
read data commodity_data into COMMODITIES=|[c];

set <str,str> ARCS;

num unit_cost {ARCS, COMMODITIES};

num fixed_charge {ARCS};

read data arc_data into ARCS=[from to] {c in COMMODITIES}
<unit_cost[from,to,c]=col('c'||c)> fixed charge=fx;

print unit_cost fixed charge;

set <str> NODES = union {<i, j> in ARCS} {i, j};

num supply {NODES, COMMODITIES} init O;

read data supply_data nomiss into [node] {c in COMMODITIES}
<supply[node,c]l=col('sd'| |c)>;

print supply;

var AmountShipped {ARCS, c in COMMODITIES} >= 0 <= sum {i in NODES}
max (supply[i,c],0);

/* UseArc[i,j] = 1 if arc (i, j) is used, 0 otherwise */
var UseArc {ARCS} binary;

/* TotalCost = variable costs + fixed charges */

min TotalCost = sum {<i, j> in ARCS, c in COMMODITIES}
unit_cost[i, j,c] * AmountShipped[i, j, c]
+ sum {<i, j> in ARCS} fixed chargel[i, j] * UseArcli, j];

con flow balance {i in NODES, c in COMMODITIES}:
sum {<(i), j> in ARCS} AmountShipped[i, j,c] -
sum {<j, (i)> in ARCS} AmountShipped[j,i,c] <= supplyli,c];

/* if AmountShipped[i,j,c] > 0 then UseArc[i,j] = 1 */
con fixed charge_def {<i,j> in ARCS, c in COMMODITIES}:
AmountShipped|[i, j,c] <= AmountShipped[i, j,c].ub *x UseArcl[i, j];

solve;
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print AmountShipped;

create data solution from [from to commodity]={<i, j> in ARCS,
c in COMMODITIES: AmountShipped[i, j,c].sol ne 0} amount=AmountShipped;

quit;
Although the PROC LP example used M = 1.0e6 in the FIXED_CHARGE_DEEF constraint that links the
continuous variable to the binary variable, it is numerically preferable to use a smaller, data-dependent
value. Here, the upper bound on AmountShipped[i, j, c] is used instead. This upper bound is calculated
in the first VAR statement as the sum of all positive supplies for commodity ¢. The logical condition
AmountShipped[i, j, k] .sol ne 0 in the CREATE DATA statement ensures that only the nonzero parts
of the solution appear in the SOLUTION data set.

The problem summary, solution summary, and the output from the two PRINT statements are shown in
Output 8.2.1.

Output 8.2.1 Multicommodity Transshipment Problem with Fixed Charges Solution Summary

Multicommodity Transshipment Problem with Fixed Charges

The OPTMODEL Procedure
[1] [2] [3] unit_cost
Chicago NY 1 75
Chicago NY 2 75
Chicago NY 3 75
Chicago NY 4 75
StLouis NY 1 80
StLouis NY 2 80
StLouis NY 3 80
StLouis NY 4 80
farm-a Chicago 1 20
farm-a Chicago 2 15
farm-a Chicago 3 17
farm-a Chicago 4 22
farm-a  StLouis 1 30
farm-a StLouis 2 25
farm-a StLouis 3 27
farm-a StLouis 4 22
farm-b Chicago 1 15
farm-b  Chicago 2 15
farm-b  Chicago 3 15
farm-b  Chicago 4 30
farm-c  Chicago 1 30
farm-c  Chicago 2 30
farm-c  Chicago 3 10
farm-c  Chicago 4 10
farm-c  StLouis 1 10
farm-c  StLouis 2 9
farm-c  StLouis 3 11
farm-c  StLouis 4 10
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Output 8.2.1 continued

[11 [2] fixed_charge
Chicago NY 200
StLouis NY 200
farm-a Chicago 100
farm-a  StlLouis 150
farm-b  Chicago 75
farm-c  Chicago 100
farm-c  StlLouis 75
supply

1 2 3 4

Chicago 0 0 0 O

NY -150 -200 -50 -75

StLouis 0 0 0 O
farm-a 100 100 40 O
farm-b 100 200 50 50
farm-c 40 100 75 100

Problem Summary

Objective Sense Minimization
Objective Function TotalCost
Objective Type Linear
Number of Variables 35
Bounded Above 0
Bounded Below 0
Bounded Below and Above 35
Free 0
Fixed 0
Binary 7
Integer 0
Number of Constraints 52
Linear LE (<=) 52
Linear EQ (=) 0
Linear GE (>=) 0
Linear Range 0
Constraint Coefficients 112

