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Overview: QLIM Procedure
The QLIM (qualitative and limited dependent variable model) procedure analyzes univariate and multivariate
limited dependent variable models in which dependent variables take discrete values or in which dependent
variables are observed only in a limited range of values. These models include logit, probit, tobit, selection,
and multivariate models. The multivariate model can contain discrete choice and limited endogenous variables
in addition to continuous endogenous variables.

The QLIM procedure supports the following models:

� linear regression model with heteroscedasticity

� Box-Cox regression with heteroscedasticity

� probit with heteroscedasticity

� logit with heteroscedasticity

� tobit (censored and truncated) with heteroscedasticity

� bivariate probit

� bivariate tobit

� sample selection and switching regression models
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� multivariate limited dependent variables

� stochastic frontier production and cost models

In the linear regression models with heteroscedasticity, the assumption that error variance is constant across
observations is relaxed. The QLIM procedure allows for a number of different linear and nonlinear variance
specifications. Another way to make the linear model more appropriate to fit the data and reduce skewness
is to apply Box-Cox transformation. If the nature of the data is such that the dependent variable is discrete
and it takes only two possible values, ordinary least squares (OLS) estimates are inconsistent. The QLIM
procedure offers probit and logit models to overcome these estimation problems. Assumptions about the
error variance can also be relaxed in order to estimate probit or logit with heteroscedasticity.

The QLIM procedure also offers a class of models in which the dependent variable is censored or truncated
from below or above or both. When a continuous dependent variable is observed only within a certain range
and values outside this range are not available, the QLIM procedure offers a class of models that adjust for
truncation. In some cases, the dependent variable is continuous only in a certain range and all values outside
this range are reported as being on its boundary. For example, if it is not possible to observe negative values,
the value of the dependent variable is reported as equal to 0. Because the data are censored, OLS results are
inconsistent, and it cannot be guaranteed that the predicted values from the model fall in the appropriate
region.

Most of the models in the QLIM procedure can be extended to accommodate bivariate and multivariate
scenarios. The assumption that one variable is observed only if another variable takes on certain values
lead to the introduction of sample selection models. If the dependent variables are mutually exclusive and
observed only for certain ranges of the selection variable, the sample selection can be extended to include
cases of switching regression. Stochastic frontier production and cost models allow for random shocks
of the production or cost. They include a systematic positive component in the error term that adjusts for
technological or cost inefficiency.

The QLIM procedure can use the maximum likelihood method and the Bayesian method for both univariate
and multivariate models. Initial starting values for the nonlinear optimizations are typically calculated by
OLS.

Getting Started: QLIM Procedure
The QLIM procedure is similar in use to the other regression or simultaneous equations model procedures in
the SAS System. For example, the following statements are used to estimate a binary choice model by using
the probit probability function:

proc qlim data=a;
model y = x1;
endogenous y ~ discrete;

run;

The response variable, y, is numeric and has discrete values. PROC QLIM enables the user to specify the type
of endogenous variables in the ENDOGENOUS statement. The binary probit model can be also specified as
follows:
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model y = x1 / discrete;

When multiple endogenous variables are specified in the QLIM procedure, these equations are estimated as a
system. Multiple endogenous variables can be specified with one MODEL statement in the QLIM procedure
when these models have the same exogenous variables:

model y1 y2 = x1 x2 / discrete;

The preceding specification is equivalent to the following statements:

proc qlim data=a;
model y1 = x1 x2;
model y2 = x1 x2;
endogenous y1 y2 ~ discrete;

run;

Some equations in multivariate models can be continuous while other equations can be discrete. A bivariate
model with a discrete and a continuous equation is specified as follows:

proc qlim data=a;
model y1 = x1 x2;
model y2 = x3 x4;
endogenous y1 ~ discrete;

run;

The standard tobit model is estimated by specifying the endogenous variable to be truncated or censored.
The limits of the dependent variable can be specified with the CENSORED or TRUNCATED option in
the ENDOGENOUS or MODEL statement when the data are limited by specific values or variables. For
example, the two-limit censored model requires two variables that contain the lower (bottom) and upper (top)
bound:

proc qlim data=a;
model y = x1 x2 x3;
endogenous y ~ censored(lb=bottom ub=top);

run;

The bounds can be numbers if they are fixed for all observations in the data set. For example, the standard
tobit model can be specified as follows:

proc qlim data=a;
model y = x1 x2 x3;
endogenous y ~ censored(lb=0);

run;
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Introductory Example: Binary Probit and Logit Models
The following example illustrates the use of PROC QLIM. The data were originally published by Mroz
(1987) and downloaded from Wooldridge (2002). This data set is based on a sample of 753 married white
women. The dependent variable is a discrete variable of labor force participation (inlf ). Explanatory variables
are the number of children ages 5 or younger (kidslt6 ), the number of children ages 6 to 18 (kidsge6 ), the
woman’s age (age ), the woman’s years of schooling (educ ), wife’s labor experience (exper ), square of
experience (expersq ), and the family income excluding the wife’s wage (nwifeinc ). The program (with data
values omitted) is as follows:

/*-- Binary Probit --*/
proc qlim data=mroz plots=predicted;

model inlf = nwifeinc educ exper expersq
age kidslt6 kidsge6 / discrete;

run;

Results of this analysis are shown in the following four figures. In the first table, shown in Figure 29.1, PROC
QLIM provides frequency information about each choice. In this example, 428 women participate in the
labor force (inlf =1).

Figure 29.1 Choice Frequency Summary

Binary Data

The QLIM Procedure

Binary Data

The QLIM Procedure

Discrete Response
Profile of inlf

Index Value
Total

Frequency

1 0 325

2 1 428

The second table is the estimation summary table shown in Figure 29.2. Included are the number of dependent
variables, names of dependent variables, the number of observations, the log-likelihood function value, the
maximum absolute gradient, the number of iterations, AIC, and Schwarz criterion.

Figure 29.2 Fit Summary Table of Binary Probit

Model Fit Summary

Number of Endogenous Variables 1

Endogenous Variable inlf

Number of Observations 753

Log Likelihood -401.30219

Maximum Absolute Gradient 0.0000669

Number of Iterations 15

Optimization Method Quasi-Newton

AIC 818.60439

Schwarz Criterion 855.59691
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Goodness-of-fit measures are displayed in Figure 29.3. All measures except McKelvey-Zavoina’s definition
are based on the log-likelihood function value. The likelihood ratio test statistic has chi-square distribution
conditional on the null hypothesis that all slope coefficients are zero. In this example, the likelihood ratio
statistic is used to test the hypothesis that kidslt6 =kidge6 =age =educ =exper =expersqDnwifeinc = 0.

Figure 29.3 Goodness of Fit

Goodness-of-Fit Measures

Measure Value Formula

Likelihood Ratio (R) 227.14 2 * (LogL - LogL0)

Upper Bound of R (U) 1029.7 - 2 * LogL0

Aldrich-Nelson 0.2317 R / (R+N)

Cragg-Uhler 1 0.2604 1 - exp(-R/N)

Cragg-Uhler 2 0.3494 (1-exp(-R/N)) / (1-exp(-U/N))

Estrella 0.2888 1 - (1-R/U)^(U/N)

Adjusted Estrella 0.2693 1 - ((LogL-K)/LogL0)^(-2/N*LogL0)

McFadden's LRI 0.2206 R / U

Veall-Zimmermann 0.4012 (R * (U+N)) / (U * (R+N))

McKelvey-Zavoina 0.4025

N = # of observations, K = # of regressors

The parameter estimates and standard errors are shown in Figure 29.4.

Figure 29.4 Parameter Estimates of Binary Probit

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.270077 0.508590 0.53 0.5954

nwifeinc 1 -0.012024 0.004840 -2.48 0.0130

educ 1 0.130905 0.025255 5.18 <.0001

exper 1 0.123348 0.018720 6.59 <.0001

expersq 1 -0.001887 0.000600 -3.14 0.0017

age 1 -0.052853 0.008477 -6.24 <.0001

kidslt6 1 -0.868329 0.118519 -7.33 <.0001

kidsge6 1 0.036005 0.043477 0.83 0.4076

Finally, the QLIM procedure profiles the predicted outcome with respect to the regressors. For example,
Output 29.5 shows the predicted values profiled with respect to nwifeinc, educ, exper, expersq, age, and
kidslt6.
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Figure 29.5 Predictions by Regressors: nwifeinc, educ, exper, expersq, age, and kidslt6

When the error term has a logistic distribution, the binary logit model is estimated. To specify a logistic
distribution, add D=LOGIT option as follows:

/*-- Binary Logit --*/
proc qlim data=mroz;

model inlf = nwifeinc educ exper expersq
age kidslt6 kidsge6 / discrete(d=logit);

run;

The estimated parameters are shown in Figure 29.6.
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Figure 29.6 Parameter Estimates of Binary Logit

Binary Data

The QLIM Procedure

Binary Data

The QLIM Procedure

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.425452 0.860365 0.49 0.6210

nwifeinc 1 -0.021345 0.008421 -2.53 0.0113

educ 1 0.221170 0.043441 5.09 <.0001

exper 1 0.205870 0.032070 6.42 <.0001

expersq 1 -0.003154 0.001017 -3.10 0.0019

age 1 -0.088024 0.014572 -6.04 <.0001

kidslt6 1 -1.443354 0.203575 -7.09 <.0001

kidsge6 1 0.060112 0.074791 0.80 0.4215

The heteroscedastic logit model can be estimated using the HETERO statement. If the variance of the logit
model is a function of the family income level excluding wife’s income (nwifeinc ), the variance can be
specified as

Var.�i / D �2 exp.
*nwifeinci /

where �2 is normalized to 1 because the dependent variable is discrete. The following SAS statements
estimate the heteroscedastic logit model:

/*-- Binary Logit with Heteroscedasticity --*/
proc qlim data=mroz;

model inlf = nwifeinc educ exper expersq
age kidslt6 kidsge6 / discrete(d=logit);

hetero inlf ~ nwifeinc / noconst;
run;

The parameter estimate, 
 , of the heteroscedasticity variable is listed as _H.nwifeinc; see Figure 29.7.
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Figure 29.7 Parameter Estimates of Binary Logit with Heteroscedasticity

Binary Data

The QLIM Procedure

Binary Data

The QLIM Procedure

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.510445 0.983538 0.52 0.6038

nwifeinc 1 -0.026778 0.012108 -2.21 0.0270

educ 1 0.255547 0.061728 4.14 <.0001

exper 1 0.234105 0.046639 5.02 <.0001

expersq 1 -0.003613 0.001236 -2.92 0.0035

age 1 -0.100878 0.021491 -4.69 <.0001

kidslt6 1 -1.645206 0.311296 -5.29 <.0001

kidsge6 1 0.066941 0.085633 0.78 0.4344

_H.nwifeinc 1 0.013280 0.013606 0.98 0.3291

Syntax: QLIM Procedure
The following statements are available in the QLIM procedure:

PROC QLIM options ;
BAYES < options > ;
BOUNDS bound1 < , bound2 . . . > ;
BY variables ;
CLASS variables ;
FREQ variable ;
ENDOGENOUS variables Ï options ;
HETERO dependent variables Ï exogenous variables / options ;
INIT initvalue1 < , initvalue2 . . . > ;
MODEL dependent variables = regressors / options ;
NLOPTIONS options ;
OUTPUT options ;
PRIOR variables Ï distributions ;
RANDOM random-effects < / options > ;
RESTRICT restriction1 < , restriction2 . . . > ;
TEST options ;
WEIGHT variable ;

At least one MODEL statement is required. If more than one MODEL statement is used, the QLIM procedure
estimates a system of models. If a FREQ or WEIGHT statement is specified more than once, the variable
specified in the first instance is used. Main effects and higher-order terms can be specified in the MODEL
statement, as in the GLM procedure and PROBIT procedure in SAS/STAT. If a CLASS statement is used, it
must precede the MODEL statement.
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Functional Summary
Table 29.1 summarizes the statements and options used with the QLIM procedure.

Table 29.1 PROC QLIM Functional Summary

Description Statement Option

Data Set Options
Specifies the input data set QLIM DATA=
Writes parameter estimates to an output data set QLIM OUTEST=
Writes predictions to an output data set OUTPUT OUT=

Declaring the Role of Variables
Specifies BY-group processing BY
Specifies classification variables CLASS
Specifies a frequency variable FREQ
Specifies a weight variable WEIGHT NONORMALIZE

Printing Control Options
Requests all printing options QLIM PRINTALL
Prints correlation matrix of the estimates QLIM CORRB
Prints covariance matrix of the estimates QLIM COVB
Prints a summary iteration listing QLIM ITPRINT
Suppresses the normal printed output QLIM NOPRINT

Plotting Options
Displays plots QLIM PLOTS=

Options to Control the Optimization Process
Specifies the optimization method QLIM METHOD=
Specifies the optimization options NLOPTIONS see Chapter 7, “Nonlinear Opti-

mization Methods,”
Sets initial values for parameters INIT
Specifies upper and lower bounds for the parameter
estimates

BOUNDS

Specifies linear restrictions on the parameter esti-
mates

RESTRICT

Model Estimation Options
Specifies options specific to Box-Cox transforma-
tion

MODEL BOXCOX()

Suppresses the intercept parameter MODEL NOINT
Specifies variable selection MODEL SELECTVAR=( )
Specifies the type of random number generators MODEL RANDNUM=
Specifies that initial values are generated using ran-
dom numbers

MODEL RANDOMINIT
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Table 29.1 continued

Description Statement Option

Specifies a seed for pseudo-random number genera-
tion

QLIM SEED=

Specifies the number of draws for Monte Carlo inte-
gration

QLIM NDRAW=

Specifies the method to calculate parameter covari-
ance

QLIM COVEST=

Requests estimation by Heckman’s two-step method QLIM HECKIT

Integration Method Options for Random-
Effects Models
Requests the simulation method RANDOM METHOD=SIMULATION()
Requests the Gauss-Hermite quadrature method RANDOM METHOD=HERMITE()
Requests the Halton sequence method RANDOM METHOD=HALTON()

Bayesian MCMC Options
Controls the aggregation of multiple posterior chains BAYES AGGREGATION=
Automates the initialization of the MCMC algorithm BAYES AUTOMCMC()
Specifies the initial values of the MCMC INIT
Evaluates the marginal likelihood BAYES MARGINLIKE
Specifies the maximum number of tuning phases BAYES MAXTUNE=
Specifies the minimum number of tuning phases BAYES MINTUNE=
Specifies the number of burn-in iterations BAYES NBI=
Specifies the number of iterations during the sam-
pling phase

BAYES NMC=

Specifies the number of samples for the prior predic-
tive analysis

BAYES NMCPRIOR=

Specifies the number of threads to use during the
sampling phase

BAYES NTRDS=

Specifies the number of iterations during the tuning
phase

BAYES NTU=

Controls options for constructing the initial proposal
covariance matrix

BAYES PROPCOV=

Specifies the sampling scheme BAYES SAMPLING=
Specifies the random number generator seed BAYES SEED=
Prints the time required for the MCMC sampling BAYES SIMTIME
Controls the thinning of the Markov chain BAYES THIN=

Bayesian Summary Statistics and Convergence Diagnostics
Displays convergence diagnostics BAYES DIAGNOSTICS=
Displays summary statistics of the posterior samples BAYES STATISTICS=

Bayesian Prior and Posterior Samples
Specifies a SAS data set for the posterior samples BAYES OUTPOST=
Specifies a SAS data set for the prior samples BAYES OUTPRIOR=
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Table 29.1 continued

Description Statement Option

Bayesian Analysis
Specifies normal prior distribution PRIOR NORMAL(MEAN=, VAR=)
Specifies gamma prior distribution PRIOR GAMMA(SHAPE=, SCALE=)
Specifies square root gamma prior distribution PRIOR SQGAMMA(SHAPE=,

SCALE=)
Specifies inverse gamma prior distribution PRIOR IGAMMA(SHAPE=, SCALE=)
Specifies square root inverse gamma prior distribu-
tion

PRIOR SQIGAMMA(SHAPE=,
SCALE=)

Specifies uniform prior distribution PRIOR UNIFORM(MIN=, MAX=)
Specifies beta prior distribution PRIOR BETA(SHAPE1=, SHAPE2=,

MIN=, MAX=)
Specifies t prior distribution PRIOR T(LOCATION=, DF=)

Endogenous Variable Options
Specifies discrete variable ENDOGENOUS DISCRETE()
Specifies censored variable ENDOGENOUS CENSORED()
Specifies truncated variable ENDOGENOUS TRUNCATED()
Specifies variable selection condition ENDOGENOUS SELECT()
Specifies stochastic frontier variable ENDOGENOUS FRONTIER()

Endogeneity and Overidentification Test Options
Requests the variable addition test for endogeneity ENDOGENOUS ENDOTEST()
Requests the overidentification test ENDOGENOUS OVERID()

Heteroscedasticity Model Options
Specifies the function for heteroscedasticity models HETERO LINK=
Squares the function for heteroscedasticity models HETERO SQUARE
Specifies no constant for heteroscedasticity models HETERO NOCONST

Output Control Options
Outputs predicted values OUTPUT PREDICTED
Outputs structured part OUTPUT XBETA
Outputs residuals OUTPUT RESIDUAL
Outputs error standard deviation OUTPUT ERRSTD
Outputs marginal effects OUTPUT MARGINAL
Outputs probability for the current response OUTPUT PROB
Outputs probability for all responses OUTPUT PROBALL
Outputs expected value OUTPUT EXPECTED
Outputs conditional expected value OUTPUT CONDITIONAL
Outputs inverse Mills ratio OUTPUT MILLS
Outputs technical efficiency measures OUTPUT TE1

OUTPUT TE2
Includes covariances in the OUTEST= data set QLIM COVOUT
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Table 29.1 continued

Description Statement Option

Includes correlations in the OUTEST= data set QLIM CORROUT

Test Request Options
Requests Wald, Lagrange multiplier, and likelihood
ratio tests

TEST ALL

Requests the WALD test TEST WALD
Requests the Lagrange multiplier test TEST LM
Requests the likelihood ratio test TEST LR

PROC QLIM Statement
PROC QLIM options ;

The following options can be used in the PROC QLIM statement.

Data Set Options

DATA=SAS-data-set
specifies the input SAS data set. If the DATA= option is not specified, PROC QLIM uses the most
recently created SAS data set.

Output Data Set Options

OUTEST=SAS-data-set
writes the parameter estimates to an output data set.

COVOUT
writes the covariance matrix for the parameter estimates to the OUTEST= data set. This option is valid
only if the OUTEST= option is specified.

CORROUT
writes the correlation matrix for the parameter estimates to the OUTEST= data set. This option is valid
only if the OUTEST= option is specified.

Printing Options

NOPRINT
suppresses the normal printed output but does not suppress error listings. If NOPRINT option is set,
then any other print option is turned off.

PRINTALL
turns on all the printing-control options. The options set by PRINTALL are COVB and CORRB.
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CORRB
prints the correlation matrix of the parameter estimates.

COVB
prints the covariance matrix of the parameter estimates.

ITPRINT
prints the initial parameter estimates, convergence criteria, and all constraints of the optimization. At
each iteration, objective function value, step size, maximum gradient, and slope of search direction are
printed as well.

Model Estimation Options

COVEST=covariance-option
specifies the method to calculate the covariance matrix of parameter estimates. The supported covari-
ance types are as follows:

OP specifies the covariance from the outer product matrix.

HESSIAN specifies the covariance from the inverse Hessian matrix.

QML specifies the covariance from the outer product and Hessian matrices (the quasi-
maximum likelihood estimates).

The default is COVEST=HESSIAN.

HECKIT < (heckit-options) >
requests that the selection model be estimated by Heckman’s two-step estimation method. You must
specify exactly two MODEL statements when you use the HECKIT option. One of the models must
be a binary probit model; therefore, you must specify the DISCRETE option in the MODEL or
ENDOGENOUS statement. You base the selection on the binary probit model for the second model;
therefore, you must specify the SELECT option for this model.

You can specify one or both of the following heckit-options:

SECONDSTAGE=OLS | ML
specifies the estimation method of the second stage of Heckman’s two-step method.
SECONDSTAGE=OLS requests the ordinary least squares method for the second stage. If you
specify SECONDSTAGE=OLS, then the model of interest—that is, the model that uses the
SELECT option—must be linear and contain a continuous dependent variable. Therefore, you
cannot specify the DISCRETE, CENSORED, or TRUNCATED option along with the SELECT
option for the model of interest. When you specify the SECONDSTAGE=OLS option, you
cannot test or restrict the parameters of the model of interest. However, you can test or restrict
the parameters of the selection model—that is, the model that defines the selection rule.

If you specify SECONDSTAGE=ML, then PROC QLIM uses the maximum likelihood method in
the second stage, as it does in the first stage. When you specify SECONDSTAGE=ML, the model
of interest can be nonlinear. Moreover, you can also use the TEST or RESTRICT statement to
test or restrict the parameters of the model of interest.

By default, SECONDSTAGE=OLS.
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UNCORRECTED
requests the conventional OLS standard errors when the second-stage estimation method is the
ordinary least squares method. If you do not specify the UNCORRECTED option, PROC QLIM
reports the corrected OLS standard errors. For more information about the corrected standard
errors, see the section “Heckman’s Two-Step Selection Method” on page 1997.

If you specify both the UNCORRECTED and SECONDSTAGE=ML options, PROC QLIM
ignores the UNCORRECTED option, because the UNCORRECTED option is related to the OLS
standard errors.

NDRAW=value
specifies the number of draws for Monte Carlo integration.

SEED=value
specifies a seed for pseudo-random number generation in Monte Carlo integration.

Optimization Process Control Options

PROC QLIM uses the nonlinear optimization (NLO) subsystem to perform nonlinear optimization tasks.
You can use any of the NLO options in the NLOPTIONS statement. For more information, see Chapter 7,
“Nonlinear Optimization Methods.”

METHOD=value
specifies the optimization method. If this option is specified, it overwrites the TECH= option in
NLOPTIONS statement. Valid values are as follows:

CONGRA performs a conjugate-gradient optimization

DBLDOG performs a version of double-dogleg optimization

NEWRAP performs a Newton-Raphson optimization combining a line-search algorithm with
ridging

NMSIMP performs a Nelder-Mead simplex optimization

NONE specifies that no optimization be performed beyond using the ordinary least squares
method to compute the parameter estimates

NRRIDG performs a Newton-Raphson optimization with ridging

QUANEW performs a quasi-Newton optimization

TRUREG performs a trust region optimization

The default method is METHOD=QUANEW.

Plotting Options

PLOTS< (global-plot-options) > = plot-request | (plot-requests)
controls the display of plots. By default, the plots are displayed in panels unless the UNPACK global-
plot-option is specified. When you specify only one plot-request , you can omit the parentheses around
the plot-request .
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Global Plot Options
You can specify the following global-plot-options:

ONLY
displays only the requested plot.

PRIOR
displays the prior predictive graph that is associated with the requested posterior predictive plot
BAYESPRED. This option is available only for Bayesian analysis.

UNPACKPANEL

UNPACK
specifies that all paneled plots be unpacked, meaning that each plot in a panel is displayed separately.

Plot Requests
You can specify the following plot-requests:

ALL
specifies all types of available plots.

AUTOCORR< (LAGS=n) >
displays the autocorrelation function plots for the parameters. This plot-request is available only for
Bayesian analysis. The optional LAGS= suboption the number (up to lag n) of autocorrelations to be
plotted in the AUTOCORR plot. If this suboption is not specified, autocorrelations are plotted up to
lag 50.

BAYESDIAG
displays the TRACE, AUTOCORR, and DENSITY plots. This plot-request is available only for
Bayesian analysis.

BAYESPRED
displays the predictive analysis. The predictive analysis takes into account the variability of the error
term, whereas the PREDICTED plot-request does not. The BAYESPRED plot-request is available
only for Bayesian analysis.

BAYESSUM
displays the posterior distribution, the prior distribution, and the maximum likelihood estimates. This
plot-request is available only for Bayesian analysis.

CONDITIONAL
displays the conditional expected values for continuous endogenous variables. Each contributing
regressor is set equal to its mean, except for the parameter that is reported on the X axis. This
plot-request is not available for Bayesian analysis.

DENSITY< (FRINGE) >
displays the kernel density plots for the parameters. This plot-request is available only for Bayesian
analysis. If you specify the FRINGE suboption, a fringe plot is created on the X axis of the kernel
density plot. This plot-request is available only for Bayesian analysis.
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ERRSTD
displays the error standard deviation versus observed regressors when you also specify a HETERO
statement. This plot-request is not available for Bayesian analysis.

EXPECTED
displays the expected values for continuous endogenous variables. Each contributing regressor is set
equal to its mean, except for the parameter that is reported on the X axis. This plot-request is not
available for Bayesian analysis.

MARGINAL
displays the marginal effects. Each contributing regressor is set equal to its mean, except for the
parameter that is reported on the X axis. This plot-request is not available for Bayesian analysis.

MILLS
displays the inverse Mills ratio. Each contributing regressor is set equal to its mean, except for the
parameter that is reported on the X axis. This plot-request is not available for Bayesian analysis.

NONE
suppresses all diagnostic plots.

PREDICTED
displays the model predicted values. Each contributing regressor is set equal to its mean, except for the
parameter that is reported on the X axis. This plot-request is not available for Bayesian analysis.

PROB
displays the predicted response probability. Each contributing regressor is set equal to its mean, except
for the parameter that is reported on the X axis. This plot-request is not available for Bayesian analysis.

PROBALL
displays the predicted probabilities for each level of the response. Each contributing regressor is set
equal to its mean, except for the parameter that is reported on the X axis. This plot-request is not
available for Bayesian analysis.

PROFLIK
displays the profiled log likelihood. Each profiled graph is obtained by setting all the parameters to their
maximum likelihood estimate except for the profiling parameter. The profiling parameter takes values
on a predefined grid that is determined by the maximum likelihood estimate of the corresponding
standard deviation. When a restricted optimization is requested, the profiled log likelihood plots depict
the behavior of the profiled log likelihood around the restricted MLE without imposing the actual
restrictions.

RESIDUAL
displays the residuals versus observed regressors. This plot-request is not available for Bayesian
analysis.

