SAS/ETS® 14.1 User’s Guide
The TIMESERIES Procedure
Chapter 39
The TIMESERIES Procedure

Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview: TIMESERIES Procedure</td>
<td>2658</td>
</tr>
<tr>
<td>Getting Started: TIMESERIES Procedure</td>
<td>2659</td>
</tr>
<tr>
<td>Syntax: TIMESERIES Procedure</td>
<td>2662</td>
</tr>
<tr>
<td>Functional Summary</td>
<td>2662</td>
</tr>
<tr>
<td>PROC TIMESERIES Statement</td>
<td>2665</td>
</tr>
<tr>
<td>BY Statement</td>
<td>2669</td>
</tr>
<tr>
<td>CORR Statement</td>
<td>2669</td>
</tr>
<tr>
<td>COUNT Statement (Experimental)</td>
<td>2671</td>
</tr>
<tr>
<td>CROSSCORR Statement</td>
<td>2672</td>
</tr>
<tr>
<td>DECOMP Statement</td>
<td>2673</td>
</tr>
<tr>
<td>ID Statement</td>
<td>2675</td>
</tr>
<tr>
<td>SEASON Statement</td>
<td>2678</td>
</tr>
<tr>
<td>SPECTRA Statement</td>
<td>2679</td>
</tr>
<tr>
<td>SSA Statement</td>
<td>2681</td>
</tr>
<tr>
<td>TREND Statement</td>
<td>2684</td>
</tr>
<tr>
<td>VAR and CROSSVAR Statements</td>
<td>2685</td>
</tr>
<tr>
<td>Details: TIMESERIES Procedure</td>
<td>2686</td>
</tr>
<tr>
<td>Accumulation</td>
<td>2687</td>
</tr>
<tr>
<td>Missing Value Interpretation</td>
<td>2689</td>
</tr>
<tr>
<td>Time Series Transformation</td>
<td>2690</td>
</tr>
<tr>
<td>Time Series Differencing</td>
<td>2690</td>
</tr>
<tr>
<td>Descriptive Statistics</td>
<td>2691</td>
</tr>
<tr>
<td>Seasonal Decomposition</td>
<td>2691</td>
</tr>
<tr>
<td>Correlation Analysis</td>
<td>2693</td>
</tr>
<tr>
<td>Cross-Correlation Analysis</td>
<td>2694</td>
</tr>
<tr>
<td>Spectral Density Analysis</td>
<td>2695</td>
</tr>
<tr>
<td>Singular Spectrum Analysis</td>
<td>2699</td>
</tr>
<tr>
<td>Data Set Output</td>
<td>2701</td>
</tr>
<tr>
<td>OUT= Data Set</td>
<td>2701</td>
</tr>
<tr>
<td>OUTCORR= Data Set</td>
<td>2702</td>
</tr>
<tr>
<td>OUTCROSSCORR= Data Set</td>
<td>2703</td>
</tr>
<tr>
<td>OUTDECOMP= Data Set</td>
<td>2704</td>
</tr>
<tr>
<td>OUTFREQ= Data Set</td>
<td>2705</td>
</tr>
<tr>
<td>OUTPROCINFO= Data Set</td>
<td>2705</td>
</tr>
<tr>
<td>OUTSEASON= Data Set</td>
<td>2705</td>
</tr>
<tr>
<td>OUTSPECTRA= Data Set</td>
<td>2706</td>
</tr>
</tbody>
</table>
Overview: TIMESERIES Procedure

The TIMESERIES procedure analyzes time-stamped transactional data with respect to time and accumulates the data into a time series format. The procedure can perform trend and seasonal analysis on the transactions. After the transactional data are accumulated, time domain and frequency domain analysis can be performed on the accumulated time series.

For seasonal analysis of the transaction data, various statistics can be computed for each season. For trend analysis of the transaction data, various statistics can be computed for each time period. The analysis is similar to applying the MEANS procedure of Base SAS software to each season or time period of concern.

After the transactional data are accumulated to form a time series and any missing values are interpreted, the accumulated time series can be functionally transformed using log, square root, logistic, or Box-Cox transformations. The time series can be further transformed using simple and/or seasonal differencing. After functional and difference transformations have been applied, the accumulated and transformed time series can be stored in an output data set. This working time series can then be analyzed further using various time series analysis techniques provided by this procedure or other SAS/ETS procedures.

Time series analyses performed by the TIMESERIES procedure include:

- descriptive (global) statistics
- seasonal decomposition/adjustment analysis
- correlation analysis
- cross-correlation analysis
- spectral analysis
All results of the transactional or time series analysis can be stored in output data sets or printed using the Output Delivery System (ODS).

The TIMESERIES procedure can process large amounts of time-stamped transactional data. Therefore, the analysis results are useful for large-scale time series analysis or (temporal) data mining. All of the results can be stored in output data sets in either a time series format (default) or in a coordinate format (transposed). The time series format is useful for preparing the data for subsequent analysis with other SAS/ETS procedures. For example, the working time series can be further analyzed, modeled, and forecast with other SAS/ETS procedures. The coordinate format is useful when using this procedure with SAS/STAT procedures or SAS Enterprise Miner. For example, clustering time-stamped transactional data can be achieved by using the results of this procedure with the clustering procedures of SAS/STAT and the nodes of SAS Enterprise Miner.

The EXPAND procedure can be used for the frequency conversion and transformations of time series output from this procedure.

Getting Started: TIMESERIES Procedure

This section outlines the use of the TIMESERIES procedure and gives a cursory description of some of the analysis techniques that can be performed on time-stamped transactional data.

Given an input data set that contains numerous transaction variables recorded over time at no specific frequency, the TIMESERIES procedure can form time series as follows:

```
PROC TIMESERIES DATA=<input-data-set>
   OUT=<output-data-set>;
   ID <time-ID-variable> INTERVAL=<frequency>
   ACCUMULATE=<statistic>;
   VAR <time-series-variables>;
RUN;
```

The TIMESERIES procedure forms time series from the input time-stamped transactional data. It can provide results in output data sets or in other output formats by using the Output Delivery System (ODS).

Time-stamped transactional data are often recorded at no fixed interval. Analysts often want to use time series analysis techniques that require fixed-time intervals. Therefore, the transactional data must be accumulated to form a fixed-interval time series.

Suppose that a bank wants to analyze the transactions associated with each of its customers over time. Further, suppose that the data set WORK.TRANSACTIONS contains four variables that are related to these transactions: CUSTOMER, DATE, WITHDRAWAL, and DEPOSITS. The following examples illustrate possible ways to analyze these transactions by using the TIMESERIES procedure.

To accumulate the time-stamped transactional data to form a daily time series based on the accumulated daily totals of each type of transaction (WITHDRAWALS and DEPOSITS), the following TIMESERIES procedure statements can be used:

```
proc timeseries data=transactions
   out=timeseries;
   by customer;
   id date interval=day accumulate=total;
   var withdrawals deposits;
run;
```
Chapter 39: The TIMESERIES Procedure

The OUT=TIMESERIES option specifies that the resulting time series data for each customer is to be stored in the data set WORK.TIMESERIES. The INTERVAL=DAY option specifies that the transactions are to be accumulated on a daily basis. The ACCUMULATE=TOTAL option specifies that the sum of the transactions is to be calculated. After the transactional data is accumulated into a time series format, many of the procedures provided with SAS/ETS software can be used to analyze the resulting time series data.

For example, the ARIMA procedure can be used to model and forecast each customer’s withdrawal data by using an ARIMA(0,1,1)(0,1,1)s model (where the number of seasons is s=7 days in a week) using the following statements:

```r
proc arima data=timeseries;
   identify var=withdrawals(1,7) noprint;
   estimate q=(1)(7) outest=estimates noprint;
   forecast id=date interval=day out=forecasts;
quit;
```

The OUTEST=ESTIMATES data set contains the parameter estimates of the model specified. The OUT=FORECASTS data set contains forecasts based on the model specified. See the SAS/ETS ARIMA procedure for more detail.

A single set of transactions can be very large and must be summarized in order to analyze them effectively. Analysts often want to examine transactional data for trends and seasonal variation. To analyze transactional data for trends and seasonality, statistics must be computed for each time period and season of concern. For each observation, the time period and season must be determined and the data must be analyzed based on this determination.

The following statements illustrate how to use the TIMESERIES procedure to perform trend and seasonal analysis of time-stamped transactional data.

```r
proc timeseries data=transactions out=out
   outseason=season outtrend=trend;
   by customer;
   id date interval=day accumulate=total;
   var withdrawals deposits;
run;
```

Since the INTERVAL=DAY option is specified, the length of the seasonal cycle is seven (7) where the first season is Sunday and the last season is Saturday. The output data set specified by the OUTSEASON=SEASON option contains the seasonal statistics for each day of the week by each customer. The output data set specified by the OUTTREND=TREND option contains the trend statistics for each day of the calendar by each customer.

Often it is desired to seasonally decompose into seasonal, trend, cycle, and irregular components or to seasonally adjust a time series. The following techniques describe how the changing seasons influence the time series.

The following statements illustrate how to use the TIMESERIES procedure to perform seasonal adjustment/decomposition analysis of time-stamped transactional data.

```r
proc timeseries data=transactions
   out=out
   outdecomp=decompose;
   by customer;
   id date interval=day accumulate=total;
   var withdrawals deposits;
run;
```
The output data set specified by the OUTDECOMP=DECOMPOSE data set contains the decomposed/adjusted time series for each customer.

A single time series can be very large. Often, a time series must be summarized with respect to time lags in order to be efficiently analyzed using time domain techniques. These techniques help describe how a current observation is related to the past observations with respect to the time (season) lag.

The following statements illustrate how to use the TIMESERIES procedure to perform time domain analysis of time-stamped transactional data.

```sas
proc timeseries data=transactions
    out=out
    outcorr=timedomain;
    by customer;
    id date interval=day accumulate=total;
    var withdrawals deposits;
run;
```

The output data set specified by the OUTCORR=TIMEDOMAIN data set contains the time domain statistics, such as sample autocorrelations and partial autocorrelations, by each customer.

Sometimes time series data contain underlying patterns that can be identified using spectral analysis techniques. Two kinds of spectral analyses on univariate data can be performed using the TIMESERIES procedure. They are singular spectrum analysis and Fourier spectral analysis.

Singular spectrum analysis (SSA) is a technique for decomposing a time series into additive components and categorizing these components based on the magnitudes of their contributions. SSA uses a single parameter, the window length, to quantify patterns in a time series without relying on prior information about the series’ structure. The window length represents the maximum lag that is considered in the analysis, and it corresponds to the dimensionality of the principle components analysis (PCA) on which SSA is based. The components are combined into groups to categorize their roles in the SSA decomposition.

Fourier spectral analysis decomposes a time series into a sum of harmonics. In the discrete Fourier transform, the contribution of components at evenly spaced frequencies are quantified in a periodogram and summarized in spectral density estimates.

The following statements illustrate how to use the TIMESERIES procedure to analyze time-stamped transactional data without prior information about the series’ structure.

```sas
proc timeseries data=transactions
    outssa=ssa
    outspectra=spectra;
    by customer;
    id date interval=day accumulate=total;
    var withdrawals deposits;
run;
```

The output data set specified by the OUTSSA=SSA data set contains a singular spectrum analysis of the withdrawals and deposits data. The data set specified by OUTSPECTRA=SPECTRA contains a Fourier spectral decomposition of the same data.

By default, the TIMESERIES procedure produces no printed output.
Syntax: TIMESERIES Procedure

The TIMESERIES Procedure uses the following statements:

```
PROC TIMESERIES options ;
   BY variables ;
   CORR statistics-list / options ;
   CROSSCORR statistics-list / options ;
   CROSSVAR variable-list / options ;
   COUNT / options ;
   DECOMP component-list / options ;
   ID variable INTERVAL= interval-option ;
   SEASON statistics-list / options ;
   SPECTRA statistics-list / options ;
   SSA / options ;
   TREND statistics-list / options ;
   VAR variable-list / options ;
```

Functional Summary

Table 39.1 summarizes the statements and options that control the TIMESERIES procedure.

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifies BY-group processing</td>
<td>BY</td>
<td></td>
</tr>
<tr>
<td>Specifies variables to analyze</td>
<td>VAR</td>
<td></td>
</tr>
<tr>
<td>Specifies cross variables to analyze</td>
<td>CROSSVAR</td>
<td></td>
</tr>
<tr>
<td>Specifies the time ID variable</td>
<td>ID</td>
<td></td>
</tr>
<tr>
<td>Specifies correlation options</td>
<td>CORR</td>
<td></td>
</tr>
<tr>
<td>Specifies cross-correlation options</td>
<td>CROSSCORR</td>
<td></td>
</tr>
<tr>
<td>Specifies discrete distribution analysis options</td>
<td>COUNT</td>
<td></td>
</tr>
<tr>
<td>Specifies decomposition analysis options</td>
<td>DECOMP</td>
<td></td>
</tr>
<tr>
<td>Specifies seasonal statistics options</td>
<td>SEASON</td>
<td></td>
</tr>
<tr>
<td>Specifies spectral analysis options</td>
<td>SPECTRA</td>
<td></td>
</tr>
<tr>
<td>Specifies SSA options</td>
<td>SSA</td>
<td></td>
</tr>
<tr>
<td>Specifies trend statistics options</td>
<td>TREND</td>
<td></td>
</tr>
<tr>
<td>Data Set Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifies the input data set</td>
<td>PROC TIMESERIES</td>
<td>DATA=</td>
</tr>
<tr>
<td>Specifies the output data set</td>
<td>PROC TIMESERIES</td>
<td>OUT=</td>
</tr>
<tr>
<td>Specifies the correlations output data set</td>
<td>PROC TIMESERIES</td>
<td>OUTCORR=</td>
</tr>
<tr>
<td>Specifies the cross-correlations output data set</td>
<td>PROC TIMESERIES</td>
<td>OUTCROSSCORR=</td>
</tr>
<tr>
<td>Specifies the decomposition output data set</td>
<td>PROC TIMESERIES</td>
<td>OUTDECOMP=</td>
</tr>
<tr>
<td>Specifies the frequency (count) output data set</td>
<td>PROC TIMESERIES</td>
<td>OUTFREQ=</td>
</tr>
<tr>
<td>Description</td>
<td>Statement</td>
<td>Option</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Specifies the SAS log output data set</td>
<td>PROC TIMESERIES</td>
<td>OUTPROCINFO=</td>
</tr>
<tr>
<td>Specifies the seasonal statistics output data set</td>
<td>PROC TIMESERIES</td>
<td>OUTSEASON=</td>
</tr>
<tr>
<td>Specifies the spectral analysis output data set</td>
<td>PROC TIMESERIES</td>
<td>OUTSPECTRA=</td>
</tr>
<tr>
<td>Specifies the SSA output data set</td>
<td>PROC TIMESERIES</td>
<td>OUTSSA=</td>
</tr>
<tr>
<td>Specifies the summary statistics output data set</td>
<td>PROC TIMESERIES</td>
<td>OUTSUM=</td>
</tr>
<tr>
<td>Specifies the trend statistics output data set</td>
<td>PROC TIMESERIES</td>
<td>OUTTREND=</td>
</tr>
<tr>
<td>Accumulation and Seasonality Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifies the accumulation frequency</td>
<td>ID</td>
<td>INTERVAL=</td>
</tr>
<tr>
<td>Specifies the length of seasonal cycle</td>
<td>ID</td>
<td>SEASONALITY=</td>
</tr>
<tr>
<td>Specifies the interval alignment</td>
<td>ID</td>
<td>ALIGN=</td>
</tr>
<tr>
<td>Specifies the interval boundary alignment</td>
<td>ID</td>
<td>BOUNDARYALIGN=</td>
</tr>
<tr>
<td>Specifies that time ID variable values not be sorted</td>
<td>ID</td>
<td>NOTSORTED</td>
</tr>
<tr>
<td>Specifies the starting time ID value</td>
<td>ID</td>
<td>START=</td>
</tr>
<tr>
<td>Specifies the ending time ID value</td>
<td>ID</td>
<td>END=</td>
</tr>
<tr>
<td>Specifies the accumulation statistic</td>
<td>ID, VAR, CROSSVAR</td>
<td>ACCUMULATE=</td>
</tr>
<tr>
<td>Specifies missing value interpretation</td>
<td>ID, VAR, CROSSVAR</td>
<td>SETMISSING=</td>
</tr>
<tr>
<td>Time-Stamped Data Seasonal Statistics Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifies the form of the output data set</td>
<td>SEASON</td>
<td>TRANSPOSE=</td>
</tr>
<tr>
<td>Fourier Spectral Analysis Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifies whether to adjust to the series mean</td>
<td>SPECTRA</td>
<td>ADJUSTMEAN=</td>
</tr>
<tr>
<td>Specifies confidence limits</td>
<td>SPECTRA</td>
<td>ALPHA=</td>
</tr>
<tr>
<td>Specifies the kernel weighting function</td>
<td>SPECTRA</td>
<td>PARZEN</td>
</tr>
<tr>
<td>Specifies the domain where kernel functions apply</td>
<td>SPECTRA</td>
<td>TRUNC</td>
</tr>
<tr>
<td>Specifies the constant kernel scale parameter</td>
<td>SPECTRA</td>
<td>C=</td>
</tr>
<tr>
<td>Specifies the exponent kernel scale parameter</td>
<td>SPECTRA</td>
<td>EXPON=</td>
</tr>
<tr>
<td>Specifies the periodogram weights</td>
<td>SPECTRA</td>
<td>WEIGHTS</td>
</tr>
<tr>
<td>Singular Spectrum Analysis Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifies whether to adjust to the series mean</td>
<td>SSA</td>
<td>ADJUSTMEAN=</td>
</tr>
<tr>
<td>Specifies the grouping of principal components</td>
<td>SSA</td>
<td>GROUPS=</td>
</tr>
<tr>
<td>Specifies the window length</td>
<td>SSA</td>
<td>LENGTH=</td>
</tr>
<tr>
<td>Specifies the number of time periods in the transposed output</td>
<td>SSA</td>
<td>NPERIODS=</td>
</tr>
<tr>
<td>Specifies the division between principal component groupings</td>
<td>SSA</td>
<td>THRESHOLDPCT</td>
</tr>
<tr>
<td>Specifies that the output be transposed</td>
<td>SSA</td>
<td>TRANSPOSE=</td>
</tr>
</tbody>
</table>
Chapter 39: The TIMESERIES Procedure

