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Chapter 1: Overview

Extension nodes provide a mechanism for extending the functionality of a SAS
Enterprise Miner installation. Extension nodes can be developed to perform any essential
data mining activity (that is, sample, explore, modify, model, or assess[SEMMA]).
Although the Enterprise Miner nodes that are distributed by SAS are typically designed
to satisfy the needs of a diverse audience, extension nodes provide a means to develop
custom solutions.

Developing an extension node is conceptually simple. An extension node consists of the
following:

. oneor more SAS source code files stored in a SAS library or in external files that
are accessible by the Enterprise Miner server

. an XML file defining the properties of the node

. two graphic images stored as .gif files.

When properly developed and deployed, an extension node integrates into the Enterprise
Miner workspace so that, from the perspective of the end user, it is indistinguishable
from any other node in Enterprise Miner. From a devel oper's perspective, the only
difference is the storage location of the files that define an extension node's functionality
and appearance. Any valid SAS language program statement can be used in the source
code for an extension node, so an extension node's functionality is virtually unlimited.

Although the anatomy of an extension node is fairly ssmple, the fact that an extension
node must function within an Enterprise Miner process flow diagram requires special
consideration. An extension node's functionality typically allows for the possibility that
the process flow diagram contains predecessor nodes and successor nodes. As aresult,
your extension node typically includes code designed to capture and process information
from predecessor nodes, and to prepare results to pass on to successor nodes. Also, the
extension node deployment process involves stopping and restarting the Enterprise
Miner server. Because software development is inherently an iterative process, these
features introduce obstacles to devel opment not typically encountered in other
environments. Fortunately, a solution is readily available: the Enterprise Miner SAS
Code node. The SAS Code node provides an ideal environment in which to develop and
test your code. Y ou can place a SAS Code node anywhere in a process flow diagram.
Using the SAS Code node's Code Editor, you can edit and submit code interactively



while viewing the SAS log and output listings. Y ou can run the process flow diagram
path up to and including the SAS Code node and view the Results window without
closing the programming interface. Predefined macros and macro variables are readily
available to provide easy access to information from predecessor nodes. There are also
predefined utility macros that can assist you in generating output for your extension
node. In short, you can develop and test your code using a SAS Code node without ever
having to actually deploy your extension node.

After you have determined that your server code is robust, you will need to develop and
test the XML propertiesfile. The XML propertiesfile is used to popul ate the extension
node's Properties panel, which enables users to set program options for the node's SAS
program.

Accessibility Features of SAS Enterprise
Miner 6.1

SAS Enterprise Miner 6.1 includes accessibility and compatibility features that improve
the usability of the product for users with disabilities. These features are related to
accessibility standards for electronic information technology adopted by the U.S.
Government under Section 508 of the U.S. Rehabilitation Act of 1973, asamended. SAS
Enterprise Miner 6.1 supports Section 508 standards except as noted in the following
table.

Section 508 Accessibility

Criteria Support Status Explanation




When software is designed
to run on a system that has a
keyboard, product functions

The software supports
keyboard equivalents for al
user actions with the
following exception:

The Explore action in the

element.

shall be executable from a Supported with data source pop-up menu
keyboard where the function |exceptions. cannot be invoked directly
itself or the result of from the keyboard, but there
performing afunction can is an alternative way to
be discerned textually. invoke the data source
explorer using the Variables
property in the Properties
panel.
Color coding shall not be ,
Node run or failure
used as the only means of e )
conveying information _ indi catlop relies on color,
S ) ’ Supported with but there is always a
Indicating an action, exceptions corresponding message
prompting a response, or P ' di I&p edin g 0D-U
distinguishing avisual play Pop-Up
window.

If you have questions or concerns about the accessibility of SAS products, send e-mail to

accessi bility @sas.com.
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Chapter 2: Anatomy of an Extension Node

As described in the Overview, an extension node consists of icons, an XML propertiesfile, and a SAS program. To build
and deploy an extension node, you must learn the structure of the individual parts as well as how the parts integrate to form
awhole. Unfortunately, thereis no natural order in which to discuss the individual parts. Y ou cannot learn everything you
need to know about one part without first learning something about at least one of the other parts. This chapter provides

as complete an introduction to each of the parts as possible without discussing their interdependencies. This chapter

also provides the prerequisite knowledge you need to explore the interdependencies in subsequent chapters.

I cons

Each node has two graphical representations. One appears on the SAS Enterprise Miner node Toolbar that is positioned
above the process flow diagram. The other graphical representation appears when you drag and drop an icon from the
toolbar onto the process flow diagram. Theicon that appears on the toolbar requires a 16x16 pixel image and the one
that appearsin the process flow diagram requires a 32x32 pixel image. Both images should be stored as .gif files. For
example, consider the two images here:

E -

When deployed, the 16x16 pixel image appears on the toolbar as follows;

. 8 R Y 9 TS )R 1

Samplel Expll:ure! Mu:u:IiF\_.rI Mndell Assessi Utilityl Credit SEDringl

The 32x32 pixel imageis used by SAS Enterprise Miner to generate the following icon:

—
E Sxample ‘

Thisicon appears on the process flow diagram.

The two .gif files must reside in specific folders on the SAS Enterprise Miner installation's middle-tier server or on the
client/server if you are working on a personal workstation installation. The exact path depends on your operating system
and where your SAS software isinstalled, but on all systems the folders are found under the SAS configuration
directory. Specificaly, the 16x16 image should be stored inthe . . . \ SAS\ Confi g\ Levn\ anal yti csPl atform
\ apps\ Ent erpri seM ner\ ext\ gi f 16 folder, and the 32x32 image should be stored inthe . . .\ SAS\ Confi g
\ Levn\ anal yti csPl at f or Ml apps\ Ent er pri seM ner\ ext\ gi f 32 folder. For example, on atypical
Microsoft Windows installation, the full paths are, respectively, as follows:

. C\ SAS\ Confi g\ Levn\anal yti csPl at forml apps\ Enterpri seM ner\ext\gif16
. C\ SAS\ Confi g\ Levn\anal yticsPl atform apps\ Enterpri seM ner\ext\gif32

Both .gif files must have the same filename. Because they are stored in different folders, a name conflict does not arise.
Y ou can use any available software to generate the images. The preceding images were generated with Adobe
Photoshop Elements 2.0. The 32x32 image was generated first, and then the 16x16 image was created by rescaling the
larger image.

XML PropertiesFile

An extension node's XML properties file provides afacility for managing information about the node. The XML file for
an extension node is stored under the SAS configuration directory:

...\ SAS\ Confi g\ Levn\ anal yti csPl at f orml apps\ Ent er pri seM ner\ ext.


file:///G|/pub/doc/902/production/emxndg/html/extnodesdocument_toc.html#icons
file:///G|/pub/doc/902/production/emxndg/html/extnodesdocument_toc.html#xmlfile

The basic structure and minimal features of an XML propertiesfile are as follows:

<?xm version="1.0" encodi ng="UTF-8"7?>

<! DOCTYPE Conponent PUBLI C
"-/1SAS// EnterpriseM ner DTD Conponents 1.3//EN'
"Component s. dtd" >

<Conponent
type="AF"
resource="com sas. anal yti cs. enm ner. vi sual s. PropertyBundl e"
servercl ass="EM3"
nane=" "
di spl ayNane="
descri ption="
group=" "
i con="
prefix=" " >

"

"

n

<PropertyDescri ptors>
</ PropertyDescri ptors>

<Vi ews>
</ Vi ews>

</ Conponent >

The preceding XML code can be copied verbatim and used as a template for an extension node's XML propertiesfile. XML
is case-sensitive, so it isimportant that the element tags are written as specified in the example. The values for all of
the elements' attributes must be quoted strings.

The most basic properties file consists of a single Component element with attributes, a single nested
PropertyDescriptors element, and a single nested Views element. In the example properties file depicted here,

the PropertyDescriptors and Views elements are empty. As the discussion progresses, the PropertyDescriptor s element
is populated with avariety of Property elements and Control elements; the Views element is populated with avariety

of View elements, Group elements, and PropertyRef elements. Some of these elements are used to integrate the node into
the SAS Enterprise Miner application. Some elements link the node with a SAS program that you write to provide the
node with computational functionality. Other elements are used to populate the node's Properties panel, which serves as
agraphical user interface (GUI) for the node's SAS program.

Component Element

The Component element encompasses all other elementsin the properties file. The attributes of the Component

element provide information that is used to integrate the extension node into the SAS Enterprise Miner environment.

All extension nodes share three common Component attributes: type, resour ce, and server class. These three attributes
must have the values that are displayed in the preceding example. The values of the other Component attributes are unique
for each extension node. These other Component attributes convey the following information:

. hame — the name of the node as it appears on the node's icon in a process flow diagram.

. displayName — the name of the node that is displayed in the tooltip for the node'sicon on the node Toolbar and in the
tooltip for the node'sicon in a process flow diagram. The amount of text that can be displayed on an icon is limited but
tooltips can accommodate longer strings.

. description — ashort description of the node that appears as a tooltip for the node Toolbar.

. group — the SEMMA group where the node appears on the SAS Enterprise Miner node Toolbar. The existing SEMMA
group values are as follows:

SAMPLE
EXPLORE
MODIFY
MODEL
ASSESS
UTILITY

O 0o o o o o



If you select avalue from thislist, your extension node'sicon appears on the toolbar under that group. However, you can
add your own group to the SEMMA toolbar by specifying avalue that isnot in thislist.

. icon — the name of the two .gif files that are used to generate the SAS Enterprise Miner icons. The two .gif files share
acommon filename.

. prefix — astring used to name files (data sets, catalog, and so on) that are created on the server. The prefix must be a
valid SAS variable name and should be as short as possible. SAS filenames are limited to 32 characters, so if your prefix is
k characterslong, SAS Enterprise Miner is left with 32-k characters with which to name files. The shorter the prefix, the
greater the flexibility the application has for generating unique filenames.

Consider the following example:

<?xm version="1.0" encodi ng="UTF-8"7?>

<! DOCTYPE Conponent PUBLI C
"-//SAS/ /| EnterpriseM ner DTD Conponents 1.3//EN'
"Component s. dtd" >

<Conponent
type="AF"
resource="com sas. anal yti cs. enmi ner. vi sual s. PropertyBundl e"
servercl ass="EM3"
nane="Exanpl e"
di spl ayNane="Exanpl e"
descri pti on="Ext ensi on Node Exanpl e"
gr oup="EXPLORE"
i con="Exanpl e.gi f"
prefix="EXMPL" >

<PropertyDescri ptors>
</ PropertyDescri ptors>

<Vi ews>
</ Vi ews>

</ Conponent >

Thedi spl ayNanme="Exanpl e" anddescri pti on="Ext ensi on Node Exanpl e" attributestogether produce
the tooltip that appears when you hover your mouse over the extension node's icon on the node Toolbar.

el o S BN ) B Y V51 el A
EI Explore | M= = Eility | Credit Scaring |

Exampl
{w. pxample Extenzion Node Example

The nane="Exanpl e" attribute produces the name on the icon in the following example.
Thedi spl ayNane="Exanpl e" produces the tooltip that is displayed when you hover your mouse over the node'sicon
in the process flow diagram.

E Zxample $ ‘-

|Example|

Thegr oup="EXPLORE" attribute informs SAS Enterprise Miner that the extension node's icon should be displayed in
the Explore tab of the node toolbar. Thei con="Exanpl e. gi f" attribute informs SAS Enterprise Miner of the name of
the .gif file used to produce the icon on the node toolbar. The pr ef i x="EXMPL" attribute informs SAS Enterprise Miner
that filenames of files generated on behalf of this node should share a common prefix of EXMPL. The prefix isalso used as
the Node ID in the Properties panel. When deployed, this extension node would have the following Properties panel:



F %

| | Property: | Yalue |

Mode D ExMPL |
Imported Data
Exported Data

Motes

Create Time 210/09 3:06 P
Fun Id

Last Errar
Last Status
Last Run Time
Fun Duratian
Grid Host
User-Addad Naode es
N

The General properties and Status properties that are displayed here are common to all nodes and are generated
automatically by SAS Enterprise Miner.

PropertyDescriptors Element

The PropertyDescriptor s element provides structure to the XML document. Having all of the Property

elements encompassed by a single PropertyDescriptor s element isolates the Property elements from the rest of the

file's contents and promotes efficient parsing. The real information content of the PropertyDescriptors element is provided
by theindividual Property elements that you place within the PropertyDescriptor s element. A variety of Property
elements can be used in an extension node. Each type of Property element is discussed in detail here. Working examples
for each type of Property element are also provided.

Property Elements

The different types of Property elements are distinguished by their attributes. The attributes that are currently supported
for extension nodes are as follows:

. type— specifies one of four supported types of Property element. The supported types are as follows:

o String
o boolean
o int

o double

These values are case-sensitive.

. name — aname by which the Property element is referenced el sewhere in the properties file and in the node's SAS code.
At run time, SAS Enterprise Miner generates a corresponding macro variable with the name & EM_PROPERTY _name. By
default, & EM_PROPERTY _name resolves to the value that is declared in theinitial attribute of the Property element. If a
user specifies avalue for the property in the Properties panel, & EM_PROPERTY _name resolves to that new value. Macro
variable names are limited to 32 characters. Twelve characters are reserved for the EM_PROPERTY _ prefix, so the value
specified for the name attribute must be 20 characters or less.

. displayName — the name of the Property element that is displayed in the node's Properties panel.

. description — the description of the Property element that is displayed in the node's Properties panel.

. initial — definestheinitial or default value for the property.

. edit — indicates whether the user can modify the property's value. Valid valuesare Y and N.

Some Property elements support all of these attributes, and some support only a subset.

Examples of the syntax for each of the four types of Property elements are provided here. These examples can be copied
and used to create your own properties file. All you need to do is change the values for the name,

displayName, description, initial, and edit attributes.

String Property

<Property



type="String"

nane="St ri ngExanpl e"

di spl ayNanme="String Property Exanple"
description="wite your own description here"
initial="Initial Value"

edit="Y" />

The value of a String Property is displayed as atext box that a user can edit. Use a String Property when you want the user
to typein astring value. For example, your extension node might create a new variable, and you could allow the user
to provide avariable label .

L ocation and Catalog Properties

The preceding example is typical of a String Property element that corresponds to a specific option or argument of
the node's SAS program. However, there are two specia String Property elements, referred to as the Location
Property and the Catalog Property, that you must include in the properties file. These two specia String Property
elements are used to inform SAS Enterprise Miner of the location of the node's SAS program. These two Property
elements appear as follows:

<Property
type="String"
name="Locati on"
initial="CATALOG'/ >

<Property
type="String"
nane = "Catal 0g"

initial="SASHELP. EMEXT. Exanpl e. SOURCE"/ >

The Location Property should be copied verbatim. The Catalog Property can also be copied. However, you should
change the value of theinitial attribute to the name of the file that contains the entry point of your SAS program in
the Catalog Property. As discussed later in the section on Server Code, your SAS program can be stored in several
separate files. However, there must always be one file that contains a main program that executes first. The value of
theinitial attribute of the Catalog Property should be set to the name of thisfile. If you want to store the main
program in an external file, you still need to create a source file that is stored in a SAS catal og. The contents of that
file would then simply have the following form:

filename tenp 'file-
nane'

% ncl ude tenp;
filenanme tenp;

Here, file-name is the name of the external file containing the main program.
Boolean Property

<Property
t ype="bool ean"
name="Bool eanExanpl e"
di spl ayNane="Bool ean Property Exanple"
description="wite your own description here"
initial="Y" />

The Boolean Property is displayed as a drop-down list; the user can select either Yesor No.
Integer Property
<Property
type="int"

name="I| nt eger"
di spl ayNanme="1nt eger Property Exanple"



description="wite your own description here"
initial="20"
edit="Y">

</ Property>

The value of an Integer Property isdisplayed as atext box that a user can edit. Use an Integer Property when you want
the user to provide an integer value as an argument to your extension node's SAS program.

Double Property

<Property
type="doubl e"
name="Doubl e"
di spl ayNane="Doubl e Property Exanple"
description="wite your own description here"
initial="0.02"
edit="Y">

</ Property>

The value of aDouble Property is displayed as atext box that a user can edit. Use a Double Property when you want the
user to provide areal number as an argument to your extension node's SAS program.

Properties of these types appear as depicted in the following Properties panel :

Property ‘alue

Iode [0 ExmPL
Imported Data
Exported Data
[otes

String Property Example  |nitial Yalue
Boolean Froperty Example [Yes
Integer Property Example |20

Couhle Property Example 0.02

Create Time 210508 3:23 PM
Run Id

Last Errar
Last Status
Last Run Time
Fun Duration
Grid Host
User-Added Mode Bs

These are the most basic forms of the available Property elements. For some applications, these basic forms are sufficient.
In many cases, however, you might want to provide a more sophisticated interface. Y ou might also want to restrict the set
of valid values that a user can enter. Such added capability is provided by Control elements.

Note: For thisexample, al of the newly created properties were placed under the heading Train. That heading was
generated using a View element discussed later.

Control Elements

In addition to specifying the attributes for a Property element, you can also specify one of several types of Control
elements. Control elements are nested within Property elements. Seven types of Control elements are currently supported
for extension nodes. Each type of Control element has its own unique syntax. The seven types of Control elements are
listed here:

. Choicel ist — displays a predetermined list of values.
. Range — validates a numeric value entered by the user.



. SASTABLE — opens a Select a SAS Table window enabling the user to select a SAS data set.

. FileTransfer — provides adialog box enabling a user to select aregistered model.

. Dialog— opens adialog box providing access to a variables table from a predecessor data source node, an external text file,
or a SAS data set.

. TableEditor — displays atable and permits the user to edit the columns of the table.

. DynamicChoicel ist — displays adynamically generated list of values. Thistype of Control element is used with
a TableEditor Control element.

Some Control elements require accompanying server code to provide functionality. These include the
TableEditor, DynamicChoicel ist, Filetransfer, and some Dialog Control elements. Examples of these types of
Control elements are presented in alater chapter following a discussion of extension node server code.

Examples of the syntax for each of the four types of Control elements that do not require server code follow. These
examples can be copied and used to create your own propertiesfile.

String Property with a ChoicelL ist Control

<Property
type="String"
nane=" Choi ceLi st Exanpl e"
di spl ayNane="Choi ce List Control Exanple"
description="wite your own description here"
initial="SEGVENT">
<Control >
<Choi celi st >
<Choi ce rawval ue="SEGVENT" di spl ayVal ue="Segnent" />
<Choi ce rawval ue="1D" di spl ayval ue="1D" />
<Choi ce rawval ue="1 NPUT" di spl ayVval ue="1nput" />
<Choi ce rawval ue="TARGET" di spl ayVval ue="Target" />
</ Choi celLi st >
</ Control >
</ Property>

A ChoicelList Control enablesyou to present the user with a drop-down list containing predetermined values for a property.
A String Property with a ChoiceList Control consists of the following items:

. aProperty element with attributes.

. asingle Control element.

. asingle ChoicelL ist element.

. two or more Choice elements. Each Choice element represents one valid value for a program option or argument.

Each Choice element has the following attributes:
. rawValue — the value that is passed to the node's SAS program.

. displayValue— the value that is displayed to the user in the Properties panel. It can be any character string. If no
displayValueis provided, the rawValueis displayed.



Property

Mode [D

Walue

ExMPL

Imparted Data

Exported Data

Motes

String Propery Example Initial *¥alue
EBoolean Property Example as
Integer Property Example 20

0.0z

i Segment

Segrent
Create Time i
Run Id Input
Last Error Target
Last Status

Last Run Time
Run Duration
Grid Host
User-Added Hode as

Note: Make sure that the value of theinitial attribute of the Property element matches the rawValue attribute of one of
the Choice elements. The value of the Property element'sinitial attribute is the default value for the property; it isthe
valuethat is passed to your SAS program if the user doesn't select a value from the Properties pandl. If theinitia attribute
does not match the rawValue attribute of one of the Choice elements, you could potentially be passing an invalid value to
your SAS program. To avoid case mismatches, it is a good practice to write the rawValue attributes and the initial
attribute using all capital letters.

String Property with a Dialog Control

There are three types of Dialog Control elements supported for extension nodes in Enterprise Miner 6.1. The Dialog
elements are uniquely distinguished by their class attributes. The class attributes are as follows:

. com.sas.analytics.eminer.visuals.VariablesDialog
. com.sas.analytics.eminer.visuals.CodeNodeScoreCodeEditor
. com.sas.analytics.eminer.visuas.InteractionsEditorDialog

In each of the three cases, the class attribute must be specified verbatim. The Dialog Control with class=com.sas.
analytics.eminer .visuals.VariablesDialog is the only Dialog Control of the three that does not require accompanying
server code.

Dialog Control with class=com.sas.analytics.eminer.visuals.VariablesDialog

<Property
type="String"
name="Vari abl eSet"
di spl ayNane="Vari abl es"
description="Variable Properties">
<Control >
<Di al og
cl ass="com sas. anal yti cs. em ner. vi sual s. Vari abl esDi al og"
showval ue="N" />
</ Control >
</ Property>

This Property element configuration provides access to the variables exported by a predecessor Data Source node.
Notice the class attribute of the Dialog element. When you include a Property element of thistype, the

displayName value is displayed in the Properties panel and an ellipsisicon ( g) is displayed in the Value column.



Property: Yalue

Mode (D ExmMPL

Imported Data
Exported Data
[otes

String Property Example Initial %¥alue

Boolean Froperty Example es

Integer Praperty Example 20

Ciouhle Property Example 0.0z

Choice List Contral Example |Segment
ariables

Create Time 211008 11:21 Ahd
Fun Id

Last Error
Last Status
Last Run Time
Run Duration
Grid Host
Llzer-Added Mode es

Clicking on the[=d icon opens awindow containing a variablestable. A filter based on the variable metadata column
values can be applied so that only a subset of the variablesis displayed in the table. The user can set the Use and
Report status for individual variables, view the columns metadata, or open the Explore window. In the Explore
window, the user can view a variable's sampling information, observation values, or plots of variables' distributions.

BA Variables - EXMPL

(none) LI [ not IEquaI to Ll Apply | Reset |
IColurmns: [ Label [ Mining [ Basic [ Shatistics
Mame Lse Report Role Lewvel
BAD Default Ho Target Binary
CLAGE Default Ho Ihput Interal
CLMO Default Mo Input Interval
DEETIMC Default Yes Input Interval
DELIMG Default Ho Input Interval
DEROG Default No Input Interval
0B Default Ho Input Maminal
LOAM Default No Input Interval
IMORETDUE  Default Ho Input Interal
] [ 2 Default Ho Input Interval
REASCOMN Default No Input Mominal
ALLIE Default Ho Ihput Interal
[ON] Default Ho Input Interal

Explore, .. Update Path | (ol I Cancel

If you set the value of the showValue attribute to Y, the name of the VariableSet data set name is displayed beside
the elipsisicon.

Note: You use this Property and Control configuration only when you want the user to be able to control which
variables the node uses.

The other two types of Dialog Control elements are used to access files or data sets that are not exported by predecessor
nodes in aprocess flow diagram. In order to access such files or data sets, you must first register these files or data sets

with Enterprise Miner. Thistopic is explained |ater in a discussion about extension node server code. Therefore, illustrations
of the two additional Dialog Control elements are presented in alater chapter after you have gained the requisite
knowledge for registering files and data sets that are to be accessed by your extension node.

Integer Property with a Range Control



<Property
type="int"
name="Range"
di spl ayNanme="Integer Property wi th Range Control"
description="wite your own description here"
initial="20"
edit="Y">
<Control >
<Range mi n="1"
excl udeM n="N'

max="1000"
excl udeMax="N"/>
</ Control >

</ Property>

The addition of the Range Control element to an Integer Property element enables you to restrict the range of
permissible values that a user can enter. The Control element has no attributes in this case. Instead, a Range element is
nested within the Control element. The Range element has these four attributes:

. min — an integer that represents the minimum of the range of permissible values.

. excludeMin — when this attribute is set to Y, the minimum value of the range that is declared in the min attribute is
excluded as a permissible value. When this attribute is set to N, the minimum value is a permitted value.

. max — an integer that represents the maximum of the range of permissible values.

. excludeM ax — when this attribute is set to Y, the maximum value of the range that is declared in the max attribute is
excluded as a permissible value. When this attribute is set to N, the maximum value is a permitted value.

If the user enters avalue that is outside the permissible range, the value revertsto the previous valid vaue.
Double Property with a Range Control

<Property
t ype="doubl e"
name="doubl e_r ange"
di spl ayNane="Doubl e Property w th Range Control"
description="wite your own description here"
initial="0.33"

edit="Y">
<Control >
<Range

m n="0"
excl udeM n="Y"
max="1"
excl udeMax="Y" />

</ Control >

</ Property>

The addition of the Range Control element to a Double Property element enables you to restrict the range of
permissible values that a user can enter. The Control element has no attributes in this case. Instead, a Range element is
nested within the Control element. The Range element has these four attributes:

. min — area number that represents the minimum of the range of permissible values.

. excludeMin — when this attribute is set to Y, the minimum value of the range that is declared in the min attribute is
excluded as a permissible value. When this attribute is set to N, the minimum value is a permitted value.

. max — areal number that represents the maximum of the range of permissible values.

. excludeM ax — when this attribute is set to Y, the maximum value of the range that is declared in the max attribute is
excluded as a permissible value. When this attribute is set to N, the maximum value is a permitted value.

If the user enters avalue that is outside the permissible range, the value reverts to the previous valid value.
String Property with a SASTABLE Control

<Property
type="String"



name="SASTabl e"
di spl ayNane="SASTABLE Control Exanple"
description="wite your own description here"
initial=""
edit="Y">
<Contr ol
t ype="SASTABLE"
showval ue="Y"
showSyst enli brari es="Y"
noDat aSpeci fi ed="Y" />
</ Property>

A SASTABLE Control element enables the user to select the name of a SAS data set. The default value of a String
Property element with a SASTABLE Control isanull string.

| Property | YWalue

HNode 1D ExMPL
Imported Data
Exported Data

Hotes

String Property Example Initial WYalue

Boolean Property Example BS

Integer Property Example 20

Double Property Example 0.02

Choice List Control Example Segment
ariables B

Integer Propery with Randge Caontrol (20
Couble Fropery with Ranoge Control (0,33

SASTABLE Contral E}(amile

Create Time 2111009 217 PN
Run Id

Last Error
Last Status
Last Run Time
Run Duration
Grid Host
ser-Added Hode es

When the user clicks on the [l icon, a Select a SAS Table window is displayed and the user is permitted to select a SAS
data set from the SAS libraries that are displayed.

BN Select a SAS Table E

g 545 Libraries | Type | Created Date | Modified Date | Size |
{2} Apfmtlib DATA  2008-12-22  2008-12-22  3MB =]
5 J Emds DATA 2008-12-22  2008-12-22 34KE |

~{=f Emids

-z Emimeta

DATA 20058-12-22  2008-12-22 104KE
DATA 20058-12-22  2008-12-22 43KE

;i Emmeta DAaTA 20058-12-22  2008-12-22 24KB

_:i Emites DAaTA 20058-12-22  2008-12-22 40KE

(=P Maps DATA 20058-12-22  2008-12-22 akB
DATA 20058-12-22  2008-12-22 3KEB

;’ Sampsio

=

DATA 20058-12-22  2008-12-22 16kE
DAaTA 20058-12-22  2008-12-22 17EKE
DATA 20058-12-22  2008-12-22 3KE
DATA 20058-12-22  2008-12-22 11zKE

_i Sasuser

{2 Work

[T Mo data set ko be specified

Refresh Propetties. .. | QK I Cancel |




This Control element has these four attributes:

. type— declares the type of control. This attribute value must be set to "SASTABLE" to produce the effect depicted here.

. showValue— when set to Y, this attribute displays the name of the data set selected by the user in the Vaue column of the
Properties panel. When this attribute is set to N, the Value column of the Properties panel remains empty even when a user
has selected a data set.

. showSystemLibraries— when this attribute is set to Y, SAS Enterprise Miner project libraries are displayed in the Select a
SAS Table window. When this attribute is set to N, SAS Enterprise Miner project libraries are not displayed in the Select a
SAS Table window. For example, in the previous example, notice the SAS Enterprise Miner project libraries Emds, Emlds,
Emlmeta, Emmeta, and Emws2. If the showSystemL ibraries attribute had been set to N, these SAS Enterprise Miner
libraries would not be displayed.

. noDataSpecified — When this attribute is set to Y, a check box with the label "No data set to be specified" appearsin the
bottom left corner of the Select a SAS Table window. When checked, the SASTABLE Control is cleared and the value of
the String Property is set to null. When set to N, this attribute has no effect.

The default values of the property and the corresponding macro variable & EM_PROPERTY _propertyname are null. When
auser selects a data set, the name of the data set is assigned to & EM_PROPERTY _propertyname and is displayed in the
Value column of the Properties panel. The property's value can be changed to another data set name by clicking on the [

icon and selecting a new data set. Clicking on the =] icon and then clicking on the No data set to be specified check
box clears the property.

String Property with a TableEditor Control: A Preview

A String Property with a TableEditor Control requires SAS code in order for it to function properly. Because this
Control requires server code, which has not yet been discussed, a complete discussion and example of this type of
Property and Control configuration is provided in Appendix 2: Controls That Require Server Code. This section provides
apreview of the most basic type of table editor. This preview also serves as areference example for the discussion on
server code in the next chapter.

When a String Property with a TableEditor Control isimplemented, an ellipsisicon ( [ ) appears in the Vaue column of
the Properties panel next to the Property name.

Properky Walue

Mode [0 ExMFL
Imported Data B8
Exported Data o
Motes
String Froperty Example Initial Walue
Boolean Property Example BS
Integer Property Example 20
Couhle Property Example n.0z
Choice List Control Example Segment

ariahles |
SASTABLE Caontrol Example __|

Integer Property with Range Control |20
Couhle Property with Range Control |0.33

Tahle Editor Contral Examile

Create Time 212508 213 PM
Run Id

Last Error
Last Status
Last Run Time
Fun Duration
Grid Host
User-Added Mode Bs

Clicking on the icon opens a Table Editor window, which displays a table that is associated with the Control element.


file:///G|/pub/doc/902/production/emxndg/html/extnodestableeditor.html

B4 SAS Table Editor - WORK.COMPANY x|

CEFTHEAD | JOB | LE"EL1 OhslD I LEE

1 MANAGER International Ai [1.0 TOKYD -

2 ASSISTANT International Ai [2.0 TOKYD

7 ACCOUNTANT International Ai [3.0 TOKYD

1 MANAGER International Ai |4.0 LOMDC

7 ADMIN International i 5.0 TOKYD

7 ASSIST. International Ai [5.0 TOKYD

7 ASSISTANT International i [7.0 LOMNDC

1 MARKET. CONS. International Ai [5.0 LOMDC

7 MARKETING International Ai [9.0 TOKYD

7 ASSISTANT International Ai [10.0 LOMDC

7 SALES.-CONS. International Ai [11.0 LOMDC

7 SALES CONS International Ai [12.0 LOMDE

7 SALES CONSBERL  International Ai[13.0 LOMNDC

7 MARKET. CONS. International Ai [14.0 LOMNDC

2 CONSULTANT SOD  International Ai [15.0 LOMNDC

7 SALES.-CONS. International Ai [16.0 LOMDC

7 SALES-TRAINEE International Ai [17.0 LOMDC

7 CONSULTANT International Ai [15.0 LOMDC

7 SALES-COMSMAINF  International Ai [19.0 LOMNDC

7 ASSIST International Ai [20.0 LOMNDC

1 MANAGER International Ai [21 0 TOKYD

2 TRANSLATOR International Ai [22.0 LOMDC

7 TRANSLATOR International Ai [23.0 TOKYD

7 ASSISTANT International Ai [24.0 MEY ¥

7 ASSISTANT International Ai [25.0 MEWY 11 = |

Kl 5]

0.4 I Cancel |

Depending on how the Control element is configured, a user might then edit some or all of the valuesin the table. You
aso have the option of writing specially identified blocks of SAS code that execute either when the table first opens or
when the tableis closed.

Views

The Views element organizes properties in the Properties panel. The following Properties panel contains one of each type
of Property element:



Property Walue

[

Mode [0 EXMPL
Imported Data
Exparted Data

[4otes

String Froperty Example Initial Walue

Boolean Property Example BS

Integer Property Example 20

Couhle Fropery Example 0.02

Choice List Control Example Segment
ariahles B

Integer Property with Range Cantral |20
Douhle Fropery with Range Control [0.33

SASTABLE Control Examile

Create Time 211508 217 P
Run Id

Last Errar
Last Status
Last Run Time
Fun Duration
Grid Host
User-Added Mode es

Hereisthe Views element of the XML propertiesfile that generates this Properties panel:

<Vi ews>
<Vi ew nanme="Trai n">
<PropertyRef naneref="StringExanpl e"/>
<PropertyRef naneref="Bool eanExanpl e"/ >
<PropertyRef nameref="Integer"/>
<PropertyRef naneref="Double"/>
<PropertyRef nameref="Choi celLi st Exanpl e"/>
<PropertyRef naneref="Variabl eSet"/>
<PropertyRef naneref="Range"/>
<PropertyRef naneref="doubl e_range"/>
<PropertyRef naneref="SASTabl e"/>
</ Vi ew>
</ Vi ews>

Within the Views element, thereisasingle View element. That View element has a single attribute — name — and its value
isTrain. Nested within the View element is a collection of PropertyRef elements. There is one PropertyRef element for
each Property element in the properties file. Each PropertyRef element has a single namer ef attribute. Each namer ef has
avalue that corresponds to the name attribute of one of the Property elements.

When you add the Train View element, SAS Enterprise Miner separates the node's properties into three groups:
General, Train, and Status. The General and Status groups are automatically generated and populated by SAS
Enterprise Miner. These two groups and the properties that popul ate them are common to all nodes and do not have to
be specified in the extension node's XML propertiesfile. The Train group contains al of the properties that are specified
by the PropertyRef elements that are nested within the Train View element.

Now suppose that instead of asingle View element, there were three View elements: Train, Score, and Report. Suppose
that we also remove some of the PropertyRef elements from the Train View, put somein the Score View, and put the rest
in the Report View, asfollows:

<Vi ews>

<Vi ew nanme="Train">
<PropertyRef naneref="StringExanpl e"/>
<PropertyRef naneref="Bool eanExanpl e"/ >
<PropertyRef nameref="Integer"/>
<PropertyRef naneref="Double"/>

</ Vi ew>

<Vi ew nane="Scor e" >



<PropertyRef naneref="Choi celi st Exanpl e"/>
<PropertyRef naneref="Variabl eSet"/>
<PropertyRef naneref="SASTabl e"/>

</ Vi ew>

<Vi ew nane="Report">
<PropertyRef naneref="Range"/>
<PropertyRef naneref="doubl e_range"/>

</ Vi ew>

</ Vi ews>

The following Properties panel would appear as aresult:

Property: Walue

Mode 1D EXMPL
Imported Data
Exported Data

Motes

String Property Example Initial Yalue

Boolean Property Example es

Integer Froperty Example 20

Ciouble Property Example 0.0z

Choice List Control Example Segment
ariablas

SASTABLE Control Example

Integer Froperty with Range Contral (20
Double Property with Range Cantral (0,33

Create Time 21109 246 P
Run Id

Last Errar
Last Btatus
Last Run Time
Run Duration
Grid Host
ser-Added MNode BS

By convention, SAS Enterprise Miner nodes use only three View elements with the names Train, Score, and

Report. However, not all nodes need al three View elements. Although it is recommended, you are not required to follow
this convention. Y our node can have as many different View elements as you like and you can use any names that you want
for the View elements.

Group Elements

Y ou can indicate to the user when a set of Property elementsisrelated by placing the related Property elementsin a

group. When agroup is defined, all of the propertiesin the group appear asitems in an expandable and collapsible list under
a separate subheading. Thisis accomplished by nesting a Group element within a View element and then nesting
PropertyRef elements inside of the Group element.

Group elements have two attributes:

. name — uniquely identifies the Group to the Enterprise Miner server.
. displayName — the name of the Group that is displayed in the node's Properties panel.
. description — the description of the Group that is displayed in the node's Properties panel.

For example, consider the following Views configuration:

<Vi ews>
<Vi ew nanme="Train">
<PropertyRef naneref="StringExanple" />
<PropertyRef naneref="Bool eanExanpl e" />
<G oup



name=" G oupExanpl e"
di spl ayNane="G oup Exanpl e"
description="wite your own description here">
<PropertyRef nanmeref="Integer" />
<PropertyRef naneref="Double" />
<Pr opertyRef naneref="Choi ceLi st Exanpl e" />
</ Gr oup>
<PropertyRef naneref="VariableSet" />
<PropertyRef naneref="SASTable" />
<Pr opertyRef naneref="Range" />
<PropertyRef naneref="doubl e_range" />
</ Vi ew>
</ Vi ews>

The following Properties panel results:

Property ‘Value

Mode |D EXMPL

Imported Data
Exported Data
Motes

String Froperty Example Initial ¥alue
es

20
Double Property Example 0.0z
Choice List Control Example Segment
ariables

SASTABLE Control Example
Integer Propery with Range Caontrol (20
Diouble Propery with Range Contral  [0.33

Create Time 211108 331 P
Run Id

Last Errar

L ast Status
Last Run Time
Run Duration
Grid Host
User-Added Mode es
=T’

Group Example

write your own description here
Y ou can click on the + or - sign beside the Group name to expand or collapse, respectively, the list of properties that
areincluded in agroup.
Y ou can examine the XML properties files of existing SAS Enterprise Miner nodes and use them as guides to constructing
your own properties files. The exact location of these files depends upon your operating system and installation

configuration, but they can be found under the SAS configuration directory:

...\ SAS\ Confi g\ Levl\ Anal yti csPl at f or Ml apps\ Ent er pri seM ner\ conf\ conponent s

Be aware, however, that SAS Enterprise Miner nodes can have features that are not supported for extension nodes. If you
see an attribute in a SAS node's XML propertiesfile that is not documented here, assume that the attribute is not supported
for extension nodes.

SubGroup Elements

Y ou might also encounter situations where your node's SAS program has many options and arguments. In such cases, the list
of properties can become too long to conveniently display in the Properties panel. In such situations, you might want to



have related propertiesin their own separate Properties panel. Thisis accomplished by using SubGroup el ements.
SubGroup elements have essentially the same structure as Group elements. That is, SubGroup elements have these
three attributes:

. name — uniquely identifies the SubGroup to the Enterprise Miner server.
. displayName — the name of the SubGroup that is displayed in the node's Properties panel.
. description — the description of the SubGroup that is displayed in the node's Properties panel.

Nest the SubGroup element within aView element, and nest PropertyRef elements within the SubGroup element. When
aSubGroup element isused, an [dicon appears in the Value column of the Properties panel next to the displayName of

the SubGroup. Clicking the [ icon opens a child window. The properties that are nested within the SubGroup element
are displayed in that window. The Property elements and Control elements within the SubGroup's Properties panel
function the same way that they function in the main Properties panel.

For example, consider the following Views element:

<Vi ews>
<Vi ew nanme="Train">
<SubGr oup
name="SubG oupExanpl e"
di spl ayNane="SubG oup Exanpl e"
description="wite your own description here">
<PropertyRef naneref="Bool eanExanpl e"/ >
<PropertyRef naneref="StringExanple"/>
<PropertyRef naneref="Integer"/>
<PropertyRef naneref="Doubl e"/>
</ SubG oup>
<PropertyRef naneref="=Choi celLi st Exanpl e"/>
<PropertyRef naneref="Variabl eSet"/>
<PropertyRef naneref="SASTable"/>
<PropertyRef naneref="Range"/>
<PropertyRef naneref="doubl e_range"/>
</ Vi ew>
</ Vi ews>

The following Properties panel results:

Properky- ‘alue

Mode D EXMPL
Impored Data
Exported Data
Motes

Choice List Caontrol Example Segment
ariables

SASTABLE Control Example

Integer Property with Randge Control 20

Ciouble Property with Range Cantrol (0,33

Create Time 211708 331 PM
Run Id

Last Error
Last Status
Last Run Time
Run Duration
Grid Host
User-Added Mode es

The four properties that are nested in the SubGroup element do not appear in the Properties panel. Instead, the
SubGroup element's name value is displayed. Clicking the adjacent Edicon opens the following child window:



B4 SubGroup Example

Property Yalue

Boolean Property Example 85

String Property Example Initial %alue
Integer Property Example 20

Ciouble Propey Example 0.0z

P

Boolean Property Example

write your own description here

oK I Cancel

Server Code

The specific function of each node is performed by a SAS program that is associated with the node. Thus, when a node
isplaced in a process flow diagram, it isagraphical representation of a SAS program. An extension node's SAS

program consists of one or more SAS source code files residing on the SAS Enterprise Miner server. The source code can
be stored in a SAS library or in external files. Any valid SAS statement can be used in an extension node's SAS

program. However, you cannot issue statements that generate a SAS windowing environment. The SAS

windowing environment from Base SAS is not compatible with SAS Enterprise Miner. For example, you cannot execute
SAS/LAB software from within an extension node. As you begin to design your node's SAS program, ask yourself these
five questions:

. What needs to occur when the extension node'sicon isinitially placed in a process flow diagram?