TE1
displays the technical efficiency for the stochastic frontier model as suggested by Battese and Coelli
(1988). Each contributing regressor is set equal to its mean, except for the parameter that is reported
on the X axis. This plot-request is not available for Bayesian analysis.
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TE2
displays the technical efficiency for the stochastic frontier model as suggested by Jondrow et al. (1982).
Each contributing regressor is set equal to its mean, except for the parameter that is reported on the X
axis. This plot-request is not available for Bayesian analysis.

TRACE< (SMOOTH) >
displays the trace plots for the parameters. This plot-request is available only for Bayesian analysis.
The SMOOTH suboption displays a fitted penalized B-spline curve for each TRACE plot.

XBETA
displays the structural part on the right-hand side of the model. Each contributing regressor is set equal
to its mean, except for the parameter that is reported on the X axis. This is not available for Bayesian
analysis.

BAYES Statement
BAYES < options > ;

The BAYES statement controls the Metropolis sampling scheme that is used to obtain samples from the
posterior distribution of the underlying model and data.

AGGREGATION=WEIGHTED | UNWEIGHTED (Experimental )
specifies how multiple posterior samples should be aggregated. AGGREGATION=WEIGHTED
implements a weighted resampling scheme for the aggregation of multiple posterior chains. You can
use this option when the posterior distribution is characterized by several very distinct posterior modes.
AGGREGATION=UNWEIGHTED aggregates multiple posterior chains without any adjustment. You
can use this option when the posterior distribution is characterized by one or few relatively close
posterior modes. By default, AGGREGATION=UNWEIGHTED. For more information, see the
section “Aggregation of Multiple Chains” on page 2013.

AUTOMCMC < =(automcmc-options) > (Experimental )
specifies an algorithm for the auto-initialization of the MCMC sampling algorithm. For more informa-
tion, see the section “Automated Initialization of MCMC” on page 2014.

ACCURACY= (accuracy-options)
customizes the behavior of the AUTOMCMC algorithm when you are searching for an accurate
representation of the posterior distribution. You can specify the following accuracy-options:

ATTEMPTS=number
specifies the maximum number of attempts that is required in order to obtain accurate
samples from the posterior distribution. By default,ATTEMPTS=10.

TARGETESS=number
requests that the accuracy search be based on the effective sample size (ESS) analysis. If
you specify this option, you must also specify the minimum number of effective samples.

TARGETSTATS<=(targetstats-option)>
requests that the accuracy search be based on the analysis of the posterior mean and a
posterior quantile of interest. You can customize the behavior of the analysis of the posterior
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mean by adjusting HEIDELBERGER sub-options. You can customize the behavior of the
analysis of the posterior quantile by adjusting the RAFTERY sub-options. If you specify
TARGETSTATS, you can also specify how the Raftery-Lewis test should be interpreted by
using the following option:

RLLIMITS=(LB=number UB=number )
specifies a region where the search for the optimal sample size depends directly on the
Raftery-Lewis test. By default, RLLIMITS (LB=10000 UB=300000).

TOL=value
specifies the proportion of parameters that are required to be accurate. By default, TOL=0.95.

MAXNMC=number
specifies the maximum number of posterior samples that the AUTOMCMC option allows. By
default, MAXNMC=700000.

RANDINIT < =(randinit-options) >
specifies random starting points for the MCMC algorithm. The starting points can be sampled
around the maximum likelihood estimate and around the prior mean. You can specify the
following randinit-options:

MULTIPLIER= (value)
specifies the radius of the area where the starting points are sampled. For the starting points
that are sampled around the maximum likelihood estimate, the radius equals the standard
deviation of the maximum likelihood estimate multiplied by the multiplier value. For the
starting points that are sampled around the prior mean, the radius equals the standard devia-
tion of the prior distribution multiplied by the multiplier value. By default, MULTIPLIER=2.

PROPORTION= (value)
specifies the proportion of starting points that are sampled around the maximum likelihood
estimate and around the prior mean. By default, PROPORTION=0, which implies that all
the initial points are sampled around the maximum likelihood estimate. If you use choose
to sample starting points around the prior mean, the convergence of the MCMC algorithm
could be very slow.

STATIONARITY= (stationarity-options)
customizes the behavior of the AUTOMCMC algorithm when you are trying to sample from the
posterior distribution. You can specify the following stationarity-options:

ATTEMPTS=number
specifies the maximum number of attempts that are required in order to obtain stationary
samples from the posterior distribution. By default, ATTEMPTS=10.

TOL=value
specifies the proportion of parameter whose samples must to be stationary. By default,
TOL=0.95.
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DIAGNOSTICS=ALL | NONE | (keyword-list)

DIAG=ALL | NONE | (keyword-list)
controls which diagnostics are produced. All the following diagnostics are produced with DIAGNOS-
TICS=ALL. If you do not want any of these diagnostics, specify DIAGNOSTICS=NONE. If you
want some but not all of the diagnostics, or if you want to change certain settings of these diagnostics,
specify a subset of the following keywords. By default, DIAGNOSTICS=NONE.

AUTOCORR < (LAGS= numeric-list) >
computes the autocorrelations at lags that are specified in the numeric-list . Elements in the
numeric-list are truncated to integers, and repeated values are removed. If the LAGS= option is
not specified, autocorrelations of lags 1, 5, 10, and are computed.

AUTOMCMCSUM
produces a summary table for the AUTOMCMC (automatic MCMC) sampling tool is used.

ESS
computes Carlin’s estimate of the effective sample size, the correlation time, and the efficiency of
the chain for each parameter.

GEWEKE < (geweke-options) >
computes the Geweke spectral density diagnostics, which are essentially a two-sample t test
between the first f1 portion and the last f2 portion of the chain. The default is f1 D 0:1 and
f2 D 0:5, but you can choose other fractions by using the following geweke-options:

FRAC1=value
specifies the fraction f1 for the first window.

FRAC2=value
specifies the fraction f2 for the second window.

HEIDELBERGER < (heidel-options) >
computes the Heidelberger and Welch diagnostic for each variable, which consists of a stationarity
test of the null hypothesis that the sample values form a stationary process. If the stationarity test
is not rejected, a halfwidth test is then carried out. Optionally, you can specify one or more of the
following heidel-options:

SALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the stationarity test.

HALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the halfwidth test.

EPS=value
specifies a positive number � such that if the halfwidth is less than � times the sample mean
of the retained iterates, the halfwidth test is passed.

MCSE

MCERROR
computes the Monte Carlo standard error for each parameter. The Monte Carlo standard error,
which measures the simulation accuracy, is the standard error of the posterior mean estimate and
is calculated as the posterior standard deviation divided by the square root of the effective sample
size.



BAYES Statement F 1967

RAFTERY< (raftery-options) >
computes the Raftery and Lewis diagnostics, which evaluate the accuracy of the estimated
quantile ( O�Q for a given Q 2 .0; 1/) of a chain. O�Q can achieve any degree of accuracy when
the chain is allowed to run for a long time. The computation is stopped when the estimated
probability OPQ D Pr.� � O�Q/ reaches within ˙R of the value Q with probability S; that is,
Pr.Q �R � OPQ � QCR/ D S . The following raftery-options enable you to specify Q;R; S ,
and a precision level � for the test:

QUANTILE | Q=value
specifies the order (a value between 0 and 1) of the quantile of interest. The default is 0.025.

ACCURACY | R=value
specifies a small positive number as the margin of error for measuring the accuracy of
estimation of the quantile. The default is 0.005.

PROBABILITY | S=value
specifies the probability of attaining the accuracy of the estimation of the quantile. The
default is 0.95.

EPSILON | EPS=value
specifies the tolerance level (a small positive number) for the stationary test. The default is
0.001.

MARGINLIKE< (NSIM=number ) > (Experimental )
evaluates of the logarithm of the marginal likelihood. Two estimates are produced: the cross entropy
estimate and the harmonic mean. The cross entropy estimate is based on an importance sampling
algorithm. You can specify the number of importance samples in the NSIM=number option. By
default NSIM=10,000. For more information, see the section “Marginal Likelihood” on page 2022.

MAXTUNE=number
specifies the maximum number of tuning phases. The default is 24.

MINTUNE=number
specifies the minimum number of tuning phases. The default is 2.

NBI=number
specifies the number of burn-in iterations before the chains are saved. The default is 1,000.

NMC=number
specifies the number of iterations after the burn-in. The default is 1,000.

NMCPRIOR=number
specifies the number of samples for the prior predictive analysis when PLOTS(PRIOR)=BAYESPRED
is requested. The default is 10,000.

NTRDS=number

THREADS=number
specifies the number of threads to be used. The number of threads cannot exceed the number of
computer cores available. Each core samples the number of iterations that is specified by the NMC
option. The default is 1.
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NTU=number
specifies the number of samples for each tuning phase. The default is 500.

OUTPOST=SAS-data-set
names the SAS data set to contain the posterior samples. Alternatively, you can create the output data
set by specifying an ODS OUTPUT statement as follows:

ODS OUTPUT POSTERIORSAMPLE = < SAS-data-set > ;

OUTPRIOR=SAS-data-set
names the SAS data set to contain the prior samples used to generate the prior predictive analysis when
you request the prior predictive plots. Alternatively, you can create the output data set by specifying an
ODS OUTPUT statement as follows:

ODS OUTPUT PRIORSAMPLE = < SAS-data-set > ;

PROPCOV=value
specifies the method used in constructing the initial covariance matrix for the Metropolis-Hastings
algorithm. The QUANEW and NMSIMP methods find numerically approximated covariance matrices
at the optimum of the posterior density function with respect to all continuous parameters. The
tuning phase starts at the optimized values; in some problems, this can greatly increase convergence
performance. If the approximated covariance matrix is not positive definite, then an identity matrix is
used instead. You can specify the following values:

CONGRA
performs a conjugate-gradient optimization.

DBLDOG
performs a version of double-dogleg optimization.

NEWRAP
performs a Newton-Raphson optimization that combines a line-search algorithm with ridging.

NMSIMP
performs a Nelder-Mead simplex optimization.

NRRIDG
performs a Newton-Raphson optimization with ridging.

QUANEW
performs a quasi-Newton optimization.

TRUREG
performs a trust-region optimization.

SAMPLING=MULTIMETROPOLIS | UNIMETROPOLIS | MODELMETROPOLIS
specifies how to sample from the posterior distribution. SAMPLING=MULTIMETROPOLIS imple-
ments a Metropolis sampling scheme on a single block that contains all the parameters of the model.
SAMPLING=MODELMETROPOLIS implements a Metropolis sampling scheme on multiple blocks:
one block for each model (all the parameters of the model) plus a block for all the correlation parameters
across the models. SAMPLING=UNIMETROPOLIS implements a Metropolis sampling scheme on
multiple blocks, one for each parameter of the model. By default, SAMPLING=MULTIMETROPOLIS.
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SEED=number
specifies an integer seed in the range 1 to 231 � 1 for the random number generator in the simulation.
Specifying a seed enables you to reproduce identical Markov chains for the same specification. If you
do not specify the SEED= option, or if you specify a nonpositive seed, a random seed is derived from
the time of day.

SIMTIME
prints the time required for the MCMC sampling.

STATISTICS < (global-options) > = ALL | NONE | keyword | (keyword-list)

STATS < (global-options) > = ALL | NONE | keyword | (keyword-list)
controls the number of posterior statistics produced. Specifying STATISTICS=ALL is equivalent
to specifying STATISTICS= (CORR COV INTERVAL PRIOR SUMMARY). If you do not want
any posterior statistics, specify STATISTICS=NONE. The default is STATISTICS=(SUMMARY
INTERVAL). You can specify the following global-options:

ALPHA=numeric-list
controls the probabilities of the credible intervals. The ALPHA= values must be between 0 and
1. Each ALPHA= value produces a pair of 100(1–ALPHA)% equal-tail and HPD intervals for
each parameter. The default is ALPHA=0.05, which yields the 95% credible intervals for each
parameter.

PERCENT=numeric-list
requests the percentile points of the posterior samples. The PERCENT= values must be between
0 and 100. The default is PERCENT=25, 50, 75, which yields the 25th, 50th, and 75th percentile
points, respectively, for each parameter.

You can specify the following keywords:

CORR
produces the posterior correlation matrix.

COV
produces the posterior covariance matrix.

INTERVAL
produces equal-tail credible intervals and HPD intervals. The default is to produce the 95%
equal-tail credible intervals and 95% HPD intervals, but you can use the ALPHA= global-option
to request intervals of any probabilities.

NONE
suppresses printing of all summary statistics.

PRIOR
produces a summary table of the prior distributions used in the Bayesian analysis.

SUMMARY
produces the means, standard deviations, and percentile points (25th, 50th, and 75th) for the
posterior samples. You can use the global PERCENT= global-option to request specific percentile
points.
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THIN=number

THINNING=number
controls the thinning of the Markov chain. Only one in every k samples is used when THIN=k, and if
NBI=n0 and NMC=n, the number of samples that are kept is�

n0 C n

k

�
�

�
n0

k

�
where [a] represents the integer part of the number a. The default is THIN=1.

BOUNDS Statement
BOUNDS bound1 < , bound2 . . . > ;

The BOUNDS statement imposes simple boundary constraints on the parameter estimates. BOUNDS
statement constraints refer to the parameters estimated by the QLIM procedure. Any number of BOUNDS
statements can be specified.

Each bound is composed of parameters and constants and inequality operators. Parameters associated with
regressor variables are referred to by the names of the corresponding regressor variables:

item operator item < operator item < operator item . . . > >

Each item is a constant, the name of a parameter, or a list of parameter names. See the section “Naming of
Parameters” on page 2032 for more details on how parameters are named in the QLIM procedure. Each
operator is ’<’, ’>’, ’<=’, or ’>=’.

Both the BOUNDS statement and the RESTRICT statement can be used to impose boundary constraints;
however, the BOUNDS statement provides a simpler syntax for specifying these kinds of constraints. See the
“RESTRICT Statement” on page 1982 for more information.

The following BOUNDS statement constrains the estimates of the parameters associated with the variable
ttime and the variables x1 through x10 to be between 0 and 1. This example illustrates the use of parameter
lists to specify boundary constraints.

bounds 0 < ttime x1-x10 < 1;

The following BOUNDS statement constrains the estimates of the correlation (_RHO) and sigma (_SIGMA)
in the bivariate model:

bounds _rho >= 0, _sigma.y1 > 1, _sigma.y2 < 5;

The BOUNDS statement is not supported if a BAYES statement is also specified. In Bayesian analysis, the
restrictions on parameters are usually introduced through the prior distribution.
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BY Statement
BY variables ;

A BY statement can be used with PROC QLIM to obtain separate analyses on observations in groups defined
by the BY variables.

CLASS Statement
CLASS variables ;

The CLASS statement names the classification variables to be used in the analysis. Classification variables
can be either character or numeric.

Class levels are determined from the formatted values of the CLASS variables. Thus, you can use formats
to group values into levels. See the discussion of the FORMAT procedure in SAS Language Reference:
Dictionary for details.

ENDOGENOUS Statement
ENDOGENOUS variables Ï options ;

The ENDOGENOUS statement specifies the type of dependent variables that appear on the left-hand side of
the equation. Endogenous variables listed refer to the dependent variables that appear on the left-hand side of
the equation.

Discrete Variable Options

DISCRETE < (discrete-options ) >
specifies that the endogenous variables in this statement are discrete. Valid discrete-options are as
follows:

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sorting order for the levels of the discrete variables specified in the ENDOGENOUS
statement. This ordering determines which parameters in the model correspond to each level in the
data. The following table shows how PROC QLIM interprets values of the ORDER= option.

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set
FORMATTED Formatted value
FREQ Descending frequency count; levels with the

most observations come first in the order
INTERNAL Unformatted value

By default, ORDER=FORMATTED. For the values FORMATTED and INTERNAL, the sort order is
machine dependent. For more information about sorting order, see the chapter on the SORT procedure
in the Base SAS Procedures Guide.
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DISTRIBUTION=NORMAL | LOGISTIC

DIST=NORMAL | LOGISTIC

D=NORMAL | LOGISTIC
specifies the cumulative distribution function used to model the response probabilities. DISTRIBU-
TION=NORMAL specifies the normal distribution for the probit model. DISTRIBUTION=LOGISTIC
specifies the logistic distribution for the logit model.

By default, DISTRIBUTION=NORMAL.

If a multivariate model is specified, logistic distribution is not allowed. Only normal distribution is
supported.

Censored Variable Options

CENSORED (censored-options )
specifies that the endogenous variables in this statement be censored. Valid censored-options are as
follows:

LB=value or variable

LOWERBOUND=value or variable
specifies the lower bound of the censored variables. If value is missing or the value in variable is
missing, no lower bound is set. By default, no lower bound is set.

UB=value or variable

UPPERBOUND=value or variable
specifies the upper bound of the censored variables. If value is missing or the value in variable is
missing, no upper bound is set. By default, no upper bound is set.

Truncated Variable Options

TRUNCATED (truncated-options )
specifies that the endogenous variables in this statement be truncated. Valid truncated-options are as
follows:

LB=value or variable

LOWERBOUND=value or variable
specifies the lower bound of the truncated variables. If value is missing or the value in variable is
missing, no lower bound is set. By default, no lower bound is set.

UB=value or variable

UPPERBOUND=value or variable
specifies the upper bound of the truncated variables. If value is missing or the value in variable is
missing, no upper bound is set. By default, no upper bound is set.
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Stochastic Frontier Variable Options

FRONTIER < (frontier-options ) >
specifies that the endogenous variable in this statement follow a production or cost frontier. Valid
frontier-options are as follows:

TYPE=HALF | EXPONENTIAL | TRUNCATED
specifies the model type:

HALF specifies a half-normal model.

EXPONENTIAL specifies an exponential model.

TRUNCATED specifies a truncated normal model.

PRODUCTION
specifies that the model estimated be a production function.

COST
specifies that the model estimated be a cost function.

If neither PRODUCTION nor COST option is specified, production function is estimated by default.

Selection Options

SELECT (select-option )
specifies selection criteria for sample selection model. The BAYES statement does not support the
SELECT option. The select-option specifies the condition for the endogenous variable to be selected.
It is written as a variable name, followed by an equality operator (=) or an inequality operator (<, >,
<=, >=), followed by a number:

variable operator number

The variable is the endogenous variable that the selection is based on. The operator can be =, <, >, <= ,
or >=. Multiple select-options can be combined with the logic operators: AND, OR. The following
example illustrates the use of the SELECT option:

endogenous y1 ~ select(z=0);
endogenous y2 ~ select(z=1 or z=2);

The SELECT option can be used together with the DISCRETE, CENSORED, or TRUNCATED option.
For example:

endogenous y1 ~ select(z=0) discrete;
endogenous y2 ~ select(z=1) censored (lb=0);
endogenous y3 ~ select(z=1 or z=2) truncated (ub=10);

For more information about selection models with censoring or truncation, see the section “Selection
Models” on page 1996.
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Endogeneity and Overidentification Test Options

ENDOTEST (regressors)
requests the test of endogeneity for a list of regressors in the model. More specifically, this option tests
the null hypothesis that the specified regressors are exogenous. Each of these regressors must also have
a model of its own. The former model is considered the structural model, and the latter models are
considered reduced form models.

The following example illustrates the use of the ENDOTEST option by testing whether the regressors
y2 and y3 are endogenous in the model for y1:

proc qlim;
model y1 = y2 y3 x1;
model y2 = x1 x2 x3 x4 x5;
model y3 = x1 x2 x3 x4 x5;
endogenous y1 ~ endotest(y2 y3);

run;

The ENDOTEST option is not available when you specify the SELECT or FRONTIER option. You
can specify the ENDOTEST option only once for each ENDOGENOUS statement.

For more information about the test for endogeneity, see the section “Test for Endogeneity” on
page 2006.

OVERID (variables)
requests the overidentification test for a list of variables. These variables are the overidentifying
instrumental variables that you provide from the reduced form models. For more information, see the
section “Overidentification Test” on page 2007.

The following example illustrates the use of the OVERID option:

proc qlim;
model y1 = y2 y3 x1;
model y2 = x1 x2 x3 x4 x5;
model y3 = x1 x2 x3 x4 x5;
endogenous y1 ~ overid(y2.x4 y3.x5);

run;

The regressors y2 and y3 in the model for y1 are the endogenous variables. Therefore, each of
these variables has its own models, which are considered reduced form models. The overidentifying
instrumental variables are x4 and x5. If you specify the OVERID option as

endogenous y1 ~ overid(y2.x4 y2.x5);

then you consider only the regressor y2 to be endogenous, and the model for y3 is ignored during the
testing process.

The OVERID option is not available when you specify the SELECT or FRONTIER option. You can
specify the OVERID option only once for each ENDOGENOUS statement.
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FREQ Statement
FREQ variable ;

The FREQ statement identifies a variable that contains the frequency of occurrence of each observation.
PROC QLIM treats each observation as if it appears n times, where n is the value of the FREQ variable for
the observation. If it is not an integer, the frequency value is truncated to an integer. If the frequency value
is less than 1 or missing, the observation is not used in the model fitting. When the FREQ statement is not
specified, each observation is assigned a frequency of 1. If you specify more than one FREQ statement, then
the first FREQ statement is used.

HETERO Statement
HETERO dependent variables Ï exogenous variables < / options > ;

The HETERO statement specifies variables that are related to the heteroscedasticity of the residuals and the
way these variables are used to model the error variance. The heteroscedastic regression model supported by
PROC QLIM is

yi D x0iˇ C �i

�i � N.0; �2i /

See the section “Heteroscedasticity” on page 1993 for more details on the specification of functional forms.

LINK=value
The functional form can be specified using the LINK= option. The following option values are allowed:

EXP specifies the exponential link function

�2i D �2.1C exp.z
0

i
//

LINEAR specifies the linear link function

�2i D �2.1C z
0

i
/

When the LINK= option is not specified, the exponential link function is specified by default.

NOCONST
specifies that there be no constant in the exponential heteroscedasticity model.

�2i D �2exp.z
0

i
/

SQUARE
estimates the model by using the square of linear heteroscedasticity function. For example, you can
specify the following heteroscedasticity function:

�2i D �
2.1C .z

0

i
/
2/

model y = x1 x2 / discrete;
hetero y ~ z1 / link=linear square;
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The option SQUARE does not apply to exponential heteroscedasticity function because the square of
an exponential function of z

0

i
 is the same as the exponential of 2z
0

i
 . Hence the only difference is
that all 
 estimates are divided by two.

You can use the HETERO statement within a Bayesian framework, but you should do this carefully be-
cause convergence can be slower than in the homoscedastic case. For more information see “Priors for
Heteroscedastic Models” on page 2019.

INIT Statement
INIT initvalue1 < , initvalue2 . . . > ;

The INIT statement sets initial values for parameters in the optimization. You can specify any number of
INIT statements.

Each initvalue is written as a parameter or parameter list, followed by an optional equality operator (=),
followed by a number:

parameter <=> number

If you also specify the BAYES statement, the INIT statement also initializes the Markov chain Monte Carlo
(MCMC) algorithm. In particular, the INIT statement does one of the following:

� It initializes the tuning phase (this also includes the PROPCOV option).

� It initializes the sampling phase, if there is no tuning phase.

MODEL Statement
MODEL dependent = regressors < / options > ;

The MODEL statement specifies the dependent variable and independent regressor variables for the regression
model.

You can specify the following options after a slash (/).

LIMIT1=ZERO | VARYING
specifies the restriction of the threshold value of the first category when the ordinal probit or logit
model is estimated. LIMIT1=ZERO is the default option. When LIMIT1=VARYING is specified, the
threshold value is estimated.

NOINT
suppresses the intercept parameter.

Endogenous Variable Options

The endogenous variable options are the same as the options that you can specify in the ENDOGENOUS
statement. If you specify an ENDOGENOUS statement, all endogenous options in the MODEL statement
are ignored.
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Endogeneity and Overidentification Test Options

The endogeneity and overidentification test options are the same as the options that you can specify in the EN-
DOGENOUS statement. If you specify an ENDOGENOUS statement, all endogeneity and overidentification
test options in the MODEL statement are ignored.

BOXCOX Estimation Options

BOXCOX (option-list )
specifies options that are used for Box-Cox regression or regressor transformation. For example, the
Box-Cox regression is specified as

model y = x1 x2 / boxcox(y=lambda,x1 x2)

PROC QLIM estimates the following Box-Cox regression model:

y
.�/
i D ˇ0 C ˇ1x

.�2/
1i C ˇ2x

.�2/
2i C �i

The option-list takes the form variable-list < = varname > separated by commas. The variable-list
specifies that the list of variables have the same Box-Cox transformation; varname specifies the name
of this Box-Cox coefficient. If varname is not specified, the coefficient is called _Lambdai, where i
increments sequentially.

Variable Selection Options

SELECTVAR <=(selectvar-option)>
enables variable selection. The selectvar-option specifies a variable selection method based on an
information criterion. For more information, see the section “Variable Selection” on page 2000. You
can specify the following selectvar-options:

DIRECTION=FORWARD | BACKWARD
specifies the searching algorithm to use in the variable selection method. By default, DIREC-
TION=FORWARD.

CRITER=AIC | SBC
specifies the information criterion to use for the variable selection. By default, CRITER=AIC.

MAXSTEPS=value
specifies the maximum number of steps that are allowed in the search algorithm. The default is
100.

LSTOP=value
specifies the stopping criterion. The value represents the percentage of decrease or increase in
the AIC or SBC that is required for the algorithm to proceed; it must be a positive number less
than 1. The default is 0.

RETAIN(regressors)
specifies a list of regressors that are to be retained in any model that the variable selection process
considers.
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The following rules apply to how regressors are handled when you specify more than one MODEL
statement and use the SELECTVAR option:

� If you do not specify the SELECTVAR option in a particular MODEL statement, then all
regressors in the original model are included in any model that the variable selection algorithm
considers. In other words, omitting the SELECTVAR option is equivalent to providing the option:
SELECTVAR=(RETAIN(all-regressors)).

� If you specify the SELECTVAR option without any =(option) clause in a MODEL statement,
then all regressors in that model (other than the intercept, if present) are eligible for potential
exclusion as the variable selection process is executed.

