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Overview: CLP Solver
You can use the constraint logic programming (CLP) solver in the OPTMODEL procedure to address finite-
domain constraint satisfaction problems (CSPs) that have linear, logical, and global constraints. In addition to
providing an expressive syntax for representing CSPs, the CLP solver features powerful built-in consistency
routines and constraint propagation algorithms, a choice of nondeterministic search strategies, and controls
for guiding the search mechanism. These features enable you to solve a diverse array of combinatorial
problems.

Many important problems in areas such as artificial intelligence (AI) and operations research (OR) can
be formulated as constraint satisfaction problems. A CSP is defined by a finite set of variables that take
values from finite domains and by a finite set of constraints that restrict the values that the variables can
simultaneously take.

A solution to a CSP is an assignment of values to the variables in order to satisfy all the constraints. The
problem amounts to finding one or more solutions, or possibly determining that a solution does not exist.

A constraint satisfaction problem (CSP) can be defined as a triplet hX;D;C i:

• X D fx1; : : : ; xng is a finite set of variables.

• D D fD1; : : : ;Dng is a finite set of domains, where a domain Di is a finite set of possible values that
the variable xi can take. Di is known as the domain of variable xi .

• C D fc1; : : : ; cmg is a finite set of constraints that restrict the values that the variables can simultane-
ously take.

The domains do not need to represent consecutive integers. For example, the domain of a variable could be
the set of all even numbers in the interval [0, 100]. In PROC OPTMODEL, variables are always numeric.
Therefore, if your problem contains nonnumeric domains (such as colors), you must map the values in the
domain to integers. For more information, see “Example 6.5: Car Painting Problem.”

You can use the CLP solver to find one or more (and in some instances, all) solutions to a CSP that has linear,
logical, and global constraints. The numeric components of all variable domains are required to be integers.

Getting Started: CLP Solver
The following examples illustrate the use of the CLP solver in formulating and solving two well-known
logical puzzles in constraint programming.

Send More Money
The Send More Money problem consists of finding unique digits for the letters D, E, M, N, O, R, S, and Y
such that S and M are different from zero (no leading zeros) and the following equation is satisfied:
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S E N D

+ M O R E

M O N E Y

You can use the CLP solver to formulate this problem as a CSP by using an integer variable to represent
each letter in the expression. The comments before each statement in the following code introduce variables,
domains, and constraints:

/* Send More Money */

proc optmodel;
/* Declare all variables as integer. */
var S integer, E integer, N integer, D integer, M integer, O integer,

R integer, Y integer;
/* Set all domains to between 0 and 9. Domains are unbounded by default.

Always declare domains to be as tight as possible. */
for {j in 1.._NVAR_} do;

_VAR_[j].lb = 0;
_VAR_[j].ub = 9;

end;
/* Describe the arithmetic constraint.*/
con Arithmetic: 1000*S + 100*E + 10*N + D

+ 1000*M + 100*O + 10*R + E
= 10000*M + 1000*O + 100*N + 10*E + Y;

/* Forbid leading letters from taking the value zero.
Constraint names are optional. */

con S ne 0;
con M ne 0;
/* Require all variables to take distinct values. */
con alldiff(S E N D M O R Y);

solve;
print S E N D M O R Y;

quit;

The domain of each variable is the set of digits 0 through 9. The VAR statement identifies the variables in
the problem. The Arithmetic constraint defines the linear constraint SEND + MORE = MONEY and the
restrictions that S and M cannot take the value 0. (Alternatively, you can simply specify the domain for S
and M as � 1 � 9 in the VAR statement.) Finally, the ALLDIFF predicate enforces the condition that the
assignment of digits should be unique.

The PRINT statement produces the solution output as shown in Figure 6.1.
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Figure 6.1 Solution to SEND + MORE = MONEY

The OPTMODEL ProcedureThe OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function (0)

Objective Type Constant

Number of Variables 8

Bounded Above 0

Bounded Below 0

Bounded Below and Above 8

Free 0

Fixed 0

Binary 0

Integer 8

Number of Constraints 4

Linear LE (<=) 0

Linear EQ (=) 1

Linear GE (>=) 0

Linear LT (<) 0

Linear NE (~=) 2

Linear GT (>) 0

Linear Range 0

Alldiff 1

Element 0

GCC 0

Lexico (<=) 0

Lexico (<) 0

Pack 0

Reify 0

Constraint Coefficients 10

Performance Information

Execution Mode Single-Machine

Number of Threads 1

Solution Summary

Solver CLP

Objective Function (0)

Solution Status Solution Limit Reached

Objective Value 0

Solutions Found 1

Presolve Time 0.00

Solution Time 0.00
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Figure 6.1 continued

S E N D M O R Y

9 5 6 7 1 0 8 2

The CLP solver determines the following unique solution to this problem:

9 5 6 7

+ 1 0 8 5

1 0 6 5 2

Eight Queens
The Eight Queens problem is a special instance of the N-Queens problem, where the objective is to position
N queens on an N × N chessboard such that no two queens can attack each other. The CLP solver provides
an expressive constraint for variable arrays that can be used for solving this problem very efficiently.

You can model this problem by using a variable array a of dimension N, where ai is the row number of
the queen in column i. Because no two queens can be in the same row, it follows that all the ai ’s must be
pairwise distinct.

In order to ensure that no two queens can be on the same diagonal, the following two expressions should be
true for all i and j:

aj � ai <> j � i

aj � ai <> i � j

These expressions can be reformulated as follows:

ai � i <> aj � j

ai C i <> aj C j

Hence, the .ai C i/’s are pairwise distinct, and the .ai � i/’s are pairwise distinct. One possible formulation
is as follows:
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proc optmodel;
num n init 8;
var A {1..n} >= 1 <= n integer;
/* Define artificial offset variables. */
var B {1..n, -1..1} >= 1 - n <= n + n integer;
con Bdef {i in 1..n, k in -1..1}:

B[i,k] = A[i] + k * i;

con OffsetsMustBeAlldifferent {k in -1..1}:
alldiff({i in 1..n} B[i,k]);

solve with CLP / varselect=fifo;
/* Replicate typical PROC CLP output from an OPTMODEL array */
create data out from {i in 1..n}<col('A'||i)=A[i]>;

quit;

The VARSELECT= option specifies the variable selection strategy to be first-in, first-out—the order in which
the CLP solver encounters the variables.

The corresponding solution to the Eight Queens problem is displayed in Figure 6.2.

Figure 6.2 A Solution to the Eight Queens Problem
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Syntax: CLP Solver
SOLVE WITH CLP /

< FINDALLSOLNS >
< MAXSOLNS=number >
< MAXTIME=number >
< NOPREPROCESS >
< OBJTOL=number >
< PREPROCESS >
< SHOWPROGRESS >
< TIMETYPE=number | string >
< VARASSIGN=string >
< VARSELECT=string >
;

The section “Functional Summary” on page 199 provides a quick reference for each option. Each option is
then described in more detail in its own section, in alphabetical order.

Functional Summary
Table 6.1 summarizes the options available in the SOLVE WITH CLP statement.

Table 6.1 Functional Summary of SOLVE WITH CLP Options

Description Option

General Options
Finds all possible solutions FINDALLSOLNS
Specifies the number of solution attempts MAXSOLNS=
Specifies the maximum time to spend calculating results MAXTIME=
Suppresses preprocessing NOPREPROCESS
Specifies the tolerance of the objective value OBJTOL=
Permits preprocessing PREPROCESS
Indicates progress in the log SHOWPROGRESS
Specifies whether time units are CPU time or real time TIMETYPE=
Specifies the variable assignment strategy VARASSIGN=
Specifies the variable selection strategy VARSELECT=
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SOLVE WITH CLP Statement
SOLVE WITH CLP / < options > ;

The SOLVE WITH CLP statement invokes the CLP solver. You can specify the following options to define
various processing and diagnostic controls and to tune the algorithm to run.

General Options

You can specify the following general options.

FINDALLSOLNS

ALLSOLNS

FINDALL
attempts to find all possible solutions to the CSP.

MAXSOLNS=number
specifies the number of solution attempts to be generated for the CSP. By default, MAXSOLNS=1.

MAXTIME=number
specifies the maximum time to spend calculating results. The type of time (either CPU time or
real time) is determined by the value of the TIMETYPE= option. The value of number can be any
positive number; the default value is the positive number that has the largest absolute value that can be
represented in your operating environment.

NOPREPROCESS
suppresses any preprocessing that would usually be performed for the problem.

OBJTOL=number
specifies the tolerance of the objective value. By default, OBJTOL=1.

PREPROCESS
permits any preprocessing that would usually be performed for the problem.

SHOWPROGRESS
prints a message to the log whenever a solution is found.

TIMETYPE=number | string
specifies whether to use CPU time or real time for the MAXTIME= option. Table 6.2 describes the
valid values of the TIMETYPE= option.

Table 6.2 Values for TIMETYPE= Option

number string Description

0 CPU Specifies units of CPU time
1 REAL Specifies units of real time
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By default, TIMETYPE=REAL if the CLP solver is invoked in a PROC OPTMODEL COFOR loop;
otherwise, the default is TIMETYPE=CPU.

VARASSIGN=string
specifies the variable assignment strategy. Currently, only one variable assignment strategy is supported:
the MIN strategy selects the minimum value from the domain of the selected variable.

VARSELECT=string
specifies the variable selection strategy. Both static and dynamic strategies are available. Table 6.3
describes the valid values of the VARSELECT= option.

Table 6.3 Values for VARSELECT= Option

string Description

FIFO Uses the first-in, first-out ordering of the variables as encountered
by the procedure

MAXCS Selects the variable that has the maximum number of constraints
MAXC Selects the variable that has the largest number of active constraints
MINR Selects the variable that has the smallest range (that is, the minimum

value of the upper bound minus the lower bound)
MINRMAXC Selects the variable that has the smallest range, breaking ties by

selecting one that has the largest number of active constraints

FIFO and MAXCS are static strategies. MAXC, MINR and MINRMAXC are dynamic strategies.
The dynamic strategies embody the “fail-first principle” (FFP) of Haralick and Elliott (1980), which
suggests that “To succeed, try first where you are most likely to fail.” By default, VARSELECT=MINR.