Description Statement Option

Time-Stamped Data Trend Statistics Options
- Specifies the form of the output data set
 - TREND
- Specifies the number of time periods to be stored
 - TREND

Time Series Transformation Options
- Specifies simple differencing
 - VAR, CROSSVAR
- Specifies seasonal differencing
 - VAR, CROSSVAR
- Specifies transformation
 - VAR, CROSSVAR

Time Series Correlation Options
- Specifies the list of lags
 - CORR
- Specifies the number of lags
 - CORR
- Specifies the number of parameters
 - CORR
- Specifies the form of the output data set
 - CORR

Time Series Cross-Correlation Options
- Specifies the list of lags
 - CROSSCORR
- Specifies the number of lags
 - CROSSCORR
- Specifies the form of the output data set
 - CROSSCORR

Time Series Decomposition Options
- Specifies the mode of decomposition
 - DECOMP
- Specifies the Hodrick-Prescott filter parameter
 - DECOMP
- Specifies the number of time periods to be stored
 - DECOMP
- Specifies the form of the output data set
 - DECOMP

Time Series Discrete Distribution Analysis Options
- Specifies the confidence limit size
 - COUNT
- Specifies the discrete distribution selection criterion
 - COUNT
- Specifies one or more discrete distributions
 - COUNT

Printing Control Options
- Specifies the time ID format
 - ID
- Specifies which output to print
 - PROC TIMESERIES
- Specifies that detailed output be printed
 - PROC TIMESERIES

Miscellaneous Options
- Specifies that analysis variables be processed in sorted order
 - PROC TIMESERIES
- Limits error and warning messages
 - PROC TIMESERIES

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time-Stamped Data Trend Statistics Options</td>
<td>TREND</td>
<td>TRANSPOSE=</td>
</tr>
<tr>
<td>Time Series Transformation Options</td>
<td>VAR, CROSSVAR</td>
<td>DIF=</td>
</tr>
<tr>
<td>Time Series Correlation Options</td>
<td>CORR</td>
<td>LAGS=</td>
</tr>
<tr>
<td>Time Series Cross-Correlation Options</td>
<td>CROSSCORR</td>
<td>LAGS=</td>
</tr>
<tr>
<td>Time Series Decomposition Options</td>
<td>DECOMP</td>
<td>MODE=</td>
</tr>
<tr>
<td>Time Series Discrete Distribution Analysis Options</td>
<td>COUNT</td>
<td>ALPHA=</td>
</tr>
<tr>
<td>Printing Control Options</td>
<td>ID</td>
<td>FORMAT=</td>
</tr>
<tr>
<td>Miscellaneous Options</td>
<td>PROC TIMESERIES</td>
<td>SORTNAMES</td>
</tr>
<tr>
<td></td>
<td>PROC TIMESERIES</td>
<td>MAXERROR=</td>
</tr>
</tbody>
</table>
PROC TIMESERIES Statement

PROC TIMESERIES `options` ;

You can specify the following `options`:

- **DATA=** `SAS-data-set`
 names the SAS data set that contains the input data for the procedure to create the time series. If the `DATA=` option is not specified, the most recently created SAS data set is used.

- **COUNTPLOTS=** `option | (options)` (Experimental)
 specifies the count series graphical output to be produced. You can specify the following plotting `options`:

 - **COUNTS**
 plots the counts of the discrete values of the time series (OUTFREQ= data set).

 - **CHISQPROB | CHISQ**
 plots the chi-square probabilities.

 - **DISTRIBUTION | DIST**
 plots the discrete probability distribution.

 - **VALUES**
 plots the distinct values of the time series (OUTFREQ= data set).

 - **ALL**
 is equivalent to `PLOTS=(COUNTS CHISQPROB DISTRIBUTION VALUES)`.

The `COUNTPLOTS=` option produces graphical results similar to the information contained in the data sets that are listed in parentheses next to the options.

By default, the TIMESERIES procedure produces no graphical output.

- **CROSSPLOTS=** `option | (options)`
 specifies the cross-variable graphical output to be produced. You can specify the following plotting `options`:

 - **SERIES**
 plots the two time series (OUT= data set).

 - **CCF**
 plots the cross-correlation functions (OUTCROSSCORR= data set).

 - **ALL**
 is equivalent to `PLOTS=(SERIES CCF)`.

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODS Graphics Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifies the count series graphical output</td>
<td>PROC TIMESERIES</td>
<td>COUNTPLOTS=</td>
</tr>
<tr>
<td>Specifies the cross-variable graphical output</td>
<td>PROC TIMESERIES</td>
<td>CROSSPLOTS=</td>
</tr>
<tr>
<td>Specifies the variable graphical output</td>
<td>PROC TIMESERIES</td>
<td>PLOTS=</td>
</tr>
<tr>
<td>Specifies the vector time series graphical output</td>
<td>PROC TIMESERIES</td>
<td>VECTORPLOTS=</td>
</tr>
</tbody>
</table>
The CROSSPLOTS= option produces results similar to the information contained in the data sets that are listed in parentheses next to the options.

By default, the TIMESERIES procedure produces no graphical output.

MAXERROR=number
limits the number of warning and error messages that are produced during the execution of the procedure to the specified value. This option is particularly useful in BY-group processing, where it can be used to suppress the recurring messages. By default, MAXERRORS=50.

MAXVARLENGTH
specifies that processed variables be set to eight bytes in length. This option exists principally for use when data storage might be a concern.

OUT=SAS-data-set
names the output data set to contain the time series variables that are specified in the subsequent VAR and CROSSVAR statements. If BY variables are specified, they are also included in the OUT= data set. If an ID variable is specified, it is also included in the OUT= data set. The values are accumulated based on the INTERVAL= or the ACCUMULATE= option (or both) in the ID statement. The OUT= data set is particularly useful when you want to further analyze, model, or forecast the resulting time series with other SAS/ETS procedures.

OUTCORR=SAS-data-set
names the output data set to contain the univariate time domain statistics.

OUTCROSSCORR=SAS-data-set
names the output data set to contain the cross-correlation statistics.

OUTDECOMP=SAS-data-set
names the output data set to contain the decomposed or seasonally adjusted time series (or both).

OUTFREQ=SAS-data-set
names the output data set to contain the frequency (count) analysis.

OUTPROCINFO=SAS-data-set
names the output data set to contain information in the SAS log, specifically the number of notes, errors, and warnings and the number of series processed, number of analyses requested, and number of analyses failed.

OUTSEASON=SAS-data-set
names the output data set to contain the seasonal statistics. The statistics are computed for each season as specified by the INTERVAL= option in the ID statement or the SEASONALITY= option in the PROC TIMESERIES statement. The OUTSEASON= data set is particularly useful when analyzing transactional data for seasonal variations.

OUTSPECTRA=SAS-data-set
names the output data set to contain the univariate frequency domain analysis results.

OUTSSA=SAS-data-set
names the output data set to contain the singular spectrum analysis result series.
OUTSUM=SAS-data-set
names the output data set to contain the descriptive statistics. The descriptive statistics are based on the accumulated time series when the ACCUMULATE= or SETMISSING= options are specified in the ID or VAR statements. The OUTSUM= data set is particularly useful when you analyze large numbers of series and you need a summary of the results.

OUTTREND=SAS-data-set
names the output data set to contain the trend statistics. The statistics are computed for each time period as specified by the INTERVAL= option in the ID statement. The OUTTREND= data set is particularly useful when you analyze transactional data for trends.

PLOTS=option | (options)
specifies the univariate graphical output desired. By default, the TIMESERIES procedure produces no graphical output. You can specify the following plotting options:

- **SERIES** plots the time series (OUT= data set).
- **RESIDUAL** plots the residual time series (OUT= data set).
- **HISTOGRAM** plots a histogram of the time series values
- **CYCLES** plots the seasonal cycles (OUT= data set).
- **CORR** plots the correlation panel (OUTCORR= data set).
- **ACF** plots the autocorrelation function (OUTCORR= data set).
- **PACF** plots the partial autocorrelation function (OUTCORR= data set).
- **IACF** plots the inverse autocorrelation function (OUTCORR= data set).
- **WN** plots the white noise probabilities (OUTCORR= data set).
- **DECOMP** plots the seasonal adjustment panel (OUTDECOMP= data set).
- **TCS** plots the trend-cycle-seasonal component (OUTDECOMP= data set).
- **TCC** plots the trend-cycle component (OUTDECOMP= data set).
- **SIC** plots the seasonal-irregular component (OUTDECOMP= data set).
- **SC** plots the seasonal component (OUTDECOMP= data set).
- **SA** plots the seasonal adjusted component (OUTDECOMP= data set).
- **PCSA** plots the percent change in the seasonal adjusted component (OUTDECOMP= data set).
- **IC** plots the irregular component (OUTDECOMP= data set).
- **TC** plots the trend component (OUTDECOMP= data set).
- **CC** plots the cycle component (OUTDECOMP= data set).
- **PERIOGRAM<(suboption)>** plots the periodogram (OUTSPECTRA= data set). You can specify the following suboptions:
 - **MAXFREQ=number** specifies the maximum frequency in radians to include in the plot.
 - **MINPERIOD=number** specifies the minimum period to include in the plot.
Chapter 39: The TIMESERIES Procedure

SPECTRUM<(suboption)> plots the spectral density estimate (OUTSPECTRA= data set). You can specify the following suboptions:

MAXFREQ=number specifies the maximum frequency in radians to include in the plot.

MINPERIOD=number specifies the minimum period to include in the plot.

SSA plots the singular spectrum analysis results (OUTSSA= data set).

ALL is equivalent to PLOTS=(SERIES HISTOGRAM ACF PACF IACF WN SSA PERIODOGRAM SPECTRUM).

BASIC is equivalent to PLOTS=(SERIES HISTOGRAM CYCLES CORR DECOMP)

The PLOTS= option produces graphical output for these results by using the Output Delivery System (ODS). The PLOTS= option produces results similar to the data sets listed in parentheses next to the preceding options.

PRINT=option | (options) specifies the printed output desired. By default, the TIMESERIES procedure produces no printed output. You can specify the following printing options:

COUNTS prints the discrete distribution analysis (OUTFREQ= data set). This PRINT=COUNTS is experimental.

DECOMP prints the seasonal decomposition/adjustment table (OUTDECOMP= data set).

SEASONS prints the seasonal statistics table (OUTSEASON= data set).

DESCSTATS prints the descriptive statistics for the accumulated time series (OUTSUM= data set).

SUMMARY prints the descriptive statistics table for all time series (OUTSUM= data set).

TRENDS prints the trend statistics table (OUTTREND= data set).

SSA prints the singular spectrum analysis results (OUTSSA= data set).

ALL is equivalent to PRINT=(DESCSTATS SUMMARY).

The PRINT= option produces printed output for these results by using the Output Delivery System (ODS). The PRINT= option produces results similar to the data sets listed in parentheses next to the preceding options.

PRINTDETAILS requests that output specified in the PRINT= option be printed in greater detail.

SEASONALITY=number specifies the length of the seasonal cycle. For example, SEASONALITY=3 means that every group of three time periods forms a seasonal cycle. By default, the length of the seasonal cycle is one (no seasonality) or the length implied by the INTERVAL= option specified in the ID statement. For example, INTERVAL=MONTH implies that the length of the seasonal cycle is 12.
SORTNAMES requests that the variables specified in the VAR and CROSSVAR statements be processed in sorted order by the variable names. This option enables the output data sets to be presorted by the variable names.

VECTORPLOTS=option | (options)
specifies the vector time series graphical output to be produced. You can specify the following plotting options:

- SCALED plots each time series scaled between 0 and 1.
- SERIES plots each time series on a common axis without scaling.
- STACKED plots each time series on stacked thumbnail plots.
- ALL is equivalent to PLOTS=(SCALED SERIES STACKED).

By default, the TIMESERIES procedure produces no graphical output.

BY Statement
You can use a BY statement to obtain separate dummy variable definitions for groups of observations that are defined by the BY variables.

When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alternatives:

- Sort the data by using the SORT procedure with a similar BY statement.
- Specify the option NOTSORTED or DESCENDING in the BY statement for the TIMESERIES procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged in groups (according to values of the BY variables) and that these groups are not necessarily in alphabetical or increasing numeric order.
- Create an index on the BY variables by using the DATASETS procedure.

For more information about the BY statement, see SAS Language Reference: Concepts. For more information about the DATASETS procedure, see Base SAS Procedures Guide.

CORR Statement
CORR statistics < / options > ;
You can use a CORR statement to specify options that are related to time domain analysis of the accumulated time series. Only one CORR statement is allowed.

You can specify the following time domain statistics:
LAG time lag
N number of variance products
ACOV autocovariances
ACF autocorrelations
ACFSTD autocorrelation standard errors
ACF2STD an indicator of whether autocorrelations are less than \((-1)\), greater than \((1)\), or within \((0)\) two standard errors of zero
ACFNORM normalized autocorrelations
ACFPROB autocorrelation probabilities
ACFLPROB autocorrelation log probabilities
PACF partial autocorrelations
PACFSTD partial autocorrelation standard errors
PACF2STD an indicator of whether partial autocorrelation are less than \((-1)\), greater than \((1)\), or within \((0)\) two standard errors of zero
PACFNORM partial normalized autocorrelations
PACFPROB partial autocorrelation probabilities
PACFLPROB partial autocorrelation log probabilities
IACF inverse autocorrelations
IACFSTD inverse autocorrelation standard errors
IACF2STD an indicator of whether the inverse autocorrelation is less than \((-1)\), greater than \((1)\) or within \((0)\) two standard errors of zero
IACFNORM normalized inverse autocorrelations
IACFPROB inverse autocorrelation probabilities
IACFLPROB inverse autocorrelation log probabilities
WN white noise test statistics
WNPROB white noise test probabilities
WNLPROB white noise test log probabilities

If you do not specify any statistics, then the default is as follows:

 corr lag n acov acf acfstd pacf pacfstd iacf iacfstd wn wnprob;

You can specify the following options after a slash (/):

LAGS=\((numlist)\)
 specifies the list of lags to be stored in OUTCORR= data set or to be plotted. The list of lags must be separated by spaces or commas. For example, LAGS=(1,3) specifies the first then third lag.
NLAG=number

specifies the number of lags to be stored in the OUTCORR= data set or to be plotted. The default is 24 or three times the length of the seasonal cycle, whichever is smaller. The LAGS= option takes precedence over the NLAG= option.

