Chapter 8 • Customizing Project Code, Time Intervals, Formats, and Events

Add Start-Up and Shutdown Code to a Project
Create Custom Time Intervals
Create a Custom Format
Create a Customized List of Events

Chapter 9 • Miscellaneous Administration Tasks

Change Configuration Properties in SAS Management Console
Specify a Time-Out
Configure a SAS Environment URL
Set the Preferred SAS Environment in the Logon Dialog Box for SAS Forecast Studio
Configure the Archive Functionality
Remove a Product Configuration with the SAS Deployment Manager
Archive a Project

Chapter 10 • SAS Forecast Studio

Requirements for Starting SAS Forecast Studio
Run SAS Forecast Studio from a Local Installation
Use Java Web Start
Start SAS Forecast Studio with Options

Chapter 11 • SAS Forecast Batch Interface

About the SAS Forecast Batch Interface
Dictionary

Chapter 12 • SAS Forecast Studio Tasks in Other SAS Software

About the SAS Forecast Studio Tasks
Prerequisites for Using the SAS Forecast Studio Tasks
Grant Access to the SAS Forecast Studio Tasks

PART 5 SAS Forecast Server Utility Macros

Chapter 13 • Using the SAS Forecast Server Utility Macros

About the SAS Forecast Server Utility Macros
Dictionary

PART 6 Appendixes

Appendix 1 • Troubleshooting the SAS Forecast Server
Gather Information ... 184
Additional Resources ... 186
Troubleshoot the SAS Forecast Server 189
Troubleshoot the Java Web Start Clients 190
Troubleshoot the Logon Process .. 191
Troubleshoot the SAS Forecast Server Plug-ins for SAS Management Console .. 192
Troubleshoot the SAS Forecast Batch Interface 193
Performance Tuning for the SAS Forecast Server 194

Glossary .. 197
Index ... 199
About This Book

Audience

The SAS Forecast Server: Administrator's Guide is intended for system administrators who need to install, configure, and optimize the SAS Forecast Server. SAS and other programming expertise are not required.

SAS Forecast Server uses the SAS Intelligence Platform, so your system administrator should be familiar with the SAS Intelligence Platform. For more information, see http://support.sas.com/documentation/onlinedoc/intellplatform.

The system administrator performs these tasks:

• installs and configures the required SAS Intelligence Platform software on the required operating system.

• administers the metadata for the SAS Forecast Server and SAS Data Integration Studio (if your site uses ETL processes). The system administrator maintains the metadata for servers, users, and other global resources that are required by the SAS Forecast Server and SAS Data Integration Studio.

The SAS Forecast Server administrator performs these tasks:

• administers the metadata for SAS Forecast Server. Either the SAS Forecast Server administrator or the system administrator maintains the metadata for servers, users, and other global resources that are required by the SAS Forecast Server.

• maintains the data and performs other administration tasks that enable users to analyze data.

Prerequisites

Review the system requirements documentation before you install the SAS Forecast Server to ensure that your system meets the requirements. For more information, see http://support.sas.com/documentation/installcenter/en/ikforecastofrsr/65717/HTML/default/index.html.

Note: You must have SAS/OR software licensed to access its full functionality. The SAS Forecast Server has internal access to SAS/OR software with limited functionality, but direct access to and the full functionality of SAS/OR software is not provided.
Documentation Conventions

\$SASROOT
represents the SAS Foundation directory.

\$SAS_CONFIG
represents the SAS configuration directory.

\$SAS_HOME
represents the SAS installation directory.
Accessibility and Compatibility Features

SAS Forecast Server has been tested with assistive technology tools. It includes accessibility and compatibility features that improve the usability of the product for users with disabilities with some exceptions. These features are related to accessibility standards for electronic information technology that were adopted by the US Government under Section 508 of the US Rehabilitation Act of 1973 (2008 draft proposal initiative update). For more information about the accessibility of the SAS Forecast Server, see the SAS Forecast Studio: User's Guide.

For detailed information about the accessibility of the SAS Forecast Server, send e-mail to accessibility@sas.com or call SAS Technical Support.
Accessibility and Compatibility Features
Recommended Reading

- *SAS Forecast Server: Migration Guide*

For a complete list of SAS publications, go to support.sas.com/bookstore. If you have questions about which titles you need, please contact a SAS Publishing Sales Representative:

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-3228
Fax: 1-919-677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore
Recommended Reading
Part 1

Introduction to the SAS Forecast Server

Chapter 1
Understanding the SAS Forecast Server
Chapter 1
Understanding the SAS Forecast Server

What Is the SAS Forecast Server?
The SAS Forecast Server is a large-scale, automatic forecasting solution that enables organizations to produce huge quantities of high-quality forecasts quickly and automatically.

The SAS Forecast Server has two primary components:

• SAS Forecast Server Mid-Tier, which is supported by the SAS Web Infrastructure Platform Database
• SAS Forecast Studio, which is the graphical user interface (based on Java) to the forecasting and time series analysis procedures in SAS High-Performance Forecasting and SAS/ETS software
Overview of the SAS Forecast Server Architecture

Architecture Diagram

The following figure shows how SAS Forecast Studio and the SAS Forecast Server Mid-Tier fit with the SAS Intelligence Platform.

Figure 1.1 The SAS Forecast Server Architecture

The SAS Intelligence Platform Components

The SAS Forecast Server works with the SAS Intelligence Platform, which is installed and configured when you deploy the SAS Forecast Server.

SAS Metadata Server

The SAS Metadata Server provides an enterprise-level repository for SAS server configurations and application management metadata. Products such as the SAS Forecast Server store metadata about users and other resources. Administrators use SAS Management Console to administer the SAS Metadata Server and the SAS server configurations. The SAS Forecast Server uses the SAS Metadata Server to obtain metadata about SAS libraries, the SAS Workspace Server, and the SAS Object Spawner and to authenticate users. A SAS System installation is required.

The SAS Workspace Server and the SAS Object Spawner

The SAS Workspace Server provides all computation and intermediate data storage services. A SAS System installation is required.
The SAS Forecast Server uses the SAS Workspace Server to execute SAS High-Performance Forecasting procedures and to save data to SAS data sets. The SAS Forecast Server accesses the SAS Workspace Server and the SAS Object Spawner through the middle tier.

SAS Web Infrastructure Platform Database
The SAS Forecast Server supports deployment to each application server that is supported in SAS 9.3.

SAS Services Application
The SAS Services Application deploys a set of services called Remote Services. Remote Services are used by the SAS Information Delivery Portal, the SAS Stored Process Web application, and other Web applications. The SAS Services Application must be started before you start your Web application server.

The Components of the SAS Forecast Server

The SAS Forecast Server bundle consists of the following components:

SAS Forecast Server
The SAS Forecast Server Mid-Tier is deployed on an application server. The SAS Forecast Server Mid-Tier is a collection of custom services that are used to support the SAS Forecast Server clients and to coordinate their use of the underlying SAS Intelligence Platform.

SAS Forecast Studio
SAS Forecast Studio is the primary client application of the SAS Forecast Server. With its graphical user interface, SAS Forecast Studio provides the user visual access to SAS Forecast Server projects. A connection to the middle tier is required by SAS Forecast Studio. The middle tier reports and manages the state of the SAS Forecast Server project.

Note: In addition, SAS Forecast Server clients require a connection to the middle tier.

SAS Forecast Server Plug-ins for SAS Management Console
The SAS Forecast Server Plug-ins for SAS Management Console provide a graphical user interface for managing the resources and content of the SAS Forecast Server Mid-Tier. You can use the SAS Forecast Server Plug-ins for SAS Management Console to perform the administrative tasks that are required to create and maintain an integrated environment. SAS Forecast Studio generates and uses the content, and the plug-ins manage the project and its content. Managing includes copying an environment, moving a project, converting a project to a new release, and deleting an environment.

SAS Forecast Project Manager
The SAS Forecast Project Manager is a stand-alone management client designed to require only HTTP-based communication. The SAS Forecast Project Manager enables you to configure the project. (The SAS Forecast Project Manager has all of the management capabilities that are available in the SAS Forecast Server Plug-ins for SAS Management Console.)

SAS Forecast Batch Interface
The SAS Forecast Batch Interface consists of client macros to use with the SAS Foundation. These macros send requests to the SAS Forecast Server Mid-Tier to perform actions, including creating and managing projects and updating forecasts just like the other SAS Forecast Server clients. Most actions focus on managing projects and environments. These actions parallel actions available in the SAS Forecast Project Manager and the SAS Forecast Server Plug-ins for SAS.
Management Console. In addition, macros for creating and running projects are included in the batch interface. As a result, the SAS Forecast Batch Interface is the best option for scripting and scheduling.

SAS Time Series Studio Mid-Tier
The SAS Time Series Studio Mid-Tier is deployed on an application server. The SAS Time Series Studio Mid-Tier is a collection of custom services that are used to support the SAS Time Series Studio Client.

SAS Time Series Studio Client
The SAS Time Series Studio Client is experimental for the release 12.1. It requires a 64-bit Windows middle tier. It enables you to interactively explore time series data. You can interactively structure the time series data from several hierarchical and frequency perspectives. You can interactively query (or subset) the time series data using hierarchical queries, graphical queries, filtering queries, or manual selection. Given a target series, you can interactively search for similar series. After retrieving time series data, you can analyze the data using common statistical time series analysis techniques. After understanding the patterns in the selected time series, the data can be exported for subsequent analysis such as forecasting, econometric analysis, pricing analysis, risk analysis, time series mining, and other analyses related to time series data.

SAS Forecast Server Integration

The following figure shows the access points for SAS Forecast Studio, the SAS Forecast Server Mid-Tier, and the SAS High-Performance Forecasting procedures.
The following conditions must be true for the SAS Forecast Server to run:

- The SAS Metadata Server is running.
- The SAS Object Spawner is running.
- Remote Services are running.
- The SAS Web Infrastructure Platform Database and the SAS Forecast Server are running on an application server.
- The input data for the SAS Forecast Server is accessible through configured SAS libraries.

SAS Forecast Studio accesses the SAS Forecast Server Mid-Tier when it needs to access the SAS Metadata Server or the SAS Workspace Server. The SAS Forecast Server Mid-Tier coordinates the use of the SAS Intelligence Platform (the SAS Metadata Server and the SAS Workspace Server) for the following purposes:

- access and return SAS library metadata from the SAS Metadata Server
- execute SAS High-Performance Forecasting procedures and return results
- authenticate users on the SAS Metadata Server

For more information about the SAS Intelligence Platform, see the SAS Intelligence Platform documentation set at http://support.sas.com/documentation/onlinedoc/intellplatform.
Part 2

Installing the SAS Forecast Server

Chapter 2
 Pre-Installation Tasks .. 11

Chapter 3
 Installing the SAS Forecast Server 15

Chapter 4
 Post-Installation Tasks ... 21
Create an Operating System Account for Product Administrators and Users

About the User Accounts for the SAS Forecast Server

SAS Forecast Server has two types of user accounts:

- **product administrator**
 A product administrator is specific to the SAS Forecast Server. A product administrator account is not the same as a general administrator account, such as the SAS administrator (sasadm@saspw) account. A product administrator must have a valid host operating system account, and you must associate that account with a metadata user using SAS Management Console.

 You must create the valid host operating system account for the product administrator as a pre-installation task. For more information, see “Create an Operating System Account for the Product Administrator” on page 12.

- **SAS Forecast Studio user**
 A SAS Forecast Studio user must have a valid host operating system account, and you must associate that account with a metadata user using SAS Management Console. In addition, a SAS Forecast Studio user must have full access to the appropriate project areas on each SAS Workspace Server.

 You can create a regular user account for the SAS Forecast Server as a post-installation task. For more information, see “Manage Roles and Capabilities” on page 23.
Create an Operating System Account for the Product Administrator

On each SAS Workspace Server that has SAS Forecast Server projects, create an operating system account for the product administrator of SAS Forecast Server.

If the SAS Workspace Server is running on Windows, use one of the following methods to create this operating system account:

- If you are working on a local machine, complete the following steps to create the operating system account:
 1. If you are running Windows 7, right-click the Computer icon on your desktop, and select Manage. The Computer Management dialog box appears.
 2. In the left navigation pane, expand the Local Users and Groups folder. The Users folder and Groups folder appear.
 3. Right-click the Users folder, and select New User. The New User dialog box appears.
 4. In this dialog box, complete these tasks:
 - Specify a user name and password.
 - Clear the User must change password at next logon check box.
 - Select the User cannot change password check box.
 - Select the Password never expires check box.
 - Click Create.
 5. Click Close.
 - Define the new user (for example, <domain>\username) on the Microsoft Active Directory Server.
 - Grant the user permission Log on as a Batch Job.

Create an Operating System Account for a SAS Forecast Studio User

Create an operating system account for each SAS Forecast Studio user. SAS Forecast Studio runs on Windows. For more information about creating operating system accounts in Windows, see “Create an Operating System Account for the Product Administrator” on page 12.

Install Your Web Application Server

Before you install the SAS Forecast Server, you must have installed a Web application server. For more information about how to install and configure a Web application server so that it works with SAS, see http://support.sas.com/resources/thirdpartysupport/v93/appservers/index.html.
Create and Configure a Forecasting Environment

About Forecasting Environments

Note: A forecasting environment is different from a SAS environment. A SAS environment is used only when you log on to the product. The forecasting environment is used after you log on to the product and start a product session.

A forecasting environment is a product workspace for a product session. A forecasting environment is created by the SAS Forecast Server product administrator, and it is used only by the SAS Forecast Server and its client applications. Forecasting environments can be used to organize your projects and to control access to SAS Forecast Server projects.

How You Can Create Forecasting Environments

You must create at least one forecasting environment before you can create a project in SAS Forecast Studio.

You can create a forecasting environment using one of the following ways:

- You can create a forecasting environment when you install the SAS Forecast Server by using the SAS Forecast Server: Environment Setup step in the SAS Deployment Wizard. For more information, see “How to Install and Configure the SAS Forecast Server” on page 15.

- After the SAS Forecast Server is installed, you can create a forecasting environment using the SAS Forecast Server Plug-ins for SAS Management Console or the SAS Forecast Project Manager. For more information, see the online Help for the SAS Forecast Server Plug-ins for SAS Management Console or the online Help for the SAS Forecast Project Manager.
Requirements for a New Forecasting Environment

All product users who need to access the forecasting environment must have full access to the file system content in that environment directory, including the root directory and any subdirectories. A product administrator needs to set permissions based on the specific operating environment. A product administrator should verify that every user has permission to access any new files that are created in the environment directory.

Determine the Location of the SAS Environment URL

During the deployment of the SAS Forecast Server, you are prompted by the SAS Deployment Wizard to specify the URL location of the SAS environment file (named sas-environment.xml). An example is `http://<your HTTP server>/sas-environment.xml`. This file defines a set of SAS deployments at your site for SAS Forecast Server client applications to use. The sas-environment.xml file does not need to physically exist at the URL location that you specify in the SAS Deployment Wizard during deployment. However, knowing the intended location of this URL is important and efficient because during every SAS Forecast Server client installation, you are prompted to specify this value. If you do not specify the correct URL location of the SAS environment file during deployment, then you must manually specify the URL location in a file on every client.

Chapter 3
Installing the SAS Forecast Server

About the Deployment of the SAS Forecast Server
When you deploy the SAS Forecast Server, you deploy all of the components that are part of the SAS Forecast Server architecture. For more information, see “Overview of the SAS Forecast Server Architecture” on page 4.

How to Install and Configure the SAS Forecast Server
To install and configure the SAS Forecast Server, you use the SAS Deployment Wizard and follow the basic process described in the SAS Intelligence Platform: Installation and Configuration Guide. Some steps in the SAS Deployment Wizard are specific to installing and configuring the SAS Forecast Server. Here is the information that you need to install the SAS Forecast Server:

1. Start the SAS Deployment Wizard from your SAS Software Depot. For example, on a Windows system, double-click the setup.exe file located in your SAS Software Depot folder.

2. In the Specify Deployment Plan step, select your deployment plan. It is recommended that you use one of the standard deployment plans created by SAS. If you need a custom plan, contact your SAS support personnel for assistance.
Note: To install the experimental release of SAS Time Series Studio Client, you must have a custom plan. For more information, contact your SAS support personnel.

3. In the Select Deployment Step and Products to Install step, verify the products that you want to install on your machine. Depending on what software you license at your site, additional products might be installed. For a multiple-machine deployment, products and components can be installed on several machines.

In this example, the following SAS Forecast Server components are being installed on a single machine:

- SAS Forecast Server Mid-Tier
- SAS Forecast Batch Interface Java Components
- SAS Forecast Project Manager
- SAS Forecast Studio
Click Next.

4. In the Select Microsoft Office Applications step, select the Microsoft Office applications in which you want to run the SAS Add-In for Microsoft Office. Click Next.

 Note: This step is available only if your site licenses the SAS Add-In for Microsoft Office.

5. In the SAS Environments URL step, specify the URL location of the SAS environment file. For more information, see “Determine the Location of the SAS Environment URL” on page 14.

6. In the SAS Forecast Server: SOAP Configuration step, select Grant access to SAS Forecast Studio tasks to allow the SAS Add-In for Microsoft Office and SAS Enterprise Guide to access SAS Forecast Studio tasks. For more information, see “SAS Forecast Studio Tasks in Other SAS Software” on page 169.

 Click Next.
7. In the SAS Forecast Server: Environment Setup step, you can select to **Create an environment during configuration**. Selecting this option enables you to create a forecasting environment during configuration, not as a post-installation step. A forecasting environment is required. It serves as a container for SAS Forecast Server projects and should not be confused with a SAS environment. If you choose to create a forecasting environment as a post-installation step, you must create at least one forecasting environment in a SAS Forecast Server client before using SAS Forecast Studio. Click **Next**.
If you select the **Create an environment during configuration** check box, registration information for the Default forecasting environment is created.

Note: In this example, the content location refers to a path on the SAS Workspace Server. The path that you specify for the content location must meet the requirements for a new forecasting environment. As a result, you might have to manually configure this path on the SAS Forecast Server as a post-installation step. For more information about forecasting environments and their requirements, see “About Forecasting Environments” on page 13.

8. In the SAS Internal Account: Forecast Server Metadata User step, specify the password for the metadata user.

9. In the Deployment Summary, review the products that you are about to install on your machine, and click **Start**.

10. In the Additional Resources step, review the additional resources and complete the manual configuration instructions in the Instructions.html file.
Click **Finish** to exit the SAS Deployment Wizard.
Chapter 4
Post-Installation Tasks

Minimum Requirements for Post-Installation ... 21
Create a Forecasting Environment ... 21

Set Permissions for Forecasting Environments in UNIX
Operating Environments ... 22
 Use Operating System Groups to Assign Permissions 22
 Conditions for the SAS Forecast Server User Group 22
 Update the SAS Scripts to Grant Permissions to the SAS
 Forecast Server User Group .. 22

Manage Roles and Capabilities .. 23
 About Metadata Groups, Roles, and Capabilities 23
 How to Configure the SAS Forecast Server Users 28

Minimum Requirements for Post-Installation

The number of post-installation and configuration tasks that you need to complete
depends on your site. For example, your site might not use the Java Web Start client or
the sample reports that are provided with the SAS Forecast Server. If that is the case,
you do not need to complete certain post-installation tasks.

Every site must complete the following steps to run the SAS Forecast Server:

• create a forecasting environment
• set the permissions for each forecasting environment
• specify the roles and capabilities for each user of the SAS Forecast Server

Create a Forecasting Environment

When you install the SAS Forecast Server using the SAS Deployment Wizard, you have
the option of creating a default forecasting environment. If you do not create a
forecasting environment during installation, then you must create the environment as a
post-installation task. You can create this environment using the SAS Forecast Server
Plug-ins for SAS Management Console or the SAS Forecast Project Manager.
For more information, see “Create and Configure a Forecasting Environment” on page 13.

Set Permissions for Forecasting Environments in UNIX Operating Environments

Use Operating System Groups to Assign Permissions

Users have different operating system privileges on the SAS Workspace Server. By defining a user group for the SAS Forecast Server, you can assign all SAS Forecast Server users to the same group, and you can grant the same permissions to all SAS Forecast Server users at one time. Each SAS Forecast Server user must have Read, Write, and Execute permissions to each forecasting environment directory that he or she is permitted to use. A user also needs Read, Write, and Execute permissions to all of the files and directories in the forecasting environment directory. The operating system must be configured to grant these permissions as new files and directories are created. The exact details of how this is done depends on which operating system groups are defined and your site’s security policies.

Conditions for the SAS Forecast Server User Group

If you are working in a UNIX operating environment, the following conditions must be met:

- A group of SAS Forecast Server users is created for the UNIX operating environment. The logon ID of each SAS Forecast Server user must be in this group. The group must include any user who might run code that is created from a SAS Forecast Server project in a SAS session.

- A user can be a member of multiple groups, but the SAS Forecast Server user group is the primary group for each user.

- SAS scripts are updated to grant permissions to each SAS Forecast Server user on the SAS Workspace Server and the SAS Stored Process Server. For more information, see “Update the SAS Scripts to Grant Permissions to the SAS Forecast Server User Group” on page 22.

- Each forecasting environment directory has the correct ownership, and the SAS Forecast Server user group members have Read, Write, and Execute permissions.

Update the SAS Scripts to Grant Permissions to the SAS Forecast Server User Group

Using the UMASK option, you can grant permissions to a SAS Forecast Server user on a conditional basis if the user is a member of the SAS Forecast Server user group.

Note: The following example might require changes to match your server configuration. In particular, this example could result in changed permissions to other SAS files such as OLAP cubes. For example, if you are working with multiple UNIX user groups, and your site has a SAS OLAP Server, you must ensure that the account under which the SAS OLAP Server runs maintains the Read and Execute permissions to OLAP cubes.
To grant permissions to the SAS Forecast Server user group:

2. Enter the configuration information for your operating environment. Here is the general format of this code:

 Note: The following code uses grave accents, not quotation marks.

