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Overview: HP4SCORE Procedure
The HP4SCORE procedure scores a previously trained random forest model produced 
by the HPFOREST procedure.

Syntax: HP4SCORE Procedure
PROC HP4SCORE DATA=<libref.>SAS-data-set;

ID variables-list;
PERFORMANCE <performance-options>;
SAVE FILE=file-name;
SCORE FILE=file-name OUT=SAS-data-set;

PROC HP4SCORE Statement
The PROC HP4SCORE statement invokes the procedure.

Syntax
PROC HP4SCORE DATA=<libref.>SAS-data-set;
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Details

Required Arguments
DATA=<libref.>SAS-data-set

Specifies the input data set that is used by the HPFOREST procedure to generate the 
random forest model.

Note: Due to restrictions on the length of variable names, it is possible that unique 
names are not generated by HPFOREST in the OUT= data set. The current 
versions of the HPFOREST procedure and the HP4SCORE procedure do not 
check for unique variable names and will terminate with an error if all variable 
names are not unique.

ID Statement
The ID statement lists one or more variables from the input data set that are transferred to the output data 
sets. The ID statement accepts numeric and character variables. For more information about the ID 
statement, see “Shared Concepts and Topics” in the SAS High-Performance Analytics User’s Guide.

Syntax
ID variables-list;

Details

Required Arguments
variables-list

Specifies the variables that you want to transfer from the input data set to the output 
data sets.

PERFORMANCE Statement
The PERFORMANCE statement defines performance parameters for multi-threaded and distributed 
computing, communicates variable information about the distributed computing environment, and requests 
detailed results about the performance characteristics of the HP4SCORE procedure. With the 
PERFORMANCE statement, you can control whether the HP4SCORE procedure executes in symmetric 
multiprocessing or massively parallel mode. For more information about the PERFORMANCE statement, 
see “Shared Concepts and Topics” in the SAS High-Performance Analytics User’s Guide.

Syntax
PERFORMANCE <performance-options>;
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Details

Optional Arguments
COMMIT=n

Specifies the minimum number of observations that must transfer from the client to 
the appliance before the SAS log is updated. For example, if you specify 
COMMIT=5000, then every time the number of observations sent exceeds an integer 
multiple of 5000, a log message is produced. This message indicates the actual 
number of observations distributed, not the COMMIT= value that triggered the 
message.

CPUCOUNT= ACTUAL | number
Specifies how many processors that PROC HP4SCORE assumes are available on 
each host in the computing environment. Valid values for number are integers 
between 1 and 256, inclusive. Setting CPUCOUNT= to a value greater than the 
actual number of available CPUs can result in reduced performance.

Specify CPUCOUNT=ACTUAL to set CPUCOUNT= to the number of processors 
physically available. This number can be less than the physical number of CPUs if 
the SAS process has been restricted by system administration tools.

This option overrides the CPUCOUNT= SAS system option.

If PROC HP4SCORE executes in SMP mode, then this option refers to the client 
machine of the SAS session. If PROC HP4SCORE executes in MPP mode, then this 
option applies the nodes on the appliance.

DATASERVER=“name”
Specifies the server name on Teradata systems as defined through the hosts file and 
as used in the LIBNAME statement for Teradata. For example, if the hosts file 
defines myservercop1 33.44.55.66 as the server for Teradata, then a 
LIBNAME statement would be as follows:

libname TDLIB terdata server=myserver user= password= database= ;

To induce PROC HP4SCORE to run alongside the Teradata server, specify the 
following performance statement:

performance dataserver="myserver";

DETAILS
Requests a table that shows a timing breakdown of the procedure steps.

TIMEOUT=s
Specifies the length of time, in seconds, that PROC HP4SCORE should wait for a 
connection to the appliance and should wait before establishing a connection back to 
the client. The default value for s is 120 seconds. If jobs are submitted to the 
appliance through workload management tools that might suspend access to the 
appliance for a longer period, you might want to increase the time-out value.

HOST=“name”
GRIDHOST=“name”

Specifies the name of the appliance host. The HOST= option overrides the value of 
the GRIDHOST environment variable.

INSTALL=“name”
INSTALLOC=“name”

Specifies the directory where the SAS High-Performance Analytics shared libraries 
are installed on the appliance. Specifying the INSTALL= option overrides the 
GRIDINSTALLLOC environment variable.

PERFORMANCE Statement 5



NODES=n
NNODES=n

Specifies the number of nodes in the distributed computing environment, provided 
that the data is not processed alongside the database. Specify NODES=0 to indicate 
that you want to process the data in SMP mode on the client machine. If the input 
data is not alongside the database, this is the default setting. The HP4SCORE 
procedure then performs multi-threaded analysis on the client.

If the data is not read alongside the database, the NODES= option specifies the 
number of nodes on the appliance that are involved in the analysis.

If the number of nodes can be modified by the application, you can specify a 
NODES= option where n exceeds the number of physical nodes on the appliance. 
The SAS High-Performance Analytics software then over-subscribes the nodes and 
associates nodes with multiple units of work. For example, on a system with 16 
appliance nodes, the following statement would over-subscribe the system by a 
factor of 3:

performance nodes=48 host="hpa.sas.com";

Generally, it is not advisable to over-subscribe the system because the analytic code 
is optimized for a certain level of multi-threading on the nodes that depend on the 
CPU count.

If the data is read alongside the distributed database on the appliance, specifying a 
nonzero value for the NODES= option has no effect. The number of units of work in 
the distributed computing environment is then determined by the distribution of the 
data and cannot be altered.

NTHREADS=n
Specifies the number of threads used for analytic computations and overrides the 
SAS system option THREADS | NOTHREADS. If you do not specify the 
NTHREADS= option, then the number of threads is determined based on the number 
of CPUs on the host machine where the analytic computations execute.

By default, SAS High-Performance Analytics procedures execute in multiple 
concurrent threads, unless you disable this behavior with the NOTHREADS system 
option or you specify NTHREADS=1 to force single-threaded execution. The value 
specified here must not exceed 256.

Note: The SAS system option THREADS | NOTHREADS applies to the current 
machine where the SAS High-Performance Analytics procedures execute. This 
option does not apply to the compute nodes in a distributed environment.

SAVE Statement

Syntax
SAVE FILE=file-name;

6 Chapter 1 • HP4SCORE Procedure



Details

Required Argument
FILE=file-name

Specifies the location where PROC HP4SCORE will save the scoring model. This 
version of PROC HP4SCORE requires a fully formed, physical path to the filename. 
File references are not supported.

SCORE Statement
The SCORE statement identifies the model created by the HPFOREST procedure and outputs the scoring 
information.

Syntax
SCORE FILE=file-name OUT=SAS-data-set;

Details

Required Arguments
FILE=file-name

Specifies the filename created by the FILE= argument in the HPFOREST procedure. 
This version of PROC HP4SCORE requires a fully formed, physical path to the file 
name. File references are not supported.

OUT=SAS-data-set
Specifies the output data set that contains scored model.

SCORE Statement 7
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Overview: HPBIN Procedure

The HPBIN Procedure
Binning is a common step in the data preparation stage of the model building process. 
You can use binning to classify missing variables, reduce the impact of outliers, or 
generate multiple effects. The generated effects are useful in modeling nonlinear 
processes.

The HPBIN procedure conducts high-performance binning that uses either bucket 
binning or pseudo-quantile binning. Like other high-performance procedures, the 
HPBIN procedure can read and write data in distributed form. Also, PROC HPBIN can 
perform analyses in parallel in either symmetric multiprocessing (SMP) mode or 
massively parallel processing (MPP) mode.
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Features
The HPBIN Procedure has the following features:

• performs analysis on a massively parallel SAS high-performance appliance

• reads input data in parallel and writes output data in parallel when the data source is 
on the appliance database

• is highly multithreaded during all phases of analytic execution

• provides a bucket (or equal length) binning method

• provides a pseudo-quantile binning method, which is similar to quantile binning

• provides a mapping table for the selected binning method

• provides different output tables according to user preferences.

Bucket Binning
Those familiar with SAS Enterprise Miner should recall a special variable named 
_AOV16_, which is used heavily during the data preparation and variable selection 
stages. This variable is a class variable with maximum level 16, derived from an interval 
variable that you want to bin. Bucket binning creates equal length bins and assigns the 
data to one of these bins. The bucket lengths of the equal length bins are calculated 
according to (maximum — minimum)/(number of valid observations).

Pseudo-Quantile Binning
Quantile binning requires a particular data sorting, and the sorting process typically 
consumes a significant amount of CPU time and memory usage. When the input data set 
is larger than the available memory, it is nearly impossible to sort the data in any amount 
of time. For distributed computing, data communications overhead increases the data 
sorting challenge.

To address these issues, the HPBIN procedure contains a novel approach to quantile 
binning, named pseudo-quantile binning. The pseudo-quantile method is very efficient, 
and the results mimic those of the quantile binning method. For example, consider the 
code below:

data bindata;
    do i=1 to 1000;
    x=rannorm(1);
    output;
    end;
run;

proc rank data=bindata out=rankout group=8;
    var x;
    ranks rank_x;
run;

proc univariate data=rankout plot;
    var rank_x;
    histogram;
run;
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This code creates a data set with 1000 observations, each generated by a random normal 
distribution. The histogram for this data set is shown below.

The pseudo-quantile method used by PROC HPBIN achieves similar results in far less 
computation time. In this case, the time complexity is C*O(n), where C is a constant and 
n is the number of observations. When the algorithm runs on the grid, the total 
computation time is much less. For example, if a cluster has 32 nodes and each node has 
24 shared memory CPUs, then the time complexity is (C*O(n))/(32*24).

The code below bins the data using the PSEUDO_QUANTILE option. The histogram 
for the data is given below the code. Note that it is similar to the histogram shown above.

proc hpbin data=bindata output=binout numbin=8 pseudo_quantile;
    var x;
run;

proc univariate data=binout plot;
    var bin_x;
    histogram;
run;

Overview: HPBIN Procedure 11



The Output Data Set
The output data set that PROC HPBIN generates varies based on the statements and 
options that you include in your PROC HPBIN call. By default, the output data set 
includes the original input data and the binning variables. However, you can alter this 
data set with an ID statement, the REPLACE option, or certain other conditions. The 
following conditions affect the information in the output data set:

• if PROC HPBIN was run in solo mode

• if the output is transferred back to the client machine

• if the output is created on the grid alongside a database

• if NOPRINT is specified, suppressing all ODS output

Note: If the input variable value is missing, then the binning output level value is 0.

Variable Mapping Table
By default, the variable mapping table is provided in the PROC HPBIN output. This 
table provides the level mapping for the input variables. The level starts at 1 and 
continues to the value of NUMBINS. In the mapping table, a missing value for the lower 
bound indicates negative infinity, and a missing value for the upper bound indicates 
positive infinity.

Note that the final binning level might be less than NUMBINS, if the input data is small 
or the binning variable is discrete. In this case, a warning message is printed.

Performance Information
The Performance Information table is produced by default, and displays information 
about the grid host for distributed execution. Moreover, this table specifies if the 
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procedure was executed in client mode, distributed mode, or alongside-the-database 
mode. The number of compute nodes and threads are also provided, depending on the 
environment.

ODS Tables
Each table created by the HPBIN procedure has a name that is associated with it. You 
must use this name to refer to each table when you use ODS statements. These tables are 
described below.

Table Name Description
Required Statements or 
Arguments

hpbininfo This table provides basic 
binning information, 
including the method, number 
of bins, number of binning 
variables, and number of 
observations.

This table requires the PROC 
HPBIN statement, options, 
and observation count.

mappingTable This table provides the level 
mapping table, calculated 
based on the binning option 
specified.

This table requires you to 
specify either BUCKET or 
PSEUDO-QUANTILE in the 
PROC HPBIN statement.

PerformanceInfo This table contains 
information about the high-
performance computing 
environment.

This table requires the 
OUTPUT= argument.

Syntax: HPBIN Procedure
Requirement: The VAR statement is required for PROC HPBIN.

PROC HPBIN DATA=SAS-data-set <options>;
FREQ variable;
ID variables-list;
PERFORMANCE <performance-options;>
VAR variables-list;

RUN;

PROC HPBIN Statement
The PROC HBPIN statement invokes the procedure.

Syntax
PROC HPBIN DATA=data-set-name <options>;

PROC HPBIN Statement 13



Details

Required Arguments
DATA=<libref.>SAS-data-set

Specifies the data set that is used in the binning process. By default, the most 
recently created data set is used. If the data is already distributed, the procedure reads 
the data alongside the distributed database.

Optional Arguments
NOPRINT

Suppresses the generation of ODS output.

