
SAS/ETS® 14.2 User’s Guide
The SASEFAME Interface
Engine

This document is an individual chapter from SAS/ETS® 14.2 User’s Guide.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2016. SAS/ETS® 14.2 User’s Guide. Cary, NC:
SAS Institute Inc.

SAS/ETS® 14.2 User’s Guide

Copyright © 2016, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute
Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time
you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is
illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic
piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software
developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or
disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as
applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S.
federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision
serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The
Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

November 2016

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SAS software may be provided with certain third-party software, including but not limited to open-source software, which is
licensed under its applicable third-party software license agreement. For license information about third-party software distributed
with SAS software, refer to http://support.sas.com/thirdpartylicenses.

http://support.sas.com/thirdpartylicenses

Chapter 47

The SASEFAME Interface Engine

Contents
Overview: SASEFAME Interface Engine . 3424
Getting Started: SASEFAME Interface Engine . 3424

Structure of a SAS Data Set That Contains Time Series Data 3424
Reading and Converting Fame Database Time Series 3425
Using the SAS DATA Step . 3425
Using SAS Procedures . 3425
Using the SAS Windowing Environment . 3425
Remote Fame Data Access . 3426
Creating Views of Time Series by Using SASEFAME LIBNAME Options 3426

Syntax: SASEFAME Interface Engine . 3427
LIBNAME libref SASEFAME Statement . 3428

Details: SASEFAME Interface Engine . 3431
Opening a Local Fame Database . 3431
Managing Fame Server Processes for Remote Access 3432
SAS Output Data Set . 3432
Mapping Fame Frequencies to SAS Time Intervals 3433
Performing the Keeplist Expression Function . 3434
Performing the Crosslist Selection Function . 3436

Examples: SASEFAME Interface Engine . 3438
Example 47.1: Converting an Entire Fame Database 3438
Example 47.2: Reading Time Series from the Fame Database 3441
Example 47.3: Writing Time Series to the SAS Data Set 3442
Example 47.4: Limiting the Time Range of Data . 3445
Example 47.5: Creating a View Using the SQL Procedure and the SASEFAME Engine 3449
Example 47.6: Reading Other Fame Data Objects with the FAMEOUT= Option . . . 3455
Example 47.7: Remote Fame Access by Using Fame CHLI 3458
Example 47.8: Selecting Time Series by Using the CROSSLIST= Option and KEEP

Statement . 3459
Example 47.9: Selecting Time Series by Using the CROSSLIST= Option and Fame

Namelist . 3462
Example 47.10: Selecting Time Series by Using the CROSSLIST= Option and

WHERE=TICK . 3464
Example 47.11: Selecting Boolean Case Series with the FAMEOUT= Option 3466
Example 47.12: Selecting Numeric Case Series with the FAMEOUT= Option 3468
Example 47.13: Selecting Date Case Series with the FAMEOUT= Option 3469
Example 47.14: Selecting String Case Series with the FAMEOUT= Option 3471

3424 F Chapter 47: The SASEFAME Interface Engine

Example 47.15: Extracting Source for Formulas . 3472
Example 47.16: Reading Time Series by Defining Fame Expression Groups in the

INSET= Option with the KEEP= Clause . 3473
Example 47.17: Optimizing Cache Sizes with the TUNEFAME= and TUNECHLI=

Options . 3475
References . 3478

Overview: SASEFAME Interface Engine
The SASEFAME interface engine provides a seamless interface between Fame and SAS data to enable SAS
users to access and process time series, case series, and formulas that reside in a Fame database.

Fame is an integrated, front-to-back market data and historical database solution for storing and managing
real-time and high-volume time series data that are used by leading institutions in the financial, energy, and
public sectors, as well as by third-party content aggregators, software vendors, and individual investors. Fame
provides real-time market data feeds and end-of-day data, a web-based desktop solution, application hosting,
data delivery components, and tools for performing analytic modeling.

The SASEFAME engine uses the LIBNAME statement to enable you to specify the time series that you want
to read from the Fame database and how you want to convert the selected time series to the same time scale.
You can then use the SAS DATA step to perform further subsetting and to store the resulting time series in a
SAS data set. You can perform more analysis (if desired) either in the same SAS session or in a later session.

The SASEFAME interface engine supports Windows and Linux Opteron hosts that use Fame 11.5. However,
you can still get remote access to Fame data by using the master server on the AIX and Solaris hosts. For
more information about MarketMap (formerly Fame) servers, see Guide to MarketMap Database Servers,
formerly known as Guide to Fame Database Servers.

Getting Started: SASEFAME Interface Engine

Structure of a SAS Data Set That Contains Time Series Data
The SAS System represents time series data in a two-dimensional array, called a SAS data set, whose columns
correspond to series variables and whose rows correspond to measurements of these variables at certain
time periods. The time periods at which observations are recorded can be included in the data set as a time
ID variable. The SASEFAME engine provides a time ID variable named DATE. The DATE variable can be
represented by any of the time intervals shown in the section “Mapping Fame Frequencies to SAS Time
Intervals” on page 3433.

Reading and Converting Fame Database Time Series F 3425

Reading and Converting Fame Database Time Series
The SASEFAME engine supports reading and converting time series that reside in Fame databases. The
SASEFAME engine uses Fame’s Work database to temporarily store the converted time series. All series
that are specified by the Fame wildcard are written to the Fame Work database. For conversion of very large
databases, you might want to define the FAME_TEMP environment variable to point to a location where there
is ample space for the Fame Work database.

The SASEFAME engine provides seamless access to Fame databases via Fame’s C host language interface
(CHLI). Fame expressions that contain formulas and Fame functions can be input to the engine via the
INSET= option.

The SASEFAME engine finishes the CHLI whenever a fatal error occurs. To restart the engine after a fatal
error, terminate the current SAS session and open a new SAS session.

Using the SAS DATA Step
You can store the converted series in a SAS data set by using the SAS DATA step. You can also perform
other operations on your data inside the DATA step. After your data are stored in a SAS data set, you can use
this data set as you would any other SAS data set.

Using SAS Procedures
You can print the output SAS data set by using the PRINT procedure and report information about the
contents of your data set by using the CONTENTS procedure, as in Example 47.1. You can create a view of
the Fame database by using the SQL procedure’s USING clause to reference the SASEFAME engine in your
libref. See Example 47.5.

Using the SAS Windowing Environment
You can see the available data sets in the SAS LIBNAME window of the SAS windowing environment. To do
so, select the SASEFAME engine libref in the LIBNAME window that you have previously defined in your
LIBNAME statement. You can view your SAS output observations by double-clicking the desired output
data set libref in the LIBNAME window of the SAS windowing environment. Type Viewtable on the SAS
command line to view any of your SASEFAME engine tables, views, or librefs both for input and output
data sets. Before you use the Viewtable command, it is recommended that you store your output data sets
in a physical folder or library that is separate from the folder or library used for your input databases. (The
default location for output data sets is the SAS Work library.)

3426 F Chapter 47: The SASEFAME Interface Engine

Remote Fame Data Access
The remote access feature of the SASEFAME engine uses the MarketMap (Fame) CHLI to communicate
with your remote server (master). It is available to licensed MarketMap customers who have the CHLI on
both their remote and client machines.

For an example that uses the master server, see Example 47.7, where you simply provide the frdb_m port
number and node name of your Fame master server in your SASEFAME engine libref. For more information,
see the section “Start the Master Server” in Guide to MarketMap Database Servers.

Creating Views of Time Series by Using SASEFAME LIBNAME Options
You can perform selection based on names of your time series simply by using Fame wildcard specifications
in the SASEFAME engine WILDCARD= option.

You can limit the time span of time series data by specifying a beginning and ending date range in the
SASEFAME engine RANGE= option.

It is also easy to use the SAS input data set INSET= option to create a specific view of your Fame data. You
can create multiple views by using multiple LIBNAME statements with customized options that are tailored
to the unique views that you want to create.

You can list the INSET variables that you want to keep in your SAS data set by using the KEEP= clause.
When you use INSET variables in conjunction with the input data set that you specify in the INSET= option,
the SASEFAME engine can show any or all of your expression groups in the same view or in multiple views.
The INSET= option defines the valid set of expression groups that you can reference in the KEEP= clause, as
shown in Example 47.16.

The INSET variables define the BY variables that enable you to view cross sections (slices) of your data.
When you use INSET variables in conjunction with the WHERE clause and the CROSSLIST= option, the
SASEFAME engine can show any or all of your BY groups in the same view or in multiple views. When
you use the INSET= option along with a WHERE clause that specifies the BY variables that you want to
use in your view, you must also use the CROSSLIST= option, as shown in Example 47.10. You can use the
CROSSLIST= option without using the INSET= option, as shown in Example 47.8 and Example 47.9.

Syntax: SASEFAME Interface Engine F 3427

Syntax: SASEFAME Interface Engine
The SASEFAME interface engine uses standard engine syntax. Table 47.1 summarizes the options used by
the SASEFAME engine.

Table 47.1 Summary of LIBNAME libref SASEFAME Statement Options

Option Description

AS_DB= Specifies the channel name to use for a local database;
used when Fame expressions or formulas need to resolve
in a Fame child process.

CONVERT= Specifies the Fame frequency and the Fame technique
CROSSLIST= Specifies a Fame crosslist fame_namelist to perform

selection based on the crossproduct of two Fame namelists
DBVERSION= Echoes the present version number of the Fame Work

database in the SAS log
DEBUG= Specifies whether or not you need diagnostic message

logging in the SAS log window
FAMEOUT= Specifies the Fame data object class/type that you want

output to the SAS data set
INSET= Uses a SAS data set named setname and KEEP=

fame_expression_group as selection input variables or
WHERE= fame_bygroup as selection input for BY
variables

RANGE= Specifies the range of data to keep in 'ddmmmyyy' –
'ddmmmyyyy' format

TUNEFAME= Tunes the Fame database engine’s use of memory to
reduce I/O in favor of a bigger virtual memory for caching
database objects

TUNECHLI= Tunes the CHLI database engine’s use of memory to
reduce I/O in favor of a bigger virtual memory for caching
database objects

WILDCARD= Specifies a Fame wildcard to match data object series
names within the Fame database

3428 F Chapter 47: The SASEFAME Interface Engine

LIBNAME libref SASEFAME Statement
LIBNAME libref SASEFAME ‘physical name’ options ;

Because ‘physical name’ specifies the location of the folder where your Fame database resides, it should end
in a backslash if you are in a Windows environment or a forward slash if you are in a UNIX environment.

If you are accessing a remote Fame database using an implicit connection in the Fame CHLI, you can use the
following syntax for ‘physical name’:

‘#port_number @hostname physical_path_name ’

You can specify the following options.

AS_DB=fame_db_name

OPEN_AS= fame_db_name
specifies the Fame database ID to use in the Fame OPEN command, which is often the same as the
name of the database (without the .db extension). In Fame, you can retrieve a list of open database ID
names by using the Fame command TYPE @OPEN.DB. Use this option when you get this error:

ERROR: From cfmfame: Error from a FAME-like server, error from
cfmferr is: \Variable{XXXX} not found

For a more complete discussion of opening a local Fame database, see the section “Opening a Local
Fame Database” on page 3431.

CONVERT=(FREQ=fame_frequency TECH=fame_technique)

CONV=(FREQ=fame_frequency TECH=fame_technique)
specifies the Fame frequency and the Fame technique, just as you would in the Fame CONVERT
function. There are four possible values for fame_technique: Constant (default), Cubic, Discrete, and
Linear . Table 47.2 shows the Fame frequencies that are supported by the SASEFAME engine.

For a more complete discussion of Fame frequencies and SAS time intervals, see the section “Mapping
Fame Frequencies to SAS Time Intervals” on page 3433. For all possible fame_frequency values, see
the section “Understanding Frequencies” in the User’s Guide to Fame. For example:

LIBNAME libref sasefame 'physical-name'
CONVERT=(TECH=CONSTANT FREQ=TWICEMONTHLY);

CROSSLIST=(< fame_namelist1, > fame_namelist2)

CROSS=(< fame_namelist1, > fame_namelist2)
performs a crossproduct of the members of the first namelist with the members of the second namelist,
using a glue symbol “.” to join the two. If one of the time series that are listed in fame_namelist2
does not exist, the SASEFAME engine stops processing the remainder of the namelist. For more
information, see the section “Performing the Crosslist Selection Function” on page 3436.

LIBNAME libref SASEFAME Statement F 3429

DBVERSION=ON | OFF
specifies whether or not to display the version number of the Fame Work database. DBVERSION=ON
specifies that the SAS log show the version number (3 or 4) of the Fame Work database. By default,
DBVERSION=OFF.

DEBUG= ON | OFF (default)
specifies that additional diagnostic information in the SAS log be reported. When you specify
DEBUG=ON, the information about Fame commands that are outlined in the SAS log by debug tracing
can be valuable for diagnosing and identifying the issues that cause errors when you are using the
SASEFAME engine. By default, DEBUG=OFF.

FAMEOUT=fame_data_object_class_type
specifies the class and type of the Fame data series objects to include in your SAS output data set.
The possible values for fame_data_object_class_type are FORMULA, TIME, BOOLEAN, CASE,
DATE, and STRING. Case series can be numeric, boolean, string, and date, or they can be generated
using formulas that resolve to series. The SASEFAME engine resolves all formulas that belong to the
type of series data object that you specify in the FAMEOUT= option. If the FAMEOUT= option is
not specified, numeric time series are output to the SAS data set. FAMEOUT=CASE defaults to case
series of numeric type. If you want another type of case series in your output, then you must specify it.
Scalar data objects are not supported.

INSET=(setname KEEP=fame_expression_group)
INSET=(setname KEEPLIST=fame_expression_group)

specifies the name of a SAS data set (setname) and selects series that are generated by the expressions
defined in fame_expression_group. You can define fame_expression_group by using Fame functions
and Fame expressions. It is important to specify the length of the longest expression, or expressions
might be truncated because the default length is the first defined variable in the DATA step. The INSET
(input data set) must output each expression statement as a character string ending with a semicolon,
enclosed in single quotation marks, and followed by another semicolon and an output statement. For
more about using the INSET= option to define a group of selected series that are generated by Fame
expressions, see the section “Performing the Keeplist Expression Function” on page 3434.

