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Overview: UCM Procedure

The UCM procedure analyzes and forecasts equally spaced univariate time series data by using an unobserved
components model (UCM). The UCMs are also called structural models in the time series literature. A UCM
decomposes the response series into components such as trend, seasonals, cycles, and the regression effects
due to predictor series. The components in the model are supposed to capture the salient features of the
series that are useful in explaining and predicting its behavior. Harvey (1989) and Pelagatti (2015) are good
references for time series modeling that use the UCMs. Harvey calls the components in a UCM the “stylized
facts” about the series under consideration. Traditionally, the ARIMA models and, to some limited extent,
the exponential smoothing models have been the main tools in the analysis of this type of time series data. It
is fair to say that the UCMs capture the versatility of the ARIMA models while possessing the interpretability
of the smoothing models. A thorough discussion of the correspondence between the ARIMA models and the
UCMs, and the relative merits of UCM and ARIMA modeling, is given in Harvey (1989). The UCMs are
also very similar to another set of models, called the dynamic models, that are popular in the Bayesian time
series literature (West and Harrison 1999). In SAS/ETS, you can use PROC SSM for multivariate (and more
general univariate) UCMs (see Chapter 33, “The SSM Procedure”), PROC ARIMA for ARIMA modeling
(see Chapter 7, “The ARIMA Procedure”), PROC ESM for exponential smoothing modeling (see Chapter 14,
“The ESM Procedure”), and the Time Series Forecasting System for a point-and-click interface to ARIMA
and exponential smoothing modeling.

You can use the UCM procedure to fit a wide range of UCMs that can incorporate complex trend, seasonal,
and cyclical patterns and can include multiple predictors. It provides a variety of diagnostic tools to assess the
fitted model and to suggest the possible extensions or modifications. The components in the UCM provide
a succinct description of the underlying mechanism governing the series. You can print, save, or plot the
estimates of these component series. Along with the standard forecast and residual plots, the study of these
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component plots is an essential part of time series analysis using the UCMs. Once a suitable UCM is found
for the series under consideration, it can be used for a variety of purposes. For example, it can be used for the
following:

o forecasting the values of the response series and the component series in the model
e obtaining a model-based seasonal decomposition of the series

e obtaining a “denoised” version and interpolating the missing values of the response series in the
historical period

e obtaining the full sample or “smoothed” estimates of the component series in the model

Getting Started: UCM Procedure

The analysis of time series using the UCMs involves recognizing the salient features present in the series and
modeling them suitably. The UCM procedure provides a variety of models for estimating and forecasting the
commonly observed features in time series. These models are discussed in detail later in the section “An
Introduction to Unobserved Component Models” on page 2869. First the procedure is illustrated using an
example.

A Seasonal Series with Linear Trend

The airline passenger series, given as Series G in Box and Jenkins (1976), is often used in time series
literature as an example of a nonstationary seasonal time series. This series is a monthly series consisting of
the number of airline passengers who traveled during the years 1949 to 1960. Its main features are a steady
rise in the number of passengers from year to year and the seasonal variation in the numbers during any given
year. It also exhibits an increase in variability around the trend. A log transformation is used to stabilize this
variability. The following DATA step prepares the log-transformed passenger series analyzed in this example:

data seriesG;
set sashelp.air;
logair = log( air );
run;

The following statements produce a time series plot of the series by using the TIMESERIES procedure (see
Chapter 38, “The TIMESERIES Procedure”). The trend and seasonal features of the series are apparent in
the plot in Figure 41.1.

proc timeseries data=seriesG plot=series;
id date interval=month;
var logair;

run;
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Figure 41.1 Series Plot of Log-Transformed Airline Passenger Series
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In this example this series is modeled using an unobserved component model called the basic structural
model (BSM). The BSM models a time series as a sum of three stochastic components: a trend component
Wz, a seasonal component y;, and random error €;. Formally, a BSM for a response series y; can be described
as

VYt = Mt + Y + €

Each of the stochastic components in the model is modeled separately. The random error ¢;, also called the
irregular component, is modeled simply as a sequence of independent, identically distributed (iid) zero-mean
Gaussian random variables. The trend and the seasonal components can be modeled in a few different ways.
The model for trend used here is called a locally linear time trend. This trend model can be written as follows:

e = -1+ P+, me ~ iid N©O,o7)
Bt Bi—1 + &. £ ~ iid N(O, og)
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These equations specify a trend where the level 1, as well as the slope §; is allowed to vary over time. This
variation in slope and level is governed by the variances of the disturbance terms 7; and &; in their respective
equations. Some interesting special cases of this model arise when you manipulate these disturbance variances.
For example, if the variance of &; is zero, the slope will be constant (equal to fy); if the variance of 7; is also
zero, 1y will be a deterministic trend given by the line g + Bot. The seasonal model used in this example is
called a trigonometric seasonal. The stochastic equations governing a trigonometric seasonal are explained
later (see the section “Modeling Seasons” on page 2871). However, it is interesting to note here that this
seasonal model reduces to the familiar regression with deterministic seasonal dummies if the variance of the
disturbance terms in its equations is equal to zero. The following statements specify a BSM with these three
components:

proc ucm data=seriesG;
id date interval=month;
model logair;
irregular;
level;
slope;
season length=12 type=trig print=smooth;
estimate;
forecast lead=24 print=decomp;
run;

The PROC UCM statement signifies the start of the UCM procedure, and the input data set, seriesG,
containing the dependent series is specified there. The optional ID statement is used to specify a date, datetime,
or time identification variable, date in this example, to label the observations. The INTERVAL=MONTH
option in the ID statement indicates that the measurements were collected on a monthly basis. The model
specification begins with the MODEL statement, where the response series is specified (logair in this case).
After this the components in the model are specified using separate statements that enable you to control
their individual properties. The irregular component ¢; is specified using the IRREGULAR statement and
the trend component u; is specified using the LEVEL and SLOPE statements. The seasonal component y;
is specified using the SEASON statement. The specifics of the seasonal characteristics such as the season
length, its stochastic evolution properties, etc., are specified using the options in the SEASON statement. The
seasonal component used in this example has a season length of 12, corresponding to the monthly seasonality,
and is of the trigonometric type. Different types of seasonals are explained later (see the section “Modeling
Seasons” on page 2871).

The parameters of this model are the variances of the disturbance terms in the evolution equations of w;, B¢,
and y; and the variance of the irregular component ¢;. These parameters are estimated by maximizing the
likelihood of the data. The ESTIMATE statement options can be used to specify the span of data used in
parameter estimation and to display and save the results of the estimation step and the model diagnostics.
You can use the estimated model to obtain the forecasts of the series as well as the components. The
options in the individual component statements can be used to display the component forecasts—for example,
PRINT=SMOOTH option in the SEASON statement requests the displaying of smoothed forecasts of the
seasonal component y;. The series forecasts and forecasts of the sum of components can be requested using
the FORECAST statement. The option PRINT=DECOMP in the FORECAST statement requests the printing
of the smoothed trend p; and the trend plus seasonal component (1 + yz).

The parameter estimates for this model are displayed in Figure 41.2.
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Figure 41.2 BSM for the Logair Series
The UCM Procedure

Final Estimates of the Free Parameters

Approx Approx
Component Parameter Estimate Std Error t Value Pr > |t
Irregular Error Variance 0.00023436 0.0001079 2.17 0.0298
Level Error Variance 0.00029828 0.0001057  2.82 0.0048
Slope Error Variance 8.47922E-13 6.2271E-10 0.00 0.9989
Season Error Variance 0.00000356 1.32347E-6 2.69 0.0072

The estimates suggest that except for the slope component, the disturbance variances of all the components
are significant—that is, all these components are stochastic. The slope component, however, appears to be
deterministic because its error variance is quite insignificant. It might then be useful to check if the slope
component can be dropped from the model—that is, if f9 = 0. This can be checked by examining the
significance analysis table of the components given in Figure 41.3.

Figure 41.3 Component Significance Analysis for the Logair Series

Significance Analysis of Components
(Based on the Final State)

Component DF Chi-Square Pr > ChiSq

Irregular 1 0.08 0.7747
Level 1 117867 <.0001
Slope 1 43.78 <.0001
Season 11 507.75 <.0001

This table provides the significance of the components in the model at the end of the estimation span. If a
component is deterministic, this analysis is equivalent to checking whether the corresponding regression
effect is significant. However, if a component is stochastic, then this analysis pertains only to the portion of
the series near the end of the estimation span. In this example the slope appears quite significant and should
be retained in the model, possibly as a deterministic component. Note that, on the basis of this table, the
irregular component’s contribution appears insignificant toward the end of the estimation span; however,
since it is a stochastic component, it cannot be dropped from the model on the basis of this analysis alone.
The slope component can be made deterministic by holding the value of its error variance fixed at zero. This
is done by modifying the SLOPE statement as follows:

slope variance=0 noest;
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After a tentative model is fit, its adequacy can be checked by examining different goodness-of-fit measures
and other diagnostic tests and plots that are based on the model residuals. Once the model appears satisfactory,
it can be used for forecasting. An interesting feature of the UCM procedure is that, apart from the series
forecasts, you can request the forecasts of the individual components in the model. The plots of component
forecasts can be useful in understanding their contributions to the series. The following statements illustrate
some of these features:

proc ucm data=seriesG;
id date interval = month;
model logair;
irregular;
level plot=smooth;
slope variance=0 noest;
season length=12 type=trig
plot=smooth;
estimate;
forecast lead=24 plot=decomp;
run;

The table given in Figure 41.4 shows the goodness-of-fit statistics that are computed by using the one-step-
ahead prediction errors (see the section “Statistics of Fit” on page 2908). These measures indicate a good
agreement between the model and the data. Additional diagnostic measures are also printed by default but
are not shown here.

Figure 41.4 Fit Statistics for the Logair Series

The UCM Procedure

Fit Statistics Based on Residuals

Mean Squared Error 0.00147
Root Mean Squared Error 0.03830
Mean Absolute Percentage Error 0.54132
Maximum Percent Error 2.19097
R-Square 0.99061
Adjusted R-Square 0.99046
Random Walk R-Square 0.87288

Amemiya's Adjusted R-Square  0.99017

Number of non-missing residuals used
for computing the fit statistics = 131

The first plot, shown in Figure 41.5, is produced by the PLOT=SMOQOTH option in the LEVEL statement, it
shows the smoothed level of the series.
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Figure 41.5 Smoothed Trend in the Logair Series
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The second plot (Figure 41.6), produced by the PLOT=SMOOTH option in the SEASON statement, shows
the smoothed seasonal component by itself.
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Figure 41.6 Smoothed Seasonal in the Logair Series
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The plot of the sum of the trend and seasonal component, produced by the PLOT=DECOMP option in the
FORECAST statement, is shown in Figure 41.7. You can see that, at least visually, the model seems to fit the
data well. In all these decomposition plots the component estimates are extrapolated for two years in the
future based on the LEAD=24 option specified in the FORECAST statement.
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logair

Figure 41.7 Smoothed Trend plus Seasonal in the Logair Series
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Syntax: UCM Procedure

The UCM procedure uses the following statements:

PROC UCM < options > ;
AUTOREG < options> ;
BLOCKSEASON options ;
BY variables ;
CYCLE < options> ;
DEPLAG options ;
ESTIMATE < options> ;
FORECAST < options> ;
ID variable options ;
IRREGULAR < options > ;
LEVEL < options> ;
MODEL dependent variable < = regressors > ;
NLOPTIONS options ;
PERFORMANCE options ;
OUTLIER options ;
RANDOMREG regressors </ options> ;
SEASON options ;
SLOPE < options> ;
SPLINEREG regressor < options > ;
SPLINESEASON options ;
TF regressor < options > ;

The PROC UCM and MODEL statements are required. In addition, the model must contain at least one
component with nonzero disturbance variance.

Functional Summary

The statements and options controlling the UCM procedure are summarized in Table 41.1. Most commonly
needed scenarios are listed; see the individual statements for additional details. You can use the PRINT=
and PLOT= options in the individual component statements for printing and plotting the corresponding
component forecasts.

Table 41.1  Functional Summary

Description Statement Option
Data Set Options

Specify the input data set PROC UCM DATA=
Write parameter estimates to an output data set ESTIMATE OUTEST=
Write series and component forecasts to an FORECAST OUTFOR=

output data set
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Table 41.1 continued
Description Statement Option
Model Specification
Specify the dependent variable and simple MODEL
predictors
Specify predictors with time-varying RANDOMREG
coefficients
Specify a nonlinear predictor SPLINEREG
Specify the irregular component IRREGULAR
Specify the random walk trend LEVEL
Specify the locally linear trend LEVEL and SLOPE
Specify a cycle component CYCLE
Specify a dummy seasonal component SEASON TYPE=DUMMY
Specify a trigonometric seasonal component SEASON TYPE=TRIG
Drop some harmonics from a trigonometric SEASON DROPH=
seasonal component
Specify a list of harmonics to keep in a SEASON KEEPH=
trigonometric seasonal component
Specify a spline-season component SPLINESEASON
Specify a block-season component BLOCKSEASON
Specify an autoreg component AUTOREG
Specify the lags of the dependent variable DEPLAG
Specify a transfer function component TF
Controlling the Likelihood Optimization Process
Request optimization of the profile likelihood ESTIMATE PROFILE
Request optimization of the usual likelihood ESTIMATE NOPROFILE
Specify the optimization technique NLOPTIONS TECH=
Limit the number of iterations NLOPTIONS MAXITER=
Outlier Detection
Turn on the search for additive outliers Default
Turn on the search for level shifts LEVEL CHECKBREAK
Specify the significance level for outlier tests ~ OUTLIER ALPHA=
Limit the number of outliers OUTLIER MAXNUM=
Limit the number of outliers to a percentage of OUTLIER MAXPCT=
the series length
Controlling the Series Span
Exclude some initial observations from ESTIMATE SKIPFIRST=
analysis during the parameter estimation
Exclude some observations at the end from ESTIMATE BACK=
analysis during the parameter estimation
Exclude some initial observations from FORECAST SKIPFIRST=

analysis during forecasting
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Description Statement Option

Exclude some observations at the end from FORECAST BACK=

analysis during forecasting

Graphical Residual Analysis

Get a panel of plots consisting of residual ESTIMATE PLOT=PANEL
autocorrelation plots and residual normality

plots

Get the residual CUSUM plot ESTIMATE PLOT=CUSUM
Get the residual cumulative sum of squares ESTIMATE PLOT=CUSUMSQ
plot

Get a plot of p-values for the portmanteau ESTIMATE PLOT=WN

white noise test

Get a time series plot of residuals with ESTIMATE PLOT=LOESS
overlaid loess smoother

Series Decomposition and Forecasting

Specify the number of periods to forecast in FORECAST LEAD=

the future

Specify the significance level of the forecast FORECAST ALPHA=
confidence interval

Request printing of smoothed series FORECAST PRINT=DECOMP
decomposition

Request printing of one-step-ahead and FORECAST PRINT=FORECASTS
multistep-ahead forecasts

Request plotting of smoothed series FORECAST PLOT=DECOMP
decomposition

Request plotting of one-step-ahead and FORECAST PLOT=FORECASTS
multistep-ahead forecasts

Request bootstrap standard errors FORECAST BOOTSTRAP

BY Groups

Specify BY-group processing BY

Global Printing and Plotting Options

Turn off all the printing for the procedure PROC UCM NOPRINT

Turn on all the printing options for the PROC UCM PRINTALL
procedure

Turn off all the plotting for the procedure PROC UCM PLOTS=NONE
Turn on all the plotting options for the PROC UCM PLOTS=ALL
procedure

Turn on a variety of plotting options for the PROC UCM PLOTS=

procedure
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Table 41.1 continued

Description Statement Option
ID

Specify a variable that provides the time index ID
for the series values

PROC UCM Statement
PROC UCM < options > ;

The PROC UCM statement is required. The following options can be used in the PROC UCM statement:

DATA=SAS-data-set

specifies the name of the SAS data set containing the time series. If the DATA= option is not specified
in the PROC UCM statement, the most recently created SAS data set is used.

NOPRINT

turns off all the printing for the procedure. The subsequent print options in the procedure are ignored.

PLOTS< (global-plot-options) > < = plot-request < (options) > >
PLOTS< (global-plot-options) > < = (plot-request < (options) > < .. . plot-request < (options) > >) >

controls the plots produced with ODS Graphics. When you specify only one plot request, you can omit
the parentheses around the plot request.

Here are some examples:

plots=none

plots=all

plots=residuals (acf loess)

plots (noclm)=(smooth (decomp) residual (panel loess))

For general information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS”
(SAS/STAT User’s Guide).

proc ucm;
model y = x;
irregular;
level;

run;

proc ucm plots=all;
model y = x;
irregular;
level;

run;

The first PROC UCM step does not specify the PLOTS= option, so the default plot that displays the
series forecasts in the forecast region is produced. The PLOTS=ALL option in the second PROC UCM
step produces all the plots that are appropriate for the specified model.
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In addition to the PLOTS= option in the PROC UCM statement, you can request plots by using the
PLOT= option in other statements of the UCM procedure. This way of requesting plots provides finer
control over the plot production. If you do not specify any specific plot request, then PROC UCM
produces the plot of series forecasts in the forecast horizon by default.

Global Plot Options
The global-plot-options apply to all relevant plots generated by the UCM procedure. The following
global-plot-option is supported:

NOCLM
suppresses the confidence limits in all the component and forecast plots.

Specific Plot Options
The following list describes the specific plots and their options:

ALL
produces all plots appropriate for the particular analysis.

NONE
suppresses all plots.

FILTER (< filter-plot-options >)
produces time series plots of the filtered component estimates. The following filter-plot-options
are available:

ALL
produces all the filtered component estimate plots appropriate for the particular analysis.

LEVEL
produces a time series plot of the filtered level component estimate, provided the model
contains the level component.

SLOPE
produces a time series plot of the filtered slope component estimate, provided the model
contains the slope component.

CYCLE
produces time series plots of the filtered cycle component estimates for all cycle components
in the model, if there are any.

SEASON
produces time series plots of the filtered season component estimates for all seasonal
components in the model, if there are any.

DECOMP
produces time series plots of the filtered estimates of the series decomposition.

RESIDUAL ( < residual-plot-options >)
produces the residuals plots. The following residual-plot-options are available:
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ALL
produces all the residual diagnostics plots appropriate for the particular analysis.

ACF
produces the autocorrelation plot of residuals.

CUSUM
produces the plot of cumulative residuals against time.

CUSUMSQ
produces the plot of cumulative squared residuals against time.

HISTOGRAM
produces the histogram of residuals.

LOESS
produces a scatter plot of residuals against time, which has an overlaid loess-fit.

PACF
produces the partial-autocorrelation plot of residuals.

PANEL
produces a summary panel of the residual diagnostics consisting of the following:

e histogram of residuals

normal quantile plot of residuals

the residual-autocorrelation-plot

the residual-partial-autocorrelation-plot

QaQ

produces a normal quantile plot of residuals.

RESIDUAL
produces a needle plot of residuals against time.

WN
produces the plot of Ljung-Box white-noise test p-values at different lags (in log scale).

SMOOTH ( < smooth-plot-options >)
produces time series plots of the smoothed component estimates. The following smooth-plot-
options are available:

ALL
produces all the smoothed component estimate plots appropriate for the particular analysis.

LEVEL
produces time series plot of the smoothed level component estimate, provided the model
contains the level component.
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SLOPE
produces time series plot of the smoothed slope component estimate, provided the model
contains the slope component.

CYCLE
produces time series plots of the smoothed cycle component estimates for all cycle compo-
nents in the model, if there are any.

SEASON
produces time series plots of the smoothed season component estimates for all season
components in the model, if there are any.

DECOMP
produces time series plots of the smoothed estimates of the series decomposition.

PRINTALL
turns on all the printing options for the procedure. The subsequent NOPRINT options in the procedure
are ignored.

AUTOREG Statement
AUTOREG < options> ;

The AUTOREG statement specifies an autoregressive component in the model. An autoregressive component
is a special case of cycle that corresponds to the frequency of zero or . It is modeled separately for easier
interpretation. A stochastic equation for an autoregressive component r; can be written as follows:

ry = pre—1 + vg, Vg ~ iid N(0,0’S’)

The damping factor p can take any value in the interval (-1, 1), including —1 but excluding 1. If p = 1, the
autoregressive component cannot be distinguished from the random walk level component. If p = —1, the
autoregressive component corresponds to a seasonal component with a season length of 2, or a nonstationary
cycle with period 2. If |p| < 1, then the autoregressive component is stationary. The following example
illustrates the AUTOREG statement. This statement includes an autoregressive component in the model. The

damping factor p and the disturbance variance o2 are estimated from the data.

autoreg;

NOEST=RHO
NOEST=VARIANCE

NOEST=(RHO VARIANCE)
fixes the values of p and 02 to those specified in the RHO= and VARIANCE= options.

PLOT=FILTER
PLOT=SMOOTH

PLOT=( <FILTER> <SMOOTH > )
requests plotting of the filtered or smoothed estimate of the autoreg component.
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PRINT=FILTER
PRINT=SMOOTH

PRINT=(< FILTER > < SMOOTH >)
requests printing of the filtered or smoothed estimate of the autoreg component.

RHO=value
specifies an initial value for the damping factor p during the parameter estimation process. The value
of p must be in the interval (-1, 1), including —1 but excluding 1.

VARIANCE=value
specifies an initial value for the disturbance variance 0.2 during the parameter estimation process. Any
nonnegative value, including zero, is an acceptable starting value.

BLOCKSEASON Statement

BLOCKSEASON NBLOCKS=integer BLOCKSIZE=integer < options> ;

The BLOCKSEASON or BLOCKSEASONAL statement is used to specify a seasonal component y; that has
a special block structure. The seasonal y; is called a block seasonal of block size m and number of blocks k
if its season length, s, can be factored as s = m * k and its seasonal effects have a block form—that is, the
first m seasonal effects are all equal to some number 71, the next m effects are all equal to some number 7,
and so on.

This type of seasonal structure can be appropriate in some cases; for example, consider a series that is
recorded on an hourly basis. Further assume that, in this particular case, the hour-of-the-day effect and the
day-of-the-week effect are additive. In this situation the hour-of-the-week seasonality, having a season length
of 168, can be modeled as a sum of two components. The hour-of-the-day effect is modeled using a simple
seasonal of season length 24, while the day-of-the-week is modeled as a block seasonal component that has
the days of the week as blocks. This day-of-the-week block seasonal component has seven blocks, each of
size 24.

A block seasonal specification requires, at the minimum, the block size m and the number of blocks in the
seasonal k. These are specified using the BLOCKSIZE= and NBLOCKS= option, respectively. In addition,
you might need to specify the position of the first observation of the series by using the OFFSET= option if it
is not at the beginning of one of the blocks. In the example just considered, this corresponds to a situation
where the first series measurement is not at the start of the day. Suppose that the first measurement of the
series corresponds to the hour between 6:00 and 7:00 a.m., which is the seventh hour within that day or at the
seventh position within that block. This is specified as OFFSET=7.

The other options in this statement are very similar to the options in the SEASON statement; for example, a
block seasonal can also be of one of the two types, DUMMY and TRIG. There can be more than one block
seasonal component in the model, each specified using a separate BLOCKSEASON statement. No two block
seasonals in the model can have the same NBLOCKS= and BLOCKSIZE= specifications. The following
example illustrates the use of the BLOCKSEASON statement to specify the additive, hour-of-the-week
seasonal model:

season length=24 type=trig;
blockseason nblocks=7 blocksize=24;
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BLOCKSIZE=integer
specifies the block size, m. This is a required option in this statement. The block size can be any
integer larger than or equal to two. Typical examples of block sizes are 24, corresponding to the hours
of the day when a day is being used as a block in hourly data, or 60, corresponding to the minutes in
an hour when an hour is being used as a block in data recorded by minutes, etc.

NBLOCKS=integer
specifies the number of blocks, k. This is a required option in this statement. The number of blocks
can be any integer greater than or equal to two.

NOEST
fixes the value of the disturbance variance parameter to the value specified in the VARIANCE= option.

OFFSET=integer
specifies the position of the first measurement within the block, if the first measurement is not at the
start of a block. The OFFSET= value must be between one and the block size. The default value is one.
The first measurement refers to the start of the estimation span and the forecast span. If these spans
differ, their starting measurements must be separated by an integer multiple of the block size.

PLOT=FILTER

PLOT=SMOOTH

PLOT=F_ANNUAL

PLOT=S_ANNUAL

PLOT=( < plot-request > ... < plot-request > )
requests plots of the season component. When you specify only one plot-request, you can omit the
parentheses around it. You can use the FILTER and SMOOTH options to plot the filtered and smoothed
estimates of the season component y;. You can use the F_ ANNUAL and S_ANNUAL options to
get the plots of “annual” variation in the filtered and smoothed estimates of y;. The annual plots are
useful to see the change in the contribution of a particular month over the span of years. Here “month”
and “year” are generic terms that change appropriately with the interval type being used to label the
observations and the season length. For example, for monthly data with a season length of 12, the
usual meaning applies, while for daily data with a season length of 7, the days of the week serve as
months and the weeks serve as years. The first period in each block is plotted over the years.