NUMBIN=n
Specifies the number of bins that are created. The value of n must be an integer 
between 2 and 1000, inclusive. The default value is 16.

OUTPUT=SAS-data-set
Specifies the binning output data set. By default, this data set contains the original 
data and the extra binning data.

REPLACE
Replaces the specified variables in the original data set with the binning variables. If 
the ID statement is present, the REPLACE option is ignored, because the output data 
set contains only the ID and binning variables.

Options
BUCKET | PSEUDO_QUANTILE

Specify BUCKET to apply equal-length binning. You can specify the binning 
method after you have specified your arguments. The PSEUDO_QUANTILE 
method approximates the results of quantile binning. The default binning method is 
BINNING.

FREQ Statement
The variable in the FREQ statement identifies a numeric variable in the input data set that contains the 
frequency of occurrence for each observation.

Note: For bucket binning, the FREQ statement has no effect.

Syntax
FREQ variable;

Details

Required Argument
variable

Specify the variable in the input data set that contains the frequency for each 
observation. The HPBIN procedure treats each observation as if it appeared f times, 
where f is the value of the frequency variable for that observation. If the frequency 
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value is not an integer, then it is truncated to an integer. If the frequency value is less 
than 1 (or missing), the observation is not used in the analysis. When the FREQ 
statement is not specified, each observation is assigned a frequency of 1.

ID Statement
The ID statement lists one or more variables from the input data set that are transferred to the output data 
sets. The ID statement accepts numeric and character variables. If an ID statement is used, the ID 
variables and the binning output variables are included in the output data set. For more information about 
the ID statement, see “Shared Concepts and Topics” in the SAS High-Performance Analytics User’s Guide.

Note: The ID statement is optional.

Syntax
ID variables-list

Details

Required Argument
variables-list

Use the ID statement to specify the variables that you want to transfer from the input 
data set to the output data sets.

PERFORMANCE Statement
The PERFORMANCE statement defines performance parameters for multi-threaded and distributed 
computing, communicates variable information about the distributed computing environment, and requests 
detailed results about the performance characteristics of the HPBIN procedure. With the PERFORMANCE 
statement, you can control whether the HPBIN procedure executes in symmetric multiprocessing mode or 
massively parallel mode. For more information about the PERFORMANCE statement, see “Shared 
Concepts and Topics” in the SAS High-Performance Analytics User’s Guide.

Syntax
PERFORMANCE <performance-options>;

Details

Optional Arguments
COMMIT=n

Specifies the minimum number of observations transferred from the client to the 
appliance necessary to update the SAS Log. For example, if you specify 
COMMIT=5000, then every time the number of observations sent exceeds an integer 
multiple of 5000 a log message is produced. This message indicates the actual 
number of observations distributed, not the COMMIT= value that triggered the 
message.
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CPUCOUNT= ACTUAL | number
Specifies how many processors PROC HPBIN assumes are available on each host in 
the computing environment. Valid values for number are integers between 1 and 
256, inclusive. Setting CPUCOUNT= to a value greater than the actual number of 
available CPUs might results in reduced performance.

Specify CPUCOUNT=ACTUAL to set CPUCOUNT= to the number of processors 
physically available. This number can be less than the physical number of CPUs if 
the SAS process has been restricted by system administration tools.

This option overrides the CPUCOUNT= SAS system option.

If PROC HPBIN executes in SMP mode, then this option refers to the client machine 
of the SAS session. If PROC HPBIN executes in MPP mode, then this option applies 
the nodes on the appliance.

DATASERVER=“name”
Specifies the server name on Teradata systems as defined through the hosts file and 
as used in the LIBNAME statement for Teradata. For example, if the hosts file 
defines myservercop1 33.44.55.66 as the server for Teradata, then a 
LIBNAME statement would be as follows:

libname TDLIB terdata server=myserver user= password= database= ;

To induce PROC HPBIN to run alongside the Teradata server, specify the following 
performance statement:

performance dataserver="myserver";

DETAILS
Requests a table that shows a timing breakdown of the procedure steps.

TIMEOUT=s
Specifies the length of time, in seconds, that PROC HPBIN should wait for a 
connection to the appliance and to establish a connection back to the client. The 
default value for s is 120 seconds. If jobs are submitted to the appliance through 
workload management tools that might suspend access to the appliance for a longer 
period, you might want to increase the time-out value.

HOST=“name”
GRIDHOST=“name”

Specifies the name of the appliance host. The HOST= option overrides the value of 
the GRIDHOST environment variable.

INSTALL=“name”
INSTALLOC=“name”

Specifies the directory where the High-Performance Analytics shared libraries are 
installed on the appliance. Specifying the INSTALL= option overrides the 
GRIDINSTALLLOC environment variable.

NODES=n
NNODES=n

Specifies the number of nodes in the distributed computing environment, provided 
that the data is not processed alongside the database. Specify NODES=0 to indicate 
that you want to process the data in SMP mode on the client machine. If the input 
data is not alongside the database, this is the default setting. The HPBIN procedure 
then performs multithreaded analysis on the client.

If the data is not read alongside the database, the NODES= option specifies the 
number of nodes on the appliance that are involved in the analysis.

If the number of nodes can be modified by the application, you can specify a 
NODES= option where n exceeds the number of physical nodes on the appliance. 
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The High-Performance Analytics software then over-subscribes the nodes and 
associates nodes with multiple units of work. For example, on a system with 16 
appliance nodes, the following statement would over-subscribe the system by a 
factor of 3:

performance nodes=48 host="hpa.sas.com";

Generally, it is not advisable to over-subscribe the system because the analytic code 
is optimized for a certain level of multithreading on the nodes that depend on the 
CPU count.

If the data is read alongside the distributed database on the appliance, specifying a 
nonzero value for the NODES= option has no effect. The number of units of work in 
the distributed computing environment is then determined by the distribution of the 
data and cannot be altered.

NTHREADS=n
Specifies the number of threads used for analytic computations and overrides the 
SAS system option THREADS | NOTHREADS. If you do not specify the 
NTHREADS= option, then the number of threads is determined based on the number 
of CPUs on the host machine where the analytic computations execute.

By default, High-Performance Analytics procedures execute in multiple concurrent 
threads, unless you disable this behavior with the NOTHREADS system option or 
you specify NTHREADS=1 to force single-threaded execution. The value specified 
here must not exceed 256.

Note: The SAS system option THREADS | NOTHREADS applies to the current 
machine where the SAS High-Performance Analytics procedures execute. This 
option does not apply to the compute nodes in a distributed environment.

VAR Statement
The VAR statement identifies which variables the HPBIN procedure will bin. PROC HPBIN does not 
support duplicated variables, and the VAR statement terminates with an error if duplicated variables exist.

Requirement: The variables specified here must be interval variables. PROC HPBIN terminates 
with an error if class variables are specified

Syntax
VAR variables-list;

Details

Required Arguments
variables-list

Lists the variables that the HPBIN procedure will bin. You cannot specify the same 
variable more than once, or PROC HPBIN terminates in an error. If you specify a 
variable in the VAR statement, then you cannot specify that variable in either the ID 
or the FREQ statement.
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Examples: HPBIN Procedure

Example 1: Bucket Binning

Create the Data Set

This example creates a sample data set and applies the bucket binning method to 
partition the data. First, you need to create the sample data set with the code below:

data ex12;
    length i 8;
    length cl1 $20;

    do i=1 to 1000;
        x1 = ranuni(1);
        x2 = 10*ranuni(2);
        x3 = 100*ranuni(3);
        x4 = 1000*ranuni(4);
        x5 = 5*ranuni(6);

        if x1 < 0.3 then do;
            cl1 = "East";
        end;
        else if x1 < 0.6 then do;
            cl1 = "West";
        end; 
        else do;
            cl1 = "Middle";
        end;
        output;
    end;
run;

Run the HPBIN Procedure

Run the code below to bin the data set ex12.

proc hpbin data=ex12 output=out numbin=5 bucket;
    id x5;
    var x1-x3; 
run;

The preceding code uses bucket binning on the variables x1, x2, and x3 to create 5 bins. 
Also, x5 is passed to the output data set, because it is included in the ID statement. The 
HPBIN Mapping Table, shown below, displays the variable assignments for each bin.

HPBIN Mapping Table
NAME BIN_NAME LB         UB         EM_BIN_LABEL                 BIN
x1   bin_x1   .          0.203283   x1 < 0.203283                1
x1   bin_x1   0.203283   0.402403   0.203283 <= x1 < 0.402403    2
x1   bin_x1   0.402403   0.601524   0.402403 <= x1 < 0.601524    3
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x1   bin_x1   0.601524   0.800644   0.601524 <= x1 < 0.800644    4
x1   bin_x1   0.800644   .          0.800644 <= x1               5
x2   bin_x2   .          2.009399   x2 < 2.009399                1
x2   bin_x2   2.009399   3.995784   2.009399 <= x2 < 3.995784    2
x2   bin_x2   3.995784   5.982170   3.995784 <= x2 < 5.982170    3
x2   bin_x2   5.982170   7.968556   5.982170 <= x2 < 7.968556    4
x2   bin_x2   7.968556   .          7.968556 <= x2               5
x3   bin_x3   .          19.946486  x3 < 19.946486               1
x3   bin_x3   19.946486  39.865621  19.946486 <= x3 < 39.865621  2
x3   bin_x3   39.865621  59.784756  39.865621 <= x3 < 59.784756  3
x3   bin_x3   59.784756  79.703890  59.784756 <= x3 < 79.703890  4
x3   bin_x3   79.703890  .          79.703890 <= x3              5

Note that because you specified bucket binning, each bin is the same length.

Example 2: Pseduo-Quantile Binning

Binning in Soloist Mode

This example uses the HMEQ data set, available in the SAMPSIO library. Consider the 
following code:

proc hpbin data=sampsio.hmeq pseudo_quantile;
    performance details;
    var loan mortdue;
    ods table mappingTable=binmap;
run;

This code bins the variables loan and mortdue into 16 bins. The Performance 
Information table provides information about the host, Execute mode, nodes, and threads 
used by the HPBIN procedure. The Binning Information table displays the method, 
number of bins, number of variables, and number of observations used by PROC 
HPBIN. Note in the following mapping table shown that these bins are not equal length.

The Binning output
Obs  NAME  BIN_NAME        LB       UB       EM_BIN_LABEL  BIN 
1    LOAN     bin_LOAN     .        6339.20  LOAN < 6339.20 1 
2    LOAN     bin_LOAN     6339.20  8381.60  6339.20 <= LOAN < 8381.60         2
3    LOAN     bin_LOAN     8381.60  9980.00  8381.60 <= LOAN < 9980.00         3
4    LOAN     bin_LOAN     9980.00  11134    9980.00 <= LOAN < 11134.40        4
5    LOAN     bin_LOAN     11134    12466    11134.40 <= LOAN < 12466.40       5
6    LOAN     bin_LOAN     12466    13710    12466.40 <= LOAN < 13709.60       6
7    LOAN     bin_LOAN     13710    15042    13709.60 <= LOAN < 15041.60       7
8    LOAN     bin_LOAN     15042    16374    15041.60 <= LOAN < 16373.60       8
9    LOAN     bin_LOAN     16374    17883    16373.60 <= LOAN < 17883.20       9
10   LOAN     bin_LOAN     17883    19748    17883.20 <= LOAN < 19748.00       10
11   LOAN     bin_LOAN     19748    21435    19748.00 <= LOAN < 21435.20       11
12   LOAN     bin_LOAN     21435    23389    21435.20 <= LOAN < 23388.80       12
13   LOAN     bin_LOAN     23389    25431    23388.80 <= LOAN < 25431.20       13
14   LOAN     bin_LOAN     25431    28273    25431.20 <= LOAN < 28272.80       14
15   LOAN     bin_LOAN     28273    36620    28272.80 <= LOAN < 36620.00       15
16   LOAN     bin_LOAN     36620    .        36620.00 <= LOAN                  16
17   MORTDUE  bin_MORTDUE  .        21142    MORTDUE < 21142.37                1
18   MORTDUE  bin_MORTDUE  21142    31477    21142.37 <= MORTDUE < 31477.03    2
19   MORTDUE  bin_MORTDUE  31477    40222    31477.03 <= MORTDUE < 40221.75    3
20   MORTDUE  bin_MORTDUE  40222    46582    40221.75 <= MORTDUE < 46581.54    4
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21   MORTDUE  bin_MORTDUE  46582    50954    46581.54 <= MORTDUE < 50953.90    5
22   MORTDUE  bin_MORTDUE  50954    56121    50953.90 <= MORTDUE < 56121.23    6
23   MORTDUE  bin_MORTDUE  56121    60494    56121.23 <= MORTDUE < 60493.58    7
24   MORTDUE  bin_MORTDUE  60494    65263    60493.58 <= MORTDUE < 65263.43    8
25   MORTDUE  bin_MORTDUE  65263    70828    65263.43 <= MORTDUE < 70828.25    9
26   MORTDUE  bin_MORTDUE  70828    76791    70828.25 <= MORTDUE < 76790.55    10
27   MORTDUE  bin_MORTDUE  76791    83150    76790.55 <= MORTDUE < 83150.34    11
28   MORTDUE  bin_MORTDUE  83150    91498    83150.34 <= MORTDUE < 91497.57    12
29   MORTDUE  bin_MORTDUE  91498    101435   91497.57 <= MORTDUE < 101434.75   13
30   MORTDUE  bin_MORTDUE  101435   120117   101434.75 <= MORTDUE < 120116.63  14
31   MORTDUE  bin_MORTDUE  120117   145556   120116.63 <= MORTDUE < 145555.80  15
32   MORTDUE  bin_MORTDUE  145556   .        145555.80 <= MORTDUE              16

Note: Some of the values in the preceding table have been truncated to two decimal 
places.