NPARMS=number

specifies the number of parameters that are used in the model that created the residual time series. The number of parameters determines the degrees of freedom associated with the Ljung-Box statistics. This option is useful when you analyze the residuals of a time series model whose number of parameters is specified by *number*. By default, NPARMS=0.

TRANSPOSE=NO | YES

specifies which values are recorded as column names in the OUTCORR= data set. You can specify the following values:

- **NO**
 specifies that correlation statistics be recorded as the column names. This option is useful for graphing the correlation results with SAS/GRAPH procedures.

- **YES**
 specifies that lags be recorded as the column names instead of correlation statistics as the column names. This option is useful for analyzing the correlation results with other SAS procedures such as the CLUSTER procedure in SAS/STAT or with SAS Enterprise Miner software.

By default, TRANSPOSE=NO.

COUNT Statement (Experimental)

```
COUNT < / options > ;
```

You can use a COUNT statement to specify options that are related to the discrete distribution analysis of the accumulated time series. Only one COUNT statement is allowed.

You can specify the following `options` after a slash (/):

ALPHA=number

specifies the confidence limit size. The *number* must be between 0 and 1; the default is 0.05.

CRITERION=LOGLIK | AIC | BIC

specifies the discrete distribution selection criterion. The default is CRITERION=LOGLIK.

You can specify the following selection criteria:

- **AIC**
 specifies the Akaike’s information criterion.

- **BIC**
 specifies the Bayesian information criterion.

- **LOGLIK**
 specifies the log-likelihood as the criterion.

By default, CRITERION=LOGLIK.
DISTRIBUTION= option | (options)
specifies one or more discrete distributions for automatic selection. You can specify one or more of the following options:

- **BINOMIAL** specifies the binomial distribution.
- **ZMBINOMIAL** specifies the zero-modified binomial distribution.
- **GEOMETRIC** specifies the geometric distribution.
- **ZMGEOMETRIC** specifies the zero-modified geometric distribution.
- **POISSON** specifies the Poisson distribution.
- **ZMPOISSON** specifies the zero-modified Poisson distribution.
- **NEGBINOMIAL | NEGBIN** specifies the negative binomial distribution.

CROSSCORR Statement

```
CROSSCORR statistics < / options > ;
```

You can use a CROSSCORR statement to produce statistics that are related to cross-correlation analysis of the accumulated time series. Only one CROSSCORR statement is allowed.

You can specify the following time domain statistics:

- **LAG** time lag
- **N** number of variance products
- **CCOV** cross covariances
- **CCF** cross-correlations
- **CCFSTD** cross-correlation standard errors
- **CCF2STD** an indicator of whether cross-correlations are less than (−1), greater than (1), or within (0) two standard errors of zero
- **CCFNORM** normalized cross-correlations
- **CCFPROB** cross-correlation probabilities
- **CCFLPROB** cross-correlation log probabilities

If do not specify any statistics, the default is as follows:

```
crosscorr lag n ccov ccf ccfstd;
```

You can also specify the following options after a slash (/):

- **NLAG=number** specifies the number of lags to be stored in the OUTCROSSCORR= data set or to be plotted. The default is 24 or three times the length of the seasonal cycle, whichever is smaller. The LAGS= option takes precedence over the NLAG= option.
LAGS=(numlist)
specifies a list of lags to be stored in OUTCROSSCORR= data set or to be plotted. The list of lags must be separated by spaces or commas. For example, LAGS=(1,3) specifies the first then third lag.

TRANSPOSE=NO | YES
specifies which values are recorded as column names in the OUTCROSSCORR= data set. You can specify the following values:

NO specifies that cross-correlation statistics be recorded as the column names. This option is useful for graphing the cross-correlation results with SAS/GRAPH procedures.
YES specifies that lags instead of cross-correlation statistics be recorded as the column names. This option is useful for analyzing the cross-correlation results with other procedures such as the CLUSTER procedure in SAS/STAT or with SAS Enterprise Miner software.

By default, TRANSPOSE=NO.
decomp orig tcc sc ic sa;

You can also specify the following options after a slash (/):

MODE=option
specifies the type of decomposition to be used to decompose the time series. You can specify the following options:

- **ADD | ADDITIVE** uses additive decomposition.
- **MULT | MULTIPLICATIVE** uses multiplicative decomposition.
- **LOGADD | LOGADDITIVE** uses log-additive decomposition.
- **PSEUDOADD | PSEUDOADDITIVE** uses pseudo-additive decomposition.
- **MULTORADD** uses multiplicative decomposition when the accumulated time series contains only positive values, uses pseudo-additive decomposition when the accumulated time series contains only nonnegative values, and uses additive decomposition otherwise.

Multiplicative and log additive decomposition require strictly positive time series. If the accumulated time series contains nonpositive values and **MODE=MULT** or **MODE=LOGADD**, an error results. Pseudo-additive decomposition requires a nonnegative-valued time series. If the accumulated time series contains negative values and the **MODE=PSEUDOADD** option is specified, an error results.

By default, **MODE=MULTORADD**.

LAMBDAnumber
specifies the Hodrick-Prescott filter parameter for trend-cycle decomposition. Filtering applies when the trend component or the cycle component is requested. If filtering is not specified, this option is ignored. By default, **LAMBA=1600**.

NPERIODSN=number
specifies the number of time periods to be stored in the OUTDECOMP= data set when the TRANSPOSE=YES option is specified. If TRANSPOSE=NO, the NPERIODS= option is ignored. If number is positive, the first or beginning time periods are recorded. If number is negative, the last or ending time periods are recorded. The NPERIODS= option specifies the number of OUTDECOMP= data set variables to contain the seasonal decomposition and is therefore limited to the maximum allowed number of SAS variables. If the number of time periods exceeds this limit, a warning is printed in the log and the number of periods stored is reduced to the limit.

If the NPERIODS= option is not specified, all of the periods specified between the ID statement **START=** and **END=** options are stored. If at least one of the **START=** or **END=** options is not specified, the default magnitude is the seasonality specified in the SEASONALITY= option in the PROC TIMESERIES statement or implied by the INTERVAL= option in the ID statement. If only the **START=** option or both the **START=** and **END=** options are specified and the seasonality is zero, the default is **NPERIODS=5**. If only the **END=** option or neither the **START=** nor **END=** option is specified and the seasonality is zero, the default is **NPERIODS=–5**.
TRANSPOSE= NO | YES
 specifies which values are recorded as column names in the OUTDECOMP= data set.

NO
 specifies that decomposition components be recorded as the column names. This option is useful for analyzing or displaying the decomposition results with SAS/GRAPH procedures.

YES
 specifies that the time periods be recorded as the column names instead of decomposition components. The first and last time periods stored in the OUTDECOMP= data set correspond to the period specified in the START= option and END= option, respectively, in the ID statement. If only the END= option is specified, the last time ID value of each accumulated time series corresponds to the last time period column. If only the START= option is specified, the first time ID value of each accumulated time series corresponds to the first time period column. If neither the START= option nor the END= option is specified in the ID statement, the first time ID value of each accumulated time series corresponds to the first time period column. This option is useful for analyzing the decomposition results with other SAS procedures or with SAS Enterprise Miner software.

By default, TRANSPOSE=NO.

ID Statement

ID variable INTERVAL= interval < options > ;

The ID statement names a numeric variable that identifies observations in the input and output data sets. The ID variable’s values are assumed to be SAS date or datetime values. In addition, the ID statement specifies the frequency to be associated with the time series. The ID statement option also specify how the observations are accumulated and how the time ID values are aligned to form the time series. The specified information affects all variables that are listed in subsequent VAR statements. If you do not specify an ID statement, the observation number, with respect to the BY group, is used as the time ID.

You must specify the following argument:

INTERVAL=interval

specifies the frequency of the accumulated time series. For example, if the input data set consists of quarterly observations, then specify INTERVAL=QTR. If the PROC TIMESERIES statement SEASONALITY= option is not specified, the length of the seasonal cycle is implied from the INTERVAL= option. For example, INTERVAL=QTR implies a seasonal cycle of length 4. If the ACCUMULATE= option is also specified, the INTERVAL= option determines the time periods for the accumulation of observations. The INTERVAL= option is required and must be the first option specified in the ID statement.

You can also specify the following **options**:

ACCUMULATE=option

specifies how the data set observations are to be accumulated within each time period. The frequency (width of each time interval) is specified by the INTERVAL= interval. The ID variable contains the
time ID values. Each time ID variable value corresponds to a specific time period. The accumulated values form the time series, which is used in subsequent analysis.

This option is useful when there are zero or more than one input observations that coincide with a particular time period (for example, time-stamped transactional data). The EXPAND procedure offers additional frequency conversions and transformations that can also be useful in creating a time series.

You can specify the following options, which determine how the observations are accumulated within each time period based on the ID variable and on the frequency specified in INTERVAL= interval:

- **NONE** does not accumulate observations; the ID variable values must be equally spaced with respect to the frequency.
- **TOTAL** accumulates observations based on the total sum of their values.
- **AVERAGE** accumulates observations based on the average of their values.
- **MINIMUM** accumulates observations based on the minimum of their values.
- **MEDIAN** accumulates observations based on the median of their values.
- **MAXIMUM** accumulates observations based on the maximum of their values.
- **N** accumulates observations based on the number of nonmissing observations.
- **NMISS** accumulates observations based on the number of missing observations.
- **NOBS** accumulates observations based on the number of observations.
- **FIRST** accumulates observations based on the first of their values.
- **LAST** accumulates observations based on the last of their values.
- **STDDEV** accumulates observations based on the standard deviation of their values.
- **CSS** accumulates observations based on the corrected sum of squares of their values.
- **USS** accumulates observations based on the uncorrected sum of squares of their values.

If you specify the ACCUMULATE= option, the SETMISSING= option is useful for specifying how accumulated missing values are to be treated. If missing values are to be interpreted as 0, then specify SETMISSING=0. For more information about accumulation, see the section “Details: TIMESERIES Procedure” on page 2686.

By default, ACCUMULATE=NONE.

ALIGN= option controls the alignment of SAS dates that are used to identify output observations. The ALIGN= option accepts the following values: BEGINNING | BEG | B, MIDDLE | MID | M, and ENDING | END | E. BEGINNING is the default.

BOUNDARYALIGN= option controls how the ACCUMULATE= option is processed for the two boundary time intervals, which include the START= and END= time ID values. Some time ID values might fall inside the first and last accumulation intervals but fall outside the START= and END= boundaries. In these cases the BOUNDARYALIGN= option determines which values to include in the accumulation operation. You can specify the following options:
NONE does not accumulate any values outside the START= and END= boundaries.
START accumulates all observations in the first time interval.
END accumulates all observations in the last time interval.
BOTH accumulates all observations in the first and last.

For more information, see the section “Details: TIMESERIES Procedure” on page 2686. By default, BOUNDARYALIGN=NONE.

END=value specifies a SAS date or datetime value that represents the end of the data. If the last time ID variable value is less than value, the series is extended with missing values. If the last time ID variable value is greater than value, the series is truncated. For example, END="&sysdate"D uses the automatic macro variable SYSDATE to extend or truncate the series to the current date. You can use the START= and END= options to ensure that data associated within each BY group contains the same number of observations.

FORMAT=format specifies the SAS format for the time ID values. The default format is implied from the INTERVAL= option.

NOTSORTED specifies that the time ID values might not be in sorted order. Prior to analysis, the TIMESERIES procedure sorts the data with respect to the time ID.

SETMISSING=option | number specifies how missing values (either actual or accumulated) are to be interpreted in the accumulated time series. If you specify a number, missing values are set to the number. If a missing value indicates an unknown value, this option should not be used. If a missing value indicates no value, specify SETMISSING=0. You would typically use SETMISSING=0 for transactional data because no recorded data usually implies no activity. Instead of specifying a number, you can specify one of the following options to determine how missing values are assigned:

MISSING sets missing values to missing.
AVERAGE | AVG sets missing values to the accumulated average value.
MINIMUM | MIN sets missing values to the accumulated minimum value.
MEDIAN | MED sets missing values to the accumulated median value.
MAXIMUM | MAX sets missing values to the accumulated maximum value.
FIRST sets missing values to the accumulated first nonmissing value.
LAST sets missing values to the accumulated last nonmissing value.
PREVIOUS | PREV sets missing values to the previous period’s accumulated nonmissing value. Missing values at the beginning of the accumulated series remain missing.
NEXT sets missing values to the next period’s accumulated nonmissing value. Missing values at the end of the accumulated series remain missing.

By default, SETMISSING=MISSING.
START=value
specifies a SAS date or datetime value that represents the beginning of the data. If the first time ID variable value is greater than value, missing values are added to the beginning of the series. If the first time ID variable value is less than value, the series is truncated. You can specify the START= and END= options to ensure that data associated with each BY group contains the same number of observations.

SEASON Statement

SEASON statistics < / options > ;
You can use a SEASON statement to specify seasonal statistics and options that are related to seasonal analysis of the time-stamped transactional data. Only one SEASON statement is allowed. The options affect all variables specified in the VAR statements. Seasonal analysis can be performed only when the length of the seasonal cycle specified by the SEASONALITY= option in the PROC TIMESERIES statement or implied by the INTERVAL= option in the ID statement is greater than 1.

You can specify the following seasonal statistics:

- NOBS number of observations
- N number of nonmissing observations
- NMISS number of missing observations
- MINIMUM minimum value
- MAXIMUM maximum value
- RANGE range value
- SUM summation value
- MEAN mean value
- STDDEV standard deviation
- CSS corrected sum of squares
- USS uncorrected sum of squares
- MEDIAN median value

If you do not specify any of the seasonal statistics, then the default is as follows:

 season n min max mean std;

You can also specify the following options after a slash (/):

- TRANSPOSE= NO | YES
 specifies which values are recorded as column names in the OUTSEASON= data set. You can specify the following values:
SPECTRA Statement

SPECTRA statistics < / options > ;

You can use a SPECTRA statement to specify which statistics appear in the OUTSPECTRA= data set. The SPECTRA statement options are used in performing a spectral analysis on the variables listed in the VAR statement. These options affect values that are produced in the PROC TIMESERIES statement’s OUTSPECTRA= data set, and in the periodogram and spectral density estimate. Only one SPECTRA statement is allowed.

You can request the following univariate frequency domain statistics:

- **FREQ** frequency in radians from 0 to \(\pi \)
- **PERIOD** period or wavelength
- **COS** cosine transform
- **SIN** sine transform
- **P** periodogram
- **S** spectral density estimates

If you do not specify any frequency domain statistics, then the default is as follows:

```
spectra period p;
```

You can also specify the following options after a slash (/):

- **C=coefficient** specifies the scale coefficient for the kernel function. For more information, see the section “Kernel Option Details” on page 2681.
- **E=exponent**
- **EXP=exponent**
- **EXPON=exponent** specifies the exponent for the kernel function. For more information, see the section “Kernel Option Details” on page 2681.
ADJUSTMEAN=NO | YES

CENTER=NO | YES

specifies whether the series is to be adjusted by its mean prior to performing the Fourier decomposition. This adjustment sets the first periodogram ordinate to 0 rather than to \(2\pi n\) times the squared mean. This option is commonly used when the periodograms are to be plotted to prevent a large first periodogram ordinate from distorting the scale of the plot.

- **NO** specifies that no adjustment of the series be performed.
- **YES** specifies that the series be transformed by subtracting its mean.

By default, ADJUSTMEAN=NO.

ALPHA=\(num\)

specifies the width of a window that is drawn around the spectral density estimate in a spectral density versus frequency plot. Based on approximations proposed by Brockwell and Davis (1991), periodogram ordinates fall within this window with a confidence level of \(1 - \frac{1}{num}\). The value \(num\) must be between 0 and 1; the default is 0.05.

DOMAIN=\(domain\)

specifies how the smoothing function is interpreted. You can specify the following \(domain\) values:

- **FREQUENCY** smooths the periodogram ordinates.
- **TIME** applies the kernel as a filter to the time series autocovariance function.