PRINT=FILTER
PRINT=SMOOTH

PRINT=( <FILTER > <SMOOTH> )
requests the printing of the filtered or smoothed estimate of the block seasonal component y;.

TYPE=DUMMY | TRIG
specifies the type of the block seasonal component. The default type is DUMMY.

VARIANCE=value
specifies an initial value for the disturbance variance, 62, in the y; equation at the start of the parameter
estimation process. Any nonnegative value, including zero, is an acceptable starting value.
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BY Statement
BY variables ;

A BY statement can be used in the UCM procedure to process a data set in groups of observations defined by
the BY variables. The model specified using the MODEL and other component statements is applied to all
the groups defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. The variables are one or more variables in the input data set.

CYCLE Statement
CYCLE < options> ;

The CYCLE statement is used to specify a cycle component, ¥, in the model. The stochastic equation
governing a cycle component of period p and damping factor p is

Y | cos A sin A Y1 Vs
L ]l S s [ ]+ ]
where v; and v/ are independent, zero-mean, Gaussian disturbances with variance 03 and A =2x*x7/pis
the angular frequency of the cycle. Any p strictly greater than two is an admissible value for the period, and
the damping factor p can be any value in the interval (0, 1), including one but excluding zero. The cycles
with frequency zero and 7, which correspond to the periods equal to infinity and two, respectively, can be
specified using the AUTOREG statement. The values of p less than one give rise to a stationary cycle, while

p = 1 gives rise to a nonstationary cycle. As a default, values of p, p, and o2 are estimated from the data.
However, if necessary, you can fix the values of some or all of these parameters.

There can be multiple cycles in a model, each specified using a separate CYCLE statement. The examples
that follow illustrate the use of the CYCLE statement.

The following statements request including two cycles in the model. The parameters of each of these cycles
are estimated from the data.

cycle;
cycle;

The following statement requests inclusion of a nonstationary cycle in the model. The cycle period p and the

disturbance variance o2 are estimated from the data.

cycle rho=1 noest=rho;

In the following statement, a nonstationary cycle with a fixed period of 12 is specified. Moreover, a starting
value is supplied for o2.

cycle period=12 rho=1 variance=4 noest=(rho period);
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NOEST=PERIOD
NOEST=RHO
NOEST=VARIANCE

NOEST=( <RHO> < PERIOD > < VARIANCE > )
fixes the values of the component parameters to those specified in the RHO=, PERIOD=, and VARI-
ANCE= options. This option enables you to fix any combination of parameter values.

ORDER=integer (Experimental )
enables you to specify a higher-order cycle. A higher-order cycle (a cycle whose order is greater than
1) is a generalization of the stochastic cycle described at the beginning of this section, which can
be thought of as a first-order cycle. Higher-order cycles are well explained in Trimbur (2005) and
Pelagatti (2015, sect. 3.3.3). A cycle whose order is greater than 2 is rarely needed, and specifying
cycles of large orders (for example, an order greater than 4) can lead to computational instability. See
Example 41.9 for an example of the use of higher-order cycles.

PERIOD=value
specifies an initial value for the cycle period during the parameter estimation process. Period value
must be strictly greater than 2.

PLOT=FILTER
PLOT=SMOOTH

PLOT=( <FILTER> <SMOOTH > )
requests plotting of the filtered or smoothed estimate of the cycle component.

PRINT=FILTER
PRINT=SMOOTH

PRINT=( <FILTER> <SMOOTH> )
requests the printing of a filtered or smoothed estimate of the cycle component ;.

RHO=value
specifies an initial value for the damping factor in this component during the parameter estimation
process. Any value in the interval (0, 1), including one but excluding zero, is an acceptable initial value
for the damping factor.

VARIANCE=value
specifies an initial value for the disturbance variance parameter, 02, to be used during the parameter
estimation process. Any nonnegative value, including zero, is an acceptable starting value.
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DEPLAG Statement
DEPLAG LAGS=order <PHI=value ... > <NOEST > ;

The DEPLAG statement is used to specify the lags of the dependent variable to be included as predictors in
the model. The following examples illustrate the use of the DEPLAG statement.

If the dependent series is denoted by y;, the following statement specifies the inclusion of ¢ y;—1 + ¢2y:—2
in the model. The parameters ¢; and ¢, are estimated from the data.

deplag lags=2;
The following statement requests including ¢1 ys—1 + ¢2yr—4 — P12 ys—5 in the model. The values of ¢
and ¢, are fixed at 0.8 and —1.2.

deplag lags=(1l) (4) phi=0.8 -1.2 noest;

The dependent lag parameters are not constrained to lie in any particular region. In particular, this implies that
a UCM that contains only an irregular component and dependent lags, resulting in a traditional autoregressive
model, is not constrained to be a stationary model. In the DEPLAG statement, if an initial value is supplied
for any one of the parameters, the initial values must also be supplied for all other parameters.

LAGS=order
LAGS=(lag, ..., lag)...(lag, ..., lag)
is a required option in this statement. LAGS=(/ 1, / 2, ..., | ;) defines a model with specified lags of

the dependent variable included as predictors. LAGS=order is equivalent to LAGS=(1, 2, ..., order ).

A concatenation of parenthesized lists specifies a factored model. For example, LAGS=(1)(12) specifies
that the lag values, 1, 12, and 13, corresponding to the following polynomial in the backward shift
operator, be included in the model:

(1—¢1,1B)(1 —¢2,1B)

Note that, in this case, the coefficient of the thirteenth lag is constrained to be the product of the
coefficients of the first and twelfth lags.

NOEST
fixes the values of the parameters to those specified in PHI= option.

PHl=value ...
lists starting values for the coefficients of the lagged dependent variable. The order of the values listed
corresponds with the order of the lags specified in the LAGS= option.

ESTIMATE Statement
ESTIMATE < options> ;

The ESTIMATE statement is an optional statement used to control the overall model-fitting environment.
Using this statement, you can control the span of observations used to fit the model by using the SKIPFIRST=
and BACK= options. This can be useful in model diagnostics. You can request a variety of goodness-of-fit
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statistics and other model diagnostic information including different residual diagnostic plots. Note that the
ESTIMATE statement is not used to control the nonlinear optimization process itself. That is done using
the NLOPTIONS statement, where you can control the number of iterations, choose between the different
optimization techniques, and so on. You can save the estimated parameters and other related information
in a data set by using the OUTEST= option. You can request the optimization of the profile likelihood,
the likelihood obtained by concentrating out a disturbance variance, for parameter estimation by using the
PROFILE option. The following example illustrates the use of this statement:

estimate skipfirst=12 back=24;

This statement requests that the initial 12 measurements and the last 24 measurements be excluded during the
model-fitting process. The actual observation span used to fit the model is decided as follows: Suppose that
no and n are the observation numbers of the first and the last nonmissing values of the response variable,
respectively. As a result of SKIPFIRST=12 and BACK=24, the measurements between observation numbers
no + 12 and n1 — 24 form the estimation span. Of course, the model fitting might not take place if there
are insufficient data in the resulting span. The model fitting does not take place if there are regressors in the
model that have missing values in the estimation span.

BACK=integer

SKIPLAST=integer
indicates that some ending part of the data needs to be ignored during the parameter estimation. This
can be useful when you want to study the forecasting performance of a model on the observed data.
BACK=10 results in skipping the last 10 measurements of the response series during the parameter
estimation. The default is BACK=0.

LIKE=DIFFUSE | MARGINAL (Experimental )
specifies the type of likelihood to use for parameter estimation. You can specify the following values:

DIFFUSE uses diffuse likelihood.
MARGINAL uses marginal likelihood.

For more information about likelihood types, see the section “Likelihood Computation and Model-
Fitting Phase” on page 2435 in Chapter 33, “The SSM Procedure.” For an example of the use of
LIKE=MARGINAL option, see Example 41.10. By default, LIKE=DIFFUSE.

EXTRADIFFUSE=k

enables continuation of the diffuse filtering iterations for k additional iterations beyond the first instance
where the initialization of the diffuse state would have otherwise taken place. If the specified k is larger
than the sample size, the diffuse iterations continue until the end of the sample. Note that one-step-
ahead residuals are produced only after the diffuse state is initialized. Delaying the initialization leads
to a reduction in the number of one-step-ahead residuals available for computing the residual diagnostic
measures. This option is useful when you want to ignore the first few one-step-ahead residuals that
often have large variance.

NOPROFILE
requests that the usual likelihood be optimized for parameter estimation. For more information, see the
section “Parameter Estimation by Profile Likelihood Optimization” on page 2886.
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OUTEST=SAS-data-set
specifies an output data set for the estimated parameters.

In the ESTIMATE statement, the PLOT= option is used to obtain different residual diagnostic plots.
The different possibilities are as follows:

PLOT=ACF
PLOT=MODEL
PLOT=LOESS
PLOT=HISTOGRAM
PLOT=PACF
PLOT=PANEL
PLOT=QQ
PLOT=RESIDUAL
PLOT=WN

PLOT=( < plot-request > ... < plot-request > )
requests different residual diagnostic plots. The different options are as follows:

ACF
produces the residual-autocorrelation plot.

CUSUM
produces the plot of cumulative residuals against time.

CUSUMSQ
produces the plot of cumulative squared residuals against time.

MODEL
produces the plot of one-step-ahead forecasts in the estimation span.

HISTOGRAM
produces the histogram of residuals.

LOESS
produces a scatter plot of residuals against time, which has an overlaid loess-fit.

PACF
produces the residual-partial-autocorrelation plot.

PANEL
produces a summary panel of the residual diagnostics consisting of the following:

o histogram of residuals
e normal quantile plot of residuals
o the residual-autocorrelation-plot

o the residual-partial-autocorrelation-plot
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QQ
produces a normal quantile plot of residuals.

RESIDUAL
produces a needle plot of residuals against time.

WN
produces a plot of p-values, in log-scale, at different lags for the Ljung-Box portmanteau white
noise test statistics.

PRINT=NONE
suppresses all the printed output related to the model fitting, such as the parameter estimates, the
goodness-of-fit statistics, and so on.

PROFILE
requests that the profile likelihood, obtained by concentrating out one of the disturbance variances
from the likelihood, be optimized for parameter estimation. By default, the profile likelihood is not
optimized if any of the disturbance variance parameters is held fixed to a nonzero value. For more
information see the section “Parameter Estimation by Profile Likelihood Optimization™ on page 2886.

SKIPFIRST=integer
indicates that some early part of the data needs to be ignored during the parameter estimation. This
can be useful if there is a reason to believe that the model being estimated is not appropriate for this
portion of the data. SKIPFIRST=10 results in skipping the first 10 measurements of the response series
during the parameter estimation. The default is SKIPFIRST=0.

FORECAST Statement
FORECAST < options> ;

The FORECAST statement is an optional statement that is used to specify the overall forecasting environment
for the specified model. It can be used to specify the span of observations, the historical period, to use to
compute the forecasts of the future observations. This is done using the SKIPFIRST= and BACK= options.
The number of periods to forecast beyond the historical period, and the significance level of the forecast
confidence interval, is specified using the LEAD= and ALPHA= options. You can request one-step-ahead
series and component forecasts by using the PRINT= option. You can save the series forecasts, and the
model-based decomposition of the series, in a data set by using the OUTFOR= option. You can use the
BOOTSTRAP option to request the computation of bootstrap prediction standard errors and the associated
confidence intervals. The following example illustrates the use of this statement:

forecast skipfirst=12 back=24 lead=30;

This statement requests that the initial 12 and the last 24 response values be excluded during the forecast
computations. The forecast horizon, specified using the LEAD= option, is 30 periods; that is, multistep
forecasting begins at the end of the historical period and continues for 30 periods. The actual observation span
used to compute the multistep forecasting is decided as follows: Suppose that ny and n; are the observation
numbers of the first and the last nonmissing values of the response variable, respectively. As a result of
SKIPFIRST=12 and BACK=24, the historical period, or the forecast span, begins at ng + 12 and ends at
n1 — 24. Multistep forecasts are produced for the next 30 periods—that is, for the observation numbers
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n1 —23tong + 6. Of course, the forecast computations can fail if the model has regressor variables that have
missing values in the forecast span. If the regressors contain missing values in the forecast horizon—that is,
between the observations n; — 23 and n; + 6—the forecast horizon is reduced accordingly.

ALPHA=value
specifies the significance level of the forecast confidence intervals; for example, ALPHA=0.05, which
is the default, results in a 95% confidence interval.

BACK=integer

SKIPLAST=integer
specifies the holdout sample for the evaluation of the forecasting performance of the model. For
example, BACK=10 results in treating the last 10 observed values of the response series as unobserved.
A post-sample-prediction-analysis table is produced for comparing the predicted values with the actual
values in the holdout period. The default is BACK=0.

BOOTSTRAP(NREP=integer < SEED=integer >) (Experimental )

enables the computation of bootstrap prediction standard errors based on the specified number of
replications (NREP). The value of NREP must be at least 2. Optionally, you can specify the random
number seed that is associated with the first replication by using the SEED= option. The seeds for the
subsequent replications are assigned sequentially. The default seed value that is associated with the first
replication is 123. The BOOTSTRAP option has no effect if the number of parameters to be estimated
is zero (that is, all the model parameters are known). Note that this option is computationally expensive.
The computational cost of NREP replications is comparable to the cost of estimating parameters NREP
times.

EXTRADIFFUSE=k
enables continuation of the diffuse filtering iterations for k additional iterations beyond the first instance
where the initialization of the diffuse state would have otherwise taken place. If the specified k is larger
than the sample size, the diffuse iterations continue until the end of the sample. Note that one-step-
ahead forecasts are produced only after the diffuse state is initialized. Delaying the initialization leads
to reduction in the number of one-step-ahead forecasts. This option is useful when you want to ignore
the first few one-step-ahead forecasts that often have large variance.

LEAD-=integer
specifies the number of periods to forecast beyond the historical period defined by the SKIPFIRST=
and BACK= options; for example, LEAD=10 results in the forecasting of 10 future values of the
response series. The default is LEAD=12.

OUTFOR=SAS-data-set
specifies an output data set for the forecasts. The output data set contains the ID variable (if specified),
the response and predictor series, the one-step-ahead and out-of-sample response series forecasts, the
forecast confidence intervals, the smoothed values of the response series, and the smoothed forecasts
produced as a result of the model-based decomposition of the series.
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PLOT=DECOMP

PLOT=DECOMPVAR

PLOT=FDECOMP

PLOT=FDECOMPVAR

PLOT=FORECASTS

PLOT=TREND

PLOT=( < plot-request > ... < plot-request > )
requests forecast and model decomposition plots. The FORECASTS option provides the plot of the
series forecasts, the TREND and DECOMP options provide the plots of the smoothed trend and other
decompositions, the DECOMPVAR option can be used to plot the variance of these components, and

the FDECOMP and FDECOMPVAR options provide the same plots for the filtered decomposition
estimates and their variances.

PRINT=DECOMP
PRINT=FDECOMP
PRINT=FORECASTS
PRINT=NONE

PRINT=( < print-request > ... < print-request > )

controls the printing of the series forecasts and the printing of smoothed model decomposition estimates.
By default, the series forecasts are printed only for the forecast horizon specified by the LEAD= option;
that is, the one-step-ahead predicted values are not printed. You can request forecasts for the entire
forecast span by specifying the PRINT=FORECASTS option. Using PRINT=DECOMP, you can
get smoothed estimates of the following effects: trend, trend plus regression, trend plus regression
plus cycle, and sum of all components except the irregular. If some of these effects are absent in
the model, then they are ignored. Similarly, you can get filtered estimates of these effects by using
PRINT=FDECOMP. You can use PRINT=NONE to suppress the printing of all the forecast output.

SKIPFIRST=integer
indicates that some early part of the data needs to be ignored during the forecasting calculations. This
can be useful if there is a reason to believe that the model being used for forecasting is not appropriate
for this portion of the data. SKIPFIRST=10 results in skipping the first 10 measurements of the
response series during the forecast calculations. The default is SKIPFIRST=0.

ID Statement
ID variable INTERVAL=value < ALIGN=value> ;

The ID statement names a numeric variable that identifies observations in the input and output data sets. The
ID variable’s values are assumed to be SAS date, time, or datetime values. In addition, the ID statement
specifies the frequency associated with the time series. The ID statement options also specify how the
observations are aligned to form the time series. If the ID statement is specified, the INTERVAL= option
must also be specified. If the ID statement is not specified, the observation number, with respect to the BY
group, is used as the time ID. The values of the ID variable are extrapolated for the forecast observations
based on the values of the INTERVAL= option.
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ALIGN=value
controls the alignment of SAS dates used to identify output observations. The ALIGN= option has the
following possible values: BEGINNING | BEG | B, MIDDLE | MID | M, and ENDING | END | E.
The default is BEGINNING. The ALIGN= option is used to align the ID variable with the beginning,
middle, or end of the time ID interval specified by the INTERVAL= option.

INTERVAL=value
specifies the time interval between observations. This option is required in the ID statement. IN-
TERVAL=value is used in conjunction with the ID variable to check that the input data are in order
and have no gaps. The INTERVAL= option is also used to extrapolate the ID values past the end of
the input data. For a complete discussion of the intervals supported, see Chapter 4, “Date Intervals,
Formats, and Functions.”

IRREGULAR Statement
IRREGULAR < options> ;

The IRREGULAR statement includes an irregular component in the model. There can be at most one
IRREGULAR statement in the model specification. The irregular component corresponds to the overall
random error ¢; in the model. By default the irregular component is modeled as white noise—that is, as a
sequence of independent, identically distributed, zero-mean, Gaussian random variables. However, you can
also model it as an autoregressive moving average (ARMA) process. The options for specifying an ARMA
model for the irregular component are given in a separate subsection: “ARMA Specification” on page 2855.

The options in this statement enable you to specify the model for the irregular component and to output its
estimates. Two examples of the IRREGULAR statement are given next. In the first example the statement is
in its simplest form, resulting in the inclusion of an irregular component that is white noise with unknown
variance:

irregular;

The following statement provides a starting value for the white noise variance o2 to be used in the nonlinear
parameter estimation process. It also requests the printing of smoothed estimates of €;. The smoothed
irregulars are useful in model diagnostics.

irregular variance=4 print=smooth;

NOEST
fixes the value of 62 to the value specified in the VARIANCE= option. Also see the NOEST= option
in the subsection “ARMA Specification” on page 2855.

PLOT=FILTER
PLOT=SMOOTH

PLOT=( <FILTER> <SMOOTH > )
requests plotting of the filtered or smoothed estimate of the irregular component.
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PRINT=FILTER
PRINT=SMOOTH

PRINT=( <FILTER > <SMOOTH> )
requests printing of the filtered or smoothed estimate of the irregular component.

VARIANCE=value
specifies an initial value for 062 during the parameter estimation process. Any nonnegative value,
including zero, is an acceptable starting value.

ARMA Specification

This section details the options for specifying an ARMA model for the irregular component. The specification
of ARMA models requires some notation, which is explained first.

Let B denote the backshift operator—that is, for any sequence ¢;, Be; = €;—1. The higher powers
of B represent larger shifts (for example, B3¢; = ¢;_3). A random sequence ¢; follows a zero-mean
ARMA(p,q)x(P,Q)s model with nonseasonal autoregressive order p, seasonal autoregressive order P, nonsea-
sonal moving average order ¢, and seasonal moving average order Q, if it satisfies the following difference
equation specified in terms of the polynomials in the backshift operator where a; is a white noise sequence
and s is the season length:

P(B)D(B*)e; = 6(B)O(B*)a;

The polynomials ¢, ®@, 8, and ® are of orders p, P, ¢, and Q, respectively, which can be any nonnegative
integers. The season length s must be a positive integer. For example, €; satisfies an ARMA(1,1) model (that
is, p=1,g=1,P =0,and Q = 0)if

€ = P16—1 + ar — bras—;

for some coefficients ¢p; and 6; and a white noise sequence a;. Similarly, ¢; satisfies an ARMA(1,1)x(1,1)12
model if

€ = P1€i—1 + Pres—12 — P1Pres—13 +ar — br1ar—1 — Or1a1-12 + 6101a:-13

for some coefficients ¢;, @1, 01, and ®; and a white noise sequence a;. The ARMA process is stationary
and invertible if the defining polynomials ¢, ®, 6, and ® have all their roots outside the unit circle—that
is, their absolute values are strictly larger than 1.0. It is assumed that the ARMA model specified for the
irregular component is stationary and invertible—that is, the coefficients of the polynomials ¢, ®, 6, and ®
are constrained so that the stationarity and invertibility conditions are satisfied. The unknown coefficients of
these polynomials become part of the model parameter vector that is estimated using the data.

The notation for a closely related class of models, autoregressive integrated moving average (ARIMA)
models, is also given here. A random sequence y; is said to follow an ARIMA(p,d,q)x(P.D,Q)s model
if, for some nonnegative integers d and D, the differenced series ¢; = (1 — B)4(1 — B%)P v follows
an ARMA(p,q)x(P,Q)s model. The integers d and D are called nonseasonal and seasonal differencing
orders, respectively. You can specify ARIMA models by using the DEPLAG statement for specifying the
differencing orders and by using the IRREGULAR statement for the ARMA specification. For an example
of ARIMA(0,1,1)x(0,1,1)12 model specification, see Example 41.8. Brockwell and Davis (1991) can be
consulted for additional information about ARIMA models.

You can use options of the IRREGULAR statement to specify the desired ARMA model and to request
printed and graphical output. A few examples of the IRREGULAR statement are given next.
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The following statement specifies an irregular component that is modeled as an ARMA(1,1) process. It also
requests plotting its smoothed estimate.

irregular p=1 g=1 plot=smooth;

The following statement specifies an ARMA(1,1)x(1,1)12 model. It also fixes the coefficient of the first-order
seasonal moving average polynomial to 0.1. The other coefficients and the white noise variance are estimated
using the data.

irregular p=1 sp=1 g=1 sqg=1 s=12 sma=0.l1 noest=(sma);

AR=¢1 ¢ ... ¢p
lists the starting values of the coefficients of the nonseasonal autoregressive polynomial

(B)=1-¢1B—--—g,B”

where the order p is specified in the P= option. The coefficients ¢; must define a stationary autoregres-
sive polynomial.

MA=0, 6, ...0,
lists the starting values of the coefficients of the nonseasonal moving average polynomial

O(B)=1—0,B —---— 0, BY

where the order ¢ is specified in the Q= option. The coefficients §; must define an invertible moving
average polynomial.

NOEST=(<VARIANCE> <AR> <SAR> <MA> <SMA>)
fixes the values of the ARMA parameters and the value of the white noise variance to those specified
in the AR=, SAR=, MA=, SMA=, or VARIANCE-= options.

P=integer
specifies the order of the nonseasonal autoregressive polynomial. The order can be any nonnegative
integer; the default value is 0. In practice the order is a small integer such as 1, 2, or 3.

Q=integer
specifies the order of the nonseasonal moving average polynomial. The order can be any nonnegative
integer; the default value is 0. In practice the order is a small integer such as 1, 2, or 3.

S=integer
specifies the season length used during the specification of the seasonal autoregressive or seasonal
moving average polynomial. The season length can be any positive integer; for example, S=4 might be
an appropriate value for a quarterly series. The default value is S=1.

SAR=®; &, ...Dp
lists the starting values of the coefficients of the seasonal autoregressive polynomial

®(B)=1—® B —-..— dpB°F

where the order P is specified in the SP= option and the season length s is specified in the S= option.
The coefficients ®; must define a stationary autoregressive polynomial.
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SMA=0; 0, ...0¢
lists the starting values of the coefficients of the seasonal moving average polynomial

O(B%) =1-0;B* —---— Qg B2

where the order Q is specified in the SQ= option and the season length s is specified in the S= option.
The coefficients ®; must define an invertible moving average polynomial.

SP=integer
specifies the order of the seasonal autoregressive polynomial. The order can be any nonnegative integer;
the default value is 0. In practice the order is a small integer such as 1 or 2.

SQ=integer
specifies the order of the seasonal moving average polynomial. The order can be any nonnegative
integer; the default value is 0. In practice the order is a small integer such as 1 or 2.

LEVEL Statement
LEVEL < options> ;

The LEVEL statement is used to include a level component in the model. The level component, either by
itself or together with a slope component (see the SLOPE statement), forms the trend component, j;, of
the model. If the slope component is absent, the resulting trend is a random walk (RW) specified by the
following equations:

e = Me—1 + N N ~ did N(O,(T?)

