
SAS/OR® 13.2 User’s Guide:
Mathematical Programming
Legacy Procedures
The INTPOINT Procedure

This document is an individual chapter from SAS/OR® 13.2 User’s Guide: Mathematical Programming Legacy Procedures.

The correct bibliographic citation for the complete manual is as follows: SAS Institute Inc. 2014. SAS/OR® 13.2 User’s Guide:
Mathematical Programming Legacy Procedures. Cary, NC: SAS Institute Inc.

Copyright © 2014, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute
Inc.

For a Web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time
you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is
illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic
piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software
developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication or
disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as
applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a) and DFAR 227.7202-4 and, to the extent required under U.S.
federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision
serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The
Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

August 2014

SAS provides a complete selection of books and electronic products to help customers use SAS® software to its fullest potential. For
more information about our offerings, visit support.sas.com/bookstore or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies. © 2013 SAS Institute Inc. All rights reserved. S107969US.0613

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/bookstore
for additional books and resources.

Gain Greater Insight into Your
SAS® Software with SAS Books.

Chapter 4

The INTPOINT Procedure

Contents
Overview: INTPOINT Procedure . 38

Mathematical Description of NPSC . 39
Mathematical Description of LP . 41
The Interior Point Algorithm . 41
Network Models . 48

Getting Started: INTPOINT Procedure . 55
NPSC Problems . 55
LP Problems . 62
Typical PROC INTPOINT Run . 69

Syntax: INTPOINT Procedure . 71
Functional Summary . 71
PROC INTPOINT Statement . 73
CAPACITY Statement . 92
COEF Statement . 93
COLUMN Statement . 93
COST Statement . 94
DEMAND Statement . 94
HEADNODE Statement . 94
ID Statement . 95
LO Statement . 95
NAME Statement . 95
NODE Statement . 96
QUIT Statement . 96
RHS Statement . 96
ROW Statement . 96
RUN Statement . 97
SUPDEM Statement . 97
SUPPLY Statement . 97
TAILNODE Statement . 97
TYPE Statement . 98
VAR Statement . 99

Details: INTPOINT Procedure . 100
Input Data Sets . 100
Output Data Sets . 109
Converting Any PROC INTPOINT Format to an MPS-Format SAS Data Set 111
Case Sensitivity . 111

38 F Chapter 4: The INTPOINT Procedure

Loop Arcs . 112
Multiple Arcs . 112
Flow and Value Bounds . 112
Tightening Bounds and Side Constraints . 112
Reasons for Infeasibility . 113
Missing S Supply and Missing D Demand Values . 114
Balancing Total Supply and Total Demand . 118
How to Make the Data Read of PROC INTPOINT More Efficient 119
Stopping Criteria . 123

Examples: INTPOINT Procedure . 126
Example 4.1: Production, Inventory, Distribution Problem 127
Example 4.2: Altering Arc Data . 134
Example 4.3: Adding Side Constraints . 139
Example 4.4: Using Constraints and More Alteration to Arc Data 146
Example 4.5: Nonarc Variables in the Side Constraints 151
Example 4.6: Solving an LP Problem with Data in MPS Format 158
Example 4.7: Converting to an MPS-Format SAS Data Set 160
Example 4.8: Migration to OPTMODEL: Production, Inventory, Distribution 162

References . 166

Overview: INTPOINT Procedure
The INTPOINT procedure solves the Network Program with Side Constraints (NPSC) problem (defined in
the section “Mathematical Description of NPSC” on page 39) and the more general Linear Programming
(LP) problem (defined in the section “Mathematical Description of LP” on page 41). NPSC and LP models
can be used to describe a wide variety of real-world applications ranging from production, inventory, and
distribution problems to financial applications.

Whether your problem is NPSC or LP, PROC INTPOINT uses the same optimization algorithm, the interior
point algorithm. This algorithm is outlined in the section “The Interior Point Algorithm” on page 41.

While many of your problems may best be formulated as LP problems, there may be other instances when
your problems are better formulated as NPSC problems. The section “Network Models” on page 48 describes
typical models that have a network component and suggests reasons why NPSC may be preferable to LP.
The section “NPSC Problems” on page 55 outlines how you supply data of any NPSC problem to PROC
INTPOINT and call the procedure. After it reads the NPSC data, PROC INTPOINT converts the problem
into an equivalent LP problem, performs interior point optimization, then converts the solution it finds back
into a form you can use as the optimum to the original NPSC model.

If your model is an LP problem, the way you supply the data to PROC INTPOINT and run the procedure is
described in the section “LP Problems” on page 62.

You can also solve LP problems by using the OPTLP procedure. The OPTLP procedure requires a linear
program to be specified by using a SAS data set that adheres to the MPS format, a widely accepted format

Mathematical Description of NPSC F 39

in the optimization community. You can use the MPSOUT= option in the INTPOINT procedure to convert
typical PROC INTPOINT format data sets into MPS-format SAS data sets.

The remainder of this chapter is organized as follows:

• The section “Typical PROC INTPOINT Run” on page 69 describes how to use this procedure.

• The section “Syntax: INTPOINT Procedure” on page 71 describes all the statements and options of
PROC INTPOINT.

• The section “Functional Summary” on page 71 lists the statements and options that can be used to
control PROC INTPOINT.

• The section “Details: INTPOINT Procedure” on page 100 contains detailed explanations, descriptions,
and advice on the use and behavior of the procedure.

• PROC INTPOINT is demonstrated by solving several examples in the section “Examples: INTPOINT
Procedure” on page 126.

Mathematical Description of NPSC
A network consists of a collection of nodes joined by a collection of arcs. The arcs connect nodes and convey
flow of one or more commodities that are supplied at supply nodes and demanded at demand nodes in the
network. Each arc has a cost per unit of flow, a flow capacity, and a lower flow bound associated with it. An
important concept in network modeling is conservation of flow. Conservation of flow means that the total
flow in arcs directed toward a node, plus the supply at the node, minus the demand at the node, equals the
total flow in arcs directed away from the node.

Often all the details of a problem cannot be specified in a network model alone. In many of these cases,
these details can be represented by the addition of side constraints to the model. Side constraints are linear
functions of arc variables (variables containing flow through an arc) and nonarc variables (variables that
are not part of the network). The data for a side constraint consist of coefficients of arcs and coefficients of
nonarc variables, a constraint type (that is, �, =, or �) and a right-hand-side value (rhs). A nonarc variable
has a name, an objective function coefficient analogous to an arc cost, an upper bound analogous to an arc
capacity, and a lower bound analogous to an arc lower flow bound.

If a network component of NPSC is removed by merging arcs and nonarc variables into a single set of
variables, and if the flow conservation constraints and side constraints are merged into a single set of
constraints, the result is an LP problem. PROC INTPOINT will automatically transform an NPSC problem
into an equivalent LP problem, perform the optimization, then transform the problem back into its original
form. By doing this, PROC INTPOINT finds the flow through the network and the values of any nonarc
variables that minimize the total cost of the solution. Flow conservation is met, flow through each arc is on
or between the arc’s lower flow bound and capacity, the value of each nonarc variable is on or between the
nonarc’s lower and upper bounds, and the side constraints are satisfied.

Note that, since many LPs have large embedded networks, PROC INTPOINT is an attractive alternative
to the LP procedure in many cases. Rather than formulating all problems as LPs, network models remain
conceptually easy since they are based on network diagrams that represent the problem pictorially. PROC
INTPOINT accepts the network specification in a format that is particularly suited to networks. This not only

40 F Chapter 4: The INTPOINT Procedure

simplifies problem description but also aids in the interpretation of the solution. The conversion to and from
the equivalent LP is done “behind the scenes” by the procedure.

If a network programming problem with side constraints has n nodes, a arcs, g nonarc variables, and k side
constraints, then the formal statement of the problem solved by PROC INTPOINT is

minimize cT x C dT z

subject to Fx D b

Hx CQz f�;D;�g r

l � x � u

m � z � v

where

• c is the a � 1 arc variable objective function coefficient vector (the cost vector)

• x is the a � 1 arc variable value vector (the flow vector)

• d is the g � 1 nonarc variable objective function coefficient vector

• z is the g � 1 nonarc variable value vector

• F is the n � a node-arc incidence matrix of the network, where

Fi;j D

8<:
�1; if arc j is directed from node i
1; if arc j is directed toward node i
0; otherwise

• b is the n � 1 node supply/demand vector, where

bi D

8<:
s; if node i has supply capability of s units of flow
�d; if node i has demand of d units of flow
0; if node i is a transshipment node

• H is the k � a side constraint coefficient matrix for arc variables, where Hi;j is the coefficient of arc j
in the ith side constraint

• Q is the k � g side constraint coefficient matrix for nonarc variables, where Qi;j is the coefficient of
nonarc j in the ith side constraint

• r is the k � 1 side constraint right-hand-side vector

• l is the a � 1 arc lower flow bound vector

• u is the a � 1 arc capacity vector

• m is the g � 1 nonarc variable lower bound vector

• v is the g � 1 nonarc variable upper bound vector

The INTPOINT procedure can also be used to solve an unconstrained network problem, that is, one in which
H, Q, d, r, and z do not exist. It can also be used to solve a network problem with side constraints but no
nonarc variables, in which case Q, d, and z do not exist.

Mathematical Description of LP F 41

Mathematical Description of LP
A linear programming (LP) problem has a linear objective function and a collection of linear constraints.
PROC INTPOINT finds the values of variables that minimize the total cost of the solution. The value of each
variable is on or between the variable’s lower and upper bounds, and the constraints are satisfied.

If an LP has g variables and k constraints, then the formal statement of the problem solved by PROC
INTPOINT is

minimize dT z

subject to Qz f�;D;�g r

m � z � v

where

• d is the g � 1 variable objective function coefficient vector

• z is the g � 1 variable value vector

• Q is the k � g constraint coefficient matrix for the variables, where Qi;j is the coefficient of variable j
in the ith constraint

• r is the k � 1 side constraint right-hand-side vector

• m is the g � 1 variable lower bound vector

• v is the g � 1 variable upper bound vector

The Interior Point Algorithm
The simplex algorithm, developed shortly after World War II, was for many years the main method used
to solve linear programming problems. Over the last fifteen years, however, the interior point algorithm
has been developed. This algorithm also solves linear programming problems. From the start it showed
great theoretical promise, and considerable research in the area resulted in practical implementations that
performed competitively with the simplex algorithm. More recently, interior point algorithms have evolved
to become superior to the simplex algorithm, in general, especially when the problems are large.

There are many variations of interior point algorithms. PROC INTPOINT uses the Primal-Dual with Predictor-
Corrector algorithm. More information on this particular algorithm and related theory can be found in the
texts by Roos, Terlaky, and Vial (1997), Wright (1997), and Ye (1996).

Interior Point Algorithmic Details

After preprocessing, the linear program to be solved is

minimize cT x

subject to Ax D b

x � 0

42 F Chapter 4: The INTPOINT Procedure

This is the primal problem. The matrices d, z, and Q of NPSC have been renamed c, x, and A, respectively, as
these symbols are by convention used more, the problem to be solved is different from the original because of
preprocessing, and there has been a change of primal variable to transform the LP into one whose variables
have zero lower bounds. To simplify the algebra here, assume that variables have infinite upper bounds, and
constraints are equalities. (Interior point algorithms do efficiently handle finite upper bounds, and it is easy to
introduce primal slack variables to change inequalities into equalities.) The problem has n variables; i is a
variable number; k is an iteration number, and if used as a subscript or superscript it denotes “of iteration k”.

There exists an equivalent problem, the dual problem, stated as

maximize bT y

subject to AT y C s D c

s � 0

where y are dual variables, and s are dual constraint slacks.

The interior point algorithm solves the system of equations to satisfy the Karush-Kuhn-Tucker (KKT)
conditions for optimality:

Ax D b

AT y C s D c

XSe D 0

x � 0

s � 0

where

S D diag.s/ (that is, Si;j D si if i D j; Si;j D 0 otherwise)

X D diag.x/

ei D 1 8i

These are the conditions for feasibility, with the complementarity condition XSe D 0 added. Complementar-
ity forces the optimal objectives of the primal and dual to be equal, cT xopt D b

T yopt , as

0 D xT
optsopt D s

T
optxopt D .c � A

T yopt /
T xopt D

cT xopt � y
T
opt .Axopt / D c

T xopt � b
T yopt

Before the optimum is reached, a solution .x; y; s/ may not satisfy the KKT conditions:

• Primal constraints may be violated, infeasc D b � Ax ¤ 0.

• Dual constraints may be violated, infeasd D c � A
T y � s ¤ 0.

• Complementarity may not be satisfied, xT s D cT x � bT y ¤ 0. This is called the duality gap.

The interior point algorithm works by using Newton’s method to find a direction to move .�xk; �yk; �sk/

from the current solution .xk; yk; sk/ toward a better solution:

.xkC1; ykC1; skC1/ D .xk; yk; sk/C ˛.�xk; �yk; �sk/

The Interior Point Algorithm F 43

where ˛ is the step length and is assigned a value as large as possible but not so large that an xkC1
i or skC1

i is
“too close” to zero. The direction in which to move is found using

A�xk D infeasc

AT�yk C�sk D infeasd

Sk�xk CXk�sk D �XkSke

To greatly improve performance, the third equation is changed to

Sk�xk CXk�sk D �XkSke C �k�ke

where �k D .x
k/T sk=n, the average complementarity, and 0 � �k � 1:

The effect now is to find a direction in which to move to reduce infeasibilities and to reduce the comple-
mentarity toward zero, but if any xk

i s
k
i is too close to zero, it is “nudged out” to �, and any xk

i s
k
i that is

larger than � is “nudged into” �. A �k close to or equal to 0.0 biases a direction toward the optimum, and
a value of �k close to or equal to 1.0 “centers” the direction toward a point where all pairwise products
xk

i s
k
i D �. Such points make up the central path in the interior. Although centering directions make little, if

any, progress in reducing � and moving the solution closer to the optimum, substantial progress toward the
optimum can usually be made in the next iteration.

The central path is crucial to why the interior point algorithm is so efficient. As � is decreased, this path
“guides” the algorithm to the optimum through the interior of feasible space. Without centering, the algorithm
would find a series of solutions near each other close to the boundary of feasible space. Step lengths along
the direction would be small and many more iterations would probably be required to reach the optimum.

That in a nutshell is the primal-dual interior point algorithm. Varieties of the algorithm differ in the way ˛
and �k are chosen and the direction adjusted during each iteration. A wealth of information can be found in
the texts by Roos, Terlaky, and Vial (1997), Wright (1997), and Ye (1996).

The calculation of the direction is the most time-consuming step of the interior point algorithm. Assume the
kth iteration is being performed, so the subscript and superscript k can be dropped from the algebra:

A�x D infeasc

AT�y C�s D infeasd

S�x CX�s D �XSe C ��e

Rearranging the second equation,

�s D infeasd � A
T�y

Rearranging the third equation,

�s D X�1.�S�x �XSe C ��e/

�s D �‚�x � Se CX�1��e

where ‚ D SX�1:

44 F Chapter 4: The INTPOINT Procedure

Equating these two expressions for �s and rearranging,

�‚�x � Se CX�1��e D infeasd � A
T�y

�‚�x D Se �X�1��e C infeasd � A
T�y

�x D ‚�1.�Se CX�1��e � infeasd C A
T�y/

�x D �C‚�1AT�y

where � D ‚�1.�Se CX�1��e � infeasd /:

Substituting into the first direction equation,

A�x D infeasc

A.�C‚�1AT�y/ D infeasc

A‚�1AT�y D infeasc � A�

�y D .A‚�1AT /�1.infeasc � A�/

‚, �, �y, �x, and �s are calculated in that order. The hardest term is the factorization of the .A‚�1AT /

matrix to determine �y. Fortunately, although the values of .A‚�1AT / are different for each iteration, the
locations of the nonzeros in this matrix remain fixed; the nonzero locations are the same as those in the
matrix .AAT /. This is because ‚�1 D XS�1 is a diagonal matrix that has the effect of merely scaling the
columns of .AAT /.

The fact that the nonzeros in A‚�1AT have a constant pattern is exploited by all interior point algorithms
and is a major reason for their excellent performance. Before iterations begin, AAT is examined and its
rows and columns are symmetrically permuted so that during Cholesky factorization, the number of fill-ins
created is smaller. A list of arithmetic operations to perform the factorization is saved in concise computer
data structures (working with memory locations rather than actual numerical values). This is called symbolic
factorization. During iterations, when memory has been initialized with numerical values, the operations
list is performed sequentially. Determining how the factorization should be performed again and again is
unnecessary.

The Primal-Dual Predictor-Corrector Interior Point Algorithm

The variant of the interior point algorithm implemented in PROC INTPOINT is a Primal-Dual Predictor-
Corrector interior point algorithm. At first, Newton’s method is used to find a direction .�xk

aff ; �y
k
aff ; �s

k
aff /

to move, but calculated as if � is zero, that is, as a step with no centering, known as an affine step:

A�xk
aff D infeasc

AT�yk
aff C�s

k
aff D infeasd

Sk�xk
aff CX

k�sk
aff D �X

kSke

.xk
aff ; y

k
aff ; s

k
aff / D .x

k; yk; sk/C ˛.�xk
aff ; �y

k
aff ; �s

k
aff /

where ˛ is the step length as before.

The Interior Point Algorithm F 45

Complementarity xT s is calculated at .xk
aff ; y

k
aff ; s

k
aff / and compared with the complementarity at the starting

point .xk; yk; sk/, and the success of the affine step is gauged. If the affine step was successful in reducing
the complementarity by a substantial amount, the need for centering is not great, and �k in the following
linear system is assigned a value close to zero. If, however, the affine step was unsuccessful, centering would
be beneficial, and �k in the following linear system is assigned a value closer to 1.0. The value of �k is
therefore adaptively altered depending on the progress made toward the optimum.

A second linear system is solved to determine a centering vector .�xk
c ; �y

k
c ; �s

k
c / from .xk

aff ; y
k
aff ; s

k
aff /:

A�xk
c D 0

AT�yk
c C�s

k
c D 0

Sk�xk
c CX

k�sk
c D �X

k
aff S

k
aff e C �k�ke

Then

.�xk; �yk; �sk/ D .�xk
aff ; �y

k
aff ; �s

k
aff /C .�x

k
c ; �y

k
c ; �s

k
c /

.xkC1; ykC1; skC1/ D .xk; yk; sk/C ˛.�xk; �yk; �sk/

where, as before, ˛ is the step length assigned a value as large as possible but not so large that an xkC1
i or

skC1
i is “too close” to zero.

Although the Predictor-Corrector variant entails solving two linear systems instead of one, fewer iterations
are usually required to reach the optimum. The additional overhead of calculating the second linear system
is small, as the factorization of the .A‚�1AT / matrix has already been performed to solve the first linear
system.

Interior Point: Upper Bounds

If the LP had upper bounds (0 � x � u where u is the upper bound vector), then the primal and dual
problems, the duality gap, and the KKT conditions would have to be expanded.

The primal linear program to be solved is

minimize cT x

subject to Ax D b

0 � x � u

where 0 � x � u is split into x � 0 and x � u. Let z be primal slack so that x C z D u, and associate dual
variables w with these constraints. The interior point algorithm solves the system of equations to satisfy the
Karush-Kuhn-Tucker (KKT) conditions for optimality:

Ax D b

x C z D u

AT y C s � w D c

XSe D 0

ZWe D 0

x; s; z; w � 0

46 F Chapter 4: The INTPOINT Procedure

These are the conditions for feasibility, with the complementarity conditions XSe D 0 and ZWe D 0

added. Complementarity forces the optimal objectives of the primal and dual to be equal, cT xopt D

bT yopt � u
Twopt , as

0 D zT
optwopt D .u � xopt /

Twopt D u
Twopt � x

T
optwopt

0 D xT
optsopt D s

T
optxopt D .c � A

T yopt C wopt /
T xopt D

cT xopt � y
T
opt .Axopt /C w

T
optxopt D c

T xopt � b
T yopt C u

Twopt

Before the optimum is reached, a solution .x; y; s; z; w/ might not satisfy the KKT conditions:

• Primal bound constraints may be violated, infeasb D u � x � z ¤ 0.

• Primal constraints may be violated, infeasc D b � Ax ¤ 0.

• Dual constraints may be violated, infeasd D c � A
T y � s C w ¤ 0.

• Complementarity conditions may not be satisfied, xT s ¤ 0 or zTw ¤ 0.

The calculations of the interior point algorithm can easily be derived in a fashion similar to calculations for
when an LP has no upper bounds. See the paper by Lustig, Marsten, and Shanno (1992).

In some iteration k, the affine step system that must be solved is

�xaff C�zaff D infeasb

A�xaff D infeasc

AT�yaff C�saff ��waff D infeasd

S�xaff CX�saff D �XSe

Z�waff CW�zaff D �ZWe

Therefore, the computations involved in solving the affine step are

‚ D SX�1 CWZ�1

� D ‚�1.infeasd C .S �W /e �Z
�1W infeasb/

�yaff D .A‚
�1AT /�1.infeasc C A�/

�xaff D ‚
�1AT�yaff � �

�zaff D infeasb ��xaff

�waff D �We �Z
�1W�zaff

�saff D �Se �X
�1S�xaff

.xaff ; yaff ; saff ; zaff ; waff / D .x; y; s; z; w/C

˛.�xaff ; �yaff ; �saff ; �zaff ; �waff /

and ˛ is the step length as before.

The Interior Point Algorithm F 47

A second linear system is solved to determine a centering vector .�xc ; �yc ; �sc ; �zc ; �wc/ from
.xaff ; yaff ; saff ; zaff ; waff /:

�xc C�zc D 0

A�xc D 0

AT�yc C�sc ��wc D 0

S�xc CX�sc D �Xaff Saff e C ��e

Z�wc CW�zc D �ZaffWaff e C ��e

where

�start D x
T s C zTw, complementarity at the start of the iteration

�aff D x
T
aff saff C z

T
affwaff , the affine complementarity

� D �aff =2n, the average complementarity

� D .�aff =�start /
3

Therefore, the computations involved in solving the centering step are

� D ‚�1.��.X�1 �Z�1/e �X�1Xaff Saff e CZ
�1ZaffWaff e/

�yc D .A‚
�1AT /�1A�

�xc D ‚
�1AT�yc � �

�zc D ��xc

�wc D ��Z
�1e �Z�1ZaffWaff e �Z

�1Waff�zc

�sc D ��X
�1e �X�1Xaff Saff e �X

�1Saff�xc

Then

.�x;�y;�s;�z;�w/ D

.�xaff ; �yaff ; �saff ; �zaff ; �waff /

C.�xc ; �yc ; �sc ; �zc ; �wc/

.xkC1; ykC1; skC1; zkC1; wkC1/ D

.xk; yk; sk; zk; wk/

C˛.�x;�y;�s;�z;�w/

where, as before, ˛ is the step length assigned a value as large as possible but not so large that an xkC1
i , skC1

i ,
zkC1

i , or wkC1
i is “too close” to zero.

48 F Chapter 4: The INTPOINT Procedure

The algebra in this section has been simplified by assuming that all variables have finite upper bounds. If the
number of variables with finite upper bounds nu < n, you need to change the algebra to reflect that the Z and
W matrices have dimension nu � 1 or nu � nu. Other computations need slight modification. For example,
the average complementarity is

� D xT
aff saff =nC z

T
affwaff =nu

An important point is that any upper bounds can be handled by specializing the algorithm and not by
generating the constraints x � u and adding these to the main primal constraints Ax D b.

Network Models
The following are descriptions of some typical NPSC models.

Production, Inventory, and Distribution (Supply Chain) Problems

One common class of network models is the production-inventory-distribution or supply-chain problem. The
diagram in Figure 4.1 illustrates this problem. The subscripts on the Production, Inventory, and Sales nodes
indicate the time period. By replicating sections of the model, the notion of time can be included.

Figure 4.1 Production-Inventory-Distribution Problem

Salesi�1 Salesi SalesiC1

Inventoryi�1 Inventoryi InventoryiC1

Productioni�1 Productioni ProductioniC1

Stock on hand Stock at end

In this type of model, the nodes can represent a wide variety of facilities. Several examples are suppliers,
spot markets, importers, farmers, manufacturers, factories, parts of a plant, production lines, waste disposal
facilities, workstations, warehouses, coolstores, depots, wholesalers, export markets, ports, rail junctions,
airports, road intersections, cities, regions, shops, customers, and consumers. The diversity of this selection
demonstrates how rich the potential applications of this model are.

Depending upon the interpretation of the nodes, the objectives of the modeling exercise can vary widely.
Some common types of objectives are

• to reduce collection or purchase costs of raw materials

Network Models F 49

• to reduce inventory holding or backorder costs. Warehouses and other storage facilities sometimes
have capacities, and there can be limits on the amount of goods that can be placed on backorder.

• to decide where facilities should be located and what the capacity of these should be. Network models
have been used to help decide where factories, hospitals, ambulance and fire stations, oil and water
wells, and schools should be sited.

• to determine the assignment of resources (machines, production capability, workforce) to tasks,
schedules, classes, or files

• to determine the optimal distribution of goods or services. This usually means minimizing transporta-
tion costs and reducing transit time or distances covered.

• to find the shortest path from one location to another

• to ensure that demands (for example, production requirements, market demands, contractual obliga-
tions) are met

• to maximize profits from the sale of products or the charge for services

• to maximize production by identifying bottlenecks

Some specific applications are

• car distribution models. These help determine which models and numbers of cars should be manufac-
tured in which factories and where to distribute cars from these factories to zones in the United States
in order to meet customer demand at least cost.

• models in the timber industry. These help determine when to plant and mill forests, schedule production
of pulp, paper, and wood products, and distribute products for sale or export.

• military applications. The nodes can be theaters, bases, ammunition dumps, logistical suppliers, or
radar installations. Some models are used to find the best ways to mobilize personnel and supplies and
to evacuate the wounded in the least amount of time.

• communications applications. The nodes can be telephone exchanges, transmission lines, satellite
links, and consumers. In a model of an electrical grid, the nodes can be transformers, powerstations,
watersheds, reservoirs, dams, and consumers. The effect of high loads or outages might be of concern.

Proportionality Constraints

In many models, you have the characteristic that a flow through an arc must be proportional to the flow
through another arc. Side constraints are often necessary to model that situation. Such constraints are called
proportionality constraints and are useful in models where production is subject to refining or modification
into different materials. The amount of each output, or any waste, evaporation, or reduction can be specified
as a proportion of input.

Typically, the arcs near the supply nodes carry raw materials and the arcs near the demand nodes carry
refined products. For example, in a model of the milling industry, the flow through some arcs may represent
quantities of wheat. After the wheat is processed, the flow through other arcs might be flour. For others it
might be bran. The side constraints model the relationship between the amount of flour or bran produced as

50 F Chapter 4: The INTPOINT Procedure

a proportion of the amount of wheat milled. Some of the wheat can end up as neither flour, bran, nor any
useful product, so this waste is drained away via arcs to a waste node.

Figure 4.2 Proportionality Constraints

Wheat Mill

Flour

Bran

Other

100 20

30

50

In order for arcs to be specified in side constraints, they must be named. By default, PROC INTPOINT names
arcs using the names of the nodes at the head and tail of the arc. An arc is named with its tail node name
followed by an underscore and its head node name. For example, an arc from node from to node to is called
from_to.

Consider the network fragment in Figure 4.2. The arc Wheat_Mill conveys the wheat milled. The cost of flow
on this arc is the milling cost. The capacity of this arc is the capacity of the mill. The lower flow bound on
this arc is the minimum quantity that must be milled for the mill to operate economically. The constraints

0:3Wheat_Mill � Mill_FlourD 0:0

0:2Wheat_Mill � Mill_BranD 0:0

force every unit of wheat that is milled to produce 0.3 units of flour and 0.2 units of bran. Note that it is not
necessary to specify the constraint

0:5Wheat_Mill � Mill_OtherD 0:0

since flow conservation implies that any flow that does not traverse through Mill_Flour or Mill_Bran must
be conveyed through Mill_Other. And, computationally, it is better if this constraint is not specified, since
there is one less side constraint and fewer problems with numerical precision. Notice that the sum of the
proportions must equal 1.0 exactly; otherwise, flow conservation is violated.

Blending Constraints

Blending or quality constraints can also influence the recipes or proportions of ingredients that are mixed.
For example, different raw materials can have different properties. In an application of the oil industry, the
amount of products that are obtained could be different for each type of crude oil. Furthermore, fuel might
have a minimum octane requirement or limited sulphur or lead content, so that a blending of crudes is needed
to produce the product.

Network Models F 51

The network fragment in Figure 4.3 shows an example of this.

Figure 4.3 Blending Constraints

USA

MidEast

Port Refinery

Gasoline

Diesel

Other

5 units/
liter

4 units/
liter

4.75 units/
liter

The arcs MidEast_Port and USA_Port convey crude oil from the two sources. The arc Port_Refinery
represents refining while the arcs Refinery_Gasoline and Refinery_Diesel carry the gas and diesel produced.
The proportionality constraints

0:4Port_Refinery � Refinery_GasolineD 0:0

0:2Port_Refinery � Refinery_DieselD 0:0

capture the restrictions for producing gasoline and diesel from crude. Suppose that only crude from the
Middle East is used, then the resulting diesel would contain 5 units of sulphur per liter. If only crude from the
U.S.A. is used, the resulting diesel would contain 4 units of sulphur per liter. Diesel can have at most 4.75
units of sulphur per liter. Some crude from the U.S.A. must be used if Middle East crude is used in order to
meet the 4.75 sulphur per liter limit. The side constraint to model this requirement is

5MidEast_PortC4USA_Port �4:75Port_Refinery � 0.0

Since Port_Refinery = MidEast_Port C USA_Port, flow conservation allows this constraint to be simplified
to

1MidEast_Port �3USA_Port � 0.0

If, for example, 120 units of crude from the Middle East is used, then at least 40 units of crude from the U.S.A.
must be used. The preceding constraint is simplified because you assume that the sulphur concentration of
diesel is proportional to the sulphur concentration of the crude mix. If this is not the case, the relation

0:2Port_Refinery = Refinery_Diesel

is used to obtain

52 F Chapter 4: The INTPOINT Procedure

5MidEast_PortC4USA_Port �4:75 .1:0=0:2Refinery_Diesel/ � 0.0

which equals

5MidEast_PortC4USA_Port �23:75Refinery_Diesel � 0.0

An example similar to this oil industry problem is solved in the section “Introductory NPSC Example” on
page 57.

Multicommodity Problems

Side constraints are also used in models in which there are capacities on transportation or some other
shared resource, or there are limits on overall production or demand in multicommodity, multidivisional, or
multiperiod problems. Each commodity, division, or period can have a separate network coupled to one main
system by the side constraints. Side constraints are used to combine the outputs of subdivisions of a problem
(either commodities, outputs in distinct time periods, or different process streams) to meet overall demands
or to limit overall production or expenditures. This method is more desirable than doing separate local
optimizations for individual commodity, process, or time networks and then trying to establish relationships
between each when determining an overall policy if the global constraint is not satisfied. Of course, to make
models more realistic, side constraints may be necessary in the local problems.

Figure 4.4 Multicommodity Problem

Factorycom2

Factorycom1

City2com2

City1com2

City2com1

City1com1

Commodity 1

Commodity 2

Figure 4.4 shows two network fragments. They represent identical production and distribution sites of two
different commodities. Suffix com1 represents commodity 1 and suffix com2 represents commodity 2. The
nodes Factorycom1 and Factorycom2 model the same factory, and nodes City1com1 and City1com2 model
the same location, city 1. Similarly, City2com1 and City2com2 are the same location, city 2. Suppose that
commodity 1 occupies 2 cubic meters, commodity 2 occupies 3 cubic meters, the truck dispatched to city 1
has a capacity of 200 cubic meters, and the truck dispatched to city 2 has a capacity of 250 cubic meters.
How much of each commodity can be loaded onto each truck? The side constraints for this case are

Network Models F 53

2Factorycom1_City1com1C3Factorycom2_City1com2 � 200

2Factorycom1_City2com1C3Factorycom2_City2com2 � 250

Large Modeling Strategy

In many cases, the flow through an arc might actually represent the flow or movement of a commodity from
place to place or from time period to time period. However, sometimes an arc is included in the network
as a method of capturing some aspect of the problem that you would not normally think of as part of a
network model. There is no commodity movement associated with that arc. For example, in a multiprocess,
multiproduct model (Figure 4.5), there might be subnetworks for each process and each product. The
subnetworks can be joined together by a set of arcs that have flows that represent the amount of product
j produced by process i. To model an upper-limit constraint on the total amount of product j that can be
produced, direct all arcs carrying product j to a single node and from there through a single arc. The capacity
of this arc is the upper limit of product j production. It is preferable to model this structure in the network
rather than to include it in the side constraints because the efficiency of the optimizer may be less affected
by a reasonable increase in the size of the network rather than increasing the number or complicating side
constraints.

Figure 4.5 Multiprocess, Multiproduct Example

Capacity of
Process 200

Process 200 subnetwork

Capacity of
Process 100

Process 100 subnetwork

Capacity is upper limit of
Product 200 production

Product 200 subnetwork

Capacity is upper limit of
Product 100 production

Product 100 subnetwork

When starting a project, it is often a good strategy to use a small network formulation and then use that
model as a framework upon which to add detail. For example, in the multiprocess, multiproduct model,
you might start with the network depicted in Figure 4.5. Then, for example, the process subnetwork can be
enhanced to include the distribution of products. Other phases of the operation could be included by adding
more subnetworks. Initially, these subnetworks can be single nodes, but in subsequent studies they can be
expanded to include greater detail.

Advantages of Network Models over LP Models

Many linear programming problems have large embedded network structures. Such problems often result
when modeling manufacturing processes, transportation or distribution networks, or resource allocation, or
when deciding where to locate facilities. Often, some commodity is to be moved from place to place, so the
more natural formulation in many applications is that of a constrained network rather than a linear program.

54 F Chapter 4: The INTPOINT Procedure

Using a network diagram to visualize a problem makes it possible to capture the important relationships in an
easily understood picture form. The network diagram aids the communication between model builder and
model user, making it easier to comprehend how the model is structured, how it can be changed, and how
results can be interpreted.

If a network structure is embedded in a linear program, the problem is an NPSC (see the section “Mathematical
Description of NPSC” on page 39). When the network part of the problem is large compared to the nonnetwork
part, especially if the number of side constraints is small, it is worthwhile to exploit this structure to describe
the model. Rather than generating the data for the flow conservation constraints, generate instead the data for
the nodes and arcs of the network.

Flow Conservation Constraints

The constraints Fx D b in NPSC (see the section “Mathematical Description of NPSC” on page 39) are
referred to as the nodal flow conservation constraints. These constraints algebraically state that the sum of the
flow through arcs directed toward a node plus that node’s supply, if any, equals the sum of the flow through
arcs directed away from that node plus that node’s demand, if any. The flow conservation constraints are
implicit in the network model and should not be specified explicitly in side constraint data when using PROC
INTPOINT to solve NPSC problems.

Nonarc Variables

Nonarc variables can be used to simplify side constraints. For example, if a sum of flows appears in many
constraints, it may be worthwhile to equate this expression with a nonarc variable and use this in the other
constraints. This keeps the constraint coefficient matrix sparse. By assigning a nonarc variable a nonzero
objective function, it is then possible to incur a cost for using resources above some lowest feasible limit.
Similarly, a profit (a negative objective function coefficient value) can be made if all available resources are
not used.

In some models, nonarc variables are used in constraints to absorb excess resources or supply needed
resources. Then, either the excess resource can be used or the needed resource can be supplied to another
component of the model.

For example, consider a multicommodity problem of making television sets that have either 19- or 25-inch
screens. In their manufacture, three and four chips, respectively, are used. Production occurs at two factories
during March and April. The supplier of chips can supply only 2,600 chips to factory 1 and 3,750 chips to
factory 2 each month. The names of arcs are in the form Prodn_s_m, where n is the factory number, s is the
screen size, and m is the month. For example, Prod1_25_Apr is the arc that conveys the number of 25-inch
TVs produced in factory 1 during April. You might have to determine similar systematic naming schemes for
your application.

As described, the constraints are

3Prod1_19_MarC4Prod1_25_Mar � 2600

3Prod2_19_MarC4Prod2_25_Mar � 3750

3Prod1_19_AprC4Prod1_25_Apr � 2600

3Prod2_19_AprC4Prod2_25_Apr � 3750

Getting Started: INTPOINT Procedure F 55

If there are chips that could be obtained for use in March but not used for production in March, why not keep
these unused chips until April? Furthermore, if the March excess chips at factory 1 could be used either at
factory 1 or factory 2 in April, the model becomes

3Prod1_19_MarC4Prod1_25_MarCF1_Unused_MarD 2600

3Prod2_19_MarC4Prod2_25_MarCF2_Unused_MarD 3750

3Prod1_19_AprC4Prod1_25_Apr � F1_Kept_Since_MarD 2600

3Prod2_19_AprC4Prod2_25_Apr � F2_Kept_Since_MarD 3750

F1_Unused_MarC F2_Unused_Mar (continued)

� F1_Kept_Since_Mar � F2_Kept_Since_Mar � 0.0

where F1_Kept_Since_Mar is the number of chips used during April at factory 1 that were obtained in March
at either factory 1 or factory 2, and F2_Kept_Since_Mar is the number of chips used during April at factory 2
that were obtained in March. The last constraint ensures that the number of chips used during April that were
obtained in March does not exceed the number of chips not used in March. There may be a cost to hold chips
in inventory. This can be modeled having a positive objective function coefficient for the nonarc variables
F1_Kept_Since_Mar and F2_Kept_Since_Mar. Moreover, nonarc variable upper bounds represent an upper
limit on the number of chips that can be held in inventory between March and April.

See Example 4.1 through Example 4.5, which use this TV problem. The use of nonarc variables as described
previously is illustrated.

Getting Started: INTPOINT Procedure

NPSC Problems
To solve NPSC problems using PROC INTPOINT, you save a representation of the network and the side
constraints in three SAS data sets. These data sets are then passed to PROC INTPOINT for solution. There
are various forms that a problem’s data can take. You can use any one or a combination of several of these
forms.

The NODEDATA= data set contains the names of the supply and demand nodes and the supply or demand
associated with each. These are the elements in the column vector b in the NPSC problem (see the section
“Mathematical Description of NPSC” on page 39).

The ARCDATA= data set contains information about the variables of the problem. Usually these are arcs, but
there can also be data related to nonarc variables in the ARCDATA= data set.

An arc is identified by the names of its tail node (where it originates) and head node (where it is directed).
Each observation can be used to identify an arc in the network and, optionally, the cost per flow unit across

56 F Chapter 4: The INTPOINT Procedure

the arc, the arc’s capacity, lower flow bound, and name. These data are associated with the matrix F and the
vectors c, l, and u in the NPSC problem (see the section “Mathematical Description of NPSC” on page 39).

