Overview: PDLREG Procedure

The PDLREG procedure estimates regression models for time series data in which the effects of some of the regressor variables are distributed across time. The distributed lag model assumes that the effect of an input variable X on an output Y is distributed over time. If you change the value of X at time t, Y will experience some immediate effect at time t, and it will also experience a delayed effect at times $t + 1, t + 2$, and so on up to time $t + p$ for some limit p.

The regression model supported by PROC PDLREG can include any number of regressors with distribution lags and any number of covariates. (Simple regressors without lag distributions are called covariates.) For example, the two-regressor model with a distributed lag effect for one regressor is written

$$y_t = \alpha + \sum_{i=0}^{p} \beta_i x_{t-i} + yz_t + u_t$$
Here, \(x_t \) is the regressor with a distributed lag effect, \(z_t \) is a simple covariate, and \(u_t \) is an error term.

The distribution of the lagged effects is modeled by Almon lag polynomials. The coefficients \(b_i \) of the lagged values of the regressor are assumed to lie on a polynomial curve. That is,

\[
b_i = \alpha_0^* + \sum_{j=1}^{d} \alpha_j^* i^j
\]

where \(d(\leq p) \) is the degree of the polynomial. For the numerically efficient estimation, the PDLREG procedure uses orthogonal polynomials. The preceding equation can be transformed into orthogonal polynomials,

\[
b_i = \alpha_0 + \sum_{j=1}^{d} \alpha_j f_j(i)
\]

where \(f_j(i) \) is a polynomial of degree \(j \) in the lag length \(i \), and \(\alpha_j \) is a coefficient estimated from the data.

The PDLREG procedure supports endpoint restrictions for the polynomial. That is, you can constrain the estimated polynomial lag distribution curve so that \(b_{-1} = 0 \) or \(b_{p+1} = 0 \), or both. You can also impose linear restrictions on the parameter estimates for the covariates.

You can specify a minimum degree and a maximum degree for the lag distribution polynomial, and the procedure fits polynomials for all degrees in the specified range. (However, if distributed lags are specified for more than one regressor, you can specify a range of degrees for only one of them.)

The PDLREG procedure can also test for autocorrelated residuals and perform autocorrelated error correction by using the autoregressive error model. You can specify any order autoregressive error model and can specify several different estimation methods for the autoregressive model, including exact maximum likelihood.

The PDLREG procedure computes generalized Durbin-Watson statistics to test for autocorrelated residuals. For models with lagged dependent variables, the procedure can produce Durbin \(h \) and Durbin \(t \) statistics. You can request significance level \(p \)-values for the Durbin-Watson, Durbin \(h \), and Durbin \(t \) statistics. For more information about these statistics, see Chapter 8, “The AUTOREG Procedure.”

The PDLREG procedure assumes that the input observations form a time series. Thus, the PDLREG procedure should be used only for ordered and equally spaced time series data.

Getting Started: PDLREG Procedure

Use the MODEL statement to specify the regression model. The PDLREG procedure’s MODEL statement is written like MODEL statements in other SAS regression procedures, except that a regressor can be followed by a lag distribution specification enclosed in parentheses.

For example, the following MODEL statement regresses \(Y \) on \(X \) and \(Z \) and specifies a distributed lag for \(X \):

```sas
model y = x(4,2) z;
```

The notation \(X(4,2) \) specifies that the model includes \(X \) and 4 lags of \(X \), with the coefficients of \(X \) and its lags constrained to follow a second-degree (quadratic) polynomial. Thus, the regression model specified by this MODEL statement is

\[
y_t = a + b_0 x_t + b_1 x_{t-1} + b_2 x_{t-2} + b_3 x_{t-3} + b_4 x_{t-4} + c z_t + u_t
\]
Introductory Example

\[b_i = \alpha_0 + \alpha_1 f_1(i) + \alpha_2 f_2(i) \]

where \(f_1(i) \) is a polynomial of degree 1 in \(i \) and \(f_2(i) \) is a polynomial of degree 2 in \(i \).

Lag distribution specifications are enclosed in parentheses and follow the name of the regressor variable. The general form of the lag distribution specification is

```
regressor-name ( length, degree, minimum-degree, end-constraint )
```

where

- `length` is the length of the lag distribution—that is, the number of lags of the regressor to use.
- `degree` is the degree of the distribution polynomial.
- `minimum-degree` is an optional minimum degree for the distribution polynomial.
- `end-constraint` is an optional endpoint restriction specification, which can have the value FIRST, LAST, or BOTH.

If the `minimum-degree` option is specified, the PDLREG procedure estimates models for all degrees between `minimum-degree` and `degree`.

Introductory Example

The following statements generate simulated data for variables \(Y \) and \(X \). \(Y \) depends on the first three lags of \(X \), with coefficients .25, .5, and .25. Thus, the effect of changes of \(X \) on \(Y \) takes effect 25% after one period, 75% after two periods, and 100% after three periods.

```
data test;
  x11 = 0; x12 = 0; x13 = 0;
  do t = -3 to 100;
    x = ranuni(1234);
    y = 10 + .25 * x11 + .5 * x12 + .25 * x13
      + .1 * rannor(1234);
    if t > 0 then output;
    x13 = x12; x12 = x11; x11 = x;
  end;
run;
```

The following statements use the PDLREG procedure to regress \(Y \) on a distributed lag of \(X \). The length of the lag distribution is 4, and the degree of the distribution polynomial is specified as 3.

```
proc pdlreg data=test;
  model y = x( 4, 3 );
run;
```

The PDLREG procedure first prints a table of statistics for the residuals of the model, as shown in Figure 27.1. For an explanation of these statistics, see Chapter 8, “The AUTOREG Procedure.”
The PDLREG procedure next prints a table of parameter estimates, standard errors, and \(t \) tests, as shown in Figure 27.2.

The table in Figure 27.2 shows the model intercept and the estimated parameters of the lag distribution polynomial. The parameter labeled X**0 is the constant term, \(\alpha_0 \), of the distribution polynomial. X**1 is the linear coefficient, \(\alpha_1 \); X**2 is the quadratic coefficient, \(\alpha_2 \); and X**3 is the cubic coefficient, \(\alpha_3 \).

