
SAS® Enterprise Miner™
High-Performance Data
Mining Procedures and
Macro Reference for SAS®

9.3

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2011. SAS® Enterprise Miner™ High-Performance Data Mining
Procedures and Macro Reference for SAS® 9.3. Cary, NC: SAS Institute Inc.

SAS® Enterprise Miner™ High-Performance Data Mining Procedures and Macro Reference for SAS® 9.3

Copyright © 2011, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hardcopy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is
subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227–19, Commercial Computer Software-Restricted Rights
(June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st electronic book, December 2011

SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For
more information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at
support.sas.com/publishing or call 1-800-727-3228.

 

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

http://support.sas.com/publishing

Contents

PART 1 High-Performance Procedures 1

Chapter 1 • HP4SCORE Procedure . 3
Overview: HP4SCORE Procedure . 3
Syntax: HP4SCORE Procedure . 3

Chapter 2 • HPBIN Procedure . 9
Overview: HPBIN Procedure . 9
Syntax: HPBIN Procedure . 13
Examples: HPBIN Procedure . 18

Chapter 3 • HPDECIDE Procedure . 23
Overview: HPDECIDE Procedure . 23
Syntax: HPDECIDE Procedure . 23
Example: The HPDECIDE Procedure . 30

Chapter 4 • HPIMP Procedure . 33
Overview: HPIMP Procedure . 33
Syntax: HPIMP Procedure . 33
Example: The HPIMP Procedure . 38

PART 2 High-Performance Macros 41

Chapter 5 • The %EM_new_assess Macro . 43
Overview . 43
Syntax . 44
Details . 45
Example: The %EM_new_assess Macro . 51

Chapter 6 • The %HPDM_create_scorecode_bin Macro . 53
Overview . 53
Syntax . 54
Example: The %HPDM_create_scorecode_bin Macro . 54

Chapter 7 • The %HPDM_create_scorecode_logistic Macro . 57
Overview . 57
Syntax . 57
Example: The %HPDM_create_scorecode_logistic Macro . 58

Chapter 8 • The %HPDM_create_scorecode_neural Macro . 61
Overview . 61
Syntax . 62
Example: The %HPDM_create_scorecode_neural Macro . 62

Chapter 9 • The %HPDM_create_scorecode_reg Macro . 65
Overview . 65
Syntax . 65

Example: The %HPDM_create_scorecode_reg Macro . 66

PART 3 Example High-Performance Procedure and Macro
Code 69

Chapter 10 • Home Equity Loan Default Model . 71
Overview . 71
Example Program Flow . 71
Example Code . 73
SAMPSIO.HMEQ Data Set Map . 78

iv Contents

Part 1

High-Performance Procedures

Chapter 1
HP4SCORE Procedure . 3

Chapter 2
HPBIN Procedure . 9

Chapter 3
HPDECIDE Procedure . 23

Chapter 4
HPIMP Procedure . 33

1

2

Chapter 1

HP4SCORE Procedure

Overview: HP4SCORE Procedure . 3

Syntax: HP4SCORE Procedure . 3
PROC HP4SCORE Statement . 3
ID Statement . 4
PERFORMANCE Statement . 4
SAVE Statement . 6
SCORE Statement . 7

Overview: HP4SCORE Procedure
The HP4SCORE procedure scores a previously trained random forest model produced
by the HPFOREST procedure.

Syntax: HP4SCORE Procedure
PROC HP4SCORE DATA=<libref.>SAS-data-set;

ID variables-list;
PERFORMANCE <performance-options>;
SAVE FILE=file-name;
SCORE FILE=file-name OUT=SAS-data-set;

PROC HP4SCORE Statement
The PROC HP4SCORE statement invokes the procedure.

Syntax
PROC HP4SCORE DATA=<libref.>SAS-data-set;

3

Details

Required Arguments
DATA=<libref.>SAS-data-set

Specifies the input data set that is used by the HPFOREST procedure to generate the
random forest model.

Note: Due to restrictions on the length of variable names, it is possible that unique
names are not generated by HPFOREST in the OUT= data set. The current
versions of the HPFOREST procedure and the HP4SCORE procedure do not
check for unique variable names and will terminate with an error if all variable
names are not unique.

ID Statement
The ID statement lists one or more variables from the input data set that are transferred to the output data
sets. The ID statement accepts numeric and character variables. For more information about the ID
statement, see “Shared Concepts and Topics” in the SAS High-Performance Analytics User’s Guide.

Syntax
ID variables-list;

Details

Required Arguments
variables-list

Specifies the variables that you want to transfer from the input data set to the output
data sets.

PERFORMANCE Statement
The PERFORMANCE statement defines performance parameters for multi-threaded and distributed
computing, communicates variable information about the distributed computing environment, and requests
detailed results about the performance characteristics of the HP4SCORE procedure. With the
PERFORMANCE statement, you can control whether the HP4SCORE procedure executes in symmetric
multiprocessing or massively parallel mode. For more information about the PERFORMANCE statement,
see “Shared Concepts and Topics” in the SAS High-Performance Analytics User’s Guide.

Syntax
PERFORMANCE <performance-options>;

4 Chapter 1 • HP4SCORE Procedure

Details

Optional Arguments
COMMIT=n

Specifies the minimum number of observations that must transfer from the client to
the appliance before the SAS log is updated. For example, if you specify
COMMIT=5000, then every time the number of observations sent exceeds an integer
multiple of 5000, a log message is produced. This message indicates the actual
number of observations distributed, not the COMMIT= value that triggered the
message.

CPUCOUNT= ACTUAL | number
Specifies how many processors that PROC HP4SCORE assumes are available on
each host in the computing environment. Valid values for number are integers
between 1 and 256, inclusive. Setting CPUCOUNT= to a value greater than the
actual number of available CPUs can result in reduced performance.

Specify CPUCOUNT=ACTUAL to set CPUCOUNT= to the number of processors
physically available. This number can be less than the physical number of CPUs if
the SAS process has been restricted by system administration tools.

This option overrides the CPUCOUNT= SAS system option.

If PROC HP4SCORE executes in SMP mode, then this option refers to the client
machine of the SAS session. If PROC HP4SCORE executes in MPP mode, then this
option applies the nodes on the appliance.

DATASERVER=“name”
Specifies the server name on Teradata systems as defined through the hosts file and
as used in the LIBNAME statement for Teradata. For example, if the hosts file
defines myservercop1 33.44.55.66 as the server for Teradata, then a
LIBNAME statement would be as follows:

libname TDLIB terdata server=myserver user= password= database= ;

To induce PROC HP4SCORE to run alongside the Teradata server, specify the
following performance statement:

performance dataserver="myserver";

DETAILS
Requests a table that shows a timing breakdown of the procedure steps.

TIMEOUT=s
Specifies the length of time, in seconds, that PROC HP4SCORE should wait for a
connection to the appliance and should wait before establishing a connection back to
the client. The default value for s is 120 seconds. If jobs are submitted to the
appliance through workload management tools that might suspend access to the
appliance for a longer period, you might want to increase the time-out value.

HOST=“name”
GRIDHOST=“name”

Specifies the name of the appliance host. The HOST= option overrides the value of
the GRIDHOST environment variable.

INSTALL=“name”
INSTALLOC=“name”

Specifies the directory where the SAS High-Performance Analytics shared libraries
are installed on the appliance. Specifying the INSTALL= option overrides the
GRIDINSTALLLOC environment variable.

PERFORMANCE Statement 5

NODES=n
NNODES=n

Specifies the number of nodes in the distributed computing environment, provided
that the data is not processed alongside the database. Specify NODES=0 to indicate
that you want to process the data in SMP mode on the client machine. If the input
data is not alongside the database, this is the default setting. The HP4SCORE
procedure then performs multi-threaded analysis on the client.

If the data is not read alongside the database, the NODES= option specifies the
number of nodes on the appliance that are involved in the analysis.

If the number of nodes can be modified by the application, you can specify a
NODES= option where n exceeds the number of physical nodes on the appliance.
The SAS High-Performance Analytics software then over-subscribes the nodes and
associates nodes with multiple units of work. For example, on a system with 16
appliance nodes, the following statement would over-subscribe the system by a
factor of 3:

performance nodes=48 host="hpa.sas.com";

Generally, it is not advisable to over-subscribe the system because the analytic code
is optimized for a certain level of multi-threading on the nodes that depend on the
CPU count.

If the data is read alongside the distributed database on the appliance, specifying a
nonzero value for the NODES= option has no effect. The number of units of work in
the distributed computing environment is then determined by the distribution of the
data and cannot be altered.

NTHREADS=n
Specifies the number of threads used for analytic computations and overrides the
SAS system option THREADS | NOTHREADS. If you do not specify the
NTHREADS= option, then the number of threads is determined based on the number
of CPUs on the host machine where the analytic computations execute.

By default, SAS High-Performance Analytics procedures execute in multiple
concurrent threads, unless you disable this behavior with the NOTHREADS system
option or you specify NTHREADS=1 to force single-threaded execution. The value
specified here must not exceed 256.

Note: The SAS system option THREADS | NOTHREADS applies to the current
machine where the SAS High-Performance Analytics procedures execute. This
option does not apply to the compute nodes in a distributed environment.

SAVE Statement

Syntax
SAVE FILE=file-name;

6 Chapter 1 • HP4SCORE Procedure

Details

Required Argument
FILE=file-name

Specifies the location where PROC HP4SCORE will save the scoring model. This
version of PROC HP4SCORE requires a fully formed, physical path to the filename.
File references are not supported.

SCORE Statement
The SCORE statement identifies the model created by the HPFOREST procedure and outputs the scoring
information.

Syntax
SCORE FILE=file-name OUT=SAS-data-set;

Details

Required Arguments
FILE=file-name

Specifies the filename created by the FILE= argument in the HPFOREST procedure.
This version of PROC HP4SCORE requires a fully formed, physical path to the file
name. File references are not supported.

OUT=SAS-data-set
Specifies the output data set that contains scored model.

SCORE Statement 7

8 Chapter 1 • HP4SCORE Procedure

Chapter 2

HPBIN Procedure

Overview: HPBIN Procedure . 9
The HPBIN Procedure . 9
Features . 10
Bucket Binning . 10
Pseudo-Quantile Binning . 10
The Output Data Set . 12
Variable Mapping Table . 12
Performance Information . 12
ODS Tables . 13

Syntax: HPBIN Procedure . 13
PROC HPBIN Statement . 13
FREQ Statement . 14
ID Statement . 15
PERFORMANCE Statement . 15
VAR Statement . 17

Examples: HPBIN Procedure . 18
Example 1: Bucket Binning . 18
Example 2: Pseduo-Quantile Binning . 19

Overview: HPBIN Procedure

The HPBIN Procedure
Binning is a common step in the data preparation stage of the model building process.
You can use binning to classify missing variables, reduce the impact of outliers, or
generate multiple effects. The generated effects are useful in modeling nonlinear
processes.

The HPBIN procedure conducts high-performance binning that uses either bucket
binning or pseudo-quantile binning. Like other high-performance procedures, the
HPBIN procedure can read and write data in distributed form. Also, PROC HPBIN can
perform analyses in parallel in either symmetric multiprocessing (SMP) mode or
massively parallel processing (MPP) mode.

9

Features
The HPBIN Procedure has the following features:

• performs analysis on a massively parallel SAS high-performance appliance

• reads input data in parallel and writes output data in parallel when the data source is
on the appliance database

• is highly multithreaded during all phases of analytic execution

• provides a bucket (or equal length) binning method

• provides a pseudo-quantile binning method, which is similar to quantile binning

• provides a mapping table for the selected binning method

• provides different output tables according to user preferences.

Bucket Binning
Those familiar with SAS Enterprise Miner should recall a special variable named
AOV16, which is used heavily during the data preparation and variable selection
stages. This variable is a class variable with maximum level 16, derived from an interval
variable that you want to bin. Bucket binning creates equal length bins and assigns the
data to one of these bins. The bucket lengths of the equal length bins are calculated
according to (maximum — minimum)/(number of valid observations).

Pseudo-Quantile Binning
Quantile binning requires a particular data sorting, and the sorting process typically
consumes a significant amount of CPU time and memory usage. When the input data set
is larger than the available memory, it is nearly impossible to sort the data in any amount
of time. For distributed computing, data communications overhead increases the data
sorting challenge.

To address these issues, the HPBIN procedure contains a novel approach to quantile
binning, named pseudo-quantile binning. The pseudo-quantile method is very efficient,
and the results mimic those of the quantile binning method. For example, consider the
code below:

data bindata;
 do i=1 to 1000;
 x=rannorm(1);
 output;
 end;
run;

proc rank data=bindata out=rankout group=8;
 var x;
 ranks rank_x;
run;

proc univariate data=rankout plot;
 var rank_x;
 histogram;
run;

10 Chapter 2 • HPBIN Procedure

This code creates a data set with 1000 observations, each generated by a random normal
distribution. The histogram for this data set is shown below.

The pseudo-quantile method used by PROC HPBIN achieves similar results in far less
computation time. In this case, the time complexity is C*O(n), where C is a constant and
n is the number of observations. When the algorithm runs on the grid, the total
computation time is much less. For example, if a cluster has 32 nodes and each node has
24 shared memory CPUs, then the time complexity is (C*O(n))/(32*24).

