Chapter 37
The TIMEID Procedure

Overview: TIMEID Procedure

The TIMEID procedure evaluates a variable in an input data set for its suitability as a time ID variable in SAS procedures and solutions that are used for time series analysis. PROC TIMEID assesses how well a time interval specification fits SAS date or datetime values, or observation numbers used to index a time series. The time interval used in this analysis can be either specified explicitly as input to PROC TIMEID or inferred by the procedure based on values of the time ID variable. The TIMEID procedure produces diagnostic information in the form of data sets and ODS tabular and plotted output. These diagnostic results summarize characteristics of the time ID variable that can help determine its use as an index in other time series procedures and solutions.

PROC TIMEID is intended for use as a tool to either identify the time interval of a variable or prepare problematic data sets for use in subsequent time series analyses. In particular, this procedure can be used to investigate inconsistencies between time ID values and the ID statement options used in other SAS procedures and solutions.
Chapter 37: The TIMEID Procedure

Getting Started: TIMEID Procedure

When a data set contains a time ID variable with corrupted, missing, or duplicate values, PROC TIMEID can help isolate and identify these problematic observations. For a data set with a small number of ID variable anomalies and a known time interval, a graphical depiction of the problem areas can be created using the following statements:

```
proc timeid data=<input-dataset> plot=values;
    id <time-ID-variable> interval=<frequency>;
run;
```

For larger data sets whose quality is unknown, it can be useful to get a general overview of the relative number of observations with problematic time ID values. The following statements graphically summarize the prevalence of anomalous time ID values:

```
proc timeid data=<input-dataset> plot=(intervalcounts offsets spans);
    id <time-ID-variable> interval=<frequency>;
run;
```

When prior knowledge of the time interval that separates observations is incomplete, PROC TIMEID can be used to infer the interval by omitting the INTERVAL= option from the ID statement as in the following statements:

```
proc timeid data=<input-dataset> outinterval=<output-dataset>;
    id <time-ID-variable>;
run;
```

Syntax: TIMEID Procedure

The TIMEID procedure uses the following statements:

```
PROC TIMEID options ;
    BY variables ;
    ID variable < options > ;
```
Functional Summary

The statements and options that control the TIMEID procedure are summarized in Table 37.1.

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifies data sets and options</td>
<td>PROC TIMEID</td>
<td></td>
</tr>
<tr>
<td>Specifies BY-group processing</td>
<td>BY</td>
<td></td>
</tr>
<tr>
<td>Specifies the time ID variable</td>
<td>ID</td>
<td></td>
</tr>
<tr>
<td>Data Set Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifies the input data set</td>
<td>PROC TIMEID DATA=</td>
<td></td>
</tr>
<tr>
<td>Specifies the maximum number of ID values to analyze</td>
<td>PROC TIMEID NBYOBS=</td>
<td></td>
</tr>
<tr>
<td>Specifies the output frequency count data set</td>
<td>PROC TIMEID OUTFREQ=</td>
<td></td>
</tr>
<tr>
<td>Specifies the output interval data set</td>
<td>PROC TIMEID OUTFREQ=</td>
<td></td>
</tr>
<tr>
<td>Specifies the detailed output interval data set</td>
<td>PROC TIMEID OUTFREQ=</td>
<td></td>
</tr>
<tr>
<td>Time ID Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifies the interval alignment</td>
<td>ID ALIGN=</td>
<td></td>
</tr>
<tr>
<td>Specifies that duplicate time ID values can be present in the DATA= data set</td>
<td>ID ID DUPLICATES</td>
<td></td>
</tr>
<tr>
<td>Specifies the time interval between observations</td>
<td>ID INTERVAL=</td>
<td></td>
</tr>
<tr>
<td>Specifies that time ID variable values are not sorted</td>
<td>ID NOTSORTED</td>
<td></td>
</tr>
<tr>
<td>Printing and Plotting Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifies the time ID format</td>
<td>ID FORMAT=</td>
<td></td>
</tr>
<tr>
<td>Specifies the types of graphical output</td>
<td>PROC TIMEID PLOT=</td>
<td></td>
</tr>
<tr>
<td>Specifies the types of printed output</td>
<td>PROC TIMEID PRINT=</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limits the number of error and warning messages</td>
<td>PROC TIMEID MAXERROR=</td>
<td></td>
</tr>
</tbody>
</table>

Table 37.1 Functional Summary
PROC TIMEID Statement

PROC TIMEID *options* ;

The following options can be used in the PROC TIMEID statement:

DATA=SAS-data-set

names the SAS data set that contains the input data for the procedure. If the DATA= option is not specified, the most recently created SAS data set is used.