   ```
   CMD=<your-operating-system-path>
   CURR_GID=`eval $CMD -g`
   GID=<solution-group-id>
   if [ $CURR_GID -eq $GID ]; then umask 002fi
   ``

   a In `CMD=<your-operating-system-path>`, specify the full path on your SAS Workspace Server where the ID command is stored. You can get this information by submitting a `which id` or `whence id` command.

   b In `GID=<solution-group-id>`, specify the group ID. Type `id` to get the GID and UID information.

   c A value of 002 is recommended for the `umask` option.

Here are code examples for each UNIX environment where the SAS Forecast Server is supported:

<table>
<thead>
<tr>
<th>Operating Environment</th>
<th>Sample Code</th>
</tr>
</thead>
</table>
| AIX                   | CMD=/usr/bin/id
 |                         | CURR_GID=`eval $CMD -g`
 |                         | GID=201
 |                         | if [ $CURR_GID -eq $GID ]; then umask 002fi |
| HP 64 (HP-RISC)       | CMD=/usr/xpg4/bin/id
 |                         | CURR_GID=`eval $CMD -g`
 |                         | GID=201
 |                         | if [ $CURR_GID -eq $GID ]; then umask 002fi |
| HP 64 Itanium         | CMD=/usr/bin/id
 |                         | CURR_GID=`eval $CMD -g`
 |                         | GID=201
 |                         | if [ $CURR_GID -eq $GID ]; then umask 002fi |
| Solaris 64            | CMD=/usr/xpg4/bin/id
 |                         | CURR_GID=`eval $CMD -g`
 |                         | GID=201
 |                         | if [ $CURR_GID -eq $GID ]; then umask 002fi |
| Solaris X64           | CMD=/usr/bin/id
 |                         | CURR_GID=`eval $CMD -g`
 |                         | GID=500
 |                         | if [ "$CURR_GID" -eq "$GID" ]; then umask 002fi |
| Linux                 | #!/bin/bash
 |                         | CMD=/usr/bin/id
 |                         | CURR_GID=`eval $CMD -g`
 |                         | GID=500
 |                         | if [ "$CURR_GID" -eq "$GID" ]; then umask 002fi |

---

**Manage Roles and Capabilities**

**About Metadata Groups, Roles, and Capabilities**

**Default Roles for the SAS Forecast Server**

SAS Forecast Server provides default metadata roles. When the SAS Forecast Server is deployed, capabilities are already assigned to the default metadata roles. Using SAS
Management Console, you can add capabilities to these default roles. You can create your own metadata roles and specify capabilities for those roles.

The following roles are provided with the SAS Forecast Server:

<table>
<thead>
<tr>
<th>Role</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forecast Server: Administrator</td>
<td>Manages product content, such as projects.</td>
</tr>
<tr>
<td>Forecast Server: Forecaster</td>
<td>Creates projects and generates forecasts.</td>
</tr>
<tr>
<td>Forecast Server: Analyst</td>
<td>Analyzes the time series data and the results of the forecast.</td>
</tr>
<tr>
<td>Forecast Server: Browser</td>
<td>Views the results of the forecasts and uses reports.</td>
</tr>
</tbody>
</table>

In addition to these SAS Forecast Server roles, you might use the Job Execution: Job Submitter role and Management Console: Advanced role. These two roles are available in SAS Management Console and are not specific to the SAS Forecast Server. The Job Execution: Job Submitter role enables you to run stored processes from the Reports and Stored Processes dialog box. (This assumes that the Job Execution Service is configured to enforce these capabilities.) The Management Console: Advanced role enables you to access product plug-ins, such as the SAS Forecast Server Plug-ins for SAS Management Console.

**Capabilities in the SAS Forecast Server**

The following table lists the capabilities in the SAS Forecast Server. Use these capabilities to prevent a user from requesting that the SAS Forecast Server perform a specific action, such as generate a forecast or update a model specification.

*Note:* Granting a capability to a user does not necessarily ensure access to an action. Other settings (such as project configuration, project ownership, and metadata permissions) can limit access to an action.

<table>
<thead>
<tr>
<th>Capability</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forecast Studio</td>
<td>Enables the use of the SAS Forecast Studio client.</td>
</tr>
<tr>
<td>Management Clients</td>
<td>Enables the use of the SAS Forecast Server Plug-ins for SAS Management Console and the SAS Forecast Project Manager.</td>
</tr>
<tr>
<td>SOAP Service Bridge</td>
<td>Enables the use of SAS Forecast Studio tasks that are available in SAS Enterprise Guide and the SAS Add-In for Microsoft Office.</td>
</tr>
<tr>
<td>Macro Bridge</td>
<td>Enables the use of the SAS Forecast Batch Interface (for example, the FSCOPY macro).</td>
</tr>
</tbody>
</table>
### Table 4.2 General Features

<table>
<thead>
<tr>
<th>Capability</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administer Product</td>
<td>Enables the user to administer the metadata for and the projects in the SAS Forecast Server. Users who are assigned this capability are exempt from the SAS Forecast Server’s internal security checks, which are based on project ownership and whether the project is shared. However, these users are still subject to other restrictions imposed by other capabilities and metadata permissions.</td>
</tr>
<tr>
<td>Analyze Time Series</td>
<td>Enables the Series View in SAS Forecast Studio.</td>
</tr>
<tr>
<td>Analyze Models</td>
<td>Enables the Modeling View in SAS Forecast Studio.</td>
</tr>
<tr>
<td>Change Series Usage</td>
<td>Enables the user to specify whether a series is active. For example, this capability enables the <strong>Active series</strong> check box in the Forecasting View and the Modeling View.</td>
</tr>
<tr>
<td>Import New Data</td>
<td>Enables the user to choose whether to update the project when the SAS Forecast Server determines that changes have been made to the input data set. For example, this capability selects the <strong>Use updated data if available</strong> check box in several dialog boxes in SAS Forecast Studio, such as the Update Project Version dialog box and the Reforecast Project dialog box. Users who are not assigned this capability cannot update the input data set for the project. Instead, the project uses the version of the data that was available when the project was created.</td>
</tr>
</tbody>
</table>

### Table 4.3 Forecasts

<table>
<thead>
<tr>
<th>Capability</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modify Forecasts</td>
<td>Enables the user to forecast the project or series in SAS Forecast Studio.</td>
</tr>
<tr>
<td>Reconcile Forecasts</td>
<td>Enables the user to reconcile the hierarchy. For example, this capability enables the <strong>Reconcile Hierarchy</strong> menu item, the Reconcile Hierarchy icon in the Forecasting View, and the <strong>Reconcile</strong> message (that appears in the workspace if there are override conflicts or unresolved nodes).</td>
</tr>
</tbody>
</table>
### Capability Description

**Override Forecasts**
Enables the user to create, edit, or delete override values. For example, this capability enables the Override calculator, the ability to lock overrides, and ability to select Set Scenario Forecast Values as Overrides in the Scenario Analysis View.

**Change Model Selection**
Enables the user to change the baseline model for the series. For example, in the Modeling View, this capability enables the Set this model as forecast model and Reset to “automatic selection” links.

**Modify Models**
Enables the user to create, delete, copy, and edit models. This capability enables the user to import models from a catalog and export models to a catalog.

**Change Event Usage**
Enables the user to specify whether an event is used in the model. For example, this capability enables the Usage in system-generated models menu in the Events Properties dialog box.

**Modify Events**
Enables the user to create, delete, copy, and edit events. This capability enables the user to import events from a catalog and export events to a catalog.

**View Environment Details**
Enables the user to view the properties of SAS Forecast Server environments.

**Manage Environment Settings**
Enables the user to edit the properties of SAS Forecast Server environments.

**Manage Environments**
Enables the user to create, delete, and rename environments.

### Table 4.4 Models

<table>
<thead>
<tr>
<th>Capability</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change Model Selection</td>
<td>Enables the user to change the baseline model for the series. For example, in the Modeling View, this capability enables the Set this model as forecast model and Reset to “automatic selection” links.</td>
</tr>
<tr>
<td>Modify Models</td>
<td>Enables the user to create, delete, copy, and edit models. This capability enables the user to import models from a catalog and export models to a catalog.</td>
</tr>
</tbody>
</table>

### Table 4.5 Events

<table>
<thead>
<tr>
<th>Capability</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change Event Usage</td>
<td>Enables the user to specify whether an event is used in the model. For example, this capability enables the Usage in system-generated models menu in the Events Properties dialog box.</td>
</tr>
<tr>
<td>Modify Events</td>
<td>Enables the user to create, delete, copy, and edit events. This capability enables the user to import events from a catalog and export events to a catalog.</td>
</tr>
</tbody>
</table>

### Table 4.6 Environments

<table>
<thead>
<tr>
<th>Capability</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>View Environment Details</td>
<td>Enables the user to view the properties of SAS Forecast Server environments.</td>
</tr>
<tr>
<td>Manage Environment Settings</td>
<td>Enables the user to edit the properties of SAS Forecast Server environments.</td>
</tr>
<tr>
<td>Manage Environments</td>
<td>Enables the user to create, delete, and rename environments.</td>
</tr>
</tbody>
</table>

26 Chapter 4 • Post-Installation Tasks
### Table 4.7  Projects

<table>
<thead>
<tr>
<th>Capability</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create Projects</td>
<td>Enables the user to create a new project. This capability enables the New Project wizard.</td>
</tr>
<tr>
<td>Manage Projects</td>
<td>Enables the user to delete, copy, register, and unregister a project; import and unarchive a project; export and archive a project; delete project archives; and update the project version.</td>
</tr>
<tr>
<td>Manage Project Access</td>
<td>Enables the user to specify whether a project is shared and to change the ownership of a project. For example, this capability enables the <strong>New Owner</strong> and <strong>Share</strong> options in the SAS Forecast Server Plug-ins for SAS Management Console.</td>
</tr>
<tr>
<td>Manage Project Settings</td>
<td>Enables the user to specify the hierarchy and variable settings and forecasting settings for a project. For example, this capability enables the <strong>Hierarchy and Variable Settings</strong> and <strong>Forecasting Settings</strong> dialog boxes in SAS Forecast Studio.</td>
</tr>
<tr>
<td>View Project Scripts</td>
<td>Enables the user to view the project code that runs when the project is opened and when the project is closed. For example, this capability enables the <strong>Start-up and shutdown Code</strong> button in the New Project wizard and in the Project Properties dialog box.</td>
</tr>
<tr>
<td>Modify Project Scripts</td>
<td>Enables the user to edit the project code that runs when the project is opened and when the project is closed. For example, this capability enables the user to edit the code in the SAS <strong>Start-up and Shutdown Code</strong> dialog box.</td>
</tr>
</tbody>
</table>

### Table 4.8  Notes

<table>
<thead>
<tr>
<th>Capability</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>View Notes</td>
<td>Enables the Notes panel at the bottom of the Forecasting View.</td>
</tr>
<tr>
<td>Modify Notes</td>
<td>Enables the user to edit the content in the Notes panel at the bottom of the Forecasting View. This capability enables the user to create and remove notes.</td>
</tr>
</tbody>
</table>
Table 4.9  Reports

<table>
<thead>
<tr>
<th>Capability</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Reports</td>
<td>Enables the <strong>Reports and Stored Processes</strong> menu item and the Reports and Stored Processes dialog box in SAS Forecast Studio.</td>
</tr>
<tr>
<td>Manage Reports</td>
<td>Enables the user to manage reports. For example, this capability enables a user to deploy and remove sample reports.</td>
</tr>
</tbody>
</table>

Table 4.10  Scenarios

<table>
<thead>
<tr>
<th>Capability</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>View Scenarios</td>
<td>Enables the Scenario Analysis View in SAS Forecast Studio.</td>
</tr>
<tr>
<td>Modify Scenarios</td>
<td>Enables the user to create new scenarios and to edit, save, and delete existing scenarios.</td>
</tr>
</tbody>
</table>

Table 4.11  Special Features

<table>
<thead>
<tr>
<th>Capability</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legacy Features</td>
<td>Enables legacy features. This capability is provided only to help users through transitional periods that result from design changes in the next release. Support for these legacy features is limited. You should enable legacy features only if directed by SAS Technical Support.</td>
</tr>
<tr>
<td>Experimental Features</td>
<td>Enables experimental features that are still under development. These experimental features might change or be removed in a future release. No migration support is provided for these experimental features. You should enable experimental features only if directed by SAS Technical Support.</td>
</tr>
<tr>
<td>Debugging Features</td>
<td>Enables debugging features that are provided to help users and SAS Technical Support when problems arise. You should enable debugging features only if directed by SAS Technical Support.</td>
</tr>
</tbody>
</table>

**How to Configure the SAS Forecast Server Users**

*Note:* On each SAS Workspace Server that contains forecasting environments, you must have an operating system account for each SAS Forecast Server user. For more
You can use the default metadata roles that are provided with the SAS Forecast Server to quickly configure your SAS Forecast Server users. Each default metadata role is assigned capabilities that enable access to features.

The following steps configure an administrator account for the SAS Forecast Server by using a default role. In this example, all SAS Forecast Server roles are listed.

The defining quality of an administrator account is the Administer Product capability that grants the administrator account expanded privileges in the product security model. In this example, the Administer Product capability is granted by assigning the Forecast Server: Administrator role.

To configure the metadata roles:

1. Start SAS Management Console. Connect as a SAS administrator (for example, sasadm@saspw).

2. Create a metadata account for the user in SAS Management Console, and associate that account with the operating system account.

3. In User Manager, right-click the user, and then select Properties. The Properties dialog box appears.

   a. Select the Groups and Roles tab.

   b. Assign the user to a default role or a role that you created for your site.

   The Forecast Server: Administrator role is sufficient if the administrator account only needs to manage actions in the SAS Forecast Server. However, the Forecast Server: Administrator role does not grant access to all product features. To give the administrator account access to all product features, you must select all of the following roles:

   • Management Console: Advanced
   • Job Execution: Job Submitter
   • Forecast Server: Administrator
   • Forecast Server: Analyst
   • Forecast Server: Browser
   • Forecast Server: Forecaster

   **Tip** To view the capabilities for a role, right-click the role, and select Properties.

   c. Click to move the item to the Member of list.

   d. Click OK.
Part 3

Configuration Tasks

Chapter 5
Specifying Security Permissions for Users and Groups ............ 33

Chapter 6
Administering Reports to Use in SAS Forecast Studio .......... 41

Chapter 7
Creating and Configuring Libraries ............................... 63

Chapter 8
Customizing Project Code, Time Intervals, Formats, and Events . 69

Chapter 9
Miscellaneous Administration Tasks ................................. 79
Chapter 5
Specifying Security Permissions for Users and Groups

Enable Users to Access the SAS Forecast Server ........................................ 33
   Initial Users .............................................................................. 33
   The SAS Forecast Server Metadata User ..................................... 34
   Project Owners ....................................................................... 35

Secure Access to the SAS Forecast Server .............................................. 36
   Security Layers ...................................................................... 36
   Notes Regarding Permissions .................................................. 36
   Environment Permissions .......................................................... 37
   Project Permissions .................................................................. 38
   Sharing Options for Projects ..................................................... 39

Enable Users to Access the SAS Forecast Server

Initial Users

When you install and configure the SAS Intelligence Platform and the SAS Forecast Server, standard user definitions and group definitions are added. The following display
shows how these users and groups might appear in the User Manager plug-in for SAS Management Console.

**Display 5.1  Example of Standard Users and Groups Created for the SAS Forecast Server**

---

### The SAS Forecast Server Metadata User

#### What Is the SAS Forecast Server Metadata User?

In the SAS Forecast Server, the Metadata User (fsmeta@saspw) role has the capability to access data that is not accessible to the current user. The Metadata User can also update the metadata. The Metadata User account must have access to all metadata that is used by the SAS Forecast Server. For example, the WriteMetadata permission is required for any object that the product might need to modify, and the ReadMetadata permission is required for any object that the product might need to use or detect.

During deployment, the Metadata User is granted permissions to the `/System/Applications/SAS Forecast Server` metadata folder. This folder contains the metadata objects that represent SAS Forecast Server content.

If you create metadata folders outside of the `/System/Applications/SAS Forecast Server` directory that you want to use with the SAS Forecast Server, you must grant the Metadata User the appropriate permissions to these folders. For example, additional metadata folders are needed to manage the report metadata objects. Special metadata objects that are used by the SAS Forecast Server (such as objects that define libraries and servers) must be accessible. Permission settings must be set so that ReadMetadata permission is granted to all objects that are created during deployment.

**Note:** No product environment can be associated with a server without having WriteMetadata permission to the defining server object. This security requirement is imposed by the SAS Metadata Server. However, the SAS Forecast Server does not modify server objects.
Specify User Permissions for the Metadata User
To grant the Metadata User the appropriate permissions to a folder outside of the /System/Applications/SAS Forecast Server directory:

1. Start SAS Management Console. Connect as a SAS administrator (for example, sasadm@saspw).
2. Click the Folders tab.
3. Locate the metadata folder that you created.
4. Right-click on the metadata folder, and then select Properties. The Properties dialog box appears.
5. Click the Authorization tab.
6. Next to Users and Groups, click Add. The Add Users and Groups dialog box appears.
7. In the Available Identities list, double-click Forecast Server Metadata User. The Forecast Server Metadata User is added to the Selected Identities list. Click OK.
8. In Users and Groups, select Forecast Server Metadata User.
9. Grant the ReadMetadata, WriteMetadata, WriteMemberMetadata, and CheckInMetadata permissions to the Forecast Server Metadata User, and then click OK.

Tip: When appropriate, grant the ReadMetadata, WriteMetadata, WriteMemberMetadata, and CheckInMetadata permissions to the parent folder. A child folder automatically inherits these permissions from its parent folder.

Project Owners

What Is a Project Owner?
The user who creates a project in SAS Forecast Studio is the de facto administrator for that project. This user is referred to as the project owner. In addition to the default capabilities, a project owner can perform management actions, such as changing project-sharing settings and deleting a project. You can transfer project ownership to another user by using the SAS Forecast Server Plug-ins for SAS Management Console, the SAS Forecast Project Manager, or the FSSETOWN macro. A project can have only one owner.

The value for the project owner is detected by comparing a generated identifier for the user (called an identity token) with a previously stored token value for the user. To determine the previously stored token value for the user who is currently logged in, either look at the session record on the SAS Forecast Studio Status page or select the Show my (token-value) projects only check box in the Projects dialog box in SAS Forecast Studio.

Note: In many cases, the identity token for a user matches the user name.

How to Change Project Ownership
You can change project ownership using the SAS Forecast Server Plug-ins for SAS Management Console or the SAS Forecast Project Manager. For more information, see the online Help for the SAS Forecast Server Plug-ins for SAS Management Console or the online Help for SAS Forecast Project Manager.
Secure Access to the SAS Forecast Server

Security Layers

Security settings in the SAS Forecast Server are implemented in four layers.

- capabilities, which are enforced by the SAS Forecast Server
- metadata permissions
  - ReadMetadata, WriteMetadata, WriteMemberMetadata, and CheckInMetadata, which are enforced by the SAS Metadata Server
  - other permissions, such as library authorizations, which are enforced by the SAS Forecast Server
- project ownership and sharing, also called the application security model, which are enforced by the SAS Forecast Server
- file system permissions, which are enforced by the operating system

Typically, permissions are checked in the order in which they are listed. For example, capabilities are checked first and file system permissions are checked last. In order for a user to be able to access project content, all four layers of security must permit this access.

Notes Regarding Permissions

File System Permissions

Use metadata and SAS Forecast Server permissions when you define your security strategy. Typically, file system permissions are not checked before an operation is attempted in a product, which could result in run-time errors.

Note: Only using file system permissions to secure content is not recommended.

WriteMetadata Permissions

In the SAS Forecast Server, the metadata security that is applied to an object with product content is limited to controlling the visibility of this content using the ReadMetadata permission. Metadata updates to an object are performed indirectly by the Metadata User. The WriteMetadata settings for an individual user account have no impact on the product’s behavior, so WriteMetadata permission should be granted so that a user can see an object with product content.

What Permissions Can You Control Using Metadata?

To secure access to metadata objects that represent SAS Forecast Server data, you can grant or deny permissions to a user or group using the Authorization tab in SAS Management Console.

The following table lists some of the metadata objects and their permissions.

<table>
<thead>
<tr>
<th>Metadata Object</th>
<th>Permissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>environment</td>
<td>ReadMetadata—controls visibility</td>
</tr>
</tbody>
</table>
environments. To enable project sharing within an environment, you must grant full control to all users who are allowed to access the environment. Metadata permissions should be used to secure the environment.

The ReadMetadata permission at the environment level controls whether a user can access the projects and reports within an environment. When a user logs on to SAS Forecast Studio, environments to which he or she does not have ReadMetadata permission do not appear as projects in the Projects dialog box. The user cannot select the project or its content. This environment is not visible in any SAS Forecast Server client as well.

Note: Each file system location on a SAS Workspace Server should be used by only one environment system-wide, regardless of the number of environments or middle tiers in the system. In general, the file system location that is specified for the environment and its subdirectories should be reserved for that environment only. This restriction ensures the integrity of the file system’s content and the ability to properly coordinate client access.

You can create environments by using the FSNEWENV macro or the SAS Forecast Server Plug-ins for SAS Management Console. For more information about using the plug-ins to create an environment, see the online Help for the SAS Forecast Server Plug-ins for SAS Management Console.

Configure Environment Permissions
To configure permissions for an environment:

1. In the file system, grant full control to all users and user groups who are allowed to access the environment. A user group for all users of the environment is
recommended. For more information about user groups, see “Set Permissions for Forecasting Environments in UNIX Operating Environments” on page 22.

2. Start SAS Management Console. Connect as a SAS administrator (for example, sasadm@saspw).

3. Click the **Folders** tab.

4. Expand the **System**, **Applications**, **SAS Forecast Server**, **Forecast Server 12.1**, and **Environments** folders.

5. Right-click on an environment folder, and then select **Properties**. The environment Properties dialog box appears.

6. Click the **Authorization** tab.

7. Select a user or user group in **Users and Groups**.

8. Grant the **ReadMetadata** permission to the user or user group, and then click **OK**.

**TIP** You can set the permissions for an environment directly on the environment object in the environment folder.

### Project Permissions

#### About Project Permissions

A project is similar to an environment in physical structure. The content of a project is saved to an environment subdirectory. The security for the file system was specified when you created the environment. Because a project’s content is saved in an environment subdirectory, the project files inherit the permissions from the environment. New project metadata is saved in this environment. It inherits the permissions from the environment. As a result, no additional security is required when a project is created. However, you can set the ReadMetadata permission on each project object to control that project’s visibility to users.

#### Configure Project Permissions

To configure permissions for a project:

1. Start SAS Management Console. Connect as a SAS administrator (for example, sasadm@saspw).

2. Click the **Folders** tab.


4. Select an environment folder.

5. Right-click on a project, and then select **Properties**. The project Properties dialog box appears.

6. Click the **Authorization** tab.

7. Select a user or user group in **Users and Groups**.

8. Grant the **ReadMetadata** permission to the user or user group, and then click **OK**.
Sharing Options for Projects

About Sharing Projects
By default, only the project owner or a SAS Forecast Server administrator can open a project. By enabling project sharing, any user who can see a project can access the project. You can enable project sharing by selecting the **Allow other users to view and edit this project** check box in the New Project wizard or the Project Properties dialog box.

Enable Project Sharing
To enable project sharing:

1. Start SAS Management Console. To log on, your user account must be assigned to the Forecast Server: Administrator group. You must have a valid operating system account.
2. Click the **Plug-ins** tab. Expand the **Application Management** and **Forecast Server** folders, and then expand the environment folder that contains the project that you want to share.
3. Right-click on a project, and then select **Properties**. The Project Properties dialog box appears.
4. Select the **Enable sharing** check box, and then click **OK**.

For more information about how to enable project sharing in SAS Forecast Studio, see the *SAS Forecast Studio: User's Guide*.

Sharing and Groups
Although project ownership and the sharing security model do not include the explicit concept of a user group, the use of environments does divide users into implied work groups. For example, all users who can access a particular environment can be considered a work group. Therefore, when you enable sharing of a project, you are essentially sharing the project with other members of the environment work group. A user who does not have access to the environment in which the project is stored cannot access the project. Use caution when copying projects that are shared with another environment because the work group changes based on the environment.
Overview of Reports

What Is a Report?

In the SAS Forecast Server, reports enable you to extend the capabilities of the product so that you can perform site-specific custom operations. Reports encapsulate custom logic. When the report is executed, it receives information about the run-time state of the project in SAS Forecast Studio. By collecting information about the state of the project, the SAS Forecast Server knows what the user is looking at and, consequently, what data to use when generating the report.

A report is written in the SAS programming language and is saved as a SAS stored process. A stored process is a SAS program that is stored centrally on a server. Stored processes consist of two distinct parts: the SAS code and the stored process definition that resides on a SAS Metadata Server. A client application can then execute the program and can receive and process the results. Stored processes enable you to maintain and manage code centrally, give you better control over changes, enhance security and application integrity, and ensure that every client executes the latest version of code that is available.

Stored processes are like other SAS programs, except that they have an additional feature that enables you to customize the program’s execution. In a stored process, an invoking application supplies parameters when the stored process is invoked. For example, if you have a stored process that analyzes monthly sales data, you could create...
a MONTH variable in the stored process. At execution time, you would supply the parameter MONTH=MAY to analyze May sales data. For more information about how to create a stored process and to invoke it in a client application, see the SAS Stored Processes: Developer's Guide at http://support.sas.com/documentation/onlinedoc/inttech.

Reports are implemented using stored processes. However, not all SAS stored processes generate reports. The reports in the SAS Forecast Server differ from generic stored processes in the following ways:

- The reports rely on a special infrastructure that includes the macros that are delivered with the SAS Forecast Server. As a result, reports reflect the run-time state of SAS Forecast Studio.

- SAS Forecast Server includes a custom execution mechanism for reports. In fact, most reports work only when run through this mechanism. These reports are not intended to be run outside of the SAS Forecast Server.

To distinguish reports from other stored processes, the SAS Forecast Server identifies them by the FS_REPORT keyword.

**Types of Reports**

In the SAS Forecast Server, you can have two types of reports.

- Several sample reports that demonstrate how reports can be used to handle a variety of tasks are provided with the SAS Forecast Server. A sample report can serve as a basis for a custom report. Simply copy the sample report, and then modify the report to meet your site’s needs.

  The reports are not available for use in the Reports and Stored Processes dialog box until you deploy them using the SAS Forecast Server Plug-ins for SAS Management Console. For a list and descriptions of the sample reports, see the SAS Forecast Studio: User's Guide.

- To meet the needs of your site, you can create custom reports.

  When working with custom reports in the SAS Forecast Server, note the following constraints:

  - SAS Forecast Server does not currently support the execution of reports using a SAS Stored Process Server.

  - For stored processes that are compatible with SAS 9.2, each metadata object is configured to use a specific execution server. When you use multiple SAS Workspace Servers to host projects, you might need to create one metadata object for each SAS Workspace Server. You must copy the source file for the stored process to the file system of each SAS Workspace Server. In this way, each metadata object can refer to the source file that is located in its file system.

  - The Reports and Stored Processes dialog box in SAS Forecast Studio lists only reports that run on the same SAS Workspace Server as the current project. Reports that exist in metadata, but that are not shown in this dialog box, are not visible to the user (for example, the ReadMetadata permission is not granted or the Use Reports capability has not been assigned to the user), are missing the FS_REPORT keyword, or are configured to use a different server.

When you register a report object in SAS Management Console for use with the SAS Forecast Server, you must use the FS_REPORT keyword to distinguish the report object from other stored processes. The sample reports provided with the SAS Forecast Server use the FS_SAMPLE keyword to distinguish them from custom reports.
Manage Reports

To use reports in SAS Forecast Studio, you must first create a report folder. Then, you must configure your environment to use this folder location. The existence of the report folder enables the Reports and Stored Processes dialog box in SAS Forecast Studio.

For example, suppose that you configure your environment to use the /Shared Data/Forecasting Reports/Dev Reports report folder as shown in the following display:

Display 6.1 Configuring the Environment’s Root Report Folder

In addition, suppose that you create the My Report stored process metadata object at the folder location /Shared Data/Forecasting Reports/Dev Reports/Examples, as shown in the following display:

Display 6.2 My Report Metadata Object
In the following example, **My Report** is displayed under the **Reports/Examples** folder in the Reports and Stored Processes dialog box.

**Display 6.3  Folder Presentation in the Reports and Stored Processes Dialog Box**

The **Reports** folder at the top of the hierarchy represents the root report folder that was configured in the metadata. The root report folder path does not appear in the Reports and Stored Processes dialog box.

Before you can create a report for use in SAS Forecast Studio, you must let the environment know where your report folder is located. You can configure the location for the report folder in the Environment Properties dialog box.

**Access the Reports in SAS Forecast Studio**

You can access and execute reports when you have a project open in SAS Forecast Studio by selecting **Tools ➔ Reports and Stored Processes**.

Here is an example of the Reports and Stored Processes dialog box in SAS Forecast Studio:

**Display 6.4  SAS Forecast Studio Reports and Stored Processes Dialog Box**

The reports shown in the Reports and Stored Processes dialog box in SAS Forecast Studio are filtered based on whether the user is assigned the Use Reports capability, whether the ReadMetadata permission has been specified for a report, the use of the
FS_REPORT keyword, and the server constraints that you specified in the metadata. To use a report, the report must be on the same server as the project. When you run a report, the locations of the data and forecasts for the current project are passed to the stored process.

---

**Use the Sample Reports**

**Deploy the Sample Reports**

To deploy the sample reports:

1. Create a report folder to store your metadata objects.
2. Grant all permissions on the report folder to the Metadata User. Configure any additional user permissions on this folder.
   a. In SAS Management Console, click the **Folders** tab.
   b. Right-click on the report folder, and select **Properties**. For example, the report folder might be `/Shared Data/FSReports`. The folder-name Properties dialog box appears.
   c. Click the **Authorization** tab.
   d. In **Users and Groups**, select **Forecast Server Metadata User**.
      
      **Note:** If Forecast Server Metadata User is not available, click **Add**, and then select it from the Add Users and Groups dialog box.
   e. In **Effective Permissions**, grant all of the permissions to the Forecast Server Metadata User.
   f. Configure any additional user permissions, and then click **OK**.
3. Designate a root report folder for the environment.
4. In SAS Management Console, click the **Plug-ins** tab.
5. Expand the **Application Management** and **Forecast Server** folders.
6. Expand the environment folder to which you want to deploy the sample reports.
7. Right-click **Reports**, and select **Deploy Samples**.

**Remove the Sample Reports**

To remove all sample reports from the current environment’s report tree:

1. In SAS Management Console, click the **Plug-ins** tab.
2. Expand the **Application Management** and **Forecast Server** folders.
3. Expand the environment folder from which you want to remove the sample reports.
4. Right-click **Reports**, and select **Remove Samples**.
5. To remove an empty report folder from the current environment’s report tree, right-click **Reports**, and select **Prune**.

**Note:** The **Reports** folder does not appear in an environment folder until the report tree is configured.
**CAUTION:**

Selecting Remove Samples removes any report object with the FS_SAMPLE keyword. Before selecting Remove Samples, you should remove the FS_SAMPLE keyword from any custom report that was created by copying a sample report.

---

**Register Reports**

**Preregistration Tasks**

The following tasks enable you to gather the information that you need to make a report usable in SAS Forecast Studio.

To prepare a report for registration:

1. Locate the source code for the report. The source code can be saved to a file system or in a metadata repository.

   For example, the example.sas file is saved in the `C:\MyStoredProcesses` directory. The source repository location is `C:\MyStoredProcesses`, and the source filename is `example.sas`.

   **Note:** The file system location must be on the same physical machine that hosts the corresponding project files for the SAS Forecast Server. Having all of these files on the same physical machine ensures that the project data is accessible to the stored process when it executes.

2. Plan the organization of your report hierarchy. If you want to display the report under its own folder group in the Reports and Stored Processes dialog box in SAS Forecast Studio, then you can create this hierarchy in the metadata using SAS Management Console. The Reports folder in the Reports and Stored Processes dialog box corresponds to the root report folder that you configured for that environment in SAS Management Console. The expandable folders in the dialog box correspond to subfolders that you create under the root report folder. For example, you can specify that the `My Reports` folder is displayed in the Reports and Stored Processes dialog box under `Reports` by creating a subfolder with that name in the root report folder.

Here is how a custom folder structure would appear:

**Display 6.5 Example Report Hierarchy**

For more information about creating report folders, see the documentation for SAS Management Console at [http://support.sas.com/documentation/onlinedoc/sasmc](http://support.sas.com/documentation/onlinedoc/sasmc).

3. Select a name for the report. The report name that you specify in SAS Management Console is the metadata object name. The report name is displayed in the Reports
and Stored Processes dialog box in SAS Forecast Studio. For example, if you name
the report My Example Report in SAS Management Console, then the Reports and
Stored Processes dialog box displays the My Example Report report.

Here is an example folder structure with a My Reports subfolder that contains My
Example Report:

**Display 6.6 Report Hierarchy with an Example Report**

Register a Report

For information about the basic processes and terminology that are related to using

Note: Before you change an existing stored process, it is recommended that you make a
copy of the stored process metadata object and its associated source code.

Before you register a report, perform the following steps in SAS Management Console:

1. Create a report folder to store your metadata objects.
2. Write the code for the report.
3. Set permissions on the report folder so that all users can access it in SAS Forecast
   Studio.
   a. In SAS Management Console, click the **Folders** tab.
   b. Right-click on the report folder, and select **Properties**. For example, the report
      folder might be `/Shared Data/FSReports`. The folder-name Properties
dialog box appears.
   c. Click the **Authorization** tab.
   d. In **Users and Groups**, select a user or group.
   e. In **Effective Permissions**, grant permissions for that user or group, and then click
      **OK**.
4. Configure your environment to use the report folder.
5. Create a stored process metadata object.
   a. Start SAS Management Console. Connect as a SAS administrator (for example,
      sasadm@saspw).
   b. Click the **Folders** tab.
   c. In the root report folder, right-click on any folder, and then select **New ➔ Stored
d. In the General step, enter the name of your stored process—**My Example Report**—and an optional description.

e. Next to **Keywords**, click **Add**. The Add Keyword dialog box appears.

f. Type **FS_REPORT**, and then click **OK**. Click **Next**.

g. In the Execution step, the **Application server** is the SAS Workspace Server that hosts the project files.

   **Note:** The execution constraints for a stored process must enable you to run the stored process on the SAS Workspace Server that hosts the projects that use this stored process.

h. For **Source code repository**, select the directory where you saved your SAS code (in this example, this value is **C:\MyStoredProcesses**). If the directory does not appear in the list, you can add a new directory location.

i. For **Source file**, specify **example.sas**. For **Result capabilities**, select **Package**. Click **Next**.

   **Note:** Starting in SAS 9.3, you can save the source code with the stored process metadata. By saving the source code with the metadata, you can run the stored process on multiple application servers. When the source code is saved to a directory on the server, you can run the stored process only on the server where the source code is saved.

j. Click **Finish** in the Parameters panel.

   **Note:** For more information about defining parameters, see the **SAS Stored Processes: Developer's Guide** at [http://support.sas.com/documentation/onlinedoc/inttech](http://support.sas.com/documentation/onlinedoc/inttech).

---

**Create Reports**

**Types of Report Parameters**

**What Is a Normal Report Parameter?**
A normal report parameter is a stored process prompt that is completely defined in the metadata. Examples of normal parameters include specifying the title to use for the output and specifying whether to include the observation number in the results. These parameters are created using the usual interfaces for defining stored process prompts (for example, SAS Management Console). The only constraint is that a normal report parameter name cannot start with a dynamic parameter prefix. (See Table 6.1 on page 49.)

**What Is a Dynamic Report Parameter?**
A dynamic report parameter is a parameter that is defined by options that you select from the product at run time. Because the options depend on the run-time state, they cannot be previously defined in the metadata. For example, a parameter that enables you to select an independent variable from the current project is a dynamic report parameter.

Dynamic report parameters require special support from the product to generate the list of available options. They are not extensible. To find dynamic parameters in a report, the product checks for a special prefix in the name of the text (type) parameter that matches
a prefix in the following table. If a match is found, then the corresponding option list is generated and assigned to the parameter before the stored process prompt is displayed. If a match is not found, then the product assumes that the parameter is a normal report parameter and uses it as is.

**Table 6.1 Dynamic Report Parameter Prefixes**

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Available Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS_BYVAR</td>
<td>All project BY variables</td>
</tr>
<tr>
<td>FS_CURRENT_BYVAR</td>
<td>BY variables in the selected hierarchy level</td>
</tr>
<tr>
<td>FS_DEPVAR</td>
<td>All project dependent variables</td>
</tr>
<tr>
<td>FS_INDVAR</td>
<td>All project independent variables</td>
</tr>
<tr>
<td>FS_REPORTVAR</td>
<td>All project reporting variables</td>
</tr>
<tr>
<td>FS_EVENT</td>
<td>All project events</td>
</tr>
<tr>
<td>FS_FITSTAT</td>
<td>All statistics of fit</td>
</tr>
<tr>
<td>FS_MODELSTAT</td>
<td>All model statistics</td>
</tr>
<tr>
<td>FS_LIBRARY</td>
<td>Libraries allowing Read access</td>
</tr>
<tr>
<td>FS_WLIBRARY</td>
<td>Libraries allowing Write access</td>
</tr>
<tr>
<td>FS OLAPSCHEMA</td>
<td>All OLAP schemas currently defined in metadata</td>
</tr>
</tbody>
</table>

When locating dynamic report parameters, the product has the following process:

1. Prefix matching allows multiple variables to use the same dynamic list of available options. For example, FS_INDVAR1 and FS_INDVAR2 both match FS_INDVAR. Therefore, all independent variables would be available options in the dynamic list.

2. For efficiency, only prefixes generated by truncating the name at non-letter characters are considered for when matching prefixes. For example, FS_INDVARS does not match the prefix FS_INDVAR because the name breaks on the letter S. However, the prefixes FS_INDVAR, FS_INDVAR_LIST, and FS_INDVAR1 all match the FS_INDVAR prefix.

3. If a required parameter has an empty list of available options, the product does not execute the stored process. This prevents a prompt that cannot be fulfilled. For example, you cannot use a required parameter named FS_INDVAR in a project that does not contain an independent variable.

**What Is an Internal Report Parameter?**

To help you create stored processes, the product provides internal parameters, also called predefined macro variables. Internal parameters are automatically defined and populated by the product. They do not appear in the metadata definition of the report. Internal parameters pass state information and instructions to the stored process environment. In particular, they convey information about the project and the location in the hierarchy that you are currently viewing.
Note: To ensure correct behavior, a user-defined parameter should not have the same name as an internal parameter. The naming convention used for a sample report (and generally recommended) is to prefix a metadata parameter with FS_. This prevents name collisions because all internal parameters have the HPF_ prefix.

By default, the maximum length for a macro variable is 4,096. However, if the number of variables (BY, dependent, independent, reporting, and so on) is very large, you can increase the maximum length for the macro variable to 65,534 using the MVARSIZE= system option.

Note: In the following tables that describe macro variables, a variable name that ends with # indicates a sequenced variable. Unless otherwise stated, you can assume that sequencing begins with 1 for these variables. For levels, indexing starts at the top level.

Control Macro Variables

The following variables are used for basic session control:

Table 6.2 Control Macro Variables

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPF_READ_ONLY</td>
<td>Project access Read-Only flag</td>
<td>Boolean</td>
</tr>
<tr>
<td></td>
<td>By default, stored processes have Read-Only access with respect to the project libraries. This macro variable changes access to Write.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For example, the following SAS code assigns project library names with Read-Only access:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>%include &quot;&amp;HPF_INCLUDE&quot;;</td>
<td></td>
</tr>
<tr>
<td>HPF_ODSDEST</td>
<td>Used inside a stored process to control the output destination for the report.</td>
<td>ODS destinations</td>
</tr>
<tr>
<td></td>
<td>By default, HPF_ODSDEST is set to HTML, which means that the output is in HTML format.</td>
<td></td>
</tr>
<tr>
<td>HPF_ODSSTYLE</td>
<td>Used inside a stored process to control the output style.</td>
<td>ODS styles</td>
</tr>
<tr>
<td>HPF_MULTISELECT_VAR_COUNT</td>
<td>Used to specify the number of multi-value metadata parameters passed to the report.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>HPF_MULTISELECT_VAR#</td>
<td>Used to specify the base name of each multi-value metadata parameter.</td>
<td>Multi-value metadata parameter name</td>
</tr>
</tbody>
</table>
**Metadata Macro Variables**

The following variables describe the metadata resources that are used by the SAS Forecast Server:

**Table 6.3  Metadata Macro Variables**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPF_METADATA_HOST</td>
<td>SAS Metadata Server host name</td>
<td>Host name</td>
</tr>
<tr>
<td>HPF_METADATA_PORT</td>
<td>SAS Metadata Server port number</td>
<td>Port number</td>
</tr>
<tr>
<td>HPF_METADATA_REPNANAME</td>
<td>Metadata repository name</td>
<td>Repository name</td>
</tr>
</tbody>
</table>

**Library Macro Variables**

The following variables describe the library resources that are used by the SAS Forecast Server:

**Table 6.4  Library Macro Variables**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPF_ENV_LIBNAME_COUNT</td>
<td>Number of local environment libraries</td>
<td>Positive integer</td>
</tr>
<tr>
<td>HPF_ENV_LIBNAME#</td>
<td>LIBNAME of each local environment library</td>
<td>LIBNAME library names</td>
</tr>
<tr>
<td>HPF_ENV_LIBPATH#</td>
<td>File system path of each local environment library</td>
<td>Directory path</td>
</tr>
<tr>
<td>HPF_ENV_LIBACCESS#</td>
<td>Access level of each local environment library</td>
<td>Positive integer</td>
</tr>
<tr>
<td>HPF_META_LIBNAME_COUNT</td>
<td>Number of manually assigned metadata libraries</td>
<td>Positive integer</td>
</tr>
<tr>
<td>HPF_META_LIBNAME#</td>
<td>LIBNAME of each manually assigned metadata library</td>
<td>LIBNAME library names</td>
</tr>
<tr>
<td>HPF_META_LIBID#</td>
<td>FQID of the metadata object that defines each manually assigned metadata library</td>
<td>Metadata FQID value</td>
</tr>
<tr>
<td>HPF_META_LIBACCESS#</td>
<td>Access level of each manually assigned metadata library</td>
<td>Positive integer</td>
</tr>
</tbody>
</table>
Basic Project Macro Variables
The following variables describe the basic characteristics of the active project:

**Table 6.5 Basic Project Macro Variables**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPF_PROJECT</td>
<td>Project name.</td>
<td>SAS name</td>
</tr>
<tr>
<td>HPF_DESC</td>
<td>Project description.</td>
<td>SAS label</td>
</tr>
<tr>
<td>HPF_PROJECT_SERVER</td>
<td>Logical name of the host SAS Workspace Server.</td>
<td>Host name</td>
</tr>
<tr>
<td>HPF_DEFAULT_LOCATION</td>
<td>Base file system path to the environment directory.</td>
<td>File system path</td>
</tr>
<tr>
<td>HPF_PROJECT_LOCATION</td>
<td>File system path to the project directory.</td>
<td>System path</td>
</tr>
<tr>
<td>HPF_INCLUDE</td>
<td>File system path to the project include file.</td>
<td>System filename</td>
</tr>
<tr>
<td></td>
<td>This macro variable specifies the system path and filename that contains the SAS code to assign the SAS libraries and catalogs that are associated with the project.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>By default, all SAS libraries and catalogs are assigned with Read-Only access (ACCESS=READONLY).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For example, the following SAS code assigns project library names with Read-Only access:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>%include &quot;&amp;HPF_INCLUDE&quot;;</td>
<td></td>
</tr>
<tr>
<td>HPF_EVENTS</td>
<td>Space-delimited list of all event names.</td>
<td>SAS name</td>
</tr>
<tr>
<td>HPF_NUM_EVENTS</td>
<td>Number of events defined in the project.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>HPF_EVENT_#</td>
<td>The name of individual event elements.</td>
<td>SAS name</td>
</tr>
</tbody>
</table>

Data Hierarchy and Settings Macro Variables
The following variables describe the data hierarchy and settings for the active project:
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPF_INPUT_LIBNAME</td>
<td>SAS library reference from which the source data for the input data set was obtained.</td>
<td>SAS name</td>
</tr>
<tr>
<td>HPF_INPUT_DATASET</td>
<td>Data set from which the source data was obtained.</td>
<td>SAS name</td>
</tr>
<tr>
<td>HPF_NUM_BYVARS</td>
<td>Number of BY variables. If there are no BY variables, HPF_NUM_BYVARS is set to zero.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>HPF_BYVAR#</td>
<td>Individual BY variable names listed in the $n$th position of the ordered list of BY variables (HPF_BYVARS). The first BY variable name is stored in HPF_BYVAR1, the second in HPF_BYVAR2, and the last is stored in HPF_BYVAR&amp;HPF_NUM_BYVARS. If there are no BY variables (&amp;HPF_NUM_BYVARS is zero), these macro variables are not defined.</td>
<td>SAS name</td>
</tr>
<tr>
<td>HPF_NUM_DEPVARS</td>
<td>Number of dependent variables. There is always at least one dependent variable.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>HPF_DEPVARS</td>
<td>Space-delimited list of all dependent variable names. The order of the dependent variable names is the same as specified in the project.</td>
<td>List of SAS names separated by a single space</td>
</tr>
<tr>
<td>HPF_DEPVAR#</td>
<td>Individual dependent variable names listed in the $n$th position of the ordered list of dependent variables (HPF_DEPVARS). The first dependent variable name is stored in HPF_DEPVAR1, the second in HPF_DEPVAR2, and the last is stored in HPF_DEPVAR&amp;HPF_NUM_DEPVARS. Because there is always at least one dependent variable associated with a project, HPF_DEPVAR1 is always defined.</td>
<td>SAS name</td>
</tr>
<tr>
<td>HPF_NUM_INDEPVARS</td>
<td>Number of independent variables. If there are no independent variables, HPF_NUM_INDEPVARS is set to zero.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>Format</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>---------------------------------------------</td>
</tr>
<tr>
<td>HPF_INDEPVARS</td>
<td>Space-delimited list of all independent variable names.</td>
<td>List of SAS names separated by a single space</td>
</tr>
<tr>
<td></td>
<td>The order of the independent variable names is the same as specified in the project.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The macro variable is always defined. If there are no independent variables, HPF_INDEPVARS is set to NULL.</td>
<td></td>
</tr>
<tr>
<td>HPF_INDEPVAR#</td>
<td>Individual independent variable names listed in the n\textsuperscript{th} position of the ordered list of independent variables (HPF_INDEPVARS).</td>
<td>SAS name</td>
</tr>
<tr>
<td></td>
<td>The first independent variable name is stored in HPF_INDEPVAR1, the second in HPF_INDEPVAR2, and the last is stored in HPF_INDEPVAR&amp;HPF_NUM_INDEPVARS.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If there are no independent variables (&amp;HPF_NUM_INDEPVARS is zero), these macro variables are not defined.</td>
<td></td>
</tr>
<tr>
<td>HPF_NUM_REPORTVARS</td>
<td>Number of reporting variables.</td>
<td>Positive integer</td>
</tr>
<tr>
<td></td>
<td>If there are no reporting variables, then HPF_NUM_REPORTVARS is set to zero.</td>
<td></td>
</tr>
<tr>
<td>HPF_REPORTVARS</td>
<td>Space-delimited list of all reporting variable names.</td>
<td>List of SAS names separated by a single space</td>
</tr>
<tr>
<td></td>
<td>The order of the reporting variable names is the same as specified in the project.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The macro variable is always defined. If there are no reporting variables, HPF_REPORTVARS is set to NULL.</td>
<td></td>
</tr>
<tr>
<td>HPF_REPORTVAR#</td>
<td>Individual reporting variable names listed in the n\textsuperscript{th} position of the ordered list of reporting variables (HPF_REPORTVARS).</td>
<td>SAS name</td>
</tr>
<tr>
<td></td>
<td>The first reporting variable name is stored in HPF_REPORTVAR1, the second in HPF_REPORTVAR2, and the last is stored in HPF_REPORTVAR&amp;HPF_NUM_REPORTVARS.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If there are no reporting variables (&amp;HPF_NUM_REPORTVARS is zero), these macro variables are not defined.</td>
<td></td>
</tr>
<tr>
<td>HPF_TIMEID</td>
<td>Time ID variable name.</td>
<td>SAS name</td>
</tr>
<tr>
<td>HPF_TIMEID_FORMAT</td>
<td>SAS format of the time ID variable.</td>
<td>SAS format name</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>Format</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>---------------------------------------------</td>
</tr>
<tr>
<td>HPF_SEASONALITY</td>
<td>Integer length of the seasonal cycle. A seasonality of 1 implies no seasonality.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>HPF_INTERVAL</td>
<td>Interval of the time ID variable (for example, MONTH).</td>
<td>SAS time interval</td>
</tr>
<tr>
<td>HPF_DATASTART</td>
<td>Start date, datetime, or time value of the project. The starting time ID value of the project input data set (&amp;HPF_LIBNAME.&amp;HPF_DATASET).</td>
<td>SAS date, datetime, or time value</td>
</tr>
<tr>
<td>HPF_DATAEND</td>
<td>End date, datetime, or time value of the project. The ending time ID value of the project input data set (&amp;HPF_LIBNAME.&amp;HPF_DATASET).</td>
<td>SAS date, datetime, or time value</td>
</tr>
<tr>
<td>HPF_SETMISSING</td>
<td>Controls the interpretation of missing values.</td>
<td></td>
</tr>
<tr>
<td>HPF_TRIMMISS</td>
<td>Controls whether missing values are trimmed.</td>
<td></td>
</tr>
<tr>
<td>HPF_ZEROMISS</td>
<td>Controls the interpretation of zero values.</td>
<td></td>
</tr>
<tr>
<td>HPF_NUM_LEVELS</td>
<td>Number of levels in the hierarchy. The levels of the hierarchy are numbered from 1 (the top of the hierarchy) to &amp;HPF_NUM_LEVELS (the leaves of the hierarchy). If there is no hierarchy, then the number of levels is 1.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>HPF_LEVEL_BYVARS#</td>
<td>Space-delimited list of BY variable names associated with the $n$th level, where $n$ ranges from 1 to &amp;HPF_NUM_LEVELS. The variables names are separated by a single space. The BY variables at level 1 (the top) are stored in HPF_LEVEL_BYVARS1. The BY variables at the lowest level (the leaves) are stored in HPF_LEVEL_BYVARS&amp;HPF_NUM_LEVELS.</td>
<td>SAS name</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>Format</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>------------------------------</td>
</tr>
</tbody>
</table>
| HPF_LEVEL_DATAWHERE#  | Input data filtering WHERE clause for the n<sup>th</sup> level, where n ranges from 1 to &HPF_NUM_LEVELS. These WHERE clauses can be used to subset the input data sets for each level in the hierarchy to obtain information about the currently selected node. The WHERE clause at level 1 (the top) is stored in HPF_LEVEL_DATAWHERE1. The WHERE clause at the lowest level (the leaves) is stored in HPF_LEVEL_DATAWHERE&HPF_NUM_LEVELS. **Note:** You must unquote this macro variable. For example,  
  ```
 %quote
 (&HPF_CURRENT_DATAWHERE&n);
  ``` | SAS WHERE clause |
| HPF_LEVEL_OUTWHERE#   | Output data filtering WHERE clause for the n<sup>th</sup> level, where n ranges from 1 to &HPF_NUM_LEVELS. These WHERE clauses can be used to subset the output data sets for each level in the hierarchy to obtain information about the currently selected node. The WHERE clause at level 1 (the top) is stored in HPF_LEVEL_OUTWHERE1. The WHERE clause at the lowest level (the leaves) is stored in HPF_LEVEL_OUTWHERE&HPF_NUM_LEVELS. **Note:** You must unquote this macro variable. For example,  
  ```
 %quote
 (&HPF_LEVEL_OUTWHERE&n);
  ``` | SAS WHERE clause |
| HPF_LEVEL_LIBNAME#    | SAS library reference for the n<sup>th</sup> level, where n ranges from 1 to &HPF_NUM_LEVELS. The SAS library reference at level 1 (the top) is stored in HPF_LEVEL_LIBNAME1. The SAS library reference at the lowest level (the leaves) is stored in HPF_LEVEL_LIBNAME&HPF_NUM_LEVELS. | SAS LIBNAME |

Chapter 6 • Administering Reports to Use in SAS Forecast Studio
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPF_LEVEL_NSERIES#</td>
<td>Number of series associated with the n\textsuperscript{th} level, where n ranges from 1 to &amp;HPF_NUM_LEVELS.</td>
<td>Positive integer</td>
</tr>
<tr>
<td></td>
<td>The number of series at level 1 (the top) is stored in HPF_LEVEL_NSERIES1. The number of series at the lowest level (the leaves) is stored in HPF_LEVEL_NSERIES&amp;HPF_NUM_LEVELS.</td>
<td></td>
</tr>
</tbody>
</table>
**Diagnose Macro Variables**
The following variables describe the current diagnose settings for the active project:

*Table 6.7 Diagnose Macro Variables*

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPF_DIAGNOSE_INTERMITTENT</td>
<td>Intermittency threshold values for diagnose tests.</td>
<td>Positive number</td>
</tr>
<tr>
<td>HPF_DIAGNOSE_SEASONTEST</td>
<td>Seasonality significance level for diagnose tests.</td>
<td>p-value</td>
</tr>
</tbody>
</table>

**Model Selection Macro Variables**
The following variables describe the current model selection settings for the active project:

*Table 6.8 Model Selection Macro Variables*

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPF_SELECT_CRITERION</td>
<td>Statistic of fit to use for model selection.</td>
<td></td>
</tr>
<tr>
<td>HPF_SELECT_HOLDOUT</td>
<td>Absolute number of observations to hold out for selection. Zero implies that the model fit is used for selection.</td>
<td></td>
</tr>
<tr>
<td>HPF_SELECT_HOLDOUTPCT</td>
<td>Percentage of observations to hold out for selection.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>HPF_SELECT_MINOBS_NON_MEAN</td>
<td>Minimum number of observations to require for a non-mean model.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>HPF_SELECT_MINOBS_TREND</td>
<td>Minimum number of observations to require for a trend model.</td>
<td>Positive integer</td>
</tr>
</tbody>
</table>

**Forecast Macro Variables**
The following variables describe the current forecasting settings for the active project:

*Table 6.9 Forecast Macro Variables*

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPF_LEAD</td>
<td>Integer number of time periods to forecast the length of the forecast horizon or lead.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>HPF_FORECAST_ALPHA</td>
<td>Confidence level size.</td>
<td>p-value</td>
</tr>
<tr>
<td>HPF_BACK</td>
<td>Integer number of time periods to ignore when forecasting.</td>
<td>Positive integer</td>
</tr>
</tbody>
</table>
Reconciliation Macro Variables

The following variables describe the current reconciliation settings for the active project:

Table 6.10  Reconciliation Macro Variables

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPF_RECONCILE_LEVEL</td>
<td>Index of the reconciliation level. The reconciliation level index ranges from 1 to &amp;HPF_NUM_LEVELS, depending on the level of reconciliation.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>HPF_RECONCILE_BYVAR</td>
<td>BY variable associated with the level used for reconciliation.</td>
<td>SAS name</td>
</tr>
<tr>
<td>HPF_RECONCILE_METHOD</td>
<td>Reconciliation method.</td>
<td>SAS name</td>
</tr>
<tr>
<td>HPF_LEVEL_RECONCILE_DATASET#</td>
<td>Reconciled forecast data set for each level.</td>
<td></td>
</tr>
<tr>
<td>HPF_LEVEL_RECONCILE_STATISTICS#</td>
<td>Reconciled statistics data set for each level.</td>
<td></td>
</tr>
<tr>
<td>HPF_LEVEL_RECONCILE_SUMMARY#</td>
<td>Reconciled summary data set for each level.</td>
<td></td>
</tr>
</tbody>
</table>

Active Series Macro Variables

The active series macro variables differ from the other macro variables because they depend on the folder of the tree (in the forecasting hierarchy) that is currently selected. Because of this dependency, you cannot use these macro variables outside of the SAS Forecast Server.
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPF_CURRENT_LEVEL</td>
<td>The level index number associated with the current level.</td>
<td>Positive integer</td>
</tr>
<tr>
<td></td>
<td>The current level number ranges from 1 to &amp;HPF_NUM_LEVELS, depending on</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the currently selected level of the hierarchy.</td>
<td></td>
</tr>
<tr>
<td>HPF_CURRENT_LIBNAME</td>
<td>The SAS library reference associated with the currently selected level of</td>
<td>SAS LIBNAME</td>
</tr>
<tr>
<td></td>
<td>the hierarchy.</td>
<td></td>
</tr>
<tr>
<td>HPF_CURRENT_LEVEL_START</td>
<td>Start date, datetime, or time value of the current level.</td>
<td>SAS date, datetime, or time value</td>
</tr>
<tr>
<td></td>
<td>The starting time ID value of the input data set for the currently selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>level of the hierarchy.</td>
<td></td>
</tr>
<tr>
<td>HPF_CURRENT_LEVEL_END</td>
<td>End date, datetime, or time value of the current level.</td>
<td>SAS date, datetime, or time value</td>
</tr>
<tr>
<td></td>
<td>The ending time ID value of the input data set for the currently selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>level of the hierarchy.</td>
<td></td>
</tr>
<tr>
<td>HPF_CURRENT_LEVEL_NSERIES</td>
<td>Number of series (or nodes) associated with the currently selected level of</td>
<td>Positive integer</td>
</tr>
<tr>
<td></td>
<td>the hierarchy.</td>
<td></td>
</tr>
<tr>
<td>HPF_CURRENT_SERIESSTART</td>
<td>Start date, datetime, or time value of the current node.</td>
<td>SAS date, datetime, or time value</td>
</tr>
<tr>
<td></td>
<td>The starting time ID value of the series for the currently selected node of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the hierarchy.</td>
<td></td>
</tr>
<tr>
<td>HPF_CURRENT_SERIESEND</td>
<td>End date, datetime, or time value of the current node.</td>
<td>SAS date, datetime, or time value</td>
</tr>
<tr>
<td></td>
<td>The ending time ID value of the series for the currently selected node of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the hierarchy.</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>Format</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>HPF_CURRENT_DATAWHERE</td>
<td>Input data WHERE clause for the currently selected node.</td>
<td>SAS WHERE clause</td>
</tr>
<tr>
<td></td>
<td>This WHERE clause can be used to subset the input data set to obtain information about the currently selected node of the hierarchy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Note:</em> You must unquote this macro variable. For example,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>%unquote ( &amp;HPF_CURRENT_DATAWHERE );</td>
<td></td>
</tr>
<tr>
<td>HPF_CURRENT_OUTWHERE</td>
<td>Output data WHERE clause for the currently selected node.</td>
<td>SAS WHERE clause</td>
</tr>
<tr>
<td></td>
<td>This WHERE clause can be used to subset the output data set to obtain information about the currently selected node of the hierarchy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>Note:</em> You must unquote this macro variable. For example,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>%unquote ( &amp;HPF_CURRENT_OUTWHERE );</td>
<td></td>
</tr>
<tr>
<td>HPF_NUM_CURRENT_BYVARS</td>
<td>Number of BY variable names for the currently selected level of the hierarchy.</td>
<td>Positive integer</td>
</tr>
<tr>
<td>HPF_CURRENT_BYVARS</td>
<td>Space-delimited list of BY variable names for the currently selected level of the hierarchy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The macro variable is always defined. If there are no BY variables, HPF_CURRENT_BYVARS is set to NULL.</td>
<td></td>
</tr>
<tr>
<td>HPF_CURRENT_BYVARS#</td>
<td>Individual BY variable names for the current level.</td>
<td>SAS name</td>
</tr>
<tr>
<td>HPF_CURRENT_DEPVAR</td>
<td>Dependent variable name associated with the currently selected node of the hierarchy. This variable is contained in the list of dependent variables (HPF_DEPVARS).</td>
<td>SAS name</td>
</tr>
<tr>
<td>HPF_CURRENT_HORIZON</td>
<td>Horizon date, datetime, or time value of the current node.</td>
<td>SAS date, datetime, or time value</td>
</tr>
<tr>
<td></td>
<td>The time ID value of the start of the multi-step ahead forecast for the currently selected node of the hierarchy.</td>
<td></td>
</tr>
</tbody>
</table>
Sample Reports to Get You Started

Note: You must deploy the sample reports before you can use them in SAS Forecast Studio. For more information, see “Use the Sample Reports” on page 45.

To understand how to use dynamic parameters, multi-value parameters, and manually assigned metadata libraries, see these types of sample reports in the Reports and Stored Processes dialog box in SAS Forecast Studio.

Using Dynamic Parameters
This sample report shows all special parameter names for which dynamic lists are supported and demonstrates how to configure such parameters.

Using Libraries
This sample report shows how libraries that are not pre-assigned can be used in reports using the provided macro support.

Using Package Files
This sample report shows how to add files to the generated results package. These files can be accessed by saving the report output to your local file system.

Working with List Variables
This sample report shows how list variables are now passed to programs and how to use provided macros to reformat them.

Initialize a Report
When you create a report, the header portion of the report’s source code file must contain macro calls to initialize the SAS Forecast Server workspace macros and ODS output.

*ProcessBody;

/*---------------------------------------------------------*/
/*- initialize the HPF stored process support              -*/
/*---------------------------------------------------------*/
%hpfstp();

/*---------------------------------------------------------*/
/*- initialize the ODS output                              -*/
/*---------------------------------------------------------*/
%HPF_InitODSOutput();

%stpbegin;
Chapter 7
Creating and Configuring Libraries

Overview of Libraries

SAS Forecast Server uses SAS libraries and data sets to manage and access project data. For more information about libraries, see the “SAS Libraries” chapter in SAS Language Reference: Concepts and the “LIBNAME Statement” topic in SAS Statements: Reference.

Note: Library names cannot begin with an underscore character. A library name that begins with an underscore is the naming convention reserved for an internal SAS library.

In the SAS Forecast Server, libraries are either assigned by the SAS Forecast Server or assigned by something external to the SAS Forecast Server. Library assignments that are made by a SAS system that is external to the SAS Forecast Server or a user are examples of external library assignments.

External Library Assignments

Libraries can be assigned when a SAS server session is created or in the start-up code for a specific forecasting environment. Because these libraries are not assigned by the SAS Forecast Server, they are external library assignments.
Here are the four main sources of external library assignments:

- All SAS libraries that are provided with SAS are automatically assigned to each SAS session. Examples of Base SAS libraries are Sashelp, Sasuser, and Work.
- Libraries can be assigned by adding LIBNAME statements to your SAS Foundation configuration files or SAS server configuration files. The scope of the file (whether it is a SAS Foundation configuration file or a SAS server configuration file) determines the availability of the library.
- Libraries can be assigned by adding LIBNAME statements to the start-up code for a forecasting environment. These libraries are available only for the associated environment. If you assign a library in the environment’s start-up code, you must include a corresponding LIBNAME CLEAR statement in the code that shuts down the environment.
- Pre-assigned libraries that are defined in the metadata and associated with the SAS Forecast Server are automatically assigned when the server session is created.

**Libraries Assigned by the SAS Forecast Server**

SAS Forecast Server enables you to manage and assign libraries on demand. Even if a library is not currently assigned, it appears in SAS Forecast Studio (and in other clients) like any other library. When the SAS Forecast Server detects that a library is going to be accessed (for example, when a library is referenced), the SAS Forecast Server assigns the library before allowing access.

Because of security, on-demand libraries are not available in the SAS Forecast Server by default. SAS Forecast Server has a configuration setting that enables the use of each type of on-demand library. Types include manually assigned metadata libraries, configured environment libraries, and automatic environment libraries. For more information, see the “Enable Expanded Support for Libraries” on page 65.

Here are the three types of libraries that are assigned by the SAS Forecast Server:

- Libraries that are defined in the metadata, but they are not pre-assigned. When the SAS Forecast Server detects that one of these libraries needs to be used, the library is assigned using the META engine with the METAOUT=DATA option. This assignment method ensures that metadata permissions are followed when accessing the library.

  **Note:** The META engine requires that each data set (also referred to as a table) is registered in the metadata. If the data set is not registered, then it does not appear in SAS Forecast Studio. Data sets that exist only as files on the file system cannot be accessed from SAS Forecast Studio when they are located in a metadata-defined library that is not pre-assigned.

- Configured environment libraries that are defined in the `<environment-directory>\Config\libs` data set. Each row of this data set represents a library assignment and contains the information required for the BASE engine:
  - the LIBNAME
  - the full path to the library directory
  - whether access to the library should be Read-Only

  When the SAS Forecast Server detects that a configured environment library needs to be used, the library is assigned using the BASE engine.

- Automatic environment libraries are implicitly defined by creating a subdirectory for each library in the `<environment-directory>\Libraries` directory.
name of the subdirectory implies the LIBNAME for the library assignment and the access settings for the library.

When the SAS Forecast Server detects that an automatic environment library needs to be used, the library is assigned using the BASE engine.

Configured and automatic environment libraries enable you to perform the following tasks:

- Manage libraries for users who have access to the file system.
- Define local libraries for individual environments.

**Authorization Checks**

A key to good library management and use is performing authorization checks on the data accesses that are attempted by users. How these authorization checks are performed depends on the type of library that the user is trying to access.

Two strategies are used.

- The SAS Intelligence Platform and the SAS Metadata Server require that a user has ReadMetadata permission on a library object for the library to be available. For libraries that are defined in the metadata, the SAS Forecast Server requires that the user has ReadMetadata permission for the user to have Read access to the contents of the library. It requires that the user has WriteMetadata permission for the user to have Write access to the contents of the library. Permissions can be set for elements within the library, such as a data set (table) or a data set variable (column). For example, when a client application tries to read a variable in a data set, the SAS Forecast Server searches for an associated Column, Table, or Library object, in that order. An authorization check is performed on the first object that is found.

  **Tip** You can create Table objects for any type of metadata library using the Data Library Manager plug-in for SAS Management Console. For more information, see the online Help for the Data Library Manager plug-in for SAS Management Console.

- All other libraries (for example, the configured and automatic environment libraries) are assigned using the BASE engine. Or, they are assigned in a way that cannot be determined by the SAS Forecast Server (for example, when a LIBNAME statement is included in a SAS Foundation configuration file or SAS server configuration file). For these libraries, the SAS Forecast Server checks the dictionary tables for the SAS session. Permissions for a library are specified by the Read-Only access setting in the dictionary table.

Any additional security settings are not visible to the SAS Forecast Server. As a result, errors might occur because SAS Forecast Security cannot see security settings before an action is attempted. These errors often occur when working with SAS/ACCESS libraries.

**Enable Expanded Support for Libraries**

By default, the SAS Forecast Server restricts the use of manually assigned metadata libraries, automatic environment libraries, and configured environment libraries. You must configure the SAS Forecast Server so that users can access these libraries.
To enable library access:

1. Start SAS Management Console. Connect as a SAS administrator (for example, sasadm@saspw). Connect to a metadata repository.
2. Expand the Configuration Manager and SAS Application Infrastructure folders.
4. Click the Settings tab.
5. In the left pane, select Forecast Server.
7. Click OK.

How to Define a Pre-assigned Metadata Library

To define a pre-assigned metadata library:

1. Create a metadata definition for the library.
   a. Start SAS Management Console. Connect as a SAS administrator (for example, sasadm@saspw). Connect to a metadata repository.
   b. Expand the Data Library Manager folder, and select Libraries.
   c. Right-click the library that you want to pre-assign, and select Properties.
   d. Select the Options tab.
   e. Click Advanced Options. The Advanced Options dialog box appears.
   f. Select the Library is Pre-Assigned check box. The selected library is assigned whenever a SAS session is started for one of the assigned SAS servers.
   g. Verify that the library is assigned to the SAS servers.
   h. Click OK.
2. Set the metadata permissions on the new library for the SAS Forecast Server product administrator and users.
   a. In SAS Management Console, expand the Data Library Manager folder, and select Libraries.
   b. Right-click the library, and select Properties.
   c. Select the Authorization tab.
   d. In Users and Groups, select the product administrator, and grant permissions by selecting the Grant check boxes. Select each SAS Forecast Server user, and grant permissions by selecting the Grant check boxes.

   Verify that the fsmeta account has ReadMetadata permission on the library. If the fsmeta account does not have ReadMetadata permission, the SAS Forecast Server might not detect the library or might classify the library incorrectly.
3. If the SAS Object Spawner is running, stop and restart the SAS Object Spawner.
How to Define a Metadata Library That Is Assigned by the SAS Forecast Server

To define a metadata library that is not pre-assigned:

1. Verify that the SAS Forecast Server is configured to support automatic environment libraries. For more information, see the “Enable Expanded Support for Libraries” on page 65.
2. Create a metadata definition for the library.
   a. Start SAS Management Console. Connect as a SAS administrator (for example, sasadm@saspw). Connect to a metadata repository.
   b. Expand the Data Library Manager folder, and select Libraries.
   c. Right-click the library that you want to pre-assign, and select Properties.
   d. Select the Options tab.
   e. Click Advanced Options. The Advanced Options dialog box appears.
   f. Verify that the library is assigned to the SAS servers.
   g. Click OK.
3. Set the metadata permissions on the new library for the SAS Forecast Server product administrator and users.
   a. In SAS Management Console, expand the Data Library Manager folder, and select Libraries.
   b. Right-click the library, and select Properties.
   c. Select the Authorization tab.
   d. In Users and Groups, select the product administrator, and grant permissions by selecting the Grant check boxes. Select each SAS Forecast Server user, and grant permissions by selecting the Grant check boxes.
      Verify that the fsmeta account has ReadMetadata permission on the library. If the fsmeta account does not have ReadMetadata permission, the SAS Forecast Server might not detect the library or might classify the library incorrectly.
4. Register the data sets that you want to include in this library.

How to Define an Automatic Environment Library

Note: You can create an environment using the SAS Forecast Project Manager. For more information, see the SAS Forecast Studio: User's Guide or the online Help for the SAS Forecast Project Manager.

To define an automatic environment library:

1. Verify that the SAS Forecast Server is configured to support automatic environment libraries. For more information, see the “Enable Expanded Support for Libraries” on page 65.
2. In the `<environment-directory>\Libraries` directory, create a subdirectory for the automatic environment library. The name of the subdirectory implies the LIBNAME for the library assignment. For example, if the LIBNAME is Hpfuser, then the name of the subdirectory should be `hpfuser`.

   **Note:** If the `Libraries` directory does not exist, then you need to create it.

3. Specify the security access for the library. By default, a library is assigned Read and Write access. If the library should have Read-Only access, append an `.r` to the directory name. For example, the `hpfuser.r` directory creates the Hpfuser library with Read-Only access.

   When a user opens this forecasting environment in SAS Forecast Studio, the new library is available.

---

**How to Define a Configured Environment Library**

**Note:** You can create an environment using the SAS Forecast Project Manager. For more information, see the *SAS Forecast Studio: User's Guide* or the online Help for the SAS Forecast Project Manager.

To define a configured environment library:

1. Verify that the SAS Forecast Server is configured to support configured environment libraries. For more information, see the “Enable Expanded Support for Libraries” on page 65.

2. In the `<environment-directory>\Config` directory, create a `libs.sas7bdat` file. This file (data set) should contain three character variables: LIBNAME, PATH, and READONLY.

   **Note:** If the `libs.sas7bdat` data set is not created, the SAS Forecast Server tries to create it when a user opens this forecasting environment in SAS Forecast Studio.

3. Edit the `libs.sas7bdat` data set to include the information for the new library. For example, to define the Hpfuser library, you might use these values:

   - For the LIBNAME variable, specify `hpfuser`.
   - For the PATH variable, specify `C:\mylibs\hpfuser`.
   - For the READONLY variable, specify `yes`.

   When a user opens this forecasting environment in SAS Forecast Studio, the new library is available.
Chapter 8
Customizing Project Code, Time Intervals, Formats, and Events

Add Start-Up and Shutdown Code to a Project .......................... 69
   Start-Up or Shutdown Code .............................................. 69
   Configure Code to Run .................................................. 70
   Add Start-Up and Shutdown Code to Your Project ................. 70

Create Custom Time Intervals .......................................... 71
   Create a Custom Time Interval ....................................... 71
   Example 1: Create a StoreHours Custom Interval ................. 72
   Example 2: Create a Custom Interval Definition Interactively 73

Create a Custom Format .................................................. 74

Create a Customized List of Events ................................. 75
   Create a Customized Lists of Events ............................... 75
   Example: Create Super Bowl Events ................................. 76

Add Start-Up and Shutdown Code to a Project

Start-Up or Shutdown Code

You can customize your project by adding SAS code to run when the project is open or closed. For example, you can specify the MPRINT system option to run when the project opens. As a result, any SAS statements that are generated when the user runs SAS Forecast Studio macros are traced for debugging.

Note: Do not use start-up code to assign a library that contains the input data set for a project. The input data set must be available before the project is created or opened. The library cannot be assigned before the input data.

When you close a project, you might want SAS Forecast Studio to remove any temporary files that were created, to make backups of files, or to automatically export your results to an external data set.

Although start-up and shutdown code is associated with a project, the scope of the code applies to an entire SAS Forecast Server session. It is important that the shutdown code closes any processes that were started by the start-up code. For example, suppose you specified the MPRINT system option to run when the project was opened. If you do not turn off the MPRINT system option in the shutdown code, when you close the project and open another project in the same environment, SAS Forecast Studio will still be tracing any SAS statements that are generated for macro variables. The MPRINT option...
is still specified in the log. If you turn off the MPRINT system option in the shutdown code, when you close the project, tracing is turned off when you open another project.

Start-up code is saved in the startup.sas file, and shutdown code is saved in the shutdown.sas file. These files are in the `<project-directory>\Config` directory. The code can be modified only when the project is open in SAS Forecast Studio.

**Configure Code to Run**

Site administrators can specify whether the code should run for each deployment of the SAS Forecast Server. If the code should not run, a message appears, stating that code execution is not permitted. This message appears at the top of the SAS Start-up and Shutdown Code dialog box. Because of security, the code is not run by default.

To specify that the code should run for a deployment of SAS Forecast Server:

1. Start SAS Management Console. Connect as a SAS administrator (for example, sasadm@saspw).
2. On the **Plug-ins** tab, expand the **Configuration Manager** and **SAS Application Infrastructure** folders.
3. Right-click the **Forecast Server 12.1** folder, and select **Properties**. The Forecast Server 12.1 Properties dialog box appears.
4. Click the **Settings** tab.
5. In the left pane, select **Forecast Server**.
6. In **Forecast Server**, select whether start-up and shutdown code will be run using the **Project scripts** menu.
7. Click **OK**.
8. Restart the SAS Forecast Server for these changes to take effect.

**Add Start-Up and Shutdown Code to Your Project**

When you create a project, you can add start-up and shutdown code using the New Project wizard. After the project is created, you can add or edit this code using the Project Properties dialog box.

*Note:* For a user to add start-up or shutdown code in SAS Forecast Studio, the user must be assigned the Modify Project Scripts capability using the SAS Forecast Server Plug-ins for SAS Management Console. For more information, see “Manage Roles and Capabilities” on page 23.

To add start-up or shutdown code:

1. Open SAS Forecast Studio. Select **File ➤ Projects**. In the Projects dialog box, open the project that you want to modify.
2. Select **File ➤ Project Properties**. The Project Properties dialog box appears.
3. Click **Modify**. The SAS Start-up and Shutdown Code dialog box appears.
4. On the **Start-up Code** and **Shutdown Code** tabs, enter the SAS code that you want to include in the project.

*Note:* If the code should not run, a message appears at the top of the SAS Start-up and Shutdown Code dialog box. To enable the code to run, see “Configure Code to Run” on page 70.
5. To update the shutdown code that is saved in memory, select the **Also update the stored shutdown code to be used during the upcoming close action** check box. To view the code that is saved in memory, click **View the stored shutdown code**.

**Note:** When a project is opened, the shutdown code (that will run when you close the project) is saved in memory. If you change the shutdown code, you must select the **Also update the stored shutdown code to be used during the upcoming close action** check box if you want the changes to be reflected in the saved copy of the shutdown code.

6. Click **OK** to save your changes and close the SAS Start-up and Shutdown Code dialog box. Click **OK** again to close the Project Properties dialog box.

---

**Create Custom Time Intervals**

**Create a Custom Time Interval**

SAS Forecast Server includes numerous time intervals. However, your site might need a custom time interval.

To create a custom interval:

1. Using a DATA step program or a text editor, create the data set that defines the custom interval. The data set must include the following information:
   - A BEGIN variable that specifies the date or datetime at which each period begins. If the raw data contains date values (the number of days since January 1, 1960), use a date value for the BEGIN variable and assign a date format. If the raw data contains datetime values (the number of seconds since midnight January 1, 1960), use a datetime value for the BEGIN variable and assign a datetime format.
     
     You can define the end of each period (using an END variable) and the seasonal cycle (using a SEASON variable). The END variable must use the same format as the BEGIN variable. If you do not specify an END variable, then the implied value of the END variable for each observation is one less than the value of the BEGIN variable for the next observation.
   - The span of the custom interval data set must include any dates or times that are necessary for performing calculations on the time series. Calculations include forecasting and operations that might extend beyond the time series (such as filters).

**CAUTION:**

An error will occur if a date or datetime value (in the actual data, in a forecast, or in a plot) is outside the range of the custom interval definition. For your custom interval, the value for the BEGIN variable must start with the earliest historical date and extend into the future for at least three forecasting horizons. For example, if the historical data includes all of the business days for 2011, and the forecasts are for the first 12 business days in 2012, the value of the BEGIN variable must range from the first business day of 2011 through the 36th business day of 2012.

2. To define the name and location of your custom interval, specify the INTERVALDS= system option in either of these files:
• in the config file (sasv9_usermods.cfg or sasv9.cfg) that is used by the SAS Workspace Server
• in the autoexec file (for example, appserver_autoexec_usermods.sas) that is used by the SAS Workspace Server

In the SAS Forecast Server, the syntax for the INTERVALDS= system option is more restrictive than the syntax in the SAS System Options: Reference. Here is the syntax:

```
INTERVALDS=(interval-1=libref.dataset-name-1 interval-n=libref.dataset-name-n)
```

The name for the interval must be 1 to 32 characters. The name cannot contain an underscore or an embedded numeric character (with the exception that the name can end with one or more digits). For example, StoreHours12 is a valid name. Store12Hours is an invalid name. When you specify multiple custom intervals, each interval name must be unique. The value of the interval is the data set that is named in `libref.dataset-name`.

`libref.dataset-name` specifies the library reference and data set name of the file that contains the custom interval.

In this example, the StoreHours interval is associated with the StoreHoursDS data set:

```
options intervalds=(StoreHours=CustIntLib.StoreHoursDS);
```

After completing these steps, the custom interval should appear in the list of available intervals the next time you start SAS Forecast Studio. For example, you can select an interval when you create a new project in the New Project wizard. If a custom interval that you created is not available in the list, check the SAS log for errors in the definition of the custom interval.

**Example 1: Create a StoreHours Custom Interval**

This example shows how to set up a custom interval for data that is recorded hourly during the hours of 9 a.m. to 6 p.m. Monday through Friday, and 9 a.m. to 1 p.m. on Saturday.

1. Log on to the SAS Workspace Server. Use a text editor to add the following code to the `C:\SAS\Config\Lev1\SASApp\sasv9_usermods.cfg` file:

   ```
 -intervalds (StoreHours=CustIntLib.StoreHoursDS);
   ```

2. Start a SAS session on the SAS Workspace Server. In this SAS session, complete these steps:

   a. Assign the LIBNAME CustIntLib to the directory in which the data set (in this example, StoreHoursDS) for the custom interval is stored.

   b. Submit the following code to create the data set:

   ```
 data CustIntLib.StoreHoursDS(keep=BEGIN END);
 start = '01JAN2009'D;
 stop = '31DEC2009'D;
 do date = start to stop;
 dow = WEEKDAY(date);
 datetime=dhms(date,0,0,0);
 if dow not in (1,7) then
 do hour = 9 to 17;
 begin=intnx('hour',datetime,hour,'b');
 end=intnx('hour',datetime,hour,'e');
   ```
output;
end;
else if dow = 7 then
do hour = 9 to 13;
begin=intnx('hour',datetime,hour,'b');
end=intnx('hour',datetime,hour,'e');
output;
end;
end;
format BEGIN END DATETIME.;
run;

a In the DATA statement, the name StoreHoursDS is specified for the data set. The
KEEP= option specifies that only the BEGIN and END variables should be
included in the data set.

The START= and STOP= options specify the dates of the first and last
observations in the data set.

b The DO loop analyzes each observation from 01JAN2009 to 31DEC2009
(inclusive).

• Use the WEEKDAY function to determine the day of the week for a specific
date. By default, the day of the week is specified as 1 for Sunday, 2 for
Monday, and so on. You need this information later in the DO loop to assign
the correct store hours to the day of the week. For example, if the day of the
week is not 1 (Sunday) or 7 (Saturday), then the store hours are 9 to 17. If the
day of the week is 7 (Saturday), then the store hours are 9 to 13.

• Use the DHMS function to return a SAS datetime value for the date.

• Use the INTNX function to return the datetime value of the beginning of the
interval that is n intervals from the interval that contains the datetime value.

c The FORMAT statement specifies a DATETIME. format for the values of the
BEGIN and END variables.

Example 2: Create a Custom Interval Definition Interactively

This example shows how to create a custom interval interactively.

1. Start a SAS session on the SAS Workspace Server.

2. Click the New Library icon in the toolbar. The New Library dialog box appears.

3. For Name, enter the LIBNAME that you specified in the INTERVALDS= system
option.

4. For Path, click Browse, and select the path where the custom interval will be stored. Click OK to close the Select dialog box. Click OK again to close the New Library
dialog box.

5. In the SAS Explorer, right-click the library that you created, and click New. The
New Member dialog box appears.

6. Select Table, and click OK. An empty table opens in VIEWTABLE.

7. Right-click the A at the top of column A, and select Column Attributes.

8. Specify these properties:

• Change Name from A to BEGIN.
Select **Numeric** for Type.

Enter DATE9 as the format and informat.

Click Close.

9. Click the first cell in the BEGIN column to edit that cell. Type **01JAN2011**, and press Enter.

10. In the second cell, enter the date of the next period. Continue entering dates in cells as needed. When you are finished, close VIEWTABLE. Click Yes to save your changes. In the Save As dialog box, select the library that you entered in step 3.

11. For **Member Name**, enter the name of the data set that you specified in the INTERVALDS= system option.

12. Click Save to save the data set.

---

**Create a Custom Format**

SAS Forecast Server includes numerous formats. However, you might have formats at your site that are not available in SAS Forecast Studio. Using the FORMAT procedure, you can create custom formats and make them available. For more information about this procedure, see the *Base SAS Procedures Guide*.

To create a custom format:

1. In PROC FORMAT, specify where to store the custom format using the LIBRARY= option.
   - To store the format in a library in the default location, write the following SAS code:

```
libname library
<SAS-configuration-directory>/Levnen/SASApp/SASEnvironment/SASFormats;
proc format library=library;
...
```

   - To store the format in the \C:\myfmts location on the SAS Workspace Server, write the following SAS code:

```
libname library "c:\myfmts";
proc format library=library;
...
```

By default, the catalog name for this library is **Formats** (unless you changed the default value to a different catalog name).

2. Use the VALUE statement to define the format. For example, the following code defines the LINE format. The special code—**Line1**, **Line2**, and so on—is converted to the corresponding product line.

```
value $ line
'Line1'='Product Line1'
'Line2'='Product Line2'
'Line3'='Product Line3'
```
3. Define the format library for the SAS Workspace Server that is used by the SAS Forecast Server.

- If the format is stored in the default library location (`<SAS-configuration-directory>/Lev1/SASApp/SASEnvironment/SASFormats`), then no further modifications are required.

- If the format is stored in a different location, you must configure SAS to search in that library in addition to the default library.

To search in a different format library:

1. Open the configuration file in the following default location:

   Windows
   ```
 <SAS-configuration-directory>\Lev1\SASApp\sasv9_usermods.cfg
   ```

   UNIX
   ```
 <SAS-configuration-directory>/Lev1/SASApp/sasv9_usermods.cfg
   ```

2. In the sasv9_usermods.cfg file, use the SET system option to define the library. In the following code, the SET system option associates the FSFMTS catalog with the Myfmts library on a UNIX system. Set the FMTSEARCH system option to FSFMTS so that the SAS Forecast Server searches this library.

   ```
 -set FSFMTS ("*/myfmts")
 -fmtsearch (FSFMTS)
   ```

   When you restart the SAS Workspace Server, the SAS Forecast Server resolves any references to custom formats that are stored in `/myfmts`.

---

**Create a Customized List of Events**

Create a Customized Lists of Events

SAS Forecast Studio provides a list of predefined events. However, you might need to add to this list or create a customized list. To create an event, you must use the HPFEVENTS procedure first, and then use the DATEKEYS procedure to associate a date key, label, and locale with this event. The procedure results are saved in a data set. The date key forms the name of the event. The EVENTDS= system option is defined (preferably in the SAS configuration file) to point to these event data sets so that the events appear in SAS Forecast Studio.

To create a customized list:

1. Using a DATA step program or a text editor, create the data set that defines the events.

2. To define the name and location of your event data set, specify the EVENTDS= system option in the SAS configuration file (`sasv9_usermods.cfg` or `sasv9.cfg`) that is used by the SAS Workspace Server.
The customized list of events should appear in the list of events the next time you start SAS Forecast Studio.

**Example: Create Super Bowl Events**

1. Start a SAS session on the SAS Workspace Server, and run the following code:

```sas
proc datekeys;
 '28JAN2001'D '03FEB2002'D '26JAN2003'D '01FEB2004'D '06FEB2005'D
 '05FEB2006'D '04FEB2007'D '03FEB2008'D '01FEB2009'D '07FEB2010'D
 '06FEB2011'D '05FEB2012'D '03FEB2013'D '02FEB2014'D
 / PULSE=DAY locale= 'en_US'
 label="Super Bowl Sunday";
 datekeykey Christmas / locale= 'en_US'
 label="Christmas Day";
 datekeykey Thanksgiving / locale= 'en_US'
 label="Thanksgiving Day in US";
 datekeykey TurkeyDay=N4W5NOVYR / locale= 'en_US'
 label="Alternate Name for Thanksgiving";
 datekeydata out=holiday condense;
run;
proc print data=holiday;
run;

options eventds=(holiday);

title 'LIST option gives a list of available datekeys- with defaults';
proc datekeys;
 datekeydata out=holidaylist LIST;
run;
proc print data=holidaylist;
run;

title 'LIST option gives a list of available datekeys - without defaults';
proc datekeys;
 datekeydata out=holidaylist LIST NODEFAULTS;
run;
proc print data=holidaylist;
run;

data ts(keep=date);
 do i=1 to 120;
 date=INTNX('MONTH','01JAN2000'D,i-1);
 output;
 end;
 format date DATE.;;
run;
title 'Using system option custom datekeys are allowed';
proc hpfevents;
 id date interval=month;
 eventkey SuperBowl;
 eventkey Xmas=Christmas;
 eventdata out=myevents condense;
 eventdummy out=mydummies;
run;
proc print data=myevents;
run;
proc print data=mydummies;
run;

2. Open the SAS configuration file in the following default location:
 Windows
 <SAS-configuration-directory>\Lev\SASApp\sasv9_usermods.cfg
 UNIX
 <SAS-configuration-directory>/Lev/SASApp/sasv9_usermods.cfg

3. In the sasv9_usermods.cfg file, use the EVENTDS= system option to point to the events data set.
 EVENTDS=('c:\eventslist')
Chapter 9
Miscellaneous Administration Tasks

Change Configuration Properties in SAS Management Console 79
Specify a Time-Out ... 79
 Specify a Time-Out for SAS Forecast Studio 79
 Specify a Time-Out for the SOAP Bridge 80
Configure a SAS Environment URL .. 80
Set the Preferred SAS Environment in the Logon Dialog Box
 for SAS Forecast Studio ... 81
Configure the Archive Functionality .. 81
Remove a Product Configuration with the SAS Deployment Manager 82
Archive a Project ... 83

Change Configuration Properties in SAS Management Console

The SAS Forecast Server middle tier has several configuration properties. You can set these properties by using the Configuration Manager in SAS Management Console. The values of these configuration properties are cached at run time. If you change the value of a configuration property, you must restart the SAS Forecast Server. For more information about the Configuration Manager, see the SAS Management Console online Help.