Predicates
A predicate asserts a fact about its subject. You use a predicate as the first identifier in a constraint declaration
to define what must hold true in any feasible solution. The following is an example of a constraint that uses
the ELEMENT predicate:

var X integer, Y integer;
con ElementConstraintExample: element(X, 1 2 3 4, Y);

The following predicates are available in PROC OPTMODEL:

ALLDIFF(variable-list)
ELEMENT(scalar-variable,data-list ,variable)
GCC(variable-list ,set-of-numeric-triplets)
LEXICO(variable-list relational-operator variable-list)
PACK(scalar-variable,data-list ,variable-list)
REIFY(variable, linear-constraint)
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Common Syntax Components

The following syntax components are used in multiple predicates. They depend on the definition of an
identifier-exprression. For more information, see the section “Identifier Expressions” on page 101 in
Chapter 5, “The OPTMODEL Procedure.” For information about other syntactic components, see the section
that describes the corresponding predicate.

data-list
is a space-separated list of items, each of which can be prefixed by an indexing set and
conforms to one of the following syntaxes:

• a number

• an identifier-expression, but excluding suffixes

• the name of a numeric array

• ( expression ), which must evaluate to a number

For example, the first three constraints in the following statements refer to valid data-lists,
whereas the last four do not. Each incorrect constraint is preceded by a comment that
explains why the constraint is incorrect.

var X integer, Y integer, Z integer;
num n;
con CorrectDataList1: element(X, 1 2 3 4, Y);
con CorrectDataList2: element(X, 1 2 3 4 n, Y);
con CorrectDataList3: element(X, {i in 1..4} i n, Y);
/* The parenthesis imply a scalar expression */
con IncorrectDataList1: element(X, ({i in 1..4} i) n, Y);
/* [1 2 3 4] is an array initializer, not an array name */
con IncorrectDataList2: element(X, [1 2 3 4], Y);
/* Z is a variable */
con IncorrectDataList3: element(X, 1 2 3 4 Z, Y);
/* Impossible to distinguish Z.sol from [ Z . sol ] */
con IncorrectDataList4: element(X, 1 2 3 4 Z.sol, Y);

scalar-variable
is an identifier-expression that refers to a single variable (that is, not to an array of
variables).

variable-list
is a space-separated list of identifier-expressions, each of which can be prefixed by an
indexing set and must resolve to a variable or a variable array. For example, the first
three constraints in the following statements refer to valid variable-lists, whereas the last
four do not. Each incorrect constraint is preceded by a comment that explains why the
constraint is incorrect.

var X{1..3} integer, A integer, B integer;
con CorrectVariableList1: alldiff({j in 1..3} X[j]);
con CorrectVariableList2: alldiff(A B);
con CorrectVariableList3: alldiff({j in 1..3} X[j] A B);



Predicates F 203

/* Indexing is not distributive in variable lists */
var Y{1..3} integer;
con IncorrectVariableList1: alldiff({j in 1..3} (X[j] Y[j]));
/* literals or expressions are not allowed in variable lists */
con IncorrectVariableList2: alldiff(1 A B);
/* literals or expressions are not allowed in variable lists */
con IncorrectVariableList3: alldiff(A.dual B);
/* you must refer only to variables */
num n;
con IncorrectVariableList4: alldiff(A B n);

ALLDIFF Predicate

ALLDIFF(variable-list)
ALLDIFFERENT(variable-list)

The ALLDIFF predicate defines an all-different constraint, which defines a unique global constraint on a set
of variables that requires all of them to be different from each other. A global constraint is equivalent to a
conjunction of elementary constraints.

The syntax of the all-different constraint consists of one part, a variable-list , which is defined in the section
“Common Syntax Components” on page 202. For example, the statements

var X{1..3} integer, A integer, B integer;
con AD1: alldiff({j in 1..3} X[j]);
con AD2: alldiff(A B);

are equivalent to

XŒ1� ¤ XŒ2� AND
XŒ2� ¤ XŒ3� AND
XŒ1� ¤ XŒ3� AND
A ¤ B

To apply the all-different constraint to all the variables, use the problem symbol _VAR_ as follows:

con alldiff(_VAR_);

For a description of problem symbols, see the section “Problem Symbols” on page 151 in Chapter 5, “The
OPTMODEL Procedure.”

ELEMENT Predicate

ELEMENT(scalar-variable,data-list ,variable)

The ELEMENT predicate specifies an array element lookup constraint, which enables you to define depen-
dencies (which are not necessarily functional) between variables.

The predicate ELEMENT.I; L; V / sets the variable V to be equal to the Ith element in the list L, where
L D .v1; : : : ; vn/ is a list of values (not necessarily distinct) that the variable V can take. The variable I
is the index variable, and its domain is considered to be Œ1; n�. Each time the domain of I is modified, the
domain of V is updated, and vice versa.
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For example, the following statements use the ELEMENT predicate to determine whether there are squares
greater than 1 that are also elements of the Fibonacci sequence:

/* Are there any squares > 1 in the Fibonacci sequence? */
proc optmodel;

num n = 20;
/* 1 appears twice in the Fibonacci sequence */
num fib{i in 1..n} = if i < 3 then 1 else fib[i-1] + fib[i-2];

var IFib integer, ISq integer,
XFib integer, XSq integer;

con IsFibAndIsSquare: XFib = XSq;
/* You can use a numeric array to refer to a list */
con IdxOfFib: element( IFib, fib, XFib );
/* You can also build a list from a set iterator */
con IdxOfSq: element( ISq, {i in 2..n} (i * i), XSq );
solve;
print XFib XSq;

quit;

An element constraint enforces the propagation rules

V D v, I 2 fi1; : : : ; img

where v is a value in the list L and i1; : : : ; im are all the indices in L whose value is v.

An element constraint is equivalent to a conjunction of reify and linear constraints. For example, both of the
following examples implement the quadratic function, Y D X2:

• Using the ELEMENT predicate:

proc optmodel;
var X >= 1 <= 5 integer, Y >= 1 <= 25 integer;
num a {i in 1..5} = i^2;
con Mycon: element(X, a, Y);
solve;

quit;

• Using linear constraints and the REIFY predicate:

proc optmodel;
var X >= 1 <= 5 integer, Y >= 1 <= 25 integer, R {1..5} binary;
con MyconX {i in 1..5}:

reify(R[i], X = i);
con MyconY {i in 1..5}:

reify(R[i], Y = i^2);
con SumToOne:

sum {i in 1..5} R[i] = 1;
solve;

quit;
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You can also use element constraints to define positional mappings between two variables. For example,
suppose the function Y D X2 is defined on only odd numbers in the interval Œ�5; 5�. You can relate X and Y
by using two element constraints and an artificial index variable:

var I integer, X integer, Y integer;
/* You can also build a list by providing explicit literals. */
con XsubI: element (I, -5 -3 -1 1 3 5, X);
con YsubI: element (I, 25 9 1 1 9 25, Y);

GCC Predicate

GCC(variable-list ,set-of-numeric-triplets)

The GCC predicate specifies a global cardinality constraint (GCC), which sets the minimum and maximum
number of times each value can be assigned to a group of variables.

The syntax of the GCC constraint consists of two parts:

variable-list
See “Common Syntax Components” on page 202.

set-of-numeric-triplets
The triplets < v; lv; uv > provide, for each value v, the minimum lv and maximum uv number of
times that v can be assigned to the variables in the variable-list .

Consider the following statements:

var X {1..6} >= 1 <= 4 integer;
con Mycon: gcc(X, /<1,1,2>, <2,1,3>, <3,1,3>, <4,2,3>/);

These statements specify a constraint that expresses the following requirements about the values of variables
fXŒ1�; : : : ; XŒ6�g:

• The value 1 must appear at least once but no more than twice.

• The value 2 must appear at least once but no more than three times.

• The value 3 must appear at least once but no more than three times.

• The value 4 must appear at least twice but no more than three times.

The assignment XŒ1� D 1;XŒ2� D 1;XŒ3� D 2;XŒ4� D 3;XŒ5� D 4, and XŒ6� D 4 satisfies the constraint.

In general, a GCC constraint consists of a set of variables fx1; : : : ; xng and, for each value v in D DS
iD1;:::;n Dom.xi /, a pair of numbers lv and uv . A GCC is satisfied if and only if the number of times that

a value v in D is assigned to the variables x1; : : : ; xn is at least lv and at most uv.

Values in the domain of variable-list that do not appear in any triplet are unconstrained. They can be assigned
to as many of the variables in variable-list as needed to produce a feasible solution.
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The following statements specify that each of the values in the set f1; : : : ; 9g can be assigned to at most one
of the variables XŒ1�; : : : ; XŒ9�:

var X {1..9} >= 1 <= 9 integer;
con Mycon: gcc(X, setof{i in 1..9} <i,0,1>);

Note that the preceding global cardinality constraint is equivalent to the all-different constraint that is
expressed as follows:

var X {1..9} >= 1 <= 9 integer;
con Mycon: alldiff(X);

The global cardinality constraint also provides a convenient way to define disjoint domains for a set of
variables. For example, the following syntax limits assignment of the variables XŒ1�; : : : ; XŒ9� to even
numbers between 0 and 10:

var X {1..9} >= 0 <= 10 integer;
con Mycon: gcc(X, setof{i in 1..9 by 2} <i,0,0>);

LEXICO Predicate

LEXICO(variable-list relational-operator variable-list)

The LEXICO predicate defines a lexicographic ordering constraint, which compares two arrays of the
same size from left to right. For example, a standings table in a sports competition is usually ordered
lexicographically, with certain attributes (such as wins or points) to the left of others (such as goal difference).

Given two n-tuples x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/, the n-tuple x is lexicographically less than or
equal to y (x �lex y) if and only if�

xi D yi 8i D 1; : : : ; n
�
_
�
9j with 1 � j � n s.t. xi D yi 8i D 1; : : : ; j�1 and xj < yj

�
The n-tuple x is lexicographically less than y (x <lex y) if and only if x �lex y and x ¤ y. Equivalently,
x <lex y if and only if

9j with 1 � j � n s.t. xi D yi 8i D 1; : : : ; j�1 and xj < yj

Informally, you can think of the lexicographic constraint �lex as sorting the n-tuples in alphabetical order.
Mathematically, �lex is a partial order on a subset of n-tuples, and <lex is a strict partial order on a subset of
n-tuples (Brualdi 2010).

For example, you can express the lexicographic constraint .XŒ1�; : : : ; XŒ6�/ �lex .Y Œ1�; : : : ; Y Œ6�/ by using
a LEXICO predicate as follows:

con Mycon: lexico({j in 1..6} X[j] <= {j in 1..6} Y[j]);

The assignment XŒ1�D1, XŒ2�D2, XŒ3�D2, XŒ4�D1, XŒ5�D2, XŒ6�D5, Y Œ1�D1, Y Œ2�D2, Y Œ3�D2,
Y Œ4�D1, Y Œ5�D4, and Y Œ6�D3 satisfies this constraint because XŒi� D Y Œi � for i D 1; : : : ; 4 and XŒ5� <
Y Œ5�. The fact that XŒ6� > Y Œ6� is irrelevant in this ordering.
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Lexicographic ordering constraints can be useful for breaking a certain type of symmetry that arises in CSPs
and involves matrices of decision variables. Frisch et al. (2002) introduce an optimal algorithm to establish
generalized arc consistency (GAC) for the �lex constraint between two vectors of variables.

PACK Predicate

PACK(scalar-variable,data-list ,variable-list)

The PACK predicate specifies a pack constraint, which is used to assign items to bins, subject to the sizes of
the items and the capacities of the bins.

For example, suppose you have three bins, whose capacities are 3, 4, and 5, and you have five items of sizes
4, 3, 2, 2, and 1, to be assigned to these three bins. The following statements formulate the problem and find
a solution:

proc optmodel;
var Bin {j in 1..3} >= 0 <= j + 2 integer;
var Item {1..5} >= 1 <= 3 integer;
num size {1..5} = [4 3 2 2 1];
con Mycon: pack(Item, size, Bin);
solve;

quit;

Each row of Table 6.4 represents a solution to the problem. The number in each item column is the number
of the bin to which the corresponding item is assigned.