Binning on the Grid

For this example, you create a data set similar to that in Example 1: Bucket Binning on 
page 18 . However, this data set is much larger. Consider the following code:

data ex12;
    length i 8;
    length cl1 $10;

    do i=1 to 1000000;
        x1 = ranuni(1);
        x2 = 10*ranuni(2);
        x3 = 100*ranuni(3);

        if x1 < 0.3 then do;
            cl1 = "East";
        end;
        else if x1 < 0.6 then do;
            cl1 = "West";
        end;
        else do;
            cl1 = "Middle";
        end;
        output;
    end;
run;

Note that this data set has 1,000,000 observations, compared to the 1,000 observations in 
the previous example. Next, this data is binned on a grid with 100 nodes, each having 8 
processors.

Note: You must replace <yourGridHostName> and 
<yourGridInstallLocation> with your specific grid host name and 
installation location, respectively.

option set=GRIDHOST="<yourGridHostName>";
option set=GRIDINSTALLLOC="<yourGridInstallLocation>";

ods output hpbininfo=bininfo;
ods output mappingTable=mapTable;
ods output performanceinfo=perfTable;
ods listing close;

20 Chapter 2 • HPBIN Procedure



proc hpbin data=ex12 output=out numbin=10 pseudo_quantile ;
    var x1-x3;
    performance nodes=100 nthreads=8;
run;
ods listing;

proc print data=perfTable noobs;
    title "The Performance Information";
run;

proc print data=bininfo noobs;
    title "The Binning information";
run;

proc print data=mapTable noobs;
    title "The mapping table";
run;

proc print data=out(obs=10) noobs;
    title "The Binning output";
run;

The Performance Information, Binning Information, and Mapping Table outputs are 
given below.

The performance information output is as follows:

The Performance Information
Descr           Value
Host Node                    <yourGridHostName>
Execution Mode               Distributed
Number of Compute Nodes      100
Number of Threads per Node   8

The binning information output is as follows:

The Binning information
Descr                   Value
Method                  Pseudo-Quantile Binning
Number of Bins          10
Number of Variables     3
Observations            1000000

The mapping table output is as follows:

The mapping table
NAME  BIN_NAME  LB         UB        EM_BIN_LABEL                  BIN
x1    bin_x1    .          0.101000   x1 < 0.101000                1
x1    bin_x1    0.101000   0.201000   0.101000 <= x1 < 0.201000    2
x1    bin_x1    0.201000   0.301000   0.201000 <= x1 < 0.301000    3
x1    bin_x1    0.301000   0.401000   0.301000 <= x1 < 0.401000    4
x1    bin_x1    0.401000   0.500000   0.401000 <= x1 < 0.500000    5
x1    bin_x1    0.500000   0.600000   0.500000 <= x1 < 0.600000    6
x1    bin_x1    0.600000   0.700000   0.600000 <= x1 < 0.700000    7
x1    bin_x1    0.700000   0.800000   0.700000 <= x1 < 0.800000    8
x1    bin_x1    0.800000   0.900000   0.800000 <= x1 < 0.900000    9
x1    bin_x1    0.900000   .          0.900000 <= x1               10
x2    bin_x2    .          1.010000   x2 < 1.010000                1
x2    bin_x2    1.010000   2.000000   1.010000 <= x2 < 2.000000    2
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x2    bin_x2    2.000000   3.000000   2.000000 <= x2 < 3.000000    3
x2    bin_x2    3.000000   3.999999   3.000000 <= x2 < 3.999999    4
x2    bin_x2    3.999999   4.999999   3.999999 <= x2 < 4.999999    5
x2    bin_x2    4.999999   5.999999   4.999999 <= x2 < 5.999999    6
x2    bin_x2    5.999999   7.009998   5.999999 <= x2 < 7.009998    7
x2    bin_x2    7.009998   8.009998   7.009998 <= x2 < 8.009998    8
x2    bin_x2    8.009998   8.999997   8.009998 <= x2 < 8.999997    9
x2    bin_x2    8.999997   .          8.999997 <= x2               10
x3    bin_x3    .          10.100087  x3 < 10.100087               1
x3    bin_x3    10.100087  20.000066  10.100087 <= x3 < 20.000066  2
x3    bin_x3    20.000066  30.000045  20.000066 <= x3 < 30.000045  3
x3    bin_x3    30.000045  40.000024  30.000045 <= x3 < 40.000024  4
x3    bin_x3    40.000024  50.100003  40.000024 <= x3 < 50.100003  5
x3    bin_x3    50.100003  59.999982  50.100003 <= x3 < 59.999982  6
x3    bin_x3    59.999982  69.999961  59.999982 <= x3 < 69.999961  7
x3    bin_x3    69.999961  80.099940  69.999961 <= x3 < 80.099940  8
x3    bin_x3    80.099940  89.999919  80.099940 <= x3 < 89.999919  9
x3    bin_x3    89.999919  .          89.999919 <= x3              10
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Overview: HPDECIDE Procedure
The HPDECIDE procedure creates optimal decisions that are based on a user-supplied 
decision matrix, prior probabilities, and output from a modeling procedure. This output 
can be either posterior probabilities for a categorical target variable or predicted values 
for an interval target variable. The HPDECIDE procedure can also adjust the posterior 
probabilities for changes in the prior probabilities.

Syntax: HPDECIDE Procedure
PROC HPDECIDE DATA=SAS-data-set <options>;

DECISION DECDATA=SAS-data-set <options>;
FREQ variable;
ID variables-list;
PERFORMANCE <performance-options>;
POSTERIORS variables-list;
PREDICTED variable;
TARGET variable;

RUN;
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PROC HPDECIDE Statement
The PROC HPDECIDE statement invokes the procedure.

Details

Required Arguments
DATA=SAS-data-set

Specifies the input data set, which is the output data set from a modeling procedure.

Note: Strictly speaking, this argument is not required. If you omit this argument, 
then the HPDECIDE procedure uses the most recently created data set.

Optional Arguments
OUT=data-set-name
Specifies the output data set, which contains the following information:

• any variables from the input data set that are specified in the ID statement

• the chosen decision with a prefix of “D_”

• the expected consequence of the chosen decision with a prefix of either “EL_” or 
“EP_”

If the target value is in the input data set, then the output data set also contains the 
following variables:

• the consequence of the chosen decision computed from the target value with a 
prefix of either “CL_” or “CP_”

• the consequence of the best possible decision knowing the target value with a 
prefix of either “BL_” or “BP_”

Also, if the PRIORVAR= and OLDPRIORVAR= variables are specified, then this 
data set will contain the recalculated posterior probabilities. The default name for 
this data set is data_n, where n is the smallest integer not already used to name a 
data set.

OUTFIT=data-set-name
Specifies an output data set that contains fit statistics. These statistics include the 
total and average profit or loss. You cannot specify this option with a data set of type 
SCORE. By default, this data set is not created.

ROLE=TRAIN | VALID | VALIDATION | TEST | SCORE
Specifies the role of the data set. This option affects the variables that are created in 
the OUTFIT= data set. The default value is TEST.

DECISION Statement
The DECISION statement specifies the decision matrix, prior probabilities, or both.
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Syntax
DECISION DECDATA=SAS-data-set <options>;

Details

Required Argument
DECDATA=SAS-data-set

Specifies the input data set that contains the decision matrix, the prior probabilities, 
or both. This data set might contain decision variables that are specified with the 
DECVARS= option. Also, it might contain prior probability variables that are 
specified with the PRIORVAR= option, the OLDPRIORVAR= option, or both.

This data set must contain the target variable, which is specified in the TARGET 
statement.

For a categorical target variable, there should be one observation for each class. Each 
entry dij in the decision matrix indicates the consequence of selecting target value i 
for variable j. If any class appears twice or more in this data set, an error message is 
printed and the procedure terminates. Any class value in the input data set that is not 
found in this data set is treated as a missing class value. Note that the classes in this 
data set must correspond exactly with the variables in the POSTERIORS statement.

For an interval target variable, each row defines a knot in a piecewise linear spline 
function. The consequence of making a decision is computed by interpolating in the 
corresponding column of the decision matrix. If the predicted target value is outside 
the range of knots in the decision matrix, the consequence is computed by linear 
extrapolation. If the target values are monotonically increasing or decreasing, any 
interior target value is allowed to appear twice in the data set. This enables you to 
specify discontinuities in the data. The end points, which are the minimum and 
maximum data points, cannot appear more than once. No target value is allowed to 
appear more than twice. If the target values are not monotonic, then they are sorted 
by the procedure and are not allowed to appear more than once.

T I P The DECDATA= data set can be of type LOSS, PROFIT, or REVENUE. 
PROFIT is assumed by default. TYPE is a data set option that is specified in 
parentheses after the data set name when the data set is created or used.

Optional Arguments
DECVARS=list-of-variables

Specifies the numeric decision variables in the DECDATA= data set that contain the 
target-specific consequences for each decision. The decision variables cannot contain 
any missing values.

COST=list-of-costs
Specifies one of the following:

• numeric constants that give the cost of a decision

• numeric variables in the input data set that contain case-specific costs

• any combination of constants and variables

There must be the same number of cost constants and variables as there are decision 
variables in the DECVARS= option. In this option, you cannot use abbreviated 
variable lists. For any case where a cost variable is missing, the results for that case 
are considered missing. By default, all costs are assumed to be zero. Furthermore, 
this option can be used only when the DECDATA= data set is of type REVENUE.
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PRIORVAR=variable
This option specifies the numeric variable in the DECDATA= data set that contains 
the prior probabilities that are used to make decisions. Prior probabilities are also 
used to adjust the total and average profit or loss. Prior probabilities cannot be 
missing or negative, and there must be at least one positive prior probability. The 
prior probabilities are not required to sum to one. But, if they do not sum to one, then 
they are scaled by some constant so that they do sum to one. If this option is not 
specified, then no adjustment for prior probabilities is applied to the posterior 
probabilities.

OLDPRIORVAR=variable
Specifies the numeric variable in the DECDATA= data set that contains the prior 
probabilities that were used the first time the model was fit. If you specify this 
option, then you must also specify PRIORVAR=.

FREQ Statement
The variable in the FREQ statement identifies a numeric variable in the input data set that contains the 
frequency of occurrence for each observation.

Syntax
FREQ variable;

Details

Required Argument
variable

Specify the variable in the input data set that contains the frequency for each 
observation. The HPDECIDE procedure treats each observation as if it appeared f 
times, where f is the value of the frequency variable for that observation. If the 
frequency value is not an integer, then the fractional part is not truncated. If the 
frequency value is less than or equal to 0, then the observation does not contribute to 
the summary statistics. However, all of the variables in the OUT= data set are 
processed as if the frequency variable is positive.

The frequency variable has no effect on decisions of the adjustment for prior 
probabilities. It affects only the summary statistics in the OUTFIT= data set.

ID Statement
The ID statement lists one or more variables from the input data set that are transferred to the output data 
sets. For more information about the ID statement, see “Shared Concepts and Topics” in the SAS High-
Performance Analytics User’s Guide.

Syntax
ID variables-list;
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Details

Required Argument
variables-list

Specifies the variables that you want to transfer from the input data set to the output 
data sets, provided that the output data set produces at least one record per input 
observation.