. What is the node going to accomplish at run time?

. Will the node generate Publish or Flow code?

. What types of reports should be displayed in the node's Results window?

. What program options or arguments should the user be able to modify; what should the default values be; and should
the choices, or range of values, be restricted?

SAS Enterprise Miner 5.3 introduced two new features that can significantly enhance the performance of extension nodes:
the EM6 server class and the & EM_ACTION macro variable. With these features, a node's code can be separated into
the following actions that identify the type of code that is running:

. CREATE — executes only when the node isfirst placed on a process flow diagram.

. TRAIN — executesthe first time the node is run. Subsequently, it executes when one of the following occurs:

o A user runsthe node and an input data set has changed.
o A user runs the node and the variabl es table has changed.
o A user runs the node and one of the node's Train properties has been changed.

. SCORE — executes the first time the node is run. Subsequently, it executes when one of the following occurs:

o A user runs the node and an input data set has changed.
o A user runs the node and one of the node's Score properties has been changed.
o The TRAIN action has executed.

. REPORT — executes the first time the node is run. Subsequently, it executes when one of the following occurs:

o A user runs anode and one of the node's Report properties has been changed.
o The TRAIN or SCORE action has executed.

To take advantage of this feature, write your code as separate SAS macros. SAS Enterprise Miner executes the

macros sequentially, each triggered by an internally generated & EM_ACTION macro variable. That is, the
&EM_ACTION macro variableinitially resolves to avalue of CREATE. When all code associated with that action
has completed, the & EM_ACTION macro variable is updated to avalue of TRAIN. When all code associated with the
TRAIN action has executed, the & EM_ACTION macro variable is updated to a value of SCORE. After all code
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associated with the SCORE action has executed, the & EM_ACTION macro variable is updated to a value of REPORT;
all code associated with the REPORT action is then executed.

Each Property that you define in the node's XML properties file can be assigned an action value. When anodeis placed in
a process flow diagram and the process flow diagram isrun initially, al of the node's code executes and all executed actions
are recorded. When the process flow diagram is run subsequently, the code doesn't have to execute again unless a

property setting, the variables table, or dataimported from a predecessor node has changed. If a user has changed a
property setting, SAS Enterprise Miner can determine what action is associated with that property. Thus, it can begin the
new execution sequence with that action value. For example, suppose that a user changes a REPORT property setting.

The TRAIN and SCORE code does not have to execute again. This can save significant computing time, particularly when
you have large data sets, complex algorithms, or many nodesin a process flow diagram.

Y ou are not required to take advantage of actions, and your code is not required to conform to any particular
structure. However, to take full advantage of the actions mechanism, write your SAS code so that it conforms to the
following structure:

%racr o mai n;

% f %upcase( &EM ACTI ON) = CREATE % hen %lo;
/ *add CREATE code */

%l se;

% f %upcase( &EM ACTION) = TRAI N % hen %do;
/*add TRAIN code */

%l se;

% f %upcase( &EM ACTI ON) = SCORE % hen 9%do;
/ *add SCORE code */

%l se;

% f %upcase( &EM ACTI ON) = REPORT % hen %lo;
/ *add REPORT code */

%rend mai n;

o%rai n;

Typically, the code associated with the CREATE, TRAIN, SCORE, and REPORT actions consists of four separate macros
— %Create, %Train, %Score, and %Report.

All nodes do not have code associated with all four actions. This poses no problem. SAS Enterprise Miner recognizes only
the entry point that you declare in the node's XML propertiesfile. It initializes the & EM_ACTION macro variable and
submits the main program. If the main program does not include any code that is triggered by a particular action,

the &EM_ACTION macro variable is updated to the next action in the sequence. Therefore, if you do not separate your
code by actions, all codeistreated like TRAIN code; the entire main program must execute completely every time the node
isrun.

A common practice used for SAS Enterprise Miner nodesis to place the macro, %Main, in a separate file named name.
source. name is the name of the node and typically corresponds to the value of the name attribute of the Components
element in the XML properties file. name.source serves as the entry point for the extension node's SAS program. It is
also common practice to place the source code for the %Create, %Train, %Score, and %Report macros in separate files
with names like name_create.source, name_train.source, name_score.source, and name_report.source. There might also
be additional files containing other macros or actions with names like name_macros.source and name_actions.source
(these types of actions are discussed in Appendix 2: Controls That Require Server Code. To implement this strategy,
use FILENAME and %INCLUDE statements in the %Main macro to access the other files. For example, assume that
your extension node's SAS program is stored in the Sashelp library in a SAS catalog named Sashelp.Emext and that the
catalog contains these five files:
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. example.source

. example_create.source
. example_train.source
. example_score.source
. example_report.source

Example.source would contain the %Main macro, and it would appear as follows:
/* exanpl e. source */
%racro nain;
% f %%upcase( &EM ACTI ON) = CREATE % hen %lo;

filename tenp catal og 'sashel p. enext. exanpl e_create. source';
% ncl ude t enp;

filenane tenp;

%r eat e;

%end;

%l se
% f %upcase( &EM ACTION) = TRAIN % hen %lo;

filename tenp catal og 'sashel p. enext. exanpl e_train. source';
% ncl ude tenp;

filenane tenp;

% rain;

%end;

%l se
% f %upcase( &EM ACTI ON) = SCORE % hen %lo;

filenanme tenp catal og 'sashel p. enext. exanpl e_score. source';
% ncl ude tenp;

filenane tenp;

Uscore;

%end;

%l se
% f Yupcase(&EM ACTI ON) = REPORT % hen %do;

filenane tenp catal og ' sashel p. enmext. exanpl e_report.source';
% ncl ude t enp;

filenane tenp;

% eport;

%end;
%rend mai n;
%rai n;
The other four fileswould contain their respective macros. Thereismoreto thisstrategy than smple
organizational efficiency; it can actually enhance performance. Toillustrate, consider the following scenario. When
anodeisfirst placed in a process flow diagram, the entire main program isread and processed. Suppose your
TRAIN code contains a thousand lines of code. If the codeis contained in the main program, all thousand lines

of TRAIN code must beread and processed. However, if the TRAIN codeisin a separate file, that codeisnot
processed until thefirst timethenodeisrun.

A similar situation can occur at run time. At run time, the entire main program is processed. Suppose the node has already



been run once and the user has changed a Report property. The actions mechanism prevents the TRAIN code from
executing again. However, if your TRAIN code is stored in a separate file, the TRAIN code does not have to be read
and processed. Thisis the recommended strategy.

To store your code in external files rather than in a SAS catalog, simply alter the FILENAME statements

accordingly. However, you must store the entry point file (for example, example.source) in acatalog and placeitina
SASlibrary that is accessible by Enterprise Miner. The simplest way to do thisisto include your catalog in the Sashelp
library by placing the catalog in the SASCFGfolder. The exact location of this folder depends on your operating system

and your installation configuration, but it is always found under the root SAS directory and has a path resembling . . .

\ SAS\ SASFoundat i on\ 9. 2\ nl s\ en\ SASCFG. For example, on atypical Windows installation, the path is as follows:

C:.\ Program Fi | es\ SAS\ SASFoundat i on\ 9. 2\ nl s\ en\ SASCFG

Y ou can also store the catalog in another folder and then modify the SAS system configuration file Sasv9.cfg so that this
folder isincluded in the Sashelp search path. The Sasv9.cfg fileislocated under the root SAS directory in . . .

\ SAS\ SASFoundat i on\ 9. 2\ nl s\ en. Putting your code in the Sashelp library enables anyone using that server to
access it.

An alternative is to place your code in a separate folder and issue a LIBNAME statement. The library needs to be
accessible when a project is opened because a node's main program is read and processed when the nodeisfirst placed in
aprocess flow diagram (only the CREATE action is executed). If aLIBNAME statement has not been issued when a
project opens and you drop a node in a process flow diagram, the node's main program will not be accessible by
Enterprise Miner. See Appendix 4: Allocating Libraries for SAS Enterprise Miner 6.1 for details.

Copyright 2009 by SAS Institute Inc., Cary, NC, USA. All rights reserved.



Chapter 3: Writing Server Code

In order to integrate a node into a process flow, the SAS Enterprise Miner environment generates and initializes avariety
of macro variables and variables macros at run time. As a developer, you can take advantage of these macro variables
and variables macros to enable your extension node to function effectively and efficiently within an Enterprise Miner
process flow.

. Macro Variables

o General

o Properties

o Imports

o Exports

o Files

o Number of Variables
o Statements

o Code Statements

. Variables Macros

These tools are documented in the help file for the SAS Code node. For convenience, the SAS Code node's documentation
isreproduced inits entirety in Appendix 1: SAS Code Node.

Thereisaso acollection utility macros that can be invaluable:

. %EM_REGISTER

. %EM_REPORT

. %EM_MODEL

. %EM_DATA2CODE
. %EM_DECDATA

. %EM_ODSLISTON

. %EM_ODSLISTOFF
. YEM_METACHANGE
. %EM_CHECKERROR
. %EM_PROPERTY

. %EM_GETNAME

These are documented in the Utility Macros section of the SAS Code node help file. In the discussion that follows, each time
amacro isreferenced initialy, a hyperlink to its documentation is provided rather than providing syntax diagrams within

the text. Even so, it is recommended that you read both appendixes before proceeding with this chapter in order to gain

an appreciation of the scope of the tools available to you.

Thereis also another reason why you should read Appendix 1: SAS Code Node in its entirety. The SAS Code node can be
used to develop, test, and modify an extension node's code in the context of a process flow diagram without being
encumbered by deployment issues. There are also a number of useful examplesin the SAS Code node's documentation that
can guide you when writing your own code. However, you should be aware that the Score Code pane of the SAS Code
node's Code Editor is reserved for what is known as static scoring code. Dynamic scoring code must be included in the
Train code pane of the Code Editor (thisis discussed in greater detail in the SAS Code node documentation). Therefore,
the way you separate your code into Train, Score, and Report actions in an extension node might not directly correspond to
the way you separate your code in the Train, Score, and Report code panes of the SAS Code node Code Editor. Also,

you cannot develop and test the node's properties file or the node's Create action using the SAS Code node; you must
deploy your extension node to perform these tasks.

Create Action

When you first place an extension node on a process flow diagram, SAS Enterprise Miner initializes the
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macro variable, & EM_ACTION, with avalue of "CREATE"; any code associated with that action is then executed. This
action occurs before run time (that is, before the process flow diagram is run) and is the only time the Create action
executes. The most common events that can occur before run time are as follows:

. initializing properties
. registering data sets, files, catalogs, folders, and graphs
. performing DATA steps

You initialize properties using the %oEM_PROPERTY macro. Even though you typically provide initial values for properties
in the XML propertiesfile, there are two good reasons for initializing the properties using code. The first is that the

initial valuesthat you provide in the properties file get validated only if the process flow diagram isrun from the

SAS Enterprise Miner User Interface. However, a process flow diagram can be run using the %o EM5BATCH macro that
does not provide a validation mechanism for properties. The second reason isthat %EM_PROPERTY allows you to assign
an action value to each property. As described in the previous chapter, having properties associated with actions enhances
run-time efficiency. To initialize the properties that were devel oped as examplesin the previous chapter, include the
following in your Create action code:

%racro create;

%em property(name="StringExanmpl e",
value="Initial Value",
acti on="REPORT") ;

%em property(nane="Bool eanExanpl e",
val ue="Y",
action="SCORE");

%em property(nanme="1nteger",
val ue="20",
action="TRAIN");

%em property(nane="Doubl e",
val ue="20",
action="TRAIN");

%em property(nane="Choi celLi st Exanpl e",
val ue="SEGVENT",
action="TRAIN");

%em property( name="SASTabl e",
val ue=" SASHELP. COVPANY" ,
action="TRAIN");

%em property(nane="Range",
val ue="20",
action="TRAIN");

%em property(name="doubl e_range",
val ue="0. 33",
action="TRAIN");

%rend create;

Most nodes generate permanent data sets and files. However, before you can reference afilein your code, you must

first register aunique file key using the %EM_REGISTER macro and then associate a file with that key. When you register
akey, Enterprise Miner generates a macro variable named & EM_USER_key. Y ou use that macro variable in your code

to associate the file with the key. Registering afile allows Enterprise Miner to track the state of the file, avoid name
conflicts, and ensure that the registered file is deleted when the node is deleted from a process flow diagram. The
information that you provide via%EM_REGISTER is stored in atable on the Enterprise Miner server. You

can use %EM_REGISTER in Train, Score, or Report actions. However, registering a key involves an INO operation on

the server, so it ismore efficient if you register all keysin your node's Create action.

In the TableEditor example in the previous chapter, if auser clicked on the ellipsisicon (EI), atable constructed from

the Sashelp.Company data set is displayed. To make that happen, you must register the key, COMPANY (the value of

the TableEditor's key attribute), and then associate that key with the data set Sashelp.Company. That is, you would include
the following code in your Create action:

%em regi ster(type=data, key=COWVPANY, property=Y);
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dat a &EM USER_COVPANY;
set sashel p. conpany;
run;

Registering the key, COMPANY/, causes Enterprise Miner to generate the macro variable, &EM_USER_COMPANY,
which initially resolves to the value EMWS#.node-prefix COMPANY . After the DATA step
is executed, &EM_USER_COMPANY resolves to sashelp.company.

In the example above, the DATA step that associates the registered key with the file is located in the Create action. This
was done so that the table would be available to the user from the TableEditor control before run time. That is not always
the case. In most cases the registered file isused in a Train, Score, or Report action. When you refer to registered filesin
your Train, Score, or Report action, you must use the 0EM_GETNAME macro to reinitialize the

macro variable &EM_USER_key. The reason is that when a process flow diagram is closed, the

macro variable &EM_USER_key gets annihilated. When you reopen the process flow diagram and run it, the node's

Create action does not execute again, so &EM_USER_key doesn't get initialized. The registered information still resides on
the server so you don't have to register the key again, but you must reinitialize the macro variable & EM_USER_key

using %EM_GETNAME. Y ou can do this just before referencing &EM_USER_key or you can put al of your

callsto %EM_GETNAME together in asingle block of code. Be aware, however, that if you are taking advantage of actions,
acall to %EM_GETNAME must be made in every source file in which a particular &EM_USER_key is referenced.

For example, suppose that in the example above, & EM_USER_COMPANY isreferenced in both your Train action and
your Report action. Y ou would need acall to %EM_GETNAME in both train.source and report.source. The reason, again,
is the action sequence. Suppose a user ran the node, changed a Report property setting, and then ran the node again. In

the second run, even if you had acall to %EM_GETNAME in your Train action, you would still need a

call to %EM_GETNAME in your Report action; the Train action would not be executed in the second run. Therefore, if
you want to put al of the callsto %EM_GETNAME in asingle block of code, it is probably best if you put themin a
macro and then call that macro in every source file in which any of the registered keys are used.

Train, Score, and Report Actions

When thinking about how to take advantage of the actions mechanism, you might find it useful to think of a node's code
as being analogous to a process flow, where your Train, Score, and Report code are separate nodes that always have
fixed relative positions.

Train Score Report

If you don't take advantage of actions, all of your code would be Train code, so that is your default. The question then
becomes: what functionality can you remove from your Train code and put in Score or Report code in order to best
take advantage of actions? A node's Train action istypically the most time consuming. Therefore, your objectiveisto
separate your code so that user actions do not cause the Train action to be executed unnecessarily. Keep in mind that
the actions mechanism has an impact only if at least one of the following is true:

. auser runsthe node and an input data set has changed

. auser runs the node and the variabl es table has changed

. auser runs the node and one of the node's properties has been changed. This can include changing the datain aregistered
filethat hasits Property attribute set to Y and its Action attribute set to either TRAIN, SCORE, or REPORT.

An extension node's program typically performs the following:

. input processing
. output processing
. report processing

Input processing refers to processes like scanning the training data to fit statistical models, performing data
transformations, generating descriptive statistics, and so on. Thisistypically the main function of a node. Input processing
isamost always performed in the node's Train action. Output processing refers to processes that prepare the data that is
passed to subsequent nodes in a process flow. Typically thisinvolves data scoring or modifying metadata. When possible,
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you include output processing in the Score action. However, some output processes induce feedback into an input

process. Such output processes would, therefore, be performed in the Train action. For example, suppose your node generates
adecision tree (input process). Y ou then allow the user to modify the metadata (output process); in this case, suppose the
user is allowed to manually reject input variables. In most situations like this, you would want to regenerate the tree
(feedback). Finally, the input process often generates information that you want to report to the user. Thisinformation
istypically reported in the form of tables or graphs. This reporting process rarely induces feedback into either the input

or output processes and istypically performed in the node's Report action.

Exceptions

In many instances a node has data and variable requirements. If those restrictions are not met, then Enterprise Miner needs
to be notified so that the client can display an appropriate message. This is accomplished by assigning avalue to the
macro variable & EMEXCEPTIONSTRING. For example, suppose you write code that does the following:

. uses PROC MEANS to compute descriptive statistics of interval variables.
. If classtargets are present, then they are used as grouping variables.
. savesthe output statistics to the STATS output data set.

In the code below, an exception is generated if no interval variables are present.

%em get nane( key=STATS, type=DATA);
%racr o nmeans;
% f 9&EM | NTERVAL_| NPUT %EM | NTERVAL_TARGET eq % hen %lo;
% et ENMEXCEPTI ONSTRI NG = ERROR;
%out &em codebar;
%ut Error: Must use at | east one
interval input or target.;
%out &em codebar;
%got o doendm
%end;
proc neans dat a=&EM | MPORT_DATA,
% f %&EM Bl NARY_TARGET %EM NOM NAL_TARGET
%EM ORDI NAL_TARGET ne % hen %do;
cl ass %EM BI NARY_TARGET
9EM NOM NAL TARGET
%EM ORDI NAL_TARGET;
%end;
var %EM | NTERVAL_I NPUT
%EM | NTERVAL_TARGET;
out put out =&EM USER_STATS;
run;
Y%gdoendm
%rrend neans;
%reans;

You can literaly populate & EMEXCEPTIONSTRING with any non-null string. All that really mattersisthat it is no
longer null after the exception is encountered. The result is the same regardless of the string you use; you see a generic
error message:

Runstatus x|

e A problemn haz been encountered on the server

Diagram: example

Maode:  Example

In the example above, if the input data source contained no interval input or target variables the following message would
also appear in the SAS|og:
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Error: Miust use at |least one interval input or target.

Scoring Code

Scoring codeis SAS code that creates new variables or transforms existing variables. The scoring code is usualy, but
not necessarily, in the form of asingle DATA step. Enterprise Miner recognizes two types of SAS scoring code:

. Flow Scoring Code — This scoring code is used to score data tables within a SAS Enterprise Miner process flow.
. Publish Scoring Code — This scoring code is used to publish a SAS Enterprise Miner model to a scoring system outside of
aprocess flow.

When the scoring code is generated dynamically by the node, the code must be written to specific files that are recognized

by SAS Enterprise Miner. These files are specified by the macro variables & EM_FILE_EMFLOWSCORECODE

and &EM_FILE_EMPUBLISHSCORECODE. If the code is to be used only within the process flow, the code is written to the file specified by
&EM_FILE_EMFLOWSCORECODE. When scoring external tables, the code is written to the file

specified by &EM_FILE_EMPUBLISHSCORECODE. If the scoring code is not pure DATA step code, assign the

macro variable, & EM_SCORECODEFORMAT, avalue of OTHER. By default, & EM_SCORECODEFORMAT has a

value of DATASTEP. If the Flow scoring code and the Publish scoring code are identical, you can just generate the Flow

code using thefile designated by & EM_FILE_EMFLOWSCORECODE and then assign the

macro variable, & EM_PUBLISHCODE, avalue of FLOW.

Some SAS modeling procedures have OUTPUT statements that produce output data sets containing newly created
variables, and are, therefore, performing the act of scoring. When these methods are used for scoring, the newly
generated variables can be exported by the node and imported by successor nodes. However, since this method does

not actually generate scoring code, the scoring formula cannot be exported outside of the flow. Also, some SAS
Enterprise Miner nodes (for example, the Scoring node) collect and aggregate all of the scoring code that is generated

by predecessor nodesin a process flow diagram. Such nodes cannot recognize this form of scoring since no scoring code
is generated. Hence, the aggregated scoring code contains no references to the variables that are generated by an
OUTPUT statement.

M odifying M etadata

The Metadata node can be used to modify attributes exported by Enterprise Miner nodes. However, you can aso modify
the metadata programmatically in your extension node's code. Thisis done by specifying DATA step statements that
Enterprise Miner uses to change the metadata exported by the node. The macro variable, &EM_ FILE
_CDELTA_TRAIN, resolvesto the filename containing the code. For example, you might want to reject an input variable.

filenane x “&EM FI LE_CDELTA TRAI N;

data _null _;

file x;

put ‘if upcase(NAME) = “variabl e-nane” then ROLE="REJECTED”; ’;
run;

The code aboveiswriting a SAS DATA step to the file specified by & EM_FILE_CDELTA. You can aso
use the EM_METACHANGE macro to perform the same action.

%EM _METACHANGE( nane=vari abl e- name, rol e=REJECTED) ;

%EM_METACHANGE writes SAS DATA step statements to the samefile. Y ou can aso modify other attributes such
asROLE, LEVEL, ORDER, COMMENT, LOWERLIMIT, UPPERLIMIT, or DELETE. When DELETE equals 'Y,

the variable is removed from the metadata data set even if the variableis still in the exported data set. This provides away
to hide variables. Since both methods result in SAS code being written to afile, that code can be exported and used outside
of the SAS Enterprise Miner environment.

Results

By default, every node inherits a basic set of Results. Once a process flow diagram is run, the user can view the Results for
aparticular node by right-clicking on the node in the process flow diagram and selecting Results. From the Results
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window, the user can select View from the menu and the following menu items are displayed:

. Properties
o Settings
o Run Status
o Variables
o Train Code
o Notes
. SASResults
o LOg
a] OUtpUt
o Flow Code
o Train Graphs
o Report Graphs
. Scoring
o SASCode
o PMML Code
. Assessment (modeling nodes)
o Fit Statistics
. Custom Reports

All nodes report their Results using this structure. Some items are dimmed and unavailable if the node does not perform

the function associated with a particular menu item. Some nodes also have additional menu items. These additional menu
items are typically generated when you add reports using the %EM _REPORT macro. The macro enables you to specify

the contents of aresults window created using a registered data set or file. The report can be asimple view of a datatable or
amore complex graphical view, such as alattice of plots. By default, these reports are listed under Custom Reports. Y ou
can aso generate your own menu items using %EM_REPORT. In that case, the report is listed under that new menu

item. Examples using %EM_REPORT are available in the SAS Code node's documentation. When you generate graphs
using SAS/GRAPH commands within the Train action, those graphs appear under the menu item Train Graphs. When

you generate graphs using SAS/GRAPH commands within the Report action, those graphs appear under the menu item
Report Graphs.

M odel Nodes

Extension nodes that perform predictive modeling have specia requirements. Before proceeding with this section, it
is recommended that you read Predictive Modeling documentation. In particular, read the sections entitled Predicted
Values and Posterior Probabilities and Input and Output Data Sets. The discussion below assumes familiarity with that
subject matter.

Integrating a modeling node into the Enterprise Miner environment requires that you write scoring code that

generates predicted or posterior variables with appropriate names. The attributes of the variables and assessment variables
for each target variable are stored in SAS data sets. The names of the data sets can be found in
WORK.EM_TARGETDECINFO. Consider the following process flow diagram:

] b1
> E Sxample
L o

The variable BAD isthe single target variable and has the following decisions profile:


file:///G|/pub/doc/902/production/emxndg/html/extnodesdocument_toc.html#model_nodes
file:///G|/pub/doc/902/production/emxndg/html/Predict.html
file:///G|/pub/doc/902/production/emxndg/html/Predict.html#Predicted Values and Posterior Probabilities
file:///G|/pub/doc/902/production/emxndg/html/Predict.html#Predicted Values and Posterior Probabilities
file:///G|/pub/doc/902/production/emxndg/html/Predict.html#z1216989

E:_Decisiun Processing - Home Equity

| Targets | Prior Probabilities | Decisions | Decision

Do you want to use the decisions?

i |

i Yes ) No | Default with Inverse Prior Weights |
Decision Mame | Label | costvariable |  Constant |
DECISIONT I _|=Canstant=  |-150
DECISIONZ 0 = Constant= 1.0

Add

Delete Al

!

Reset

D

Default

Say that you add the following code to the Train code of the node:

proc print data=work.emtargetdecinfo;
run;

Then you would get the following output:

| | Cancel

Output °

46 Predicted and decision wvariables

47

43 Type Variahle Label

49

L0 TARGET BAD

S FREDICTED P _EBADI Predicted: BiD=1

52 RESIDTIAL F_E4Drl Residual: BAD=1

53 FREDICTED P_BADO Predicted: BiD=0

54 RESIDTAL F_E4D0 Rezidual: EAD=0

55 FROM F_BaD From: B&D

1 INTO I BaD Into: BAD

57 MODELDECISTON I_E4Dr Decision: EBAD

1] EXPECTEDPREOFIT EP_EAD Expected Profit: BiD
] COMPUTEDFROFIT CP_EAD Computed Profit: BAD
50 BESTPROFIT EP_BAT Best Profit: BAD

6l INVESTMENTCOST IC_BAD Investnent Cost: BAD
Bz ROI ROI_EAD Feturn on Investment: BAD
63

64

65

(1

67

[t Obs TARGET DECDATA DECHETA
]

70 1 BAD EMWS5. Ids_EAD DD EMW55. Ids_EaDr DM
71




The output, by default, displays the names of the variables that you want to create. For example, after you train your
model, you need to generate two variables that represent the predictions for the target variable, BAD. The output above
tells you that the names of the variables, in this example, should be P_BAD1 and P_BADO; P_BAD1 is the probability
that BAD =1 and P_BADOQO isthe probability that BAD = 0. The source of that information isthe DECMETA data set for
the target, BAD. Theresult of the PROC PRINT statement that is displayed at the bottom of the output informs us that
the name of the DECMETA data setis EMWS8.1ds BAD_DM. Using Explorer, we can view the data set:

i=f FMWSB.IDS_BAD_DM il =10 =l
Tvpe Yariahle Lahel ‘ i
1 IMaTRIK
3 [TARGET BAD
5 |paATAPRIOR DATAPRIOR Data Prior
4 |[TRAINPRIOR TRAINPRIOR Training Frior
5 |DECPRIOR DECPRIOR  Decision Prior
' § |PREDICTED F_BAD1  |Predicted: BAD=1
7 |RESIDUAL R_BAD1  Residual: BAD=1
"3 |PREDICTED F_BADD  |Predicted: BAD=0
g |RESIDUAL R_BADO  Residual: EAD=0
10 [FROM F_BAD Fram: BAD
11 INTO |_BAD Inta BAD
47 [MODELDECISION D _BAD  Decision: BAD
13 |EXPECTEDPROFIT EP_BAD  Expected Profit BAD
14 |COMPUTEDPROFITICP_EAD  |Computed Profit BAD
45 |BESTPROFIT BP_BAD  BestProfit BAD
16 [NVESTMENTCOST IC_BAD  |Investment Cost BAD
17 |ROI IROILBAD  |Return on Investment. BAD) __
18 |DECISION DECISIONT |1 |
P T hd
i : [ »]

At run time, when thereis only one target variable, the &EM_DEC_DECMETA macro variable is assigned the name of

the decision metadata data set for the target variable. In this example, &EM_DEC_DECMETA resolvesto

EMWS8.1ds BAD_DM. Using &EM_DEC_DECMETA alows you to retrieve the information programmatically.

For example, the code below creates two macro arrays, pred_vars and pred_labels, that contain the names and

labels, respectively, of the posterior or predicted variables. The numLevels macro variable identifies the number of levelsfor
aclasstarget variable.

data null _;
set &em dec_decneta end=eof;
where _TYPE =' PREDI CTED ;
call synput('pred_vars'!!Istrip(put(_N_,BEST.)),
strip(Variable));
call synput('pred_|labels'!!strip(put(_N_,BEST.)),
strip(tranwd(Label,"" ","""")));
if eof then
call symput (' nunmLevel s', strip(put(_N_,BEST.)));
run;

Y ou can loop through the macro arrays using the numL evels macro variable as the terminal value for the loop.

If more than one target variable is used, then &EM_DEC_DECMETA isblank. In that case you need to retrieve the names
of the decisions data sets (one per target) from the WORK.EM_TARGETDECINFO data set. The code below
demonstrates how this can be accomplished:

data _null _;
set WORK. EM TARGETDEC!I NFG,
where TARGET = 'target-nane';



call synput (' EM DEC DECMETA' , decneta);
run;

For example, suppose we modify the attributes of the Home Equity data set making JOB atarget variable in addition to
the variable BAD. Then suppose we give it the following decision profile:

E:_Decisiun Processing - Home Equity ﬂ

| Decisions

Do you want to use the decisions?

@ Yes ) No | Default with Inverse Prior Weights |

Decision Mame | Label | costvarable |  Gonstant

DECISIONT  |SELF 1.0 Add
DECISIONT BALES 2.0 , '
DECISIONZ  |PROFEXE g 30 Delete |
DECISIONS  |[OTHER < Constant= |40

DECISIONS  |OFFICE (=Constant= 5.0 _ Deletean_|
DECISIONG  |MGR = Constant= |60 | Reset

D

Default

OK | | Cancel

Note: The profile above is for demonstration purposes only; the values are not intended to represent arealistic decision
profile for business purposes.

Suppose you add this code:

data _null _;

set work.em targetdecinfo;

where TARGET = "JOB';

call synput("em dec_decneta", decneta);
run;

This code then causes the macro variable, & EM_DEC_DECMETA, to resolve to the value, EMWS8.1ds_JOB_DM.
Using Explorer once again, you can view the DECMETA data set for the target variable, JOB:



g8 EMwS8.IDS_J0B_DM 1 =10 x|
Type Variable Label E

1 IMATRIX PF
7 |TARGET OB M
5 |DATAPRIOR DATAPRIOR  Data Prior '
4 [TRAINPRIOR TRAINFRIOR  Training Prior
5 |DECPRIOR DECPRIOR  Decisian Prior
& |PREDICTED P_JOBSelf Predicted: JOB=Self Y
7 |RESIDUAL R_IOBSelfl  Residual JOE=Self =Y
2 |PREDICTED P_JOBSales  Predicted: JOB=Sales  Sf
g |RESIDUAL R_JOBSales  Residual JOE=Sales S
10 IPREDICTED P_JOBProfExe |Predicted: JOB=FrofExe  |PF
11 |RESIDUAL R_JOBProfExe  Residual JOB=PrafExe  PF
12 |PREDICTED P_JOBOther  Predicted: JOB=Other |0
13 REBIDUAL :R_._IOEIOther :ResiduaI:JOEl:Other 0
14 |PREDICTED P_JOBOfice  |Predicted: JOB=Ofice  |Of
15 |RESIDUAL R_JOEOfice  Residual JOB=Ofice  Of
18 IPREDICTED F_JOEMgr Fredicted: JOB=Ngr [
17 |[RESIDUAL R_JOBMar  Residual; JOB=Mar ™
18 [FROM F_JOB Fram: JOB
19 INTO 1_JOB Inta: JOE
30 [MODELDECISION |D_JOB Detision: JOB
31 |[EXPECTEDPROFIT EP_JOB Expected Profit JOB
23 |COMPUTEDPROFIT CP_JOE Computed Profit JOB
5 |BESTPROFIT BF_IOR Best Profit JOB
24 |INVESTMENTCOST |IC_JOB Investment Cost JOB |
25 ROI .ROI_JOEI 'Retum DnlnvestmentJOB.
35 |DECISION DECISIONY  |SELF
37 |DECISION DECISIONZ  SALES
28 |DECISION DECISIONZ | PROFEXE
29 |DECISION DECISIONd  OTHER
30 |DECISION DECISIONS | OFFICE
11 IDECISION DECISIONG  MGR

[hE | IC

Y ou would use this code once for each target variable, making the appropriate substitution for the target-name in the
WHERE statement.

If the data sets exported by the node contain the appropriate predicted variables, the %bEM_MODEL macro can be used
to notify the Enterprise Miner environment to compute fit statistics. It can aso generate scoring code that

computes classification (I_, F_, and U_ variables), decision, and residual variables (R_ variables). Assessment statistics
are produced by default, provided those variables are available.

Copyright 2009 by SAS Ingtitute Inc., Cary, NC, USA. All rights reserved.



Chapter 4: Extension Node Example

This example builds an extension node that enables a user to access the functionality provided by the REG procedure of
the SAS/STAT software. The node provides the user with the ability to control the selection technique used to fit the
model. The user can aso control how variables that are excluded from the final model are exported to successor nodes.

Icons

The following 32x32 and 16x16 pixel .gif files are used to generate the extension node icons:

®* ,

When deployed, the icons appear on the toolbar and a process flow diagram as follows:

o] af te| 3| 0l | &l 2| B 2] | b be] | B ]
Samplel Explu:urel Mu:udifyl Mu:udell .&ssessl’._ﬁutil'rtvl Credit Scurinql
inear Regression

s Example Fit linear regression madel using the RES procedure,

ﬁ o, Linear |
l’\'_l_ Regression

XML PropertiesFile

The XML properties file for this exampleis as follows:

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE Conponent PUBLIC
"-//SAS/ /| EnterpriseM ner DID Conponents 1.3//EN'
" Conponent s. dtd" >

<Conponent
type="AF"
resource="com sas. anal yti cs. em ner. vi sual s. PropertyBundl e"
servercl ass="EM"
name="Reg"
di spl ayNane="Li near Regression"
description="Fit |inear regression nodel using the REG procedure."
gr oup=" MODEL"
i con="Li near Regr essi onPl ane. gi f"
prefi x="LReg" >

<Pr opertyDescri ptors>
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<Property

type="String"
nanme="Locati on"
initial="CATALOCG' />

<Property

type="String"
nane=" Cat al og"
initial="SASHELP. EMb1EXT. REG. SOURCE" />

<Property

type="bool ean”

name="Detai | s"

di spl ayNane="Step Detail s"

descri ption="Produce sunmary statistics at each step."
initial="N" />

<Property

type="String"

name="Met hod"

di spl ayNane="Sel ecti on Met hod"
description="Indicates the type of nodel selection."
initial="None" >

<Control >
<Choi celLi st >
<Choi ce rawval ue="None"/ >
<Choi ce rawval ue="Backward"/>
<Choi ce rawval ue="Forward"/ >
<Choi ce rawval ue="St epw se"/ >
<Choi ce rawval ue="MaxR'/ >
<Choi ce rawal ue="M nR'/ >
<Choi ce rawval ue="Rsquare"/ >
<Choi ce rawval ue="Adj Rsq"/ >
</ Choi celLi st >

</ Control >

</ Property>

<Property

type="String"

name="Excl udedVari abl es"
di spl ayNanme="Excl uded Vari abl es”
descri ption="Speci fies what action should be taken for variabl es excl uded
fromthe final nodel. This option is only in effect when using a variable
sel ection nethod. Wen set to 'None', the roles of these variables renain
unchanged. Wen set to 'Hide', these variables are dropped fromthe

nmet adat a

exported by the node. When set to 'Reject', the role of the variables is
set to REJECTED."
initial ="None" >

<Contr ol

>

<Choi celLi st >

<Choi ce rawval ue="None"/ >
<Choi ce rawval ue="Rej ect"/>
<Choi ce rawval ue="Hi de"/ >
</ Choi celLi st >

</ Contro
</ Property>

| >

</ PropertyDescri pt ors>



<Vi ews>
<Vi ew nane="Trai n">
<PropertyRef naneref="Method"/>
<PropertyRef naneref="Detail s"/>
</ Vi ew>
<Vi ew nane="Score" >
<PropertyRef naneref="Excl udedVari abl es"/ >
</ Vi ew>
</ Vi ens>

</ Conponent >

The resulting Properties panel appears as follows:

Property “alue

MHode D
Impotted Data
Exported Data
MHotes

Selection Method
Step Details

Excluded Yariables

Create Time 321708 2:43 P

Fun Id

Last Error
Last Status
Last Run Time
Fun Duration
Gricd Host

Server Code

Throughout the example, the following process flow diagram is used to illustrate the results generated by the node:

. Thetarget variableisSAMOUNT.
. The Linear Regression extension node has its Method property set to Stepwise.
. The Linear Regression extension node has its Excluded Variables property set to Reject.

The extension node's server code consists of the following four files:

. Thereg.source entry contains the macro %main; it is the entry source for the node.

. Thereg_create.source entry contains the macro %create and is associated with the CREATE action. The macro %
create initializes the macro variables associated with the node's properties and registers the data sets created by the node.

. Thereg_train.source entry contains the macro %train and is associated with the TRAIN action. The macro %train calls
three additional macros: %procreg, %fillFile, and %makeScoreCode. The code for these three macros is therefore included
in reg_train.source. The code generates and submits the PROC REG step code that produces the parameter estimates



and generates the FLOW and PUBLISH scoring code.
. Thereg_score.source entry contains the macro %score and is associated with the SCORE action. The macro %score
controls how variables that are excluded from the final model are exported from the node.

reg.source
%racr o nmain;
% f Y%pcase(&EM ACTI ON) = CREATE % hen %do;
filenane tenp catal og 'sashel p. enblext.reg_create.source';
% ncl ude tenp;
filenane tenp;
%r eat e,

%end;

%l se
% f %upcase( &M ACTION) = TRAIN % hen %do;

filenane tenp catal og 'sashel p. enblext.reg_train.source';
% ncl ude tenp;
filenane tenp;
% rain;
%end;
% f Y%upcase( &EM ACTI ON) = SCORE % hen %do;
filenane tenp catal og 'sashel p. enblext.reg_score. source';
% ncl ude tenp;
filenane tenp;
Uscore;

%end;

%rend mai n;
orai n;

CREATE Action

When the CREATE action is called, the following code stored in the reg_create.source entry is submitted:
%racr o create;
[* Training Properties */

%em property(name=Met hod, val ue=NONE) ;
%em property(nane=Details, value=N);

/* Scoring Properties */
%em property(nanme=Excl udedVari abl e, val ue=REJECT, acti on=SCORE) ;
/* Register Data Sets */

%M REQ STER( key=QUTEST, type=DATA);



%EM REG STER(key=EFFECTS, type=DATA):

%rend create;
Using the & EM_PROPERTY macro, we define two Train properties and one Score property:

. Method is a String Property with a ChoicelList Control. The property indicates the model selection method that is used
to obtain the final model. The initial value of the Method property is NONE, so by default, no selection method is used.
The property has no action associated with it, so it is assumed to be a Train property.

. Detailsisaboolean Property. When settoY, it indicates that statistics are to be listed in the output at the end of each
step when amodel selection method is used.

. ExcludedVariableis a String Property with a ChoicelList Control. The property indicates how the node exports variables
that are not selected in the final model when using a model selection technique. By default, the value is REJECT, which
means that such variables have their role set to REJECTED. Thisis a Score property because it does not affect the model
or results produced by PROC REG. For performance reasons, we do not need to refit the linear regression model if the
user changes the property to NONE or HIDE. By associating the property with a SCORE action, the node skips over
the TRAIN action and simply rescores and regenerates the exported metadata.

The %EM_REGISTER macro is used to register the EFFECTS and the OUTEST data sets, which contain the
parameter estimates from the linear regression model.

TRAIN Action

When the &EM_ACTION macro variableis set to TRAIN, the reg_train.source entry is executed. This extension node
simply executes the REG procedure. The extension node has data requirements:

. There must be atraining data set imported by the node. If not, an exception is thrown indicating that the user must specify
atraining data set.

Note: In this example, the exception string has been set to an encoding string that is recognized by the SAS Enterprise
Miner client.

. There must be an interval target variable. If not, an exception is thrown indicating that the user must specify an interval
target variable.