Note: If your site allows JMX access, then you can use a JMX call to indicate when the middle tier should reload the configuration properties. A JMX call can eliminate the need to restart the SAS Forecast Server for the new configuration properties to take effect. For more information, see the “JMX MBeans” on page 188.

Specify a Time-Out

Specify a Time-Out for SAS Forecast Studio

By default, a SAS Forecast Studio session times out after being idle for 60 minutes. The SAS Forecast Server checks every five minutes to see whether the SAS Forecast Studio
session has timed out. You can change the values of the time-out and how frequently the SAS Forecast Server checks the session.

To specify a new time-out value for an idle SAS Forecast Studio session:

1. Start SAS Management Console. Connect as a SAS administrator (for example, sasadm@saspw).
2. Expand the Configuration Manager and SAS Application Infrastructure folders.
4. Click the Settings tab.
5. In the left pane, select Forecast Server.
6. In Forecast Server > Session Timeout, specify new values for the Idle time limit option and the Timeout check interval option. Click Reset.
7. Restart the SAS Forecast Server for these changes to take effect.

Specify a Time-Out for the SOAP Bridge

The SOAP bridge enables you to run SAS Forecast Studio tasks in SAS Enterprise Guide and in the SAS Add-In for Microsoft Office. By default, the SOAP bridge times out after being idle for 60 minutes. The SAS Forecast Server checks every 60 seconds to see whether the SOAP bridge has timed out. You can change the value of the time-out in the com.sas.analytics.forecasting.soap.timeout Java system property. If you set this Java system property to a value less than or equal to 0, then the time-out is disabled, and you must restart the SOAP bridge to remove any old sessions.

Configure a SAS Environment URL

For some deployments of SAS Forecast Studio, the list of SAS environments that are available to users at logon might be fixed and universal. For these deployments, you can add a SAS environment URL as part of the configuration for the Java Web Start client. By using a central SAS environment URL, you do not need to manually specify the URL on every client.

If you use a central URL, a user cannot change the logon choices on his or her machine. If the logon choices need to vary from machine to machine, you should not use a central URL.

To configure the central URL:
1. Start SAS Management Console. Connect as a SAS administrator (for example, sasadm@saspw).
2. Expand the Configuration Manager and SAS Application Infrastructure folders.
4. Click the Settings tab.
5. In the left pane, select Forecast Studio (Java Web Start).
6. In **SAS environment URL**, specify the URL for the sas-environment.xml file. Click **Reset**.

7. Restart the Web application server for these changes to take effect.

Set the Preferred SAS Environment in the Logon Dialog Box for SAS Forecast Studio

When a user logs on to SAS Forecast Studio, he or she must specify a SAS environment to use. You can set a preferred SAS environment that is selected by default. Or, you can force users to use a specific SAS environment when logging on to SAS Forecast Studio. If you force users to use a specific environment, you should configure the SAS environment URL in the middle tier to use this same environment. For more information, see the “Configure a SAS Environment URL” on page 80.

Note: If the preferred SAS environment does not exist at run time, SAS Forecast Studio assumes that you did not specify a preferred environment.

To specify the list of SAS environments that should appear in the logon dialog box:

1. Start SAS Management Console. Connect as a SAS administrator (for example, sasadm@saspw).

2. Expand the **Configuration Manager** and **SAS Application Infrastructure** folders.

3. Right-click the **Forecast Server 12.1** folder, and select **Properties**. The Forecast Server 12.1 Properties dialog box appears.

4. Click the **Settings** tab.

5. In the left pane, select **Forecast Studio (Java Web Start)**.

6. In **Preferred SAS environment**, specify the name of the SAS environment that should be selected by default in the logon dialog box.

 Note: This name is case sensitive.

 Click **Reset**.

7. If you do not want the user to be able to change the selected environment in the logon dialog box, set the **Lock SAS environment selection** property to **true**.

8. Restart the SAS Forecast Server for these changes to take effect.

Configure the Archive Functionality

Note: With the exception of the compression level, do not modify archiving properties unless directed by SAS Technical Support.

The archiving properties in the SAS Forecast Server enable you to control the process for creating and extracting project archives.

To modify archiving properties:

1. Start SAS Management Console. Connect as a SAS administrator (for example, sasadm@saspw).
2. Expand the Configuration Manager and SAS Application Infrastructure folders.

4. Click the Settings tab.

5. In the left pane, select Forecast Server.

6. In Forecast Server > Archiving, you can set the following archiving properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression level</td>
<td>Specifies how much to compress a new archive.</td>
<td>The same as the default for Java</td>
</tr>
<tr>
<td>Files to ignore (by extension)</td>
<td>Specifies the file types that you do not want to include in an archive.</td>
<td>sas7bndx</td>
</tr>
<tr>
<td>Data set files to CPORT (by extension)</td>
<td>Specifies data files that you want to include in an archive. A comma-separated list of values is expected.</td>
<td>sas7bdat</td>
</tr>
<tr>
<td>Catalog files to CPORT (by extension)</td>
<td>Specifies catalog files that you want to include in an archive. A comma-separated list of values is expected.</td>
<td>sas7bcat</td>
</tr>
<tr>
<td>Additional CPORT option</td>
<td>Enables you to include additional options to insert into the PROC CPORT statement that is used to create an archive.</td>
<td>(blank)</td>
</tr>
</tbody>
</table>

Click Reset.

7. Restart the SAS Forecast Server for these changes to take effect.

Remove a Product Configuration with the SAS Deployment Manager

To remove a product configuration:

1. Navigate to the SASHome directory. For example, on a Windows system, navigate to C:\Program Files\SASHome\SASDeploymentManager\9.3. Double-click sasdm.exe to launch the SAS Deployment Manager.

2. Select Remove Existing Configuration, and then click Next.

3. Select a configuration directory, and then click Next.

4. Specify connection information to the SAS Metadata Server, and then click Next.
5. Select the product that you want to remove, and then click **Next**. For example, to remove the SAS Forecast Server, select **Forecast Server 12.1**.

6. SAS Forecast Server has metadata that describes user-defined environments and projects. This metadata is stored in the SAS Metadata Server. If you are removing the SAS Forecast Server, you can select to unregister the user content. This option removes the SAS Forecast Server metadata when you remove the SAS Forecast Server. However, the metadata in the file system is not removed. Therefore, you can use it to re-create the metadata if needed.

 Note: You can use the SAS Forecast Server Plug-ins for SAS Management Console and the SAS Forecast Project Manager to register and unregister user content. For more information about registering and unregistering user content, see the online Help for the SAS Forecast Server Plug-ins for SAS Management Console and the online Help for SAS Forecast Project Manager. In addition, you can use the macros in the SAS Forecast Batch Interface. For more information, see the “About the SAS Forecast Batch Interface” on page 94.

7. In **Summary**, click **Start**.

8. Restart the Web application server for these changes to take effect.

Archive a Project

You can archive a project by using the SAS Forecast Server Plug-ins for SAS Management Console or the SAS Forecast Project Manager. For more information, see the online Help for the SAS Forecast Server Plug-ins for SAS Management Console or the online Help for the SAS Forecast Project Manager. In addition, you can archive projects by using the %FSEXPORT macro.

To archive a project by using the SAS Forecast Server Plug-ins for SAS Management Console:

2. Click the **Plug-ins** tab. Expand the **Application Management** and **Forecast Server** folders. Expand the environment folder that contains the project that you want to archive.

3. Expand the **Projects** folder, and right-click on a project. Select **Archive** from the menu. The Archive dialog box appears.

4. Enter a name for the archived project. By default, the SAS Forecast Server uses the project name. The name must be a valid SAS name. It cannot be the name of an existing archived project.

5. Enter a description for the archived project.

6. Enter a location for the archived project.

7. Click **OK**.
Part 4

Using the SAS Forecast Server Clients

Chapter 10
SAS Forecast Studio .. 87

Chapter 11
SAS Forecast Batch Interface 93

Chapter 12
SAS Forecast Studio Tasks in Other SAS Software 169
Chapter 10
SAS Forecast Studio

Requirements for Starting SAS Forecast Studio

Before you can start SAS Forecast Studio, you must start the servers (for example, the SAS Metadata Server, your Web application server, and SAS Remote Services). For information about how to start these servers, see the SAS Intelligence Platform: System Administration Guide.

Run SAS Forecast Studio from a Local Installation

SAS Forecast Studio runs only on the Windows operating system. To start SAS Forecast Studio on the system where it is installed, select Start ⇒ All Programs ⇒ SAS ⇒ SAS Forecast Studio ⇒ SAS Forecast Studio 12.1.
Use Java Web Start

How to Launch SAS Forecast Studio

You do not need to install SAS Forecast Studio on every system where you want to run SAS Forecast Studio. Instead, the SAS Forecast Server supports automatic launches of SAS Forecast Studio by using Java Web Start.

To launch SAS Forecast Studio using Java Web Start, perform either of these steps:

• Open the SAS Forecast Server Current Status Web page. The default URL for this page is the location from which the SAS Forecast Server is deployed. An example is http://<your-server-name>:<port-number>/SASForecastServer/Status.

 To start SAS Forecast Studio, click **Launch using Java Web Start**.

• Use the direct link to Java Web Start. You can launch SAS Forecast Studio from http://<your-server-name>:8080/SASForecastServer/main.jnlp.

• Use the **LaunchForecastStudio** directive.

Configure the Logon Behavior for Java Web Start

Default Logon Behavior for the Local Installation of SAS Forecast Studio and Java Web Start

The behavior of SAS Forecast Studio is the same whether you launch SAS Forecast Studio from a local installation or by using Java Web Start. The main difference between these two choices is visible in the logon dialog box.

• When you launch SAS Forecast Studio from a local installation, the default value in the **SAS environment** list is the last SAS environment that you used on that machine. If you have not previously logged on to SAS Forecast Studio from the machine, the **SAS environment** list displays the default SAS environment.

• When you launch SAS Forecast Studio using Java Web Start, the **SAS environment** list includes **(host deployment)**, as well as any available SAS environments. The **(host deployment)** value represents the SAS deployment from which SAS Forecast Studio was downloaded. When you launch SAS Forecast Studio using Java Web Start, the default value in the **SAS environment** list is the last SAS environment that you used. If you have not previously logged on to SAS Forecast Studio, the **SAS environment** list defaults to **(host deployment)**.

Configure the Logon Behavior on the Server

Using the Configuration Manager in the SAS Forecast Server Plug-ins for SAS Management Console, you can control the logon behavior for Java Web Start.

You can set the following options:

SAS environment URL

specifies the URL for the sas-environment.xml file. For more information, see the “Configure a SAS Environment URL” on page 80.
Preferred SAS environment
specifies the SAS environment that should be selected by default in the logon dialog box. For more information, see the “Set the Preferred SAS Environment in the Logon Dialog Box for SAS Forecast Studio” on page 81.

Lock SAS environment selection
specifies whether users can select a different SAS environment in the logon dialog box. When you specify both the Preferred SAS environment and Lock SAS environment selection options, you force users to use a specific SAS environment.

If you change any of these options, you must restart the SAS Forecast Server or use a JMX call to apply the new values.

Configure the Logon Behavior on the Client
On the client, you can configure the logon behavior of Java Web Start in either of these ways:

- You can specify the URL for the sas-environment.xml file in the SAS_ENV_DEFINITION_LOCATION environment variable.
- If you run the SAS Deployment Wizard on a client, and the URL for the sas-environment.xml file was specified during the SAS installation in the local sassw.config file, you can use the SASHOME environment variable to specify where the client deployment is installed. When the SASHOME environment variable is defined, the client automatically checks the configuration files of the current deployment for a configured sas-environment.xml file to use.

If you configure the logon behavior by using both ways, the value from the SAS_ENV_DEFINITION_LOCATION environment variable is used.

To create either of these environment variables on a client running Windows XP, perform the following steps. If you are running another version of the Windows operating system, then these steps might be slightly different.

1. On your desktop, right-click My Computer, and select Properties. The System Properties dialog box appears.
2. Click the Advanced tab, and click Environment Variables. The Environment Variables dialog box appears.
3. Click New to create a new system variable.

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Variable Name</th>
<th>Variable Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SASHOME</td>
<td>SASHOME</td>
<td>The location where SAS was installed. An example is C:\Program Files \SASHome.</td>
</tr>
</tbody>
</table>

Click OK. The SAS_ENV_DEFINITION_LOCATION and SASHOME variables now appear in the list of system variables.

4. Click OK.
Note: When you open a new Web browser, the process for that new Web browser saves the values of the environment variables. Because Java Web Start is a child of this process, Java Web Start uses the cached values of the environment variables from the process. For Java Web Start to recognize new environment variables (or any changes that you make to environment variables), you must restart your Web browser, and then reopen Java Web Start.

Customize the Default URL for Java Web Start

To open a specific forecasting environment or project in SAS Forecast Studio, add a parameter to this URL.

- **forecasting.launch.environment** specifies a forecasting environment.
- **forecasting.launch.project** specifies the name of a project.

TIP You are not required to specify the project parameter when you specify the environment parameter.

For example, if your URL is http://localhost:8080/SASForecastServer/main.jnlp?forecasting.launch.environment=Default&forecasting.launch.project=Project1, then SAS Forecast Studio attempts to connect to the environment named Default. If the connection is successful, SAS Forecast Studio attempts to open the Project1 project.

Start SAS Forecast Studio with Options

Open a Specific Forecasting Environment or Project in SAS Forecast Studio

To open a specific forecasting environment or project in SAS Forecast Studio, type `launchFile=filename` at the command prompt, where `filename` is the path to an .fs file that contains the parameters of a specific forecasting environment or project. An example of a filename is C:\Europe\Sales\Products2012.fs. The `Products2012.fs` file contains the following code:

```
environment=Default
project=Products2012
```

When you run SAS Forecast Studio using `launchFile="C:\Europe\Sales\Products2012.fs"`, SAS Forecast Studio attempts to open the Default environment. If the connection is successful, SAS Forecast Studio attempts to open the Products2012 project.

Specify the Number of Observations to Use to Detect the Time Interval

You can specify the number of observations from the input data set that SAS Forecast Studio uses to detect the time interval. By default, SAS Forecast Studio uses the first 10,000 observations. Usually, a few distinct time ID values are needed to detect the time interval. However, a data set with many repeated values of the time ID variable
sometimes requires a larger sample of observations to get enough distinct values. Increasing the number of observations might improve time-interval detection when you are using data sets that have many repeated values. However, values of 100,000 observations or larger could cause noticeably slower performance when you are creating a new project.

To configure SAS Forecast Studio to use a specified number of observations:

1. Open the `forecaststdo.ini` file in a text editor. For example, in a default Windows installation, this file is located in the `C:\Program Files\SAS\SASForecastStudio\12.1` directory.

2. In the `.ini` file, enter a new `JavaArgs_n` entry, where `n` is the number of the next argument in the list. Increment the argument number accordingly. For example, `JavaArgs_14=-Dcom.sas.analytics.forecasting.interval_sample=50000`.

Specify the Sample Size for Validating BY Variable Values and Formats

When you start SAS Forecast Studio, you can specify a default value for the sample size. The sample is used to check the validity of BY variable values and formats. The default value is applied when you use the New Project wizard to save a project’s code without running it.

The default value for the sample size is 50000. When you specify a value for the sample size, the first `n` observations of the data set are used to answer the following questions:

- Is any numeric BY variable continuous-valued?
- Does any BY variable have a format that maps more than one raw value to the same formatted value?

If the answer to either of these questions is “yes,” then an appropriate error dialog box is displayed. The project is not created or saved.

To configure SAS Forecast Studio to use a sample size other than 50000 to validate BY variable values and formats:

1. Open the `forecaststdo.ini` file in a text editor. For example, in a default Windows installation, this file is located in the `C:\Program Files\SAS\SASForecastStudio\12.1` directory.

2. In the `.ini` file, enter a new `JavaArgs_n` entry, where `n` is the number of the next argument in the list. Increment the argument number accordingly. For example, `JavaArgs_14=-Dcom.sas.analytics.forecasting.by_validation_sample=50000`.
Chapter 11
SAS Forecast Batch Interface

About the SAS Forecast Batch Interface

Overview .. 94
Installation and Availability .. 94
General Usage .. 94
Work with the SAS Forecast Server 95
Work with SAS Forecasting for Desktop 96
Summary of Macros ... 97

Dictionary .. 99
FSADDEVT Macro .. 99
FSCLEAR Macro .. 102
FSCOPY Macro .. 102
FSCREATE Macro .. 104
FSDELARC Macro ... 117
FSDELENV Macro ... 118
FSDELEVT Macro ... 119
FSDELPRJ Macro .. 121
FSEVTREQ Macro ... 122
FSEXPALL Macro .. 123
FSEXPORT Macro .. 125
FSEXPSET Macro .. 126
FSGETENV Macro ... 128
FSGETPRJ Macro .. 129
FSGETURP Macro ... 130
FSIMPALL Macro ... 131
FSIMPORT Macro ... 132
FSLOAD Macro ... 134
FSLOGIN Macro .. 135
FSLOGOUT Macro ... 136
FSLOOP Macro ... 136
FSMIGALL Macro .. 138
FSMIGPRJ Macro .. 139
FSMOVE Macro .. 140
FSNEWENV Macro ... 142
FSREGENV Macro ... 143
FSREGPRJ Macro ... 144
FSREN Macro .. 145
FSRUNPRJ Macro .. 146
FSRUNRPT Macro ... 148
FSSETDAT Macro ... 150
FSSETDEF Macro ... 151
FSSETOWN Macro ... 152
About the SAS Forecast Batch Interface

Overview

The SAS Forecast Batch Interface is available for the SAS Forecast Server and SAS Forecasting for Desktop. Macros in the SAS Forecast Batch Interface provide a SAS language interface to the SAS Forecast Server and SAS Forecasting for Desktop. Effectively, the macros serve as an alternative client to SAS Forecast Studio, SAS Forecast Studio for Desktop, the SAS Forecast Server Plug-ins for SAS Management Console, SAS Forecast Project Manager, and SAS Forecast Project Manager for Desktop. Some macros enable you to create projects with options identical to those available in SAS Forecast Studio and SAS Forecast Studio for Desktop. However, most of the macros are used to manage environments and projects.

Installation and Availability

When your site licenses the SAS Forecast Server or SAS Forecasting for Desktop, the SAS Forecast Batch Interface is automatically included in all SAS Foundation installations. The SAS Forecast Batch Interface component is installed in the extension directory `forecastbat`. On Windows, the macros in the SAS Forecast Batch Interface reside in an autocall library in `!SASROOT/forecastbat/sasmacro`. On UNIX, they reside in the `SASFoundation/9.3/sasautos` directory.

General Usage

Whether you are working with the SAS Forecast Server or SAS Forecasting for Desktop, the basic pattern of usage is the same. Here are the general usage steps:

1. Call the FSLOGIN macro to begin a product session.
2. Call one or more of the other SAS Forecast Batch Interface macros to perform actions in the product session.
3. Call the FSLOGOUT macro to end the product session.

For example, the FSGETENV macro can be used with the PRINT=YES argument to retrieve the list of available forecasting environments and print them to the SAS LISTING output. To make this call, the code would be similar to the following:

```
%FSLOGIN(arguments);
%FSGETENV(print=YES);
%FSLOGOUT();
```

In this example, the arguments for FSLOGIN are intentionally omitted because they depend on the type of deployment. There is more information about these arguments in the subsections that follow.

Note: Prior to release 12.1, each SAS Forecast Batch Interface macro created and ended a dedicated product session during the course of its call. This required FSLOGIN
As of release 12.1, these macro arguments are no longer supported. SAS scripts that were created for releases prior to 12.1 must be updated to use FSLOGIN and FSLOGOUT macros instead.

Work with the SAS Forecast Server

The following figure shows how the SAS Forecast Batch Interface macros interact with the other components of SAS Forecast Server:

As with the other SAS Forecast Server clients, the SAS Forecast Batch Interface uses SAS environments to identify the SAS deployments that are available. As a result, the same configuration requirements apply to the SAS Forecast Batch Interface. SAS Forecast Batch Interface macros must have access to a sas-environment.xml file that defines the list of SAS environments or an error message is displayed. For the login macro, FSLOGIN, the SASENVIRONMENT argument is used to identify the selected SAS environment by name. As a result, the value for this argument is the symbolic name of the SAS environment. This symbolic name is specified by the NAME= attribute in the sas-environment.xml file. The symbolic name is used by the clients that do not have a graphical user interface because a symbolic name is independent of your locale. (Do not use the DESC= attribute to specify the SAS environment. The DESC= attribute is the label that appears when the SAS environment is displayed in a menu.)

Note: FSLOGIN is the only macro that refers to SAS environments. All other macros in the SAS Forecast Batch Interface refer to forecasting environments.

SAS Forecast Server deployments require credential-based authentication when creating a session. The arguments USER and PASSWORD are used to provide authentication information. A plain text password in macro code is not recommended. Instead, use PROC PWENCODE to create an encrypted password.

For example, to encrypt the password SASmeta1, submit the following code in the SAS Program Editor:
proc pwencode in="SASmeta1";
run;

Copy the encrypted password from the SAS log, and paste the password into your macro code. For more information about the PWENCODE procedure, see the Base SAS 9.3 Procedures Guide.

For example, suppose your site has only one SAS environment named DEFAULT and the SAS Forecast Server is included. Running the previous example with the SASDEMO identity and an encrypted password {sas002}123 produces the following code:

```sas
%FSLOGIN(sasEnvironment=default, user=sasdemo, password={sas002}123);
%FSGETENV(print=YES);
%FSLOGOUT();
```

Work with SAS Forecasting for Desktop

The following figure shows how the SAS Forecast Batch Interface macros interact with the other components of SAS Forecasting for Desktop.

Because SAS Forecasting for Desktop can use your operating system identity directly, creating a product session is trivial. The FSLOGIN call needs to indicate that only a desktop session is requested, which is done by passing the DESKTOP=YES Boolean argument. Here is the complete code for the previous example for SAS Forecasting for Desktop:

```sas
%FSLOGIN(sasEnvironment=default, user=sasdemo, password={sas002}123);
%FSGETENV(print=YES);
%FSLOGOUT();
```
Note: The SAS Forecasting for Desktop license does not permit the use of the FSCREATE macro. Instead, projects must be created using the SAS Forecast Studio for Desktop client. In addition, the FSRUNRPT macro does not apply to SAS Forecasting for Desktop deployments because stored processes are not available in desktop mode.

The following table lists the macros in the SAS Forecast Batch Interface:

<table>
<thead>
<tr>
<th>Macro Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSADDEVT</td>
<td>Defines an event and adds it to the event repository for the specified project.</td>
</tr>
<tr>
<td>FSCLEAR</td>
<td>Clears project information currently stored in global macro variables.</td>
</tr>
<tr>
<td>FSCOPY</td>
<td>Copies a project.</td>
</tr>
<tr>
<td>FSCREATE</td>
<td>Creates a new project in batch mode.</td>
</tr>
<tr>
<td>FSDELEVT</td>
<td>Deletes specified events from the event repository.</td>
</tr>
<tr>
<td>FSDELARC</td>
<td>Deletes an archived project.</td>
</tr>
<tr>
<td>FSDELENV</td>
<td>Deletes an existing forecasting environment.</td>
</tr>
<tr>
<td>FSDELPRJ</td>
<td>Deletes an existing project.</td>
</tr>
<tr>
<td>FSEVTREQ</td>
<td>Sets the required attributes for events in the project’s event repository.</td>
</tr>
<tr>
<td>FSEXPALL</td>
<td>Archives all projects.</td>
</tr>
<tr>
<td>FSEXPORT</td>
<td>Archives a single project.</td>
</tr>
<tr>
<td>FSEXPSET</td>
<td>Exports the project settings to a local file.</td>
</tr>
<tr>
<td>FSGETENV</td>
<td>Shows all of the details about a forecasting environment.</td>
</tr>
<tr>
<td>FSGETPRJ</td>
<td>Shows all of the details about a project.</td>
</tr>
<tr>
<td>FSGETURP</td>
<td>Lists the names of unregistered projects in a specified forecasting environment.</td>
</tr>
<tr>
<td>Macro Name</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>FSIMPALL</td>
<td>Imports a collection of projects from the project archives.</td>
</tr>
<tr>
<td>FSIMPORT</td>
<td>Imports a single project from the project archives.</td>
</tr>
<tr>
<td>FSLOAD</td>
<td>Opens an existing SAS Forecast Server project and loads global macro variables that describe the project.</td>
</tr>
<tr>
<td>FSLOGIN</td>
<td>Creates a new session for a specified instance of the middle tier.</td>
</tr>
<tr>
<td>FSLOGOUT</td>
<td>Closes a session of a specified instance of the middle tier.</td>
</tr>
<tr>
<td>FSLOOP</td>
<td>Iterates through a data set and invokes a callback macro with the values from each row.</td>
</tr>
<tr>
<td>FSMIGALL</td>
<td>Migrates all existing SAS Forecast Server projects to the current version of the SAS Forecast Server.</td>
</tr>
<tr>
<td>FSMIGPRJ</td>
<td>Migrates an existing SAS Forecast Server project to the current version of the SAS Forecast Server.</td>
</tr>
<tr>
<td>FSMOVE</td>
<td>Moves a SAS Forecast Server project to a different forecasting environment.</td>
</tr>
<tr>
<td>FSNEWENV</td>
<td>Creates a new SAS Forecast Server forecasting environment.</td>
</tr>
<tr>
<td>FSREGENV</td>
<td>Registers an existing directory structure as a forecasting environment. You can also use this macro to register projects in the environment.</td>
</tr>
<tr>
<td>FSREGPRJ</td>
<td>Registers a project.</td>
</tr>
<tr>
<td>FSREN</td>
<td>Renames a project.</td>
</tr>
<tr>
<td>FSRUNPRJ</td>
<td>Runs an existing project at a specified stage.</td>
</tr>
<tr>
<td>FSRUNRPT</td>
<td>Runs a forecasting report and saves the results to a local directory.</td>
</tr>
<tr>
<td>FSSETDAT</td>
<td>Changes the input data source for a project.</td>
</tr>
<tr>
<td>FSSETDEF</td>
<td>Stores a default value for a macro argument.</td>
</tr>
<tr>
<td>FSSETOWN</td>
<td>Assigns the owner of a project.</td>
</tr>
<tr>
<td>FSSETPUB</td>
<td>Changes the public access (sharing) status of a project.</td>
</tr>
<tr>
<td>FSUNREG</td>
<td>Unregisters an existing project.</td>
</tr>
</tbody>
</table>
Macro Name | Description
---|---
| FSUNRENV | Unregisters a forecasting environment. |
| FSUPDATE | Updates the settings of an existing SAS Forecast Studio project. |
| FSVER | Returns the version of the SAS Forecast Batch Interface. |

The FSCREATE and FSRUNRPT macros are not applicable to SAS Forecasting for Desktop.

Dictionary

FSADDEVT Macro

The FSADDEVT macro defines an event and adds it to the event repository for the specified project. All types of events and their attributes can be defined.

Syntax

```%FSADDEVT(EVENTNAME=,EVENTTYPE= [,options]);```

#### Details

**Required Arguments**

*Note: Some required arguments do not have to be specified by the user in the macro call for the requirement to be satisfied. In some cases, when a user does not specify a required argument, the macro attempts to resolve it with a default value previously stored in the macro run-time environment. If the required argument has a default value (either the system default value or a value set with FSSETDEF), then the argument does not have to be specified in the macro.*

The following arguments are required with the FSADDEVT macro if no default values were previously stored. The required arguments are separated by commas.

- **EVENTNAME = event-name**
  - specifies the name of the event to be created.

- **EVENTTYPE = POINT | RAMP | LEVELSHIFT | TEMPORARYCHANGE | COMBINED**
  - specifies the type of event. For more information about each type of event, see the *SAS Forecast Studio: User's Guide.*

  *Note: POINT events are called pulse events in SAS Forecast Studio.*
Options
The following options can be used with the FSADDEVT macro. Options must follow arguments and are separated by commas.

ENVIRONMENT = environment-name
specifies the name of the SAS Forecast Server forecasting environment. The value for this option is case sensitive. The default environment is Default. A global default value for ENVIRONMENT can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

EVENTCHANGEPARAMETER = value
specifies the change for a temporary change event. This option does not have any effect on other event types. Valid values range from 0 to 1 (inclusive). The default value is 0.5.

EVENTCOMBINATION = event-name1 event-name2
specifies the events to include in the combined event. This option is valid only when the event type is COMBINED. Event names are separated by spaces.

EVENTCOMBINATIONRULE = ADD | MAX | MIN | MINNZ | MINMAG | MULT
specifies which combination rule to use when the event has several values that overlap in the same time period. Here are the valid values:

ADD add the overlapping values.
MAX use the maximum value.
MINNZ use the minimum nonzero value.
MINMAG use the value with the least magnitude.
MULT multiply the overlapping values.

EVENTDESCRIPTION = text
specifies a description of the event.

EVENTDIFF = YES | TRUE | NO | FALSE | 1 | 0
specifies whether to use the same differencing value that is used in the model. This option applies only to ARIMA models. The default value is YES.

EVENTOCCURRENCESAFTER = value
specifies the duration of the component that occurs after the event. For example, EVENTOCCURRENCESAFTER=4 specifies that the event ends four periods after the date and time that you specified for the event. If you specified more than one date or time for the event, the EVENTOCCURRENCESAFTER option applies to all of them.

EVENTOCCURRENCESBEFORE = value
specifies the duration of the component that occurs before the event. For example, EVENTOCCURRENCESBEFORE=4 specifies that the event starts four periods before the date and time that you specified for the event. If you specified more than one date or time for the event, the EVENTOCCURRENCESBEFORE option applies to all of them.

EVENTOCCURRENCESAFTERGROWTH = YES | TRUE | NO | FALSE | 1 | 0
specifies the slope for the component that occurs after the event. This option is valid only if the event type is RAMP or TEMPORARYCHANGE. The YES | TRUE values indicate growth, and the NO | FALSE values indicate decay.

EVENTOCCURRENCESBEFOREGROWTH = YES | TRUE | NO | FALSE | 1 | 0
specifies the slope for the component that occurs before the event. This option is valid only if the event type is RAMP or TEMPORARYCHANGE. The YES | TRUE values indicate growth, and the NO | FALSE values indicate decay.
EVENTPERIODINTERVAL = time-interval
specifies the time interval by which the event repeats infinitely.

EVENTPERIODICFROMSTART = date-time-value
specifies the starting point for the recurrence. The interval value is specified by the
EVENTPERIODINTERVAL option.

EVENTPERIODICFROMSTARTINTERVAL = time-interval
specifies the time interval for an event that repeats infinitely. The starting point is
specified by the EVENTPERIODICFROMSTART option.

EVENTPERIODICITYEND = date-time-value
specifies the end date or time for the periodic interval. When you specify the
EVENTPERIODICITYSTART, EVENTRANGEINTERVAL, and
EVENTPERIODICITYEND options, then the periodicity for the recurrence is finite.

EVENTPERIODICITYOCCURRENCES = integer-value
specifies the number of times that the event recurs. The recurrence starts at the date
or time specified by the value of the EVENTPERIODICITYSTART option, and
occurs at the interval specified by the value of the EVENTRANGEINTERVAL
option. If you specify this option and the EVENTPERIODICITYEND option, the
value of the EVENTPERIODICITYEND option is ignored.

EVENTPERIODICITYSTART = date-time-value
specifies the start date or time for the periodic interval. When you specify the
EVENTPERIODICITYSTART, EVENTRANGEINTERVAL, and
EVENTPERIODICITYEND options, then the periodicity for the recurrence is finite.

EVENTRANGEINTERVAL = time-interval
specifies the time interval at which the event repeats. The start and end dates are
specified by the EVENTPERIODICITYSTART and EVENTPERIODICITYEND
options.

EVENTREQUIRED = NO | MAYBE | YES | UNDEF
specifies whether the event should be used when the SAS Forecast Server
automatically fits a model. The default value is NO. Here are the valid values:

NO specifies that the event should be included in the model as long as
the event parameters are significant and the increment of the value
of criterion exceeds the specified threshold.

MAYBE specifies that the event should be included in the model as long as
the event parameters are significant.

YES specifies that the event should be included in the model as long as
the model can be diagnosed.

UNDEF specifies that the event should not be included in the model.

EVENTTIMINGSHIFT = integer-value
specifies how long to delay the onset of the event. This delay is calculated from the
start date or time of the event. Negative values can be used to specify an onset before
the start date or time.

EVENTTIMINGVALUES = value1 value2 . . .
specifies the dates and times of the event. Values are separated by spaces. Here are
the valid values:

• Dates in the ddmmyyyy format (for example, 01JAN2012).
• Datetime values in the ddmmyyyy:hh:mm:ss format (for example,
• Event keywords, including holiday names and seasonal events. For a list of these keywords, see the “Event Definitions” topic in the HPEVENTS procedure chapter in the SAS High-Performance Forecasting: User’s Guide.

PROJECTNAME = project-name
specifies the name of the SAS Forecast Server project. The name must be a valid SAS name. If you do not specify this option, the current stored default value for the project name is used. A global default value for PROJECTNAME can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

MIDTIER = label
identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.

**Results**
The FSADDEVT global macro variable indicates whether a new event was created or whether it failed due to errors:

&FSADDEVT = SUCCESS|ERROR

**Example**

```
%fsaddevt(projectname=Project1,
environment=Default,
eventname=evt2,
eventtype=ramp,
eventdescription=sample event,
eventTimingValues=01MAR1955,
eventRequired=YES
);
```

**FSCLEAR Macro**
The FSCLEAR macro clears project information currently stored in global macro variables. Use the FSLOAD macro to add project information to a global macro variable.

**Syntax**