PERFORMANCE Statement
The PERFORMANCE statement defines performance parameters for multi-threaded and distributed 
computing, communicates variable information about the distributed computing environment, and requests 
detailed results about the performance characteristics of the HPDECIDE procedure. With the 
PERFORMANCE statement, you can control whether the HPDECIDE procedure executes in symmetric 
multiprocessing mode or massively parallel mode. For more information about the PERFROMANCE 
statement, see “Shared Concepts and Topics” in the SAS High-Performance Analytics User’s Guide.

Syntax
PERFORMANCE <performance-options>;

Details

Optional Arguments
COMMIT=n

Specifies the minimum number of observations transferred from the client to the 
appliance necessary to update the SAS log. For example, if you specify 
COMMIT=5000, then every time the number of observations sent exceeds an integer 
multiple of 5000, a log message is produced. This message indicates the actual 
number of observations distributed, not the COMMIT= value that triggered the 
message.

CPUCOUNT= ACTUAL | number
Specifies how many processors that PROC HPDECIDE assumes are available on 
each host in the computing environment. Valid values for number are integers 
between 1 and 256, inclusive. Setting CPUCOUNT= to a value greater than the 
actual number of available CPUs might result in reduced performance.

Specify CPUCOUNT=ACTUAL to set CPUCOUNT= to the number of processors 
physically available. This number can be less than the physical number of CPUs if 
the SAS process has been restricted by system administration tools.

This option overrides the CPUCOUNT= SAS system option.

If PROC HPDECIDE executes in SMP mode, then this option refers to the client 
machine of the SAS session. If PROC HPDECIDE executes in MPP mode, then this 
option applies the nodes on the appliance.

DATASERVER=“name”
Specifies the server name on Teradata systems as defined through the hosts file and 
as used in the LIBNAME statement for Teradata. For example, if the hosts file 
defines myservercop1 33.44.55.66 as the server for Teradata, then a 
LIBNAME statement would be as follows:
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libname TDLIB terdata server=myserver user= password= database=;

To induce PROC HPDECIDE to run alongside the Teradata server, specify the 
following performance statement:

performance dataserver="myserver";

DETAILS
Requests a table that shows a timing breakdown of the procedure steps.

TIMEOUT=s
Specifies the length of time, in seconds, that PROC HPDECIDE should wait for a 
connection to the appliance and to establish a connection back to the client. The 
default value for s is 120 seconds. If jobs are submitted to the appliance through 
workload management tools that might suspend access to the appliance for a longer 
period, you might want to increase the time-out value.

HOST=“name”
GRIDHOST=“name”

Specifies the name of the appliance host. The HOST= option overrides the value of 
the GRIDHOST environment variable.

INSTALL=“name”
INSTALLOC=“name”

Specifies the directory where the High-Performance Analytics shared libraries are 
installed on the appliance. Specifying the INSTALL= option overrides the 
GRIDINSTALLLOC environment variable.

NODES=n
NNODES=n

Specifies the number of nodes in the distributed computing environment, provided 
that the data is not processed alongside the database. Specify NODES=0 to indicate 
that you want to process the data in SMP mode on the client machine. If the input 
data is not alongside the database, this is the default setting. The HPDECIDE 
procedure then performs multithreaded analysis on the client.

If the data is not read alongside the database, the NODES= option specifies the 
number of nodes on the appliance that are involved in the analysis.

If the number of nodes can be modified by the application, you can specify a 
NODES= option where n exceeds the number of physical nodes on the appliance. 
The High-Performance Analytics software then over-subscribes the nodes and 
associates nodes with multiple units of work. For example, on a system with 16 
appliance nodes, the following statement would over-subscribe the system by a 
factor of 3:

performance nodes=48 host="hpa.sas.com";

Generally, it is not advisable to over-subscribe the system because the analytic code 
is optimized for a certain level of multithreading on the nodes that depend on the 
CPU count.

If the data is read alongside the distributed database on the appliance, specifying a 
nonzero value for the NODES= option has no effect. The number of units of work in 
the distributed computing environment is then determined by the distribution of the 
data and cannot be altered.

NTHREADS=n
Specifies the number of threads used for analytic computations and overrides the 
SAS system option THREADS | NOTHREADS. If you do not specify the 
NTHREADS= option, then the number of threads is determined based on the number 
of CPUs on the host machine where the analytic computations execute.
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By default, High-Performance Analytics procedures execute in multiple concurrent 
threads, unless you disable this behavior with the NOTHREADS system option, or 
you specify NTHREADS=1 to force single-threaded execution. The value specified 
here must not exceed 256.

Note: The SAS system option THREADS | NOTHREADS applies to the current 
machine where the SAS High-Performance Analytics procedures execute. This 
option does not apply to the compute nodes in a distributed environment.

POSTERIORS Statement
The POSTERIORS statement can be specified only with a categorical target variable. You cannot use both 
the POSTERIORS statement and the PREDICTED statement.

Syntax
POSTERIORS variables-list;

Details

Required Argument
variables-list

Specify the numeric variables in the input data set that contain the estimated 
posterior probabilities that correspond to the categories of the target variable. If one 
of a few certain conditions are met, then a case is set to missing and the variable 
_WARN_ contains the flag P.

These conditions are as follows:

• The posterior probability is missing, negative, or greater than 1.

• There is a nonzero posterior that corresponds to a zero posterior.

• There is not at least one valid positive posterior probability.

Note that the order of the variables in this list must correspond exactly to the order of 
the classes in the DECDATA= data set.

PREDICTED Statement
The PREDICTED statement can be specified only with an interval target variable. You cannot use both the 
POSTERIORS statement and the PREDICTED statement.

Syntax
PREDICTED variable;
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Details

Required Argument
variable

Specifies the numeric variable in the input data set that contains the predicted values 
of an interval target variable.

TARGET Statement
The TARGET statement specifies which variable in the DECDATA= data set is the target variable. The 
HPDECIDE procedure searches for a target variable with the same name in the input data set. If none is 
found, then the HPDECIDE procedure assumes that actual target values are unknown. For a categorical 
variable, the target variables in the DATA= and DECDATA= data sets do not need to be the same type. 
This is because only the formatted values are used for comparisons. For an interval target, both variables 
must be numeric. If scoring code is generated by the CODE statement, the code will format the target 
variable with the format and length from the DATA= data set.

Syntax
TARGET variable;

Details

Required Argument
variable

The variable specified here is the target variable and must be in the DECDATA= 
data set.

Example: The HPDECIDE Procedure

Preprocessing the Data and Basic Usage

This extended example creates a fictitious scenario to illustrate how to adjust prior 
probabilities and make decisions with a revenue matrix and cost constants. This example 
considers a population of men who consult urologists for prostate problems. In this 
population, 70% of the men have benign enlargement of the prostate, 25% have an 
infection, and 5% have cancer. A sample of 100 men is taken and two new diagnostic 
measures, X and Y, are made on each patient. The training data set also includes the 
diagnosis made by reliable, conventional methods.

For each patient, three treatments are available. First, the urologist could prescribe 
antibiotics, which are effective against infection, but might have moderately bad side 
effects. Antibiotics have no effect on benign enlargement or cancer. Second, the 
urologist could recommend surgery, which is effective for all diseases, but has 
potentially severe side effects, such as impotence. Finally, the urologist and patient could 
decide against both antibiotics and surgery, thereby doing nothing.
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The first step is to create the sample of 100 men. To simulate the measurements of 
diagnostics X and Y, this example uses the SAS random number generator. Because you 
specify the initial seed to the random number generator, all of your results will be 
identical to those presented in this example.

data Prostate;
    length dx $14;
    dx='Benign';
    mx=30; sx=10;
    my=30; sy=10;
    n=70;
    link generate;
    dx='Infection';
    mx=70; sx=20;
    my=35; sy=15;
    n=25;
    link generate;
    dx='Cancer';
    mx=50; sx=10;
    my=50; sy=15;
    n=5;
    link generate;
    stop;
generate:
    do i=1 to n;
    x=rannor(12345)*sx+mx;
    y=rannor(0) *sy+my;
    output;
    end;
run;

This code creates the Prostate data set. The first 70 observations represent benign 
tumors, the next 20 represent infections, and the final 5 are cancer. To visualize the 
measurements of X and Y, you can plot the data with the GPLOT procedure.

title2 'Diagnosis';
proc gplot data=prostate;
    plot y*x=dx;
run;

When you plot the data, you should be able to see fairly distinct groups of data points. 
There can be some overlap between groups, but most of the observations for each 
diagnosis are tightly grouped. You can also use the DISCRIM procedure to see how well 
variables X and Y classify each patient.

proc discrim data=prostate out=outdis short;
    class dx;
    var x y;
run;

The DISCRIM procedure assumes that all prior probabilities are equal, which is 1/3 for 
this example. As the Output window indicates, the DISCRIM procedure misidentifies 
some of the benign tumors as cancer or infections. Also, it misidentifies some of the 
infections as benign tumors. Therefore, you want to create a data set that contains prior 
probabilities and revenue information. The revenue information indicates the benefit of 
each treatment. The costs of each treatment, such as bad side effects, are specified late in 
a DECISION statement. The revenue matrix is given by the code that follows.
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data rx(type=revenue);
    input dx $14. eqprior prior nothing antibiot surgery;
    datalines;
    Benign       0.3333 70 0 0  5
    Infection    0.3333 25 0 10 10
    Cancer       0.3333 5  0 0  100
;

The variable eqprior defines an equal prior probability for each diagnosis while prior 
uses information that is known from the sample data set. The other variables define the 
revenue of each treatment option. The revenue, or benefit, of doing nothing in either case 
is 0, and the benefit of taking antibiotics is relevant only if the patient has an infection. 
Surgery can remove a benign tumor, but since this is not necessary, it has very little 
benefit. Surgery completely removes an infection, so it has the same value as antibiotics. 
Finally, surgery can remove a cancerous tumor, which is an immense benefit to the 
patient.

You can now use the HPDECIDE procedure to assign a treatment to each patient. In the 
DECISION statement, you specify the costs of treatment. The cost of doing nothing is 0, 
the cost of antibiotics is 5, and the cost of surgery is 20.

proc hpdecide data=outdis out=decOut outstat=decSum;
    target dx;
    posteriors benign infection cancer;
    decision decdata=rx
        oldpriorvar=eqprior priorvar=prior
        decvars=nothing antibiot surgery
        cost= 0 5 20;
run;

The data set decOut indicates that only one benign tumor was misidentified, but a similar 
number of infections were misidentified as benign, when compared with the DISCRIM 
procedure. All of the cancerous tumors were identified and assigned the treatment of 
surgery, as was the lone misidentified benign tumor. The total profit for all patients, 
identified in the data set decSum is 470.

Due to the personal nature of medical decisions, the costs associated with each treatment 
can vary considerably from patient to patient. Some patients regard the side effects of 
surgery as more severe than other patients. Likewise, the costs of antibiotics might vary 
due to the patients' insurance plans. For illustrative purposes, assume a higher cost for 
surgery and leave the other costs constant.

proc hpdecide data=outdis out=decOut outstat=decSum;
    target dx;
    posteriors benign infection cancer;
    decision decdata=rx
        oldpriorvar=eqprior priorvar=prior
        decvars=nothing antibiot surgery
        cost= 0 5 50;
run;

Notice that the misclassified benign tumor was now correctly classified. However, one 
of the cancer cases was identified as benign, which is a costly mistake. Notice, in 
decOut, that the total profit has been reduced from 470 to 285.
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Overview: HPIMP Procedure
The HPIMP procedure executes high-performance variable imputation. You can specify 
multiple INPUT and IMPUTE statements, as is shown in the example in this chapter. 
Any class variables that are referenced by the IMPUTE statement are ignored.

Syntax: HPIMP Procedure
Requirement: At least one INPUT and one IMPUTE statement are required.

PROC HPIMP DATA=<libref.>SAS-data-set OUT=<libref.>SAS-data-set <options>;
CODE <options>
ID variables-list;
IMPUTE variables-list / <options>;
INPUT variables-list / <options>;
PERFORMANCE <performance-options>;

PROC HPIMP Statement
The PROC HPIMP statement invokes the procedure.

Note: WHERE processing is supported in the DATA= and OUT= arguments.
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Syntax
PROC HPIMP DATA=<libref.>SAS-data-set OUT=<libref.>SAS-data-set <options>;

Details

Required Arguments
DATA=<libref.>SAS-data-set

Specifies the input data set that contains the variables to be imputed. The default data 
set is the most recently created data set. If the data is already distributed, then the 
procedure reads the data alongside the distributed database.

DMDBCAT=<libref.>SAS-catalog
Names the SAS catalog that contains the variable metadata. This catalog must exist 
on the client machine.