By default DOMAIN=FREQUENCY, and smoothing is applied in the same manner as weights are applied when you specify the WEIGHTS= option.

kernel

specifies the smoothing function to use to calculate a spectral density estimate as the moving average of periodogram ordinates. The kernel function is an alternative smoothing method to using the WEIGHTS= option. You can specify the following \(kernel\) values:

- **PARZEN** Parzen kernel
- **BARTLETT** Bartlett kernel
- **TUKEY** Tukey-Hanning kernel
- **TRUNC | TRUNCAT** truncated kernel
- **QS | QUADR** quadratic spectral kernel

If neither a WEIGHTS= option nor a \(kernel\) function is specified, the spectral density estimate is identical to the unmodified periodogram.

WEIGHTS=\(numlist\)

specifies the relative weights to use to compute a spectral density estimate as the moving average smoothing of periodogram ordinates. If neither a WEIGHTS= option nor a \(kernel\) function is specified, the spectral density estimate is identical to the unmodified periodogram. The following SPECTRA statement uses the WEIGHTS= option to specify equal weighting for each of the three adjacent periodogram ordinates that are centered on each spectral density estimate:
spectra / weights 1 1 1;

For information about how the weights are applied, see the section “Using Specification of Weight Constants” on page 2699.

Kernel Option Details

You can further parameterize each of the kernel functions with a kernel scale factor by using the C= and E= options. The default values of the kernel scale parameters, c and e, that are associated with each of the kernel functions together with their kernel scale factor values, M, for a series with 100 periodogram ordinates are listed in Table 39.2. The formula that is used to generate the table entries is $M = cK^e$, where K is the number of Fourier component frequencies.

<table>
<thead>
<tr>
<th>Kernel</th>
<th>c</th>
<th>e</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bartlett</td>
<td>1/2</td>
<td>1/3</td>
<td>2.32</td>
</tr>
<tr>
<td>Parzen</td>
<td>1</td>
<td>1/5</td>
<td>2.51</td>
</tr>
<tr>
<td>Quadratic</td>
<td>1/2</td>
<td>1/5</td>
<td>1.26</td>
</tr>
<tr>
<td>Tukey-Hanning</td>
<td>2/3</td>
<td>1/5</td>
<td>1.67</td>
</tr>
<tr>
<td>Truncated</td>
<td>1/4</td>
<td>1/5</td>
<td>0.63</td>
</tr>
</tbody>
</table>

For example, to apply the truncated kernel by using default scale factor parameters in the frequency domain, you could use the following SPECTRA statement:

```
spectra / truncat;
```

For more information about the kernel function parameterization and the DOMAIN= option, see the section “Using Kernel Specifications” on page 2697.

SSA Statement

```
SSA < / options > ;
```

The SSA statement requests singular spectrum analysis (SSA) of the accumulated time series. Only one SSA statement is allowed.

You can also specify the following options after a slash (/):

ADJUSTMEAN=NO | YES

CENTER=NO | YES

specifies whether the series should be adjusted by its mean prior to performing the singular spectrum analysis. You can specify the following values:
Chapter 39: The TIMESERIES Procedure

NO specifies that no adjustment of the series be performed.

YES specifies that the series be transformed by subtracting its mean.

By default, ADJUSTMEAN=NO.

GROUPS=(numlist) . . (numlist)

specifies the lists that categorize window lags into groups. The window lags must be separated by spaces or commas. For example, GROUPS=(1,3) (2,4) specifies that the first and third window lags form the first group and the second and fourth window lags form the second group. If you do not specify the GROUPS= option, the window lags are divided into two groups based on the THRESHOLDPCT= value.

For example, the following SSA statement specifies three groups:

```plaintext
ssa / groups=(1 3) (2 4 5) (6);
```

The first group contains the first and third principal components; the second group contains the second, fourth, and fifth principal components; and the third group contains the sixth principal component.

By default, the first group contains the principal components whose contributions to the series sum to greater than the THRESHOLDPCT= value of 90%, and the second group contains the remaining components.

LENGTH=number

specifies the window length to be used in the analysis. The window length represents the maximum lag to be used in the SSA autocovariance calculations, where number must be greater than 1. When the SEASONALITY= option is provided or implied by the INTERVAL= option in the ID statement, the default window length is the smaller of two times the length of the seasonal cycle and one-half the length of the time series. When no seasonality value is available, the default window length is the smaller of 12 and one half the length of the time series.

For example, the following SSA statement specifies a window length of 10:

```plaintext
ssa / length=10;
```

If the specified number is greater than one-half the length of the accumulated time series, the window length is reduced and a warning message is printed to the log. If you do not specify the window length option and the INTERVAL=MONTH or SEASONALITY=12 options are specified, a window length of 24 is used.

NPERIODS=number

specifies the number of time periods to be stored in the OUTSSA= data set when the TRANSPOSE=YES option is specified. If the TRANSPOSE option is not specified, the NPERIODS= option is ignored. The NPERIODS= option specifies the number of OUTSSA= data set variables to contain the groups.

If you do not specify this option, all the periods specified between the START= and END= options are stored of the ID statement. If at least one of the START= or END= options is not specified, the default magnitude is the seasonality specified by the SEASONALITY= option in the PROC TIMESERIES statement or implied by the INTERVAL= option in the ID statement. If only the START= option or both
the START= and END= options are specified and the seasonality is zero, the default is NPERIODS=5. If only the END= option or neither the START= nor END= option is specified and the seasonality is zero, the default is NPERIODS=−5.

THRESHOLDPCT= *percentage*

specifies a *percentage* to be used to divide the SSA components into two groups based on the cumulative percentage of their singular values. The *percentage* must be between 0 and 100, inclusive. By default, THRESHOLDPCT=90.

For example, the following SSA statement specifies 80%:

```
ssa / THRESHOLDPCT=80;
```

The size of the second group must be at least 1, and it must be less than the window length. The *percentage* is adjusted to achieve this requirement.

For example, the following SSA statement specifies THRESHOLDPCT=0, which effectively sets the size of the second group to one less than the window length:

```
ssa / THRESHOLDPCT = 0;
```

The following SSA statement specifies 100%, which implies that the size of the last group is one:

```
ssa / THRESHOLDPCT= 100;
```

TRANSPOSE=NO | YES

specifies which values are recorded as column names in the OUTSSA= data set.

NO

specifies that the specified groups be recorded as the column names. This option is useful for displaying the SSA results.

YES

specifies that the time periods instead of the specified groups be recorded as the column names. The first and last time periods stored in the OUTSSA= data set correspond to the periods that are specified in the START= and END= options, respectively, in the ID statement. If only the END= option is specified in the ID statement, the last time ID value of each accumulated time series corresponds to the last time period column. If only the START= option is specified in the ID statement, the first time ID value of each accumulated time series corresponds to the first time period column. If neither the START= option nor the END= option is specified in the ID statement, the first time ID value of each accumulated time series corresponds to the first time period column. This option is useful for analyzing the SSA results using SAS Enterprise Miner software.

By default, TRANSPOSE=NO.
TREND Statement

```
TREND statistics < / options > ;
```

You can use a TREND statement to specify statistics and related options for trend analysis of the time-stamped transactional data. Only one TREND statement is allowed. The specified options affect all variables that are listed in the VAR statements.

You can specify the following trend statistics:

- **NOBS** number of observations
- **N** number of nonmissing observations
- **NMISS** number of missing observations
- **MINIMUM** minimum value
- **MAXIMUM** maximum value
- **RANGE** range value
- **SUM** summation value
- **MEAN** mean value
- **STDDEV** standard deviation
- **CSS** corrected sum of squares
- **USS** uncorrected sum of squares
- **MEDIAN** median value

If you do not specify any trend statistics, the default is as follows:

```
trend n min max mean std;
```

You can also specify the following options after a slash (/):

NPERIODS=number

specifies the number of time periods to be stored in the OUTTREND= data set when the TRANSPOSE=YES option is specified. If the TRANSPOSE option is not specified, the NPERIODS= option is ignored. The NPERIODS= option specifies the number of OUTTREND= data set variables to contain the trend statistics and is therefore limited to the maximum allowed number of SAS variables.

If you do not specify this option, all the periods that are specified between the START= and END= options in the ID statement are stored. If at least one of the START= or END= options is not specified, the default magnitude is the seasonality that is specified in the SEASONALITY= option in the PROC TIMESERIES statement or implied by the INTERVAL= option in the ID statement. If only the START= option or both the START= and END= options are specified and the seasonality is zero, the default is NPERIODS=5. If only the END= option or neither the START= nor END= option is specified and the seasonality is zero, the default is NPERIODS=–5.
TRANSPOSE=NO | YES

specifies which values are recorded as column names in the OUTTREND= data set.

NO

specifies that the specified groups be recorded as the column names. This option is useful for displaying the SSA results.

YES

specifies that the time periods instead of the specified groups be recorded as the column names. The first and last time periods stored in the OUTSSA= data set correspond to the periods that are specified in the START= and END= options, respectively, in the ID statement. If only the END= option is specified in the ID statement, the last time ID value of each accumulated time series corresponds to the last time period column. If only the START= option is specified in the ID statement, the first time ID value of each accumulated time series corresponds to the first time period column. If neither the START= option nor the END= option is specified in the ID statement, the first time ID value of each accumulated time series corresponds to the first time period column. This option is useful for analyzing the SSA results using SAS Enterprise Miner software.

By default, TRANSPOSE=NO.

VAR and CROSSVAR Statements

```
VAR variable-list < / options > ;
CROSSVAR variable-list < / options > ;
```

The VAR and CROSSVAR statements list the numeric variables in the DATA= data set whose values are to be accumulated to form the time series.

An input data set variable can be specified in only one VAR or CROSSVAR statement. You can specify any number of VAR and CROSSVAR statements. You can specify the following **options** for either the VAR and CROSSVAR statement:

ACCUMULATE=option

specifies how the data set observations are to be accumulated within each time period for the variables in the **variable-list**. If you do not specify the ACCUMULATE= option in the VAR or CROSSVAR statement, accumulation is determined by the ACCUMULATE= option in the ID statement. For more information, see the ACCUMULATE= option in the ID statement.

DIF= (numlist)

specifies the differencing to be applied to the accumulated time series. The list of differencing orders must be separated by spaces or commas. For example, DIF=(1,3) specifies first then third order differencing. Differencing is applied after time series transformation. The TRANSFORM= option is applied before the DIF= option.

SDIF= (numlist)

specifies the seasonal differencing to be applied to the accumulated time series. The list of seasonal differencing orders must be separated by spaces or commas. For example, SDIF=(1,3) specifies first then third order seasonal differencing. Differencing is applied after time series transformation. The TRANSFORM= option is applied before the SDIF= option.
SETMISS= option | number

SETMISSING= option | number

Specifies how missing values (either actual or accumulated) are to be interpreted in the accumulated time series for variables in the variable-list. If the SETMISSING= option is not specified in the VAR or CROSSVAR statement, missing values are set based on the SETMISSING= option of the ID statement. For more information, see the SETMISSING= option in the ID statement.

TRANSFORM= transformation

Specifies the time series transformation to be applied to the accumulated time series. When you specify the TRANSFORM= option, the time series must be strictly positive. You can specify the following transformations:

- NONE: does not apply any transformation.
- LOG: logarithmic transformation
- SQRT: square-root transformation
- LOGISTIC: logistic transformation
- BOXCOX(n): Box-Cox transformation with parameter n where the n is between –5 and 5

By default, TRANSFORM=NONE.

Details: TIMESERIES Procedure

The TIMESERIES procedure can be used to perform trend and seasonal analysis on transactional data. For trend analysis, various sample statistics are computed for each time period defined by the time ID variable and INTERVAL= option. For seasonal analysis, various sample statistics are computed for each season defined by the INTERVAL= or the SEASONALITY= option. For example, if the transactional data ranges from June 1990 to January 2000 and the data are to be accumulated on a monthly basis, then the trend statistics are computed for every month: June 1990, July 1990, . . . , January 2000. The seasonal statistics are computed for each season: January, February, . . . , December.

The TIMESERIES procedure can be used to form time series data from transactional data. The accumulated time series can then be analyzed using time series techniques. The data is analyzed in the following order:

1. accumulationACCUMULATE= option in the ID, VAR, or CROSSVAR statement
2. missing value interpretationSETMISSING= option in the ID, VAR, or CROSSVAR statement
3. time series transformationTRANSFORM= option in the VAR or CROSSVAR statement
4. time series differencingDIF= and SDIF= options in the VAR or CROSSVAR statement
5. descriptive statisticsOUTSUM= option and the PRINT=DESCSTATS option
6. seasonal decompositionDECOMP statement or the OUTDECOMP= option in the PROC TIMESERIES statement
7. correlation analysis: CORR statement or the OUTCORR= option in the PROC TIMESERIES statement
8. singular spectrum analysis: SSA statement or the OUTSSA= option in the PROC TIMESERIES statement
9. Fourier spectral analysis: SPECTRA statement or the OUTSPECTRA= option in the PROC TIMESERIES statement
10. cross-correlation analysis: CROSSCORR statement or the OUTCROSSCORR= option in the PROC TIMESERIES statement

Accumulation

If the ACCUMULATE= option in the ID, VAR, or CROSSVAR statement is specified, data set observations are accumulated within each time period. The frequency (width of each time interval) is specified by the ID statement INTERVAL= option. The ID variable contains the time ID values. Each time ID value corresponds to a specific time period. Accumulation is useful when the input data set contains transactional data, whose observations are not spaced with respect to any particular time interval. The accumulated values form the time series, which is used in subsequent analyses.

For example, suppose a data set contains the following observations:

```
19MAR1999 10
19MAR1999 30
11MAY1999 50
12MAY1999 20
23MAY1999 20
```

If the INTERVAL=MONTH is specified, all of the above observations fall within a three-month period of time between March 1999 and May 1999. The observations are accumulated within each time period as follows:

If the ACCUMULATE=NONE option is specified, an error is generated because the ID variable values are not equally spaced with respect to the specified frequency (MONTH).

If the ACCUMULATE=TOTAL option is specified, the resulting time series is:

```
O1MAR1999 40
O1APR1999 .
O1MAY1999 90
```

If the ACCUMULATE=AVERAGE option is specified, the resulting time series is:

```
O1MAR1999 20
O1APR1999 .
O1MAY1999 30
```
If the ACCUMULATE=MINIMUM option is specified, the resulting time series is:

<table>
<thead>
<tr>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>01MAR1999</td>
<td>10</td>
</tr>
<tr>
<td>01APR1999</td>
<td>.</td>
</tr>
<tr>
<td>01MAY1999</td>
<td>20</td>
</tr>
</tbody>
</table>

If the ACCUMULATE=MEDIAN option is specified, the resulting time series is:

<table>
<thead>
<tr>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>01MAR1999</td>
<td>20</td>
</tr>
<tr>
<td>01APR1999</td>
<td>.</td>
</tr>
<tr>
<td>01MAY1999</td>
<td>20</td>
</tr>
</tbody>
</table>

If the ACCUMULATE=MAXIMUM option is specified, the resulting time series is:

<table>
<thead>
<tr>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>01MAR1999</td>
<td>30</td>
</tr>
<tr>
<td>01APR1999</td>
<td>.</td>
</tr>
<tr>
<td>01MAY1999</td>
<td>50</td>
</tr>
</tbody>
</table>

If the ACCUMULATE=FIRST option is specified, the resulting time series is:

<table>
<thead>
<tr>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>01MAR1999</td>
<td>10</td>
</tr>
<tr>
<td>01APR1999</td>
<td>.</td>
</tr>
<tr>
<td>01MAY1999</td>
<td>50</td>
</tr>
</tbody>
</table>

If the ACCUMULATE=LAST option is specified, the resulting time series is:

<table>
<thead>
<tr>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>01MAR1999</td>
<td>30</td>
</tr>
<tr>
<td>01APR1999</td>
<td>.</td>
</tr>
<tr>
<td>01MAY1999</td>
<td>20</td>
</tr>
</tbody>
</table>

If the ACCUMULATE=STDDEV option is specified, the resulting time series is:

<table>
<thead>
<tr>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>01MAR1999</td>
<td>14.14</td>
</tr>
<tr>
<td>01APR1999</td>
<td>.</td>
</tr>
<tr>
<td>01MAY1999</td>
<td>17.32</td>
</tr>
</tbody>
</table>

As can be seen from the above examples, even though the data set observations contain no missing values, the accumulated time series can have missing values.
Boundary Alignment

When the `BOUNDARYALIGN=` option is used to qualify the `START=` or `END=` options, additional time series values can be incorporated into the accumulation operation. For instance, if a data set contains the following observations:

- 01JAN1999 10
- 01FEB1999 10
- 01MAR1999 10
- 01APR1999 10
- 01MAY1999 10
- 01JUN1999 10

and the options `START='01FEB1999'd`, `END='01APR1999'd`, `INTERVAL=QUARTER`, and `ACCUMULATE=TOTAL` are specified, using the `BOUNDARYALIGN=` option results in the following accumulated time series:

If `BOUNDARYALIGN=START` is specified, the accumulated time series is:

- 01JAN1999 30
- 01APR1999 10

If `BOUNDARYALIGN=END` is specified, the accumulated time series is:

- 01JAN1999 20
- 01APR1999 30

If `BOUNDARYALIGN=BOTH` is specified, the accumulated time series is:

- 01JAN1999 30
- 01APR1999 30

If `BOUNDARYALIGN=NONE` is specified, the accumulated time series is:

- 01JAN1999 20
- 01APR1999 10

Missing Value Interpretation

Sometimes missing values should be interpreted as unknown values. But sometimes missing values are known, such as when missing values are created from accumulation and no observations should be interpreted as no value—that is, zero. In the former case, the `SETMISSING=` option can be used to interpret how missing values are treated. The `SETMISSING=0` option should be used when missing observations are to be treated as no (zero) values. In other cases, missing values should be interpreted as global values, such as minimum or maximum values of the accumulated series. The accumulated and interpreted time series is used in subsequent analyses.
Time Series Transformation

There are four transformations available for strictly positive series only. Let $y_t > 0$ be the original time series, and let w_t be the transformed series. The transformations are defined as follows:

Log

is the logarithmic transformation.

$$w_t = \ln(y_t)$$

Logistic

is the logistic transformation.

$$w_t = \ln(c y_t / (1 - c y_t))$$

where the scaling factor c is

$$c = (1 - 10^{-6}) 10^{-\text{ceil}(\log_{10}(\text{max}(y_t)))}$$

and $\text{ceil}(x)$ is the smallest integer greater than or equal to x.