Table 6.4 Bin Packing Solutions

Item Variable
Item[1] Item[2] Item[3] Item[4] Item[5]

2 3 3 1 1
2 3 1 3 1
2 1 3 3 3
3 1 2 2 3

When you assign a set of k items to m bins, the item variable bi ; i 2 1; : : : ; k contains the bin number for
the ith item. The variable si holds the size or weight of the ith item. The domain of the load variable lj
constrains the capacity of bin j.

NOTE: It can be more efficient to list the item variables in nonincreasing size order and to specify VAR-
SELECT=FIFO in the SOLVE WITH CLP statement.

REIFY Predicate

REIFY(variable, linear-constraint)

The REIFY predicate specifies a reify constraint, which associates a binary variable with a constraint. The
value of the binary variable is 1 or 0, depending on whether the constraint is satisfied or not, respectively.
The constraint is said to be reified, and the binary variable is referred to as the control variable. Currently,
only linear constraints can be reified.
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The REIFY predicate provides a convenient mechanism for expressing logical constraints, such as disjunctive
and implicative constraints. For example, the disjunctive constraint

.3X C 4Y < 20/ _ .5X � 2Y > 50/

can be expressed by the following statements:

var X integer, Y integer,
P binary, Q binary;

con reify(P, 3 * X + 4 * Y < 20);
con reify(Q, 5 * X - 2 * Y > 50);
con AtLeastOneHolds: P + Q >= 1;

The binary variable P reifies the linear constraint

3X C 4Y < 20

The binary variable Q reifies the linear constraint

5X � 2Y > 50

The following linear constraint enforces the desired disjunction:

P CQ � 1

The following implicative constraint

.3X C 4Y < 20/) .5X � 2Y > 50/

can be enforced by the linear constraint

P � Q

You can also use the REIFY constraint to express a constraint that involves the absolute value of a variable.
For example, the constraint

jX j D 5

can be expressed by the following statements:

var X integer, P binary, Q binary;
con Xis5: reify(P, X = 5);
con XisMinus5: reify(Q, X = -5);
con OneMustHold: P + Q = 1;
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Details: CLP Solver

Types of CSPs
The CLP solver is a finite-domain constraint programming solver for CSPs. A standard CSP is characterized
by integer variables, linear constraints, global constraints, and reify constraints. In other words, X is a finite
set of integer variables, and C can contain linear, global, or logical constraints. As such, the solver expects
only linear, ALLDIFF, ELEMENT, GCC, LEXICO, PACK, and REIFY predicates.

Both PROC OPTMODEL and PROC CLP support standard CSPs. The CLP procedure also supports schedul-
ing CSPs, which are characterized by activities, temporal constraints, and resource requirement constraints.
For more information about the CLP procedure see SAS/OR User’s Guide: Constraint Programming.

Techniques for Solving CSPs
Several techniques for solving CSPs are available. Kumar (1992) and Tsang (1993) present a good overview
of these techniques. It should be noted that the satisfiability problem (SAT) (Garey and Johnson 1979) can be
regarded as a CSP. Consequently, most problems in this class are nondeterministic polynomial-time complete
(NP-complete) problems, and a backtracking search mechanism is an important technique for solving them
(Floyd 1967).

One of the most popular tree search mechanisms is chronological backtracking. However, a chronological
backtracking approach is not very efficient because conflicts are detected late; that is, the approach is oriented
toward recovering from failures rather than avoiding them to begin with. The search space is reduced only
after a failure is detected, and the performance of this technique is drastically reduced as the problem size
increases. Another drawback of using chronological backtracking, for the same reason, is encountering
repeated failures, sometimes called “thrashing.” The presence of late detection and “thrashing” has led
researchers to develop consistency techniques that can achieve superior pruning of the search tree. This
strategy uses constraints actively, rather than pasively.

Constraint Propagation

A more efficient technique than backtracking is constraint propagation, which uses consistency techniques to
effectively prune the domains of variables. Consistency techniques are based on the idea of a priori pruning,
which uses the constraint to reduce the domains of the variables. Consistency techniques are also known as
relaxation algorithms (Tsang 1993), and the process is also called problem reduction, domain filtering, or
pruning.
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One of the earliest applications of consistency techniques was in the AI field to solve the scene labeling
problem, which required recognizing objects in three-dimensional space by interpreting two-dimensional line
drawings of the object. The Waltz filtering algorithm (Waltz 1975) analyzes line drawings by systematically
labeling the edges and junctions while maintaining consistency between the labels.

An effective consistency technique for handling resource capacity constraints is edge finding (Applegate and
Cook 1991). Edge-finding techniques reason about the processing order of a set of activities that require
a specified resource or set of resources. Some of the earliest work in edge finding can be attributed to
Carlier and Pinson (1989), who successfully solved MT10, a well-known 10 × 10 job shop problem that had
remained unsolved for more than 20 years (Muth and Thompson 1963).

Constraint propagation is characterized by the extent of propagation (also called the level of consistency)
and whether domain propagation or interval propagation is the domain pruning scheme that is followed.
In practice, interval propagation is preferred because of its lower computational costs. This mechanism is
discussed in detail in Van Hentenryck (1989). However, constraint propagation is not a complete solution
technique and needs to be complemented by a search technique in order to ensure success (Kumar 1992).

Finite-Domain Constraint Programming

Finite-domain constraint programming is an effective and complete solution technique that embeds incomplete
constraint propagation techniques into a nondeterministic backtracking search mechanism that is implemented
as follows: Whenever a node is visited, constraints are propagated to attain a desired level of consistency.
If the domain of each variable reduces to a singleton set, the node represents a solution to the CSP. If the
domain of a variable becomes empty, the node is pruned. Otherwise a variable is selected, its domain is
distributed, and a new set of CSPs is generated, each of which is a child node of the current node. Several
factors play a role in determining the outcome of this mechanism, such as the extent of propagation (or level
of consistency enforced), the variable selection strategy, and the variable assignment or domain distribution
strategy.

For example, the lack of any propagation reduces this technique to a simple generate-and-test approach,
whereas performing consistency checking using variables that are already selected reduces this approach to
chronological backtracking, one of the systematic search techniques. These are also known as look-back
schemas, because they share the disadvantage of late conflict detection. Look-ahead schemas, on the other
hand, work to prevent future conflicts. Some popular examples of look-ahead schemas, in increasing degree
of consistency level, are forward checking (FC), partial look ahead (PLA), and full look ahead (LA) (Kumar
1992). Forward checking enforces consistency between the current variable and future variables; PLA and
LA extend this even further to pairs of not yet instantiated variables.

Two important consequences of this technique are that inconsistencies are discovered early and that the
current set of alternatives that are coherent with the existing partial solution is dynamically maintained. These
consequences are powerful enough to prune large parts of the search tree, thereby reducing the “combinatorial
explosion” of the search process. However, although constraint propagation at each node results in fewer
nodes in the search tree, the processing at each node is more expensive. The ideal scenario is to strike a
balance between the extent of propagation and the subsequent computation cost.

Variable selection is another strategy that can affect the solution process. The order in which variables are
chosen for instantiation can have a substantial impact on the complexity of the backtrack search. Several
heuristics have been developed and analyzed for selecting variable ordering. One of the most common ones
is a dynamic heuristic based on the fail-first principle (Haralick and Elliott 1980), which selects the variable
whose domain has minimal size. Subsequent analysis of this heuristic by several researchers has validated
this strategy as providing substantial improvement for a significant class of problems. Another popular
strategy is to instantiate the most constrained variable first. Both these strategies are based on the principle of
selecting the variable most likely to fail and detecting such failures as early as possible.
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The domain distribution strategy for a selected variable is yet another area that can influence the performance
of a backtracking search. However, good value-ordering heuristics are expected to be very problem-specific
(Kumar 1992).

Consistency Techniques

The CLP solver features a full look-ahead algorithm for standard CSPs that follows a strategy of maintaining
a version of generalized arc consistency that is based on the AC-3 consistency routine (Mackworth 1977).
This strategy maintains consistency between the selected variables and the unassigned variables and also
maintains consistency between unassigned variables.

Selection Strategy

A search algorithm for CSPs searches systematically through the possible assignments of values to variables.
The order in which a variable is selected can be based on a static ordering, which is determined before the
search begins, or on a dynamic ordering, in which the choice of the next variable depends on the current state
of the search. The VARSELECT= option in the SOLVE statement defines the variable selection strategy for
a standard CSP. The default strategy is the dynamic MINR strategy, which selects the variable that has the
smallest range.

Assignment Strategy

After a variable is selected, the assignment strategy dictates the value that is assigned to it. For variables,
the assignment strategy is specified in the VARASSIGN= option in the SOLVE statement. The default
assignment strategy selects the minimum value from the domain of the selected variable.

Differences between PROC OPTMODEL and PROC CLP
You can invoke the CLP solver from PROC OPTMODEL by using any of the predicates that are defined in
the standard mode of PROC CLP. The standard mode gives you access to all-different, element, GCC, linear,
pack, and reify constraints.

To replicate the FOREACH predicate that PROC CLP supports, you can use PROC OPTMODEL’s expressions
and iteration machinery. For an example, see the Eight Queens example in the “Getting Started: CLP Solver”
on page 194. For more information about the FOREACH predicate, see SAS/OR User’s Guide: Constraint
Programming.

In addition to the predicates that are defined in this chapter, PROC CLP provides several constraints and
capabilities that simplify the modeling of scheduling-oriented CSPs. For more information about those
statements, see the section “Details: CLP Procedure” (Chapter 3, SAS/OR User’s Guide: Constraint
Programming).

PROC OPTMODEL has different syntax and semantics for variable declarations:

• Because all CLP variables are discrete, you must declare every variable that a CLP model uses as
integer or binary.

• The default variable bounds in PROC OPTMODEL are �1 to1. The default lower bound in PROC
CLP is 0. Thus, to replicate the behavior of PROC CLP, you must explicitly add a lower bound of 0 to
the variable declaration.
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Macro Variable _OROPTMODEL_
The OPTMODEL procedure always creates and initializes a SAS macro variable called _OROPTMODEL_,
which contains a character string. After each PROC OPTMODEL run, you can examine this macro variable
by specifying %put &_OROPTMODEL_; and check the execution of the most recently invoked solver from the
value of the macro variable. You can also extract each keyword and value pair to obtain details about the
solution. After the solver is called, the various keywords in the variable are interpreted as follows.

STATUS
indicates the solver status at termination. It can take one of the following values:

OK The solver terminated normally.

SYNTAX_ERROR The use of syntax is incorrect.

DATA_ERROR The input data are inconsistent.

OUT_OF_MEMORY Insufficient memory was allocated to the procedure.

IO_ERROR A problem in reading or writing of data has occurred.

SEMANTIC_ERROR An evaluation error, such as an invalid operand type, has occurred.

ERROR The status cannot be classified into any of the preceding categories.

SOLUTION_STATUS
indicates the solution status at termination. It can take one of the following values:

ABORT_NOSOL The solver was stopped by the user and did not find a
solution.

ABORT_SOL The solver was stopped by the user but still found a solu-
tion.