The code below bins the data using the PSEUDO_QUANTILE option. The histogram
for the data is given below the code. Note that it is similar to the histogram shown above.

proc hpbin data=bindata output=binout numbin=8 pseudo_quantile;
 var x;
run;

proc univariate data=binout plot;
 var bin_x;
 histogram;
run;

Overview: HPBIN Procedure 11

The Output Data Set
The output data set that PROC HPBIN generates varies based on the statements and
options that you include in your PROC HPBIN call. By default, the output data set
includes the original input data and the binning variables. However, you can alter this
data set with an ID statement, the REPLACE option, or certain other conditions. The
following conditions affect the information in the output data set:

• if PROC HPBIN was run in solo mode

• if the output is transferred back to the client machine

• if the output is created on the grid alongside a database

• if NOPRINT is specified, suppressing all ODS output

Note: If the input variable value is missing, then the binning output level value is 0.

Variable Mapping Table
By default, the variable mapping table is provided in the PROC HPBIN output. This
table provides the level mapping for the input variables. The level starts at 1 and
continues to the value of NUMBINS. In the mapping table, a missing value for the lower
bound indicates negative infinity, and a missing value for the upper bound indicates
positive infinity.

Note that the final binning level might be less than NUMBINS, if the input data is small
or the binning variable is discrete. In this case, a warning message is printed.

Performance Information
The Performance Information table is produced by default, and displays information
about the grid host for distributed execution. Moreover, this table specifies if the

12 Chapter 2 • HPBIN Procedure

procedure was executed in client mode, distributed mode, or alongside-the-database
mode. The number of compute nodes and threads are also provided, depending on the
environment.

ODS Tables
Each table created by the HPBIN procedure has a name that is associated with it. You
must use this name to refer to each table when you use ODS statements. These tables are
described below.

Table Name Description
Required Statements or
Arguments

hpbininfo This table provides basic
binning information,
including the method, number
of bins, number of binning
variables, and number of
observations.

This table requires the PROC
HPBIN statement, options,
and observation count.

mappingTable This table provides the level
mapping table, calculated
based on the binning option
specified.

This table requires you to
specify either BUCKET or
PSEUDO-QUANTILE in the
PROC HPBIN statement.

PerformanceInfo This table contains
information about the high-
performance computing
environment.

This table requires the
OUTPUT= argument.

Syntax: HPBIN Procedure
Requirement: The VAR statement is required for PROC HPBIN.

PROC HPBIN DATA=SAS-data-set <options>;
FREQ variable;
ID variables-list;
PERFORMANCE <performance-options;>
VAR variables-list;

RUN;

PROC HPBIN Statement
The PROC HBPIN statement invokes the procedure.

Syntax
PROC HPBIN DATA=data-set-name <options>;

PROC HPBIN Statement 13

Details

Required Arguments
DATA=<libref.>SAS-data-set

Specifies the data set that is used in the binning process. By default, the most
recently created data set is used. If the data is already distributed, the procedure reads
the data alongside the distributed database.

Optional Arguments
NOPRINT

Suppresses the generation of ODS output.

NUMBIN=n
Specifies the number of bins that are created. The value of n must be an integer
between 2 and 1000, inclusive. The default value is 16.

OUTPUT=SAS-data-set
Specifies the binning output data set. By default, this data set contains the original
data and the extra binning data.

REPLACE
Replaces the specified variables in the original data set with the binning variables. If
the ID statement is present, the REPLACE option is ignored, because the output data
set contains only the ID and binning variables.

Options
BUCKET | PSEUDO_QUANTILE

Specify BUCKET to apply equal-length binning. You can specify the binning
method after you have specified your arguments. The PSEUDO_QUANTILE
method approximates the results of quantile binning. The default binning method is
BINNING.

FREQ Statement
The variable in the FREQ statement identifies a numeric variable in the input data set that contains the
frequency of occurrence for each observation.

Note: For bucket binning, the FREQ statement has no effect.

Syntax
FREQ variable;

Details

Required Argument
variable

Specify the variable in the input data set that contains the frequency for each
observation. The HPBIN procedure treats each observation as if it appeared f times,
where f is the value of the frequency variable for that observation. If the frequency

14 Chapter 2 • HPBIN Procedure

value is not an integer, then it is truncated to an integer. If the frequency value is less
than 1 (or missing), the observation is not used in the analysis. When the FREQ
statement is not specified, each observation is assigned a frequency of 1.

ID Statement
The ID statement lists one or more variables from the input data set that are transferred to the output data
sets. The ID statement accepts numeric and character variables. If an ID statement is used, the ID
variables and the binning output variables are included in the output data set. For more information about
the ID statement, see “Shared Concepts and Topics” in the SAS High-Performance Analytics User’s Guide.

Note: The ID statement is optional.

Syntax
ID variables-list

Details

Required Argument
variables-list

Use the ID statement to specify the variables that you want to transfer from the input
data set to the output data sets.

PERFORMANCE Statement
The PERFORMANCE statement defines performance parameters for multi-threaded and distributed
computing, communicates variable information about the distributed computing environment, and requests
detailed results about the performance characteristics of the HPBIN procedure. With the PERFORMANCE
statement, you can control whether the HPBIN procedure executes in symmetric multiprocessing mode or
massively parallel mode. For more information about the PERFORMANCE statement, see “Shared
Concepts and Topics” in the SAS High-Performance Analytics User’s Guide.

Syntax
PERFORMANCE <performance-options>;

Details

Optional Arguments
COMMIT=n

Specifies the minimum number of observations transferred from the client to the
appliance necessary to update the SAS Log. For example, if you specify
COMMIT=5000, then every time the number of observations sent exceeds an integer
multiple of 5000 a log message is produced. This message indicates the actual
number of observations distributed, not the COMMIT= value that triggered the
message.

PERFORMANCE Statement 15

CPUCOUNT= ACTUAL | number
Specifies how many processors PROC HPBIN assumes are available on each host in
the computing environment. Valid values for number are integers between 1 and
256, inclusive. Setting CPUCOUNT= to a value greater than the actual number of
available CPUs might results in reduced performance.

Specify CPUCOUNT=ACTUAL to set CPUCOUNT= to the number of processors
physically available. This number can be less than the physical number of CPUs if
the SAS process has been restricted by system administration tools.

This option overrides the CPUCOUNT= SAS system option.

If PROC HPBIN executes in SMP mode, then this option refers to the client machine
of the SAS session. If PROC HPBIN executes in MPP mode, then this option applies
the nodes on the appliance.

DATASERVER=“name”
Specifies the server name on Teradata systems as defined through the hosts file and
as used in the LIBNAME statement for Teradata. For example, if the hosts file
defines myservercop1 33.44.55.66 as the server for Teradata, then a
LIBNAME statement would be as follows:

libname TDLIB terdata server=myserver user= password= database= ;

To induce PROC HPBIN to run alongside the Teradata server, specify the following
performance statement:

performance dataserver="myserver";

DETAILS
Requests a table that shows a timing breakdown of the procedure steps.

TIMEOUT=s
Specifies the length of time, in seconds, that PROC HPBIN should wait for a
connection to the appliance and to establish a connection back to the client. The
default value for s is 120 seconds. If jobs are submitted to the appliance through
workload management tools that might suspend access to the appliance for a longer
period, you might want to increase the time-out value.

HOST=“name”
GRIDHOST=“name”

Specifies the name of the appliance host. The HOST= option overrides the value of
the GRIDHOST environment variable.

INSTALL=“name”
INSTALLOC=“name”

Specifies the directory where the High-Performance Analytics shared libraries are
installed on the appliance. Specifying the INSTALL= option overrides the
GRIDINSTALLLOC environment variable.

NODES=n
NNODES=n

Specifies the number of nodes in the distributed computing environment, provided
that the data is not processed alongside the database. Specify NODES=0 to indicate
that you want to process the data in SMP mode on the client machine. If the input
data is not alongside the database, this is the default setting. The HPBIN procedure
then performs multithreaded analysis on the client.

If the data is not read alongside the database, the NODES= option specifies the
number of nodes on the appliance that are involved in the analysis.

If the number of nodes can be modified by the application, you can specify a
NODES= option where n exceeds the number of physical nodes on the appliance.

16 Chapter 2 • HPBIN Procedure

The High-Performance Analytics software then over-subscribes the nodes and
associates nodes with multiple units of work. For example, on a system with 16
appliance nodes, the following statement would over-subscribe the system by a
factor of 3:

performance nodes=48 host="hpa.sas.com";

Generally, it is not advisable to over-subscribe the system because the analytic code
is optimized for a certain level of multithreading on the nodes that depend on the
CPU count.

If the data is read alongside the distributed database on the appliance, specifying a
nonzero value for the NODES= option has no effect. The number of units of work in
the distributed computing environment is then determined by the distribution of the
data and cannot be altered.

NTHREADS=n
Specifies the number of threads used for analytic computations and overrides the
SAS system option THREADS | NOTHREADS. If you do not specify the
NTHREADS= option, then the number of threads is determined based on the number
of CPUs on the host machine where the analytic computations execute.

By default, High-Performance Analytics procedures execute in multiple concurrent
threads, unless you disable this behavior with the NOTHREADS system option or
you specify NTHREADS=1 to force single-threaded execution. The value specified
here must not exceed 256.

Note: The SAS system option THREADS | NOTHREADS applies to the current
machine where the SAS High-Performance Analytics procedures execute. This
option does not apply to the compute nodes in a distributed environment.

VAR Statement
The VAR statement identifies which variables the HPBIN procedure will bin. PROC HPBIN does not
support duplicated variables, and the VAR statement terminates with an error if duplicated variables exist.

Requirement: The variables specified here must be interval variables. PROC HPBIN terminates
with an error if class variables are specified

Syntax
VAR variables-list;

Details

Required Arguments
variables-list

Lists the variables that the HPBIN procedure will bin. You cannot specify the same
variable more than once, or PROC HPBIN terminates in an error. If you specify a
variable in the VAR statement, then you cannot specify that variable in either the ID
or the FREQ statement.

VAR Statement 17

Examples: HPBIN Procedure

Example 1: Bucket Binning

Create the Data Set

This example creates a sample data set and applies the bucket binning method to
partition the data. First, you need to create the sample data set with the code below:

data ex12;
 length i 8;
 length cl1 $20;

 do i=1 to 1000;
 x1 = ranuni(1);
 x2 = 10*ranuni(2);
 x3 = 100*ranuni(3);
 x4 = 1000*ranuni(4);
 x5 = 5*ranuni(6);

 if x1 < 0.3 then do;
 cl1 = "East";
 end;
 else if x1 < 0.6 then do;
 cl1 = "West";
 end;
 else do;
 cl1 = "Middle";
 end;
 output;
 end;
run;

Run the HPBIN Procedure

Run the code below to bin the data set ex12.

proc hpbin data=ex12 output=out numbin=5 bucket;
 id x5;
 var x1-x3;
run;

The preceding code uses bucket binning on the variables x1, x2, and x3 to create 5 bins.
Also, x5 is passed to the output data set, because it is included in the ID statement. The
HPBIN Mapping Table, shown below, displays the variable assignments for each bin.

HPBIN Mapping Table
NAME BIN_NAME LB UB EM_BIN_LABEL BIN
x1 bin_x1 . 0.203283 x1 < 0.203283 1
x1 bin_x1 0.203283 0.402403 0.203283 <= x1 < 0.402403 2
x1 bin_x1 0.402403 0.601524 0.402403 <= x1 < 0.601524 3

18 Chapter 2 • HPBIN Procedure

x1 bin_x1 0.601524 0.800644 0.601524 <= x1 < 0.800644 4
x1 bin_x1 0.800644 . 0.800644 <= x1 5
x2 bin_x2 . 2.009399 x2 < 2.009399 1
x2 bin_x2 2.009399 3.995784 2.009399 <= x2 < 3.995784 2
x2 bin_x2 3.995784 5.982170 3.995784 <= x2 < 5.982170 3
x2 bin_x2 5.982170 7.968556 5.982170 <= x2 < 7.968556 4
x2 bin_x2 7.968556 . 7.968556 <= x2 5
x3 bin_x3 . 19.946486 x3 < 19.946486 1
x3 bin_x3 19.946486 39.865621 19.946486 <= x3 < 39.865621 2
x3 bin_x3 39.865621 59.784756 39.865621 <= x3 < 59.784756 3
x3 bin_x3 59.784756 79.703890 59.784756 <= x3 < 79.703890 4
x3 bin_x3 79.703890 . 79.703890 <= x3 5

Note that because you specified bucket binning, each bin is the same length.

Example 2: Pseduo-Quantile Binning

Binning in Soloist Mode

This example uses the HMEQ data set, available in the SAMPSIO library. Consider the
following code:

proc hpbin data=sampsio.hmeq pseudo_quantile;
 performance details;
 var loan mortdue;
 ods table mappingTable=binmap;
run;

This code bins the variables loan and mortdue into 16 bins. The Performance
Information table provides information about the host, Execute mode, nodes, and threads
used by the HPBIN procedure. The Binning Information table displays the method,
number of bins, number of variables, and number of observations used by PROC
HPBIN. Note in the following mapping table shown that these bins are not equal length.

