I ——
6sas

SAS/ETS” 14.1 User’s Guide
The HPSEVERITY

Procedure

This document is an individual chapter from SAS/ETS® 14.1 User’s Guide.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2015. SAS/ETS® 14.1 User’s Guide. Cary, NC:
SAS Institute Inc.

SAS/ETS® 14.1 User’s Guide
Copyright © 2015, SAS Institute Inc., Cary, NC, USA
All Rights Reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute
Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time
you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is
illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic
piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software
developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or
disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as
applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S.
federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision
serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The
Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414
July 2015

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Chapter 23
The HPSEVERITY Procedure

Contents
Overview: HPSEVERITY Procedure 1194
Getting Started: HPSEVERITY Procedure 1196
A Simple Example of Fitting Predefined Distributions 1196
An Example with Left-Truncation and Right-Censoring 1199
An Example of Modeling Regression Effects 1202
Syntax: HPSEVERITY Procedure 1206
Functional Summary L 1206
PROC HPSEVERITY Statement 1209
BY Statement e 1217
CLASS Statement e 1218
DIST Statement 1220
LOSS Statement oL e e 1222
NLOPTIONS Statement oo v i ittt 1224
OUTSCORELIB Statement oo v vttt it e et e 1225
PERFORMANCE Statementt 1227
SCALEMODEL Statementottt 1227
WEIGHT Statement e 1229
Programming Statements Lo 1229
Details: HPSEVERITY Procedure 1230
Predefined Distributions 1230
Censoring and Truncation L o 1240
Parameter Estimation Method L. 1242
Parameter Initialization L 1244
Estimating Regression Effects o0 1245
Levelization of Classification Variables 1251
Specification and Parameterization of Model Effects 1253
Empirical Distribution Function Estimation Methods 1260
Statisticsof Fit 1266
Distributed and Multithreaded Computation. 1271
Defining a Severity Distribution Model with the FCMP Procedure 1273
Predefined Utility Functions 1285
Scoring Functions e e 1290
Custom Objective Functions L 1298
Input Data Sets e 1301
Output Data Sets e e 1302

Displayed Output. e 1306

1194 4 Chapter 23: The HPSEVERITY Procedure

ODS Graphics o ot i 1309
Examples: HPSEVERITY Procedure 1312
Example 23.1: Defining a Model for Gaussian Distribution 1312
Example 23.2: Defining a Model for the Gaussian Distribution with a Scale Parameter 1316
Example 23.3: Defining a Model for Mixed-Tail Distributions 1320
Example 23.4: Fitting a Scaled Tweedie Model with Regressors 1327
Example 23.5: Fitting Distributions to Interval-Censored Data 1330
Example 23.6: Benefits of Distributed and Multithreaded Computing 1332
Example 23.7: Estimating Parameters Using Cramér-von Mises Estimator 1338
Example 23.8: Defining a Finite Mixture Model That Has a Scale Parameter 1339
Example 23.9: Predicting Mean and Value-at-Risk by Using Scoring Functions 1345
Example 23.10: Scale Regression with Rich Regression Effects 1350
References e 1353

Overview: HPSEVERITY Procedure

The HPSEVERITY procedure estimates parameters of any arbitrary continuous probability distribution that
is used to model the magnitude (severity) of a continuous-valued event of interest. Some examples of such
events are loss amounts paid by an insurance company and demand of a product as depicted by its sales.
PROC HPSEVERITY is especially useful when the severity of an event does not follow typical distributions
(such as the normal distribution) that are often assumed by standard statistical methods.

PROC HPSEVERITY runs in either single-machine mode or distributed mode. NOTE: Distributed mode
requires SAS High-Performance Econometrics.

PROC HPSEVERITY provides a default set of probability distribution models that includes the Burr,
exponential, gamma, generalized Pareto, inverse Gaussian (Wald), lognormal, Pareto, Tweedie, and Weibull
distributions. In the simplest form, you can estimate the parameters of any of these distributions by using a
list of severity values that are recorded in a SAS data set. You can optionally group the values by a set of BY
variables. PROC HPSEVERITY computes the estimates of the model parameters, their standard errors, and
their covariance structure by using the maximum likelihood method for each of the BY groups.

PROC HPSEVERITY can fit multiple distributions at the same time and choose the best distribution according
to a selection criterion that you specify. You can use seven different statistics of fit as selection criteria. They
are log likelihood, Akaike’s information criterion (AIC), corrected Akaike’s information criterion (AICC),
Schwarz Bayesian information criterion (BIC), Kolmogorov-Smirnov statistic (KS), Anderson-Darling
statistic (AD), and Cramér-von Mises statistic (CvM).

You can request the procedure to output the status of the estimation process, the parameter estimates and their
standard errors, the estimated covariance structure of the parameters, the statistics of fit, estimated cumulative
distribution function (CDF) for each of the specified distributions, and the empirical distribution function
(EDF) estimate (which is used to compute the KS, AD, and CvM statistics of fit).

The following key features make PROC HPSEVERITY unique among SAS procedures that can estimate
continuous probability distributions:

Overview: HPSEVERITY Procedure 4 1195

e [t enables you to fit a distribution model when the severity values are truncated or censored or both. You
can specify any combination of the following types of censoring and truncation effects: left-censoring,
right-censoring, left-truncation, or right-truncation. This is especially useful in applications with an
insurance-type model where a severity (loss) is reported and recorded only if it is greater than the
deductible amount (left-truncation) and where a severity value greater than or equal to the policy limit
is recorded at the limit (right-censoring). Another useful application is that of interval-censored data,
where you know both the lower limit (right-censoring) and upper limit (left-censoring) on the severity,
but you do not know the exact value.

PROC HPSEVERITY also enables you to specify a probability of observability for the left-truncated
data, which is a probability of observing values greater than the left-truncation threshold. This
additional information can be useful in certain applications to more correctly model the distribution of
the severity of events.

It uses an appropriate estimator of the empirical distribution function (EDF). EDF is required to
compute the KS, AD, and CvM statistics-of-fit. The procedure also provides the EDF estimates to
your custom parameter initialization method. When you specify truncation or censoring, the EDF is
estimated by using either Kaplan-Meier’s product-limit estimator or Turnbull’s estimator. The former is
used by default when you specify only one form of censoring effect (right-censoring or left-censoring),
whereas the latter is used by default when you specify both left-censoring and right-censoring effects.
The procedure computes the standard errors for all EDF estimators.

e [t enables you to define any arbitrary continuous parametric distribution model and to estimate its
parameters. You just need to define the key components of the distribution, such as its probability
density function (PDF) and cumulative distribution function (CDF), as a set of functions and subroutines
written with the FCMP procedure, which is part of Base SAS software. As long as the functions and
subroutines follow certain rules, the HPSEVERITY procedure can fit the distribution model defined by
them.

e [t can model the influence of exogenous or regressor variables on a probability distribution, as long as
the distribution has a scale parameter. A linear combination of regression effects is assumed to affect
the scale parameter via an exponential link function.

If a distribution does not have a scale parameter, then either it needs to have another parameter that can
be derived from a scale parameter by using a supported transformation or it needs to be reparameterized
to have a scale parameter. If neither of these is possible, then regression effects cannot be modeled.

You can easily construct many types of regression effects by using various operators on a set of classifi-
cation and continuous variables. You can specify classification variables in the CLASS statement.

e [t enables you to specify your own objective function to be optimized for estimating the parameters of
a model. You can write SAS programming statements to specify the contribution of each observation
to the objective function. You can use keyword functions such as _PDF_ and _CDF_ to generalize
the objective function to any distribution. If you do not specify your own objective function, then the
parameters of a model are estimated by maximizing the likelihood function of the data.

e [t enables you to create scoring functions that offer a convenient way to evaluate any distribution
function, such as PDF, CDF, QUANTILE, or your custom distribution function, for a fitted model on
new observations.

1196 4 Chapter 23: The HPSEVERITY Procedure

Because the HPSEVERITY procedure is a high-performance analytical procedure, it also does the following:

e cnables you to run in distributed mode on a cluster of machines that distribute the data and the
computations

e cnables you to run in single-machine mode on the server where SAS is installed

e exploits all the available cores and concurrent threads, regardless of execution mode

For more information, see the section “Processing Modes” on page 62 in Chapter 3, “Shared Concepts and
Topics.”

Getting Started: HPSEVERITY Procedure

This section outlines the use of the HPSEVERITY procedure to fit continuous probability distribution models.
Three examples illustrate different features of the procedure.

A Simple Example of Fitting Predefined Distributions

The simplest way to use PROC HPSEVERITY is to fit all the predefined distributions to a set of values and
let the procedure identify the best fitting distribution.

Consider a lognormal distribution, whose probability density function (PDF) f and cumulative distribution
function (CDF) F are as follows, respectively, where ® denotes the CDF of the standard normal distribution:

log(x) — u)
o

1 1 (log(x)—u)z
e o and F(x;u,a):CD(

NI

fxip,0) =

xXoA/2m

The following DATA step statements simulate a sample from a lognormal distribution with population
parameters ;4 = 1.5 and o = 0.25, and store the sample in the variable Y of a data set Work.Test_sev1:

/* Simple Lognormal Example *x/
data test_sevl (keep=y label='Simple Lognormal Sample');
call streaminit (45678);
label y='Response Variable';
Mu = 1.5;
Sigma = 0.25;
don =1 to 100;
y = exp(Mu) x rand('LOGNORMAL') *x*Sigma;
output;
end;
run;

The following statements fit all the predefined distribution models to the values of Y and identify the best
distribution according to the corrected Akaike’s information criterion (AICC):

A Simple Example of Fitting Predefined Distributions 4 1197

proc hpseverity data=test_sevl crit=aicc;
loss y;
dist _predefined_;

run;

The PROC HPSEVERITY statement specifies the input data set along with the model selection criterion, the
LOSS statement specifies the variable to be modeled, and the DIST statement with the _PREDEFINED _
keyword specifies that all the predefined distribution models be fitted.

Some of the default output displayed by this step is shown in Figure 23.1 through Figure 23.3. First,
information about the input data set is displayed followed by the “Model Selection” table, as shown in
Figure 23.1. The model selection table displays the convergence status, the value of the selection criterion,
and the selection status for each of the candidate models. The Converged column indicates whether the
estimation process for a given distribution model has converged, might have converged, or failed. The
Selected column indicates whether a given distribution has the best fit for the data according to the selection
criterion. For this example, the lognormal distribution model is selected, because it has the lowest value for
the selection criterion.

Figure 23.1 Data Set Information and Model Selection Table
The HPSEVERITY Procedure
Input Data Set

Name WORK.TEST_SEV1
Label Simple Lognormal Sample

Model Selection
Distribution Converged AICC Selected

Burr Yes 322.50845 No
Exp Yes 508.12287 No
Gamma Yes 320.50264 No
Igauss Yes 319.61652 No
Logn Yes 319.56579 Yes
Pareto Yes 510.28172 No
Gpd Yes 510.20576 No
Weibull Yes 334.82373 No

Next, the estimation information for each of the candidate models is displayed. The information for the
lognormal model, which is the best fitting model, is shown in Figure 23.2. The first table displays a summary
of the distribution. The second table displays the convergence status. This is followed by a summary of
the optimization process which indicates the technique used, the number of iterations, the number of times
the objective function was evaluated, and the log likelihood attained at the end of the optimization. Since
the model with lognormal distribution has converged, PROC HPSEVERITY displays its statistics of fit and
parameter estimates. The estimates of Mu=1.49605 and Sigma=0.26243 are quite close to the population
parameters of Mu=1.5 and Sigma=0.25 from which the sample was generated. The p-value for each estimate
indicates the rejection of the null hypothesis that the estimate is 0, implying that both the estimates are
significantly different from O.

1198 4 Chapter 23: The HPSEVERITY Procedure

Figure 23.2 Estimation Details for the Lognormal Model

The HPSEVERITY Procedure
Logn Distribution

Distribution Information

Name Logn
Description Lognormal Distribution
Distribution Parameters 2

Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Optimization Summary
Optimization Technique Trust Region

lterations 2

Function Calls 8

Log Likelihood -157.72104

Fit Statistics

-2 Log Likelihood 315.44208
AIC 319.44208
AlCC 319.56579
BIC 324.65242
Kolmogorov-Smirnov 0.50641
Anderson-Darling 0.31240
Cramer-von Mises 0.04353

Parameter Estimates

Standard Approx
Parameter Estimate Error t Value Pr > |t
Mu 1.49605 0.02651 56.43 <.0001
Sigma 0.26243 0.01874 14.00 <.0001

The parameter estimates of the Burr distribution are shown in Figure 23.3. These estimates are used in the
next example.

Figure 23.3 Parameter Estimates for the Burr Model

Parameter Estimates

Standard Approx
Parameter Estimate Error t Value Pr> |t
Theta 462348 0.46181 10.01 <.0001
Alpha 1.15706 0.47493 244 0.0167

Gamma 6.41227 0.99039 6.47 <.0001

An Example with Left-Truncation and Right-Censoring 4 1199

An Example with Left-Truncation and Right-Censoring

PROC HPSEVERITY enables you to specify that the response variable values are left-truncated or right-
censored. The following DATA step expands the data set of the previous example to simulate a scenario that
is typically encountered by an automobile insurance company. The values of the variable Y represent the
loss values on claims that are reported to an auto insurance company. The variable THRESHOLD records
the deductible on the insurance policy. If the actual value of Y is less than or equal to the deductible, then
it is unobservable and does not get recorded. In other words, THRESHOLD specifies the left-truncation of
Y. LIMIT records the policy limit. If the value of Y is equal to or greater than the recorded value, then the
observation is right-censored.

[h————— Lognormal Model with left-truncation and censoring —--———- */
data test_sev2 (keep=y threshold limit
label='A Lognormal Sample With Censoring and Truncation');
set test_sevl;
label y='Censored & Truncated Response';
if n = 1 then call streaminit (45679);

/* make about 20% of the observations left-truncated */
if (rand('UNIFORM') < 0.2) then

threshold = y * (1 — rand('UNIFORM'));
else

threshold = .;
/* make about 15% of the observations right-censored x*/
iscens = (rand('UNIFORM') < 0.15);
if (iscens) then

limit = y;
else
limit = .;

run;

The following statements use the AICC criterion to analyze which of the four predefined distributions
(lognormal, Burr, gamma, and Weibull) has the best fit for the data:

proc hpseverity data=test_sev2 crit=aicc print=all ;
loss y / lt=threshold rc=limit;

dist logn burr gamma weibull;
performance nthreads=2;
run;

The LOSS statement specifies the left-truncation and right-censoring variables. The DIST statement specifies
the candidate distributions. The PRINT= option in the PROC HPSEVERITY statement requests that all
the displayed output be prepared. The NTHREADS option in the PERFORMANCE statement specifies
that two threads of computation be used. The option is shown here just for illustration. You should use
it only when you want to restrict the procedure to use a different number of threads than the value of the
CPUCOUNT= system option, which usually defaults to the number of physical CPU cores available on your
machine, thereby allowing the procedure to fully utilize the computational power of your machine.

Some of the key results prepared by PROC HPSEVERITY are shown in Figure 23.4 through Figure 23.7. In
addition to the estimates of the range, mean, and standard deviation of Y, the “Descriptive Statistics for y”’
table shown in Figure 23.4 also indicates the number of observations that are left-truncated or right-censored.
The “Model Selection” table in Figure 23.4 shows that models with all the candidate distributions have
converged and that the Logn (lognormal) model has the best fit for the data according to the AICC criterion.

1200 4 Chapter 23: The HPSEVERITY Procedure

Figure 23.4 Summary Results for the Truncated and Censored Data
The HPSEVERITY Procedure

PROC HPSEVERITY also prepares a table that shows all the fit statistics for all the candidate models. It is
useful to see which model would be the best fit according to each of the criteria. The “All Fit Statistics” table
prepared for this example is shown in Figure 23.5. It indicates that the lognormal model is chosen by all the

Name

Input Data Set

WORK.TEST_SEV2
Label A Lognormal Sample With Censoring and Truncation

Descriptive Statistics for y

Observations

Observations Used for Estimation

Minimum

Maximum

Mean

Standard Deviation

100

100
2.30264
8.34116
4.62007
1.23627
23

Left Truncated Observations

Right Censored Observations

Model Selection

Distribution Converged

Logn
Burr
Gamma
Weibull

Yes
Yes
Yes
Yes

AICC Selected

298.92672 Yes
302.66229 No
299.45293 No
309.26779 No

Figure 23.5 Comparing All Statistics of Fit for the Truncated and Censored Data

criteria.
-2 Log
Distribution Likelihood
Logn 294.80301 * 298.80301
Burr 296.41229 302.41229
Gamma 295.32921 299.32921
Weibull 305.14408 309.14408

All Fit Statistics

AIC
* 298.92672
302.66229
299.45293
309.26779

AICC
* 304.01335
310.22780
304.53955
314.35442

BIC

* 0.51824
0.66984
0.62511
0.93307

KS

* 0.34736
0.36712
0.42921
1.40699

Note: The asterisk (*) marks the best model according to each column'’s criterion.

All Fit Statistics

Distribution CvM
Logn 0.05159 *
Burr 0.05726
Gamma 0.05526
Weibull 0.17465

Note: The asterisk (*)
marks the best model
according to each
column's criterion.

An Example with Left-Truncation and Right-Censoring 4 1201

Specifying Initial Values for Parameters

All the predefined distributions have parameter initialization functions built into them. For the current
example, Figure 23.6 shows the initial values that are obtained by the predefined method for the Burr
distribution. It also shows the summary of the optimization process and the final parameter estimates.

Figure 23.6 Burr Model Summary for the Truncated and Censored Data

Initial Parameter Values and Bounds

Initial Lower Upper
Parameter Value Bound Bound

Theta 4.78102 1.05367E-8 Infty
Alpha 2.00000 1.05367E-8 Infty
Gamma 2.00000 1.05367E-8 Infty

Optimization Summary
Optimization Technique Trust Region

Iterations 8
Function Calls 23
Log Likelihood -148.20614

Parameter Estimates

Standard Approx
Parameter Estimate Error t Value Pr > |t
Theta 476980 0.62492 7.63 <.0001
Alpha 1.16363 0.58859 1.98 0.0509

Gamma 594081 1.05004 5.66 <.0001

You can specify a different set of initial values if estimates are available from fitting the distribution to similar
data. For this example, the parameters of the Burr distribution can be initialized with the final parameter
estimates of the Burr distribution that were obtained in the first example (shown in Figure 23.3). One of the
ways in which you can specify the initial values is as follows:

[k————— Specifying initial values using INIT= option ——————- */
proc hpseverity data=test_sev2 crit=aicc print=all;
loss y / lt=threshold rc=limit;

dist burr (init=(theta=4.62348 alpha=1.15706 gamma=6.41227));
performance nthreads=2;
run;
The names of the parameters that are specified in the INIT option must match the parameter names in the
definition of the distribution. The results obtained with these initial values are shown in Figure 23.7. These
results indicate that new set of initial values causes the optimizer to reach the same solution with fewer
iterations and function evaluations as compared to the default initialization.

1202 4 Chapter 23: The HPSEVERITY Procedure

Figure 23.7 Burr Model Optimization Summary for the Truncated and Censored Data
The HPSEVERITY Procedure
Burr Distribution

Optimization Summary
Optimization Technique Trust Region

lterations 5
Function Calls 16
Log Likelihood -148.20614

Parameter Estimates

Standard Approx
Parameter Estimate Error t Value Pr > |t]
Theta 4.76980 0.62492 7.63 <.0001
Alpha 1.16363 0.58859 1.98 0.0509

Gamma 594081 1.05004 5.66 <.0001

An Example of Modeling Regression Effects

Consider a scenario in which the magnitude of the response variable might be affected by some regressor
(exogenous or independent) variables. The HPSEVERITY procedure enables you to model the effect of
such variables on the distribution of the response variable via an exponential link function. In particular, if
you have k random regressor variables denoted by x; (j = 1,...,k), then the distribution of the response
variable Y is assumed to have the form

k
Y ~exp() | Bix;) - F(©)

j=1
where F denotes the distribution of ¥ with parameters ® and B;(j = 1,...,k) denote the regression
parameters (coefficients).
For the effective distribution of Y to be a valid distribution from the same parametric family as F, it is
necessary for F to have a scale parameter. The effective distribution of Y can be written as

Y ~ F(0,9)

where 6 denotes the scale parameter and €2 denotes the set of nonscale parameters. The scale 6 is affected by
the regressors as

k
0 = 69 -exp(z Bixj)

Jj=1
where 6 denotes a base value of the scale parameter.

Given this form of the model, PROC HPSEVERITY allows a distribution to be a candidate for modeling
regression effects only if it has an untransformed or a log-transformed scale parameter.

An Example of Modeling Regression Effects 4 1203

All the predefined distributions, except the lognormal distribution, have a direct scale parameter (that is, a
parameter that is a scale parameter without any transformation). For the lognormal distribution, the parameter
W is a log-transformed scale parameter. This can be verified by replacing p with a parameter 6 = e, which
results in the following expressions for the PDF f and the CDF F in terms of 6 and o, respectively, where &
denotes the CDF of the standard normal distribution:

1 (log(x)—log(6)
e 2

f(x;@,a)z# o) and F(x;9,0)=<l>(

o T

log(x) — log(Q))

o

With this parameterization, the PDF satisfies the f(x:0,0) = % f(3:1,0) condition and the CDF satisfies
the F(x;0,0) = F(%; 1,0) condition. This makes 6 a scale parameter. Hence, 4 = log(f) is a log-
transformed scale parameter and the lognormal distribution is eligible for modeling regression effects.

