
SAS® Solutions Services 5.2
Customization Guide

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2011. SAS® Solutions Services 5.2: Customization Guide. Cary,
NC: SAS Institute Inc.

SAS® Solutions Services 5.2: Customization Guide

Copyright © 2011, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hardcopy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book:Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is
subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer Software-Restricted Rights (June
1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, January 2011

SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For more
information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at support.sas.com/
publishing or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

http://support.sas.com/publishing
http://support.sas.com/publishing

Contents
Chapter 1 • About the Customization Guide . 1

What's in This Book . 1
Required Skills . 2
Documentation Conventions . 2
Additional Documentation . 2

Chapter 2 • Working with Stored Processes . 5
Overview: Stored Processes and SAS Solutions Services . 5
Writing a Custom Stored Process for the Solutions . 6
Macros for Use with SAS Solutions Services . 10
Troubleshooting Stored Processes . 16
Scorecards and KPI Projects: Automatic Variables from Global or Personal Thresholds 17

Chapter 3 • The SAS Financial Management Java API . 19
Using the SAS Financial Management Java API . 20
Summary of Classes . 23
The AdminQuery Class (Financial Planning Only) . 24
The AuditHistory Class . 29
The BaseApi Class . 31
The BaseQuery Class . 33
The CycleQuery Class (Financial Cycles Only) . 35
The Form Class (Financial Forms Only) . 37
The FormSet Class . 39
The Metadata Class . 44
The Model Class (Financial Models Only) . 45
Model Macros . 48
Executing Queries with the %FMQUERY Macro . 56

Chapter 4 • Customizing a Workflow . 69
About Customizing a Workflow . 69
Workflow Types . 69
Adding Your Custom Code to a Workflow . 72
Data Validation Example . 75

Chapter 5 • Creating a Custom Cell Action . 81
Overview . 81
Write the Stored Process . 82
Register the Stored Process . 84
Update the Resource File . 87
Select the Action . 88

Chapter 6 • The SAS Financial Management Add-In API for Microsoft Excel 89
Overview of Working with the SAS Financial Management Add-

In API for Microsoft Excel . 89
Setup for Using the API . 90
General Usage Information . 90
Summary of Classes . 94
The FMAddIn Class . 95
The FMCollections Class . 98
The FMCrossing Class . 100
The FMCrossingsCollection Class . 102

The FMCube Class . 102
The FMCubesCollection Class . 106
The FMHierarchiesCollection Class . 106
The FMHierarchy Class . 107
The FMMember Class . 112
The FMMembersCollection Class . 114
The FMTable Class . 114
The FMTablesCollection Class . 122
The FMUser Class . 122

Chapter 7 • Auditing in SAS Strategy Management . 125
Configure Auditing in SAS Strategy Management . 125
Create an Audit Report . 129

Chapter 8 • Using Secure Sockets Layer (SSL) . 131
About SSL . 131
References . 132
Configuring SSL for the Solutions . 132
Configure the Managed Servers . 133
Configure the Web Applications . 134
Configure the SAS Content Server . 135
Modify the Content Mapping . 136
Modify the Remote Services . 136
Modify the Foundation Services . 138
Modify SAS Human Capital Management Files . 139
Modify the SAS Environment Files . 140
Configuring Java Desktop Clients for Use with an SSL-Enabled Server 141
Restart and Test . 143
Index . 145

iv Contents

Chapter 1

About the Customization Guide

What's in This Book . 1

Required Skills . 2

Documentation Conventions . 2

Additional Documentation . 2

What's in This Book
This book contains information about customizing SAS Solutions Services 5.2 and the
solutions that use SAS Solutions Services:

• SAS Financial Management 5.2

• SAS Human Capital Management 5.2

• SAS Strategy Management 5.2

It includes the following topics:

• creating custom stored processes

• customizing SAS Financial Management:

• writing SAS code that accesses the SAS Financial Management application
programming interface (API)

• writing macros in Microsoft Excel that interact with SAS Financial Management
objects

• adding custom cell actions to Microsoft Excel

• customizing a workflow

• enabling and customizing auditing in SAS Strategy Management

• configuring Secure Sockets Layer (SSL)

Note: This book no longer contains information about alerts or directives, because those
features are now part of the SAS Intelligence Platform or the Web Infrastructure
Platform. For information about creating row-level security filters, see the SAS Human
Capital Management: Administrator's Guide. For information about customizing
themes, see the SAS Intelligence Platform: Web Application Administration Guide.

1

Required Skills
To use the SAS Financial Management Java API, you must be familiar with both SAS and
Java programming. To use the SAS Financial Management Add-In API for Microsoft
Excel, you must have an understanding of Microsoft Excel and Microsoft Visual Basic for
Applications (VBA).

Documentation Conventions
This book uses the following documentation conventions to identify paths in the solutions
configuration:

Convention Description

SAS-config-dir The path to the SAS configuration directory in the operating system;
for example, C:\SAS\Config (Windows) or /usr/local/
SAS/Config (UNIX).

MySQL-install-dir The path to the MySQL installation directory. For example, C:
\MySQL\bin (Windows) or /usr/local/mysql (UNIX)

!SASROOT The SAS root directory.

For example, C:\Program Files\SAS
\SASFoundation\9.2 (Windows) or /usr/local/
SAS/SASFoundation/9.2 (UNIX).

Note:

• Your site might have a different configuration directory name or a different
level number.

• File system pathnames are typically shown with Windows separators (“\”); for
UNIX, substitute a forward slash.

Additional Documentation
For additional information, see the appropriate versions of the following books:

• SAS Solutions Services: System Administration Guide

• SAS Solutions Services: Data Administration Guide

• SAS Solutions Services: Data Model Reference

• The user's guides for SAS Financial Management, SAS Human Capital Management,
and SAS Strategy Management

• The administrator's guide for SAS Human Capital Management

2 Chapter 1 • About the Customization Guide

These books are available at the following sites:

• SAS Financial Management: http://support.sas.com/documentation/
onlinedoc/fm

• SAS Strategy Management: http://support.sas.com/documentation/
onlinedoc/stm

• SAS Human Capital Management: http://support.sas.com/
documentation/onlinedoc/hcm

Note: These sites are password-restricted. You can find the user name and password in the
preinstallation checklist or by contacting SAS Technical Support at http://
support.sas.com/techsup/contact.

For information about the SAS Intelligence Platform, see http://support.sas.com/
92administration.

For information about administering third-party software, such as the Web application
servers, see http://support.sas.com/resources/thirdpartysupport/v92.

Additional Documentation 3

http://support.sas.com/documentation/onlinedoc/fm
http://support.sas.com/documentation/onlinedoc/fm
http://support.sas.com/documentation/onlinedoc/stm
http://support.sas.com/documentation/onlinedoc/stm
http://support.sas.com/documentation/onlinedoc/hcm
http://support.sas.com/documentation/onlinedoc/hcm
http://support.sas.com/techsup/contact
http://support.sas.com/techsup/contact
http://support.sas.com/92administration
http://support.sas.com/92administration
http://support.sas.com/resources/thirdpartysupport/v92

4 Chapter 1 • About the Customization Guide

Chapter 2

Working with Stored Processes

Overview: Stored Processes and SAS Solutions Services . 5

Writing a Custom Stored Process for the Solutions . 6
Creating the Stored Process . 6
Making the Stored Process Available . 6

Macros for Use with SAS Solutions Services . 10
Overview . 10
The %BLDVIEW Macro . 10
The %GETLSTNR Macro . 12
The %MTRCLOAD Macro . 13
The %RPTINIT Macro . 14
The %SENDEVNT Macro . 15

Troubleshooting Stored Processes . 16

Scorecards and KPI Projects: Automatic Variables from
Global or Personal Thresholds . 17

Overview: Stored Processes and SAS Solutions
Services

A stored process is a SAS program that is stored centrally on a server and is executed via
a client application, which then can receive and process the results. Stored processes can
access a SAS data source or external file and can create new data sets, files, or other data
targets.

A stored process can be defined with parameters, with or without global default values. At
run time, client applications can supply parameter values when they invoke the stored
process.

Here are some common uses for stored processes, within the context of the solutions:

• Creating charts. Parameters are used to select elements such as time, analysis, and
product category.

• Generating quick reports, such as profit and loss reports. Parameters are used to select
product, customer, region, and so on.

• Validating data. For example, a stored process can be used to find extraordinary values
such as too many returns or extraordinarily high sales in an unlikely area.

5

• Verifying data. One such example is the ETL Job Status report, which is included with
the product as a standard report.

• Loading data. For example, you might create a stored process to import new data for
a forthcoming period, from the SAS Data Integration Studio jobs that load metric tables.
Another example is the standard Import Users and Groups stored process, which stores
user and group information in the SASSDM database.

Writing a Custom Stored Process for the Solutions

Creating the Stored Process
Stored processes are a standard way to extend and otherwise customize the solutions. For
detailed information about writing SAS code for use in stored processes, see the SAS Stored
Processes: Developer's Guide.

Stored processes that you create should reside on the data tier of your installation. One
good location is in the SAS-config-dir\Lev1\SASApp\SASEnvironment
\solution-name\SASCode directory. In the SASCode directory, you can create a
subdirectory for your code (for example, C:\SAS\Config\Lev1\SASApp
\SASEnvironment\FinancialManagement\SASCode\UserDefined).

Several macros are available for use in stored processes that are part of SAS Solutions
Services and the solutions. For more information, see “Macros for Use with SAS Solutions
Services” on page 10.

For examples of stored processes that use these macros, see the stored processes that are
included with SAS Solutions Services and the solutions:

• SAS Solutions Services: !sasroot\soltnsdata\sasstp

• SAS Financial Management: !sasroot\finance\sasstp

• SAS Strategy Management: !sasroot\scorecard\sasstp

• SAS Human Capital Management: SAS-config-dir\Lev1\AppData
\SASHumanCapitalManagement5.2\StoredProcesses

Making the Stored Process Available

Overview
To register a stored process, log on to SAS Management Console as an administrator and
add the stored process to the appropriate folder.

Users can execute a stored process from Document Manager. They can also create or edit
a My Favorites portlet or a Collection portlet and add a link to a stored process. With SAS
Human Capital Management, users can execute a stored process from the workspace.

With SAS Financial Management, a stored process can be used in a custom cell action or
as a workflow customization.

For more information about creating and registering a stored process, see the SAS Stored
Processes: Developer's Guide (available at http://support.sas.com/
documentation/).

6 Chapter 2 • Working with Stored Processes

http://support.sas.com/documentation/
http://support.sas.com/documentation/

For information about security for stored processes, see the SAS Intelligence Platform:
Security Administration Guide (available at http://support.sas.com/
92administration).

Creating Package Results for SAS Financial Management Reports
When you register a stored process, you can specify what type of output that stored process
can produce. You can specify Stream, Package, both output types, or neither output type.

The simplest type of output, or result type, is none. The client receives no output from the
stored process. The stored process is still able to create or update data sets, external files,
or other objects, but this output remains on the server. Streaming output delivers a data
stream, such as an HTML page or XML document, to the client. It is supported only on
the stored process server.

Package output can be stored in a permanent location, such as a WebDAV repository. For
a SAS Financial Management report, your stored process code should begin with a call to
%RPTINIT, and your stored process should generate package results. Typically, the results
are stored in the user's personal repository. Each user can run the same stored process and
generate results that depend on the parameters the user selects and depending on security
that is in place.

The following steps register a stored process in a shared folder, with output to a personal
repository. (In the screen displays, some dialog boxes are truncated.)

1. Log on to SAS Management Console as an administrator.

2. On the Folders tab, right-click a shared folder and select New Stored Process. One
possible location is the /Products/SAS Financial Management folder, where
you might create a subfolder to hold stored processes for your site.

3. On the General page of the New Stored Process wizard, give the stored process a name.

4. On the Execution page of the wizard, select the stored process server and define the
path and the name for the stored process. Select the Package check box.

5. On the Parameters page, define any input parameters that are required by the stored
process.

For the results options, select WebDAV output, as follows:

a. Click Add Shared.

b. In the Select a Shared Group or Prompt dialog box, navigate to SAS Folders
\Products\Intelligence Platform\Samples. To store the output in the

Writing a Custom Stored Process for the Solutions 7

http://support.sas.com/92administration
http://support.sas.com/92administration

user's personal folder in the WebDAV repository, select Package - Personal
Repository.

Note: Do not select Package - Personal Repository with New Instance.

c. Click OK.

d. In the Add Package dialog box, click OK.

6. Select Package - Personal Repository and click Unshare to unshare the prompts so
that you can modify them.

SAS Management Console displays a warning message and asks whether you want to
continue. Click Yes.

7. Click the plus sign next to the Package - Personal Repository prompt to expand the
options.

8. Select the Personal repository collection path prompt and click Edit.

9. On the Prompt Type and Value tab, type a value into the Default value text box.

8 Chapter 2 • Working with Stored Processes

This value becomes the directory name for storing the output in the WebDAV
repository.

10. Keep the defaults for the other results prompts.

11. Click Next.

12. On the Data page of the wizard, enter any source or target data sources. Then click
Finish.

Note: For an example of registering a stored process that uses Package - WebDAV
Server as the output location, see “Register the Stored Process” on page 84.

When a user executes a stored process, the results are immediately available in the Web
browser. The results are also stored in the WebDAV repository. For example, if the personal
repository is selected, results are stored in the sasdav/Users/user-name/PR/
MyResults/default-value folder. The user can access the stored results (for
example, via a WebDAV navigator portlet in the portal).

For an example of a stored process that was created with package output, see the stored
processes in the /Products/SAS Financial Management/5.2 Standard
Reports folder.

For more information about WebDAV content and the SAS Content Server, see the SAS
Intelligence Platform: Web Application Administration Guide. For more information about
WebDAV navigator portlets, see the online Help for the portal.

Writing a Custom Stored Process for the Solutions 9

Macros for Use with SAS Solutions Services

Overview
The following macros are available to use in stored processes that work with SAS Solutions
Services or the solutions:

Table 2.1 Macros for Use with SAS Solutions Services

Macro Description

%BLDVIEW Creates a view of records that have been filtered for the current user.

This macro is vailable only if you have SAS Human Capital
Management.

%GETLSTNR Locates a designated Event Broker Service from a SAS Metadata
Server repository.

%MTRCLOAD Updates metric data in the SAS Solutions Data Mart.

%RPTINIT Extends and replaces the standard %STPBEGIN macro.

Use this macro for a stored process that is used in SAS Financial
Management to create package output.

%SENDEVNT Sends an event to an event listener that is running in the SAS
Solutions middle tier.

The %BLDVIEW Macro

Overview
Creates a view of records to which row-level security has been applied.

Note: This macro is available for use only in SAS Human Capital Management.

Syntax
%BLDVIEW (

INTABLE=,
OUTTABLE=
[, OUTTYPE=TABLE|VIEW]
[, LIBREF=]
[, DEFAULT_LIBREF=_INTBL_]
[, DEFAULT_DATAPATH=]
[, DEFAULT_EVENTSERVER=]
[, TABLE_REPOSITORY=]
[, DOALLVARS=]
[, EVENTNAME=]
[, DEFAULT_EVENTNAME=SAS.Solutions.Service.Requested]

10 Chapter 2 • Working with Stored Processes

)

INTABLE
Name of the table that the secured view should be based on. This value should be a
one-level name, without any libref. The table must be registered in the metadata
repository.

OUTTABLE
Name of the output table or view. This value should include a libref.

OUTTYPE
Output type: a VIEW or a data TABLE. If unspecified, this parameter defaults to VIEW.

LIBREF
A standard SAS libref that applies to the INTABLE.

DEFAULT_LIBREF
A standard SAS libref that applies to the INTABLE if the LIBREF parameter is empty.

DEFAULT_DATAPATH
The path to the input table. (Use if there is no libref assigned to the input table.)

DEFAULT_EVENTSERVER
The default event server to be used by the %SENDEVNT macro. If you do not set this
parameter, %BLDVIEW calls the %GETLSTNR macro. The %GETLSTNR macro
sets the event server name.

TABLE_REPOSITORY
Name of the metadata repository for the input table.

DOALLVARS
Flag that determines whether secured columns are visible. If DOALLVARS is missing
or has a value of Y, then %BLDVIEW returns all columns in the table. If the user does
not have access to a column, then a missing value is returned for that column (a blank
for character data or a period for numeric data).

If DOALLVARS has a value other than Y, then %BLDVIEW does not return any
columns that are not accessible by the user. If the stored process explicitly references
one of those columns, then the stored process server returns an error.

Note: You can achieve the same effect by setting the BLDVIEW_ALLVARS global
variable.

DOALLVARS and BLDVIEW_ALLVARS apply only to column-level security. If the
user does not have access to an entire table, then %BLDVIEW does not return any
columns

EVENTNAME
The event to use. The default is SAS.Solutions.Service.Requested. To
override the default, give the EVENTNAME parameter a value or set a global macro
variable named BLDVIEW_EVENTNAME.

DEFAULT_EVENTNAME
The default event to use. (See the description of the EVENTNAME parameter.)

Details
Use this macro to ensure that your report includes only those records that the user is
authorized to view. For information about row-level security, see the SAS Human Capital
Management: Administrator's Guide.

Macros for Use with SAS Solutions Services 11

Example
This example is from the ABSWKDAY stored process, one of the SAS Human Capital
Management standard reports:

%let dsn=abshmast;
%bldview(intable=&dsn, outtable=&dsn, libref=hcmdata,
 default_libref=hcmdata, table_repository=Foundation);

The %GETLSTNR Macro

Overview
Locates a designated Event Broker Service in a metadata repository.

Syntax
%GETLSTNR (

[METASERVER=]
[, METAPORT=]
[, METAPROTOCOL=BRIDGE|]
[, METAUSER=]
[, METAPASS=]
[, METAREPOSITORY=]
[, SOFTWARECOMPONENTNAME=Remote Services|]
[, SOFTWARETREENAME=Event]
[, MEMBERNAME=Event Broker Service]
[, TRANSFORMATIONSOURCENAME=HTTP_Transport]

)

METASERVER, METAPORT, METAPROTOCOL, METAUSER, METAPASS,
METAREPOSITORY

Values for the metadata repository and server, if they were not specified in SAS options
or if they differ from the options value.

SOFTWARECOMPONENTNAME, SOFTWARETREENAME, MEMBERNAME,
TRANSFORMATIONSOURCENAME

Values for the event listener. These parameters need to be set only if the event listener
is stored in a different place in the metadata repository from the default location.

Details
The macro creates a global macro variable named EVENTSERVER that contains the name
of the HTTP event server, in the form server-name:port. The value of the EVENTSERVER
variable can be passed to the EVENTSERVER parameter of the %SENDEVNT macro.

Example
If the metadata-related parameters are already set as SAS options, then the call to this macro
is as follows:

%getlstnr();

Note: Avoid defining a different Event Broker Service.

12 Chapter 2 • Working with Stored Processes

The %MTRCLOAD Macro

Overview
Updates metric data in the SAS Solutions Data Mart.

Syntax
%MTRCLOAD (

INPUT=
, DIMFLDS=
, STATFLDS=
[, SOURCE_SYSTEM_CD=ETL]
[, TABLE_DESC=]
[,_STRINGDELIMITER=|++|]

)

INPUT
Specifies the two-level table that contains metric information.

For more information about this table, see “Details” on page 13.

DIMFLDS
One or more sets of dimension field values, separated by the |++| separator. For each
dimension, provide the following values, also separated by |++|:

field-name|++|dimension-code|++|dimension-type-code|++|hierarchy-code

STATFLDS
A list of value fields, separated by the |++| separator. At least one value is required.

TABLE_DESC
The table description. If this parameter is omitted, the macro creates it from the
dimension list.

SOURCE_SYSTEM_CD
Source system code, such as ETL, FM, or HCM. The default is ETL.

_STRINGDELIMITER
The delimiter used for the DIMFLDS and STATFLDS parameters. The default is |+
+|.

Details
This macro checks to see whether there is already a metric table of the same structure in
the database that is referenced by the SDMMET libref. If not, it adds the table to the
database (with a name of METRICTABLEX) and registers it in the metadata repository.

The table that is designated in the INPUT parameter should include the following columns:

Column Name Description

MEASURE_NM Contains a valid measure name derived from the MEASURE
table in the Cross Industry Detail Data Store.

DIRECTIVE_TXT Specifies a directive to use to drill to details on this measure.

MODIFIED_DT Contains the date on which the record was created.

Macros for Use with SAS Solutions Services 13

Column Name Description

TIME_PERIOD_ID Contains a valid time period code from the TIME_PERIOD
table in the Cross Industry Detail Data Store.

value columns Contains one or more columns that are supplied as values to
the STATFLDS parameter in the %MTRCLOAD macro.
Examples: VALUE, TARGET_VALUE.

dimension columns Contains one or more columns that are supplied as values to
the DIMFLDS parameter in the %MTRCLOAD macro.
Example: INTERNAL_ORG_ID.

Note: When you create a metric table, do not use dimension codes that are also reserved
words in MySQL. For a list of these reserved words, see http://dev.mysql.com/
doc/refman/5.0/en/reserved-words.html.

Example
This example is from an ETL job:

%let dimflds = %nrquote(TIME_PERIOD_ID|++|TIME|++|TIME|++|TIME_MR|++|
 INTORG_HR_ID|++|ORG|++|INTORG|++|INTORG_HR);
%let statflds = %nrquote(value|++|mean_val|++|median_val|++|p10_val|++|
 p25_val|++|p75_val|++|p90_val);
%let table_desc = %nrquote(HCM Metric Table);

%mtrcload(input=&syslast,
 dimflds=&dimflds,
 statflds=&statflds,
 table_desc=&table_desc);

The %RPTINIT Macro

Overview
This macro extends and replaces the standard %STPBEGIN macro when it is used in a
stored process for SAS Solutions Services reporting. It is used in SAS Financial
Management stored processes.

Syntax
%RPTINIT (

[STYLE=]
[, DEVICE=]

)

STYLE
Name of the ODS style to define for output by setting the _ODSSTYLE variable;
defaults to sasweb.

DEVICE
SAS/GRAPH DEVICE option for generating graphical output. Defaults to gif.

Details
%RPTINIT performs the following tasks:

14 Chapter 2 • Working with Stored Processes

http://dev.mysql.com/doc/refman/5.0/en/reserved-words.html
http://dev.mysql.com/doc/refman/5.0/en/reserved-words.html

• sets the image path to obtain output assets from the appropriate WebDAV path

• calls the %STPBEGIN macro

Example
/* Simple Stored Process for SAS Solutions */
%rptinit;
goptions hpos=45
 vpos=25
 ftext=
 colors=(blue red green);
proc gtestit;
run;
%stpend;

The %SENDEVNT Macro

Overview
Sends an event to an event listener that is running in the middle tier.

Syntax
%SENDEVNT (

EVNTNAME=,
EVENTSERVER=
[, FILEREF=]
[, FILENAME=]
[, RESULT_URL=]
[, RESULT_FILEREF=]
[, SENTBY=]
[, PROPS=, VALS=]
[, RESPONSE=NONE]
[, PRIORITY=]
[, VALS_DELIMITERS=%str()]
[, ETL_GROUP_NM=]
[, SENDEVNT_RC_VAR=SENDEVNT_RC]

)

EVNTNAME
(Required) Name of the event to send.

EVENTSERVER
(Required) Name of the event server to which the event is sent. Use %GETLSTNR to
obtain the appropriate event listener.

FILEREF
SAS fileref that points to an XML file that is sent with the event. Some events read an
XML file that contains additional information about what the event should do. For these
events, you can supply either a SAS fileref or filename that points to this XML file. If
values for both the FILEREF and FILENAME parameters are specified, then the
filename takes precedence.

FILENAME
Name of an XML file that is sent with the event. (See FILEREF, above.)

Macros for Use with SAS Solutions Services 15

RESULT_URL
URL to hold the response XML. This value takes priority over the RESULT_FILEREF,
if both parameters are specified.

RESULT_FILEREF
A fileref that points to a file to hold the response XML.

SENTBY
Optional sender information that is sent with the event. Its value is usually a name or
user ID.

PROPS, VALS
Additional properties (separated by spaces or commas) to send with the event. There
is a one-to-one match between the values defined in PROPS and the values defined in
VALS.

RESPONSE
Indicates whether the event includes a response; the default is NONE.

PRIORITY
The Java priority level for the event, with values that range between 1 and 10. The
default, which typically does not need to be changed, is 10.

VALS_DELIMITERS
Specifies the delimiter character that is used to separate the values in the VALS field.
Normally this value should not be changed; the default is the pound character (#).

ETL_GROUP_NM
Used only by ETL jobs.

SENDEVNT_RC_VAR
The name of a macro variable to receive the return code (RC) of the DATA step that
publishes the event. A nonzero value indicates an error. Proper usage is to define the
receiving macro outside of this macro, because the %SENDEVNT macro does not
define it as either global or local.

Example
%sendevnt(evntname=&eventName,
 priority=&priority,
 eventserver=&EVENTSERVER,
 sentby=&sentby,
 props=%bquote(&props),
 vals=%bquote(&prop_vals));

Troubleshooting Stored Processes
If a stored process does not run correctly, view the stored process log file that is located in
the SAS-config-dir\Lev1\SASApp\StoredProcessServer\Logs directory on
the machine where the stored process server is running. For information about configuring
the log files for the stored process server, see “Administering Logging for SAS Servers”
in the SAS Intelligence Platform: System Administration Guide.

For standard reports that are a part of SAS Financial Management, you can configure an
additional log file to provide more information. For details, see “Viewing and Configuring
the Log Files” in the SAS Solutions Services: System Administration Guide.

16 Chapter 2 • Working with Stored Processes

Scorecards and KPI Projects: Automatic Variables
from Global or Personal Thresholds

In a scorecard (or KPI) project or table, users can define global and personal thresholds.
Within the threshold options, users can select a stored process to be invoked when the
threshold is met and define parameters to be passed to the stored process.

In addition, several automatic variables are available to these stored processes to identify
the threshold context. The following variables can be accessed as &variable-name:

Table 2.2 Automatic Variables from Global or Personal Thresholds

Automatic Variable Type Description

ENTITYKEY String The session entity key.

SPM_THRESHOLDOPERATOR Numeric The operator that was chosen when building the threshold.
Possible operators are:

• 1: less than

• 2: less than or equal

• 3: greater than

• 4: greater than or equal

• 5: equal

• 6: not equal

An operator of 0 calls for no action, and the stored process is
not invoked.

SPM_THRESHOLDTYPE String The threshold type:

• G: Global

• P: Personal

SPM_THRESHOLDVALUE String The value that was chosen when building the threshold.

SPM_THRESHOLDVALUETYPE String The threshold value type:

• D: Double

• I: Interval

SPM_CONTAINERID String The ID of the container (project or scorecard) that crossed the
threshold.

SPM_ELEMENTNAME String The name of the element that crossed the threshold.

SPM_ELEMENTID String The ID of the element that crossed the threshold.

SPM_COLUMNID String The ID of the column that crossed the threshold.

Scorecards and KPI Projects: Automatic Variables from Global or Personal Thresholds 17

Automatic Variable Type Description

SPM_PERIODID String The ID of the period that crossed the threshold.

SPM_METRICVALUE String The metric value of the cell that is defined by
SPM_ELEMENTID, SPM_COLUMNID, and
SPM_PERIODID.

Here is an example of those variables, from a stored process log:

ENTITYKEY=dd48e492aa9d18a2:-3d2a3b32:129656d95db:-3e93
SPM_THRESHOLDOPERATOR=1
SPM_COLUMNID=41ed6bc5-0a0c-0bd8-283f-da7f5481959e
SPM_CONTAINERID=4274faf7-0a0c-0bd8-689e-b45726536cf2
SPM_ELEMENTID=42780448-0a0c-0bd8-689e-b457a2c401c4
SPM_ELEMENTNAME=m1
SPM_METRICVALUE=20.0
SPM_PERIODID=182
SPM_THRESHOLDTYPE=P
SPM_THRESHOLDVALUE=100.0
SPM_THRESHOLDVALUETYPE=D

18 Chapter 2 • Working with Stored Processes

Chapter 3

The SAS Financial Management
Java API

Using the SAS Financial Management Java API . 20
About the SAS Financial Management Java API . 20
Instantiating an Object . 20
Authenticating the User . 21
Calling an Object's Methods . 22
Deleting the Javaobj . 22
Retrieving Error Messages . 23
Configuring a Log File . 23
Handling Exceptions . 23

Summary of Classes . 23

The AdminQuery Class (Financial Planning Only) . 24
Overview . 24
Method Summary . 24

The AuditHistory Class . 29
Overview . 29
Method Summary . 30

The BaseApi Class . 31
Overview . 31
Method Summary . 31

The BaseQuery Class . 33
Overview . 33
Method Summary . 33

The CycleQuery Class (Financial Cycles Only) . 35
Overview . 35
Method Summary . 35

The Form Class (Financial Forms Only) . 37
Overview . 37
Method Summary . 38

The FormSet Class . 39
Overview . 39
Method Summary . 40

The Metadata Class . 44
Overview . 44
Method Summary . 44

The Model Class (Financial Models Only) . 45
Overview . 45

19

Method Summary . 45

Model Macros . 48
Overview . 48
The %GETALLMODELS Macro . 49
The %GETFORMS Macro . 50
The %GETFORMSETS Macro . 51
The %GETMODELHIERARCHIES Macro . 52
The %GETMODELMEMBERS Macro . 54
The %GETMODELPROPERTIES Macro . 55

Executing Queries with the %FMQUERY Macro . 56
Overview . 56
The RUNASUSERID Parameter . 57
Query Types . 57
Syntax . 57
The Query Data Set . 59
%FMQUERY Example (Non-MDX) . 60
%FMQUERY Example with MDX String . 60
Copying an MDX String . 61
MDX Reference for SAS Financial Management . 61

Using the SAS Financial Management Java API

About the SAS Financial Management Java API
The SAS Financial Management application programming interface (API) includes a set
of Java classes and a set of SAS macros that are available to SAS code for accessing SAS
Financial Management data. Among other tasks, the API can be used for the following
purposes:

• to execute a custom query against SAS Financial Management data

• to get a list of models or information about the properties, members, hierarchies, forms,
or form sets that are associated with a specified model

• to reset or publish a form set

• to post adjustments for a model

Most of the classes apply only to financial planning. However, the macros (other than
%FMQUERY) apply to both financial and operational models. The AuditHistory and
Metadata classes can also be used for both financial and operational planning.