The Binning output
Obs NAME BIN_NAME LB UB EM_BIN_LABEL BIN
1 LOAN bin_LOAN . 6339.20 LOAN < 6339.20 1
2 LOAN bin_LOAN 6339.20 8381.60 6339.20 <= LOAN < 8381.60 2
3 LOAN bin_LOAN 8381.60 9980.00 8381.60 <= LOAN < 9980.00 3
4 LOAN bin_LOAN 9980.00 11134 9980.00 <= LOAN < 11134.40 4
5 LOAN bin_LOAN 11134 12466 11134.40 <= LOAN < 12466.40 5
6 LOAN bin_LOAN 12466 13710 12466.40 <= LOAN < 13709.60 6
7 LOAN bin_LOAN 13710 15042 13709.60 <= LOAN < 15041.60 7
8 LOAN bin_LOAN 15042 16374 15041.60 <= LOAN < 16373.60 8
9 LOAN bin_LOAN 16374 17883 16373.60 <= LOAN < 17883.20 9
10 LOAN bin_LOAN 17883 19748 17883.20 <= LOAN < 19748.00 10
11 LOAN bin_LOAN 19748 21435 19748.00 <= LOAN < 21435.20 11
12 LOAN bin_LOAN 21435 23389 21435.20 <= LOAN < 23388.80 12
13 LOAN bin_LOAN 23389 25431 23388.80 <= LOAN < 25431.20 13
14 LOAN bin_LOAN 25431 28273 25431.20 <= LOAN < 28272.80 14
15 LOAN bin_LOAN 28273 36620 28272.80 <= LOAN < 36620.00 15
16 LOAN bin_LOAN 36620 . 36620.00 <= LOAN 16
17 MORTDUE bin_MORTDUE . 21142 MORTDUE < 21142.37 1
18 MORTDUE bin_MORTDUE 21142 31477 21142.37 <= MORTDUE < 31477.03 2
19 MORTDUE bin_MORTDUE 31477 40222 31477.03 <= MORTDUE < 40221.75 3
20 MORTDUE bin_MORTDUE 40222 46582 40221.75 <= MORTDUE < 46581.54 4

Example 2: Pseduo-Quantile Binning 19

21 MORTDUE bin_MORTDUE 46582 50954 46581.54 <= MORTDUE < 50953.90 5
22 MORTDUE bin_MORTDUE 50954 56121 50953.90 <= MORTDUE < 56121.23 6
23 MORTDUE bin_MORTDUE 56121 60494 56121.23 <= MORTDUE < 60493.58 7
24 MORTDUE bin_MORTDUE 60494 65263 60493.58 <= MORTDUE < 65263.43 8
25 MORTDUE bin_MORTDUE 65263 70828 65263.43 <= MORTDUE < 70828.25 9
26 MORTDUE bin_MORTDUE 70828 76791 70828.25 <= MORTDUE < 76790.55 10
27 MORTDUE bin_MORTDUE 76791 83150 76790.55 <= MORTDUE < 83150.34 11
28 MORTDUE bin_MORTDUE 83150 91498 83150.34 <= MORTDUE < 91497.57 12
29 MORTDUE bin_MORTDUE 91498 101435 91497.57 <= MORTDUE < 101434.75 13
30 MORTDUE bin_MORTDUE 101435 120117 101434.75 <= MORTDUE < 120116.63 14
31 MORTDUE bin_MORTDUE 120117 145556 120116.63 <= MORTDUE < 145555.80 15
32 MORTDUE bin_MORTDUE 145556 . 145555.80 <= MORTDUE 16

Note: Some of the values in the preceding table have been truncated to two decimal
places.

Binning on the Grid

For this example, you create a data set similar to that in Example 1: Bucket Binning on
page 18 . However, this data set is much larger. Consider the following code:

data ex12;
 length i 8;
 length cl1 $10;

 do i=1 to 1000000;
 x1 = ranuni(1);
 x2 = 10*ranuni(2);
 x3 = 100*ranuni(3);

 if x1 < 0.3 then do;
 cl1 = "East";
 end;
 else if x1 < 0.6 then do;
 cl1 = "West";
 end;
 else do;
 cl1 = "Middle";
 end;
 output;
 end;
run;

Note that this data set has 1,000,000 observations, compared to the 1,000 observations in
the previous example. Next, this data is binned on a grid with 100 nodes, each having 8
processors.

Note: You must replace <yourGridHostName> and
<yourGridInstallLocation> with your specific grid host name and
installation location, respectively.

option set=GRIDHOST="<yourGridHostName>";
option set=GRIDINSTALLLOC="<yourGridInstallLocation>";

ods output hpbininfo=bininfo;
ods output mappingTable=mapTable;
ods output performanceinfo=perfTable;
ods listing close;

20 Chapter 2 • HPBIN Procedure

proc hpbin data=ex12 output=out numbin=10 pseudo_quantile ;
 var x1-x3;
 performance nodes=100 nthreads=8;
run;
ods listing;

proc print data=perfTable noobs;
 title "The Performance Information";
run;

proc print data=bininfo noobs;
 title "The Binning information";
run;

proc print data=mapTable noobs;
 title "The mapping table";
run;

proc print data=out(obs=10) noobs;
 title "The Binning output";
run;

The Performance Information, Binning Information, and Mapping Table outputs are
given below.

The performance information output is as follows:

The Performance Information
Descr Value
Host Node <yourGridHostName>
Execution Mode Distributed
Number of Compute Nodes 100
Number of Threads per Node 8

The binning information output is as follows:

The Binning information
Descr Value
Method Pseudo-Quantile Binning
Number of Bins 10
Number of Variables 3
Observations 1000000

The mapping table output is as follows:

The mapping table
NAME BIN_NAME LB UB EM_BIN_LABEL BIN
x1 bin_x1 . 0.101000 x1 < 0.101000 1
x1 bin_x1 0.101000 0.201000 0.101000 <= x1 < 0.201000 2
x1 bin_x1 0.201000 0.301000 0.201000 <= x1 < 0.301000 3
x1 bin_x1 0.301000 0.401000 0.301000 <= x1 < 0.401000 4
x1 bin_x1 0.401000 0.500000 0.401000 <= x1 < 0.500000 5
x1 bin_x1 0.500000 0.600000 0.500000 <= x1 < 0.600000 6
x1 bin_x1 0.600000 0.700000 0.600000 <= x1 < 0.700000 7
x1 bin_x1 0.700000 0.800000 0.700000 <= x1 < 0.800000 8
x1 bin_x1 0.800000 0.900000 0.800000 <= x1 < 0.900000 9
x1 bin_x1 0.900000 . 0.900000 <= x1 10
x2 bin_x2 . 1.010000 x2 < 1.010000 1
x2 bin_x2 1.010000 2.000000 1.010000 <= x2 < 2.000000 2

Example 2: Pseduo-Quantile Binning 21

x2 bin_x2 2.000000 3.000000 2.000000 <= x2 < 3.000000 3
x2 bin_x2 3.000000 3.999999 3.000000 <= x2 < 3.999999 4
x2 bin_x2 3.999999 4.999999 3.999999 <= x2 < 4.999999 5
x2 bin_x2 4.999999 5.999999 4.999999 <= x2 < 5.999999 6
x2 bin_x2 5.999999 7.009998 5.999999 <= x2 < 7.009998 7
x2 bin_x2 7.009998 8.009998 7.009998 <= x2 < 8.009998 8
x2 bin_x2 8.009998 8.999997 8.009998 <= x2 < 8.999997 9
x2 bin_x2 8.999997 . 8.999997 <= x2 10
x3 bin_x3 . 10.100087 x3 < 10.100087 1
x3 bin_x3 10.100087 20.000066 10.100087 <= x3 < 20.000066 2
x3 bin_x3 20.000066 30.000045 20.000066 <= x3 < 30.000045 3
x3 bin_x3 30.000045 40.000024 30.000045 <= x3 < 40.000024 4
x3 bin_x3 40.000024 50.100003 40.000024 <= x3 < 50.100003 5
x3 bin_x3 50.100003 59.999982 50.100003 <= x3 < 59.999982 6
x3 bin_x3 59.999982 69.999961 59.999982 <= x3 < 69.999961 7
x3 bin_x3 69.999961 80.099940 69.999961 <= x3 < 80.099940 8
x3 bin_x3 80.099940 89.999919 80.099940 <= x3 < 89.999919 9
x3 bin_x3 89.999919 . 89.999919 <= x3 10

22 Chapter 2 • HPBIN Procedure

Chapter 3

HPDECIDE Procedure

Overview: HPDECIDE Procedure . 23

Syntax: HPDECIDE Procedure . 23
PROC HPDECIDE Statement . 24
DECISION Statement . 24
FREQ Statement . 26
ID Statement . 26
PERFORMANCE Statement . 27
POSTERIORS Statement . 29
PREDICTED Statement . 29
TARGET Statement . 30

Example: The HPDECIDE Procedure . 30

Overview: HPDECIDE Procedure
The HPDECIDE procedure creates optimal decisions that are based on a user-supplied
decision matrix, prior probabilities, and output from a modeling procedure. This output
can be either posterior probabilities for a categorical target variable or predicted values
for an interval target variable. The HPDECIDE procedure can also adjust the posterior
probabilities for changes in the prior probabilities.

Syntax: HPDECIDE Procedure
PROC HPDECIDE DATA=SAS-data-set <options>;

DECISION DECDATA=SAS-data-set <options>;
FREQ variable;
ID variables-list;
PERFORMANCE <performance-options>;
POSTERIORS variables-list;
PREDICTED variable;
TARGET variable;

RUN;

23

PROC HPDECIDE Statement
The PROC HPDECIDE statement invokes the procedure.

Details

Required Arguments
DATA=SAS-data-set

Specifies the input data set, which is the output data set from a modeling procedure.

Note: Strictly speaking, this argument is not required. If you omit this argument,
then the HPDECIDE procedure uses the most recently created data set.

Optional Arguments
OUT=data-set-name
Specifies the output data set, which contains the following information:

• any variables from the input data set that are specified in the ID statement

• the chosen decision with a prefix of “D_”

• the expected consequence of the chosen decision with a prefix of either “EL_” or
“EP_”

If the target value is in the input data set, then the output data set also contains the
following variables:

• the consequence of the chosen decision computed from the target value with a
prefix of either “CL_” or “CP_”

• the consequence of the best possible decision knowing the target value with a
prefix of either “BL_” or “BP_”

Also, if the PRIORVAR= and OLDPRIORVAR= variables are specified, then this
data set will contain the recalculated posterior probabilities. The default name for
this data set is data_n, where n is the smallest integer not already used to name a
data set.

OUTFIT=data-set-name
Specifies an output data set that contains fit statistics. These statistics include the
total and average profit or loss. You cannot specify this option with a data set of type
SCORE. By default, this data set is not created.

ROLE=TRAIN | VALID | VALIDATION | TEST | SCORE
Specifies the role of the data set. This option affects the variables that are created in
the OUTFIT= data set. The default value is TEST.

DECISION Statement
The DECISION statement specifies the decision matrix, prior probabilities, or both.

24 Chapter 3 • HPDECIDE Procedure

Syntax
DECISION DECDATA=SAS-data-set <options>;

Details

Required Argument
DECDATA=SAS-data-set

Specifies the input data set that contains the decision matrix, the prior probabilities,
or both. This data set might contain decision variables that are specified with the
DECVARS= option. Also, it might contain prior probability variables that are
specified with the PRIORVAR= option, the OLDPRIORVAR= option, or both.

This data set must contain the target variable, which is specified in the TARGET
statement.

For a categorical target variable, there should be one observation for each class. Each
entry dij in the decision matrix indicates the consequence of selecting target value i
for variable j. If any class appears twice or more in this data set, an error message is
printed and the procedure terminates. Any class value in the input data set that is not
found in this data set is treated as a missing class value. Note that the classes in this
data set must correspond exactly with the variables in the POSTERIORS statement.

For an interval target variable, each row defines a knot in a piecewise linear spline
function. The consequence of making a decision is computed by interpolating in the
corresponding column of the decision matrix. If the predicted target value is outside
the range of knots in the decision matrix, the consequence is computed by linear
extrapolation. If the target values are monotonically increasing or decreasing, any
interior target value is allowed to appear twice in the data set. This enables you to
specify discontinuities in the data. The end points, which are the minimum and
maximum data points, cannot appear more than once. No target value is allowed to
appear more than twice. If the target values are not monotonic, then they are sorted
by the procedure and are not allowed to appear more than once.

T I P The DECDATA= data set can be of type LOSS, PROFIT, or REVENUE.
PROFIT is assumed by default. TYPE is a data set option that is specified in
parentheses after the data set name when the data set is created or used.

Optional Arguments
DECVARS=list-of-variables

Specifies the numeric decision variables in the DECDATA= data set that contain the
target-specific consequences for each decision. The decision variables cannot contain
any missing values.

COST=list-of-costs
Specifies one of the following:

• numeric constants that give the cost of a decision

• numeric variables in the input data set that contain case-specific costs

• any combination of constants and variables

There must be the same number of cost constants and variables as there are decision
variables in the DECVARS= option. In this option, you cannot use abbreviated
variable lists. For any case where a cost variable is missing, the results for that case
are considered missing. By default, all costs are assumed to be zero. Furthermore,
this option can be used only when the DECDATA= data set is of type REVENUE.

DECISION Statement 25

PRIORVAR=variable
This option specifies the numeric variable in the DECDATA= data set that contains
the prior probabilities that are used to make decisions. Prior probabilities are also
used to adjust the total and average profit or loss. Prior probabilities cannot be
missing or negative, and there must be at least one positive prior probability. The
prior probabilities are not required to sum to one. But, if they do not sum to one, then
they are scaled by some constant so that they do sum to one. If this option is not
specified, then no adjustment for prior probabilities is applied to the posterior
probabilities.

OLDPRIORVAR=variable
Specifies the numeric variable in the DECDATA= data set that contains the prior
probabilities that were used the first time the model was fit. If you specify this
option, then you must also specify PRIORVAR=.

FREQ Statement
The variable in the FREQ statement identifies a numeric variable in the input data set that contains the
frequency of occurrence for each observation.

Syntax
FREQ variable;

Details

Required Argument
variable

Specify the variable in the input data set that contains the frequency for each
observation. The HPDECIDE procedure treats each observation as if it appeared f
times, where f is the value of the frequency variable for that observation. If the
frequency value is not an integer, then the fractional part is not truncated. If the
frequency value is less than or equal to 0, then the observation does not contribute to
the summary statistics. However, all of the variables in the OUT= data set are
processed as if the frequency variable is positive.