The following DATA step simulates a lognormal sample whose scale is decided by the values of the three
regressors X1, X2, and X3 as follows:

w=log(f) =140.75 X1 —X2 4+ 0.25 X3

[R ———————e Lognormal Model with Regressors ———————————— */
data test_sev3 (keep=y x1-x3
label='A Lognormal Sample Affected by Regressors');
array x{x} x1-x3;
array b{4} _TEMPORARY_ (1 0.75 -1 0.25);
call streaminit (45678);
label y='Response Influenced by Regressors';
Sigma = 0.25;
don =1 to 100;
Mu = b(l); /* log of base value of scale */
do i =1 to dim(x);
x(i) = rand('UNIFORM');
Mu = Mu + b(i+l) * x(i);
end;
y = exp(Mu) x rand('LOGNORMAL') **Sigma;
output;
end;
run;

The following PROC HPSEVERITY step fits the lognormal, Burr, and gamma distribution models to this
data. The regressors are specified in the SCALEMODEL statement.

proc hpseverity data=test_sev3 crit=aicc print=all;
loss y;
scalemodel x1-x3;

dist logn burr gamma;
run;

Some of the key results prepared by PROC HPSEVERITY are shown in Figure 23.8 through Figure 23.12.
The descriptive statistics of all the variables are shown in Figure 23.8.

1204 4 Chapter 23: The HPSEVERITY Procedure

Figure 23.8 Summary Results for the Regression Example
The HPSEVERITY Procedure

Input Data Set
Name WORK.TEST_SEV3
Label A Lognormal Sample Affected by Regressors

Descriptive Statistics for y

Observations 100
Observations Used for Estimation 100
Minimum 1.17863
Maximum 6.65269
Mean 2.99859
Standard Deviation 1.12845

Descriptive Statistics for Regressors

Standard
Variable N Minimum Maximum Mean Deviation
x1 100 0.0005115 0.97971 0.51689 0.28206
x2 100 0.01883 0.99937 0.47345 0.28885
x3 100 0.00255 0.97558 0.48301 0.29709

The comparison of the fit statistics of all the models is shown in Figure 23.9. It indicates that the lognormal
model is the best model according to each of the likelihood-based statistics, whereas the gamma model is the
best model according to two of the three EDF-based statistics.

Figure 23.9 Comparison of Statistics of Fit for the Regression Example

All Fit Statistics

Distribution Likelizhlt-)gtgi AIC AICC BIC KS AD
Logn 187.49609 * 197.49609 * 198.13439 * 210.52194 * 1.97544 17.24618
Burr 190.69154 202.69154 203.59476 218.32256 2.09334 13.93436 *
Gamma 188.91483 198.91483 199.55313 211.94069 1.94472 * 15.84787

Note: The asterisk (*) marks the best model according to each column'’s criterion.

All Fit Statistics

Distribution CvM
Logn 1.21665
Burr 1.28529

Gamma 1.17617 *

Note: The asterisk (*)
marks the best model
according to each
column's criterion.

The distribution information and the convergence results of the lognormal model are shown in Figure 23.10.
The iteration history gives you a summary of how the optimizer is traversing the surface of the log-likelihood
function in its attempt to reach the optimum. Both the change in the log likelihood and the maximum gradient
of the objective function with respect to any of the parameters typically approach 0 if the optimizer converges.

An Example of Modeling Regression Effects 4 1205

Figure 23.10 Convergence Results for the Lognormal Model with Regressors

The HPSEVERITY Procedure
Logn Distribution

Distribution Information

Name Logn
Description Lognormal Distribution
Distribution Parameters 2
Regression Parameters 3

Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Optimization Iteration History

Function -Log Maximum
Iter Calls Likelihood Change Gradient
0 2 93.75285 6.16002

1 4 93.74805 -0.0048055 0.11031
2 6 93.74805 -1.5017E-6 0.00003376
3 10 93.74805 -1.421E-13 3.1051E-12

Optimization Summary
Optimization Technique Trust Region

Iterations 3
Function Calls 10
Log Likelihood -93.74805

The final parameter estimates of the lognormal model are shown in Figure 23.11. All the estimates are
significantly different from 0. The estimate that is reported for the parameter Mu is the base value for the
log-transformed scale parameter . Let x;(1 < i < 3) denote the observed value for regressor Xi. If the
lognormal distribution is chosen to model Y, then the effective value of the parameter p varies with the
observed values of regressors as

p = 1.04047 4 0.65221 x1 — 0.91116 x2 4 0.16243 x3

These estimated coefficients are reasonably close to the population parameters (that is, within one or two
standard errors).

Figure 23.11 Parameter Estimates for the Lognormal Model with Regressors

Parameter Estimates

Standard Approx
Parameter Estimate Error t Value Pr > |t
Mu 1.04047 0.07614 13.66 <.0001
Sigma 0.22177 0.01609 13.78 <.0001
x1 0.65221 0.08167 7.99 <.0001
x2 -0.91116 0.07946 -11.47 <.0001

x3 0.16243 0.07782 2.09 0.0395

1206 4 Chapter 23: The HPSEVERITY Procedure

The estimates of the gamma distribution model, which is the best model according to a majority of the
EDF-based statistics, are shown in Figure 23.12. The estimate that is reported for the parameter Theta is the
base value for the scale parameter 6. If the gamma distribution is chosen to model Y, then the effective value
of the scale parameter is = 0.14293 exp(0.64562 x; — 0.89831 x5 + 0.14901 x3).

Figure 23.12 Parameter Estimates for the Gamma Model with Regressors

Parameter Estimates

Standard Approx
Parameter Estimate Error t Value Pr > [t]
Theta 0.14293 0.02329 6.14 <.0001
Alpha 20.37726 2.93277 6.95 <.0001
x1 0.64562 0.08224 7.85 <.0001
x2 -0.89831 0.07962 -11.28 <.0001
x3 0.14901 0.07870 1.89 0.0613

Syntax: HPSEVERITY Procedure

The following statements are available in the HPSEVERITY procedure:

PROC HPSEVERITY options ;
BY variable-list ;
LOSS < response-variable > </ censoring-truncation-options > ;
WEIGHT weight-variable ;
CLASS variable < (options) > . .. < variable < (options) > > </ global-options > ;
SCALEMODEL regression-effect-list </ scalemodel-options > ;
DIST distribution-name-or-keyword < (distribution-option) < distribution-name-or-keyword
< (distribution-option) > > ... > </ preprocess-options > ;
OUTSCORELIB < OUTLIB=> fcmp-library-name options ;
NLOPTIONS options ;
PERFORMANCE options ;
Programming statements ;

Functional Summary

Table 23.1 summarizes the statements and options that control the HPSEVERITY procedure.

Table 23.1 HPSEVERITY Functional Summary

Description Statement Option
Statements

Specifies BY-group processing BY

Specifies the response variable to model along LOSS

with censoring and truncation effects

Specifies the weight variable WEIGHT

Specifies the classification variables CLASS

Functional Summary 4 1207

Table 23.1 continued
Description Statement Option
Specifies the regression effects to model SCALEMODEL
Specifies distributions to fit DIST
Specifies the library to write scoring functions to ~ OUTSCORELIB
Specifies optimization options NLOPTIONS
Specifies performance options PERFORMANCE
Specifies programming statements that define an ~ Programming statements
objective function
Input and Output Options
Specifies that the OUTEST= data set contain PROC HPSEVERITY CovouT
covariance estimates
Specifies the input data set PROC HPSEVERITY DATA=
Specifies the input data set for parameter estimates PROC HPSEVERITY INEST=
Specifies the input item store for parameter PROC HPSEVERITY INSTORE=
initialization
Limits the length of effect names PROC HPSEVERITY NAMELEN=
Specifies the output data set for CDF estimates PROC HPSEVERITY OUTCDF=
Specifies the output data set for parameter PROC HPSEVERITY OUTEST=
estimates
Specifies the output data set for model information PROC HPSEVERITY OUTMODELINFO=
Specifies the output data set for statistics of fit PROC HPSEVERITY OUTSTAT=
Specifies the output item store for context and PROC HPSEVERITY OUTSTORE=
estimation results
Data Interpretation Options
Specifies left-censoring LOSS LEFTCENSORED=
Specifies left-truncation LOSS LEFTTRUNCATED=
Specifies the probability of observability LOSS PROBOBSERVED=
Specifies right-censoring LOSS RIGHTCENSORED=
Specifies right-truncation LOSS RIGHTTRUNCATED=
Model Estimation Options
Specifies the model selection criterion PROC HPSEVERITY CRITERION=
Specifies the method for computing mixture SCALEMODEL DFMIXTURE=
distribution
Specifies initial values for model parameters DIST INIT=
Specifies the objective function symbol PROC HPSEVERITY OBJECTIVE=
Specifies the offset variable in the scale regression SCALEMODEL OFFSET=
model
Specifies the denominator for computing PROC HPSEVERITY VARDEF=

covariance estimates

1208 4 Chapter 23: The HPSEVERITY Procedure

Table 23.1 continued
Description Statement Option
Empirical Distribution Function (EDF)
Estimation Options
Specifies the confidence level for reporting the PROC HPSEVERITY EDFALPHA=
confidence interval for EDF estimates
Specifies the nonparametric method of CDF PROC HPSEVERITY EMPIRICALCDF=
estimation
Specifies the sample to be used for computing the PROC HPSEVERITY INITSAMPLE
EDF estimates
EMPIRICALCDF=MODIFIEDKM Options
Specifies the « value for the lower bound on risk ~ PROC HPSEVERITY ALPHA=
set size
Specifies the ¢ value for the lower bound on risk ~ PROC HPSEVERITY C=
set size
Specifies the absolute lower bound on risk set size PROC HPSEVERITY RSLB=
EMPIRICALCDF=TURNBULL Options
Specifies that the final EDF estimates be PROC HPSEVERITY ENSUREMLE
maximum likelihood estimates
Specifies the relative convergence criterion PROC HPSEVERITY EPS=
Specifies the maximum number of iterations PROC HPSEVERITY MAXITER=
Specifies the threshold below which an EDF PROC HPSEVERITY ZEROPROB=
estimate is deemed to be O
Scoring Function Generation Options
Specifies that scoring functions of all models be =~ OUTSCORELIB COMMONPACKAGE
written to one package
Specifies the output data set for BY-group OUTSCORELIB OUTBYID=
identifiers
Specifies the output library for scoring functions =~ OUTSCORELIB OUTLIB=
Displayed Output and Plotting Options
Specifies that distributions be listed to the log DIST LISTONLY
without estimating any models that use them
Limits or suppresses the display of class levels PROC HPSEVERITY NOCLPRINT
Suppresses all displayed and graphical output PROC HPSEVERITY NOPRINT
Specifies which graphical output to prepare PROC HPSEVERITY PLOTS=
Specifies which output to display PROC HPSEVERITY PRINT=
Specifies that distributions be validated without DIST VALIDATEONLY

estimating any models that use them

PROC HPSEVERITY Statement 4 1209

PROC HPSEVERITY Statement
PROC HPSEVERITY options ;

The PROC HPSEVERITY statement invokes the procedure. You can specify two types of options in the
PROC HPSEVERITY statement. One set of options controls input and output. The other set of options
controls the model estimation and selection process.

The following options control the input data sets used by PROC HPSEVERITY and various forms of output
generated by PROC HPSEVERITY. The options are listed in alphabetical order.

CovouT
specifies that the OUTEST= data set contain the estimate of the covariance structure of the parameters.
This option has no effect if you do not specify the OUTEST= option. For more information about
how the covariance is reported in the OUTEST= data set, see the section “OUTEST= Data Set” on
page 1303.

DATA=SAS-data-set
names the input data set. If you do not specify the DATA= option, then the most recently created SAS
data set is used.

EDFALPHA=confidence-level
specifies the confidence level in the (0,1) range that is used for computing the confidence intervals for
the EDF estimates. The lower and upper confidence limits that correspond to this level are reported in
the OUTCDF= data set, if specified, and are displayed in the plot that is created when you specify the
PLOTS=CDFPERDIST option.

If you do not specify the EDFALPHA= option, then PROC HPSEVERITY uses a default value of 0.05.

INEST=SAS-data-set
names the input data set that contains the initial values of the parameter estimates to start the opti-
mization process. The initial values that you specify in the INIT= option in the DIST statement take
precedence over any initial values that you specify in the INEST= data set. For more information about
the variables in this data set, see the section “INEST= Data Set” on page 1301.

If you specify the SCALEMODEL statement, then PROC HPSEVERITY reads the INEST= data
set only if the SCALEMODEL statement contains singleton continuous effects. For more generic
regression effects, you should save the estimates by specifying the OUTSTORE= item store in a step
and then use the INSTORE= option to read those estimates. The INSTORE= option is the newer and
more flexible method of specifying initial values for distribution and regression parameters.

INITSAMPLE (initsample-option)

INITSAMPLE (initsample-option .. . initsample-option)
specifies that a sample of the input data be used for initializing the distribution parameters. If you
specify more than one initsample-option, then separate them with spaces.

When you do not specify initial values for the distribution parameters, PROC HPSEVERITY needs to
compute the empirical distribution function (EDF) estimates as part of the default method for parameter
initialization. The EDF estimation process can be expensive, especially when you specify censoring
or truncation effects for the loss variable. Furthermore, it is not amenable to parallelism due to the
sequential nature of the algorithm for truncation effects. You can use the INITSAMPLE option to

1210 4 Chapter 23: The HPSEVERITY Procedure

specify that only a fraction of the input data be used in order to reduce the time taken to compute the
EDF estimates. PROC HPSEVERITY uses the uniform random sampling method to select the sample,
the size and randomness of which is controlled by the following initsample-options:

FRACTION=number
specifies the fraction, between 0 and 1, of the input data to be used for sampling.

SEED=number
specifies the seed to be used for the uniform random number generator. This option enables you
to select the same sample from the same input data across different runs of PROC HPSEVERITY,
which can be useful for replicating the results across different runs. If you do not specify the seed
value, PROC HPSEVERITY generates a seed that is based on the system clock.

SIZE=number

specifies the size of the sample. If the data are distributed across different nodes, then this size
applies to the sample that is prepared at each node. For example, let the input data set of size
100,000 observations be distributed across 10 nodes such that each node has 10,000 observations.
If you specify SIZE=1000, then each node computes a local EDF estimate by using a sample
of size 1,000 selected randomly from its 10,000 observations. If you specify both of the SIZE=
and FRACTION= options, then the value that you specify in the SIZE= option is used and the
FRACTION-= option is ignored.

If you do not specify the INITSAMPLE option, then a uniform random sample of at most 10,000
observations is used for EDF estimation.

INSTORE=store-name (Experimental)
names the item store that contains the context and results of the severity model estimation process. An
item store has a binary file format that cannot be modified. You must specify an item store that you
have created in another PROC HPSEVERITY step by using the OUTSTORE= option.

The store-name is a usual one- or two-level SAS name, as for SAS data sets. If you specify a one-level
name, then PROC HPSEVERITY reads the item store from the WORK library. If you specify a
two-level name of the form /ibname.membername, then PROC HPSEVERITY reads the item store from
the libname library.

This option is more flexible than the INEST= option, because it can read estimates of any type of scale
regression model; the INEST= option can read only scale regression models that contain singleton
continuous effects.

For more information about how the input item store is used for parameter initialization, see the
sections “Parameter Initialization” on page 1244 and “Parameter Initialization for Regression Models”
on page 1247.

NAMELEN=number
specifies the length to which long regression effect names are shortened. The default and minimum
value is 20.

This option does not apply to the names of singleton continuous effects if you have not specified any
CLASS variables.

PROC HPSEVERITY Statement 4 1211

NOCLPRINT< =number >
suppresses the display of the “Class Level Information” table if you do not specify number. If you
specify number, the values of the classification variables are displayed for only those variables whose
number of levels is less than number. Specifying a number helps to reduce the size of the “Class Level
Information” table if some classification variables have a large number of levels. This option has no
effect if you do not specify the CLASS statement.

NOPRINT
turns off all displayed and graphical output. If you specify this option, then any value that you specify
for the PRINT= and PLOTS= options is ignored.

OUTCDF=SAS-data-set
names the output data set to contain estimates of the cumulative distribution function (CDF) value
at each of the observations. This data set is created only when you run PROC HPSEVERITY in
single-machine mode.

The information is output for each specified model whose parameter estimation process converges. The
data set also contains the estimates of the empirical distribution function (EDF). For more information
about the variables in this data set, see the section “OUTCDF= Data Set” on page 1302.

OUTEST=SAS-data-set
names the output data set to contain estimates of the parameter values and their standard errors for
each model whose parameter estimation process converges. For more information about the variables
in this data set, see the section “OUTEST= Data Set” on page 1303.

If you specify the SCALEMODEL statement such that it contains at least one effect that is not a
singleton continuous effect, then the OUTEST= data set that this option creates cannot be used as an
INEST= data set in a subsequent PROC HPSEVERITY step. In such cases, it is recommended that you
use the newer OUTSTORE= option to save the estimates and specify those estimates in a subsequent
PROC HPSEVERITY step by using the INSTORE= option.

OUTMODELINFO=SAS-data-set
names the output data set to contain the information about each candidate distribution. For more
information about the variables in this data set, see the section “OUTMODELINFO= Data Set” on
page 1304.

OUTSTAT=SAS-data-set
names the output data set to contain the values of statistics of fit for each model whose parameter
estimation process converges. For more information about the variables in this data set, see the section
“OUTSTAT= Data Set” on page 1305.

OUTSTORE-=store-name (Experimental)
names the item store to contain the context and results of the severity model estimation process. The

resulting item store has a binary file format that cannot be modified. You can specify this item store in
a subsequent PROC HPSEVERITY step by using the INSTORE= option.

The store-name is a usual one- or two-level SAS name, as for SAS data sets. If you specify a one-
level name, then the item store resides in the WORK library and is deleted at the end of the SAS
session. Because item stores are meant to be consumed by a subsequent PROC HPSEVERITY step for
parameter initialization, typical usage specifies a two-level name of the form /ibname.membername.

1212 4 Chapter 23: The HPSEVERITY Procedure

This option is more useful than the OUTEST= option, especially when you specify a scale regression
model that contains interaction effects or effects that have CLASS variables. You can initialize such
scale regression models in a subsequent PROC HPSEVERITY step only by specifying the item store
that this option creates as an INSTORE= item store in that step.

PLOTS < (global-plot-options) > < =plot-request-option >

PLOTS < (global-plot-options) > < =(plot-request-option . . . plot-request-option) >
specifies the desired graphical output. The graphical output is created only when you run PROC
HPSEVERITY in single-machine mode. If you specify more than one global-plot-option, then separate
them with spaces and enclose them in parentheses. If you specify more than one plot-request-option,
then separate them with spaces and enclose them in parentheses.

You can specify the following global-plot-options:

HISTOGRAM
plots the histogram of the response variable on the PDF plots.

KERNEL
plots the kernel estimate of the probability density of the response variable on the PDF plots.

ONLY
turns off the default graphical output and creates only the requested plots.

You can specify the following plot-request-options:

ALL
creates all the graphical output.

CDF
creates a plot that compares the cumulative distribution function (CDF) estimates of all the
candidate distribution models to the empirical distribution function (EDF) estimate. The plot does
not contain CDF estimates for models whose parameter estimation process does not converge.

CDFPERDIST
creates a plot of the CDF estimates of each candidate distribution model. A plot is not created for
models whose parameter estimation process does not converge.

NONE
creates none of the graphical output. If you specify this option, then it overrides all the other
plot-request-options. The default graphical output is also suppressed.

PDF
creates a plot that compares the probability density function (PDF) estimates of all the candidate
distribution models. The plot does not contain PDF estimates for models whose parameter
estimation process does not converge.

PDFPERDIST
creates a plot of the PDF estimates of each candidate distribution model. A plot is not created for
models whose parameter estimation process does not converge.

PROC HPSEVERITY Statement 4 1213

PP
creates the probability-probability plot (known as the P-P plot), which compares the CDF estimate
of each candidate distribution model to the empirical distribution function (EDF). The data that
are shown in this plot are used for computing the EDF-based statistics of fit.

QaQ
creates the quantile-quantile plot (known as the Q-Q plot), which compares the empirical quantiles
to the quantiles of each candidate distribution model.

If you do not specify the PLOTS= option or if you do not specify the ONLY global-plot-option, then
the default graphical output is equivalent to specifying PLOTS(HISTOGRAM KERNEL)=(CDF PDF).

PRINT < (global-display-option) > < =display-option >

PRINT < (global-display-option) > < = (display-option . .. display-option) >
specifies the desired displayed output. If you specify more than one display-option, then separate them
with spaces and enclose them in parentheses.

You can specify the following global-display-option:

ONLY
turns off the default displayed output and displays only the requested output.

You can specify the following display-options:

ALL
displays all the output.

ALLFITSTATS
displays the comparison of all the statistics of fit for all the models in one table. The table does
not include the models whose parameter estimation process does not converge.

CONVSTATUS
displays the convergence status of the parameter estimation process.

DESCSTATS
displays the descriptive statistics for the response variable. If you specify the SCALEMODEL
statement, then this option also displays the descriptive statistics for the regression effects that do
not contain a CLASS variable.

DISTINFO
displays the information about each specified distribution. For each distribution, the information
includes the name, description, validity status, and number of distribution parameters.

ESTIMATES | PARMEST
displays the final estimates of parameters. The estimates are not displayed for models whose
parameter estimation process does not converge.

ESTIMATIONDETAILS
displays the details of the estimation process for all the models in one table.

1214 4 Chapter 23: The HPSEVERITY Procedure

INITIALVALUES
displays the initial values and bounds used for estimating each model.

NLOHISTORY
displays the iteration history of the nonlinear optimization process used for estimating the
parameters.

NLOSUMMARY
displays the summary of the nonlinear optimization process used for estimating the parameters.

NONE
displays none of the output. If you specify this option, then it overrides all other display options.
The default displayed output is also suppressed.

SELECTION | SELECT
displays the model selection table.

STATISTICS | FITSTATS
displays the statistics of fit for each model. The statistics of fit are not displayed for models
whose parameter estimation process does not converge.

If you do not specify the PRINT= option or if you do not specify the ONLY global-display-option,
then the default displayed output is equivalent to specifying PRINT=(SELECTION CONVSTATUS
NLOSUMMARY STATISTICS ESTIMATES).

VARDEF=DF | N
specifies the denominator to use for computing the covariance estimates. You can specify one of the
following values:

DF
specifies that the number of nonmissing observations minus the model degrees of freedom
(number of parameters) be used.

specifies that the number of nonmissing observations be used.

