Chapter 30
The SIMILARITY Procedure

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview: SIMILARITY Procedure</td>
<td>2254</td>
</tr>
<tr>
<td>Getting Started: SIMILARITY Procedure</td>
<td>2256</td>
</tr>
<tr>
<td>Syntax: SIMILARITY Procedure</td>
<td>2258</td>
</tr>
<tr>
<td>Functional Summary</td>
<td>2258</td>
</tr>
<tr>
<td>PROC SIMILARITY Statement</td>
<td>2259</td>
</tr>
<tr>
<td>BY Statement</td>
<td>2262</td>
</tr>
<tr>
<td>FCMPOPT Statement</td>
<td>2263</td>
</tr>
<tr>
<td>ID Statement</td>
<td>2263</td>
</tr>
<tr>
<td>INPUT Statement</td>
<td>2266</td>
</tr>
<tr>
<td>TARGET Statement</td>
<td>2268</td>
</tr>
<tr>
<td>Details: SIMILARITY Procedure</td>
<td>2273</td>
</tr>
<tr>
<td>Accumulation</td>
<td>2274</td>
</tr>
<tr>
<td>Missing Value Interpretation</td>
<td>2275</td>
</tr>
<tr>
<td>Zero Value Interpretation</td>
<td>2276</td>
</tr>
<tr>
<td>Time Series Transformation</td>
<td>2276</td>
</tr>
<tr>
<td>Time Series Differencing</td>
<td>2277</td>
</tr>
<tr>
<td>Time Series Missing Value Trimming</td>
<td>2277</td>
</tr>
<tr>
<td>Time Series Descriptive Statistics</td>
<td>2277</td>
</tr>
<tr>
<td>Input and Target Sequences</td>
<td>2277</td>
</tr>
<tr>
<td>Sliding Sequences</td>
<td>2277</td>
</tr>
<tr>
<td>Time Warping</td>
<td>2278</td>
</tr>
<tr>
<td>Sequence Normalization</td>
<td>2278</td>
</tr>
<tr>
<td>Sequence Scaling</td>
<td>2278</td>
</tr>
<tr>
<td>Similarity Measures</td>
<td>2279</td>
</tr>
<tr>
<td>User-Defined Functions and Subroutines</td>
<td>2279</td>
</tr>
<tr>
<td>Output Data Sets</td>
<td>2286</td>
</tr>
<tr>
<td>OUT= Data Set</td>
<td>2286</td>
</tr>
<tr>
<td>OUTMEASURE= Data Set</td>
<td>2287</td>
</tr>
<tr>
<td>OUTFIELD= Data Set</td>
<td>2287</td>
</tr>
<tr>
<td>OUTSEQUENCE= Data Set</td>
<td>2288</td>
</tr>
<tr>
<td>OUTSUM= Data Set</td>
<td>2289</td>
</tr>
<tr>
<td>STATUS Variable Values</td>
<td>2290</td>
</tr>
<tr>
<td>Printed Output</td>
<td>2290</td>
</tr>
<tr>
<td>ODS Table Names</td>
<td>2291</td>
</tr>
<tr>
<td>ODS Graphics</td>
<td>2291</td>
</tr>
<tr>
<td>Examples: SIMILARITY Procedure</td>
<td>2294</td>
</tr>
</tbody>
</table>
Overview: SIMILARITY Procedure

The SIMILARITY procedure computes similarity measures associated with time-stamped data, time series, and other sequentially ordered numeric data. PROC SIMILARITY computes similarity measures for time-stamped transactional data (transactions) with respect to time by accumulating the data into a time series format, and it computes similarity measures for sequentially ordered numeric data (sequences) by respecting the ordering of the data.

Given two ordered numeric sequences (input and target), a similarity measure is a metric that measures the distance between the input and target sequences while taking into account the ordering of the data. The SIMILARITY procedure computes similarity measures between an input sequence and a target sequence, in addition to similarity measures that “slide” the target sequence with respect to the input sequence. The “slides” can be by observation index (sliding-sequence similarity measures) or by seasonal index (seasonal-sliding-sequence similarity measures).

In order to compare the raw input and the raw target time-stamped data, the raw data must be accumulated to a time series format. After the input and target time series are formed, the two accumulated time series can be compared as two ordered numeric sequences.

For raw time-stamped data, after the transactional data are accumulated to form time series and any missing values are interpreted, each accumulated time series can be functionally transformed, if desired. Transformations are useful when you want to stabilize the time series before computing the similarity measures. Transformations performed by the SIMILARITY procedure include the following:

- log (LOG)
- square-root (SQRT)
- logistic (LOGISTIC)
- Box-Cox (BOXCOX)
- user-defined transformations

Each time series can be transformed further by using simple differencing or seasonal differencing or both. Additional time series transformations can be performed by using various time series transformation and analysis techniques provided by this procedure or other SAS/ETS procedures.

After optionally transforming each time series, the accumulated and transformed time series can be stored in an output data set (OUT= data set).
After optional accumulation and transformation, each of these time series are the “working series,” which can now be analyzed as sequences of numeric data. Each of these sequences can be a target sequence, an input sequence, or both a target and an input sequence. Throughout the remainder of this chapter, the term “original sequence” applies to both the original input and target sequence. The term “working sequence” applies to a version of both the original input and target sequence under investigation.

Each original sequence can be normalized prior to similarity analysis. Normalizations are useful when you want to compare the “shape” or “profile” of the time series. Normalizations performed by the SIMILARITY procedure include the following:

- standard (STANDARD)
- absolute (ABSOLUTE)
- user-defined normalizations

After each original sequence is optionally normalized, each working input sequence can be scaled to the target sequence prior to similarity analysis. Scaling is useful when you want to compare the input sequence to the target sequence while discounting the variation of the target sequence. Input sequence scaling performed by the SIMILARITY procedure include the following:

- standard (STANDARD)
- absolute (ABSOLUTE)
- user-defined scaling

After the working input sequence is optionally scaled to the target sequence, similarity measures can be computed. Similarity measures computed by the SIMILARITY procedure include the following:

- squared deviation (SQRDEV)
- absolute deviation (ABSDEV)
- mean square deviation (MSQRDEV)
- mean absolute deviation (MABSDEV)
- user-defined similarity measures

In computing the similarity measure between two time series, tasks are needed for transforming time series, normalizing sequences, scaling sequences, and computing metrics or measures. The SIMILARITY procedure provides built-in routines to perform these tasks. The SIMILARITY procedure also enables you to extend the procedure with user-defined routines.

All results of the similarity analysis can be stored in output data sets, printed, or graphed using the Output Delivery System (ODS).

The SIMILARITY procedure can process large amounts of time-stamped transactional data, time series, or sequential data. Therefore, the analysis results are useful for large-scale time series analysis, analogous time series forecasting, new product forecasting, or time series (temporal) data mining.
The SAS/ETS EXPAND procedure can be used for frequency conversion and transformations of time series. The TIMESERIES procedure can be used for large-scale time series analysis. The SAS/STAT DISTANCE procedure can be used to compute various measures of distance, dissimilarity, or similarity between observations (rows) of a SAS data set.

Getting Started: SIMILARITY Procedure

This section outlines the use of the SIMILARITY procedure and gives a cursory description of some of the analysis techniques that can be performed on time-stamped transactional data, time series, or sequentially ordered numeric data.

Given an input data set that contains numerous transaction variables recorded over time at no specific frequency, the SIMILARITY procedure can form equally spaced input and target time series as follows:

```
PROC SIMILARITY DATA=<input-data-set>
  OUT=<output-data-set>
  OUTSUM=<summary-data-set>
  ID <time-ID-variable> INTERVAL=<frequency>
  ACCUMULATE=<statistic>
  INPUT <input-time-stamp-variables>
  TARGET <target-time-stamp-variables>
RUN;
```

The SIMILARITY procedure forms time series from the input time-stamped transactional data. It can provide results in output data sets or in other output formats using the Output Delivery System (ODS). The examples in this section are more fully illustrated in the section “Examples: SIMILARITY Procedure” on page 2294.

Time-stamped transactional data are often recorded at no fixed interval. Analysts often want to use time series analysis techniques that require fixed-time intervals. Therefore, the transactional data must be accumulated to form a fixed-interval time series.

Suppose that a bank wants to analyze the transactions that are associated with each of its customers over time. Further, suppose that the data set WORK.TRANSACTIONS contains three variables that are related to the customer transactions (CUSTOMER, DATE, and WITHDRAWAL) and one variable that contains an example fraudulent behavior (FRAUD).

The following statements illustrate how to use the SIMILARITY procedure to accumulate time-stamped transactional data to form a daily time series based on the accumulated daily totals of each type of transaction (WITHDRAWALS and FRAUD):

```
proc similarity data=transactions out=timedata;
  by customer;
  id date interval=day accumulate=total;
  input withdrawals;
  target fraud;
run;
```
The OUT=TIMEDATA option specifies that the resulting time series data for each customer are to be stored in the data set WORK.TIMEDATA. The INTERVAL=DAY option specifies that the transactions are to be accumulated on a daily basis. The ACCUMULATE=TOTAL option specifies that the sum of the transactions are to be accumulated. After the transactional data are accumulated into a time series format, the time series data can be normalized so that the “shape” or “profile” is analyzed.

For example, the following statements build on the previous statements and demonstrate normalization of the accumulated time series:

```plaintext
proc similarity data=transactions out=timedata;
   by customer;
   id date interval=day accumulate=total;
   input withdrawals / NORMALIZE=STANDARD;
   target fraud / NORMALIZE=STANDARD;
run;
```

The NORMALIZE=STANDARD option specifies that each accumulated time series observation is normalized by subtracting the mean and then dividing by the standard deviation of the accumulated time series. The WORK.TIMEDATA data set now contains the accumulated and normalized time series data for each customer.

After the transactional data are accumulated into a time series format and normalized to a mean of zero and standard deviation of one, similarity analysis can be performed on the accumulated and normalized time series.

For example, the following statements build on the previous statements and demonstrate similarity analysis of the accumulated and normalized time series:

```plaintext
proc similarity data=transactions
   out=timedata OUTSUM=SUMMARY;
   by customer;
   id date interval=day accumulate=total;
   input withdrawals / normalize=standard;
   target fraud / normalize=standard MEASURE=MABSDEV;
run;
```

The MEASURE=MABSDEV option specifies the accumulated and normalized time series data that are associated with the variables WITHDRAWALS and FRAUD are to be compared by using mean absolute deviation. The OUTSUM=SUMMARY option specifies that the similarity analysis summary for each customer is to be stored in the data set WORK.SUMMARY.
Syntax: SIMILARITY Procedure

The following statements are used with the SIMILARITY procedure:

```plaintext
PROC SIMILARITY options ;
  BY variables ;
  ID variable INTERVAL= interval options ;
  FCMPOPT options ;
  INPUT variable-list / options ;
  TARGET variable-list / options ;
```

Functional Summary

The statements and options that control the SIMILARITY procedure are summarized in Table 30.1.

Table 30.1 Functional Summary

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifies BY-group processing</td>
<td>BY</td>
<td></td>
</tr>
<tr>
<td>Specifies the time ID variable</td>
<td>ID</td>
<td></td>
</tr>
<tr>
<td>Specifies the FCMP options</td>
<td>FCMPOPT</td>
<td></td>
</tr>
<tr>
<td>Specifies input variables to analyze</td>
<td>INPUT</td>
<td></td>
</tr>
<tr>
<td>Specifies target variables to analyze</td>
<td>TARGET</td>
<td></td>
</tr>
<tr>
<td>Data Set Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifies the input data set</td>
<td>PROC SIMILARITY DATA=</td>
<td></td>
</tr>
<tr>
<td>Specifies the time series output data set</td>
<td>PROC SIMILARITY OUT=</td>
<td></td>
</tr>
<tr>
<td>Specifies the measure summary output data set</td>
<td>PROC SIMILARITY OUTMEASURE=</td>
<td></td>
</tr>
<tr>
<td>Specifies the path output data set</td>
<td>PROC SIMILARITY OUTPATH=</td>
<td></td>
</tr>
<tr>
<td>Specifies the sequence output data set</td>
<td>PROC SIMILARITY OUTSEQUENCE=</td>
<td></td>
</tr>
<tr>
<td>Specifies the summary output data set</td>
<td>PROC SIMILARITY OUTSUM=</td>
<td></td>
</tr>
<tr>
<td>User-Defined Functions and Subroutine Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifies FCMP quiet mode</td>
<td>FCMPOPT QUIET=</td>
<td></td>
</tr>
<tr>
<td>Specifies FCMP trace mode</td>
<td>FCMPOPT TRACE=</td>
<td></td>
</tr>
<tr>
<td>Accumulation and Seasonality Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifies the accumulation frequency</td>
<td>ID INTERVAL=</td>
<td></td>
</tr>
<tr>
<td>Specifies the length of seasonal cycle</td>
<td>PROC SIMILARITY SEASONALITY=</td>
<td></td>
</tr>
<tr>
<td>Specifies the interval alignment</td>
<td>ID ALIGN=</td>
<td></td>
</tr>
<tr>
<td>Specifies that the time ID variable values are not sorted</td>
<td>ID NOTSORTED</td>
<td></td>
</tr>
<tr>
<td>Specifies the starting time ID value</td>
<td>ID START=</td>
<td></td>
</tr>
<tr>
<td>Specifies the ending time ID value</td>
<td>ID END=</td>
<td></td>
</tr>
</tbody>
</table>
The following options can be used in the PROC SIMILARITY statement.