Performance Information
Execution Mode Single-Machine
Number of Threads 1
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Output 8.2.1 continued

Solution Summary

Solver MILP
Algorithm Branch and Cut
Objective Function TotalCost
Solution Status Optimal within Relative Gap
Objective Value 42825
Relative Gap 2.3350852E-7
Absolute Gap 0.01
Primal Infeasibility 0
Bound Infeasibility 0
Integer Infeasibility 1.110223E-16
Best Bound 42824.99
Nodes 1
Iterations 38
Presolve Time 0.00
Solution Time 0.02
[1] [2] [3] AmountShipped
Chicago NY 1 110
Chicago NY 2 100
Chicago NY 3 50
Chicago NY 4 75
StLouis NY 1 40
StLouis NY 2 100
StLouis NY 3 0
StLouis NY 4 0
farm-a Chicago 1 10
farm-a Chicago 2 10
farm-a Chicago 3 0
farm-a Chicago 4 0
farm-a  StlLouis 1 0
farm-a  StlLouis 2 0
farm-a  StlLouis 3 0
farm-a  StlLouis 4 0
farm-b  Chicago 1 100
farm-b  Chicago 2 90
farm-b  Chicago 3 0
farm-b  Chicago 4 0
farm-c  Chicago 1 0
farm-c  Chicago 2 0
farm-c  Chicago 3 50
farm-c  Chicago 4 75
farm-c  StlLouis 1 40
farm-c  StlLouis 2 100
farm-c  StlLouis 3 0
farm-c  StLouis 4 0
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Example 8.3: Facility Location

Consider the classic facility location problem. Given a set L of customer locations and a set F of candidate
facility sites, you must decide on which sites to build facilities and assign coverage of customer demand to
these sites so as to minimize cost. All customer demand ¢; must be satisfied, and each facility has a demand
capacity limit C. The total cost is the sum of the distances ¢;; between facility j and its assigned customer i,
plus a fixed charge f; for building a facility at site j. Let y; = 1 represent choosing site j to build a facility,
and 0 otherwise. Also, let x;; = 1 represent the assignment of customer i to facility j, and O otherwise. This
model can be formulated as the following integer linear program:

min Y cijxij+ Y fiy;

ieL jeF jeF

s.t. Z Xij = 1 Viel (assign_def)
jeF
Xij < yj VielL,jeF (link)
Zdixij < Cy; VjeF (capacity)
ieL
xij €10,1} VielL,jeF
v; €10,1} VjeF

Constraint (assign_def) ensures that each customer is assigned to exactly one site. Constraint (link) forces a
facility to be built if any customer has been assigned to that facility. Finally, constraint (capacity) enforces
the capacity limit at each site.

Consider also a variation of this same problem where there is no cost for building a facility. This problem is
typically easier to solve than the original problem. For this variant, let the objective be

min E Z CijXij

ieL jeF
First, construct a random instance of this problem by using the following DATA steps:

title 'Facility Location Problem';

%$let NumCustomers = 50;
%$let NumSites = 10;
%$let SiteCapacity = 35;
%$let MaxDemand = 10;
%$let xmax = 200;
%$let ymax = 100;
%$let seed = 938;

/* generate random customer locations */
data cdata (drop=i);
length name $8;
do i = 1 to &NumCustomers;
name = compress('C'||put(i,best.));
X = ranuni (&seed) * &xmax;
y = ranuni (&seed) * &ymax;



Example 8.3: Facility Location 4 357

demand = ranuni (&seed) * &MaxDemand;
output;
end;
run;

/* generate random site locations and fixed charge x*/
data sdata (drop=i);
length name $8;
do i = 1 to &NumSites;
name = compress ('SITE'||put(i,best.));
X = ranuni (&seed) * &xmax;
y = ranuni (&seed) * &ymax;
fixed charge = 30 * (abs(&xmax/2-x) + abs(&ymax/2-y));
output;
end;
run;

The following PROC OPTMODEL statements first generate and solve the model with the no-fixed-charge
variant of the cost function. Next, they solve the fixed-charge model. Note that the solution to the model with
no fixed charge is feasible for the fixed-charge model and should provide a good starting point for the MILP

solver. Use the PRIMALIN option to provide an incumbent solution (warm start).

