
SAS
®
 Enterprise Miner

TM

6, 7, 12, and 13
C and Java Score Code Basics

SAS
®
 Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2013. SAS® Enterprise MinerTM 6,
7, 12, and 13: C and Java Score Code Basics. Cary, NC: SAS Institute Inc.

SAS® Enterprise MinerTM 6, 7, 12, and 13: C and Java Score Code Basics

Copyright © 2013, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission
of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the
vendor at the time you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of
the publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not
participate in or encourage electronic piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer
software developed at private expense and is provided with RESTRICTED RIGHTS to the United States
Government. Use, duplication or disclosure of the Software by the United States Government is subject to the license
terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a) and
DFAR 227.7202-4 and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR
52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no
other notice is required to be affixed to the Software or documentation. The Government's rights in Software and
documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513-2414.

December 2013

SAS provides a complete selection of books and electronic products to help customers use SAS® software to its fullest
potential. For more information about our offerings, visit support.sas.com/bookstore or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://support.sas.com/bookstore

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies. © 2013 SAS Institute Inc. All rights reserved. S107969US.0613

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/bookstore
for additional books and resources.

Gain Greater Insight into Your
SAS® Software with SAS Books.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR18308

 iii

Contents

Chapter 1 C and Java Score Code in SAS Enterprise Miner 1
SAS Enterprise Miner Tools That Produce C and Java Score Code 2

SAS Formats Support 4
Generated C and Java Code 5
Generated C Code 5
DB2 User-Defined Functions 5

C Code Usage 7
C Formats Support 8

C Formats Support Distribution 9
C Formats Usage 9

Generated Java Code 10
Java Package Name 11

Java Code Usage 11
Java Scoring JAR Files 11

Java Scoring JAR File Distribution 12
Java Scoring JAR File Usage 12
SAS System Formats 12

Chapter 2 Scoring Example 13
Create Folders for the Example 13

Gather Files 13
Create SAS Enterprise Miner Process Flow Diagram 15
Scoring with C Code 15

Save and Edit C Code Component Files 16

Organize C Code Component Files 17
Compile, Link, and Run C Score Code in UNIX 17

Scoring with Java Code 19
Save and Organize Java Code Component Files 20

Create Java Main Program 20
Compile and Run Java Score Code in UNIX 22

Chapter 3 C and Java Score Code in SAS Enterprise Miner 23
SAS Enterprise Miner Tools That Produce C and Java Score Code 24
SAS Formats Support 26
Generated C and Java Code 27

Generated C Code 27
DB2 User-Defined Functions 27
C Code Usage 29
C Formats Support 30

C Formats Support Distribution 31

iv Contents

C Formats Usage 31

Generated Java Code 32
Java Package Name 33

Java Code Usage 33
Java Scoring JAR Files 33

Java Scoring JAR File Distribution 34
Java Scoring JAR File Usage 34
SAS System Formats 34

Appendix 1 Programming Information 35
General Code Limitations 35

Supported Functions 36
Supported SAS Operators 37

Arithmetic Operators 37
Comparison Operators 37

Logical Operators 37
Other Operators 37

Conditional Statement Syntax 38
Variable Name Length 38

Character Data Length 38
Extended Character Sets 38

Appendix 2 Example Java Main Program 39

Appendix 3 Example C Main Program 41

Appendix 4 SAS System Formats Supported Java Scoring 45

Appendix 5 SAS System Formats Supported for C Scoring 51

Appendix 6 C Compiler Command Examples 53
C Compiler Command Examples 53

W32 – Windows 32-bit (x86) 53
LAX- Linux for x64 (x86-64) 55
LNX- Linux 32-bit (x86) 56

H64- HP-UX on PA-RISC 57
H6I- HP-UX on Itanium 59
R64 – AIX on Power 61
S64 - Solaris on SPARC 62

SAX – Solaris 10 x64 (x64-86) 63

1
C and Java Score Code in
SAS Enterprise Miner

SAS Enterprise Miner Tools That Produce C and Java Score Code 2
SAS Formats Support ... 4
Generated C and Java Code ... 5
Generated C Code .. 5
DB2 User-Defined Functions .. 5

DB2 Data Types ... 7
C Code Usage .. 7
C Formats Support .. 8

C Formats Support Distribution ... 9
C Formats Usage ... 9

Generated Java Code .. 10
Java Package Name .. 11

Java Code Usage ... 11
Java Scoring Jars ... 11

Java Scoring Jars Distribution ... 12
Java Scoring Jars Usage ... 12
SAS System Formats ... 12

Analytical data mining models generate score code that can be applied to new
data in order to evaluate candidates for some defined event of interest. The
model scoring code can exist in any number of programming languages. SAS
Enterprise Miner generates model scoring code not only in SAS code, but for
most models, in C and Java programming languages as well.

Generating model score code in programming languages like C and Java
provides greater flexibility in organizational deployment. Data mining score
code in C and Java can be combined with source code and binary files. These
files are distributed with SAS Enterprise Miner, and then compiled for
deployment in external C, C++, or Java environments. Experienced C, C++,
or Java programmers can use this feature to extend the functionality of new
and existing software by embedding the power of SAS Enterprise Miner
analytical model scoring.

It should be emphasized that creating a scoring application is a very complex
and highly advanced task that requires expertise in several areas. The
likelihood of successfully implementing a scoring system that incorporates C
or Java code that is generated in SAS Enterprise Miner is exactly
proportional to your fluency and experience with the environment in which
you choose to implement your application. Testing of both the application
and the generated code are critical to the success of any such project.

C H A P T E R

2 SAS Enterprise Miner 6.1: C and Java Score Code Basics

SAS Enterprise Miner Tools That Produce C and Java Score Code
SAS Enterprise Miner can generate C and Java score code for most analytical
models that are built from nodes that produce SAS DATA step scoring code.
The following list of SAS Enterprise Miner nodes by area indicates which
nodes can produce C and Java score code. Any nodes that are not listed
cannot produce C or Java score code.

Sample Tools
C and Java Generated No C or Java score code

Filter Node Append
 Data Partition nc

 File Import nc

 Input Data nc

 Merge

 Sample nc

 Time Series nc

Explore Tools
C and Java Generated No C or Java score code
Cluster Association
SOM/Kohonen DMDB nc
Variable Clustering Graph Explore nc
Variable Selection Market Basket
 Multiplot nc
 Path Analysis
 Stat Explore nc
 Text Miner

Modify Tools
C and Java Generated No C or Java score code

Impute Drop nc
Interactive Binning
Principal Components
Replacement
Rules Builder **
Transform Variables **

Chapter 1: C and Java Score Code in SAS Enterprise Miner 3

Model Tools
C and Java Generated No C or Java score code

AutoNeural MBR
Decision Tree
Dmine Regression
DMNeural
Ensemble***
Gradient Boosting
LARS
Model Import
Neural Network
Partial Least Squares
Regression
Rule Induction
Two Stage

Utility Tools
C and Java Generated No C or Java score code

End Groups Control Point nc
Start Groups Merge
 Metadata nc
 Reporter nc
 SAS Code

Credit Scoring Tools
C and Java Generated No C or Java score code

Credit Exchange Reject Inference nc
Interactive Grouping
Scorecard

nc Tool produces no score code.

** It is possible to create code that cannot be correctly generated as C or Java. When you are
creating transformations or expressions in the Transformation tool or the Rules Builder,
careful inspection and testing is required to make sure your C and Java score code is
generated correctly.

*** Depends on members of process flow diagram.

**** Any nodes that are not listed in the above tables cannot produce C or Java score code.

4 SAS Enterprise Miner 6.1: C and Java Score Code Basics

The SAS Enterprise Miner Score node can produce DATA step, C, and Java
score code for most modeling process flow diagrams. However, a process flow
diagram does not produce C or Java score code if the diagram includes a node
that produces SAS code and also contains PROC statements or DATA
statements. SAS Enterprise Miner process flow diagrams that contain a node
not listed in the above table do not generate C or Java code.

The SAS Enterprise Miner SAS Code node is a special case because it is an
open-ended tool for user-entered SAS code. SAS Enterprise Miner does not
translate user-entered SAS code into C and Java score code. When SAS
Enterprise Miner encounters a model process flow diagram that includes the
SAS Code node, it attempts to generate C and Java score code for the
remaining portions of the process flow diagram. For the portion of the
process flow diagram that is represented by the SAS Code node, SAS
Enterprise Miner inserts a comment in the generated C and Java score code
that indicates the omitted input. For example, the comment in generated C
code might resemble the following:

 /*--------------------------------**/

 /* insert c code here */

 /* datastep scorecode for emcode */

 /* is not supported for conversion */

 /*--------------------------------**/

In some cases, it might be possible for you to insert your own C code to take
the place of the omitted SAS Code node content.

SAS Enterprise Miner also does not generate Java score code for SAS Code
node content. When SAS Enterprise Miner encounters a SAS Code node
while generating Java code, the omitted code from the SAS Code node is
replaced in the generated Java code with a call to a specific method. SAS
Enterprise Miner produces source code for an empty stub method with that
specific name. This might enable you to substitute your own Java code to
take the place of the omitted SAS Code node content.

SAS Formats Support
SAS formats are functions used in the SAS System to configure the size,
form, or pattern of raw data for display and analysis. There are two basic
types of SAS formats: the pre-defined formats that are supplied with all SAS
Systems, and the formats that are defined by the customer. The formats that
are defined by the customer are also referred to as user-defined formats. The
user-defined formats that are used in the generated C and Java score code
are supported by a combination of generated code and distributed functions.
The SAS System formats for Java are supported through libraries that are
distributed with SAS Enterprise Miner. The SAS System formats for C are
supported through libraries that are distributed as the SAS Stand-alone
Formats.

Chapter 1: C and Java Score Code in SAS Enterprise Miner 5

Generated C and Java Code
The C and Java code that SAS Enterprise Miner generates is a conversion of
the algorithms and operations that the SAS DATA step code performed in the
process flow diagram. You can use the tools available in SAS Enterprise
Miner to generate valid SAS score code that cannot be correctly generated as
C or Java score code. Any generated code should be tested thoroughly before
deployment.

The generated C and Java code represents only the functions that are
explicitly expressed in the SAS DATA step scoring code. The C score code
that SAS Enterprise Miner generates conforms to the “ISO/IEC 9899
International Standard for Programming Languages – C.” The Java code that
SAS Enterprise Miner generates conforms to the Java Language
Specification, published in 1996 by Addison-Wesley.

You can use generate C or Java scoring code from a SAS Enterprise Miner
analytical model as the core for a scoring system, but you should not confuse
the generated C or Java scoring code with a complete scoring system. In both
C or Java languages, the programs that you write to enclose the scoring code
must provide a suitable environment for performing the data analysis.

After you successfully run a SAS Enterprise Miner model process flow
diagram that generates C or Java score code, you can export your model as an
SPK file that contains the generated C and Java code, or you can use the File
menu in the results browser to save individual files.

Generated C Code
The C scoring code is generated as several output files. They include the
following:

• Cscore.xml is the XML description of the model that produced the code

and the generated C code. It is valid XML. No Document Type Definition
(DTD) is supplied.

• DB2_Score.c is C code for DB2 scalar User Defined Functions for each of
the output variables defined in the scoring code.

• Score.c is the model score code that is generated as a C function. It is C
source code and must be compiled before it can be executed.

DB2 User-Defined Functions
In addition to generating the scoring algorithms that are developed in SAS
Enterprise Miner models, the C scoring component generates the C code for
IBM DB2 user-defined functions. IBM user-defined functions, or UDFs, are
tools that you can use to write your own extensions to SQL. The functions
that are integrated in DB2 are useful, but do not offer the customizable
power of SAS Analytics. The UDFs that are generated by SAS Enterprise

6 SAS Enterprise Miner 6.1: C and Java Score Code Basics

Miner enable you to greatly increase the efficiency, versatility, and power of
your DB2 database. The key advantages of using UDFs are performance,
modularity, and the object-oriented UDF process. The UDF code that SAS
Enterprise Miner generates is matched to each specific model’s training data
and the C scoring functions that are associated with the model.

The UDF code that SAS Enterprise Miner generates is only one of several
ways to create score code in DB2. The generated source code for the UDFs is
simple but expandable. The comments in the UDF source code contain
templates of SQL commands that need to be registered in order to invoke the
generated UDFs.

SAS Enterprise Miner can generate score functions that return values that
are not useful in a scoring context. The UDFs that SAS Enterprise Miner
generates for a specific model are limited to the functions that return scoring
output values that are considered to be of interest heuristically. The names of
the scoring output variables are created by concatenating a prefix (for each
type of computed variable) with the name of the corresponding target
variable (or decision data set).

SAS Enterprise Miner produces UDFs for scoring output variables that begin
with the following prefixes:

D_ decision chosen by the model
EL_ expected loss of the decision chosen by the model
EP_ expected profit of the decision chosen by the model
I_ normalized category that the case is classified into
P_ predicted values and estimates of posterior probabilities

SAS Enterprise Miner also produces UDFs for scoring output variables with
the following names:

NODE tree node identifier
SEGMENT segment or cluster identifier
_WARN indicates problems with computing predicted

values or making decisions
EM_CCF average credit cost factor value
EM_CLASSIFICATION fixed name for the I_ variable
EM_DECISION fixed name for the D_targetname variable
EM_EVENTPROBABILITY fixed name for the posterior probability of a

target event
EM_EXPOSURE average exposure value
EM_FILTER identifies filtered observations
EM_LGD average loss given default value
EM_PD average predicted value
EM_PREDICTION fixed name for the predicted value of an

interval target
EM_PROBABILITY fixed name for the maximum posterior

probability that is associated with the
predicted classification

Chapter 1: C and Java Score Code in SAS Enterprise Miner 7

EM_PROFITLOSS fixed name for the value of expected profit or
loss

EM_SEGMENT fixed name for the name of the segment
variable

SCORECARD_BIN bin assigned to each observation
SCORECARD_POINTS total score for each individual
SOM_DIMENSION1 identifies rows in a Self Organizing Map

(SOM)
SOM_DIMENSION2 identifies columns in a SOM
SOM_ SEGMENT identifies clusters created by a SOM

Most of the code in the UDFs that SAS Enterprise Miner generates is
designed to handle the conversion of data types and missing values before
and after the score function is called. The first function in the generated UDF
code (load_indata_vec) is invoked by all the UDFs in the file in order to load
the input data vector for the score function.