```
%FSCLEAR();
```

**Example**

```
%fsclear();
```

**FSCOPY Macro**
The FSCOPY macro copies a project.
Syntax

%FSCOPY (SOURCEENVIRONMENT=, DESTINATIONENVIRONMENT=, SOURCEPROJECT=, DESTINATIONPROJECT= [ options ] ) ;

Details

Required Arguments
You must specify either a source environment and a destination environment or a source project and a destination project. You cannot specify both an environment and a project at the same time. Required arguments are separated by commas.

SOURCEENVIRONMENT = environment-name
specifies the name of the SAS Forecast Server environment to be used as the source. This option is required only if there are multiple environments available to the user. If this option is omitted, the current stored default value is used. The default value is Default. A global default value for SOURCEENVIRONMENT can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

DESTINATIONENVIRONMENT = environment-name
specifies the name of the SAS Forecast Server environment to be used as the destination. This option is required only if there are multiple environments available to the user. If this option is omitted, the current stored default value is used. The default value is Default. A global default value for DESTINATIONENVIRONMENT can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

SOURCEPROJECTNAME = source-project-name
specifies the name of the SAS Forecast Server project on the source host. The name must be a valid SAS name. If this option is omitted, then the current stored default value is used. A global default value for the SOURCEPROJECTNAME can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

DESTINATIONPROJECTNAME = destination-project-name
specifies the name of the SAS Forecast Server project on the destination host. The name must be a valid SAS name. If this option is omitted, then the current stored default value is used. A global default value for the DESTINATIONPROJECTNAME can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

Options
The following options can be used with the FSCOPY macro. Options must follow arguments and are separated by commas.

ARCHIVEFOLDER = directory-name
specifies the directory in which to save the archive. It is recommended that you specify a value for this directory. The ARCHIVEFOLDER= and REMOTEARCHIVEFOLDER= options are closely related.

• If you specify the ARCHIVEFOLDER= option, but you do not specify a value for the REMOTEARCHIVEFOLDER= option, SAS Forecast Server assumes that the directory for the archive folder and the remote archive folder is the same. For this to work, the source and destination environments must be using the same server. If these environments are on different servers, an error results.
• If you specify a value for the REMOTEARCHIVEFOLDER= option, you must specify a value for the ARCHIVEFOLDER= option.

• If you do not specify a value for the ARCHIVEFOLDER= option or the REMOTEARCHIVEFOLDER= option, both options are set to the Work directory in the source environment. This option is valid only when you are copying or moving a project from one destination to another on the same server. If the source and destination environments are on different servers, an error results.

\[ \text{CPORT = TRUE | FALSE | YES | NO | 1 | 0} \]

exports data sets and catalogs using CPORT. You must specify this option if the source and destination environments are running on different operating systems. The default is NO.

\[ \text{MIDTIER = label} \]

identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.

\[ \text{REMOTEARCHIVEFOLDER = directory-name} \]

specifies the directory in which the archived projects of the source SAS Workspace Server can be found on the destination SAS Workspace Server (for example, \sourceserver\SAS\ForecastStudio\Archives). If you specify a remote archive folder, you must specify a value for the ARCHIVEFOLDER= option. For more information about how the REMOTEARCHIVEFOLDER= and ARCHIVEFOLDER= options work together, see the description for the ARCHIVEFOLDER= option.

Note: The user must have Read and Write privileges to the REMOTEARCHIVEFOLDER= directory.

\[ \text{TMPARCHIVENAME = project-name} \]

specifies the name of the temporary archived project. The default is _fs_tmp_archive. The name must not match an existing archived project.

**Results**

The FSCOPY global macro variable indicates whether the FSCOPY macro terminated successfully or encountered errors:

\[ &\text{FSCOPY= SUCCESS | ERROR} \]

**Example**

\[
%\text{fscopy}\left(\text{sourceprojectname=prdat1,}
\text{destinationprojectname=prdat2,}
\text{sourceEnvironment=Default,}
\text{destinationEnvironment=Default,}
\right);
\]

**FSCREATE Macro**

The FSCREATE macro creates a new project in batch mode.
Syntax

%FSCREATE (PROJECTNAME=, DATA=, ID=, VAR= [ , options ] ) ;

Details

If you license SAS Forecast Studio for Desktop, the FSCREATE macro is not available. It is available only if you license the SAS Forecast Server. For more information about SAS Forecast Studio for Desktop, see the *SAS Forecast Studio: User's Guide*.

Required Arguments

Note: Some required arguments do not have to be specified by the user in the macro call for the requirement to be satisfied. In some cases, when a user does not specify a required argument, the macro attempts to resolve it with a default value previously stored in the macro run-time environment. If the required argument has a default value (either the system default value or a value set with FSSETDEF), then the argument does not have to be specified in the macro.

The following arguments are required with the FSCREATE macro if no default values were previously stored. The required arguments are separated by commas.

PROJECTNAME = *project-name*

specifies the name of the SAS Forecast Server project. The name must be a valid SAS name. If you do not specify this option, the current stored default value for PROJECTNAME is used. The value of this default cannot be specified with the FSSETDEF macro.

DATA = *SAS-data-set-name*

specifies the name of the input SAS data set. The value that you enter for this argument is not case sensitive.

ID = *variable*

specifies the time ID variable.

VAR = *variable*

specifies one or more dependent variables. Multiple variables can be specified only if HIERARCHY= NO | FALSE. Multiple variable names are separated by spaces.

Options

The following options can be used with the FSCREATE macro. Options must follow arguments and are separated by commas.

ACCUMULATE = TYPE [TYPE(*var1*var2) TYPE(*var3*var4) ...]

specifies the accumulation options for the dependent, input, and reporting variables.

Here are the valid values for TYPE:

NONE

specifies that no accumulation occurs. The ID variable values must be equally spaced with respect to the frequency.

TOTAL

specifies that observations are accumulated based on the total sum of their values. This is the default value.

AVERAGE | AVG

specifies that observations are accumulated based on the average of their values.

MINIMUM | MIN

specifies that observations are accumulated based on the minimum of their values.
MEDIAN | MED specifies that observations are accumulated based on the median of their values.

MAXIMUM | MAX specifies that observations are accumulated based on the maximum of their values.

N specifies that observations are accumulated based on the number of nonmissing observations.

NMISS specifies that observations are accumulated based on the number of missing observations.

NOBS specifies that observations are accumulated based on the number of observations.

FIRST specifies that observations are accumulated based on the first of their values.

LAST specifies that observations are accumulated based on the last of their values.

STDDEV | STD specifies that observations are accumulated based on the standard deviation of their values.

CSS specifies that observations are accumulated based on the corrected sum of squares of their values.

USS specifies that observations are accumulated based on the uncorrected sum of squares of their values.

Here are some examples:

- To use an average accumulation of all variables, specify **ACCUMULATE=AVG**.
- To use a total accumulation of all variables except for VAR1, which will use an average accumulation, specify **ACCUMULATE=TOTAL AVG(var1)**.
- To use a total accumulation of all variables except VAR1 and VAR2, which will use an average accumulation, and VAR3, which will accumulate the observations based on standard deviation, specify **ACCUMULATE=TOTAL AVG(var1 var2) STD(var3)**.

**ADJUST = var1(var2 var3) [/operation=(pre,post)]** specifies the adjustment options for the dependent variables. If this option is omitted, the current stored default value for pre-ADJUST and post-ADJUST is **NONE**.

Here are the valid pre-ADJUST and post-ADJUST values:

- **NONE**
- **ADD**
- **SUBTRACT**
- **MULTIPLY**
- **DIVIDE**
- **MIN**
- **MAX**

Here are some examples:

- To adjust the SALE variable with the values of the PRICE1 variable, specify **ADJUST=sale(price1)**.
• To adjust the SALE variable with the values of the PRICE1 variable and to adjust the PRICE variable with the values of the PRICE2 variable, specify `ADJUST=sale(price1) price(price2)`.
• To adjust the SALE variable with the values of the PRICE1 and PRICE2 variables, specify `ADJUST=sale(price1 price2)`.
• To adjust the SALE variable with the values of the PRICE1 variable before any forecasts are generated, specify `ADJUST=sale(price1)/operation=(ADD,NONE)`.

AGGREGATE = TYPE [TYPE(var1var2) TYPE(var3var4) ...] specifies the aggregation options for the dependent, input, and reporting variables. Aggregation is valid only if HIERARCHY=YES. See the ACCUMULATE option for valid values and examples.

Note: For the dependent variable, the only valid values are TOTAL | AVERAGE | AVG.

ALLOWNEGATIVE = YES | TRUE | NO | FALSE | 1 | 0 specifies whether negative forecasts are allowed. The default value is NO.

ALPHA = n specifies the confidence level for the series. The default value is 0.05, which is a 95% confidence level.

ARIMAX = YES | TRUE | NO | FALSE | 1 | 0 specifies whether ARIMA models should be considered. The default value is YES.

BACK = n specifies the out-of-sample range (the number of periods from the end). The default value is 0.

BY = variable specifies the BY variables. Multiple variable names are separated by a space.

COMBINE = YES | TRUE | NO | FALSE | 1 | 0 specifies whether the SAS Forecast Server should automatically generate a combined model for the set of time series models that is generated from the diagnosis of each time series model. The default value is NO.

COMBINECRITERION = selection-criterion specifies the statistic of fit to use when ranking the combined models. The default value is RMSE.

Note: This option is valid only if the following conditions are met:

• The COMBINE option is set to YES or TRUE.
• The ARIMAX option, the UCM option, or both the ARIMAX and UCM options are set to YES or TRUE.

Here are the valid values for the selection criterion:

• AADJRSQ—Amemiya’s adjusted R-square
• ADJRSQ—adjusted R-square
• AIC—Akaike information criterion
• AICC—Akaike information criterion, finite sample size corrected
• APC—Amemiya’s prediction criterion
• GMAPE—geometric mean percent error
• GMAPES—geometric mean absolute error percent of standard deviation
• GMAPPE—geometric mean predictive error
• GMASPE—geometric mean symmetric percent error
• GMRAE—geometric mean relative absolute error
• MAE—mean absolute error
• MAPE—mean absolute percent error
• MAPES—mean absolute error percent of standard deviation
• MAPPE—mean absolute predictive symmetric percent error
• MASE—mean absolute scaled error
• MAXERR—maximum error
• MAXPE—maximum percent error
• MAXPPE—maximum predictive percent error
• MAXRE—maximum relative error
• MAXSPE—maximum symmetric percent error
• MDAPE—median absolute percent error
• MDAPES—median absolute percent error of standard deviation
• MDAPPE—median absolute predictive percent error
• MDASPE—median absolute symmetric percent error
• MDRAE—median relative absolute errors
• ME—mean error
• MINERR—minimum error
• MINPE—minimum percent error
• MINPPE—minimum predictive percent error
• MINRE—minimum relative error
• MINSPE—minimum symmetric percent error
• MPE—mean percent error
• MPPE—mean predictive percent error
• MRAE—mean relative absolute error
• MRE—mean relative error
• MSPE—mean symmetric percent error
• MSE—mean square error
• RMSE—root mean square error
• RSQUARE—R-square
• RWRSQ—random walk R-square
• SBC—Schwarz Bayesian information criterion
• SMAPE—mean absolute symmetric percent error
• SSE—sum of squares error
• UMSE—unbiased mean square error
• URMSE—unbiased root mean square error

COMBINEENCOMPASS = OLS | HLN

specifies the forecast encompassing test to use to remove any models that contain redundant information. The default value is OLS.

Note: This option is valid only if the following conditions are met:

- The COMBINE option is set to YES or TRUE
- The ARIMAX option, the UCM option, or both the ARIMAX and UCM options are set to YES or TRUE.

Here are the valid values:

OLS uses an ordinary least squares (OLS) regression test to estimate pairwise encompassing between candidate forecasts.

HLN uses the Harvey-Leybourne-Newbold (HLN) test to estimate pairwise encompassing between candidate forecasts.

COMBINEMETHOD = AVERAGE | AICC | OLS | ERLS | LAD | NERLS | NRLS | RMSEWGT

specifies the method for determining the combination weights. Combination weights are used to calculate the weighted average of the candidate forecasts. The default method is AVERAGE.

Note: This option is valid only if the following conditions are met:

- The COMBINE option is set to YES or TRUE
- The ARIMAX option, the UCM option, or both the ARIMAX and UCM options are set to YES or TRUE.

Here are the valid values:

AVERAGE computes the simple average of the forecasts that you selected for combination. This is the default.

AICC uses the Akaike information criterion to compute the combination weights based on corrected AIC weights.

OLS uses ordinary least squares to compute the combination weights. The results minimize the $l_2$ norm of the combined forecast residuals.

ERLS uses equally restricted least squares to compute the combination weights. The results minimize the $l_2$ norm of the combined forecast residuals subject to the constraint that the weights sum to 1.

LAD uses a measure of fit based on the least absolute deviation to compute the combination weights.

NERLS uses nonnegative, equally restricted least squares to compute the combination weights. The results minimize the $l_2$ norm of the combined forecast residuals subject to the constraint that the weights sum to 1 and be nonnegative.

NRLS uses nonnegative, restricted least squares to compute the combination weights. The results minimize the $l_2$ norm of the combined forecast residuals subject to the constraint that the weights be nonnegative.
RANKWGT assigns weights using the rank of the candidate forecasts at the time the combination is performed. The weights must sum to 1. If not, the last value in the list is adjusted, and a warning is issued. The weights are assigned by ranking the candidate forecasts from best to worst. The best uses the first weight, and so on. The set of weights used is normalized to account for candidates that fail to forecast or for candidates that are omitted from the final combination because of any exclusion tests.

RMSEWGT uses the weights of the root mean square error to compute the combination weights. The weights are normalized to sum to 1.

COMBINEMISSMODE = MISSING | RESCALE
specifies the method for treating missing values in the forecast combination. In a time series across the combination, one or more combination contributors can have a missing value. This option determines the treatment of missing values in the final combination for time series indices. The default value is MISSING.

Note: This option is valid only if the following conditions are met:
- The COMBINE option is set to YES or TRUE.
- The ARIMAX option, the UCM option, or both the ARIMAX and UCM options are set to YES or TRUE.

MISSING generates a missing combined forecast at each time index with one or more missing contributors. This method is the default for AICC weights, OLS weights, restricted least squares weights, and LAD weights. You cannot rescale the combination weights if you selected the OLS-based regression test to estimate pairwise encompassing. In this test, the estimated weights are not constrained to sum to 1.

RESCALE rescales the combination weights for the nonmissing contributors at each time index to sum to 1. This method is the default for simple average, user-specified weights, ranked user weights, ranked weights, and root mean square error weights.

COMBINEMISSPCT = integer
specifies a threshold for the percentage of missing values in the combination estimation region. This threshold is used to exclude a candidate forecast from consideration in the final combination. By default, no missing percentage test is performed on candidate forecasts. Valid values are 1 to 100.

The COMBINEMISSPCT option and the HORMISSPCT option are independent of each other. You can specify one or both of these options.

Note: This option is valid only if the following conditions are met:
- The COMBINE option is set to YES or TRUE.
- The ARIMAX option, the UCM option, or both the ARIMAX and UCM options are set to YES or TRUE.

COMBINESTDERR = DIAG | ESTCORR
specifies the method for computing the prediction error variance series. This series is used to compute the prediction standard error, which is used to compute confidence bands on the combined forecast. The default value is DIAG.

Note: This option is valid only if the following conditions are met:
- The COMBINE option is set to YES or TRUE.
• The ARIMAX option, the UCM option, or both the ARIMAX and UCM options are set to YES or TRUE.

**CRITERION = options**

specifies the model selection criterion (statistic of fit) to be used to select from several candidate models. The default value is MAPE. For more values, see the COMBINECRITERION option.

**DESCRIPTION = text**

specifies the project description.

**DETECTOUTLIERS = YES | TRUE | NO | FALSE | 1 | 0**

specifies whether outliers in the data should be detected when fitting an ARIMA model. The default value is NO.

**DISAGGREGATION = PROPORTIONS | EQUALSPLIT**

specifies the disaggregation method for reconciliation. The default value is PROPORTIONS.

**ENCOMPASSALPHA = value**

specifies the significance level (or alpha value) for the forecast encompassing test. Valid values are 0 to 1 (inclusive). The default value is 0.05. See also the COMBINEENCOMPASS option.

*Note:* This option is valid only if the following conditions are met:

- The COMBINE option is set to YES or TRUE.
- The ARIMAX option, the UCM option, or both the ARIMAX and UCM options are set to YES or TRUE.

**ENDZEROSMAXNUM = integer**

specifies the maximum number of trailing zeros for a nonzero model. The default value is 0.

**ENDZEROSMAXPCT = integer**

specifies the maximum percentage of trailing zeros for a nonzero model relative to the number of nonzero values in the entire series. The default value is 0.

**ENDZEROSMINOBS = integer**

specifies a threshold for the series length that is required to enable the ENDZERO test. The default value is 0.

**ENVIRONMENT = environment-name**

specifies the name of the SAS Forecast Server forecasting environment. The value for this option is case sensitive. The default environment is Default. A global default value for ENVIRONMENT can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

**ESM = YES | TRUE | NO | FALSE | 1 | 0**

specifies whether exponential smoothing models (ESM) should be considered. The default value is YES.

**ESMONLYATLEVEL = BY- variable**

for hierarchical projects, specifies the highest level to fit the exponential smoothing models (ESM). Use this option to improve performance for projects with large hierarchies. The value must be the name of a BY variable. By default, no level is specified for fitting exponential smoothing models.

**HIERARCHY = YES | TRUE | NO | FALSE | 1 | 0**

specifies whether the BY variables should be considered hierarchical. The default value is NO.
HOLDOUT = \( n \) | NO | FALSE
specifies the number of periods to be used as the holdout sample for model selection. If you do not want to specify a holdout sample, set this option to NO or FALSE.

HORMISSPCT = integer
specifies a threshold for the percentage of missing forecast values in the combination horizon. This threshold is used to exclude a candidate forecast from consideration in the final combination. Valid values are from 1 to 100.

This option is different from the COMBINEMISSPCT option, which is for the estimation region. The COMBINEMISSPCT option and the HORMISSPCT option are independent of each other. You can specify one or both of these options.

Note: This option is valid only if the following conditions are met:

- The COMBINE option is set to YES or TRUE.
- The ARIMAX option, the UCM option, or both the ARIMAX and UCM options are set to YES or TRUE.

HOLDOUTPCT = \( n \) | NO | FALSE
specifies the maximum percentage of the series length to be used as the holdout sample for model selection. The holdout percentage guards against errors that are caused by holdout samples that are too large for the selected time series. For example, suppose a series has a length of 100 periods (excluding any leading or trailing missing values). If the HOLDOUT= option is set to 20, and the HOLDOUTPCT= option is set to 10, the holdout sample contains 10 periods.

If you do not specify a value for the HOLDOUTPCT= option, the default value is 5.

IDFORMAT = date
specifies the date-and-time format of the values in the time ID variable.

IMPORTSETTINGSPATH = full-path-to-file
specifies the file that contains the project settings to use in the new project. You must specify the full path to the macro file on the machine that invokes the macro. For example, this could be a file created by %FSEXPS. When you set the IMPORTSETTINGSPATH= option, the project settings in the file are used to initialize the values for the project. If you set any project settings by using arguments in the FSRESET macro, these arguments are processed after the IMPORTSETTINGSPATH= option. This enables project settings to be adjusted individually after the initial import of the project settings from the file.

INPUT = variable
specifies the input (or independent) variables. Variable names are separated by spaces.

INTERMITTENT = \( n \) | NO | FALSE
specifies a number greater than 1 that is used to determine whether a time series is intermittent. The default value is 2. To disable this test, set this option to NO or FALSE.

INTERVAL = interval-measure
specifies the time interval of the time ID variable. If a time interval is not specified, SAS Forecast Server detects the time interval from the data.

Here are the valid values:

- For SAS date values: YEAR, SEMIYEAR, QTR, MONTH, SEMIMONTH, TENDAY, WEEK, WEEKDAY, DAY, YEARV, R445YR, R454YR, R544YR, R445QTR, R454QTR, R544QTR, R445MON, R454MON, R544MON, and WEEKV.
• For SAS datetime values: HOUR, MINUTE, and SECOND.

  Note: Add a DT prefix to a date interval to create a datetime interval.

Abbreviations or aliases of these intervals are not valid values. You can add multiplier and shift parameters to any of these intervals. For the WEEKDAY interval, you can add values for the weekend day. Custom interval names are allowed. For more information, see “Time Intervals” in the SAS/ETS User’s Guide.

LEAD = n
specifies the number of periods into the future in which multiple step forecasts are made. The larger the horizon value, the larger the prediction error variance at the end of the horizon. The default value is 12.

MAXNUMOUTLIERS = n
specifies the maximum number of outliers to include in ARIMA models. The default value is 2.

MAXPCTOUTLIERS = n
specifies the maximum number of outliers to include in ARIMA models specified as a percentage of the series length, not including beginning and ending missing values. The default value is 2.

If you specify both the MAXNUMOUTLIERS and MAXPCTOUTLIERS options, then the SAS Forecast Server uses the smaller value. For example, suppose you set MAXNUMOUTLIERS=5 and MAXPCTOUTLIERS=10. The maximum number of the outliers is 5 or 10% of the series length, whichever is smaller.

MIDTIER = label
identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.

MINOBSTREND = n
specifies the minimum number of observations needed for a trend model. The default value is 2.

MINOBSNONMEAN = n
specifies the minimum number of observations needed for a non-mean model. The default value is 1.

MINOBSSEASON = n
is used to determine the number of observations required for a seasonal model. The value of the MINOBSSEASON option is multiplied by the seasonal cycle length. In order for a seasonal model to be fit to a series, the model must have more observations than the calculated value. Models with fewer observations will not be fit.

The value of MINOBSSEASON must be greater than or equal to 1. The default value is 2.

MODELSELECTIONLIST = SAS-data-set-name
specifies a model selection list that contains models that you can use. The default value is SASHELP.HPFDFLT.TSFSSELECT.

PUBLICACCESS = YES | TRUE | NO | FALSE | 1 | 0
specifies whether the project can be opened by other users. The default value is NO.
RECONCILIATION = TOPDOWN | TD | BOTTOMUP | BU | MIDDLEOUT(BY-variable) | MO(BY-variable) | NO | FALSE

specifies whether the SAS Forecast Server reconciles the hierarchy. By default, the SAS Forecast Server reconciles the hierarchy using the top-down reconciliation method (TOPDOWN or TD). To reconcile the hierarchy by a middle level, you must specify the BY variable for the level where the reconciliation starts.

Here are some examples of how to specify this option:

- To specify a top-down reconciliation, use RECONCILIATION=TOPDOWN.
- To specify a middle-out reconciliation that starts at the REGIONNAME variable, use RECONCILIATION=MIDDLEOUT(REGIONNAME).
- If you do not want to reconcile the hierarchy, specify RECONCILIATION=NO (or FALSE).

REPORTING = variable

specifies the reporting (or auxiliary) variables for the project. Variable names are separated by spaces.

RUN = YES | TRUE | NO | FALSE | 1 | 0

specifies whether to produce forecasts when the project is created. The default value is YES. The NO value is equivalent to "Save SAS code to produce forecasts later" in SAS Forecast Studio. This means that the SAS code (.sas file in the project folder) for the task (for example, CREATE_PROJECT_IMPORT_DATA.sas) should be submitted when forecasts are needed. If the FSRUN macro is submitted without first submitting this code, it will automatically select the task and submit the code.

SASENVIRONMENT = environment-name

specifies the symbolic name of the SAS environment where the middle tier for the SAS Forecast Server is saved. This symbolic name is specified by the NAME= attribute in the sas-environment.xml file and is case sensitive. The default value is Default.

SEASONALITY = n

specifies the length of a season. When possible, the SAS Forecast Server determines the seasonal cycle length from the time ID variable. You can specify a seasonal cycle length other than the default if you want to model a cycle in the data. For example, if your data contains a 13-week cycle, then specify SEASONALITY=13.

SEASONTEST = n | NO | FALSE

specifies the sensitivity of the seasonality test. You can specify no seasonality test or specify a significance probability value for the test. Series with strong seasonality have small test probabilities. A significance probability value of 0 always implies seasonality. A significance probability value of 1 always implies no seasonality.

The default value is 0.01. To disable the seasonality test, set this option to NO or FALSE.

SETMISSING = 0 | MISSING | AVG | MIN | MED | MAX | FIRST | LAST | PREV | NEXT

specifies how to replace the missing values in the data. The default value is MISSING.

- 0—Each missing value is set to 0.
- MISSING—Each missing value is set to missing. This is the default value.
- AVG—Each missing value is set to the accumulated average value.
- MIN—Each missing value is set to the accumulated minimum value.
- MED—Each missing value is set to the accumulated median value.
• MAX—Each missing value is set to the accumulated maximum value.
• FIRST—Each missing value is set to the accumulated first nonmissing value.
• LAST—Each missing value is set to the accumulated last nonmissing value.
• PREV—Each missing value is set to the previous accumulated nonmissing value. Missing values at the beginning of the accumulated series remain missing.
• NEXT—Each missing value is set to the next accumulated nonmissing value. Missing values at the end of the accumulated series remain missing.

START = date
specifies the first date to use in data preparation. The date format is ddmmyyyy and the date-and-time format is ddmmyyyy:hh:mm:ss. The default value is the earliest date in the input data set.

TIMEMULTIPLIER = n
specifies the multiplier for the time interval that you specified in the INTERVAL= option. You can specify the multiplier in the INTERVAL option. For example, if you specify INTERVAL=WEEK2, then the time interval is WEEK and the multiplier is 2.

TIMESHIFT = n
specifies the offset for the time interval that you specified in the INTERVAL= option. You can specify the offset in the INTERVAL option. For example, if you specify INTERVAL=WEEK.2, then the time interval is WEEK, and the offset is 2 periods.

TRANSBOXCOX = n
specifies the Box-Cox value if the transformation type (specified by the TRANSTYPE option) is BOXCOX. Valid values range from -5 to 5 (inclusive). The default is 1.

TRANSOPT = MEAN | MEDIAN
specifies how to calculate the forecasts for the system-generated models. The default is MEAN.

TRANSTYPE = AUTO | LOG | NONE | SQRT | LOGISTIC | BOXCOX
specifies the transformation to apply to the dependent variable or independent variable. This transformation applies to the system-generated models.

Here are the valid values:

AUTO Automatic transformation. SAS Forecast Studio uses the model selection criteria to determine whether to apply a logarithmic transformation or no transformation.

LOG Logarithmic transformation. This option is not available for negative series.

NONE No transformation. This is the default.

SQRT Square-root transformation.

LOGISTIC Logistic transformation.

BOXCOX Box-Cox transformation. If you select this type of transformation, then you can specify a value using the TRANSBOXCOX option.

TRIMMISS = NONE | LEFT | RIGHT | BOTH
specifies how missing values are removed from the accumulated time series. The default value is NONE. If the project is hierarchical with reconciliation, only NONE is allowed.
Here are the valid values:

- **NONE**  The missing values are kept.
- **LEFT**  The beginning missing values are removed.
- **RIGHT** The ending missing values are removed.
- **BOTH**  Both the beginning and ending missing values are removed.

### UCM

**UCM = YES | TRUE | NO | FALSE | 1 | 0**

specifies whether the SAS Forecast Server should automatically generate an unobserved component model (UCM). The default value is **NO**.

### WEEKENDDAYS

**WEEKENDDAYS = 1 | 2 | 3 | 4 | 5 | 6 | 7**

specifies which days are the weekend (or inactive) days in the week. This option is valid only when **INTERVAL=WEEKDAY**. The days are specified as numbers (1 through 7) representing the days of the week (Sunday through Saturday).

Here are some examples:

- To specify Saturday and Sunday as the weekend (or inactive) days in the week, use **WEEKENDDAYS=17**
- To specify Friday and Saturday as the weekend days, use **WEEKENDDAYS=67**.

The weekend (or inactive) days can also be specified using the **INTERVAL** option. For example, **INTERVAL=WEEKDAY67W** is the same as setting **INTERVAL=WEEKDAY** and **WEEKENDDAYS=67**.

### ZEROMISS

**ZEROMISS = NONE | LEFT | RIGHT | BOTH**

specifies how beginning or ending zero values (or both) are interpreted in the accumulated time series. The default value is **NONE**.

Here are the valid values:

- **NONE**  The beginning and ending zeros are unchanged.
- **LEFT**  The beginning zeros are set to missing.
- **RIGHT** The ending zeros are set to missing.
- **BOTH**  Both the beginning and ending zeros are set to missing.

### Results

The **FSCREATE** global macro variable indicates whether the **FSCREATE** macro terminated successfully or encountered errors:

**&FSCREATE = SUCCESS | ERROR**

A series of global macro variables are populated after a SAS Forecast Server project is loaded. These macro variables describe the project. Using these macro variables, you can write SAS code that can be used across multiple projects. For example, you can use SAS code to explore and use data in your SAS Forecast Server projects. You can also use these macro variables in SAS stored processes.

### Example

```sas
%fscreate(projectname=pdi,
 environment=Default,
 data=sashelp.pricedata,
 id=date,
 by=regionName productLine productName,
```
hierarchy=YES,
var=sale,
input=price discount,
reporting=price1 price2 price3,
accumulate=TOTAL AVG(price) NONE(price1 price3),
aggregate=NONE total(sale) MIN(price price3),
disaggregation=EQUALSPLIT,
reconciliation=NO,
publicaccess=YES,
setmissing=last,
zeromiss=left,
trimmiss=right,
back=1,
start=01Feb1998,
interval=MONTH,
seasonality=12,
idformat=MMYY.,
timemultiplier=1,
timeshift=1,
weekenddays=45,
arimax=YES,
esm=YES,
modelselectionlist=sashelp.hpfdflt.tsfsselect,
detectoutliers=YES,
intermittent=NO,
seasonstest=0.3,
holdout=NO,
holdoutpct=2,
minobstrend=2,
minobsnonmean=2,
criterion=MAPE,
lead=24,
alpha=0.10,
allownegative=NO,
description=foo bar stuff,
transopt=MEDIAN,
transtype=boxcox,
transboxcox=2
);

FSDELARC Macro
The FSDELARC macro deletes an archived project.

Syntax

%FSDELARC(ARCHIVENAME=[,options]) ;

Details

Required Arguments

Note: Some required arguments do not have to be specified by the user in the macro call for the requirement to be satisfied. In some cases, when a user does not specify a
required argument, the macro attempts to resolve it with a default value previously stored in the macro run-time environment. If the required argument has a default value (either the system default value or a value set with FSSETDEF), then the argument does not have to be specified in the macro.

The following argument is required with the FSDELARC macro if no default value was previously stored.

ARCHIVENAME = archived-project-name

specifies the filename of the archive that you want to delete the project from (for example, myarchive.far). If the archived project name does not end with .far, then the extension is automatically assumed.

Options
The following options can be used with the FSDELARC macro. Options must follow arguments and are separated by commas.

ARCHIVEFOLDER = archive-folder-name

specifies the directory containing the archived project to delete. If this option is not specified, the default location is assumed.

ENVIRONMENT = environment-name

specifies the name of the SAS Forecast Server forecasting environment. The value for this option is case sensitive. The default environment is Default. A global default value for ENVIRONMENT can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

MIDTIER = label

identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.

PROJECTNAME = project-name

specifies the name of the SAS Forecast Server project that is associated with the archived project. You must specify this option only if you do not specify the ARCHIVEFOLDER= option. The value of this default cannot be specified with the FSSETDEF macro.

Results
The FSDELARC global macro variable indicates whether the FSDELARC macro terminated successfully or encountered errors:

&FSDELARC = SUCCESS | ERROR

Example

%fsdelarc(projectname=pd1,
   archivename=ArchPD1.far,
   )

FSDELENV Macro
The FSDELENV macro deletes an existing forecasting environment. When you delete an environment, the registration and file system content are deleted.
Syntax

%FSDELENV(ENVIRONMENT= [,options]) ;

Details

Required Arguments

The following argument is required with the FSDELENV macro.

ENVIRONMENT = environment-name

specifies the name of the SAS Forecast Server forecasting environment. This option has no default value. The value of this default cannot be specified with the FSSETDEF macro.

Options

The following options can be used with the FSDELENV macro. Options must follow arguments and are separated by commas.

MIDTIER = label

identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.

Results

The FSDELENV global macro variable indicates whether the FSDELENV macro terminated successfully or encountered errors:

&FSDELENV = SUCCESS | ERROR

Example

%fsdelenv(environmen=Default ;

FSDELEVT Macro

The FSDELEVT macro deletes specified events from the event repository.

Syntax

%FSDELEVT(EVENTNAMES= [,options]);

Details

Required Arguments

Note: Some required arguments do not have to be specified by the user in the macro call for the requirement to be satisfied. In some cases, when a user does not specify a required argument, the macro attempts to resolve it with a default value previously
stored in the macro run-time environment. If the required argument has a default value (either the system default value or a value set with FSSETDEF), then the argument does not have to be specified in the macro.

The following argument is required with the FSDELEVT macro if no default value was previously stored.

EVENTNAMES = name1 name2
  specifies the events that you want to delete. Only one event name is required. Event names are separated by spaces. Event names are case sensitive.

Options
The following options can be used with the FSDELEVT macro. Options must follow arguments and are separated by commas.

ENVIRONMENT = environment-name
  specifies the name of the SAS Forecast Server forecasting environment. The value for this option is case sensitive. The default environment is Default. A global default value for ENVIRONMENT can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

EVENTINTEGRITYRULE = NONE | CHECK | FORCE
  determines how events are deleted when those events are in combination events or model selection lists. The default value is NONE.

  NONE       No integrity checks are performed. The events are removed from the event repository unconditionally.

  CHECK      SAS Forecast Server checks combination events and model selection lists for these events. An error appears if any of the events are found.

  FORCE      The events are removed from combination events, model selection lists, and the event repository.

MIDTIER = label
  identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.

PROJECTNAME = project-name
  specifies the name of the SAS Forecast Server project. The name must be a valid SAS name. If you do not specify this option, the current stored default value for the project name is used. A global default value for PROJECTNAME can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

Results
The FSDELEVT global macro variable indicates whether the FSDELEVT macro terminated successfully or encountered errors:

&FSDELEVT= SUCCESS | ERROR

Example

%fsdelevt(projectname=Project1,
          eventnames=evt2 evt4,
FSDELPRJ Macro

The FSDELPRJ macro deletes an existing project. You can also delete any related archived projects in the default archive location.

Syntax

```sas
%FSDELPRJ(PROJECTNAME= [,options]) ;
```

Details

**Required Arguments**

*Note:* Some required arguments do not have to be specified by the user in the macro call for the requirement to be satisfied. In some cases, when a user does not specify a required argument, the macro attempts to resolve it with a default value previously stored in the macro run-time environment. If the required argument has a default value (either the system default value or a value set with FSSETDEF), then the argument does not have to be specified in the macro.

The following argument is required with the FSDELPRJ macro if no default value was previously stored.

**PROJECTNAME = project-name**

specifies the name of the SAS Forecast Server project. The name must be a valid SAS name. If you do not specify this argument, then the default value for PROJECTNAME is used. The value of this default cannot be specified with the FSSETDEF macro.

**Options**

The following options can be used with the FSDELPRJ macro. Options must follow arguments and are separated by commas.

**DELETEARCHIVES = YES | TRUE | NO | FALSE | 1 | 0**

specifies whether the archives in the default archive location are to be deleted. By default, all archives are deleted with the project.

**ENVIRONMENT = environment-name**

specifies the name of the SAS Forecast Server forecasting environment. The value for this option is case sensitive. The default environment is Default. A global default value for ENVIRONMENT can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

**MIDTIER = label**

identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.

**NOWARN = YES | NO**

specifies whether to suppress errors if the SAS Forecast Server project does not exist. The default is NO.
Results
The FSDELPRJ global macro variable indicates whether the FSDELPRJ macro terminated successfully or encountered errors:

\&FSDELPRJ = SUCCESS | ERROR

Example

\%fsdelprj(projectname=prdat4, deleteArchives=YES,);

FSEVTREQ Macro
The FSEVTREQ macro sets the required attributes for events in the project’s event repository.

Syntax

\%FSEVTREQ(EVENTNAME=, EVENTREQUIRED= [, options]) ;

Details

Required Arguments
Note: Some required arguments do not have to be specified by the user in the macro call for the requirement to be satisfied. In some cases, when a user does not specify a required argument, the macro attempts to resolve it with a default value previously stored in the macro run-time environment. If the required argument has a default value (either the system default value or a value set with FSSETDEF), then the argument does not have to be specified in the macro.

The following arguments are required with the FSEVTREQ macro if no default values were previously stored. The required arguments are separated by commas.

EVENTNAME = event-name
specifies the name of the event. To set attributes for all events in the project’s event repository, use the _ALL_ keyword in place of event-name.

EVENTREQUIRED = YES | MAYBE | NO | UNDEF
specifies whether the event must be included in the model.

Here are the valid values:

YES specifies to include the event in the model as long as the model can be diagnosed.

MAYBE specifies to include the event in the model if the parameters of the event are significant.

NO specifies to include the event in the model if the parameters of the event are significant and the value of the criterion exceeds a specified threshold.

UNDEF specifies not to include the event in the model.
Options
The following options can be used with the FSEVTREQ macro. Options must follow arguments and are separated by commas.

MIDTIER = label
identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.

ENVIRONMENT = environment-name
specifies the name of the SAS Forecast Server forecasting environment. The value for this option is case sensitive. The default environment is Default. A global default value for ENVIRONMENT can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

PROJECTNAME = project-name
specifies the name of the SAS Forecast Server project. The name must be a valid SAS name. If you do not specify this option, the current stored default value for the project name is used. A global default value for PROJECTNAME can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

Results
The FSEVTREQ global macro variable indicates whether the FSEVTREQ macro terminated successfully or encountered errors:

&FSEVTREQ = SUCCESS | ERROR

Example
%fsevtreq(projectname=prdata1,
   eventname=_ALL_,
   eventrequired=undef
);
Details

Options
The following options can be used with the FSEXPALL macro. Options must follow arguments and are separated by commas.

ARCHIVEFOLDER = directory-name
specifies the directory in which to save the archives. If this option is not specified, the archives are saved to project subfolders in the default location.

CPORT = YES | TRUE | NO | FALSE | 1 | 0
exports data sets and catalogs using CPORT. You must specify this option if you unarchive the project on a different platform. The default is NO.

ENVIRONMENT = environment-name
specifies the name of the SAS Forecast Server forecasting environment. The value for this option is case sensitive. The default environment is Default. A global default value for ENVIRONMENT can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

NAMESUFFIX = string
specifies a suffix to the name of the archive. The suffix must make the archive name unique. If an archive with the same name exists, then archiving fails for that project. The default suffix is _fs_export.

MIDTIER = label
identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.

OUT = SAS-data-set-name
specifies the fully qualified name of a SAS data set that contains information about the archived projects. The format is library.dataset.

SUBFOLDERS = YES | TRUE | NO | FALSE | 1 | 0
specifies whether archives are saved in subfolders corresponding to project names. If this option is set to NO, all archives are saved in the same location. To use this option, you must specify the ARCHIVEFOLDER= option. The default is NO.

PRINT = YES | TRUE | 1 | NO | FALSE | 0
specifies whether to print the output data set. The default is NO.

Results
The FSEXPALL global macro variable indicates whether the FSEXPALL macro terminated successfully or encountered errors:

&FSEXPALL = SUCCESS | ERROR

The OUT= option produces a SAS data set that contains the following variables:

NAME specifies the project name.
CREATED specifies the date and time when the project was created.
MODIFIED specifies the date and time when the project was last modified.
CREATEDBY specifies the user ID that created the project.
OWNEDBY specifies the user ID of the project's owner.
LOCKED equals 1 if the project is locked (currently opened by another user).

CANOPEN equals 1 if the user can open the project.

CANDELETE equals 1 if the user can delete the project.

ISPUBLIC equals 1 if the project has public access.

ARCHIVENAME specifies the name of the exported project’s archive file.

ARCHIVEFAIL equals 1 if an error was detected while archiving the project.

In addition, archives for all projects are created in the default archive location. The name of the archived project is the name of the project followed by the NAMESUFFIX parameter.

Example

