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Overview of the SAS Enterprise Miner High-Performance
Procedures

The high-performance data mining procedures provides tools that have been specially developed to take
advantage of parallel processing in both multithreaded single-machine mode and distributed multiple-machine
mode. Data Mining methods include neural networks and ensemble tree models as well as variables selection
techniques and applying decision maricies to make optimal decisions. The software is constantly being
updated to reflect new methodology and advances in high-performance analytics.

In addition to the high-performance data mining procedures described in this book, Enterpise Miner in-
cludes high-performance utility procedures, which are described in Base SAS Procedures Guide: High-
Performance Procedures. You can run all these procedures in single-machine mode without licensing SAS
High-Performance Data Mining. However, to run these procedures in distributed mode, you must license
SAS High-Performance Data Mining.

About This Book

This book assumes that you are familiar with Base SAS software and with the books SAS Language Reference:
Concepts and Base SAS Procedures Guide. It also assumes that you are familiar with basic SAS System
concepts, such as using the DATA step to create SAS data sets and using Base SAS procedures (such as the
PRINT and SORT procedures) to manipulate SAS data sets.
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Chapter Organization

This book is organized as follows:

Chapter 1, this chapter, provides an overview of high-performance data mining procedures.

Chapter 2, “Shared Concepts and Topics,” describes the modes in which high-performance data mining

procedures can execute.

Subsequent chapters describe the individual procedures. These chapters appear in alphabetical order by
procedure name. Each chapter is organized as follows:

* The “Overview” section provides a brief description of the analysis provided by the procedure.

» The “Getting Started” section provides a quick introduction to the procedure through a simple example.

* The “Syntax” section describes the SAS statements and options that control the procedure.

The “Details” section discusses methodology and other topics, such as ODS tables.
The “Examples” section contains examples that use the procedure.

The “References” section contains references for the methodology.

Typographical Conventions

This book uses several type styles for presenting information. The following list explains the meaning of the
typographical conventions used in this book:

roman

UPPERCASE ROMAN

UPPERCASE BOLD

oblique

VariableName
bold

italic

monospace

is the standard type style used for most text.

is used for SAS statements, options, and other SAS language elements when
they appear in the text. However, you can enter these elements in your own SAS
programs in lowercase, uppercase, or a mixture of the two.

is used in the “Syntax” sections’ initial lists of SAS statements and options.

is used in the syntax definitions and in text to represent arguments for which you
supply a value.

is used for the names of variables and data sets when they appear in the text.
is used to for matrices and vectors.

is used for terms that are defined in the text, for emphasis, and for references to
publications.

is used for example code. In most cases, this book uses lowercase type for SAS
code.
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Options Used in Examples

Most of the output shown in this book is produced with the following SAS System options:

options linesize=80 pagesize=500 nonumber nodate;

The HTMLBLUE style is used to create the HTML output and graphs that appear in the online documentation.
A style template controls stylistic elements such as colors, fonts, and presentation attributes. The style
template is specified in the ODS HTML statement as follows:

ods html style=HTMLBlue;

If you run the examples, your output might be slightly different, because of the SAS System options you use
and the precision that your computer uses for floating-point calculations.

Online Documentation

You can access the documentation by going to http://support.sas.com/documentation.

SAS Technical Support Services

The SAS Technical Support staff is available to respond to problems and answer technical questions re-

garding the use of high-performance procedures. Go to http://support.sas.com/techsup for more
information.


http://support.sas.com/documentation
http://support.sas.com/techsup
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Overview

This chapter describes the modes of execution in which SAS high-performance analytical procedures can
execute. If you have SAS Enterprise Miner installed, you can run any procedure in this book on a single



6 4 Chapter 2: Shared Concepts and Topics

machine. However, to run procedures in this book in distributed mode, you must also have SAS High-
Performance Data Mining software installed. For more information about these modes, see the next section.

This chapter provides details of how you can control the modes of execution and includes the syntax for the
PERFORMANCE statement, which is common to all high-performance analytical procedures.

Processing Modes

Single-Machine Mode

Single-machine mode is a computing model in which multiple processors or multiple cores are controlled
by a single operating system and can access shared resources, such as disks and memory. In this book,
single-machine mode refers to an application running multiple concurrent threads on a multicore machine
in order to take advantage of parallel execution on multiple processing units. More simply, single-machine
mode for high-performance analytical procedures means multithreading on the client machine.

All high-performance analytical procedures are capable of running in single-machine mode, and this is the
default mode when a procedure runs on the client machine. The procedure uses the number of CPUs (cores)
on the machine to determine the number of concurrent threads. High-performance analytical procedures use
different methods to map core count to the number of concurrent threads, depending on the analytic task.
Using one thread per core is not uncommon for the procedures that implement data-parallel algorithms.

Distributed Mode

Distributed mode is a computing model in which several nodes in a distributed computing environment
participate in the calculations. In this book, the distributed mode of a high-performance analytical procedure
refers to the procedure performing the analytics on an appliance that consists of a cluster of nodes. This
appliance can be one of the following:

* a database management system (DBMS) appliance on which the SAS High-Performance Analytics
infrastructure is also installed

* a cluster of nodes that have the SAS High-Performance Analytics infrastructure installed but no DBMS
software installed

Distributed mode has several variations:

* Client-data (or local-data) mode: The input data for the analytic task are not stored on the appliance or
cluster but are distributed to the distributed computing environment by the SAS High-Performance
Analytics infrastructure when the procedure runs.

* Alongside-the-database mode: The data are stored in the distributed database and are read from the
DBMS in parallel into a high-performance analytical procedure that runs on the database appliance.
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* Alongside-HDFS mode: The data are stored in the Hadoop Distributed File System (HDFS) and
are read in parallel from the HDFS. This mode is available if you install the SAS High-Performance
Deployment of Hadoop on the appliance or when you configure a Cloudera 4 Hadoop deployment on the
appliance to operate with the SAS High-Performance Analytics infrastructure. For more information
about installing the SAS High-Performance Deployment of Hadoop, see the SAS High-Performance
Analytics Infrastructure: Installation and Configuration Guide.

* Alongside-LASR mode: The data are loaded from a SAS LASR Analytic Server that runs on the
appliance.

Symmetric and Asymmetric Distributed Modes

SAS high-performance analytical procedures can run alongside the database or alongside HDFS in asymmetric
mode. The primary reason for providing the asymmetric mode is to enable you to manage and house data
on one appliance (the data appliance) and to run the high-performance analytical procedure on a second
appliance (the computing appliance). You can also run in asymmetric mode on a single appliance that
functions as both the data appliance and the computing appliance. This enables you to run alongside the
database or alongside HDFS, where computations are done on a different set of nodes from the nodes that
contain the data. The following subsections provide more details.

Symmetric Mode

When SAS high-performance analytical procedures run in symmetric distributed mode, the data appliance
and the computing appliance must be the same appliance. Both the SAS Embedded Process and the high-
performance analytical procedures execute in a SAS process that runs on the same hardware where the
DBMS process executes. This is called symmetric mode because the number of nodes on which the DBMS
executes is the same as the number of nodes on which the high-performance analytical procedures execute.
The initial data movement from the DBMS to the high-performance analytical procedure does not cross node
boundaries.

Asymmetric Mode

When SAS high-performance analytical procedures run in asymmetric distributed mode, the data appliance
and computing appliance are usually distinct appliances. The high-performance analytical procedures execute
in a SAS process that runs on the computing appliance. The DBMS and a SAS Embedded Process run
on the data appliance. Data are requested by a SAS data feeder that runs on the computing appliance and
communicates with the SAS Embedded Process on the data appliance. The SAS Embedded Process transfers
the data in parallel to the SAS data feeder that runs on each of the nodes of the computing appliance. This is
called asymmetric mode because the number of nodes on the data appliance does not need to be the same as
the number of nodes on the computing appliance.

Controlling the Execution Mode with Environment Variables and
Performance Statement Options

You control the execution mode by using environment variables or by specifying options in the PERFOR-
MANCE statement in high-performance analytical procedures, or by a combination of these methods.
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The important environment variables follow:

* grid host identifies the domain name system (DNS) or IP address of the appliance node to which the
SAS High-Performance Data Mining software connects to run in distributed mode.

* installation location identifies the directory where the SAS High-Performance Data Mining software is
installed on the appliance.

* data server identifies the database server on Teradata appliances as defined in the hosts file on the client.
This data server is the same entry that you usually specify in the SERVER= entry of a LIBNAME
statement for Teradata. For more information about specifying LIBNAME statements for Teradata and
other engines, see the DBMS-specific section of SAS/ACCESS for Relational Databases: Reference
for your engine.

» grid mode specifies whether the high-performance analytical procedures execute in symmetric or
asymmetric mode. Valid values for this variable are 'sym' for symmetric mode and 'asym' for
asymmetric mode. The default is symmetric mode.

You can set an environment variable directly from the SAS program by using the OPTION SET= command.
For example, the following statements define three variables for a Teradata appliance (the grid mode is the
default symmetric mode):

option set=GRIDHOST ="hpa.sas.com";
option set=GRIDINSTALLLOC="/opt/TKGrid";
option set=GRIDDATASERVER="myserver";

Alternatively, you can set the parameters in the PERFORMANCE statement in high-performance analytical
procedures. For example:

performance host ="hpa.sas.com"
install ="/opt/TKGrid"
dataserver="myserver";

The following statements define three variables that are needed to run asymmetrically on a computing

appliance.
option set=GRIDHOST ="compute_appliance.sas.com";
option set=GRIDINSTALLLOC="/opt/TKGrid";
option set=GRIDMODE ="asym";

Alternatively, you can set the parameters in the PERFORMANCE statement in high-performance analytical
procedures. For example:

performance host ="compute_appliance.sas.com"
install ="/opt/TKGrid"
gridmode ="asym"

A specification in the PERFORMANCE statement overrides a specification of an environment variable
without resetting its value. An environment variable that you set in the SAS session by using an OPTION
SET= command remains in effect until it is modified or until the SAS session terminates.
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Specifying a data server is necessary only on Teradata systems when you do not explicitly set the gridmode
environment variable or specify the GRIDMODE= option in the PERFORMANCE statement. The data
server specification depends on the entries in the (client) hosts file. The file specifies the server (suffixed by
cop and a number) and an IP address. For example:

myservercopl 33.44.55.66

The key variable that determines whether a high-performance analytical procedure executes in single-machine
or distributed mode is the grid host. The installation location and data server are needed to ensure that a
connection to the grid host can be made, given that a host is specified. This book assumes that the installation
location and data server (if necessary) have been set by your system administrator.

The following sets of SAS statements are functionally equivalent:

proc hpreduce;
reduce unsupervised x:;
performance host="hpa.sas.com";
run;

option set=GRIDHOST="hpa.sas.com";
proc hpreduce;

reduce unsupervised x:;
run;

Determining Single-Machine Mode or Distributed Mode

High-performance analytical procedures use the following rules to determine whether they run in single-
machine mode or distributed mode:

* If a grid host is not specified, the analysis is carried out in single-machine mode on the client machine
that runs the SAS session.

* If a grid host is specified, the behavior depends on whether the execution is alongside the database
or alongside HDFS. If the data are local to the client (that is, not stored in the distributed database or
HDEFS on the appliance), you need to use the NODES= option in the PERFORMANCE statement
to specify the number of nodes on the appliance or cluster that you want to engage in the analysis.
If the procedure executes alongside the database or alongside HDFS, you do not need to specify the
NODES-= option.

The following example shows single-machine and client-data distributed configurations for a data set of
100,000 observations that are simulated from a logistic regression model. The following DATA step generates
the data:

data simData;
array _a{8} _temporary_(0,0,0,1,0,1,1,1);
array _b{8} _temporary_(0,0,1,0,1,0,1,1);
array _c{8} _temporary_(0,1,0,0,1,1,0,1);

4 4 4 4 4

rYr Myt < Vy
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do obsno=1 to 100000;
X = rantbl1(1,0.28,0.18,0.14,0.14,0.03,0.09,0.08,0.06);

a = _a{x};
b = _b{x};
c = _c{x};

x1l = int (ranuni (1) *400);
x2 = 52 + ranuni (1) *38;
x3 = ranuni (1) *12;
lp = 6. —-0.015%x(1-a) + 0.7x(1-b) + 0.6x(1-c) + 0.02xx1 —-0.05%x2 — 0.1%x3;
y = ranbin(1l,1, (1/(l+exp(lp))));
output;

end;

drop x 1lp;

run;

The following statements run PROC HPLOGISTIC to fit a logistic regression model:

proc hplogistic data=simData;
class a b ¢;
model y = a b ¢ x1 x2 x3;
run;

Figure 2.1 shows the results from the analysis.

Figure 2.1 Results from Logistic Regression in Single-Machine Mode

The HPLOGISTIC Procedure

Performance Information

Execution Mode Single-Machine
Number of Threads 4

Model Information

Data Source WORK.SIMDATA
Response Variable y

Class Parameterization GLM
Distribution Binary

Link Function Logit

Optimization Technique Newton-Raphson with Ridging
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Figure 2.1 continued

Parameter Estimates
Standard
Parameter Estimate Error DF t Value Pr > |t]|
Intercept 5.7011 0.2539 Infty 22.45 <.0001
ao -0.01020 0.06627 Infty -0.15 0.8777
al 0 . . . .
b 0 0.7124 0.06558 Infty 10.86 <.0001
b1 0 . . . .
c O 0.8036 0.06456 Infty 12.45 <.0001
cl1l 0 . . . .
x1 0.01975 0.000614 Infty 32.15 <.0001
x2 -0.04728 0.003098 Infty -15.26 <.0001
x3 -0.1017 0.009470 Infty -10.74 <.0001

The entries in the “Performance Information™ table show that the HPLOGISTIC procedure runs in single-
machine mode and uses four threads, which are chosen according to the number of CPUs on the client
machine. You can force a certain number of threads on any machine that is involved in the computations
by specifying the NTHREADS option in the PERFORMANCE statement. Another indication of execution
on the client is the following message, which is issued in the SAS log by all high-performance analytical
procedures:

NOTE: The HPLOGISTIC procedure is executing on the client.

The following statements use 10 nodes (in distributed mode) to analyze the data on the appliance; results
appear in Figure 2.2:

proc hplogistic data=simData;

class a b c;

model y = a b ¢ x1 x2 x3;

performance host="hpa.sas.com" nodes=10;
run;

Figure 2.2 Results from Logistic Regression in Distributed Mode

The HPLOGISTIC Procedure

Performance Information

Host Node hpa.sas.com
Execution Mode Distributed
Grid Mode Symmetric
Number of Compute Nodes 10

Number of Threads per Node 24
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Figure 2.2 continued

Data Source
Response Variable
Class Parameteriz
Distribution

Link Function
Optimization Tech

Parameter Estimate
Intercept 5.7011
ao -0.01020
al 0
b 0 0.7124
b1l 0
cO 0.8036
cl 0
x1 0.01975
x2 -0.04728
x3 -0.1017

Model Information

WORK . SIMDATA

y
ation GLM
Binary
Logit
nique Newton-Raphson with Ridging

Parameter Estimates

Standard
Error

0.2539
0.06627

0.06558
0.06456
0.000614

0.003098
0.009470

DF

Infty
Infty

Infty
Infty
Infty

Infty
Infty

t Value

22.
-0.

10.
12.
32.

-15.
-10.

45
15

86

45

15

26
74

Pr > |t|

<.0001
0.8777

<.0001
<.0001
<.0001

<.0001
<.0001

The specification of a host causes the “Performance Information” table to display the name of the host node
of the appliance. The “Performance Information” table also indicates that the calculations were performed in
a distributed environment on the appliance. Twenty-four threads on each of 10 nodes were used to perform

the calculations—for a total of 240 threads.

Another indication of distributed execution on the appliance is the following message, which is issued in the
SAS log by all high-performance analytical procedures:

NOTE: The HPLOGISTIC procedure is executing in the distributed

computing environment with 10 worker nodes.

You can override the presence of a grid host and force the computations into single-machine mode by
specifying the NODES=0 option in the PERFORMANCE statement:

proc hplogistic data=simData;

class a b
model y =

performance host="hpa.sas.com" nodes=0;

run;

Figure 2.3 shows the “Performance Information” table. The numeric results are not reproduced here, but they
agree with the previous analyses, which are shown in Figure 2.1 and Figure 2.2.

Cc;
a b c x1 x2 x3;
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Figure 2.3 Single-Machine Mode Despite Host Specification

The HPLOGISTIC Procedure

Performance Information

Execution Mode Single—Machine
Number of Threads 4

The “Performance Information” table indicates that the HPLOGISTIC procedure executes in single-machine
mode on the client. This information is also reported in the following message, which is issued in the SAS
log:

NOTE: The HPLOGISTIC procedure is executing on the client.

In the analysis shown previously in Figure 2.2, the data set Work.simData is local to the client, and the
HPLOGISTIC procedure distributed the data to 10 nodes on the appliance. The High-Performance Analytics
infrastructure does not keep these data on the appliance. When the procedure terminates, the in-memory
representation of the input data on the appliance is freed.

When the input data set is large, the time that is spent sending client-side data to the appliance might dominate
the execution time. In practice, transfer speeds are usually lower than the theoretical limits of the network
connection or disk I/O rates. At a transfer rate of 40 megabytes per second, sending a 10-gigabyte data set
to the appliance requires more than four minutes. If analytic execution time is in the range of seconds, the
“performance” of the process is dominated by data movement.

The alongside-the-database execution model, unique to high-performance analytical procedures, enables you
to read and write data in distributed form from the database that is installed on the appliance.

Alongside-the-Database Execution

High-performance analytical procedures interface with the distributed database management system (DBMS)
on the appliance in a unique way. If the input data are stored in the DBMS and the grid host is the appliance
that houses the data, high-performance analytical procedures create a distributed computing environment in
which an analytic process is co-located with the nodes of the DBMS. Data then pass from the DBMS to the
analytic process on each node. Instead of moving across the network and possibly back to the client machine,
the data pass locally between the processes on each node of the appliance.

Because the analytic processes on the appliance are separate from the database processes, the technique is
referred to as alongside-the-database execution in contrast to in-database execution, where the analytic code
executes in the database process.

In general, when you have a large amount of input data, you can achieve the best performance from
high-performance analytical procedures if execution is alongside the database.
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Before you can run alongside the database, you must distribute the data to the appliance. The following
statements use the HPDS2 procedure to distribute the data set Work.simData into the mydb database on the
hpa.sas.com appliance. In this example, the appliance houses a Greenplum database.

option set=GRIDHOST="hpa.sas.com";
libname applianc greenplm
server ="hpa.sas.com"
user =XXXXXX
password=YYYYY
database=mydb;

proc datasets lib=applianc nolist; delete simData;
proc hpds2 data=simData
out =applianc.simData (distributed by='distributed randomly');
performance commit=10000 nodes=all;
data DS2GTF.out;
method run();
set DS2GTF.in;
end;
enddata;
run;

If the output table applianc.simData exists, the DATASETS procedure removes the table from the Greenplum
database because a DBMS does not usually support replacement operations on tables.

Note that the libref for the output table points to the appliance. The data set option informs the HPDS2
procedure to distribute the records randomly among the data segments of the appliance. The statements that
follow the PERFORMANCE statement are the DS2 program that copies the input data to the output data
without further transformations.
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Because you loaded the data into a database on the appliance, you can use the following HPLOGISTIC
statements to perform the analysis on the appliance in the alongside-the-database mode. These statements
are almost identical to the first PROC HPLOGISTIC example in the previous section, which executed in
single-machine mode.

proc hplogistic data=applianc.simData;
class a b c;
model y = a b ¢ x1 x2 x3;

run;

The subtle differences are as follows:

* The grid host environment variable that you specified in an OPTION SET= command is still in effect.
* The DATA= option in the high-performance analytical procedure uses a libref that identifies the data

source as being housed on the appliance. This libref was specified in a prior LIBNAME statement.

Figure 2.4 shows the results from this analysis. The “Performance Information” table shows that the execution
was in distributed mode. In this case the execution was alongside the Greenplum database. The numeric
results agree with the previous analyses, which are shown in Figure 2.1 and Figure 2.2.

Figure 2.4 Alongside-the-Database Execution on Greenplum

The HPLOGISTIC Procedure

Performance Information

Host Node hpa.sas.com
Execution Mode Distributed
Grid Mode Symmetric
Number of Compute Nodes 8

Number of Threads per Node 24

Model Information

Data Source SIMDATA
Response Variable y

Class Parameterization GLM
Distribution Binary
Link Function Logit

Optimization Technique Newton-Raphson with Ridging
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Figure 2.4 continued

Parameter Estimates
Standard
Parameter Estimate Error DF t Value Pr > |t]|
Intercept 5.7011 0.2539 Infty 22.45 <.0001
ao -0.01020 0.06627 Infty -0.15 0.8777
al 0 . . . .
b 0 0.7124 0.06558 Infty 10.86 <.0001
b1 0 . . . .
c O 0.8036 0.06456 Infty 12.45 <.0001
cl1l 0 . . . .
x1 0.01975 0.000614 Infty 32.15 <.0001
x2 -0.04728 0.003098 Infty -15.26 <.0001
x3 -0.1017 0.009470 Infty -10.74 <.0001

When high-performance analytical procedures execute symmetrically alongside the database, any nonzero
specification of the NODES= option in the PERFORMANCE statement is ignored. If the data are read
alongside the database, the number of compute nodes is determined by the layout of the database and cannot
be modified. In this example, the appliance contains 16 nodes. (See the “Performance Information” table.)

However, when high-performance analytical procedures execute asymmetrically alongside the database, the
number of compute nodes that you specify in the PERFORMANCE statement can differ from the number of
nodes across which the data are partitioned. For an example, see the section “Running High-Performance
Analytical Procedures in Asymmetric Mode” on page 19.

Alongside-LASR Distributed Execution

You can execute high-performance analytical procedures in distributed mode alongside a SAS LASR Analytic
Server. When high-performance analytical procedures execute in this mode, the data are preloaded in
distributed form in memory that is managed by a LASR Analytic Server. The data on the nodes of the
appliance are accessed in parallel in the process that runs the LASR Analytic Server, and they are transferred
to the process where the high-performance analytical procedure runs. In general, each high-performance
analytical procedure copies the data to memory that persists only while that procedure executes. Hence, when
a high-performance analytical procedure runs alongside a LASR Analytic Server, both the high-performance
analytical procedure and the LASR Analytic Server have a copy of the subset of the data that is used by the
high-performance analytical procedure. The advantage of running high-performance analytical procedures
alongside a LASR Analytic Server (as opposed to running alongside a DBMS table or alongside HDFS) is
that the initial transfer of data from the LASR Analytic Server to the high-performance analytical procedure
is a memory-to-memory operation that is faster than the disk-to-memory operation when the procedure runs
alongside a DBMS or HDFS. When the cost of preloading a table into a LASR Analytic Server is amortized
by multiple uses of these data in separate runs of high-performance analytical procedures, using the LASR
Analytic Server can result in improved performance.
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Running High-Performance Analytical Procedures Alongside
a SAS LASR Analytic Server in Distributed Mode

This section provides an example of steps that you can use to start and load data into a SAS LASR Analytic
Server instance and then run high-performance analytical procedures alongside this LASR Analytic Server
instance.

Starting a SAS LASR Analytic Server Instance

The following statements create a SAS LASR Analytic Server instance and load it with the simData data
set that is used in the preceding examples. The data that are loaded into the LASR Analytic Server persist
in memory across procedure boundaries until these data are explicitly deleted or until the server instance is
terminated.

proc lasr port=12345
data=simData
path="/tmp/";
performance host="hpa.sas.com" nodes=ALL;
run;

The PORT= option specifies a network port number to use. The PATH= option specifies the directory in
which the server and table signature files are to be stored. The specified directory must exist on each machine
in the cluster. The DATA= option specifies the name of a data set that is loaded into this LASR Analytic
Server instance. (You do not need to specify the DATA= option at this time because you can add tables to
the LASR Analytic Server instance at any stage of its life.) For more information about starting and using a
LASR Analytic Server, see the SAS LASR Analytic Server: Administration Guide.

The NODES=ALL option in the PERFORMANCE statement specifies that the LASR Analytic Server run
on all the nodes on the appliance. You can start a LASR Analytic Server on a subset of the nodes on an
appliance, but this might affect whether high-performance analytical procedures can run alongside the LASR
Analytic Server. For more information, see the section “Alongside-LASR Distributed Execution on a Subset
of the Appliance Nodes” on page 19.

Figure 2.5 shows the “Performance Information” table, which shows that the LASR procedure executes in
distributed mode on 16 nodes.

Figure 2.5 Performance Information

The LASR Procedure

Performance Information

Host Node hpa.sas.com
Execution Mode Distributed
Grid Mode Symmetric

Number of Compute Nodes 8
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Associating a SAS Libref with the SAS LASR Analytic Server Instance

The following statements use a LIBNAME statement that associates a SAS libref (named MyLasr) with
tables on the server instance as follows:

libname MyLlasr sasiola port=12345;

The SASIOLA option requests that the MyLasr libref use the SASIOLA engine, and the PORT= value
associates this libref with the appropriate server instance. For more information about creating a libref that
uses the SASIOLA engine, see the SAS LASR Analytic Server: Administration Guide.

Running a High-Performance Analytical Procedure Alongside the SAS
LASR Analytic Server Instance

You can use the MyLasr libref to specify the input data for high-performance analytical procedures. You can
also create output data sets in the SAS LASR Analytic Server instance by using this libref to request that the
output data set be held in memory by the server instance as follows:

proc hplogistic data=MyLasr.simData;

class a b ¢;

model y = a b ¢ x1 x2 x3;

output out=MyLasr.simulateScores pred=PredictedProbabliity;
run;

Because you previously specified the GRIDHOST= environment variable and the input data are held in
distributed form in the associated server instance, this PROC HPLOGISTIC step runs in distributed mode
alongside the LASR Analytic Server, as indicated in the “Performance Information” table shown in Figure 2.6.

Figure 2.6 Performance Information

Performance Information

Host Node hpa.sas.com
Execution Mode Distributed
Grid Mode Symmetric
Number of Compute Nodes 8

Number of Threads per Node 24

The preceding OUTPUT statement creates an output table that is added to the LASR Analytic Server instance.
Output data sets do not have to be created in the same server instance that holds the input data. You can use a
different LASR Analytic Server instance to hold the output data set. However, in order for the output data to
be created in alongside mode, all the nodes that are used by the server instance that holds the input data must
also be used by the server instance that holds the output data.
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Terminating a SAS LASR Analytic Server Instance

You can continue to run high-performance analytical procedures and add and delete tables from the SAS
LASR Analytic Server instance until you terminate the server instance as follows:

proc lasr term port=12345;
run;

Alongside-LASR Distributed Execution on a Subset of the
Appliance Nodes

When you run PROC LASR to start a SAS LASR Analytic Server, you can specify the NODES= option in a
PERFORMANCE statement to control how many nodes the LASR Analytic Server executes on. Similarly,
a high-performance analytical procedure can execute on a subset of the nodes either because you specify
the NODES= option in a PERFORMANCE statement or because you run alongside a DBMS or HDFS
with an input data set that is distributed on a subset of the nodes on an appliance. In such situations, if a
high-performance analytical procedure uses nodes on which the LASR Analytic Server is not running, then
running alongside LASR is not supported. You can avoid this issue by specifying the NODES=ALL in the
PERFORMANCE statement when you use PROC LASR to start the LASR Analytic Server.

Running High-Performance Analytical Procedures in
Asymmetric Mode

This section provides examples of how you can run high-performance analytical procedures in asymmetric
mode. It also includes examples that run in symmetric mode to highlight differences between the modes.
For a description of asymmetric mode, see the section “Symmetric and Asymmetric Distributed Modes” on
page 7.

Asymmetric mode is commonly used when the data appliance and the computing appliance are distinct
appliances. In order to be able to use an appliance as a data provider for high-performance analytical
procedures that run in asymmetric mode on another appliance, it is not necessary that SAS High-Performance
Data Mining be installed on the data appliance. However, it is essential that a SAS Embedded Process be
installed on the data appliance and that SAS High-Performance Data Mining be installed on the computing
appliance.

The following examples use a 24-node data appliance named ‘“data_appliance.sas.com,” which houses a
Teradata DBMS and has a SAS Embedded Process installed. Because SAS High-Performance Data Mining
is also installed on this appliance, it can be used to run high-performance analytical procedures in both
symmetric and asymmetric modes.
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The following statements load the simData data set of the preceding sections onto the data appliance:

libname datalLib teradata
server ="tera2650"
user =XXXXXX
password=YYYYY
database=mydb;

data datalib.simData;
set simData;
run;

NOTE: You can provision the appliance with data even if SAS High-Performance Data Mining software is
not installed on the appliance.

The following subsections show how you can run the HPLOGISTIC procedure symmetrically and asymmet-
rically on a single data appliance and asymmetrically on distinct data and computing appliances.

Running in Symmetric Mode

The following statements run the HPLOGISTIC procedure in symmetric mode on the data appliance:

proc hplogistic data=datalib.simData;
class a b c;
model y = a b ¢ x1 x2 x3;

performance host = "data_appliance.sas.com"
nodes = 10
gridmode = sym;
run;

Because you explicitly specified the GRIDMODE= option, you do not need to also specify the
DATASERVER= option in the PERFORMANCE statement. Figure 2.7 shows the results of this anal-
ysis.

Figure 2.7 Alongside-the-Database Execution in Symmetric Mode on Teradata

The HPLOGISTIC Procedure

Performance Information

Host Node data_appliance.sas.com
Execution Mode Distributed

Grid Mode Symmetric

Number of Compute Nodes 24

Number of Threads per Node 24
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Figure 2.7 continued

Model Information

Data Source simData

Response Variable y

Class Parameterization GLM

Distribution Binary

Link Function Logit

Optimization Technique Newton-Raphson with Ridging

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t]|
Intercept 5.7011 0.2539 Infty 22.45 <.0001
ao -0.01020 0.06627 Infty -0.15 0.8777
al 0 . . . .
b 0 0.7124 0.06558 Infty 10.86 <.0001
b1l 0 . . . .
cO 0.8036 0.06456 Infty 12.45 <.0001
cl 0 . . . .
x1 0.01975 0.000614 Infty 32.15 <.0001
x2 -0.04728 0.003098 Infty -15.26 <.0001
x3 -0.1017 0.009470 Infty -10.74 <.0001

The “Performance Information” table shows that the execution occurs in symmetric mode on the 24 nodes of
the data appliance. In this case, the NODES=10 option in the PERFORMANCE statement is ignored because
the number of nodes that are used is determined by the number of nodes across which the data are distributed,
as indicated in the following warning message in the SAS log:

WARNING: The NODES=10 option in the PERFORMANCE statement is ignored because
you are running alongside the distributed data source
DATALIB.simData.DATA. The number of compute nodes is determined by the
configuration of the distributed DBMS.

Running in Asymmetric Mode on One Appliance

You can switch to running the HPLOGISTIC procedure in asymmetric mode by specifying the GRID-
MODE=ASYM option in the PERFORMANCE statement as follows:

proc hplogistic data=datalib.simData;
class a b ¢;
model y = a b ¢ x1 x2 x3;
performance host "data_appliance.sas.com"
nodes =10
gridmode = asym;

run;
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Figure 2.8 shows the “Performance Information” table.

Figure 2.8 Alongside Teradata Execution in Asymmetric Mode

The HPLOGISTIC Procedure

Performance Information

Host Node data_appliance.sas.com
Execution Mode Distributed

Grid Mode Asymmetric

Number of Compute Nodes 10

Number of Threads per Node 24

You can see that now the grid mode is asymmetric. Furthermore, the NODES=10 option that you specified in
the PERFORMANCE statement is honored. The data are moved in parallel from the 24 nodes on which the
data are stored to the 10 nodes on which the execution occurs. The numeric results are not reproduced here,
but they agree with the previous analyses.

Running in Asymmetric Mode on Distinct Appliances

Usually, there is no advantage to executing high-performance analytical procedures in asymmetric mode
on one appliance, because data might have to be unnecessarily moved between nodes. The following
example demonstrates the more typical use of asymmetric mode. In this example, the specified grid host
“compute_appliance.sas.com” is a computing appliance that has 15 compute nodes, and it is a different
appliance from the 24-node data appliance “data_appliance.sas.com,” which houses the Teradata DBMS
where the data reside.

The advantage of using different computing and data appliances is that the data appliance is not affected by
the execution of high-performance analytical procedures except during the initial parallel data transfer. A
potential disadvantage of this asymmetric mode of execution is that the performance can be limited by the
bandwidth with which data can be moved between the appliances. However, because this data movement
takes place in parallel from the nodes of the data appliance to the nodes of the computing appliance, this
potential performance bottleneck can be overcome with appropriately provisioned hardware. The following
statements show how this is done:

proc hplogistic data=dataLib.simData;
class a b c;
model y = a b ¢ x1 x2 x3;
performance host "compute_appliance.sas.com"
gridmode = asym;

run;

Figure 2.9 shows the “Performance Information” table.
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Figure 2.9 Asymmetric Mode with Distinct Data and Computing Appliances

The HPLOGISTIC Procedure

Performance Information

Host Node compute_appliance.sas.com
Execution Mode Distributed

Grid Mode Asymmetric

Number of Compute Nodes 15

Number of Threads per Node 24

PROC HPLOGISTIC ran on the 15 nodes of the computing appliance, even though the data are partitioned
across the 24 nodes of the data appliance. The numeric results are not reproduced here, but they agree with
the previous analyses shown in Figure 2.1 and Figure 2.2.