MAXERROR=number

limits the number of warning and error messages produced during the execution of the procedure to the specified value. The default is MAXERRORS=50. This option is particularly useful in BY-group processing, where it can be used to suppress recurring messages.

NBYOBS=number

limits the number of observations that are used to analyze the time ID variable. The NBYOBS= option should be used instead of the OBS= data set option when BY variables are specified. The NBYOBS= option excludes observations from incomplete BY groups in the analysis. This option guarantees that any truncation of the DATA= data set occurs at a BY-group boundary. Only BY groups that are completely contained within the first *number* of observations are processed. When the NBYOBS= option is omitted, all observations are processed.

OUTFREQ=SAS-data-set

names the output data set to contain the frequency counts of each unique value of the time ID variable. The frequency counts are performed on time ID values that are recorded in the DATA= data set. The time ID values are not aligned with respect to an interval prior to computation of the frequency counts. For more information, see the section “OUTFREQ= Data Set” on page 2696.

OUTINTERVAL=SAS-data-set

names the output data set to contain the time ID interval information that is summarized across all BY groups in the DATA= data set. For more information, see the section “OUTINTERVAL= Data Set” on page 2696.

OUTINTERVALDETAILS=SAS-data-set

names the output data set to contain the time ID interval information for each BY group. For more information, see the section “OUTINTERVALDETAILS= Data Set” on page 2697.

PLOT(global-option)=request-option | (request-options)

specifies the graphical output desired. By default, the TIMEID procedure produces no graphical output. The following *global-options* are available:

- **UNPACK | UNPACKPANELS** suppresses paneling.

By default, multiple plots can appear in some output panels. Specify UNPACKPANELS to get each plot in a separate panel. The following plot *request-options* are available:

- **COUNTS | INTCNTS | INTERVALCOUNTS** plots a histogram of the time ID interval counts.
- **OFFSETS** plots a histogram of the time offsets for the time ID values.
PERIODS | SPANS plots a histogram of the spans between adjacent time ID values.
VALUES plots a panel of the counts, offsets, and spans for each of the time ID values.
ALL is equivalent to specifying PLOT=(INTERVALCOUNTS SPANS OFFSETS VALUES).

For more information, see the section “Time ID Diagnostics” on page 2693.

PRINT= | (options)
specifies the printed output desired. By default, the TIMEID procedure produces no printed output. The following printing options are available:

COUNTS | INTCNTS | INTERVALCOUNTS prints a table that contains the counts of time ID values per interval.
INTERVAL prints a summary of information about the time interval.
OFFSETS prints a table that contains the time offsets for the time ID values.
PERIODS | SPANS prints tables that contain statistics on the spans between adjacent time ID values.
VALUES prints tables that contain offset span and count information for the time ID values.
ALL is equivalent to specifying PRINT=(INTERVALCOUNTS SPANS INTERVAL OFFSETS VALUES).

For more information, see the section “Time ID Diagnostics” on page 2693.

BY Statement

BY variables ;

A BY statement can be used with PROC TIMEID to obtain separate analyses for groups of observations defined by the BY variables.

When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alternatives:

- Sort the data by using the SORT procedure with a similar BY statement.
- Specify the option NOTSORTED or DESCENDING in the BY statement for the TIMESERIES procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged in groups (according to values of the BY variables) and that these groups are not necessarily in alphabetical or increasing numeric order.
- Create an index on the BY variables by using the DATASETS procedure.