INSET=(setname WHERE=fame_bygroup)
specifies a SAS data set (setname) as input for a BY group such as a ticker, and uses the fame_bygroup
to select time series that are named using the following convention. Selected variable names are glued
together by the BY-group name (such as a ticker symbol) concatenated with the glue character (such as
DOT) to the series name that is specified in the CROSSLIST= option or in the fame_bygroup.

For more information, see the section “Performing the Crosslist Selection Function” on page 3436.

RANGE=’fame_begdt ’d-’fame_enddt ’d
DATERANGE=’fame_begdt ’d-’fame_enddt ’d
DATE=’fame_begdt ’d-’fame_enddt ’d
DATECASE=’fame_begdt ’d-’fame_enddt ’d

limits the time range of data that are read from your Fame database. The string fame_begdt is the
beginning date in 'ddmmmyyyy' format, and the string fame_enddt is the ending date of the range in
'ddmmmyyyy' format; both strings must be enclosed in single quotation marks and followed by the
letter 'd'.

3430 F Chapter 47: The SASEFAME Interface Engine

For example, to read a series with a date range that spans the first quarter of 1999, you could use the
following statement:

LIBNAME test sasefame 'physical name of test database'
RANGE='01jan1999'd - '31mar1999'd;

TUNEFAME=NODES fameengine_size_virtual_memory_MB
specifies the number of megabytes to use for the cache size for the Fame API (CHLI). The
fameengine_size_virtual_memory_MB can range from a minimum of 0.1 MB (100 KB) to a maximum
of 17,592,186,000,000 MB. For more information, see Example 47.17.

TUNECHLI=NODES famechliengine_size_virtual_memory_MB
specifies the number of megabytes to use for the cache size for the Fame API (CHLI). The famech-
liengine_size_virtual_memory_MB can range from a minimum of 0.1 MB (100 KB) to a maximum of
17,592,186,000,000 MB. For more information, see Example 47.17.

WILDCARD="fame_wildcard"

WILD="fame_wildcard"
limits the time series read from the Fame database. By default, the SASEFAME engine reads all time
series in the Fame database that you name in your SASEFAME libref. The fame_wildcard is a quoted
string that contains the Fame wildcard you want to use. The wildcard is used for matching against the
data object names of series that you want to select from the Fame database that resides in the library
you are assigning.

For more information about using wildcards, see the section “Specifying Wildcards” in the User’s
Guide to Fame.

For example, to read all time series in the TEST library that is being accessed by the SASEFAME
engine, you would specify the following statement:

LIBNAME test sasefame 'physical name of test database'
WILDCARD="?";

To read series that have names such as A_DATA, B_DATA, and C_DATA, you could specify the
following statement:

LIBNAME test sasefame 'physical name of test database'
WILDCARD="^_DATA";

When you use the WILDCARD= option, you limit the number of series that are read and converted
to the desired frequency. This option can help you save resources when processing large databases
or when processing a large number of observations, such as daily or hourly frequencies. Because the
SASEFAME engine uses the Fame Work database to store the converted time series, using wildcards is
recommended to prevent your workspace from getting too large. When the FAMEOUT= option is also
specified, the wildcard is applied to the type of data object series that you specify in the FAMEOUT=
option.

Details: SASEFAME Interface Engine F 3431

Details: SASEFAME Interface Engine

Opening a Local Fame Database
Fame databases often contain expressions and formulas that resolve to a series. In order for Fame to resolve
the expressions and formulas a channel is opened to the local database to a Fame-like server that is invoked
by the SASEFAME interface engine so that the selected series are complete.

For example, the following SAS code generates the SAS log after it, which shows the OPEN command that
is used to open the local training database on the Fame channel named TR, enabling the Fame Crosslist to
resolve all the time series values for all the tickers included in the inset’s BY group (TICK) :

libname lib5 sasefame "\\tappan\crsp1\fame10"
as_db="TR"
debug=ON
convert=(frequency=business technique=constant)
inset=(inseta where=tick)
crosslist=

({adjust, close, high, low, open, volume, uclose, uhigh, ulow, uopen, uvolume})

data trout;
set lib5.training;

run;

Here is an excerpt of the information shown in the SAS log (on Windows), which is created by using the
DEBUG=ON option:

NOTE: The SASEFAME engine is using Version 11.43000 of the HLI.

len4=2
SIMPLE FAMECMD for local open is: \\tappan\crsp1\fame10/training
len4= 2
FAME COMMAND line 1004 is:
OPEN <ACCESS READ> """\\tappan\crsp1\fame10/training""" AS TR

It is important to note that the SAS SET command for local access uses the database name, training (without
the .db extension), in the DATA step. For more information about opening and closing local Fame databases,
see the section “Opening and Closing Local Databases” in Online Help for MarketMap Analytic Studio at the
following URL:

https://fame.sungard.com/support_secure/fame/online_help/commands_and_options/
opening_local_databases.htm

3432 F Chapter 47: The SASEFAME Interface Engine

Managing Fame Server Processes for Remote Access
When you use a master server, the appropriate configuration file is necessary. For the master server, on UNIX,
your configuration file might look like this:

cat master1.config
security access all
dbback $FAME/frdb/dbback

Your master command could look like this:

$FAME/frdb/master -p \#5555 -s master1.config > master1.log &

For more information about the master server command, visit the following URL:

https://fame.sungard.com/support_secure/fame/online_help_115/
servers/master_server_command.htm

SAS Output Data Set
You can use the SAS DATA step to write the selected time series from your Fame database to a SAS data set.
This enables you to easily analyze the data by using the SAS System. You can specify the name of the output
data set in the DATA statement. This causes the engine supervisor to create a SAS data set by using the
specified name in either the SAS Work library or, if specified, the Sasuser library. For more information about
naming your SAS data set, see the section “SAS Data Sets: Data Set Names” in SAS Language Reference:
Concepts.

The contents of the SAS data set that contains time series include the date of each observation, the name of
each series read from the Fame database as specified by the WILDCARD= option, and the label or Fame
description of each series. Missing values are represented as ‘.’ in the SAS data set. You can see the available
data sets in the SAS LIBNAME window of the SAS windowing environment by selecting the SASEFAME
libref in the LIBNAME window that you have previously used in your LIBNAME statement. You can use
PROC PRINT and PROC CONTENTS to print your output data set and its contents. You can use PROC
SQL and the SASEFAME engine to create a view of your SAS data set. You can view your SAS output
observations by double-clicking the desired output data set libref in the LIBNAME window of the SAS
windowing environment.

The DATE variable in the SAS data set contains the date of the observation. For Fame weekly intervals that
end on a Friday, Fame reports the date on the Friday that ends the week, whereas the SAS System reports the
date on the Saturday that begins the week.

A more detailed discussion of how to map Fame frequencies to SAS time intervals follows. For other types
of data, such as Boolean case series, numeric case series, date case series, string case series, and extracting
source for formulas, see Example 47.11, Example 47.12, Example 47.13, Example 47.14, and Example 47.15,
respectively.

Mapping Fame Frequencies to SAS Time Intervals F 3433

Mapping Fame Frequencies to SAS Time Intervals
Table 47.2 summarizes the mapping of Fame frequencies to SAS time intervals. Fame frequencies often have
a sample unit in parentheses after the keyword frequency. This sample unit is an end-of-interval unit. SAS
dates are represented by beginning-of-interval notation.

For more information about SAS time intervals, see Chapter 4, “Date Intervals, Formats, and Functions.”

For more information about Fame frequencies, see the section “Understanding Frequencies” in the User’s
Guide to Fame.

Table 47.2 Mapping Fame Frequencies

Fame Frequency SAS Time Interval

WEEKLY (SUNDAY) WEEK.2
WEEKLY (MONDAY) WEEK.3
WEEKLY (TUESDAY) WEEK.4
WEEKLY (WEDNESDAY) WEEK.5
WEEKLY (THURSDAY) WEEK.6
WEEKLY (FRIDAY) WEEK.7
WEEKLY (SATURDAY) WEEK.1

BIWEEKLY (ASUNDAY) WEEK2.2
BIWEEKLY (AMONDAY) WEEK2.3
BIWEEKLY (ATUESDAY) WEEK2.4
BIWEEKLY (AWEDNESDAY) WEEK2.5
BIWEEKLY (ATHURSDAY) WEEK2.6
BIWEEKLY (AFRIDAY) WEEK2.7
BIWEEKLY (ASATURDAY) WEEK2.1
BIWEEKLY (BSUNDAY) WEEK2.9
BIWEEKLY (BMONDAY) WEEK2.10
BIWEEKLY (BTUESDAY) WEEK2.11
BIWEEKLY (BWEDNESDAY) WEEK2.12
BIWEEKLY (BTHURSDAY) WEEK2.13
BIWEEKLY (BFRIDAY) WEEK2.14
BIWEEKLY (BSATURDAY) WEEK2.8

BIMONTHLY (NOVEMBER) MONTH2.2
BIMONTHLY MONTH2.1

QUARTERLY (OCTOBER) QTR.2
QUARTERLY (NOVEMBER) QTR.3
QUARTERLY QTR.1

ANNUAL (JANUARY) YEAR.2
ANNUAL (FEBRUARY) YEAR.3
ANNUAL (MARCH) YEAR.4
ANNUAL (APRIL) YEAR.5

3434 F Chapter 47: The SASEFAME Interface Engine

Table 47.2 continued

Fame Frequency SAS Time Interval

ANNUAL (MAY) YEAR.6
ANNUAL (JUNE) YEAR.7
ANNUAL (JULY) YEAR.8
ANNUAL (AUGUST) YEAR.9
ANNUAL (SEPTEMBER) YEAR.10
ANNUAL (OCTOBER) YEAR.11
ANNUAL (NOVEMBER) YEAR.12
ANNUAL YEAR.1

SEMIANNUAL (JULY) SEMIYEAR.2
SEMIANNUAL (AUGUST) SEMIYEAR.3
SEMIANNUAL (SEPTEMBER) SEMIYEAR.4
SEMIANNUAL (OCTOBER) SEMIYEAR.5
SEMIANNUAL (NOVEMBER) SEMIYEAR.6
SEMIANNUAL SEMIYEAR.1

YPP Not supported
PPY Not supported

SECONDLY SECOND
MINUTELY MINUTE
HOURLY HOUR

DAILY DAY
BUSINESS WEEKDAY
TENDAY TENDAY
TWICEMONTHLY SEMIMONTH
MONTHLY MONTH

Performing the Keeplist Expression Function
This section shows how to use the INSET= option to define a group of selected series that are generated by
Fame expressions. It is important to use the LENGTH statement to avoid truncating the longest expression in
the group defined by the BY variable EXPRESS. NOTE: The EXPRESS variable is assigned the character
string expression and is shown in Table 47.3. The following statements create an input data set, INSETA, and
print it:

data inseta; /* Use this for training database */
length express $52;
express='{ibm.high,ibm.low,ibm.close};'; output;
express='crosslist({gm,f,c},{volume});'; output;
express='cvx.close;'; output;
express='mave(ibm.close,30);'; output;

Performing the Keeplist Expression Function F 3435

express='cvx.close+ibm.close;'; output;
express='ibm.close;'; output;
express='close * shares/sum(close * shares);'; output;
express='sum(pep.volume);'; output;
express='mave(pep.close,20);'; output;

run;

proc print
data=inseta;

run;

Next you can name the input data set that you want to use in the INSET= option, followed by the KEEP=
variable that specifies the expression group you want to keep. Only series variables that are defined in the
selected expression group are output to the output data set. You can define up to eight different expression
groups in an INSET= option.

libname lib5 sasefame "C:\PROGRA~1\FAME10\util"
wildcard="?"
convert=(frequency=business technique=constant)
range='23jul1997'd - '25jul1997'd
inset=(inseta KEEP=express)
;

data trout;
set lib5.trainten;

run;

title1 'TRAINING DB, Pricing Time Series for Expressions in INSET=';
title2 'OUT=TROUT from the PRINT Procedure';
proc print data=trout;
run;

Table 47.3 shows the eight expressions that are defined in INSETA.

Table 47.3 SAS Input Data Set, INSETA, Defined for Use in the
INSET= Option

Observation EXPRESS

1 cvx.close;
2 ibm.high,ibm.low,ibm.close;
3 mave(ibm.close,30);
4 crosslist(gm,f,c,volume);
5 cvx.close+ibm.close;
6 ibm.close;
7 sum(pep.volume);
8 mave(pep.close,20);

Table 47.4 shows the output data set, TROUT. The output data set names each derived variable SASTEMPn by
appending the number, n, to match the observation number of the input data set’s expression for that variable.
For example, SASTEMP1 names the series derived by ‘cvx.close’ in observation 1, and SASTEMP3 names

3436 F Chapter 47: The SASEFAME Interface Engine

the series derived by the expression ‘mave(ibm.close,30);’ in observation 3. Because SASTEMP2 is a simple
name list of three series, the original series names are used.

Table 47.4 TRAINING DB, Pricing Timeseries for Expressions in
INSETA for OUT=TROUT from the PRINT Procedure

DATE C.VOLUME VOLUME GM.VOLUME IBM.CLOSE IBM.HIGH
23JUL1997 33791.88 45864.05 37392 52.5625 53.5000
24JUL1997 41828.85 29651.34 27771 53.9063 54.2188
25JUL1997 46979.83 36716.77 24969 53.5000 54.2188

IBM.LOW SASTEMP1 SASTEMP3 SASTEMP5 SASTEMP6 SASTEMP8
51.5938 38.4063 . 90.9688 52.5625 .
52.2500 38.4375 . 92.3438 53.9063 .
52.8125 39.0000 . 92.5000 53.5000 .

Note that SASTEMP3 and SASTEMP8 have no observations in the date range July 23, 1997, to July 25,
1997, so the missing value symbol ‘.’ appears for those observations.

Performing the Crosslist Selection Function
There are two methods of performing the crosslist selection function. The first method uses two Fame
namelists, and the second method uses one namelist and one BY group specified in the WHERE= clause of
the INSET= option.