The following example specifies 10 possible regressor candidates, out of which five are selected using
the AIC criterions:

proc qlim data=one;
model y = x1-x10 /selectvar=(direction=forward criter=AIC maxsteps=5);

run;

NLOPTIONS Statement
NLOPTIONS < options > ;

PROC QLIM uses the nonlinear optimization (NLO) subsystem to perform nonlinear optimization tasks. For
a list of all the options of the NLOPTIONS statement, see Chapter 7, “Nonlinear Optimization Methods.”

OUTPUT Statement
OUTPUT < OUT=SAS-data-set > < output-options > ;

The OUTPUT statement creates a new SAS data set containing all variables in the input data set and,
optionally, the estimates of x0ˇ, predicted value, residual, marginal effects, probability, standard deviation
of the error, expected value, conditional expected value, technical efficiency measures, and inverse Mills
ratio. When the response values are missing for the observation, all output estimates except residual are
still computed as long as none of the explanatory variables is missing. This enables you to compute these
statistics for prediction. You can specify only one OUTPUT statement.

Details on the specifications in the OUTPUT statement are as follows:

CONDITIONAL
outputs estimates of conditional expected values of continuous endogenous variables.

ERRSTD
outputs estimates of �j , the standard deviation of the error term.

EXPECTED
outputs estimates of expected values of continuous endogenous variables.
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MARGINAL
outputs marginal effects.

MILLS
outputs estimates of inverse Mills ratios of censored or truncated continuous, binary discrete, and
selection endogenous variables.

OUT=SAS-data-set
names the output data set.

PREDICTED
outputs estimates of predicted endogenous variables.

PROB
outputs estimates of probability of discrete endogenous variables taking the current observed responses.

PROBALL
outputs estimates of probability of discrete endogenous variables for all possible responses.

RESIDUAL
outputs estimates of residuals of continuous endogenous variables.

XBETA
outputs estimates of x0ˇ.

TE1
outputs estimates of technical efficiency for each producer in the stochastic frontier model suggested
by Battese and Coelli (1988).

TE2
outputs estimates of technical efficiency for each producer in the stochastic frontier model suggested
by Jondrow et al. (1982).

PRIOR Statement
PRIOR _REGRESSORS | parameter-list Ï distribution ;

The PRIOR statement specifies the prior distribution of the model parameters. You must specify a single
parameter or a list of parameter, a tilde Ï, and then a distribution with its parameters. Multiple PRIOR
statements are allowed.

You can specify the following distributions:

NORMAL(MEAN=�, VAR=�2)
specifies a normal distribution with parameters MEAN and VAR.

GAMMA(SHAPE=a, SCALE=b)
specifies a gamma distribution with parameters SHAPE and SCALE.
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SQGAMMA(SHAPE=a, SCALE=b)
specifies a square root gamma distribution with parameters SHAPE and SCALE.

IGAMMA(SHAPE=a, SCALE=b)
specifies an inverse gamma distribution with parameters SHAPE and SCALE.

SQIGAMMA(SHAPE=a, SCALE=b)
specifies a square root inverse gamma distribution with parameters SHAPE and SCALE.

UNIFORM(MIN=m, MAX=M)
specifies a uniform distribution that is defined between MIN and MAX.

BETA(SHAPE1=a, SHAPE2=b, MIN=m, MAX=M)
specifies a beta distribution with parameters SHAPE1 and SHAPE2 and defined between MIN and
MAX.

T(LOCATION=�, DF=�)
specifies a noncentral t distribution with DF degrees of freedom and location parameter equal to
LOCATION.

See the section “Standard Distributions” on page 2024 for details about how to specify distributions.

You can specify the special keyword REGRESSORS to select all the parameters used in the linear regression
component of the model.

RANDOM Statement (Experimental)
RANDOM INTERCEPT < / options > ;

The RANDOM statement defines the random effects in the mixed model. Currently, you can specify only
random intercepts as random effects; random coefficients are not allowed. If you have a panel data set, you
can use the RANDOM statement to estimate random-effects models that include binomial probit, binomial
logit, ordinal probit, ordinal logit, linear regression, Tobit, truncated regression, and stochastic frontier
models.

You can specify only a single RANDOM statement, and if you specify a RANDOM statement, you can
specify only one MODEL statement. The RANDOM statement is not supported if a BAYES statement is
also specified.

You can abbreviate INTERCEPT as INT. You can specify the following options after a slash (/).

SUBJECT=variable
S=variable

determines the unique realizations of the random effects. In panel data, the variable identifies the
cross-sectional units. For example, in panel data, variable might be household or country.

If you do not specify the SUBJECT= option, then variable is assumed to have a single realization; that
is, there is no variation in the random effects. You should specify this option in order to have a true
random-effects model.

The following statement illustrates the SUBJECT= option:

random int / subject=id;
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METHOD=method-options

M=method-options
specifies the method of approximation to the integral that appears in the likelihood function. For more
information about the integral and the integration methods, see the section “Random-Effects Models
for Panel Data” on page 2008 and its subsections.

You can specify the following method-options:

HALTON < (halton-options) >

HALT < (halton-options) >

QMC < (halton-options) >
requests a quasi–Monte Carlo integration method that uses the Halton sequence that is defined by
the prime number 2. For information about how this series is generated, see the section “QMC
Method Using the Halton Sequence” on page 2010.

You can specify the following halton-options:

HALTONDRAW=value

HDRAW=value
determines the number of elements that the Halton series has for each unique value of the
subject variable. Therefore, the total number of elements in the Halton sequence is value
times the number of unique values of the variable that is specified in the SUBJECT= option.
For more information, see the subsection “QMC Method Using the Halton Sequence” on
page 2010.

The default value of the HALTONDRAW= option is the number of unique values of the
variable that is specified in the SUBJECT= option. For example, if you have a panel data set,
the number of terms in the Halton sequence is the square of the number of cross-sections.

HALTONSTART=value
specifies the starting point of the Halton sequence, where value must be a positive integer.
By default, HALTONSTART=11.

The following statement requests a Halton sequence that has 100 elements and does not discard
any elements:

random int / subject=country method=halton(hdraw=100 haltonstart=1);

HERMITE < ( QPOINTS=value ) >

HERM < ( QPOINTS=value ) >

GAUSS < ( QPOINTS=value ) >
requests the Gauss-Hermite quadrature integration method. For more information, see the section
“Approximation by Hermite Quadrature” on page 2010.

QPOINTS=value specifies the number of quadrature points to be used during evaluation of
integral. By default QPOINTS=20.

The following statement illustrates this option:

random int / subject=states method=hermite(qpoints=4);
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SIMULATION < (simulation-options) >

SIM < (simulation-options) >
requests simulation as the method of integration. For more information, see the section “Simulated
Maximum Likelihood” on page 2009.

You can specify the following simulation-options:

NDRAW=value
specifies the number of draws for the simulation. You can also specify the number of draws
in the NDRAW= option in the PROC QLIM statement. If you specify both, PROC QLIM
uses the value in the RANDOM statement. If you do not specify any NDRAW= option, the
default value is set to N 3=2, where N is the number of unique values of the subject variable.
For example, for a panel data set, N is the number of cross-sections.

SEED=value
specifies the seed of the random draws, where value must be less than 231 � 1. You can also
specify the seed in the SEED= option in the PROC QLIM statement. If you specify both,
PROC QLIM uses the value in the RANDOM statement. If you do not specify a seed, or if
you specify a value less than equal to zero, the seed is generated randomly.

The following statement illustrates this option:

random int / subject=id method=simulation(ndraw=1000 seed=12345);

By default, METHOD=HERMITE(QPOINTS=20).

RESTRICT Statement
RESTRICT restriction1 < , restriction2 . . . > ;

The RESTRICT statement is used to impose linear restrictions on the parameter estimates. Any number of
RESTRICT statements can be specified, but the number of restrictions imposed is limited by the number of
regressors.

Each restriction is written as an expression, followed by an equality operator (=) or an inequality operator (<,
>, <=, >=), followed by a second expression:

expression operator expression

The operator can be =, <, >, <= , or >=. The operator and second expression are optional.

Restriction expressions can be composed of parameter names, multiplication (�), addition (C) and substitution
(�) operators, and constants. Parameters named in restriction expressions must be among the parameters
estimated by the model. Parameters associated with a regressor variable are referred to by the name of the
corresponding regressor variable. The restriction expressions must be a linear function of the parameters.

The following is an example of the use of the RESTRICT statement:

proc qlim data=one;
model y = x1-x10 / discrete;
restrict x1*2 <= x2 + x3;

run;
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The RESTRICT statement can also be used to impose cross-equation restrictions in multivariate models. The
following RESTRICT statement imposes an equality restriction on coefficients of x1 in equation y1 and x1
in equation y2:

proc qlim data=one;
model y1 = x1-x10;
model y2 = x1-x4;
endogenous y1 y2 ~ discrete;
restrict y1.x1=y2.x1;

run;

The RESTRICT statement is not supported if a BAYES statement is also specified. In Bayesian analysis, the
restrictions on parameters are usually introduced through the prior distribution.

TEST Statement
<’label’:> TEST <’string’:> equation [,equation. . . ] / options ;

The TEST statement performs Wald, Lagrange multiplier, and likelihood ratio tests of linear hypotheses about
the regression parameters in the preceding MODEL statement. Each equation specifies a linear hypothesis to
be tested. All hypotheses in one TEST statement are tested jointly. Variable names in the equations must
correspond to regressors in the preceding MODEL statement, and each name represents the coefficient of the
corresponding regressor. The keyword INTERCEPT refers to the coefficient of the intercept.

The following options can be specified in the TEST statement after the slash (/):

ALL
requests Wald, Lagrange multiplier, and likelihood ratio tests.

WALD
requests the Wald test.

LM
requests the Lagrange multiplier test.

LR
requests the likelihood ratio test.

The following illustrates the use of the TEST statement:

proc qlim;
model y = x1 x2 x3;
test x1 = 0, x2 * .5 + 2 * x3 = 0;
test_int: test intercept = 0, x3 = 0;

run;

The first test investigates the joint hypothesis that

ˇ1 D 0
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and

0:5ˇ2 C 2ˇ3 D 0

In case there is more than one MODEL statement in one QLIM procedure, then TEST statement is
capable of testing cross-equation restrictions. Each parameter reference should be preceded by the
name of the dependent variable of the particular model and the dot sign. For example,

proc qlim;
model y1 = x1 x2 x3;
model y2 = x3 x5 x6;
test y1.x1 + y2.x6 = 1;

run;

This cross-equation test investigates the null hypothesis that

ˇ1;1 C ˇ2;3 D 1

in the system of equations

y1;i D ˛1 C ˇ1;1x1;i C ˇ1;2x2;i C ˇ1;3x3;i

y2;i D ˛2 C ˇ2;1x3;i C ˇ2;2x5;i C ˇ2;3x6;i

Only linear equality restrictions and tests are permitted in PROC QLIM. Tests expressions can be
composed only of algebraic operations involving the addition symbol (+), subtraction symbol (-), and
multiplication symbol (*).

The TEST statement accepts labels that are reproduced in the printed output. TEST statement can be
labeled in two ways. A TEST statement can be preceded by a label followed by a colon. Alternatively,
the keyword TEST can be followed by a quoted string. If both are present, PROC QLIM uses the label
preceding the colon. In the event no label is present, PROC QLIM automatically labels the tests.

You cannot specify both the TEST statement and the BAYES statement.

WEIGHT Statement
WEIGHT variable < / option > ;

The WEIGHT statement specifies a variable to supply weighting values to use for each observation in
estimating parameters. The log likelihood for each observation is multiplied by the corresponding weight
variable value.

If the weight of an observation is nonpositive, that observation is not used in the estimation.

The following option can be added to the WEIGHT statement after a slash (/).

NONORMALIZE
specifies that the weights are required to be used as is. When this option is not specified, the weights
are normalized so that they add up to the actual sample size. Weights wi are normalized by multiplying
them by nPn

iD1wi
, where n is the sample size.
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Details: QLIM Procedure

Ordinal Discrete Choice Modeling

Binary Probit and Logit Model

The binary choice model is

y�i D x0iˇ C �i

where value of the latent dependent variable, y�i , is observed only as follows:

yi D 1 if y�i > 0

D 0 otherwise

The disturbance, �i , of the probit model has standard normal distribution with the distribution function (CDF)

ˆ.x/ D

Z x

�1

1
p
2�

exp.�t2=2/dt

The disturbance of the logit model has standard logistic distribution with the CDF

ƒ.x/ D
exp.x/

1C exp.x/
D

1

1C exp.�x/
The binary discrete choice model has the following probability that the event fyi D 1g occurs:

P.yi D 1/ D F.x0iˇ/ D
�
ˆ.x0iˇ/ .probit/
ƒ.x0iˇ/ .logit/

The log-likelihood function is

` D

NX
iD1

˚
yi logŒF .x0iˇ/�C .1 � yi / logŒ1 � F.x0iˇ/�

	
where the CDF F.x/ is defined as ˆ.x/ for the probit model while F.x/ D ƒ.x/ for logit. The first order
derivatives of the logit model are

@`

@ˇ
D

NX
iD1

.yi �ƒ.x0iˇ//xi

The probit model has more complicated derivatives

@`

@ˇ
D

NX
iD1

(
.2yi � 1/�

�
.2yi � 1/x0iˇ

�
ˆ
�
.2yi � 1/x0iˇ

� )
xi D

NX
iD1

rixi

where

ri D
.2yi � 1/�

�
.2yi � 1/x0iˇ

�
ˆ
�
.2yi � 1/x0iˇ

�
Note that the logit maximum likelihood estimates are �p

3
times greater than probit maximum likelihood esti-

mates, since the probit parameter estimates, ˇ, are standardized, and the error term with logistic distribution
has a variance of �

2

3
.
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Ordinal Probit/Logit

When the dependent variable is observed in sequence with M categories, binary discrete choice modeling is
not appropriate for data analysis. McKelvey and Zavoina (1975) proposed the ordinal (or ordered) probit
model.

Consider the following regression equation:

y�i D x0iˇ C �i

where error disturbances, �i , have the distribution function F. The unobserved continuous random variable,
y�i , is identified as M categories. Suppose there are M C 1 real numbers, �0; � � � ; �M , where �0 D �1,
�1 D 0, �M D1, and �0 � �1 � � � � � �M . Define

Ri;j D �j � x0iˇ

The probability that the unobserved dependent variable is contained in the jth category can be written as

P Œ�j�1 < y
�
i � �j � D F.Ri;j / � F.Ri;j�1/

The log-likelihood function is

` D

NX
iD1

MX
jD1

dij log
�
F.Ri;j / � F.Ri;j�1/

�
where

dij D

�
1 if�j�1 < yi � �j
0 otherwise

The first derivatives are written as

@`

@ˇ
D

NX
iD1

MX
jD1

dij

�
f .Ri;j�1/ � f .Ri;j /

F.Ri;j / � F.Ri;j�1/
xi

�

@`

@�k
D

NX
iD1

MX
jD1

dij

�
ıj;kf .Ri;j / � ıj�1;kf .Ri;j�1/

F.Ri;j / � F.Ri;j�1/

�

where f .x/ D dF .x/
dx

and ıj;k D 1 if j D k, and ıj;k D 0 otherwise. When the ordinal probit is estimated,
it is assumed that F.Ri;j / D ˆ.Ri;j /. The ordinal logit model is estimated if F.Ri;j / D ƒ.Ri;j /. The
first threshold parameter, �1, is estimated when the LIMIT1=VARYING option is specified. By default
(LIMIT1=ZERO), so that M � 2 threshold parameters (�2; : : : ; �M�1) are estimated.

The ordered probit models are analyzed by Aitchison and Silvey (1957), and Cox (1970) discussed ordered
response data by using the logit model. They defined the probability that y�i belongs to jth category as

P Œ�j�1 < yi � �j � D F.�j C x0i�/ � F.�j�1 C x0i�/

where �0 D �1 and �M D1. Therefore, the ordered response model analyzed by Aitchison and Silvey
can be estimated if the LIMIT1=VARYING option is specified. Note that � D �ˇ.
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Goodness-of-Fit Measures

The goodness-of-fit measures discussed in this section apply only to discrete dependent variable models.

McFadden (1974) suggested a likelihood ratio index that is analogous to the R2 in the linear regression
model:

R2M D 1 �
lnL
lnL0

where L is the value of the maximum likelihood function and L0 is the value of a likelihood function when
regression coefficients except an intercept term are zero. It can be shown that L0 can be written as

L0 D

MX
jD1

Nj ln.
Nj

N
/

where Nj is the number of responses in category j.

Estrella (1998) proposes the following requirements for a goodness-of-fit measure to be desirable in discrete
choice modeling:

� The measure must take values in Œ0; 1�, where 0 represents no fit and 1 corresponds to perfect fit.

� The measure should be directly related to the valid test statistic for significance of all slope coefficients.

� The derivative of the measure with respect to the test statistic should comply with corresponding
derivatives in a linear regression.

Estrella’s (1998) measure is written

R2E1 D 1 �

�
lnL
lnL0

�� 2
N

lnL0

An alternative measure suggested by Estrella (1998) is

R2E2 D 1 � Œ.lnL �K/= lnL0��
2
N

lnL0

where lnL0 is computed with null slope parameter values, N is the number observations used, and K
represents the number of estimated parameters.

Other goodness-of-fit measures are summarized as follows:

R2CU1 D 1 �

�
L0

L

� 2
N

.Cragg �Uhler1/

R2CU2 D
1 � .L0=L/

2
N

1 � L
2
N

0

.Cragg �Uhler2/

R2A D
2.lnL � lnL0/

2.lnL � lnL0/CN
.Aldrich �Nelson/

R2VZ D R
2
A

2 lnL0 �N
2 lnL0

.Veall � Zimmermann/

R2MZ D

PN
iD1. Oyi �

NOyi /
2

N C
PN
iD1. Oyi �

NOyi /2
.McKelvey � Zavoina/

where Oyi D x0i Ǒ and NOyi D
PN
iD1 Oyi=N .
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Limited Dependent Variable Models

Censored Regression Models

When the dependent variable is censored, values in a certain range are all transformed to a single value. For
example, the standard tobit model can be defined as

y�i D x0iˇ C �i

yi D

�
y�i ify�i > 0
0 ify�i � 0

where �i � i idN.0; �2/. The log-likelihood function of the standard censored regression model is

` D
X

i2fyiD0g

lnŒ1 �ˆ.x0iˇ=�/�C
X

i2fyi>0g

ln
�
�.
yi � x0iˇ

�
/=�

�

where ˆ.�/ is the cumulative density function of the standard normal distribution and �.�/ is the probability
density function of the standard normal distribution.

The tobit model can be generalized to handle observation-by-observation censoring. The censored model on
both of the lower and upper limits can be defined as

yi D

8<:
Ri if y�i � Ri
y�i if Li < y�i < Ri
Li if y�i � Li

The log-likelihood function can be written as

` D
X

i2fLi<yi<Ri g

ln
�
�.
yi � x0iˇ

�
/=�

�
C

X
i2fyiDRi g

ln
�
ˆ.�

Ri � x0iˇ
�

/

�
C

X
i2fyiDLi g

ln
�
ˆ.
Li � x0iˇ

�
/

�

Log-likelihood functions of the lower- or upper-limit censored model are easily derived from the two-limit
censored model. The log-likelihood function of the lower-limit censored model is

` D
X

i2fyi>Li g

ln
�
�.
yi � x0iˇ

�
/=�

�
C

X
i2fyiDLi g

ln
�
ˆ.
Li � x0iˇ

�
/

�

The log-likelihood function of the upper-limit censored model is

` D
X

i2fyi<Ri g

ln
�
�.
yi � x0iˇ

�
/=�

�
C

X
i2fyiDRi g

ln
�
1 �ˆ.

Ri � x0iˇ
�

/

�
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Types of Tobit Models

Amemiya (1984) classified Tobit models into five types based on characteristics of the likelihood function.
For notational convenience, let P denote a distribution or density function, y�j i is assumed to be normally
distributed with mean x0j iˇj and variance �2j .

Type 1 Tobit

The Type 1 Tobit model was already discussed in the preceding section.

y�1i D x01iˇ1 C u1i
y1i D y�1i if y�1i > 0

D 0 if y�1i � 0

The likelihood function is characterized as P.y1 < 0/P.y1/.

Type 2 Tobit

The Type 2 Tobit model is defined as

y�1i D x01iˇ1 C u1i
y�2i D x02iˇ2 C u2i
y1i D 1 if y�1i > 0

D 0 if y�1i � 0

y2i D y�2i if y�1i > 0

D 0 if y�1i � 0

where .u1i ; u2i / � N.0;†/. The likelihood function is described as P.y1 < 0/P.y1 > 0; y2/.

Type 3 Tobit

The Type 3 Tobit model is different from the Type 2 Tobit in that y�1i of the Type 3 Tobit is observed when
y�1i > 0.

y�1i D x01iˇ1 C u1i
y�2i D x02iˇ2 C u2i
y1i D y�1i if y�1i > 0

D 0 if y�1i � 0

y2i D y�2i if y�1i > 0

D 0 if y�1i � 0

where .u1i ; u2i /0 � i idN.0;†/.

The likelihood function is characterized as P.y1 < 0/P.y1; y2/.
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Type 4 Tobit

The Type 4 Tobit model consists of three equations:

y�1i D x01iˇ1 C u1i
y�2i D x02iˇ2 C u2i
y�3i D x03iˇ3 C u3i
y1i D y�1i if y�1i > 0

D 0 if y�1i � 0

y2i D y�2i if y�1i > 0

D 0 if y�1i � 0

y3i D y�3i if y�1i � 0

D 0 if y�1i > 0

where .u1i ; u2i ; u3i /0 � i idN.0;†/. The likelihood function of the Type 4 Tobit model is characterized as
P.y1 < 0; y3/P.y1; y2/.

Type 5 Tobit

The Type 5 Tobit model is defined as follows:

y�1i D x01iˇ1 C u1i
y�2i D x02iˇ2 C u2i
y�3i D x03iˇ3 C u3i
y1i D 1 if y�1i > 0

D 0 if y�1i � 0

y2i D y�2i if y�1i > 0

D 0 if y�1i � 0

y3i D y�3i if y�1i � 0

D 0 if y�1i > 0

where .u1i ; u2i ; u3i /0 are from iid trivariate normal distribution. The likelihood function of the Type 5 Tobit
model is characterized as P.y1 < 0; y3/P.y1 > 0; y2/.

Code examples for these models can be found in “Example 29.6: Types of Tobit Models” on page 2045.

Truncated Regression Models

In a truncated model, the observed sample is a subset of the population where the dependent variable falls in
a certain range. For example, when neither a dependent variable nor exogenous variables are observed for
y�i < 0, the truncated regression model can be specified.

` D
X

i2fyi�0g

�
� lnˆ.x0iˇ=�/C ln

�
�..yi � x0iˇ/=�/

�

��
Two-limit truncation model is defined as

yi D y
�
i if Li � y�i � Ri
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The log-likelihood function of the two-limit truncated regression model is

` D

NX
iD1

�
ln
�
�.
yi � x0iˇ

�
/=�

�
� ln

�
ˆ.
Ri � x0iˇ

�
/ �ˆ.

Li � x0iˇ
�

/

��

The log-likelihood functions of the lower- and upper-limit truncation model are

` D

NX
iD1

�
ln
�
�.
yi � x0iˇ

�
/=�

�
� ln

�
1 �ˆ.

Li � x0iˇ
�

/

��
(lower)

` D

NX
iD1

�
ln
�
�.
yi � x0iˇ

�
/=�

�
� ln

�
ˆ.
Ri � x0iˇ

�
/

��
(upper)

Stochastic Frontier Production and Cost Models
Stochastic frontier production models were first developed by Aigner, Lovell, and Schmidt (1977); Meeusen
and van den Broeck (1977). Specification of these models allow for random shocks of the production or cost
but also include a term for technological or cost inefficiency. Assuming that the production function takes a
log-linear Cobb-Douglas form, the stochastic frontier production model can be written as

ln.yi / D ˇ0 C
X
n

ˇn ln.xni /C �i

where �i D vi � ui . The vi term represents the stochastic error component and ui is the nonnegative,
technology inefficiency error component. The vi error component is assumed to be distributed iid normal and
independently from ui . Given that ui > 0, the error term, �i , is negatively skewed and represents technology
inefficiency. For the stochastic frontier cost model, �i D vi C ui . The vi term represents the stochastic error
component and ui is the nonnegative, cost inefficiency error component. Given that ui > 0, the error term,
�i , is positively skewed and represents cost inefficiency. PROC QLIM models the ui error component as a
half normal, exponential, or truncated normal distribution.

The Normal-Half Normal Model

In case of the normal-half normal model, vi is iid N.0; �2v /, ui is iid NC.0; �2u/ with vi and ui independent
of each other. Given the independence of error terms, the joint density of v and u can be written as

f .u; v/ D
2

2��u�v
exp

�
�
u2

2�2u
�
v2

2�2v

�

Substituting v D � C u into the preceding equation gives

f .u; �/ D
2

2��u�v
exp

�
�
u2

2�2u
�
.� C u/2

2�2v

�
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Integrating u out to obtain the marginal density function of � results in the following form:

f .�/ D

Z 1
0

f .u; �/du

D
2

p
2��

�
1 �ˆ

�
��

�

��
exp

�
�
�2

2�2

�
D

2

�
�
� �
�

�
ˆ

�
�
��

�

�

where � D �u=�v and � D
p
�2u C �

2
v .