For more information about the BY statement, see *SAS Language Reference: Concepts*. For more information about the DATASETS procedure, see the discussion in the *Base SAS Procedures Guide*.
ID Statement

ID variable < options > ;

The ID statement names a numeric variable that identifies observations in the input and output data sets. The ID variable’s values are assumed to be SAS date or datetime values. The ID statement options specify how the time ID values are spaced and aligned relative to a SAS date or datetime interval. The INTERVAL= option specifies the fundamental spacing that is used as the basis for counting intervals, offsets, and spans in the data. Specification of the ID variable in an ID statement is required.

ALIGN=alignment
 specifies the alignment of the identifying SAS date or datetime that is used to represent intervals. The value of the ALIGN= option is used in the analysis of the time ID variable. The ALIGN= option accepts the following values: BEGINNING | BEG | B, MIDDLE | MID | M, ENDING | END | E, and INFER. For example, ALIGN=BEGIN specifies that the identifying date for the interval is the beginning date in the interval. If the ALIGN= option is not specified, then the default alignment is BEGIN. ALIGN=INFER specifies that the alignment of values within time intervals be inferred from the time ID values.

DUPLICATES
 specifies that multiple observations in the DATA= data set can fall within the same time interval as defined by the time ID variable. When this option is omitted and multiple time ID values are encountered in a single time interval, error messages are written to the SAS log.

FORMAT=format
 specifies the SAS format used for time ID values in the data sets and in printed and plotted output that is generated by PROC TIMEID. If the FORMAT= option is not specified, the format applied to the input time ID variable is used. If neither of these formats is specified, the format is inferred from the INTERVAL= option.

INTERVAL=interval
 specifies the proposed time interval and shift that describe the time ID values in the input data set. For more information about the intervals that can be specified, see Chapter 4, “Date Intervals, Formats, and Functions.” For more information about how the INTERVAL= option determines the nature of diagnostic information reported by the TIMEID procedure, see the section “Time ID Diagnostics” on page 2693.

If no interval is specified, the procedure attempts to infer an interval from the input time ID values. For more information about how the time interval is inferred, see the section “Inferring Time Intervals and Alignments” on page 2695.

NOTSORTED
 specifies that the observations in the DATA= data set are not sorted by the time ID variable. When this option is omitted, error messages are generated for time ID values that are not sorted in ascending order.
Details: TIMEID Procedure

Time ID Diagnostics

For a specified time interval, PROC TIMEID decomposes the raw time ID values in an input data set into the following three quantities, whose values are represented by nonnegative integers at each unique time ID value in the input series:

- **interval counts**: the number of observations that share each time interval in the data set.
- **offsets**: the numerical difference between a time ID value and the aligned value for that time interval. The unit of measure used to express this distance is days for date values and seconds for datetime values. The offset is computed for each time ID value, \(t_i \), by using the following SAS expression:

 \[
 \text{offset}_i = t_i - \text{INTNX}(\text{interval}, t_i, 0, \text{alignment})
 \]

- **spans**: the number of intervals between each time ID value and the previous time ID value. The spans value is equivalent to the number returned by the following SAS expression:

 \[
 \text{spans}_i = \text{INTCK}(\text{interval}, t_{i-1}, t_i)
 \]

Diagnostic Output Representation

The TIMEID procedure produces time ID diagnostics as both time-ID-based and count-based frequency distributions to expose many of the possible problems that can occur in a time ID variable. The time-ID-based frequency distributions that are generated with the PLOT= option provide a detailed view of time ID values that can isolate problems with specific ID values. Figure 37.1 shows a time series that has a span of 10 observations in a weekday series based on the results of the PLOT=(VALUES SPANS) option. The single large bar in the spans plot shows where data are omitted.
The count-based frequency distributions summarize features of the time ID variable. Individual printed and plotted outputs are available to describe the distribution of the number of spans, offsets, and interval counts that occur in the time ID variable. Figure 37.2 illustrates a count-based frequency distribution of the spans within the weekday series.
Inferring Time Intervals and Alignments

When the INTERVAL= option is not specified in the ID statement, a time interval is inferred from the time ID values in the input data set. The technique used to infer a time interval involves searching for the interval that fits the greatest number of time ID values. First, time ID values are sampled from the input data set to generate a set of candidate intervals. Then the candidate interval that is consistent with greatest number of time ID values is chosen to represent the time series.