NOTE: Although F is a node-arc incidence matrix, it is specified in the ARCDATA= data set by arc definitions.
Do not explicitly specify these flow conservation constraints as constraints of the problem.

In addition, the ARCDATA= data set can be used to specify information about nonarc variables, including
objective function coefficients, lower and upper value bounds, and names. These data are the elements of the
vectors d, m, and v in the NPSC problem (see the section “Mathematical Description of NPSC” on page 39).
Data for an arc or nonarc variable can be given in more than one observation.

Supply and demand data also can be specified in the ARCDATA= data set. In such a case, the NODEDATA=
data set may not be needed.

The CONDATA= data set describes the side constraints and their right-hand sides. These data are elements
of the matrices H and Q and the vector r. Constraint types are also specified in the CONDATA= data set.
You can include in this data set upper bound values or capacities, lower flow or value bounds, and costs or
objective function coefficients. It is possible to give all information about some or all nonarc variables in the
CONDATA= data set.

An arc is identified in this data set by its name. If you specify an arc’s name in the ARCDATA= data set, then
this name is used to associate data in the CONDATA= data set with that arc. Each arc also has a default name
that is the name of the tail and head node of the arc concatenated together and separated by an underscore
character; tail_head, for example.

If you use the dense side constraint input format (described in the section “CONDATA= Data Set” on
page 101), and want to use the default arc names, these arc names are names of SAS variables in the VAR list
of the CONDATA= data set.

If you use the sparse side constraint input format (see the section “CONDATA= Data Set” on page 101)
and want to use the default arc names, these arc names are values of the COLUMN list variable of the
CONDATA= data set.

PROC INTPOINT reads the data from the NODEDATA= data set, the ARCDATA= data set, and the
CONDATA= data set. Error checking is performed, and the model is converted into an equivalent LP. This
LP is preprocessed. Preprocessing is optional but highly recommended. Preprocessing analyzes the model
and tries to determine before optimization whether variables can be “fixed” to their optimal values. Knowing
that, the model can be modified and these variables dropped out. It can be determined that some constraints
are redundant. Sometimes, preprocessing succeeds in reducing the size of the problem, thereby making the
subsequent optimization easier and faster.

The optimal solution to the equivalent LP is then found. This LP is converted back to the original NPSC
problem, and the optimum for this is derived from the optimum of the equivalent LP. If the problem was
preprocessed, the model is now post-processed, where fixed variables are reintroduced. The solution can be
saved in the CONOUT= data set.

NPSC Problems F 57

Introductory NPSC Example

Consider the following transshipment problem for an oil company. Crude oil is shipped to refineries where it
is processed into gasoline and diesel fuel. The gasoline and diesel fuel are then distributed to service stations.
At each stage, there are shipping, processing, and distribution costs. Also, there are lower flow bounds and
capacities.

In addition, there are two sets of side constraints. The first set is that two times the crude from the Middle
East cannot exceed the throughput of a refinery plus 15 units. (The phrase “plus 15 units” that finishes the
last sentence is used to enable some side constraints in this example to have a nonzero rhs.) The second set
of constraints are necessary to model the situation that one unit of crude mix processed at a refinery yields
three-fourths of a unit of gasoline and one-fourth of a unit of diesel fuel.

Because there are two products that are not independent in the way in which they flow through the network,
an NPSC is an appropriate model for this example (see Figure 4.6). The side constraints are used to model the
limitations on the amount of Middle Eastern crude that can be processed by each refinery and the conversion
proportions of crude to gasoline and diesel fuel.

Figure 4.6 Oil Industry Example

u.s.a. refinery2

middle east refinery1

r2

r1

ref2 diesel

ref2 gas

ref1 diesel

ref1 gas

servstn2

diesel

servstn2
gas

servstn1

diesel

servstn1
gas

To solve this problem with PROC INTPOINT, save a representation of the model in three SAS data sets. In
the NODEDATA= data set, you name the supply and demand nodes and give the associated supplies and
demands. To distinguish demand nodes from supply nodes, specify demands as negative quantities. For the
oil example, the NODEDATA= data set can be saved as follows:

58 F Chapter 4: The INTPOINT Procedure

title 'Oil Industry Example';
title3 'Setting Up Nodedata = Noded For PROC INTPOINT';
data noded;

input _node_&$15. _sd_;
datalines;

middle east 100
u.s.a. 80
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;

The ARCDATA= data set contains the rest of the information about the network. Each observation in the
data set identifies an arc in the network and gives the cost per flow unit across the arc, the capacities of the
arc, the lower bound on flow across the arc, and the name of the arc.

title3 'Setting Up Arcdata = Arcd1 For PROC INTPOINT';
data arcd1;

input _from_&$11. _to_&$15. _cost_ _capac_ _lo_ _name_ $;
datalines;

middle east refinery 1 63 95 20 m_e_ref1
middle east refinery 2 81 80 10 m_e_ref2
u.s.a. refinery 1 55 . . .
u.s.a. refinery 2 49 . . .
refinery 1 r1 200 175 50 thruput1
refinery 2 r2 220 100 35 thruput2
r1 ref1 gas . 140 . r1_gas
r1 ref1 diesel . 75 . .
r2 ref2 gas . 100 . r2_gas
r2 ref2 diesel . 75 . .
ref1 gas servstn1 gas 15 70 . .
ref1 gas servstn2 gas 22 60 . .
ref1 diesel servstn1 diesel 18 . . .
ref1 diesel servstn2 diesel 17 . . .
ref2 gas servstn1 gas 17 35 5 .
ref2 gas servstn2 gas 31 . . .
ref2 diesel servstn1 diesel 36 . . .
ref2 diesel servstn2 diesel 23 . . .
;

NPSC Problems F 59

Finally, the CONDATA= data set contains the side constraints for the model:

title3 'Setting Up Condata = Cond1 For PROC INTPOINT';
data cond1;

input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas
type $ _rhs_;

datalines;
-2 . 1 . . . >= -15
. -2 . . 1 . GE -15
. . -3 4 . . EQ 0
. . . . -3 4 = 0

;

Note that the SAS variable names in the CONDATA= data set are the names of arcs given in the ARCDATA=
data set. These are the arcs that have nonzero constraint coefficients in side constraints. For example, the
proportionality constraint that specifies that one unit of crude at each refinery yields three-fourths of a unit of
gasoline and one-fourth of a unit of diesel fuel is given for refinery 1 in the third observation and for refinery
2 in the last observation. The third observation requires that each unit of flow on the arc thruput1 equals
three-fourths of a unit of flow on the arc r1_gas. Because all crude processed at refinery 1 flows through
thruput1 and all gasoline produced at refinery 1 flows through r1_gas, the constraint models the situation. It
proceeds similarly for refinery 2 in the last observation.

To find the minimum cost flow through the network that satisfies the supplies, demands, and side constraints,
invoke PROC INTPOINT as follows:

proc intpoint
bytes=1000000
nodedata=noded /* the supply and demand data */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* the solution data set */
run;

The following messages, which appear on the SAS log, summarize the model as read by PROC INTPOINT
and note the progress toward a solution.

60 F Chapter 4: The INTPOINT Procedure

NOTE: Number of nodes= 14 .

NOTE: Number of supply nodes= 2 .

NOTE: Number of demand nodes= 4 .

NOTE: Total supply= 180 , total demand= 180 .

NOTE: Number of arcs= 18 .

NOTE: Number of <= side constraints= 0 .

NOTE: Number of == side constraints= 2 .

NOTE: Number of >= side constraints= 2 .

NOTE: Number of side constraint coefficients= 8 .

NOTE: The following messages relate to the equivalent Linear Programming

 problem solved by the Interior Point algorithm.

NOTE: Number of <= constraints= 0 .

NOTE: Number of == constraints= 16 .

NOTE: Number of >= constraints= 2 .

NOTE: Number of constraint coefficients= 44 .

NOTE: Number of variables= 18 .

NOTE: After preprocessing, number of <= constraints= 0.

NOTE: After preprocessing, number of == constraints= 3.

NOTE: After preprocessing, number of >= constraints= 2.

NOTE: The preprocessor eliminated 13 constraints from the problem.

NOTE: The preprocessor eliminated 33 constraint coefficients from the problem.

NOTE: After preprocessing, number of variables= 5.

NOTE: The preprocessor eliminated 13 variables from the problem.

NOTE: 4 columns, 0 rows and 4 coefficients were added to the problem to handle

 unrestricted variables, variables that are split, and constraint slack or

 surplus variables.

NOTE: There are 10 sub-diagonal nonzeroes in the unfactored A Atranspose matrix.

NOTE: The 5 factor nodes make up 1 supernodes

NOTE: There are 0 nonzero sub-rows or sub-columns outside the supernodal

 triangular regions along the factors leading diagonal.

NOTE: Bound feasibility attained by iteration 1.

NOTE: Dual feasibility attained by iteration 1.

NOTE: Constraint feasibility attained by iteration 1.

NOTE: The Primal-Dual Predictor-Corrector Interior Point algorithm performed 6

 iterations.

NOTE: Optimum reached.

NOTE: Objective= 50875.

NOTE: The data set WORK.SOLUTION has 18 observations and 10 variables.

NOTE: There were 18 observations read from the data set WORK.ARCD1.

NOTE: There were 6 observations read from the data set WORK.NODED.

NOTE: There were 4 observations read from the data set WORK.COND1.

The first set of messages shows the size of the problem. The next set of messages provides statistics on the
size of the equivalent LP problem. The number of variables may not equal the number of arcs if the problem
has nonarc variables. This example has none. To convert a network to the equivalent LP problem, a flow
conservation constraint must be created for each node (including an excess or bypass node, if required). This
explains why the number of equality constraints and the number of constraint coefficients differ from the
number of equality side constraints and the number of coefficients in all side constraints.

NPSC Problems F 61

If the preprocessor was successful in decreasing the problem size, some messages will report how well it did.
In this example, the model size was cut approximately in half!

The next set of messages describes aspects of the interior point algorithm. Of particular interest are those
concerned with the Cholesky factorization of AAT where A is the coefficient matrix of the final LP. It is
crucial to preorder the rows and columns of this matrix to prevent fill-in and reduce the number of row
operations to undertake the factorization. See the section “Interior Point Algorithmic Details” on page 41 for
a more extensive explanation.

Unlike PROC LP, which displays the solution and other information as output, PROC INTPOINT saves
the optimum in the output SAS data set that you specify. For this example, the solution is saved in the
SOLUTION data set. It can be displayed with the PRINT procedure as

title3 'Optimum';
proc print data=solution;

var _from_ _to_ _cost_ _capac_ _lo_ _name_
supply _demand_ _flow_ _fcost_;

sum _fcost_;
run;

Figure 4.7 CONOUT=SOLUTION

OptimumOptimum

Obs _from_ _to_ _cost_ _capac_ _lo_ _name_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 refinery 1 r1 200 175 50 thruput1 . . 145.000 29000.00

2 refinery 2 r2 220 100 35 thruput2 . . 35.000 7700.00

3 r1 ref1 diesel 0 75 0 . . 36.250 0.00

4 r1 ref1 gas 0 140 0 r1_gas . . 108.750 0.00

5 r2 ref2 diesel 0 75 0 . . 8.750 0.00

6 r2 ref2 gas 0 100 0 r2_gas . . 26.250 0.00

7 middle east refinery 1 63 95 20 m_e_ref1 100 . 80.000 5040.00

8 u.s.a. refinery 1 55 99999999 0 80 . 65.000 3575.00

9 middle east refinery 2 81 80 10 m_e_ref2 100 . 20.000 1620.00

10 u.s.a. refinery 2 49 99999999 0 80 . 15.000 735.00

11 ref1 diesel servstn1 diesel 18 99999999 0 . 30 30.000 540.00

12 ref2 diesel servstn1 diesel 36 99999999 0 . 30 0.000 0.00

13 ref1 gas servstn1 gas 15 70 0 . 95 68.750 1031.25

14 ref2 gas servstn1 gas 17 35 5 . 95 26.250 446.25

15 ref1 diesel servstn2 diesel 17 99999999 0 . 15 6.250 106.25

16 ref2 diesel servstn2 diesel 23 99999999 0 . 15 8.750 201.25

17 ref1 gas servstn2 gas 22 60 0 . 40 40.000 880.00

18 ref2 gas servstn2 gas 31 99999999 0 . 40 0.000 0.00

50875.00

Notice that, in CONOUT=SOLUTION (Figure 4.7), the optimal flow through each arc in the network is given
in the variable named _FLOW_, and the cost of flow through each arc is given in the variable _FCOST_.

62 F Chapter 4: The INTPOINT Procedure

Figure 4.8 Oil Industry Solution

u.s.a. refinery2

middle east refinery1

r2

r1

ref2 diesel

ref2 gas

ref1 diesel

ref1 gas

servstn2

diesel

servstn2
gas

servstn1

diesel

servstn1
gas

80

100

15

80

20

65

35

145

8:75

26:25

36:25

108:75

68:75

8:75

30

40 26:25

6:25

�95

�30

�40

�15

LP Problems
Data for an LP problem resembles the data for side constraints and nonarc variables supplied to PROC
INTPOINT when solving an NPSC problem. It is also very similar to the data required by the LP procedure.

To solve LP problems using PROC INTPOINT, you save a representation of the LP variables and the
constraints in one or two SAS data sets. These data sets are then passed to PROC INTPOINT for solution.
There are various forms that a problem’s data can take. You can use any one or a combination of several of
these forms.

The ARCDATA= data set contains information about the LP variables of the problem. Although this data set
is called ARCDATA, it contains data for no arcs. Instead, all data in this data set are related to LP variables.
This data set has no SAS variables containing values that are node names.

The ARCDATA= data set can be used to specify information about LP variables, including objective function
coefficients, lower and upper value bounds, and names. These data are the elements of the vectors d, m, and v
in problem (LP). Data for an LP variable can be given in more than one observation.

The CONDATA= data set describes the constraints and their right-hand sides. These data are elements of the
matrix Q and the vector r.

Constraint types are also specified in the CONDATA= data set. You can include in this data set LP variable
data such as upper bound values, lower value bounds, and objective function coefficients. It is possible to
give all information about some or all LP variables in the CONDATA= data set.

LP Problems F 63

Because PROC INTPOINT evolved from PROC NETFLOW, another procedure in SAS/OR software that
was originally designed to solve models with networks, the ARCDATA= data set is always expected. If
the ARCDATA= data set is not specified, by default the last data set created before PROC INTPOINT is
invoked is assumed to be the ARCDATA= data set. However, these characteristics of PROC INTPOINT are
not helpful when an LP problem is being solved and all data are provided in a single data set specified by the
CONDATA= data set, and that data set is not the last data set created before PROC INTPOINT starts. In this
case, you must specify that the ARCDATA= data set and the CONDATA= data set are both equal to the input
data set. PROC INTPOINT then knows that an LP problem is to be solved and that the data reside in one
data set.

An LP variable is identified in this data set by its name. If you specify an LP variable’s name in the
ARCDATA= data set, then this name is used to associate data in the CONDATA= data set with that LP
variable.

If you use the dense constraint input format (described in the section “CONDATA= Data Set” on page 101),
these LP variable names are names of SAS variables in the VAR list of the CONDATA= data set.

If you use the sparse constraint input format (described in the section “CONDATA= Data Set” on page 101),
these LP variable names are values of the SAS variables in the COLUMN list of the CONDATA= data set.

PROC INTPOINT reads the data from the ARCDATA= data set (if there is one) and the CONDATA= data set.
Error checking is performed, and the LP is preprocessed. Preprocessing is optional but highly recommended.
The preprocessor analyzes the model and tries to determine before optimization whether LP variables can be
“fixed” to their optimal values. Knowing that, the model can be modified and these LP variables dropped out.
Some constraints may be found to be redundant. Sometimes, preprocessing succeeds in reducing the size of
the problem, thereby making the subsequent optimization easier and faster.

The optimal solution is then found for the resulting LP. If the problem was preprocessed, the model is now
post-processed, where fixed LP variables are reintroduced. The solution can be saved in the CONOUT= data
set.

Introductory LP Example

Consider the linear programming problem in the section “An Introductory Example” on page 171. The SAS
data set in that section is created the same way here:

title 'Linear Programming Example';
title3 'Setting Up Condata = dcon1 For PROC INTPOINT';
data dcon1;

input _id_ $17.
a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2
type $ _rhs_;

datalines;
profit -175 -165 -205 0 0 0 300 300 max .
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 eq 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0 eq 0
heating_o_conv .390 .300 .430 0 0 -1 0 0 eq 0
recipe_1 0 0 0 0 .3 .7 -1 0 eq 0
recipe_2 0 0 0 .2 0 .8 0 -1 eq 0
available 110 165 80 upperbd .
;

64 F Chapter 4: The INTPOINT Procedure

To solve this problem, use

proc intpoint
bytes=1000000
condata=dcon1
conout=solutn1;
run;

Note how it is possible to use an input SAS data set of PROC LP and, without requiring any changes to be
made to the data set, to use that as an input data set for PROC INTPOINT.

The following messages that appear on the SAS log summarize the model as read by PROC INTPOINT and
note the progress toward a solution

NOTE: Number of variables= 8 .

NOTE: Number of <= constraints= 0 .

NOTE: Number of == constraints= 5 .

NOTE: Number of >= constraints= 0 .

NOTE: Number of constraint coefficients= 18 .

NOTE: After preprocessing, number of <= constraints= 0.

NOTE: After preprocessing, number of == constraints= 0.

NOTE: After preprocessing, number of >= constraints= 0.

NOTE: The preprocessor eliminated 5 constraints from the problem.

NOTE: The preprocessor eliminated 18 constraint coefficients from the problem.

NOTE: After preprocessing, number of variables= 0.

NOTE: The preprocessor eliminated 8 variables from the problem.

NOTE: The optimum has been determined by the Preprocessor.

NOTE: Objective= 1544.

NOTE: The data set WORK.SOLUTN1 has 8 observations and 6 variables.

NOTE: There were 7 observations read from the data set WORK.DCON1.

Notice that the preprocessor succeeded in fixing all LP variables to their optimal values, eliminating the need
to do any actual optimization.

Unlike PROC LP, which displays the solution and other information as output, PROC INTPOINT saves the
optimum in the output SAS data set you specify. For this example, the solution is saved in the SOLUTION
data set. It can be displayed with PROC PRINT as

title3 'LP Optimum';
proc print data=solutn1;

var _name_ _objfn_ _upperbd _lowerbd _value_ _fcost_;
sum _fcost_;
run;

Notice that in the CONOUT=SOLUTION (Figure 4.9) the optimal value through each variable in the LP is
given in the variable named _VALUE_, and that the cost of value for each variable is given in the variable
FCOST.

LP Problems F 65

Figure 4.9 CONOUT=SOLUTN1

LP OptimumLP Optimum

Obs _NAME_ _OBJFN_ _UPPERBD _LOWERBD _VALUE_ _FCOST_

1 a_heavy -165 165 0 0.00 0

2 a_light -175 110 0 110.00 -19250

3 brega -205 80 0 80.00 -16400

4 heatingo 0 99999999 0 77.30 0

5 jet_1 300 99999999 0 60.65 18195

6 jet_2 300 99999999 0 63.33 18999

7 naphthai 0 99999999 0 21.80 0

8 naphthal 0 99999999 0 7.45 0

1544

The same model can be specified in the sparse format as in the following scon2 data set. This format enables
you to omit the zero coefficients.

title3 'Setting Up Condata = scon2 For PROC INTPOINT';
data scon2;

format _type_ $8. _col_ $8. _row_ $16.;
input _type_ $ _col_ $ _row_ $ _coef_;
datalines;

max . profit .
eq . napha_l_conv .
eq . napha_i_conv .
eq . heating_oil_conv .
eq . recipe_1 .
eq . recipe_2 .
upperbd . available .
. a_light profit -175
. a_light napha_l_conv .035
. a_light napha_i_conv .100
. a_light heating_oil_conv .390
. a_light available 110
. a_heavy profit -165
. a_heavy napha_l_conv .030
. a_heavy napha_i_conv .075
. a_heavy heating_oil_conv .300
. a_heavy available 165
. brega profit -205
. brega napha_l_conv .045
. brega napha_i_conv .135
. brega heating_oil_conv .430
. brega available 80
. naphthal napha_l_conv -1
. naphthal recipe_2 .2
. naphthai napha_i_conv -1
. naphthai recipe_1 .3
. heatingo heating_oil_conv -1
. heatingo recipe_1 .7
. heatingo recipe_2 .8
. jet_1 profit 300

66 F Chapter 4: The INTPOINT Procedure

. jet_1 recipe_1 -1

. jet_2 profit 300

. jet_2 recipe_2 -1
;

To find the minimum cost solution, invoke PROC INTPOINT (note the SPARSECONDATA option which
must be specified) as follows:

proc intpoint
bytes=1000000
sparsecondata
condata=scon2
conout=solutn2;
run;

A data set that can be used as the ARCDATA= data set can be initialized as follows:

data vars3;
input _name_ $ profit available;
datalines;

a_heavy -165 165
a_light -175 110
brega -205 80
heatingo 0 .
jet_1 300 .
jet_2 300 .
naphthai 0 .
naphthal 0 .
;

The following CONDATA= data set is the original dense format CONDATA= dcon1 data set after the LP
variable’s nonconstraint information has been removed. (You could have left some or all of that information
in CONDATA as PROC INTPOINT “merges” data, but doing that and checking for consistency takes time.)

data dcon3;
input _id_ $17.

a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2
type $ _rhs_;

datalines;
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 eq 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0 eq 0
heating_o_conv .390 .300 .430 0 0 -1 0 0 eq 0
recipe_1 0 0 0 0 .3 .7 -1 0 eq 0
recipe_2 0 0 0 .2 0 .8 0 -1 eq 0
;

NOTE: You must now specify the MAXIMIZE option; otherwise, PROC INTPOINT will optimize to the
minimum (which, incidentally, has a total objective = -3539.25). You must indicate that the SAS variable
profit in the ARCDATA=vars3 data set has values that are objective function coefficients, by specifying the
OBJFN statement. The UPPERBD must be specified as the SAS variable available that has as values upper
bounds:

LP Problems F 67

proc intpoint
maximize /* ***** necessary ***** */
bytes=1000000
arcdata=vars3
condata=dcon3
conout=solutn3;

objfn profit;
upperbd available;
run;

The ARCDATA=vars3 data set can become more concise by noting that the model variables heatingo,
naphthai, and naphthal have zero objective function coefficients (the default) and default upper bounds, so
those observations need not be present:

data vars4;
input _name_ $ profit available;
datalines;

a_heavy -165 165
a_light -175 110
brega -205 80
jet_1 300 .
jet_2 300 .
;

The CONDATA=dcon3 data set can become more concise by noting that all the constraints have the same
type (eq) and zero (the default) rhs values. This model is a good candidate for using the DEFCONTYPE=
option.

The DEFCONTYPE= option can be useful not only when all constraints have the same type as is the case
here, but also when most constraints have the same type and you want to change the default type from
� to D or �. The essential constraint type data in the CONDATA= data set is that which overrides the
DEFCONTYPE= type you specified.

data dcon4;
input _id_ $17.

a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2;

datalines;
naphtha_l_conv .035 .030 .045 -1 0 0 0 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0
heating_o_conv .390 .300 .430 0 0 -1 0 0
recipe_1 0 0 0 0 .3 .7 -1 0
recipe_2 0 0 0 .2 0 .8 0 -1
;

proc intpoint
maximize defcontype=eq
bytes=1000000
arcdata=vars3
condata=dcon3
conout=solutn3;

objfn profit;
upperbd available;
run;

68 F Chapter 4: The INTPOINT Procedure

Here are several different ways of using the ARCDATA= data set and a sparse format CONDATA= data set
for this LP. The following CONDATA= data set is the result of removing the profit and available data from
the original sparse format CONDATA=scon2 data set.

data scon5;
format _type_ $8. _col_ $8. _row_ $16. ;
input _type_ $ _col_ $ _row_ $ _coef_;
datalines;

eq . napha_l_conv .
eq . napha_i_conv .
eq . heating_oil_conv .
eq . recipe_1 .
eq . recipe_2 .
. a_light napha_l_conv .035
. a_light napha_i_conv .100
. a_light heating_oil_conv .390
. a_heavy napha_l_conv .030
. a_heavy napha_i_conv .075
. a_heavy heating_oil_conv .300
. brega napha_l_conv .045
. brega napha_i_conv .135
. brega heating_oil_conv .430
. naphthal napha_l_conv -1
. naphthal recipe_2 .2
. naphthai napha_i_conv -1
. naphthai recipe_1 .3
. heatingo heating_oil_conv -1
. heatingo recipe_1 .7
. heatingo recipe_2 .8
. jet_1 recipe_1 -1
. jet_2 recipe_2 -1
;

proc intpoint
maximize
bytes=1000000
sparsecondata
arcdata=vars3 /* or arcdata=vars4 */
condata=scon5
conout=solutn5;

objfn profit;
upperbd available;
run;

The CONDATA=scon5 data set can become more concise by noting that all the constraints have the same type
(eq) and zero (the default) rhs values. Use the DEFCONTYPE= option again. Once the first five observations
of the CONDATA=scon5 data set are removed, the _type_ variable has values that are missing in all of the
remaining observations. Therefore, this variable can be removed.

data scon6;
input _col_ $ _row_&$16. _coef_;
datalines;

a_light napha_l_conv .035
a_light napha_i_conv .100

Typical PROC INTPOINT Run F 69

a_light heating_oil_conv .390
a_heavy napha_l_conv .030
a_heavy napha_i_conv .075
a_heavy heating_oil_conv .300
brega napha_l_conv .045
brega napha_i_conv .135
brega heating_oil_conv .430
naphthal napha_l_conv -1
naphthal recipe_2 .2
naphthai napha_i_conv -1
naphthai recipe_1 .3
heatingo heating_oil_conv -1
heatingo recipe_1 .7
heatingo recipe_2 .8
jet_1 recipe_1 -1
jet_2 recipe_2 -1
;

proc intpoint
maximize
bytes=1000000
defcontype=eq
sparsecondata
arcdata=vars4
condata=scon6
conout=solutn6;

objfn profit;
upperbd available;
run;

Typical PROC INTPOINT Run
You start PROC INTPOINT by giving the PROC INTPOINT statement. You can specify many options in the
PROC INTPOINT statement to control the procedure, or you can rely on default settings and specify very
few options. However, there are some options you must specify:

• You must specify the BYTES= parameter indicating the size of the working memory that the procedure
is allowed to use. This option has no default.

• In many instances (and certainly when solving NPSC problems), you need to specify the ARCDATA=
data set. This option has a default (which is the SAS data set that was created last before PROC
INTPOINT began running), but that may need to be overridden.

• The CONDATA= data set must also be specified if the problem is NPSC and has side constraints, or if
it is an LP problem.

• When solving a network problem, you have to specify the NODEDATA= data set, if some model data
are given in such a data set.

Some options, while optional, are frequently required. To have the optimal solution output to a SAS data set,
you have to specify the CONOUT= data set. You may want to indicate reasons why optimization should stop

70 F Chapter 4: The INTPOINT Procedure

(for example, you can indicate the maximum number of iterations that can be performed), or you might want
to alter stopping criteria so that optimization does not stop prematurely. Some options enable you to control
other aspects of the interior point algorithm. Specifying certain values for these options can reduce the time
it takes to solve a problem.

The SAS variable lists should be given next. If you have SAS variables in the input data sets that have special
names (for example, a SAS variable in the ARCDATA= data set named _TAIL_ that has tail nodes of arcs as
values), it may not be necessary to have many or any variable lists. If you do not specify a TAIL variable list,
PROC INTPOINT will search the ARCDATA= data set for a SAS variable named _TAIL_.

What usually follows is a RUN statement, which indicates that all information that you, the user, need to
supply to PROC INTPOINT has been given, and the procedure is to start running. This also happens if you
specify a statement in your SAS program that PROC INTPOINT does not recognize as one of its own, the
next DATA step or procedure.

The QUIT statement indicates that PROC INTPOINT must immediately finish.

For example, a PROC INTPOINT run might look something like this:

proc intpoint
bytes= /* working memory size */
arcdata= /* data set */
condata= /* data set */
/* other options */

;
variable list specifications; /* if necessary */
run; /* start running, read data, */

/* and do the optimization. */

Syntax: INTPOINT Procedure F 71

Syntax: INTPOINT Procedure
Below are statements used in PROC INTPOINT, listed in alphabetical order as they appear in the text that
follows.

PROC INTPOINT options ;
CAPACITY variable ;
COEF variables ;
COLUMN variable ;
COST variable ;
DEMAND variable ;
HEADNODE variable ;
ID variables ;
LO variable ;
NAME variable ;
NODE variable ;
QUIT ; ;
RHS variable ;
ROW variables ;
RUN ; ;
SUPDEM variable ;
SUPPLY variable ;
TAILNODE variable ;
TYPE variable ;
VAR variables ;

Functional Summary
Table 4.1 outlines the options that can be specified in the INTPOINT procedure. All options are specified in
the PROC INTPOINT statement.

Table 4.1 Functional Summary

Description Statement Option

Input Data Set Options:
Arcs input data set PROC INTPOINT ARCDATA=
Nodes input data set PROC INTPOINT NODEDATA=
Constraint input data set PROC INTPOINT CONDATA=

Output Data Set Options:
Constrained solution data set PROC INTPOINT CONOUT=
Convert sparse or dense format input data set
into MPS-format output data set

PROC INTPOINT MPSOUT=

Data Set Read Options:
CONDATA has sparse data format PROC INTPOINT SPARSECONDATA

72 F Chapter 4: The INTPOINT Procedure

Description Statement Option

Default constraint type PROC INTPOINT DEFCONTYPE=
Special COLUMN variable value PROC INTPOINT TYPEOBS=
Special COLUMN variable value PROC INTPOINT RHSOBS=
Used to interpret arc and variable names PROC INTPOINT NAMECTRL=
No nonarc data in ARCDATA PROC INTPOINT ARCS_ONLY_ARCDATA
Data for an arc found once in ARCDATA PROC INTPOINT ARC_SINGLE_OBS
Data for a constraint found once in CONDATA PROC INTPOINT CON_SINGLE_OBS
Data for a coefficient found once in CONDATA PROC INTPOINT NON_REPLIC=
Data are grouped, exploited during data read PROC INTPOINT GROUPED=

Problem Size Specification Options:
Approximate number of nodes PROC INTPOINT NNODES=
Approximate number of arcs PROC INTPOINT NARCS=
Approximate number of variables PROC INTPOINT NNAS=
Approximate number of coefficients PROC INTPOINT NCOEFS=
Approximate number of constraints PROC INTPOINT NCONS=

Network Options:
Default arc cost, objective function coefficient PROC INTPOINT DEFCOST=
Default arc capacity, variable upper bound PROC INTPOINT DEFCAPACITY=
Default arc flow and variable lower bound PROC INTPOINT DEFMINFLOW=
Network’s only supply node PROC INTPOINT SOURCE=
SOURCE’s supply capability PROC INTPOINT SUPPLY=
Network’s only demand node PROC INTPOINT SINK=
SINK’s demand PROC INTPOINT DEMAND=
Convey excess supply/demand through network PROC INTPOINT THRUNET
Find max flow between SOURCE and SINK PROC INTPOINT MAXFLOW
Cost of bypass arc, MAXFLOW problem PROC INTPOINT BYPASSDIVIDE=
Find shortest path from SOURCE to SINK PROC INTPOINT SHORTPATH

Interior Point Algorithm Options:
Factorization method PROC INTPOINT FACT_METHOD=
Allowed amount of dual infeasibility PROC INTPOINT TOLDINF=
Allowed amount of primal infeasibility PROC INTPOINT TOLPINF=
Allowed total amount of dual infeasibility PROC INTPOINT TOLTOTDINF=
Allowed total amount of primal infeasibility PROC INTPOINT TOLTOTPINF=
Cut-off tolerance for Cholesky factorization PROC INTPOINT CHOLTINYTOL=
Density threshold for Cholesky processing PROC INTPOINT DENSETHR=
Step-length multiplier PROC INTPOINT PDSTEPMULT=
Preprocessing type PROC INTPOINT PRSLTYPE=
Print optimization progress on SAS log PROC INTPOINT PRINTLEVEL2=
Ratio test zero tolerance PROC INTPOINT RTTOL=

PROC INTPOINT Statement F 73

Description Statement Option

Interior Point Algorithm Stopping Criteria:
maximum number of interior point iterations PROC INTPOINT MAXITERB=
primal-dual (duality) gap tolerance PROC INTPOINT PDGAPTOL=
Stop because of complementarity PROC INTPOINT STOP_C=
Stop because of duality gap PROC INTPOINT STOP_DG=
Stop because of infeasb PROC INTPOINT STOP_IB=
Stop because of infeasc PROC INTPOINT STOP_IC=
Stop because of infeasd PROC INTPOINT STOP_ID=
Stop because of complementarity PROC INTPOINT AND_STOP_C=
Stop because of duality gap PROC INTPOINT AND_STOP_DG=
Stop because of infeasb PROC INTPOINT AND_STOP_IB=
Stop because of infeasc PROC INTPOINT AND_STOP_IC=
Stop because of infeasd PROC INTPOINT AND_STOP_ID=
Stop because of complementarity PROC INTPOINT KEEPGOING_C=
Stop because of duality gap PROC INTPOINT KEEPGOING_DG=
Stop because of infeasb PROC INTPOINT KEEPGOING_IB=
Stop because of infeasc PROC INTPOINT KEEPGOING_IC=
Stop because of infeasd PROC INTPOINT KEEPGOING_ID=
Stop because of complementarity PROC INTPOINT AND_KEEPGOING_C=
Stop because of duality gap PROC INTPOINT AND_KEEPGOING_DG=
Stop because of infeasb PROC INTPOINT AND_KEEPGOING_IB=
Stop because of infeasc PROC INTPOINT AND_KEEPGOING_IC=
Stop because of infeasd PROC INTPOINT AND_KEEPGOING_ID=

Memory Control Options:
Issue memory usage messages to SAS log PROC INTPOINT MEMREP
Number of bytes to use for main memory PROC INTPOINT BYTES=

Miscellaneous Options:
Infinity value PROC INTPOINT INFINITY=
Maximization instead of minimization PROC INTPOINT MAXIMIZE
Zero tolerance - optimization PROC INTPOINT ZERO2=
Zero tolerance - real number comparisons PROC INTPOINT ZEROTOL=
Suppress similar SAS log messages PROC INTPOINT VERBOSE=
Scale problem data PROC INTPOINT SCALE=
Write optimization time to SAS log PROC INTPOINT OPTIM_TIMER

PROC INTPOINT Statement
PROC INTPOINT options ;

This statement invokes the procedure. The following options can be specified in the PROC INTPOINT
statement.

74 F Chapter 4: The INTPOINT Procedure

Data Set Options

This section briefly describes all the input and output data sets used by PROC INTPOINT. The ARCDATA=
data set, the NODEDATA= data set, and the CONDATA= data set can contain SAS variables that have special
names, for instance _CAPAC_, _COST_, and _HEAD_. PROC INTPOINT looks for such variables if you do
not give explicit variable list specifications. If a SAS variable with a special name is found and that SAS
variable is not in another variable list specification, PROC INTPOINT determines that values of the SAS
variable are to be interpreted in a special way. By using SAS variables that have special names, you may not
need to have any variable list specifications.

ARCDATA=SAS-data-set
names the data set that contains arc and, optionally, nonarc variable information and nodal sup-
ply/demand data. The ARCDATA= data set must be specified in all PROC INTPOINT statements
when solving NPSC problems.

If your problem is an LP, the ARCDATA= data set is optional. You can specify LP variable information
such as objective function coefficients, and lower and upper bounds.

CONDATA=SAS-data-set
names the data set that contains the side constraint data. The data set can also contain other data such
as arc costs, capacities, lower flow bounds, nonarc variable upper and lower bounds, and objective
function coefficients. PROC INTPOINT needs a CONDATA= data set to solve a constrained problem.
See the section “CONDATA= Data Set” on page 101 for more information.

If your problem is an LP, this data set contains the constraint data, and can also contain other data
such as objective function coefficients, and lower and upper bounds. PROC INTPOINT needs a
CONDATA= data set to solve an LP.

CONOUT=SAS-data-set

COUT=SAS-data-set
names the output data set that receives an optimal solution. See the section “CONOUT= Data Set” on
page 109 for more information.

If PROC INTPOINT is outputting observations to the output data set and you want this to stop, press
the keys used to stop SAS procedures.

MPSOUT=SAS-data-set
names the SAS data set that contains converted sparse or dense format input data in MPS format.
Invoking this option directs the INTPOINT procedure to halt before attempting optimization. For more
information about the MPSOUT= option, see the section “Converting Any PROC INTPOINT Format
to an MPS-Format SAS Data Set” on page 111. For more information about the MPS-format SAS
data set, see Chapter 17, “The MPS-Format SAS Data Set” (SAS/OR User’s Guide: Mathematical
Programming).

NODEDATA=SAS-data-set
names the data set that contains the node supply and demand specifications. You do not need
observations in the NODEDATA= data set for transshipment nodes. (Transshipment nodes neither
supply nor demand flow.) All nodes are assumed to be transshipment nodes unless supply or demand
data indicate otherwise. It is acceptable for some arcs to be directed toward supply nodes or away from
demand nodes.

PROC INTPOINT Statement F 75

This data set is used only when you are solving network problems (not when solving LP problems),
in which case the use of the NODEDATA= data set is optional provided that, if the NODEDATA=
data set is not used, supply and demand details are specified by other means. Other means include
using the MAXFLOW or SHORTPATH option, SUPPLY or DEMAND variable list (or both) in the
ARCDATA= data set, and the SOURCE=, SUPPLY=, SINK=, or DEMAND= option in the PROC
INTPOINT statement.

General Options

The following is a list of options you can use with PROC INTPOINT. The options are listed in alphabetical
order.

ARCS_ONLY_ARCDATA
indicates that data for arcs only are in the ARCDATA= data set. When PROC INTPOINT reads the
data in the ARCDATA= data set, memory would not be wasted to receive data for nonarc variables.
The read might then be performed faster. See the section “How to Make the Data Read of PROC
INTPOINT More Efficient” on page 119.

ARC_SINGLE_OBS
indicates that for all arcs and nonarc variables, data for each arc or nonarc variable is found in only one
observation of the ARCDATA= data set. When reading the data in the ARCDATA= data set, PROC
INTPOINT knows that the data in an observation is for an arc or a nonarc variable that has not had data
previously read and that needs to be checked for consistency. The read might then be performed faster.

When solving an LP, specifying the ARC_SINGLE_OBS option indicates that for all LP variables,
data for each LP variable is found in only one observation of the ARCDATA= data set. When reading
the data in the ARCDATA= data set, PROC INTPOINT knows that the data in an observation is for an
LP variable that has not had data previously read and that needs to be checked for consistency. The
read might then be performed faster.

If you specify ARC_SINGLE_OBS, PROC INTPOINT automatically works as if GROUPED=ARCDATA
is also specified.