The %EM_GETNAME macroiscalled to initialize the &EM_USER_OUTEST and &EM_USER_EFFECTS macro
variables. These data sets are used to store the parameter estimates.

oracro train;

% f Y%sysfunc(i ndex(&EM DEBUG SOURCE)) >0 or
%sysfunc(index(&EM DEBUG, ALL))>0 % hen %o;
options nprint;

%end;

%f ("¥%ysfunc(exist(&EM | MPORT_DATA)) and
Nysysfunc(exi st (&EM | MPORT_DATA, VIEW))
or "&EM | MPORT_DATA" eq "" % hen %do;
% et EMEXCEPTI ONSTRI NG = exception. server. | MPORT. NOTRAI N, 1;
%got o doenda;
%end;

% f (%EM_| NTERVAL_TARCET eq ) % hen % lo;
% et EMEXCEPTI ONSTRI NG = exception. server. METADATA. USE1l NTERVALTARGET;
%got o doenda;

%end;

%em get nane( key=QUTEST, TYPE=DATA);



%em get nane( key=EFFECTS, t ype=DATA) ;
%pr ocr eg;
%rakeScor eCode;

%em nodel ( TARGET=&t ar get var,
ASSESS=Y,
DECSCORECCDE=Y,
FI TSTATI STI CS=Y,
CLASSI FI CATI ON=N,
RESI DUALS=Y) ;

%em r eport (key=EFFECTS,
Vi ewt ype=BAR,
TI PTEXT=VARI ABLE,
X=VARI ABLE,
Fr eq=TVALUE,
Aut odi spl ay=Y,
descri pti on=%r bquote(Ef fects Pl ot),
bl ock=MODEL) ;

%doenda:

%rend train;

In the %procreg macro, we fit alinear regression model using the REG procedure:

. Using the ODS system, create the EFFECTS data set containing the parameter estimates.

. If the Details property is set to Y es (corresponds to the & EM_PROPERTY _DETAILS macro variable), then the
DETAILS options of the MODEL statement is used.

. The modd usesal interval and rejected variables with the “Use” attribute set to “Y es”. Those variables are assigned
to the %EM_INTERVAL_INPUT and %EM_INTERVAL_REJECTED macros.

. If afrequency variable is defined, the FREQ statement is used.

%racr o procreg;

%l obal targetVar;
% et targetVar = %can( %M | NTERVAL_TARGET, 1, );

ods out put paraneterestimates= &EM USER _EFFECTS;

proc reg data=&EM | MPORT_DATA OQUTEST=&EM USER_OUTEST;
nodel &t argetVar = %EM | NTERVAL_I NPUT %EM | NTERVAL_REJECTED

% f Y%upcase( &EM PROPERTY_METHOD) ne NONE % hen %o;
sel ecti on= &EM PROPERTY_METHOD

%end;

% f %M FREQ ne % hen %do;
freq %EM FREQ
%end;
run;
ods _all _ cl ose;
ods listing;

%rend procreg;



The EFFECTS data set has the following structure:

Model Dependent Variable DF Estimate StdErr tValue Probt
MODEL1 anount Intercept 1 -1130.54625 534. 48857 -2.12 0.0347
MODEL1 anount age 1 14. 12780 5. 53920 2.55 0.0109
MODEL1 anount duration 1 136. 22034 5.32411 25.59 <. 0001
MODEL1 amount enpl oyed 1 -108.10434 52.16738 -2.07 0.0385
MODEL1 anount foreign 1 567. 01572 323. 58225 1.75 0.0800
MODEL1 anount installp 1 -830.99671 54. 44354 -15.26 <.0001
MODEL1 anount job 1 570. 83009 103. 14025 5.53 <.0001
MODEL1 anount property 1 263. 71329 62. 04117 4,25 <, 0001
MODEL1 anount savi ngs 1 56. 29680 38. 38939 1.47 0.1428
MODEL1 anount t el ephon 1 642. 84575 135. 33767 4.75 <.0001

You can easily generate the scoring code using this data set.

The OUTEST data set contains the parameter estimates for variables in the final model, but also identifies variables that
are excluded from the model. It has the following structure:

_MODEL_ _TYPE_ _DEPVAR_ _RMSE_ Intercept age checki ng coapp
depends

MODEL 1 PARMS anmount 1892. 16 -1130. 55
14. 1278

The %makeScoreCode macro retrieves the name of the predicted variable using the decision metadata data set. If only
onetarget variable is defined, that data set corresponds to the &EM_DEC _DECMETA macro variable. If multiple
target variables are defined, you can retrieve the decision metadata data set from the &EM_TARGETDECINFO data set.

The %fillfile macro processes the EFFECTS data set, generates the scoring code, and savesitin
the & EM_FILE_EMPUBLISHSCORECODE and & EM_FILE_FLOWSCORECODE files that correspond to the Publish
and Flow scoring code, respectively.

%racro fillFile(type=, predvar=, file=);
filenane tenpf "&file";
data _null _;
file tenpf;
set &EM USER _EFFECTS end=eof ;
if N =1 then do;
put "&predvar = ";

if Variable = "Intercept' then
put Esti mat e;
el se
put Estimate '*' Variabl e;
end;
el se do;
put '+ Estimate '*' Variabl e;
end;
if eof then do;
put ";";
end;
run;

fil enane tenpf;
%rend fillFile;

%racr o makeScor eCode;
% et predvar=;



% f &em dec_decneta eq % hen %lo;
% f Y%sysfunc(exist(EM TARGETDECI NFO)) % hen %do;
data _null _;
set EM TARGETDECI NFG,
where TARGET="&t ar get Var";
call synput('em dec_decneta', DECMETA);

run;
%end;
%end,;
%f (& mdec_decneta ne ) and %sysfunc(exist(&m dec_decneta)) % hen %lo;
data _null _;
set &em dec_decnet a;
where _TYPE_ = 'PREDI CTED ;
call synput (' predvar', stri p(VARI ABLE)) ;
call synput (' predLabel', strip(LABEL));
run;
%end;

% f &predVar eq % hen %goto doendm

% illFile(type=publish, predvar=&predVar, file=&EM FI LE_EMPUBLI SHSCORECQODE) ;
%illFile(type=flow, predvar =&predVar, file=&EM FI LE_EMFLOWNSCORECCDE) ;

%doendm
%rend makeScor eCode;

The generated scoring code has the following form:

P_amount =

-1130. 54625

+14. 12780 *age

+136. 22034 *duration
+-108. 10434 *enpl oyed
+567. 01572 *foreign
+-830. 99671 *installp
+570. 83009 *j ob

+263. 71329 *property
+56. 29680 *savi ngs
+642. 84575 *tel ephon

The %em_model macro is used to generate additional scoring code and to produce assessment reports.

%em nodel ( TARGET=&t ar get var,
ASSESS=Y,
DECSCORECODE=Y,
FI TSTATI STI CS=Y,
CLASSI FI CATI ON=N,
RESI DUALS=Y) ;

. ASSESS=Y — indicates to generate assessment reports (Score Rankings and Score Distribution).

. DECSCORECODE=Y — indicates to append score code to generate decision variables when a profit matrix is defined.

. FITSTATISTICS=Y — indicates to compute fit statistics associated with the model. Those are computed for the training
data set and for validation and test data sets when applicable.

. CLASSIFICATION=N — indicates not to generate report and score code associated with the classification variables (1_).

. RESIDUAL S=Y — indicates to append the code generating the residual variable (R ) to the flow score code and produce
the residual report.

For example, the Flow scoring code would now appear as follows:



P_armount =

-1130. 54625

+14. 12780 *age

+136. 22034 *duration
+-108. 10434 *enpl oyed
+567. 01572 *foreign
+-830.99671 *installp
+570. 83009 *j ob

+263. 71329 *property
+56. 29680 *savi ngs
+642. 84575 *tel ephon

*Conputi ng Residual Vars: anount;
Label R ampunt = 'Residual: anount';
R _anmount = amount - P_anount;

The %em_report macro generates a graph of the parameter estimates:

%em r eport (key=EFFECTS,
Vi ewt ype=BAR,
Tl PTEXT=VARI ABLE
X=VARI ABLE,
Fr eq=TVALUE,
Aut odi spl ay=Y,
descri pti on=%r bquote(Effects Pl ot),
bl ock=MODEL) ;

. Key=EFFECTS — identifies the data set used to produce the chart.

. Viewtype=BAR — indicates to generate a BAR graph.

. TIPTEXT=VARIABLE — indicates that the variable named VARIABLE is to be used to identify abar when clicking on it.
. X=VARIABLE — indicates that the bar chart should have one bar for each variable.

. FREQ=TVALUE — specifiesthat the variable TVALUE should be used to control the height of the various bar.

. AutoDisplay=Y — indicatesto display the report whenever the Results viewer of the node is opened.

. Description==% nrbquote(Effects Plot) — specifies thetitle bar of the report.

. Block=M ODEL — indicates that the report should appear under the “Model” pmenu item.
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Score Action

When the &EM_ACTION macro variableis set to SCORE, the reg_score.source entry is executed.

The %em_getname macro is used again to retrieve the &em_user_outest macro variable. Thisis done because the training
code might not be running before executing the SCORE action. For example, if the ExcludedVariable isthe only
modified property, the TRAIN action would be bypassed.

If the user specifies amodel selection method using the Method property and sets the ExcludedV ariable property to
either HIDE or REJECT, the node generates DATA step code that modifies the metadata that is exported to successor
nodes. The DATA step codeissaved inthe &EM_FILE_CMETA_TRAIN file.

Using PROC TRANSPOSE of Base SAS, the node identifies all the variables with missing parameter estimates. Those
are variables excluded from the final model. If the ExcludedV ariable property is set to REJECT, then the role of the
variables with missing parameter estimates is set to REJECTED. If the ExcludedV ariable property is set to HIDE,
variables with missing parameter estimates are deleted from the exported metadata so that successor nodes are not exposed
to those variables.

%racr o score;

/* Del ete Code Modifying Exported Metadata */

filenane tenpd "&EM FI LE_CDELTA TRAI N';
data _null _;
if fexist('tenpd' ) then
rc=fdelete('tenmpd);
run;

% f (Yupcase("&EM PROPERTY_METHOD') ne "NONE") and
(Ypcase(" &EM PROPERTY_EXCLUDEDVARI ABLE") ne "NONE")
% hen %do;

%em get name( key=0OUTEST, type=DATA);

proc transpose data=&EM USER OUTEST
out =t enp(where=(Col 1 eq .));

run;

data _null _;
file tenpd;
length String $200;
set tenp end=eof;
if N =1 then put "if upcase(NAME) in(';
string = quote(strip(upcase(_NAMVE )));
put string;
i f eof then do;

% f Yupcase(" &EM PROPERTY_EXCLUDEDVARI ABLE") eq "REJECT"
% hen %do;
put ') then ROLE="REJECTED';';

%end;
%l se %lo;
put ') then delete;"';
%end;
end;

run;



%end;
filenane tenpd;

%rend score;

For example, the generated “delta code” could have the following form:

i f upcase(NAME) in(
" CHECKI NG

" COAPP"

" DEPENDS"

" EXI STCR"

"H STORY"

" HOUSI NG

"MARI TAL"

" OTHER"

" RESI DENT"

) then ROLE="REJECTED';

Copyright 2009 by SAS Institute Inc., Cary, NC, USA. All rights reserved.



Chapter 5: Deploying An Extension Node

This chapter provides a concise reference for al extension node deployment issues.

There are two paths for extension nodes deployment, depending on the SAS Enterprise
Miner installation you choose:

. Personal Workstation
. Shared Platform Server

The required components for extension nodes are as follows:

. aSAS catalog containing the extension node's entry source file
. two images per node:
o a16x16 pixel image used on the Enterprise Miner SEMMA toolbar
o a32x32 pixel image used to represent the node in the Enterprise Miner
diagram workspace
. an XML propertiesfile

Personal Workstation System

Use the following steps to deploy extension nodes on a SAS Enterprise Miner Personal
Workstation installation:

1. Closethe Enterprise Miner Client application.
2. Copy the XML propertiesfileto theext directory that is under the SAS

configuration directory:

...\ SAS\ Confi g\ Levn\anal yti csPl at f or ml apps
\ Ent er pri seM ner\ ext

3. Copy the 16x16 and 32x32 pixel images to the gif16 and gif32 directory,
respectively:



...\ SAS\ Confi g\ Levn\anal yti csPl at f or ml apps
\EnterpriseMner\ext\gifl6

...\ SAS\ Confi g\ Levn\anal yti csPl at f or m apps
\EnterpriseMner\ext\gif32

4. Placethe SAS catalog containing your node's source code entry fileinaSAS
library that is accessible by the SAS Enterprise Miner server.
5. Restart the Enterprise Miner Client application.

If you make changes to the icon images or the XML propertiesfile, you must close and
reopen the client in order for the changes to take effect. Y ou should also close any open
diagram before you close the client.

Shared Platform Server

Follow these steps to deploy extension nodes on the Enterprise Miner Shared Analytics
Platform Server. Y ou do not need to update each individual end-user client.

1. Notify the usersto close their Enterprise Miner Client sessions before you stop
the Analytics Platform. Verify that al the client sessions have been shut down.

2. Log on as a System Administrator or as a member of the Administrators group.

3. Stop the Enterprise Miner Analytics Platform. Select

Start # Programs = SAS = SASConfiguration = Config-Levl =
Analytics Platform-Stop

4. Copy the node's XML propertiesfile to theext directory that is under the SAS
configuration directory.

...\ SAS\ Confi g\ Levn\ anal yti csPl at f or ml apps



\ Ent er pri seM ner\ ext

5. Copy the 16x16 and 32x32 pixel images to the following directories, respectively:

...\ SAS\ Confi g\ Levn\anal yti csPl at form apps
\EnterpriseMner\ext\gifl6

...\ SAS\ Confi g\ Levn\anal yti csPl at f or m apps
\EnterpriseMner\ext\gif32

6. Placethe SAS catalog containing your node's source code entry filein aSAS
library that is accessible by the SAS Enterprise Miner server.

7. Restart the Enterprise Miner Shared Analytics Platform. Select

Start = Programs = SAS = SAS Configuration = Config-Levl =
Analytics Platform-Start

If you make changes to the icon images or the XML propertiesfile, you must stop and
restart the AP server in order for the changes to take effect.

Making Your Server Code Accessibleto SAS Enterprise Miner

If you follow the development strategy described in previous chapters, the source code
for your extension node consists of multiple files. As a practical matter, it is most
convenient for the purposes of development and deployment if all of thefilesresideina
single SAS catalog. Deploying the code is then just a matter of placing the catalogin a
SASlibrary that is accessible by SAS Enterprise Miner.

The ssimplest method is to include your catalog in the SASHELP library. Thisis
accomplished in one of three ways. The first way isto use PROC CATALOG. Suppose
your catalog is named mylib.mycode. Start a SAS session and issue the commands:

proc catal og cat=nylib. nycode;
copy out =sashel p. nycode;



run;

The second way isto manually copy and paste the catalog into the SASCFG folder. The
exact location of this folder depends upon your operating system and your installation
configuration, but it is aways found under the root SAS directory and has a path
resembling the following:

C.\ Program Fi | es\ SAS\ SASFoundat i on\ 9. 2\ nl s\ en
\ SASCFG

The third way is to store the catalog in another folder and then modify the SAS system
configuration file SASV9.CFG. The folder containing the catalog is then included in the
SASHELP search path. The SASV9.CFG file islocated under the root SAS directory:

C.\ Program Fi | es\ SAS\ SASFoundat i on\ 9. 2\ nl s\ en

The advantage of putting your code in the SASHELP library is that anyone using that
server has accessto it.

An dternative isto place your code in a separate folder and issue aLIBNAME
statement. The library needs to be accessible when a project is opened. See Appendix 4:
Allocating Libraries for SAS Enterprise Miner 6.1 for details on the various ways this
can be accomplished. For a shared platform installation, the catalog must reside on the
SAS Enterprise Miner server. For a persona workstation installation, the catalog resides
on the client, because the client and server are the same machine.

If you have more than one extension node, you can place the code for all of your
extension nodes in asingle catalog. However, while you are developing an extension
node, it is probably better to keep that node's code in a separate catalog. That way, as
you are developing or modifying the node's code, you do not have to interrupt the use of
other extension nodes.

Batch M ode

SAS Enterprise Miner enables you to execute a process flow in batch mode using the %
EM5BATCH macro. Asindicated previously, when running in batch mode, Enterprise
Miner does not process a node's XML propertiesfile. As such, Enterprise Miner has no
way of determining where the source code for an extension node resides. Therefore, if



you plan to use an extension node in a batch process, you must provide Enterprise Miner
with a means to locate the source code for your extension node. This is accomplished by
creating a SAS data set named Extension. The data set must contain two character
variables named Component and Code. There is one observation for each extension node
that you create. The Component variable contains the name of the extension node. This
should be the same as the value of the name attribute in the Component element of the
node's XML properties file. The Code variable contains the name of the source file that
serves as the entry point for your extension node. It is the same as the value of theinitial
attribute of the Catalog Property element of the node's XML propertiesfile. The
Extension data set must be stored in a SAS library name Emgmeta. When you use an
extension node in a batch process, SAS Enterprise Miner automatically checks for the
existence of the Emgmeta library and the Extension data set. When it exists, the
Extension data set is read to determine the location of the extension node's entry point
source code. For example, if your node is named Reg and the entry point source codeis a
file named Sashel p.Em61ext.reg.source, the data set Extension has the value of Reg for
the Component variable and the value Sashel p.Em61ext.reg.source for the Code variable.

i EMGMETA EXTENSION =] E3
I Zomponent | Code

1 Feg ;Sashelp.Emﬁlext.reg.snurce

Copyright 2009 by SAS Institute Inc., Cary, NC, USA. All rights reserved.



SAS Code Node

SAS Code

. Overview of the SAS Code Node
. SAS Code Node Properties
. Code Editor
o User Interface
o Macros
o Macro Variables
o Code pane
. SAS Code Node Results
. SAS Code Node Examples

Overview of the SAS Code Node

The SAS Code node enables you to incorporate new or existing SAS code into process flow diagrams that were
developed using Enterprise Miner. The SAS Code node extends the functionality of Enterprise Miner by making other
SAS System procedures available for use in your data mining analysis. Y ou can also write SAS DATA stepsto

create customized scoring code, conditionally process data, or manipulate existing data sets. The SAS Code node is also
useful for building predictive models, formatting SAS output, defining table and plot views in the user interface, and

for modifying variables metadata. The SAS Code node can be placed at any location within an Enterprise Miner a process
flow diagram. By default, the SAS Code node does not require data. The exported data that is produced by a successful
SAS Code node run can be used by subsequent nodes in a process flow diagram.

SAS Code Node Properties

When the SAS Code node is selected in the Diagram Workspace, the Properties panel displays all of the properties that
the node uses and their associated values.

. SAS Code Node General Properties
. SAS Code Node Train Properties

. SAS Code Node Score Properties

. SAS Code Node Status Properties

SAS Code Node General Properties

The following general properties are common to al SAS Enterprise Miner nodes.

. Node|D — displaysthe ID of the node.
. Imported Data— Select the [ button to open atable of SAS data setsthat are imported into the SAS Code node. If
data exists for an imported data source, you can select the row in the imported data table and click one of the following buttons:
o Browse— opens awindow where you can browse the data set.
o Explore — opens awindow where you can sample and plot the data.
o Properties— opens the Properties panel for the data source. The Properties panel contains a Table tab and a Variables
tab. The tabs contain summary information (metadata) about the table and the variables.
. Exported Data— Select the [l button to open atable of SAS data sets that are exported data by the SAS Code node. If
data exists for an exported data set, you can select the row in the table and click one of the following buttons:
o Browse— opens awindow where you can browse the data set.
o Explore— opens the Explore window, where you can sample and plot the data.
o Properties— opens the Properties panel for the data set. The Properties panel contains a Table tab and a Variables tab.
The tabs contain summary information (metadata) about the table and the variables.
. Notes— Sdlect the [=d button to the right of the Notes property to open awindow that you can use to store notes of
interest, such as data or configuration information.



SAS Code Node Train Properties

The following train properties are associated with the SAS Code node.

. Variables— Usethe Variables table to specify the status for individual variables that are imported into the SAS Code
node. Select the [=d button to open awindow containing the variables table. Y ou can set the Use and Report status
for individual variables, view the columns metadata, or open an Explore window to view avariable's sampling
information, observation values, or aplot of variable distributions. Y ou can apply afilter based on the variable
metadata column values so that only a subset of the variablesis displayed in the table.
. Code Editor — Select the [= button to open the Code Editor. Y ou can use the Code Editor to edit and submit
code interactively while viewing the SAS log and output listings. Y ou can also run a process flow diagram path up to
and including the SAS Code node and view the Results window without closing the programming interface. For more
details, see the Code Editor section below.
. Tool Type — specifies the node type using the Enterprise Miner SEMMA framework. Valid values are:
1 Sample
o Explore
o Modify
o Model
o Assess
o Utility.
The default setting for the Tool Type property is Utility. When the Tool Typeis set to Model, Enterprise Miner creates a
target profile for the node is none exists. It will also create areport data model that is appropriate for a modeling node.
Doing so alows SAS Enterprise Miner to automatically generate assessment results provided certain variables are found in
the scored dataset (P_, |_, F_, R_ (depending on the target level)). See Predictive Modeling for more details regarding
these variables and other essential information regarding modeling nodes.
. Data Needed — specifies whether the node needs at |east one predecessor node. Valid values are Yes and No. The
default setting for the Data Needed property is No.
. Rerun — specifies whether the node should rerun each time the process flow is executed, regardless of whether the node
has run before or not. Valid values are Y es and No. The default setting for the Rerun property of the SAS Code nodeis No.
. Use Priors— specifies whether the posterior probability values are adjusted by the prior probability values. Valid values
for the Use Priors property are Y es and No. The default setting for the Use Priors property isYes.

SAS Code Node Scor e Properties

The following score properties are associated with the SAS Code node.

. Advisor Type — specifies the type of Enterprise Miner input data advisor to be used to set theinitial input
variable measurement levels and roles. Valid values are

o Basic— any new variables created by the node will inherit Basic metadata attributes. These attributes include:

« Character variables are assigned a Level of Nominal
= numeric variables are assigned a Level of Interva
. variables are assigned a Role of Input

o Advanced — variable distributions and variable attributes are used to determine the variable level and role attributes of
newly created variables.

The default setting for the Advisor Type property is Basic. Y ou can also control the metadata programmetically by writing
SAS codeto thefile CDELTA_TRAIN.sas. Thereis also afeature that permits a user to create a dataset that

predefines metadata for specific variable names. This dataset must be named COLUMNMETA and it must be stored in
the EMMETA library.

. Publish Code — specifies thefile that should be used when collecting the scoring code to be exported. Valid values are

o Flow — Flow scoring code is used to score SAS data tables inside the process flow diagram. The scoring code is written
to EMFLOWSCORE.sas.

o Publish — Publish scoring code is used to publish the Enterprise Miner model to a scoring system outside the process
flow diagram. The scoring code is written to EMPUBLISHSCORE.sas.

The default setting of the Publish Code property is Publish. It is possible to have scoring code that is used within the
process flow (Flow code) and different code that is used used to score external data (Publish code). For example,
when generating Flow code for modeling nodes, the scoring code can reference the observed target variable and you
can generate residuals from a statistical model. Since Publish code is destined to be used to score external data where the
target variable is unobserved, residuals from a statistical model cannot be generated.



. Code Format — specifies the format of the score code to be generated. Valid values are:

o DATA step — The score code contains only DATA step statements.
o Other — The score code contains statements other than DATA step statements, such as PROC step statements.

The default setting for the Code Format property is DATA step. It is necessary to make the distinction because nodes such
as the Ensembl e node and the Score node collect score code from every predecessor node in the process flow diagram. If all
of the predecessor hodes generate only DATA step score code, then the score code from all of the nodesin the process
flow diagram can simply be appended together. However, if PROC step statements are intermixed in the score code in any
of the predecessor nodes, a different algorithm must be employed.

SAS Code Node Status Properties

The following status properties are common to all SAS Enterprise Miner nodes.

. Create Time— displays the time that the SAS Code node was created.

. Run ID — displaysthe training identifier. A new identifier is created every time the nodeisrun.

. Last Error — displaysthe error message from the last run.

. Last Status— displays the last reported status of the node.

. Last Run Time — displaysthe time at which the node was last run.

. Run Duration — displays the length of time of the last node run.

. Grid Host — displays the grid host used for computation.

. User-Added Node — specifiesif the node was created by a user as a SAS Enterprise Miner extension node.

Code Editor

Y ou use the Code Editor to enter SAS code that executes when you run the node. The editor provides separate panes for
Train, Score, and Report code. Y ou can edit and submit code interactively in al three panes while viewing the SAS log
and output listings. Y ou can also run the process flow diagram path up to and including the SAS Code node and view
the Results window without closing the programming interface.

The Code Editor provides tables of macros and macro variables that you can use to integrate your SAS code with the
Enterprise Miner environment. Y ou use the macro variables and the variables macros to reference information about
the imported data sets, the target and input variables, the exported data sets, the files that store the scoring code, the
decision metadata, and so on. Y ou use the utility macros, which typically accept arguments, to manage data and format
output. Y ou can insert amacro variable, a variables macro, or a utility macro into your code without having to typeits
name; you simply select an item from the macro variables list or macros table and drag it to the active code pane.

If an imported data set exists, you can access the variables table from the Code Editor. The variables table has the
same functionality regardless of whether it is accessed from the Code Editor or the SAS Code node's Properties panel.

Y ou can a'so access the SAS Code node's Properties panel from the Code Editor. Y ou can specify values for any of the
node's properties in the Code Editor's properties interface the same way you would in the SAS Code node's Properties panel.

User I nterface
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The Code Editor consists of seven components. Some components serve multiple functions:

Menu
Toolbar
. Content Selector Buttons
. Tables Pane
o Macrostable
o Macrovariablestable
o Variablestable
5. Code Pane
o Training Code
o Score Code
o Report Code
6. Results Pane
o Output
o Log
7. StatusBar

ABwppp

Menu

The Code Editor menu consists of the following items:

. File

o Save — save the contents in the current view of the code pane.

o Save As— saves any combination of the code, output or log.

o Save All — saves the code, output, and log.

o Print — print the contents of the pane that currently has the focus.

o Exit — close the Code Editor window and return to the Enterprise Miner main workspace.
. Edit

o Cut — deletes the selected item and copiesiit to the clipboard.

o Copy — copies the selected item to the clipboard.

o Paste — pastes a copied item from the clipboard.

o Select All — selects all of the text from the code pane.



o Clear All — clearsdl of the text from the current code pane.
o Find and Replace — opens the Find/Replace dialog box allowing you to search for and replace text in the
code, output, and log.

o Run Code— runsthe code in the active code pane. This does not affect the status of the node or the
process flow. It is simply away to validate your code.
o Run Node— runsthe SAS Code node and any predecessor nodes in the process flow that have not been
executed.
o Results— open the SAS Code node's Results window.
o Stop Node— interrupts a currently running process flow.
. View
Training Code — views the Training Code pane.
Scor e Code — views the Score Code pane.
Report Code — views the Report Code pane.
Properties— open the SAS Code node Properties panel.

o o o o

Toolbar

. E — savesthe contents in the current view of the code pane
. — saves the contents of the code pane, the output, and the SAS log

| ‘ — prints the contents of the code pane, the output, or the SAS|og

. %I — runsthe code in the active code pane

A runs the SAS Code node and any predecessor nodes in the process flow that have not been executed
. E — opensthe SAS Code node's Results window
. D | — stops acurrently running process flow diagram

. El — resets the workspace

Content Selector Buttons

. E — displaysthe SAS Code node Training Code
] _ displays the SAS Code node Score Code

o

- displays the SAS Code node Report Code

Lrk

— opensthe property settings for the SAS Code node

Tables Pane

. Macros— Click the Macros tab to view atable of macrosin the Tables pane. The macro variables are arranged in
two groups: Utility and Variables. Click on the plus or minus sign on the left of the group name to expand or
collapse the list, respectively. You can insert a macro into your code without typing its name by selecting an item
from the macros table, and dragging it to the code pane.
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. Macro Variables— Click the Macro Variables tab to view atable of macro variablesin the Tables pane. Y ou can
use the split bar to adjust the width of the columnsin the table. For many of the macro variables, you will see the
value to which it resolves in the Value column, but in some cases, the value cannot be displayed in the table since
those macro variables are populated at run-time.

Macro Walue

Macros  pacro Yariahles Variablesl
~

The macro variables are arranged in groups according to function:

o General — Use general macro variables to retrieve system information.

o Properties— Use properties macro variables to retrieve information about the nodes.

o Imports— Useimports macro variables to identify the SAS tables that are imported from predecessor
nodes at run time.

o Exports— Use exports macro variablesto identify the SAS tables that are exported to successor hodes at
run time.

o Files— Usefiles macro variables to identify external files that are managed by Enterprise Miner, such as
log and output listings.

o Number of Variables— Use number of variables macro variables for a given combination of the
measurement |levels and model roles.

o Statements— Use statements macro variables to identify SAS program statements that are frequently
used by Enterprise Miner, such as the decision statement in the modeling procedures.

o Code Statements— Use the Code Statements macro variable to identify the file containing the Code
statement.

Y ou can insert amacro variable into your code without typing its name by selecting an item from the macro
variables table, and dragging it to the code pane.

. Variables— Click on the Variables tab to view the variables table in the Tables pane. The variables table has the
same functionality regardless of whether it is accessed from the Code Editor or the SAS Code node's Properties
panel.
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Code Pane
The Code pane has three views: Training Code, Score Code, and Report Code.
L
Training Cocde
=] PROC MERHS data=sEM IMPORT_DATA noprint; =
wvar EN INTERVAL;
output out=t;
| rumn;
H—;data T
Sek. Lt}
drop freq _type :
where _stat_ ne 'N';
| rumn; ;I

&

Click on the E (Training), L | (Score), or e (Report) icons on the toolbar to choose the pane in which you want to
work.

%

The code from the three panes is executed sequentially when you select Run Node ( ). Training code is

executed first, followed by Score code, and then Report code. If you select Run Code ( @ ), only the code in
the visible code pane is executed. For more details, see the Code pane section.

Usethe .aw  controlsto either expand (&) or collapse (™) the code pane.

Results Pane

The Results pane has two tabs: Output and Log. Click the Output tab to view the output generated by your code or click

the Log tab to view the SAS Log that was generated by your code. If you run the node ( * ), rather than just your code (

%I), the output and log must be viewed from the SAS Code node's Results window (@) and not from the Code
Editor's Results pane.



Usethe aw  controlsto either expand () or collapse (») the Results pane.

Status Bar

The status bar displays the following:

. SAS User ID — the SAS User ID of the current Enterprise Miner session owner.

. User name — the User name that is associated with the current Enterprise Miner session owner.

. Project name — the name of the currently open Enterprise Miner project.

. Diagram name — the name of the currently open Enterprise Miner diagram.

. Node name — the name of the selected node in the current Enterprise Miner diagram workspace.

. Current status — the current status of the selected node in the current Enterprise Miner diagram
workspace.

. Last status — the last known status of the selected node in the current Enterprise Miner diagram
workspace.

sasuserlD az UserMame - ProjectMame - DiagramMame - ModeMame - STATUS=NOME LASTSTATUS=NDnE| |

Macros

The Macros table lists the SAS macros that are used to encode multiple values, such asalist of variables, and functions that
are already programmed in Enterprise Miner. The macro variables are arranged in two groups: Utility and Variables.

Utility macros are used to manage data and format output and Variables macros are used to identify variable definitions at
run time. The macros discussion below is organized as follows:

. Utility Macros

o WEM_REGISTER

1 Y%EM_REPORT

s Y%EM_MODEL

1 %EM_DATA2CODE

o %EM_DECDATA

o %EM_CHECKMACRO
o YEM_CHECKSETINIT
o Y%EM_ODSLISTON

1 %EM_ODSLISTOFF

1 WEM_METACHANGE
o %EM_GETNAME

1 YEM_CHECKERROR

1 YEM_PROPERTY

. Variables Macros

Utility Macros

Use utility macros to manage data and format output. The following utility macros are available:

%EM_REGISTER

Use the %EM_REGISTER macro to register aunique file key. When you register akey, Enterprise Miner generates a
macro variable named & EM_USER _key. Y ou then use &EM_USER_key in your code to associate a file with the key.
Registering afile allows Enterprise Miner to track the state of the file, avoid name conflicts, and insure that the registered
file is deleted when the node is deleted from a process flow diagram.

%EM_REGISTER allows the following arguments:



ACTION = < TRAIN | SCORE | REPORT > — associates the registered CATALOG, DATA, FILE,
or FOLDER with an action. If the registered object is modified, the associated action is triggered
to execute whenever the node is run subsequently. The default value is TRAIN. This is an
optional argument. The argument has little use in the SAS Code node but can be of significant
value to extension node developers.

AUTODELETE = <Y|N> — Request the delete status of the file prior to the run. This argument is
optional.

EXTENSION = <file-extension> — an optional parameter to identify non-standard file extensions
(.sas or .txt, for example).

FOLDER = <folder-key> — the folder key where a registered file resides (optional).
KEY = <data-key> — an alias for a filename.
PROPERTY = <Y|N> — an optional argument that indicates that the file is a node property and
that when the node or the process flow diagram is exported, the content of the registered file will
also be exported with the rest of the properties.
TYPE = <CATALOG | DATA | FILE | FOLDER> — the type of file that is to be registered.

For example, if you want to use the data set Class from the SASHELP library, register the key Class:
%em regi ster(key=C ass, type=data);

Later, in your code, you can use statements like

data &em user_d ass;
set Sashel p. d ass;

so that references to &EM_USER_Class would resolve to the permanent data set Sashelp.Class.

%EM_REPORT

Use the %EM_REPORT macro to specify the contents of a results window display created using a registered
data set. The display contents, or view, can be a data table view or a plot view. Examples of plot types are
histogram, bar chart, and line plots. The views (both tables and plots) appear in the results window of the SAS
Code node and in any results package files (SPK files).

%EM_REPORT allows the following arguments:

AUTODISPLAY = <Y | N> — specifies whether the report displays automatically when the
results viewer is opened.

BLOCK = <group-name> — specifies the group that the report belongs to when the results
viewer is opened. The default setting is CUSTOM.

COLOR = <variable-name> — specifies a variable that contains color value.

COMPARE = <Y | N> — specifies whether data in the generated report can be used to compare
registered models. The default setting is N.

DESCRIPTION = <window-title-description> — specifies a text string or report description that
will appear in the window title.

DISCRETEX = <Y | N> — specifies whether the values on the x-axis will be discrete when the
VIEWTYPE is HISTOGRAM.

DISCRETEY = <Y | N> — specifies whether the values on the y-axis will be discrete when the
VIEWTYPE is HISTOGRAM.



EQUALIZECOLX = <Y | N> — specifies if the x-axis should be equalized (that is, use a shared
common scale and tick marks) across columns of the lattice. The default setting is N.

EQUALIZECOLY = <Y | N> — specifies if the y-axis should be equalized across columns of the
lattice. The default setting is N.

EQUALIZEROWX = <Y | N> — specifies if the x-axis should be equalized (that is, use a shared
common scale and tick marks) across rows of the lattice. The default setting is N.

EQUALIZEROWY = <Y | N> — specifies if the y-axis should be equalized across rows of the
lattice. The default setting is N.

FREQ = <frequency-variable-name> — specifies a frequency variable.
GROUP = <group-variable-name(s)> — specifies one or more grouping variables.

IDVALUE = <data-set-name> — specifies a data set. When a corresponding variable name is
specified using the REPORTID argument, a report is generated for each value of the specified
variable in the named data set. A report window is created for each unique value.

KEY == <data-key> (required) — specifies the data key. Since this is a required argument, you
must assign the data key using %EM_REGISTER before using
%EM_REPORT.

LATTICETYPE=<viewtype> — valid viewtypes are:

. Data

. Scatter

. Lineplot

. Bar

. Histogram
. Pie

. Profileview
. Gainsplot

LATTICEX =<lattice-row-variable-name> — specifies variables to be used as rows in a lattice.

LATTICEY = <lattice-column-variable-name> — specifies variables to be used as columns in a
lattice.

LOCALIZE = <Y | N> — specifies whether the description should be localized or used as-is. The
default setting is N.

REPORTID = <variable-name> — specifies a variable name. When a corresponding data set
name is specified using the IDVALUE argument, a report is generated for each value of the
specified variable in the named data set. A report window is created for each unique value.

SPK = <Y | N> — specifies whether to include the report and data in an SPK package. The
default setting is Y.

SUBGROUP = <subgroup-variable-name(s)> — specifies one or more sub-grouping variables.
TIPTEXT = <variable-name> — specifies a variable that contains tooltip text.

TOOLTIP = <variable-name> — specifies a variable containing tooltip text for the Constellation
application.

VIEWS = <numeric-value> — assigns a numeric ID to the generated report.

VIEWTYPE = < plot-type > — specifies the type of plot that you want to display. Valid plot types
include:

. Data
. Bar



. Histogram

. Lineplot

. Pie

. Profileview
. Scatter

. Gainsplot

. Lattice

. Dendrogram
. Constellation

Data is the default value.

WHERE = — specifies an explicit SQL WHERE clause.
X = <x-variable-name> — specifies the x-axis variable.
XREF = <numeric-value> — specifies a reference line on the x-axis.
Y = <y-variable-name> — specifies the y-axis variable.

Yn = <Yn-variable-name> — where n is an integer ranging from 1 to 16. Y1, Y2, ..., Y16 specify
variables that are to be plotted and overlayed on the y-axis.

YREF = <numeric-name> — specifies a reference line on the y-axis.
Z = <z-variable-name> — specifies the z-axis variable of a 3-dimensional plot.

Examples using %EM_REPORT are provided below.

%EM_MODEL

The %EM_MODEL macro enables you to control the computations that are performed and the score code that
is generated by the Enterprise Miner environment for modeling nodes. The macro supports the following
arguments:

TARGET = <target-variable-name> — name of the target (required).

ASSESS = <Y|N> — assess the target. The defaultis Y.

DECSCORECODE = <Y|N> — generate decision score code. The default is N.
FITSTATISTICS = <Y|N> — compute fit statistics. The default is N.

CLASSIFICATION = <Y|N> — generate score code to generate classification variables (I_, F_,
U_) . The default is N.

RESIDUALS = <Y|N> — generate score code to compute residuals. The default is N.
PREDICTED = <Y|N> — indicates if the node generates predicted values. The defaultis Y.

For example, suppose you have a binary target variable named BAD and your code only generates posterior
variables. You can use the %EM_MODEL macro to indicate that you want Enterprise Miner to generate fit
statistics, assessment statistics, and to generate score code that computes classification, residual, and
decision variables.

%em nodel (
t ar get =BAD,
assess=Y,
decscor ecode=Y,
fitstatistics=Y,
cl assification=Y,



r esi dual s=Y,
predi ct ed=Y);

NOTE: %EM_MODEL is available for use in your code but it does not currently appear in the Code Editor's
table of macros.

%EM_DATA2CODE

The %EM_DATA2CODE macro converts a SAS data set to SAS program statements. For example, it can be
used to embed the parameter estimates that PROC REG creates directly into scoring code. The resulting
scoring code can be deployed without need for an EST data set. You must provide the code to use the
parameter estimates to produce a model score.

%EM_DATA2CODE accepts the following arguments:

APPEND= <Y | N> — specifies whether to append or overwrite code if the specified file already
exists.

DATA= <source-data-name> — specifies the source data.

OUTDATA-= <output-data-set-name> — specifies the name of the output data set that is created
when the DATA step code runs.

OUTFILE= <output-data-step-code-filename> — specifies the name of the output file that will
contain the generated SAS DATA step code.

%EM_DECDATA

The %EM_DECDATA macro uses information that you entered to create the decision data set that is used by
Enterprise Miner modeling procedures. %EM_DECDATA copies the information to the WORK library and
assigns the proper type (profit, loss, or revenue) for modeling procedures.
%EM_DECDATA accepts the following arguments:

DECDATA = <decision-data-set> — specifies the data set containing the decision data set.

DECMETA = <decision-metadata — specifies the data set containing decision metadata.

NODEID = <node-identifier> — specifies the unique node identifier.

%EM_CHECKMACRO

Use the EM_CHECKMACRO macro to check for the existence of a macro variable. Assigning a value is
optional.

%EM_CHECKMACRO accepts the following arguments:

NAME = <macro-variable-name> — specifies the name of the macro variable for which you want
to check .

GLOBAL = <Y | N> — specifies whether the named macro variable is a global macro variable.

VALUE = <variable-value> — specifies a value for the macro variable if it has not been
previously defined.