Square root

is the square root transformation.

$$w_t = \sqrt{y_t}$$

Box Cox

is the Box-Cox transformation.

$$w_t = \begin{cases} \frac{y_t^\lambda - 1}{\lambda}, & \lambda \neq 0 \\ \ln(y_t), & \lambda = 0 \end{cases}$$

More complex time series transformations can be performed by using the EXPAND procedure of SAS/ETS.

Time Series Differencing

After optionally transforming the series, the accumulated series can be simply or seasonally differenced by using the VAR and CROSSVAR statement DIF= and SDIF= options. For example, suppose y_t is a monthly time series. The following examples of the DIF= and SDIF= options demonstrate how to simply and seasonally difference the time series.

```
dif=(1) sdif=(1)
dif=(1,12)
```
Additionally, when \(y_t \) is strictly positive and the `TRANSFORM=`, `DIF=`, and `SDIF=` options are combined in the VAR and CROSSVAR statements, the transformation operation is performed before the differencing operations.

Descriptive Statistics

Descriptive statistics can be computed from the working series by specifying the `OUTSUM=` option or `PRINT=DESCSTATS`.

Seasonal Decomposition

Seasonal decomposition/analysis can be performed on the working series by specifying the `OUTDECOMP=` option, the `PRINT=DECOMP` option, or one of the `PLOTS=` options associated with decomposition in the PROC TIMESERIES statement. The DECOMP statement enables you to specify options related to decomposition. The TIMESERIES procedure uses classical decomposition. More complex seasonal decomposition/adjustment analysis can be performed by using the X11 or the X12 procedure of SAS/ETS.

The DECOMP statement `MODE=` option determines the mode of the seasonal adjustment decomposition to be performed. There are four modes: multiplicative (`MODE=MULT`), additive (`MODE=ADD`), pseudo-additive (`MODE=PSEUDOADD`), and log-additive (`MODE=LOGADD`) decomposition. The default is `MODE=MULTORADD` which specifies `MODE=MULT` for series that are strictly positive, `MODE=PSEUDOADD` for series that are nonnegative, and `MODE=ADD` for series that are not nonnegative.

When `MODE=LOGADD` is specified, the components are exponentiated to the original metric.

The DECOMP statement `LAMBDA=` option specifies the Hodrick-Prescott filter parameter (Hodrick and Prescott 1980). The default is `LAMBDA=1600`. The Hodrick-Prescott filter is used to decompose the trend-cycle component into the trend component and cycle component in an additive fashion. A smaller parameter assigns less significance to the cycle; that is, `LAMBDA=0` implies no cycle component.

The notation and keywords associated with seasonal decomposition/adjustment analysis are defined in Table 39.3.
Table 39.3 Seasonal Adjustment Formulas

<table>
<thead>
<tr>
<th>Component</th>
<th>Keyword</th>
<th>MODE= Option</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>original series</td>
<td>ORIGINAL</td>
<td>MULT</td>
<td>$O_t = TC_t S_t I_t$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADD</td>
<td>$O_t = TC_t + S_t + I_t$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOGADD</td>
<td>$\log(O_t) = TC_t + S_t + I_t$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSEUDOADD</td>
<td>$O_t = TC_t (S_t + I_t - 1)$</td>
</tr>
<tr>
<td>trend-cycle component</td>
<td>TCC</td>
<td>MULT</td>
<td>centered moving average of O_t</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADD</td>
<td>centered moving average of O_t</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOGADD</td>
<td>centered moving average of $\log(O_t)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSEUDOADD</td>
<td>centered moving average of O_t</td>
</tr>
<tr>
<td>seasonal-irregular component</td>
<td>SIC</td>
<td>MULT</td>
<td>$SI_t = S_t I_t = O_t / TC_t$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADD</td>
<td>$SI_t = S_t + I_t = O_t - TC_t$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOGADD</td>
<td>$SI_t = S_t + I_t = \log(O_t) - TC_t$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSEUDOADD</td>
<td>$SI_t = S_t + I_t - 1 = O_t / TC_t$</td>
</tr>
<tr>
<td>seasonal component</td>
<td>SC</td>
<td>MULT</td>
<td>seasonal Averages of SI_t</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADD</td>
<td>seasonal Averages of SI_t</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOGADD</td>
<td>seasonal Averages of SI_t</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSEUDOADD</td>
<td>seasonal Averages of SI_t</td>
</tr>
<tr>
<td>irregular component</td>
<td>IC</td>
<td>MULT</td>
<td>$I_t = SI_t / S_t$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADD</td>
<td>$I_t = SI_t - S_t$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOGADD</td>
<td>$I_t = SI_t - S_t$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSEUDOADD</td>
<td>$I_t = SI_t - S_t + 1$</td>
</tr>
<tr>
<td>trend-cycle-seasonal component</td>
<td>TCS</td>
<td>MULT</td>
<td>$TCS_t = TC_t S_t = O_t / I_t$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADD</td>
<td>$TCS_t = TC_t + S_t = O_t - I_t$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOGADD</td>
<td>$TCS_t = TC_t + S_t = O_t - I_t$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSEUDOADD</td>
<td>$TCS_t = TC_t S_t$</td>
</tr>
<tr>
<td>trend component</td>
<td>TC</td>
<td>MULT</td>
<td>$T_t = TC_t - C_t$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADD</td>
<td>$T_t = TC_t - C_t$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOGADD</td>
<td>$T_t = TC_t - C_t$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSEUDOADD</td>
<td>$T_t = TC_t - C_t$</td>
</tr>
<tr>
<td>cycle component</td>
<td>CC</td>
<td>MULT</td>
<td>$C_t = TC_t - T_t$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADD</td>
<td>$C_t = TC_t - T_t$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOGADD</td>
<td>$C_t = TC_t - T_t$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSEUDOADD</td>
<td>$C_t = TC_t - T_t$</td>
</tr>
<tr>
<td>seasonally adjusted series</td>
<td>SA</td>
<td>MULT</td>
<td>$SA_t = O_t / S_t = TC_t I_t$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADD</td>
<td>$SA_t = O_t - S_t = TC_t + I_t$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOGADD</td>
<td>$SA_t = O_t / \exp(S_t) = \exp(TC_t + I_t)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSEUDOADD</td>
<td>$SA_t = TC_t I_t$</td>
</tr>
</tbody>
</table>
Correlation Analysis

When s is odd the trend-cycle component is computed from the s-period centered moving average as follows:

$$TC_t = \sum_{k=-(s/2)}^{[s/2]} y_{t+k}/s$$

When s is even the trend-cycle component is computed from the s-period centered moving average as follows:

$$TC_t = \sum_{k=-s/2}^{s/2-1} (y_{t+k} + y_{t+1+k})/2s$$

The seasonal component is obtained by averaging the seasonal-irregular component for each season.

$$S_{k+js} = \sum_{t=k \mod s} T/s$$

where $0 \leq j \leq T/s$ and $1 \leq k \leq s$. The seasonal components are normalized to sum to one (multiplicative) or zero (additive).

Correlation Analysis

Correlation analysis can be performed on the working series by specifying the OUTCORR= option or one of the PLOTS= options that are associated with correlation. The CORR statement enables you to specify options that are related to correlation analysis.

Autocovariance Statistics

LAGS $h \in \{0, \ldots, H\}$
N \(N_h\) is the number of observed products at lag h, ignoring missing values
ACOV \(\hat{\gamma}(h) = \frac{1}{T} \sum_{t=h+1}^{T} (y_t - \bar{y})(y_{t-h} - \bar{y})\)
ACOV \(\hat{\gamma}(h) = \frac{1}{N_h} \sum_{t=h+1}^{T} (y_t - \bar{y})(y_{t-h} - \bar{y})\) when embedded missing values are present

Autocorrelation Statistics

ACF \(\hat{\rho}(h) = \hat{\gamma}(h)/\hat{\gamma}(0)\)
ACFSTD \(\text{Std}(\hat{\rho}(h)) = \sqrt{\frac{1}{T} \left(1 + 2 \sum_{j=1}^{h-1} \rho(j)^2 \right)}\)
ACFNORM \(\text{Norm}(\hat{\rho}(h)) = \hat{\rho}(h)/\text{Std}(\hat{\rho}(h))\)
ACFPROB \(\text{Prob}(\hat{\rho}(h)) = 2(1 - \Phi(|\text{Norm}(\hat{\rho}(h))|))\)
ACFLPROB \(\text{LogProb}(\hat{\rho}(h)) = -\log_{10}(\text{Prob}(\hat{\rho}(h)))\)
ACF2STD \(\text{Flag}(\hat{\rho}(h)) = \begin{cases} 1 & \hat{\rho}(h) > 2\text{Std}(\hat{\rho}(h)) \\ 0 & -2\text{Std}(\hat{\rho}(h)) < \hat{\rho}(h) < 2\text{Std}(\hat{\rho}(h)) \\ -1 & \hat{\rho}(h) < -2\text{Std}(\hat{\rho}(h)) \end{cases}\)
Partial Autocorrelation Statistics

\[\hat{\phi}(h) = \sum_{j=1}^{h} \gamma_{j}^{(0,h-1)} \]

\[\text{PACFSTD} = \frac{1}{\sqrt{N_0}} \]

\[\text{PCFNORM} = \frac{\hat{\phi}(h)}{\text{PACFSTD}} \]

\[\text{PACFPROB} = 2 \left(1 - \Phi \left(|\text{Norm(\hat{\phi}(h))}| \right) \right) \]

\[\text{PACFLPROB} = -\log_{10}(\text{PACFPROB}) \]

\[\text{PACF2STD} = \begin{cases} 1 & \hat{\phi}(h) > 2 \text{PACFSTD} \\ 0 & -2\text{PACFSTD} < \hat{\phi}(h) < 2\text{PACFSTD} \\ -1 & \hat{\phi}(h) < -2\text{PACFSTD} \end{cases} \]

Inverse Autocorrelation Statistics

\[\hat{\theta}(h) \]

\[\text{IACFSTD} = \frac{1}{\sqrt{N_0}} \]

\[\text{IACFNORM} = \frac{\hat{\theta}(h)}{\text{IACFSTD}} \]

\[\text{IACFPROB} = 2 \left(1 - \Phi \left(|\text{Norm(\hat{\theta}(h))}| \right) \right) \]

\[\text{IACFLPROB} = -\log_{10}(\text{IACFPROB}) \]

\[\text{IACF2STD} = \begin{cases} 1 & \hat{\theta}(h) > 2 \text{IACFSTD} \\ 0 & -2\text{IACFSTD} < \hat{\theta}(h) < 2\text{IACFSTD} \\ -1 & \hat{\theta}(h) < -2\text{IACFSTD} \end{cases} \]

White Noise Statistics

\[Q(h) = T(T+2)\sum_{j=1}^{h} \rho(j)^2 / (T-j) \]

\[Q(h) = \sum_{j=1}^{h} N_j \rho(j)^2 \text{ when embedded missing values are present} \]

\[\text{WNPROB} = \chi_{\text{max}(1,h-p)}(Q(h)) \]

\[\text{WNLPROB} = -\log_{10}(\text{WNPROB}) \]

Cross-Correlation Analysis

Cross-correlation analysis can be performed on the working series by specifying the OUTCROSSCORR= option or one of the CROSSPLOTS= options that are associated with cross-correlation. The CROSSCORR statement enables you to specify options that are related to cross-correlation analysis.

Cross-Correlation Statistics

The cross-correlation statistics for the variable \(x \) supplied in a VAR statement and variable \(y \) supplied in a CROSSVAR statement are:
Spectral Density Analysis

Spectral analysis can be performed on the working series by specifying the OUTSPECTRA= option or by specifying the PLOTS=PERIODOGRAM or PLOTS=SPECTRUM option in the PROC TIMESERIES statement. PROC TIMESERIES uses the finite Fourier transform to decompose data series into a sum of sine and cosine terms of different amplitudes and wavelengths. The finite Fourier transform decomposition of the series x_t is

$$x_t = \frac{a_0}{2} + \sum_{k=1}^{K-1} f_k (a_k \cos \omega_k t + b_k \sin \omega_k t)$$

where

t is the time subscript, $t = 0, 1, 2, \ldots, T - 1$

x_t are the equally spaced time series data

T is the number of observations in the time series

K is the number of frequencies in the Fourier decomposition: $K = \frac{T+2}{2}$ if T is even, $K = \frac{T+1}{2}$ if T is odd

k is the frequency subscript, $k = 0, 1, 2, \ldots, K - 1$

a_0 is the mean term: $a_0 = 2\bar{x}$

a_k are the cosine coefficients

b_k are the sine coefficients

ω_k are the Fourier frequencies: $\omega_k = \frac{2\pi k}{T}$
The Fourier decomposition is performed after the ACCUMULATE=, DIF=, SDIF= and TRANSFORM= options in the ID and VAR statements have been applied.

Functions of the Fourier coefficients a_k and b_k can be plotted against frequency or against wavelength to form periodograms. The amplitude periodogram I_k is defined as follows:

$$I_k = \frac{T}{2} (a_k^2 + b_k^2)$$

Since the Fourier transform is an even, periodic function of frequency which repeats every T ordinates the periodogram is also. Values of I_k for all k therefore can be mapped to the unique values $I_k : k = 0 \ldots K - 1$ using the equations

$$I_k = I_{-k} \quad \text{for all } k$$

$$I_k = I_{k+nT} \quad \text{for } n = \pm 1, \pm 2, \pm 3, \ldots$$

$$I_k = I_{T-k} \quad \text{for } 0 \leq k \leq K - 1$$

The periodogram, I_k, is an estimate at the discrete frequencies ω_k of the spectral density function which characterizes the series x_t. By smoothing the periodogram an improved spectral density estimate with reduced variance and bias can be achieved at these points. Smoothing can be accomplished either through use of a spectral window smoothing function or by applying a lag window filter to the series autocovariance function.

When the SPECTRA statement’s DOMAIN=FREQUENCY option is in effect spectral density estimates are computed by smoothing the periodogram ordinates using the equation

$$S_k(M) = \sum_{\tau = K-M}^{K-1} w\left(\frac{\tau}{M}\right) I_{k+\tau}$$

where $w(θ)$ is the spectral window function whose form is specified by either the KERNEL= option or the WEIGHTS option. M is the kernel scale parameter which acts as a frequency scaling factor in the spectral window smoothing function. Values of $I_{k+\tau}$ that fall outside of $0 \leq k + \tau \leq K - 1$ are mapped to values inside this range by the equations presented previously.