When the ALIGN=INFER option is specified, the convention that is used to specify time interval alignment is inferred from the time ID variable values by using a similar technique. When both the time interval and its alignment are to be inferred, each of the possible alignments, BEGIN, MIDDLE, and END, is considered in the search. Precedence in the search is given to intervals with the BEGIN alignment.
Chapter 37: The TIMEID Procedure

Data Set Output

The TIMEID procedure creates the OUTFREQ=, OUTINTERVAL=, and OUTINTERVALDETAILS= data sets. The OUTFREQ= and OUTINTERVALDETAILS= data sets contain the variables that are specified in the BY statement along with variables that characterize the time ID values. The OUTINTERVAL= option creates a data set without BY variables. The information in this data set summarizes time ID diagnostic information across all BY groups in the DATA= data set.

OUTFREQ= Data Set

The OUTFREQ= data set contains a single observation for each value of the time ID variable in the input data set for each BY group. Additionally, the following variables are written to the OUTFREQ= data set:

- **COUNT**: number of the occurrences of the time ID value
- **PERCENT**: percentage of all time ID values

OUTINTERVAL= Data Set

The OUTINTERVAL= data set contains information that is similar to the variables written to the OUTINTERVALDETAILS= data set; however, the OUTINTERVAL= data set summarizes the information across all BY groups into a single observation. The following variables are written to the OUTINTERVAL= data set:

- **TIMEID**: time ID variable
- **START**: smallest time ID interval
- **END**: largest time ID interval
- **STARTSHARED**: largest starting time ID interval
- **ENDSHARED**: smallest ending time ID interval
- **NOBS**: number of observations
- **N**: number of nonmissing observations
- **NMISS**: number of missing observations
- **NBY**: number of BY groups
- **NINVALID**: number of invalid observations
- **STATUS**: status flag that indicates whether the requested analyses were successful:
 - 0: The analysis completed successfully.
 - 1: interval consistent but data contain gaps
 - 2: interval not consistent with data
 - 10: missing or invalid values found
 - 20: ID values not sorted
 - 21: duplicate ID values detected
 - 30: fewer than three values found
Inference of a time interval from the data set failed.
Diagnosis of the DATA= data set for the specified time interval failed.

MSG a message that provides further details when the STATUS variable is not zero

INTERVAL time interval that is specified or recommended

INTNAME time interval base name that is specified or recommended

MULTIPLIER time interval multiplier that is specified or recommended

SHIFT_INDEX time interval shift index that is specified or recommended

ALIGNMENT time interval alignment that is specified or recommended

SEASONALITY seasonality determined from specified or recommended time interval

TOTALSEASONCYCLES total number of seasonal cycles spanned by all the observations

SEASONCYCLESSHARED number of seasonal cycles that are shared among all BY groups

FORMAT format of the time ID variable

The **START, END, STARTSHARED,** and **ENDSHARED** variables are reported using the interval and alignment specified in the ID statement or inferred from the time ID values.

OUTINTERVALDETAILS= Data Set

The **OUTINTERVALDETAILS=** data set contains statistics about the time interval that is specified in the ID statement or inferred from the time ID values for each BY group. The following variables represent these statistics:

TIMEID time ID variable name

START starting time ID interval

END ending time ID interval

NOBS number of observations

N number of nonmissing observations

NMISS number of missing observations

NINVALID number of invalid observations

NINTCNTS number of unique interval count values

PCTINTCNTS percentage of interval counts greater than one

MININTCNT minimum of interval counts

MAXINTCNT maximum of interval counts

MEANINTCNT mean of interval counts

STDINTCNT standard deviation of interval counts

MEDINTCNT median of interval counts

NOFFSETS number of time ID offset

PCTOFFSETS percentage of time ID offset
MINOFFSET minimum of time ID offsets
MAXOFFSET maximum of time ID offsets
MEANOFFSET mean of time ID offsets
STDOFFSET standard deviation of time ID offsets
MEDOFFSET median of time ID offsets
NSPANS number of spans between time ID values
PCTSPANS percentage of spans between time ID values
MINSPAN maximum of spans between time ID values
MAXSPAN minimum of spans between time ID values
MEANSPAN mean of spans between time ID values
STDSPAN standard deviation of spans between time ID values
MEDSPAN median of spans between time ID values
STATUS status flag that indicates whether the requested analyses were successful:
 0 The analysis completed successfully.
 1 interval consistent but data contain gaps
 2 interval not consistent with data
 10 missing or invalid values found
 20 ID values not sorted
 21 duplicate ID values detected
 30 fewer than three values found
 4000 Inference of a time interval from the data set failed.
 5000 Diagnosis of the DATA= data set for specified time interval failed.
MSG a message that provides further details when the STATUS variable is not zero
INTERVAL time interval specified or recommended
INTNAME time interval base name specified or recommended
MULTIPLIER time interval multiplier specified or recommended
SHIFT_INDEX time interval shift index specified or recommended
ALIGNMENT time interval alignment specified or recommended
SEASONALITY seasonality determined from specified or recommended time interval
NSEASONCYCLES number of seasonal cycles spanned by the time ID values
FORMAT format of the time ID variable

The START and END variables are reported using the interval and alignment specified in the ID statement or inferred from the time ID values.
Printed Tabular Output

The TIMEID procedure optionally produces printed output by using the Output Delivery System (ODS). By default, the procedure produces no printed output. The appearance of the printed tabular output is controlled by the PRINT= option in the PROC TIMEID statement.

Table 37.2 relates the PRINT= options to the names of the ODS tables.

<table>
<thead>
<tr>
<th>ODS Name</th>
<th>Description</th>
<th>PRINT= Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataSet</td>
<td>Information about the input dataset</td>
<td>ALL</td>
</tr>
<tr>
<td>Decomposition</td>
<td>Time ID counts, offsets, and spans</td>
<td>VALUES</td>
</tr>
<tr>
<td>Interval</td>
<td>Information about the time interval</td>
<td>INTERVAL</td>
</tr>
<tr>
<td>IntervalCountsComponent</td>
<td>Frequency distribution of interval counts</td>
<td>INTERVALCOUNTS</td>
</tr>
<tr>
<td>IntervalCountsStatistics</td>
<td>Statistics on interval count frequency distribution</td>
<td>INTERVALCOUNTS</td>
</tr>
<tr>
<td>OffsetsComponent</td>
<td>Frequency distribution of offsets</td>
<td>OFFSETS</td>
</tr>
<tr>
<td>OffsetStatistics</td>
<td>Statistics on offset frequency distribution</td>
<td>OFFSETS</td>
</tr>
<tr>
<td>SpansComponent</td>
<td>Frequency distribution of spans</td>
<td>SPANS</td>
</tr>
<tr>
<td>SpanStatistics</td>
<td>Statistics on the span frequency distribution</td>
<td>SPANS</td>
</tr>
<tr>
<td>Values</td>
<td>Time ID value counts</td>
<td>VALUES</td>
</tr>
<tr>
<td>ValueSummary</td>
<td>Summary of the number of valid observations</td>
<td>VALUES</td>
</tr>
</tbody>
</table>

ODS Graphics

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling ODS Graphics” in that chapter.

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

The TIMEID procedure uses ODS Graphics to produce plotted output as specified by the PLOT= option. Table 37.3 relates the PLOT= options to the names of the ODS Graphics objects.
Table 37.3 ODS Graphics Produced by the PLOT= Option in PROC TIMEID