See the section “How to Make the Data Read of PROC INTPOINT More Efficient” on page 119.

BYPASSDIVIDE=b

BYPASSDIV=b

BPD=b
should be used only when the MAXFLOW option has been specified; that is, PROC INTPOINT is
solving a maximal flow problem. PROC INTPOINT prepares to solve maximal flow problems by
setting up a bypass arc. This arc is directed from the SOURCE= to the SINK= and will eventually
convey flow equal to INFINITY minus the maximal flow through the network. The cost of the bypass
arc must be great enough to drive flow through the network, rather than through the bypass arc. Also,
the cost of the bypass arc must be greater than the eventual total cost of the maximal flow, which can
be nonzero if some network arcs have nonzero costs. The cost of the bypass is set to the value of the
INFINITY= option. Valid values for the BYPASSDIVIDE= option must be greater than or equal to
1.1.

If there are no nonzero costs of arcs in the MAXFLOW problem, the cost of the bypass arc is set to 1.0
(-1.0 if maximizing) if you do not specify the BYPASSDIVIDE= option. The default value for the
BYPASSDIVIDE= option (in the presence of nonzero arc costs) is 100.0.

76 F Chapter 4: The INTPOINT Procedure

BYTES=b
indicates the size of the main working memory (in bytes) that PROC INTPOINT will allocate. Speci-
fying this option is mandatory. The working memory is used to store all the arrays and buffers used
by PROC INTPOINT. If this memory has a size smaller than what is required to store all arrays and
buffers, PROC INTPOINT uses various schemes that page information between auxiliary memory
(often your machine’s disk) and RAM.

For small problems, specify BYTES=100000. For large problems (those with hundreds of thousands
or millions of variables), BYTES=1000000 might do. For solving problems of that size, if you are
running on a machine with an inadequate amount of RAM, PROC INTPOINT’s performance will
suffer since it will be forced to page or to rely on virtual memory.

If you specify the MEMREP option, PROC INTPOINT will issue messages on the SAS log informing
you of its memory usage; that is, how much memory is required to prevent paging, and details about
the amount of paging that must be performed, if applicable.

CON_SINGLE_OBS
improves how the CONDATA= data set is read. How it works depends on whether the CONDATA has
a dense or sparse format.

If the CONDATA= data set has the dense format, specifying CON_SINGLE_OBS indicates that, for
each constraint, data for each can be found in only one observation of the CONDATA= data set.

If the CONDATA= data set has a sparse format, and data for each arc, nonarc variable, or LP variable
can be found in only one observation of the CONDATA, then specify the CON_SINGLE_OBS option.
If there are n SAS variables in the ROW and COEF list, then each arc or nonarc can have at most n
constraint coefficients in the model. See the section “How to Make the Data Read of PROC INTPOINT
More Efficient” on page 119.

DEFCAPACITY=c

DC=c
requests that the default arc capacity and the default nonarc variable value upper bound (or for LP
problems, the default LP variable value upper bound) be c. If this option is not specified, then
DEFCAPACITY= INFINITY.

DEFCONTYPE=c

DEFTYPE=c

DCT=c
specifies the default constraint type. This default constraint type is either less than or equal to or is the
type indicated by DEFCONTYPE=c. Valid values for this option are

LE, le, or <D for less than or equal to

EQ, eq, or = for equal to

GE, ge, or >D for greater than or equal to

The values do not need to be enclosed in quotes.

PROC INTPOINT Statement F 77

DEFCOST=c
requests that the default arc cost and the default nonarc variable objective function coefficient (or for
an LP, the default LP variable objective function coefficient) be c. If this option is not specified, then
DEFCOST=0.0.

DEFMINFLOW=m

DMF=m
requests that the default lower flow bound through arcs and the default lower value bound of nonarc
variables (or for an LP, the default lower value bound of LP variables) be m. If a value is not specified,
then DEFMINFLOW=0.0.

DEMAND=d
specifies the demand at the SINK node specified by the SINK= option. The DEMAND= option
should be used only if the SINK= option is given in the PROC INTPOINT statement and neither the
SHORTPATH option nor the MAXFLOW option is specified. If you are solving a minimum cost
network problem and the SINK= option is used to identify the sink node, and the DEMAND= option
is not specified, then the demand at the sink node is made equal to the network’s total supply.

GROUPED=grouped
PROC INTPOINT can take a much shorter time to read data if the data have been grouped prior to
the PROC INTPOINT call. This enables PROC INTPOINT to conclude that, for instance, a new
NAME list variable value seen in the ARCDATA= data set grouped by the values of the NAME list
variable before PROC INTPOINT was called is new. PROC INTPOINT does not need to check that
the NAME has been read in a previous observation. See the section “How to Make the Data Read of
PROC INTPOINT More Efficient” on page 119.

• GROUPED=ARCDATA indicates that the ARCDATA= data set has been grouped by values of
the NAME list variable. If _NAME_ is the name of the NAME list variable, you could use

proc sort data=arcdata; by _name_;

prior to calling PROC INTPOINT. Technically, you do not have to sort the data, only
to ensure that all similar values of the NAME list variable are grouped together. If you
specify the ARCS_ONLY_ARCDATA option, PROC INTPOINT automatically works as if
GROUPED=ARCDATA is also specified.

• GROUPED=CONDATA indicates that the CONDATA= data set has been grouped.
If the CONDATA= data set has a dense format, GROUPED=CONDATA indicates that the
CONDATA= data set has been grouped by values of the ROW list variable. If _ROW_ is the
name of the ROW list variable, you could use

proc sort data=condata; by _row_;

prior to calling PROC INTPOINT. Technically, you do not have to sort the data, only to en-
sure that all similar values of the ROW list variable are grouped together. If you specify the
CON_SINGLE_OBS option, or if there is no ROW list variable, PROC INTPOINT automatically
works as if GROUPED=CONDATA has been specified.

78 F Chapter 4: The INTPOINT Procedure

If the CONDATA= data set has the sparse format, GROUPED=CONDATA indicates that CON-
DATA has been grouped by values of the COLUMN list variable. If _COL_ is the name of the
COLUMN list variable, you could use

proc sort data=condata; by _col_;

prior to calling PROC INTPOINT. Technically, you do not have to sort the data, only to ensure
that all similar values of the COLUMN list variable are grouped together.

• GROUPED=BOTH indicates that both GROUPED=ARCDATA and GROUPED=CONDATA are
TRUE.

• GROUPED=NONE indicates that the data sets have not been grouped, that is, neither
GROUPED=ARCDATA nor GROUPED=CONDATA is TRUE. This is the default, but it is
much better if GROUPED=ARCDATA, or GROUPED=CONDATA, or GROUPED=BOTH.

A data set like

... _XXXXX_
bbb
bbb
aaa
ccc
ccc

is a candidate for the GROUPED= option. Similar values are grouped together. When PROC
INTPOINT is reading the ith observation, either the value of the _XXXXX_ variable is the same as
the .i � 1/st (that is, the previous observation’s) _XXXXX_ value, or it is a new _XXXXX_ value not
seen in any previous observation. This also means that if the ith _XXXXX_ value is different from
the .i � 1/st _XXXXX_ value, the value of the .i � 1/st _XXXXX_ variable will not be seen in any
observations i; i C 1; : : : .

INFINITY=i

INF=i
is the largest number used by PROC INTPOINT in computations. A number too small can adversely
affect the solution process. You should avoid specifying an enormous value for the INFINITY= option
because numerical roundoff errors can result. If a value is not specified, then INFINITY=99999999.
The INFINITY= option cannot be assigned a value less than 9999.

MAXFLOW

MF
specifies that PROC INTPOINT solve a maximum flow problem. In this case, the PROC INTPOINT
procedure finds the maximum flow from the node specified by the SOURCE= option to the node
specified by the SINK= option. PROC INTPOINT automatically assigns an INFINITY= option supply
to the SOURCE= option node and the SINK= option is assigned the INFINITY= option demand. In
this way, the MAXFLOW option sets up a maximum flow problem as an equivalent minimum cost
problem.

You can use the MAXFLOW option when solving any flow problem (not necessarily a maximum flow
problem) when the network has one supply node (with infinite supply) and one demand node (with
infinite demand). The MAXFLOW option can be used in conjunction with all other options (except
SHORTPATH, SUPPLY=, and DEMAND=) and capabilities of PROC INTPOINT.

PROC INTPOINT Statement F 79

MAXIMIZE

MAX
specifies that PROC INTPOINT find the maximum cost flow through the network. If both the
MAXIMIZE and the SHORTPATH options are specified, the solution obtained is the longest path
between the SOURCE= and SINK= nodes. Similarly, MAXIMIZE and MAXFLOW together cause
PROC INTPOINT to find the minimum flow between these two nodes; this is zero if there are no
nonzero lower flow bounds. If solving an LP, specifying the MAXIMIZE option is necessary if you
want the maximal optimal solution found instead of the minimal optimum.

MEMREP
indicates that information on the memory usage and paging schemes (if necessary) is reported by
PROC INTPOINT on the SAS log.

NAMECTRL=i
is used to interpret arc and nonarc variable names in the CONDATA= data set. In the ARCDATA=
data set, an arc is identified by its tail and head node. In the CONDATA= data set, arcs are identified
by names. You can give a name to an arc by having a NAME list specification that indicates a SAS
variable in the ARCDATA= data set that has names of arcs as values.

PROC INTPOINT requires that arcs that have information about them in the CONDATA= data set have
names, but arcs that do not have information about them in the CONDATA= data set can also have names.
Unlike a nonarc variable whose name uniquely identifies it, an arc can have several different names. An arc
has a default name in the form tail_head, that is, the name of the arc’s tail node followed by an underscore
and the name of the arc’s head node.

In the CONDATA= data set, if the dense data format is used (described in the section “CONDATA= Data
Set” on page 101), a name of an arc or a nonarc variable is the name of a SAS variable listed in the VAR
list specification. If the sparse data format of the CONDATA= data set is used, a name of an arc or a nonarc
variable is a value of the SAS variable listed in the COLUMN list specification.

The NAMECTRL= option is used when a name of an arc or a nonarc variable in the CONDATA= data set
(either a VAR list variable name or a value of the COLUMN list variable) is in the form tail_head and there
exists an arc with these end nodes. If tail_head has not already been tagged as belonging to an arc or nonarc
variable in the ARCDATA= data set, PROC INTPOINT needs to know whether tail_head is the name of the
arc or the name of a nonarc variable.

If you specify NAMECTRL=1, a name that is not defined in the ARCDATA= data set is assumed to be the
name of a nonarc variable. NAMECTRL=2 treats tail_head as the name of the arc with these endnodes,
provided no other name is used to associate data in the CONDATA= data set with this arc. If the arc does
have other names that appear in the CONDATA= data set, tail_head is assumed to be the name of a nonarc
variable. If you specify NAMECTRL=3, tail_head is assumed to be a name of the arc with these end nodes,
whether the arc has other names or not. The default value of NAMECTRL is 3.

If the dense format is used for the CONDATA= data set, there are two circumstances that affect how this data
set is read:

1. if you are running SAS Version 6, or a previous version to that, or if you are running SAS Version 7
onward and you specify

options validvarname=v6;

80 F Chapter 4: The INTPOINT Procedure

in your SAS session. Let’s refer to this as case 1.

2. if you are running SAS Version 7 onward and you do not specify

options validvarname=v6;

in your SAS session. Let’s refer to this as case 2.

For case 1, the SAS System converts SAS variable names in a SAS program to uppercase. The VAR list
variable names are uppercased. Because of this, PROC INTPOINT automatically uppercases names of arcs
and nonarc variables or LP variables (the values of the NAME list variable) in the ARCDATA= data set. The
names of arcs and nonarc variables or LP variables (the values of the NAME list variable) appear uppercased
in the CONOUT= data set.

Also, if the dense format is used for the CONDATA= data set, be careful with default arc names (names in
the form tailnode_headnode). Node names (values in the TAILNODE and HEADNODE list variables) in
the ARCDATA= data set are not automatically uppercased by PROC INTPOINT. Consider the following
statements:

data arcdata;
input _from_ $ _to_ $ _name $;
datalines;

from to1 .
from to2 arc2
TAIL TO3 .
;
data densecon;

input from_to1 from_to2 arc2 tail_to3;
datalines;

2 3 3 5
;
proc intpoint

arcdata=arcdata condata=densecon;
run;

The SAS System does not uppercase character string values within SAS data sets. PROC INTPOINT never
uppercases node names, so the arcs in observations 1, 2, and 3 in the preceding ARCDATA= data set have the
default names from_to1, from_to2, and TAIL_TO3, respectively. When the dense format of the CONDATA=
data set is used, PROC INTPOINT does uppercase values of the NAME list variable, so the name of the arc
in the second observation of the ARCDATA= data set is ARC2. Thus, the second arc has two names: its
default from_to2 and the other that was specified ARC2.

As the SAS System uppercases program code, you must think of the input statement

input from_to1 from_to2 arc2 tail_to3;

as really being

INPUT FROM_TO1 FROM_TO2 ARC2 TAIL_TO3;

PROC INTPOINT Statement F 81

The SAS variables named FROM_TO1 and FROM_TO2 are not associated with any of the arcs in the
preceding ARCDATA= data set. The values FROM_TO1 and FROM_TO2 are different from all of the arc
names from_to1, from_to2, TAIL_TO3, and ARC2. FROM_TO1 and FROM_TO2 could end up being the
names of two nonarc variables.

The SAS variable named ARC2 is the name of the second arc in the ARCDATA= data set, even though the
name specified in the ARCDATA= data set looks like arc2. The SAS variable named TAIL_TO3 is the default
name of the third arc in the ARCDATA= data set.

For case 2, the SAS System does not convert SAS variable names in a SAS program to uppercase. The
VAR list variable names are not uppercased. PROC INTPOINT does not automatically uppercase names of
arcs and nonarc variables or LP variables (the values of the NAME list variable) in the ARCDATA= data
set. PROC INTPOINT does not uppercase any SAS variable names, data set values, or indeed anything.
Therefore, PROC INTPOINT respects case, and characters in the data if compared must have the right case if
you mean them to be the same. Note how the input statement in the DATA step that initialized the data set
densecon below is specified in the following code:

data arcdata;
input _from_ $ _to_ $ _name $;
datalines;

from to1 .
from to2 arc2
TAIL TO3 .
;
data densecon;

input from_to1 from_to2 arc2 TAIL_TO3;
datalines;

2 3 3 5
;
proc intpoint

arcdata=arcdata condata=densecon;
run;

NARCS=n
specifies the approximate number of arcs. See the section “How to Make the Data Read of PROC
INTPOINT More Efficient” on page 119.

NCOEFS=n
specifies the approximate number of constraint coefficients. See the section “How to Make the Data
Read of PROC INTPOINT More Efficient” on page 119.

NCONS=n
specifies the approximate number of constraints. See the section “How to Make the Data Read of
PROC INTPOINT More Efficient” on page 119.

NNAS=n
specifies the approximate number of nonarc variables. See the section “How to Make the Data Read of
PROC INTPOINT More Efficient” on page 119.

82 F Chapter 4: The INTPOINT Procedure

NNODES=n
specifies the approximate number of nodes. See the section “How to Make the Data Read of PROC
INTPOINT More Efficient” on page 119.

NON_REPLIC=non_replic
prevents PROC INTPOINT from doing unnecessary checks of data previously read.

• NON_REPLIC=COEFS indicates that each constraint coefficient is specified once in the CON-
DATA= data set.

• NON_REPLIC=NONE indicates that constraint coefficients can be specified more than once in
the CONDATA= data set. NON_REPLIC=NONE is the default.

See the section “How to Make the Data Read of PROC INTPOINT More Efficient” on page 119.

OPTIM_TIMER
indicates that the procedure is to issue a message to the SAS log giving the CPU time spent doing
optimization. This includes the time spent preprocessing, performing optimization, and postprocessing.
Not counted in that time is the rest of the procedure execution, which includes reading the data and
creating output SAS data sets.

The time spent optimizing can be small compared to the total CPU time used by the procedure. This is
especially true when the problem is quite small (e.g., fewer than 10,000 variables).

RHSOBS=charstr
specifies the keyword that identifies a right-hand-side observation when using the sparse format for
data in the CONDATA= data set. The keyword is expected as a value of the SAS variable in the
CONDATA= data set named in the COLUMN list specification. The default value of the RHSOBS=
option is _RHS_ or _rhs_. If charstr is not a valid SAS variable name, enclose it in quotes.

SCALE=scale
indicates that the NPSC side constraints or the LP constraints are to be scaled. Scaling is useful when
some coefficients are either much larger or much smaller than other coefficients. Scaling might make
all coefficients have values that have a smaller range, and this can make computations more stable
numerically. Try the SCALE= option if PROC INTPOINT is unable to solve a problem because of
numerical instability. Specify

• SCALE=ROW, SCALE=CON, or SCALE=CONSTRAINT if you want the largest absolute value
of coefficients in each constraint to be about 1.0

• SCALE=COL, SCALE=COLUMN, or SCALE=NONARC if you want NPSC nonarc variable
columns or LP variable columns to be scaled so that the absolute value of the largest constraint
coefficient of that variable is near to 1

• SCALE=BOTH if you want the largest absolute value of coefficients in each constraint, and the
absolute value of the largest constraint coefficient of an NPSC nonarc variable or LP variable to
be near to 1. This is the default.

• SCALE=NONE if no scaling should be done

PROC INTPOINT Statement F 83

SHORTPATH

SP
specifies that PROC INTPOINT solve a shortest path problem. The INTPOINT procedure finds the
shortest path between the nodes specified in the SOURCE= option and the SINK= option. The costs
of arcs are their lengths. PROC INTPOINT automatically assigns a supply of one flow unit to the
SOURCE= node, and the SINK= node is assigned to have a one flow unit demand. In this way, the
SHORTPATH option sets up a shortest path problem as an equivalent minimum cost problem.

If a network has one supply node (with supply of one unit) and one demand node (with demand of one
unit), you could specify the SHORTPATH option, with the SOURCE= and SINK= nodes, even if the
problem is not a shortest path problem. You then should not provide any supply or demand data in the
NODEDATA= data set or the ARCDATA= data set.

SINK=sinkname

SINKNODE=sinkname
identifies the demand node. The SINK= option is useful when you specify the MAXFLOW option or
the SHORTPATH option and you need to specify toward which node the shortest path or maximum
flow is directed. The SINK= option also can be used when a minimum cost problem has only one
demand node. Rather than having this information in the ARCDATA= data set or the NODEDATA=
data set, use the SINK= option with an accompanying DEMAND= specification for this node. The
SINK= option must be the name of a head node of at least one arc; thus, it must have a character value.
If the value of the SINK= option is not a valid SAS character variable name (if, for example, it contains
embedded blanks), it must be enclosed in quotes.

SOURCE=sourcename

SOURCENODE=sourcename
identifies a supply node. The SOURCE= option is useful when you specify the MAXFLOW or
the SHORTPATH option and need to specify from which node the shortest path or maximum flow
originates. The SOURCE= option also can be used when a minimum cost problem has only one supply
node. Rather than having this information in the ARCDATA= data set or the NODEDATA= data
set, use the SOURCE= option with an accompanying SUPPLY= amount of supply at this node. The
SOURCE= option must be the name of a tail node of at least one arc; thus, it must have a character
value. If the value of the SOURCE= option is not a valid SAS character variable name (if, for example,
it contains embedded blanks), it must be enclosed in quotes.

SPARSECONDATA

SCDATA
indicates that the CONDATA= data set has data in the sparse data format. Otherwise, it is assumed that
the data are in the dense format.

NOTE: If the SPARSECONDATA option is not specified, and you are running SAS software Version
6 or you have specified

options validvarname=v6;

all NAME list variable values in the ARCDATA= data set are uppercased. See the section “Case
Sensitivity” on page 111.

84 F Chapter 4: The INTPOINT Procedure

SUPPLY=s
specifies the supply at the source node specified by the SOURCE= option. The SUPPLY= option
should be used only if the SOURCE= option is given in the PROC INTPOINT statement and neither
the SHORTPATH option nor the MAXFLOW option is specified. If you are solving a minimum cost
network problem and the SOURCE= option is used to identify the source node and the SUPPLY=
option is not specified, then by default the supply at the source node is made equal to the network’s
total demand.

THRUNET
tells PROC INTPOINT to force through the network any excess supply (the amount by which total
supply exceeds total demand) or any excess demand (the amount by which total demand exceeds
total supply) as is required. If a network problem has unequal total supply and total demand and the
THRUNET option is not specified, PROC INTPOINT drains away the excess supply or excess demand
in an optimal manner. The consequences of specifying or not specifying THRUNET are discussed in
the section “Balancing Total Supply and Total Demand” on page 118.

TYPEOBS=charstr
specifies the keyword that identifies a type observation when using the sparse format for data in the
CONDATA= data set. The keyword is expected as a value of the SAS variable in the CONDATA= data
set named in the COLUMN list specification. The default value of the TYPEOBS= option is _TYPE_
or _type_. If charstr is not a valid SAS variable name, enclose it in quotes.

VERBOSE=v
limits the number of similar messages that are displayed on the SAS log.

For example, when reading the ARCDATA= data set, PROC INTPOINT might have cause to issue the
following message many times:

ERROR: The HEAD list variable value in obs i in ARCDATA is
missing and the TAIL list variable value of this obs
is nonmissing. This is an incomplete arc specification.

If there are many observations that have this fault, messages that are similar are issued for only the first
VERBOSE= such observations. After the ARCDATA= data set has been read, PROC INTPOINT will
issue the message

NOTE: More messages similar to the ones immediately above
could have been issued but were suppressed as
VERBOSE=v.

If observations in the ARCDATA= data set have this error, PROC INTPOINT stops and you have
to fix the data. Imagine that this error is only a warning and PROC INTPOINT proceeded to other
operations such as reading the CONDATA= data set. If PROC INTPOINT finds there are numerous
errors when reading that data set, the number of messages issued to the SAS log are also limited by the
VERBOSE= option.

PROC INTPOINT Statement F 85

When PROC INTPOINT finishes and messages have been suppressed, the message

NOTE: To see all messages, specify VERBOSE=vmin.

is issued. The value of vmin is the smallest value that should be specified for the VERBOSE= option
so that all messages are displayed if PROC INTPOINT is run again with the same data and everything
else (except VERBOSE=vmin) unchanged.

The default value for the VERBOSE= option is 12.

ZERO2=z

Z2=z
specifies the zero tolerance level used when determining whether the final solution has been reached.
ZERO2= is also used when outputting the solution to the CONOUT= data set. Values within z of zero
are set to 0.0, where z is the value of the ZERO2= option. Flows close to the lower flow bound or
capacity of arcs are reassigned those exact values. If there are nonarc variables, values close to the
lower or upper value bound of nonarc variables are reassigned those exact values. When solving an LP
problem, values close to the lower or upper value bound of LP variables are reassigned those exact
values.

The ZERO2= option works when determining whether optimality has been reached or whether an
element in the vector .�xk; �yk; �sk/ is less than or greater than zero. It is crucial to know that
when determining the maximal value for the step length ˛ in the formula

.xkC1; ykC1; skC1/ D .xk; yk; sk/C ˛.�xk; �yk; �sk/

See the description of the PDSTEPMULT= option for more details on this computation.

Two values are deemed to be close if one is within z of the other. The default value for the ZERO2=
option is 0.000001. Any value specified for the ZERO2= option that is < 0.0 or > 0.0001 is not valid.

ZEROTOL=z
specifies the zero tolerance used when PROC INTPOINT must compare any real number with another
real number, or zero. For example, if x and y are real numbers, then for x to be considered greater than
y, x must be at least y C z. The ZEROTOL= option is used throughout any PROC INTPOINT run.

ZEROTOL=z controls the way PROC INTPOINT performs all double precision comparisons; that is,
whether a double precision number is equal to, not equal to, greater than (or equal to), or less than (or
equal to) zero or some other double precision number. A double precision number is deemed to be the
same as another such value if the absolute difference between them is less than or equal to the value of
the ZEROTOL= option.

The default value for the ZEROTOL= option is 1.0E�14. You can specify the ZEROTOL= option in
the INTPOINT statement. Valid values for the ZEROTOL= option must be > 0.0 and < 0.0001. Do
not specify a value too close to zero as this defeats the purpose of the ZEROTOL= option. Neither
should the value be too large, as comparisons might be incorrectly performed.

86 F Chapter 4: The INTPOINT Procedure

Interior Point Algorithm Options

FACT_METHOD=f
enables you to choose the type of algorithm used to factorize and solve the main linear systems at each
iteration of the interior point algorithm.

FACT_METHOD=LEFT_LOOKING is new for SAS 9.1.2. It uses algorithms described in George,
Liu, and Ng (2001). Left looking is one of the main methods used to perform Cholesky optimization
and, along with some recently developed implementation approaches, can be faster and require less
memory than other algorithms.

Specify FACT_METHOD=USE_OLD if you want the procedure to use the only factorization available
prior to SAS 9.1.2.

TOLDINF=t

RTOLDINF=t
specifies the allowed amount of dual infeasibility. In the section “Interior Point Algorithmic Details” on
page 41, the vector infeasd is defined. If all elements of this vector are � t , the solution is considered
dual feasible. infeasd is replaced by a zero vector, making computations faster. This option is the dual
equivalent to the TOLPINF= option. Increasing the value of the TOLDINF= option too much can lead
to instability, but a modest increase can give the algorithm added flexibility and decrease the iteration
count. Valid values for t are greater than 1.0E�12. The default is 1.0E�7.

TOLPINF=t

RTOLPINF=t
specifies the allowed amount of primal infeasibility. This option is the primal equivalent to the
TOLDINF= option. In the section “Interior Point: Upper Bounds” on page 45, the vector infeasb is
defined. In the section “Interior Point Algorithmic Details” on page 41, the vector infeasc is defined.
If all elements in these vectors are � t , the solution is considered primal feasible. infeasb and infeasc

are replaced by zero vectors, making computations faster. Increasing the value of the TOLPINF=
option too much can lead to instability, but a modest increase can give the algorithm added flexibility
and decrease the iteration count. Valid values for t are greater than 1.0E�12. The default is 1.0E�7.

TOLTOTDINF=t

RTOLTOTDINF=t
specifies the allowed total amount of dual infeasibility. In the section “Interior Point Algorithmic
Details” on page 41, the vector infeasd is defined. If

Pn
iD1 infeasdi � t , the solution is considered

dual feasible. infeasd is replaced by a zero vector, making computations faster. This option is the dual
equivalent to the TOLTOTPINF= option. Increasing the value of the TOLTOTDINF= option too much
can lead to instability, but a modest increase can give the algorithm added flexibility and decrease the
iteration count. Valid values for t are greater than 1.0E�12. The default is 1.0E�7.

TOLTOTPINF=t

RTOLTOTPINF=t
specifies the allowed total amount of primal infeasibility. This option is the primal equivalent to the
TOLTOTDINF= option. In the section “Interior Point: Upper Bounds” on page 45, the vector infeasb

is defined. In the section “Interior Point Algorithmic Details” on page 41, the vector infeasc is defined.
If

Pn
iD1 infeasbi � t and

Pm
iD1 infeasci � t , the solution is considered primal feasible. infeasb

and infeasc are replaced by zero vectors, making computations faster. Increasing the value of the
TOLTOTPINF= option too much can lead to instability, but a modest increase can give the algorithm

PROC INTPOINT Statement F 87

added flexibility and decrease the iteration count. Valid values for t are greater than 1.0E�12. The
default is 1.0E�7.

CHOLTINYTOL=c

RCHOLTINYTOL=c
specifies the cut-off tolerance for Cholesky factorization of the A‚A�1. If a diagonal value drops
below c, the row is essentially treated as dependent and is ignored in the factorization. Valid values for
c are between 1.0E�30 and 1.0E�6. The default value is 1.0E�8.

DENSETHR=d

RDENSETHR=d
specifies the density threshold for Cholesky factorization. When the symbolic factorization encounters
a column of L (where L is the remaining unfactorized submatrix) that has DENSETHR= proportion
of nonzeros and the remaining part of L is at least 12 � 12, the remainder of L is treated as dense.
In practice, the lower right part of the Cholesky triangular factor L is quite dense and it can be
computationally more efficient to treat it as 100% dense. The default value for d is 0.7. A specification
of d � 0.0 causes all dense processing; d � 1.0 causes all sparse processing.

PDSTEPMULT=p

RPDSTEPMULT=p
specifies the step-length multiplier. The maximum feasible step-length chosen by the interior point
algorithm is multiplied by the value of the PDSTEPMULT= option. This number must be less than 1 to
avoid moving beyond the barrier. An actual step-length greater than 1 indicates numerical difficulties.
Valid values for p are between 0.01 and 0.999999. The default value is 0.99995.

In the section “Interior Point Algorithmic Details” on page 41, the solution of the next iteration is
obtained by moving along a direction from the current iteration’s solution:

.xkC1; ykC1; skC1/ D .xk; yk; sk/C ˛.�xk; �yk; �sk/

where ˛ is the maximum feasible step-length chosen by the interior point algorithm. If ˛ � 1, then ˛
is reduced slightly by multiplying it by p. ˛ is a value as large as possible but � 1.0 and not so large
that an xkC1

i or skC1
i of some variable i is “too close” to zero.

PRSLTYPE=p

IPRSLTYPE=p
Preprocessing the linear programming problem often succeeds in allowing some variables and con-
straints to be temporarily eliminated from the resulting LP that must be solved. This reduces the
solution time and possibly also the chance that the optimizer will run into numerical difficulties. The
task of preprocessing is inexpensive to do.

You control how much preprocessing to do by specifying PRSLTYPE=p, where p can be –1, 0, 1, 2, or
3:

–1 Do not perform preprocessing. For most problems, specifying
PRSLTYPE= –1 is not recommended.

88 F Chapter 4: The INTPOINT Procedure

0 Given upper and lower bounds on each variable, the greatest and least
contribution to the row activity of each variable is computed. If these are
within the limits set by the upper and lower bounds on the row activity,
then the row is redundant and can be discarded. Otherwise, whenever
possible, the bounds on any of the variables are tightened. For example, if
all coefficients in a constraint are positive and all variables have zero lower
bounds, then the row’s smallest contribution is zero. If the rhs value of
this constraint is zero, then if the constraint type is = or �, all the variables
in that constraint are fixed to zero. These variables and the constraint are
removed. If the constraint type is �, the constraint is redundant. If the
rhs is negative and the constraint is �, the problem is infeasible. If just
one variable in a row is not fixed, the row to used to impose an implicit
upper or lower bound on the variable and then this row is eliminated. The
preprocessor also tries to tighten the bounds on constraint right-hand sides.

1 When there are exactly two unfixed variables with coefficients in an equality
constraint, one variable is solved in terms of the other. The problem will
have one less variable. The new matrix will have at least two fewer coef-
ficients and one less constraint. In other constraints where both variables
appear, two coefficients are combined into one. PRSLTYPE=0 reductions
are also done.

2 It may be possible to determine that an equality constraint is not constraining
a variable. That is, if all variables are nonnegative, then x�

P
i yi D 0 does

not constrain x, since it must be nonnegative if all the yi ’s are nonnegative.
In this case, x is eliminated by subtracting this equation from all others
containing x. This is useful when the only other entry for x is in the
objective function. This reduction is performed if there is at most one other
nonobjective coefficient. PRSLTYPE=0 reductions are also done.

3 All possible reductions are performed. PRSLTYPE=3 is the default.

Preprocessing is iterative. As variables are fixed and eliminated, and constraints are found to be
redundant and they too are eliminated, and as variable bounds and constraint right-hand sides are
tightened, the LP to be optimized is modified to reflect these changes. Another iteration of preprocessing
of the modified LP may reveal more variables and constraints that are eliminated, or tightened.

PRINTLEVEL2=p
is used when you want to see PROC INTPOINT’s progress to the optimum. PROC INTPOINT will
produce a table on the SAS log. A row of the table is generated during each iteration and may consist
of values of

• the affine step complementarity

• the complementarity of the solution for the next iteration

• the total bound infeasibility
Pn

iD1 infeasbi (see the infeasb array in the section “Interior Point:
Upper Bounds” on page 45)

• the total constraint infeasibility
Pm

iD1 infeasci (see the infeasc array in the section “Interior
Point Algorithmic Details” on page 41)

• the total dual infeasibility
Pn

iD1 infeasdi (see the infeasd array in the section “Interior Point
Algorithmic Details” on page 41)

PROC INTPOINT Statement F 89

As optimization progresses, the values in all columns should converge to zero. If you specify PRINT-
LEVEL2=2, all columns will appear in the table. If PRINTLEVEL2=1 is specified, only the affine step
complementarity and the complementarity of the solution for the next iteration will appear. Some time
is saved by not calculating the infeasibility values.

PRINTLEVEL2=2 is specified in all PROC INTPOINT runs in the section “Examples: INTPOINT
Procedure” on page 126.

RTTOL=r
specifies the zero tolerance used during the ratio test of the interior point algorithm. The ratio test
determines ˛, the maximum feasible step length.

Valid values for r are greater than 1.0E�14. The default value is 1.0E�10.

In the section “Interior Point Algorithmic Details” on page 41, the solution of the next iteration is
obtained by moving along a direction from the current iteration’s solution:

.xkC1; ykC1; skC1/ D .xk; yk; sk/C ˛.�xk; �yk; �sk/

where ˛ is the maximum feasible step-length chosen by the interior point algorithm. If ˛ � 1, then
˛ is reduced slightly by multiplying it by the value of the PDSTEPMULT= option. ˛ is a value as
large as possible but � 1:0 and not so large that an xkC1

i or skC1
i of some variable i is negative. When

determining ˛, only negative elements of �x and �s are important.

RTTOL=r indicates a number close to zero so that another number n is considered truly negative if
n � �r . Even though n < 0, if n > �r , n may be too close to zero and may have the wrong sign due
to rounding error.

Interior Point Algorithm Options: Stopping Criteria

MAXITERB=m

IMAXITERB=m
specifies the maximum number of iterations that the interior point algorithm can perform. The default
value for m is 100. One of the most remarkable aspects of the interior point algorithm is that for most
problems, it usually needs to do a small number of iterations, no matter the size of the problem.

PDGAPTOL=p

RPDGAPTOL=p
specifies the primal-dual gap or duality gap tolerance. Duality gap is defined in the section “Interior
Point Algorithmic Details” on page 41. If the relative gap (duality gap=.cT x/) between the primal
and dual objectives is smaller than the value of the PDGAPTOL= option and both the primal and
dual problems are feasible, then PROC INTPOINT stops optimization with a solution that is deemed
optimal. Valid values for p are between 1.0E�12 and 1.0E�1. The default is 1.0E�7.

STOP_C=s
is used to determine whether optimization should stop. At the beginning of each iteration, if complemen-
tarity (the value of the Complem-ity column in the table produced when you specify PRINTLEVEL2=1
or PRINTLEVEL2=2) is <D s, optimization will stop. This option is discussed in the section
“Stopping Criteria” on page 123.

90 F Chapter 4: The INTPOINT Procedure

STOP_DG=s
is used to determine whether optimization should stop. At the beginning of each iteration, if the duality
gap (the value of the Duality_gap column in the table produced when you specify PRINTLEVEL2=1 or
PRINTLEVEL2=2) is <D s, optimization will stop. This option is discussed in the section “Stopping
Criteria” on page 123.

STOP_IB=s
is used to determine whether optimization should stop. At the beginning of each iteration, if total
bound infeasibility

Pn
iD1 infeasbi (see the infeasb array in the section “Interior Point: Upper Bounds”

on page 45; this value appears in the Tot_infeasb column in the table produced when you specify
PRINTLEVEL2=1 or PRINTLEVEL2=2) is <D s, optimization will stop. This option is discussed in
the section “Stopping Criteria” on page 123.

STOP_IC=s
is used to determine whether optimization should stop. At the beginning of each iteration, if total
constraint infeasibility

Pm
iD1 infeasci (see the infeasc array in the section “Interior Point Algorithmic

Details” on page 41; this value appears in the Tot_infeasc column in the table produced when you
specify PRINTLEVEL2=2) is <D s, optimization will stop. This option is discussed in the section
“Stopping Criteria” on page 123.

STOP_ID=s
is used to determine whether optimization should stop. At the beginning of each iteration, if total dual
infeasibility

Pn
iD1 infeasdi (see the infeasd array in the section “Interior Point Algorithmic Details”

on page 41; this value appears in the Tot_infeasd column in the table produced when you specify
PRINTLEVEL2=2) is <D s, optimization will stop. This option is discussed in the section “Stopping
Criteria” on page 123.

AND_STOP_C=s
is used to determine whether optimization should stop. At the beginning of each iteration, if complemen-
tarity (the value of the Complem-ity column in the table produced when you specify PRINTLEVEL2=1
or PRINTLEVEL2=2) is <D s, and the other conditions related to other AND_STOP parameters are
also satisfied, optimization will stop. This option is discussed in the section “Stopping Criteria” on
page 123.

AND_STOP_DG=s
is used to determine whether optimization should stop. At the beginning of each iteration, if the duality
gap (the value of the Duality_gap column in the table produced when you specify PRINTLEVEL2=1
or PRINTLEVEL2=2) is <D s, and the other conditions related to other AND_STOP parameters are
also satisfied, optimization will stop. This option is discussed in the section “Stopping Criteria” on
page 123.

AND_STOP_IB=s
is used to determine whether optimization should stop. At the beginning of each iteration, if total bound
infeasibility

Pn
iD1 infeasbi (see the infeasb array in the section “Interior Point: Upper Bounds” on

page 45; this value appears in the Tot_infeasb column in the table produced when you specify PRINT-
LEVEL2=1 or PRINTLEVEL2=2) is <D s, and the other conditions related to other AND_STOP
parameters are also satisfied, optimization will stop. This option is discussed in the section “Stopping
Criteria” on page 123.

PROC INTPOINT Statement F 91

AND_STOP_IC=s
is used to determine whether optimization should stop. At the beginning of each iteration, if total
constraint infeasibility

Pm
iD1 infeasci (see the infeasc array in the section “Interior Point Algorithmic

Details” on page 41; this value appears in the Tot_infeasc column in the table produced when you
specify PRINTLEVEL2=2) is <D s, and the other conditions related to other AND_STOP parameters
are also satisfied, optimization will stop. This option is discussed in the section “Stopping Criteria” on
page 123.

AND_STOP_ID=s
is used to determine whether optimization should stop. At the beginning of each iteration, if total dual
infeasibility

Pn
iD1 infeasdi (see the infeasd array in the section “Interior Point Algorithmic Details”

on page 41; this value appears in the Tot_infeasd column in the table produced when you specify
PRINTLEVEL2=2) is <D s, and the other conditions related to other AND_STOP parameters are
also satisfied, optimization will stop. This option is discussed in the section “Stopping Criteria” on
page 123.

KEEPGOING_C=s
is used to determine whether optimization should stop. When a stopping condition is met, if complemen-
tarity (the value of the Complem-ity column in the table produced when you specify PRINTLEVEL2=1
or PRINTLEVEL2=2) is > s, optimization will continue. This option is discussed in the section
“Stopping Criteria” on page 123.