The parameter estimates for the distribution polynomial are not of interest in themselves. Since the PDLREG procedure does not print the orthogonal polynomial basis that it constructs to represent the distribution polynomial, these coefficient values cannot be interpreted.

However, because these estimates are for an orthogonal basis, you can use these results to test the degree of the polynomial. For example, this table shows that the X**3 estimate is not significant; the \(p \)-value for its \(t \) ratio is 0.4007, while the X**2 estimate is highly significant \((p < .0001)\). This indicates that a second-degree polynomial might be more appropriate for this data set.

The PDLREG procedure next prints the lag distribution coefficients and a graphical display of these coefficients, as shown in Figure 27.3.
The lag distribution coefficients are the coefficients of the lagged values of *X* in the regression model. These coefficients lie on the polynomial curve defined by the parameters shown in Figure 27.2. Note that the estimated values for *X(1)*, *X(2)*, and *X(3)* are highly significant, while *X(0)* and *X(4)* are not significantly different from 0. These estimates are reasonably close to the true values used to generate the simulated data.

The graphical display of the lag distribution coefficients plots the estimated lag distribution polynomial reported in Figure 27.2. The roughly quadratic shape of this plot is another indication that a third-degree distribution curve is not needed for this data set.

Syntax: PDLREG Procedure

The following statements can be used with the PDLREG procedure:

```
PROC PDLREG option ;
   BY variables ;
MODEL dependent = effects / options ;
OUTPUT OUT= SAS-data-set keyword = variables ;
RESTRICT restrictions ;
```

Functional Summary

The statements and options used with the PDLREG procedure are summarized in Table 27.1.

Table 27.1 Functional Summary

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Set Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specify the input data set</td>
<td>PROC PDLREG</td>
<td>DATA=</td>
</tr>
<tr>
<td>Write predicted values to an output data set</td>
<td>OUTPUT</td>
<td>OUT=</td>
</tr>
<tr>
<td>BY-Group Processing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specify BY-group processing</td>
<td>BY</td>
<td></td>
</tr>
<tr>
<td>Printing Control Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Request all print options</td>
<td>MODEL</td>
<td>ALL</td>
</tr>
</tbody>
</table>
Table 27.1 continued

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print transformed coefficients</td>
<td>MODEL</td>
<td>COEF</td>
</tr>
<tr>
<td>Print correlations of the estimates</td>
<td>MODEL</td>
<td>CORRB</td>
</tr>
<tr>
<td>Print covariances of the estimates</td>
<td>MODEL</td>
<td>COVB</td>
</tr>
<tr>
<td>Print DW statistics up to order (j)</td>
<td>MODEL</td>
<td>DW=j</td>
</tr>
<tr>
<td>Print the marginal probability of DW statistics</td>
<td>MODEL</td>
<td>DWPORB</td>
</tr>
<tr>
<td>Print inverse of Toeplitz matrix</td>
<td>MODEL</td>
<td>GINV</td>
</tr>
<tr>
<td>Print inverse of the crossproducts matrix</td>
<td>MODEL</td>
<td>I</td>
</tr>
<tr>
<td>Print details at each iteration step</td>
<td>MODEL</td>
<td>ITPRINT</td>
</tr>
<tr>
<td>Print Durbin (t) statistic</td>
<td>MODEL</td>
<td>LAGDEP</td>
</tr>
<tr>
<td>Print Durbin (h) statistic</td>
<td>MODEL</td>
<td>LAGDEP=</td>
</tr>
<tr>
<td>Suppress printed output</td>
<td>MODEL</td>
<td>NOPRINT</td>
</tr>
<tr>
<td>Print partial autocorrelations</td>
<td>MODEL</td>
<td>PARTIAL</td>
</tr>
<tr>
<td>Print standardized parameter estimates</td>
<td>MODEL</td>
<td>STB</td>
</tr>
<tr>
<td>Print crossproducts matrix</td>
<td>MODEL</td>
<td>XPX</td>
</tr>
</tbody>
</table>

Model Estimation Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify order of autoregressive process</td>
<td>MODEL</td>
<td>NLAG=</td>
</tr>
<tr>
<td>Suppress intercept parameter</td>
<td>MODEL</td>
<td>NOINT</td>
</tr>
<tr>
<td>Specify convergence criterion</td>
<td>MODEL</td>
<td>CONVERGE=</td>
</tr>
<tr>
<td>Specify maximum number of iterations</td>
<td>MODEL</td>
<td>MAXITER=</td>
</tr>
<tr>
<td>Specify estimation method</td>
<td>MODEL</td>
<td>METHOD=</td>
</tr>
</tbody>
</table>

Output Control Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify confidence limit size</td>
<td>OUTPUT</td>
<td>ALPHACLI=</td>
</tr>
<tr>
<td>Specify confidence limit size for structural predicted values</td>
<td>OUTPUT</td>
<td>ALPHACLM=</td>
</tr>
<tr>
<td>Output transformed intercept variable</td>
<td>OUTPUT</td>
<td>CONSTANT=</td>
</tr>
<tr>
<td>Output lower confidence limit for predicted values</td>
<td>OUTPUT</td>
<td>LCL=</td>
</tr>
<tr>
<td>Output lower confidence limit for structural predicted values</td>
<td>OUTPUT</td>
<td>LCLM=</td>
</tr>
<tr>
<td>Output predicted values</td>
<td>OUTPUT</td>
<td>P=</td>
</tr>
<tr>
<td>Output predicted values of the structural part</td>
<td>OUTPUT</td>
<td>PM=</td>
</tr>
<tr>
<td>Output residuals from the predicted values</td>
<td>OUTPUT</td>
<td>R=</td>
</tr>
<tr>
<td>Output residuals from the structural predicted values</td>
<td>OUTPUT</td>
<td>RM=</td>
</tr>
<tr>
<td>Output transformed variables</td>
<td>OUTPUT</td>
<td>TRANSFORM=</td>
</tr>
<tr>
<td>Output upper confidence limit for the predicted values</td>
<td>OUTPUT</td>
<td>UCL=</td>
</tr>
<tr>
<td>Output upper confidence limit for the structural predicted values</td>
<td>OUTPUT</td>
<td>UCLM=</td>
</tr>
</tbody>
</table>
PROC PDLREG Statement

PROC PDLREG option;

The PROC PDLREG statement has the following option:

DATA=SAS-data-set
 specifies the name of the SAS data set containing the input data. If you do not specify the DATA= option, the most recently created SAS data set is used.