ALL_SOLUTIONS All solutions were found.

BAD_PROBLEM_TYPE The problem type is not supported by the solver.

CONDITIONAL_OPTIMAL The optimality of the solution cannot be proven.

ERROR The algorithm encountered an error.

FAIL_NOSOL The solver stopped because of errors and did not find a
solution.

FAIL_SOL The solver stopped because of errors but still found a
solution.
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INFEASIBLE The problem is infeasible.

INTERRUPTED The solver was interrupted by the system or the user
before completing its work.

OK The algorithm terminated normally.

OPTIMAL The solution is optimal.

OUTMEM_NOSOL The solver ran out of memory and either did not find
a solution or failed to output the solution because of
insufficient memory.

OUTMEM_SOL The solver ran out of memory but still found a solution.

SOLUTION_LIM The solver reached the maximum number of solutions
specified in the MAXSOLS= option.

TIME_LIM_NOSOL The solver reached the execution time limit specified in
the MAXTIME= option and did not find a solution.

TIME_LIM_SOL The solver reached the execution time limit specified in
the MAXTIME= option and found a solution.

UNBOUNDED The problem is unbounded.

ALGORITHM
indicates the algorithm that produces the solution data in the macro variable. This term appears only
when STATUS=OK. It can take only one value in the CLP solver: CLP, which indicates that the
constraint satisfaction algorithm produced the solution data.

OBJECTIVE
indicates the objective value that the solver obtained at termination. If a problem does not have an
explicit objective, the value of this keyword in the _OROPTMODEL_ macro variable is missing (.).

PRESOLVE_TIME
indicates the real time (in seconds) taken for preprocessing.

SOLUTION_TIME
indicates the real time (in seconds) taken by the algorithm to perform iterations to solve the problem.

SOLUTIONS_FOUND
indicates the number of solutions found, which might be 0 if the problem is infeasible. This keyword
is always present in the solution status when you call the CLP solver. The value might not be the total
number of solutions possible (for example, if the solver reached its time limit).
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Examples: CLP Solver

Example 6.1: Logic-Based Puzzles
Many logic-based puzzles can be formulated as CSPs. Several such puzzles are shown in this example.

Sudoku

Sudoku is a logic-based, combinatorial number-placement puzzle that uses a partially filled 9 × 9 grid. The
objective is to fill the grid with the digits 1 to 9 so that each column, each row, and each of the nine 3 × 3
blocks contains only one of each digit. Figure 6.1.1 shows an example of a sudoku grid.

Output 6.1.1 Example of an Unsolved Sudoku Grid

This example illustrates the use of the all-different constraint to solve the preceding sudoku problem. The
data set Indata contains the partially filled values for the grid.

data Indata;
input C1-C9;
datalines;

. . 5 . . 7 . . 1

. 7 . . 9 . . 3 .

. . . 6 . . . . .

. . 3 . . 1 . . 5

. 9 . . 8 . . 2 .
1 . . 2 . . 4 . .
. . 2 . . 6 . . 9
. . . . 4 . . 8 .
8 . . 1 . . 5 . .
;
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Let the variable Xij .i D 1; : : : ; 9; j D 1; : : : ; 9/ represent the value of cell .i; j / in the grid. The domain of
each of these variables is Œ1; 9�. When cell .i; j / is not missing in the data set, Xij is fixed to that value.

Three sets of all-different constraints specify the required rules for each row, each column, and each of the
3 × 3 blocks. The RowCon constraint forces all values in row i to be different, the ColumnCon constraint
forces all values in column j to be different, and the BlockCon constraint forces all values in each block to be
different.

The following statements express the preceding constraints in PROC OPTMODEL and solve the sudoku
puzzle:

proc optmodel;
/* Declare variables */
set ROWS = 1..9;
set COLS = ROWS; /* Use an alias for convenience and clarity */
var X {ROWS, COLS} >= 1 <= 9 integer;

/* Nine row constraints */
con RowCon {i in ROWS}:

alldiff({j in COLS} X[i,j]);

/* Nine column constraints */
con ColCon {j in COLS}:

alldiff({i in ROWS} X[i,j]);

/* Nine 3x3 block constraints */
con BlockCon {s in 0..2, t in 0..2}:

alldiff({i in 3*s+1..3*s+3, j in 3*t+1..3*t+3} X[i,j]);

/* Fix variables to cell values */
/* X[i,j] = c[i,j] if c[i,j] is not missing */
num c {ROWS, COLS};
read data indata into [_N_] {j in COLS} <c[_N_,j]=col('C'||j)>;
for {i in ROWS, j in COLS: c[i,j] ne .}

fix X[i,j] = c[i,j];

solve;
quit;
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Output 6.1.2 shows the solution.

Output 6.1.2 Solution of the Sudoku Grid

Pi Day Sudoku

The basic structure of the classical sudoku problem can easily be extended to formulate more complex
puzzles. One such example is the Pi Day sudoku puzzle.

Pi Day is a celebration of the number � that occurs every March 14. In honor of Pi Day, Brainfreeze Puzzles
(Riley and Taalman 2008) celebrates this day with a special 12 × 12 grid sudoku puzzle. The 2008 Pi Day
sudoku puzzle is shown in Figure 6.1.3.

Output 6.1.3 Pi Day Sudoku 2008
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The rules for this puzzle are a little different from the rules for standard sudoku:

1. Rather than using regular 3 × 3 blocks, this puzzle uses jigsaw regions such that highlighted regions in
the middle resemble the Greek letter � . Each jigsaw region consists of 12 contiguous cells.

2. The first 12 digits of � are used instead of the digits 1–9. Each row, column, and jigsaw region contains
the first 12 digits of � (314159265358) in some order. In other words, there are no 7s; one each of 2,
4, 6, 8, and 9; two each of 1 and 3; and three 5s.

To generalize the original sudoku model:

1. Replace the expression that calculates the starting and ending cells of a region by an array that maps
each cell to one region.

2. Replace the all-different constraints with GCC constraints. GCC constraints describe how often each
value can be assigned to a set of variables. Conceptually, an all-different constraint is a specialized
GCC constraint in which both the lower bound and the upper bound of every value is 1.

The data set Raw contains the partially filled values for the grid. It contains missing values where the cell
does not yet contain a number.

data Raw;
input C1-C12;
datalines;

3 . . 1 5 4 . . 1 . 9 5
. 1 . . 3 . . . . 1 3 6
. . 4 . . 3 . 8 . . 2 .
5 . . 1 . . 9 2 5 . . 1
. 9 . . 5 . . 5 . . . .
5 8 1 . . 9 . . 3 . 6 .
. 5 . 8 . . 2 . . 5 5 3
. . . . 5 . . 6 . . 1 .
2 . . 5 1 5 . . 5 . . 9
. 6 . . 4 . 1 . . 3 . .
1 5 1 . . . . 5 . . 5 .
5 5 . 4 . . 3 1 6 . . 8
;
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The following statements define the GCC constraints in order to find all solutions of the Pi Day sudoku 2008
puzzle:

proc optmodel;
set ROWS = 1..12;
/* These declarations are inexpensive and improve clarity: */
set COLS = ROWS, REGIONS = ROWS, CELLS = ROWS cross COLS;

/* specify a 12x12 array of region identifiers.
The spacing is just to make the regions easier to visualize. */

num region{CELLS} = [
1 1 1 2 2 2 2 2 2 3 3 3
1 1 1 2 2 2 2 2 2 3 3 3
1 1 4 4 4 4 5 5 5 5 3 3
1 1 4 4 4 4 5 5 5 5 3 3
1 1 4 4 4 4 5 5 5 5 3 3
6 6 6 7 7 8 8 9 9 10 10 10
6 6 6 7 7 8 8 9 9 10 10 10
6 6 6 7 7 8 8 9 9 10 10 10
6 6 6 7 7 8 8 9 9 10 10 10

11 11 11 7 7 8 8 9 9 12 12 12
11 11 11 7 7 8 8 9 9 12 12 12
11 11 11 11 11 11 12 12 12 12 12 12 ];

/* Each area must contain two 1's, two 3's, three 5's, no 7's,
and one for each of other values from 1 to 9. */

/* 1 2 3 4 5 6 7 8 9 */
num nTimes{1..9} = [2 1 2 1 3 1 0 1 1];
/* For convenience, create a triplet set version of nTimes.

In this model, GCC's lower and upper bounds are the same. */
set N_TIMES = setof{ni in 1..9} <ni,nTimes[ni],nTimes[ni]>;

/* The number assigned to the ith row and jth column. */
var X {CELLS} >= 1 <= 9 integer;

/* X[i,j] = c[i,j] if c[i,j] is not missing */
num c {CELLS};
read data raw into [_N_] {j in COLS} <c[_N_,j]=col('C'||j)>;
for {<i,j> in CELLS: c[i,j] ne .}

fix X[i,j] = c[i,j];

con RowCon {i in ROWS}:
gcc({j in COLS} X[i,j], N_TIMES);

con ColCon {j in COLS}:
gcc({i in ROWS} X[i,j], N_TIMES);

con RegionCon {ri in REGIONS}:
gcc({<i,j> in CELLS: region[i,j] = ri} X[i,j], N_TIMES);

solve;
/* Replicate typical PROC CLP output from PROC OPTMODEL arrays */
create data pdsout from

{<i,j> in ROWS cross COLS}<col('X_'||i||'_'||j)=X[i,j]>;
quit;
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The only solution of the 2008 Pi Day sudoku puzzle is shown in Output 6.1.4.

Output 6.1.4 Solution to Pi Day Sudoku 2008

Pi Day Sudoku 2008Pi Day Sudoku 2008

Obs C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

1 3 2 5 1 5 4 6 3 1 8 9 5

2 4 1 5 2 3 8 5 9 5 1 3 6

3 6 1 4 5 9 3 5 8 3 1 2 5

4 5 3 3 1 8 5 9 2 5 6 4 1

5 8 9 2 6 5 1 1 5 4 3 3 5

6 5 8 1 5 2 9 4 3 3 5 6 1

7 1 5 3 8 1 6 2 4 9 5 5 3

8 9 4 5 3 5 1 5 6 8 2 1 3

9 2 3 6 5 1 5 3 1 5 4 8 9

10 3 6 8 9 4 5 1 5 1 3 5 2

11 1 5 1 3 6 3 8 5 2 9 5 4

12 5 5 9 4 3 2 3 1 6 5 1 8

The corresponding completed grid is shown in Figure 6.1.5.