KEEPGOING_DG=s
is used to determine whether optimization should stop. When a stopping condition is met, if the duality
gap (the value of the Duality_gap column in the table produced when you specify PRINTLEVEL2=1
or PRINTLEVEL2=2) is > s, optimization will continue. This option is discussed in the section
“Stopping Criteria” on page 123.

KEEPGOING_IB=s
is used to determine whether optimization should stop. When a stopping condition is met, if total
bound infeasibility

Pn
iD1 infeasbi (see the infeasb array in the section “Interior Point: Upper Bounds”

on page 45; this value appears in the Tot_infeasb column in the table produced when you specify
PRINTLEVEL2=1 or PRINTLEVEL2=2) is > s, optimization will continue. This option is discussed
in the section “Stopping Criteria” on page 123.

KEEPGOING_IC=s
is used to determine whether optimization should stop. When a stopping condition is met, if total
constraint infeasibility

Pm
iD1 infeasci (see the infeasc array in the section “Interior Point Algorithmic

Details” on page 41; this value appears in the Tot_infeasc column in the table produced when you
specify PRINTLEVEL2=2) is > s, optimization will continue. This option is discussed in the section
“Stopping Criteria” on page 123.

KEEPGOING_ID=s
is used to determine whether optimization should stop. When a stopping condition is met, if total
dual infeasibility

Pn
iD1 infeasdi (see the infeasd array in the section “Interior Point Algorithmic

Details” on page 41; this value appears in the Tot_infeasd column in the table produced when you
specify PRINTLEVEL2=2) is > s, optimization will continue. This option is discussed in the section
“Stopping Criteria” on page 123.

92 F Chapter 4: The INTPOINT Procedure

AND_KEEPGOING_C=s
is used to determine whether optimization should stop. When a stopping condition is met, if complemen-
tarity (the value of the Complem-ity column in the table produced when you specify PRINTLEVEL2=1
or PRINTLEVEL2=2) is > s, and the other conditions related to other AND_KEEPGOING parameters
are also satisfied, optimization will continue. This option is discussed in the section “Stopping Criteria”
on page 123.

AND_KEEPGOING_DG=s
is used to determine whether optimization should stop. When a stopping condition is met, if the duality
gap (the value of the Duality_gap column in the table produced when you specify PRINTLEVEL2=1
or PRINTLEVEL2=2) is > s, and the other conditions related to other AND_KEEPGOING parameters
are also satisfied, optimization will continue. This option is discussed in the section “Stopping Criteria”
on page 123.

AND_KEEPGOING_IB=s
is used to determine whether optimization should stop. When a stopping condition is met, if total
bound infeasibility

Pn
iD1 infeasbi (see the infeasb array in the section “Interior Point: Upper Bounds”

on page 45; this value appears in the Tot_infeasb column in the table produced when you specify
PRINTLEVEL2=2) is > s, and the other conditions related to other AND_KEEPGOING parameters
are also satisfied, optimization will continue. This option is discussed in the section “Stopping Criteria”
on page 123.

AND_KEEPGOING_IC=s
is used to determine whether optimization should stop. When a stopping condition is met, if total
constraint infeasibility

Pm
iD1 infeasci (see the infeasc array in the section “Interior Point Algorithmic

Details” on page 41; this value appears in the Tot_infeasc column in the table produced when you
specify PRINTLEVEL2=2) is > s, and the other conditions related to other AND_KEEPGOING
parameters are also satisfied, optimization will continue. This option is discussed in the section
“Stopping Criteria” on page 123.

AND_KEEPGOING_ID=s
is used to determine whether optimization should stop. When a stopping condition is met, if total dual
infeasibility

Pn
iD1 infeasdi (see the infeasd array in the section “Interior Point Algorithmic Details”

on page 41; this value appears in the Tot_infeasd column in the table produced when you specify
PRINTLEVEL2=2) is > s, and the other conditions related to other AND_KEEPGOING parameters
are also satisfied, optimization will continue. This option is discussed in the section “Stopping Criteria”
on page 123.

CAPACITY Statement
CAPACITY variable ;

CAPAC variable ;

UPPERBD variable ;

The CAPACITY statement identifies the SAS variable in the ARCDATA= data set that contains the maximum
feasible flow or capacity of the network arcs. If an observation contains nonarc variable information, the

COEF Statement F 93

CAPACITY list variable is the upper value bound for the nonarc variable named in the NAME list variable in
that observation.

When solving an LP, the CAPACITY statement identifies the SAS variable in the ARCDATA= data set that
contains the maximum feasible value of the LP variables.

The CAPACITY list variable must have numeric values. It is not necessary to have a CAPACITY statement
if the name of the SAS variable is _CAPAC_, _UPPER_, _UPPERBD, or _HI_.

COEF Statement
COEF variables ;

The COEF list is used with the sparse input format of the CONDATA= data set. The COEF list can contain
more than one SAS variable, each of which must have numeric values. If the COEF statement is not specified,
the CONDATA= data set is searched and SAS variables with names beginning with _COE are used. The
number of SAS variables in the COEF list must be no greater than the number of SAS variables in the ROW
list.

The values of the COEF list variables in an observation can be interpreted differently than these variables’
values in other observations. The values can be coefficients in the side constraints, costs and objective
function coefficients, bound data, constraint type data, or rhs data. If the COLUMN list variable has a value
that is a name of an arc or a nonarc variable, the ith COEF list variable is associated with the constraint or
special row name named in the ith ROW list variable. Otherwise, the COEF list variables indicate type values,
rhs values, or missing values.

When solving an LP, the values of the COEF list variables in an observation can be interpreted differently
than these variables’ values in other observations. The values can be coefficients in the constraints, objective
function coefficients, bound data, constraint type data, or rhs data. If the COLUMN list variable has a value
that is a name of an LP variable, the ith COEF list variable is associated with the constraint or special row
name named in the ith ROW list variable. Otherwise, the COEF list variables indicate type values, rhs values,
or missing values.

COLUMN Statement
COLUMN variable ;

The COLUMN list is used with the sparse input format of the CONDATA= data set.

This list consists of one SAS variable in the CONDATA= data set that has as values the names of arc variables,
nonarc variables, or missing values. When solving an LP, this list consists of one SAS variable in the
CONDATA= data set that has as values the names of LP variables, or missing values. Some, if not all, of
these values also can be values of the NAME list variables of the ARCDATA= data set. The COLUMN list
variable can have other special values (Refer to the TYPEOBS= and RHSOBS= options). If the COLUMN
list is not specified after the PROC INTPOINT statement, the CONDATA= data set is searched and a SAS
variable named _COLUMN_ is used. The COLUMN list variable must have character values.

94 F Chapter 4: The INTPOINT Procedure

COST Statement
COST variable ;

OBJFN variable ;

The COST statement identifies the SAS variable in the ARCDATA= data set that contains the per unit flow
cost through an arc. If an observation contains nonarc variable information, the value of the COST list
variable is the objective function coefficient of the nonarc variable named in the NAME list variable in that
observation.

If solving an LP, the COST statement identifies the SAS variable in the ARCDATA= data set that contains the
per unit objective function coefficient of an LP variable named in the NAME list variable in that observation.

The COST list variable must have numeric values. It is not necessary to specify a COST statement if the
name of the SAS variable is _COST_ or _LENGTH_.

DEMAND Statement
DEMAND variable ;

The DEMAND statement identifies the SAS variable in the ARCDATA= data set that contains the demand
at the node named in the corresponding HEADNODE list variable. The DEMAND list variable must have
numeric values. It is not necessary to have a DEMAND statement if the name of this SAS variable is
DEMAND. See the section “Missing S Supply and Missing D Demand Values” on page 114 for cases when
the SUPDEM list variable values can have other values. There should be no DEMAND statement if you are
solving an LP.

HEADNODE Statement
HEADNODE variable ;

HEAD variable ;

TONODE variable ;

TO variable ;

The HEADNODE statement specifies the SAS variable that must be present in the ARCDATA= data set
that contains the names of nodes toward which arcs are directed. It is not necessary to have a HEADNODE
statement if the name of the SAS variable is _HEAD_ or _TO_. The HEADNODE variable must have
character values.

There should be no HEAD statement if you are solving an LP.

ID Statement F 95

ID Statement
ID variables ;

The ID statement specifies SAS variables containing values for pre- and post-optimal processing and analysis.
These variables are not processed by PROC INTPOINT but are read by the procedure and written in the
CONOUT= data set. For example, imagine a network used to model a distribution system. The SAS variables
listed on the ID statement can contain information on the type of vehicle, the transportation mode, the
condition of the road, the time to complete the journey, the name of the driver, or other ancillary information
useful for report writing or describing facets of the operation that do not have bearing on the optimization.
The ID variables can be character, numeric, or both.

If no ID list is specified, the procedure forms an ID list of all SAS variables not included in any other implicit
or explicit list specification. If the ID list is specified, any SAS variables in the ARCDATA= data set not in
any list are dropped and do not appear in the CONOUT= data set.

LO Statement
LO variable ;

LOWERBD variable ;

MINFLOW variable ;

The LO statement identifies the SAS variable in the ARCDATA= data set that contains the minimum feasible
flow or lower flow bound for arcs in the network. If an observation contains nonarc variable information, the
LO list variable has the value of the lower bound for the nonarc variable named in the NAME list variable. If
solving an LP, the LO statement identifies the SAS variable in the ARCDATA= data set that contains the
lower value bound for LP variables. The LO list variables must have numeric values. It is not necessary to
have a LO statement if the name of this SAS variable is _LOWER_, _LO_, _LOWERBD, or _MINFLOW.

NAME Statement
NAME variable ;

ARCNAME variable ;

VARNAME variable ;

Each arc and nonarc variable in an NPSC, or each variable in an LP, that has data in the CONDATA= data set
must have a unique name. This variable is identified in the ARCDATA= data set. The NAME list variable
must have character values (see the NAMECTRL= option in the PROC INTPOINT statement for more
information). It is not necessary to have a NAME statement if the name of this SAS variable is _NAME_.

96 F Chapter 4: The INTPOINT Procedure

NODE Statement
NODE variable ;

The NODE list variable, which must be present in the NODEDATA= data set, has names of nodes as values.
These values must also be values of the TAILNODE list variable, the HEADNODE list variable, or both. If
this list is not explicitly specified, the NODEDATA= data set is searched for a SAS variable with the name
NODE. The NODE list variable must have character values.

QUIT Statement
QUIT ;

The QUIT statement indicates that PROC INTPOINT is to stop immediately. The solution is not saved in the
CONOUT= data set. The QUIT statement has no options.

RHS Statement
RHS variable ;

The RHS variable list is used when the dense format of the CONDATA= data set is used. The values of the
SAS variable specified in the RHS list are constraint right-hand-side values. If the RHS list is not specified,
the CONDATA= data set is searched and a SAS variable with the name _RHS_ is used. The RHS list variable
must have numeric values. If there is no RHS list and no SAS variable named _RHS_, all constraints are
assumed to have zero right-hand-side values.

ROW Statement
ROW variables ;

The ROW list is used when either the sparse or the dense format of the CONDATA= data set is being used.
SAS variables in the ROW list have values that are constraint or special row names. The SAS variables in the
ROW list must have character values.

If the dense data format is used, there must be only one SAS variable in this list. In this case, if a ROW list is
not specified, the CONDATA= data set is searched and the SAS variable with the name _ROW_ or _CON_
is used. If that search fails to find a suitable SAS variable, data for each constraint must reside in only one
observation.

If the sparse data format is used and the ROW statement is not specified, the CONDATA= data set is searched
and SAS variables with names beginning with _ROW or _CON are used. The number of SAS variables in the
ROW list must not be less than the number of SAS variables in the COEF list. The ith ROW list variable is
paired with the ith COEF list variable. If the number of ROW list variables is greater than the number of
COEF list variables, the last ROW list variables have no COEF partner. These ROW list variables that have
no corresponding COEF list variable are used in observations that have a TYPE list variable value. All ROW
list variable values are tagged as having the type indicated. If there is no TYPE list variable, all ROW list
variable values are constraint names.

RUN Statement F 97

RUN Statement
RUN ;

The RUN statement causes optimization to be started. The RUN statement has no options. If PROC
INTPOINT is called and is not terminated because of an error or a QUIT statement, and you have not used a
RUN statement, a RUN statement is assumed implicitly as the last statement of PROC INTPOINT. Therefore,
PROC INTPOINT reads that data, performs optimization, and saves the optimal solution in the CONOUT=
data set.

SUPDEM Statement
SUPDEM variable ;

The SAS variable in this list, which must be present in the NODEDATA= data set, contains supply and
demand information for the nodes in the NODE list. A positive SUPDEM list variable value s .s > 0/

denotes that the node named in the NODE list variable can supply s units of flow. A negative SUPDEM list
variable value �d .d > 0/ means that this node demands d units of flow. If a SAS variable is not explicitly
specified, a SAS variable with the name _SUPDEM_ or _SD_ in the NODEDATA= data set is used as the
SUPDEM variable. If a node is a transshipment node (neither a supply nor a demand node), an observation
associated with this node need not be present in the NODEDATA= data set. If present, the SUPDEM list
variable value must be zero or a missing value. See the section “Missing S Supply and Missing D Demand
Values” on page 114 for cases when the SUPDEM list variable values can have other values.

SUPPLY Statement
SUPPLY variable ;

The SUPPLY statement identifies the SAS variable in the ARCDATA= data set that contains the supply at the
node named in that observation’s TAILNODE list variable. If a tail node does not supply flow, use zero or a
missing value for the observation’s SUPPLY list variable value. If a tail node has supply capability, a missing
value indicates that the supply quantity is given in another observation. It is not necessary to have a SUPPLY
statement if the name of this SAS variable is _SUPPLY_. See the section “Missing S Supply and Missing D
Demand Values” on page 114 for cases when the SUPDEM list variable values can have other values. There
should be no SUPPLY statement if you are solving an LP.

TAILNODE Statement
TAILNODE variable ;

TAIL variable ;

FROMNODE variable ;

FROM variable ;

98 F Chapter 4: The INTPOINT Procedure

The TAILNODE statement specifies the SAS variable that must (when solving an NPSC problem) be present
in the ARCDATA= data set that has as values the names of tail nodes of arcs. The TAILNODE variable must
have character values. It is not necessary to have a TAILNODE statement if the name of the SAS variable is
TAIL or _FROM_. If the TAILNODE list variable value is missing, it is assumed that the observation of the
ARCDATA= data set contains information concerning a nonarc variable. There should be no TAILNODE
statement if you are solving an LP.

TYPE Statement
TYPE variable ;

CONTYPE variable ;

The TYPE list, which is optional, names the SAS variable that has as values keywords that indicate either
the constraint type for each constraint or the type of special rows in the CONDATA= data set. The values
of the TYPE list variable also indicate, in each observation of the CONDATA= data set, how values of the
VAR or COEF list variables are to be interpreted and how the type of each constraint or special row name
is determined. If the TYPE list is not specified, the CONDATA= data set is searched and a SAS variable
with the name _TYPE_ is used. Valid keywords for the TYPE variable are given below. If there is no TYPE
statement and no other method is used to furnish type information (see the DEFCONTYPE= option), all
constraints are assumed to be of the type “less than or equal to” and no special rows are used. The TYPE list
variable must have character values and can be used when the data in the CONDATA= data set is in either the
sparse or the dense format. If the TYPE list variable value has a * as its first character, the observation is
ignored because it is a comment observation.

TYPE List Variable Values

The following are valid TYPE list variable values. The letters in boldface denote the characters that PROC
INTPOINT uses to determine what type the value suggests. You need to have at least these characters. In the
following list, the minimal TYPE list variable values have additional characters to aid you in remembering
these values.

< less than or equal to (�)
= equal to (=)
> greater than or equal to (�)
CAPAC capacity
COST cost
EQ equal to
FREE free row (used only for linear programs solved by interior point)
GE greater than or equal to
LE less than or equal to
LOWERBD lower flow or value bound
LOWblank lower flow or value bound
MAXIMIZE maximize (opposite of cost)
MINIMIZE minimize (same as cost)
OBJECTIVE objective function (same as cost)
RHS rhs of constraint
TYPE type of constraint

VAR Statement F 99

UPPCOST reserved for future use
UNREST unrestricted variable (used only for linear programs solved by inte-

rior point)
UPPER upper value bound or capacity; second letter must not be N

The valid TYPE list variable values in function order are

• LE less than or equal to (�)

• EQ equal to (D)

• GE greater than or equal to (�)

• COST
MINIMIZE
MAXIMIZE
OBJECTIVE
cost or objective function coefficient

• CAPAC
UPPER
capacity or upper value bound

• LOWERBD
LOWblank
lower flow or value bound

• RHS rhs of constraint

• TYPE type of constraint

A TYPE list variable value that has the first character � causes the observation to be treated as a comment. If
the first character is a negative sign, then � is the type. If the first character is a zero, thenD is the type. If
the first character is a positive number, then � is the type.

VAR Statement
VAR variables ;

The VAR variable list is used when the dense data format is used for the CONDATA= data set. The names of
these SAS variables are also names of the arc and nonarc variables that have data in the CONDATA= data set.
If solving an LP, the names of these SAS variables are also names of the LP variables. If no explicit VAR list
is specified, all numeric SAS variables in the CONDATA= data set that are not in other SAS variable lists are
put onto the VAR list. The VAR list variables must have numeric values. The values of the VAR list variables
in some observations can be interpreted differently than in other observations. The values can be coefficients
in the side constraints, costs and objective function coefficients, or bound data. When solving an LP, the
values of the SAS variables in the VAR list can be constraint coefficients, objective function coefficients, or

100 F Chapter 4: The INTPOINT Procedure

bound data. How these numeric values are interpreted depends on the value of each observation’s TYPE or
ROW list variable value. If there are no TYPE list variables, the VAR list variable values are all assumed to
be side constraint coefficients.

Details: INTPOINT Procedure

Input Data Sets
PROC INTPOINT is designed so that there are as few rules as possible that you must obey when inputting a
problem’s data. Raw data are acceptable. This should cut the amount of processing required to groom the
data before it is input to PROC INTPOINT. Data formats are so flexible that, due to space restrictions, all
possible forms for a problem’s data are not shown here. Try any reasonable form for your problem’s data; it
should be acceptable. PROC INTPOINT will outline its objections.

You can supply the same piece of data several ways. You do not have to restrict yourself to using any
particular one. If you use several ways, PROC INTPOINT checks that the data are consistent each time that
the data are encountered. After all input data sets have been read, data are merged so that the problem is
described completely. The observations can be in any order.

ARCDATA= Data Set

See the section “NPSC Problems” on page 55 and the section “Introductory NPSC Example” on page 57 for
a description of this input data set.

NOTE: Information for an arc or nonarc variable can be specified in more than one observation. For example,
consider an arc directed from node A toward node B that has a cost of 50, capacity of 100, and lower flow
bound of 10 flow units. Some possible observations in the ARCDATA= data set are as follows:

tail _head_ _cost_ _capac_ _lo_
A B 50 . .
A B . 100 .
A B . . 10
A B 50 100 .
A B . 100 10
A B 50 . 10
A B 50 100 10

Similarly, for a nonarc variable that has an upper bound of 100, a lower bound of 10, and an objective function
coefficient of 50, the _TAIL_ and _HEAD_ values are missing.

When solving an LP that has an LP variable named my_var with an upper bound of 100, a lower bound of 10,
and an objective function coefficient of 50, some possible observations in the ARCDATA= data set are

name _cost_ _capac_ _lo_
my_var 50 . .
my_var . 100 .
my_var . . 10

Input Data Sets F 101

my_var 50 100 .
my_var . 100 10
my_var 50 . 10
my_var 50 100 10

CONDATA= Data Set

Regardless of whether the data in the CONDATA= data set is in the sparse or dense format, you will receive
a warning if PROC INTPOINT finds a constraint row that has no coefficients. You will also be warned if any
nonarc or LP variable has no constraint coefficients.

Dense Input Format

If the dense format is used, most SAS variables in the CONDATA= data set belong to the VAR list. The
names of the SAS variables belonging to this list have names of arc and nonarc variables or, if solving an LP,
names of the LP variables. These names can be values of the SAS variables in the ARCDATA= data set that
belong to the NAME list, or names of nonarc variables, or names in the form tail_head, or any combination
of these three forms. Names in the form tail_head are default arc names, and if you use them, you must
specify node names in the ARCDATA= data set (values of the TAILNODE and HEADNODE list variables).

The CONDATA= data set can have three other SAS variables belonging, respectively, to the ROW, the TYPE,
and the RHS lists. The CONDATA= data set of the oil industry example in the section “Introductory NPSC
Example” on page 57 uses the dense data format.

Consider the SAS code that creates a dense format CONDATA= data set that has data for three constraints.
This data set was used in the section “Introductory NPSC Example” on page 57.

data cond1;
input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas

type $ _rhs_;
datalines;

-2 . 1 . . . >= -15
. -2 . . 1 . GE -15
. . -3 4 . . EQ 0
. . . . -3 4 = 0

;

You can use nonconstraint type values to furnish data on costs, capacities, lower flow bounds (and, if there
are nonarc or LP variables, objective function coefficients and upper and lower bounds). You need not have
such (or as much) data in the ARCDATA= data set. The first three observations in the following data set are
examples of observations that provide cost, capacity, and lower bound data.

data cond1b;
input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas

type $ _rhs_;
datalines;

63 81 200 . 220 . cost .
95 80 175 140 100 100 capac .
20 10 50 . 35 . lo .
-2 . 1 . . . >= -15
. -2 . . 1 . GE -15
. . -3 4 . . EQ 0
. . . . -3 4 = 0

;

102 F Chapter 4: The INTPOINT Procedure

If a ROW list variable is used, the data for a constraint can be spread over more than one observation. To
illustrate, the data for the first constraint (which is called con1) and the cost and capacity data (in special rows
called costrow and caprow, respectively) are spread over more than one observation in the following data set.

data cond1c;
input _row_ $

m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas
type $ _rhs_;

datalines;
costrow 63
costrow . 81 200 . . . cost .
. 220 . cost .
caprow capac .
caprow 95 . 175 . 100 100 . .
caprow . 80 175 140
lorow 20 10 50 . 35 . lo .
con1 -2 . 1
con1 >= -15
con2 . -2 . . 1 . GE -15
con3 . . -3 4 . . EQ 0
con4 -3 4 = 0
;

Using both ROW and TYPE lists, you can use special row names. Examples of these are costrow and caprow
in the last data set. It should be restated that in any of the input data sets of PROC INTPOINT, the order
of the observations does not matter. However, the CONDATA= data set can be read more quickly if PROC
INTPOINT knows what type of constraint or special row a ROW list variable value is. For example, when the
first observation is read, PROC INTPOINT does not know whether costrow is a constraint or special row and
how to interpret the value 63 for the arc with the name m_e_ref1. When PROC INTPOINT reads the second
observation, it learns that costrow has cost type and that the values 81 and 200 are costs. When the entire
CONDATA= data set has been read, PROC INTPOINT knows the type of all special rows and constraints.
Data that PROC INTPOINT had to set aside (such as the first observation 63 value and the costrow ROW list
variable value, which at the time had unknown type, but is subsequently known to be a cost special row) is
reprocessed. During this second pass, if a ROW list variable value has unassigned constraint or special row
type, it is treated as a constraint with DEFCONTYPE= (or DEFCONTYPE= default) type. Associated VAR
list variable values are coefficients of that constraint.

Sparse Input Format

The side constraints usually become sparse as the problem size increases. When the sparse data format of the
CONDATA= data set is used, only nonzero constraint coefficients must be specified. Remember to specify
the SPARSECONDATA option in the PROC INTPOINT statement. With the sparse method of specifying
constraint information, the names of arc and nonarc variables or, if solving an LP, the names of LP variables
do not have to be valid SAS variable names.

A sparse format CONDATA= data set for the oil industry example in the section “Introductory NPSC
Example” on page 57 is displayed below.

title 'Setting Up Condata = Cond2 for PROC INTPOINT';
data cond2;

input _column_ $ _row1 $ _coef1 _row2 $ _coef2 ;
datalines;

Input Data Sets F 103

m_e_ref1 con1 -2 . .
m_e_ref2 con2 -2 . .
thruput1 con1 1 con3 -3
r1_gas . . con3 4
thruput2 con2 1 con4 -3
r2_gas . . con4 4
type con1 1 con2 1
type con3 0 con4 0
rhs con1 -15 con2 -15
;

Recall that the COLUMN list variable values _type_ and _rhs_ are the default values of the TYPEOBS=
and RHSOBS= options. Also, the default rhs value of constraints (con3 and con4) is zero. The third to last
observation has the value _type_ for the COLUMN list variable. The _ROW1 variable value is con1, and the
COEF1 variable has the value 1. This indicates that the constraint con1 is greater than or equal to type
(because the value 1 is greater than zero). Similarly, the data in the second to last observation’s _ROW2 and
_COEF2 variables indicate that con2 is an equality constraint (0 equals zero).

An alternative, using a TYPE list variable, is

title 'Setting Up Condata = Cond3 for PROC INTPOINT';
data cond3;

input _column_ $ _row1 $ _coef1 _row2 $ _coef2 _type_ $;
datalines;

m_e_ref1 con1 -2 . . >=
m_e_ref2 con2 -2 . . .
thruput1 con1 1 con3 -3 .
r1_gas . . con3 4 .
thruput2 con2 1 con4 -3 .
r2_gas . . con4 4 .
. con3 . con4 . eq
. con1 -15 con2 -15 ge
;

If the COLUMN list variable is missing in a particular observation (the last 2 observations in the data set
cond3, for instance), the constraints named in the ROW list variables all have the constraint type indicated by
the value in the TYPE list variable. It is for this type of observation that you are allowed more ROW list
variables than COEF list variables. If corresponding COEF list variables are not missing (for example, the
last observation in the data set cond3), these values are the rhs values of those constraints. Therefore, you
can specify both constraint type and rhs in the same observation.

As in the previous CONDATA= data set, if the COLUMN list variable is an arc or nonarc variable, the COEF
list variable values are coefficient values for that arc or nonarc variable in the constraints indicated in the
corresponding ROW list variables. If in this same observation the TYPE list variable contains a constraint
type, all constraints named in the ROW list variables in that observation have this constraint type (for example,
the first observation in the data set cond3). Therefore, you can specify both constraint type and coefficient
information in the same observation.

Also note that DEFCONTYPE=EQ could have been specified, saving you from having to include in the data
that con3 and con4 are of this type.

104 F Chapter 4: The INTPOINT Procedure

In the oil industry example, arc costs, capacities, and lower flow bounds are presented in the ARCDATA=
data set. Alternatively, you could have used the following input data sets. The arcd2 data set has only two
SAS variables. For each arc, there is an observation in which the arc’s tail and head node are specified.

title3 'Setting Up Arcdata = Arcd2 for PROC INTPOINT';
data arcd2;

input _from_&$11. _to_&$15. ;
datalines;

middle east refinery 1
middle east refinery 2
u.s.a. refinery 1
u.s.a. refinery 2
refinery 1 r1
refinery 2 r2
r1 ref1 gas
r1 ref1 diesel
r2 ref2 gas
r2 ref2 diesel
ref1 gas servstn1 gas
ref1 gas servstn2 gas
ref1 diesel servstn1 diesel
ref1 diesel servstn2 diesel
ref2 gas servstn1 gas
ref2 gas servstn2 gas
ref2 diesel servstn1 diesel
ref2 diesel servstn2 diesel
;

title 'Setting Up Condata = Cond4 for PROC INTPOINT';
data cond4;

input _column_&$27. _row1 $ _coef1 _row2 $ _coef2 _type_ $;
datalines;

. con1 -15 con2 -15 ge

. costrow . . . cost

. . . caprow . capac
middle east_refinery 1 con1 -2 . . .
middle east_refinery 2 con2 -2 . . .
refinery 1_r1 con1 1 con3 -3 .
r1_ref1 gas . . con3 4 =
refinery 2_r2 con2 1 con4 -3 .
r2_ref2 gas . . con4 4 eq
middle east_refinery 1 costrow 63 caprow 95 .
middle east_refinery 2 costrow 81 caprow 80 .
u.s.a._refinery 1 costrow 55 . . .
u.s.a._refinery 2 costrow 49 . . .
refinery 1_r1 costrow 200 caprow 175 .
refinery 2_r2 costrow 220 caprow 100 .
r1_ref1 gas . . caprow 140 .
r1_ref1 diesel . . caprow 75 .
r2_ref2 gas . . caprow 100 .
r2_ref2 diesel . . caprow 75 .
ref1 gas_servstn1 gas costrow 15 caprow 70 .
ref1 gas_servstn2 gas costrow 22 caprow 60 .
ref1 diesel_servstn1 diesel costrow 18 . . .

Input Data Sets F 105

ref1 diesel_servstn2 diesel costrow 17 . . .
ref2 gas_servstn1 gas costrow 17 caprow 35 .
ref2 gas_servstn2 gas costrow 31 . . .
ref2 diesel_servstn1 diesel costrow 36 . . .
ref2 diesel_servstn2 diesel costrow 23 . . .
middle east_refinery 1 . 20 . . lo
middle east_refinery 2 . 10 . . lo
refinery 1_r1 . 50 . . lo
refinery 2_r2 . 35 . . lo
ref2 gas_servstn1 gas . 5 . . lo
;

The first observation in the cond4 data set defines con1 and con2 as greater than or equal to (�) constraints
that both (by coincidence) have rhs values of -15. The second observation defines the special row costrow as
a cost row. When costrow is a ROW list variable value, the associated COEF list variable value is interpreted
as a cost or objective function coefficient. PROC INTPOINT has to do less work if constraint names and
special rows are defined in observations near the top of a data set, but this is not a strict requirement. The
fourth to ninth observations contain constraint coefficient data. Observations seven and nine have TYPE list
variable values that indicate that constraints con3 and con4 are equality constraints. The last five observations
contain lower flow bound data. Observations that have an arc or nonarc variable name in the COLUMN list
variable, a nonconstraint type TYPE list variable value, and a value in (one of) the COEF list variables are
valid.

The following data set is equivalent to the cond4 data set.

title 'Setting Up Condata = Cond5 for PROC INTPOINT';
data cond5;

input _column_&$27. _row1 $ _coef1 _row2 $ _coef2 _type_ $;
datalines;

middle east_refinery 1 con1 -2 costrow 63 .
middle east_refinery 2 con2 -2 lorow 10 .
refinery 1_r1 . . con3 -3 =
r1_ref1 gas caprow 140 con3 4 .
refinery 2_r2 con2 1 con4 -3 .
r2_ref2 gas . . con4 4 eq
. CON1 -15 CON2 -15 GE
ref2 diesel_servstn1 diesel . 36 costrow . cost
. . . caprow . capac
. lorow . . . lo
middle east_refinery 1 caprow 95 lorow 20 .
middle east_refinery 2 caprow 80 costrow 81 .
u.s.a._refinery 1 . . . 55 cost
u.s.a._refinery 2 costrow 49 . . .
refinery 1_r1 con1 1 caprow 175 .
refinery 1_r1 lorow 50 costrow 200 .
refinery 2_r2 costrow 220 caprow 100 .
refinery 2_r2 . 35 . . lo
r1_ref1 diesel caprow2 75 . . capac
r2_ref2 gas . . caprow 100 .
r2_ref2 diesel caprow2 75 . . .
ref1 gas_servstn1 gas costrow 15 caprow 70 .
ref1 gas_servstn2 gas caprow2 60 costrow 22 .
ref1 diesel_servstn1 diesel . . costrow 18 .
ref1 diesel_servstn2 diesel costrow 17 . . .

106 F Chapter 4: The INTPOINT Procedure

ref2 gas_servstn1 gas costrow 17 lorow 5 .
ref2 gas_servstn1 gas . . caprow2 35 .
ref2 gas_servstn2 gas . 31 . . cost
ref2 diesel_servstn2 diesel . . costrow 23 .
;

Converting from an NPSC to an LP Problem

If you have data for a linear programming program that has an embedded network, the steps required to
change that data into a form that is acceptable by PROC INTPOINT are

1. Identify the nodal flow conservation constraints. The coefficient matrix of these constraints (a submatrix
of the LP’s constraint coefficient matrix) has only two nonzero elements in each column, -1 and 1.

2. Assign a node to each nodal flow conservation constraint.

3. The rhs values of conservation constraints are the corresponding node’s supplies and demands. Use
this information to create the NODEDATA= data set.

4. Assign an arc to each column of the flow conservation constraint coefficient matrix. The arc is directed
from the node associated with the row that has the 1 element in it and directed toward to the node
associated with the row that has the �1 element in it. Set up the ARCDATA= data set that has two SAS
variables. This data set could resemble ARCDATA=arcd2. These will eventually be the TAILNODE
and HEADNODE list variables when PROC INTPOINT is used. Each observation consists of the tail
and head node of each arc.

5. Remove from the data of the linear program all data concerning the nodal flow conservation constraints.

6. Put the remaining data into a CONDATA= data set. This data set will probably resemble CON-
DATA=cond4 or CONDATA=cond5.

The Sparse Format Summary

The following list illustrates possible CONDATA= data set observation sparse formats. a1, b1, b2, b3 and c1
have as a _COLUMN_ variable value either the name of an arc (possibly in the form tail_head) or the name
of a nonarc variable (if you are solving an NPSC), or the name of the LP variable (if you are solving an LP).
These are collectively referred to as variable in the tables that follow.

Input Data Sets F 107

• If there is no TYPE list variable in the CONDATA= data set, the problem must be constrained and
there is no nonconstraint data in the CONDATA= data set:

COLUMN _ROWx_ _COEFx_ _ROWy_
(no _COEFy_)
(may not be
in CONDATA)

a1 variable constraint lhs coef +------------+
a2 _TYPE_ or constraint -1 0 1 | |

TYPEOBS= | |
a3 _RHS_ or constraint rhs value | constraint |

RHSOBS= or | or |
missing | missing |

a4 _TYPE_ or constraint missing | |
TYPEOBS= | |

a5 _RHS_ or constraint missing | |
RHSOBS= or +------------+
missing

Observations of the form a4 and a5 serve no useful purpose but are still allowed to make problem
generation easier.

• If there are no ROW list variables in the data set, the problem has no constraints and the information is
nonconstraint data. There must be a TYPE list variable and only one COEF list variable in this case.
The COLUMN list variable has as values the names of arcs or nonarc variables and must not have
missing values or special row names as values:

COLUMN _TYPE_ _COEFx_

b1 variable UPPERBD capacity
b2 variable LOWERBD lower flow
b3 variable COST cost

108 F Chapter 4: The INTPOINT Procedure

• Using a TYPE list variable for constraint data implies the following:

COLUMN _TYPE_ _ROWx_ _COEFx_ _ROWy_
(no _COEFy_)
(may not be
in CONDATA)

c1 variable missing +-----+ lhs coef +------------+
c2 _TYPE_ or missing | c | -1 0 1 | |

TYPEOBS= | o | | |
c3 _RHS_ or missing | n | rhs value | constraint |

missing | s | | or |
or RHSOBS= | t | | missing |

c4 variable con type | r | lhs coef | |
c5 _RHS_ or con type | a | rhs value | |

missing | i | | |
or RHSOBS= | n | | |

c6 missing TYPE | t | -1 0 1 | |
c7 missing RHS +-----+ rhs value +------------+

If the observation is in form c4 or c5, and the _COEFx_ values are missing, the constraint is assigned
the type data specified in the _TYPE_ variable.

• Using a TYPE list variable for arc and nonarc variable data implies the following:

COLUMN _TYPE_ _ROWx_ _COEFx_ _ROWy_
(no _COEFy_)
(may not be
in CONDATA)

+---------+ +---------+ +---------+
d1 variable | UPPERBD | | missing | capacity | missing |
d2 variable | LOWERBD | | or | lowerflow | or |
d3 variable | COST | | special | cost | special |

		row		row
		name		name
	+---------+			

d4 missing | | | special | | |
| | | row | | |
+---------+ | name | +---------+

d5 variable missing | | value that missing
| |is interpreted
| |according to
+---------+ _ROWx_

The observations of the form d1 to d5 can have ROW list variable values. Observation d4 must have
ROW list variable values. The ROW value is put into the ROW name tree so that when dealing with
observation d4 or d5, the COEF list variable value is interpreted according to the type of ROW list
variable value. For example, the following three observations define the _ROWx_ variable values
up_row, lo_row, and co_row as being an upper value bound row, lower value bound row, and cost row,
respectively:

Output Data Sets F 109

COLUMN _TYPE_ _ROWx_ _COEFx_

. UPPERBD up_row .
variable_a LOWERBD lo_row lower flow
variable_b COST co_row cost

PROC INTPOINT is now able to correctly interpret the following observation:

COLUMN _TYPE_ _ROW1_ _COEF1_ _ROW2_ _COEF2_ _ROW3_ _COEF3_

var_c . up_row upval lo_row loval co_row cost

If the TYPE list variable value is a constraint type and the value of the COLUMN list variable equals
the value of the TYPEOBS= option or the default value _TYPE_, the TYPE list variable value is
ignored.

NODEDATA= Data Set

See the section “NPSC Problems” on page 55 and the section “Introductory NPSC Example” on page 57 for
a description of this input data set.

Output Data Sets
For NPSC problems, the procedure determines the flow that should pass through each arc as well as the value
that should be assigned to each nonarc variable. The goal is that the minimum flow bounds, capacities, lower
and upper value bounds, and side constraints are not violated. This goal is reached when total cost incurred
by such a flow pattern and value assignment is feasible and optimal. The solution found must also conserve
flow at each node.

For LP problems, the procedure determines the value that should be assigned to each variable. The goal is
that the lower and upper value bounds and the constraints are not violated. This goal is reached when the
total cost incurred by such a value assignment is feasible and optimal.

The CONOUT= data set can be produced and contains a solution obtained after performing optimization.

CONOUT= Data Set

The variables in the CONOUT= data set depend on whether or not the problem has a network component.
If the problem has a network component, the variables and their possible values in an observation are as
follows:

FROM a tail node of an arc. This is a missing value if an observation has
information about a nonarc variable.

TO a head node of an arc. This is a missing value if an observation
has information about a nonarc variable.

COST the cost of an arc or the objective function coefficient of a nonarc
variable

CAPAC the capacity of an arc or upper value bound of a nonarc variable

110 F Chapter 4: The INTPOINT Procedure

LO the lower flow bound of an arc or lower value bound of a nonarc
variable

NAME a name of an arc or nonarc variable
SUPPLY the supply of the tail node of the arc in the observation. This is a

missing value if an observation has information about a nonarc
variable.

DEMAND the demand of the head node of the arc in the observation. This is
a missing value if an observation has information about a nonarc
variable.