In addition, you can place any of the following MODEL statement options in the PROC PDLREG statement, which is equivalent to specifying the option for every MODEL statement: ALL, COEF, CONVERGE=, CORRB, COVB, DW=, DWPROB, GINV, ITPRINT, MAXITER=, METHOD=, NOINT, NOPRINT, and PARTIAL.

BY Statement

BY variables;

A BY statement can be used with PROC PDLREG to obtain separate analyses on observations in groups defined by the BY variables.

MODEL Statement

MODEL dependent = effects / options;

The MODEL statement specifies the regression model. The keyword MODEL is followed by the dependent variable name, an equal sign, and a list of independent effects. Only one MODEL statement is allowed.

Every variable in the model must be a numeric variable in the input data set. Specify an independent effect with a variable name optionally followed by a polynomial lag distribution specification.

Specifying Independent Effects

The general form of an effect is

variable (length, degree, minimum-degree, constraint)

The term in parentheses following the variable name specifies a polynomial distributed lag (PDL) for the variable. The PDL specification is as follows:

length specifies the number of lags of the variable to include in the lag distribution.

degree specifies the maximum degree of the distribution polynomial. If not specified, the degree defaults to the lag length.

minimum-degree specifies the minimum degree of the polynomial. By default minimum-degree is the same as degree.

constraint specifies endpoint restrictions on the polynomial. The value of constraint can be FIRST, LAST, or BOTH. If a value is not specified, there are no endpoint restrictions.
If you do not specify the *degree* or *minimum-degree* parameter, but you do specify endpoint restrictions, you must use commas to show which parameter, *degree* or *minimum-degree*, is left out.

MODEL Statement Options

The following options can appear in the MODEL statement after a slash (/).

ALL
prints all the matrices computed during the analysis of the model.

COEF
prints the transformation coefficients for the first p observations. These coefficients are formed from a scalar multiplied by the inverse of the Cholesky root of the Toeplitz matrix of autocovariances.

CORRB
prints the matrix of estimated correlations between the parameter estimates.

COVB
prints the matrix of estimated covariances between the parameter estimates.

DW=j
prints the generalized Durbin-Watson statistics up to the order of j. The default is DW=1. When you specify the LAGDEP or LAGDEP= name option, the Durbin-Watson statistic is not printed unless you specify the DW= option.

DWPROB
prints the marginal probability of the Durbin-Watson statistic.

CONVERGE=value
sets the convergence criterion. If the maximum absolute value of the change in the autoregressive parameter estimates between iterations is less than this amount, then convergence is assumed. The default is CONVERGE=0.001.

GINV
prints the inverse of the Toeplitz matrix of autocovariances for the Yule-Walker solution.

I
prints $(X'X)^{-1}$, the inverse of the crossproducts matrix for the model; or, if restrictions are specified, it prints $(X'X)^{-1}$ adjusted for the restrictions.

ITPRINT
prints information on each iteration.

LAGDEP
LAGDV
prints the t statistic for testing residual autocorrelation when regressors contain lagged dependent variables.
LAGDEP=name
LAGDV=name
prints the Durbin h statistic for testing the presence of first-order autocorrelation when regressors contain the lagged dependent variable whose name is specified as LAGDEP=name. When the h statistic cannot be computed, the asymptotically equivalent t statistic is given.

MAXITER=number
sets the maximum number of iterations allowed. The default is MAXITER=50.

METHOD=value
specifies the type of estimates for the autoregressive component. The values of the METHOD= option are as follows:

ML specifies the maximum likelihood method.
ULS specifies unconditional least squares.
YW specifies the Yule-Walker method.
ITYW specifies iterative Yule-Walker estimates.

The default is METHOD=ML if you specified the LAGDEP or LAGDEP= option; otherwise, METHOD=YW is the default.

NLAG=m
NLAG=(number-list)
specifies the order of the autoregressive process or the subset of autoregressive lags to be fit. If you do not specify the NLAG= option, PROC PDLREG does not fit an autoregressive model.

NOINT
suppresses the intercept parameter from the model.

NOPRINT
suppresses the printed output.

PARTIAL
prints partial autocorrelations if the NLAG= option is specified.

STB
prints standardized parameter estimates. Sometimes known as a standard partial regression coefficient, a standardized parameter estimate is a parameter estimate multiplied by the standard deviation of the associated regressor and divided by the standard deviation of the regressed variable.

XPX
prints the crossproducts matrix, $X'X$, used for the model. X refers to the transformed matrix of regressors for the regression.
OUTPUT Statement

OUTPUT OUT=SAS-data-set keyword=option . . . ;

The OUTPUT statement creates an output SAS data set that contains variables as specified by the following keyword options. For a description of the associated computations for these options, see the section “Predicted Values” in Chapter 8, “The AUTOREG Procedure.”

ALPHACLI=number
sets the confidence limit size for the estimates of future values of the current realization of the response time series to number, where number is less than one and greater than zero. The resulting confidence interval has 1–number confidence. The default value for number is 0.05, corresponding to a 95% confidence interval.

ALPHACLM=number
sets the confidence limit size for the estimates of the structural or regression part of the model to number, where number is less than one and greater than zero. The resulting confidence interval has 1–number confidence. The default value for number is 0.05, corresponding to a 95% confidence interval.

OUT=SAS-data-set
names the output data.

The following specifications are of the form keyword=names, where keyword specifies the statistic to include in the output data set and names gives names to the variables that contain the statistics.

CONSTANT=variable
writes the transformed intercept to the output data set.