Note: For information about the terminology in this chapter, see the SAS Financial
Management User's Guide.

Instantiating an Object
The API uses the Javaobj interface, a mechanism that is similar to the Java Native Interface
(JNI) for instantiating Java classes and accessing their methods and fields. The DATA step
that includes a Javaobj declaration must include the following option:

/picklist='finance/finance.txt'

The picklist option is necessary so that the Javaobj can access the necessary JAR files.

20 Chapter 3 • The SAS Financial Management Java API

To instantiate an object, you declare a Javaobj object using the following syntax:

dcl javaobj object-name (classname, constructor-arguments);

Parameters are as follows:

object-name
The handle to the Java object that is returned. You use this handle to access the object's
methods.

classname
A string that contains the fully qualified name of the Java class that you are instantiating,
such as com/sas/solutions/finance/api/Form.

constructor-arguments
Any arguments that are required by the constructor.

Authenticating the User

Authentication Using the METADATA_PASSID Function
In order to access SAS Financial Management data, the user must be authenticated on the
middle tier. The recommended approach is to call the object's setEnvironment method and
then call the METADATA_PASSID function in the DATA step. For example:

data _null_ /picklist='finance/finance.txt';
dcl javaobj j("com/sas/solutions/finance/api/AuditHistory");
j.ExceptionDescribe(1);
j.callVoidMethod("setEnvironment", "default");
call METADATA_PASSID("j", "");

This function creates a one-time user-password combination and authenticates the user on
the middle tier.

In a stored process, the METADATA_PASSID function has access to the user ID and
password. In an interactive SAS session, the user is asked for the user ID and password to
be used for authentication on the middle tier. If the authentication fails, check the stored
process log or the SAS log.

Note: Document Manager no longer passes the session context to a stored process.
Consequently, you cannot use a constructor such as Model(entityKey) in a stored
process that is called from Document Manager. (You can use such a constructor in a
stored process that is called from a workflow.)

Authentication Via User ID and Password
An alternative approach is to pass the user ID, password, and environment (also called
domain) to the constructor. For example:

data _null_ /picklist='finance/finance.txt';
 dcl javaobj oAdmin("com/sas/solutions/finance/api/AdminQuery",
 "sasdemo", "DemoDemo1", "default");

We recommend encoding or encrypting the password, rather than using a plain-text
password. For more information, see the SAS Intelligence Platform: Security
Administration Guide.

Authentication from a Workflow
For a stored process that is called from a workflow, you must get the session context from
the FM_SP_SECKEY variable and pass it to the constructor for a Java class. For more

Using the SAS Financial Management Java API 21

information about using a stored process in a workflow, see Chapter 4, “Customizing a
Workflow,” on page 69.

Specifying the Solutions Environment
The environment argument is the name of a Solutions environment that is defined in the
EnvironmentFactory.xml file—for example, “default,” “dev,” or “prod.” It should be the
same value that a user would specify when logging on to the middle tier from Microsoft
Excel.

If it was not added at installation time, add the JREOPTIONS option to the
sasV9_usermods.cfg file located in each SAS application server context directory that you
use. The env.factory.location argument should point to a network-accessible copy of the
EnvironmentFactory.xml file. By default, this file is made available as follows:

-JREOPTIONS=(-Denv.factory.location=
 http://hostname:port/SASConfig/EnvironmentFactory.xml)

Note: Line break inserted for readability. hostname is the name of the host machine for
the middle tier, and port is the port number of the managed server to which you deployed
SAS Solutions Services.

If the environment files are published to an HTTP server, the URL would resemble the
following: http://myhttpserver:port/EnvironmentFactory.xml. For more
information, see “Configuring the SAS Environment Files” in the SAS Solutions Services:
System Administration Guide.

Calling an Object's Methods
With a handle to the Java object, you can call its methods. This code calls the Form object's
getState method, which returns a String value:

oForm.callStringMethod("getState", state);

In this example, OFORM represents the handle to the Form object. The call statement
matches the method's return type (for example, CALLSTRINGMETHOD,
CALLDOUBLEMETHOD, CALLINTMETHOD, CALLBOOLEANMETHOD, or
CALLVOIDMETHOD).

The first parameter is always the method name, and the last parameter always contains the
return value (if any). The remaining parameters are the parameters that the Java method
requires. In the example above, the getState method has no parameters.

Note: The value returned by a boolean method is 1 (true) or 0 (false).

Deleting the Javaobj
To avoid memory leaks, all instantiations of a Javaobj should be terminated by a call to the
DELETE method. Call the object's logout method before deleting the object, as in this
example:

dcl javaobj oAudit("com/sas/solutions/finance/api/AuditHistory");
oAudit.ExceptionDescribe(1);
oAudit.callVoidMethod("setEnvironment", "default");
call METADATA_PASSID("oAudit", "");
...
oAudit.callVoidMethod ("logout");
oAudit.delete();

22 Chapter 3 • The SAS Financial Management Java API

Retrieving Error Messages
Many methods return a Boolean value indicating whether the action was successful.
Because SAS does not have a true Boolean type, the return code is either 0 (failure) or 1
(success). When the return code is 0, the getErrorMessage method can be used to retrieve
the pertinent error message, as in this example:

if rc le 0 then do;
 oForm.callStringMethod("getErrorMessage", msg);
end;

Configuring a Log File
In addition to calling getErrorMessage, you can generate a more detailed log by creating
a log4j.properties file. For more information, see “Configure a Log File for the SAS
Financial Management Reports” in the SAS Solutions Services: System Administration
Guide.

Handling Exceptions
The EXCEPTIONCHECK method can be used to determine whether an exception has been
thrown. The EXCEPTIONCLEAR method clears any existing exceptions. Here is an
example:

/* clear any existing stored exception */
oModel.ExceptionClear();
oModel.callvoidmethod("getModelHierarchies", "Default_Model", "FMSData",
 "TstHierarchies");
/* check to see if an exception has been thrown */
rc = oModel.ExceptionCheck(exception);
if (exception) then
 put 'Exception occurred,Please check the log for more information';
oModel.callVoidMethod("logout");

Note: The EXCEPTIONCHECK method cannot be used to detect exceptions that are
thrown when constructing an object.

Summary of Classes

Table 3.1 Summary of Classes. Each class is part of the com.sas.solutions.finance.api package.

Class Description

AdminQuery Contains methods for running queries on the Base Facts data of SAS Financial Management.
Applies only to financial planning.

AuditHistory Contains methods for running queries on the AuditHistory data of SAS Financial
Management.

Summary of Classes 23

Class Description

BaseApi Serves as the base class for the SAS Financial Management Java API. This class is extended
by the BaseQuery, Form, Metadata, and Model classes.

BaseQuery Contains methods for running queries. This class is extended by the AuditHistory,
AdminQuery, and CycleQuery classes.

CycleQuery Contains methods for extracting facts from a cycle. Applies only to financial cycles.

Form Contains methods for running queries on the properties of a planning form from SAS Financial
Management. Applies only to financial forms.

Metadata Contains methods for retrieving metadata about SAS Financial Management.

Model Contains methods for retrieving information about SAS Financial Management models and
for running queries against a model. Applies only to financial models.

The AdminQuery Class (Financial Planning Only)

Overview
The com.sas.solutions.finance.api.AdminQuery class contains methods for running queries
on the Base Facts data. It extends the com.sas.solutions.finance.api.BaseQuery class. The
AdminQuery class applies only to financial planning.

For an example of using the AdminQuery class, see the Facts stored process in
the !sasroot\finance\sasstp\facts.sas directory (Windows) or
the !sasroot/sasstp/finance/facts.sas directory (UNIX). This stored process
lists data records that are associated with a specified financial model. You can limit a Facts
report to a time period or an analysis member, and in several other ways.

Method Summary

Table 3.2 AdminQuery Class Method Summary

Method Description

AdminQuery() Constructor.

Throws: java.lang.Exception

boolean executeQuery() Executes the query using the filters and any other parameters
that have been previously specified.

Returns: true if the action succeeded; otherwise, false

Throws: java.lang.Exception

24 Chapter 3 • The SAS Financial Management Java API

Method Description

java.lang.String getQueryColNames
(java.lang.String queryType)

Gets the list of column names for a specific query and model.
This method can be executed before running a query. However,
you must set the model to be used in the query before calling
getQueryColNames.

Parameters:

• queryType: type of query to execute. For a list of possible
values, see the definition of the setQueryType method.

Returns: column names, separated by commas

java.lang.String getQueryColNames
(java.lang.String queryType, java.lang.String modelCode)

Gets the list of column names for a specific query and model.
This method can be executed before running a query.

Parameters:

• queryType: the type of query to execute. For a list of
possible values, see the definition of the setQueryType
method.

• modelCode: the model code to be used in the query.

Returns: column names, separated by commas

Throws: java.lang.Exception

java.lang.String
getQueryColNamesWithSeparator
(java.lang.String queryType, java.lang.String modelCode,
java.lang.String separator)

Gets the list of column names for a specific query and model.
This method can be executed before running the query.

Parameters:

• queryType: the type of query to execute. For a list of
possible values, see the definition of the setQueryType
method.

• modelCode: the model code to be used in the query.

• separator: the text (such as a comma) to be used to separate
column names in the list that is returned.

Returns: column names, separated by the separator text

Throws: java.lang.Exception

java.lang.String getQuerySASNames
(java.lang.String queryType)

Gets a list of column names (in SAS valid name format) for a
specific query and model. This method can be executed before
running a query. However, you must first set the model to be
used in the query.

Parameters:

• queryType: the type of query to execute. For a list of
possible values, see the definition of the setQueryType
method.

Returns: column names, separated by commas

The AdminQuery Class (Financial Planning Only) 25

Method Description

java.lang.String getQuerySASNames
(java.lang.String queryType, java.lang.String modelCode)

Gets a list of column names (in SAS valid name format) for a
specific query and model. This method can be executed before
running the query. It returns column names, separated by
commas.

Parameters:

• queryType: the type of query to execute. For a list of
possible values, see the definition of the setQueryType
method.

• modelCode: the model code to be used in the query.

Returns: column names, separated by commas

Throws: java.lang.Exception

java.lang.String
getQuerySASNamesWithSeparator
(java.lang.String queryType, java.lang.String modelCode,
java.lang.String separator)

Gets the list of column names (in SAS valid name format) for
a specific query and model. This method can be executed
before running the query.

Parameters:

• queryType: the type of query to execute. For a list of
possible values, see the definition of the setQueryType
method.

• modelCode: the model code to be used in the query.

• separator: the text (such as a comma) to be used to separate
column names in the list that is returned.

Returns: column names, separated by the separator text

Throws: java.lang.Exception

java.lang.String getReportingCurrency() Gets the reporting currency member code.

Returns: If the reporting currency has been set (via the
setReportingCurrency method), then that member code is
returned. Otherwise, the default reporting currency is returned.

Throws: java.lang.Exception

boolean setDimFilter (java.lang.String code,
java.lang.String value)

Sets a filter on a dimension; to filter on multiple values, call
the method for each value.

Parameters:

• code: the dimension code

• value: the member code to be used as the filter value

Returns: true if the action succeeded; otherwise, false

Throws: java.lang.Exception

26 Chapter 3 • The SAS Financial Management Java API

Method Description

boolean setDimFilterID (java.lang.String dimID,
java.lang.String memID)

Sets a filter on a dimension; to filter on multiple values, call
the method for each value.

Parameters:

• dimID: the dimension ID

• memID: the member reference ID to be used in the filter

Returns: true if the action succeeded; otherwise, false

Throws: java.lang.Exception

boolean setDimTypeFilter (java.lang.String code,
java.lang.String value)

Sets a filter on a dimension type; to filter on multiple values,
call the method for each value.

Parameters:

• code: the dimension type code.

• value: the member code to be used in the filter.

Returns: true if the action succeeded; otherwise, false

Throws: java.lang.Exception

boolean setFactsParms (java.lang.String otid,
java.lang.String oid, java.lang.String ssid)

Deprecated. Use setParms instead.

boolean setModel (java.lang.String name) Sets the model to be used in a query.

Parameters:

• name: the model name.

Returns: true if the action succeeded; otherwise, false

Throws: java.lang.Exception

boolean setModelCode (java.lang.String code) Sets the model to be used in a query.

Parameters:

• code: the model code.

Returns: true if the action succeeded; otherwise, false

Throws: java.lang.Exception

boolean setModelID (java.lang.String ID) Sets the model to be used in a query.

Parameters:

• ID: the model ID.

Returns: true if the action succeeded; otherwise, false

Throws: java.lang.Exception

The AdminQuery Class (Financial Planning Only) 27

Method Description

boolean setParms (java.lang.String otid,
java.lang.String oid, java.lang.String convert)

Sets the parameters for the query.

Parameters:

• otid: the object type ID, which must be a string containing
one of these values: adjustmentsequence,
attachment, cashinfusiontransaction,
compositeresult, cycle, dataload,
differentialwritedown,
disposaltransaction,
dividendtransaction, equityassignment,
form, formset, formtemplate, holding,
holdingmethodaccounts, lineitem,
manualadjustment, measureexport,
othercpolineitem, othercpotransaction,
ownershipchangetransaction, period,
pocconsolidationmethod,
pocholdingfact, purchaseadjustment,
purchasedifferential,
purchasetransaction, result, rule,
standaloneparent, or balsheet_reversal.

• oid: the object ID. Typically, this value is an empty string
("").

• convert: the currency conversion flag. A value of Y
specifies that currency values should be converted from
their functional currencies to a presentation currency. A
value of N specifies that conversion should not take place.

Returns: true if the parameter values are valid; otherwise,
false

boolean setQueryType (java.lang.String queryType) Sets the type of query to execute.

Parameters:

• queryType: the type of query to execute, which must be a
string containing one of these values: ELIMINATIONS,
NONLEAF, DATAENTRY, TRIALBALANCE,
INTERCOMPANY, NONINTERCOMPANY,
RULESFACTS, RULE, MANUALADJUSTMENTS,
FACTS, OWNERSHIP, ICACCOUNTS, FACTSR,
DETAILS, OWNERSHIPTRANSACTIONS, or
OWNERSHIPMETHODS

Returns: true if the query type value is valid; otherwise,
false

boolean setReportingCurrency (java.lang.String
code)

Sets the currency to be used for reporting values.

Parameters:

• code: a currency code, such as EUR.

Returns: true if the action succeeded; otherwise, false

Throws: java.lang.Exception

28 Chapter 3 • The SAS Financial Management Java API

Method Description

boolean setRule (java.lang.String name) Sets the rule by name (required only by the RULE query).

Parameters:

• name: the name of a rule.

Returns: true if the action succeeded; otherwise, false

Throws: java.lang.Exception

boolean setRuleID (java.lang.String id) Sets the rule by ID (required only by the RULE query).

Parameters:

• id: the ID of a rule.

Returns: true if the action succeeded; otherwise, false

Throws: java.lang.Exception

boolean setVCubeID (java.lang.String ID) Sets the model using the ID of a virtual cube (vcube).

Parameters:

• ID: the ID of a virtual cube.

Returns: true if the action succeeded; otherwise, false

Throws: java.lang.Exception

The following methods are inherited from class com.sas.solutions.finance.api.BaseQuery:
getColumnName, getColumnSASName, getColumnType, getMaxRowsMessage,
getNumberOfColumns, getNumericValue, getQueryColNames,
getQueryColNamesWithSeparator, getQueryRecordsNumber, getQuerySASNames,
getQuerySASNamesWithSeparator, getRecord, getValue, and setMaxRows.

The following methods are inherited from class com.sas.solutions.finance.api.BaseApi:
authenticate, buildExceptionMessageString, getErrorMessage, getMessage,
setEnvironment, logout, setLocale, and trim.

The following methods are inherited from class java.lang.Object: equals, getClass,
hashCode, notify, notifyAll, toString, and wait.

The AuditHistory Class

Overview
The com.sas.solutions.finance.api.AuditHistory class contains methods for running queries
on AuditHistory data from SAS Financial Management. It extends the
com.sas.solutions.finance.api.BaseQuery class.

For an example of using the AuditHistory class, see the Audit stored process
(!sasroot\finance\sasstp\audit.sas). This stored process extracts audit and
history data that is filtered by three optional parameters: a user, an action type, and a date
range.

The AuditHistory Class 29

Method Summary

Table 3.3 AuditHistory Class Method Summary

Method Description

boolean executeQuery() Executes the query using the filters and any other parameter
previously specified.

The query generates records with the following columns (all
are character data): USERNAME, ACTION_TYPE_ID,
TIMESTAMP_TS, OBJECT_CLASS_ID, OBJECT_ID,
SOLUTION_ID, TRANSACTION_ID, AUDIT_ID,
PROPERTY_NM, OLD_VALUE, and NEW_VALUE. You
can call the getValue method to retrieve these values.

Returns: true if the action succeeded; otherwise, false

Throws: java.lang.Exception

java.lang.String getQueryColNames() Gets the list of column names that were returned by the
AuditHistory query. This method can be called only after
running the query.

Returns: column names, separated by commas

java.lang.String getQueryColNames
(java.lang.String separator)

Gets the list of column names that were returned by the
AuditHistory query. This method can be called only after
running the query.

Parameters:

• separator: the text (such as a comma) to be used to separate
column names in the list that is returned.

Returns: column names, separated by the separator text

void setDateFormat (java.lang.String format) Sets the desired format for passing the dates when calling
setDateRange.

Throws: java.lang.Exception

boolean setDateRange (java.lang.String from,
java.lang.String to)

Sets a date range. Dates are expected to be in the format mm/
dd/yyyy unless they are otherwise specified by a call to
setDateFormat.

Throws: java.lang.Exception

boolean setFilter (java.lang.String name,
java.lang.String value)

Sets a filter on a column. To filter on multiple values, call the
method for each value.

Parameters:

• name: the column name. For a list of valid column names,
see the description of the executeQuery method.

• value: the value for the filter. For example, if you wanted
to see audit records for the sasdemo, you would use a call
like this:
oAuditHistory.callBooleanMethod("set
Filter", "username", "sasdemo", rc);

Throws: java.lang.Exception

30 Chapter 3 • The SAS Financial Management Java API

The following methods are inherited from class com.sas.solutions.finance.api.BaseQuery:
getColumnName, getColumnSASName, getColumnType, getMaxRowsMessage,
getNumberOfColumns, getNumericValue, getQueryColNames,
getQueryColNamesWithSeparator, getQueryRecordsNumber, getQuerySASNames,
getQuerySASNamesWithSeparator, getRecord, getValue, and setMaxRows.

The following methods are inherited from class com.sas.solutions.finance.api.BaseApi:
authenticate, buildExceptionMessageString, getErrorMessage, getMessage,
setEnvironment, logout, setLocale, and trim.

The following methods are inherited from class java.lang.Object: equals, getClass,
hashCode, notify, notifyAll, toString, and wait.

The BaseApi Class

Overview
The com.sas.solutions.finance.api.BaseApi class is extended by the BaseQuery, Form,
Metadata, and Model classes.

Note: BaseApi methods should be called only by one of its subclasses.

Method Summary

Table 3.4 BaseApi Class Method Summary

Method Description

BaseApi() Constructor.

Throws: java.lang.Exception

boolean authenticate (java.lang.String entityKey) Authenticates the user on the middle tier. This method can be
called only from a stored process that is part of a workflow.

Parameters:

• entityKey: the security key that contains the session
context information for the current user. See
“Authentication from a Workflow” on page 21.

Returns: true if the authentication succeeded; otherwise,
false

Throws: java.lang.Exception

java.lang.String getErrorMessage() Gets the localized error message from the last action. If the
setLocale method was called, the specified locale is used.
Otherwise, the system default locale is used.

Returns: a localized message string

The BaseApi Class 31

Method Description

java.lang.String getMessage (java.lang.String
message)

Gets the localized message that corresponds to a message code.
If the setLocale method was called, the specified locale is used.
Otherwise, the system default locale is used.

Parameters:

• message: the identifier for a localized message string.

For a list of valid message codes, see the
Resources_language-code.properties files in the
sas.solutions.finance.api.nls.jar file.

To locate the correct JAR file, open
the
!sasroot\picklist\finance\finance.txt
file and find the following name:
sas.solutions.finance.api. Make a note of
the version that corresponds to this name. The JAR file is
in the SAS-install-dir
\SASVersionedJarRepository\version
directory.

Returns: a localized message string

Example:

j.callStringMethod("getMessage",
 "Api.QueryReturnedNoFacts.txt", msg);
 call symput('msg', msg);

void logout() Logs the user off the middle tier and releases any resources
allocated for the user.

Note: The login method is no longer a public method.

boolean setLocale (java.lang.String l) Sets the locale. (The default locale is the system default locale.)

Parameters:

• l: a locale that is specified as language-code_country-
code, such as en_US or es_SP. The language-code is a
valid ISO language code in the form of a lowercase, two-
character string, and the country-code is a valid ISO
country code in the form of an uppercase, two-character
string.

Returns: true if the action succeeded; otherwise, false

java.lang.String trim (java.lang.String s) Returns the value passed in, with trailing blanks removed.

The following methods are inherited from class java.lang.Object: equals, getClass,
hashCode, notify, notifyAll, toString, and wait.

32 Chapter 3 • The SAS Financial Management Java API

The BaseQuery Class

Overview
The com.sas.solutions.finance.api.BaseQuery class is extended by the AdminQuery,
AuditHistory, and CycleQuery classes. It contains methods for retrieving the results of a
query.

Note: The methods of the BaseQuery class should be called only from one of its subclasses.

Method Summary

Table 3.5 BaseQuery Class Method Summary

Method Description

BaseQuery() Constructor.

Throws: java.lang.Exception

java.lang.String getColumnName (double n) Gets the name of the nth column.

java.lang.String getColumnSASName (double n) Gets the SAS name of the nth column.

java.lang.String getColumnType (double n) Gets the column type (numeric or character) of the nth column.

java.lang.String getMaxRowsMessage() Gets the maximum number of rows that a query can return. The
default is 10,000 rows.

If the query returns fewer than this maximum number of rows,
the getMaxRowsMessage method returns an empty string.
Otherwise, it returns a localized message with this string:
Showing the first n rows, where n is the
maximum number of rows that were requested.

int getNumberOfColumns() Gets the number of columns returned by the query. This
method can be executed only after a query has run.

double getNumericValue (double n, double m) Gets the numeric value of the nth column of the mth record.

java.lang.String getQueryColNames() Gets the list of column names that were returned by a query.
This method can be executed only after the query has been run.

Returns: column names, separated by commas

java.lang.String
getQueryColNamesWithSeparator
(java.lang.String separator)

Gets the list of column names that were returned by a query.
This method can be executed only after the query has been run.

Parameters:

• separator: the text (such as a comma) to be used to separate
column names in the list that is returned.

Returns: column names, separated by the separator text

The BaseQuery Class 33

Method Description

int getQueryRecordsNumber() Gets the number of records (facts) that were returned by the
query.

java.lang.String getQuerySASNames() Gets a list of column names (in SAS valid name format) that
were returned by a query. This method can be executed only
after the query has been run.

Returns: column names, separated by commas

java.lang.String
getQuerySASNamesWithSeparator
(java.lang.String separator)

Gets the list of column names (in SAS valid name format) that
were returned by a query. This method can be executed only
after the query has been run.

Parameters:

• separator: the text (such as a comma) to be used to separate
column names in the list that is returned.

Returns: column names, separated by the separator text

java.lang.String getRecord (double n) Gets the nth record.

Parameters:

• n: the index of a record in the query results.

Returns: record values, separated by commas

java.lang.String getRecord (double n, java.lang.String
separator)

Gets the nth record.

Parameters:

• n: the index of a record in the query results.

• separator: the text to be used as a separator, such as a
comma.

Returns: record values, separated by the separator text

java.lang.String getValue (double n, double m) Gets the value of the nth column of the mth record.

boolean setMaxRows (java.lang.String s) Sets the maximum number of records (or facts) a query can
return. The default is 10,000 rows.

Parameters:

• s: the maximum number of rows. A value of 0 specifies
no limit.

Returns: true if the action succeeded; otherwise, false

The following methods are inherited from class com.sas.solutions.finance.api.BaseApi:
authenticate, buildExceptionMessageString, getErrorMessage, getMessage,
setEnvironment, logout, setLocale, and trim.

The following methods are inherited from class java.lang.Object: equals, getClass,
hashCode, notify, notifyAll, toString, and wait.

34 Chapter 3 • The SAS Financial Management Java API

The CycleQuery Class (Financial Cycles Only)

Overview
The com.sas.solutions.finance.api.CycleQuery class contains methods for extracting facts
from a cycle. It extends the com.sas.solutions.finance.api.BaseQuery class.

This class applies only to financial cycles.

The CycleQuery class is similar to the AdminQuery class. For an example of its use, see
the ETL Facts stored process (!sasroot\finance\sasstp\etlfacts.sas). This
stored process lists data records that have been loaded from SAS Data Integration Studio
to a specified time period and analysis member within a specified financial cycle, and
(optionally) a specified organization.

Method Summary

Table 3.6 CycleQuery Class Method Summary

Method Description

CycleQuery() Constructor.

Throws: java.lang.Exception

boolean getETLFacts() Gets the ETL facts for the specified cycle and filters.

Returns: true if the action succeeded; otherwise, false

Throws: java.lang.Exception

java.lang.String getQueryColNames
(java.lang.String cycleName, java.lang.String separator)

Gets the list of column names for the query. This method can
be called before running the query.

Parameters:

• cycleName: the name of a cycle

• separator: the text, such as a comma, to be used as a
separator

Returns: a list of column names, separated by the separator text.

Throws: java.lang.Exception

java.lang.String getQueryColNamesByID
(java.lang.String cycleID, java.lang.String separator)

Gets the list of column names for the query. This method can
be called before running the query.

Parameters:

• cycleID: the ID of a cycle.

• separator: the text, such as a comma, to be used as a
separator.

Returns: a list of column names, separated by the separator text

Throws: java.lang.Exception

The CycleQuery Class (Financial Cycles Only) 35

Method Description

java.lang.String getQuerySASNames
(java.lang.String cycleName, java.lang.String separator)

Gets a list of column names (in SAS valid name format) for a
specific query and cycle. This method can be executed before
running the query.

Parameters:

• cycleName: the cycle name.

• separator: the text, such as a comma, to be used as a
separator.

Returns: a list of column names, separated by the separator text

Throws: java.lang.Exception

java.lang.String getQuerySASNamesByID
(java.lang.String cycleID, java.lang.String separator)

Gets a list of column names (in SAS valid name format) for a
specific query and cycle. This method can be executed before
running the query (after setting the cycle to be used in the
query).

Parameters:

• cycleID: the cycle ID.

• separator: the text, such as a comma, to be used as a
separator.

Returns: a list of column names, separated by the separator text

Throws: java.lang.Exception

boolean setCycleByID (java.lang.String ID) Sets the cycle for the query by ID.

Returns: true if the action succeeded; otherwise, false

Throws: java.lang.Exception

boolean setCycleByName (java.lang.String name) Sets the cycle for the query by name.

Returns: true if the action succeeded; otherwise, false

Throws: java.lang.Exception

boolean setDimTypeFilter (java.lang.String code,
java.lang.String value)

Sets a filter on a dimension type; to filter on multiple values,
call the method for each value.

Parameters:

• code: the dimension type code.

• value: the member code to be used in the filter.

Returns: true if the action succeeded; otherwise, false

Throws: java.lang.Exception

36 Chapter 3 • The SAS Financial Management Java API

Method Description

boolean setParms (java.lang.String otid,
java.lang.String oid)

Sets the parameters for the query.

Parameters:

• otid: the object type ID. Possible values are
adjustmentsequence, attachment,
cashinfusiontransaction,
compositeresult, cycle, dataload,
differentialwritedown,
disposaltransaction,
dividendtransaction, equityassignment,
form, formset, formtemplate, holding,
holdingmethodaccounts, lineitem,
manualadjustment, measureexport,
othercpolineitem, othercpotransaction,
ownershipchangetransaction, period,
pocconsolidationmethod,
pocholdingfact, purchaseadjustment,
purchasedifferential,
purchasetransaction, result, rule,
standaloneparent, or balsheet_reversal.

• oid: the object ID.

Returns: true if the parameter values are valid; otherwise,
false

Throws: java.lang.Exception

The following methods are inherited from class com.sas.solutions.finance.api.BaseQuery:
getColumnName, getColumnSASName, getColumnType, getMaxRowsMessage,
getNumberOfColumns, getNumericValue, getQueryColNames,
getQueryColNamesWithSeparator, getQueryRecordsNumber, getQuerySASNames,
getQuerySASNamesWithSeparator, getRecord, getValue, and setMaxRows.

The following methods are inherited from class com.sas.solutions.finance.api.BaseApi:
authenticate, buildExceptionMessageString, getErrorMessage, getMessage,
setEnvironment, logout, setLocale, and trim.

The following methods are inherited from class java.lang.Object: equals, getClass,
hashCode, notify, notifyAll, toString, and wait.

The Form Class (Financial Forms Only)

Overview
The com.sas.solutions.finance.api.Form class contains methods for running queries on the
properties of a planning form from SAS Financial Management. It extends the
com.sas.solutions.finance.api.BaseApi class. This class applies only to financial forms.

For an example of using the Form class, see “Data Validation Example” on page 75.

The Form Class (Financial Forms Only) 37

Method Summary

Table 3.7 Form Class Method Summary

Method Description

Form() Constructor.

Throws: java.lang.Exception

Form (int formId, java.lang.String entityKey) Constructor.

This constructor can be used only in a stored process that is used in a
workflow. Both the form ID and the security key (entityKey) are
available as environment variables that are set by the workflow.

Throws: java.lang.Exception

Form (java.lang.String sFormId,
java.lang.String userId, java.lang.String
password, java.lang.String environment)

Constructor.