FLOW the flow through the arc or value of the nonarc variable
FCOST flow cost, the product of _COST_ and _FLOW_
RCOST the reduced cost of the arc or nonarc variable
ANUMB the number of the arc (positive) or nonarc variable (nonpositive);

used for warm starting PROC NETFLOW
TNUMB the number of the tail node in the network basis spanning tree;

used for warm starting PROC NETFLOW
STATUS the status of the arc or nonarc variable

If the problem does not have a network component, the variables and their possible values in an observation
are as follows:

OBJFN the objective function coefficient of a variable
_UPPERBD the upper value bound of a variable
_LOWERBD the lower value bound of a variable
NAME the name of a variable
VALUE the value of the variable
FCOST objective function value for that variable; the product of _OBJFN_

and _VALUE_

The variables present in the ARCDATA= data set are present in a CONOUT= data set. For example, if there
is a variable called tail in the ARCDATA= data set and you specified the SAS variable list

from tail;

then tail is a variable in the CONOUT= data sets instead of _FROM_. Any ID list variables also appear in the
CONOUT= data sets.

MPSOUT= Data Set

The MPSOUT= data set contains problem data converted from a PROC INTPOINT format into an MPS-
format SAS data set. The six fields, FIELD1 to FIELD6, in the MPSOUT= data set correspond to the six
columns in MPS standard. For more information about the MPS-format SAS data set, see Chapter 17, “The
MPS-Format SAS Data Set” (SAS/OR User’s Guide: Mathematical Programming).

Converting Any PROC INTPOINT Format to an MPS-Format SAS Data Set F 111

Converting Any PROC INTPOINT Format to an MPS-Format SAS Data Set
The MPSOUT= option enables you to convert an input data set for the INTPOINT procedure into an
MPS-format SAS data set. The converted data set is readable by the OPTLP procedure.

The conversion can handle linear programs and network flow formulations. If you specify a network flow
formulation, it will be converted into an equivalent linear program. When multiple objective row names are
present, rows with the name encountered first are combined into the objective row. The remaining rows are
marked as free rows.

For information about how the contents of the MPS-format SAS data set are interpreted, see Chapter 17,
“The MPS-Format SAS Data Set” (SAS/OR User’s Guide: Mathematical Programming). For examples that
demonstrate the use of the MPSOUT= option and migration to the OPTMODEL procedure, see the section
“Examples: INTPOINT Procedure” on page 126.

Case Sensitivity
Whenever the INTPOINT procedure has to compare character strings, whether they are node names, arc
names, nonarc names, LP variable names, or constraint names, if the two strings have different lengths, or on
a character by character basis the character is different or has different cases, PROC INTPOINT judges the
character strings to be different.

Not only is this rule enforced when one or both character strings are obtained as values of SAS variables in
PROC INTPOINT’s input data sets, it also should be obeyed if one or both character strings were originally
SAS variable names, or were obtained as the values of options or statements parsed to PROC INTPOINT.
For example, if the network has only one node that has supply capability, or if you are solving a MAXFLOW
or SHORTPATH problem, you can indicate that node using the SOURCE= option. If you specify

proc intpoint source=NotableNode

then PROC INTPOINT looks for a value of the TAILNODE list variable that is NotableNode.

Version 6 of the SAS System converts text that makes up statements into uppercase. The name of the node
searched for would be NOTABLENODE, even if this was your SAS code:

proc intpoint source=NotableNode

If you want PROC INTPOINT to behave as it did in Version 6, specify

options validvarname=v6;

If the SPARSECONDATA option is not specified, and you are running SAS software Version 6, or you are
running SAS software Version 7 onward and have specified

options validvarname=v6;

all values of the SAS variables that belong to the NAME list are uppercased. This is because the SAS System
has uppercased all SAS variable names, particularly those in the VAR list of the CONDATA= data set.

Entities that contain blanks must be enclosed in quotes.

112 F Chapter 4: The INTPOINT Procedure

Loop Arcs
Loop arcs (which are arcs directed toward nodes from which they originate) are prohibited. Rather, introduce
a dummy intermediate node in loop arcs. For example, replace arc (A,A) with (A,B) and (B,A); B is the name
of a new node, and it must be distinct for each loop arc.

Multiple Arcs
Multiple arcs with the same tail and head nodes are prohibited. PROC INTPOINT checks to ensure there are
no such arcs before proceeding with the optimization. Introduce a new dummy intermediate node in multiple
arcs. This node must be distinct for each multiple arc. For example, if some network has three arcs directed
from node A toward node B, then replace one of these three with arcs (A,C) and (C,B) and replace another
one with (A,D) and (D,B). C and D are new nodes added to the network.

Flow and Value Bounds
The capacity and lower flow bound of an arc can be equal. Negative arc capacities and lower flow bounds are
permitted. If both arc capacities and lower flow bounds are negative, the lower flow bound must be at least as
negative as the capacity. An arc (A,B) that has a negative flow of �f units can be interpreted as an arc that
conveys f units of flow from node B to node A.

The upper and lower value bound of a nonarc variable can be equal. Negative upper and lower bounds are
permitted. If both are negative, the lower bound must be at least as negative as the upper bound.

When solving an LP, the upper and lower value bounds of an LP variable can be equal. Negative upper and
lower bounds are permitted. If both are negative, the lower bound must be at least as negative as the upper
bound.

In short, for any problem to be feasible, a lower bound must be � the associated upper bound.

Tightening Bounds and Side Constraints
If any piece of data is furnished to PROC INTPOINT more than once, PROC INTPOINT checks for
consistency so that no conflict exists concerning the data values. For example, if the cost of some arc is
seen to be one value and as more data are read, the cost of the same arc is seen to be another value, PROC
INTPOINT issues an error message on the SAS log and stops. There are two exceptions to this:

• The bounds of arcs and nonarc variables, or the bounds of LP variables, are made as tight as possible.
If several different values are given for the lower flow bound of an arc, the greatest value is used. If
several different values are given for the lower bound of a nonarc or LP variable, the greatest value
is used. If several different values are given for the capacity of an arc, the smallest value is used. If
several different values are given for the upper bound of a nonarc or LP variable, the smallest value is
used.

Reasons for Infeasibility F 113

• Several values can be given for inequality constraint right-hand sides. For a particular constraint, the
lowest rhs value is used for the rhs if the constraint is of less than or equal to type. For a particular
constraint, the greatest rhs value is used for the rhs if the constraint is of greater than or equal to type.

Reasons for Infeasibility
Before optimization commences, PROC INTPOINT tests to ensure that the problem is not infeasible by
ensuring that, with respect to supplies, demands, and arc flow bounds, flow conservation can be obeyed at
each node:

• Let IN be the sum of lower flow bounds of arcs directed toward a node plus the node’s supply. Let
OUT be the sum of capacities of arcs directed from that node plus the node’s demand. If IN exceeds
OUT, not enough flow can leave the node.

• Let OUT be the sum of lower flow bounds of arcs directed from a node plus the node’s demand. Let
IN be the total capacity of arcs directed toward the node plus the node’s supply. If OUT exceeds IN,
not enough flow can arrive at the node.

Reasons why a network problem can be infeasible are similar to those previously mentioned but apply to a
set of nodes rather than for an individual node.

Consider the network illustrated in Figure 4.10.

Figure 4.10 An Infeasible Network

NODE_1----------------->NODE_2
/ capac=55 \
/ lo=50 \

/ \
/ \
/ \

NODE_3 NODE_4
supply=100 \ / demand=120

\ /
\ /
\ capac=62 /
\ lo=60 /
NODE_5----------------->NODE_6

The demand of NODE_4 is 120. That can never be satisfied because the maximal flow through arcs (NODE_1,
NODE_2) and (NODE_5, NODE_6) is 117. More specifically, the implicit supply of NODE_2 and NODE_6
is only 117, which is insufficient to satisfy the demand of other nodes (real or implicit) in the network.

Furthermore, the lower flow bounds of arcs (NODE_1, NODE_2) and (NODE_5, NODE_6) are greater than
the flow that can reach the tail nodes of these arcs, that, by coincidence, is the total supply of the network.
The implicit demand of nodes NODE_1 and NODE_5 is 110, which is greater than the amount of flow that
can reach these nodes.

114 F Chapter 4: The INTPOINT Procedure

Missing S Supply and Missing D Demand Values
In some models, you may want a node to be either a supply or demand node but you want the node to
supply or demand the optimal number of flow units. To indicate that a node is such a supply node, use a
missing S value in the SUPPLY list variable in the ARCDATA= data set or the SUPDEM list variable in
the NODEDATA= data set. To indicate that a node is such a demand node, use a missing D value in the
DEMAND list variable in the ARCDATA= data set or the SUPDEM list variable in the NODEDATA= data
set.

Suppose the oil example in the section “Introductory NPSC Example” on page 57 is changed so that crude
oil can be obtained from either the Middle East or U.S.A. in any amounts. You should specify that the node
middle east is a supply node, but you do not want to stipulate that it supplies 100 units, as before. The node
u.s.a. should also remain a supply node, but you do not want to stipulate that it supplies 80 units. You must
specify that these nodes have missing S supply capabilities:

title 'Oil Industry Example';
title3 'Crude Oil can come from anywhere';
data miss_s;

missing S;
input _node_&$15. _sd_;
datalines;

middle east S
u.s.a. S
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;

The following PROC INTPOINT run uses the same ARCDATA= and CONDATA= data sets used in the
section “Introductory NPSC Example” on page 57:

proc intpoint
bytes=100000
nodedata=miss_s /* the supply (missing S) and */

/* demand data */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* the solution data set */
run;

proc print;
var _from_ _to_ _cost_ _capac_ _lo_ _flow_ _fcost_;
sum _fcost_;
run;

Missing S Supply and Missing D Demand Values F 115

The following messages appear on the SAS log:

NOTE: Number of nodes= 14 .

NOTE: All supply nodes have unspecified (.S) supply capability. Number of these

 nodes= 2 .

NOTE: Number of demand nodes= 4 .

NOTE: Total supply= 0 , total demand= 180 .

NOTE: Number of arcs= 18 .

NOTE: Number of <= side constraints= 0 .

NOTE: Number of == side constraints= 2 .

NOTE: Number of >= side constraints= 2 .

NOTE: Number of side constraint coefficients= 8 .

NOTE: The following messages relate to the equivalent Linear Programming

 problem solved by the Interior Point algorithm.

NOTE: Number of <= constraints= 0 .

NOTE: Number of == constraints= 17 .

NOTE: Number of >= constraints= 2 .

NOTE: Number of constraint coefficients= 48 .

NOTE: Number of variables= 20 .

NOTE: After preprocessing, number of <= constraints= 0.

NOTE: After preprocessing, number of == constraints= 5.

NOTE: After preprocessing, number of >= constraints= 2.

NOTE: The preprocessor eliminated 12 constraints from the problem.

NOTE: The preprocessor eliminated 33 constraint coefficients from the problem.

NOTE: After preprocessing, number of variables= 6.

NOTE: The preprocessor eliminated 14 variables from the problem.

NOTE: 6 columns, 0 rows and 6 coefficients were added to the problem to handle

 unrestricted variables, variables that are split, and constraint slack or

 surplus variables.

NOTE: There are 19 sub-diagonal nonzeroes in the unfactored A Atranspose matrix.

NOTE: The 7 factor nodes make up 2 supernodes

NOTE: There are 4 nonzero sub-rows or sub-columns outside the supernodal

 triangular regions along the factors leading diagonal.

NOTE: Bound feasibility attained by iteration 1.

NOTE: Dual feasibility attained by iteration 1.

NOTE: Constraint feasibility attained by iteration 1.

NOTE: The Primal-Dual Predictor-Corrector Interior Point algorithm performed 6

 iterations.

NOTE: Optimum reached.

NOTE: Objective= 50075.

NOTE: The data set WORK.SOLUTION has 18 observations and 10 variables.

NOTE: There were 18 observations read from the data set WORK.ARCD1.

NOTE: There were 6 observations read from the data set WORK.MISS_S.

NOTE: There were 4 observations read from the data set WORK.COND1.

116 F Chapter 4: The INTPOINT Procedure

The CONOUT= data set is shown in Figure 4.11.

Figure 4.11 Missing S SUPDEM Values in NODEDATA

Obs _from_ _to_ _cost_ _capac_ _lo_ _FLOW_ _FCOST_

1 refinery 1 r1 200 175 50 145.000 29000.00

2 refinery 2 r2 220 100 35 35.000 7700.00

3 r1 ref1 diesel 0 75 0 36.250 0.00

4 r1 ref1 gas 0 140 0 108.750 0.00

5 r2 ref2 diesel 0 75 0 8.750 0.00

6 r2 ref2 gas 0 100 0 26.250 0.00

7 middle east refinery 1 63 95 20 20.000 1260.00

8 u.s.a. refinery 1 55 99999999 0 125.000 6875.00

9 middle east refinery 2 81 80 10 10.000 810.00

10 u.s.a. refinery 2 49 99999999 0 25.000 1225.00

11 ref1 diesel servstn1 diesel 18 99999999 0 30.000 540.00

12 ref2 diesel servstn1 diesel 36 99999999 0 0.000 0.00

13 ref1 gas servstn1 gas 15 70 0 68.750 1031.25

14 ref2 gas servstn1 gas 17 35 5 26.250 446.25

15 ref1 diesel servstn2 diesel 17 99999999 0 6.250 106.25

16 ref2 diesel servstn2 diesel 23 99999999 0 8.750 201.25

17 ref1 gas servstn2 gas 22 60 0 40.000 880.00

18 ref2 gas servstn2 gas 31 99999999 0 0.000 0.00

50075.00

The optimal supplies of nodes middle east and u.s.a. are 30 and 150 units, respectively. For this example,
the same optimal solution is obtained if these nodes had supplies less than these values (each supplies 1
unit, for example) and the THRUNET option was specified in the PROC INTPOINT statement. With the
THRUNET option active, when total supply exceeds total demand, the specified nonmissing demand values
are the lowest number of flow units that must be absorbed by the corresponding node. This is demonstrated
in the following PROC INTPOINT run. The missing S is most useful when nodes are to supply optimal
numbers of flow units and it turns out that for some nodes, the optimal supply is 0.

data miss_s_x;
missing S;
input _node_&$15. _sd_;
datalines;

middle east 1
u.s.a. 1
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;

proc intpoint
bytes=100000
thrunet
nodedata=miss_s_x /* No supply (missing S) */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* the solution data set */
run;

Missing S Supply and Missing D Demand Values F 117

proc print;
var _from_ _to_ _cost_ _capac_ _lo_ _flow_ _fcost_;
sum _fcost_;
run;

The following messages appear on the SAS log. Note that the Total supply= 2, not 0 as in the last run:

NOTE: Number of nodes= 14 .

NOTE: Number of supply nodes= 2 .

NOTE: Number of demand nodes= 4 .

NOTE: Total supply= 2 , total demand= 180 .

NOTE: Number of arcs= 18 .

NOTE: Number of <= side constraints= 0 .

NOTE: Number of == side constraints= 2 .

NOTE: Number of >= side constraints= 2 .

NOTE: Number of side constraint coefficients= 8 .

NOTE: The following messages relate to the equivalent Linear Programming problem

 solved by the Interior Point algorithm.

NOTE: Number of <= constraints= 0 .

NOTE: Number of == constraints= 17 .

NOTE: Number of >= constraints= 2 .

NOTE: Number of constraint coefficients= 48 .

NOTE: Number of variables= 20 .

NOTE: After preprocessing, number of <= constraints= 0.

NOTE: After preprocessing, number of == constraints= 5.

NOTE: After preprocessing, number of >= constraints= 2.

NOTE: The preprocessor eliminated 12 constraints from the problem.

NOTE: The preprocessor eliminated 33 constraint coefficients from the problem.

NOTE: After preprocessing, number of variables= 6.

NOTE: The preprocessor eliminated 14 variables from the problem.

NOTE: 6 columns, 0 rows and 6 coefficients were added to the problem to handle

 unrestricted variables, variables that are split, and constraint slack or

 surplus variables.

NOTE: There are 19 sub-diagonal nonzeroes in the unfactored A Atranspose matrix.

NOTE: The 7 factor nodes make up 2 supernodes

NOTE: There are 4 nonzero sub-rows or sub-columns outside the supernodal triangular

 regions along the factors leading diagonal.

NOTE: Bound feasibility attained by iteration 1.

NOTE: Dual feasibility attained by iteration 1.

NOTE: Constraint feasibility attained by iteration 1.

NOTE: The Primal-Dual Predictor-Corrector Interior Point algorithm performed 6

 iterations.

NOTE: Optimum reached.

NOTE: Objective= 50075.

NOTE: The data set WORK.SOLUTION has 18 observations and 10 variables.

NOTE: There were 18 observations read from the data set WORK.ARCD1.

NOTE: There were 6 observations read from the data set WORK.MISS_S_X.

NOTE: There were 4 observations read from the data set WORK.COND1.

If total supply exceeds total demand, any missing S values are ignored. If total demand exceeds total supply,
any missing D values are ignored.

118 F Chapter 4: The INTPOINT Procedure

Balancing Total Supply and Total Demand

When Total Supply Exceeds Total Demand

When total supply of a network problem exceeds total demand, PROC INTPOINT adds an extra node (called
the excess node) to the problem and sets the demand at that node equal to the difference between total supply
and total demand. There are three ways that this excess node can be joined to the network. All three ways
entail PROC INTPOINT generating a set of arcs (henceforth referred to as the generated arcs) that are
directed toward the excess node. The total amount of flow in generated arcs equals the demand of the excess
node. The generated arcs originate from one of three sets of nodes.

When you specify the THRUNET option, the set of nodes that generated arcs originate from are all demand
nodes, even those demand nodes with unspecified demand capability. You indicate that a node has unspecified
demand capability by using a missing D value instead of an actual value for demand data (discussed in
the section “Missing S Supply and Missing D Demand Values” on page 114). The value specified as the
demand of a demand node is in effect a lower bound of the number of flow units that node can actually
demand. For missing D demand nodes, this lower bound is zero.

If you do not specify the THRUNET option, the way in which the excess node is joined to the network
depends on whether there are demand nodes with unspecified demand capability (nodes with missing D
demand) or not.

If there are missing D demand nodes, these nodes are the set of nodes that generated arcs originate from. The
value specified as the demand of a demand node, if not missing D, is the number of flow units that node can
actually demand. For a missing D demand node, the actual demand of that node may be zero or greater.

If there are no missing D demand nodes, the set of nodes that generated arcs originate from are the set of
supply nodes. The value specified as the supply of a supply node is in effect an upper bound of the number of
flow units that node can actually supply. For missing S supply nodes (discussed in the section “Missing S
Supply and Missing D Demand Values” on page 114), this upper bound is zero, so missing S nodes when
total supply exceeds total demand are transshipment nodes, that is, nodes that neither supply nor demand
flow.

When Total Supply Is Less Than Total Demand

When total supply of a network problem is less than total demand, PROC INTPOINT adds an extra node
(called the excess node) to the problem and sets the supply at that node equal to the difference between total
demand and total supply. There are three ways that this excess node can be joined to the network. All three
ways entail PROC INTPOINT generating a set of arcs (henceforth referred to as the generated arcs) that
originate from the excess node. The total amount of flow in generated arcs equals the supply of the excess
node. The generated arcs are directed toward one of three sets of nodes.

When you specify the THRUNET option, the set of nodes that generated arcs are directed toward are all
supply nodes, even those supply nodes with unspecified supply capability. You indicate that a node has
unspecified supply capability by using a missing S value instead of an actual value for supply data (discussed
in the section “Missing S Supply and Missing D Demand Values” on page 114). The value specified as the
supply of a supply node is in effect a lower bound of the number of flow units that the node can actually
supply. For missing S supply nodes, this lower bound is zero.

If you do not specify the THRUNET option, the way in which the excess node is joined to the network
depends on whether there are supply nodes with unspecified supply capability (nodes with missing S supply)
or not.

How to Make the Data Read of PROC INTPOINT More Efficient F 119

If there are missing S supply nodes, these nodes are the set of nodes that generated arcs are directed toward.
The value specified as the supply of a supply node, if not missing S, is the number of flow units that the node
can actually supply. For a missing S supply node, the actual supply of that node may be zero or greater.

If there are no missing S supply nodes, the set of nodes that generated arcs are directed toward are the set
of demand nodes. The value specified as the demand of a demand node is in effect an upper bound of the
number of flow units that node can actually demand. For missing D demand nodes (discussed in the section
“Missing S Supply and Missing D Demand Values” on page 114), this upper bound is zero, so missing D
nodes when total supply is less than total demand are transshipment nodes, that is, nodes that neither supply
nor demand flow.

How to Make the Data Read of PROC INTPOINT More Efficient
This section contains information that is useful when you want to solve large constrained network prob-
lems. However, much of this information is also useful if you have a large linear programming problem.
All of the options described in this section that are not directly applicable to networks (options such as
ARCS_ONLY_ARCDATA, ARC_SINGLE_OBS, NNODES=, and NARCS=) can be specified to improve
the speed at which LP data are read.

Large Constrained Network Problems

Many of the models presented to PROC INTPOINT are enormous. They can be considered large by linear
programming standards; problems with thousands, even millions, of variables and constraints. When dealing
with side constrained network programming problems, models can have not only a linear programming
component of that magnitude, but also a larger, possibly much larger, network component.

The majority of network problem’s decision variables are arcs. Like an LP decision variable, an arc has
an objective function coefficient, upper and lower value bounds, and a name. Arcs can have coefficients
in constraints. Therefore, an arc is quite similar to an LP variable and places the same memory demands
on optimization software as an LP variable. But a typical network model has many more arcs and nonarc
variables than the typical LP model has variables. And arcs have tail and head nodes. Storing and processing
node names require huge amounts of memory. To make matters worse, node names occupy memory at times
when a large amount of other data should also reside in memory.

While memory requirements are lower for a model with embedded network component compared with the
equivalent LP once optimization starts, the same is usually not true during the data read. Even though nodal
flow conservation constraints in the LP should not be specified in the constrained network formulation, the
memory requirements to read the latter are greater because each arc (unlike an LP variable) originates at one
node and is directed toward another.

Paging

PROC INTPOINT has facilities to read data when the available memory is insufficient to store all the data at
once. PROC INTPOINT does this by allocating memory for different purposes; for example, to store an array
or receive data read from an input SAS data set. After that memory has filled, the information is written to
disk and PROC INTPOINT can resume filling that memory with new information. Often, information must
be retrieved from disk so that data previously read can be examined or checked for consistency. Sometimes,

120 F Chapter 4: The INTPOINT Procedure

to prevent any data from being lost, or to retain any changes made to the information in memory, the contents
of the memory must be sent to disk before other information can take its place. This process of swapping
information to and from disk is called paging. Paging can be very time-consuming, so it is crucial to minimize
the amount of paging performed.

There are several steps you can take to make PROC INTPOINT read the data of network and linear
programming models more efficiently, particularly when memory is scarce and the amount of paging must be
reduced. PROC INTPOINT will then be able to tackle large problems in what can be considered reasonable
amounts of time.

The Order of Observations

PROC INTPOINT is quite flexible in the ways data can be supplied to it. Data can be given by any reasonable
means. PROC INTPOINT has convenient defaults that can save you work when generating the data. There
can be several ways to supply the same piece of data, and some pieces of data can be given more than once.
PROC INTPOINT reads everything, then merges it all together. However, this flexibility and convenience
come at a price; PROC INTPOINT may not assume the data has a characteristic that, if possessed by the
data, could save time and memory during the data read. Several options can indicate that the data has some
exploitable characteristic.

For example, an arc cost can be specified once or several times in the ARCDATA= data set or the CONDATA=
data set, or both. Every time it is given in the ARCDATA= data set, a check is made to ensure that the new
value is the same as any corresponding value read in a previous observation of the ARCDATA= data set.
Every time it is given in the CONDATA= data set, a check is made to ensure that the new value is the same
as the value read in a previous observation of the CONDATA= data set, or previously in the ARCDATA=
data set. PROC INTPOINT would save time if it knew that arc cost data would be encountered only once
while reading the ARCDATA= data set, so performing the time-consuming check for consistency would not
be necessary. Also, if you indicate that the CONDATA= data set contains data for constraints only, PROC
INTPOINT will not expect any arc information, so memory will not be allocated to receive such data while
reading the CONDATA= data set. This memory is used for other purposes and this might lead to a reduction
in paging. If applicable, use the ARC_SINGLE_OBS or the CON_SINGLE_OBS option, or both, and the
NON_REPLIC=COEFS specification to improve how the ARCDATA= data set and the CONDATA= data set
are read.

PROC INTPOINT allows the observations in input data sets to be in any order. However, major time savings
can result if you are prepared to order observations in particular ways. Time spent by the SORT procedure to
sort the input data sets, particularly the CONDATA= data set, may be more than made up for when PROC
INTPOINT reads them, because PROC INTPOINT has in memory information possibly used when the
previous observation was read. PROC INTPOINT can assume a piece of data is either similar to that of the
last observation read or is new. In the first case, valuable information such as an arc or a nonarc variable
number or a constraint number is retained from the previous observation. In the last case, checking the data
with what has been read previously is not necessary.

Even if you do not sort the CONDATA= data set, grouping observations that contain data for the same arc or
nonarc variable or the same row pays off. PROC INTPOINT establishes whether an observation being read is
similar to the observation just read.

In practice, many input data sets for PROC INTPOINT have this characteristic, because it is natural for data
for each constraint to be grouped together (when using the dense format of the CONDATA= data set) or data
for each column to be grouped together (when using the sparse format of the CONDATA= data set). If data

How to Make the Data Read of PROC INTPOINT More Efficient F 121

for each arc or nonarc is spread over more than one observation of the ARCDATA= data set, it is natural to
group these observations together.

Use the GROUPED= option to indicate whether observations of the ARCDATA= data set, the CONDATA=
data set, or both, are grouped in a way that can be exploited during data read.

You can save time if the type data for each row appears near the top of the CONDATA= data set, especially if
it has the sparse format. Otherwise, when reading an observation, if PROC INTPOINT does not know if a
row is a constraint or special row, the data are set aside. Once the data set has been completely read, PROC
INTPOINT must reprocess the data it set aside. By then, it knows the type of each constraint or row or, if its
type was not provided, it is assumed to have a default type.

Better Memory Utilization

In order for PROC INTPOINT to make better utilization of available memory, you can specify options that
indicate the approximate size of the model. PROC INTPOINT then knows what to expect. For example, if
you indicate that the problem has no nonarc variables, PROC INTPOINT will not allocate memory to store
nonarc data. That memory is better utilized for other purposes. Memory is often allocated to receive or store
data of some type. If you indicate that the model does not have much data of a particular type, the memory
that would otherwise have been allocated to receive or store that data can be used to receive or store data of
another type.

The problem size options are as follows:

• NNODES= approximate number of nodes

• NARCS= approximate number of arcs

• NNAS= approximate number of nonarc variables or LP variables

• NCONS= approximate number of NPSC side constraints or LP constraints

• NCOEFS= approximate number of NPSC side constraint coefficients or LP constraint coefficients

These options will sometimes be referred to as Nxxxx= options.

You do not need to specify all these options for the model, but the more you do, the better. If you do not
specify some or all of these options, PROC INTPOINT guesses the size of the problem by using what it
already knows about the model. Sometimes PROC INTPOINT guesses the size of the model by looking at
the number of observations in the ARCDATA= and the CONDATA= data sets. However, PROC INTPOINT
uses rough rules of thumb, that typical models are proportioned in certain ways (for example, if there are
constraints, then arcs, nonarc variables, or LP variables usually have about five constraint coefficients). If
your model has an unusual shape or structure, you are encouraged to use these options.

If you do use the options and you do not know the exact values to specify, overestimate the values. For
example, if you specify NARCS=10000 but the model has 10100 arcs, when dealing with the last 100 arcs,
PROC INTPOINT might have to page out data for 10000 arcs each time one of the last arcs must be dealt
with. Memory could have been allocated for all 10100 arcs without affecting (much) the rest of the data read,
so NARCS=10000 could be more of a hindrance than a help.

The point of these Nxxxx= options is to indicate the model size when PROC INTPOINT does not know it.
When PROC INTPOINT knows the “real” value, that value is used instead of Nxxxx= .

122 F Chapter 4: The INTPOINT Procedure

ARCS_ONLY_ARCDATA indicates that data for only arcs are in the ARCDATA= data set. Memory would
not be wasted to receive data for nonarc variables.

Use the memory usage options:

• The BYTES= option specifies the size of PROC INTPOINT main working memory in number of
bytes.

• The MEMREP option indicates that memory usage report is to be displayed on the SAS log.

Specifying an appropriate value for the BYTES= parameter is particularly important. Specify as large a
number as possible, but not so large a number that will cause PROC INTPOINT (that is, the SAS System
running underneath PROC INTPOINT) to run out of memory.

PROC INTPOINT reports its memory requirements on the SAS log if you specify the MEMREP option.

Use Defaults to Reduce the Amount of Data

Use the parameters that specify default values as much as possible. For example, if there are many arcs
with the same cost value c, use DEFCOST=c for arcs that have that cost. Use missing values in the COST
variable in the ARCDATA= data set instead of c. PROC INTPOINT ignores missing values, but must read,
store, and process nonmissing values, even if they are equal to a default option or could have been equal to a
default parameter had it been specified. Sometimes, using default parameters makes the need for some SAS
variables in the ARCDATA= and the CONDATA= data sets no longer necessary, or reduces the quantity of
data that must be read. The default options are

• DEFCOST= default cost of arcs, objective function of nonarc variables or LP variables

• DEFMINFLOW= default lower flow bound of arcs, lower bound of nonarc variables or LP variables

• DEFCAPACITY= default capacity of arcs, upper bound of nonarc variables or LP variables

• DEFCONTYPE= LE or DEFCONTYPE= <D
DEFCONTYPE= EQ or DEFCONTYPE= =
DEFCONTYPE= GE or DEFCONTYPE= >D

DEFCONTYPE=LE is the default.

The default options themselves have defaults. For example, you do not need to specify DEFCOST=0 in the
PROC INTPOINT statement. You should still have missing values in the COST variable in the ARCDATA=
data set for arcs that have zero costs.

If the network has only one supply node, one demand node, or both, use

• SOURCE= name of single node that has supply capability

• SUPPLY= the amount of supply at SOURCE

• SINK= name of single node that demands flow

• DEMAND= the amount of flow SINK demands

Stopping Criteria F 123

Do not specify that a constraint has zero right-hand-side values. That is the default. The only time it might
be practical to specify a zero rhs is in observations of the CONDATA= data set read early so that PROC
INTPOINT can infer that a row is a constraint. This could prevent coefficient data from being put aside
because PROC INTPOINT did not know the row was a constraint.

Names of Things

To cut data read time and memory requirements, reduce the number of bytes in the longest node name, the
longest arc name, the longest nonarc variable name, the longest LP variable name, and the longest constraint
name to 8 bytes or less. The longer a name, the more bytes must be stored and compared with other names.

If an arc has no constraint coefficients, do not give it a name in the NAME list variable in the ARCDATA=
data set. Names for such arcs serve no purpose.

PROC INTPOINT can have a default name for each arc. If an arc is directed from node tailname toward
node headname, the default name for that arc is tailname_headname. If you do not want PROC INTPOINT
to use these default arc names, specify NAMECTRL=1. Otherwise, PROC INTPOINT must use memory for
storing node names and these node names must be searched often.

If you want to use the default tailname_headname name, that is, NAMECTRL=2 or NAMECTRL=3, do
not use underscores in node names. If the CONDATA has a dense format and has a variable in the VAR list
A_B_C_D, or if the value A_B_C_D is encountered as a value of the COLUMN list variable when reading
the CONDATA= data set that has the sparse format, PROC INTPOINT first looks for a node named A. If it
finds it, it looks for a node called B_C_D. It then looks for a node with the name A_B and possibly a node
with name C_D. A search is then conducted for a node named A_B_C and possibly a node named D is done.
Underscores could have caused PROC INTPOINT to look unnecessarily for nonexistent nodes. Searching
for node names can be expensive, and the amount of memory to store node names is often large. It might be
better to assign the arc name A_B_C_D directly to an arc by having that value as a NAME list variable value
for that arc in the ARCDATA= data set and specify NAMECTRL=1.

Other Ways to Speed Up Data Reads

Arcs and nonarc variables, or LP variables, can have associated with them values or quantities that have no
bearing on the optimization. This information is given in the ARCDATA= data set in the ID list variables. For
example, in a distribution problem, information such as truck number and driver’s name can be associated
with each arc. This is useful when the optimal solution saved in the CONOUT= data set is analyzed. However,
PROC INTPOINT needs to reserve memory to process this information when data are being read. For
large problems when memory is scarce, it might be better to remove ancillary data from the ARCDATA.
After PROC INTPOINT runs, use SAS software to merge this information into the CONOUT= data set that
contains the optimal solution.

Stopping Criteria
There are several reasons why PROC INTPOINT stops interior point optimization. Optimization stops when

• the number of iteration equals MAXITERB=m

124 F Chapter 4: The INTPOINT Procedure

• the relative gap .duality gap=.cT x// between the primal and dual objectives is smaller than the value
of the PDGAPTOL= option, and both the primal and dual problems are feasible. Duality gap is defined
in the section “Interior Point Algorithmic Details” on page 41.

PROC INTPOINT may stop optimization when it detects that the rate at which the complementarity or duality
gap is being reduced is too slow; that is, that there are consecutive iterations when the complementarity or
duality gap has stopped getting smaller and the infeasibilities, if nonzero, have also stalled. Sometimes this
indicates that the problem is infeasible.

The reasons to stop optimization outlined in the previous paragraph will be termed the usual stopping
conditions in the following explanation.

However, when solving some problems, especially if the problems are large, the usual stopping criteria are
inappropriate. PROC INTPOINT might stop optimizing prematurely. If it were allowed to perform additional
optimization, a better solution would be found. On other occasions, PROC INTPOINT might do too much
work. A sufficiently good solution might be reached several iterations before PROC INTPOINT eventually
stops.

You can see PROC INTPOINT’s progress to the optimum by specifying PRINTLEVEL2=2. PROC INT-
POINT will produce a table on the SAS log. A row of the table is generated during each iteration and consists
of values of the affine step complementarity, the complementarity of the solution for the next iteration, the
total bound infeasibility

Pn
iD1 infeasbi (see the infeasb array in the section “Interior Point: Upper Bounds”

on page 45), the total constraint infeasibility
Pm

iD1 infeasci (see the infeasc array in the section “Interior
Point Algorithmic Details” on page 41), and the total dual infeasibility

Pn
iD1 infeasdi (see the infeasd array

in the section “Interior Point Algorithmic Details” on page 41). As optimization progresses, the values in all
columns should converge to zero.

To tailor stopping criteria to your problem, you can use two sets of parameters: the STOP_x and the
KEEPGOING_x parameters. The STOP_x parameters (STOP_C, STOP_DG, STOP_IB, STOP_IC, and
STOP_ID) are used to test for some condition at the beginning of each iteration and if met, to stop
optimizing immediately. The KEEPGOING_x parameters (KEEPGOING_C, KEEPGOING_DG, KEEPGO-
ING_IB, KEEPGOING_IC, and KEEPGOING_ID) are used when PROC INTPOINT would ordinarily
stop optimizing but does not if some conditions are not met.

For the sake of conciseness, a set of options might be referred to as the part of the option name they have in
common followed by the suffix x. For example, STOP_C, STOP_DG, STOP_IB, STOP_IC, and STOP_ID
will collectively be referred to as STOP_x.

At the beginning of each iteration, PROC INTPOINT will test whether complementarity is <D STOP_C
(provided you have specified a STOP_C parameter) and if it is, PROC INTPOINT will stop optimizing. If
the duality gap is <D STOP_DG (provided you have specified a STOP_DG parameter), PROC INTPOINT
will stop optimizing immediately. This is also true for the other STOP_x parameters that are related to
infeasibilities, STOP_IB, STOP_IC, and STOP_ID.

For example, if you want PROC INTPOINT to stop optimizing for the usual stopping conditions, plus the
additional condition, complementarity � 100 or duality gap � 0.001, then use

proc intpoint stop_c=100 stop_dg=0.001

If you want PROC INTPOINT to stop optimizing for the usual stopping conditions, plus the additional
condition, complementarity � 1000 and duality gap � 0.001 and constraint infeasibility � 0.0001, then use

Stopping Criteria F 125

proc intpoint
and_stop_c=1000 and_stop_dg=0.01 and_stop_ic=0.0001

Unlike the STOP_x parameters that cause PROC INTPOINT to stop optimizing when any one of them is
satisfied, the corresponding AND_STOP_x parameters (AND_STOP_C, AND_STOP_DG, AND_STOP_IB,
AND_STOP_IC, and AND_STOP_ID) cause PROC INTPOINT to stop only if all (more precisely, all that
are specified) options are satisfied. For example, if PROC INTPOINT should stop optimizing when

• complementarity � 100 or duality gap � 0.001 or

• complementarity � 1000 and duality gap � 0.001 and constraint infeasibility � 0.000

then use

proc intpoint
stop_c=100 stop_dg=0.001
and_stop_c=1000 and_stop_dg=0.01 and_stop_ic=0.0001

Just as the STOP_x parameters have AND_STOP_x partners, the KEEPGOING_x parameters have
AND_KEEPGOING_x partners. The role of the KEEPGOING_x and AND_KEEPGOING_x parame-
ters is to prevent optimization from stopping too early, even though a usual stopping criteria is met.

When PROC INTPOINT detects that it should stop optimizing for a usual stopping condition, it will perform
the following tests:

• It will test whether complementarity is > KEEPGOING_C (provided you have specified a KEEPGO-
ING_C parameter), and if it is, PROC INTPOINT will perform more optimization.

• Otherwise, PROC INTPOINT will then test whether the primal-dual gap is > KEEPGOING_DG
(provided you have specified a KEEPGOING_DG parameter), and if it is, PROC INTPOINT will
perform more optimization.

• Otherwise, PROC INTPOINT will then test whether the total bound infeasibility
Pn

iD1 infeasbi >

KEEPGOING_IB (provided you have specified a KEEPGOING_IB parameter), and if it is, PROC
INTPOINT will perform more optimization.

• Otherwise, PROC INTPOINT will then test whether the total constraint infeasibility
Pm

iD1 infeasci >

KEEPGOING_IC (provided you have specified a KEEPGOING_IC parameter), and if it is, PROC
INTPOINT will perform more optimization.

• Otherwise, PROC INTPOINT will then test whether the total dual infeasibility
Pn

iD1 infeasdi >

KEEPGOING_ID (provided you have specified a KEEPGOING_ID parameter), and if it is, PROC
INTPOINT will perform more optimization.

• Otherwise it will test whether complementarity is > AND_KEEPGOING_C (provided you have speci-
fied an AND_KEEPGOING_C parameter), and the primal-dual gap is > AND_KEEPGOING_DG
(provided you have specified an AND_KEEPGOING_DG parameter), and the total bound infeasibilityPn

iD1 infeasbi > AND_KEEPGOING_IB (provided you have specified an AND_KEEPGOING_IB
parameter), and the total constraint infeasibility

Pm
iD1 infeasci > AND_KEEPGOING_IC (pro-

vided you have specified an AND_KEEPGOING_IC parameter), and the total dual infeasibilityPn
iD1 infeasdi > AND_KEEPGOING_ID (provided you have specified an AND_KEEPGOING_ID

parameter), and if it is, PROC INTPOINT will perform more optimization.