For more information about the covariance estimation, see the section “Estimating Covariance and
Standard Errors” on page 1243.

The following options control the model estimation and selection process:

CRITERION | CRITERIA | CRIT=criterion-option
specifies the model selection criterion.

If you specify two or more candidate models for estimation, then the one with the best value for the
selection criterion is chosen as the best model. If you specify the OUTSTAT= data set, then the best
model’s observation has a value of 1 for the _SELECTED_ variable.

PROC HPSEVERITY Statement 4 1215

You can specify one of the following criterion-options:

AD
specifies the Anderson-Darling (AD) statistic value, which is computed by using the empirical
distribution function (EDF) estimate, as the selection criterion. A lower value is deemed better.

AlC
specifies Akaike’s information criterion (AIC) as the selection criterion. A lower value is deemed
better.

AICC
specifies the finite-sample corrected Akaike’s information criterion (AICC) as the selection
criterion. A lower value is deemed better.

BIC
specifies the Schwarz Bayesian information criterion (BIC) as the selection criterion. A lower
value is deemed better.

CUSTOM
specifies the custom objective function as the selection criterion. You can specify this only if you

also specify the OBJECTIVE= option. A lower value is deemed better.

CVM
specifies the Cramher-von Mises (CvM) statistic value, which is computed by using the empirical
distribution function (EDF) estimate, as the selection criterion. A lower value is deemed better.

KS
specifies the Kolmogorov-Smirnov (KS) statistic value, which is computed by using the empirical
distribution function (EDF) estimate, as the selection criterion. A lower value is deemed better.

LOGLIKELIHOOD | LL
specifies —2 * log(L) as the selection criterion, where L is the likelihood of the data. A lower
value is deemed better. This is the default.

For more information about these criterion-options, see the section “Statistics of Fit” on page 1266.

EMPIRICALCDF | EDF=method
specifies the method to use for computing the nonparametric or empirical estimate of the cumulative
distribution function of the data. You can specify one of the following values for method:

AUTOMATIC | AUTO
specifies that the method be chosen automatically based on the data specification.

If you do not specify any censoring or truncation, then the standard empirical estimation method
(STANDARD) is chosen. If you specify both right-censoring and left-censoring, then Turnbull’s
estimation method (TURNBULL) is chosen. For all other combinations of censoring and
truncation, the Kaplan-Meier method (KAPLANMEIER) is chosen.

KAPLANMEIER | KM
specifies that the product limit estimator proposed by Kaplan and Meier (1958) be used. Specifi-
cation of this method has no effect when you specify both right-censoring and left-censoring.

1216 4 Chapter 23: The HPSEVERITY Procedure

MODIFIEDKM | MKM <(options)>
specifies that the modified product limit estimator be used. Specification of this method has no
effect when you specify both right-censoring and left-censoring.

This method allows Kaplan-Meier’s product limit estimates to be more robust by ignoring the
contributions to the estimate due to small risk-set sizes. The risk set is the set of observations at
the risk of failing, where an observation is said to fail if it has not been processed yet and might
experience censoring or truncation. You can specify the minimum risk-set size that makes it
eligible to be included in the estimation either as an absolute lower bound on the size (RSLB=
option) or a relative lower bound determined by the formula ¢n® proposed by Lai and Ying
(1991). You can specify the values of ¢ and « by using the C= and ALPHA= options, respectively.
By default, the relative lower bound is used with values of ¢ = 1 and o = 0.5. However, you can
modify the default by using the following options:

ALPHA | A=number
specifies the value to use for & when the lower bound on the risk set size is defined as cn®.
This value must satisfy 0 < o < 1.

C=number
specifies the value to use for ¢ when the lower bound on the risk set size is defined as cn®.
This value must satisfy ¢ > 0.

RSLB=number
specifies the absolute lower bound on the risk set size to be included in the estimate.

NOTURNBULL
specifies that the method be chosen automatically based on the data specification and that
Turnbull’s method not be used. This option is the default.

This method first replaces each left-censored or interval-censored observation with an uncensored
observation. If the resulting set of observations has any truncated or right-censored observations,
then the Kaplan-Meier method (KAPLANMEIER) is chosen. Otherwise, the standard empirical
estimation method (STANDARD) is chosen. The observations are modified only for the purpose
of computing the EDF estimates; the modification does not affect the parameter estimation
process.

STANDARD | STD
specifies that the standard empirical estimation method be used. If you specify both right-
censoring and left-censoring, then the specification of this method has no effect. If you specify
any other combination of censoring or truncation effects, then this method ignores such effects,
and can thus result in estimates that are more biased than those obtained with other methods that
are more suitable for censored or truncated data.

TURNBULL | EM <(options)>
specifies that the Turnbull’s method be used. This method is used when you specify both right-
censoring and left-censoring. An iterative expectation-maximization (EM) algorithm proposed
by Turnbull (1976) is used to compute the empirical estimates. If you also specify truncation,
then the modification suggested by Frydman (1994) is used.

This method is used if you specify both right-censoring and left-censoring and if you explicitly
specify the EMPIRICALCDF=TURNBULL option.

You can modify the default behavior of the EM algorithm by using the following options:

BY Statement 4 1217

ENSUREMLE
specifies that the final EDF estimates be maximum likelihood estimates. The Kuhn-Tucker
conditions are computed for the likelihood maximization problem and checked to ensure
that EM algorithm converges to maximum likelihood estimates. The method generalizes
the method proposed by Gentleman and Geyer (1994) by taking into account any truncation
information that you might specify.

EPS=number
specifies the maximum relative error to be allowed between estimates of two consecutive
iterations. This criterion is used to check the convergence of the algorithm. If you do not
specify this option, then PROC HPSEVERITY uses a default value of 1.0E-8.

MAXITER=number
specifies the maximum number of iterations to attempt to find the empirical estimates. If
you do not specify this option, then PROC HPSEVERITY uses a default value of 500.

ZEROPROB=number
specifies the threshold below which an empirical estimate of the probability is considered
zero. This option is used to decide if the final estimate is a maximum likelihood estimate.
This option does not have an effect if you do not specify the ENSUREMLE option. If you
specify the ENSUREMLE option, but do not specify this option, then PROC HPSEVERITY
uses a default value of 1.0E-8.

For more information about each of the methods, see the section “Empirical Distribution Function
Estimation Methods” on page 1260.

OBJECTIVE=symbol-name

names the symbol that represents the objective function in the SAS programming statements that you
specify. For each model to be estimated, PROC HPSEVERITY executes the programming statements to
compute the value of this symbol for each observation. The values are added across all observations to
obtain the value of the objective function. The optimization algorithm estimates the model parameters
such that the objective function value is minimized. A separate optimization problem is solved for each
candidate distribution. If you specify a BY statement, then a separate optimization problem is solved
for each candidate distribution within each BY group.

For more information about writing SAS programming statements to define your own objective
function, see the section “Custom Objective Functions” on page 1298.

BY Statement
BY variable-list ;

A BY statement can be used in the HPSEVERITY procedure to process the input data set in groups of
observations defined by the BY variables. If you specify the BY statement, then PROC HPSEVERITY
expects the input data set to be sorted in the order of the BY variables unless you specify the NOTSORTED
option.

The BY statement is always supported in the single-machine mode of execution. For the distributed mode, it
is supported only when the DATA= data set resides on the client machine. In other words, the BY statement
is supported only in the client-data (or local-data) mode of the distributed computing model and not for any
of the alongside modes, such as the alongside-the-database or alongside-HDFS mode.

1218 4 Chapter 23: The HPSEVERITY Procedure

CLASS Statement

CLASS variable < (options) > . .. < variable < (options) > > </ global-options > ;

The CLASS statement names the classification variables to be used in the scale regression model. These
variables enter the analysis not through their values, but through levels to which the unique values are mapped.
For more information about these mappings, see the section “Levelization of Classification Variables” on
page 1251.

If you specify a CLASS statement, then it must precede the SCALEMODEL statement.

You can specify options either as individual variable options or as global-options. You can specify options
for each variable by enclosing the options in parentheses after the variable name. You can also specify
global-options for the CLASS statement by placing them after a slash (/). Global-options are applied to all
the variables that you specify in the CLASS statement. If you specify more than one CLASS statement, the
global-options that are specified in any one CLASS statement apply to all CLASS statements. However,
individual CLASS variable options override the global-options.

You can specify the following values for either an option or a global-option:

DESCENDING

DESC
reverses the sort order of the classification variable. If you specify both the DESCENDING and
ORDER-= options, the HPSEVERITY procedure orders the levels of classification variables according
to the ORDER= option and then reverses that order.

ORDER=DATA | FORMATTED | INTERNAL

ORDER=FREQ | FREQDATA | FREQFORMATTED | FREQINTERNAL
specifies the sort order for the levels of classification variables. This order is used by the parame-
terization method to create the parameters in the model. By default, ORDER=FORMATTED. For
ORDER=FORMATTED and ORDER=INTERNAL, the sort order is machine-dependent. When
ORDER=FORMATTED is in effect for numeric variables for which you have supplied no explicit
format, the levels are ordered by their internal values.

The following table shows how the HPSEVERITY procedure interprets values of the ORDER= option.

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted values, except for numeric variables that have no
explicit format, which are sorted by their unformatted (internal) values

FREQ Descending frequency count (levels that have more observations come
earlier in the order)

FREQDATA Order of descending frequency count, and within counts by order of

appearance in the input data set when counts are tied

FREQFORMATTED Order of descending frequency count, and within counts by formatted value
when counts are tied

FREQINTERNAL Order of descending frequency count, and within counts by unformatted
(internal) value when counts are tied

INTERNAL Unformatted value

CLASS Statement 4+ 1219

For more information about sort order, see the chapter about the SORT procedure in Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

REF="level’ | keyword

REFERENCE-="leve!’ | keyword
specifies the reference level that is used when you specify PARAM=REFERENCE. For an individual
(but not a global) variable REF= option, you can specify the level of the variable to use as the reference
level. Specify the formatted value of the variable if a format is assigned. For a REF= option or
global-option, you can use one of the following keywords.

FIRST designates the first-ordered level as reference.

LAST designates the last-ordered level as reference.

By default, REF=LAST.

If you choose a reference level for any CLASS variable, all variables are parameterized in the reference
parameterization for computational efficiency. In other words, the HPSEVERITY procedure applies a
single parameterization method to all classification variables.

Suppose that the variable temp has three levels (' hot ', "warm', and 'cold') and that the variable
gender has two levels ('M' and 'F'). The following statements fit a scale regression model:

proc hpseverity;
loss y;
class gender (ref='F') temp;
scalemodel gender*temp gender;
run;

Both CLASS variables are in reference parameterization in this model. The reference levels are 'F'
for the variable gender and 'warm' for the variable temp, because the statements are equivalent to the
following statements:

proc hpseverity;
loss y;
class gender (ref='F') temp (ref=last);
scalemodel gender*temp gender;

run;

You can specify the following global-options:

MISSING
treats missing values (“.”, “.A”, ..., “.Z” for numeric variables and blanks for character variables) as
valid values for the CLASS variable.

If you do not specify the MISSING option, observations that have missing values for CLASS variables
are removed from the analysis, even if the CLASS variables are not used in the model formulation.

1220 4 Chapter 23: The HPSEVERITY Procedure

PARAM=keyword
specifies the parameterization method for the classification variable or variables. You can specify the
following keywords:

GLM specifies a less-than-full-rank reference cell coding.

REFERENCE specifies a reference cell encoding. You can choose the reference value by specifying
an option for a specific variable or set of variables in the CLASS statement, or you
can designate the first- or last-ordered value by specifying a global-option. By default,
REFERENCE=LAST.

The GLM parameterization is the default. For more information about how parameterization of
classification variables affects the construction and interpretation of model effects, see the section
“Specification and Parameterization of Model Effects” on page 1253.

TRUNCATE<=n>
specifies the truncation width of formatted values of CLASS variables when the optional n is specified.

If nis not specified, the TRUNCATE option requests that classification levels be determined by using
no more than the first 16 characters of the formatted values of CLASS variables.

DIST Statement

DIST distribution-name-or-keyword < (distribution-option) < distribution-name-or-keyword < (distribution-
option)>> ... > </ preprocess-options > ;

The DIST statement specifies candidate distributions to be estimated by the HPSEVERITY procedure. You
can specify multiple DIST statements, and each statement can contain one or more distribution specifications.

For your convenience, PROC HPSEVERITY provides the following 10 different predefined distributions
(the name in the parentheses is the name to use in the DIST statement): Burr (BURR), exponential (EXP),
gamma (GAMMA), generalized Pareto (GPD), inverse Gaussian or Wald (IGAUSS), lognormal (LOGN),
Pareto (PARETO), Tweedie (TWEEDIE), scaled Tweedie (STWEEDIE), and Weibull (WEIBULL). These
are described in detail in the section “Predefined Distributions” on page 1230.

You can specify any of the predefined distributions or any distribution that you have defined. If a distribution
that you specify is not a predefined distribution, then you must submit the CMPLIB= system option with
appropriate libraries before you submit the PROC HPSEVERITY step to enable the procedure to find the
functions associated with your distribution. The predefined distributions are defined in the Sashelp.Svrtdist
library. However, you are not required to specify this library in the CMPLIB= system option. For more
information about defining your own distributions, see the section “Defining a Severity Distribution Model
with the FCMP Procedure” on page 1273.

As a convenience, you can also use a shortcut keyword to indicate a list of distributions. You can specify one
or more of the following keywords:

ALL
specifies all the predefined distributions and the distributions that you have defined in the libraries that
you specify in the CMPLIB= system option. In addition to the eight predefined distributions included
by the _PREDEFINED_ keyword, this list also includes the Tweedie and scaled Tweedie distributions
that are defined in the Sashelp.Svrtdist library.

DIST Statement 4+ 1221

_PREDEFINED _
specifies the list of eight predefined distributions: BURR, EXP, GAMMA, GPD, IGAUSS, LOGN,
PARETO, and WEIBULL. Although the TWEEDIE and STWEEDIE distributions are available in the
Sashelp.Svrtdist library along with these eight distributions, they are not included by this keyword. If
you want to fit the TWEEDIE and STWEEDIE distributions, then you must specify them explicitly or
use the _ALL_ keyword.

USER
specifies the list of all the distributions that you have defined in the libraries that you specify in the
CMPLIB= system option. This list does not include the distributions defined in the Sashelp.Svrtdist
library, even if you specify the Sashelp.Svrtdist library in the CMPLIB= option.

The use of these keywords, especially _ALL_, can result in a large list of distributions, which might take a
longer time to estimate. A warning is printed to the SAS log if the number of total distribution models to
estimate exceeds 10.

If you specify the OUTCDF= option or request a CDF plot and you do not specify any DIST statement, then
PROC HPSEVERITY does not fit any distributions and produces the empirical estimates of the cumulative
distribution function.

The following distribution-option values can be used in the DIST statement for a distribution name that is not
a shortcut keyword:

INIT=(name=value . .. name=value)
specifies the initial values to be used for the distribution parameters to start the parameter estimation
process. You must specify the values by parameter names and the parameter names must match the
names used in the model definition. For example, let a model M’s definition contain a M_PDF function
with following signature:

function M _PDF (x, alpha, beta);

For this model, the names alpha and beta must be used for the INIT option. The names are case-
insensitive. If you do not specify initial values for some parameters in the INIT statement, then a
default value of 0.001 is assumed for those parameters. If you specify an incorrect parameter, PROC
HPSEVERITY prints a warning to the SAS log and does not fit the model. All specified values must
be nonmissing.

If you are modeling regression effects, then the initial value of the first distribution parameter (alpha
in the preceding example) should be the initial base value of the scale parameter or log-transformed
scale parameter. For more information, see the section “Estimating Regression Effects” on page 1245.

The use of INIT= option is one of the three methods available for initializing the parameters. For
more information, see the section ‘“Parameter Initialization” on page 1244. If none of the initialization
methods is used, then PROC HPSEVERITY initializes all parameters to 0.001.

You can specify the following preprocess-options in the DIST statement:

LISTONLY
specifies that the list of all candidate distributions be printed to the SAS log without doing any further
processing on them. This option is especially useful when you use a shortcut keyword to include a list
of distributions. It enables you to find out which distributions are included by the keyword.

1222 4 Chapter 23: The HPSEVERITY Procedure

VALIDATEONLY

specifies that all candidate distributions be checked for validity without doing any further processing on
them. If a distribution is invalid, the reason for invalidity is written to the SAS log. If all distributions
are valid, then the distribution information is written to the SAS log. The information includes name,
description, validity status (valid or invalid), and number of distribution parameters. The information
is not written to the SAS log if you specify an OUTMODELINFO= data set or the PRINT=DISTINFO
or PRINT=ALL option in the PROC HPSEVERITY statement. This option is especially useful
when you specify your own distributions or when you specify the _"USER_ or _ALL_ keywords in
the DIST statement. It enables you to check whether your custom distribution definitions satisfy
PROC HPSEVERITY s requirements for the specified modeling task. It is recommended that you
specify the SCALEMODEL statement if you intend to fit a model with regression effects, because the
SCALEMODEL statement instructs PROC HPSEVERITY to perform additional checks to validate
whether regression effects can be modeled on each candidate distribution.

LOSS Statement

LOSS < response-variable-name > < / censoring-truncation-options > ;

The LOSS statement specifies the name of the response or loss variable whose distribution needs to be
modeled. You can also specify additional options to indicate any truncation or censoring of the response. The
specification of response variable is optional if you specify at least one type of censoring. You must specify a
response variable if you do not specify any censoring. If you specify more than one LOSS statement, then
the first statement is used.

All the analysis variables that you specify in this statement must be present in the input data set that you
specify by using the DATA= option in the PROC HPSEVERITY statement. The response variable is expected
to have nonmissing values. If the variable has a missing value in an observation, then a warning is written to
the SAS log and that observation is ignored.

The following censoring-truncation-options can be used in the LOSS statement:

LEFTCENSORED | LC=variable-name

LEFTCENSORED | LC=number
specifies the left-censoring variable or a global left-censoring limit.

You can use the variable-name argument to specify a data set variable that contains the left-censoring
limit. If the value of this variable is missing, then PROC HPSEVERITY assumes that such observations
are not left-censored.

Alternatively, you can use the number argument to specify a left-censoring limit value that applies to
all the observations in the data set. This limit must be a nonzero positive number.

By the definition of left-censoring, an exact value of the response is not known when it is less than or
equal to the left-censoring limit. If you specify the response variable and the value of that variable is less
than or equal to the value of the left-censoring limit for some observations, then PROC HPSEVERITY
treats such observations as left-censored and the value of the response variable is ignored. If you specify
the response variable and the value of that variable is greater than the value of the left-censoring limit
for some observations, then PROC HPSEVERITY assumes that such observations are not left-censored
and the value of the left-censoring limit is ignored.

LOSS Statement 4 1223

If you specify both right-censoring and left-censoring limits, then the left-censoring limit must be
greater than or equal to the right-censoring limit. If both limits are identical, then the observation is
assumed to be uncensored.

For more information about left-censoring, see the section “Censoring and Truncation” on page 1240.

LEFTTRUNCATED | LT=variable-name < (left-truncation-option) >

LEFTTRUNCATED | LT=number < (left-truncation-option) >
specifies the left-truncation variable or a global left-truncation threshold.

You can use the variable-name argument to specify a data set variable that contains the left-truncation
threshold. If the value of this variable is missing or O for some observations, then PROC HPSEVERITY
assumes that such observations are not left-truncated.

Alternatively, you can use the number argument to specify a left-truncation threshold that applies to all
the observations in the data set. This threshold must be a nonzero positive number.

It is assumed that the response variable contains the observed values. By the definition of left-truncation,
you can observe only a value that is greater than the left-truncation threshold. If a response variable
value is less than or equal to the left-truncation threshold, a warning is printed to the SAS log, and the
observation is ignored. For more information about left-truncation, see the section “Censoring and
Truncation” on page 1240.

You can specify the following left-truncation-option for an alternative interpretation of the left-truncation
threshold:

PROBOBSERVED | POBS=number
specifies the probability of observability, which is defined as the probability that the underlying
severity event is observed (and recorded) for the specified left-threshold value.

The specified number must lie in the (0.0, 1.0] interval. A value of 1.0 is equivalent to specifying
that there is no left-truncation, because it means that no severity events can occur with a value less
than or equal to the threshold. If you specify value of 1.0, PROC HPSEVERITY prints a warning
to the SAS log and proceeds by assuming that LEFTTRUNCATED= option is not specified.

For more information, see the section “Probability of Observability” on page 1241.

RIGHTCENSORED | RC=variable-name

RIGHTCENSORED | RC=number
specifies the right-censoring variable or a global right-censoring limit.

You can use the variable-name argument to specify a data set variable that contains the right-censoring
limit. If the value of this variable is missing, then PROC HPSEVERITY assumes that such observations
are not right-censored.

Alternatively, you can use the number argument to specify a right-censoring limit value that applies to
all the observations in the data set. This limit must be a nonzero positive number.

By the definition of right-censoring, an exact value of the response is not known when it is greater than
or equal to the right-censoring limit. If you specify the response variable and the value of that variable
is greater than or equal to the value of the right-censoring limit for some observations, then PROC
HPSEVERITY treats such observations as right-censored and the value of the response variable is
ignored. If you specify the response variable and the value of that variable is less than the value of the

1224 4 Chapter 23: The HPSEVERITY Procedure

right-censoring limit for some observations, then PROC HPSEVERITY assumes that such observations
are not right-censored and the value of the right-censoring limit is ignored.

If you specify both right-censoring and left-censoring limits, then the left-censoring limit must be
greater than or equal to the right-censoring limit. If both limits are identical, then the observation is
assumed to be uncensored.

For more information about right-censoring, see the section “Censoring and Truncation” on page 1240.

RIGHTTRUNCATED | RT=variable-name

RIGHTTRUNCATED | RT=number
specifies the right-truncation variable or a global right-truncation threshold.