```
%fsexpall(out=work.projects,
 namesuffix=_fs_export31,
 environment=default
);
```

FSEXPORT Macro

The FSEXPORT macro archives a single project.

Syntax

```
%FSEXPORT(ARCHIVENAME=, DESCRIPTION=, [options]) ;
```

Details

**Required Arguments**

*Note:* Some required arguments do not have to be specified by the user in the macro call for the requirement to be satisfied. In some cases, when a user does not specify a required argument, the macro attempts to resolve it with a default value previously stored in the macro run-time environment. If the required argument has a default value (either the system default value or a value set with FSSETDEF), then the argument does not have to be specified in the macro.

The following arguments are required with the FSEXPORT macro if no default values were previously stored. The required arguments are separated by commas.

**ARCHIVENAME = archived-project-name**

specifies the filename of the archive that you want to export the project into (for example, myarchive). Do not specify the file extension. The file extension is automatically assumed to be .far. Use the ARCHIVEFOLDER= option to specify the directory of the archive file.

**DESCRIPTION = text**

specifies a description for the archive. The description is recorded in the Manifest.fs file in the archive. If a comma is in the description string, the description must be enclosed in quotation marks.
Options

The following options can be used with the FSEXPORT macro. Options must follow arguments and are separated by commas.

ARCHIVEFOLDER = directory-name
specifies the directory in which to save the archive. If this option is not specified, the archive is saved in the default location.

CPORT = YES | TRUE | NO | FALSE | 1 | 0
exports data sets and catalogs using CPORT. You must specify this option if you unarchive the project on a different platform. The default is NO.

ENVIRONMENT = environment-name
specifies the name of the SAS Forecast Server forecasting environment. The value for this option is case sensitive. The default environment is Default. A global default value for ENVIRONMENT can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

MIDTIER = label
identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.

PROJECTNAME = project-name
specifies the name of the SAS Forecast Server project. The name must be a valid SAS name. If you do not specify this option, the current stored default value for the project name is used. A global default value for PROJECTNAME can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

Results

The FSEXPORT global macro variable indicates whether the FSEXPORT macro terminated successfully or encountered errors:

&FSEXPORT = SUCCESS | ERROR

An archived project with the ARCHIVENAME= filename is created in the default location.

Example

```sas
%fsexport(projectname=pd1, archivename=ArchPD1.far, description=Project pd1) ;
```

FSEXPSET Macro

The FSEXPSET macro exports the project settings to a local file.

Syntax

```sas
%FSEXPSET(OUTPATH= [,options]) ;
```
Details

**Required Arguments**

*Note:* Some required arguments do not have to be specified by the user in the macro call for the requirement to be satisfied. In some cases, when a user does not specify a required argument, the macro attempts to resolve it with a default value previously stored in the macro run-time environment. If the required argument has a default value (either the system default value or a value set with FSSETDEF), then the argument does not have to be specified in the macro.

The following argument is required with the FSEXPS Macro if no default values were previously stored.

**OUTPATH = full-path-of-output-file**

specifies the path and filename of the local file. This file has an .fps extension.

**Options**

The following options can be used with the FSEXPS Macro. Options must follow arguments and are separated by commas.

**ENVIRONMENT = environment-name**

specifies the name of the SAS Forecast Server forecasting environment. The value for this option is case sensitive. The default environment is Default. A global default value for ENVIRONMENT can be specified with the FSSETDEF Macro. For more information, see “FSSETDEF Macro” on page 151.

**MIDTIER = label**

identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.

**PROJECTNAME = project-name**

specifies the name of the SAS Forecast Server project. The name must be a valid SAS name. If you do not specify this option, the current stored default value for the project name is used. A global default value for PROJECTNAME can be specified with the FSSETDEF Macro. For more information, see “FSSETDEF Macro” on page 151.

**Results**

The FSEXPS global macro variable indicates whether the FSEXPS Macro terminated successfully or encountered errors:

&FSEXPS = SUCCESS | ERROR

**Example**

```sas
%fsexpset(outpath=C:\ForecastServer\Projects\Settings.fps, environment=Default, projectname=Project3,);
```
FSGETENV Macro
The FSGETENV macro shows all of the details about a forecasting environment.

Syntax

%FSGETENV([options]) ;

Details

Options

The following options can be used with the FSGETENV macro. Options must follow arguments and are separated by commas.

MIDTIER = label
identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.

OUT = SAS-data-set-name
specifies the fully qualified name of a SAS data set that contains the program results. The default value is Work.FSEnv.

PRINT = YES | TRUE | 1 | NO | FALSE | 0
specifies whether to print the output data set. The default is NO.

Results

The FSGETENV global macro variable indicates whether the FSGETENV macro terminated successfully or encountered errors:

&FSGETENV = SUCCESS | ERROR

The OUT= option produces a SAS data set that contains the following variables:

NAME specifies the environment name.
DESCRIPTION specifies the description of the environment.
CREATED specifies the date and time when the environment was created.
MODIFIED specifies the date and time when the environment was last modified.
HOSTNAME specifies the name of the SAS Workspace Server used by the environment.
REPORTSROOT specifies the SAS metadata folder where the stored process metadata objects are stored.
CONTENTPATH specifies the file system path associated with the environment.
VERSION specifies the version of the SAS Forecast Server that the environment uses.
Example

%fsgetenv(out=work.getprojects,
    print=YES
);
CREATED specifies the date and time when the project was created.
MODIFIED specifies the date and time when the project was last modified.
CREATEDBY specifies the project identity of the person who created the project initially which in some cases is the same as the user ID.
MODIFIEDBY specifies the project identity of the last person who modified the project which in some cases is the same as the user ID.
OWNEDBY specifies the project identity of the project's owner which in some cases is the same as the user ID.
LOCKED equals 1 if the project is locked (currently opened by another user).
CANOPEN equals 1 if the user can open the project.
CANDELETE equals 1 if the user can delete the project.
ISPUBLIC equals 1 if the project is available to all users.

Example

```
%fsgetprj(out=work.getprojects,
print=YES
);
```

FSGETURP Macro

The FSGETURP macro lists the names of any unregistered projects in a specified forecasting environment. To register the projects, you can use the project names generated by the FSGETURP macro as input to the FSREGPRJ macro.

Syntax

```
%FSGETURP([options]) ;
```

Details

Options

The following options can be used with the FSGETURP macro. Options must follow arguments and are separated by commas.

```
ENVIRONMENT = environment-name
```

specifies the name of the SAS Forecast Server forecasting environment. The value for this option is case sensitive. The default environment is Default. A global default value for ENVIRONMENT can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

```
MIDTIER = label
```

identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.
OUT = $SAS$-data-set-name
    specifies the fully qualified name of a SAS data set that contains the program results.
The default value is Work.FSPrj.

PRINT = YES | TRUE | 1 | NO | FALSE | 0
    specifies whether to print the output data set. The default is NO.

Results
The FSGETURP global macro variable indicates whether the FSGETURP macro terminated successfully or encountered errors:

&FSGETURP = SUCCESS | ERROR

Example
%fsgeturp(environment=Default,
    out=sales.unregistered,
    print=YES
    ) ;

FSIMPALL Macro
The FSIMPALL macro imports a collection of projects from the project archives. This macro should be used only by a user who has the Administer Product capability.

Syntax
%FSIMPALL(PROJECTDS=, ARCHIVEFOLDER=[options]) ;

Details

Required Arguments
Note: Some required arguments do not have to be specified by the user in the macro call for the requirement to be satisfied. In some cases, when a user does not specify a required argument, the macro attempts to resolve it with a default value previously stored in the macro run-time environment. If the required argument has a default value (either the system default value or a value set with FSSETDEF), then the argument does not have to be specified in the macro.

The following arguments are required with the FSIMPALL macro if no default values were previously stored. The required arguments are separated by commas.

PROJECTDS = $SAS$-data-set-name
    specifies the fully qualified name of a SAS data set that contains the list of the SAS Forecast Server projects to import. The format is library:dataset. The PROJECTDS= data set is created when you specify the OUT= option in the FSEXPALL macro.

The PROJECTDS= data set must be a SAS data set that contains the following variables:

NAME       specifies the project name.
ARCHIVENAME specifies the name of the archive.
ARCHIVEFAIL equals 1 if an error was detected during archiving. If the ARCHIVEFAIL variable is included, only the archives where the value of the ARCHIVEFAIL variable is 0 are imported.

ARCHIVEFOLDER = directory-name
specifies the directory that contains the archived projects (for example, C:\SAS\ForecastStudio\Archives).

Options
The following options can be used with the FSIMPALL macro. Options must follow arguments and are separated by commas.

ENVIRONMENT = environment-name
specifies the name of the SAS Forecast Server forecasting environment. The value for this option is case sensitive. The default environment is Default. A global default value for ENVIRONMENT can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

MIDTIER = label
identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.

SUBFOLDERS = YES | TRUE | NO | FALSE | 1 | 0
specifies whether archives are stored in subfolders corresponding to project names in the archive folder location. If this option is set to NO, all archives are assumed to be stored in the default archive folder location. The default value is NO.

Results
The FSIMPALL global macro variable indicates whether the FSIMPALL macro terminated successfully or encountered errors:

&FSIMPALL = SUCCESS | ERROR

Note: FSIMPALL does not migrate 2.1 projects to the current version. However, you can use the FSMIGALL macro to accomplish that. For more information, see “FSMIGALL Macro” on page 138.

Example

%fsimpall(projectds=work.projects,
archivefolder=\sourceserver\SAS\ForecastStudio\Archives
);

FSIMPORT Macro
The FSIMPORT macro imports a single project from the project archives.

Syntax

%FSIMPORT(ARCHIVEPATH= [,options]) ;
Details

**Required Arguments**

*Note:* Some required arguments do not have to be specified by the user in the macro call for the requirement to be satisfied. In some cases, when a user does not specify a required argument, the macro attempts to resolve it with a default value previously stored in the macro run-time environment. If the required argument has a default value (either the system default value or a value set with FSSETDEF), then the argument does not have to be specified in the macro.

The following argument is required with the FSIMPORT macro if no default value was previously stored.

**ARCHIVEPATH = directory-name**

specifies the location of the archived project.

**Options**

The following options can be used with the FSIMPORT macro. Options must follow arguments and are separated by commas.

**ENVIRONMENT = environment-name**

specifies the name of the SAS Forecast Server forecasting environment. The value for this option is case sensitive. The default environment is Default. A global default value for ENVIRONMENT can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

**MIDTIER = label**

identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.

**PROJECTNAME = project-name**

specifies the name of the SAS Forecast Server project. The name must be a valid SAS name. If you do not specify this option, the current stored default value for the project name is used. A global default value for PROJECTNAME can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

**Results**

The FSIMPORT global macro variable indicates whether the FSIMPORT macro terminated successfully or encountered errors:

```
&FSIMPORT = SUCCESS | ERROR
```

**Example**

```sas
%fsimport (projectname=prdat2, archivepath=C:\SAS\ForecastStudio\Archives\pd1\ArchPD1.far);
```
FSLOAD Macro
The FSLOAD macro opens an existing SAS Forecast Server project and loads global macro variables that describe the project.

Syntax

%FSLOAD([options]) ;

Details

Options
The following options can be used with the FSLOAD macro. Options must follow arguments and are separated by commas.

ENVIRONMENT = environment-name
specifies the name of the SAS Forecast Server forecasting environment. The value for this option is case sensitive. The default environment is Default. A global default value for ENVIRONMENT can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

MIDTIER = label
identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.

PROJECTNAME = project-name
specifies the name of the SAS Forecast Server project. The name must be a valid SAS name. If you do not specify this option, the current stored default value for the project name is used. A global default value for PROJECTNAME can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

Results
The FSLOAD global macro variable indicates whether the FSLOAD macro terminated successfully or encountered errors:

&FSLOAD = SUCCESS | ERROR

A series of global macro variables are populated after a SAS Forecast Server project is loaded. These macro variables describe the project. Using these macro variables, you can write SAS code that can be used across multiple projects. For example, you can use SAS code to explore and use data in your SAS Forecast Server projects.

Example

%fsload(projectname=pdl,
environment=default
);


FSLOGIN Macro

The FSLOGIN macro creates a new session for a specific instance of the middle tier. Each middle tier is permitted to have, at most, one session at any given time. This allows the middle tier to be used to identify the session.

Note: FSLOGIN stores information about the most recent session in a global variable for use by other macros. You can specify the middle tier explicitly by using the MIDTIER= argument.

Syntax

\%FSLOGIN(DESKTOP=, USER=, PASSWORD=, [options]) ;

Details

Required Arguments

The following arguments are required with the FSLOGIN macro if no default values were previously stored. The required arguments are separated by commas.

DESKTOP = YES | NO
specifies whether the specific instance of the middle tier is being run in the SAS Forecast Server or in SAS Forecasting for Desktop. This argument is used only the first time a session is created for that instance of the middle tier. By default, this argument is set to NO, and the new session is created for the SAS Forecast Server.

USER = user-name
specifies the user name that you use to log on to SAS Forecast Studio. This argument is required when DESKTOP=NO, which is the default setting.

PASSWORD = password
specifies the password that you use to log on to SAS Forecast Studio. This argument is required when DESKTOP=NO, which is the default setting.

Options

The following options can be used with the FSLOGIN macro. Options must follow arguments and are separated by commas.

SASENVIRONMENT = environment-name
specifies the symbolic name of the SAS environment. This symbolic name is specified by the NAME= attribute in the sas-environment.xml file and is case sensitive. The default value is Default.

MIDTIER = label
identifies which middle tier to use. When you specify this option, you must give each middle tier a unique label (name) so that a later macro call can be directed to the correct session. A name should never be reused for a different middle tier during the same SAS session, even after previous SAS sessions are closed.

This option is typically omitted and the default value is used. For the SAS Forecast Server, the default label is fsmain.
Results
The FSLOGIN global macro variable indicates whether the FSLOGIN macro terminated successfully or encountered errors:

&FSLOGIN=SUCCESS | ERROR

Example

%fslogin (user=sasdemo, password=Password1, sasEnvironment=default, desktop=NO );

FSLOGOUT Macro
The FSLOGOUT macro closes a session of a specific instance of the middle tier.

Syntax

%FSLOGOUT([options]);

Details

Options
The following option can be used with the FSLOGOUT macro. Options must follow arguments.

MIDTIER = label
 identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.

Results
The FSLOGOUT global macro variable indicates whether the FSLOGOUT macro terminated successfully or encountered errors:

&FSLOGOUT=SUCCESS | ERROR

FSLOOP Macro
The FSLOOP macro iterates through a data set and invokes a callback macro with the values from each row.

Syntax

%FSLOOP(DATA=,CALLBACK=,VARLIST=[,options]);
Details

**Required Arguments**
The following arguments are required with the FSLOOP macro if no default values were previously stored. The required arguments are separated by commas.

- **DATA** = *data-set-name*
  specifies the data set that contains the arguments that you want to use.

- **CALLBACK** = *name-of-handler-macro*
  specifies the handler macro to invoke for each row of arguments. The macro must implement the expected signature.

- **VARLIST** = *var-name1 var-name2 ... var-name_n*
  specifies the variables in the data set to pass to the calls to the handler macro. Variable names must be separated by spaces. The handler macro is expected to accept each row variable through a macro variable of the same name, unless the VARARGS= optional argument is used to map the variable names to other names of macro arguments.

**Options**
The following options can be used with the FSLOOP macro. Options must follow arguments and are separated by commas.

- **ARGDATA** = *data-set-name*
  specifies the data set that contains additional fixed argument values. These arguments are passed to each generated macro call with the arguments from the input data set. The ARGDATA= data set must be formatted for two character columns named Name and Value. By default, no fixed arguments are used.

- **VARARGS** = *macro_varname1 macro_varname2...macro_varname_n*
  specifies the variable names for the macro input that corresponds to the variable names in the VARLIST= argument. If you do not specify the VARARGS= argument, the argument names for the handler macro are assumed to match the variable names in the input data set. For example, if VARLIST=NAME DESCRIPTION, but the macro expects the arguments to be named X= and Y=, then you should specify VARARGS= X Y for the FSLOOP macro.

**Results**
The FSLOOP global macro variable indicates whether the FSLOOP macro terminated successfully or encountered errors:

&FSLOOP=SUCCESS | ERROR

**Example**

```sas
%FSLOGIN(sasenvironment=default, user=sasdemo, password=Password1);

* Example of using FSGETPRJ to get project information and put results in work.prjlst;
%FSGETPRJ(
 environment=Default, out=work.prjlst);
```
* Example using arguments data set to fill extra parameters;
data args;
  length name $32;
  length value $128;

  name='environment';
  value='Default';
  output;

  name='isPublic';
  value='true';
  output;
run;

%FSLOOP(
  data=work.prjlst,
  callback=FSSETPUB,
  varlist=name,
  varargs=project,
  argdata=args
);

%FSLOGOUT();

---

FSMIGALL Macro

The FSMIGALL macro migrates all existing SAS Forecast Server projects to the current version of the SAS Forecast Server.

Syntax

%FSMIGALL(OUT= [options]);

Details

Options

The following options can be used with the FSMIGALL macro. Options must follow arguments and are separated by commas.

ENVIRONMENT = environment-name

specifies the name of the SAS Forecast Server forecasting environment. The value for this option is case sensitive. The default environment is Default. A global default value for ENVIRONMENT can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

MIDTIER = label

identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.
OUT = SAS-data-set-name
    specifies the fully qualified name of a SAS data set that contains information about
    the archived projects. The format is library.dataset. The default value is
    Work.FSMig.

PRINT = YES | TRUE | 1 | NO | FALSE | 0
    specifies whether to print the output data set. The default is NO.

Results
    The FSMIGALL global macro variable indicates whether the FSMIGALL macro
    terminated successfully or encountered errors:
    &FSMIGALL=SUCCESS | ERROR

The OUT= option produces a SAS data set that contains the following variables:

- NAME       specifies the project name.
- CREATED    specifies the date and time when the project was created.
- MODIFIED   specifies the date and time when the project was last modified.
- CREATEDBY  specifies the user ID that created the project initially.
- OWNEDBY    specifies the user ID of the project's owner.
- LOCKED     equals 1 if the project is locked (currently opened by another
            user).
- CANOPEN    equals 1 if the user can open the project.
- CANDELETE  equals 1 if the user can delete the project.
- ISPUBLIC   equals 1 if the project is available to all users.
- ISMIGRATED equals 1 if the project was successfully migrated.

Example

    %fsmigall(out=work.migrated,
            print=YES
    );

FSMIGPRJ Macro

The FSMIGPRJ macro migrates an existing SAS Forecast Server project to the current version of the SAS
Forecast Server.

Syntax

    %FSMIGPRJ([options]) ;
Details

**Options**
The following options can be used with the FSMIGPRJ macro. Options must follow arguments and are separated by commas.

**ENVIRONMENT =** `environment-name`
Specifies the name of the SAS Forecast Server forecasting environment. The value for this option is case sensitive. The default environment is Default. A global default value for `ENVIRONMENT` can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

**MIDTIER =** `label`
Identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.

**PROJECTNAME =** `project-name`
Specifies the name of the SAS Forecast Server project. The name must be a valid SAS name. If you do not specify this option, the current stored default value for the project name is used. A global default value for `PROJECTNAME` can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

**Results**
The FSMIGPRJ global macro variable indicates whether the FSMIGPRJ macro terminated successfully or encountered errors:

```
&FSMIGPRJ=SUCCESS | ERROR
```

**Example**
```
%fsmigprj(projectname=pd1,
 environment=default
);
```

**FSMOVE Macro**
The FSMOVE macro moves a project to a new destination.

**Syntax**
```
%FSMOVE([options])
```
Details

Options
The following options can be used with the FSMOVE macro. Options must follow arguments and are separated by commas.

ARCHIVEFOLDER = directory-name
specifies the directory in which to save the archive in. If not specified, the default location is used.

CPORT = YES | TRUE | NO | FALSE | 1 | 0
exports data sets and catalogs using CPORT. This option is needed if the source and destination are running on different operating systems. The default is NO.

DESTINATIONENVIRONMENT = environment-name
specifies the name of the SAS Forecast Server environment to be used as the destination environment. This option is required only if there are multiple environments available to the user. If this option is omitted, the current stored default value is used. The default value is Default. A global default value for DESTINATIONENVIRONMENT can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

DESTINATIONPROJECTNAME = destination-project-name
specifies the name of the SAS Forecast Server project in the destination environment. The name must be a valid SAS name. A global default value for DESTINATIONPROJECTNAME can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

MIDTIER = label
identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.

REMOTEARCHIVEFOLDER = project-name
specifies the folder location of the archived project. This location must be accessible by the destination environment (for example, \\remotehost\SAS\ForecastStudio\Archives).

SOURCEENVIRONMENT = environment-name
specifies the name of the SAS Forecast Server environment to be used as the source environment. This option is required only if there are multiple environments available to the user. If this option is omitted, the current stored default value is used. The default value is Default. A global default value for SOURCEENVIRONMENT can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

SOURCEPROJECTNAME = source-project-name
specifies the name of the SAS Forecast Server project in the source environment. The name must be a valid SAS name. A global default value for SOURCEPROJECTNAME can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

TMPARCHIVENAME = value
specifies the name of the temporary archived project. The default is _fs_tmp_archive. The name must not match an existing archive.
Results

The FSMOVE global macro variable indicates whether the FSMOVE macro terminated successfully or encountered errors:

\&FSMOVE=SUCCESS | ERROR

Example

\%fsmove(sourceprojectname=prdat1, destinationprojectname=prdat2, remoteArchiveFolder=C:\SAS\ForecastStudio\Archives, sourceEnvironment=Default, destinationEnvironment=Default, )

FSNEWENV Macro

The FSNEWENV macro creates a new SAS Forecast Server forecasting environment.

Syntax

\%FSNEWENV(ENVIRONMENT=,PATH= [,options])

Details

Required Arguments

The following arguments are required with the FSNEWENV macro if no default values were previously stored. The required arguments are separated by commas.

ENVIRONMENT = environment-name

specifies the name of the forecasting environment. The value for this argument is case sensitive. The default environment is Default. The value of this default cannot be customized with the FSSETDEF macro.

PATH = file path

specifies the absolute file path to the base content directory.

Options

The following options can be used with the FSNEWENV macro. Options must follow arguments and are separated by commas.

DESC = text

specifies the environment description.

MIDTIER = label

identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.

REPORTSPATH = UNIX-style-path

specifies a UNIX-style absolute path to the Base SAS Folder in the metadata (for example, /MyContent/Reports). Searches for reports start in this folder. This
option is used only when you are creating an environment for a networked middle
tier.

\texttt{WSSERVER = workspace-server-name}

specifies the name of the logical SAS Workspace Server. The default value is
SASAPP - Logical Workspace Server. This argument is ignored by SAS Forecasting
for Desktop because it is assumed that the local machine is the host.

\textbf{Results}

The FSNEWENV global macro variable indicates whether the FSNEWENV macro
terminated successfully or encountered errors:

\&FSNEWENV=SUCCESS | ERROR

\textbf{Example}

\%
fsnewenv\{environment=Default,\n            desc=A new environment,\n            path=C:\FSEnvironment,\n            reportspath=/MyContent/Reports,\n            wsserver=SASApp - Logical Workspace Server \};

\textbf{FSREGENV Macro}

The FSREGENV macro registers an existing directory structure as a forecasting environment. You can
also use this macro to register all projects in the environment.

\textbf{Syntax}

\%
FSREGENV\{ENVIRONMENT=, PATH=[,options]\};

\textbf{Details}

\textbf{Required Arguments}

The following arguments are required with the FSREGENV macro if no default values
were previously stored. The required arguments are separated by commas.

\texttt{ENVIRONMENT = environment-name}

specifies the name of the forecasting environment. The value for this argument is
case sensitive. The default environment is Default. The value of this default cannot
be customized with the FSSETDEF macro.

\texttt{PATH = file-path}

specifies the absolute file path to the base content directory on the specified SAS
Workspace Server.

\textbf{Options}

The following options can be used with the FSREGENV macro. Options must follow
arguments and are separated by commas.

\texttt{DESC = text}

specifies the environment description.
MIDTIER = \textit{label} identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.

\textbf{REGISTERPROJECTS} = YES | TRUE | NO | FALSE | 1 | 0 specifies whether to register in the metadata any existing projects in the environment. The default value is YES.

\textbf{REPORTSPATH} = \textit{UNIX-style-path} specifies a UNIX-style absolute path to the Base SAS Folder in the metadata (for example, /MyContent/Reports). Searches for reports start in this directory.

\textbf{WSSERVER} = \textit{workspace-server-name} specifies the name of the logical SAS Workspace Server. The default value is SASAPP - Logical Workspace Server. This argument is ignored by SAS Forecasting for Desktop because it is assumed that the local machine is the host.

\textbf{Results} The FSREGENV global macro variable indicates whether the FSREGENV macro terminated successfully or encountered errors:

\&FSREGENV=SUCCESS | ERROR

\textbf{Example}

\begin{verbatim}
%fsregenv(environment=Default,
desc=A new environment,
path=C:\FSEnvironment,
reportspath=/MyContent/Reports,
wsserver=SASApp - Logical Workspace Server,
registerprojects=no
);
\end{verbatim}

\textbf{FSREGPRJ Macro} The FSREGPRJ macro registers a project.

\textbf{Syntax}

\%FSREGPRJ\(\text{PROJECTNAME=}[\text{options}]\);  

\textbf{Details}

\textbf{Required Arguments}  
\textit{Note:} Some required arguments do not have to be specified by the user in the macro call for the requirement to be satisfied. In some cases, when a user does not specify a required argument, the macro attempts to resolve it with a default value previously stored in the macro run-time environment. If the required argument has a default value (either the system default value or a value set with FSSETDEF), then the argument does not have to be specified in the macro.
The following arguments are required with the FSREGPRJ macro if no default values were previously stored. The required arguments are separated by commas.

**PROJECTNAME = project-name**
specifies the name of the SAS Forecast Server project. The name must be a valid SAS name. If you do not specify this argument, then the current stored default value for PROJECTNAME is used. The value of this default cannot be customized with the FSSETDEF macro.

**Options**
The following options can be used with the FSREGPRJ macro. Options must follow arguments and are separated by commas.

**ENVIRONMENT = environment-name**
specifies the name of the SAS Forecast Server forecasting environment. The value for this option is case sensitive. The default environment is Default. A global default value for ENVIRONMENT can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

**MIDTIER = label**
identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.

**Results**
The FSREGPRJ global macro variable indicates whether the FSREGPRJ macro terminated successfully or encountered errors:

```
&FSREGPRJ=SUCCESS | ERROR
```

**Example**

```
%fsregprj(projectname=ProjectA,
 environment=Default
);
```

---

**FSREN Macro**
The FSREN macro renames a project.

**Syntax**

```
%FSREN(NEWPROJECTNAME=[options]) ;
```

**Details**

**Required Arguments**

**Note:** Some required arguments do not have to be specified by the user in the macro call for the requirement to be satisfied. In some cases, when a user does not specify a required argument, the macro attempts to resolve it with a default value previously stored in the macro run-time environment. If the required argument has a default
value (either the system default value or a value set with FSSETDEF), then the argument does not have to be specified in the macro.

The following argument is required with the FSREN macro if no default value was previously stored.

NEWPROJECTNAME = project-name
  specifies the new name of the SAS Forecast Server project. The name must be a valid SAS name.

Options
The following options can be used with the FSREN macro. Options must follow arguments and are separated by commas.

ENVIRONMENT = environment-name
  specifies the name of the SAS Forecast Server forecasting environment. The value for this option is case sensitive. The default environment is Default. A global default value for ENVIRONMENT can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

MIDTIER = label
  identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.

PROJECTNAME = project-name
  specifies the name of the SAS Forecast Server project. The name must be a valid SAS name. If you do not specify this option, the current stored default value for the project name is used. A global default value for PROJECTNAME can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

NOWARN = YES | NO
  specifies whether to suppress errors if the SAS Forecast Server project does not exist. The default value is NO.

Results
The FSREN global macro variable indicates whether the FSREN macro terminated successfully or encountered errors:

&FSREN=SUCCESS | ERROR

Example

%fsren(projectname=prdat3,
  newprojectname=prdat4
 );

FSRUNPRJ Macro
The FSRUNPRJ macro runs an existing project at a specified stage.
Syntax

```
%FSRUNPRJ(METHOD=,IMPORTDATA=[,options]) ;
```

Details

Required Arguments

*Note:* Some required arguments do not have to be specified by the user in the macro call for the requirement to be satisfied. In some cases, when a user does not specify a required argument, the macro attempts to resolve it with a default value previously stored in the macro run-time environment. If the required argument has a default value (either the system default value or a value set with FSSETDEF), then the argument does not have to be specified in the macro.

The following arguments are required with the FSRUNPRJ macro if no default values were previously stored. The required arguments are separated by commas.

METHOD = CREATE | DESTRUCTIVE-DIAGNOSE | DIAGNOSE | SELECT | FIT | FORECAST | RECONCILE | OVERRIDES | CURRENT

specifies the stage when the project opens in SAS Forecast Studio.

IMPORTDATA = YES | TRUE | NO | FALSE | 1 | 0

specifies whether to update the data in the project with any new data in the input data set. The default value is NO. Any changes to the input data set are not applied to the project.

Options

The following options can be used with the FSRUNPRJ macro. Options must follow arguments and are separated by commas.

ENVIRONMENT = environment-name

specifies the name of the SAS Forecast Server forecasting environment. The value for this option is case sensitive. The default environment is Default. A global default value for ENVIRONMENT can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

LEAD = n

specifies the number of periods into the future in which multi-step forecasts are made. The default value is 12.

MIDTIER = label

identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.

PROJECTNAME = project-name

specifies the name of the SAS Forecast Server project. The name must be a valid SAS name. If you do not specify this option, the current stored default value for the project name is used. A global default value for PROJECTNAME can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

RETAINCHOOSE = YES | TRUE | NO | FALSE | 1 | 0

clears any user-specified model selections and resets the series to the model automatically selected by SAS Forecast Studio. The default value is YES.
Results
The FSRUNPRJ global macro variable indicates whether the FSRUNPRJ macro terminated successfully or encountered errors:

&FSRUNPRJ=SUCCESS | WARNING | ERROR

Note: A warning message displays if there are override conflicts or reconciliation failures.

A series of global macro variables are populated after a SAS Forecast Server project is loaded. These macro variables describe the project. Using these macro variables, you can write SAS code that can be used across multiple projects. For example, you can use SAS code to explore and use data in your SAS Forecast Server projects.

Example

%fsrunprj(projectname=pd1,
    method=FORECAST,
    importdata=NO,
    retainchoose=YES
);

FSRUNRPT Macro
The FSRUNRPT macro runs a forecasting report and saves the results to a local directory.

Syntax

%FSRUNRPT(REPORTPATH=,OUTPATH= [,options]);

Details

Required Arguments

Note: Some required arguments do not have to be specified by the user in the macro call for the requirement to be satisfied. In some cases, when a user does not specify a required argument, the macro attempts to resolve it with a default value previously stored in the macro run-time environment. If the required argument has a default value (either the system default value or a value set with FSSETDEF), then the argument does not have to be specified in the macro.

The following arguments are required with the FSRUNRPT macro if no default values were previously stored. The required arguments are separated by commas.

OUTPATH = directory-path
    specifies the local directory in which to save the output. An example is C:\temp.

REPORTPATH = directory-path
    specifies the path in SAS Folders for the report definition. An example is /MyContent/Reports/MyReport.
Options
The following options can be used with the FSRUNRPT macro. Options must follow arguments and are separated by commas.

ENVIRONMENT = environment-name
specifies the name of the SAS Forecast Server forecasting environment. The value for this option is case sensitive. The default environment is Default. A global default value for ENVIRONMENT can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

MIDTIER = label
identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.

ODSDEST = ODS-destination
specifies the ODS format for the output. You can specify any valid ODS destination (for example, HTML, RTF, PDF, and so on). The default format is HTML.

ODSSTYLE = ODS-style
specifies the ODS style to apply to the output. The default style is Journal.

OUTFILE = name-of-output-file
specifies the name of the file that contains the output. By default, the name is assigned by the SAS Forecast Server.

PROJECTNAME = project-name
specifies the name of the SAS Forecast Server project. The name must be a valid SAS name. If you do not specify this option, the current stored default value for the project name is used. A global default value for PROJECTNAME can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

PROMPTDATA = data-set-name
specifies the data set that contains the parameter values for prompts. The data set must be formatted for two character columns named Name and Value. The Name column should contain the prompt name to identify the prompt (rather than the display label that is used for the prompt). To determine the prompt name, see the report definition in SAS Management Console. By default, no prompt values are provided, so if you run a report that requires prompt values, the report will fail.

PROMPTVALUEDELM = delimiter
specifies the delimiter used when providing values for multi-value prompts. The default delimiter is a space.

SAVELOG = YES | TRUE | NO | FALSE | 1 | 0
specifies whether to save the log from the report. The log is saved in the same location as the output files. The default value is FALSE.

UNIT = directory-path
specifies the path to the focus unit in the project. By default, the root unit has the focus.

UNITDELM = delimiters
specifies the delimiters for the unit path. By default, the delimiters are ~ and |.

Results
The FSRUNRPT global macro variable indicates whether the FSRUNRPT macro terminated successfully or encountered errors:
&FSRUNRPT=SUCCESS |ERROR

Example

%fsrunrpt(reportpath=Samples/Getting Started/Introduction
/Introduction to Stored Processes,
outpath=C:\temp,
environment=Default,
projectname=pdsale4,
odsdest=RTF
);

FSSETDAT Macro

The FSSETDAT macro changes the input data source for a project.

Syntax

%FSSETDAT(DATA= [,options]) ;

Details

Required Arguments

Note: Some required arguments do not have to be specified by the user in the macro call for the requirement to be satisfied. In some cases, when a user does not specify a required argument, the macro attempts to resolve it with a default value previously stored in the macro run-time environment. If the required argument has a default value (either the system default value or a value set with FSSETDEF), then the argument does not have to be specified in the macro.

The following argument is required with the FSSETDAT macro if no default value was previously stored.

DATA = input-data-set
specifies the new input data set. The value must be in the libname.memname format.

Options

The following options can be used with the FSSETDAT macro. Options must follow arguments and are separated by commas.

ENVIRONMENT = environment-name
specifies the name of the SAS Forecast Server forecasting environment. The value for this option is case sensitive. The default environment is Default. A global default value for ENVIRONMENT can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

MIDTIER = label
identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.
PROJECTNAME = *project-name*

specifies the name of the SAS Forecast Server project. The name must be a valid SAS name. If you do not specify this option, the current stored default value for the project name is used. A global default value for PROJECTNAME can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

**Results**

The FSSETDAT global macro variable indicates whether the FSSETDAT macro terminated successfully or encountered errors:

```
&FSSETDAT= SUCCESS | ERROR
```

**Example**

```
%fssetdat(data=fslib.fsprj,
 projectname=Project3,
 midtier=server1,
 environment=Default
);
```

---

**FSSETDEF Macro**

The FSSETDEF macro stores a default value for a macro argument.

**Syntax**

```
%FSSETDEF(MIDTIER=,KEY=,VALUE=);
```

**Details**

**Required Arguments**

The following arguments are required with the FSSETDEF macro if no default values were previously stored. These required arguments are separated by commas.

**KEY = key-name**

specifies the key to associate with the value specified in the VALUE variable. This key specifies what type of variable for which the default is being set. Here are the valid values:

- **ENVIRONMENT** specifies that the value is for an environment variable (for example, ENVIRONMENT, SOURCEENVIRONMENT, and DESTINATIONENVIRONMENT).
- **PROJECT** specifies that the value is for a project variable (for example, PROJECTNAME, SOURCEPROJECTNAME, and DESTINATIONPROJECTNAME).

**MIDTIER = label**

identifies which middle tier can use this stored default. The special * value can be used to indicate a default for all middle tiers. A * default is used only when the middle tier has not been assigned an explicit default value. If you are not explicitly setting the MIDTIER= value, the value automatically assigned by FSLOGIN should be passed. For more information, see “MIDTIER = label” on page 135.
VALUE = default-argument-value
specifies the value to store with the key. This value is used as the default argument
value as appropriate by macros that support that configurable default.

Options
There are no options for the FSSETDEF macro.

Results
The FSSETDEF global macro variable indicates whether the FSSETDEF macro
terminated successfully or encountered errors:
&FSSETDEF=SUCCESS | ERROR | WARNING

Example
%fssetdef(midtier=fsmain,
key=projectname,
value=sales
);

FSSETOWN Macro
The FSSETOWN macro assigns the owner of a project.

Syntax
%FSSETOWN (OWNER= [options]) ;

Details

Required Arguments
Note: Some required arguments do not have to be specified by the user in the macro call
for the requirement to be satisfied. In some cases, when a user does not specify a
required argument, the macro attempts to resolve it with a default value previously
stored in the macro run-time environment. If the required argument has a default
value (either the system default value or a value set with FSSETDEF), then the
argument does not have to be specified in the macro.

The following argument is required with the FSSETOWN macro if no default value was
previously stored.

OWNER = user-name
specifies the new owner of the project.

Options
The following options can be used with the FSSETOWN macro. Options must follow
arguments and are separated by commas.

ENVIRONMENT = environment-name
specifies the name of the SAS Forecast Server forecasting environment. The value
for this option is case sensitive. The default environment is Default. A global default
value for ENVIRONMENT can be specified with the FSSETDEF macro. For more
information, see “FSSETDEF Macro” on page 151.
MIDTIER = label
identifies which middle tier session to use. This option is needed only when you are
using multiple middle tier sessions in the same script, which is usually unnecessary
and should be avoided. If the MIDTIER= option is not specified, SAS Forecast
Server uses the most recently created session if it is still open. If no such session
exists or the session has been closed, then an error is reported.

PROJECTNAME = project-name
specifies the name of the SAS Forecast Server project. The name must be a valid
SAS name. If you do not specify this option, the current stored default value for the
project name is used. A global default value for PROJECTNAME can be specified
with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page
151.

Results
The FSSETOWN global macro variable indicates whether the FSSETOWN macro
terminated successfully or encountered errors:

&FSSETOWN=SUCCESS| ERROR

Example

%fssetown(projectname=Project3,
owner=sastrust,
environment=Default
);

FSSETPUB Macro
The FSSETPUB macro changes the public access (sharing) status of a project.

Syntax

%FSSETPUB(ISPUBLIC= [options]);

Details

Required Arguments

Note: Some required arguments do not have to be specified by the user in the macro call
for the requirement to be satisfied. In some cases, when a user does not specify a
required argument, the macro attempts to resolve it with a default value previously
stored in the macro run-time environment. If the required argument has a default
value (either the system default value or a value set with FSSETDEF), then the
argument does not have to be specified in the macro.

The following argument is required with the FSSETPUB macro if no default value was
previously stored.

ISPUBLIC = TRUE | FALSE | YES | NO | 1 | 0
specifies whether the project should be available to all users.
Options
The following options can be used with the FSSETPUB macro. Options must follow arguments and are separated by commas.

ENVIRONMENT = environment-name
specifies the name of the SAS Forecast Server forecasting environment. The value for this option is case sensitive. The default environment is Default. A global default value for ENVIRONMENT can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

MIDTIER = label
identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.

PROJECTNAME = project-name
specifies the name of the SAS Forecast Server project. The name must be a valid SAS name. If you do not specify this option, the current stored default value for the project name is used. A global default value for PROJECTNAME can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

Results
The FSSETPUB global macro variable indicates whether the FSSETPUB macro terminated successfully or encountered errors:

&FSSETPUB=SUCCESS|ERROR

Example

%fssetpub(project=Project3,
ispublic=YES,
environment=Default
);

FSUNREG Macro

The FSUNREG macro unregisters an existing project. The project files are not deleted. You can register the project again by using the project files and the FSREGPRJ macro.

Syntax

%FSUNREG(PROJECTNAME=[,options]);

Details

Required Arguments

Note: Some required arguments do not have to be specified by the user in the macro call for the requirement to be satisfied. In some cases, when a user does not specify a required argument, the macro attempts to resolve it with a default value previously stored in the macro run-time environment. If the required argument has a default
value (either the system default value or a value set with FSSETDEF), then the argument does not have to be specified in the macro.

The following argument is required with the FSUNREG macro if no default value was previously stored.

PROJECTNAME = project-name
specifies the name of the SAS Forecast Server project. The name must be a valid SAS name. If you do not specify this argument, then the current stored default value for PROJECTNAME is used. The value of this default cannot be customized with the FSSETDEF macro.

**Options**
The following options can be used with the FSREGPRJ macro. Options must follow arguments and are separated by commas.

ENVIRONMENT = environment-name
specifies the name of the SAS Forecast Server forecasting environment. The value for this option is case sensitive. The default environment is Default. A global default value for ENVIRONMENT can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

MIDTIER = label
identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.

**Results**
The FSUNREG global macro variable indicates whether the FSUNREG macro terminated successfully or encountered errors:

&FSUNREG=SUCCESS | ERROR

**Example**

```sas
%fsunreg(projectname=prdat2,
environment=Default
);
```

---

**FSUNRENV Macro**
The FSUNRENV macro unregisters a forecasting environment. Unregistering an environment removes the registration for the environment and all projects in that environment without deleting the content in the file system. You can use the FSREGENV macro variable to re-register an environment and its projects.

**Syntax**

```sas
%FSUNRENV(ENVIRONMENT=[,options])
```
Details

**Required Arguments**
The following argument is required with the FSUNRENV macro if no default value was previously stored.