%EM_CHECKSETINIT

Use the %EM_CHECKSETINIT macro to validate and view your SAS product licensing information.
%EM_CHECKSETINIT has the following required argument:
PRODUCTID = <product id number> — specifies the product identification number. If the product

specified is not licensed, SAS Enterprise Miner will issue an error and halt execution of the
program.

%EM_ODSLISTON

Use the %EM_ODSLISTON macro to turn the SAS Output Delivery System (ODS) listing on, and to specify a
name for the destination HTML file.

%EM_ODSLISTON accepts the following arguments:

FILE = <destination-file> — specifies the name of an HTML output file that will contain the generated ODS
listing.

%EM_ODSLISTOFF

Use the %EM_ODSLISTOFF utility macro to turn SAS ODS listing off. No argument is needed for this macro.

%EM_METACHANGE

Use the %EM_METACHANGE macro to modify the columns metadata data set that is exported by a node.
The macro should be called during either the TRAIN or SCORE actions. %EM_METACHANGE allows the
following arguments:

NAME = <variable-name> — the name of the variable that you want to modify (required).
ROLE = <variable-role> — assign a new role to the variable (optional).

LEVEL = <UNARY | BINARY | ORDINAL | NOMINAL | INTERVAL> — assign a new measurement level to
the variable (optional).

ORDER = <ASC | DESC | FMTASC | FMTDESC> — new level ordering for a class variable (optional).
COMMENT = <string>— string that can be attached to a variable (optional).

LOWERLIMIT = <number> — the lower limit of a numeric variable's valid range (optional).
UPPERLIMIT = <number> — the upper limit of a numeric variable's valid range.

DELETE = <Y|N> — indicate whether the variable should be removed from the metadata (optional).

%EM_GETNAME

Use %EM_GETNAME to retrieve the name of a file or dataset that is registered to a given key. The macro
initializes the EM_USER_key macro variable. This macro should be called in actions other than CREATE,
rather than call the EM_REGISTER macro. %EM_GETNAME allows the following arguments:

KEY = <data-key> — the registered data key



TYPE = <CATALOG | DATA | FILE | FOLDER | GRAPH> — the type of file that is registered.
EXTENSION = <file-extension> — an optional parameter to identify non-standard file extensions.

FOLDER = <folder-key> — the folder key where a registered file resides (optional).

%EM_CHECKERROR

This macro checks the return code and initializes the &REMEXCEPTIONSTRING macro variable. %
EM_CHECKERROR has no arguments.

%EM_PROPERTY

Use %EM_PROPERTY in the CREATE action to initialize the &EM_PROPERTY_name macro variable for the
specified property. The macro allows you to specify the initial value to which &EM_PROPERTY_name will
resolve. You can also associate the property with a specific action (TRAIN, SCORE, or REPORT). %
EM_PROPERTY allows the following arguments:

NAME = <property name> — specify the name of the property that is to be initialized (required).
This is case sensitive and must match the property name that is specified in the XML properties
file.

VALUE = <initial value> — specify the initial value for the property (required). The value should
match the initial attribute that is specified for the property in the XML properties file.

ACTION = <TRAIN | SCORE | REPORT> — specify the action that is associated with the
property (optional).

Variables M acros

Use the variables macros to identify variable definitions at run time. Variables appear in these macros only if
the variable's Use or Report status is set to Yes.

. %EM_INTERVAL — resolves to the input variables that have an interval measurement level. Interval variables
are continuous variables that contain values across a range.

. %EM_CLASS — resolves to the categorical input variables, including all inputs that have a binary, nominal,
or ordinal measurement level.

. %EM_TARGET — resolves to the variables that have a model role of target. The target variable is the
dependent or the response variable.

. WEM_TARGET_LEVEL — resolves to the measurement level of the target variable.

. %EM_BINARY_TARGET — resolves to the binary variables that have a model role of target.

. %EM_ORDINAL_TARGET — resolves to the ordinal variables that have a model role of ordinal.

. %EM_NOMINAL_TARGET — resolves to the nominal variables that have a model role of nominal.

. %EM_INTERVAL_TARGET — resolves to the interval variables that have a model role of target.

. %EM_INPUT — resolves to the variables that have a model role of input. The input variables are the
independent or predictor variables.

. %EM_BINARY_INPUT — resolves to the binary variables that have a model role of input.

. %EM_ORDINAL_INPUT — resolves to the ordinal variables that have a model role of input.

. %EM_NOMINAL_INPUT — resolves to the nominal variables that have a model role of input.

. %EM_INTERVAL_INPUT — resolves to the interval variables that have a model role of input.

. %EM_REJECTED — resolves to the variables that have a model role of REJECTED.

. %EM_BINARY_REJECTED — resolves to the binary variables that have a model role of rejected.

. %EM_ORDINAL_REJECTED — resolves to the ordinal variables that have a model role of rejected.

. %EM_NOMINAL_REJECTED — resolves to the nominal variables that have a model role of rejected.

. %EM_INTERVAL_REJECTED — resolves to the interval variables that have a model role of rejected.

. %EM_ASSESS — resolves to the variables that have a model role of assessment.

. %EM_CENSOR — resolves to the variables that have a model role of censor.

. %EM_CLASSIFICATION — resolves to the variables that have a model role of classification.

. %EM_COST — resolves to the variables that have a model role of cost.



. %EM_CROSSID — resolves to the variables that have a model role of Cross ID.

. %EM_DECISION — resolves to the variables that have a model role of decision.

. %EM_FREQ — resolves to the variables that have a model role of freq.

. %EM_ID — resolves to the variables that have a model role of ID.

. %EM_LABEL — resolves to the variables that have a model role of label.

. %EM_PREDICT — resolves to the variables that have a model role of prediction.

. %EM_REFERRER — resolves to the variables that have a model role of referrer.

. %EM_REJECTS — resolves to the variables that have a model role of REJECTED. This macro is
equivalent to %EM_REJECTED.

. %EM_REPORT_VARS — resolves to the variables that have a model role of report.

. %EM_CLASS_REPORT — resolves to the class variables that have a model role of report.

. %EM_INTERVAL_REPORT — resolves to the interval variables that have a model role of report.

. %EM_RESIDUAL — resolves to the variables that have a model role of residual.

. %EM_SEGMENT — resolves to the variables that have a model role of segment.

. %EM_SEQUENCE — resolves to the variables that have a model role of sequence.

. %EM_TEXT — resolves to the variables that have a model role of text.

. %EM_TIMEID — resolves to the variables that have a model role of Time ID.

Macro Variables

The Macro Variables table lists the macro variables that are used to encode single values such as the names of
the input data sets. The macro variables are arranged in groups according to function:

. General
. Properties
. Imports
. Exports

. Files

. Number of Variables

. Statements
. Code Statements

General

Use general macro variables to retrieve system information.

&EM_USERID — resolves to the user name.

&EM_METAHOST — resolves to the host name of SAS Metadata Repository.

&EM_METAPORT — resolves to the port number of SAS Metadata Repository.

&EM_LIB — resolves to the numbered EMWS SAS library containing the data sets and SAS catalogs
related to the current process flow diagram. This will be the same as the value of the process flow
diagram's ID property.

&EM_DESP — resolves to the operating system file delimiter, for example, backslash (\) for Windows
and slash (/) for UNIX.

&EM_CODEBAR — resolves to the macro variable that identifies a code separator.

&EM_VERSION — resolves to the version of Enterprise Miner.

&EM_TOOLTYPE — resolves to the node type (Sample | Explore | Modify | Model | Assess |Utility).
&EM_NODEID — resolves to the node ID.

&EM_NODEDIR — resolves to the path to the node folder.

&EM_SCORECODEFORMAT — resolves to the format of the score code (DATASTEP | OTHER).
&EM_PUBLISHCODE — resolves to the Publish Code property (FLOW | PUBLISH).
&EM_META_ADVISOR — resolves to the Advisor Type property (BASIC | ADVANCED). This is
equivalent to &EM_PROPERTY_MetaAdvisor.

& EM_MININGFUNCTION — resolves to a description of the function of the node.

Properties



Use properties macro variables to retrieve information about the nodes.

. & EM_PROPERTY _ScoreCodeFor mat — resolves to the value of the Code Format property.

. & EM_PROPERTY_MetaAdvisor — resolves to the value of the Advisor Type property. Thisis equivalent
to &EM_Meta Advisor.

. &EM_PROPERTY _ForceRun — resolvesto Y or N. When set to Y the node and its successors will rerun even
though no properties, variables or imports have changed

. & EM_PROPERTY _UsePriors— resolves to the value of the Use Priors property.

. & EM_PROPERTY _Tool Type — resolves to the value of the Tool Type property.

. & EM_PROPERTY _DataNeeded — resolvesto the value of the Data Needed property.

. & EM_PROPERTY _VariableSet — resolves to the name of the catalog containing the Variabl eSet.

. & EM_PROPERTY _PublishCode — resolves to the value of the Publish Code property.

. & EM_PROPERTY _NotesFile— resolves to the name of the file containing the contents of the Notes Editor.

. & EM_PROPERTY_Component — resolves to the Enterprise Miner node name.

. & EM_PROPERTY_RunID — resolves to the value of the Run ID property. Each time the node isrun anew ID
is generated.

Imports
Use imports macro variables to identify the SAS tables that are imported from predecessor nodes at run time.

. &EM_IMPORT_DATA — resolves to the name of the training data set.

« &EM_IMPORT_DATA_CMETA — resolvesto the name of the column metadata data set that corresponds to
the training data set.

« &EM_IMPORT_VALIDATE — resolvesto the name of the validation data set.

« &EM_IMPORT_VALIDATE_CMETA — resolves to the name of the column metadata data set that
corresponds to the validation data set.

. &EM_IMPORT_TEST — resolvesto the name of the test data set.

. &EM_IMPORT_TEST_CMETA — resolves to the name of the column metadata data set that corresponds to
the test data set.

. &EM_IMPORT_SCORE — resolves to the name of the score data set.

. &EM_IMPORT_SCORE_CMETA — resolves to the name of the column metadata data set that corresponds to
the score data set.

« & EM_IMPORT_TRANSACTION — resolves to the name of the transaction data set.

« & EM_IMPORT_TRANSACTION_CMETA — resolves to the name of the column metadata data set that
corresponds to the transaction data set.

.« &EM_IMPORT_DOCUMENT — resolves to the name of the document data set.

« &EM_IMPORT_DOCUMENT_CMETA — resolves to the name of the column metadata data set that
corresponds to the document data set.

. &EM_IMPORT_RULES— resolvesto the name of the rules data set that is exported from a predecessor
Association or Path Analysis node.

« &EM_IMPORT_REPORTFIT — resolves to the name of the fit statistics data set.

. &EM_IMPORT_RANK — resolvesto the name of the rank data set.

. & EM_IMPORT_SCOREDIST — resolves to the name of the score distribution data set.

« &EM_IMPORT_ESTIMATE — resolves to the name of the parameter estimates data set.

. & EM_IMPORT_TREE — resolves to the name of the tree data set from a predecessor modeling node.

« & EM_IMPORT_CLUSSTAT — resolves to the name of the cluster statistics data set from a predecessor

Cluster node.

. &EM_IMPORT_CLUSMEAN — resolvesto the name of the cluster mean data set from a predecessor Cluster
node.

. &EM_IMPORT_VARMAP — resolves to the name of the data set of variable mapping from a predecessor
Cluster node.

. & EM_METASOURCE_NODEID — resolves to the node ID that is providing the variables metadata.

. & EM_METASOURCE_CLASS — resolves to the class of the node.

. & EM_METASOURCE_CHANGED — resolvesto Y or N, indicating whether the source of the metadata has
changed.

Exports

Use exports macro variables to identify the SAS tables that are exported to successor nodes at run time.



& EM_EXPORT_TRAIN — resolvesto the name of the export training data set.

& EM_TRAIN_SCORE — resolvesto Y or N, indicating whether SAS Enterprise Miner should score the
training data set.

& EM_TRAIN_DELTA —resolvesto Y or N, indicating whether the metadata DATA step code will be used to
modify the training column metadata data set.

& EM_EXPORT_TRAIN_CMETA — resolves to the name of the column metadata data set that corresponds to
the export training data set.

& EM_EXPORT_VALIDATE — resolves to the name of the export validation data set.

& EM_VALIDATE_SCORE — resolvesto Y or N, indicating whether the score code will be used to create the
output validation data set.

&EM_VALIDATE_DELTA —resolvesto Y or N, indicating whether the metadata DATA step code will be
used to modify the validation column metadata data set.

&EM_EXPORT_VALIDATE_CMETA — resolvesto the name of the column metadata data set that
corresponds to the export validation data set.

& EM_EXPORT_TEST — resolvesto the name of the export test data set.

& EM_TEST_SCORE — resolvesto Y or N, indicating whether the score code will be used to create the output
test data set.

&EM_TEST_DELTA —resolvesto Y or N, indicating whether the metadata DATA step code will be used to
modify the test column metadata data set.

& EM_EXPORT_TEST_CMETA — resolves to the name of the column metadata data set that corresponds to
the export test data set.

& EM_EXPORT_SCORE — resolves to the name of the export score data set.

& EM_SCORE_SCORE — resolvesto Y or N, indicating whether the score code will be used to create the
output score data set.

& EM_SCORE_DELTA — resolvesto Y or N, indicating whether the metadata DATA step code will be used to
modify the score column metadata data set.

& EM_EXPORT_SCORE_CMETA — resolves to the name of the column metadata data set that corresponds to
the export score data set.

& EM_EXPORT_TRANSACTION — resolves to the name of the export transaction data set.

& EM_TRANSACTION_SCORE — resolvesto Y or N, indicating whether the score code will be used to create
the output transaction data set.

&EM_TRANSACTION_DELTA —resolvesto Y or N, indicating whether the metadata DATA step code will
be used to modify the transaction column metadata data set.

& EM_EXPORT_TRANSACTION_CMETA — resolvesto the name of the column metadata data set that
corresponds to the export transaction data set.

& EM_EXPORT_DOCUMENT — resolves to the name of the export document data set.

& EM_DOCUMENT_SCORE — resolvesto Y or N, indicating whether the score code will be used to create the
output document data set.

& EM_DOCUMENT_DELTA —resolvesto Y or N, indicating whether the metadata DATA step code will be
used to modify the document column metadata data set.

&EM_EXPORT_DOCUMENT_CMETA — resolvesto the name of the column metadata data set that
corresponds to the export document data set.

Use files macro variables to identify external files that are managed by Enterprise Miner, such as log and output listings.
Not all nodes create or manage all external files.

& EM_DATA_IMPORTSET — resolves to the name of the data set containing metadata for the imported data
sets.

& EM_DATA_EXPORTSET — resolves to the name of the data set containing metadata for the exported data
Sets.

& EM_DATA_VARIABLESET — resolvesto the data set containing metadata for the variables that are
available for use with the node.

& EM_DATA_ESTIMATE — resolves to the name of the parameter estimates data set.
&EM_DATA_EMTREE — resolves to the name of the tree data set.

&EM_DATA_EMREPORTFIT — resolves to the name of thefit statistics data set in columns format.
&EM_DATA_EMOUTFIT — resolves to the name of the fit statistics data set.
&EM_DATA_EMCLASSIFICATION — resolves to the name of the data set that contains classification
statistics for categorical targets.

& EM_DATA_EMRESIDUAL — resolvesto the name of the data set that contains summary statistics for
residuals for interval targets.

& EM_DATA_EMRANK — resolves to the name of the data set that contains assessment statistics such as lift,
cumulative lift, and profit.



. &EM_DATA_EMSCOREDIST — resolvesto the name of the data set that contains assessment statistics such
as mean, minimum, and maximum.

. & EM_DATA_INTERACTION — resolves to the name of the interaction data set.

. & EM_DATA_EMTRAINVARIABLE — resolves to the name of the training variable data set.

. & EM_CATALOG_EMNODELABEL — resolves to the name of the node catal og.

. & EM_FILE_EMNOTES — resolves to the name of the file containing your notes.

. & EM_FILE_EMLOG — resolves to the name of the Enterprise Miner output log file.

. & EM_FILE_EMOUTPUT — resolves to the name of the Enterprise Miner output datafile.

. & EM_FILE_EMTRAINCODE — resolves to the name of the file that contains the training code.

. &EM_FILE_EMFLOWSCORECODE — resolves to the name of the file that contains the flow score code.

. &EM_FILE_EMPUBLISHSCORECODE — resolves to the name of the file that contains the publish score
code.

. &EM_FILE_EMPMML — resolves to the name of the PMML file.

. &EM_FILE_CDELTA_TRAIN — resolves to the name of the file that containsthe DATA step code that is
used to modify the column metadata associated with the training data set that is exported by anode (if one exists).

. &EM_FILE_CDELTA_TRANSACTION — resolves to the name of the file that containsthe DATA step code
that is used to modify the column metadata associated with the transaction data set that is exported by anode (if
one exists).

. &EM_FILE_CDELTA_DOCUMENT — resolvesto the name of thefile that containsthe DATA step code
that is used to modify the column metadata associated with the document data set that is exported by a node (if
one exists).

Number of Variables

Use number of variables macro variables for a given combination of Level and Role. These macro variables only count
variables that have a Use or Report status of Yes.

. &EM_NUM_VARS — resolves to the number of variables.

. &EM_NUM _INTERVAL — resolvesto the number of interval variables.

. &EM_NUM_CLASS — resolvesto the number of class variables.

. & EM_NUM_TARGET — resolves to the number of target variables.

. & EM_NUM_BINARY_TARGET — resolves to the number of binary target variables.

. &EM_NUM_ORDINAL_TARGET — resolvesto the number of ordinal target variables.

. &EM_NUM_NOMINAL_TARGET — resolves to the number of nominal target variables.

. & EM_NUM_INTERVAL_TARGET — resolves to the number of interval target variables.

. & EM_NUM_BINARY_INPUT — resolvesto the number of binary input variables.

. & EM_NUM_ORDINAL_INPUT — resolves to the number of ordinal input variables.

. &EM_NUM_NOMINAL_INPUT — resolves to the number of nominal input variables.

. & EM_NUM_INTERVAL_INPUT — resolvesto the number of interval input variables.

. &EM_NUM_BINARY_REJECTED — resolves to the number of rejected binary input variables.

. &EM_NUM_ORDINAL_REJECTED — resolves to the number of rejected ordinal input variables.

. &EM_NUM_NOMINAL_REJECTED — resolves to the number of rejected nominal input variables.

. &EM_NUM_INTERVAL_REJECTED — resolves to the number of rejected interval input variables.

. &EM_NUM_ASSESS — resolves to the number of variables that have the model role of Assess.

. &EM_NUM_CENSOR — resolves to the number of variables that have the model role of Censor.

. & EM_NUM_CLASSIFICATION — resolves to the number of variables that have the model role of
Classification.

« & EM_NUM_COST — resolves to the number of variables that have the model role of Cost.

. & EM_NUM_CROSSID — resolves to the number of variables that have the model role of CrossID.

. & EM_NUM_DECISION — resolves to the number of variables that have the model role of Decision.

. & EM_NUM_FREQ — resolves to the number of variables that have the model role of Freq.

. & EM_NUM_ID — resolves to the number of variables that have the model role of ID.

. &EM_NUM_LABEL — resolvesto the number of variables that have the model role of Label.

. &EM_NUM_PREDICT — resolves to the number of variables that have the model role of Predict.

. &EM_NUM_REFERRER — resolves to the number of variables that have the model role of Referrer.

. &EM_NUM_REJECTS— resolves to the number of variables that have the model role of Rejected.

. &EM_NUM_REPORT_VAR — resolves to the number of variables that have the model role of Report.

. &EM_NUM_CLASS REPORT — resolvesto the number of class variables that have the model role of Report.

. &EM_NUM_INTERVAL_REPORT — resolves to the number of interval variables that have the model role of
Report.

. &EM_NUM_RESIDUAL — resolvesto the number of variables that have the model role of Residual.

. & EM_NUM_SEGMENT — resolves to the number of variables that have the model role of Segment.

. &EM_NUM_SEQUENCE — resolves to the number of variables that have the model role of Sequence.

. &EM_NUM_TEXT — resolves to the number of variables that have the model role of Text.



. &EM_NUM_TIMEID — resolves to the number of variables that have the model role of Time ID.

Statements

Statements macro variables resolve to values that refer to information regarding decision variables and decision
information. These macro variables are empty when there is more than one target variable.

. &EM_DEC_TARGET — resolves to the name of the target variable.

. &EM_DEC_LEVEL — resolvesto the event level.

. &EM_DEC_ORDER — resolves to the sorting order of the target levels (ASCENDING | DESCENDING).
. &EM_DEC_FORMAT — resolvesto the format of the decision target variable.

. &EM_DEC_DECMETA — resolves to the decision metadata data set of the target variable.

. & EM_DEC_DECDATA — resolvesto the decision data set of the target variable.

. & EM_DEC_STATEMENT — resolves to the decision statement.

Code Statements

Use the Code Statements macro variable to identify the file containing the CODE statement.

. &EM_STATEMENT_RESCODE — resolves to the file containing a CODE statement with aresiduals option.
In effect, thiswill resolve to the file containing FLOW scoring code (& EM_FILE_ EMFLOWSCORECODE).

. & EM_STATEMENT_CODE — resolvesto the file for containing a CODE statement does not have aresiduals
option. In effect, thiswill resolve to the file containing PUBLISH scoring
code (& EM_FILE_EMPUBLISHSCORECODE).

There are also system macro variables that can be set by the user. These are documented in Enterprise Miner Macro Variables.

Code pane

The code pane is where you write new SAS code or where you import existing code from an external source.
Any valid SAS language program statement is valid for use in the SAS Code node with the exception that

you cannot issue statements that generate a SAS windowing environment. The SAS windowing environment
from Base SAS is not compatible with Enterprise Miner. For example, you cannot execute SAS/Lab from within
an Enterprise Miner SAS Code node.

The code pane has three views: Training Code, Score Code, and Report Code. You can use either the icons on
the toolbar or the View menu to select the editor in which you want to work.

When you enter SAS code in the code pane, DATA steps and PROC steps are presented as
collapsible/expandable blocks of code. The code pane itself can be expanded or contracted using the ‘aw
icons located at the bottom left-side of the pane.

Report Code

em registeritype=data, key=exanple); e
Tdﬂta GEI_USer_example;

zet EM IMPORT DATA:

run;

sem report(FET=exauple,
YIEWTYPE=EAR,
K=REAS0N,
GROUP=JOE,
FEEQ=LOAN,
ATTODISPLAT=T, LI

F


file:///G|/pub/doc/902/production/emxndg/html/install3.html#macro_variables

Y ou can drag and drop macros and macro variables from their respective tables into the code pane. This speeds up the
coding process and prevents spelling errors.

You can import SAS code that is stored as atext file or a source entry in a SAS catalog. If your code isin an external text
file, then follow this example:

filename fref "path-nanme\nycode. sas";
% nc fref;
filenanme fref;

If your code isin acatalog, follow this example:

filename fref catalog "libref. mycatal og. nyentry. source";
% nc fref;
filenane fref;

The codein the three views is executed sequentially at when the node is run. Training code is executed first, followed by
Score code, and finally, Report code. Suppose, for example, that you make changes to your Report code but do not change
your Training and Score code. When you run your node from within the Code Editor, Enterprise Miner does not have to
rerun the Training and Score code; it just reruns the Report code. This can save considerable timeif you have complex code
or very large data sets. The three views are designed to be used in the following manner:

. Training Code — Write code that passes over the input training or transaction data to produce some result in the
Training Code pane. For example:

proc neans data=&em i nport _dat a;
out put out=m
run;

Y ou should also write dynamic scoring code in the training code pane. Scoring code is code that generates new variables
or transforms existing variables. Dynamic scoring code, as opposed to static scoring code, is written such that no

prior knowledge of the properties of any particular data set is assumed. That is, the code is not unique to a particular
process flow diagram. For example, suppose that you begin your process flow diagram with a particular data source and it
isfollowed by a SAS Code node that contains dynamic scoring code. If you changed the data source in the diagram,

the dynamic scoring code should still execute properly. Dynamic scoring code can make use of SAS PROC statements
and macros, whereas static scoring code cannot.

. Score Code — Write code that modifies the train, validate, test, or transaction data sets for the successor nodes. The
Score view is, however, reserved for static scoring code. Static scoring code makes references to properties of a specific
data set, such as variable names, so the code is unique for a particular process flow diagram. For example,

| ogage= | og(age);

If you write dynamic scoring code in the Score Code pane it will not execute. Scoring code that is included in the Score
Code pane must be in the form of pure DATA steps. SAS PROC statements and macros will not execute in the Score
Code pane.

. Report Code — code that generates output that is displayed to the user. The output can be in the form of graphs, tables, or
the output from SAS procedures. For example, statements such as

proc print data=m
run;

Callsto the macro, %EM REPORT, which areillustrated in Examples using %EM REPORT, are the most common form
of Report code.

Y ou can execute your code in two modes:

. Run Code ( £ ) — Code will be executed immediately in the current SAS session. Only the code in the active code pane
is executed. The log and output will appear in the Code Editor's Results pane. If ablock of codeis highlighted, only that code
is executed. No pre-processing or post-processing will occur. Use this mode to test and debug blocks of code
during devel opment.



. Run Node ( * ) — The code node and all predecessor nodes will be executed in a separate SAS session, exactly as if
the user has closed the editor and run the path. All hormal pre-processing and post-processing will occur. Use the
Results window to view the log, output, and other results generated by your code.

Most nodes generate permanent data sets and files. However, before you can reference afile in your code, you must

first register aunique file key using the %EM_REGISTER macro and then associate a file with that key. When you register
akey, Enterprise Miner generates a macro variable named & EM_USER_key. Y ou use that macro variable in your code

to associate the file with the key. Registering afile allows Enterprise Miner to track the state of the file and avoid

name conflicts.

Use the %EM_GETNAME macro to reinitialize the macro variable & EM_USER_key when referring to afileskey ina

code pane other than the one in which it was registered. Using Run Code causes the code in the active code pane to execute in
aseparate SAS session. If the key was registered in a different pane, & EM_USER_key will not get initialized. The

registered information is stored on the server, so you don't have to register the key again, but you must

reinitialize & EM_USER_key.

SAS Code Node Results

To view the SAS Code node's Results window from within the Code Editor, click the @ icon. Alternatively, you can
view the Results window from the main Enterprise Miner workspace by right-clicking the SAS Code node in the diagram
and selecting Results.

Select View from the main menu in the Results window to view the following results:

. Properties

o Settings — displays awindow with aread-only table of the SAS Code node's properties configuration when the node was
last run.

o Run Status — displays the status of the SAS Code node run. The Run Start Time, Run Duration, and information
about whether the run completed successfully are displayed in this window.

o Variables— display atable of the variablesin the training data set.

o Train Code— displays the code that Enterprise Miner used to train the node.

o Notes— display (in read-only mode) any notes that were previously entered in the Notes editor.

. SASResults

o Log— the SASlog of the SAS Code node's run.

o Output — The SAS Code node's output report, like all other nodes, includes Training Output, Score Output, and
Report Output. The specific contents are determined by the results of the code that you write in the SAS Code node.

o Flow Code — the SAS code used to produce the output that the SAS Code node passes on to the next node in the process
flow diagram.

o Train Graphs— displays graphs that are generated by SAS\GRAPH commands from within the Train code pane.

o Report Graphs— displays graphs that are generated by SAS\GRAPH commands from within the Report code pane.

. Scoring

o SAS Code— the SAS score code that was created by the node. The SAS score code can be used outside of the
Enterprise Miner environment in custom user applications.

s PMML Code— the PMML code that was generated by the node. The PMML Code menu item is dimmed and
unavailable unless PMML is enabled.

. Assessment — thisitem appears only if the Tool Type property is set to MODEL. By default, it contains a submenu item
for Fit Statistics. Y ou can, however, generate other items by including the appropriate type code in the node.

. Custom Reports— appears as an item in the menu when you generate custom reports using %EM_REPORT. Thetitlein
the menu, by default, is Custom Reports, but that can be changed by specifying the BLOCK argument of
the macro %EM_REPORT.

. Table— displays atable that contains the underlying data that is used to produce a chart.

. Plot — use the Graph wizard to modify an existing Results plot or create a Results plot of your own.




SAS Code Node Examples

Example 1a: Writing New SAS Code

Example 1b: Adding Logical Evaluation

Example 1c: Adding Report Elements

Example 1d: Adding Score Code

Example 1e: Modifying Variables M etadata

Example 2: Writing SAS Code to Create Predictive Models
Examples using %EM REPORT

Example 1a: Writing New SAS Code

Follow these steps to write SAS code to compare the distributions of interval variablesin the training and validation data sets.

1

abrbowdN

Define a data source for SAMPSIO.HMEQ. Ensure that the measurement level is binary for BAD, and nomina for JOB
and REASON. Other variables have the level of interval.

. Add an Input Data hode by dragging and dropping the HMEQ data source onto the diagram workspace.

. Add a Data Partition node and connect it to the Input Data node.

. Run the Data Partition node.

. Add a SAS Code node and connect it to the Data Partition. Y our process flow diagram should look like the following:

5 Data Parttion = |=] SAS Code

Home Ecuity -

. Select the SAS Code node and click the ellipsisicon [ that corresponds to the Code Editor property to open the editor.
. Typethefollowing code in the Training Code pane.

/* perform PROC MEANS on interval variables in training data */
/* output the results to data set naned t */

proc neans data=&em i nport_data noprint;
var %em.interval;
out put out =t;

run;

/* drop unneeded variabl es and observations */

data t;
set t;
drop _freq_ _type_;
where _stat_ ne 'N;
run;

/* transpose the data set */

proc transpose data=t out=tt;
id stat_;
run;

/* add a variable to identify data partition */

data tt;
set tt;
| ength datarole $8;
datarole="train';
run;

/* perform PROC MEANS on interval variables in validation data */



/* output the results to data set naned v */

proc neans data=&em i nport_validate noprint;
var %em.interval;
out put out =v;

run;

/* drop unneeded vari abl es and observations */

data v;
set v;
drop _freq_ _type_;
where stat_ ne 'N;
run;

/* transpose the data set */

proc transpose data=v out=tv;
id _stat_;
run;

/* add a variable to identify data partition */

data tv;
set tv;
l ength datarole $8;
datarol e='valid';
run;

/* append the validation data results */
/* to the training data results */

proc append base=tt data=tv;
run;

/* register the key Conp and */
/* create a pernmanent data set so */
/* that the data set can be used */
/* later in Report code */

%em regi ster(key=Conp, type=data);

data &em user _Conp;
length _name_ $12;
| abel _name_ = 'Nang';
set tt;
cv=st d/ nean;

run;

/* tabulate the results */

proc tabul ate data=&em user _Conp;
class _nanme_ datarol e;
var mn nean max std vc;
table nanme_*datarole, nmn mean max std cv;
keyl abel sun¥' *;
title "Distribution Conparison';
run;

8. Runthe SAS Code node and view the results. In the SAS Code Results window, the Output window displays the
tabulated comparison of the variables distributions of the training and validation data sets.
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Example 1b: Adding L ogical Evaluation

The SAS code in Example 1la generates error messages if no validation data set exists. Y ou use conditional logic within
amacro to make the program more robust. To do so, follow these steps.

1. Open the Code Editor.

2. Add the following code shown in blue in the Training Code pane. The %EV AL function evaluates logical expressions
and returns avalue of either 1(for true) or O (for false). In this example, it checks whether a value has been assigned to
the macro variable & EM_IMPORT_VALIDATE . If avalidation data set exists, &EM_IMPORT_VALIDATE will
be assigned a value of the name of the validation data set, and the macro variable, &cv, is set to 1. The new code checks
the existence of a validation data set before it calculates the values of minimum, mean, max, and standard deviation
of variables. If no validation data set exists, it writes a note to the Log window.

%racro i ntconpare();
% et cv=0;
%f "em.inport_validate" ne "" and
(%sysfunc(exi st(&m.inport_validate)) or
%sysfunc(exist(&m.inmport_validate, VIEW)) % hen
% et cv=1;

proc neans data=&em i nport_data noprint;
var %em.interval;
out put out=t;

run;

data t;
set t;
drop _freq_ _type_;
where _stat_ ne 'N;
run;

proc transpose data=t out=tt;
id stat ;




run;

data tt;
set tt;
| ength datarole $8;
datarole="train';
run;

% f &cv % hen %o;

proc nmeans data=&em i nport_validate noprint;
var %em.interval;
out put out =v;

run;

data v;
set v;
drop _freq_ _type_;
where stat_ ne 'N;
run;

proc transpose data=v out=tv;
id _stat_;
run;

data tv;
set tv;
| ength datarole $8;
datarol e="valid';
run;

proc append base=tt data=tv;
run;

%em regi st er (key=Conp, type=data);

data &em user _Conp;
length _name_ $12;
| abel _name_ = 'Nane';
set tt;
cv=st d/ nean;

run;

%end;
%l se %lo;

%ut &em codebar;
%ut %t r (VALI DATI ON DATA SET NOT FOUND!);
%ut &em codebar;

%end;

proc tabul ate data=&em user _Conp;
class _nane_ datarol e;
var mn nmean max std cv;
table nanme_*datarole, nmn nean max std cv;
keyl abel sune' ';
title "Distribution Conparison';
run;



%rend i nt conpare;
% nt conpare();

3. Inthe Data Partition node's properties panel, change the Data Set Allocation property for the training and validation data sets
to 70 and O, respectively.

4. Runthe SAS Code node and view the results. The Output window in the Results window displays statistics for the training
data set only. Open the Log window within the Results window and the note that the text

VAL| DATI ON DATA SET NOT FOUND!

displaysin the Log window.

=10l x|
149 =]
150 HOTE: There were 11 cbserwvations read from the data set WORE.TT.
AR HOTE: The data set WORK.TT has 11 obserwations and 6 wariables.

152 HOTE: DATA statement used (Total process time):

153 real time 0.00 seconds

154 cpu time 0.00 seconds
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158 VALIDATION DATA 3ET NOT FOUND!
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16l HOTE: There were 11 observations read from the data set WORK.TT.
162 HOTE: The PROCEDURE TABULATE printed padge Z.

163 HOTE: PROCEDURE TAEULATE used (Total process time):

la4 real time 0.03 seconds

165 cpu time 0.03 seconds _ILI
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Example 1c: Adding Report Elements

In parts 1aand 1b, the comparison of variables distributionsis displayed in the Output window. In addition, you might
also want to include the tabulated comparison in a SAS table view and to create a plot of some of the statistics. To do
so, follow these steps:

1. Inthe Data Partition's properties panel, change the Data Set Allocation property for the training and validation data sets back
to 40 and 30, respectively.

2. Open the Code Editor.

3. Typethefollowing code in the Report Code pane.

/* initialize the &m user_Conp nacro variable */
%em get nane(key=Conp, type=data);
/*** Save Results with EM Name ***/

proc sort
dat a=&em user _Conp
out =&em user _Conp;
by descendi ng cv;
run;

[*** Add to EM Results ***/

%em r eport (key=Conp,
vi ewt ype=Dat a,
bl ock=Conpar e,
descri pti on=Conpari son Tabl e);



%em r epor t (key=Conp,
Vi ewt ype=Bar,
X=_nane_,
freg=cv,
bl ock=Compar e,
where= datarole eq 'train',
aut odi spl ay=Y,
description=Trai ning Data CV Pl ot);

%em r eport (key=Conp,
Vi ewt ype=Bar,
X=_nane._,
freg=cv,
bl ock=Conpar e,
where= datarole eq 'valid',
aut odi spl ay=Y,
description=Validation Data CV Plot);

run;

4. Run the SAS Code node and view results.
5. Inthe SAS Code Results window, select from the main menu

View = Compare= Comparison Table.

The following Comparison Table window opens. The table is sorted by the values of standard deviation in adescending order.

@ Comparson Table i
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6. Inthe Results window, select from the main menu
View = Compare= Training Data CV Plot.

The following Training Data CV Plot window opens. The plot displays a bar chart of the coefficient of variation for
each variable in the training data set.
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In the Results window, select from the main menu
View = Compare= Validation Data CV Plot.

The following Validation Data CV Plot window opens. The plot displays a bar chart of the coefficient of variation for
each variable in the training data set.
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Example 1d: Adding Scoring Code

Suppose you want to generate scoring code to rescale the variables to their deviation from the mean. Enterprise

Miner recognizes two types of SAS scoring code, Flow scoring code and Publish scoring code. Flow scoring code is used

to score SAS data tables inside the process flow diagram. Publish scoring code is used to publish the Enterprise Miner model
to a scoring system outside the process flow diagram. To generate both types of scoring code, follow these steps:

1. Open the Code Editor.
2. Add the following code to your SAS program in the Training Code pane.

/* Add Score Code */



%racro scorecode(file);
data _null _;
I ength var $32;
filename X "&file";
FILE X;
set &em user _Conp(where=(datarole eq 'train'));

if N eq 1 then do;

[0 B i i *;
put '*---------- Squared Variation Scaling --------- *;
1T R e R R *;

end;

var=strip('Vv_" 'l _pame_);

put var '= (' _nanme_ '-' nmean ')**2 ;' ;

run;

%rend scor ecode;
%scorecode(&m fil e_enfl owscorecode);
%scorecode(&m fil e_enpublishscorecode);

3. Run the SAS Code node and open the Results window.
4. Select View # SAS Results= Flow Code from the main menu.

Browtole il

| e i st et el i e i *riEe
2 T Gruared Variation 3caling --—------- e

3 e e T s S e *
a4 ¥_CLAGE = (CLAGE -182.3514213%6 )*%%2 ;

5 ¥_CLNO = (CLNO -21.216440752 )*%2 ;

] ¥_DEETINC = (DEETINC -33.907492422 %%2 ;

i ¥ _DELTNQ = (DELINQ -0.4679069767 )**2 ;

g ¥_DEROG = (DEROG -0.2433460076 )*%2 ;

] W_LOAN = (LOAN -18757.850546 )**2 ;

10 ¥_MOETDUE = (MORTDUE -73215.742741 )*%%2 :

11 ¥_NINQ = (NINQ -1.1503208066 )%*%2 ;

lz ¥_VALUE = (VALUE -102461.00508 )*%2 ;

13 V_¥0J = (¥0J -8.8810123683 (*+2 ; i
14 ¥__datacbs_ = [_datachs_ -2996.774979 )¥%2 ;

15

5. To view the publish scoring code, select View # Scoring # SAS Code from the main menu.
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Example 1e: M odifying Variables M etadata

New variables have been added to the model and the original variables need to be removed to avoid duplicating termsin
the final model. The variables can be dropped from the incoming tables or they can be given a Role of REJECTED in

the exported metadata. Y ou follow these steps to generate SAS code to modify the exported metadata tables. SAS codeis
used to create rules that can have more than one condition. Even though the training, validation, and test data sets are
processed in the flow, you only need to modify the metadata for the exported training data set. Y ou modify the metadata for
the validation and test data sets only when different variables are created on the validation or test data set.

1. Open the Code Editor.
2. Add the following code to your SAS program in the Training Code pane.

/* Modify Exported Training Metadata */

data _null_;
I ength string $34;
filename X "&mfile cdelta train";
FI LE X;
set & m user_Conp(
where=(datarole eq "train'));

/* Reject Original Variable */

string = upcase('""!!strip(_NAMVE_)!!""");
put "if upcase(NAME) eq ' string ' then rol e="REJECTED" ;' ;

/* Modify New Vari abl es */

var =upcase(strip('V_" 'l _name_));

string = """Ilstrip(var)!!t'"";

put "if upcase(NAME) eq ' string ' then do ;' ;
put ' rol e="| NPUT" ;' ;

put ' | evel = "I NTERVAL" ;' ;

put ' coment = "Squared Variation" ;' ;

put 'end ;' ;

run;

3. Runthe SAS Code node and do not view the results. Close the Code Editor.
4. From the SAS Code node's General properties, click the [l icon of the Exported Data property.

E{E:H:purted Data - SAS Code i

Data Exists
Erdv=1 0. EMCODE_TRAIM Trairn
WALIDATE Erdiivs10 EMCODE MW ALIDATE W alidate Mo
TEZT Erdiivs10 EMCODE_TEST Test es
SCORE Etv=10 EMCODE_SCORE SCoke Mo
TRAMNSACTION Erv=1 0 EMCODE_TRANSACTION |Transaction Mo
Dz IMEMT Erdivs1 0 EMCODE_DOCUMENT Crocument Mo

Erowse... Explore... Properies...