The frequency variable has no effect on decisions of the adjustment for prior
probabilities. It affects only the summary statistics in the OUTFIT= data set.

ID Statement
The ID statement lists one or more variables from the input data set that are transferred to the output data
sets. For more information about the ID statement, see “Shared Concepts and Topics” in the SAS High-
Performance Analytics User’s Guide.

Syntax
ID variables-list;

26 Chapter 3 • HPDECIDE Procedure

Details

Required Argument
variables-list

Specifies the variables that you want to transfer from the input data set to the output
data sets, provided that the output data set produces at least one record per input
observation.

PERFORMANCE Statement
The PERFORMANCE statement defines performance parameters for multi-threaded and distributed
computing, communicates variable information about the distributed computing environment, and requests
detailed results about the performance characteristics of the HPDECIDE procedure. With the
PERFORMANCE statement, you can control whether the HPDECIDE procedure executes in symmetric
multiprocessing mode or massively parallel mode. For more information about the PERFROMANCE
statement, see “Shared Concepts and Topics” in the SAS High-Performance Analytics User’s Guide.

Syntax
PERFORMANCE <performance-options>;

Details

Optional Arguments
COMMIT=n

Specifies the minimum number of observations transferred from the client to the
appliance necessary to update the SAS log. For example, if you specify
COMMIT=5000, then every time the number of observations sent exceeds an integer
multiple of 5000, a log message is produced. This message indicates the actual
number of observations distributed, not the COMMIT= value that triggered the
message.

CPUCOUNT= ACTUAL | number
Specifies how many processors that PROC HPDECIDE assumes are available on
each host in the computing environment. Valid values for number are integers
between 1 and 256, inclusive. Setting CPUCOUNT= to a value greater than the
actual number of available CPUs might result in reduced performance.

Specify CPUCOUNT=ACTUAL to set CPUCOUNT= to the number of processors
physically available. This number can be less than the physical number of CPUs if
the SAS process has been restricted by system administration tools.

This option overrides the CPUCOUNT= SAS system option.

If PROC HPDECIDE executes in SMP mode, then this option refers to the client
machine of the SAS session. If PROC HPDECIDE executes in MPP mode, then this
option applies the nodes on the appliance.

DATASERVER=“name”
Specifies the server name on Teradata systems as defined through the hosts file and
as used in the LIBNAME statement for Teradata. For example, if the hosts file
defines myservercop1 33.44.55.66 as the server for Teradata, then a
LIBNAME statement would be as follows:

PERFORMANCE Statement 27

libname TDLIB terdata server=myserver user= password= database=;

To induce PROC HPDECIDE to run alongside the Teradata server, specify the
following performance statement:

performance dataserver="myserver";

DETAILS
Requests a table that shows a timing breakdown of the procedure steps.

TIMEOUT=s
Specifies the length of time, in seconds, that PROC HPDECIDE should wait for a
connection to the appliance and to establish a connection back to the client. The
default value for s is 120 seconds. If jobs are submitted to the appliance through
workload management tools that might suspend access to the appliance for a longer
period, you might want to increase the time-out value.

HOST=“name”
GRIDHOST=“name”

Specifies the name of the appliance host. The HOST= option overrides the value of
the GRIDHOST environment variable.

INSTALL=“name”
INSTALLOC=“name”

Specifies the directory where the High-Performance Analytics shared libraries are
installed on the appliance. Specifying the INSTALL= option overrides the
GRIDINSTALLLOC environment variable.

NODES=n
NNODES=n

Specifies the number of nodes in the distributed computing environment, provided
that the data is not processed alongside the database. Specify NODES=0 to indicate
that you want to process the data in SMP mode on the client machine. If the input
data is not alongside the database, this is the default setting. The HPDECIDE
procedure then performs multithreaded analysis on the client.

If the data is not read alongside the database, the NODES= option specifies the
number of nodes on the appliance that are involved in the analysis.

If the number of nodes can be modified by the application, you can specify a
NODES= option where n exceeds the number of physical nodes on the appliance.
The High-Performance Analytics software then over-subscribes the nodes and
associates nodes with multiple units of work. For example, on a system with 16
appliance nodes, the following statement would over-subscribe the system by a
factor of 3:

performance nodes=48 host="hpa.sas.com";

Generally, it is not advisable to over-subscribe the system because the analytic code
is optimized for a certain level of multithreading on the nodes that depend on the
CPU count.

If the data is read alongside the distributed database on the appliance, specifying a
nonzero value for the NODES= option has no effect. The number of units of work in
the distributed computing environment is then determined by the distribution of the
data and cannot be altered.

NTHREADS=n
Specifies the number of threads used for analytic computations and overrides the
SAS system option THREADS | NOTHREADS. If you do not specify the
NTHREADS= option, then the number of threads is determined based on the number
of CPUs on the host machine where the analytic computations execute.

28 Chapter 3 • HPDECIDE Procedure

By default, High-Performance Analytics procedures execute in multiple concurrent
threads, unless you disable this behavior with the NOTHREADS system option, or
you specify NTHREADS=1 to force single-threaded execution. The value specified
here must not exceed 256.

Note: The SAS system option THREADS | NOTHREADS applies to the current
machine where the SAS High-Performance Analytics procedures execute. This
option does not apply to the compute nodes in a distributed environment.

POSTERIORS Statement
The POSTERIORS statement can be specified only with a categorical target variable. You cannot use both
the POSTERIORS statement and the PREDICTED statement.

Syntax
POSTERIORS variables-list;

Details

Required Argument
variables-list

Specify the numeric variables in the input data set that contain the estimated
posterior probabilities that correspond to the categories of the target variable. If one
of a few certain conditions are met, then a case is set to missing and the variable
WARN contains the flag P.

These conditions are as follows:

• The posterior probability is missing, negative, or greater than 1.

• There is a nonzero posterior that corresponds to a zero posterior.

• There is not at least one valid positive posterior probability.

Note that the order of the variables in this list must correspond exactly to the order of
the classes in the DECDATA= data set.

PREDICTED Statement
The PREDICTED statement can be specified only with an interval target variable. You cannot use both the
POSTERIORS statement and the PREDICTED statement.

Syntax
PREDICTED variable;

PREDICTED Statement 29

Details

Required Argument
variable

Specifies the numeric variable in the input data set that contains the predicted values
of an interval target variable.

TARGET Statement
The TARGET statement specifies which variable in the DECDATA= data set is the target variable. The
HPDECIDE procedure searches for a target variable with the same name in the input data set. If none is
found, then the HPDECIDE procedure assumes that actual target values are unknown. For a categorical
variable, the target variables in the DATA= and DECDATA= data sets do not need to be the same type.
This is because only the formatted values are used for comparisons. For an interval target, both variables
must be numeric. If scoring code is generated by the CODE statement, the code will format the target
variable with the format and length from the DATA= data set.

Syntax
TARGET variable;

Details

Required Argument
variable

The variable specified here is the target variable and must be in the DECDATA=
data set.

Example: The HPDECIDE Procedure

Preprocessing the Data and Basic Usage

This extended example creates a fictitious scenario to illustrate how to adjust prior
probabilities and make decisions with a revenue matrix and cost constants. This example
considers a population of men who consult urologists for prostate problems. In this
population, 70% of the men have benign enlargement of the prostate, 25% have an
infection, and 5% have cancer. A sample of 100 men is taken and two new diagnostic
measures, X and Y, are made on each patient. The training data set also includes the
diagnosis made by reliable, conventional methods.

For each patient, three treatments are available. First, the urologist could prescribe
antibiotics, which are effective against infection, but might have moderately bad side
effects. Antibiotics have no effect on benign enlargement or cancer. Second, the
urologist could recommend surgery, which is effective for all diseases, but has
potentially severe side effects, such as impotence. Finally, the urologist and patient could
decide against both antibiotics and surgery, thereby doing nothing.

30 Chapter 3 • HPDECIDE Procedure

The first step is to create the sample of 100 men. To simulate the measurements of
diagnostics X and Y, this example uses the SAS random number generator. Because you
specify the initial seed to the random number generator, all of your results will be
identical to those presented in this example.

data Prostate;
 length dx $14;
 dx='Benign';
 mx=30; sx=10;
 my=30; sy=10;
 n=70;
 link generate;
 dx='Infection';
 mx=70; sx=20;
 my=35; sy=15;
 n=25;
 link generate;
 dx='Cancer';
 mx=50; sx=10;
 my=50; sy=15;
 n=5;
 link generate;
 stop;
generate:
 do i=1 to n;
 x=rannor(12345)*sx+mx;
 y=rannor(0) *sy+my;
 output;
 end;
run;

This code creates the Prostate data set. The first 70 observations represent benign
tumors, the next 20 represent infections, and the final 5 are cancer. To visualize the
measurements of X and Y, you can plot the data with the GPLOT procedure.

title2 'Diagnosis';
proc gplot data=prostate;
 plot y*x=dx;
run;

When you plot the data, you should be able to see fairly distinct groups of data points.
There can be some overlap between groups, but most of the observations for each
diagnosis are tightly grouped. You can also use the DISCRIM procedure to see how well
variables X and Y classify each patient.

proc discrim data=prostate out=outdis short;
 class dx;
 var x y;
run;

The DISCRIM procedure assumes that all prior probabilities are equal, which is 1/3 for
this example. As the Output window indicates, the DISCRIM procedure misidentifies
some of the benign tumors as cancer or infections. Also, it misidentifies some of the
infections as benign tumors. Therefore, you want to create a data set that contains prior
probabilities and revenue information. The revenue information indicates the benefit of
each treatment. The costs of each treatment, such as bad side effects, are specified late in
a DECISION statement. The revenue matrix is given by the code that follows.

Example: The HPDECIDE Procedure 31

data rx(type=revenue);
 input dx $14. eqprior prior nothing antibiot surgery;
 datalines;
 Benign 0.3333 70 0 0 5
 Infection 0.3333 25 0 10 10
 Cancer 0.3333 5 0 0 100
;

The variable eqprior defines an equal prior probability for each diagnosis while prior
uses information that is known from the sample data set. The other variables define the
revenue of each treatment option. The revenue, or benefit, of doing nothing in either case
is 0, and the benefit of taking antibiotics is relevant only if the patient has an infection.
Surgery can remove a benign tumor, but since this is not necessary, it has very little
benefit. Surgery completely removes an infection, so it has the same value as antibiotics.
Finally, surgery can remove a cancerous tumor, which is an immense benefit to the
patient.

You can now use the HPDECIDE procedure to assign a treatment to each patient. In the
DECISION statement, you specify the costs of treatment. The cost of doing nothing is 0,
the cost of antibiotics is 5, and the cost of surgery is 20.

proc hpdecide data=outdis out=decOut outstat=decSum;
 target dx;
 posteriors benign infection cancer;
 decision decdata=rx
 oldpriorvar=eqprior priorvar=prior
 decvars=nothing antibiot surgery
 cost= 0 5 20;
run;

The data set decOut indicates that only one benign tumor was misidentified, but a similar
number of infections were misidentified as benign, when compared with the DISCRIM
procedure. All of the cancerous tumors were identified and assigned the treatment of
surgery, as was the lone misidentified benign tumor. The total profit for all patients,
identified in the data set decSum is 470.

Due to the personal nature of medical decisions, the costs associated with each treatment
can vary considerably from patient to patient. Some patients regard the side effects of
surgery as more severe than other patients. Likewise, the costs of antibiotics might vary
due to the patients' insurance plans. For illustrative purposes, assume a higher cost for
surgery and leave the other costs constant.

proc hpdecide data=outdis out=decOut outstat=decSum;
 target dx;
 posteriors benign infection cancer;
 decision decdata=rx
 oldpriorvar=eqprior priorvar=prior
 decvars=nothing antibiot surgery
 cost= 0 5 50;
run;

Notice that the misclassified benign tumor was now correctly classified. However, one
of the cancer cases was identified as benign, which is a costly mistake. Notice, in
decOut, that the total profit has been reduced from 470 to 285.

32 Chapter 3 • HPDECIDE Procedure

Chapter 4

HPIMP Procedure

Overview: HPIMP Procedure . 33

Syntax: HPIMP Procedure . 33
PROC HPIMP Statement . 33
CODE Statement . 34
ID Statement . 34
IMPUTE Statement . 35
INPUT Statement . 36
PERFORMANCE Statement . 36

Example: The HPIMP Procedure . 38

Overview: HPIMP Procedure
The HPIMP procedure executes high-performance variable imputation. You can specify
multiple INPUT and IMPUTE statements, as is shown in the example in this chapter.
Any class variables that are referenced by the IMPUTE statement are ignored.

Syntax: HPIMP Procedure
Requirement: At least one INPUT and one IMPUTE statement are required.

PROC HPIMP DATA=<libref.>SAS-data-set OUT=<libref.>SAS-data-set <options>;
CODE <options>
ID variables-list;
IMPUTE variables-list / <options>;
INPUT variables-list / <options>;
PERFORMANCE <performance-options>;

PROC HPIMP Statement
The PROC HPIMP statement invokes the procedure.

Note: WHERE processing is supported in the DATA= and OUT= arguments.

33

Syntax
PROC HPIMP DATA=<libref.>SAS-data-set OUT=<libref.>SAS-data-set <options>;

Details

Required Arguments
DATA=<libref.>SAS-data-set

Specifies the input data set that contains the variables to be imputed. The default data
set is the most recently created data set. If the data is already distributed, then the
procedure reads the data alongside the distributed database.

DMDBCAT=<libref.>SAS-catalog
Names the SAS catalog that contains the variable metadata. This catalog must exist
on the client machine.