<table>
<thead>
<tr>
<th>ODS Graph Name</th>
<th>Plot Description</th>
<th>PLOT= Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>DecompositionPlot</td>
<td>Panel of spans, offsets, and counts for each time interval</td>
<td>VALUES</td>
</tr>
<tr>
<td>IntervalCountsComponentPlot</td>
<td>Histogram of interval counts</td>
<td>INTERVALCOUNTS</td>
</tr>
<tr>
<td>IntervalCountsPlot</td>
<td>Plot of counts for each time interval value</td>
<td>VALUES</td>
</tr>
<tr>
<td>OffsetComponentPlot</td>
<td>Histogram of time ID offsets</td>
<td>OFFSETS</td>
</tr>
<tr>
<td>OffsetsPlot</td>
<td>Plot of offsets for each time interval value</td>
<td>VALUES</td>
</tr>
<tr>
<td>SpanComponentPlot</td>
<td>Histogram of span sizes between time ID values</td>
<td>SPANS</td>
</tr>
<tr>
<td>SpansPlot</td>
<td>Plot of spans for each time interval value</td>
<td>VALUES</td>
</tr>
<tr>
<td>ValuesPlot</td>
<td>Plot of counts of each time ID value</td>
<td>VALUES</td>
</tr>
</tbody>
</table>

Examples: TIMEID Procedure

Example 37.1: Examining a Weekly Time ID Variable

This example illustrates how problems in a weekly time series can be visualized and quantified using the TIMEID procedure’s diagnostic capabilities.

The following DATA step creates a data set that contains time values spaced in three-week intervals where some weeks have been skipped or duplicated and some have been recorded on different weekdays:

```plaintext
data triweek;
  format date date.;
  input date : date. @@;
datalines;
28DEC48 18JAN49 08FEB49 01MAR49 22MAR49 12APR49 03MAY49 24MAY49
17JUN49 05JUL49 26JUL49 16AUG49 06SEP49 27SEP49 18OCT49 08NOV49
29NOV49 20DEC49 10JAN50 04FEB50 21FEB50 14MAR50 04APR50 25APR50
... more lines ...
```
The following TIMEID procedure statements generate an ODS display of the time series that characterizes interval counts, offsets, and spans in the time ID variable:

```plaintext
c proc timeid data=triweek print=all plot=all;
   id date interval=week3;
run;
```

The Time ID decomposition listing and plot shown in Output 37.1.1 and Output 37.1.2 summarize how well the WEEK3 interval fits the time ID values by showing the number of counts, offsets, and spans for each time interval that is represented by the DATE variable. The listing in Output 37.1.1 has been truncated to include only the first 10 observations. The Time ID plots in Output 37.1.2 indicate that there are duplicated time ID values for a three-week time interval in the Counts plot. The duplicated time intervals have a Count value of 2. The Offsets plot shows which days in the 21 day cycle have been used to record each time interval in the series. The Spans plot records values of 2 for six time intervals where no observations were recorded in the previous interval. The three component plots are histogram summaries of the diagnostic quantities plotted against individual intervals in the decomposition plots. The component plots can be useful in diagnosing time series that contain many time intervals.

Output 37.1.1 Time ID Decomposition Listing

<table>
<thead>
<tr>
<th>Value Index</th>
<th>Time Component</th>
<th>Date</th>
<th>Offset</th>
<th>Span</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sun, 12 Dec 1948</td>
<td>16</td>
<td>.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sun, 2 Jan 1949</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Sun, 23 Jan 1949</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Sun, 13 Feb 1949</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Sun, 6 Mar 1949</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Sun, 27 Mar 1949</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Sun, 17 Apr 1949</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Sun, 8 May 1949</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Sun, 29 May 1949</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Sun, 19 Jun 1949</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Output 37.1.2 Time ID Decomposition Plot

Output 37.1.3 and Output 37.1.4 describe the distribution of counts of duplicated WEEK3 intervals in the TriWeek data set. For this data set there are 134 intervals that contain one DATE value, and 10 intervals that contain two DATE values.

Output 37.1.3 Time ID Interval Counts Listings

The TIMEID Procedure

<table>
<thead>
<tr>
<th>Value Index</th>
<th>Interval Count</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>132</td>
<td>91.666667</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>12</td>
<td>8.333333</td>
</tr>
</tbody>
</table>

Statistics Summary

<table>
<thead>
<tr>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1.0833333</td>
<td>1.3008873</td>
</tr>
</tbody>
</table>
Example 37.1: Examining a Weekly Time ID Variable

Output 37.1.4 Time ID Interval Counts Histogram

The offsets diagnostics Output 37.1.5 and Output 37.1.6 show the distribution of days in the 21-day WEEK3 interval used to record the time intervals in the series. The observations in the TriWeek data set represent intervals with five different offsets from the beginning of the WEEK3 interval: 0, 16, 18, 19, and 20. The high prevalence of intervals with offset 16 indicates that the TriWeek data set would be represented better using the WEEK3.17 interval.