If the slope component is present, signified by the presence of a SLOPE statement, a locally linear trend
(LLT) is obtained. The equations of LLT are as follows:

we = -1+ P+ ne ~ iid N(0,07)
Bt Bi—1 + &. £ ~ iid N(O, ag)

In either case, the options in the LEVEL statement are used to specify the value of (7,% and to request forecasts
of ;. The SLOPE statement is used for similar purposes in the case of slope ;. The following examples
illustrate the use of the LEVEL statement. Assuming that a SLOPE statement is not added subsequently, a
simple random walk trend is specified by the following statement:

level;

The following statements specify a locally linear trend with value of (7% fixed at 4. It also requests printing of

filtered values of u;. The value of (fg, the disturbance variance in the slope equation, is estimated from the
data.

level variance=4 noest print=filter;
slope;
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CHECKBREAK
turns on the checking of breaks in the level component.

NOEST
fixes the value of 0,? to the value specified in the VARIANCE= option.

PLOT=FILTER
PLOT=SMOOTH

PLOT=( <FILTER> <SMOOTH > )
requests plotting of the filtered or smoothed estimate of the level component.

PRINT=FILTER
PRINT=SMOOTH

PRINT=( <FILTER > <SMOOTH > )
requests printing of the filtered or smoothed estimate of the level component.

VARIANCE=value
specifies an initial value for a,%, the disturbance variance in the p; equation at the start of the parameter
estimation process. Any nonnegative value, including zero, is an acceptable starting value.

MODEL Statement

MODEL dependent < = regressors > ;

The MODEL statement specifies the response variable and, optionally, the predictor or regressor variables for
the UCM model. This is a required statement in the UCM procedure. The predictors specified in the MODEL
statement are assumed to have a linear and time-invariant relationship with the response. The predictors that
have time-varying regression coefficients are specified separately in the RANDOMREG statement. Similarly,
the predictors that have a nonlinear effect on the response variable are specified separately in the SPLINEREG
statement. Only one MODEL statement can be specified.

NLOPTIONS Statement
NLOPTIONS < options> ;

PROC UCM uses the nonlinear optimization (NLO) subsystem to perform the nonlinear optimization of the
likelihood function during the estimation of model parameters. You can use the NLOPTIONS statement
to control different aspects of this optimization process. For most problems the default settings of the
optimization process are adequate. However, in some cases it might be useful to change the optimization
technique or to change the maximum number of iterations. This can be done by using the TECH= and
MAXITER= options in the NLOPTIONS statement as follows:

nloptions tech=dbldog maxiter=200;

This sets the maximum number of iterations to 200 and changes the optimization technique to DBLDOG
rather than the default technique, TRUREG, used in PROC UCM. A discussion of the full range of options
that can be used with the NLOPTIONS statement is given in Chapter 6, “Nonlinear Optimization Methods.”
In PROC UCM, all these options are available except the options related to the printing of the optimization
history. In this version of PROC UCM all the printed output from the NLO subsystem is suppressed.
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OUTLIER Statement
OUTLIER < options > ;

The OUTLIER statement enables you to control the reporting of the additive outliers (AO) and level shifts
(LS) in the response series. The AOs are searched by default. You can turn on the search for LSs by using the
CHECKBREAK option in the LEVEL statement.

ALPHA-=significance-level
specifies the significance level for reporting the outliers. The default is 0.05.

MAXNUM=number
limits the number of outliers to search. The default is MAXNUM=5.

MAXPCT=number
is similar to the MAXNUM-= option. In the MAXPCT= option you can limit the number of outliers to
search for according to a percentage of the series length. The default is MAXPCT=1. When both of
these options are specified, the minimum of the two search numbers is used.

PRINT=SHORT | DETAIL
enables you to control the printed output of the outlier search. The PRINT=SHORT option, which
is the default, produces an outlier summary table containing the most significant outliers, either AO
or LS, discovered in the outlier search. The PRINT=DETAIL option produces, in addition to the
outlier summary table, separate tables containing the AO and LS structural break chi-square statistics
computed at each time point in the estimation span.

PERFORMANCE Statement
PERFORMANCE options ;

The PERFORMANCE statement defines performance parameters for distributed and multithreaded computing
and passes variables that describe the distributed computing environment. In the UCM procedure, this
statement is applicable only if you specify the BOOTSTRAP option in the FORECAST statement. In
addition, the number of nodes that you specify in the NODES= option in the PERFORMANCE statement
must be strictly smaller than the number of bootstrap replications that you specify in the BOOTSTRAP
option. The following statements illustrate how you can use this statement to perform bootstrap computations
that use 10 nodes on a grid named hpa.sas.com:

proc ucm data=seriesG;
id date interval=month;
model logair;
irregular;
level;
forecast lead=24 bootstrap (nrep=50 seed=1234);
performance nodes=10 host="hpa.sas.com";
run;

For more information about the PERFORMANCE statement, see the section “PERFORMANCE Statement”
(Chapter 2, SAS/ETS User’s Guide: High-Performance Procedures).
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RANDOMREG Statement
RANDOMREG regressors </ options > ;

The RANDOMREG statement is used to specify regressors with time-varying regression coefficients. Each
regression coefficient—for example, 8;—is assumed to evolve as a random walk:

Br = Br—1 + 1. e ~ iid N(0,02)

Of course, if the random walk disturbance variance o2 is zero, then the regression coefficient is not time

varying, and it reduces to the standard regression setting. There can be multiple RANDOMREG statements,
and each statement can contain one or more regressors. The regressors in a given RANDOMREG statement
form a group that is assumed to share the same disturbance variance parameter. The random walks associated
with different regressors are assumed to be independent. For an example of using this statement see
Example 41.4. For additional information about the way parameter estimates are reported for this type of
regressors, see the section “Reporting Parameter Estimates for Random Regressors” on page 2883.

NOEST
fixes the value of 02 to the value specified in the VARIANCE= option.

PLOT=FILTER
PLOT=SMOOTH

PLOT=( <FILTER> <SMOOTH > )
requests plotting of filtered or smoothed estimate of the time-varying regression coefficient.

PRINT=FILTER
PRINT=SMOOTH

PRINT=( <FILTER > <SMOOTH> )
requests printing of the filtered or smoothed estimate of the time-varying regression coefficient.

VARIANCE=value
specifies an initial value for 02 during the parameter estimation process. Any nonnegative value,
including zero, is an acceptable starting value.

SEASON Statement
SEASON LENGTH-=integer < options > ;

The SEASON or SEASONAL statement is used to specify a seasonal component, y;, in the model. A
seasonal component can be one of the two types, DUMMY or TRIG. A DUMMY seasonal with season
length s satisfies the following stochastic equation:

s—1
> v = o, w; ~ iid N(0,03)
i=0
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The equations for a TRIG (short for trigonometric) seasonal component are as follows

[s/2]

Ve = Z Vit
j=1

where [s/2] equals s/2 if s is even and (s — 1)/2 if it is odd. The sinusoids, also called harmonics, yj; have
frequencies A ; = 27j/s and are specified by the matrix equation

Vit cos A sin A Yjt—1 Wit

Vit —sinA; cosi; Vii—1 w7,
where the disturbances w; ; and a);" , are assumed to be independent and, for fixed j, w;; and a);" , ~ N(O, 02).
If s is even, then the equation for Vs*/z, ; is not needed and y;/5 ; is given by

Vs/2,6 = —Vs/2,0—1 T Ws/2t

In the TRIG seasonal case, the option KEEPH= or DROPH= can be used to obtain subset trigonometric
seasonals that contain only a subset of the full set of harmonics y;,, j = 1,2,...,[s/2]. This is particularly
useful when the season length s is large and the seasonal pattern is relatively smooth.

Note that whether the seasonal type is DUMMY or TRIG, there is only one parameter, the disturbance

variance 62, in the seasonal model.

There can be more than one seasonal component in the model, necessarily with different season lengths if the
seasons are full. You can have multiple subset season components with the same season length, if you need
to use separate disturbance variances for different sets of harmonics. Each seasonal component is specified
using a separate SEASON statement. A model with multiple seasonal components can easily become quite
complex and might need a large amount of data and computing resources for its estimation and forecasting.
The examples that follow illustrate the use of SEASON statement.

The following statement specifies a DUMMY type (default) seasonal component with a season length of four,

corresponding to the quarterly seasonality. The disturbance variance o2 is estimated from the data.

season length=4;

The following statement specifies a trigonometric seasonal with monthly seasonality. It also provides a

starting value for o2

season length=12 type=trig variance=4;

DROPHARMONICS | DROPH=number-list| nTO mBY p
enables you to drop some harmonics y; , from the full set of harmonics used to obtain a trigonometric
seasonal. The drop list can include any integer between 1 and [s/2], s being the season length. For
example, the following specification results in a specification of a trigonometric seasonal with a season
length 12 that consists of only the first four harmonics y;;, j = 1,2, 3, 4:

season length=12 type=trig DROPH=5 6;

The last two high-frequency harmonics are dropped. The DROPH= option cannot be used with the
KEEPH= option.
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KEEPHARMONICS | KEEPH=number-list| nTO mBY p
enables you to keep only the harmonics y; ; listed in the option to obtain a trigonometric seasonal. The
keep list can include any integer between 1 and [s/2], s being the season length. For example, the
following specification results in a specification of a trigonometric seasonal with a season length of 12
that consists of all six harmonics y;;, j = 1,...,6:

season length=12 type=trig KEEPH=1 to 3;
season length=12 type=trig KEEPH=4 to 6;

However, these six harmonics are grouped into two groups, each having its own disturbance variance
parameter. The DROPH= option cannot be used with the KEEPH= option.

LENGTH=integer
specifies the season length, s. This is a required option in this statement. The season length can be any
integer greater than or equal to 2. Typical examples of season lengths are 12, corresponding to the
monthly seasonality, or 4, corresponding to the quarterly seasonality.

NOEST
fixes the value of the disturbance variance parameter to the value specified in the VARIANCE= option.

PLOT=FILTER
PLOT=SMOOTH
PLOT=F_ANNUAL
PLOT=S_ANNUAL

PLOT=( <plot-requests . ..<plot-requests)
requests plots of the season component. When you specify only one plot-request, you can omit the
parentheses around it. You can use the FILTER and SMOOTH options to plot the filtered and smoothed
estimates of the season component y;. You can use the F_ ANNUAL and S_ANNUAL options to
get the plots of “annual” variation in the filtered and smoothed estimates of y;. The annual plots are
useful to see the change in the contribution of a particular month over the span of years. Here “month”
and “year” are generic terms that change appropriately with the interval type being used to label the
observations and the season length. For example, for monthly data with a season length of 12, the
usual meaning applies, while for daily data with a season length of 7, the days of the week serve as
months and the weeks serve as years.

PRINT=HARMONICS
requests printing of the summary of harmonics present in the seasonal component. This option is valid
only for the trigonometric seasonal component.

PRINT=FILTER
PRINT=SMOOTH

PRINT=( < print-request > . ..< print-request > )
requests printing of the filtered or smoothed estimate of the seasonal component y;.

TYPE=DUMMY | TRIG
specifies the type of the seasonal component. The default type is DUMMY.
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VARIANCE=value
specifies an initial value for the disturbance variance, 03), in the y; equation at the start of the parameter
estimation process. Any nonnegative value, including zero, is an acceptable starting value.

SLOPE Statement
SLOPE < options> ;

The SLOPE statement is used to include a slope component in the model. The slope component cannot be
used without the level component (see the LEVEL statement). The level and slope specifications jointly
define the trend component of the model. A SLOPE statement without the accompanying LEVEL statement
is ignored. The equations of the trend, defined jointly by the level u; and slope f;, are as follows:

P = 1+ Bt + 0, me ~ iid N(0,oy)
Bt Bi—1 + &, & ~ iid N(O, og)

The SLOPE statement is used to specify the value of the disturbance variance, o2

to request forecasts of B;. The following examples illustrate this statement:

, in the slope equation, and

level;
slope;

The preceding statements fit a model with a locally linear trend. The disturbance variances 03 and o2 are
estimated from the data. You can request a locally linear trend with fixed slope by using the following
statements:

level;
slope variance=0 noest;

NOEST
fixes the value of the disturbance variance, 052, to the value specified in the VARIANCE= option.

PLOT=FILTER
PLOT=SMOOTH

PLOT=( <FILTER> <SMOOTH > )
requests plotting of the filtered or smoothed estimate of the slope component.

PRINT=FILTER
PRINT=SMOOTH

PRINT=( <FILTER > <SMOOTH> )
requests printing of the filtered or smoothed estimate of the slope component S;.

VARIANCE=value
specifies an initial value for the disturbance variance, 02, in the 8; equation at the start of the parameter
estimation process. Any nonnegative value, including zero, is an acceptable starting value.
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SPLINEREG Statement
SPLINEREG regressor < options> ;

The SPLINEREG statement is used to specify a regressor that has a nonlinear relationship with the dependent
series that can be approximated by a given B-spline. If the specified spline has degree d and is based on
n internal knots, then it is known that it can be written as a linear combination of (n + d + 1) regressors
that are derived from the original regressor. The span of these (n + d + 1) derived regressors includes
constant; therefore, to avoid multicollinearity with the level component, one of these regressors is dropped.
Specifying the SPLINEREG statement is equivalent to specifying a RANDOMREG statement with these
derived regressors. There can be multiple SPLINEREG statements. You must specify at least one interior
knot, either using the NKNOTS= option or the KNOTS= option. For more information about splines,
see Chapter 123, “The TRANSREG Procedure” (SAS/STAT User’s Guide). For an example of using this
statement, see Example 41.6. For additional information about the way parameter estimates are reported
for this type of regressors, see the section “Reporting Parameter Estimates for Random Regressors” on
page 2883.

DEGREE=integer
specifies the degree of the spline. It can be any integer larger than or equal to zero. The default value
is 3. The polynomial degree should be a small integer, usually O, 1, 2, or 3. Larger values are rarely
useful. If you have any doubt as to what degree to specify, use the default.

KNOTS=number-list| nTO mBY p

specifies the interior knots or break points. The values in the knot list must be nondecreasing and must
lie between the minimum and the maximum of the spline regressor values in the input data set. The
first time you specify a value in the knot list, it indicates a discontinuity in the nth (from DEGREE=n)
derivative of the transformation function at the value of the knot. The second mention of a value
indicates a discontinuity in the (n — 1)th derivative of the transformation function at the value of the
knot. Knots can be repeated any number of times for decreasing smoothness at the break points, but
the values in the knot list can never decrease.

You cannot use the KNOTS= option with the NKNOTS= option. You should keep the number of knots
small.

NKNOTS=m
creates m knots, the first at the 100/ (m + 1) percentile, the second at the 200/(m + 1) percentile, and
so on. Knots are always placed at data values; there is no interpolation. For example, if NKNOTS=3,
knots are placed at the 25th percentile, the median, and the 75th percentile. The value specified for the
NKNOTS= option must be > 1. You cannot use the NKNOTS=option with the KNOTS= option.

NOTE: Specifying knots by using the NKNOTS= option can result in different sets of knots in the
estimation and forecast stages if the distributions of regressor values in the estimation and forecast
spans differ. The estimation span is based on the BACK= and SKIPFIRST= options in the ESTIMATE
statement, and the forecast span is based on the BACK= and SKIPFIRST= options in the FORECAST
statement.

NOEST
fixes the value of the regression coefficient random walk disturbance variance to the value specified in
the VARIANCE-= option.
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PLOT=FILTER
PLOT=SMOOTH

PLOT=( <FILTER> <SMOOTH > )
requests plotting of filtered or smoothed estimate of the time-varying regression coefficient.

PRINT=FILTER
PRINT=SMOOTH

PRINT=( <FILTER > < SMOOTH > )
requests printing of filtered or smoothed estimate of the time-varying regression coefficient.

VARIANCE=value
specifies an initial value for the regression coefficient random walk disturbance variance during the
parameter estimation process. Any nonnegative value, including zero, is an acceptable starting value.

SPLINESEASON Statement
SPLINESEASON LENGTH=infeger KNOTS=integer, integer, ... <options> ;

The SPLINESEASON statement is used to specify a seasonal pattern that is to be approximated by a given
B-spline. If the specified spline has degree d and is based on n internal knots, then it can be written as
a linear combination of (n + d) regressors that are derived from the seasonal dummy regressors. The
SPLINESEASON specification is equivalent to specifying a RANDOMREG specification with these derived
regressors. Such approximation is useful only if the season length is relatively large, at least larger than
(n 4+ d). For additional information about splines, see Chapter 123, “The TRANSREG Procedure” (SAS/STAT
User’s Guide). For an example of using this statement, see Example 41.3.

DEGREE-=integer
specifies the degree of the spline. It can be any integer greater than or equal to zero. The default value
is 3.

KNOTS=integer, integers ...
lists the internal knots. This list of values must be a nondecreasing sequence of integers within the
range of 2 to (s — 1), where s is the season length specified in the LENGTH= option. This is a required
option in this statement.

LENGTH=integer
specifies the season length, s. This is a required option in this statement. The length can be any integer
greater than or equal to three.

NOEST
fixes the value of the regression coefficient random walk disturbance variance to the value specified in
the VARIANCE= option.

OFFSET=integer
specifies the position of the first measurement within the season, if the first measurement is not at the
start of the season. The OFFSET= value must be between one and the season length. The default value
is one. The first measurement refers to the start of the estimation span and the forecast span. If these
spans differ, their starting measurements must be separated by an integer multiple of the season length.
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PLOT=FILTER
PLOT=SMOOTH

PLOT=( <FILTER> <SMOOTH > )
requests plots of the season component. When you specify only one plot request, you can omit the
parentheses around the plot request. You can use the FILTER and SMOOTH options to plot the filtered
and smoothed estimates of the season component.

PRINT=FILTER
PRINT=SMOOTH

PRINT=( <FILTER > <SMOOTH > )
requests the printing of the filtered or smoothed estimate of the spline season component.

RKNOTS=(knot, ..., knot) ...(knot, ..., knot)
specifies a grouping of knots such that the knots within the same group have identical seasonal values.
The knots specified in this option must already be present in the list specified by the KNOTS= option.
The knot groups must be non-overlapping and without any repeated knots.

VARIANCE=value
specifies an initial value for the regression coefficient random walk disturbance variance during the
parameter estimation process. Any nonnegative value, including zero, is an acceptable starting value.

TF Statement (Experimental)
TF regressor < options > ;

The TF statement specifies a regressor that has a transfer-function relationship with the dependent series.
A transfer function is useful for capturing the contributions from lagged values of the regressor. Box and
Jenkins (1976) popularized ARIMA models that have transfer-function inputs. In the UCM procedure, you
can specify a transfer function of the following type (assuming the regression variable is X):

(yo + y1B' + B2 +...)B4 .
(1—81B—68,B2 — -+ — 8, B")(1 — 01 BS — w0y B2S — - — w, B"5)""

This transfer function is specified by using the ratio of polynomials in the backshift operator B. The
numerator polynomial orders (/1,/2, ---) are positive integers, possibly with gaps (for example, 1, 3). The
numerator term B¢ signifies the delay of order d. The denominator polynomial can have two factors:
a nonseasonal factor, (1 —§; B — §,B> —--- — §,, B™), and a seasonal factor whose season length is s,
(1 — w1 B — wyB?® — -+ — w, B™). The orders of the terms in the denominator factors cannot have gaps;
that is, if 5 is the maximum order of the nonseasonal factor, then all terms of orders 1 through 5 are present.
By design, the denominator factors are restricted to be stable polynomials (their roots are strictly larger than
1 in absolute value). As an example, consider the following transfer function specification:

(Yo + y1B' + y2B?)B3 .
(1—81B —8,B2)(1 — a1 B4 "

You can specify this transfer function as follows:
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tf x num=(1 2) den=2 sden=1 s=4 delay=3;

Since the numerator polynomial orders do not have any gaps, the following simpler specification is also
available:

tf x num=2 den=2 sden=1 s=4 delay=3;

Because the denominator factors do not permit gaps in their orders, only the maximum orders need to be
provided in their specification.

A state space representation of a transfer-function relationship is described in the section “State Space Form
of a Transfer Function Relationship” on page 2882. You can specify multiple TF statements, each one with
a separate regressor. A regressor that is specified in any transfer function specification must not appear
in any other regression specifications, such as in the right-hand side of the MODEL statement or in the
RANDOMREG and SPLINEREG statements.

NOTE: The mathematical form of the transfer function considered by PROC UCM is similar to the one
considered in the ARIMA procedure (Chapter 7, “The ARIMA Procedure”). However, there are some
differences:

e The sign convention of the coefficients of the nonzero-order terms in the numerator polynomial in the
UCM procedure is opposite to that of the ARIMA procedure.

e The ARIMA procedure permits multiple polynomial factors in both the numerator and the denominator.
The UCM procedure permits only one numerator factor and at most two denominator factors.

e The ARIMA procedure permits full control over the terms present in each of the polynomial factors.
The UCM procedure does not permit such fine control over the terms in the polynomials.

e In the UCM procedure, you cannot fix the coefficients of the numerator polynomial. They are always
estimated from the data.

e In the UCM procedure, if both nonseasonal and seasonal factors are present in the denominator, you
must specify starting values for their coefficients either for both factors or for neither.

You can specify the following options in the TF statement:

DELAY=integer
specifies the delay order, which must be a positive integer. By default, DELAY= 0.

DEN=integer
specifies the maximum order of the nonseasonal factor of the denominator polynomial. By default,
DEN=0.

DENVAL=val1 val2 ...
specifies the starting values of the coefficients of the nonseasonal factor of the denominator polynomial.
The number of values supplied in the DENVAL= option must match the value of the DEN= option.
Moreover, the resulting polynomial must be stable.
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NOEST
fixes the values of the denominator polynomial coefficients to those specified in the DENVAL= and
SDENVAL-= specifications.

NUM=argument
specifies the positive orders of the terms in the numerator polynomial. You can specify the argument
in either of the following forms:

integer includes all orders from 1 to integer.

(lag1, lag2, ...)  specifies a more general list of orders.

PLOT=FILTER
PLOT=SMOOTH

PLOT=( <FILTER> <SMOOTH > )
requests plots of the transfer-function component. When you specify only one plot request, you can
omit the parentheses around the plot request. You can use the FILTER and SMOQOTH options to plot
the filtered and smoothed estimates of the transfer-function component.

PRINT=FILTER
PRINT=SMOOTH

PRINT=( <FILTER > <SMOOTH> )
requests the printing of the filtered or smoothed estimate of the transfer-function component. When
you specify only one print request, you can omit the parentheses around the print request. You can use
the FILTER and SMOOTH options to print the filtered and smoothed estimates of the transfer-function
component.

S=integer
specifies the season length that is used in the specification of the seasonal factor of the denominator
polynomial. The season length can be any positive integer; for example, S=4 might be an appropriate
value for a quarterly series. By default, S=1.

SDEN=integer
specifies the maximum order of the seasonal factor of the denominator polynomial. By default,
SDEN=0.

SDENVAL=val1 val2 ...
specifies the starting values of the coefficients of the seasonal factor of the denominator polynomial.
The number of values supplied in this option must match the value of the SDEN= option. Moreover,
the resulting polynomial must be stable.

TFSTART=value
specifies the value of the transfer function at the start of the sample (the first time ID). By default, the
value of this option is a missing value that is estimated from the data. This option is often used when
the past values of the transfer function can be inferred because of the structure of the problem or when
it is useful to set these values (usually to 0) to achieve identifiability of the overall model. For more
information, see the section “State Space Form of a Transfer Function Relationship™ on page 2882.
See Example 41.10 for an example of the use of this option.
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Details: UCM Procedure

An Introduction to Unobserved Component Models

A UCM decomposes the response series into components such as trend, seasons, cycles, and the regression
effects due to predictor series. The following model shows a possible scenario:

m
Vi = mAvi+ve+ Y Bixjp+e
=1

& ~ iid N(0,02)

The terms u;, y¢, and ¥ represent the trend, seasonal, and cyclical components, respectively. In fact the
model can contain multiple seasons and cycles, and the seasons can be of different types. For simplicity
of discussion the preceding model contains only one of each of these components. The regression term,
Z’}Ll Bjx jt, includes contribution of regression variables with fixed regression coefficients. A model can
also contain regression variables that have time-varying regression coefficients or that have a nonlinear or a
transfer-function relationship with the dependent series (see “Incorporating Predictors of Different Types” on
page 2881). The disturbance term ¢;, also called the irregular component, is usually assumed to be Gaussian
white noise. In some cases it is useful to model the irregular component as a stationary ARMA process. For
additional information, see the section “Modeling the Irregular Component” on page 2873.

By controlling the presence or absence of various terms and by choosing the proper flavor of the included
terms, the UCMs can generate a rich variety of time series patterns. A UCM can be applied to variables after
transforming them by transforms such as log and difference.

The components (i, ¥, and ¥, model structurally different aspects of the time series. For example, the
trend u; models the natural tendency of the series in the absence of any other perturbing effects such as
seasonality, cyclical components, and the effects of exogenous variables, while the seasonal component
y: models the correction to the level due to the seasonal effects. These components are assumed to be
statistically independent of each other and independent of the irregular component. All of the component
models can be thought of as stochastic generalizations of the relevant deterministic patterns in time. This
way the deterministic cases emerge as special cases of the stochastic models. The different models available
for these unobserved components are discussed next.