LCL=name
requests that the lower confidence limit for the predicted value (specified in the PREDICTED= option) be added to the output data set under name.

LCLM=name
requests that the lower confidence limit for the structural predicted value (specified in the PREDICTEDM= option) be added to the output data set under name.

PREDICTED=name
P=name
stores the predicted values in the output data set under name.

PREDICTEDM=name
PM=name
stores the structural predicted values in the output data set under name. These values are formed from only the structural part of the model.

RESIDUAL=name
R=name
stores the residuals from the predicted values based on both the structural and time series parts of the model in the output data set under name.
RESIDUALM=\textit{name}

\textbf{RM=**name**}

requests that the residuals from the structural prediction be given.

\textbf{TRANSFORM=**variables**}

requests that the specified variables from the input data set be transformed by the autoregressive model and put in the output data set. If you need to reproduce the data suitable for reestimation, you must also transform an intercept variable. To do this, transform a variable that only takes the value 1 or use the CONSTANT= option.

\textbf{UCL=**name**}

stores the upper confidence limit for the predicted value (specified in the PREDICTED= option) in the output data set under \textit{name}.

\textbf{UCLM=**name**}

stores the upper confidence limit for the structural predicted value (specified in the PREDICTEDM= option) in the output data set under \textit{name}.

For example, the SAS statements

```sas
proc pdlreg data=a;
  model y=x1 x2;
  output out=b p=yhat r=resid;
run;
```

create an output data set named B. In addition to the input data set variables, the data set B contains the variable \textit{YHAT}, whose values are predicted values of the dependent variable \textit{Y}, and \textit{RESID}, whose values are the residual values of \textit{Y}.

RESTRICT Statement

```sas
RESTRICT equation, . . . , equation;
```

The RESTRICT statement places restrictions on the parameter estimates for covariates in the preceding \textbf{MODEL} statement. A parameter produced by a distributed lag cannot be restricted with the RESTRICT statement.

Each restriction is written as a linear equation. If you specify more than one restriction in a RESTRICT statement, the restrictions are separated by commas.

You can refer to parameters by the name of the corresponding regressor variable. Each name used in the equation must be a regressor in the preceding \textbf{MODEL} statement. Use the keyword INTERCEPT to refer to the intercept parameter in the model.

RESTRICT statements can be given labels. You can use labels to distinguish results for different restrictions in the printed output. Labels are specified as follows:

```sas
label : RESTRICT . . .
```

The following is an example of the use of the RESTRICT statement, in which the coefficients of the regressors X1 and X2 are required to sum to 1:
Parameter names can be multiplied by constants. When no equal sign appears, the linear combination is set equal to 0. Note that the parameters associated with the variables are restricted, not the variables themselves. Here are some examples of valid RESTRICT statements:

\begin{verbatim}
restrict x1 + x2 = 1;
restrict x1 + x2 - 1;
restrict 2 * x1 = x2 + x3, intercept + x4 = 0;
restrict x1 = x2 = x3 = 1;
restrict 2 * x1 - x2;
\end{verbatim}

Restricted parameter estimates are computed by introducing a Lagrangian parameter λ for each restriction (Pringle and Rayner 1971). The estimates of these Lagrangian parameters are printed in the parameter estimates table. If a restriction cannot be applied, its parameter value and degrees of freedom are listed as 0.

The Lagrangian parameter, λ, measures the sensitivity of the SSE to the restriction. If the restriction is changed by a small amount ϵ, the SSE is changed by $2\lambda \epsilon$.

The t ratio tests the significance of the restrictions. If λ is zero, the restricted estimates are the same as the unrestricted ones.

You can specify any number of restrictions in a RESTRICT statement, and you can use any number of RESTRICT statements. The estimates are computed subject to all restrictions specified. However, restrictions should be consistent and not redundant.

Details: PDLREG Procedure

Missing Values

The PDLREG procedure skips any observations at the beginning of the data set that have missing values. The procedure uses all observations with nonmissing values for all the independent and dependent variables such that the lag distribution has sufficient nonmissing lagged independent variables.

Polynomial Distributed Lag Estimation

The simple finite distributed lag model is expressed in the form

$$ y_t = \alpha + \sum_{i=0}^{p} \beta_i x_{t-i} + \epsilon_t $$

When the lag length (p) is long, severe multicollinearity can occur. Use the Almon or polynomial distributed lag model to avoid this problem, since the relatively low-degree $d \leq p$ polynomials can capture the true lag
The lag coefficient can be written in the Almon polynomial lag

\[\beta_i = \alpha_0^* + \sum_{j=1}^{d} \alpha_j^* i^j \]

Emerson (1968) proposed an efficient method of constructing orthogonal polynomials from the preceding polynomial equation as

\[\beta_i = \alpha_0 + \sum_{j=1}^{d} \alpha_j f_j(i) \]

where \(f_j(i) \) is a polynomial of degree \(j \) in the lag length \(i \). The polynomials \(f_j(i) \) are chosen so that they are orthogonal,

\[\sum_{i=1}^{n} w_i f_j(i) f_k(i) = \begin{cases} 1 & \text{if } j = k \\ 0 & \text{if } j \neq k \end{cases} \]

where \(w_i \) is the weighting factor, and \(n = p + 1 \). PROC PDLREG uses the equal weights \((w_i = 1) \) for all \(i \). To construct the orthogonal polynomials, the following recursive relation is used:

\[f_j(i) = (A_j i + B_j) f_{j-1}(i) - C_j f_{j-2}(i) \]

where \(f_{-1}(i) = 0 \) and \(f_0(i) = -A_j \sum_{i=1}^{n} w_i i f_{j-1}(i) \). PROC PDLREG estimates the orthogonal polynomial coefficients, \(\alpha_0, \ldots, \alpha_d \), to compute the coefficient estimate of each independent variable \((X)\) with distributed lags. For example, if an independent variable is specified as \(X(9,3) \), a third-degree polynomial is used to specify the distributed lag coefficients. The third-degree polynomial is fit as a constant term, a linear term, a quadratic term, and a cubic term. The four terms are constructed to be orthogonal. In the output produced by the PDLREG procedure for this case, parameter estimates with names \(X**0, X**1, X**2, \) and \(X**3 \) correspond to \(\hat{\alpha}_0, \hat{\alpha}_1, \hat{\alpha}_2, \) and \(\hat{\alpha}_3 \), respectively. A test using the \(t \) statistic and the approximate \(p \)-value (“Approx Pr > |t|”) associated with \(X**3 \) can determine whether a second-degree polynomial rather than a third-degree polynomial is appropriate. The estimates of the 10 lag coefficients associated with the specification \(X(9,3) \) are labeled \(X(0), X(1), X(2), X(3), X(4), X(5), X(6), X(7), X(8), \) and \(X(9) \).
Autoregressive Error Model Estimation