Every time you run a high-performance analytical procedure in asymmetric mode that uses different comput-
ing and data appliances, data are transferred between these appliances. If you plan to make repeated use of
the same data, then it might be advantageous to temporarily persist the data that you need on the computing
appliance. One way to persist the data is to store them as a table in a SAS LASR Analytic Server that runs on
the computing appliance. By running PROC LASR in asymmetric mode, you can load the data in parallel
from the data appliance nodes to the nodes on which the LASR Analytic Server runs on the computing
appliance. You can then use a LIBNAME statement that associates a SAS libref with tables on the LASR
Analytic Server. The following statements show how you do this:

proc lasr port=54321
data=datalib.simData
path="/tmp/";
performance host ="compute_appliance.sas.com"
gridmode = asym;
run;

libname MylLasr sasiola tag="dataLib" port=54321 host="compute_appliance.sas.com"

Figure 2.10 show the “Performance Information” table.

Figure 2.10 PROC LASR Running in Asymmetric Mode

The LASR Procedure

Performance Information

Host Node compute_appliance.sas.com
Execution Mode Distributed

Grid Mode Asymmetric

Number of Compute Nodes 15

PROC LASR ran in asymmetric mode on the computing appliance, which has 15 compute nodes. In this
mode, the data are loaded in parallel from the 24 data appliance nodes to the 15 compute nodes on the
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computing appliance. By default, all the nodes on the computing appliance are used. You can use the
NODES-= option in the PERFORMANCE statement to run the LASR Analytic Server on a subset of the
nodes on the computing appliance. If you omit the GRIDMODE=ASYM option from the PERFORMANCE
statement, PROC LASR still runs successfully but much less efficiently. The Teradata access engine transfers
the simData data set to a temporary table on the client, and the High-Performance Analytics infrastructure
then transfers these data from the temporary table on the client to the grid nodes on the computing appliance.

After the data are loaded into a LASR Analytic Server that runs on the computing appliance, you can run
high-performance analytical procedures alongside this LASR Analytic Server. Because these procedures
run on the same computing appliance where the LASR Analytic Server is running, it is best to run these
procedures in symmetric mode, which is the default or can be explicitly specified in the GRIDMODE=SYM
option in the PERFORMANCE statement. The following statements provide an example. The OUTPUT
statement creates an output data set that is held in memory by the LASR Analytic Server. The data appliance
has no role in executing these statements.

proc hplogistic data=MyLasr.simData;
class a b ¢;
model y = a b ¢ x1 x2 x3;
output out=MyLasr.myOutputData pred=myPred;
performance host = "compute_appliance.sas.com";
run;

The following note, which appears in the SAS log, confirms that the output data set is created successfully:

NOTE: The table DATALIB.MYOUTPUTDATA has been added to the LASR Analytic Server
with port 54321. The Libname is MYLASR.

You can use the datalib libref that you used to load the data onto the data appliance to create an output
data set on the data appliance. In order for this output to be directly written in parallel from the nodes of
the computing appliance to the nodes of the data appliance, you need to run the HPLOGISTIC procedure
in asymmetric mode by specifying the GRIDMODE=ASYM option in the PERFORMANCE statement as
follows:

proc hplogistic data=MyLasr.simData;
class a b ¢c;
model y = a b ¢ x1 x2 x3;
output out=datalib.myOutputData pred=myPred;
performance host = "compute_appliance.sas.com"
gridmode asym;

run;

The following note, which appears in the SAS log, confirms that the output data set is created successfully on
the data appliance:

NOTE: The data set DATALIB.myOutputData has 100000 observations and 1 variables.

When you run a high-performance analytical procedure on a computing appliance and either read data from
or write data to a different data appliance, it is important to run the high-performance analytical procedures
in asymmetric mode so that the Read and Write operations take place in parallel without any movement of
data to and from the SAS client. If you omit running the preceding PROC HPLOGISTIC step in asymmetric
mode, then the output data set would be created much less efficiently: the output data would be moved
sequentially to a temporary table on the client, after which the Teradata access engine sequentially would
write this table to the data appliance.
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When you no longer need the data in the SAS LASR Analytic Server, you should terminate the server instance
as follows:

proc lasr term port=54321;
performance host="compute_appliance.sas.com";
run;

If you configured Hadoop on the computing appliance, then you can create output data tables that are stored
in the HDFS on the computing appliance. You can do this by using the SASHDAT engine as described in the
section “Alongside-HDFS Execution” on page 25.

Alongside-HDFS Execution

Running high-performance analytical procedures alongside HDFS shares many features with running along-
side the database. You can execute high-performance analytical procedures alongside HDFS by using either
the SASHDAT engine or the Hadoop engine.

You use the SASHDAT engine to read and write data that are stored in HDFS in a proprietary SASHDAT
format. In SASHDAT format, metadata that describe the data in the Hadoop files are included with the
data. This enables you to access files in SASHDAT format without supplying any additional metadata.
Additionally, you can also use the SASHDAT engine to read data in CSV (comma-separated value) format,
but you need supply metadata that describe the contents of the CSV data. The SASHDAT engine provides
highly optimized access to data in HDFS that are stored in SASHDAT format.

The Hadoop engine reads data that are stored in various formats from HDFS and writes data to HDFS in
CSV format. This engine can use metadata that are stored in Hive, which is a data warehouse that supplies
metadata about data that are stored in Hadoop files. In addition, this engine can use metadata that you create
by using the HDMD procedure.

The following subsections provide details about using the SASHDAT and Hadoop engines to execute
high-performance analytical procedures alongside HDFS.

Alongside-HDFS Execution by Using the SASHDAT Engine

If the grid host is a cluster that houses data that have been distributed by using the SASHDAT engine, then
high-performance analytical procedures can analyze those data in the alongside-HDFS mode. The procedures
use the distributed computing environment in which an analytic process is co-located with the nodes of the
cluster. Data then pass from HDFS to the analytic process on each node of the cluster.

Before you can run a procedure alongside HDFS, you must distribute the data to the cluster. The following
statements use the SASHDAT engine to distribute to HDFS the simData data set that was used in the previous
two sections:

option set=GRIDHOST="hpa.sas.com";

libname hdatLib sashdat
path="/hps";
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data hdatLib.simData (replace = yes) ;
set simData;
run;

In this example, the GRIDHOST is a cluster where the SAS Data in HDFS Engine is installed. If a data set that
is named simData already exists in the hps directory in HDFS, it is overwritten because the REPLACE=YES
data set option is specified. For more information about using this LIBNAME statement, see the section
“LIBNAME Statement for the SAS Data in HDFS Engine” in the SAS LASR Analytic Server: Administration
Guide.

The following HPLOGISTIC procedure statements perform the analysis in alongside-HDFS mode. These
statements are almost identical to the PROC HPLOGISTIC example in the previous two sections, which
executed in single-machine mode and alongside-the-database distributed mode, respectively.

proc hplogistic data=hdatLib.simData;
class a b ¢;
model y = a b ¢ x1 x2 x3;

run;

Figure 2.11 shows the “Performance Information” table. You see that the procedure ran in distributed mode.
The numeric results shown in Figure 2.12 agree with the previous analyses shown in Figure 2.1, Figure 2.2,
and Figure 2.4.

Figure 2.11 Alongside-HDFS Execution Performance Information

Performance Information

Host Node hpa.sas.com
Execution Mode Distributed
Grid Mode Symmetric
Number of Compute Nodes 206

Number of Threads per Node 8

Figure 2.12 Alongside-HDFS Execution Model Information

Model Information

Data Source HDATLIB.SIMDATA
Response Variable y

Class Parameterization GLM
Distribution Binary

Link Function Logit

Optimization Technique Newton-Raphson with Ridging
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Figure 2.12 continued

Parameter Estimates
Standard
Parameter Estimate Error DF t Value Pr > |t]|
Intercept 5.7011 0.2539 Infty 22.45 <.0001
ao -0.01020 0.06627 Infty -0.15 0.8777
al 0 . . . .
b 0 0.7124 0.06558 Infty 10.86 <.0001
b1 0 . . . .
c O 0.8036 0.06456 Infty 12.45 <.0001
cl1l 0 . . . .
x1 0.01975 0.000614 Infty 32.15 <.0001
x2 -0.04728 0.003098 Infty -15.26 <.0001
x3 -0.1017 0.009470 Infty -10.74 <.0001

Alongside-HDFS Execution by Using the Hadoop Engine

The following LIBNAME statement sets up a libref that you can use to access data that are stored in HDFS
and have metadata in Hive:

libname hdoopLib hadoop

server = "hpa.sas.com"
user = XXXXX
password = YYYYY
database = myDB

config = "demo.xml"

For more information about LIBNAME options available for the Hadoop engine, see the LIBNAME topic in
the Hadoop section of SAS/ACCESS for Relational Databases: Reference. The configuration file that you
specify in the CONFIG= option contains information that is needed to access the Hive server. It also contains
information that enables this configuration file to be used to access data in HDFS without using the Hive
server. This information can also be used to specify replication factors and block sizes that are used when the
engine writes data to HDFS. The following XML shows the contents of the file demo.xml that is used in this
example:

<configuration>

<property>
<name>fs.default.name</name>
<value>hdfs://hpa.sas.com:8020</value>

</property>

<property>
<name>mapred. job.tracker</name>
<value>hpa.sas.com:8021</value>

</property>

<property>

<name>dfs.replication</name>
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<value>l</value>
</property>
<property>
<name>dfs.block.size</name>
<value>33554432</value>
</property>
</configuration>

The following DATA step uses the Hadoop engine to distribute to HDFS the simData data set that was used
in the previous sections. The engine creates metadata for the data set in Hive.

data hdoopLib.simData;
set simData;
run;

After you have loaded data or if you are accessing preexisting data in HDFS that have metadata in Hive,
you can access this data alongside HDFS by using high-performance analytics procedures. The following
HPLOGISTIC procedure statements perform the analysis in alongside-HDFS mode. These statements are
similar to the PROC HPLOGISTIC example in the previous sections. However, whenever you use the

Hadoop engine, you must execute the analysis in asymmetric mode to cause the execution to occur alongside
HDEFS.

proc hplogistic data=hdoopLib.simData;
class a b ¢;
model y = a b ¢ x1 x2 x3;
performance host = "compute_appliance.sas.com"
gridmode = asym;
run;

Figure 2.13 shows the “Performance Information” table. You see that the procedure ran asymmetrically in
distributed mode. The numeric results shown in Figure 2.14 agree with the previous analyses.

Figure 2.13 Alongside-HDFS Execution by Using the Hadoop Engine

The HPLOGISTIC Procedure

Performance Information

Host Node compute_appliance.sas.com
Execution Mode Distributed

Grid Mode Asymmetric

Number of Compute Nodes 15

Number of Threads per Node 24
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Figure 2.14 Alongside-HDFS Execution by Using the Hadoop Engine

Model Information

Data Source HDOOPLIB.SIMDATA

Response Variable y

Class Parameterization GLM

Distribution Binary

Link Function Logit

Optimization Technique Newton-Raphson with Ridging

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t]|
Intercept 5.7011 0.2539 Infty 22.45 <.0001
ao -0.01020 0.06627 Infty -0.15 0.8777
al 0 . . . .
b 0 0.7124 0.06558 Infty 10.86 <.0001
b1l 0 . . . .
cO 0.8036 0.06456 Infty 12.45 <.0001
cl 0 . . . .
x1 0.01975 0.000614 Infty 32.15 <.0001
x2 -0.04728 0.003098 Infty -15.26 <.0001
x3 -0.1017 0.009470 Infty -10.74 <.0001

The Hadoop engine also enables you to access tables in HDFS that are stored in various formats and that are
not registered in Hive. You can use the HDMD procedure to generate metadata for tables that are stored in
the following file formats:

¢ delimited text

* fixed-record length binary

* JavaScript Object Notation (JSON)

* sequence files

* XML text
To read any other kind of file in Hadoop, you can write a custom file reader plug-in in Java for use with

PROC HDMD. For more information about LIBNAME options available for the Hadoop engine, see the
LIBNAME topic in the Hadoop section of SAS/ACCESS for Relational Databases: Reference.
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The following example shows how you can use PROC HDMD to register metadata for CSV data independently
from Hive and then analyze these data by using high-performance analytics procedures. The CSV data in the
table csvExample.csv is stored in HDFS in the directory /user/demo/data. Each record in this table consists
of the following fields, in the order shown and separated by commas.

1. astring of at most six characters
2. anumeric field with values of 0 or 1

3. anumeric field with real numbers

Suppose you want to fit a logistic regression model to these data, where the second field represents a target
variable named Success, the third field represents a regressor named Dose, and the first field represents a
classification variable named Group.

The first step is to use PROC HDMD to create metadata that are needed to interpret the table, as in the
following statements:

libname hdoopLib hadoop

server = "hpa.sas.com"
user = XXXXX

password = YYYYY
HDFS_PERMDIR = "/user/demo/data"
HDFS_METADIR = "/user/demo/meta"
config = "demo.xml"

DBCREATE_TABLE_EXTERNAL=YES;

proc hdmd name=hdoopLib.csvExample data_file='csvExample.csv'

format=delimited encoding=utf8 sep = ',"';
column Group char (6);
column Success double;
column Dose double;

run;

The metadata that are created by PROC HDMD for this table are stored in the directory /user/demo/meta
that you specified in the HDFS_METADIR = option in the preceding LIBNAME statement. After you create
the metadata, you can execute high-performance analytics procedures with these data by using the hdoopLib
libref. For example, the following statements fit a logistic regression model to the CSV data that are stored in
csvExample.csv table.

proc hplogistic data=hdoopLib.csvExample;
class Group;
model Success = Dose;

performance host
gridmode

"compute_appliance.sas.com"
asym;

run;

Figure 2.15 shows the results of this analysis. You see that the procedure ran asymmetrically in distributed
mode. The metadata that you created by using the HDMD procedure have been used successfully in executing
this analysis.
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The HPLOGISTIC Procedure

Performance Information

Host Node compute_appliance.sas.com
Execution Mode Distributed

Grid Mode Asymmetric

Number of Compute Nodes 15

Number of Threads per Node 24

Model Information

Data Source GRIDLIB.CSVEXAMPLE

Response Variable Success

Class Parameterization GLM

Distribution Binary

Link Function Logit

Optimization Technique Newton-Raphson with Ridging

Class Level Information

Class Levels Values

Group 3 groupl group2 group3
Number of Observations Read 1000
Number of Observations Used 1000

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t]|
Intercept 0.1243 0.1295 Infty 0.96 0.3371
Dose -0.2674 0.2216 Infty -1.21 0.2277

Output Data Sets

In the alongside-the-database mode, the data are read in distributed form, minimizing data movement for
best performance. Similarly, when you write output data sets and a high-performance analytical procedure

executes in distributed mode, the data can be written in parallel into the database.

For example, in the following statements, the HPLOGISTIC procedure executes in distributed mode by using

eight nodes on the appliance to perform the logistic regression on work.simData:
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proc hplogistic data=simData;
class a b ¢;
model y = a b ¢ x1 x2 x3;
id a;
output out=applianc.simData_out pred=p;
performance host="hpa.sas.com" nodes=8;
run;

The output data set applianc.simData_out is written in parallel into the database. Although the data are fed
on eight nodes, the database might distribute the data on more nodes.

When a high-performance analytical procedure executes in single-machine mode, all output objects are
created on the client. If the libref of the output data sets points to the appliance, the data are transferred to the
database on the appliance. This can lead to considerable performance degradation compared to execution in
distributed mode.

Many procedures in SAS software add the variables from the input data set when an observationwise output
data set is created. The assumption of high-performance analytical procedures is that the input data sets can
be large and contain many variables. For performance reasons, the output data set contains the following:

* variables that are explicitly created by the statement

* variables that are listed in the ID statement

* distribution keys or hash keys that are transferred from the input data set

Including this information enables you to add to the output data set information necessary for subsequent
SQL joins without copying the entire input data set to the output data set.

Working with Formats

You can use SAS formats and user-defined formats with high-performance analytical procedures as you can
with other procedures in the SAS System. However, because the analytic work is carried out in a distributed
environment and might depend on the formatted values of variables, some special handling can improve the
efficiency of work with formats.

High-performance analytical procedures examine the variables that are used in an analysis for association with
user-defined formats. Any user-defined formats that are found by a procedure are transmitted automatically
to the appliance. If you are running multiple high-performance analytical procedures in a SAS session and
the analysis variables depend on user-defined formats, you can preprocess the formats. This step involves
generating an XML stream (a file) of the formats and passing the stream to the high-performance analytical
procedures.
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Suppose that the following formats are defined in your SAS program:

proc format;

value YesNo ='Yes' ='No';
value checkThis 1="ThisisOne' 2='ThisisTwo';
value $cityChar 1="Portage' 2='Kinston';

run;

The next group of SAS statements create the XML stream for the formats in the file Myfmt.xml, associate that
file with the file reference myxml, and pass the file reference with the FMTLIBXML= option in the PROC

HPLOGISTIC statement:

filename myxml 'Myfmt.xml';

libname myxml XML92 xmltype=sasfmt tagset=tagsets.XMLsuv;
proc format cntlout=myxml.allfmts;

run;

proc hplogistic data=six fmtlibxml=myxml;
class wheeze cit age;
format wheeze best4. cit $cityChar.;
model wheeze = cit age;

run;

Generation and destruction of the stream can be wrapped in convenience macros:

$macro Make_ XMLStream(name=tempxml) ;
filename &name 'fmt.xml';
libname &name XML92 xmltype=sasfmt tagset=tagsets.XMLsuv;

proc format cntlout=&name..allfmts;
run;
$mend;

$macro Delete_XMLStream(fref);
%$let rc=%sysfunc(fdelete (&fref));
$mend;
If you do not pass an XML stream to a high-performance analytical procedure that supports the
FMTLIBXML= option, the procedure generates an XML stream as needed when it is invoked.
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PERFORMANCE Statement

PERFORMANCE < performance-options > ;

The PERFORMANCE statement defines performance parameters for multithreaded and distributed comput-
ing, passes variables that describe the distributed computing environment, and requests detailed results about
the performance characteristics of a high-performance analytical procedure.

You can also use the PERFORMANCE statement to control whether a high-performance analytical procedure
executes in single-machine or distributed mode.

You can specify the following performance-options in the PERFORMANCE statement:

COMMIT=n
requests that the high-performance analytical procedure write periodic updates to the SAS log when
observations are sent from the client to the appliance for distributed processing.

High-performance analytical procedures do not have to use input data that are stored on the appliance.
You can perform distributed computations regardless of the origin or format of the input data, provided
that the data are in a format that can be read by the SAS System (for example, because a SAS/ACCESS
engine is available).

In the following example, the HPREG procedure performs LASSO variable selection where the input
data set is stored on the client:

proc hpreg data=work.one;

model y = x1-x500;

selection method=lasso;

performance nodes=10 host='mydca' commit=10000;
run;

In order to perform the work as requested using 10 nodes on the appliance, the data set Work.One
needs to be distributed to the appliance.

High-performance analytical procedures send the data in blocks to the appliance. Whenever the number
of observations sent exceeds an integer multiple of the COMMIT= size, a SAS log message is produced.
The message indicates the actual number of observations distributed, and not an integer multiple of the
COMMIT= size.

DATASERVER="name”
specifies the name of the server on Teradata systems as defined through the hosts file and as used in
the LIBNAME statement for Teradata. For example, assume that the hosts file defines the server for
Teradata as follows:

myservercopl 33.44.55.66

Then a LIBNAME specification would be as follows:
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libname TDLib teradata server=myserver user= password= database= ;

A PERFORMANCE statement to induce running alongside the Teradata server would specify the
following:

performance dataserver="myserver";

The DATASERVER= option is not required if you specify the GRIDMODE=option in the PERFOR-
MANCE statement or if you set the GRIDMODE environment variable.

Specifying the DATASERVER= option overrides the GRIDDATASERVER environment variable.

DETAILS
requests a table that shows a timing breakdown of the procedure steps.

GRIDHOST="name”

HOST="hame”
specifies the name of the appliance host in single or double quotation marks. If this option is specified,
it overrides the value of the GRIDHOST environment variable.

GRIDMODE=SYM | ASYM

MODE=SYM | ASYM
specifies whether the high-performance analytical procedure runs in symmetric (SYM) mode or
asymmetric (ASYM) mode. The default is GRIDMODE=SYM. For more information about these
modes, see the section “Symmetric and Asymmetric Distributed Modes” on page 7.

If this option is specified, it overrides the GRIDMODE environment variable.

GRIDTIMEOUT=s

TIMEOUT=s
specifies the time-out in seconds for a high-performance analytical procedure to wait for a connection
to the appliance and establish a connection back to the client. The default is 120 seconds. If jobs
are submitted to the appliance through workload management tools that might suspend access to the
appliance for a longer period, you might want to increase the time-out value.

INSTALL="name”

INSTALLLOC="name”
specifies the directory in which the shared libraries for the high-performance analytical procedure
are installed on the appliance. Specifying the INSTALL= option overrides the GRIDINSTALLLOC
environment variable.

LASRSERVER="path”

LASR="path”
specifies the fully qualified path to the description file of a SAS LASR Analytic Server instance. If
the input data set is held in memory by this LASR Analytic Server instance, then the procedure runs
alongside LASR. This option is not needed to run alongside LASR if the DATA= specification of the
input data uses a libref that is associated with a LASR Analytic Server instance. For more information,
see the section “Alongside-LASR Distributed Execution” on page 16 and the SAS LASR Analytic
Server: Administration Guide.
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NODES=ALL | n

NNODES=ALL | n
specifies the number of nodes in the distributed computing environment, provided that the data are not
processed alongside the database.

Specifying NODES=0 indicates that you want to process the data in single-machine mode on the client
machine. If the input data are not alongside the database, this is the default. The high-performance
analytical procedures then perform the analysis on the client. For example, the following sets of
statements are equivalent:

proc hplogistic data=one;
model y = x;
run;

proc hplogistic data=one;
model y = x;
performance nodes=0;
run;

If the data are not read alongside the database, the NODES= option specifies the number of nodes
on the appliance that are involved in the analysis. For example, the following statements perform the
analysis in distributed mode by using 10 units of work on the appliance that is identified in the HOST=
option:

proc hplogistic data=one;

model y = x;

performance nodes=10 host="hpa.sas.com";
run;

If the number of nodes can be modified by the application, you can specify a NODES=n option, where
n exceeds the number of physical nodes on the appliance. The SAS High-Performance Data Mining
software then oversubscribes the nodes and associates nodes with multiple units of work. For example,

on a system that has 16 appliance nodes, the following statements oversubscribe the system by a factor
of 3:

proc hplogistic data=one;

model y = x;

performance nodes=48 host="hpa.sas.com";
run;
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Usually, it is not advisable to oversubscribe the system because the analytic code is optimized for
a certain level of multithreading on the nodes that depends on the CPU count. You can specify
NODES=ALL if you want to use all available nodes on the appliance without oversubscribing the
system.

If the data are read alongside the distributed database on the appliance, specifying a nonzero value
for the NODES= option has no effect. The number of units of work in the distributed computing
environment is then determined by the distribution of the data and cannot be altered. For example, if
you are running alongside an appliance with 24 nodes, the NODES= option in the following statements
is ignored:

libname GPLib greenplm server=gpdca user=XXX password=YYY
database=277%;
proc hplogistic data=gplib.one;
model y = x;
performance nodes=10 host="hpa.sas.com";
run;

NTHREADS=n

THREADS=n
specifies the number of threads for analytic computations and overrides the SAS system option
THREADS | NOTHREADS. If you do not specify the NTHREADS= option, the number of threads is
determined based on the number of CPUs on the host on which the analytic computations execute. The
algorithm by which a CPU count is converted to a thread count is specific to the high-performance
analytical procedure. Most procedures create one thread per CPU for the analytic computations.

By default, high-performance analytical procedures execute in multiple concurrent threads unless
multithreading has been turned off by the NOTHREADS system option or you force single-threaded
execution by specifying NTHREADS=1. The largest number that can be specified for n is 256.
Individual high-performance analytical procedures can impose more stringent limits if called for by
algorithmic considerations.

NOTE: The SAS system options THREADS | NOTHREADS apply to the client machine on which the
SAS high-performance analytical procedures execute. They do not apply to the compute nodes in a
distributed environment.
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Overview: HP4SCORE Procedure

The HP4SCORE procedure is a high-performance procedure that scores a data set with a forest predic-
tive model that was previously trained by the HPFOREST procedure. See Chapter 5, “The HPFOREST
Procedure.”

The forest predictive model is an ensemble of hundreds of decision trees that are used to predict a target. The
target can have either an interval or a nominal measurement level. Each decision tree consists of a sequence
of rules that are applied to the observation to arrive at the prediction. The final prediction is either an average
of the individual predictions for a target that has an interval measurement level or is derived from the average
of the individual posterior probabilities for a target that has a nominal measurement level.

The HPASCORE procedure can score the data in concurrent threads run in parallel when executed in
single-machine (SMP) or distributed (MPP) mode. See the section ‘“Processing Modes” on page 6 in
Chapter 2, “Shared Concepts and Topics,” for details about how to configure the execution mode of SAS
High-Performance Analytics procedures.
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PROC HP4SCORE Features

The HP4SCORE procedure is designed to be used subsequent to the training performed by the HPFOREST
procedure. PROC HP4SCORE requires the binary model file that is created by the HPFOREST procedure
and that encapsulates the full forest model. PROC HP4SCORE then applies the model for scoring a specified
data set. For successful scoring, the variables in the data set that is specified in the input to PROC HP4SCORE
must have the same attributes as the data set on which the model was trained (that is, the data set that was
specified as input to PROC HPFOREST). If the attributes do not match, the HPASCORE procedure stops
with an error.

PROC HP4SCORE Contrasted with Other SAS Procedures

No other SAS procedure scores a forest model. SAS high-performance procedures create DATA step
programs that incorporate the scoring logic in the model. The decision tree procedures in SAS Enterprise
Miner (the ARBOR, DMSPLIT, and SPLIT procedures) also output the score code directly. Because the
forest model is an ensemble of hundreds of decision trees and each decision tree can contain hundreds or
thousands of decision rules for scoring, the DATA step program can become extremely large. In addition
to slow scoring performance, a very large DATA step program also poses additional challenges. PROC
HP4SCORE overcomes these difficulties by reading the binary model file and scoring the observations
directly.

The HP4SCORE procedure takes full advantage of concurrent threads and distributed data. For general
contrasts between SAS high-performance analytical procedures and other SAS procedures, see the section
“Output Data Sets” on page 31.

Getting Started: HP4SCORE Procedure

This example shows the usage of the HPASCORE procedure in conjunction with the HPFOREST procedure.
The HPFOREST procedure first trains a model on the training data and saves the model as a binary file. The
HP4SCORE procedure then uses the trained model to score a different data set.

The hypothetical data set contains the ratings by three different volunteers on six different proportions of
fruits. The following DATA step creates the SAS data set PunchTrain with the proportions of watermelon,
pineapple, orange, and the numerical ratings for each combination of fruit mix and the volunteer:

data PunchTrain;
input watermelon pineapple orange rating;

datalines;

1.0 0.0 0.0 4.3
1.0 0.0 0.0 4.7
1.0 0.0 0.0 4.8
0.0 1.0 0.0 6.2
0.0 1.0 0.0 6.5
0.0 1.0 0.0 6.3
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run;
The following statements train the forest model on the data set with the rating as the target and different
fruit mix proportions as the independent variables. The SAVE statement saves the model to a binary file
punchModel.sav in the current directory. For the full details of the HPFOREST procedure options, see
Chapter 5, “The HPFOREST Procedure.”

proc hpforest data=PunchTrain maxtrees=10;
input watermelon pineapple orange;
target rating;
save file="punchModel.sav";

run;

The following DATA step creates the SAS data set PunchScore, which contains only the proportions of
watermelon, pineapple, orange fruit:

data PunchScore;
input watermelon pineapple orange;
datalines;
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run;

The following statements invoke HPASCORE to score this data set:

proc hp4score data=PunchScore;
score file="punchModel.sav" out=scoreout;
run;
proc print data=scoreout;
run;

The SAS data set scoreout contains the ratings for each input observation as predicted by the model.
Output 3.1 shows the scoring results.
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Figure 3.1 Scored Data set

Obs P_rating _WARN__
1 5.61429
2 5.50286
3 5.50286
4 5.61429
5 5.83429

Syntax: HP4SCORE Procedure

The following statements are available in the HP4SCORE procedure:

PROC HP4SCORE data-options ;
ID variables ;
SCORE score-options ;
PERFORMANCE performance-options ;

The PROC HP4SCORE statement and SCORE statements are required.

PROC HP4SCORE Statement
PROC HP4SCORE DATA=< libref. >SAS-data-set ;
The PROC HP4SCORE statement invokes the procedure.

DATA=< libref. >SAS-data-set

names the SAS data set to be used for scoring by PROC HP4SCORE. This argument is required.

If the data are already distributed, PROC HP4ASCORE reads the data alongside the distributed database.
The different nodes then independently read the data rows, score them and write them back. See the
section “Processing Modes” on page 6 for information about the various execution modes and the section
“Alongside-the-Database Execution” on page 13 for information about the alongside-the-database model.

ID Statement

ID variables ;

The ID statement lists one or more variables from the input data set that are transferred to the output data set
that is specified in the SCORE statement. The ID statement accepts numeric and character variables. By
default, high-performance analytical procedures do not include all variables from the input data set in output

data sets.
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The ID statement is optional. However, when running in distributed mode or with concurrent threads, the
SCORE statement rearranges the observations. An ID variable is needed to correctly merge the output data
with other variables from the input data set.

PERFORMANCE Statement
PERFORMANCE < performance-options > ;

The PERFORMANCE statement defines performance parameters for multithreaded and distributed comput-
ing, passes variables about the distributed computing environment, and requests detailed results about the
performance characteristics of the HP4SCORE procedure. You can also use the PERFORMANCE statement
to control whether the HPFOREST procedure executes in single-machine or distributed mode.

The PERFORMANCE statement is documented further in the section “PERFORMANCE Statement” on
page 34 of Chapter 2, “Shared Concepts and Topics.”

SCORE Statement
SCORE score-options ;

The SCORE statement specifies the name of the model file and the output data set name.

When running in distributed mode or with concurrent threads, the SCORE statement rearranges the observa-
tions. An ID variable is needed to correctly merge the output data with other variables from the input data
set.

You can specify the following score-options:

FILE=model-file-name
specifies either the file reference or the full path and member name of the valid model file that was
created by PROC HPFOREST.

MAXDEPTH=< n>
produces predictions from trees pruned to a depth of n. The trees are not pruned by default.

NTREES=<n>
produces predictions from the first n trees only. Scoring with fewer trees can sometimes increase the
speed without significantly reducing the accuracy.

OUT=< libref. >SAS-data-set
names the output SAS data set to contain the scored results.

Details: HPASCORE Procedure

When PROC HPFOREST saves the model, it saves only the variables that were used in the model. These
might be all the input variables or a subset of those variables. The data set to be scored must contain the
variables that are in the model. These variables must have same attributes as the training data. They include
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variable names (differences in character case are ignored), the data type, and the length. If a variable that has
a nominal measurement level has a level that was not present in the training data set, that level is treated as a
missing value. The HPASCORE procedure does not ignore observations with missing values while scoring.
The full model is applied on all the observations, and the prediction is computed.

Displayed Output
The HP4SCORE procedure displays the the following information tables:

* The “Performance Information” table is produced by default. It displays information about the
execution mode. For single-machine mode, the table displays the number of threads used. For
distributed mode, the table displays the grid mode (symmetric or asymmetric), the number of compute
nodes, and the number of threads per node.

* The “Number of Observations” table displays total number of observations that are read from the data
set and the total number of observations scored.

¢ If you specify the DETAILS option in the PERFORMANCE statement, the procedure also produces a
“Timing” table in which elapsed times for the main tasks of the procedure are displayed.

Output Data Set

The HPASCORE procedure writes the scored results as a separate output data set, which contains one
observation for each input observation. Only the ID variables specified in the ID statement are copied from
the input data set to the output data set. The prediction variables depend on the measurement type of the
target variable in the model. For a target that has an interval measurement level, a single prediction variable is
generated. For each level of the target that has a nominal measurement level, a posterior probability variable
is generated in addition to the final predicted level. The names of the variables are constructed using the rules
that are explained in the SAS Enterprise Miner product documentation.

If the input data set is read in alongside-the-database mode from the SAS appliance, the output data set is
written back in parallel. In this case, the output records are distributed across the processing nodes such that
the input row and the corresponding output row are colocated.