Current DB2 code documentation states that each reference to a DB2
function (UDF or built-in) is allowed to have arguments that number from 0
to 90. The limitation on the number of arguments for each reference is a
critical limitation for data mining jobs where even simple models can require
hundreds of values. SAS Enterprise Miner is capable of producing UDF code
that contains more than 91 arguments, but DB2 cannot use any of the
additional arguments.

DB2 Data Types
The UDFs that SAS Enterprise Miner generates accept only two SQL data
types: DOUBLE and VARCHAR. Most databases use more than two SQL
data types, so you should use care when you convert your DB2 data types for
UDF calls in your code. DB2 provides functions that you can use to convert
most data types to DOUBLE or VARCHAR. Another way to handle
additional SQL data types in training data and score data is to perform the
required data type conversions during the extract, transfer, and load (ETL)
step of your data preparation. You can also modify the UDF source code that
SAS Enterprise Miner generates in order to convert data types for scoring.

C Code Usage
To compile, link, and run C code that is generated in SAS Enterprise Miner,
you need to first gather the required tools, libraries, and files.

The generated C code conforms to the “ISO/IEC 9899 International Standard
for Programming Languages – C”, so any current compiler should be able to
compile the code.

Other than the standard C libraries, the generated C code will have
dependencies on the SAS Stand-alone Formats libraries. See the SAS
Formats section below for details.

8 SAS Enterprise Miner 6.1: C and Java Score Code Basics

The generated C code also depends on three C header files.

• cscore.h
• csparm.h
• jazz.h

The cscore.h and csparm.h files are distributed with the SAS Enterprise
Miner Server Windows systems. They are located in
SASROOT\dmine\sasmisc. For UNIX systems, they are located in
SASROOT/misc/dmine. Copy them to your development environment. The
cscore.h file has several operating system specific definitions that will, in
most cases, need to be modified for your target operating system. Those
modifications are documented in comments in the header file and in the
following example.

The jazz.h header file is distributed with the SAS Stand-alone Formats
product. See details below in the C Formats Support section. Copy it to your
development environment.

To run the generated C code, you need to create a main program to invoke
the score function. You can view the score.c file and inspect it to determine
how the score function should be called.

The metadata file Cscore.xml also describes the generated function and its
arguments. By default, the generated function accepts two pointers as
arguments. The first argument points to an array of input data values. The
second argument points to an array of output data values. The memory,
which is required for each data value, must be allocated by the calling
program.

Both arrays must be composed of the PARM data structure that is defined in
the csparm.h header file. Each array element must contain either a double
or a char *. The length of the memory referenced by each char* can be
extracted from the Cscore.xml or by inspection of the original training data
set. If the appropriate memory for each character value is not allocated before
calling score(), the results are undefined.

The position of each data value in its array can also be extracted from the
XML or inferred from the #defines for the variable names that are found in
the generated C code. These variable names are usually taken directly from
the training data or derived from names in the training data. Such a main
program can be as simple as the code in Appendix 3.

C Formats Support
The C scoring code that is generated in SAS Enterprise Miner supports the
use of SAS System Formats through the SAS Stand-alone Formats product.
The SAS Stand-alone Formats do not depend on a SAS System environment
in any way. The SAS Stand-alone Formats product contains a header file. It
also contains a set of libraries that are needed for compilation, linking, and
running the SAS Enterprise Miner-generated C scoring function. The SAS

Chapter 1: C and Java Score Code in SAS Enterprise Miner 9

Stand-alone Formats are a set of link and run-time libraries that are
compiled for each supported operating system. Those include the following:

• Windows 32-bit
• Windows Itanium 64-bit
• Windows x64-bit
• Solaris 64-bit
• AIX 64-bit
• Linux 32-bit
• Linux 64-bit
• HP-Itanium 64-bit
• HP 64-bit

C Formats Support Distribution
The SAS Stand-alone Formats are distributed as downloads from the SAS
Customer Support website. Look in the Knowledge Base section for Samples
and SAS Notes. Search for Note 35872, titled “SAS Stand-alone Formats for
SAS Enterprise Miner C Score Code.” Follow the instructions to download
the package for your target operating system.

C Formats Usage
The C scoring function or application that is generated in SAS Enterprise
Miner is linked to jazxfbrg. This means that at run time the code in
jazxfbrg can dynamically load the rest of the routines that are needed to
support the SAS System formats. Although only jazxfbrg might need to be
present when linking the function or application, all of the files must be
available at run time.

For the Stand-alone Formats, dynamic loading is accomplished through calls
to standard System routines. Dynamic loading is an advanced topic in any C
environment. The exact procedures, options, and environment variables that
are used in compiling, linking, and running dynamically loaded code are
different for every compiler, linker, and operating system. For example, on
Windows, shared libraries are loaded from the environment variable PATH.
This environment variable must be set to contain the directory path for the
Stand-alone Formats shared libraries (jazwf*). The value of this
environment variable must be the fully qualified directory name for the
directory that holds the Stand-alone Formats.

On Solaris systems, the Stand-alone Formats are dynamically loaded from
shared libraries via the environment variable LD_LIBRARY_PATH. HP and
UNIX systems use a slightly different environment variable, SHLIB_PATH.
A thorough understanding of your target system’s procedures for compiling,
linking, and running with dynamically loaded code is required to successfully
exploit the Stand-alone Formats and the code that is generated by the SAS
Enterprise Miner C Scoring component.

For environments where the Stand-alone Formats support is not available or
not desired, it should be possible for an experienced C programmer to modify

10 SAS Enterprise Miner 6.1: C and Java Score Code Basics

the source code in the cscore.h header file that is distributed with SAS
Enterprise Miner in SASROOT/dmine/sasmisc. The object of the
modifications is to remove the dependency on the Stand-alone Formats and to
support any format that they want, with their own C code.

If you write your own format functions, you can integrate those functions into
the logic that handles formats in cscore.h. The cscore.h file that is
distributed with SAS Enterprise Miner already contains two examples of
such C formatting code—partial support for $CHAR and BEST formats. If
your situation enables you to accept the limitations of those examples (no
padding for $CHAR, and no scientific notation for BEST), you can use the
example formats without any modification. You can also add any additional
formats that you might need. In that case, C scoring code that is generated by
SAS Enterprise Miner will contain only those formats, and will be compiled
with the cscore.h header file that will support those formats.

In cases where Stand-alone Formats support is not desired, the dependency
on the Stand-alone formats support can be removed. This can be
accomplished by modifying a copy of the cscore.h header file that is
distributed with SAS Enterprise Miner in SASROOT/dmine/sasmisc. In the
cscore.h file, the preprocessor symbol FMTLIB is set to 0, which disables
support for the SAS Stand-alone formats.

Generated Java Code
Java scoring code is generated in several output files. The primary model
logic is generated as a Java class file. The other files are generated as Java
source files, and the model’s variable metadata is encoded as XML. The Java
code that is generated by SAS Enterprise Miner is compatible with the
version of Java that SAS Enterprise Miner uses. The generated Java files
might include some or all of the following:

• DS.class is the actual DATA step code that is generated directly to Java

binary code. There is no Java source code supplied.

• DS_UEXIT.java is generated only if code from unsupported tools was
omitted from the generated Java code. This Java source code is a
template that customers can use to provide their own code for the omitted
tool or node.

• Jscore.xml is an XML description of the model that produced the code
and the generated Java code. It is valid XML. No DTD is supplied.

• JscoreUserFormats.java is the Java source code that supports any
user-written formats that might be used in the model. It is Java source
code and must be compiled before it can be executed.

• Score.java is the Java source code that implements the interface to
DS.class. It is Java source code and must be compiled before it can be
executed.

Chapter 1: C and Java Score Code in SAS Enterprise Miner 11

After you run a SAS Enterprise Miner modeling flow, there are a number of
ways to export the contents of your model along with the generated C and
Java Scoring code. See Exporting the Results and the Score Node in the SAS
Enterprise Miner Reference Help.

Java Package Name
The code that is generated by SAS Enterprise Miner contains an assigned
package name. The package name effectively becomes the first part of the
absolute class name. When compiling Java source code with a package name,
the Java compiler (javac) searches for the related source and class files by the
package name in a path relative to the current working directory. The Java
compiler uses the package name to form a hierarchical path for each related
file. For example, if the package name has the default of “eminer.user.Score,"
the Java compiler searches for the package's files in the path
eminer\user\Score. In order to compile the generated Java source code, all
of the generated Java files (Jscore.xml is not required) must be placed in a
directory or folder tree that looks like the package name "eminer.user.Score."
You can change the default package name in the SAS Enterprise Miner
Client before the flow is run. On the the main menu, select Options
Preferences. Then fill in a package name of at least two levels.

Java Code Usage

Java scoring code that is generated by SAS Enterprise Miner depends on the
classes and methods that are distributed as the SAS Enterprise Miner Java
Scoring JAR files. In order to compile or run Java score code that is
generated by SAS Enterprise Miner, you need to copy the supporting Java
archives and configure your system to make the JAR files available to Java.

Java Scoring JAR Files
The SAS Enterprise Miner Java Scoring JAR files support the classes and
methods that are used in the generated Java code, including the use of SAS
formats. The SAS Enterprise Miner Java Scoring JAR files are as follows:

• dtj.jar
• icu4j.jar
• sas.analytics.eminer.jsutil.jar
• sas.core.jar
• sas.core.nls.jar
• sas.icons.jar
• sas.icons.nls.jar
• sas.nls.collator.jar
• tkjava.nls.jar

These JAR files include support for most, but not all of the SAS System
formats. The list of supported Java formats is detailed in Appendix 4.

12 SAS Enterprise Miner 6.1: C and Java Score Code Basics

Java Scoring JAR File Distribution
The SAS Enterprise Miner Java scoring JAR files are distributed as part of
the SAS Enterprise Miner Server image. On Windows systems, they are
found in the path SASROOT\dmine\sasmisc. For UNIX systems, check the
path SASROOT/misc/dmine. It is recommended that you save copies of your
Java scoring JAR files in your scoring environment.

Java Scoring JAR File Usage
Wherever you want to compile and run the Java code that is generated by
SAS Enterprise Miner, you need to make the SAS Enterprise Miner Java
scoring JAR files available to Java. Adding the directory path that contains
your Java scoring JAR files to your CLASSPATH environment variable
enables both the compile and execution steps.

SAS System Formats
Supported SAS System formats are listed in Appendix 4.

2
Scoring Example

Create Folders for the Example... 13
Gather Files ... 13
Create Enterprise Miner Process Flow Diagram .. 15
Scoring with C Code .. 15

Save and Edit C Code Component Files ... 16
Organize C Code Component Files .. 17
Compile, Link, and Run C Score Code in UNIX ... 17

Scoring with Java Code .. 19
Save and Organize Java Code Component Files .. 20
Create Java Main Program ... 20
Compile and Run Java Score Code in UNIX .. 22

The scoring code that SAS Enterprise Miner produces is affected by the
choice of the data mining nodes that you use in your SAS Enterprise Miner
process flow diagram, by the sequence of the nodes in the process flow
diagram, and by the data that you use to train your model. Likewise,
changing the configuration of node settings in a process flow diagram, or
modifying the variable roles, structure, or size of the training data set can
change the generated scoring code. The score code that SAS Enterprise Miner
generates can be unique for every process flow diagram.

The following example is for illustrative purposes and is not intended to be
deployed as a real application. The example includes sections for producing
both C and Java score code. The example score code is generated using a SAS
Enterprise Miner client on a Windows system. After the score code is created,
it is extracted. Then the extracted score code is moved to a Solaris system,
where it can be compiled and run.

Create Folders for the Example
This example uses a number of folders or directories that you will need to
create on your SAS Enterprise Miner client. The example assumes that you
will create the folders c:\temp\scorecode,
c:\temp\scorecode\cscore, and c:\temp\scorecode\jscore.

Gather Files
For the C scoring example, locate the SAS Stand-alone Formats for the
system on which you will be scoring. In this example, we will run the code
that is generated by SAS Enterprise Miner on a Solaris system that requires
the safmtss64.tar file. The “C Formats Support Distribution” section of this

C H A P T E R

14 SAS Enterprise Miner 6.1: C and Java Score Code Basics

document contains additional details about locating the SAS Stand-alone
Formats.

1. Copy the TAR file to the temporary cscore folder that you created for this
example: C:\Temp\ScoreCode\cscore.

2. Locate the \sasmisc folder that is created when the Workspace Server for
SAS Enterprise Miner is installed. The default path for the sasmisc folder on
a Windows Workspace Server for the SAS Enterprise Miner installation is
C:\Program Files\SAS\SASFoundation\9.2\dmine\sasmisc.

3. Copy two files, cscore.h and csparm.h, from the \sasmisc folder to the
C:\Temp\ScoreCode\cscore Folder.

4. For the Java scoring example, locate the folder in your Workspace Server for
the SAS Enterprise Miner installation that contains the SAS Enterprise
Miner Java Scoring JAR files. The default folder location in UNIX
is!SASROOT/misc/dmine. The default folder location on Windows systems
is C:\Program Files\SAS\SASFoundation\9.2\dmine\sasmisc.