Optional Arguments
OUT=<libref.>SAS-data-set

Specifies the output data set that contains the imputed variables. This data set 
contains the ID variables (if applicable), the imputation indicator variables, and the 
imputed variables. If the data is already distributed, then the procedure writes the 
data alongside the distributed database with the ID variables, indicator variables, and 
imputed variables.

CODE Statement
The CODE statement generates SAS DATA step code that mimics the computations done by the IMPUTE 
statement.

Syntax
CODE <options>;

Details

Optional Arguments
FILE=file-name

Specifies the filename that contains the SAS score code.

ID Statement
The ID statement lists one or more variables from the input data set that are transferred to the output data 
sets. The ID statement accepts numeric and character variables. For example, when an OUTPUT 
statement is used, the ID variables, followed by the indicator variables and the imputed variables, are 
added to the output data set. For more information about the ID statement, see “Shared Concepts and 
Topics” in the SAS High-Performance Analytics User’s Guide.
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Default: By default, the HPIMP procedure does not include all variables from the input data 
set in the output data sets.

Requirement: The variables in an ID statement must not appear in any INPUT statement. 
Otherwise, an error is reported.

Syntax
ID variables-list;

Details

Required Arguments
variables-list

Specifies the variables that you want to transfer from the input data set to the output 
data sets.

IMPUTE Statement
The IMPUTE statement names the variables for PROC HPIMP to impute. You can specify multiple 
IMPUTE statements

Requirements: The IMPUTE statement accepts only numeric variables that have appeared in an 
INPUT statement. Class variables are ignored, but specifying a character variable 
results in an error.
You must specify one of the options METHOD= or VALUE=.

Syntax
IMPUTE variables-list / <options>;

Details

Required Argument
variables-list

Contains a list of variables to be imputed.

Optional Arguments
METHOD= MEAN | RANDOM

Specifies the method of imputation.

If you specify MEAN, then missing values for each variable are replaced with the 
algebraic mean of that variable. The mean is obtained from the DMDB catalog. If 
there is no nonmissing value, the mean is set to 0.

If you specify RANDOM, then missing values for each variable are replaced with a 
random value between the minimum and maximum value for that variable. The 
minimum and maximum are obtained from the DMDB catalog.

VALUE=value
Replaces missing values with the value specified by the user.
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INPUT Statement
The INPUT statement names input variables with common options. The INPUT statement can be repeated.

Note: If you specify any LEVEL= options other than LEVEL=INTERVAL, then the variables 
are ignored by the IMPUTE statement.

Syntax
INPUT variables-list / <options>;

Details

Required Argument
variables-list

Contains a list of variables that share common features.

Optional Arguments
LEVEL=level

Specifies the level of measurement of the variables. Valid values are BINARY, 
NOMINAL, ORDINAL, and INTERVAL. The default value is 
LEVEL=INTERVAL.

ORDER=order
Specifies the sorting order for the values of an ordinal input variable. Valid values 
are given in the table below.

Value of ORDER= Variable Values Sorted By

ASCENDING ascending order of unformatted values

ASCFORMATTED ascending order of formatted values

DESCENDING descending order of unformatted values

DESFORMATTED descending order of formatted values

DSORDER order of appearance in the input data set

PERFORMANCE Statement
The PERFORMANCE statement defines performance parameters for multi-threaded and distributed 
computing, communicates variable information about the distributed computing environment, and requests 
detailed results about the performance characteristics of the HPIMP procedure. With the PERFORMANCE 
statement, you can control whether the HPIMP procedure executes in symmetric multiprocessing or 
massively parallel mode. For more information about the PERFORMANCE statement, see “Shared 
Concepts and Topics” in the SAS High-Performance Analytics User’s Guide.
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Syntax
PERFORMANCE <performance-options>;

Details

Optional Arguments
COMMIT=n

Specifies the minimum number of observations transferred from the client to the 
appliance necessary to update the SAS log. For example, if you specify 
COMMIT=5000, then every time the number of observations sent exceeds an integer 
multiple of 5000, a log message is produced. This message indicates the actual 
number of observations distributed, not the COMMIT= value that triggered the 
message.

CPUCOUNT= ACTUAL | number
Specifies how many processors PROC HPIMP assumes are available on each host in 
the computing environment. Valid values for number are integers between 1 and 
256, inclusive. Setting CPUCOUNT= to a value greater than the actual number of 
available CPUs can result in reduced performance.

Specify CPUCOUNT=ACTUAL to set CPUCOUNT= to the number of processors 
physically available. This number can be less than the physical number of CPUs if 
the SAS process has been restricted by system administration tools.

This option overrides the CPUCOUNT= SAS system option.

If PROC HPIMP executes in SMP mode, then this option refers to the client machine 
of the SAS session. If PROC HPIMP executes in MPP mode, then this option applies 
the nodes on the appliance.

DATASERVER=“name”
Specifies the server name on Teradata systems as defined through the hosts file and 
as used in the LIBNAME statement for Teradata. For example, if the hosts file 
defines myservercop1 33.44.55.66 as the server for Teradata, then a 
LIBNAME statement would be as follows:

libname TDLIB terdata server=myserver user= password= database= ;

To induce PROC HPIMP to run alongside the Teradata server, specify the following 
performance statement:

performance dataserver="myserver";

DETAILS
Requests a table that shows a timing breakdown of the procedure steps.

TIMEOUT=s
Specifies the length of time, in seconds, that PROC HPIMP should wait for a 
connection to the appliance and to establish a connection back to the client. The 
default value for s is 120 seconds. If jobs are submitted to the appliance through 
workload management tools that might suspend access to the appliance for a longer 
period, you might want to increase the time-out value.

HOST=“name”
GRIDHOST=“name”

Specifies the name of the appliance host. The HOST= option overrides the value of 
the GRIDHOST environment variable.
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INSTALL=“name”
INSTALLOC=“name”

Specifies the directory where the High-Performance Analytics shared libraries are 
installed on the appliance. Specifying the INSTALL= option overrides the 
GRIDINSTALLLOC environment variable.

NODES=n
NNODES=n

Specifies the number of nodes in the distributed computing environment, provided 
that the data is not processed alongside the database. Specify NODES=0 to indicate 
that you want to process the data in SMP mode on the client machine. If the input 
data is not alongside the database, this is the default setting. The HPIMP procedure 
then performs multithreaded analysis on the client.

If the data is not read alongside the database, the NODES= option specifies the 
number of nodes on the appliance that are involved in the analysis.

If the number of nodes can be modified by the application, you can specify a 
NODES= option where n exceeds the number of physical nodes on the appliance. 
The High-Performance Analytics software then over-subscribes the nodes and 
associates nodes with multiple units of work. For example, on a system with 16 
appliance nodes, the following statement would over-subscribe the system by a 
factor of 3:

performance nodes=48 host="hpa.sas.com";

Generally, it is not advisable to over-subscribe the system because the analytic code 
is optimized for a certain level of multithreading on the nodes that depend on the 
CPU count.

If the data is read alongside the distributed database on the appliance, specifying a 
nonzero value for the NODES= option has no effect. The number of units of work in 
the distributed computing environment is then determined by the distribution of the 
data and cannot be altered.

NTHREADS=n
Specifies the number of threads used for analytic computations and overrides the 
SAS system option THREADS | NOTHREADS. If you do not specify the 
NTHREADS= option, then the number of threads is determined based on the number 
of CPUs on the host machine where the analytic computations execute.

By default, High-Performance Analytics procedures execute in multiple concurrent 
threads, unless you disable this behavior with the NOTHREADS system option or 
you specify NTHREADS=1 to force single-threaded execution. The value specified 
here must not exceed 256.

Note: The SAS system option THREADS | NOTHREADS applies to the current 
machine where the SAS High-Performance Analytics procedures execute. This 
option does not apply to the compute nodes in a distributed environment.

Example: The HPIMP Procedure

Imputing a Data Set

In this example, you use all three imputation methods available in the IMPUTE 
statement to manipulate a data set. First, you create the data set with the SAS DATA 
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step provided below. This data set has four variables, the first being an index variable. 
The next three variables all have some missing values.

data dsopts;
  input ind x y z;
  cards;
1  0.18496   0.97009   0.8496
2  0.39982   .         0.9982
3  0.92160   .         0.2160
4  .         0.53169   .
5  0.04979   0.06657   0.4979
6  0.81932   0.52387   .
7  .         0.06718   .
8  0.95702   0.29719   .
9  0.27261   0.68993   .
10 0.97676   .         .
;

Next, you need to run the following code to create the DMDB catalog for your data set:

proc dmdb data=dsopts cat=cat;
    var ind x y z;
run;

Now, you are ready to run the HPIMP procedure.

proc hpimp data=dsopts(where=(y>0.1))
    dmdbcat=cat out=impout(where=(m_y=0));
    input x y z;
    impute x/method=mean;
    impute y/method=random;
    impute z/value=0.888;
    code file="c:\imp.sas";
    id ind;
run;

In this call to PROC HPIMP, the variable x is imputed with the method MEAN, y is 
imputed with the method RANDOM, and z is imputed with a specific value.

The output data set IMPOUT contains seven variables. Note that the two WHERE 
clauses keep only the rows where y is both nonmissing and greater than 0.1. The 
variables m_x, m_y, and m_z are the indicator variables and display a 0 if that 
observation was not imputed and a 1 if it was. The variables imp_x, imp_y, and imp_z 
contain the imputed variable values.

Example: The HPIMP Procedure 39



40 Chapter 4 • HPIMP Procedure



Part 2

High-Performance Macros

Chapter 5
The %EM_new_assess Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Chapter 6
The %HPDM_create_scorecode_bin Macro . . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 7
The %HPDM_create_scorecode_logistic Macro . . . . . . . . . . . . . . . . . . . 57

Chapter 8
The %HPDM_create_scorecode_neural Macro . . . . . . . . . . . . . . . . . . . . 61

Chapter 9
The %HPDM_create_scorecode_reg Macro . . . . . . . . . . . . . . . . . . . . . . . 65

41



42



Chapter 5

The %EM_new_assess Macro

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
The %EM_new_assess Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Required Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Optional Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
The OUT= Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
The EXPAND= Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
The BINSTATS= Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
MAP-REDUCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Tie-Breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Counting Rows, Events, and Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Integration with SAS Enterprise Miner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Integration with SAS Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Comparison with SAS Enterprise Miner 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Example: The %EM_new_assess Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Overview
The %EM_new_assess macro computes model assessment measures that are used to 
evaluate the performance of predictive models and to inform decisions based on the 
results of the models. For example, the %EM_new_assess macro can help you to 
determine the following:

• the expected response rate in each of the top 5%, 10%, 15%, and 20% subsets of 
your campaign

• the probability cutoff that you should use to select customers that areexpected to 
respond at least 12% of the time.

Model assessment measures are typically referred to as rank order measures. The term 
rank order measure refers to the fact that these statistics are computed by a descending 
ranking of the probabilities of a predicted event.

To compute all model assessment measures, %EM_new_assess macro uses a mixture of 
DATA step code, Base SAS procedures, SAS Enterprise Miner Procedures, and SAS 
High Performance Analytics procedures. The event and probability for assessment do 
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not depend on the sort order of the target variable and can be selected independently. 
You can select any event for assessment.

Syntax

The %EM_new_assess Macro
%macro EM_new_assess (

DATA=SAS-data-set
LEVEL=CLASS | INTERVAL
TARGET=variable-name
VAR=variable-name
<BINS=number>
<BINSTATS=SAS-data-set>
<CUTOFF=number>
<EVENT=event-string>
<EXPAND=SAS-data-set>
<FUZZ=number>
<HPDS2=0 | 1>
<MAX=number>
<MIN=number>
<OUT=SAS-data-set>

Required Arguments
DATA=SAS-data-set

Specifies the input data set. The model assessment measures are generated for this 
data set.

LEVEL=CLASS | INTERVAL
Specifies the measurement level of the target variable.

TARGET=variable-name
Specifies the target variable.

VAR=variable-name
Specifies the numeric variable that is used for ranking.

Optional Arguments
BINS=number

Specifies the number of bins that are created in the OUT= data set.

BINSTATS=SAS-data-set
Specifies an output data set that contains the overall binning statistics.

CUTOFF=number
Specifies the cutoff value for new classification. That is, this value specifies the 
minimum probability value of a bin.
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EVENT=event-string
Specifies the event string.

EXPAND=SAS-data-set
Specifies an output data set that is similar in structure to the scored data. This data 
set contains columns for target, probability, and classification, and can be used as 
input to the Model Import node. Note that computations on this data set are 
approximations and do not equal computations on the full data set. You cannot 
specify this argument for an interval target variable.