Optional Arguments
OUT=<libref.>SAS-data-set

Specifies the output data set that contains the imputed variables. This data set
contains the ID variables (if applicable), the imputation indicator variables, and the
imputed variables. If the data is already distributed, then the procedure writes the
data alongside the distributed database with the ID variables, indicator variables, and
imputed variables.

CODE Statement
The CODE statement generates SAS DATA step code that mimics the computations done by the IMPUTE
statement.

Syntax
CODE <options>;

Details

Optional Arguments
FILE=file-name

Specifies the filename that contains the SAS score code.

ID Statement
The ID statement lists one or more variables from the input data set that are transferred to the output data
sets. The ID statement accepts numeric and character variables. For example, when an OUTPUT
statement is used, the ID variables, followed by the indicator variables and the imputed variables, are
added to the output data set. For more information about the ID statement, see “Shared Concepts and
Topics” in the SAS High-Performance Analytics User’s Guide.

34 Chapter 4 • HPIMP Procedure

Default: By default, the HPIMP procedure does not include all variables from the input data
set in the output data sets.

Requirement: The variables in an ID statement must not appear in any INPUT statement.
Otherwise, an error is reported.

Syntax
ID variables-list;

Details

Required Arguments
variables-list

Specifies the variables that you want to transfer from the input data set to the output
data sets.

IMPUTE Statement
The IMPUTE statement names the variables for PROC HPIMP to impute. You can specify multiple
IMPUTE statements

Requirements: The IMPUTE statement accepts only numeric variables that have appeared in an
INPUT statement. Class variables are ignored, but specifying a character variable
results in an error.
You must specify one of the options METHOD= or VALUE=.

Syntax
IMPUTE variables-list / <options>;

Details

Required Argument
variables-list

Contains a list of variables to be imputed.

Optional Arguments
METHOD= MEAN | RANDOM

Specifies the method of imputation.

If you specify MEAN, then missing values for each variable are replaced with the
algebraic mean of that variable. The mean is obtained from the DMDB catalog. If
there is no nonmissing value, the mean is set to 0.

If you specify RANDOM, then missing values for each variable are replaced with a
random value between the minimum and maximum value for that variable. The
minimum and maximum are obtained from the DMDB catalog.

VALUE=value
Replaces missing values with the value specified by the user.

IMPUTE Statement 35

INPUT Statement
The INPUT statement names input variables with common options. The INPUT statement can be repeated.

Note: If you specify any LEVEL= options other than LEVEL=INTERVAL, then the variables
are ignored by the IMPUTE statement.

Syntax
INPUT variables-list / <options>;

Details

Required Argument
variables-list

Contains a list of variables that share common features.

Optional Arguments
LEVEL=level

Specifies the level of measurement of the variables. Valid values are BINARY,
NOMINAL, ORDINAL, and INTERVAL. The default value is
LEVEL=INTERVAL.

ORDER=order
Specifies the sorting order for the values of an ordinal input variable. Valid values
are given in the table below.

Value of ORDER= Variable Values Sorted By

ASCENDING ascending order of unformatted values

ASCFORMATTED ascending order of formatted values

DESCENDING descending order of unformatted values

DESFORMATTED descending order of formatted values

DSORDER order of appearance in the input data set

PERFORMANCE Statement
The PERFORMANCE statement defines performance parameters for multi-threaded and distributed
computing, communicates variable information about the distributed computing environment, and requests
detailed results about the performance characteristics of the HPIMP procedure. With the PERFORMANCE
statement, you can control whether the HPIMP procedure executes in symmetric multiprocessing or
massively parallel mode. For more information about the PERFORMANCE statement, see “Shared
Concepts and Topics” in the SAS High-Performance Analytics User’s Guide.

36 Chapter 4 • HPIMP Procedure

Syntax
PERFORMANCE <performance-options>;

Details

Optional Arguments
COMMIT=n

Specifies the minimum number of observations transferred from the client to the
appliance necessary to update the SAS log. For example, if you specify
COMMIT=5000, then every time the number of observations sent exceeds an integer
multiple of 5000, a log message is produced. This message indicates the actual
number of observations distributed, not the COMMIT= value that triggered the
message.

CPUCOUNT= ACTUAL | number
Specifies how many processors PROC HPIMP assumes are available on each host in
the computing environment. Valid values for number are integers between 1 and
256, inclusive. Setting CPUCOUNT= to a value greater than the actual number of
available CPUs can result in reduced performance.

Specify CPUCOUNT=ACTUAL to set CPUCOUNT= to the number of processors
physically available. This number can be less than the physical number of CPUs if
the SAS process has been restricted by system administration tools.

This option overrides the CPUCOUNT= SAS system option.

If PROC HPIMP executes in SMP mode, then this option refers to the client machine
of the SAS session. If PROC HPIMP executes in MPP mode, then this option applies
the nodes on the appliance.

DATASERVER=“name”
Specifies the server name on Teradata systems as defined through the hosts file and
as used in the LIBNAME statement for Teradata. For example, if the hosts file
defines myservercop1 33.44.55.66 as the server for Teradata, then a
LIBNAME statement would be as follows:

libname TDLIB terdata server=myserver user= password= database= ;

To induce PROC HPIMP to run alongside the Teradata server, specify the following
performance statement:

performance dataserver="myserver";

DETAILS
Requests a table that shows a timing breakdown of the procedure steps.

TIMEOUT=s
Specifies the length of time, in seconds, that PROC HPIMP should wait for a
connection to the appliance and to establish a connection back to the client. The
default value for s is 120 seconds. If jobs are submitted to the appliance through
workload management tools that might suspend access to the appliance for a longer
period, you might want to increase the time-out value.

HOST=“name”
GRIDHOST=“name”

Specifies the name of the appliance host. The HOST= option overrides the value of
the GRIDHOST environment variable.

PERFORMANCE Statement 37

INSTALL=“name”
INSTALLOC=“name”

Specifies the directory where the High-Performance Analytics shared libraries are
installed on the appliance. Specifying the INSTALL= option overrides the
GRIDINSTALLLOC environment variable.

NODES=n
NNODES=n

Specifies the number of nodes in the distributed computing environment, provided
that the data is not processed alongside the database. Specify NODES=0 to indicate
that you want to process the data in SMP mode on the client machine. If the input
data is not alongside the database, this is the default setting. The HPIMP procedure
then performs multithreaded analysis on the client.

If the data is not read alongside the database, the NODES= option specifies the
number of nodes on the appliance that are involved in the analysis.

If the number of nodes can be modified by the application, you can specify a
NODES= option where n exceeds the number of physical nodes on the appliance.
The High-Performance Analytics software then over-subscribes the nodes and
associates nodes with multiple units of work. For example, on a system with 16
appliance nodes, the following statement would over-subscribe the system by a
factor of 3:

performance nodes=48 host="hpa.sas.com";

Generally, it is not advisable to over-subscribe the system because the analytic code
is optimized for a certain level of multithreading on the nodes that depend on the
CPU count.

If the data is read alongside the distributed database on the appliance, specifying a
nonzero value for the NODES= option has no effect. The number of units of work in
the distributed computing environment is then determined by the distribution of the
data and cannot be altered.

NTHREADS=n
Specifies the number of threads used for analytic computations and overrides the
SAS system option THREADS | NOTHREADS. If you do not specify the
NTHREADS= option, then the number of threads is determined based on the number
of CPUs on the host machine where the analytic computations execute.

By default, High-Performance Analytics procedures execute in multiple concurrent
threads, unless you disable this behavior with the NOTHREADS system option or
you specify NTHREADS=1 to force single-threaded execution. The value specified
here must not exceed 256.

Note: The SAS system option THREADS | NOTHREADS applies to the current
machine where the SAS High-Performance Analytics procedures execute. This
option does not apply to the compute nodes in a distributed environment.

Example: The HPIMP Procedure

Imputing a Data Set

In this example, you use all three imputation methods available in the IMPUTE
statement to manipulate a data set. First, you create the data set with the SAS DATA

38 Chapter 4 • HPIMP Procedure

step provided below. This data set has four variables, the first being an index variable.
The next three variables all have some missing values.

data dsopts;
 input ind x y z;
 cards;
1 0.18496 0.97009 0.8496
2 0.39982 . 0.9982
3 0.92160 . 0.2160
4 . 0.53169 .
5 0.04979 0.06657 0.4979
6 0.81932 0.52387 .
7 . 0.06718 .
8 0.95702 0.29719 .
9 0.27261 0.68993 .
10 0.97676 . .
;

Next, you need to run the following code to create the DMDB catalog for your data set:

proc dmdb data=dsopts cat=cat;
 var ind x y z;
run;

Now, you are ready to run the HPIMP procedure.

proc hpimp data=dsopts(where=(y>0.1))
 dmdbcat=cat out=impout(where=(m_y=0));
 input x y z;
 impute x/method=mean;
 impute y/method=random;
 impute z/value=0.888;
 code file="c:\imp.sas";
 id ind;
run;

In this call to PROC HPIMP, the variable x is imputed with the method MEAN, y is
imputed with the method RANDOM, and z is imputed with a specific value.

The output data set IMPOUT contains seven variables. Note that the two WHERE
clauses keep only the rows where y is both nonmissing and greater than 0.1. The
variables m_x, m_y, and m_z are the indicator variables and display a 0 if that
observation was not imputed and a 1 if it was. The variables imp_x, imp_y, and imp_z
contain the imputed variable values.

Example: The HPIMP Procedure 39

40 Chapter 4 • HPIMP Procedure

Part 2

High-Performance Macros

Chapter 5
The %EM_new_assess Macro . 43

Chapter 6
The %HPDM_create_scorecode_bin Macro . 53

Chapter 7
The %HPDM_create_scorecode_logistic Macro 57

Chapter 8
The %HPDM_create_scorecode_neural Macro . 61

Chapter 9
The %HPDM_create_scorecode_reg Macro . 65

41

42

Chapter 5

The %EM_new_assess Macro

Overview . 43

Syntax . 44
The %EM_new_assess Macro . 44
Required Arguments . 44
Optional Arguments . 44

Details . 45
The OUT= Data Set . 45
The EXPAND= Data Set . 47
The BINSTATS= Data Set . 47
MAP-REDUCE . 49
Tie-Breaking . 49
Counting Rows, Events, and Missing Values . 50
Integration with SAS Enterprise Miner . 50
Integration with SAS Code . 51
Comparison with SAS Enterprise Miner 7.1 . 51
Profiling . 51

Example: The %EM_new_assess Macro . 51

Overview
The %EM_new_assess macro computes model assessment measures that are used to
evaluate the performance of predictive models and to inform decisions based on the
results of the models. For example, the %EM_new_assess macro can help you to
determine the following:

• the expected response rate in each of the top 5%, 10%, 15%, and 20% subsets of
your campaign

• the probability cutoff that you should use to select customers that areexpected to
respond at least 12% of the time.

Model assessment measures are typically referred to as rank order measures. The term
rank order measure refers to the fact that these statistics are computed by a descending
ranking of the probabilities of a predicted event.

To compute all model assessment measures, %EM_new_assess macro uses a mixture of
DATA step code, Base SAS procedures, SAS Enterprise Miner Procedures, and SAS
High Performance Analytics procedures. The event and probability for assessment do

43

not depend on the sort order of the target variable and can be selected independently.
You can select any event for assessment.

Syntax

The %EM_new_assess Macro
%macro EM_new_assess (

DATA=SAS-data-set
LEVEL=CLASS | INTERVAL
TARGET=variable-name
VAR=variable-name
<BINS=number>
<BINSTATS=SAS-data-set>
<CUTOFF=number>
<EVENT=event-string>
<EXPAND=SAS-data-set>
<FUZZ=number>
<HPDS2=0 | 1>
<MAX=number>
<MIN=number>
<OUT=SAS-data-set>

Required Arguments
DATA=SAS-data-set

Specifies the input data set. The model assessment measures are generated for this
data set.

LEVEL=CLASS | INTERVAL
Specifies the measurement level of the target variable.

TARGET=variable-name
Specifies the target variable.

VAR=variable-name
Specifies the numeric variable that is used for ranking.

Optional Arguments
BINS=number

Specifies the number of bins that are created in the OUT= data set.

BINSTATS=SAS-data-set
Specifies an output data set that contains the overall binning statistics.

CUTOFF=number
Specifies the cutoff value for new classification. That is, this value specifies the
minimum probability value of a bin.

44 Chapter 5 • The %EM_new_assess Macro

EVENT=event-string
Specifies the event string.

EXPAND=SAS-data-set
Specifies an output data set that is similar in structure to the scored data. This data
set contains columns for target, probability, and classification, and can be used as
input to the Model Import node. Note that computations on this data set are
approximations and do not equal computations on the full data set. You cannot
specify this argument for an interval target variable.

FUZZ=0 | 1
Specify 1 to enable FUZZ tie-breaking. FUZZ tie-breaking adds a random number
that is generated by an appropriately scaled random normal distribution to the
probability in order to create several microbins. This is equivalent to applying a
kernel function. In the event of sparse or skewed distributions, this method can still
produce bins that contain too many or too few observations.

HPDS2=0 | 1
Specify 1 to use PROC HPDS2 to build the microbins.

MAX=number

MIN=number

OUT=SAS-data-set
Specifies the output data set for the binned data.

Details

The OUT= Data Set
The primary output data set is a summary data set that contains one row for each bin.
The columns generated depend on the measurement level of the target variable.
Cumulative measures are calculated by descending probability. Each bin should have an
approximately equal number of observations. The mean probability, event count, and
non-event count are stored in each bin.

Note: The tables below do not detail every variable in the output data set. Variables with
common or obvious definitions are omitted from these tables.