```
ENVIRONMENT = environment-name
```
specifies the name of the forecasting environment. This option has no default value. The value of this default cannot be specified with the FSSETDEF macro.

**Options**
The following options can be used with the FSUNRENV macro. Options must follow arguments and are separated by commas.

```
MIDTIER = label
```
identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.

**Results**
The FSUNRENV global macro variable indicates whether the FSUNRENV macro terminated successfully or encountered errors:

```
&FSUNRENV=SUCCESS | ERROR
```

**Example**

```
%fsunrenv(environment=Default,
 midtier=server1
);
```

---

**FSUPDATE Macro**

The FSUPDATE macro updates the settings of an existing SAS Forecast Studio project.

**Note:** Most of the arguments in the FSCREATE macro are also in the FSUPDATE macro. The exceptions are BY, DATA, HIERARCHY, ID, RUN, and VAR. DATA can be changed using the FSSETDAT macro.

**Syntax**

```
%FSUPDATE([options]);
```

**Details**

**Options**
The following options can be used with the FSUPDATE macro. Options must follow arguments and are separated by commas.

```
ACCUMULATE = TYPE [TYPE(var1 var2) TYPE(var3 var4) ...]
```
specifies the accumulation options for the dependent, input, and reporting variables.
In SAS Forecast Server 12.1, Set accumulation to the value used for aggregation is checked by default. If the ACCUMULATE= or AGGREGATE= arguments are used, Set accumulation to the value used for aggregation is not selected. This setting persists, so the next time the project is opened in SAS Forecast Server 12.1, Set accumulation to the value used for aggregation will still not be selected.

Here are the valid values for TYPE:

- **NONE** specifies that no accumulation occurs. The ID variable values must be equally spaced with respect to the frequency.

- **TOTAL** specifies that observations are accumulated based on the total sum of their values. This is the default value.

- **AVERAGE | AVG** specifies that observations are accumulated based on the average of their values.

- **MINIMUM | MIN** specifies that observations are accumulated based on the minimum of their values.

- **MEDIAN | MED** specifies that observations are accumulated based on the median of their values.

- **MAXIMUM | MAX** specifies that observations are accumulated based on the maximum of their values.

- **N** specifies that observations are accumulated based on the number of nonmissing observations.

- **NMISS** specifies that observations are accumulated based on the number of missing observations.

- **NOBS** specifies that observations are accumulated based on the number of observations.

- **FIRST** specifies that observations are accumulated based on the first of their values.

- **LAST** specifies that observations are accumulated based on the last of their values.

- **STDDEV | STD** specifies that observations are accumulated based on the standard deviation of their values.

- **CSS** specifies that observations are accumulated based on the corrected sum of squares of their values.

- **USS** specifies that observations are accumulated based on the uncorrected sum of squares of their values.

Here are some examples:

- To use an average accumulation of all variables, specify `ACCUMULATE=AVG`.

- To use a total accumulation of all variables except VAR1, which will use an average accumulation, specify `ACCUMULATE=TOTAL AVG(var1)`.

- To use a total accumulation of all variables except VAR1 and VAR2, which will use an average accumulation, and VAR3, which will accumulate the observations based on standard deviation, specify `ACCUMULATE=TOTAL AVG(var1 var2) STD(var3)`.
ADJUST = var1(var2var3) [ /operation=(pre,post)]

specifies the adjustment options for the dependent variables. If this option is omitted, the current stored default value for pre-ADJUST and post-ADJUST is NONE.

Here are the valid pre-ADJUST and post-ADJUST values:

- NONE
- ADD
- SUBTRACT
- MULTIPLY
- DIVIDE
- MIN
- MAX

Here are some examples:

- To adjust the SALE variable with the values of the PRICE1 variable, specify ADJUST=sale(price1).
- To adjust the SALE variable with the values of the PRICE1 variable and to adjust the PRICE variable with the values of the PRICE2 variable, specify ADJUST=sale(price1) price(price2).
- To adjust the SALE variable with the values of the PRICE1 and PRICE2 variables, specify ADJUST=sale(price1 price2).
- To adjust the SALE variable with the values of the PRICE1 variable before any forecasts are generated, specify ADJUST=sale(price1)/operation=(ADD,NONE).

AGGREGATE = TYPE [TYPE(var1var2) TYPE(var3var4) ...]

specifies the aggregation options for the dependent, input, and reporting variables. Aggregation is valid only if HIERARCHY=YES. See the ACCUMULATE option for valid values and examples.

Note: For the dependent variable, the only valid values are TOTAL | AVERAGE | AVG.

**TIP** In SAS Forecast Server 12.1, Set accumulation to the value used for aggregation is checked by default. If the ACCUMULATE= or AGGREGATE= arguments are used, Set accumulation to the value used for aggregation is not selected. This setting persists, so the next time the project is opened in SAS Forecast Server 12.1, Set accumulation to the value used for aggregation will still not be selected.

ALLOWNEGATIVE = YES | TRUE | NO | FALSE | 1 | 0

specifies whether negative forecasts are allowed. The default value is NO.

ALPHA = n

specifies the confidence level for the series. The default value is 0.05, which is a 95% confidence level.

ARIMAX = YES | TRUE | NO | FALSE | 1 | 0

specifies whether ARIMA models should be considered. The default value is YES.

BACK = n

specifies the out-of-sample range (the number of periods from the end). The default value is 0.
COMBINE = YES | TRUE | NO | FALSE | 1 | 0
specifies whether the SAS Forecast Server should automatically generate a combined model for the set of time series models that is generated from the diagnosis of each time series. The default value is NO.

COMBINECRITERION = selection-criterion
specifies the statistic of fit to use when ranking the combined models. The default value is RMSE.

Note: This option is valid only if the following conditions are met:
- The COMBINE option is set to YES or TRUE.
- The ARIMAX option, the UCM option, or both the ARIMAX and UCM options are set to YES or TRUE.

Here are the valid values for the selection criterion:
- AADJRSQ—Amemiya’s adjusted R-square
- ADJRSQ—adjusted R-square
- AIC—Akaike information criterion
- AICC—Akaike information criterion, finite sample size corrected
- APC—Amemiya’s prediction criterion
- GMAPE—geometric mean percent error
- GMAPES—geometric mean absolute error percent of standard deviation
- GMAPPE—geometric mean predictive error
- GMASPE—geometric mean symmetric percent error
- GMRAE—geometric mean relative absolute error
- MAE—mean absolute error
- MAPE—mean absolute percent error
- MAPES—mean absolute error percent of standard deviation
- MAPPE—mean absolute predictive symmetric percent error
- MASE—mean absolute scaled error
- MAXERR—maximum error
- MAXPE—maximum percent error
- MAXPPE—maximum predictive percent error
- MAXRE—maximum relative error
- MAXSPE—maximum symmetric percent error
- MDAPE—median absolute percent error
- MDAPES—median absolute percent error of standard deviation
- MDAPPE—median absolute predictive percent error
- MDASPE—median absolute symmetric percent error
- MDRAE—median relative absolute errors
- ME—mean error
- MINERR—minimum error
• MINPE—minimum percent error
• MINPPE—minimum predictive percent error
• MINRE—minimum relative error
• MINSPE—minimum symmetric percent error
• MPE—mean percent error
• MPPE—mean predictive percent error
• MRAE—mean relative absolute error
• MRE—mean relative error
• MSPE—mean symmetric percent error
• MSE—mean square error
• RMSE—root mean square error
• RSQUARE—R-square
• RWRSQ—random walk R-square
• SBC—Schwarz Bayesian information criterion
• SMAPE—mean absolute symmetric percent error
• SSE—sum of squares error
• UMSE—unbiased mean square error
• URMSE—unbiased root mean square error

COMBINEENCOMPASS = OLS | HLN

specifies the forecast encompassing test to use to remove any models that contain redundant information. The default value is OLS.

Note: This option is valid only if the following conditions are met:

• The COMBINE option is set to YES or TRUE.
• The ARIMAX option, the UCM option, or both the ARIMAX and UCM options are set to YES or TRUE.

Here are the valid values:

OLS uses an ordinary least squares (OLS) regression test to estimate pairwise encompassing between candidate forecasts.

HLN uses the Harvey-Leybourne-Newbold (HLN) test to estimate pairwise encompassing between candidate forecasts.

COMBINEMETHOD = AVERAGE | AICC | OLS | ERLS | LAD | NERLS | NRLS | RMSEWGT

specifies the method for determining the combination weights. Combination weights are used to calculate the weighted average of the candidate forecasts. The default method is AVERAGE.

Note: This option is valid only if the following conditions are met:

• The COMBINE option is set to YES or TRUE.
• The ARIMAX option, the UCM option, or both the ARIMAX and UCM options are set to YES or TRUE.
Here are the valid values:

**AVERAGE** computes the simple average of the forecasts that you selected for combination. This is the default.

**AICC** uses the Akaike information criterion to compute the combination weights based on corrected AIC weights.

**OLS** uses ordinary least squares to compute the combination weights. The results minimize the $l_2$ norm of the combined forecast residuals.

**ERLS** uses equally restricted least squares to compute the combination weights. The results minimize the $l_2$ norm of the combined forecast residuals subject to the constraint that the weights sum to 1.

**LAD** uses a measure of fit based on the least absolute deviation to compute the combination weights.

**NERLS** uses nonnegative, equally restricted least squares to compute the combination weights. The results minimize the $l_2$ norm of the combined forecast residuals subject to the constraint that the weights sum to 1 and be nonnegative.

**NRLS** uses nonnegative, restricted least squares to compute the combination weights. The results minimize the $l_2$ norm of the combined forecast residuals subject to the constraint that the weights be nonnegative.

**RANKWGT** assigns weights using the rank of the candidate forecasts at the time the combination is performed. The weights must sum to 1. If not, the last value in the list is adjusted, and a warning is issued. The weights are assigned by ranking the candidate forecasts from best to worst. The best uses the first weight, and so on. The set of weights used is normalized to account for candidates that fail to forecast or for candidates that are omitted from the final combination because of any exclusion tests.

**RMSEWGT** uses the weights of the root mean square error to compute the combination weights. The weights are normalized to sum to 1.

**COMBINEMISSMODE** = **MISSING** | **RESCALE** specifies the method for treating missing values in the forecast combination. In a time series across the combination, one or more combination contributors can have a missing value. This option determines the treatment of missing values in the final combination for time series indices. The default value is **MISSING**.

**Note:** This option is valid only if the following conditions are met:

- The **COMBINE** option is set to **YES** or **TRUE**.
- The **ARIMAX** option, the **UCM** option, or both the **ARIMAX** and **UCM** options are set to **YES** or **TRUE**.

**MISSING** generates a missing combined forecast at each time index with one or more missing contributors. This method is the default for **AICC** weights, **OLS** weights, restricted least squares weights, and **LAD** weights. You cannot rescale the combination weights if you selected the **OLS**-based regression test to estimate pairwise
encompassing. In this test, the estimated weights are not constrained to sum to 1.

RESCALE rescales the combination weights for the nonmissing contributors at each time index to sum to 1. This method is the default for simple average, user-specified weights, ranked user weights, ranked weights, and root mean square error weights.

COMBINEMISSPCT = integer
specifies a threshold for the percentage of missing values in the combination estimation region. This threshold is used to exclude a candidate forecast from consideration in the final combination. By default, no missing percentage test is performed on candidate forecasts. Valid values are 1 to 100.

The COMBINEMISSPCT option and the HORMISSPCT option are independent of each other. You can specify one or both of these options.

Note: This option is valid only if the following conditions are met:

- The COMBINE option is set to YES or TRUE.
- The ARIMAX option, the UCM option, or both the ARIMAX and UCM options are set to YES or TRUE.

COMBINESTDERR = DIAG | ESTCORR
specifies the method for computing the prediction error variance series. This series is used to compute the prediction standard error, which is used to compute confidence bands on the combined forecast. The default value is DIAG.

Note: This option is valid only if the following conditions are met:

- The COMBINE option is set to YES or TRUE.
- The ARIMAX option, the UCM option, or both the ARIMAX and UCM options are set to YES or TRUE.

CRITERION = options
specifies the model selection criterion (statistic of fit) to be used to select from several candidate models. The default value is MAPE. For more values, see the COMBINECRITERION option.

DESCRIPTION = text
specifies the project description.

DETECTOUTLIERS = YES | TRUE | NO | FALSE | 1 | 0
specifies whether outliers in the data should be detected when fitting an ARIMA model. The default value is NO.

DISAGGREGATION = PROPORTIONS | EQUALSPLIT
specifies the disaggregation method for reconciliation. The default value is PROPORTIONS.

ENCOMPASSALPHA = value
specifies the significance level (or alpha value) for the forecast encompassing test. Valid values are 0 to 1 (inclusive). The default value is 0.05. See also the COMBINEENCOMPASS option.

Note: This option is valid only if the following conditions are met:

- The COMBINE option is set to YES or TRUE.
- The ARIMAX option, the UCM option, or both the ARIMAX and UCM options are set to YES or TRUE.
ENDZEROSMAXNUM = integer
    specifies the maximum number of trailing zeros for a nonzero model. The default value is 0.

ENDZEROSMAXPCT = integer
    specifies the maximum percentage of trailing zeros for a nonzero model relative to the number of nonzero values in the entire series. The default value is 0.

ENDZEROSMINOBS = integer
    specifies a threshold for the series length that is required to enable the ENDZERO test. The default value is 0.

ENVIRONMENT = environment-name
    specifies the name of the SAS Forecast Server forecasting environment. The value for this option is case sensitive. The default environment is Default. A global default value for ENVIRONMENT can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

ESM = YES | TRUE | NO | FALSE | 1 | 0
    specifies whether exponential smoothing models (ESM) should be considered. The default value is YES.

ESMONLYATLEVEL = BY-variable
    for hierarchical projects, specifies the highest level to fit the exponential smoothing models (ESM). Use this option to improve performance for projects with large hierarchies. The value must be the name of a BY variable. By default, no level is specified for fitting exponential smoothing ESM models.

HOLDOUT = n | NO | FALSE
    specifies the number of periods to be used as the holdout sample for model selection. If you do not want to specify a holdout sample, set this option to NO or FALSE.

HORMISSPCT = integer
    specifies a threshold for the percentage of missing forecast values in the combination horizon. This threshold is used to exclude a candidate forecast from consideration in the final combination. Valid values are 1 to 100.

This option is different from the COMBINEMISSPCT option, which is for the estimation region. The COMBINEMISSPCT option and the HORMISSPCT option are independent of each other. You can specify one or both of these options.

Note: This option is valid only if the following conditions are met:
    • The COMBINE option is set to YES or TRUE.
    • The ARIMAX option, the UCM option, or both the ARIMAX and UCM options are set to YES or TRUE.

HOLDOUTPCT = n | NO | FALSE
    specifies the maximum percentage of the series length to be used as the holdout sample for model selection. The holdout percentage guards against errors that are caused by holdout samples that are too large for the selected time series. For example, suppose a series has a length of 100 periods (excluding any leading or trailing missing values). If the HOLDOUT= option is set to 20, and the HOLDOUTPCT= option is set to 10, the holdout sample contains 10 periods.

If you do not specify a value for the HOLDOUTPCT= option, the default value is 5.

IDFORMAT = date
    specifies the date-and-time format of the values in the time ID variable.
INPUT = variable
  specifies the input (or independent) variables. Variable names are separated by spaces.

INTERMITTENT = n | NO | FALSE
  specifies a number greater than 1 that is used to determine whether a time series is intermittent. The default value is 2. To disable this test, set this option to NO or FALSE.

INTERVAL = interval-measure
  specifies the time interval of the time ID variable. If a time interval is not specified, SAS Forecast Server detects the time interval from the data.

Here are the valid values:
  • For SAS date values: YEAR, SEMIYEAR, QTR, MONTH, SEMIMONTH, TENDAY, WEEK, WEEKDAY, DAY, YEARV, R445YR, R454YR, R544YR, R445QTR, R454QTR, R544QTR, R445MON, R454MON, R544MON, and WEEKV.
  • For SAS datetime values: HOUR, MINUTE, and SECOND.

  Note: Add a DT prefix to a date interval to create a datetime interval.

Abbreviations or aliases of these intervals are not valid values. You can add multiplier and shift parameters to any of these intervals. For the WEEKDAY interval, you can add values for the weekend day. Custom interval names are allowed. For more information, see “Time Intervals” in the SAS/ETS User’s Guide.

LEAD = n
  specifies the number of periods into the future in which multiple step forecasts are made. The larger the horizon value, the larger the prediction error variance at the end of the horizon. The default value is 12.

MAXNUMOUTLIERS = n
  specifies the maximum number of outliers to include in ARIMA models. The default value is 2.

MAXPCTOUTLIERS = n
  specifies the maximum number of outliers to include in ARIMA models specified as a percentage of the series length, not including beginning and ending missing values. The default value is 2.

  If you specify both the MAXNUMOUTLIERS and MAXPCTOUTLIERS options, then the SAS Forecast Server uses the smaller value. For example, suppose you set MAXNUMOUTLIERS=5 and MAXPCTOUTLIERS=10. The maximum number of the outliers is 5 or 10% of the series length, whichever is smaller.

MIDTIER = label
  identifies which middle tier session to use. This option is needed only when you are using multiple middle tier sessions in the same script, which is usually unnecessary and should be avoided. If the MIDTIER= option is not specified, SAS Forecast Server uses the most recently created session if it is still open. If no such session exists or the session has been closed, then an error is reported.

MINOBSSTREND = n
  specifies the minimum number of observations needed for a trend model. The default value is 2.

MINOBSNONMEAN = n
  specifies the minimum number of observations needed for a non-mean model. The default value is 1.
MINOBSSEASON = n
is used to determine the number of observations required for a seasonal model. The value of the MINOBSSEASON option is multiplied by the seasonal cycle length. In order for a seasonal model to be fit to a series, the model must have more observations than the calculated value. Models with fewer observations will not be fit.

The value of MINOBSSEASON must be greater than or equal to 1. The default value is 2.

MODELSELECTIONLIST = data-set-name
specifies a model selection list that contains models that you can use. The default value is SASHELP.HPFDFT.TSFSSELECT.

PROJECTNAME = project-name
specifies the name of the SAS Forecast Server project. The name must be a valid SAS name. If you do not specify this option, the current stored default value for the project name is used. A global default value for PROJECTNAME can be specified with the FSSETDEF macro. For more information, see “FSSETDEF Macro” on page 151.

PUBLICACCESS = YES | TRUE | NO | FALSE | 1 | 0
specifies whether the project can be opened by other users. The default value is NO.

RECONCILIATION = TOPDOWN | TD | BOTTOMUP | BU | MIDDLEOUT(BY-variable) | MO(BY-variable) | NO | FALSE
specifies whether the SAS Forecast Server reconciles the hierarchy. By default, the SAS Forecast Server reconciles the hierarchy using the top-down reconciliation method (TOPDOWN or TD). To reconcile the hierarchy by a middle level, you must specify the BY variable for the level where the reconciliation starts.

Here are some examples of how to specify this option:

- To specify a top-down reconciliation, use RECONCILIATION=TOPDOWN.
- To specify a middle-out reconciliation that starts at the REGIONNAME variable, use RECONCILIATION=MIDDLEOUT(REGIONNAME).
- If you do not want to reconcile the hierarchy, specify RECONCILIATION=NO (or FALSE).

REPORTING = variable
specifies the reporting (or auxiliary) variables for the project. Variable names are separated by spaces.

SEASONALITY = n
specifies the length of a season. When possible, the SAS Forecast Server determines the seasonal cycle length from the time ID variable. You can specify a seasonal cycle length other than the default if you want to model a cycle in the data. For example, if your data contains a 13-week cycle, then specify SEASONALITY=13.

SEASONTEST = n | NO | FALSE
specifies the sensitivity of the seasonality test. You can specify no seasonality test or specify a significance probability value for the test. Series with strong seasonality have small test probabilities. A significance probability value of 0 always implies seasonality. A significance probability value of 1 always implies no seasonality.

The default value is 0.01. To disable the seasonality test, set this option to NO or FALSE.
SETMISSING = 0 | MISSING | AVG | MIN | MED | MAX | FIRST | LAST | PREV | NEXT
specifies how to replace the missing values in the data. The default value is MISSING.

- 0—The missing value is set to 0.
- MISSING—Each missing value is set to missing. This is the default value.
- AVG—Each missing value is set to the accumulated average value.
- MIN—Each missing value is set to the accumulated minimum value.
- MED—Each missing value is set to the accumulated median value.
- MAX—Each missing value is set to the accumulated maximum value.
- FIRST—Each missing value is set to the accumulated first nonmissing value.
- LAST—Each missing value is set to the accumulated last nonmissing value.
- PREV—Each missing value is set to the previous accumulated nonmissing value. Missing values at the beginning of the accumulated series remain missing.
- NEXT—Each missing value is set to the next accumulated nonmissing values. Missing values at the end of the accumulated series remain missing.

START = date
specifies the first date to use in data preparation. The date format is ddmmmyyyy and the date-and-time format is ddmmmyyyy:hh:mm:ss. The default value is the earliest date in the input data set.

TIMEMULTIPLIER = n
specifies the multiplier for the time interval that you specified in the INTERVAL= option. You can specify the multiplier in the INTERVAL option. For example, if you specify INTERVAL=WEEK2, then the time interval is WEEK and the multiplier is 2.

TIMESHIFT = n
specifies the offset for the time interval that you specified in the INTERVAL= option. You can specify the offset in the INTERVAL option. For example, if you specify INTERVAL=WEEK.2, then the time interval is WEEK, and the offset is 2 periods.

TRANSBOXCOX = n
specifies the Box-Cox value if the transformation type (specified by the TRANSTYPE option) is BOXCOX. Valid values range from -5 to 5 (inclusive). The default is 1.

TRANSOPT = MEAN | MEDIAN
specifies how to calculate the forecasts for the system-generated models. The default is MEAN.

TRANSTYPE = AUTO | LOG | NONE | SQRT | LOGISTIC | BOXCOX
specifies the transformation to apply to the dependent variable or independent variable. This transformation applies to the system-generated models.

Here are the valid values:

AUTO Automatic transformation. SAS Forecast Studio uses the model selection criteria to determine whether to apply a logarithmic transformation or no transformation.

LOG Logarithmic transformation. This option is not available for negative series.
NONE No transformation. This is the default.

SQRT Square-root transformation.

LOGISTIC Logistic transformation.

BOXCOX Box-Cox transformation. If you select this type of transformation, then you can specify a value using the TRANSBOXCOX option.

TRIMMISS = NONE | LEFT | RIGHT | BOTH specifies how missing values are removed from the accumulated time series. The default value is NONE. If the project is hierarchical with reconciliation, only NONE is allowed.

Here are the valid values:

NONE The missing values are kept.
LEFT The beginning missing values are removed.
RIGHT The ending missing values are removed.
BOTH Both the beginning and ending missing values are removed.

UCM = YES | TRUE | NO | FALSE | 1 | 0 specifies whether the SAS Forecast Server should automatically generate an unobserved component model (UCM). The default value is NO.

WEEKENDDAYS = 1 | 2 | 3 | 4 | 5 | 6 | 7 specifies which days are the weekend (or inactive) days in the week. This option is valid only when INTERVAL=WEEKDAY. The days are specified as numbers (1 through 7) representing the days of the week (Sunday through Saturday).

Here are some examples:

• To specify Saturday and Sunday as the weekend (or inactive) days in the week, use WEEKENDDAYS=17.
• To specify Friday and Saturday as the weekend days, use WEEKENDDAYS=67.

The weekend (or inactive) days can also be specified using the INTERVAL option. For example, INTERVAL=WEEKDAY67W is the same as setting INTERVAL=WEEKDAY and WEEKENDDAYS=67.

ZEROMISS = NONE | LEFT | RIGHT | BOTH specifies how beginning or ending zero values (or both) are interpreted in the accumulated time series. The default value is NONE.

Here are the valid values:

NONE The beginning and ending zeros are unchanged.
LEFT The beginning zeros are set to missing.
RIGHT The ending zeros are set to missing.
BOTH Both the beginning and ending zeros are set to missing.

Results
The FSUPDATE global macro variable indicates whether the FSUPDATE macro terminated successfully or encountered errors:

&FSUPDATE = SUCCESS | ERROR
A series of global macro variables are populated after a SAS Forecast Server project is loaded. These macro variables describe the project. Using these macro variables, you can write SAS code that can be used across multiple projects. For example, you can use SAS code to explore and use data in your SAS Forecast Server projects.

**Example**

```sas
%fsupdate(projectname=pd1,
 reconciliation=YES,
 publicaccess=NO
);
```

---

**FSVER Macro**

The FSVER macro returns the version of the SAS Forecast Batch Interface.

---

**Syntax**

```sas
%FSVER();
```

**Details**

**Required Arguments**

There are no arguments for the FSVER macro.

**Results**

The output from this macro is FSVERSION, which lists the version number.
Chapter 12
SAS Forecast Studio Tasks in Other SAS Software

About the SAS Forecast Studio Tasks
The Forecast Studio Create Project task, the Forecast Studio Open Project task, and the Forecast Studio Override Project task enable you to create and work with SAS Forecast Studio projects in SAS Enterprise Guide and in the SAS Add-In for Microsoft Office. SAS Add-In for Microsoft Office extends the functionality of Microsoft Excel, Microsoft Word, and Microsoft PowerPoint by enabling you to access SAS analytics and SAS reporting functionality without any SAS programming experience. SAS Add-In for Microsoft Office is designed for people who are familiar with these Microsoft Office programs, but who might be new to SAS.

Prerequisites for Using the SAS Forecast Studio Tasks
To use the SAS Forecast Studio tasks in the SAS Add-In for Microsoft Office, you must complete the following tasks.

- Install the SAS Forecast Server 12.1.
- Install SAS Enterprise Guide 5.1 or the SAS Add-In 5.1 for Microsoft Office on each client machine.
- Configure the SAS Forecast Server to use the SAS Add-In for Microsoft Office.

**TIP** To avoid having to reconfigure SAS Forecast Studio, make sure that you enable the use of the SOAP bridge for the SAS Forecast Server during deployment. For more information, see the “How to Install and Configure the SAS Forecast Server” on page 15.
Grant Access to the SAS Forecast Studio Tasks

Note: When you initially configured the SAS Forecast Server, you might have selected Grant access to SAS Forecast Studio tasks in the SAS Forecast Server: SOAP Configuration step of the SAS Deployment Wizard. This access is required to enable the use of SAS Forecast Studio tasks in SAS Enterprise Guide and in the SAS Add-In for Microsoft Office. If you selected this option, then you can skip the following reconfiguration steps. For more information, see the “How to Install and Configure the SAS Forecast Server” on page 15.

If you did not grant access to SAS Forecast Studio tasks when you initially configured the SAS Forecast Server, you must reconfigure the SAS Forecast Server Mid-Tier before you can use the SAS Forecast Studio tasks in SAS Enterprise Guide or in the SAS Add-In for Microsoft Office. You need to reconfigure only the machine that is running the SAS Forecast Server Mid-Tier. You do not need to unconfigure the SAS Forecast Server first.

To reconfigure the SAS Forecast Server to grant access to SAS Forecast Studio tasks:

1. Stop the Web application server. You will need to reconfigure the Web application server after reconfiguring the SAS Forecast Server.

2. Start the SAS Deployment Wizard from your SAS Software Depot. For example, on a Windows system, double-click the setup.exe file located in your SAS Software Depot folder.

3. In the SAS Deployment Wizard, complete the following steps:
   a. In the Select Deployment Task step, select Install SAS software.
   b. In the Select Deployment Type step, select Perform a Planned Deployment, and then select Configure SAS Software.
   c. In the Select Configuration Prompting Level step, select Typical to display the basic set of configuration settings.
   d. In the Select Products to Configure step, click Clear All, and then select SAS Forecast Server Mid-Tier. Select the check box for your Web application server.
   e. In the SAS Forecast Server: SOAP Configuration step, select Grant access to SAS Forecast Studio tasks.
   f. Complete the remaining steps in the SAS Deployment Wizard. Use the same values in these steps that you specified during your initial deployment. Click Finish.
Chapter 13
Using the SAS Forecast Server Utility Macros

About the SAS Forecast Server Utility Macros
Utility macros can be used to manage your SAS Forecast Server projects.

Dictionary

HPF_HIER_ROLLUP
The HPF_HIER_ROLLUP macro performs hierarchical aggregation of forecasting data sets.

Syntax

```
%HPF_HIER_ROLLUP(DATASET=,BYVARS=,TIMEID=,INTERVAL=,HORIZONSTART=,OUTSET= [,options])
```

Details

**Required Arguments**
The following arguments must be used with the HPF_HIER_ROLLUP macro. The required arguments are separated by commas.

- **DATASET = data-set-name**
  specifies the name of the input data set that contains the forecasts at the lowest level of aggregation. The data set must have the standard form for a forecasting data set (for example, OUTFOR= data set). The name must be a valid SAS name and in the `library.data-set-name` format.
BYVARS = variable-names
    specifies the BY variables in the input data set. A name must be a valid SAS name.

TIMEID = variable-name
    specifies the time ID variable in the input data set. The value must be a valid SAS
date, time, or datetime. The name must be a valid SAS name.

INTERVAL = interval-name
    specifies the time interval for the time ID variable. The name must be a valid SAS
time interval.

HORIZONSTART = date-or-time-value
    specifies the start of the forecast horizon. The value must be a valid SAS date,
time, or datetime.

OUTSET = data-set-name
    specifies the name of the output data set that contains the forecasts at the highest
level of aggregation. The data set must have the standard form for a forecasting data
set (for example, OUTFOR= data set). The name must be a valid SAS name and in
the library.data-set-name format.

Options
You can use the following options with the HPF_HIER_ROLLUP macro. Options must
follow arguments and are separated by commas.

ACTUAL = variable-name
    specifies the name of the variable in the input data set that contains the actual values
to be forecast. The default value is ACTUAL.

PREDICT = variable-name
    specifies the name of the variable in the input data set that contains the predicted
time. The default value is PREDICT.

DEPVAR = variable-name
    specifies the name of the variable that is used to rename the ACTUAL variable for
display purposes. The default value is ACTUAL.

AGGREGATE = TOTAL | AVERAGE
    specifies the statistic that aggregates the forecasts in the input data set. The default
value is TOTAL.

SETMISS = MISSING | number
    specifies the missing value interpretation of an actual value in the aggregate time
series. The default value is MISSING.

ZEROMISS = NONE | LEFT | RIGHT | BOTH
    specifies the leading or trailing zero interpretation of an actual value in the aggregate
time series. The default value is NONE.

MINOBS = non-negative-integer
    specifies the minimum number of observations in a non-mean model for the
forecasts of the aggregate time series. The default value is 2.

LEAD = non-negative-integer
    specifies the forecast horizon of the lead. The default value is 12.

Results
The HPF_RETURN_CODE global macro indicates whether the HPF_HIER_ROLLUP
macro finished successfully or encountered errors.

&HP_RETURN_CODE = SUCCESS | ERROR
Example
In this example, the HPFENGINE procedure is used to generate forecasts at the lowest level of aggregation. The HPF_HIER_ROLLUP macro is used to aggregate the forecasts using bottom-up reconciliation.