Examples: HP4SCORE Procedure

All examples use the same training data set and the model file, which is created by PROC HPFOREST in the
following statements:

data hmegq;
set sampsio.hmeq;
id = _n_;

run;
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filename outmodel "C:\Temp\HPForestModel";
proc HPFOREST data=hmeq;
input CLAGE CLNO LOAN MORTDUE VALUE YOJ DEBTINC/level=interval;
input BAD DELINQ DEROG NINQ REASON/level=nominal;
target JOB/level=nominal;
save file=outmodel;
ods select PerformancelInfo;
quit;

Example 3.1: Running PROC HP4SCORE

When running in distributed mode or with concurrent threads, the order of the observations in the PROC
HP4SCORE output might differ from the original order. The observations must be sorted before they are
merged with the original data. This example runs PROC HP4SCORE and computes the misclasification rate

of the scored output twice: once without sorting, and once with sorting. Without sorting, the misclassification
rate is incorrect.

filename outmodel "C:\Temp\HPForestModel";

proc hp4score data=hmeq;

id id;

score file=outmodel out=scoreout3;
run;

The ID statement in PROC HP4SCORE specifies a variable to include in the output that contains the original
observation number. The output does not contain the original target variable. We need to add it in order to
compute the misclassification rate. The following data step incorrectly merges the target variable with the
predictions output from PROC HP4SCORE. It is incorrect because the predictions are not sorted. The data
step also creates a variable to detect whether the observations are mismatched and another variable to detect
whether the prediction equals the actual target.

data score;
merge hmeq(keep=JOB) scoreout3;
if id ne _n_ then unequalobs=1;
else unequalobs=0;
if upcase (JOB) ne upcase(I_JOB) then misclass=1;
else misclass=0;
run;

proc means data=score;
var unequalobs misclass;
run;

Now we merge the data again, this time sorting predictions before merging them with the original data.

proc sort data=scoreout3 out=scoreout3;
by id;
run;
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data score;
merge hmeq(keep=JOB id) scoreout3;
by id;
if id ne _n_ then unequalobs=1;
else unequalobs=0;
if upcase (JOB) ne upcase(I_JOB) then misclass=1;
else misclass=0;
run;

proc means data=score;
var unequalobs misclass;
run;

Output 3.1.1 shows that HPASCORE was run on a single-machine with 4 threads.

Output 3.1.1 Performance Information

The HPFOREST Procedure
Performance Information

Execution Mode Single-Machine
Number of Threads 4

Output 3.1.2 shows the output from PROC MEANS when the output from PROC HP4SCORE is not sorted.
The table shows that 75 percent of the observations are mismatched: the actual target is from a different
observation than the predicted target. The apparent misclassification rate is 59 percent. This result is incorrect.

Output 3.1.2 Output from PROC MEANS with Mismatched Data

The MEANS Procedure

Variable N Mean Std Dev Minimum Maximum

unequalobs 5960 0.7500000 0.4330490 0 1.0000000
misclass 5960 0.5894295 0.4919786 0 1.0000000
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Output 3.1.3 shows the output from PROC MEANS when the output from PROC HP4SCORE is correctly
sorted. The table shows that the target variable is matched to the correct target prediction, and that the true
misclassification rate is 29 percent.

Output 3.1.3 Output from PROC MEANS with Correctly Matched Data

The MEANS Procedure

Variable N Mean Std Dev Minimum Maximum

unequalobs 5960 0 0 0 0
misclass 5960 0.2934564 0.4553839 0 1.0000000
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Overview: HPDECIDE Procedure

The HPDECIDE procedure creates optimal decisions that are based on a decision matrix that you specify, on
prior probabilities, and on output from a modeling procedure. This output can be either posterior probabilities
for a categorical target variable or predicted values for an interval target variable. The HPDECIDE procedure
can also adjust the posterior probabilities for changes in the prior probabilities.

Some modeling procedures assume that the prior probabilities for categorical variable level membership
either are all equal or are proportional to the relative frequency of the corresponding response level in the data
set. PROC HPDECIDE enables you to specify other prior probabilities. Thus, you can conduct a sensitivity
analysis without running the modeling procedure again.

The HPDECIDE procedure runs in either single-machine mode or distributed mode.

NOTE: Distributed mode requires SAS High-Performance Data Mining.
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Because the HPDECIDE procedure is a high-performance analytical procedure, it also does the following:

* enables you to run in distributed mode on a cluster of machines that distribute the data and the
computations

* enables you to run in single-machine mode on the server where SAS is installed

* exploits all the available cores and concurrent threads, regardless of execution mode

For more information, see the section ‘“Processing Modes” on page 6 in Chapter 2, “Shared Concepts and
Topics.”

Getting Started: HPDECIDE Procedure

The HPDECIDE procedure can adjust posterior probabilities from a modeling procedure to make decisions.
This fictitious example shows how to use the HPDECIDE procedure to adjust posterior probabilities from the
DISCRIM procedure, and how to use a revenue matrix and cost constants to make decisions.

In a population of men who consult urologists for prostate problems, 70% have benign enlargement of the
prostate, 25% have an infection, and 5% have cancer. A sample of 100 men is taken, and two new diagnostic
measures, X and Y, are taken on each patient. The training set also includes the diagnosis that is made
by reliable, conventional methods. For each patient, three treatments are available: antibiotics, surgery, or
no treatment. Antibiotics are effective against infection, but they might have moderately bad side effects.
Antibiotics have no effect on benign enlargement or cancer. Surgery is effective for all diseases but has
potentially severe side effects such as impotence.

The first step is to create the sample of 100 men. To simulate the measurements of diagnostics X and Y, this
example uses the SAS random number generator. Because you specify the initial seed to the random number
generator, all your results will be identical to those presented in this example.

The following statements create the Prostate data set. The first 70 observations represent benign tumors, the
next 25 represent infections, and the final 5 represent cancer.

data Prostate;
length dx $14;
dx="'Benign';
mx=30; sx=10;
my=30; sy=10;
n=70;
link generate;
dx='Infection';
mx=70; sx=20;
my=35; sy=15;
n=25;
link generate;
dx="'Cancer';
mx=50; sx=10;
my=50; sy=15;
n=5;
link generate;
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stop;

generate:
do i=1 to n;
x=rannor (12345) *sx+mx;
y=rannor (0) *sy+my;
output;
end;

run;

The following statements run the DISCRIM procedure, which assumes that all prior probabilities are equal
(1/3 for this example). In this example, the DISCRIM procedure misidentifies some of the benign tumors as
cancer or an infection. Also, it misidentifies some of the infections as benign tumors.

proc discrim data=prostate out=outdis short;
class dx;
var x y;

run;

Because PROC DISCRIM misidentifies some of the data, you want to create a data set that contains prior
probabilities and revenue information. The revenue information indicates the benefit of each treatment.
The cost of each treatment, such as bad side effects, will be specified later in a DECISION statement. The
following DATA step creates the revenue matrix:

data rx(type=revenue);
input dx $14. eqgprior prior nothing antibiot surgery;

datalines;

Benign 0.3333 70 0 0 5
Infection 0.3333 25 0 10 10
Cancer 0.3333 5 0 0 100

The variable eqprior defines an equal prior probability for each diagnosis, and the variable prior uses
information that is known from the sample data set. The other variables define the revenue of each treatment
option. The revenue (benefit) of doing nothing in either case is 0, and the benefit of taking antibiotics is
relevant only if the patient has an infection. Surgery can remove a benign tumor, but it has very little benefit
because it is not necessary. Surgery completely removes an infection, so it has the same value as antibiotics.
Finally, surgery can remove a cancerous tumor and therefore is an immense benefit to the patient.

The following statements assign a treatment to each patient. In the DECISION statement, you specify the
costs of treatment. The cost of doing nothing is 0, the cost of antibiotics is 5, and the cost of surgery is 20.

proc hpdecide data=outdis out=decOut outstat=decSum;
target dx;
posteriors benign infection cancer;
decision decdata=rx
oldpriorvar=eqgprior priorvar=prior
decvars=nothing antibiot surgery
cost= 0 5 20;
run;

proc print data=decSum;
run;

Output 4.1 shows the fit statistics information.
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Figure 4.1 Fit Statistics

Obs _PROF_ _APROF_

1 470 4.7

The data set decOut indicates that only one benign tumor was misidentified, but the number of infections that
were misidentified as benign is similar to the results from the DISCRIM procedure. All the cancerous tumors
were identified and assigned the treatment of surgery, as was the lone misidentified benign tumor. The total
profit for all patients, identified in the data set decSum, is 470.

Because medical decisions are personal, the costs that are associated with each treatment can vary considerably
from patient to patient. Some patients regard the side effects of surgery as more severe than other patients.
Likewise, the costs of antibiotics might vary because of the patients’ insurance plans. The following
statements assume a higher cost for surgery and leave the other costs constant:

proc hpdecide data=outdis out=decOut2 outstat=decSum2;
target dx;
posteriors benign infection cancer;
decision decdata=rx
oldpriorvar=eqgprior priorvar=prior
decvars=nothing antibiot surgery
cost= 0 5 50;
run;

proc print data=decSum2;
run;

Output 4.2 shows the fit statistics information that results from the higher cost of surgery.

Figure 4.2 Fit Statistics with Higher Cost of Surgery

Obs _PROF_ _APROF_

1 285 2.85

Notice that the misclassified benign tumor is now correctly classified. However, one of the cancer cases is
identified as benign; this is a costly mistake. Notice in decOut that the total profit has been reduced from 470
to 285.
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Syntax: HPDECIDE Procedure

The following statements are available in the HPDECIDE procedure:

PROC HPDECIDE < options> ;
ID variables ;
FREQ variable ;
PERFORMANCE performance-options ;
POSTERIORS variables ;
PREDICTED variables ;
TARGET variable ;
DECISION DECDATA=< libref. >SAS-data-set < options > ;
CODE < options > ;

PROC HPDECIDE Statement
PROC HPDECIDE < options> ;

The PROC HPDECIDE statement invokes the procedure and identifies the input and output data sets. You
also need the following statements:

e DECISION statement
¢ either a POSTERIORS or a PREDICTED statement
e TARGET statement

You can specify the following options in the PROC HPDECIDE statement:

DATA=< libref. >SAS-data-set
specifies the input data set that contains the output from a modeling procedure. The default is the most
recently created data set. If the data are already distributed, PROC HPDECIDE reads the data alongside
the distributed database. For information about the various execution modes and about the alongside-
the-database model, see the sections “Processing Modes” on page 6 and “Alongside-the-Database
Execution” on page 13 in Chapter 2, “Shared Concepts and Topics.”

OUT=< libref. >SAS-data-set
specifies the output data set, which always contains any variables from the input data set that is specified
in the ID statement, the chosen decision (with a prefix of D_), and the expected consequence of the
chosen decision (with a prefix of either EL_ or EP_).

If the target value is in the input data set, then the output data set also contains the following variables:
the consequence of the chosen decision (which is computed from the target value and has a prefix of
either CL_ or CP_) and the consequence of the best possible decision when the target value is known
(this variable has a prefix of either BL._ or BP_).

If the profit matrix is revenue, then the output data set also contains the following variables: the
investment cost (which has a prefix of IC_) and the return on investment (which has a prefix of ROI_).

Additionally, if the PRIORVAR= and OLDPRIORVAR= variables are specified, then this data set
contains the recalculated posterior probabilities.
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OUTFIT=< libref. >SAS-data-set
specifies an output data set to contain fit statistics. These statistics include the total and average profit
or loss. You cannot specify this option when ROLE=SCORE. By default, this data set is not created.

ROLE=TRAIN | VALID | VALIDATION | TEST | SCORE
specifies the role of the input data set. This option affects the variables that are created in the DATA=
data set. The default value is TEST. You can specify the following values:

TRAIN specifies that the role of the input data set is training.
VALIDATION specifies that the role of the input data set is validation.

TEST specifies that the role of the input data set is testing.
SCORE specifies that the role of the input data set is scoring.
CODE Statement
CODE < options> ;

The CODE statement generates SAS DATA step code that can be used to score data sets. If neither the FILE=
option nor the METABASE-= option is specified, then the SAS code is written to the SAS log. You can
specify both the FILE= option and the METABASE= option to write code to both locations.

FILE=file-name
names the file into which score code is saved.

METABASE=catalog-spec
specifies a catalog entry to contain the SAS score code. For example, you can specify
METABASE=myLibrary.myCatalog.catalog-entry.

RESIDUAL
computes the variables that depend on the target variable in the score code.

DECISION Statement
DECISION DECDATA=< libref. >SAS-data-set < options > ;

Required Argument

DECDATA=< libref. >SAS-data-set< (type) >
names the input data set that contains the decision matrix or the prior probabilities, or both. This
argument is required.

The named data set must contain the target variable that is specified in the TARGET statement. It
might also contain decision variables that are specified in the DECVARS= option and prior probability
variables that are specified in the PRIORVAR= option or the OLDPRIORVAR= option or both.
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For a categorical target variable, there should be one observation for each class. Each entry d;; in the
decision matrix indicates the consequence of selecting target value i for variable j. If any class appears
more than once in this data set, an error message is printed and the PROC HPDECIDE terminates. Any
class value in the input data set that is not found in this data set is treated as a missing class value. The
classes in this data set must correspond exactly to the variables in the POSTERIORS statement.

For an interval target variable, each row defines a knot in a piecewise linear spline function. The
consequence of making a decision is computed by interpolation in the corresponding column of the
decision matrix. If the predicted target value is outside the range of knots in the decision matrix, the
consequence is computed by linear extrapolation. If the target values are monotonically increasing or
decreasing, any interior target value is allowed to appear twice in data set. This enables you to specify
discontinuities in the data. No target value is allowed to appear more than twice. If the target values
are not monotonic, then they are sorted by PROC HPDECIDE and are not allowed to appear more than
once.

The data set option type is specified in parentheses after the data set name when the data set is created
or used. The possible values of type are LOSS, PROFIT, and REVENUE; the default is PROFIT.

Optional Arguments

You can specify the following options:

DECVARS=variables
specifies the numeric decision variables in the DECDATA= data set that contain the target-specific
consequences for each decision. The decision variables cannot contain any missing values.

COST=list-of-costs
specifies the numeric constants that give the cost of a decision, the numeric variables in the input data
set that contain case-specific costs, or any combination of constants and variables.

The number of cost constants and variables must match the number of decision variables in the
DECVARS= option. You cannot use abbreviated variable lists. For any observation in which a cost
variable is missing, the results for that observation are considered missing. By default, all costs are
assumed to be 0. You can specify this option only when type is REVENUE.

PRIORVAR=variable
specifies the number variable in the DECDATA= data set that contains the prior probabilities that
are used to make decisions. Prior probabilities are also used to adjust the total and average profit or
loss. Prior probabilities cannot be missing or negative, and there must be at least one positive prior
probability. The prior probabilities are not required to sum to 1. But if they do not sum to 1, then
they are scaled by some constant so that they do sum to 1. If you do not specify this option, then no
adjustment for prior probabilities is applied to the posterior probabilities.

OLDPRIORVAR=variable
specifies the numeric variable in the DECDATA= data set that contains the prior probabilities that
were used the first time the model was fit. If you specify this option, then you must also specify the
PRIORVAR= option.
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FREQ Statement
FREQ variable ;

The FREQ statement specifies a single numeric variable whose value represents the frequency of each
observation. If you use the FREQ statement, the HPDECIDE procedure treats the data set as if each
observation appeared n times, where 7 is the value of the FREQ variable. The FREQ variable has no effect on
decisions of the adjustment for prior probabilities. It affects only the summary statistics in the OUTFIT= data
set. If a value of the FREQ variable is not an integer, then the fractional part is not truncated. If a value of the
FREQ variable is less than or equal to 0, then the observation does not contribute to the summary statistics.
However, all the variables in the OUT= data set are processed as if the FREQ variable were positive.

ID Statement
ID variables ;

The ID statement lists one or more variables from the input data set that are transferred to the output
data set created by the HPDECIDE procedure. By default, to avoid data duplication for large data sets,
the HPDECIDE procedure does not include any variables from the input data set in the output data sets.
Therefore, the ID statement can be used to copy variables from the input data set to the output data set.

PERFORMANCE Statement
PERFORMANCE < performance-options> ;

The PERFORMANCE statement defines performance parameters for multithreaded and distributed comput-
ing, passes variables that describe the distributed computing environment, and requests detailed results about
the performance characteristics of the HPDECIDE procedure.

You can also use the PERFORMANCE statement to control whether the HPDECIDE procedure executes in
single-machine or distributed mode.

The PERFORMANCE statement is documented further in the section “PERFORMANCE Statement” on
page 34 of Chapter 2, “Shared Concepts and Topics.”

POSTERIORS Statement
POSTERIORS variable-list ;

The POSTERIORS statement specifies a list of the numeric variables in the input data set that contain
the estimated posterior probabilities that correspond to the categories of the target variable. If one of the
following conditions is met, then an observation is set to missing and the variable _WARN_ contains the flag
P:

* The posterior probability is missing, negative, or greater than 1.
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* There is a nonzero posterior that corresponds to a zero posterior.

* There is not at least one valid positive posterior probability.

The order of the variables in the variable-list must correspond exactly to the order of the classes in the data
set that is specified in the DECDATA= option in the DECISION statement.

PREDICTED Statement
PREDICTED variable ;

The PREDICTED statement specifies the numeric variable in the input data set that contains the predicted
values of an interval target variable. You can specify only an interval target variable in the PREDICTED
statement. You cannot use both the POSTERIORS statement and the PREDICTED statement.

TARGET Statement
TARGET variable ;

The TARGET statement specifies which variable is the target variable in the data set that is specified in the
DECDATA= option in the DECISION statement. The TARGET statement is required.

The HPDECIDE procedure searches for a target variable that has the same name in the input data set. If none
is found, then the HPDECIDE procedure assumes that actual target values are unknown. For a categorical
variable, the target variables in the data sets that are specified in the DATA= option in the PROC HPDECIDE
statement and in the DECDATA= option in the DECISION statement do not need to be the same type because
only the formatted values are used for comparisons. For an interval target, both variables must be numeric. If
scoring code is generated by the CODE statement, the code formats the target variable by using the format
and length from the DATA= data set.

Details: HPDECIDE Procedure

Decision Matrix

The decision matrix contains columns (decision variables) that correspond to each decision and rows
(observations) that correspond to target values. The values of the decision variables represent target-specific
consequences, which might be profit, loss, or revenue. These consequences are the same for all cases that are
scored.

For each decision, there might also be either a cost variable or a numeric constant. The values of these
variables represent case-specific consequences, which are always costs. These consequences do not depend
on the target values of the cases that are scored. Costs are used for computing return on investment as

revenue — cost

cost
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Variables

Cost variables might be specified only if the decision data set contains revenue, not profit or loss. Therefore,
if revenues and costs are specified, profits are computed as revenue minus cost. If revenues are specified
without costs, the costs are assumed to be 0. The interpretation of consequences as profits, losses, revenues,
and costs is needed only to compute return on investment. You can specify values in the decision data set that
are target-specific consequences but that might have some practical interpretation other than profit, loss, or
revenue. Likewise, you can specify values for the cost variables that are case-specific consequences but that
might have some practical interpretation other than costs. If the revenue/cost interpretation is not applicable,
the values that are computed for return on investment might not be meaningful.

The HPDECIDE procedure chooses the optimal decision for each observation. If the type of decision data
set (as specified in the DECISION statement) is PROFIT or REVENUE, PROC HPDECIDE chooses the
decision that produces the maximum expected or estimated profit. If type is LOSS, PROC HPDECIDE
chooses the decision that produces the minimum expected or estimated loss.

If the actual value of the target variable is known, the HPDECIDE procedure calculates the following:

* the consequence of the chosen decision for the actual target value for each case
* the best possible consequence for each case

* summary statistics that give the total and average profit or loss

Displayed Output

The “Performance Information” table is produced by default. It displays information about the execution
mode. For single-machine mode, the table displays the number of threads used. For distributed mode, the

table displays the grid mode (symmetric or asymmetric), the number of compute nodes, and the number of
threads per node.

If you specify the DETAILS option in the PERFORMANCE statement, the procedure also produces a
“Timing” table in which elapsed times (absolute and relative) for the main tasks of the procedure are
displayed.

ODS Table Names

Table 4.1 lists the names of the ODS tables that are created by the HPDECIDE procedure. You must use
these names in ODS statements.

Table 4.1 ODS Table Produced by PROC HPDECIDE

Table Name Description Required Statement or Option
Performancelnfo Performance information Default output
Timing Timing PERFORMANCE statement with

DETAILS option




Examples: HPDECIDE Procedure 4 59

Examples: HPDECIDE Procedure

Example 4.1: Using a Revenue Matrix and Cost Variables to Make Decisions

This fictitious example demonstrates how to use PROC HPDECIDE to adjust posterior probabilities and how
to use a revenue matrix and cost variables to make decisions. In the following DATA steps, the categorical
target variable tar has two levels in the data set datal: a and b.

data datal (drop=i);
do i=1 to §5;
tar="b";
if i<3 then tar="a";
p_a=abs (ranuni (81923));
p_b=abs(1-p_a);
cl=ranpoi (38192, 5);
c2=ranpoi (28131, 7);
output;
end;

run;

data decdatal (type=revenue) ;
input dvl-dv2 op np tar §;
cards;
53 .5 .2 a
6 3 .5 .8Db

The estimated posterior probabilities that correspond to the categories of the target variable are denoted by
p_a and p_b. The two cost variables, ¢c1 and c2, represent the target-specific consequences for the decision
variables dv1 and dv2, respectively. The variable op contains the “old” prior probabilities that were used the
first time the model was fictitiously fit. The variable np contains the “new” prior probabilities that are used to
make decisions.

The following statements take the data set datal and the data set decdatal, and output the data set out1
and the data set outstat1. The target variable is tar. Because the input data set resides on the client and no
PERFORMANCE statement is specified, the client performs all computations.

proc hpdecide data=datal out=outl outstat=outstatl;
decision decdata=decdatal decvars=dvl-dv2
oldpriorvar=op priorvar=np cost=cl c2;
posteriors p_a p_b;
target tar;
performance details nthreads=2;

run;

proc print data=outl;
var p_a p_b I_tar F_tar dvl dv2 D_DECDATAl EP_DECDATAl CP_DECDATAL;
run;

proc print data=outstatl;
run;
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Output 4.1.1 shows the out1 data set, which displays the decision for each observation. The adjusted posterior
probabilities are also shown in the out1 data set.

Output 4.1.1 out1 Data Set

Obs p_a p_b I_tar F_tar dvl dv2 D_DECDATAl EP_DECDATAl CP_DECDATAl
1 0.35602 0.64398 B A 0.64398 -6 dvl 0.64398 0
2 0.38571 0.61429 B A 0.61429 -1 dvl 0.61429 0
3 0.18922 0.81078 B B -1.18922 -2 dvl -1.18922 -1
4 0.11035 0.88965 B B 4.88965 0 dvl 4.88965 5
5 0.29158 0.70842 B B -3.29158 -2 dv2 -2.00000 -2

Output 4.1.2 shows the outstat1 data set, which shows that the total profit is 2.6666666667 and the average
profit is 0.5333333333, based on the decisions from the out1 data set.

Output 4.1.2 outstat1 Data Set

Obs _PROF_ _APROF_

1 2.66667 0.53333

Output 4.1.3 shows the performance information.

Output 4.1.3 Performance Information

The HPDECIDE Procedure
Performance Information

Execution Mode Single-Machine
Number of Threads 2
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Example 4.2: Running with Client Data in Distributed Mode

This example demonstrates how to use PROC HPDECIDE to make decisions when the type of the decision
data set is LOSS and the target is continuous. When the input data set resides on the client and a PERFOR-
MANCE statement with a NODES= option is specified, as in the following statements, PROC HPDECIDE
copies the data set to the SAS appliance, where the computation is performed:

data data2;
input tar p ;
cards;

WdowWod WWwbhR
G FRPDNDMNWONMNMMEDNDOO

4

data decdata2 (type=loss);
input dvl dv2 dv3 tar ;
cards;
003

The following statements take as input the data2 and decdata2 data sets (which reside on the client) and
output the out2 and outstat2 data sets. The decision variables are dv1, dv2, and dv3, and the target variable
is tar. Because five grid nodes are specified in the PERFORMANCE statement, the input data sets are

distributed from the client to the five grid nodes, which perform the computations and then write the output
data sets back to the client.

proc hpdecide data=data2 out=out2 outstat=outstat2;
decision decdata=decdata2 decvars=dvl-dv3;
predicted p;
target tar;
performance details nodes=5 nthreads=8
host="&GRIDHOST" install="&GRIDINSTALLLOC";

run;

proc print data=out2;
run;

proc print data=outstat2;
run;



62 4 Chapter 4: The HPDECIDE Procedure

Output 4.2.1 shows the out2 data set, which displays the decision for each observation. For each observation,
the continuous target variable was interpolated.

Output 4.2.1 out2 Data Set

Obs p dvl dv2 dv3 D_DECDATA2 EL_DECDATA2 CL_DECDATA2 BL_DECDATA2 _WARN_
1 6 0 6 -3 dv3 -3 2 0
2 2 0 2 1 dvl 0 0 0
3 1 1 0 2 dv2 0 3 0
4 4 0 4 -1 dv3 -1 0 0
5 2 0 2 1 dvl 0 0 -1
6 0 0 0 3 dvl 0 0 -2
7 3 0 3 0 dvl 0 0 0
8 2 0 2 1 dvl 0 0 -3
9 1 1 0 2 dv2 0 7 -4

10 5 0 5 -2 dv3 -2 0 0

Output 4.2.2 shows the outstat2 data set, which shows that the total loss is 0 and the average loss is 0, based
on the decisions from the out2 data set.

Output 4.2.2 outstat2 Data Set

Obs _LOSs_ _ALOSS_

1 12 1.2

Output 4.2.3 shows the performance information.

Output 4.2.3 Performance Information

Performance Information

Host Node << your grid host >>

Install Location << your grid install location >>
Execution Mode Distributed

Grid Mode Symmetric

Number of Compute Nodes 5

Number of Threads per Node 8
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Output 4.2.4 shows the timing information.

Output 4.2.4 Timing Information

Procedure Task Timing

Task Seconds Percent
Startup of Distributed Environment 1.05 62.68%
Data Transfer from Client 0.00 0.14%
Computation 0.00 0.09%

Writing Output 0.62 37.09%
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Overview: HPFOREST Procedure

The HPFOREST procedure is a high-performance procedure that creates a predictive model called a forest
that consists of several decision trees. A predictive model defines a relationship between input variables and
a target variable. The purpose of a predictive model is to predict a target value from inputs. The HPFOREST
procedure frains the model; that is it creates the model using fraining data in which the target values are
known. The model can then be applied to observations in which the target is unknown. If the predictions fit
the new data well, the model is said to generalize well. Good generalization is the primary goal for predictive
tasks. A predictive model might fit the training data well but generalize poorly.

A decision tree is a type of predictive model that has been developed independently in the statistics and
artificial intelligence communities. The HPFOREST procedure creates a tree recursively. An input variable
is chosen and used to create a rule to split the data into two segments. The process is then repeated in each
segment, and then again in each new segment, and so on until some constraint is met. In the terminology of
the tree metaphor, the segments are nodes, the original data set is the root node, and the final unpartitioned
segments are leaves or terminal nodes. A node is an internal node if it is not a leaf. The data in a leaf
determine the estimates of the value of the target variable. These estimates are subsequently applied to predict
the target of a new observation assigned to the leaf.

The HPFOREST procedure creates decision trees that differ from each other in two ways. First, the training
data for a tree is a sample, without replacement, from the original training data of the forest. Second, the
input variables considered for splitting a node are randomly selected from all available inputs. Among these
variables, the HPFOREST procedure considers only a single variable when forming a splitting rule. The
chosen variable is the one that is most associated with the target.

PROC HPFOREST runs in either single-machine mode or distributed mode. In distributed mode, PROC
HPFOREST trains decision trees in parallel, and accesses all the data for every tree. NOTE: Distributed
mode requires SAS High-Performance Data Mining.
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PROC HPFOREST Features

The HPFOREST procedure creates an ensemble of hundreds of decision trees to predict a single target of
either interval or nominal measurement level. An input variable can have an interval, ordinal, or nominal
measurement level.

The HPFOREST procedure deletes from the training data any observation that has a missing target value or a
FREQ variable whose value is less than or equal to 0.

Because the HPFOREST procedure is a high-performance analytical procedure, it also does the following:

* enables you to run in distributed mode on a cluster of machines that distribute the data and the
computations

* enables you to run in single-machine mode on the server where SAS is installed
* exploits all the available cores and concurrent threads, regardless of execution mode
However, the current release of PROC HPFOREST copies all the data to all cores in distributed mode and

limits the use of concurrent threads to reading and scoring data. For more information, see the section
“Processing Modes” on page 6 in Chapter 2, “Shared Concepts and Topics.”

PROC HPFOREST Contrasted with Other SAS Procedures

No SAS procedure other than PROC HPFOREST creates a forest of decision trees for predictive modeling.
PROC HPSPLIT in SAS HPSTAT creates a single decision tree, as does PROC ARBORETUM in SAS
Enterprise Miner. These procedures search for a split on every variable in every node; the HPFOREST
procedure searches for a split on only one variable in a node: the variable that has the largest association
with the target among candidates randomly selected in that node. Consequently, the HPFOREST procedure
creates different trees than the other procedures.

The ARBORETUM procedure distinguishes between split-based and observation-based variable importance
measures. The HPFOREST procedure calls these measures loss reduction and Breiman’s method of variable
importance, respectively.

The HPFOREST and HPSPLIT procedures are high-performance analytical procedures; the ARBORETUM
procedure is not.

Getting Started: HPFOREST Procedure

This example uses diabetes data to illustrate PROC HPFOREST. Diabetes is a major American disease.
The American Diabetes Association estimates that over 8% of Americans have diabetes, and diabetes costs
Americans over $175 billion a year. The National Institute of Diabetes and Digestive and Kidney Diseases
(NIDDK) has been studying diabetes and obesity in the Pima Indians in Arizona for over 30 years. Smith et al.
(1988) prepared some of the NIDDK data for forecasting the onset of diabetes mellitus, and then donated
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the data for community use. Since then the data has been applied to dozens of experimental algorithms for
predicting the onset of diabetes.

The Pima Indians diabetes data are available from the UCI Machine Learning Repository (Asuncion and
Newman 2007) http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes. The
following SAS statements create a SAS data set from the data downloaded into a file called c:\
diabetes_data.txt:

data diabetes;

infile 'c:\diabetes_data.txt' delimiter=',';

input NumPregnancies
plasmaGlucose
diastolicBloodPr
tricepsSkinfold
hrSerumInsulin
BodyMassIndex
DiabetesPedigreeFn
Age
diabetes $

4

run;

The variable diabetes has values 0 and 1, 1 indicating the presence of diabetes. The other variables are raw
measures on interval scales, except for DiabetesPedigreeFn which is an interval variable created by Smith
et al. (1988) to capture the family history of diabetes. PROC HPFOREST uses an interval scale for numeric
variables and a nominal scale for categorical variables unless the scale is specified. The following statements
run PROC HPFOREST and saves the model in a binary file.

proc hpforest data=diabetes ;
input NumPregnancies
plasmaGlucose
diastolicBloodPr
tricepsSkinfold
hrSerumInsulin
BodyMassIndex
DiabetesPedigreeFn
Age ;
target diabetes;
save file="model";
run;


http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
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Output 5.1 shows that the program ran locally and that four threads were available. The listing also shows the
values of the training parameters and the number of observations (768). No parameters are specified in the
PROC HPFOREST statement; therefore, all the values are default. The maximum number of decision trees
to create is 50. The VARS_TO_TRY= option equals 3, indicating that 3 of the 8 input variables are randomly
selected to be considered for a splitting rule.

Figure 5.1 HPFOREST Getting Started Example Output

The HPFOREST Procedure
Performance Information

Execution Mode Single-Machine
Number of Threads 4

Model Information

Parameter Value

Category Bins 30 (Default)
Leaf Size 5 (Default)
Maximum Depth 50 (Default)
Maximum Trees 50 (Default)
Minimum Category Size 5 (Default)
Variables to Try 3 (Default)
Alpha 0.2 (Default)
Exhaustive 5000 (Default)
Leaf Fraction 0.001 (Default)
Train Fraction 0.6 (Default)
Split Criterion 6 Gini
Missing Value Handling 1 Valid value

Number of Observations

Type N

Number of Observations Read 768
Number of Observations Used 768
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Figure 5.2 shows the Baseline Fit Statistics. PROC HPFOREST first computes baseline statistics without
using a model. The listing shows a baseline misclassification rate of 0.349 because that is the proportion of
observations with diabetes equal to 1.