Modeling the Trend

As mentioned earlier, the trend in a series can be loosely defined as the natural tendency of the series in the
absence of any other perturbing effects. The UCM procedure offers two ways to model the trend component
Wz . The first model, called the random walk (RW) model, implies that the trend remains roughly constant
throughout the life of the series without any persistent upward or downward drift. In the second model the
trend is modeled as a locally linear time trend (LLT). The RW model can be described as

He = fe—1+ne. ne ~ iid N(0,07)
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Note that if (7% = 0, then the model becomes u; = constant. In the LLT model the trend is locally linear,
consisting of both the level and slope. The LLT model is

e = -1+ B—r+m, m ~ iid N,0p)
Bi Br—1 + &, & ~ iid N(O,UEZ)

The disturbances 7; and &; are assumed to be independent. There are some interesting special cases of this

model obtained by setting one or both of the disturbance variances 0,? and 052 equal to zero. If 052 is set

equal to zero, then you get a linear trend model with fixed slope. If 0,% is set to zero, then the resulting
model usually has a smoother trend. If both the variances are set to zero, then the resulting model is the
deterministic linear time trend: w; = o + Bot.

You can incorporate these trend patterns in your model by using the LEVEL and SLOPE statements.

Modeling a Cycle

A deterministic cycle v with frequency A, 0 < A < 7, can be written as
Yy = a cos(At) + B sin(At)

If the argument ¢ is measured on a continuous scale, then v, is a periodic function with period 27/A,
amplitude y = (a2 4+ $2)'/2, and phase ¢ = tan~!(B/«). Equivalently, the cycle can be written in terms
of the amplitude and phase as

Yy =y cos(Ar — )

Note that when v/, is measured only at the integer values, it is not exactly periodic, unless A = (275 )/ k for
some integers j and k. The cycles in their pure form are not used very often in practice. However, they are
very useful as building blocks for more complex periodic patterns. It is well known that the periodic pattern
of any complexity can be written as a sum of pure cycles of different frequencies and amplitudes. In time
series situations it is useful to generalize this simple cyclical pattern to a stochastic cycle that has a fixed
expected period but time-varying amplitude and phase. The stochastic cycle considered here is motivated by
the following recursive formula for computing v,

Ve | | cosA sin A Y1
v | | —sind cosA v
starting with Yo = o and /5 = B. Note that v/, and ;" satisfy the relation

V22 =a®+ B> forall ¢

A stochastic generalization of the cycle ¥; can be obtained by adding random noise to this recursion and by
introducing a damping factor, p, for additional modeling flexibility. This model can be described as follows,

Ve | cos A sin A Y1 n vy

vr ol Pl _sinA cosi /0 v
where 0 < p < 1, and the disturbances v; and v;* are independent N (0, 03) variables. The resulting stochastic
cycle has a fixed expected period but time-varying amplitude and phase. The stationarity properties of the
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random sequence ¥; depend on the damping factor p. If p < 1, ¥ has a stationary distribution with mean
zero and variance 02 /(1 — p?). If p = 1, ¥, is nonstationary.

You can incorporate a cycle in a UCM by specifying a CYCLE statement. You can include multiple cycles in
the model by using separate CYCLE statements for each included cycle.

As mentioned before, the cycles are very useful as building blocks for constructing more complex periodic
patterns. Periodic patterns of almost any complexity can be created by superimposing cycles of different
periods and amplitudes. In particular, the seasonal patterns, general periodic patterns with integer periods, can
be constructed as sums of cycles. This important topic of modeling the seasonal components is considered
next.

Modeling Seasons

Seasonal fluctuations are a common source of variation in time series data. These fluctuations arise because of
the regular changes in seasons or some other periodic events. The seasonal effects are regarded as corrections
to the general trend of the series due to the seasonal variations, and these effects sum to zero when summed
over the full season cycle. Therefore the seasonal component y; is modeled as a stochastic periodic pattern of
an integer period s such that the sum Zf;(l) y¢—i 1s always zero in the mean. The period s is called the season
length. Two different models for the seasonal component are considered here. The first model is called the
dummy variable form of the seasonal component. It is described by the equation

s—1
> yii = o, w; ~ iid N(0,03)
i=0

The other model is called the trigonometric form of the seasonal component. In this case y; is modeled as a
sum of cycles of different frequencies. This model is given by

[s/2]

Ve = Z Vit
ji=1

where [s/2] equals s/2 if s is even and (s — 1)/2 if it is odd. The cycles y; ; have frequencies A ; = 2mj/s
and are specified by the matrix equation

Yt cosA;  sini; Yji—1 Wit

Vit —sinA; cosi; Yii—1 w7,
where the disturbances w; ; and w;‘ , are assumed to be independent and, for fixed j, @ ; and w;‘ , ~ N(0,352).
If s is even, then the equation for Vs*/z, , 1s not needed and y; /5 ; 1s given by

Vs/2,6 = —Vs/2,0—1 T Ws/2¢

The cycles y ; are called harmonics. If the seasonal component is deterministic, the decomposition of the
seasonal effects into these harmonics is identical to its Fourier decomposition. In this case the sum of squares
of the seasonal factors equals the sum of squares of the amplitudes of these harmonics. In many practical
situations, the contribution of the high-frequency harmonics is negligible and can be ignored, giving rise
to a simpler description of the seasonal. In the case of stochastic seasonals, the situation might not be so
transparent; however, similar considerations still apply. Note that if the disturbance variance 62 = 0, then
both the dummy and the trigonometric forms of seasonal components reduce to constant seasonal effects.
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That is, the seasonal component reduces to a deterministic function that is completely determined by its first
s — 1 values.

In the UCM procedure you can specify a seasonal component in a variety of ways, the SEASON statement
being the simplest of these. The dummy and the trigonometric seasonal components discussed so far can be
considered as saturated seasonal components that put no restrictions on the s — 1 seasonal values. In some
cases a more parsimonious representation of the seasonal might be more appropriate. This is particularly
useful for seasonal components with large season lengths. In the UCM procedure you can obtain parsimonious
representations of the seasonal components by one of the following ways:

e Use a subset trigonometric seasonal component obtained by deleting a few of the [s/2] harmonics used
in its sum. For example, a slightly smoother seasonal component of length 12, corresponding to the
monthly seasonality, can be obtained by deleting the highest-frequency harmonic of period 2. That is,
such a seasonal component will be a sum of five stochastic cycles that have periods 12, 6, 4, 3, and 2.4.
You can specify such subset seasonal components by using the KEEPH= or DROPH= option in the
SEASON statement.

e Approximate the seasonal pattern by a suitable spline approximation. You can do this by using the
SPLINESEASON statement.

o A block-seasonal pattern is a seasonal pattern where the pattern is divided into a few blocks of equal
length such that the season values within a block are the same—for example, a monthly seasonal
pattern that has only four different values, one for each quarter. In some situations a long seasonal
pattern can be approximated by the sum of block season and a simple season, the length of the simple
season being equal to the block length of the block season. You can obtain such approximation by
using a combination of BLOCKSEASON and SEASON statements.

e Consider a seasonal component of a large season length as a sum of two or more seasonal components
that are each of much smaller season lengths. This can be done by specifying more than one SEASON
statements.

Note that the preceding techniques of obtaining parsimonious seasonal components can also enable you
to specify seasonal components that are more general than the simple saturated seasonal components. For
example, you can specify a saturated trigonometric seasonal component that has some of its harmonics
evolving according to one disturbance variance parameter while the others evolve with another disturbance
variance parameter.

Modeling an Autoregression

An autoregression of order one can be thought of as a special case of a cycle when the frequency A is either O
or . Modeling this special case separately helps interpretation and parameter estimation. The autoregression
component r; is modeled as

1 =pr—1 4+ v, v ~ iid N(0,02)

where —1 < p < 1. An autoregression can also provide an alternative to the IRREGULAR component when
the model errors show some autocorrelation. You can incorporate an autoregression in your model by using
the AUTOREG statement.
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Modeling Regression Effects

A predictor variable can affect the response variable in a variety of ways. The UCM procedure enables you
to model several different types of predictor-response relationships:

e The predictor-response relationship is linear, and the regression coefficient does not change with time.
This is the simplest kind of relationship and such predictors are specified in the MODEL statement.

e The predictor-response relationship is /inear, but the regression coefficient does change with time.
Such predictors are specified in the RANDOMREG statement. Here the regression coefficient is
assumed to evolve as a random walk.

e The predictor-response relationship is nonlinear and the relationship can change with time. This
type of relationship can be approximated by an appropriate time-varying spline. Such predictors are
specified in the SPLINEREG statement.

e The response depends on contemporaneous and lagged values of the predictor. This type of relationship
is called transfer-function relationship, which can be specified in the TF statement.

A response variable can depend on its own past values—that is, lagged dependent values. Such a relationship
can be specified in the DEPLAG statement.

Modeling the Irregular Component

The components—such as trend, seasonal and regression effects, and nonstationary cycles—are used to
capture the structural dynamics of a response series. In contrast, the stationary cycles and the autoregression
are used to capture the transient aspects of the response series that are important for its short-range prediction
but have little impact on its long-term forecasts. The irregular component represents the residual variation
remaining in the response series that is modeled using an appropriate selection of structural and transient
effects. In most cases, the irregular component can be assumed to be simply Gaussian white noise. In some
other cases, however, the residual variation can be more complicated. In such situations, it might be necessary
to model the irregular component as a stationary ARMA process. Moreover, you can use the ARMA
irregular component together with the dependent lag specification (see the DEPLAG statement) to specify an
ARIMA(p,d,q)x(P.D,Q)s model for the response series. For an explanation of the ARIMA notation, see the
IRREGULAR statement. For an example of modeling a series by using an ARIMA(0,1,1)x(0,1,1);2 model,
see Example 41.8.

The Model Parameters

The parameter vector in a UCM consists of the variances of the disturbance terms of the unobserved compo-
nents, the damping coefficients and frequencies in the cycles, the damping coefficient in the autoregression,
and the regression coefficients in the regression terms. These parameters are estimated by maximizing the
likelihood. It is possible to restrict the values of the model parameters to user-specified values.

Model Specification

A UCM is specified by describing the components in the model. For example, consider the model

Ye =Mt + Y + €&
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consisting of the irregular, level, slope, and seasonal components. This model is called the basic structural
model (BSM) by Harvey (1989). The syntax for a BSM with monthly seasonality of trigonometric type is as
follows:

model y;

irregular;

level;

slope;

season length=12 type=trig;

Similarly, the following syntax specifies a BSM with a response variable y, a regressor x, and dummy-type
monthly seasonality:

model y = x;

irregular;

level;

slope variance=0 noest;
season length=12 type=dummy;

Moreover, the disturbance variance of the slope component is restricted to zero, giving rise to a local linear
trend with fixed slope.

A model can contain multiple cycle and seasonal components. In such cases the model syntax contains a
separate statement for each of these multiple cycle or seasonal components; for example, the syntax for a
model containing irregular and level components along with two cycle components could be as follows:

model y = x;
irregular;
level;
cycle;
cycle;

The UCMs as State Space Models

The UCMs considered in PROC UCM are special cases of more general models, called (linear) state space
models (SSM). The section “State Space Model and Notation” on page 2426 in Chapter 33, “The SSM
Procedure,” provides an elaborate notation for such models. However, for most of the UCMs considered
in PROC UCM, much simpler notation suffices. This section describes a treatment of UCMs in terms of
this simplified notation. At times the description and mathematical treatment (such as the expressions of
likelihood) of state space models in PROC UCM and PROC SSM can appear different. However, these
differences are only notational and the underlying mathematical quantities coincide. For example, the diffuse
Kalman filter (DKF) described in this section is called the exact initial Kalman filter whereas the DKF
described in the section “Filtering, Smoothing, Likelihood, and Structural Break Detection” on page 2433 in
Chapter 33, “The SSM Procedure,” is called the augmented Kalman filter. Both of these algorithms produce
the same final output (see Durbin and Koopman (2012, chap. 5) for more information).

An SSM can be described as follows:

e = Zia
a1 = Troar + 841, & ~N(O, Q)
a1 ~ N(O,P)
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The first equation, called the observation equation, relates the response series y; to a state vector o; that
is usually unobserved. The second equation, called the state equation, describes the evolution of the state
vector in time. The system matrices Z; and Ty are of appropriate dimensions and are known, except possibly
for some unknown elements that become part of the parameter vector of the model. The noise series {;
consists of independent, zero-mean, Gaussian vectors with covariance matrices (;. For most of the UCMs
considered here, the system matrices Z; and T}, and the noise covariances Q;, are time invariant—that is,
they do not depend on time. In a few cases, however, some or all of them can depend on time. The initial
state vector o1 is assumed to be independent of the noise series, and its covariance matrix P can be partially
diffuse. A random vector has a partially diffuse covariance matrix if it can be partitioned such that one part
of the vector has a properly defined probability distribution, while the covariance matrix of the other part is
infinite—that is, you have no prior information about this part of the vector. The covariance of the initial
state o7 is assumed to have the form

P = Py + kP

where P, and P, are nonnegative definite, symmetric matrices and « is a constant that is assumed to be
close to co. In the case of UCMs considered here, P is always a diagonal matrix that consists of zeros and
ones, and, if a particular diagonal element of P is one, then the corresponding row and column in Py are
Zero.

The state space formulation of a UCM has many computational advantages. In this formulation there are
convenient algorithms for estimating and forecasting the unobserved states {c; } by using the observed series
{y+}. These algorithms also yield the in-sample and out-of-sample forecasts and the likelihood of {y;}.
The state space representation of a UCM does not need to be unique. In the representation used here, the
unobserved components in the UCM often appear as elements of the state vector. This makes the elements
of the state interpretable and, more important, the sample estimates and forecasts of these unobserved
components are easily obtained. For additional information about the computational aspects of the state
space modeling, see Durbin and Koopman (2012). Next, some notation is developed to describe the essential
quantities computed during the analysis of the state space models.

Let {y;,t = 1,...,n} be the observed sample from a series that satisfies a state space model. Next, for
1 <t < n, let the one-step-ahead forecasts of the series, the states, and their variances be defined as follows,
using the usual notation to denote the conditional expectation and conditional variance:

a = E(al|y1, 2., y1-1)
Iy = Var(e|y1,y2,..., yi—1)
b = EOrly1,y2,.-.5ye-1)
Fy = Var(yt|y1, y2,-.., yi—1)

These are also called the filtered estimates of the series and the states. Similarly, for ¢ > 1, let the following
denote the full-sample estimates of the series and the state values at time ¢:

&t == E(at|y1,y2”Yn)
Ay = Var(o¢|y1,Y2,...,Vn)
Vi = Etly1,y2,---,¥n)

G: = Var(y:|y1.y2,-..,¥n)
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If the time ¢ is in the historical period—that is, if 1 < ¢t < n—then the full-sample estimates are called
the smoothed estimates, and if ¢ lies in the future then they are called out-of-sample forecasts. Note that if
1 <t < n,then y; = y; and G; = 0, unless y; is missing.

All the filtered and smoothed estimates (&, &, ..., G¢, and so on) are computed by using the Kalman
filtering and smoothing (KFS) algorithm, which is an iterative process. If the initial state is diffuse, as is
often the case for the UCMs, its treatment requires modification of the traditional KFS, which is called the
diffuse KFS (DKFS). The details of DKFS implemented in the UCM procedure can be found in De Jong
and Chu-Chun-Lin (2003). Additional information on the state space models can be found in Durbin and
Koopman (2012). The likelihood formulas described in this section are taken from the latter reference.

In the case of diffuse initial condition, the effect of the improper prior distribution of oy manifests itself in the
first few filtering iterations. During these initial filtering iterations the distribution of the filtered quantities
remains diffuse; that is, during these iterations the one-step-ahead series and state forecast variances F; and
I'; have the following form:

Fr = Fu +xFoot
I’ = T +«loot

The actual number of iterations—for example, [—affected by this improper prior depends on the nature
of the vectors Z;, the number of nonzero diagonal elements of P, and the pattern of missing values in
the dependent series. After [ iterations, I'so; and Fio; become zero and the one-step-ahead series and state
forecasts have proper distributions. These first / iterations constitute the initialization phase of the DKFS
algorithm. The post-initialization phase of the DKFS and the traditional KFS is the same. In the state space
modeling literature the pre-initialization and post-initialization phases are some times called pre-collapse and
post-collapse phases of the diffuse Kalman filtering. In certain missing value patterns it is possible for I to
exceed the sample size; that is, the sample information can be insufficient to create a proper prior for the
filtering process. In these cases, parameter estimation and forecasting is done on the basis of this improper
prior, and some or all of the series and component forecasts can have infinite variances (or zero precision).
The forecasts that have infinite variance are set to missing. The same situation can occur if the specified
model contains components that are essentially multicollinear. In these situations no residual analysis is
possible; in particular, no residuals-based goodness-of-fit statistics are produced.

The log likelihood of the sample (L ), which takes account of this diffuse initialization step, is computed by

using the one-step-ahead series forecasts as follows,

(n—d)
2

1 n
1 1 v2
Loo(¥1:---2yn) = — log2n—§§ wt_i E (long-i-Ftt)

t=1 t=1+1

where d is the number of diffuse elements in the initial state oy, v, = y; — Z;@; are the one-step-ahead
residuals, and

wy = IOg Foot if Foot >0
v2

= log Far + —— if Foor =0
Fys

If y; is missing at some time ¢, then the corresponding summand in the log likelihood expression is deleted,
and the constant term is adjusted suitably. Moreover, if the initialization step does not complete—that is, if /
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exceeds the sample size—then the value of d is reduced to the number of diffuse states that are successfully
initialized.

The portion of the log likelihood that corresponds to the post-initialization period is called the nondiffuse log
likelihood (Lg). The nondiffuse log likelihood is given by

1 < 2
Loi..-oyn) ==5 ) (logFy + 1)
t=I+1 !

In the case of UCMs considered in PROC UCM, it often happens that the diffuse part of the likelihood,
Zt1=1 wy, does not depend on the model parameters, and in these cases the maximization of nondiffuse and
diffuse likelihoods is equivalent. However, in some cases, such as when the model consists of dependent lags,
the diffuse part does depend on the model parameters. In these cases the maximization of the diffuse and
nondiffuse likelihood can produce different parameter estimates.

In some situations it is convenient to reparameterize the nondiffuse initial state covariance Py as 02 Py and
the state noise covariance Q; as 02 Q; for some common scalar parameter ¢2. In this case the preceding
log-likelihood expression, up to a constant, can be written as

e | 1 v (n—d) >
LOO(yls---ayn):_EZwl_z Z IOgFt—za—z Z Ftt_ 7 log o
r=1 t=I+1 t=1+1

Solving analytically for the optimum, the maximum likelihood estimate of o2 can be shown to be

1 "2
A2 — Z _t
(n—d) T, b

When this expression of o2 is substituted back into the likelihood formula, an expression called the profile
likelihood (L profile) of the data is obtained:

n n 2
v
E logFt—i—(n—d)log(E Ft)
t

1
_2Lproﬁle(y17 cees yn) = Z wr +
=1 t=1+1 t=1+1

In some situations the parameter estimation is done by optimizing the profile likelihood (see the section
“Parameter Estimation by Profile Likelihood Optimization” on page 2886 and the PROFILE option in the
ESTIMATE statement).

A new experimental feature in this release enables you to request that parameter estimation be based on an
alternate form of the likelihood, called the marginal likelihood (L, (Y, #)). You can switch to the marginal-
likelihood-based parameter estimation by specifying LIKE=EMARGINAL in the ESTIMATE statement. This
alternate likelihood and two additional likelihoods are described in the section “Likelihood Computation
and Model-Fitting Phase” on page 2435 in Chapter 33, “The SSM Procedure.” The diffuse likelihood,
Lo, described in this section is equivalent to the diffuse likelihood, Ly (Y, ), described in that section.
However, do not confuse the profile likelihood, L pofile, described in this section with the profile likelihood,
L,(Y,6), described in that section. The profiling in L, (Y, 8) refers to the profiling of the diffuse effects,
whereas the profiling in L o516 refers to the profiling of a common scalar parameter o2. For each of the
three likelihoods—diffuse, marginal and profile—that are described in that section, it is possible to profile
out (also called concentrate out) a common scalar parameter 02 and obtain expressions similar to the Lprofile
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likelihood that is described in this section. In fact, when you request that parameter estimation be based on
the marginal likelihood by specifying LIKE=MARGINAL in the ESTIMATE statement, the profile version of
marginal likelihood (L, (Y, 0)) is used if the PROFILE option is in effect (by default or when the PROFILE
option is specified). The discussion in the section “Parameter Estimation by Profile Likelihood Optimization”
on page 2886 also applies to marginal likelihood. As explained in the section “Likelihood Computation and
Model-Fitting Phase” on page 2435 in Chapter 33, “The SSM Procedure,” the estimates that are based on
marginal likelihood and the estimates that are based on diffuse likelihood coincide in many cases. In PROC
UCM, estimates that are based on marginal likelihood and diffuse likelihood will differ only if at least one of
the following conditions holds:

e The DEPLAG statement is present and the NOEST option is not specified.
e In a TF statement, at least one denominator factor is present and the NOEST option is not specified.

e In a CYCLE statement, RHO is fixed at 1 and the period is to be estimated—that is, RHO=1 and
NOEST=RHO or NOEST=(RHO VARIANCE).

Whenever you specify LIKE=EMARGINAL in the ESTIMATE statement, the FitSummary table that displays
the likelihood-based fit statistics includes fit statistics and information criteria that are based on the marginal
likelihood in addition to fit statistics that are based on diffuse likelihood.

In the remainder of this section, the state space formulation of UCMs is further explained by using some
particular UCMs as examples. The examples show that the state space formulation of the UCMSs depends
on the components in the model in a simple fashion; for example, the system matrix 7 is usually a block
diagonal matrix with blocks that correspond to the components in the model. The only exception to this
pattern is the UCMs that consist of the lags of dependent variable. This case is considered at the end of the
section.

In what follows, Diag [a, b, . .. ] denotes a diagonal matrix with diagonal entries [a, b, . .. ], and the transpose
of a matrix 7 is denoted as 7" .
Locally Linear Trend Model

Recall that the dynamics of the locally linear trend model are

e = Mt €
me = pe—1+ Br—1+
B: = PBi-1+&

Here y; is the response series and ¢;, 1y, and &, are independent, zero-mean Gaussian disturbance sequences

with variances 03, 03, and 052, respectively. This model can be formulated as a state space model where

the state vector oy = [ €; s By ]/ and the state noise {; = [ ¢ 1 & ]/. Note that the elements of the state
vector are precisely the unobserved components in the model. The system matrices 7" and Z and the noise
covariance Q corresponding to this choice of state and state noise vectors can be seen to be time invariant and
are given by

000
Z=[110], T=| 011 | and Q=Diag[o€2,o§,o§]
001
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The distribution of the initial state vector ¢ is diffuse, with Py = Diag [‘752» 0, O] and P, = Diagl0, 1, 1].
The parameter vector 6 consists of all the disturbance variances—that is, = (062, 0,%, (Tg).

Basic Structural Model

The basic structural model (BSM) is obtained by adding a seasonal component, y;, to the local level model.
In order to economize on the space, the state space formulation of a BSM with a relatively short season
length, season length = 4 (quarterly seasonality), is considered here. The pattern for longer season lengths
such as 12 (monthly) and 52 (weekly) is easy to see.

Let us first consider the dummy form of seasonality. In this case the state and state noise vectors are

oy = [et e Br Vit Vo V3 ], and & = [€ nr & w; 00 ]/, respectively. The first three elements of the
state vector are the irregular, level, and slope components, respectively. The remaining elements, y; ;, are
lagged versions of the seasonal component y;. y1,; corresponds to lag zero—that is, the same as y;, y2 ¢ to
lag 1 and y3 to lag 2. The system matrices are

000 0 0 0
011 0 0 0
001 0 0 0
Z=[110100], 000 -1 -1 1
000 1 0 0
000 0 1 0 |

and Q = Diag [0 02 GS , 0 ,0, O] The distribution of the initial state vector o1 is diffuse, with P, =
Diag [02,0.0,0,0,0] and P = Diag[0.1,1,1,1,1].

7

In the case of the trigonometric type of seasonality, oy = [et We Br Vi yi"’t yz,,] and {; =

’

[et Nt & w14 wi, w2 1 ] . The disturbance sequences, w;;, 1 < j < 2, and a)i"’t, are independent, zero-

mean, Gaussian sequences with variance Gaz). The system matrices are

00 0 0 0 0
01 1 0 0 0
0 0 1 0 0 0
Z=[110101], 0 0 0 cosA; sinkyg 0
0 0 0 —sind; cosA; O
000 0 0 CosAy |

and Q = Diag [0 02 OE , 02 02 o, ] Here A ; = (27j)/4. The distribution of the initial state vector o/

is diffuse, with Py, = Diag [a 0,0,0,0,0] and Po, = Diag][0, 1, 1,1, 1, 1]. The parameter vector in both
the cases is 6 = (02, 02 og, a2).