Output 37.1.5 Time ID Offsets Listings

<table>
<thead>
<tr>
<th>The TIMEID Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>
Output 37.1.5 continued

Statistics Summary

<table>
<thead>
<tr>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td>16.006944</td>
<td>1.7006205</td>
</tr>
</tbody>
</table>

Output 37.1.6 Time ID Offsets Histogram

The span diagnostics Output 37.1.7 and Output 37.1.8 show the distribution of the span sizes between successive DATE values. The TriWeek data set has three different span sizes of widths 0, 1, and 2. Here one span corresponds to the width of a WEEK3 interval.
Output 37.1.7 Time ID Span Listings

The TIMEID Procedure

<table>
<thead>
<tr>
<th>Value Index</th>
<th>Component Value</th>
<th>Span</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.704225</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>135</td>
<td>95</td>
<td>95.070423</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>4.225352</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>1.0352113</td>
<td>0.6367974</td>
</tr>
</tbody>
</table>

Output 37.1.8 Time ID Span Histogram

Span Component

![Histogram of Span Components](image)
Output 37.1.9 and Output 37.1.10 show the distribution of time ID values before alignment to the WEEK3 interval. The listing in Output 37.1.9 has been truncated to include only the first 10 observations.

Output 37.1.9 Unaligned Time ID Listings

<table>
<thead>
<tr>
<th>Value Index</th>
<th>date</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tue, 28 Dec 1948</td>
<td>1</td>
<td>0.694444</td>
</tr>
<tr>
<td>2</td>
<td>Tue, 18 Jan 1949</td>
<td>1</td>
<td>0.694444</td>
</tr>
<tr>
<td>3</td>
<td>Tue, 8 Feb 1949</td>
<td>1</td>
<td>0.694444</td>
</tr>
<tr>
<td>4</td>
<td>Tue, 1 Mar 1949</td>
<td>1</td>
<td>0.694444</td>
</tr>
<tr>
<td>5</td>
<td>Tue, 22 Mar 1949</td>
<td>1</td>
<td>0.694444</td>
</tr>
<tr>
<td>6</td>
<td>Tue, 12 Apr 1949</td>
<td>1</td>
<td>0.694444</td>
</tr>
<tr>
<td>7</td>
<td>Tue, 3 May 1949</td>
<td>1</td>
<td>0.694444</td>
</tr>
<tr>
<td>8</td>
<td>Tue, 24 May 1949</td>
<td>1</td>
<td>0.694444</td>
</tr>
<tr>
<td>9</td>
<td>Fri, 17 Jun 1949</td>
<td>1</td>
<td>0.694444</td>
</tr>
<tr>
<td>10</td>
<td>Tue, 5 Jul 1949</td>
<td>1</td>
<td>0.694444</td>
</tr>
</tbody>
</table>

Output 37.1.10 Unaligned Time ID Histogram
Example 37.2: Inferring a Date Interval

This example illustrates how a time ID variable can be inferred from a data set when a sufficient number of observations are present.

``` Sas
data workdays;
  format day weekdate.;
  input day : date. @@;
datalines;
01AUG09 06AUG09 11AUG09 14AUG09 19AUG09 22AUG09
27AUG09 01SEP09 04SEP09 09SEP09 12SEP09 17SEP09
;
proc timeid data=workdays print=interval;
  id day;
run;
```

The 12 observations in the WorkDays data set are enough to determine that the DAY time ID variable is represented by the WEEKDAY12W3 interval. The WEEKDAY12W3 interval corresponds to every third day of the week excluding Sundays and Mondays. Characteristics of this interval are shown in Output 37.2.1.