Figure 5.2 HPFOREST Getting Started Example Output

Baseline Fit Statistics

Statistic Value
Average Square Error 0.227
Misclassification Rate 0.349

Figure 5.3 shows the Fit Statistics. When not run on a grid, PROC HPFOREST computes fit statistics for a
sequence of forests with an increasing number of trees. Typically the fit statistics improve (decrease) with
the number of trees until reaching a rough bottom. Forest models provide an alternative estimate of average
square error and misclassification rate, called the out-of-bag (OOB) estimate. It is a convenient substitute
for an estimate based on test data, a less biased estimate of how the model will perform on future data. For
more information, see the section “Bagging the Data” on page 79. The listing shows that the out-of-bag error
estimate is worse (larger) than the estimate that evaluates all observations on all trees. This is usual. The
out-of-bag misclassification rate for the model is 0.230, which is much less than the baseline rate of rate of
0.349. We can conclude that the model is good. In fact, 0.230 is the best misclassification rate (or close to it)
in the literature for these data.
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Figure 5.3 HPFOREST Getting Started Example Output

Fit Statistics
Average Average

Square Square Misclassification Misclassification
Number Number Error Error Rate Rate
of Trees of Leaves (Full Data) (OOB) (Full Data) (OOB)
1 14 0.165 0.215 0.240 0.302
2 26 0.146 0.190 0.227 0.279
3 47 0.135 0.189 0.197 0.274
4 69 0.130 0.179 0.193 0.253
5 89 0.130 0.177 0.189 0.250
6 101 0.131 0.174 0.191 0.253
7 121 0.128 0.171 0.184 0.250
8 135 0.127 0.167 0.180 0.248
9 154 0.128 0.167 0.182 0.246
10 171 0.127 0.167 0.176 0.246
11 192 0.126 0.165 0.181 0.238
12 201 0.127 0.164 0.184 0.243
13 215 0.127 0.163 0.182 0.245
14 228 0.128 0.162 0.182 0.245
15 238 0.128 0.162 0.182 0.242
16 254 0.128 0.162 0.181 0.240
17 268 0.128 0.162 0.184 0.236
18 293 0.127 0.162 0.180 0.241
19 313 0.127 0.162 0.177 0.240
20 321 0.128 0.162 0.177 0.240
21 342 0.128 0.161 0.174 0.241
22 351 0.128 0.162 0.178 0.240
23 376 0.128 0.162 0.176 0.237
24 390 0.128 0.162 0.182 0.237
25 411 0.127 0.161 0.177 0.240
26 427 0.127 0.161 0.178 0.238
27 439 0.127 0.161 0.184 0.240
28 454 0.127 0.161 0.181 0.238
29 471 0.127 0.161 0.184 0.236
30 491 0.127 0.160 0.184 0.237
31 510 0.127 0.160 0.184 0.237
32 529 0.127 0.160 0.182 0.242
33 545 0.127 0.160 0.182 0.243
34 561 0.127 0.160 0.186 0.245
35 574 0.128 0.160 0.186 0.242
36 590 0.127 0.160 0.184 0.241
37 611 0.127 0.161 0.182 0.242
38 631 0.127 0.161 0.182 0.243
39 641 0.127 0.161 0.182 0.242
40 654 0.127 0.161 0.178 0.241
41 670 0.127 0.160 0.184 0.238
42 681 0.128 0.161 0.188 0.237
43 695 0.128 0.161 0.188 0.237
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Figure 5.3 continued

Fit Statistics
Average Average

Square Square Misclassification Misclassification
Number Number Error Error Rate Rate
of Trees of Leaves (Full Data) (OOB) (Full Data) (OOB)
44 709 0.128 0.161 0.185 0.240
45 733 0.128 0.161 0.186 0.242
46 747 0.128 0.161 0.185 0.241
47 767 0.128 0.161 0.189 0.241
48 780 0.128 0.160 0.186 0.243
49 796 0.128 0.160 0.188 0.243
50 816 0.128 0.161 0.190 0.245

Estimates of variable importance appear after the fit statistics. The NRules column in Figure 5.4 shows
the number of splitting rules that use a variable. Section ‘“Measuring Variable Importance” on page 96
explains the measures of importance. Each measure is computed twice: once on training data and once on
out-of-bag data. As with fit statistics, the out-of-bag estimates are less biased. The GiniOOB column is
negative for four variables. The splitting rules involving these variables are, on average, spurious. The worst
is DiabetesPedigreeFn, suggesting that family history of diabetes is a misleading predictor, at least when
measured with DiabetesPedigreeFn. The MarinOOB statistic gives DiabetesPedigreeFn more importance.
The main conclusion from fitting the forest model to these data is that plasmaGilucose is the most important
predictor of future onset of diabetes. Three other variables also contribute to the prediction.

Figure 5.4 HPFOREST Getting Started Example Output

Loss Reduction Variable Importance

Number OOB OOB
Variable of Rules Gini Gini Margin Margin
plasmaGlucose 188 0.090053 0.03960 0.180106 0.099637
BodyMassIndex 125 0.027664 0.00772 0.055328 0.025179
Age 90 0.016573 0.00497 0.033146 0.015931
NumPregnancies 93 0.015310 0.00312 0.030620 0.013603
hrSerumInsulin 66 0.008547 -0.00166 0.017095 0.003813
tricepsSkinfold 47 0.003610 -0.00211 0.007220 0.000078
diastolicBloodPr 60 0.004767 -0.00295 0.009535 0.000715
DiabetesPedigreeFn 97 0.014071 -0.00322 0.028141 0.006580
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Syntax: HPFOREST Procedure

The following statements are available in the HPFOREST procedure:

PROC HPFOREST < option(s)> ;
FREQ variable ;
INPUT variable(s) < option(s)> ;
ID variable(s) ;
PERFORMANCE performance-options ;
SAVE < options> ;
SCORE < score-options > ;
TARGET variable < option(s)> ;

The PROC HPFOREST statement, INPUT, and TARGET statements are required. The INPUT statement can
appear multiple times.

PROC HPFOREST Statement
PROC HPFOREST < options > ;

The PROC HPFOREST statement invokes the procedure. You can specify one or more of the following
optional arguments.

DATA=< libref. >SAS-data-set
names the SAS data set to be used by PROC HPFOREST for training the model. The default is the
most recently created data set.

If the data are already distributed, the procedure reads the data alongside the distributed database. See
the section “Processing Modes” on page 6 for the various execution modes and the section “Alongside-
the-Database Execution” on page 13 for the alongside-the-database model. Data from all the computer
grid nodes are combined into a structure that is optimized for model training and redistributed to the
nodes. The different nodes then proceed independently with identical data to create decision trees.

ALPHA=number
specifies a threshold p-value for the significance level of a test of association of a candidate variable
with the target. If no association meets this threshold, the node is not split. The default value is 0.2.

CATBINS=k

specifies the maximum number of categories of a nominal candidate variable to use in the association
test. k refers only to the categories that are present in the training data in the node and that satisfy
the MINCATSIZE= option. The categories are counted independently in each node. If more than k
categories are present, then the least frequent categories are removed from the association test. Many
infrequent categories can dilute a strong predictive ability of common categories. The search for a
splitting rule uses all categories that satisfy the MINCATSIZE= options. The value of kK must be a
positive integer. The default value is 30.
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EXHAUSTIVE=number
specifies the maximum number of splits to examine in a complete enumeration of all possible splits
when the input variable is nominal and the target has more than two nominal categories. The exhaustive
method of searching for a split examines all possible splits. If the number of possible splits is greater

than number, then a heuristic search is done instead of an exhaustive search. The default value of
number is 5,000.

IMPORTANCE=YES | NO
specifies whether to calculate loss reduction variable importance. Avoiding the calculation can save
some memory resources. The default action is YES: calculate loss reduction variable importance.

LEAFFRACTION=f
specifies the smallest number of training observations that a new branch can have, expressed as the
fraction of the number N of available observations in the DATA= data set. N might be less than the total
number of observations in the data set because observations with a missing target value or non positive
value of the variable specified in the FREQ statement are excluded from N. If you specify a number
in the LEAFSIZE= option that implies a larger number than that specified in the LEAFFRACTION=
option, f is ignored. The value f must be larger than O and less than 1. The default value is 0.001.

LEAFSIZE=n
specifies the smallest number of training observations a new branch can have. If you specify a value
for the LEAFFRACTION= option that implies a larger value than n, the LEAFSIZE= option is ignored.
The default value is 5.

MAXDEPTH=d
specifies the maximum depth of a node in any tree that PROC HPFOREST creates. The depth of a
node equals the number of splitting rules needed to define the node. The root node has depth 0. The
children of the root have depth 1, and on. The smallest acceptable value of d is 1. The default value of
d is 50.

MAXTREES=n

specifies the number of trees in the forest. nis a positive integer. The number of trees in the resulting
forest can be less than n when the HPFOREST procedure fails to split the training data for a tree. Up
to two times n trees are attempted. If the procedure fails to split the training data for more than n trees,
then less than n trees are created. The ALPHA=, LEAFSIZE=, and MINCATSIZE= options constrain
the split search to form trees that are more likely to predict well using new data. Setting all of these
options to 1 generally frees the search algorithm to find a split and train a tree, although the tree might
not help the forest predict well. The default value of n is 50.

MINCATSIZE=n
specifies the minimum number of observations that a given nominal input category must have in order
to use the category in a split search. Categorical values that appear in fewer than n observations are
handled as if they were missing. The categories that occur in fewer than n observations are merged
into the pseudo category for missing values for the purpose of finding a split. The policy for assigning
such observations to a branch is the same as the policy for assigning missing values to a branch. The
default value of nis 5.
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MINUSEINSEARCH=n
specifies a threshold for utilizing missing values in the split search when MISSING=USEINSEARCH
is specified as the missing value policy. If the number of observations in which the splitting variable
has missing values in a node is greater than or equal to n, then PROC HPFOREST initiates the
USEINSEARCH policy for missing values. See the section “Handling Missing Values” on page 94 for
a more complete explanation. The default value of nis 1.

MISSING=USEINSEARCH | DISTRIBUTE
specifies how the training procedure handles an observation with missing values. If MISS-
ING=USEINSEARCH and the number of training observations in the node is more than n, where n is
the value of the MINUSEINSEARCH= option, then the missing value is used as a separate, legitimate
value in the test of association and the split search. If MISSING=DISTRIBUTE, observations with
a missing value of the candidate variable are omitted from the test of association and split search in
that node. A splitting rule distributes such an observation to all branches. See the section “Handling
Missing Values” on page 94 for a more complete explanation. By default, MISSING=USEINSEARCH.

NODESIZE=n | ALL
specifies the number of training observations to use for association tests and split searches. NODE-
SIZE=ALL requests to use all the observations. The acceptable range is from two to two billion on
most machines. The default value of nis 100,000.

The procedure counts the number of training observations in a node without adjusting the number with
the values of the variable specified in the FREQ statement. If the count is larger than n, then the split
search for that node is based on a random sample of size n. For categorical targets, the sample uses as
many observations with less frequent target values as possible. The calculations for the association
measures and split worth adjust the category counts to the category proportions in the node before
sampling.

SEED=n
specifies the seed for generating random numbers. The HPFOREST procedure uses random numbers
to select training observations for each tree and to select candidate variables in each node to split
on. nis a nonnegative integer. Set n to 0 to use the internal default. The default value of the seed is
8,976,153.

SKIP_SEQ_ROWS=n
specifies the number of rows to skip in the “Fit Statistics” table in distributed mode. After every n trees
that are trained on a grid node, the fit statistics on the node are updated, consolidated with statistics
from other nodes, and eventually output in the “Fit Statistics” table. Each row in the table contains
statistics for a specific number of trees in a forest. The table has gaps of up to n rows. The default
value of nis 5.

SPLITSIZE=n
specifies the requisite number of training observations a node must have for the HPFOREST procedure
to consider splitting it. By default, n is twice the value of the LEAFSIZE= option (or n is the value
implied by LEAFFRACTION= option if the procedure ignores the LEAFSIZE= option). The procedure
counts the number of observations in a node without adjusting the number with the values of the variable
specified in the FREQ statement when it interprets the value specified in the LEAFFRACTION=,
LEAFSIZE=, MINCATSIZE=, and SPLITSIZE= options.
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TRAINFRACTION=f

specifies the fraction of training observations to train a tree with. Using less than all the available data
often improves the generalization error. A different training sample is taken for each tree. f can be any
number greater than 0 and at most 1. The default value of f is 0.6. PROC HPFOREST uses at least
four observations in the training data regardless of how small f is (assuming four observations exist).
If f is too small to accommodate the LEAFSIZE=, LEAFFRACTION=, and SPLITSIZE options then
no tree is made. The TRAINN= option accepts an absolute number instead of a fraction to specify the
same quantity. Specifying both the TRAINN= and TRAINFRACTION= options is an error.

TRAINN=n

specifies how many observations to use to train each tree. The observations are counted without regard
to the variable specified in the FREQ statement. Using less than all the available data often improves
the generalization error. A different training sample is taken for each tree. n can be any positive integer.
If nis greater than the number of observations in the data set specified in the DATA= option, then all
the available data are used. n must be at least 3 and large enough to accommodate the values of the
LEAFSIZE=, LEAFFRACTION=, and SPLITSIZE options. The default value is 0.6 times the number
of available observations in DATA= data set. The TRAINFRACTION= option accepts a fraction
instead of an absolute number to specify the same quantity as the TRAINN= option. Specifying both
the TRAINN= and TRAINFRACTION= is an error.

VARS_TO_TRY=m | ALL
specifies the number of input variables to consider splitting on in a node. m ranges from 1 to the
number of input variables, v. The default value of mis /v. Specify VARS_TO_TRY=ALL to use all
the inputs as candidates in a node.

FREQ Statement
FREQ variable ;

The variable in the FREQ statement identifies a numeric variable in the data set that contains the frequency
of occurrence for each observation. PROC HPFOREST accepts any positive value of a frequency variable
without converting the value to an integer. If the frequency value is missing or less than or equal to 0, the
observation is not used in the analysis. When the FREQ statement is not specified, each observation is
assigned a frequency of 1.

INPUT Statement
INPUT variable(s) < option(s)> ;

The INPUT statement names input variables with common options. The INPUT statement can be repeated.
You can specify the following options:

LEVEL=/evel
specifies the level of measurement of the variables. Accepted values of /evel are: BINARY, NOMINAL,
ORDINAL, and INTERVAL.
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ORDER=o0rder
specifies the sorting order of the values of an ordinal input variable. Table 5.1 provides recognized
values of order.

Table 5.1 ORDER= Option Values

Value of ORDER= Variable Values Sorted By

ASCENDING Ascending order of unformatted values (default)
ASCFORMATTED Ascending order of formatted values
DESCENDING Descending order of unformatted values
DESFORMATTED Descending order of formatted values
DSORDER Order of appearance in the input data set

NOTE: The DSORDER sort option is not supported for input data sets stored on the SAS appli-
ance.

ID Statement
ID variables ;

The ID statement lists one or more variables from the input data set that are transferred to the output data set
that is specified in the SCORE statement. By default, high-performance analytical procedures do not include
all variables from the input data set in output data sets.

The ID statement is optional. However, when you are running in distributed mode or with concurrent threads,
the SCORE statement rearranges the observations. An ID variable is needed to correctly merge the output
data with other variables from the input data set.

PERFORMANCE Statement
PERFORMANCE < performance-options> ;

The PERFORMANCE statement defines performance parameters for multithreaded and distributed comput-
ing, passes variables that describe the distributed computing environment, and requests detailed results about
the performance characteristics of the HPFOREST procedure.

You can also use the PERFORMANCE statement to control whether the HPFOREST procedure executes in
single-machine or distributed mode.

The PERFORMANCE statement is documented further in the section “PERFORMANCE Statement” on
page 34 of Chapter 2, “Shared Concepts and Topics.”
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SAVE Statement
SAVE < option> ;

The SAVE statement outputs the forest model information into a binary file. You can specify the following
option:

FILE=filename
names the file into which tree information is saved. The filename can be either a SAS file reference or
the full path and member name of the binary file.

You can score new data sets against the forest model by specifying the name of this binary file in the FILE=
option in the SCORE statement in the HP4ASCORE procedure.

SCORE Statement

SCORE < score-options> ;

The SCORE statement applies the forest model to the training data and outputs a data set containing the
ID variables that are specified in the ID statement, predictions, residuals, and decsions. The prediction
variables depend on the measurement type of the target variable in the model. For a target that has an interval
measurement level, a single prediction variable is generated. For each level of the target that has a nominal
measurement level, a posterior probability variable is generated in addition to the final predicted level. The
names of the variables are constructed using the rules that are explained in the SAS Enterprise Miner product
documentation.

When you are running in distributed mode or with concurrent threads, the SCORE statement rearranges the
observations. An ID variable is needed to correctly merge the output data with other variables from the input
data set.

You can specify one or more of the following optional arguments.

MAXDEPTH=<n>
produces predictions from trees pruned to a depth of n. The trees are not truncated by default.

NTREES=<n>
produces predictions from the first n trees only. Scoring with fewer trees can sometimes increase the
speed without significantly reducing the accuracy.

OUT=< libref. >SAS-data-set
names the output data set to contain the scored data.

TARGET Statement
TARGET variable < LEVEL=/evel> ;

The TARGET statement names the variable whose values PROC HPFOREST tries to predict. You can specify
the following optional argument:
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LEVEL=/evel
specifies the level of measurement. Accepted values of level are: BINARY, NOMINAL, and INTER-
VAL. Note that level cannot be ORDINAL.

Details: HPFOREST Procedure

Bagging the Data

A decision tree in a forest trains on new training data that are derived from the original training data presented
to the HPFOREST procedure. Training different trees with different training data reduces the correlation of
the predictions of the trees, which in turn should improve the predictions of the forest.

The HPFOREST procedure samples the original data without replacement to create the training data for
an individual tree. Most forest algorithms sample with replacement. The convention of sampling with
replacement originated with Leo Breiman’s bagging algorithm (Breiman 1996, 2001). The word bagging
stems from “bootstrap aggregating,” where “bootstrap” refers to a procedure that uses sampling with
replacement. Breiman refers to the observations that are excluded from the sample as our-of-bag (OOB)
observations. Therefore, observations in the training sample are called the bagged observations, and the
training data for a specific decision tree are called the bagged data. Subsequently, Freedman and Popescu
(2003) argued that sampling without replacement can provide more variability between the trees, especially
with larger training sets.

The TRAINN= and TRAINFRACTION= options in the PROC HPFOREST statement specify the number of
observations to sample without replacement into a bagged data set.

Estimating the goodness-of-fit of the model by using the training data is usually too optimistic; the fit of
the model to new data is usually worse than the fit to the training data. Estimating the goodness-of-fit by
using the out-of-bag data is usually too pessimistic at first. With enough trees, the out-of-bag estimates are an
unbiased estimate of the generalization fit.

Training a Decision Tree

The HPFOREST procedure trains a decision tree by forming a binary split of the bagged data, then forming a
binary split of each of the segments, and so on recursively until some constraint is met.

Creating a binary split involves a few subtasks:

1. selecting candidate inputs
2. reducing the number of nominal input categories
3. computing the association of each input with the target

4. searching for the best split that uses the most highly associated input
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PROC HPFOREST selects candidate inputs independently in every node. The purpose of preselecting
candidate inputs is to increase the differences between the trees, thereby decreasing the correlation and
theoretically increasing the quality of the forest predictions. The selection is random, and each input has the
same chance. The VARS_TO_TRY= option specifies the number of candidates to select. The quality of the
forest often depends on the number of candidates. Unfortunately, a good value for the VARS_TO_TRY=
option is generally not known in advance. Data with more irrelevant variables generally warrant a larger
value.

The reason for searching only one input variable for a splitting rule instead of searching all inputs and
choosing the best split is to improve prediction on new data. An input that offers more splitting possibilities
provides the search routine more chances to find a spurious split. Loh and Shih (1997) demonstrate the
bias towards spurious splits that result. They also demonstrate that preselecting the input variable and then
searching only on that one input reduces the bias. The HPFOREST procedure preselects the input with the
largest p-value of an asymptotic permutation distribution of an association statistic. Hothorn, Hornik, and
Zeileis (2006) originated the idea and describe the statistic.

The HPFOREST procedure sometimes reduces the number of categories of a nominal input. Nominal inputs
with fewer categories in the node than the number specified in the CATBINS= option are not modified.
For nominal inputs with more categories, PROC HPFOREST ignores observations with the least frequent
category values. Limiting the number of categories in a nominal input can strengthen the association of that
input with the target by eliminating categories that have less predictive potential. PROC HPFOREST reduces
the categories independently in every node.

The split search seeks to maximize the reduction in the Gini index for a nominal target and the reduction in
variance of an interval target.

Controlling for Variable Selection Bias

Split-search algorithms generally inflate the worth of variables that offer many split possibilities beyond the
predictive ability of the variable. Nominal variables are especially troublesome because they offer 2k=1)
possible binary splits of the data, where k is the number of categories. A nominal variable that has many
categories and no predictive power can produce a split of greater apparent worth simply by chance than a
predictive variable that offers fewer split choices.

The problem motivated Gordon Kass to invent CHAID (Kass 1980), an algorithm that penalizes variables
that produce more split candidates. The problem is mentioned in Breiman et al. 1984, p. 42, as one of the
weaknesses of their algorithm. The problem is worse in Ross Quinlan’s C5.0 algorithm (1993) because that
algorithm creates many branches for a categorical input and only two for an interval input. Each branch
provides an estimate of the target. Allowing some variables more estimates of a target than others gives those
variables an unfair competitive advantage.

The HPFOREST procedure avoids the problem by not using the worth of a split to select the variable to split
on. Instead, the inputs compete on a test of association with the target. The test adjusts for the different
number of input categories. Only the winning variable is eligible for a splitting rule. Loh and Shih (1997)
first proposed this in their QUEST algorithm. PROC HPFOREST uses the version in Hothorn, Hornik, and
Zeileis (20006).

This section compares the different methods of selecting the variable to split the data. The data contain a
purely random input X ; with j nominal categories and a second input Z; with k categories that is predictive
of the target. The plots show the proportions of samples in which a method selects X ; instead of the predictive
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input, Zy. The larger the proportion, the greater the bias of the method towards variables that offer more
splitting possibilities than predictive power.

The data contain 500 observations. The target ¥ has values 0 and 1 with equal probabilities. Nominal input
Z} has equally probable integer values from O through k — 1. The probability that ¥ = 1 given Zj is
greater than or equal to k /2 is 0.6 (and therefore P(Y = 1|Z; < k/2) = 0.4). With enough data, a splitting
algorithm that uses Zj assigns values that are less than k /2 to one branch, and the rest to the other branch.
X is equally distributed without reference to Y. With enough data, the best split on X ; has negligible worth.
A variable selection method chooses between two variables. After repeating this for 1,000 samples, the
proportion of times X ; is selected is recorded and plotted for several combinations of j and k.

Figure 5.5 shows the proportion of samples for which X ; is selected instead of Z; when the split-search
algorithm uses the reduction in Gini impurity as the splitting criterion. As shown in the figure, Gini reduction
selects X ; more often as the number of categories j increases. When j is similar to k, Gini reduction selects
X ; between 15% and 30% of the time. For j —k = 10, X; is selected about 75% of the time. Gini reduction
selects the wrong variable more often than not for these values of j and k.

Figure 5.5 Proportion of Samples for Which Gini Reduction Selects X ;
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Proportion

Figure 5.6 shows the proportion of samples for which X ; is selected using the CHAID split-search algorithm.
The figure shows that CHAID selects X ; less often as the number of categories j increases. CHAID penalizes
variables with many categories, and the penalty is larger than necessary. For j — k = 10, the proportion of
times CHAID selects X ; decreases from about 70% (j = 12) to less than 10% (j = 38). CHAID selects
the wrong variable more often than not for j much less than k.

Figure 5.6 Proportion of Samples for Which CHAID Selects X ;
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Figure 5.7 shows the proportion of samples for which PROC HPFOREST selects X ; by using a test of
association. As shown in the figure, given Z;, PROC HPFOREST selects X ; the same proportion of
times regardless of the number of categories j. When the number of categories k of Zj increases, PROC
HPFOREST selects X ; more often. However, the proportion never reaches 40%. PROC HPFOREST never
selects the wrong variable more often than not for any values of j and k examined.
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Figure 5.7 Proportion of Samples for Which an Association Test Selects X ;
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The material in this section is part of a fuller discussion in de Ville and Neville of variable selection bias.

Selecting a Splitting Variable

PROC HPFOREST considers only one input variable when it searches for a splitting rule in a node; it selects
the variable with the highest association with the target. The measure of association is adapted from Hothorn,
Hornik, and Zeileis (2006) and presented here.

Let Y and X denote the target variable and input variable, respectively. Let ¥; and X; denote their values
in observation i. The formulas for the association depend on whether Y and X are categorical. If Y is
categorical, let J denote the number of values, and let ¥;; equal 1 if ¥; equals j and O otherwise. Similarly,
if X is categorical, let K denote the number of values, and let X;; equal 1 if X; equals k and O otherwise.
Let T denote the statistic defined in Table 5.2.
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Table 5.2 Definition of T for Different Types of Variables

Type of Variable Dimension of

Y X T Definition
Interval Interval 1 T=>)YX

J classes Interval J T =YX,
Interval K categories K Ty =) YiXik
J classes K categories J x K Tix =2 YijXik

The test statistic is

Cquad =(T - ﬁ)tﬁ:_l(T — 1)

where
n = estimate of the expected value of T
pX = estimate of the covariance of T’
»~! = generalized inverse of %

PROC HPFOREST selects the variable with the smallest p-value, the integral from Cquad to infinity of the

density of a chi-square distribution with degrees of freedom equal to the rank of 3.

Table 5.3 contains formulas for /1.

Table 5.3 Definition of /1 for Different Types of Variables

Type of Variable Dimension of

Y X i Definition

Interval Interval 1 a=0_YH0O_ Xi)/N

J classes Interval J a; =0 Y Xi)/N
Interval K categories K =0 Y. Xir)/N
J classes K categories J x K Pk = QY Xik)/N

To make the formulas more concise, let / = 1 and ¥;; = ¥; when Y has an interval measurement level.
Now J and Y;; are defined for all types of Y. Similarly, let K = 1 and X;; = X; when X has an interval
measurement level. The multiple definitions of 7" in Table 5.2 now reduce to the single formula,

N
Tix =Y YijXik
i=1
and the concise definition of /i becomes

N N
Rk = Q_Yi)Q_ Xix)/N

i=1 i=1

The dimension of & equals (J x K)?2, the dimension of T squared. If X has a large number of categories,
then K is large, and storing and inverting 3 can impede performance.
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The formula for X is built as follows from the expectation and covariance of Y and a factor that depends on
X:

N
EY); = ;1 Yij/N

N
Cov(Y)n; = > (Yin —E(X)p)(Yi; —E(Y);)/N

i=1

N N N
Exi =1k =D(X XixXir) — (X Xip) (X Xip)

i=1 i=1 i=1
ik = Cov(Y)p; ExgN/(N — 1)

where 1(k = [) equals 1 when k = [ and O otherwise.

Searching for a Splitting Rule
Rules

A PROC HPFOREST splitting rule uses the value of a single input variable to assign an observation to one
of two branches. If the split-search algorithm uses missing values, then the rule includes an assignment of
missing values to a branch.

A rule might assign all observations with a nonmissing value of the splitting variable to one branch, and all
observations with a missing value to the other. In this case, the missing values go the second branch.

If the split-search algorithm does not use missing values, then the rule assigns an observation with a missing
value to both branches and adds to each copy a fractional weight that is proportional to the number of training
observations in each branch. This is the policy when the splitting variable contains no missing variables in
the node during training, even if the MISSING=USEINSEARCH option is specified.

Criteria

The HPFOREST procedure searches for rules that maximize the measure of worth that is associated with the
splitting criterion. Formally, the worth of a split s is the reduction in node impurity,

B
Ai(s,0) = i(w) — Y plwp|w)i(wp)

b=1

where i (w) is the impurity of the node w, and p(wp|w) is the proportion of training observations in branch b.
Generally, p(w) is a nonnegative number that equals O if all observations in w have the same target value,
and p(w) is large if the target values in w are very different.

The impurity function for the Gini index is

J
i) =1-) 7]
j=1

where p; is the probability of target value j. The impurity function for variance reduction is

N(w)

(@) = —— 3 (v - 7)?
l(a))_N(a));(YZ ¥
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where N(w) is the number of observations in node w, Y; is the target value of observation i, and Y is the
average of Y; in w.

Algorithm
PROC HPFOREST searches for a splitting rule as follows:

1. It sorts the values in one of the following ways:

* For an interval or ordinal input, it sorts by nonmissing values of the input.

* For a nominal input with interval target, it sorts the categories by the average target value in the
category.

* For a nominal input with binary target, it sorts the categories by the proportion of one of the
target values in the categories.

2. It walks from the lowest to the highest values, and it evaluates the split at every permissible position. A
permissible position is one that does not separate two observations with the same target value and that
satisfies any constraints, such as the LEAFSIZE= option.

If the algorithm allows missing input values, then the algorithm evaluates two splits at every permissible
position of an interval or ordinal input: one that assigns the missing values to the left branch, and another that
assigns missing values to the right branch.

For a nominal input, sorting reduces the number of candidate splits to m — 1 from 27~V where m is the
number of nominal categories. Fisher (1958) proved it works and that the best split is among the m — 1
examined. Breiman et al. (1984) applied their theorem to decision trees.

No similar reduction is known for a nominal input with a nominal target (with more than two categories).
However, PROC HPFOREST uses the following simple extension which usually works: For each nominal
target category Yy, it sorts the input categories by the proportion of y and finds the best permissible split
among the m — 1 sorted positions. A total of km splits are considered, where k denotes the number of target
values. PROC HPFOREST uses this approach unless the value of the EXHAUSTIVE= option is greater than
or equal to 2”1 in which case PROC HPFOREST examines all permissible splits.

Before PROC HPFOREST applies the algorithm, it might combine small nominal input categories to
satisfy the CATBINS= and MINCATSIZE= options. The algorithm uses the combined category only if
MISSING=USEINSEARCH and the number of missing observations in the node is greater than or equal to
the value of the MINUSEINSEARCH= option.

Predicting an Observation

To predict an observation, the HPFOREST procedure first assigns the observation to a single leaf in each
decision tree in the forest, then uses that leaf to make a prediction based on the tree that contains the leaf, and
finally simply averages the predictions over the trees. For an interval target, the prediction in a leaf equals the
average of the target values among the bagged training observations in that leaf. For a nominal target, the
posterior probability of a target category equals the proportion of that category among the bagged training
observations in that leaf. The predicted nominal target category is the category with the largest posterior
probability. In case of a tie, the first category that occurs in the training data is the prediction.
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The HPFOREST procedure also computes out-of-bag predictions. The out-of-bag prediction of an observation
uses only trees for which the observation is out of bag (that is, not selected as part of the training data for that
tree).

A model is worthless if its predictions are no better than predictions without a model. For an interval target,
the no-model prediction of an observation is the average of the target among training observations. For
a nominal target, the no-model posterior probabilities are the class proportions in the training data. The
no-model predictions are the same for every observation.

Computing the Average Square Error and Misclassification Rate

The HPFOREST procedure computes the average square error and the misclassification rate to assess the
model’s goodness of fit. The average square error applies to all types of targets. The misclassification rate
applies only to nominal targets.

The average square error for an interval, the average square error for a nominal target, and the misclassification
rate for a nominal target are defined respectively as

N o532
ASE,;, = Z i —Yi)

. N
i=1
N J N
(8ij — Pij)?
b= 3 30
i=1j=1 IN
N A
1 . .
MISC = Z (yl]\?]"é )’l)

i=1

where J; is the target prediction of observation i, §;; equals 1 or O if the nominal target value j does or
does not occur in observation i, respectively, p;; is the predicted probability of nominal target value j for
observation i, N is the number of observations, and J is the number of nominal target values (classes).

The definitions are valid whether y; is the usual model prediction, the out-of-bag prediction, or the no-model
prediction. The three predictions result in three different estimates of ASE;,;. The model has some predictive
ability if the out-of-bag estimate of fit is smaller than the no-model estimate. The ASE;, that is based on the
usual model predictions of the original training data is usually optimistic, smaller than what its value will be
on future data.

Adjusting Statistics When Sampling Target Classes Unevenly

When the proportions of target classes in the training data differ from the proportions in the population to
which the model is applied, predictions and fit statistics need to be adjusted for the population of interest.
Consider fraud detection as an example. A random sample of 100,000 transactions might have too few
fraudulent observations for training a good model. One solution is to preferentially include fraudulent cases
in the sample. Adding extra observations of a rare target class into the training data is called oversampling.
Another solution is to randomly sample enough transactions (several million perhaps) to obtain enough
fraudulent cases. In this situation, the number of non-fraudulent cases might be more than are necessary for
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training and might be a burden for data processing. Removing observations of a common target class from
the training data is called undersampling.

Typically, the greater the class proportion in the training data, the greater the class posterior probability from
a model. When the class proportions in the training data differ from those in the population of interest, the
model inflates the predictions of the classes that are overrepresented in the training data. The following
sections explain how to adjust the predictions and the fit statistics that estimate how well the model will
perform when applied, illustrate why the adjustments matter, and present a technical derivation of the
adjustment formulas.

Formulas for Adjusting the Predictions and Fit Statistics

The formulas for adjusting the probabilities and statistics assume that the distribution of the inputs for a target
class is the same in the training data as in the population of interest. The class proportions can differ, but the
distribution of input values within a class must be the same.