proc optmodel;
set <str> CUSTOMERS;
set <str> SITES init ({};
/* x and y coordinates of CUSTOMERS and SITES x/
num x {CUSTOMERS union SITES};
num y {CUSTOMERS union SITES};
num demand {CUSTOMERS};
num fixed_charge {SITES},;
/* distance from customer i to site j */
num dist {i in CUSTOMERS, j in SITES}
= sqrt ((x[i] - x[3])*2 + (y[i] - y[3i])*2);
read data cdata into CUSTOMERS=[name] x y demand;
read data sdata into SITES=[name] x y fixed_charge;
var Assign {CUSTOMERS, SITES} binary;
var Build {SITES} binary;
min CostNoFixedCharge
= sum {i in CUSTOMERS, Jj in SITES} dist[i, j] * Assignl[i, j];
min CostFixedCharge
= CostNoFixedCharge + sum {j in SITES} fixed_charge[]j] * Build[j];
/* each customer assigned to exactly one site */
con assign_def {i in CUSTOMERS}:
sum {j in SITES} Assignl[i,j] = 1;
/* if customer i assigned to site j, then facility must be built at j */
con link {i in CUSTOMERS, j in SITES}:
Assign[i, j] <= Build[j];
/* each site can handle at most &SiteCapacity demand =/
con capacity {j in SITES}:
sum {i in CUSTOMERS} demand[i] * Assign[i, j] <=
&SiteCapacity * Build[j];
/* solve the MILP with no fixed charges x*/
solve obj CostNoFixedCharge with milp / logfreq = 500;
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/* clean up the solution */

for {i in CUSTOMERS, j in SITES} Assign[i, j] = round(Assign[i, j]);

for {j in SITES} Build[j] = round(Build[j]);

call symput ('varcostNo', put (CostNoFixedCharge, 6.1));

/* create a data set for use by GPLOT x*/

create data CostNoFixedCharge_Data from
[customer site]={i in CUSTOMERS, Jj in SITES: Assign[i, j] = 1}
xi=x[i] yi=y[i] xj=x[3]] yi=yI[3l;

/* solve the MILP, with fixed charges with warm start =*/

solve obj CostFixedCharge with milp / primalin logfreq = 500;

/* clean up the solution */

for {i in CUSTOMERS, j in SITES} Assign[i, j] = round(Assign[i, j]);

for {j in SITES} Build[j] = round(Build[j]);

num varcost = sum {i in CUSTOMERS, j in SITES} dist[i, j] * Assign[i, j].sol;

num fixcost = sum {j in SITES} fixed_charge[j] * Build[j].sol;

call symput ('varcost', put(varcost,6.1));

call symput ('fixcost', put(fixcost,5.1));

call symput ('totalcost', put (CostFixedCharge,6.1));

/* create a data set for use by GPLOT x*/

create data CostFixedCharge Data from
[customer site]={i in CUSTOMERS, j in SITES: Assign[i,j] = 1}
xi=x[i] yi=y[i] xj=x[3] yi=y[3l;

quit;
The information printed in the log for the no-fixed-charge model is displayed in Output 8.3.1.
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Output 8.3.1 OPTMODEL Log for Facility Location with No Fixed Charges

NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:

NOTE:

NOTE:

NOTE:

NOTE:
NOTE:

Problem generation will use 4 threads.

The problem has 510 variables (0 free, 0 fixed).

The problem has 510 binary and O integer variables.

The problem has 560 linear constraints (510 LE, 50 EQ, 0O GE, O range).
The problem has 2010 linear constraint coefficients.

The problem has 0 nonlinear constraints (0 LE, 0 EQ, O GE, O range).
The MILP presolver value AUTOMATIC is applied.

The MILP presolver removed 10 variables and 500 constraints.

The MILP presolver removed 1010 constraint coefficients.

The MILP presolver modified O constraint coefficients.

The presolved problem has 500 variables, 60 constraints, and 1000
constraint coefficients.

The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 2 972.1737321 0 972.2 0
0 1 2 972.1737321 961.2403449 1.14% 0
0 1 2 972.1737321 961.2403449 1.14% 0
0 1 2 972.1737321 961.2403449 1.14% 0

The MILP presolver is applied again.

0 1 3 966.4832160 961.2403449 0.55% 0
0 1 3 966.4832160 962.9120844 0.37% 0
0 1 3 966.4832160 962.9120844 0.37% 0
0 1 3 966.4832160 962.9120844 0.37% 0
The MILP presolver is applied again.
0 1 4 966.4832160 962.9120844 0.37% 0
0 1 5 966.4832160 966.4832160 0.00% 0
0 0 5 966.4832160 966.4832160 0.00% 0

Optimal.
Objective = 966.48321599.