Seasons with Blocked Seasonal Values

Block seasonals are special seasonal components that impose a special block structure on the seasonal effects.
Let us consider a BSM with monthly seasonality that has a quarterly block structure—that is, months within
the same quarter are assumed to have identical effects except for some random perturbation. Such a seasonal
component is a block seasonal with block size m equal to 3 and the number of blocks k equal to 4. The state
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space structure for such a model with dummy-type seasonality is as follows: The state and state noise vectors
are oy = [e, e Br Vi V2t V3 ]/ and & = [€ nt & w; 00 ],, respectively. The first three elements of
the state vector are the irregular, level, and slope components, respectively. The remaining elements, y; ;, are
lagged versions of the seasonal component y;. y1,; corresponds to lag zero—that is, the same as y;, y2 ; to
lag m and y3; to lag 2m. All the system matrices are time invariant, except the matrix 7. They can be seen to

be Z=[110100], 0 =Diag[og,02 2 og,o,o],and

n O
000 0 0 0
011 0 0 0

| 0010 0 o0
000 —1 —1 —1
000 1 0 0
000 0 1 0 |

when ¢ is a multiple of the block size m, and

000000
011000
r_| 001000
000100
0000T10
00000 1

otherwise. Note that when ¢ is not a multiple of m, the portion of the 7; matrix corresponding to the seasonal
is identity. The distribution of the initial state vector «; is diffuse, with P, = Diag [03, 0,0,0,0, O] and
Py = Diag|0,1,1,1,1,1].

Similarly, in the case of the trigonometric form of seasonality, o; = [ € e Br Vi yf ; V2t ] and {; =

/7

[6, Nt & w1, a)it w2 1 ] . The disturbance sequences, w;;,1 < j < 2, and a)i",t, are independent, zero-

mean, Gaussian sequences with variance Uaz). Z =[110101], Q = Diag [03,0,%, 52, 03), 002),03)],

and
0 0 0 0 0 0
01 1 0 0 0
T — 0 0 1 0 0 0
P71 0 0 0 cosAy  sin)y 0
0 0 0 —sinAy cosAq 0
| 0 0 O 0 0 CcosAy |

when ¢ is a multiple of the block size m, and

0 00

[e]
]
o

SO O OO
SO OO -
SO O = =
SO = O O
S = O OO
—_ o O O O

otherwise. As before, when ¢ is not a multiple of m, the portion of the 7; matrix corresponding to the
seasonal is identity. Here A; = (2mj)/4. The distribution of the initial state vector ¢/ is diffuse, with
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P, = Diag [0 0,0,0,0, O] and Po, = Diag]0,1,1,1,1,1]. The parameter vector in both the cases is
6 = (02, cr GS, 02).

Cycles and Autoregression

The preceding examples have illustrated how to build a state space model corresponding to a UCM that
includes components such as irregular, trend, and seasonal. There you can see that the state vector and the
system matrices have a simple block structure with blocks corresponding to the components in the model.
Therefore, here only a simple model consisting of a single cycle and an irregular component is considered.
The state space form for more complex UCMs consisting of multiple cycles and other components can be
easily deduced from this example.

Recall that a stochastic cycle ¥, with frequency A, 0 < A < 7, and damping coefficient p can be modeled as

Ve | cos A sin A Yr—1 + Vs

vr ol Pl —sind cosA v vf
where v; and vt* are independent, zero-mean, Gaussian disturbances with variance 03. In what follows, a
state space form for a model consisting of such a stochastic cycle and an irregular component is given.

/ /
The state vector o, = [ & ¥ ¥, | , and the state noise vector {; = [ € v, v/ | . The system matrices are

0 0 0
Z=[110] T=| 0 pcosA psind 0= Dlag[a 02 02]
0 —psinA pcosA

The distribution of the initial state vector o is proper, with Py, = Diag [062, 0120, Gi], where O'i =

02(1 — p?)~L. The parameter vector § = (62, p, A, 02).

An autoregression r; can be considered as a special case of cycle with frequency A equal to O or 7. In this
case the equation for ¥,* is not needed. Therefore, for a UCM consisting of an autoregressive component and
an irregular component, the state space model simplifies to the following form.

/ ’
The state vector oy = [ €; r; | , and the state noise vector {; = [ € vy | . The system matrices are

0 0 . 2 2
Z=[11], T:[O p} and Q = Diag |0, 0, ]

The distribution of the initial state vector « is proper, with P, = Diag [0 o ] where 02 = 02(1 0>~ L.
The parameter vector 0 = (02, p,02).

Incorporating Predictors of Different Types

In the UCM procedure, you can incorporate predictors in a UCM in a variety of ways: you can specify simple
time-invariant linear predictors in the MODEL statement, you can specify predictors that have time-varying
coefficients in the RANDOMREG statement, and you can specify predictors that have a nonlinear relationship
with the response variable in the SPLINEREG statement. You can also specify a transfer-function relationship
by using the TF statement. As with earlier examples, the first part of this section uses a simple special
case to show how to obtain a state space form of a UCM that consists of a variety of predictors (except the
transfer-function relationship). The state space form that is associated with a transfer-function relationship is
described in the section “State Space Form of a Transfer Function Relationship” on page 2882.
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Consider a random walk trend model that has predictors x, u1, u, and v. Assume that x is a simple regressor
that is specified in the MODEL statement, u1 and u, are random regressors with time-varying regression
coefficients that are specified in the same RANDOMREG statement, and v is a nonlinear regressor that is
specified in a SPLINEREG statement. Further assume that the spline that is associated with v has degree
one and is based on two internal knots. As explained in the section “SPLINEREG Statement” on page 2864,
using v is equivalent to using (n knots + degree) = (2 + 1) = 3 derived (random) regressors: for example,
S1,82, 3. There are (1 + 2 + 3) = 6 regressors in all, the first one being a simple regressor and the others
being time-varying coefficient regressors. The time-varying regressors are in two groups: the first group
consists of u; and up, and the other group consists of s1, 52, and s3. The dynamics of this model are as

follows:
3
Yi = Wt + Bxr + Kisur + koruar + Z VitSit + €
i=1

Mt = Mp—1+ 7z

Kir = Kig-1) T E1r

K2t = Kp@—1) + &2

Yie = YVig—1) + i

Y2r = Ya@—1) + ot

Y3t = V3@—1) + {3t

All the disturbances ¢;, 1¢, €17, €2, C1¢, {2, and C3; are independent, zero-mean, Gaussian variables, where
€17, &2 share a common variance parameter cr; and (¢, {2y, {3 share a common variance ag. These

dynamics can be captured in the state space form by taking state oy = [ €; s B K1z K2¢ Y1r Y2t V3t ]/, state
/
disturbance {; = [ €; 17 0 &17 §2¢ 1 $2¢ 3¢ | » and the system matrices

Ziy = [11 X u1r uas S1e 521 3¢ |
T = Diagl0, 1,1, 1, 1, 1, 1, 1]
Q = Diag [062, 03, 0, ag, 052, G?, 0?, ag]

Note that the regression coefficients are elements of the state vector and that the system vector Z; is not
time-invariant. The distribution of the initial state vector ¢ is diffuse, with P, = Diag [062, 0,0,0,0,0,0, 0]
and Py, = Diag[0,1,1,1,1,1, 1, 1]. The parameters of this model are the disturbance variances, 062, 0,?,
052, and 0?, which are estimated by maximizing the likelihood. The regression coefficients, time-invariant 3,
and time-varying x1s, k2¢, V1¢, Y2¢ and y3; are implicitly estimated during the state estimation (smoothing).

State Space Form of a Transfer Function Relationship

This section illustrates the state space form of a simple transfer-function relationship. The state space form
of more complicated transfer-function relationships can be deduced using the same logic. Suppose that a
predictor x enters the model for a response variable y as

e = fite
f (Yo + v1B) .
! (1—8,B —8,B2)""




The UCMs as State Space Models 4 2883

where f; is the transfer-function component and ¢; is a sequence of independent, zero-mean, Gaussian
variables. In this description, the transfer-function component is described using the backward shift operator
B. Alternatively, it can be described as follows:

Jr =81 fi—1 + 82 fr—2 + yoxs + y1xi—1

This model can be easily put in a state space form by taking state &¢; = (¢; f; fi—1 Yo )/1)/, state disturbance
& = (e 0000), the system matrices Z =[1 100 0], Q = Diag[oZ 0 0 0 0], and

00 0 0 O

0 81 02 Xi41 Xt
;=10 1 0 0 0
0O 0 O 1 0
0O 0 O 0 1

The initial state et is partially diffuse. The precise form of the initial state depends on the value of the
TFSTART= option in the TF statement. If the TFSTART option is not specified, all elements of a1 except for
the first element (e1) are treated as diffuse. On the other hand, if a value is specified in the TFSTART= option,
the initial transfer function values ( f; and fp) in ¢} are fixed at that specified value. In this formulation of
the model, the numerator coefficients of the transfer-function relationship (yo and y;) are part of the state.
They are implicitly estimated during the state estimation (smoothing). On the other hand, the denominator
coefficients (81 and §,) and the noise variance (03) are estimated by maximizing the likelihood.

Reporting Parameter Estimates for Random Regressors

If the random walk disturbance variance that is associated with a random regressor is held fixed at 0, then
its coefficient is no longer time-varying. In the UCM procedure, the random regressor parameter estimates
are reported differently if the random walk disturbance variance that is associated with a random regressor
is held fixed at 0. The following points explain how the parameter estimates are reported in the parameter
estimates table and in the OUTEST= data set:

o [f the random walk disturbance variance that is associated with a random regressor is not held fixed,
then its estimate is reported in the parameter estimates table and in the OUTEST= data set.

o If more that one random regressor is specified in a RANDOMREG statement, then the first regressor
in the list is used as a representative of the list when the corresponding common variance parameter
estimate is reported.

e [f the random walk disturbance variance is held fixed at 0, then the parameter estimates table and the
OUTEST= data set contain the corresponding regression parameter estimate rather than the variance
parameter estimate.

e Similar considerations apply in the case of the derived random regressors that are associated with a
spline regressor.

Forecasting with Predictor Variables

If regression effects are included in the model (in a MODEL statement or in one or more of the RAN-
DOMREG, SPLINEREG, and TF statements) and the FORECAST statement is used to compute multistep
forecasts, then future values of the predictor variables must be included in the DATA= data set for the
forecast horizon that is defined by the BACK= and LEAD= options in the FORECAST statement. For more
information about how the forecast horizon is defined, see the FORECAST statement.
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ARMA Irregular Component

The state space form for the irregular component that follows an ARMA(p,q)x(P,Q)s model is described
in this section. The notation for ARMA models is explained in the IRREGULAR statement. A number of
alternate state space forms are possible in this case; the one given here is based on Jones (1980). With slight
abuse of notation, let p = p + sP denote the effective autoregressive order and ¢ = g + sQ denote the
effective moving average order of the model. Similarly, let ¢ be the effective autoregressive polynomial
and 6 be the effective moving average polynomial in the backshift operator with coefficients ¢1,..., ¢,
and 01, ..., 6,4, obtained by multiplying the respective nonseasonal and seasonal factors. Then, a random
sequence ¢; that follows an ARMA(p,q)x(P,Q)s model with a white noise sequence a; has a state space form
with state vector of size m = max(p,q + 1). The system matrices, which are time invariant, are as follows:

Z =[10 ... 0]. The state transition matrix 7, in a blocked form, is given by
0 Im—l
T =
Lo
where ¢; = 0ifi > p and [,,—1 is an (m — 1) dimensional identity matrix. The covariance of the

state disturbance matrix Q = ozww/ where o2 is the variance of the white noise sequence a; and the
vector ¥ = [yo... wm_l]/ contains the first m values of the impulse response function—that is, the first m
coefficients in the expansion of the ratio 6/¢. Since ¢; is a stationary sequence, the initial state is nondiffuse
and Po, = 0. The description of Py, the covariance matrix of the initial state, is a little involved; the details
are given in Jones (1980).

Models with Dependent Lags

The state space form of a UCM consisting of the lags of the dependent variable is quite different from the
state space forms considered so far. Let us consider an example to illustrate this situation. Consider a model
that has random walk trend, two simple time-invariant regressors, and that also includes a few—for example,
k—Ilags of the dependent variable. That is,

k

ye = Z¢iyt—i + e + B1x1e + Baxar + €
i=1

Mt = He—1+ Nt

The state space form of this augmented model can be described in terms of the state space form of a model
that has random walk trend with two simple time-invariant regressors. A superscript dagger (1) has been
added to distinguish the augmented model state space entities from the corresponding entities of the state
space form of the random walk with predictors model. With this notation, the state vector of the augmented

’ /7

model oth = [oz; Ve Vi—1 -+ Vi—k+1 ] and the new state noise vector Z: = [é‘; us 0... 0] , where u; is

the matrix product Z;{;. Note that the length of the new state vector is k + length(a;) = k + 4. The new
system matrices, in block form, are

T; 0 ... 0
zl=[00001...0]. T'=| ZuTy &1 ... &
0 Te—1k—1 0
where I g is the k — 1 dimensional identity matrix and

L[ ez o
O, =\ Z:0: Z:0Q:Z, 0
0 0 0
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Note that the 7" and Q matrices of the random walk with predictors model are time invariant, and in the
expressions above their time indices are kept because they illustrate the pattern for more general models. The
initial state vector is diffuse, with

+ | P« O # | Po O
P*_[O 0]’P°°_[ 0 Irk
The parameters of this model are the disturbance variances 03 and 0,?, the lag coefficients ¢1, ¢, ..., ¢g,

and the regression coefficients 81 and 5. As before, the regression coefficients get estimated during the
state smoothing, and the other parameters are estimated by maximizing the likelihood.

Outlier Detection

In time series analysis it is often useful to detect changes over time in the characteristics of the response
series. In the UCM procedure you can search for two types of changes, additive outliers (AO) and level
shifts (LS). An additive outlier is an unusual value in the series, the cause of which might be a data recording
error or a temporary shock to the series generation process. A level shift represents a permanent shift, either
up or down, in the level of the series. You can control different aspects of the outlier search, such as the
significance level of the reported outliers, by choosing different options in the OUTLIER statement. The
search for AOs is done by default, whereas the CHECKBREAK option in the LEVEL statement must be
used to turn on the search for LSs.

The outlier detection process implemented in the UCM procedure is based on De Jong and Penzer (1998). In
this approach the fitted model is taken to be the null model, and the series values and level shifts that are
not adequately accounted for by the null model are flagged as outliers. The unusualness of a response series
value at a particular time point 79, with respect to the fitted model, can be judged by estimating its value
based on the rest of the data (that is, the series obtained by deleting the series value at #yp) and comparing
the estimated value to the observed value. If the difference between the estimated and observed values is
statistically significant, then such value can be regarded as an AO. Note that this difference between the
estimated and observed values is also the regression coefficient of a dummy regressor that takes the value 1.0
at 7o and is 0.0 elsewhere, assuming such a regressor is added to the null model. In this way the series value
at tg is regarded as AO if the regression coefficient of this dummy regressor is significant. Similarly, you
can say that a level shift has occurred at a time point 7y if the regression coefficient of a regressor, which is
0.0 before 9 and 1.0 at 7 and thereafter, is statistically significant. De Jong and Penzer (1998) provide an
efficient way to compute such AO and LS regression coefficients and their standard errors at all time points
in the series. The outlier summary table, which is produced by default, simply lists the most statistically
significant candidates among these.

Missing Values

Embedded missing values in the dependent variable usually cause no problems in UCM modeling. However,
no missing values are allowed in the predictor variables. Certain patterns of missing values in the dependent
variable can lead to failure of the initialization step of the diffuse Kalman filtering for some models. For
example, if in a monthly series all values are missing for a certain month—such as May—then a BSM with
monthly seasonality leads to such a situation. However, in this case the initialization step can complete
successfully for a nonseasonal model such as local linear model.
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Parameter Estimation

The parameter vector in a UCM consists of the variances of the disturbance terms of the unobserved compo-
nents, the damping coefficients and frequencies in the cycles, the damping coefficient in the autoregression,
the lag coefficients of the dependent lags, and the regression coefficients in the regression terms. The
regression coefficients are always part of the state vector and are estimated by state smoothing. The remaining
parameters are estimated by maximizing either the full diffuse likelihood or the nondiffuse likelihood. The
decision to use the full diffuse likelihood or the nondiffuse likelihood depends on the presence or absence
of the dependent lag coefficients in the parameter vector. If the parameter vector does not contain any
dependent lag coefficients, then the full diffuse likelihood is used. If, on the other hand, the parameter
vector does contain some dependent lag coefficients, then the parameters are estimated by maximizing the
nondiffuse likelihood. The optimization of the full diffuse likelihood is often unstable when the parameter
vector contains dependent lag coefficients. In this sense, when the parameter vector contains dependent lag
coefficients, the parameter estimates are not true maximum likelihood estimates.

The optimization of the likelihood, either full or nondiffuse, is carried out using one of several nonlinear
optimization algorithms. The user can control many aspects of the optimization process by using the NLOP-
TIONS statement and by providing the starting values of the parameters while specifying the corresponding
components. However, in most cases the default settings work quite well. The optimization process is
not guaranteed to converge to a maximum likelihood estimate. In most cases the difficulties in parameter
estimation are associated with the specification of a model that is not appropriate for the series being modeled.

Parameter Estimation by Profile Likelihood Optimization

If a disturbance variance, such as the disturbance variance of the irregular component, is a part of the UCM
and is a free parameter, then it can be profiled out of the likelihood. This means solving analytically for its
optimum and plugging this expression back into the likelihood formula, giving rise to the so-called profile
likelihood. The expression of the profile likelihood and the MLE of the profiled variance are given earlier in
the section “The UCMs as State Space Models” on page 2874, where the computation of the likelihood of
the state space model is also discussed.

In some situations the optimization of the profile likelihood can be more efficient because the number of
parameters to optimize is reduced by one; however, for a variety of reasons such gains might not always
be observed. Moreover, in theory the estimates obtained by optimizing the profile likelihood and the usual
likelihood should be the same, but in practice this might not hold because of numerical rounding and other
conditions.

In the UCM procedure, by default the usual likelihood is optimized if any of the disturbance variance
parameters is held fixed to a nonzero value by using the NOEST option in the corresponding component
statement. In other cases the decision whether to optimize the profile likelihood or the usual likelihood
is based on several factors that are difficult to document. You can choose which likelihood to optimize
during parameter estimation by specifying the PROFILE option for the profile likelihood optimization or
the NOPROFILE option for the usual likelihood optimization. In the presence of the PROFILE option, the
disturbance variance to profile is checked in a specific order, so that if the irregular component disturbance
variance is free then it is always chosen. The situation in other cases is more complicated.
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Profiling in the Presence of Fixed Variance Parameters

Note that when the parameter estimation is done by optimizing the profile likelihood, the interpretation of
the variance parameters that are held fixed to nonzero values changes. In the presence of the PROFILE
option, the disturbance variances that are held at a fixed value by using the NOEST option in their respective
component statements are interpreted as being restricted to be that fixed multiple of the profiled variance
rather than being fixed at that nominal value. That is, implicitly, the parameter estimation is done under
the restriction of holding the disturbance variance ratio fixed at a given value rather than the disturbance
variance itself. For an example of this type of restriction to obtain a UC model that is equivalent to the famous
Hodrick-Prescott filter, see Example 41.5.

t Values

The ¢ values reported in the table of parameter estimates are approximations whose accuracy depends on
the validity of the model, the nature of the model, and the length of the observed series. The distributional
properties of the maximum likelihood estimates of general unobserved components models have not been
explored fully; therefore the probability values that correspond to a ¢ distribution should be interpreted
carefully, as they can be misleading. This is particularly true if the parameters in question are close to
the boundary of the parameter space. The two sources by Harvey (1989, 2001) are good references for
information about this topic. For some parameters, such as the cycle period, the reported ¢ values are
uninformative because comparison of the estimated parameter with zero is never needed. In such cases the ¢
values and the corresponding probability values should be ignored.

Bootstrap Prediction Intervals (Experimental)

By default, the UCM procedure computes the standard errors of the series and component forecasts (both the
filtered and smoothed estimates) by assuming that the estimated parameters are in fact the true parameters.
Rodriguez and Ruiz (2010) describe a bootstrap-based procedure to compute the standard errors of the series
and component forecasts that takes into account the uncertainty of parameter estimation. As an experimental
feature in this release, you can request the computation of standard errors based on this bootstrap-based
procedure by specifying the BOOTSTRAP option in the FORECAST statement. Subsequently, the confidence
intervals for the series and component forecasts are based on these bootstrap standard errors. The algorithm
that PROC UCM uses closely follows the first procedure described in Section 3 of Rodriguez and Ruiz (2010).
Note that this bootstrap algorithm is computationally expensive. The computational burden increases with the
number of bootstrap replications and is comparable to the computational burden of fitting the specified model
as many times as the number of replications. Fortunately, these replications can be executed in parallel, and
the UCM procedure can use multiple cores and multiple grid nodes (if they are available) to complete these
calculations faster. For a single machine with multiple cores, the procedure automatically detects and uses all
the cores. If a grid environment with multiple machines is available (with the appropriate SAS license), you
must use the PERFORMANCE statement to supply the necessary information to the UCM procedure.
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Computational Issues
Convergence Problems

As explained in the section ‘“Parameter Estimation” on page 2886, the model parameters are estimated by
nonlinear optimization of the likelihood. This process is not guaranteed to succeed. For some data sets, the
optimization algorithm can fail to converge. Nonconvergence can result from a number of causes, including
flat or ridged likelihood surfaces and ill-conditioned data. It is also possible for the algorithm to converge to
a point that is not the global optimum of the likelihood.

If you experience convergence problems, the following points might be helpful:

e Data that are extremely large or extremely small can adversely affect results because of the internal
tolerances used during the filtering steps of the likelihood calculation. Rescaling the data can improve
stability.

e Examine your model for redundancies in the included components and regressors. If some of the
included components or regressors are nearly collinear to each other, then the optimization process can
become unstable.

e Experimenting with different options offered by the NLOPTIONS statement can help.

e Lack of convergence can indicate model misspecification or a violation of the normality assumption.

Computer Resource Requirements

The computing resources required for the UCM procedure depend on several factors. The memory require-
ment for the procedure is largely dependent on the number of observations to be processed and the size of the
state vector underlying the specified model. If n denotes the sample size and m denotes the size of the state
vector, the memory requirement for the smoothing stage of the Kalman filter is of the order of 6 x 8 x 1 x m?>
bytes, ignoring the lower-order terms. If the smoothed component estimates are not needed then the memory
requirement is of the order of 6 x 8 x (m? 4 n) bytes. Besides m and n, the computing time for the parameter
estimation depends on the type of components included in the model. For example, the parameter estimation
is usually faster if the model parameter vector consists only of disturbance variances, because in this case
there is an efficient way to compute the likelihood gradient.

Displayed Output
The default printed output produced by the UCM procedure is described in the following list:

e brief information about the input data set, including the data set name and label, and the name of the
ID variable specified in the ID statement

e summary statistics for the data in the estimation and forecast spans, including the names of the variables
in the model, their categorization as dependent or predictor, the index of the beginning and ending
observations in the spans, the total number of observations and the number of missing observations,
the smallest and largest measurements, and the mean and standard deviation
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e information about the model parameters at the start of the model-fitting stage, including the fixed
parameters in the model and the initial estimates of the free parameters in the model

e convergence status of the likelihood optimization process if any parameter estimation is done

e estimates of the free parameters at the end of the model fitting-stage, including the parameter estimates,
their approximate standard errors, ¢ statistics, and the approximate p-value

o the likelihood-based goodness-of-fit statistics, including the full likelihood, the portion of the likelihood
corresponding to the diffuse initialization, the sum of squares of residuals normalized by their standard
errors, and the information criteria: AIC, AICC, HQIC, BIC, and CAIC

o the fit statistics that are based on the raw residuals (observed minus predicted), including the mean
squared error (MSE), the root mean squared error (RMSE), the mean absolute percentage error
(MAPE), the maximum percentage error (MAXPE), the R-square, the adjusted R-square, the random
walk R-square, and Amemiya’s R-square

o the significance analysis of the components included in the model that is based on the estimation span
e brief information about the components included in the model

e additive outliers in the series, if any are detected

e the multistep series forecasts

e post-sample-prediction analysis table that compares the multistep forecasts with the observed series
values, if the BACK= option is used in the FORECAST statement

Statistical Graphics

Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” in that chapter.

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

This section provides information about the basic ODS statistical graphics produced by the UCM procedure.

You can obtain most plots relevant to the specified model by using the global PLOTS= option in the PROC
UCM statement. The plot of series forecasts in the forecast horizon is produced by default. You can further
control the production of individual plots by using the PLOT= options in the different statements.