The formula for converting probabilities from the training sample to the population of interest is

1 B
Zk PtkVk
where
Pr; = estimate of p; that is computed with the training data

pr;j = adjusted probability of class j for the population of interest
pzj = unadjusted probability of class j for the training data

vi =7/t
m; = proportion of class j in the population of interest
T; = proportion of class j in the training data

The circumflex above a population statistic such as py; indicates that the statistic is estimated from training
data. A population statistic without a circumflex indicates that the statistic is computed from population data.

Let S denote a statistic that can be expressed as the average of a loss metric, Loss(y, p(y)), between the actual
target value and the predicted probabilities. Average square error and misclassification rate are examples.

The probability p(y) might be adjusted or unadjusted, and the average might be taken over the training data or
the population of interest. An optional argument to S indicates whether the probabilities are adjusted, and an
optional suffix indicates the sample for evaluating the statistic. Thus,

N

ZT Loss(Vi»Pvi)
; Nz

i=1

N Loss(y; i)
Se(pa) = 3. npoend)
=
[EP
Sx(pe) = 3. sy
i=1

Nz Loss(y; i)
Sz(px) = ). 1)\)]“177”

i=1 T

Sz(pr)
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To compute the estimate of a population statistic S (pr), multiply the terms for target class j by the
proportion of class j observations in the population as

E; = Z Szj (1/7;)7[]'
J

where
—_— Loss(y;, ﬁ)
Seii(pr) = ¥ EeGprm)
i3y;=j '
N = number of classj observations in the training data

The class j formulas for the average square error and misclassification rate are

J R
(8‘ —Pri )2
ASE; = 3 Y gy
idyi=j k=1 '
MISC,; = Y 14z
idy;=j
where

djk = lif j = k and 0 otherwise
yi = the class k with the largest value of p,

Why the Adjustments Matter

This section illustrates the need to adjust probabilities and statistics. The data consist of a binary target and
two independent input variables from a normal distribution with standard deviation of 0.25. The mean value
of an input is 0.25 for target class 0, and is 0.75 for class 1.

The test data set has 20,000 class 0 observations and 80,000 class 1 observations. All runs use the same test
data. The training and validation data sets have 5,000 observations. The percentage of class 0 observations
varies from 5 to 95. For each percentage, 20 training and validation data sets are generated. A decision tree is
fit to each of the 20 training data sets and applied to the test data.

Figure 5.8 shows the misclassification rate of each tree, which is evaluated on the test data. A smooth curve
passes near the average misclassification rate at each percentage of class 0 observations. (Technically, the
curve is a cubic spline with A equal to 0.05.) The rate is computed twice: once with the probabilities adjusted
for the class proportions in the test data, and once without adjusting. A separate curve is drawn for each. The
two rates are the same when the proportion of class 0 observations in the training data is 20 percent, which is
the same as in the test data. The misclassification rates increase (get worse) as the class proportions in the
training data differ more from the proportions in the test data. If you could choose the proportions of the
target classes in the training data, this example suggests that the best choice would be to choose the same
proportions as in the population of interest. However, if one target value is rare, oversampling would still be
necessary to ensure that the training data have enough rare observations for the algorithm to work with.
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Misclassification Rate

In this example, adjusting probabilities is better because the rates that are computed after adjusting probabili-
ties are generally smaller (better) than those computed without adjusting. The difference is larger when the
class proportions in the training data differ more from those in the test data.

Figure 5.8 Test Set Misclassification Rates Using Adjusted and Unadjusted Predictions

0.40 .
= = Unadjusted
— Adjusted

0.35+

0.30+

L]
]
]

0257

020+

0.157

0.104

0.05+

0.00 T T T T T
] 20 40 G0 an 100
Fercent of Class 0in Training Data

Figure 5.9 shows the average square error (ASE) for each tree, which is evaluated on the test data. A smooth
curve passes near the average ASE for each percentage of class 0 observations. When the proportion of class
0 observations in the training data is 0.5 or less, adjusting the probabilities makes no difference to the ASE.
For larger proportions of class 0, adjusting the probabilities results in a slightly larger (worse) ASE in this
example.
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Figure 5.9 Test Set Average Square Error Using Adjusted and Unadjusted Predictions
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Figure 5.10 shows the misclassification rate that is computed using validation data and adjusted probabilities.
The rate is estimated in two ways: one estimate adjusts only the probabilities, and the other adjusts both the
statistics and the probabilities. The two are defined respectively as

J
i£$:) Ngj
MISCunadjusted = Z Z 1 #Yi) Nej

. . T N:

j idyi=j

4 1G#5)
MISCadjusted =2 2 Tj'ﬂ j

J i3yi=j

Only the last factor in each term is different. In Figure 5.10, the curve for MISC,gjusteq is indistinguishable
from the curve for the test set misclassification rate. MISC,gjusted predicts the test set rate perfectly in this
example. On the other hand, the curve for MISCypadjusted 18 completely different and unreliable. Adjusting
the misclassification rate is necessary in this example to get a good estimate of the rate in the test set.
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Misclassification Rate

Figure 5.10 Estimates of Test Set Misclassification Using Adjusted and Unadjusted Statistics
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Figure 5.11 is the corresponding plot for ASE. The solid gray curve passes near the average ASE that is
computed on the test data. The dashed blue curve that approximately follows the gray curve is the adjusted
statistic that is computed on the validation data. The dashed green hill-shaped curve is the unadjusted statistic
that is computed on the validation data. The evidence for adjusting the statistics for ASE is less compelling in
this example than for the misclassification rate. For class O proportions between 45 and 65%, the unadjusted
estimates of ASE are closer to the test set ASE than the adjusted estimates. For other class 0 proportions, the
adjusted estimates are closer.
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Figure 5.11 Estimates of Test Set ASE Using Adjusted and Unadjusted Statistics
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Technical Derivations of Adjustment Formulas

The formulas for adjusting the probabilities and statistics rely on statistical theory that assumes that the
training data and the population of interest are both samples drawn from two infinite, ideal populations. For
each target value, the distributions of the inputs are assumed to be the same in the two ideal populations:
P(X:|Y; = j) = P(Xz|Yr = j), where X; and Y; designate the inputs and target random variables in the
population of the training sample and X and Y, designate the inputs and target variables in the population
of interest.

The formulas also assume that the model predictions converge to the population probabilities P(y = j|x) as
the training sample becomes large. The formula for adjusting the probabilities follows from Bayes’ theorem,
where « is a constant that is independent of the target class:
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P(Yx = j1Xx) = P(Xal¥n = )25
A\ P(Yp=
. P(X:) P(Yr=j
=P, = J|XI)P(Yt:)j) ;>(X,,)/)

. PYr=j) P(X:
=P(Y, = ]|Xr)1>((Y—=J{)) Pan;

= P(Y; = j|Xo) pF=Ra

The sum of the class probabilities equals 1:

Y P(Yn=jlXn) =1
J

Therefore,

1
T Y P, = jIX0)P(Ya = ))/P(Ye = )

The formula works well when the model predictions are close to the population probabilities, P(y = j|x).
Similarly, the formula for adjusting a statistic S works well when S is close to its expected value. Sy (pr)
equals the average of a loss function over a sample from the population of interest, and S;(p,) equals
the average of a loss function over the training population. The central limit theorem asserts that Sy (pr)
converges to its expected value, Er(Loss(Y, pr)), as the sample size increases. Similarly, S;(pr) —
E (Loss(Y, pr)). The same is true when the average is restricted to observations with the same target value,
Szj(pr) = Erj(Loss(Y, pr)). The formula that uses S; to estimate S, assumes the averages are close to
their expected values.

En(Loss(Yz, pr)) = ffLOSS(YmPn)p(Xn, Yp)dXydYy

Zj ILOSS(Yn,Pn)p(XﬂYn = j)dXz P(Yr = j)
= Zj fLOSS(YTvpn)p(Xr|Yr = j)dX:P(Y; = j)
= Zj Ezj(Loss(Yz, pr))P(Yr = j)

King and Zeng (2001, Appendix B) discuss the adjustments of probabilities in more detail. Discussions of
the adjustments of the statistics are hard to find.

Handling Missing Values
Strategies

Tree-based models use observations with missing input values. The HPFOREST procedure offers two
strategies for handling missing values. The simplest strategy is to regard a missing value as a special
nonmissing value. For a nominal input, a missing value simply constitutes a new categorical value. For an
input whose values are ordered, each missing value constitutes a special value that is assigned a place in the
ordering that yields the best split. The place is generally different in different nodes of the tree.

This strategy is beneficial when missing values are predictive of certain target values. For example, people
with large incomes might be more reluctant to disclose their income than people with ordinary incomes. If
income were predictive of a target, then missing income would be predictive of the target and the missing
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values would be regarded as a special large income value. The strategy seems harmless when the distribution
of missing values is uncorrelated with the target because no choice of branch for the missing values would
help predict the target.

A linear regression could use the same strategy by adding binary indicator variables to designate whether
a value is missing. Alternatively, and much more commonly, a linear regression could simply remove
observations in which any input is missing. Let p denote the probability that a variable value is missing,
and let v denote the number of input variables. The probability that an observation has one or more missing
values is (1 — p)? (assuming missingness is independent and identically distributed among the inputs). If
p = 0.1 and v = 10, then 65% of the observations would have missing values and be removed from linear
regression.

The alternative strategy for decision trees is to exclude from the search algorithm observations that have a
missing value in the single input variable that defines the splitting rule. If p = 0.1 and v = 10, then only
10% instead of 65% of the observations are excluded. Although this compares favorably with common linear
regression, using observations with missing values might still be better. PROC HPFOREST is designed to
run faster by using observations with missing values than by not using them.

When missing values are excluded from the split search, a new policy is needed for assigning an observation
with missing values to a branch. Assigning all the observations with missing values to a single branch is likely
to reduce the purity of the branch, thereby degrading the split. Instead, the HPFOREST procedure assigns
the observation to both branches by replacing the single observation with two copies and assigning each copy
a fractional frequency that is proportional to the size of the branches. The prediction for an observation is the
weighted average of predictions of the derived fractional observations. The prediction that uses the two child
nodes is the same as the prediction that would be obtained from not splitting the node. (This can be proved as
follows: The prediction based on the two child nodes is the weighted average of the predictions of the two
child nodes. The prediction in a node is the average of some variable. The weighted average of the averages
in the child nodes is the average in the parent, which is the prediction based on the parent.)

Specifics

If the value of a target variable is missing, the observation is excluded from training and from evaluating the
model. If the value of an input variable is missing, PROC HPFOREST uses the missing value as a legitimate
value by default or if MISSING=USEINSEARCH and the number of observations in which the splitting
variable has missing values is at least as large as the value of the MINUSEINSEACH= option.

Specifying MISSING=DISTRIBUTE forces every splitting rule to distribute an observation to the branches
when the value of the splitting variable is missing. Specifying MISSING=USEINSEARCH also produces
rules that distribute observations if the splitting variable has no missing values in the training data or when
the value specified in the MINUSEINSEACH= option prevents using missing values in the search.

Observations that are distributed into multiple branches might slow down training noticeably. Values of
distributed observations in a leaf are stored in a linked list and passed to the association and split-search
routines individually. Values of observations that are not distributed (that is, observations that reside entirely
within one leaf) are passed together in a single vector. Processing a single vector of values is much faster
than plodding through a linked list and calling an accumulation routine separately for each value.

The discussion in this section applies to each candidate variable and each node separately. For example, the
test of association that uses input variable X might use all observations, and the test that uses input variable Z
might ignore some observations because of missing values. The test that uses X might use all observations in
one node but not all observations in another node.
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Handling Values That Are Absent from Training Data

A splitting rule that uses a categorical variable might not recognize all possible values of the variable. Some
categories might not exist in the training data. Others might be so infrequent in the training sample in the node
that the procedure excludes them. The MINCATSIZE= option specifies the minimum number of occurrences
required for a categorical value to participate in the search for a splitting rule. Splitting rules handle unseen
categorical values the same way they handle missing values.

Measuring Variable Importance

The importance of a variable is the contribution it makes to the success of the model. For a predictive model,
success means good prediction. Often the prediction relies mainly on a few variables. A good measure of
importance reveals those variables. The better the prediction, the closer the model represents reality, and the
more plausible it is that the important variables represent the true cause of prediction. Some people prefer
a simple model so they can understand it. However, a simple model usually relinquishes details of reality.
Sometimes it is better to first find a good model and ask what variables are important than to first ask what
model is good for variable importance and train that model.

M. J. van der Laan (2006) asks whether a predictive model is appropriate at all. He believes that if variable
importance is your goal, then you should predict importance directly instead of fitting a model. If your
goal is to select suspicious genes for further study in a lab or to find variables in an industrial process that
might influence the quality of the product, then his argument is persuasive. However, the purpose of many
predictive models is to make predictions. In these cases, gaining insight to causes can be useful.

Variable importance is also useful for selecting variables for a subsequent model. The comparative importance
between the selected variables does not matter. Researchers often seek speed and simplicity from the first
model and seek accuracy from the subsequent model. Despite this tendency, a forest is often more useful
than a simpler regression as a first model when interactions are wanted because variables contribute to the
forest model through interactions.

Several authors have demonstrated that using a forest to select variables, then using only those variables in
a subsequent forest, and then repeating the process produces a final forest with better prediction than the
original.

Leo Breiman’s seminal publication (2001) gives one measure of importance, which is called Breiman’s
method here. Breiman and Cutler (2003) introduce another method, which they call Gini increase but which is
called loss reduction here for reasons discussed in the following section. Several modifications to Breiman’s
method have been proposed. Strobl’s method (2008) assigns less importance to correlated variables than
Breiman’s method, which in turn assigns less than loss reduction. Strobl’s method is also the most complex
and takes the longest time to compute. Breiman’s method is again in the middle. Running time is the main
reason Breiman introduced loss reduction.

Loss Reduction

Loss reduction is also called Gini increase, Gini importance, or impurity reduction. It was introduced in
Breiman et al. (1984) for decision trees, later modified for gradient boosting machines (Friedman 2001), and
later used in forests (Breiman and Cutler 2003).
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The importance of variable v is proportional to the sum of the reduction in node impurity, summed over
nodes that v splits. Breiman et al. (1984) and Breiman and Cutler (2003) introduce the impurity measure
with the Gini splitting criterion, hence the name Gini importance. However, Gini impurity is defined only for
a categorical target. For an interval target, the most common node impurity measure is the sum of square
errors. Friedman (2001) uses a square root at the end of the calculation to revert back to the scale of the
target. This can fail when you use validation data because the impurity reduction can be negative. Therefore,
the HPFOREST procedure computes both the reduction in absolute error and the reduction in square error.

PROC HPFOREST uses the word loss instead of impurity to associate the measure of importance with the
reduction in loss from using the model. A loss function is a statistic that measures how well a model fits
data. Average square error is a common loss function. Given a loss function, the next equation defines an
associated measure of variable importance. The sum over variables of the associated variable importance
equals the total loss when a model is not used minus the loss when a model is used. In other words, the loss
reduction variable importance assigns shares to the variables of the total reduction in the loss that the model
achieves.

The loss reduction variable importance for input v in tree 7" is computed as
Loss(v: T) Z 1(v splits w) ALoss(w)
w€eT

where the sum is over internal nodes w in T and where 1(v splits w) is 1 if v is the splitting variable in @
and 0 otherwise. ALoss(w) is the reduction in loss from splitting w. A loss function maps a response value
and a prediction to a number that represents how bad the prediction is. Square error loss is most common,

ALoss(w) = SSE(w) — > SSE(wp)

beB(w)
N(w) .
> Y —Y(w))? for interval target Y
— =1
SSE(w) = ;]( 0) J
> Y (6ij — pj(w))? for target with J categories
i=1 j=1
where
B(w) = set of branches from w
wp = child node of w in branch b
N(w) = number of observations in w
Y () = average Y in training data in @
dij = 1if ¥; = j, 0 otherwise
pj(w) = average §;; in training data in @

For an interval target, PROC HPFOREST also computes absolute error loss,

ALoss(w) = SAE(w) — Y SAE(wp)
beB(w)
where

N(w)

SAE() = ) [¥i = ¥ (w)|

i=1
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For a categorical target, the formula for SSE(w) reduces to

J
N1 =Y p%) for training data
SSE(w) = 71
N1 — ) (pj—p;)p;) forvalidation data
Jj=1

where p; is the proportion of the validation data with target value j, and N, p;, and p; are evaluated in
node w. SSE(w) for training data equals the Gini impurity index. Loss reduction variable importance is
commonly called Gini importance for this reason.

Another measure of importance for a categorical target is based on the margin, the probability of the true
class minus the maximum probability of the other classes. A good model increases the margin. Therefore,
loss reduction variable importance uses the negative of margin.

ALoss(w) = SNM(w) — Z SNM(wp)

beB(w)
where
J
SNM(@) =— Y N, (pj — max py)
Jj=1

and N; is the number of class j observations in @ in the data set being used to evaluate the variable
importance.

When the target is binary, variable importance based on the margin equals twice that of the variable importance
based on the Gini index.

Breiman’s Method

Breiman’s method is also called a permutation-based or randomization method. Breiman’s method calculates
importance as

n n
IBreiman(v: T) o Loss(yi. $i (x(v)) — Y Loss(yi. §)
i=1 i=1

where y; is the prediction for observation i and y; (7t (v)) is the prediction for observation i after randomizing
the values of input v. In Breiman’s writings, the sum uses only out-of-bag observations, and randomizing
is done by permuting the out-of-bag values of v. Originally Breiman (2001) uses misclassification as the
loss function. Breiman and Cutler (2003) retract that, saying misclassification loss is too volatile with many
variables. Instead they recommend the margin for a nominal target: the probability of the true class minus
the maximum probability among the other classes. Breiman (2001) bases the loss on the entire forest, not a
single tree. Today authors generally compute the importance for each tree and then average these (Berk 2008;
Gromping 2009).
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Bias and Correlation

The loss reduction method uses only the variables that PROC HPFOREST selects for splitting rules. Selecting
the wrong variable among candidates that compete for a rule reduces the importance of the correct variable
in the final tally. Variable selection bias produces bias in variable importance as a consequence. PROC
HPFOREST uses a variable selection method that is widely agreed to be free from bias for practical purposes
(Strobl et al. 2008).

Even so, only one of possibly several deserving variables is selected in a node for splitting. Only one gets
credit for loss reduction in a node. Ideally, a forest handles this by letting the variables compete many times
in many trees with slightly different data and in nodes in which some variables are randomly excluded. The
process should result in a fair distribution of the use of the variables, without correlated inputs masking each
other, and a fair representation in the final variable importance.

What variable importance measures actually do with correlated variables is subtle. Suppose X and Z are
correlated, and Y = X. Should Z be assigned any importance? One answer is no: Z is not even in the
formula that generates Y. The other answer is yes: observing Z provides information about Y, and therefore
Z is helpful in explaining the variation of Y. An input W has conditional importance if it is needed for
prediction even after values of the other variables are given. Z has no conditional importance. An input W
has marginal importance if it is predictive of Y by itself. Z has marginal importance.

The degree to which correlations determine the final importance values depends both on the algorithm for
importance and on the algorithmic parameters for the model. In the current example, if VARS_TO_TRY=2,
then X and Z compete in every node, PROC HPFOREST selects X to split almost all the nodes, and all
importance measures assign Z negligible importance. If VARS_TO_TRY=1, then PROC HPFOREST must
use Z to split some nodes, and it assigns some importance to Z. In general, loss reduction assigns more
importance to correlated variables than Breiman’s method, and Breiman’s method assigns more importance
than a conditional permutation method discussed in Strobl et al. (2008).

To illustrate, you can generate 500 bivariate correlated normal observations, run PROC HPFOREST with
VARS_TO_TRY=1, and plot the proportion of total importance that is assigned to Z. Figure 5.12 shows the
result from generating 25 samples at each of several correlation values that range from 0 to 1. The figure has
a point for each of three measures of importance that are evaluated on each sample. Unless the correlation
equals 1, Breiman’s method and Strobl’s method assign little importance to Z. (Strobl’s method extends
Breiman’s method by first segregating the observations by quantiles of X, then permuting Z within the
quantile limits, and then scoring the result to compute the importance of Z.) All methods pick X as the most
important variable unless they are perfectly correlated.



100 % Chapter 5: The HPFOREST Procedure

Figure 5.12 Z’s Proportion of Total Importance
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Archer and Kimes (2008) present a simulation that compares the variable importance methods. To emulate
genomic data, correlated variables appear in groups, and at most one variable in a correlated group is in the
regression equation that generates the target. Both forest methods are about as good as using a method of
variable importance from regression. This is consistent with Figure 5.12, which deems X the most important
variable by every method and every correlation value except a correlation of 1.
Preferences

Loss reduction applies to tree-based models. Breiman’s method can apply to any predictive model by using
hold-out data instead of out-of-bag data. However, it is generally not used in practice. One reason is the long
running time needed to score every observation for every variable that is evaluated. A more important reason
is the lack of a convincing example where Breiman’s method succeeds and others fail. The comparison in the
previous section applies only to forests because only in forests can the VARS_TO_TRY= option be set. No
comparison of importance measures is published with the VARS_TO_TRY= option equal to all the variables.

Some authors insist on using Breiman’s method. Berk (2008) says that importance must be measured outside
of the procedure that is used to measure it. Otherwise, it is not a practical measure. It simply restates a part
of the model itself without reference to the practical reason for creating the model. Nicodemus and Malley
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(2009) present plots that clearly show loss reduction as hopelessly biased, while Breiman’s method gives the
correct results on the same data. Actually, they are not the same data. All these authors use training data with
loss reduction and hold-out data with Breiman’s method. Berk even says loss reduction is a fit measure, and
as such should be used with the training data. This is misguided. Using hold-out data to evaluate a predictive
model is generally recommended. Computing loss reduction with both training and validation data can reveal
which inputs are fooling the training algorithm, and corrective action can be taken.

Displaying the Output

The HPFOREST procedure displays the parameters that are used to train the model, fit statistics of the trained
model, and other information. The output is organized into various tables, which are discussed here in order
of appearance.

Performance Information

The “Performance Information” table is produced by default. It displays information about the execution
mode. For single-machine mode, the table displays the number of threads used. For distributed mode, the
table displays the grid mode (symmetric or asymmetric), the number of compute nodes, and the number of
threads per node. If you specify the DETAILS option in the PERFORMANCE statement, the procedure also
produces a “Timing” table in which elapsed times for the main tasks of the procedure are displayed.

Model Information

The “Model Information” table contains the settings of the training parameters. The table is produced by
default.

Number of Observations

The “Number of Observations” table contains the number of observations that are read from the input data
set and the number of observations that are used in the analysis.

Baseline Fit Statistics

The “Baseline Fit Statistics™ table contains fit statistics that are calculated without a model. Compare the
baseline statistics with the model fit statistics to determine how beneficial the model is. Fit statistics are
described in the section “Computing the Average Square Error and Misclassification Rate” on page 87. The
table is produced by default.

Fit Statistics

The “Fit Statistics” table contains statistics that measure the model’s goodness of fit. The fit of the model to
the data improves with the number of trees in the forest. Successive rows in the table contain fit statistics for
a forest that has more trees. The SKIP_SEQ_ROWS= option controls how many more trees successive rows
represent. Compare these fit statistics with the baseline fit statistics to determine how beneficial the model is.
Fit statistics are described in the section “Computing the Average Square Error and Misclassification Rate”
on page 87. The table is produced by default.
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Loss Reduction Variable Importance

The “Variable Importance” table displays variable importance based on loss reduction, which is explained in
the section “Loss Reduction” on page 96. The table is produced by default. If the table is not wanted, then
specifying IMPORTANCE=NO turns off the calculation and conserves some memory resources.

ODS Table Names

Table 5.4 lists the names of the data tables created by the HPFOREST procedure. Use these names in ODS

statements.
Table 5.4 ODS Tables Produced by PROC HPFOREST

Table Name Description Required Statement and Option
Performancelnfo Performance information Default output

NObs Number of observations Default output

Baseline Fit statistics without a model Default output

FitStatistics Fit statistics from the model Default output
VariableImportance Loss reduction variable importance  Default output

Modellnfo Model information Default output

Timing Absolute and relative times for tasks PERFORMANCE DETAILS

performed by the procedure

Examples: HPFOREST Procedure

The following examples illustrate the basic concepts of forests. The first three examples use the spambase data
available from the UCI Machine Learning Repository (Asuncion and Newman 2007) http://archive.
ics.uci.edu/ml/datasets/Spambase.

Example 5.1: Out-Of-Bag Estimate of Misclassification Rate

Using the original training data to evaluate a forest model is poor practice because the forest predicts the
training data much better than it predicts similar data withheld from training. Using the out-of-bag data is
better practice because, with enough trees, the fit of a forest to the out-of-bag data converges to what the fit
would be on similar data withheld from training. With only a few trees, the fit to the out-of-bag data is worse
than what the fit would be on withheld data. Consequently, the training and out-of-bag data provide lower
and upper bounds to what the error rate will be when the forest is applied to new data.


http://archive.ics.uci.edu/ml/datasets/Spambase
http://archive.ics.uci.edu/ml/datasets/Spambase
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This example illustrates the difference between the misclassification rates estimated from the training and
out-of-bag data. The HPFOREST procedure is run on the spambase data. The target, SPAM, has two values:
0 indicates a legitimate e-mail, 1 indicates spam. The number of trees is set large enough for the out-of-bag

misclassification error rates to converge (MAXTREES=200 or 500).

The following SAS statements create a SAS data set from the data downloaded into a file called c:|

spambase_data.txt:

data spambase;
infile 'c:\spambase_data.txt' delimiter = ',';

input wf_make wf adress wf all wf_3d wf our
wf_over wf_remove wf_internet wf_order wf_mail
wf_receive wf_will wf_people wf_report wf_addresses
wf_ free wf business wf _email wf_you wf_ credit
wf_your wf_font wf_000 wf_money wf_hp
wf_hpl wf_george wf_650 wf_lab wf_labs
wf_ telnet wf_ 857 wf data wf_ 415 wf_ 85
wf_technology wf_ 1999 wf_parts wf _pm wf_direct
wf_cs wf_meeting wf_original wf_project wf_re
wf_edu wf_table wf_conference
cf_semicolon cf_parenthese cf_bracket cf_exclamation
cf _dollar cf_pound
average longest total
spam;

run;

proc hpforest data=spambase maxtrees=200;
input w: c: average longest total/level=interval;
target spam/level=binary;

ods output FitStatistics=fitstats (rename=(Ntrees=Trees));

run;

data fitstats;
set fitstats;
label Trees = 'Number of Trees';
label MiscAll = 'Full Data’';
label Miscoob = 'OOB';
run;
proc sgplot data=fitstats;
title "OOB vs Training";
series x=Trees y=MiscAll;
series x=Trees y=MiscOob/lineattrs=(pattern=shortdash
yaxis label='Misclassification Rate'’;
run;
title;

thickness=2);
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Output 5.1.1 Plot of OOB versus Training Misclassification Rate

OOB vs Training
0.10 -}

o) .

T 008-|

14 ‘.

c ]

S '

5 \

9 ’

= N

g '

O “-

2] “‘:’\, - ten

= 006 i -~ T

L X .~

P PN V,” e - -
’ - *” - - - .= n
PERPPLI ’ -~ o=

0.04

50

100

Number of Trees
Full Data ==-----

150 200

Figure 5.1.1 shows the misclassification rate is worse (larger) based on the out-of-bag (OOB) data, and more
trees are needed for the out-of-bag rates to level off. Both characteristics are typical of a forest.
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Example 5.2: Number of Variables to Try When Splitting a Node

This example illustrates the effect of changing the number of variables to randomly select as candidate
splitting variables in a node. In each node in each tree, m variables are randomly selected to be candidates
to split on. Use the VARS_TO_TRY= option to specify m. Specifying m less than the number of available
inputs is one way to reduce the correlation between the trees in the forest. Broadly speaking, the predictions
of a forest improve when the trees are less correlated. On the other hand, the predictions of the forest improve
when the predictions of the trees improve (without changing the correlations). When the number of useful
inputs are much less than the total number of inputs, smaller values of m produce weaker trees because fewer
nodes consider useful inputs for defining a splitting rule. Try several values of m to find a good one for the
data.

The following SAS statements create a SAS data set from the data downloaded into a file called c:|
spambase_data.txt:

data spambase;
infile 'c:\spambase_data.txt' delimiter = ',';

input wf_make wf_adress wf_all wf_3d wf_our
wf_over wf_remove wf_internet wf_order wf mail
wf_receive wf will wf_people wf_report wf_addresses
wf_ free wf_business wf_email wf_you wf_credit
wf_your wf_font wf_000 wf_money wf_hp
wf_hpl wf_george wf_650 wf_lab wf_labs
wf_telnet wf_ 857 wf_data wf_ 415 wf_85
wf_technology wf_1999 wf_parts wf_pm wf_direct
wf_cs wf_meeting wf_original wf_project wf_re
wf_edu wf_table wf_conference
cf_semicolon cf_parenthese cf_ bracket cf_exclamation
cf_dollar cf_pound
average longest total
spam;

run;
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$macro hpforest (Vars=);
proc hpforest data=spambase maxtrees=200
vars_to_try=&Vars.;
input w: c: average longest total/level=interval;
target spam/level=binary;
ods output
FitStatistics = fitstats_varsé&Vars. (rename=(Miscoob=VarsToTry&Vars.));
run;
$mend;

$hpforest (vars=all);
$hpforest (vars=40);
$hpforest (vars=26) ;
$hpforest (vars=7);
$hpforest (vars=2);

data fitstats;
merge
fitstats_varsall
fitstats_vars40
fitstats_vars26
fitstats_vars7
fitstats_vars2;
rename Ntrees=Trees;
label VarsToTryAll = "Vars=All";

label VarsToTry40 = "Vars=40";

label VarsToTry26 = "Vars=26";

label VarsToTry7 = "Vars=7";

label VarsToTry2 = "Vars=2";
run;

proc sgplot data=fitstats;
title "Misclassification Rate for Various VarsToTry Values";
series x=Trees y = VarsToTryAll/lineattrs=(Color=black);
series x=Trees y=VarsToTry40/lineattrs=(Pattern=ShortDash Thickness=2);
series x=Trees y=VarsToTry26/lineattrs=(Pattern=ShortDash Thickness=2);
series x=Trees y=VarsToTry7/lineattrs=(Pattern=MediumDashDotDot Thickness=2);
series x=Trees y=VarsToTry2/lineattrs=(Pattern=LongDash Thickness=2);
yaxis label='OOB Misclassification Rate’';

run;

title;
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Output 5.2.1 Effect of the VARS_TO_TRY= Option on the Misclassification Rate

Misclassification Rate for Various VarsToTry Values
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Specifying a value of 40 or 26 for the VARS_TO_TRY= option results in a slightly more accurate forest than
would occur without random selection of variables (VARS_TO_TRY=ALL). Specifying VARS_TO_TRY=2
is much worse than specifying VARS_TO_TRY=ALL. A good value for VARS_TO_TRY= depends on the
data. In this example, the HPFOREST procedure uses a default value of /58 = 7.
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Example 5.3: Fraction of Training Data to Train a Tree

This example illustrates the effect of changing the fraction of original training observations used to train an
individual tree. Use the TRAINFRACTION= option to specify f. Specifying f less than 1 is one way to
reduce the correlation between the trees in the forest.