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifies the accumulation statistic</td>
<td>ID, INPUT, TARGET</td>
<td>ACCUMULATE=</td>
</tr>
<tr>
<td>Specifies the missing value interpretation</td>
<td>ID, INPUT, TARGET</td>
<td>SETMISS=</td>
</tr>
<tr>
<td>Specifies the zero value interpretation</td>
<td>ID, INPUT, TARGET</td>
<td>ZEROMISS=</td>
</tr>
<tr>
<td>Specifies the type of missing value trimming</td>
<td>INPUT, TARGET</td>
<td>TRIMMISS=</td>
</tr>
<tr>
<td>Time Series Transformation Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifies simple differencing</td>
<td>INPUT, TARGET</td>
<td>DIF=</td>
</tr>
<tr>
<td>Specifies seasonal differencing</td>
<td>INPUT, TARGET</td>
<td>SDIF=</td>
</tr>
<tr>
<td>Specifies the transformation</td>
<td>INPUT, TARGET</td>
<td>TRANSFORM=</td>
</tr>
<tr>
<td>Input Sequence Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifies normalization</td>
<td>INPUT</td>
<td>NORMALIZE=</td>
</tr>
<tr>
<td>Specifies scaling</td>
<td>INPUT</td>
<td>SCALE=</td>
</tr>
<tr>
<td>Target Sequence Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifies normalization</td>
<td>TARGET</td>
<td>NORMALIZE=</td>
</tr>
<tr>
<td>Similarity Measure Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifies the compression limits</td>
<td>TARGET</td>
<td>COMPRESS=</td>
</tr>
<tr>
<td>Specifies the expansion limits</td>
<td>TARGET</td>
<td>EXPAND=</td>
</tr>
<tr>
<td>Specifies the similarity measure</td>
<td>TARGET</td>
<td>MEASURE=</td>
</tr>
<tr>
<td>Specifies the similarity measure and path</td>
<td>TARGET</td>
<td>PATH=</td>
</tr>
<tr>
<td>Specifies the sequence slide</td>
<td>TARGET</td>
<td>SLIDE=</td>
</tr>
<tr>
<td>Printing and Graphical Control Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifies the time ID format</td>
<td>ID</td>
<td>FORMAT=</td>
</tr>
<tr>
<td>Specifies printed output</td>
<td>PROC SIMILARITY</td>
<td>PRINT=</td>
</tr>
<tr>
<td>Specifies detailed printed output</td>
<td>PROC SIMILARITY</td>
<td>PRINTDETAILS</td>
</tr>
<tr>
<td>Specifies graphical output</td>
<td>PROC SIMILARITY</td>
<td>PLOTS=</td>
</tr>
<tr>
<td>Miscellaneous Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifies that analysis variables are processed</td>
<td>PROC SIMILARITY</td>
<td>SORTNAMES</td>
</tr>
<tr>
<td>in ascending order</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifies the ordering of the processing of the</td>
<td>PROC SIMILARITY</td>
<td>ORDER=</td>
</tr>
<tr>
<td>input and target variables</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DATA=SAS-data-set
names the SAS data set that contains the time series, transactional, or sequence input data for the
procedure. If the DATA= option is not specified, the most recently created SAS data set is used.

ORDER=order-option
specifies the order in which the variables listed in the INPUT and TARGET statements are to be
processed. This ordering affects the OUTSEQUENCE=, OUTPATH=, OUTMEASURE=, and OUT-
SUM= data sets, in addition to the printed and graphical output. The SORTNAMES option also affects
the ordering of the analysis. You must specify one of the following order-options:

INPUT specifies that each INPUT variable be processed and then the TARGET variables be processed. The results are stored and printed based only on the INPUT variables.

INPUTTARGET specifies that each INPUT variable be processed and then the TARGET variables be processed. The results are stored and printed based on both the INPUT and TARGET variables. This is the default.

TARGET specifies that each TARGET variable be processed and then the INPUT variables be processed. The results are stored and printed based only on the TARGET variables.

TARGETINPUT specifies that each TARGET variable be processed and then the INPUT variables be processed. The results are stored and printed based on both the TARGET and INPUT variables.

OUT=SAS-data-set
names the output data set to contain the time series variables specified in the subsequent INPUT and
TARGET statements. If an ID variable is specified in the ID statement, it is also included in the
OUT= data set. The values are accumulated based on the ID statement INTERVAL= option or the
ACCUMULATE= options or both. The values are transformed based on the INPUT or TARGET
statement TRANSFORM=, DIF=, and SDIF= options in this order. The OUT= data set is particularly
useful when you want to further analyze, model, or forecast the resulting time series with other
SAS/ETS procedures.

OUTMEASURE=SAS-data-set
names the output data set to contain the detailed similarity measures by time ID value. The form of the
OUTMEASURE= data set is determined by the PROC SIMILARITY statement SORTNAMES and
ORDER= options.

OUTPATH=SAS-data-set
names the output data set to contain the path used to compute the similarity measures for each slide
and warp. The form of the OUTPATH= data set is determined by the PROC SIMILARITY statement
SORTNAMES and ORDER= options. If a user-defined similarity measure is specified, the path cannot
be determined; therefore, the OUTPATH= data set does not contain information related to this measure.

OUTSEQUENCE=SAS-data-set
names the output data set to contain the sequences used to compute the similarity measures for each
slide and warp. The form of the OUTSEQUENCE= data set is determined by the PROC SIMILARITY
statement SORTNAMES and ORDER= options.
OUTSUM=SAS-data-set
names the output data set to contain the similarity measure summary. The OUTSUM= data set is particularly useful when analyzing large numbers of series and only the summary of the results are needed. The form of the OUTSUM= data set is determined by the PROC SIMILARITY statement SORTNAMES and ORDER= options.

PLOTS=option
PLOTS=(options . . .)
specifies the graphical output desired. To specify multiple options, separate them by spaces and enclose the group in parentheses. By default, the SIMILARITY procedure produces no graphical output. The following graphical options are available:

- **COSTS** plots graphics for time warp costs.
- **DISTANCES** plots graphics for similarity absolute and relative distances (OUTPATH= data set).
- **INPUTS** plots graphics for input variable time series (OUT= data set).
- **MAPS** plots graphics for time warp maps (OUTPATH= data set).
- **MEASURES** plots graphics for similarity measures (OUTMEASURE= data set).
- **NORMALIZED** plots graphics for both the input and target variable normalized sequence. These plots are displayed only when the INPUT or TARGET statement NORMALIZE= option is specified.
- **PATHS** plots time warp paths graphics (OUTPATH= data set).
- **SCALED** plots graphics for both the input variable scaled sequence. These plots are displayed only when the INPUT statement SCALE= option is specified.
- **SEQUENCES** plots graphics for both the input and target variable sequence (OUTSEQUENCE= data set).
- **TARGETS** plots graphics for the target variable time series (OUT= data set).
- **WARPS** plots graphics for time warps (OUTPATH= data set).
- **ALL** is the same as PLOTS=(INPUTS TARGETS SEQUENCES NORMALIZED SCALED DISTANCES PATHS MAPS WARPS COST MEASURES).

PRINT=option
PRINT=(options . . .)
specifies the printed output desired. To specify multiple options, separate them by spaces and enclose the group in parentheses. By default, the SIMILARITY procedure produces no printed output. The following printing options are available:

- **DESCSTATS** prints the descriptive statistics for the working time series.
- **PATHS** prints the path statistics table. If a user-defined similarity measure is specified, the path cannot be determined; therefore, the PRINT=PATHS table is not printed for this measure.
- **COSTS** prints the cost statistics table.
- **WARPS** prints the warp summary table.
SLIDES prints the slides summary table.
SUMMARY prints the similarity measure summary table.
ALL is the same as PRINT=(DESCSTATS PATHS COSTS WARPS SLIDES SUMMARY).

PRINTDETAILS specifies that the output requested with the PRINT= option be printed in greater detail.

SEASONALITY=integer specifies the length of the seasonal cycle where integer ranges from one to 10,000. For example, SEASONALITY=3 means that every group of three time periods forms a seasonal cycle. By default, the length of the seasonal cycle is 1 (no seasonality) or the length implied by the INTERVAL= option specified in the ID statement. For example, INTERVAL=MONTH implies that the length of the seasonal cycle is 12.

SORTNAMES specifies that the variables specified in the INPUT and TARGET statements be processed in alphabetical order of the variable names. By default, the SIMILARITY procedure processes the variables in the order in which they are listed. The ORDER= option also affects the ordering in which the analysis is performed.

BY Statement

A BY statement can be used with PROC SIMILARITY to obtain separate dummy variable definitions for groups of observations defined by the BY variables.

When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alternatives:

- Sort the data by using the SORT procedure with a similar BY statement.
- Specify the option NOTSORTED or DESCENDING in the BY statement for the SIMILARITY procedure. The NOTSORTED option does not mean that the data are unsorted, but rather that the data are arranged in groups (according to values of the BY variables) and that these groups are not necessarily in alphabetical or increasing numeric order.
- Create an index on the BY variables by using the DATASETS procedure.

For more information about the BY-group processing, see SAS Language Reference: Concepts. For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.
FCMPOPT Statement

FCMPOPT options;

The FCMPOPT statement specifies the following options that are related to user-defined functions and subroutines:

QUIET=ON | OFF
specifies whether the nonfatal errors and warnings that are generated by the user-defined SAS language functions and subroutines are printed to the log. Nonfatal errors are usually associated with operations with missing values. The default is QUIET=ON.

TRACE=ON | OFF
specifies whether the user-defined SAS language functions and subroutines tracings are printed to the log. Tracings are the results of every operation executed. This option is generally used for debugging. The default is TRACE=OFF.

ID Statement

ID variable INTERVAL= interval options;

The ID statement names a numeric variable that identifies observations in the input and output data sets. The ID variable’s values are assumed to be SAS date, time, or datetime values. In addition, the ID statement specifies the (desired) frequency associated with the time series. The ID statement options also specify how the observations are accumulated and how the time ID values are aligned to form the time series. The options specified affect all variables listed in subsequent INPUT and TARGET statements. If an ID statement is specified, the INTERVAL= option must also be specified. The other ID statement options are optional. If an ID statement is not specified, the observation number, with respect to the BY group, is used as the time ID.

The following options can be used with the ID statement:

ACCUMULATE=option
specifies how the data set observations are accumulated within each time period. The frequency (width of each time interval) is specified by the INTERVAL= option. The ID variable contains the time ID values. Each time ID variable value corresponds to a specific time period. The accumulated values form the time series, which is used in subsequent analysis.

The ACCUMULATE= option is particularly useful when there are zero or more than one input observations that coincide with a particular time period (for example, time-stamped transactional data). The EXPAND procedure offers additional frequency conversions and transformations that can also be useful in creating a time series.

The following options determine how the observations are accumulated within each time period based on the ID variable and the frequency specified by the INTERVAL= option:

NONE No accumulation occurs; the ID variable values must be equally spaced with respect to the frequency. This is the default option.

TOTAL Observations are accumulated based on the total sum of their values.
Chapter 30: The SIMILARITY Procedure

- AVERAGE | AVG: Observations are accumulated based on the average of their values.
- MINIMUM | MIN: Observations are accumulated based on the minimum of their values.
- MEDIAN | MED: Observations are accumulated based on the median of their values.
- MAXIMUM | MAX: Observations are accumulated based on the maximum of their values.
- N: Observations are accumulated based on the number of nonmissing observations.
- NMISS: Observations are accumulated based on the number of missing observations.
- NOBS: Observations are accumulated based on the number of observations.
- FIRST: Observations are accumulated based on the first of their values.
- LAST: Observations are accumulated based on the last of their values.
- STDDEV | STD: Observations are accumulated based on the standard deviation of their values.
- CSS: Observations are accumulated based on the corrected sum of squares of their values.
- USS: Observations are accumulated based on the uncorrected sum of squares of their values.

If the ACCUMULATE= option is specified, the SETMISSING= option is useful for specifying how accumulated missing values are treated. If missing values should be interpreted as zero, then SETMISSING=0 should be used. The section “Details: SIMILARITY Procedure” on page 2273 describes accumulation in greater detail.

ALIGN=option controls the alignment of SAS dates that are used to identify output observations. The ALIGN= option accepts the following values: BEGINNING | BEG | B, MIDDLE | MID | M, and ENDING | END | E. ALIGN=BEGINNING is the default.

END=option specifies a SAS date, datetime, or time value that represents the end of the data. If the last time ID variable value is less than the END= value, the series is extended with missing values. If the last time ID variable value is greater than the END= value, the series is truncated. For example, END="&sysdate"D uses the automatic macro variable SYSDATE to extend or truncate the series to the current date. The START= and END= options can be used to ensure that data that are associated within each BY group contain the same number of observations.

FORMAT=format specifies the SAS format for the time ID values. If the FORMAT= option is not specified, the default format is implied by the INTERVAL= option. For example, FORMAT=DATE9. specifies that the DATE9. SAS format be used. Notice that the terminating “.” is required when specifying a SAS format.

INTERVAL=interval specifies the frequency of the accumulated time series. For example, if the input data set consists of quarterly observations, then INTERVAL=QTR should be used. If the SEASONALITY= option is not specified, the length of the seasonal cycle is implied from the INTERVAL= option. For example, INTERVAL=QTR implies a seasonal cycle of length 4. If the ACCUMULATE= option is also specified, the INTERVAL= option determines the time periods for the accumulation of observations.
NOTSORTED
 specifies that the time ID values are not in sorted order. The SIMILARITY procedure sorts the data with respect to the time ID prior to analysis if the NOTSORTED option is specified.