The PDLREG procedure uses the same autoregressive error model estimation methods as the AUTOREG procedure. These two procedures share the same computational resources for computing estimates. For more information about estimation methods for autoregressive error models, see Chapter 8, “The AUTOREG Procedure.”

OUT= Data Set

The OUT= data set produced by the PDLREG procedure’s OUTPUT statement is similar in form to the OUT= data set produced by the AUTOREG procedure. For more information about the OUT= data set, see Chapter 8, “The AUTOREG Procedure.”

Printed Output

The PDLREG procedure prints the following items:

1. the name of the dependent variable
2. the ordinary least squares (OLS) estimates
3. the estimates of autocorrelations and of the autocovariance, and if line size permits, a graph of the autocorrelation at each lag. The autocorrelation for lag 0 is 1. These items are printed if you specify the NLAG= option.
4. the partial autocorrelations if the PARTIAL and NLAG= options are specified. The first partial autocorrelation is the autocorrelation for lag 1.
5. the preliminary mean square error, which results from solving the Yule-Walker equations if you specify the NLAG= option
6. the estimates of the autoregressive parameters, their standard errors, and the ratios of estimates to standard errors (t) if you specify the NLAG= option
7. the statistics of fit for the final model if you specify the NLAG= option. These include the error sum of squares (SSE), the degrees of freedom for error (DFE), the mean square error (MSE), the root mean square error (Root MSE), the mean absolute error (MAE), the mean absolute percentage error (MAPE), the Schwarz information criterion (SBC), Akaike’s information criterion (AIC), Akaike’s information criterion corrected (AICC), the regression R^2 (Regress R-Square), the total R^2 (Total R-Square), and the Durbin-Watson statistic (Durbin-Watson). For more information about the regression R^2 and the total R^2, see Chapter 8, “The AUTOREG Procedure.”
8. the parameter estimates for the structural model (B), a standard error estimate, the ratio of estimate to standard error (t), and an approximation to the significance probability for the parameter being 0 (“Approx Pr > |t|”)
9. a plot of the lag distribution (estimate of lag distribution)
10. the covariance matrix of the parameter estimates if the COVB option is specified
ODS Graphics

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling ODS Graphics” in that chapter.

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

PROC PDLREG assigns a name to each table it creates. You can use these names to reference the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in Table 27.2.

<table>
<thead>
<tr>
<th>ODS Table Name</th>
<th>Description</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODS Tables Created by the MODEL Statement</td>
<td>Estimates of autoregressive parameters</td>
<td>NLAG=</td>
</tr>
<tr>
<td>ARParameterEstimates</td>
<td>Cholesky root of gamma</td>
<td>NLAG= and ALL</td>
</tr>
<tr>
<td>CholeskyFactor</td>
<td>Coefficients for first NLAG observations</td>
<td>NLAG= and (COEF or ALL)</td>
</tr>
<tr>
<td>Coefficients</td>
<td>Convergence status table</td>
<td>Default</td>
</tr>
<tr>
<td>ConvergenceStatus</td>
<td>Correlation of parameter estimates</td>
<td>CORRB</td>
</tr>
<tr>
<td>CorrB</td>
<td>Estimates of autocorrelations</td>
<td>NLAG=</td>
</tr>
<tr>
<td>CorrGraph</td>
<td>Covariance of parameter estimates</td>
<td>COVB</td>
</tr>
<tr>
<td>CovB</td>
<td>Linear dependence equation</td>
<td>Default</td>
</tr>
<tr>
<td>DependenceEquations</td>
<td>Dependent variable</td>
<td>Default</td>
</tr>
<tr>
<td>Dependent</td>
<td>Durbin-Watson statistics</td>
<td>DW=</td>
</tr>
<tr>
<td>DWTest</td>
<td>Durbin-Watson statistics and p-values</td>
<td>DW=</td>
</tr>
<tr>
<td>DWTestProb</td>
<td>Expected autocorrelations</td>
<td>{NLAG= and (COEF or ALL)} or {NLAG=(l₁...lₘ) where lₘ > m}</td>
</tr>
<tr>
<td>ExpAutocorr</td>
<td>Summary of regression</td>
<td>Default</td>
</tr>
<tr>
<td>FitSummary</td>
<td>Gamma inverse</td>
<td>NLAG= and (GINV or ALL)</td>
</tr>
<tr>
<td>GammaInverse</td>
<td>Iteration history</td>
<td>ITPRINT</td>
</tr>
<tr>
<td>LagDist</td>
<td>Lag distribution</td>
<td>Default</td>
</tr>
<tr>
<td>ParameterEstimates</td>
<td>Parameter estimates</td>
<td>Default</td>
</tr>
<tr>
<td>ParameterEstimatesGivenAR</td>
<td>Parameter estimates assuming AR parameters are given</td>
<td>NLAG=</td>
</tr>
<tr>
<td>PartialAutoCorr</td>
<td>Partial autocorrelation</td>
<td>PARTIAL</td>
</tr>
</tbody>
</table>
Table 27.2 continued