Output 6.1.5 Solution to Pi Day Sudoku 2008

Magic Square

A magic square is an arrangement of the distinct positive integers from 1 to n2 in an n�nmatrix such that the
sum of the numbers of any row, any column, or any main diagonal is the same number, known as the magic
constant. The magic constant of a normal magic square depends only on n and has the value n.n2 C 1/=2:

This example illustrates the use of the MINRMAXC selection strategy, which is controlled by the VAR-
SELECT= option. In this example, MINRMAXC is the only variable selection strategy that finds a solution
to a magic square of size seven within three seconds.
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%macro magic(n);
proc optmodel;

num n = &n;
/* magic constant */
num sum = n*(n^2+1)/2;
set ROWS = 1..n;
set COLS = 1..n;

/* X[i,j] = entry (i,j) */
var X {ROWS, COLS} >= 1 <= n^2 integer;

/* row sums */
con RowCon {i in ROWS}:

sum {j in COLS} X[i,j] = sum;

/* column sums */
con ColCon {j in COLS}:

sum {i in ROWS} X[i,j] = sum;

/* diagonal: upper left to lower right */
con DiagCon:

sum {i in ROWS} X[i,i] = sum;

/* diagonal: upper right to lower left */
con AntidiagCon:

sum {i in ROWS} X[n+1-i,i] = sum;

/* symmetry-breaking */
con BreakRowSymmetry:

X[1,1] + 1 <= X[n,1];
con BreakDiagSymmetry:

X[1,1] + 1 <= X[n,n];
con BreakAntidiagSymmetry:

X[1,n] + 1 <= X[n,1];

con alldiff(X);

solve with CLP / varselect=minrmaxc maxtime=3;
quit;

%mend magic;

%magic(7)
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The solution is displayed in Output 6.1.6.

Output 6.1.6 Solution of the Magic Square

Example 6.2: Alphabet Blocks Problem
This example illustrates the use of the global cardinality constraint (GCC). The alphabet blocks problem
consists of finding an arrangement of letters on four alphabet blocks. Each alphabet block has a single letter
on each of its six sides. Collectively, the four blocks contain every letter of the alphabet except Q and Z. By
arranging the blocks in various ways, the following words should be spelled out: BAKE, ONYX, ECHO,
OVAL, GIRD, SMUG, JUMP, TORN, LUCK, VINY, LUSH, and WRAP.

You can formulate this problem as a CSP by representing each of the 24 letters as an integer variable. The
domain of each variable is the set f1; 2; 3; 4g, which represents block1 through block4. The assignment A = 1
indicates that the letter A is on a side of block1. Because each block has six sides, each value v in f1; 2; 3; 4g
must be assigned to exactly six variables so that each side of a block has a letter on it. This restriction can be
formulated as a global cardinality constraint over all 24 variables, with common lower and upper bounds set
equal to 6.

Moreover, in order to spell all the words listed previously, the four letters in each of the 12 words must be
on different blocks. Another GCC statement that specifies 12 global cardinality constraints enforces these
conditions. You can also formulate these restrictions by using 12 all-different constraints. Finally, four FIX
statements break the symmetries that blocks are interchangeable. These constraints preset the blocks that
contain the letters B, A, K, and E as block1, block2, block3, and block4, respectively.
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The complete representation of the problem is as follows:

proc optmodel;
/* Each letter except Q and Z is represented with a variable. */
/* The domain of each variable is the set of 4 blocks, */
/* or {1, 2, 3, 4} for short. */
set LETTERS = / A B C D E F G H I J K L M N O P R S T U V W X Y /;
var Block {LETTERS} integer >= 1 <= 4;
set BLOCKS = 1..4;

/* There are exactly 6 letters on each alphabet block */
con SixLettersPerBlock:

gcc(Block, setof {b in BLOCKS} <b,6,6>);

/* The letters in each word must be on different blocks. */
set WORDS = / BAKE ONYX ECHO OVAL GIRD SMUG JUMP TORN LUCK VINY LUSH WRAP /;
con CanSpell {w in WORDS}:

gcc({k in 1..length(w)} Block[char(w,k)], setof {b in BLOCKS} <b,0,1>);

/* Note 2: These restrictions can also be enforced by ALLDIFF constraints:
con CanSpellv2 {w in WORDS}:

alldiff({k in 1..length(w)} Block[char(w,k)]);

*/

/* Breaking the symmetry that blocks can be interchanged by setting
the block that contains the letter B as block1, the block that
contains the letter A as block2, etc. */

for {k in 1..length('BAKE')} fix Block[char('BAKE',k)] = k;

solve;
print Block;

quit;
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The solution to this problem is shown in Output 6.2.1.

Output 6.2.1 Solution to Alphabet Blocks Problem

The OPTMODEL ProcedureThe OPTMODEL Procedure

Problem Summary

Objective Sense Minimization

Objective Function (0)

Objective Type Constant

Number of Variables 24

Bounded Above 0

Bounded Below 0

Bounded Below and Above 20

Free 0

Fixed 4

Binary 1

Integer 23

Number of Constraints 13

Linear LE (<=) 0

Linear EQ (=) 0

Linear GE (>=) 0

Linear Range 0

Alldiff 0

Element 0

GCC 13

Lexico (<=) 0

Lexico (<) 0

Pack 0

Reify 0

Constraint Coefficients 0

Performance Information

Execution Mode Single-Machine

Number of Threads 1

Solution Summary

Solver CLP

Objective Function (0)

Solution Status Solution Limit Reached

Objective Value 0

Solutions Found 1

Presolve Time 0.00

Solution Time 0.00
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Output 6.2.1 continued

[1] Block

A 2

B 1

C 2

D 2

E 4

F 1

G 4

H 3

I 1

J 2

K 3

L 4

M 3

N 2

O 1

P 4

R 3

S 2

T 4

U 1

V 3

W 1

X 3

Y 4

Example 6.3: Work-Shift Scheduling Problem
This example illustrates the use of the GCC constraint to find a feasible solution to a work-shift scheduling
problem and then the use of the element constraint to incorporate cost information in order to find a
minimum-cost schedule.

Six workers (Alan, Bob, Juanita, Mike, Ravi, and Aisha) are to be assigned to three working shifts. The first
shift needs at least one and at most four people; the second shift needs at least two and at most three people;
and the third shift needs exactly two people. Alan cannot work on the first shift; Bob can work only on the
third shift. The others can work on any shift. The objective is to find a feasible assignment for this problem.

You can model the minimum and maximum shift requirements by using a GCC constraint and formulate the
problem as a standard CSP. The variables W[1],: : : ,W[6] identify the shift to which each of the six workers
is assigned: Alan, Bob, Juanita, Mike, Ravi, and Aisha.

proc optmodel;
/* Six workers (Alan, Bob, Juanita, Mike, Ravi and Aisha)

are to be assigned to 3 working shifts. */
set WORKERS = 1..6;
var W {WORKERS} integer >= 1 <= 3;
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/* The first shift needs at least 1 and at most 4 people;
the second shift needs at least 2 and at most 3 people;
and the third shift needs exactly 2 people. */

con ShiftNeeds:
gcc(W, /<1,1,4>,<2,2,3>,<3,2,2>/);

/* Alan doesn't work on the first shift. */
con Alan:

W[1] ne 1;

/* Bob works only on the third shift. */
fix W[2] = 3;

solve;
print W;

quit;

The resulting assignment is shown in Output 6.3.1.

Output 6.3.1 Solution to Work-Shift Scheduling Problem

Solution to Work-Shift Scheduling ProblemSolution to Work-Shift Scheduling Problem

Obs W1 W2 W3 W4 W5 W6

1 2 3 1 1 2 3

A Gantt chart of the corresponding schedule is displayed in Output 6.3.2.

Output 6.3.2 Work-Shift Schedule
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Now suppose that every work-shift assignment has a cost associated with it and that the objective of interest
is to determine the schedule that has the lowest cost.

The costs of assigning the workers to the different shifts are shown in Table 6.5. A dash (“-”) in position
.i; j / indicates that worker i cannot work on shift j.

Table 6.5 Costs of Assigning Workers to Shifts

Shift 1 Shift 2 Shift 3
Alan - 12 10
Bob - - 6

Juanita 16 8 12
Mike 10 6 8
Ravi 6 6 8
Aisha 12 4 4

Based on the cost structure in Table 6.5, the previously derived schedule has a cost of $54. The objective now
is to determine the optimal schedule—one that results in the minimum cost.

Let the variable Ci represent the cost of assigning worker i to a shift. This variable is shift-dependent and
is given a high value (for example, 100) if the worker cannot be assigned to a shift. The costs can also be
interpreted as preferences if desired. You can use an element constraint to associate the cost Ci with the shift
assignment for each worker. For example, C1, the cost of assigning Alan to a shift, can be determined by the
constraint ELEMENT(W1; .100; 12; 10/; C1).

By adding a linear constraint,
Pn

iD1 Ci � obj, you can limit the solutions to feasible schedules that cost no
more than obj. Although an upper bound of $100 is used in this example, it would suffice to use an upper
bound of $54, the cost of the feasible schedule that was determined earlier.

proc optmodel;
/* Six workers (Alan, Bob, Juanita, Mike, Ravi and Aisha)

are to be assigned to 3 working shifts. */
set WORKERS = 1..6;
set SHIFTS = 1..3;
var W {WORKERS} integer >= 1 <= 3;
var C {WORKERS} integer >= 1 <= 100;

/* The first shift needs at least 1 and at most 4 people;
the second shift needs at least 2 and at most 3 people;
and the third shift needs exactly 2 people. */

con GccCon:
gcc(W, /<1,1,4>,<2,2,3>,<3,2,2>/);

/* Alan doesn't work on the first shift. */
con Alan:

W[1] ne 1;

/* Bob works only on the third shift. */
fix W[2] = 3;

/* Specify the costs of assigning the workers to the shifts.
Use 100 (a large number) to indicate an assignment
that is not possible.*/

num a {WORKERS, SHIFTS} = [
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100, 12, 10,
100, 100, 6,
16, 8, 12
10, 6, 8
6, 6, 8

12, 4, 4
];
con ElementCon {j in WORKERS}:

element(W[j], {k in SHIFTS} a[j,k], C[j]);

/* explicit objective instead of binary search */
min TotalCost = sum {j in WORKERS} C[j];
con TotalCost_bounds:

1 <= TotalCost <= 100;

solve;
print W;
create data clpout from

{j in WORKERS} <col('W'||j)=W[j]> {j in WORKERS} <col('C'||j)=C[j]>;
quit;

The cost of the optimal schedule, which corresponds to the solution shown in the following output, is $40.

Solution to Optimal Work-Shift Scheduling ProblemSolution to Optimal Work-Shift Scheduling Problem

Obs W1 W2 W3 W4 W5 W6 C1 C2 C3 C4 C5 C6

1 3 3 2 2 1 2 10 6 8 6 6 4

The minimum-cost schedule is displayed in the Gantt chart in Output 6.3.3.

Output 6.3.3 Work-Shift Schedule with Minimum Cost
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Example 6.4: A Nonlinear Optimization Problem
This example illustrates how you can use the element constraint to represent almost any function between two
variables in addition to representing nonstandard domains. Consider the following nonlinear optimization
problem:

maximize f .x/ D x3
1 C 5x2 � 2

x3

subject to
�

x1 � :5x2 C x2
3 � 50

mod.x1; 4/ C :25x2 � 1:5

where x1 is any integer in [–5, 5], x2 is any odd integer in [–5, 9], and x3 is any integer in [1, 10].