The following SAS statements create a SAS data set from the data downloaded into a file called c:|
spambase_data.txt:

data spambase;
infile 'c:\spambase_data.txt' delimiter = ',';

input wf_make wf_adress wf_all wf_3d wf_our
wf_over wf_remove wf_internet wf_order wf_mail
wf_receive wf_will wf_people wf_report wf_addresses
wf_ free wf _business wf _email wf_you wf_ credit
wf_your wf_font wf_ 000 wf_money wf_hp
wf_hpl wf_george wf_650 wf_lab wf_labs
wf telnet wf_ 857 wf data wf 415 wf_ 85
wf_technology wf_1999 wf_parts wf_pm wf_direct
wf_cs wf_meeting wf_original wf _project wf_re
wf_edu wf_table wf_conference
cf_semicolon cf_parenthese cf_bracket cf _exclamation
cf_dollar cf_pound
average longest total
spam;

run;

$macro hpforest (f=, output_suffix=);
proc hpforest data=spambase maxtrees=500 vars_to_try=26
trainfraction=&f;
input w: c: average longest total/level=interval;
target spam/level=binary;
ods output
FitStatistics = fitstats_f&output_suffix. (rename=(Miscoob=fraction&output_suffix.));
run;
$mend;

$hpforest (£=0.8, output_suffix=08);
$hpforest (£=0.6, output_suffix=06);
$hpforest (£=0.4, output_suffix=04);

data fitstats;
merge
fitstats_f£08
fitstats_£06
fitstats_£f04;
rename Ntrees=Trees;
label fraction08 = "Fraction=0.8";
label fractionO06 "Fraction=0.6";
label fraction04
run;

"Fraction=0.4";
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proc sgplot data=fitstats;

title "Misclassification Rate for Various Fractions of Training Data";

series x=Trees y=fraction08/lineattrs=(Pattern=ShortDash Thickness=2);

series x=Trees y=fraction06/lineattrs=(Pattern=MediumDashDotDot Thickness=2);
series x=Trees y=fraction04/lineattrs=(Pattern=LongDash Thickness=2);

yaxis label='OOB Misclassification Rate’';

run;
title;
Output 5.3.1 Effect of the TRAINFRACTION Option on the Misclassification Rate
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Using the default number of trees (MAXTREES=50) in this example, the default value of TRAINFRAC-
TION=0.6 results in the best OOB misclassification rate. Using more trees, TRAINFRACTION=0.8 is

best.
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Example 5.4: Loss Reduction Variable Importance

This example compares the loss reduction variable importance measure on uncorrelated and correlated
variables. The data have eight inputs that are generated from a standard normal distribution. The first four
inputs are independent; the last four have a correlation of 0.9. The target Y is computed as

Y =X14+X24+2X34+X54X642X7
The following SAS statements create a SAS data set and run PROC HPFOREST:

data output;
call streaminit (54321);
do i=1 to 10000;
x1 rand('normal', 0, 1);
x2 rand('normal', 0, 1);
x3 rand('normal', 0, 1);
x4 rand('normal', 0, 1);
output;
end;
run;

data cov;
input x5-x8;
datalines;
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proc simnormal data=cov (type=cov)
out = osim(drop=Rnum)
numreal = 10000
seed = 54321;
var x5-x8;
run;

data output;

merge output osim;

y = x1 + x2 + 2%x3 + x5 + x6 + 2%x7;
run;

proc hpforest data=output vars_to_try=all;
input x:/level=interval;
target y/level=interval;
ods select VariableImportance;

run;

Output 5.4.1 shows the PROC HPFOREST variable importance table. The NRules column contains the
number of splitting rules that use each variable. The next four columns are loss reduction measures of variable
importance. The mean square error and the absolute error are computed with the training data. The OOB
columns contain the same measures computed with out-of-bag data. In this example, the relative importance
of any pair of variables is similar in every measure.
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Output 5.4.1 Loss Reduction Variable Importance

The HPFOREST Procedure
Loss Reduction Variable Importance

Number OOB Absolute OOB Absolute
Variable of Rules MSE MSE Error Error
x7 3155 14.07098 9.11268 1.596360 1.013232
x3 4432 3.72444 2.37187 0.664560 0.400804
x2 4856 0.77072 0.43230 0.213774 0.104361
x1 4900 0.77382 0.41808 0.218838 0.103704
x5 2695 0.69354 0.40966 0.160186 0.083892
x6 2839 0.45978 0.24706 0.122328 0.056424
x8 367 0.01384 0.00151 0.005449 0.000500
x4 79 0.00117 -0.00077 0.000625 -0.000198

PROC HPFOREST reports X7 as the most important variable. Although X7 and X3 have the same coefficient,
X7 steals importance from correlated variables X5 and X6. PROC HPFOREST assigns less importance to X5
and X6 than to the uncorrelated variables X1 and X2 as a result, even though all four variables have the same
coefficient in the formula for Y.

X8 is not in the formula for Y but gets some importance because it is correlated with variables that are in the
formula; therefore, X8 is correlated to some extent with Y. Splits that use X8 have some validity because of
this correlation. X4 is not in the formula and is not correlated with any variables that are in the formula. The
splits that use X4 are all spurious. The out-of-bag measures of importance are negative because, on balance,
the spurious splits assign out-of-bag observations to the branch with the worse prediction.

Specifying VARS_TO_TRY=ALL in this example requests that PROC HPFOREST compare all inputs when
it selects a variable to split a node on. The larger the number, the more dominant the importance of X7 is in
this example. If VARS_TO_TRY=3 or less, variables X5, X6, and X7 would each get approximately the same
importance, which would be slightly higher than the importance given to X3. Changing the VARS_TO_TRY=
option has little effect on the importance of X1, X2, and X3.

Example 5.5: Missing Values and Imputed Values

This example uses the Home Equity data from the SAS sample library to illustrate the difference between
using missing values and using imputed values. A nonrandom pattern of missingness in the data can help
predict the target. PROC HPFOREST cannot use this pattern when missing values are replaced by imputed
values in the training data. The following statements illustrate this by running PROC HPFOREST twice:
once on the original data, and once on the data after missing nominal values have been replaced by the mode
of the variable and missing interval values have been replaced by the mean of the variable.

The Sampsio.Hmeq data set contains fictitious mortgage data in which each case represents an applicant
for a home equity loan. All applicants have an existing mortgage. The binary target BAD equals 1 for an
applicant who eventually defaulted or was ever seriously delinquent. Nine interval inputs are available for
modeling. JOB and REASON are the only nominal inputs. The modes for JOB and REASON are OTHER
and DEBTCON, respectively.
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proc hpimpute data=sampsio.hmeq out=imout;

input mortdue value yoj clage ning clno debtinc derog deling;

impute mortdue value yoj clage ning clno debtinc derog deling/method=mean;
run;

data job_reason;

set sampsio.hmeq;

if job='' then job="Other";

if reason='' then reason="DebtCon";
run;

data imout;
merge imout job_reason;
run;

proc hpforest data=imout vars_to_try=all;
input im:/level=interval;
input reason job/level=nominal;
target bad/level=binary;
ods output
VariableImportance=imvi
FitStatistics=imfit (rename= (Ntrees=Trees Miscall=ImMiscall Miscoob=ImMiscoob));
run;

proc hpforest data=sampsio.hmeq vars_to_try=all;
input mortdue value yoj clage ning clno debtinc derog delinqg/level=interval;
input reason job/level=nominal;
target bad/level=binary;
ods output
Baseline=bs
VariableImportance=vi
FitStatistics=fit (rename=(Ntrees=Trees));
run;

proc sqgl noprint;
select value into :MiscBaseline trimmed from bs where Statistic='Misclassification Rate'’';
quit;

data fitstats;
merge imfit fit;
MiscBaseline = &MiscBaseline;

label Trees = 'Number of Trees';
label MiscAll = 'Full Data';
label Miscoob = 'OOB';
label ImMiscAll = 'Full Data - Impute’';
label ImMiscoob = 'OOB — Impute';
label Miscbaseline = 'Baseline';
run;

proc sgplot data=fitstats;
title "Misclassification Rate With and Without Imputed Values";
series x=trees y=Miscbaseline/lineattrs=(Pattern=Solid Color=black);
series x=Trees y=MiscAll/lineattrs=(Pattern=Solid Thickness=2);
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series x=Trees y=Miscoob/lineattrs=(Pattern=ShortDash Thickness=2);
series x=Trees y=ImMiscAll/lineattrs=(Pattern=ShortDash Thickness=2);
series x=Trees y=ImMiscoob/lineattrs=(Pattern=MediumDashDotDot Thickness=2);
yaxis label='Misclassification Rate’;
run;

data vi;
set vi;
keep Variable NRules Gini GiniOOB Rank;
Rank = _n_;

run;

proc sort data=vi;
by Variable;
run;

data imvi;

set imvi;

keep Variable RankImputed NRules Gini GiniOOB;

if substr(Variable,1l,3)='IM ' then Variable=substr (Variable, 4);

RankImputed=_n_;

label RankImputed="Rank (Imput)";

rename NRules=RulesImputed;

label NRules="Rules (Imputed)";

rename Gini=GiniImputed;

label Gini="Gini (Imputed)";

rename GiniOOB=GiniOOBImputed;

label GiniOOB="OOB Gini Reduction (Impute)";
run;

proc sort data=imvi;
by Variable;
run;

data vi;

merge vi imvi;

by Variable;

rename NRules=Rules;
run;

proc sort data=vi;
by rank;
run;
data tl1 (keep=Variable Rules RulesImputed RankImputed)
t2 (keep=Variable Gini GiniImputed GiniOOB GiniOOBImputed) ;
set vi;
run;
proc print data=tl; run;

proc print data=t2; run;

data debtinc_miss;
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set sampsio.hmeq;

if debtinc =. then debtinc_is_missing='MISSING ';
else debtinc_is_missing='NOT MISSING';
run;

proc freq data=debtinc_miss;
tables debtinc_is_missingxbad/nocol;
run;

Figure 5.5.1 shows the misclassification rate and the out-of-bag misclassification rate with and without
imputed missing values. Without any model, the misclassification rate equals 0.1995. The out-of-bag rate
from the model trained with imputed values is not much better. The out-of-bag rate with the original data is
much better, close to half the baseline rate.

Output 5.5.1 The Effect of Imputing Missing Values

Misclassification Rate With and Without Imputed Values
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Output 5.5.2 shows the number of times each model uses each variable. The Rules column shows the number
of times by using the original data; the RankImputed column shows the number of times by using the imputed
data. The numbers in the Rules column vary much more than those in the RuleImputed column, which
suggests that variables with missing values have more distinctive information than variables with imputed
values.
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The order of the variables is the order of importance from the model that uses the original data. The
RankImpute column shows the order of importance from the model that uses imputed values. DEBTINC is
the most important variable when the original data are used, and among the last in importance when imputed
values are used. Imputing changes the characteristics of these data dramatically.

Output 5.5.2 Variable Importance Ranking

Misclassification Rate With and Without Imputed Values
Rules Rank
Obs Variable Rules Imputed Imputed
1 DEBTINC 862 526 8
2 DELINQ 748 414 1
3 DEROG 440 427 4
4 CLAGE 1130 534 11
5 VALUE 4140 519 5
6 NINQ 1034 518 9
7 CLNO 573 608 6
8 REASON 223 310 3
9 JOB 498 534 2
10 MORTDUE 716 398 7
11 YOJ 980 610 10

Output 5.5.3 shows the in-bag and out-of-bag Gini measures of importance for each variable. PROC
HPFOREST uses only the training data in a tree to compute the in-bag measure, and it uses only the out-of-
bag data in a tree for the out-of-bag measure. The out-of-bag measure is a better estimate of the contribution
the variable makes to predicting new observations. A negative value indicates that the variable makes the
prediction worse on average. The GiniOOB column shows that DEBTINC is six times more important than
the next variable. However, when missing values are imputed, GinioOOB is slightly negative for DEBTINC,
indicating that DEBTINC makes prediction slightly worse.

Output 5.5.3 Variable Importance Ranking

Misclassification Rate With and Without Imputed Values
Gini Gini
Obs Variable Gini GiniOOB Imputed OOBImputed

1 DEBTINC 0.114505 0.07181 0.005911 -0.00159
2 DELINQ 0.022592 0.01198 0.011046 0.00406
3 DEROG 0.010230 0.00471 0.004509 -0.00020
4 CLAGE 0.015952 0.00167 0.007823 -0.00237
5 VALUE 0.017810 0.00134 0.008441 -0.00101
6 NINQ 0.005895 -0.00061 0.004520 -0.00199
7 CLNO 0.005783 -0.00067 0.008768 -0.00120
8 REASON 0.001477 -0.00068 0.002987 -0.00010
9 JOB 0.003181 -0.00086 0.006935 0.00081
10 MORTDUE 0.003799 -0.00175 0.005901 -0.00151
11 YOJ 0.007206 -0.00197 0.006911 -0.00225
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Output 5.5.4 shows the count of observations for which DEBTINC is or is not missing for each value of the
target BAD. DEBTINC is missing in 21% of the observations. If DEBTINC is missing, then the proportion
of observations with BAD equal to 1 (which indicates an applicant who becomes delinquent) is 62%. If
DEBTINC is not missing, then the proportion is only 8.6%. Missing values in DEBTINC are highly predictive
of BAD in this example. Imputing the missing values destroys the predictive power.

Output 5.5.4 Contingency Table of BAD by DEBTINC_IS_MISSING

Frequency Table of debtinc_is_missing by BAD

Percent

Row Pct BAD
debtinc_is_missing 0 1 Total
MISSING 481 786 1267

8.07 13.19 21.26
37.96 62.04

NOT MISSING 4290 403 4693
71.98 6.76 78.74
91.41 8.59

Total 4771 1189 5960

80.05 19.95 100.00
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Overview: HPNEURAL Procedure

The HPNEURAL procedure is a high-performance procedure that trains a multilayer perceptron neural
network. For more information about multilayer perceptron neural networks, see Bishop (1995). PROC
HPNEURAL can also use a previously trained network to score a data set (referred to as stand-alone scoring),
or it can generate SAS DATA step statements that can be used to score a data set.
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PROC HPNEURAL runs in either single-machine mode or distributed mode.
NOTE: Distributed mode requires SAS High-Performance Data Mining.
Because the HPNEURAL procedure is a high-performance analytical procedure, it also does the following:

* enables you to run in distributed mode on a cluster of machines that distribute the data and the
computations

* enables you to run in single-machine mode on the server where SAS is installed

* exploits all the available cores and concurrent threads, regardless of execution mode

For more information, see the section ‘“Processing Modes” on page 6 in Chapter 2, “Shared Concepts and
Topics.”

Training a multilayer perceptron neural network requires the unconstrained minimization of a nonlinear
objective function. Because there are currently no practical methods to guarantee finding a global minimum
of that objective function, one way to be reasonably sure of finding a good solution is to train the network
multiple times using different sets of initial values for the weights. Thus, even problems with smaller numbers
of variables and training observations can benefit from the use of distributed mode.

PROC HPNEURAL Features

The HPNEURAL procedure was designed with two goals in mind: to perform efficient, high-speed training
of neural networks, and to be as easy to use as possible while still creating models that fit the training data
well and generalize well. With these goals in mind, most parameters for the neural network are automatically
selected.

The following list summarizes some basic features of PROC HPNEURAL.:

* ability to train and score using distributed mode

* parallel read of input data and parallel write of output data when the data source is the appliance
database

* high degree of multithreading during all phases of training and scoring

* automatic standardization of input and target variables

* intelligent defaults for most neural network parameters such as activation and error functions
* either automatic or manual selection and use of a validation data subset

* automatic termination of training when the validation error stops improving

* ability to weight individual observations or automatically use inverse prior probabilities as weights
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PROC HPNEURAL Contrasted with Other SAS Procedures
Table 6.1 compares the HPNEURAL procedure with the SAS Enterprise Miner Neural Network Node.

Table 6.1 Comparison of PROC HPNEURAL and SAS Enterprise Miner Neural Network Node
PROC HPNEURAL Neural Network Node
Multithreaded Single-threaded

Can execute in single-machine mode or
distributed mode

Has few required user-specified parameters so that
users with minimal experience with neural
networks can obtain good solutions to problems
that are amenable to supervised training

Automatically selects the data standardization
methods, network architecture, activation
functions, error functions, and weight
initialization method

Uses the limited memory
Broyden-Fletcher—Goldfarb—Shanno (LBFGS)
optimization method (Nocedal and Liu 1989) with
proprietary enhancements. LBFGS was chosen
for the HPNEURAL procedure because of both its
speed of training and its limited use of memory,
which can be especially important for problems
with large amounts of training data.

Can execute only in single-machine mode

Gives you fine control over the myriad of possible
choices of parameters that control the training of a
neural network

Can use many different user-specified data
standardization methods, network architectures,
activation functions, error functions, and ways of
selecting initial weights

Can use a variety of conjugate gradient or
quasi-Newton optimization methods, but not
LBFGS

Getting Started: HPNEURAL Procedure

Training

The HPNEURAL procedure can either train a neural network model or use a previously trained model to
score a data set. We will first discuss training.

The HPNEURAL procedure does not have many parameters that you must specify. It simply needs to know
where the training data are (the DATA= option in the PROC statement), the names and types of the input
variables (the INPUT statement), the names and types of the target variables (the TARGET statement), the
number of hidden neurons (the HIDDEN statement), the number of training tries with each using different
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randomly generated initial weights (the TRAIN statement), and, optionally, where to write the score file that
contains targets from the input file and predicted targets from the trained network and where to write the
model file that contains the parameters of the trained network (the SCORE statement).

The single most important parameter you can specify is the number of hidden neurons in the network. A
good strategy is to start with a small number and slowly increase the number until the validation error stops

improving.

The next most important parameter you can specify is the number of times the network is to be retrained
using different sets of initial weights (the NUMTRIES option in the TRAIN statement). A good strategy is to
start with 5 (the default) and increase by 2 until the validation error stops improving.

The following small example trains a neural network to predict the type of iris plant, given several measure-
ments, and then scores the same data set that was used for training. The DATA step contains 150 observations

derived from the R. A. Fisher (1936) Iris data set:

title 'Fisher (1936) Iris Data’';

proc format;
value specname
1="'Setosa !
2='Versicolor'

='Virginica ';

run;

data iris;

input Sepallength SepalWidth Petallength PetalWidth Species @@;
format Species specname.;

datalines;
50 33 14 02 1 64 28
63 28 51 15 3 46 34
59 32 48 18 2 46 36
65 30 52 20 3 56 25
68 32 59 23 3 51 33
77 38 67 22 3 63 33
49 25 45 17 3 55 35
64 32 45 15 2 61 28
55 24 38 11 2 63 25
49 36 14 01 1 54 30
67 33 57 21 3 50 35
77 28 67 20 3 63 27
50 23 33 10 2 72 32
61 30 49 18 3 48 34
61 26 56 14 3 64 28
51 38 19 04 1 67 31
51 35 14 02 1 56 30
46 32 14 02 1 60 29
50 36 14 02 1 77 30
57 29 42 13 2 72 30
71 30 59 21 3 64 31
49 24 33 10 2 56 27
49 31 15 02 1 77 26

’
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proc hpneural data=iris;
input Sepallength SepalWidth PetallLength PetalWidth;
target Species / level=nom;

hidden 2;
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Figure 6.1 displays the SAS log output, which shows the percentage of validation observations that were
misclassified by the trained network. If there had been any interval targets, the log would have shown the
absolute average percentage error and the absolute maximum percentage error for each interval target.

Figure 6.1 SAS Log Output
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Figure 6.2 displays the “Model Information,” “Performance Information,” and “Number of Observations’

>

tables. The HPNEURAL procedure creates a neural network model for the nominal variable Species. Of the
150 observations, 38 are used as a validation subset, which consists of the first observation and every fourth
observation thereafter. The other 112 observations make up the training subset.

PROC HPNEURAL executes in single-machine mode. That is, the model is trained on the machine where

the SAS session executes.

Figure 6.2 Model Information, Performance Information, and Number of Observations Tables

Data Source WORK. IRIS

Architecture One Hidden Layer

Optimization Technique Limited Memory BFGS

Number of Input Variables 4

Number of Target Variables 1

Number of Hidden Neurons 2

Number of Weights 19
Number of Observations Read 150
Number of Observations Used 150
Number Used for Training 112
Number Used for Validation 38

Fisher (1936) Iris Data

The HPNEURAL Procedure

Performance Information

Execution Mode On client
Number of Threads 2

Model Information

Figure 6.3 displays the “Misclassification Table.

B

It shows the results of scoring the validation subset

by using the neural network model that is trained on the training subset. This example shows two incor-
rect classifications: two observations whose target value was “Virginica” were incorrectly classified as

“Versicolor.”
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Misclassification Table for Species

Class: SETOSA
SETOSA 13
VERSICOLOR 0
VIRGINICA 0

VERSICOLOR VIRGINICA

11

12

Stand-Alone Scoring

The primary purpose for training a neural network model is to use the trained model to score new data that
was not seen during training. It is very important that the new data have the same statistical characteristics as
the data that were used for training. The following statements use the model that was trained in the preceding
section to score some new observations:

title

data new_iris;
input Sepallength SepalWidth PetallLength PetalWidth;
datalines;
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'New Iris Data';
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02
22
15
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18
02
14
16
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11
18
19

proc hpneural data=new_iris;
score model=model_iris out=scores_new iris;

run;
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Syntax: HPNEURAL Procedure

The following statements are available in the HPNEURAL procedure:

PROC HPNEURAL <DATA=SAS-data-set> <DISTR=ALL | SPLIT > <NOPRINT > ;
PERFORMANCE performance-options ;
ARCHITECTURE architecture-option ;
ID variables ;
INPUT variables </ LEVEL=INT | LEVEL=NOM < MISSING=MAP > > ;
WEIGHT variable | _INVERSE_PRIORS_;
HIDDEN number ;
TARGET variables </ LEVEL=INT | LEVEL=NOM > ;
PARTITION ROLEVAR=variable( TRAIN=value | VALIDATE=value ) ;
PARTITION FRACTION( TRAIN=number | VALIDATE=number ) ;
TRAIN <NUMTRIES=number> < MAXITER=number>

<VALID=_NONE_ > <OUTMODEL=SAS-data-set> ;

SCORE OUT=SAS-data-set < MODEL=SAS-data-set> ;
CODE FILE="external-file’ | fileref ;

When you train a neural network, the PROC HPNEURAL, INPUT, TARGET, and TRAIN statements are
required. The HIDDEN statement is required unless you use the logistic architecture (in which case, the
HIDDEN statement is not allowed).

When you use a previously trained neural network to score a data set, only the PROC HPNEURAL, SCORE,
ID, PERFORMANCE, and CODE statements are allowed.

PROC HPNEURAL Statement
PROC HPNEURAL <DATA=SAS-data-set> <DISTR=ALL | SPLIT> <NOPRINT > ;

The PROC HPNEURAL statement invokes the procedure. You can specify the following options in the
PROC HPNEURAL statement:

DATA=SAS-data-set
names the SAS data set that contains the training and validation observations to be used by PROC
HPNEURAL to train the neural network or that contains the observations to be scored when you are
performing stand-alone scoring. The default input data set is the most recently created data set.

When you use PROC HPNEURAL to train a neural network, each observation must contain the input,
weight, validation, ID, and target variables that are specified in the associated INPUT, WEIGHT,
PARTITION, ID, and TARGET statements.

When you use PROC HPNEURAL to perform stand-alone scoring, the input data set must contain the
input variables that were specified when the network was trained (as saved in the model data set) and
optionally the target variables that were specified when the network was trained. In addition, if you
applied formats to variables when training, the same formats must be applied when you do stand-alone
scoring. Only the target variables (if they exist) and the network’s predictions are written to the output
data set, which is specified in the SCORE statement.
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For nominal variables of character type, levels are truncated to 32 bytes and converted to upper case.
Also, when you train a network, if all observations that have a specific level for a nominal variable
contain missing values in other input, target, weight, or validation variables, then that specific level is
discarded and does not appear in the analysis.

If PROC HPNEURAL executes in distributed mode, the input data are distributed to memory on the
appliance nodes and analyzed in parallel. For information about the alongside-the-database model, see
the section “Alongside-the-Database Execution” on page 13.

When PROC HPNEURAL runs in single-machine mode, the input data set must fit into the available
memory on the single machine. When PROC HPNEURAL runs in distributed mode, the input data set
must fit into the total memory available across the distributed environment.

DISTR=ALL | SPLIT
specifies whether the input data set is to be replicated in the memory of each node in distributed mode.
If this option is not specified, PROC HPNEURAL makes this decision automatically based on the size
of the input data set. This option is ignored if PROC HPNEURAL is not running in distributed mode.

When PROC HPNEURAL runs in distributed mode, PROC HPNEURAL usually divides the input
data set among all the nodes to minimize the time it takes to optimize each try. However, if the input
data set is small, dividing the data in this way might be inefficient because of the interconnect delay
(the time it takes to send partial results between nodes). It might be more efficient to have each node
have a complete copy of the data and run each try in parallel on separate nodes. Each try might take
longer because it uses only a single node, but it could take less time to finish all the tries because the
tries are running in parallel.

You can force the data to be redistributed so that each node has a complete in-memory copy by specify-
ing DISTR=ALL. You can prevent the data from being redistributed by specifying DISTR=SPLIT.

NOPRINT
specifies that no ODS tables be created.

ARCHITECTURE Statement
ARCHITECTURE architecture-option ;

The ARCHITECTURE statement specifies the architecture of the neural network to be trained. The
architecture-option must be one of the following:

LOGISTIC
specifies a multilayer perceptron with no hidden units (which is equivalent to a logistic regression). If
you specify this architecture, the HIDDEN statement is not allowed.

LAYER1
specifies a multilayer perceptron with a single hidden layer.

LAYER1SKIP
specifies a multilayer perceptron with a single hidden layer and additional connections between each
input and each target neuron. Logistic regression is used to initialize the network for the first try.
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LAYER2
specifies a multilayer perceptron with two hidden layers. The number of hidden neurons is split equally
between the first and second layer. If the number of hidden neurons is odd, the first hidden layer has
the extra neuron.

LAYER2SKIP
specifies a multilayer perceptron with two hidden layers and additional connections between each input
and each target neuron. The number of hidden neurons is split equally between the first and second
layer. If the number of hidden neurons is odd, the first hidden layer has the extra neuron. Logistic
regression is used to initialize the network for the first try.

When you use PROC HPNEURAL to train a neural network, the ARCHITECTURE statement is optional.
The default is LAYER1. The ARCHITECTURE statement is not allowed when you use PROC HPNEURAL
to perform stand-alone scoring.

CODE Statement
CODE FILE="external-file’ | fileref ;

The CODE statement uses the current neural network model to generate SAS DATA step statements and save
them in an external text file that can later be used to score a data set. The file does not contain the surrounding
PROC and RUN statements. The DATA step statements can be used with the standard DATA step, PROC
DS2, or PROC HPDS?2.

The CODE statement is optional.

FILE="external-file’
specifies an external text file where the generated statements are saved.

FILE=fileref
specifies a fileref that refers to an external text file where the generated statements are saved.

HIDDEN Statement
HIDDEN number ;

The HIDDEN statement specifies the number of hidden neurons in the network. The number must be an
integer greater than or equal to 1 (2 for two-layer architectures). For two-layer architectures (LAYER?2 and
LAYER2SKIP in the ARCHITECTURE statement), the hidden neurons are split between the first and second
layer. In this case, if the number of hidden neurons is odd, the first hidden layer has the extra neuron.

All hidden neurons use a hyperbolic-tangent activation function.

When training, you must include exactly one HIDDEN statement, unless you specify ARCHITECTURE
LOGISTIC (in which case the HIDDEN statement is not allowed).

The HIDDEN statement is not allowed when you do stand-alone scoring.
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ID Statement
ID variables ;

The ID statement lists one or more variables from the input data set that are transferred to the output data set,
which is specified in the SCORE statement.

For documentation about the common ID statement in high-performance analytical procedures, see the
section “ID Statement” (Chapter 3, SAS/STAT User’s Guide: High-Performance Procedures) in Chapter 3,
“Shared Statistical Concepts” (SAS/STAT User’s Guide: High-Performance Procedures).

The ID statement is optional.

INPUT Statement
INPUT variables </ LEVEL=INT | LEVEL=NOM <MISSING=MAP > > ;

The INPUT statement identifies the variables in the input data set that are inputs to the neural network.

LEVEL=INT
specifies that the variables are interval variables, which must be numeric. The default for the LEVEL
option is INT.

LEVEL=NOM
specifies that the variables are nominal variables, also known as classification variables, which can be
numeric or character.

MISSING=MAP
specifies that the missing value for nominal variables should be treated as a valid level (mapped to
level 0). This option is not allowed for interval variables.

When training, you must include one or more INPUT statements. You need more than one INPUT statement
when you have both interval and nominal input variables. The INPUT statement is not allowed when you do
stand-alone scoring.

All interval input variables are automatically standardized to the range [-1, 1].
When you are training, any observation that has missing values for any variable is not used.

When you are performing stand-alone scoring, if an interval variable is missing, its mean (as observed during
the training phase) is used. If a nominal variable is missing, all input neurons associated with the variable
(one per class level, except for binary variables, which have a single neuron) are set to 0.

PARTITION Statement
PARTITION ROLEVAR=variable( TRAIN=value | VALIDATE=value ) ;
PARTITION FRACTION( TRAIN=number | VALIDATE=number ) ;

The PARTITION statement specifies how to divide the input data set into a training subset and a validation
subset.
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The statement implements two alternate methods of specifying the split between the training and validation
data. Either you can explicitly specify training observations and validation observations by specifying
ROLEVAR=variable, where variable is a variable in the input data set, or you can specify that an approximate
fraction of the input data set be used for training observations or validation observations by specifying
FRACTION( TRAIN=number ) or FRACTION( VALIDATE=number ).

ROLEVAR=variable( TRAIN=value | VALIDATE=value)
specifies that the variable in the input data set be used to decide whether an observation is used for
training or for validation. You can either specify the value used to identify training observations or the
value used to identify validation observations. If you specify TRAIN=value, then an observation is
used for training if the value of variable equals value; otherwise the observation is used for validation.
If you specify VALIDATE=value, then an observation is used for validation if the value of variable
equals value; otherwise the observation is used for training.

FRACTION( TRAIN=number | VALIDATE=number)

specifies the approximate fraction of the input data set to be used for training or validation. If
you specify TRAIN=number, then approximately the fraction of the data set specified by number
is used as training observations, and the rest are used for validation observations. If you specify
VALIDATE=number, then approximately the fraction of the data set specified by number is used as
validation observations. The split between training and validation observations can only approximate
the requested fraction because that fraction is used as a cutoff value for a random number generator
to determine the actual split. If you require a more accurate split or a split that is guaranteed to be
identical across different distributed computing environments, you must use the ROLEVAR option to
specify the split explicitly.

When you are training, the PARTITION statement is optional. If you do not include the PARTITION
statement, every fourth observation (starting with the first observation) is used as a validation observation,
unless you specify VALID=_NONE__ in the TRAIN statement. In this case, no validation is performed. The
PARTITION statement is not allowed when you are doing stand-alone scoring.

Fit statistics reported after training are only computed using validation observations. Fit statistics reported
after stand-alone scoring are computed using all observations.

PERFORMANCE Statement
PERFORMANCE < performance-options > ;

The PERFORMANCE statement defines performance parameters for multithreaded and distributed comput-
ing. The PERFORMANCE statement is documented further in the section “Processing Modes” on page 6 in
Chapter 2, “Shared Concepts and Topics.”

The PERFORMANCE statement is optional.



SCORE Statement 4 131

SCORE Statement
SCORE OUT=SAS-data-set < MODEL=SAS-data-set> ;

The SCORE statement causes the HPNEURAL procedure to write the network’s target and predicted output
for each observation in the input data set to the output data set that is specified by the OUT option, along
with any variables from the input data set that are specified in the ID statement.

OUT=SAS-data-set
specifies the data set to contain the predicted values of the target variables. For nominal variables, each
observation also contains the computed probabilities of each class level. This keyword is required.

MODEL=SAS-data-set
specifies the data set that contains the model parameters for a previously trained network. You can
specify this keyword only when you are doing stand-alone scoring.

When you are training, the SCORE statement is optional but the MODEL= keyword is not allowed. When
you are doing stand-alone scoring, the SCORE statement is required and the MODEL= keyword must be
used.

TARGET Statement
TARGET variables </ LEVEL=INT | LEVEL=NOM > ;

The TARGET statement identifies the variables in the input data set that the network is to be trained to
predict. The default for the LEVEL= option is INT.

LEVEL=INT
specifies that the variables are interval variables, which must be numeric.

LEVEL=NOM
specifies that the variables are nominal variables, also known as classification variables, which can be
numeric or character.

When training, you must include one or more TARGET statements. You need more than one TARGET
statement when you have both interval and nominal target variables. The TARGET statement is not allowed
when you do stand-alone scoring.

For interval variables, all target neurons use the identity activation function.

Nominal variables have one target neuron per class level. Each of these neurons uses the softmax activation
function to ensure that the sum of the outputs for all neurons is 1.0. The output of each neuron can then be
interpreted as the probability that the variable is the corresponding class level.

When you are training, any observation that has missing values for any variable is not used.

You cannot specify the same variable in both an INPUT statement and a TARGET statement.
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TRAIN Statement

TRAIN <NUMTRIES=number> < MAXITER=number>
<VALID=_NONE_ > <OUTMODEL=SAS-data-set> ;

The TRAIN statement causes the HPNEURAL procedure to use the training data that are specified in
the PROC HPNEURAL statement to train a neural network model whose structure is specified in the
ARCHITECTURE, INPUT, TARGET, and HIDDEN statements. The goal of training is to determine a set of
network weights that best predicts the targets in the training data while still doing a good job of predicting
targets of unseen data (that is, generalizing well and not overfitting).

Except for the first try when you specify LAYER1SKIP or LAYER2SKIP in the ARCHITECTURE statement,
training starts with a pseudorandomly generated initial set of weights. For the first try in LAYER1SKIP or
LAYER2SKIP architectures, the initial set of weights is generated by performing a logistic regression. PROC
HPNEURAL then computes the objective function for the training subset (the sum of the squared differences
between the target values of each observation and the outputs of the network), and the minimization algorithm
adjusts the weights. This process is repeated until any one of the following conditions is met:

* The objective function that is computed using the training subset stops improving.
* The objective function that is computed using the validation subset stops improving.

» The process has been repeated the number of times specified in the MAXITER= option.

By default, every fourth observation that is read (starting with the first observation) is used as a validation
observation. You can override this by specifying VALID=_NONE__ in the TRAIN statement or by using
the PARTITION statement. Any observations with missing values for input, weight, validation, or target
variables are not used for training or validation error calculation, although they are scored if a SCORE
statement is present. Fit statistics reported after training are only computed using validation observations. Fit
statistics reported after stand-alone scoring are computed using all observations.