For example, suppose that your Fame database has a string case series named TICKER, so that when the
Fame NL function is used on TICKER, it returns the following namelist:

Ticker = {AOL, C, CVX, F, GM, HPQ, IBM, INDUA, INTC, SPX, SUNW, XOM}

Also suppose your time series are named in fame_namelist2 as

{adjust, close, high, low, open, volume, uclose, uhigh, ulow, uopen, uvolume}

When you specify the following statements, the 132 variables shown in Table 47.5 are selected by the
CROSSLIST= option:

LIBNAME test sasefame 'physical name of test database'
RANGE='01jan1999'd - '31mar1999'd
CROSSLIST=(nl(ticker),

{adjust, close, high, low, open, volume,
uclose, uhigh, ulow, uopen, uvolume})

;

Performing the Crosslist Selection Function F 3437

Table 47.5 SAS Variables Selected by CROSSLIST= Option

AOL.ADJUST C.ADJUST CVX.ADJUST F.ADJUST
AOL.CLOSE C.CLOSE CVX.CLOSE F.CLOSE
AOL.HIGH C.HIGH CVX.HIGH F.HIGH
AOL.LOW C.LOW CVX.LOW F.LOW
AOL.OPEN C.OPEN CVX.OPEN F.OPEN
AOL.UCLOSE C.UCLOSE CVX.UCLOSE F.UCLOSE
AOL.UHIGH C.UHIGH CVX.UHIGH F.UHIGH
AOL.ULOW C.ULOW CVX.ULOW F.ULOW
AOL.UOPEN C.UOPEN CVX.UOPEN F.UOPEN
AOL.UVOLUME C.UVOLUME CVX.UVOLUME F.UVOLUME
AOL.VOLUME C.VOLUME CVX.VOLUME F.VOLUME
GM.ADJUST HPQ.ADJUST IBM.ADJUST INDUA.ADJUST
GM.CLOSE HPQ.CLOSE IBM.CLOSE INDUA.CLOSE
GM.HIGH HPQ.HIGH IBM.HIGH INDUA.HIGH
GM.LOW HPQ.LOW IBM.LOW INDUA.LOW
GM.OPEN HPQ.OPEN IBM.OPEN INDUA.OPEN
GM.UCLOSE HPQ.UCLOSE IBM.UCLOSE INDUA.UCLOSE
GM.UHIGH HPQ.UHIGH IBM.UHIGH INDUA.UHIGH
GM.ULOW HPQ.ULOW IBM.ULOW INDUA.ULOW
GM.UOPEN HPQ.UOPEN IBM.UOPEN INDUA.UOPEN
GM.UVOLUME HPQ.UVOLUME IBM.UVOLUME INDUA.UVOLUME
GM.VOLUME HPQ.VOLUME IBM.VOLUME INDUA.VOLUME
INTC.ADJUST SPX.ADJUST SUNW.ADJUST XOM.ADJUST
INTC.CLOSE SPX.CLOSE SUNW.CLOSE XOM.CLOSE
INTC.HIGH SPX.HIGH SUNW.HIGH XOM.HIGH
INTC.LOW SPX.LOW SUNW.LOW XOM.LOW
INTC.OPEN SPX.OPEN SUNW.OPEN XOM.OPEN
INTC.UCLOSE SPX.UCLOSE SUNW.UCLOSE XOM.UCLOSE
INTC.UHIGH SPX.UHIGH SUNW.UHIGH XOM.UHIGH
INTC.ULOW SPX.ULOW SUNW.ULOW XOM.ULOW
INTC.UOPEN SPX.UOPEN SUNW.UOPEN XOM.UOPEN
INTC.UVOLUME SPX.UVOLUME SUNW.UVOLUME XOM.UVOLUME
INTC.VOLUME SPX.VOLUME SUNW.VOLUME XOM.VOLUME

Instead of using two namelists, you can use the WHERE= clause in an INSET= option to perform the
crossproduct of the BY variables specified in your input data set via the WHERE= clause and the members
named in your namelist. The following statements define a SAS input data set named INSETA to use as input
for the CROSSLIST= option instead of using the Fame namelist:

DATA INSETA;
LENGTH tick $5;

/* AOL, C, CVX, F, GM, HPQ, IBM, INDUA, INTC, SPX, SUNW, XOM */
tick='AOL'; output;
tick='C'; output;
tick='CVX'; output;
tick='F'; output;

3438 F Chapter 47: The SASEFAME Interface Engine

tick='GM'; output;
tick='HPQ'; output;
tick='IBM'; output;
tick='INDUA'; output;
tick='INTC'; output;
tick='SPX'; output;
tick='SUNW'; output;
tick='XOM'; output;

RUN;

LIBNAME test sasefame 'physical name of test database'
RANGE='01jan1999'd - '31mar1999'd
INSET=(inseta, where=tick)
CROSSLIST=(

{adjust, close, high, low, open, volume,
uclose, uhigh, ulow, uopen, uvolume})

;

Using a SAS INSET statement with a WHERE clause and using a Fame namelist in the CROSSLIST=
statement are equivalent ways of performing the same selection function. In the preceding example, the Fame
ticker namelist corresponds to the SAS input data set’s BY variable named TICK.

Note that the fame_bygroup that you specify in the WHERE= clause must match the BY-variable name used
in your input data set in order for the CROSSLIST= option to perform the desired selection. If one of the
time series listed in fame_namelist2 does not exist, the SASEFAME engine stops processing the remainder
of the namelist. For complete results, make sure that your fame_namelist2 is accurate and does not name
unknown variables. The same holds true for fame_namelist1 and the BY-variable values named in the input
data set and used in the WHERE= clause.

Examples: SASEFAME Interface Engine
In this section, the examples were run on Windows, so the physical names used in the LIBNAME libref
SASEFAME statement reflect the syntax necessary for that platform. In general, Windows environments use
backslashes in their pathname, and the UNIX environments use forward slashes.

Example 47.1: Converting an Entire Fame Database
To enable conversion of all time series, no wildcard is specified, so the default “?” wildcard is used. Always
consider both the number of time series and the number of observations generated by the conversion process.
The converted series reside in the Fame Work database during the SAS DATA step. You can further limit
your resulting SAS data set by using KEEP, DROP, or WHERE statements inside your DATA step.

The following statements convert a Fame database and print out its contents:

options pagesize=60 linesize=80 validvarname=any ;
%let FAME=%sysget(FAME);
%put(&FAME);
%let FAMETEMP=%sysget(FAME_TEMP);

Example 47.1: Converting an Entire Fame Database F 3439

%put(&FAMETEMP);

libname famedir sasefame "%sysget(FAME_DATA)"
convert=(freq=annual technique=constant);

libname mydir "%sysget(FAME_TEMP)";

data mydir.a; /* add data set to mydir */
set famedir.oecd1;
/* Read in oecd1.db data from the Organization */
/* For Economic Cooperation and Development */
where date between '01jan88'd and '31dec93'd;

run;

proc print data=mydir.a;
run;

In the preceding example, the Fame database is called OECD1.DB, and it resides in the famedir directory.
The DATA statement names the SAS output data set a that will reside in mydir. All time series in the
Fame OECD1.DB database will be converted to an annual frequency and reside in the mydir.a SAS data set.
Because the time series variable names contain the special glue symbol ‘.’, the SAS option statement specifies
VALIDVARNAME=ANY. For more information about this option, see SAS System Options: Reference. The
Fame environment variable is the location of the Fame installation. In the Windows environment, the log
would look like this:

1 options validvarname=any;

2 %let FAME=%sysget(FAME);
3 %put(&FAME);
(C:\PROGRA~1\FAME)
4 %let FAMETEMP=%sysget(FAME_TEMP);
5 %put(&FAMETEMP);
(\\ge\U11\saskff\fametemp\)
6
7 libname famedir sasefame "&FAME\util"
8 convert=(freq=annual technique=constant);
NOTE: Libref FAMEDIR was successfully assigned as follows:

Engine: FAMECHLI
Physical Name: C:\PROGRA~1\FAME\util

9
10 libname mydir '\\dntsrc\usrtmp\saskff';
NOTE: Libref MYDIR was successfully assigned as follows:

Engine: V9
Physical Name: \\dntsrc\usrtmp\saskff

11
12 data mydir.a; /* add data set to mydir */
13 set famedir.oecd1;
AUS.DIRDES -- SERIES (NUMERIC by ANNUAL)
AUS.DIRDES copied to work data base as AUS.DIRDES.

For more about the glue DOT character, see the section “Gluing Names Together” in the User’s Guide to
Fame. In the preceding log, the variable name AUS.DIRDES uses the glue DOT between AUS and DIRDES.

3440 F Chapter 47: The SASEFAME Interface Engine

The PROC PRINT statement produces the results shown in Output 47.1.1, which displays all observations in
the mydir.a SAS data set.

Output 47.1.1 Listing of OUT=MYDIR.A of the OECD1 Fame Data

Obs DATE AUS.DIRDES AUS.HERD AUT.DIRDES AUT.HERD BEL.DIRDES BEL.HERD CAN.DIRDES CAN.HERD

1 1988 750 1072.90 . . 374 16572.70 1589.60 2006

2 1989 18310.70 1737.00 2214

3 1990 18874.20 1859.20 2347

4 1991 1959.60 2488

Obs CHE.DIRDES CHE.HERD DEU.DIRDES DEU.HERD DNK.DIRDES DNK.HERD ESP.DIRDES ESP.HERD

1 632.100 1532 3538.60 8780.00 258.100 2662 508.200 55365.5

2 . 1648 3777.20 9226.60 284.800 2951 623.600 69270.5

3 . . 2953.30 9700.00 . . 723.600 78848.0

4 89908.0

Obs FIN.DIRDES FIN.HERD FRA.DIRDES FRA.HERD GBR.DIRDES GBR.HERD GRC.DIRDES GRC.HERD

1 247.700 1602.0 2573.50 19272.00 2627.00 1592.00 60.600 6674.50

2 259.700 1725.5 2856.50 21347.80 2844.10 1774.20 119.800 14485.20

3 271.000 1839.0 3005.20 22240.00

4

Obs IRL.DIRDES IRL.HERD ISL.DIRDES ISL.HERD ITA.DIRDES ITA.HERD JPN.DIRDES JPN.HERD NLD.DIRDES

1 49.6000 37.0730 . . 1861.50 2699927 9657.20 2014073 883

2 50.2000 39.0130 10.3000 786.762 1968.00 2923504 10405.90 2129372 945

3 51.7000 . 11.0000 902.498 2075.00 3183071 . 2296992 .

4 . . 11.8000 990.865 2137.80 3374000 . . .

Obs NLD.HERD NOR.DIRDES NOR.HERD NZL.DIRDES NZL.HERD PRT.DIRDES PRT.HERD SWE.DIRDES

1 2105 111.5 10158.20 .

2 2202 308.900 2771.40 78.7000 143.800 . . 1076

3

4 . 352.000 3100.00

Obs SWE.HERD TUR.DIRDES TUR.HERD USA.DIRDES USA.HERD YUG.DIRDES YUG.HERD

1 . 174.400 74474 20246.20 20246.20 233.000 29.81

2 11104 212.300 143951 22159.50 22159.50 205.100 375.22

3 . . . 23556.10 23556.10 . 2588.50

4 . . . 24953.80 24953.80 . .

Example 47.2: Reading Time Series from the Fame Database F 3441

Example 47.2: Reading Time Series from the Fame Database
This example uses the Fame WILDCARD= option to limit the number of series converted. The following
statements show how to read only series whose names begin with WSPCA:

options validvarname=any;

%let FAME=%sysget(FAME);
%put(&FAME);
%let FAMETEMP=%sysget(FAME_TEMP);
%put(&FAMETEMP);

libname lib1 sasefame "%sysget(FAME_DATA)"
wildcard="wspca?"
convert=(technique=constant freq=twicemonthly);

libname lib2 "%sysget(FAME_TEMP)";

data lib2.twild(label='Annual Series from the FAMEECON.db');
set lib1.subecon;
where date between '01jan93'd and '31dec93'd;
/* keep only */
keep date wspca;

run;

proc contents data=lib2.twild;
run;

proc print data=lib2.twild;
run;

Output 47.2.1 and Output 47.2.2 show the results of using WILDCARD=“WSPCA?”.

Output 47.2.1 Contents of OUT=LIB2.TWILD of the SUBECON Fame Data

The CONTENTS ProcedureThe CONTENTS Procedure

Alphabetic List of Variables and Attributes

Variable Type Len Format Informat Label

1 DATE Num 8 DATE9. 9. Date of Observation

2 WSPCA Num 8 STANDARD & POOR'S WEEKLY BOND YIELD: COMPOSITE, A

The WILDCARD=“WSPCA?” option limits reading to only those series whose names begin with WSPCA.
The KEEP statement further restricts the SAS data set to include only the series named WSPCA and the
DATE variable. The time interval that is used for the conversion is TWICEMONTHLY.

3442 F Chapter 47: The SASEFAME Interface Engine

Output 47.2.2 Listing of OUT=LIB2.TWILD of the SUBECON Fame Data

Obs DATE WSPCA

1 01JAN1993 8.59400

2 16JAN1993 8.50562

3 01FEB1993 8.47000

4 16FEB1993 8.31000

5 01MAR1993 8.27000

6 16MAR1993 8.29250

7 01APR1993 8.32400

8 16APR1993 8.56333

9 01MAY1993 8.37867

10 16MAY1993 8.26313

11 01JUN1993 8.21333

12 16JUN1993 8.14400

13 01JUL1993 8.09067

14 16JUL1993 8.09937

15 01AUG1993 7.98533

16 16AUG1993 7.91600

Example 47.3: Writing Time Series to the SAS Data Set
The following statements use the DROP statement to exclude certain time series from the SAS data set. (You
can also use the KEEP statement to include certain series in the SAS data set.)

options validvarname=any;

%let FAME=%sysget(FAME);
%put(&FAME);
%let FAMETEMP=%sysget(FAME_TEMP);
%put(&FAMETEMP);

libname famedir sasefame "%sysget(FAME_DATA)"
convert=(freq=annual technique=constant);

libname mydir "%sysget(FAME_TEMP)";

data mydir.a; /* add data set to mydir */
set famedir.oecd1;
drop 'ita.dirdes'n--'jpn.herd'n 'tur.dirdes'n--'usa.herd'n;
where date between '01jan88'd and '31dec93'd;

run;

title1 "OECD1: TECH=Constant, FREQ=Annual";
title2 "Drop Using N-literals";

proc print data=mydir.a;
run;

Output 47.3.1 shows the results.