Table 5.1 Output Data Set Variables for a Class Target Variable

Variable Details

cutoff minimum probability value of a bin

count number of nonmissing predicted value
observations within a bin

c_count cumulative number of observations

events number of events within a bin

c_events cumulative number of events

Details 45

Variable Details

depth 100*(c_count / total_count)

lift events / ((count*total_events) / total_count)

c_lift c_events / ((c_count*total_events) /
total_count)

correct_rate 100*(c_events + total_events –
c_nonevents) / total_count

error_rate 100 – correct_rate

separation correct_rate – error_rate

sensitivity c_events / total_events — Also called the true
positive rate

specificity 1 – c_nonevents / total_non_events — Also
called the true negative rate

one_minus_specificity 1 – specificity

Table 5.2 Output Data Set Variables for an Interval Target Variable

Variable Details

depth 100*(c_count / total_count)

count number of nonmissing target value
observations within a bin

c_count cumulative number of observations

predicted_count number of nonmissing predicted observations
within a bin

c_predicted_count cumulative predicted count

target_mean target variable mean within a bin

target_min target variable minimum within a bin

target_max target variable maximum within a bin

predicted_mean predicted variable mean within a bin

predicted_min predicted variable minimum within a bin

predicted_max predicted variable maximum within a bin

residual_mean residual mean within a bin

46 Chapter 5 • The %EM_new_assess Macro

Variable Details

residual_min residual minimum within a bin

residual_max residual maximum within a bin

residual_squared_mean mean of the squared residuals within a bin

The EXPAND= Data Set
This data set is similar in structure to the scored data. This data set contains columns for
target, probability, and classification, and can be used as input to the Model Import node.
Note that computations on this data set are approximations and do not equal
computations on the full data set. This data set is not created for interval target variables.

Variable Type Details

target $ target value, either event or non-event

predict $ predicted value, either event or non-
event

prob N event probability. This is the mean bin
probability.

freq N frequency. This is the bin count. This variable
is necessary for valid results.

The BINSTATS= Data Set
This data set contains a summary of the binning process. It includes point measures of
the Kolmogorov-Smirnov statistic, the maximum classification rate, and the depth and
probability for each of those measures. These values can be used in subsequent
processing. This data set contains one observation.

Table 5.3 Class Target Variable Summary Information

Variable Details

Target target variable name

Level target variable measurement level

Var probability of event variable name. This was
used to bin the data.

NBINS number of bins created

Details 47

Variable Details

NOBS total number of observations. This should
equal PredCount + PredMiss.

TargetCount number of nonmissing target values

TargetMiss number of missing target values

PredCount number of nonmissing predicted values

PredMiss number of missing predicted values

Event target event value

EventCount number of events with nonmissing predicted
values

NonCount number of non-events with nonmissing
predicted values

EventMiss number of events with missing predicted
values

KSR the maximum separation between the
percentage of captured events and non-events.
This value should equal 100*KS.

KS The Kolmogorov-Smirnov (KS) measure,
computed as the maximum difference between
sensitivity and one_minus_specificity. Higher
numbers indicate better overall confidence in
the classification of events and non-events.

KSDEPTH the sample depth where KS is computed

KSCUT the predicted event probability where KS is
computed

KSREF the value of one_minus_specificity for the KS
reference value

CR the maximum overall correct classification
rate

CRDEPTH the sample depth where CR is computed

CRCUT the predicted event probability where CR is
computed

MDEPTH the sample depth that identifies half of the
predicted events

MCUT the cutoff that identifies half of the predicted
events

48 Chapter 5 • The %EM_new_assess Macro

Table 5.4 Interval Target Variable Summary Information

Variable Details

target target variable name that was used to bin the
data

level target variable measurement level

var predicted value variable name

NBINS number of bins created. It is expected to be
approximately equal to volume.

NOBS total number of observation. It is expected to
equal TargetCount + TargetMiss

TargetCount number of nonmissing target values

TargetMiss number of missing target values

PredCount number of nonmissing predicted values

PredMiss number of missing predicted values

MAP-REDUCE
In a distributed grid environment, sets of data rows are located across one or more server
units. The high-performance model assessment functions follow the MAP-REDUCE
paradigm for distributed grid processing. In this section, MAP-REDUCE is explained
briefly.

In the MAP phase, a single variable, such as probability of event, is chosen for ranking.
A frequency table is constructed in an initial pass.The initial pass also returns the
maximum and minimum values of the ranking variable. A second pass maps the
predictions and event counts to equal-width bins. Bins with zero observations are
dropped. For a class target variable, the binned data set has columns for count, event
count, and minimum probability. This data is called microbins.

Next begins the REDUCE phase. On the SAS side, the microbins are sorted by
descending probability. The next step merges bins together until the cumulative count
meets or exceeds the next bin’s threshold. The result is a set of bins that contain an equal
number of observations. These bins are processed to produce measures that are used for
reporting for each bin, such as percents, separation, lift, captured response, sensitivity,
specificity, and classification rates.

Tie-Breaking
A key point in ranking the probabilities is breaking ties when a small number of
probability values have very large frequencies. This macro has two methods to handle
ties that can work together.

First, in the MAP phase the FUZZ option adds a random number that is generated by an
appropriately scaled random normal distribution to the probability to spread the

Details 49

distribution into several microbins. This is equivalent to applying a kernel function. In
the event of very sparse and skewed probability distributions, this method can still have
the effect of producing percentile bins with too many and too few counts.

Second, in the REDUCE phase the code slices microbins to produce final bins with
exactly the same numbers of observations. The final bin at the low end of the probability
scale might contain a different number of observations to make the final count correct.
This is different than in SAS Enterprise Miner 7.1, where the overage is spread among
multiple bins at the high end of the probability scale. This difference accounts for some
differences in the values of captured response and lift between SAS Enterprise Miner 7.1
and high-performance data mining.

Counting Rows, Events, and Missing Values
Missing values are particularly important when counting targets and predictions. Either
the target or the predicted value might be independently missing in the scored data.
Counting is handled differently for interval and class target models.

• Interval Targets — In this case, the actual target variable is binned, and missing
target values are counted separately. Predicted values are accumulated only for
nonmissing target values. The total count of all predictions is equal to the count of
nonmissing target values. The values reported are TotalCount, TargetCount,
TargetMiss, PredCount, PredMiss.

• Class Targets — The predicted probabilities are binned, and missing probability
values are counted separately. Target events and non-events are counted for all real
probabilities. In addition, target events are counted for missing probabilities. The
values reported are TotalCount, PredCount, PredMiss, TargetCount, TargetMiss,
EventCount, and EventMiss. TargetCount includes any nonmissing target value.
EventCount includes only the event specified. All other target values are considered
non-events with the exception of missing values. Target values are counted as the
DMNORM of the formatted value.

Integration with SAS Enterprise Miner
Model assessment within the SAS Enterprise Miner process flow diagram is
accomplished in two ways:

• Project Sample — The high-performance model produces score code. The score
code is applied to the project sample that is maintained by the input node. These
scores are evaluated by the SAS Enterprise Miner model assessment code that runs
on the SAS system. The results are displayed in the SAS Enterprise Miner model
node results and the SAS Enterprise Miner Model Comparison node. The results are
used to select a champion model. In this case, the model has been trained on the
high-performance system, and then applied on the SAS system to produce results
comparable to other work based in SAS.

• Grid Data — The high-performance procedure outputs a table of training data scores.
These scores are evaluated by the %EM_new_assess macro on the grid system and
displayed as additional results in the high-performance model node results. These
results are similar to the results computed on the project sample, but might differ in
the number of observations that are counted and any of the resulting measurements.

50 Chapter 5 • The %EM_new_assess Macro

Integration with SAS Code
The %EM_new_assess macro can be used directly in a SAS program to evaluate scores
on either a SAS system or on a high-performance appliance system. The scores can be
generated by a high-performance procedure, by a SAS procedure, or by direct import of
a file containing scores. The extended example at the end of this book includes several
calls to various high-performance procedures and the %EM_new_assess macro.

Comparison with SAS Enterprise Miner 7.1
In most cases, computational results are similar to the results produced by SAS
Enterprise Miner 7.1. However, the new algorithm is fundamentally different from the
algorithm used in SAS Enterprise Miner 7.1. The new functions were tested with both
simulated and real data and found to adequately preserve the distributions of targets,
probabilities, and predictions. Differences can be described by one or more ofthe
following conditions:

• The new algorithm creates bins in two stages and handles unlimited quantities of
data. The initial set of bins treats all observations within the bin as having the same
mean probability. If the distribution of probabilities or predictions is extremely
sparse, such that some of these bins both contain at least a centile of data and also
multiple modes of data, then resolution in the output might be lost.

• Ties and observations that do not fit into an even number of centiles are handled
differently. See Tie-Breaking on page 49 for more details. This effect can produce
extremely small differences in the bin counts. This difference should be less than the
number of bins for any given bin.

• The distributions of interval target predictions are handled differently. The SAS
Enterprise Miner 7.1 functions bin the prediction values and summarize the target
values. The new algorithm bins the target values and summarizes the predictions.
This is done to encourage diagnostic analysis of residuals by target values. It is also
potentially more likely that there will be more missing predictions than missing
target values in real data used for modeling.

• The new functions generate additional information about the number of missing
values of the target and predicted values. See Counting Rows, Events, and Missing
Values on page 50 for more details.

Profiling
The SAS Enterprise Miner 7.1 functions also generate mean and mode values by each
centile for variables that have the Report attribute. These values are generated for high-
performance models within the model nodes and the Model Compare node based on the
project sample data. The new functions do not yet generate full profiles on grid data.

Example: The %EM_new_assess Macro
This example applies the %EM_new_assess macro to a neural network that is created by
the HPNEURAL procedure. Before you can run the %EM_new_assess macro, you must
run the HPNEURAL procedure, as shown below.

Example: The %EM_new_assess Macro 51

filename tools catalog 'sashelp.hpdm.hpdm_tools.source' ;
%include tools ;

proc hpneural data=sampsio.dmagecr ;
input AGE AMOUNT DURATION / level=int ;
input CHECKING COAPP DEPENDS EMPLOYED EXISTCR FOREIGN HISTORY HOUSING
 INSTALLP JOB MARITAL OTHER PROPERTY PURPOSE RESIDENT SAVINGS TELEPHON
 / level=nom ;
target good_bad / level=nom ;
hidden 2 ;
train ;
score out=train_scores ;
run;

Now, you can run the %EM_new_assess macro with the following code:

%em_new_assess(
 data =train_scores, /* input data; */
 level =CLASS, /* specify the measurement level */
 target =good_bad, /* target variable; */
 var =p_good_badbad, /* numeric variable for ranking; */
 event =BAD, /* event string (not variable name); */
 bins =20, /* final number bins; */
 fuzz =0, /* handle ties; */
 expand =expand /* output data */
);

52 Chapter 5 • The %EM_new_assess Macro

Chapter 6

The
%HPDM_create_scorecode_bin
Macro

Overview . 53
Introduction . 53
Details . 53

Syntax . 54
The %HPDM_create_scorecode_bin Macro . 54
Required Arguments . 54

Example: The %HPDM_create_scorecode_bin Macro . 54

Overview

Introduction
The %HPDM_create_scorecode_hpbin macro creates binning score code based on the
output of the HPBIN procedure. Refer to the HPBIN procedure on page 9 for more
information about its usage and details. Binning transformations must be included in the
model score code for scoring data in test and production processes.

Details
The HPBIN procedure only bins numeric interval variables. It cannot be used for
character variables. The mapping table, created by the MAPPINGTABLE= argument in
PROC HPBIN, contains all the information necessary for binning. Also, a source code
line is added to map missing values to bin level zero. Output variables are given the
prefix bin_ and are numeric variables. For example, if the HPBIN procedure bins the
variable _TEST_, then the output variable is _BIN_TEST_. The actual variable names
appear in the output produced by PROC HPBIN and in the mapping table.

Based on the particulars of your data mining project, you must decide whether the
original, unbinned variables are kept or dropped. The score code produced by this macro
contains no DROP or KEEP statements. The score code created is simple, block DATA
step code that can be included within a DATA step that contains other code blocks.

53

Syntax

The %HPDM_create_scorecode_bin Macro
%macro hpdm_create_scorecode_neural (

BINDATA=SAS-data-set
FILEREF=file-name

Required Arguments
BINDATA=SAS-data-set

Specifies the mapping table that is created by the MAPPINGTABLE= argument in
PROC HPBIN.

FILEREF=file-name
Specifies a SAS file reference for an output code file.

Example: The %HPDM_create_scorecode_bin
Macro

This example applies the %HPDM_create_scorecode_bin macro to a binned data set.
The data set that is binned is the HMEQ data set from the SAMPSIO library. Before you
can run the %HPDM_create_scorecode_bin macro, you need to run PROC HPBIN, as
shown below.

/*--- load the score code creation macro ---*/
filename h catalog 'sashelp.hpdm.hpdm_create_scorecode_hpbin.source';
%include h;

/*--- run proc hpbin to create bins table --*/
proc hpbin data=sampsio.hmeq pseudo_quantile;
 performance details;
 var LOAN MORTDUE;
 ods table mappingTable=binmap;
run;

Next, run the %HPDM_create_scorecode_bin to create the score code for the binned
data set. Also, the code below applies the score code and monitors the distribution of the
bins.