You can use the variable-name argument to specify a data set variable that contains the right-truncation
threshold. If the value of this variable is missing for some observations, then PROC HPSEVERITY
assumes that such observations are not right-truncated.

Alternatively, you can use the number argument to specify a right-truncation threshold that applies to
all the observations in the data set. This threshold must be a nonzero positive number.

It is assumed that the response variable contains the observed values. By the definition of right-
truncation, you can observe only a value that is less than or equal to the right-truncation threshold.
If a response variable value is greater than the right-truncation threshold, a warning is printed to the
SAS log, and the observation is ignored. For more information about right-truncation, see the section
“Censoring and Truncation” on page 1240.

NLOPTIONS Statement
NLOPTIONS options ;

The HPSEVERITY procedure uses the nonlinear optimization (NLO) subsystem to perform the nonlinear
optimization of the likelihood function to obtain the estimates of distribution and regression parameters.
You can use the NLOPTIONS statement to control different aspects of this optimization process. For most
problems, the default settings of the optimization process are adequate. However, in some cases it might be
useful to change the optimization technique or to change the maximum number of iterations. The following
statement uses the MAXITER= option to set the maximum number of iterations to 200 and uses the TECH=
option to change the optimization technique to the double-dogleg optimization (DBLDOG) rather than the
default technique, the trust region optimization (TRUREG), that is used in the HPSEVERITY procedure:

nloptions tech=dbldog maxiter=200;

A discussion of the full range of options that can be used in the NLOPTIONS statement is given in Chapter 7,
“Nonlinear Optimization Methods.” The HPSEVERITY procedure supports all those options except the
options that are related to displaying the optimization information. You can use the PRINT= option in the
PROC HPSEVERITY statement to request the optimization summary and iteration history. If you specify
more than one NLOPTIONS statement, then the first statement is used.

OUTSCORELIB Statement 4 1225

OUTSCORELIB Statement
OUTSCORELIB < OUTLIB=> fcmp-library-name options ;

The OUTSCORELIB statement specifies the library to write scoring functions to. Scoring functions enable
you to easily compute a distribution function on the fitted parameters of the distribution without going
through a potentially complex process of extracting the fitted parameter estimates from other output such as
the OUTEST= data set that is created by PROC HPSEVERITY.

If you specify the SCALEMODEL statement and if you specify interaction or classification effects, then
PROC HPSEVERITY ignores the OUTSCORELIB statement and does not generate scoring functions. In
other words, if you specify the SCALEMODEL statement, then PROC HPSEVERITY generates scoring
functions if you specify only singleton continuous effects in the SCALEMODEL statement.

You must specify the following option as the first option in the statement:

OUTLIB=fcmp-library-name
names the FCMP library to contain the scoring functions. PROC HPSEVERITY writes the scoring
functions to the FCMP library named fcmp-library-name. If a library or data set named fcmp-library-
name already exists, PROC HPSEVERITY deletes it before proceeding.

This option is similar to the OUTLIB= option that you would specify in a PROC FCMP statement,
except that femp-library-name must be a two-level name whereas the OUTLIB= option in the PROC
FCMP statement requires a three-level name. The third level of a three-level name specifies the package
to which the functions belong. You do not need to specify the package name in the fcmp-library-name,
because PROC HPSEVERITY automatically creates the package for you. By default, a separate
package is created for each distribution that has not failed to converge. Each package is named for a
distribution. For example, if you define and fit a distribution named mydist, and if mydist does not fail
to converge, then PROC HPSEVERITY creates a package named mydist in the OUTLIB= library that
you specify. Further, let the definition of the mydist distribution contain three distribution functions,
mydist PDF(x,Parm1,Parm2), mydist LOGCDF(x,Parm1,Parm2), and mydist XYZ(x,Parm1,Parm2).
If you specify the OUTSCORELIB statement

outscorelib outlib=sasuser.scorefunc;

then the Sasuser.Scorefunc library contains the following three functions in a package named mydist:
SEV_PDF(x), SEV_LOGCDF(x), and SEV_XYZ(x).

The key feature of scoring functions is that they do not require the parameter arguments (Parm1 and
Parm2 in this example). The fitted parameter estimates are encoded inside the scoring function so
that you can compute or score the value of each function for a given value of the loss variable without
having to know or extract the parameter estimates through some other means.

For convenience, you can omit the OUTLIB= portion of the specification and just specify the name, as
in the following example:

outscorelib sasuser.scorefunc;

1226 4 Chapter 23: The HPSEVERITY Procedure

When the HPSEVERITY procedure runs successfully, the femp-library-name is appended to the CMPLIB
system option, so you can immediately start using the scoring functions in a DATA step or PROC FCMP step.

You can specify the following options in the OUTSCORELIB statement:

COMMONPACKAGE

ONEPACKAGE
requests that only one common package be created to contain all the scoring functions.

If you specify this option, then all the scoring functions are created in a package called sevfit. For
each distribution function that has the name distribution_suffix, the name of the corresponding scoring
function is formed as SEV_suffix_distribution. For example, the scoring function of the distribution
function ‘MYDIST_BAR’ is named ‘SEV_BAR_MYDIST".

If you do not specify this option, then all scoring functions for a distribution are created in a package
that has the same name as the distribution, and for each distribution function that has the name
distribution_suffix, the name of the corresponding scoring function is formed as SEV_suffix. For
example, the scoring function of the distribution function ‘MYDIST_BAR’ is named ‘SEV_BAR’.

OUTBYID=SAS-data-set
names the output data set to contain the unique identifier for each BY group. This unique identifier is
used as part of the name of the package or scoring function for each distribution. This is a required
option when you specify a BY statement in PROC HPSEVERITY.

The OUTBYID= data set contains one observation per BY group and a variable named _ID__ in addition
to the BY variables that you specify in the BY statement. The _ID_ variable contains the unique
identifier for each BY group. The identifier of the BY group is the decimal representation of the
sequence number of the BY group. The first BY group has an identifier of 1, the second BY group has
an identifier of 2, the tenth BY group has an identifier of 10, and so on.

If you do not specify the COMMONPACKAGE option in the OUTSCORELIB statement, then for
each distribution, PROC HPSEVERITY creates as many packages as the number of BY groups. The
unique BY-group identifier is used as a suffix for the package name. For example, if your DATA= data
set has three BY groups and if you specify the OUTSCORELIB statement

outscorelib outlib=sasuser.byscorefunc outbyid=sasuser.byid;

then for the distribution ‘MYDIST’, the Sasuser.Byscorefunc library contains the three packages
‘MYDISTT’, ‘MYDIST2’, and ‘MYDIST3’, and each package contains one scoring function named
‘SEV_BAR’ for each distribution function named ‘MYDIST_BAR’.

If you specify the COMMONPACKAGE option in the OUTSCORELIB statement, PROC HPSEVER-
ITY creates as many versions of the distribution function as the number of BY groups. The unique

BY-group identifier is used as a suffix for the function name. Extending the previous example, if you
specify the OUTSCORELIB statement with the COMMONPACKAGE option,

outscorelib outlib=sasuser.byscorefunc outbyid=sasuser.byid commonpackage;

then for the distribution function ‘MYDIST_BAR’ of the distribution ‘MYDIST’, the
Sasuser.Byscorefunc library contains the following three scoring functions: ‘SEV_BAR_MYDIST1’,

PERFORMANCE Statement 4 1227

‘SEV_BAR_MYDIST?2’, and ‘SEV_BAR_MYDIST3’. All the scoring functions are created in one
common package named sevfit.

For both the preceding examples, the Sasuser.Byid data set contains three observations, one for each
BY group. The value of the _ID_ variable is 1 for the first BY group, 2 for the second BY group, and 3
for the third BY group.

For more information about scoring functions, see the section “Scoring Functions” on page 1290.

PERFORMANCE Statement
PERFORMANCE options ;

The PERFORMANCE statement defines performance parameters for distributed and multithreaded comput-
ing, passes variables that describe the distributed computing environment, and requests detailed results about
the performance characteristics of PROC HPSEVERITY.

You can also use the PERFORMANCE statement to control whether a high-performance analytical procedure
runs in single-machine or distributed mode.

The PERFORMANCE statement is documented further in the section “PERFORMANCE Statement” on
page 87 of Chapter 3, “Shared Concepts and Topics.”

SCALEMODEL Statement
SCALEMODEL regression-effect-list </ scalemodel-options > ;

The SCALEMODEL statement specifies regression effects. A regression effect is formed from one or more
regressor variables according to effect construction rules. Each regression effect forms one element of X
in the linear model structure X that affects the scale parameter of the distribution. The SCALEMODEL
statement in conjunction with the CLASS statement supports a rich set of effects. Effects are specified by a
special notation that uses regressor variable names and operators. There are two types of regressor variables:
classification (or CLASS) variables and continuous variables. Classification variables can be either numeric
or character and are specified in a CLASS statement. To include CLASS variables in regression effects, you
must specify the CLASS statement so that it appears before the SCALEMODEL statement. A regressor
variable that is not declared in the CLASS statement is assumed to be continuous. For more information
about effect construction rules, see the section “Specification and Parameterization of Model Effects” on
page 1253.

All the regressor variables must be present in the input data set that you specify by using the DATA= option
in the PROC HPSEVERITY statement. The scale parameter of each candidate distribution is linked to the
linear predictor X that includes an intercept. If a distribution does not have a scale parameter, then a model
based on that distribution is not estimated. If you specify more than one SCALEMODEL statement, then the
first statement is used.

The regressor variables are expected to have nonmissing values. If any of the variables has a missing value in
an observation, then a warning is written to the SAS log and that observation is ignored.

For more information about modeling regression effects, see the section “Estimating Regression Effects” on
page 1245.

1228 4 Chapter 23: The HPSEVERITY Procedure

You can specify the following scalemodel-options in the SCALEMODEL statement:

DFMIXTURE=method-name < (method-options) >
specifies the method for computing representative estimates of the cumulative distribution function
(CDF) and the probability density function (PDF).

When you specify regression effects, the scale of the distribution depends on the values of the regressors.
For a given distribution family, each observation in the input data set implies a different scaled version
of the distribution. To compute estimates of CDF and PDF that are comparable across different
distribution families, PROC HPSEVERITY needs to construct a single representative distribution
from all such distributions. You can specify one of the following method-name values to specify the
method that is used to construct the representative distribution. For more information about each of the
methods, see the section “CDF and PDF Estimates with Regression Effects” on page 1249.

FULL
specifies that the representative distribution be the mixture of N distributions such that each
distribution has a scale value that is implied by each of the N observations that are used for
estimation. This method is the slowest.

MEAN
specifies that the representative distribution be the one-point mixture of the distribution whose
scale value is computed by using the mean of the N values of the linear predictor that are implied
by the N observations that are used for estimation. If you do not specify the DFMIXTURE=
option, then this method is used by default. This is also the fastest method.

QUANTILE < (K=q)>
specifies that the representative distribution be the mixture of a fixed number of distributions
whose scale values are computed by using the quantiles from the sample of N values of the linear
predictor that are implied by the NV observations that are used for estimation.

You can use the K= option to specify the number of distributions in the mixture. If you specify
K=q, then the mixture contains (q — 1) distributions such that each distribution has as its scale
one of the (g — 1)-quantiles.

If you do not specify the K= option, then PROC HPSEVERITY uses the default of 2, which
implies the use of a one-point mixture with a distribution whose scale value is the median of all
scale values.

RANDOM < (random-method-options) >
specifies that the representative distribution be the mixture of a fixed number of distributions
whose scale values are computed by using the values of the linear predictor that are implied by
a randomly chosen subset of the set of all observations that are used for estimation. The same
subset of observations is used for each distribution family.

WEIGHT Statement 4 1229

You can specify the following random-method-options to specify how the subset is chosen:

K=r
specifies the number of distributions to include in the mixture. If you do not specify this
option, then PROC HPSEVERITY uses the default of 15.

SEED=number
specifies the seed that is used to generate the uniform random sample of observation indices.
If you do not specify this option, then PROC HPSEVERITY generates a seed internally that
is based on the current value of the system clock.

OFFSET=offset-variable-name
specifies the name of the offset variable in the scale regression model. An offset variable is a regressor
variable whose regression coefficient is known to be 1. For more information, see the section “Offset
Variable” on page 1246.

WEIGHT Statement
WEIGHT variable-name ;

The WEIGHT statement specifies the name of a variable whose values represent the weight of each obser-
vation. PROC HPSEVERITY associates a weight of w to each observation, where w is the value of the
WEIGHT variable for the observation. If the weight value is missing or less than or equal to 0, then the
observation is ignored and a warning is written to the SAS log. When you do not specify the WEIGHT
statement, each observation is assigned a weight of 1. If you specify more than one WEIGHT statement, then
the last statement is used.

The weights are normalized so that they add up to the actual sample size. In particular, the weight of each
observation is multiplied by Z+’ where N is the sample size.

i=1Wi

Programming Statements

You can use a series of programming statements that use variables in the input data set that you specify in the
DATA= option in the PROC HPSEVERITY statement to assign a value to an objective function symbol. You
must specify the objective function symbol by using the OBJECTIVE= option in the PROC HPSEVERITY
statement. If you do not specify the OBJECTIVE= option in the PROC HPSEVERITY statement, then the
programming statements are ignored and models are estimated using the maximum likelihood method.

You can use most DATA step statements and functions in your program. Any additional functions, restrictions,
and differences are listed in the section “Custom Objective Functions” on page 1298.

1230 4 Chapter 23: The HPSEVERITY Procedure

Details: HPSEVERITY Procedure

Predefined Distributions
PROC HPSEVERITY assumes the following model for the response variable Y

Y ~ F(©)

where JF is a continuous probability distribution with parameters ®. The model hypothesizes that the
observed response is generated from a stochastic process that is governed by the distribution F. This model
is usually referred to as the error model. Given a representative input sample of response variable values,
PROC HPSEVERITY estimates the model parameters for any distribution / and computes the statistics of fit
for each model. This enables you to find the distribution that is most likely to generate the observed sample.

A set of predefined distributions is provided with the HPSEVERITY procedure. A summary of the distribu-
tions is provided in Table 23.2. For each distribution, the table lists the name of the distribution that should be
used in the DIST statement, the parameters of the distribution along with their bounds, and the mathematical
expressions for the probability density function (PDF) and cumulative distribution function (CDF) of the
distribution.

All the predefined distributions, except LOGN and TWEEDIE, are parameterized such that their first
parameter is the scale parameter. For LOGN, the first parameter p is a log-transformed scale parameter.
TWEEDIE does not have a scale parameter. The presence of scale parameter or a log-transformed scale
parameter enables you to use all of the predefined distributions, except TWEEDIE, as a candidate for
estimating regression effects.

A distribution model is associated with each predefined distribution. You can also define your own distribution
model, which is a set of functions and subroutines that you define by using the FCMP procedure. For more
information, see the section “Defining a Severity Distribution Model with the FCMP Procedure” on page 1273.

Predefined Distributions 4 1231

Table 23.2 Predefined HPSEVERITY Distributions

Name Distribution Parameters PDF (f) and CDF (F)
v
BURR Burr 0 > O, o > 0, f(X) = x(l_:_xzy—yz)(a-i-lo)t
1
y >0 Fx)= 1-(3)
EXP Exponential 0>0 fx) = ée‘z
Fx)= 1—e¢7*%
GAMMA Gamma 0>0,a>0 f(x)= Z (Fe(a%
_ vz
F(x) = @)
GPD Generalized 0>0,&>0 f(x) = é 1+ SZ)_I_I/E
Pareto F(x)= 1—(1+¢&z)7 V¢
. _ 1 —ot(z—l)2
IGAUSS Inverse Gaussian 0 >0, >0 f(x)= g./575€¢ 2=
(Wald) Fx)= @ ((z 1 g) +
d (—(Z +1) %) e2v
1 1 (log(JC)—u)2
LOGN Lognormal i (no bounds), f(x) = oy
— log(x)—
o>0 F(x) = @(Og’; “)
PARETO Pareto 0>0,a>0 f(x)= %)
— [o
TWEEDIE Tweedie® p>1Lu>0, f(x)= a(x,¢p)exp [é (x’l“b_l;p —Kk(u, p))]
¢ >0 F(x)= [y f@)dt
STWEEDIE Scaled Tweedie® 6 > 0,1 >0, f(x)= agcx, 0, A, p)exp (—% — /\)
l<p<?2 F(x)= [, f()dt
WEIBULL Weibull 0>01>0 f(x)= ZLez7e™
Fx)= 1—e%"
Notes:

1. z = x/0, wherever z is used.
2. 0 denotes the scale parameter for all the distributions. For LOGN, log(8) = u.
3. Parameters are listed in the order in which they are defined in the distribution model.

4. y(a,b) = fé) t4~le="dt is the lower incomplete gamma function.
5. d(y) = % (1 + erf (%)) is the standard normal CDF.

6. For more information, see the section ‘“Tweedie Distributions” on page 1232.

1232 4 Chapter 23: The HPSEVERITY Procedure

Tweedie Distributions

Tweedie distributions are a special case of the exponential dispersion family (Jgrgensen 1987) with a property
that the variance of the distribution is equal to ¢pu?, where p is the mean of the distribution, ¢ is a dispersion
parameter, and p is an index parameter as discovered by Tweedie (1984). The distribution is defined for all
values of p except for values of p in the open interval (0, 1). Many important known distributions are a special
case of Tweedie distributions including normal (p=0), Poisson (p=1), gamma (p=2), and the inverse Gaussian
(p=3). Apart from these special cases, the probability density function (PDF) of the Tweedie distribution
does not have an analytic expression. For p > 1, it has the form (Dunn and Smyth 2005),

1 (xp'=?
fxipm. ¢, p) =alx,¢)exp| — — k(. p)
p\1-p
where k (i, p) = u>~?/(2 — p) for p # 2 and k (., p) = log(u) for p = 2. The function a(x, ¢) does not
have an analytical expression. It is typically evaluated using series expansion methods described in Dunn and
Smyth (2005).

For 1 < p < 2, the Tweedie distribution is a compound Poisson-gamma mixture distribution, which is the
distribution of S defined as

N
S=>"X

i=1
where N ~ Poisson(1) and X; ~ gamma(e, 6) are independent and identically distributed gamma random
variables with shape parameter @ and scale parameter 6. At X = 0, the density is a probability mass that
is governed by the Poisson distribution, and for values of X > 0, it is a mixture of gamma variates with
Poisson mixing probability. The parameters A, o, and 6 are related to the natural parameters i, ¢, and p of
the Tweedie distribution as

2—p

=

$2—p)
2—p
o= —-
p—1

0 =¢(p—Du"""
The mean of a Tweedie distribution is positive for p > 1.

Two predefined versions of the Tweedie distribution are provided with the HPSEVERITY procedure. The
first version, named TWEEDIE and defined for p > 1, has the natural parameterization with parameters u,
¢, and p. The second version, named STWEEDIE and defined for 1 < p < 2, is the version with a scale
parameter. It corresponds to the compound Poisson-gamma distribution with gamma scale parameter 6,
Poisson mean parameter A, and the index parameter p. The index parameter decides the shape parameter « of
the gamma distribution as

2-p
o=—-"
p—1
The parameters 6 and A of the STWEEDIE distribution are related to the parameters p and ¢ of the TWEEDIE
distribution as
uw = Aba
(A0a)?P B 0
A2—=p) (p—1D@Aba)r~1

¢:

Predefined Distributions 4 1233

You can fit either version when there are no regression variables. Each version has its own merits. If you
fit the TWEEDIE version, you have the direct estimate of the overall mean of the distribution. If you are
interested in the most practical range of the index parameter 1 < p < 2, then you can fit the STWEEDIE
version, which provides you direct estimates of the Poisson and gamma components that comprise the
distribution (an estimate of the gamma shape parameter « is easily obtained from the estimate of p).

If you want to estimate the effect of exogenous (regression) variables on the distribution, then you must use
the STWEEDIE version, because PROC HPSEVERITY requires a distribution to have a scale parameter in
order to estimate regression effects. For more information, see the section “Estimating Regression Effects”
on page 1245. The gamma scale parameter 6 is the scale parameter of the STWEEDIE distribution. If you
are interested in determining the effect of regression variables on the mean of the distribution, you can do so
by first fitting the STWEEDIE distribution to determine the effect of the regression variables on the scale
parameter 6. Then, you can easily estimate how the mean of the distribution p is affected by the regression
variables using the relationship u = ¢, where ¢ = Ao = A(2— p)/(p — 1). The estimates of the regression
parameters remain the same, whereas the estimate of the intercept parameter is adjusted by the estimates of
the A and p parameters.

Parameter Initialization for Predefined Distributions

The parameters are initialized by using the method of moments for all the distributions, except for the gamma
and the Weibull distributions. For the gamma distribution, approximate maximum likelihood estimates are
used. For the Weibull distribution, the method of percentile matching is used.

Given n observations of the severity value y; (1 <i < n), the estimate of kth raw moment is denoted by m
and computed as

Me =+ DV
i=1
The 100pth percentile is denoted by 7, (0 < p < 1). By definition, 7 satisfies
F(rp—) = p = F(7p)

where F(mp—) = limyo F(mp — h). PROC HPSEVERITY uses the following practical method of

computing . Let Fy (¥) denote the empirical distribution function (EDF) estimate at a severity value y. Let
y, and y;' denote two consecutive values in the ascending sequence of y values such that F;, (y;) < pand

F, (y;,") > p. Then, the estimate 77, is computed as

P P —Fa(yp)
p - A A
P RO - Fayy)

OF =y

Let € denote the smallest double-precision floating-point number such that 1 + € > 1. This machine precision
constant can be obtained by using the CONSTANT function in Base SAS software.