You can solve this problem by introducing four artificial variables, y1–y4, to represent each of the nonlinear
terms. Let y1 D x

3
1 , y2 D 2

x3 , y3 D x
2
3 , and y4 D mod.x1; 4/. You can represent the domains of x1 and

x2 (which are not consecutive integers that start from 1) by using element constraints and index variables.
For example, any of the following three element constraints specifies that the domain of x2 is the set of odd
integers in Œ�5; 9�:

con element(z2,-5 -3 -1 1 3 5 7 9,x2);
con element(z2, {ri in -5..9 by 2} ri, x2);
num range{ri in -5..9 by 2} = ri;
con element(z2,range,x2);

Any functional dependencies on x1 or x2 can now be defined using z1 or z2, respectively, as the index
variable in an element constraint. Because the domain of x3 is Œ1; 10�, you can directly use x3 as the index
variable in an element constraint to define dependencies on x3.

For example, the following constraint specifies the function y1 D x
3
1 , x1 2 Œ�5; 5�:

con element(z1,-125 -64 -27 -8 -1 0 1 8 27 64 125,y1);
/* or, con element(z1, {ri in -5..5} (ri**3), y1}; */
num range{ri in -5..5} = ri**3;
con element(z1,range,y1);

To solve the problem, define the objective function as demonstrated in the following statements:

proc optmodel;
set DOM{1..3} = [ (-5 .. 5) (-5 .. 9 by 2) (1 .. 10) ];
var X{i in 1..3} integer >= min{j in DOM[i]} j <= max{j in DOM[i]} j;

/* map the domain of X[1] and X[2] to 1 .. list size */
var Z {1..2} integer;
/* map nonlinear expressions */
var Y {1..4} integer;

/* Use an element constraint to represent noncontiguous domains */
/* domains with negative numbers, and nonlinear functions. */
/* Z[2] does not appear anywhere else. Its only purpose is

to restrict X[2] to take a value from DOM[2]. */
con MapDomainTo1ToCard{i in 1..2}:

element(Z[i], {k in DOM[i]} k, X[i]);
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/* Functional Dependencies on X[1] */
/* Y[1] = X[1]^3 -- Use Z[1] for X[1] for proper indexing */
con Y1:

element(Z[1], {k in DOM[1]} (k^3), Y[1]);

/* Y[4] = mod(X[1], 4) */
con Y4:

element(Z[1], {k in DOM[1]} (mod(k,4)), Y[4]);

/* Functional Dependencies on X[3] */
/* Y[2] = 2^X[3] */
con Y2:

element(X[3], {k in DOM[3]} (2^k), Y[2]);

/* Y[3] = X[3]^2 */
con Y3:

element(X[3], {k in DOM[3]} (k^2), Y[3]);

/* X[1] - 0.5 * X[2] + X[3]^2 <= 50 */
con Con1:

X[1] - 0.5 * X[2] + Y[3] <= 50;

/* mod(X[1],4) + 0.25 * X[2] >= 1.5 */
con Con2:

Y[4] + 0.25 * X[2] >= 1.5;

/* Objective function: X[1]^3 + 5 * X[2] - 2^X[3] */
max Objective = Y[1] + 5 * X[2] - Y[2];

solve;
print X Y Z;

quit;
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Output 6.4.1 shows the solution that corresponds to the optimal objective value of 168.

Output 6.4.1 Nonlinear Optimization Problem Solution

The OPTMODEL ProcedureThe OPTMODEL Procedure

Problem Summary

Objective Sense Maximization

Objective Function Objective

Objective Type Linear

Number of Variables 9

Bounded Above 0

Bounded Below 0

Bounded Below and Above 3

Free 6

Fixed 0

Binary 0

Integer 9

Number of Constraints 8

Linear LE (<=) 1

Linear EQ (=) 0

Linear GE (>=) 1

Linear Range 0

Alldiff 0

Element 6

GCC 0

Lexico (<=) 0

Lexico (<) 0

Pack 0

Reify 0

Constraint Coefficients 5

Performance Information

Execution Mode Single-Machine

Number of Threads 1

Solution Summary

Solver CLP

Objective Function Objective

Solution Status Optimal

Objective Value 168

Solutions Found 1

Presolve Time 0.00

Solution Time 0.00
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Output 6.4.1 continued

[1] X Y Z

1 5 125 11

2 9 2 8

3 1 1

4 1

Example 6.5: Car Painting Problem
The car painting process is an important part of the automobile manufacturing industry. Purging (the act of
changing colors during assembly) is expensive because of the added cost of wasted paint and solvents from
each color change and the extra time that the purging process requires. The objective of the car painting
problem is to sequence the cars in the assembly line in order to minimize the number of paint color changes
(Sokol 2002; Trick 2004).

Suppose an assempbly line contains 10 cars, which are ordered 1, 2, . . . , 10. A car must be painted within
three positions of its assembly order. For example, car 5 can be painted in positions 2 through 8. Cars 1, 5,
and 9 are red; 2, 6, and 10 are blue; 3 and 7 green; and 4 and 8 are yellow. The initial sequence 1, 2, . . . , 10
corresponds to the color pattern RBGYRBGYRB and has nine purgings. The objective is to find a solution
that minimizes the number of purgings.

This problem can be formulated as a CSP as follows:

• The input is the color of each car currently on the assembly line.

• The output variables are the slot in which each car will be painted and whether purging will be required
after that painting operation.

• Set the bounds of the slot variables to their feasible range, at most three slots before or after the car’s
current position.

• To determine whether purging is needed, use another variable to store the color of the car painted in
each slot.

• Use an element constraint to determine the color used in each slot from the car assigned to that slot.

• Use a reify constraint to determine whether two consecutive slots are assigned different colors, and
thus whether purging is required.

• Finally, use a linear constraint to limit the total number of purgings.
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The following %CAR_PAINTING macro determines all feasible solutions for the number of purgings that is
specified as a parameter to the macro:

%macro car_painting(purgings);
proc optmodel;

num nCars = 10;
/* a car is identified by its original slots */
set SLOTS = 1..nCars;

/* maximum reshuffling of any car on the line*/
num maxMove init 3;
/* which car is in slot i. */
var S {si in SLOTS} integer >= max(1, si - maxMove)

<= min(nCars, si + maxMove) ;

/* which color the car in slot i is. */
/* Red=1; Blue=2; Green=3; Yellow=4 */
num nColors=4;
num colorOf{SLOTS} = [ 1 2 3 4 1 2 3 4 1 2 ];
var C {SLOTS} integer >= 1 <= nColors;

con ElementCon {i in SLOTS}:
element(S[i], colorOf, C[i]);

/* A car can be painted only once. */
con PaintOnlyOnce:

alldiff(S);

/* Whether there is a purge after slot i.
You can ignore any purging that would happen at the end of the shift. */

var P {SLOTS diff {nCars}} binary;

con ReifyCon {i in SLOTS diff {nCars}}:
reify(P[i], C[i] ne C[i+1]);

/* Calculate the number of purgings. */
con PurgingsCon:

sum {i in SLOTS diff {nCars}} P[i] <= &purgings;

solve with CLP / findall;
/* Replicate typical PROC CLP output from PROC OPTMODEL arrays */
create data car_ds(drop=k) from [k]=(1.._NSOL_)

{i in SLOTS} <col('S'||i)=S[i].sol[k]>
{i in SLOTS} <col('C'||i)=C[i].sol[k]>;

quit;
%mend;
%car_painting(5);
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The problem is infeasible for four purgings. The CLP solver finds 87 possible solutions for the five-purgings
problem. The solutions are sorted by the total distance that all cars are moved in the sequencing, which
ranges from 12 to 22 slots. The first 15 solutions are displayed in the Gantt chart in Output 6.5.1. Each row
represents a solution, and each color transition represents a paint purging.

Output 6.5.1 Car Painting Schedule with Five Purgings
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Example 6.6: Scene Allocation Problem
The scene allocation problem consists of deciding when to shoot each scene of a movie in order to minimize
the total production cost (Van Hentenryck 2002). Each scene involves a number of actors, and at most five
scenes a day can be shot. All actors who appear in a scene must be present in the studio on the day the scene
is shot. Each actor earns a daily rate for each day spent in the studio, regardless of the number of scenes in
which he or she appears on that day. The goal is to shoot the movie for the lowest possible production cost.

The actors’ names, their daily fees, and the scenes in which they appear are contained in the Scene data set,
which is shown in Output 6.6.1. The data set variables S_Var1, . . . , S_Var9 indicate the scenes in which the
actor appears. For example, the first observation indicates that Patt’s daily fee is 26,481 and that Patt appears
in scenes 2, 5, 7, 10, 11, 13, 15, and 17.

Output 6.6.1 Scene Data Set

Obs Number Actor DailyFee S_Var1 S_Var2 S_Var3 S_Var4 S_Var5 S_Var6 S_Var7 S_Var8 S_Var9

1 1 Patt 26481 2 5 7 10 11 13 15 17 .

2 2 Casta 25043 4 7 9 10 13 16 19 . .

3 3 Scolaro 30310 3 6 9 10 14 16 17 18 .

4 4 Murphy 4085 2 8 12 13 15 . . . .

5 5 Brown 7562 2 3 12 17 . . . . .

6 6 Hacket 9381 1 2 12 13 18 . . . .

7 7 Anderson 8770 5 6 14 . . . . . .

8 8 McDougal 5788 3 5 6 9 10 12 15 16 18

9 9 Mercer 7423 3 4 5 8 9 16 . . .

10 10 Spring 3303 5 6 . . . . . . .

11 11 Thompson 9593 6 9 12 15 18 . . . .

There are 19 scenes. At most 5 scenes can be filmed in one day, so at least four days are needed to schedule
all the scenes (d19

5
e D 4). Let Sjk be a binary variable that equals 1 if scene j is shot on day k. Let Aik be

another binary variable that equals 1 if actor i is present on day k. The input daily_feei is the daily cost of the
ith actor.