Ok

Select the Train data set from the Port column of the table. Click on the Properties button at the bottom of the window.



i Properties - EMWS10.EMCODE_TRAIN

Yariakles I
Propetty Walue |

Takle Ebds1 0 EMCODE_TRAIM
member Type WIEWY
Description
Data Zet Type DATA
Engine SASDEY
Crested 2005-02-13 11:00:01 .442
Modified 2005-02-13 11:00:01 .442
Murnber of Ohservations Unkrowen
Mutnber of Colutnns 24
Fole Train

Click on the Variables tab.

. Properties - EMWS10.EMCODE_TRAIN

Table | Varishles

Mame Role Lewel Type Order |
BALD Target Binany Mumeric
CLAGE Rejected Interval Mumeric
CLMO Rejected Interval Humeric
DEETIMC Rejected Interval Humeric
DELIMG Rejected Interval Mumeric
DERCOG Target Qrdinal Mumeric
JOB Input Maorminal Character
LCIAMN Rejected Interval Mumeric
MORTDUE  |Rejected Interval MUrmeric
MM Rejected Interval Mumeric
REASCOMN Input Maorminal Character

ALLIE Rejected Interval Mumeric

CLAGE Input Interval Mumeric

CLMO Input Interval Humeric

DEBTIMNG  [Input Interval Mumeric

DELIMG  [Input Interval Mumeric

LOAR Input Interval Mumeric

MORTDUE (Input Interval Humeric

I G Input Interval Mumeric

WaLLIE Input Interval Mumeric

T Input Interval Humeric

dataohs_ (Input Interval Humeric

(o] Rejected Interval Mumeric
dataohs Rejected Interval Mumeric
A | i3

The original interval input variables now have a Role of REJECTED. The new variables (V_xxx) have a Role of INPUT.

Example 2: Writing SAS Codeto Create Predictive Models

This example shows you additional features of the SAS Code node.

1. Define adata source for SAMPSIO.DMAGECR (German Credit) and set the binary variable GOOD_BAD as the target.



Use the Advanced Advisor and select Y es when you are prompted to build models by using the values of the decisions.
. Add an Input Data node by dragging and dropping the data source DMAGECR onto the diagram workspace.
. Add a SAS Code node to the diagram workspace and connect it to the Input Data node.
. Change the value of the Tool Type property to Model in the Properties panel.
Select the SAS Code node and click the [=d icon in the Code Editor property to open the Code Editor.
. In the Training Code pane, type the following code:

oOUAWN

/* Register User Files */

%em regi ster(
key=Fit,
t ype=Dat a) ;

%em regi ster(
key=Est,
t ype=Dat a) ;

/* Training Regression Mdel */
/* Create a DVDB dat abase */
%em dndb( out =1) ;

/* Fit logistic regression nodel */
/* using macro Yemdnreg fromthe */
/* sashel p.enutil catal og */

%em dnr eg(
sel ecti on=St epwi se,
out est =&em user Est,
out sel ect =Wor k. Qut sel ect) ;

/* Work. Qut sel ect contains the names of REJECTED vari abl es */
/* & m user_Est contains paraneter estinmates and t statistics */
/* for each of the stepw se nodels */

/* Modify Exported Metadata */

data _null _;

I ength string $34;

filename X "&mfile_cdelta_train";

FILE X;

if _N =1 then do;
put "if ROLE in ('INPUT',' REJECTED ) then do;";
put "if NAME in (";
end;

set Work. Qut sel ect end=eof;
string = """Iltrimleft(TERM)!!""";
put string;

if eof then do;
put ') then role="INPUT";";
put 'else rol e="REJECTED";";
put 'end;"';
end;

run;
7. Inthe Report Code editor, type the following code:
/* Cenerate Graphs */

proc univariate data=&m.inport_data noprint;
cl ass &m dec_t arget;



hi st ogram %em_i nt erval _i nput;
run;

SAS graphs are automatically copied from the WORK.GSEG catalog and GIF files are created and stored in the
node's REPORTGRAPH subfolder. For example, suppose your projects are stored in afolder named C:\EMPROJECTS.
If your project name is SASCODE and your diagram ID is EMWSL, the GIF files will be stored in C:
\EMPROJECTS\SASCODE\WORK SPACES\EMWS1\EM CODE\REPORTGRAPH.

8. Run the SAS Code node and view the results. Open the Score Distribution chart. The following display shows an example
of the SAS Code results window.
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Standard results of amodel node are displayed. The SAS Codeis registered asa MODEL tool at the beginning of the
SAS code. Therefore, fit statistics, and plots of score distribution and score rankings are automatically displayed. Select
from the main menu:

View = SAS Results= Report Graphs

The Report Graphs window opens and displays the output from the PROC UNIVARIATE statement. The
PROC UNIVARIATE statement produces histograms of each input interval input for both target levels.
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. Close the Results window. Add ancther SAS Code node to the diagram workspace and connect it to the Input Data node.
. Change the value of the Tool Type property to Model in the Properties panel.

. Open the Code Editor for the newly added SAS Code node and copy the following code in the Training Code editor. The
codeissimilar to that in step 6, but uses PROC ARBOR to creste a decision tree model. The PROC ARBOR step

is encapsulated in the %EM_ARBOR macro.

/* Registering User Files */

%em regi st er (key=MODEL, type=DATA);
%em regi st er (key=I MPORTANCE, type=DATA);
%em regi st er (key=NCDES, type=DATA);
%em regi st er (key=LEAFSTATS, type=DATA);

/* Training Decision Tree Mdel */

%em ar bor (
criterion=probchisq,
al pha=0. 2,
out nodel =&EM USER_MODEL,
out i nport =&EM_USER | MPORTANCE,
out nodes=&EM USER_NODES) ;

/**************************************************************************/

/* CRI TERI ON = criterion (VAR ANCE, PROBF, ENTROPY, G N, PROBCH SQ */



/* ALPHA al pha value; used with criterion = PROBCH SQ or PROBF  */

/* (def aul t =0. 20) */
/* OUTMODEL = tree data set; encode info used in the | NMODEL option  */
/* OUTI MPORT = inmportance data set; contains variable inportance */
/* OUTNODES = nodes data set; contains node information */

/**************************************************************************/

/* Modi fying Exported Metadata */

data _null _;
I ength string $200;
filename X "&EM FI LE CDELTA TRAIN';

file X
set &EM USER | MPORTANCE
end=eof ;

if I MPORTANCE =0 then do;

string = "if NAVE="'!ltrin(left(name))!!"" then do;";
put string;
put ' ROLE="REJECTED';"';
string = ' COWENT=""11"&EM NODEI D'!'!'': Rejected because of |ow
i nportance val ue";";
put string;
put 'end;"';
end;
el se do;
string = "if NAME=""Iltrin(left(name))!!"" then ROLE="I|NPUT";";
put string;
end;

if ~eof then
put 'else';
run;

12. Type the following code in the Report Code pane:
/* Cenerating Reports */

/* Initialize &M PRED with the nane of the */
/* target=1 prediction variable */

data _null _;
set &em dec_decnet a;
where _TYPE_ eq "PREDI CTED' AND LEVEL eq "GOOD';
call synput ("EM PRED', VARl ABLE) ;

run;

/* Reinitialize registered keys */

%em get name( key=LEAFSTATS, type=data);
%em get name( key=NCDES, type=dat a);
%em get nane( key=I MPORTANCE, type=data);

/* retrieve the predicted variables data set */

dat a &EM USER_LEAFSTATS;
set &EM USER_NODES(
keep=LEAF N NPRIORS P_: I_: U:);
where LEAF ne .;
format LEAF 3.;
run;

/* plot the target prediction for each |eaf */

Y%EM REPORT( key=LEAFSTATS,
descri pti on=STATI STI CS,



Vi ewt ype=BAR,
freq=&EM_PRED,
X=LEAF) ;
/* Generating G aphs */
%em _get nane( key=I MPORTANCE, type=data);

/* Plot the Inportance of the Individual Variables */

proc gchart dat a=&EM USER_| MPORTANCE;
vbar nane/ sunvar =i nportance di screte descendi ng;
title 'Variable Inportance';

run;

title;

quit;

13. Run the SAS Code node and open the Results window. Select from the main menu:

View = Custom Reports = Transformation Statistics

The Transformation Statistics plot is displayed:
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14. Select from the main menu:
View = SAS Results # Report Graphs

The Report Graphs window opens and displays the output from the PROC GCHART statement. The PROC
GCHART statement produces bar charts of the importance value of each input variable.
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Examplesusing % EM REPORT

The following examples use the %EM_REPORT utility macro to produce a variety of plots:

. Bar Plot

. Multiple Bar Plot

. MultipleY Plot

. Dendrogram

. Three Dimensional Components
. Simple Lattice of Plots

. Constellation Plot

Bar Charts

This example demonstrates how to generate a simple bar chart and progressively add features.

1. Create anew diagram
2. Add an input data source to the diagram. Use the Home Equity data set from the SAMPSIO library.
3. Add a SAS Code node to the diagram and connect it to the Home Equity node.



Home Equity - :1 SAS Code
4. Click on the SAS Code node and open the Code Editor.
5. Enter the following code in the Report Code pane:

%em regi ster(type=Dat a, key=Exanpl e) ;
data &em user _Exanpl €;
set & m i nport_Dat a;

run;

%em report (
key=Exanpl e,
Vi ewt ype=Bar,
Xx=Reason,

aut odi spl ay=Y,
description=Sinple Bar Chart,
bl ock=My Graphs);

6. Click RunNode ( % ).

7. Click Results ( E ). When the Results window opens, double click thetitle bar of the bar chart pane and you should see
the following:

i Results - Node: SAS Code Diagram: emreport i ¢ -iEIl_?il
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Examining the code that was submitted, thefirst lineis:
%em regi ster(type=Data, key=Exanple);
The macro %EM_REGISTER registers the data key "Example". The three lines,

data &m user _Exanpl e;



set &em i nport _Dat a;
run;

performs a SAS data step. By using the macro variable & em_user_Example for the data set name, the data set name s linked
to the data key that was registered previously. So the general form of this macro variableis & em_user_<key>, where <key>
is the argument that you supplied to %EM_REGISTER. The macro variable &EM_IMPORT_DATA used in the set
statement resolves to the data set that is imported from the Home Equity data node that precedes the SAS Code node in

the path. Finally, let's analyze the arguments that were supplied to the macro %EM_REPORT:

%em r eport (

key=Exanpl e,
Vi ewt ype=Bar ,
x=Reason,

aut odi spl ay=Y,
description=Si npl e Bar Chart,
bl ock=My Graphs);

Six arguments were specified. The 1st argument, KEY =Example, links the graph to the data set via the key that was
registered previously using %EM_REGISTER,; it is arequired argument for %EM_REPORT. The 2nd

argument, VIEWTY PE=Bar, specifiesthat abar chart is the desired type of graph. The 3rd argument, X=Reason,
specifies that the variable REASON is to populate the x-axis. By default, the y-axisis the frequency of the variable
populating the x-axis, but as will be demonstrated later, this feature of the graph can be changed using the FREQ
argument. The variable, Reason, records the reported purpose for the applicant's home equity loan. The 4th

argument, AUTODISPLAY=Y, specifies to automatically display the graph in the Results window. Without this option,
you would have to use the Results window's View menu to display the graph. The 5th argument,
DESCRIPTION=Simple Bar Chart, specifies the text that isto appear in thetitle bar of the graph pane. The description
isalso used to populate a View submenu. By default, the View menu will list an item, known as a block, called

Custom Reports. The description will be listed in the block's submenu. By including the final option, BLOCK=My
Graphs, the block will be labeled "My Graphs' rather than "Custom Reports* and the Description, "Simple Bar Chart"
will appear as a menu item under My Graphs.
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Our data set includes a variable, JOB, which records the profession of the loan applicant. Suppose you want to see how
the frequencies for REASON are distributed across JOB. Y ou can do this by specifying the GROUP option of %
EM_REPORT. So, replace the call to %EM_REPORT in your code with the following:

%em report (
key=Exanpl e,
vi ewt ype=Bar,
x=Reason,
gr oup=Job,
aut odi spl ay=Y,
descri pti on=REASON gr ouped by JOB,
bl ock=My G aphs);

Save your modified code, click Run Node ( % ), and then click Results ( E ). You new graph should look like this:
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Thereisavariablein our data set called LOAN that records the dollar amount of the requested loan. Suppose now that
instead of displaying the number of loans by type, you want to display the dollar amounts, still grouping by JOB. To do
this, add the FREQ argument to %EM_REPORT. Replace the call to %EM_REPORT with the following:

%em r eport (
key=exanpl e,
Vi ewt ype=Bar,
x=Reason,
group=Job,
freg=Loan,
aut odi spl ay=Y,
descri pti on=REASON grouped by JOB wei ghted by LOAN,
bl ock=My G aphs);

)

Save your modified code, click Run Node ( % ), and then click Results (—_). Y ou new graph should look like this:
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Multiple Bar Charts

The previous example, Bar Charts, demonstrated how to generate asingle bar chart using %EM_REPORT. Specificaly,
using the Home Equity data set, abar chart was generated for the variable REASON, grouped by JOB, and weighted

by LOAN. This example extends that example by demonstrating how to generate a combo box that enables you to

view different frames of a plot. The example will start where the previous example finished and will add two additional plots;
adifferent weight variable will be used for each frame of the plot. Thisisaccomplished by including the VIEW argument of
%EM_REPORT to specify an ID value in multiple callsto %EM_REPORT. The CHOICETEXT argument is also

used, enabling you to attach text to each frame that is displayed by the combo box.

1. Create anew diagram
2. Add an input data source to the diagram. Use the Home Equity data set from the SAMPSIO library.
3. Add a SAS Code node to the diagram and connect it to the Home Equity node.

HL T

EEE Horme Equity -

1 SAS Code

4. Click on the SAS Code node and open the Code Editor.
5. Enter the following code in the Report Code pane:

%em regi ster(type=Data, key=Exanple);
data &em user _Exanpl e;

set & m i nport_dat a;

run;

%em r eport (
key=Exanpl e,
Vi ewt ype=Bar,
vi ew=1,
x=Reason,
group=Job,
freg=Loan,



choi cet ext =Loan,

aut odi spl ay=Y,

descripti on=Reason by Job w th Wi ghts,
bl ock=My G aphs);

%em report (
vi ew=l,
freg=Val ue,
choi cet ext =Val ue) ;

%em r eport (
vi ew=1,
freq=Mort due,
choi cet ext =Mort due) ;

Each call to %EM_REPORT defines a different frame for the graph. There are three things you should notice about the
second and third calls to %EM_REPORT. Thefirst is that you must specify the VIEW argument with the same ID number
indl three callsto %EM_REPORT. This links the three calls. The second is that except for the VIEW argument, the only
other arguments that you need to specify are the ones that have values that differ from the first call to %EM_REPORT.
The third is that while arguments can have different values across the multiple calls to %EM_REPORT, you cannot

specify different sets of arguments.
6. Click Run Node ( % ).

7. Click Results ( E ). When the Results window opens, double click the title bar of the bar chart pane and you should see
the following:
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Click on the drop-down arrow to choose a different frame to view.

There is no pre-defined limit on the number of frames that you can have. However, as the number of frames grows large,
the utility of the combo box declines.

Multiple Y Plot



This example demonstrates how to use the macro %EM_REPORT to generate a line plot with two variables on the y-axis.
The technique demonstrated previously, in the example Multiple Bar Charts, for generating multiple frames will also
be applied.

1. Create anew diagram

2. Add a SAS Code node to the diagram. The data for the example will be simulated.
3. Click onthe SAS Code node and open the Code Editor.

4. Enter the following code in the Report Code pane:

%em regi ster(type=Data, key=Sanple);
/* Sinmulate the data */

data &em user _Sanpl e;
do X=1 to 100;
varl = 10 + ranuni (1234)*2;
var2 = 10 + rannor (1234)*2;
var3 = 10 + rannor(1234)*2.5;
out put ;
end;
run ;

%em report (

key=Sanpl e,

vi ewt ype=Li nepl ot

Vi ew=2,

X=X, /* specify the x-axis variable */
yl=var1i, /* specify the 1st y-axis variable */
y2=var 2, /* specify the 2nd y-axis variable */

choi cet ext =Fi r st Fr ane,
aut odi spl ay=Y,
description= Line Plots,
bl ock=My Graphs);

%em report (
Vi ew=2,
yl=var 2,
y2=var 3,
choi cet ext =SecondFr an®) ;

5. Click Run Node ( % ).

)

6. Click Results (— ). When the Results window opens, double click the title bar of the bar chart pane and you should see
the following:



_ialx]
File Edit Wiew indow
Bl Bl sl £ &
18] x]
FirstFrame
16.0 4
1=
10.0 5
7.5+
5.0+
2.5+
T T T T T T
0 20 40 G0 20 100
X
VAR VARZ2
Click the drop-down arrow and select SecondFrame:
=
File Edit  Wiew  Sindow
Bl Bl &l £ &
=181
164
104
5+ ,7
T T T T T T
0 20 40 G0 an 100
X
VARZ WAR3




VAR2 VAR3|

%EM_REPORT allows you to overlay up tol6 variables on the y-axis using the Y 1=<variable name>,
Y 2=<variable name>, ..., Y 16=<variable name> arguments.

Dendrogram
This example demonstrates how to use the macro %EM_REPORT to generate a dendrogram.

1. Create anew diagram
2. Add an input data source to the diagram. Use the Home Equity data set from the SAMPSIO library.
3. Add a SAS Code node to the diagram and connect it to the Home Equity node.

—_— e —
Home Equity - —*-L:i_?l SAS Code

4. Click on the SAS Code node and open the Code Editor
5. Enter the following code in the Report Code pane:

%em regi ster(key=Quttree, type=Data);
%em get nane(key=Quttree, type=Data);
proc varclus data = &m.inport_data hi outtree=&m user_Quttree;
var Clage C no Debtinc Deling Derog Loan Mirtdue N ng Val ue Yoj;
run;
%em report (

key=QUTTREE,

Vi ewt y pe=DENDROGRAM

aut odi spl ay=Y,

bl ock=Dendr ogr am

name=_Nane_,

parent =_Parent _,

hei ght =_Varexp_);

Note: The macro %EM_GETNAME used in the example code above returns a filename an initializes the macro variable
&EM_USER_KEY, where KEY isthe data key defined in the call to %EM_REGISTER.

6. Click RunNode ( % ).

)

7. Click Results (— ). When the Results window opens, close the output pane and double click the title bar of the
OUTTREE pane and you should see the following:
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If you click on View in the Results window you will see the item Dendrogram; it will have a submenu item, OUTTREE.

Three Dimensional Components

This example demonstrates how to use %EM_REPORT to generate 3-dimensional scatter, bar, and surface plots.

1. Create anew diagram

2. Add a SAS Code node to the diagram. The example uses simulated data and data that is available from the SASHEL P
library that is automatically included with your SAS installation.

3. Click on the SAS Code node and open the Code Editor.

4. Enter the following code in the Report Code pane:

%em regi ster(key=Data, type=Data);
/[* sinulate data */

data One;

doi =1 to 100;
X= ranuni (0) * 100 * 200;
y = ranuni (0) * 100 + 75;
z = ranuni (0) * 100 + 10;
out put ;

end;

run;

data &em user _dat a;
set Work. One;
run;

/* K-Di nensional Scatter Plot */
%em report (

key=Dat a,
vi ewt ype=Thr eeDScat t er,



bl ock=My G aphs,
descripti on=3DScatt er Pl ot
aut odi spl ay=Y) ;

/* K-Di nensi onal Surface Plot */

%em report (
key=Dat a,
vi ewt ype=Sur f ace,
X=X,
y=Y,
z=Z,
bl ock=My Graphs,
descri pti on=Surf ace,
aut odi spl ay=Y) ;

%em regi ster(key=C ass, type=Data);

data &em user_d ass;
set Sashel p. d ass;
run;

/* K-Di nensional Bar Chart */

%em report (
key=Cl ass,
vi ewt ype=Thr eeDBar,
x=Nanme,
y=Weéi ght ,
seri es=Age,
bl ock=My G aphs,
descri pti on=3DBar ,
aut odi spl ay=Y) ;

5. Click Run Node ( % ).

)

6. Click Results (—).
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Simple L attice of Plots

This example demonstrates how to use %EM_REPORT to generate a simple lattice of plots. A lattice of plotsisacollection
of plots displayed asagrid.

1
2.
3.

7.

Create anew diagram.
Add an input data source to the diagram. Use the Home Equity data set from the SAMPSIO library.
Add a SAS Code node to the diagram and connect it to the Home Equity node.

22%| Home Equity

|\|||_\

SAS Code

. Inthe Properties panel of the Home Equity data source node, click on the [l icon for the Variables property to open

the variables table. Change the Role property of the variables JOB and REASON to Classification and click OK.

. Click on the SAS Code node and open the Code Editor.
. Enter the following code in the Report Code pane:

%em regi ster(type=Data, key=Exanple);
data &em user _Exanpl e;

set &em i nport _dat a;

where (Job='Prof Exe' or Job="Myr') and

(Reason = 'Debt Con' or Reason = 'Honelnp');

run;
%em report (

key=Exanpl e,

vi ewt ype=Lattice,

latticetype=Scatter,

x=Debt i nc,

y=Mor t due,

| atti cex=Job,

| atti cey=Reason);

Click Run Node ( % ),



)

8. Click Results (—_ ). When the Results window opens, select View % Custom Reports# example.
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Constellation Plot

This example demonstrates how to use %EM_REPORT to generate a Constellation plot.

1. Create anew diagram.

2. Add an input data source to the diagram. Use the Associations data set from the SAMPSIO library.
3. Add an Association node to the diagram and connect it to the data source node.

4. Add a SAS Code node to the diagram and connect it to the Association node.

Associations

.~ Association

I

5. Click on the SAS Code node and open the Code Editor.
6. Enter the following code in the Report Code pane:

FI-.




%em regi ster(key=A, type=DATA);
%em regi ster(key=B, type=DATA);

data &em user _a;
set &mlib..assoc_l|inks;
run;

data &em user _b;
set &mlib..assoc_nodes;
run;

%em report (viewt ype=Constel | ati on,
I'i nkkey=A,
nodekey=B,
LI NKFROVEFROM
LI NKTO=TO,
LI NKI D=l i nki d,
L1 NKVALUE=CONF,
nodei d=i tem
nodesi ze=count ,
nodetip=iten);

7. Click RunNode (% ).

8. Click Results (———_). When the Results window opens, select View # Custom Reports= Link Graph.
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Controls That Require Server Code

Some Control elements require server code in order for the Control to function properly. For example, some
Control configurations require tables to be created with a specific structure and registered with the Enterprise Miner
server. Other Control configurations can require code so that some specific functionality occurs on the server when a
user interacts with the Control. In Enterprise Miner 6.1, the Control elements that are available for extension nodes
that require accompanying server code include the following:

. Table Editor Controls
o Basic Table Editor
o Table Editor with Choices
o Table Editor with Dynamic Choices
o Table Editor with Restricted Choices

o Ordering Editor

. Dialog Controls
o Text Editor

o Interactions Editor
. FileTransfer Control

Examples of each type of Control configuration listed above are provided in the following discussion. In each case, an
attempt is made to demonstrate the minimal amount of server code that is required to enable the Control to function properly.

Table Editor Controls

Table Editor Control elements enable your extension node to access SAS data sets that are accessible by the Enterprise
Miner server or that are generated by your extension node's server code. The server code that isrequired for a
TableEditor Controal istypically minimal. The essential purpose of the server code isto provide away for the Enterprise
Miner server to identify and track the data sets or files that are to be accessed by the Control. The Control elements
aso typically provide away for you to add more sophisticated functionality beyond the minimal requirements.

Basic Table Editor

Thefollowing XML code illustrates the most basic configuration of a String Property with a TableEditor Control:

<Property description="wite your own description here"
di spl ayNane="Tabl eEdi t or Control Exanple"
nane="Tabl eEdi t or"
type="String">

<Control >
<Tabl eEdi t or key=" COVPANY" >
<Acti ons>

<Open nane="QOpenTabl e" />
<Cl ose nane="Cl oseTabl e" />
</ Actions>
</ Tabl eEdi t or >
</ Control >
</ Property>

This configuration requires asingle Control element. This Control element has no attributes. Nested inside of this Control
edement isasingle TableEditor element. The TableEditor element has akey attribute. The value of the key attribute isthe
name of afile key that you register using the %EM_REGISTER macro. In this example, the node prefix is EXMPL and the

key is COMPANY, so the name of the tableisEMWS.EXMPL_COMPANY .

Y ou also need some code that associates a data set with that key. For example, you might have code in the CREATE action

that registers the key, COMPANY , and a SAS DATA step that associates the key with the data set Sashelp.Company:

%em regi ster(type=dat a, key=COVPANY, property=Y);



data &EM USER_COWVPANY;
set sashel p. conpany;
run;

If you want the table to be available before run time, place the code that associates the data set with the key in the CREATE
action. However, in some cases, the table that you are opening with the TableEditor Control is not created until after the node
isrun. The data set might be created by a process within the TRAIN code. In that case, you could still register the key in your
CREATE code, but the code that associates the key with the data set would be in your TRAIN code. If the user attempted to
open the table before the node was run, an error message would appear indicating that the table does not exist.

Nested within the TableEditor element is an Actions element. The Actions element associates a block of SAS code with a
user action. Inside of the Actions element are an Open element and a Close element; both have a name attribute. 1n your
node's main program, you can add code that might look like this:

% f %upcase(&EM ACTI ON) = OPENTABLE % hen %o;

filenanme tenp catal og 'sashel p. emext . exanpl e_acti ons. source';
% ncl ude tenp;

filenane tenp;

% penTabl e;

%end;
% f Y%upcase(&EM ACTI ON) = CLOSETABLE % hen %do;

filenanme tenp catal og 'sashel p. emext . exanpl e_acti ons. source';
% ncl ude tenp;

filenane tenp;

% oseTabl €;

%end;

The values of the name attributes correspond to the names of the actions that are executed when the user either opens or
closes the table. The following actions occur when the user opens the table by clicking the ellipsis (|;|) icon:

. The &EM_ACTION macro variableis assigned the value of the Open action (for example, OpenTable) before the
server code is processed.

. The &EM_TABLE macro variable isinitialized; it resolves to the name of the table (for example, EMWS.
EXMPL_COMPANY).

. The OpenTable action that is specified in the Open element executes before a copy of the table is returned to the
client.

. A temporary table named WORK .key is created (for example, WORK.COMPANY). This table stores any changes that
the user makes to the original table.

The following actions occur when the user closes the table:

. The %EM_ACTION macro variable is assigned the value of the Close action (for example, CloseTable) before the
server code is processed.

. The&EM_TABLE macro variableisinitialized; it resolves to the name of the table (for example, EMWS.
EXMPL_COMPANY).

. The&EM_TEMPTABLE macro variable isinitialized; it resolves to the name of the temporary table that contains any
changes to the table that the user made (for example, WORK.COMPANY).

. The CloseTable action that is specified in the Close element executes.

. The permanent table is overwritten by the temporary table so that any changes made by the user are recorded in the
permanent table.

Y ou must have at least one named action (Open or Close) specified in the XML propertiesfile for a TableEditor Control.
However, you are not required to write any code or to include a call to the action in your main program. When you do not
have any code that you want to execute when the table is opened or closed, the Actions, Open, and Close elements act as
placeholders.
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Ei Table Editor Control Example-WORK.COMPANY

When implemented, the [d icon appears in the Value column of the Properties pandl.

When a user dlicks the [=] icon, a SAS Table Editor window opens, displaying the table that is associated with the Control.

ObsID | LEVELZ LEVELL LEVELS DEPTHEAD

1 {0 TOKYO  International A So Suumi 1 Al
2 20 TOKYO  [International & Steffen Graff 2

3 |30 ITOKfO International Al Karin Schenidt 2

4 4.0 [LONDON  [International AilAnne Bauer 1

5 |50 rrowo International A Barbara Bial 2

& (6.0 TOKYO  |Inbernational Ai Lisa Lamaners 2

7 |70 [IﬂﬁDOH [Interniational Ailduergen Heidler 2

& [5.0 [LONDON  (International Ajlalex Brudel 1

g o0 rromo International A Lie Benz 2

10 [10.0 [LONDOM  (International & Merzedes Schaver |2

11 |1L.0 P.ONDON [International Ai Heinz Ballmann 2

12 [12.0 LONDOM  |International n.iiaCurneIia Gt 2

13 [13.0 [memu International & Hartwig Hartmann 2

14 |14.0 LONDON  |International &ilJochen Lacker 2

15 |15.0 [L_GNDOH International & Jorgen Mueller 2

16 [160  LOMDON  |International .ﬁ.ilPeter Gruendel |2 |

q | D




In this example, the entire table is displayed when the user clicks the [d icon and the table cannot be edited. Addi ng a
Columns element with nested Column elements enables you to control which variables appear in the table and whether a
variable's values can be edited by the user. In the following example, the Control configuration restricts which variables are
displayed in the table and enables the user to edit the values of those variables:

<Property description="wite your own description here"
di spl ayNanme="Tabl eEdi t or Control Exanple"
nane="Tabl eEdi t or"
type="String">

<Control >
<Tabl eEdi t or key=" COVPANY" >
<Acti ons>

<Open nane="CpenTabl e"/ >
<Cl ose nane="C oseTabl e"/ >
</ Actions>
<Col umms di spl ayAl | ="N'>

<Col um nane=" DEPTHEAD"
type="String"
edi tabl e="Y"/>

<Col um nane="J0B1"
type="String"
edi tabl e="Y"/>

<Col um nane="LEVEL3"
type="String"
edi tabl e="Y"/>

<Col um nane="N"
type="int"
edi tabl e="Y"/>

<Col um nane="LEVEL4"
type="String"
edi tabl e="Y"/>

</ Col utms>

</ Tabl eEdi t or >
</ Control >
</ Property>

In the Columns element, the displayAll attribute has avalue of N. Thisindicates that only those variables that are specifically
identified by Column elements should appear when the table is opened. Four Column elements are specified. In each
Column element, there are three attributes defined as follows:

. name — specifies the name of the variable to display.
. type— specifies one of four supported types of variables. The supported types are as follows:

o boolean
o String
o int

o double

Note: These values are case-sensitive.

. editable— indicates whether the user can modify the variable's values. Valid valuesare Y or N.



Ei TableEditor Control Example-wWORK_COMPANY

DEPTHEAL JOEL LEVELZ LEYEL4 M

1 MANAGER ADMIN CONTRACTS 1.0 | =1

2 ASSISTANT ADMIN CONTRACTS 1.0

2 ACCOUNTANT ADMIN FINANCE 1.0

1 MANAGER ADMIN PERSOHNEL 1.0

2 ADMIN ADMIN PERSOHNEL 1.0

2 ASSIST. ADMIN SHIPPING 1.0

2 ASSISTANT ADMIN SHIPPING 1.0

1 MARKET. CONS. SALESMARKETING MARKETING 1.0 |

2 MARKETING SALESMARKETING :h'IARI'EETING 1.0

2 ASSISTANT SALESMARKETING MARKETING 1.0

2 SALES.-CONS. SALESMABKETING SALES 1.0

2 SALES CONS SALESMARKETING SALES 1.0

2 SALES CONS BERL SALESMARKETING SALES 1.0

2 MARKET. CONS. SALESMABKETING SALES 1.0

2 CONSULTANT 5D  SALESMARKETING SALES 1.0

2 SALES.-CONS. SALESMABKETING SALES 1.0

2 SALES-TRAIMEE SALESMABKETING SALES 1.0

2 CONSULTANT SALESMABKETING SALES 1.0

2 SALES-CONSMAINF SALESMARKETING SALES 1.0 ;I
(a4 I Cancel |

When the editable attribute of a Column element isset to Y, the user can edit the values of the corresponding variable by
typing anew value in the SAS Table Editor window.

Y ou can aso add Range Control elements to restrict the values that can be used to edit the values in the table. For example,
suppose you add a Range Control to the N Column element as follows:

<Property description="write your own description here"
di spl ayName="Tabl eEdi t or Control Exanple"
name="Tabl eEdi t or "
type="String">

<Control >
<Tabl eEdi t or key=" COVPANY" >
<Acti ons>

<Open nane="QpenTabl e" />
<Cl ose nane="C oseTabl e" />
</ Acti ons>
<Col ums di spl ayAl | =" N'>
<Col um nane=" DEPTHEAD"

type="String"
edi tabl e="Y">
</ Col utmm>
<Col umm nane="JOBl"
type="String"

editable="Y"/>
name="LEVEL3"
type="String"
edi tabl e="Y"/>
name="LEVEL4"
type="String"

<Col um

<Col um



edi tabl e="Y"/>
<Col um nane="N'

type="int"
edi t abl e="Y">
<Control >

<Range mi n="1" pax="3" />
</ Control >
</ Col um>
</ Col utms>
</ Tabl eEdi t or >
</ Control >
</ Property>

Now when the user tries to edit the N column of the table, they must enter an integer value between the min and max values
specified. If they enter avalue that is outside of that range, the value of N is set to missing in that row of the table.

Table Editor with Choices

Y ou can aso add a ChoiceList Control to restrict the values that can be used to edit the valuesin the table. For example,
suppose you add a ChoiceList Control to the DEPTHEAD Column element as follows:

<Property description="wite your own description here"
di spl ayNanme="Tabl eEdi t or Control Exanple"
nanme="Tabl eEdi t or "
type="String">

<Control >
<Tabl eEdi t or key=" COVPANY" >
<Acti ons>

<Open nane="QpenTabl e" />
<Cl ose nane="(Cl oseTabl e" />
</ Acti ons>
<Col umms di spl ayAl | =" N'>
<Col um nane=" DEPTHEAD"

type="String"
edi t abl e="Y">
<Control >

<Choi celLi st >
<Choi ce di spl ayVval ue="1" rawal ue="1"/>
<Choi ce di spl ayVal ue="2" rawal ue="2"/>
</ Choi celLi st >

</ Control >
</ Col um>
<Col um nane="J0B1"
type="String"

edi tabl e="Y"/>
<Col um nane="LEVEL3"

type="String"

edi tabl e="Y"/>
<Col um nane="LEVEL3"

type="String"

edi tabl e="Y"/>
<Col um nane="N'

type="int"
edi tabl e="Y">
<Control >
<Range m n="1" max="3" />
</ Control >
</ Col um>

</ Col utms>
</ Tabl eEdi t or >
</ Control >
</ Property>



When the SAS Table Editor window opens and the user clicks on avaluein the DEPTHEAD column, a drop-down list
appears. The user can edit the value by choosing from the list that contains the values 1 and 2. If users want to edit the value
of the N column, they can enter an integer value of 1, 2, or 3. If they enter a value outside of the range permitted by the Range

Control, amissing value appearsin that observation.

Ei TableEditor Control Example-WORK_COMPANY

DEPTHEAD JOE1 LEVELS LEVEL4
1 MANAGER ADMIN CONTRACTS 11
2 ASSISTANT ADMIN CONTRACTS 1
2 MCCOUNTANT ADMIN FINANCE 1
1 II'I.I'I.fl.l'l.l'-l.lliEFl ADMIN PERSOMNNEL 1
2 ADMIN ADMIN PERSOMNEL 1
2 ASSIST. ADMIN SHIPPING 1
2 ASSISTANT ADMIN SHIPPING 1
1 MARKET. CONS.  SALESMARKETING MARKETING 1
? h‘IARI{ETING SALESMARKETING PI.I'IARKETING 1
2 ASSISTANT SALESMARKETING bu'IAF!.KETING 1
2 SALES.-CONS. SALESMARKETING SALES 1
2 SALES CONS SALESMARKETING |SALES 1
2 SALES CONS BERL SALESMARKETING  SALES 1
2 > IMABKET. CONS. SALESMARKETING SALES 1 LI
1
oK I Cancel |

Table Editor with Dynamic Choices

A DynamicChoicelist Control alowsyou to dynamically populate a choice list rather than hard-coding valuesin the XML
properties file. The following example demonstrates the functionality that this control provides as well as the steps necessary
to implement it. There are four steps to implementing this type of Control:

1. Add achoiceKey attribute to the TableEditor element.

2. Add a DynamicChoicelList Control to the Column element.

3. Usethe %EM_REGISTER macro to register the value of the choiceK ey attribute.

4. Write code that generates the data set that is used to popul ate the DynamicChoicelist Control.

The modified Property configuration appears as follows:

<Property description="wite your own description here"
di spl ayName="Tabl eEdi t or Control Exanple"
name="Tabl eEdi t or "
type="String">
<Control >
<Tabl eEdi t or key=" COVPANY"
choi ceKey="CHO CE" >
<Acti ons>
<Open name="penConpanyTabl e" />
</ Acti ons>
<Col umms di spl ayAl | ="N'>
<Col um edi tabl e="Y"
nane=" DEPTHEAD"
type="String">
</ Col umm>



<Col um nane="J0B1"

type="String"
edi tabl e="Y">
<Control >
<Dynam cChoi celLi st/ >
</ Control >
</ Col utm>
<Col um nane="LEVEL3"
type="String"

edi t abl e="Y"/>

<Col um nane="LEVEL4"
type="String"
edi tabl e="Y"/>

<Col um nanme="N'
type="int"
edi tabl e="Y">

</ Col um>

</ Col unms>
</ Tabl eEdi t or >
</ Control >
</ Property>

The TableEditor element now has a choiceK ey attribute with a value of CHOICE. The Column element for JOB1 now hasa
Control element with a nested DynamicChoicelL ist element. In the CREATE action, the following line of code is added:

%em regi ster(type=data, key=CHO CE);

Typically, the code that generates the data set that is used to populate the DynamicChoiceList isin the OPEN action.
However, it can actually be placed wherever it is most appropriate for the purpose it serves. In this example, the codeis placed
in the CREATE action so that the SAS Table Editor is functional when the nodeisfirst placed in a process flow diagram.

The data set Sashelp.Company has a variable named Level4. The DynamicChoicel ist is populated with the unique values of
that variable. The following code generates the data set:

proc sort data=sashel p. conpany nodupkey out =&m user _choi ce( keep=LEVEL4);
by LEVEL4,

run;

data &em user _choi ce(keep=Vari abl e Choi ce);

I ength Variable $32 Choice $32;

set &em user _choi ce;

Vari abl e="LEVEL4";

Choi ce=LEVEL4;

run;

The resulting data set appears as follows:

i EMWS2 EXMPL_CHOICE =] E3

Yariable Choice

1 [LEVEL# CONTRACTS
LEVEL4 FINAMCE
LEVEL4 MARKETING
LEVEL4 MIS

LEVELS PERSCNMEL
LEVEL4 SALES

LEVEL4 SHIPPING
LEWEL4 TRAMILATIONS

Ll et I =R 0 B (S SO S R )

The key features of the data set are as follows:



. The name of the data set is contained in the macro variable & EM_USER_choiceKey, where choiceKey is the value of
the choiceK ey attribute of the TableEditor element.

. Thedata set has exactly two character variables: Variable and Choice.

. Each record of the data set has avalue of LEVEL4 in the variable named Variable. LEVEL4 is the value of the name
attribute of the Column element to which the DynamicChoiceL ist element is applied.

. Each record contains a unique value in the Choice variable. These unique values are the choices that popul ate the
DynamicChoiceL ist.

In this example, the NODUPKEY option of the SORT procedure ensures that the values are unique.

The DynamicChoiceL ist element can be applied to multiple Column elementsin a TableEditor Control. In such acase, the
data set has a repested measures structure. That is, imagine that there are k Column elements to which you want to apply a
DynamicChoicel ist. You still create one data set to populate the k lists. The data set has the following structure:

Vari abl e

vari
vari
vari
vari
vari
vari
vari
vari

vari
vari
vari
vari

abl e-nane_1
abl e- nane_1
abl e-nane_1
abl e- nane_1
abl e- nane_2
abl e- nane_2
abl e- nane_2
abl e- nane_2

abl e- nane_k
abl e- nane_k
abl e- nane_k
abl e- nane_k

Choi ce

val ue
val ue

val ue
val ue
val ue

val ue

val ue
val ue

val ue

NN e
Nz N =

N

k
k

k_

[y

N -

Nk

In this example, when the Table Editor window is opened, the user can modify the value for LEVEL4 in any observation by
selecting from the list of valuesthat already exist in the data set.