The results from the warm start approach are shown in Output 8.3.2.
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Output 8.3.2 OPTMODEL Log for Facility Location with Fixed Charges, Using Warm Start

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 510 variables (0 free, 0 fixed).

NOTE: The problem uses 1 implicit variables.

NOTE: The problem has 510 binary and O integer variables.

NOTE: The problem has 560 linear constraints (510 LE, 50 EQ, O GE, O range).

NOTE: The problem has 2010 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, O EQ, O GE, O range).

NOTE: The MILP presolver value AUTOMATIC is applied.

NOTE: The MILP presolver removed O variables and O constraints.

NOTE: The MILP presolver removed 0O constraint coefficients.

NOTE: The MILP presolver modified O constraint coefficients.

NOTE: The presolved problem has 510 variables, 560 constraints, and 2010
constraint coefficients.

NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
[0] 1 3 16070.0150023 0 16070 0
[0] 1 3 16070.0150023 9946.2514269 61.57% 0
[0] 1 3 16070.0150023 9962.4849932 61.31% 0
[0] 1 3 16070.0150023 9971.5893075 61.16% 0
[0] 1 3 16070.0150023 9974.5588580 61.11% 0
[0] 1 3 16070.0150023 9978.1322942 61.05% 0
[0] 1 3 16070.0150023 9978.3312183 61.05% 0
[0] 1 3 16070.0150023 9980.4930282 61.01% 0
[0] 1 3 16070.0150023 9981.2701907 61.00% 0
[0] 1 4 16034.0651055 9981.2701907 60.64% 0
[0] 1 4 16034.0651055 9981.2701907 60.64% 0

NOTE: The MILP solver added 20 cuts with 631 cut coefficients at the root.
264 125 7 11365.1547459 10527.4665245 7.96% 0
287 10 9 10960.8997578 10943.8749703 0.16% 0
295 14 10 10959.4361909 10944.1167370 0.14% 0
299 6 11 10950.3308631 10945.0380192 0.05% 0
315 7 12 10950.0345545 10946.4662518 0.03% 0
323 14 13 10950.0345545 10946.4662518 0.03% 0
325 6 14 10948.4603465 10946.4951518 0.02% 0
332 6 14 10948.4603465 10947.3824040 0.01% 0

NOTE: Optimal within relative gap.
NOTE: Objective = 10948.460346.

The following two SAS programs produce a plot of the solutions for both variants of the model, using data
sets produced by PROC OPTMODEL:

titlel h=1.5 "Facility Location Problem";
title2 "TotalCost = &varcostNo (Variable = &varcostNo, Fixed = 0)";

data csdata;
set cdata (rename=(y=cy)) sdata (rename=(y=sy));
run;

/* create Annotate data set to draw line between customer and assigned site */
%$annomac;
data anno(drop=xi yi xj y3j);

%$SYSTEM(2, 2, 2);

set CostNoFixedCharge_Data (keep=xi yi xj yJj);
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SLINE (xi, yi, xj, y3, *, 1, 1);
run;

proc gplot data=csdata anno=anno;
axisl label=none order=(0 to &xmax by 10);
axis2 label=none order=(0 to &ymax by 10);
symboll value=dot interpol=none
pointlabel=("#name" nodropcollisions height=1) cv=black;
symbol2 value=diamond interpol=none
pointlabel=("#name" nodropcollisions color=blue height=1) cv=blue;
plot cy*x sy*x / overlay haxis=axisl vaxis=axis2;
run;
quit;

The output of the first program is shown in Output 8.3.3.

Output 8.3.3 Solution Plot for Facility Location with No Fixed Charges

Facility Location Problem
TotalCost = 966.5 (Variable = 966.5, Fixed = 0)

90 ca9 C4

80 c39

c2 SITE4
70 Ci15

60
50
40

30 C3l

c24

c1
20 i c1 ITE3

SITE7

The output of the second program is shown in Output 8.3.4.
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titlel "Facility Location Problem";
title2 "TotalCost =

&totalcost (Variable = &varcost, Fixed = &fixcost)";

/* create Annotate data set to draw line between customer and assigned site */
data anno (drop=xi yi xj yJj);

$SYSTEM (2, 2, 2);

set CostFixedCharge_Data (keep=xi yi xj yj);