SETMISSING=option | number
 specifies how missing values (either actual or accumulated) are interpreted in the accumulated time series. If a number is specified, missing values are set to that number. If a missing value indicates an unknown value, the SETMISSING= option should not be used. If a missing value indicates no value, then SETMISSING=0 should be used. You typically use SETMISSING=0 for transactional data, because no recorded data usually implies no activity. The following options can also be used to determine how missing values are assigned:

 MISSING Missing values are set to missing. This is the default option.
 AVERAGE | AVG Missing values are set to the accumulated average value.
 MINIMUM | MIN Missing values are set to the accumulated minimum value.
 MEDIAN | MED Missing values are set to the accumulated median value.
 MAXIMUM | MAX Missing values are set to the accumulated maximum value.
 FIRST Missing values are set to the accumulated first nonmissing value.
 LAST Missing values are set to the accumulated last nonmissing value.
 PREVIOUS | PREV Missing values are set to the previous period’s accumulated nonmissing value. Missing values at the beginning of the accumulated series remain missing.
 NEXT Missing values are set to the next period’s accumulated nonmissing value. Missing values at the end of the accumulated series remain missing.

START=option
 specifies a SAS date, datetime, or time value that represents the beginning of the data. If the first time ID variable value is greater than the START= value, missing values are added to the beginning of the series. If the first time ID variable value is less than the START= value, the series is truncated. The START= and END= options can be used to ensure that data that are associated with each BY group contain the same number of observations.

ZEROMISS=option
 specifies how beginning and ending zero values (either actual or accumulated) are interpreted in the accumulated time series. The following options can also be used to determine how beginning and ending zero values are assigned:

 NONE Beginning and ending zeros are unchanged. This is the default.
 LEFT Beginning zeros are set to missing.
 RIGHT Ending zeros are set to missing.
 BOTH Both beginning and ending zeros are set to missing.

If the accumulated series is all missing or zero, the series is not changed.
Chapter 30: The SIMILARITY Procedure

INPUT Statement

```
INPUT variable-list < / options> ;
```

The INPUT statement lists the input numeric variables in the DATA= data set whose values are to be accumulated to form the time series or represent ordered numeric sequences (when no ID statement is specified).

An input data set variable can be specified in only one INPUT or TARGET statement. Any number of INPUT statements can be used. The following options can be used with an INPUT statement:

ACCUMULATE= option

specifies how the data set observations are accumulated within each time period for the variables listed in the INPUT statement. If the ACCUMULATE= option is not specified in the INPUT statement, accumulation is determined by the ACCUMULATE= option of the ID statement. If the ACCUMULATE= option is not specified in the ID statement or the INPUT statement, no accumulation is performed. For more information, see the ACCUMULATE= option in the ID statement.

DIF=(numlist)

specifies the differencing to be applied to the accumulated time series. The list of differencing orders must be separated by spaces or commas. For example, DIF=(1,3) specifies first, then third order, differencing. Differencing is applied after time series transformation. The TRANSFORM= option is applied before the DIF= option. Simple differencing is useful when you want to detrend the time series before computing the similarity measures.

NORMALIZE= option

specifies the sequence normalization to be applied to the working input sequence. The following normalization options are provided:

- **NONE** No normalization is applied. This option is the default.
- **ABSOLUTE** Absolute normalization is applied.
- **STANDARD** Standard normalization is applied.
- **User-Defined** Normalization is computed by a user-defined subroutine that is created using the FCMP procedure, where User-Defined is the subroutine name.

Normalization is applied to the working input sequence, which can be a subset of the working input time series if the SLIDE=INDEX or SLIDE=SEASON option is specified.

SCALE= option

specifies the scaling of the working input sequence with respect to the working target sequence. Scaling is performed after normalization. The following scaling options are provided:

- **NONE** No scaling is applied. This option is the default.
- **ABSOLUTE** Absolute scaling is applied.
- **STANDARD** Standard scaling is applied.
- **User-Defined** Scaling is computed by a user-defined subroutine that is created using the FCMP procedure, where User-Defined is the subroutine name.
Scaling is applied to the working input sequence, which can be a subset of the working input time series if the SLIDE=INDEX or SLIDE=SEASON option is specified.

SDIF=(numlist)

specifies the seasonal differencing to be applied to the accumulated time series. The list of seasonal differencing orders must be separated by spaces or commas. For example, SDIF=(1,3) specifies first, then third, order seasonal differencing. Differencing is applied after time series transformation. The TRANSFORM= option is applied before the SDIF= option. Seasonal differencing is useful when you want to deseasonalize the time series before computing the similarity measures.

SETMISSING=option | number

SETMISS=option | number

specifies how missing values (either actual or accumulated) are interpreted in the accumulated time series or ordered sequence for variables listed in the INPUT statement. If the SETMISSING= option is not specified in the INPUT statement, missing values are set based on the SETMISSING= option in the ID statement. If the SETMISSING= option is not specified in the ID statement or the INPUT statement, no missing value interpretation is performed. For more information, see the SETMISSING= option in the ID statement.

TRANSFORM=option

specifies the time series transformation to be applied to the accumulated time series. The following transformations are provided:

- **NONE** No transformation is applied. This option is the default.
- **LOG** Logarithmic transformation is applied.
- **SQRT** Square-root transformation is applied.
- **LOGISTIC** Logistic transformation is applied.
- **BOXCOX(number)** Box-Cox transformation with parameter is applied, where the real number is between –5 and 5.
- **User-Defined** Transformation is computed by a user-defined subroutine that is created using the FCMP procedure, where User-Defined is the subroutine name.

When the TRANSFORM= option is specified, the time series must be strictly positive unless a user-defined function is used.

TRIMMISSING=option

specifies how missing values (either actual or accumulated) are trimmed from the accumulated time series or ordered sequence for variables that are listed in the INPUT statement. The following trimming options are provided:

- **NONE** No missing value trimming is applied.
- **LEFT** Beginning missing values are trimmed.
- **RIGHT** Ending missing values are trimmed.
- **BOTH** Both beginning and ending missing value are trimmed. This is the default.
ZEROMISS=option
specifies how beginning and ending zero values (either actual or accumulated) are interpreted in
the accumulated time series or ordered sequence for variables listed in the INPUT statement. If the
ZEROMISS= option is not specified in the INPUT statement, beginning and ending zero values are set
based on the ZEROMISS= option of the ID statement. If the ZERO= option is not specified in the ID
statement or the INPUT statement, no zero value interpretation is performed. For more information,
see the ZEROMISS= option in the ID statement.

TARGET Statement

TARGET variable-list < / options> ;
The TARGET statement lists the numeric target variables in the DATA= data set whose values are to be
accumulated to form the time series or represent ordered numeric sequences (when no ID statement is
specified).

An input data set variable can be specified in only one INPUT or TARGET statement. Any number of
TARGET statements can be used. The following options can be used with a TARGET statement:

ACCUMULATE=option
specifies how the data set observations are accumulated within each time period for the variables
listed in the TARGET statement. If the ACCUMULATE= option is not specified in the TARGET
statement, accumulation is determined by the ACCUMULATE= option in the ID statement. If
the ACCUMULATE= option is not specified in the ID statement or the TARGET statement, no
accumulation is performed. For more information, see the ACCUMULATE= option in the ID statement.

COMPRESS=option | (options)
specifies the sliding sequence (global) and warping (local) compression range of the target sequence
with respect to the input sequence. Compression of the target sequence is the same as expansion of the
input sequence and vice versa. The compression limits are defined based on the length of the target
sequence and are imposed on the target sequence. The following compression options are provided:

GLOBALABS=integer specifies the absolute global compression, where integer ranges from zero
to 10,000. GLOBALABS=0 implies no global compression, which is the
default unless the GLOBALPCT= option is specified.

GLOBALPCT=number specifies global compression as a percentage of the length of the target
sequence, where number ranges from zero to 100. GLOBALPCT=0 implies
no global compression, which is the default. GLOBALPCT=100 implies
maximum allowable compression.

LOCALABS=integer specifies the absolute local compression, where integer ranges from zero
to 10,000. The default is maximum allowable absolute local compression
unless the LOCALPCT= option is specified.

LOCALPCT=number specifies local compression as a percentage of the length of the target
sequence, where number ranges from zero to 100. The percentage specified
by the LOCALPCT= option must be less than the GLOBALPCT= option.
LOCALPCT=0 implies no local compression. LOCALPCT=100 implies
maximum allowable local compression. The default is LOCALPCT=100.
If the SLIDE=NONE or SLIDE=SEASON option is specified in the TARGET statement, the global compression options are ignored. To disallow local compression, use the option COMPRESS=(LOCALPCT=0 LOCALABS=0).

If the SLIDE=INDEX option is specified, the global compression options are not ignored. To completely disallow both global and local compression, use the option COMPRESS=(GLOBALPCT=0 LOCALPCT=0) or COMPRESS=(GLOBALABS=0 LOCALABS=0). To allow only local compression, use the option COMPRESS=(GLOBALPCT=0 GLOBALABS=0). These are the default compression options.

The preceding options can be used in combination to specify the desired amount of global and local compression as the following examples illustrate, where L_c denotes the global compression limit and l_c denotes the local compression limit:

- COMPRESS=(GLOBALPCT=20) allows the global and local compression to range from zero to $L_c = \min \left(\left\lfloor 0.2N_y \right\rfloor, (N_y - 1) \right)$.
- COMPRESS=(GLOBALPCT=20 GLOBALABS=10) allows the global and local compression to range from zero to $L_c = \min \left(\left\lfloor 0.2N_y \right\rfloor, \min \left((N_y - 1), 10 \right) \right)$.
- COMPRESS=(LOCALPCT=10) allows the local compression to range from zero to $l_c = \min \left(\left\lfloor 0.1N_y \right\rfloor, (N_y - 1) \right)$.
- COMPRESS=(LOCALPCT=20 LOCALABS=5) allows the local compression to range from zero to $l_c = \min \left(\left\lfloor 0.2N_y \right\rfloor, (N_y - 1) \right)$.
- COMPRESS=(GLOBALPCT=20 LOCALPCT=20) allows the global compression to range from zero to $L_c = \min \left(\left\lfloor 0.2N_y \right\rfloor, (N_y - 1) \right)$ and allows the local compression to range from zero to $l_c = \min \left(\left\lfloor 0.2N_y \right\rfloor, (N_y - 1) \right)$.
- COMPRESS=(GLOBALPCT=20 GLOBALABS=10 LOCALPCT=10 LOCALABS=5) allows the global compression to range from zero to $L_c = \min \left(\left\lfloor 0.2N_y \right\rfloor, \min \left((N_y - 1), 10 \right) \right)$ and allows the local compression to range from zero to $l_c = \min \left(\left\lfloor 0.2N_y \right\rfloor, \min \left((N_y - 1), 5 \right) \right)$.

Suppose T_z is the length of the input time series and N_y is the length of the target sequence. The valid global compression limit, L_c, is always limited by the length of the target sequence: $0 \leq L_c < N_y$.

Suppose N_x is the length of the input sequence and N_y is the length of the target sequence. The valid local compression limit, l_c, is always limited by the lengths of the input and target sequence: $\max \left(0, (N_y - N_x) \right) \leq l_c < N_y$.

DIF=(numlist)

specifies the differencing to be applied to the accumulated time series. The list of differencing orders must be separated by spaces or commas. For example, DIF=(1,3) specifies first, then third, order differencing. Differencing is applied after time series transformation. The TRANSFORM= option is applied before the DIF= option. Simple differencing is useful when you want to detrend the time series before computing the similarity measures.

EXPAND=option | (options)

specifies the sliding sequence (global) and warping (local) expansion range of the target sequence with respect to the input sequence. Expansion of the target sequence is the same as compression of the input sequence and vice versa. The expansion limits are defined based on the length of the input sequence, but are imposed on the target sequence. The following expansion options are provided:
GLOBALABS=integer specifies the absolute global expansion, where integer ranges from zero to 10,000. GLOBALABS=0 implies no global expansion, which is the default unless the GLOBALPCT= option is specified.

GLOBALPCT=number specifies global expansion as a percentage of the length of the target sequence, where number ranges from zero to 100. GLOBALPCT=0 implies no global expansion, which is the default unless the GLOBALABS= option is specified. GLOBALPCT=100 implies maximum allowable global expansion.

LOCALABS=integer specifies the absolute local expansion, where integer ranges from zero to 10,000. The default is the maximum allowable absolute local expansion unless the LOCALPCT= option is specified.

LOCALPCT=number specifies local expansion as a percentage of the length of the target sequence, where number ranges from zero to 100. LOCALPCT=0 implies no local expansion. LOCALPCT=100 implies maximum allowable local expansion. The default is LOCALPCT=100.

If the SLIDE=NONE or SLIDE=SEASON option is specified in the TARGET statement, the global expansion options are ignored. To disallow local expansion, use the option EXPAND=(LOCALPCT=0 LOCALABS=0).

If the SLIDE=INDEX option is specified, the global expansion options are not ignored. To completely disallow both global and local expansion, use the option EXPAND=(GLOBALPCT=0 LOCALPCT=0) or EXPAND=(GLOBALABS=0 LOCALABS=0). To allow only local expansion, use the option EXPAND=(GLOBALPCT=0 GLOBALABS=0). These are the default expansion options.

The preceding options can be used in combination to specify the desired amount of global and local expansion as the following examples illustrate, where L_e denotes the global expansion limit and l_e denotes the local expansion limit:

- EXPAND=(GLOBALPCT=20) allows the global and local expansion to range from zero to $L_e = \min \left(\left\lfloor 0.2N_y \right\rfloor, (N_y - 1) \right)$.
- EXPAND=(GLOBALPCT=20 GLOBALABS=10) allows the global and local expansion to range from zero to $L_e = \min \left(\left\lfloor 0.2N_y \right\rfloor, \min \left((N_y - 1) \cdot 10 \right) \right)$.
- EXPAND=(LOCALPCT=10) allows the local expansion to range from zero to $l_e = \min \left(\left\lfloor 0.1N_y \right\rfloor, (N_y - 1) \right)$.
- EXPAND=(LOCALPCT=10 LOCALABS=5) allows the local expansion to range from zero to $l_e = \min \left(\left\lfloor 0.1N_y \right\rfloor, \min \left((N_y - 1), 5 \right) \right)$.
- EXPAND=(GLOBALPCT=20 LOCALPCT=10) allows the global expansion to range from zero to $L_e = \min \left(\left\lfloor 0.2N_y \right\rfloor, (N_y - 1) \right)$ and allows the local expansion to range from zero to $l_e = \min \left(\left\lfloor 0.1N_y \right\rfloor, (N_y - 1) \right)$.
- EXPAND=(GLOBALPCT=20 LOCALPCT=10 LOCALABS=10) allows the global expansion to range from zero to $L_e = \min \left(\left\lfloor 0.2N_y \right\rfloor, \min \left((N_y - 1), 10 \right) \right)$ and allows the local expansion to range from zero to $l_e = \min \left(\left\lfloor 0.1N_y \right\rfloor, \min \left((N_y - 1), 5 \right) \right)$.