In the case of a stochastic frontier cost model, v D � � u and

f .�/ D
2

�
�
� �
�

�
ˆ

�
��

�

�

The log-likelihood function for the production model with N producers is written as

lnL D constant �N ln � C
X
i

lnˆ
�
�
�i�

�

�
�

1

2�2

X
i

�2i

The Normal-Exponential Model

Under the normal-exponential model, vi is iid N.0; �2v / and ui is iid exponential with scale parameter �u.
Given the independence of error term components ui and vi , the joint density of v and u can be written as

f .u; v/ D
1

p
2��u�v

exp
�
�
u

�u
�
v2

2�2v

�

The marginal density function of � for the production function is

f .�/ D

Z 1
0

f .u; �/du

D

�
1

�u

�
ˆ

�
�
�

�v
�
�v

�u

�
exp

�
�

�u
C

�2v
2�2u

�
and the marginal density function for the cost function is equal to

f .�/ D

�
1

�u

�
ˆ

�
�

�v
�
�v

�u

�
exp

�
�
�

�u
C

�2v
2�2u

�

The log-likelihood function for the normal-exponential production model with N producers is

lnL D constant �N ln �u CN
�
�2v
2�2u

�
C

X
i

�i

�u
C

X
i

lnˆ
�
�
�i

�v
�
�v

�u

�
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The Normal-Truncated Normal Model

The normal-truncated normal model is a generalization of the normal-half normal model by allowing the
mean of ui to differ from zero. Under the normal-truncated normal model, the error term component vi is iid
N.0; �2v / and ui is iid NC.�; �2u/. The joint density of vi and ui can be written as

f .u; v/ D
1

2��u�vˆ.�=�u/
exp

�
�
.u � �/2

2�2u
�
v2

2�2v

�

The marginal density function of � for the production function is

f .�/ D

Z 1
0

f .u; �/du

D
1

p
2��ˆ .�=�u/

ˆ

�
�

��
�
��

�

�
exp

�
�
.� C �/2

2�2

�
D

1

�
�

�
� C �

�

�
ˆ

�
�

��
�
��

�

��
ˆ

�
�

�u

���1
and the marginal density function for the cost function is

f .�/ D
1

�
�
�� � �

�

�
ˆ

�
�

��
C
��

�

��
ˆ

�
�

�u

���1

The log-likelihood function for the normal-truncated normal production model with N producers is

lnL D constant �N ln � �N lnˆ
�
�

�u

�
C

X
i

lnˆ
�
�

��
�
�i�

�

�

�
1

2

X
i

�
�i C �

�

�2

For more detail on normal-half normal, normal-exponential, and normal-truncated models, see Kumbhakar
and Lovell (2000); Coelli, Prasada Rao, and Battese (1998).

Heteroscedasticity and Box-Cox Transformation

Heteroscedasticity

If the variance of regression disturbance, (�i ), is heteroscedastic, the variance can be specified as a function
of variables

E.�2i / D �
2
i D f .z

0
i
/

The following table shows various functional forms of heteroscedasticity and the corresponding options to
request each model.
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No. Model Options

1 f .z0i
/ D �
2.1C exp.z0i
// LINK=EXP (default)

2 f .z0i
/ D �
2 exp.z0i
/ LINK=EXP NOCONST

3 f .z0i
/ D �
2.1C

PL
lD1 
lzli / LINK=LINEAR

4 f .z0i
/ D �
2.1C .

PL
lD1 
lzli /

2/ LINK=LINEAR SQUARE

For discrete choice models, �2 is normalized (�2 D 1) since this parameter is not identified. Note that in
models 3 and 5, it may be possible that variances of some observations are negative. Although the QLIM
procedure assigns a large penalty to move the optimization away from such region, it is possible that the
optimization cannot improve the objective function value and gets locked in the region. Signs of such
outcome include extremely small likelihood values or missing standard errors in the estimates. In models 2
and 6, variances are guaranteed to be greater or equal to zero, but it may be possible that variances of some
observations are very close to zero. In these scenarios, standard errors may be missing. Models 1 and 4 do
not have such problems. Variances in these models are always positive and never close to zero.

The heteroscedastic regression model is estimated using the following log-likelihood function:

` D �
N

2
ln.2�/ �

NX
iD1

1

2
ln.�2i / �

1

2

NX
iD1

.
ei

�i
/2

where ei D yi � x0iˇ.

Box-Cox Modeling

The Box-Cox transformation on x is defined as

x.�/ D

(
x��1
�

if� ¤ 0
ln.x/ if� D 0

The Box-Cox regression model with heteroscedasticity is written as

y
.�0/
i D ˇ0 C

KX
kD1

ˇkx
.�k/

ki
C �i

D �i C �i

where �i � N.0; �2i / and transformed variables must be positive. In practice, too many transformation
parameters cause numerical problems in model fitting. It is common to have the same Box-Cox transformation
performed on all the variables — that is, �0 D �1 D � � � D �K . It is required for the magnitude of transformed
variables to be in the tolerable range if the corresponding transformation parameters are j�j > 1.

The log-likelihood function of the Box-Cox regression model is written as

` D �
N

2
ln.2�/ �

NX
iD1

ln.�i / �
1

2�2i

NX
iD1

e2i C .�0 � 1/

NX
iD1

ln.yi /

where ei D y
.�0/
i � �i .

When the dependent variable is discrete, censored, or truncated, the Box-Cox transformation can be applied
only to explanatory variables.
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Bivariate Limited Dependent Variable Modeling
The generic form of a bivariate limited dependent variable model is

y�1i D x01iˇ1 C �1i
y�2i D x02iˇ2 C �2i

where the disturbances, �1i and �2i , have joint normal distribution with zero mean, standard deviations �1
and �2, and correlation of �. y�1 and y�2 are latent variables. The dependent variables y1 and y2 are observed
if the latent variables y�1 and y�2 fall in certain ranges:

y1 D y1i if y�1i 2 D1.y1i /

y2 D y2i if y�2i 2 D2.y2i /

D is a transformation from .y�1i ; y
�
2i / to .y1i ; y2i /. For example, if y1 and y2 are censored variables with

lower bound 0, then

y1 D y1i if y�1i > 0; y1 D 0 if y�1i � 0

y2 D y2i if y�2i > 0; y2 D 0 if y�2i � 0

There are three cases for the log likelihood of .y1i ; y2i /. The first case is that y1i D y�1i and y2i D y�2i . That
is, this observation is mapped to one point in the space of latent variables. The log likelihood is computed
from a bivariate normal density,

`i D ln
�
�2.

y1 � x1
0ˇ1

�1
;
y2 � x2

0ˇ2

�2
; �/

�
� ln �1 � ln �2

where �2.u; v; �/ is the density function for standardized bivariate normal distribution with correlation �,

�2.u; v; �/ D
e�.1=2/.u

2Cv2�2�uv/=.1��2/

2�.1 � �2/1=2

The second case is that one observed dependent variable is mapped to a point of its latent variable and the other
dependent variable is mapped to a segment in the space of its latent variable. For example, in the bivariate
censored model specified, if observed y1 > 0 and y2 D 0, then y1� D y1 and y2� 2 .�1; 0�. In general,
the log likelihood for one observation can be written as follows (the subscript i is dropped for simplicity):
If one set is a single point and the other set is a range, without loss of generality, let D1.y1/ D fy1g and
D2.y2/ D ŒL2; R2�,

`i D ln
�
�.
y1 � x1

0ˇ1

�1
/

�
� ln �1

C ln

"
ˆ

 
R2 � x2

0ˇ2 � �
y1�x1

0ˇ1
�1

�2

!
�ˆ

 
L2 � x2

0ˇ2 � �
y1�x1

0ˇ1
�1

�2

!#

where � and ˆ are the density function and the cumulative probability function for standardized univariate
normal distribution.
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The third case is that both dependent variables are mapped to segments in the space of latent variables. For
example, in the bivariate censored model specified, if observed y1 D 0 and y2 D 0, then y1� 2 .�1; 0�
and y2� 2 .�1; 0�. In general, if D1.y1/ D ŒL1; R1� and D2.y2/ D ŒL2; R2�, the log likelihood is

`i D ln
Z R1�x10ˇ1

�1

L1�x10ˇ1
�1

Z R2�x20ˇ2
�2

L2�x20ˇ2
�2

�2.u; v; �/ du dv

Selection Models
In sample selection models, one or several dependent variables are observed when another variable takes
certain values. For example, the standard Heckman selection model can be defined as

z�i D w0i
 C ui

zi D

�
1 if z�i > 0
0 if z�i � 0

yi D x0iˇ C �i if zi D 1

where ui and �i are jointly normal with 0 mean, standard deviations of 1 and � , respectively, and correlation
of �. Selection is based on the variable z, and y is observed when z has a value of 1. Least squares regression
that uses the observed data of y produces inconsistent estimates of ˇ. The maximum likelihood method is
used to estimate selection models. It is also possible to estimate these models by using Heckman’s method,
which is more computationally efficient. But it can be shown that the resulting estimates, although consistent,
are not asymptotically efficient under a normality assumption. Moreover, this method often violates the
constraint on the correlation coefficient j�j � 1.

The log-likelihood function of the Heckman selection model is written as

` D
X

i2fziD0g

lnŒ1 �ˆ.w0i
/�

C

X
i2fziD1g

(
ln�.

yi � xi
0ˇ

�
/ � ln � C lnˆ

 
w0i
 C �

yi�xi
0ˇ

�p
1 � �2

!)

The selection can be based on only one variable, but the selection can lead to several variables. For example,
selection is based on the variable z in the following switching regression model:

z�i D w0i
 C ui

zi D

�
1 if z�i > 0
0 if z�i � 0

y1i D x01iˇ1 C �1i if zi D 0

y2i D x02iˇ2 C �2i if zi D 1
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If z D 0, then y1 is observed. If z D 1, then y2 is observed. Because y1 and y2 are never observed at the
same time, the correlation between y1 and y2 cannot be estimated. Only the correlation between z and y1
and the correlation between z and y2 can be estimated. This estimation uses the maximum likelihood method.

A brief example of the SAS statements for this model can be found in “Example 29.4: Sample Selection
Model” on page 2042.

The Heckman selection model can include censoring or truncation. For a brief example of the SAS statements
for these models see “Example 29.5: Sample Selection Model with Truncation and Censoring” on page 2043.
The following example shows a variable yi that is censored from below at zero:

z�i D w0i
 C ui

zi D

�
1 if z�i > 0
0 if z�i � 0

y�i D x0iˇ C �i if zi D 1

yi D

�
y�i ify�i > 0
0 ify�i � 0

In this case, the log-likelihood function of the Heckman selection model needs to be modified as follows to
include the censored region:

` D
X
fi jziD0g

lnŒ1 �ˆ.w0i
/�

C

X
fi jziD1;yiDy

�
i
g

(
ln
�
�.
yi � xi

0ˇ

�
/

�
� ln � C ln

"
ˆ

 
w0i
 C �

yi�xi
0ˇ

�p
1 � �2

!#)

C

X
fi jziD1;yiD0g

ln
Z �xi0ˇ

�

�1

Z 1
�wi0


�2.u; v; �/ du dv

In case yi is truncated from below at 0 instead of censored, the likelihood function can be written as

` D
X
fi jziD0g

lnŒ1 �ˆ.w0i
/�

C

X
fi jziD1g

(
ln
�
�.
yi � xi

0ˇ

�
/

�
� ln � C ln

"
ˆ

 
w0i
 C �

yi�xi
0ˇ

�p
1 � �2

!#
� ln

�
ˆ.x0iˇ=�/

�)

Heckman’s Two-Step Selection Method

Sample selection bias arises from nonrandom selection of the sample from the population. A classic example
is using a sample of market wages for working women to estimate female labor supply function. This sample
is nonrandom because it includes only the wages of women whose market wage exceeds their home wage at
zero hours of work.
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A simple selection model can be written as the latent model

z�i D w0i
 C ui

zi D

�
1 if z�i > 0
0 if z�i � 0

yi D x0iˇ C �i if zi D 1

where ui and �i are jointly normal with 0 mean, standard deviations of 1 and � , respectively, and correlation
of �. The dependent variable yi (wage) is observed if the latent variable z�i (the difference between market
wage and reservation wage) is positive or if the indicator variable zi (labor force participation) is 1.

The model of interest that applies to the observations in the selected sample can be written as

E.yi jxi ; zi D 1/ D x0iˇ C ���.w
0
i
/

where �.w0i
/ D �.w
0
i
/=ˆ.w

0
i
/. Hence, the following regression equation is valid for the observations

for which zi D 1:

yi D x0iˇ C ���.w
0
i
/C vi

Therefore, estimates of ˇ that are obtained from the OLS regression of y on x by using the selected sample
(that is, the sample for which zi D 1) suffer from omitted variable bias if selection bias is really the case.
Although maximum likelihood estimation of ˇ is consistent and efficient, Heckman’s two-step method is
more frequently used. Heckman’s two-step method can be requested by specifying the HECKIT option of
the QLIM statement.

Heckman’s two-step method is as follows:

1. Obtain O
 , the estimate of the parameters of the probability that z�i > 0, by using regressors wi and the
binary dependent variable zi by probit analysis for the full sample. Compute O�i D �.w0i O
/.

2. Obtain Ǒ and Ǒ�, the estimates of ˇ and �� , by least squares regression of yi on xi and O�i by using
observations on the selected subsample.

The standard least squares estimators of the population variance �2 and the variances of the estimated
coefficients are incorrect. To test hypotheses, the correct ones need to be calculated. An estimator of �2 is

O�2 D
1

N1

N1X
iD1

e2i C
Ǒ2
�

1

N1

N1X
iD1

Oıi

where N1 is the selected subsample size, ei is the residual for the ith observation obtained from step 2, and
Oıi D O�

2
i C
O�iw0i O
 . Let X� be an N1 � .K C 1/ matrix with ith row Œx0i �i �, and define W similarly with ith

row w0i . Then the estimator of the asymptotic covariance of Œ Ǒ; Ǒ�� is

EstAsyVarŒ Ǒ; Ǒ�� D O�
2ŒX0�X��

�1ŒX0�.I � O�
2 O�/X� CQ�ŒX0�X��

�1

where O�2 D Ǒ2
�
= O�2, O� D diag. Oıi /, and

Q D O�2.X0� O�W/Est.Asy.Var. O
/.W0 O�X�/
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where Est.Asy.Var. O
/ is the estimator of the asymptotic covariance of the probit coefficients that are obtained
in step 1. When you specify the HECKIT option, PROC QLIM uses a numerical estimated asymptotic
variance.

When the HECKIT option is specified, PROC QLIM reports the corrected standard errors for Œ Ǒ; Ǒ��
automatically. However, if you need the conventional OLS standard errors, you can specify the
HECKIT(UNCORRECTED) option.

In the selected regression model, when the coefficient of �.w0i
/ is 0, you do not need Heckman’s two-step
estimation method; a simple regression of y on x produces consistent estimates for ˇ, and the OLS standard
errors are correct. Thus, a standard t test on Ǒ� (which uses the estimate from step 2 and the uncorrected
standard errors) is a valid test of the null hypothesis of no selection bias.

Although Heckman’s two-step method uses the OLS method in the second stage, you can request the ML
method by specifying the HECKIT(SECONDSTAGE=ML) option. When the second-stage method is the
ML method, the model for yi can be nonlinear.

Multivariate Limited Dependent Models
The multivariate model is similar to bivariate models. The generic form of the multivariate limited dependent
variable model is

y�1i D x01iˇ1 C �1i
y�2i D x02iˇ2 C �2i

:::

y�mi D x0miˇm C �mi

where m is the number of models to be estimated. The vector � has multivariate normal distribution with
mean 0 and variance-covariance matrix †. Similar to bivariate models, the likelihood may involve computing
multivariate normal integrations. This is done using Monte Carlo integration. (See Genz (1992); Hajivassiliou
and McFadden (1998).)

When the number of equations, N, increases in a system, the number of parameters increases at the rate of
N 2 because of the correlation matrix. When the number of parameters is large, sometimes the optimization
converges but some of the standard deviations are missing. This usually means that the model is over-
parameterized. The default method for computing the covariance is to use the inverse Hessian matrix. The
Hessian is computed by finite differences, and in over-parameterized cases, the inverse cannot be computed.
It is recommended that you reduce the number of parameters in such cases. Sometimes using the outer
product covariance matrix (COVEST=OP option) may also help.
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Variable Selection

Variable Selection

Variable selection uses either Akaike’s information criterion (AIC) or the Schwartz Bayesian criterion (SBC)
and either a forward selection method or a backward elimination method.

Forward selection starts from a small subset of variables. In each step, the variable that gives the largest
decrease in the value of the information criterion specified in the CRITER= option (AIC or SBC) is added.
The process stops when the next candidate to be added does not reduce the value of the information criterion
by more than the amount specified in the LSTOP= option in the MODEL statement.

Backward elimination starts from a larger subset of variables. In each step, one variable is dropped based on
the information criterion that is chosen.

Tests on Parameters

Tests on Parameters

In general, the hypothesis tested can be written as

H0 W h.�/ D 0

where h.�/ is an r by 1 vector valued function of the parameters � given by the r expressions specified in the
TEST statement.

Let OV be the estimate of the covariance matrix of O� . Let O� be the unconstrained estimate of � and Q� be the
constrained estimate of � such that h. Q�/ D 0. Let

A.�/ D @h.�/=@� j O�

Using this notation, the test statistics for the three kinds of tests are computed as follows.

The Wald test statistic is defined as

W D h
0

. O�/
8:A. O�/ OV A0. O�/9;�1h. O�/

The Wald test is not invariant to reparameterization of the model (Gregory and Veall 1985, Gallant 1987, p.
219). For more information about the theoretical properties of the Wald test, see Phillips and Park (1988).

The Lagrange multiplier test statistic is

LM D �
0

A. Q�/ QV A
0

. Q�/�

where � is the vector of Lagrange multipliers from the computation of the restricted estimate Q� .

The likelihood ratio test statistic is

LR D 2
�
L. O�/ � L. Q�/

�
where Q� represents the constrained estimate of � and L is the concentrated log-likelihood value.
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For each kind of test, under the null hypothesis the test statistic is asymptotically distributed as a �2 random
variable with r degrees of freedom, where r is the number of expressions in the TEST statement. The p-values
reported for the tests are computed from the �2.r/ distribution and are only asymptotically valid.

Monte Carlo simulations suggest that the asymptotic distribution of the Wald test is a poorer approximation
to its small sample distribution than that of the other two tests. However, the Wald test has the lowest
computational cost, since it does not require computation of the constrained estimate Q� .

The following is an example of using the TEST statement to perform a likelihood ratio test:

proc qlim;
model y = x1 x2 x3;
test x1 = 0, x2 * .5 + 2 * x3 = 0 /lr;

run;

Endogeneity and Instrumental Variables
The PROC QLIM models such as qualitative response or limited dependent variable models assume that the
errors are independent of the explanatory variables. If this assumption fails to hold, the distributional form
that the likelihood is based on is misspecified and the obtained coefficients are inconsistent.

To begin, consider a linear model

yi D y
�
i D ˇ0 C ˇ1x1i C � � � C ˇkxki C ui

Assume that E.u/ D 0, Cov.xj ; u/ D 0 for j D 1; : : : ; k � 1, and Cov.xk; u/ D � ¤ 0. Therefore, xk is
endogenous. The endogeneity comes from many sources, such as xk having measurement error or omitting
a variable that is correlated with xk . If you ignore the endogeneity, you can estimate this model in PROC
QLIM as follows (assuming k D 4):

proc qlim data=a;
model y = x1 x2 x3 x4;

run;

However, this approach produces inconsistent maximum likelihood estimates. To obtain consistent maximum
likelihood estimates, you should consider the joint density of the dependent variable and the endogenous
variables. To do this in PROC QLIM, you need at least one instrument—that is, an observable variable, z1—
that is not in the structural equation and that satisfies two conditions: z1 is exogenous (that is, Cov.z1; u/ D 0),
and z1 must be correlated with the endogenous regressor xk . Then, you can model xk as

xki D �0 C �1x1i C � � � C �k�1x.k�1/i C �z1i C �i

You can now write this reduced form equation along with the structural equation to obtain the consistent
maximum likelihood estimates as follows:

proc qlim data=a;
model y = x1 x2 x3 x4;
model x4 = x1 x2 x3 z1;

run;
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Estimating the structural model together with the reduced form models for the endogenous explanatory
variables gives you the full information maximum likelihood (FIML) estimates. Because of the linearity of
the structural model, you can estimate it efficiently and more simply by using the two-stage least squares
estimator. However, PROC QLIM handles nonlinear models such as qualitative response and limited
dependent variable models, and in their estimation it maximizes the corresponding joint likelihood function
(for more information and an application see Wooldridge (2010, Section 15.7.3)). In the case of endogeneity,
when the reduced form models for the endogenous explanatory variables are written along with the structural
model, PROC QLIM maximizes the likelihood function that is obtained from the joint density of the response
variable and the endogenous explanatory variables. For example, consider the following censored regression
model in which one of the explanatory variables is a continuous endogenous variable:

y�1i D ˛y2i C z01iˇ C ui
y2i D z0i� C �i

y1i D

�
y�1i if y�1i > 0
0 if y�1i � 0

The exogenous explanatory variables are z1i , and the continuous endogenous explanatory variable is y2i .

The likelihood function to maximize is

L D
Y

i2fy1i>0g

f .y1i ; y2i / �
Y

i2fy1iD0g

Z 0

�1

f .y�1i ; y2i /dy
�
1i

where f .y�1i ; y2i / is the joint density of y�1i and y2i . Note that y1i is substituted for y�1i when y1i > 0. If

you assume .ui ; �i /
i id
� N.0;†/ with† D

�
�2u �

� �2�

�
, then, by using f .y�1i ; y2i / D f .y

�
1i jy2i / � f .y2i /,

you can write the likelihood function for each i as a multiplication of two parts. The first part is the probability
density function of the normal distribution with mean z0i� and variance �2� , and the second part follows
a Tobit model that has latent mean ˛y2i C z01i� C .�=�

2
� /.y2i � z0i�/ and variance �2u � .�

2=�2� /. Then,
you can obtain the log-likelihood function by taking the log of this multiplication and summing over i (for
more information, see Wooldridge (2002, Section 16.6.2)). This is the log-likelihood function that PROC
QLIM maximizes. The parameters . Ǫ ; Ǒ; O�; O�2u ; O�

2
� ; O�/ that are obtained from this maximization are the

FIML estimators. Assuming that the latent model includes two instrumental variables and two exogenous
explanatory variables, you can estimate this model in PROC QLIM as follows:

proc qlim data=a;
model y1 = y2 z11 z12 / censored(lb=0);
model y2 = z11 z12 z21 z22;

run;

For simple examples like the preceding ones, you can derive the likelihood function easily. However, as the
number of endogenous explanatory variables increases, if these variables have a discontinuous nature, if
simultaneity among equations exists, or if a combination of these occurs, then the derivation of the likelihood
function becomes cumbersome, or, in some cases, the likelihood function does not even have a closed
analytical form.

PROC QLIM can handle endogeneity regardless of the nature of the endogenous explanatory variables for
a single structural model. In the case of one endogenous explanatory variable, PROC QLIM reports the
FIML estimates that are calculated by using the analytical likelihood function that is obtained from the joint
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distribution of the dependent variable and the endogenous variable. When there is more than one endogenous
explanatory variable, the analytical form of the likelihood function is usually not available; in this case
PROC QLIM reports the simulated maximum likelihood estimates. For the simulated maximum likelihood
estimation method, PROC QLIM uses the Geweke-Hajivassiliou-Keane (GHK) simulator (see, among others,
Hajivassiliou, McFadden, and Ruud (1996)) to simulate the joint distribution of the dependent variable and
the endogenous variables. The simulation is facilitated by assuming that the error terms in the latent models
for the dependent variable and the endogenous explanatory variables are distributed as multivariate normal.

When you estimate a model in PROC QLIM, you can take the endogeneity into account by writing the
structural model along with the reduced form models for each endogenous variable. Examples are provided
in the following sections.

Probit Model with a Continuous Endogenous Explanatory Variable

Consider a probit model that contains a single endogenous explanatory variable in addition to two instruments
and two exogenous explanatory variables. The model is

y�1i D ˛1y2i C ˇ1z1i C ˇ2z2i C ui

y�2i D �1z1i C �2z2i C �3z3i C �4z4i C �i

y1i D

�
1 if y�1i > 0
0 if y�1i � 0

y2i D y�2i

where Cov.u; �/ D �. You can estimate this model by using the following statements:

proc qlim data=a;
model y1 = y2 z1 z2 / discrete;
model y2 = z1 z2 z3 z4;

run;

Probit Model with a Binary Endogenous Explanatory Variable

Consider a probit model that contains a single binary endogenous explanatory variable in addition to two
instruments and two exogenous explanatory variables. The model is

y�1i D ˛1y2i C ˇ1z1i C ˇ2z2i C ui

y�2i D �1z1i C �2z2i C �3z3i C �4z4i C �i

y1i D

�
1 if y�1i > 0
0 if y�1i � 0

y2i D

�
1 if y�2i > 0
0 if y�2i � 0

where Cov.u; �/ D �. You can estimate this model by using the following statements:

proc qlim data=a;
model y1 = y2 z1 z2 / discrete;
model y2 = z1 z2 z3 z4 / discrete;

run;
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Probit Model with a Censored Endogenous Explanatory Variable

Consider a probit model that contains a single censored (below zero) endogenous explanatory variable in
addition to two instruments and two exogenous explanatory variables. The model is

y�1i D ˛1y2i C ˇ1z1i C ˇ2z2i C ui

y�2i D �1z1i C �2z2i C �3z3i C �4z4i C �i

y1i D

�
1 if y�1i > 0
0 if y�1i � 0

y2i D

�
y�2i ify�2i > 0
0 ify�2i � 0

where Cov.u; �/ D �. You can estimate this model by using the following statements:

proc qlim data=a;
model y1 = y2 z1 z2 / discrete;
model y2 = z1 z2 z3 z4 / censored(lb=0);

run;

Censored Regression Model with a Binary Endogenous Explanatory Variable

Consider a Type 1 Tobit model that contains a single binary endogenous explanatory variable in addition to
two instruments and two exogenous explanatory variables. The model is

y�1i D ˛1y2i C ˇ1z1i C ˇ2z2i C ui

y�2i D �1z1i C �2z2i C �3z3i C �4z4i C �i

y1i D

�
y�1i ify�1i > 0
0 ify�1i � 0

y2i D

�
1 if y�2i > 0
0 if y�2i � 0

where Cov.u; �/ D �. You can estimate this model by using the following statements:

proc qlim data=a;
model y1 = y2 z1 z2 / censored(lb=0);
model y2 = z1 z2 z3 z4 / discrete;

run;
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Censored Regression Model with Binary and Continuous Endogenous Explanatory Variables

Consider a Type 1 Tobit model that contain binary and continuous endogenous explanatory variables in
addition to two instruments and two exogenous explanatory variables. The model is

y�1i D ˛1y21i C ˛2y22i C ˇ1z1i C ˇ2z2i C ui

y�21i D �11z1i C �12z2i C �13z3i C �14z4i C �1i

y�22i D �21z1i C �22z2i C �23z3i C �24z4i C �2i

y1i D

�
y�1i if y�1i > 0
0 if y�1i � 0

y21i D

�
1 if y�21i > 0
0 if y�21i � 0

y22i D y�22i

where Cov.u; �1; �2/ D �. You can estimate this model by using the following statements:

proc qlim data=a;
model y1 = y21 y22 z1 z2 / censored(lb=0);
model y21 = z1 z2 z3 z4 / discrete;
model y22 = z1 z2 z3 z4;

run;

Probit Model with Binary, Censored, and Truncated Endogenous Explanatory Variables

Consider a probit model that contains binary, censored (below zero), and truncated (below zero) endogenous
explanatory variables. The model is

y�1i D ˛1y21i C ˛2y22i C ˛3y23i C ui

y�21i D �11z1i C �12z2i C �13z3i C �14z4i C �1i

y�22i D �21z1i C �22z2i C �23z3i C �24z4i C �2i

y�23i D �31z1i C �32z2i C �33z3i C �34z4i C �3i

y1i D

�
1 if y�1i > 0
0 if y�1i � 0

y21i D

�
1 if y�21i > 0
0 if y�21i � 0

y22i D

�
y�22i ify�22i > 0
0 if y�22i � 0

y23i D y�23i if y�23i > 0

where z1; : : : ; z4 are the instrumental variables that are independent of the errors. You can estimate this
model by using the following statements:
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proc qlim data=a;
model y1 = y21 y22 y23 / discrete;
model y21 = z1 z2 z3 z4 / discrete;
model y22 = z1 z2 z3 z4 / censored(lb=0);
model y23 = z1 z2 z3 z4 / truncated(lb=0);

run;

Note that the dependent variable y1 should not occur in the models for the endogenous explanatory variables,
because this causes inconsistent coefficient estimates. In other words, you should write the models for the
endogenous explanatory variables as reduced form models. PROC QLIM does not handle simultaneous
equations models.