5. Copy the SAS Enterprise Miner Java Scoring JAR files from the installation

source folder to the local folder that you created at the beginning of this
example: C:\Temp\ScoreCode\jscore.

Chapter 2: Scoring Example 15

Create SAS Enterprise Miner Process Flow Diagram
1. Launch SAS Enterprise Miner and create a new project. In your new SAS

Enterprise Miner project, create a new diagram.

2. Click the SAS Enterprise Miner Toolbar shortcut button for Create Data
Source to open the Data Source Wizard. Use the Data Source Wizard to
specify the sample SAS table SAMPSIO.DMAGECR. Then use the wizard’s
Advanced Advisor setting to configure the SAMPSIO.DMAGECR variable
good_bad as the target variable. Keep the wizard’s default settings for the
rest of the variables. Then save the All: German Credit data source with
the data set role of Train.

3. Drag your newly created German Credit Data data source from the Data
Sources folder of the Projects panel to the diagram workspace.

4. Drag an Interactive Grouping node from the Credit Scoring tab of
the node toolbar to the diagram workspace. Connect it to the German
Credit data source node. Leave the Interactive Grouping node in its
default configuration.
Note: The Interactive Grouping node is located on the Credit
Scoring tab of the node toolbar in SAS Enterprise Miner 5.3. If you are
using SAS Enterprise Miner 5.2, the Interactive Grouping node is
located on the Modify tab of the node toolbar.

5. Drag a Regression node from the Model tab of the node toolbar to the
diagram workspace. Connect it to the Interactive Grouping Node. Use
the Selection Model property to configure the Regression node to
perform Stepwise selection.

6. Drag a Score node from the Assess tab of the node toolbar to the
diagram workspace. Connect it to the Regression node. Leave the Score
node in its default configuration.

7. Right-click the Score node, click Run, and then click Yes in the
confirmation dialog box to run your newly constructed process flow
diagram.

The C scoring code and the Java scoring code that SAS Enterprise Miner
generates are handled differently. Depending on which type of score code you
intend to compile and deploy, your next steps are provided in either the
section on Scoring with C Code or in the section on Scoring with Java Code.

Scoring with C Code
The C scoring code that you generate with SAS Enterprise Miner process flow
diagrams can be compiled in most modern C or C++ development
environments. The compilation results will vary, depending on the compiler
and its option settings. For example, some compilers produce warning
messages about data type conversions because the compiler interprets data
type conversion as a generic risk. Each compiler environment is different,
and the range of option settings that are available through different
compilers can generate different results. You, as the score code programmer,

16 SAS Enterprise Miner 6.1: C and Java Score Code Basics

need to decide how to properly configure and investigate your chosen
compiler settings and warnings.

Save and Edit C Code Component Files
1. When your SAS Enterprise Miner process flow diagram run completes,

click Results in the Run Status window.

2. On the main menu in the Results window, select View Scoring C
Score Code to open the C Score Code window.

3. In the C Score Code window, ensure that the list box at the bottom of the
window is set to Scoring Function Metadata.

4. On the Results window main menu, select File Save As. Save the file
as cscore.xml in the c:\temp\scorecode\cscore directory that you
created at the beginning of this example.

5. In the C Score Code window, return to the list box at the bottom of the
window and change the setting from Scoring Function Metadata to
Score Code.

6. On the Results window main menu, select File Save As. Save the file
as score.c in the c:\temp\scorecode\cscore directory that you
created at the beginning of this example.

7. For the Solaris SPARC architecture, change the value used for missing
values. Search the cscore.h file for the text string, “#define MISSING”.

You should find a line that looks like this:

 #define MISSING WIN_LE_MISSING

Edit this line so that it reads as follows:

 #define MISSING UNX_BE_MISSING

Each operating system has its own value for missing. Cscore.h must be
modified for each system.

Change the defined value of SFDKeyWords to be blank. Some systems
require special directives to correctly store the function name in an
objects export table. The cscore.h header file provides a macro called
SFDKeyWords for those systems.

By default, the SFDKeyWords macro is configured for the Windows
directive. For systems other than Windows, or if you are creating an
object other than a DLL, you will need to modify the SFDKeyWords
macro.

If your situation does not require any directives, change your #define
statement for the SFDKeyWords macro to define SFDKeyWords as blank.

Search your cscore.h file for the string, “SFDKeyWords”. You should
find a line that resembles the following:

 #define SFDKeyWords extern __declspec(dllexport)

Chapter 2: Scoring Example 17

Edit the #define SFDKeyWords statement so that it reads as follows:

 #define SFDKeyWords

Then save your changes and close the cscore.h file.

Organize C Code Component Files
1. Create a main program to invoke the score function. For this example,

such a main program can be copied from Appendix 3. Name the main
program file csbasic.c and copy it to C:\temp\ScoreCode\cscore.

2. In your HOME directory on the target UNIX System, create a directory
named /example.

3. In your new /example directory, create a subdirectory called \cscore.

4. Copy or FTP all of the following files to your /example/cscore
directory:

 c:\temp\scorecode\cscore\safmtss64.tar
 c:\temp\scorecode\cscore\csparm.h
 c:\temp\scorecode\cscore\cscore.h
 c:\temp\scorecode\cscore\Score.c
 c:\temp\scorecode\cscore\Cscore.xml

Most FTP clients will take care of the carriage-returns in Windows text
files. If not, most Solaris systems provide a dos2unix command that you
can use to handle carriage returns. The dos2unix command is usually
found in the /bin directory.

Compile, Link, and Run C Score Code in UNIX
All steps in this section are performed in the UNIX operating system.

1. Navigate to your UNIX example/cscore directory. Unpack the SAS
Stand-alone Formats TAR file by submitting the following command:

 tar xf safmtss64.tar

The tar process creates the example/cscore/safmts directory, which
contains the SAS Stand-alone Formats files.

2. Copy the C header file jazz.h from the /safmts directory to the folder
that you created for this example, ~HOME/example/cscore.

3. The SAS Stand-alone Formats routines are dynamically loaded from
some of the files in the /safmts folder. In the Solaris operating
environment, you can use the LD_LIBRARY_PATH environment variable
to modify the path that is searched for dynamically loaded code. The
LD_LIBRARY_PATH environment variable is read at process start-up. It is
a colon-delimited list of locations to include in the load library search
path. To include your newly extracted /safmts directory in your Solaris
load library path, enter this command:

18 SAS Enterprise Miner 6.1: C and Java Score Code Basics

 LD_LIBRARY_PATH=.:$HOME/example/cscore/safmts

4. After you set the library path environmental variable, export the setting
so that it is visible to your child processes. Enter this command:

 export LD_LIBRARY_PATH

5. If GNU C Version 3.2.3 (Oracle Solaris for SPARC 2.8) is available, it is
usually installed in /usr/local/bin/. You can use GNU C to compile
and link your C scoring program with a single command. The link and
compile command might resemble the following:

 gcc -m64 -ansi -I$HOME/example/safmts csbasic.c Score.c
 –lm $HOME/example/safmts/jazxfbrg

-m64 selects the 64-bit environment
-ansi turns off the features of GNU C that are incompatible

with ANSI C
-I specifies the path for the jazz.h header file, which is

part of the formats support
csbasic.c the main C program to be compiled
Score.c the C scoring code that was generated by SAS

Enterprise Miner
-lm specifies the math link library
jazxfbrg an object library from which the SAS Stand-alone

Formats objects are linked

The link and compile command above should produce a single executable
file called a.out.

6. To execute the main program, submit the following code:
 a.out

The output from running the executable file a.out should resemble the
following:

$ a.out

>> First observation...
csEM_CLASSIFICATION = GOOD
csEM_EVENTPROBABILITY = 0.8710097610
csEM_PROBABILITY = 0.8710097610
cs_WARN_ =

>> 4th observation...
csEM_CLASSIFICATION = BAD
csEM_EVENTPROBABILITY = 0.4103733144
csEM_PROBABILITY = 0.5896266856
cs_WARN_ =
$

Chapter 2: Scoring Example 19

Scoring with Java Code
SAS Enterprise Miner can generate Java source code and binary class files.
You must have access to a Java development environment in order to be able
to use the Java code that you generate with SAS Enterprise Miner. The Java
code distributed with and produced by SAS Enterprise Miner was developed
with the Java SE Development Kit 6. You can obtain a Java Developer’s Kit
(JDK) from Sun at http://www.oracle.com/technetwork/java/index.html.

20 SAS Enterprise Miner 6.1: C and Java Score Code Basics

Save and Organize Java Code Component Files
1. Run the example SAS Enterprise Miner process flow diagram. When the

run completes, click Results in the Run Status window.

2. Select View Scoring Java Score Code on the main menu of the
Results window. The Java Score Code window opens.

3. In the Java Score Code window, ensure that the list box at the bottom of
the window is set to Scoring Function Metadata.

4. On the Results window main menu, select File Save As. Save the file
as JScore.xml in the c:\temp\scorecode\jscore directory that you
created at the beginning of this example.

5. In the Java Score Code window, return to the list box at the bottom and
change the setting from Scoring Function Metadata to Score Code.

6. On the Results window main menu, select File Save As. Save the file
as Score.java in the c:\temp\scorecode\jscore directory that you
created at the beginning of this example.

7. In the Java Score Code window, return to the list box at the bottom and
change the setting from Score Code to User-defined Formats.

8. On the Results window main menu, select File Save As. Save the file
as JscoreUserFormats.java in the c:\temp\scorecode\jscore
directory that you created at the beginning of this example.

9. Save the Java Class file as DS.class in the
c:\temp\scorecode\jscore directory that you created at the
beginning of this example.

Create Java Main Program
1. Determine the package name of the generated Java code. One way to

determine the package name is to view the Jscore.xml file and look up
the Java class name. In this example, the class name is
eminer.user.Score.Score. Remove the last qualifier "Score" from the
class name, and the remainder eminer.user.Score is the package name.

2. You must provide a Java main program. The Java main program needs
to instantiate the generated scoring class, provide input data, invoke the
score method, and handle the scoring outputs. Appendix 2 contains an
example Java main program. For this example, save the code in
Appendix 2 as Jsbasic.java. Move the Jsbasic.java file to the folder
that you created at the beginning of this example,
c:\temp\scorecode\jscore.

3. On the UNIX system where the score code will be deployed, create the
following directory structure in your HOME directory:

 $HOME/example/jscore/eminer/user/Score

4. FTP or copy all the JAR files from the Windows folder
c:\temp\scorecode\jscore to the UNIX folder that you created,

Chapter 2: Scoring Example 21

$HOME/example/jscore.

5. FTP or otherwise copy all the JAVA and related CLASS files from the
c:\temp\scorecode\jscore folder to the UNIX folder at
$HOME/example/jscore/eminer/user/Score.

6. When you are finished, the list of files in the $HOME/example/jscore
directory should resemble the following:

 $ ls -1

 dtj.jar
 eminer
 icu4j.jar
 sas.analytics.eminer.jusutil.jar
 sas.core.jar
 sas.core.nls.jar
 sas.icons.jar
 sas.icons.nls.jar
 tkjava.jar
 tkjava.nls.jar

7. The contents of the $HOME/example/jscore/eminer/user/Score
directory should resemble the following:

 $ ls –l

 DS.class
 Jsbasic.java
 JscoreUserFormats.java
 Score.java

Note: Windows JAVA files will need to have the carriage-returns in the body removed. Many FTP
clients automatically remove carriage-returns in text files. If not, most Solaris systems provide a
dos2unix command to perform that task. The dos2unix command is usually found in the UNIX /bin
directory.

22 SAS Enterprise Miner 6.1: C and Java Score Code Basics

Compile and Run Java Score Code in UNIX
All steps in this section are performed on the UNIX operating system.

1. Set the CLASSPATH environment variable to contain absolute paths for
the JAR files that are distributed with SAS Enterprise Miner Java
Scoring. Here is one way to set environment variables: At a prompt, on a
single line, enter something that resembles the following:

export
CLASSPATH=.:$HOME/example/jscore/dtj.jar:$HOME/example/j
score/sas.analytics.eminer.jsutil.jar:$HOME/example/jsco
re/sas.core.jar:$HOME/example/jscore/sas.core.nls.jar:$H
OME/example/jscore/sas.icons.jar:$HOME/example/jscore/sa
s.icons.nls.jar:$HOME/example/jscore/sas.nls.collator.ja
r:$HOME/example/jscore/sas.icons.jar:$HOME/example/jscor
e/tkjava.nls.jar:$HOME/example/jscore/icu4j.jar

2. Your current working directory should be the parent directory of the
package tree. The parent directory of the package tree in the example is
$HOME/example/jscore. Invoke the Java compiler on the source files
using a command that resembles the following:

 javac eminer/user/Score/*.java

3. The result should be a set of newly-created Java class files that
implement the Jscore interface.

4. After you compile the Jsbasic main program and the SAS Enterprise
Miner generated source code, copy the Jsbasic.class file from
$HOME/example/jscore/eminer/user/Score to the working
directory that you want to use to deploy the Java scoring code.

5. To execute your Java scoring code program, on the command line enter
this code:

 java Jsbasic

6. The output from your Java scoring code program should resemble the
following:

 >> First observation...
 EM_CLASSIFICATION = GOOD
 EM_EVENTPROBABILITY = 0.8710097609996974
 EM_PROBABILITY = 0.8710097609996974
 WARN =

>> Second observation...
 EM_CLASSIFICATION = BAD
 EM_EVENTPROBABILITY = 0.41037331440653074
 EM_PROBABILITY = 0.5896266855934693
 WARN =

3
C and Java Score Code in
SAS Enterprise Miner

SAS Enterprise Miner Tools That Produce C and Java Score Code 24
SAS Formats Support ... 26
Generated C and Java Code ... 27
Generated C Code .. 27
DB2 User-Defined Functions .. 27

DB2 Data Types ... 29
C Code Usage .. 29
C Formats Support .. 30

C Formats Support Distribution ... 31
C Formats Usage ... 31

Generated Java Code .. 32
Java Package Name .. 33

Java Code Usage ... 33
Java Scoring Jars ... 33

Java Scoring Jars Distribution ... 34
Java Scoring Jars Usage ... 34
SAS System Formats ... 34

Analytical data mining models generate score code that can be applied to new
data in order to evaluate candidates for some defined event of interest. The
model scoring code can exist in any number of programming languages. SAS
Enterprise Miner generates model scoring code not only in SAS code, but for
most models, in C and Java programming languages as well.