EA TableEditor Control Example-‘WDRK COMPANY

DEPTHEAD |  JoBI LEVEL3 LEVEL4 N
1 MANAGER MIN \CONTRACTS .. ¥ho &
2 ASSISTANT ADMIN 1.0
2 ACCOUNTANT  ADMIN i 10
1 MANAGER ADMIN M 1.0

> ADMIN ADMIN PERSOMMEL 10
2 ASSIST. ADMIN SALES 10

2 ASSISTANT ADMIN TRANSLATIONS 1.0

1 MARKET. CONS.  SALESMARKETING MARKETING o T
o MARKETING /SALESMARKETING MARKETING 1.0

) ASSISTANT SALESMARKETING MARKETING 1.0

2 SALES.-CONS.  [SALESMARKETING SALES 1.0

2 SALES CONS SALESMARKETING  SALES 1.0

7) SALES CONS BERL SALESMARKETING SALES 1.0

2 MARKET. CONS. IEQ.ALESMEHKETIHG SALES 1.0

2 CONSULTANTSD 'SALESMARKETING SALES 1.0

7) SALES.CONS.  SALESMARKETING SALES 1.0

2 SALES-TRAINEE  SALESMARKETING SALES 1.0

d CONSULTANT _ SALESMARKETING .;.5“.'-.55. o
1 I>|J

[oc | cancel |

Y ou can provide some additional control over how the datais displayed in the SAS Table Editor window by adding
wher eClause and whereColumn attributes to the TableEditor element. For example, change the TableEditor element as
follows:

<Tabl eEdi t or
key=" COVPANY"
choi ceKey="CHO CE"
wher eCl ause="Y"
wher eCol uim=" DEPTHEAD" >

The wher eClause attribute is redundant, but it is required; it should have avalue of Y. The whereColumn specifies the name
of avariable in the data set. Including these two attributes sorts the data set by the values of the variable specified in the
whereColumn attribute. A drop-down list is added at the top of the SAS Table Editor window. The valuesin thelist
correspond to the unique values of the variable specified in the whereColumn attribute and the additional value of All. By
default, only observations with a value corresponding to the first value in the list are displayed. The user can then select a
different value from the drop-down list; the tableis refreshed and the observations that correspond to the new value are
displayed. If the user selects All, the entire table is displayed.



B4 TableEditor Control Example-WORK_COMPANY

DEPTHEAL!: |1 - I

DEFTHEAL: JOBI LEVELS LEVEL4 I
1 4 PGER ADMIN CONTRACTS 1.0
1 MANAGER ADMIN PERSONNEL 1.0
1 MARKET. CONS. SALESMARKETING  MARKETING 1.0
1 MANAGER TECHN. SERVICES  TRANSLATIONS 1.0
1 MANAGER ADMIN PERSONNEL 1.0
1 MANAGER ADMIN SHIPPING 1.0
1 MANAGER SALESMARKETING  MARKETING 1.0
1 MANAGER TECHN, SERVICES  MIS 1.0

QK I Zancel

Table Editor with Restricted Choices

In the example above, the choices for the variable Level4 were populated using a DynamicChoicelist Control. By adding a
single new attribute and modifying the accompanying SAS code, you can take advantage of the hierarchical structure of the
SASHelp.Company data set to restrict the values that are used to populate the choices. For example, consider the following
modified Property configuration:

<Property
description="wite your own description here"
di spl ayNanme="Tabl eEdi tor Control Exanple"
nane="Tabl eEdi t or"
type="String">
<Control >
<Tabl eEdi t or
key=" COVPANY"
choi ceKey="CHO CE"
keyVar =" LEVEL3"
wher eCl ause="Y"
wher eCol um=" DEPTHEAD" >
<Act i ons>
<Open nane="CpenConpanyTabl e" />
<Cl ose nanme="C oseConpanyTabl e" />
</ Acti ons>
<Col ums di spl ayAl | ="N'>
<Col umm
edi tabl e="Y"
nanme=" DEPTHEAD"
type="String"/>
<Col umm
nane="J0OBl"
type="String"
editabl e="Y"/>
<Col umm
name="LEVEL3"
type="String"
editabl e="Y"/>
<Col umm
nanme="LEVEL4"
type="String"
edi t abl e="Y">
<Control >
<Dynani cChoi ceLi st/ >



</ Control >
</ Col um>
<Col um
name="N"
type="int"
edi tabl e="Y"/>
</ Col unms>
</ Tabl eEdi t or >
</ Control >
</ Property>

The essential addition to this configuration isthe keyVar attribute of the TableEditor Controal. In this example, the keyVar
attribute is assigned the value of "LEVEL3". This means that when the choices for the variable LEVEL4 are presented for a
given row in the table, the choices are conditional on the value of LEVEL 3 in the same row of the table. To accomplish this, a
table with a hierarchical structure of choices must be generated as follows:

%m regi ster(type=data, key=CHO CE)

proc sort data=sashel p. conpany nodupkey out =&m user _choi ce( keep= LEVEL3 LEVEL4);
by LEVEL3 LEVEL4,

run;

data & m user _choi ce(keep=Vari abl e Choi ce key);
[ ength Variabl e $32 Choice $32 key $32;
set

&em user _choi ce;

Vari abl e=" LEVEL4";
Choi ce=LEVEL4;
key=LEVEL3;

run;

The resulting data set appears as follows:

i EMWS2 EXMPL_CHODICE [_ (O] =]
Mariable Choice ke

1 [LEVEL4 CONTRACTS ADMIN

2 |LEVEL4 FIMNAMNZE ADMIM

3 [LEWEL4 PERSONMEL ADMIN

4 [LEVYEL4 SHIPPING ADMIN

S |LEVEL4 MARKETING SALESIMARKETIMG

& [LEWEL4 SALES SALES/MARKETING

7 |LEWEL4 MIS TECHM, SERNMICES

3 |LEVEL4 TRAMSLATIONS [TECHM, SERNICES

The key features of the data set are as follows:

. Thename of the data set is contained in the macro variable & EM_USER_choiceKey, where choiceKey is the value of
the choiceK ey attribute of the TableEditor element.

. The data set has exactly three character variables: Variable, Choice, and key.

. Each record of the data set has a value of LEVEL4 in the variable named Variable. LEVEL4 is the value of the name
attribute of the Column element to which the DynamicChoicel ist is applied.

. Thedataset has a hierarchical structure with the Choice variable nested within the key variable. Therefore, each record
contains a unique combination of the key and Choice variables. These unique values are the choices that populate the
DynamicChoicel ist.

In this example, when the user clicks on the variable Level4 in arow where the variable Level3is"ADMIN" they are
presented with one set of choices:



E‘_TahleEditur Control Example-W0ORE_COMPANY

DEPTHEAD: |1 - I

DEFTHEAD JOE1 LEYEL3 LEVEL4 I

1 MANAGER  ADMIN CONTRACTS ~ 1.0
1 MANAGER  ADMIN 1.0
1 MANAGER  ADMIN B 1.0

PERSOMMNEL

1 MHNHGER ADMIN SHIPPTMG 1.0
1 MARKET. CONS. 'SALESMARKETING MARKETING 1.0
1 MANAGER  SALESMARKETING MARKETING 1.0
1 MANAGER [TECHN.SERVICES [TRANSLATIONS 1.0
1 MANAGER TECHN.SERVICES  MIS 1.0

o]

Cancel

However, when the user clicks on the variable Level4 in arow where the variable Level 3 is"SALES/MARKETING" they are

presented with a different set of choices:

B4 TableEditor Control Example-WORK_COMPANY

DEPTHEAL: |1 - I

DEPTHEAD 3081 LEVELS LEVELS N
1 MANAGER  ADMIN CONTRACTS 1.0
1 MANAGER  ADMIN PERSONNEL 1.0
1 MANAGER  ADMIN PERSONNEL 1.0
1 MANAGER  ADMIN SHIPPING 10
1 MARKET. CONS. SALESMARKETING | MARKETING > |10
1 MANAGER 'SALESMARKETING 10
1 MANAGER  TECHN.SERVICES lmrmvorrrrrores 1.0
1 MANAGER  TECHN.SERVICES MIS 1.0

Cancel

]

Ordering Editor

An Ordering Editor provides a means by which you can display atable to the user and enable the user to change the order of
the variablesin the table. A simple example of an ordering editor's XML Property configuration is as follows:

<Property
description="wite your own description here"

di spl ayNanme="Ordering Editor Control Exanple"
nane="Or deri ngEditor”
type="String">
<Control >

<Tabl eEdi t or

key=" ORDER"

i sOrderingEditor="Y">

<Acti ons>

<Open nane="QpenOrder Tabl e" />
<Cl ose name="C oseOr der Tabl e"
</ Acti ons>

/>



<Col umms di spl ayAl | ="Y">
<Col um
edi t abl e="N'

name=" NAVE"
type="String"/>
</ Col utms>

</ Tabl eEdi t or >

</ Control >

</ Property>

Notice the two attributes of the TableEditor Control: key and isOrderingEditor. Just asin the other TableEditor Contr ol
example, the value of the key attribute must be registered with Enterprise Miner using the %oEM_REGISTER macro in your
extension node's server code. The isOrderingEditor attribute tells Enterprise Miner that this table editor is, in fact, an
ordering editor.

Aswith other table editors, an ordering editor requires an Actions element and at least one named action nested within it.
However, the named action need not have any server code associated with it. Y ou control which variables appear in the table
with the Columns element and the nested Column elements. Y ou can have as many columns in the table as you want.

An ordering editor requires minimal server code to make it functional. All that isreally required is that you have atable and
that the table be registered. For example, you might have server code in the create action that appears as follows:

%em regi ster(type=data, key=ORDER);

proc contents data=sashel p. conpany out=&m user _or der ( KEEP=NAME) ;
run;

When the user opens the table editor the following table appears. The user can select a variable on the left and use the arrows
on the right to move the variable to a higher or lower position in the order.

E{_Drdering Editor Control Example-w0ORK.ORDER

Yariable Name
DEPTHEAD
OB
LEYEL1
LEVELZ
LEVEL3
LEVEL4
LEVELS
M

|'-?|l\.—|-—vl|\.— e

(] 4 l Cancel

After the user clicks OK and the table is closed, a new version of the table is stored in the EMWS library under the
name prefix_key. In this example the prefix is EXMPL and the key is ORDER, so the newly ordered table is stored in
Emws.Exmpl_Order.

Dialog Controls

There are two Dialog Control elements that require server code: the Text Editor and Interactions Editor. Examples for both
are presented below.

Text Editor



The most common example of atext editor Dialog Control is the Notes editor that is common to al SAS distributed nodes.
The notes editor simply provides atext file in which the user might type notes related to a particular node in a particular
process flow diagram. This capability has now been extended to extension nodes in Enterprise Miner 6.1. The XML Property
configuration for a Property with atext editor Dialog Control is as follows:

<Property
description="Exanple of a text editor which enables
you to enter and nodify text in an external
file."
di spl ayNanme="Text Editor"
name=" Code"
type="String">
<Control >
<Di al og
showval ue="N"
al | owTypi ng="Y"
cl ass="com sas. anal yti cs. em ner. vi sual s.
CodeNodeScor eCodeEdi t or " >
<Option nanme="key" val ue="CODE"/ >
</ Di al og>
</ Control >
</ Property>

First, notice the class attribute of the Dialog element. Y ou must copy that value verbatim. Second , notice the Option element.
The Option element has two attributes: name and value. The name attribute has avalue of "key" and the value attribute has a
value of "CODE". Thisissimply adifferent syntax for declaring that this Dialog Control has akey="CODE". The
explanation for why the syntax for this type of control is different from all the other controlsthat have akey attributeis
beyond the scope of this discussion.

To register the key for this Dialog Control you use the following syntax in your server code:

%m regi ster (key=CODE, type=FILE, extension=sas, property=Y);
Registering the key this way informs Enterprise Miner that the text that the user enters into the editor isto be stored in afile
named CODE.sas. When property="Y", the contents of the editor get copied along if you use a cut-and-paste action to make

acopy of the node. When property="N", the contents of the editor are not preserved if you use a cut-and-paste action to
make a copy of the node. No other server code is required for this type of Dialog Control.

When the user clicks on the =] icon next to the text editor property, the following window appears:

Eﬂf Text Editor
Type any text you want in here. s
E
(0] 4 I Cancel I

The user can then type any text they want in the editor. When the user clicks OK, the fileis saved under the name CODE.sas
in the extension node's directory for that particular process flow diagram. For example, if the projects directory isc:

\ enpr oj ect s and the project nameis" ext ensi on nodes", then CODE.sasis created in

c:\ enproj ect s\ ext ensi on nodes\ Wr kspaces\ EMAS\ EXMPL.

I nteractions Editor

When developing statistical models, it is common to include interactions between explanatory variables in your model. For



example, if you have the variables A and B, their interaction iswritten A*B. An interaction editor provides away for a user to
manually construct a collection of interactions that can be used by your extension node.

The XML Property configuration for a Property with an interactions editor Dialog Control is asfollows:

<Property
type="String"
name="1nteracti on"
di spl ayNane="Interactions Editor"
descri ption="Exanple of an Interaction Editor.">
<Control >
<Di al og
showval ue="N'
al | owTypi ng="N"
cl ass="com sas. anal yti cs. em ner. vi sual s.
InteractionsEditorDi al og" >
<Option
nanme="Key"
val ue="1 NTERACTI ON'/ >
<Option
nanme="Mai nEf f ect "
val ue="N'"/ >
<Option
nanme="MaxTer ns"
val ue="2"/>
<Option
name="Cpen"
val ue="openl nteracti onTabl e"/ >
<Option
name="Cl ose"
val ue="cl osel nteracti onTabl e"/ >
<Option
nane="1nt erval Vari abl e"
val ue="N'"/>
</ Di al og>
</ Control >
</ Property>

The class attribute of the Dialog element uniquely distinguishes this Dialog Contr ol from the other type of Dialog Control
elements and must be copied verbatim. Each of the Option elements has two attributes: name and value. These Option
elements and their attributes determine the interactions editor's capabilities.

Thefirst Option element has a name attribute of "key" and the value attribute has avalue of "INTERACTION". Thisis
simply adifferent syntax for declaring that this Dialog Control has akey="INTERACTION". The explanation for why the
syntax for thistype of control isdifferent from all the other controls that have a key attribute is beyond the scope of this
discussion.

In the second Option element, name=" MainEffect" and value="N". Thisindicates that the interactions editor is not to
create an interaction that consists of just amain effect. That is, all interactions must include at least two terms. If value="Y",
then an interaction can consist of amain effect. That is, an interaction can consist of asingle term.

In the third Option element, name="MaxTerms' and value="2". Thisindicates that the maximum number of terms that can
beincluded in an interaction is 2. The value attribute can have a range between 2 and 6.

The third and fourth Option elements represent an aternative syntax for the Actions elements that appeared in other Control
elements. You must have at least one of these Option elements. Y ou can write server code that is associated with the name
you provide in the value attribute of these Option elements, but it is optional. The explanation for why the syntax for this type
of control isdifferent from all the other controls that have Actions elements is beyond the scope of this discussion.

In the final Option element, name="IntervalVariable" and value=" N". Thisindicates that interval variables should not be
used to popul ate the list of variables from which the interactions are generated. When value="Y", then interval variables can
beincluded in thelist.



The server code that is required for this Dialog Control consists of the following:
%em regi ster (key=I NTERACTI ON, type=DATA);

data &em user _interaction;
| ength key 8 Term $32;
st op;

run;

Thefirst line of code registers the key that appearsin the first Option element in the example XML above. The DATA step

programming generates an empty data set that has two variables: a numeric variable named key and a string variable named
Term.

Finally, before the interactions editor can be populated with variable names, there must be a data source node preceding your
extension node in the process flow diagram. For example, suppose you have the following process flow diagram:

When the user clicks on the ==l icon next to the interactions editor property the following window appears:

BA Terms

1 APRTMMT*GENDER
2 MTITLE*TELIND

Ed

“Marigbles———— cTerm—————————
APRTMMT - |
GEMDER.
MTITLE e |
TELIMD:
SEYE I

) | {

When the user constructs interactions, saves them, and clicks OK, Enterprise Miner creates the Emws.Exmpl_interaction data
set. For example, suppose the user had selected APRTMNT and GENDER for the first interaction, and NTITLE and TELIND
for the second interaction, as depicted above. When the user clicks OK, Emws.Exmpl_interaction appears as follows:



8 EMWS2. EXMPL_INTERAC... [Hi[=] E3
ke kerm

1[0 APRTRMT

z o GEMDER.

3l MNTITLE

41 TELIMD

The data set ultimately has a hierarchical structure. The value for Key begins at zero for the first interaction and then
increments by one for each additional interaction that is generated by the user.

FileTransfer Control

A FileTransfer Control enables a user to select aregistered model. Once the user selects aregistered model, a collection
of data sets and an external file are generated. These data sets and external file provide you with access to information
about the registered model. The XML syntax for this Property and Control configuration is as follows:

<Property
type="String"
name="Model Sel ect or"
di spl ayNanme="Mbdel Sel ector"
description="Di al og to select a registered nodel.">
<Control >
<Fil eTransfer action="InportMdel" fil enane=""/>
</ Control >
</ Property>

Thereisasingle Control element with a nested FileTransfer element. The FileTransfer element has two attributes:
action and filename. Copy the syntax for this Control verbatim.

The following server code isrequired for aFileTransfer Control. Copy this code verbatim in your extension node's code.

%em regi st er (key=MODELI NFQ, t ype=DATA, property=Y);
%em regi st er (key=MODELI NPUT, t ype=DATA, property=Y);
%em r egi st er (key=MODELOUTPUT, t ype=DATA, property=Y);
%em regi st er (key=MODELSTAT, t ype=DATA, property=Y);

%em regi ster (key=MODELTRAI NI NG, type=DATA, property=Y);
%em regi st er (key=MODELTARGET, t ype=DATA, property=Y);
%em r egi st er ( key=MODEL SCORE, type=FI LE, extension=sas, property=Y);

When auser clicks on the (== icon next to the Mode! Selector property, adialog box appears that enables them to select
aregistered model. The name of the registered model then appears in the Value column of the Properties panel next to
the Model Selector property. Six SAS data sets and asingle external file are created. The SAS data sets are created in
the EMWS library for the user's project. The external fileis created in the extension node's directory for that particular
process flow diagram. For example, if the extension node's prefix is EXMPL, then the following seven data sets and files
are created:

. Emws.Exmpl_modeinfo — SAS data set containing metadata for the model

. Emws.Exmpl_modelinput — SAS data set containing metadata for the model inputs

. Emws.Exmpl_modeoutput — SAS data set containing metadata for the model outputs

. Emws.Exmpl_modelstat — SAS data set containing fit statistics for the model

. Emws.Exmpl_modeltraining — SAS data set containing metadata for the input data source
. Emws.Exmpl_modeltar get — SAS data set containing metadata for the target variable

. Modelscore.sas— externd file containing the score code of the registered model




Copyright 2009 by SAS Institute Inc., Cary, NC, USA. All rights reserved.



Predictive Modeling

. Terminology
. Common Features of Predictive Modeling Nodes

o Table of Common Features
v Categorical Variables
o Predicted Values and Posterior Probabilities
o The Frequency Variable and Weighted Estimation
. Differences among Predictive Modeling Nodes
. Computer Resources
. Prior Probahilities
. Decisions
. Decision Thresholds and Profit Charts
. Detecting Rare Classes
. Generalization
. Input and Output Data Sets
o Scored Data Sets
o Fit Statistics
. Combining Models
o Ensembles
o Unstable Algorithms
. Scoring New Data
. References

Terminology

Predictive modeling tries to find good rules (models) for guessing (predicting) the values of one or more variablesin a data
set from the values of other variablesin the data set. After agood rule has been found, it can be applied to new data

sets (scoring) that may or may not contain the variable(s) that are being predicted. The various methods that find

prediction rules go by different namesin different areas of research, such as regression, function mapping,

classification, discriminant analysis, pattern recognition, concept learning, supervised learning, and so on.

In the present context, prediction does not mean forecasting time series. In time series analysis, an entity is observed
repeatedly over time, and past values are used to forecast future values. For the predictive modeling methodsin

Enterprise Miner, each case in a data set represents a different entity, independent of the other casesin the data set. If

the entities in question are, for example, customers, then al of the information pertaining to any one customer must

be contained in asingle case in the data set. If you have a data set in which each customer is described by multiple cases,
you must first rearrange the data to place all of the information regarding any one customer into the same case. It is possible
to fit some simple autoregressive models by preprocessing the data using the LAG and DIF functionsin the SAS Code
node, but Enterprise Miner has no convenient interface for making forecasts.

Enterprise Miner provides a number of tools for predictive modeling. Three of these tools are the Regression node,

the Decision Tree node, and the Neural Network node. The methods used in these nodes come from severa different areas
of research, including statistics, pattern recognition, and machine learning. These different areas use different terminology,
so before discussing predictive modeling methods, it will be helpful to clarify the terms used in Enterprise Miner.

The following list of termsisin logical, not aphabetical order. A more extensive a phabetical glossary can be found in
the Glossary.



Synonym

Case

Variable

Target

Input

Output

M odel

A word having ameaning similar to but not necessarily identical to that
of another word in at |east one sense.

A collection of information regarding one of numerous entities
represented in a data set. Synonyms: observation, record, example,
pattern, sample, instance, row, vector, pair, tuple, fact.

One of the items of information represented in numeric or character
form for each case in adata set. Synonyms:. column, feature, attribute,
coordinate, measurement.

A variable whose value is known in some currently available data, but
will be unknown in some future/fresh/operational data set. Y ou want to
be able to predict/guess the values of the target variable(s) from other
known variables. Synonyms: dependent variable, response, observed
values, training values, desired output, correct output, outcome.

A variable used to predict/guess the value of the target variable(s).
Synonyms: independent variable, predictor, regressor, explanatory
variable, carrier, factor, covariate.

A variable computed from the inputs as a prediction/guess of the value
of the target variable(s) Synonyms: predicted value, estimate, y-hat.

A class of formulas or algorithms used to compute outputs from inputs.
A statistical model a so includes information about the conditional
distribution of the targets given the inputs. See also trained model
below. Synonyms: architecture (for neural nets), classifier, expert,
equation, function.



Weights

Case Weight

Parameters

Training

Trained M od€

Generalization

Population

Sample

Numeric values used in amodel that are usually unknown or
unspecified prior to the analysis. Synonyms: estimated parameters,
estimates, regression coefficients, standardized regression coefficients,
betas.

A nonnegative numeric variable that indicates the importance of each
case. There are three kinds of case weights: frequencies, sampling
weights, and variance weights. Enterprise Miner supports only
frequencies.

The true or optimal values of the weights or other quantities (such as
standard deviations) in amodel.

The process of computing good values for the weightsin amodel, or,
for tree-based modéels, choosing good split variables and split values.
Synonyms: estimation, fitting, learning, adaptation, induction, growing
(trees, that is).

A specific formula or algorithm for computing outputs from inputs,
with al weights or parameter estimates in the model chosen viaa
training algorithm from a class of such formulas or algorithms
designated by the model. Synonyms: fitted model.

The ability of amodel to compute good outputs from input data not
used during training. Synonyms; interpolation and extrapolation,
prediction.

The set of all cases that you want to be able to generalize to. The data
to be analyzed in data mining are usually a subset of the population.

A subset of the population that is available for analysis.



Noise

Signal

Training Data

Test Data

Validation Data

Scoring

Interpolation

Extrapolation

Unpredictable variation, usually in atarget variable. For example, if
two cases have identical input values but different target values, the
variation in those different target values is not predictable from any
model using only those inputs, hence that variation is noise. Noise is
often assumed to be random, in which case it isinherently
unpredictable. Since noise prevents target values from being accurately
predicted, the distribution of the noise can be estimated statistically
given enough data. Synonym: error.

Predictable variation in atarget variable. It is often assumed that target
values are the sum of signal and noise, where the signal is a function of
the input variables. Synonyms. Function, systematic component.

Data containing input and target values, used for training to estimate
weights or other parameters. Synonyms:. Training set, design set.

Data containing input and target values, not used during training in any
way, but instead used to estimate generalization error. Synonyms; Test
set (often confused with validation data).

Data containing input and target values, used indirectly during training
for model selection or early stopping. Synonyms: Validation set (often
confused with test data).

Applying atrained model to data to compute outputs. Synonyms:
running (for neural nets), simulating (for neura nets), filtering (for
trees), interpolating or extrapolating.

Scoring or generalization for cases on or within the convex hull of the
training set in the space of the input variables.

Scoring or generalization for cases outside the convex hull of the
training set in the space of the input variables.



Operational Data

Categorical

Variable

Category

ClassVariable

M easur ement

M easur ement
Level

Nominal Variable

Datato be scored in a practical application, containing inputs but not
target values. Scoring operational datais the main purpose of training
models in data mining. Synonyms:. scoring data.

A variable which for all practical purposes has only alimited number
of possible values. Synonyms: class variable, label.

One of the possible values of a categorical variable. Synonyms: class,
level, label.

In data mining, pattern recognition, knowledge discovery, neural
networks, etc., a class variable means a categorical target variable, and
classification means assigning cases to categories of atarget variable.
In traditional SAS procedures, class variable means ssimply
categorical variable, either an input or atarget.

The process of assigning numbers to things such that the properties of
the numbers reflect some attribute of the things.

One of severa different ways in which properties of numbers can
reflect attributes of things. The most common measurement levels are
nominal, ordinal, interval, log-interval, ratio, and absolute. For details,
see the Measurement Theory FAQ at

ftp://ftp.sas.com pub/ neural /nmeasurenent. html .

A numeric or character categorical variable in which the categories are
unordered, and the category values convey no additional information
beyond category membership.



Ordinal Variable A numeric or character categorical variable in which the categories are
ordered, but the category values convey no additional information
beyond membership and order. In particular, the number of levels
between two categoriesis not informative, and for numeric variables,
the difference between category valuesis not informative. The results
of an analysis that includes ordinal variables will typicaly be
unchanged if you replace all the values of an ordinal variable by
different numeric or character values as long as the order is maintained,
although some algorithms may use the numeric values for
initialization. Enterprise Miner provides no explicit support for
continuous ordinal variables, although some proceduresin other SAS
products do so, such as TRANSREG and PRINQUAL.

Interval Variable A numeric variable for which differences of values are informative.

Ratio Variable A numeric variable for which ratios of values are informative. In
Enterprise Miner, ratio and higher-level variables are not generally
distinguished from interval variables, since the analytical methods are
the same. However, ratio measurements are required for some
computations in model assessment, such as profit and ROl measures.

Binary Variable A variable that takes only two distinct values. A binary variable can be
legitimately treated as nominal, ordinal, interval, or sometimes ratio.

Common Features of Predictive M odeling Nodes

. Table of Common Features

. Categorica Variables

. Predicted Values and Posterior Probabilities
. The Frequency Variable and Weighted Estimation

Table of Common Features

The predictive modeling nodes are designed to share many common features. The following table lists some
features that are broadly applicable to predictive modeling and indicates which nodes have the features. Decision
options, output data sets, and score variables are described in subsequent sections of this chapter.

Features of Predictive Modeling Nodes

Decision

Tree

Neural
Networ k

Regression |



Input Data Sets:

Training Yes Yes Yes
Validation Yes Yes Yes
Test Yes Yes Yes
Scoring Yes Yes Yes
I nput Variables:

Nominal Yes Yes Yes
Ordinal Yes No# Yes
Interval Yes Yes Yes
Target Variables:

Nominal Yes Yes Yes
Ordinal Yes Yes Yes
Interval Yes Yes Yes
Other Variable Roles:

Frequency Yes Yes Yes
Sampling Weight No* No* No*
Variance Weight No No No
Cost Yes Yes Yes
Decision Options:

Prior Probabilities Yes Yes Yes
Profit or Loss Matrix Yes Yes Yes
Output Data Sets:

Scores Yes Yes Yes
Model (weights, trees) Yes Yes Yes
Fit Statistics Yes Yes Yes
Profit or Loss Summaries Yes Yes Yes
Score Variables:

Output (predicted value, posterior Yes Yes Yes
probability)

Residual Yes Yes Yes




Classify (from, into) Yes Yes Yes

Expected Profit or Loss Yes Yes Yes
Profit or Loss Computed from Target Yes Yes Yes
Decision Yes Yes Yes

Other Features:

Interactive Training Yes No Yes
Save and reuse models Yes Yes Yes
Apply model with missing inputs No No Yes
DATA step code for scoring Yes Yes Yes

# — The Regression node treats ordinal inputs as nominal; it does not preserve the ordering of the
levels.

* — Planned for afuture release.

Categorical Variables

Categories for nominal and ordinal variables are defined by the normalized, formatted values of the variable. If
you have not explicitly assigned aformat to avariable, the default format for anumeric variableis BEST12., and
the default format for a character variable is $w., where w is the length of the variable. The formatted valueis
normalized by:

1. Removing leading blanks
2. Truncating to 32 characters
3. Changing lowercase | etters to uppercase.

Hence, if two values of avariable differ only in the number of leading blanks and the in the case of their letters,
they will be assigned to the same category. Also, if two values differ only past the first 32 characters (after | eft-
justification), they will be assigned to the same category.

Dummy variables are generated for categorical variablesin the Regression and Neural Network nodes. If a
categorical variable has c categories, the number of dummy variables will be either ¢ or ¢-1, depending on therole
of the variable and what options are specified. The computer time and memory requirements for analyzing a
categorical variable with ¢ categories are the same as the requirements for analyzing c or c-1 interval-level
variables for the Regression and Neural Network nodes.

When a categorical variable appears in two or more data sets used in the same modeling node, such asthe training
set (prior to DM DB processing), validation set, and decision data set, the variable is not required to have the same
type and length in each data set. For example, avariable named TEMPERAT could be numeric in the training set
with values such as 98.6, while a variable by the same name in the validation set could be character with values
such as"98.6". Aslong as the normalized, formatted values from the two data sets agree, the values of the two
variables will be matched correctly. In the Neural Network node only, a categorical variable that appearsin two or
more data sets must have the same formatted length in each data set.




Predicted Values and Posterior Probabilities

For an interval target variable, by default the modeling nodes try to predict the conditional mean of the target
given the values of the input variables. The Neural Network node also provides robust error functions that can be
used to predict approximately the conditional median or mode of the target.

For a categorical target variable, by default the modeling nodes try to estimate the conditional probability of each
class given the values of the input variables. These conditional probabilities are called posterior probabilities.
Given the posterior probabilities, each case can be classified into the most probable class.

Y ou can aso specify aprofit or loss matrix to classify cases according to the business consequences of the
decision (see the section below on Decisions). The robust error functions in the Neural Network node can be used
to output the approximately most probable class.

When comparing predictive models, it is essential to compare al models using the same cases. If acaseis omitted
from scoring for one model but not from another (for example, because of missing input variables) you get
invalid, "apples-and-oranges' model comparisons. Therefore, Enterprise Miner modeling nodes compute
predictions for all cases, even for cases where the model is inapplicable because of missing inputs or other reasons
(except, of course, when there are no valid target values).

For cases where the model cannot be applied, the modeling nodes output the unconditional mean (the mean for all
cases used for training) for interval targets, or the prior probabilities for categorical targets (see the section below
on Prior Probabilities). If you do not specify prior probabilities, implicit priors are used, which are the proportions
of the classes among all cases used for training. A variable named WARN _ in the scored data set indicates why
the model could not be applied. If you have lots of cases with missing inputs, you should either use the Decision
Tree node for modeling, or use the Impute node to impute missing values prior to using the Regression or Neura
Network nodes.

The Frequency Variable and Weighted Estimation

All of the Enterprise Miner modeling nodes allow you to specify afrequency variable. Typically, the values of the
frequency variable are nonnegative integers. The data are treated as if each case were replicated as many times as
the value of the frequency variable.

Unlike most SAS procedures, the modeling nodes in Enterprise Miner accept values for afrequency variable that
are not integers without truncating the fractional part. Thus, you can use a frequency variable to perform weighted
analyses.

However, Enterprise Miner does not provide explicit support for sampling weights, noise-variance weights, or
other analyses where the weight variable does not represent the frequency of occurrence of each case. If the
frequency variable represents sampling weights or noise-variance weights, the point estimates of regression
coefficients and neural network weights will be valid. But if the frequency variable does not represent actual
frequencies, then standard errors, significance tests, and statistics such asMSE, AIC, and SBC may be invalid.

If you want to do weighted estimation under the usual assumption for weighted | east-squares that the weights are
inversely proportional to the noise variance (error variance) of the target variable, then you can obtain statistically
correct results by specifying frequency values that add up to the sample size.

If you want to use sampling weights that are inversely proportional to the sampling probability of each case, you
can get approximate estimates for MSE and related statistics in the Regression and Neural Network nodes by
specifying frequencies that add up to the effective sample size. A pessimistic approximation to the effective
sample sizeis provided by



(=W
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where W(i) is a sampling weight for casei. This approximation will not work properly with the Decision Tree
node.

Differences Among Predictive M odeling Nodes

The Regression node, the Tree node, and the Neural Network node can all learn complex models from data, but they
have different ways of representing complexity in their models. Choosing a model of appropriate complexity isimportant
for making accurate predictions, as discussed in the section below on Generalization. Simple models are best for

learning simple functions of the data (as long as the model is correct, of course), while complex models are required

for learning complex functions. With all data mining models, one way to increase the complexity of amodel isto add
input variables. Other ways to increase complexity depend on the type of model:

. Inregression models, you can add interactions and polynomial terms.
. Inneura networks, you can add hidden units.
. Intree-based models, you can grow alarger tree.

One fundamental difference between tree-based models and both regression and neural net modelsis that tree-based
models learn step functions, whereas the other models learn continuous functions. If you expect the function to

be discontinuous, atree-based model isagood way to start. However, given enough data and training time, neural
networks can approximate discontinuities arbitrarily well. Polynomial regression models are not good at

learning discontinuities. To model discontinuities using regression, you need to know where the discontinuities occur
and construct dummy variablesto indicate the discontinuities before fitting the regression model.

For both regression and neural networks, the simplest models are linear functions of the inputs, hence regression and
neural nets are both good for learning linear functions. Tree-based models require many branches to approximate
linear functions accurately.

When there are many inputs, learning is inherently difficult because of the curse of dimensionality (see the Neural
Network FAQ at the URL

ftp://ftp.sas.conf pub/ neural / FAQ. ht m #A cur se.

To learn general nonlinear functions, all modeling methods require a degree of complexity that grows exponentialy with the
number of inputs. That is, as the number of inputs increases, the number of interactions and polynomial terms required in
aregression model grows exponentially, the number of hidden units required in a neural network grows exponentially, and
the number of branches required in atree grows exponentially. The amount of data and the amount of training time required
to learn such models also grow exponentially.

Fortunately, in most practical applications with alarge number of inputs, most of the inputs are irrelevant or redundant, and
the curse of dimensionality can be circumvented. Tree-based models are especially good at ignoring irrelevant inputs,
since trees often use arelatively small number of inputs even when the total number of inputsislarge.

If the function to be learned is linear, stepwise regression is good for choosing a small number out of alarge set of inputs.
For nonlinear models with many inputs, regression is not a good choice unless you have prior knowledge of which
interactions and polynomial terms to include in the model. Among various neural net architectures, multilayer perceptrons
and normalized radia basis function (RBF) networks are good at ignoring irrelevant inputs and finding relevant subspaces



of the input space, but ordinary radial basis function networks should only be used when all or most of the inputs are relevant.

All of the modeling nodes can process redundant inputs effectively. Adding redundant inputs has little effect on the
effective dimensionality of the data; hence the curse of dimensionality does not apply. When there are redundant inputs,
the training cases lie close to some (possibly nonlinear) subspace. If this subspaceis linear, redundancy is

called multicollinearity.

In statistical theory, it iswell-known that redundancy causes parameter estimates (weights) to be unstable; that is, different
parameter estimates can produce similar predictions. But if the purpose of the analysisis prediction, unstable

parameter estimates are not necessarily a problem. If the same redundancy applies to the test cases as to the training cases,
the model needs to produce accurate outputs only near the subspace occupied by the data, and stable parameter estimates
are not needed for accurate prediction. However, if the test cases do not follow the same pattern of redundancy as the
training cases, generalization will require extrapolation and will rarely work well.

If extrapolation is required, decision tree-based models are saf est, because trees choose just one of several redundant inputs
and produce constant predictions outside the range of the training data. Stepwise linear regression or linear-logistic
regression are the next safest methods for extrapolation if alarge singularity criterion is used to make sure that the
parameter estimates do not become excessively unstable. Polynomial regression is usually a bad choice for

extrapolation, because the predictions will often increase or decrease rapidly outside the range of the training data.

Neural networks are also dangerous for extrapolation if the weights are large. Weight decay and early stopping can be used
to discourage large weights. Normalized radial basis function (RBF) networks are the safest type of neural net architecture
for extrapolation, since the range of predictions will never exceed the range of the hidden-to-output weights.

The Decision Tree node can use cases with missing inputs for training and provides several ways of making predictions
from cases with missing inputs. The Regression and Neural Network nodes cannot use cases with missing inputs for
training; predictions are based on the unconditional mean or prior probabilities (see Predicted Values and

Posterior Probabilities).

The Neural Network node can model two or more target variables in the same network. Having multiple targets in the
network can be an advantage when there are features common to all the targets; otherwise, it is more efficient to train
separate networks. The Regression node and the Decision Tree node process only one target at atime, but the Start Group
node can be used to handle multiple targets.

The following figuresillustrate the kinds of approximation error that commonly occur with each of the modeling nodes.

The noise-free data come from the hill-and-plateau function, which was chosen because it is difficult for typical

neural networks to learn. Given sufficient model complexity, al of the modeling nodes can, of course, learn the data accurately.
These examples show what happens with insufficient model complexity. The casesin thetraining set lieon a21 by 21

grid, while those in the test set are on a41 by 41 grid.



Hill and Plateau Function: Test Data
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Computer Resour ces

The computer time and memory required for an analysis depend on the number of cases, the number of variables,
the complexity of the model, and the training algorithm. For many modeling methods, there is a trade-off between time
and memory.

For all modeling nodes, memory is required for the operating system, SAS supervisor, and the Enterprise Miner diagram
and programs, resulting in an overhead of about 20 to 30 megabytes.

Let:

N be the number of cases.

V  bethe number of input variables.



| bethe number of input terms or units, including
dummy variables, intercepts, interactions, and
polynomials.

W  be the number of weightsin aneural network.

O bethe number of output units.

be the average depth of atree.

be the number of times the training data are read

in logistic regression or neural nets, which depends
on the training technique, the termination criteria,

the model, and the data. Ristypically much larger

for neural nets than for logistic regression. In regard
to training techniques, Ris usually smallest for
Newton-Raphson or Levenberg-Marquardt, larger for
guasi-Newton, and still larger for conjugate gradients.

S bethe number of stepsin stepwise regression, or 1
if stepwiseregression is not used.

For the Decision Tree node, the minimum additional memory required for an analysisis about 8N bytes. Training will

be considerably faster if there is enough RAM to hold the entire data set, which is about 8N(V+ 1) bytes. If the datawill not
fit in memory, they must be stored in a utility file. Memory is also required to hold summary statistics for a node, such

as means or a contingency table, but this amount is usually much smaller than the amount required for the data.

For the Regression node, the memory required depends on the type of model and on the training technique. For
linear regression, memory usage is dominated by the SSCP matrix, which requires 812 bytes. For logistic regression,
memory usage depends on the training technique as documented in the SAS/OR Technical Report: The NLP
Procedur e, ranging from about 401 bytes for the conjugate gradient technique to about 812 bytes for the Newton-
Raphson technique.

For the Neural Network node, memory usage depends on the training technique as documented in the SAS/OR

Technical Report: The NLP Procedure. About 40W bytes are needed for the conjugate gradient technique, while 4W2
bytes are needed for the quasi-Newton and Levenberg-Marquardt techniques. For a network with biases and H hidden units
inonelayer, W= (I+1)H + (H+1)O.

For both logistic regression and neural networks, the conjugate gradient technique, which requires the least memory,
must usually read the training data many more times than the Newton-Raphson and L evenberg-Marquardt techniques.

Assuming that the number of training cases is greater than the number of inputs or weights, the time required for training is
roughly proportional to:

NI2 for linear regression.

SRNI  for logistic regression using conjugate
gradients.

SRNI2 for logistic regression using quasi-Newton
or Newton-Raphson. Note that Ris usually
considerably less for these techniques than
for conjugate gradients.



DNI  for decision tree-based models.
RNW  for neural nets using conjugate gradients.

RNW?2 for neural nets using quasi-Newton or
Levenberg-Marquardt. Note that Ris usually
considerably less for these techniques than
for conjugate gradients.

Prior Probabilities

For a categorical target variable, each modeling node can estimate posterior probabilities for each class, which are defined
asthe conditional probabilities of the classes given the input variables. By default, the posterior probabilities are based

on implicit prior probabilities that are proportional to the frequencies of the classesin the training set. Y ou can specify
different prior probabilities viathe Target Profile using the Prior Probabilities tab (see the Target Profile chapter). Also, given
apreviously scored data set containing posterior probabilities, you can compute new posterior probabilities for different
priors by using the DECIDE procedure, which reads the prior probabilities from a decision data set.