/*--- create scorecode ---------------------*/
filename bincode catalog 'work.sample.bincode.source';
%hpdm_create_scorecode_hpbin(bindata=binmap,fileref=bincode);

/*--- apply scorecode ---------------------*/
data hmeq_bins; set sampsio.hmeq;
 %include bincode;
run;

54 Chapter 6 • The %HPDM_create_scorecode_bin Macro

/*--- check distribution of bins -----------*/
proc freq data=hmeq_bins;
 table bin_loan bin_mortdue;
run;

Example: The %HPDM_create_scorecode_bin Macro 55

56 Chapter 6 • The %HPDM_create_scorecode_bin Macro

Chapter 7

The
%HPDM_create_scorecode_logi
stic Macro

Overview . 57
Introduction . 57

Syntax . 57
The %HPDM_create_scorecode_logistic Macro . 57
Required Arguments . 58
Optional Arguments . 58

Example: The %HPDM_create_scorecode_logistic Macro 58

Overview

Introduction
The %HPDM_create_scorecode_logistic macro creates SAS code to score the logistic
model created by the HPLOGISTIC procedure.

Syntax

The %HPDM_create_scorecode_logistic Macro
%macro hpdm_create_scorecode_logistic (

DATA=SAS-data-set
EVENTLEVEL=number
MODEL=SAS-data-set
MODELINFO=SAS-data-set
NONEVENTLEVEL=number
FILEREF=file-name
<CLASSIFY=Y | N>
<IMPUTE=Y | N>
<RESIDUAL=Y | N>

57

Required Arguments
DATA=SAS-data-set

Specifies the data set that is used to create the regression model in PROC
HPLOGISTIC.

EVENTLEVEL=number
Specifies the event level for a binary target variable.

FILEREF=file-name
Specifies a SAS file reference for an output code file. Failure to specify this
argument results in an error.

MODEL=SAS-data-set
Specifies the parameter estimate data set that is generated by the HPLOGISTIC
procedure.

MODELINFO=SAS-data-set
Specifies the model information data set output that is generated by the
HPLOGISTIC procedure.

NONEVENTLEVEL=number
Specifies the nonevent level for a binary target variable.

Optional Arguments
CLASSIFY=Y | N

Specify Y to create the F_, I_, and U_ variables. Specify N to suppress the residual
parameters. The default value is N.

IMPUTEY | N
Specify Y to impute the predicted values. The default value is N.

RESIDUAL=Y | N
Specify Y to create residual variables. The default value is N.

Example: The %HPDM_create_scorecode_logistic
Macro

This example applies the %HPDM_create_scorecode_logistic macro to a regression
model that is created by the HPLOGISTIC procedure. The data set that you model is the
HMEQ data set from the SAMPSIO library. Before you can run the
%HPDM_create_scorecode_logistic macro, you need to run PROC HPLOGISTIC and
output the parameter estimate table and model information table, as shown below.

/*--- load the score code creation macro ---*/
filename source1 catalog 'sashelp.hpdm.hpreg_macros.source';
%include source1;
filename source1;

/*--- run proc HPLOGISTIC to create the model --*/
proc hplogistic data=sampsio.hmeq;
 class JOB REASON DELINQ DEROG NINQ;
 model BAD(order=internal descending) =

58 Chapter 7 • The %HPDM_create_scorecode_logistic Macro

 JOB REASON CLAGE CLNO DEBTINC DELINQ DEROG
 LOAN MORTDUE NINQ VALUE YOJ / link=LOGIT ;
 performance details;
 ods output ParameterEstimates = ParamEsts1 ModelInfo = MInfo1;
run; quit;

Next, run the %HPDM_create_scorecode_logistic macro to create the score code for the
logistic model. Also, the code below applies the score code.

filename code1 catalog 'work.model.scorecode_HMEQ_BAD.source';

%HPDM_create_scorecode_HPLOGISTIC(
 data = sampsio.hmeq,
 model = ParamEsts1,
 modelinfo = Minfo1,
 classify = Y,
 residual = Y,
 fileref = code1,
 eventLevel = 1,
 nonEventLevel= 0
);

data scored_hmeq;
 set sampsio.hmeq;
 %include code1;
run;

Example: The %HPDM_create_scorecode_logistic Macro 59

60 Chapter 7 • The %HPDM_create_scorecode_logistic Macro

Chapter 8

The
%HPDM_create_scorecode_neu
ral Macro

Overview . 61
Introduction . 61
Usage . 61

Syntax . 62
The %HPDM_create_scorecode_neural Macro . 62
Required Arguments . 62
Optional Arguments . 62

Example: The %HPDM_create_scorecode_neural Macro 62

Overview

Introduction
The %HPDM_create_scorecode_neural macro creates neural network score code based
on the output of the HPNEURAL procedure. This macro reads the output data set
created by the OUTMODEL= option in the TRAIN statement of PROC HPNEURAL.
See “The HPNEURAL Procedure” in the SAS High-Performance Analytics User’s
Guide for information about its usage.

The generated score code is used inside a DATA step to calculate the predicted value for
an interval target variable and the predicted probabilities for a nominal target variable in
a neural network model. The residuals are calculated on request.

Usage
Before you can invoke the %HPDM_create_scorecode_neural macro, you must include
the macro source file. The macro source file is located in the HPDM catalog. The
following is an example of how to include the macro source file:

filename NNSC catalog 'sashelp.hpdm.hpdmneural_score_macros.source';
%include NNSC;
filename NNSC;

You must create the file reference that stores the score codes before you invoke the
%HPDM_create_scorecode_neural macro. Otherwise, the score code output prints to the
SAS log.

61

Syntax

The %HPDM_create_scorecode_neural Macro
%macro hpdm_create_scorecode_neural (

DATA=SAS-data-set
MODEL=SAS-data-set
<FILEREF=file-name>
<RESIDUAL=Y | N>

Required Arguments
DATA=SAS-data-set

Specifies the training data that is used for the HPNEURAL procedure.

MODEL=SAS-data-set
Specifies the parameter estimates produced by PROC HPNEURAL. The data set
specified here is the data set created by the OUTMODEL= argument in the TRAIN
statement of the HPNEURAL procedure.

Optional Arguments
FILEREF=file-name

Specifies a SAS file reference for an output code file. If this option is omitted, then
the output prints to the SAS log.

RESIDUAL=Y | N
Specify Y to create residual variables. The default value is N.

Example: The %HPDM_create_scorecode_neural
Macro

This example applies the %HPDM_create_scorecode_neural macro to neural network
model created for the SAMPSIO.HMEQ data set. Before you can run the
%HPDM_create_scorecode_neural macro, you need to prepare the data set and run
PROC HPNEURAL. The code below accomplishes both of these steps.

%let hpdm = <directoryPath>;

libname hpdm "&hpdm.";
filename CodeFile "&hpdm.\hpneural_scorecode.sas";
filename CodeDS2 "&hpdm.\hpneural_scorecode_DS2.sas";

/* Create a case ID */
data hpdm.hmeq;
 set sampsio.hmeq;
 casnum = _N_;

62 Chapter 8 • The %HPDM_create_scorecode_neural Macro

run;

/* Partition data into training and hold-out samples */
data hpdm.hmeq_train
 hpdm.hmeq_holdout;
 set hpdm.hmeq;
 call streaminit(27513);
 if (rand('uniform') le 0.7) then output hpdm.hmeq_train;
 else output hpdm.hmeq_holdout;
run;

/* Assign variables into interval predictors and nominal predictors */
%let INTPRED = CLAGE CLNO DEBTINC LOAN MORTDUE VALUE YOJ;
%let NOMPRED = DELINQ DEROG JOB NINQ REASON ;

/* Predict bad loan using all available predictors by a neural*/
/* network model (2 layers with 10 hidden nodes) */
proc hpneural data = hpdm.hmeq_train;
 id casnum;
 input &INTPRED. / level = int;
 input &NOMPRED. / level = nom;
 target BAD / level = nom;
 hidden 10 / act = sig;
 architecture layer2;
 train outmodel = hpdm.hmeq_model numtries=4;
 performance details;
run;

Note: You must replace <directoryPath> with the directory path to a valid location
on your network.

The above code partitions the SAMPSIO.HMEQ data set into a training and a holdout
data set, and then models the training data set with the HPNEURAL procedure. Now,
you can run the %HPDM_create_scorecode_neural macro with the following code:

/* Invoke the macro to generate score codes */
filename NNSC catalog 'sashelp.hpdm.hpdmneural_score_macros.source';
%include NNSC;
filename NNSC;

%hpdm_create_scorecode_neural
(
 data = hpdm.hmeq_train,
 model = hpdm.hmeq_model,
 fileref = CodeFile,
 residual = N
);

/* Translate scoring code into DS2 codes using DSTRANS */
proc dstrans ds_to_ds2 nocomp aster
 in = CodeFile
 out = CodeDS2;
run;

/* Calculate scores (i.e. predicted probabilities) for the hold-out sample */
%let ASTER_INPUT = sasep.in;
%let ASTER_OUTPUT = sasep.out;

Example: The %HPDM_create_scorecode_neural Macro 63

proc hpds2 in = hpdm.hmeq_holdout
 out = hpdm.hmeq_holdout_score;
 %include CodeDS2;
run;

/* Print the first 20 records of scores in the hold-out samples */
proc print data = hpdm.hmeq_holdout_score (obs = 20);
 var casnum BAD _WARN_ P_:;
run;

64 Chapter 8 • The %HPDM_create_scorecode_neural Macro

Chapter 9

The
%HPDM_create_scorecode_reg
Macro

Overview . 65
Introduction . 65

Syntax . 65
The %HPDM_create_scorecode_reg Macro . 65
Required Arguments . 65
Optional Arguments . 66

Example: The %HPDM_create_scorecode_reg Macro . 66

Overview

Introduction
The %HPDM_create_scorecode_reg macro creates SAS code to score the regression
model that is created by the HPREG procedure.

Syntax

The %HPDM_create_scorecode_reg Macro
%macro hpdm_create_scorecode_reg (

DATA=SAS-data-set
FILEREF=file-name
MODEL=SAS-data-set
MODELINFO=SAS-data-set
<IMPUTE=Y | N>
<RESIDUAL=Y | N>

Required Arguments
DATA=SAS-data-set

Specifies the data set that is used to create the regression model in PROC HPREG.

65

FILEREF=file-name
Specifies a SAS file reference for an output code file. Failure to specify this
argument results in an error.

MODEL=SAS-data-set
Specifies the parameter estimate data set that is generated by the HPREG procedure.

MODELINFO=SAS-data-set
Specifies the model information data set output that is generated by the HPREG
procedure.

Optional Arguments
IMPUTE=Y | N

Specify Y to impute the predicted values. The default value is N.

RESIDUAL=Y | N
Specifies Y to create residual variables. The default value is N.

Example: The %HPDM_create_scorecode_reg
Macro

This example applies the %HPDM_create_scorecode_reg macro to a regression model
that is created by the HPREG procedure. The data set that you model is the HMEQ data
set from the SAMPSIO library. Before you can run the %HPDM_create_scorecode_reg
macro, you need to run PROC HPREG, as shown below.

/*--- load the score code creation macro ---*/
filename source1 catalog 'sashelp.hpdm.hpreg_macros.source';
%include source1;
filename source1;

/*--- run proc hpreg to create the model --*/
proc hpreg data=sampsio.hmeq;
 class JOB REASON BAD DELINQ DEROG NINQ;
 model LOAN =
 JOB REASON CLAGE CLNO DEBTINC DELINQ DEROG MORTDUE NINQ VALUE YOJ BAD;
 performance details;
 ods output ParameterEstimates = ParamEsts2 ModelInfo = MInfo2;
run; quit;

Next, run the %HPDM_create_scorecode_reg macro to create the score code for the
regression model. Also, the code below applies the score code.

filename code2 catalog 'work.model.scorecode_HMEQ_LOAN.source' ;

%HPDM_create_scorecode_HPREG(
 data = sampsio.hmeq,
 model = ParamEsts2,
 modelinfo = Minfo2,
 residual = Y,
 fileref = code2
);

66 Chapter 9 • The %HPDM_create_scorecode_reg Macro

data scored_hmeq;
 set sampsio.hmeq;
 %include code2;
run;

Example: The %HPDM_create_scorecode_reg Macro 67

68 Chapter 9 • The %HPDM_create_scorecode_reg Macro

Part 3

Example High-Performance
Procedure and Macro Code

Chapter 10
Home Equity Loan Default Model . 71

69

70

Chapter 10

Home Equity Loan Default Model

Overview . 71

Example Program Flow . 71

Example Code . 73

SAMPSIO.HMEQ Data Set Map . 78

Overview
This example program uses SAS Enterprise Miner High Performance (HP) procedures
and macros together to build a data mining model with model scoring. The example code
uses the HMEQ (Home Equity) data set from the SAMPSIO example data library that
ships with SAS Enterprise Miner.

For a variable map of the SAMPSIO.HMEQ home equity data set, see
“SAMPSIO.HMEQ Data Set Map” on page 78.

For ease of use and understanding, this program is written for deployment on a single
SAS Enterprise Miner client, and not on a grid.

Example Program Flow
The following outline indicates the sequence of functional operations that are performed
by the example program. Actions that are new high-performance components are in
bold.

Action Function

setup specify SAMPSIO.HMEQ data set, select
BAD as target variable, create macro
variables, create titles

DATA step partition SAMPSIO.HMEQ into train and test
data sets and create a partition variable for the
train data set

71

Action Function

proc hpdmdb identify variables with missing values,
determine the range for LOAN and
MORTDUE variables.

proc hpimp impute missing values in interval variables,
create score code.