Suppose T_z is the length of the input time series and N_y is the length of the target sequence. The valid global expansion limit, L_e, is always limited by the length of the input time series: $0 \leq L_e < T_z$.
Suppose \(N_x \) is the length of the input sequence and \(N_y \) is the length of the target sequence. The valid local expansion limit, \(l_e \), is always limited by the lengths of the input and target sequence:
\[
\max(0, (N_x - N_y)) \leq l_e < N_x.
\]

MEASURE= option

specifies the similarity measure to be computed by using the working input and target sequences. The following similarity measures are provided:

- **SQRDEV** squared deviation. This option is the default.
- **ABSDEV** absolute deviation
- **MSQRD** mean squared deviation
- **MSQRDEVINP** mean squared deviation relative to the length of the input sequence
- **MSQRDEVTAR** mean squared deviation relative to the length of the target sequence
- **MSQRDEVMIN** mean squared deviation relative to the minimum valid path length
- **MSQRDEVMAX** mean squared deviation relative to the maximum valid path length
- **MABSDEV** mean absolute deviation
- **MABSDEVINP** mean absolute deviation relative to the length of the input sequence
- **MABSDEVTAR** mean absolute deviation relative to the length of the target sequence
- **MABSDEVMIN** mean absolute deviation relative to the minimum valid path length
- **MABSDEVMAX** mean absolute deviation relative to the maximum valid path length

User-Defined The measure is computed by a user-defined function created by using the FCMP procedure, where *User-Defined* is the function name.

NORMALIZE= option

specifies the sequence normalization to be applied to the working target sequence. The following normalization options are provided:

- **NONE** No normalization is applied. This option is the default.
- **ABSOLUTE** Absolute normalization is applied.
- **STANDARD** Standard normalization is applied.
- **User-Defined** Normalization is computed by a user-defined subroutine that is created by using the FCMP procedure, where *User-Defined* is the subroutine name.

PATH= option

specifies the similarity measure and warping path information to be computed using the working input and target sequences. The following similarity measures and warping path are provided:

- **User-Defined** The measure and path are computed by a user-defined subroutine that is created by using the FCMP procedure, where *User-Defined* is the subroutine name.

For computational efficiency, the PATH= option should be only used when you want to compute both the similarity measure and the warping path information. If only the similarity measure is needed, use the MEASURE= option. If you specify both the MEASURE= and PATH= option in the TARGET statement, the PATH= option takes precedence.
Chapter 30: The SIMILARITY Procedure

SDIF=(numlist)
specifies the seasonal differencing to be applied to the accumulated time series. The list of seasonal differencing orders must be separated by spaces or commas. For example, SDIF=(1,3) specifies first, then third, order seasonal differencing. Differencing is applied after time series transformation. The TRANSFORM= option is applied before the SDIF= option. Seasonal differencing is useful when you want to deseasonalize the time series before computing the similarity measures.

SETMISSING=option | number

SETMISS=option | number
option specifies how missing values (either actual or accumulated) are interpreted in the accumulated time series for variables that are listed in the TARGET statement. If the SETMISSING= option is not specified in the TARGET statement, missing values are set based on the SETMISSING= option in the ID statement. If the SETMISSING= option is not specified in the ID statement or the TARGET statement, no missing value interpretation is performed. For more information, see the SETMISSING= option in the ID statement.

SLIDE=option
specifies the sliding of the target sequence with respect to the input sequence. The following slides are provided:

NONE No sequence sliding. The input time series is compared with the target sequence directly with no sliding. This option is the default.
INDEX Slide by time index. The input time series is compared with the target sequence by observation index.
SEASON Slide by seasonal index. The input time series is compared with the target sequence by seasonal index.

The SLIDE= option takes precedence over the COMPRESS= and EXPAND= options.

TRANSFORM=option
specifies the time series transformation to be applied to the accumulated time series. The following transformations are provided:

NONE No transformation is applied. This option is the default.
LOG Logarithmic transformation is applied.
SQRT Square-root transformation is applied.
LOGISTIC Logistic transformation is applied.
BOXCOX(number) Box-Cox transformation with parameter is applied, where the real number is between –5 and 5

User-Defined Transformation is computed by a user-defined subroutine that is created by using the FCMP procedure, where User-Defined is the subroutine name.

When the TRANSFORM= option is specified, the time series must be strictly positive unless a user-defined function is used.
TRIMMISSING=option

TRIMMISS= option

specifies how missing values (either actual or accumulated) are trimmed from the accumulated time series or ordered sequence for variables that are listed in the TARGET statement. The following trimming options are provided:

NONE No missing value trimming is applied.
LEFT Beginning missing values are trimmed.
RIGHT Ending missing values are trimmed.
BOTH Both beginning and ending missing values are trimmed. This is the default.

ZEROMISS=option

specifies how beginning and ending zero values (either actual or accumulated) are interpreted in the accumulated time series or ordered sequence for variables listed in the TARGET statement. If the ZEROMISS= option is not specified in the TARGET statement, beginning and ending values are set based on the ZEROMISS= option in the ID statement. For more information, see the ZEROMISS= option in the ID statement.

Details: SIMILARITY Procedure

You can use the SIMILARITY procedure to do the following functions, which are done in the order shown. First, you can form time series data from transactional data with the options shown:

1. accumulation ACCUMULATE= option
2. missing value interpretation SETMISSING= option
3. zero value interpretation ZEROMISS= option

Next, you can transform the accumulated time series to form the working time series with the following options. Transformations are useful when you want to stabilize the time series before computing the similarity measures. Simple and seasonal differencing are useful when you want to detrend or deseasonalize the time series before computing the similarity measures. Often, but not always, the TRANSFORM=, DIF=, and SDIF= options should be specified in the same way for both the target and input variables.

4. time series transformation TRANSFORM= option
5. time series differencing DIF= and SDIF= options
6. time series missing value trimming TRIMMISSING= option
7. time series descriptive statistics PRINT=DESCSTATS option
Chapter 30: The SIMILARITY Procedure

After the working series is formed, you can treat it as an ordered sequence that can be normalized or scaled. Normalizations are useful when you want to compare the “shape” or “profile” of the time series. Scaling is useful when you want to compare the input sequence to the target sequence while discounting the variation of the target sequence.

8. normalization NORMALIZE= option
9. scaling SCALE= option

After the working sequences are formed, you can compute similarity measures between input and target sequences:

10. sliding SLIDE= option
11. warping COMPRESS= and EXPAND= options
12. similarity measure MEASURE= and PATH= options

The SLIDE= option specifies observation-index sliding, seasonal-index sliding, or no sliding. The COMPRESS= and EXPAND= options specify the warping limits. The MEASURE= and PATH= options specify how the similarity measures are computed.

Accumulation

If the ACCUMULATE= option is specified in the ID, INPUT, or TARGET statement, data set observations are accumulated within each time period. The frequency (width of each time interval) is specified by the INTERVAL= option in the ID statement. The ID variable contains the time ID values. Each time ID value corresponds to a specific time period. Accumulation is particularly useful when the input data set contains transactional data, whose observations are not spaced with respect to any particular time interval. The accumulated values form the time series, which is used in subsequent analyses.

For example, suppose a data set contains the following observations:

<table>
<thead>
<tr>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>19MAR1999</td>
<td>10</td>
</tr>
<tr>
<td>19MAR1999</td>
<td>30</td>
</tr>
<tr>
<td>11MAY1999</td>
<td>50</td>
</tr>
<tr>
<td>12MAY1999</td>
<td>20</td>
</tr>
<tr>
<td>23MAY1999</td>
<td>20</td>
</tr>
</tbody>
</table>

If the INTERVAL=MONTH option is specified, all of the preceding observations fall within three time periods of March 1999, April 1999, and May 1999. The observations are accumulated within each time period as follows:

If the ACCUMULATE=NONE option is specified, an error is generated because the ID variable values are not equally spaced with respect to the specified frequency (MONTH).

If the ACCUMULATE=TOTAL option is specified, the data are accumulated as follows:
If the ACCUMULATE=AVERAGE option is specified, the data are accumulated as follows:

O1MAR1999 20
O1APR1999 .
O1MAY1999 30

If the ACCUMULATE=MINIMUM option is specified, the data are accumulated as follows:

O1MAR1999 10
O1APR1999 .
O1MAY1999 20

If the ACCUMULATE=MEDIAN option is specified, the data are accumulated as follows:

O1MAR1999 20
O1APR1999 .
O1MAY1999 20

If the ACCUMULATE=MAXIMUM option is specified, the data are accumulated as follows:

O1MAR1999 30
O1APR1999 .
O1MAY1999 50

If the ACCUMULATE=FIRST option is specified, the data are accumulated as follows:

O1MAR1999 10
O1APR1999 .
O1MAY1999 50

If the ACCUMULATE=LAST option is specified, the data are accumulated as follows:

O1MAR1999 30
O1APR1999 .
O1MAY1999 20

If the ACCUMULATE=STDDEV option is specified, the data are accumulated as follows:

O1MAR1999 14.14
O1APR1999 .
O1MAY1999 17.32

As can be seen from the preceding examples, even though the data set observations contain no missing values, the accumulated time series can have missing values.

Missing Value Interpretation

Sometimes missing values should be interpreted as unknown values. But sometimes missing values are known, such as when missing values are created from accumulation and no observations should be interpreted as no (zero) value. In the former case, the SETMISSING= option in the ID, INPUT, or TARGET statement
can be used to interpret how missing values are treated. The SETMISSING=0 option should be used when missing observations are to be treated as no (zero) values. In other cases, missing values should be interpreted as global values, such as minimum or maximum values of the accumulated series. The accumulated and interpreted time series is used in subsequent analyses.

The SETMISSING=0 option should be used with missing observations are to be treated as a zero value. In other cases, missing values should be interpreted as global values, such as minimum or maximum values of the accumulated series. The accumulated and interpreted time series is then used in subsequent analyses.

Zero Value Interpretation

When querying certain databases for time-stamped data based on a particular time range, time periods that contain no data are sometimes assigned zero values. For certain analyses, it is more desirable to assign these values to missing. Often, these beginning or ending zero values need to be interpreted as missing values. The ZEROMISS= option in the ID, INPUT, or TARGET statement specifies that the beginning, ending, or both the beginning and ending values are to be interpreted as zero values.

Time Series Transformation

Transformations are useful when you want to stabilize the time series before computing the similarity measures. There are four transformations available, for strictly positive series only. Let \(y_t > 0 \) be the original time series, and let \(w_t \) be the transformed series. The transformations are defined as follows:

- **Log** is the logarithmic transformation,
 \[
 w_t = \ln(y_t)
 \]

- **Logistic** is the logistic transformation,
 \[
 w_t = \ln(c y_t / (1 - c y_t))
 \]
 where the scaling factor \(c \) is
 \[
 c = (1 - e^{-6})10^{-\text{ceil}10(\text{max}(y_t))}
 \]
 and \(\text{ceil}(x) \) is the smallest integer greater than or equal to \(x \).

- **Square root** is the square root transformation,
 \[
 w_t = \sqrt{y_t}
 \]

- **Box-Cox** is the Box-Cox transformation,
 \[
 w_t = \begin{cases} \frac{y_t^\lambda - 1}{\lambda} & \lambda \neq 0 \\ \ln(y_t) & \lambda = 0 \end{cases}
 \]

- **User-Defined** is the transformation computed by a user-defined subroutine that is created by using the FCMP procedure, where **User-Defined** is the subroutine name.

Other time series transformations can be performed prior to invoking the SIMILARITY procedure by using the SAS/ETS EXPAND procedure or the DATA step.
Time Series Differencing

After optionally transforming the series, the accumulated series can be simply or seasonally differenced using the INPUT or TARGET statement DIF= and SDIF= options. Simple and seasonal differencing are useful when you want to detrend or deseasonalize the time series before computing the similarity measures.

For example, suppose y_t is a monthly time series. The following examples of the DIF= and SDIF= options demonstrate how to simply and seasonally difference the time series: DIF=(1,3) specifies first, then third, order differencing; SDIF=(1,3) specifies first, then third, order seasonal differencing.

Additionally, assuming that y_t is strictly positive, the INPUT or TARGET statement TRANSFORM= option and the DIF= and SDIF= options can be combined.

Time Series Missing Value Trimming

In some instances, missing values should be interpreted as an unknown observation, but other times, missing values are known and should be interpreted as a zero value. This is the case when missing values are created from accumulation, and a missing observation should be interpreted as having no value (meaning a value of zero). In the former case, the SETMISSING=option in the ID, INPUT, or TARGET, statement can be used to interpret how missing observations should be treated. By default, missing values, at the beginning and ending of the data set, are trimmed from the data set prior to analysis. This can be performed using TRIMMISS=both.

Time Series Descriptive Statistics

After a series has been optionally accumulated and transformed with missing values interpreted, descriptive statistics can be computed for the resulting working series by specifying the PRINT=DESCSTATS option. This option produces an ODS table that contains the sum, mean, minimum, maximum, and standard deviation of the working series.