Generating model score code in programming languages like C and Java
provides greater flexibility in organizational deployment. Data mining score
code in C and Java can be combined with source code and binary files. These
files are distributed with SAS Enterprise Miner, and then compiled for
deployment in external C, C++, or Java environments. Experienced C, C++,
or Java programmers can use this feature to extend the functionality of new
and existing software by embedding the power of SAS Enterprise Miner
analytical model scoring.

It should be emphasized that creating a scoring application is a very complex
and highly advanced task that requires expertise in several areas. The
likelihood of successfully implementing a scoring system that incorporates C
or Java code that is generated in SAS Enterprise Miner is exactly
proportional to your fluency and experience with the environment in which
you choose to implement your application. Testing of both the application
and the generated code are critical to the success of any such project.

C H A P T E R

24 SAS Enterprise Miner 6.1: C and Java Score Code Basics

SAS Enterprise Miner Tools That Produce C and Java Score Code
SAS Enterprise Miner can generate C and Java score code for most analytical
models that are built from nodes that produce SAS DATA step scoring code.
The following list of SAS Enterprise Miner nodes by area indicates which
nodes can produce C and Java score code. Any nodes that are not listed
cannot produce C or Java score code.

Sample Tools
C and Java Generated No C or Java score code

Filter Node Append
 Data Partition nc

 File Import nc

 Input Data nc

 Merge

 Sample nc

 Time Series nc

Explore Tools
C and Java Generated No C or Java score code
Cluster Association
SOM/Kohonen DMDB nc
Variable Clustering Graph Explore nc
Variable Selection Market Basket
 Multiplot nc
 Path Analysis
 Stat Explore nc
 Text Miner

Modify Tools
C and Java Generated No C or Java score code

Impute Drop nc
Interactive Binning
Principal Components
Replacement
Rules Builder **
Transform Variables **

Chapter 1: C and Java Score Code in SAS Enterprise Miner 25

Model Tools
C and Java Generated No C or Java score code

AutoNeural MBR
Decision Tree
Dmine Regression
DMNeural
Ensemble***
Gradient Boosting
LARS
Model Import
Neural Network
Partial Least Squares
Regression
Rule Induction
Two Stage

Utility Tools
C and Java Generated No C or Java score code

End Groups Control Point nc
Start Groups Merge
 Metadata nc
 Reporter nc
 SAS Code

Credit Scoring Tools
C and Java Generated No C or Java score code

Credit Exchange Reject Inference nc
Interactive Grouping
Scorecard

nc Tool produces no score code.

** It is possible to create code that cannot be correctly generated as C or Java. When you are
creating transformations or expressions in the Transformation tool or the Rules Builder,
careful inspection and testing is required to make sure your C and Java score code is
generated correctly.

*** Depends on members of process flow diagram.

**** Any nodes that are not listed in the above tables cannot produce C or Java score code.

26 SAS Enterprise Miner 6.1: C and Java Score Code Basics

The SAS Enterprise Miner Score node can produce DATA step, C, and Java
score code for most modeling process flow diagrams. However, a process flow
diagram does not produce C or Java score code if the diagram includes a node
that produces SAS code and also contains PROC statements or DATA
statements. SAS Enterprise Miner process flow diagrams that contain a node
not listed in the above table do not generate C or Java code.

The SAS Enterprise Miner SAS Code node is a special case because it is an
open-ended tool for user-entered SAS code. SAS Enterprise Miner does not
translate user-entered SAS code into C and Java score code. When SAS
Enterprise Miner encounters a model process flow diagram that includes the
SAS Code node, it attempts to generate C and Java score code for the
remaining portions of the process flow diagram. For the portion of the
process flow diagram that is represented by the SAS Code node, SAS
Enterprise Miner inserts a comment in the generated C and Java score code
that indicates the omitted input. For example, the comment in generated C
code might resemble the following:

 /*--------------------------------**/

 /* insert c code here */

 /* datastep scorecode for emcode */

 /* is not supported for conversion */

 /*--------------------------------**/

In some cases, it might be possible for you to insert your own C code to take
the place of the omitted SAS Code node content.

SAS Enterprise Miner also does not generate Java score code for SAS Code
node content. When SAS Enterprise Miner encounters a SAS Code node
while generating Java code, the omitted code from the SAS Code node is
replaced in the generated Java code with a call to a specific method. SAS
Enterprise Miner produces source code for an empty stub method with that
specific name. This might enable you to substitute your own Java code to
take the place of the omitted SAS Code node content.

SAS Formats Support
SAS formats are functions used in the SAS System to configure the size,
form, or pattern of raw data for display and analysis. There are two basic
types of SAS formats: the pre-defined formats that are supplied with all SAS
Systems, and the formats that are defined by the customer. The formats that
are defined by the customer are also referred to as user-defined formats. The
user-defined formats that are used in the generated C and Java score code
are supported by a combination of generated code and distributed functions.
The SAS System formats for Java are supported through libraries that are
distributed with SAS Enterprise Miner. The SAS System formats for C are
supported through libraries that are distributed as the SAS Stand-alone
Formats.

Chapter 1: C and Java Score Code in SAS Enterprise Miner 27

Generated C and Java Code
The C and Java code that SAS Enterprise Miner generates is a conversion of
the algorithms and operations that the SAS DATA step code performed in the
process flow diagram. You can use the tools available in SAS Enterprise
Miner to generate valid SAS score code that cannot be correctly generated as
C or Java score code. Any generated code should be tested thoroughly before
deployment.

The generated C and Java code represents only the functions that are
explicitly expressed in the SAS DATA step scoring code. The C score code
that SAS Enterprise Miner generates conforms to the “ISO/IEC 9899
International Standard for Programming Languages – C.” The Java code that
SAS Enterprise Miner generates conforms to the Java Language
Specification, published in 1996 by Addison-Wesley.

You can use generated C or Java scoring code from a SAS Enterprise Miner
analytical model as the core for a scoring system, but you should not confuse
the generated C or Java scoring code with a complete scoring system. In both
C or Java languages, the programs that you write to enclose the scoring code
must provide a suitable environment for performing the data analysis.

After you successfully run a SAS Enterprise Miner model process flow
diagram that generates C or Java score code, you can export your model as an
SPK file that contains the generated C and Java code, or you can use the File
menu in the results browser to save individual files.

Generated C Code
The C scoring code is generated as several output files. They include the
following:

• Cscore.xml is the XML description of the model that produced the code

and the generated C code. It is valid XML. No Document Type Definition
(DTD) is supplied.

• DB2_Score.c is C code for DB2 scalar User Defined Functions for each of
the output variables defined in the scoring code.

• Score.c is the model score code that is generated as a C function. It is C
source code and must be compiled before it can be executed.

DB2 User-Defined Functions
In addition to generating the scoring algorithms that are developed in SAS
Enterprise Miner models, the C scoring component generates the C code for
IBM DB2 user-defined functions. IBM user-defined functions, or UDFs, are
tools that you can use to write your own extensions to SQL. The functions
that are integrated in DB2 are useful, but do not offer the customizable
power of SAS Analytics. The UDFs that are generated by SAS Enterprise

28 SAS Enterprise Miner 6.1: C and Java Score Code Basics

Miner enable you to greatly increase the efficiency, versatility, and power of
your DB2 database. The key advantages of using UDFs are performance,
modularity, and the object-oriented UDF process. The UDF code that SAS
Enterprise Miner generates is matched to each specific model’s training data
and the C scoring functions that are associated with the model.

The UDF code that SAS Enterprise Miner generates is only one of several
ways to create score code in DB2. The generated source code for the UDFs is
simple but expandable. The comments in the UDF source code contain
templates of SQL commands that need to be registered in order to invoke the
generated UDFs.

SAS Enterprise Miner can generate score functions that return values that
are not useful in a scoring context. The UDFs that SAS Enterprise Miner
generates for a specific model are limited to the functions that return scoring
output values that are considered to be of interest heuristically. The names of
the scoring output variables are created by concatenating a prefix (for each
type of computed variable) with the name of the corresponding target
variable (or decision data set).

SAS Enterprise Miner produces UDFs for scoring output variables that begin
with the following prefixes:

D_ decision chosen by the model
EL_ expected loss of the decision chosen by the model
EP_ expected profit of the decision chosen by the model
I_ normalized category that the case is classified into
P_ predicted values and estimates of posterior probabilities

SAS Enterprise Miner also produces UDFs for scoring output variables with
the following names:

NODE tree node identifier
SEGMENT segment or cluster identifier
_WARN indicates problems with computing predicted

values or making decisions
EM_CCF average credit cost factor value
EM_CLASSIFICATION fixed name for the I_ variable
EM_DECISION fixed name for the D_targetname variable
EM_EVENTPROBABILITY fixed name for the posterior probability of a

target event
EM_EXPOSURE average exposure value
EM_FILTER identifies filtered observations
EM_LGD average loss given default value
EM_PD average predicted value
EM_PREDICTION fixed name for the predicted value of an

interval target
EM_PROBABILITY fixed name for the maximum posterior

probability that is associated with the
predicted classification

Chapter 1: C and Java Score Code in SAS Enterprise Miner 29

EM_PROFITLOSS fixed name for the value of expected profit or
loss

EM_SEGMENT fixed name for the name of the segment
variable

SCORECARD_BIN bin assigned to each observation
SCORECARD_POINTS total score for each individual
SOM_DIMENSION1 identifies rows in a Self Organizing Map

(SOM)
SOM_DIMENSION2 identifies columns in a SOM
SOM_ SEGMENT identifies clusters created by a SOM

Most of the code in the UDFs that SAS Enterprise Miner generates is
designed to handle the conversion of data types and missing values before
and after the score function is called. The first function in the generated UDF
code (load_indata_vec) is invoked by all the UDFs in the file in order to load
the input data vector for the score function.

Current DB2 code documentation states that each reference to a DB2
function (UDF or built-in) is allowed to have arguments that number from 0
to 90. The limitation on the number of arguments for each reference is a
critical limitation for data mining jobs where even simple models can require
hundreds of values. SAS Enterprise Miner is capable of producing UDF code
that contains more than 91 arguments, but DB2 cannot use any of the
additional arguments.

DB2 Data Types
The UDFs that SAS Enterprise Miner generates accept only two SQL data
types: DOUBLE and VARCHAR. Most databases use more than two SQL
data types, so you should use care when you convert your DB2 data types for
UDF calls in your code. DB2 provides functions that you can use to convert
most data types to DOUBLE or VARCHAR. Another way to handle
additional SQL data types in training data and score data is to perform the
required data type conversions during the extract, transfer, and load (ETL)
step of your data preparation. You can also modify the UDF source code that
SAS Enterprise Miner generates in order to convert data types for scoring.

C Code Usage
To compile, link, and run C code that is generated in SAS Enterprise Miner,
you need to first gather the required tools, libraries, and files.

The generated C code conforms to the “ISO/IEC 9899 International Standard
for Programming Languages – C”, so any current compiler should be able to
compile the code.

Other than the standard C libraries, the generated C code will have
dependencies on the SAS Stand-alone Formats libraries. See the SAS
Formats section below for details.

30 SAS Enterprise Miner 6.1: C and Java Score Code Basics

The generated C code also depends on three C header files.

• cscore.h
• csparm.h
• jazz.h

The cscore.h and csparm.h files are distributed with the SAS Enterprise
Miner Server Windows systems. They are located in
SASROOT\dmine\sasmisc. For UNIX systems, they are located in
SASROOT/misc/dmine. Copy them to your development environment. The
cscore.h file has several operating system specific definitions that will, in
most cases, need to be modified for your target operating system. Those
modifications are documented in comments in the header file and in the
following example.

The jazz.h header file is distributed with the SAS Stand-alone Formats
product. See details below in the C Formats Support section. Copy it to your
development environment.

To run the generated C code, you need to create a main program to invoke
the score function. You can view the score.c file and inspect it to determine
how the score function should be called.

The metadata file Cscore.xml also describes the generated function and its
arguments. By default, the generated function accepts two pointers as
arguments. The first argument points to an array of input data values. The
second argument points to an array of output data values. The memory,
which is required for each data value, must be allocated by the calling
program.

Both arrays must be composed of the PARM data structure that is defined in
the csparm.h header file. Each array element must contain either a double
or a char *. The length of the memory referenced by each char* can be
extracted from the Cscore.xml or by inspection of the original training data
set. If the appropriate memory for each character value is not allocated before
calling score(), the results are undefined.

The position of each data value in its array can also be extracted from the
XML or inferred from the #defines for the variable names that are found in
the generated C code. These variable names are usually taken directly from
the training data or derived from names in the training data. Such a main
program can be as simple as the code in Appendix 3.