Throws: java.lang.Exception

java.lang.String getAuthors (java.lang.String
delimiter)

Returns the user IDs of all authors of a specified form, separated by the
delimiter text if more than one author was found.

Parameters:

• delimiter: the text (such as a space or semi-colon) that is used to
separate author names in the return string.

Throws: java.lang.Exception

java.lang.String getDescription() Returns the form description.

java.lang.String getDueDate() Returns the due date of the form.

java.lang.String
getFormSetDescription()

Returns the description of the form set to which the form belongs.

int getFormSetId() Returns the ID of the form set to which the form belongs.

java.lang.String getFormSetName() Returns the name of the form set to which the form belongs.

java.lang.String getId() Returns the form ID as a string.

java.lang.String getInfo() Returns a formatted string with key information about the form.

java.lang.String getName() Returns the form name.

java.lang.String
getPlanningAdministrators
(java.lang.String delimiter)

Returns a list of users with the role of Finance Process Administrator.

Parameters:

• delimiter: the text that is used to separate names in the return
string.

Throws: java.lang.Exception

38 Chapter 3 • The SAS Financial Management Java API

Method Description

java.lang.String getReviewers
(java.lang.String delimiter)

Returns all reviewers of a specified form. The reviewers are separated
by the delimiter text if more than one reviewer was found.

Parameters:

• delimiter: the text that is used to separate names in the return
string.

Throws: java.lang.Exception

java.lang.String getState() Returns the form state.

java.lang.String
getTargetDimensionCode()

Returns the code of the target dimension of the form set to which the
form belongs.

java.lang.String
getTargetDimensionDescription()

Returns the description of the target dimension of the form set to which
the form belongs.

java.lang.String
getTargetDimensionName()

Returns the name of the target dimension of the form set to which the
form belongs.

java.lang.String
getTargetMemberCode()

Returns the target member code of the form.

java.lang.String
getTargetMemberDescription()

Returns the description of the target member of the form.

int getTargetMemberId() Returns the target member ID of the form.

java.lang.String
getTargetMemberName()

Returns the name of the target member of the form.

boolean isLocked() Returns true if the form is locked by some process.

The following methods are inherited from class com.sas.solutions.finance.api.BaseApi:
authenticate, buildExceptionMessageString, getErrorMessage, getMessage,
setEnvironment, logout, setLocale, and trim.

The following methods are inherited from class java.lang.Object: equals, getClass,
hashCode, notify, notifyAll, toString, and wait.

The FormSet Class

Overview
Using methods of the com.sas.solutions.finance.api.FormSet class, you can manage form
sets from SAS code. For example, you can reset a form set or you can write a batch script
to publish a form set.

This class applies to both financial and operational planning, with the restrictions noted for
specific methods.

This example resets two form sets and extends their deadlines:

The FormSet Class 39

Example Code 3.1 Using Methods of the FormSet Class

dcl javaobj formset('com/sas/solutions/finance/api/FormSet');
formset.ExceptionDescribe(1);
call METADATA_PASSID('formset','');
formset.callVoidMethod('setCycle','FM','MyCycleName');
formset.callVoidMethod('setFormSet','MyFormSetName');
formset.callVoidMethod('enableUserNotification');
formset.callVoidMethod('enableCommentRetirement');
formset.callVoidMethod('setComment','My reset comment');
formset.callVoidMethod('reset');
formset.callVoidMethod('setDeadline','Apr 10, 2010 9:00 AM');
formset.callVoidMethod('setComment','My publish comment');
formset.callVoidMethod('publish');
formset.callVoidMethod('setFormSet','MyOtherFormSetName');
formset.callVoidMethod('reset');
formset.callVoidMethod('moveDeadlineByCalendarMonth',1);
formset.callVoidMethod('moveDeadlineByDaysAndHours',0,1);
formset.callVoidMethod('publish');
formset.callVoidMethod ('logout');
formset.delete();

Note: When a date string is specified as a parameter, use a format such as the following:
“Apr 10, 2010 3:00 PM” or “10 avr 2010 15:00:00”. Returned date strings have the
same format. The system default locale is used.

Method Summary
The following methods can be called for the FormSet class.

Table 3.8 FormSet Class Method Summary

Method Description

FormSet () Constructor.

Throws: java.lang.Exception

void disableCommentRetirement () Disables comment retirement for the publish action.

With comment retirement disabled, when you publish the form set,
comments that were associated with the form set are retained.

void
disableDeletionOfDataEntryFacts
()

Disables the deletion of data entry facts for the publish action. This
method is valid only when the cycle type is “OP”.

void disableUserNotification () Disables user notification for the publish and reset actions.

void enableCommentRetirement () Enables comment retirement for the publish action.

This is the default behavior. When you publish the form set, comments
that were associated with the form set are retired.

40 Chapter 3 • The SAS Financial Management Java API

Method Description

void
enableDeletionOfDataEntryFacts ()

Enables deletion of data entry facts for the publish action. This method
is valid only when the cycle type is “OP”.

This is the default behavior. When you publish the form set, data entry
facts that were previously associated with the form set are deleted.

void enableUserNotification () Enables user notification for the publish and reset actions.

java.lang.String getComment () Returns the comment to be used for publish and reset actions.

java.lang.String getCycle () Returns the cycle name.

java.lang.String getCycleType () Returns the cycle type: "FM" (for financial cycles) or "OP” (for
operational cycles).

java.lang.String getDeadline () Returns the due date for the form set.

Throws: FinanceClientException

java.lang.String getFormSet () Returns the form set name.

java.lang.String
getTargetHierarchyAsOfDate ()

Returns the as-of date for the target hierarchy.

Throws: FinanceClientException

boolean
isCommentRetirementEnabled ()

Returns the current comment retirement behavior for publication
actions: true if comments are retired at publish time; otherwise
false.

boolean
isDeletionOfDataEntryFactsEnabl
ed ()

Returns the current deletion behavior of data entry facts: true if data
entry facts are deleted when a form set is published; otherwise
false.

This method is valid only when the cycle type is “OP”.

boolean isLocked () Returns the lock status of the form set: true if the form set is locked;
otherwise false.

Throws: FinanceClientException

boolean isUserNotificationEnabled
()

Returns the current user notification behavior for publish and reset:
true if user notification is enabled; otherwise false.

void lock () Locks the form set.

Throws: FinanceClientException

void moveDeadlineByCalendarMonth
(double months)

Moves the current deadline by the specified number of calendar
months.

Parameters:

• months: the number of months (positive or negative) by which to
move the form set deadline.

Throws: FinanceClientException

The FormSet Class 41

Method Description

void moveDeadlineByDaysAndHours
(double days, double hours)

Moves the current deadline by the specified number of days and hours.

Parameters:

• days: the number of days (positive or negative) by which to move
the form set deadline.

• hours: the number of hours (positive or negative) by which to move
the form set deadline.

Throws: FinanceClientException

void publish () Publishes the form set. The form set must be in Draft status, it cannot
be locked, and it must have a valid template.

Throws: FinanceClientException

void publish (double max_seconds_to_wait) Initiates the publish action and waits for its completion. The form set
must be in Draft status, it cannot be locked, and it must have a valid
template.

Parameters:

• max_seconds_to_wait: the maximum time (in seconds) to wait
before issuing a timeout exception.

The publish() method (without a parameter) initiates the publish action
and returns.

The publish(max_seconds_to_wait) method initiates the publish
operation and then checks the status of the publish activity for at most
max_seconds_to_wait seconds. When the publish completes, the
method returns. If the publish activity has not completed within the
specified time, the method throws a timeout exception. However, it
does not cancel the publish action.

Throws: FinanceClientException

void reset () Resets the form set. This operation is not possible if the form set is
locked.

If comment text has been defined, the comment is applied to the
operation.

Throws: FinanceClientException

void restoreDefaults () Restores the following default attributes of the FormSet object:

• User notification is enabled.

• Comments are deleted when the form set is published.

• (Operational form sets) Data entry facts are deleted when the form
set is published.

• The comment text is set to an empty string.

• The locale is set to the system default locale.

Calling this method does not affect the form set name, cycle name, and
cycle type that are associated with the FormSet object.

void setComment (java.lang.String comment) Defines the comment text to be used for publish and reset actions. By
default, this text is an empty string.

42 Chapter 3 • The SAS Financial Management Java API

Method Description

void setCurrentUntilPublished () Sets the due date of the target hierarchy to "current until published".

This method is valid only when the cycle type is “FM”.

Throws: FinanceClientException

void setCycle (java.lang.String type,
java.lang.String name)

Associates a cycle name and type with the FormSet object. You must
call setCycle before calling any of the following methods: publish,
reset, setDeadline, getDeadline, moveDeadlineByCalendarMonth,
moveDeadlineByDaysAndHours, setTargetHierarchyAsOfDate,
getTargetHierarchyAsOfDate, setCurrentUntilPublished, lock,
unlock, and isLocked.

Parameters:

• type: “OP” for operational cycles; “FM” for financial cycles.

• name: the name of the cycle for this form set.

void setDeadline (java.lang.String
dateString)

Sets the due date and time for the form set.

Parameters:

• dateString: a string that contains the date and time of the
deadline.

Throws: FinanceClientException

void setFormSet (java.lang.String name) Associates a form set with the FormSet object.

Parameters:

• name: the name of the form set.

void setTargetHierarchyAsOfDate
(java.lang.String dateString)

Sets the as-of date for the target hierarchy. This method is valid only
when the cycle type is “FM”.

Parameters:

• dateString: the date and time to use for the target hierarchy's as-of
date.

Throws: FinanceClientException

void unlock (double unlockForms) Unlocks the form set, with the option of also unlocking its forms.

If the form set is already unlocked, you can still call this method to
unlock its forms.

Parameters:

• unlockForms: If the value is 0, any forms that are explicitly locked
remain locked, even though the form set itself is unlocked.

If the value is 1, any forms that are explicitly locked are unlocked.

Throws: FinanceClientException

The following methods are inherited from class com.sas.solutions.finance.api.BaseApi:
authenticate, buildExceptionMessageString, getErrorMessage, getMessage,
setEnvironment, logout, setLocale, and trim.

The following methods are inherited from class java.lang.Object: equals, getClass,
hashCode, notify, notifyAll, toString, and wait.

The FormSet Class 43

The Metadata Class

Overview
The com.sas.solutions.finance.api.Metadata class contains methods for looking up SAS
Financial Management metadata. It extends the com.sas.solutions.finance.api.BaseApi
class.

This class can be used for both financial planning and operational planning.

For an example of using the Metadata class, see Chapter 5, “Creating a Custom Cell
Action,” on page 81.

Method Summary

Table 3.9 Metadata Class Method Summary

Method Description

Metadata () Constructor.

Throws: java.lang.Exception

java.lang.String
getDimensionCode
(java.lang.String dimID)

Gets the dimension code.

Parameters:

• dimID: the dimension ID.

Returns: the dimension code that corresponds to the dimension ID

java.lang.String getMemberCode
(java.lang.String dimID, java.lang.String
memID)

Gets the member code.

Parameters:

• dimID: the dimension ID.

• memID: the member ID.

Returns: the member code that corresponds to the specified dimension ID and
member ID

The following methods are inherited from class com.sas.solutions.finance.api.BaseApi:
authenticate, buildExceptionMessageString, getErrorMessage, getMessage,
setEnvironment, logout, setLocale, and trim.

The following methods are inherited from class java.lang.Object: equals, getClass,
hashCode, notify, notifyAll, toString, and wait.

44 Chapter 3 • The SAS Financial Management Java API

The Model Class (Financial Models Only)

Overview
The com.sas.solutions.finance.api.Model class contains methods for retrieving information
about SAS Financial Management models and for running queries against a model. It
extends the com.sas.solutions.finance.api.BaseApi class. This class applies only to
financial models.

Most methods of the Model class now have corresponding macros (as noted in the table
below). Those methods are still supported for backward compatibility. However, we
recommend using the macros instead. A few methods have no macro equivalents.

Note: The Model class is not designed for interactive use. It is intended to be used by
administrators and power users. The security that is applied is the security for the user
who is running the query. Keep that in mind if you make the query results available to
other users.

Method Summary

Table 3.10 Model Class Method Summary

Method Description

Model Constructor.

Throws: java.lang.Exception

Model (java.lang.String storedProcessEntityKey) Constructor. This constructor can be used only in a stored
process that is part of a workflow.

Parameters:

• storedProcessEntityKey: the security key that is passed
from the workflow.

Throws: java.lang.Exception

Model (java.lang.String userId, java.lang.String
password, java.lang.String environment)

Constructor.

Parameters:

• userId: the user ID for logging on to the middle tier.

• password: the password for this user.

• environment: the environment for logging on to the middle
tier.

Throws: java.lang.Exception

void executeQuery (java.lang.String
sasLibraryName, java.lang.String modelCode,
java.lang.String queryDataSetName, java.lang.String
resultDataSetName, double filterOptions)

Deprecated. Use the %FMQUERY macro instead. See
“Executing Queries with the %FMQUERY Macro” on page
56.

The Model Class (Financial Models Only) 45

Method Description

int generateFormulaFacts (java.lang.String
cycleName, java.lang.String formSetName)

Computes and stores all driver formula output values for
crossings in the selected form set. This method corresponds to
the Run driver formulas option of SAS Financial
Management Studio, which is used to make sure that the stored
output values of all driver formulas are current.

Before calling this method for an imported form set, save the
form set template (in Microsoft Excel). Otherwise, the method
returns an error. (This is also true when you select Run driver
formulas in SAS Financial Management Studio.)

Parameters:

• cycleName: the name of the cycle to use.

• formSetName: the name of the form set to use.

Returns an integer containing the status code:

• 0: SUCCESS

• 1: OBJECT NOT FOUND

• 2: FORM SET IS LOCKED

• 3: GENERIC ERROR

void getAllModels (java.lang.String
sasLibraryName, java.lang.String resultDataSetName)

void getAllModels (java.lang.String language,
java.lang.String country, java.lang.String variant,
java.lang.String sasLibraryName, java.lang.String
resultDataSetName)

Deprecated. Use the %GETALLMODELS macro instead. See
“Model Macros” on page 48.

double getCellValue (java.lang.String resultCode,
java.lang.String[] dimensionCodes, java.lang.String[]
memberCodes)

Gets the value of a crossing.

Parameters:

• resultCode: the code of the results model.

• dimensionCodes: the list of dimension codes that define
the crossing.

• memberCodes: a matching list of member codes that
define the crossing.

If you omit a dimension, the default member for the model’s
hierarchy in that dimension (at the model’s hierarchy as-of
date) is used instead. For the Time dimension, this value is not
necessarily the same as the default read member for the time
hierarchy that can be set in the model. To avoid unexpected
results, we recommend that you always include the Time
dimension in your specification.

Returns: the value of the specified crossing

Throws: java.lang.Exception

For an example, see Chapter 4, “Customizing a Workflow,” on
page 69.

46 Chapter 3 • The SAS Financial Management Java API

Method Description

void getModelHierarchies (java.lang.String
modelCode, java.lang.String sasLibraryName,
java.lang.String resultDataSetName)

void getModelHierarchies (java.lang.String
modelCode, java.lang.String language, java.lang.String
country, java.lang.String variant, java.lang.String
sasLibraryName, java.lang.String resultDataSetName)

Deprecated. Use the %GETMODELHIERARCHIES macro
instead. See “Model Macros” on page 48.

java.lang.String getModelMemberProperties
(java.lang.String modelCode, java.lang.String filePrefix,
java.lang.String delim)

String getModelMemberProperties (String
modelCode, String filePrefix, String language, String
country, String variant, String dimTypeCodes, String
propertyCodes, String memberCodes, String delim)

Deprecated. Use the %GETMODELPROPERTIES macro
instead. See “Model Macros” on page 48.

void getModelMembers (java.lang.String
modelCode, java.lang.String sasLibraryName,
java.lang.String resultDataSetName)

void getModelMembers (java.lang.String
modelCode, java.lang.String language, java.lang.String
country, java.lang.String variant, java.lang.String
sasLibraryName, java.lang.String resultDataSetName)

Deprecated. Use the %GETMODELMEMBERS macro
instead. See “Model Macros” on page 48.

void postAdjustments (java.lang.String
modelCode)

Post adjustments for all time periods and analysis members of
the specified model. Calling this method has the same effect
as selecting Post Adjustments for a model in SAS Financial
Management Studio.

The postAdjustments method is useful for situations such as
the following:

• You need to post adjustments for a model with many
adjustment rules.

• You need to post adjustments for multiple models at a time.

• You need to post adjustments for many time periods and
analyses at a time.

Parameters

• modelCode: the model to be affected by the adjustments.

Example:

omodel.callVoidMethod('postAdjustments',
 'MyModel');

To confirm the completion of batch posting, check the posting
status in SAS Financial Management Studio. In addition, if the
posting is successful, the postAdjustments method logs an
information message that begins “Posting adjustments
completed successfully for model model-name”

Throws: FinanceClientException

The Model Class (Financial Models Only) 47

Method Description

void postAdjustments (java.lang.String
modelCode, java.lang.String startTimeCode,
java.lang.String endTimeCode, java.lang.String[]
analysisCodes)

Post adjustments for the specified model, time spans, and
analysis members.

Parameters:

• modelCode: the code for the model to be affected.

• startTimeCode: the dimension member code for the start
time period.

• endTimeCode: the dimension member code for the end
time period.

• analysisCodes: array of dimension member codes for the
analysis members to be affected.

Example:

array j[2] $9 ("MyActual", "MyBudget");
omodel.callVoidMethod('postAdjustments','MyModel',
 'Jan 2009','Feb 2009',j);

Throws: FinanceClientException

The following methods are inherited from class com.sas.solutions.finance.api.BaseApi:
authenticate, buildExceptionMessageString, getErrorMessage, getMessage,
setEnvironment, logout, setLocale, and trim.

The following methods are inherited from class java.lang.Object: equals, getClass,
hashCode, notify, notifyAll, toString, and wait.

Model Macros

Overview
Several macros are available for financial or operational models. These macros are intended
for use only by administrators and power users. Member-level security is applied for the
user who is running the query. Keep that in mind if you make the results available to other
users.

Table 3.11 Summary of Macros

Macro Description

%GETALLMODELS Gets the available models of the specified model type.

%GETFORMS Gets the forms in the specified form set.

%GETFORMSETS Gets the form sets that use the specified model.

%GETMODELHIERAR
CHIES

Gets the hierarchies that are associated with the specified model.

%GETMODELMEMBE
RS

Gets the members for the specified model.

48 Chapter 3 • The SAS Financial Management Java API

Macro Description

%GETMODELPROPER
TIES

Gets the member properties for the specified model.

To use these macros, first invoke the %MODEL macro. (You do not need to declare a
Model object or authenticate the user; those functions are handled in the macro code.)

Here is an example:

%MODEL
%GETALLMODELS ('FM', 'WORK', 'ModelList')

The %GETALLMODELS Macro

Overview
The %GETALLMODELS macro retrieves the available models of the specified model type
and creates a result set with these columns: MODEL_CD, MODEL_NAME, and
MODEL_DESCRIPTION.

Syntax
%GETALLMODELS (

modelType
, sasLibName
, outputDataSetName
[, TRUSTEDUSERNAME=""]
[, TRUSTEDPASSWORD=""]
[, ENVIRONMENT=”default”]
[, LOCALE=”default”]

)

modelType
The type of model: 'FM' for financial models and 'OP' for operational models.

Note: The model type must be enclosed in single quotation marks.

sasLibName
The libref for the SAS library that holds the result set. This library must be defined
during the current SAS session; typically, it is the WORK library.

outputDataSetName
The name of the result set.

TRUSTEDUSERNAME
The user name for logging on to the middle tier.

If you omit the user name and password, the macro uses the METADATA_PASSID
function to obtain the user credentials.

TRUSTEDPASSWORD
The password for logging on to the middle tier. For information about encoding
passwords, see the SAS Intelligence Platform: Security Administration Guide.

ENVIRONMENT
An environment (such as “default”, “dev”, or “prod”) refers to an installation of SAS
Solutions Services and one or more solutions. If you omit this parameter, “default” is
used.

Model Macros 49

The environment value is site-specific. For more information, see “Specifying the
Solutions Environment” on page 22.

LOCALE
A locale that is specified as language-code_country-code, such as en_US or es_SP.
The language-code is a valid ISO language code in the form of a lowercase, two-
character string, and the country-code is a valid ISO country code in the form of an
uppercase, two-character string. If you omit this parameter, the system default locale
is used.

Example
This example creates a result set, ModelsOut, containing information about the financial
models that are available to this user. It uses default values for the optional parameters:

%MODEL
%GETALLMODELS('FM', 'Work', 'ModelsOut')

The %GETFORMS Macro

Overview
The %GETFORMS macro returns a data set with information about the forms in the
specified form set. The data set contains the following columns: FORM_ID,
FORM_NAME, FORM_DESCRIPTION, FORM_AUTHOR, FORM_REVIEWER,
FORM_DUE_DATE, and FORM_STATE. The FORM_STATE column contains the
status of the form, with a value such as DRAFT, READY, or EDITED.

Syntax
%GETFORMS (

modelType
, sasLibName
, outputDataSetName
, modelCode
, formSetName
[, TRUSTEDUSERNAME=""]
[, TRUSTEDPASSWORD=""]
[, ENVIRONMENT=""]
[, LOCALE="default"]

)

modelType
The type of model: 'FM' for financial models and 'OP' for operational models.

Note: The model type must be enclosed in single quotation marks.

sasLibName
The libref for the SAS library that holds the result set. This library must be defined
during the current SAS session; typically, it is the WORK library.

outputDataSetName
The name of the result set.

modelCode
The code for a model that is associated with the form set. The model code is used only
to retrieve the correct cycle. If the form set uses more than one model, select any one
of the models.

50 Chapter 3 • The SAS Financial Management Java API

formSetName
The name of the form set.

TRUSTEDUSERNAME
The user name for logging on to the middle tier.

If you omit the user name and password, the macro uses the METADATA_PASSID
function to obtain the user credentials.

TRUSTEDPASSWORD
The password for logging on to the middle tier. For information about encoding
passwords, see the SAS Intelligence Platform: Security Administration Guide.

ENVIRONMENT
An environment (such as “default”, “dev”, or “prod”) refers to an installation of SAS
Solutions Services and one or more solutions. If you omit this parameter , “default” is
used.

The environment value is site-specific. For more information, see “Specifying the
Solutions Environment” on page 22.

LOCALE
A locale that is specified as language-code_country-code, such as en_US or es_SP.
The language-code is a valid ISO language code in the form of a lowercase, two-
character string, and the country-code is a valid ISO country code in the form of an
uppercase, two-character string. If you omit this parameter, the system default locale
is used.

Example
This example creates a result set, FormsOut, containing information about the forms that
are part of the MyFormSet form set.

%MODEL
%GETFORMS('FM', 'Work', 'FormsOut', 'MyModel', 'MyFormSet')

The %GETFORMSETS Macro

Overview
The %GETFORMSETS macro returns a data set with information about the form sets that
use the specified model. The data set contains the following columns: FORMSET_ID,
FORMSET_NAME, FORMSET_DESCRIPTION, and FORMSET_STATUS.

The FORMSET_STATUS column can have one of the following values:

• 0: Processing

• 1: Draft

• 2: Published

• 4: Complete

Syntax
%GETFORMSETS (

modelType
, sasLibName
, outputDataSetName
, modelCode
[, TRUSTEDUSERNAME=""]

Model Macros 51

[, TRUSTEDPASSWORD=""]
[, ENVIRONMENT=""]
[, LOCALE="default"]

)

modelType
The type of model: 'FM' for financial models and 'OP' for operational models.

Note: The model type must be enclosed in single quotation marks.

sasLibName
The libref for the SAS library that holds the result set. This library must be defined
during the current SAS session; typically, it is the WORK library.

outputDataSetName
The name of the result set.

modelCode
The code for the associated model.

TRUSTEDUSERNAME
The user name for logging on to the middle tier.

If you omit the user name and password, the macro uses the METADATA_PASSID
function to obtain the user credentials.

TRUSTEDPASSWORD
The password for logging on to the middle tier. For information about encoding
passwords, see the SAS Intelligence Platform: Security Administration Guide.

ENVIRONMENT
An environment (such as “default”, “dev”, or “prod”) refers to an installation of SAS
Solutions Services and one or more solutions. If you omit this parameter , “default” is
used.

The environment value is site-specific. For more information, see “Specifying the
Solutions Environment” on page 22.

LOCALE
A locale that is specified as language-code_country-code, such as en_US or es_SP.
The language-code is a valid ISO language code in the form of a lowercase, two-
character string, and the country-code is a valid ISO country code in the form of an
uppercase, two-character string. If you omit this parameter, the system default locale
is used.

Example
This example creates a result set, FormsetsOut, containing information about the form sets
that use MyModel.

%MODEL
%GETFORMSETS('FM','Work','FormsetsOut', 'MyModel')

The %GETMODELHIERARCHIES Macro

Overview
The %GETMODELHIERARCHIES macro creates a result set with information about the
hierarchies that are associated with the specified model. The result set contains these
columns: DIMENSION_TYPE_CD, DIMENSION_CD, DIMENSION_NAME,

52 Chapter 3 • The SAS Financial Management Java API

DIMENSION_DESCRIPTION, HIERARCHY_CD, HIERARCHY_NAME, and
HIERARCHY_DESCRIPTION.

Syntax
%GETMODELHIERARCHIES (

modelType
, sasLibName
, outputDataSetName
, modelCode
[, TRUSTEDUSERNAME=""]
[, TRUSTEDPASSWORD=""]
[, ENVIRONMENT=""]
[, LOCALE="default"]

)

modelType
The type of model: 'FM' for financial models and 'OP' for operational models.

Note: The model type must be enclosed in single quotation marks.

sasLibName
The libref for the SAS library that holds the result set. This library must be defined
during the current SAS session; typically, it is the WORK library.

outputDataSetName
The name of the result set.

modelCode
The code for the associated model.

TRUSTEDUSERNAME
The user name for logging on to the middle tier.

If you omit the user name and password, the macro uses the METADATA_PASSID
function to obtain the user credentials.

TRUSTEDPASSWORD
The password for logging on to the middle tier. For information about encoding
passwords, see the SAS Intelligence Platform: Security Administration Guide.

ENVIRONMENT
An environment (such as “default”, “dev”, or “prod”) refers to an installation of SAS
Solutions Services and one or more solutions. If you omit this parameter , “default” is
used.

The environment value is site-specific. For more information, see “Specifying the
Solutions Environment” on page 22.

LOCALE
A locale that is specified as language-code_country-code, such as en_US or es_SP.
The language-code is a valid ISO language code in the form of a lowercase, two-
character string, and the country-code is a valid ISO country code in the form of an
uppercase, two-character string. If you omit this parameter, the system default locale
is used.

Example
This example creates a result set, HierarchiesOut, containing information about the
hierarchies that are part of MyModel.

%MODEL
%GETMODELHIERARCHIES ('FM', 'Work', 'HierarchiesOut', 'MyModel')

Model Macros 53

The %GETMODELMEMBERS Macro

Overview
The %GETMODELMEMBERS macro retrieves a model's members and creates a result
set with these columns: DIMENSION_TYPE_CD, HIERARCHY_CD, MEMBER_CD,
MEMBER_NAME, MEMBER_DESCRIPTION, HIERARCHY_LEVEL,
HIERARCHY_ORDER, PARENT_CD, and IS_LEAF. A value of 1 for IS_LEAF
signifies a leaf member. Otherwise, the value is 0.

Syntax
%GETMODELMEMBERS (

modelType
, sasLibName
, outputDataSetName
, modelCode
[, TRUSTEDUSERNAME=""]
[, TRUSTEDPASSWORD=""]
[, ENVIRONMENT=""]
[, LOCALE="default"]

)

modelType
The type of model: 'FM' for financial models and 'OP' for operational models.

Note: The model type must be enclosed in single quotation marks.

sasLibName
The libref for the SAS library that holds the result set. This library must be defined
during the current SAS session; typically, it is the WORK library.

outputDataSetName
The name of the result set.

modelCode
The code for the associated model.

TRUSTEDUSERNAME
The user name for logging on to the middle tier.

If you omit the user name and password, the macro uses the METADATA_PASSID
function to obtain the user credentials.

TRUSTEDPASSWORD
The password for logging on to the middle tier. For information about encoding
passwords, see the SAS Intelligence Platform: Security Administration Guide.

ENVIRONMENT
An environment (such as “default”, “dev”, or “prod”) refers to an installation of SAS
Solutions Services and one or more solutions. If you omit this parameter , “default” is
used.

The environment value is site-specific. For more information, see “Specifying the
Solutions Environment” on page 22.

LOCALE
A locale that is specified as language-code_country-code, such as en_US or es_SP.
The language-code is a valid ISO language code in the form of a lowercase, two-
character string, and the country-code is a valid ISO country code in the form of an

54 Chapter 3 • The SAS Financial Management Java API

uppercase, two-character string. If you omit this parameter, the system default locale
is used.

Example
This example creates a result set with information about the members that are part of
MyModel:

%MODEL
%GETMODELMEMBERS ('FM', 'Work', 'ModelMembersOut', 'MyModel')

The %GETMODELPROPERTIES Macro

Overview
The %GETMODELPROPERTIES macro retrieves the member properties for the specified
model and creates a result set with the following columns: DIMENSION_TYPE_CD,
HIERARCHY_CD, MEMBER_CD, PROPERTY_CD, PROPERTY_NAME, and
PROPERTY_VALUE. You can limit the results by specifying dimension type codes,
property codes, and/or member codes as parameters.

Note: The version of this macro that is in fmmodel.sas has been deprecated. Use this
version instead.

Syntax
%GETMODELPROPERTIES (

modelType
, sasLibName
, outputDataSetName
, modelCode
[, TRUSTEDUSERNAME=""]
[, TRUSTEDPASSWORD=""]
[, ENVIRONMENT=""]
[, DIMTYPECODES=""]
[, PROPERTYCODES=""]
[, MEMBERCODES=""]
[, LOCALE="default"]
[, DELIM=';']

)

modelType
The type of model: 'FM' for financial models and 'OP' for operational models.