The main types of plots available are as follows:

e Time series plots of the component estimates, either filtered or smoothed, can be requested by using
the PLOT= option in the respective component statements. For example, the use of PLOT=SMOOTH
option in a CYCLE statement produces a plot of smoothed estimate of that cycle.
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e Residual plots for model diagnostics can be obtained by using the PLOT= option in the ESTIMATE
statement.

e Plots of series forecasts and model decompositions can be obtained by using the PLOT= option in the
FORECAST statement.

The following example is a simple illustration of the available plot options.

Analysis of Sunspot Data: lllustration of ODS Graphics

In this example a well-known series, Wolfer’s sunspot data (Anderson 1971), is considered. The data consist
of yearly sunspot numbers recorded from 1749 to 1924. These sunspot numbers are known to have a cyclical
pattern with a period of about eleven years. The following DATA step creates the input data set:

data sunspot;

input year wolfer @@;

year = mdy (1,1, year);

format year year4.;
datalines;
1749 809 1750 834 1751 477 1752 478 1753 307 1754 122 1755 96
1756 102 1757 324 1758 476 1759 540 1760 629 1761 859 1762 612
1763 451 1764 364 1765 209 1766 114 1767 378 1768 698 1769 1061

. more lines

The following statements specify a UCM that includes a cycle component and a random walk trend compo-
nent:

proc ucm data=sunspot;

id year interval=year;

model wolfer;

irregular;

level ;

cycle plot=(filter smooth);

estimate back=24 plot=(loess panel cusum wn);

forecast back=24 lead=24 plot=(forecasts decomp);
run;

The following subsections explain the graphics produced by the preceding statements.



Statistical Graphics 4 2891

Component Plots

The plots in Figure 41.8 and Figure 41.9, produced by specifying PLOT=(FILTER SMOOTH) in the CYCLE
statement, show the filtered and smoothed estimates, respectively, of the cycle component in the model.
Note that the smoothed estimate appears smoother than the filtered estimate. This is always true because
the filtered estimate of a component at time ¢ is based on the observations prior to time r—that is, it uses
measurements from the first observation up to the (¢ — 1)th observation. On the other hand, the corresponding
smoothed estimate uses all the available observations—that is, all the measurements from the first observation
to the last. This makes the smoothed estimate of the component more precise than the filtered estimate for
the time points within historical period. In the forecast horizon, both filtered and smoothed estimates are
identical, being based on the same set of observations.

Figure 41.8 Sunspots Series: Filtered Cycle
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Figure 41.9 Sunspots Series: Smoothed Cycle
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Residual Diagnostics

If the fitted model is appropriate for the given data, then the corresponding one-step-ahead residuals should
be approximately white—that is, uncorrelated—and approximately normal. Moreover, the residuals should
not display any discernible pattern. You can detect departures from these conditions graphically. Different
residual diagnostic plots can be requested by using the PLOT= option in the ESTIMATE statement.

The normality can be checked by examining the histogram and the normal quantile plot of residuals. The
whiteness can be checked by examining the ACF and PACF plots that show the sample autocorrelation and
sample partial-autocorrelation at different lags. The diagnostic panel shown in Figure 41.10, produced by
specifying PLOT=PANEL, contains these four plots.
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Figure 41.10 Sunspots Series: Residual Diagnostics
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The residual histogram and Q-Q plot show no serious violation of normality. The histogram appears
reasonably symmetric and follows the overlaid normal density curve reasonably closely. Similarly, in the
Q-Q plot the residuals follow the reference line fairly closely. The ACF and PACF plots also do not exhibit
any violation of the whiteness assumption; the correlations at all nonzero lags seem to be insignificant.

The residual whiteness can also be formally tested by using the Ljung-Box portmanteau test. The plot in
Figure 41.11, produced by specifying PLOT=WN, shows the p-values of the Ljung-Box test statistics at
different lags. In these plots the p-values for the first few lags, equal to the number of estimated parameters in
the model, are not shown because they are always missing. This portion of the plot is shaded blue to indicate
this fact. In the case of this model, five parameters are estimated so the p-values for the first five lags are
not shown. The p-values are displayed on a log scale in such a way that higher bars imply more extreme
test statistics. In this plot some early p-values appear extreme. However, these p-values are based on large
sample theory, which suggests that these statistics should be examined for lags larger than the square root of
sample size. In this example it means that the p-values for the first +/154 ~ 12 lags can be ignored. With
this consideration, the plot shows no violation of whiteness since the p-values after the 12th lag do not appear
extreme.
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Figure 41.11 Sunspots Series: Ljung-Box Portmanteau Test
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The plot in Figure 41.12, produced by specifying PLOT=LOESS, shows the residuals plotted against time
with an overlaid loess curve. This plot is useful for checking whether any discernible pattern remains in the
residuals. Here again, no significant pattern appears to be present.
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Figure 41.12 Sunspots Series: Residual Loess Plot
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The plot in Figure 41.13, produced by specifying PLOT=CUSUM, shows the cumulative residuals plotted
against time. This plot is useful for checking structural breaks. Here, there appears to be no evidence of
structural break since the cumulative residuals remain within the confidence band throughout the sample
period. Similarly, you can request a plot of the squared cumulative residuals by specifying PLOT=CUSUMSQ.
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Brockwell and Davis (1991) can be consulted for additional information on diagnosing residuals. For more
information about CUSUM and CUSUMSAQ plots, you can consult Harvey (1989).
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Forecast and Series Decomposition Plots

You can use the PLOT= option in the FORECAST statement to obtain the series forecast plot and the
series decomposition plots. The series decomposition plots show the result of successively adding different
components in the model starting with the trend component. The IRREGULAR component is left out of this
process. The following two plots, produced by specifying PLOT=DECOMP, show the results of successive
component addition for this example. The first plot, shown in Figure 41.14, shows the smoothed trend
component and the second plot, shown in Figure 41.15, shows the sum of smoothed trend and cycle.

Figure 41.14 Sunspots Series: Smoothed Trend
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Figure 41.15 Sunspots Series: Smoothed Trend plus Cycle
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Finally, Figure 41.16 shows the forecast plot.

1940
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Figure 41.16 Sunspots Series: Series Forecasts
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ODS Table Names

The UCM procedure assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 41.2.

Table 41.2 ODS Tables Produced by PROC UCM

ODS Table Name Description Statement Option

Tables Summarizing the Estimation and Forecast Spans

EstimationSpan Estimation span summary Default
information

ForecastSpan Forecast span summary Default

information
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Table 41.2 continued

ODS Table Name Description Statement Option

Tables Related to Model Parameters

ConvergenceStatus Convergence status of the Default
estimation process

FixedParameters Fixed parameters in the Default
model

InitialParameters Initial estimates of the free Default
parameters

ParameterEstimates Final estimates of the free Default
parameters

Tables Related to Model Information and Diagnostics

BlockSeasonDescription  Information about the block Default
seasonals in the model

ComponentSignificance  Significance analysis of the Default
components in the model

CycleDescription Information about the cycles Default
in the model

FitStatistics Fit statistics based on the Default
one-step-ahead predictions

FitSummary Likelihood-based fit statistics Default

OutlierSummary Summary table of the Default
detected outliers

AdditiveOutliers AO statistics computed at OUTLIER PRINT=DETAIL

each time point in the
estimation span
LevelShifts LS statistics computed at OUTLIER
each time point in the
estimation span

SeasonDescription Information about the
seasonals in the model

SeasonHarmonics Summary of harmonicsina ~ SEASON
trigonometric seasonal
component

SplineSeasonDescription Information about the
spline-seasonals in the model

TrendInformation Summary information of the
level and slope components

Tables Related to Filtered Component Estimates
Filtered AutoReg Filtered estimate of an AUTOREG
autoreg component

PRINT=DETAIL

Default

PRINT=HARMONICS

Default

Default

PRINT=FILTER

FilteredBlockSeason Filtered estimate of a block BLOCKSEASON PRINT=FILTER

seasonal component
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ODS Table Name Description Statement Option

FilteredCycle Filtered estimate of a cycle CYCLE PRINT=FILTER
component

FilteredIrregular Filtered estimate of the IRREGULAR PRINT=FILTER
irregular component

FilteredLevel Filtered estimate of the leve]l LEVEL PRINT=FILTER
component

FilteredRandomReg Filtered estimate of the RANDOMREG PRINT=FILTER
time-varying
random-regression
coefficient

FilteredSeason Filtered estimate of a SEASON PRINT=FILTER
seasonal component

FilteredSlope Filtered estimate of the slope ~SLOPE PRINT=FILTER
component

FilteredSplineReg Filtered estimate of the SPLINEREG PRINT=FILTER
time-varying
spline-regression coefficient

FilteredSplineSeason Filtered estimate of a SPLINESEASON PRINT=FILTER
spline-seasonal component

Tables Related to Smoothed Component Estimates

SmoothedAutoReg Smoothed estimate of an AUTOREG PRINT=SMOOTH
autoreg component

SmoothedBlockSeason Smoothed estimate of a BLOCKSEASON PRINT=SMOOTH
block seasonal component

SmoothedCycle Smoothed estimate of the CYCLE PRINT=SMOOTH
cycle component

SmoothedIrregular Smoothed estimate of the IRREGULAR PRINT=SMOOTH
irregular component

SmoothedLevel Smoothed estimate of the LEVEL PRINT=SMOOTH
level component

SmoothedRandomReg Smoothed estimate of the RANDOMREG PRINT=SMOOTH
time-varying
random-regression
coefficient

SmoothedSeason Smoothed estimate of a SEASON PRINT=SMOOTH
seasonal component

SmoothedSlope Smoothed estimate of the SLOPE PRINT=SMOOTH
slope component

SmoothedSplineReg Smoothed estimate of the SPLINEREG PRINT=SMOOTH
time-varying
spline-regression coefficient

SmoothedSplineSeason ~ Smoothed estimate of a SPLINESEASON PRINT=SMOOTH

spline-seasonal component
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Table 41.2 continued

ODS Table Name Description Statement Option

Tables Related to Series Decomposition and Forecasting

FilteredAllExceptlrreg Filtered estimate of sum of =~ FORECAST PRINT=FDECOMP
all components except the
irregular component

FilteredTrend Filtered estimate of trend FORECAST PRINT=FDECOMP

FilteredTrendReg Filtered estimate of trend FORECAST PRINT=FDECOMP
plus regression

FilteredTrendRegCyc Filtered estimate of trend FORECAST PRINT=FDECOMP
plus regression plus cycles
and autoreg

Forecasts Dependent series forecasts Default
PostSamplePrediction Forecasting performance in ~ FORECAST BACK=
the holdout period

SmoothedAllExceptlrreg  Smoothed estimate of sum of FORECAST PRINT=DECOMP
all components except the
irregular component

SmoothedTrend Smoothed estimate of trend = FORECAST PRINT= DECOMP

SmoothedTrendReg Smoothed estimate of trend =~ FORECAST PRINT=DECOMP
plus regression

SmoothedTrendRegCyc ~ Smoothed estimate of trend =~ FORECAST PRINT=DECOMP
plus regression plus cycles
and autoreg

NOTE: The tables are related to a single series within a BY group. In the case of models that contain multiple
cycles, seasonal components, or block seasonal components, the corresponding component estimate tables
are sequentially numbered. For example, if a model contains two cycles and a seasonal component and the
PRINT=SMOOTH option is used for each of them, the ODS tables containing the smoothed estimates will
be named SmoothedCyclel, SmoothedCycle2, and SmoothedSeason. Note that the seasonal table is not
numbered because there is only one seasonal component. There are some exceptions to this numbering rule:
the tables, FilteredRandomReg, SmoothedRandomReg, FilteredSplineReg, and SmoothedSplineReg, are
always numbered starting with zero.

ODS Graph Names

Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” in that chapter.

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.
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You can reference every graph produced through ODS Graphics with a name. The names of the graphs that
PROC UCM generates are listed in Table 41.3, along with the required statements and options.

Table 41.3 ODS Graphics Produced by PROC UCM

ODS Graph Name Description Statement Option

Plots Related to Residual Analysis

ErrorACFPlot Prediction error ESTIMATE PLOT=ACF
autocorrelation plot

ErrorPACFPlot Prediction error ESTIMATE PLOT=PACF
partial-autocorrelation plot

ErrorHistogram Prediction error histogram ESTIMATE PLOT=NORMAL

ErrorQQPlot Prediction error normal ESTIMATE PLOT=QQ
quantile plot

ErrorPlot Plot of prediction errors ESTIMATE PLOT=RESIDUAL

ErrorWhiteNoiseLogProbPlot Plot of p-values at different =~ ESTIMATE PLOT=WN
lags for the Ljung-Box
portmanteau white noise test
statistics

CUSUMPIlot Plot of cumulative residuals ~ ESTIMATE PLOT=CUSUM

CUSUMSQPIot Plot of cumulative squared ESTIMATE PLOT=CUSUMSQ
residuals

ModelPlot Plot of one-step-ahead ESTIMATE PLOT=MODEL
forecasts in the estimation
span

PanelResidualPlot Panel of residual diagnostic =~ ESTIMATE PLOT=PANEL
plots

ResidualLoessPlot Time series plot of residuals ESTIMATE PLOT=LOESS
with superimposed loess
smoother

Plots Related to Filtered Component Estimates

Filtered AutoregPlot Plot of filtered autoreg AUTOREG PLOT=FILTER

FilteredBlockSeasonPlot
FilteredCyclePlot
FilteredIrregularPlot
FilteredLevelPlot
FilteredRandomRegPlot

FilteredSeasonPlot

component

Plot of filtered block season
component

Plot of filtered cycle
component

Plot of filtered irregular
component

Plot of filtered level
component

Plot of filtered time-varying
regression coefficient

Plot of filtered season
component

BLOCKSEASON PLOT=FILTER

CYCLE PLOT=FILTER
IRREGULAR PLOT=FILTER
LEVEL PLOT=FILTER
RANDOMREG PLOT=FILTER
SEASON PLOT=FILTER
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Table 41.3 continued

ODS Graph Name Description Statement Option

FilteredSlopePlot Plot of filtered slope SLOPE PLOT=FILTER
component

FilteredSplineRegPlot Plot of filtered time-varying ~ SPLINEREG PLOT=FILTER
regression coefficient

FilteredSplineSeasonPlot Plot of filtered spline-season ~ SPLINESEASON PLOT=FILTER
component

AnnualSeasonPlot Plot of annual variation in SEASON PLOT=F_ANNUAL
the filtered season
component

Plots Related to Smoothed Component Estimates

Smoothed AutoregPlot Plot of smoothed autoreg AUTOREG PLOT=SMOOTH
component

SmoothedBlockSeasonPlot Plot of smoothed block BLOCKSEASON PLOT=SMOOTH
season component

SmoothedCyclePlot Plot of smoothed cycle CYCLE PLOT=SMOOTH
component

SmoothedIrregularPlot Plot of smoothed irregular IRREGULAR PLOT=SMOOTH
component

SmoothedLevelPlot Plot of smoothed level LEVEL PLOT=SMOOTH
component

SmoothedRandomRegPlot Plot of smoothed RANDOMREG PLOT=SMOOTH
time-varying regression
coefficient

SmoothedSeasonPlot Plot of smoothed season SEASON PLOT=SMOOTH
component

SmoothedSlopePlot Plot of smoothed slope SLOPE PLOT=SMOOTH
component

SmoothedSplineRegPlot Plot of smoothed SPLINEREG PLOT=SMOOTH
time-varying regression
coefficient

SmoothedSplineSeasonPlot Plot of smoothed SPLINESEASON PLOT=SMOOTH
spline-season component

AnnualSeasonPlot Plot of annual variation in SEASON PLOT=S_ANNUAL
the smoothed season
component

Plots Related to Series Decomposition and Forecasting

ForecastsOnlyPlot Series forecasts beyond the FORECAST DEFAULT
historical period

ForecastsPlot One-step-ahead as well as FORECAST PLOT=FORECASTS

multistep-ahead forecasts
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ODS Graph Name

Description

Statement

Option

Filtered AllExceptlrregPlot
FilteredTrendPlot
FilteredTrendRegCycPlot
FilteredTrendRegPlot

SmoothedAllExceptlrregPlot

SmoothedTrendPlot

SmoothedTrendRegPlot

SmoothedTrendRegCycPlot

Filtered AllExceptlrregVarPlot

FilteredTrend VarPlot

FilteredTrendReg VarPlot

FilteredTrendRegCycVarPlot

SmoothedAllExceptlrreg VarPlot

SmoothedTrendVarPlot

SmoothedTrendRegVarPlot

SmoothedTrendRegCycVarPlot

Plot of sum of all filtered
components except the
irregular component

Plot of filtered trend

Plot of sum of filtered trend,
cycles, and regression effects
Plot of filtered trend plus
regression effects

Plot of sum of all smoothed
components except the
irregular component

Plot of smoothed trend

Plot of smoothed trend plus
regression effects

Plot of sum of smoothed
trend, cycles, and regression
effects

Plot of standard error of sum
of all filtered components
except the irregular

Plot of standard error of
filtered trend

Plot of standard error of
filtered trend plus regression
effects

Plot of standard error of
filtered trend, cycles, and
regression effects

Plot of standard error of sum
of all smoothed components
except the irregular

Plot of standard error of
smoothed trend

Plot of standard error of
smoothed trend plus
regression effects

Plot of standard error of
smoothed trend, cycles, and
regression effects

FORECAST

FORECAST

FORECAST

FORECAST

FORECAST

FORECAST

FORECAST

FORECAST

FORECAST

FORECAST

FORECAST

FORECAST

FORECAST

FORECAST

FORECAST

FORECAST

PLOT=FDECOMP

PLOT=FDECOMP

PLOT=FDECOMP

PLOT=FDECOMP

PLOT= DECOMP

PLOT=TREND

PLOT= DECOMP

PLOT= DECOMP

PLOT= FDECOMPVAR

PLOT= FDECOMPVAR

PLOT= FDECOMPVAR

PLOT= FDECOMPVAR

PLOT= DECOMPVAR

PLOT= DECOMPVAR

PLOT= DECOMPVAR

PLOT= DECOMPVAR
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OUTFOR= Data Set

You can use the OUTFOR= option in the FORECAST statement to store the series and component forecasts
produced by the procedure. This data set contains the following columns:

e the BY variables

e the ID variable. If an ID variable is not specified, then a numerical variable, _ID_, is created that
contains the observation numbers from the input data set.

o the dependent series and the predictor series

e FORECAST, a numerical variable containing the one-step-ahead predicted values and the multistep
forecasts

e RESIDUAL, a numerical variable containing the difference between the actual and forecast values
e STD, a numerical variable containing the standard error of prediction
e LCL and UCL, numerical variables containing the lower and upper forecast confidence limits

e S_SERIES and VS_SERIES, numerical variables containing the smoothed values of the dependent
series and their variances

e S_IRREG and VS_IRREG, numerical variables containing the smoothed values of the irregular compo-
nent and their variances. These variables are present only if the model has an irregular component.

e F LEVEL, VF_LEVEL, S_LEVEL, and VS_LEVEL, numerical variables containing the filtered and
smoothed values of the level component and the respective variances. These variables are present only
if the model has a level component.

e F_SLOPE, VF_SLOPE, S_SLOPE, and VS_SLOPE, numerical variables containing the filtered and
smoothed values of the slope component and the respective variances. These variables are present only
if the model has a slope component.

e F_AUTOREG, VF_AUTOREG, S_AUTOREG, and VS_AUTOREG, numerical variables containing the
filtered and smoothed values of the autoreg component and the respective variances. These variables
are present only if the model has an autoreg component.

e F_CYCLE, VF_CYCLE, S_CYCLE, and VS_CYCLE, numerical variables containing the filtered and
smoothed values of the cycle component and the respective variances. If there are multiple cycles in
the model, these variables are sequentially numbered as F_CYCLE1, F_CYCLEZ2, and so on. These
variables are present only if the model has at least one cycle component.

e F_SEASON, VF_SEASON, S_SEASON, and VS_SEASON, numerical variables containing the filtered
and smoothed values of the season component and the respective variances. If there are multiple
seasons in the model, these variables are sequentially numbered as F_SEASON1, F_SEASONZ2, and
so on. These variables are present only if the model has at least one season component.

e F_BLKSEAS, VF_BLKSEAS, S_BLKSEAS, and VS_BLKSEAS, numerical variables containing the
filtered and smoothed values of the blockseason component and the respective variances. If there
are multiple block seasons in the model, these variables are sequentially numbered as F_BLKSEAS1,
F_BLKSEASZ2, and so on.



OUTEST= Data Set 4 2907

F_SPLSEAS, VF_SPLSEAS, S_SPLSEAS, and VS_SPLSEAS, numerical variables containing the
filtered and smoothed values of the splineseason component and the respective variances. If there
are multiple spline seasons in the model, these variables are sequentially numbered as F_SPLSEAS1,
F_SPLSEASZ2, and so on. These variables are present only if the model has at least one splineseason
component.

e Filtered and smoothed estimates, and their variances, of the time-varying regression coefficients of
the variables that are specified in the RANDOMREG and SPLINEREG statements. A variable is not
included if its coefficient is time-invariant, that is, if the associated disturbance variance is zero.

e F TF,VF_TF,S TF, and VS_TF, numerical variables that contain the filtered and smoothed values of
the transfer-function component and their variances. If there are multiple transfer-function components
in the model, these variables are sequentially numbered as F_TF1, F_TF2, and so on. These variables
are present only if the model has at least one transfer-function component.

e S TREG and VS_TREG, numerical variables containing the smoothed values of level plus regression
component and their variances. These variables are present only if the model has at least one predictor
variable or has dependent lags.

e S_TREGCYC and VS_TREGCYC, numerical variables containing the smoothed values of level plus
regression plus cycle component and their variances. These variables are present only if the model has
at least one cycle or an autoreg component.

e S_NOIRREG and VS_NOIRREG, numerical variables containing the smoothed values of the sum of
all components except the irregular component and their variances. These variables are present only if
the model has at least one seasonal or block seasonal component.

OUTEST= Data Set

You can use the OUTEST= option in the ESTIMATE statement to store the model parameters and the related
estimation details. This data set contains the following columns:
e the BY variables

e COMPONENT, a character variable containing the name of the component corresponding to the
parameter being described

e PARAMETER, a character variable containing the parameter name
e TYPE, a character variable indicating whether the parameter value was fixed by the user or estimated

e _STATUS_, a character variable indicating whether the parameter estimation process converged or
failed or there was an error of some other kind

e ESTIMATE, a numerical variable containing the parameter estimate

e STD, a numerical variable containing the standard error of the parameter estimate. This has a missing
value if the parameter value is fixed.
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e TVALUE, a numerical variable containing the #-statistic. This has a missing value if the parameter
value is fixed.

e PVALUE, a numerical variable containing the p-value. This has a missing value if the parameter value
is fixed.

Statistics of Fit

This section explains the goodness-of-fit statistics reported to measure how well the specified model fits the
data.

First the various statistics of fit that are computed using the prediction errors, y; — J;, are considered. In
these formulas, n is the number of nonmissing prediction errors and k is the number of fitted parameters in
the model. Moreover, the sum of squared errors, SSE = " (y; — $;)?, and the total sum of squares for the
series corrected for the mean, SST = Y (y; — 7)?, where ¥ is the series mean, and the sums are over all the
nonmissing prediction errors.

Mean Squared Error
The mean squared prediction error, MSE = %SSE

Root Mean Squared Error
The root mean square error, RMSE = +/MSE

Mean Absolute Percent Error
The mean absolute percent prediction error, MAPE = 1% Yo |5e = 90) /el
The summation ignores observations where y; = 0.

R-Square

The R-square statistic, RZ = 1 — SSE/SST.

If the model fits the series badly, the model error sum of squares, SSE, might be larger than SST and the
R-square statistic will be negative.

Adjusted R-Square
The adjusted R-square statistic, 1 — %)(1 - R?)

Amemiya’s Adjusted R-Square
Amemiya’s adjusted R-square, 1 — (%)(1 —R?)

Random Walk R-Square
The random walk R-square statistic (Harvey’s R-square statistic that uses the random walk
model for comparison), 1 — (”T_I)SSE/RWSSE, where RWSSE = Y7, (y; — y:—1 — ), and

=30, (v — yi-1)
Maximum Percent Error

The largest percent prediction error, 100 max((y; — y¢)/ ). In this computation the observations where
y: = 0 are ignored.