When the DOMAIN=TIME option is specified spectral density values are estimated by applying a lag window filter, $\lambda(h, M)$, to the series autocovariance function. The spectral density estimate then can be computed from the filtered autocovariance function using the equation

$$S_k(M) = \sum_{h = -(T-1)}^{T-1} \lambda(h, M) \hat{y}(h) \cos h\omega_k.$$

In this case the kernel scale parameter, M, serves as a scale factor for the lag length, h, in the time domain.

In the lag window formulation the spectral density estimate is a consistent estimator as $T, M \to \infty$ under the conditions $\lambda(h, M) = 0$ for $|h| > M$, and $\lim_{T \to \infty} M/T = 0$. These conditions lead to the following parameterization of M provided by the SPECTRA statement:

$$M = cK^e$$

where the values $c > 0$ and $0 < e < 1$ satisfy the consistency conditions. To specify the kernel scale parameter explicitly, set $c =$ to the desired scale factor and $e =$ 0.
For uniformity and computational efficiency all spectral density estimates are calculated using a spectral window weighting function, \(w(\theta) \), applied to the periodogram ordinates. In the case where the \(\text{DOMAIN=}\text{TIME} \) option is specified the effective spectral window weighting function is computed by the equation

\[
w_{\text{TIME}}(\theta) = \sum_{h=-(T-1)}^{T-1} \lambda(h, M) \cos h\theta.
\]

Because the kernel scale parameter, \(M \), serves as a lag scale factor in the time domain and bandwidth scale factor in the frequency domain the impact of \(M \) on spectral density estimates depends on the value of the \(\text{DOMAIN=} \) option. When \(\text{DOMAIN=}\text{FREQUENCY} \) increasing values of \(M \) decrease variance and increase bias in the spectral density estimates whereas when \(\text{DOMAIN=}\text{TIME} \) increasing values of \(M \) increase variance and decrease bias.

Using Kernel Specifications

You can specify one of ten different kernel smoothing functions in the SPECTRA statement. Five smoothing functions are available as \(\text{KERNEL=} \) options and five complementary smoothing functions which correspond to lag window filters are available when the \(\text{KERNEL=} \) option is used in conjunction with the \(\text{DOMAIN=}\text{TIME} \) option.

For example, a Parzen kernel with a support of 11 periodogram ordinates in the frequency domain can be specified using the kernel option:

\[
\text{spectra / parzen c=5 expon=0;}
\]

The TIMESERIES procedure supports the following spectral window kernel functions in the frequency domain where \(x = \tau/M \):

BARTLETT: Bartlett kernel

\[
w(x) = \begin{cases}
1 - |x| & |x| \leq 1 \\
0 & \text{otherwise}
\end{cases}
\]

PARZEN: Parzen kernel

\[
w(x) = \begin{cases}
1 - 6|x|^2 + 6|x|^3 & 0 \leq |x| \leq \frac{1}{2} \\
2(1 - |x|)^3 & \frac{1}{2} \leq |x| \leq 1 \\
0 & \text{otherwise}
\end{cases}
\]

QS: quadratic spectral kernel

\[
w(x) = \frac{3}{(2\pi x)^2} \left(\frac{\sin 2\pi x}{2\pi x} - \cos 2\pi x \right)
\]
TUKEY: Tukey-Hanning kernel

\[
w(x) = \begin{cases}
(1 + \cos(\pi x))/2 & |x| \leq 1 \\
0 & \text{otherwise}
\end{cases}
\]

TRUNCAT: truncated kernel

\[
w(x) = \begin{cases}
1 & |x| \leq 1 \\
0 & \text{otherwise}
\end{cases}
\]

When the DOMAIN=TIME option is specified the five kernel functions above are interpreted as lag window filters on the autocovariance function. The lag window kernel functions correspond to the following spectral window smoothing functions where \(\theta = 2\pi \tau / T \):

BARTLETT: Bartlett equivalent lag window filter

\[
w(\theta) = \frac{1}{2\pi M} \left(\frac{\sin(M\theta/2)}{\sin(\theta/2)} \right)^2
\]

PARZEN: Parzen equivalent lag window filter

\[
w(\theta) = \frac{6}{\pi M^3} \left(\frac{\sin(M\theta/4)}{\sin(\theta/2)} \right)^4 \left(1 - \frac{2}{3} \sin^2(\theta/2) \right)
\]

QS: quadratic spectral equivalent lag window filter

\[
w(\theta) = \begin{cases}
\frac{3M}{4\pi} (1 - (M\theta/\pi)^2) & |\theta| \leq \pi/M \\
0 & |\theta| > \pi/M
\end{cases}
\]

TUKEY: Tukey-Hanning equivalent lag window filter

\[
w(\theta) = \frac{1}{4} D_M(\theta - \pi/M) + \frac{1}{2} D_M(\theta) + \frac{1}{4} D_M(\theta + \pi/M)
\]

\[
D_M(\theta) = \frac{1}{2\pi} \frac{\sin[(M + 1/2)\theta]}{\sin(\theta/2)}
\]

TRUNC: truncated equivalent lag window filter

\[
w(\theta) = D_M(\theta)
\]
Using Specification of Weight Constants

Any number of weighting constants can be specified. The constants are interpreted symmetrically about the middle weight. The middle constant (or the constant to the right of the middle if an even number of weight constants is specified) is the relative weight of the current periodogram ordinate. The constant immediately following the middle one is the relative weight of the next periodogram ordinate, and so on. The actual weights used in the smoothing process are the weights specified in the WEIGHTS option scaled so that they sum to 1.

The moving average calculation reflects at each end of the periodogram to accommodate the periodicity of the periodogram function.

For example, a simple triangular weighting can be specified using the following WEIGHTS option:

```
spectra / weights 1 2 3 2 1;
```

Computational Method

If the number of observations, \(T \), factors into prime integers that are less than or equal to 23, and the product of the square-free factors of \(T \) is less than 210, then the procedure uses the fast Fourier transform developed by Cooley and Tukey (1965) and implemented by Singleton (1969). If \(T \) cannot be factored in this way, then the procedure uses a Chirp-Z algorithm similar to that proposed by Monro and Branch (1977).

Missing Values

Missing values are replaced with an estimate of the mean to perform spectral analyses. This treatment of a series with missing values is consistent with the approach used by Priestley (1981).

Singular Spectrum Analysis

Given a time series, \(y_t \), for \(t = 1, \ldots, T \), and a window length, \(2 \leq L < T/2 \), singular spectrum analysis Golyandina, Nekrutkin, and Zhigljavsky (2001) decompose the time series into spectral groupings using the following steps:

Embedding Step

Using the time series, form a \(K \times L \) trajectory matrix, \(X \), with elements

\[
X = \{x_{k,l}\}_{k=1,l=1}^{K,L}
\]

such that \(x_{k,l} = y_{k-l+1} \) for \(k = 1, \ldots, K \) and \(l = 1, \ldots, L \) and where \(K = T - L + 1 \). By definition \(L \leq K < T \), because \(2 \leq L < T/2 \).

Decomposition Step

Using the trajectory matrix, \(X \), apply singular value decomposition to the trajectory matrix

\[
X = UQV
\]
where U represents the $K \times L$ matrix that contains the left-hand-side (LHS) eigenvectors, where Q represents the diagonal $L \times L$ matrix that contains the singular values, and where V represents the $L \times L$ matrix that contains the right-hand-side (RHS) eigenvectors.

Therefore,
\[
X = \sum_{l=1}^{L} X^{(l)} = \sum_{l=1}^{L} u_l q_l v_l^T
\]

where $X^{(l)}$ represents the $K \times L$ principal component matrix, u_l represents the $K \times 1$ left-hand-side (LHS) eigenvector, q_l represents the singular value, and v_l represents the $L \times 1$ right-hand-side (RHS) eigenvector associated with the lth window index.

Grouping Step

For each group index, $m = 1, \ldots, M$, define a group of window indices $I_m \subset \{1, \ldots, L\}$. Let
\[
X_{I_m} = \sum_{l \in I_m} X^{(l)} = \sum_{l \in I_m} u_l q_l v_l^T
\]

represent the grouped trajectory matrix for group I_m. If groupings represent a spectral partition,
\[
\bigcup_{m=1}^{M} I_m = \{1, \ldots, L\} \quad \text{and} \quad I_m \cap I_n = \emptyset \quad \text{for} \quad m \neq n
\]

then according to the singular value decomposition theory,
\[
X = \sum_{m=1}^{M} X_{I_m}
\]

Averaging Step

For each group index, $m = 1, \ldots, M$, compute the diagonal average of X_{I_m},
\[
\bar{x}_t^{(m)} = \frac{1}{n_t} \sum_{l=s_t}^{e_t} x_{t-l+1,l}^{(m)}
\]

where
\[
\begin{align*}
 s_t &= 1, \quad e_t = t, \quad n_t = t \quad \text{for} \quad 1 \leq t < L \\
 s_t &= 1, \quad e_t = L, \quad n_t = L \quad \text{for} \quad L \leq t \leq T - L + 1 \\
 s_t &= T - t - 1, \quad e_t = L, \quad n_t = T - t + 1 \quad \text{for} \quad T - L + 1 < t \leq T
\end{align*}
\]

If the groupings represent a spectral partition, then by definition
\[
y_t = \sum_{m=1}^{M} \bar{x}_t^{(m)}
\]

Hence, singular spectrum analysis additively decomposes the original time series, y_t, into m component series $\bar{x}_t^{(m)}$ for $m = 1, \ldots, M$.
Specifying the Window Length

You can explicitly specify the maximum window length, \(2 \leq L \leq 1000\), using the LENGTH= option or implicitly specify the window length using the INTERVAL= option in the ID statement or the SEASONALITY= option in the PROC TIMESERIES statement.

Either way the window length is reduced based on the accumulated time series length, \(T\), to enforce the requirement that \(2 \leq L \leq T/2\).

Specifying the Groups

You can use the GROUPS= option to explicitly specify the composition and number of groups, \(I_m \subset \{1, \ldots, L\}\) or use the THRESHOLDPCT= option in the SSA statement to implicitly specify the grouping. The THRESHOLDPCT= option is useful for removing noise or less dominant patterns from the accumulated time series.

Let \(0 < \alpha < 1\) be the cumulative percent singular value \(\text{THRESHOLDPCT}=\). Then the last group, \(I_M = \{l_\alpha, \ldots, L\}\), is determined by the smallest value such that

\[
\left(\frac{\sum_{l=1}^{l_\alpha} q_l}{\sum_{l=1}^{L} q_l} \right) \geq \alpha \quad \text{where} \quad 1 < l_\alpha \leq L
\]

Using this rule, the last group, \(I_M\), describes the least dominant patterns in the time series and the size of the last group is at least one and is less than the window length, \(L \geq 2\).

The magnitudes of the principal components which are plotted using the PLOT=SSA option and selected by the THRESHOLDPCT= option are based on the singular values which appear on the diagonal of \(Q\). Alternatively, each principal component’s contribution to variation in the series can be quantified by using the squares of the singular values. The relative contributions of the principal components to variation in the series are included in the printed tabular output produced by the PRINT=SSA option.

Data Set Output

The TIMESERIES procedure can create the OUT=, OUTCORR=, OUTCROSSCORR=, OUTDECOMP=, OUTFREQ=, OUTSEASON=, OUTSPECTRA=, OUTSSA=, OUTSUM=, and OUTTREND= data sets. In general, these data sets contain the variables listed in the BY statement. If an analysis step that is related to an output data step fails, the values of this step are not recorded or are set to missing in the related output data set and appropriate error and/or warning messages are recorded in the log.

OUT= Data Set

The OUT= data set contains the variables specified in the BY, ID, VAR, and CROSSVAR statements. If the ID statement is specified, the ID variable values are aligned and extended based on the ALIGN= and INTERVAL= options. The values of the variables specified in the VAR and CROSSVAR statements are accumulated based on the ACCUMULATE= option, and missing values are interpreted based on the SETMISSING= option.
OUTCORR= Data Set

The OUTCORR= data set contains the variables specified in the BY statement as well as the variables listed below. The OUTCORR= data set records the correlations for each variable specified in a VAR statement (not the CROSSVAR statement).

When the CORR statement TRANSPOSE=NO option is omitted or specified explicitly, the variable names are related to correlation statistics specified in the CORR statement options and the variable values are related to the NLAG= or LAGS= option.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>variable name</td>
</tr>
<tr>
<td>LAG</td>
<td>time lag</td>
</tr>
<tr>
<td>N</td>
<td>number of variance products</td>
</tr>
<tr>
<td>ACOV</td>
<td>autocovariances</td>
</tr>
<tr>
<td>ACF</td>
<td>autocorrelations</td>
</tr>
<tr>
<td>ACFSTD</td>
<td>autocorrelation standard errors</td>
</tr>
<tr>
<td>ACF2STD</td>
<td>an indicator of whether autocorrelations are less than (–1), greater than (1), or within (0) two standard errors of zero</td>
</tr>
<tr>
<td>ACFNORM</td>
<td>normalized autocorrelations</td>
</tr>
<tr>
<td>ACFPROB</td>
<td>autocorrelation probabilities</td>
</tr>
<tr>
<td>ACFLPROB</td>
<td>autocorrelation log probabilities</td>
</tr>
<tr>
<td>PACF</td>
<td>partial autocorrelations</td>
</tr>
<tr>
<td>PACFSTD</td>
<td>partial autocorrelation standard errors</td>
</tr>
<tr>
<td>PACF2STD</td>
<td>an indicator of whether partial autocorrelations are less than (–1), greater than (1), or within (0) two standard errors of zero</td>
</tr>
<tr>
<td>PACFNORM</td>
<td>partial normalized autocorrelations</td>
</tr>
<tr>
<td>PACFPROB</td>
<td>partial autocorrelation probabilities</td>
</tr>
<tr>
<td>ACFLPROB</td>
<td>partial autocorrelation log probabilities</td>
</tr>
<tr>
<td>IACF</td>
<td>inverse autocorrelations</td>
</tr>
<tr>
<td>IACFSTD</td>
<td>an indicator of whether inverse autocorrelations are less than (–1), greater than (1), or within (0) two standard errors of zero</td>
</tr>
<tr>
<td>IACF2STD</td>
<td>two standard errors beyond inverse autocorrelation</td>
</tr>
<tr>
<td>IACFNORM</td>
<td>normalized inverse autocorrelations</td>
</tr>
<tr>
<td>IACFPROB</td>
<td>inverse autocorrelation probabilities</td>
</tr>
<tr>
<td>IACFLPROB</td>
<td>inverse autocorrelation log probabilities</td>
</tr>
<tr>
<td>WN</td>
<td>white noise test Statistics</td>
</tr>
<tr>
<td>WNPROB</td>
<td>white noise test probabilities</td>
</tr>
<tr>
<td>WNLPROB</td>
<td>white noise test log probabilities</td>
</tr>
</tbody>
</table>

The preceding correlation statistics are computed for each specified time lag.
When the CORR statement TRANSPOSE=YES option is specified, the variable *values* are related to correlation statistics specified in the CORR statement and the variable *names* are related to the NLAG= or LAGS= options.

NAME	variable name
STAT	correlation statistic name
LABEL	correlation statistic label
LAGh	correlation statistics for lag h

OUTCROSSCORR= Data Set

The OUTCROSSCORR= data set contains the variables specified in the BY statement as well as the variables listed below. The OUTCROSSCORR= data set records the cross-correlations for each variable specified in a VAR and the CROSSVAR statements.

When the CROSSCORR statement TRANSPOSE=NO option is omitted or specified explicitly, the variable *names* are related to cross-correlation statistics specified in the CROSSCORR statement options and the variable *values* are related to the NLAG= or LAGS= option.

NAME	variable name
CROSS	cross variable name
LAG	time lag
N	number of variance products
CCOV	cross-covariances
CCF	cross-correlations
CCFSTD	cross-correlation standard errors
CCF2STD	an indicator of whether cross-correlations are less than (-1), greater than (1), or within (0) two standard errors of zero
CCFNORM	normalized cross-correlations
CCFPROB	cross-correlation probabilities
CCFLPROB	cross-correlation log probabilities

The preceding cross-correlation statistics are computed for each specified time lag.

When the CROSSCORR statement TRANSPOSE=YES option is specified, the variable *values* are related to cross-correlation statistics specified in the CROSSCORR statement and the variable *names* are related to the NLAG= or LAGS= options.