Note: The model type must be enclosed in single quotation marks.

sasLibName
The libref for the SAS library that holds the result set. This library must be defined
during the current SAS session; typically, it is the WORK library.

outputDataSetName
The name of the result set.

modelCode
The code for the associated model.

TRUSTEDUSERNAME
The user name for logging on to the middle tier.

Model Macros 55

If you omit the user name and password, the macro uses the METADATA_PASSID
function to obtain the user credentials.

TRUSTEDPASSWORD
The password for logging on to the middle tier. For information about encoding
passwords, see the SAS Intelligence Platform: Security Administration Guide.

ENVIRONMENT
An environment (such as “default”, “dev”, or “prod”) refers to an installation of SAS
Solutions Services and one or more solutions. If you omit this parameter , “default” is
used.

The environment value is site-specific. For more information, see “Specifying the
Solutions Environment” on page 22.

LOCALE
A locale that is specified as language-code_country-code, such as en_US or es_SP.
The language-code is a valid ISO language code in the form of a lowercase, two-
character string, and the country-code is a valid ISO country code in the form of an
uppercase, two-character string. If you omit this parameter, the system default locale
is used.

DIMTYPECODES
A delimited list of unquoted dimension type codes to use in the query. By default, all
dimension type codes are used.

PROPERTYCODES
A delimited list of unquoted property codes to use in the query. By default, all properties
are used.

MEMBERCODES
A delimited list of unquoted member codes to use in the query. By default, all members
are used.

DELIM
The delimiter to be used to parse the input (dimension type codes, property codes, and
member codes). By default, the macro expects a semicolon.

Example
This example retrieves only the AccountType and AccountBehavior properties for the
ACCOUNT dimension type:

%MODEL
%GETMODELPROPERTIES('FM', 'Work', 'PropertiesOut', 'MyModel',
 DIMTYPECODES='ACCOUNT', PROPERTYCODES='AccountType;AccountBehavior')

Executing Queries with the %FMQUERY Macro

Overview
The %FMQUERY macro executes a query against a model. The macro returns the same
result as a query in Excel, including calculated members. Use this macro instead of the
executeQuery method of the Model class.

Note: This macro applies only to financial models.

56 Chapter 3 • The SAS Financial Management Java API

The %FMQUERY macro is intended to be used only by administrators and power users.
In most cases, member-level security is applied to a query for the user who is running the
query. (Keep that in mind if you make the query results available to other users.) There is
one exception: see “The RUNASUSERID Parameter,” below.

The RUNASUSERID Parameter
If you specify a user with the RUNASUSERID parameter, the query is performed on behalf
of the specified user, and that user's member-level security is applied. This parameter
enables administrators to set up a job that runs multiple reports on behalf of different users.

To use this feature, you must also specify the TRUSTEDUSERNAME and
TRUSTEDPASSWORD parameters, and the trusted user must be a member of the
Administrators group.

In this example, the query is run on behalf of userA. The trusted user, sasdemo, belongs to
the Administrators group. Notice that it is not necessary to know the password for userA.

%fmquery("Work", "FMExtract", modelCode="My Model", sasLibName="FMSData",
 queryDataSetName="queryParameters", filterOpts=0, memberOpts=3,
 environment="default", trustedUsername="sasdemo",
 trustedPassword="DemoDemo1", runAsUserID="userA");

Query Types
The %FMQUERY macro supports two types of queries:

• MDX queries: Queries that use MDX syntax, which is similar to SQL syntax.

• Non-MDX queries: Queries that are based on a model code and a data set that contains
query parameters.

Syntax
%FMQUERY (

localSasLibName
, resultDataSetName
[, MDXSTRING=""]
[, MODELCODE=""]
[, SASLIBNAME=""]
[, QUERYDATASETNAME=""]
[, FILTEROPTS=0]
[, MEMBEROPTS=0]
[, TRUSTEDUSERNAME=""]
[, TRUSTEDPASSWORD=""]
[, ENVIRONMENT="default"]
[, RUNASUSERID=""]

)

localSasLibName
The libref for the SAS library that holds the result set. This library must be defined
during the current SAS session; typically, it is the WORK library.

resultDataSetName
The name of the result set to be produced by the query. It contains the following
columns:

Executing Queries with the %FMQUERY Macro 57

DIMENSION_TYPE_CD: the member code for each dimension type. The calling
routine must handle illegal characters in the member codes.

VALUE: the corresponding value. NaN is represented as a period (.).

Records are filtered according to the filterOptions.

If the query fails and the result data set already exists, the data set is not deleted.

MDXSTRING
The query to be executed. This parameter is required if you are performing an MDX-
style query.

Note: For non-MDX-style queries, use the QUERYDATASETNAME parameter
instead.

MODELCODE
The identifier for the results model to be used in the query.

Note: This parameter is not used for MDX-style queries.

SASLIBNAME
The libref for the SAS library that holds the query data set. This library must be
registered in the metadata repository.

QUERYDATASETNAME
The name of the SAS table that contains the query. This table must exist before you
call %FMQUERY. For details, see “The Query Data Set” on page 59.

This parameter is not used for MDX-style queries. Instead, use the MDXSTRING
parameter.

FILTEROPTS
A value that specifies filters to be applied to the result set. Valid options are:

0: include all crossings (default)

1: exclude missing values

2: exclude zero values

3: exclude missing and zero values

MEMBEROPTS
Additional member attributes, including hierarchical ordering, to be printed beside the
member codes. The parameter can have any combination of these values:

0: include only member code (_CD) columns.

1: include member name (_NAME) columns.

2: include member description (_DESC) columns.

4: include member hierarchy sort (_SORT) columns. The sort values are represented
as hierarchical child numbering of the member starting from the root of the hierarchy
(such as 1.4.2.5).

Regardless of other options, the member code column is always printed. The options
can be used in any combination. For example, a value of 5 includes the member code
(always), the member name, and the member hierarchy sort columns.

TRUSTEDUSERNAME
The user name for logging on to the middle tier.

If you omit the user name and password, the macro uses the METADATA_PASSID
function to obtain the user credentials.

58 Chapter 3 • The SAS Financial Management Java API

TRUSTEDPASSWORD
The password for logging on to the middle tier. For information about encoding
passwords, see the SAS Intelligence Platform: Security Administration Guide.

ENVIRONMENT
An environment (such as default, dev, or prod) refers to an installation of SAS
Solutions Services and one or more solutions.

The environment value is site-specific. For more information, see “Specifying the
Solutions Environment” on page 22.

RUNASUSERID
If you specify this parameter, the query is made on behalf of the specified user, and the
member-level security for that user is applied.

You must also specify the TRUSTEDUSERNAME and TRUSTEDPASSWORD
parameters. Otherwise, the RUNASUSERID parameter is ignored.

If you omit a dimension type in your query, the default member for the model’s hierarchy
in that dimension (at the model’s hierarchy as-of date) is used instead. For the Time
dimension, this value is not necessarily the same as the default read member for the time
hierarchy that can be set in the model. To avoid unexpected results, we recommend that
you always include the Time dimension in your specification. This applies to both MDX
and non-MDX queries.

The Query Data Set
For non-MDX queries, one parameter of the %FMQUERY macro is
QUERYDATASETNAME, the name of a table that contains the query. This table must
exist before you call the macro, and it must reside in the same library as the result set that
is produced by the query.

Note: This parameter is not used for MDX queries.

The table has the following columns:

Table 3.12 Contents of the Query Data Set

Column Description Data Type

DIMENSION_TYPE_CD Dimension type code character

MEMBER_CD Member code. The dimension type code and member code
pair define the root of the subtree to be queried.

character

INCLUDE_MEMBER 0: exclude the member

1: include the member

numeric

INCLUDE_LEAVES 0: exclude leaves

1: include first-level leaves

2: include all levels of leaves

3: include first-level leaves and virtual children

4: include all levels of leaves and virtual children

numeric

Executing Queries with the %FMQUERY Macro 59

Column Description Data Type

INCLUDE_ROLLUPS 0: exclude roll-ups

1: include first-level roll-ups

2: include all levels of roll-ups

numeric

%FMQUERY Example (Non-MDX)
This example executes a query against a fictitious model that is named
TESTING18_MODEL. The query data set name is QUERYPARAMETERS. In this
example, the results are written to the NONMDXRESULTDATASETNAME data set in
the WORK library.

Example Code 3.2 Non-MDX Query

LIBNAME stagedds BASE "C:\SAS\Config\Lev1\SASApp\Data\SolutionsServices\stagedds";

data stagedds.queryParameters;
 length DIMENSION_TYPE_CD MEMBER_CD $32;
 DIMENSION_TYPE_CD = "ACCOUNT"; MEMBER_CD = "A8420"; INCLUDE_MEMBER=1;
 INCLUDE_LEAVES=0; INCLUDE_ROLLUPS=0; output;
 DIMENSION_TYPE_CD = "TIME"; MEMBER_CD = "DEC1997"; INCLUDE_MEMBER=1;
 INCLUDE_LEAVES=0; INCLUDE_ROLLUPS=0; output;
 DIMENSION_TYPE_CD = "CURRENCY"; MEMBER_CD = "USD"; INCLUDE_MEMBER=1;
 INCLUDE_LEAVES=0; INCLUDE_ROLLUPS=0; output;
run;
%fmquery(modelCode="testing18_model",localSasLibName="Work", sasLibName="stagedds",
 queryDataSetName="queryParameters", resultDataSetName="NONMDXResultDataSetName",
 trustedUserName="sasdemo",trustedPassword="DemoDemo1",
 environment="default")

%FMQUERY Example with MDX String
Here is an example of calling %FMQUERY using an MDX string:

Example Code 3.3 Query Using an MDX String

%fmquery("Work", "MDXResultDataSetName",
 mdxString="SELECT {ACCOUNT.A8420} on 0 FROM testing18_model WHERE (TIME.DEC1997, CURRENCY.USD)",
 trustedUsername="sasdemo",
 trustedPassword="DemoDemo1", environment="default")

Note: The mdxString cannot include a line break.

For one approach to creating an MDX string, see “Copying an MDX String” on page
61.

For MDX reference information, see “MDX Reference for SAS Financial Management”
on page 61.

Note: Currently, MDX queries in SAS Financial Management do not support the
equivalent of the INCLUDE_MEMBER, INCLUDE_LEAVES, or
INCLUDE_ROLLUPS options (that are available in non-MDX queries). In an MDX
query, you must specify each member separately. To include leaves for one or more
dimensions, specify those leaf members in the MDX string.

60 Chapter 3 • The SAS Financial Management Java API

Copying an MDX String
To create an MDX string, one simple approach is to save the string that is created when
you insert a Read-only table in Microsoft Excel. Follow these steps:

1. In Microsoft Excel, log on to the middle tier.

2. Insert a Read-only table.

3. Open the table properties.

4. Select the Dimensions tab.

5. Click Query Diagnostics.

6. Click Copy ODCS MDX String to Clipboard.

The MDX string for the Read-only table is available on the Windows clipboard.

MDX Reference for SAS Financial Management

Overview
Via ODCS, SAS Financial Management supports simple MDX queries that extend the
capabilities that are available with the standard query parameters.

Previously, complex queries required exploding the cube or running multiple, smaller
queries. By stacking multiple dimensions on an axis, MDX allows clients to express the
specific query they need.

Only a small subset of MDX functionality is currently supported in ODCS:

• basic queries: SELECT ... FROM ... WHERE ...

• basic member functions

More sophisticated features are not currently supported. For example, these features are
not currently supported:

• creating or manipulating metadata

• defining calculated members

• more advanced functions, such as filter, aggregate, and non-empty

• anything that is defined on a WITH clause

Members
A member is represented as DimensionTypeCode.MemberCode. For example:

• CURRENCY.USD

• TIME.Jan2001

• INTORG.Legal

Note: Standard MDX and OLAP do not have the concept of dimension types. Instead, they
use dimension codes to define members. ODCS uses dimension types, because they
make it easier to reuse queries between virtual cubes (vcubes). In this MDX reference,
references to dimensions and dimension types are interchangeable.

Executing Queries with the %FMQUERY Macro 61

All codes in ODCS are case sensitive. If a dimension type code or member code includes
a non-alphanumeric character, the code must be wrapped in square brackets, as in these
examples:

• INTORG.[R&D]

• ANALYSIS.[My Analysis]

• PRODUCT.[Hershey's Kisses]

• [CUSTOM TYPE].[My Member]

A member function can be appended to a member using the following syntax:
DimensionTypeCode.MemberCode.Function

An example is the VC function, a SAS Financial Management function that returns the
virtual child of the member:

• INTORG.Legal.VC

• PRODUCT.[Hershey's Kisses].VC

(In MDX, the virtual child is known as a DataMember.)

Tuples
A tuple is a combination of members from one or more dimensions, with only one member
from each dimension. You can think of it as a multidimensional member. The simplest
example of a tuple has one member, such as INTORG.Legal.

When there are multiple members on a tuple, the members are separated by commas and
the entire tuple is wrapped in parentheses, as in these examples:

• (INTORG.Legal, TIME.Jan2001)

• (INTORG.Legal, TIME.Jan2001, PRODUCT.[Hershey's Kisses])

• (INTORG.Legal, TIME.Jan2001, PRODUCT.[Hershey's Kisses],
CURRENCY.USD, ANALYSIS.Actuals)

It is important to remember that tuples can have only one member from each dimension.
The following tuples are invalid because they have multiple members from the same
dimension:

• (INTORG.Legal, TIME.Jan2001, TIME.Feb2001)

Invalid: two members from the TIME dimension.

• (INTORG.Legal, TIME.Jan2001, INTORG.[R&D])

Invalid: two members from the INTORG dimension.

Tuple Sets: { }s
A tuple set is an ordered collection of tuples. A tuple set can have one tuple, multiple tuples,
or even zero tuples. Within a set, tuples can be repeated.

Note: This definition differs from the mathematical definition of a set or the Set data
structures in Java.)

The tuples in a set can have one or more members. A set is wrapped in curly braces, and
the tuples are separated by commas. Here are some examples:

• { INTORG.Legal, INTORG.[R&D] }

Set with two tuples, each containing one member.

• { (INTORG.Legal, TIME.Jan2001) }

62 Chapter 3 • The SAS Financial Management Java API

Set with one tuple (wrapped in parentheses), containing two members.

• { (INTORG.Legal, TIME.Jan2001), (INTORG.[R&D],
TIME.Feb2001) }

Set with two tuples, each tuple containing two members.

• { (INTORG.Legal, TIME.Jan2001, ANALYSIS.Actuals), (INTORG.
[R&D], TIME.Feb2001, ANALYSIS.Budget) }

Set with two tuples, each tuple containing three members.

• { (INTORG.Legal, TIME.Jan2001), (INTORG.[R&D],
TIME.Feb2001), (INTORG.[R&D], TIME.Feb2001) }

Set with three tuples, each tuple containing two members. One tuple is repeated.

All tuples in a set must have the same dimensions represented, and the dimensions must
be in the same order. This is called the dimensionality of the tuple. Notice that all of the
examples above meet this requirement. The last example has three tuples, each with two
members. All three tuples contain the same dimensions and specify the INTORG dimension
first and the TIME dimension second. Thus, they have the same dimensionality.

The following sets are invalid because they do not have the same dimensionality:

• { (INTORG.Legal, TIME.Jan2001), (INTORG.[R&D],
ANALYSIS.Budget) }

Invalid: TIME and ANALYSIS are different dimensions.

• { (INTORG.Legal, TIME.Jan2001), (TIME.Feb2001, INTORG.
[R&D]) }

Invalid: tuple dimensions are not in the same order.

• { (INTORG.Legal), (ANALYSIS.Actuals) }

Invalid: INTORG and ANALYSIS are different dimensions.

• { INTORG.Legal, ANALYSIS.Actuals }

Invalid: INTORG and ANALYSIS are different dimensions.

This example might look like a single tuple with two members. However, it is actually
a tuple set with two tuples, each containing one member (using the convention of
omitting parentheses for a tuple with a single member). Because the members are from
different dimensions, the tuple set is invalid.

Basic Query Syntax
The MDX query syntax enables you to define the view of the data that you want returned.
Syntactically, it is similar to an SQL query. The basic syntax of a SELECT clause is as
follows:

This simple query retrieves data with TIME members on the columns and INTORG
members on the rows:

• SELECT {TIME.Jan2001, TIME.Feb2001, TIME.Mar2001,
TIME.Q12001} ON COLUMNS, {INTORG.Legal, INTORG.[R&D]} ON ROWS
FROM [My VCube]

Note: The example queries in this chapter contain line breaks only so that they fit on the
page. In the %FMQUERY macro, MDX query strings cannot contain a line break. In
addition, keywords are shown in upper case. However, MDX queries are not case
sensitive.

The results would resemble the following:

Executing Queries with the %FMQUERY Macro 63

TIME.Jan2001 TIME.Feb2001 TIME.Mar2001 TIME.Q12001

INTORG.Legal 2 6 10 18

INTORG.[R&D] 10 40 20 70

The SELECT clause defines one or more axes, with each axis assigned a position on the
table (columns or rows). The example above defines two axes: TIME on columns and
INTORG on rows. Notice the curly braces in the row axis definition, denoting a tuple set.
Each tuple in the set contains only one member. However, like any tuple set, it can contain
multiple members. This feature enables you to stack multiple dimensions on an axis, mixing
and matching members between dimensions.

The following example crosses the INTORG members with different ANALYSIS
members on the rows:

• SELECT {TIME.Jan2001, TIME.Feb2001, TIME.Mar2001,
TIME.Q12001} ON COLUMNS, { (INTORG.Legal, ANALYSIS.Actuals),
(INTORG.[R&D], ANALYSIS.Budget) } ON ROWS FROM [My VCube]

The results would resemble the following:

TIME.Jan2001 TIME.Feb2001 TIME.Mar2001 TIME.Q12001

INTORG.Legal

ANALYSIS.Actuals

2 6 10 18

INTORG.[R&D]

ANALYSIS.Budget

20 60 15 95

WHERE Clause: Defining a Slicer
The previous examples use only two or three dimensions in the queries. For any dimensions
in the cube that were not specified (such as CURRENCY, PRODUCT, or ACCOUNT),
the default member for the dimension is implicitly used in the query.

What if you want to cross your table with members that are not default members? In MDX,
you can use a WHERE clause to define members that apply to the entire table. This clause
is known as a slicer. The example below defines a slicer for three dimensions that are not
shown on the table:

• SELECT {TIME.Jan2001, TIME.Feb2001, TIME.Mar2001,
TIME.Q12001} ON COLUMNS, {INTORG.Legal, INTORG.[R&D]} ON ROWS
FROM [My VCube] WHERE (CURRENCY.USD, ANALYSIS.Budget,
FREQUENCY.PA)

Results would resemble the following:

Slicer: CURRENCY.USD, ANALYSIS.Budget, FREQUENCY.PA

TIME.Jan2001 TIME.Feb2001 TIME.Mar2001 TIME.Q12001

INTORG.Legal 4 8 12 24

64 Chapter 3 • The SAS Financial Management Java API

Slicer: CURRENCY.USD, ANALYSIS.Budget, FREQUENCY.PA

INTORG.[R&D] 20 60 15 95

Notice that the slicer in the WHERE clause is enclosed by parentheses: it is really just a
tuple. Like any tuple, it can contain one or more members, and the members must be from
different dimensions. In addition, the slicer in the tuple cannot contain a member from a
dimension that is used in one of the axes. The following example is invalid because it uses
the TIME dimension on both the rows and the slicer:

• SELECT {TIME.Jan2001, TIME.Feb2001, TIME.Mar2001,
TIME.Q12001} ON COLUMNS, {INTORG.Legal, INTORG.[R&D]} ON ROWS
FROM [My VCube] WHERE (TIME.Apr2001, ANALYSIS.Budget)

SELECT Clause: Defining Axes
So far, all the query examples have used only two axes: columns and rows. However, an
MDX query can have anywhere from 0–64 axes. Beyond COLUMNS and ROWS, the axis
keywords are PAGES, CHAPTERS, and SECTIONS. Here are examples of queries that
use a different number of axes:

• SELECT {TIME.Jan2001, TIME.Feb2001} ON COLUMNS FROM [My
VCube] WHERE (CURRENCY.USD)

• SELECT {TIME.Jan2001, TIME.Feb2001} ON COLUMNS,
{INTORG.Legal} ON ROWS, {ANALYSIS.Actuals, ANALYSIS.Budget}
ON PAGES FROM [My VCube] WHERE (CURRENCY.USD)

• SELECT {TIME.Jan2001, TIME.Feb2001} ON COLUMNS,
{INTORG.Legal} ON ROWS, {ANALYSIS.Actuals, ANALYSIS.Budget}
ON PAGES, {FREQUENCY.PTD} ON CHAPTERS FROM [My VCube] WHERE
(CURRENCY.USD)

• SELECT {TIME.Jan2001, TIME.Feb2001} ON COLUMNS,
{INTORG.Legal} ON ROWS, {ANALYSIS.Actuals, ANALYSIS.Budget}
ON PAGES, {FREQUENCY.PTD} ON CHAPTERS, {PRODUCT.Widgets,
PRODUCT.Gadgets} ON SECTIONS FROM [My VCube] WHERE
(CURRENCY.USD)

Instead of using the axis keywords such as COLUMNS or PAGES, you can refer to axes
by numbers, beginning with 0 (where 0=COLUMNS, 1=ROWS, 2=PAGES,
3=CHAPTERS, and 4=SECTIONS). Beyond sections, you must use numbers. The
following queries are the same as the examples above, except that they use axis numbers
instead of keywords:

• SELECT {TIME.Jan2001, TIME.Feb2001} ON 0 FROM [My VCube]
WHERE (CURRENCY.USD)

• SELECT {TIME.Jan2001, TIME.Feb2001} ON 0, {INTORG.Legal} ON
1, {ANALYSIS.Actuals, ANALYSIS.Budget} ON 2 FROM [My VCube]
WHERE (CURRENCY.USD)

• SELECT {TIME.Jan2001, TIME.Feb2001} ON 0, {INTORG.Legal} ON
1, {ANALYSIS.Actuals, ANALYSIS.Budget} ON 2, {FREQUENCY.PTD}
ON 3 FROM [My VCube] WHERE (CURRENCY.USD)

• SELECT {TIME.Jan2001, TIME.Feb2001} ON 0, {INTORG.Legal} ON
1, {ANALYSIS.Actuals, ANALYSIS.Budget} ON 2, {FREQUENCY.PTD}

Executing Queries with the %FMQUERY Macro 65

ON 3, {PRODUCT.Widgets, PRODUCT.Gadgets} ON 4 FROM [My VCube]
WHERE (CURRENCY.USD)

Note: You cannot skip axis definitions. For example, you cannot specify 0 and 2 and omit
1.

Specifying Excluded Members
In an ODCS query, you can specify excluded members (members on an axis that should
be ignored while running a query). Because there is no equivalent concept in MDX, ODCS
supports an MDX extension for using this functionality in SAS Financial Management. At
the end of a query, you can add an EXCLUDE clause to specify the members to be excluded
from the query. For each dimension from which you want to exclude members, the
EXCLUDE clause contains a tuple set separated by commas, as in these examples:

• SELECT {TIME.Jan2001, TIME.Feb2001, TIME.Mar2001,
TIME.Q12001} ON COLUMNS, { INTORG.All } ON ROWS FROM [My
VCube] EXCLUDE { INTORG.Legal }

• SELECT {TIME.Jan2001, TIME.Feb2001, TIME.Mar2001,
TIME.Q12001} ON COLUMNS, { INTORG.All } ON ROWS FROM [My
VCube] WHERE (CURRENCY.USD) EXCLUDE { INTORG.Legal, INTORG.
[R&D] }

• SELECT {TIME.Jan2001, TIME.Feb2001, TIME.Mar2001,
TIME.Q12001} ON COLUMNS, { INTORG.All } ON ROWS,
{ PRODUCT.All } ON PAGES FROM [My VCube] WHERE
(CURRENCY.USD) EXCLUDE { INTORG.Legal, INTORG.[R&D] },
{ PRODUCT.Widgets }

Notice that each set corresponds to a dimension in the query, and each tuple in the set
contains only one member.

Supported Member Functions
ODCS supports a limited number of functions:

.VC
Uses the virtual child of the member. Examples:

• INTORG.Legal.VC

• INTORG.[R&D].VC

.DataMember
MDX term for the ODCS term “virtual child.” This function is interchangeable with
the .VC function. Example: INTORG.Legal.DataMember

.Ignore
Placeholder member that is never calculated. This function is used by Excel to overlay
client-side calculations after the MDX table is returned. Only the dimension type code
must be valid; the member code is ignored by the server. Here is an example:
PRODUCT.MyClientSideCalc.Ignore

ODCS versus Standard OLAP
The ODCS architecture differs from standard OLAP in a few ways. These differences affect
MDX usage and syntax support:

• ODCS supports only a single, numeric measure. Therefore, there is never a need to use
the MEASURES keyword in a query.

66 Chapter 3 • The SAS Financial Management Java API

• Levels are not supported explicitly in ODCS, except for certain dimensions such as
TIME. Currently, there is no support for referencing Levels in the query syntax.

• In ODCS, members in the same dimension must have a unique code. Because a cube
has only one dimension for each dimension type, a member code is always unique in
a given dimension type at query time.

This requirement provides the shortcut when defining member definitions of
DimensionTypeCode.MemberCode, such as TIME.Jan05. If ODCS supported
non-unique member codes in a dimension, you would need to follow the MDX standard
and specify the ancestors of the member, such as TIME.2005.Q1.Jan.

Executing Queries with the %FMQUERY Macro 67

68 Chapter 3 • The SAS Financial Management Java API

Chapter 4

Customizing a Workflow

About Customizing a Workflow . 69

Workflow Types . 69
Overview . 69
Top-Down Workflow . 70
Bottom-Up Workflow . 70

Adding Your Custom Code to a Workflow . 72
The Pre and Post Classes . 72
Steps in Customizing a Workflow . 72
The Resource File . 73

Data Validation Example . 75
About the Data Validation Example . 75
Code for the Example . 76
Registering the Stored Process . 78
Updating the Resource File . 79

About Customizing a Workflow
Note: This chapter applies to both financial form sets and operational form sets.

In SAS Financial Management, a workflow defines the review and approval process used
in budgeting, forecasting, and other planning activities. Each workflow consists of a
collection of states (such as READY, EDITED, and COMPLETE) and actions (such as
PUBLISH and EDIT). At run time, the actions advance the workflow from one state to the
next. Each action triggers a corresponding policy file (code that is associated with these
actions).

You can customize a workflow by writing a stored process that executes before or after the
workflow is advanced. This chapter explains how to add your custom code to a workflow.
It also contains a short example of a workflow stored process.

Workflow Types

Overview
SAS Financial Management supports two types of workflows: top-down and bottom-up.

69

Note: For more information about the terminology that is used in this chapter, see the SAS
Financial Management: User's Guide or the online Help for the SAS Financial
Management Add-In for Microsoft Excel.

Top-Down Workflow
A top-down workflow enables users at any roll-up point to make bulk updates and
adjustments down and across multiple entities and dimensions.

A data-entry project that has a top-down workflow begins when a top-down form set is
published from SAS Financial Management Studio. The workflow ends when a Finance
Process Administrator applies the COMPLETE action to the form set in SAS Financial
Management Studio.

Here is a schematic diagram of a top-down workflow. The applicable states are displayed
in ellipses, and the applicable actions are displayed as lines that connect one state to another.

Figure 4.1 A Top-Down Workflow

Bottom-Up Workflow
In a bottom-up workflow, forms begin at the lower levels of the hierarchy and are
aggregated and reviewed by the organization as they move up an approval hierarchy.
(Optional) A bottom-up workflow can be connected to a separate reviewer workflow that
supports additional reviewers in the budget approval process.

A bottom-up workflow begins when a bottom-up form set is published from SAS Financial
Management Studio. The workflow ends when a Finance Process Administrator applies
the COMPLETE action to the form set in SAS Financial Management Studio.

70 Chapter 4 • Customizing a Workflow

Here is a schematic diagram of a bottom-up workflow, with the applicable states and
actions. The diagram also contains a reviewer workflow (for two reviewers) that is attached
to the bottom-up workflow.

Figure 4.2 A Bottom-Up Workflow

DRAFT READY EDITED SUBMIT-

TABLE
SUBMITTED PRECOM-

PLETED
COMPLETED

REJECTED

REVIEWER

1

REVIEWER

2

EDIT

PRESUBMIT* PUBLISH*
SUBMIT

APPROVE COMPLETE*

UNCOMPLETE*
PRESUBMIT*

*SYSTEM ACTION

UNDOPRESUBMIT*

Form: X

Reviewer Workflow

FMS ODCS

Form 1

Form X

If reviewer workflow exists, invoke the first reviewer

Form: X

RECALL
PRESUBMIT*

PREAPPROVEALL*

PREAPPROVEALL*

PREAPPROVEALL*

APPROVE-

ALL
SUBMITANDAPPROVE

UNDOPRE-

APPROVEALL*

REJECT

EDIT

APPROVE

REJECT

REJECT

RECALL RECALL

APPROVE

REJECT

SUBMIT

EDIT

EDIT

EDIT

*Notes on system actions:

• Children are moved from PRECOMPLETED to COMPLETED when their parent
invokes SUBMIT.

• Children are moved from COMPLETED to PRECOMPLETED when their parent is
recalled.

• Children are moved from COMPLETED to PRECOMPLETED when their parent is
rejected.

• A parent is moved from SUBMITTABLE to EDITED if any child is recalled and moved
to SUBMITTABLE.

• A parent is moved from SUBMITTABLE to EDITED if any child is rejected and moved
to that state.

• A parent is moved from EDITED to SUBMITTABLE if all its children are in a
PRECOMPLETED state.

Workflow Types 71

Adding Your Custom Code to a Workflow

The Pre and Post Classes
Two Java classes (Pre and Post) form the bridges between the SAS Financial Management
workflow system and the SAS stored processes in which the customized code is deployed.

Whenever a policy file is triggered, the Pre.invoke method is called before the policy file
is executed, and the Post.invoke method is called after the policy file is executed. These
methods call a stored process if one is linked to this part of the workflow.

If the stored process fails (due to exception or error in the customized codes), the workflow
does not advance to the next state.