SLINE (xi, yi, xj,

run;

v3,

*, 1, 1);

proc gplot data=csdata anno=anno;

axisl label=none order=(0 to &xmax by 10);

axis2 label=none order=(0 to &ymax by 10);

symboll value=dot interpol=none
pointlabel=("#name" nodropcollisions height=1) cv=black;

symbol2 value=diamond interpol=none

pointlabel=("#name" nodropcollisions color=blue height=1) cv=blue;

plot cy*x sy*x / overlay haxis=axisl vaxis=axis2;
run;
quit;

Output 8.3.4 Solution Plot for Facility Location with Fixed Charges
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The economic trade-off for the fixed-charge model forces you to build fewer sites and push more demand to
each site.

It is possible to expedite the solution of the fixed-charge facility location problem by choosing appropriate
branching priorities for the decision variables. Recall that for each site j, the value of the variable y;
determines whether or not a facility is built on that site. Suppose you decide to branch on the variables y ;
before the variables x;;. You can set a higher branching priority for y; by using the .priority suffix for the
Build variables in PROC OPTMODEL, as follows:

for{j in SITES} Build[j].priority=10;

Setting higher branching priorities for certain variables is not guaranteed to speed up the MILP solver, but
it can be helpful in some instances. The following program creates and solves an instance of the facility
location problem, giving higher priority to the variables y ;. The LOGFREQ= option is used to abbreviate
the node log.

%$let NumCustomers = 45;
%$let NumSites = 8;
%$let SiteCapacity = 35;
%$let MaxDemand = 10;
%$let xmax = 200;
%$let ymax = 100;
%$let seed = 2345;

/* generate random customer locations =*/
data cdata (drop=i);
length name $8;
do i = 1 to &NumCustomers;
name = compress('C'||put(i,best.));
X = ranuni (&seed) * &xmax;
y = ranuni (&seed) * &ymax;
demand = ranuni (&seed) * &MaxDemand;
output;
end;
run;

/* generate random site locations and fixed charge */
data sdata (drop=i);
length name $8;
do i = 1 to &NumSites;
name = compress ('SITE'||put(i,best.));
X = ranuni (&seed) * &xmax;
y = ranuni (&seed) * &ymax;
fixed_charge = (abs(&xmax/2-x) + abs(&ymax/2-y)) / 2;
output;
end;
run;
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proc optmodel;
set <str> CUSTOMERS;
set <str> SITES init ({};

/* x and y coordinates of CUSTOMERS and SITES */
num x {CUSTOMERS union SITES};

num y {CUSTOMERS union SITES};

num demand {CUSTOMERS};

num fixed_charge {SITES},;

/* distance from customer i to site j */
num dist {i in CUSTOMERS, j in SITES}
= sqrt ((x[1i] - x[j])"*2 + (y[i] - y[3])"2);

read data cdata into CUSTOMERS=[name] x y demand;
read data sdata into SITES=[name] x y fixed_charge;

var Assign {CUSTOMERS, SITES} binary;
var Build {SITES} binary;

min CostFixedCharge
= sum {i in CUSTOMERS, Jj in SITES} dist[i, j] * Assign[i, j]
+ sum {j in SITES} fixed_charge[j] * Build[j];

/* each customer assigned to exactly one site */
con assign_def {i in CUSTOMERS}:
sum {j in SITES} Assignl[i,j] = 1;

/* if customer i assigned to site j, then facility must be built at j */
con link {i in CUSTOMERS, j in SITES}:
Assign[i, j] <= Build[j];

/* each site can handle at most &SiteCapacity demand */
con capacity {j in SITES}:
sum {i in CUSTOMERS} demand[i] * Assign[i, j] <= &SiteCapacity * Build[j];

/* assign priority to Build variables (y) */
for{j in SITES} Build[j].priority=10;

/* solve the MILP with fixed charges, using branching priorities =*/
solve obj CostFixedCharge with milp / logfreq=1000;

quit;
The resulting output is shown in Output 8.3.5.
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Output 8.3.5 PROC OPTMODEL Log for Facility Location with Branching Priorities

NOTE: There were 45 observations read from the data set WORK.CDATA.

NOTE: There were 8 observations read from the data set WORK.SDATA.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 368 variables (0 free, 0 fixed).

NOTE: The problem has 368 binary and 0 integer variables.

NOTE: The problem has 413 linear constraints (368 LE, 45 EQ, 0O GE, O range).

NOTE: The problem has 1448 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, O EQ, O GE, O range).