FUZZ=0 | 1
Specify 1 to enable FUZZ tie-breaking. FUZZ tie-breaking adds a random number 
that is generated by an appropriately scaled random normal distribution to the 
probability in order to create several microbins. This is equivalent to applying a 
kernel function. In the event of sparse or skewed distributions, this method can still 
produce bins that contain too many or too few observations.

HPDS2=0 | 1
Specify 1 to use PROC HPDS2 to build the microbins.

MAX=number

MIN=number

OUT=SAS-data-set
Specifies the output data set for the binned data.

Details

The OUT= Data Set
The primary output data set is a summary data set that contains one row for each bin. 
The columns generated depend on the measurement level of the target variable. 
Cumulative measures are calculated by descending probability. Each bin should have an 
approximately equal number of observations. The mean probability, event count, and 
non-event count are stored in each bin.

Note: The tables below do not detail every variable in the output data set. Variables with 
common or obvious definitions are omitted from these tables.

Table 5.1 Output Data Set Variables for a Class Target Variable

Variable Details

cutoff minimum probability value of a bin

count number of nonmissing predicted value 
observations within a bin

c_count cumulative number of observations

events number of events within a bin

c_events cumulative number of events
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Variable Details

depth 100*(c_count / total_count)

lift events / ( (count*total_events) / total_count )

c_lift c_events / ( (c_count*total_events) / 
total_count )

correct_rate 100*( c_events + total_events – 
c_nonevents ) / total_count

error_rate 100 – correct_rate

separation correct_rate – error_rate

sensitivity c_events / total_events — Also called the true 
positive rate

specificity 1 – c_nonevents / total_non_events — Also 
called the true negative rate

one_minus_specificity 1 – specificity

Table 5.2 Output Data Set Variables for an Interval Target Variable

Variable Details

depth 100*(c_count / total_count)

count number of nonmissing target value 
observations within a bin

c_count cumulative number of observations

predicted_count number of nonmissing predicted observations 
within a bin

c_predicted_count cumulative predicted count

target_mean target variable mean within a bin

target_min target variable minimum within a bin

target_max target variable maximum within a bin

predicted_mean predicted variable mean within a bin

predicted_min predicted variable minimum within a bin

predicted_max predicted variable maximum within a bin

residual_mean residual mean within a bin
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Variable Details

residual_min residual minimum within a bin

residual_max residual maximum within a bin

residual_squared_mean mean of the squared residuals within a bin

The EXPAND= Data Set
This data set is similar in structure to the scored data. This data set contains columns for 
target, probability, and classification, and can be used as input to the Model Import node. 
Note that computations on this data set are approximations and do not equal 
computations on the full data set. This data set is not created for interval target variables.

Variable Type Details

target $ target value, either event or non-event

predict $ predicted value, either event or non-
event

prob N event probability. This is the mean bin 
probability.

freq N frequency. This is the bin count. This variable 
is necessary for valid results.

The BINSTATS= Data Set
This data set contains a summary of the binning process. It includes point measures of 
the Kolmogorov-Smirnov statistic, the maximum classification rate, and the depth and 
probability for each of those measures. These values can be used in subsequent 
processing. This data set contains one observation.

Table 5.3 Class Target Variable Summary Information

Variable Details

Target target variable name

Level target variable measurement level

Var probability of event variable name. This was 
used to bin the data.

NBINS number of bins created
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Variable Details

NOBS total number of observations. This should 
equal PredCount + PredMiss.

TargetCount number of nonmissing target values

TargetMiss number of missing target values

PredCount number of nonmissing predicted values

PredMiss number of missing predicted values

Event target event value

EventCount number of events with nonmissing predicted 
values

NonCount number of non-events with nonmissing 
predicted values

EventMiss number of events with missing predicted 
values

KSR the maximum separation between the 
percentage of captured events and non-events. 
This value should equal 100*KS.

KS The Kolmogorov-Smirnov (KS) measure, 
computed as the maximum difference between 
sensitivity and one_minus_specificity. Higher 
numbers indicate better overall confidence in 
the classification of events and non-events.

KSDEPTH the sample depth where KS is computed

KSCUT the predicted event probability where KS is 
computed

KSREF the value of one_minus_specificity for the KS 
reference value

CR the maximum overall correct classification 
rate

CRDEPTH the sample depth where CR is computed

CRCUT the predicted event probability where CR is 
computed

MDEPTH the sample depth that identifies half of the 
predicted events

MCUT the cutoff that identifies half of the predicted 
events
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Table 5.4 Interval Target Variable Summary Information

Variable Details

target target variable name that was used to bin the 
data

level target variable measurement level

var predicted value variable name

NBINS number of bins created. It is expected to be 
approximately equal to volume.

NOBS total number of observation. It is expected to 
equal TargetCount + TargetMiss

TargetCount number of nonmissing target values

TargetMiss number of missing target values

PredCount number of nonmissing predicted values

PredMiss number of missing predicted values

MAP-REDUCE
In a distributed grid environment, sets of data rows are located across one or more server 
units. The high-performance model assessment functions follow the MAP-REDUCE 
paradigm for distributed grid processing. In this section, MAP-REDUCE is explained 
briefly.

In the MAP phase, a single variable, such as probability of event, is chosen for ranking. 
A frequency table is constructed in an initial pass.The initial pass also returns the 
maximum and minimum values of the ranking variable. A second pass maps the 
predictions and event counts to equal-width bins. Bins with zero observations are 
dropped. For a class target variable, the binned data set has columns for count, event 
count, and minimum probability. This data is called microbins.

Next begins the REDUCE phase. On the SAS side, the microbins are sorted by 
descending probability. The next step merges bins together until the cumulative count 
meets or exceeds the next bin’s threshold. The result is a set of bins that contain an equal 
number of observations. These bins are processed to produce measures that are used for 
reporting for each bin, such as percents, separation, lift, captured response, sensitivity, 
specificity, and classification rates.

Tie-Breaking
A key point in ranking the probabilities is breaking ties when a small number of 
probability values have very large frequencies. This macro has two methods to handle 
ties that can work together.

First, in the MAP phase the FUZZ option adds a random number that is generated by an 
appropriately scaled random normal distribution to the probability to spread the 
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distribution into several microbins. This is equivalent to applying a kernel function. In 
the event of very sparse and skewed probability distributions, this method can still have 
the effect of producing percentile bins with too many and too few counts.

Second, in the REDUCE phase the code slices microbins to produce final bins with 
exactly the same numbers of observations. The final bin at the low end of the probability 
scale might contain a different number of observations to make the final count correct. 
This is different than in SAS Enterprise Miner 7.1, where the overage is spread among 
multiple bins at the high end of the probability scale. This difference accounts for some 
differences in the values of captured response and lift between SAS Enterprise Miner 7.1 
and high-performance data mining.

Counting Rows, Events, and Missing Values
Missing values are particularly important when counting targets and predictions. Either 
the target or the predicted value might be independently missing in the scored data. 
Counting is handled differently for interval and class target models.

• Interval Targets — In this case, the actual target variable is binned, and missing 
target values are counted separately. Predicted values are accumulated only for 
nonmissing target values. The total count of all predictions is equal to the count of 
nonmissing target values. The values reported are TotalCount, TargetCount, 
TargetMiss, PredCount, PredMiss.

• Class Targets — The predicted probabilities are binned, and missing probability 
values are counted separately. Target events and non-events are counted for all real 
probabilities. In addition, target events are counted for missing probabilities. The 
values reported are TotalCount, PredCount, PredMiss, TargetCount, TargetMiss, 
EventCount, and EventMiss. TargetCount includes any nonmissing target value. 
EventCount includes only the event specified. All other target values are considered 
non-events with the exception of missing values. Target values are counted as the 
DMNORM of the formatted value.

Integration with SAS Enterprise Miner
Model assessment within the SAS Enterprise Miner process flow diagram is 
accomplished in two ways:

• Project Sample — The high-performance model produces score code. The score 
code is applied to the project sample that is maintained by the input node. These 
scores are evaluated by the SAS Enterprise Miner model assessment code that runs 
on the SAS system. The results are displayed in the SAS Enterprise Miner model 
node results and the SAS Enterprise Miner Model Comparison node. The results are 
used to select a champion model. In this case, the model has been trained on the 
high-performance system, and then applied on the SAS system to produce results 
comparable to other work based in SAS. 

• Grid Data — The high-performance procedure outputs a table of training data scores. 
These scores are evaluated by the %EM_new_assess macro on the grid system and 
displayed as additional results in the high-performance model node results. These 
results are similar to the results computed on the project sample, but might differ in 
the number of observations that are counted and any of the resulting measurements.
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Integration with SAS Code
The %EM_new_assess macro can be used directly in a SAS program to evaluate scores 
on either a SAS system or on a high-performance appliance system. The scores can be 
generated by a high-performance procedure, by a SAS procedure, or by direct import of 
a file containing scores. The extended example at the end of this book includes several 
calls to various high-performance procedures and the %EM_new_assess macro.

Comparison with SAS Enterprise Miner 7.1
In most cases, computational results are similar to the results produced by SAS 
Enterprise Miner 7.1. However, the new algorithm is fundamentally different from the 
algorithm used in SAS Enterprise Miner 7.1. The new functions were tested with both 
simulated and real data and found to adequately preserve the distributions of targets, 
probabilities, and predictions. Differences can be described by one or more ofthe 
following conditions:

• The new algorithm creates bins in two stages and handles unlimited quantities of 
data. The initial set of bins treats all observations within the bin as having the same 
mean probability. If the distribution of probabilities or predictions is extremely 
sparse, such that some of these bins both contain at least a centile of data and also 
multiple modes of data, then resolution in the output might be lost.

• Ties and observations that do not fit into an even number of centiles are handled 
differently. See Tie-Breaking on page 49 for more details. This effect can produce 
extremely small differences in the bin counts. This difference should be less than the 
number of bins for any given bin.

• The distributions of interval target predictions are handled differently. The SAS 
Enterprise Miner 7.1 functions bin the prediction values and summarize the target 
values. The new algorithm bins the target values and summarizes the predictions. 
This is done to encourage diagnostic analysis of residuals by target values. It is also 
potentially more likely that there will be more missing predictions than missing 
target values in real data used for modeling.

• The new functions generate additional information about the number of missing 
values of the target and predicted values. See Counting Rows, Events, and Missing 
Values on page 50 for more details. 

Profiling
The SAS Enterprise Miner 7.1 functions also generate mean and mode values by each 
centile for variables that have the Report attribute. These values are generated for high-
performance models within the model nodes and the Model Compare node based on the 
project sample data. The new functions do not yet generate full profiles on grid data.

Example: The %EM_new_assess Macro
This example applies the %EM_new_assess macro to a neural network that is created by 
the HPNEURAL procedure. Before you can run the %EM_new_assess macro, you must 
run the HPNEURAL procedure, as shown below.
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filename tools catalog 'sashelp.hpdm.hpdm_tools.source' ;
%include tools ; 

proc hpneural data=sampsio.dmagecr ; 
input AGE AMOUNT DURATION / level=int ; 
input CHECKING COAPP DEPENDS EMPLOYED EXISTCR FOREIGN HISTORY HOUSING 
      INSTALLP JOB MARITAL OTHER PROPERTY PURPOSE RESIDENT SAVINGS TELEPHON
      / level=nom ; 
target good_bad / level=nom ; 
hidden 2 ;
train ; 
score out=train_scores ;
run;

Now, you can run the %EM_new_assess macro with the following code:

%em_new_assess(
    data    =train_scores,     /* input data;                       */
    level   =CLASS,            /* specify the measurement level     */
    target  =good_bad,         /* target variable;                  */
    var     =p_good_badbad,    /* numeric variable for ranking;     */
    event   =BAD,              /* event string (not variable name); */
    bins    =20,               /* final number bins;                */
    fuzz    =0,                /* handle ties;                      */
    expand  =expand            /* output data                       */
    );
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Overview

Introduction
The %HPDM_create_scorecode_hpbin macro creates binning score code based on the 
output of the HPBIN procedure. Refer to the HPBIN procedure on page 9 for more 
information about its usage and details. Binning transformations must be included in the 
model score code for scoring data in test and production processes.

Details
The HPBIN procedure only bins numeric interval variables. It cannot be used for 
character variables. The mapping table, created by the MAPPINGTABLE= argument in 
PROC HPBIN, contains all the information necessary for binning. Also, a source code 
line is added to map missing values to bin level zero. Output variables are given the 
prefix bin_ and are numeric variables. For example, if the HPBIN procedure bins the 
variable _TEST_, then the output variable is _BIN_TEST_. The actual variable names 
appear in the output produced by PROC HPBIN and in the mapping table.