• If the Pre operation fails, the policy file is not executed.

• If the Post operation fails, the workflow is rolled back to its previous state.

However, if the stored process itself makes any changes, such as updating the database,
those changes remain.

Steps in Customizing a Workflow
Do not modify the Pre and Post classes directly. To customize the workflow, follow these
steps:

1. Write a SAS stored process to perform the necessary business logic.

The stored process must set the FM_SP_RESULT environment variable. If the
operation fails, the program should set FM_SP_RESULT to INVALID and set the
FM_SP_MESSAGE environment variable to an appropriate text message. Otherwise,
the stored process should set FM_SP_RESULT to VALID.

These environment variables are available on the middle tier. If the value of
FM_SP_RESULT is INVALID, an exception is thrown, the workflow is not advanced
to the next state, and the corresponding text message is displayed in a message box in
the rich client or in the Web browser.

For information about writing a stored process, see Chapter 2, “Working with Stored
Processes,” on page 5. For an example stored process, see “Data Validation Example”
on page 75.

2. On the data tier, save the stored process in a directory such as SAS-config-dir
\Lev1\SASApp\SASEnvironment\FinancialManagement\SASCode
\UserDefined. (Create the UserDefined directory if it does not already exist.)

3. Log on to SAS Management Console as an administrator and register the stored process
in the /Products/SAS Financial Management/Customized workflow
folder. (You might need to create this folder.)

4. Create a resource file that links a workflow action to the stored process. If the resource
file already exists, update the file with information about the new stored process. See
“The Resource File” on page 73.

72 Chapter 4 • Customizing a Workflow

The Resource File

Update the Resource File
The resource file is an XML file that provides the location of a stored process and associates
it with a specific form set and an action. A template for a resource file follows:

<SASWorkflowCustomizations>
 <Application name="SAS Financial Management">
 <Object type="FormSet" name="form_set_ID">
 <Action type="action_type">
 <Execute type="execute_type"
 storedProcessFullPath="path_to_stp"/>
 </Action>
 </Object>
 </Application>
</SASWorkflowCustomizations>

Replace the italicized strings with the appropriate values:

• execute_type specifies when the stored process is called, relative to execution of the
policy file. It must have a value of pre or post.

• action_type is an action such as SUBMIT or REJECT.

For a list of available action types, see Table 4.1 on page 74. Notice that some actions
are available only in a top-down workflow or only in a bottom-up workflow.

• path_to_stp is the path to the stored process metadata definition, such as /Products/
SAS Financial Management/Customized workflow/validation.

You can link the same stored process to more than one form set or action: just create a
separate <Object> entry for each form set, action type, and execute type combination.

• form_set_ID is the ID of the form set to which the action applies. To look up a form
set ID in the SASSDM database, you can use the following SQL query:

"select form_set_id from sassdm.sas_form_set where form_set_nm='form-set-name'"

Here is an example:

Example Code 4.1 Example Resource File

<SASWorkflowCustomizations>
 <Application name="SAS Financial Management">
 <Object type="FormSet" name="2">
 <Action type="SUBMIT">
 <Execute type="pre" storedProcessFullPath= _
 "/Products/SAS Financial Management/Customized workflow/Customized workflow test"/>
 </Action>
 <Action type="REJECT">
 <Execute type="post"
 storedProcessFullPath= _
 "/Products/SAS Financial Management/Customized workflow/Customized workflow test"/>
 </Action>
 </Object>
 </Application>
</SASWorkflowCustomizations>

Note: Line breaks (“_”) added for readability.

Adding Your Custom Code to a Workflow 73

Table 4.1 Available Workflow Actions

Action Type
Top-down
Workflow

Bottom-up
Workflow Description

PUBLISH √ √ Moves a form from the DRAFT state to the READY
state so that it can be edited.

SUBMIT √ Submits a form for approval.

EDIT Opens a form for editing.

REVIEW √ Opens a form in read-only mode so that it can be
reviewed.

REJECT √ Changes the form's state to REJECTED and notifies the
user who submitted the form.

APPROVE √ Approves a form and copies that form's data to its parent
form.

RECALL √ √ Recalls a form so that it can be further edited and then
pushed again or resubmitted.

PUSH √ Makes a form available to the users who are responsible
for the top member's children. The amounts that have
been allocated to the children of that member are copied
to the forms for those child members.

As a result, the users who are responsible for the child
members to edit their forms, allocate the pushed
amounts to the next level of child members, and then
push their forms in turn.

PUSHTOALL √ Makes a form available to the users who are responsible
for all the top member's descendants. The amounts that
have been allocated to the descendants of that member
are copied to the forms for those descendant members.

As a result, the users who are responsible for the
descendant members to edit their forms. However, their
editing is limited to redistributing amounts within their
target member. No other user can push amounts to the
next level of child members because PUSHTOALL
cascades all the way down the target hierarchy in a
single step.

COMPLETE √ √ Ends the workflow. This action can be performed only
by a Finance Process Administrator.

UNCOMPLETE √ √ Reactivates a form for further work. This action can be
performed only by a Finance Process Administrator.

SUBMITAPPROVE √ Moves a form from the APPROVEALL state to the
SUBMITTED state.

PREAPPROVEALL √ Moves a form from the READY or EDITED state to the
APPROVEALL state.

74 Chapter 4 • Customizing a Workflow

Action Type
Top-down
Workflow

Bottom-up
Workflow Description

UNDOPREAPPROVEALL √ Moves a form from the APPROVEALL state to the
EDITED state.

You can associate as many actions with a form set as necessary, but each action can have
only one stored process associated with it. On the other hand, you are free to associate the
same stored process with multiple actions in multiple form sets, if applicable.

Name the file WorkflowCustomizations.xml and save it on the middle tier, where the Web
application server resides. A good location is the following directory: SAS-config-dir
\Lev1\CustomAppData\FMCustomizedWorkflow.

Set the JVM Options
To make the resource file available, add the following option to the JVM options for
SASServer3 (the managed server to which SAS Financial Management is deployed).

-Dsas.workflow.customizations="file:///path-to-resource-file"

Here is an example:

-Dsas.workflow.customizations=
"file:///C:/SAS/Config/Lev1/CustomAppData/Workflow/WorkflowCustomizations.xml"

The option applies when you restart the managed server.

Note: You do not need to restart the managed server when you make updates to the resource
file.

Data Validation Example

About the Data Validation Example
Here is an example of cell-based data validation that uses a stored process, an execute type
of pre, and a SUBMIT action. At run time, when a user submits a form in the specified
form set, the stored process is automatically triggered. It validates a cell value in the form.
If the value is greater than 0, the SUBMIT succeeds. Otherwise, the SUBMIT fails.

The example applies only to financial models. It makes the following assumptions:

• A form set with ID 123 has been created.

• A form template with a result model (called tst_model) has been saved. It includes
the dimensions shown in the Dimension column of Table 4.2 on page 76..

• The form cell whose value is to be validated is defined by the crossing that is
exemplified by the codes in the Member Code column of the following table.

The dimensionCodes and memberCodes arrays in the example contain the values from the
first and second columns, respectively, of the following table. You do not need to include
all the values in the table in the two arrays, but the values of the two arrays must match.
During the query, any missing dimension code-member code pairs are filled with default
values from the dimensions that are defined for the results model and the default read
member that is defined in the hierarchy for each dimension.

Data Validation Example 75

Table 4.2 Example Dimensions and Member Codes

Dimension Member Code

ACCOUNT_FM 6232

ANALYSIS_FM BUDGET

Cost Center Total

CURRENCY EUR

fm_INTORG_CODE WW_SA

TIME_FM 012002

fm_INTORG_CODE_TRADER EXT

SOURCE BaseForm

PRODUCT_FM Jackets

The actual query is carried out in the following code:

model.callDoubleMethod("getCellValue", "tst_model", dimensionCodes,
 memberCodes, value);

Depending on the return value, the program sets the FM_SP_RESULT and
FM_SP_MESSAGE environment variables. If the return value is less than or equal to 0,
the program sets FM_SP_RESULT to INVALID and sets FM_SP_MESSAGE to a text
message. Otherwise, the program sets FM_SP_RESULT to VALID.

This example uses methods from the SAS Financial Management Java API. Most of the
classes in this API apply only to financial planning. For details, see Chapter 3, “The SAS
Financial Management Java API,” on page 19.

Code for the Example
This SAS program retrieves the data from the cell and validates the data.

Note: If you are declaring a Javaobj, the picklist option is required in the DATA step so
that the Javaobj can find the necessary JAR files.

Example Code 4.2 Stored Process for Workflow Customization

data _null_ /picklist='finance/finance.txt';
 put 'This is a data entry validation test';

 /* Read and echo environment variables passed in from the middle tier */
 /* form ID */
 length formId $20;
 formId = symgetc("fm_sp_form_id");
 put formId=;

 /* security key */
 length secKey $200;
 secKey = symgetc("fm_sp_seckey");

76 Chapter 4 • Customizing a Workflow

 put secKey=;

 /* action on the form */
 length action $20;
 action = symgetc("fm_sp_action");
 put action=;

 /* user ID */
 length userId $20;
 userId = symgetc("fm_sp_user_id");
 put userId=;

 /* user name */
 length userName $60;
 userName = symgetc("fm_sp_user_name");
 put userName=;

 /* Instantiate the Form class */
 dcl javaobj form("com/sas/solutions/finance/api/Form",formId, trim(secKey));
 form.ExceptionDescribe(1);

 /* Call methods of the Form class and echo the results */
 /* Get the target member code */
 length targetMemberCode $50;
 form.callStringMethod("getTargetMemberCode", targetMemberCode);
 put targetMemberCode=;

 /* Get the target dimension code */
 length targetDimensionCode $50;
 form.callStringMethod("getTargetDimensionCode", targetDimensionCode);
 put targetDimensionCode=;

 length cFormInfo $20000;
 form.callStringMethod("getInfo",cFormInfo);
 put cFormInfo=;

 length authors $ 200;
 form.callStringMethod("getAuthors", " ", authors);
 put authors=;

 length admins $30000;
 form.callStringMethod("getPlanningAdministrators", " ", admins);
 put admins=;

 /* Instantiate the Model class */
 dcl javaobj model("com/sas/solutions/finance/api/Model", trim(secKey));

 /* Set up two arrays, dimensionCodes and memberCodes */
 array dimensionCodes[9] $50
 (
 "",
 "ANALYSIS_FM",
 "ACCOUNT_FM",
 "Cost Center",
 "CURRENCY",
 "TIME_FM",

Data Validation Example 77

 "fm_INTORG_CODE_TRADER",
 "SOURCE",
 "PRODUCT_FM"
);
 /* Set target dimension code */
 dimensionCodes[1] = targetDimensionCode;

 array memberCodes[9] $30
 (
 "",
 "BUDGET",
 "6232",
 "Total",
 "EUR",
 "012002",
 "EXT",
 "BaseForm",
 "Jackets"
);
 /* Set target member code */
 memberCodes[1] = targetMemberCode;

 /* Call getCellValue method */
 length value 8;
 model.callDoubleMethod("getCellValue", "tst_model", dimensionCodes,
 memberCodes, value);
 put value=;

 /* Test for value <= 0 and set environment variables accordingly */
 if value <= 0 then do;
 call symput("fm_sp_result", "INVALID");
 call symput("fm_sp_message",
 "Account 6232 of JAN2002 should be greater than 0.");
 end;
 else do;
 call symput("fm_sp_result", "VALID");
 end;
 form.delete();
 model.delete();
run;

Registering the Stored Process
Register the stored process in SAS Management Console. This example uses the
recommended location of /Products/SAS Financial Management/Customized
workflow.

Note: For this example, neither Stream nor Package is selected for the Results, because
the only output is to the log file.

78 Chapter 4 • Customizing a Workflow

Updating the Resource File
The resource file (SAS-config-dir\Lev1\CustomAppData\Workflow
\WorkflowCustomizations.xml) might have an entry as follows:

<SASWorkflowCustomizations>
 <Application name="SAS Financial Management">
 <Object type="FormSet" name="123">
 <Action type="SUBMIT">
 <Execute type="pre" storedProcessFullPath=
 "/Products/SAS Financial Management/Customized workflow/validation"/>
 </Action>
 </Object>
 </Application>
</SASWorkflowCustomizations>

In this case, the execute type is set to “pre”, which means that the stored process is executed
before the workflow policy file.

Data Validation Example 79

80 Chapter 4 • Customizing a Workflow

Chapter 5

Creating a Custom Cell Action

Overview . 81

Write the Stored Process . 82
About the Stored Process . 82
Parameters That You Can Expect . 82

Register the Stored Process . 84

Update the Resource File . 87
Define the Custom Action . 87
Set the JVM Option . 88

Select the Action . 88

Overview
This chapter explains how to create a custom cell action for use in a read-only table in
Microsoft Excel.

When a user selects a cell in the Excel read-only table and clicks the right mouse button,
the Contributing Data action is available by default. This action enables the user to view
the data records that make up the selected cell.

You can add your own custom actions that invoke a stored process that displays its output
in a browser window. For example, you might create a custom action that displays the
transactions that make up the selected cell. Or you might create a custom action to reconcile
adjustments in consensus forecasting.

Note: Viewing read-only tables requires the SAS Financial Management Add-in for
Microsoft Excel. Currently, custom cell actions cannot be applied to data-entry tables.

Follow these steps to create a custom action:

1. Write a stored process to run when the action is invoked.

See “Write the Stored Process” on page 82.

2. In SAS Management Console, define the stored process metadata.

See “Register the Stored Process” on page 84.

3. Define the custom action in a resource file.

For the first custom action, you must create this file and set a JVM option that points
to the resource file.

81

See “Update the Resource File” on page 87.

4. The new action is available from a read-only table in Microsoft Excel. When a user
right-clicks a cell and selects Tools, the new action appears as a selection.

See “Select the Action” on page 88.

Write the Stored Process

About the Stored Process
Your stored process will most likely use the SAS Financial Management Java API. For
information about the classes and methods that make up that API, as well as information
about declaring a Javaobj object and authenticating the user, see Chapter 3, “The SAS
Financial Management Java API,” on page 19.

Save the stored process code on the data tier, in a location such as the SAS-config-dir
\Lev1\SASApp\SASEnvironment\FinancialManagement\SASCode
\UserDefined directory. Create the UserDefined directory if it does not already exist.

Parameters That You Can Expect
At run time, when a user selects a custom action, a URL is built to call the associated stored
process. The URL includes the following parameters, which are available to the stored
process:

Parameter Name Value

_model The model ID for this table

__dimension-ID The member ID for this dimension, for the selected crossing

The parameter names are available in the _APSLIST. For example:

_APSLIST=__19, __8,_archive_path,_model,_metaperson, _metauser, ...

Dimension IDs and member IDs are represented by parameters beginning with two
underscores (__). The parameter name following the underscores is the dimension ID, and
the parameter value is the member ID for the selected crossing. The simple example below
scans the list for variables beginning with two underscores (such as __19) and extracts the
dimension IDs and member IDs. With the dimension ID, you can call the
getDimensionCode method of the Metadata class to get the associated dimension code.
With the dimension ID and member ID, you can call the getMemberCode method to get
the associated member code.

Example Code 5.1 Example Stored Process for Custom Cell Action

/*+---
| Copyright (c) 2009 by SAS Institute Inc., Cary, NC, USA.
| All rights reserved.
| Name: viewtrans.sas
| Purpose: show DDS transactions that make up a cell value
+---+*/

82 Chapter 5 • Creating a Custom Cell Action

Options mprint;
*ProcessBody;
ods path(prepend) sashelp.sasweb2(read);
%rptinit(style=sasweb2);
* extract crossing values from the parameter list;

%model
%getModelHierarchies('FM','Work','HierOut','Default_Model',environment='default')

data DimType;
 set Work.HierOut;
 If dimension_type_cd IN ("ACCOUNT", "INTORG", "ANALYSIS", "TIME")
 then call symputx(dimension_type_cd, dimension_cd);
run;

data _null_ /picklist='finance/finance.txt';
 length parameter $32;
 length value $1000;
 length dimID dim member $200;

 dcl javaobj oMetadata("com/sas/solutions/finance/api/Metadata");
 oMetadata.ExceptionDescribe(1);
 oMetadata.callVoidMethod("setEnvironment", "default");
 call METADATA_PASSID("oMetadata", "");
 * get the model and the list of filters ;
 do until(parameter = '');
 i+1;
 parameter = scan("&_APSLIST", i, ",");
 if parameter ne '' then do;
 value = symget(parameter);
 put parameter= value=;
 if substr(parameter,1,2)='__' then do;
 dimID=upcase(substr(parameter,3));
 if dimID ne 'FREQ' then do;
 put dimid=;
 oMetadata.callStringMethod("getDimensionCode", trim(dimID),dim);
 oMetadata.callStringMethod("getMemberCode", trim(dimID),
 trim(value), member);
 /* set dimension values, such as ACCOUNT=10020 */
 call symputx(dim, member);
 end;
 end;
 end;
 end;
 oMetadata.delete();
run;

/*assign library (modify path as necessary) */

libname dds 'C:\SAS\Config\Lev1\SASApp\Data\SolutionsServices\DDSData';
proc sql;
 select b.gl_account_id, c.internal_org_id, d.analysis_id,
 e.time_period_id, a.transaction_amt
 from dds.gl_transaction_sum a,
 dds.gl_account b,
 dds.internal_org c,

Write the Stored Process 83

 dds.analysis d,
 dds.time_period e
 where a.gl_account_rk=b.gl_account_rk
 AND a.initiating_internal_org_rk=c.internal_org_rk
 AND a.analysis_rk=d.analysis_rk
 AND a.affected_time_period_rk=e.time_period_rk
 AND b.gl_account_id=symget("&ACCOUNT")
 AND c.internal_org_id=symget("&INTORG")
 AND d.analysis_id=symget("&ANALYSIS")
 AND e.time_period_id=symget("&TIME")
 ;
quit;

data _null_;
 if symget('SQLOBS')=0 then do;
 file print;
 put "NOTE: No rows were found for user ";
 put "%scan(&_METAUSER,1,'@')";
 value=symget("&ACCOUNT");
 put "ACCOUNT= " value;
 value=symget("&INTORG");
 put "ORG= " value;
 value=symget("&ANALYSIS");
 put "ANALYSIS= " value;
 value=symget("&TIME");
 put "TIME= " value;
 end;
run;

title;
footnote;
proc printto;
quit;

ods _all_ close;
ods listing;

%stpend;

Register the Stored Process
Define this stored process with package output to the WebDAV Server (not to the personal
repository). For this kind of output, you must specify the full URL to the output directory.
If the directory does not already exist, create it before defining the stored process. One way
of creating a WebDAV folder is via the DAVTree utility. See “Using the SAS Web
Infrastructure Platform Utilities” in the SAS Intelligence Platform: Web Application
Administration Guide.

1. Log on to SAS Management Console as an administrator.

2. On the Folders tab, right-click a shared folder and select New Stored Process. One
possible location is the /Products/SAS Financial Management/Custom
Cell Actions folder.

84 Chapter 5 • Creating a Custom Cell Action

Create the Custom Cell Actions folder if it does not already exist.

3. On the Execution page of the wizard, select the stored process server and define the
path and the name for the stored process. Select the Package check box.

4. On the Parameters page, define any input parameters that are required by the stored
process.

5. For the results options, select WebDAV output, as follows:

a. Click Add Shared.

b. In the Select a Shared Group or Prompt dialog box, navigate to SAS Folders
\Products\Intelligence Platform\Samples. Select Package -
WebDAV Server.

Note: Do not select Package - WebDAV Server with New Instance.

c. Click OK.

Register the Stored Process 85

d. In the Add Package dialog box, click OK.

6. In the parameter list, select Package - WebDAV Server and click Unshare to unshare
the prompts so that you can modify them.

SAS Management Console displays a warning message and asks whether you want to
continue. Click Yes.

7. Click the plus sign next to the Package - WebDAV Server prompt to expand the
options.

8. Select the Collection URL prompt and click Edit.

9. On the Prompt Type and Value tab, type the full URL to the WebDAV location into
the Default value text box.

86 Chapter 5 • Creating a Custom Cell Action

Note: Use the Import Users and Groups stored process as a model. It is located in
the /Products/SAS Solutions Services/Standard Reports folder.

10. Keep the defaults for the other results prompts, and save the stored process definition.

Make sure that the Solutions Users group has ReadMetadata and WriteMetadata access to
the stored process.

For more information about registering a stored process, see the online Help in SAS
Management Console. See also the SAS Stored Processes: Developer’s Guide.

Update the Resource File

Define the Custom Action
Custom actions are defined in a resource file that is stored on the middle tier, where the
Web application server resides. A good location is a directory such as SAS-config-dir
\Lev1\CustomAppData\FMCustomActions. Create the FMCustomActions
directory if it does not already exist.

The resource file is an XML file with the following contents:

<?xml version="1.0"?>
<customActions>
 <action name="action-name" onCell="true|false" onRollups="true|false"

Update the Resource File 87

 onLabels="true|false" onReadTable="true|false" onWriteTable="true|false">
 <description>description of this stored process</description>
 <url>URL to fallback page</url>
 <path>path to stored process metadata definition</path>
 </action>
</customActions>

The action-name is the name of the stored process, as defined in the metadata repository.
In Microsoft Excel, it appears as the custom action.

The fallback page is the page to be displayed if the custom action fails for some reason.
SAS Financial Management expects this file (with a name of main.html) to be available
from the URL that you define in the resource file. In the example below, the fallback page
would be http://www.mycompany.com/CustomActions/Error/main.html.
Each custom action can have its own page (with its own URL), or you can specify the same
URL for multiple actions.

The path is the path to the stored process definition in the metadata repository. Do not
include a slash (/) before Products, and do not include the name of the stored process.

Here is an example:

<?xml version="1.0"?>
<customActions>
 <action name="View transactions" onCell="true" onRollups="true"
 onLabels="false" onReadTable="true" onWriteTable="false">
 <description>View DDS transactions</description>
 <url>www.mycompany.com/CustomActions/Error</url>
 <path>Products/SAS Financial Management/Custom Cell Actions</path>
 </action>
</customActions>

Set the JVM Option
If you have not already done so, tell SAS Financial Management where to find the resource
file. Add the following option to the JVM options for the managed server to which SAS
Financial Management is deployed (by default, SASServer3):

-Dsas.customActions.customizations="file:///path-to-resource-file"

For information about configuring your Web application server, go to http://
support.sas.com/resources/thirdpartysupport/v92/.

Here is an example:

-Dsas.customActions.customizations=
"file:///C:/SAS/Config/Lev1/CustomAppData/FMCustomActions/CustomActions.xml"

The option applies when you restart the managed servers for SAS Financial Management
and ODCS (typically, SASServer3, SASServer4, and SASServer5).

Note: If you update the resource file, you must also restart the managed servers.

Select the Action
In Microsoft Excel, right-click a cell in a read-only table and select Tools to see the new
action.

88 Chapter 5 • Creating a Custom Cell Action

http://support.sas.com/resources/thirdpartysupport/v92/
http://support.sas.com/resources/thirdpartysupport/v92/

Chapter 6

The SAS Financial Management
Add-In API for Microsoft Excel

Overview of Working with the SAS Financial Management
Add-In API for Microsoft Excel . 89

Setup for Using the API . 90

General Usage Information . 90
Declaring the FMAddIn Object . 90
Working with Objects . 91
Handling Events . 92
Activating the Log . 93

Summary of Classes . 94

The FMAddIn Class . 95

The FMCollections Class . 98

The FMCrossing Class . 100

The FMCrossingsCollection Class . 102

The FMCube Class . 102

The FMCubesCollection Class . 106

The FMHierarchiesCollection Class . 106

The FMHierarchy Class . 107

The FMMember Class . 112

The FMMembersCollection Class . 114

The FMTable Class . 114

The FMTablesCollection Class . 122

The FMUser Class . 122

Overview of Working with the SAS Financial
Management Add-In API for Microsoft Excel

With the SAS Financial Management Add-In for Microsoft Excel and the SAS Financial
Management Add-In API for Microsoft Excel, you can use Microsoft Visual Basic for
Applications (VBA) to write macros that interact with SAS Financial Management objects.
For example, you might perform some of the following tasks:

89

• Launch a SAS Financial Management report in batch mode, automatically log on to
the SAS Financial Management server, and print the report with updated numbers.

• Retrieve SAS Financial Management data and metadata.

• Use the FMMember selection dialog box in a cell data access (CDA) report.

• Execute code that is based on events from the SAS Financial Management objects.

• Apply custom formatting to SAS Financial Management tables.

Note: For information about the terminology that is used in this chapter, see the SAS
Financial Management 5.2: User's Guide or the online Help for the SAS Financial
Management Add-In for Microsoft Excel.

Setup for Using the API
If you have not already done so, load the add-ins for Microsoft Excel that are required by
the solutions. See the instructions in the “Installing the Client Applications” chapter of the
SAS Solutions Services: System Administration Guide.

The API requires a reference to the SASSESExcelAddin.tlb type library. In Microsoft
Excel, follow these steps to add the reference:

1. Click the Developer tab.

2. Click Visual Basic.

3. From the Tools menu of the Visual Basic Editor, select References.

4. From the list of available references, select SASSESExcelAddIn.

If SASSESExcelAddIn is not in the list, click Browse to select the file and add it to
the list. The file is located in the SAS-install-dir
\SASFinancialManagementAdd-InforMicrosoftExcel\5.2 directory.

5. Click OK.

Note: If you had an earlier version of the SAS Financial Management Add-In for Microsoft
Excel, deselect the check box for SASSESExcelAddin on the References page, click
OK, and exit Excel. Then re-open Excel and add the new TLB file as described above.

General Usage Information

Declaring the FMAddIn Object
In the Declarations section of the Workbook module, declare the FMAddIn object and
other SAS Financial Management objects in code that resembles the following:

Public addin As FMAddIn
Public table As FMTable
Public cube As FMCube
Public user As FMUser

To use the events framework, the declarations for FMAddin and FMTable should resemble
the following code:

90 Chapter 6 • The SAS Financial Management Add-In API for Microsoft Excel

Public WithEvents addin As FMAddIn
Public WithEvents table As FMTable

For more information about the events framework, see “Handling Events” on page 92.

Working with Objects

The FMAddin Object
To get a reference to the FMAddIn object, use code that resembles the following:

Dim conn As Connect
...
Set conn = Application.COMAddIns.Item("SASSESExcelAddIn.Connect").Object
Set addin = conn.FMAddIn

For the remainder of this chapter, the code examples assume that you already have a
reference (called addin) to the FMAddIn object. (Your code should contain only one
instance of the FMAddIn object.)

From the FMAddIn object, you can get a reference to the FMTablesCollection object or to
an FMCubesCollection object. The tables collection represents all tables in the workbook.
Each FMTable object in the collection represents a data entry or read-only table in the
current workbook. The cubes collection represents all virtual cubes (results models) on the
server. Each FMCube object represents a virtual cube.

Note: We recommend using Option Explicit in your code. This option requires all
variables to be explicitly declared.

This diagram shows classes in the API. It indicates which classes contain references to
other classes. (It is not intended to imply any inheritance from one class to another.)

Figure 6.1 Classes in the SAS Financial Management Add-In API for Microsoft Excel

Objects in a Collection
To get a reference to an object in a collection, you can specify an index into the collection.
For example, addin.Tables(0) references the first table in an FMTablesCollection
object.

You can also name an object in the collection. To get a reference to an object in the
FMCubesCollection, FMHierarchiesCollection, or FMMembersCollection, you specify
the code for the cube, hierarchy, or member. For example:

General Usage Information 91

Dim cube As FMCube
Set cube = addin.cubes("Default_Model")

Table Objects
To get a reference to a table, use the table name (tables do not have codes). For example:

Dim table As FMTable
Set table = addin.Tables("NewTable0")

In Excel, the location of a table is defined as a named range. When you add the first table,
it is automatically named NewTable0. The next table is named NewTable1, and so on.

Note: A user might change the name of a table (in the table properties), but the new name
is only for display purposes and cannot be used in the code. For more information, see
the getTableName method of the FMTable class.

Another approach is to iterate through the collection. This code iterates over a collection
of server hierarchies in a cube:

For Each hierarchy In cube.ServerHierarchies
 ...
 Next hierarchy

Handling Events

About Events
An event is an action that happens in Excel (for example, logging in or refreshing a table).
Event handlers are called when the user performs the specified action.

For an event to be captured:

• The object that the event is associated with must be declared using the WithEvents
clause; for example:

• There must be an existing reference to the object; for example:

Set table = addin.tables("NewTable0")

Write an Event Handler
To write an event-handling procedure, use code similar to the following example, which
is invoked when the user refreshes the worksheet:

Public Sub addin_AfterRefresh()
 MsgBox "Refresh event trapped in VBA"
End Sub

The name of the procedure is object-name + _ + event-name.

Be aware that an action can trigger multiple events. For example, if a user selects SAS
Solutions ð View ð Refresh, the table refresh event is triggered, followed by the
worksheet's refresh event. On the other hand, if a table object's Refresh method is called,
or if the user performs an action that affects a single table, then only that table's refresh
event is triggered.

Imagine that you want to resize the columns for a table each time the table is refreshed. To
ensure that the table columns are always resized correctly, you need to add the resizing
code to both the table0_AfterRefresh event handler and the
addin_AfterRefresh event handler. The code might resemble the following:

92 Chapter 6 • The SAS Financial Management Add-In API for Microsoft Excel

Example Code 6.1 Event Handler

Public WithEvents table0 As FMTable
Public WithEvents addin As FMAddin
...
' Event handler for table0
Private Sub table0_AfterRefresh()
 ' Temporarily disable screen updating
 Application.ScreenUpdating = False

 ' Resize columns to have a uniform width
 startColumn = table0.Position(fmArea_Column, fmType_startColumn)
 endColumn = table0.Position(fmArea_Column, fmType_endColumn)
 For col = startColumn To endColumn
 Columns(col).ColumnWidth = 20
 Next col

 ' Re-enable screen updating
 Application.ScreenUpdating = True
End Sub

' addin object's AfterRefresh event handler
Private Sub addin_AfterRefresh()
 Application.ScreenUpdating = False

 ' Check to be sure this table is in the active worksheet
 If Range(table0.Name).Worksheet.Name = ActiveSheet.Name Then
 ' Resize columns
 startColumn = table0.Position(fmArea_Column, fmType_startColumn)
 endColumn = table0.Position(fmArea_Column, fmType_endColumn)
 For col = startColumn To endColumn
 Columns(col).ColumnWidth = 20
 Next col
 End If

 Application.ScreenUpdating = True
End Sub

To handle a table refresh that occurs when the user selects SAS Solutions ð View ð
RefreshAll, you would write similar code for the addin_AfterRefreshAll event
handler.