NOTE: The MILP presolver value AUTOMATIC is applied.

NOTE: The MILP presolver removed O variables and O constraints.

NOTE: The MILP presolver removed 0O constraint coefficients.

NOTE: The MILP presolver modified O constraint coefficients.

NOTE: The presolved problem has 368 variables, 413 constraints, and 1448
constraint coefficients.

NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 3 2823.1827978 0 2823.2 0
0 1 3 2823.1827978 1727.0208789 63.47% 0
0 1 3 2823.1827978 1756.0637224 60.77% 0
0 1 5 1906.4633474 1764.3961986 8.05% 0
0 1 5 1906.4633474 1772.0991932 7.58% 0
0 1 5 1906.4633474 1784.2955379 6.85% 0
0 1 5 1906.4633474 1788.0570704 6.62% 0
0 1 5 1906.4633474 1788.0570704 6.62% 0

NOTE: The MILP presolver is applied again.

[0] 1 5 1906.4633474 1788.0570704 6.62% 0
[0] 1 5 1906.4633474 1788.0570704 6.62% 0
[0] 1 5 1906.4633474 1788.0570704 6.62% 0
[0] 1 5 1906.4633474 1788.0570704 6.62% 0
[0] 1 5 1906.4633474 1788.0570704 6.62% 0
[0] 1 5 1906.4633474 1788.0570704 6.62% 0
[0] 1 5 1906.4633474 1788.1857838 6.61% 0
[0] 1 5 1906.4633474 1793.1018884 6.32% 0
[0] 1 5 1906.4633474 1794 .0969506 6.26% 0
[0] 1 5 1906.4633474 1794.9102303 6.21% 0
[0] 1 5 1906.4633474 1795.0361850 6.21% 0
[0] 1 5 1906.4633474 1795.0773286 6.21% 0
[0] 1 5 1906.4633474 1795.0825886 6.20% 0
[0] 1 5 1906.4633474 1795.0869957 6.20% 0
[0] 1 5 1906.4633474 1795.0869957 6.20% 0
[0] 1 5 1906.4633474 1795.0871903 6.20% 0
NOTE: The MILP solver added 30 cuts with 668 cut coefficients at the root.
248 228 6 1838.5150486 1800.4972361 2.11% 0
1000 218 6 1838.5150486 1804.4864009 1.89% 1
1100 271 7 1833.3994654 1804.4864009 1.60% 1
1135 294 8 1833.2698616 1804.4864009 1.60% 1
1712 590 9 1829.0025678 1811.9146769 0.94% 1
1818 493 10 1825.1666003 1812.5246843 0.70% 1
1967 395 12 1823.3288813 1814.9655663 0.46% 1
1995 198 13 1819.9124343 1815.2227512 0.26% 1
2000 200 13 1819.9124343 1815.2252293 0.26% 1
2245 6 13 1819.9124343 1819.7532289 0.01% 1

NOTE: Optimal within relative gap.
NOTE: Objective = 1819.9124343.
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Example 8.4: Traveling Salesman Problem

The traveling salesman problem (TSP) is that of finding a minimum cost four in an undirected graph G with
vertex set V' = {1,...,|V|} and edge set E. A tour is a connected subgraph for which each vertex has degree
two. The goal is then to find a tour of minimum total cost, where the total cost is the sum of the costs of the
edges in the tour. With each edge e € E we associate a binary variable x., which indicates whether edge
e is part of the tour, and a cost c, € R. Let §(S) = {{i,j} € E|i € S, j ¢ S}. Then an integer linear
programming (ILP) formulation of the TSP is as follows:

s.t. Z Xe = 2 VieV (two_match)
eed(i)
Z Xe > 2 VSCV, 2<|§S|<|V|-=1 (subtour_elim)
e€é(S)
Xe €{0,1} Ve E

The equations (two_match) are the matching constraints, which ensure that each vertex has degree two in the
subgraph, while the inequalities (subtour_elim) are known as the subtour elimination constraints (SECs) and
enforce connectivity.

Since there is an exponential number O(2|V|) of SECs, it is impossible to explicitly construct the full TSP
formulation for large graphs. An alternative formulation of polynomial size was introduced by Miller, Tucker,
and Zemlin (1960) (MTZ):

min E CijXij

(i,/))€E

s.t. Z Xij = 1 VieV (assign_1i)
JjeV
inj = 1 VieV (assign_j)
ieV
wi—uj+1 < (VI=D(—xij) YG.j)eVi#Lj#1 (i)
25“1’ = |V| Vi 6{2""|V|}’
xij €10, 1} V(i,j)e E

This formulation uses a directed graph. Constraints (assign_i) and (assign_j) now enforce that each vertex
has degree two (one edge in, one edge out). The MTZ constraints (mtz) enforce that no subtours exist.