Test for Endogeneity

PROC QLIM has two ways to test the null hypothesis that an endogenous explanatory variable (EEV) is
in fact exogenous. In the case of a single EEV, the first testing method involves a likelihood ratio test of
H0 W _rho D 0. For example, consider the probit model with a binary endogenous explanatory variable that
was considered earlier; y2 is exogenous if the error term in the model for y�1 is uncorrelated with the error
term in the model for y�2 . Therefore, testing to determine whether this correlation is 0 or not provides an
endogeneity test for y2. You can do this in PROC QLIM as follows:

proc qlim data=a;
model y1 = y2 z1 z2 / discrete;
model y2 = z1 z2 z3 z4 / discrete;
test _rho = 0 / LR;

run;

Failing to reject the null hypothesis favors the decision that y2 is exogenous in the model for y1.

When there are two or more EEVs, the test becomes the joint likelihood ratio test of whether corresponding
correlations are 0 or not.

The second testing method is similar to the approach of Rivers and Vuong (1988). Considering the same
model, you can write

ui D ��i C ei

where � D �=�2� and e is independent of zs and �. You can now write

y�1i D ˛1y2i C ˇ1z1i C ˇ2z2i C ��i C ei

Testing H0 W � D 0 is the same as testing whether ui is correlated with �i or testing whether y2i is
endogenous or not. Because �i are unobserved, you can replace them with the OLS residuals from the model
for y�2i and apply a robust t test. Note that even though y2i is binary (or censored), the test is still correct
under H0.
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This approach can be summarized as a two-step procedure. In the first step, generated regressors—that is,
the OLS residuals from the models for each of the EEVs—are obtained. In the second step, the structural
model that includes the generated regressors as additional explanatory variables is estimated by the maximum
likelihood method and the joint significance of these generated regressors is tested by the Wald test.

In PROC QLIM, you can apply the second method for the same test that was considered previously as
follows:

proc qlim data=a;
model y1 = y2 z1 z2 / discrete endotest(y2);
model y2 = z1 z2 z3 z4 / discrete;

run;

Overidentification Test

In PROC QLIM you can test the validity of instrumental variables (IVs) by specifying the OVERID option
in the ENDOGENOUS or MODEL statement. The OVERID test is a maximum likelihood version of
the overidentifying restrictions test in the IV framework. If you have more IVs than are necessary for
identification—that is, overidentifying IVs—you can use them to test the validity of your IVs. When you
use the OVERID option to specify the overidentifying IVs, it applies the likelihood ratio test of the joint
significance of these IVs, included as additional explanatory variables in the structural model that it estimates
by the MLE jointly with the reduced form models. In effect, you test whether the overidentifying IVs are
correlated with the error term in the structural model. You specify the reduced form models through the
overidentifying IVs. The structural model is the model that includes the OVERID option. For example,
consider the probit model that contains a continuous endogenous explanatory variable. You can consider z3
or z4 in the model for y2 as an overidentifying IV; therefore, you can specify the OVERID test as follows:

proc qlim data=a;
model y1 = y2 z1 z2 / discrete overid(y2.z4);
model y2 = z1 z2 z3 z4;

run;

In this case, PROC QLIM estimates the structural model y1, including the overidentifying IV z4 as an
additional explanatory variable in this model, jointly with the reduced form model y2. Then it uses the
likelihood ratio test to test the hypothesis that the overidentifying IV is insignificant. Rejecting this hypothesis
raises doubts about the validity of the instruments z3 and z4.

Note that, as long as you have continuous endogenous explanatory variables, the test result is invariant to
which overidentifying IVs you specify in the test.
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Panel Data Analysis
You can use panel data to estimate the random effects in linear, censored response, truncated response,
discrete choice, and stochastic frontier models.

Random-Effects Models for Panel Data

The general form of a nonlinear random-effects model is defined by the density for an observed random
variable, yit , as follows1

f .yit jxit ; �i / D g.yit ; x0itˇ; �i I�/

where � is a vector of ancillary parameters such as a scale parameter or an overdispersion parameter and �i ,
i D 1; : : : ; N , embodies the group-specific heterogeneity, which is unobservable and has the density

f .�i / D h.�i I�/

There are Ti observations for group i. For example, in the case of a random-effects Tobit model, yit is
specified as

y�it D x0itˇ C �it ; t D 1; : : : ; Ti ; i D 1; : : : ; N

yit D

�
y�it ify�it > 0
0 ify�it � 0

where

�it D �i C vit

vit jxi ; �i � N.0; �2/

�i jxi � N.0; �2�/

where xi contains xit for all t and � consists of � and ��. Therefore, for this model

f .yit jxit ; �i / D f1 �ˆŒ.x0itˇ C �i /=��g
1ŒyitD0�f.1=�/�Œ.yit � x0itˇ � �i /=��g

1Œyit>0�

and

f .�i / D �.�i=��/

where ˆ.�/ is the cumulative density function and �.�/ is the probability density function of the standard
normal distribution and 1Œ�� is the indicator function.

By construction, the Ti observations in group i are correlated and jointly distributed with a distribution that
does not factor into the product of the marginal distributions. To be able to drive the joint distribution of
the Ti C 1 random variables, f .yi1; yi2; : : : ; yiTi ; �i jxi ;ˇI�/, the assumption that the Ti observations are
independent conditional on �i is important. Under this assumption the joint distribution can be written as

f .yi1; yi2; : : : ; yiTi ; �i jxi ;ˇI�/ D f .yi1; yi2; : : : ; yiTi jxi ;ˇI�/f .�i /

D

TiY
tD1

g.yit ; x0itˇ; �i I�/h.�i I�/

1The i subscript represents individuals, and the t subscript represents time.
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In order to form the likelihood function for the observed data, the unobserved component, �i , must be
integrated out. For individual i

Li D f .yi1; yi2; : : : ; yiTi jxi ;ˇI�/ D
Z
�

24 TiY
tD1

g.yit ; x0itˇ; �i I�/

35 h.�i I�/d�i
Therefore, the log-likelihood function for the observed data becomes

lnL D
NX
iD1

ln

24Z
�

0@ TiY
tD1

g.yit ; x0itˇ; �i I�/

1A h.�i I�/d�i
35

In most cases, the integral in the square brackets does not have a closed form. The following subsections
describe three approaches to this integration.

Simulated Maximum Likelihood
You can use simulation to approximate the integral. First, note that

Z
�

0@ TiY
tD1

g.yit ; x0itˇ; �i I�/

1A h.�i I�/d�i D EŒF.�i I�/�
The function is smooth, continuous, and continuously differentiable. By the law of large numbers, if
.�i1; �i2; : : : ; �iR/ is a sample of iid draws from h.�i I�/, then

plim
1

R

RX
rD1

F.�ir I�/ D EŒF.�i I�/�

This operation is implemented by simulation that uses a random-number generator. PROC QLIM inserts the
simulated integral in the log likelihood to obtain the simulated log likelihood

lnLSimulated D
NX
iD1

ln

24 1
R

RX
rD1

0@ TiY
tD1

g.yit ; x0itˇ; �ir I�/

1A35
and maximizes the simulated log likelihood with respect to the parameters ˇ and � .

Under certain assumptions (Greene 2001), the simulated likelihood estimator and the maximum likelihood
estimator are equivalent. For this equivalence result to hold, the number of draws, R, must increase faster
than the number of observations, N. For this reason, if the NDRAW option is not specified, then by default, it
is tied to the sample size by using the rule R D N 1Cı , where ı D 1=2.

The use of independent random draws in simulation is conceptually straightforward, and the statistical
properties of the simulated maximum likelihood estimator are easy to derive. However, simulation is a very
computationally intensive technique. Moreover, the simulation method itself contributes to the variation of
the simulated maximum likelihood estimator; see, for example, Geweke (1995). There are other ways to
take draws that can provide greater accuracy by covering the domain of the integral more uniformly and
by lowering the simulation variance (Train 2009 section 9.3). Quas–Monte Carlo methods (QMC), for
example, are based on an integration technique that replaces the pseudorandom draws of Monte Carlo (MC)
integration with a sequence of judiciously selected nonrandom points that provide more uniform coverage
of the domain of the integral. Therefore, the advantage of QMC integration over MC integration is that for
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some types of sequences, the accuracy is far greater, convergence is much faster, and the simulation variance
is smaller. QMC methods are surveyed in Bhat (2001), Sloan and Woźniakowski (1998), and Morokoff and
Caflisch (1995). Besides MC simulation, PROC QLIM offers the QMC integration method that uses Halton
sequences.

QMC Method Using the Halton Sequence
Halton sequences (Halton 1960) provide a uniform coverage for each observations’s integral, and they
decrease the simulation variance by inducing a negative correlation over the draws for each observation. A
Halton sequence is constructed deterministically in terms of a prime number as its base. For example, the
following sequence is the Halton sequence for 2:

1=2; 1=4; 3=4; 1=8; 5=8; 3=8; 7=8; 1=16; 9=16; : : :

For more information about how to generate a Halton sequence, see Train (2009) section 9.3.3.

If you use the QMC method, one long Halton sequence is created, and then part of the sequence (or the
whole sequence, depending on whether you decide to discard the initial elements of the sequence2) is used
in groups. Each group of consequent elements constitutes the “draws” for each cross-sectional observation.
This way, each subsequence fills in the gaps for the previous subsequences, and the draws for one observation
tend to be negatively correlated with those for the previous observation.

When the number of draws used for each observation rises, the coverage for each observation improves. This
improvement in turn improves the accuracy; however, the negative covariance across observations diminishes.
Because Halton draws are far more effective than random draws for simulation, a small number of Halton
draws provide relatively good integration (Spanier and Maize 1991).

The Halton draws are for a uniform density. PROC QLIM evaluates the inverse cumulative standard normal
density for each element of the Halton sequence to obtain draws from a standard normal density.

Approximation by Hermite Quadrature
This method is the Butler and Moffitt (1982) approach, which is based on models in which �i has a normal
distribution. If �i is normally distributed with zero mean, then

Z
�

0@ TiY
tD1

g.yit ; x0itˇ; �i I�/

1A h.�i I�/d�i
D

1

��
p
2�

Z C1
�1

TiY
tD1

g.yit ; x0itˇ; �i I�/ exp

 
��2i
2�2�

!
d�i

Let ri D �i=.��
p
2/. Then �i D .��

p
2/ri and d�i D .��

p
2/dri . Making the change of variable and

letting the error effects be additive produce

Li D
1
p
�

Z C1
�1

exp.�r2i /

24 TiY
tD1

g.yit ; x0itˇ C .��
p
2/ri I�/

35 dri
2When sequences are created in multiple dimensions, the initial part of the series is usually eliminated because the initial terms

of multiple Halton sequences are highly correlated. However, there is no such correlation for a single dimension.
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This likelihood function is in a form that can be approximated accurately by using Gauss-Hermite quadrature,
which eliminates the integration. Thus, the log-likelihood function can be approximated with

lnLh D
NX
iD1

ln

24 1
p
�

HX
hD1

wh

TiY
tD1

g.yit ; x0itˇ C .��
p
2/ri I�/

35
where wh and rh are the weights and nodes for the Hermite quadrature of degree H. PROC QLIM maximizes
lnLh when the Hermite quadrature option is specified (METHOD=HERMITE in the RANDOM statement).

Bayesian Analysis
To perform Bayesian analysis, you must specify a BAYES statement. Unless otherwise stated, all options in
this section are options in the BAYES statement.

By default, PROC QLIM uses the random walk Metropolis algorithm to obtain posterior samples. For the
implementation details of the Metropolis algorithm in PROC QLIM, such as the blocking of the parameters
and tuning of the covariance matrices, see the sections “Blocking of Parameters” on page 2011 and “Tuning
the Proposal Distribution” on page 2011.

The Bayes theorem states that

p.� jy/ / �.�/L.yj�/

where � is a parameter or a vector of parameters and �.�/ is the product of the prior densities that are
specified in the PRIOR statement. The term L.yj�/ is the likelihood associated with the MODEL statement.

Blocking of Parameters

In a multivariate parameter model, all the parameters are updated in one single block (by default or when
you specify the SAMPLING=MULTIMETROPOLIS option). This could be inefficient, especially when
parameters have vastly different scales. As an alternative, you could update the parameters one at the time
(by specifying SAMPLING=UNIMETROPOLIS).

Tuning the Proposal Distribution

One key factor in achieving high efficiency of a Metropolis-based Markov chain is finding a good proposal
distribution for each block of parameters. This process is called tuning. The tuning phase consists of a
number of loops controlled by the options MINTUNE and MAXTUNE. The MINTUNE= option controls
the minimum number of tuning loops and has a default value of 2. The MAXTUNE= option controls the
maximum number of tuning loops and has a default value of 24. Each loop is iterated the number of times
specified by the NTU= option, which has a default of 500. At the end of every loop, PROC QLIM examines
the acceptance probability for each block. The acceptance probability is the percentage of NTU proposed
values that have been accepted. If this probability does not fall within the acceptance tolerance range (see the
following section), the proposal distribution is modified before the next tuning loop.

A good proposal distribution should resemble the actual posterior distribution of the parameters. Large
sample theory states that the posterior distribution of the parameters approaches a multivariate normal
distribution (see Gelman et al. 2004, Appendix B; Schervish 1995, Section 7.4). That is why a normal
proposal distribution often works well in practice. The default proposal distribution in PROC QLIM is the
normal distribution.
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Scale Tuning
The acceptance rate is closely related to the sampling efficiency of a Metropolis chain. For a random walk
Metropolis, a high acceptance rate means that most new samples occur right around the current data point.
Their frequent acceptance means that the Markov chain is moving rather slowly and not exploring the
parameter space fully. A low acceptance rate means that the proposed samples are often rejected; hence the
chain is not moving much. An efficient Metropolis sampler has an acceptance rate that is neither too high
nor too low. The scale c in the proposal distribution q.�j�/ effectively controls this acceptance probability.
Roberts, Gelman, and Gilks (1997) show that if both the target and proposal densities are normal, the optimal
acceptance probability for the Markov chain should be around 0.45 in a one-dimension problem and should
asymptotically approach 0.234 in higher-dimension problems. The corresponding optimal scale is 2.38,
which is the initial scale that is set for each block.

Because of the nature of stochastic simulations, it is impossible to fine-tune a set of variables so that the
Metropolis chain has exactly the desired acceptance rate that you want. In addition, Roberts and Rosenthal
(2001) empirically demonstrate that an acceptance rate between 0.15 and 0.5 is at least 80% efficient, so there
is really no need to fine-tune the algorithms to reach an acceptance probability that is within a small tolerance
of the optimal values. PROC QLIM works with a probability range, determined by TargetAcceptance˙0:075.
If the observed acceptance rate in a given tuning loop is less than the lower bound of the range, the scale is
reduced; if the observed acceptance rate is greater than the upper bound of the range, the scale is increased.
During the tuning phase, a scale parameter in the normal distribution is adjusted as a function of the observed
acceptance rate and the target acceptance rate. PROC QLIM uses the following updating scheme: 3

cnew D
ccur �ˆ�1.popt=2/

ˆ�1.pcur=2/

where ccur is the current scale, pcur is the current acceptance rate, and popt is the optimal acceptance
probability.

Covariance Tuning
To tune a covariance matrix, PROC QLIM takes a weighted average of the old proposal covariance matrix
and the recent observed covariance matrix, based on the number samples (as specified by the NTU= option)
NTU samples in the current loop. The formula to update the covariance matrix is:

COVnew D 0:75 COVcur C 0:25 COVold

There are two ways to initialize the covariance matrix:

� The default is an identity matrix that is multiplied by the initial scale of 2.38 and divided by the square
root of the number of estimated parameters in the model. A number of tuning phases might be required
before the proposal distribution is tuned to its optimal stage, because the Markov chain needs to spend
time to learn about the posterior covariance structure. If the posterior variances of your parameters vary
by more than a few orders of magnitude, if the variances of your parameters are much different from
1, or if the posterior correlations are high, then the proposal tuning algorithm might have difficulty
forming an acceptable proposal distribution.

3 Roberts and associates demonstrate that the relationship between acceptance probability and scale in a random walk Metropolis
scheme is p D 2ˆ

�
�
p
Ic=2

�
, where c is the scale, p is the acceptance rate, ˆ is the CDF of a standard normal, and I �

Ef Œ.f
0.x/=f .x//2�, f .x/ is the density function of samples (Roberts, Gelman, and Gilks 1997; Roberts and Rosenthal 2001).

This relationship determines the updating scheme, with I replaced by the identity matrix to simplify calculation.
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� Alternatively, you can use a numerical optimization routine, such as the quasi-Newton method, to find
a starting covariance matrix. The optimization is performed on the joint posterior distribution, and the
covariance matrix is a quadratic approximation at the posterior mode. In some cases this is a better
and more efficient way of initializing the covariance matrix. However, there are cases, such as when
the number of parameters is large, where the optimization could fail to find a matrix that is positive
definite. In those cases, the tuning covariance matrix is reset to the identity matrix.

A by-product of the optimization routine is that it also finds the maximum a posteriori (MAP) estimates with
respect to the posterior distribution. The MAP estimates are used as the initial values of the Markov chain.

For more information, see the section “INIT Statement” on page 1976.

Initial Values of the Markov Chains

You can assign initial values to any parameters. (For more information, see the INIT statement.) If you use
the optimization option PROPCOV=, then PROC QLIM starts the tuning at the optimized values. This option
overwrites the provided initial values. If you specify the RANDINIT option, the information that the INIT
statement provides is overwritten.

Aggregation of Multiple Chains

When you want to exploit the possibility of running several MCMC instances at the same time (NTRDS=n>1),
you face the problem of aggregating the chains. In ordinary applications, each MCMC instance can easily
obtain stationary samples from the entire posterior distribution. In these applications, you can use the option
AGGREGATION=UNWEIGHTED. This option piles up one chain on top of another and makes no particular
adjustment. However, when the posterior distribution is characterized by multiple distinct posterior modes,
some of the MCMC instances fail to obtain stationary samples from the entire posterior distribution. You
can use the option AGGREGATION=WEIGHTED when the posterior samples from each MCMC instance
approximate well only a part of the posterior distribution.

The main idea behind the option AGGREGATION=WEIGHTED is to consider the entire posterior distribution
to be similar to a mixture distribution. When you are sampling with multiple threads, each MCMC instance
samples from one of the mixture components. Then the samples from each mixture component are aggregated
together using a resampling scheme in which weights are proportional to the nonnormalized posterior
distribution.

Description of the Algorithm
The preliminary step of the aggregation that is implied by the option AGGREGATION=WEIGHTED is to
run several (K) independent instances of the MCMC algorithm. Each instance searches for a set of stationary
samples. Notice that the concept of stationarity is weaker: each instance might be able to explore not the
entire posterior but only portions of it. In the next equation, each column represents the output from one
MCMC instance,

0BB@
x11
x21
: : :

xn1

1CCA
0BB@
x12
x22
: : :

xn2

1CCA : : :
0BB@
x1K
x2K
: : :

xnK

1CCA � globally/locally sampled from the posterior
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If the length of each chain is less than n, you can augment the corresponding chain by subsampling the chain
itself. Each chain is then sorted with respect to the nonnormalized posterior density: �.xŒ1�:/ � �.xŒ2�:/ �
� � ��.xŒn�:/. Therefore,0BB@

x11
x21
: : :

xn1

1CCA
0BB@
x12
x22
: : :

xn2

1CCA : : :
0BB@
x1K
x2K
: : :

xnK

1CCA!
0BB@
xŒ1�1
xŒ2�1
: : :

xŒn�1

1CCA
0BB@
xŒ1�2
xŒ2�2
: : :

xŒn�2

1CCA : : :
0BB@
xŒ1�K
xŒ2�K
: : :

xŒn�K

1CCA
The final step is to use a multinomial sampler to resample each row i with weights proportional to the
nonnormalized posterior densities:

ex.i�1/KC1;ex.i�1/KC2; : : : ;ex.i�1/KCK � Multinom
�
xŒi�1; xŒi�2; : : : ; xŒi�K I�.xŒi�1/; �.xŒi�2/; : : : ; �.xŒi�K/

�
The resulting posterior sample

ex1;ex2; : : : ;exK ; : : : ;ex.i�1/KC1;ex.i�1/KC2; : : : ;ex.i�1/KCK ; : : : ;ex.n�1/KC1;ex.n�1/KC2; : : : ;exnK
is a good approximation of the posterior distribution that is characterized by multiple modes.

Automated Initialization of MCMC

The MCMC methods can generate samples from the posterior distribution. The correct implementation of
these methods often requires the stationarity analysis, the convergence analysis and the accuracy analysis of
the posterior samples. These analyses usually imply the following:

� initialization of the proposal distribution

� initialization of the chains (starting values)

� determination of the burn-in

� determination of the length of the chains.

In more general terms, this determination is equivalent to deciding whether the samples are drawn from the
posterior distribution (stationarity analysis), and whether the number of samples is large enough to accurately
approximate the posterior distribution (accuracy analysis). You can use the AUTOMCMC option to automate
and facilitate the stationary analysis and the accuracy analysis.

Description of the Algorithm
The algorithm consists of two phases. In the first phase, the stationarity phase, the algorithm tries to generate
stationary samples from the posterior distribution. In the second phase, the accuracy phase, the algorithm
searches for an accurate representation of the posterior distribution. The algorithm implements the following
tools:

� Geweke test to check stationarity

� Heidelberger-Welch test to check stationarity and provide a proxy for the burn-in

� Heidelberger-Welch half-test to check the accuracy of the posterior mean
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� Raftery-Lewis test to check the accuracy of a given percentile (indirectly proving a proxy for the
number of required samples)

� effective sample size analysis to determine a proxy of the number of required samples

During the stationarity phase, the algorithm searches for stationarity. The number of attempts that the
algorithm makes is determined by the option ATTEMPTS=number . During each attempt, a preliminary
tuning stage chooses a proposal distribution for the MCMC sampler. At the end of the preliminary tuning
phase, the algorithm analyzes tests for the stationarity of the samples. If the percentage of successful
stationary tests is equal to or greater than the percentage that is indicated by the option TOL=value, then
the posterior sample is considered to be stationary. If the sample cannot be considered stationary, then the
algorithm attempts to achieve stationarity by changing some of the initialization parameters as follows:

� increasing the number of tuning samples (NTU)

� increasing the number of posterior samples (NMC)

� increasing the burn-in (NBI)

Figure 29.8 shows a flowchart of the algorithm as it searches for stationarity.

Figure 29.8 Flowchart of the AUTOMCMC Algorithm: Stationarity Analysis
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You can initialize NMC=M, NBI=B, and NTU=T during the stationarity phase by specifying NMC, NBI,
and NTU as options in the BAYES statement. You can also change the minimum stationarity acceptance
ratio of successful stationarity tests that are needed to exit the stationarity phase. By default, TOL=0.95. For
example:

proc qlim data=dataset;
...;
bayes nmc=M nbi=B ntu=T automcmc=( stationarity=(tol=0.95) );
...;

run;

During the accuracy phase, the algorithm attempts to determine how many posterior samples are needed.
The number of attempts is determined by the option ATTEMPTS=number . You can choose between two
different approaches to study the accuracy:

� accuracy analysis based on the effective sample size (ESS)

� accuracy analysis based on the Heidelberger-Welch half-test and the Raftery-Lewis test

If you choose the effective sample size approach, you must provide the minimum number of effective samples
that are needed. You can also change the tolerance for the ESS accuracy analysis (by default, TOL=0.95).
For example:

proc qlim data=dataset;
...;
bayes automcmc=(targetess=N accuracy=(tol=0.95));
...;

run;

Figure 29.9 shows a flowchart of the algorithm based on the effective sample size approach to determine
whether the samples provide an accurate representation of the posterior distribution.
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Figure 29.9 Flowchart of the AUTOMCMC Algorithm: Accuracy Analysis Based on the ESS

If you choose the accuracy analysis based on the Heidelberger-Welch half-test and the Raftery-Lewis test
(the default option), then you might want to choose a posterior quantile of interest for the Raftery-Lewis test
(by default, 0.025). You can also change the tolerance for the accuracy analysis (by default, TOL=0.95).
Notice that the Raftery-Lewis test produces a proxy of the number of posterior sample required. In each
attempt, the current number of posterior samples is compared to this proxy. If the proxy is greater than the
current nmc, then the algorithm reinitializes itself. To control this reinitialization, you can use the option
RLLIMITS=(LB=lb UB=ub). In particular, there are three cases

� if the proxy is greater than ub, then NMC is set equal to ub,

� if the proxy is less than lb, then NMC is set equal to lb,

� if lb is less than the proxy, which is less than ub, then NMC is set equal to the proxy.