<table>
<thead>
<tr>
<th>ODS Table Name</th>
<th>Description</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>PreMSE</td>
<td>Preliminary MSE</td>
<td>NLAG=</td>
</tr>
<tr>
<td>XPXIMatrix</td>
<td>$\left(X'X\right)^{-1}$ matrix</td>
<td></td>
</tr>
<tr>
<td>XPXMatrix</td>
<td>$X'X$ matrix</td>
<td>XPX</td>
</tr>
<tr>
<td>YWIterSSE</td>
<td>Yule-Walker iteration sum of squared</td>
<td>METHOD=ITYW</td>
</tr>
<tr>
<td></td>
<td>error</td>
<td></td>
</tr>
</tbody>
</table>

ODS Tables Created by the RESTRICT Statement

<table>
<thead>
<tr>
<th>Restrict</th>
<th>Restriction table</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Default</td>
<td></td>
</tr>
</tbody>
</table>

Examples: PDLREG Procedure

Example 27.1: Industrial Conference Board Data

In this example, a second-degree Almon polynomial lag model is fit to a model with a five-period lag, and dummy variables are used for quarter effects. The PDL model is estimated using capital appropriations data series for the period 1952 to 1967. The estimation model is written

$$CE_t = a_0 + b_1Q1_t + b_2Q2_t + b_3Q3_t + c_0CA_t + c_1CA_{t-1} + \cdots + c_5CA_{t-5}$$

where CE represents capital expenditures and CA represents capital appropriations.

title 'National Industrial Conference Board Data';
title2 'Quarterly Series - 1952Q1 to 1967Q4';

data a;
 input ce ca @@;
 qtr = mod(_n_-1, 4) + 1;
 q1 = qtr=1;
 q2 = qtr=2;
 q3 = qtr=3;
datelines;
 2072 1660 2077 1926 2078 2181 2043 1897 2062 1695

... more lines ...

proc pdlreg data=a;
 model ce = q1 q2 q3 ca(5,2) / dwprob;
run;

The printed output produced by the PDLREG procedure is shown in Output 27.1.1. The small Durbin-Waston test indicates autoregressive errors.
Output 27.1.1 Printed Output Produced by PROC PDLREG

National Industrial Conference Board Data
Quarterly Series - 1952Q1 to 1967Q4

The PDLREG Procedure

Dependent Variable: ce

| Variable | Estimate | Standard Error | t Value | Approx Pr > |t| |
|----------|----------|----------------|---------|-------------|---|
| Intercept| 210.0109 | 73.2524 | 2.87 | 0.0061 | |
| q1 | -10.5515 | 61.0634 | -0.17 | 0.8635 | |
| q2 | -20.9887 | 59.9386 | -0.35 | 0.7277 | |
| q3 | -30.4337 | 59.9004 | -0.51 | 0.6137 | |
| ca**0 | 0.3760 | 0.007318 | 51.38 | <0.0001 | |
| ca**1 | 0.1297 | 0.0251 | 5.16 | <0.0001 | |
| ca**2 | 0.0247 | 0.0593 | 0.42 | 0.6794 | |

The following statements use the REG procedure to fit the same polynomial distributed lag model. A DATA step computes lagged values of the regressor X, and RESTRICT statements are used to impose the polynomial lag distribution. For the restricted least squares estimation of the Almon distributed lag model, see Judge et al. (1985, pp. 357–359).

data b;
 set a;
 ca_1 = lag(ca);
 ca_2 = lag2(ca);
 ca_3 = lag3(ca);
 ca_4 = lag4(ca);
 ca_5 = lag5(ca);
run;
%\newcommand{proc}{\texttt{proc}}
%\newcommand{reg}{\texttt{reg}}
%\newcommand{data}{\texttt{data=b}}
%\newcommand{model}{\texttt{model}}
%\newcommand{ce}{\texttt{ce}}
%\newcommand{q1}{\texttt{q1}}
%\newcommand{q2}{\texttt{q2}}
%\newcommand{q3}{\texttt{q3}}
%\newcommand{ca}{\texttt{ca}}
%\newcommand{ca_1}{\texttt{ca_1}}
%\newcommand{ca_2}{\texttt{ca_2}}
%\newcommand{ca_3}{\texttt{ca_3}}
%\newcommand{ca_4}{\texttt{ca_4}}
%\newcommand{ca_5}{\texttt{ca_5}}
%\newcommand{restrict}{\texttt{restrict}}

\begin{verbatim}
proc reg data=b;
 model ce = q1 q2 q3 ca ca_1 ca_2 ca_3 ca_4 ca_5;
 restrict - ca + 5*ca_1 - 10*ca_2 + 10*ca_3 - 5*ca_4 + ca_5;
 restrict ca - 3*ca_1 + 2*ca_2 + 2*ca_3 - 3*ca_4 + ca_5;
 restrict -5*ca + 7*ca_1 + 4*ca_2 - 4*ca_3 - 7*ca_4 + 5*ca_5;
run;
\end{verbatim}

The REG procedure output is shown in Output 27.1.2.

\begin{verbatim}
Output 27.1.2 Printed Output Produced by PROC REG
\end{verbatim}

\textbf{National Industrial Conference Board Data Quarterly Series - 1952Q1 to 1967Q4}

\begin{verbatim}
The REG Procedure
Model: MODEL1
Dependent Variable: ce

Analysis of Variance
\begin{tabular}{llllll}
Source & DF & Sum of Squares & Mean Square & F Value & Pr > F \\
Model & 6 & 71343377 & 11890563 & 473.58 & <.0001 \\
Error & 48 & 1205186 & 25108 & & \\
Corrected Total & 54 & 72548564 & & & \\
\end{tabular}
\end{verbatim}