Example 47.3: Writing Time Series to the SAS Data Set F 3443

Output 47.3.1 Listing of OUT=MYDIR.A of the OECD1 Fame Data

OECD1: TECH=Constant, FREQ=Annual
Drop Using N-literals

OECD1: TECH=Constant, FREQ=Annual
Drop Using N-literals

Obs DATE AUS.DIRDES AUS.HERD AUT.DIRDES AUT.HERD BEL.DIRDES BEL.HERD CAN.DIRDES CAN.HERD

1 1988 750 1072.90 . . 374 16572.70 1589.60 2006

2 1989 18310.70 1737.00 2214

3 1990 18874.20 1859.20 2347

4 1991 1959.60 2488

Obs CHE.DIRDES CHE.HERD DEU.DIRDES DEU.HERD DNK.DIRDES DNK.HERD ESP.DIRDES ESP.HERD

1 632.100 1532 3538.60 8780.00 258.100 2662 508.200 55365.5

2 . 1648 3777.20 9226.60 284.800 2951 623.600 69270.5

3 . . 2953.30 9700.00 . . 723.600 78848.0

4 89908.0

Obs FIN.DIRDES FIN.HERD FRA.DIRDES FRA.HERD GBR.DIRDES GBR.HERD GRC.DIRDES GRC.HERD

1 247.700 1602.0 2573.50 19272.00 2627.00 1592.00 60.600 6674.50

2 259.700 1725.5 2856.50 21347.80 2844.10 1774.20 119.800 14485.20

3 271.000 1839.0 3005.20 22240.00

4

Obs IRL.DIRDES IRL.HERD ISL.DIRDES ISL.HERD NLD.DIRDES NLD.HERD NOR.DIRDES NOR.HERD

1 49.6000 37.0730 . . 883 2105 . .

2 50.2000 39.0130 10.3000 786.762 945 2202 308.900 2771.40

3 51.7000 . 11.0000 902.498

4 . . 11.8000 990.865 . . 352.000 3100.00

Obs NZL.DIRDES NZL.HERD PRT.DIRDES PRT.HERD SWE.DIRDES SWE.HERD YUG.DIRDES YUG.HERD

1 . . 111.5 10158.20 . . 233.000 29.81

2 78.7000 143.800 . . 1076 11104 205.100 375.22

3 2588.50

4

Note that the SAS option VALIDVARNAME=ANY was used at the beginning of this example because
special characters are present in the time series names. SAS variables that contain certain special characters
are called n-literals and are referenced in SAS code, as shown in this example.

You can rename your SAS variables by using the RENAME statement. The following statements show how to
use n-literals when selecting variables that you want to keep and how to rename some of your kept variables:

options validvarname=any;

%let FAME=%sysget(FAME);
%put(&FAME);
%let FAMETEMP=%sysget(FAME_TEMP);
%put(&FAMETEMP);

libname famedir sasefame "%sysget(FAME_DATA)"
convert=(freq=annual technique=constant);

3444 F Chapter 47: The SASEFAME Interface Engine

libname mydir "%sysget(FAME_TEMP)";

data mydir.a; /* add data set to mydir */
set famedir.oecd1;
/* keep and rename */
keep date 'ita.dirdes'n--'jpn.herd'n 'tur.dirdes'n--'usa.herd'n;
rename 'ita.dirdes'n='italy.dirdes'n

'jpn.dirdes'n='japan.dirdes'n
'tur.dirdes'n='turkey.dirdes'n
'usa.dirdes'n='united.states.of.america.dirdes'n ;

run;

title1 "OECD1: TECH=Constant, FREQ=Annual";
title2 "keep statement using n-literals";
title3 "rename statement using n-literals";

proc print data=mydir.a;
run;

Output 47.3.2 shows the results.

Output 47.3.2 Listing of OUT=MYDIR.A of the OECD1 Fame Data

OECD1: TECH=Constant, FREQ=Annual
keep statement using n-literals
rename statement using n-literals

OECD1: TECH=Constant, FREQ=Annual
keep statement using n-literals
rename statement using n-literals

Obs DATE italy.dirdes ITA.HERD japan.dirdes JPN.HERD turkey.dirdes TUR.HERD

1 1985 1344.90 1751008 8065.70 1789780 144.800 22196

2 1986 1460.60 2004453 8290.10 1832575 136.400 26957

3 1987 1674.40 2362102 9120.80 1957921 121.900 32309

4 1988 1861.50 2699927 9657.20 2014073 174.400 74474

5 1989 1968.00 2923504 10405.90 2129372 212.300 143951

6 1990 2075.00 3183071 . 2296992 . .

7 1991 2137.80 3374000

Obs united.states.of.america.dirdes USA.HERD

1 14786.00 14786.00

2 16566.90 16566.90

3 18326.10 18326.10

4 20246.20 20246.20

5 22159.50 22159.50

6 23556.10 23556.10

7 24953.80 24953.80

Example 47.4: Limiting the Time Range of Data F 3445

Example 47.4: Limiting the Time Range of Data
You can also limit the time range of the data in the SAS data set by using the RANGE= option in the
LIBNAME statement or the WHERE statement in the DATA step to process the time ID variable DATE only
when it falls in the range you are interested in.

All data for 1988, 1989, and 1990 are included in the SAS data set that is generated by using the
RANGE=’01JAN1988’D - ’31DEC1990’D option or the WHERE DATE BETWEEN ’01JAN88’D AND
’31DEC90’D statement. The difference is that the RANGE= option uses less space in the Fame Work
database. If you have a very large database and you want to use less space in your Fame Work database while
you are processing the OECD1 database, you should use the RANGE= option as shown in the following
statements:

options validvarname=any;

%let FAME=%sysget(FAME);
%put(&FAME);
%let FAMETEMP=%sysget(FAME_TEMP);
%put(&FAMETEMP);

libname famedir SASEFAME "%sysget(FAME_DATA)"
convert=(freq=annual technique=constant)
range='01jan1988'd - '31dec1990'd;

libname mydir "%sysget(FAME_TEMP)";

data mydir.a; /* add data set to mydir */
set famedir.oecd1;
/* range on the libref restricts the dates *
* read from famedir's oecd1 database */

run;

title1 "OECD1: TECH=Constant, FREQ=Annual";
proc print data=mydir.a;
run;

Output 47.4.1 shows the results.

3446 F Chapter 47: The SASEFAME Interface Engine

Output 47.4.1 OECD1 Fame Data Using the RANGE= Option

OECD1: TECH=Constant, FREQ=AnnualOECD1: TECH=Constant, FREQ=Annual

Obs DATE AUS.DIRDES AUS.HERD AUT.DIRDES AUT.HERD BEL.DIRDES BEL.HERD CAN.DIRDES CAN.HERD

1 1988 750 1072.90 . . 374 16572.70 1589.60 2006

2 1989 18310.70 1737.00 2214

3 1990 18874.20 1859.20 2347

Obs CHE.DIRDES CHE.HERD DEU.DIRDES DEU.HERD DNK.DIRDES DNK.HERD ESP.DIRDES ESP.HERD

1 632.100 1532 3538.60 8780.00 258.100 2662 508.200 55365.5

2 . 1648 3777.20 9226.60 284.800 2951 623.600 69270.5

3 . . 2953.30 9700.00 . . 723.600 78848.0

Obs FIN.DIRDES FIN.HERD FRA.DIRDES FRA.HERD GBR.DIRDES GBR.HERD GRC.DIRDES GRC.HERD

1 247.700 1602.0 2573.50 19272.00 2627.00 1592.00 60.600 6674.50

2 259.700 1725.5 2856.50 21347.80 2844.10 1774.20 119.800 14485.20

3 271.000 1839.0 3005.20 22240.00

Obs IRL.DIRDES IRL.HERD ISL.DIRDES ISL.HERD ITA.DIRDES ITA.HERD JPN.DIRDES JPN.HERD NLD.DIRDES

1 49.6000 37.0730 . . 1861.5 2699927 9657.20 2014073 883

2 50.2000 39.0130 10.3000 786.762 1968.0 2923504 10405.90 2129372 945

3 51.7000 . 11.0000 902.498 2075.0 3183071 . 2296992 .

Obs NLD.HERD NOR.DIRDES NOR.HERD NZL.DIRDES NZL.HERD PRT.DIRDES PRT.HERD SWE.DIRDES

1 2105 111.5 10158.20 .

2 2202 308.900 2771.40 78.7000 143.800 . . 1076

3

Obs SWE.HERD TUR.DIRDES TUR.HERD USA.DIRDES USA.HERD YUG.DIRDES YUG.HERD

1 . 174.400 74474 20246.20 20246.20 233.000 29.81

2 11104 212.300 143951 22159.50 22159.50 205.100 375.22

3 . . . 23556.10 23556.10 . 2588.50

Example 47.4: Limiting the Time Range of Data F 3447

The following statements show how you can use the WHERE statement in the DATA step to process the time
ID variable DATE only when it falls in the range you are interested in:

options validvarname=any;

%let FAME=%sysget(FAME);
%put(&FAME);
%let FAMETEMP=%sysget(FAME_TEMP);
%put(&FAMETEMP);

libname famedir SASEFAME "%sysget(FAME_DATA)"
convert=(freq=annual technique=constant);

libname mydir "%sysget(FAME_TEMP)";

data mydir.a; /* add data set to mydir */
set famedir.oecd1;
/* where only */
where date between '01jan88'd and '31dec90'd;

run;

title1 "OECD1: TECH=Constant, FREQ=Annual";
proc print data=mydir.a;
run;

In Output 47.4.2, you can see that the result from the WHERE statement is the same as the result in
Output 47.4.1 from using the RANGE= option.

3448 F Chapter 47: The SASEFAME Interface Engine

Output 47.4.2 OECD1 Fame Data Using the WHERE Statement

OECD1: TECH=Constant, FREQ=AnnualOECD1: TECH=Constant, FREQ=Annual

Obs DATE AUS.DIRDES AUS.HERD AUT.DIRDES AUT.HERD BEL.DIRDES BEL.HERD CAN.DIRDES CAN.HERD

1 1988 750 1072.90 . . 374 16572.70 1589.60 2006

2 1989 18310.70 1737.00 2214

3 1990 18874.20 1859.20 2347

Obs CHE.DIRDES CHE.HERD DEU.DIRDES DEU.HERD DNK.DIRDES DNK.HERD ESP.DIRDES ESP.HERD

1 632.100 1532 3538.60 8780.00 258.100 2662 508.200 55365.5

2 . 1648 3777.20 9226.60 284.800 2951 623.600 69270.5

3 . . 2953.30 9700.00 . . 723.600 78848.0

Obs FIN.DIRDES FIN.HERD FRA.DIRDES FRA.HERD GBR.DIRDES GBR.HERD GRC.DIRDES GRC.HERD

1 247.700 1602.0 2573.50 19272.00 2627.00 1592.00 60.600 6674.50

2 259.700 1725.5 2856.50 21347.80 2844.10 1774.20 119.800 14485.20

3 271.000 1839.0 3005.20 22240.00

Obs IRL.DIRDES IRL.HERD ISL.DIRDES ISL.HERD ITA.DIRDES ITA.HERD JPN.DIRDES JPN.HERD NLD.DIRDES

1 49.6000 37.0730 . . 1861.5 2699927 9657.20 2014073 883

2 50.2000 39.0130 10.3000 786.762 1968.0 2923504 10405.90 2129372 945

3 51.7000 . 11.0000 902.498 2075.0 3183071 . 2296992 .

Obs NLD.HERD NOR.DIRDES NOR.HERD NZL.DIRDES NZL.HERD PRT.DIRDES PRT.HERD SWE.DIRDES

1 2105 111.5 10158.20 .

2 2202 308.900 2771.40 78.7000 143.800 . . 1076

3

Obs SWE.HERD TUR.DIRDES TUR.HERD USA.DIRDES USA.HERD YUG.DIRDES YUG.HERD

1 . 174.400 74474 20246.20 20246.20 233.000 29.81

2 11104 212.300 143951 22159.50 22159.50 205.100 375.22

3 . . . 23556.10 23556.10 . 2588.50

For more information about the KEEP, DROP, RENAME, and WHERE statements, see SAS Language
Reference: Concepts.

Example 47.5: Creating a View Using the SQL Procedure and the SASEFAME Engine F 3449

Example 47.5: Creating a View Using the SQL Procedure and the
SASEFAME Engine

The following statements create a view of OECD data by using the SQL procedure’s FROM and USING
clauses. For more information about SQL views, see the Base SAS Procedures Guide.

title1 'famesql5: PROC SQL Dual Embedded Libraries w/ FAME option';
options validvarname=any;

%let FAME=%sysget(FAME);
%put(&FAME);
%let FAMETEMP=%sysget(FAME_TEMP);
%put(&FAMETEMP);

title2 'OECD1: Dual Embedded Library Allocations with FAME Option';
proc sql;

create view fameview as
select date, 'fin.herd'n

from lib1.oecd1
using libname lib1 sasefame "%sysget(FAME_DATA)"

convert=(tech=constant freq=annual),
libname temp "%sysget(FAME_TEMP)";

quit;

title2 'OECD1: Print of View from Embedded Library with FAME Option';
proc print data=fameview;
run;

Output 47.5.1 shows the results.

Output 47.5.1 Printout of the Fame View of OECD Data

famesql5: PROC SQL Dual Embedded Libraries w/ FAME option
OECD1: Print of View from Embedded Library with FAME Option
famesql5: PROC SQL Dual Embedded Libraries w/ FAME option
OECD1: Print of View from Embedded Library with FAME Option

Obs DATE FIN.HERD

1 1985 1097.00

2 1986 1234.00

3 1987 1401.30

4 1988 1602.00

5 1989 1725.50

6 1990 1839.00

7 1991 .

3450 F Chapter 47: The SASEFAME Interface Engine

The following statements create a view of the DRI Basic Economic data by using the SQL procedure’s FROM
and USING clauses:

title2 'SUBECON: Dual Embedded Library Allocations with FAME Option';
options validvarname=any;

%let FAME=%sysget(FAME);
%put(&FAME);
%let FAMETEMP=%sysget(FAME_TEMP);
%put(&FAMETEMP);

proc sql;
create view fameview as
select date, gaa

from lib1.subecon
using libname lib1 sasefame "%sysget(FAME_DATA)"

convert=(tech=constant freq=annual),
libname temp "%sysget(FAME_TEMP)";

quit;

title2 'SUBECON: Print of View from Embedded Library with FAME Option';
proc print data=fameview;
run;

Output 47.5.2 shows the results.

Example 47.5: Creating a View Using the SQL Procedure and the SASEFAME Engine F 3451

Output 47.5.2 Printout of the Fame View of DRI Basic Economic Data

famesql5: PROC SQL Dual Embedded Libraries w/ FAME option
SUBECON: Print of View from Embedded Library with FAME Option
famesql5: PROC SQL Dual Embedded Libraries w/ FAME option

SUBECON: Print of View from Embedded Library with FAME Option

Obs DATE GAA

1 1946 .