Input and Target Sequences

After the input and target working series are formed, they can be treated as two ordered sequences. Given an input time sequence, x_i, for $i = 1$ to N_x, where i is the input sequence index, and a target time sequence, y_j, for $j = 1$ to N_y, where j is the target sequence index, these sequences are analyzed for similarity.

Sliding Sequences

Similarity measures can be computed between the target sequence and any contiguous subsequences of the input time series.

There are three types of sequence sliding:
Time Warping

Time warping allows for the comparison between target and input sequences of differing lengths by compressing or expanding the input sequence with respect the target sequence while respecting the order of the sequence elements.

For more information, see Leonard et al. (2008).

Sequence Normalization

The working (input or target) sequence can be normalized prior to further analysis. Let q_i be the original sequence with mean μ_q and standard deviation σ_q, and let r_i be the normalized sequence. The normalizations are defined as follows:

- Standard is the standard normalization
 \[r_i = \frac{(q_i - \mu_q)}{\sigma_q} \]
- Absolute is the absolute normalization
 \[r_i = \frac{(q_i - \min(q_i))}{(\max(q_i) - \min(q_i))} \]
- User-defined is a user-defined normalization created by the FCMP procedure.

Sequence Scaling

The working input sequence can be scaled to the working target sequence. Sequence scaling is applied after normalization. Let y_j be the working target sequence with mean μ_y and standard deviation σ_y. Let x_i be the working input sequence and let q_i be the scaled sequence. The scaling is defined as follows:

- Standard is the standard normalization
 \[q_i = \frac{(x_i - \mu_y)}{\sigma_y} \]
- Absolute is the absolute scaling
 \[q_i = \frac{(x_i - \min(y_j))}{(\max(y_j) - \min(y_j))} \]
- User-defined is a user-defined scaling created by the FCMP procedure.
Similarity Measures

The working input sequence can be compared to the working target sequence to create a similarity. For more information, see Leonard et al. (2008).

User-Defined Functions and Subroutines

A user-defined routine can be written in the SAS language by using the FCMP procedure or in the C language by using both the FCMP procedure and the PROTO procedure, respectively. The SIMILARITY procedure cannot use C language routines directly. The procedure can use only SAS language routines that might or might not call C language routines. Creating user-defined routines is more completely described in the FCMP procedure and the PROTO procedure documentation. The FCMP and PROTO procedures are part of Base SAS software.

The SAS language provides integrated memory management and exception handling such as operations on missing values. The C language provides flexibility and allows the integration of existing C language libraries. However, proper memory management and exception handling are solely the responsibility of the user. Additionally, the support for standard C libraries is restricted. If you have a choice, it is highly recommended that you write user-defined functions and subroutines in the SAS language using the FCMP procedure.

For each of the tasks previously described, the following sections describe the required subroutine or function signature and provide examples of using a user-defined routine with the SIMILARITY procedure.

Time Series Transformations

A user-defined transformation subroutine has the subroutine signature

```
SUBROUTINE <SUBROUTINE-NAME> ( <ARRAY-NAME>[*] );
```

where the `array-name` is the time series to be transformed.

For example, to duplicate the functionality of the built-in TRANSFORM=LOG option in the INPUT and TARGET statement, the following SAS statements create a user-defined version of this transformation called MYTRANSFORM and store this subroutine in the catalog SASUSER.MYSIMILAR:

```
proc fcmp outlib=sasuser.mysimilar.package;

subroutine mytransform( series[*] );

outargs series;

length = DIM(series);

do i = 1 to length;
   value = series[i];
   if value > 0 then do;
      series[i] = log( value );
   end;
   else do;
```
This user-defined subroutine can be specified in the TRANSFORM= option in the INPUT or TARGET statement as follows:

```sas
options cmplib = sasuser.mysimilar;
proc similarity ...;
...
input myinput / transform=mytransform;
target mytarget / transform=mytransform;
...
run;
```

Sequence Normalizations

A user-defined normalization subroutine has the signature

```
SUBROUTINE <SUBROUTINE-NAME> ( <ARRAY-NAME>[*] );
```

where the `array-name` is the sequence to be normalized.

For example, to duplicate the functionality of the built-in NORMALIZE=ABSOLUTE option in the INPUT and TARGET statement, the following SAS statements create a user-defined version of this normalization called MYNORMALIZE and store this subroutine in the catalog SASUSER.MYSIMILAR:

```sas
proc fcmp outlib=sasuser.mysimilar.package;
  subroutine mynormalize( sequence[*] );
    outargs sequence;
    length = DIM(sequence);
    minimum = .; maximum = .;
    do i = 1 to length;
      value = sequence[i];
      if nmiss(minimum) | nmiss(maximum) then do;
        minimum = value;
        maximum = value;
      end;
      if nmiss(value) = 0 then do;
        if value < minimum then minimum = value;
        if value > maximum then maximum = value;
      end;
    end;
    do i = 1 to length;
      value = sequence[i];
```

if nmiss(value) | minimum > maximum then do;
 sequence[i] = .;
end;
else do;
 sequence[i] = (value - minimum) / (maximum - minimum);
end;
end;
endsub;
run;

This user-defined subroutine can be specified in the NORMALIZE= option in the INPUT or TARGET statement as follows:

options cmplib = sasuser.mysimilar;

proc similarity ...;
...
 input myinput / normalize=mynormalize;
 target mytarget / normalize=mynormalize;
...
run;

Sequence Scaling

A user-defined scaling subroutine has the signature

 SUBROUTINE <SUBROUTINE-NAME> (<ARRAY-NAME>[*], <ARRAY-NAME>[*]);

where the first array-name is the target sequence and the second array-name is the input sequence to be scaled.

For example, to duplicate the functionality of the built-in SCALE=ABSOLUTE option in the INPUT statement, the following SAS statements create a user-defined version of this scaling called MYSCALE and store this subroutine in the catalog SASUSER.MYSIMILAR:

proc fcmp outlib=sasuser.mysimilar.package;

subroutine myscale(target[*], input[*]);

 outargs input;

 length = DIM(target);
 minimum = .; maximum = .;

 do i = 1 to length;
 value = target[i];
 if nmiss(minimum) | nmiss(maximum) then do;
 minimum = value;
 maximum = value;
 end;
 if nmiss(value) = 0 then do;
 if value < minimum then minimum = value;
 if value > maximum then maximum = value;
Chapter 30: The SIMILARITY Procedure

This user-defined subroutine can be specified in the SCALE= option in the INPUT statement as follows:

```sas
options cmplib=sasuser.mysimilar;
proc similarity ...;
  ...
  input myinput / scale=myscale;
  ...
run;
```

Similarity Measures

A user-defined similarity measure function has the signature

```sas
FUNCTION <FUNCTION-NAME> ( <ARRAY-NAME>[*, <ARRAY-NAME>[*] );
```

where the first `array-name` is the target sequence and the second `array-name` is the input sequence. The return value of the function is the similarity measure associated with the target sequence and the input sequence.

For example, to duplicate the functionality of the built-in MEASURE=ABSDEV option in the TARGET statement with no warping, the following SAS statements create a user-defined version of this measure called MYMEASURE and store this subroutine in the catalog SASUSER.MYSIMILAR:

```sas
proc fcmp outlib=sasuser.mysimilar.package;
  function mymeasure( target[*], input[*] );
    length = min(DIM(target), DIM(input));
    sum = 0; num = 0;
    do i = 1 to length;
      x = input[i];
      w = target[i];
      if nmiss(x) = 0 & nmiss(w) = 0 then do;
        d = x - w;
        sum = sum + abs(d);
        num = num + 1;
      end;
    end;
run;
```
end;
if num <= 0 then return(.);
return(sum);
endsub;
run;

This user-defined function can be specified in the MEASURE= option in the TARGET statement as follows:

options cmplib=sasuser.mysimilar;
proc similarity ...;
...
 target mytarget / measure=mymeasure;
...
run;

For another example, to duplicate the functionality of the built-in MEASURE=SQRDEV and MEASURE=ABSDEV options by using the C language, the following SAS statements create a user-defined C language version of these measures called DTW_SQRDEV_C and DTW_ABSDEV_C and store these functions in the catalog SASUSER.CSIMIL.CFUNCS. DTW refers to dynamic time warping. These C language functions can then be called by SAS language functions and subroutines.

proc proto package=sasuser.csimil.cfuncs;
mapmiss double = 9999999999;

double dtw_sqrdev_c(double * target / iotype=input,
 int targetLength,
 double * input / iotype=input,
 int inputLength);

externc dtw_sqrdev_c;

double dtw_sqrdev_c(double * target,
 int targetLength,
 double * input,
 int inputLength)
{

 int i,j;
 double x,w,d;
 double * prev = (double *)malloc(sizeof(double)*targetLength);
 double * curr = (double *)malloc(sizeof(double)*inputLength);
 if (prev == 0 || curr == 0) return 9999999999;

 x = input[0];
 for (j=0; j<targetLength; j++) {
 w = target[j];
 d = x - w;
 d = d*d;
 if (j == 0) prev[j] = d;
 else prev[j] = d + prev[j-1];
 }
}
for (i=1; i<inputLength; i++) {
 x = input[i];

 j = 0;
 w = target[j];
 d = x - w;
 d = d*d;
 curr[j] = d + prev[j];
}

for (j=1; j<targetLength; j++) {
 w = target[j];
 d = x - w;
 d = d*d;
 curr[j] = d + fmin(prev[j],
 fmin(prev[j-1], curr[j]));
}

if (i < targetLength) {
 for(j=0; j<inputLength; j++)
 prev[j] = curr[j];
}
}

d = curr[inputLength-1];
free((char*) prev);
free((char*) curr);
return(d);

externc;

double dtw_absdev_c(double * target / iotype=input,
 int targetLength,
 double * input / iotype=input,
 int inputLength);

externc dtw_absdev_c;

double dtw_absdev_c(double * target,
 int targetLength,
 double * input,
 int inputLength)
{
 int i,j;
 double x,w,d;
 double * prev = (double *)malloc(sizeof(double)*targetLength);
 double * curr = (double *)malloc(sizeof(double)*inputLength);
 if (prev == 0 || curr == 0) return 999999999;

 x = input[0];
 for (j=0; j<targetLength; j++) {
 w = target[j];
 d = x - w;
 d = fabs(d);
 if (j == 0) prev[j] = d;
 else prev[j] = d + prev[j-1];
 }
for (i=1; i<inputLength; i++) {
 x = input[i];
 j = 0;
 w = target[j];
 d = x - w;
 d = fabs(d);
 curr[j] = d + prev[j];

 for (j=1; j<targetLength; j++) {
 w = target[j];
 d = x - w;
 d = fabs(d);
 curr[j] = d + fmin(prev[j],
 fmin(prev[j-1], curr[j]));
 }

 if (i < inputLength) {
 for (j=0; j<targetLength; j++)
 prev[j] = curr[j];
 }
}

d = curr[inputLength-1];
free((char*) prev);
free((char*) curr);
return(d);
}

The preceding SAS statements create two C language functions that can then be used in SAS language functions or subroutines or both. However, these functions cannot be directly used by the SIMILARITY procedure. In order to use these C language functions in the SIMILARITY procedure, two SAS language functions must be created that call these two C language functions. The following SAS statements create two user-defined SAS language versions of these measures called DTW_SQRDEV and DTW_ABSDEV and stores these functions in the catalog SASUSER.MYSIMILAR.FUNCS. These SAS language functions use the previously created C language function; the SAS language functions can then be used by the SIMILARITY procedure.

proc fcmp outlib=sasuser.mysimilar.funcs
 inlib=sasuser.cfuncs;

 function dtw_sqrdev(target[*], input[*]);
 dev = dtw_sqrdev_c(target, DIM(target), input, DIM(input));
 return(dev);
 endsub;

 function dtw_absdev(target[*], input[*]);

dev = dtw_absdev_c(target,DIM(target),input,DIM(input));
return(dev);
endsub;

run;

This user-defined function can be specified in the MEASURE= option in the TARGET statement as follows:

options cmplib=sasuser.mysimilar;
proc similarity ...;
... target mytarget / measure=dtw_sqrdev;
target yourtarget / measure=dtw_absdev;
... run;

Similarity Measures and Warping Path

A user-defined similarity measure and warping path information function has the signature

FUNCTION <FUNCTION-NAME> (<ARRAY-NAME>[*], <ARRAY-NAME>[*],
<ARRAY-NAME>[*], <ARRAY-NAME>[*],
<ARRAY-NAME>[*]);

where the first array-name is the target sequence, the second array-name is the input sequence, the third array-name is the returned target sequence indices, the fourth array-name is the returned input sequence indices, and the fifth array-name is the returned path distances. The returned value of the function is the similarity measure. The last three returned arrays are used to compute the path and cost statistics.

The returned sequence indices must represent a valid warping path; that is, integers greater than zero and less than or equal to the sequence length and recorded in ascending order. The returned path distances must be nonnegative numbers.

Output Data Sets

The SIMILARITY procedure can create the OUT=, OUTMEASURE=, OUTPATH=, OUTSEQUENCE=, and OUTSUM= data sets. In general, these data sets contain the variables listed in the BY statement. The ID statement time ID variable is also included in the data sets when the time dimension is important. If an analysis step related to an output data step fails, then the values of this step are not recorded or are set to missing in the related output data set, and appropriate error and warning messages are recorded in the SAS log.

OUT= Data Set

The OUT= data set contains the variables that are specified in the BY, ID, INPUT, and TARGET statements. If the ID statement is specified, the ID variable values are aligned and extended based on the ALIGN=, INTERVAL=, START=, and END= options. The values of the variables specified in the INPUT and TARGET statements are accumulated based on the ACCUMULATE= option, missing values are interpreted based on
the SETMISSING= option, and zero values are interpreted using the ZEROMISS= option. The accumulated time series is transformed based on the TRANSFORM=, DIF=, and SDIF= options.