The details of how parameters are initialized for each predefined distribution are as follows:

BURR The parameters are initialized by using the method of moments. The kth raw moment of the
Burr distribution is:

kT (1 + k/y)T(a —k/y)

E[X*] = @ ,

—y <k <ay

1234 4 Chapter 23: The HPSEVERITY Procedure

EXP

GAMMA

Three moment equations E[X*] = my (k = 1,2, 3) need to be solved for initializing the
three parameters of the distribution. In order to get an approximate closed form solution, the
second shape parameter J is initialized to a value of 2. If 2m3 — 3m1m, > 0, then simplifying
and solving the moment equations yields the following feasible set of initial values:

mams3 ~ ms3 ~
e A=l §=2
ZI’H3 —31’)’11}1’12 2I’H3 —3m1m2

If 2ms — 3mmy < €, then the parameters are initialized as follows:

/My, & = 2,)7 =2

0

0

The parameters are initialized by using the method of moments. The kth raw moment of the
exponential distribution is:

EXF = 0*T(k +1), k> -1

Solving E[X] = m yields the initial value of § = m;.

The parameter « is initialized by using its approximate maximum likelihood (ML) estimate.
For a set of n independent and identically distributed observations y; (1 < i < n) drawn from
a gamma distribution, the log likelihood [is defined as follows:

n w1 e~ Vilt
| = log | y; 7T (@)

n l n
= (= 1)) _log(y) = 5 Y yi —ntlog(§) — nlog(T (@)

i=1 i=1

Using a shorter notation of) to denote > ;_; and solving the equation d/ /36 = 0 yields the
following ML estimate of 6:

é:Zyi_ml

no o

Substituting this estimate in the expression of / and simplifying gives
l=(@-1) Zlog(y,') —na —nalog(my) + na log(a) — nlog(T'(x))
Let d be defined as follows:
1
d =log(my) = — > Jlog(yi)

Solving the equation 9/ /da = 0 yields the following expression in terms of the digamma
function, ¥ («):

log(a) — ¢ (a) = d

The digamma function can be approximated as follows:

N 1
Y () = log(a) — - (0.5 + g 2)

Predefined Distributions 4 1235

This approximation is within 1.4% of the true value for all the values of & > 0 except when
« is arbitrarily close to the positive root of the digamma function (which is approximately
1.461632). Even for the values of « that are close to the positive root, the absolute error
between true and approximate values is still acceptable (| @(a) — ¥ (a)] < 0.005 for o > 1.07).
Solving the equation that arises from this approximation yields the following estimate of «:

3—d++/(d—3)2+24d
12d

o =

If this approximate ML estimate is infeasible, then the method of moments is used. The kth
raw moment of the gamma distribution is:

' + k)

k1 _ pk
E[X¥] =0 @

k> —«

Solving E[X] = my and E[X?] = m; yields the following initial value for a:

. m?
@=—-—7
I’I’lz—ml

If myp — m% < € (almost zero sample variance), then « is initialized as follows:

1

a

After computing the estimate of «, the estimate of 6 is computed as follows:

mi

o

0

Both the maximum likelihood method and the method of moments arrive at the same relation-
ship between & and 6.

GPD The parameters are initialized by using the method of moments. Notice that for £ > 0, the
CDF of the generalized Pareto distribution (GPD) is:

~1/¢
F(x):l—(l-l—é—x)

0
0 1/§
— - (i)
x+ 0/
This is equivalent to a Pareto distribution with scale parameter 8; = /& and shape pa-

rameter ¢ = 1/£. Using this relationship, the parameter initialization method used for the
PARETO distribution is used to get the following initial values for the parameters of the GPD
distribution:

b mimo é— mz—Zm%
2(my —m3)’

2(my —m?)

If my, — m% < € (almost zero sample variance) or mp — 2m% < €, then the parameters are

initialized as follows:
N mi ~ 1
9 = —, = —
2 § 2

1236 4 Chapter 23: The HPSEVERITY Procedure

IGAUSS

The parameters are initialized by using the method of moments. The standard parameterization
of the inverse Gaussian distribution (also known as the Wald distribution), in terms of the
location parameter y and shape parameter A, is as follows (Klugman, Panjer, and Willmot
1998, p. 583):

[A —A(x — p)?
A 2w x3 eXp(2u?x
X A X A 21
Fx)y=o(|——-1 —|+o[-(—+1 —) exp| —
M X M X M
For this parameterization, it is known that the mean is E[X] = u and the variance is

Var[X] = n3/A, which yields the second raw moment as E[X?] = u?(1 + /1) (computed
by using E[X?] = Var[X] + (E[X])?).

The predefined IGAUSS distribution in PROC HPSEVERITY uses the following alternate
parameterization to allow the distribution to have a scale parameter, 6:

_ of —a(x — 9)2
1) = |5 exp (i)
F(x)=® ((% — 1) 0;—9) + @ (— (g + 1) \/O;E) exp (2r)

The parameters 8 (scale) and « (shape) of this alternate form are related to the parameters
and A of the preceding form such that & = p and @ = A/u. Using this relationship, the first
and second raw moments of the IGAUSS distribution are:

E[X]=6
E[X?] = 02 (1 + 1)
o

Solving E[X] = m1 and E[X?] = m; yields the following initial values:

A) m?
0=m1, Ol=—2
I’H2—m1

Ifmy — m% < € (almost zero sample variance), then the parameters are initialized as follows:

9=m1, 5[=1

Predefined Distributions 4 1237

LOGN The parameters are initialized by using the method of moments. The kth raw moment of the
lognormal distribution is:

k2 2
E[Xk]=exp(k,u+ 20)

Solving E[X] = m1 and E[X?] = m; yields the following initial values:

1 2
= 2log(ml) — og(zm), 6 = /log(m2) — 2log(m1)

PARETO The parameters are initialized by using the method of moments. The kth raw moment of the
Pareto distribution is:
kT (k + DT (o — k)
()

E[X* = —l<k<a

Solving E[X] = m1 and E[X?] = m; yields the following initial values:

mims 2(my —m?)

b=—1-2_ 4=
my — Zm%’ my — 2m%

If my — m% < € (almost zero sample variance) or my — Zm% < €, then the parameters are
initialized as follows:

0=m1, a=2

TWEEDIE The parameter p is initialized by assuming that the sample is generated from a gamma
distribution with shape parameter o and by computing p = g‘—ﬁ. The initial value & is
obtained from using the method previously described for the GAMMA distribution. The
parameter w is the mean of the distribution. Hence, it is initialized to the sample mean as

= m

Variance of a Tweedie distribution is equal to ¢u?. Thus, the sample variance is used to
initialize the value of ¢ as
A mop — m%
¢ = 5
I

1238 4 Chapter 23: The HPSEVERITY Procedure

STWEEDIE STWEEDIE is a compound Poisson-gamma mixture distribution with mean & = A8«, where

WEIBULL

o is the shape parameter of the gamma random variables in the mixture and the parameter p is
determined solely by «. First, the parameter p is initialized by assuming that the sample is
generated from a gamma distribution with shape parameter o and by computing p = g‘l—ﬁ.
The initial value & is obtained from using the method previously described for the GAMMA
distribution. As done for initializing the parameters of the TWEEDIE distribution, the sample

mean and variance are used to compute the values [i and ¢ as

mi

=
Il

mz—m%

Y

<>
I

Based on the relationship between the parameters of TWEEDIE and STWEEDIE distributions
described in the section “Tweedie Distributions” on page 1232, values of 6 and A are initialized
as

The parameters are initialized by using the percentile matching method. Let g1 and g3 denote
the estimates of the 25th and 75th percentiles, respectively. Using the formula for the CDF of
Weibull distribution, they can be written as

1 —exp(—(q1/6)%) = 0.25

1 —exp(—(¢3/60)") = 0.75

Simplifying and solving these two equations yields the following initial values:

b = exp (rlog(ql) - log(q3)) o _ log(log(4)
-l log(¢3) —log(6)

where r = log(log(4))/log(log(4/3)). These initial values agree with those suggested in
Klugman, Panjer, and Willmot (1998).

A summary of the initial values of all the parameters for all the predefined distributions is given in Table 23.3.
The table also provides the names of the parameters to use in the INIT= option in the DIST statement if you
want to provide a different initial value.

Predefined Distributions 4 1239

Table 23.3 Parameter Initialization for Predefined Distributions

Distribution Parameter Name for INIT option Default Initial Value

BURR 0 theta V Zm B

o alpha 1+ —2m3_";fnlm2

y gamma 2
EXP 0 theta m
GAMMA 0 theta mi/o

o alpha 3—d+«/(1c;;3)2+24d
GPD 0 theta myma/(2(my — m%))

§ Xi (mz —2m3)/(2(mz — m?))
IGAUSS) theta mi

o alpha m%/(mz — m%)
LOGN " mu 2log(ml) —log(m?2)/2

o sigma Vlog(m2) — 2log(m1)
PARETO 0 theta myma/(my — 2m?)

o alpha 2(mp — m%)/(mz — Zm%)
TWEEDIE n mu mi

¢ phi (mo —m%)/mf

p p (@+2)/(@+1)

where @ — 3—d+«/(1t;;3)2+24d

STWEEDIE 4 theta (my —m?)(p —1)/my

A lambda m%/(a(mz — m%)(p —1))

p p (@+2)/(@+1)

where o — 3—d+./(1z;3)2+24d

WEIBULL 6 theta exp ((Hlo)enld3))

T tau log(log(4))/ (log(¢3) — log(6))
Notes:

e my denotes the kth raw moment

o d =log(mi)— (3 log(yi))/n
e ¢l and g3 denote the 25th and 75th percentiles, respectively
[]

r = log(log(4))/ log(log(4/3))

1240 4 Chapter 23: The HPSEVERITY Procedure

Censoring and Truncation

One of the key features of PROC HPSEVERITY is that it enables you to specify whether the severity event’s
magnitude is observable and if it is observable, then whether the exact value of the magnitude is known. If an
event is unobservable when the magnitude is in certain intervals, then it is referred to as a truncation effect. If
the exact magnitude of the event is not known, but it is known to have a value in a certain interval, then it is
referred to as a censoring effect.

PROC HPSEVERITY allows a severity event to be subject to any combination of the following four censoring
and truncation effects:

e Left-truncation: An event is said to be left-truncated if it is observed only when ¥ > T, where
Y denotes the random variable for the magnitude and T* denotes a random variable for the trunca-
tion threshold. You can specify left-truncation using the LEFTTRUNCATED= option in the LOSS
statement.

e Right-truncation: An event is said to be right-truncated if it is observed only when Y < T”, where Y
denotes the random variable for the magnitude and 7" denotes a random variable for the truncation
threshold. You can specify right-truncation using the RIGHTTRUNCATED= option in the LOSS
statement.

e Left-censoring: An event is said to be left-censored if it is known that the magnitude is ¥ < C!, but
the exact value of Y is not known. C’ is a random variable for the censoring limit. You can specify
left-censoring using the LEFTCENSORED= option in the LOSS statement.

e Right-censoring: An event is said to be right-censored if it is known that the magnitude is Y > C”,
but the exact value of Y is not known. C” is a random variable for the censoring limit. You can specify
right-censoring using the RIGHTCENSORED= option in the LOSS statement.

For each effect, you can specify a different threshold or limit for each observation or specify a single threshold
or limit that applies to all the observations.

If all the four types of effects are present on an event, then the following relationship holds: T! < CT <
C! < TT. PROC HPSEVERITY checks these relationships and write a warning to the SAS log if any is
violated.

If you specify the response variable in the LOSS statement, then PROC HPSEVERITY also checks whether
each observation satisfies the definitions of the specified censoring and truncation effects. If you specify
left-truncation, then PROC HPSEVERITY ignores observations where ¥ < T!, because such observations
are not observable by definition. Similarly, if you specify right-truncation, then PROC HPSEVERITY ignores
observations where Y > T7. If you specify left-censoring, then PROC HPSEVERITY treats an observation
with Y > C! as uncensored and ignores the value of C ! The observations with ¥ < C! are considered
as left-censored, and the value of Y is ignored. If you specify right-censoring, then PROC HPSEVERITY
treats an observation with ¥ < C7 as uncensored and ignores the value of C”. The observations with
Y > C" are considered as right-censored, and the value of Y is ignored. If you specify both left-censoring
and right-censoring, it is referred to as interval-censoring. If C” < C! is satisfied for an observation, then
it is considered as interval-censored and the value of the response variable is ignored. If C" = C ! for an
observation, then PROC HPSEVERITY assumes that observation to be uncensored. If all the observations in
a data set are censored in some form, then the specification of the response variable in the LOSS statement is
optional, because the actual value of the response variable is not required for the purposes of estimating a
model.

Censoring and Truncation 4 1241

Specification of censoring and truncation affects the likelihood of the data (see the section “Likelihood
Function” on page 1242) and how the empirical distribution function (EDF) is estimated (see the section
“Empirical Distribution Function Estimation Methods” on page 1260).

Probability of Observability

For left-truncated data, PROC HPSEVERITY also enables you to provide additional information in the form
of probability of observability by using the PROBOBSERVED= option. It is defined as the probability that the
underlying severity event gets observed (and recorded) for the specified left-truncation threshold value. For
example, if you specify a value of 0.75, then for every 75 observations recorded above a specified threshold,
25 more events have happened with a severity value less than or equal to the specified threshold. Although
the exact severity value of those 25 events is not known, PROC HPSEVERITY can use the information about
the number of those events.

In particular, for each left-truncated observation, PROC HPSEVERITY assumes a presence of (1 — p)/p
additional observations with y; = ¢;. These additional observations are then used for computing the likelihood
(see the section “Probability of Observability and Likelihood” on page 1243) and an unconditional estimate
of the empirical distribution function (see the section “EDF Estimates and Truncation” on page 1265).

Truncation and Conditional CDF Estimates

If you specify left-truncation without the probability of observability or if you specify right-truncation, then
the EDF estimates that are computed by all methods except the STANDARD method are conditional on the
truncation information. See the section “EDF Estimates and Truncation” on page 1265 for more information.
In such cases, PROC HPSEVERITY uses conditional estimates of the CDF for computational or visual
comparison to the EDF estimates.

Let L. = min; {tl} be the smallest value of the left-truncation threshold (tl-l is the left-truncation threshold

min
for observation i) and 77, = max;{t] } be the largest value of the right-truncation threshold (¢ is the

max
right-truncation threshold for observation i). If F(y) denotes the unconditional estimate of the CDF at y,

then the conditional estimate £¢ (y) is computed as follows:

e If you do not specify the probability of observability, then the EDF estimates are conditional on the
left-truncation information. If an observation is both left-truncated and right-truncated, then

F(y) = F(ik)
(max) - F(tmm)
If an observation is left-truncated but not right-truncated, then

_M
1—FU

Fe(y) =

mm)
If an observation is right-truncated but not left-truncated, then

F(y)

F(y)—F(

max)

e If you specify the probability of observability, then EDF estimates are not conditional on the left-
truncation information. If an observation is not right-truncated, then the conditional estimate is the

1242 4 Chapter 23: The HPSEVERITY Procedure

same as the unconditional estimate. If an observation is right-truncated, then the conditional estimate
is computed as

rc _ ﬁ(y)
F (y)_ﬁ(l‘r)

max

If you specify regression effects, then F), F (trlnin), and F (¢) are all computed from a mixture distribu-

tion, as described in the section “CDF and PDF Estimates with Regression Effects” on page 1249.

Parameter Estimation Method

If you do not specify a custom objective function by specifying programming statements and the OB-
JECTIVE= option in the PROC HPSEVERITY statement, then PROC HPSEVERITY uses the maximum
likelihood (ML) method to estimate the parameters of each model. A nonlinear optimization process is
used to maximize the log of the likelihood function. If you specify a custom objective function, then
PROC HPSEVERITY uses a nonlinear optimization algorithm to estimate the parameters of each model
that minimize the value of your specified objective function. For more information, see the section “Custom
Objective Functions” on page 1298.

Likelihood Function

Let fo(x) and Fg(x) denote the PDF and CDF, respectively, evaluated at x for a set of parameter values ®.
Let Y denote the random response variable, and let y denote its value recorded in an observation in the input
data set. Let 7! and 7" denote the random variables for the left-truncation and right-truncation threshold,
respectively, and let ¢! and 1" denote their values for an observation, respectively. If there is no left-truncation,
then t! = ¢!, where 7 is the smallest value in the support of the distribution; so F (") = 0. If there is no
right-truncation, then " = 13, where 1y, is the largest value in the support of the distribution; so F(t") = 1.
Let C! and C” denote the random variables for the left-censoring and right-censoring limit, respectively, and
let ¢! and ¢” denote their values for an observation, respectively. If there is no left-censoring, then el =1

so F(c') = 1. If there is no right-censoring, then ¢’ = t!; so F(c¢”) = 0.

The set of input observations can be categorized into the following four subsets within each BY group:

e F is the set of uncensored and untruncated observations. The likelihood of an observation in E is
lg =Pr(Y =y) = fo(y)

e [, is the set of uncensored observations that are truncated. The likelihood of an observation in E; is

fo(y)
Fo(t") — Fo(t!)

e (is the set of censored observations that are not truncated. The likelihood of an observation C is

lg, =Pr(Y =ylif <Y <1") =

lc =Pr(c" <Y <ch) = Fo(c) — Fo(c")

e (is the set of censored observations that are truncated. The likelihood of an observation C; is

Fo(c') — Fo(c")

Ic, =Pr(c" <Y <cl|itt <y <) =
G T S = = =)~ R

Parameter Estimation Method 4 1243

Note that (E U E;) N (C U Cy) = @. Also, the sets E; and C; are empty when you do not specify truncation,
and the sets C and C; are empty when you do not specify censoring.

Given this, the likelihood of the data L is as follows:

fo() 1y poen]T FoeD = Foleh)
L=]_[f (y)l_[F) F@(tl)l;[F®(c) Feg(c)1;[Fo(t") — Fo(t!)

The maximum likelihood procedure used by PROC HPSEVERITY finds an optimal set of parameter values
© that maximizes log(L) subject to the boundary constraints on parameter values. For a distribution dist,
you can specify such boundary constraints by using the dist LOWERBOUNDS and dist_ UPPERBOUNDS
subroutines. For more information, see the section “Defining a Severity Distribution Model with the
FCMP Procedure” on page 1273. Some aspects of the optimization process can be controlled by using the
NLOPTIONS statement.

Probability of Observability and Likelihood

If you specify the probability of observability for the left-truncation, then PROC HPSEVERITY uses a
modified likelihood function for each truncated observation. If the probability of observability is p €
(0.0, 1.0], then for each left-truncated observation with truncation threshold 1!, there exist 1-=p/p
observations with a response variable value less than or equal to t!. Bach such observation has a probability
of Pr(Y < t!) = Fg(t!). The right-truncation and censoring information does not apply to these added
observations. Thus, following the notation of the section “Likelihood Function” on page 1242, the likelihood
of the data is as follows:

I Hf@)(Y) 1—[Jo(») 1—[f@()’))T

g sim FoT) 00 Fo e
r Fo(c!) — Fo(c") Fo(c!) — Fo(c") 1y=2
HFe(C)—Fo(c")] Fal) I1 Four o)

Cy tl=1! Cy tl>1!
Note that the likelihood of the observations that are not left-truncated (observations in sets £ and C, and
observations in sets E; and C; for which — rl) is not affected.

If you specify a custom objective function, then PROC HPSEVERITY accounts for the probability of
observability only while computing the empirical distribution function estimate. The parameter estimates are
affected only by your custom objective function.

Estimating Covariance and Standard Errors

PROC HPSEVERITY computes an estimate of the covariance matrix of the parameters by using the
asymptotic theory of the maximum likelihood estimators (MLE). If N denotes the number of observations
used for estimating a parameter vector 0, then the theory states that as N — oo, the distribution of 8, the
estimate of @, converges to a normal distribution with mean € and covariance C such that 1(6)- C — 1, where
I(0) = —E [V?log(L(0))] is the information matrix for the likelihood of the data, L(8). The covariance
estimate is obtained by using the inverse of the information matrix.

1244 4 Chapter 23: The HPSEVERITY Procedure

In particular, if G = V?(—1log(L(#))) denotes the Hessian matrix of the negative of log likelihood, then the
covariance estimate is computed as

~ N
C=—-G"!
d
where d is a denominator that is determined by the VARDEF= option. If VARDEF=N, then d = N,
which yields the asymptotic covariance estimate. If VARDEF=DF, then d = N — k, where k is number of
parameters (the model’s degrees of freedom). The VARDEF=DF option is the default, because it attempts to
correct the potential bias introduced by the finite sample.

The standard error s; of the parameter 6; is computed as the square root of the ith diagonal element of the
estimated covariance matrix; that is, s; = éii.

If you specify a custom objective function, then the covariance matrix of the parameters is still computed by
inverting the information matrix, except that the Hessian matrix G is computed as G = V2 log(U(8)), where
U denotes your custom objective function that is minimized by the optimizer.

Covariance and standard error estimates might not be available if the Hessian matrix is found to be singular
at the end of the optimization process. This can especially happen if the optimization process stops without
converging.

Parameter Initialization

PROC HPSEVERITY enables you to initialize parameters of a model in different ways. A model can have
two kinds of parameters: distribution parameters and regression parameters.

The distribution parameters can be initialized by using one of the following three methods:

INIT= option You can use the INIT= option in the DIST statement.

INEST= or INSTORE= option You can use either the INEST= data set or the INSTORE= item store, but
not both.

PARMINIT subroutine You can define a dist PARMINIT subroutine in the distribution model.

For more information, see the section “Defining a Severity Distribution
Model with the FCMP Procedure” on page 1273.

Note that only one of the initialization methods is used. You cannot combine them. They are used in the
following order:

e The method that uses the INIT= option takes the highest precedence. If you use the INIT= option
to provide an initial value for at least one parameter, then other initialization methods (INEST=,
INSTORE=, or PARMINIT) are not used. If you specify initial values for some but not all the
parameters by using the INIT= option, then the uninitialized parameters are initialized to the default
value of 0.001.

If you use this option and if you specify the regression effects, then the value of the first distribution
parameter must be related to the initial value for the base value of the scale or log-transformed scale
parameter. For more information, see the section “Estimating Regression Effects” on page 1245.