In distributed mode, the order of the observations that are read is not guaranteed to be the same across
different distributed environments. Therefore, different validation observations might be selected in different
environments when the default method is used for choosing validation observations, causing results to be
somewhat different between different distributed environments. You can avoid this by using the ROLEVAR=
option in a PARTITION statement to explicitly specify which observations are validation observations.

The weights that result in the smallest value of the objective function for the validation subset are saved and
used for calculating fit statistics and for scoring.

When you are training, you must include exactly one TRAIN statement. The TRAIN statement is not allowed
when you are doing stand-alone scoring.

NUMTRIES=number
specifies the number of times the network is to be trained using a different starting points. Specifying
this option helps ensure that the optimizer finds the set of weights that truly minimizes the objective

function and does not return a local minimum. The value of number must be an integer between 1 and
99,999. The default is 5.
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MAXITER=number
specifies the maximum number of iterations (weight adjustments) for the optimizer to make before
terminating.

Setting number to a large value does not mean that the optimizer actually iterates that many times.
Often, training or validation error stops improving much sooner, usually after a few hundred iterations.

When you are training using large data sets, you can do a training run with MAXITER=1 to determine
approximately how long each iteration will take.

The default is 50.

VALID=_NONE_
specifies that a validation subset not be used to help determine when to stop training.

If you specify VALID=_NONE_ in the TRAIN statement, you cannot have a PARTITION statement.

OUTMODEL=SAS-data-set
specifies the data set to which to save the model parameters for the trained network. These parameters
include the network architecture, input and target variable names and types, and trained weights.

You can use the model data set later to score a different input data set as long as the variable names and
types of the variables in the new input data set match those of the training data set.

WEIGHT Statement
WEIGHT variable | _INVERSE_PRIORS_ ;

If you specify a WEIGHT statement, variable identifies a numeric variable in the input data set that contains
the weight to be placed on the prediction error (the difference between the output of the network and the
target value specified in the input data set) for each observation during training.

If, instead of specifying a variable, you specify the keyword _INVERSE_PRIORS_, the HPNEURAL
procedure calculates the weight applied to the prediction error of each nominal target variable as the total
number of observations divided by the number of observations whose target class is the same as the current
observation (in other words, the inverse of the fraction of the number of times that the target class occurs in
the input data set).

If variable is less than or equal to O or is missing, the observation is not used for training or for computing
validation error. When validation error is computed during training, the weights on the validation observations
are used even though weights are not used when scoring.

The WEIGHT statement is optional. If a WEIGHT statement is not included, all observations are assigned a
weight of 1.
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Details: HPNEURAL Procedure

Computational Method

PROC HPNEURAL trains a multilayer perceptron neural network with one or two hidden layers. For more
information about multilayer perceptron neural networks, see Bishop (1995).

All continuous input variables are scaled to be in the range [-1, 1].

For all nominal input variables, except binary variables (which have a single input neuron), there is one input
neuron per level. The value assigned to each input neuron is 0 except for the neuron which represents the
actual input level for an observation, which has an input value of 1.

All activation functions for hidden neurons are hyperbolic tangents.

For all continuous target variables, the output activation function is the identity function, and the error
function is the squared difference between the scaled target value and the network output.

For all nominal target variables, the output activation function is the softmax function, and the error function
is the cross entropy function. There is one output neuron per level, except for binary variables (which have a
single output neuron). The target value for each output neuron is 0 except for the neuron that represents the
actual target level for an observation, which has a target value of 1.

The error function for the network is a scalar function of the network weights. This function defines an error
surface on which the optimization algorithm attempts to locate a minimum. Optimization is done in two
parts: the limited memory Broyden—Fletcher—Goldfarb—Shanno (LBFGS) algorithm (Nocedal and Liu 1989)
computes a direction along the error surface; then the Moré Thuente line search algorithm (Moré and Thuente
1992) finds a new minimum of the error function on the surface along that direction. If a sufficient decrease
in the error function can be found, the weights that generated the new minimum are then used by the LBFGS
algorithm to calculate a new descent direction. The process is repeated until a sufficient decrease in the error
function cannot be obtained.

Both the LBFGS search direction algorithm and the Moré Thuente line search algorithm need to know the
gradient of the error surface at several different points (sets of weights). This gradient is calculated by using
the algorithm described in Bishop (1995).

Besides terminating due to the inability to improve the error function, the optimization algorithm also stops if
the validation error (which is calculated after each line search) lacks improvement 40 times in a row. The
validation error is computed as the sum, over each validation observation, of the absolute difference between
the target and the network output. By default, every fourth observation is used as a validation observation,
starting with the first observation. This default can be changed by using the PARTITION statement. Validation
observations are not used in any other way by the optimization algorithm. Fit statistics reported after training
are only computed using validation observations. Fit statistics reported after stand-alone scoring are computed
using all observations.
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Multithreading

Threading refers to the organization of the computational work into multiple tasks (processing units that
can be scheduled by the operating system). A task is associated with a thread. Multithreading refers to the
concurrent execution of threads. When multithreading is possible, substantial performance gains can be
realized compared to sequential (single-threaded) execution.

By default, the number of threads used by the HPNEURAL procedure is the number of CPUs on a machine.
You can control the number of threads by specifying the NTHREADS= option in the PERFORMANCE
statement.

The number of threads per machine is displayed in the “Performance Information” table, which is part of the
default output.

The tasks multithreaded by the HPNEURAL procedure are primarily defined by dividing the data that
are processed on a single machine among the threads; that is, the HPNEURAL procedure implements
multithreading through a data-parallel model. For example, if the input data set on a machine has 1,000
observations and PROC HPNEURAL is running four threads in parallel, then 250 observations are processed
in parallel by each thread.

Output Data Set

The output data set is specified by the OUT= option in the SCORE statement. If there is no SCORE statement,
then no output data set is created, but fit statistics are still displayed in ODS tables.

Table 6.2 describes the columns of the output data set.

Table 6.2 Output Data Set Columns

Column Name

ID variables from the input data set Name of each ID variable in the input data set

Predicted value of the variable from the A name of the form P_varname for interval variables and

trained network |_varname for nominal variables, where varname is the
variable name from the input data set. The name is trun-
cated to 32 bytes if necessary. Double-byte characters are
converted to underscores unless the SAS system option
VALIDVARNAME-=any.

For nominal values, additional columns P_varnamelLevelname where varname is the variable
for the raw network output for each level name from the input data set and Levelname is the level
of each nominal variable. Because nom- name from the input data set. The name is truncated to 32
inal variables use the softmax activation bytes if necessary. Double-byte characters are converted
function, the raw value for a specific level to underscores unless the SAS system option VALIDVAR-
is usually interpreted as the probability NAME=any.

that the target variable is that level.
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Displayed Output

PROC HPNEURAL displays basic fit statistics in the SAS log and more detailed information in several ODS
tables.

When you are training, the statistics are based on the network’s prediction accuracy on the validation subset,
unless there is no validation subset, in which case the statistics are based on the entire input data set.

When you are performing stand-alone scoring, the statistics depend on whether the target variables exist in
the input data set: if the target variables exist in the input data set, the statistics are based on the network’s
prediction accuracy on the entire input data set; otherwise no fits statistics can be computed.

For interval variables, PROC HPNEURAL displays the average absolute percentage error and maximum
absolute percentage error. The percentage is the percentage of the range of the variable across the entire
input data set (not just the validation observations). For nominal variables, PROC HPNEURAL displays the
percentage of observations that were misclassified.

In addition to information displayed in the SAS log, PROC HPNEURAL generates ODS tables that give
detailed information about the model structure, input data, detailed training results, and timings.

Other fit statistics can be computed from information in the score data set.

ODS Table Names

Each table created by the HPNEURAL procedure has a name associated with it, and you must use this name
to refer to the table when you use ODS statements. The names of each table and a short description of the
contents are listed in Table 6.3.

Table 6.3 ODS Tables Produced by PROC HPNEURAL

Table Name Description Required Statement / Option
ClassLevels Level information for nominal input INPUT with LEVEL=NOM
variables
Details Detailed real times for each phase of PERFORMANCE with DETAILS
the procedure option
ErrorSummary Average and maximum errors for inter- TARGET with LEVEL=INT (the
val targets default)
Iteration Training and validation error for each Default output
iteration of the best try
Misclassification ~ Misclassification matrix for nominal TARGET with LEVEL=NOM
target variables
Modellnformation Information about the modeling envi- Default output
ronment
Nobs Number of observations read and Default output
used; number of validation observa-
tions used
Performancelnfo = Information  about the  high- Default output
performance computing environment
Training Training error, validation error, and Default output

reason for stopping for each try
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Overview: HPREDUCE Procedure

The HPREDUCE procedure is a high-performance procedure that performs both supervised and unsupervised
variable selection on the SAS appliance. You can use the HPREDUCE procedure to read data in distributed
form and perform variable selection in parallel in single-machine mode or distributed mode. For more
information about these modes, see the section “Processing Modes” on page 6 in Chapter 2, “Shared
Concepts and Topics.”

NOTE: Distributed mode requires SAS High-Performance Data Mining.

The HPREDUCE procedure performs unsupervised variable selection by identifying a set of variables that
jointly explain the maximum amount of data variance. Unlike principal component analysis (PCA), which
reduces dimensionality by generating a set of new variables (variable extraction), the HPREDUCE procedure
reduces dimensionality by selecting a subset of the original variables (variable selection). Thus, this technique
preserves model interpretation.

The HPREDUCE procedure performs supervised variable selection by identifying a set of variables that
jointly explain the maximum amount of variance contained in the response variables. The HPREDUCE
procedure supports variable selection in both the regression setting and the classification (categorization)
setting.

The HPREDUCE procedure can also be used to output the sums of squares and crossproducts (SSCP) matrix,
the correlation (CORR) matrix, or the covariance (COV) matrix for exploratory data analysis and direct
input to statistical procedures that accept that form. This step saves time by eliminating redundant matrix
aggregations.

PROC HPREDUCE Features

The HPREDUCE procedure conducts a variance analysis and reduces dimensionality by selecting the
variables that contribute the most to the overall variance of the data (or the dependent variables). The
following list summarizes the basic features of the HPREDUCE procedure:

* Variable selection is based on covariance analysis.

* Analysis can be performed on a massively parallel SAS high-performance appliance.

* Input data can be read in parallel when the data source is the appliance database.

* Computation of the CORR, COV, or SSCP matrix is distributed.

* Computation of the variable selection steps is distributed.

* All phases of analytic execution use of high degree of multithreading.

* Both supervised and unsupervised variable selection are supported.

* Multiple response variables are supported in variable selection for regression.

* The CLASS statement supports categorical inputs.
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» The REDUCE statement supports main and interaction effects.

* The OUTCP statement supports outputting a CORR, COV, or SSCP matrix.

PROC HPREDUCE Contrasted with Other SAS Procedures

This section compares the HPREDUCE procedure with the FACTOR, PRINCOMP, GLMSELECT, and
DISCRIM procedures in SAS/STAT software.

When PROC HPREDUCE performs unsupervised variable selection, it conducts variance analysis and
reduces dimensionality by forward selection of the variables that contribute the most to the overall data
variance. The output lists the variables in order of their contribution to data variance and can be used directly
for reporting or for selecting variables for model building procedures. In contrast, principal component
analysis (PCA) conducts a variance analysis and then projects the data space to an orthogonal set of axes
by a linear combination of the original variables. These new principal components best explain the data
variance and can be used as input to model building procedures. In either case, the number of inputs to
the modeling procedure has been reduced from the original set. PCA can be done through the SAS/STAT
FACTOR and PRINCOMP procedures. The primary difference between PCA and PROC HPREDUCE is that
PCA generates new variables, while PROC HPREDUCE reduces data dimensionality by selecting a subset of
the original variables. This feature of PROC HPREDUCE is beneficial in applications where retaining the
original variables is important for model exploration and interpretation.

When PROC HPREDUCE performs supervised variable selection, it conducts variance analysis and reduces
dimensionality by forward selection of the variables that contribute the most to explaining the overall variance
of the response variables (targets). The output lists the variables in order of their contribution to explaining
response variance. The output can be used directly for reporting or for selecting variables for model building
procedures. When PROC HPREDUCE is used to perform supervised variable selection, it most resembles
the GLMSELECT procedure. However, PROC HPREDUCE allows multiple response variables, which
is not supported by PROC GLMSELECT. When the response variable is a classification variable and its
levelization is done in a special format, PROC HPREDUCE conducts variance analysis in the same way as
linear discriminant analysis (LDA) does. LDA can be done through the SAS/STAT DISCRIM procedure. Like
PCA, LDA generates new variables by linearly combining all original variables, while PROC HPREDUCE
reduces data dimensionality by selecting a subset of the original variables.

Getting Started: HPREDUCE Procedure

The following DATA step contains 100 observations with one character variable (C), one classification
variable (y), and 10 continuous variables (x1—x10). This data set is used for both of the getting-started
examples in the following sections.

data getStarted;
input C$ y x1-x10;

datalines;

D 0O 10.2 6 1.6 38 15 2.4 20 0.8 8.5 3.9
F 1 12.2 6 2.6 42 61 1.5 10 0.6 8.5 0.7
D 1 7.7 1 2.1 38 61 1 90 0.6 7.5 5.2
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Unsupervised Variable Selection with the HPREDUCE Procedure

The following statements use PROC HPREDUCE for unsupervised variable selection. The statements specify

that the technique used for variable selection is variance analysis. The maximum number of variables to

select is 5, and the maximum percentage of the total variance to explain is 95%. The procedure stops when

either of two conditions is satisfied.
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proc hpreduce data=getstarted technique=VarianceAnalysis;
class C;
reduce unsupervised C x1-x10 / maxeffects=5 varexp=0.95;
performance details;

run;

The output from this analysis is presented in Figure 7.1 through Figure 7.5.

Figure 7.1 shows the “Performance Information” table, which indicates that the procedure executes in
single-machine mode. That is, the procedure runs on the machine where the SAS system is running. The
table also shows that two threads are used for computing.

Figure 7.1 Performance Information

Performance Information

Execution Mode Single-Machine
Number of Threads 2

’

Figure 7.2 displays the “Model Information” and “Number of Observations” tables. The “Model Information’
table shows that the HPREDUCE procedure is used for unsupervised variable selection. The CLASS variable
C is parameterized in the general linear model (GLM) parameterization, which is the default. The total
number of variables is 11. The technique used for variable selection is variance analysis. The maximum
number of variables to select is 5, and the maximum percentage of the total variance to explain is 95%. The
“Number of Observations” table shows that all 100 observations in the data set are used in the analysis.

Figure 7.2 Model Information and Number of Observations

Model Information

Data Source WORK . GETSTARTED
Model Type Unsupervised
Class Parameterization GLM
Selection Technique Variance Analysis
Number of Variables 11
Number of Variables to Select 5
Variance to Explain 0.95

Number of Observations Read 100

Number of Observations Used 100

Figure 7.3 shows the “Class Level Information” table, which indicates that the CLASS variable C has 10
unique formatted levels.
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Figure 7.3 Class Level Information and Response Profile

Class Level Information

Class Levels Values

C 10 ABCDEFGHTIUJ

Figure 7.4 shows the “Selection Summary” and “Selected Variables” tables. The “Selection Summary” table
shows which variable (or level for CLASS variables) is selected in each step, in addition to the total variance
that is explained by the variables selected so far. The “Selected Variables” table presents all the selected
variables and their corresponding variable types.

Figure 7.4 Selection Summary and Selected Variables

Selection Summary

Proportion

of

Selected Variance
Iteration Effect Level Explained SSE MSE AIC AICC BIC
1 x3 - 0.0681 18.6380 0.1883 7.1052 27.2163 2.9713
2 x7 - 0.1326 17.3484 0.1770 6.9935 26.0940 2.9456
3 x10 - 0.1933 16.1341 0.1663 6.8609 24.9455 2.9191
4 C I 0.2529 14.9423 0.1556 6.7042 23.7675 2.8884
5 C F 0.3120 13.7607 0.1448 6.5218 22.5585 2.8521
6 C J 0.3690 12.6210 0.1343 6.3154 21.3202 2.8117
7 C B 0.4257 11.4856 0.1235 6.0811 20.0487 2.7635
8 C G 0.4813 10.3749 0.1128 5.8194 18.7444 2.7078
9 C D 0.5351 9.2980 0.1022 5.5298 17.4070 2.6443
10 C H 0.5889 8.2218 0.0914 5.2068 16.0308 2.5673
11 cC A 0.6407 7.1867 0.0807 4.8522 14.6178 2.4788
12 x5 - 0.6916 6.1678 0.0701 4.4593 13.1611 2.3720

Selected Variables

Selected Variable
Number Variable Type

1 x3 INTERVAL
2 x7 INTERVAL
3 x10 INTERVAL
4 C CLASS

5 x5 INTERVAL
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Figure 7.5 shows the “Procedure Task Timing” table, which provides details about how much time is used by
each processing step.

Figure 7.5 Procedure Task Timing

Procedure Task Timing

Time
Task (sec.)
Data read and variable levelization 0.03 91.2%
Effect Levelization 0.00 0.00%
Cross-product accumulation 0.00 5.88%
Variable selection 0.00 2.94%

Supervised Variable Selection with HPREDUCE Procedure

The following statements use PROC HPREDUCE for supervised variable selection. The statements specify
that y is the response variable, the technique used for variable selection is discriminant analysis, and the
maximum number of variables to select is 5.

proc hpreduce data=getstarted technique=DiscriminantAnalysis;
class C y;
reduce supervised y = C x1-x10 / maxeffects=5;
performance details;

run;

The output from this analysis is presented in Figure 7.6 through Figure 7.10.

Figure 7.6 shows the “Performance Information™ table, which indicates that the procedure executes in
single-machine mode. That is, the procedure runs on the machine where the SAS system is running. The
table also shows that two threads are used for computing.

Figure 7.6 Performance Information

Performance Information

Execution Mode Single—-Machine
Number of Threads 2
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’

Figure 7.7 displays the “Model Information” and “Number of Observations” tables. The “Model Information’
table shows that HPREDUCE procedure performed supervised variable selection. The CLASS variables are
parameterized in the general linear model (GLM) parameterization, which is the default. The total number of
variables is 12. The technique used for variable selection is discriminant analysis, and the maximum number
of variables to select is 5. The “Number of Observations” table shows that all 100 observations in the data set
are used in the analysis.

Figure 7.7 Model Information and Number of Observations

Model Information

Data Source WORK .GETSTARTED
Model Type Supervised
Class Parameterization GLM
Selection Technique Discriminant Analysis
Number of Variables 12
Number of Variables to Select 5

Number of Observations Read 100

Number of Observations Used 100

Figure 7.8 shows the “Class Level Information” table, which indicates that the CLASS variable C has 10
unique formatted levels and the CLASS variable y has two levels.

Figure 7.8 Class Level Information and Response Profile

Class Level Information

Class Levels Values
C 10 ABCDEFGHTIUJ
y 2 01

Figure 7.9 shows the “Selection Summary” and “Selected Variable” tables. The “Selection Summary” table
shows which variable (or level for CLASS variables) is selected in each step, in addition to the total variance
that is explained by the variables selected so far. The “Selected Variable” table presents all the selected
variables and their corresponding variable types.
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Figure 7.9 Selection Summary and Selected Variable

Selection Summary

Proportion
of
Selected Variance
Iteration Effect Level Explained SSE MSE AIC AICC BIC
1 C J 0.0811 0.9189 0.00928 0.0154 2.0196 -0.0385
2 x8 - 0.1323 0.8677 0.00885 -0.0019 2.0055 -0.0498
3 x2 - 0.1687 0.8313 0.00857 -0.0048 2.0067 -0.0467
4 C C 0.1992 0.8008 0.00834 -0.0021 2.0145 -0.0379
5 x4 - 0.2184 0.7816 0.00823 0.0136 2.0362 -0.0161
6 x9 - 0.2369 0.7631 0.00812 0.0297 2.0593 0.0060

Selected Variables

Selected Variable
Number Variable Type

1 C CLASS

2 x8 INTERVAL
3 x2 INTERVAL
4 x4 INTERVAL
5 x9 INTERVAL

Figure 7.10 shows the “Procedure Task Timing” table, which provides details about how much time is used
by each processing step.

Figure 7.10 Procedure Task Timing

Procedure Task Timing

Time
Task (sec.)
Data read and variable levelization 0.04 70.7%
Effect Levelization 0.00 0.00%
Data preparation for discriminant analysis 0.00 0.00%
Cross—-product accumulation 0.02 27.6%
Variable selection 0.00 1.72%
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Syntax: HPREDUCE Procedure

The following statements are available in the HPREDUCE procedure:

PROC HPREDUCE < options > ;
CLASS variable < (options)>. . . < variable < (options) > > </ global-options > ;
REDUCE UNSUPERVISED effects </ reduce-options > ;
REDUCE SUPERVISED response ... < response> = effects </ reduce-options> ;
PERFORMANCE performance-options ;

The PROC HPREDUCE statement and the REDUCE statement are required. The CLASS statement can
appear multiple times. If a CLASS statement is specified, it must precede the REDUCE statement.

PROC HPREDUCE Statement
PROC HPREDUCE < options > ;

The PROC HPREDUCE statement invokes the procedure. Table 7.1 summarizes the important options in the
PROC HPREDUCE statement by function. The options are then described fully in alphabetical order.

Table 7.1 PROC HPREDUCE Statement Options

Option Description

Basic Options

DATA= Specifies the input data set
NAMELEN= Limits the length of effect names
TECHNIQUE= Selects the variable selection technique

Options Related to Output

NOPRINT Suppresses ODS output

NOCLPRINT Limits or suppresses the display of CLASS levels
NOSUMPRINT Suppresses generation of the selection summary table
TIMEPRINT Prints the time used by each variable selection iteration
OUTCP= Outputs the CORR, COV, or SSCP matrix

Pearson Correlation Statistics

Cov Computes covariances

CORR Computes correlations (default)

SSCP Computes sums of squares and crossproducts

User-Defined Formats
FMTLIBXML= Specifies the file reference for a format stream
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You can specify the following options in the PROC HPREDUCE statement.

CORR
selects variables based on the correlation matrix. Assuming that X and Y are two variables, the
correlation between X and Y is computed by:

E(X-EX)) (Y - E(Y))

Corr(X,Y) =

JEX —EX)PEY —E(Y)
This is the default option for computing the Pearson correlation statistics in PROC HPREDUCE.

cov
selects variables based on the covariance matrix. Assuming that X and Y are two variables, the
covariance between X and Y is computed by:

Cov(X.Y) = E((X -EX) (Y - E(Y))

DATA=SAS-data-set
names the input SAS data set to be used by PROC HPREDUCE. The default is the most recently
created data set. If the procedure executes in distributed mode, the input data are distributed to memory
on the appliance nodes and analyzed in parallel, unless the data are already distributed in the appliance
database. When data are already distributed, the procedure reads the data alongside the distributed
database. See the sections “Processing Modes” on page 6 and “Alongside-the-Database Execution” on
page 13 in Chapter 2, “Shared Concepts and Topics.”

FMTLIBXML=file-ref
specifies the file reference for the XML stream that contains the user-defined format definitions. In a
distributed computing environment, user-defined formats are handled differently than they are in other
SAS products. For information about how to generate an XML stream for your formats, see the section
“Working with Formats™ on page 32 in Chapter 2, “Shared Concepts and Topics.”

NAMELEN=number
specifies the length to which long effect names are shortened (20 < number <128). The default and
minimum value is 64.

NOCLPRINT< =number >
suppresses the display of the “Class Level Information” table if you do not specify number. If you
specify number, the values of the classification variables are displayed for only those variables whose
number of levels is less than number. Specifying a number helps to reduce the size of the “Class Level
Information” table if some classification variables have a large number of levels.

NOPRINT
suppresses the generation of ODS output.

NOSUMPRINT
suppresses the generation of the “Selection Summary” table.

OUTCP=SAS-data-set< /LIST<(EPS = number) > >
creates both a data set that contains a symmetric matrix that depicts the relationships among variables
and also a set of statistics about the input data set and variables. Depending on the Pearson correlation
statistics option specified in the PROC HPREDUCE statement, the symmetric matrix can be a corre-
lation (CORR) matrix, a covariance (COV) matrix, or a sums of squares and crossproducts (SSCP)
matrix.
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When the LIST option is specified, the symmetric matrix is output in the list-of-list (LIL) format. In
this format, the matrix is represented as a set of tuples (i, j, x), where x is an entry in the matrix
and i and j denote its row and column indices, respectively. LIL format can be used when the output
contains too many columns to fit in a data set. For example, in most database systems the maximum
number of columns in a table is usually limited to several thousand. If an output matrix contains more
columns than the limit, you must use the LIST option to avoid errors that would arise from writing
too many columns to the table. When LIL format is used, all 0 entries in the matrix are ignored in the
output.

When EPS= number is specified in the LIST option, matrix entries that have an absolute value smaller
than number are ignored in the output. This feature helps omit unreliable estimations and generate a
compact representation for the matrix. When the EPS= option is not specified, only the O entries in the
matrix are ignored in the output.

SSCP
selects variables based on the sums of squares and crossproducts matrix. Assuming that X and Y are
two variables and that x and y are their corresponding variable vectors, the SSCP between X and Y is
computed by:

SSCP(X,Y)=x"y

TECHNIQUE=keyword

TECH=keyword
specifies the variable selection technique. You can specify the following keywords:

VARIANCEANALYSIS | VAR performs variance analysis for variable selection.
DISCRIMINANTANALYSIS | DSC  performs discriminant analysis for variable selection.

The default value is TECHNIQUE=VAR.

You can use variance analysis for both supervised and unsupervised variable selection. You can use
discriminant analysis only for supervised variable selection with one classification variable as the
response. For more information, see the section “Variable Selection for Classification” on page 155.

TIMEPRINT
prints the time (in seconds) used by each variable selection iteration in the “Selection Summary” table.
If this option does not appear in the PROC HPREDUCE statement, the time information is not printed.

CLASS Statement

CLASS variable < (options)>. . . < variable < (options) > > </ global-options > ;

The CLASS statement names the classification variables to be used as explanatory variables in the analysis.
The CLASS statement must precede the REDUCE statement.

The CLASS statement for high-performance analytical procedures is documented in the section “CLASS
Statement” (Chapter 3, SAS/STAT User’s Guide: High-Performance Procedures).

The HPREDUCE procedure does not support the SPLIT option in the CLASS statement. For CLASS variable
parameterization, the HPREDUCE procedure only support the GLM method.
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PERFORMANCE Statement
PERFORMANCE < performance-options> ;

The PERFORMANCE statement defines performance parameters for multithreaded and distributed comput-
ing, passes variables about the distributed computing environment, and requests detailed results about the
performance characteristics of the HPREDUCE procedure.

You can also use the PERFORMANCE statement to control whether the HPREDUCE procedure executes in
single-machine or distributed mode.

The PERFORMANCE statement is documented further in the section “PERFORMANCE Statement” on
page 34 of Chapter 2, “Shared Concepts and Topics.”

REDUCE Statement
REDUCE UNSUPERVISED effects </ reduce-options > ;
REDUCE SUPERVISED response ... < response> = effects </ reduce-options> ;

PROC HPREDUCE can be used for both supervised and unsupervised variable selection. In unsupervised
case, the REDUCE statement specifies the effects to be considered in the variable selection process. An
effect can be an original variable in the input data set or a variable constructed from the original variables. In
the supervised case, you need to specify both the effects and the response variables. A response variable
can be an original variable in the input data set or a variable constructed from the original variables. For the
regression case, you can specify more than one response variable.

Table 7.2 summarizes the reduce-options, which control the number of variables to be selected.

Table 7.2 reduce-options

Option Description

AIC Performs model selection by using Akaike’s information
criterion

AICC Performs model selection by using the corrected Akaike’s
information criterion

BIC Perform model selection by using Schwarz Bayesian in-
formation criterion

MAXSTEPS= Specifies the maximum number of steps to take; the num-
ber must be greater than or equal to 1

MAXEFFECTS= Specifies the number of effects to select; the number must
be greater than or equal to 1.

VARIANCEEXPLAINED | VAREXP= Specifies the fraction of the total variance to be explained;

the value must be between 0 and 1.

MINVARIANCEINCREMENT | VARINC=  Specifies the minimum increment of explained variance
(in a fraction of the total variance); the value must be
between 0 and 1.
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The reduce-options determine the number of variables to be selected. You can specify the following reduce-
options as stopping criteria for the HPREDUCE procedure. When you specify more than one option, PROC
HPREDUCE stops whenever one of the specified options is satisfied, or when the explained variance equals
to the total variance. In the latter case, the procedure prints the following message in the log: “Early stop: the
proportion of the explained variance to the total variance equals 1.”

AIC
stops PROC HPREDUCE if the Akaike’s information criterion (AIC) value fails to decrease in three
contiguous steps.

AICC
stops PROC HPREDUCE if the corrected Akaike’s information (AICC) value fails to decrease in three
contiguous steps.

BIC
stops PROC HPREDUCE if the Schwarz Bayesian information criterion (BIC) value fails to decrease
in three contiguous steps.

MAXSTEPS=n
stops PROC HPREDUCE after it runs n steps.

MAXEFFECTS=n
stops PROC HPREDUCE after n effects have been selected. Because individual levels of one classifi-
cation variable can be selected in different steps of the variable selection process, PROC HPREDUCE
might take more than n steps to select n effects.

VARIANCEEXPLAINED=fraction

VAREXP=fraction
stops PROC HPREDUCE when the fraction of the total variance can be explained by the selected
variables.

MINVARIANCEINCREMENT=fraction

VARINC-=fraction
stops PROC HPREDUCE when the minimum increment of the explained variance is less than fraction
of the total variance.

Details: HPREDUCE Procedure

The performance of a learning model usually decreases in terms of accuracy and efficiency when the
dimensionality of the input data is high. The problem is known as the “curse of dimensionality.” Variable
selection techniques can reduce the dimensionality of a data set by removing irrelevant and redundant
variables (Liu and Motoda 1998).

The HPREDUCE procedure performs both supervised and unsupervised variable selection. It selects variables
by identifying a set of variables that can jointly explain the maximum amount of data variance.



154 4 Chapter 7: The HPREDUCE Procedure

Unsupervised Variable Selection

When no response variable is specified, PROC HPREDUCE conducts unsupervised variable selection.
Assume that k variables need to be selected. Let X € IR”*™ be a data set that contains n samples and
m variables; let X = (X;,X5), where X; € IR”*K is the data set that contains the k selected variables
and X, € R "=K) contains the remaining m — k variables. PROC HPREDUCE selects the variables by
minimizing the equation:

-1
min Trace (XZT (I - Xy (XTx) XI) Xz)

1
(I -X; (XITXl)_1 XlT) * X, projects X» to the null space of X;. Therefore, the above equation measures
the data variance that resides in the null space of X, which is the data variance that cannot be explained by

the variables in X ;. Minimizing this equation leads to the selection of the variables that jointly explain the
maximum amount of the variance in the original data.

Let Ci1 = XIXl, Cip = XIXz, and Cy1 = X;Xl. The following equations hold:

Ciit Ci2 )
c=X"X=
( Cz1 Cx

-1
X7 (1 -X, (XIXI) XlT) X, = C2z — C21C1 1 Cyy

When all the variables are centralized to have a zero mean, C is the covariance matrix. This corresponds to
setting the COV option in the PROC HPREDUCE statement, which specifies that the covariance matrix be
used for variable selection. Similarly, if variables need to be both centralized and normalized to have unit
length, you should specify the CORR option in the PROC HPREDUCE statement, which leads to the use of
the correlation matrix for variable selection. If neither centralization nor normalization should be applied,
you need to specify the SSCP option in the PROC HPREDUCE statement.

Principal component analysis (PCA) (Jolliffe 2002) also reduces dimensionality by preserving data variance.
The key difference between PCA and PROC HPREDUCE is that PCA generates a small set of new variables
(variable extraction) by linearly combining the original variables, while PROC HPREDUCE selects a small
set of the original variables (variable selection). The variables returned by PROC HPREDUCE are the
original variables. This feature is very important in applications where retaining the original variables is
important for model exploration or interpretation (for example, genetic analysis, and text mining).

Supervised Variable Selection

When response variables are specified in a REDUCE statement, PROC HPREDUCE conducts supervised
variable selection. The procedure supports variable selection both in a regression context and in a classification
(categorization) context.
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Variable Selection for Regression

In a regression setting, all response variables should be numerical. When a classification variable is in
the response, this variable needs to be levelized to multiple dummy variables, with each dummy variable
corresponding to a level of the classification variable. You can achieve this levelization by adding this variable
to the variable list of the CLASS statement.