Output 37.2.1 Inferred Time Interval Information

<table>
<thead>
<tr>
<th>The TIMEID Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Interval Analysis Summary</td>
</tr>
<tr>
<td>Time ID Variable</td>
</tr>
<tr>
<td>Time Interval</td>
</tr>
<tr>
<td>Base Name</td>
</tr>
<tr>
<td>Multiplier</td>
</tr>
<tr>
<td>Shift</td>
</tr>
<tr>
<td>Length of Seasonal Cycle</td>
</tr>
<tr>
<td>Time ID Format</td>
</tr>
<tr>
<td>Start</td>
</tr>
<tr>
<td>End</td>
</tr>
</tbody>
</table>
Example 37.3: Examining Multiple BY Groups

This example illustrates how a time ID variable can be examined independently over each BY group and summarized over all observations in the DATA= data set.

```plaintext
data bygroups;
  format tid date.;
  input tid : date. by @@;
datalines;
24NOV09 1 25NOV09 1 26NOV09 1 27NOV09 1 30NOV09 1 01DEC09 1 02DEC09 1 03DEC09 1

   ... more lines ...
```

The following TIMEID procedure statements generate two data sets that summarize a data set with four BY groups:

```plaintext
proc timeid data=bygroups outintervaldetails=int outinterval=intsum;
  id tid;
  by by;
run;
```

The summarized information in Output 37.3.1 shows that BY groups 2, 3, and 4 in the ByGroups data set contain some duplicate values and spans, and group 1 conforms exactly to the WEEKDAY17W interval. This listing also shows that the date ranges in these two BY groups start and end on different days and that they overlap between December 7, 2009, and December 28, 2009.

Output 37.3.1

<table>
<thead>
<tr>
<th>by</th>
<th>N</th>
<th>NINTCNTS</th>
<th>PCTINTCNTS</th>
<th>NOFFSETS</th>
<th>PCTOFFSETS</th>
<th>NSPANS</th>
<th>PCTSPANS</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>1</td>
<td>0.00</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.00000</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>2</td>
<td>0.08</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0.00000</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>2</td>
<td>0.16</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0.04348</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>2</td>
<td>0.24</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0.13043</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>START</th>
<th>END</th>
<th>SEASONALITY</th>
<th>NSEASONCYCLES</th>
<th>STARTSHARED</th>
<th>ENDSHARED</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEEKDAY17W</td>
<td>24NOV09</td>
<td>28DEC09</td>
<td>5</td>
<td>5</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>WEEKDAY17W</td>
<td>27NOV09</td>
<td>31DEC09</td>
<td>5</td>
<td>5</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>WEEKDAY17W</td>
<td>02DEC09</td>
<td>05JAN10</td>
<td>5</td>
<td>5</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>WEEKDAY17W</td>
<td>07DEC09</td>
<td>08JAN10</td>
<td>5</td>
<td>4</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>WEEKDAY17W</td>
<td>24NOV09</td>
<td>08JAN10</td>
<td>5</td>
<td>.</td>
<td>07DEC09</td>
<td>28DEC09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NBY</th>
<th>TOTALSEASONCYCLES</th>
<th>SEASONCYCLES</th>
<th>SEASONCYCLES</th>
<th>SEASONCYCLES</th>
<th>SEASONCYCLES</th>
<th>SEASONCYCLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>3</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>
ALIGN= option
 TIMEID procedure, 2692

BY statement
 TIMEID procedure, 2691

DATA= option
 PROC TIMEID statement, 2690
DUPLICATES option
 TIMEID procedure, 2692

FORMAT= option
 TIMEID procedure, 2692
FREQ= option
 PROC TIMEID statement, 2690

ID statement
 TIMEID procedure, 2692
INTERVAL= option
 TIMEID procedure, 2692
MAXERROR= option
 PROC TIMEID statement, 2690

NBYOBS= option
 PROC TIMEID statement, 2690
NOTSORTED option
 TIMEID procedure, 2692

OUTINTERVAL= option
 PROC TIMEID statement, 2690
OUTINTERVALDETAILS= option
 PROC TIMEID statement, 2690

PLOT= option
 PROC TIMEID statement, 2690
PRINT= option
 PROC TIMEID statement, 2691

PROC TIMEID statement, 2690

TIMEID procedure, 2688
 syntax, 2688