If you wanted to resize the columns of all tables to have a uniform width, then you would
write an addin_AfterTableRefresh event handler, which would be called for each
table that was refreshed.

For more information about specific events, see the event summaries for the FMAddin
class and the FMTable class.

Activating the Log
The log for the SAS Add-In for Microsoft Office records information about queries
generated via the SAS add-ins for Microsoft Office applications, including the SAS
Financial Management Add-In for Microsoft Excel. You can write to the log using the
traceWrite function of the FMAddin class.

By default, this log is disabled.

General Usage Information 93

• For information about activating the log, see SAS Usage Note 19846 at http://
support.sas.com/kb/19/846.html. For information about directing the log
output to a file, see SAS Usage Note 38063 at http://support.sas.com/kb/
38/063/html.

• To prevent the log file from becoming too long, we recommend that you specify a
DebugLevel no higher than 2 in the configuration file.

Summary of Classes
The following table summarizes the classes that make up the API.

Table 6.1 Summary of Classes

Class Description

FMAddIn The top-level class for manipulating the add-in.

FMCollections Base class for other collections such as FMCrossingsCollection and
FMTablesCollection. Its properties and methods are inherited by
these subclasses.

FMCrossing Provides access to the properties of a crossing in a table or cube.

FMCrossingsCollection Represents a collection of crossings.

FMCube Represents a virtual cube (results model).

FMCubesCollection Represents a collection of cubes.

FMHierarchy Represents a hierarchy.

FMHierarchiesCollectio
n

Represents a collection of hierarchies.

FMMember Represents a member of a hierarchy.

FMMembersCollection Represents a collection of members.

FMTable Represents a table.

FMTablesCollection Represents a collection of tables.

FMUser Represents the user who is currently logged on.

94 Chapter 6 • The SAS Financial Management Add-In API for Microsoft Excel

http://support.sas.com/kb/19/846.html
http://support.sas.com/kb/19/846.html
http://support.sas.com/kb/38/063.html
http://support.sas.com/kb/38/063.html

The FMAddIn Class
The FMAddIn class is the top-level class in the API. From the FMAddIn object, you can
get a reference to the tables in the workbook, the cubes that are on the server, and the current
user.

Table 6.2 FMAddIn Property Summary

Property Description

Property Cubes As FMCubesCollection A collection of cubes that are on the server (and that you have access to).
Read-only.

Property isLoggedIn As Boolean If True, the user is logged on. Read-only.

Property MessageBoxEnabled As
Boolean

If False, pop-up messages are disabled from the SAS Financial
Management Add-In. Typically, you would set this property to False when
you are running in batch mode. The default is True. Read-write.

Property MessageBoxResponseOK
As Boolean

The default response to any suppressed message boxes. This property applies
only if MessageBox Enabled is set to False.

A value of True sets the default response to Yes or OK. A value of
False sets the default response to No or Cancel. The default is True.
Read-write.

Property Port As Long The port number of the middle-tier server. Read-only.

Property ReadOnly As Boolean This property applies if the user is viewing a data-entry form. If True, the
form cannot be edited.

Property Secure As Boolean True if the middle-tier server is using the Secure Sockets Layer (SSL)
protocol. Otherwise False. Read-only.

Property Server As String The name of the middle-tier server. Read-only.

Property Tables As FMTablesCollection A collection of tables. Read-only.

Property Url As String The URL to the middle-tier server on which SAS Financial Management is
running. Read-only.

Property User As FMUser A FMUser object that represents the user who is currently logged on. Read-
only.

Property Version As String The name and version number of this software. Read-only.

Property VersionDate As String The date of this version of the software. Read-only.

Property VersionID As String The version number of this software. Read-only.

The FMAddIn Class 95

Table 6.3 FMAddIn Class Method Summary

Function enumString (fmEnum As
fmEnums, enumValue As Long) As String

Returns the String equivalent of an enumerated constant—for example, the
value returned from a write operation, the name of a role, or an area of the
table.

Parameters:

• fmEnum: the type of enumerated constant. This parameter can be one of
the following: fmBudgetMode, fmDisplayMode, fmRole,
fmType, fmArea, fmSelection,
fmCreditsDebitsDisplay, or fmWriteBackReturn.

• enumValue: the value to be converted into a string.

Returns: a string that corresponds to enumValue for the specified type of
constant.

Many methods take enumerated constants as parameters or return them as
return values. The Write method returns an enumerated constant (a numeric
value). You can declare the variable that you are using for the return value
as an enumerated constant and then access its string representation. This code
fragment displays a message box for a write operation that failed, with the
reason for the failure:

Dim rc As fmWriteBackReturn
...
Set crossing = addin.Tables(0).crossing(4, 3)
rc = crossing.Write(111)
If rc <> fmWriteBackReturn_Succeeded Then
 MsgBox "return from write: " & _
 addin.enumString(fmWriteBackReturn, rc)
End If

Function findTable (sheetName As
String, row As Long, column As Long) As
FMTable

Finds the table object that corresponds to the specified sheet and position.

Parameters:

• sheetname: the name of a sheet in the workbook.

• row, column: the position of a table element.

Returns: an FMTable object.

Function getTableName (username As
String) As String

Returns the internal name of the table that corresponds to a name in the table
properties. By default, the first table a user inserts is named NewTable0,
the second table is NewTable1, and so on. The user might rename the table
in the table properties. However, the new name is only a display name. The
code requires the original name, which is available via the getTableName
function.

Parameters:

• username: the table name in the table properties.

Returns: the original table name.

96 Chapter 6 • The SAS Financial Management Add-In API for Microsoft Excel

Function Login (environment As String,
username As String, password As String) As
Boolean

Logs the user on to the middle tier.

If the user is already logged on, this function returns True even if the
parameter values are incorrect.

Parameters:

• environment, username, and password: the environment, user name, and
password for logging on to the middle tier. These parameters are the same
values that you would use to log on from the SAS Solutions menu in
Excel. The environment value is site-specific. Environments are defined
in the EnvironmentFactory.xml file. For more information, see
“Specifying the Solutions Environment” on page 22.

We recommend generating an encoded or encrypted password that you
can copy and paste into your code, rather than using a plain-text
password. For more information, see the SAS Intelligence Platform:
Security Administration Guide.

Returns: True if the user is already logged on or if the login succeeds;
otherwise, False.

Function Logoff() As Boolean Logs the user off the middle tier.

Returns: True if the action succeeded; otherwise, False.

Function Refresh() As Boolean Refreshes the selected worksheet. This action is similar to the Refresh action
from the SAS Solutions menu.

Returns: True if the action succeeded; otherwise, False.

Function RefreshAll() As Boolean Refreshes all open worksheets in the selected file. This action is similar to
the Refresh All action from the SAS Solutions menu.

Returns: True if the action succeeded; otherwise, False.

Function traceWrite (traceString As
String) As Boolean

Writes the contents of traceString to the log for SAS Add-In for Microsoft
Office. This method is helpful in debugging your code.

Parameters:

• traceString: the string to write.

By default, the log is disabled. See “Activating the Log” on page 93.

Table 6.4 FMAddin Event Summary

Event Description

Event AfterLogOff() Triggered after the user logs off from the middle tier. A logoff event occurs
when there is a call to the Logoff method of the FMAddin object or when
the user selects Log Off from the SAS Solutions menu.

Event AfterLogon() Triggered after the user has logged on. This event occurs when there is a call
to the Login method of the FMAddin object, when the user selects Log On
from the SAS Solutions menu, or when the user opens an Excel report from
the portal.

Event AfterRefresh() Triggered after a refresh action—for example, if there is a call to
addin.Refresh() or if the user selects SAS Solutions ð View ð
Refresh.

The FMAddIn Class 97

Event Description

Event AfterRefreshAll() Triggered if there is a call to addin.RefreshAll() or if the user selects
SAS Solutions ð View ð RefreshAll.

Event AfterTableRefresh (table As
FMTable)

Triggered after a table has been refreshed. This event might occur if there is
a call to the Refresh method of a table object, if the user selects Refresh or
RefreshAll from the View menu, or if the user performs some other manual
action, such as a pivot, that triggers a refresh.

If the user refreshes a worksheet, the table refresh event and the addin refresh
event are triggered, in that order.

Parameters:

• table: an FMTable object that represents the table that was refreshed. If
you refresh a worksheet that contains multiple tables, the
AfterTableRefresh event is triggered multiple times, once for each table.

This event handler displays a message that includes the name of the table that
was refreshed:

Private Sub addin_AfterTableRefresh(ByVal table As FMTable)
 txt = "Addin afterRefresh: " + table.Code
 MsgBox txt
End Sub

Event BeforeLogOff() Triggered when logoff has been requested but before the user logs off. This
event handler returns a Boolean. If the return value is True, the logoff
continues. If the return value is False, the logoff is canceled. Here is an
example:

Private Function addin_BeforeLogOff() As Boolean
 response = MsgBox("Do you really want to log off?", _
 vbOKCancel, "SAS Financial Management")
 If response = vbOK Then
 addin_BeforeLogOff = True
 Else
 ' Cancel the logoff process
 addin_BeforeLogOff = False
 End If
End Function

Event BeforeTableRefresh (table
As FMTable)

Triggered before a table is refreshed. You might use this event handler to
disable screen updating while you are modifying the screen. In the
AfterTableRefresh event handler, you could re-enable screen updating.

Parameters:

• table: an FMTable object that represents the table that was refreshed. If
you refresh a worksheet that contains multiple tables, the
BeforeTableRefresh event is triggered multiple times, once for each
table.

The FMCollections Class
The FMCollections class is the base class for several other collections:
FMCrossingsCollection, FMCubesCollection, FMHierarchiesCollection,

98 Chapter 6 • The SAS Financial Management Add-In API for Microsoft Excel

FMMembersCollection, and FMTablesCollection. Its properties and methods for
manipulating a collection are inherited by these subclasses.

Note: Do not invoke this class directly. Instead, use one of its subclasses.

Table 6.5 FMCollections Class Property Summary

Property Description

Property Count As Long The number of items in the collection. Read-only.

Table 6.6 FMCollections Class Method Summary

Class Description

Sub Add (item) Adds a single item to the collection.

Parameters:

• item: the item to add.

This example creates a FMMembersCollection object and adds two members of
the ACCOUNT.AccountType hierarchy to the collection:

Dim hierarchy As FMHierarchy
Dim excmems As New FMMembersCollection
Set hierarchy = addin.Tables(0).Hierarchies("ACCOUNT.AccountType")
Call excmems.Add(hierarchy.Members("StatisticalBalance"))
Call excmems.Add(hierarchy.Members("Equity"))

Sub AddAll(item) Adds a collection of items to the collection.

Parameters:

• item: a collection of items to add (for example, an FMMembersCollection
object that represents a collection of members).

This example creates a FMMembersCollection object and adds all the members of
the ACCOUNT.AccountType hierarchy to the collection:

Dim hierarchy As FMHierarchy
Dim mems As New FMMembersCollection
Set hierarchy = addin.Tables(0).Hierarchies("ACCOUNT.AccountType")
Call mems.AddAll(hierarchy.Members)

Sub Clear() Clears the collection.

Function Contains (item) As
Boolean

Returns: True if the collection contains the specified item.

Parameters:

• item: a single item (for example, an FMMember object if you are searching an
FMMembersCollection instance).

Function IndexOf (item) As Long Returns: the zero-based index (position) of the specified item in the collection, or
-1 if the item is not found.

Parameters:

• item: an object of the collection type (for example, an FMMember object).

The FMCollections Class 99

Class Description

Sub Insert (index As Long, item) Inserts item at the index position in the collection.

Parameters:

• index: a (zero-based) index into the collection.

• item: an object of the collection type.

Sub InsertAll (index As Long,
item)

Inserts a collection at the index position in the collection.

Parameters:

• index: a (zero-based) index into the collection.

• item: an object that represents a collection (for example, an
FMMembersCollection object).

Sub Remove (item) Removes an object from a collection (if the object is found).

Parameters:

• item: an item in a collection.

Sub RemoveAt (index As Long) Removes the item at the index position in the collection.

Parameters:

• index: a (zero-based) index into the collection.

Function ToString () As String Returns: a string that represents the concatenated codes of all the elements in the
collection.

The FMCrossing Class
The FMCrossing class provides access to the properties of a crossing. In a table, a crossing
is determined by its position in the table (row and column). In a cube, a crossing is
determined by a two-dimensional String array of dimension codes and member codes. For
examples, see the FMCube class (“The FMCube Class” on page 102) or the FMTable class
(“The FMTable Class” on page 114).

Table 6.7 FMCrossing Class Property Summary

Property Description

Property Code As String An identifier for this crossing. For table crossings, the code is a string that
contains information about the row and column for the crossing. For
crossings in a cube, the code is a concatenated string of model code,
dimension codes, and member codes, such as the following:

DefaultModel_ACCOUNT_NETINCOME_TIME_JAN2003_ANALYSIS_BUDGET...

Read-only.

Property Column As Long The column position of this crossing. Applies only to tables. Read-only.

100 Chapter 6 • The SAS Financial Management Add-In API for Microsoft Excel

Property Description

Property ColumnRelative As Long The column position of this crossing, relative to the leftmost column of the
table (crossingColumn - firstColumn + 1). Applies only to tables. Read-only.

Property DimensionMembers As
String()

A two-dimensional array of strings that contain the dimensions and members
that apply to this crossing, in the form (dimension, member). Read-only.

Property Length As Long The number of dimensions in this crossing. Read-only.

Property NewValue As Double For a cube or a table, the NewValue is the value that is written to the server
for this crossing when the BatchWrite method is called. Read/write.

Property Row As Long The row position of this crossing. Applies only to tables. Read-only.

Property RowRelative As Long The row position of this crossing, relative to the topmost row of the table
(crossingRow - firstRow + 1). Applies only to tables. Read-only.

Property ScaledValue As Double For tables, this property contains the value of the crossing divided by the
current scale of the table. This value is similar to the value that is shown in
the table.

For cubes, this property contains the value of the crossing. (It is identical to
the Value property.)

Read-only.

Property Value As Double The value of this crossing, before any table scaling is applied. Read-only.

Property Writeable As Boolean If True, the crossing is writable. Read-only.

Table 6.8 FMCrossing Class Method Summary

Method Description

Function GetMember (item As String) As
FMMember

Returns the member of this crossing for the specified dimension code.

Parameters:

• item: a dimension code, such as ACCOUNT or ORG.

Function GetMemberCode (item As
String) As String

Returns the member code in this crossing for the specified dimension code.

Parameters:

• item: a dimension code.

Function Write (value As Double) As
fmWriteBackReturn

Writes value to this crossing.

Returns: the status of the write operation, which can be one of the following:
fmWriteBackReturn_Succeeded,
fmWriteBackReturn_FailedCantUpdateForm,
fmWriteBackReturn_FailedReadOnly,
fmWriteBackReturn_FailedNoValueChange,
fmWriteBackReturn_FailedNoValue,
fmWriteBackReturn_FailedNoXRate, or
fmWriteBackReturn_FailedUnknown.

The FMCrossing Class 101

The FMCrossingsCollection Class
The FMCrossingsCollection class represents a collection of crossings. This class is a
subclass of FMCollections.

The following properties are inherited from FMCollections: Count.

The following methods are inherited from FMCollections: Add, AddAll, Clear, Contains,
IndexOf, Insert, InsertAll, Remove, RemoveAt, ToString.

The FMCube Class
An FMCube object represents a virtual cube (results model). With the FMCube class, you
can access metadata from the Solutions data mart. An instance of the FMCube class can
be the entry point for metadata about results models, hierarchies, and members. With
FMCube methods, you can also read and write facts.

The FMCube class works independently of read-only tables, data entry tables, and CDA
expressions. As a result, your code is able to interact with metadata and with facts.

To perform a query for a cube:

1. Get a reference to the cube.

2. Get a reference to the cube's crossings collection, which is empty to begin with.

3. Get the crossings for a particular set of (dimension code, member code) values, and add
them to the cube's crossings collection.

At this point, you have the metadata for the crossings, but you have no corresponding
values.

4. Call the cube's ExecuteQuery method to get the values for each crossing in the
collection.

The (dimension code, member code) values in the cube's crossings collection are the
parameters for the query. If you omit a dimension from the set of parameters, the model's
default read member for that dimension is used.

This example creates a set of query parameters, performs a query, and displays the results.

Example Code 6.2 Query on a Cube

Public addin As FMAddIn
Dim crossing As FMCrossing
Dim crs As FMCrossing
Dim crossings As FMCrossingsCollection
Dim cube As FMCube
Dim member As FMMember

Public Sub testCube()
 Set Connection = _
 Application.COMAddIns.Item("SASSESExcelAddIn.Connect").Object
 Set addin = Connection.FMAddIn

 If addin.IsLoggedIn = False Then

102 Chapter 6 • The SAS Financial Management Add-In API for Microsoft Excel

 MsgBox "Please log in..."
 Exit Sub
 End If

 ' Get reference to cube
 Set cube = addin.Cubes("Default_Model")

 ' Specify dimension, member pairs
 ' to be used as default parameters for query
 Dim dm() As String
 ReDim dm(9, 1)
 dm(0, 0) = "ACCOUNT"
 dm(0, 1) = "A6520"
 dm(1, 0) = "TIME"
 dm(1, 1) = "JAN2003"
 dm(2, 0) = "FREQUENCY"
 dm(2, 1) = "PA"
 dm(3, 0) = "ORG"
 dm(3, 1) = "BMRM"
 dm(4, 0) = "ANALYSIS"
 dm(4, 1) = "BUDGET"
 dm(5, 0) = "COUNTRY_D"
 dm(5, 1) = "WW.vc"
 dm(6, 0) = "TRADER"
 dm(6, 1) = "EXT"
 dm(7, 0) = "PERIODS"
 dm(7, 1) = "AP.vc"
 dm(8, 0) = "PRODUCT"
 dm(8, 1) = "B0815"
 dm(9, 0) = "CURRENCY"
 dm(9, 1) = "USD"

 ' Get reference to crossings collection for this cube
 ' (Collection is currently empty.)
 Set crossings = cube.crossings

 ' Get reference to crossings for YR2001 in TIME dimension
 ' and add to crossings collection
 For Each member In cube.Hierarchies("TIME").GetMembers("YR2001", True, False)
 ' Replace member code for TIME dimension in array
 dm(1, 1) = member.Code
 ' Get the crossing for this member
 Set crossing = cube.crossing(dm)
 ' Add this crossing to the collection
 Call crossings.Add(crossing)
 Next member

 ' Execute query to fetch values for each crossing in collection
 cube.ExecuteQuery

 ' Display values for each member of TIME dimension
 For Each crs In cube.crossings
 MsgBox crs.GetMemberCode("TIME") + " = " + Str(crs.Value)
 Next crs
 End Sub

The FMCube Class 103

After you perform a query, the values that the query returns are available locally. Before
performing any additional queries, you would call the cube's ClearQuery method and then
define the parameters for the new query.

To write values to a cube, you can call the cube's Write method with the crossing and new
value as arguments, or you can set the NewValue property for each crossing that you want
to affect and then call the cube's BatchWrite method. Here is an example of a batch write
for a cube.

Example Code 6.3 Batch Write for a Cube

Dim dm() As String
ReDim dm(9, 1)
dm(0, 0) = "ACCOUNT"
dm(0, 1) = "A6520"
dm(1, 0) = "TIME"
dm(1, 1) = "JAN2003"
...
dm(9, 0) = "CURRENCY"
dm(9, 1) = "USD"

Set crossings = cube.crossings

' Create new crossings and add to cubes crossings collection
For Each member In cube.Hierarchies("TIME").GetMembers("YR2002", True, False)
 ' One crossing for each month in year 2002
 dm(1, 1) = member.Code
 Set crossing = cube.crossing(dm)
 Call crossings.Add(crossing)
 crossing.newValue = newValue
Next member

cube.ExecuteQuery

' Write new values
rc = cube.BatchWrite(True)

Table 6.9 FMCube Class Property Summary

Property Description

Property Code As String The code for this cube (for example, Default_Model). Read-only.

Property Crossings As
FMCrossingsCollection

The collection of crossings in this cube. Read-only.

Property CurrencyHierarchy As
FMHierarchy

An FMHierarchy object that contains the currency hierarchy for this cube.
Read-only.

Property Description As String The description of this cube. Read-only.

104 Chapter 6 • The SAS Financial Management Add-In API for Microsoft Excel

Property Description

Property Hierarchies As
FMHierarchiesCollection

A collection of hierarchies (both server hierarchies and client attribute
hierarchies) in this cube. Read-only.

Server hierarchies are hierarchies that are defined on the server and that are
being used in the specified results model, either directly (via an FMCube
object) or via a virtual cube that is attached to an FMTable object. They are
based on the required dimensions (such as ACCOUNT, ANALYSIS, and
TIME) and any custom defined dimensions (such as PRODUCT or
COSTCENTER).

Client attribute hierarchies are virtual hierarchies that exist only on the client
side. They are based on dimension attributes (both system properties and
custom properties).

Property Id As Long A unique numeric identifier from the Solutions data mart. Read-only.

Property Index As Long The position of this cube within the cubes collection. Read-only.

Property Name As String The name of this cube. Read-only.

Property ServerHierarchies As
FMHierarchiesCollection

The collection of server hierarchies that are associated with the cube. Read-
only.

For more information about server hierarchies, see the description of the
Hierarchies property.

Table 6.10 FMCube Class Method Summary

Method Description

Function BatchWrite (reQuery As
Boolean) As fmWriteBackReturn

Writes the accumulated transactions to the server. Parameters:

• reQuery: the requery flag. If True, the function performs a requery and
repaint after the write operation. If False, the function performs a
repaint only.

Returns: fmWriteBackReturn_Succeeded,
fmWriteBackReturn_FailedCantUpdateForm,
fmWriteBackReturn_FailedReadOnly,
fmWriteBackReturn_FailedNoValueChange,
fmWriteBackReturn_FailedNoValue,
fmWriteBackReturn_FailedNoXRate, or
fmWriteBackReturn_FailedUnknown.

Note: The BatchWrite method does not honor driver formulas. As an
alternative, you can include the driver formula calculations in your code or
execute the Run driver formula function on the form set. See the online Help
for SAS Financial Management Studio, or the description of the
generateFormulaFacts method in “The Model Class (Financial Models
Only)” on page 45.

Function BatchWriteNew (reQuery As
Boolean) As fmWriteBackReturn

The BatchWriteNew function behaves like the BatchWrite function. The
difference is that BatchWriteNew returns failure codes for each cell write
failure, whereas BatchWrite returns only the last failure code.

Sub ClearQuery () Clears the query definitions on the cube.

The FMCube Class 105

Method Description

Function Crossing (item) As
FMCrossing

Returns the crossing that is represented by item.

Parameters:

• item: an array of dimension code/member code value pairs.

Sub ExecuteQuery () Queries the server for all crossings that are defined for the cube.

Function isWriteable() As Boolean Returns True if the cube is writeable.

Function Write (crossing As
FMCrossing, newValue As Double) As
fmWriteBackReturn

Writes newValue to the specified crossing.

Parameters:

• crossing: an FMCrossing object.

• newValue: the value to write.

Returns: fmWriteBackReturn_Succeeded,
fmWriteBackReturn_FailedCantUpdateForm,
fmWriteBackReturn_FailedReadOnly,
fmWriteBackReturn_FailedNoValueChange,
fmWriteBackReturn_FailedNoValue,
fmWriteBackReturn_FailedNoXRate, or
fmWriteBackReturn_FailedUnknown.

The FMCubesCollection Class
The FMCubesCollection class represents a collection of cubes that are available on the
server (and that the user has permission to access). This class is a subclass of
FMCollections.

The following properties are inherited from FMCollections: Count.

The following methods are inherited from FMCollections: Add, AddAll, Clear, Contains,
IndexOf, Insert, InsertAll, Remove, RemoveAt, ToString.

The FMHierarchiesCollection Class
The FMHierarchiesCollection class represents a collection of hierarchies. This class is a
subclass of FMCollections.

The following properties are inherited from FMCollections: Count.

The following methods are inherited from FMCollections: Add, AddAll, Clear, Contains,
IndexOf, Insert, InsertAll, Remove, RemoveAt, ToString.

106 Chapter 6 • The SAS Financial Management Add-In API for Microsoft Excel

The FMHierarchy Class
The FMHierarchy class has properties and methods for accessing members of a hierarchy.
For more information about types of hierarchies, see the Hierarchies property of the
FMCube class (“The FMCube Class” on page 102) or the FMTable class (“The FMTable
Class” on page 114).

Note: Some properties (such as position, role, and available members) apply only to
hierarchies that are associated with a table, rather than a cube.

One method to note in the FMHierarchy class is the ShowMemberSelectionDialog method.
This method displays a dialog box from which users can select a member of a specified
hierarchy. The following example presents a dialog box from which the user can select a
member of the TIME hierarchy.

Example Code 6.4 Selecting a Hierarchy Member

Dim cube As FMCube
Dim hier As FMHierarchy
Dim selmem As FMMember
Dim premem As FMMember
Dim exclude As FMMembersCollection
...
' Get an instance of the results model /cube + hierarchy
Set cube = addin.Cubes("Default_Model")
Set hier = cube.Hierarchies("TIME")

' Set a preselected member
Set premem = hier.Members("YR2005")
' ... or use the default
' Set selmem = Nothing

' Prepare a list of members to exclude from the dialog
Set exclude = New FMMembersCollection

' Add YR1997 and all descendants of YR1997 to the list
Call exclude.Add(hier.Members("YR1997"))
For Each member In hier.GetMembers("YR1997", True, False)
 Call exclude.Add(member)
Next member

' Display the dialog with preselected member and exclusion list
Set selmem = hier.ShowMemberSelectionDialog(premem, exclude, fmDisplayMode_CodeAndDescription)
' ...or use default member and no exclusion list
' Set selmem = hier.ShowMemberSelectionDialog(Nothing, Nothing, fmDisplayMode_CodeAndDescription)

The ShowMemberSelectionDialog method displays the Select Member dialog box. In this
case, YR2005 would be pre-selected, and YR1997 and its descendants would be excluded.

The user selects a member of the hierarchy and clicks OK. The return value is the selected
member.

The FMHierarchy Class 107

Table 6.11 FMHierarchy Class Property Summary

Property Description

Property Asof As Double The as-of date for this hierarchy. Read-only.

To view this date as an Excel date, store it in a Date field. For example:

Dim hier as FMHierarchy
Dim dt as Date
...
dt = hier.Asof
MsgBox Str(dt)

Property AvailableMembers As
FMMembersCollection

A list of the hierarchy members that are available after the member selection
rules have been applied. Read-only.

Property Code As String The dimension code that applies to this hierarchy. Read-only.

Property Description As String The description of this hierarchy. Read-only.

Property DimensionCode As String The dimension code that applies to this hierarchy. Read-only.

Property DimensionDescription
As String

The dimension description that applies to this hierarchy. Read-only.

Property DimensionId As Long The dimension ID that applies to this hierarchy. Read-only.

Property DimensionName As String The dimension name that applies to this hierarchy. Read-only.

Property DimensionTypeCode As
String

The dimension type code that applies to this hierarchy. Read-only.

Property
DimensionTypeDescription As
String

The dimension type description that applies to this hierarchy. Read-only.

Property DimensionTypeID As Long A unique numeric identifier from the Solutions data mart. Read-only.

Property DimensionTypeName As
String

The dimension type name that applies to this hierarchy. Read-only.

Property DisplayedMembers As
FMMembersCollection

A collection of the hierarchy members that are currently being displayed.
Read-only.

This example creates a collection of the members of the ACCOUNT
hierarchy that are currently displayed in the specified table and displays the
results in a message box:

Dim txt as String
Set hierarchy = addin.Tables(0).Hierarchies("ACCOUNT")
txt = "All displayed members in " & hierarchy.Description _
 & Chr$(10)
For Each member In hierarchy.DisplayedMembers
 txt = txt & " " & member.Code
Next member
MsgBox txt

108 Chapter 6 • The SAS Financial Management Add-In API for Microsoft Excel

Property Description

Property DisplayMode As
fmDisplayMode

The labeling method for this hierarchy, which specifies the way displayed
members are identified. The value can be one of the following:

• fmDisplayMode_Code

• fmDisplayMode_Name

• fmDisplayMode_Description

• fmDisplayMode_CodeAndName

• fmDisplayMode_CodeAndDescription

Read/write.

Property HierarchyCode As String The code for this hierarchy. Read-only.

Property HierarchyIndex As Long For a table, this value represents the index of this hierarchy in the set of
dimensions that make up the query for the table. For cubes, this value is
always -1. Read-only.

Property ID As Long A unique numeric identifier from the Solutions data mart. Read-only.

Property LeafMembers As
FMMembersCollection

A collection of the leaf members of this hierarchy. Read-only.

Property Members As
FMMembersCollection

A collection of the members of this hierarchy. Read-only.

Property Name As String The name of this hierarchy. Read-only.

Property Position As Long The position of this hierarchy within its section. The section is determined
by the Role property. (See below.) If the hierarchy is in the Available list, its
position is –1. Read/write.

Property ReadableMembers As
FMMembersCollection

A collection of hierarchy members that are readable by the current user. Read-
only.

Property ReadDefaultMember As
FMMember

The default Read member for this hierarchy. Read/write.

The FMHierarchy Class 109

Property Description

Property Role As fmRole The role of this hierarchy. Read/write.