Root MSE	158.45520
R-Square	0.9834
Dependent Mean	3185.69091
Adj R-Sq	0.9813
Coeff Var	4.97397

\begin{verbatim}
Parameter Estimates
\begin{tabular}{llllll}
Variable & DF & Parameter Estimate & Standard Error & t Value & Pr > |t| \\
Intercept & 1 & 210.01094 & 73.25236 & 2.87 & 0.0061 \\
q1 & 1 & -10.55151 & 61.06341 & -0.17 & 0.8635 \\
q2 & 1 & -20.98869 & 59.93860 & -0.35 & 0.7277 \\
q3 & 1 & -30.43374 & 59.90045 & -0.51 & 0.6137 \\
ca & 1 & 0.08947 & 0.03599 & 2.49 & 0.0165 \\
ca_1 & 1 & 0.10432 & 0.01091 & 9.56 & <.0001 \\
ca_2 & 1 & 0.12724 & 0.02547 & 5.00 & <.0001 \\
ca_3 & 1 & 0.15823 & 0.02537 & 6.24 & <.0001 \\
ca_4 & 1 & 0.19729 & 0.01115 & 17.69 & <.0001 \\
ca_5 & 1 & 0.24443 & 0.03704 & 6.60 & <.0001 \\
RESTRIC1 & -1 & 623.63242 & 12697 & 0.05 & 0.9614* \\
RESTRIC1 & -1 & 18933 & 44803 & 0.42 & 0.6772* \\
RESTRIC1 & -1 & 10303 & 18422 & 0.56 & 0.5814* \\
\end{tabular}
\end{verbatim}

* Probability computed using beta distribution.
Example 27.2: Money Demand Model

This example estimates the demand for money by using the dynamic specification

$$m_t = a_0 + b_0 m_{t-1} + \sum_{i=0}^{5} c_i y_{t-i} + \sum_{i=0}^{2} d_i r_{t-i} + \sum_{i=0}^{3} f_i p_{t-i} + u_t$$

where

- $m_t =$ log of real money stock (M1)
- $y_t =$ log of real GNP
- $r_t =$ interest rate (commercial paper rate)
- $p_t =$ inflation rate
- $c_i, d_i, f_i (i > 0)$ are coefficients for the lagged variables

The following DATA step reads the data and transforms the real money and real GNP variables using the natural logarithm. For a description of the data, see Balke and Gordon (1986).

```plaintext
data a;
  input m1 gnp gdf r @@;
  m = log( 100 * m1 / gdf );
  lagm = lag( m );
  y = log( gnp );
  p = log( gdf / lag( gdf ) );
  date = intnx( 'qtr', '1jan1968'd, _n_-1 );
  format date yyqc6.;
  label m = 'Real Money Stock (M1)'
           lagm = 'Lagged Real Money Stock'
           y = 'Real GNP'
           r = 'Commercial Paper Rate'
           p = 'Inflation Rate';
datalines;
187.15 1036.22 81.18 5.58
... more lines ...
```

Output 27.2.1 shows a partial list of the data set.
Chapter 27: The PDLREG Procedure

Output 27.2.1 Partial List of the Data Set A

<table>
<thead>
<tr>
<th>Obs</th>
<th>date</th>
<th>m</th>
<th>lagm</th>
<th>y</th>
<th>r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1968:1</td>
<td>5.44041</td>
<td>6.94333</td>
<td>5.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1968:2</td>
<td>5.44732</td>
<td>5.44041</td>
<td>6.96226</td>
<td>6.08</td>
<td>0.011513</td>
</tr>
<tr>
<td>3</td>
<td>1968:3</td>
<td>5.45815</td>
<td>5.44732</td>
<td>6.97422</td>
<td>5.96</td>
<td>0.008246</td>
</tr>
<tr>
<td>4</td>
<td>1968:4</td>
<td>5.46492</td>
<td>5.45815</td>
<td>6.97661</td>
<td>5.96</td>
<td>0.014865</td>
</tr>
<tr>
<td>5</td>
<td>1969:1</td>
<td>5.46980</td>
<td>5.46492</td>
<td>6.98855</td>
<td>6.66</td>
<td>0.011005</td>
</tr>
</tbody>
</table>

The regression model is written for the PDLREG procedure with a MODEL statement. The LAGDEP= option is specified to test for the serial correlation in disturbances since regressors contain the lagged dependent variable LAGM.

```plaintext
title 'Money Demand Estimation using Distributed Lag Model';
title2 'Quarterly Data - 1968Q2 to 1983Q4';
proc pdlreg data=a;
   model m = lagm y(5,3) r(2, , ,first) p(3,2) / lagdep=lagm;
run;
```

The estimated model is shown in Output 27.2.2 and Output 27.2.3.

Output 27.2.2 Parameter Estimates

Money Demand Estimation using Distributed Lag Model Quarterly Data - 1968Q2 to 1983Q4

The PDLREG Procedure

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Real Money Stock (M1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ordinary Least Squares Estimates</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SSE</td>
<td>0.0169815</td>
<td>48</td>
</tr>
<tr>
<td>MSE</td>
<td>0.0000354</td>
<td>Root MSE</td>
</tr>
<tr>
<td>SBC</td>
<td>-404.60169</td>
<td>AIC</td>
</tr>
<tr>
<td>MAE</td>
<td>0.00383648</td>
<td>AICC</td>
</tr>
<tr>
<td>MAPE</td>
<td>0.07051345</td>
<td>HQC</td>
</tr>
<tr>
<td>Total R-Square</td>
<td>0.9712</td>
<td></td>
</tr>
</tbody>
</table>
Output 27.2.2 continued

Parameter Estimates

| Variable | DF | Estimate | Standard Error | t Value | Approx Pr > |t| |
|----------|----|----------|----------------|---------|-------------|---|
| Intercept | 1 | -0.1407 | 0.2625 | -0.54 | 0.5943 |
| lagm | 1 | 0.9875 | 0.0425 | 23.21 | <.0001 |
| y**0 | 1 | 0.0132 | 0.004531 | 2.91 | 0.0055 |
| y**1 | 1 | -0.0704 | 0.0528 | -1.33 | 0.1891 |
| y**2 | 1 | 0.1261 | 0.0786 | 1.60 | 0.1154 |
| y**3 | 1 | -0.4089 | 0.1265 | -3.23 | 0.0022 |
| r**0 | 1 | -0.000186| 0.000336 | -0.55 | 0.5816 |
| r**1 | 1 | 0.002200 | 0.000774 | 2.84 | 0.0065 |
| r**2 | 1 | 0.000788 | 0.000249 | 3.16 | 0.0027 |
| p**0 | 1 | -0.6602 | 0.1132 | -5.83 | <.0001 |
| p**1 | 1 | 0.4036 | 0.2321 | 1.74 | 0.0885 |
| p**2 | 1 | -1.0064 | 0.2288 | -4.40 | <.0001 |