C Formats Support
The C scoring code that is generated in SAS Enterprise Miner supports the
use of SAS System Formats through the SAS Stand-alone Formats product.
The SAS Stand-alone Formats do not depend on a SAS System environment
in any way. The SAS Stand-alone Formats product contains a header file. It
also contains a set of libraries that are needed for compilation, linking, and
running the SAS Enterprise Miner-generated C scoring function. The SAS

Chapter 1: C and Java Score Code in SAS Enterprise Miner 31

Stand-alone Formats are a set of link and run-time libraries that are
compiled for each supported operating system. Those include the following:

• Windows 32-bit
• Windows Itanium 64-bit
• Windows x64-bit
• Solaris 64-bit
• AIX 64-bit
• Linux 32-bit
• Linux 64-bit
• HP-Itanium 64-bit
• HP 64-bit

C Formats Support Distribution
The SAS Stand-alone Formats are distributed as downloads from the SAS
Customer Support website. Look in the Knowledge Base section for Samples
and SAS Notes. Search for Note 35872, titled “SAS Stand-alone Formats for
SAS Enterprise Miner C Score Code.” Follow the instructions to download
the package for your target operating system.

C Formats Usage
The C scoring function or application that is generated in SAS Enterprise
Miner is linked to jazxfbrg. This means that at run time the code in
jazxfbrg can dynamically load the rest of the routines that are needed to
support the SAS System formats. Although only jazxfbrg might need to be
present when linking the function or application, all of the files must be
available at run time.

For the Stand-alone Formats, dynamic loading is accomplished through calls
to standard System routines. Dynamic loading is an advanced topic in any C
environment. The exact procedures, options, and environment variables that
are used in compiling, linking, and running dynamically loaded code are
different for every compiler, linker, and operating system. For example, on
Windows, shared libraries are loaded from the environment variable PATH.
This environment variable must be set to contain the directory path for the
Stand-alone Formats shared libraries (jazwf*). The value of this
environment variable must be the fully qualified directory name for the
directory that holds the Stand-alone Formats.

On Solaris systems, the Stand-alone Formats are dynamically loaded from
shared libraries via the environment variable LD_LIBRARY_PATH. HP and
UNIX systems use a slightly different environment variable, SHLIB_PATH.
A thorough understanding of your target system’s procedures for compiling,
linking, and running with dynamically loaded code is required to successfully
exploit the Stand-alone Formats and the code that is generated by the SAS
Enterprise Miner C Scoring component.

For environments where the Stand-alone Formats support is not available or
not desired, it should be possible for an experienced C programmer to modify

32 SAS Enterprise Miner 6.1: C and Java Score Code Basics

the source code in the cscore.h header file that is distributed with SAS
Enterprise Miner in SASROOT/dmine/sasmisc. The object of the
modifications is to remove the dependency on the Stand-alone Formats and to
support any format that they want, with their own C code.

If you write your own format functions, you can integrate those functions into
the logic that handles formats in cscore.h. The cscore.h file that is
distributed with SAS Enterprise Miner already contains two examples of
such C formatting code—partial support for $CHAR and BEST formats. If
your situation enables you to accept the limitations of those examples (no
padding for $CHAR, and no scientific notation for BEST), you can use the
example formats without any modification. You can also add any additional
formats that you might need. In that case, C scoring code that is generated by
SAS Enterprise Miner will contain only those formats, and will be compiled
with the cscore.h header file that will support those formats.

In cases where Stand-alone Formats support is not desired, the dependency
on the Stand-alone formats support can be removed. This can be
accomplished by modifying a copy of the cscore.h header file that is
distributed with SAS Enterprise Miner in SASROOT/dmine/sasmisc. In the
cscore.h file, the preprocessor symbol FMTLIB is set to 0, which disables
support for the SAS Stand-alone formats.

Generated Java Code
Java scoring code is generated in several output files. The primary model
logic is generated as a Java class file. The other files are generated as Java
source files, and the model’s variable metadata is encoded as XML. The Java
code that is generated by SAS Enterprise Miner is compatible with the
version of Java that SAS Enterprise Miner uses. The generated Java files
might include some or all of the following:

• DS.class is the actual DATA step code that is generated directly to Java

binary code. There is no Java source code supplied.

• DS_UEXIT.java is generated only if code from unsupported tools was
omitted from the generated Java code. This Java source code is a
template that customers can use to provide their own code for the omitted
tool or node.

• Jscore.xml is an XML description of the model that produced the code
and the generated Java code. It is valid XML. No DTD is supplied.

• JscoreUserFormats.java is the Java source code that supports any
user-written formats that might be used in the model. It is Java source
code and must be compiled before it can be executed.

• Score.java is the Java source code that implements the interface to
DS.class. It is Java source code and must be compiled before it can be
executed.

Chapter 1: C and Java Score Code in SAS Enterprise Miner 33

After you run a SAS Enterprise Miner modeling flow, there are a number of
ways to export the contents of your model along with the generated C and
Java Scoring code. See Exporting the Results and the Score Node in the SAS
Enterprise Miner Reference Help.

Java Package Name
The code that is generated by SAS Enterprise Miner contains an assigned
package name. The package name effectively becomes the first part of the
absolute class name. When compiling Java source code with a package name,
the Java compiler (javac) searches for the related source and class files by the
package name in a path relative to the current working directory. The Java
compiler uses the package name to form a hierarchical path for each related
file. For example, if the package name has the default of “eminer.user.Score,"
the Java compiler searches for the package's files in the path
eminer\user\Score. In order to compile the generated Java source code, all
of the generated Java files (Jscore.xml is not required) must be placed in a
directory or folder tree that looks like the package name "eminer.user.Score."
You can change the default package name in the SAS Enterprise Miner
Client before the flow is run. On the the main menu, select Options
Preferences. Then fill in a package name of at least two levels.

Java Code Usage

Java scoring code that is generated by SAS Enterprise Miner depends on the
classes and methods that are distributed as the SAS Enterprise Miner Java
Scoring JAR files. In order to compile or run Java score code that is
generated by SAS Enterprise Miner, you need to copy the supporting Java
archives and configure your system to make the JAR files available to Java.

Java Scoring JAR Files
The SAS Enterprise Miner Java Scoring JAR files support the classes and
methods that are used in the generated Java code, including the use of SAS
formats. The SAS Enterprise Miner Java Scoring JAR files are as follows:

• dtj.jar
• icu4j.jar
• sas.analytics.eminer.jsutil.jar
• sas.core.jar
• sas.core.nls.jar
• sas.icons.jar
• sas.icons.nls.jar
• sas.nls.collator.jar
• tkjava.nls.jar

These JAR files include support for most, but not all of the SAS System
formats. The list of supported Java formats is detailed in Appendix 4.

34 SAS Enterprise Miner 6.1: C and Java Score Code Basics

Java Scoring JAR File Distribution
The SAS Enterprise Miner Java scoring JAR files are distributed as part of
the SAS Enterprise Miner Server image. On Windows systems, they are
found in the path SASROOT\dmine\sasmisc. For UNIX systems, check the
path SASROOT/misc/dmine. It is recommended that you save copies of your
Java scoring JAR files in your scoring environment.

Java Scoring JAR File Usage
Wherever you want to compile and run the Java code that is generated by
SAS Enterprise Miner, you need to make the SAS Enterprise Miner Java
scoring JAR files available to Java. Adding the directory path that contains
your Java scoring JAR files to your CLASSPATH environment variable
enables both the compile and execution steps.

SAS System Formats
Supported SAS System formats are listed in Appendix 4.

1
Programming Information

General Code Limitations ... 35
Supported Functions ... 36
Supported SAS Operators ... 37

Arithmetic Operators ... 37
Comparison Operators ... 37
Logical Operators .. 37
Other Operators ... 37

Conditional Statement Syntax .. 38
Variable Name Length .. 38
Character Data Length ... 38
Extended Character Sets ... 38

General Code Limitations
The SAS DATA step language is a flexible and powerful development
environment. The SAS Enterprise Miner component that generates C and
Java scoring code supports only a small portion of the syntax, expressions,
and functions that the SAS System supports. Every effort has been made to
ensure that the DATA step code that SAS Enterprise Miner produces is
compatible with the restrictions that are imposed by the C and Java code
generation process.

It is possible to create code in SAS Enterprise Miner that cannot be correctly
translated into C or Java code. This is particularly a problem with data
transformations that are performed within SAS Enterprise Miner. When you
use the SAS Enterprise Miner Expression Builder to create transformations,
and you want to migrate your scoring code to C or Java, you must take great
care to ensure that your data transformations are expressed using code
structures that resemble C or Java structures as much as possible. This
facilitates the correct generation of score code. It is best to attempt to
structure DATA step code for any transformation to make it as much like C
as possible. In other words, any SAS operand or function that is not native to
the C or Java languages should be avoided in your data transformation
expressions unless the operand or function is explicitly supported by the C
and Java code generation process.

A P P E N D I X

36 SAS Enterprise Miner 5.3: C and Java Score Code Basics

Supported Functions
The following SAS System functions are supported either directly by the
target language libraries or by code that is distributed with SAS Enterprise
Miner:

ARCOS(n);
ARSIN(n);
ATAN(n);
CEIL(n);
COS(n);
COSH(n);
c1= DMNORMCP(c1,n1,c2);
c1 = DMNORMIP(c1,n1);
n2 = DMRAN(n1); Similar to the SAS system function RANUNI
n2 = EXP(n1);
n2 = FLOOR(n1);
INDEX(c1, c2);
INT(n1);
c1= LEFT(c1);
n1 = LENGTH(c1);
n2 = LOG(n1);
n2 = LOG10(n1);
nx = MAX(n1, n2, n3, …);
nx = MIN(n1, n2, n3, …);
n1 = MISSING(<n1/c1>);
nx = N(n1, n2, n3, …);
nx = NMISS(n1, n2, n3, …);
n2 = PROBNORM(n1);
PUT((<n1/c1>,fmtw.d);
n2 = SIN(n);
n2 = SINH(n);
n2 = SQRT(n);
c2 = STRIP(c1);
c2 = SUBSTR(c1, p, n1); /* n is not optional */
SUBSTR(c1,p,n1) = strx;
n2 = TAN(n1);
n2 = TANH(n1);
c1 = TRIM(c1);
c1 = UPCASE(c1);

Note: n1, n2, …, nx indicates numeric variables, and c1, c2, …, cx indicates
character variables.

Appendix 1 37

Supported SAS Operators

Arithmetic Operators

SAS System
Symbol

C *Score
Equivalent

Definition

+ + addition

- - subtraction

* * multiplication

** pow(); exponentiation

/ / division

Comparison Operators

SAS System C
Equivalent

Definition
Symbol Mnemonic

= EQ == equal to

^= NE != not equal to

> GT > greater than

< LT < less than

>= GE >= greater than or
equal to

<= LE <= less than or equal to

 IN IN(); equal to one of a list

Logical Operators

SAS System C
Equivalent Symbol Mnemonic

& AND &&
| OR ||
^ NOT !

Other Operators
In SAS, the concatenation operator (||) concatenates character values. SAS
Enterprise Miner only supports concatenation of constants (quoted strings) in
C or Java score code.

38 SAS Enterprise Miner 5.3: C and Java Score Code Basics

Conditional Statement Syntax
In any conditional statement to be represented in C or Java code, any
variable that might have a missing value must be tested for missing values
before any other operation is performed. When you are comparing a
character type variable with a quoted character constant, the quoted
character constant must be the second operand.

Variable Name Length
SAS Enterprise Miner truncates column names at 32 bytes. You should
exercise care during the ETL process for training data and scoring data in
order to make sure that the first 32 characters of all column names are
unique.

Character Data Length
The maximum allowable length for character data in SAS Enterprise Miner
is 32 bytes. You should exercise care during the ETL process for training data
and scoring data to make sure that the first 32 characters of all character
data types are unique.

Extended Character Sets
The generation of C and Java score code for data and variable names that use
extended character sets is not supported. The generation of C and Java score
code requires single-byte length characters. Multi-byte character names and
data are not supported. Generated Java code that contains single-byte,
extended character set names and data is untested and unsupported.
Because the C code that SAS Enterprise Miner generates depends on the
char type, character values of both variable names and data values are
limited to integral values with a minimum value of -127 and a maximum
value of 127.

2
Example Java Main Program

import eminer.user.Score.*;
import com.sas.analytics.eminer.jscore.util.*;
import java.util.Map;
import java.util.HashMap;

public class Jsbasic {
 public static void main(String[] args) {
 Map outdata;

 Map indata = new HashMap(12);
 Jscore jsb = new Score();

 // load data into input Map
 indata.put("CHECKING",((Object)new Double(1.0)));
 indata.put("DURATION",((Object)new Double(6.0)));
 indata.put("HISTORY",((Object)new Double(4.0)));
 indata.put("PURPOSE",((Object)"3"));

 try {
 //invoke the scoring method
 outdata = jsb.score(indata);

 // process scoring output
 System.out.println(">> First observation...");

 System.out.println("EM_CLASSIFICATION = " +

(String)outdata.get("EM_CLASSIFICATION"));
 System.out.println("EM_EVENTPROBABILITY = " +

(Double)outdata.get("EM_EVENTPROBABILITY"));
 System.out.println("EM_PROBABILITY = " +

(Double)outdata.get("EM_PROBABILITY"));
 System.out.println("_WARN_ = " +

(String)outdata.get("_WARN_"));

 } catch (Exception ex) {
 System.out.println("Exception caught....Scoring failed");
 return;
 }

 // load obs2 data into input Map
 indata.put("CHECKING",((Object)new Double(1.0)));
 indata.put("DURATION",((Object)new Double(42.0)));
 indata.put("HISTORY",((Object)new Double(2.0)));
 indata.put("PURPOSE",((Object)"2"));

A P P E N D I X

40 SAS Enterprise Miner 6.1: C and Java Score Code Basics

 try {
 //invoke the scoring method
 outdata = jsb.score(indata);

 // process scoring output

 System.out.println("\n>> Second observation...");

 System.out.println("EM_CLASSIFICATION = " +

(String)outdata.get("EM_CLASSIFICATION"));
 System.out.println("EM_EVENTPROBABILITY = " +

(Double)outdata.get("EM_EVENTPROBABILITY"));
 System.out.println("EM_PROBABILITY = " +