126 F Chapter 4: The INTPOINT Procedure

If all these tests to decide whether more optimization should be performed are false, optimization is stopped.

The following PROC INTPOINT example is used to illustrate how several stopping criteria options can be
used together:

proc intpoint
stop_c=1000
and_stop_c=2000 and_stop_dg=0.01
and_stop_ib=1 and_stop_ic=1 and_stop_id=1
keepgoing_c=1500
and_keepgoing_c=2500 and_keepgoing_dg=0.05
and_keepgoing_ib=1 and_keepgoing_ic=1 and_keepgoing_id=1

At the beginning of each iteration, PROC INTPOINT will stop optimizing if

• complementarity � 1000 or

• complementarity � 2000 and duality gap � 0.01 and the total bound, constraint, and dual infeasibilities
are each � 1

When PROC INTPOINT determines it should stop optimizing because a usual stopping condition is met, it
will stop optimizing only if

• complementarity � 1500 or

• complementarity � 2500 and duality gap � 0.05 and the total bound, constraint, and dual infeasibilities
are each � 1

Examples: INTPOINT Procedure
The following examples illustrate some of the capabilities of PROC INTPOINT. These examples, together
with the other SAS/OR examples, can be found in the SAS sample library.

In order to illustrate variations in the use of the INTPOINT procedure, Example 4.1 through Example 4.5 use
data from a company that produces two sizes of televisions. The company makes televisions with a diagonal
screen measurement of either 19 inches or 25 inches. These televisions are made between March and May
at both of the company’s two factories. Each factory has a limit on the total number of televisions of each
screen dimension that can be made during those months.

The televisions are distributed to one of two shops, stored at the factory where they were made, and sold later
or shipped to the other factory. Some sets can be used to fill backorders from the previous months. Each
shop demands a number of each type of TV for the months of March through May. The following network in
Figure 4.12 illustrates the model. Arc costs can be interpreted as production costs, storage costs, backorder
penalty costs, inter-factory transportation costs, and sales profits. The arcs can have capacities and lower flow
bounds.

Example 4.1: Production, Inventory, Distribution Problem F 127

Figure 4.12 TV Problem

Production

Inventory and
Backorders

Inter-factory

Distribution

fact2

f2_may

f2_apl

f2_mar

fact1

f1_may

f1_apl

f1_mar

shop2

shop1

There are two similarly structured networks, one for the 19-inch televisions and the other for the 25-inch
screen TVs. The minimum cost production, inventory, and distribution plan for both TV types can be
determined in the same run of PROC INTPOINT. To ensure that node names are unambiguous, the names of
nodes in the 19-inch network have suffix _1, and the node names in the 25-inch network have suffix _2.

Example 4.1: Production, Inventory, Distribution Problem
The following code shows how to save a specific problem’s data in data sets and solve the model with PROC
INTPOINT.

title 'Production Planning/Inventory/Distribution';
title2 'Minimum Cost Flow problem';
title3;

data node0;
input _node_ $ _supdem_ ;
datalines;

fact1_1 1000
fact2_1 850
fact1_2 1000
fact2_2 1500
shop1_1 -900
shop2_1 -900

128 F Chapter 4: The INTPOINT Procedure

shop1_2 -900
shop2_2 -1450
;

data arc0;
input _tail_ $ _head_ $ _cost_ _capac_ _lo_ diagonal factory

key_id $10. mth_made $ _name_&$17. ;
datalines;

fact1_1 f1_mar_1 127.9 500 50 19 1 production March prod f1 19 mar
fact1_1 f1_apr_1 78.6 600 50 19 1 production April prod f1 19 apl
fact1_1 f1_may_1 95.1 400 50 19 1 production May .
f1_mar_1 f1_apr_1 15 50 . 19 1 storage March .
f1_apr_1 f1_may_1 12 50 . 19 1 storage April .
f1_apr_1 f1_mar_1 28 20 . 19 1 backorder April back f1 19 apl
f1_may_1 f1_apr_1 28 20 . 19 1 backorder May back f1 19 may
f1_mar_1 f2_mar_1 11 . . 19 . f1_to_2 March .
f1_apr_1 f2_apr_1 11 . . 19 . f1_to_2 April .
f1_may_1 f2_may_1 16 . . 19 . f1_to_2 May .
f1_mar_1 shop1_1 -327.65 250 . 19 1 sales March .
f1_apr_1 shop1_1 -300 250 . 19 1 sales April .
f1_may_1 shop1_1 -285 250 . 19 1 sales May .
f1_mar_1 shop2_1 -362.74 250 . 19 1 sales March .
f1_apr_1 shop2_1 -300 250 . 19 1 sales April .
f1_may_1 shop2_1 -245 250 . 19 1 sales May .
fact2_1 f2_mar_1 88.0 450 35 19 2 production March prod f2 19 mar
fact2_1 f2_apr_1 62.4 480 35 19 2 production April prod f2 19 apl
fact2_1 f2_may_1 133.8 250 35 19 2 production May .
f2_mar_1 f2_apr_1 18 30 . 19 2 storage March .
f2_apr_1 f2_may_1 20 30 . 19 2 storage April .
f2_apr_1 f2_mar_1 17 15 . 19 2 backorder April back f2 19 apl
f2_may_1 f2_apr_1 25 15 . 19 2 backorder May back f2 19 may
f2_mar_1 f1_mar_1 10 40 . 19 . f2_to_1 March .
f2_apr_1 f1_apr_1 11 40 . 19 . f2_to_1 April .
f2_may_1 f1_may_1 13 40 . 19 . f2_to_1 May .
f2_mar_1 shop1_1 -297.4 250 . 19 2 sales March .
f2_apr_1 shop1_1 -290 250 . 19 2 sales April .
f2_may_1 shop1_1 -292 250 . 19 2 sales May .
f2_mar_1 shop2_1 -272.7 250 . 19 2 sales March .
f2_apr_1 shop2_1 -312 250 . 19 2 sales April .
f2_may_1 shop2_1 -299 250 . 19 2 sales May .
fact1_2 f1_mar_2 217.9 400 40 25 1 production March prod f1 25 mar
fact1_2 f1_apr_2 174.5 550 50 25 1 production April prod f1 25 apl
fact1_2 f1_may_2 133.3 350 40 25 1 production May .
f1_mar_2 f1_apr_2 20 40 . 25 1 storage March .
f1_apr_2 f1_may_2 18 40 . 25 1 storage April .
f1_apr_2 f1_mar_2 32 30 . 25 1 backorder April back f1 25 apl
f1_may_2 f1_apr_2 41 15 . 25 1 backorder May back f1 25 may
f1_mar_2 f2_mar_2 23 . . 25 . f1_to_2 March .
f1_apr_2 f2_apr_2 23 . . 25 . f1_to_2 April .
f1_may_2 f2_may_2 26 . . 25 . f1_to_2 May .
f1_mar_2 shop1_2 -559.76 . . 25 1 sales March .
f1_apr_2 shop1_2 -524.28 . . 25 1 sales April .
f1_may_2 shop1_2 -475.02 . . 25 1 sales May .
f1_mar_2 shop2_2 -623.89 . . 25 1 sales March .

Example 4.1: Production, Inventory, Distribution Problem F 129

f1_apr_2 shop2_2 -549.68 . . 25 1 sales April .
f1_may_2 shop2_2 -460.00 . . 25 1 sales May .
fact2_2 f2_mar_2 182.0 650 35 25 2 production March prod f2 25 mar
fact2_2 f2_apr_2 196.7 680 35 25 2 production April prod f2 25 apl
fact2_2 f2_may_2 201.4 550 35 25 2 production May .
f2_mar_2 f2_apr_2 28 50 . 25 2 storage March .
f2_apr_2 f2_may_2 38 50 . 25 2 storage April .
f2_apr_2 f2_mar_2 31 15 . 25 2 backorder April back f2 25 apl
f2_may_2 f2_apr_2 54 15 . 25 2 backorder May back f2 25 may
f2_mar_2 f1_mar_2 20 25 . 25 . f2_to_1 March .
f2_apr_2 f1_apr_2 21 25 . 25 . f2_to_1 April .
f2_may_2 f1_may_2 43 25 . 25 . f2_to_1 May .
f2_mar_2 shop1_2 -567.83 500 . 25 2 sales March .
f2_apr_2 shop1_2 -542.19 500 . 25 2 sales April .
f2_may_2 shop1_2 -461.56 500 . 25 2 sales May .
f2_mar_2 shop2_2 -542.83 500 . 25 2 sales March .
f2_apr_2 shop2_2 -559.19 500 . 25 2 sales April .
f2_may_2 shop2_2 -489.06 500 . 25 2 sales May .
;

proc intpoint
bytes=1000000
printlevel2=2
nodedata=node0
arcdata=arc0
conout=arc1;
run;

proc print data=arc1 width=min;
var _tail_ _head_ _cost_ _capac_ _lo_ _flow_ _fcost_

diagonal factory key_id mth_made;
sum _fcost_;
run;

130 F Chapter 4: The INTPOINT Procedure

The following notes appear on the SAS log:

NOTE: Number of nodes= 20 .

NOTE: Number of supply nodes= 4 .

NOTE: Number of demand nodes= 4 .

NOTE: Total supply= 4350 , total demand= 4150 .

NOTE: Number of arcs= 64 .

NOTE: The following messages relate to the equivalent Linear Programming problem

 solved by the Interior Point algorithm.

NOTE: Number of <= constraints= 0 .

NOTE: Number of == constraints= 21 .

NOTE: Number of >= constraints= 0 .

NOTE: Number of constraint coefficients= 136 .

NOTE: Number of variables= 68 .

NOTE: After preprocessing, number of <= constraints= 0.

NOTE: After preprocessing, number of == constraints= 20.

NOTE: After preprocessing, number of >= constraints= 0.

NOTE: The preprocessor eliminated 1 constraints from the problem.

NOTE: The preprocessor eliminated 9 constraint coefficients from the problem.

NOTE: 0 columns, 0 rows and 0 coefficients were added to the problem to handle

 unrestricted variables, variables that are split, and constraint slack or

 surplus variables.

NOTE: There are 48 sub-diagonal nonzeroes in the unfactored A Atranspose matrix.

NOTE: The 20 factor nodes make up 8 supernodes

NOTE: There are 27 nonzero sub-rows or sub-columns outside the supernodal triangular

 regions along the factors leading diagonal.

 Iter Complem_aff Complem-ity Duality_gap Tot_infeasb Tot_infeasc Tot_infeasd

 0 -1.000000 192857968 0.895105 66024 25664 0

 1 37620673 24479828 0.919312 4575.155540 1778.391068 0

 2 4392127 1833947 0.594993 0 0 0

 3 654204 426961 0.249790 0 0 0

 4 161214 108340 0.075186 0 0 0

 5 50985 43146 0.030894 0 0 0

 6 37774 34993 0.025167 0 0 0

 7 17695 9774.172272 0.007114 0 0 0

 8 2421.777663 1427.435257 0.001042 0 0 0

 9 522.394743 240.454270 0.000176 0 0 0

 10 57.447587 7.581156 0.000005540 0 0 0

 11 0.831035 0.007569 5.5317109E-9 0 0 0

NOTE: The Primal-Dual Predictor-Corrector Interior Point algorithm performed 11

 iterations.

NOTE: Optimum reached.

NOTE: Objective= -1281110.338.

NOTE: The data set WORK.ARC1 has 64 observations and 14 variables.

NOTE: There were 64 observations read from the data set WORK.ARC0.

NOTE: There were 8 observations read from the data set WORK.NODE0.

Example 4.1: Production, Inventory, Distribution Problem F 131

The solution is given in the CONOUT=arc1 data sets. In the CONOUT= data set, shown in Output 4.1.1, the
variables diagonal, factory, key_id, and mth_made form an implicit ID list. The diagonal variable has one of
two values, 19 or 25. factory also has one of two values, 1 or 2, to denote the factory where either production
or storage occurs, from where TVs are either sold to shops or used to satisfy backorders. production, storage,
sales, and backorder are values of the key_id variable.

Other values of this variable, f1_to_2 and f2_to_1, are used when flow through arcs represents the transporta-
tion of TVs between factories. The mth_made variable has values March, April, and May, the months when
TVs that are modeled as flow through an arc were made (assuming that no televisions are stored for more
than one month and none manufactured in May are used to fill March backorders).

These ID variables can be used after the PROC INTPOINT run to produce reports and perform analysis on
particular parts of the company’s operation. For example, reports can be generated for production numbers for
each factory; optimal sales figures for each shop; and how many TVs should be stored, used to fill backorders,
sent to the other factory, or any combination of these, for TVs with a particular screen, those produced in a
particular month, or both.

132 F Chapter 4: The INTPOINT Procedure

Output 4.1.1 CONOUT=ARC1

Obs _tail_ _head_ _cost_ _capac_ _lo_ _FLOW_ _FCOST_ diagonal factory key_id mth_made

1 fact1_1 f1_apr_1 78.60 600 50 600.000 47160.00 19 1 production April

2 f1_mar_1 f1_apr_1 15.00 50 0 0.000 0.00 19 1 storage March

3 f1_may_1 f1_apr_1 28.00 20 0 0.000 0.00 19 1 backorder May

4 f2_apr_1 f1_apr_1 11.00 40 0 0.000 0.00 19 . f2_to_1 April

5 fact1_2 f1_apr_2 174.50 550 50 550.000 95975.00 25 1 production April

6 f1_mar_2 f1_apr_2 20.00 40 0 0.000 0.00 25 1 storage March

7 f1_may_2 f1_apr_2 41.00 15 0 15.000 615.00 25 1 backorder May

8 f2_apr_2 f1_apr_2 21.00 25 0 0.000 0.00 25 . f2_to_1 April

9 fact1_1 f1_mar_1 127.90 500 50 344.999 44125.43 19 1 production March

10 f1_apr_1 f1_mar_1 28.00 20 0 20.000 560.00 19 1 backorder April

11 f2_mar_1 f1_mar_1 10.00 40 0 40.000 400.00 19 . f2_to_1 March

12 fact1_2 f1_mar_2 217.90 400 40 400.000 87160.00 25 1 production March

13 f1_apr_2 f1_mar_2 32.00 30 0 30.000 960.00 25 1 backorder April

14 f2_mar_2 f1_mar_2 20.00 25 0 25.000 500.00 25 . f2_to_1 March

15 fact1_1 f1_may_1 95.10 400 50 50.001 4755.06 19 1 production May

16 f1_apr_1 f1_may_1 12.00 50 0 50.000 600.00 19 1 storage April

17 f2_may_1 f1_may_1 13.00 40 0 0.000 0.00 19 . f2_to_1 May

18 fact1_2 f1_may_2 133.30 350 40 40.000 5332.04 25 1 production May

19 f1_apr_2 f1_may_2 18.00 40 0 0.000 0.00 25 1 storage April

20 f2_may_2 f1_may_2 43.00 25 0 0.000 0.00 25 . f2_to_1 May

21 f1_apr_1 f2_apr_1 11.00 99999999 0 30.000 330.00 19 . f1_to_2 April

22 fact2_1 f2_apr_1 62.40 480 35 480.000 29952.00 19 2 production April

23 f2_mar_1 f2_apr_1 18.00 30 0 0.000 0.00 19 2 storage March

24 f2_may_1 f2_apr_1 25.00 15 0 0.000 0.00 19 2 backorder May

25 f1_apr_2 f2_apr_2 23.00 99999999 0 0.000 0.00 25 . f1_to_2 April

26 fact2_2 f2_apr_2 196.70 680 35 680.000 133755.99 25 2 production April

27 f2_mar_2 f2_apr_2 28.00 50 0 0.000 0.00 25 2 storage March

28 f2_may_2 f2_apr_2 54.00 15 0 15.000 810.00 25 2 backorder May

29 f1_mar_1 f2_mar_1 11.00 99999999 0 0.000 0.00 19 . f1_to_2 March

30 fact2_1 f2_mar_1 88.00 450 35 290.000 25520.00 19 2 production March

31 f2_apr_1 f2_mar_1 17.00 15 0 0.000 0.00 19 2 backorder April

32 f1_mar_2 f2_mar_2 23.00 99999999 0 0.000 0.00 25 . f1_to_2 March

33 fact2_2 f2_mar_2 182.00 650 35 645.000 117389.96 25 2 production March

34 f2_apr_2 f2_mar_2 31.00 15 0 0.000 0.00 25 2 backorder April

35 f1_may_1 f2_may_1 16.00 99999999 0 100.000 1600.01 19 . f1_to_2 May

36 fact2_1 f2_may_1 133.80 250 35 35.000 4683.00 19 2 production May

37 f2_apr_1 f2_may_1 20.00 30 0 15.000 299.99 19 2 storage April

38 f1_may_2 f2_may_2 26.00 99999999 0 0.000 0.00 25 . f1_to_2 May

39 fact2_2 f2_may_2 201.40 550 35 35.000 7049.00 25 2 production May

40 f2_apr_2 f2_may_2 38.00 50 0 0.000 0.00 25 2 storage April

41 f1_mar_1 shop1_1 -327.65 250 0 154.999 -50785.56 19 1 sales March

42 f1_apr_1 shop1_1 -300.00 250 0 250.000 -75000.00 19 1 sales April

43 f1_may_1 shop1_1 -285.00 250 0 0.000 0.00 19 1 sales May

44 f2_mar_1 shop1_1 -297.40 250 0 250.000 -74349.99 19 2 sales March

45 f2_apr_1 shop1_1 -290.00 250 0 245.001 -71050.17 19 2 sales April

46 f2_may_1 shop1_1 -292.00 250 0 0.000 0.00 19 2 sales May

47 f1_mar_2 shop1_2 -559.76 99999999 0 0.000 0.00 25 1 sales March

48 f1_apr_2 shop1_2 -524.28 99999999 0 0.000 -0.01 25 1 sales April

Example 4.1: Production, Inventory, Distribution Problem F 133

Output 4.1.1 continued

Obs _tail_ _head_ _cost_ _capac_ _lo_ _FLOW_ _FCOST_ diagonal factory key_id mth_made

49 f1_may_2 shop1_2 -475.02 99999999 0 25.000 -11875.64 25 1 sales May

50 f2_mar_2 shop1_2 -567.83 500 0 500.000 -283915.00 25 2 sales March

51 f2_apr_2 shop1_2 -542.19 500 0 375.000 -203321.08 25 2 sales April

52 f2_may_2 shop1_2 -461.56 500 0 0.000 0.00 25 2 sales May

53 f1_mar_1 shop2_1 -362.74 250 0 250.000 -90685.00 19 1 sales March

54 f1_apr_1 shop2_1 -300.00 250 0 250.000 -75000.00 19 1 sales April

55 f1_may_1 shop2_1 -245.00 250 0 0.000 0.00 19 1 sales May

56 f2_mar_1 shop2_1 -272.70 250 0 0.000 0.00 19 2 sales March

57 f2_apr_1 shop2_1 -312.00 250 0 250.000 -78000.00 19 2 sales April

58 f2_may_1 shop2_1 -299.00 250 0 150.000 -44850.00 19 2 sales May

59 f1_mar_2 shop2_2 -623.89 99999999 0 455.000 -283869.94 25 1 sales March

60 f1_apr_2 shop2_2 -549.68 99999999 0 535.000 -294078.78 25 1 sales April

61 f1_may_2 shop2_2 -460.00 99999999 0 0.000 0.00 25 1 sales May

62 f2_mar_2 shop2_2 -542.83 500 0 120.000 -65139.47 25 2 sales March

63 f2_apr_2 shop2_2 -559.19 500 0 320.000 -178940.96 25 2 sales April

64 f2_may_2 shop2_2 -489.06 500 0 20.000 -9781.20 25 2 sales May

-1281110.34

134 F Chapter 4: The INTPOINT Procedure

Example 4.2: Altering Arc Data
This example examines the effect of changing some of the arc costs. The backorder penalty costs are
increased by 20 percent. The sales profit of 25-inch TVs sent to the shops in May is increased by 30 units.
The backorder penalty costs of 25-inch TVs manufactured in May for April consumption is decreased by 30
units. The production cost of 19-inch and 25-inch TVs made in May are decreased by 5 units and 20 units,
respectively. How does the optimal solution of the network after these arc cost alterations compare with the
optimum of the original network?

These SAS statements produce the new NODEDATA= and ARCDATA= data sets:

title2 'Minimum Cost Flow problem- Altered Arc Data';
data arc2;

set arc1;
oldcost=_cost_;
oldfc=_fcost_;
oldflow=_flow_;
if key_id='backorder'

then _cost_=_cost_*1.2;
else if _tail_='f2_may_2' then _cost_=_cost_-30;

if key_id='production' & mth_made='May' then
if diagonal=19 then _cost_=_cost_-5;

else _cost_=_cost_-20;
run;

proc intpoint
bytes=100000
printlevel2=2
nodedata=node0
arcdata=arc2
conout=arc3;
run;

proc print data=arc3;
var _tail_ _head_ _capac_ _lo_ _supply_ _demand_ _name_
cost _flow_ _fcost_ oldcost oldflow oldfc
diagonal factory key_id mth_made;
/* to get this variable order */

sum oldfc _fcost_;
run;

Example 4.2: Altering Arc Data F 135

The following notes appear on the SAS log:

NOTE: Number of nodes= 20 .

NOTE: Number of supply nodes= 4 .

NOTE: Number of demand nodes= 4 .

NOTE: Total supply= 4350 , total demand= 4150 .

NOTE: Number of arcs= 64 .

NOTE: The following messages relate to the equivalent Linear Programming problem

 solved by the Interior Point algorithm.

NOTE: Number of <= constraints= 0 .

NOTE: Number of == constraints= 21 .

NOTE: Number of >= constraints= 0 .

NOTE: Number of constraint coefficients= 136 .

NOTE: Number of variables= 68 .

NOTE: After preprocessing, number of <= constraints= 0.

NOTE: After preprocessing, number of == constraints= 20.

NOTE: After preprocessing, number of >= constraints= 0.

NOTE: The preprocessor eliminated 1 constraints from the problem.

NOTE: The preprocessor eliminated 9 constraint coefficients from the problem.

NOTE: 0 columns, 0 rows and 0 coefficients were added to the problem to handle

 unrestricted variables, variables that are split, and constraint slack or

 surplus variables.

NOTE: There are 48 sub-diagonal nonzeroes in the unfactored A Atranspose matrix.

NOTE: The 20 factor nodes make up 8 supernodes

NOTE: There are 27 nonzero sub-rows or sub-columns outside the supernodal triangular

 regions along the factors leading diagonal.

 Iter Complem_aff Complem-ity Duality_gap Tot_infeasb Tot_infeasc Tot_infeasd

 0 -1.000000 193775969 0.894415 66024 25664 0

 1 37797544 24594220 0.918149 4566.893212 1775.179450 0

 2 4408681 1844606 0.590964 0 0 0

 3 347168 312126 0.194113 0 0 0

 4 145523 86002 0.060330 0 0 0

 5 43008 38240 0.027353 0 0 0

 6 31097 21145 0.015282 0 0 0

 7 9308.807034 4158.399675 0.003029 0 0 0

 8 1710.832075 752.174595 0.000549 0 0 0

 9 254.197112 47.755299 0.000034846 0 0 0

 10 5.252560 0.010692 7.8017564E-9 0 0 0

NOTE: The Primal-Dual Predictor-Corrector Interior Point algorithm performed 10

 iterations.

NOTE: Optimum reached.

NOTE: Objective= -1285086.442.

NOTE: The data set WORK.ARC3 has 64 observations and 17 variables.

NOTE: There were 64 observations read from the data set WORK.ARC2.

NOTE: There were 8 observations read from the data set WORK.NODE0.

The solution is displayed in Output 4.2.1.

136 F Chapter 4: The INTPOINT Procedure

Output 4.2.1 CONOUT=ARC3

Minimum Cost Flow Problem- Altered Arc DataMinimum Cost Flow Problem- Altered Arc Data

tail _head_ _capac_ _lo_ _SUPPLY_ _DEMAND_ _name_ _cost_ _FLOW_

fact1_1 f1_apr_1 600 50 1000 . prod f1 19 apl 78.60 540.000

f1_mar_1 f1_apr_1 50 0 . . 15.00 0.000

f1_may_1 f1_apr_1 20 0 . . back f1 19 may 33.60 0.000

f2_apr_1 f1_apr_1 40 0 . . 11.00 0.000

fact1_2 f1_apr_2 550 50 1000 . prod f1 25 apl 174.50 250.000

f1_mar_2 f1_apr_2 40 0 . . 20.00 0.000

f1_may_2 f1_apr_2 15 0 . . back f1 25 may 49.20 15.000

f2_apr_2 f1_apr_2 25 0 . . 21.00 0.000

fact1_1 f1_mar_1 500 50 1000 . prod f1 19 mar 127.90 340.000

f1_apr_1 f1_mar_1 20 0 . . back f1 19 apl 33.60 20.000

f2_mar_1 f1_mar_1 40 0 . . 10.00 40.000

fact1_2 f1_mar_2 400 40 1000 . prod f1 25 mar 217.90 400.000

f1_apr_2 f1_mar_2 30 0 . . back f1 25 apl 38.40 30.000

f2_mar_2 f1_mar_2 25 0 . . 20.00 25.000

fact1_1 f1_may_1 400 50 1000 . 90.10 115.000

f1_apr_1 f1_may_1 50 0 . . 12.00 0.000

f2_may_1 f1_may_1 40 0 . . 13.00 0.000

fact1_2 f1_may_2 350 40 1000 . 113.30 350.000

f1_apr_2 f1_may_2 40 0 . . 18.00 0.000

f2_may_2 f1_may_2 25 0 . . 13.00 0.000

f1_apr_1 f2_apr_1 99999999 0 . . 11.00 20.000

fact2_1 f2_apr_1 480 35 850 . prod f2 19 apl 62.40 480.000

f2_mar_1 f2_apr_1 30 0 . . 18.00 0.000

f2_may_1 f2_apr_1 15 0 . . back f2 19 may 30.00 0.000

f1_apr_2 f2_apr_2 99999999 0 . . 23.00 0.000

fact2_2 f2_apr_2 680 35 1500 . prod f2 25 apl 196.70 680.000

f2_mar_2 f2_apr_2 50 0 . . 28.00 0.000

f2_may_2 f2_apr_2 15 0 . . back f2 25 may 64.80 0.000

f1_mar_1 f2_mar_1 99999999 0 . . 11.00 0.000

fact2_1 f2_mar_1 450 35 850 . prod f2 19 mar 88.00 290.000

f2_apr_1 f2_mar_1 15 0 . . back f2 19 apl 20.40 0.000

f1_mar_2 f2_mar_2 99999999 0 . . 23.00 0.000

fact2_2 f2_mar_2 650 35 1500 . prod f2 25 mar 182.00 635.000

f2_apr_2 f2_mar_2 15 0 . . back f2 25 apl 37.20 0.000

f1_may_1 f2_may_1 99999999 0 . . 16.00 115.000

fact2_1 f2_may_1 250 35 850 . 128.80 35.000

f2_apr_1 f2_may_1 30 0 . . 20.00 0.000

f1_may_2 f2_may_2 99999999 0 . . 26.00 335.000

fact2_2 f2_may_2 550 35 1500 . 181.40 35.000

f2_apr_2 f2_may_2 50 0 . . 38.00 0.000

f1_mar_1 shop1_1 250 0 . 900 -327.65 150.000

f1_apr_1 shop1_1 250 0 . 900 -300.00 250.000

f1_may_1 shop1_1 250 0 . 900 -285.00 0.000

f2_mar_1 shop1_1 250 0 . 900 -297.40 250.000

f2_apr_1 shop1_1 250 0 . 900 -290.00 250.000

f2_may_1 shop1_1 250 0 . 900 -292.00 0.000

f1_mar_2 shop1_2 99999999 0 . 900 -559.76 0.000

Example 4.2: Altering Arc Data F 137

Output 4.2.1 continued

Minimum Cost Flow Problem- Altered Arc Data

tail _head_ _capac_ _lo_ _SUPPLY_ _DEMAND_ _name_ _cost_ _FLOW_

f1_apr_2 shop1_2 99999999 0 . 900 -524.28 0.000

f1_may_2 shop1_2 99999999 0 . 900 -475.02 0.000

f2_mar_2 shop1_2 500 0 . 900 -567.83 500.000

f2_apr_2 shop1_2 500 0 . 900 -542.19 400.000

f2_may_2 shop1_2 500 0 . 900 -491.56 0.000

f1_mar_1 shop2_1 250 0 . 900 -362.74 250.000

f1_apr_1 shop2_1 250 0 . 900 -300.00 250.000

f1_may_1 shop2_1 250 0 . 900 -245.00 0.000

f2_mar_1 shop2_1 250 0 . 900 -272.70 0.000

f2_apr_1 shop2_1 250 0 . 900 -312.00 250.000

f2_may_1 shop2_1 250 0 . 900 -299.00 150.000

f1_mar_2 shop2_2 99999999 0 . 1450 -623.89 455.000

f1_apr_2 shop2_2 99999999 0 . 1450 -549.68 235.000

f1_may_2 shop2_2 99999999 0 . 1450 -460.00 0.000

f2_mar_2 shop2_2 500 0 . 1450 -542.83 110.000

f2_apr_2 shop2_2 500 0 . 1450 -559.19 280.000

f2_may_2 shop2_2 500 0 . 1450 -519.06 370.000

138 F Chapter 4: The INTPOINT Procedure

Minimum Cost Flow Problem- Altered Arc DataMinimum Cost Flow Problem- Altered Arc Data

Obs _FCOST_ oldcost oldflow oldfc diagonal factory key_id mth_made

1 42444.01 78.60 600.000 47160.00 19 1 production April

2 0.00 15.00 0.000 0.00 19 1 storage March

3 0.00 28.00 0.000 0.00 19 1 backorder May

4 0.00 11.00 0.000 0.00 19 . f2_to_1 April

5 43625.00 174.50 550.000 95975.00 25 1 production April

6 0.00 20.00 0.000 0.00 25 1 storage March

7 738.00 41.00 15.000 615.00 25 1 backorder May

8 0.00 21.00 0.000 0.00 25 . f2_to_1 April

9 43486.02 127.90 344.999 44125.43 19 1 production March

10 672.00 28.00 20.000 560.00 19 1 backorder April

11 400.00 10.00 40.000 400.00 19 . f2_to_1 March

12 87160.00 217.90 400.000 87160.00 25 1 production March

13 1152.00 32.00 30.000 960.00 25 1 backorder April

14 500.00 20.00 25.000 500.00 25 . f2_to_1 March

15 10361.47 95.10 50.001 4755.06 19 1 production May

16 0.00 12.00 50.000 600.00 19 1 storage April

17 0.00 13.00 0.000 0.00 19 . f2_to_1 May

18 39655.00 133.30 40.000 5332.04 25 1 production May

19 0.00 18.00 0.000 0.00 25 1 storage April

20 0.00 43.00 0.000 0.00 25 . f2_to_1 May

21 220.00 11.00 30.000 330.00 19 . f1_to_2 April

22 29952.00 62.40 480.000 29952.00 19 2 production April

23 0.00 18.00 0.000 0.00 19 2 storage March

24 0.00 25.00 0.000 0.00 19 2 backorder May

25 0.00 23.00 0.000 0.00 25 . f1_to_2 April

26 133755.99 196.70 680.000 133755.99 25 2 production April

27 0.00 28.00 0.000 0.00 25 2 storage March

28 0.00 54.00 15.000 810.00 25 2 backorder May

29 0.00 11.00 0.000 0.00 19 . f1_to_2 March

30 25520.00 88.00 290.000 25520.00 19 2 production March

31 0.00 17.00 0.000 0.00 19 2 backorder April

32 0.00 23.00 0.000 0.00 25 . f1_to_2 March

33 115570.01 182.00 645.000 117389.96 25 2 production March

34 0.00 31.00 0.000 0.00 25 2 backorder April

35 1840.00 16.00 100.000 1600.01 19 . f1_to_2 May

36 4508.00 133.80 35.000 4683.00 19 2 production May

37 0.00 20.00 15.000 299.99 19 2 storage April

38 8710.00 26.00 0.000 0.00 25 . f1_to_2 May

39 6349.00 201.40 35.000 7049.00 25 2 production May

40 0.00 38.00 0.000 0.00 25 2 storage April

41 -49147.54 -327.65 154.999 -50785.56 19 1 sales March

42 -75000.00 -300.00 250.000 -75000.00 19 1 sales April

43 -0.01 -285.00 0.000 0.00 19 1 sales May

44 -74350.00 -297.40 250.000 -74349.99 19 2 sales March

45 -72499.96 -290.00 245.001 -71050.17 19 2 sales April

46 0.00 -292.00 0.000 0.00 19 2 sales May

47 0.00 -559.76 0.000 0.00 25 1 sales March

Example 4.3: Adding Side Constraints F 139

Minimum Cost Flow Problem- Altered Arc Data

Obs _FCOST_ oldcost oldflow oldfc diagonal factory key_id mth_made

48 -0.01 -524.28 0.000 -0.01 25 1 sales April

49 -0.06 -475.02 25.000 -11875.64 25 1 sales May

50 -283915.00 -567.83 500.000 -283915.00 25 2 sales March

51 -216875.92 -542.19 375.000 -203321.08 25 2 sales April

52 0.00 -461.56 0.000 0.00 25 2 sales May

53 -90685.00 -362.74 250.000 -90685.00 19 1 sales March

54 -75000.00 -300.00 250.000 -75000.00 19 1 sales April

55 0.00 -245.00 0.000 0.00 19 1 sales May

56 -0.01 -272.70 0.000 0.00 19 2 sales March

57 -78000.00 -312.00 250.000 -78000.00 19 2 sales April

58 -44849.99 -299.00 150.000 -44850.00 19 2 sales May

59 -283869.94 -623.89 455.000 -283869.94 25 1 sales March

60 -129174.80 -549.68 535.000 -294078.78 25 1 sales April

61 0.00 -460.00 0.000 0.00 25 1 sales May

62 -59711.32 -542.83 120.000 -65139.47 25 2 sales March

63 -156573.27 -559.19 320.000 -178940.96 25 2 sales April

64 -192052.13 -489.06 20.000 -9781.20 25 2 sales May

-1285086.44 -1281110.34

Example 4.3: Adding Side Constraints
The manufacturer of Gizmo chips, which are parts needed to make televisions, can supply only 2,600 chips
to factory 1 and 3,750 chips to factory 2 in time for production in each of the months of March and April.
However, Gizmo chips will not be in short supply in May. Three chips are required to make each 19-inch TV
while the 25-inch TVs require four chips each. To limit the production of televisions produced at factory 1 in
March so that the TVs have the correct number of chips, a side constraint called FACT1 MAR GIZMO is used.
The form of this constraint is

3 * prod f1 19 mar + 4 * prod f1 25 mar <= 2600

prod f1 19 mar is the name of the arc directed from the node fact1_1 toward node f1_mar_1 and, in the
previous constraint, designates the flow assigned to this arc. The ARCDATA= and CONOUT= data sets have
arc names in a variable called _name_.

The other side constraints (shown below) are called FACT2 MAR GIZMO, FACT1 APL GIZMO, and FACT2
APL GIZMO.

3 * prod f2 19 mar + 4 * prod f2 25 mar <= 3750
3 * prod f1 19 apl + 4 * prod f1 25 apl <= 2600
3 * prod f2 19 apl + 4 * prod f2 25 apl <= 3750

140 F Chapter 4: The INTPOINT Procedure

To maintain customer goodwill, the total number of backorders is not to exceed 50 sets. The side constraint
TOTAL BACKORDER that models this restriction is

back f1 19 apl + back f1 25 apl +
back f2 19 apl + back f2 25 apl +
back f1 19 may + back f1 25 may +
back f2 19 may + back f2 25 may <= 50

The sparse CONDATA= data set format is used. All side constraints are of less than or equal type. Because this
is the default type value for the DEFCONTYPE= option, type information is not necessary in the following
CONDATA=con3. Also, DEFCONTYPE= <= does not have to be specified in the PROC INTPOINT
statement that follows. Notice that the _column_ variable value CHIP/BO LIMIT indicates that an observation
of the con3 data set contains rhs information. Therefore, specify RHSOBS=‘CHIP/BO LIMIT’

title2 'Adding Side Constraints';
data con3;

input _column_ &$14. _row_ &$15. _coef_ ;
datalines;

prod f1 19 mar FACT1 MAR GIZMO 3
prod f1 25 mar FACT1 MAR GIZMO 4
CHIP/BO LIMIT FACT1 MAR GIZMO 2600
prod f2 19 mar FACT2 MAR GIZMO 3
prod f2 25 mar FACT2 MAR GIZMO 4
CHIP/BO LIMIT FACT2 MAR GIZMO 3750
prod f1 19 apl FACT1 APL GIZMO 3
prod f1 25 apl FACT1 APL GIZMO 4
CHIP/BO LIMIT FACT1 APL GIZMO 2600
prod f2 19 apl FACT2 APL GIZMO 3
prod f2 25 apl FACT2 APL GIZMO 4
CHIP/BO LIMIT FACT2 APL GIZMO 3750
back f1 19 apl TOTAL BACKORDER 1
back f1 25 apl TOTAL BACKORDER 1
back f2 19 apl TOTAL BACKORDER 1
back f2 25 apl TOTAL BACKORDER 1
back f1 19 may TOTAL BACKORDER 1
back f1 25 may TOTAL BACKORDER 1
back f2 19 may TOTAL BACKORDER 1
back f2 25 may TOTAL BACKORDER 1
CHIP/BO LIMIT TOTAL BACKORDER 50
;

Example 4.3: Adding Side Constraints F 141

The four pairs of data sets that follow can be used as ARCDATA= and NODEDATA= data sets in the
following PROC INTPOINT run. The set used depends on which cost information the arcs are to have.

ARCDATA=arc0 NODEDATA=node0
ARCDATA=arc1 NODEDATA=node0
ARCDATA=arc2 NODEDATA=node0
ARCDATA=arc3 NODEDATA=node0

arc0, node0, and arc1 were created in Example 4.1. The first two data sets are the original input data sets.

In the previous example, arc2 was created by modifying arc1 to reflect different arc costs. arc2 and node0
can also be used as the ARCDATA= and NODEDATA= data sets in a PROC INTPOINT run.

If you are going to continue optimization using the changed arc costs, it is probably best to use arc3 and
node0 as the ARCDATA= and NODEDATA= data sets.

PROC INTPOINT is used to find the changed cost network solution that obeys the chip limit and backorder
side constraints. An explicit ID list has also been specified so that the variables oldcost, oldfc, and oldflow do
not appear in the subsequent output data sets:

proc intpoint
bytes=1000000
printlevel2=2
nodedata=node0 arcdata=arc3
condata=con3 sparsecondata rhsobs='CHIP/BO LIMIT'
conout=arc4;
id diagonal factory key_id mth_made;
run;

proc print data=arc4;
var _tail_ _head_ _cost_ _capac_ _lo_ _flow_ _fcost_;

/* to get this variable order */
sum _fcost_;
run;

The following messages appear on the SAS log:

142 F Chapter 4: The INTPOINT Procedure

NOTE: The following variables in ARCDATA do not belong to any SAS variable list.