The likelihood-based fit statistics are reported separately (see the section “The UCMs as State Space Models”
on page 2874). They include the full log likelihood (L ), the diffuse part of the log likelihood, the normalized
residual sum of squares, and several information criteria: AIC, AICC, HQIC, BIC, and CAIC. Let g denote the
number of estimated parameters, n be the number of nonmissing measurements in the estimation span, and d
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be the number of diffuse elements in the initial state vector that are successfully initialized during the Kalman
filtering process. Moreover, let n* = (n — d). The reported information criteria, all in smaller-is-better form,
are described in Table 41.4:

Table 41.4 Information Criteria

Criterion Formula Reference
AIC —2Ls +2¢ Akaike (1974)
AICC 2Ly +2gn*/(n* —q —1) Hurvich and Tsai (1989)
Burnham and Anderson (1998)

HQIC —2L + 2qloglog(n™) Hannan and Quinn (1979)
BIC —2Loo + ¢log(n®) Schwarz (1978)
CAIC 2L + gq(log(n™)+1) Bozdogan (1987)

Examples: UCM Procedure

Example 41.1: The Airline Series Revisited

The series in this example, the monthly airline passenger series, has already been discussed earlier; see the
section “A Seasonal Series with Linear Trend” on page 2829. Recall that the series consists of monthly
numbers of international airline travelers (from January 1949 to December 1960). Here additional output
features of the UCM procedure are illustrated, such as how to use the ESTIMATE and FORECAST statements
to limit the span of the data used in parameter estimation and forecasting. The following statements fit a BSM
to the logarithm of the airline passenger numbers. The disturbance variance for the slope component is held
fixed at value 0; that is, the trend is locally linear with constant slope. In order to evaluate the performance of
the fitted model on observed data, some of the observed data are withheld during parameter estimation and
forecast computations. The observations in the last two years, years 1959 and 1960, are not used in parameter
estimation, while the observations in the last year, year 1960, are not used in the forecasting computations.
This is done using the BACK= option in the ESTIMATE and FORECAST statements. In addition, a panel of
residual diagnostic plots is obtained using the PLOT=PANEL option in the ESTIMATE statement.

data seriesG;
set sashelp.air;
logair = log(air);
run;

proc ucm data = seriesG;

id date interval = month;

model logair;

irregular;

level;

slope var = 0 noest;

season length = 12 type=trig;

estimate back=24 plot=panel;

forecast back=12 lead=24 print=forecasts;
run;
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The following tables display the summary of data used in estimation and forecasting (Output 41.1.1 and
Output 41.1.2). These tables provide simple summary statistics for the estimation and forecast spans; they
include useful information such as the beginning and ending dates of the span, the number of nonmissing
values, and so on.

Output 41.1.1 Observation Span Used in Parameter Estimation (partial output)

Variable Type First Last Nobs Mean
logair Dependent JAN1949 DEC1958 120 5.43035

Output 41.1.2 Observation Span Used in Forecasting (partial output)

Variable Type First Last Nobs Mean
logair Dependent JAN1949 DEC1959 132 5.48654

The following tables display the fixed parameters in the model, the preliminary estimates of the free
parameters, and the final estimates of the free parameters (Output 41.1.3, Output 41.1.4, and Output 41.1.5).

Output 41.1.3 Fixed Parameters in the Model
The UCM Procedure

Fixed Parameters in the Model
Component Parameter Value
Slope Error Variance 0

Output 41.1.4 Starting Values for the Parameters to Be Estimated

Preliminary Estimates of the Free

Parameters
Component Parameter Estimate
Irregular Error Variance 6.64120
Level Error Variance 2.49045
Season Error Variance 1.26676

Output 41.1.5 Maximum Likelihood Estimates of the Free Parameters

Final Estimates of the Free Parameters

Approx Approx
Component Parameter Estimate Std Error t Value Pr > |t
Irregular Error Variance 0.00018686 0.0001212 1.54 0.1233
Level Error Variance 0.00040314 0.0001566 2.57 0.0100

Season Error Variance 0.00000350 1.66319E-6 2.10 0.0354
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Two types of goodness-of-fit statistics are reported after a model is fit to the series (see Output 41.1.6
and Output 41.1.7). The first type is the likelihood-based goodness-of-fit statistics, which include the full
likelihood of the data, the diffuse portion of the likelihood (see the section “Details: UCM Procedure” on
page 2869), and the information criteria. The second type of statistics is based on the raw residuals, residual
= observed — predicted. If the model is nonstationary, then one-step-ahead predictions are not available for
some initial observations, and the number of values used in computing these fit statistics will be different
from those used in computing the likelihood-based test statistics.

Output 41.1.6 Likelihood-Based Fit Statistics for the Airline Data

Likelihood Based Fit Statistics

Statistic Value
Diffuse Log Likelihood 180.63
Diffuse Part of Log Likelihood -13.93
Non-Missing Observations Used 120
Estimated Parameters 3
Initialized Diffuse State Elements 13
Normalized Residual Sum of Squares 107
AIC (smaller is better) -355.3
BIC (smaller is better) -347.2
AICC (smaller is better) -355
HQIC (smaller is better) -352
CAIC (smaller is better) -344.2

Output 41.1.7 Residuals-Based Fit Statistics for the Airline Data

Fit Statistics Based on Residuals

Mean Squared Error 0.00156
Root Mean Squared Error 0.03944
Mean Absolute Percentage Error 0.57677
Maximum Percent Error 2.19396
R-Square 0.98705
Adjusted R-Square 0.98680
Random Walk R-Square 0.86370

Amemiya's Adjusted R-Square  0.98630

Number of non-missing residuals used
for computing the fit statistics = 107

The diagnostic plots based on the one-step-ahead residuals are shown in Output 41.1.8. The residual histogram
and the Q-Q plot show no reasons to question the approximate normality of the residual distribution. The
remaining plots check for the whiteness of the residuals. The sample correlation plots, the autocorrelation
function (ACF) and the partial autocorrelation function (PACF), also do not show any significant violations
of the whiteness of the residuals. Therefore, on the whole, the model seems to fit the data well.
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Output 41.1.8 Residual Diagnostics for the Airline Series Using a BSM

Residual Diagnostics for logair
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The forecasts are given in Output 41.1.9. In order to save the space, the upper and lower confidence limit
columns are dropped from the output, and only the rows corresponding to the year 1960 are shown. Recall
that the actual measurements in the years 1959 and 1960 were withheld during the parameter estimation, and
the ones in 1960 were not used in the forecast computations.
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Output 41.1.9 Forecasts for the Airline Data

Obs date Forecast StdErr logair Residual
133 JAN60 6.050 0.038 6.033 -0.017
134 FEB60 5996 0.044 5969 -0.027
135 MARG60 6.156 0.049 6.038 -0.118
136 APR60 6.124 0.053 6.133 0.010
137 MAY60 6.168 0.058 6.157 -0.011
138 JUNG60 6.303 0.061 6.282 -0.021
139 JUL60 6.435 0.065 6.433  -0.002
140 AUG60 6.450 0.068 6.407 -0.043
141 SEP60 6.265 0.071 6.230 -0.035
142 OCT60 6.138 0.073 6.133  -0.005
143 NOV60 6.015 0.075 5.966 -0.049
144 DEC60 6.121 0.077 6.068 -0.053

Output 41.1.10 shows the forecast plot. The forecasts in the year 1960 show that the model predictions were
quite good.

Output 41.1.10 Forecast Plot of the Airline Series Using a BSM
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Example 41.2: Variable Star Data

The series in this example is studied in detail in Bloomfield (2000).

This series consists of bright-

ness measurements (magnitude) of a variable star taken at midnight for 600 consecutive days. The
data can be downloaded from a time series archive maintained by the University of York, England
(http://www.york.ac.uk/depts/maths/data/ts/welcome.htm (series number 26)). The following DATA step

statements read the data in a SAS data set:

data star;
input magnitude Q@;
_n_;

day =
datalines;

25 28
14 10
15 19
24 20

7 10
27 25
10 11

. more lines

31

7
23
17
13
24
12

Il

32

4
26
13
16
21
12

33

29
10
19
19
13

33

32

22

17
14

32

33

24

15
15

31

34

26

13
16

28

33

27

12
17

25

32

28

11
18

22

30

29

11
19

18
11
27

28
10
19

The following statements use the TIMESERIES procedure to get a timeseries plot of the series (see Out-

put41.2.1)

proc timeseries data=star plot=series;
var magnitude;

run;
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Output 41.2.1 Plot of Star Brightness on Successive Days

Series Values for magnitude
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The plot clearly shows the cyclic nature of the series. Bloomfield shows that the series is very well explained
by a model that includes two deterministic cycles that have periods 29.0003 and 24.0001 days, a constant
term, and a simple error term. He also mentions the difficulty involved in estimating the periods from the
data (Bloomfield 2000, Chapter 3). In his case the cycle periods are estimated by least squares, and the sum
of squares surface has multiple local optima and ridges. The following statements show how to use the UCM
procedure to fit this two-cycle model to the series. The constant term in the model is specified by holding the
variance parameter of the level component to zero.

proc ucm data=star;
model magnitude;
irregular;
level var=0 noest;
cycle;
cycle;
estimate;

run;

The final parameter estimates and the goodness-of-fit statistics are shown in Output 41.2.2 and Output 41.2.3,
respectively. The model fit appears to be good.
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Output 41.2.2 Two-Cycle Model: Parameter Estimates
The UCM Procedure

Final Estimates of the Free Parameters

Approx Approx
Component Parameter Estimate Std Error t Value Pr> ||
Irregular Error Variance 0.09257 0.0053845 17.19 <.0001
Cycle_1 Damping Factor 1.00000 1.81175E-7 5519514 <.0001
Cycle_1 Period 29.00036 0.0022709 12770.4 <.0001

Cycle_1 Error Variance 0.00000882 5.27213E-6 1.67 0.0944
Cycle_2 Damping Factor 1.00000 2.11939E-7 4718334 <.0001
Cycle_2 Period 24.00011 0.0019128 12547.2 <.0001
Cycle_2 Error Variance 0.00000535 3.56374E-6 1.50 0.1330

Output 41.2.3 Two-Cycle Model: Goodness of Fit

Fit Statistics Based on Residuals

Mean Squared Error 0.12072
Root Mean Squared Error 0.34745
Mean Absolute Percentage Error 2.65141
Maximum Percent Error 36.38991
R-Square 0.99850
Adjusted R-Square 0.99849
Random Walk R-Square 0.97281

Amemiya's Adjusted R-Square 0.99847

Number of non-missing residuals used for
computing the fit statistics = 599

A summary of the cycles in the model is given in Output 41.2.4.

Output 41.2.4 Two-Cycle Model: Summary

Name Type period Rho ErrorVar
Cycle_1 Stationary 29.00036 1.00000 0.00000882
Cycle_2 Stationary 24.00011 1.00000 0.00000535

Note that the estimated periods are the same as in Bloomfield’s model, the damping factors are nearly equal
to 1.0, and the disturbance variances are very close to zero, implying persistent deterministic cycles. In fact,
this model is identical to Bloomfield’s model.

Example 41.3: Modeling Long Seasonal Patterns

This example illustrates some of the techniques you can use to model long seasonal patterns in a series. If the
seasonal pattern is of moderate length and the underlying dynamics are simple, then it is easily modeled by
using the basic settings of the SEASON statement and these additional techniques are not needed. However,
if the seasonal pattern has a long season length and/or has a complex stochastic dynamics, then the techniques
discussed here can be useful. You can obtain parsimonious models for a long seasonal pattern by using
an appropriate subset of trigonometric harmonics, or by using a suitable spline function, or by using a
block-season pattern in combination with a seasonal component of much smaller length. You can also vary
the disturbance variances of the subcomponents that combine to form the seasonal component.
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The time series used in this example consists of number of calls received per shift at a call center. Each
shift is six hours long, and the first shift of the day begins at midnight, resulting in four shifts per day. The
observations are available from December 15, 1999, to April 30, 2000. This series is seasonal with season
length 28, which is moderate, and in fact there is no particular need to use pattern approximation techniques
in this case. However, it is adequate for demonstration purposes. The plan of this example is as follows. First
an initial model with a full seasonal component is created. This model is used as a baseline for comparing
alternate models created by the techniques that are being illustrated. In practice any candidate model is first
checked for adequacy by using various diagnostic procedures. In this illustration the main focus is on the
different ways a long seasonal pattern can be modeled and no model diagnostics are done for the models
being entertained. The alternate models are compared by using the sum of absolute prediction errors in the
holdout region.

The following DATA step statements create the input data set used in this example:

data callCenter;
input calls @@;
label calls= "Number of Calls Received in a 6 Hour Shift";
start = '15dec99:00:00'dt;
datetime = INTNX( 'dthour6', start, _n -1 );
format datetime datetimelO.;

datalines;
18 122 244 128 19 113 230 119 17 112
219 93 14 73 139 53 11 32 74 56
15 137 289 153 20 125 227 106 16 101
201 92 14 94 187 69 11 59 94 21

. more lines

Initial exploration of the series clearly indicates that the series does not show any significant trend, and time
of day and day of the week have a significant influence on the number of calls received. These considerations
suggest a simple random walk trend model along with a seasonal component of season length 28, the total
number of shifts in a week. The following statements specify this model. Note the PRINT=HARMONICS
option in the SEASON statement, which produces a table that lists the full set of harmonics contributing
to the seasonal along with the significance of their contribution. This table will be useful later in choosing
a subset trigonometric model. The BACK=28 and LEAD=28 specifications in the FORECAST statement
create a holdout region of 28 observations. The sum of absolute prediction errors (SAE) in this holdout
region is used to compare the different models.

proc ucm data=callCenter;
id datetime interval=dthour6;
model calls;
irregular;
level;
season length=28 type=trig
print=(harmonics);
estimate back=28;
forecast back=28 lead=28;
run;

The forecasting performance of this model in the holdout region is shown in Output 41.3.1. The SAE is
516.22, which appears in the last row of the holdout analysis table.
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Output 41.3.1 Predictions in the Holdout Region: Baseline Model

Obs datetime Actual Forecast Error SAE
525 24APR00:00 12 -4.004 16.004 16.004
526 24APR00:06 136 110.825 25.175 41.179
527 24APR00:12 295 262.820 32.180 73.360
528 24APR00:18 172 145.127 26.873 100.232
529 25APR00:00 20 2.188 17.812 118.044
530 25APR00:06 127 105.442 21.558 139.602
531 25APR00:12 236 217.043 18.957 158.559
532 25APR00:18 125 114.313 10.687 169.246
533 26APR00:00 16 2.855 13.145 182.391
534 26APR00:06 108 95.202 12.798 195.189
535 26APR00:12 207 194.184 12.816 208.005
536 26APR00:18 112  97.687 14.313 222.317
537 27APR00:00 15 1.270 13.730 236.047
538 27APR00:06 98  85.875 12.125 248.172
539 27APR00:12 200 184.891 15.109 263.281
540 27APR00:18 113 93.113 19.887 283.168
541 28APR00:00 15  -1.120 16.120 299.288
542 28APR00:06 104  84.983 19.017 318.305
543 28APR00:12 205 177.940 27.060 345.365
544 28APR00:18 89  64.292 24.708 370.073
545 29APR00:00 12 -6.020 18.020 388.093
546 29APR00:06 68  46.286 21.714 409.807
547 29APR00:12 116 100.339 15.661 425.468
548 29APR00:18 54  34.700 19.300 444.768
549 30APR00:00 10 -6.209 16.209 460.978
550 30APR00:06 30 12.167 17.833 478.811
551 30APR00:12 66  49.524 16.476 495.287
552 30APR00:18 61  40.071 20.929 516.216

Now that a baseline model is created, the exploration for alternate models can begin. The review of the
harmonic table in Output 41.3.2 shows that all but the last three harmonics are significant, and deleting
any of them to form a subset trigonometric seasonal component will lead to a poorer model. The last three
harmonics, 12th, 13th, and 14th, with periods of 2.333, 2.15 and 2.0, respectively, do appear to be possible
choices for deletion. Note that the disturbance variance of the seasonal component is not very insignificant
(see Output 41.3.3); therefore the seasonal component is stochastic and the preceding logic, which is based
on the final state estimate, provides only a rough guideline.
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Output 41.3.2 Harmonic Analysis of the Season: Initial Model
The UCM Procedure

Harmonic Analysis of Trigonometric Seasons
(Based on the Final State)

Season
Name Length Harmonic Period Chi-Square DF Pr > ChiSq

Season 28 1 28.00000 23419 2 <.0001
Season 28 2 14.00000 26419 2 <.0001
Season 28 3 9.33333 9565 2 <.0001
Season 28 4 7.00000 105.64 2 <.0001
Season 28 5 5.60000 146.74 2 <.0001
Season 28 6 4.66667 12193 2 <.0001
Season 28 7 4.00000 4299.12 2 <.0001
Season 28 8 3.50000 150.79 2 <.0001
Season 28 9 311111 89.68 2 <.0001
Season 28 10 2.80000 895 2 0.0114
Season 28 11 2.54545 6.14 2 0.0464
Season 28 12 233333 220 2 0.3325
Season 28 13 215385 340 2 0.1828
Season 28 14 2.00000 233 1 0.1272

Output 41.3.3 Parameter Estimates: Initial Model

Final Estimates of the Free Parameters

Approx Approx
Component Parameter Estimate Std Error t Value Pr > |t]
Irregular Error Variance 92.14591 13.10986 7.03 <.0001
Level Error Variance 44.83595 10.65465 421 <.0001

Season Error Variance 0.01250 0.0065153 1.92 0.0551

The following statements fit a subset trigonometric model formed by dropping the last three harmonics by
specifying the DROPH= option in the SEASON statement:

proc ucm data=callCenter;
id datetime interval=dthours6;
model calls;
irregular;
level;
season length=28 type=trig droph=12 13 14;
estimate back=28;
forecast back=28 lead=28;
run;

The last row of the holdout region prediction analysis table for the preceding model is shown in Output 41.3.4.
It shows that the subset trigonometric model has better prediction performance in the holdout region than the
full trigonometric model; its SAE is 471.53, compared to an SAE of 516.22 for the full model.

Output 41.3.4 SAE for the Subset Trigonometric Model

Obs datetime Actual Forecast Error SAE
552 30APRO00:18 61 40.836 20.164 471.534
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The following statements illustrate a spline approximation to this seasonal component. In the spline specifica-
tion the knot placement is quite important, and usually some experimentation is needed. In the following
model the knots are placed at the beginning and the middle of each day. Note that the knots at the beginning
and end of the season, 1 and 28 in this case, should not be listed in the knot list because knots are always
placed there anyway.

proc ucm data=callCenter;
id datetime interval=dthours6;
model calls;
irregular;
level;
splineseason length=28
knots=3 5 7 9 11 13 15 17 19 21 23 25 27
degree=3;
estimate back=28;
forecast back=28 lead=28;
run;

The spline season model takes about half the time to fit that the baseline model takes. The last row of the
holdout region prediction analysis table for this model is shown in Output 41.3.5, which shows that the spline
season model performs even better than the previous two models in the holdout region; its SAE is 313.79,
compared to an SAE of 471.53 for the previous model.

Output 41.3.5 SAE for the Spline Season Model

Obs datetime Actual Forecast Error SAE
552 30APR00:18 61  23.350 37.650 313.792

The following statements illustrate yet another way to approximate a long seasonal component. Here a
combination of BLOCKSEASON and SEASON statements results in a seasonal component that is a sum of
two seasonal patterns: one seasonal pattern is simply a regular season with season length 4 that captures the
within-day seasonal pattern, and the other seasonal pattern is a block seasonal pattern that remains constant
during the day but varies from day to day within a week. Note the use of the NLOPTIONS statement to
change the optimization technique during the parameter estimation to DBLDOG, which in this case performs
better than the default technique, TRUREG.

proc ucm data=callCenter;
id datetime interval=dthours6;
model calls;
irregular;
level;
season length=4 type=trig;
blockseason nblocks=7 blocksize=4

type=trig;

estimate back=28;
forecast back=28 lead=28;
nloptions tech=dbldog;

run;

This model also takes about half the time to fit that the baseline model takes. The last row of the holdout
region prediction analysis table for this model is shown in Output 41.3.6, which shows that the block season
model does slightly better than the baseline model but not as well as the other two models; its SAE is 508.52,
compared to an SAE of 516.22 for the baseline model.
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Output 41.3.6 SAE for the Block Season Model

Obs datetime Actual Forecast Error SAE
552 30APR00:18 61 39.339 21.661 508.522

This example showed a few different ways to model a long seasonal pattern. It showed that parsimonious
models for long seasonal patterns can be useful, and in some cases even more effective than the full model.
Moreover, for very long seasonal patterns the high memory requirements and long computing times might
make full models impractical.

Example 41.4: Modeling Time-Varying Regression Effects

In April 1979, the Albuquerque Police Department began a special enforcement program aimed at reducing
the number of DWI (driving while intoxicated) accidents. The program was administered by a squad
of police officers, who used breath alcohol testing (BAT) devices and a van that houses a BAT device
(Batmobile). These data were collected by the Division of Governmental Research of the University of New
Mexico, under a contract with the National Highway Traffic Safety Administration of the U.S. Department of
Transportation, to evaluate the Batmobile program. The first 29 observations are for a control period, and the
next 23 observations are for the experimental (Batmobile) period. The data consist of two variables: ACC,
which represents injuries and fatalities from Wednesday to Saturday nighttime accidents, and FUEL, which
represents fuel consumption (millions of gallons) in Albuquerque. The variables are measured quarterly
starting from the first quarter of 1972 up to the last quarter of 1984, covering the span of 13 years. The
following DATA step statements create the input data set:

data bat;

input ACC FUEL @Q@;

batProgram = 0;

if n_ > 29 then batProgram = 1;

date = INTNX( 'gtr', 'ljanl972'd, _n_ -1 );

format date qgtr8.;
datalines;
192 32.592 238 37.250 232 40.032
246 35.852 185 38.226 274 38.711
266 43.139 196 40.434 170 35.898
234 37.111 272 38.944 234 37.717
210 37.861 280 42.524 246 43.965
248 41.976 269 42.918 326 49.789
342 48.454 257 45.056 280 49.385
290 42.524 356 51.224 295 48.562
279 48.167 330 51.362 354 54.646
331 53.398 291 50.584 377 51.320
327 50.810 301 46.272 269 48.664
314 48.122 318 47.483 288 44.732
242 46.143 268 44.129 327 46.258
253 48.230 215 46.459 263 50.686
319 49.681 263 51.029 206 47.236
286 51.717 323 51.824 306 49.380
230 47.961 304 46.039 311 55.683
292 52.263

’
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There are a number of ways to study these data and the question of the effectiveness of the BAT program.
One possibility is to study the before-after difference in the injuries and fatalities per million gallons of fuel
consumed, by regressing ACC on FUEL and the dummy variable BATPROGRAM, which is zero before the
program began and one while the program is in place. However, it is possible that the effect of the Batmobiles
might well be cumulative, because as awareness of the program becomes dispersed, its effectiveness as
a deterrent to driving while intoxicated increases. This suggests that the regression coefficient of the
BATPROGRAM variable might be time-varying. The following program fits a model that incorporates these

considerations. A seasonal component is included in the model since it is easy to see that the data show
strong quarterly seasonality.

proc ucm data=bat;
model acc = fuel;
id date interval=qtr;
irregular;
level var=0 noest;
randomreg batProgram / plot=smooth;
season length=4 var=0 noest plot=smooth;
estimate plot=(panel residual);
forecast plot=forecasts lead=0;
run;

The model seems to fit the data adequately. No data are withheld for model validation because the series
is relatively short. The plot of the time-varying coefficient of BATPROGRAM is shown in Output 41.4.1.
As expected, it shows that the effectiveness of the program increases as awareness of the program becomes
dispersed. The effectiveness eventually seems to level off. The residual diagnostic plots are shown in
Output 41.4.2 and Output 41.4.3, the forecast plot is in Output 41.4.4, the goodness-of-fit statistics are in
Output 41.4.5, and the parameter estimates are in Output 41.4.6.
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Output 41.4.1 Time-Varying Regression Coefficient of BATPROGRAM

Smoothed Time Varying Coefficient for batProgram for ACC
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Output 41.4.2 Residuals for the Time-Varying Regression Model

Residuals for ACC
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Output 41.4.3 Residual Diagnostics for the Time-Varying Regression Model

Residual Diagnostics for ACC
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ACC
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Output 41.4.4 One-Step-Ahead Forecasts for the Time-Varying Regression Model
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Output 41.4.5 Model Fit for the Time-Varying Regression Model

O Actual

Forecasts for ACC
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date

Fit Statistics Based on Residuals

Mean Squared Error 866.75562
Root Mean Squared Error 29.44071
Mean Absolute Percentage Error  9.50326
Maximum Percent Error 14.15368
R-Square 0.32646
Adjusted R-Square 0.29278
Random Walk R-Square 0.63010

Amemiya's Adjusted R-Square 0.19175

Number of non-missing residuals used for
computing the fit statistics = 22
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Output 41.4.6 Parameter Estimates for the Time-Varying Regression Model

Final Estimates of the Free Parameters

Approx Approx
Component Parameter Estimate Std Error t Value Pr > |t
Irregular Error Variance 480.92258 109.21980 4.40 <.0001
FUEL Coefficient 6.23279  0.67533 9.23 <.0001

batProgram Error Variance 84.22334 79.88166 1.05 0.2917

Example 41.5: Trend Removal Using the Hodrick-Prescott Filter

The Hodrick-Prescott filter (Hodrick and Prescott 1997) is a popular tool in macroeconomics for fitting
a smooth trend to time series. It is well known that the trend computation according to this filter is
equivalent to fitting the local linear trend plus irregular model with the level disturbance variance restricted
to zero and the slope disturbance variance restricted to be a suitable multiple of the irregular component
variance. The multiple used depends on the frequency of the series; for example, for quarterly series the
commonly recommended multiple is 1/1600 = 0.000625. For other intervals there is no consensus, but a
frequently suggested value for monthly series is 1/14400 and the value for an annual series can range from
1/400 = 0.0025 to 1/7 = 0.15. The data set considered in this example consists of quarterly GNP values
for the United States from 1960 to 1991. In the UCM procedure statements that follow, the presence of the
PROFILE option in the ESTIMATE statement implies that the restriction that the disturbance variance of
the slope component be fixed at 0.000625 is interpreted differently: it implies that the disturbance variance
of the slope component be restricted to be 0.000625 times the estimated irregular component variance, as
needed for the Hodrick-Prescott filter. The plot of the fitted trend is shown in Output 41.5.1, and the plot of
the smoothed irregular component, which corresponds to the detrended series, is given in Output 41.5.2. The
detrended series can be further analyzed for business cycles.

proc ucm data=sashelp.gnp;
id date interval=qtr;
model gnp;
irregular plot=smooth;
level var=0 noest plot=smooth;
slope var=0.000625 noest;
estimate PROFILE;
forecast plot=(decomp) ;
run;
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Output 41.5.1 Smoothed Trend for the GNP Series as per the Hodrick-Prescott Filter
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Output 41.5.2 Detrended GNP Series

Smoothed Irregular Component for GNP

100

50

Smoothed Irregular Component
o

-100

1960 1965 1970 1975 1980 1985 1990 1995
DATE

[0 95% Confidence Limits Start of multi-step forecasts

Example 41.6: Using Splines to Incorporate Nonlinear Effects

The data in this example are created to mirror the electricity demand and temperature data recorded at a utility
company in the midwest region of the United States. The data set (not shown), utility, has three variables:
load, temp, and date. The load column contains the daily electricity demand, the temp column has the
average daily temperature readings, and the date column records the observation date.