TSPLIB, located at http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib.html, is a set of benchmark
instances for the TSP. The following DATA step converts a TSPLIB instance of type EUC_2D into a SAS
data set that contains the coordinates of the vertices:

/* convert the TSPLIB instance into a data set =*/
data tspData (drop=H) ;

infile "st70.tsp";

input H $1. @;

if H not in ('N','T','C','D','E');

input @1 varl-var3;
run;
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The following PROC OPTMODEL statements attempt to solve the TSPLIB instance st70.tsp by using the
MTZ formulation:

/* direct solution using the MTZ formulation =*/
proc optmodel;
set VERTICES;
set EDGES = {i in VERTICES, j in VERTICES: i ne j};
num xc {VERTICES};
num yc {VERTICES};
/* read in the instance and customer coordinates (xc, yc) =*/
read data tspData into VERTICES=[_n_] xc=var2 yc=var3;
/* the cost is the euclidean distance rounded to the nearest integer x*/
num ¢ {<i, j> in EDGES}
init floor( sqrt( ((xc[i]-xc[j])**2 + (yc[i]-yc[j]l)=*x2)) + 0.5);
var x {EDGES} binary;
var u {i in 2..card(VERTICES)} >= 2 <= card(VERTICES);
/* each vertex has exactly one in-edge and one out-edge */
con assign_i {i in VERTICES}:
sum {j in VERTICES: i ne j} x[i,]j] = 1;
con assign_j {j in VERTICES}:
sum {i in VERTICES: i ne j} x[i,]j] = 1;
/* minimize the total cost */
min obj
= sum {<i, j> in EDGES} (if i > j then c[i, j] else c[j,i]) * x[i,]];
/* no subtours */
con mtz {<i,j> in EDGES : (i ne 1) and (j ne 1)}:
u[i] - u[j] + 1 <= (card(VERTICES) - 1) * (1 - x[i,3]);
solve with milp / maxtime = 600;
quit;
It is well known that the MTZ formulation is much weaker than the subtour formulation. The exponential
number of SECs makes it impossible, at least in large instances, to use a direct call to the MILP solver with
the subtour formulation. For this reason, if you want to solve the TSP with one SOLVE statement, you must
use the MTZ formulation and rely strictly on generic cuts and heuristics. Except for very small instances,
this is unlikely to be a good approach.

A much more efficient way to tackle the TSP is to dynamically generate the subtour inequalities as cuts. Typi-
cally this is done by solving the LP relaxation of the two-matching problem, finding violated subtour cuts,
and adding them iteratively. The problem of finding violated cuts is known as the separation problem. In this
case, the separation problem takes the form of a minimum cut problem, which is nontrivial to implement
efficiently. Therefore, for the sake of illustration, an integer program is solved at each step of the process.

The initial formulation of the TSP is the integral two-matching problem. You solve this by using PROC
OPTMODEL to obtain an integral matching, which is not necessarily a tour. In this case, the separation
problem is trivial. If the solution is a connected graph, then it is a tour, so the problem is solved. If the
solution is a disconnected graph, then each component forms a violated subtour constraint. These constraints
are added to the formulation, and the integer program is solved again. This process is repeated until the
solution defines a tour.

The following PROC OPTMODEL statements solve the TSP by using the subtour formulation and iteratively
adding subtour constraints:
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/* iterative solution using the subtour formulation =*/
proc optmodel;
set VERTICES;
set EDGES = {i in VERTICES, j in VERTICES: i > j};
num xc {VERTICES};
num yc {VERTICES};

num numsubtour init O;
set SUBTOUR {1..numsubtour};

/* read in the instance and customer coordinates (xc, yc) =*/
read data tspData into VERTICES=[varl] xc=var2 yc=var3;

/* the cost is the euclidean distance rounded to the nearest integer =/
num c¢ {<i, j> in EDGES}
init floor( sqrt( ((xc[i]-xc[j])**2 + (yc[i]-yc[jl)**2)) + 0.5);

var x {EDGES} binary;

/* minimize the total cost */
min obj =
sum {<i,j> in EDGES} c[i,j] » x[i,Jl;