(Double)outdata.get("EM_PROBABILITY"));
 System.out.println("_WARN_ = " +

(String)outdata.get("_WARN_"));

 } catch (Exception ex) {
 System.out.println("Exception caught....Scoring failed");
 return;
 }

 } // end main
} //end class Try

3
Example C Main Program

/*--
 * CSBASIC - Enterprise Miner C scoring example program simulates
 * scoring data from the first and fourth rows of the
 * SAS Enterprise Miner sample data set DMAGECR.
 *
 * V3
 --/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "csparm.h"

/* EM Score function prototype */
void score (PARM *, PARM *);

/*--
 * Numeric Missing Value definition copied from cscore.h
 ---/
 /* for UNIX big endian systems */
#define UNX_BE_MISSING (*((double*)"\xff\xff\xfe\0\0\0\0"))

/* Set the system specific value of missing */
#define MISSING UNX_BE_MISSING

/*--
 * Sizes derived from Cscore.xml
 ---/
#define InSize 4
#define OutSize 12

/*--
 * Definitions copied from EM generated C source file
 ---/
#define csCHECKING indata[0].data.fnum
#define csDURATION indata[1].data.fnum
#define csHISTORY indata[2].data.fnum
#define csPURPOSE indata[3].data.str

#define csEM_CLASSIFICATION outdata[0].data.str
#define csEM_EVENTPROBABILITY outdata[1].data.fnum
#define csEM_PROBABILITY outdata[2].data.fnum
#define csGRP_CHECKING outdata[3].data.fnum
#define csGRP_DURATION outdata[4].data.fnum
#define csGRP_HISTORY outdata[5].data.fnum
#define csGRP_PURPOSE outdata[6].data.fnum
#define csI_GOOD_BAD outdata[7].data.str

A P P E N D I X

42 SAS Enterprise Miner 6.1: C and Java Score Code Basics

#define csP_GOOD_BADBAD outdata[8].data.fnum
#define csP_GOOD_BADGOOD outdata[9].data.fnum
#define csU_GOOD_BAD outdata[10].data.str
#define cs_WARN_ outdata[11].data.str

int main(argc, argv)
 int argc;
 char *argv[];
{
 PARM * indata; /* score function input argument */
 PARM * outdata; /* score function output argument */

 /*---
 * Allocate and clear memory for score function inputs and outputs
 ---/
 indata = (PARM *)malloc(sizeof(PARM)*InSize);
 outdata = (PARM *)malloc(sizeof(PARM)*OutSize);
 memset(outdata,0,sizeof(PARM)*OutSize);
 memset(indata,0, sizeof(PARM)*InSize);

 /*---
 * Memory for all character type parameters must be allocated
 * Lengths derived from Cscore.xml
 ---/
 /* indata[3].data.str */
 csPURPOSE = (char *)malloc(33);
 memset(csPURPOSE,0,sizeof(char)*33);

 /* outdata[0].data.str */
 csEM_CLASSIFICATION = (char *)malloc(33);
 memset(csEM_CLASSIFICATION,0,sizeof(char)*33);

 /* outdata[7].data.str*/
 csI_GOOD_BAD = (char *)malloc(9);
 memset(csI_GOOD_BAD,0,sizeof(char)*9);

 /*outdata[10].data.str */
 csU_GOOD_BAD= (char *)malloc(9);
 memset(csU_GOOD_BAD,0,sizeof(char)*9);

 /* outdata[11].data.str */
 cs_WARN_= (char *)malloc(5);
 memset(cs_WARN_,0,sizeof(char)*5);

 /*---
 * Initialize outputs to type appropriate for the missing value
 ---/
 strncpy(csEM_CLASSIFICATION," ",2); /* outdata[0].data.str */
 csEM_EVENTPROBABILITY = MISSING; /* outdata[1].data.fnum */
 csEM_PROBABILITY = MISSING; /* outdata[2].data.fnum */
 csGRP_CHECKING = MISSING; /* outdata[3].data.fnum */
 csGRP_DURATION = MISSING; /* outdata[4].data.fnum */
 csGRP_HISTORY = MISSING; /* outdata[5].data.fnum */
 csGRP_PURPOSE = MISSING; /* outdata[6].data.fnum */
 strncpy(csI_GOOD_BAD," ",2); /* outdata[7].data.str */
 csP_GOOD_BADBAD = MISSING; /* outdata[8].data.fnum */
 csP_GOOD_BADGOOD = MISSING; /* outdata[9].data.fnum */

Appendix 3 43

 strncpy(csU_GOOD_BAD," ",2); /* outdata[10].data.str */
 strncpy(cs_WARN_," ",2); /* outdata[11].data.str */

 /*---
 * Instead of reading in the data, this sets example values
 * from the first row in sample data set DMAGECR
 ---/
 csCHECKING = 1.0; /* indata[0].data.fnum */
 csDURATION = 6.0; /* indata[1].data.fnum */
 csHISTORY = 4.0; /* indata[2].data.fnum */
 strncpy(csPURPOSE,"3",33); /* indata[3].data.str */

 /*---
 * Call the EM generated C scoring function
 ---/
 score(indata,outdata);

 /*---
 * print some outputs to stdout
 ---/
 printf("\n>> First observation...\n");
 printf("csEM_CLASSIFICATION = %s\n", csEM_CLASSIFICATION);
 printf("csEM_EVENTPROBABILITY = %12.10f\n", csEM_EVENTPROBABILITY);
 printf("csEM_PROBABILITY = %12.10f\n", csEM_PROBABILITY);
 printf("cs_WARN_ = %s\n", cs_WARN_);

 /*---
 * Always initialize all outputs to the type appropriate missing
 * value.
 ---/
 strncpy(csEM_CLASSIFICATION," ",2); /* outdata[0].data.str */
 csEM_EVENTPROBABILITY = MISSING; /* outdata[1].data.fnum */
 csEM_PROBABILITY = MISSING; /* outdata[2].data.fnum */
 csGRP_CHECKING = MISSING; /* outdata[3].data.fnum */
 csGRP_DURATION = MISSING; /* outdata[4].data.fnum */
 csGRP_HISTORY = MISSING; /* outdata[5].data.fnum */
 csGRP_PURPOSE = MISSING; /* outdata[6].data.fnum */
 strncpy(csI_GOOD_BAD," ",2); /* outdata[7].data.str */
 csP_GOOD_BADBAD = MISSING; /* outdata[8].data.fnum */
 csP_GOOD_BADGOOD = MISSING; /* outdata[9].data.fnum */
 strncpy(csU_GOOD_BAD," ",2); /* outdata[10].data.str */
 strncpy(cs_WARN_," ",2); /* outdata[11].data.str */

 /*---
 * Instead of reading in new data, this sets example values
 * from the 4th row in sample data set DMAGECR
 ---/
 csCHECKING = 1.0; /* indata[0].data.fnum */
 csDURATION = 42.0; /* indata[1].data.fnum */
 csHISTORY = 2.0; /* indata[2].data.fnum */
 strncpy(csPURPOSE,"2",33); /* indata[3].data.str */

 /*---
 * Call the EM generated C scoring function a second time
 ---/
 score(indata,outdata);

44 SAS Enterprise Miner 6.1: C and Java Score Code Basics

 /*---
 * print some outputs to stdout
 ---/
 printf("\n>> 4th observation...\n");
 printf("csEM_CLASSIFICATION = %s\n", csEM_CLASSIFICATION);
 printf("csEM_EVENTPROBABILITY = %12.10f\n", csEM_EVENTPROBABILITY);
 printf("csEM_PROBABILITY = %12.10f\n", csEM_PROBABILITY);
 printf("cs_WARN_ = %s\n", cs_WARN_);

 /*---
 * clean up allocated memory
 ---/
 free(csPURPOSE); /* indata[3].data.str */
 free(csEM_CLASSIFICATION); /* outdata[0].data.str */
 free(csI_GOOD_BAD); /* outdata[7].data.str */
 free(csU_GOOD_BAD); /* outdata[10].data.str */
 free(cs_WARN_); /* outdata[11].data.str */
 free(indata);
 free(outdata);

 return 0; /* end main */
}

4
SAS System Formats Supported
Java Scoring

$
$ASCII
$BINARY
$CHAR
$F
$HEX
$OCTAL
AFRDFDD
AFRDFDDB
AFRDFDDC
AFRDFDDD
AFRDFDDP
AFRDFDDS
AFRDFDE
AFRDFDN
AFRDFDT
AFRDFDWN
AFRDFMN
AFRDFMY
AFRDFWDX
AFRDFWKX
BEST
BINARY
CATDFDD
CATDFDDB
CATDFDDC
CATDFDDD
CATDFDDP
CATDFDDS
CATDFDE
CATDFDN

CATDFDT
CATDFDWN
CATDFMN
CATDFMY
CATDFWDX
CATDFWKX
COMMA
COMMAX
COMMAX
CRODFDD
CRODFDDB
CRODFDDC
CRODFDDD
CRODFDDP
CRODFDDS
CRODFDE
CRODFDN
CRODFDT
CRODFDWN
CRODFMN
CRODFMY
CRODFWDX
CRODFWKX
CSYDFDD
CSYDFDDB
CSYDFDDC
CSYDFDDD
CSYDFDDP
CSYDFDDS
CSYDFDE
CSYDFDN

CSYDFDT
CSYDFDWN
CSYDFMN
CSYDFMY
CSYDFWDX
CSYDFWKX
DANDFDD
DANDFDDB
DANDFDDC
DANDFDDD
DANDFDDP
DANDFDDS
DANDFDE
DANDFDN
DANDFDT
DANDFDWN
DANDFMN
DANDFMY
DANDFWDX
DANDFWKX
DATE
DATEAMPM
DATETIME
DAY
DDMMYY
DDMMYYB
DDMMYYC
DDMMYYD
DDMMYYN
DDMMYYP
DDMMYYS

A P P E N D I X

36 SAS Enterprise Miner 6.1: C and Java Score Code Basics

DESDFDD
DESDFDDB
DESDFDDC
DESDFDDD
DESDFDDP
DESDFDDS
DESDFDE
DESDFDN
DESDFDT
DESDFDWN
DESDFMN
DESDFMY
DESDFWDX
DESDFWKX
DEUDFDD
DEUDFDDB
DEUDFDDC
DEUDFDDD
DEUDFDDP
DEUDFDDS
DEUDFDE
DEUDFDN
DEUDFDT
DEUDFDWN
DEUDFMN
DEUDFMY
DEUDFWDX
DEUDFWKX
DOLLAR
DOLLARX
DOWNAME
DTDATE
DTMONYY
DTWKDATX
DTYEAR
DTYYQC
E
ENGDFDD
ENGDFDDB
ENGDFDDC
ENGDFDDD
ENGDFDDP
ENGDFDDS

ENGDFDE
ENGDFDN
ENGDFDT
ENGDFDWN
ENGDFMN
ENGDFMY
ENGDFWDX
ENGDFWKX
ESPDFDD
ESPDFDDB
ESPDFDDC
ESPDFDDD
ESPDFDDP
ESPDFDDS
ESPDFDE
ESPDFDN
ESPDFDT
ESPDFDWN
ESPDFMN
ESPDFMY
ESPDFWDX
ESPDFWKX
EURDFDD
EURDFDDB
EURDFDDC
EURDFDDD
EURDFDDP
EURDFDDS
EURDFDE
EURDFDN
EURDFDT
EURDFDWN
EURDFMN
EURDFMY
EURDFWDX
EURDFWKX
EURO
F
FINDFDD
FINDFDDB
FINDFDDC
FINDFDDD
FINDFDDP

FINDFDDS
FINDFDE
FINDFDN
FINDFDT
FINDFDWN
FINDFMN
FINDFMY
FINDFWDX
FINDFWKX
FRADFDD
FRADFDDB
FRADFDDC
FRADFDDD
FRADFDDP
FRADFDDS
FRADFDE
FRADFDN
FRADFDT
FRADFDWN
FRADFMN
FRADFMY
FRADFWDX
FRADFWKX
FRSDFDD
FRSDFDDB
FRSDFDDC
FRSDFDDD
FRSDFDDP
FRSDFDDS
FRSDFDE
FRSDFDN
FRSDFDT
FRSDFDWN
FRSDFMN
FRSDFMY
FRSDFWDX
FRSDFWKX
HEX
HHMM
HOUR
HUNDFDD
HUNDFDDB
HUNDFDDC

Appendix 4 37

HUNDFDDD
HUNDFDDP
HUNDFDDS
HUNDFDE
HUNDFDN
HUNDFDT
HUNDFDWN
HUNDFMN
HUNDFMY
HUNDFWDX
HUNDFWKX
ITADFDD
ITADFDDB
ITADFDDC
ITADFDDD
ITADFDDP
ITADFDDS
ITADFDE
ITADFDN
ITADFDT
ITADFDWN
ITADFMN
ITADFMY
ITADFWDX
ITADFWKX
JULDATE
JULDAY
JULIAN
LOGPROB
MACDFDD
MACDFDDB
MACDFDDC
MACDFDDD
MACDFDDP
MACDFDDS
MACDFDE
MACDFDN
MACDFDT
MACDFDWN
MACDFMN
MACDFMY
MACDFWDX
MACDFWKX

MMDDYY
MMDDYYB
MMDDYYC
MMDDYYD
MMDDYYN
MMDDYYP
MMDDYYS
MMSS
MMYY
MMYYB
MMYYC
MMYYD
MMYYN
MMYYP
MMYYS
MONNAME
MONTH
MONYY
NEGPAREN
NLDATE
NLDATEMN
NLDATEW
NLDATEWN
NLDATM
NLDATMAP
NLDATMTM
NLDATMW
NLDDFDD
NLDDFDDB
NLDDFDDC
NLDDFDDD
NLDDFDDP
NLDDFDDS
NLDDFDE
NLDDFDN
NLDDFDT
NLDDFDWN
NLDDFMN
NLDDFMY
NLDDFWDX
NLDDFWKX
NLMNIAUD
NLMNICAD