OUTMEASURE= Data Set

The OUTMEASURE= data set records the similarity measures between each INPUT and TARGET statement variable with respect to each time ID value. The form of the OUTMEASURE= data set depends on the SORTNAMES and ORDER= options. The OUTMEASURE= data set contains the variables specified in the BY statement in addition to the variables listed below.

For ORDER=INPUTTARGET and ORDER=TARGETINPUT, the OUTMEASURE= data set has the following form:

- `_INPUT_` input variable name
- `_TARGET_` target variable name
- `_TIMEID_` time ID values
- `_INPSEQ_` input sequence values
- `_TARSEQ_` target sequence values
- `_SIM_` similarity measures

The OUTMEASURE= data set is ordered by the variables `_INPUT_`, then `_TARGET_`, then `_TIMEID_` when ORDER=INPUTTARGET. The OUTMEASURE= data set is ordered by the variables `_TARGET_`, then `_INPUT_`, then `_TIMEID_` when ORDER=TARGETINPUT.

For ORDER=INPUT, the OUTMEASURE= data set has the following form:

- `_INPUT_` input variable name
- `_TIMEID_` time ID values
- `_INPSEQ_` input sequence values
- `target-names` similarity measures that are associated with each TARGET statement variable name

The OUTMEASURE= data set is ordered by the variables `_INPUT_`, then `_TIMEID_`.

For ORDER=TARGET, the OUTMEASURE= data set has the following form:

- `_TARGET_` target variable name
- `_TIMEID_` time ID values
- `_TARSEQ_` target sequence values
- `input-names` similarity measures that are associated with each INPUT statement variable name

The OUTMEASURE= data set is ordered by the variables `_TARGET_`, then `_TIMEID_`.
OUTPATH= Data Set

The OUTPATH= data set records the path analysis between each INPUT and TARGET statement variable. This data set records the path sequences for each slide index and for each warp index associated with the slide index. The sequence values recorded are normalized and scaled based on the NORMALIZE= and SCALE= options.

The OUTPATH= data set contains the variables specified in the BY statement and the following variables:

- _INPUT_ input variable name
- _TARGET_ target variable name
- _TIMEID_ time ID values
- _SLIDE_ slide index
- _WARP_ warp index
- _INPSEQ_ input sequence values
- _TARSEQ_ target sequence values
- _INPPTH_ input path index
- _TARPTH_ target path index
- _METRIC_ distance metric values

The Warp Index indicates the total amount of warping for each slide. A negative number represents compression of the target sequence. A positive number represents expansion of the target sequence. The Warp Index is always zero for SLIDE=NONE and SLIDE=SEASON.

The sorting of the OUTPATH= data set depends on the SORTNAMES and ORDER= options.

The OUTPATH= data set is ordered by the variables _INPUT_, then _TARGET_, then _TIMEID_ when ORDER=INPUTTARGET or ORDER=INPUT. The OUTPATH= data set is ordered by the variables _TARGET_, then _INPUT_, then _TIMEID_ when ORDER=TARGETINPUT or ORDER=TARGET.

If there are a large number of slides or warps or both, this data set might be large.

OUTSEQUENCE= Data Set

The OUTSEQUENCE= data set records the input and target sequences that are associated with each INPUT and TARGET statement variable. This data set records the input and target sequence values for each slide index and for each warp index that is associated with the slide index. The sequence values that are recorded are normalized and scaled based on the NORMALIZE= and SCALE= options. This data set also contains the similarity measure associated with the two sequences.

The OUTSEQUENCE= data set contains the variables specified in the BY statement in addition to the following variables:

- _INPUT_ input variable name
- _TARGET_ target variable name
The sorting of the OUTSEQUENCE= data set depends on the SORTNAMES and ORDER= options. The OUTSEQUENCE= data set is ordered by the variables _INPUT_, then _TARGET_, then _TIMEID_ when ORDER=INPUTTARGET or ORDER=INPUT. The OUTSEQUENCE= data set is ordered by the variables _TARGET_, then _INPUT_, then _TIMEID_ when ORDER=TARGETINPUT or ORDER=TARGET.

If there are a large number of slides or warps or both, this data set might be large.

OUTSUM= Data Set

The OUTSUM= data set summarizes the similarity measures between each INPUT and TARGET statement variable. The form of the OUTSUM= data set depends on the SORTNAMES and ORDER= options. If the SORTNAMES option is specified, each variable (INPUT or TARGET) is analyzed in ascending order. The OUTSUM= data set contains the variables specified in the BY statement in addition to the variables listed below.

For ORDER=INPUTTARGET and ORDER=TARGETINPUT, the OUTSUM= data set has the following form:

- `_INPUT_` input variable name
- `_TARGET_` target variable name
- `_STATUS_` status flag that indicates whether the requested analyses were successful
- `_TIMEID_` time ID values
- `_SIM_` similarity measure summary

The OUTSUM= data set is ordered by the variables _INPUT_, then _TARGET_ when ORDER=INPUTTARGET. The OUTSUM= data set is ordered by the variables _TARGET_, then _INPUT_ when ORDER=TARGETINPUT.

For ORDER=INPUT, the OUTSUM= data set has the following form:

- `_INPUT_` input variable name
- `_STATUS_` status flag that indicates whether the requested analyses were successful
- `target-names` similarity measure summary that is associated with each TARGET statement variable name

The OUTSUM= data set is ordered by the variable _INPUT_.

For ORDER=TARGET, the OUTSUM= data set has the following form:
Chapter 30: The SIMILARITY Procedure

TARGET target variable name
STATUS status flag that indicates whether the requested analyses were successful
input-names similarity measure summary that is associated with each INPUT statement variable name

The OUTSUM= data set is ordered by the variable _TARGET_.

STATUS Variable Values

The _STATUS_ variable contains a code that specifies whether the similarity analysis has been successful or not. The _STATUS_ variable can take the following values:

- 0 Success
- 3000 Accumulation failure
- 4000 Missing value interpretation failure
- 6000 Series is all missing
- 7000 Transformation failure
- 8000 Differencing failure
- 9000 Unable to compute descriptive statistics
- 10000 Normalization failure
- 11000 Input contains imbedded missing values
- 12000 Target contains imbedded missing values
- 13000 Scaling failure
- 14000 Measure failure
- 15000 Path failure
- 16000 Slide summarization failure

Printed Output

The SIMILARITY procedure optionally produces printed output by using the Output Delivery System (ODS). By default, the procedure produces no printed output. All output is controlled by the PRINT= and PRINTDETAILS options in the PROC SIMILARITY statement.

The sort, order, and form of the printed output depend on both the SORTNAMES option and the ORDER= option. If the SORTNAMES option is specified, each variable (INPUT or TARGET) is analyzed in ascending order. For ORDER=INPUTTARGET, the printed output is ordered by the INPUT statement variables (row) and then by the TARGET statement variables (row). For ORDER=TARGETINPUT, the printed output is ordered by the TARGET statement variables (row) and then by the INPUT statement variables (row). For ORDER=INPUT, the printed output is ordered by the INPUT statement variables (row) and then by the TARGET statement variables (row). For ORDER=TARGET, the printed output is ordered by the TARGET statement variables (row) and then by the INPUT statement variables (column).

In general, if an analysis step related to printed output fails, the values of that step are not printed and appropriate error and warning messages are recorded in the SAS log. The printed output is similar to the output data set; these similarities are described as follows:
PRINT=COSTS
prints the costs statistics.

PRINT=DESCSTATS
prints the descriptive statistics.

PRINT=PATHS
prints the path statistics.

PRINT=SLIDES
prints the sliding sequence summary.

PRINT=SUMMARY
prints the summary of similarity measures similar to the OUTSUM= data set.

PRINT=WARPS
prints the warp summary.

PRINTDETAILS
prints each table with greater detail.

ODS Table Names

Table 30.2 relates the PRINT= options to ODS tables.

<table>
<thead>
<tr>
<th>ODS Table Name</th>
<th>Description</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>CostStatistics</td>
<td>Cost statistics</td>
<td>PRINT=COSTS</td>
</tr>
<tr>
<td>DescStats</td>
<td>Descriptive statistics</td>
<td>PRINT=DESCSTATS</td>
</tr>
<tr>
<td>PathLimits</td>
<td>Path limits</td>
<td>PRINT=PATHS</td>
</tr>
<tr>
<td>PathStatistics</td>
<td>Path statistics</td>
<td>PRINT=PATHS</td>
</tr>
<tr>
<td>SlideMeasuresSummary</td>
<td>Summary of measure per slide</td>
<td>PRINT=SLIDES</td>
</tr>
<tr>
<td>MeasuresSummary</td>
<td>Measures summary</td>
<td>PRINT=SUMMARY</td>
</tr>
<tr>
<td>InputMeasuresSummary</td>
<td>Measures summary</td>
<td>PRINT=SUMMARY</td>
</tr>
<tr>
<td>TargetMeasuresSummary</td>
<td>Measures summary</td>
<td>PRINT=SUMMARY</td>
</tr>
<tr>
<td>WarpMeasuresSummary</td>
<td>Summary of measure per warp</td>
<td>PRINT=WARPS</td>
</tr>
</tbody>
</table>

The tables are related to a single series within a BY group.

ODS Graphics

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling ODS Graphics” in that chapter.

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

This section describes the use of ODS for creating graphics with the SIMILARITY procedure.

ODS Graph Names

PROC SIMILARITY assigns a name to each graph it creates by using ODS. You can use these names to selectively reference the graphs. The names are listed in Table 30.3.

<table>
<thead>
<tr>
<th>ODS Graph Name</th>
<th>Plot Description</th>
<th>Statement</th>
<th>PLOTS= Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>CostsPlot</td>
<td>Costs plot</td>
<td>SIMILARITY</td>
<td>COSTS</td>
</tr>
<tr>
<td>NormalizedSequencePlot</td>
<td>Normalized sequence plot</td>
<td>SIMILARITY</td>
<td>NORMALIZED</td>
</tr>
<tr>
<td>PathDistancePlot</td>
<td>Path distances plot</td>
<td>SIMILARITY</td>
<td>DISTANCES</td>
</tr>
<tr>
<td>PathDistanceHistogram</td>
<td>Path distances histogram</td>
<td>SIMILARITY</td>
<td>DISTANCES</td>
</tr>
<tr>
<td>PathRelativeDistancePlot</td>
<td>Path relative distances plot</td>
<td>SIMILARITY</td>
<td>DISTANCES</td>
</tr>
<tr>
<td>PathRelativeDistanceHistogram</td>
<td>Path relative distances histogram</td>
<td>SIMILARITY</td>
<td>DISTANCES</td>
</tr>
<tr>
<td>PathPlot</td>
<td>Path plot</td>
<td>SIMILARITY</td>
<td>PATHS</td>
</tr>
<tr>
<td>PathSequencesPlot</td>
<td>Path sequences plot</td>
<td>SIMILARITY</td>
<td>MAPS</td>
</tr>
<tr>
<td>PathSequencesScaledPlot</td>
<td>Scaled path sequences map plot</td>
<td>SIMILARITY</td>
<td>MAPS</td>
</tr>
<tr>
<td>ScaledSequencePlot</td>
<td>Scaled sequence plot</td>
<td>SIMILARITY</td>
<td>SCALED</td>
</tr>
<tr>
<td>SequencePlot</td>
<td>Sequence plot</td>
<td>SIMILARITY</td>
<td>SEQUENCES</td>
</tr>
<tr>
<td>SeriesPlot</td>
<td>Input time series plot</td>
<td>SIMILARITY</td>
<td>INPUTS</td>
</tr>
<tr>
<td>SimilarityPlot</td>
<td>Similarity measures plot</td>
<td>SIMILARITY</td>
<td>MEASURES</td>
</tr>
<tr>
<td>TargetSequencePlot</td>
<td>Target sequence plot</td>
<td>SIMILARITY</td>
<td>TARGETS</td>
</tr>
<tr>
<td>WarpPlot</td>
<td>Warping plot</td>
<td>SIMILARITY</td>
<td>WARP</td>
</tr>
<tr>
<td>WarpScaledPlot</td>
<td>Scaled warping plot</td>
<td>SIMILARITY</td>
<td>WARP</td>
</tr>
</tbody>
</table>

Time Series Plots

The time series plots (SeriesPlot) illustrate the input time series to be compared. The horizontal axis represents the input series time ID values, and the vertical axis represents the input series values.
Sequence Plots

The sequence plots (SequencePlot) illustrate the target and input sequences to be compared. The horizontal axis represents the (target or input) sequence index, and the vertical axis represents the (target or input) sequence values.

Path Plots

The path plot (PathPlot) and path limits plot (PathLimitsPlot) illustrate the path through the distance matrix. The horizontal axis represents the input sequence index, and the vertical axis represents the target sequence index. The dots represent the path coordinates. The upper parallel line represents the compression limit, and the lower parallel line represents the expansion limit. These plots visualize the path through the distance matrix. Vertical movements indicate compression, and horizontal movements represent expansion of the target sequence with respect to the input sequence. These plots are useful for visualizing the amount of expansion and compression along the path.

Time Warp Plots

The time warp plot (WarpPlot) and scaled time warp plot (WarpScaledPlot) illustrate the time warping. The horizontal axis represents the (input and target) sequence index. The upper line plot represents the target sequence. The lower line plot represents the input sequence. The lines that connect the input and target sequence values represent the mapping between the input and target sequence indices along the optimal path. These plots visualize the warping of the time index with respect to the input and target sequence values. Expansion of a single target sequence value occurs when it is mapped to more than one input sequence value. Expansion of a single input sequence value occurs when it is mapped to more than one target sequence value. The plots are useful for visualizing the mapping between the input and target sequence values along the path. The plots are useful for comparing the path sequences or input and target sequence after time warping.