The following statements produce a plot, shown in Output 41.6.1, of electricity load versus temperature.
Clearly the relationship is smooth but nonlinear: the load generally increases when the temperatures are away
from the comfortable sixties.

proc sgplot data=utility;
loess x=temp y=load / smooth=0.4;
run;
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Output 41.6.1 Load versus Temperature Plot
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The time series plot of the load (not shown) also shows that, apart from a day-of-the-week seasonal effect,
there are no additional easily identifiable patterns in the series. The series has no apparent upward or
downward trend. The following statements fit a UCM to the series that takes into account these observations.
The particular choice of the model is a result of a little modeling exercise that compared a small number of
competing models. The chosen model is adequate but by no means the best possible. The temperature effect
is modeled by a deterministic three-degree spline with knots at 30, 40, 50, 60, and 75. The knot locations
and the degree were chosen by visual inspection of the plot (Output 41.6.1). An autoreg component is used
in place of the simple irregular component, which improved the residual analysis. The last 60 days of data
are withheld for out-of-sample forecast evaluation (note the BACK= option in both the ESTIMATE and
FORECAST statements). The OUTLIER statement is used to increase the number of outliers reported to 10.
Since no CHECKBREAK option is used in the LEVEL statement, only the additive outliers are searched. In
this example the use of the EXTRADIFFUSE= option in the ESTIMATE and FORECAST statements is
useful for discarding some early one-step-ahead forecasts and residuals with large variance.

proc ucm data=utility;
id date interval=day;
model load;
autoreg;
level plot=smooth;
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splinereg temp knots=30 40 50 65 75 degree=3
variance=0 noest;

season length=7 var=0 noest;

estimate plot=panel back=60
extradiffuse=50;

outlier maxnum=10;

forecast back=60 lead=60
extradiffuse=50;

run;

The parameter estimates are given in Output 41.6.2, and the residual goodness-of-fit statistics are shown in
Output 41.6.3. The residual diagnostic plots are shown in Output 41.6.4. The ACF and PACF plots appear
satisfactory, but the normality plots, particularly the Q-Q plot, show possible violations. It appears that, at
least in part, this nonnormal behavior of the residuals might be attributable to the outliers in the series. The
outlier summary table, Output 41.6.5, shows the most likely outlying observations. Notice that most of these
outliers are holidays, like July 4th, when the electricity load is lower than usual for that day of the week.

Output 41.6.2 Electricity Load: Parameter Estimates
The UCM Procedure

Final Estimates of the Free Parameters

Approx Approx
Component Parameter Estimate Std Error t Value Pr > ||
Level Error Variance 0.21185  0.05025 422 <.0001
AutoReg Damping Factor 0.57522 0.03466 16.60 <.0001
AutoReg Error Variance 221057 0.20478 10.79 <.0001
temp Spline Coefficient_1 4.72502 1.93997 2.44 0.0149
temp Spline Coefficient_2 2.19116 1.71243 1.28 0.2007
temp Spline Coefficient_3 -7.14492 1.56805 -4.56 <.0001
temp Spline Coefficient_4 -11.39950 1.45098 -7.86 <.0001
temp Spline Coefficient_5 -16.38055 1.36977 -11.96 <.0001
temp Spline Coefficient_6 -18.76075 1.28898 -14.55 <.0001
temp Spline Coefficient_7 -8.04628 1.09017 -7.38 <.0001
temp Spline Coefficient_8 -2.30525 1.25102 -1.84 0.0654

Output 41.6.3 Electricity Load: goodness-of-fit

Fit Statistics Based on Residuals

Mean Squared Error 2.90945
Root Mean Squared Error 1.70571
Mean Absolute Percentage Error 2.92586
Maximum Percent Error 14.96281
R-Square 0.92739
Adjusted R-Square 0.92721
Random Walk R-Square 0.69618

Amemiya's Adjusted R-Square 0.92684

Number of non-missing residuals used for
computing the fit statistics = 791
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Output 41.6.4 Electricity Load: Residual Diagnostics

Normal

30 Kernel

20

Percent

10

Residual Diagnostics for load

-10.8 -84 -6 -3.6 -1

2 12 36

Residual

1.0

0.5

0.0

ACF

-1.0

10 15

20

Lag

[ Two Standard Errors

25

30

5

Residual

-10

1.0

0.5

0.0

PACF

-1.0

10

[ Two Standard Errors

0
Quantile

15
Lag

Output 41.6.5 Additive Outliers in the Electricity Load Series

Obs Time Estimate StdErr ChiSq DF ProbChiSq
1281 04JUL2002 -7.99908 1.3417486 35.54 1 <.0001
916 04JUL2001 -6.55778 1.338431 24.01 1 <.0001
329 25NOV1999 -5.85047 1.3379735 19.12 1 <.0001
977 03SEP2001 -5.67254 1.3389138 17.95 1 <.0001
1341 02SEP2002 -5.49631 1.337843 16.88 1 <.0001
693 23NOV2000 -5.27968 1.3374368 15.58 1 <.0001
915 03JUL2001 5.06557 1.3375273 14.34 1 0.0002
1057 22NOV2001 -5.01550 1.3386184 14.04 1 0.0002
551 04JUL2000 -4.89965 1.3381557 13.41 1 0.0003
879 28MAY2001 -4.76135 1.3375349 12.67 1 0.0004

The plot of the load forecasts for the withheld data is shown in Output 41.6.6.

20

25

30



Example 41.7: Detection of Level Shift 4 2933

Output 41.6.6 Electricity Load: Forecast Evaluation of the Withheld Data
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Example 41.7: Detection of Level Shift

The series in this example consists of the yearly water level readings of the Nile River recorded at Aswan,
Egypt (Cobb 1978; De Jong and Penzer 1998). The readings are from the years 1871 to 1970. The series
does not show any apparent trend or any other distinctive patterns; however, there is a shift in the water level
starting at the year 1899. This shift could be attributed to the start of construction of a dam near Aswan in
that year. A time series plot of this series is given in Output 41.7.1. The following DATA step statements

create the input data set:

data nile;
input waterlevel @Q@;
year = intnx( 'year',
format year year4.;
datalines;
1120 1160 963 1210
995 935 1110 994
1100 1210 1150 1250
874 694 940 833
831 726 456 824

'l1janl871'd, _n_-1);

1160
1020
1260
701
702

1160
960
1220
916
1120

813
1180
1030
692
1100

1230
799
1100
1020
832

1370
958
774
1050
764

1140
1140
840
969
821



2934 4 Chapter 41: The UCM Procedure

768 845 864 862 698 845 744 796 1040 759
781 865 845 944 984 897 822 1010 771 676
649 846 812 742 801 1040 860 874 848 890
744 749 838 1050 918 986 797 923 975 815
1020 906 901 1170 912 746 919 718 714 740

4

proc timeseries data=nile plot=series;
id year interval=year;
var waterlevel;

run;

Output 41.7.1 Nile Water Level

Series Values for waterlevel
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In this situation it is known that a shift in the water level occurred within the span of the series, and its effect
can be easily taken into account by including an appropriate indicator variable as a regressor. However, in
many situation such prior information is not available, and it is useful to detect such a shift in a data analytic
fashion. You can check for breaks in the level by using the CHECKBREAK option in the LEVEL statement.
The following statements fit a simple locally constant level plus error model to the series:
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proc ucm data=nile;
id year interval=year;
model waterlevel;
irregular;
level plot=smooth checkbreak;
estimate;
forecast plot=decomp;
run;

The plot in Output 41.7.2 shows a noticeable drop in the smoothed water level around 1899.

Output 41.7.2 Smoothed Trend without the Shift of 1899
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The “Outlier Summary” table in Output 41.7.3 shows the most likely types of breaks and their locations
within the series span. The shift of 1899 is easily detected.

Output 41.7.3 Detection of Structural Breaks in the Nile River Level

Outlier Summary

Standard
Obs year Break Type Estimate Error Chi-Square DF Pr > ChiSq

29 1899 Level -315.73791 97.639753 1046 1 0.0012
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The following statements specify a UCM that models the level of the river as a locally constant series with a
shift in the year 1899, represented by a dummy regressor (SHIFT1899):

data nile;
set nile;

shift1899 = ( year >= 'l1janl899'd );
run;

proc ucm data=nile;
id year interval=year;
model waterlevel = shiftl1899;
irregular;
level;
estimate;

forecast plot=decomp;
run;

The plot in Output 41.7.4 shows the smoothed trend, including the correction due to the shift in the year 1899.
Notice the simplicity in the shape of the smoothed curve after the incorporation of the shift information.

Output 41.7.4 Smoothed Trend plus Shift of 1899
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Example 41.8: ARIMA Modeling

This example shows how you can use the UCM procedure for ARIMA modeling. The parameter estimates
and predictions for ARIMA models obtained by using PROC UCM will be close to those obtained by using
PROC ARIMA (in the presence of the ML option in its ESTIMATE statement) if the model is stationary or
if the model is nonstationary and there are no missing values in the data. For more information about the
ARIMA procedure, see Chapter 7, “The ARIMA Procedure.” However, if there are missing values in the data
and the model is nonstationary, then the UCM and ARIMA procedures can produce significantly different
parameter estimates and predictions. An article by Kohn and Ansley (1986) suggests a statistically sound
method of estimation, prediction, and interpolation for nonstationary ARIMA models with missing data. This
method is based on an algorithm that is equivalent to the Kalman filtering and smoothing algorithm used
in the UCM procedure. The results of an illustrative example in their article are reproduced here using the
UCM procedure. In this example an ARIMA(0,1,1)x(0,1,1)12 model is applied to the logarithm of the air
series in the sashelp.air data set. Four different missing value patterns are considered to highlight different
aspects of the problem:

e Datal. The full data set of 144 observations.
e Data2. The set of 78 observations that omit January through November in each of the last 6 years.

e Data3. The data set with the 5 observations July 1949, June, July, and August 1957, and July 1960
missing.

e Data4. The data set with all July observations missing and June and August 1957 also missing.
The following DATA steps create these data sets:
data Datal;
set sashelp.air;
logair = log(air);

run;

data Data2;

set datal;
if year (date) >= 1955 and month(date) < 12 then logair = .;
run;

data Data3;
set datal;
if (year(date) = 1949 and month (date)
if ( year(date) = 1957 and
(month (date) = 6 or month(date) = 7 or month(date) = 8))
then logair = .;
if (year(date) = 1960 and month (date)
run;

7) then logair = .;

7) then logair = .;

data Data4;

set datal;

if month(date) = 7 then logair = .;

if year(date) = 1957 and (month(date) = 6 or month(date) = 8)
then logair = .;

run;
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The following statements specify the ARIMA(O, 1, 1) x (0, 1, 1)12 model for the logair series in the first data
set (Datal):

proc ucm data=Datal;
id date interval=month;
model logair;
irregular g=1 sqg=1 s=12;
deplag lags=(1l) (12) phi=1] 1 noest;
estimate outest=estl;
forecast outfor=forl;
run;

Note that the moving average part of the model is specified by using the Q=, SQ=, and S= options in the
IRREGULAR statement and the differencing operator, (1 — B)(1 — B!2), is specified by using the DEPLAG
statement. The model does not contain an intercept term; therefore no LEVEL statement is needed. The
parameter estimates are saved in a data set EST1 by using the OUTEST= option in the ESTIMATE statement
and the forecasts and the component estimates are saved in a data set FOR1 by using the OUTFOR= option
in the FORECAST statement. The same analysis is performed on the other three data sets, but is not shown
here.

Output 41.8.1 resembles Table 1 in Kohn and Ansley (1986). This table is generated by merging the parameter
estimates from the four analyses. Only the moving average parameter estimates and their standard errors are
reported. The columns EST1 and STD1 correspond to the estimates for Datal. The parameter estimates and
their standard errors for other three data sets are similarly named. Note that the parameter estimates closely
match the parameter estimates in the article. However, their standard errors differ slightly. This difference
could be the result of different ways of computing the Hessian at the optimum. The white noise error variance
estimates are not reported here, but they agree quite closely with those in the article.

Output 41.8.1 Data Sets 1—4: Parameter Estimates and Standard Errors

PARAMETER estl std1 est2 std2 est3 std3 est4 std4
MA_1 0.402 0.090 0.457 0.121 0.408 0.092 0.431 0.091
SMA 1 0.557 0.073 0.758 0.236 0.566 0.075 0.573 0.074

Output 41.8.2 resembles Table 2 in Kohn and Ansley (1986). It contains forecasts and their standard errors
for the four data sets. The numbers are very close to those in the article.

Output 41.8.2 Data Sets 1—4: Forecasts and Standard Errors

DATE for1 std1 for2 std2 for3 std3 for4d std4
JAN61 6.110 0.037 6.084 0.052 6.110 0.037 6.111 0.037
FEB61 6.054 0.043 6.091 0.058 6.054 0.043 6.055 0.043
MAR61 6.172 0.048 6.247 0.063 6.173 0.048 6.174 0.048
APR61 6.199 0.053 6.205 0.068 6.199 0.053 6.200 0.052
MAY61 6.233 0.057 6.199 0.072 6.232 0.058 6.233 0.056
JUN61 6.369 0.061 6.308 0.076 6.367 0.062 6.368 0.060
JUL61 6.507 0.065 6.409 0.079 6.497 0.067 . .
AUG61 6.503 0.069 6.414 0.082 6.503 0.069 6.503 0.067
SEP61 6.325 0.072 6.299 0.085 6.325 0.072 6.326 0.071
OCT61 6.209 0.075 6.174 0.087 6.209 0.076 6.209 0.074
NOV61 6.063 0.079 6.043 0.089 6.064 0.079 6.064 0.077
DEC61 6.168 0.082 6.174 0.086 6.168 0.082 6.169 0.080
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Output 41.8.3 is based on Data2. It resembles Table 3 in Kohn and Ansley (1986). The columns S_SERIES
and VS_SERIES in the OUTFOR= data set contain the interpolated values of logair and their variances.
The estimate column in Output 41.8.3 reports interpolated values (which are the same as S_SERIES),
and the std column reports their standard errors (which are computed as square root of VS_SERIES) for
January—November 1957. The actual logair values for these months, which are missing in Data2, are also
provided for comparison. The numbers are very close to those in the article.

Output 41.8.3 Data Set 2: Interpolated Values and Standard Errors

DATE logair estimate std
JAN57 5.753 5.733 0.045
FEB57 5.707 5.738 0.049
MAR57 5.875 5.893 0.052
APR57 5.852 5.850 0.054
MAY57 5.872 5.843 0.055
JUN57 6.045 5.951 0.055
JULS7 6.142 6.051 0.055
AUG57 6.146 6.055 0.054
SEP57 6.001 5.938 0.052
OCT57 5.849 5.812 0.049
NOV57 5.720 5.680 0.045

Output 41.8.4 resembles Table 4 in Kohn and Ansley (1986). These numbers are based on Data3, and they
also are very close to those in the article.

Output 41.8.4 Data Set 3: Interpolated Values and Standard Errors

DATE logair estimate std
JUL49 4.997 5.013 0.031
JUN57 6.045 6.024 0.030
JULS57 6.142 6.147 0.031
AUG57 6.146 6.148 0.030
JUL60 6.433 6.409 0.031

Output 41.8.5 resembles Table 5 in Kohn and Ansley (1986). As before, the numbers are very close to those
in the article.

Output 41.8.5 Data Set 4: Interpolated Values and Standard Errors

DATE logair estimate std
JUNS7 6.045 6.023 0.030
AUG57 6.146 6.147 0.030

The similarity between the outputs in this example and the results shown in Kohn and Ansley (1986)
demonstrate that PROC UCM can be effectively used for nonstationary ARIMA models with missing data.
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Example 41.9: Extracting A Business Cycle (Experimental)

The data set (not shown) gdp in this example has two variables: date dates the observations, and Igdp contains
the quarterly readings of the US real GDP (in log scale). Pelagatti (2015, Example 3.3, Example 8.2) uses
this quarterly time series (Igdp) to illustrate how you can adjust the smoothness of the estimated cycle by
changing the order of the cycle in a trend-cycle decomposition,

lgdp: = e + Y1 + &

where (; is an integrated random walk trend, ¥, is a cycle component, and ¢; is an irregular component.

The following statements fit the model /gdp; = u; + ¥ + €;, where the cycle component has an order of 1
(default):

proc ucm data=gdp;

where year (date) >= 1970;

id date interval=quarter;

model lgdp;

irregular;

level variance=0 noest plot=smooth;

slope;

cycle plot=smooth;

estimate plot=panel;

forecast plot=decomp outfor=forl;
run;

The following statements fit the same model, except that the cycle order is 2. Similarly, a model with a cycle
order of 4 is also fit (not shown).

proc ucm data=gdp;
where year (date) >= 1970;
id date interval=quarter;
model lgdp;
irregular;
level variance=0 noest plot=smooth;
slope;
cycle order=2 plot=smooth;
estimate plot=panel;
forecast plot=decomp outfor=for2;
run;

Output 41.9.1 summarizes the features of the estimated cycles of different orders. The estimated periods
of the first-order and second-order cycles, 31.59 and 45.18, are reasonable. However, the period of the
fourth-order cycle seems quite unreasonable. Fortunately, Pelagatti (2015, Example 8.2) mentions that cycles
of order 3 or higher are rarely needed when you are working with real economic series. Although they are not
the same, the parameter estimates that the UCM procedure produces are reasonably close to those reported in
Pelagatti (2015, Example 8.2).
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Output 41.9.1 Cycles of Orders 1, 2, and 4: Summary

order period Frequency Rho ErrorVar
1 31.59295 0.19888 0.94371 0.00004873
2 45.18256 0.13906 0.76177 0.00000956
4 23580 0.00026647 0.52055 0.00000856

Output 41.9.2 shows the plot of the first-order cycle, Output 41.9.3 shows the plot of the second-order cycle,
and Output 41.9.4 shows the plot of the fourth-order cycle. You can see that although the overall form of the
estimated cycle remains the same, the smoothness of the plot of the estimated cycle increases with the order.

Output 41.9.2 Estimated Cycle: Order = 1
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Output 41.9.3 Estimated Cycle: Order = 2

Smoothed Cycle for Igdp

Period = 45.18

0.05 -
()
o
& 0.00 -
©
()]
S
o
(@]
£
n

-0.05

I

T T T T T T T T T
1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

date

[0 95% Confidence Limits — — — - Start of multi-step forecasts



Example 41.9: Extracting A Business Cycle (Experimental) 4 2943

Output 41.9.4 Estimated Cycle: Order = 4

Smoothed Cycle for Igdp
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Output 41.9.5 shows the three cycle estimates in the same plot. It shows that the estimates don’t differ very

much.
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Output 41.9.5 Estimated Cycles of Orders 1, 2, and 4
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Example 41.10: A Transfer-Function Model for the Italian Traffic Accident Data
(Experimental)

This example is based on a case study described in Pelagatti (2015, chap. 9, sec. 1). In July 2003, Italy
introduced a new traffic monitoring system with the aim of improving traffic safety. The case study tried to
answer the question, “Was the monitoring system effective in reducing the number of traffic injuries?”” The
time series plot in Output 41.10.1 shows monthly traffic injuries for the span of January 2001 to December
2013. Visual inspection of the plot clearly shows that the series is seasonal and has an overall downward
trend, which appears to be more pronounced after the intervention.
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Output 41.10.1 Monthly Traffic Injuries in ltaly
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Pelagatti (2015, chap. 9, sec. 1) suggests the following model for this series:
Y = Mg + lﬁt + shift03 ,8 + g:t + €

Various terms in the right-hand side of this model are explained as follows:

e 1 is the trend component, which is modeled as an integrated random walk.

e Y is the trigonometric seasonal component, which accounts for the monthly seasonality.
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o The effect of the introduction of the monitoring system is modeled using two terms:

— One term captures a permanent shift, which is a regression effect that is associated with the
dummy regressor shift03. This regressor is 0 before July 2003 and 1 thereafter.

— The other term captures a transient effect that rapidly decays to 0. The transient effect & is a
transfer-function effect

g = Yo pulse03;
T (1-6B)

where pulse03 is a dummy regressor that is 1 at July 2003 and O otherwise. In this example, the
transfer function & is clearly O before July 2003.

e ¢; is the simple irregular component.

The following statements show how to fit this model to the data. The LIKE=MARGINAL option in the
ESTIMATE statement causes the parameter estimation to be based on marginal likelihood rather than on
diffuse likelihood, which is the default. Since the parameter vector of this model contains § (the denominator
coefficient of the transfer function), the parameter estimations that are based on marginal likelihood and
diffuse likelihood can lead to different results. In this example, the results turn out to be similar; however, this
is not necessarily the case in general. Generally, parameter estimation that is based on marginal likelihood is
the preferred choice in such cases.

proc ucm data=italy;
id date interval=month;
model Injured = shift03;
irregular;
level variance=0 noest;
slope;
season length=12 type=trig;
tf pulse03 den=1 tfstart=0 plot=smooth;
estimate plot=(panel residual) like=marginal;
forecast plot=decomp;
run;

Output 41.10.3 shows the parameter estimates. It shows that soon after the introduction of the monitoring
system in July 2003, the accident level decreased by about 5.22 thousand (,[3 + Y0 = —(2.48 + 2.74)).
However, the permanent decrease was only about 2.48 thousand (/§ = —2.48). The estimate of the decay
parameter of the transfer function, §, is 0.587.

Output 41.10.2 Estimates of the Model Parameters
The UCM Procedure

Final Estimates of the Free Parameters

Approx Approx
Component Parameter Estimate Std Error t Value Pr > |t|
Irregular Error Variance 0.55447  0.09227 6.01 <.0001
Slope Error Variance 0.00064586 0.0004515 1.43 0.1526
Season Error Variance 0.00068803 0.0005190 133 0.1849
shifto3 Coefficient -2.47939 0.70928 -3.50 0.0005
pulse03 Coefficient -2.74316  0.93850 -2.92 0.0035

pulse03 DEN_1 0.58714 0.17805  3.30 0.0010
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Output 41.10.3 shows the plot of smoothed estimate of the transfer function &, and Output 41.10.4 shows the
plot of the estimate of the trend plus the total effect of the July 2003 intervention.

Output 41.10.3 Decaying Part of the July 2003 Intervention Effect (Smoothed Estimate of &)

Smoothed Transfer Function for Injured
Transfer Function Variable: pulse03

Smoothed Transfer Function

2000 2002 2004 2006 2008 2010 2012 2014
Date

[0 95% Confidence Limits
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Output 41.10.4 Smoothed Estimate of p; + shift03 8 + &

Sum of Smoothed Trend and Regression Effects for Injured
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Finally, the Output 41.10.5 shows the plot of the overall model fit.
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Output 41.10.5 Sum of All Model Terms Except the Irregular

Sum of Smoothed Trend, Regression and Seasons for Injured
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