DATA step merge training data with new imputed
variables

proc hpbin create bin class variables for LOAN and
MORTDUE

DATA step merge training data with new bin variables

macro %hpdm_create_scorecode_hpbin create score code for bin variables

proc hpreduce select a subset of the variable set. The list used
for variable selection includes impute
variables, impute indicator variables, and bin
variables. Variable transformations affect the
model.

proc hpneural train the neural network

macro %em_new_assessmacro
%em_new_report

build and report on model performance

macro %hpdm_create_scorecode_neural create score code for the neural model

DATA step apply the generated score code to the test data

macro %em_new_assessmacro
%em_new_report

report on the test data set

proc hplogistic use backwards model selection algorithm to
train the logistic regression model

macro %em_new_assessmacro
%em_new_report

build and report on model assessment

macro %hpdm_create_scorecode_reg create score code for the regression model

DATA step apply the generated score code to the test data

macro %em_new_assessmacro
%em_new_report

build and report on model performance

proc hpdecide create profit matrix and bias decisions.

72 Chapter 10 • Home Equity Loan Default Model

Example Code

/*---*/
/* HPDM 1.1 HMEQ SAMPLE PROGRAM */
/*---*/
/* load use useful macros for hp data mining */
/*---*/
filename h catalog 'sashelp.hpdm.hpdm_tools.source' ;
 %include h ;
filename h catalog 'sashelp.hpdm.hpreg_macros.source' ;
 %include h ;
filename h catalog 'sashelp.hpdm.hpdmneural_score_macros.source' ;
 %include h ;
filename h catalog 'sashelp.hpdm.hpdm_score_create_hpbin.source' ;
 %include h ;
%global em_keytargetlevel ;

/*---*/
/* Create train and test partitions of the data */
/* Grid data should have an ID column for matching results */
/*---*/
data train test; set sampsio.hmeq ;
 length id 8 ;
 ID= 10101010 + _N_ ;
 if ranuni(1) < 0.1 then output test ; else output train ;
run ;

/*---*/
/* Create a partition variable in the train data */
/*---*/
data train ; set train ;
 length partition $2 ;
 if ranuni(1) < 0.5 then partition='T';
else partition='V';
run ;

/*---*/
/* use these variables for the analysis. the target is BAD */
/*---*/
%let class= JOB REASON ;
%let vars= CLAGE CLNO DEBTINC DELINQ DEROG LOAN MORTDUE NINQ VALUE YOJ ;

/*---*/
/* create summary of the data. locate missing var values */
/*---*/
title1 'SAS High Performance Data Mining 1.1 DEMO' ;
proc hpdmdb data=train varout=v classout=c dmdbcat=d ;

Example Code 73

 performance details ;
 var &vars ;
 class &class ;
run ;

title2 'Class Variables' ; proc print data=c noobs ; run ;

title2 'Interval Variables' ; proc print data=v noobs; run ;

/*---*/
/* impute the missing interval variables */
/* procedure saves scorecode for test and production data */
/*---*/
title2 'Impute missing interval values' ;
filename impute 'impute.sas' ;
proc hpimp data=train out=hpimp dmdbcat=d;
 performance details ;
 id id ;
 input &vars ;
 impute &vars / method=mean ;
 ods table ImputeResults=ir ;
 code file= impute ;
run ;

/*---*/
/* Update train table by merging output */
/*---*/
data train ; merge train hpimp ; by id ; drop &vars ; run;

/*---*/
/* fetch names of new variables */
/*---*/
%global n_imp_vars imp_vars m_vars ;
data _null_ ; set ir end=eof ;
 length imp_vars $2000 m_vars $2000 ;
 retain imp_vars ' ' m_vars ' ' ;
 imp_vars= strip(imp_vars) !! ' ' !! impvarname ;
 m_vars= strip(m_vars) !! ' ' !! indicatorvarname ;
 if eof then do ;
 call symput('imp_vars',strip(imp_vars)) ;
 call symput('m_vars',strip(m_vars)) ;
 call symput('n_imp_vars', strip(put(_N_,6.))) ;
 end ;
run ;

%put NOTE: IMPUTE VARS: &n_imp_vars : &imp_vars ;
%put NOTE: INDICATOR VARS: &n_imp_vars : &m_vars ;

/*---*/
/* bin variables with wide distributions */
/*---*/
proc hpbin data=train output=hpbin pseudo_quantile ;

74 Chapter 10 • Home Equity Loan Default Model

 performance details ;
 id id ;
 var imp_LOAN imp_MORTDUE ;
 ods table mappingTable=binmap ;
run ;

/*---*/
/* Update train table by merging output */
/*---*/
data train ; merge train hpbin ; by id ; run;

%let class= &class bin_imp_LOAN bin_imp_MORTDUE ;

/*---*/
/* build score code for test and production data */
/*---*/
filename bincode 'bincode.sas' ;
%hpdm_create_scorecode_bin(bindata=binmap,fileref=bincode) ;

/*---*/
/* select variables based on unsupervised variance reduction */
/*---*/
title2 'Reduce dimensionality' ;
proc hpreduce data=train outcp= cp;
 performance details ;
 id id partition ;
 class &class / missing ;
 reduce unsupervised &class &imp_vars &m_vars / varexp=0.95 ;
 ods table selectionsummary=s ;
run ;

/*---*/
/* fetch names of selected variables */
/*---*/
proc freq data=s noprint ; table variable / missing out=sf ; run ;
%global n_reduce_vars reduce_vars n_reduce_class reduce_class ;
data _null_ ; set sf end=eof ;
 length cvars $2000 ivars $2000 ;
 retain cvars ' ' ivars ' ' cnv 0 inv 0 ;
 if count gt 1 then do ;
 cvars= strip(cvars) !! ' ' !! variable ;
 cnv+1 ;
end ;
 else do ; ivars= strip(ivars) !! ' ' !! variable ;
 inv+1 ;
end ;
 if eof then do ;
 call symput('reduce_vars',strip(ivars)) ;
 call symput('n_reduce_vars', strip(put(inv,6.))) ;
 call symput('reduce_class',strip(cvars)) ;
 call symput('n_reduce_class', strip(put(cnv,6.))) ;
 end ;

Example Code 75

run ;

%put NOTE: REDUCE VARS: &n_reduce_vars : &reduce_vars ;
%put NOTE: REDUCE CLASS: &n_reduce_class : &reduce_class ;

/*---*/
/* Train a Neural Network model */
/*---*/
title2 'Neural Network' ;
proc hpneural data=train ;
 performance details ;
 id id ;
 input &reduce_vars / level=int ;
 input &reduce_class / level=nom ;
 target bad / level=nom ;
 hidden 4 ;
 architecture layer1 ;
 train outmodel=nn maxiter=40 ;
 score out=scores ;
run ;

/*---*/
/* create model performance measures */
/*---*/
%em_new_assess(data=scores,out=bins,target=bad,event=1,var=p_bad1,
 from=from,into=into) ;
%em_new_report(bins=bins,from=from,into=into) ;

/*---*/
/* build score code for test and production data */
/*---*/
filename neural 'neural.sas' ;
%hpdm_create_scorecode_neural(data=train,model=nn,fileref=neural) ;

/*---*/
/* score test data and measure performance */
/*---*/
data testscores ; set test ;
 %include impute ;
 %include bincode ;
 %include neural ;
 keep id bad p_: ;
run ;

title2 'Neural Model Applied to Test Data' ;
%em_new_assess(data=testscores,out=testbins,target=bad,event=1,var=p_bad1,
 from=from,into=into) ;
%em_new_report(bins=testbins,from=from,into=into) ;

/*---*/
/* train a logistic regression model. */

76 Chapter 10 • Home Equity Loan Default Model

/* use all imputed vars and backward model selection */
/*---*/
title2 'Logistic Regression' ;
proc hplogistic data=train ;
 performance details ;
 id id partition bad ;
 class &class ;
 model bad(ref=first) = &imp_vars &m_vars &class ;
 selection method=backward ;
 output out=scores(rename=(pred=p_bad1)) pred ;
 ods output ParameterEstimates=lr_est ModelInfo=lr_info ;
run ;

/*---*/
/* create model performance measures */
/*---*/
%em_new_assess(data=scores,out=bins,target=bad,event=1,var=p_bad1,
 from=from,into=into) ;
%em_new_report(bins=bins,from=from,into=into) ;

/*---*/
/* build score code for test data and production systems */
/*---*/
filename logistic 'logistic.sas' ;
%HPDM_create_scorecode_HPLOGISTIC(data=train,model=lr_est,modelinfo=lr_info,
 fileref=logistic,eventLevel=1,nonEventLevel=0) ;
/*---*/
/* score test data and measure performance */
/*---*/
title2 'Logistic Model Applied to Test Data' ;
data testscores ; set test ;
 %include impute ;
 %include bincode ;
 %include logistic ;
 keep id bad p_: ;
run ;

%em_new_assess(data=testscores,out=testbins,target=bad,event=1,
 var=p_bad1,from=from,into=into) ;
%em_new_report(bins=testbins,from=from,into=into) ;

/*---*/
* Create a profit matrix ;
* introduce bias to keep more risky borrowers ;
* use basis points as units ;
/*---*/
data profit(type=profit) ;
 length BAD $32 keep reject 8;
 label keep='keep' reject='reject';
 bad='1' ; keep=150 ; reject=170 ; output ;
 bad='0' ; keep=200 ; reject=100 ; output ;
run;

Example Code 77

title2 'Decision Processing' ;
proc hpdecide data=testscores out=decisions outFit=hpdecide_outFit role=train ;
 decision decdata=profit decvars=keep reject;
 target BAD;
 posteriors P_BAD1 P_BAD0;
run;

proc hpdmdb data=decisions classout=c;
class i_bad d_profit;
run ;

proc print data=c ; run ;
/*---*/
* create hpreg example ;
/*---*/

SAMPSIO.HMEQ Data Set Map
The following table provides summary information about the HMEQ Home Equity data
set that is included in the SAS Enterprise Miner SAMPSIO example data library:

Variable Model Role Measurement Description

BAD target binary default or seriously
delinquent

CLAGE input interval age of oldest trade
(credit) line in months

CLNO input interval number of trade (credit)
lines

DEBTINC input interval debt-to-income ratio

DELINQ input interval number of delinquent
trade lines

DEROG input interval number of major
derogatory reports

JOB input nominal job category

LOAN input interval amount of current loan
request

MORTDUE input interval amount due on existing
mortgage

NINQ input interval number of recent credit
inquiries

78 Chapter 10 • Home Equity Loan Default Model

Variable Model Role Measurement Description

REASON input binary home improvement or
debt consolidation

VALUE input interval value of current
property

YOJ input interval years on current job

SAMPSIO.HMEQ Data Set Map 79

80 Chapter 10 • Home Equity Loan Default Model

	Contents
	High-Performance Procedures
	HP4SCORE Procedure
	Overview: HP4SCORE Procedure
	Syntax: HP4SCORE Procedure
	PROC HP4SCORE Statement
	ID Statement
	PERFORMANCE Statement
	SAVE Statement
	SCORE Statement

	HPBIN Procedure
	Overview: HPBIN Procedure
	The HPBIN Procedure
	Features
	Bucket Binning
	Pseudo-Quantile Binning
	The Output Data Set
	Variable Mapping Table
	Performance Information
	ODS Tables

	Syntax: HPBIN Procedure
	PROC HPBIN Statement
	FREQ Statement
	ID Statement
	PERFORMANCE Statement
	VAR Statement

	Examples: HPBIN Procedure
	Bucket Binning
	Pseduo-Quantile Binning

	HPDECIDE Procedure
	Overview: HPDECIDE Procedure
	Syntax: HPDECIDE Procedure
	PROC HPDECIDE Statement
	DECISION Statement
	FREQ Statement
	ID Statement
	PERFORMANCE Statement
	POSTERIORS Statement
	PREDICTED Statement
	TARGET Statement

	Example: The HPDECIDE Procedure

	HPIMP Procedure
	Overview: HPIMP Procedure
	Syntax: HPIMP Procedure
	PROC HPIMP Statement
	CODE Statement
	ID Statement
	IMPUTE Statement
	INPUT Statement
	PERFORMANCE Statement

	Example: The HPIMP Procedure

	High-Performance Macros
	The %EM_new_assess Macro
	Overview
	Syntax
	The %EM_new_assess Macro
	Required Arguments
	Optional Arguments

	Details
	The OUT= Data Set
	The EXPAND= Data Set
	The BINSTATS= Data Set
	MAP-REDUCE
	Tie-Breaking
	Counting Rows, Events, and Missing Values
	Integration with SAS Enterprise Miner
	Integration with SAS Code
	Comparison with SAS Enterprise Miner 7.1
	Profiling

	Example: The %EM_new_assess Macro

	The %HPDM_create_scorecode_bin Macro
	Overview
	Introduction
	Details

	Syntax
	The %HPDM_create_scorecode_bin Macro
	Required Arguments

	Example: The %HPDM_create_scorecode_bin Macro

	The %HPDM_create_scorecode_logistic Macro
	Overview
	Introduction

	Syntax
	The %HPDM_create_scorecode_logistic Macro
	Required Arguments
	Optional Arguments

	Example: The %HPDM_create_scorecode_logistic Macro

	The %HPDM_create_scorecode_neural Macro
	Overview
	Introduction
	Usage

	Syntax
	The %HPDM_create_scorecode_neural Macro
	Required Arguments
	Optional Arguments

	Example: The %HPDM_create_scorecode_neural Macro

	The %HPDM_create_scorecode_reg Macro
	Overview
	Introduction

	Syntax
	The %HPDM_create_scorecode_reg Macro
	Required Arguments
	Optional Arguments

	Example: The %HPDM_create_scorecode_reg Macro

	Example High-Performance Procedure and Macro Code
	Home Equity Loan Default Model
	Overview
	Example Program Flow
	Example Code
	SAMPSIO.HMEQ Data Set Map