Prior probabilities should be specified when the sample proportions of the classesin the training set differ substantially

from the proportionsin the operational datato be scored, either through sampling variation or deliberate bias. For

example, when the purpose of the analysisis to detect arare class, it isacommon practice to use atraining set in which the
rare classis over represented. If no prior probabilities are used, the estimated posterior probabilities for the rare class will

be too high. If you specify correct priors, the posterior probabilities will be correctly adjusted no matter what the proportions
in the training set are. For more information, see Detecting Rare Classes.

Increasing the prior probability of a class increases the posterior probability of the class, moving the classification boundary
for that class so that more cases are classified into the class. Changing the prior will have a more noticeable effect if
the original posterior isnear 0.5 than if it is near zero or one.

For linear logistic regression and linear normal -theory discriminant analysis, classification boundaries are

hyperplanes; increasing the prior for a class moves the hyperplanes for that class farther from the class mean, while
decreasing the prior moves the hyperplanes closer to the class mean, but changing the priors does not change the angles of
the hyperplanes.

For quadratic logistic regression and quadratic normal-theory discriminant analysis, classification boundaries are

quadratic hypersurfaces; increasing the prior for a class moves the boundaries for that class farther from the class mean,
while decreasing the prior moves the boundaries closer to the class mean, but changing the priors does not change the shapes
of the quadratic surfaces.

To show the effect of changing prior probabilities, the datain the following figure were generated to have three classes,
shown as red circles, blue crosses, and green triangles. Each class has 100 training cases with a bivariate normal distribution.


file:///G|/pub/doc/902/production/emxndg/html/TargetProfile.html

Training Data

These training data were used to fit a quadratic logistic regression model using the Neural Network engine. Since each

class has the same number of training cases, the implicit prior probabilities are equal. In the following figure, the plot on

the left shows color-coded posterior probabilities for each class. Bright red areas have a posterior probability near 1.0 for

the red circle class, bright blue areas have a posterior probability near 1.0 for the blue cross class, and bright green areas have
a posterior probability near 1.0 for the green triangle class. The plot on the right shows the classification results as red,

blue, and green regions.

Equal Priors
Posterior Prolzahilities Classification

If the prior probability for the red classis increased, the red areasin the plots expand in size as shown in the following
figure. Thered class has a small variance, so the effect is not widespread. Since the priors for the blue and green classes
are still equal, the boundary between blue and green has not changed.



Priors: Red= .90 Blue= .05 Green= .05

Posterior Prolahilities

Classification

the blue areas in the plots expand in size as shown in the following figure.

The blue class has alarge variance and has a substantial density extending beyond the high-density red region, so

increasing the blue prior causes the red areas to contract dramatically.

If the prior probability for the blue classisincreased

Priors: Red= .10 Blue= .80 Green=.10

Posterior Probahilities

Classification

the green areas in the plots expand as shown in the following figure.

If the prior probability for the green classisincreased



Priors: Red= .10 Blue= .10 Green= .80
Posterior Prolahilities Classification

In the literature on data mining, statistics, pattern recognition, and so on, prior probabilities are used for avariety of
purposes that are sometimes confusing. In Enterprise Miner, however, the nodes are designed to use prior probabilitiesin
asimple, unambiguous way:

. Prior probabilities are assumed to be estimates of the true proportions of the classes in the operational datato be scored.

. Prior probabilities are not used by default for parameter estimation. This allows you to manipulate the class proportions
in the training set by nonproportional sampling or by afrequency variable in any manner you want.

. If you specify prior probabilities, the posterior probabilities computed by the modeling nodes are always adjusted for the
priors.

. If you specify prior probabilities, the profit and loss summary statistics are always adjusted for priors and therefore
provide valid model comparisons, assuming that you specify valid decision consequences (see the following section on
Decisions).

If you do not explicitly specify prior probabilities (or if you specify None for prior probabilitiesin the target profile),
no adjustments for priors are performed by any nodes.

Posterior probabilities are adjusted for priors as follows. Let:

t be an index for target values (classes)
i> be an index for cases
OldPrior(t) be the old prior probability or implicit

prior probability for target t
OldPost(i,t) be the posterior probability based on OldPrior (t)
Prior(t) be the new prior probability desired for target t
Post(i,t) be the posterior probability based on Prior(t)

Then:



OldPost (1) Prior () | OldPricr (£)

Fogi(i, 0 =
o QldPast(i, j)Prior (i) OldPrior (f)
:

For classification, each casei is assigned to the class with the greatest posterior probability, that is, the classt for which Post
(i,t) is maximized.

Prior probabilities have no effect on estimating parameters in the Regression node, on learning weightsin the Neura
Network node, or, by default, on growing trees in the Tree node. Prior probabilities do affect classification and decision
processing for each case. Hence, if you specify the appropriate options for each node, prior probabilities can affect the
choice of modelsin the Regression node, early stopping in the Neural Network node, and pruning in the Tree node.

Prior probabilities are also used to adjust the relative contribution of each class when computing the total and average
profit and loss as described in the section below on Decisions. The adjustment of total and average profit and lossis
distinct from the adjustment of posterior probabilities. The latter is used to obtain correct posteriors for individual

cases, whereas the former is used to obtain correct summary statistics for the sample. The adjustment of total and average
profit and lossis done only if you explicitly specify prior probabilities; the adjustment is not done when the implicit
priors based on the training set proportions are used.

Note that the fit statistics such as misclassification rate and mean squared error are not adjusted for prior probabilities. These
fit statistics are intended to provide information about the training process under the assumption that you have provided

an appropriate training set with appropriate frequencies, hence adjustment for prior probabilities could present a

misleading picture of the training results. The profit and loss summary statistics are intended to be used for model

selection, and to assess decisions that are made using the model under the assumption that you have provided the
appropriate prior probabilities and decision values. Therefore, adjustment for prior probabilitiesis required for data sets

that lack representative class proportions. For more details, see Decisions.

If you specify priors explicitly, Enterprise Miner assumes that the priors that you specify represent the true operational
prior probabilities and adjusts the profit and loss summary statistics accordingly. Therefore:

. If you are using profit and loss summary statistics, the class proportionsin the validation and test sets need not be the
same as in the operational data as long as your priors are correct for the operational data.

« You can use training sets based on different sampling methods or with differently weighted classes (using a frequency
variable), and as long as you use the same explicitly specified prior probabilities, the profit and loss summary statistics
for the training, validation, and test sets will be comparable across al of those different training conditions.

. If you fit two or more models with different specified priors, the profit and loss summary statistics will not be
comparable and should not be used for model selection, since the different summary statistics apply to different
operational data sets.

If you do not specify priors, Enterprise Miner assumes that the validation and test sets are representative of the
operational data, hence the profit and loss summary statistics are not adjusted for the implicit priors based on the training
set proportions. Therefore:

. If thevalidation and test sets are indeed representative of the operational data, then regardless of whether you specify
priors, you can use training sets based on different sampling methods or with differently weighted classes (using a
frequency variable), and the profit and loss summary statistics for the validation and test sets will be comparable across
all of those different training conditions.

. If thevalidation and test sets are not representative of the operational data, then the validation statistics may not provide
valid model comparisons, and the test-set statistics may not provide valid estimates of generalization accuracy.

If aclass has both an old prior and a new prior of zero, then it is omitted from the computations. If a class has a zero old
prior, you may not assign it a positive new prior, since that would cause a division by zero. Prior probabilities may not

be missing or negative. They must sum to a positive value. If the priors do not sum to one, they are automatically adjusted to
do so by dividing each prior by the sum of the priors. A class may have a zero prior probability, but if you use PROC
DECIDE to update posterior probabilities, any case having a nonzero posterior corresponding to a zero prior will cause

the results for that case to be set to missing values.



To summarize, prior probabilities do not affect:

. Estimating parametersin the Regression node.

. Learning weightsin the Neural Network node.

. Growing (as opposed to pruning) treesin the Decision Tree node unless you configure the property Use Prior Probability
in Split Search.

. Residuals, which are based on posteriors before adjustment for priors, except in the Decision Tree node if you choose to
use prior probabilitiesin the split search.

. Error functions such as deviance or likelihood, except in the Decision Tree node if you choose to use prior probabilities
in the split search.

. Fit statistics such as M SE based on residual s or error functions, except in the Decision Tree node if you choose to use
prior probabilities in the split search.

Prior probabilities do affect:

. Posterior probabilities

. Classification

. Decisions

. Misclassification rate

. Expected profit or loss

. Profit and loss summary statistics, including the relative contribution of each class.

Prior probabilities will by default affect the following processesif and only if there are two or more decisionsin the
decision matrix:

. Choice of modelsin the Regression node
. Early stopping in the Neural Network node
. Pruning treesin the Tree node.

Decisions

Each modeling node can make a decision for each case in a scoring data set, based on humerical consequences specified via
adecision matrix and cost variables or cost constants. The decision matrix can specify profit, loss, or revenue. In the GUI,
the decision matrix is provided viathe Target Profile. With a previously scored data set containing posterior

probabilities, decisions can also be made using PROC DECIDE, which reads the decision matrix from a decision data set.

When you use decision processing, the modeling nodes compute summary statistics giving the total and average profit or
loss for each model. These profit and loss summary statistics are useful for selecting models. To use these summary
statistics for model selection, you must specify numeric consequences for making each decision for each value of the
target variable. It is your responsibility to provide reasonable numbers for the decision consequences based on your
particular application.

In some applications, the numeric consequences of each decision may not al be known at the time you are training the
model. Hence you may want to perform what-if analyses to explore the effects of different decision consequences using
the Model Comparison node. In particular, when one of the decisionsisto "do nothing," the profit charts in the Model
Comparison node provide a convenient way to see the effect of applying different thresholds for the do-nothing decision.

To use profit charts, the do-nothing decision should not be included in the decision matrix; the Model Comparison node

will implicitly supply ado-nothing decision when computing the profit charts. When you omit the do-nothing decision from the
profit matrix so you can obtain profit charts, you should not use the profit and loss summary statistics for comparing

models, since these summary statistics will not incorporate the implicit do-nothing decision. Thistopic is discussed further

in Decision Thresholds and Profit Charts.



The decision matrix contains columns (decision variables) corresponding to each decision, and rows

(observations) corresponding to target values. The values of the decision variables represent target-specific
consequences, which may be profit, loss, or revenue. These consequences are the same for all cases being scored. A
decision data set may contain prior probabilitiesin addition to the decision matrix.

For a categorical target variable, there should be one row for each class. The value in the decision matrix located at a given
row and column specifies the consequence of making the decision corresponding to the column when the target

value corresponds to the row. The decision matrix is allowed to contain rows for classes that do not appear in the data
being analyzed. For a profit or revenue matrix, the decision is chosen to maximize the expected profit. For aloss matrix,
the decision is chosen to minimize the expected loss.

For an interval target variable, each row defines aknot in a piecewise linear spline function. The consequence of making
adecision is computed by linear interpolation in the corresponding column of the decision matrix. If the predicted target
valueis outside the range of knotsin the decision matrix, the consequence of adecision is computed by linear
extrapolation. Decisions are made to maximize the predicted profit or minimize the predicted | oss.

For each decision, there may aso be either a cost variable or anumeric cost constant. The values of cost variables
represent case-specific consequences, which are always treated as costs. These consequences do not depend on the
target values of the cases being scored. Costs are used for computing return on investment as (revenue-cost)/cost.

Cost variables may be specified only if the decision matrix contains revenue, not profit or loss. Hence if revenues and costs
are specified, profits are computed as revenue minus cost. If revenues are specified without costs, the costs are assumed to
be zero. The interpretation of consequences as profits, 10sses, revenues, and costs is needed only to compute return

on investment. Y ou can specify valuesin the decision matrix that are target-specific consequences but that may have

some practical interpretation other than profit, loss, or revenue. Likewise, you can specify values for the cost variables that
are case-specific consequences but that may have some practical interpretation other than costs. If the revenue/

cost interpretation is not applicable, the values computed for return on investment may not be meaningful. There are

some restrictions on the use of cost variables in the Decision Tree node; see the documentation on the Decision Tree node

for more information.

In principle, consequences need not be the sum of target-specific and case-specific terms, but Enterprise Miner does
not support such non-additive consequences.

For a categorical target variable, you can use a decision matrix to classify cases by specifying the same number of decisions
as classes and having each decision correspond to one class. However, there is no requirement for the number of decisions
to equal the number of classes except for ordinal target variablesin the Decision Tree node.

For example, suppose there are three classes designated red, blue, and green. For an identity decision matrix, the average
profit is equal to the correct-classification rate:

Profit Matrix to Compute the Correct-
Classification Rate

Target Decision:
Value:

Red Blue Green

Red 1 0 0

Blue 0 1 0
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To obtain the misclassification rate, you can specify aloss matrix with zeros on the diagonal and ones everywhere else;

Loss Matrix to Compute the
Misclassification Rate

Target Decision:
Value

Red Blue Green

Red 0 1 1
Blue 1 0 1
Green 1 1 0

If itis 20 times more important to classify red cases correctly than blue or green cases, you can specify adiagonal profit
matrix with a profit of 20 for classifying red cases correctly and a profit of one for classifying blue or green cases correctly:

Profit Matrix for Detecting a Rare

(Red) Class
Target Decision:
Value:
Red Blue Green
Red 20 0 0
Blue 0 1 0
Green 0 0 1

When you use a diagonal profit matrix, the decisions depend only on the products of the prior probabilities and

the corresponding profits, not on their separate values. Hence, for any given combination of priors and diagonal profit
matrix, you can make any change to the priors (other than replacing a zero with a nonzero value) and find a
corresponding change to the diagonal profit matrix that leaves the decisions unchanged, even though the expected profit
for each case may change.

Similarly, for any given combination of priors and diagonal profit matrix, you can find a set of priorsthat will yield the
same decisions when used with an identity profit matrix. Therefore, using adiagonal profit matrix does not provide you
with any power in decision making that could not be achieved with no profit matrix by choosing appropriate priors
(although the profit matrix may provide an advantage in interpretability). Furthermore, any two by two decision matrix can
be transformed into a diagonal profit matrix as discussed in the following section on Decision Thresholds and Profit Charts.

When the decision matrix is three by three or larger, it may not be possible to diagonalize the profit matrix, and



some nondiagonal profit matrices will produce effects that could not be achieved by manipulating the priors. To show the effect
of anondiagonalizable decision matrix, the data in the upper left plot of the following figure were generated to have
three classes, shown asred circles, blue crosses, and green triangles.

Each class has 100 training cases with a bivariate normal distribution. The training data were used to fit alinear
logistic regression model using the Neural Network engine. The posterior probabilities are shown in the upper right
plot. Classification according to the posterior probabilities yields linear classification boundaries as shown in the lower
left plot. Use of a nondiagonalizable decision matrix causes the decision boundaries in the lower right plot to be rotated
in comparison with the classification boundaries, and the decision boundaries are curved rather than linear.

Linear Logistic Regression with a Nondiagonal Profit Matrix

Linear Logistic Regression
Training Data Posterior Probabilities

The decision matrix that produced the curved decision boundariesis shown in the following table:

Nondiagonal Profit Matrix



Target Decision:
Value:

Red Blue Green
Red 4 0 3
Blue 3 4 0
Green 0 3 4

In each row, the two profit values for misclassification are different, hence it is impossible to diagonalize the matrix by
adding a constant to each row. Consider the blue row. The greatest profit is for a correct assignment into blue, but thereis
also asmaller but still substantial profit for assignment into red. There is no profit for assigning red into blue, so the red/
blue decision boundary is moved toward the blue mean in comparison with the classification boundary based on

posterior probabilities. The following figure shows the effect of the same nondiagonal profit matrix on a quadratic
logistic regression model.

Quadratic Logistic Regression with a Nondiagonal Profit Matrix

Quadratic Logistic Regression
Training Data Posterior Probabilities




For the Neural Network and Regression nodes, a separate decision is made for each case. For the Decision Tree node,
acommon decision ismade for all casesin the same leaf of the tree, so when different cases have different costs, the
average cost in the leaf isused in place of the individual costs for each case. That is, the profit equal s the revenue minus
the average cost among all training cases in the same leaf, hence asingle decision is assigned to all casesin the same leaf of
atree.

The decision alternative assigned to a validation, test or scoring case ignores any cost associated with the case. The new
data are assumed similar to the training datain cost as well as predictive relations. However, the actua cost values for
each case are used for the investment cost, ROI, and quantities that depend on the actual target value.

Decision and cost matrices do not affect:

. Estimating parameters in the Regression node

. Learning weightsin the Neural Networ k node

. Growing (as opposed to pruning) treesin the Decision Tree node unless the target is ordinal
. Residuals, which are based on posteriors before adjustment for priors

. Error functions such as deviance or likelihood

. Fit statistics such as M SE based on residual s or error functions

. Posterior probabilities

. Classification

. Misclassification rate.

Decision and cost matrices do affect:

. Growing treesin the Decision Tree node when the target is ordina

. Decisions

. Expected profit or loss

. Profit and loss summary statistics, including the relative contribution of each class.

Decision and cost matrices will by default affect the following processes if and only if there are two or more decisions:

. Choice of modelsin the Regression node
. Early stopping in the Neural Network node
. Pruning treesin the Decision Tree node.

Formulas will be presented first for the Neural Network and Regression nodes. Léet:

t be an index for target values (classes)
d be an index for decisions

i be an index for cases

N q be the number of decisions

Class(t) be the set of indices of cases belonging
to target t

Profit(t,d) be the profit for making decision d when

thetarget ist



Loss(t,d) be the loss for making decision d when
thetarget ist

Revenue(t,d)  bethe revenue for making decision d when

thetargetist

Cost(i,d) be the cost for making decision d for case i

Q(i,t,d) be the combined consequences for making
decision d when the target ist for casei

Prior(t) be the prior probability for target t

Paw(t) be the prior-adjustment weight for target t

Post(i,t) be the posterior probability of target t for
casei

F(i) be the frequency for casei

T() be the index of the actual target value for
caseli

A(i,d) be the expected profit of decision d for
casei

B(i) be the best possible profit for casei

based on the actual target value

C(i) be the computed profit for case i based
on the actual target value

D(i) be the index of the decision chosen by
the model for casei

E() be the expected profit for casei of the
decision chosen by the model

1C(i) be the investment cost for casei for the
decision chosen by the model

ROI (i) be the return on investment for casei for
the decision chosen by the model.

These quantities are related by the following formulas:

Frofitit &) = —Logs(f, d)

Eevenue(t, &) — Cosi(i, o) it revennue and costs are specified

CE.8.d) = {Profiilt,d) it profit 12 specified
= Loss(t,d) if loss iz specified



When the target variable is categorical, the expected profit for decisondin casei is:

Ai,d) =T Q. t,d) Post(i, £)

For each casei, the decision is made by choosing D(i) to be the value of d that maximizes the expected profit:

Dy =arg msx A, d) = argmsx >0 ¢ d ) Post(i, )

If two or more decisions are tied for maximum expected profit, the first decision in the user-specified list of decisions
is chosen.

The expected profit E(i) is the expected combined consequence for the chosen decision D(i), computed as a weighted
average over the target values of the combined consequences, using the posterior probabilities as weights:

B() = A, D)) = 206, DE)) Post(:, )

The expected lossis the negative of expected profit.

Note that E(i) and D(i) can be computed without knowing the target index T(i). When T(i) is known, two more quantities
useful for evaluating the model can also be computed. C(i) isthe profit computed from the target value using the
decision chosen by the model:

C) = QE.TG). LG

The loss computed from the target value is the negative of C(i). C(i) is the most important variable for assessing and comparing
models. The best possible profit for any of the decisions, which is an upper bound for C(i), is:

5@) = max Q6. 7G).d)

The best possible lossis the negative of B(i).

When revenue and cost are specified, investment cost is:
ICGE) = Cosi(i, DN

And return on investment is:



(C(H)
I
ROI = d.1(=) IC6Y20,C6) >0
(missing ) JC@) £0,CG) =0
| M(-=)  ICG) £0,C() <0

ICGE) >0

For an interval target variable, let:

Y  betheactual target value for casei

(i)

P bethe predicted target value for casei

0)

K betheknot value for row tof the decision matrix.

(®)

For interval targets, the predicted value is assumed to be accurate enough that no integration over the predictive distribution
isrequired. Define the functions:

£ () =maxit | Kig) & v}

£, ) =min{ £] £02) 2 )}

: _ y—E_(y : e
L@, ».d) Q(I,K_Ulﬂ’)+—K+U)_K_U)[Q(I=K+(Jflﬂf) QG E_(0).d)]

Then the decision is made by maximizing the expected profit:
Dy =arg s LiE, P, d)

The expected profit for the chosen decisionis:
() = L, PE), DG

When Y(i) is known, the profit computed from the target value using the decision chosen by the mode is:
C) = LG, 7). D60

And the best possible profit for any of the decisionsis:

B@) = max LG,V ().4)

For both categorical and interval targets, the summary statistics for decision processing with profit and revenue matrices
are computed by summation over cases with nonmissing cost values. If no adjustment for prior probabilitiesis used, the
sums are weighted only by the case frequencies, hence total profit and average profit are given by the following formulas:



TotalProfit = 3, FG)CE)

TotalPraofit

AverageFPrafit = -
S FG)

For loss matrices, total loss and average loss are the negatives of total profit and average profit, respectively.

If total and average profit are adjusted for prior probabilities, an additional weight Paw(t)is used:

) = %Z Fii)

ieciasgy)

Total and average profit are then given by:

TotalProfit = 3, FG)CH) Paw[TG)] =3 Paw(®) T FEHCE)

jeassie)

TotalPraofit

AverageFrafit = -
S FE)

If any class with a positive prior probability has atotal frequency of zero, total and average profit and loss cannot be
computed and are assigned missing values. Note that the adjustment of total and average profit and lossis done only if
you explicitly specify prior probabilities; the adjustment is not done when the implicit priors based on the training

set proportions are used.

The adjustment for prior probabilitiesis not done for fit statistics such as SSE, deviance, likelihood, or misclassification
rate. For example, consider the situation shown in the following table:

Unconditional
Proportion in: Misclassification
Rate
. - . Conditional
Class Operational Training Prior | Misclassification | Unadjusted | Adjusted
Data Data Probability
Rate
05* 0.8 0.1*0.8
Rare N N
0.1 0.5 0.1 0.8 05*0.2 09*0.2
0.50 0.26
Common 0.9 0.5 0.9 0.2




Thereisarare class comprising 10% of the operational data, and a common class comprising 90%. For reasons discussed in
the section below on Detecting Rare Classes, you may want to train using a balanced sample with 50% from each class.

To obtain correct posterior probabilities and decisions, you specify prior probabilities of .1 and .9 that are equal to

the operational proportions of the two classes.

Suppose the conditional misclassification rate for the common classis low, just 20%, but the conditional misclassification
rate for therare classis high, 80%. If it isimportant to detect the rare class accurately, these misclassification rates are poor.

The unconditional misclassification rate computed using the training proportions without adjustment for priorsis a mediocre
50%. But adjusting for priors, the unconditional misclassification rate is apparently much better at only 26%. Hence
the adjusted misclassification rate is misleading.

For the Decision Tree node, the following modifications to the formulas are required. Let Leaf(i) be the set of indices of
casesin the same leaf ascasei. Then:

> F()Cost(f,d)
Cont(i dy = 1E¥
2 FD
FeLeafi)

The combined consequences are:

Feavenue(t,d)— Cost i,d) iof revenue and costs are specified
ﬁ(i,z,d) ={ Profit(t.d) if profit 1z specified
= Loss(t,d) if loss 15 speciied

For a categorical target, the decision is:

D) = arg max T, (O0i.¢.d) Post (i £)

And the expected profit is:

R =3 06, £, DY) Post(i, £)

For an interval target:

y- K W

Fo e e K08 B K )

Liiedy= OG.K_(5).d) +

Thedecisionis:



agmax 2, F()HL (P, d)
DI:I:I — Je=leafiil

2 F

J= Leafii]

And the expected profit is:

agmax 2, F(HL(, PU), DGY)
EI:I:I - JeLegfii)

20

Je Leaf (i)

The other formulas are unchanged.

Decision Thresholds and Profit Charts

There are two distinct ways of using decision processing in Enterprise Miner:

. Making firm decisions in the modeling nodes and comparing models on profit and loss summary statistics. For this
approach, you include al possible decisions in the decision matrix. Thisis the traditional approach in statistical decision
theory.

. Using a profit chart to set a decision threshold. For this approach, thereis an implicit decision (usually a decision to "do
nothing") that is not included in the decision matrix. The decisions made in the modeling nodes are tentative. The profit
and loss summary statistics from the modeling nodes are not used. Instead, you look at profit charts (similar to lift or
gains charts) in the Model Comparison node to decide on athreshold for the do-nothing decision. Then you use a
Transform Variables or SAS Code node that sets the decision variable to "do nothing" when the expected profit or lossis
not better than the threshold chosen from the profit chart. This approach is popular for business applications such as
direct marketing.

To understand the difference between these two approaches to decision making, you first need to understand the effects
of varioustypes of transformations of decisions on the resulting decisions and summary statistics.

Consider the formulafor the expected profit of decision d in casei using (without loss of generality) revenue and cost:

A, d) =2 00.¢,d) Post(i, )
= > [Revenue(t, d) — Costli,d )| Post(i,£)

=3 Revenue(f d)Fost(i i) — Cost(i,d)3 Post(i,t)
t t

Now transform the decision problem by adding a constant 1o the tth row of the revenue matrix and a constant c; to theith row
of the cost matrix, yielding a new expected profit A'(i,d):



AG.d) =3[ Revenue(t,d) +r,1Post(i £) - [Cost(i,d) + ¢, 0 Post(i,i)
3 t
= Aii,d)+ 3 r Post(if) + e
¥
In the last expression above, the second and third terms do not depend on the decision. Hence this transformation of
the decision problem will not affect the choice of decision.

Consider the total profit before transformation and without adjustment for priors:

Total Profit = ZF(:&)C(E’)

= 2 FOLETE). D)
= 3 F () Revenue(T(i), D(i)) - Cost(i, D(i))]

After transformation, the new total profit, Total Profit', is:

Total Profit’ = Z F)f Revenue)T(1), DY) +ry — Cost(i, DE)) —c, ]

=S F@ 6]

In the last expression above, the second term does not depend on the posterior probabilities and therefore does not depend
on the model. Hence this transformation of the decision problem adds the same constant to the total profit regardless of
the model, and the transformation does not affect the choice of models based on total profit. The same conclusion applies
to average profit and to total and average loss, and also applies when the adjustment for prior probabilitiesis used.

For example, in the German credit benchmark data set (SAMPSIO.DMAGECR), the target variable indicates whether
the credit risk of each loan applicant is good or bad, and a decision must be made to accept or reject each application. It
is customary to use the loss matrix:

Customary Loss Matrix for the
German Credit Data

Target | Decision
Value:

Accept | Reect
Good 0 1
Bad 5 0

Thisloss matrix says that accepting a bad credit risk is five times worse than rejecting a good credit risk. But this matrix
also says that you cannot make any money no matter what you do, so the results may be difficult to interpret (or perhaps
you should just get out of business). In fact, if you accept a good credit risk, you will make money, that is, you will have
anegativeloss. And if you reject an application (good or bad), there will be no profit or loss aside from the cost of
processing the application, which will be ignored. Hence it would be more realistic to subtract one from the first row of
the matrix to give amore realistic loss matrix:



Realistic Loss Matrix for the
German Credit Data

Target | Decision
Value:

Accept | Reject
Good -1 0
Bad 5 0

This loss matrix will yield the same decisions and the same model selections as the first matrix, but the summary statistics
for the second matrix will be easier to interpret.

Sometimes a decision threshold K is used to maodify the decision-making process, so that no decision is made unless
the maximum expected profit exceeds K. However, making no decision is really a decision to make no decision or to
"do nothing." Thus the use of athreshold implicitly creates a new decision numbered Ng+ 1. Let Dy (i) be the decision based

on threshold K. Thus:

Nﬂ'
argmax A1, d) o A@f.d) > K
D)= 4
N;+1 otherwise

If the decision and cost matrices are correctly specified, then using athreshold is suboptimal, since D(i) is the optimal
decision, not D,(i). But a threshold-based decision can be reformulated as an optimal decision using modified decision and cost

matrices in several ways.

A threshold-based decision is optimal if "doing nothing" actually yields an additional revenue K. For example, K might be
the interest earned on money saved by doing nothing. Using the profit matrix formulation, you can define an augmented
profit matrix Profit* with Ng+ 1 columns, where:

Profit(t.d) d <N,

Prafit’ (t,d) =
refit (4.d) {K d=N,+1

Let D*(i) be the decision based on Profit*, where:
i

D) = argﬂ;_a_% S Profit”(t.d) Post i £)
ot

Then D*(i) = Dk(i). Equivalently, you can define augmented revenue and cost matrices, Revenue*> and Cost”, each with Ny
+1 columns, where:



Revenue(t,d) d 2N,

Revenue*(z,d 1=
& d=N;+1

Cost(i,d) d <N,

Clost (i,d) =
- K d=N,+1

Then the decision D* (i) based on Revenue® and Cost” is:

A
D) = argﬂ;_a% S Profit"(t,d) Past i.0)
ot

Again, D*(i) = Dy(i).

A threshold-based decision is also optimal if doing anything other than nothing actually incurs an additional cost K. In
this situation, you can define an augmented profit matrix Profit” with Ng+ 1 columns, where:

\ Profit(t.d)- X d<N
rofi“(.a) =1 ) 5
0 d=N,+1

This version of Profit* produces the same decisions as the previous version, but the total profit is reduced by

KLF@ regardless of the model used. Similarly, you can define Revenue® and Cost” as:

Revenue(t, d) d 2N,

Revenue*(i,cf =
& d=N;+1

. Costi,d)— K o £ N,
Cost (3,40 =
0 d=~N;+1

Again, this version of the Revenue” and Cost™ matrices produces the same decisions as the previous version, but the total

profit is reduced by K2 FG) regardless of the model used.

If you want to apply a known decision threshold in any of the modeling nodesin Enterprise Miner, use an augmented
decision matrix as described above. If you want to explore the consequences of using different threshold values to make
suboptimal decisions, you can use profit chartsin the Model Comparison node with a non-augmented decision matrix. In
aprofit chart, the horizontal axis shows percentile points of the expected profit E(i). By the default, the deciles of E(i) are
used to define 10 bins with equal frequencies of cases. The vertical axis can display either cumulative or noncumulative
profit computed from C(i).

To see the effect on total profit of varying the decision threshold K, use a cumulative profit chart. Each percentile point p on the
horizontal axis corresponds to a threshold K equal to the corresponding percentile of E(i). That is:



2 i)
P _ BN

100 T FE)

However, the chart shows only p, not K. Since the chart shows cumulative profit, each case with E(i)<K contributes a profit
of C(i), while all other cases contribute a profit of zero. Hence the ordinate (vertical coordinate) of the curveis the total
profit for the decision rule Dy(i), assuming that the profit for the decision to do nothing is zero:

2, FECE)
i E(i<E

Transformations that add a constant P the tth row of the revenue matrix or a constant ; to the ith row of the cost matrix

can change the expected profit for different cases by different amounts and therefore can alter the order of the cases along
the horizontal axis of a profit chart, producing large changes in the cumulative profit curve.

To obtain a profit chart for the German credit data, you need to:

1. Transform the decision matrix to have a column of zeros, asin the "Realistic Loss Matrix" above.
2. Omit the zero column.

Hence the decision matrix presented to the Model Comparison node should be:
Loss Matrix to Obtain

a Profit Chart for the
German Credit Data

Target

Value: | Decision:
Accept

Good -1

Bad 5

Detecting Rar e Classes

In data mining, predictive models are often used to detect rare classes. For example, an application to detect credit card

fraud might involve a data set containing 100,000 credit card transactions, of which only 100 are fraudulent. Or an analysis of
adirect marketing campaign might use a data set representing mailings to 100,000 customers, of whom only 5,000 made
apurchase. Since such data are noisy, it is quite possible that no credit card transaction will have a posterior probability

over 0.5 of being fraudulent, and that no customer will have a posterior probability over 0.5 of responding. Hence,

simply classifying cases according to posterior probability will yield no transactions classified as fraudulent and no
customers classified aslikely to respond.

When you are collecting the original data, it is always good to over-samplerare classes if possible. If the sample sizeis fixed,
abalanced sample (that is, a nonproportiona stratified sample with equal sizes for each class) will usually produce

more accurate predictions than an unbalanced 5% / 95% split. For example, if you can sample any 100,000 customers

you want, it would be much better to have 50,000 responders and 50,000 nonresponders than to have 5,000 responders



and 95,000 nonresponders.

Sampling designs like this that are stratified on the classes are called case-control studies or choice-based sampling and
have been extensively studied in the statistics and econometrics literature. If alogistic regression model is well-specified
for the population ignoring stratification, estimates of the dlope parameters from a sample stratified on the classes are
unbiased. Estimates of the intercepts are biased but can be easily adjusted to be unbiased, and this adjustment is
mathematically equivalent to adjusting the posterior probabilities for prior probabilities.

If you are familiar with survey-sampling methods, you may be tempted to apply sampling weights to analyze a

balanced stratified sample. Resist the temptation! In sample surveys, sampling weights (inversely proportiona to
sampling probability) are used to obtain unbiased estimates of population totals. In predictive modeling, you are not
primarily interested in estimating the total number of customers who responded to a mailing, but in identifying

which individuals are more likely to respond. Use of sampling weightsin a predictive model reduces the effective sample
size and makes predictions less accurate. Instead of using sampling weights, specify the appropriate prior probabilities
and decision consequences, which will provide all the necessary adjustments for nonproportional stratification on classes.

Unfortunately, balanced sampling is often impractical. The remainder of this section will be concerned with samples where
the class sizes are severely unbal anced.

Methods for dealing with the problem of rare classesinclude:

. Specifying correct decision consequences. Thisis the method of choice with Enterprise Miner, although in some
circumstances discussed below, additional methods may also be needed.

. Using false prior probabilities. This method is commonly used with software that does not support decision matrices.
When there are only two classes, the same decision results can be obtained either by using false priors or by using correct
decision matrices, but with three or more classes, false priors do not provide the full power of decision matrices. Y ou
should not use false priors with Enterprise Miner, because Enterprise Mines adjusts profit and loss summary statistics for
priors, hence using false priors may give you false profit and loss summary statistics.

. Over-weighting, or weighting rare classes more heavily than common classes during training. This method can be useful
when there are three or more classes, but it reduces the effective sample size and can degrade predictive accuracy. Over-
weighting can be done in Enterprise Miner by using a frequency variable. However, the current version of Enterprise
Miner does not provide full support for sampling weights or other kinds of weighted analyses, so this method should be
approached with care in any analysis where standard errors or significance tests are used, such as stepwise regression.
When using a frequency variable for weighting in Enterprise Miner, it is recommended that you also specify appropriate
prior probabilities and decision consequences.

« Under-sampling, or omitting cases from common classes in the training set. This method throws away information but
can be useful for very large data sets in which the amount of information lost is small compared to the noise level in the
data. Aswith over-weighting, the main benefits occur when there are three or more classes. When using under-sampling,
it is recommended that you also specify appropriate prior probabilities and decision consequences. Unless you are using
this method simply to reduce computational demands, you should not weight cases (using afrequency variable) in
inverse proportion to the sampling probabilities, since the use of sampling weights would cancel out the effect of using
nonproportional sampling, accomplishing nothing.

. Duplicating cases from rare classesin the training set. This method is equivalent to using a frequency variable, except
that duplicating cases requires more computer time and disk space. Hence, this method is not recommended except for
incremental backprop training in the Neural Network node.

A typical scenario for analyzing data with arare class would proceed as follows:

1. Inthe Input Data node, open a data set containing a random sample of the population. Specify the prior
probabilitiesin the target profile:
o For asimple random sample, the priors are proportional to the data.
o For astratified random sample, you have to type in numbersfor the priors.



Also specify the decision matrix in the target profile, including a do-nothing decision if applicable. The
profit for choosing the best decision for a case from arare class should be larger than the profit for
choosing the best decision for a case from a common class.

2. Optionally:
o For over-weighting, assign arole of Frequency to the weighting variable in the Data Source wizard
or Metadata node, or compute a weighting variable in the Transform Variables node.
o For under-sampling, use the Sampling node to do stratified sampling on the class variable with the
Equal Size option.

3. Usethe Data Partition node to create training, validation, and test sets.
4. Use one or more modeling nodes.

5. Inthe Model Comparison node, compare models based on the total or average profit or lossin the
validation set.

6. To produce a profit chart in the Model Comparison node, open the target profile for the model of interest
and delete the do-nothing decision.

Specifying correct prior probabilities and decision consequences is generally sufficient to obtain correct decision results if
the moddl you use is well-specified. A model iswell-specified if there exist values for the weights and/or other parameters
in the model that provide a true description of the population, including the distribution of the target noise. However, it is
the nature of data mining that you often do not know the true form of the mechanism underlying the data, so in practiceit
is often necessary to use misspecified models. It is often assumed that trees and neural nets are only asymptotically
well-specified.

Over-weighting or under-sampling can improve predictive accuracy when there are three or more classes, including at least
one rare class and two or more common classes. |f the model is misspecified and |acks sufficient complexity to discriminate
all of the classes, the estimation process will emphasize the common classes and neglect the rare classes unless either
over-weighting or under-sampling is used. For example, consider the data with three classes in the following plot:

Data with One Rare Class and
Two Common Classes



Training Data

The two common classes, blue and green, are separated along the X variable. Therare class, red, is separated from the
blue class only along the Y variable. A variable selection method based on significance tests, such as stepwise
discriminant analysis, would choose X first, since both the R2 and F statistics would be larger for X. But if you were
more interested in detecting the rare class, red, than in distinguishing between the common classes, blue and green, you
would prefer to choose Y first.

Similarly, if these data were used to train a neural network with one hidden unit, the hidden unit would have alarge
weight along the X variable, but it would essentially ignore the Y variable, as shown by the posterior probability plot in
the following figure. Note that no cases would be classified into the red class using the posterior probabilities for
classification. But when adiagonal decision matrix is used, specifying 20 times as much profit for correctly assigning a
red case as for correctly assigning a blue or green case, about half the cases are assigned to red, while no cases at all

are assigned to blue.

Unweighted Data, Neural Net with 1 Hidden Unit
Posterior Probahilities Decisions
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If you weighted the classes in a balanced manner by creating a frequency variable with values inversely proportional to
the number of training cases in each class, the hidden unit would learn alinear combination of the X and Y variables
that provides moderate discrimination among all three classes instead of high discrimination between the two common



classes. But since the model is misspecified, the posterior probabilities are still not accurate. As the following figure
shows, there is enough improvement that each class is assigned some cases.

Weighted Data, Neural Net with 1 Hidden Unit
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If the neural network had five hidden units instead of just one, it could learn the distributions of all three classes
more accurately without the need for weighting, as shown in the following figure:

Unweighted Data, Neural Net with 5 Hidden Units
Posterior Probabilities Decisions
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Using balanced weights for the classes would have only a small effect on the decisions, as shown in the following figure:



Weighted Data, Neural Net with 5 Hidden Units
Posterior Probabilities Decisions
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While using balanced weights for a well-specified neural network will not usually improve predictive accuracy, it may
make neural network training faster by improving numerical condition and reducing the risk of bad local optima

While balanced weighting can be important when there are three or more classes, there islittle evidence that balance
isimportant when there are only two classes. Scott and Wild (1989) have shown that for awell-specified logistic
regression madel, balanced weighting increases the standard error of every linear combination of the regression
coefficients and therefore reduces the accuracy of the posterior probability estimates. Simulation studies, which will

be described in a separate report, have found that even for misspecified models, balanced weighting provides

little improvement and often degrades the total profit or loss in logistic regression, normal-theory discriminant analysis,
and neura networks.

Generalization

The critical issue in predictive modeling is generalization: how well will the model make predictions for cases that are not

in the training set? Data mining models, like other flexible nonlinear estimation methods such as kernel regression, can
suffer from either underfitting or overfitting (or as statisticians usually say, oversmoothing or undersmoothing). A model that
is not sufficiently complex can fail to detect fully the signal in a complicated data set, leading to underfitting. A model that
istoo complex may fit the noise, not just the signal, leading to overfitting. Overfitting can happen even with noise-free

data and, especially in neural nets, can yield predictionsthat are far beyond the range of the target valuesin the training data.

By making amodel sufficiently complex, you can always fit the training data perfectly. For example, if you have N
training cases and you fit alinear regression with N-1 inputs, you can always get zero error (assuming the inputs are

not singular). Even if the N-1 inputs are random numbers that are totally unrelated to the target variable, you will still get
zero error on the training set. However, the predictions are worthless for such a regression model for new cases that are not
in the training set.