Let Y € IR"*! be the response data that contain 7 response variables. Assume that k variables need to be
selected. Let X € R™™™ be a data set that contains n samples and m variables; let X = (X1, X,), where
X; € IR"*k is the data set that contains the k selected variables and X, € R*~K) contains the remaining
m — k variables. PROC HPREDUCE selects the variables by minimizing the following equation:

—1
min Trace (YT (I ~ X, (XIXI) XIT) Y)

1
(I - X (X-l'—Xl)_1 X-lr) ’y projects Y to the null space of X;. Therefore, the equation measures the

response variance that resides in the null space of X, which is the variance of the response variables that
cannot be explained by the variables in X;. Minimizing the equation leads to the selection of the variables
that jointly explain the maximum amount of the variance of the response variables.

Variable Selection for Classification

In a classification setting, one classification variable is specified as the response, with each of its levels
corresponding to a category of the classification problem. Let the classification variable be y with ¢ levels

{1,...,c}. Theny can be levelized in a special way to generate a response data Y € IR"*¢ as:
1 n n; .
Y. — Jn nj \Vn)’ yi=J
2J 1 n; —
ﬁ n ’ yl .]

By using this Y in the variance analysis, PROC HPREDUCE selects variables by using the discriminant
criterion specified in linear discriminant analysis (LDA) (Fisher 1936; Cooley and Lohnes 1971). LDA also
reduces dimensionality. The key difference between LDA and PROC HPREDUCE is that LDA generates a
small set of new variables (variable extraction) by linearly combining the original variables, while PROC
HPREDUCE selects a small set of the original variables (variable selection).

Criteria Used in Model Selection
The HPREDUCE procedure supports the following three fit statistics that you can specify as stopping criteria
in the REDUCE statement:

AIC Akaike’s information criterion (Akaike 1969; Judge et al. 1985)
AICC Corrected Akaike’s information criterion (Hurvich and Tsai 1989)

BIC Schwarz Bayesian information criterion (Schwarz 1978; Judge et al. 1985)
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The HPREDUCE procedure supports multiple response variables; therefore, it computes the AIC, AICC, and
BIC that are defined for multivariate regression. Besides the three criteria, it also computes the error sum of
squares (SSE) and residual mean square error (MSE).

Table 7.3 provides formulas and definitions for these fit statistics.

Table 7.3 Formulas and Definitions for Model Fit Summary Statistics

Statistic Definition or Formula
n Number of observations
P Number of parameters
t Number of response variables
SSE Error sum of squares
SSE
MSE
n—p
SSE 2pt+t(t +1
AIC In ( ) + prar+1
n n
SSE t
AlICC In ( ) + (n+ p)
n n—p—t—1
SSE 1
BIC ln( ) + pIn(n)
n n

Computational Method

Given m variables, finding the k variables that minimize the proposed equations is a combinatorial problem,
which is NP-hard (nondeterministic polynomial-time hard). To select k variables, PROC HPREDUCE applies
k steps of a greedy search to generate a suboptimal solution for the problem.

Assume that g features have been selected, that X; contains the g selected variables, and that X; contains
the remaining variables. PROC HPREDUCE selects the ¢ + 1 variable, F', by minimizing the equation

) o e =1 A\ 4
arg n};n Trace (X;— (I - X1 (Xirxl) X—lr) X2)

where Xl is the data set that contains the feature F' and the g selected variables, and Xz is the data set

that contains the remaining variables. Minimizing the preceding problem is equivalent to maximizing the
following problem:

“XZT (I — X, (XTX,) 7 XlT) sz

“ (1—x (xTx0) ™ XIT)é £ z

In the preceding equation,

T T I xT el .
‘Xz (I - X1 (X{X1)  X{ )sz is the summation of the squares of the
covariance between the variable f and all the unselected variables in the null space of X;. And
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1 2
‘(I—Xl (xXTx)) "' XT) " f
2

normalization factor.

is the square of the variance of f in the null space of X, which is used as a

This problem can be solved efficiently. Assuming that m >> k, the time complexity for solving it is
O (m* (n + k?))

where m is the number of variables, n is the number of samples, and k is the number of selected variables. In
the equation, m?n corresponds to the time for computing the covariance (or correlation, or SSCP) matrix.
And m?k? corresponds to the time for selecting k variables out of m.

Similar analysis also applies to supervised variable selection with PROC HPREDUCE. In this case, the
following problem is maximized for variable selection:

“YT (I ~ X, (XTX,) 7 XIT) sz

H (1-x (x7x1) ™" XI)E £

2

Here, Y is the response data. Let ¢ be the number of columns in Y. The time complexity for selecting k
variables by solving the preceding problem is

O (k* (¢ + k)ym + m*n)

Note that for most data of very high dimensionality, ¢ + k < m.

PROC HPREDUCE is fully threaded and distributed. When there are p machines used for computing, the
time complexity for unsupervised variable selection is

2 k2
CPU (% +m?log p) + NET (m®log p)

And the time complexity for supervised variable selection is

k% (c +k)ym + m?n
p

CPU( +m210gp) + NET (mzlogp)

where CPU corresponds to the time used for computing and NET corresponds to the time used for communi-
cation among computers.

Displayed Output

The following sections describe the output that PROC HPREDUCE produces by default. The output is
organized into various tables, which are discussed in the order of appearance.
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Performance Information

The “Performance Information” table is produced by default. It displays information about the execution
mode. For single-machine mode, the table displays the number of threads used. For distributed mode, the
table displays the grid mode (symmetric or asymmetric), the number of compute nodes, and the number of
threads per node. If you specify the DETAILS option in the PERFORMANCE statement, the procedure also
produces a “Timing” table in which elapsed times (absolute and relative) for the main tasks of the procedure
are displayed.

Model Information

The “Model Information” table displays basic information about the model, such as the data source, the
selection technique, the number of selected variables, and the execution mode that the HPREDUCE procedure
determines based on your input and options. If you want to know whether the procedure executed on the
client machine or in distributed form or whether data were sent from the client or processed alongside the
database, check the execution mode entry of this table.

Number of Observations
The “Number of Observations” table displays the number of observations read from the input data set and the
number of observations used in the analysis.

Class Level Information

The “Class Level Information” table lists the levels of every variable specified in the CLASS statement. You
should check this information to make sure that the data are correct. You can adjust the order of the CLASS
variable levels with the ORDER= option in the CLASS statement.

If the classification variables are in reference parameterization, the “Class Level Information” table also
displays the reference value for each variable.

Selection Summary

The “Selection Summary” table displays for each iteration the name of the selected effect, the name of the
selected level, and the total variance explained after the iteration. If you specify the TIMEPRINT option
in the PROC HPREDUCE statement, information about the time used by each iteration is added to the
“Selection Summary” table.
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The “Selected Variables” table summarizes which variables were selected in the selection process. It also

provides information about the variable type of each selected variable.

Procedure Task Timing

If you specify the DETAILS option in the PERFORMANCE statement, the procedure produces a “Procedure
Task Timing” table, which displays the elapsed time (absolute and relative) for the main tasks of the procedure.

ODS Table Names

Each table created by the HPREDUCE procedure has a name associated with it, and you must use this name
to refer to the table when you use ODS statements. These names are listed in Table 7.4.

Table 7.4 ODS Tables Produced by PROC HPREDUCE

Table Name Description Required Statement / Option
ClassLevels Level information from the CLASS state- CLASS
ment
Modellnfo Information about modeling environment  Default output
NObs Number of observations read and used; Default output
number of events and trials, if applicable
SelectedEffects Summary of selected variables Default output
SelectionSummary Selection summary Default output
Timing Absolute and relative times for tasks per- DETAILS option in the PERFOR-

formed by the procedure

MANCE statement
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Examples: HPREDUCE Procedure

Example 7.1: Running in Single-Machine Mode

This example first generates a data set, which has 2,000 observations and contains both interval variables
(x1-x10) and CLASS variables (b1-b3, c1-c10). Then PROC HPREDUCE is run to select variables. When
a host for distributed computing is not specified or the NODES option in the PERFORMANCE statement is
not specified, PROC HPREDUCE automatically runs in single-machine mode.

data one;
array x{10};
array c{10};
do i=1 to 2000;
do j=1 to 10;
x{j}=ranuni (1),
c{j}=int (ranuni (1) *4);

end;

if c¢{1} eq 0 then bl = 'aa';
if c¢{1} eq 1 then bl = 'bb';
if c{1} eq 2 then bl = 'cc';
if c{1} eq 3 then bl = 'dd';
if c{1l} eq 4 then bl = 'ee';
if c{2} eq 0 then b2 = '"ff';
if c{2} eq 1 then b2 = 'gg';
if c{2} eq 2 then b2 = 'hh';
if c{2} eq 3 then b2 = 'ii';
if c{2} eq 4 then b2 = 'jj';
if c{3} eq 0 then b3 = 'kk';
if c¢{3} eq 1 then b3 = '11"';
if c{3} eq 2 then b3 = 'mm';
if c{3} eq 3 then b3 = 'nn';
if c{3} eq 4 then b3 = 'oo';
output;

end;
run;

proc hpreduce data=one;
class bl-b3 cl-c3;
reduce unsupervised bl blxb2 b3 cl-c3 x1-x10/maxsteps=5;
performance details;

run;

Output 7.1.1 shows the results for PROC HPREDUCE running in single-machine mode. Notice that the
“Performance Information” table shows that the “Execution mode” is “On client.”
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Output 7.1.1 PROC HPREDUCE Running in Single-Machine Mode

Performance Information

Execution Mode Single-Machine
Number of Threads 2

Model Information

Data Source WORK .ONE

Model Type Unsupervised
Class Parameterization GLM

Selection Technique Variance Analysis
Number of Variables 16

Maximal Number of Steps 5

Number of Observations Read 2000
Number of Observations Used 2000

Class Level Information

Class Levels Values
bl 4 aa bb cc dd
b2 4 ff gg hh ii
b3 4 kk 11 mm nn
cl 4 0123
c2 4 0123
c3 4 0123
Selection Summary
Proportion
of
Selected Variance
Iteration Effect Level Explained SSE MSE AIC AICC BIC
1 bl cc 0.0821 42.2236 0.0211 4.8230 49.8490 3.7468
2 bl bb 0.1637 38.4694 0.0193 4.7279 48.7538 3.6575
3 bl aa 0.2443 34.7635 0.0174 4.6236 47.6494 3.5600
4 b3 kk 0.3036 32.0323 0.0160 4.5377 46.5635 3.4819
5 b3 mm 0.3619 29.3519 0.0147 4.4454 45.4710 3.3984
Selected Variable
Selected Variable
Number Variable Type
1 bl CLASS
2 b3 CLASS
Procedure Task Timing
Time
Task (sec.)
Data read and variable levelization 0.03 56.5%
Effect Levelization 0.00 8.70%
Cross—-product accumulation 0.02 34.8%

Variable selection 0.00 0.00%
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Example 7.2: Running in Distributed Mode

When a host for distributed computing is specified and the NODES option in the PERFORMANCE statement
is specified, PROC HPREDUCE uses the specified host for computing and runs in distributed mode.

option set=GRIDHOST="&GRIDHOST";
option set=GRIDINSTALLLOC="&GRIDINSTALLLOC";

data one;
array x{10};
array c{10};
do i=1 to 2000;
do j=1 to 10;
x{Jj}=ranuni (1),
c{j}=int (ranuni (1) *4);
end;
y=int (ranuni (1) x2) ;
output;
end;
run;

proc hpreduce data=one tech=var;
class cl c2 c3;
reduce supervised y = cl-c3 x1-x10/maxsteps=5;
performance nodes=2;

run;

To run the preceding example successfully, you need to set the macro variables GRIDHOST and GRIDIN-
STALLLOC to resolve to appropriate values, or you can replace the references to the macro variables in the
example with the appropriate values.

Output 7.2.1 shows the results for PROC HPREDUCE running in distributed mode. Notice that the “Perfor-
mance Information” table shows that the “Execution mode” is “Distributed.”
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Output 7.2.1 PROC HPREDUCE Running in Distributed Mode

Performance Information
Host Node << your grid host >>
Install Location << your grid install location >>
Execution Mode Distributed
Number of Compute Nodes 2
Number of Threads per Node 8
Model Information
Data Source WORK . ONE
Model Type Supervised
Class Parameterization GLM
Selection Technique Variance Analysis
Number of Variables 14
Maximal Number of Steps 5
Number of Observations Read 2000
Number of Observations Used 2000
Class Level Information
Class Levels Values
cl 4 0123
c2 4 0123
c3 4 0123
Selection Summary
Proportion
of
Selected Variance
Iteration Effect Level Explained SSE MSE AIC AICC BIC
1 c2 0 0.0017 0.9983 0.000499 0.0003 1.0003 0.0021
2 c3 0 0.0026 0.9974 0.000499 0.0004 1.0004 0.0050
3 c3 3 0.0034 0.9966 0.000499 0.0006 1.0006 O0.0080
4 x2 - 0.0042 0.9958 0.000499 0.0008 1.0008 0.0110
5 x8 - 0.0045 0.9955 0.000499 0.0015 1.0015 0.0145
Selected Variable
Selected Variable
Number Variable Type
1 c2 CLASS
2 c3 CLASS
3 x2 INTERVAL
4 x8 INTERVAL
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Example 7.3: Output a Correlation Matrix to a SAS Data File

This example shows how to output a correlation matrix to a SAS data file. The OUTCP option creates an
output data set named corr.

data one;
array x{2},;
array c{2},;
do i=1 to 2000;
do j=1 to 2;
x{j}=ranuni (1),
c{j}=int (ranuni (1) *2);
end;
output;
end;
run;

title "Output the Correlation Matrix";

proc hpreduce data=one corr outcp=corr;
class a;
reduce unsupervised a x1-x2 /maxsteps=4;

run;

proc print data=corr;
run;

Output 7.3.1 shows the content of the data file generated by PROC HPREDUCE.

Output 7.3.1 Output the Correlation Matrix

Obs _ID_ _TYPE _VAR _LEV_ _vID vl v2 v3 va
1 1 MEAN/FREQ 979.00 1021.00 0.49 0.50
2 2 N 2000.00 2000.00 2000.00 2000.00
3 3 CORR a 0 vl 1.00 -1.00 0.03 0.00
4 4 CORR a 1 v2 -1.00 1.00 -0.03 -0.00
5 5 CORR x1 v3 0.03 -0.03 1.00 0.00
6 6 CORR x2 v4 0.00 -0.00 0.00 1.00

The values in the column _ VAR _ are the name of the variables. The _LEV_ column shows the name of a
CLASS variable’s levels, but is empty for interval variables. Assuming that you have n effects (the total
number of interval variables and the levels of CLASS variables), the _vID_ column contains » markers, v1 to
vn, where vi denotes the ith effect. The column _TYPE_ defines the role of each row. When the _TYPE_
column shows MEAN/FREQ), the corresponding row contains either the mean for an interval variable or
the frequency for a level of a CLASS variable. When the _TYPE_ column shows N, the corresponding
row contains the number of samples. And when the _TYPE_ column shows CORR, COV, or SSCP, the
corresponding row contains a row of the CORR, COV, or SSCP matrix. In this example, the CORR matrix is
4 x 4, and it resides in the table in row 3 through row 6 and column 7 through column 10.



Example 7.4: Output the Correlation Matrix in LIL Format 4 165

Example 7.4: Output the Correlation Matrix in LIL Format

By using the LIST option in the OUTCP option, you can output a correlation matrix in LIL format.

data one;
array x{2};
do i=1 to 2000;
a=int (ranuni (1) *2) ;
do j=1 to 2;
x{Jj}=ranuni (1),
end;
output;
end;
run;

title "Output the Correlation Matrix in LIL format";
proc hpreduce data=one corr outcp=corr_lil/list (eps=0.01);
class a;
reduce unsupervised a x1-x2 /maxsteps=4;

run;

proc print data=corr_ 1lil;
run;

Output 7.4.1 shows the correlation matrix in LIL format.

Output 7.4.1 Output the Correlation Matrix in LIL Format

Obs _TYPE_ _ID_ _NAME1_ _NAME2_ _ VAL
1 S 1 samples 2000.00
2 S 2 nVar 3.00
3 S 3 nEff 4.00
4 F 1 a 0 979.00
5 F 2 a 1 1021.00
6 M 3 x1 0.49
7 M 4 x2 0.50
8 R 1 1 1 1.00
9 R 2 2 1 -1.00

10 R 3 2 2 1.00
11 R 4 3 1 0.03
12 R 5 3 2 -0.03
13 R 6 3 3 1.00
14 R 10 4 4 1.00

The column _TYPE_ defines the type of each row:

* When the _TYPE_ column shows S, the corresponding row contains the statistics of the data set. More
specifically, when the _TYPE_ column shows S and the _"NAME]1_ column shows samples, the VAL _
column in the corresponding row contains the number of samples in the data set. Similarly, when the
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_TYPE_ column shows S and the _ NAMEI1_ column shows nVar, the _VAL_ column contains the
number of variables. And when the _"TYPE_ column show S and the _"NAME]1_ column shows nEff,
the _VAL_ column in the corresponding row contains the number of effects.

* When the _TYPE_ column shows F, the row contains the frequency of a level of a CLASS variable. In
this case, the _ NAMEI1 _ column contains the name of the CLASS variable and the  NAME?2_ column
contains the name of the corresponding level.

* When the _TYPE_ column shows M, the row contains the mean of an interval variable. In this case,
the _NAME]1_ column contains the name of the variable and the _NAME?2_ column is empty.

* When the _TYPE_ column shows R, the row contains an entry in the correlation matrix. In this case,
the _NAMEI1_ column contains the row ID, the _ NAME?2_ column contains the column ID, and the
_VAL_ column contains the value.

* When the _TYPE_ column shows V or P, the corresponding row contains an entry of a COV matrix or
an SSCP matrix, respectively.

Only entries in the lower triangle of the correlation matrix are written to the file, because the correlation
matrix is symmetric. Also any entry of the matrix that has a value smaller than 0.01 is ignored in the output
(EPS =0.01), which saves storage space.

Example 7.5: Output an ODS Table as A Local Data File

The ODS output of PROC HPREDUCE can be stored in a local data file. The following example shows how
the “Iteration History” table can be stored as a local file named IterHist by using the ODS output statement:

data one;
array x{10};
array c{10};
do i=1 to 2000;
do j=1 to 10;
x{j}=ranuni (1) ;
c{j}=int (ranuni (1) *4);

end;

if c{1} eq 0 Then bl = 'aa';
if c{1} egq 1 Then bl = 'bb';
if c{1l} eq 2 then bl = 'cc';
if c{1l} eq 3 then bl = 'dd’';
if c{1l} eq 4 then bl = 'ee';
if c{2} eq 0 Then b2 = 'ff';
if c{2} eq 1 Then b2 = 'gg';
if c{2} eq 2 then b2 = 'hh';
if c{2} eq 3 then b2 = 'ii';
if c{2} eq 4 then b2 = 'j3"';

if c{3} eq 0 Then b3 = 'kk';
if c¢{3} eq 1 Then b3 = '11"';
if c{3} eq 2 then b3 = 'mm';
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if c{3} eq 3 then b3 = 'nn’';
if c{3} eq 4 then b3 = 'oo';
output;
end;
run;

proc hpreduce data=one;
ods output SelectionSummary=Summary;
class bl-b3 cl-c3;
reduce unsupervised bl blxb2 b3 cl-c3 x1-x10 /maxsteps =5;
performance details;
run;
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split search SPLITSIZE= option, 75

technical derivations of adjustments formulas, 93
train fraction, 76

train n, 76

training a decision tree, 79

turn variable importance calculations on or off, 74
within node sample, 75

HPNEURAL procedure, 119

computational method, 134
displayed output, 136
input data distribution, 127
input data sets, 126
multithreading, 130, 135
ODS table names, 136
output data set, 135

HPREDUCE procedure, 139

AIC, 153

AICC, 153

BIC, 153

CLASS level, 150, 158
computational method, 156
computes correlations, 150, 151
computes covariances, 150
displayed output, 157

effect name length, 150

fit criteria, 155

input data sets, 150

maximum effects, 153
maximum steps, 153

minimal explained variance increment, 153
model information, 158
multithreading, 152

number of observations, 158
ODS table names, 159
performance information, 158

prints the time used by each variable selection
iteration, 151

procedure task timing, 159

reduce options, 152

reduce options summary, 152

selected variable, 159

selection summary, 158

user-defined formats, 150

variance explained, 153

XML input stream, 150

illustrations of adjusting when sampling unevenly
HPFOREST procedure, 89

input variables
HPNEURAL procedure, 129

loss reduction variable importance
HPFOREST procedure, 102

measuring variable importance
HPFOREST procedure, 96
model
information (HPFOREST), 101
information (HPREDUCE), 158
multithreading
HPNEURAL procedure, 130, 135
HPREDUCE procedure, 152

number of hidden neurons
HPNEURAL procedure, 128

number of observations
HPFOREST procedure, 101
HPREDUCE procedure, 158

options summary
PROC HPREDUCE statement, 149
output data set
HP4SCORE procedure, 44
HPNEURAL procedure, 135

performance information
HPFOREST procedure, 101
HPREDUCE procedure, 158
posterior variables
HPDECIDE procedure, 56
predicted variable
HPDECIDE procedure, 57
procedure task timing
HPREDUCE procedure, 159

reduce options

HPREDUCE procedure, 152
rules

HPFOREST procedure, 85

searching for a splitting rule



HPFOREST procedure, 85
selected variable

HPREDUCE procedure, 159
selecting a splitting variable

HPFOREST procedure, 83
selection summary

HPREDUCE procedure, 158

target variables
HPNEURAL procedure, 131

technical derivations of adjustments formulas
HPFOREST procedure, 93

training a decision tree
HPFOREST procedure, 79

variables
HPDECIDE procedure, 58

weight variable
HPNEURAL procedure, 133
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AIC option
REDUCE statement, 153
AICC option
REDUCE statement, 153
ALPHA-= option
PROC HPFOREST statement, 73
ARCHITECTURE statement
HPNEURAL procedure, 127

BIC option
REDUCE statement, 153

CATBINS= option

PROC HPFOREST statement, 73
CLASS statement

HPREDUCE procedure, 151
CODE statement

HPDECIDE procedure, 54

HPNEURAL procedure, 128
COMMIT= option

PERFORMANCE statement (high-performance

analytical procedures), 34

CORR

PROC HPREDUCE statement, 150
COST= option

PROC HPDECIDE statement, 55
Cov

PROC HPREDUCE statement, 150

DATA= option
PROC HP4SCORE statement, 42
PROC HPDECIDE statement, 53
PROC HPFOREST statement, 73
PROC HPNEURAL statement, 126
PROC HPREDUCE statement, 150
DATASERVER= option
PERFORMANCE statement (high-performance
analytical procedures), 34
DECDATA= option
PROC HPDECIDE statement, 54
DECISION statement
HPDECIDE procedure, 54
DECVARS= option
PROC HPDECIDE statement, 55
DETAILS option
PERFORMANCE statement (high-performance
analytical procedures), 35
DISTR option
PROC HPNEURAL statement, 127

EXHAUSTIVE= option
PROC HPFOREST statement, 74

FILE= option
PROC HPDECIDE statement, 54
SCORE statement, 43
FMTLIBXML-= option
PROC HPREDUCE statement, 150
FREQ statement
HPDECIDE procedure, 56
HPFOREST procedure, 76

GRIDHOST= option
PERFORMANCE statement (high-performance
analytical procedures), 35
GRIDMODE-= option
PERFORMANCE statement (high-performance
analytical procedures), 35
GRIDTIMEOUT= option
PERFORMANCE statement (high-performance
analytical procedures), 35

HIDDEN statement
HPNEURAL procedure, 128
high-performance analytical procedures,
PERFORMANCE statement, 34
COMMIT= option, 34
DATASERVER= option, 34
DETAILS option, 35
GRIDHOST= option, 35
GRIDMODE-= option, 35
GRIDTIMEOUT= option, 35
HOST= option, 35
INSTALL= option, 35
INSTALLLOC= option, 35
LASR= option, 35
LASRSERVER= option, 35
MODE-= option, 35
NNODES= option, 36
NODES= option, 36
NTHREADS= option, 37
THREADS= option, 37
TIMEOUT= option, 35
HOST= option
PERFORMANCE statement (high-performance
analytical procedures), 35
HP4SCORE procedure, 42
syntax, 42
HP4SCORE procedure, PROC HP4SCORE statement



174 4 Syntax Index

DATA= option, 42
HP4SCORE procedure, SCORE statement, 43
FILE= option, 43
MAXDEPTH= option, 43
NTREES= option, 43
OUT= option, 43
HP4SCOREC procedure, ID statement, 42
HP4SCOREC procedure, PROC HP4SCORE
statement, 42
HPDECIDE procedure, 53
CODE statement, 54
DECISION statement, 54
FREQ statement, 56
ID statement, 56
PERFORMANCE statement, 56
POSTERIORS statement, 56
PREDICTED statement, 57
PROC HPDECIDE statement, 53
syntax, 53
TARGET statement, 57
HPDECIDE procedure, PROC HPDECIDE statement
COST= option, 55
DATA= option, 53
DECDATA= option, 54
DECVARS= option, 55
FILE= option, 54
METABASE-= option, 54
OLDPRIORVAR= option, 55
OUT= option, 53
OUTFIT= option, 54
PRIORVAR= option, 55
RESIDUAL, 54
ROLE=option, 54
HPFOREST procedure, 73
FREQ statement, 76
ID statement, 77
INPUT statement, 76
PROC HPFOREST statement, 73
SAVE statement, 78
SCORE statement, 78
syntax, 73
TARGET statement, 78
HPFOREST procedure, FREQ statement, 76
HPFOREST procedure, ID statement, 77
HPFOREST procedure, PROC HPFOREST statement
ALPHA= option, 73
CATBINS= option, 73
DATA= option, 73
EXHAUSTIVE= option, 74
IMPORTANCE-= option, 74
LEAFFRACTION= option, 74
LEAFSIZE= option, 74
MAXDEPTH= option, 74
MAXTREES= option, 74

MINCATSIZE= option, 74
MINUSEINSEARCH= option, 75
MISSING= option, 75
NODESIZE= option, 75
SEED= option, 75
SKIP_SEQ_ROWS= option, 75
SPLITSIZE= option, 75
TRAINFRACTION= option, 76
TRAINN= option, 76
VARS_TO_TRY= option, 76
HPFOREST procedure, SCORE statement, 78
MAXDEPTH= option, 78
NTREES= option, 78
HPLOGISTIC procedure, PROC HPREDUCE
statement
NOPRINT option, 150
HPNEURAL procedure, 126
ARCHITECTURE statement, 127
CODE statement, 128
HIDDEN statement, 128
ID statement, 129
INPUT statement, 129
PARTITION statement, 129
PERFORMANCE statement, 130
PROC HPNEURAL statement, 126
SCORE statement, 131
syntax, 126
TARGET statement, 131
TRAIN statement, 132
WEIGHT statement, 133
HPNEURAL procedure, ID statement, 129
HPNEURAL procedure, PERFORMANCE statement,
130
HPNEURAL procedure, PROC HPNEURAL
statement, 126
DATA= option, 126
DISTR= option, 127
NOPRINT option, 127
HPNEURAL procedure, TRAIN statement
MAXITER= option, 132
NUMTRIES= option, 132
OUTMODEL-= option, 133
VALID= option, 133
HPNEURAL procedures, ARCHITECTURE
statement, 127
HPNEURAL procedures, CODE statement, 128
HPNEURAL procedures, HIDDEN statement, 128
HPNEURAL procedures, INPUT statement, 129
HPNEURAL procedures, PARTITION statement, 129
HPNEURAL procedures, SCORE statement, 131
HPNEURAL procedures, TARGET statement, 131
HPNEURAL procedures, TRAIN statement, 132
HPNEURAL procedures, WEIGHT statement, 133
HPREDUCE procedure, 149



PERFORMANCE statement, 152
PROC HPREDUCE statement, 149
REDUCE statement, 152
syntax, 149
HPREDUCE procedure, CLASS statement, 151

HPREDUCE procedure, PERFORMANCE statement,

152
HPREDUCE procedure, PROC HPREDUCE
statement
CORR, 150
COV, 150
DATA= option, 150
FMTLIBXML= option, 150
NAMELEN= option, 150
NOCLPRINT option, 150
NOSUMPRINT option, 150
OUTCP= option, 150
SSCP, 151
TECHNIQUE-= option, 151
TIMEPRINT, 151
HPREDUCE procedure, REDUCE statement, 152
AIC option, 153
AICC option, 153
BIC option, 153
MAXEFFECTS option, 153
MAXSTEPS option, 153
MINVARIANCEINCREMENT option, 153
VAREXP option, 153
VARIANCEEXPLAINED option, 153
VARINC option, 153
HPREDUCEC procedure, PROC HPREDUCE
statement, 149

ID statement
HPDECIDE procedure, 56
HPFOREST procedure, 77
HPNEURAL procedure, 129
IMPORTANCE= option
PROC HPFOREST statement, 74
INPUT statement
HPFOREST procedure, 76
HPNEURAL procedure, 129
INSTALL= option
PERFORMANCE statement (high-performance
analytical procedures), 35
INSTALLLOC= option
PERFORMANCE statement (high-performance
analytical procedures), 35

LASR= option
PERFORMANCE statement (high-performance
analytical procedures), 35
LASRSERVER= option
PERFORMANCE statement (high-performance
analytical procedures), 35
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LEAFFRACTION= option

PROC HPFOREST statement, 74
LEAFSIZE= option

PROC HPFOREST statement, 74

MAXDEPTH= option

PROC HPFOREST statement, 74

SCORE statement, 43, 78
MAXEFFECTS option

REDUCE statement, 153
MAXITER= option

TRAIN statement, 132
MAXSTEPS option

REDUCE statement, 153
MAXTREES= option

PROC HPFOREST statement, 74
METABASE-= option

PROC HPDECIDE statement, 54
MINCATSIZE= option

PROC HPFOREST statement, 74
MINUSEINSEARCH= option

PROC HPFOREST statement, 75
MINVARIANCEINCREMENT option

REDUCE statement, 153
MISSING= option

PROC HPFOREST statement, 75
MODE-= option

PERFORMANCE statement (high-performance

analytical procedures), 35

NAMELEN= option
PROC HPREDUCE statement, 150
NNODES= option
PERFORMANCE statement (high-performance
analytical procedures), 36
NOCLPRINT option
PROC HPREDUCE statement, 150
NODES= option
PERFORMANCE statement (high-performance
analytical procedures), 36
NODESIZE= option
PROC HPFOREST statement, 75
NOPRINT option
PROC HPNEURAL statement, 127
PROC HPREDUCE statement, 150
NOSUMPRINT option
PROC HPREDUCE statement, 150
NTHREADS= option
PERFORMANCE statement (high-performance
analytical procedures), 37
NTREES= option
SCORE statement, 43, 78
NUMTRIES= option
TRAIN statement, 132
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OLDPRIORVAR= option

PROC HPDECIDE statement, 55
OUT= option

PROC HPDECIDE statement, 53

SCORE statement, 43
OUTCP= option

PROC HPREDUCE statement, 150
OUTFIT= option

PROC HPDECIDE statement, 54
OUTMODEL-= option

TRAIN statement, 133

PARTITION statement

HPNEURAL procedure, 129
PERFORMANCE statement

high-performance analytical procedures, 34

HPDECIDE procedure, 56

HPNEURAL procedure, 130

HPREDUCE procedure, 152
POSTERIORS statement

HPDECIDE procedure, 56
PREDICTED statement

HPDECIDE procedure, 57
PRIORVAR= option

PROC HPDECIDE statement, 55
PROC HPDECIDE statement

HPDECIDE procedure, 53
PROC HPFOREST statement

HPFOREST procedure, 73
PROC HPNEURAL statement, see HPNEURAL

procedure

HPNEURAL procedure, 126
PROC HPREDUCE statement

HPREDUCE procedure, 149

REDUCE statement

HPREDUCE procedure, 152
RESIDUAL

PROC HPDECIDE statement, 54
ROLE-= option

PROC HPDECIDE statement, 54

SAVE statement

HPFOREST procedure, 78
SCORE statement

HPFOREST procedure, 78

HPNEURAL procedure, 131
SEED= option

PROC HPFOREST statement, 75
SKIP_SEQ_ROWS= option

PROC HPFOREST statement, 75
SPLITSIZE= option

PROC HPFOREST statement, 75
SSCP

PROC HPREDUCE statement, 151

syntax
HP4SCORE procedure, 42
HPDECIDE procedure, 53
HPFOREST procedure, 73
HPREDUCE procedure, 149

TARGET statement
HPDECIDE procedure, 57
HPFOREST procedure, 78
HPNEURAL procedure, 131
TECHNIQUE-= option
PROC HPREDUCE statement, 151
THREADS= option
PERFORMANCE statement (high-performance
analytical procedures), 37
TIMEOUT= option
PERFORMANCE statement (high-performance
analytical procedures), 35
TIMEPRINT
PROC HPREDUCE statement, 151
TRAIN statement
HPNEURAL procedure, 132
TRAINFRACTION= option
PROC HPFOREST statement, 76
TRAINN= option
PROC HPFOREST statement, 76

VALID= option

TRAIN statement, 133
VAREXP option

REDUCE statement, 153
VARIANCEEXPLAINED option

REDUCE statement, 153
VARS_TO_TRY= option

PROC HPFOREST statement, 76

WEIGHT statement
HPNEURAL procedure, 133
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