/* each vertex has exactly one in-edge and one out-edge */
con two_match {i in VERTICES}:
sum {j in VERTICES: i > j} x[i, j]
+ sum {j in VERTICES: i < j} x[j,i] = 2;

/* no subtours (these constraints are generated dynamically) =*/
con subtour elim {s in 1. .numsubtour}:
sum {<i, j> in EDGES: (i in SUBTOUR[s] and j not in SUBTOUR[s])
or (i not in SUBTOUR[s] and j in SUBTOUR[s])} x[i,]j] >= 2;

/* this starts the algorithm to find violated subtours x*/
set <num,num> EDGES];

set INITVERTICES = setof{<i,j> in EDGES1l} i;
set VERTICES];

set NEIGHBORS;

set <num, num> CLOSURE;

num component {INITVERTICES};

num numcomp init 2;

num iter init 1;

num numiters init 1;

set ITERS = 1. .numiters;

num sol {ITERS, EDGES};

/* initial solve with just matching constraints x/

solve;

call symput (compress('obj'| |put (iter,best.)),
trim(left (put (round(obj) ,best.))));

for {<i,j> in EDGES} sol[iter,i,j] = round(x[i, j]);

/* while the solution is disconnected, continue */
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do while (numcomp > 1);
iter = iter + 1;

/* find connected components of support graph */
EDGES1 = {<i, j> in EDGES: round(x[i, j].sol) = 1};
EDGES1 = EDGES1 union {setof {<i,j> in EDGES1l} <j,i>};
VERTICES1 = INITVERTICES;
CLOSURE = EDGESI1;
for {i in INITVERTICES} component[i] = O;
for {i in VERTICES1l} do;

NEIGHBORS = slice(<i, *>,CLOSURE);

CLOSURE = CLOSURE union (NEIGHBORS cross NEIGHBORS) ;
end;

numcomp = 0;
do while (card(VERTICES1l) > 0);
numcomp = numcomp + 1;
for {i in VERTICES1l} do;
NEIGHBORS = slice(<i, *>,CLOSURE) ;
for {j in NEIGHBORS} component[j] = numcomp;
VERTICES1 = VERTICES1 diff NEIGHBORS;
leave;
end;
end;

if numcomp = 1 then leave;
numiters = iter;
numsubtour = numsubtour + numcomp;
for {comp in 1..numcomp} do;
SUBTOUR [numsubtour—numcomp+comp]
= {i in VERTICES: component[i] = comp};
end;

solve;
call symput (compress('obj'| |put (iter,best.)),
trim(left (put (round(obj) ,best.))));
for {<i,j> in EDGES} soll[iter,i,j] = round(x[i, j]);
end;

/* create a data set for use by gplot =*/
create data solData from
[iter i j]={it in ITERS, <i, j> in EDGES: sol[it,i,j] = 1}
xi=xc[i] yi=yc[i] xj=xc[j] yi=yeclil;
call symput ('numiters', put (numiters,best.));
quit;
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You can generate plots of the solution and objective value at each stage by using the following statements:

$macro plotTSP;
%$annomac;
$do i = 1 %to &numiters;
/* create annotate data set to draw subtours */
data anno(drop=iter xi yi xj yj);
$SYSTEM (2, 2, 2);
set solData(keep=iter xi yi xj yj);
where iter = &i;
SLINE(xi, yi, xJj, yj, *, 1, 1);
run;

titlel h=2 "TSP: Iter = &i, Objective = &&obj&i";
title2;

proc gplot data=tspData anno=anno;
axisl label=none;
symboll value=dot interpol=none
pointlabel=("#varl" nodropcollisions height=1) cv=black;
plot var3xvar2 / haxis=axisl vaxis=axisl;

run;

quit;

%$end;
$mend plotTSP;

$plotTSP;

The plot in Output 8.4.1 shows the solution and objective value at each stage. Notice that each stage restricts
some subset of subtours. When you reach the final stage, you have a valid tour.

NOTE: An alternative way of approaching the TSP is to use a genetic algorithm. See the “Examples” section
in Chapter 4, “The GA Procedure” (SAS/OR User’s Guide: Local Search Optimization), for an example of
how to use PROC GA to solve the TSP.

NOTE: See the “Examples” section in Chapter 2, “The OPTNET Procedure” (SAS/OR User’s Guide: Network
Optimization Algorithms), for an example of how to use PROC OPTNET to solve the TSP.
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