Based on the particulars of your data mining project, you must decide whether the 
original, unbinned variables are kept or dropped. The score code produced by this macro 
contains no DROP or KEEP statements. The score code created is simple, block DATA 
step code that can be included within a DATA step that contains other code blocks.
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Syntax

The %HPDM_create_scorecode_bin Macro
%macro hpdm_create_scorecode_neural (

BINDATA=SAS-data-set
FILEREF=file-name

Required Arguments
BINDATA=SAS-data-set

Specifies the mapping table that is created by the MAPPINGTABLE= argument in 
PROC HPBIN.

FILEREF=file-name
Specifies a SAS file reference for an output code file.

Example: The %HPDM_create_scorecode_bin 
Macro

This example applies the %HPDM_create_scorecode_bin macro to a binned data set. 
The data set that is binned is the HMEQ data set from the SAMPSIO library. Before you 
can run the %HPDM_create_scorecode_bin macro, you need to run PROC HPBIN, as 
shown below.

/*--- load the score code creation macro ---*/
filename h catalog 'sashelp.hpdm.hpdm_create_scorecode_hpbin.source';
%include h;

/*--- run proc hpbin to create bins table --*/
proc hpbin data=sampsio.hmeq pseudo_quantile;
    performance details;
    var LOAN MORTDUE;
    ods table mappingTable=binmap;
run;

Next, run the %HPDM_create_scorecode_bin to create the score code for the binned 
data set. Also, the code below applies the score code and monitors the distribution of the 
bins.

/*--- create scorecode ---------------------*/
filename bincode catalog 'work.sample.bincode.source';
%hpdm_create_scorecode_hpbin(bindata=binmap,fileref=bincode);

/*--- apply scorecode  ---------------------*/
data hmeq_bins; set sampsio.hmeq;
    %include bincode;
run;
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/*--- check distribution of bins -----------*/
proc freq data=hmeq_bins;
    table bin_loan bin_mortdue;
run;
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Overview

Introduction
The %HPDM_create_scorecode_logistic macro creates SAS code to score the logistic 
model created by the HPLOGISTIC procedure.

Syntax

The %HPDM_create_scorecode_logistic Macro
%macro hpdm_create_scorecode_logistic (

DATA=SAS-data-set
EVENTLEVEL=number
MODEL=SAS-data-set
MODELINFO=SAS-data-set
NONEVENTLEVEL=number
FILEREF=file-name
<CLASSIFY=Y | N>
<IMPUTE=Y | N>
<RESIDUAL=Y | N>
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Required Arguments
DATA=SAS-data-set

Specifies the data set that is used to create the regression model in PROC 
HPLOGISTIC.

EVENTLEVEL=number
Specifies the event level for a binary target variable.

FILEREF=file-name
Specifies a SAS file reference for an output code file. Failure to specify this 
argument results in an error.

MODEL=SAS-data-set
Specifies the parameter estimate data set that is generated by the HPLOGISTIC 
procedure.

MODELINFO=SAS-data-set
Specifies the model information data set output that is generated by the 
HPLOGISTIC procedure.

NONEVENTLEVEL=number
Specifies the nonevent level for a binary target variable.

Optional Arguments
CLASSIFY=Y | N

Specify Y to create the F_, I_, and U_ variables. Specify N to suppress the residual 
parameters. The default value is N.

IMPUTEY | N
Specify Y to impute the predicted values. The default value is N.

RESIDUAL=Y | N
Specify Y to create residual variables. The default value is N.

Example: The %HPDM_create_scorecode_logistic 
Macro

This example applies the %HPDM_create_scorecode_logistic macro to a regression 
model that is created by the HPLOGISTIC procedure. The data set that you model is the 
HMEQ data set from the SAMPSIO library. Before you can run the 
%HPDM_create_scorecode_logistic macro, you need to run PROC HPLOGISTIC and 
output the parameter estimate table and model information table, as shown below.

/*--- load the score code creation macro ---*/
filename source1 catalog 'sashelp.hpdm.hpreg_macros.source';
%include source1;
filename source1;

/*--- run proc HPLOGISTIC to create the model --*/
proc hplogistic data=sampsio.hmeq; 
  class JOB REASON DELINQ DEROG NINQ; 
  model BAD(order=internal descending) = 
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     JOB REASON CLAGE CLNO DEBTINC DELINQ DEROG
     LOAN MORTDUE NINQ VALUE YOJ / link=LOGIT ; 
     performance details; 
  ods output ParameterEstimates = ParamEsts1 ModelInfo = MInfo1;
run; quit;

Next, run the %HPDM_create_scorecode_logistic macro to create the score code for the 
logistic model. Also, the code below applies the score code.

filename code1 catalog 'work.model.scorecode_HMEQ_BAD.source';

%HPDM_create_scorecode_HPLOGISTIC(
 data = sampsio.hmeq, 
 model = ParamEsts1, 
 modelinfo = Minfo1, 
 classify = Y, 
 residual = Y,
 fileref = code1, 
 eventLevel = 1, 
 nonEventLevel= 0
);

data scored_hmeq; 
  set sampsio.hmeq; 
  %include code1;
run;
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Overview

Introduction
The %HPDM_create_scorecode_neural macro creates neural network score code based 
on the output of the HPNEURAL procedure. This macro reads the output data set 
created by the OUTMODEL= option in the TRAIN statement of PROC HPNEURAL. 
See “The HPNEURAL Procedure” in the SAS High-Performance Analytics User’s 
Guide for information about its usage.

The generated score code is used inside a DATA step to calculate the predicted value for 
an interval target variable and the predicted probabilities for a nominal target variable in 
a neural network model. The residuals are calculated on request.

Usage
Before you can invoke the %HPDM_create_scorecode_neural macro, you must include 
the macro source file. The macro source file is located in the HPDM catalog. The 
following is an example of how to include the macro source file:

filename NNSC catalog 'sashelp.hpdm.hpdmneural_score_macros.source';
%include NNSC;
filename NNSC;

You must create the file reference that stores the score codes before you invoke the 
%HPDM_create_scorecode_neural macro. Otherwise, the score code output prints to the 
SAS log.
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Syntax

The %HPDM_create_scorecode_neural Macro
%macro hpdm_create_scorecode_neural (

DATA=SAS-data-set
MODEL=SAS-data-set
<FILEREF=file-name>
<RESIDUAL=Y | N>

Required Arguments
DATA=SAS-data-set

Specifies the training data that is used for the HPNEURAL procedure.

MODEL=SAS-data-set
Specifies the parameter estimates produced by PROC HPNEURAL. The data set 
specified here is the data set created by the OUTMODEL= argument in the TRAIN 
statement of the HPNEURAL procedure.

Optional Arguments
FILEREF=file-name

Specifies a SAS file reference for an output code file. If this option is omitted, then 
the output prints to the SAS log.

RESIDUAL=Y | N
Specify Y to create residual variables. The default value is N.

Example: The %HPDM_create_scorecode_neural 
Macro

This example applies the %HPDM_create_scorecode_neural macro to neural network 
model created for the SAMPSIO.HMEQ data set. Before you can run the 
%HPDM_create_scorecode_neural macro, you need to prepare the data set and run 
PROC HPNEURAL. The code below accomplishes both of these steps.

%let hpdm = <directoryPath>;

libname hpdm "&hpdm.";
filename CodeFile "&hpdm.\hpneural_scorecode.sas";
filename CodeDS2 "&hpdm.\hpneural_scorecode_DS2.sas";

/* Create a case ID */
data hpdm.hmeq;
   set sampsio.hmeq;
   casnum = _N_;
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run;

/* Partition data into training and hold-out samples */
data hpdm.hmeq_train
     hpdm.hmeq_holdout;
   set hpdm.hmeq;
   call streaminit(27513);
   if (rand('uniform') le 0.7) then output hpdm.hmeq_train;
   else output hpdm.hmeq_holdout;
run;

/* Assign variables into interval predictors and nominal predictors */
%let INTPRED = CLAGE CLNO DEBTINC LOAN MORTDUE VALUE YOJ;
%let NOMPRED = DELINQ DEROG JOB NINQ REASON ;

/* Predict bad loan using all available predictors by a neural*/
/* network model (2 layers with 10 hidden nodes)              */
proc hpneural data = hpdm.hmeq_train;
   id casnum;
   input &INTPRED. / level = int;
   input &NOMPRED. / level = nom;
   target BAD / level = nom;
   hidden 10 / act = sig;
   architecture layer2;
   train outmodel = hpdm.hmeq_model numtries=4;
   performance details;
run;

Note: You must replace <directoryPath> with the directory path to a valid location 
on your network.

The above code partitions the SAMPSIO.HMEQ data set into a training and a holdout 
data set, and then models the training data set with the HPNEURAL procedure. Now, 
you can run the %HPDM_create_scorecode_neural macro with the following code:

/* Invoke the macro to generate score codes */
filename NNSC catalog 'sashelp.hpdm.hpdmneural_score_macros.source';
%include NNSC;
filename NNSC;

%hpdm_create_scorecode_neural
(
   data = hpdm.hmeq_train,
   model = hpdm.hmeq_model,
   fileref = CodeFile,
   residual = N
);

/* Translate scoring code into DS2 codes using DSTRANS */
proc dstrans ds_to_ds2 nocomp aster
             in = CodeFile
             out = CodeDS2; 
run; 

/* Calculate scores (i.e. predicted probabilities) for the hold-out sample */
%let ASTER_INPUT = sasep.in;
%let ASTER_OUTPUT = sasep.out;
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proc hpds2 in = hpdm.hmeq_holdout
           out = hpdm.hmeq_holdout_score; 
   %include CodeDS2;
run;

/* Print the first 20 records of scores in the hold-out samples */
proc print data = hpdm.hmeq_holdout_score (obs = 20);
   var casnum BAD _WARN_ P_:;
run;
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Overview

Introduction
The %HPDM_create_scorecode_reg macro creates SAS code to score the regression 
model that is created by the HPREG procedure.

Syntax

The %HPDM_create_scorecode_reg Macro
%macro hpdm_create_scorecode_reg (

DATA=SAS-data-set
FILEREF=file-name
MODEL=SAS-data-set
MODELINFO=SAS-data-set
<IMPUTE=Y | N>
<RESIDUAL=Y | N>

Required Arguments
DATA=SAS-data-set

Specifies the data set that is used to create the regression model in PROC HPREG.
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FILEREF=file-name
Specifies a SAS file reference for an output code file. Failure to specify this 
argument results in an error.

MODEL=SAS-data-set
Specifies the parameter estimate data set that is generated by the HPREG procedure.

MODELINFO=SAS-data-set
Specifies the model information data set output that is generated by the HPREG 
procedure.

Optional Arguments
IMPUTE=Y | N

Specify Y to impute the predicted values. The default value is N.

RESIDUAL=Y | N
Specifies Y to create residual variables. The default value is N.

Example: The %HPDM_create_scorecode_reg 
Macro

This example applies the %HPDM_create_scorecode_reg macro to a regression model 
that is created by the HPREG procedure. The data set that you model is the HMEQ data 
set from the SAMPSIO library. Before you can run the %HPDM_create_scorecode_reg 
macro, you need to run PROC HPREG, as shown below.

/*--- load the score code creation macro ---*/
filename source1 catalog 'sashelp.hpdm.hpreg_macros.source';
%include source1;
filename source1;

/*--- run proc hpreg to create the model --*/
proc hpreg data=sampsio.hmeq; 
  class JOB REASON BAD DELINQ DEROG NINQ; 
  model LOAN = 
    JOB REASON CLAGE CLNO DEBTINC DELINQ DEROG MORTDUE NINQ VALUE YOJ BAD; 
  performance details; 
  ods output ParameterEstimates = ParamEsts2 ModelInfo = MInfo2;
run; quit;

Next, run the %HPDM_create_scorecode_reg macro to create the score code for the 
regression model. Also, the code below applies the score code.

filename code2 catalog 'work.model.scorecode_HMEQ_LOAN.source' ;

%HPDM_create_scorecode_HPREG( 
  data = sampsio.hmeq, 
  model = ParamEsts2, 
  modelinfo = Minfo2, 
  residual = Y, 
  fileref = code2
);
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data scored_hmeq; 
  set sampsio.hmeq; 
  %include code2;
run;
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Overview
This example program uses SAS Enterprise Miner High Performance (HP) procedures 
and macros together to build a data mining model with model scoring. The example code 
uses the HMEQ (Home Equity) data set from the SAMPSIO example data library that 
ships with SAS Enterprise Miner.

For a variable map of the SAMPSIO.HMEQ home equity data set, see 
“SAMPSIO.HMEQ Data Set Map” on page 78.