The role determines the section in which the hierarchy appears. It can have
one of the following values:

• fmRole_Row: row

• fmRole_Column: column

• fmRole_Slicer: slicer

• fmRole_Available: available for use in a row, column, or slicer

This example performs a pivot of a table by changing the Role and Position
properties of a Hierarchy object. When the code has been executed, the
ACCOUNT hierarchy is the first column heading in the table.

Set table = addin.Tables("NewTable0")
Set hierarchy = table.Hierarchies("ACCOUNT")
hierarchy.role = fmRole_Column hierarchy.Position = 0
' Refresh with a requery
table.Refresh (True)

Property TargetMember As
FMMember

The hierarchy member that a form is assigned to. Read-only.

Property VCFilter As Boolean If True, the table is filtered so that virtual children are not included. If
False, virtual children are included. Read/write.

Property WriteDefaultMember As
FMMember

The default Write member for this hierarchy. Read/write.

Table 6.12 FMHierarchy Class Method Summary

Method Description

Function ChangeSlicer (item) As Boolean Changes the hierarchy member that is used as the slicer. For example,
if you are using a member of the TIME hierarchy as a slicer, you might
change from one year to another. (The hierarchy must already be
functioning as a slicer. In other words, if the hierarchy is being used
in a column or row or is simply available for use, the ChangeSlicer
method will not work.)

Parameters:

• item: the member of the hierarchy that will become the new slicer.
It can be an index into the hierarchy or a member code.

Returns: True if the change succeeded; otherwise, False.

In this example, a member of the ACCOUNT hierarchy is being used
as a slicer. The code changes the member to A1000:

Set hierarchy = addin.Tables(0).Hierarchies("ACCOUNT")
rc = hierarchy.ChangeSlicer("A1000")

110 Chapter 6 • The SAS Financial Management Add-In API for Microsoft Excel

Method Description

Function GetMembers (item, recurse As
Boolean, reverse As Boolean) As
FMMembersCollection

Returns a collection of members of this hierarchy, beginning with the
first child of the member that is selected by item.

Parameters:

• item: the hierarchy member on which to begin processing. This
parameter can be an index into the hierarchy or a member code.

• recurse: the recursion flag. If True, the function performs a
recursive search and returns all descendants. If False, it returns
only the member's children.

• reverse: the reverse order flag. If True, the function returns the
results in reverse order. If False, the children are returned in the
same order in which they appear in the hierarchy.

This example returns all descendants of the first member of the
ACCOUNT hierarchy for a table:

Dim txt As String
Dim member As FMMember
Set hierarchy = _
 addin.Tables("NewTable0").Hierarchies("ACCOUNT")
txt = "All descendants of " _
 & hierarchy.Members(0).Description & " in " _
 & hierarchy.Description & " hierarchy" & Chr$(10)
For Each member In hierarchy.GetMembers(0, True, False)
 txt = txt & " " & member.Code
Next member
MsgBox txt

Function IsFlatDimensionType () As
Boolean

Returns: True if this hierarchy belongs to a flat dimension type;
otherwise, False. Read-only.

There are three dimension types that must have flat hierarchies:
ANALYSIS, CURRENCY, and FREQUENCY. In addition, a client
attribute hierarchy is a flat dimension type. (For more about client
attribute hierarchies, see the description of the FMTable.Hierarchies
property at “The FMTable Class” on page 114.)

Function
IsNonVirtualChildDimensionType ()
As Boolean

Returns: True if the hierarchy does not include virtual children;
otherwise, False. Read-only.

Function IsServer () As Boolean Returns: True if this hierarchy is defined on the server.

Function SelectSlicerMember
(DisplayMode As fmDisplayMode) As
FMMember

Displays the Select Member dialog box for a slicer.

Parameters:

• displayMode: the way displayed members are identified (the
labeling method). The value can be one of the following:
fmDisplayMode_Code, fmDisplayMode_Name,
fmDisplayMode_Description,
fmDisplayMode_CodeAndName, or
fmDisplayMode_CodeAndDescription.

Returns: the selected member of the hierarchy.

The FMHierarchy Class 111

Method Description

Function ShowMemberSelectionDialog
(item, exclude As FMMembersCollection,
displayMode As fmDisplayMode) As FMMember

Displays the Show Members dialog box, from which users can select
a member of the specified hierarchy.

Parameters:

• item: the member that you want to be highlighted in the dialog
box.

• exclude: a collection of members to be excluded from the dialog
box. To display all members, create a collection but do not assign
it any values, as in this example: Dim excmems as New
FMMembersCollection

• displayMode: the way displayed members are identified (the
labeling method). The value can be one of the following:
fmDisplayMode_Code, fmDisplayMode_Name,
fmDisplayMode_Description,
fmDisplayMode_CodeAndName, or
fmDisplayMode_CodeAndDescription.

Returns: the selected member of the hierarchy, which can be used in
several ways. For example, the selected member could be used as input
to code that modifies a CDA expression.

The FMMember Class
The FMMember class represents a member of a hierarchy, which can be displayed or not.
For members of displayed hierarchies, the selection rules can be modified.

Note: Some properties and methods (such as the SelectionRule property and the Expand
method) apply only to members of hierarchies that are associated with tables.

Table 6.13 FMMember Class Property Summary

Property Description

Property Asof As Double The as-of date for this member. Read-only.

To view this date as an Excel date, store it in a Date field.

Property Code As String The code for this hierarchy member. Read-only.

Property Column As Long The column position of the top left cell of this member's position in the table.
Read-only.

Property Description As String The description of a member of a hierarchy. Read-only.

Property ID As Long A unique numeric identifier from the Solutions data mart. Read-only.

Property Level As Long The level of this member in the current hierarchy. The top member of the
hierarchy has a level of 0. Read-only.

Property Name As String The name of a member of a hierarchy. Read-only.

112 Chapter 6 • The SAS Financial Management Add-In API for Microsoft Excel

Property Description

Property Row As Long The row position of the top left cell of this member's position in the table.
Read-only.

Property SelectionRule As
fmSelection

Gets or sets the selection rule for a displayed hierarchy member. Read/write.

The value can be one of the following enumerated constants:

fmSelection_Member: selects the designated member.

fmSelection_Descendants: selects the entire subhierarchy
subordinate to the designated member but not including the designated
member itself.

fmSelection_MemberAndChildren: selects the designated
member and all members that are immediately subordinate to it.

fmSelection_MemberAndDescendants: selects the entire
subhierarchy from the designated member down.

fmSelection_MemberAndLeaf: selects the designated member and
all members that are subordinate to it but that have no members under them.
For example, in a Time hierarchy that included years, quarters, and months,
this value would select year and months, but not quarters.

fmSelection_Children: selects all members that are immediately
subordinate to the designated member.

fmSelection_Leaf: selects all members that are subordinate to the
designated member but have no members subordinate to them.

fmSelection_NoMember: excludes the designated member from the
subset. All members that are subordinate to the designated member are also
excluded, unless you apply additional rules to one or more of these
subordinate members.

fmSelection_NoRule: removes any rules from the designated
member.

This code modifies selection rules for the ACCOUNT, ANALYSIS, and
ORG hierarchies in a table:

Set addin = conn.FMAddIn
Set table = addin.Tables("NewTable0")

Set hier = table.Hierarchies("ACCOUNT")
hier.Members("A8000").SelectionRule = fmSelection_NoMember
hier.Members("A7400").SelectionRule = fmSelection_Member
hier.Members("A6300").SelectionRule = fmSelection_NoMember
hier.Members("A7800").SelectionRule = _
 fmSelection_MemberAndDescendants
hier.Members("A7900").SelectionRule = fmSelection_NoMember
hier.Members("A8100").SelectionRule = fmSelection_Member

Set hier = table.Hierarchies("ANALYSIS")
hier.Members("ACTUAL").SelectionRule = fmSelection_Member
hier.Members("BUDGET").SelectionRule = fmSelection_NoMember

Set hier = table.Hierarchies("ORG")
hier.Members("PLD").SelectionRule = fmSelection_Member

' Refresh the table to see the results
table.Refresh (True)

The FMMember Class 113

Table 6.14 FMMember Class Method Summary

Method Description

Sub Collapse() Collapses the member to hide all its descendants.

Sub Expand () Expands the member to display all its children.

Sub ExpandAll () Expands the member to display all its descendants.

Function getParent() As FMMember Returns: the parent of this member. If this member is a top-level member, it
returns this member.

Function
IsClientAttributeFilter() As
Boolean

Returns: True if this member is a member attribute filter.

Function
IsClientCalculatedMember() As
Boolean

Returns: True if this member is a client calculated member.

Function IsLeaf() As Boolean Returns: True if this member is a leaf member.

Function IsReadable() As Boolean Returns: True if this member is readable by the current user.

Function IsServer() As Boolean Returns: True if this member is defined on the server.

Function IsVirtual() As Boolean Returns: True if this member is a virtual child.

Function IsWriteable() As Boolean Returns: True if this member is writable by the current user.

The FMMembersCollection Class
The FMMembersCollection class represents members of a hierarchy. This class is a
subclass of FMCollections.

The following properties are inherited from FMCollections: Count.

The following methods are inherited from FMCollections: Add, AddAll, Clear, Contains,
IndexOf, Insert, InsertAll, Remove, RemoveAt, ToString.

The FMTable Class
An FMTable object represents a read-only table or a data entry table. Some elements, such
as layout and scale, can be manipulated directly on the table object. Other operations, such
as filtering virtual children and showing or hiding members, must be manipulated on the
FMHierarchy or FMMember objects that belong to the table.

Note: The FMTable class does not apply to CDA tables. Use the FMCube class instead.

114 Chapter 6 • The SAS Financial Management Add-In API for Microsoft Excel

Table 6.15 FMTable Class Property Summary

Property Description

Property Code As String The code for this table. Read-only.

Property Credit As
fmCreditsDebitsDisplay

The manner in which credit values are displayed in this table. Read/write.

Possible values are as follows:

fmCreditsDebitsDisplay_Default: uses the default for the
result model

fmCreditsDebitsDisplay_Negative: displays credits as
negative numbers

fmCreditsDebitsDisplay_Positive: displays credits as
positive numbers

Property Crossings As
FMCrossingsCollection

A collection of crossings in this table. Read-only.

Property Debit As
fmCreditsDebitsDisplay

The manner in which debit values are displayed in this table. Read/write.

Possible values are as follows:

fmCreditsDebitsDisplay_Default: uses the default for the
result model

fmCreditsDebitsDisplay_Negative: displays debits as
negative numbers

fmCreditsDebitsDisplay_Positive: displays debits as positive
numbers

Property
DisplayDebitCreditOnLabel As
Boolean

This setting applies to account member labels. If True, each row and column
heading contains the word (debit) or (credit), whichever is
applicable. Read/write.

Property FilterInvalid As Boolean If True, rows or columns that contain only invalid values are not displayed.
Read/write.

Property
FilterInvalidOnColumns As
Boolean

If True, columns that contain only invalid values are not displayed. Read/
write.

Property FilterInvalidOnRows As
Boolean

If True, rows that contain only invalid values are not displayed. Read/write.

Property FilterZeros As Boolean If True, rows or columns that contain only zero values are not displayed.
Read/write.

Property FilterZerosOnColumns
As Boolean

If True, columns that contain only zero values are not displayed. Read/write.

Property FilterZerosOnRows As
Boolean

If True, rows that contain only zero values are not displayed. Read/write.

Property FreezeCells As Boolean If True, users cannot alter the table layout by operations such as changing
the role of dimensions, expanding or collapsing hierarchies, adding or
removing filters, and adding or removing calculated members. Read/write.

The FMTable Class 115

Property Description

Property Hierarchies As
FMHierarchiesCollection

A collection of hierarchies (both server hierarchies and client attribute
hierarchies) in this table. Read-only.

Server hierarchies are hierarchies that are defined on the server and that are
being used in the specified results model, either directly (via an FMCube
object) or via a virtual cube that is attached to an FMTable object. They are
based on the required dimensions (such as ACCOUNT, ANALYSIS, and
TIME) and any custom defined dimensions (such as PRODUCT or
COSTCENTER).

Client attribute hierarchies are virtual hierarchies that exist only on the client
side. They are based on dimension attributes—both system properties and
custom properties.

The collection of hierarchies includes both hierarchies that are displayed in
the table and hierarchies with a role of fmRole_Available, meaning
that they are part of the table but are not currently displayed. Instead, their
default read and write members are used in the table crossings.

Note: Custom properties hierarchies are treated like any other hierarchy.

Property Index As Long The position of this table within the tables collection. Read-only.

Property Model As String The code for the model that is used in this table. Read/write.

Property Name As String The name of this table. Read-only.

Property ReadOnly As Boolean If True, this table is read-only. Read-only.

Property
RefreshOnOtherTableUpdate As
Boolean

If True, this table is refreshed when other tables in the same worksheet
change. Read/write.

For example, you might set this property to True for a read-only table so
that it is refreshed when a user enters a value in a data entry table in the same
worksheet.

Property ScaleValue As Double The value by which displayed values are scaled. The actual computed values
are divided by this number before they are displayed. Read/write.

Property ServerHierarchies As
FMHierarchiesCollection

The collection of server hierarchies that are associated with the table. Read-
only.

For more information about server hierarchies, see the description of the
Hierarchies property.

116 Chapter 6 • The SAS Financial Management Add-In API for Microsoft Excel

Table 6.16 FMTable Class Method Summary Areas of a Table

Method Description

Sub BatchWrite () Writes the accumulated transactions to the server.

Writeback is the process of writing back facts to the server. A writeback
occurs when the user enters a value in a data entry table and presses ENTER.
Normally, this operation requires one trip to the server for each value that
the user enters. The BatchWrite method enables you to perform multiple
updates with a single writeback. The process is as follows:

1. Call the TransactionBegin method for a data entry table, to begin
accumulating values.

2. Write values to the table cells, either manually or programmatically. At
this point, only the client-side representation is updated.

3. Call the BatchWrite method to perform the writeback of the accumulated
values.

Here is an example:

Table.TransactionBegin
For Each c In target
 If c.Value <> newValue Then
 table.Crossing(c.row, c.column).newValue = newValue
 End If
Next c
Table.BatchWrite

Sub Collapse (member As FMMember) Collapses the selected member to hide all its descendants.

Parameters:

• member: the hierarchy member to collapse.

Function Crossing (row As Long,
column As Long) As FMCrossing

Returns the crossing at (row, column).

Parameters:

• row and column: the Excel row and column values, after converting the
column letter to a number (A=1, B=2, and so on).

Sub Expand (member As FMMember) Expands the selected member to display all its children.

Parameters:

• member: the hierarchy member to expand.

Sub ExpandAll (member As
FMMember)

Expands the selected member to display all its descendants.

Parameters:

• member: the hierarchy member to expand.

Sub FilterMemberCombinations
(mems As FMMembersCollection)

Creates and applies a multi-member table filter based on the selected
members. For more information, see the description of the Filter Member
Combination option in the online Help for the SAS Financial Management
Add-In for Microsoft Excel.

Parameters:

• mems: a collection of members.

The FMTable Class 117

Method Description

Sub FilterMembers (row As Long,
column As Long)

Creates and applies a single-member table filter based on the selected row
or column heading. For more information, see the description of the Filter
Member Combination option in the online Help for the SAS Financial
Management Add-In for Microsoft Excel.

Parameters:

• row, column: the coordinates of the row or column heading that is used
as the filter.

Function isDataArea (sheetName As
String, row As Long, column As Long) As
Boolean

Returns True if the specified position is within the data area. For more
information about the data area, see the description of the Position function.

Parameters:

• sheetName: the name of the worksheet.

• row, column: the coordinates of the position.

Function Pivot (hierarchy As
FMHierarchy, role As fmRole, position As
Long) As Boolean

Changes the layout of the selected table by changing the role of the hierarchy
that was passed in. You must refresh the table in order to see the effects of
the pivot operation.

Parameters:

• hierarchy: the hierarchy whose role is to be changed.

• role: the new role for this hierarchy. A role of fmRole_Slicer,
fmRole_Row, or fmRole_Column places the hierarchy in the
slicer, row, or column section of the table. A role of
fmRole_Available removes the hierarchy from its previous role
as a slicer, row, or column and places it in the list of available hierarchies.

• position: the hierarchy's position within its section (slicer, row, or
column). If the section contains more than one hierarchy, existing
hierarchies are pushed up or down as necessary to accommodate the
position that you specify for this hierarchy. A position of 0 represents
the highest position for the specified role.

Returns: True if the operation succeeded; False if the role is the same as
the current role or if an error is encountered.

This example uses the Pivot method of the Table object to change the layout
of a table. Assume that the column headings for a table are TIME and
ANALYSIS, and the only row heading is ACCOUNT. The following code
removes ANALYSIS from the column headings and adds it to the row
headings. The new row headings would be ANALYSIS and ACCOUNT, in
that order.

Dim table as FMTable
Dim hierarchy as FMHierarchy
set table = addin.tables("NewTable0")
Set hierarchy = table.Hierarchies("ANALYSIS")
rc = table.Pivot(hierarchy, fmRole_Row, 0)
table.refresh(true)

118 Chapter 6 • The SAS Financial Management Add-In API for Microsoft Excel

Method Description

Function Position (area As fmArea, type
As fmType) As Long

Returns the position of an element within the table. One common use for this
method is to determine a range for applying custom formats to a table.

Parameters:

• area: the area of the table for which you want to know the position. This
parameter can be one of the following:

fmArea_Table: the entire table

fmArea_Slicer: the table slicer area

fmArea_Row: the row heading area

fmArea_Column: the column heading area

fmArea_Data: the data area

fmArea_Drillpath: the drill-path area of the table

The diagram in Figure 6.2 on page 121 shows the location of the areas
in an example table.

• type: the type of position to return, which can be one of the following:

fmType_startRow: the position of the starting row of the specified
area

fmType_endRow: the position of the ending row of the specified area

fmType_startColumn: the position of the starting column of the
specified area

fmType_endColumn: the position of the ending column of the
specified area

fmType_width: the width of the specified area, in terms of number
of columns

fmType_height: the height of the specified area, in terms of number
of rows

fmType_rowOffset: the number of rows before the start of this
table (regardless of the area)

fmType_columnOffset: the number of columns before the start
of this table (regardless of the area parameter)

Returns: a value for the specified area and type.

This example finds the positions of the start and end rows and columns in
the data area of a table:

startRow = table.Position(fmArea_Data, fmType_startRow)
endRow = table.Position(fmArea_Data, fmType_endRow)
startColumn = table.Position(fmArea_Data, fmType_startColumn)
endColumn = table.Position(fmArea_Data, fmType_endColumn)

The FMTable Class 119

Method Description

Sub Refresh (reQuery As Boolean) Refreshes the table.

Parameters:

• reQuery: the requery flag. If True, the function performs a requery and
repaint. If False, the function performs a repaint only.

Consider carefully whether a requery is needed or whether a repaint is
sufficient. The refresh operation requires more resources when a requery
is included.

This example refreshes the specified table and performs a requery:

table.Refresh(True)

This example repaints the table without performing a requery:

table.Refresh(False)

Sub
RemoveAllMemberCombinationF
ilters()

Deletes all table filters.

Function TargetHierarchy() As
FMHierarchy

Returns the target hierarchy for this table and model.

Sub
UnfilterMemberCombinations
(mems As FMMembersCollection)

Deletes the table filter that is specified by the combination of members.

Parameters:

• mems: a collection of members.

Function Write (row As Long, column As
Long, newValue As Double) As
fmWriteBackReturn

Writes newValue to the crossing that is specified by row and column.

Parameters:

• row and column: the row and column values that determine the crossing.
For column values, convert letters to numbers (for example, cell A3 is
the crossing that is determined by a row value of 3 and a column value
of 1).

• newValue: the value to write.

Returns: fmWriteBackReturn_Succeeded,
fmWriteBackReturn_FailedCantUpdateForm,
fmWriteBackReturn_FailedReadOnly,
fmWriteBackReturn_FailedNoValueChange,
fmWriteBackReturn_FailedNoValue,
fmWriteBackReturn_FailedNoXRate, or
fmWriteBackReturn_FailedUnknown.

Sub TransactionBegin() Begins accumulating transactions for later writeback using the BatchWrite
method.

Function Writeable (row As Long,
column As Long) As Boolean

Determines whether a specified crossing is writable. Read-only.

Parameters:

• row and column: the row and column values that determine the crossing.
For column values, convert letters to numbers.

Returns: True if the crossing is writable; otherwise, False.

120 Chapter 6 • The SAS Financial Management Add-In API for Microsoft Excel

This diagram illustrates the areas of a table. (See the Position method of the FMTable class.)

Figure 6.2 Areas of a Table

Table 6.17 FMTable Class: Event Summary

Event Description

Event AfterRefresh() Triggered after the table has been refreshed. This event might occur if the
code calls the Refresh method of a table object, if the user selects
Refresh or RefreshAll from the View menu, or if the user performs some
other manual action that triggers a refresh. If the user refreshes a worksheet,
the table refresh event and the addin refresh event are triggered, in that order.

Here is an example of an event handler for a table called table1:

Private Sub table1_AfterRefresh()
 ' Assumes that screen updating has been disabled
 ' in the BeforeRefresh event handler
 ...
 ' Perform some actions
 ...
 ' Re-enable screen updating
 Application.ScreenUpdating = True
End Sub

Notice that the name of the event handler includes the name of the object (in
this case, table1). It applies only to this table, not to any other tables in
the worksheet. If you wanted to affect a different table (for example,
table2), you would write a second event handler,
table2_afterRefresh(). To handle all table refresh events
identically, you could use the addin_AfterTableRefresh event
handler.

The FMTable Class 121

Event Description

Event BeforeRefresh() Triggered before the table is refreshed. One use for this event handler is to
disable screen updating. You could re-enable screen updating in the
AfterRefresh event handler. For more information, see the description of
AfterRefresh.

Here is an example of an event handler for a table called table1:

Private Sub table1_BeforeRefresh()
 ' Disable screen updating
 Application.ScreenUpdating = False
 ' Perform some actions
 ...
End Sub

The FMTablesCollection Class
The FMTablesCollection class represents a collection of tables. This class is a subclass of
FMCollections.

The following properties are inherited from FMCollections: Count.

The following methods are inherited from FMCollections: Add, AddAll, Clear, Contains,
IndexOf, Insert, InsertAll, Remove, RemoveAt, ToString.

The FMUser Class
The FMUser class contains information about the user who is currently logged on.

Table 6.18 FMUser Class Property Summary

Property Description

Property BudgetMode As
FMBudgetMode

Returns one of the following values:

• fmBudgetMode_Create: if the user is editing a template

• fmBudgetMode_Entry: if the user is editing a form

Otherwise, the value is fmBudgetMode_None. Read-only.

Property FormId As Long The form ID. Read-only.

Property FormSetId As Long The form set ID. Read-only.

Property FormSetName As String The name of the form set. Read-only.

Property FormTemplateId As Long The form template ID. Read-only.

122 Chapter 6 • The SAS Financial Management Add-In API for Microsoft Excel

Property Description

Property LockName As String If the form is opened in data-entry mode, this property contains the name that
is associated with the lock. The lock name can be viewed in the log. (See
“Activating the Log” on page 93.)

Property ReadOnly As Boolean This property applies only if a user has a form open. It has a value of
True if the form is read-only. The user might have launched the form for
viewing only, or the user might not have permission to edit the form. Read-
only.

Property UserContext As String Returns the user context (session ID). Read-only.

With this property, a user can log on to the middle tier without reauthorization
—for example, to run a stored process.

Property UserId As String The user ID (for example, sasdemo). Read-only.

Property UserName As String The user display name (for example, SAS Demo User). Read-only.

Property WorkflowMethod As String The workflow method, which can be one of the following: TopDown or
BottomUp. Read-only.

The FMUser Class 123

124 Chapter 6 • The SAS Financial Management Add-In API for Microsoft Excel

Chapter 7

Auditing in SAS Strategy
Management

Configure Auditing in SAS Strategy Management . 125

Create an Audit Report . 129

Configure Auditing in SAS Strategy Management
Audit logging in SAS Strategy Management enables site administrators to track and report
on model changes, usage patterns, value changes, and permission changes. Four levels of
auditing can be configured:

• Audit.Model: Tracks all changes to templates, projects, scorecards, and elements.

• Audit.Usage: Tracks the usage of table views, aggregate views, association views, and
diagram views.

Note: This level produces a large auditing table.

• Audit.Values: Tracks all changes to the values of metric attributes.

• Audit.Permission: Tracks changes to permission settings.

By default, auditing is disabled for SAS Strategy Management. To enable auditing for one
or more levels, follow these steps:

1. Log on to SAS Management Console as a member of the SAS Administrators group.

2. On the Plug-ins tab, navigate to Application Management ð Configuration
Manager.

3. Right-click Strategy Mgmt 5.2 and select Properties.

4. In the properties dialog box, click the Advanced tab.

5. Select a level (Audit.Model, Audit.Permissions, Audit.Usage, or Audit.Values) and
change its value to true.

Note: Use lowercase. The property value is case sensitive.

125

6. If you are enabling Audit.Model or Audit.Usage, you must also configure the fields
to be audited, as follows:

a. Select one of the following properties:

• Audit.Element

• Audit.ElementColumn

• Audit.Scorecard

• Audit.Template

b. Each of those properties is configured with a default set of values. In the Property
Value column, add or remove field names, separating the entries with a period
(.).

7. Click OK to save your changes.

The changes go into effect when you restart all the managed servers.

The following table lists the field names that can be set in the Property Value column.
Your selections apply to both Audit.Model and Audit.Usage (if auditing for those levels
is enabled).

Table 7.1 Auditing Levels and Fields

Level Field Name Description

Audit.Element ID The GUID that identifies this element.

CONTAINERID The GUID for the scorecard or project that contains this
element.

126 Chapter 7 • Auditing in SAS Strategy Management

Level Field Name Description

ELEMENTTYPEID The GUID for the element type for this element.

LINKID The GUID for any element that is associated with this
element. If the element is not associated with any other
elements, then this value is identical to the ID value.

OWNERID The user ID of the current owner of this element.

PERIODTYPE The periodicity of this element.

SECURITYOWNERID The user ID of the user who created this element.

SECURITYUSETYPE The security use type for this element. Possible values are:

• N: None

• C: Container

• E: Entity

• H: Hierarchy

FROMPERIODID The beginning effective period for this element.

TOPERIODID The ending effective period for this element.

ORDERNUM An internal value that is used to order elements for
viewing.

Audit.ElementColumn ELEMENTID The GUID used to identify the element that this attribute
belongs to.

COLUMNID The GUID used to identify the element attribute.

PERIODID The GUID used to identify the period associated with the
element attribute.

VALUE The current value of the element attribute

METRICTEXTVALUE The associated metric text value for this cell.

LASTMODIFIEDDATE The date the element attribute was last modified.

RANGEID The GUID used to identify the range associated with the
element attribute.

MEASUREID The GUID used to identify the measure associated with
this cell.

FORMULA The formula assigned to the element attribute.

THRESHOLD The value for which an associated threshold is crossed.

THRESHOLDOPERATOR The operator for the associated threshold.

Configure Auditing in SAS Strategy Management 127

Level Field Name Description

THRESHOLDTYPE The threshold type for the associated threshold.

THRESHOLDINTERVALID The interval ID of the associated threshold.

SUPPORTINGDOCUMENTURL The associated URL string for this cell.

ISUSEROVERRIDEVALUE An override flag. A value of 1 indicates that the cell value
has been overridden by the user. Otherwise, the value is
0.

DIRECTIVE The directive associated with the element attribute.

DIRECTIVE_PARMS The parameters used with any associated directive.

STOREDPROCESSID The ID of an associated stored process.

STOREDPROCESSPARMS The parameters to be sent to the associated stored process,
in a string separated by semicolons.

Audit.Scorecard ID The GUID that identifies this scorecard.

PROJECTID The GUID for the project that contains this scorecard.

PARENTSCORECARDID The GUID for the parent scorecard for this scorecard.

MEMBERID The GUID for the dimension ID, if the project for this
scorecard is linked to a dimensional hierarchy.

SECURITYOWNERID The user ID for the owner of this scorecard.

SECURITYUSETYPE The security use type for this scorecard (see the
description of this field in the Audit.Element level).

ORDERNUM An integer value for the scorecard ordering.

Audit.Template ID The GUID used to identify the template.

DEFAULTCULTUREID The GUID used to identify the default language for this
template.

SECURITYOWNERID The user ID of the template owner.

SECURITYUSETYPE The security use type for this template. (See the
description of the SECURITYUSETYPE field in the
Audit.Element level.)

128 Chapter 7 • Auditing in SAS Strategy Management

Create an Audit Report
Auditing information is recorded in three tables in the SHAREDSERVICES database:
SAS_ACTION_EXECUTOR, SAS_AUDIT, and SAS_AUDIT_ENTRY.

Here is an example SAS program that creates an audit report. The query includes this filter
to return only items that have been logged for SAS Strategy Management: where
sas_action_executor.executor_nm = "Strategy Mgmt 5.2".

Note: This code is intended only as an introduction to audit reporting.