Estimating Regression Effects 4 1245

e The method that uses the INEST= data set or INSTORE= item store takes second precedence. If
the INEST= data set or INSTORE= item store contains a nonmissing value for even one distribution
parameter, then the PARMINIT method is not used and any uninitialized parameters are initialized to
the default value of 0.001.

e If none of the distribution parameters are initialized by using the INIT= option, the INEST= data
set, or the INSTORE= item store, but the distribution model defines a PARMINIT subroutine, then
PROC HPSEVERITY invokes that subroutine with appropriate inputs to initialize the parameters. If
the PARMINIT subroutine returns missing values for some parameters, then those parameters are
initialized to the default value of 0.001.

o If none of the initialization methods are used, each distribution parameter is initialized to the default
value of 0.001.

For more information about regression models and initialization of regression parameters, see the section
“Estimating Regression Effects” on page 1245.

PARMINIT-Based Parameter Initialization Method and Distributed Data

If you specify a distributed mode of execution for the procedure, then the input data are distributed across the
computational nodes. For more information about the distributed computing model, see the section “Dis-
tributed and Multithreaded Computation” on page 1271. If the PARMINIT subroutine is used for initializing
the distribution parameters, then PROC HPSEVERITY invokes that subroutine on each computational node
with the data that are local to that node. The EDF estimates that are supplied to the PARMINIT subroutine are
also computed using the local data. The initial values of the parameters that are supplied to the optimizer are
the average of the local estimates that are computed on each node. This approach works well if the data are
distributed randomly across nodes. If you distribute the data on the appliance before you run the procedure
(alongside-the-database model), then you should try to make the distribution as random as possible in order to
increase the chances of computing good initial values. If you specify a data set that is not distributed before
you run the procedure, then PROC HPSEVERITY distributes the data for you by sending the first observation
to the first node, the second observation to the second node, and so on. If the order of observations is random,
then this method ensures random distribution of data across the computational nodes.

Estimating Regression Effects

The HPSEVERITY procedure enables you to estimate the influence of regression (exogenous) effects while
fitting a distribution if the distribution has a scale parameter or a log-transformed scale parameter.

Letx;, j = 1,...,k,denote the k regression effects. Let 8, denote the regression parameter that corresponds
to the effect x ;. If you do not specify regression effects, then the model for the response variable Y is of the
form

Y ~ F(O®)

where F is the distribution of Y with parameters ©. This model is usually referred to as the error model. The
regression effects are modeled by extending the error model to the following form:

k
Y ~exp() Bjx))- F(O)

Jj=1

1246 4 Chapter 23: The HPSEVERITY Procedure

Under this model, the distribution of Y is valid and belongs to the same parametric family as F if and only
if F has a scale parameter. Let 6 denote the scale parameter and €2 denote the set of nonscale distribution
parameters of . Then the model can be rewritten as

Y ~ F(0,9)

such that 6 is modeled by the regression effects as
k
6 =6 -exp(D_ Bjx;)
j=1

where 0y is the base value of the scale parameter. Thus, the scale regression model consists of the following
parameters: g, Q,and B;(j = 1,...,k).

Given this form of the model, distributions without a scale parameter cannot be considered when regression
effects are to be modeled. If a distribution does not have a direct scale parameter, then PROC HPSEVERITY
accepts it only if it has a log-transformed scale parameter—that is, if it has a parameter p = log(6).

Offset Variable

You can specify that an offset variable be included in the scale regression model by specifying it in the
OFFSET= option of the SCALEMODEL statement. The offset variable is a regressor whose regression
coefficient is known to be 1. If x, denotes the offset variable, then the scale regression model becomes

k
0 =6 exp(xo + Y Bjx;))

Jj=1

The regression coefficient of the offset variable is fixed at 1 and not estimated, so it is not reported in
the ParameterEstimates ODS table. However, if you specify the OUTEST= data set, then the regression
coefficient is added as a variable to that data set. The value of the offset variable in OUTEST= data set is
equal to 1 for the estimates row (_TYPE_=‘EST’) and is equal to a special missing value (.F) for the standard
error (_TYPE_=‘STDERR’) and covariance (_TYPE_=‘COV’) rows.

An offset variable is useful to model the scale parameter per unit of some measure of exposure. For example,
in the automobile insurance context, measure of exposure can be the number of car-years insured or the total
number of miles driven by a fleet of cars at a rental car company. For worker’s compensation insurance,
if you want to model the expected loss per enterprise, then you can use the number of employees or total
employee salary as the measure of exposure. For epidemiological data, measure of exposure can be the
number of people who are exposed to a certain pathogen when you are modeling the loss associated with an
epidemic. In general, if e denotes the value of the exposure measure and if you specify x, = log(e) as the
offset variable, then you are modeling the influence of other regression effects (x ;) on the size of the scale of
the distribution per unit of exposure.

Another use for an offset variable is when you have a priori knowledge of the influence of some exogenous
variables that cannot be included in the SCALEMODEL statement. You can model the combined influence
of such variables as an offset variable in order to correct for the omitted variable bias.

Estimating Regression Effects 4 1247

Parameter Initialization for Regression Models

The regression parameters are initialized either by using the values that you specify or by the default method.

e If you provide initial values for the regression parameters, then you must provide valid, nonmissing
initial values for 6y and B; parameters for all ;.

You can specify the initial value for 6y by using either the INEST= data set, the INSTORE= item
store, or the INIT= option in the DIST statement. If the distribution has a direct scale parameter (no
transformation), then the initial value for the first parameter of the distribution is used as an initial
value for 0. If the distribution has a log-transformed scale parameter, then the initial value for the first
parameter of the distribution is used as an initial value for log(6p).

You can use only the INEST= data set or the INSTORE= item store, but not both, to specify the initial
values for B ;. The requirements for each option are as follows:

— If you use the INEST= data set, then it must contain nonmissing initial values for all the regressors
that you specify in the SCALEMODEL statement. The only missing value that is allowed is
the special missing value .R, which indicates that the regressor is linearly dependent on other
regressors. If you specify .R for a regressor for one distribution in a BY group, you must specify
it the same way for all the distributions in that BY group.

Note that you cannot specify INEST= data set if the regression model contains effects that have
CLASS variables or interaction effects.

— The parameter estimates in the INSTORE= item store are used to initialize the parameters of a
model if the item store contains a model specification that matches the model specification in the
current PROC HPSEVERITY step according to the following rules:

* The distribution name and the number and names of the distribution parameters must match.

* The model in the item store must include a scale regression model whose regression parame-
ters match as follows:

- If the regression model in the item store does not contain any redundant parameters,
then at least one regression parameter must match. Initial values of the parameters that
match are set equal to the estimates that are read from the item store, and initial values
of the other regression parameters are set equal to the default value of 0.001.

- If the regression model in the item store contains any redundant parameters, then all the
regression parameters must match, and the initial values of all parameters are set equal
to the estimates that are read from the item store.

Note that a regression parameter is defined by the variables that form the underlying re-
gression effect and by the levels of the CLASS variables if the effect contains any CLASS
variables.

e If you do not specify valid initial values for 8y or B; parameters for all j, then PROC HPSEVERITY
initializes those parameters by using the following method:

Let a random variable Y be distributed as F (6, 2), where 6 is the scale parameter. By the definition of
the scale parameter, a random variable W = Y /0 is distributed as G(€2) such that G(2) = F(1, Q).
Given a random error term e that is generated from a distribution G(£2), a value y from the distribution
of Y can be generated as

y==0-e

1248 4 Chapter 23: The HPSEVERITY Procedure

Taking the logarithm of both sides and using the relationship of § with the regression effects yields:

k

log(y) = log(6o) + Y _ Bjx; + log(e)
j=1

PROC HPSEVERITY makes use of the preceding relationship to initialize parameters of a regression
model with distribution dist as follows:

1. The following linear regression problem is solved to obtain initial estimates of B¢ and ;:

k
log(y) = Bo+ »_ Bjx;
j=1

The estimates of 8, (j = 1, ..., k) in the solution of this regression problem are used to initialize
the respective regression parameters of the model. The estimate of B¢ is later used to initialize
the value of 6.

The results of this regression are also used to detect whether any regression parameters are
linearly dependent on the other regression parameters. If any such parameters are found, then a
warning is written to the SAS log and the corresponding parameter is eliminated from further
analysis. The estimates for linearly dependent regression parameters are denoted by a special
missing value of .R in the OUTEST= data set and in any displayed output.

2. Let s¢ denote the initial value of the scale parameter.

If the distribution model of dist does not contain the dist PARMINIT subroutine, then s¢ and all
the nonscale distribution parameters are initialized to the default value of 0.001.

However, it is strongly recommended that each distribution’s model contain the dist_ PARMINIT
subroutine. For more information, see the section “Defining a Severity Distribution Model with
the FCMP Procedure” on page 1273. If that subroutine is defined, then s¢ is initialized as follows:

Each input value y; of the response variable is transformed to its scale-normalized version w; as
Yi
k
exp(Bo + > =1 Bjxij)

where x;; denotes the value of jth regression effect in the ith input observation. These w; values
are used to compute the input arguments for the dist_ PARMINIT subroutine. The values that are
computed by the subroutine for nonscale parameters are used as their respective initial values.
If the distribution has an untransformed scale parameter, then sg is set to the value of the scale
parameter that is computed by the subroutine. If the distribution has a log-transformed scale
parameter P, then s¢ is computed as so = exp(lp), where [y is the value of P computed by the
subroutine.

w; =

3. The value of 6y is initialized as

6o = so - exp(Bo)

Estimating Regression Effects 4 1249

Reporting Estimates of Regression Parameters

When you request estimates to be written to the output (either ODS displayed output or in the OUTEST= data
set), the estimate of the base value of the first distribution parameter is reported. If the first parameter is the log-
transformed scale parameter, then the estimate of log(6p) is reported; otherwise, the estimate of 8y is reported.
The transform of the first parameter of a distribution dist is controlled by the dist_ SCALETRANSFORM
function that is defined for it.

CDF and PDF Estimates with Regression Effects

When regression effects are estimated, the estimate of the scale parameter depends on the values of the
regressors and the estimates of the regression parameters. This dependency results in a potentially different
distribution for each observation. To make estimates of the cumulative distribution function (CDF) and
probability density function (PDF) comparable across distributions and comparable to the empirical distri-
bution function (EDF), PROC HPSEVERITY computes and reports the CDF and PDF estimates from a
representative distribution. The representative distribution is a mixture of a certain number of distributions,
where each distribution differs only in the value of the scale parameter. You can specify the number of
distributions in the mixture and how their scale values are chosen by using the DFMIXTURE= option in the
SCALEMODEL statement.

Let N denote the number of observations that are used for estimation, K denote the number of components
in the mixture distribution, s; denote the scale parameter of the kth mixture component, and dj denote the
weight associated with kth mixture component.

Let f(y; Sk, Q) and F (y; Sk $2) denote the PDF and CDF, respectively, of the kth component distribution,
where 2 denotes the set of estimates of all parameters of the distribution other than the scale parameter. Then,
the PDF and CDF estimates, f*(y) and F*(y), respectively, of the mixture distribution at y are computed as

1 & .
S0 =35) defisie Q)
k=1

K
1 N
F*(y) =3 2 diF (6. %)
k=1

where D is the normalization factor (D = Z,I;l dy).

PROC HPSEVERITY uses the F*(y) values to compute the EDF-based statistics of fit and to create the
OUTCDEF-= data set and the CDF plots. The PDF estimates that it plots in the PDF plots are the f*(y) values.

The scale values sy for the K mixture components are derived from the set {/A\ iy@=1,...,N)of N linear
predictor values, where A; denotes the estimate of the linear predictor due to observation i. It is computed as

k
A =log(Bo) + > Bjxij
j=1

where 6 is an estimate of the base value of the scale parameter, B; are the estimates of regression coefficients,
and x;; is the value of jth regression effect in observation i.

Let w; denote the weight of observation i. If you specify the WEIGHT statement, then the weight is equal to
the value of the specified weight variable for the corresponding observation in the DATA= data set; otherwise,
the weight is set to 1.

1250 4 Chapter 23: The HPSEVERITY Procedure

You can specify one of the following method-names in the DEFMIXTURE= option in the SCALEMODEL
statement to specify the method of choosing K and the corresponding s; and dj values:

FULL

MEAN

QUANTILE

RANDOM

In this method, there are as many mixture components as the number of observations that
are used for estimation. In other words, K =N, s = 0, and dy, = wi (k = 1,...,N).
This is the slowest method, because it requires O(/N) computations to compute the
mixture CDF F*(y;) or the mixture PDF f*(y;) of one observation. For N observations,
the computational complexity in terms of number of CDF or PDF evaluations is O(N?).
Even for moderately large values of N, the time that is taken to compute the mixture CDF
and PDF can significantly exceed the time that is taken to estimate the model parameters.
So it is recommended that you use the FULL method only for small data sets.

In this method, the mixture contains only one distribution, whose scale value is determined
by the mean of the linear predictor values that are implied by all the observations. In other
words, s1 is computed as

1
s1 = — > A
|~ exp (N >)
i=1
The component’s weight d is set to 1.

This method is the fastest because it requires only one CDF or PDF evaluation per
observation. The computational complexity is O(/N) for N observations.

If you do not specify the DFMIXTURE= option in the SCALEMODEL statement, then
this is the default method.

In this method, a certain number of quantiles are chosen from the set of all linear predictor
values. If you specify a value of g for the K= option when specifying this method, then
K =qg—1landsg (k =1,...,K) is computed as sy = exp(Ax), where Ay is the kth
g-quantile from the set {A;} (i = 1,..., N). The weight of each of the components (dy)
is assumed to be 1 for this method.

The default value of g is 2, which implies a one-point mixture that has a distribution
whose scale value is equal to the median scale value.

For this rAnethod, PROC HPSEVERITY needs to sort the N linear predictor values in
the set {A;}; the sorting requires O(N log(N)) computations. Then, computing the
mixture estimate of one observation requires (q — 1) CDF or PDF evaluations. Hence,
the computational complexity of this method is O(g/N) 4+ O(N log(N)) for computing
a mixture CDF or PDF of N observations. For g << N, the QUANTILE method is
significantly faster than the FULL method.

In this method, a uniform random sample of observations is chosen, and the mixture
contains the distributions that are implied by those observations. If you specify a value of
r for the K= option when specifying this method, then the size of the sample is r. Hence,
K = r.If [; denotes the index of jth observation in the sample (j = 1, ..., r), such that
1 </; < N, then the scale of kth component distribution in the mixture is sy = exp ()AL 1)
The weight of each of the components (d) is assumed to be 1 for this method.

You can also specify the seed to be used for generating the random sample by using the
SEED= option for this method. The same sample of observations is used for all models.

Computing a mixture estimate of one observation requires r CDF or PDF evaluations.
Hence, the computational complexity of this method is O(rN) for computing a mixture
CDF or PDF of N observations. For r << N, the RANDOM method is significantly
faster than the FULL method.

Levelization of Classification Variables 4 1251

Levelization of Classification Variables

A classification variable enters the statistical analysis or model not through its values but through its levels.
The process of associating values of a variable with levels is called levelization.

During the process of levelization, observations that share the same value are assigned to the same level. The
manner in which values are grouped can be affected by the inclusion of formats. You can determine the sort
order of the levels by specifying the ORDER= option in the CLASS statement. You can also control the sort
order separately for each variable in the CLASS statement.

Consider the data on nine observations in Table 23.4. The variable A is integer-valued, and the variable X is
a continuous variable that has a missing value for the fourth observation. The fourth and fifth columns of
Table 23.4 apply two different formats to the variable X.

Table 23.4 Example Data for Levelization

Obs A X FORMAT FORMAT
X 3.0 X 3.1

1 2 1.09 1 1.1

2 2 1.13 1 1.1

3 2 1.27 1 1.3

4 3 . . .

5 3 2.26 2 2.3

6 3 2.48 2 2.5

7 4 3.34 3 33

8 4 3.34 3 33

9 4 3.14 3 3.1

By default, levelization of the variables groups the observations by the formatted value of the variable, except
for numerical variables for which no explicit format is provided. Those numerical variables are sorted by their
internal value. The levelization of the four columns in Table 23.4 leads to the level assignment in Table 23.5.

Table 23.5 Values and Levels

A X FORMAT X 3.0 FORMAT X 3.1
Obs Value Level Value Level Value Level Value Level
1 2 1 1.09 1 1 1 1.1 1
2 2 1 1.13 2 1 1 1.1 1
3 2 1 1.27 3 1 1 1.3 2
4 3 2
5 3 2 226 4 2 2 23 3
6 3 2 248 5 2 2 25 4
7 4 3 334 7 3 3 33 6
8 4 3 334 7 3 3 33 6
9 4 3 314 6 3 3 31 5

1252 4 Chapter 23: The HPSEVERITY Procedure

You can specify the sort order for the levels of CLASS variables in the ORDER= option in the CLASS
statement.

When ORDER=FORMATTED (which is the default) is in effect for numeric variables for which you have
supplied no explicit format, the levels are ordered by their internal values. To order numeric class levels that
have no explicit format by their BEST12. formatted values, you can specify the BEST12. format explicitly
for the CLASS variables.

Table 23.6 shows how values of the ORDER= option are interpreted.

Table 23.6 Interpretation of Values of ORDER= Option

Value of ORDER= Levels Sorted By
DATA Order of appearance in the input data set
FORMATTED External formatted value, except for numeric variables

that have no explicit format, which are sorted by their
unformatted (internal) value

FREQ Descending frequency count (levels that have the most
observations come first in the order)

INTERNAL Unformatted value

FREQDATA Order of descending frequency count, and within counts
by order of appearance in the input data set when counts
are tied

FREQFORMATTED Order of descending frequency count, and within counts
by formatted value when counts are tied

FREQINTERNAL Order of descending frequency count, and within counts
by unformatted (internal) value when counts are tied

For FORMATTED, FREQFORMATTED, FREQINTERNAL, and INTERNAL values, the sort order is
machine-dependent. For more information about sort order, see the chapter about the SORT procedure in
the Base SAS Procedures Guide and the discussion of BY-group processing in SAS Language Reference:
Concepts.

When you specify the MISSING option in the CLASS statement, the missing values (‘.” for a numeric variable
and blanks for a character variable) are included in the levelization and are assigned a level. Table 23.7
displays the results of levelizing the values in Table 23.4 when the MISSING option is in effect.

Table 23.7 Values and Levels with the MISSING Option

A X FORMAT x 3.0 FORMAT x 3.1
Obs Value Level Value Level Value Level Value Level
1 2 1 1.09 2 1 2 1.1 2
2 1 1.13 3 1 2 1.1 2
3 2 1 1.27 4 1 2 1.3 3
4 3 2 . 1 . 1 . 1
5 3 2 226 5 2 3 23 4

Specification and Parameterization of Model Effects 4 1253

Table 23.7 continued

A X format x 3.0 format x 3.1
Obs Value Level Value Level Value Level Value Level
6 3 2 248 6 2 3 25 5
7 4 3 334 8 3 4 33 17
8 4 3 334 8 3 4 33 17
9 4 3 3.14 7 3 4 31 6

When you do not specify the MISSING option, it is important to understand the implications of missing values
for your statistical analysis. When PROC HPSEVERITY levelizes the CLASS variables, any observations
for which a CLASS variable has a missing value are excluded from the analysis. This is true regardless of
whether the variable is used to form the statistical model. For example, consider the case in which some
observations contain missing values for variable A but the records for these observations are otherwise
complete with respect to all other variables in the model. The analysis results that come from the following
statements do not include any observations for which variable A contains missing values, even though A is
not specified in the SCALEMODEL statement:

class A B;
scalemodel B x Bxx;

You can request PROC HPSEVERITY to print the “Descriptive Statistics” table, which shows the number
of observations that are read from the data set and the number of observations that are used in the analysis.
Pay careful attention to this table—especially when your data set contains missing values—to ensure that no
observations are unintentionally excluded from the analysis.

Specification and Parameterization of Model Effects

PROC HPSEVERITY supports formation of regression effects in the SCALEMODEL statement. A regression
effect is formed from one or more regressor variables according to effect construction rules (parameterization).
Each regression effect forms one element of X in the linear model structure X g that affects the scale parameter.
The SCALEMODEL statement in conjunction with the CLASS statement supports a rich set of effects. In
order to correctly interpret the results, you need to understand the specification and parameterization of
effects that are discussed in this section.

Effects are specified by a special notation that uses variable names and operators. There are two types of
regressor variables: classification (or CLASS) variables and continuous variables. Classification variables
can be either numeric or character and are specified in a CLASS statement. For more information, see the
section “Levelization of Classification Variables” on page 1251. A regressor variable that is not declared in
the CLASS statement is assumed to be continuous.

Two primary operators (crossing and nesting) are used for combining the variables, and several additional
operators are used to simplify effect specification. Operators are discussed in the section “Effect Operators”
on page 1254.

If you specify the CLASS statement, then PROC HPSEVERITY supports a general linear model (GLM)
parameterization and a reference parameterization for the classification variables. The GLM parameterization
is the default. For more information, see the sections “GLM Parameterization of Classification Variables and
Effects” on page 1256 and “Reference Parameterization” on page 1259.

1254 4 Chapter 23: The HPSEVERITY Procedure

Effect Operators

Table 23.8 summarizes the operators that are available for selecting and constructing effects. These operators
are discussed in the following sections.

Table 23.8 Available Effect Operators

Operator Example Description

Interaction A*B Crosses the levels of the effects

Nesting A(B) Nests A levels within B levels

Bar operator AIBIC Specifies all interactions

At sign operator AIBIC@2 Reduces interactions in bar effects

Dash operator Al-A10 Specifies sequentially numbered variables
Colon operator A: Specifies variables that have a common prefix
Double dash operator A--C Specifies sequential variables in data set order

Bar and At Sign Operators
You can shorten the specification of a large factorial model by using the bar operator. For example, two ways
of writing the model for a full three-way factorial model follow:

scalemodel A B C A*xB AxC B*C AxB*C;

scalemodel A|B|C;

When you use the bar (1), the right and left sides become effects, and the cross of them becomes an effect.
Multiple bars are permitted. The expressions are expanded from left to right, using rules 2—4 from Searle
(1971, p. 390).