Path Sequence Plots

The path sequence plot (PathSequencesPlot) and scaled path sequence plot (PathSequencesScaledPlot) illustrate the sequence mapping along the optimal path. The horizontal axis represents the path index. The dashed line represents the time warped input sequence. The solid line represents the time warped target sequence. These plots visualize the mapping between the input and target sequence values with respect to the path index. The scaled plot with the input and target sequence values are scaled and evenly separated for visual convenience.

Path Distance Plots

The path distance plots (PathDistancePlot) and path relative distance plots (PathRelativeDistancePlot) illustrate the path (relative) distances. The horizontal axis represents the path index. The vertical needles represent the (relative) distances. The horizontal reference lines indicate one and two standard deviations. The path distance histogram (PathDistanceHistogram) and path relative distance histogram (PathDistanceRelativeHistogram) illustrate the distribution of the path (relative) distances. The bars represent the histogram, and the solid line represents a normal distribution with the same mean and variance.
Cost Plots

The cost plot (CostPlot) and cost limits plot (CostPlot) illustrate the cost of traversing the distance matrix. The horizontal axis represents the input sequence index, and the vertical axis represents the target sequence index. The colors and shading within the plot illustrate the incremental cost of traversing the distance matrix. The upper parallel line represents the compression limit, and the lower parallel line represents the expansion limit.

Examples: SIMILARITY Procedure

Example 30.1: Accumulating Transactional Data into Time Series Data

This example uses the SIMILARITY procedure to illustrate the accumulation of time-stamped transactional data that has been recorded at no particular frequency into time series data at a specific frequency. After the time series is created, the various SAS/ETS procedures related to time series analysis, similarity analysis, seasonal adjustment and decomposition, modeling, and forecasting can be used to further analyze the time series data.

Suppose that the input data set WORK.RETAIL contains the variables STORE and TIMESTAMP and numerous other numeric transaction variables. The BY variable STORE contains values that break up the transactions into groups (BY groups). The time ID variable TIMESTAMP contains SAS date values recorded at no particular frequency. The other data set variables contain the numeric transaction values to be analyzed. It is further assumed that the input data set is sorted by the variables STORE and TIMESTAMP.

The following statements form monthly time series from the transactional data based on the median value (ACCUMULATE=MEDIAN) of the transactions recorded with each time period. The accumulated time series values for time periods with no transactions are set to zero instead of missing (SETMISS=0). Only transactions recorded between the first day of 1998 (START='01JAN1998'D) and last day of 2000 (END='31JAN2000'D) are considered and if needed are extended to include this range.

```
proc similarity data=work.retail out=mseries;
  by store;
  id timestamp interval=month
  accumulate=median
  setmiss=0
  start='01jan1998'd
  end   ='31dec2000'd;
  target _NUMERIC_;
run;
```
Example 30.1: Accumulating Transactional Data into Time Series Data

The monthly time series data are stored in the data set WORK.MSERIES. Each BY group associated with the BY variable STORE contains an observation for each of the 36 months associated with the years 1998, 1999, and 2000. Each observation contains the variables STORE and TIMESTAMP and each of the analysis variables in the input DATA= data set.

After each set of transactions has been accumulated to form the corresponding time series, the accumulated time series can be analyzed by using various time series analysis techniques. For example, exponentially weighted moving averages can be used to smooth each series. The following statements use the EXPAND procedure to smooth the analysis variable named STOREITEM:

```sas
proc expand data=mseries
   out=smoothed
   from=month;
   by store;
   id timestamp;
   convert storeitem=smooth / transform=(ewma 0.1);
run;
```

The smoothed series is stored in the data set WORK.SMOOTHED. The variable SMOOTH contains the smoothed series.

If the time ID variable TIMESTAMP contains SAS datetime values instead of SAS date values, the INTERVAL=, START=, and END= options in the SIMILARITY procedure must be changed accordingly, and the following statements could be used to accumulate the datetime transactions to a monthly interval:

```sas
proc similarity data=work.retail
   out=tseries;
   by store;
   id timestamp interval=dtmonth
   accumulate=median
   setmiss=0
   start='01jan1998:00:00:00'dt
   end   = '31dec2000:00:00:00'dt;
   target _NUMERIC_;
run;
```

The monthly time series data are stored in the data set WORK.TSERIES, and the time ID values use a SAS datetime representation.
Example 30.2: Similarity Analysis

This simple example illustrates how to use similarity analysis to compare two time sequences. The following statements create an example data set that contains two time sequences of differing lengths:

```plaintext
data test;
  input i y x;
datalines;
  1 2 3
  2 4 5
  3 6 3
  4 7 3
  5 3 3
  6 8 6
  7 9 3
  8 3 8
  9 10 .
10 11 .
;
run;
```

The following statements perform similarity analysis on the example data set:

```plaintext
class similarity data=test out=_null_
    print=all plot=all;
  input x;
  target y / measure=absdev;
run;
```

The DATA=TEST option specifies that the input data set WORK.TEST is to be used in the analysis. The OUT=_NULL_ option specifies that no output time series data set is to be created. The PRINT=ALL and PLOTS=ALL options specify that all ODS tables and graphs are to be produced. The INPUT statement specifies that the input variable is \(X \). The TARGET statement specifies that the target variable is \(Y \) and that the similarity measure is computed using absolute deviation (MEASURE=ABSDEV).

Output 30.2.1 Description Statistics of the Input Variable, \(x \)

<table>
<thead>
<tr>
<th>Time Series Descriptive Statistics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>(x)</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>10</td>
</tr>
<tr>
<td>Number of Missing Observations</td>
<td>2</td>
</tr>
<tr>
<td>Minimum</td>
<td>3</td>
</tr>
<tr>
<td>Maximum</td>
<td>8</td>
</tr>
<tr>
<td>Mean</td>
<td>4.25</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>1.908627</td>
</tr>
</tbody>
</table>
Output 30.2.2 Plot of Input Variable, x

Input Series Plot for x

Observation
Output 30.2.3 Target Sequence Plot
Output 30.2.4 Sequence Plot

Sequence Plot for Input=x and Target=y

<table>
<thead>
<tr>
<th>Sequence Values</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

- Blue line: Target Sequence
- Red line: Input Sequence
Output 30.2.5 Path Plot

Path Plot for Input=x and Target=y

Target Path Index

Input Path Index
Output 30.2.6 Path Sequences Plot

Path Sequences Plot for Input=x and Target=y
Output 30.2.7 Path Sequences Scaled Plot

Path Sequences Scaled Plot for Input=x and Target=y

Scaled Sequence Values

Path Index

Target Sequence
Input Sequence
Output 30.2.8 Path Distance Plot

Path Distance Plot for Input=x and Target=y

Distance

Path Index

Distance Average Std Dev Twice Std Dev
Output 30.2.9 Path Distance Histogram

Distribution of Path Distances for Input=x and Target=y
Output 30.2.10 Path Relative Distance Plot

Path Relative Distance Plot for Input=x and Target=y

- **Relative Distance**
 - Values range from 0.0 to 0.5.
- **Path Index**
 - Values range from 0 to 10.

Legend:
- **Distance**
- **Average**
- **Std Dev**
- **Twice Std Dev**
Output 30.2.11 Path Relative Distance Histogram

Output 30.2.12 Path Limits

<table>
<thead>
<tr>
<th>Limit</th>
<th>Specified Absolute</th>
<th>Specified Percentage</th>
<th>Minimum Allowed</th>
<th>Maximum Allowed</th>
<th>Applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression</td>
<td>None</td>
<td>None</td>
<td>2</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Expansion</td>
<td>None</td>
<td>None</td>
<td>0</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Output 30.2.13 Path Statistics

<table>
<thead>
<tr>
<th>Path</th>
<th>Path Number</th>
<th>Path Percent</th>
<th>Input Percent</th>
<th>Target Percent</th>
<th>Path Maximum</th>
<th>Input Maximum</th>
<th>Target Maximum</th>
<th>Path Percent</th>
<th>Input Percent</th>
<th>Target Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missing Map</td>
<td>0</td>
<td>0.000%</td>
<td>0.000%</td>
<td>0.000%</td>
<td>0.000%</td>
<td>0.000%</td>
<td>0.000%</td>
<td>0.000%</td>
<td>0.000%</td>
<td>0.000%</td>
</tr>
<tr>
<td>Direct Maps</td>
<td>6</td>
<td>50.00%</td>
<td>75.00%</td>
<td>60.00%</td>
<td>2</td>
<td>16.67%</td>
<td>25.00%</td>
<td>20.00%</td>
<td>20.00%</td>
<td>20.00%</td>
</tr>
<tr>
<td>Compression</td>
<td>4</td>
<td>33.33%</td>
<td>50.00%</td>
<td>40.00%</td>
<td>1</td>
<td>8.33%</td>
<td>12.50%</td>
<td>10.00%</td>
<td>10.00%</td>
<td>10.00%</td>
</tr>
<tr>
<td>Expansion</td>
<td>2</td>
<td>16.67%</td>
<td>25.00%</td>
<td>20.00%</td>
<td>2</td>
<td>16.67%</td>
<td>25.00%</td>
<td>20.00%</td>
<td>20.00%</td>
<td>20.00%</td>
</tr>
<tr>
<td>Warps</td>
<td>6</td>
<td>50.00%</td>
<td>75.00%</td>
<td>60.00%</td>
<td>2</td>
<td>16.67%</td>
<td>25.00%</td>
<td>20.00%</td>
<td>20.00%</td>
<td>20.00%</td>
</tr>
</tbody>
</table>
Output 30.2.14 Cost Plot

Cost Plot for Input=x and Target=y

Output 30.2.15 Cost Statistics

<table>
<thead>
<tr>
<th>Cost</th>
<th>Number</th>
<th>Total</th>
<th>Average</th>
<th>Standard Deviation</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Input Mean</th>
<th>Target Mean</th>
<th>Path Mean</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Path Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute</td>
<td>12</td>
<td>15.00000</td>
<td>1.250000</td>
<td>1.138180</td>
<td>0</td>
<td>3.000000</td>
<td>1.875000</td>
<td>1.500000</td>
<td>1.875000</td>
<td>0.8823529</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative</td>
<td>12</td>
<td>2.25844</td>
<td>0.188203</td>
<td>0.160922</td>
<td>0</td>
<td>0.500000</td>
<td>0.282305</td>
<td>0.225844</td>
<td>0.282305</td>
<td>0.1328495</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relative Costs based on Target Sequence values
Output 30.2.16 Time Warp Plot

Warp Plot for Input=x and Target=y

Sequences

Obs

y
x
The following statements repeat the preceding similarity analysis on the example data set with warping limits:

```sas
proc similarity data=test out=_null_
   print=all plot=all;
   input x;
   target y / measure=absdev
       compress=(localabs=2)
       expand=(localabs=2);
run;
```

The COMPRESS=(LOCALABS=2) option limits local absolute compression to 2. The EXPAND=(LOCALABS=2) option limits local absolute expansion to 2.
Output 30.2.18 Path Plot with Warping Limits

Output 30.2.19 Warped Path Limits

<table>
<thead>
<tr>
<th>Limit</th>
<th>Specified Absolute</th>
<th>Specified Percentage</th>
<th>Minimum Allowed</th>
<th>Maximum Allowed</th>
<th>Applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression</td>
<td>2</td>
<td>None</td>
<td>2</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Expansion</td>
<td>2</td>
<td>None</td>
<td>0</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>
The following statements repeat the preceding similarity analysis on the example data set but store the results in output data sets:

```plaintext
proc similarity data=test out=series
   outsequence=sequences outpath=path outsum=summary;
   input x;
   target y / measure=absdev
       compress=(localabs=2)
       expand=(localabs=2);
run;
```

The OUT=SERIES, OUTSEQUENCE=SEQUENCES, OUTPATH=PATH, and OUTSUM=SUMMARY options specify that the output time series, time sequences, path analysis, and summary data sets be created, respectively.
Example 30.3: Sliding Similarity Analysis

This example illustrates how to use sliding similarity analysis to compare two time sequences. The SASHELP.WORKERS data set contains two similar time series variables (ELECTRIC and MASONRY), which represent employment over time. The following statements create an example data set that contains two time series of differing lengths, where the variable MASONRY has the first 12 and last 7 observations set to missing to simulate the lack of data associated with the target series:

```sas
data workers; set sashelp.workers;
  if '01JAN1978'D <= date < '01JAN1982'D then masonry = masonry;
  else masonry = .;
run;
```

The goal of sliding similarity measures analysis is find the slide index that corresponds to the most similar subsequence of the input series when compared to the target sequence. The following statements perform sliding similarity analysis on the example data set:

```sas
proc similarity data=workers out=_NULL_ print=(slides summary);
  id date interval=month;
  input electric;
  target masonry / slide=index measure=msqrdev
    expand=(localabs=3 globalabs=3)
    compress=(localabs=3 globalabs=3);
run;
```

The DATA=WORKERS option specifies that the input data set WORK.WORKERS is to be used in the analysis. The OUT=_NULL_ option specifies that no output time series data set is to be created. The PRINT=(SLIDES SUMMAR Y) option specifies that the ODS tables related to the sliding similarity measures and their summary be produced. The INPUT statement specifies that the input variable is ELECTRIC. The TARGET statement specifies that the target variable is MASONRY and that the similarity measure be computed using mean squared deviation (MEASURE=MSQRDEV). The SLIDE=INDEX option specifies observation index sliding. The COMPRESS=(LOCALABS=3 GLOBALABS=3) option limits local and global absolute compression to 3. The EXPAND=(LOCALABS=3 GLOBALABS=3) option limits local and global absolute expansion to 3.
Output 30.3.1 Summary of the Slide Measures