NAME	variable name
CROSS	cross variable name
STAT	cross-correlation statistic name
LABEL	cross-correlation statistic label
LAGh	cross-correlation statistics for lag h
OUTDECOMP= Data Set

The OUTDECOMP= data set contains the variables specified in the BY statement as well as the variables listed below. The OUTDECOMP= data set records the seasonal decomposition/adjustments for each variable specified in a VAR statement (not the CROSSVAR statement).

When the DECOMP statement TRANSPOSE=NO option is omitted or specified explicitly, the variable names are related to decomposition/adjustments specified in the DECOMP statement and the variable values are related to the ID statement INTERVAL= option and the PROC TIMESERIES statement SEASONALITY= option.

(NAME) variable name
(MODE) mode of decomposition
(TIMEID) time ID values
(SEASON) seasonal index
(ORIGINAL) original series values
(TCC) trend-cycle component
(SIC) seasonal-irregular component
(SC) seasonal component
(SCSTD) seasonal component standard errors
(TCS) trend-cycle-seasonal component
(IC) irregular component
(SA) seasonally adjusted series
(PCSA) percent change seasonally adjusted series
(TC) trend component
(CC) cycle component

The preceding decomposition components are computed for each time period.

When the DECOMP statement TRANSPOSE=YES option is specified, the variable values are related to decomposition/adjustments specified in the DECOMP statement and the variable names are related to the ID statement INTERVAL= option, the PROC TIMESERIES statement SEASONALITY= option, and the DECOMP statement NPERIODS= option.

(NAME) variable name
(MODE) mode of decomposition name
(COMP) decomposition component name
(LABEL) decomposition component label
(PERIOD) decomposition component value for time period t
OUTFREQ= Data Set

The OUTFREQ= data set contains the variables specified in the BY statement as well as the variables listed below. The OUTFREQ= data set records the counts of the discrete values of the time series for each variable specified in a VAR statement (not the CROSSVAR statement).

NAME variable name
VALUES distinct series values
COUNTS counts of the discrete values
PERCENT percentage of the total counts

OUTPROCINFO= Data Set

The OUTPROCINFO= data set contains information about the run of the TIMESERIES procedure. The following variables are present:

SOURCE set to the name of the procedure, in this case TIMESERIES
NAME name of the item being reported
LABEL descriptive label for the item in _NAME_
STAGE set to the current stage of the procedure; for TIMESERIES this is set to ALL
VALUE value of the item specified in _NAME_

OUTSEASON= Data Set

The OUTSEASON= data set contains the variables specified in the BY statement as well as the variables listed below. The OUTSEASON= data set records the seasonal statistics for each variable specified in a VAR statement (not the OUTSEASON statement).

When the SEASON statement TRANSPOSE=NO option is omitted or specified explicitly, the variable names are related to seasonal statistics specified in the SEASON statement and the variable values are related to the ID statement INTERVAL= option or the PROC TIMESERIES statement SEASONALITY= option.

NAME variable name
TIMEID time ID values
SEASON seasonal index
NOBS number of observations
N number of nonmissing observations
NMISS number of missing observations
MINIMUM minimum value
MAXIMUM maximum value
RANGE range value
SUM summation value
MEAN mean value
STDDEV standard deviation
CSS corrected sum of squares
USS uncorrected sum of squares
MEDIAN median value

The preceding statistics are computed for each season.

When the SEASON statement TRANSPOSE=YES option is specified, the variable values are related to seasonal statistics specified in the SEASON statement and the variable names are related to the ID statement INTERVAL= option or the PROC TIMESERIES statement SEASONALITY= option.

NAME variable name
STAT season statistic name
LABEL season statistic name
SEASONs season statistic value for season s

OUTSPECTRA= Data Set

The OUTSPECTRA= data set contains the variables that are specified in the BY statement in addition to the variables listed below. The OUTSPECTRA= data set records the frequency domain analysis for each variable specified in a VAR statement (not the CROSSVAR statement).

The following variable names are related to correlation statistics specified in the SPECTRA statement options.

NAME variable name
FREQ frequency in radians from 0 to π
PERIOD period or wavelength
COS cosine transform
SIN sine transform
P periodogram
S spectral density estimates
OUTSSA= Data Set

The OUTSSA= data set contains the variables that are specified in the BY statement in addition to the variables listed below. The OUTSSA= data set records the singular spectrum analysis (SSA) for each variable specified in a VAR statement (not the CROSSVAR statement).

When the SSA statement TRANSPOSE=NO option is omitted or specified explicitly, the variable names are related to singular spectrum analysis specified in the SSA statement, and the variable values are related to the INTERVAL= option in the ID statement and the SEASONALITY= option in the PROC TIMESERIES statement.

NAME variable name
TIMEID time ID values
CYCLE cycle index
SEASON seasonal index
ORIGINAL original series values
_GROUP_i SSA result groups

The _GROUP_i_ decomposition components are computed for each time period.

When the SSA statement TRANSPOSE=YES option is specified, the variable values are related to singular spectrum analysis specified in the SSA statement, and the variable names are related to the INTERVAL= option in the ID statement, the SEASONALITY= option in the PROC TIMESERIES statement, or the NPERIODS= option in the SSA statement. The following variables are written to a transposed OUTSSA= data set:

NAME variable name
GROUP group number
PERIOD_t SSA group value for time period t

OUTSUM= Data Set

The OUTSUM= data set contains the variables specified in the BY statement as well as the variables listed below. The OUTSUM= data set records the descriptive statistics for each variable specified in a VAR statement (not the CROSSVAR statement).

Variables related to descriptive statistics are based on the ACCUMULATE= and SETMISSING= options in the ID and VAR statements:

NAME variable name
STATUS status flag that indicates whether the requested analyses were successful
NOBS number of observations
N number of nonmissing observations
Chapter 39: The TIMESERIES Procedure

NMISS number of missing observations
START the starting date of the time series
END the ending date of the time series
STARTOBS the beginning observation of the time series
ENDOBS the ending observation of the time series
MINIMUM minimum value
MAXIMUM maximum value
AVG average value
STDDEV standard deviation

The OUTSUM= data set contains the descriptive statistics of the (accumulated) time series.

OUTTREND= Data Set

The OUTTREND= data set contains the variables specified in the BY statement as well as the variables listed below. The OUTTREND= data set records the trend statistics for each variable specified in a VAR statement (not the CROSSV AR statement).

When the TREND statement TRANSPOSE=NO option is omitted or explicitly specified, the variable names are related to trend statistics specified in the TREND statement and the variable values are related to the INTERVAL= option in the ID statement or the SEASONALITY= option in the PROC TIMESERIES statement.

NAME variable name
TIMEID time ID values
SEASON seasonal index
NOBS number of observations
N number of nonmissing observations
NMISS number of missing observations
MINIMUM minimum value
MAXIMUM maximum value
RANGE range value
SUM summation value
MEAN mean value
STDDEV standard deviation
CSS corrected sum of squares
USS uncorrected sum of squares
MEDIAN median value
The preceding statistics are computed for each time period.

When the TREND statement TRANSPOSE=YES option is specified, the variable values related to trend statistics specified in the TREND statement and the variable names are related to the INTERVAL= option in the ID statement, the SEASONALITY= option in the PROC TIMESERIES statement, or the NPERIODS= option in the TREND statement. The following variables are written to the OUTTREND= data set:

- **_NAME_** variable name
- **_STAT_** trend statistic name
- **_LABEL_** trend statistic name
- **PERIOD** trend statistic value for time period t

STATUS Variable Values

The _STATUS_ variable that appears in the OUTSUM= data set contains a code that specifies whether the analysis has been successful or not. The _STATUS_ variable can take the following values:

- 0 success
- 1000 transactional trend statistics failure
- 2000 transactional seasonal statistics failure
- 3000 accumulation failure
- 4000 missing value interpretation failure
- 6000 series is all missing
- 7000 transformation failure
- 8000 differencing failure
- 9000 unable to compute descriptive statistics
- 10000 seasonal decomposition failure
- 11000 correlation analysis failure
- 15000 singular spectrum analysis failure
- 16000 spectral analysis failure

Printed Output

The TIMESERIES procedure optionally produces printed output by using the Output Delivery System (ODS). By default, the procedure produces no printed output. All output is controlled by the PRINT= and PRINTDETAILS options associated with the PROC TIMESERIES statement. In general, if an analysis step related to printed output fails, the values of this step are not printed and appropriate error or warning messages or both are recorded in the log. The printed output is similar to the output data set, and these similarities are described below.
PRINT=COUNTS prints the discrete distribution analysis.
PRINT=DECOMP prints the seasonal decomposition similar to the OUTDECOMP= data set.
PRINT=DESCSTATS prints a table of descriptive statistics for each variable.
PRINT=SEASONS prints the seasonal statistics similar to the OUTSEASON= data set.
PRINT=SSA prints the singular spectrum analysis similar to the OUTSSA= data set.
PRINT=SUMMARY prints the summary statistics similar to the OUTSUM= data set.
PRINT=TRENDS prints the trend statistics similar to the OUTTRENDS= data set.
PRINTDETAILS prints each table with greater detail.

If PRINT=SEASONS and the PRINTDETAILS options are both specified, all seasonal statistics are printed.

ODS Table Names

Table 39.4 relates the PRINT= options to ODS tables:

<table>
<thead>
<tr>
<th>ODS Table Name</th>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>CountStatistics</td>
<td>Discrete distribution</td>
<td>PRINT</td>
<td>COUNTS</td>
</tr>
<tr>
<td>DistributionSelection</td>
<td>Discrete distribution Selection</td>
<td>PRINT</td>
<td>COUNTS</td>
</tr>
<tr>
<td>DistributionParameterEstimates</td>
<td>Discrete distribution Parameter Estimates</td>
<td>PRINT</td>
<td>COUNTS</td>
</tr>
<tr>
<td>DistributionEstimates</td>
<td>Discrete distribution Estimates</td>
<td>PRINT</td>
<td>COUNTS</td>
</tr>
<tr>
<td>SeasonalDecomposition</td>
<td>Seasonal decomposition</td>
<td>PRINT</td>
<td>DECOMP</td>
</tr>
<tr>
<td>DescStats</td>
<td>Descriptive statistics</td>
<td>PRINT</td>
<td>DESCSTATS</td>
</tr>
<tr>
<td>GlobalStatistics</td>
<td>Global statistics</td>
<td>PRINT</td>
<td>SEASONS</td>
</tr>
<tr>
<td>SeasonStatistics</td>
<td>Season statistics</td>
<td>PRINT</td>
<td>SEASONS</td>
</tr>
<tr>
<td>StatisticsSummary</td>
<td>Statistics summary</td>
<td>PRINT</td>
<td>SUMMARY</td>
</tr>
<tr>
<td>TrendStatistics</td>
<td>Trend statistics</td>
<td>PRINT</td>
<td>TRENDS</td>
</tr>
<tr>
<td>GlobalStatistics</td>
<td>Global statistics</td>
<td>PRINT</td>
<td>TRENDS</td>
</tr>
<tr>
<td>SSASingularValues</td>
<td>SSA singular values</td>
<td>PRINT</td>
<td>SSA</td>
</tr>
<tr>
<td>SSAResults</td>
<td>SSA results</td>
<td>PRINT</td>
<td>SSA</td>
</tr>
</tbody>
</table>

The tables are related to a single series within a BY group.

ODS Graphics Names

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling ODS Graphics” in that chapter.
The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

This section describes the graphical output produced by the TIMESERIES procedure. PROC TIMESERIES assigns a name to each graph it creates. These names are listed in Table 39.5.

<table>
<thead>
<tr>
<th>ODS Graph Name</th>
<th>Plot Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACFPlot</td>
<td>Autocorrelation function</td>
<td>PLOTS</td>
<td>ACF</td>
</tr>
<tr>
<td>ACFNORMPlot</td>
<td>Normalized autocorrelation function</td>
<td>PLOTS</td>
<td>ACF</td>
</tr>
<tr>
<td>CCFNORMPlot</td>
<td>Normalized cross-correlation function</td>
<td>CROSSPLOTS</td>
<td></td>
</tr>
<tr>
<td>CCFPlot</td>
<td>Cross-correlation function</td>
<td>CROSSPLOTS</td>
<td>CCF</td>
</tr>
<tr>
<td>ChiSquareProbabilitiesPlot</td>
<td>Discrete distribution evaluation</td>
<td>COUNTPLOTS</td>
<td>CHISQPROB</td>
</tr>
<tr>
<td>ChiSquareLogProbabilitiesPlot</td>
<td>Discrete distribution evaluation</td>
<td>COUNTPLOTS</td>
<td>CHISQPROB</td>
</tr>
<tr>
<td>CorrelationPlots</td>
<td>Correlation graphics panel</td>
<td>PLOTS</td>
<td>CORR</td>
</tr>
<tr>
<td>CrossSeriesPlot</td>
<td>Cross series plot</td>
<td>CROSSPLOTS</td>
<td>SERIES</td>
</tr>
<tr>
<td>CycleComponentPlot</td>
<td>Cycle component</td>
<td>PLOTS</td>
<td>CC</td>
</tr>
<tr>
<td>CyclePlot</td>
<td>Seasonal cycles plot</td>
<td>PLOTS</td>
<td>CYCLES</td>
</tr>
<tr>
<td>DecompositionPlots</td>
<td>Decomposition graphics panel</td>
<td>PLOTS</td>
<td>DECOMP</td>
</tr>
<tr>
<td>DiscreteDistributionPlot</td>
<td>Discrete distribution analysis</td>
<td>COUNTPLOTS</td>
<td>DISTRIBUTION</td>
</tr>
<tr>
<td>FrequencyAnalysisPlot</td>
<td>Frequency analysis</td>
<td>COUNTPLOTS</td>
<td>COUNTS</td>
</tr>
<tr>
<td>FrequencyCountsPlot</td>
<td>Frequency analysis</td>
<td>COUNTPLOTS</td>
<td>COUNTS</td>
</tr>
<tr>
<td>FrequencyValuesPlot</td>
<td>Frequency analysis</td>
<td>COUNTPLOTS</td>
<td>VALUES</td>
</tr>
<tr>
<td>IACFPlot</td>
<td>Inverse autocorrelation function</td>
<td>PLOTS</td>
<td>IACF</td>
</tr>
<tr>
<td>IACFNORMPlot</td>
<td>Normalized inverse autocorrelation function</td>
<td>PLOTS</td>
<td>IACF</td>
</tr>
<tr>
<td>IrregularComponentPlot</td>
<td>Irregular component</td>
<td>PLOTS</td>
<td>IC</td>
</tr>
<tr>
<td>PACFPlot</td>
<td>Partial autocorrelation function</td>
<td>PLOTS</td>
<td>PACF</td>
</tr>
<tr>
<td>PACFNormPlot</td>
<td>Standardized partial autocorrelation function</td>
<td>PLOTS</td>
<td>PACF</td>
</tr>
<tr>
<td>PercentChangeAdjustedPlot</td>
<td>Percent-change seasonally adjusted</td>
<td>PLOTS</td>
<td>PCSA</td>
</tr>
<tr>
<td>Periodogram</td>
<td>Periodogram versus period</td>
<td>PLOTS</td>
<td>PERIODOGRAM</td>
</tr>
<tr>
<td>ResidualPlot</td>
<td>Residual time series plot</td>
<td>PLOTS</td>
<td>RESIDUAL</td>
</tr>
</tbody>
</table>
Table 39.5 (continued)

<table>
<thead>
<tr>
<th>ODS Graph Name</th>
<th>Plot Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>SeasonallyAdjustedPlot</td>
<td>Seasonally adjusted</td>
<td>PLOTS</td>
<td>SA</td>
</tr>
<tr>
<td>SeasonalComponentPlot</td>
<td>Seasonal component</td>
<td>PLOTS</td>
<td>SC</td>
</tr>
<tr>
<td>SeasonalIrregularComponentPlot</td>
<td>Seasonal-irregular component</td>
<td>PLOTS</td>
<td>SIC</td>
</tr>
<tr>
<td>SeriesHistogram</td>
<td>Histogram of series values</td>
<td>PLOTS</td>
<td>HISTOGRAM</td>
</tr>
<tr>
<td>SeriesPlot</td>
<td>Time series plot</td>
<td>PLOTS</td>
<td>SERIES</td>
</tr>
<tr>
<td>SpectralDensityPlot</td>
<td>Spectral density versus period</td>
<td>PLOTS</td>
<td>SPECTRUM</td>
</tr>
<tr>
<td>SSASingularValuesPlot</td>
<td>SSA singular values</td>
<td>PLOTS</td>
<td>SSA</td>
</tr>
<tr>
<td>SSAResultsPlot</td>
<td>SSA results</td>
<td>PLOTS</td>
<td>SSA</td>
</tr>
<tr>
<td>TrendComponentPlot</td>
<td>Trend component</td>
<td>PLOTS</td>
<td>TC</td>
</tr>
<tr>
<td>TrendCycleComponentPlot</td>
<td>Trend-cycle component</td>
<td>PLOTS</td>
<td>TCC</td>
</tr>
<tr>
<td>TrendCycleSeasonalPlot</td>
<td>Trend-cycle-seasonal component</td>
<td>PLOTS</td>
<td>TCS</td>
</tr>
<tr>
<td>WhiteNoiseLogProbabilityPlot</td>
<td>White noise log probability</td>
<td>PLOTS</td>
<td>WN</td>
</tr>
<tr>
<td>WhiteNoiseProbabilityPlot</td>
<td>White noise probability</td>
<td>PLOTS</td>
<td>WN</td>
</tr>
</tbody>
</table>

Examples: TIMESERIES Procedure

Example 39.1: Accumulating Transactional Data into Time Series Data

This example illustrates using the TIMESERIES procedure to accumulate time-stamped transactional data that has been recorded at no particular frequency into time series data at a specific frequency. After the time series is created, the various SAS/ETS procedures related to time series analysis, seasonal adjustment/decomposition, modeling, and forecasting can be used to further analyze the time series data.