The objective function that represents the total production cost is

min
11X

iD1

4X
kD1

daily_feei � Aik

This example illustrates the use of symmetry-breaking constraints. In this model, the “1” in day 1 does not
refer to sequence but simply to the label of the day. Thus, you can call day 1 the day on which scene 1 is shot,
whichever day that is. Similarly, either scene 2 is shot on the same day as scene 1 (day 1) or it is shot on
another day, which you can call day 2. Scene 3 is shot either on one of those two days or on another day.
Adding constraints that eliminate symmetry can significantly improve the performance of a CLP model. In
this model, the symmetry-breaking constraints prevent the solver from considering three other assignments
that do not differ in any meaningful way.
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The following PROC OPTMODEL statements implement these ideas:

proc optmodel;
set ACTORS;
str actor_name {ACTORS};
num daily_fee {ACTORS};
num most_scenes = 9; /* most scenes by any actor */
num scene_list {ACTORS, 1..most_scenes};
read data scene into ACTORS=[_N_]

actor_name=Actor daily_fee=DailyFee
{j in 1..most_scenes} <scene_list[_N_,j]=col('S_Var'||j)>;

print actor_name daily_fee scene_list;

set SCENES_actor {i in ACTORS} =
(setof {j in 1..most_scenes} scene_list[i,j]) diff {.};

set SCENES = 1..19;
set DAYS = 1..4;

/* Indicates if actor i is present on day k. */
var A {ACTORS, DAYS} binary;

/* Indicates if scene j is shot on day k. */
var S {SCENES, DAYS} binary;

/* Every scene is shot exactly once.*/
con SceneCon {j in SCENES}:

gcc({k in DAYS} S[j,k], {<1,1,1>});

/* At least 4 and at most 5 scenes are shot per day. */
con NumScenesPerDayCon {k in DAYS}:

gcc({j in SCENES} S[j,k], {<1,4,5>});

/* Actors for a scene must be present on day of shooting. */
con LinkCon {i in ACTORS, j in SCENES_actor[i], k in DAYS}:

S[j,k] <= A[i,k];

/* symmetry-breaking constraints. Without loss of any generality, we
can assume Scene1 to be shot on day 1, Scene2 to be shot on day 1
or day 2, and Scene3 to be shot on either day 1, day 2, or day 3. */

fix S[1,1] = 1;
for {k in 2..4} fix S[1,k] = 0;
for {k in 3..4} fix S[2,k] = 0;
fix S[3,4] = 0;

/* If Scene2 is shot on day 1, (as opposed to day 2) */
/* then Scene3 can be shot on day 1 or day 2 (but not day 3). */
con Symmetry:

S[2,1] + S[3,3] <= 1;

/* Minimize total cost. */
min TotalCost = sum {i in ACTORS, k in DAYS} daily_fee[i] * A[i,k];

/* Set lower and upper bounds for the objective value */
/* Lower bound: every actor appears on one day. */
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/* Upper bound: every actor appears on all four days. */
num obj_lb = sum {i in ACTORS} daily_fee[i];
num obj_ub = sum {i in ACTORS, k in DAYS} daily_fee[i];
put obj_lb= obj_ub=;
con TotalCost_bounds:

obj_lb <= TotalCost <= obj_ub;

solve with CLP / varselect=maxc;
quit;

The optimal production cost is 334,144, as reported in the _OROPTMODEL_ macro variable. The corre-
sponding actor schedules and scene schedules are displayed in Output 6.6.2 and Output 6.6.3, respectively.

Output 6.6.2 Scene Allocation Problem: Actor Schedules
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Output 6.6.3 Scene Allocation Problem: Scene Schedules

Example 6.7: Car Sequencing Problem
This problem is an instance of a category of problems known as the car sequencing problem. A considerable
amount of literature discusses this problem (Dincbas, Simonis, and Van Hentenryck 1988; Gravel, Gagne,
and Price 2005; Solnon et al. 2008).

A number of cars are to be produced on an assembly line. Each car is customized to include a specific set of
options, such as air conditioning, a sunroof, a navigation system, and so on. The assembly line moves through
several workstations for installation of these options. The cars cannot be positioned randomly, because each
workstation has limited capacity and needs time to set itself up to install the options as the car moves in front
of the station. These capacity constraints are formalized using constraints of the form m out of N, which
indicates that the workstation can install the option on m out of every sequence of N cars. The car sequencing
problem is to determine a sequencing of the cars on the assembly line that satisfies the demand constraints
for each set of car options and the capacity constraints for each workstation.

This example comes from Dincbas, Simonis, and Van Hentenryck (1988). Ten cars need to be customized
with five possible options. A class of car is defined by a specific set of options; there are six classes of cars.
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The data are presented in Table 6.6.

Table 6.6 Option Installation Data

Option Capacity Car Class
Name Type m/N 1 2 3 4 5 6

Option 1 1 1/2 1 0 0 0 1 1
Option 2 2 2/3 0 0 1 1 0 1
Option 3 3 1/3 1 0 0 0 1 0
Option 4 4 2/5 1 1 0 1 0 0
Option 5 5 1/5 0 0 1 0 0 0

Number of Cars 1 1 2 2 2 2

For example, car class 4 requires installation of option 2 and option 4, and two cars of this class are required.
The workstation for option 2 can process only two out of every sequence of three cars. The workstation for
option 4 has even less capacity—two out of every five cars.

The data for this problem are used to create a SAS data set, which drives the generation of variables and
constraints in PROC OPTMODEL.

The decision variables for this problem are shown in Table 6.7.

Table 6.7 Decision Variables

Variable Definition Description

S{SLOTS} >=1 <= 6 Si is the class of cars assigned
to slot i.

var O {SLOTS, OPTIONS}
binary

Oij D 1 if the class assigned
to slot i needs option j.

The following SAS statements express the workstation capacity constraints by using a set of linear constraints
for each workstation. A single GCC constraint expresses the demand constraints for each car class. An
element constraint for each option variable expresses the relationships between slot variables and option
variables.

This model also includes a set of redundant constraints, in the sense that the preceding logical constraints
correctly represent the set of feasible solutions. However, the redundant constraints provide the solver with
further information specific to this problem, significantly improving the efficiency of domain propagation.
Redundant constraints are a core fixture of CLP models. They can determine whether a model will linger and
be unsolvable for real data or will produce instant results.

The idea behind the redundant constraint in this model is the following realization: if the workstation for
option j has capacity r out of s, then at most r cars in the sequence .n � s C 1/; : : : ; n can have option j,
where n is the total number of cars. Consequently, at least nj � r cars in the sequence 1; : : : ; n � s must
have option j, where nj is the number of cars that have option j. Generalizing this further, at least nj � k � r

cars in the sequence 1; : : : ; .n � k � s/ must have option j, k D 1; : : : ; bn=sc.
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data class_data;
input class cars_cls;
datalines;

1 1
2 1
3 2
4 2
5 2
6 2
;

data option_data;
input option max blSz class1-class6;
datalines;

1 1 2 1 0 0 0 1 1
2 2 3 0 0 1 1 0 1
3 1 3 1 0 0 0 1 0
4 2 5 1 1 0 1 0 0
5 1 5 0 0 1 0 0 0
;

%macro car_sequencing(outdata);
proc optmodel;

set CLASSES;
num nClasses = card(CLASSES);
num cars_cls {CLASSES};
read data class_data into CLASSES=[class] cars_cls;

set OPTIONS;
num max {OPTIONS};
num blSz {OPTIONS};
num list {OPTIONS, CLASSES};
num cars_opt {i in OPTIONS} = sum {k in CLASSES} cars_cls[k] * list[i,k];
read data option_data into OPTIONS=[option] max blSz

{k in CLASSES} <list[option,k]=col('class'||k)>;

num nCars = sum {k in CLASSES} cars_cls[k];
set SLOTS = 1..nCars;

/* Declare Variables */
/* Slot variables: S[i] - class of car assigned to Slot i */
var S {SLOTS} integer >= 1 <= nClasses;

/* Option variables: O[i,j]
- indicates if class assigned to Slot i needs Option j */
var O {SLOTS, OPTIONS} binary;

/* Capacity Constraints: for each option j */
/* Installed in at most max[j] cars out of every sequence of blSz[j] cars */
con CapacityCon {j in OPTIONS, i in 0..(nCars-blSz[j])}:

sum {k in 1..blSz[j]} O[i+k,j] <= max[j];
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/* Demand Constraints: for each class k */
/* Exactly cars_cls[k] cars */
con MeetDemandCon:

gcc(S, setof{k in CLASSES} <k,cars_cls[k],cars_cls[k]>);

/* Element Constraints: For each slot i and each option j */
/* relate the slot variable to the option variables. */
/* O[i,j] = list[j,S[i]] */
con OptionsAtSlotCon {i in SLOTS, j in OPTIONS}:

element(S[i], {k in CLASSES} list[j,k], O[i,j]);

/* Redundant Constraints to improve efficiency - for every */
/* option j. */
/* At most max[j] out of every sequence of blSz[j] cars */
/* requires option j. */
/* All the other slots contain at least cars_opt[j] - max[j]*/
/* cars with option j */
con BoundRemainingCon {j in OPTIONS, i in 1..(nCars/blSz[j])}:

sum {k in 1..(nCars-i*blSz[j])} O[k,j] >= cars_opt[j] - i * max[j];

solve with CLP / varselect=minrmaxc findall;

/* Replicate typical PROC CLP output from PROC OPTMODEL arrays */
create data &outdata.(drop=sol) from [sol]=(1.._NSOL_)

{i in SLOTS} <col('S_'||i)=S[i].sol[sol]>
{i in SLOTS, j in OPTIONS} <col('O_'||i||'_'||j)=O[i,j].sol[sol]>;

quit;
%mend;
%car_sequencing(sequence_out);
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This problem has six solutions, as shown in Output 6.7.1.

Output 6.7.1 Car Sequencing
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Example 6.8: Balanced Incomplete Block Design
Balanced incomplete block design (BIBD) generation is a standard combinatorial problem from design theory.
The concept was originally developed in the design of statistical experiments; applications have expanded to
other fields, such as coding theory, network reliability, and cryptography. A BIBD is an arrangement of v
distinct objects into b blocks such that the following conditions are met:

• Each block contains exactly k distinct objects.

• Each object occurs in exactly r different blocks.

• Every two distinct objects occur together in exactly � blocks.

A BIBD is therefore specified by its parameters .v; b; r; k; �/. It can be proved that when a BIBD exists, its
parameters must satisfy the following conditions:

• rv D bk

• �.v � 1/ D r.k � 1/

• b � v

The preceding conditions are not sufficient to guarantee the existence of a BIBD (Prestwich 2001). For
example, the parameters .15; 21; 7; 5; 2/ satisfy the preceding conditions, but a BIBD that has these parameters
does not exist. Computational methods of BIBD generation usually suffer from combinatorial explosion, in
part because of the large number of symmetries: for any solution, any two objects or blocks can be exchanged
to obtain another solution.

This example demonstrates how to express a BIBD problem as a CSP and how to use lexicographic ordering
constraints to break symmetries. The most direct CSP model for BIBD, as described in Meseguer and Torras
(2001), represents a BIBD as a v � b matrix X. Each matrix entry is a Boolean decision variable Xi;c that
satisfies Xi;c D 1 if and only if block c contains object i. The condition that each object occurs in exactly r
blocks (or, equivalently, that there are r 1s per row) can be expressed as v linear constraints:

bX
cD1

Xi;c D r for i D 1; : : : ; v

Alternatively, you can use global cardinality constraints to ensure that there are exactly b � r 0s and r 1s in
Xi;1, . . . , Xi;b for each object i:

gcc.Xi;1; : : : ; Xi;b/ D ..0; 0; b � r/.1; 0; r// for i D 1; : : : ; v

Similarly, you can use the following constraints to specify the condition that each block contain exactly k
objects (there are k 1s per column):

gcc.X1;c ; : : : ; Xv;c/ D ..0; 0; v � k/.1; 0; k// for c D 1; : : : ; b

To enforce the final condition that every two distinct objects occur together in exactly � blocks (equivalently,
that the scalar product of every pair of rows equal �), you can introduce the auxiliary variables Pi;j;c for
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every i < j , which indicate whether objects i and j both occur in block c. The following reify constraint
ensures that Pi;j;c D 1 if and only if block c contains both objects i and j:

reifyPi;j;c W .Xi;c CXj;c D 2/

The following constraints ensure that the final condition holds:

gcc.Pi;j;1; : : : ; Pi;j;b/ D ..0; 0; b � �/.1; 0; �// for i D 1; : : : ; v � 1 and j D i C 1; : : : ; v

The objects and the blocks are interchangeable, so the matrix X has total row symmetry and total column
symmetry. Because of the constraints on the rows, no pair of rows can be equal unless r D �. To break the
row symmetry, you can impose strict lexicographic ordering on the rows of X as follows:

.Xi;1; : : : ; Xi;b/ <lex .Xi�1;1; : : : ; Xi�1;b/ for i D 2; : : : ; v

To break the column symmetry, you can impose lexicographic ordering on the columns of X as follows:

.X1;c ; : : : ; Xv;c/ �lex .X1;c�1; : : : ; Xv;c�1/ for c D 2; : : : ; b

The following SAS macro incorporates all the preceding constraints. For the specified parameters
.v; b; r; k; �/, the macro either finds BIBDs or proves that a BIBD does not exist.