NLMNICHF
NLMNICNY
NLMNIDKK
NLMNIEUR
NLMNIGBP
NLMNIHKD
NLMNIILS
NLMNIJPY
NLMNIKRW
NLMNIMYR
NLMNINOK
NLMNINZD
NLMNIPLN
NLMNIRUR
NLMNISEK
NLMNISGD
NLMNITWD
NLMNIUSD
NLMNIZAR
NLMNLAUD
NLMNLCAD
NLMNLCHF
NLMNLCNY
NLMNLDKK
NLMNLEUR
NLMNLGBP
NLMNLHKD
NLMNLILS
NLMNLJPY
NLMNLKRW
NLMNLMYR
NLMNLNOK
NLMNLNZD
NLMNLPLN
NLMNLRUR
NLMNLSEK
NLMNLSGD
NLMNLTWD
NLMNLUSD
NLMNLZAR
NLMNY
NLMNYI
NLNUM

38 SAS Enterprise Miner 6.1: C and Java Score Code Basics

NLNUMI
NLPCT
NLPCTI
NLTIMAP
NLTIME
NORDFDD
NORDFDDB
NORDFDDC
NORDFDDD
NORDFDDP
NORDFDDS
NORDFDE
NORDFDN
NORDFDT
NORDFDWN
NORDFMN
NORDFMY
NORDFWDX
NORDFWKX
NUMX
OCTAL
PERCENT
PERCENTN
POLDFDD
POLDFDDB
POLDFDDC
POLDFDDD
POLDFDDP
POLDFDDS
POLDFDE
POLDFDN
POLDFDT
POLDFDWN
POLDFMN
POLDFMY
POLDFWDX
POLDFWKX
PTGDFDD
PTGDFDDB
PTGDFDDC
PTGDFDDD
PTGDFDDP
PTGDFDDS

PTGDFDE
PTGDFDN
PTGDFDT
PTGDFDWN
PTGDFMN
PTGDFMY
PTGDFWDX
PTGDFWKX
PVALUE
QTR
QTRR
RSTDOCNY
RSTDOCYY
RSTDONYN
RSTDOPNY
RSTDOPYN
RSTDOPYY
RUSDFDD
RUSDFDDB
RUSDFDDC
RUSDFDDD
RUSDFDDP
RUSDFDDS
RUSDFDE
RUSDFDN
RUSDFDT
RUSDFDWN
RUSDFMN
RUSDFMY
RUSDFWDX
RUSDFWKX
SLODFDD
SLODFDDB
SLODFDDC
SLODFDDD
SLODFDDP
SLODFDDS
SLODFDE
SLODFDN
SLODFDT
SLODFDWN
SLODFMN
SLODFMY

SLODFWDX
SLODFWKX
SVEDFDD
SVEDFDDB
SVEDFDDC
SVEDFDDD
SVEDFDDP
SVEDFDDS
SVEDFDE
SVEDFDN
SVEDFDT
SVEDFDWN
SVEDFMN
SVEDFMY
SVEDFWDX
SVEDFWKX
TIME
TIMEAMPM
TOD
WEEKDATE
WEEKDATX
WEEKDAY
WEEKU
WEEKV
WEEKW
WORDDATE
WORDDATX
YEAR
YEN
YEN
YYMM
YYMMB
YYMMC
YYMMD
YYMMDD
YYMMDDB
YYMMDDC
YYMMDDD
YYMMDDN
YYMMDDP
YYMMDDS
YYMMN
YYMMP

Appendix 4 39

YYMMS
YYMON
YYQ
YYQB
YYQC
YYQD

YYQN
YYQP
YYQR
YYQRB
YYQRC
YYQRD

YYQRN
YYQRP
YYQRS
YYQS

36 SAS Enterprise Miner 6.1: C and Java Score Code Basics

5
SAS System Formats Supported
for C Scoring

$ASCII
$BINARY
$BYVAL
$CHAR
$CSTR
$EBCDIC
$HEX
$OCTAL
$QUOTE
$REVERJ
$REVERS
$UPCASE
$XPORTCH
AFRDFDE
AFRDFDN
AFRDFDT
AFRDFDWN
AFRDFMN
AFRDFMY
AFRDFWDX
AFRDFWKX
BEST
BESTX
BINARY
CATDFDD
CATDFDE
CATDFDN
CATDFDT
CATDFDWN
CATDFMN
CATDFMY
CATDFWDX
CATDFWKX
COMMA
COMMAX
COMMAX
CRODFDD
CRODFDE
CRODFDN

CRODFDT
CRODFDWN
CRODFMN
CRODFMY
CRODFWDX
CRODFWKX
CSYDFDD
CSYDFDE
CSYDFDN
CSYDFDT
CSYDFDWN
CSYDFMN
CSYDFMY
CSYDFWDX
CSYDFWKX
D
DANDFDD
DANDFDE
DANDFDN
DANDFDT
DANDFDWN
DANDFMN
DANDFMY
DANDFWDX
DANDFWKX
DATE
DATEAMPM
DATETIME
DAY
DDMMYY
DDMMYYB
DDMMYYC
DDMMYYD
DDMMYYN
DDMMYYP
DDMMYYS
DESDFDD
DESDFDE
DESDFDN

DESDFDT
DESDFDWN
DESDFMN
DESDFMY
DESDFWDX
DESDFWKX
DEUDFDD
DEUDFDE
DEUDFDN
DEUDFDT
DEUDFDWN
DEUDFMN
DEUDFMY
DEUDFWDX
DEUDFWKX
DOLLAR
DOLLARX
DOWNAME
DTDATE
DTMONYY
DTWKDATX
DTYEAR
DTYYQC
E
ENGDFDD
ENGDFDE
ENGDFDN
ENGDFDT
ENGDFDWN
ENGDFMN
ENGDFMY
ENGDFWDX
ENGDFWKX
ESPDFDD
ESPDFDE
ESPDFDN
ESPDFDT
ESPDFDWN
ESPDFMN

ESPDFMY
ESPDFWDX
ESPDFWKX
EURDFDD
EURDFDE
EURDFDN
EURDFDT
EURDFDWN
EURDFMN
EURDFMY
EURDFWDX
EURDFWKX
EURO
EUROX
F
FINDFDD
FINDFDE
FINDFDN
FINDFDT
FINDFDWN
FINDFMN
FINDFMY
FINDFWDX
FINDFWKX
FLOAT
FRACT
FRADFDD
FRADFDE
FRADFDN
FRADFDT
FRADFDWN
FRADFMN
FRADFMY
FRADFWDX
FRADFWKX
FRSDFDD
FRSDFDE
FRSDFDN
FRSDFDT

FRSDFDWN
FRSDFMN
FRSDFMY
FRSDFWDX
FRSDFWKX
HEX
HHMM
HOUR
HUNDFDD
HUNDFDE
HUNDFDN
HUNDFDT
HUNDFDWN
HUNDFMN
HUNDFMY
HUNDFWDX
HUNDFWKX
IB
IBR
IEEE
IEEER
ITADFDD
ITADFDE
ITADFDN
ITADFDT
ITADFDWN
ITADFMN
ITADFMY
ITADFWDX
ITADFWKX
JULDATE
JULDAY
JULIAN
LOGPROB
MACDFDD
MACDFDE
MACDFDN
MACDFDT
MACDFDWN

A P P E N D I X

48 SAS Enterprise Miner 6.1: C and Java Score Code Basics

MACDFMN
MACDFMY
MACDFWDX
MACDFWKX
MDYAMPM
MINGUO
MMDDYY
MMDDYYB
MMDDYYC
MMDDYYD
MMDDYYN
MMDDYYP
MMDDYYS
MMSS
MMYY
MMYYC
MMYYD
MMYYN
MMYYP
MMYYS
MONNAME
MONTH
MONYY
MRB
NEGPAREN
NENGO
NLDATE
NLDATEMN
NLDATEW
NLDATEWN
NLDATM
NLDATMAP
NLDATMTM
NLDATMW
NLDDFDD
NLDDFDE
NLDDFDN
NLDDFDT
NLDDFDWN
NLDDFMN
NLDDFMY
NLDDFWDX
NLDDFWKX
NLMNIAUD
NLMNICAD
NLMNICHF

NLMNICNY
NLMNIDKK
NLMNIEUR
NLMNIGBP
NLMNIHKD
NLMNIILS
NLMNIJPY
NLMNIKRW
NLMNIMYR
NLMNINOK
NLMNINZD
NLMNIPLN
NLMNIRUR
NLMNISEK
NLMNISGD
NLMNITWD
NLMNIUSD
NLMNIZAR
NLMNLAUD
NLMNLCAD
NLMNLCHF
NLMNLCNY
NLMNLDKK
NLMNLEUR
NLMNLGBP
NLMNLHKD
NLMNLILS
NLMNLJPY
NLMNLKRW
NLMNLMYR
NLMNLNOK
NLMNLNZD
NLMNLPLN
NLMNLRUR
NLMNLSEK
NLMNLSGD
NLMNLTWD
NLMNLUSD
NLMNLZAR
NLMNY
NLMNYI
NLNUM
NLNUMI
NLPCT
NLPCTI
NLTIMAP

NLTIME
NORDFDD
NORDFDE
NORDFDN
NORDFDT
NORDFDWN
NORDFMN
NORDFMY
NORDFWDX
NORDFWKX
NUMX
OCTAL
ODDSR
PCPIB
PD
PDJULG
PDJULI
PERCENT
PERCENTN
PIB
PIBR
PK
POLDFDD
POLDFDE
POLDFDN
POLDFDT
POLDFDWN
POLDFMN
POLDFMY
POLDFWDX
POLDFWKX
PTGDFDD
PTGDFDE
PTGDFDN
PTGDFDT
PTGDFDWN
PTGDFMN
PTGDFMY
PTGDFWDX
PTGDFWKX
PVALUE
QTR
QTRR
RB
ROMAN
RUSDFDD

RUSDFDE
RUSDFDN
RUSDFDT
RUSDFDWN
RUSDFMN
RUSDFMY
RUSDFWDX
RUSDFWKX
S370FF
S370FHEX
S370FIB
S370FIBU
S370FPD
S370FPDU
S370FPIB
S370FRB
S370FZD
S370FZDL
S370FZDS
S370FZDT
S370FZDU
SETLOCALE
SIZEK
SIZEKB
SIZEKMG
SLODFDD
SLODFDE
SLODFDN
SLODFDT
SLODFDWN
SLODFMN
SLODFMY
SLODFWDX
SLODFWKX
SSN
SVEDFDD
SVEDFDE
SVEDFDN
SVEDFDT
SVEDFDWN
SVEDFMN
SVEDFMY
SVEDFWDX
SVEDFWKX
TIME
TIMEAMPM

TOD
VAXRB
WEEKDATE
WEEKDATX
WEEKDAY
WORDDATE
WORDDATX
WORDF
WORDS
XPORTFLT
XPORTINT
XYYMMDD
YEAR
YEN
YEN
YYMM
YYMMC
YYMMD
YYMMDD
YYMMDDB
YYMMDDC
YYMMDDD
YYMMDDN
YYMMDDP
YYMMDDS
YYMMN
YYMMP
YYMMS
YYMON
YYQ
YYQC
YYQD
YYQN
YYQP
YYQR
YYQRC
YYQRD
YYQRN
YYQRP
YYQRS
YYQS
YYQZ
Z
ZD

6
C Compiler Command Examples

 C Compiler Command Examples .. 53
C Compiler Command Examples .. 53

W32 – Windows 32-bit (x86) .. 53
LAX- Linux for x64 (x86-64) .. 55
LNX- Linux 32-bit (x86) .. 56
H64- HP-UX on PA-RISC .. 57
H6I- HP-UX on Itanium .. 58
R64 – AIX on Power ... 59
S64 - Solaris on SPARC .. 60
SAX – Solaris 10 x64 (x64-86) ... 61

C Compiler Command Examples
The compiler options in the following examples are provided only as a
possible starting point. These examples are for producing a Windows
dynamic link library (DLL) or a UNIX Shared library. There are in most
cases many options that could be applied to the compilation of the SAS
Enterprise Miner C score code that are not mentioned here. Experience,
careful research, and experimentation are required to optimize the run-time
performance of any code using compiler options.

W32 – Windows 32-bit (x86)

OS Name Microsoft Windows XP Professional

Version 5.1.2600 Service Pack 2 Build 2600

System X86-based PC

Compiler Microsoft Visual C++ version 6.0

Compiler
Documentation

http://msdn.microsoft.com/en-
us/library/9s7c9wdw(VS.80).aspx

A P P E N D I X

http://msdn.microsoft.com/en-us/library/9s7c9wdw(VS.80).aspx
http://msdn.microsoft.com/en-us/library/9s7c9wdw(VS.80).aspx

54 Enterprise Miner C and Java Score Code Basics

Compile
command

cl /c /nologo /Zp4 /I"
C:\Temp\Ccode\headers"
"C:\Temp\Ccode\Score.c" & link
/nologo /dll Score.obj
jazxfbrg.lib
/libpath:"C:\Temp\SAFMTS" /out:"
C:\Temp\Ccode\testscore.dll" &
exit

cl The Microsoft Visual C/C++ command line
compiler

/c Specifies that the compiler should compile
only (linking is not performed)

/nologo Suppresses display of sign-on banner

/Zp4 Packs structures on 4-byte boundaries.

/I
"C:\Temp\Ccode\headers"

Adds a directory to the path list that is
searched for include files.