Even if you use only one continuous input variable, by including enough polynomial termsin aregression, you can get
zero training error. Similarly, you can always get a perfect fit with only one input variable by growing a tree large enough or
by adding enough hidden unitsto a neural net.

On the other hand, if you omit an important input variable from a model, both the training error and the generalization
error will be poor. If you use too few termsin aregression, or too few hidden unitsin aneural net, or too small atree,



then again the training error and the generalization error may be poor.

Hence, with all types of data mining models, you must strike a balance between a model that istoo simple and one that is too
complex. It is usually necessary to try avariety of models and then choose amodel that islikely to generalize well.

There are many ways to choose amodel. Some popular methods are heuristic, such as stepwise regression or CHAID

tree modeling, where the model is modified in a sequence of steps that terminates when no further steps satisfy a

statistical significance criterion. Such heuristic methods may be of use for developing explanatory models, but they do

not directly address the question of which model will generalize best. The obvious way to approach this question directly is
to estimate the generalization error of each model, then choose the model with the smallest estimated generalization error.

There are many ways to estimate generalization error, but it is especially important not to use the training error as an
estimate of generalization error. As previously mentioned, the training error can be very low even when the generalization
error is very high. Choosing amodel based on training error will cause the most complex model to be chosen even if

it generalizes poorly.

A better way to estimate generalization error is to adjust the training error for the complexity of the model. In linear
|east-squares regression, this adjustment is fairly ssmpleif the input variables are assumed fixed or multivariate normal. Let

SSE  bethe sum of squared errorsfor the training set

N be the number of training cases

P be the number of estimated weights including the intercept

Then the average squared error for the training set is SSE/N, which is designated as ASE by Enterprise Miner
modeling nodes. Statistical software often reports the mean squared error, MSE=SSE/(N-P).

M SE adjusts the training error for the complexity of the model by subtracting P in the denominator, which makes MSE
larger than ASE. But MSE is not a good estimate of the generalization error of the trained model. Under the usual
statistical assumptions, MSE is an unbiased estimate of the generalization error of the model with the best possible ("true")
weights, not the weights that were obtained by training.

Hence, a stronger adjustment is required to estimate generalization error of the trained model. One way to provide a

stronger adjustment isto use Akaike's Final Prediction Error (FPE):

_ SSE(N+ P)
NN - F)

FPE

The formulafor FPE multiplies MSE by (N+P)/N, so FPE islarger than MSE. If the input variables are fixed rather
than random, FPE is an unbiased estimate of the generalization error of the trained modéd. If inputs and target are
multivariate normal, a further adjustment is required:

SSE(N + (N -2)
NN -P)N-P-1)

which is dightly larger than FPE but has no conventional acronym.

The formulas for MSE and FPE were derived for linear |east-squares regression. For nonlinear models and for other
training criteria, M SE and FPE are not unbiased. M SE and FPE may provide adequate approximationsif the model is not



too nonlinear and the number of training cases is much larger than the number of estimated weights. But simulation
studies have shown, especially for neural networks, that FPE is not agood criterion for model choice, since it does not
provide a sufficiently severe penalty for overfitting.

There are other methods for adjusting the training error for the complexity of the model. Two of the most popular criteria

for model choice are Schwarz's Bayesian criterion, (SBC), also called the Bayesian information criterion, (BIC), and Rissanen's
minimum description length principle (MDL). Although these two criteria were derived from different theoretical
frameworks — SBC from Bayesian statistics and MDL from information theory — they are essentially the same, and in

the Enterprise Miner only the acronym SBC is used.

For least-squares training,

SBC = N]n(%) + Pln( 1) .

For maximum-likelihood training,

SBC = 2NLL + Pln( W) |

where NLL isthe negative log likelihood. Smaller values of SBC are better, since smaller values of SSE or NLL are
better. SBC often takes negative values. SBC is valid for nonlinear models under the usual statistical regularity
conditions. Simulation studies have found that SBC works much better than FPE for model choice in neural networks.

However, the usual statistical regularity conditions may not hold for neura networks, so SBC may not be entirely
satisfactory. In tree-based models, there is no well-defined number of weights, P, in the model, so SBC is not

directly applicable. And other kinds of models and training methods exist for which no single-sample statistics such as SBC
are known to be good criteriafor model choice. Furthermore, none of these adjustments for model complexity can be applied
to decision processing to maximize total profit. Fortunately, there are other methods for estimating generalization error

and total profit that are very broadly applicable; these methods include split-sample or hold-out validation, cross-

validation, and bootstrapping.

Split-sample validation is applicable with any kind of model and any training method. Y ou split the available data into
atraining set and a validation set, usually by simple random sampling or stratified random sampling. Y ou train the model
using only the training set. Y ou estimate the generalization error for each model you train by scoring the validation set.
Then you select the model with the smallest validation error. Split-sample validation is fast and is often the method of
choice for large data sets. For small data sets, split-sample validation is not so useful because it does not make efficient use
of the data.

For small data sets, cross-validation is generally preferred to split-sample validation. Cross-validation works by splitting
the data several different ways, training a different model for each split, and then combining the validation results across all
the splits. In k-fold cross-validation, you divide the datainto k subsets of (approximately) equal size. Y ou train the model

k times, each time leaving out one of the subsets from training, but using only the omitted subset to compute the error
criterion. If k equals the sample size, thisis called "leave-one-out” cross-validation.

"Leave-v-out" is amore elaborate and expensive version of cross-validation that involves leaving out al possible subsets of
v cases. Cross-validation makes efficient use of the data because every caseis used for both training and validation. But,

of course, cross-validation requires more computer time than split-sample validation. In version 3, Enterprise Miner
provides |eave-one-out cross-validation in the Regression node; k-fold cross-validation can be done easily with SAS macros.

In the literature of artificial intelligence and machine learning, the term "cross-validation" is often applied incorrectly to split-
sample validation, causing much confusion. The distinction between cross-validation and split-sample validation is
extremely important because cross-validation can be markedly superior for small data sets. On the other hand, leave-one-

out cross-validation may perform poorly for discontinuous error functions such as the number of misclassified cases, or



for discontinuous modeling methods such as stepwise regression or tree-based models. In such discontinuous situations, split-
sample validation or k-fold cross-validation (usually with k equal to five or ten) are preferred, depending on the size of the
data set.

Bootstrapping seems to work better than cross-validation in many situations, such as stepwise regression, at the cost of
even more computation. In the simplest form of bootstrapping, instead of repeatedly analyzing subsets of the data,

you repeatedly analyze subsamples of the data. Each subsample is arandom sample with replacement from the full
sample. Depending on what you want to do, anywhere from 200 to 2000 subsamples might be used. There are many
more sophisticated bootstrap methods that can be used not only for estimating generalization error but also for estimating
bias, standard errors, and confidence bounds.

Not al bootstrapping methods use resampling from the data— you can also resample from a nonparametric density
estimate, or resample from a parametric density estimate, or, in some situations, you can use analytical results.
However, bootstrapping does not work well for some methods such as tree-based models, where bootstrap
generalization estimates can be excessively optimistic.

There has been relatively little research on bootstrapping neural networks. SAS macros for bootstrap inference can be
obtained from Technical Support.

When numerous models are compared according to their estimated generalization error (for example, the error on a
validation set), and the model with the lowest estimated generalization error is chosen for operational use, the estimate of
the generalization error of the selected model will be optimistic. This optimism is a consequence of the statistical principle
of regression to the mean. Each estimate of generalization error is subject to random fluctuations. Some models by chance
will have an excessively high estimate of generalization error, while others will have an excessively low estimate

of generalization error.

The model that wins the competition for lowest generalization error is more likely to be among the models that by chance
have an excessively low estimate of generalization error. Even if the method for estimating the generalization error of

each model individually provides an unbiased estimate, the estimate for the winning model will be biased downward. Hence,
if you want an unbiased estimate of the generalization error of the winning model, further computations are required to
obtain such an estimate.

For large data sets, the most practical way to obtain an unbiased estimate of the generalization error of the winning model is
to divide the data set into three parts, not just two: the training set, the validation set, and the test set. Thetraining set is used
to train each model. The validation set is used to choose one of the models. The test set is used to obtain an unbiased
estimate of the generalization error of the chosen model.

The training/validation/test set approach is explained by Bishop (1995, p. 372) asfollows:

"Since our god is to find the network having the best performance on new data, the simplest approach to the
comparison of different networksis to evaluate the error function using data which isindependent of that used for
training. Various networks are trained by minimization of an appropriate error function defined with respect to a
training data set. The performance of the networks is then compared by evaluating the error function using an
independent validation set, and the network having the smallest error with respect to the validation set is selected.
This approach is called the hold out method. Since this procedure can itself lead to some overfitting to the
validation set, the performance of the selected network should be confirmed by measuring its performance on a
third independent set of data called atest set."

| nput and Output Data Sets

. Scored Data Sets

. Fit Statistics



Since Enterprise Miner isintended especially for the analysis of large data sets, all of the predictive modeling nodes

are designed to work with separate training, validation, and test sets. The Data Partition node provides a convenient way to
split asingle data set into the three subsets, using simple random sampling, stratified random sampling, or user

defined sampling. Each predictive modeling node also allows you to specify a fourth scoring data set that is not required
to contain the target variable. These four different uses for data sets are called the roles of the data sets.

For the training, validation and test sets, the predictive modeling nodes can produce two output data sets: one containing
the original data plus scores (predicted values, residuals, classification results, and so on), the other containing various
statistics pertaining to the fit of the model (the error function, misclassification rate, and so on). For scoring sets, only
the output data set containing scores can be produced.

Scored Data Sets

Output data sets containing scores have new variables with names usually formed by adding prefixes to the name
of the target variable(s) and, in some situations, the input variables or the decision data set.

Prefixes Commonly Used in Scored Data Sets:

Prefix Root Description Target
Needed?
BL_ Decision | Best possible loss of any Yes

data set of the decisions, -B(i)

BP_ Decision | Best possible loss of any Yes
data set of the decisions, -B(i)

CL_ Decision | Loss computed from the Yes
data set target value, -C(i)

CP_ Decision | Profit computed from the Yes
data set target value, C(i)

D Decision | Label of thedecision No
data set chosen by the model

E_ Target Error function Yes
EL Decision | Expected loss for the No
data set decision chosen by the
model, -E(i)
EP_ Decision | Expected profit for the No
data set decision chosen by the
model, E(i)
F_ Target Normalized category that Yes
the case comes from

I Target Normalized category that No
the case is classified into

IC_ Decision | Investment cost, 1C(i) No
data set




M Variable | Missing indicator dummy | -

variable
P_ Target Outputs (predicted values | No
or and posterior

dummy probabilities)

R_ Target Plain residuals: target Yes
or minus output
dummy

RA_ Target Anscombe residuals Yes

RAS | Target Standardized Anscombe Yes
residuals

RAT_ | Target Studentized Anscombe Yes
residuals

RD_ Target Devianceresiduals Yes

RDS | Target Standardized deviance Yes
residuals

RDT_ | Target Studentized deviance Yes
residuals

ROI_ | Decision | Return on investment, Yes

dataset | ROI(i)

RS Target Standardized residuals Yes
RT_ Target Studentized residuals Yes
S Variable | Standardized variable -
T Variable | Transformed variable -
u_ Target Unformatted category that | No

the caseis classified into

Usually, for categorical targets, the actual target values are dummy 0/1 variables. Hence the outputs (P_) are
estimates of posterior probabilities. Some modeling nodes may allow other ways of fitting categorical targets. For
example, when the Regression node fits an ordina target by linear least squares, it uses the index of the category
asthe actua target value, and hence does not produce posterior probabilities.

Outputs (P_) are always predictions of the actual target variable, even if the target variable is standardized or
otherwise rescaled during modeling computations. Similarly, plain residuas (R_) are always the actual target
value minus the output. Plain residuals are not multiplied by error weights or by frequencies.

For least-squares estimation, the error function variable (E_) contains the squared error for each case. For
generalized linear models or other methods based on minimizing deviance, the E_ variable is the deviance. For
other types of maximum likelihood estimation, the E_ variable is the negative log likelihood. In other words, the
E_variableiswhatever the training method is trying to minimize the sum of.



The deviance residual isthe signed sgquare root of the value of the error function for a given case. In other words,

if you square the deviance residuals, multiply them by the frequency values, and add them up, you will get the
value of the error function for the entire data set. Hence if the target variable is rescaled, the deviance residuals are
based on the rescaled target values, not on the actual target values. However, deviance residuals cannot be
computed for categorical target variables.

For categorical target variables, names for dummy target variables are created by concatenating the target name
with the formatted target values, with invalid characters replaced by underscores. Output and residual names are
created by adding the appropriate prefix (P_, R_, etc.) to the dummy target variable names. The F_ variable isthe
formatted value of the target variable. Thel _variableisthe category that the case is classified into--also a
formatted value. The | _ value isthe category with the highest posterior probability. If a decision matrix is used,
the D_ valueisthe decision with the largest estimated profit or smallest estimated loss. The D_ value may differ
from the | _value for two reasons:

. The decision aternatives do not necessarily correspond to the target categories, and
. Thel_ depends directly on the posterior probabilities, not on estimated profit or loss.

However, the | _ value may depend indirectly on the decision matrix when the decision matrix is used in model
estimation or selection.

Predicted values are computed for al cases. The model is used to compute predicted values whenever possible,
regardless of whether the target variable is missing, inputs excluded from the model (for example, by stepwise
selection) are missing, the frequency variable is missing, and so on. When predicted values cannot be computed
using the model — for example, when required inputs are missing — the P_ variables are set according to an
intercept-only model:

. For aninterval target, the P_ variable is the unconditional mean of the target variable.
. For categorical targets, the P_ variables are set to the prior probabilities.

Scored output data sets also contain avariable named _WARN__ that indicates problems computing predicted
values or making decisions.  WARN _isa character variable that either is blank, indicating there were no
problems, or that contains one or more of the following character codes:

_WARN_ Codes

Code Meaning

C Missing cost variable

M Missing inputs

P Invalid posterior probability
(eg.,,<0or>1)

U Unrecognized input
category

Regardless of how the P_ variables are computed, the | variables aswell as the residuals and errors are computed
exactly the same way given the values of the P_ variables. All cases with nonmissing targets and positive
frequencies contribute to the fit statistics. It isimportant that all such cases be included in the computation of fit
statistics because model comparisons must be based on exactly the same sets of cases for every model under
consideration, regardless of which modeling nodes are used.



Fit Statistics

The output data sets containing fit statistics produced by the Regression node and the Decision Tree node have
only one record. Since the Neural Network node can analyze multiple target variables, it produces one record for
each target variable and one record for the overall fit; the variable called _NAME_ indicates which target variable
the statistics are for.

Thefit statistics for training data generally include the following variables, computed from the sum of frequencies
and ordinary residuals:

Variables Included in Fit Statistics for Training Data

Name L abel

_NOBS_ Sum of Freguencies

_DFT_ Total Degrees of Freedom
_DIvV_ Divisor for ASE

_ASE_ Train: Average Squared Error
_MAX_ Train: Maximum Absolute Error

_RASE Train: Root Average Squared Error

SSE Train: Sum of Squared Errors

Notethat DFT_, DIV_,and_NOBS_can all be different when the target variable is categorical.

The following fit statistics are computed according to the error function (such as sguared error, deviance, or negative
log likelihood) that was minimized:

Fit Statistics Computed According to the Error Function

Name L abel

_AIC_ Train: Akaike's Information Criterion

_AVERR_ Train: Average Error Function

_ERR_ Train: Error Function

_SBC_ Train; Schwarz's Bayesian Criterion

For acategorical target variable, the following statistics are also computed:

Additional Statistics Computed for a Categorical Target Variable

Name L abel



_MISC_ Train: Misclassification Rate

_WRONG_ | Train: Number of Wrong Classifications

When decision processing is done, the statisticsin the following table are a'so computed for the training set. In the
variable labels, declab represents the label of the decision data set. The profit variables are computed for a profit or
revenue matrix, and the loss variables are computed for aloss matrix:

Additional Statistics Computed for a Decision Processing

Name L abel

_PROF_ Train: Total Profit for declab

_APROF _ Train: Average Profit for declab

_LOSss Train: Total Lossfor declab

_ALOSS Train; Average Loss for declab

For avalidation data set, the variable names contain aV following the first underscore. For atest data set, the variable
names contain a T following the first underscore. Not all the fit statistics are appropriate for validation and test sets,

and adjustments for model degrees of freedom are not applicable. Hence ASE and M SE become the same. For avalidation
set, the following fit statistics are computed:

Fit Statistics Computed for a Validation Set

Name L abel

_VASE_ Valid: Average Squared Error

_VAVERR_ Valid: Average Error Function

_VDIV_ Valid: Divisor for VASE
_VERR_ Valid: Error Function

_VMAX_ Valid: Maximum Absolute Error
_VMSE_ Valid: Mean Squared Error
_VNOBS _ Valid: Sum of Frequencies
_VRASE Valid: Root Average Squared Error
_VRMSE_ Valid: Root Mean Squared Error

_VSSE Valid: Sum of Squared Errors




For avalidation set and a categorical target variable, the following fit statistics are computed:

Fit Statistics Computed for a Validation and a Categorical Target

Variable
Name L abel
_VMISC_ Valid: Misclassification Rate

_VWRONG _ Valid: Number of Wrong Classifications

When decision processing is done, the following statistics are also computed for the validation set, where declab is the |abel
of the decision data set:

Fit Statistics Computed for a Validation Set with Decision

Processing
Name Label
_VPROF _ Valid: Total Profit for declab

_VAPROF_ Valid: Average Profit for declab

_VLOSS Valid: Total Lossfor declab

_VALOSS Vaid: Average Lossfor declab

Cross-validation statistics are similar to the above except that the letter X appearsinstead of V. These statistics appear in
the same data set(s) as fit statistics for the training data.

For atest set, the following fit statistics are computed:

Fit Statistics Computed For a Test Set

Name L abel

_TASE_ Test: Average Squared Error

_TAVERR_ Test: Average Error Function

_TDIV_ Test: Divisor for TASE
_TERR_ Test: Error Function
_TMAX_ Test: Maximum Absolute Error

_TMSE_ Test: Mean of Squared Error




_TNOBS_ Test: Sum of Frequencies
_TRASE_ Test: Root Average Squared Error
_TRMSE_ Test: Root Mean Squared Error
_TSSE Test: Sum of Squared Errors

For atest set and a categorical target variable, the following fit statistics are computed:

Fit Statisticsfor a Test Set and a Categorical Target Variable

Name L abel
_TMISC_ Test: Misclassification Rate
_TMISL_ Test: Lower 95% Confidence Limit for TMISC
_TMISU_ Test: Upper 95% Confidence Limit for TMISC
_TWRONG _ Test: Number of Wrong Classifications

When decision processing is done, the following statistics are also computed for the test set, where declab isthe label of
the decision data set:

Fit Statistics Computed for a Test Set with Decision Processing

Name L abel

_TPROF_ Test: Total Profit for declab

_TAPROF_ Test: Average Profit for declab

_TLOSS_ Test: Total Loss for declab

_TALOSS Test: Average Loss for declab

Combining M odels

An average of several measurements is often more accurate than a single measurement. This happens when the errors
of individual measurements more often cancel each other than reinforce each other. An average is aso more stable than
an individual measurement: if different sets of measurements are made on the same object, their averages would be
more similar than individual measurementsin asingle set.

A similar phenomenon exists for predictive models: aweighted average of predictions is often more accurate and more
stable than an individual model prediction. Though similar to what happens with measurements, it is less common and



more surprising. A model relates inputsto atarget. It seems surprising that a better relationship exists than is obtainable with
asingle model. Combining the models must produce a relationship not obtainable in any individual model.

An agorithm for training a model assumes some form of the relationship between the inputs and the target. Linear
regression assumes a linear relation. Tree-based models assume a constant relation within ranges of the inputs. Neural
networks assume a nonlinear relationship that depends on the architecture and activation functions chosen for the network.

Combining predictions from two different algorithms may produce a relationship of a different form than either
algorithm assumes. If two models specify different relationships and fit the data well, their average is apt to fit the data
better. If not, an individual model is apt to be adequate. In practice, the best way to know isto combine some models
and compare the results.

For neural networks, applying the same agorithm several timesto the same data may produce different results, especially
when early stopping is used, since the results may be sensitive to the random initial weights. Averaging the predictions
of several networks trained with early stopping often improves the accuracy of predictions.

Enterprise Miner provides avariety of waysto combine models using the Ensemble node.

. Ensembles
. Unstable Algorithms

Ensembles

An ensemble or committee is a collection of models regarded as one combined model. The ensemble predicts a
target value as an average or a vote of the predictions of the individual model. The different individual models
may give different weights to the average or vote.

For an interval target, an ensemble averages the predictions. For a categorical target, an ensemble may average the
posterior probabilities of the target values. Alternatively, the ensemble may classify a case into the class that most
of theindividual models classify it. The latter method is called voting and is not equivalent to the method of
averaging posteriors. Voting produces a predicted target value but does not produce posterior probabilities
consistent with combining the individual posteriors.

Unstable Algorithms

Sometimes applying the same algorithm to slightly different data produces very different models. Stepwise
regression and tree-based models behave this way when two important inputs have comparabl e predictive ability.
When atree creates a splitting rule, only one input is chosen. Changing the data slightly may tip the balancein
favor of choosing the other input. A split on one input might segregate the data very differently than a split on the
other input. In this situation, all descendent splits are apt to be different.

The unstable nature of tree-based models renders the interpretation of treestricky. A business may continually
collect new data, and a tree created in June might look very different than one created the previous January. An
analyst who depended on the January tree for understanding the datais apt to become distrustful of thetreein
June, unless he investigated the January tree for instability. The analyst should check the competing splitting rules
in anode. If two splits are comparably predictive and the input variables suggest different explanations, then
neither explanation tells the whole story.

Scoring New Data




All the predictive modeling nodes allow you to score the training, validation, test, and scoring data sets in conjunction
with training. To score other data sets, especially new data not available at the time of training, use the Score node.

Each predictive modeling node generates SAS DATA step code for computing predicted values. The Score hode
accumulates the code generated by each modeling node that precedes the Score node in the flow diagram. The Score node
then packages all the scoring code into aDATA step that can be executed to score new data sets. The scoring code can

be saved for usein the SAS System outside of Enterprise Miner.

The Score node also handles:

. code for transformations generated by the Transform Variables node
. code for missing-value imputation generated by the Impute node

. code for cluster assignment generated by the Cluster node

. code for decision processing

You can use a SAS Code node following the Score node to do additional processing of the scored data. For example, if
you used the Model Comparison node to choose a decision threshold, you could apply the threshold in a SAS Code node.
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Allocating Librariesfor SAS Enterprise Miner 6.1

. Overview: Allocating Libraries
o Allocate Librariesviaa SAS Autoexec File
o Allocate Libraries via Server Initialization Code
o Allocate Libraries via Project Start Code
o Allocate Libraries via SAS Management Console
. ERROR: Data Set LIBREF.TABLENAME Does Not Exist

Overview: Allocating Libraries

In SAS Enterprise Miner 6.1, there are severa places where LIBNAME statements (or other initialization code) can be
specified. The library alocations can be specified in these locations:

. SAS Autoexec Files

. Server Initialization Code

. Project Start-Up Code

. The SAS Management Console Library Manager Plug-In

The general form of the LIBNAME statement is as follows:

LI BNAVE | i bref "path";

For example, you can specify the following statement:

LI BNAVE MYDATA "d:\ EMlat a\t est dat a";

(Windows path examples are given, but the same principles apply to UNIX systems.)

Allocate Librariesvia a SAS Autoexec File

If LIBNAME statements are specified in an autoexec.sas file that resides in the SAS root path, then they execute by default
for al SAS processes except those that explicitly specify an autoexec override. Y ou can specify the path to a specific
autoexec.sas file by adding the option to the workspace server's SAS launch command or to any sasv9.cfg file:

-autoexec "[full path]”

Note: Y ou cannot use a mapped drive specification to indicate the path to an autoexec.sasfile.
In most installations, Enterprise Miner uses the configuration file that is located here:

C. \ SAS\ EM ner\ Lev1\ SASApp\ sasv9. cf g

In thisexample, EM ner istheinstalled plan name and might vary from site to site. If you do not designate a plan name,
then the default path will is as follows:



C. \ SAS\ Confi g\ Lev1\ SASApp\ sasv9. cfg

The sasv9.cfg file in this directory includes the sasv9.cfg file that is located in the SAS root directory:
C:\ Program Fi | es\ SAS\ SASFoundat i on\ 9. 2\ sasv9. cfg
The sasv9.cfg file in the SAS root directory points to the last configuration file located in the nl s\ en subdirectory:

C.\ Program Fi | es\ SAS\ SASFoundat i on\ 9. 2\ nl s\ en\ sasv9. cf g.

Allocate Librariesvia Server Initialization Code

Y ou can also specify LIBNAME statements that are specifically used with SAS Enterprise Miner. These statements are
unavailable to other users of the workspace server.

To execute LIBNAME statements for every SAS Enterprise Miner project on a server, follow theinstructionsin the
Enterprise Miner Help in the Installation and Configuration section, "Preparing SAS Enterprise Miner for Use." Also see
the Enterprise Miner Help on "Customizing SAS Enterprise Miner Metadata," which explains how to use the Enterprise
Miner plug-in to SAS Management Console to specify the path to the file that contains the server initialization code.

Allocate Librariesvia Project Start Code

Y ou can use Enterprise Miner project start-up code to issue LIBNAME statements for individual SAS Enterprise Miner 6.1
projects. To modify the start code for an Enterprise Miner project, open the project in Enterprise Miner, go to the
Navigation panel, and select the project name at the top of the navigation tree. With the project highlighted in the

Navigation panel, go to the Properties panel, locate the Start-Up Code property, and click the [l button in the Value
column. Enter the LIBNAME statement in the Start code window and click OK to save your new project's start code. You
can also choose to execute the start code immediately by clicking on the Run Now button. A Log tab is available so that
you can view the SAS log after executing your start code.

Allocate Librariesvia SAS M anagement Console

Enterprise Miner data libraries that are used frequently can be alocated for use with SAS Enterprise Miner 6.1 using SAS
Management Console.

First, you must define the library for the SAS Enterprise Miner input data set:
1. Open SAS Management Console.
2. Under the Data Library Manager plug-in, right-click on the Librariesfolder and select New Library.

3. Select the appropriate engine. If the SAS data set is located on the SAS Workspace Server, your engine should be the
SAS base engine. Select SASBase Library and click Next.

4. Type the name of your library and click Next.

5. Select an available server from the list on the left and click on the right arrow . Thiswill move the selected server



into the adjacent Selected servers pane. Click Next.
6. Enter alibref for the library in the LIBREF field. The libref must be 8 characters or less.

7. Click New and enter the name of the directory where the library is located.
Note: Thisdirectory must be accessible to the SAS Workspace Server.

8. Click Advanced Options, select the Library ispre-assigned check box, and click OK.
9. Click Next and highlight the SASMain entry in the list.

10. Click Next and review your entries. Text similar to this should be displayed:

Li brary:

My Enterprise Mner data
Li bref:

endat a
Locat i on:

/ Shar ed Dat a
Assi gned to SAS Servers:

SASApp
Li bref:

MyDat a
Engi ne:

BASE

Pat h Speci ficati on:

c:\yourdata <specify correct path to data>
Li brary is pre-assigned:

Yes

If thislooks correct, click Finish and then OK.
Next, you must grant read permission for the metadata in your new library:
1. In SAS Management Console, click on the Data Library Manager icon.
2. Expand the Librariesfolder.
3. Right-click the SAS library that you just created and select Properties from the pop-up menu.
4. Inthe Library Properties window, go to the Authorization tab and select the PUBL 1 C group.
5. Select the check box in the Grant column for the Read permission row.
To automatically initialize metadata when a SAS Enterprise Miner client session opens, you can add the METAAUTOINIT

option to the SAS Workspace Server definition. To add the METAAUTOINIT option to aworkspace server definition that
isused by SAS Enterprise Miner, perform the following steps:

1. In SAS Management Console, click on the Server Manager icon.
2. Click on the application server icon (typicaly, SASApp).

3. Under the expanded application server, click on the logical workspace server icon.



4. Under the expanded logical workspace server, right-click the Workspace Server icon and select Properties.

5. Inthe Workspace Server Properties window, go to the Commands section of the Options tab.

6. Enter theword METAAUTOINIT in the Object Server Parameter box and click OK .
SAS Enterprise Miner needs resources to perform automatic metadata initialization. Y ou must add the
METAAUTORESOURCES option to the SAS Enterprise Miner MPCONNECT launch command. The
METAAUTORESOURCES option identifies general system resources that must be assigned when SAS starts up. The
system resources must be defined in arepository on the SAS Metadata Server. The resources contain alist of librefs (library

references) that need to be assigned at startup. The parameter that is passed with the METAAUTORESOURCES option is
the name of the SAS application server. In the previous example, the SAS application server was SASApp.

1. From SAS Management Console, expand the Application Management folder.
2. Under the expanded Application Management folder, click on the Enterprise Miner icon.
3. Under the expanded Enterprise Miner icon, expand the Pr ojects folder.

4. Inthe Projectsfolder, right-click the logical workspace server icon (SASApp), and select Properties from the pop-
up menu.

5. Inthe Optionstab of the Server Properties window, use the MPCONNECT launch command field to specify your
METAAUTORESOURCES option.

SASApp - Logical Workspace Server Properties I

izeneral  Dptions | .ﬁ.uthurizatinni

rDefault Location For Mew Projects-

Path: I

[~ Do nok allow users ko change this location

Max. Concurrent Modes: IDeFauIt j

Initialization Code: I

MPCOMMECT launch command: IS.C'.S -mekaautoresources "SASAPP" -config "clsasieminer ey lisasr

webDAY URL: |

K I Zancel Help

The following is an example of an MPCONNECT launch command that uses the METAAUTORESOURCES
option:

On Windows Systems:

SAS - et aaut or esour ces " SASApp”



-config "c:\sas\em ner\l evl\sasapp\sasv9. cfg"

On UNIX Systems:

/installdir/EM ner/Levl/ SASApp/ sas. sh
- met aaut or esour ces " SASApp"

ERROR: Data Set LIBREF.TABLENAME Does Not Exist

In SAS Enterprise Miner 6.1, nodes that follow a SAS Code node or custom node in a process flow diagram can produce an
error that indicates that the data set that a node attempted to reference does not exist. Y ou might get this error, even when
you are able to successfully create the data source, and can explore the data set in your session. In SAS Enterprise Miner
6.1, each node in a process flow diagram spawns a new SAS session. The currently executing node does not have access to
libraries that were allocated viathe SAS Program Editor or a predecessor SAS Code node. In order for SAS libraries to be
availableto al tools and nodesin SAS Enterprise Miner 6.1, the LIBNAME statements must be specified in alocation that
is executed for each spawned session, such asin the project start code, the server initialization code, or SAS Management

Console.

Copyright 2009 by SAS Institute Inc., Cary, NC, USA. All rights reserved.



Ext Demo Node

[ ]
%}d Demo H

. Overview of the Ext Demo Node
. Ext Demo Node Properties
. Ext Demo Node Results

Overview of the Ext Demo Node

The Ext Demo node is on the Utility tab of the Enterprise Miner toolbar. The Ext Demo
node is designed to illustrate the various property types that can be implemented in
Enterprise Miner extension nodes. The properties of an Enterprise Miner node enable
users to pass arguments to the node's underlying SAS program. By choosing an
appropriate property type, an extension node developer can control how information
about the node's arguments are presented to the user and place restrictions on the values
of the arguments. The Ext Demo node's results also provide examples of the various
types of graphs that can be generated by an extension node using the %EM REPORT
macro.

Ext Demo Node Properties

. Ext Demo Node General Properties
. Ext Demo Node Train Properties
. Ext Demo Node Status Properties

Ext Demo Node General Properties

The following general properties are associated with the Ext Demo node and are



common to all Enterprise Miner nodes:

. NodelD — theID of the node.
. Imported Data— The Imported Data property provides access to the Imported
Data-Ext Demo window. The Imported Data-Ext Demo window contains alist of

the ports that provide data sources to the Ext Demo node. Select the [l putton
to the right of the Imported Data property to open atable of the imported data.

If data exists for an imported data source, you can select the row in the imported
data table and click one of the following buttons:
o Browse to open awindow where you can browse the data set.
o Exploreto open the Explore window, where you can sample and plot the
data.
o Propertiesto open the Properties window for the data source. The
Properties window contains a Table tab and a Variables tab. The tabs
contain summary information (metadata) about the table and variables.

. Exported Data— The Exported Data property provides access to the Exported
Data— Ext Demo window. The Exported Data— Ext Demo window contains a
list of the output data ports that the Ext Demo node creates data for when it runs.

Select the (= button to the right of the Exported Data property to open atable
that lists the exported data sets.

If data exists for an exported data set, you can select the row in the table and click
one of the following buttons:

o Browse to open awindow where you can browse the data set.

o Explore to open the Explore window, where you can sample and plot the
data.

o Propertiesto open the Properties window for the data set. The Properties
window contains a Table tab and a Variables tab. The tabs contain
summary information (metadata) about the table and variables.

. Variables— Usethe Variables table to specify the status for individual variables
that are imported into the Ext Demo Node. Select the [l putton to open a
window containing the variablestable. Y ou can set the variable status to either
Use or Don't Use in the table, view the columns metadata, or open an Explore
window to view avariable's sampling information, observation values, or a plot
of variable distribution.




Ext Demo Node Train Properties

The Ext Demo Node has the following Train properties:

. Cdl Editors

o

Boolean — an example of a Boolean Property element that enables the
user to assign avalue of Y or N to the property.

String — an example of a String Property element that enables the user
to assign a character string to the property by typing the string into a text
box.

Choice List — an example of a String Property element that enables the
user to assign a character string to the property by selecting a string from a
predetermined choice list. The choice list isimplemented using a
ChoiceList control.

I nteger — an example of an int Property element that enables the user to
assign an integer value to the property by typing the integer value into a
text box. If auser types in a non-integer value, the property valueis set to
missing.

Integer with Range Control — an example of an int Property element
that enables the user to assign arestricted integer value to the property by
typing the integer value into a text box. The range is determined by the
min and max attributes of the Property element. If auser typesin avalue
that is not an integer or falls outside of the permitted range, the property
value reverts back to the property'slast valid value.

Double — an example of adouble Property element that enables the user
to assign an unrestricted real number to the property by typing areal
number value into a text box. If auser typesin anon-numeric value, the
property's value is set to missing.

Double with Range Control — an example of adouble Property
element that enables the user to assign arestricted real number valueto the
property by typing area number value into atext box. Therangeis
determined by the min and max attributes of the Property element. If a
user typesin avalue that is not areal number or falls outside of the
permitted range, the property value revertsto the property's last valid
value.

. TableEditors

O

Table Editor Control Example — an example of a String Property with
aTable Editor Control. This configuration enables the user to edit or
display character or numeric columns.



o Table Editor with Choices— an example of a String Property with a
Table Editor Control and a ChoicelL ist Control. This configuration
enables you to restrict the values of character columnsto a predetermined
list of values.

o Table Editor with Dynamic Choices— an example of a String
Property with aTable Editor Control and a DynamicChoicelL ist
Control. This configuration enables you to restrict the values of character
columnsto values that are dynamically generated by the server.

o Table Editor with Restricted Choices— an example of a String
Property with a Table Editor Control and a DynamicChoicel ist
Control. This configuration enables you to restrict the values of character
columnsto values that are dynamically generated by the server. In this
configuration, the Table Editor Control has an attribute that enables the
choice lists to differ, depending on the value of another variable.

o Ordering Editor — an example of a String Property with a Table
Editor Control. Inthis example, the Table Editor Control has an
additional isOrderingEditor attribute that distinguishesit from the basic
Table Editor Control. This configuration enables the user to change the
order of therowsfor atable.

o Variables— an example of a String Property element with a Dialog
Control. This Property element configuration provides access to the
variables exported by a predecessor Data Source node. It is common to all
SAS distributed nodes.

o SASTABLE Control — an example of a String Property element with a

SASTABLE Control. When the user clicks on the = icon, aSelect a
SAS Table window is displayed and the user is permitted to select a SAS
data set from the SAS libraries that are accessible by Enterprise Miner.

o Text Editor — an example of a String Property with a Dialog Control.
A Property with this Control configuration enables the user to enter and
modify text that is stored in an external file.

o Model Selector — an example of aModel Selector Control that enables
the user to select aregistered model. When a model is selected using this
type of Control, the score code, score input variables, score output
variables, target variables, training table, and fit statistics that are
associated with the model are saved in the diagram folder and are
associated with the node.

. Interaction Editor

o Two-Factor — an example of a String Property with aDialog Control.
A Property with this Control configuration allows the user to specify a
two-factor interaction. An interaction editor Control has two attributes




that determine the maximum number of effects that are allowed and
whether or not main effects are allowed. This example has the maximum
number of effects set to 2 and main effects are not allowed.

o Terms— an example of a String Property with a Dialog Control. A
Property with this Control configuration allows the user to specify main
effects and up to six factor interactions. An interaction editor Control has
two attributes that determine the maximum number of effects that are
allowed and whether or not main effects are allowed. This example has the
maximum number of effects set to 6 and main effects are allowed.

Ext Demo Node Status Properties

The following status properties are associated with the Ext Demo node and are common
to al Enterprise Miner nodes:

. Create Time— displays the time that the node was created.

. Run ID — displaysthe identifier of the run of the node. A new identifier is
created every time the nodeis run.

. Last Error — the error message from the last run.

. Last Status— the last reported status of the node.

. Last Run Time— the time at which the node was last run.

« Run Duration — the length of time required to complete the last node run.

. Grid Host — the grid host that was used for computation.

. User-Added Node — specifies whether the node was created by auser asa SAS
Enterprise Miner Extension node.

Ext Demo Node Results

Y ou can open the Results window of the Ext Demo node by right-clicking the node and
selecting Results from the pop-up menu. For more information about the Results
window, see the section on the Results Window in the Enterprise Miner Help.

Select View from the main menu to view the following results in the Results Package:



. Properties

o Settings— displays awindow with aread-only table of the configuration
information in the Ext Demo Node Properties Panel. The information was
captured when the node was last run.

o Run Status— indicates the status of the Ext Demo node run. The Run
Start Time, Run Duration, and information about whether the run
completed successfully are displayed in this window.

o Variables— aread-only table of variable meta information about the data
set submitted to the Ext Demo node. The table includes columns to see the
variable name, the variable role, the variable level, and the model used.

o Train Code— the code that Enterprise Miner used to train the node.

o Notes— allows usersto read or create notes of interest.

. SASResults

o Log— the SASIog of the Ext Demo node run.

o Output — the SAS output of the Ext Demo node run.

o Flow Code — the SAS code used to produce the output that the Ext Demo
node passes on to the next node in the process flow diagram.

. Scoring

o SAS Code — the Ext Demo node does not generate SAS Code. The SAS
Code menu item is dimmed and unavailable in the Ext Demo Results
window.

o PMML Code— the Ext Demo node does not generate PMML code. The
PMML Code menu item is dimmed and unavailable in the Ext Demo
Results window menu.

The Ext Demo node results also include a collection of charts that can be generated using
the %EM_REPORT macro. These include the following:

. Bar Chart

o Simple

o Combo Choices
. Histogram

o Simple

1 Combo Choices
. LinePlot

o Simple

o Overlay

o Referencelines

1 Combo Choices

o Overlay Combo Choices



o TwoY Axes
o TwoY Axes Combo Choices
o LineBand
o Group
. Scatter Plot
o Simple
Overlay
Combo Choices
Overlay Combo Choices
Group

] O O O

. Pie
o Simple
. Lattice
o Simple Bar
Bar Combo Choices
Simple Histogram
Histogram Combo Choices
Simple Line Plot
Line Plot Overlay
Line Plot Reference Lines
Line Plot Combo Choices
- Pie
. Box Plot
o Grouped
. 3-D Graphs
o Scatter Plot
n Bar
o Surface
. Data Specific
» Dendrogram
o Constdlation: Link and Node Data
o Constélation: Link Data

O ] O O O (] ]

If youplaceanopti ons npri nt; statement inyour project start code, the callsto %

em_report are recorded in the Results log. Y ou can aso view the ExtDemo node's source
code. It is stored in Sashelp.Emutil.Extdemo.source.

Copyright 2009 by SAS Ingtitute Inc., Cary, NC, USA. All rights reserved.
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