For example:

proc qlim data=dataset;
...;
bayes automcmc=( accuracy=(tol=0.95 targetstats=(rllimits=(lb=k1 ub=k2))) )

raftery(q=0.025);
...;

run;
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Figure 29.10 shows a flowchart of the algorithm based on the Heidelberger-Welch half-test and the Raftery-
Lewis test approach to determine whether the posterior samples provide an accurate representation of the
posterior distribution.

Figure 29.10 Flowchart of the AUTOMCMC Algorithm: Accuracy Analysis Based on the Heidelberger-Welch
Half-test and the Raftery-Lewis Test

Prior Distributions
The PRIOR statement is used to specify the prior distribution of the model parameters. You must specify a
list of parameters, a tilde Ï, and then a distribution with its parameters. You can specify multiple PRIOR
statements to define independent priors. Parameters that are associated with a regressor variable are referred
to by the name of the corresponding regressor variable.

You can specify the special keyword _REGRESSORS to consider all the regressors of a model. If multiple
prior statements affect the same parameter, the prior that is specified is used. For example, in a regression with
three regressors (X1, X2, X3) the following statements imply that the prior on X1 is NORMAL(MEAN=0,
VAR=1), the prior on X2 is GAMMA(SHAPE=3, SCALE=4), and the prior on X3 is UNIFORM(MIN=0,
MAX=1):

...
prior _Regressors ~ uniform(min=0, max=1);
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prior X1 X2 ~ gamma(shape=3, scale=4);
prior X1 ~ normal(mean=0, var=1);
...

If a parameter is not associated with a PRIOR statement or if some of the prior hyperparameters are missing,
then the following default choices are considered:

Table 29.2 Default values for prior distributions.

PRIOR distribution Hyperparameter1 Hyperparameter2 Min Max Parameters Default Choice
NORMAL MEAN=0 VAR=1E6 �1 1 Regression-Location-Threshold
IGAMMA SHAPE=2.000001 SCALE=1 > 0 1 Scale

SQIGAMMA SHAPE=2.000001 SCALE=1 > 0 1 Scale
GAMMA SHAPE=1 SCALE=1 0 1

SQGAMMA SHAPE=1 SCALE=1 0 1

UNIFORM �1 1

UNIFORM > �1 < 1 Cross-correlation
BETA SHAPE1=1 SHAPE2=1 �1 1

T LOCATION=0 DF=3 �1 1

See the section “Standard Distributions” on page 2024 for density specification.

Priors for Heteroscedastic Models

The choice of the prior distribution for a heteroscedastic model is particularly interesting. Based on the
notation provided in section “HETERO Statement” on page 1975, you need to provide a prior for 
 . This
prior is enough to induce different �2i into the analysis. The resulting inference is a compromise between two
cases: the inference based on the entire sample and the inference based on a single unit zi . The degree of
compromise is determined by �.
/.

This type of modeling is similar to a method called “hierarchical Bayes,” in which the prior is characterized
by two levels: one for each individual �.�2i j
/ and one for the entire population �.
/. In this scenario the
degree of compromise between the information provided by a unit and the information provided by the entire
sample is determined by the data.

The choice of the prior might not be straightforward, and it can heavily affect sampling performance.
Depending on how the heteroscedastic effects are modeled, the default priors are

if
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where Nzj D 1
n

Pn
iD1 zij , 8j , and " is a small number (by default, " D 0:1 for the EXPONENTIAL link

function and " D 0:71 for the QUADRATIC link function).

The priors for the EXPONENTIAL and QUADRATIC link functions are not straightforward. To understand
the choices, do the following:

1. Assume that
z
0

i
 D zi1
1 C : : :C ziJ 
J � Nz1
1 C : : :C NzJ 
J ; 8i

2. Set the priors according to the link function type:

� For the EXPONENTIAL link function, set

E
h
exp.z

0

i
/
i
� E Œexp. Nz1
1/� � : : : � E Œexp. NzJ 
J /� D "

V
h
exp.z

0

i
/
i
� E Œexp.2 Nz1
1/� � : : : � E Œexp.2 NzJ 
J /� � "2 D 1

Assume a normal prior for �.
j /, and set

E
�
exp. Nzj 
j /

�
D "

1
J ;8j

E
�
exp.2 Nzj 
j /

�
D .1C "2/

1
J ;8j

Based on the properties of the lognormal distribution, the prior hyperparameters for 
j can be
derived. Notice that J is the number of regressors that are used in the heterogeneous regression.
If the intercept is excluded, then " D 1.

� For the QUADRATIC link function, set

E
h
.z
0

i
/
2
i
� ŒE . Nz1
1 C : : :C NzJ 
J /�2 C V Œ Nz1
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Assume a normal prior for �.
j /. Based on the properties of the normal distribution, the
preceding expressions return

E Œ Nz1
1 C : : :C NzJ 
J � D ."2 � 1=2/1=4

V Œ Nz1
1 C : : :C NzJ 
J � D " � ."2 � 1=2/1=2

" > .1=2/1=2

The prior hyperparameters for 
j can be derived by setting

E
�
Nzj 
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J
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�
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�
D
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J
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Notice that J is the number of regressors that are used in the heterogeneous regression. It is
important to emphasize that the restriction " > .1=2/1=2 � 0:71 is likely to introduce some
distortion because " cannot be any “small” number.
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Automated MCMC
The main purpose is to provide the user with the opportunity of obtaining a good approximation of the
posterior distribution without initializing the MCMC algorithm: initial values, proposal distributions, burn-in
and number of samples.

The automated algorithm is composed of two phases: tuning and sampling. In the tuning phase, there are
two main concerns: the choice of a good proposal distribution and the search for the stationary region of the
posterior distribution. In the sampling phase, the algorithm will decide how many samples are necessary to
obtain good approximations of the posterior mean and some quantiles of interest.

Stationarity Phase

During the stationarity phase, the algorithm tries to search for a good proposal distribution and, at the same
time, to reach the stationary region of the posterior. The choice of the proposal distribution is based on
the analysis of the acceptance rates. This is similar to what is done in PROC MCMC: for more details see
Chapter 73.10, “Tuning the Proposal Distribution” (SAS/STAT User’s Guide). For the stationarity analysis,
the main idea is to run two tests, Geweke (Ge) and Heidleberger-Welch (HW), on the posterior chains at the
end of each attempt. For more details, see Chapter 7.4, “Geweke Diagnostics” (SAS/STAT User’s Guide), and
Chapter 7.4, “Heidelberger and Welch Diagnostics” (SAS/STAT User’s Guide). If the stationarity hypothesis
is rejected, then the tuning samples are increased and the tests repeated in the next attempt. After 10 attempts,
the stationarity phase will be ended regardless of the results. The tuning parameters for the first attempt are
fixed:

1000 burn-in (nbi),
5000 tuning samples (ntu),
1000 MCMC samples (nmc).

For the remaining attempts, the tuning parameters will be adjusted dynamically. More specifically, each
parameter will be assigned an acceptance ratio (AR) of the stationarity hypothesis:

ARi D 0 if both tests reject the stationarity hypothesis,
ARi D 0:5 if one tests rejects and the other does not,
ARi D 1 if both tests do not reject the stationarity hypothesis,

for i D 1; : : : ; k. For the Geweke test, the implemented significance level is 0.05. Then, an overall stationarity
average (SA) for all parameters ratios is evaluated,

SA D

kX
iD1

ARi

k
; (29.1)

and the number of tuning samples is updated accordingly:

ntu D ntuC 2000 if SA < 70%,
ntu D ntuC 1000 if 70% � SA < 100%,
ntu D ntu if SA D 100%.

The Heidelberger-Welch test also provides an indications of how much burn-in should be used. The algorithm
requires this burn-in to be: nbi.HW/ D 0. If that is not the case, the burn-in will updated accordingly,
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nbi D nbiC nbi.HW/, and a new attempt searching for stationarity will be implemented. This choice is
motivated by the fact that the burn-in must be discarded in order to reach the stationary region of the posterior
distribution.

The number of samples is updated at each attempt. However, in order to exit the stationarity phase, it will
not be required nmc.RL/ D 0. The default update is nmc D nmcC 1000. Depending on the outcome of
the Raftery-Lewis diagnostics, if nmc < min fLB Œnmc.RL/� ; nmc.RL/g, the number of sampling is further
updated to nmc D LB Œnmc.RL/�. By default, LB Œnmc.RL/� D 10000. Finally, if the number of projected
samples is not sufficient to perform a stable evaluation of the Raftery-Lewis test, the number of samples
is updated to nmc D min Œnmc.RL/�. For more details see “AUTOMCMC < =(automcmc-options) >” on
page 1964 and Chapter 7.4, “Raftery and Lewis Diagnostics” (SAS/STAT User’s Guide).

Accuracy Phase

The main idea of the accuracy phase is to make sure that the mean and a quantile of interest are evaluated
accurately. This can be tested by implementing the half-width test by Heidelberger-Welch and by analyzing
the Raftery-Lewis diagnostic tool. In addition, the requirements defined in the stationarity phase will also
be checked: the Geweke and the Heidelberger-Welch tests must not reject the stationary hypothesis and the
burn-in predicted by the Heidelberger-Welch test must be zero.

The accuracy phase is characterized by a maximum of 10 attempts. If the algorithm exceeds this limit,
the accuracy phase will end and indications on how to improve sampling will be given. The search of
accuracy can be performed using two different method. The first method (the default) is triggered by the
option TARGETSTATS and it is based on the accuracy analysis of the mean and a percentile of interest.
The secong method is triggered by the option TARGETESS and it targets a minimum number of effective
samples. The accuracy phase will first update the burn-in with the information provided by the HW
test: nbi D nbi C nbi.HW/. Then, it determines the difference between the actual number of samples
and the number of samples predicted by either the RL test or the ESS: �Œnmc� D nmc.RL/ � nmc; or
�Œnmc� D nmc.ESS/ � nmc: The new number of samples will be updated accordingly:

nmc D nmcC LB Œnmc.RL/� if 0 < �Œnmc� � LB Œnmc.RL/� ;
nmc D nmcC�Œnmc� if LB Œnmc.RL/� < �Œnmc� � UB Œnmc.RL/� ;
nmc D nmcC UB Œnmc.RL/� if UB Œnmc.RL/� < �Œnmc�:

By default, LB Œnmc.RL/� D 10000 and UB Œnmc.RL/� D 300000.

In addition, the accuracy search triggered by the option TARGETSTATS also implements the HW half-width
test to checks whether the sample mean is accurate. If the mean of any parameters is not considered to be
accurate and the number of samples has not been updated based on �Œnmc�, then the number of samples is
increased:

nmc D nmcC 5000 if �Œnmc� � 0,

Marginal Likelihood
The Bayes theorem states that

p.� jy/ / �.�/L.yj�/
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where � is a vector of parameters and �.�/ is the product of the prior densities that are specified in the
PRIOR statement. The term L.yj�/ is the likelihood that is associated with the MODEL statement. The
function �.�/L.yj�/ is the nonnormalized posterior distribution over the parameter vector � . The normalized
posterior distribution (simply, the posterior distribution) is

p.� jy/ D
�.�/L.yj�/R

� �.�/L.yj�/d�

The denominator m.y/ D
R
� �.�/L.yj�/d� (also called the “marginal likelihood”) is a quantity of interest

because it represents the probability of the data after the effect of the parameter vector has been averaged out.
Because of its interpretation, the marginal likelihood can be used in various applications, including model
averaging, variable selection, and model selection.

A natural estimate of the marginal likelihood is provided by the harmonic mean,

m.y/ D

(
1

n

nX
iD1

1

L.yj�i /

)�1
where �i is a sample draw from the posterior distribution. In practical applications, this estimator has proven
to be unstable.

An alternative and more stable estimator can be obtained with an importance sampling scheme. The auxiliary
distribution for the importance sampler can be chosen through the cross entropy theory (Chan and Eisenstat
2015). In particular, given a parametric family of distributions, the auxiliary density function is chosen to be
the one closest, in terms of the Kullback-Leibler divergence, to the probability density that would give a zero
variance estimate of the marginal likelihood. In practical terms, this is equivalent to the following algorithm:

1. Choose a parametric family, f .:; ˇ/, for the parameters of the model: f .� jˇ/.

2. Evaluate the maximum likelihood estimator of ˇ by using the posterior samples �1; : : : ; �n as data.

3. Use f .��j Ǒmle/ to generate the importance samples ��1 ; : : : ; �
�
n� .

4. Estimate the marginal likelihood:

m.y/ D
1

n�

n�X
jD1

L.yj��j /�.�
�
j /

f .��j j
Ǒ
mle/

The parametric family for the auxiliary distribution is chosen to be Gaussian. The parameters that are subject
to bounds are transformed accordingly

� If �1 < � <1, then p D � .

� If m � � <1, then q D log.� �m/.

� If �1 < � �M , then r D log.M � �/.

� If m � � �M , then s D log.� �m/ � log.M � �/.
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Assuming independence for the parameters that are subject to bounds, the auxiliary distribution to generate
importance samples is0BB@

p
q
r
s

1CCA � N

2664
0BB@
�p
�q
�r
�s

1CCA ;
0BB@
†p 0 0 0

0 †q 0 0

0 0 †r 0

0 0 0 †r

1CCA
3775

where p, q, r, and s are vectors that contain the transformations of the unbounded, bounded-below, bounded-
above, and bounded-above-and-below parameters. Also, given the imposed independence structure, †p can
be a nondiagonal matrix, but †q , †r , and †s are assumed to be diagonal matrices.

Standard Distributions
Table 29.3 through Table 29.10 show all the distribution density functions that PROC QLIM recognizes. You
specify these distribution densities in the PRIOR statement.

Table 29.3 Beta Distribution

PRIOR statement BETA(SHAPE1=a, SHAPE2=b, MIN=m, MAX=M)

Note: Commonly m D 0 and M D 1.

Density .��m/a�1.M��/b�1

B.a;b/.M�m/aCb�1

Parameter restriction a > 0, b > 0, �1 < m < M <1

Range

8̂̂̂̂
<̂̂
ˆ̂̂̂:
Œm;M� when a D 1; b D 1

Œm;M/ when a D 1; b ¤ 1

.m;M� when a ¤ 1; b D 1

.m;M/ otherwise

Mean a
aCb
� .M �m/Cm

Variance ab
.aCb/2.aCbC1/

� .M �m/2

Mode

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

a�1
aCb�2

�M C b�1
aCb�2

�m a > 1; b > 1

m and M a < 1; b < 1

m

(
a < 1; b � 1

a D 1; b > 1

M

(
a � 1; b < 1

a > 1; b D 1

not unique a D b D 1

Defaults SHAPE1=SHAPE2=1, MIN! �1, MAX!1
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Table 29.4 Gamma Distribution

PRIOR statement GAMMA(SHAPE=a, SCALE=b )

Density 1
ba�.a/

�a�1e��=b

Parameter restriction a > 0; b > 0

Range Œ0;1/

Mean ab

Variance ab2

Mode .a � 1/b

Defaults SHAPE=SCALE=1

Table 29.5 Square Root Gamma Distribution

PRIOR statement SQGAMMA(SHAPE=a, SCALE=b )

Density 2
ba�.a/

�2a�1e��
2=b

Parameter restriction a > 0; b > 0

Range Œ0;1/

Mean �.aC 1
2
/

�.a/

p
b

Variance

(
a �

�
�.aC 1

2
/

�.a/

�2)
b

Mode
q
.a � 1

2
/b; a � 1

2

Defaults SHAPE=SCALE=1

See Stacy (1962) for more details.

Table 29.6 Inverse-Gamma Distribution

PRIOR statement IGAMMA(SHAPE=a, SCALE=b)

Density ba

�.a/
��.aC1/e�b=�

Parameter restriction a > 0; b > 0

Range 0 < � <1

Mean b
a�1

; a > 1

Variance b2

.a�1/2.a�2/
; a > 2

Mode b
aC1

Defaults SHAPE=2.000001, SCALE=1
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Table 29.7 Square Root Inverse-Gamma Distribution

PRIOR statement SQIGAMMA(SHAPE=a, SCALE=b)

Density 2ba

�.a/
��.2aC1/e�b=�

2

Parameter restriction a > 0; b > 0

Range 0 < � <1

Mean �.a� 1
2
/

�.a/

p
b; a > 1

2

Variance

(
1
a�1
�

�
�.a� 1

2
/

�.a/

�2)
b; a > 1

Mode
r

b

aC 1
2

Defaults SHAPE=2.000001, SCALE=1

See Stacy (1962) for more details.

Table 29.8 Normal Distribution

PRIOR statement NORMAL(MEAN=�, VAR=�2)

Density 1

�
p
2�

exp
�
�
.���/2

2�2

�
Parameter restriction �2 > 0

Range �1 < � <1

Mean �

Variance �2

Mode �

Defaults MEAN=0, VAR=1000000

Table 29.9 t Distribution

PRIOR statement T(LOCATION=�, DF=�)

Density
�
�
�C1
2

�
�.�2 /

p
��

h
1C .���/2

�

i��C1
2

Parameter restriction � > 0

Range �1 < � <1

Mean �; for � > 1

Variance �
��2

; for � > 2

Mode �

Defaults LOCATION=0, DF=3
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Table 29.10 Uniform Distribution

PRIOR statement UNIFORM(MIN=m, MAX=M)

Density 1
M�m

Parameter restriction �1 < m < M <1

Range � 2 Œm;M�

Mean mCM
2

Variance .M�m/2

12

Mode Not unique

Defaults MIN! �1, MAX!1

Output to SAS Data Set

XBeta, Predicted, Residual

Xbeta is the structural part on the right-hand side of the model. Predicted value is the predicted dependent
variable value. For censored variables, if the predicted value is outside the boundaries, it is reported as the
closest boundary. For discrete variables, it is the level whose boundaries Xbeta falls between. Residual is
defined only for continuous variables and is defined as

Residual D Observed � P redicted

Error Standard Deviation

Error standard deviation is �i in the model. It varies only when the HETERO statement is used.

Marginal Effects

Marginal effect is defined as a contribution of one control variable to the response variable. For the binary
choice model with two response categories, �0 D �1, �1 D 0, �2 D1; and ordinal response model with
M response categories, �0; � � � ; �M , define

Ri;j D �j � x0iˇ

The probability that the unobserved dependent variable is contained in the jth category can be written as

P Œ�j�1 < y
�
i � �j � D F.Ri;j / � F.Ri;j�1/

The marginal effect of changes in the regressors on the probability of yi D j is then
@P robŒyi D j �

@x
D Œf .�j�1 � x0iˇ/ � f .�j � x0iˇ/�ˇ
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where f .x/ D dF .x/
dx

. In particular,

f .x/ D
dF.x/

dx
D

(
1p
2�
e�x

2=2 .probit/
e�x

Œ1Ce.�x/�2
.logit/

The marginal effects in the Box-Cox regression model are

@EŒyi �

@x
D ˇ

x�k�1

y�0�1

The marginal effects in the truncated regression model are

@EŒyi jLi < y
�
i < Ri �

@x
D ˇ

�
1 �

.�.ai / � �.bi //
2

.ˆ.bi / �ˆ.ai //2
C
ai�.ai / � bi�.bi /

ˆ.bi / �ˆ.ai /

�
where ai D

Li�x0
i
ˇ

�i
and bi D

Ri�x0
i
ˇ

�i
.

The marginal effects in the censored regression model are

@EŒyjxi �
@x

D ˇ � P robŒLi < y
�
i < Ri �

Inverse Mills Ratio, Expected and Conditionally Expected Values

Expected and conditionally expected values are computed only for continuous variables. The inverse Mills
ratio is computed for censored or truncated continuous, binary discrete, and selection endogenous variables.

Let Li and Ri be the lower boundary and upper boundary, respectively, for the yi . Define ai D
Li�x0

i
ˇ

�i
and

bi D
Ri�x0

i
ˇ

�i
. Then the inverse Mills ratio is defined as

� D
.�.ai / � �.bi //

.ˆ.bi / �ˆ.ai //

for a continuous variable and defined as

� D
�.x0iˇ/
ˆ.x0iˇ/

for a binary discrete variable.

The expected value is the unconditional expectation of the dependent variable. For a censored variable, it is

EŒyi � D ˆ.ai /Li C .x0iˇ C ��i /.ˆ.bi / �ˆ.ai //C .1 �ˆ.bi //Ri

For a left-censored variable (Ri D1), this formula is

EŒyi � D ˆ.ai /Li C .x0iˇ C ��i /.1 �ˆ.ai //

where � D �.ai /
1�ˆ.ai /

.
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For a right-censored variable (Li D �1), this formula is

EŒyi � D .x0iˇ C ��i /ˆ.bi /C .1 �ˆ.bi //Ri

where � D � �.bi /
ˆ.bi /

.

For a noncensored variable, this formula is

EŒyi � D x0iˇ

The conditional expected value is the expectation given that the variable is inside the boundaries:

EŒyi jLi < yi < Ri � D x0iˇ C ��i

Probability

Probability applies only to discrete responses. It is the marginal probability that the discrete response is
taking the value of the observation. If the PROBALL option is specified, then the probability for all of the
possible responses of the discrete variables is computed.

Technical Efficiency

Technical efficiency for each producer is computed only for stochastic frontier models.

In general, the stochastic production frontier can be written as

yi D f .xi Iˇ/ expfvigTEi

where yi denotes producer i’s actual output, f .�/ is the deterministic part of production frontier, expfvig is a
producer-specific error term, and TEi is the technical efficiency coefficient, which can be written as

TEi D
yi

f .xi Iˇ/ expfvig
:

In the case of a Cobb-Douglas production function, TEi D expf�uig. See the section “Stochastic Frontier
Production and Cost Models” on page 1991.

Cost frontier can be written in general as

Ei D c.yi ; wi Iˇ/ expfvig=CEi

where wi denotes producer i’s input prices, c.�/ is the deterministic part of cost frontier, expfvig is a
producer-specific error term, and CEi is the cost efficiency coefficient, which can be written as

CEi D
c.xi ; wi Iˇ/ expfvig

Ei

In the case of a Cobb-Douglas cost function, CEi D expf�uig. See the section “Stochastic Frontier
Production and Cost Models” on page 1991. Hence, both technical and cost efficiency coefficients are the
same. The estimates of technical efficiency are provided in the following subsections.
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Normal-Half Normal Model

Define �� D ���2u=�
2 and �2� D �2u�

2
v =�

2. Then, as it is shown by Jondrow et al. (1982), conditional
density is as follows:

f .uj�/ D
f .u; �/

f .�/
D

1
p
2���

exp
�
�
.u � ��/

2

2�2�

���
1 �ˆ

�
�
��

��

��
Hence, f .uj�/ is the density for NC.��; �2�/.

Using this result, it follows that the estimate of technical efficiency (Battese and Coelli 1988) is

TE1i D E.expf�uigj�i / D
�
1 �ˆ.�� � ��i=��/

1 �ˆ.���i=��/

�
exp

�
���i C

1

2
�2�

�
The second version of the estimate (Jondrow et al. 1982) is

TE2i D expf�E.ui j�i /g

where

E.ui j�i / D ��i C ��

�
�.���i=��/

1 �ˆ.���i=��/

�
D ��

�
�.�i�=�/

1 �ˆ.�i�=�/
�

�
�i�

�

��
Normal-Exponential Model

DefineA D � Q�=�v and Q� D ����2v =�u. Then, as it is shown by Kumbhakar and Lovell (2000), conditional
density is as follows:

f .uj�/ D
1

p
2��vˆ.� Q�=�v/

exp
�
�
.u � Q�/2

2�2

�
Hence, f .uj�/ is the density for NC. Q�; �2v /.

Using this result, it follows that the estimate of technical efficiency is

TE1i D E.expf�uigj�i / D
�
1 �ˆ.�v � Q�i=�v/

1 �ˆ.� Q�i=�v/

�
exp

�
� Q�i C

1

2
�2v

�
The second version of the estimate is

TE2i D expf�E.ui j�i /g

where

E.ui j�i / D Q�i C �v

�
�.� Q�i=�v/

1 �ˆ.� Q�i=�v/

�
D �v

�
�.A/

ˆ.�A/
� A

�
Normal-Truncated Normal Model

Define Q� D .��2u�i C��
2
v /=�

2 and �2� D �
2
u�

2
v =�

2. Then, as it is shown by Kumbhakar and Lovell (2000),
conditional density is as follows:

f .uj�/ D
1

p
2���Œ1 �ˆ.� Q�=��/�

exp
�
�
.u � Q�/2

2�2�

�
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Hence, f .uj�/ is the density for NC. Q�; �2�/.

Using this result, it follows that the estimate of technical efficiency is

TE1i D E.expf�uigj�i / D
1 �ˆ.�� � Q�i=��/

1 �ˆ.� Q�i=��/
exp

�
� Q�i C

1

2
�2�

�
The second version of the estimate is

TE2i D expf�E.ui j�i /g

where

E.ui j�i / D Q�i C ��

�
�. Q�i=��/

1 �ˆ.� Q�i=��/

�

OUTEST= Data Set
The OUTEST= data set contains all the parameters estimated in a MODEL statement. The OUTEST= option
can be used when the PROC QLIM call contains one MODEL statement:

proc qlim data=a outest=e;
model y = x1 x2 x3;
endogenous y ~ censored(lb=0);

run;

Each parameter contains the estimate for the corresponding parameter in the corresponding model. In
addition, the OUTEST= data set contains the following variables:

_NAME_ the name of the independent variable

_TYPE_ type of observation. PARM indicates the row of coefficients; STD indicates the row of
standard deviations of the corresponding coefficients.