"C:\Temp\Ccode\Score.c" The name of the C source file

& Separates DOS command-line commands

Link The name of the Windows linker

/dll The link option to build a DLL

Score.obj The name of the object file that is
produced by the compile command

jazxfbrg.lib
The link library for the Stand-alone
format

/libpath:"C:\Temp\SAFMTS" Specifies a path that the linker will
search first to resolve references

/out:
"C:\Temp\Ccode\testscore.
dll"

Specifies the output filename

exit
DOS command that is used to close the
window when running as batch or when
opened for external commands

Note: If you specify the Microsoft Visual C/C++ compiler (-cl) and if the
pathname in your /out: specification contains embedded spaces, you must
use the short (DOS 8.3 specification) versions of the directory names, instead
of the (DOS 9 and later) long names with spaces. When the compiler passes
incorrect pathnames to the linker, the linker will flag error code LNK1181.
You use the DOS command dir /x from the parent directory to display the
short and long name DOS names for a child directory.
Alternatively, you can use separate compile and link commands to avoid
pathname problems.

Appendix 6 55

LAX- Linux for x64 (x86-64)

OS Name SUSE LINUX Enterprise Server

Version
SUSE LINUX Enterprise Server 9
(x86_64)

Compiler GNU C version 3.3.3 (SuSE Linux)

Compiler Documentation http://gcc.gnu.org/onlinedocs/gcc-
3.3.6/gcc/index.html#toc_Invoking-GCC

Compile
command

cc -std=iso9899:1999 -shared -
fPIC -I/tstest1/headers -
o/tstest1/libtstest1 /
tstest1/Score.c
/sas920/safmts/jazxfbrg

-std=iso9899:1999 Specifies the revised ISO C standard,
published in December 1999

-shared A shared object that can then be linked
with other objects to form an executable

-fPIC Generate position-independent code (PIC)
suitable for use in a shared library

-Idir
Add the directory dir to the head of the
list of directories to be searched for
header files

-o filename Place output in file filename

Score.c The SAS Enterprise Miner C scoring code

jazxfbrg
Contains the required Stand-alone
formats functions that need to be linked
in

http://gcc.gnu.org/onlinedocs/gcc-3.3.6/gcc/index.html#toc_Invoking-GCC

56 Enterprise Miner C and Java Score Code Basics

LNX- Linux 32-bit (x86)

OS Name Novell SuSE SLES 9 x86-

Version SUSE LINUX Enterprise Server 9 (i586

Compiler Intel® C++ Compiler for Linux version 9.0

Compiler Documentation
http://software.intel.com/en-
us/articles/intel-c-compiler-for-linux-9x-
manuals/

Compile
command

icc -shared -i_static -strict-
ansi
-I/users/sasled/tstest1
/headers
-o/users/sasled/tstest1/
libtstest1
/users/tstest1/Score.c/sas920/
safmts/jazxfbrg

-shared Tells both the compiler and linker to
produce a dynamic shared object

-i_static Statically links libraries that are provided
by Intel.

-strict-ansi Used for strict ANSI conformance. This
avoids conflicts with file extensions.

-Idir
Add the directory dir to the head of the
list of directories to be searched for
header files

-o filename Places the output in file filename

Score.c SAS Enterprise Miner C scoring code

jazxfbrg
Contains the required Stand-alone
formats functions that need to be linked
in

http://software.intel.com/en-us/articles/intel-c-compiler-for-linux-9x-manuals/
http://software.intel.com/en-us/articles/intel-c-compiler-for-linux-9x-manuals/
http://software.intel.com/en-us/articles/intel-c-compiler-for-linux-9x-manuals/

Appendix 6 57

H64- HP-UX on PA-RISC

OS Name HP-UX 11.23

Version HP-UX B.11.23 U 9000/800

Compiler -01 B.11.X.32509-32512.GP HP C
Compiler

Compiler Documentation
http://h21007.www2.hp.com/portal/downlo
ad/files/unprot/hpux/HP%20C%20HPUX%
20Reference%20Manual.pdf

Compile
command

/usr/bin/cc -v -V -b +Z +DD64 -q -I/
tstest1/headers -o/ tstest1/libtstest1
 / tstest1/Score.c /sas920/safmts/jazxfbrg
>> / tstest1/cclist.txt 2>&1

-V Causes sub processes to print version
information to stderr

-v Enables verbose mode

-b

Creates a shared library rather than an
executable file. The object files must have
been created with the +z or +Z option to
generate position-independent code (PIC).

+Z

Generates shared library object code with
a large data linkage table (long-form PIC).
+DD64 generates 64-bit object code for
PA2.0 architecture.

+DD64 Generates 64-bit object code for PA2.0
architecture

-q

Causes the output file from the linker to
be marked as demand loadable. For
details and system defaults, see the ld(1)
description in the HP-UX Reference
Manual.

-Idir
Add the directory dir to the head of the
list of directories to be searched for
include files by the preprocessor

-o filename Places the output in file filename

/tstest1/Score.c The absolute name of the SAS Enterprise
Miner generated C scoring source file

/sas920/safmts/jazxfbrg The Stand-alone formats link library

http://h21007.www2.hp.com/portal/download/files/unprot/hpux/HP%20C%20HPUX%20Reference%20Manual.pdf
http://h21007.www2.hp.com/portal/download/files/unprot/hpux/HP%20C%20HPUX%20Reference%20Manual.pdf
http://h21007.www2.hp.com/portal/download/files/unprot/hpux/HP%20C%20HPUX%20Reference%20Manual.pdf

58 Enterprise Miner C and Java Score Code Basics

H6I- HP-UX on Itanium

OS Name HP-UX 11.23

Version HP-UX B.11.23 U ia64

Compiler HP aC++/ANSI C B3910B A.06.06 [Nov 7
2005]

Compiler Documentation
http://h21007.www2.hp.com/portal/download/fil
es/unprot/hpux/HP%20C%20HPUX%20Referen
ce%20Manual.pdf

Compile
command

/usr/bin/cc -v -V -b +Z +DD64 -q
-I/ tstest1/headers -o/
tstest1/libtstest1
 / tstest1/Score.c
/sas920/safmts/jazxfbrg >> /
tstest1/cclist.txt 2>&1

-V Causes sub processes to print version
information to stderr

-v Enables verbose mode

-b

Creates a shared library rather than an
executable file. The object files must have
been created with the +z or +Z option to
generate position-independent code (PIC).

+Z

Generates shared library object code with
a large data linkage table (long-form PIC).
+DD64 generates 64-bit object code for
PA2.0 architecture.

+DD64 Generates 64-bit object code for PA2.0
architecture

-q

Causes the output file from the linker to
be marked as demand loadable. For
details and system defaults, see the ld(1)
description in the HP-UX Reference
Manual.

-Idir
Add the directory dir to the head of the
list of directories to be searched for
include files by the preprocessor

-o filename Places the output in file filename

/tstest1/Score.c The absolute name of the SAS Enterprise
Miner generated C scoring source file

/sas920/safmts/jazxfbrg The Stand-alone formats link library

http://h21007.www2.hp.com/portal/download/files/unprot/hpux/HP%20C%20HPUX%20Reference%20Manual.pdf

Appendix 6 59

R64 – AIX on Power

OS Name AIX

Version AIX Version 3.5

Compiler
IBM XL C Enterprise Edition for AIX,
Version 7.0.0.4

Compiler Documentation http://publib.boulder.ibm.com/infocenter/c
omphelp/v8v101/index.jsp

Compile
command

c99 -q64 -G -qlibansi -qarch=com
-I/tstest1/headers /tstest1/
Score.c /sas920/safmts/jazxfbrg
-lm -o /tstest1/libtstest1

-qarch=com
produces object code that will run on all
the 64-bit PowerPC(R) hardware
platforms but not 32-bit-only platforms

-q64 Generates 64-bit code

-qlibansi
Configures the optimizer to generate
better code because it will know about the
behavior of a standard function

-G Specifies the linker that is to create a
shared object enabled for run-time linking

-Im
Specifies the standard math library for
linking. Some configurations might not
require this.

-I dir Specifies an additional search path for
#include filenames

-o filename Specifies an output location and name for
the shared library

/tstest1/Score.c The absolute name of the SAS Enterprise
Miner generated C scoring source file

/sas920/safmts/jazxfbrg the Stand-alone formats link library

http://publib.boulder.ibm.com/infocenter/comphelp/v8v101/index.jsp
http://publib.boulder.ibm.com/infocenter/comphelp/v8v101/index.jsp

60 Enterprise Miner C and Java Score Code Basics

S64 - Solaris on SPARC

OS Name Solaris 9

Version
SunOS 5.8 Generic February 2000
(also known as Solaris 8)

Compiler Sun C 5.7 Patch 117836-02 2005/03/23

Compiler Documentation http://www.oracle.com/pls/topic/lookup?ctx=dsc
&id=/app/docs/doc/819-3688

Compile
command

cc -v -G -xtarget=ultra3
-xarch=v9a -xcode=pic32
-I/tstest1/headers
-o /tstest1/libtstest1/tstest1/
Score.c/sas920/safmts/jazxfbrg

-G Specifies that the linker is to create a
shared object enabled for run-time linking

-xcode=pic32
Generates position-independent code for
use in shared libraries (large models).
Equivalent to –KPIC.

-xtarget=ultra3 Specifies the target system for instruction
set and optimization

-xarch=v9a

Specifies the instruction set architecture
(ISA). If you use this option with
optimization, the appropriate choice can
provide good performance of the
executable on the specified architecture.
An inappropriate choice results in a
binary program that is not executable on
the intended target platform.

-I/tstest1/headers
Adds the specified directory to the list of
directories that are searched for #include
files

-o/tstest1/libtstest1

Specifies the output file filename instead
of using the default filename of a.out. The
specified filename cannot be the same as
the source file. This option and its
arguments are passed to ld(1).

/tstest1/Score.c The absolute name of the SAS Enterprise
Miner generated C scoring source file

/sas920/safmts/jazxfbrg The Stand-alone formats link library

http://docs.sun.com/app/docs/doc/819-3688
http://docs.sun.com/app/docs/doc/819-3688

Appendix 6 61

SAX – Solaris 10 x64 (x64-86)

OS Name SunOS

Version
SunOS 5.10 Generic January 2005
i86pc

Compiler C 5.9 SunOS_i386 Patch 124868-01
2007/07/12

Compiler Documentation http://www.oracle.com/pls/topic/lookup?ctx=dsc
&id=/app/docs/doc/819-3688

Compile
command

cc -V -v -G -xtarget=opteron
-xarch=amd64a -KPIC
-I/tstest1/headers
-o /tstest1/libtstest1/tstest1/
Score.c/sas920/safmts/jazxfbrg

-G Specifies that the linker is to create a
shared object enabled for run-time linking

-xtarget=opteron Specifies the target system for instruction
set and optimization

-xarch=amd64a

Specifies the instruction set architecture
(ISA). If you use this option with
optimization, the appropriate choice can
provide good performance of the
executable on the specified architecture.
An inappropriate choice results in a
binary program that is not executable on
the intended target platform.

-KPIC Generates position-independent code for
use in shared libraries

-I/tstest1/headers
Adds the specified directory to the list of
directories that are searched for #include
files

-o/tstest1/libtstest1

Specifies the output file filename instead
of using the default filename of a.out.
The specified filename cannot be the same
as the source file. This option and its
arguments are passed to ld(1).

/tstest1/Score.c The absolute name of the SAS Enterprise
Miner generated C scoring source file

/sas920/safmts/jazxfbrg The Stand-alone formats link library

http://docs.sun.com/app/docs/doc/819-3688
http://docs.sun.com/app/docs/doc/819-3688

62 Enterprise Miner C and Java Score Code Basics

	TOC
	1 C and Java Score Code in SAS Enterprise Miner
	SAS Enterprise Miner Tools That Produce C and Java Score Code
	SAS Formats Support
	Generated C and Java Code
	Generated C Code
	DB2 User-Defined Functions
	DB2 Data Types

	C Code Usage
	C Formats Support
	C Formats Support Distribution
	C Formats Usage

	Generated Java Code
	Java Package Name

	Java Code Usage
	Java Scoring JAR Files
	Java Scoring JAR File Distribution
	Java Scoring JAR File Usage
	SAS System Formats

	2 Scoring Example
	Create Folders for the Example
	Gather Files
	Create SAS Enterprise Miner Process Flow Diagram
	Scoring with C Code
	Save and Edit C Code Component Files
	Organize C Code Component Files
	Compile, Link, and Run C Score Code in UNIX

	Scoring with Java Code
	Save and Organize Java Code Component Files
	Create Java Main Program
	Compile and Run Java Score Code in UNIX

	3 C and Java Score Code in SAS Enterprise Miner
	SAS Enterprise Miner Tools That Produce C and Java Score Code
	SAS Formats Support
	Generated C and Java Code
	Generated C Code
	DB2 User-Defined Functions
	DB2 Data Types

	C Code Usage
	C Formats Support
	C Formats Support Distribution
	C Formats Usage

	Generated Java Code
	Java Package Name

	Java Code Usage
	Java Scoring JAR Files
	Java Scoring JAR File Distribution
	Java Scoring JAR File Usage
	SAS System Formats

	1 Programming Information
	General Code Limitations
	Supported Functions
	Supported SAS Operators
	Arithmetic Operators
	Comparison Operators
	Logical Operators
	Other Operators

	Conditional Statement Syntax
	Variable Name Length
	Character Data Length
	Extended Character Sets

	2 Example Java Main Program
	3 Example C Main Program
	4 SAS System Formats Supported Java Scoring
	5 SAS System Formats Supported for C Scoring
	6 C Compiler Command Examples
	C Compiler Command Examples
	W32 – Windows 32-bit (x86)
	LAX- Linux for x64 (x86-64)
	LNX- Linux 32-bit (x86)
	H64- HP-UX on PA-RISC
	H6I- HP-UX on Itanium
	R64 – AIX on Power
	S64 - Solaris on SPARC
	SAX – Solaris 10 x64 (x64-86)