Example Code 7.1 Sample Audit Report

/* Create a libref to the SharedServices database */
/* (Replace mysqlusername, serverpassword, servername, serverport) */

libname auditref MYSQL user=mysqlusername password=serverpassword
 database=SharedServices server=servername port=serverport;

/* Use PROC SQL to create an audit table with entries of interest */
proc sql;
 create table audit as select distinct sas_audit.user_id,
 sas_audit.timestamp_dttm, sas_audit.session_id,
 sas_type_object.type_object_cd, sas_audit.object_id,
 sas_audit.audit_id, sas_audit_entry.property_nm,
 sas_audit_entry.new_value_txt

 from auditref.sas_action_executor, auditref.sas_audit,
 auditref.sas_audit_entry, auditref.sas_type_object

 /* Include only SAS Strategy Management audit records */
 where sas_action_executor.executor_nm = "Strategy Mgmt 5.2" and
 sas_audit.object_type_id = sas_type_object.type_object_id and
 sas_audit.audit_id = sas_audit_entry.audit_id;
run;
proc sort data=audit;
 by user_id audit_id object_id;
run;

The following columns are referenced in the example program:

• SAS_AUDIT.USER_ID: the user ID of the user performing the action

• SAS_AUDIT.TIMESTAMP_DTTM: a timestamp of when the action occurred

• SAS_AUDIT.SESSION_ID: the session ID for the action

• SAS_AUDIT.OBJECT_ID: the GUID of the object that the audit is being performed
on (for example, the SAS Strategy Management project)

• SAS_TYPE_OBJECT.TYPE_OBJECT_CD: the object type, such as SPMProject

• SAS_AUDIT.AUDIT_ID: the ID of the audit record

• SAS_AUDIT_ENTRY.PROPERTY_NM: the name of the property that was affected

• SAS_AUDIT_ENTRY.NEW_VALUE_TXT: the new value of the property

Create an Audit Report 129

130 Chapter 7 • Auditing in SAS Strategy Management

Chapter 8

Using Secure Sockets Layer
(SSL)

About SSL . 131

References . 132

Configuring SSL for the Solutions . 132

Configure the Managed Servers . 133

Configure the Web Applications . 134

Configure the SAS Content Server . 135

Modify the Content Mapping . 136

Modify the Remote Services . 136
Overview . 136
Modify the wrapper.conf File for the Service . 137
Modify the Start-up Script . 137

Modify the Foundation Services . 138

Modify SAS Human Capital Management Files . 139
Update the HCM-config.xml File . 139
Modify the DSX File for SAS BI Dashboard . 139

Modify the SAS Environment Files . 140
Overview . 140
Update the EnvironmentFactory.xml File . 140
Update the sasv9_usermods.cfg File . 140
Update the sas-environment.xml File . 141

Configuring Java Desktop Clients for Use with an SSL-Enabled Server 141
Overview . 141
Modify the .INI Files . 141
Import the Certificate to the Client Machines . 142

Restart and Test . 143

About SSL
The Secure Sockets Layer protocol (SSL) provides secure connections by allowing two
applications connecting over a network connection to authenticate the other's identity and
by encrypting the data exchanged between the applications. Authentication allows a server
to verify the identity of the client application on the other end of a network connection.

131

Encryption makes data transmitted over the network intelligible only to the intended
recipient.

Using SSL is computationally intensive and adds overhead to a connection. Avoid using
SSL in development environments when it is not necessary. Use SSL in a production
environment if a customer site has policies requiring that all network traffic must be
encrypted.

Note: This chapter contains information only for the WebLogic Server.

References
The SAS Intelligence Platform: Web Application Administration Guide contains
instructions for enabling SSL for Web applications, including the portal and other
applications that are part of the SAS Intelligence Platform. It also contains information
about one-way versus two-way SSL. This book is available at http://
support.sas.com/92administration. See the following section: “Using Secure
Sockets Layer (SSL) for Web Applications.”

The third-party support center has information about configuring WebLogic servers. See
http://support.sas.com/resources/thirdpartysupport/v92m2/
appservers/weblogicdoc.html—in particular, “SAS 9.2 Web Applications:
Tuning for Performance and Scalability.”

In addition, the Oracle WebLogic documentation contains extensive information about
configuring SSL for the WebLogic servers, including key and certificate management. See
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/
secmanage/ssl.html.

Configuring SSL for the Solutions
To configure SSL for the solutions, follow these steps:

Note: The instructions in this chapter assume that the site is configuring one-way SSL.
For more information about two-way SSL, see the SAS Intelligence Platform: Web
Application Administration Guide and the Oracle WebLogic documentation.

1. Make sure that the solutions are running correctly without SSL.

2. Obtain the necessary digital certificates.

For testing purposes, you can use the DemoIdentity.jks and DemoTrust.jks keystores
in the WL_HOME\server\lib directory. See “Configure keystores” in the online Help
for the WebLogic Administration Console.

For production environments, the customer or client site must provide a trusted
certificate that has been digitally signed by a valid certificate authority. You can then
import this certificate into the WebLogic environment.

Note: Be sure to use the correct spelling and case for the WebLogic server names
whenever you reference them.

3. Configure SSL for the managed servers.

See “Configure the Managed Servers” on page 133.

4. Configure the Web applications.

132 Chapter 8 • Using Secure Sockets Layer (SSL)

http://support.sas.com/92administration
http://support.sas.com/92administration
http://support.sas.com/resources/thirdpartysupport/v92m2/appservers/weblogicdoc.html
http://support.sas.com/resources/thirdpartysupport/v92m2/appservers/weblogicdoc.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/ssl.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/ssl.html

See “Configure the Web Applications” on page 134.

5. Configure the SAS Content Server.

See “Configure the SAS Content Server” on page 135.

6. Change the Content Mapping properties for the SAS Folders.

See “Modify the Content Mapping” on page 136.

7. If the site has any remote portlets, update the protocol and port numbers for those
portlets. Update the URL within the portlet.xml file, recreate the PAR file, and redeploy
it.

If the site uses the SAS BI Dashboard JSR 168 remote portlet, perform the following
steps:

a. Update its portlet.xml file and change the URL to the server where SAS BI
Dashboard is deployed.

b. Redeploy the sas.bidashboardjsr1684.2.ear application.

For more information, see the installation instructions for SAS BI Dashboard
applications.

8. Modify the WebDAV connection information in the foundation services.

See “Modify the Foundation Services” on page 138.

9. Configure the remote services to support SSL.

See “Modify the Remote Services” on page 136.

10. (SAS Human Capital Management only) Update the HCM-config.xml file and the hcm-
metric.dsx file.

See “Modify SAS Human Capital Management Files” on page 139.

11. Modify the sas-environment.xml file and the EnvironmentFactory.xml file.

See “Modify the SAS Environment Files” on page 140.

12. Restart the remote services and the managed servers.

See “Restart and Test” on page 143.

13. Verify the SSL connection by logging on to one of the Web applications using the
HTTPS protocol and new port number.

Configure the Managed Servers
1. If the site requires it, configure SSL for the Admin server and the Node Manager (if

used).

2. Configure SSL for each managed server (including any secondary ODCS servers). For
instructions, see “Using Secure Sockets Layer (SSL) for Web Applications” in the SAS
Intelligence Platform: Web Application Administration Guide, as well as the WebLogic
documentation. Keep the following points in mind:

• If the allowQuotes option is not set, add it to the server start arguments for each
server, as follows:

-Dweblogic.serverStart.allowQuotes=true

Configure the Managed Servers 133

• Be sure to enable the SSL listen port and set the correct port number for each
managed server.

For HTTPS port numbers, see “Configuring your WebLogic Application Server
(Domain Configuration)” in the Instructions.html file from your installation. This
file is located in the SAS-config-dir\Lev1\Documents folder on the middle
tier.

• Add the following options to the server start arguments for each server:

-Djavax.net.ssl.trustStore=C:\Java\jdk1.6.0_16\jre\lib\security\cacerts _
-Djavax.net.ssl.trustStorePassword=changeit _
-Djavax.net.ssl.keyStore=C:\bea\wlserver_10.3\server\lib\WLStore.jks _
-Djavax.net.ssl.keyStorePassword=weblogic

Note: Line breaks (“_”) added for readability only.

Replace the paths in the trustStore and keyStore arguments with the correct
paths for your installation.

• As you configure the SASServer1 and SASServer2 managed servers, modify the
following JVM argument:

-Dsas.auto.publish.port

Change the port number to the secure port for the managed server, and add an
argument to set the protocol. For example:

-Dsas.auto.publish.port=7002 -Dsas.auto.publish.protocol=https

Note: Line breaks added for readability only.

• In the Foreign JNDI Providers service configuration, change the Provider URL of
the SharedServicesJNDIProvider to reference the t3s protocol and the secure port
number that applies to SASServer1.

• (Optional) To enable SSL debugging, you can temporarily add this command-line
option to the node manager, managed server, or client application:

-Dssl.debug=true -Dweblogic.StdoutDebugEnabled=true

Note: If you installed the managed servers as services, uninstall each service and reinstall
it so that the changes take effect.

Configure the Web Applications
Configure the Web applications to support SSL, as follows:

1. Log on to SAS Management Console as an administrator and select the Plug-ins tab.

2. Navigate to Application Management ð Configuration Manager.

3. Right-click the first application in the list and select Properties.

4. Click the Connection tab.

5. From the Communication Protocol drop-down box, select HTTPS.

6. In the Port Number field, enter the secure port number for the managed server to which
you deployed this application.

134 Chapter 8 • Using Secure Sockets Layer (SSL)

7. Save your changes.

Repeat steps 1–7 for each application that has a Connection tab and that you want to enable
for SSL. Make sure that the SAS Logon Manager (on SASServer1) uses the HTTPS
protocol.

For the BI Web Services for Java 9.2, follow these additional steps:

1. Expand the entry to find and open the properties for the Corr, CorrGroup,
CorrRegGroup, MultReg, and SingleReg services.

2. Modify the connection properties for these services.

Note: If an application (such as the SAS Web Application Themes) uses static content
only, you might want that application to continue to use the HTTP protocol. Using the
HTTP protocol for some applications can improve performance. However, it requires
that you leave both the secure and nonsecure ports open for that managed server.

Configure the SAS Content Server
Configure the communication protocol and port number for the SAS Content Server, as
follows:

1. Log on to SAS Management Console as an administrator and select the Plug-ins tab.

2. Navigate to Server Manager and select SAS Content Server.

3. In the right-hand panel, right-click SAS Content Server and select Properties.

4. Click the Options tab.

5. From the Application protocol drop-down list, select https.

Configure the SAS Content Server 135

6. In the Port number field, enter the same secure port number that you used for the Web
Infrastructure Platform (SASServer1).

7. Save your changes.

Modify the Content Mapping
Modify the content mapping for the SAS Folders, as follows:

1. On the Folders tab of SAS Management Console, right-click SAS Folders and select
Properties.

2. Click the Content Mapping tab.

Select WebDAV location if it is not already selected.

3. From the Server drop-down list, select SAS Content Server.

As a result, the URL field displays the updated URL for the SAS Content Server,
including the HTPS protocol and the new port number.

4. Click OK.

A pop-up message appears, asking you to confirm your change. Click Yes.

Modify the Remote Services

Overview
Modify the JVM parameters for the SAS Remote Services to include the certificate
authority (CA) keystore:

136 Chapter 8 • Using Secure Sockets Layer (SSL)

• If you run the remote services as a service, see “Modify the wrapper.conf File for the
Service” on page 137.

• If you run the remote services from a start-up script, see “Modify the Start-up Script”
on page 137.

Modify the wrapper.conf File for the Service
If you run the SAS Remote Services as a Windows service, follow these steps:

1. Open the wrapper.conf file for editing.

The wrapper.conf file is in the SAS-config-dir\Lev1\Web\Application
\RemoteServices directory.

2. Add two wrapper.java.additional parameters, similar to the following:

wrapper.java.additional.12=
 -Djavax.net.ssl.trustStore="C:\Java\jdk1.6.0_16\jre\lib\security\cacerts" _
wrapper.java.additional.13=
 -Djavax.net.ssl.trustStorePassword=changeit

Note: Each parameter should go on a separate line. A line break (“_”) is added at the
end of the second line for readability.

These parameter values must match the values that you defined for the managed servers.
The parameter numbers might be different if your site's file has more or fewer
parameters. Replace the example path shown above with the correct path to the Java
Development Kit (JDK).

3. Save the file.

Modify the Start-up Script
If you run the SAS Remote Services from a batch script, follow these steps:

1. Open the start-up script for the RemoteServices for editing.

This file is located in the SAS-config-dir\Lev1\Web\Applications
\RemoteServices directory.

2. Find the following line in the file:

set SERVERTYPE=services

3. After that line, create a variable called SSL_OPTS, as follows:

set SSL_OPTS=-Djavax.net.ssl.trustStore= _
 "C:\Java\jdk1.6.0_16\jre\lib\security\cacerts\jre\lib\security\cacerts"

Note: Line break (“_”) added for readability at the end of the first line. To use this
code, make the SSL_OPTS variable definition one continuous line.

These parameter values must match the values that you defined for the managed servers.

The parameter numbers might be different if your site's file has more or fewer
parameters. Replace the example path shown above with the correct path to the JDK.

4. Find the :start3 label and insert the %SSL_OPTS% string into the command. For
example:

:start3
 "%JAVA_JRE_COMMAND%" ^

Modify the Remote Services 137

 -classpath "%CLASSPATH%" ^
 ...
 %SSL_OPTS% ^
 com.sas.framework.services.bootstrap.SASRemoteServices
 goto end

5. If the file also contains a :start2 label, insert the %SSL_OPTS% variable in that
command as well.

6. Save the file.

Modify the Foundation Services
Modify the WebDAV connection information in the foundation services, as follows:

1. On the Plug-ins tab of SAS Management Console, navigate to Environment
Management ð Foundation Services Manager ð Remote Services ð Core.

2. Right-click Information Service and select Properties.

3. On the Service Configuration tab, click the Configuration button.

4. In the Configuration dialog box, click the Repositories tab.

5. In the Information Repositories list, select WebDAV. At the bottom of the page, click
Edit.

6. In the DAV Repository Definition dialog box, change the port number to the same port
number that you used for SAS Content Manager (typically 7002).

7. Select the Secure check box.

8. Save your changes.

9. Repeat these steps for the following foundation services:

• SAS Package Viewer Local Services

138 Chapter 8 • Using Secure Sockets Layer (SSL)

• SAS Portal Local Services

• SAS Stored Process Local Services

• SAS Web Report Studio Local Services

Modify SAS Human Capital Management Files

Update the HCM-config.xml File
If you installed SAS Human Capital Management, follow these steps to update the HCM-
config.xml file:

1. Open the HCM-config.xml file for editing.

This file is located on the middle-tier machine, in the SAS-config-dir
\Lev1\AppData\SASHumanCapitalManagement5.2 directory.

2. Find the following entry:

<Property Id="ProviderURL" Name="Provider URL"
 Value="t3://hostname:port "
 ReadOnly="true"/>

Hostname and port are specific to your site.

3. Change t3 to t3s, and change the port number to the secure port number for
SASServer3.

4. Save the file.

Modify the DSX File for SAS BI Dashboard
If you installed SAS Human Capital Management, you need to modify its metric definition
file for SAS BI Dashboard. Follow these steps:

1. Open the hcm-metric.dsx file for editing.

This file is located on the middle tier in the SAS-config-dir\Lev1\AppData
\SASBIDashboard4.2\dataSourceDefs directory.

2. Find the <WSUrl> entry near the end of the file.

3. Change the protocol to https.

4. Change the port number to the secure port number for the SAS Human Capital
Management application (typically, 7202).

5. Save the file.

Modify SAS Human Capital Management Files 139

Modify the SAS Environment Files

Overview
You must modify the SAS environment files to reflect the new protocol and port numbers.
(Make a backup copy of each file before you modify it.)

If you have not already done so, publish the environment files to an HTTP server, as
described in “Installing the Client Applications” in the SAS Solutions Services: System
Administration Guide.

Note: You can use the original configuration of these files to validate an installation.
However, after validation, the SAS environment files should be published to an HTTP
server, regardless of whether the site has a single SAS environment or multiple
environments, and regardless of whether the site is using SSL or not.

Update the EnvironmentFactory.xml File
Edit the EnvironmentFactory.xml and EnvironmentFactory.odcs.xml files as follows:

1. On the middle-tier server, change directory to SAS-config-dir\Lev1\Web
\Applications\SASSolutionsServices5.2.

2. In the EnvironmentFactory.xml file, modify the URLs as follows:

a. Change http to https.

b. Change t3 to t3s.

c. Change the port numbers to reference the secured ports.

For example:

<java.naming.provider.url>t3s://server-name:7202</java.naming.provider.url>

3. Copy the modified EnvironmentFactory.xml file to the sas.solutions.common.war
directory within the sas.solutionsservices5.2.ear application (replacing the current
version of that file). If you are deploying SAS Solutions Services as an exploded EAR,
this location is SAS-config-dir\Lev1\Web\Staging\exploded
\sas.solutionsservices5.2.ear\sas.solutionscommon.war.

4. Make similar changes to the EnvironmentFactory.odcs.xml file. It is located in the
SAS-config-dir\Lev1\Web\Applications\SASODCSForSolutions5.2
directory.

5. In the deployed files for your HTTP server, modify the EnvironmentFactory.xml file
as follows:

a. Find the section that matches your environment.

b. Within that section, modify the URLs as described in Step 2.

Update the sasv9_usermods.cfg File
Modify the sasv9_usermods.cfg file, as follows:

1. On the data tier, change directory to SAS-config-dir\Lev1\SASApp.

140 Chapter 8 • Using Secure Sockets Layer (SSL)

2. Open the sasv9_usermods.cfg file for editing.

3. In the JREOPTIONS, change the protocol and port number for the
EnvironmentFactory.xml file as follows:

-JREOPTIONS=(-Denv.factory.location= _
http://hostname:secure-port/SASConfig/EnvironmentFactory.xml)

Note: Line break (“_”) was added for readability.

• hostname is the name of the middle-tier server.

• secure-port is the secure port number for SASServer3, where SAS Solutions
Services is deployed. The default port number is 7202.

Update the sas-environment.xml File
Update the sas-environment.xml file as follows:

1. Open the sas-environment.xml file for editing.

This file is located in the SAS-config-dir\Lev1\Web\Common directory.

2. In the section that matches your SAS environment, find this entry:

 <service-registry>
 http://server:port/SASWIPServices/remote/serviceRegistry
</service-registry>

3. Change the protocol from http to https.

4. Change port to reflect the secure port number for the sas.wip.services92.ear application.
Typically, this secure port is 7002.

5. Save the file. The change applies when you restart the server.

Configuring Java Desktop Clients for Use with an
SSL-Enabled Server

Overview
Some customer sites require that all client communication be conducted over secure
communication channels. You can configure SAS Financial Management Studio, SAS
Solutions Services Add-In for Microsoft Office, SAS Financial Management Add-In for
Microsoft Excel, and SAS Solutions Dimension Editor to communicate via a secure
connection to the middle tier, as follows:

• Modify the .INI files to use a secure connection to the environment files.

• Import the CA certificate to the client machines.

Modify the .INI Files
1. On each client machine, edit the appropriate .INI file:

• SAS-install-dir\SASSolutionsServicesAdd-
InforMicrosoftOffice\5.2\SASSolutionsOfficeClient.ini

Configuring Java Desktop Clients for Use with an SSL-Enabled Server 141

(applies to both SAS Solutions Services Add-In for Microsoft Office and SAS
Financial Management Add-In for Microsoft Excel)

• SAS-install-dir\SASFinancialManagementStudio
\5.2\fmstudio.ini (applies to SAS Financial Management Studio)

• SAS-install-dir\SASSolutionsDimensionEditor
\5.2\soldimedit.ini (applies to SAS Solutions Dimension Editor)

2. In the .INI file, change the URL to the environment file so that it uses the HTTPS
protocol and the secure port. For example:

[Environment Factory]
https://myhttpserver:secure-port/EnvironmentFactory.xml

3. Save the file.

Import the Certificate to the Client Machines
A customer site will deploy a signed certificate on the server. Because it is signed, there
are no issues with any client, and no client component must be modified to trust this
connection.

However, it is possible to use a demo or test certificate that is not signed. In those cases
(and only in those cases), it is necessary to update the client's JRE to import the demo
certificate, so that the client can communicate over SSL to the test configuration on the
middle-tier server.

To import the CA certificate to a client machine, follow these steps:

1. On the client machine, find the lib\security directory of the JRE that is used by
SAS Financial Management Studio.

Typically, the JRE is specified in the -vm parameter of the .INI file for SAS Financial
Management Studio. Otherwise, the default JRE on the client machine is used. For
details, see “Installing the Client Applications” in the SAS Solutions Services: System
Administration Guide.

2. Copy the certificate file from the middle-tier server to the lib\security directory
on the client machine.

3. On the client machine, open a command prompt window and change directory to the
lib\security directory.

4. Execute the following command:

..\..\bin\keytool.exe -import -alias WLrootcert _
 -file certificate-name.cer -keystore cacerts

Note: Line break (“_”) was added for readability.

certificate-name.cer is the name of the certificate file that you copied from the middle-
tier server (for example, myCA.cer).

5. The keytool program prompts you for a password. The password is changeit.

6. Respond Y to the prompt Trust this certificate? .

The keytool program displays a message confirming that the certificate was imported.

142 Chapter 8 • Using Secure Sockets Layer (SSL)

Restart and Test
1. Restart the remote services, the HTTP server (if there is one), and the managed

servers.

2. Verify the SSL connection by logging on to one of the Web applications using the
HTTPS protocol and new port number.

3. Confirm that the connection is secure by observing the padlock icon. To examine the
certificate and certificate chain, click the padlock.

4. In a production environment, you might also want to disable the nonsecure ports.

Restart and Test 143

144 Chapter 8 • Using Secure Sockets Layer (SSL)

Index

A
AdminQuery class 24
AuditHistory class 29
auditing, for SAS Strategy Management

audit reports 129
configuring 125

automatic variables
in scorecards and KPI projects 17

B
BaseApi class 31
BaseQuery class 33
BLDVIEW macro 10
bottom-up workflow 70

C
cell actions

See custom cell actions
configuration directory 2
conventions 2
custom cell actions 81

invoking 88
JVM options 88
parameters 82
resource file 87
stored process 82, 84

custom stored processes 6
CycleQuery class 35

D
documentation

conventions 2
documentation links 2

E
EnvironmentFactory.odcs.xml file

and SSL 140

EnvironmentFactory.xml file 22
and SSL 140

error messages
for SAS Financial Management Java API

23

F
FMAddin class 90, 91, 95
FMCrossing class 100
FMCrossingsCollection class 102
FMCube class 102
FMCubesCollection class 106
FMHierarchiesCollection class 106
FMHierarchy class 107
FMMember class 112
FMMembersCollection class 114
FMQUERY macro 56

See also MDX reference
copying MDX strings 61
example (MDX) 60
example (non-MDX) 60
MDX strings 61
query data set 59

FMTable class 114
FMTablesCollection class 122
FMUser class 98, 122
Form class 37

G
GETLSTNR macro 12

H
HTTPS

See SSL (Secure Sockets Layer)

J
Java desktop clients

145

configuring for SSL-enabled server 141
Javaobj

deleting 22
methods 22
overview 20

K
KPI projects

thresholds 17

M
macros

for stored processes 10
MDX reference 61

defining a slicer 64
EXCLUDE clause 66
members 61
ODCS versus standard OLAP 66
overview 61
query syntax 63
SELECT clause 65
supported member functions 66
tuple sets 62
tuples 62
WHERE clause 64

METADATA_PASSID function 21
Metadata class 44
Microsoft Excel

API for 89
custom cell actions 81

Model class 45
See also FMQUERY macro

MTRCLOAD macro 13
MySQL database server

installation directory 2

P
picklist option 20
production environment 132

R
row-level security filters 1
RPTINIT macro 14

S
SAS Financial Management

See custom cell actions
See SAS Financial Management Add-In

API for Microsoft Excel
See SAS Financial Management Java

API

See workflow customizations
SAS Financial Management Add-In API

for Microsoft Excel 89
collections 91
declaring the FMAddin object 90
diagram of classes 91
events 92
FMAddin class 95
FMCrossing class 100
FMCrossingsCollection class 102
FMCube class 102
FMCubesCollection class 106
FMHierarchiesCollection class 106
FMHierarchy class 107
FMMember class 112
FMMembersCollection class 114
FMTable class 114
FMTablesCollection class 122
FMUser class 98, 122
log file 93
setup 90
summary of classes 94
tables 92
working with objects 91

SAS Financial Management Add-In for
Microsoft Excel

configuring for SSL-enabled server 141
SAS Financial Management Java API 20

accessing object methods 22
AdminQuery class 24
AuditHistory class 29
authenticating the user 21
BaseApi class 31
BaseQuery class 33
CycleQuery class 35
error messages 23
FMQUERY macro 56
Form class 37
handling exceptions 23
instantiating an object 20
Javaobj 20, 22
JRE options 22
log file 23
METADATA_PASSID function 21
Metadata class 44
Model class 45
picklist option 20
Solutions environment 22
summary of classes 23
user authentication 21

SAS Financial Management Studio
configuring for SSL-enabled server 141

SAS Human Capital Management
administering 1

SAS Human Capital Management Files
SAS BI Dashboard DSX file 139

146 Index

SAS Solutions Dimension Editor
configuring for SSL-enabled server 141

SAS Solutions Services Add-In for
Microsoft Office

configuring for SSL-enabled server 141
SAS Strategy Management

auditing levels 125
configuring auditing 125
creating an audit report 129

sas-environment.xml file
and SSL 141

scorecards
thresholds 17

Secure Sockets Layer
See SSL (Secure Sockets Layer)

SENDEVNT macro 15
SSL

EnvironmentFactory.odcs.xml 141
SSL (Secure Sockets Layer) 131

applications 134
certificates 132
content mapping 136
EnvironmentFactory.xml 140
foundation services 138
in development environment 132
in production environment 132
Java desktop clients 141
managed servers 133
overview 132
references 132
remote portlets 133
remote services 136
SAS Content Server 135
SAS Human Capital Management files

139
sas-environment.xml 140
testing 143

stored processes

custom 6
description of 5
for custom cell actions 82
for SAS Financial Management reports

7
for workflow customizations 75
macros for 10, 12, 13, 14, 15
package results 7
registering 6
troubleshooting 16
uses for 5

T
top-down workflow 70

V
validation example

for workflow customizations 75

W
workflow

See also workflow customizations
actions 73
bottom-up 70
definition 69
top-down 70

workflow customizations 69
available actions 73
data validation example 75
JVM options 75
Pre and Post classes 72
programming hooks 72
resource file 73
steps 72
stored process 75, 78

Index 147

148 Index

Your Turn

We welcome your feedback.

• If you have comments about this book, please send them to yourturn@sas.com.
Include the full title and page numbers (if applicable).

• If you have comments about the software, please send them to suggest@sas.com.

	Contents
	About the Customization Guide
	What's in This Book
	Required Skills
	Documentation Conventions
	Additional Documentation

	Working with Stored Processes
	Overview: Stored Processes and SAS Solutions Services
	Writing a Custom Stored Process for the Solutions
	Creating the Stored Process
	Making the Stored Process Available

	Macros for Use with SAS Solutions Services
	Overview
	The %BLDVIEW Macro
	The %GETLSTNR Macro
	The %MTRCLOAD Macro
	The %RPTINIT Macro
	The %SENDEVNT Macro

	Troubleshooting Stored Processes
	Scorecards and KPI Projects: Automatic Variables from Global
or Personal Thresholds

	The SAS Financial Management Java API
	Using the SAS Financial Management Java API
	About the SAS Financial Management Java API
	Instantiating an Object
	Authenticating the User
	Calling an Object's Methods
	Deleting the Javaobj
	Retrieving Error Messages
	Configuring a Log File
	Handling Exceptions

	Summary of Classes
	The AdminQuery Class (Financial Planning Only)
	Overview
	Method Summary

	The AuditHistory Class
	Overview
	Method Summary

	The BaseApi Class
	Overview
	Method Summary

	The BaseQuery Class
	Overview
	Method Summary

	The CycleQuery Class (Financial Cycles Only)
	Overview
	Method Summary

	The Form Class (Financial Forms Only)
	Overview
	Method Summary

	The FormSet Class
	Overview
	Method Summary

	The Metadata Class
	Overview
	Method Summary

	The Model Class (Financial Models Only)
	Overview
	Method Summary

	Model Macros
	Overview
	The %GETALLMODELS Macro
	The %GETFORMS Macro
	The %GETFORMSETS Macro
	The %GETMODELHIERARCHIES Macro
	The %GETMODELMEMBERS Macro
	The %GETMODELPROPERTIES Macro

	Executing Queries with the %FMQUERY Macro
	Overview
	The RUNASUSERID Parameter
	Query Types
	Syntax
	The Query Data Set
	%FMQUERY Example (Non-MDX)
	%FMQUERY Example with MDX String
	Copying an MDX String
	MDX Reference for SAS Financial Management

	Customizing a Workflow
	About Customizing a Workflow
	Workflow Types
	Overview
	Top-Down Workflow
	Bottom-Up Workflow

	Adding Your Custom Code to a Workflow
	The Pre and Post Classes
	Steps in Customizing a Workflow
	The Resource File

	Data Validation Example
	About the Data Validation Example
	Code for the Example
	Registering the Stored Process
	Updating the Resource File

	Creating a Custom Cell Action
	Overview
	Write the Stored Process
	About the Stored Process
	Parameters That You Can Expect

	Register the Stored Process
	Update the Resource File
	Define the Custom Action
	Set the JVM Option

	Select the Action

	The SAS Financial Management Add-In API for Microsoft Excel
	Overview of Working with the SAS Financial Management Add-In
API for Microsoft Excel
	Setup for Using the API
	General Usage Information
	Declaring the FMAddIn Object
	Working with Objects
	Handling Events
	Activating the Log

	Summary of Classes
	The FMAddIn Class
	The FMCollections Class
	The FMCrossing Class
	The FMCrossingsCollection Class
	The FMCube Class
	The FMCubesCollection Class
	The FMHierarchiesCollection Class
	The FMHierarchy Class
	The FMMember Class
	The FMMembersCollection Class
	The FMTable Class
	The FMTablesCollection Class
	The FMUser Class

	Auditing in SAS Strategy Management
	Configure Auditing in SAS Strategy Management
	Create an Audit Report

	Using Secure Sockets Layer (SSL)
	About SSL
	References
	Configuring SSL for the Solutions
	Configure the Managed Servers
	Configure the Web Applications
	Configure the SAS Content Server
	Modify the Content Mapping
	Modify the Remote Services
	Overview
	Modify the wrapper.conf File for the Service
	Modify the Start-up Script

	Modify the Foundation Services
	Modify SAS Human Capital Management Files
	Update the HCM-config.xml File
	Modify the DSX File for SAS BI Dashboard

	Modify the SAS Environment Files
	Overview
	Update the EnvironmentFactory.xml File
	Update the sasv9_usermods.cfg File
	Update the sas-environment.xml File

	Configuring Java Desktop Clients for Use with an SSL-Enabled
Server
	Overview
	Modify the .INI Files
	Import the Certificate to the Client Machines

	Restart and Test

	Index