Suppose that the input data set WORK.RETAIL contains variables STORE and TIMESTAMP and numerous other numeric transaction variables. The BY variable STORE contains values that break up the transactions into groups (BY groups). The time ID variable TIMESTAMP contains SAS date values recorded at no particular frequency. The other data set variables contain the numeric transaction values to be analyzed. It is further assumed that the input data set is sorted by the variables STORE and TIMESTAMP. The following statements form monthly time series from the transactional data based on the median value (ACCUMULATE=MEDIAN) of the transactions recorded with each time period. Also, the accumulated time series values for time periods with no transactions are set to zero instead of to missing (SETMISS=0) and only transactions recorded between the first day of 1998 (START='01JAN1998'D) and last day of 2000 (END='31JAN2000'D) are considered and, if needed, extended to include this range.
Example 39.1: Accumulating Transactional Data into Time Series Data

```sas
proc timeseries data=retail out=mseries;
   by store;
   id timestamp interval=month
      accumulate=median
      setmiss=0
      start='01jan1998'd
      end ='31dec2000'd;
   var item1-item8;
run;
```

The monthly time series data are stored in the data WORK.MSERIES. Each BY group associated with the BY variable STORE contains an observation for each of the 36 months associated with the years 1998, 1999, and 2000. Each observation contains the variable STORE, TIMESTAMP, and each of the analysis variables in the input data set.

After each set of transactions has been accumulated to form corresponding time series, accumulated time series can be analyzed using various time series analysis techniques. For example, exponentially weighted moving averages can be used to smooth each series. The following statements use the EXPAND procedure to smooth the analysis variable named STOREITEM.

```sas
proc expand data=mseries out=smoothed from=month;
   by store;
   id date;
   convert storeitem=smooth / transform=(ewma 0.1);
run;
```

The smoothed series are stored in the data set WORK.SMOOTHED. The variable SMOOTH contains the smoothed series.

If the time ID variable TIMESTAMP contains SAS datetime values instead of SAS date values, the INTERVAL=, START=, and END= options must be changed accordingly and the following statements could be used:

```sas
proc timeseries data=retail out=tseries;
   by store;
   id timestamp interval=dtmonth
      accumulate=median
      setmiss=0
      start='01jan1998:00:00:00'dt
      end ='31dec2000:00:00:00'dt;
   var _numeric_;
run;
```

The monthly time series data are stored in the data WORK.TSERIES, and the time ID values use a SAS datetime representation.
Example 39.2: Trend and Seasonal Analysis

This example illustrates using the TIMESERIES procedure for trend and seasonal analysis of time-stamped transactional data.

Suppose that the data set SASHELP.AIR contains two variables: DATE and AIR. The variable DATE contains sorted SAS date values recorded at no particular frequency. The variable AIR contains the transaction values to be analyzed.

The following statements accumulate the transactional data on an average basis to form a quarterly time series and perform trend and seasonal analysis on the transactions.

```sas
proc timeseries data=sashelp.air
  out=series
  outtrend=trend
  outseason=season print=seasons;
  id date interval=qtr accumulate=avg;
  var air;
run;
```

The time series is stored in the data set WORK.SERIES, the trend statistics are stored in the data set WORK.TREND, and the seasonal statistics are stored in the data set WORK.SEASON. Additionally, the seasonal statistics are printed (PRINT=SEASONS) and the results of the seasonal analysis are shown in Output 39.2.1.

Output 39.2.1 Seasonal Statistics Table

<table>
<thead>
<tr>
<th>Season Index</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Sum</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36</td>
<td>112.0000</td>
<td>419.0000</td>
<td>8963.00</td>
<td>248.9722</td>
<td>95.65189</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>121.0000</td>
<td>535.0000</td>
<td>10207.00</td>
<td>283.5278</td>
<td>117.61839</td>
</tr>
<tr>
<td>3</td>
<td>36</td>
<td>136.0000</td>
<td>622.0000</td>
<td>12058.00</td>
<td>334.9444</td>
<td>143.97935</td>
</tr>
<tr>
<td>4</td>
<td>36</td>
<td>104.0000</td>
<td>461.0000</td>
<td>9135.00</td>
<td>253.7500</td>
<td>101.34732</td>
</tr>
</tbody>
</table>

Using the trend statistics stored in the WORK.TREND data set, the following statements plot various trend statistics associated with each time period over time.

```sas
title1 "Trend Statistics";
proc sgplot data=trend;
  series x=date y=max / lineattrs=(pattern=solid);
  series x=date y=mean / lineattrs=(pattern=solid);
  series x=date y=min / lineattrs=(pattern=solid);
  yaxis display=(nolabel);
  format date year4.;
run;
```

The results of this trend analysis are shown in Output 39.2.2.
Using the trend statistics stored in the WORK.TREND data set, the following statements chart the sum of the transactions associated with each time period for the second season over time.

```
title1 "Trend Statistics for 2nd Season";
proc sgplot data=trend;
   where _season_ = 2;
   vbar date / freq=sum;
   format date year4.;
   yaxis label='Sum';
run;
```

The results of this trend analysis are shown in Output 39.2.3.
Using the trend statistics stored in the WORK.TREND data set, the following statements plot the mean of the transactions associated with each time period by each year over time.

```sas
data trend;
  set trend;
  year = year(date);
run;

title1 "Trend Statistics by Year";
proc sgplot data=trend;
  series x=_season_ y=mean / group=year lineattrs=(pattern=solid);
  xaxis values=(1 to 4 by 1);
run;
```

The results of this trend analysis are shown in Output 39.2.4.
Using the season statistics stored in the WORK.SEASON data set, the following statements plot various season statistics for each season.

```
title1 "Seasonal Statistics";
proc sgplot data=season;
    series x=_season_ y=max / lineattrs=(pattern=solid);
    series x=_season_ y=mean / lineattrs=(pattern=solid);
    series x=_season_ y=min / lineattrs=(pattern=solid);
    yaxis display=(nolabel);
    xaxis values=(1 to 4 by 1);
run;
```

The results of this seasonal analysis are shown in Output 39.2.5.
Example 39.3: Illustration of ODS Graphics

This example illustrates the use of ODS graphics.

The following statements use the SASHELP.WORKERS data set to study the time series of electrical workers and its interaction with the simply differenced series of masonry workers. The series plot, the correlation panel, the seasonal adjustment panel, and all cross-series plots are requested. Output 39.3.1 through Output 39.3.4 show a selection of the plots created.

The graphical displays are requested by specifying the PLOTS= or CROSSPLOTS= options in the PROC TIMESERIES statement. For information about the graphics available in the TIMESERIES procedure, see the section “ODS Graphics Names” on page 2710.

```sas
title "Illustration of ODS Graphics";
proc timeseries data=sashelp.workers out=_null_
   plots=(series corr decomp)
   crossplots=all;
   id date interval=month;
   var electric;
   crossvar masonry / dif=(1);
run;
```
Output 39.3.1 Series Plot

Series Values for ELECTRIC

electrical workers, thousands

DATE

Output 39.3.2 Correlation Panel

Correlations for ELECTRIC

- ACF
- PACF
- IACF
- White Noise Prob

Lag
Output 39.3.3 Seasonal Decomposition Panel

Seasonal Decomposition/Adjustment for ELECTRIC

- Trend-Cycle
- Seasonal-Irregular
- Irregular
- Seasonally Adjusted
Output 39.3.4 Cross-Correlation Plot

Cross-Correlations for ELECTRIC and MASONRY

Lag

CCF

Two Standard Errors
Example 39.4: Illustration of Spectral Analysis

This example illustrates the use of spectral analysis.

The following statements perform a spectral analysis on the SUNSPOT dataset. The periodogram is displayed as a function of the period and frequency in Output 39.4.1. The estimated spectral density together with its 50% confidence limits are displayed in Output 39.4.2.

```plaintext
    title "Wolfer's Sunspot Data";
    proc timeseries data=sunspot plot=(series periodogram spectrum);
        var wolfer;
        id year interval=year;
        spectra freq period p s / adjmean bart c=1.5 expon=0.2;
    run;
```

Output 39.4.1 Periodogram
Output 39.4.2 Spectral Density Plot

Spectral Density for wolver

Frequency

Density (millions)

Period

π / 4

0

2.2 2.4 2.8 3.1 3.7 4.4 5.5 7.3 11 22 ∞

Periodogram Spectral Density 50% Confidence
Example 39.5: Illustration of Singular Spectrum Analysis

This example illustrates the use of singular spectrum analysis.

The following statements extract two additive components from the SASHELP.AIR time series by using the THRESHOLDPCT= option to specify that the first component represent 80% of the variability in the series. The resulting groupings, consisting of the first three and remaining nine singular value components, are presented in Output 39.5.1 through Output 39.5.3.

```sas
title "SSA of AIR data";
proc timeseries data=sashelp.air plot=ssa;
   id date interval=month;
   var air;
   ssa / length=12 THRESHOLDPCT=80;
run;
```

Output 39.5.1 Singular Value Grouping #1 Plot
Output 39.5.2 Singular Value Grouping #2 Plot

SSA Results for AIR

Group 2 and Original

Group 2

DATE

Original Group
References

Subject Index

BY groups
 TIMESERIES procedure, 2669

ODS graph names
 TIMESERIES procedure, 2710

TIMESERIES procedure
 BY groups, 2669
 ODS graph names, 2710
Syntax Index

ACCUMULATE= option
 ID statement (TIMESERIES), 2675
 VAR statement (TIMESERIES), 2685

ADJUSTMEAN
 SPECTRA statement (TIMESERIES), 2680
 SSA statement (TIMESERIES), 2681

ALIGN= option
 ID statement (TIMESERIES), 2676

ALPHA option
 SPECTRA statement (TIMESERIES), 2680
 ALPHA= option
 COUNT statement (TIMESERIES), 2671

BOUNDARY ALIGN= option
 ID statement (TIMESERIES), 2676

BY statement
 TIMESERIES procedure, 2669

C
 SPECTRA statement (TIMESERIES), 2679

CENTER
 SPECTRA statement (TIMESERIES), 2680
 SSA statement (TIMESERIES), 2681

CORR statement
 TIMESERIES procedure, 2669

COUNT statement
 TIMESERIES procedure, 2671

COUNTPLOTS= option
 PROC TIMESERIES statement, 2665

CRITERION= option
 COUNT statement (TIMESERIES), 2671

CROSSCORR statement
 TIMESERIES procedure, 2672

CROSSPLOTS= option
 PROC TIMESERIES statement, 2665

CROSSVAR statement
 TIMESERIES procedure, 2685

DATA= option
 PROC TIMESERIES statement, 2665

DECOMP statement
 TIMESERIES procedure, 2673

DIF= option
 VAR statement (TIMESERIES), 2685

DISTRIBUTION= option
 COUNT statement (TIMESERIES), 2672

DOMAIN option
 SPECTRA statement (TIMESERIES), 2680

E
 SPECTRA statement (TIMESERIES), 2679

END= option
 ID statement (TIMESERIES), 2677

FORMAT= option
 ID statement (TIMESERIES), 2677

GROUPS option
 SSA statement (TIMESERIES), 2682

ID statement
 TIMESERIES procedure, 2675

INTERVAL= option
 ID statement (TIMESERIES), 2675

Kernel option values
 SPECTRA statement (TIMESERIES), 2680

LAGS= option
 CORR statement (TIMESERIES), 2670
 CROSSCORR statement (TIMESERIES), 2673

LAMBDA= option
 DECOMP statement (TIMESERIES), 2674

LENGTH
 SSA statement (TIMESERIES), 2682

MAXERROR= option
 PROC TIMESERIES statement, 2666

MAXVARLENGTH option
 PROC TIMESERIES statement, 2666

MODE= option
 DECOMP statement (TIMESERIES), 2674

NLAG= option
 CORR statement (TIMESERIES), 2671
 CROSSCORR statement (TIMESERIES), 2672

NOTSORTED option
 ID statement (TIMESERIES), 2677

NPARMS= option
 CORR statement (TIMESERIES), 2671

NPERIODS option
 SSA statement (TIMESERIES), 2682

NPERIODS= option
 DECOMP statement (TIMESERIES), 2674
 TREND statement (TIMESERIES), 2684

OUT= option
 PROC TIMESERIES statement, 2666

OUTCORR= option
- PROC TIMESERIES statement, 2666
 - OUTCROSSCORR= option
 - PROC TIMESERIES statement, 2666
 - OUTDECOMP= option
 - PROC TIMESERIES statement, 2666
 - OUTFREQ= option
 - PROC TIMESERIES statement, 2666
 - OUTPROCINFO= option
 - PROC TIMESERIES statement, 2666
 - OUTSEASON= option
 - PROC TIMESERIES statement, 2666
 - OUTSPECTRA= option
 - PROC TIMESERIES statement, 2666
 - OUTSSA= option
 - PROC TIMESERIES statement, 2666
 - OUTSUM= option
 - PROC TIMESERIES statement, 2667
 - OUTTREND= option
 - PROC TIMESERIES statement, 2667
 - PLOTS= option
 - PROC TIMESERIES statement, 2667
 - PRINT= option
 - PROC TIMESERIES statement, 2668
 - PRINTDETAILS option
 - PROC TIMESERIES statement, 2668
 - PROC TIMESERIES statement, 2665
 - SDIF= option
 - VAR statement (TIMESERIES), 2685
 - SEASON statement
 - TIMESERIES procedure, 2678
 - SEASONALITY= option
 - PROC TIMESERIES statement, 2668
 - SETMISSING= option
 - ID statement (TIMESERIES), 2677
 - VAR statement (TIMESERIES), 2686
 - SORTNAMES option
 - PROC TIMESERIES statement, 2669
 - SPECTRA statement
 - TIMESERIES procedure, 2679
 - SSA statement
 - TIMESERIES procedure, 2681
 - START= option
 - ID statement (TIMESERIES), 2678
 - THRESHOLDPCT option
 - SSA statement (TIMESERIES), 2683
 - TIMESERIES procedure, 2662
 - syntax, 2662
 - TRANSFORM= option
 - VAR statement (TIMESERIES), 2686
 - TRANSPOSE option
 - SSA statement (TIMESERIES), 2683
 - TRANSPOSE= option
 - CORR statement (TIMESERIES), 2671
 - CROSSCORR statement (TIMESERIES), 2673
 - DECOMP statement (TIMESERIES), 2675
 - SEASON statement (TIMESERIES), 2678
 - TREND statement (TIMESERIES), 2685
 - TIMESERIES procedure, 2684
 - VAR statement
 - TIMESERIES procedure, 2685
 - VECTORPLOTS= option
 - PROC TIMESERIES statement, 2669
 - WEIGHTS option
 - SPECTRA statement (TIMESERIES), 2680