%macro bibd(v, b, r, k, lambda, out=bibdout);
/* Arrange v objects into b blocks such that:

(i) each object occurs in exactly r blocks,
(ii) each block contains exactly k objects,
(iii) every pair of objects occur together in exactly lambda blocks.

Equivalently, create a binary matrix with v rows and b columns,
with r 1s per row, k 1s per column,
and scalar product lambda between any pair of distinct rows.

*/

/* Check necessary conditions */
%if (%eval(&r * &v) ne %eval(&b * &k)) or

(%eval(&lambda * (&v - 1)) ne %eval(&r * (&k - 1))) or
(&v > &b) %then %do;
%put BIBD necessary conditions are not met.;
%goto EXIT;

%end;

proc optmodel;
num v = &v;
num b = &b;
num r = &r;
num k = &k;
num lambda = &lambda;
set OBJECTS = 1..v;
set BLOCKS = 1..b;

/* Decision variable X[i,c] = 1 iff object i occurs in block c. */
var X {OBJECTS, BLOCKS} binary;
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/* Mandatory constraints: */
/* (i) Each object occurs in exactly r blocks. */
con Exactly_r_blocks {i in OBJECTS}:

gcc({c in BLOCKS} X[i,c], {<0,0,b-r>,<1,0,r>});

/* (ii) Each block contains exactly k objects. */
con Exactly_k_objects {c in BLOCKS}:

gcc({i in OBJECTS} X[i,c], {<0,0,v-k>,<1,0,k>});

/* (iii) Every pair of objects occurs in exactly lambda blocks. */
set PAIRS = {i in OBJECTS, j in OBJECTS: i < j};
/* auxiliary variable P[i,j,c] = 1 iff both i and j occur in c */
var P {PAIRS, BLOCKS} binary;
con Pairs_reify {<i,j> in PAIRS, c in BLOCKS}:

reify(P[i,j,c], X[i,c] + X[j,c] = 2);
con Pairs_gcc {<i,j> in PAIRS}:

gcc({c in BLOCKS} P[i,j,c], {<0,0,b-lambda>,<1,0,lambda>});

/* symmetry-breaking constraints: */
/* Break row symmetry via lexicographic ordering constraints. */
con Symmetry_i {i in OBJECTS diff {1}}:

lexico({c in BLOCKS} X[i,c] < {c in BLOCKS} X[i-1,c]);

/* Break column symmetry via lexicographic ordering constraints. */
con Symmetry_c {c in BLOCKS diff {1}}:

lexico({i in OBJECTS} X[i,c] <= {i in OBJECTS} X[i,c-1]);

solve with CLP / varselect=FIFO;
create data &out from

{i in OBJECTS, c in BLOCKS} <col('X'||i||'_'||c)=X[i,c]>;
quit;
%put &_oroptmodel_;

%EXIT:
%mend bibd;

The following statement invokes the macro to find a BIBD design for the parameters .15; 15; 7; 7; 3/:

%bibd(15,15,7,7,3);
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The output is displayed in Output 6.8.1.

Output 6.8.1 Balanced Incomplete Block Design for (15,15,7,7,3)

Balanced Incomplete Block Design Problem
(15, 15, 7, 7, 3)

Balanced Incomplete Block Design Problem
(15, 15, 7, 7, 3)

Obs Block1 Block2 Block3 Block4 Block5 Block6 Block7 Block8 Block9 Block10 Block11

1 1 1 1 1 1 1 1 0 0 0 0

2 1 1 1 0 0 0 0 1 1 1 1

3 1 1 0 1 0 0 0 1 0 0 0

4 1 0 1 0 1 0 0 0 1 0 0

5 1 0 0 1 0 1 0 0 0 1 1

6 1 0 0 0 1 0 1 0 0 1 1

7 1 0 0 0 0 1 1 1 1 0 0

8 0 1 1 0 0 0 1 0 0 1 0

9 0 1 0 1 0 0 1 0 1 0 1

10 0 1 0 0 1 1 0 1 0 1 0

11 0 1 0 0 1 1 0 0 1 0 1

12 0 0 1 1 1 0 0 1 0 0 1

13 0 0 1 1 0 1 0 0 1 1 0

14 0 0 1 0 0 1 1 1 0 0 1

15 0 0 0 1 1 0 1 1 1 1 0

Obs Block12 Block13 Block14 Block15

1 0 0 0 0

2 0 0 0 0

3 1 1 1 0

4 1 1 0 1

5 1 0 0 1

6 0 1 1 0

7 0 0 1 1

8 1 0 1 1

9 0 1 0 1

10 0 1 0 1

11 1 0 1 0

12 0 0 1 1

13 0 1 1 0

14 1 1 0 0

15 1 0 0 0
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Example 6.9: Progressive Party Problem
This example demonstrates the use of the pack constraint to solve an instance of the progressive party problem
(Smith et al. 1996). In the original progressive party problem, a number of yacht crews and their boats
congregate at a yachting rally. In order for each crew to socialize with as many other crews as possible, some
of the boats are selected to serve as “host boats” for six rounds of parties. The crews of the host boats stay
with their boats for all six rounds. The crews of the remaining boats, called “guest crews,” are assigned to
visit a different host boat in each round.

Given the number of boats at the rally, the capacity of each boat, and the size of each crew, the objective
of the original problem is to assign all the guest crews to host boats for each of the six rounds, using the
minimum number of host boats. The partitioning of crews into guests and hosts is fixed throughout all rounds.
No two crews should meet more than once. The assignments are constrained by the spare capacities (total
capacity minus crew size) of the host boats and the crew sizes of the guest boats. Some boats cannot be hosts
(zero spare capacity), and other boats must be hosts.

In this instance of the problem, the designation of the minimum requirement of 13 hosts is assumed (boats 1
through 12 and 14). The formulation solves up to eight rounds, but only two rounds are scheduled for this
example. The total capacities and crew sizes of the boats are shown in Output 6.9.1.
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Output 6.9.1 Progressive Party Problem Input

Progressive Party Problem InputProgressive Party Problem Input

boatnum capacity crewsize

1 6 2

2 8 2

3 12 2

4 12 2

5 12 4

6 12 4

7 12 4

8 10 1

9 10 2

10 10 2

11 10 2

12 10 3

13 8 4

14 8 2

15 8 3

16 12 6

17 8 2

18 8 2

19 8 4

20 8 2

21 8 4

22 8 5

23 7 4

24 7 4

25 7 2

26 7 2

27 7 4

28 7 5

29 6 2

30 6 4

31 6 2

32 6 2

33 6 2

34 6 2

35 6 2

36 6 2

37 6 4

38 6 5

39 9 7

40 0 2

41 0 3

42 0 4
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The following statements and DATA steps process the data and designate host boats:

data hostability;
set capacities;
spareCapacity = capacity - crewsize;

run;

data hosts guests;
set hostability;
if (boatnum <= 12 or boatnum eq 14) then do;

output hosts;
end;
else do;

output guests;
end;

run;

/* sort so guest boats with larger crews appear first */
proc sort data=guests;

by descending crewsize;
run;

data capacities;
format boatnum capacity 2.;
set hosts guests;
seqno = _n_;

run;

To model the progressive party problem for the CLP solver, first define the following sets of variables:

• Item variables xit contain the host boat number for the assignment of guest boat i in round t.

• Load variables Lht contain the load of host boat h in round t.

• Variable mijt are binary variables that take a value of 1 if and only if guest boats i and j are assigned to
the same host boat in round t.

Next, describe the set of constraints that are used in the model:

• All-different constraints ensure that a guest boat is not assigned to the same host boat in different
rounds.

• Reify constraints regulate the values that are assigned to the aforementioned indicator variables mijt .

• The reified indicator variables appear in linear constraints to enforce the requirement to meet no more
than once.

• One pack constraint per round maintains the capacity limits of the host boats.

• Finally, a symmetry-breaking linear constraint orders the host boat assignments for the highest-
numbered guest boat across rounds.
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The following statements call PROC OPTMODEL to define the variables, specify the constraints, and solve
the problem:

%let rounds=2;
%let numhosts=13;
proc optmodel;

num numrounds = &rounds;
set ROUNDS = 1..numrounds;
num numhosts = &numhosts;
set HOSTS = 1..numhosts;
set BOATS;
num numboats = card(BOATS);
num capacity {BOATS};
num crewsize {BOATS};
num spareCapacity{hi in HOSTS} = capacity[hi] - crewsize[hi];
/* Use the descending crew order for guests (seqno)

rather than the actual boat id (boatnum)
to help the performance of the PACK predicate. */

read data capacities into BOATS=[seqno] capacity crewsize;

/* Assume that the first numhosts boats are hosts,
and process each round in turn.
X is the host assigned to non-host i for round t. */

var X {numhosts+1..numboats, ROUNDS} integer >= 1 <= numhosts;
/* The load of the host boat. */
var L {hi in HOSTS, ROUNDS} integer >= 0 <= spareCapacity[hi];

/* Assign different hosts each round. */
con AlldiffCon {i in numhosts+1..numboats}:

alldiff({t in ROUNDS} X[i,t]);

/* Don't assign two non-hosts to the same host in round t. */
var M {i in numhosts+1..numboats-1, j in i+1..numboats, t in ROUNDS} binary;
con ReifyCon {i in numhosts+1..numboats-1, j in i+1..numboats, t in ROUNDS}:

reify(M[i,j,t], X[i,t] = X[j,t]);
con Assign {i in numhosts+1..numboats-1, j in i+1..numboats}:

sum {t in ROUNDS} M[i,j,t] <= 1;

/* Honor capacities. */
con PackCon {t in ROUNDS}:

pack(
{i in numhosts+1..numboats} X[i,t],
{i in numhosts+1..numboats} crewsize[i],
{h in HOSTS} L[h,t]

);

/* Break symmetries. */
con SymmetryCon {t in 1..numrounds-1}:

X[numboats,t] < X[numboats,t+1];

solve with CLP / varselect=FIFO;
quit;
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The two charts in Output 6.9.2 show the boat assignments for the first two rounds. The horizontal axis shows
the load for each host boat. Slack capacity is highlighted in red.

Output 6.9.2 Gantt Chart: Boat Schedule by Round
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Output 6.9.2 continued
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The charts in Output 6.9.3 break down the assignments by boat number for selected boats.

Output 6.9.3 Gantt Chart: Host Boat Schedule by Round
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Output 6.9.3 continued
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