2 1947 .

3 1948 23174

4 1949 19003

5 1950 24960

6 1951 21906

7 1952 20246

8 1953 20912

9 1954 21056

10 1955 27168

11 1956 27638

12 1957 26723

13 1958 22929

14 1959 29729

15 1960 28444

16 1961 28226

17 1962 32396

18 1963 34932

19 1964 40024

20 1965 47941

21 1966 51429

22 1967 49164

23 1968 51208

24 1969 49371

25 1970 44034

26 1971 52352

27 1972 62644

28 1973 81645

29 1974 91028

30 1975 89494

31 1976 109492

32 1977 130260

33 1978 154357

34 1979 173428

35 1980 156096

36 1981 147765

37 1982 113216

38 1983 133495

39 1984 146448

40 1985 128522

41 1986 111338

42 1987 160785

43 1988 210532

44 1989 201637

45 1990 218702

46 1991 210666

3452 F Chapter 47: The SASEFAME Interface Engine

Output 47.5.2 continued

famesql5: PROC SQL Dual Embedded Libraries w/ FAME option
SUBECON: Print of View from Embedded Library with FAME Option

Obs DATE GAA

47 1992 .

48 1993 .

The following statements create a view of the DB77 database by using the SQL procedure’s FROM and
USING clauses:

title2 'DB77: Dual Embedded Library Allocations with FAME Option';
options validvarname=any;

%let FAME=%sysget(FAME);
%put(&FAME);
%let FAMETEMP=%sysget(FAME_TEMP);
%put(&FAMETEMP);

proc sql;
create view fameview as

select date, ann, 'qandom.x'n
from lib1.db77
using libname lib1 sasefame "%sysget(FAME_DATA)"

convert=(tech=constant freq=annual),
libname temp "%sysget(FAME_TEMP)";

quit;

title2 'DB77: Print of View from Embedded Library with FAME Option';
proc print data=fameview;
run;

Output 47.5.3 shows the results.

Example 47.5: Creating a View Using the SQL Procedure and the SASEFAME Engine F 3453

Output 47.5.3 Printout of the Fame View of DB77 Data

famesql5: PROC SQL Dual Embedded Libraries w/ FAME option
DB77: Print of View from Embedded Library with FAME Option
famesql5: PROC SQL Dual Embedded Libraries w/ FAME option
DB77: Print of View from Embedded Library with FAME Option

Obs DATE ANN QANDOM.X

1 1959 . 0.56147

2 1960 . 0.51031

3 1961 . .

4 1962 . .

5 1963 . .

6 1964 . .

7 1965 . .

8 1966 . .

9 1967 . .

10 1968 . .

11 1969 . .

12 1970 . .

13 1971 . .

14 1972 . .

15 1973 . .

16 1974 . .

17 1975 . .

18 1976 . .

19 1977 . .

20 1978 . .

21 1979 . .

22 1980 100 .

23 1981 101 .

24 1982 102 .

25 1983 103 .

26 1984 104 .

27 1985 105 .

28 1986 106 .

29 1987 107 .

30 1988 109 .

31 1989 111 .

The following statements create a view of the Data Resources Incorporated (DRI) Basic Economic data by
using the SQL procedure’s FROM and USING clauses:

title2 'DRIECON: Dual Embedded Library Allocations with FAME Option';
options validvarname=any;

%let FAME=%sysget(FAME);
%put(&FAME);
%let FAMETEMP=%sysget(FAME_TEMP);
%put(&FAMETEMP);

proc sql;
create view fameview as

3454 F Chapter 47: The SASEFAME Interface Engine

select date, husts
from lib1.driecon
using libname lib1 sasefame "%sysget(FAME_DATA)"

convert=(tech=constant freq=annual)
range='01jan1980'd - '01jan2006'd ,

libname temp "%sysget(FAME_TEMP)";
quit;

title2 'DRIECON: Print of View from Embedded Library with FAME Option';
proc print data=fameview;
run;

The SAS option VALIDVARNAME=ANY is used at the beginning of this example because special characters
are present in the time series names. The output from this example shows how each Fame view is the
output of the SASEFAME engine’s processing. Different engine options could have been used in the USING
LIBNAME clause if desired. Output 47.5.4 shows the results.

Output 47.5.4 Printout of the Fame View of DRI Basic Economic Data

famesql5: PROC SQL Dual Embedded Libraries w/ FAME option
DRIECON: Print of View from Embedded Library with FAME Option
famesql5: PROC SQL Dual Embedded Libraries w/ FAME option
DRIECON: Print of View from Embedded Library with FAME Option

Obs DATE HUSTS

1 1980 1292.2

2 1981 1084.2

3 1982 1062.2

4 1983 1703.0

5 1984 1749.5

6 1985 1741.8

7 1986 1805.4

8 1987 1620.5

9 1988 1488.1

10 1989 1376.1

11 1990 1192.7

12 1991 1013.9

13 1992 1199.7

14 1993 1287.6

15 1994 1457.0

16 1995 1354.1

17 1996 1476.8

18 1997 1474.0

19 1998 1616.9

20 1999 1666.5

21 2000 1568.7

22 2001 1602.7

23 2002 1704.9

24 2003 .

Example 47.6: Reading Other Fame Data Objects with the FAMEOUT= Option F 3455

Example 47.6: Reading Other Fame Data Objects with the FAMEOUT= Option
This example shows how you can designate the data objects that are output to your SAS data set by using the
FAMEOUT= option. In this example, the FAMEOUT=FORMULA option selects the formulas and their
source definitions to be output. The RANGE= option is ignored because no time series are selected when
FAMEOUT=FORMULA is specified.

options validvarname=any ls=90;

%let FAME=%sysget(FAME);
%put(&FAME);
%let FAMETEMP=%sysget(FAME_TEMP);
%put(&FAMETEMP);

libname lib6 sasefame "%sysget(FAME_DATA)"
fameout=formula
convert=(frequency=business technique=constant)
range='02jan1995'd - '25jul1997'd
wildcard="?YIELD?" ;

data crout;
set lib6.training;
keep 'S.GM.YIELD.A'n -- 'S.XON.YIELD.A'n ;

run;

title1 'Formulas from the TRAINING DB, FAMEOUT=FORMULA Option';
title2 'Using WILDCARD="?YIELD?"';
proc contents

data=crout;
run;

Output 47.6.1shows the results.

3456 F Chapter 47: The SASEFAME Interface Engine

Output 47.6.1 Contents of OUT=CROUT from the FAMEOUT=FORMULA Option of the Fame
TRAINING Data
Formulas from the TRAINING DB, FAMEOUT=FORMULA Option

Using WILDCARD="?YIELD?"

The CONTENTS Procedure

Formulas from the TRAINING DB, FAMEOUT=FORMULA Option
Using WILDCARD="?YIELD?"

The CONTENTS Procedure

Alphabetic List of Variables and
Attributes

Variable Type Len

1 S.GM.YIELD.A Char 82

2 S.GM__PP.YIELD.A Char 82

3 S.HWP.YIELD.A Char 82

4 S.IBM.YIELD.A Char 82

5 S.INDUT.YIELD.A Char 82

6 S.SPAL.YIELD.A Char 82

7 S.SPALN.YIELD.A Char 82

8 S.SUNW.YIELD.A Char 82

9 S.XOM.YIELD.A Char 82

10 S.XON.YIELD.A Char 82

The FAMEOUT=FORMULA option restricts the SAS data set to include only formulas. The WILD-
CARD=“?YIELD?” option further limits the selection of formulas to those whose names contain “YIELD”.

options validvarname=any linesize=79;

title1 'Formulas from the TRAINING DB, FAMEOUT=FORMULA Option';
title2 'Using WILDCARD="?YIELD?"';
proc print

data=crout noobs;
run;

Output 47.6.2 shows the results.

Example 47.6: Reading Other Fame Data Objects with the FAMEOUT= Option F 3457

Output 47.6.2 Listing of OUT=CROUT from the FAMEOUT=FORMULA Option of the Fame
TRAINING Data
Formulas from the TRAINING DB, FAMEOUT=FORMULA Option

Using WILDCARD="?YIELD?"
Formulas from the TRAINING DB, FAMEOUT=FORMULA Option

Using WILDCARD="?YIELD?"

S.GM.YIELD.A S.GM__PP.YIELD.A

(%SPLC2TF(C37044210X01, IAD_DATE.H,
IAD.H)/C37044210X01.CLOSE)*C37044210X01.ADJUST

(%SPLC2TF(C37044210X01, IAD_DATE.H,
IAD.H)/C37044210X01.CLOSE)*C37044210X01.ADJUST

S.HWP.YIELD.A S.IBM.YIELD.A

(%SPLC2TF(C42823610X01, IAD_DATE.H,
IAD.H)/C42823610X01.CLOSE)*C42823610X01.ADJUST

(%SPLC2TF(C45920010X01, IAD_DATE.H,
IAD.H)/C45920010X01.CLOSE)*C45920010X01.ADJUST

S.INDUT.YIELD.A S.SPAL.YIELD.A

(%SPLC2TF(C00000110X00, IAD_DATE.H,
IAD.H)/C00000110X00.CLOSE)*C00000110X00.ADJUST

(%SPLC2TF(C00000117X00, IAD_DATE.H,
IAD.H)/C00000117X00.CLOSE)*C00000117X00.ADJUST

S.SPALN.YIELD.A S.SUNW.YIELD.A

(%SPLC2TF(C00000117X00, IAD_DATE.H,
IAD.H)/C00000117X00.CLOSE)*C00000117X00.ADJUST

(%SPLC2TF(C86681010X60, IAD_DATE.H,
IAD.H)/C86681010X60.CLOSE)*C86681010X60.ADJUST

S.XOM.YIELD.A S.XON.YIELD.A

(%SPLC2TF(C30231G10X01, IAD_DATE.H,
IAD.H)/C30231G10X01.CLOSE)*C30231G10X01.ADJUST

(%SPLC2TF(C30231G10X01, IAD_DATE.H,
IAD.H)/C30231G10X01.CLOSE)*C30231G10X01.ADJUST

Additional examples of the FAMEOUT= option are shown in Example 47.11, Example 47.12, Example 47.13,
Example 47.14, and Example 47.15.

3458 F Chapter 47: The SASEFAME Interface Engine

Example 47.7: Remote Fame Access by Using Fame CHLI
When you run Fame in a client/server environment and also have Fame CHLI capability to enable access
to the server, you can access Fame remote data. Access the remote data by specifying the port number
of the TCP/IP service that is defined for the frdb_m and the node name of the Fame master server in the
physical path. In this example, the Fame server node name is STONES, and the port number is 5555, as was
designated in the Fame master command. For more information about starting your Fame master server, see
the section “Starting the Master Server” in Guide to Fame Database Servers.

options ls=78;
title1 "DRIECON Database, Using FAME with Remote Access via CHLI";
options validvarname=any;
libname test1 sasefame '#5555@stones $FAME/util';

data a;
set test1.driecon;
keep YP ZA ZB;
where date between '01jan98'd and '31dec03'd;

run;

proc means data=a n;
run;

Output 47.7.1 shows the results.

Output 47.7.1 Summary Statistics for the Remote FAME Data

DRIECON Database, Using FAME with Remote Access via CHLI

The MEANS Procedure

DRIECON Database, Using FAME with Remote Access via CHLI

The MEANS Procedure

Variable Label N

YP
ZA
ZB

PERSONAL INCOME
CORPORATE PROFITS AFTER TAX EXCLUDING IVA
CORPORATE PROFITS BEFORE TAX EXCLUDING IVA

5
4
4

Example 47.8: Selecting Time Series by Using the CROSSLIST= Option and KEEP Statement F 3459

Example 47.8: Selecting Time Series by Using the CROSSLIST= Option and
KEEP Statement

This example shows how to use two Fame namelists to perform selection. Note that fame_namelist1 could
be easily generated using the Fame WILDLIST function. For more about the WILDLIST function, see the
section “The WILDLIST Function” in the Fame Command Reference, Volume 2, Functions. In the following
statements, four tickers are selected in fame_namelist1, but when you use the KEEP statement, the resulting
data set contains only the desired IBM ticker:

options validvarname=any;

libname lib8 sasefame "%sysget(FAME_DATA)"
convert=(frequency=business technique=constant)
crosslist=(

{ IBM,SPALN,SUNW,XOM },
{ adjust, close, high, low, open, volume,
uclose, uhigh, ulow,uopen,uvolume }

);

data trout;
/* eleven companies, keep only the IBM ticker this time */
set lib8.training;
where date between '01mar02'd and '20mar02'd;
keep IBM: ;

run;

title1 'TRAINING DB, Pricing Timeseries for IBM Ticker in CROSSLIST=';
proc contents

data=trout;
run;

proc print
data=trout;

run;

Output 47.8.1 and Output 47.8.2 show the results.