Output 27.2.3 Estimates for Lagged Variables

Estimate of Lag Distribution

| Variable | Estimate | Standard Error | t Value | Approx Pr > |t| |
|----------|----------|----------------|---------|-------------|---|
| y(0) | 0.2686 | 0.0910 | 2.95 | 0.0049 | **|
| y(1) | -0.196484| 0.0612 | -3.21 | 0.0024 | **|
| y(2) | -0.163148| 0.0537 | -3.04 | 0.0038 | **|
| y(3) | 0.063850 | 0.0451 | 1.42 | 0.1632 | *|
| y(4) | 0.179733 | 0.0588 | 3.06 | 0.0036 | **|
| y(5) | -0.120276| 0.0679 | -1.77 | 0.0827 | *|

Estimate of Lag Distribution

| Variable | Estimate | Standard Error | t Value | Approx Pr > |t| |
|----------|----------|----------------|---------|-------------|---|
| r(0) | -0.001341| 0.000388 | -3.45 | 0.0012 | **|
| r(1) | -0.000751| 0.000234 | -3.22 | 0.0023 | **|
| r(2) | 0.001770 | 0.000754 | 2.35 | 0.0230 | **|

Estimate of Lag Distribution

| Variable | Estimate | Standard Error | t Value | Approx Pr > |t| |
|----------|----------|----------------|---------|-------------|---|
| p(0) | -1.104051| 0.2027 | -5.45 | <.0001 | **|
| p(1) | 0.082892 | 0.1257 | 0.66 | 0.5128 | ***|
| p(2) | 0.263391 | 0.1381 | 1.91 | 0.0624 | **|
| p(3) | -0.562556| 0.2076 | -2.71 | 0.0093 | **|

Subject Index

Almon lag polynomials, see polynomial distributed lags

BY groups
 PDLREG procedure, 1931

confidence limits
 PDLREG procedure, 1935

distributed lag regression models
 PDLREG procedure, 1925

endpoint restrictions
 for polynomial distributed lags, 1926, 1931

orthogonal polynomials
 PDLREG procedure, 1926

output data sets
 PDLREG procedure, 1938

output table names
 PDLREG procedure, 1939

PDL, see polynomial distributed lags

PDLREG procedure
 BY groups, 1931
 confidence limits, 1935
 distributed lag regression models, 1925
 orthogonal polynomials, 1926
 output data sets, 1938
 output table names, 1939
 polynomial distributed lags, 1926
 predicted values, 1934
 residuals, 1934
 restricted estimation, 1935

polynomial distributed lags
 Almon lag polynomials, 1925
 endpoint restrictions for, 1926, 1931
 PDL, 1925
 PDLREG procedure, 1926

predicted values
 PDLREG procedure, 1934
 structural, 1934

residuals
 PDLREG procedure, 1934
 structural, 1935

restricted estimation
 PDLREG procedure, 1935
Syntax Index

ALL option
 MODEL statement (PDLREG), 1932
ALPHACL1= option
 OUTPUT statement (PDLREG), 1934
ALPHACL2M= option
 OUTPUT statement (PDLREG), 1934
BY statement
 PDLREG procedure, 1931
COEF option
 MODEL statement (PDLREG), 1932
CONSTANT= option
 OUTPUT statement (PDLREG), 1934
CONVERGE= option
 MODEL statement (PDLREG), 1932
CORB option
 MODEL statement (PDLREG), 1932
COVB option
 MODEL statement (PDLREG), 1932
DATA= option
 PROC PDLREG statement, 1931
DW= option
 MODEL statement (PDLREG), 1932
DWPROB option
 MODEL statement (PDLREG), 1932
GINV option
 MODEL statement (PDLREG), 1932
I option
 MODEL statement (PDLREG), 1932
ITPRINT option
 MODEL statement (PDLREG), 1932
LAGDEP option
 MODEL statement (PDLREG), 1932
LAGDEP= option
 MODEL statement (PDLREG), 1933
LAGDV option
 MODEL statement (PDLREG), 1932
LAGDV= option
 MODEL statement (PDLREG), 1933
LCL= option
 OUTPUT statement (PDLREG), 1934
LCLM= option
 OUTPUT statement (PDLREG), 1934
MAXITER= option
 MODEL statement (PDLREG), 1933
METHOD= option
 MODEL statement (PDLREG), 1933
MODEL statement
 PDLREG procedure, 1931
NLAG= option
 MODEL statement (PDLREG), 1933
NOINT option
 MODEL statement (PDLREG), 1933
NOPRINT option
 MODEL statement (PDLREG), 1933
OUT= option
 OUTPUT statement (PDLREG), 1934
OUTPUT statement
 PDLREG procedure, 1934
P= option
 OUTPUT statement (PDLREG), 1934
PARTIAL option
 MODEL statement (PDLREG), 1933
PDLREG procedure, 1929
 syntax, 1929
PM= option
 OUTPUT statement (PDLREG), 1934
PREDICTED= option
 OUTPUT statement (PDLREG), 1934
PREDICTEDM= option
 OUTPUT statement (PDLREG), 1934
PROC PDLREG statement, 1931
R= option
 OUTPUT statement (PDLREG), 1934
RESIDUAL= option
 OUTPUT statement (PDLREG), 1934
RESIDUALM= option
 OUTPUT statement (PDLREG), 1935
RESTRICT statement
 PDLREG procedure, 1935
RM= option
 OUTPUT statement (PDLREG), 1935
STB option
 MODEL statement (PDLREG), 1933
TRANSFORM= option
 OUTPUT statement (PDLREG), 1935
UCL= option
OUTPUT statement (PDLREG), 1935
UCLM= option
 OUTPUT statement (PDLREG), 1935

XPX option
 MODEL statement (PDLREG), 1933