```
proc hpfengine data=sashelp.pricedata out=_NULL_ outfor=lowest
 task=select(minobs=4) lead=24;
 by region line product;
 id date interval=month horizonstart='01JAN2004'd;
 forecast sale;
run;
%HPF_Hier_RollUp(
 dataset=lowest,
 byvars=region line product,
 timeid=date,
 interval=month,
 horizonstart='01JAN2004'd,
 depvar=sale,
 minobs=4, lead=24, outset=forecasts);
```

HPF_ImportEventsFromExcel

The HPF_ImportEventsFromExcel macro imports an Excel file that contains event descriptions into an event definition data set.

**Note:** SAS/ACCESS Interface to PC Files must be licensed to run this macro.

**Syntax**

```
%HPF_ImportEventsFromExcel(INFILE=,SHEET=,DBMS=,DATASET= [,options])
```

**Details**

**Required Arguments**
The following arguments must be used with the HPF_ImportEventsFromExcel macro.
The required arguments are separated by commas.

- **INFILE = Excel-filename**
  specifies the name of the Excel file that contains the event descriptions. Only one worksheet from an Excel file can be imported at a time. If the Excel file contains multiple worksheets, then multiple macro calls are required to import all of the worksheets.

- **SHEET = worksheet-name**
  specifies the name of the worksheet in the Excel file that contains the event descriptions. This option is not required if the Excel file specified in the INFILE option contains only one worksheet.

- **DBMS = identifier**
  specifies the type of data to import. This option is not required if the file extension of the Excel file is XLS or XLSX.
  - If the DBMS= option is not set and the file extension of the Excel file is XLS, then DBMS=XLS is implied.
If the DBMS= option is not set and the file extension of the Excel file is XLSX, then DBMS=XLSX is implied.

For more information about the DBMS= option, see “The IMPORT Procedure” in the Base SAS Procedures Guide.

DATASET = SAS-data-set-name
specifies the event repository (which is saved as a SAS data set) that will contain the event descriptions for use in the EVENTDATA IN= statement of PROC HPFEVENTS or in the INEVENT= option of PROC HPFDIAGNOSE or PROC HPFENGINE.

**Options**

You can use the following options with the HPF_ImportEventsFromExcel macro. Options must follow arguments and are separated by commas.

**DATE = column-name**
specifies the name of the column in the Excel file that contains the date information. Date information is used for the _STARTDATE_ variable of the event definition data set.

- If a value is not specified for DATE=, then the _STARTDATE_ column is used if it exists.
- If a _STARTDATE_ column does not exist, then the STARTDATE column is used if it exists.
- If neither a _STARTDATE_ nor a STARTDATE column exists, then the DATE column is used if it exists.
- _STARTDATE_ is not a required variable in an event definition data set. The date information can be specified in the _STARTDT_, _STARTOBS_, or the _KEYNAME_ column. However, each event should have a valid value for the _STARTDATE_, _STARTDT_, _STARTOBS_, or _KEYNAME_ variable for the resulting event definition data set to be processed by PROC HPFEVENTS.

**ORIGINAL = OUTLOOK**
specifies that the Excel file was created by exporting data from a Microsoft Outlook calendar. In this case, the date is formatted as text. It requires special input formatting.

**DESCRIPTION = column-name**
specifies the name of the column to use to create an event name.

- If DESCRIPTION= is not specified, then the value of the _NAME_, NAME, or DESCRIPTION column is used. Columns are listed in order of precedence.
- If the _LABEL_ column does not exist, then the value in the DESCRIPTION= column is used for the _LABEL_ column.
- For the _NAME_ variable, the DESCRIPTION= column is processed to form a valid SAS variable name for event processing. For the _LABEL_ variable, the _LABEL_ column is used as specified. For example, Christmas Day creates an event named ChristmasDay with the label Christmas Day because spaces are not allowed in SAS variable names (but they are allowed in labels).
- If no column value exists for the DESCRIPTION= value, then the event definition data set cannot be created.
**Other Columns Processed**

If any of the following columns exist in the Excel file, then they are processed as SAS variables for the event definition data set: `_CLASS_`, `_KEYNAME_`, `_ENDDATE_`, `_DATEINTRVL_`, `_STARTDT_`, `_ENDDT_`, `_DTINTRVL_`, `_STARTOBS_`, `_ENDOBS_`, `_OBSINTRVL_`, `_TYPE_`, `_VALUE_`, `_PULSE_`, `_DUR_BEFORE_`, `_DUR_AFTER_`, `_SLOPE_BEFORE_`, `_SLOPE_AFTER_`, `_SHIFT_`, `_TCPARM_`, `_RULE_`, `_PERIOD_`, `_LABEL_`. The values of the columns are used as observations in the corresponding SAS variables for PROC HPFEVENTS. This makes it possible to export an event definition data set into Excel, and then import the Excel file back into SAS.

**Results**

The HPF_RETURN_CODE global macro indicates whether the HPF_ImportEventsFromExcel macro finished successfully or encountered errors.

```
&HPF_RETURN_CODE = SUCCESS | ERROR
```

**Example**

```
%HPF_ImportEventsFromExcel(infile=C:\importEvents\Chinese2010.xlsx,
 dataset=c)
```

---

**HPF_PART_EQUAL**

The HPF_PART_EQUAL macro partitions an input data set into equally sized partitions.

**Syntax**

```
%HPF_PART_EQUAL(DATASET=,NPARTS=,PARTSET=[,options]);
```

**Details**

**Required Arguments**

The following arguments must be used with the HPF_PART_EQUAL macro. The required arguments are separated by commas.

- **DATASET = data-set-name**
  
  Specifies the name of the input data set that you want to partition. The name must be a valid SAS name and in the `library.data-set-name` format.

- **NPARTS = integer**
  
  Specifies the number of partitions. This value must be a positive integer.

- **PARTSET = data-set-name**
  
  Specifies the name of the data set whose contents are partitioned. The name must be a valid SAS name and in the `library.data-set-name` format.
Options
You can use the following options with the HPF_PART_EQUAL macro. Options must
follow arguments and are separated by commas.

**BASENAME = SAS-name**
specifies the base name of the partitioned data set or view that will be indexed using
the NPARTS= option. For example, if BASENAME=SEGMENT and NPARTS=3,
the base names of the partitioned data sets or views are SEGMENT1, SEGMENT2,
and SEGMENT3. The default is BASENAME=PART.

**LIBREF = library-reference**
specifies the name of the library reference that will contain the partitioned data sets
or views. The name must be a valid SAS library reference. The default is
LIBREF=WORK.

**VIEW = NO | YES**
specifies whether the partition creates SAS data views or SAS data sets. If
VIEW=YES, SAS data views are created. If VIEW=NO, SAS data sets are created.
The default is NO.

Results
The HPF_RETURN_CODE global macro indicates whether the HPF_PART_EQUAL
macro finished successfully or encountered errors.

&HPF_RETURN_CODE = SUCCESS | ERROR

Example

```sas
%HPF_PART_EQUAL(dataset=sashelp.pricedata,nparts=3,partset=partition);
%put HPF_RETURN_CODE=&HPF_RETURN_CODE;
%put HPF_RETURN_MESSAGE=&HPF_RETURN_MESSAGE;
```

HPF_PART_SPLIT
The HPF_PART_SPLIT macro partitions an input data set using a variable in the input data set.

Syntax

```
%HPF_PART_SPLIT(DATASET=,SPLITVAR=,PARTSET=[,options]);
```

Details

**Required Arguments**
The following arguments must be used with the HPF_PART_SPLIT macro. The
required arguments are separated by commas.

**DATASET = data-set-name**
specifies the name of the input data set that you want to partition. The name must be
a valid SAS name and in the library.data-set-name format.

**PARTSET = data-set-name**
specifies the name of the data set whose contents are partitioned. The name must be
a valid SAS name and in the library.data-set-name format.
SPLITVAR = variable-name  
  specifies the name of the variable in the input data set that you want to use to partition. The name must be a valid SAS name.

**Options**

You can use the following options with the HPF_PART_SPLIT macro. Options must follow arguments and are separated by commas.

LIBREF = library-reference  
  specifies the name of the library reference that will contain the partitioned data sets or views. The name must be a valid SAS library reference. The default is LIBREF=WORK.

VALIDVALUES = NO | YES  
  specifies whether the values for the SPLITVAR= variable are valid SAS names. If VALIDVALUES=YES, the names for the partitioned data sets are generated by the values of the SPLITVAR= variable. If VALIDVALUES=NO, the names for the partitioned data sets are generated by indexing the values of the SPLITVAR= variable. The default is NO.

VIEW = NO | YES  
  specifies whether the partition creates SAS data views or SAS data sets. If VIEW=YES, SAS data views are created. If VIEW=NO, SAS data sets are created. The default is NO.

**Results**

The HPF_RETURN_CODE global macro indicates whether the HPF_PART_SPLIT macro finished successfully or encountered errors.

&HPF_RETURN_CODE = SUCCESS | ERROR

**Example**

```sas
%HPF_PART_SPLIT(dataset=sashelp.pricedata,splitvar=region,partset=partition);
%put HPF_RETURN_CODE=&HPF_RETURN_CODE;
%put HPF_RETURN_MESSAGE=&HPF_RETURN_MESSAGE;
```
Part 6

Appendixes

Appendix 1
Troubleshooting the SAS Forecast Server .......................... 183
Appendix 1
Troubleshooting the SAS Forecast Server

Gather Information ................................................................. 184
  Overview ................................................................. 184
  Operating System Environment and Configuration Information .................. 184
  Problem Description ...................................................... 185
  Sample Data ............................................................... 185
  Log Files ................................................................. 185

Additional Resources .......................................................... 186
  The Status Page for the SAS Forecast Server .................................. 186
  The Status Page for the SAS Forecast Server: SOAP Service ................. 187
  JMX MBeans ............................................................... 188

Troubleshoot the SAS Forecast Server ...................................... 189
  SAS License Is Expiring ................................................ 189
  Project Owner Cannot Access Project .................................... 189

Troubleshoot the Java Web Start Clients .................................. 190
  Java Version Missing for Java Web Start ................................ 190
  JNLP File Is Not Signed .............................................. 190
  Enable the Java Web Start Cache ..................................... 190

Troubleshoot the Logon Process ............................................. 191
  Cannot Locate a SAS Environment URL during the Logon Process .......... 191
  Logon Process Cannot Locate Any Compatible SAS Environments .......... 191

Troubleshoot the SAS Forecast Server Plug-ins for SAS Management Console 192
  Cannot Access Application Management Plug-ins in SAS Management Console 192
  Cannot Access the SAS Forecast Server Plug-ins for SAS Management Console 192
  SAS Forecast Server Is Not Available in the Current Deployment .......... 192
  User Is Unrestricted .................................................. 193
  Environment Action Fails .............................................. 193
  Default Environment Is Missing and Java Exceptions When Adding a New Environment ................................................. 193

Troubleshoot the SAS Forecast Batch Interface ............................ 193
  CLASSPATH Variable Is Not Set ....................................... 193
  LOG4J System Property Is Not Initialized ................................ 194

Performance Tuning for the SAS Forecast Server .......................... 194
Gather Information

Overview

When you are troubleshooting unexpected application behavior, it is important to isolate the problem and describe it and the context in which it occurs. There are general classes of information that can expedite resolving a technical problem:

- operating system environment and configuration information
- detailed problem description
- log files
- other files or screen shots
- sample test data

Use the following table to help gather information. Providing this information helps SAS Technical Support reproduce and fix your problem.

<table>
<thead>
<tr>
<th>Information to Gather</th>
<th>Done</th>
</tr>
</thead>
<tbody>
<tr>
<td>Details of your operating environment</td>
<td>[ ]</td>
</tr>
<tr>
<td>Detailed description of the problem (including what it takes to reproduce the problem)</td>
<td>[ ]</td>
</tr>
<tr>
<td>Sample data that would help reproduce the problem</td>
<td>[ ]</td>
</tr>
<tr>
<td>Log files</td>
<td>[ ]</td>
</tr>
<tr>
<td>Stack traces from any dialog boxes or consoles</td>
<td>[ ]</td>
</tr>
</tbody>
</table>

Operating System Environment and Configuration Information

If you request help from SAS Technical Support, then providing the following information about your installation can result in resolving the problem faster:

- Hardware platform, operating environment (including SAS version number), amount of physical memory, and number of processors.
- JDK version.
- JRE version.
- The SAS Forecast Server version number and patch level.
- The configuration settings for the SAS Forecast Server. You can get this information from the Settings and Advanced tabs in the Configuration Manager in SAS Management Console.
- Server language and locale.
Note: You must provide this information only once, unless it has changed from previous reports of this information.

**Problem Description**

Provide a problem description that includes as much information as possible. Include a description of the general task that you are trying to accomplish, your user ID, your roles and permissions, and what has happened during the SAS session. Provide answers to questions, such as the following:

- Are you working with new data or updating existing data?
- How easy is the problem to reproduce?
- What browser and version are you using?
- Is the problem specific to a locale? If so, which locales are having problems?

**Sample Data**

If possible, capture the data that caused the problem. SAS Technical Support might request your input data set so that it can better replicate your operating environment.

**Log Files**

**SAS Forecast Studio Log**

To view the log in SAS Forecast Studio, select Tools → SAS Log.

To include additional information in the log:

1. Start SAS Management Console. Connect as a SAS administrator (for example, sasadm@saspw).
2. Expand the **Configuration Manager** and **SAS Application Infrastructure** folders.
3. Right-click the **Forecast Server 12.1** folder, and select **Properties**. The Forecast Server 12.1 Properties dialog box appears.
4. Click the **Settings** tab.
5. In the left pane, select **Forecast Server**.
6. In **Forecast Server > Logging**, set these options:
   - Disable filtering. By default, log output produced by internal activities is omitted from the log.
   - Enable the inclusion of JDBC messages. By default, JDBC messages are not included in the log.
   - Click **Reset**.

**SAS Forecast Server Log**

Log files for the SAS Forecast Server are in the form `SASForecastServer*.log`.

If possible, provide SAS Technical Support with the log for your Web application server.
Additional Resources

The Status Page for the SAS Forecast Server

From the SAS Forecast Server Mid-Tier Current Status page, you can see the current settings of the configuration options and you can monitor the activity of the current session. From this page, you can see the release numbers of the SAS Forecast Server clients. This release information will help you determine whether the clients are compatible with the middle tier. The default URL for the status page is the location where the SAS Forecast Server services are deployed. An example of this URL is http://<your-server-name>:<port-number>/SASForecastServer/Status.

Note: You can access this page by using the ViewForecastServerStatus directive.

The SAS Forecast Server Mid-Tier Current Status page provides the following information:

- Links from which you can launch SAS Forecast Studio and SAS Forecast Project Manager as Java Web Start clients.
- A link to the status of the SAS Forecast SOAP Service.
- General information, such as what version of the SAS Forecast Server you are running. This information is used by the SAS Forecast Server clients to determine their compatibility with the middle tier.
- The configuration properties of the middle tier.
- The configuration properties of the Java Web Start client.
- The status of the SAS Workspace Server services, such as the SASApp - Logical Workspace Server, that are being used by the SAS Forecast Server.
- For each of the current sessions, a summary of the actions (or capabilities) that are available to each user. For more information, see “Manage Roles and Capabilities” on page 23.
Here is an example of a status page for the SAS Forecast Server:

![Image of the SAS Forecast Server Status Page](image)

**ASSOCIATED COMPONENTS**

- SAS Forecast Studio
- SAS Forecast Project Manager
- SAS Forecast SOAP Service

**GENERAL INFORMATION**

- Standard Build Information: View XML
- Product Name: SAS Forecast Server
- Product Version: 12.1
- Product Build Name: sas.forecasting.client.jar
- Product Build Version: 402100.24.0.20120613190000_d3fstd42
- Product Build Time: 24.0.20120613190000_d3fstd42
- Software Component: Forecast Server 12.1

**MIDDLE TIER CONFIGURATION**

- Log JDBC Activity: false
- Filter Logs: true
- Event Buffer Capacity: 0
- Event Polling Timeout (Seconds): 600
- Session Timeout Limit (Minutes): 60
- Timeout Polling Delay (Minutes): 5
- Use Local JPS Sessions: true
- JPS Session Keepalive Period (Minutes): (n/a)
- Concurrent Session Requests Limit: 0
- Execute Environment Scripts: false

---

**The Status Page for the SAS Forecast Server: SOAP Service**

The SOAP service (bridge) is required to run SAS Forecast Studio tasks in the SAS Add-In for Microsoft Office or SAS Enterprise Guide. You can access the status page for this service from the status page for the SAS Forecast Server. For more information, see the “The Status Page for the SAS Forecast Server” on page 186.

The SAS Forecast Server: SOAP Service Current Status page provides the following information:

- A link to the WSDL for the SOAP service.
• A link to the status of the SAS Forecast Server.
• The configuration properties for the SOAP service.
• Details about each of the current SOAP sessions.

Here is an example of a status page for the SOAP service:

![Status Page Screenshot]

**JMX MBeans**

Although the status page for the SAS Forecast Server provides a summary of the run-time state of the middle tier, you cannot modify the state from this page. SAS Forecast Server provides a simple JMX MBean that you can use to modify the state of the SAS Forecast Server. For some modifications, you can use JMX calls to apply changes to the SAS Forecast Server instead of restarting the middle tier. The JMX MBean provides details about the run-time state, but these details are limited to information directly related to actions that are supported by the JMX MBean.

Here are the actions supported by the JMX MBean:

• General Operation
  • `isInitialized()` reports whether the middle tier has completed the initialization that is performed at start-up.
• **reloadConfiguration()** reloads the SAS Forecast Server configuration from the metadata and attempts to apply any changes to it.

  *Note:* Configuration information is also cached in the configuration service. The configuration service must be reloaded before the **reloadConfiguration()** call to avoid getting the configuration information from an old cache. The configuration service provides a JMX call that can be used to reload the cached information without restarting the middle tier.

• Server Validation

  • **getServerStatus()** returns the validation information for all tested SAS Workspace Servers.

  • **refreshServer(<server-name>)** clears the stored validation information for the specified SAS Workspace Server. Clearing this information results in the SAS Workspace Server being retested when it is accessed again. You perform this action when a server has been classified as unusable, but you have corrected the problem.

  • **refreshAllServers()** clears the stored validation information for all SAS Workspace Servers.

• Session Management

  • **getSessions()** reports all active sessions in the middle tier.

  • **killSession(<ID>)** forces the specified session to close.

    *Note:* Only use this action to close sessions that no longer have clients associated with them. For example, you might use this action when a client process must be manually terminated. Forcing a session on the middle tier to close causes any active clients to fail. This action could result in data corruption, depending on what task the active client was performing when the middle-tier session was closed.

  **TIP** After executing a JMX call, you can confirm your modification by using the status page for the SAS Forecast Server.

---

**Troubleshoot the SAS Forecast Server**

**SAS License Is Expiring**

If you install the SAS Forecast Server as an add-on product to an existing SAS 9.3 deployment, you might see error messages about your SAS license expiring. If you are adding the SAS Forecast Server to an existing SAS 9.3 deployment or if you are renewing the software license for the SAS Forecast Server, you must update the SAS installation data (SID) file in the metadata.

To resolve these error messages, see “Updating the SID File in Metadata for SAS Solutions” in the *SAS Intelligence Platform: Installation and Configuration Guide*.

**Project Owner Cannot Access Project**

If you cannot access a SAS Forecast Server project that you own, you should check the owner information that is stored with the project. SAS Forecast Server stores the identity
of the owner as a token value that is derived from the user ID. However, the token value might not be identical to the user ID.

To determine the owner of a project, access the following in SAS Forecast Studio:
• the Project Properties dialog box
• the Owner column of the table in the Projects dialog box

You can determine the owner of the project by using the SAS Forecast Server Plug-ins for SAS Management Console, the SAS Forecast Project Manager, or the FSGETPRJ macro.

To view the token value for the user who is currently logged on, access the following:
• the current sessions table on the SAS Forecast Server Mid-Tier Current Status page
• the Show my (<identity-token>) projects only check box in the Projects dialog box in SAS Forecast Studio

Note: In some cases, a token mismatch can occur when migrating projects from a previous release. Prior to SAS Forecast Server 4.1, a user ID at the logon prompt was used to generate the token value. Starting with SAS Forecast Server 4.1, the NAME attribute of the metadata identity is used instead. In cases where the user ID and metadata name differ, the value of the project owner must be updated during the migration process.

---

**Troubleshoot the Java Web Start Clients**

### Java Version Missing for Java Web Start

Java Web Start does not work because the required version of the JRE is not installed on the client tier. For SAS 9.3 products, the required Java version is 1.6 or later. To download the JRE, see [http://support.sas.com/resources/thirdpartysupport/v93](http://support.sas.com/resources/thirdpartysupport/v93).

### JNLP File Is Not Signed

When you launch the Java Web Start client, you get a warning that the JNLP file is not signed. For the SAS Forecast Server, a JNLP file is dynamically generated. It cannot be signed. You can ignore this warning.

### Enable the Java Web Start Cache

The Java Web Start client does not work properly if the Java Web Start cache is disabled. By default, the cache is enabled. If the cache is disabled for any reason, complete these steps to enable it:

1. On Windows 7, select Start ⇒ Settings ⇒ Control Panel ⇒ Programs ⇒ Java.
2. Click the General tab.
3. In the Temporary Internet Files section, click Settings, and select the Keep temporary files on my computer check box.
Troubleshoot the Logon Process

**Cannot Locate a SAS Environment URL during the Logon Process**

During the logon process, the SAS Forecast Server clients look for a URL that references a sas-environment.xml file. This file contains the list of SAS environments that a user can select during the logon process. The logon process searches the following locations in order of precedence:

1. The `sas.env.definition.location` (a Java system property).
2. The `env.definition.location` (a Java system property).
3. The SAS_ENV_DEFINITION_LOCATION environment variable for the operating system.
4. The configured URL that is stored in the SASENVIRONMENTSSURL property in `%{sas.home}/sassw.config` (sas.home is a Java system property.)
5. The configured URL that is stored in the SASENVIRONMENTSSURL property in `SASHOME/sassw.config` (SASHOME is an environment variable for the operating system.)

During the local deployment of any SAS Forecast Server client, you are prompted for the URL value to store in the sassw.config file. If the SAS Forecast Server client cannot locate this URL, you should verify that the information in the sassw.config file is correct.

Launching a SAS Forecast Server client using Java Web Start does not require this URL to be configured. However, if the URL has been configured on either the client machine or in the configuration properties for Java Web Start, the SAS Forecast Server client might generate an error if the configured URL cannot be used. To resolve this error, verify that a valid URL is specified. You can choose to remove the URL because it is optional for the Java Web Start clients.

**Logon Process Cannot Locate Any Compatible SAS Environments**

During the logon process, the SAS Forecast Server clients run a compatibility test on each SAS environment. This test is primarily used to ensure that each SAS environment that a user can select in the logon dialog box is associated with a compatible deployment of the SAS Forecast Server. Only SAS environments that pass the compatibility test appear in the logon dialog box.

If no SAS environments pass the test, an error message states that no SAS environments could be found. If you get this error message, verify the following requirements:

- The sas-environment.xml file that you are using includes at least one SAS environment with a SAS Forecast Server deployment.
- The version of the SAS Forecast Server deployment matches the version of the client. The compatibility test uses the build version of sas.forecasting.client. Each SAS Forecast Server deployment lists its version number on its status page. The corresponding client version can be determined from the client picklist.
- The servers associated with the deployment are running and responsive.
Troubleshoot the SAS Forecast Server Plug-ins for SAS Management Console

Cannot Access Application Management Plug-ins in SAS Management Console

When you log on to SAS Management Console, the Forecast Server plug-in does not display in the Application Management folder. To resolve this issue, assign your user ID to the Management Console: Advanced role. This role is required so that the SAS Forecast Server Plug-ins for SAS Management Console and other solution-specific plug-ins are available to you.

To assign a user ID to this role:

1. Open SAS Management Console. Connect as a SAS administrator (for example, sasadm@saspw).
2. On the Plug-ins tab, select User Manager. In the right pane, a list of users, groups, and roles appears.
3. Right-click the SAS Administrator user, and select Properties. The SAS Administrator Properties dialog box appears.
4. Select the Groups and Roles tab.
5. From the list of available groups and roles, select Management Console: Advanced. Add it to the Member of list.
6. Click OK.

Cannot Access the SAS Forecast Server Plug-ins for SAS Management Console

When you try to access the SAS Forecast Server Plug-ins for SAS Management Console, access is refused. The plug-ins use your logon credentials for SAS Management Console. Therefore, the logon identity must be configured as a product user and must have the appropriate capabilities assigned to it.

Note: Do not configure internal accounts (such as sasadm@saspw) for use with the SAS Forecast Server to solve this problem. You should log on to SAS Management Console with a product user account.

SAS Forecast Server Is Not Available in the Current Deployment

You might get an error message that there is no usable SAS Forecast Server instance in the current deployment. This error is often generated because the compatibility test failed. This is often because hot fixes were only partially applied. You might get this error if you are connecting to a deployment that does not include the SAS Forecast Server.
User Is Unrestricted

When using the Forecast Server plug-in, you might get a warning message that the current user is unrestricted. The unrestricted designation is used for special accounts, such as sasadm@saspw. This unrestricted designation effectively disables the checking of all metadata permissions and capabilities. So, in a sense, an unrestricted user account is assigned all of the metadata permissions and capabilities that are available for the product. Having an unrestricted user is generally not recommended because the unrestricted designation applies only to the SAS Metadata Server and not to other resources, such as the SAS Workspace Server. Unless the user has been configured to use the product, then any actions performed by the unrestricted user fail, and data corruption could occur. Therefore, the unrestricted designation should be used only with special accounts (such as sasadm@saspw) that are not used with the product.

Environment Action Fails

When you perform maintenance actions on environments (copy, move, delete, and so on), exclusive access to the environment is typically required for the duration of the action. During this time, the environment and all of its projects are inaccessible to users. Similarly, if the environment or one of its projects is already in use when the action is attempted, then the action fails. Therefore, it is recommended that you coordinate with users and establish times during which you can perform environment maintenance.

CAUTION:
You should not use the session kill support to force users off the system when maintenance is performed. Forcibly ending an active user session could result in corrupted data.

Default Environment Is Missing and Java Exceptions When Adding a New Environment

When you install the SAS Forecast Server as an add-on product to an existing SAS deployment, you have the option of creating a default forecasting environment. This forecasting environment should appear in the SAS Forecast Server Plug-ins for SAS Management Console. If the picklists were not merged when you added the SAS Forecast Server to your deployment, then the default forecasting environment might not appear. In addition, trying to add a new forecasting environment under these conditions results in several Java exceptions.

For information about how to resolve this issue, see SAS Note 44095 at http://support.sas.com/kb/44/095.html.

Troubleshoot the SAS Forecast Batch Interface

CLASSPATH Variable Is Not Set

You do not have to set the CLASSPATH variable before using the macros. If you get the following message while executing the macros, you can ignore it:

NOTE: Could not initialize classpath. Classpath variable is not set.
**LOG4J System Property Is Not Initialized**

You do not need to configure the LOG4J logging service for Java. If you get the following warning message while executing the macros, you can ignore it:

```
log4j:WARN No appenders could be found for logger java-class-name
log4j:WARN Please initialize the log4j system properly.
```

**Performance Tuning for the SAS Forecast Server**

For scalability issues, slow system performance, or failures caused by memory settings, you can change the default settings for SAS Forecast Studio and Java Web Start in the following tiers:

- SAS Forecast Studio client tier
- SAS server tier

**Note:** In general, the other SAS Forecast Server clients do not require tuning because they handle management tasks. However, the HEAP setting applies to all Java Web Start clients (both SAS Forecast Studio and SAS Forecast Project Manager), so any changes to the maximum heap size affect both clients.

To improve performance:

1. Change the maximum heap size. By default, this value is 512m. For information about formatting and value constraints, see the JRE documentation.

   You can change this value in either of these ways:
   
   - Change the `Xmx` value in the .ini files.
   - Set the **Maximum heap size** property in SAS Management Console.
     
     1. Start SAS Management Console. Connect as a SAS administrator (for example, sasadm@saspw).
     2. Click the **Plug-ins** tab.
     3. Expand the **Configuration Manager** and **SAS Application Infrastructure** folders.
     4. Right-click the **Forecast Server 12.1** folder, and select **Properties**. The Forecast Server 12.1 Properties dialog box appears.
     5. Click the **Settings** tab.
     6. In the left pane, click **Virtual Machine Options**.
     7. Specify a value for the maximum heap size.
     8. Click **Reset**.

2. Increase the JVM memory for the server, middle tier, and client by specifying the `-Xmx1g` command.

The Windows configuration files are at the following locations:
• Client (SAS Forecast Studio): `SAS_HOME\SASForecastStudio\12.1\forecaststdo.ini`

• JRE variables: `SAS_HOME\wrapper.conf`

For more information about changing your system settings to improve system performance, see the section about best practices for configuring the middle tier in the *SAS Intelligence Platform: Middle-Tier Administration Guide* at [http://support.sas.com/documentation/onlinedoc/intellplatform](http://support.sas.com/documentation/onlinedoc/intellplatform).
client application
an application that runs on a client machine.

client tier
the portion of a distributed application that requests services from the server tier. The client tier typically uses a small amount of disk space, includes a graphical user interface, and is relatively easy to develop and maintain.

data set
See SAS data set.

descriptor information
information about the contents and attributes of a SAS data set. For example, the descriptor information includes the data types and lengths of the variables, as well as which engine was used to create the data. SAS creates and maintains descriptor information within every SAS data set.

environment
a virtual container of run-time settings for SAS Forecast Server client sessions.

foundation services
See SAS Foundation Services.

Integrated Object Model server
See IOM server.

IOM server
a SAS object server that is launched in order to fulfill client requests for IOM services. Short form: IOM server.

metadata object
a set of attributes that describe a table, a server, a user, or another resource on a network. The specific attributes that a metadata object includes vary depending on which metadata model is being used.

middle tier
in a SAS business intelligence system, the architectural layer in which Web applications and related services execute. The middle tier receives user requests, applies business logic and business rules, interacts with processing servers and data servers, and returns information to users.
object spawner
a program that instantiates object servers that are using an IOM bridge connection. The object spawner listens for incoming client requests for IOM services. When the spawner receives a request from a new client, it launches an instance of an IOM server to fulfill the request. Depending on which incoming TCP/IP port the request was made on, the spawner either invokes the administrator interface or processes a request for a UUID (Universal Unique Identifier).

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of SAS data sets: SAS data files and SAS data views. SAS data files contain data values in addition to descriptor information that is associated with the data. SAS data views contain only the descriptor information plus other information that is required for retrieving data values from other SAS data sets or from files whose contents are in other software vendors' file formats.

SAS Foundation Services
a set of core infrastructure services that programmers can use in developing distributed applications that are integrated with the SAS platform. These services provide basic underlying functions that are common to many applications. These functions include making client connections to SAS application servers, dynamic service discovery, user authentication, profile management, session context management, metadata and content repository access, activity logging, event management, information publishing, and stored process execution.

SAS Management Console
a Java application that provides a single user interface for performing SAS administrative tasks.

SAS Metadata Server
a multi-user server that enables users to read metadata from or write metadata to one or more SAS Metadata Repositories.

SAS Workspace Server
a SAS IOM server that is launched in order to fulfill client requests for IOM workspaces.

server tier
in a SAS business intelligence system, the tier in which the SAS servers execute. Examples of such servers are the SAS Metadata Server, the SAS Workspace Server, the SAS Pooled Workspace Server, the SAS Stored Process Server, and the SAS OLAP Server. These servers are typically accessed either by clients or by Web applications that are running in the middle tier.

service
one or more application components that an authorized user or application can call at any time to provide results that conform to a published specification. For example, network services transmit data or provide conversion of data in a network, database services provide for the storage and retrieval of data in a database, and Web services interact with each other on the World Wide Web.

spawner
See object spawner.
Index

A
architecture
diagram 4
overview 4
archives
creating 83
deleting 117, 121
importing 131, 132
archiving projects 81
authorization for libraries 65
automatic environment libraries 64
automatic environment library
creating 67

B
batch interface 5, 94
BY variables
validating 91

C
capabilities 23
Classpath variable 193
components
client tier 5
middle tier 5, 6
SAS Forecast Project Manager 5
SAS Time Series Studio 6
configuration properties
archiving projects 81
SAS environment URL 80
session time out 79
setting 79
URL for Java Web Start 90
configurations
removing 82
configured environment libraries 64
configured environment library
creating 68
custom formats 74
custom time intervals 71
examples 72, 73

D
data sets
changing 150

events
adding 99
creating 122
deleting 119
external library assignments 63

E
environments
attributes 128
configuring 13
creating 13, 142
deleting 118
failures 193
overview 13
permissions 37
registering 143
unregistering 155

F
forms
creating a custom format 74
validating 91
FSADDEVT macro 99
FSCLEAR macro 102
FSCOPY macro 102
FSCREATE macro 104
FSDELARC macro 117
FSDELENV macro 118
FSDELEVT macro 119
FSDELPJ macro 121
FSEVTREQ macro 122
FSEXPELL macro 123
INDEX

FSEXPORT macro 125
FSEXPTSET macro 126
FSGETENV macro 128
FSGETPRJ macro 129
FSGETURP macro 130
FSIMPALL macro 131
FSIMPORT macro 132
FSLOAD macro 134
FSLOGIN macro 135
FSLOGOUT macro 136
FSLOOP macro 136
FSMIGALL macro 138
FSMIGPRJ macro 139
FSMOVE macro 140
FSNEWENV macro 142
FSREGENV macro 143
FSREGPRJ macro 144
FSREN macro 145
FSRUNPRJ macro 146
FSRUNRPT macro 148
FSSETDAT macro 150
FSSETDEF macro 151
FSSETOWN macro 152
FSSETPUB macro 153
FSUNREG macro 154
FSUNRENV macro 155
FSUPDATE macro 156
FSVER macro 168
configured environment 64
configuring 63
creating 63
enabling support 65
external library assignments 63
not pre-assigned 67
overview 63
preassigned 66
log4j system property 194
logging out 136
logging server for Java 194
logs
SAS Forecast Server 185

M
macro variables
clearing 102
macros 94
metadata
registering 144
unregistering 154, 155
middle tier 5

N
new sessions
creating 135

O
operating system accounts
UNIX environments 22
users 11
owners
projects 152

P
permissions
environments 37
file system 36
metadata 36
SAS Forecast Server Metadata User 35
unrestricted 193
user access 33
user groups 22
WriteMetadata 36
post-installation tasks
middle tier 79
pre-installation tasks
administrative user account
recommendations 12
project owners 189
changing 35
overview 35

L
libraries
assigned by SAS Forecast Server 64
authorization 65
automatic environment 64

I
installation
how to 15
INTERVALDS= system option 71

J
Java stack traces 185
Java Web Start
configuring 80
configuring login 88
JRE 190
JWS cache 190
starting 88
URL 90
JMX access 79
JMX MBeans 188
JNLP file 190
JWS cache 190

200  Index
project scripts 69
projects
accessing 189
archiving 123, 125
attributes 129
copying 102
creating 104
deleting 117, 121
exporting 123, 125
exporting settings 126
importing 131, 132
loading 134
moving 140
opening 146
owners 152
permissions 38
registering 130, 138, 143, 144
renaming 145
running 146
sharing 39, 153
start-up and shutdown code 69
unregistered project names 130
unregistering 154
updating settings 156
upgrading 139
properties
configuration 79

R
Remote Services 4
reports
about reports 41
about stored processes 41
accessing in SAS Forecast Studio 44
active series macro variables 59
basic project macro variables 52
control macro variables 50
custom reports 48
data hierarchy and settings macro variables 52
diagnose macro variables 58
dynamic report parameters 48
forecast macro variables 58
internal report parameters 49
keywords 42
managing 43
metadata macro variables 51
model selection macro variables 58
normal report parameters 48
parameter 48
preregistration tasks 46
reconciliation macro variables 59
registering 46, 47
required macro calls 62
running 148
sample reports 45
special report features 62
roles 23
configuring users 28

S
SAS Add-In for Microsoft Office 169
SAS Deployment Manager 82
SAS Enterprise Guide 169
SAS environment
Log On dialog box 81
URL 80
SAS environments
compatibility 191
Log On dialog box 191
SAS Forecast Batch Interface 94
version number 168
SAS Forecast Project Manager about 5
SAS Forecast Server
architecture 4
capabilities 23
components 5
initial users 33
logs 185
middle tier 5
overview 3
performance tuning 194
roles 23
security layers 36
Status page 186
SAS Forecast Server macros 5
Classpath variable 193
SAS Forecast Server Metadata User
overview 34
permissions 35
SAS Forecast Server Plug-in for SAS Management Console 5
SAS Forecast Studio 5
reports 44
SAS environment 81
session time out 79
starting 87
SAS Forecast Studio tasks
accessing 170
overview 169
prerequisites 169
SOAP bridge 170
SAS Intelligence Platform
components 4
integration 6
SAS Management Console
configuration properties 79
SAS Metadata Server 4, 87
SAS Object Spawner 4
SAS Remote Services 87
SAS Services Application 4
SAS Time Series Studio about 6
SAS Web Infrastructure Platform 4
SAS Workspace Server 4
security
  file system permissions 36
  layers 36
  WriteMetadata 36
servers
  required 87
sessions
  closing 136
shutdown code
  projects 69
SOAP bridge 80, 170
  connection time out 80
start-up code
  projects 69
Status page 186

time intervals
  custom 71
detecting 90
troubleshooting
  environment access 193
  gathering information 184
  JRE 190
  SAS Forecast Server Plug-ins for SAS
    Management Console is not available 192
    system performance 194

UNIX environments
  operating system accounts 22
user accounts
  product administrator 11
  users of SAS Forecast Studio 11
user groups 22
  permissions 22
users
  configuring 28
  unrestricted 193

Web application server 87
WriteMetadata permissions 36