3460 F Chapter 47: The SASEFAME Interface Engine

Output 47.8.1 Contents of the IBM Time Series in the Fame TRAINING Data

TRAINING DB, Pricing Timeseries for IBM Ticker in CROSSLIST=

The CONTENTS Procedure

TRAINING DB, Pricing Timeseries for IBM Ticker in CROSSLIST=

The CONTENTS Procedure

Alphabetic List of Variables
and Attributes

Variable Type Len

1 IBM.ADJUST Num 8

2 IBM.CLOSE Num 8

3 IBM.HIGH Num 8

4 IBM.LOW Num 8

5 IBM.OPEN Num 8

6 IBM.UCLOSE Num 8

7 IBM.UHIGH Num 8

8 IBM.ULOW Num 8

9 IBM.UOPEN Num 8

10 IBM.UVOLUME Num 8

11 IBM.VOLUME Num 8

Example 47.8: Selecting Time Series by Using the CROSSLIST= Option and KEEP Statement F 3461

Output 47.8.2 Listing of Ticker IBM Time Series in the Fame TRAINING Data

TRAINING DB, Pricing Timeseries for IBM Ticker in CROSSLIST=TRAINING DB, Pricing Timeseries for IBM Ticker in CROSSLIST=

Obs IBM.ADJUST IBM.CLOSE IBM.HIGH IBM.LOW IBM.OPEN IBM.UCLOSE IBM.UHIGH

1 1 103.020 103.100 98.500 98.600 103.020 103.100

2 1 105.900 106.540 103.130 103.350 105.900 106.540

3 1 105.670 106.500 104.160 104.250 105.670 106.500

4 1 106.300 107.090 104.750 105.150 106.300 107.090

5 1 103.710 107.500 103.240 107.300 103.710 107.500

6 1 105.090 107.340 104.820 104.820 105.090 107.340

7 1 105.240 105.970 103.600 104.350 105.240 105.970

8 1 108.500 108.850 105.510 105.520 108.500 108.850

9 1 107.180 108.650 106.700 108.300 107.180 108.650

10 1 106.600 107.950 106.590 107.020 106.600 107.950

11 1 106.790 107.450 105.590 106.550 106.790 107.450

12 1 106.350 108.640 106.230 107.100 106.350 108.640

13 1 107.490 108.050 106.490 106.850 107.490 108.050

14 1 105.500 106.900 105.490 106.900 105.500 106.900

Obs IBM.ULOW IBM.UOPEN IBM.UVOLUME IBM.VOLUME

1 98.500 98.600 104890 104890

2 103.130 103.350 107650 107650

3 104.160 104.250 75617 75617

4 104.750 105.150 76874 76874

5 103.240 107.300 109720 109720

6 104.820 104.820 107260 107260

7 103.600 104.350 86391 86391

8 105.510 105.520 110640 110640

9 106.700 108.300 64086 64086

10 106.590 107.020 53335 53335

11 105.590 106.550 108640 108640

12 106.230 107.100 53048 53048

13 106.490 106.850 46148 46148

14 105.490 106.900 48367 48367

3462 F Chapter 47: The SASEFAME Interface Engine

Example 47.9: Selecting Time Series by Using the CROSSLIST= Option and
Fame Namelist

This example demonstrates selection by using the CROSSLIST= option. Only the ticker “IBM” is specified
in the KEEP statement from the 11 companies in the Fame ticker namelist.

options validvarname=any;

libname lib9 sasefame "%sysget(FAME_DATA)"
convert=(frequency=business technique=constant)
range='07jul1997'd - '25jul1997'd
crosslist=(nl(ticker),

{ adjust, close, high, low, open, volume,
uclose, uhigh, ulow, uopen, uvolume }

);

data crout;
/* eleven companies in the FAME ticker namelist */
set lib9.training;
keep IBM: ;

run;

title1 'TRAINING DB, Pricing Timeseries for Eleven Tickers in CROSSLIST=';
title2 'Using TICKER Namelist';
proc print data=crout;
run;

proc contents data=crout;
run;

Output 47.9.1 and Output 47.9.2 show the results.

Example 47.9: Selecting Time Series by Using the CROSSLIST= Option and Fame Namelist F 3463

Output 47.9.1 Listing of OUT=CROUT Using CROSSLIST= Option in the Fame TRAINING Data

TRAINING DB, Pricing Timeseries for Eleven Tickers in CROSSLIST=
Using TICKER Namelist

TRAINING DB, Pricing Timeseries for Eleven Tickers in CROSSLIST=
Using TICKER Namelist

Obs IBM.ADJUST IBM.CLOSE IBM.HIGH IBM.LOW IBM.OPEN IBM.UCLOSE IBM.UHIGH

1 0.5 47.2500 47.7500 47.0000 47.5000 94.500 95.500

2 0.5 47.8750 47.8750 47.2500 47.2500 95.750 95.750

3 0.5 48.0938 48.3438 47.6563 48.0000 96.188 96.688

4 0.5 47.8750 48.0938 47.0313 47.3438 95.750 96.188

5 0.5 47.8750 48.6875 47.8125 47.9063 95.750 97.375

6 0.5 47.6250 48.2188 47.0000 47.8125 95.250 96.438

7 0.5 48.0000 48.1250 46.6875 47.4375 96.000 96.250

8 0.5 48.8125 49.0000 47.6875 47.8750 97.625 98.000

9 0.5 49.8125 50.8750 48.5625 48.9063 99.625 101.750

10 0.5 52.2500 52.6250 50.0000 50.0000 104.500 105.250

11 0.5 51.8750 53.1563 51.0938 52.6250 103.750 106.313

12 0.5 51.5000 51.7500 49.6875 50.0313 103.000 103.500

13 0.5 52.5625 53.5000 51.5938 52.1875 105.125 107.000

14 0.5 53.9063 54.2188 52.2500 52.8125 107.813 108.438

15 0.5 53.5000 54.2188 52.8125 53.9688 107.000 108.438

Obs IBM.ULOW IBM.UOPEN IBM.UVOLUME IBM.VOLUME

1 94.000 95.000 129012 64506

2 94.500 94.500 102796 51398

3 95.313 96.000 177276 88638

4 94.063 94.688 127900 63950

5 95.625 95.813 137724 68862

6 94.000 95.625 128976 64488

7 93.375 94.875 149612 74806

8 95.375 95.750 215440 107720

9 97.125 97.813 315504 157752

10 100.000 100.000 463480 231740

11 102.188 105.250 328184 164092

12 99.375 100.063 368276 184138

13 103.188 104.375 219880 109940

14 104.500 105.625 204088 102044

15 105.625 107.938 146600 73300

3464 F Chapter 47: The SASEFAME Interface Engine

Output 47.9.2 Contents of OUT=CROUT Using CROSSLIST= Option in the Fame TRAINING Data

Alphabetic List of Variables
and Attributes

Variable Type Len

1 IBM.ADJUST Num 8

2 IBM.CLOSE Num 8

3 IBM.HIGH Num 8

4 IBM.LOW Num 8

5 IBM.OPEN Num 8

6 IBM.UCLOSE Num 8

7 IBM.UHIGH Num 8

8 IBM.ULOW Num 8

9 IBM.UOPEN Num 8

10 IBM.UVOLUME Num 8

11 IBM.VOLUME Num 8

Example 47.10: Selecting Time Series by Using the CROSSLIST= Option and
WHERE=TICK

Instead of having a Fame namelist with the ticker symbols for companies whose data you are interested in,
you can designate an input SAS data set (INSETA) that specifies the tickers to select. Specify your selection
by using the WHERE clause in the INSET= option as follows:

options validvarname=any;

data inseta;
length tick $5;
/* need $5 so SPALN is not truncated */

tick='AOL'; output;
tick='C'; output;
tick='CPQ'; output;
tick='CVX'; output;
tick='F'; output;
tick='GM'; output;
tick='HWP'; output;
tick='IBM'; output;
tick='SPALN'; output;
tick='SUNW'; output;
tick='XOM'; output;

run;

libname lib10 sasefame "%sysget(FAME_DATA)"
convert=(frequency=business technique=constant)
range='07jul1997'd - '25jul1997'd
inset=(inseta where=tick)
crosslist=

({adjust, close, high, low, open, volume,
uclose, uhigh, ulow,uopen,uvolume});

Example 47.10: Selecting Time Series by Using the CROSSLIST= Option and WHERE=TICK F 3465

data trout;
/* eleven companies with unique TICKs specified in INSETA */
set lib10.training;
keep IBM: ;

run;

title1 'TRAINING DB, Pricing Timeseries for Eleven Tickers in CROSSLIST=';
title2 'Using INSET with WHERE=TICK';
proc print data=trout;
run;

proc contents data=trout;
run;

Output 47.10.1 and Output 47.10.2 show the results.

Output 47.10.1 Listing of OUT=TROUT Using CROSSLIST= and INSET= Options in the Fame
TRAINING Data

TRAINING DB, Pricing Timeseries for Eleven Tickers in CROSSLIST=
Using INSET with WHERE=TICK

TRAINING DB, Pricing Timeseries for Eleven Tickers in CROSSLIST=
Using INSET with WHERE=TICK

Obs IBM.ADJUST IBM.CLOSE IBM.HIGH IBM.LOW IBM.OPEN IBM.UCLOSE IBM.UHIGH

1 0.5 47.2500 47.7500 47.0000 47.5000 94.500 95.500

2 0.5 47.8750 47.8750 47.2500 47.2500 95.750 95.750

3 0.5 48.0938 48.3438 47.6563 48.0000 96.188 96.688

4 0.5 47.8750 48.0938 47.0313 47.3438 95.750 96.188

5 0.5 47.8750 48.6875 47.8125 47.9063 95.750 97.375

6 0.5 47.6250 48.2188 47.0000 47.8125 95.250 96.438

7 0.5 48.0000 48.1250 46.6875 47.4375 96.000 96.250

8 0.5 48.8125 49.0000 47.6875 47.8750 97.625 98.000

9 0.5 49.8125 50.8750 48.5625 48.9063 99.625 101.750

10 0.5 52.2500 52.6250 50.0000 50.0000 104.500 105.250

11 0.5 51.8750 53.1563 51.0938 52.6250 103.750 106.313

12 0.5 51.5000 51.7500 49.6875 50.0313 103.000 103.500

13 0.5 52.5625 53.5000 51.5938 52.1875 105.125 107.000

14 0.5 53.9063 54.2188 52.2500 52.8125 107.813 108.438

15 0.5 53.5000 54.2188 52.8125 53.9688 107.000 108.438

Obs IBM.ULOW IBM.UOPEN IBM.UVOLUME IBM.VOLUME

1 94.000 95.000 129012 64506

2 94.500 94.500 102796 51398

3 95.313 96.000 177276 88638

4 94.063 94.688 127900 63950

5 95.625 95.813 137724 68862

6 94.000 95.625 128976 64488

7 93.375 94.875 149612 74806

8 95.375 95.750 215440 107720

9 97.125 97.813 315504 157752

10 100.000 100.000 463480 231740

11 102.188 105.250 328184 164092

12 99.375 100.063 368276 184138

13 103.188 104.375 219880 109940

14 104.500 105.625 204088 102044

15 105.625 107.938 146600 73300

3466 F Chapter 47: The SASEFAME Interface Engine

Output 47.10.2 Contents of OUT=TROUT Using CROSSLIST= and INSET= Options in the Fame
TRAINING Data

Alphabetic List of Variables
and Attributes

Variable Type Len

1 IBM.ADJUST Num 8

2 IBM.CLOSE Num 8

3 IBM.HIGH Num 8

4 IBM.LOW Num 8

5 IBM.OPEN Num 8

6 IBM.UCLOSE Num 8

7 IBM.UHIGH Num 8

8 IBM.ULOW Num 8

9 IBM.UOPEN Num 8

10 IBM.UVOLUME Num 8

11 IBM.VOLUME Num 8

Example 47.11: Selecting Boolean Case Series with the FAMEOUT= Option
This example shows how to extract all Boolean case series from the Fame ALLTYPES database. The following
statements write all Boolean case series to the SAS data set BOOOUT:

title1 '***famallt: FAMEOUT Option, Different Type Values***';
options validvarname=any;

%let FAME=%sysget(FAME);
%put(&FAME);
%let FAMETEMP=%sysget(FAME_TEMP);
%put(&FAMETEMP);

libname lib4 sasefame "%sysget(FAME_DATA)"
fameout=boolcase wildcard="?" ;

data booout;
set lib4.alltypes;

run;

title1 'ALLTYPES FAMEOUT=BOOLCASE for Boolean Case Series';
title2 'Using FAMEOUT=CASE BOOLEAN Option without Range';
proc contents

data=booout;
run;

proc print
data=booout;

run;

Output 47.11.1 and Output 47.11.2 show the results for the Boolean case.

Example 47.11: Selecting Boolean Case Series with the FAMEOUT= Option F 3467

Output 47.11.1 Contents of OUT=BOOOUT Using FAMEOUT=BOOLCASE for Boolean Case Series

ALLTYPES FAMEOUT=BOOLCASE for Boolean Case Series
Using FAMEOUT=CASE BOOLEAN Option without Range

The CONTENTS Procedure

ALLTYPES FAMEOUT=BOOLCASE for Boolean Case Series
Using FAMEOUT=CASE BOOLEAN Option without Range

The CONTENTS Procedure

Alphabetic List of
Variables and Attributes

Variable Type Len

1 BOO0 Num 8

2 BOO1 Num 8

3 BOO2 Num 8

4 BOOM Num 8

5 BOO_RES Num 8

Output 47.11.2 Listing of OUT=BOOOUT Using FAMEOUT=BOOLCASE for Boolean Case Series

ALLTYPES FAMEOUT=BOOLCASE for Boolean Case Series
Using FAMEOUT=CASE BOOLEAN Option without Range
ALLTYPES FAMEOUT=BOOLCASE for Boolean Case Series
Using FAMEOUT=CASE BOOLEAN Option without Range

Obs BOO0 BOO1 BOO2 BOOM BOO_RES

1 0 1 0 1 .

2 0 0 1 0 .

3 0 0 0 251 .

4 0 1 1 1 .

5 0 1 0 1 .

6 0 0 . 0 .

7 0 0 . 0 .

8 0 1 . 1 .

9 0 . 0 . .

10 0

11 1

12 1

13 1 . 1 . .

14 1

15 1

16 1

17 1 . 0 . .

18 1

19 1

20 1

3468 F Chapter 47: The SASEFAME Interface Engine

Example 47.12: Selecting Numeric Case Series with the FAMEOUT= Option
This example extracts numeric case series. In addition to the already existing numeric case series in the Fame
database, you can also have formulas that expand to numeric case series. The SASEFAME engine resolves
all formulas that belong to the class and type of series data object that you specify in the FAMEOUT= option.
The following statements write all numeric case series to the SAS data set CSOUT:

libname lib5 sasefame "%sysget(FAME_DATA)"
fameout=case wildcard="?" ;

data csout;
set lib5.alltypes;

run;

title1 'Using FAMEOUT=CASE Option without Range';
title2 'ALLTYPES, FAMEOUT=CASE and Open Wildcard for Numeric Case Series';
proc contents

data=csout;
run;

proc print
data=csout;

run;

Output 47.12.1 and Output 47.12.2 show the results.

Output 47.12.1 Contents of OUT=CSOUT Using FAMEOUT=CASE and Open Wildcard for Numeric
Case Series

Using FAMEOUT=CASE Option without Range
ALLTYPES, FAMEOUT=CASE and Open Wildcard for Numeric Case Series

The CONTENTS Procedure

Using FAMEOUT=CASE Option without Range
ALLTYPES, FAMEOUT=CASE and Open Wildcard for Numeric Case Series

The CONTENTS Procedure

Alphabetic List of
Variables and Attributes

Variable Type Len

1 FRM1 Num 8

2 NUM0 Num 8

3 NUM1 Num 8

4 NUM2 Num 8

5 NUMM Num 8

6 NUM_RES Num 8

7 PRC0 Num 8

8 PRC1 Num 8

9 PRC2 Num 8

10 PRCM Num 8

11 PRC_RES Num 8

Example 47.13: Selecting Date Case Series with the FAMEOUT= Option F 3469

Output 47.12.2 Listing of OUT=CSOUT Using FAMEOUT=CASE and Open Wildcard for Numeric
Case Series

Using FAMEOUT=CASE Option without Range
ALLTYPES, FAMEOUT=CASE and Open Wildcard for Numeric Case Series

Using FAMEOUT=CASE Option without Range
ALLTYPES, FAMEOUT=CASE and Open Wildcard for Numeric Case Series

Obs FRM1 NUM0 NUM1 NUM2 NUMM NUM_RES PRC0 PRC1 PRC2 PRCM PRC_RES

1 0.00000 -9 0 1.33333 0 . -18 0 1.33333 0 .