_STATUS_ convergence status for optimization

The rest of the columns correspond to the explanatory variables.

The OUTEST= data set contains one observation for the MODEL statement, giving the parameter estimates
for that model. If the COVOUT option is specified, the OUTEST= data set includes additional observations
for the MODEL statement, giving the rows of the covariance matrix of parameter estimates. For covariance
observations, the value of the _TYPE_ variable is COV, and the _NAME_ variable identifies the parameter
associated with that row of the covariance matrix. If the CORROUT option is specified, the OUTEST= data
set includes additional observations for the MODEL statement, giving the rows of the correlation matrix
of parameter estimates. For correlation observations, the value of the _TYPE_ variable is CORR, and the
_NAME_ variable identifies the parameter associated with that row of the correlation matrix.
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Naming

Naming of Parameters

When there is only one equation in the estimation, parameters are named in the same way as in other SAS
procedures such as REG, PROBIT, and so on. The constant in the regression equation is called Intercept. The
coefficients on independent variables are named by the independent variables. The standard deviation of the
errors is called _Sigma. If there are Box-Cox transformations, the coefficients are named _Lambdai, where
i increments from 1, or as specified by the user. The limits for the discrete dependent variable are named
_Limiti. If the LIMIT=varying option is specified, then _Limiti starts from 1. If the LIMIT=varying option is
not specified, then _Limit1 is set to 0 and the limit parameters start from i D 2. If the HETERO statement is
included, the coefficients of the independent variables in the hetero equation are called _H.x, where x is the
name of the independent variable. If the parameter name includes interaction terms, it needs to be enclosed
in quotation marks followed by N. The following example restricts the parameter that includes the interaction
term to be greater than zero:

proc qlim data=a;
model y = x1|x2;
endogenous y ~ discrete;
restrict "x1*x2"N>0;

run;

When there are multiple equations in the estimation, the parameters in the main equation are named in the
format of y.x, where y is the name of the dependent variable and x is the name of the independent variable. The
standard deviation of the errors is called _Sigma.y. The correlation of the errors is called _Rho for bivariate
model. For the model with three variables it is _Rho.y1.y2, _Rho.y1.y3, _Rho.y2.y3. The construction of
correlation names for multivariate models is analogous. Box-Cox parameters are called _Lambdai.y and limit
variables are called _Limiti.y. Parameters in the HETERO statement are named as _H.y.x. In the OUTEST=
data set, all variables are changed from ’.’ to ’_’.

Naming of Output Variables

The following table shows the option in the OUTPUT statement, with the corresponding variable names and
their explanation.
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Option Name Explanation

PREDICTED P_y Predicted value of y
RESIDUAL RESID_y Residual of y, (y-PredictedY)
XBETA XBETA_y Structure part (x0ˇ) of y equation
ERRSTD ERRSTD_y Standard deviation of error term
PROB PROB_y Probability that y is taking the observed

value in this observation (discrete y only)
PROBALL PROBi_y Probability that y is taking the ith value

(discrete y only)
MILLS MILLS_y Inverse Mills ratio for y
EXPECTED EXPCT_y Unconditional expected value of y
CONDITIONAL CEXPCT_y Conditional expected value of y, condition

on the truncation.
MARGINAL MEFF_x Marginal effect of x on y (@y

@x
) with single

equation
MEFF_y_x Marginal effect of x on y (@y

@x
) with multi-

ple equations
MEFF_Pi_x Marginal effect of x on y (@P rob.yDi/

@x
)

with single equation and discrete y
MEFF_Pi_y_x Marginal effect of x on y (@P rob.yDi/

@x
)

with multiple equations and discrete y
TE1 TE1 Technical efficiency estimate for each pro-

ducer proposed by Battese and Coelli
(1988)

TE2 TE2 Technical efficiency estimate for each pro-
ducer proposed by Jondrow et al. (1982)

If you prefer to name the output variables differently, you can use the RENAME option in the data set. For
example, the following statements rename the residual of y as Resid:

proc qlim data=one;
model y = x1-x10 / censored;
output out=outds(rename=(resid_y=resid)) residual;

run;

ODS Table Names
PROC QLIM assigns a name to each table it creates. You can use these names to denote the table when using
the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in the
Table 29.11.
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Table 29.11 ODS Tables Produced in PROC QLIM by the
MODEL Statement and TEST Statement

ODS Table Name Description Option

ODS Tables Created by the MODEL Statement and TEST Statement
ResponseProfile Response profile default
ClassLevels Class levels default
FitSummary Summary of nonlinear estimation default
GoodnessOfFit Pseudo-R-square measures default
ConvergenceStatus Convergence status default
ParameterEstimates Parameter estimates default
SummaryContResponse Summary of continuous response default
CovB Covariance of parameter estimates COVB
CorrB Correlation of parameter estimates CORRB
FitSummaryHeckman1 Heckman First Step Model Fit Summary HECKIT
FitSummaryHeckman2 Heckman Second Model Fit Summary HECKIT
LinCon Linear constraints ITPRINT
InputOptions Input options ITPRINT
ProblemDescription Problem description ITPRINT
IterStart Optimization start summary ITPRINT
IterHist Iteration history ITPRINT
IterStop Optimization results ITPRINT
ConvergenceStatus Convergence status ITPRINT
ParameterEstimatesStart Optimization start ITPRINT
ParameterEstimatesResults Resulting parameters ITPRINT
LinConSol Linear constraints evaluated at solution ITPRINT
VariableSelection Variable selection summary SELECTVAR

ODS Tables Created by the TEST Statement
TestResults Test results default

ODS Tables Created by the BAYES Statement
AutoMcmcSummary Automatic MCMC summary DIAGNOSTICS=AUTOSUM
AutoCorr Autocorrelation statistics for each parameter default
Corr Correlation matrix of the posterior samples STATS=COR
Cov Covariance matrix of the posterior samples STATS=COV
ESS Effective sample size for each parameter Default
MCSE Monte Carlo standard error for each parameter Default
Geweke Geweke diagnostics for each parameter Default
Heidelberger Heidelberger-Welch diagnostics for each pa-

rameter
DIAGNOSTICS=HEIDEL

LogMarginLike Marginal likelihood MARGINLIKE
PostIntervals Equal-tail and HPD intervals for each parame-

ter
Default

PosteriorSample Posterior samples (ODS output data set only)
PostSummaries Posterior summaries default
PriorSample Prior samples used for prior predictive analysis (ODS output data set only)
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Table 29.11 (continued)

ODS Table Name Description Option

PriorSummaries Prior summaries STATS=PRIOR
Raftery Raftery-Lewis diagnostics for each parameter DIAGNOSTICS=RAFTER

ODS Graphics
You can reference every graph that is produced through ODS Graphics with a name. The names of the graphs
that PROC QLIM generates are listed in Table 29.12 for the frequentist approach and in Table 29.13 for the
Bayesian approach.

Table 29.12 Graphs Produced by PROC QLIM without a BAYES
Statement

ODS Graph Name Plot Description Statement & Option

Frequentist Output Plots
ResidPlot Frequentist analysis of residuals PLOTS=RESIDUAL
XbetaPlot Frequentist analysis of xbeta PLOTS=XBETA
PredPlot Frequentist analysis of Predictions PLOTS=PREDICTED
MarginalPlot Frequentist analysis of marginal effects PLOTS=MARGINAL
ErrStdPlot Frequentist analysis of the error standard devi-

ation (meaningful only with a HETERO state-
ment)

PLOTS=ERRSTD

MillsPlot Frequentist analysis of Mills ratio PLOTS=MILLS
ExpctPlot Frequentist analysis of expected values for con-

tinuous endogenous variables
PLOTS=EXPECTED

TE1Plot Frequentist analysis of technical efficiency
(only in stochastic frontier model) suggested
by Battese and Coelli (1988)

PLOTS=TE1

TE2Plot Frequentist analysis of technical efficiency
(only in stochastic frontier model) suggested
by Jondrow et al. (1982)

PLOTS=TE2

CExpctPlot Frequentist analysis of conditional expected
values for continuous endogenous variables

PLOTS=CONDITIONAL

ProbPlot Frequentist analysis of probability of discrete
endogenous variables that take the current ob-
served responses

PLOTS=PROB

ProbAllPlot Frequentist analysis of probability of discrete
endogenous variables for all responses

PLOTS=PROBALL

ProfLikPlot Profile log-likelihood plot PLOTS=PROFLIK
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Table 29.13 Graphs Produced by PROC QLIM When a BAYES
Statement Is Included

ODS Graph Name Plot Description Statement and Option

Bayesian Diagnostic Plots
ADPanel Autocorrelation function and density panel PLOTS=(AUTOCORR

DENSITY)
AutocorrPanel Autocorrelation function panel PLOTS=AUTOCORR
AutocorrPlot Autocorrelation function plot PLOTS(UNPACK)=AUTOCORR
DensityPanel Density panel PLOTS=DENSITY
DensityPlot Density plot PLOTS(UNPACK)=DENSITY
ProfLikPlot Profile log-likelihood plot PLOTS=PROFLIK
TAPanel Trace and autocorrelation function panel PLOTS=(TRACE AUTOCORR)
TADPanel Trace, density, and autocorrelation function panel PLOTS=(TRACE AUTOCORR

DENSITY)
PLOTS=BAYESDIAG

TDPanel Trace and density panel PLOTS=(TRACE DENSITY)
TracePanel Trace panel PLOTS=TRACE
TracePlot Trace plot PLOTS(UNPACK)=TRACE

Bayesian Summary Plots
BayesSumPlot Prior/posterior densities and MLE PLOTS=BAYESSUM

Bayesian Output Plots
PredictiveByObsNumPlot Predictive analysis by observation number PLOTS(PRIOR)=BAYESPRED
PredictivePlot Predictive analysis by regressor PLOTS(PRIOR)=BAYESPRED

Examples: QLIM Procedure

Example 29.1: Ordered Data Modeling
Cameron and Trivedi (1986, 1998) studied the number of doctor visits from the Australian Health Survey
1977-78. In the following data set, the dependent variable, DVISITS, contains the number of doctor visits
in the past 2 weeks (0, 1, or more than 2). The explanatory variables are: SEX indicates if the patient is
female; AGE is the age in years divided by 100; INCOME is the annual income ($10,000); LEVYPLUS
indicates if the patient has private health insurance; FREEPOOR indicates free government health insurance
due to low income; FREEREPA indicates free government health insurance for other reasons; ILLNESS is
the number of illnesses in the past 2 weeks; ACTDAYS is the number of days the illness caused reduced
activity; HSCORE is a questionnaire score; CHCOND1 indicates a chronic condition that does not limit
activity; and CHCOND2 indicates a chronic condition that limits activity.
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data docvisit;
input sex age agesq income levyplus freepoor freerepa

illness actdays hscore chcond1 chcond2 dvisits;
y = (dvisits > 0);
if ( dvisits > 8 ) then dvisits = 8;

datalines;
1 0.19 0.0361 0.55 1 0 0 1 4 1 0 0 1
1 0.19 0.0361 0.45 1 0 0 1 2 1 0 0 1

... more lines ...

1 0.37 0.1369 0.25 0 0 1 1 0 1 0 0 0
1 0.52 0.2704 0.65 0 0 0 0 0 0 0 0 0
0 0.72 0.5184 0.25 0 0 1 0 0 0 0 0 0
;

The dependent variable, dvisits, has nine ordered values. The following SAS statements estimate the ordinal
probit model:

/*-- Ordered Discrete Responses --*/
proc qlim data=docvisit;

model dvisits = sex age agesq income levyplus
freepoor freerepa illness actdays hscore
chcond1 chcond2 / discrete;

run;

The output of the QLIM procedure for ordered data modeling is shown in Output 29.1.1.

Output 29.1.1 Ordered Data Modeling

Binary Data

The QLIM Procedure

Binary Data

The QLIM Procedure

Discrete Response
Profile of dvisits

Index Value
Total

Frequency

1 0 4141

2 1 782

3 2 174

4 3 30

5 4 24

6 5 9

7 6 12

8 7 12

9 8 6
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Output 29.1.1 continued

Model Fit Summary

Number of Endogenous Variables 1

Endogenous Variable dvisits

Number of Observations 5190

Log Likelihood -3138

Maximum Absolute Gradient 0.0003675

Number of Iterations 82

Optimization Method Quasi-Newton

AIC 6316

Schwarz Criterion 6447

Goodness-of-Fit Measures

Measure Value Formula

Likelihood Ratio (R) 789.73 2 * (LogL - LogL0)

Upper Bound of R (U) 7065.9 - 2 * LogL0

Aldrich-Nelson 0.1321 R / (R+N)

Cragg-Uhler 1 0.1412 1 - exp(-R/N)

Cragg-Uhler 2 0.1898 (1-exp(-R/N)) / (1-exp(-U/N))

Estrella 0.149 1 - (1-R/U)^(U/N)

Adjusted Estrella 0.1416 1 - ((LogL-K)/LogL0)^(-2/N*LogL0)

McFadden's LRI 0.1118 R / U

Veall-Zimmermann 0.2291 (R * (U+N)) / (U * (R+N))

McKelvey-Zavoina 0.2036

N = # of observations, K = # of regressors

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -1.378705 0.147413 -9.35 <.0001

sex 1 0.131885 0.043785 3.01 0.0026

age 1 -0.534190 0.815907 -0.65 0.5126

agesq 1 0.857308 0.898364 0.95 0.3399

income 1 -0.062211 0.068017 -0.91 0.3604

levyplus 1 0.137030 0.053262 2.57 0.0101

freepoor 1 -0.346045 0.129638 -2.67 0.0076

freerepa 1 0.178382 0.074348 2.40 0.0164

illness 1 0.150485 0.015747 9.56 <.0001

actdays 1 0.100575 0.005850 17.19 <.0001

hscore 1 0.031862 0.009201 3.46 0.0005

chcond1 1 0.061601 0.049024 1.26 0.2089

chcond2 1 0.135321 0.067711 2.00 0.0457

_Limit2 1 0.938884 0.031219 30.07 <.0001

_Limit3 1 1.514288 0.049329 30.70 <.0001

_Limit4 1 1.711660 0.058151 29.43 <.0001

_Limit5 1 1.952860 0.072014 27.12 <.0001

_Limit6 1 2.087422 0.081655 25.56 <.0001

_Limit7 1 2.333786 0.101760 22.93 <.0001

_Limit8 1 2.789796 0.156189 17.86 <.0001
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By default, ordinal probit/logit models are estimated assuming that the first threshold or limit parameter (�1)
is 0. However, this parameter can also be estimated when the LIMIT1=VARYING option is specified. The
probability that y�i belongs to the jth category is defined as

P Œ�j�1 < y
�
i < �j � D F.�j � x0iˇ/ � F.�j�1 � x0iˇ/

where F.�/ is the logistic or standard normal CDF, �0 D �1 and �9 D 1. Output 29.1.2 lists ordinal
probit estimates computed in the following program. Note that the intercept term is suppressed for model
identification when �1 is estimated.

/*-- Ordered Probit --*/
proc qlim data=docvisit;

model dvisits = sex age agesq income levyplus
freepoor freerepa illness actdays hscore
chcond1 chcond2 / discrete(d=normal) limit1=varying;

run;

Output 29.1.2 Ordinal Probit Parameter Estimates with LIMIT1=VARYING

Binary Data

The QLIM Procedure

Binary Data

The QLIM Procedure

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

sex 1 0.131885 0.043785 3.01 0.0026

age 1 -0.534181 0.815915 -0.65 0.5127

agesq 1 0.857298 0.898371 0.95 0.3399

income 1 -0.062211 0.068017 -0.91 0.3604

levyplus 1 0.137031 0.053262 2.57 0.0101

freepoor 1 -0.346045 0.129638 -2.67 0.0076

freerepa 1 0.178382 0.074348 2.40 0.0164

illness 1 0.150485 0.015747 9.56 <.0001

actdays 1 0.100575 0.005850 17.19 <.0001

hscore 1 0.031862 0.009201 3.46 0.0005

chcond1 1 0.061602 0.049024 1.26 0.2089

chcond2 1 0.135322 0.067711 2.00 0.0457

_Limit1 1 1.378706 0.147415 9.35 <.0001

_Limit2 1 2.317590 0.150206 15.43 <.0001

_Limit3 1 2.892994 0.155198 18.64 <.0001

_Limit4 1 3.090367 0.158263 19.53 <.0001

_Limit5 1 3.331566 0.164065 20.31 <.0001

_Limit6 1 3.466128 0.168799 20.53 <.0001

_Limit7 1 3.712493 0.179756 20.65 <.0001

_Limit8 1 4.168502 0.215738 19.32 <.0001

Example 29.2: Tobit Analysis
The following statements show a subset of the Mroz (1987) data set. In these data, Hours is the number of
hours the wife worked outside the household in a given year, Yrs_Ed is the years of education, and Yrs_Exp
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is the years of work experience. A Tobit model will be fit to the hours worked with years of education and
experience as covariates.

By the nature of the data it is clear that there are a number of women who committed some positive number
of hours to outside work (yi > 0 is observed). There are also a number of women who did not work at all
(yi D 0 is observed). This gives us the following model:

y�i D x0iˇ C �i

yi D

�
y�i ify�i > 0
0 ify�i � 0

where �i � i idN.0; �2/. The set of explanatory variables is denoted by xi .

title1 'Estimating a Tobit model';

data subset;
input Hours Yrs_Ed Yrs_Exp @@;
if Hours eq 0 then Lower=.;

else Lower=Hours;
datalines;
0 8 9 0 8 12 0 9 10 0 10 15 0 11 4 0 11 6
1000 12 1 1960 12 29 0 13 3 2100 13 36
3686 14 11 1920 14 38 0 15 14 1728 16 3
1568 16 19 1316 17 7 0 17 15
;

/*-- Tobit Model --*/
proc qlim data=subset;

model hours = yrs_ed yrs_exp;
endogenous hours ~ censored(lb=0);

run;

The output of the QLIM procedure is shown in Output 29.2.1.

Output 29.2.1 Tobit Analysis Results

Estimating a Tobit model

The QLIM Procedure

Estimating a Tobit model

The QLIM Procedure

Model Fit Summary

Number of Endogenous Variables 1

Endogenous Variable Hours

Number of Observations 17

Log Likelihood -74.93700

Maximum Absolute Gradient 1.18953E-6

Number of Iterations 23

Optimization Method Quasi-Newton

AIC 157.87400

Schwarz Criterion 161.20685



Example 29.3: Bivariate Probit Analysis F 2041

Output 29.2.1 continued

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -5598.295129 27.692220 -202.16 <.0001

Yrs_Ed 1 373.123254 53.988877 6.91 <.0001

Yrs_Exp 1 63.336247 36.551299 1.73 0.0831

_Sigma 1 1582.859635 390.076480 4.06 <.0001

In the “Parameter Estimates” table there are four rows. The first three of these rows correspond to the vector
estimate of the regression coefficients ˇ. The last one is called _Sigma, which corresponds to the estimate of
the error variance � .

Example 29.3: Bivariate Probit Analysis
This example shows how to estimate a bivariate probit model. Note the INIT statement in the following
program, which sets the initial values for some parameters in the optimization:

data a;
keep y1 y2 x1 x2;
do i = 1 to 500;

x1 = rannor( 19283 );
x2 = rannor( 19283 );
u1 = rannor( 19283 );
u2 = rannor( 19283 );
y1l = 1 + 2 * x1 + 3 * x2 + u1;
y2l = 3 + 4 * x1 - 2 * x2 + u1*.2 + u2;
if ( y1l > 0 ) then y1 = 1;
else y1 = 0;
if ( y2l > 0 ) then y2 = 1;
else y2 = 0;
output;

end;
run;

/*-- Bivariate Probit --*/
proc qlim data=a method=qn;

init y1.x1 2.8, y1.x2 2.1, _rho .1;
model y1 = x1 x2;
model y2 = x1 x2;
endogenous y1 y2 ~ discrete;

run;

The output of the QLIM procedure is shown in Output 29.3.1.
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Output 29.3.1 Bivariate Probit Analysis Results

Estimating a Tobit model

The QLIM Procedure

Estimating a Tobit model

The QLIM Procedure

Model Fit Summary

Number of Endogenous Variables 2

Endogenous Variable y1 y2

Number of Observations 500

Log Likelihood -134.90796

Maximum Absolute Gradient 3.23363E-7

Number of Iterations 17

Optimization Method Quasi-Newton

AIC 283.81592

Schwarz Criterion 313.31817

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

y1.Intercept 1 1.003639 0.153678 6.53 <.0001

y1.x1 1 2.244374 0.256062 8.76 <.0001

y1.x2 1 3.273441 0.341581 9.58 <.0001

y2.Intercept 1 3.621164 0.457173 7.92 <.0001

y2.x1 1 4.551525 0.576547 7.89 <.0001

y2.x2 1 -2.442769 0.332295 -7.35 <.0001

_Rho 1 0.144097 0.336459 0.43 0.6685

Example 29.4: Sample Selection Model
This example illustrates the use of PROC QLIM for sample selection models. The data set is the same
one from Mroz (1987). The goal is to estimate a wage offer function for married women, accounting for
potential selection bias. Of the 753 women, the wage is observed for 428 working women. The labor force
participation equation estimated in the introductory example is used for selection. The wage equation uses
log wage (lwage ) as the dependent variable. The explanatory variables in the wage equation are the woman’s
years of schooling (educ ), wife’s labor experience (exper), and square of experience (expersq ). The program
is as follows:

/*-- Sample Selection --*/
proc qlim data=mroz;

model inlf = nwifeinc educ exper expersq
age kidslt6 kidsge6 /discrete;

model lwage = educ exper expersq / select(inlf=1);
run;

The output of the QLIM procedure is shown in Output 29.4.1.
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Output 29.4.1 Sample Selection

Binary Data

The QLIM Procedure

Binary Data

The QLIM Procedure

Model Fit Summary

Number of Endogenous Variables 2

Endogenous Variable inlf lwage

Number of Observations 753

Log Likelihood -832.88509

Maximum Absolute Gradient 0.00502

Number of Iterations 78

Optimization Method Quasi-Newton

AIC 1694

Schwarz Criterion 1759

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

lwage.Intercept 1 -0.552716 0.260371 -2.12 0.0338

lwage.educ 1 0.108351 0.014861 7.29 <.0001

lwage.exper 1 0.042837 0.014878 2.88 0.0040

lwage.expersq 1 -0.000837 0.000417 -2.01 0.0449

_Sigma.lwage 1 0.663397 0.022706 29.22 <.0001

inlf.Intercept 1 0.266459 0.508954 0.52 0.6006

inlf.nwifeinc 1 -0.012132 0.004877 -2.49 0.0129

inlf.educ 1 0.131341 0.025383 5.17 <.0001

inlf.exper 1 0.123282 0.018728 6.58 <.0001

inlf.expersq 1 -0.001886 0.000601 -3.14 0.0017

inlf.age 1 -0.052829 0.008479 -6.23 <.0001

inlf.kidslt6 1 -0.867398 0.118647 -7.31 <.0001

inlf.kidsge6 1 0.035872 0.043476 0.83 0.4093

_Rho 1 0.026617 0.147073 0.18 0.8564

Note the correlation estimate is insignificant. This indicates that selection bias is not a big problem in the
estimation of wage equation.

Example 29.5: Sample Selection Model with Truncation and Censoring
In this example the data are generated such that the selection variable is discrete and the variable Y is
truncated from below by zero. The program follows, with the results shown in Output 29.5.1:

data trunc;
keep z y x1 x2;
do i = 1 to 500;

x1 = rannor( 19283 );
x2 = rannor( 19283 );
u1 = rannor( 19283 );
u2 = rannor( 19283 );
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zl = 1 + 2 * x1 + 3 * x2 + u1;
y = 3 + 4 * x1 - 2 * x2 + u1*.2 + u2;
if ( zl > 0 ) then z = 1;
else z = 0;
if y>=0 then output;

end;
run;

/*-- Sample Selection with Truncation --*/
proc qlim data=trunc method=qn;

model z = x1 x2 / discrete;
model y = x1 x2 / select(z=1) truncated(lb=0);

run;

Output 29.5.1 Sample Selection with Truncation

Binary Data

The QLIM Procedure

Binary Data

The QLIM Procedure

Model Fit Summary

Number of Endogenous Variables 2

Endogenous Variable z y

Number of Observations 379

Log Likelihood -344.10722

Maximum Absolute Gradient 4.95535E-6

Number of Iterations 17

Optimization Method Quasi-Newton

AIC 704.21444

Schwarz Criterion 735.71473

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

y.Intercept 1 3.014158 0.128548 23.45 <.0001

y.x1 1 3.995671 0.099599 40.12 <.0001

y.x2 1 -1.972697 0.096385 -20.47 <.0001

_Sigma.y 1 0.923428 0.047233 19.55 <.0001

z.Intercept 1 0.949444 0.190265 4.99 <.0001

z.x1 1 2.163928 0.288384 7.50 <.0001

z.x2 1 3.134213 0.379251 8.26 <.0001

_Rho 1 0.494356 0.176542 2.80 0.0051

In the following statements the data are generated such that the selection variable is discrete and the variable
Y is censored from below by zero. The results are shown in Output 29.5.2.

data cens;
keep z y x1 x2;
do i = 1 to 500;

x1 = rannor( 19283 );
x2 = rannor( 19283 );
u1 = rannor( 19283 );
u2 = rannor( 19283 );
zl = 1 + 2 * x1 + 3 * x2 + u1;
yl = 3 + 4 * x1 - 2 * x2 + u1*.2 + u2;
if ( zl > 0 ) then z = 1;
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else z = 0;
if ( yl > 0 ) then y = yl;
else y = 0;
output;

end;
run;

/*-- Sample Selection with Censoring --*/
proc qlim data=cens method=qn;

model z = x1 x2 / discrete;
model y = x1 x2 / select(z=1) censored(lb=0);

run;

Output 29.5.2 Sample Selection with Censoring

Binary Data

The QLIM Procedure

Binary Data

The QLIM Procedure

Model Fit Summary

Number of Endogenous Variables 2

Endogenous Variable z y

Number of Observations 500

Log Likelihood -399.78508

Maximum Absolute Gradient 2.30443E-6

Number of Iterations 19

Optimization Method Quasi-Newton

AIC 815.57015

Schwarz Criterion 849.28702

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

y.Intercept 1 3.074276 0.111617 27.54 <.0001

y.x1 1 3.963619 0.085796 46.20 <.0001

y.x2 1 -2.023548 0.088714 -22.81 <.0001

_Sigma.y 1 0.920860 0.043278 21.28 <.0001

z.Intercept 1 1.013610 0.154081 6.58 <.0001

z.x1 1 2.256922 0.255999 8.82 <.0001

z.x2 1 3.302692 0.342168 9.65 <.0001

_Rho 1 0.350776 0.197093 1.78 0.0751

Example 29.6: Types of Tobit Models
The following five examples show how to estimate different types of Tobit models (see “Types of Tobit
Models” on page 1989). Output 29.6.1 through Output 29.6.5 show the results of the corresponding programs.