The SIMILARITY Procedure

<table>
<thead>
<tr>
<th>Slide Index</th>
<th>DATE</th>
<th>Slide Target Sequence Length</th>
<th>Slide Input Sequence Length</th>
<th>Slide Warping Amount</th>
<th>Slide Minimum Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>JAN1977</td>
<td>48</td>
<td>51</td>
<td>3</td>
<td>497.6737</td>
</tr>
<tr>
<td>1</td>
<td>FEB1977</td>
<td>48</td>
<td>51</td>
<td>1</td>
<td>482.6777</td>
</tr>
<tr>
<td>2</td>
<td>MAR1977</td>
<td>48</td>
<td>51</td>
<td>0</td>
<td>474.1251</td>
</tr>
<tr>
<td>3</td>
<td>APR1977</td>
<td>48</td>
<td>51</td>
<td>0</td>
<td>490.7792</td>
</tr>
<tr>
<td>4</td>
<td>MAY1977</td>
<td>48</td>
<td>51</td>
<td>-2</td>
<td>533.0788</td>
</tr>
<tr>
<td>5</td>
<td>JUN1977</td>
<td>48</td>
<td>51</td>
<td>-3</td>
<td>605.8198</td>
</tr>
<tr>
<td>6</td>
<td>JUL1977</td>
<td>48</td>
<td>51</td>
<td>-3</td>
<td>701.7138</td>
</tr>
<tr>
<td>7</td>
<td>AUG1977</td>
<td>48</td>
<td>51</td>
<td>3</td>
<td>646.5918</td>
</tr>
<tr>
<td>8</td>
<td>SEP1977</td>
<td>48</td>
<td>51</td>
<td>3</td>
<td>616.3258</td>
</tr>
<tr>
<td>9</td>
<td>OCT1977</td>
<td>48</td>
<td>51</td>
<td>3</td>
<td>510.9836</td>
</tr>
<tr>
<td>10</td>
<td>NOV1977</td>
<td>48</td>
<td>51</td>
<td>3</td>
<td>382.1434</td>
</tr>
<tr>
<td>11</td>
<td>DEC1977</td>
<td>48</td>
<td>51</td>
<td>3</td>
<td>340.4702</td>
</tr>
<tr>
<td>12</td>
<td>JAN1978</td>
<td>48</td>
<td>51</td>
<td>2</td>
<td>327.0572</td>
</tr>
<tr>
<td>13</td>
<td>FEB1978</td>
<td>48</td>
<td>51</td>
<td>1</td>
<td>322.5460</td>
</tr>
<tr>
<td>14</td>
<td>MAR1978</td>
<td>48</td>
<td>51</td>
<td>0</td>
<td>325.2689</td>
</tr>
<tr>
<td>15</td>
<td>APR1978</td>
<td>48</td>
<td>51</td>
<td>-1</td>
<td>351.4161</td>
</tr>
<tr>
<td>16</td>
<td>MAY1978</td>
<td>48</td>
<td>51</td>
<td>-2</td>
<td>398.0490</td>
</tr>
<tr>
<td>17</td>
<td>JUN1978</td>
<td>48</td>
<td>50</td>
<td>-3</td>
<td>471.6931</td>
</tr>
<tr>
<td>18</td>
<td>JUL1978</td>
<td>48</td>
<td>49</td>
<td>-3</td>
<td>590.8089</td>
</tr>
<tr>
<td>19</td>
<td>AUG1978</td>
<td>48</td>
<td>48</td>
<td>0</td>
<td>595.2538</td>
</tr>
<tr>
<td>20</td>
<td>SEP1978</td>
<td>48</td>
<td>47</td>
<td>-1</td>
<td>689.2233</td>
</tr>
<tr>
<td>21</td>
<td>OCT1978</td>
<td>48</td>
<td>46</td>
<td>-2</td>
<td>745.8891</td>
</tr>
<tr>
<td>22</td>
<td>NOV1978</td>
<td>48</td>
<td>45</td>
<td>-3</td>
<td>679.1907</td>
</tr>
</tbody>
</table>

Output 30.3.2 Minimum Measure

<table>
<thead>
<tr>
<th>Minimum Measure Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Variable</td>
</tr>
<tr>
<td>ELECTRIC</td>
</tr>
</tbody>
</table>
This analysis results in 23 slides based on the observation index. The minimum measure (322.5460) occurs at slide index 13, which corresponds to the time value FEB1978. Note that the original data set SASHELP.WORKERS was modified beginning at the time value JAN1978. This similarity analysis justifies the belief that ELECTRIC lags MASONRY by one month based on the time series cross-correlation analysis despite the lack of target data (MASONRY).

The goal of seasonal sliding similarity measures is to find the seasonal slide index that corresponds to the most similar seasonal subsequence of the input series when compared to the target sequence. The following statements repeat the preceding similarity analysis on the example data set with seasonal sliding:

```
proc similarity data=workers out=_NULL_ print=(slides summary);
   id date interval=month;
   input electric;
   target masonry / slide=season measure=msqrdev;
run;
```

Output 30.3.3 Summary of the Seasonal Slide Measures

<table>
<thead>
<tr>
<th>Slide Index</th>
<th>DATE</th>
<th>Slide Target Sequence Length</th>
<th>Slide Input Sequence Length</th>
<th>Slide Warping Amount</th>
<th>Slide Minimum Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>JAN1977</td>
<td>48</td>
<td>48</td>
<td>0</td>
<td>1040.086</td>
</tr>
<tr>
<td>12</td>
<td>JAN1978</td>
<td>48</td>
<td>48</td>
<td>0</td>
<td>641.927</td>
</tr>
</tbody>
</table>

Output 30.3.4 Seasonal Minimum Measure

<table>
<thead>
<tr>
<th>Minimum Measure Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Variable</td>
</tr>
<tr>
<td>ELECTRIC</td>
</tr>
</tbody>
</table>

The analysis differs from the previous analysis in that the slides are performed based on the seasonal index (SLIDE=SEASON) with no warping. With a seasonality of 12, two seasonal slides are considered at slide indices 0 and 12 with the minimum measure (641.9273) occurring at slide index 12 which corresponds to the time value JAN1978. Note that the original data set SASHELP.WORKERS was modified beginning at the time value JAN1978. This similarity analysis justifies the belief that ELECTRIC and MASONRY have similar seasonal properties based on seasonal decomposition analysis despite the lack of target data (MASONRY).
Example 30.4: Searching for Historical Analogies

This example illustrates how to search for historical analogies by using seasonal sliding similarity analysis of transactional time-stamped data. The SASHELP.TIMEDATA data set contains the variable (VOLUME), which represents activity over time. The following statements create an example data set that contains two time series of differing lengths, where the variable HISTORY represents the historical activity and RECENT represents the more recent activity:

```sas
data timedata; set sashelp.timedata;
  drop volume;
  recent = .;
  history = volume;
  if datetime >= '20AUG2000:00:00:00'DT then do;
    recent = volume;
    history = .;
  end;
run;
```

The goal of seasonal sliding similarity measures is to find the seasonal slide index that corresponds to the most similar seasonal subsequence of the input series when compared to the target sequence. The following statements perform similarity analysis on the example data set with seasonal sliding:

```sas
proc similarity data=timedata out=_NULL_ outsequence=sequences
  outsum=summary;
  id datetime interval=dtday accumulate=total
    start='27JUL1997:00:00:00'DT
    end='21OCT2000:11:59:59'DT;
  input history / normalize=absolute;
  target recent / slide=season normalize=absolute measure=mabsdev;
run;
```

The DATA=TIMEDATA option specifies that the input data set WORK.TIMEDATA be used in the analysis. The OUT=_NULL_ option specifies that no output time series data set is to be created. The OUTSEQUENCE=SEQUENCES and OUTSUM=SUMMARY options specify the output sequences and summary data sets, respectively. The ID statement specifies that the time ID variable is DATETIME, which is to be accumulated on a daily basis (INTERVAL=DTDAY) by summing the transactions (ACCUMULATE=TOTAL). The ID statement also specifies that the data are accumulated on the weekly boundaries starting on the week of 27JUL1997 and ending on the week of 15OCT2000 (START='27JUL1997:00:00:00' DT END='21OCT2000:11:59:59' DT). The INPUT statement specifies that the input variable is HISTORY, which is to be normalized using absolute normalization (NORMALIZE=ABSOLUTE). The TARGET statement specifies that the target variable is RECENT, which is to be normalized by using absolute normalization (NORMALIZE=ABSOLUTE) and that the similarity measure be computed by using mean absolute deviation (MEASURE=MABSDEV). The SLIDE=SEASON options specifies season index sliding.

To illustrate the results of the similarity analysis, the output sequence data set must be subset by using the output summary data set.

```sas
data _NULL_; set summary;
  call symput('MEASURE', left(trim(putn(recent,'BEST20.'))));
run;

data result; set sequences;
```

by _SLIDE_; retain flag 0;
if first._SLIDE_ then do;
 if (&measure - 0.00001 < _SIM_ < &measure + 0.00001)
 then flag = 1;
end;
if flag then output;
if last._SLIDE_ then flag = 0;
run;

The following statements generate a cross series plot of the results:

```
proc timeseries data=result out=_NULL_ crossplot=series;
  id datetime interval=dtday;
  var _TARSEQ_
  crossvar _INPSEQ_
run;
```

The cross series plot illustrates that the historical time series analogy most similar to the most recent time series data that started on 20AUG2000 occurred on 02AUG1998.

Output 30.4.1 Cross Series Plot of the Historical Time Series
Example 30.5: Clustering Time Series

This example illustrates how to cluster time series using a similarity matrix. The WORK.APPLIANCE data set contains 24 variables that record sales histories. The following statements create a similarity matrix and store the matrix in the WORK.SIMMATRIX data set:

```sas
proc similarity data=sashelp.applianc out=_null_ outsum=simmatrix;
target units_1--units_24 / measure=mabsdev normalize=absolute;
run;
```

The following statements cluster the rows of the similarity matrix:

```sas
proc cluster data=simmatrix(drop=_status_) outtree=tree method=ward noprint;
id _input_;run;
```

The following statements plot the dendrogram:

```sas
proc tree data=tree horizontal;
run;
```

References

Subject Index

BY groups
 SIMILARITY procedure, 2262

ODS graph names
 SIMILARITY procedure, 2292

SIMILARITY procedure
 BY groups, 2262
 ODS graph names, 2292
Syntax Index

ACCUMULATE= option
 ID statement (SIMILARITY), 2263
 INPUT statement (SIMILARITY), 2266
 TARGET statement (SIMILARITY), 2268
ALIGN= option
 ID statement (SIMILARITY), 2264
BY statement
 SIMILARITY procedure, 2262
COMPRESS= option
 TARGET statement (SIMILARITY), 2268
DATA= option
 PROC SIMILARITY statement, 2260
DIF= option
 INPUT statement (SIMILARITY), 2266
 TARGET statement (SIMILARITY), 2269
END= option
 ID statement (SIMILARITY), 2264
EXPAND= option
 TARGET statement (SIMILARITY), 2269
FCMPOPT statement
 SIMILARITY procedure, 2263
FORMAT= option
 ID statement (SIMILARITY), 2264
ID statement
 SIMILARITY procedure, 2263
INPUT statement
 SIMILARITY procedure, 2266
INTERVAL= option
 ID statement (SIMILARITY), 2264
MEASURE= option
 TARGET statement (SIMILARITY), 2271
NORMALIZE= option
 INPUT statement (SIMILARITY), 2266
 TARGET statement (SIMILARITY), 2271
NOTSORTED option
 ID statement (SIMILARITY), 2265
ORDER= option
 PROC SIMILARITY statement, 2260
OUT= option
 PROC SIMILARITY statement, 2260
OUTMEASURE= option
 PROC SIMILARITY statement, 2260
PROC SIMILARITY statement, 2260
OUTPATH= option
 PROC SIMILARITY statement, 2260
OUTSEQUENCE= option
 PROC SIMILARITY statement, 2260
OUTSUM= option
 PROC SIMILARITY statement, 2261
PATH= option
 TARGET statement (SIMILARITY), 2271
PLOTS= option
 PROC SIMILARITY statement, 2261
PRINT= option
 PROC SIMILARITY statement, 2261
PRINTDETAILS option
 PROC SIMILARITY statement, 2262
PROC SIMILARITY statement, 2259
QUIET= option
 FCMPOPT statement (SIMILARITY), 2263
SCALE= option
 INPUT statement (SIMILARITY), 2266
SDIF= option
 INPUT statement (SIMILARITY), 2267
 TARGET statement (SIMILARITY), 2272
SEASONALITY= option
 PROC SIMILARITY statement, 2262
SETMISSING= option
 ID statement (SIMILARITY), 2265
 INPUT statement (SIMILARITY), 2267
 TARGET statement (SIMILARITY), 2272
SIMILARITY procedure, 2258
 syntax, 2258
SLIDE= option
 TARGET statement (SIMILARITY), 2272
SORTNAMES option
 PROC SIMILARITY statement, 2262
START= option
 ID statement (SIMILARITY), 2265
TARGET statement
 SIMILARITY procedure, 2268
TRACE= option
 FCMPOPT statement (SIMILARITY), 2263
TRANSFORM= option
 INPUT statement (SIMILARITY), 2267
 TARGET statement (SIMILARITY), 2272
TRIMMISS= option
INPUT statement (SIMILARITY), 2267
TRIMMISSING= option
 INPUT statement (SIMILARITY), 2273

ZEROMISS= option
 INPUT statement (SIMILARITY), 2268
 TARGET statement (SIMILARITY), 2273
ZEROMISSING= option
 ID statement (SIMILARITY), 2265