Multiple bars are evaluated from left to right. For example, A | B | C is evaluated as follows:

AIBIC — {AIB}IC
—~ {ABA*B}IC
— A B A*B C A*C B*C A*B*C

Crossed and nested groups of variables are combined. For example, A(B) | C(D) generates A*C(B D),
among other terms.

Duplicate variables are removed. For example, A(C) | B(C) generates A*B(C C), among other terms,
and the extra C is removed.

Effects are discarded if a variable occurs on both the crossed and nested parts of an effect. For example,
A(B) | B(D E) generates A*B(B D E), but this effect is eliminated immediately.

You can also specify the maximum number of variables involved in any effect that results from bar evaluation
by specifying that maximum number, preceded by an at sign (@), at the end of the bar effect. For example,
the following specification selects only those effects that contain two or fewer variables:

scalemodel A|B|CR2;

Specification and Parameterization of Model Effects 4 1255

The preceding example is equivalent to the following SCALEMODEL statement:

scalemodel A B C AxB AxC BxC;

More examples of using the bar and at sign operators follow:

Al C(B) is equivalentto A C(B) A*C(B)

A(B) | C(B) is equivalentto A(B) C(B) A*C(B)

AB)IB(DE) is equivalent to A(B) B(D E)

AIBA)IC isequivalentto A B(A) C A*C B*C(A)

AIB(A)IC@2 isequivalentto A B(A) C A*C

AIBICID@2 isequivalentto A B A*B C A*C B*C D A*D B*D C*D
A*B(C*D) is equivalent to A*B(C D)

NOTE: The preceding examples assume the following CLASS statement specification:

class A B C D;

Colon, Dash, and Double Dash Operators

You can simplify the specification of a large model when some of your variables have a common prefix by
using the colon (:) operator and the dash (-) operator. The colon operator selects all variables that have a
particular prefix, and the dash operator enables you to list variables that are numbered sequentially. For
example, if your data set contains the variables X1 through X9, the following SCALEMODEL statements
are equivalent:

scalemodel X1 X2 X3 X4 X5 X6 X7 X8 X9;
scalemodel X1-X9;

scalemodel X:;
If your data set contains only the three covariates X1, X2, and X9, then the colon operator selects all three
variables:

scalemodel X:;

However, the following specification returns an error because X3 through X8 are not in the data set:

scalemodel X1-X9;

The double dash (- -) operator enables you to select variables that are stored sequentially in the SAS data
set, whether or not they have a common prefix. You can use the CONTENTS procedure (see Base SAS
Procedures Guide) to determine your variable ordering. For example, if you replace the dash in the preceding
SCALEMODEL statement with a double dash, as follows, then all three variables are selected:

scalemodel X1--X9;

If your data set contains the variables A, B, and C, then you can use the double dash operator to select these
variables by specifying the following:

scalemodel A--C;

1256 4 Chapter 23: The HPSEVERITY Procedure

GLM Parameterization of Classification Variables and Effects

Table 23.9 shows the types of effects that are available in the HPSEVERITY procedure; they are discussed
in more detail in the following sections. Let A, B, and C represent classification variables, and let X and Z
represent continuous variables.

Table 23.9 Available Types of Effects

Effect Example Description

Singleton continuous XZ Continuous variables

Polynomial continuous X*Z Interaction of continuous variables

Main AB CLASS variables

Interaction A*B Crossing of CLASS variables

Nested A(B) Main effect A nested within CLASS effect B
Continuous-by-class X*A Crossing of continuous and CLASS variables
Continuous-nesting-class X(A) Continuous variable X nested within CLASS variable A
General X*Z*A(B) Combinations of different types of effects

Continuous Effects

Continuous variables or polynomial terms that involve them can be included in the model as continuous
effects. An effect that contains a single continuous variable is referred to as a singleton continuous effect, and
an effect that contains an interaction of only continuous variables is referred to as a polynomial continuous
effect. The actual values of such terms are included as columns of the relevant model matrices. You can
use the bar operator along with a continuous variable to generate polynomial effects. For example, X | X | X
expands to X X*X X*X*X, which is a cubic model.

Main Effects

If a classification variable has m levels, the GLM parameterization generates m columns for its main effect in
the model matrix. Each column is an indicator variable for a given level. The order of the columns is the sort
order of the values of their levels and can be controlled by the ORDER= option in the CLASS statement.

Table 23.10 is an example where ¢ denotes the intercept and A and B are classification variables that have
two and three levels, respectively.

Table 23.10 Example of Main Effects

Data I A B
A B Bo Al A2 Bl B2 B3
1 1 1 1 0 1 0 0
1 2 1 1 0 0 1 0
1 3 1 1 0 0 0 1
2 1 1 0 1 1 0 0
2 2 1 0 1 0 1 0
2 3 1 0 1 0 0 1

There are usually more columns for these effects than there are degrees of freedom to estimate them. In other
words, the GLM parameterization of main effects is singular.

Specification and Parameterization of Model Effects 4 1257

Interaction Effects

Often a regression model includes interaction (crossed) effects to account for how the effect of a variable
changes along with the values of other variables. In an interaction, the terms are first reordered to correspond
to the order of the variables in the CLASS statement. Thus, B*A becomes A*B if A precedes B in the CLASS
statement. Then, the GLM parameterization generates columns for all combinations of levels that occur in
the data. The order of the columns is such that the rightmost variables in the interaction change faster than
the leftmost variables, as illustrated in Table 23.11.

Table 23.11 Example of Interaction Effects

Data I A B A*B

A B Bo Al A2 Bl B2 B3 AIB1 AIB2 AIB3 A2B1 A2B2 A2B3
1 1 1 1 0 1 0 0 1 0 0 0 0 0

1 2 1 1 0 0 1 0 0 1 0 0 0 0

1 3 1 1 0 0 0 1 0 0 1 0 0 0

2 1 1 0 1 1 0 0 0 0 0 1 0 0

2 2 1 0 1 0 1 0 0 0 0 0 1 0

2 3 1 0 1 0 0 1 0 0 0 0 0 1

In the matrix in Table 23.11, main-effects columns are not linearly independent of crossed-effects columns.
In fact, the column space for the crossed effects contains the space of the main effect.

When your regression model contains many interaction effects, you might be able to code them more
parsimoniously by using the bar operator (|). The bar operator generates all possible interaction effects. For
example, A | B | C expands to A B A*B C A*C B*C A*B*C. To eliminate higher-order interaction effects, use
the at sign (@) in conjunction with the bar operator. For example, A | B | C | D@2 expands to A B A*B C A*C
B*C D A*D B*D C*D.

Nested Effects
Nested effects are generated in the same manner as crossed effects. Hence, the design columns that are
generated by the following two statements are the same (but the ordering of the columns is different):

scalemodel A B(A);

scalemodel A AxB;

The nesting operator in PROC HPSEVERITY is more of a notational convenience than an operation that is
distinct from crossing. Nested effects are usually characterized by the property that the nested variables do
not appear as main effects. The order of the variables within nesting parentheses is made to correspond to the
order of these variables in the CLASS statement. The order of the columns is such that variables outside the
parentheses index faster than those inside the parentheses, and the rightmost nested variables index faster
than the leftmost variables, as illustrated in Table 23.12.

Table 23.12 Example of Nested Effects

Data I A B(A)
A B Bo Al A2 BIAl B2A1 B3Al BIA2 B2A2 B3A2
11 1 1 0 1 0 0 0 0 0
1 2 1 1 0 0 1 0 0 0 0
1 3 1 1 0 0 0 1 0 0 0
2 1 1 0 1 0 0 0 1 0 0

1258 4 Chapter 23: The HPSEVERITY Procedure

Table 23.12 continued

Data I A B(A)
2 2 1 0 1 0 0 0 0 1 0
2 3 1 0 1 0 0 0 0 0 1

Continuous-Nesting-Class Effects

When a continuous variable nests or crosses with a classification variable, the design columns are constructed
by multiplying the continuous values into the design columns for the classification effect, as illustrated in
Table 23.13.

Table 23.13 Example of Continuous-Nesting-Class Effects

Data I A X(A)
X A Bo Al A2 X(Al) X(A2)
21 1 1 1 0 21 0
24 1 1 1 0 24 0
22 1 1 1 0 22 0
28 2 1 0 1 0 28
19 2 1 0 1 0 19
23 2 1 0 1 0 23

Continuous-by-Class Effects

Continuous-by-class effects generate the same design columns as continuous-nesting-class effects. Ta-
ble 23.14 shows the construction of the X*A effect. The two columns for this effect are the same as the
columns for the X(A) effect in Table 23.13.

Table 23.14 Example of Continuous-by-Class Effects

Data | X A X*A
X A Bo X Al A2 X*Al X*A2
21 1 1 21 1 0 21 0
24 1 1 24 1 0 24 0
22 1 1 22 1 0 22 0
28 2 1 28 0 1 0 28
19 2 1 19 0 1 0 19
23 2 1 23 0 1 0 23

General Effects

An example that combines all the effects is X1*X2*A*B*C(D E). The continuous list comes first, followed by
the crossed list, followed by the nested list in parentheses. PROC HPSEVERITY might rename effects to
correspond to ordering rules. For example, B*A(E D) might be renamed A*B(D E) to satisfy the following:

e (Classification variables that occur outside parentheses (crossed effects) are sorted in the order in which
they appear in the CLASS statement.

Specification and Parameterization of Model Effects 4 1259

e Variables within parentheses (nested effects) are sorted in the order in which they appear in the CLASS
statement.

The sequencing of the parameters that are generated by an effect is determined by the variables whose levels
are indexed faster:

e Variables in the crossed list index faster than variables in the nested list.

e Within a crossed or nested list, variables to the right index faster than variables to the left.

For example, suppose a model includes four effects—A, B, C, and D—each of which has two levels, 1 and 2.
Assume the CLASS statement is

class A B C D;

Then the order of the parameters for the effect B*A(C D), which is renamed
A*B(C D), is

A131C1D1 — A132C1D1 —> AzBlchl — Aszchl —>
A131C1D2 d A132C1D2 — AzBlchz d A232C1D2 —
A131C2D1 — A1B2C2D1 — A231C2D1 — A2B2C2D1 —
A131C2D2 d A132C2D2 — A231C2D2 — AszCzDz

Note that first the crossed effects B and A are sorted in the order in which they appear in the CLASS
statement so that A precedes B in the parameter list. Then, for each combination of the nested effects in turn,
combinations of A and B appear. The B effect changes fastest because it is rightmost in the cross list. Then A
changes next fastest, and D changes next fastest after that. The C effect changes most slowly because it is
leftmost in the nested list.

Reference Parameterization

Classification variables can be represented in the reference parameterization. Consider the classification
variable A that has four values, 1, 2, 5, and 7. The reference parameterization generates three columns (one
less than the number of variable levels). The columns indicate group membership of the nonreference levels.
For the reference level, the three dummy variables have a value of 0. If the reference level is 7 (REF="7"), the
design columns for variable A are as shown in Table 23.15.

Table 23.15 Reference Coding

Design Matrix
A Al A2 A5
1 1 0 0
2 0 1 0
5 0 0 1
7 0 0 0

Parameter estimates of CLASS main effects that use the reference coding scheme estimate the difference in
the effect of each nonreference level compared to the effect of the reference level.

1260 4 Chapter 23: The HPSEVERITY Procedure

Empirical Distribution Function Estimation Methods

The empirical distribution function (EDF) is a nonparametric estimate of the cumulative distribution function
(CDF) of the distribution. PROC HPSEVERITY computes EDF estimates for two purposes: to send the
estimates to a distribution’s PARMINIT subroutine in order to initialize the distribution parameters, and to
compute the EDF-based statistics of fit.

To reduce the time that it takes to compute the EDF estimates, you can use the INITSAMPLE option to
specify that only a fraction of the input data be used. If you do not specify the INITSAMPLE option and
the data set has more than 10,000 valid observations, then a uniform random sample of at most 10,000
observations is used for EDF estimation.

In the distributed mode of execution, in which data are distributed across the grid nodes, the EDF estimates
are computed on each node by using the portion of the input data that is located on that node. These local
EDF estimates are an approximation of the global EDF estimates, which would been computed by using the
entire input data set. PROC HPSEVERITY does not compute global EDF estimates. Let X denote a quantity
that depends on the EDF estimates. X can be either an EDF-based initial value of a distribution parameter or
an EDF-based statistic of fit. PROC HPSEVERITY estimates X as follows: First, each grid node k computes
an estimate X} by using the local EDF estimates that are computed on that node. Then, the estimate X of X
is computed as an average of all the X values; that is, X = ZZK=1 X, where K denotes the total number of
nodes where the data reside.

This section describes the methods that are used for computing EDF estimates.

Notation

Let there be a set of N observations, each containing a quintuplet of values (y;, tl-l, tf.cf, cll),i=1,...,N,
where y; is the value of the response variable, tl.l is the value of the left-truncation threshold, ¢/ is the value
of the right-truncation threshold, ¢ is the value of the right-censoring limit, and cl? is the value of the

left-censoring limit.

If an observation is not left-truncated, then tl.l = 7/, where ! is the smallest value in the support of the
distribution; so F (tl.l) = 0. If an observation is not right-truncated, then ¢/ = 5, where 7}, is the largest
value in the support of the distribution; so F/(¢[) = 1. If an observation is not right-censored, then ¢/ = !

so F(cj) = 0. If an observation is not left-censored, then cf = 13,80 F (cf)=1.

Let w; denote the weight associated with ith observation. If you specify the WEIGHT statement, then w; is
the normalized value of the weight variable; otherwise, it is set to 1. The weights are normalized such that
they sum up to N.

An indicator function / [e] takes a value of 1 or 0 if the expression e is true or false, respectively.

Estimation Methods

If the response variable is subject to both left-censoring and right-censoring effects and if you explicitly
specify the EMPIRICALCDF=TURNBULL option, then PROC HPSEVERITY uses the Turnbull’s method.
This section describes methods other than Turnbull’s method. For Turnbull’s method, see the next section
“Turnbull’s EDF Estimation Method” on page 1263.

The method descriptions assume that all observations are either uncensored or right-censored; that is, each

observation is of the form (y;, zl-l, 1, !, 1) or (yi, tl-l,tir, ¢l Th).

Empirical Distribution Function Estimation Methods 4 1261

If all observations are either uncensored or left-censored, then each observation is of the form
(y,-,tl-l, .1, cll). It is converted to an observation (—y;,—t/, —lf, —cf, 73); that is, the signs of all the
response variable values are reversed, the new left-truncation threshold is equal to the negative of the original
right-truncation threshold, the new right-truncation threshold is equal to the negative of the original left-
truncation threshold, and the negative of the original left-censoring limit becomes the new right-censoring
limit. With this transformation, each observation is either uncensored or right-censored. The methods
described for handling uncensored or right-censored data are now applicable. After the EDF estimates are
computed, the observations are transformed back to the original form and EDF estimates are adjusted such
Fu(y;) = 1 — F,(—y;j—), where F,(—y;—) denotes the EDF estimate of the value slightly less than the

transformed value —y; .

Further, a set of uncensored or right-censored observations can be converted to a set of observations of

the form (yl-,tl.l .1}, 8;), where §; is the indicator of right-censoring. §; = 0 indicates a right-censored
observation, in which case y; is assumed to record the right-censoring limit ¢;. §; = 1 indicates an
uncensored observation, and y; records the exact observed value. In other words, §; = I[Y < C”] and

yi = min(y;, ¢;).

Given this notation, the EDF is estimated as

0 if y < yM
Fa(y) =13 Fa(y®) ify® <y < y&+D =1, N -1
F,W)) if y@W) <y

where y(k) denotes the kth order statistic of the set {y;} and I:“n (y(k)) is the estimate computed at that
value. The definition of F}, depends on the estimation method. You can specify a particular method or let
PROC HPSEVERITY choose an appropriate method by using the EMPIRICALCDF= option in the PROC
HPSEVERITY statement. Each method computes Ey, as follows:

NOTURNBULL This is the default method. First, censored observations, if any, are processed as
follows:

e An observation that is left-censored but not right-censored is converted to an

uncensored observation (y}', ll.l S !, 1), where ¥ = cl.l /2.

e An observation that is both left-censored and right-censored is converted to an
uncensored observation (y¥, tl.l, 1l !, 1), where i =(c] + cl?)/2.

e An observation that is right-censored but not left-censored is left unchanged.

If the processed set of observations contains any truncated or right-censored observa-
tions, the KAPLANMEIER method is used. Otherwise, the STANDARD method is
used.

The observations are modified only for the purpose of computing the EDF estimates.
The original censoring information is used by the parameter estimation process.

STANDARD This method is the standard way of computing EDF. The EDF estimate at observation
i is computed as follows:

N

A 1

Fu(yi) = N E wj - Iy; < yil
j=1

1262 4 Chapter 23: The HPSEVERITY Procedure

KAPLANMEIER

MODIFIEDKM

If you do not specify any censoring or truncation information, then this method is
chosen. If you explicitly specify this method, then PROC HPSEVERITY ignores any
censoring and truncation information that you specify in the LOSS statement.

The standard error of F}, (yi) is computed by using the normal approximation method:

6u(3i) = \ Fa) (1 = Fu(3i))/N

The Kaplan-Meier (KM) estimator, also known as the product-limit estimator, was first
introduced by Kaplan and Meier (1958) for censored data. Lynden-Bell (1971) derived
a similar estimator for left-truncated data. PROC HPSEVERITY uses the definition
that combines both censoring and truncation information (Klein and Moeschberger
1997; Lai and Ying 1991).

The EDF estimate at observation i is computed as

Ao n(z)
nm»&—ﬂ@—&m)

TYi

where n(t) and R, (7) are defined as follows:

o n(r) = Z,ICVZI wg - I[yx = rand t < 1 and 6 = 1], which is the number
of uncensored observations (§; = 1) for which the response variable value is
equal to T and t is observable according to the right-truncation threshold of that
observation (7 <).

e R,(7) = Z,]Ll wr Iy =1 > tllc]’ which is the size (cardinality) of the risk
set at 7. The term risk set has its origins in survival analysis; it contains the
events that are at risk of failure at a given time, t. In other words, it contains the
events that have survived up to time t and might fail at or after t. For PROC
HPSEVERITY, time is equivalent to the magnitude of the event and failure is
equivalent to an uncensored and observable event, where observable means it
satisfies the truncation thresholds.

This method is chosen when you specify at least one form of censoring or truncation.

The standard error of F}, (yi) is computed by using Greenwood’s formula (Greenwood
1926):

. P n(z)
on(yi) = | (1= Fa(y1))? Ig};j(Rn("»')(Rn("f')_n(‘l'—)))

The product-limit estimator used by the KAPLANMEIER method does not work well
if the risk set size becomes very small. For right-censored data, the size can become
small towards the right tail. For left-truncated data, the size can become small at the
left tail and can remain so for the entire range of data. This was demonstrated by
Lai and Ying (1991). They proposed a modification to the estimator that ignores the
effects due to small risk set sizes.

The EDF estimate at observation i is computed as

Fu(yi) =1- H (1 - ;(2) “I[Ry(7) > CNa])
T<y; n

Empirical Distribution Function Estimation Methods 4 1263

where the definitions of n(t) and R, (t) are identical to those used for the KAPLAN-
MEIER method described previously.

You can specify the values of ¢ and « by using the C= and ALPHA= options. If you
do not specify a value for c, the default value used is ¢ = 1. If you do not specify a
value for «, the default value used is « = 0.5.

As an alternative, you can also specify an absolute lower bound, say L, on the risk
set size by using the RSLB= option, in which case I[R,(t) > ¢N¥] is replaced by
I[Ry(t) > L] in the definition.

The standard error of Fy,(y;) is computed by using Greenwood’s formula (Greenwood
1926):

n(t) .
R (t)(Rn(7) —n(7))

nt = |- Fo X

T=Yi

I[Ru(2) > cN“])

Turnbull’s EDF Estimation Method

If the response variable is subject to both left-censoring and right-censoring effects and if you explicitly
specify the EMPIRICALCDF=TURNBULL option, then the HPSEVERITY procedure uses a method
proposed by Turnbull (1976) to compute the nonparametric estimates of the cumulative distribution function.
The original Turnbull’s method is modified using the suggestions made by Frydman (1994) when truncation
effects are present.

Let the input data consist of N observations in the form of quintuplets of values (y;, tl.l NN cf)i =
1,..., N with notation described in the section “Notation” on page 1260. For each observation, let A; =
(cf, cf] be the censoring interval; that is, the response variable value is known to lie in the interval A;, but
the exact value is not known. If an observation is uncensored, then A; = (y; — €, y;] for any arbitrarily small
value of € > 0. If an observation is censored, then the value y; is ignored. Similarly, for each observation,
let B; = (tl.l , tl.’] be the truncation interval; that is, the observation is drawn from a truncated (conditional)

distribution F(y, B;) = P(Y < y|Y € B;).

Two sets, L and R, are formed using A; and B; as follows:

L={c.,1<i<NyU{t/.1<i <N}
R={c1<i<Nyu{l 1<i<nN}

The sets L and R represent the left endpoints and right endpoints, respectively. A set of disjoint intervals
C; =1gqj,pjl,1 < j <M isformed such thatg; € L and p; € Randq; < p; and p; < q;+1. The
value of M is dependent on the nature of censoring and truncation intervals in the input data. Turnbull (1976)
showed that the maximum likelihood estimate (MLE) of the EDF can increase only inside intervals C;. In
other words, the MLE estimate is constant in the interval (p;, g;+1). The likelihood is independent of the
behavior of F}, inside any of the intervals C;. Let s; denote the increase in Fj, inside an interval C;. Then,
the EDF estimate is as follows:

0 ity <q1
Fa(y) =1 Yioyse ifpj <y <gjp1.1<j=<M—1
1 1fy>pM

1264 4 Chapter 23: The HPSEVERITY Procedure

PROC HPSEVERITY computes the estimates Fy,(p;+) = Fy(qj+1—) = lec=1 Sk at points p; and g 41
and computes Fy,(¢1—) = 0 at point g1, where F,(x+) denotes the limiting estimate at a point that is
infinitesimally larger than x when approaching x from values larger than x and where F;, (x—) denotes the
limiting estimate at a point that is infinitesimally smaller than x when approaching x from values smaller than
X.