Type 1 Tobit

data a1;
keep y x;
do i = 1 to 500;

x = rannor( 19283 );
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u = rannor( 19283 );
yl = 1 + 2 * x + u;
if ( yl > 0 ) then y = yl;
else y = 0;
output;

end;
run;

/*-- Type 1 Tobit --*/
proc qlim data=a1 method=qn;

model y = x;
endogenous y ~ censored(lb=0);

run;

Output 29.6.1 Type 1 Tobit

Binary Data

The QLIM Procedure

Binary Data

The QLIM Procedure

Model Fit Summary

Number of Endogenous Variables 1

Endogenous Variable y

Number of Observations 500

Log Likelihood -554.17696

Maximum Absolute Gradient 4.65556E-7

Number of Iterations 9

Optimization Method Quasi-Newton

AIC 1114

Schwarz Criterion 1127

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.942734 0.056784 16.60 <.0001

x 1 2.049571 0.066979 30.60 <.0001

_Sigma 1 1.016571 0.039035 26.04 <.0001

Type 2 Tobit

data a2;
keep y1 y2 x1 x2;
do i = 1 to 500;

x1 = rannor( 19283 );
x2 = rannor( 19283 );
u1 = rannor( 19283 );
u2 = rannor( 19283 );
y1l = 1 + 2 * x1 + 3 * x2 + u1;
y2l = 3 + 4 * x1 - 2 * x2 + u1*.2 + u2;
if ( y1l > 0 ) then y1 = 1;
else y1 = 0;
if ( y1l > 0 ) then y2 = y2l;
else y2 = 0;
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output;
end;

run;

/*-- Type 2 Tobit --*/
proc qlim data=a2 method=qn;

model y1 = x1 x2 / discrete;
model y2 = x1 x2 / select(y1=1);

run;

Output 29.6.2 Type 2 Tobit

Binary Data

The QLIM Procedure

Binary Data

The QLIM Procedure

Model Fit Summary

Number of Endogenous Variables 2

Endogenous Variable y1 y2

Number of Observations 500

Log Likelihood -476.12328

Maximum Absolute Gradient 8.30075E-7

Number of Iterations 17

Optimization Method Quasi-Newton

AIC 968.24655

Schwarz Criterion 1002

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

y2.Intercept 1 3.066992 0.106903 28.69 <.0001

y2.x1 1 4.004874 0.072043 55.59 <.0001

y2.x2 1 -2.079352 0.087544 -23.75 <.0001

_Sigma.y2 1 0.940559 0.039321 23.92 <.0001

y1.Intercept 1 1.017140 0.154975 6.56 <.0001

y1.x1 1 2.253080 0.256097 8.80 <.0001

y1.x2 1 3.305140 0.343695 9.62 <.0001

_Rho 1 0.292992 0.210073 1.39 0.1631

Type 3 Tobit

data a3;
keep y1 y2 x1 x2;
do i = 1 to 500;

x1 = rannor( 19283 );
x2 = rannor( 19283 );
u1 = rannor( 19283 );
u2 = rannor( 19283 );
y1l = 1 + 2 * x1 + 3 * x2 + u1;
y2l = 3 + 4 * x1 - 2 * x2 + u1*.2 + u2;
if ( y1l > 0 ) then y1 = y1l;
else y1 = 0;
if ( y1l > 0 ) then y2 = y2l;
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else y2 = 0;
output;

end;
run;

/*-- Type 3 Tobit --*/
proc qlim data=a3 method=qn;

model y1 = x1 x2 / censored(lb=0);
model y2 = x1 x2 / select(y1>0);

run;

Output 29.6.3 Type 3 Tobit

Binary Data

The QLIM Procedure

Binary Data

The QLIM Procedure

Model Fit Summary

Number of Endogenous Variables 2

Endogenous Variable y1 y2

Number of Observations 500

Log Likelihood -838.94087

Maximum Absolute Gradient 9.71691E-6

Number of Iterations 16

Optimization Method Quasi-Newton

AIC 1696

Schwarz Criterion 1734

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

y2.Intercept 1 3.081206 0.080121 38.46 <.0001

y2.x1 1 3.998361 0.063734 62.73 <.0001

y2.x2 1 -2.088280 0.072876 -28.66 <.0001

_Sigma.y2 1 0.939799 0.039047 24.07 <.0001

y1.Intercept 1 0.981975 0.067351 14.58 <.0001

y1.x1 1 2.032675 0.059363 34.24 <.0001

y1.x2 1 2.976609 0.065584 45.39 <.0001

_Sigma.y1 1 0.969968 0.039795 24.37 <.0001

_Rho 1 0.226281 0.057672 3.92 <.0001

Type 4 Tobit

data a4;
keep y1 y2 y3 x1 x2;
do i = 1 to 500;

x1 = rannor( 19283 );
x2 = rannor( 19283 );
u1 = rannor( 19283 );
u2 = rannor( 19283 );
u3 = rannor( 19283 );
y1l = 1 + 2 * x1 + 3 * x2 + u1;
y2l = 3 + 4 * x1 - 2 * x2 + u1*.2 + u2;
y3l = 0 - 1 * x1 + 1 * x2 + u1*.1 - u2*.5 + u3*.5;
if ( y1l > 0 ) then y1 = y1l;
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else y1 = 0;
if ( y1l > 0 ) then y2 = y2l;
else y2 = 0;
if ( y1l <= 0 ) then y3 = y3l;
else y3 = 0;
output;

end;
run;

/*-- Type 4 Tobit --*/
proc qlim data=a4 method=qn;

model y1 = x1 x2 / censored(lb=0);
model y2 = x1 x2 / select(y1>0);
model y3 = x1 x2 / select(y1<=0);

run;

Output 29.6.4 Type 4 Tobit

Binary Data

The QLIM Procedure

Binary Data

The QLIM Procedure

Model Fit Summary

Number of Endogenous Variables 3

Endogenous Variable y1 y2 y3

Number of Observations 500

Log Likelihood -1128

Maximum Absolute Gradient 0.0000161

Number of Iterations 21

Optimization Method Quasi-Newton

AIC 2285

Schwarz Criterion 2344

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

y2.Intercept 1 2.894656 0.076079 38.05 <.0001

y2.x1 1 4.072704 0.062675 64.98 <.0001

y2.x2 1 -1.901163 0.076874 -24.73 <.0001

_Sigma.y2 1 0.981655 0.039564 24.81 <.0001

y3.Intercept 1 0.064594 0.179441 0.36 0.7189

y3.x1 1 -0.938384 0.096570 -9.72 <.0001

y3.x2 1 1.035798 0.123104 8.41 <.0001

_Sigma.y3 1 0.743124 0.038240 19.43 <.0001

y1.Intercept 1 0.987370 0.067861 14.55 <.0001

y1.x1 1 2.050408 0.060819 33.71 <.0001

y1.x2 1 2.982190 0.072552 41.10 <.0001

_Sigma.y1 1 1.032473 0.040971 25.20 <.0001

_Rho.y1.y2 1 0.291587 0.053436 5.46 <.0001

_Rho.y1.y3 1 -0.031665 0.260057 -0.12 0.9031
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Type 5 Tobit

data a5;
keep y1 y2 y3 x1 x2;
do i = 1 to 500;

x1 = rannor( 19283 );
x2 = rannor( 19283 );
u1 = rannor( 19283 );
u2 = rannor( 19283 );
u3 = rannor( 19283 );
y1l = 1 + 2 * x1 + 3 * x2 + u1;
y2l = 3 + 4 * x1 - 2 * x2 + u1*.2 + u2;
y3l = 0 - 1 * x1 + 1 * x2 + u1*.1 - u2*.5 + u3*.5;
if ( y1l > 0 ) then y1 = 1;
else y1 = 0;
if ( y1l > 0 ) then y2 = y2l;
else y2 = 0;
if ( y1l <= 0 ) then y3 = y3l;
else y3 = 0;
output;

end;
run;

/*-- Type 5 Tobit --*/
proc qlim data=a5 method=qn;

model y1 = x1 x2 / discrete;
model y2 = x1 x2 / select(y1>0);
model y3 = x1 x2 / select(y1<=0);

run;

Output 29.6.5 Type 5 Tobit

Binary Data

The QLIM Procedure

Binary Data

The QLIM Procedure

Model Fit Summary

Number of Endogenous Variables 3

Endogenous Variable y1 y2 y3

Number of Observations 500

Log Likelihood -734.50612

Maximum Absolute Gradient 3.57134E-7

Number of Iterations 20

Optimization Method Quasi-Newton

AIC 1495

Schwarz Criterion 1550



Example 29.7: Stochastic Frontier Models F 2051

Output 29.6.5 continued

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

y2.Intercept 1 2.887523 0.095193 30.33 <.0001

y2.x1 1 4.078926 0.069623 58.59 <.0001

y2.x2 1 -1.898898 0.086578 -21.93 <.0001

_Sigma.y2 1 0.983059 0.039987 24.58 <.0001

y3.Intercept 1 0.071764 0.171522 0.42 0.6757

y3.x1 1 -0.935299 0.092843 -10.07 <.0001

y3.x2 1 1.039954 0.120697 8.62 <.0001

_Sigma.y3 1 0.743083 0.038225 19.44 <.0001

y1.Intercept 1 1.067578 0.142789 7.48 <.0001

y1.x1 1 2.068376 0.226020 9.15 <.0001

y1.x2 1 3.157385 0.314743 10.03 <.0001

_Rho.y1.y2 1 0.312369 0.177010 1.76 0.0776

_Rho.y1.y3 1 -0.018225 0.234886 -0.08 0.9382

Example 29.7: Stochastic Frontier Models
This example illustrates the estimation of stochastic frontier production and cost models.

First, a production function model is estimated. The data for this example were collected by Christensen
Associates; they represent a sample of 125 observations on inputs and output for 10 airlines between 1970
and 1984. The explanatory variables (inputs) are fuel (LF), materials (LM), equipment (LE), labor (LL), and
property (LP), and (LQ) is an index that represents passengers, charter, mail, and freight transported.

The following statements create the dataset:

title1 'Stochastic Frontier Production Model';
data airlines;

input TS FIRM NI LQ LF LM LE LL LP;
datalines;
1 1 15 -0.0484 0.2473 0.2335 0.2294 0.2246 0.2124
1 1 15 -0.0133 0.2603 0.2492 0.241 0.2216 0.1069
2 1 15 0.088 0.2666 0.3273 0.3365 0.2039 0.0865
3 1 15 0.1619 0.3019 0.4573 0.3532 0.2346 0.0242

... more lines ...

The following statements estimate a stochastic frontier exponential production model that uses Christensen
Associates data:

/*-- Stochastic Frontier Production Model --*/
proc qlim data=airlines;

model LQ=LF LM LE LL LP;
endogenous LQ ~ frontier (type=exponential production);

run;

Figure 29.7.1 shows the results from this production model.
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Output 29.7.1 Stochastic Frontier Production Model

Stochastic Frontier Production Model

The QLIM Procedure

Stochastic Frontier Production Model

The QLIM Procedure

Model Fit Summary

Number of Endogenous Variables 1

Endogenous Variable LQ

Number of Observations 125

Log Likelihood 83.27815

Maximum Absolute Gradient 9.92882E-7

Number of Iterations 25

Optimization Method Quasi-Newton

AIC -150.55630

Schwarz Criterion -127.92979

Sigma 0.12445

Lambda 0.55766

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -0.085048 0.024528 -3.47 0.0005

LF 1 -0.115802 0.124178 -0.93 0.3511

LM 1 0.756253 0.078755 9.60 <.0001

LE 1 0.424916 0.081893 5.19 <.0001

LL 1 -0.136421 0.089702 -1.52 0.1283

LP 1 0.098967 0.042776 2.31 0.0207

_Sigma_v 1 0.108688 0.010063 10.80 <.0001

_Sigma_u 1 0.060611 0.017603 3.44 0.0006

Similarly, the stochastic frontier production function can be estimated with (type=half) or (type=truncated)
options that represent half-normal and truncated normal production models.

In the next step, stochastic frontier cost function is estimated. The data for the cost model are provided
by Christensen and Greene (1976). The data describe costs and production inputs of 145 U.S. electricity
producers in 1955. The model being estimated follows the nonhomogeneous version of the Cobb-Douglas
cost function:

log
�

Cost
FPrice

�
D ˇ0Cˇ1 log

�
KPrice
FPrice

�
Cˇ2 log

�
LPrice
FPrice

�
Cˇ3 log.Output/Cˇ4

1

2
log.Output/2C�

All dollar values are normalized by fuel price. The quadratic log of the output is added to capture nonlinearities
due to scale effects in cost functions. New variables, log_C_PF, log_PK_PF, log_PL_PF, log_y, and log_y_sq,
are created to reflect transformations. The following statements create the data set and transformed variables:
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title1 'Stochastic Frontier Cost Model';
data electricity;

input Firm Year Cost Output LPrice LShare KPrice KShare FPrice FShare;
datalines;
1 1955 .0820 2.0 2.090 .3164 183.000 .4521 17.9000 .2315
2 1955 .6610 3.0 2.050 .2073 174.000 .6676 35.1000 .1251
3 1955 .9900 4.0 2.050 .2349 171.000 .5799 35.1000 .1852
4 1955 .3150 4.0 1.830 .1152 166.000 .7857 32.2000 .0990

... more lines ...

/* Data transformations */
data electricity;

set electricity;
label Firm="firm index"

Year="1955 for all observations"
Cost="Total cost"
Output="Total output"
LPrice="Wage rate"
LShare="Cost share for labor"
KPrice="Capital price index"
KShare="Cost share for capital"
FPrice="Fuel price"
FShare"Cost share for fuel";

log_C_PF=log(Cost/FPrice);
log_PK_PF=log(KPrice/FPrice);
log_PL_PF=log(LPrice/FPrice);
log_y=log(Output);
log_y_sq=log_y**2/2;

run;

The following statements estimate a stochastic frontier exponential cost model that uses Christensen and
Greene (1976) data:

/*-- Stochastic Frontier Cost Model --*/
proc qlim data=electricity;

model log_C_PF = log_PK_PF log_PL_PF log_y log_y_sq;
endogenous log_C_PF ~ frontier (type=exponential cost);

run;

Output 29.7.2 shows the results.
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Output 29.7.2 Exponential Distribution

Stochastic Frontier Cost Model

The QLIM Procedure

Stochastic Frontier Cost Model

The QLIM Procedure

Model Fit Summary

Number of Endogenous Variables 1

Endogenous Variable log_C_PF

Number of Observations 159

Log Likelihood -23.30430

Maximum Absolute Gradient 3.0458E-6

Number of Iterations 21

Optimization Method Quasi-Newton

AIC 60.60860

Schwarz Criterion 82.09093

Sigma 0.30750

Lambda 1.71345

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -4.983211 0.543328 -9.17 <.0001

log_PK_PF 1 0.090242 0.109202 0.83 0.4086

log_PL_PF 1 0.504299 0.118263 4.26 <.0001

log_y 1 0.427182 0.066680 6.41 <.0001

log_y_sq 1 0.066120 0.010079 6.56 <.0001

_Sigma_v 1 0.154998 0.020271 7.65 <.0001

_Sigma_u 1 0.265581 0.033614 7.90 <.0001

Similarly, the stochastic frontier cost model can be estimated with (type=half) or (type=truncated) options
that represent half-normal and truncated normal errors.

The following statements illustrate the half-normal option:

/*-- Stochastic Frontier Cost Model --*/
proc qlim data=electricity;

model log_C_PF = log_PK_PF log_PL_PF log_y log_y_sq;
endogenous log_C_PF ~ frontier (type=half cost);

run;

Output 29.7.3 shows the result.
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Output 29.7.3 Half-Normal Distribution

Stochastic Frontier Cost Model

The QLIM Procedure

Stochastic Frontier Cost Model

The QLIM Procedure

Model Fit Summary

Number of Endogenous Variables 1

Endogenous Variable log_C_PF

Number of Observations 159

Log Likelihood -34.95304

Maximum Absolute Gradient 0.0001150

Number of Iterations 22

Optimization Method Quasi-Newton

AIC 83.90607

Schwarz Criterion 105.38840

Sigma 0.42761

Lambda 1.80031

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -4.434634 0.690197 -6.43 <.0001

log_PK_PF 1 0.069624 0.136250 0.51 0.6093

log_PL_PF 1 0.474578 0.146812 3.23 0.0012

log_y 1 0.256874 0.080777 3.18 0.0015

log_y_sq 1 0.088051 0.011817 7.45 <.0001

_Sigma_v 1 0.207637 0.039222 5.29 <.0001

_Sigma_u 1 0.373810 0.073605 5.08 <.0001

The following statements illustrate the truncated normal option:

/*-- Stochastic Frontier Cost Model --*/
proc qlim data=electricity;

model log_C_PF = log_PK_PF log_PL_PF log_y log_y_sq;
endogenous log_C_PF ~ frontier (type=truncated cost);

run;

Output 29.7.4 shows the results.
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Output 29.7.4 Truncated Normal Distribution

Stochastic Frontier Cost Model

The QLIM Procedure

Stochastic Frontier Cost Model

The QLIM Procedure

Model Fit Summary

Number of Endogenous Variables 1

Endogenous Variable log_C_PF

Number of Observations 159

Log Likelihood -36.87279

Maximum Absolute Gradient 271.78546

Number of Iterations 9

Optimization Method Quasi-Newton

AIC 89.74557

Schwarz Criterion 114.29681

Sigma 0.30309

Lambda 1.04294E-7

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -3.772132 0.338518 -11.14 <.0001

log_PK_PF 1 -0.030841 0.143593 -0.21 0.8299

log_PL_PF 1 0.574626 0.155390 3.70 0.0002

log_y 1 0.133254 0.058093 2.29 0.0218

log_y_sq 1 0.103028 0.009912 10.39 <.0001

_Sigma_v 1 0.303087 0.016898 17.94 <.0001

_Sigma_u 1 3.1610136E-8 . . .

_Mu 1 0.531720 0.338538 1.57 0.1163

If no (Production) or (Cost) option is specified, the stochastic frontier production model is estimated by
default.

Example 29.8: Bayesian Modeling
This example illustrates how to use the QLIM procedure to perform Bayesian analysis. The generated data
mimic a hypothetical scenario in which you study the number of tickets sold for a sports event given the
probability of the hosting team winning and the price of the tickets. The following statements create the
dataset:

title1 'Bayesian Analysis';

ods graphics on;

data test;
do i=1 to 200;

e1 = rannor(8726)*2000;
WinChance = ranuni(8772);
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Price = 10+ranexp(8773)*4;
y = 48000 + 5000*WinChance - 100 * price + e1;
if y>50000 then TicketSales = 50000;
if y<=50000 then TicketSales = y;
output;

end;
keep WinChance price y TicketSales;

run;

The following statements perform Bayesian analysis of a Tobit model:

proc qlim data=test plots(prior)=all;
model TicketSales = WinChance price;
endogenous TicketSales ~ censored(lb=0 ub= 50000);
prior intercept~normal(mean=48000);
prior WinChance~normal(mean=5000);
prior Price~normal(mean=-100);
bayes NBI=10000 NMC=30000 THIN=1 ntrds=1 DIAG=ALL STATS=ALL seed=2;

run;

Output 29.8.1 shows the results from the maximum likelihood estimation and the Bayesian analysis with
diffuse prior of this Tobit model.

Output 29.8.1 Bayesian Tobit Model

Bayesian Analysis

The QLIM Procedure

Bayesian Analysis

The QLIM Procedure

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 48119 623.565045 77.17 <.0001

WinChance 1 5242.083501 559.151222 9.38 <.0001

Price 1 -106.731665 40.660795 -2.62 0.0087

_Sigma 1 1939.607206 134.348772 14.44 <.0001

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

Intercept 30000 48109.4 535.0 47750.5 48102.6 48460.1

WinChance 30000 5212.9 483.4 4878.8 5205.2 5533.0

Price 30000 -104.7 36.5224 -128.6 -104.2 -79.4191

_Sigma 30000 1950.9 132.9 1858.4 1945.0 2034.0
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Output 29.8.2 depicts a graphical representation of MLE, prior, and posterior distributions.

Output 29.8.2 Predictive Analysis by Observation Number
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Output 29.8.2 continued
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The validity of the MCMC sampling phase can be monitored with Output 29.8.3.

Output 29.8.3 Predictive Analysis by Observation Number
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Output 29.8.3 continued
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Finally the prior and the posterior predictive analyses are represented in Output 29.8.4

Output 29.8.4 Predictive Analysis by Observation Number
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IGAMMA
PRIOR statement (QLIM), 1980

INIT statement
QLIM procedure, 1976

ITPRINT option
QLIM procedure, 1960

LIMIT1= option
MODEL statement (QLIM), 1976

LM option
TEST statement (QLIM), 1983

LOWERBOUND= option
ENDOGENOUS statement (QLIM), 1972

LR option
TEST statement (QLIM), 1983

MARGINAL
OUTPUT statement (QLIM), 1979

MARGINLIKE
BAYES statement (QLIM), 1967

MAXNMCMC=number
BAYES statement (QLIM), 1965

MAXTUNE= option
BAYES statement (QLIM), 1967

METHOD option
RANDOM statement (QLIM), 1981



METHOD= option
QLIM procedure, 1961

MILLS
OUTPUT statement (QLIM), 1979

MINTUNE= option
BAYES statement (QLIM), 1967

MODEL statement
QLIM procedure, 1976

MULTIPLIER= value
BAYES statement (QLIM), 1965

NBI= option
BAYES statement (QLIM), 1967

NDRAW= option
QLIM procedure, 1961

NLOPTIONS statement
QLIM procedure, 1978

NMC= option
BAYES statement (QLIM), 1967

NMCPRIOR= option
BAYES statement (QLIM), 1967

NOINT option
MODEL statement (QLIM), 1976

NONORMALIZE option
WEIGHT statement (QLIM), 1984

NOPRINT option
PROC QLIM statement, 1959

NORMAL
PRIOR statement (QLIM), 1979

NTRDS= option
BAYES statement (QLIM), 1967

NTU= option
BAYES statement (QLIM), 1968

ORDER= option
ENDOGENOUS statement (QLIM), 1971

OUT= option
OUTPUT statement (QLIM), 1979

OUTEST= option
PROC QLIM statement, 1959

OUTPOST= option
BAYES statement (QLIM), 1968

OUTPRIOR= option
BAYES statement (QLIM), 1968

OUTPUT statement
QLIM procedure, 1978

OVERID option
ENDOGENOUS statement (QLIM), 1974

PLOTS option
QLIM statement (QLIM), 1961

PREDICTED
OUTPUT statement (QLIM), 1979

PRINTALL option
PROC QLIM statement, 1959

PRIOR statement
QLIM procedure, 1979

PROB
OUTPUT statement (QLIM), 1979

PROBALL
OUTPUT statement (QLIM), 1979

PRODUCTION option
ENDOGENOUS statement (QLIM), 1973

PROPCOV= option
BAYES statement (QLIM), 1968

PROPORTION= value
BAYES statement (QLIM), 1965

QLIM procedure, 1955
PRIOR statement, 1979
syntax, 1955

QLIM procedure, CLASS statement, 1971
QLIM procedure, FREQ statement, 1975
QLIM procedure, RANDOM statement, 1980
QLIM procedure, TEST statement, 1983
QLIM procedure, WEIGHT statement, 1984

RANDINIT option
BAYES statement (QLIM), 1965

RESIDUAL
OUTPUT statement (QLIM), 1979

RESTRICT statement
QLIM procedure, 1982

RLLIMITS= number
BAYES statement (QLIM), 1965

SAMPLING= option
BAYES statement (QLIM), 1968

SEED= option
BAYES statement (QLIM), 1969
QLIM procedure, 1961

SELECT option
ENDOGENOUS statement (QLIM), 1973

SELECTVAR option
MODEL statement (QLIM), 1977

SIM option
RANDOM statement (QLIM), 1982

SIM suboption1
RANDOM statement (QLIM), 1982

SIM suboption2
RANDOM statement (QLIM), 1982

SIMTIME option
BAYES statement (QLIM), 1969

SQGAMMA
PRIOR statement (QLIM), 1980

SQIGAMMA
PRIOR statement (QLIM), 1980

STATIONARITY= option
BAYES statement (QLIM), 1965

STATISTICS option



BAYES statement (QLIM), 1969
SUBJECT option

RANDOM statement (QLIM), 1980

T
PRIOR statement (QLIM), 1980

TARGETESS= number
BAYES statement (QLIM), 1964

TARGETSTATS<= option>
BAYES statement (QLIM), 1964

TE1
OUTPUT statement (QLIM), 1979

TE2
OUTPUT statement (QLIM), 1979

THIN= option
BAYES statement (QLIM), 1970

TOL= value
BAYES statement (QLIM), 1965

TRUNCATED option
ENDOGENOUS statement (QLIM), 1972

UNIFORM
PRIOR statement (QLIM), 1980

UPPERBOUND= option
ENDOGENOUS statement (QLIM), 1972

WALD option
TEST statement (QLIM), 1983

XBETA
OUTPUT statement (QLIM), 1979
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