2 1.00000 -8 1 1.00000 1 . -16 1 1.00000 1 .

3 0.66667 -7 2 0.66667 1.7014E38 . -14 2 0.66667 1.7014E38 .

4 3.00000 -6 3 0.33333 3 . -12 3 0.33333 3 .

5 4.00000 -5 4 0.00000 4 . -10 4 0.00000 4 .

6 . -4 5 . 5 . -8 5 . 5 .

7 . -3 6 . 6 . -6 6 . 6 .

8 7.00000 -2 7 . 7 . -4 7 . 7 .

9 . -1 . -1.33333 . . -2 . -1.33333 . .

10 . 0 0

11 . 1 2

12 . 2 4

13 . 3 . -2.66667 . . 6 . -2.66667 . .

14 . 4 8

15 . 5 10

16 . 6 12

17 . 7 . -4.00000 . . 14 . -4.00000 . .

18 . 8 16

19 . 9 18

20 . 10 20

Example 47.13: Selecting Date Case Series with the FAMEOUT= Option
This example shows how to extract date case series. In addition to the existing date case series in the Fame
database, you can have formulas that resolve to date case series. The SASEFAME engine resolves all
formulas that belong to the class and type of series data object that you specify in the FAMEOUT= option.
The following statements write all date case series to the SAS data set CDOUT:

libname lib6 sasefame "%sysget(FAME_DATA)"
fameout=datecase wildcard="?" ;

data cdout;
set lib6.alltypes;

run;

title1 'Using FAMEOUT=DATECASE Option without Range';
title2 'ALLTYPES: FAMEOUT=DATECASE and Open Wildcard for Date Case Series';
proc contents

data=cdout;
run;

proc print
data=cdout;

run;

Output 47.13.1 and Output 47.13.2 show the results.

3470 F Chapter 47: The SASEFAME Interface Engine

Output 47.13.1 Contents of OUT=CDOUT Using FAMEOUT=DATECASE

Using FAMEOUT=DATECASE Option without Range
ALLTYPES: FAMEOUT=DATECASE and Open Wildcard for Date Case Series

The CONTENTS Procedure

Using FAMEOUT=DATECASE Option without Range
ALLTYPES: FAMEOUT=DATECASE and Open Wildcard for Date Case Series

The CONTENTS Procedure

Alphabetic List of Variables and
Attributes

Variable Type Len Format Informat

1 DAT0 Num 8 YEAR4. 4.

2 DAT1 Num 8 YEAR4. 4.

3 DAT2 Num 8 YEAR4. 4.

4 DATM Num 8 YEAR4. 4.

5 FRM2 Num 8 YEAR4. 4.

Output 47.13.2 Listing of OUT=CDOUT Using FAMEOUT=DATECASE

Using FAMEOUT=DATECASE Option without Range
ALLTYPES: FAMEOUT=DATECASE and Open Wildcard for Date Case Series

Using FAMEOUT=DATECASE Option without Range
ALLTYPES: FAMEOUT=DATECASE and Open Wildcard for Date Case Series

Obs DAT0 DAT1 DAT2 DATM FRM2

1 1991 1981 1987 1981 1987

2 1992 1982 1986 1982 1986

3 1993 1983 1985 1983 1985

4 1994 1984 1984 1984 1984

5 1995 1985 1983 1985 1983

6 1996 1986 . 1986 .

7 1997 1987 . 1987 .

8 1998 1988 . 1988 .

9 1999 . 1979 . 1979

10 2000

11 2001

12 2002

13 2003 . 1975 . .

14 2004

15 2005

16 2006

17 2007 . 1971 . .

18 2008

19 2009

20 2010

Example 47.14: Selecting String Case Series with the FAMEOUT= Option F 3471

Example 47.14: Selecting String Case Series with the FAMEOUT= Option
This example shows how to extract string case series. In addition to the existing string case series in your
Fame database, you can have formulas that resolve to string case series. The SASEFAME engine resolves all
formulas that belong to the class and type of series data object that you specify in the FAMEOUT= option.
The following statements write all string case series to the SAS data set CSTROUT:

libname lib7 sasefame "%sysget(FAME_DATA)"
fameout=stringcase wildcard="?" ;

data cstrout;
set lib7.alltypes;

run;

title1 'Using FAMEOUT=STRINGCASE Option without Range';
title2 'ALLTYPES, FAMEOUT=STRINGCASE and Open Wildcard for String Case Series';
proc contents

data=cstrout;
run;

proc print
data=cstrout;

run;

Output 47.14.1 and Output 47.14.2 show the results.

Output 47.14.1 Contents of OUT=CSTROUT Using FAMEOUT=STRINGCASE and Open Wildcard for
String Case Series

Using FAMEOUT=STRINGCASE Option without Range
ALLTYPES, FAMEOUT=STRINGCASE and Open Wildcard for String Case Series

The CONTENTS Procedure

Using FAMEOUT=STRINGCASE Option without Range
ALLTYPES, FAMEOUT=STRINGCASE and Open Wildcard for String Case Series

The CONTENTS Procedure

Alphabetic List of
Variables and

Attributes

Variable Type Len

1 STR0 Char 16

2 STR1 Char 16

3 STR2 Char 16

4 STRM Char 16

3472 F Chapter 47: The SASEFAME Interface Engine

Output 47.14.2 Listing of OUT=CSTROUT Using FAMEOUT=STRINGCASE and Open Wildcard for String
Case Series
Using FAMEOUT=STRINGCASE Option without Range

ALLTYPES, FAMEOUT=STRINGCASE and Open Wildcard for String Case Series
Using FAMEOUT=STRINGCASE Option without Range

ALLTYPES, FAMEOUT=STRINGCASE and Open Wildcard for String Case Series

Obs STR0 STR1 STR2 STRM

1 -9 0 1.333333 0

2 -8 1 1 1

3 -7 2 0.6666667 2

4 -6 3 0.3333333 3

5 -5 4 0 4

6 -4 5 5

7 -3 6

8 -2 7 7

9 -1 -1.333333

10 0

11 1

12 2

13 3 -2.666667

14 4

15 5

16 6

17 7 -4

18 8

19 9

20 10

Example 47.15: Extracting Source for Formulas
This example shows how to extract the source for all the formulas in the Fame database by using the
FAMEOUT=FORMULA and WILDCARD=“?” options. The following statements show the source of all
formulas written to the SAS data set CFOROUT. Another example of the FAMEOUT=FORMULA option is
shown in Example 47.6.

libname lib8 sasefame "%sysget(FAME_DATA)"
fameout=formula wildcard="?" ;

data cforout;
set lib8.alltypes;

run;

title1 'Using FAMEOUT=FORMULA Option without Range';
proc contents

data=cforout;
run;

Output 47.15.1 and Output 47.15.2 show the results.

Example 47.16: Defining Fame Expression Groups in the INSET F 3473

Output 47.15.1 Contents of OUT=CFOROUT Using FAMEOUT=FORMULA and Open Wildcard

Using FAMEOUT=FORMULA Option without Range

The CONTENTS Procedure

Using FAMEOUT=FORMULA Option without Range

The CONTENTS Procedure

Alphabetic List of
Variables and

Attributes

Variable Type Len

1 S.DFRM Char 27

2 S.FRM1 Char 27

3 S.FRM2 Char 27

title3 'ALLTYPES, FAMEOUT=FORMULA, and Open Wildcard for FORMULA Series';
proc print

data=cforout noobs;
run;

Output 47.15.2 Listing of OUT=CFOROUT Using FAMEOUT=FORMULA and Open Wildcard

Using FAMEOUT=FORMULA Option without Range

ALLTYPES, FAMEOUT=FORMULA, and Open Wildcard for FORMULA Series

Using FAMEOUT=FORMULA Option without Range

ALLTYPES, FAMEOUT=FORMULA, and Open Wildcard for FORMULA Series

S.DFRM S.FRM1 S.FRM2

IF DBOO THEN DPRC ELSE DNUMIF BOO1 THEN NUM1 ELSE NUM2IF BOO0 THEN DAT1 ELSE DAT2

If you want all series of every type, you can merge the resulting data sets. For more information about
merging SAS data sets, see SAS Language Reference: Concepts.

Example 47.16: Reading Time Series by Defining Fame Expression Groups in
the INSET= Option with the KEEP= Clause

To keep all the numeric time series that are listed in the expressions given in the input data set, INSETA, use
the INSET=(setname KEEPLIST=fame_expression_group) and WILDCARD=“?” options. The following
statements show how to select time series that are specified in a KEEP expression group and are written to
the SAS output data set:

data inseta; /* Use this for d8690 training database */
length express $52;
express='cvx.close;'; output;
express='{ibm.high,ibm.low,ibm.close};'; output;
express='mave(ibm.close,30);'; output;
express='crosslist({gm,f,c},{volume});'; output;
express='cvx.close+ibm.close;'; output;
express='ibm.close;'; output;
express='sum(pep.volume);'; output;
express='mave(pep.close,20);'; output;

run;

3474 F Chapter 47: The SASEFAME Interface Engine

title1 'TRAINING DB, Pricing Timeseries for Expressions in INSET=';
proc print

data=inseta;
run;

Output 47.16.1 shows the expressions that are stored as observations in the input data set, INSETA.

Output 47.16.1 Listing of INSETA Defining Fame Expression Group

TRAINING DB, Pricing Timeseries for Expressions in INSET=TRAINING DB, Pricing Timeseries for Expressions in INSET=

Obs express

1 cvx.close;

2 {ibm.high,ibm.low,ibm.close};

3 mave(ibm.close,30);

4 crosslist({gm,f,c},{volume});

5 cvx.close+ibm.close;

6 ibm.close;

7 sum(pep.volume);

8 mave(pep.close,20);

The following statements show how to use the INSET= option to keep all time series that are represented in
the input data set, INSETA, as the group variable EXPRESS:

libname libX sasefame "%sysget(FAME_DATA)"
wildcard="?"
convert=(frequency=business technique=constant)
range='23jul1997'd - '25jul1997'd
inset=(inseta KEEP=express)
;

data trout;
set libX.trainten;

run;

title1 'TRAINING DB, Pricing Timeseries for Expressions in INSET=';
proc print data=trout;
run;

proc contents data=trout;
run;

Output 47.16.2 and Output 47.16.3 show the results.

Example 47.17: Optimizing Cache Sizes with the TUNEFAME= and TUNECHLI= Options F 3475

Output 47.16.2 Listing of TROUT Using INSETA with KEEP=EXPRESS

TRAINING DB, Pricing Timeseries for Expressions in INSET=TRAINING DB, Pricing Timeseries for Expressions in INSET=

Obs DATE C.VOLUME VOLUME GM.VOLUME IBM.CLOSE IBM.HIGH IBM.LOW SASTEMP1

1 23JUL1997 33791.88 45864.05 37392 52.5625 53.5000 51.5938 76.8125

2 24JUL1997 41828.85 29651.34 27771 53.9063 54.2188 52.2500 76.8750

3 25JUL1997 46979.83 36716.77 24969 53.5000 54.2188 52.8125 78.0000

Obs SASTEMP3 SASTEMP5 SASTEMP6 SASTEMP8

1 47.0894 129.375 52.5625 37.6118

2 47.4289 130.781 53.9063 37.6250

3 47.7392 131.500 53.5000 37.6546

Output 47.16.3 Listing of Contents of TROUT

Alphabetic List of Variables and Attributes

Variable Type Len Format Informat Label

2 C.VOLUME Num 8

1 DATE Num 8 DATE9. 9. Date of Observation

4 GM.VOLUME Num 8

5 IBM.CLOSE Num 8

6 IBM.HIGH Num 8

7 IBM.LOW Num 8

8 SASTEMP1 Num 8

9 SASTEMP3 Num 8

10 SASTEMP5 Num 8

11 SASTEMP6 Num 8

12 SASTEMP8 Num 8

3 VOLUME Num 8

Example 47.17: Optimizing Cache Sizes with the TUNEFAME= and
TUNECHLI= Options

This example shows how to use the TUNEFAME= option, the TUNECHLI= option, and a RANGE= option
to select pricing time series in the TRAINTEN database. The selected time series are written to the SAS
output data set. The Fame database engine’s virtual memory is given in megabytes (MB), so this example
sets the cache size to 100 MB. The Fame CHLI engine’s virtual memory is also given in megabytes (MB),
so this example sets the CHLI cache size to 100 MB. These two settings correspond to the default settings.
Both the Fame 4GL engine and the Fame CHLI engine can use a cache size that ranges from 0.1 MB to
17,592,186,000,000 MB.

3476 F Chapter 47: The SASEFAME Interface Engine

libname lib5 sasefame "%sysget(FAME_DATA)"
wildcard="?UHIGH"
tunefame=nodes 100
tunechli=nodes 100
convert=(frequency=business technique=constant)
range='23jul1997'd - '25jul1997'd
;

data trout(drop=C:);
set lib5.trainten;

run;
title1 'TRAINTEN DB, Pricing Time Series, TUNEFAME=NODES and TUNECHLI=NODES Options';
proc print data=trout;
run;

proc contents data=trout;
run;

Output 47.17.1 and Output 47.17.2 show the results.