For ease of use and understanding, this program is written for deployment on a single 
SAS Enterprise Miner client, and not on a grid.

Example Program Flow
The following outline indicates the sequence of functional operations that are performed 
by the example program. Actions that are new high-performance components are in 
bold.

Action Function

setup specify SAMPSIO.HMEQ data set, select 
BAD as target variable, create macro 
variables, create titles

DATA step partition SAMPSIO.HMEQ into train and test 
data sets and create a partition variable for the 
train data set
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Action Function

proc hpdmdb identify variables with missing values, 
determine the range for LOAN and 
MORTDUE variables.

proc hpimp impute missing values in interval variables, 
create score code.

DATA step merge training data with new imputed 
variables

proc hpbin create bin class variables for LOAN and 
MORTDUE

DATA step merge training data with new bin variables

macro %hpdm_create_scorecode_hpbin create score code for bin variables

proc hpreduce select a subset of the variable set. The list used 
for variable selection includes impute 
variables, impute indicator variables, and bin 
variables. Variable transformations affect the 
model.

proc hpneural train the neural network

macro %em_new_assessmacro 
%em_new_report

build and report on model performance

macro %hpdm_create_scorecode_neural create score code for the neural model

DATA step apply the generated score code to the test data

macro %em_new_assessmacro 
%em_new_report

report on the test data set

proc hplogistic use backwards model selection algorithm to 
train the logistic regression model

macro %em_new_assessmacro 
%em_new_report

build and report on model assessment

macro %hpdm_create_scorecode_reg create score code for the regression model

DATA step apply the generated score code to the test data

macro %em_new_assessmacro 
%em_new_report

build and report on model performance

proc hpdecide create profit matrix and bias decisions.
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Example Code

/*-------------------------------------------------------------*/
/* HPDM 1.1 HMEQ SAMPLE PROGRAM                                */
/*-------------------------------------------------------------*/
/* load use useful macros for hp data mining                   */
/*-------------------------------------------------------------*/
filename h catalog 'sashelp.hpdm.hpdm_tools.source' ; 
  %include h ; 
filename h catalog 'sashelp.hpdm.hpreg_macros.source' ; 
  %include h ; 
filename h catalog 'sashelp.hpdm.hpdmneural_score_macros.source' ; 
  %include h ; 
filename h catalog 'sashelp.hpdm.hpdm_score_create_hpbin.source' ; 
  %include h ; 
%global em_keytargetlevel ;

/*-------------------------------------------------------------*/
/* Create train and test partitions of the data                */
/* Grid data should have an ID column for matching results     */ 
/*-------------------------------------------------------------*/
data train test; set sampsio.hmeq ; 
    length id 8 ; 
    ID= 10101010 +  _N_ ;
    if ranuni(1) < 0.1 then output test ; else output train ; 
run ; 

/*-------------------------------------------------------------*/
/* Create a partition variable in the train data               */ 
/*-------------------------------------------------------------*/
data train ; set train ; 
    length partition $2 ;
    if ranuni(1) < 0.5 then partition='T'; 
else    partition='V';
run ; 

/*-------------------------------------------------------------*/
/* use these variables for the analysis.  the target is BAD    */
/*-------------------------------------------------------------*/
%let class= JOB REASON ; 
%let vars= CLAGE CLNO DEBTINC DELINQ DEROG LOAN MORTDUE NINQ VALUE YOJ ;

/*-------------------------------------------------------------*/
/* create summary of the data.  locate missing var values      */
/*-------------------------------------------------------------*/
title1 'SAS High Performance Data Mining 1.1 DEMO' ;
proc hpdmdb data=train varout=v classout=c dmdbcat=d ;
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    performance details ; 
    var &vars ;
    class &class ; 
run ;
 
title2 'Class Variables' ; proc print data=c noobs ; run ; 

title2 'Interval Variables' ; proc print data=v noobs; run ;

/*-------------------------------------------------------------*/
/* impute the missing interval variables                       */
/* procedure saves scorecode for test and production data      */
/*-------------------------------------------------------------*/
title2 'Impute missing interval values' ;
filename impute 'impute.sas' ;
proc hpimp data=train out=hpimp dmdbcat=d;
    performance details ; 
    id id ; 
    input &vars ; 
    impute &vars / method=mean ; 
    ods table ImputeResults=ir ; 
    code file= impute ;
run ; 

/*-------------------------------------------------------------*/ 
/* Update train table by merging output                        */
/*-------------------------------------------------------------*/
data train ; merge train hpimp ; by  id ; drop &vars ; run; 

/*-------------------------------------------------------------*/ 
/* fetch names of new variables                                */
/*-------------------------------------------------------------*/
%global n_imp_vars imp_vars m_vars ; 
data _null_ ; set ir end=eof ; 
    length imp_vars $2000 m_vars $2000 ; 
    retain imp_vars ' ' m_vars ' ' ;
    imp_vars= strip(imp_vars) !! ' ' !! impvarname ; 
    m_vars= strip(m_vars) !! ' ' !! indicatorvarname ; 
    if eof then do ; 
        call symput('imp_vars',strip(imp_vars)) ; 
        call symput('m_vars',strip(m_vars)) ; 
        call symput('n_imp_vars', strip(put(_N_,6.))) ;
    end ; 
run ; 

%put NOTE: IMPUTE VARS: &n_imp_vars : &imp_vars ;
%put NOTE: INDICATOR VARS: &n_imp_vars : &m_vars ;

/*-------------------------------------------------------------*/
/* bin variables with wide distributions                       */
/*-------------------------------------------------------------*/
proc hpbin data=train output=hpbin pseudo_quantile ; 
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    performance details ; 
    id id ;
    var imp_LOAN imp_MORTDUE ; 
    ods table mappingTable=binmap ; 
run ; 

/*-------------------------------------------------------------*/ 
/* Update train table by merging output                        */
/*-------------------------------------------------------------*/
data train ; merge train hpbin ; by  id ; run; 

%let class= &class bin_imp_LOAN bin_imp_MORTDUE ; 

/*-------------------------------------------------------------*/
/* build score code for test and production data               */
/*-------------------------------------------------------------*/
filename bincode 'bincode.sas' ;
%hpdm_create_scorecode_bin(bindata=binmap,fileref=bincode) ;

/*-------------------------------------------------------------*/ 
/* select variables based on unsupervised variance reduction   */
/*-------------------------------------------------------------*/
title2 'Reduce dimensionality' ;
proc hpreduce data=train outcp= cp;
    performance details ; 
    id id partition ;
    class &class / missing ;
    reduce unsupervised &class &imp_vars &m_vars / varexp=0.95 ; 
    ods table selectionsummary=s ; 
run ; 

/*-------------------------------------------------------------*/ 
/* fetch names of selected variables                           */
/*-------------------------------------------------------------*/
proc freq data=s noprint ; table variable / missing out=sf ; run ; 
%global n_reduce_vars reduce_vars n_reduce_class reduce_class ; 
data _null_ ; set sf end=eof ; 
    length cvars $2000 ivars $2000 ; 
    retain cvars ' ' ivars ' ' cnv 0 inv 0 ;
    if count gt 1 then do ;    
   cvars= strip(cvars) !! ' ' !! variable ; 
   cnv+1 ; 
end ; 
    else do ; ivars= strip(ivars) !! ' '  !! variable ; 
   inv+1 ; 
end ; 
    if eof then do ; 
        call symput('reduce_vars',strip(ivars)) ; 
        call symput('n_reduce_vars', strip(put(inv,6.))) ;
        call symput('reduce_class',strip(cvars)) ; 
        call symput('n_reduce_class', strip(put(cnv,6.))) ;
    end ; 
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run ; 

%put NOTE: REDUCE VARS: &n_reduce_vars : &reduce_vars ;
%put NOTE: REDUCE CLASS: &n_reduce_class : &reduce_class ; 

/*-------------------------------------------------------------*/
/* Train a Neural Network model                                */
/*-------------------------------------------------------------*/
title2 'Neural Network' ; 
proc hpneural data=train ; 
    performance details ; 
    id id  ; 
    input &reduce_vars / level=int ; 
    input &reduce_class / level=nom  ; 
    target bad / level=nom ; 
    hidden 4 ; 
    architecture layer1 ; 
    train outmodel=nn maxiter=40 ;
    score  out=scores ; 
run ; 

/*-------------------------------------------------------------*/
/* create model performance measures                           */
/*-------------------------------------------------------------*/
%em_new_assess(data=scores,out=bins,target=bad,event=1,var=p_bad1,
  from=from,into=into) ; 
%em_new_report(bins=bins,from=from,into=into) ;

/*-------------------------------------------------------------*/
/* build score code for test and production data               */
/*-------------------------------------------------------------*/
filename neural 'neural.sas' ;
%hpdm_create_scorecode_neural(data=train,model=nn,fileref=neural) ; 

/*-------------------------------------------------------------*/
/* score test data and measure performance                     */
/*-------------------------------------------------------------*/
data testscores ; set test ; 
    %include impute ; 
    %include bincode ; 
    %include neural ; 
    keep id bad p_: ;
run ; 

title2 'Neural Model Applied to Test Data' ;
%em_new_assess(data=testscores,out=testbins,target=bad,event=1,var=p_bad1,
  from=from,into=into) ; 
%em_new_report(bins=testbins,from=from,into=into) ;

/*-------------------------------------------------------------*/
/* train a logistic regression model.                          */
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/* use all imputed vars and backward model selection           */
/*-------------------------------------------------------------*/
title2 'Logistic Regression' ;
proc hplogistic data=train ;
    performance details ; 
    id id partition bad ; 
    class &class ; 
    model bad(ref=first) = &imp_vars &m_vars &class ;
    selection method=backward ; 
    output out=scores(rename=(pred=p_bad1)) pred ; 
    ods output ParameterEstimates=lr_est ModelInfo=lr_info ;
run ; 

/*-------------------------------------------------------------*/
/* create model performance measures                           */
/*-------------------------------------------------------------*/
%em_new_assess(data=scores,out=bins,target=bad,event=1,var=p_bad1,
  from=from,into=into) ; 
%em_new_report(bins=bins,from=from,into=into) ;

/*-------------------------------------------------------------*/
/* build score code for test data and production systems       */
/*-------------------------------------------------------------*/
filename logistic 'logistic.sas' ;
%HPDM_create_scorecode_HPLOGISTIC(data=train,model=lr_est,modelinfo=lr_info,
  fileref=logistic,eventLevel=1,nonEventLevel=0) ;
/*-------------------------------------------------------------*/
/* score test data and measure performance                     */
/*-------------------------------------------------------------*/
title2 'Logistic Model Applied to Test Data' ;
data testscores ; set test ; 
    %include impute ; 
    %include bincode ; 
    %include logistic ; 
    keep id bad p_: ;
run ; 

%em_new_assess(data=testscores,out=testbins,target=bad,event=1,
  var=p_bad1,from=from,into=into) ; 
%em_new_report(bins=testbins,from=from,into=into) ;

/*-------------------------------------------------------------*/
* Create a profit matrix ;
* introduce bias to keep more risky borrowers ;
* use basis points as units ;
/*-------------------------------------------------------------*/
data profit(type=profit) ;
    length BAD $32 keep reject 8;
    label keep='keep' reject='reject';
    bad='1' ; keep=150 ; reject=170 ; output ;
    bad='0' ; keep=200 ; reject=100 ; output ;
run;
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title2 'Decision Processing' ;
proc hpdecide data=testscores out=decisions outFit=hpdecide_outFit role=train ;
    decision decdata=profit decvars=keep reject;
    target BAD;
    posteriors P_BAD1 P_BAD0;
run;

proc hpdmdb data=decisions classout=c; 
class  i_bad d_profit; 
run ; 

proc print data=c ; run ; 
/*-------------------------------------------------------------*/
* create hpreg example ; 
/*-------------------------------------------------------------*/

SAMPSIO.HMEQ Data Set Map
The following table provides summary information about the HMEQ Home Equity data 
set that is included in the SAS Enterprise Miner SAMPSIO example data library:

Variable Model Role Measurement Description

BAD target binary default or seriously 
delinquent

CLAGE input interval age of oldest trade 
(credit) line in months

CLNO input interval number of trade (credit) 
lines

DEBTINC input interval debt-to-income ratio

DELINQ input interval number of delinquent 
trade lines

DEROG input interval number of major 
derogatory reports

JOB input nominal job category

LOAN input interval amount of current loan 
request

MORTDUE input interval amount due on existing 
mortgage

NINQ input interval number of recent credit 
inquiries
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Variable Model Role Measurement Description

REASON input binary home improvement or 
debt consolidation

VALUE input interval value of current 
property

YOJ input interval years on current job
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