 These will be ignored.

 FLOW

 FCOST

 oldcost

 oldfc

 oldflow

NOTE: Number of nodes= 20 .

NOTE: Number of supply nodes= 4 .

NOTE: Number of demand nodes= 4 .

NOTE: Total supply= 4350 , total demand= 4150 .

NOTE: Number of arcs= 64 .

NOTE: Number of <= side constraints= 5 .

NOTE: Number of == side constraints= 0 .

NOTE: Number of >= side constraints= 0 .

NOTE: Number of side constraint coefficients= 16 .

NOTE: The following messages relate to the equivalent Linear Programming problem

 solved by the Interior Point algorithm.

NOTE: Number of <= constraints= 5 .

NOTE: Number of == constraints= 21 .

NOTE: Number of >= constraints= 0 .

NOTE: Number of constraint coefficients= 152 .

NOTE: Number of variables= 68 .

NOTE: After preprocessing, number of <= constraints= 5.

NOTE: After preprocessing, number of == constraints= 20.

NOTE: After preprocessing, number of >= constraints= 0.

NOTE: The preprocessor eliminated 1 constraints from the problem.

NOTE: The preprocessor eliminated 9 constraint coefficients from the problem.

NOTE: 5 columns, 0 rows and 5 coefficients were added to the problem to handle

 unrestricted variables, variables that are split, and constraint slack or

 surplus variables.

NOTE: There are 74 sub-diagonal nonzeroes in the unfactored A Atranspose matrix.

NOTE: The 25 factor nodes make up 17 supernodes

NOTE: There are 88 nonzero sub-rows or sub-columns outside the supernodal

 triangular regions along the factors leading diagonal.

 Iter Complem_aff Complem-ity Duality_gap Tot_infeasb Tot_infeasc Tot_infeasd

 0 -1.000000 199456613 0.894741 65408 35351 10906

 1 38664128 25735020 0.919726 4738.839318 2561.195456 248.292591

 2 5142982 1874540 0.595158 0 0 6.669426

 3 366112 338310 0.207256 0 0 1.207816

 4 172159 90907 0.063722 0 0 0.238703

 5 48403 38889 0.027839 0 0 0.115586

 6 28882 17979 0.013029 0 0 0.019825

 7 7800.003324 3605.779203 0.002631 0 0 0.004077

 8 1564.193112 422.251530 0.000309 0 0 0.000225

 9 94.768595 16.589795 0.000012126 0 0 0

 10 0.294833 0.001048 5.96523E-10 0 0 0

NOTE: The Primal-Dual Predictor-Corrector Interior Point algorithm performed 10

 iterations.

Example 4.3: Adding Side Constraints F 143

NOTE: Optimum reached.

NOTE: Objective= -1282708.622.

NOTE: The data set WORK.ARC4 has 64 observations and 14 variables.

NOTE: There were 64 observations read from the data set WORK.ARC3.

NOTE: There were 8 observations read from the data set WORK.NODE0.

NOTE: There were 21 observations read from the data set WORK.CON3.

144 F Chapter 4: The INTPOINT Procedure

Output 4.3.1 CONOUT=ARC4

Obs _tail_ _head_ _cost_ _capac_ _lo_ _FLOW_ _FCOST_

1 fact1_1 f1_apr_1 78.60 600 50 533.333 41920.00

2 f1_mar_1 f1_apr_1 15.00 50 0 0.000 0.00

3 f1_may_1 f1_apr_1 33.60 20 0 0.000 0.00

4 f2_apr_1 f1_apr_1 11.00 40 0 0.000 0.00

5 fact1_2 f1_apr_2 174.50 550 50 250.000 43625.00

6 f1_mar_2 f1_apr_2 20.00 40 0 0.000 0.00

7 f1_may_2 f1_apr_2 49.20 15 0 0.000 0.00

8 f2_apr_2 f1_apr_2 21.00 25 0 0.000 0.00

9 fact1_1 f1_mar_1 127.90 500 50 333.333 42633.33

10 f1_apr_1 f1_mar_1 33.60 20 0 20.000 672.00

11 f2_mar_1 f1_mar_1 10.00 40 0 40.000 400.00

12 fact1_2 f1_mar_2 217.90 400 40 400.000 87160.00

13 f1_apr_2 f1_mar_2 38.40 30 0 30.000 1152.00

14 f2_mar_2 f1_mar_2 20.00 25 0 25.000 500.00

15 fact1_1 f1_may_1 90.10 400 50 128.333 11562.83

16 f1_apr_1 f1_may_1 12.00 50 0 0.000 0.00

17 f2_may_1 f1_may_1 13.00 40 0 0.000 0.00

18 fact1_2 f1_may_2 113.30 350 40 350.000 39655.00

19 f1_apr_2 f1_may_2 18.00 40 0 0.000 0.00

20 f2_may_2 f1_may_2 13.00 25 0 0.000 0.00

21 f1_apr_1 f2_apr_1 11.00 99999999 0 13.333 146.67

22 fact2_1 f2_apr_1 62.40 480 35 480.000 29952.00

23 f2_mar_1 f2_apr_1 18.00 30 0 0.000 0.00

24 f2_may_1 f2_apr_1 30.00 15 0 0.000 0.00

25 f1_apr_2 f2_apr_2 23.00 99999999 0 0.000 0.00

26 fact2_2 f2_apr_2 196.70 680 35 577.500 113594.25

27 f2_mar_2 f2_apr_2 28.00 50 0 0.000 0.00

28 f2_may_2 f2_apr_2 64.80 15 0 0.000 0.00

29 f1_mar_1 f2_mar_1 11.00 99999999 0 0.000 0.00

30 fact2_1 f2_mar_1 88.00 450 35 290.000 25520.00

31 f2_apr_1 f2_mar_1 20.40 15 0 0.000 0.00

32 f1_mar_2 f2_mar_2 23.00 99999999 0 0.000 0.00

33 fact2_2 f2_mar_2 182.00 650 35 650.000 118300.00

34 f2_apr_2 f2_mar_2 37.20 15 0 0.000 0.00

35 f1_may_1 f2_may_1 16.00 99999999 0 115.000 1840.00

36 fact2_1 f2_may_1 128.80 250 35 35.000 4508.00

37 f2_apr_1 f2_may_1 20.00 30 0 0.000 0.00

38 f1_may_2 f2_may_2 26.00 99999999 0 350.000 9100.00

39 fact2_2 f2_may_2 181.40 550 35 122.500 22221.50

40 f2_apr_2 f2_may_2 38.00 50 0 0.000 0.00

41 f1_mar_1 shop1_1 -327.65 250 0 143.333 -46963.16

42 f1_apr_1 shop1_1 -300.00 250 0 250.000 -75000.00

43 f1_may_1 shop1_1 -285.00 250 0 13.333 -3800.00

44 f2_mar_1 shop1_1 -297.40 250 0 250.000 -74350.00

45 f2_apr_1 shop1_1 -290.00 250 0 243.333 -70566.67

46 f2_may_1 shop1_1 -292.00 250 0 0.000 0.00

47 f1_mar_2 shop1_2 -559.76 99999999 0 0.000 0.00

48 f1_apr_2 shop1_2 -524.28 99999999 0 0.000 0.00

Example 4.3: Adding Side Constraints F 145

Output 4.3.1 continued

Obs _tail_ _head_ _cost_ _capac_ _lo_ _FLOW_ _FCOST_

49 f1_may_2 shop1_2 -475.02 99999999 0 0.000 0.00

50 f2_mar_2 shop1_2 -567.83 500 0 500.000 -283915.00

51 f2_apr_2 shop1_2 -542.19 500 0 400.000 -216876.00

52 f2_may_2 shop1_2 -491.56 500 0 0.000 0.00

53 f1_mar_1 shop2_1 -362.74 250 0 250.000 -90685.00

54 f1_apr_1 shop2_1 -300.00 250 0 250.000 -75000.00

55 f1_may_1 shop2_1 -245.00 250 0 0.000 0.00

56 f2_mar_1 shop2_1 -272.70 250 0 0.000 0.00

57 f2_apr_1 shop2_1 -312.00 250 0 250.000 -78000.00

58 f2_may_1 shop2_1 -299.00 250 0 150.000 -44850.00

59 f1_mar_2 shop2_2 -623.89 99999999 0 455.000 -283869.95

60 f1_apr_2 shop2_2 -549.68 99999999 0 220.000 -120929.60

61 f1_may_2 shop2_2 -460.00 99999999 0 0.000 0.00

62 f2_mar_2 shop2_2 -542.83 500 0 125.000 -67853.75

63 f2_apr_2 shop2_2 -559.19 500 0 177.500 -99256.23

64 f2_may_2 shop2_2 -519.06 500 0 472.500 -245255.85

-1282708.62

146 F Chapter 4: The INTPOINT Procedure

Example 4.4: Using Constraints and More Alteration to Arc Data
Suppose the 25-inch screen TVs produced at factory 1 in May can be sold at either shop with an increased
profit of 40 dollars each. What is the new optimal solution?

title2 'Using Constraints and Altering arc data';
data new_arc4;

set arc4;
oldcost=_cost_;
oldflow=_flow_;
oldfc=_fcost_;
if _tail_='f1_may_2' & (_head_='shop1_2' | _head_='shop2_2')

then _cost_=_cost_-40;
run;

proc intpoint
bytes=1000000
printlevel2=2
arcdata=new_arc4 nodedata=node0
condata=con3 sparsecondata rhsobs='CHIP/BO LIMIT'
conout=arc5;
run;

title2 'Using Constraints and Altering Arc Data';
proc print data=arc5;

var _tail_ _head_ _cost_ _capac_ _lo_
supply _demand_ _name_ _flow_ _fcost_ oldflow oldfc;

/* to get this variable order */
sum oldfc _fcost_;

run;

The following messages appear on the SAS log:

Example 4.4: Using Constraints and More Alteration to Arc Data F 147

NOTE: Number of nodes= 20 .

NOTE: Number of supply nodes= 4 .

NOTE: Number of demand nodes= 4 .

NOTE: Total supply= 4350 , total demand= 4150 .

NOTE: Number of arcs= 64 .

NOTE: Number of <= side constraints= 5 .

NOTE: Number of == side constraints= 0 .

NOTE: Number of >= side constraints= 0 .

NOTE: Number of side constraint coefficients= 16 .

NOTE: The following messages relate to the equivalent Linear Programming problem

 solved by the Interior Point algorithm.

NOTE: Number of <= constraints= 5 .

NOTE: Number of == constraints= 21 .

NOTE: Number of >= constraints= 0 .

NOTE: Number of constraint coefficients= 152 .

NOTE: Number of variables= 68 .

NOTE: After preprocessing, number of <= constraints= 5.

NOTE: After preprocessing, number of == constraints= 20.

NOTE: After preprocessing, number of >= constraints= 0.

NOTE: The preprocessor eliminated 1 constraints from the problem.

NOTE: The preprocessor eliminated 9 constraint coefficients from the problem.

NOTE: 5 columns, 0 rows and 5 coefficients were added to the problem to handle

 unrestricted variables, variables that are split, and constraint slack or

 surplus variables.

NOTE: There are 74 sub-diagonal nonzeroes in the unfactored A Atranspose matrix.

NOTE: The 25 factor nodes make up 17 supernodes

NOTE: There are 88 nonzero sub-rows or sub-columns outside the supernodal

 triangular regions along the factors leading diagonal.

 Iter Complem_aff Complem-ity Duality_gap Tot_infeasb Tot_infeasc Tot_infeasd

 0 -1.000000 201073760 0.894528 65408 35351 10995

 1 39022799 25967436 0.919693 4741.966761 2562.885742 256.192394

 2 5186078 1844990 0.589523 0 0 6.174556

 3 371920 320310 0.197224 0 0 1.074616

 4 151369 87643 0.060906 0 0 0.267952

 5 35115 25158 0.018017 0 0 0.072961

 6 14667 6194.354873 0.004475 0 0 0.005048

 7 2723.955063 2472.352937 0.001789 0 0 0.001714

 8 1028.390365 280.346187 0.000203 0 0 0.000235

 9 39.957867 5.611483 0.000004063 0 0 0

 10 0.014117 0.000291 9.492733E-11 0 0 0

NOTE: The Primal-Dual Predictor-Corrector Interior Point algorithm performed 10

 iterations.

NOTE: Optimum reached.

NOTE: Objective= -1295661.8.

NOTE: The data set WORK.ARC5 has 64 observations and 17 variables.

NOTE: There were 64 observations read from the data set WORK.NEW_ARC4.

NOTE: There were 8 observations read from the data set WORK.NODE0.

NOTE: There were 21 observations read from the data set WORK.CON3.

148 F Chapter 4: The INTPOINT Procedure

Output 4.4.1 CONOUT=ARC5

Using Constraints and Altering Arc DataUsing Constraints and Altering Arc Data

Obs _tail_ _head_ _cost_ _capac_ _lo_ _SUPPLY_ _DEMAND_

1 fact1_1 f1_apr_1 78.60 600 50 1000 .

2 f1_mar_1 f1_apr_1 15.00 50 0 . .

3 f1_may_1 f1_apr_1 33.60 20 0 . .

4 f2_apr_1 f1_apr_1 11.00 40 0 . .

5 fact1_2 f1_apr_2 174.50 550 50 1000 .

6 f1_mar_2 f1_apr_2 20.00 40 0 . .

7 f1_may_2 f1_apr_2 49.20 15 0 . .

8 f2_apr_2 f1_apr_2 21.00 25 0 . .

9 fact1_1 f1_mar_1 127.90 500 50 1000 .

10 f1_apr_1 f1_mar_1 33.60 20 0 . .

11 f2_mar_1 f1_mar_1 10.00 40 0 . .

12 fact1_2 f1_mar_2 217.90 400 40 1000 .

13 f1_apr_2 f1_mar_2 38.40 30 0 . .

14 f2_mar_2 f1_mar_2 20.00 25 0 . .

15 fact1_1 f1_may_1 90.10 400 50 1000 .

16 f1_apr_1 f1_may_1 12.00 50 0 . .

17 f2_may_1 f1_may_1 13.00 40 0 . .

18 fact1_2 f1_may_2 113.30 350 40 1000 .

19 f1_apr_2 f1_may_2 18.00 40 0 . .

20 f2_may_2 f1_may_2 13.00 25 0 . .

21 f1_apr_1 f2_apr_1 11.00 99999999 0 . .

22 fact2_1 f2_apr_1 62.40 480 35 850 .

23 f2_mar_1 f2_apr_1 18.00 30 0 . .

24 f2_may_1 f2_apr_1 30.00 15 0 . .

25 f1_apr_2 f2_apr_2 23.00 99999999 0 . .

26 fact2_2 f2_apr_2 196.70 680 35 1500 .

27 f2_mar_2 f2_apr_2 28.00 50 0 . .

28 f2_may_2 f2_apr_2 64.80 15 0 . .

29 f1_mar_1 f2_mar_1 11.00 99999999 0 . .

30 fact2_1 f2_mar_1 88.00 450 35 850 .

31 f2_apr_1 f2_mar_1 20.40 15 0 . .

32 f1_mar_2 f2_mar_2 23.00 99999999 0 . .

33 fact2_2 f2_mar_2 182.00 650 35 1500 .

34 f2_apr_2 f2_mar_2 37.20 15 0 . .

35 f1_may_1 f2_may_1 16.00 99999999 0 . .

36 fact2_1 f2_may_1 128.80 250 35 850 .

37 f2_apr_1 f2_may_1 20.00 30 0 . .

38 f1_may_2 f2_may_2 26.00 99999999 0 . .

39 fact2_2 f2_may_2 181.40 550 35 1500 .

40 f2_apr_2 f2_may_2 38.00 50 0 . .

41 f1_mar_1 shop1_1 -327.65 250 0 . 900

42 f1_apr_1 shop1_1 -300.00 250 0 . 900

43 f1_may_1 shop1_1 -285.00 250 0 . 900

44 f2_mar_1 shop1_1 -297.40 250 0 . 900

45 f2_apr_1 shop1_1 -290.00 250 0 . 900

46 f2_may_1 shop1_1 -292.00 250 0 . 900

47 f1_mar_2 shop1_2 -559.76 99999999 0 . 900

Example 4.4: Using Constraints and More Alteration to Arc Data F 149

Output 4.4.1 continued

Using Constraints and Altering Arc Data

Obs _tail_ _head_ _cost_ _capac_ _lo_ _SUPPLY_ _DEMAND_

48 f1_apr_2 shop1_2 -524.28 99999999 0 . 900

49 f1_may_2 shop1_2 -515.02 99999999 0 . 900

50 f2_mar_2 shop1_2 -567.83 500 0 . 900

51 f2_apr_2 shop1_2 -542.19 500 0 . 900

52 f2_may_2 shop1_2 -491.56 500 0 . 900

53 f1_mar_1 shop2_1 -362.74 250 0 . 900

54 f1_apr_1 shop2_1 -300.00 250 0 . 900

55 f1_may_1 shop2_1 -245.00 250 0 . 900

56 f2_mar_1 shop2_1 -272.70 250 0 . 900

57 f2_apr_1 shop2_1 -312.00 250 0 . 900

58 f2_may_1 shop2_1 -299.00 250 0 . 900

59 f1_mar_2 shop2_2 -623.89 99999999 0 . 1450

60 f1_apr_2 shop2_2 -549.68 99999999 0 . 1450

61 f1_may_2 shop2_2 -500.00 99999999 0 . 1450

62 f2_mar_2 shop2_2 -542.83 500 0 . 1450

63 f2_apr_2 shop2_2 -559.19 500 0 . 1450

64 f2_may_2 shop2_2 -519.06 500 0 . 1450

150 F Chapter 4: The INTPOINT Procedure

Using Constraints and Altering Arc DataUsing Constraints and Altering Arc Data

Obs _name_ _FLOW_ _FCOST_ oldflow oldfc

1 prod f1 19 apl 533.333 41920.00 533.333 41920.00

2 0.000 0.00 0.000 0.00

3 back f1 19 may 0.000 0.00 0.000 0.00

4 0.000 0.00 0.000 0.00

5 prod f1 25 apl 250.000 43625.00 250.000 43625.00

6 0.000 0.00 0.000 0.00

7 back f1 25 may 0.000 0.00 0.000 0.00

8 0.000 0.00 0.000 0.00

9 prod f1 19 mar 333.333 42633.33 333.333 42633.33

10 back f1 19 apl 20.000 672.00 20.000 672.00

11 40.000 400.00 40.000 400.00

12 prod f1 25 mar 400.000 87160.00 400.000 87160.00

13 back f1 25 apl 30.000 1152.00 30.000 1152.00

14 25.000 500.00 25.000 500.00

15 128.333 11562.83 128.333 11562.83

16 0.000 0.00 0.000 0.00

17 0.000 0.00 0.000 0.00

18 350.000 39655.00 350.000 39655.00

19 0.000 0.00 0.000 0.00

20 0.000 0.00 0.000 0.00

21 13.333 146.67 13.333 146.67

22 prod f2 19 apl 480.000 29952.00 480.000 29952.00

23 0.000 0.00 0.000 0.00

24 back f2 19 may 0.000 0.00 0.000 0.00

25 0.000 0.00 0.000 0.00

26 prod f2 25 apl 550.000 108185.00 577.500 113594.25

27 0.000 0.00 0.000 0.00

28 back f2 25 may 0.000 0.00 0.000 0.00

29 0.000 0.00 0.000 0.00

30 prod f2 19 mar 290.000 25520.00 290.000 25520.00

31 back f2 19 apl 0.000 0.00 0.000 0.00

32 0.000 0.00 0.000 0.00

33 prod f2 25 mar 650.000 118300.00 650.000 118300.00

34 back f2 25 apl 0.000 0.00 0.000 0.00

35 115.000 1840.00 115.000 1840.00

36 35.000 4508.00 35.000 4508.00

37 0.000 0.00 0.000 0.00

38 0.000 0.00 350.000 9100.00

39 150.000 27210.00 122.500 22221.50

40 0.000 0.00 0.000 0.00

41 143.333 -46963.17 143.333 -46963.16

42 250.000 -75000.00 250.000 -75000.00

43 13.333 -3800.00 13.333 -3800.00

44 250.000 -74350.00 250.000 -74350.00

45 243.333 -70566.67 243.333 -70566.67

46 0.000 0.00 0.000 0.00

47 0.000 0.00 0.000 0.00

Example 4.5: Nonarc Variables in the Side Constraints F 151

Using Constraints and Altering Arc Data

Obs _name_ _FLOW_ _FCOST_ oldflow oldfc

48 0.000 0.00 0.000 0.00

49 350.000 -180257.00 0.000 0.00

50 500.000 -283915.00 500.000 -283915.00

51 50.000 -27109.50 400.000 -216876.00

52 0.000 0.00 0.000 0.00

53 250.000 -90685.00 250.000 -90685.00

54 250.000 -75000.00 250.000 -75000.00

55 0.000 0.00 0.000 0.00

56 0.000 0.00 0.000 0.00

57 250.000 -78000.00 250.000 -78000.00

58 150.000 -44850.00 150.000 -44850.00

59 455.000 -283869.95 455.000 -283869.95

60 220.000 -120929.60 220.000 -120929.60

61 0.000 0.00 0.000 0.00

62 125.000 -67853.75 125.000 -67853.75

63 500.000 -279595.00 177.500 -99256.23

64 150.000 -77859.00 472.500 -245255.85

-1295661.80 -1282708.62

Example 4.5: Nonarc Variables in the Side Constraints
You can verify that the FACT2 MAR GIZMO constraint has a left-hand-side activity of 3,470, which is not
equal to the _RHS_ of this constraint. Not all of the 3,750 chips that can be supplied to factory 2 for March
production are used. It is suggested that all the possible chips be obtained in March and those not used be
saved for April production. Because chips must be kept in an air-controlled environment, it costs one dollar
to store each chip purchased in March until April. The maximum number of chips that can be stored in this
environment at each factory is 150. In addition, a search of the parts inventory at factory 1 turned up 15 chips
available for their March production.

Nonarc variables are used in the side constraints that handle the limitations of supply of Gizmo chips. A
nonarc variable called f1 unused chips has as a value the number of chips that are not used at factory 1 in
March. Another nonarc variable, f2 unused chips, has as a value the number of chips that are not used at
factory 2 in March. f1 chips from mar has as a value the number of chips left over from March used for
production at factory 1 in April. Similarly, f2 chips from mar has as a value the number of chips left over
from March used for April production at factory 2 in April. The last two nonarc variables have objective
function coefficients of 1 and upper bounds of 150. The Gizmo side constraints are

3*prod f1 19 mar + 4*prod f1 25 mar + f1 unused chips = 2615
3*prod f2 19 apl + 4*prod f2 25 apl + f2 unused chips = 3750
3*prod f1 19 apl + 4*prod f1 25 apl - f1 chips from mar = 2600
3*prod f2 19 apl + 4*prod f2 25 apl - f2 chips from mar = 3750
f1 unused chips + f2 unused chips -
f1 chips from mar - f2 chips from mar >= 0

The last side constraint states that the number of chips not used in March is not less than the number of chips
left over from March and used in April. Here, this constraint is called CHIP LEFTOVER.

152 F Chapter 4: The INTPOINT Procedure

The following SAS code creates a new data set containing constraint data. It seems that most of the constraints
are now equalities, so you specify DEFCONTYPE=EQ in the PROC INTPOINT statement from now on and
provide constraint type data for constraints that are not “equal to” type, using the default TYPEOBS value
TYPE as the _COLUMN_ variable value to indicate observations that contain constraint type data. Also,
from now on, the default RHSOBS value is used.

title2 'Nonarc Variables in the Side Constraints';
data con6;

input _column_ &$17. _row_ &$15. _coef_ ;
datalines;

prod f1 19 mar FACT1 MAR GIZMO 3
prod f1 25 mar FACT1 MAR GIZMO 4
f1 unused chips FACT1 MAR GIZMO 1
RHS FACT1 MAR GIZMO 2615
prod f2 19 mar FACT2 MAR GIZMO 3
prod f2 25 mar FACT2 MAR GIZMO 4
f2 unused chips FACT2 MAR GIZMO 1
RHS FACT2 MAR GIZMO 3750
prod f1 19 apl FACT1 APL GIZMO 3
prod f1 25 apl FACT1 APL GIZMO 4
f1 chips from mar FACT1 APL GIZMO -1
RHS FACT1 APL GIZMO 2600
prod f2 19 apl FACT2 APL GIZMO 3
prod f2 25 apl FACT2 APL GIZMO 4
f2 chips from mar FACT2 APL GIZMO -1
RHS FACT2 APL GIZMO 3750
f1 unused chips CHIP LEFTOVER 1
f2 unused chips CHIP LEFTOVER 1
f1 chips from mar CHIP LEFTOVER -1
f2 chips from mar CHIP LEFTOVER -1
TYPE CHIP LEFTOVER 1
back f1 19 apl TOTAL BACKORDER 1
back f1 25 apl TOTAL BACKORDER 1
back f2 19 apl TOTAL BACKORDER 1
back f2 25 apl TOTAL BACKORDER 1
back f1 19 may TOTAL BACKORDER 1
back f1 25 may TOTAL BACKORDER 1
back f2 19 may TOTAL BACKORDER 1
back f2 25 may TOTAL BACKORDER 1
TYPE TOTAL BACKORDER -1
RHS TOTAL BACKORDER 50
;

The nonarc variables f1 chips from mar and f2 chips from mar have objective function coefficients of 1 and
upper bounds of 150. There are various ways in which this information can be furnished to PROC INTPOINT.
If there were a TYPE list variable in the CONDATA= data set, observations could be in the form

COLUMN _TYPE_ _ROW_ _COEF_
f1 chips from mar objfn . 1
f1 chips from mar upperbd . 150
f2 chips from mar objfn . 1
f2 chips from mar upperbd . 150

Example 4.5: Nonarc Variables in the Side Constraints F 153

It is desirable to assign ID list variable values to all the nonarc variables:

data arc6;
input _tail_ $ _head_ $ _cost_ _capac_ _lo_ diagonal factory

key_id $10. mth_made $ _name_&$17.;
datalines;
fact1_1 f1_apr_1 78.60 600 50 19 1 production April prod f1 19 apl
f1_mar_1 f1_apr_1 15.00 50 . 19 1 storage March .
f1_may_1 f1_apr_1 33.60 20 . 19 1 backorder May back f1 19 may
f2_apr_1 f1_apr_1 11.00 40 . 19 . f2_to_1 April .
fact1_2 f1_apr_2 174.50 550 50 25 1 production April prod f1 25 apl
f1_mar_2 f1_apr_2 20.00 40 . 25 1 storage March .
f1_may_2 f1_apr_2 49.20 15 . 25 1 backorder May back f1 25 may
f2_apr_2 f1_apr_2 21.00 25 . 25 . f2_to_1 April .
fact1_1 f1_mar_1 127.90 500 50 19 1 production March prod f1 19 mar
f1_apr_1 f1_mar_1 33.60 20 . 19 1 backorder April back f1 19 apl
f2_mar_1 f1_mar_1 10.00 40 . 19 . f2_to_1 March .
fact1_2 f1_mar_2 217.90 400 40 25 1 production March prod f1 25 mar
f1_apr_2 f1_mar_2 38.40 30 . 25 1 backorder April back f1 25 apl
f2_mar_2 f1_mar_2 20.00 25 . 25 . f2_to_1 March .
fact1_1 f1_may_1 90.10 400 50 19 1 production May .
f1_apr_1 f1_may_1 12.00 50 . 19 1 storage April .
f2_may_1 f1_may_1 13.00 40 . 19 . f2_to_1 May .
fact1_2 f1_may_2 113.30 350 40 25 1 production May .
f1_apr_2 f1_may_2 18.00 40 . 25 1 storage April .
f2_may_2 f1_may_2 13.00 25 . 25 . f2_to_1 May .
f1_apr_1 f2_apr_1 11.00 . . 19 . f1_to_2 April .
fact2_1 f2_apr_1 62.40 480 35 19 2 production April prod f2 19 apl
f2_mar_1 f2_apr_1 18.00 30 . 19 2 storage March .
f2_may_1 f2_apr_1 30.00 15 . 19 2 backorder May back f2 19 may
f1_apr_2 f2_apr_2 23.00 . . 25 . f1_to_2 April .
fact2_2 f2_apr_2 196.70 680 35 25 2 production April prod f2 25 apl
f2_mar_2 f2_apr_2 28.00 50 . 25 2 storage March .
f2_may_2 f2_apr_2 64.80 15 . 25 2 backorder May back f2 25 may
f1_mar_1 f2_mar_1 11.00 . . 19 . f1_to_2 March .
fact2_1 f2_mar_1 88.00 450 35 19 2 production March prod f2 19 mar
f2_apr_1 f2_mar_1 20.40 15 . 19 2 backorder April back f2 19 apl
f1_mar_2 f2_mar_2 23.00 . . 25 . f1_to_2 March .
fact2_2 f2_mar_2 182.00 650 35 25 2 production March prod f2 25 mar
f2_apr_2 f2_mar_2 37.20 15 . 25 2 backorder April back f2 25 apl
f1_may_1 f2_may_1 16.00 . . 19 . f1_to_2 May .
fact2_1 f2_may_1 128.80 250 35 19 2 production May .
f2_apr_1 f2_may_1 20.00 30 . 19 2 storage April .
f1_may_2 f2_may_2 26.00 . . 25 . f1_to_2 May .
fact2_2 f2_may_2 181.40 550 35 25 2 production May .
f2_apr_2 f2_may_2 38.00 50 . 25 2 storage April .
f1_mar_1 shop1_1 -327.65 250 . 19 1 sales March .
f1_apr_1 shop1_1 -300.00 250 . 19 1 sales April .
f1_may_1 shop1_1 -285.00 250 . 19 1 sales May .
f2_mar_1 shop1_1 -297.40 250 . 19 2 sales March .
f2_apr_1 shop1_1 -290.00 250 . 19 2 sales April .
f2_may_1 shop1_1 -292.00 250 . 19 2 sales May .
f1_mar_2 shop1_2 -559.76 . . 25 1 sales March .
f1_apr_2 shop1_2 -524.28 . . 25 1 sales April .

154 F Chapter 4: The INTPOINT Procedure

f1_may_2 shop1_2 -515.02 . . 25 1 sales May .
f2_mar_2 shop1_2 -567.83 500 . 25 2 sales March .
f2_apr_2 shop1_2 -542.19 500 . 25 2 sales April .
f2_may_2 shop1_2 -491.56 500 . 25 2 sales May .
f1_mar_1 shop2_1 -362.74 250 . 19 1 sales March .
f1_apr_1 shop2_1 -300.00 250 . 19 1 sales April .
f1_may_1 shop2_1 -245.00 250 . 19 1 sales May .
f2_mar_1 shop2_1 -272.70 250 . 19 2 sales March .
f2_apr_1 shop2_1 -312.00 250 . 19 2 sales April .
f2_may_1 shop2_1 -299.00 250 . 19 2 sales May .
f1_mar_2 shop2_2 -623.89 . . 25 1 sales March .
f1_apr_2 shop2_2 -549.68 . . 25 1 sales April .
f1_may_2 shop2_2 -500.00 . . 25 1 sales May .
f2_mar_2 shop2_2 -542.83 500 . 25 2 sales March .
f2_apr_2 shop2_2 -559.19 500 . 25 2 sales April .
f2_may_2 shop2_2 -519.06 500 . 25 2 sales May .
;

data arc6;
set arc5;
drop oldcost oldfc oldflow _flow_ _fcost_ ;
run;

data arc6_b;
input _name_ &$17. _cost_ _capac_ factory key_id $;
datalines;

f1 unused chips . . 1 chips
f2 unused chips . . 2 chips
f1 chips from mar 1 150 1 chips
f2 chips from mar 1 150 2 chips
;

proc append force
base=arc6 data=arc6_b;
run;

proc intpoint
bytes=1000000
printlevel2=2
nodedata=node0 arcdata=arc6
condata=con6 defcontype=eq sparsecondata
conout=arc7;
run;

The following messages appear on the SAS log:

Example 4.5: Nonarc Variables in the Side Constraints F 155

NOTE: Number of nodes= 20 .

NOTE: Number of supply nodes= 4 .

NOTE: Number of demand nodes= 4 .

NOTE: Total supply= 4350 , total demand= 4150 .

NOTE: Number of arcs= 64 .

NOTE: Number of nonarc variables= 4 .

NOTE: Number of <= side constraints= 1 .

NOTE: Number of == side constraints= 4 .

NOTE: Number of >= side constraints= 1 .

NOTE: Number of side constraint coefficients= 24 .

NOTE: The following messages relate to the equivalent Linear Programming problem

 solved by the Interior Point algorithm.

NOTE: Number of <= constraints= 1 .

NOTE: Number of == constraints= 25 .

NOTE: Number of >= constraints= 1 .

NOTE: Number of constraint coefficients= 160 .

NOTE: Number of variables= 72 .

NOTE: After preprocessing, number of <= constraints= 1.

NOTE: After preprocessing, number of == constraints= 24.

NOTE: After preprocessing, number of >= constraints= 1.

NOTE: The preprocessor eliminated 1 constraints from the problem.

NOTE: The preprocessor eliminated 9 constraint coefficients from the problem.

NOTE: 2 columns, 0 rows and 2 coefficients were added to the problem to handle

 unrestricted variables, variables that are split, and constraint slack or

 surplus variables.

NOTE: There are 78 sub-diagonal nonzeroes in the unfactored A Atranspose matrix.

NOTE: The 26 factor nodes make up 18 supernodes

NOTE: There are 101 nonzero sub-rows or sub-columns outside the supernodal

 triangular regions along the factors leading diagonal.

 Iter Complem_aff Complem-ity Duality_gap Tot_infeasb Tot_infeasc Tot_infeasd

 0 -1.000000 210688061 0.904882 69336 35199 4398.024971

 1 54066756 35459986 0.931873 5967.706945 3029.541352 935.225890

 2 10266927 2957978 0.671565 0 0 36.655485

 3 326659 314818 0.177750 0 0 3.893178

 4 137432 83570 0.053111 0 0 0.852994

 5 41386 26985 0.017545 0 0 0.204166

 6 12451 6063.528974 0.003973 0 0 0.041229

 7 2962.309960 1429.369437 0.000939 0 0 0.004395

 8 352.469864 233.620884 0.000153 0 0 0.000297

 9 115.012309 23.329492 0.000015331 0 0 0

 10 1.754859 0.039304 2.5828261E-8 0 0 0

NOTE: The Primal-Dual Predictor-Corrector Interior Point algorithm performed 10

 iterations.

NOTE: Optimum reached.

NOTE: Objective= -1295542.717.

NOTE: The data set WORK.ARC7 has 68 observations and 14 variables.

NOTE: There were 68 observations read from the data set WORK.ARC6.

NOTE: There were 8 observations read from the data set WORK.NODE0.

NOTE: There were 31 observations read from the data set WORK.CON6.

156 F Chapter 4: The INTPOINT Procedure

The optimal solution data set, CONOUT=ARC7, is given in Output 4.5.1.

proc print data=arc7;
var _tail_ _head_ _name_ _cost_ _capac_ _lo_

flow _fcost_;
sum _fcost_;
run;

The optimal value of the nonarc variable f2 unused chips is 280. This means that although there are 3,750
chips that can be used at factory 2 in March, only 3,470 are used. As the optimal value of f1 unused chips is
zero, all chips available for production in March at factory 1 are used. The nonarc variable f2 chips from mar
also has zero optimal value. This means that the April production at factory 2 does not need any chips that
could have been held in inventory since March. However, the nonarc variable f1 chips from mar has value of
20. Thus, 3,490 chips should be ordered for factory 2 in March. Twenty of these chips should be held in
inventory until April, then sent to factory 1.