Output 47.17.1 Listing of TRAINING DB, Pricing Time Series, TUNEFAME=NODES,
and TUNECHLI=NODES Options

TRAINTEN DB, Pricing Time Series, TUNEFAME=NODES and TUNECHLI=NODES
Options

TRAINTEN DB, Pricing Time Series, TUNEFAME=NODES and TUNECHLI=NODES
Options

Obs DATE DJ30IN.UHIGH DJ__30.UHIGH F.UHIGH F___I.UHIGH GM.UHIGH GM__PP.UHIGH

1 23JUL1997 8199.15 8199.15 41.0625 41.0625 59.1250 59.1250

2 24JUL1997 8174.53 8174.53 42.0000 42.0000 59.2500 59.2500

3 25JUL1997 8200.31 8200.31 41.5000 41.5000 57.8125 57.8125

Obs HPQ.UHIGH HWP.UHIGH IBM.UHIGH INDUT.UHIGH INTC.UHIGH JAVA.UHIGH JAVAD.UHIGH

1 67.3125 67.3125 107.000 8199.15 90.750 46.9375 46.9375

2 65.8750 65.8750 108.438 8174.53 90.625 46.8750 46.8750

3 66.1250 66.1250 108.438 8200.31 91.125 47.3750 47.3750

Obs KO.UHIGH PEP.UHIGH SPAL.UHIGH SPALN.UHIGH SPALNS.UHIGH SPX.UHIGH SP_CI.UHIGH

1 70.7500 38.4375 941.800 941.800 941.800 941.800 941.800

2 70.4375 38.0625 941.510 941.510 941.510 941.510 941.510

3 70.9375 38.7500 945.650 945.650 945.650 945.650 945.650

Obs SP__50.UHIGH SP___C.UHIGH SUNW.UHIGH XOM.UHIGH XON.UHIGH

1 941.800 941.800 46.9375 63.125 63.125

2 941.510 941.510 46.8750 62.000 62.000

3 945.650 945.650 47.3750 63.000 63.000

Example 47.17: Optimizing Cache Sizes with the TUNEFAME= and TUNECHLI= Options F 3477

Output 47.17.2 Listing of Contents of TROUT for TUNEFAME=NODES and TUNECHLI=NODES Options

Alphabetic List of Variables and Attributes

Variable Type Len Format Informat Label

1 DATE Num 8 DATE9. 9. Date of Observation

2 DJ30IN.UHIGH Num 8

3 DJ__30.UHIGH Num 8

4 F.UHIGH Num 8

5 F___I.UHIGH Num 8

6 GM.UHIGH Num 8

7 GM__PP.UHIGH Num 8

8 HPQ.UHIGH Num 8

9 HWP.UHIGH Num 8

10 IBM.UHIGH Num 8

11 INDUT.UHIGH Num 8

12 INTC.UHIGH Num 8

13 JAVA.UHIGH Num 8

14 JAVAD.UHIGH Num 8

15 KO.UHIGH Num 8

16 PEP.UHIGH Num 8

17 SPAL.UHIGH Num 8

18 SPALN.UHIGH Num 8

19 SPALNS.UHIGH Num 8

20 SPX.UHIGH Num 8

21 SP_CI.UHIGH Num 8

22 SP__50.UHIGH Num 8

23 SP___C.UHIGH Num 8

24 SUNW.UHIGH Num 8

25 XOM.UHIGH Num 8

26 XON.UHIGH Num 8

For more information about tuning the use of virtual memory, read about TUNE CACHE nodes in the section
“TUNE CACHE Option” in the online document Fame 10 Online Help.

3478 F Chapter 47: The SASEFAME Interface Engine

References

DRI/McGraw-Hill (1997). DataLink. Lexington, MA: DRI/McGraw-Hill.

DRI/McGraw-Hill Data Search and Retrieval for Windows (1996). DRIPRO User’s Guide. Lexington, MA:
DRI/McGraw-Hill.

IHS Global Insight (2009). “Global Economic Data.” Available at http://www.ihs.com/products/
global-insight/industry-analysis/financial/global-economic-data.aspx.

Organisation for Economic Co-operation and Development (1992a). Annual National Accounts, Vol. 1: Main
Aggregates Content Documentation for Magnetic Tape Subscription. Paris: OECD.

Organisation for Economic Co-operation and Development (1992b). Annual National Accounts, Vol. 2:
Detailed Tables Technical Documentation for Magnetic Tape Subscription. Paris: OECD.

Organisation for Economic Co-operation and Development (1992c). Main Economic Indicators Database
Note. Paris: OECD.

Organisation for Economic Co-operation and Development (1992d). Main Economic Indicators Inventory.
Paris: OECD.

Organisation for Economic Co-operation and Development (1992e). Main Economic Indicators OECD
Statistics on Magnetic Tape Document. Paris: OECD.

Organisation for Economic Co-operation and Development (1992f). OECD Statistical Information Research
and Inquiry System Magnetic Tape Format Documentation. Paris: OECD.

Organisation for Economic Co-operation and Development (1992g). Quarterly National Accounts Inventory
of Series Codes. Paris: OECD.

Organisation for Economic Co-operation and Development (1992h). Quarterly National Accounts Technical
Documentation. Paris: OECD.

SunGard Solutions for Data Management (2009a). FAME 10 Online Help. Ann Arbor, MI: SunGard Solutions
for Data Management. https://fame.sungard.com/support.html.

SunGard Solutions for Data Management (2009b). FAME Command Reference for Release 9 and Earlier.
Ann Arbor, MI: SunGard Solutions for Data Management. https://fame.sungard.com/support.
html.

SunGard Solutions for Data Management (2009c). FAME Functions for FAME Release 9 and Earlier.
Ann Arbor, MI: SunGard Solutions for Data Management. https://fame.sungard.com/support.
html.

SunGard Solutions for Data Management (2009d). Guide to FAME Database Servers. New York: SunGard
Solutions for Data Management. https://fame.sungard.com/support.html.

SunGard Solutions for Data Management (2009e). Reference Guide to Seamless C HL. Ann Arbor, MI:
SunGard Solutions for Data Management. https://fame.sungard.com/support.html.

SunGard Solutions for Data Management (2009f). User’s Guide to FAME. Ann Arbor, MI: SunGard
Solutions for Data Management. https://fame.sungard.com/support.html.

http://www.ihs.com/products/global-insight/industry-analysis/financial/global-economic-data.aspx
http://www.ihs.com/products/global-insight/industry-analysis/financial/global-economic-data.aspx
https://fame.sungard.com/support.html
https://fame.sungard.com/support.html
https://fame.sungard.com/support.html
https://fame.sungard.com/support.html
https://fame.sungard.com/support.html
https://fame.sungard.com/support.html
https://fame.sungard.com/support.html
https://fame.sungard.com/support.html

Subject Index

CONTENTS procedure
SASEFAME engine, 3425

CONVERT= option
SASEFAME engine, 3425

creating a Fame view, see SASEFAME engine

DOT as a GLUE character
SASEFAME engine, 3429

DRI data files in Fame databases, see SASEFAME
engine

DRI/McGraw-Hill data files in Fame databases, see
SASEFAME engine

DROP in the DATA step
SASEFAME engine, 3442

Fame data files, see SASEFAME engine
Fame GLUE symbol named DOT

SASEFAME engine, 3438
Fame Information Services Databases, see

SASEFAME engine
fatal error when reading from a Fame database

SASEFAME engine, 3425
finishing the Fame CHLI

SASEFAME engine, 3425

GLUE symbol
SASEFAME engine, 3429

KEEP in the DATA step
SASEFAME engine, 3442

LIBNAME libref SASEFAME ‘physical name’ on
Windows

SASEFAME engine, 3438
LIBNAME libref SASEFAME ‘physical name’on

UNIX
SASEFAME engine, 3438

LIBNAME interface engine for Fame database, see
SASEFAME engine

LIBNAME statement
SASEFAME engine, 3424

main economic indicators (OECD) data files in Fame
databases, see SASEFAME engine

national accounts data files (OECD) in Fame databases,
see SASEFAME engine

OECD data files in Fame databases, see SASEFAME
engine

Organization for Economic Cooperation and
Development data files in Fame databases,
see SASEFAME engine

physical names on supported hosts
SASEFAME engine, 3438

physical pathname syntax for a variety of environments
SASEFAME engine, 3438

RANGE= option in the LIBNAME statement
SASEFAME engine, 3445

reading from a Fame database
SASEFAME engine, 3425

remote Fame access, using Fame CHLI
SASEFAME engine, 3426

RENAME in the DATA step
SASEFAME engine, 3442

restarting the SASEFAME engine
SASEFAME engine, 3425

SAS DATA step
SASEFAME engine, 3425

SAS options statement, using
VALIDVARNAME=ANY

SASEFAME engine, 3438, 3442
SAS output data set

SASEFAME engine, 3432
SASEFAME engine

CONTENTS procedure, 3425
CONVERT= option, 3425
creating a Fame view, 3424
DOT as a GLUE character, 3429
DRI data files in Fame databases , 3424
DRI/McGraw-Hill data files in Fame databases,

3424
DROP in the DATA step, 3442
Fame data files, 3424
Fame GLUE symbol named DOT, 3438
Fame Information Services Databases, 3424
fatal error when reading from a Fame database,

3425
finishing the Fame CHLI, 3425
GLUE symbol, 3429
KEEP in the DATA step, 3442
LIBNAME libref SASEFAME ‘physical name’

on Windows, 3438
LIBNAME libref SASEFAME ‘physical name’on

UNIX, 3438

LIBNAME interface engine for Fame databases,
3424

LIBNAME statement, 3424
main economic indicators (OECD) data files in

Fame databases, 3424
national accounts data files (OECD) in Fame

databases, 3424
OECD data files in Fame databases, 3424
Organization for Economic Cooperation and

Development data files in Fame databases,
3424

physical names on supported hosts, 3438
physical pathname syntax for a variety of

environments, 3438
RANGE= option in the LIBNAME statement,

3445
reading from a Fame database, 3425
remote Fame access, using Fame CHLI, 3426
RENAME in the DATA step, 3442
restarting the SASEFAME engine, 3425
SAS DATA step, 3425
SAS options statement, using

VALIDVARNAME=ANY, 3438, 3442
SAS output data set, 3432
special characters in SAS variable names, the

GLUE symbol DOT, 3438
SQL procedure, creating a view, 3425
SQL procedure, using clause, 3425
using CROSSLIST= option to create a view, 3426
using Fame expressions and Fame functions in an

INSET (input data set), 3426
using INSET= option with the CROSSLIST=

option to create a view, 3426
using INSET= option with the KEEP= clause to

create a view, 3426
using KEEPLIST clause to create a view, 3426
using RANGE= option to create a view, 3426
using WHERE clause with INSET= option to

create a view, 3426
using WILDCARD= option to create a view, 3426
VALIDVARNAME=ANY, SAS option statement,

3438, 3442
viewing a Fame database, 3424
WHERE clause in the DATA step, 3445

special characters in SAS variable names, the GLUE
symbol DOT

SASEFAME engine, 3438
SQL procedure, creating a view

SASEFAME engine, 3425
SQL procedure, using clause

SASEFAME engine, 3425

using CROSSLIST= option to create a view
SASEFAME engine, 3426

using Fame expressions and Fame functions in an
INSET (input data set)

SASEFAME engine, 3426
using INSET= option with the CROSSLIST= option to

create a view
SASEFAME engine, 3426

using INSET= option with the KEEP= clause to create
a view

SASEFAME engine, 3426
using KEEPLIST clause to create a view

SASEFAME engine, 3426
using RANGE= option to create a view

SASEFAME engine, 3426
using WHERE clause with INSET= option to create a

view
SASEFAME engine, 3426

using WILDCARD= option to create a view
SASEFAME engine, 3426

VALIDVARNAME=ANY, SAS option statement
SASEFAME engine, 3438, 3442

viewing a Fame database, see SASEFAME engine

WHERE clause in the DATA step
SASEFAME engine, 3445

Syntax Index

AS_DB= option
LIBNAME statement (SASEFAME), 3428

CONVERT= option
LIBNAME statement (SASEFAME), 3428

CROSSLIST= option
LIBNAME statement (SASEFAME), 3428

DBVERSION= option
LIBNAME statement (SASEFAME), 3429

DEBUG= option
LIBNAME statement (SASEFAME), 3429

FAMEOUT= option
LIBNAME statement (SASEFAME), 3429

INSET= option
LIBNAME statement (SASEFAME), 3429

RANGE= option
LIBNAME statement (SASEFAME), 3429

remote Fame data access, implicit connection
physical name using port number, 3428

TUNECHLI= option
LIBNAME statement (SASEFAME), 3430

TUNEFAME= option
LIBNAME statement (SASEFAME), 3430

WILDCARD= option
LIBNAME statement (SASEFAME), 3430

	The SASEFAME Interface Engine
	Overview: SASEFAME Interface Engine
	Getting Started: SASEFAME Interface Engine
	Structure of a SAS Data Set That Contains Time Series Data
	Reading and Converting Fame Database Time Series
	Using the SAS DATA Step
	Using SAS Procedures
	Using the SAS Windowing Environment
	Remote Fame Data Access
	Creating Views of Time Series by Using SASEFAME LIBNAME Options

	Syntax: SASEFAME Interface Engine
	LIBNAME libref SASEFAME Statement

	Details: SASEFAME Interface Engine
	Opening a Local Fame Database
	Managing Fame Server Processes for Remote Access
	SAS Output Data Set
	Mapping Fame Frequencies to SAS Time Intervals
	Performing the Keeplist Expression Function
	Performing the Crosslist Selection Function

	Examples: SASEFAME Interface Engine
	Example 47.1: Converting an Entire Fame Database
	Example 47.2: Reading Time Series from the Fame Database
	Example 47.3: Writing Time Series to the SAS Data Set
	Example 47.4: Limiting the Time Range of Data
	Example 47.5: Creating a View Using the SQL Procedure and the SASEFAME Engine
	Example 47.6: Reading Other Fame Data Objects with the FAMEOUT= Option
	Example 47.7: Remote Fame Access by Using Fame CHLI
	Example 47.8: Selecting Time Series by Using the CROSSLIST= Option and KEEP Statement
	Example 47.9: Selecting Time Series by Using the CROSSLIST= Option and Fame Namelist
	Example 47.10: Selecting Time Series by Using the CROSSLIST= Option and WHERE=TICK
	Example 47.11: Selecting Boolean Case Series with the FAMEOUT= Option
	Example 47.12: Selecting Numeric Case Series with the FAMEOUT= Option
	Example 47.13: Selecting Date Case Series with the FAMEOUT= Option
	Example 47.14: Selecting String Case Series with the FAMEOUT= Option
	Example 47.15: Extracting Source for Formulas
	Example 47.16: Reading Time Series by Defining Fame Expression Groups in the INSET= Option with the KEEP= Clause
	Example 47.17: Optimizing Cache Sizes with the TUNEFAME= and TUNECHLI= Options

	References

	Subject Index
	Syntax Index