Example 4.5: Nonarc Variables in the Side Constraints F 157

Output 4.5.1 CONOUT=ARC7

Obs _tail_ _head_ _name_ _cost_ _capac_ _lo_ _FLOW_ _FCOST_

1 fact1_1 f1_apr_1 prod f1 19 apl 78.60 600 50 540.000 42444.00

2 f1_mar_1 f1_apr_1 15.00 50 0 0.000 0.00

3 f1_may_1 f1_apr_1 back f1 19 may 33.60 20 0 0.000 0.00

4 f2_apr_1 f1_apr_1 11.00 40 0 0.000 0.00

5 fact1_2 f1_apr_2 prod f1 25 apl 174.50 550 50 250.000 43625.01

6 f1_mar_2 f1_apr_2 20.00 40 0 0.000 0.00

7 f1_may_2 f1_apr_2 back f1 25 may 49.20 15 0 0.000 0.00

8 f2_apr_2 f1_apr_2 21.00 25 0 25.000 525.00

9 fact1_1 f1_mar_1 prod f1 19 mar 127.90 500 50 338.333 43272.81

10 f1_apr_1 f1_mar_1 back f1 19 apl 33.60 20 0 20.000 672.00

11 f2_mar_1 f1_mar_1 10.00 40 0 40.000 400.00

12 fact1_2 f1_mar_2 prod f1 25 mar 217.90 400 40 400.000 87159.99

13 f1_apr_2 f1_mar_2 back f1 25 apl 38.40 30 0 30.000 1152.00

14 f2_mar_2 f1_mar_2 20.00 25 0 25.000 500.00

15 fact1_1 f1_may_1 90.10 400 50 116.667 10511.68

16 f1_apr_1 f1_may_1 12.00 50 0 0.000 0.00

17 f2_may_1 f1_may_1 13.00 40 0 0.000 0.00

18 fact1_2 f1_may_2 113.30 350 40 350.000 39655.00

19 f1_apr_2 f1_may_2 18.00 40 0 0.000 0.00

20 f2_may_2 f1_may_2 13.00 25 0 0.000 0.00

21 f1_apr_1 f2_apr_1 11.00 99999999 0 20.000 220.00

22 fact2_1 f2_apr_1 prod f2 19 apl 62.40 480 35 480.000 29952.00

23 f2_mar_1 f2_apr_1 18.00 30 0 0.000 0.00

24 f2_may_1 f2_apr_1 back f2 19 may 30.00 15 0 0.000 0.00

25 f1_apr_2 f2_apr_2 23.00 99999999 0 0.000 0.00

26 fact2_2 f2_apr_2 prod f2 25 apl 196.70 680 35 577.500 113594.25

27 f2_mar_2 f2_apr_2 28.00 50 0 0.000 0.00

28 f2_may_2 f2_apr_2 back f2 25 may 64.80 15 0 0.000 0.00

29 f1_mar_1 f2_mar_1 11.00 99999999 0 0.000 0.00

30 fact2_1 f2_mar_1 prod f2 19 mar 88.00 450 35 290.000 25520.00

31 f2_apr_1 f2_mar_1 back f2 19 apl 20.40 15 0 0.000 0.00

32 f1_mar_2 f2_mar_2 23.00 99999999 0 0.000 0.00

33 fact2_2 f2_mar_2 prod f2 25 mar 182.00 650 35 650.000 118300.00

34 f2_apr_2 f2_mar_2 back f2 25 apl 37.20 15 0 0.000 0.00

35 f1_may_1 f2_may_1 16.00 99999999 0 115.000 1840.00

36 fact2_1 f2_may_1 128.80 250 35 35.000 4508.00

37 f2_apr_1 f2_may_1 20.00 30 0 0.000 0.00

38 f1_may_2 f2_may_2 26.00 99999999 0 0.000 0.00

39 fact2_2 f2_may_2 181.40 550 35 122.500 22221.50

40 f2_apr_2 f2_may_2 38.00 50 0 0.000 0.00

41 f1_mar_1 shop1_1 -327.65 250 0 148.333 -48601.35

42 f1_apr_1 shop1_1 -300.00 250 0 250.000 -75000.00

43 f1_may_1 shop1_1 -285.00 250 0 1.667 -475.01

44 f2_mar_1 shop1_1 -297.40 250 0 250.000 -74350.00

45 f2_apr_1 shop1_1 -290.00 250 0 250.000 -72500.00

46 f2_may_1 shop1_1 -292.00 250 0 0.000 -0.05

47 f1_mar_2 shop1_2 -559.76 99999999 0 0.000 0.00

48 f1_apr_2 shop1_2 -524.28 99999999 0 0.000 0.00

158 F Chapter 4: The INTPOINT Procedure

Output 4.5.1 continued

Obs _tail_ _head_ _name_ _cost_ _capac_ _lo_ _FLOW_ _FCOST_

49 f1_may_2 shop1_2 -515.02 99999999 0 347.500 -178969.34

50 f2_mar_2 shop1_2 -567.83 500 0 500.000 -283914.98

51 f2_apr_2 shop1_2 -542.19 500 0 52.500 -28465.09

52 f2_may_2 shop1_2 -491.56 500 0 0.000 0.00

53 f1_mar_1 shop2_1 -362.74 250 0 250.000 -90684.99

54 f1_apr_1 shop2_1 -300.00 250 0 250.000 -75000.00

55 f1_may_1 shop2_1 -245.00 250 0 0.000 -0.00

56 f2_mar_1 shop2_1 -272.70 250 0 0.000 -0.01

57 f2_apr_1 shop2_1 -312.00 250 0 250.000 -78000.00

58 f2_may_1 shop2_1 -299.00 250 0 150.000 -44850.00

59 f1_mar_2 shop2_2 -623.89 99999999 0 455.000 -283869.90

60 f1_apr_2 shop2_2 -549.68 99999999 0 245.000 -134671.54

61 f1_may_2 shop2_2 -500.00 99999999 0 2.500 -1250.00

62 f2_mar_2 shop2_2 -542.83 500 0 125.000 -67853.77

63 f2_apr_2 shop2_2 -559.19 500 0 500.000 -279594.99

64 f2_may_2 shop2_2 -519.06 500 0 122.500 -63584.94

65 f1 chips from mar 1.00 150 0 20.000 20.00

66 f1 unused chips 0.00 99999999 0 0.001 0.00

67 f2 chips from mar 1.00 150 0 0.000 0.00

68 f2 unused chips 0.00 99999999 0 280.000 0.00

-1295542.72

Example 4.6: Solving an LP Problem with Data in MPS Format
In this example, PROC INTPOINT is ultimately used to solve an LP. But prior to that, there is SAS code that
is used to read a MPS format file and initialize an input SAS data set. MPS was an optimization package
developed for IBM computers many years ago and the format by which data had to be supplied to that system
became the industry standard for other optimization software packages, including those developed recently.
The MPS format is described in Murtagh (1981). If you have an LP which has data in MPS format in a file
/your-directory/your-filename.dat, then the following SAS code should be run:

filename w '/your-directory/your-filename.dat';
data raw;

infile w lrecl=80 pad;
input field1 $ 2-3 field2 $ 5-12 field3 $ 15-22

field4 25-36 field5 $ 40-47 field6 50-61;
run;

%sasmpsxs;
data lp;

set;
if _type_="FREE" then _type_="MIN";
if lag(_type_)="*HS" then _type_="RHS";
run;

proc sort data=lp;
by _col_;
run;

Example 4.6: Solving an LP Problem with Data in MPS Format F 159

proc intpoint
arcdata=lp
condata=lp sparsecondata rhsobs=rhs grouped=condata
conout=solutn /* SAS data set for the optimal solution */
bytes=20000000
nnas=1700 ncoefs=4000 ncons=700
printlevel2=2 memrep;
run;

proc lp
data=lp sparsedata
endpause time=3600 maxit1=100000 maxit2=100000;
run;
show status;
quit;

You will have to specify the appropriate path and file name in which your MPS format data resides.

SASMPSXS is a SAS macro provided within SAS/OR software. The MPS format resembles the sparse
format of the CONDATA= data set for PROC INTPOINT. The SAS macro SASMPSXS examines the MPS
data and transfers it into a SAS data set while automatically taking into account how the MPS format differs
slightly from PROC INTPOINT’s sparse format.

The parameters NNAS=1700, NCOEFS=4000, and NCONS=700 indicate the approximate (overestimated)
number of variables, coefficients and constraints this model has. You must change these to your problems
dimensions. Knowing these, PROC INTPOINT is able to utilize memory better and read the data faster.
These parameters are optional.

The PROC SORT preceding PROC INTPOINT is not necessary, but sorting the SAS data set can speed
up PROC INTPOINT when it reads the data. After the sort, data for each column is grouped together.
GROUPED=condata can be specified.

For small problems, presorting and specifying those additional options is not going to greatly influence
PROC INTPOINT’s run time. However, when problems are large, presorting and specifying those additional
options can be very worthwhile.

If you generate the model yourself, you will be familiar enough with it to know what to specify for the
RHSOBS= parameter. If the value of the SAS variable in the COLUMN list is equal to the character string
specified as the RHSOBS= option, the data in that observation is interpreted as right-hand-side data as
opposed to coefficient data. If you do not know what to specify for the RHSOBS= option, you should first
run PROC LP and optionally set MAXIT1=1 and MAXIT2=1. PROC LP will output a Problem Summary
that includes the line

Rhs Variable rhs-charstr

BYTES=20000000 is the size of working memory PROC INTPOINT is allowed.

The options PRINTLEVEL2=2 and MEMREP indicate that you want to see an iteration log and messages
about memory usage. Specifying these options is optional.

160 F Chapter 4: The INTPOINT Procedure

Example 4.7: Converting to an MPS-Format SAS Data Set
This example demonstrates the use of the MPSOUT= option to convert a problem data set in PROC
INTPOINT input format into an MPS-format SAS data set for use with the OPTLP procedure.

Suppose you want to solve a linear program with the following formulation:

min 2x1 � 3x2 � 4x3

subject to � 2x2 � 3x3 � �5

x1 C x2 C 2x3 � 4

x1 C 2x2 C 3x3 � 7

0 � x1 � 10

0 � x2 � 15

0 � x3 � 20

You can save the LP in dense format by using the following DATA step:

data exdata;
input x1 x2 x3 _type_ $ _rhs_;

datalines;
2 -3 -4 min .
. -2 -3 >= -5
1 1 2 <= 6
1 2 3 >= 7
10 15 20 upperbd .
;

If you decide to solve the problem by using the OPTLP procedure, you need to convert the data set exdata
from dense format to MPS format. You can accomplish this by using the following statements:

proc intpoint condata=exdata mpsout=mpsdata bytes=100000;
run;

Example 4.7: Converting to an MPS-Format SAS Data Set F 161

The MPS-format SAS data set mpsdata is shown in Output 4.7.1.

Output 4.7.1 Data Set mpsdata

Obs field1 field2 field3 field4 field5 field6

1 NAME modname . .

2 ROWS . .

3 MIN objfn . .

4 G _OBS2_ . .

5 L _OBS3_ . .

6 G _OBS4_ . .

7 COLUMNS . .

8 x1 objfn 2 _OBS3_ 1

9 x1 _OBS4_ 1 .

10 x2 objfn -3 _OBS2_ -2

11 x2 _OBS3_ 1 _OBS4_ 2

12 x3 objfn -4 _OBS2_ -3

13 x3 _OBS3_ 2 _OBS4_ 3

14 RHS . .

15 _OBS2_ -5 _OBS3_ 6

16 _OBS4_ 7 .

17 BOUNDS . .

18 UP bdsvect x1 10 .

19 UP bdsvect x2 15 .

20 UP bdsvect x3 20 .

21 ENDATA . .

The constraint names _OBS2_, _OBS3_, and _OBS4_ are generated by the INTPOINT procedure. If you
want to provide your own constraint names, use the ROW list variable in the CONOUT= data set. If you
specify the problem data in sparse format instead of dense format, the MPSOUT= option produces the same
MPS-format SAS data set shown in the preceding output.

Now that the problem data are in MPS format, you can solve the problem by using the OPTLP procedure.
For more information, see Chapter 12, “The OPTLP Procedure” (SAS/OR User’s Guide: Mathematical
Programming).

162 F Chapter 4: The INTPOINT Procedure

Example 4.8: Migration to OPTMODEL: Production, Inventory, Distribution
The following example shows how to solve Example 4.1 using PROC OPTMODEL. The input data sets are
the same as in that example.

The following PROC OPTMODEL statements read the data sets, build the linear programming model, solve
the model, and output the optimal solution to a SAS data set called ARC1:

proc optmodel;
set <str> NODES;
num _supdem_ {NODES} init 0;
read data node0 into NODES=[_node_] _supdem_;

set <str,str> ARCS;
num _lo_ {ARCS} init 0;
num _capac_ {ARCS} init .;
num _cost_ {ARCS};
num diagonal {ARCS};
num factory {ARCS};
str key_id {ARCS};
str mth_made {ARCS};
str _name_ {ARCS};

read data arc0 nomiss into ARCS=[_tail_ _head_] _lo_ _capac_ _cost_
diagonal factory key_id mth_made _name_;

NODES = NODES union (union {<i,j> in ARCS} {i,j});

var Flow {<i,j> in ARCS} >= _lo_[i,j];
for {<i,j> in ARCS: _capac_[i,j] ne .} Flow[i,j].ub = _capac_[i,j];
min obj = sum {<i,j> in ARCS} _cost_[i,j] * Flow[i,j];
con balance {i in NODES}: sum {<(i),j> in ARCS} Flow[i,j]

- sum {<j,(i)> in ARCS} Flow[j,i] = _supdem_[i];

num infinity = constant('BIG');
num excess = sum {i in NODES} _supdem_[i];
if (excess > 0) then do;

/* change equality constraint to le constraint */
for {i in NODES: _supdem_[i] > 0} balance[i].lb = -infinity;

end;
else if (excess < 0) then do;

/* change equality constraint to ge constraint */
for {i in NODES: _supdem_[i] < 0} balance[i].ub = infinity;

end;

solve;

num _supply_ {<i,j> in ARCS} =
(if _supdem_[i] ne 0 then _supdem_[i] else .);

num _demand_ {<i,j> in ARCS} =
(if _supdem_[j] ne 0 then -_supdem_[j] else .);

num _fcost_ {<i,j> in ARCS} = _cost_[i,j] * Flow[i,j].sol;

create data arc1 from [_tail_ _head_]

Example 4.8: Migration to OPTMODEL: Production, Inventory, Distribution F 163

cost _capac_ _lo_ _name_ _supply_ _demand_ _flow_=Flow _fcost_
diagonal factory key_id mth_made;

quit;

The statements use both single-dimensional (NODES) and multiple-dimensional (ARCS) index sets, which
are populated from the corresponding data set variables in the READ DATA statements. The _SUPDEM_,
LO, and _CAPAC_ parameters are given initial values, and the NOMISS option in the READ DATA
statement tells OPTMODEL to read only the nonmissing values from the input data set. The balance
constraint is initially declared as an equality, but depending on the total supply or demand, the sense of this
constraint is changed to “�” or “�” by relaxing the constraint’s lower or upper bound, respectively. The
ARC1 output data set contains the same information as in Example 4.1.

The PROC PRINT statements are the same as in Example 4.1:

proc print data=arc1 width=min;
var _tail_ _head_ _cost_ _capac_ _lo_ _flow_ _fcost_
diagonal factory key_id mth_made;
sum _fcost_;

run;

The output is displayed in Output 4.8.1.

164 F Chapter 4: The INTPOINT Procedure

Output 4.8.1 Output Data Set

Obs _tail_ _head_ _cost_ _capac_ _lo_ _flow_ _fcost_ diagonal factory key_id mth_made

1 fact1_1 f1_mar_1 127.90 500 50 345 44125.50 19 1 production March

2 fact1_1 f1_apr_1 78.60 600 50 600 47160.00 19 1 production April

3 fact1_1 f1_may_1 95.10 400 50 50 4755.00 19 1 production May

4 f1_mar_1 f1_apr_1 15.00 50 0 0 0.00 19 1 storage March

5 f1_apr_1 f1_may_1 12.00 50 0 50 600.00 19 1 storage April

6 f1_apr_1 f1_mar_1 28.00 20 0 20 560.00 19 1 backorder April

7 f1_may_1 f1_apr_1 28.00 20 0 0 0.00 19 1 backorder May

8 f1_mar_1 f2_mar_1 11.00 . 0 0 0.00 19 . f1_to_2 March

9 f1_apr_1 f2_apr_1 11.00 . 0 30 330.00 19 . f1_to_2 April

10 f1_may_1 f2_may_1 16.00 . 0 100 1600.00 19 . f1_to_2 May

11 f1_mar_1 shop1_1 -327.65 250 0 155 -50785.75 19 1 sales March

12 f1_apr_1 shop1_1 -300.00 250 0 250 -75000.00 19 1 sales April

13 f1_may_1 shop1_1 -285.00 250 0 0 0.00 19 1 sales May

14 f1_mar_1 shop2_1 -362.74 250 0 250 -90685.00 19 1 sales March

15 f1_apr_1 shop2_1 -300.00 250 0 250 -75000.00 19 1 sales April

16 f1_may_1 shop2_1 -245.00 250 0 0 0.00 19 1 sales May

17 fact2_1 f2_mar_1 88.00 450 35 290 25520.00 19 2 production March

18 fact2_1 f2_apr_1 62.40 480 35 480 29952.00 19 2 production April

19 fact2_1 f2_may_1 133.80 250 35 35 4683.00 19 2 production May

20 f2_mar_1 f2_apr_1 18.00 30 0 0 0.00 19 2 storage March

21 f2_apr_1 f2_may_1 20.00 30 0 15 300.00 19 2 storage April

22 f2_apr_1 f2_mar_1 17.00 15 0 0 0.00 19 2 backorder April

23 f2_may_1 f2_apr_1 25.00 15 0 0 0.00 19 2 backorder May

24 f2_mar_1 f1_mar_1 10.00 40 0 40 400.00 19 . f2_to_1 March

25 f2_apr_1 f1_apr_1 11.00 40 0 0 0.00 19 . f2_to_1 April

26 f2_may_1 f1_may_1 13.00 40 0 0 0.00 19 . f2_to_1 May

27 f2_mar_1 shop1_1 -297.40 250 0 250 -74350.00 19 2 sales March

28 f2_apr_1 shop1_1 -290.00 250 0 245 -71050.00 19 2 sales April

29 f2_may_1 shop1_1 -292.00 250 0 0 0.00 19 2 sales May

30 f2_mar_1 shop2_1 -272.70 250 0 0 0.00 19 2 sales March

31 f2_apr_1 shop2_1 -312.00 250 0 250 -78000.00 19 2 sales April

32 f2_may_1 shop2_1 -299.00 250 0 150 -44850.00 19 2 sales May

33 fact1_2 f1_mar_2 217.90 400 40 400 87160.00 25 1 production March

34 fact1_2 f1_apr_2 174.50 550 50 550 95975.00 25 1 production April

35 fact1_2 f1_may_2 133.30 350 40 40 5332.00 25 1 production May

36 f1_mar_2 f1_apr_2 20.00 40 0 0 0.00 25 1 storage March

37 f1_apr_2 f1_may_2 18.00 40 0 0 0.00 25 1 storage April

38 f1_apr_2 f1_mar_2 32.00 30 0 30 960.00 25 1 backorder April

39 f1_may_2 f1_apr_2 41.00 15 0 15 615.00 25 1 backorder May

40 f1_mar_2 f2_mar_2 23.00 . 0 0 0.00 25 . f1_to_2 March

41 f1_apr_2 f2_apr_2 23.00 . 0 0 0.00 25 . f1_to_2 April

42 f1_may_2 f2_may_2 26.00 . 0 0 0.00 25 . f1_to_2 May

43 f1_mar_2 shop1_2 -559.76 . 0 0 0.00 25 1 sales March

44 f1_apr_2 shop1_2 -524.28 . 0 0 0.00 25 1 sales April

45 f1_may_2 shop1_2 -475.02 . 0 25 -11875.50 25 1 sales May

46 f1_mar_2 shop2_2 -623.89 . 0 455 -283869.95 25 1 sales March

47 f1_apr_2 shop2_2 -549.68 . 0 535 -294078.80 25 1 sales April

48 f1_may_2 shop2_2 -460.00 . 0 0 0.00 25 1 sales May

Example 4.8: Migration to OPTMODEL: Production, Inventory, Distribution F 165

Output 4.8.1 continued

Obs _tail_ _head_ _cost_ _capac_ _lo_ _flow_ _fcost_ diagonal factory key_id mth_made

49 fact2_2 f2_mar_2 182.00 650 35 645 117390.00 25 2 production March

50 fact2_2 f2_apr_2 196.70 680 35 680 133756.00 25 2 production April

51 fact2_2 f2_may_2 201.40 550 35 35 7049.00 25 2 production May

52 f2_mar_2 f2_apr_2 28.00 50 0 0 0.00 25 2 storage March

53 f2_apr_2 f2_may_2 38.00 50 0 0 0.00 25 2 storage April

54 f2_apr_2 f2_mar_2 31.00 15 0 0 0.00 25 2 backorder April

55 f2_may_2 f2_apr_2 54.00 15 0 15 810.00 25 2 backorder May

56 f2_mar_2 f1_mar_2 20.00 25 0 25 500.00 25 . f2_to_1 March

57 f2_apr_2 f1_apr_2 21.00 25 0 0 0.00 25 . f2_to_1 April

58 f2_may_2 f1_may_2 43.00 25 0 0 0.00 25 . f2_to_1 May

59 f2_mar_2 shop1_2 -567.83 500 0 500 -283915.00 25 2 sales March

60 f2_apr_2 shop1_2 -542.19 500 0 375 -203321.25 25 2 sales April

61 f2_may_2 shop1_2 -461.56 500 0 0 0.00 25 2 sales May

62 f2_mar_2 shop2_2 -542.83 500 0 120 -65139.60 25 2 sales March

63 f2_apr_2 shop2_2 -559.19 500 0 320 -178940.80 25 2 sales April

64 f2_may_2 shop2_2 -489.06 500 0 20 -9781.20 25 2 sales May

-1281110.35

The optimal objective value is the same as in Example 4.1. The log is displayed in Output 4.8.2.

Output 4.8.2 OPTMODEL Log

NOTE: There were 8 observations read from the data set WORK.NODE0.

NOTE: There were 64 observations read from the data set WORK.ARC0.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 64 variables (0 free, 0 fixed).

NOTE: The problem has 20 linear constraints (4 LE, 16 EQ, 0 GE, 0 range).

NOTE: The problem has 128 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The OPTMODEL presolver is disabled for linear problems.

NOTE: The LP presolver value AUTOMATIC is applied.

NOTE: The LP presolver removed 0 variables and 0 constraints.

NOTE: The LP presolver removed 0 constraint coefficients.

NOTE: The presolved problem has 64 variables, 20 constraints, and 128

 constraint coefficients.

NOTE: The LP solver is called.

NOTE: The Dual Simplex algorithm is used.

 Objective

 Phase Iteration Value Time

 D 1 1 0.000000E+00 0

 D 2 2 -4.020320E+06 0

 D 2 32 -1.281110E+06 0

NOTE: Optimal.

NOTE: Objective = -1281110.35.

NOTE: The Dual Simplex solve time is 0.00 seconds.

NOTE: The data set WORK.ARC1 has 64 observations and 14 variables.

166 F Chapter 4: The INTPOINT Procedure

References

George, J. A., Liu, J. W., and Ng, E. (2001), “Computer Solution of Positive Definite Systems,” Unpublished
manuscript obtainable from authors.

Lustig, I. J., Marsten, R. E., and Shanno, D. F. (1992), “On Implementing Mehrotra’s Predictor-Corrector
Interior-Point Method for Linear Programming,” SIAM Journal on Optimization, 2, 435–449.

Murtagh, B. A. (1981), Advanced Linear Programming: Computation and Practice, New York: McGraw-Hill.

Reid, J. K. (1975), A Sparsity-Exploiting Variant of the Bartels-Golub Decomposition for Linear Programming
Bases, Technical Report Harwell CSS 20, Atomic Energy Research Establishment, Harwell, UK.

Roos, C., Terlaky, T., and Vial, J. (1997), Theory and Algorithms for Linear Optimization, Chichester, UK:
John Wiley & Sons.

Wright, S. J. (1997), Primal-Dual Interior-Point Methods, Philadelphia: SIAM Publications.

Ye, Y. (1996), Interior Point Algorithms: Theory and Analysis, New York: John Wiley & Sons.

Subject Index

affine step, 44, 46
arc capacity

INTPOINT procedure, 92
arc names

INTPOINT procedure, 56, 79, 123

balancing network problems
INTPOINT procedure, 84

blending constraints
INTPOINT procedure, 50

bypass arc
INTPOINT procedure, 75

case sensitivity
INTPOINT procedure, 80, 81, 111

centering step, 45, 47
central path

INTPOINT procedure, 43
coefficients

INTPOINT procedure, 93
columns

INTPOINT procedure, 93
complementarity

INTPOINT procedure, 42, 46, 124
computational resources, see See also memory

requirements
converting NPSC to LP

INTPOINT procedure, 106
costs

INTPOINT procedure, 94

demands
INTPOINT procedure, 94

dense input format
INTPOINT procedure, 56, 63, 96, 99, 101

distribution problem, 48
dual problem

INTPOINT procedure, 42
dual variables

INTPOINT procedure, 42
duality gap

INTPOINT procedure, 42, 124

efficiency
INTPOINT procedure, 119–123

embedded networks
INTPOINT procedure, 106

examples, see INTPOINT examples
excess node

INTPOINT procedure, 118

flow conservation constraints
INTPOINT procedure, 39, 51, 54

functional summary
INTPOINT procedure, 71

infeasibility
INTPOINT procedure, 42, 46, 113

infinity
INTPOINT procedure, 78

input data sets
INTPOINT procedure, 74, 100

interior point algorithm
INTPOINT procedure, 41

INTPOINT examples, 126
altering arc data, 134, 146
converting PROC INTPOINT format to MPS

format, 160
linear program, 158
MPS format, 158
nonarc variables, 151
production, inventory, distribution problem, 127
production, inventory, distribution problem

(OPTMODEL), 162
side constraints, 139, 146, 151

INTPOINT procedure
affine step, 44, 46
arc names, 79, 123
balancing supply and demand, 84, 118
blending constraints, 50
bypass arc, 75
case sensitivity, 80, 81, 83, 111
centering step, 45, 47
central path, 43
coefficients, 93
columns, 93
complementarity, 42, 46, 124
converting NPSC to LP, 106
costs, 94
data set options, 74
default arc capacity, 76
default arc cost, 77
default constraint type, 76
default lower bound, 77
default objective function, 77
default options, 122
default upper bounds, 76
demands, 94

dense format, 56, 63, 96, 99, 101
details, 100
distribution problem, 48
dual problem, 42
dual variables, 42
duality gap, 42, 124
efficiency, 119–123
embedded networks, 53, 106
excess node, 118
flow conservation constraints, 39, 51, 54
functional summary, 71
general options, 75
infeasibility, 42, 46, 113
input data sets, 74, 100
interior point algorithm, 41
introductory LP example, 63
introductory NPSC example, 57
inventory problem, 48
Karush-Kuhn-Tucker conditions, 42, 45
linear programming problems, 41, 62
loop arcs, 112
maximum cost flow, 79
maximum flow problem, 78
memory requirements, 69, 76, 79, 119–123
missing supply and missing demand, 114
missing values, 114
MPS file conversion, 158
multicommodity problems, 52
multiple arcs, 112
multiprocess, multiproduct example, 53
network problems, 48
nonarc variables, 54
NPSC, 39
options classified by function, 71
output data sets, 74, 109
overview, 38
preprocessing, 42, 56, 63, 87
Primal-Dual with Predictor-Corrector algorithm,

41, 44
primal problem, 42
production-inventory-distribution problem, 48
proportionality constraints, 49
scaling input data, 82
shortest path problem, 83
side constraints, 39, 54
sparse format, 56, 63, 93, 102, 106
step length, 43
stopping criteria, 89, 123
supply-chain problem, 48
symbolic factorization, 44
syntax skeleton, 71
table of syntax elements, 71
termination criteria, 89, 123
TYPE variable, 98

upper bounds, 45
inventory problem, 48

Karush-Kuhn-Tucker conditions
INTPOINT procedure, 42, 45

linear programming problems
INTPOINT procedure, 41, 62

loop arcs
INTPOINT procedure, 112

maximum flow problem
INTPOINT procedure, 78

memory requirements
INTPOINT procedure, 69, 76, 79, 119–123

migration to PROC OPTMODEL
from PROC INTPOINT, 162

missing values
INTPOINT procedure, 114

MPS file conversion
INTPOINT procedure, 158

multicommodity problems
INTPOINT procedure, 52

multiple arcs
INTPOINT procedure, 112

network problems
INTPOINT procedure, 48

nonarc variables
INTPOINT procedure, 54

NPSC
INTPOINT procedure, 39

objective function
INTPOINT procedure, 40, 41, 94

options classified by function, see functional summary
output data sets

INTPOINT procedure, 74, 109
overview

INTPOINT procedure, 38

preprocessing
INTPOINT procedure, 42, 56, 63, 87

Primal-Dual with Predictor-Corrector algorithm
INTPOINT procedure, 41, 44

production-inventory-distribution problem
INTPOINT procedure, 48

proportionality constraints
INTPOINT procedure, 49

scaling input data
INTPOINT procedure, 82

shortest path problem
INTPOINT procedure, 83

side constraints

INTPOINT procedure, 39, 54
sparse input format

INTPOINT procedure, 56, 63, 93, 102
summary (INTPOINT), 106

step length
INTPOINT procedure, 43

supply-chain problem, 48
symbolic factorization

INTPOINT procedure, 44
syntax skeleton

INTPOINT procedure, 71

table of syntax elements, see functional summary
termination criteria

INTPOINT procedure, 89, 123
TYPE variable

INTPOINT procedure, 98

upper bounds
INTPOINT procedure, 45

Syntax Index

AND_KEEPGOING_C= option
PROC INTPOINT statement, 92, 125

AND_KEEPGOING_DG= option
PROC INTPOINT statement, 92, 125

AND_KEEPGOING_IB= option
PROC INTPOINT statement, 92, 125

AND_KEEPGOING_IC= option
PROC INTPOINT statement, 92, 125

AND_KEEPGOING_ID= option
PROC INTPOINT statement, 92, 125

AND_STOP_C= option
PROC INTPOINT statement, 90, 125

AND_STOP_DG= option
PROC INTPOINT statement, 90, 125

AND_STOP_IB= option
PROC INTPOINT statement, 90, 125

AND_STOP_IC= option
PROC INTPOINT statement, 91, 125

AND_STOP_ID= option
PROC INTPOINT statement, 91, 125

ARCDATA keyword
GROUPED= option (INTPOINT), 77

ARCDATA= option
PROC INTPOINT statement, 55, 56, 62, 63, 69,

74, 100
ARCNAME statement, see NAME statement
ARC_SINGLE_OBS option

PROC INTPOINT statement, 75
ARCS_ONLY_ARCDATA option

PROC INTPOINT statement, 75, 122

BOTH keyword
GROUPED= option (INTPOINT), 78
SCALE= option (INTPOINT), 82

BPD= option, see BYPASSDIVIDE= option
BYPASSDIV= option, see BYPASSDIVIDE= option
BYPASSDIVIDE= option

PROC INTPOINT statement, 75
BYTES= option

PROC INTPOINT statement, 69, 76, 122

CAPAC keyword
TYPE variable (INTPOINT), 98

CAPAC statement, see CAPACITY statement
CAPACITY statement

INTPOINT procedure, 92
CHOLTINYTOL= option

PROC INTPOINT statement, 87
COEF statement

INTPOINT procedure, 93
COEFS keyword

NON_REPLIC= option (INTPOINT), 82
COL keyword

SCALE= option (INTPOINT), 82
COLUMN keyword

SCALE= option (INTPOINT), 82
COLUMN statement

INTPOINT procedure, 93
CON keyword

SCALE= option (INTPOINT), 82
CONDATA keyword

GROUPED= option (INTPOINT), 77
CONDATA= option

PROC INTPOINT statement, 56, 62, 63, 69, 74,
101

CONOUT= option
PROC INTPOINT statement, 56, 63, 69, 74, 109

CON_SINGLE_OBS option
PROC INTPOINT statement, 76

CONSTRAINT keyword
SCALE= option (INTPOINT), 82

CONTYPE statement, see TYPE statement
COST keyword

TYPE variable (INTPOINT), 98
COST statement

INTPOINT procedure, 94
COUT= option, see CONOUT= option

DC= option, see DEFCAPACITY= option
DCT= option, see DEFCONTYPE= option
DEFCAPACITY= option

PROC INTPOINT statement, 76, 122
DEFCONTYPE= option

PROC INTPOINT statement, 76, 122
DEFCOST= option

PROC INTPOINT statement, 77, 122
DEFMINFLOW= option

PROC INTPOINT statement, 77, 122
DEFTYPE= option, see DEFCONTYPE= option
DEMAND statement

INTPOINT procedure, 94
DEMAND= option

PROC INTPOINT statement, 77, 122
DENSETHR= option

PROC INTPOINT statement, 87
DMF= option, see DEFMINFLOW= option

EQ keyword

TYPE variable (INTPOINT), 98

FACT_METHOD= option
PROC INTPOINT statement, 86

FREE keyword
TYPE variable (INTPOINT), 98

FROM statement, see TAILNODE statement
FROMNODE statement, see TAILNODE statement

GE keyword
TYPE variable (INTPOINT), 98

GROUPED= option
PROC INTPOINT statement, 77, 121

HEAD statement, see HEADNODE statement
HEADNODE statement

INTPOINT procedure, 94

ID statement
INTPOINT procedure, 95

IMAXITERB= option, see MAXITERB= option
INF= option, see INFINITY= option
INFINITY= option

PROC INTPOINT statement, 78
INTPOINT procedure, 71

CAPACITY statement, 92
COEF statement, 93
COLUMN statement, 93
COST statement, 94
DEMAND statement, 94
HEADNODE statement, 94
ID statement, 95
LO statement, 95
NAME statement, 95
NODE statement, 96
PROC INTPOINT statement, 73
QUIT statement, 96
RHS statement, 96
ROW statement, 96
RUN statement, 97
SUPDEM statement, 97
SUPPLY statement, 97
TAILNODE statement, 97
TYPE statement, 98
VAR statement, 99

IPRSLTYPE= option, see PRSLTYPE= option

KEEPGOING_C= option
PROC INTPOINT statement, 91, 124

KEEPGOING_DG= option
PROC INTPOINT statement, 91, 124

KEEPGOING_IB= option
PROC INTPOINT statement, 91, 124

KEEPGOING_IC= option
PROC INTPOINT statement, 91, 124

KEEPGOING_ID= option
PROC INTPOINT statement, 91, 124

LE keyword
TYPE variable (INTPOINT), 98

LO statement
INTPOINT procedure, 95

LOW keyword
TYPE variable (INTPOINT), 98

LOWERBD keyword
TYPE variable (INTPOINT), 98

LOWERBD statement, see LO statement

MAX option, see MAXIMIZE option
MAXFLOW option

PROC INTPOINT statement, 78
MAXIMIZE option

PROC INTPOINT statement, 79
MAXITERB= option

PROC INTPOINT statement, 89, 123
MAZIMIZE keyword

TYPE variable (INTPOINT), 98
MEMREP option

PROC INTPOINT statement, 79, 122
MF option, see MAXFLOW option
MINFLOW statement, see LO statement
MINIMIZE keyword

TYPE variable (INTPOINT), 98
MPSOUT= option

PROC INTPOINT statement, 74, 110, 111

NAME statement
INTPOINT procedure, 95

NAMECTRL= option
PROC INTPOINT statement, 79

NARCS= option
PROC INTPOINT statement, 81, 121

NCOEFS= option
PROC INTPOINT statement, 81, 121

NCONS= option
PROC INTPOINT statement, 81, 121

NNAS= option
PROC INTPOINT statement, 81, 121

NNODES= option
PROC INTPOINT statement, 82, 121

NODE statement
INTPOINT procedure, 96

NODEDATA= option
PROC INTPOINT statement, 55, 56, 69, 74

NONARC keyword
SCALE= option (INTPOINT), 82

NONE keyword
GROUPED= option (INTPOINT), 78
NON_REPLIC= option (INTPOINT), 82
SCALE= option (INTPOINT), 82

NON_REPLIC= option
PROC INTPOINT statement, 82

OBJECTIVE keyword
TYPE variable (INTPOINT), 98

OBJFN statement, see COST statement
OPTIM_TIMER option

PROC INTPOINT statement, 82

PDGAPTOL= option
PROC INTPOINT statement, 89, 124

PDSTEPMULT= option
PROC INTPOINT statement, 87

PRINTLEVEL2= option
PROC INTPOINT statement, 88, 124

PROC INTPOINT statement, see INTPOINT
procedure

data set options, 74
general options, 75

PRSLTYPE= option
INTPOINT procedure, 87

QUIT statement
INTPOINT procedure, 96

RCHOLTINYTOL= option, see CHOLTINYTOL=
option

RDENSETHR= option, see DENSETHR= option
RHS keyword

TYPE variable (INTPOINT), 98
RHS statement

INTPOINT procedure, 96
RHSOBS= option

PROC INTPOINT statement, 82
ROW keyword

SCALE= option (INTPOINT), 82
ROW statement

INTPOINT procedure, 96
RPDGAPTOL= option, see PDGAPTOL= option
RPDSTEPMULT= option, see PDSTEPMULT= option
RTOLDINF= option, see TOLDINF= option
RTOLPINF= option, see TOLPINF= option
RTOLTOTDINF= option, see TOLTOTDINF= option
RTOLTOTPINF= option, see TOLTOTPINF= option
RTTOL= option

PROC INTPOINT statement, 89
RUN statement

INTPOINT procedure, 97

SCALE= option
PROC INTPOINT statement, 82

SCDATA option, see SPARSECONDATA option
SHORTPATH option

PROC INTPOINT statement, 83
SINK= option

PROC INTPOINT statement, 83, 122
SINKNODE= option, see SINK= option
SOURCE= option

PROC INTPOINT statement, 83, 122
SOURCENODE= option, see SOURCE= option
SP option, see SHORTPATH option
SPARSECONDATA option

PROC INTPOINT statement, 83, 102
STOP_C= option

PROC INTPOINT statement, 89, 124
STOP_DG= option

PROC INTPOINT statement, 90, 124
STOP_IB= option

PROC INTPOINT statement, 90, 124
STOP_IC= option

PROC INTPOINT statement, 90, 124
STOP_ID= option

PROC INTPOINT statement, 90, 124
SUPDEM statement

INTPOINT procedure, 97
SUPPLY statement

INTPOINT procedure, 97
SUPPLY= option

PROC INTPOINT statement, 84, 122

TAIL statement, see TAILNODE statement
TAILNODE statement

INTPOINT procedure, 97
THRUNET option

PROC INTPOINT statement, 84, 118
TO statement, see HEADNODE statement
TOLDINF= option

PROC INTPOINT statement, 86
TOLPINF= option

PROC INTPOINT statement, 86
TOLTOTDINF= option

PROC INTPOINT statement, 86
TOLTOTPINF= option

PROC INTPOINT statement, 86
TONODE statement, see HEADNODE statement
TYPE keyword

TYPE variable (INTPOINT), 99
TYPE statement

INTPOINT procedure, 98
TYPEOBS= option

PROC INTPOINT statement, 84

UNREST keyword
TYPE variable (INTPOINT), 99

UPPCOST keyword
TYPE variable (INTPOINT), 99

UPPER keyword
TYPE variable (INTPOINT), 99

UPPERBD statement, see CAPACITY statement

VAR statement
INTPOINT procedure, 99

VARNAME statement, see NAME statement
VERBOSE= option

PROC INTPOINT statement, 84

Z2= option, see ZERO2= option
ZERO2= option

PROC INTPOINT statement, 85
ZEROTOL= option

PROC INTPOINT statement, 85

	The INTPOINT Procedure
	Overview: INTPOINT Procedure
	Mathematical Description of NPSC
	Mathematical Description of LP
	The Interior Point Algorithm
	Network Models

	Getting Started: INTPOINT Procedure
	NPSC Problems
	LP Problems
	Typical PROC INTPOINT Run

	Syntax: INTPOINT Procedure
	Functional Summary
	PROC INTPOINT Statement
	CAPACITY Statement
	COEF Statement
	COLUMN Statement
	COST Statement
	DEMAND Statement
	HEADNODE Statement
	ID Statement
	LO Statement
	NAME Statement
	NODE Statement
	QUIT Statement
	RHS Statement
	ROW Statement
	RUN Statement
	SUPDEM Statement
	SUPPLY Statement
	TAILNODE Statement
	TYPE Statement
	VAR Statement

	Details: INTPOINT Procedure
	Input Data Sets
	Output Data Sets
	Converting Any PROC INTPOINT Format to an MPS-Format SAS Data Set
	Case Sensitivity
	Loop Arcs
	Multiple Arcs
	Flow and Value Bounds
	Tightening Bounds and Side Constraints
	Reasons for Infeasibility
	Missing S Supply and Missing D Demand Values
	Balancing Total Supply and Total Demand
	How to Make the Data Read of PROC INTPOINT More Efficient
	Stopping Criteria

	Examples: INTPOINT Procedure
	Example 4.1: Production, Inventory, Distribution Problem
	Example 4.2: Altering Arc Data
	Example 4.3: Adding Side Constraints
	Example 4.4: Using Constraints and More Alteration to Arc Data
	Example 4.5: Nonarc Variables in the Side Constraints
	Example 4.6: Solving an LP Problem with Data in MPS Format
	Example 4.7: Converting to an MPS-Format SAS Data Set
	Example 4.8: Migration to OPTMODEL: Production, Inventory, Distribution

	References

	Subject Index
	Syntax Index