PROC HPSEVERITY uses the expectation-maximization (EM) algorithm proposed by Turnbull (1976), who
referred to the algorithm as the self-consistency algorithm. By default, the algorithm runs until one of the
following criteria is met:

e Relative-error criterion: The maximum relative error between the two consecutive estimates of s ; falls
below a threshold €. If / indicates an index of the current iteration, then this can be formally stated as
l -1

st —s71]
J) <

arg max

1<j<M -1

5

You can control the value of € by specifying the EPS= suboption of the EDF=TURNBULL option in
the PROC HPSEVERITY statement. The default value is 1.0E-8.

e Maximum-iteration criterion: The number of iterations exceeds an upper limit that you specify for the
MAXITER= suboption of the EDF=TURNBULL option in the PROC HPSEVERITY statement. The
default number of maximum iterations is 500.

The self-consistent estimates obtained in this manner might not be maximum likelihood estimates. Gentleman
and Geyer (1994) suggested the use of the Kuhn-Tucker conditions for the maximum likelihood problem to
ensure that the estimates are MLE. If you specify the ENSUREMLE suboption of the EDF=TURNBULL
option in the PROC HPSEVERITY statement, then PROC HPSEVERITY computes the Kuhn-Tucker
conditions at the end of each iteration to determine whether the estimates {s;} are MLE. If you do not
specify any truncation effects, then the Kuhn-Tucker conditions derived by Gentleman and Geyer (1994)
are used. If you specify any truncation effects, then PROC HPSEVERITY uses modified Kuhn-Tucker
conditions that account for the truncation effects. An integral part of checking the conditions is to determine
whether an estimate s; is zero or whether an estimate of the Lagrange multiplier or the reduced gradient
associated with the estimate s; is zero. PROC HPSEVERITY declares these values to be zero if they are
less than or equal to a threshold §. You can control the value of § by specifying the ZEROPROB= suboption
of the EDF=TURNBULL option in the PROC HPSEVERITY statement. The default value is 1.0E-8. The
algorithm continues until the Kuhn-Tucker conditions are satisfied or the number of iterations exceeds the
upper limit. The relative-error criterion stated previously is not used when you specify the ENSUREMLE
option.

The standard errors for Turnbull’s EDF estimates are computed by using the asymptotic theory of the
maximum likelihood estimators (MLE), even though the final estimates might not be MLE. Turnbull’s
estimator essentially attempts to maximize the likelihood L, which depends on the parameters s; (j =
1...M). Lets = {s;} denote the set of these parameters. If G(s) = V?(—log(L(s))) denotes the
Hessian matrix of the negative of log likelihood, then the variance-covariance matrix of s is estimated as
é(s) = G~!(s). Given this matrix, the standard error of F,(y) is computed as

J k—1
on() = | Y |(Crx+2-> Cus|ifpj <y <gqjyr1.1=j<M-1
k=1 =1

The standard error is undefined outside of these intervals.

Empirical Distribution Function Estimation Methods 4 1265

EDF Estimates and Truncation

If you specify truncation, then the estimate Fy () that is computed by any method other than the STANDARD
method is a conditional estimate. In other words, F), () = Pr(Y < yltg <Y < tg), where G and
H denote the (unknown) distribution functions of the left-truncation threshold variable 7! and the right-
truncation threshold variable T, respectively, tg denotes the smallest left-truncation threshold with a nonzero
cumulative probability, and tgy denotes the largest right-truncation threshold with a nonzero cumulative
probability. Formally, tg = inf{s : G(s) > 0} and ty = sup{s : H(s) > 0}. For computational purposes,
PROC HPSEVERITY estimates 7g and tg by tt. and 17, respectively, defined as

min max?
I

thi =min{r! 11 <k <N}

min
thax = max{ty 11 <k <N}
These estimates of télin and 7], are used to compute the conditional estimates of the CDF as described in the

section “Truncation and Conditional CDF Estimates” on page 1241.

If you specify left-truncation with the probability of observability p, then PROC HPSEVERITY uses the
additional information provided by p to compute an estimate of the EDF that is not conditional on the
left-truncation information. In particular, for each left-truncated observation i with response variable value
y; and truncation threshold tl.l , an observation j is added with weight w; = (1 — p)/pand y; = tj.. Each
added observation is assumed to be uncensored and untruncated. Then, your specified EDF method is used
by assuming no left-truncation. The EDF estimate that is obtained using this method is not conditional on
the left-truncation information. For the KAPLANMEIER and MODIFIEDKM methods with uncensored
or right-censored data, definitions of n(t) and R, (t) are modified to account for the added observations.
If N denotes the total number of observations including the added observations, then n(t) is defined as
n(t) = lecv;ll wil [yx = tand v <t and 8 = 1], and Ry (7) is defined as Ry (7) = Z,Ic\’:al wi I [yr > 7).
In the definition of R, (7), the left-truncation information is not used, because it was used along with p to
add the observations.

If the original data are a combination of left- and right-censored data and if you specify the EMPIRI-
CALCDF=TURNBULL option, then Turnbull’s method is applied to the appended set that contains no
left-truncated observations.

Supplying EDF Estimates to Functions and Subroutines

The parameter initialization subroutines in distribution models and some predefined utility functions require
EDF estimates. For more information, see the sections “Defining a Severity Distribution Model with the
FCMP Procedure” on page 1273 and “Predefined Utility Functions” on page 1285.

PROC HPSEVERITY supplies the EDF estimates to these subroutines and functions by using two arrays,
x and F, the dimension of each array, and a type of the EDF estimates. The type identifies how the EDF
estimates are computed and stored. They are as follows:

Type 1 specifies that EDF estimates are computed using the STANDARD method; that is, the data that
are used for estimation are neither censored nor truncated.

Type 2 specifies that EDF estimates are computed using either the KAPLANMEIER or the MODI-
FIEDKM method; that is, the data that are used for estimation are subject to truncation and one
type of censoring (left or right, but not both).

Type 3 specifies that EDF estimates are computed using the TURNBULL method; that is, the data that
are used for estimation are subject to both left- and right-censoring. The data might or might not
be truncated.

1266 4 Chapter 23: The HPSEVERITY Procedure

For Types 1 and 2, the EDF estimates are stored in arrays x and F of dimension N such that the following
holds:

0 if y < x[1]
F.(y) =13 Flk] ifx[k]<y<xk+1,k=1,....,N—1
F[N] ifx[N] =<y

where [k] denotes kth element of the array ([1] denotes the first element of the array).

For Type 3, the EDF estimates are stored in arrays x and F of dimension N such that the following holds:

0 if y < x[1]
F |} undefined ifx2k—1] <y <x2kl,k=1,...,(N=-1)/2
n(y) = F[2kl = F[2k +1] ifx[2k] <y <x2k+1,k=1,...,(N—-1)/2
F[N] if x[N] <y

Although the behavior of EDF is theoretically undefined for the interval [x[2k — 1], x[2k]), for computational
purposes, all predefined functions and subroutines assume that the EDF increases linearly from F[2k — 1]
to F[2k] in that interval if x[2k — 1] < x[2k]. If x[2k — 1] = x[2k], which can happen when the EDF
is estimated from a combination of uncensored and interval-censored data, the predefined functions and
subroutines assume that Fy, (x[2k — 1]) = F,(x[2k]) = F[2k].

Statistics of Fit

PROC HPSEVERITY computes and reports various statistics of fit to indicate how well the estimated model
fits the data. The statistics belong to two categories: likelihood-based statistics and EDF-based statistics.
Neg2LogLike, AIC, AICC, and BIC are likelihood-based statistics, and KS, AD, and CvM are EDF-based
statistics.

In the distributed mode of execution, in which data are distributed across the grid nodes, the EDF estimates
are computed by using the local data. The EDF-based statistics are computed by using these local EDF
estimates. The reported value of each EDF-based statistic is an average of the values of the statistic that
are computed by all the grid nodes where the data reside. Also, for large data sets, in both single-machine
and distributed modes of execution, the EDF estimates are computed by using a fraction of the input data
that is governed by either the INITSAMPLE option or the default sample size. Because of this nature of
computing the EDF estimates, the EDF-based statistics of fit are an approximation of the values that would
have been computed if the entire input data set were used for computing the EDF estimates. So the values
that are reported for EDF-based statistics should be used only for comparing different models. The reported
values should not be interpreted as true estimates of the corresponding statistics.

The likelihood-based statistics are reported for the entire input data in both single-machine and distributed
modes of execution.

The following subsections provide definitions of each category of statistics.

Likelihood-Based Statistics of Fit

Lety;,i = 1,..., N, denote the response variable values. Let L be the likelihood as defined in the section
“Likelihood Function” on page 1242. Let p denote the number of model parameters that are estimated. Note
that p = pg + (k — k;), where p,; is the number of distribution parameters, & is the number of all regression
parameters, and k is the number of regression parameters that are found to be linearly dependent (redundant)
on other regression parameters. Given this notation, the likelihood-based statistics are defined as follows:

Statistics of Fit 4 1267

Neg2LogLike The log likelihood is reported as
Neg2LogLike = —2log(L)

The multiplying factor —2 makes it easy to compare it to the other likelihood-based
statistics. A model that has a smaller value of Neg2LogLike is deemed better.

AIC Akaike’s information criterion (AIC) is defined as
AIC = —2log(L) +2p

A model that has a smaller AIC value is deemed better.

AICC The corrected Akaike’s information criterion (AICC) is defined as
2N,
AICC = —21log(L) + ——F
N-p—-1

A model that has a smaller AICC value is deemed better. It corrects the finite-sample bias
that AIC has when N is small compared to p. AICC is related to AIC as

2p(p+ 1)

AICC = AIC +
N-p-1

As N becomes large compared to p, AICC converges to AIC. AICC is usually recom-
mended over AIC as a model selection criterion.

BIC The Schwarz Bayesian information criterion (BIC) is defined as
BIC = —2log(L) + plog(N)

A model that has a smaller BIC value is deemed better.

EDF-Based Statistics

This class of statistics is based on the difference between the estimate of the cumulative distribution function
(CDF) and the estimate of the empirical distribution function (EDF). A model that has a smaller value of the
chosen EDF-based statistic is deemed better.

Let y;,i = 1,..., N denote the sample of N values of the response variable. Let r; = Z;V:l Ily; < il
denote the number of observations with a value less than or equal to y;, where [is an indicator function. Let
F,(y;) denote the EDF estimate that is computed by using the method that you specify in the EMPIRICAL-
CDF= option. Let Z; = F (yi) denote the estimate of the CDF. Let F,(Z;) denote the EDF estimate of Z;
values that are computed using the same method that is used to compute the EDF of y; values. Using the
probability integral transformation, if F(y) is the true distribution of the random variable Y, then the random
variable Z = F(y) is uniformly distributed between 0 and 1 (D’ Agostino and Stephens 1986, Ch. 4). Thus,
comparing Fy, (y;) with F (yi) is equivalent to comparing Fy (Z;) with F (Z;) = Z; (uniform distribution).

Note the following two points regarding which CDF estimates are used for computing the test statistics:
o If you specify regression effects, then the CDF estimates Z; that are used for computing the EDF test

statistics are from a mixture distribution. See the section “CDF and PDF Estimates with Regression
Effects” on page 1249 for more information.

1268 4 Chapter 23: The HPSEVERITY Procedure

e If the EDF estimates are conditional because of the truncation information, then each unconditional
estimate Z; is converted to a conditional estimate using the method described in the section “Truncation
and Conditional CDF Estimates” on page 1241.

In the following, it is assumed that Z; denotes an appropriate estimate of the CDF if you specify any
truncation or regression effects. Given this, the EDF-based statistics of fit are defined as follows:

KS The Kolmogorov-Smirnov (KS) statistic computes the largest vertical distance between the CDF
and the EDF. It is formally defined as follows:

KS = s1y1p |Fu(y) — F(y)|

If the STANDARD method is used to compute the EDF, then the following formula is used:

DT = maxi(% —Z)

- ri—1
D™ = max,-(Z,- - ZT)

0.19

KS = +/N max DY, D7)+
N

Note that g is assumed to be 0.

If the method used to compute the EDF is any method other than the STANDARD method, then
the following formula is used:

DT = max;(Fu(Zi) — Zi), if Fa(Zi) > Z;
D™ = max;(Z; — Fu(Z:)), if Fu(Zi) < Z;
0.19

KS = +/N max DT, D7)+ =
N N

AD The Anderson-Darling (AD) statistic is a quadratic EDF statistic that is proportional to the expected
value of the weighted squared difference between the EDF and CDF. It is formally defined as
follows:

® (Fu(y)— F(»))?
— d
AD=N /_oo Fo)1 = F(yy TV

If the STANDARD method is used to compute the EDF, then the following formula is used:

N
AD = —N — %; [2r; = Dlog(Z;) + N + 1 —=2r;)log(l — Z;)]

If the method used to compute the EDF is any method other than the STANDARD method, then
the statistic can be computed by using the following two pieces of information:

e If the EDF estimates are computed using the KAPLANMEIER or MODIFIEDKM methods,
then EDF is a step function such that the estimate F},(z) is a constant equal to F,(Z;—_1) in
interval [Z;_1, Z;]. If the EDF estimates are computed using the TURNBULL method, then
there are two types of intervals: one in which the EDF curve is constant and the other in

Statistics of Fit 4 1269

which the EDF curve is theoretically undefined. For computational purposes, it is assumed
that the EDF curve is linear for the latter type of the interval. For each method, the EDF
estimate F,(y) at y can be written as

Fu(z) = Fo(Zi-1) + Si(z = Zi—1), forz € [Z;—1, Zi]
where S; is the slope of the line defined as
Fu(Zi) — Fa(Zi-1)
Zi—Zi
For the KAPLANMEIER or MODIFIEDKM method, S; = 0 in each interval.
e Using the probability integral transform z = F(y), the formula simplifies to

(Fa(z) —2)
AD = N/ i«

Si =

The computation formula can then be derived from the following approximation:

AD:NZ/Zi Mdz

Zi_ Z(l_Z)

(Fu(Zi—1) + Si(z Zi—l)_z)2

:NE:LH T

(P — Qiz)?

ZNZ/ZA_ z(1—2) dz

where P; = F,,(Zi—1) — SiZi—1, Q; = 1 —S;, and K is the number of points at which the EDF
estimate are computed. For the TURNBULL method, K = 2k for some k.

Assuming Zg =0, Zx+1 = 1, F,(0) = 0, and F,,(Zg) = 1 yields the following computation
formula:

AD =—N(Z; +1log(1—Z1) +log(Zg) + (1 — Zg))

dz

K
+N Z [P?A4;i — (Qi — P;))*B; — Q7Ci]
i=—2

where Al' = log(Z,-) — log(Z,-_l), Bl' = log(l — Zl') — log(l — Zi—l)v and Ci = Zl' — Zi—l-

If EDF estimates are computed using the KAPLANMEIER or MODIFIEDKM method, then
P; = F,(Z;—1) and Q; = 1, which simplifies the formula as

AD = — N(1 + log(1 — Z1) + log(Z))
K
+ N Z [Fu(Zi—1)*4i — (1 — Fa(Zi-1))*Bi]
i=2

CvM The Cramér-von Mises (CvM) statistic is a quadratic EDF statistic that is proportional to the
expected value of the squared difference between the EDF and CDF. It is formally defined as
follows:

@M:N[_wuw—ﬂwﬂww)

1270 4 Chapter 23: The HPSEVERITY Procedure

If the STANDARD method is used to compute the EDF, then the following formula is used:

_ (21‘, —1)
CVM ﬁ + Z (Zl)

If the method used to compute the EDF is any method other than the STANDARD method, then
the statistic can be computed by using the following two pieces of information:

e As described previously for the AD statistic, the EDF estimates are assumed to be piecewise
linear such that the estimate Fj (y) at y is

Fu(2) = Fu(Zi—1) + Si(z — Zi—1), forz € [Zi—1, Z;]
where S; is the slope of the line defined as
Fu(Zi) — Fa(Zi-1)
Zi—Zi
For the KAPLANMEIER or MODIFIEDKM method, S; = 0 in each interval.
e Using the probability integral transform z = F(y), the formula simplifies to:

S =

CvM = N /00 (Fu(2) — 2)%dz

The computation formula can then be derived from the following approximation:

K+1
CWM=N > / (Fu(z) — 2)%dz
i=1
K+1
-N Y / (Fa(Zio) + iz = Zi1) — 2)%dz
i=1
K+1
—NZ/ (P; — Qiz)%dz
i=1
where P; = F,(Zi—1) — SiZi—1, Q; = 1 —8;, and K is the number of points at which the EDF
estimate are computed. For the TURNBULL method, K = 2k for some k.

Assuming Zy = 0, Zg+1 = 1, and F,(0) = 0 yields the following computation formula:

73 K+1 2
CVM = NTl +N Y |:Pi2A,~ — P;QiB; — TlC,}
=2

where A; = Z; — Zi—1, Bi = Z} - Z} |, and C; = Z? - Z?_,

If EDF estimates are computed using the KAPLANMEIER or MODIFIEDKM method, then
P; = F,(Z;—1) and Q; = 1, which simplifies the formula as

K+1
N
CvM = 3+ N E [Fa(Zi—)*(Zi — Zi—1) — Fa(Zi-(Z7 — Z7))]
i—2

which is similar to the formula proposed by Koziol and Green (1976).

Distributed and Multithreaded Computation 4 1271

Distributed and Multithreaded Computation

PROC HPSEVERITY makes an attempt to use all the computational resources that you specify in the
PERFORMANCE statement in order to complete the assigned tasks as fast as possible. This section describes
the distributed and multithreading computing methods that PROC HPSEVERITY uses.

Distributed Computing

Distributed computing refers to the organization of computation work into multiple tasks that are processed
on different nodes; a node is one of the machines that constitute the grid. The number of nodes that PROC
HPSEVERITY uses is determined by the distributed processing execution mode. If you specify the client-data
(or local-data) mode of execution, then the number of nodes is determined by the NODES= option in the
PERFORMANCE statement. If you are using the alongside-the-database mode of execution, then PROC
HPSEVERITY determines the number of nodes internally by using the information that is associated with
the DATA= data set and the grid information that you specify either in the PERFORMANCE statement or in
the grid environment variables. For more information about distributed processing modes, see the section
“Processing Modes” on page 62.

In the client-data model, PROC HPSEVERITY distributes the input data across the number of nodes that you
specify by sending the first observation to the first node, the second observation to the second node, and so
on.

In the alongside-the-database model, PROC HPSEVERITY uses the existing distributed organization of the
data. You do not need to specify the NODES= option.

The number of nodes that are used for distributed computing is displayed in the “Performance Information”
table, which is part of the default output.

Multithreading

Threading refers to the organization of computational work into multiple tasks (processing units that can be
scheduled by the operating system). A task is associated with a thread. Multithreading refers to the concurrent
execution of threads. When multithreading is possible, you can achieve more substantial performance gains
than you can with sequential (single-threaded) execution.

The number of threads the HPSEVERITY procedure spawns is determined by the number of CPUs on a
machine. You can control the number of CPUs in the following ways:

e You can use the CPUCOUNT= SAS system option to specify the CPU count. For example, if you
specify the following statement, then PROC HPSEVERITY schedules threads as if it were executing
on a system that had four CPUs, regardless of the actual CPU count:

options cpucount=4;

You can use this specification only in single-machine mode, and it does not take effect if the THREADS
system option is turned off.

1272 4 Chapter 23: The HPSEVERITY Procedure

The default value of the CPUCOUNT= system option might not equal the number of all the logical
CPU cores available on your machine, such as those available because of hyperthreading. To allow
PROC HPSEVERITY to use all the logical cores in single-machine mode, specify the following
OPTIONS statement:

options cpucount=actual;

e You can specify the NTHREADS= option in the PERFORMANCE statement. This specification
overrides the THREADS and CPUCOUNT= system options. Specify NTHREADS=1 to force single-
threaded execution.

If you do not specify the NTHREADS= option and the THREADS system option is turned on, then
the number of threads that are used in distributed mode is equal to the total number of logical CPU
cores available on each node of the grid, and the number of threads used in single-machine mode is
determined by the CPUCOUNT= system option.

If you do not specify the NTHREADS= option and the THREADS system option is turned off, then
only one thread of execution is used in both single-machine and distributed modes.

The number of threads per machine is displayed in the “Performance Information” table, which is part of the
default output.

Performance improvement is not always guaranteed when you use more threads, for several reasons: the
increased cost of communication and synchronization among threads might offset the reduced cost of
computation, the hyperthreading feature of the processor might not be very efficient for floating-point
computations, and other applications might be running on the machine.

Combining the Power of Distributed and Multithreading Computing

The HPSEVERITY procedure combines the powers of distributed and multithreading paradigms by using a
data-parallel model. In particular, the distributed tasks are defined by dividing the data among multiple nodes,
and within one node, the multithreading tasks are defined by further dividing the local data among the threads.
For example, if the input data set has 10,000 observations and you are running on a grid that has five nodes,
then each node processes 2,000 observations (this assumes that if you specify an alongside-the-database
model, then you have equally and randomly divided the input data among the nodes). Further, if each node
has eight CPUs, then 250 observations are associated with each thread within the node. All computations
that require access to the data are then distributed and multithreaded.

Note that in single-machine mode (see the section “Processing Modes” on page 62), only multithreading is
available.

When you specify more than one candidate distribution model, for some tasks PROC HPSEVERITY exploits
the independence among models by processing multiple models in parallel on a single node such that each
model is assigned to one of the threads executing in parallel. When a thread finishes processing the assigned
model, it starts processing the next unprocessed model, if one exists.

The computations that take advantage of the distributed and multithreaded model include the following:

e Validation and preparation of data: In this stage, the observations in the input data set are validated and
transformed, if necessary. The summary statistics of the data are prepared. Because each observation
is independent, the computations can be distributed among nodes and among threads within nodes
without significant communication overhead.

Defining a Severity Distribution Model with the FCMP Procedure 4 1273

e Initialization of distribution parameters: In this stage, the parallelism is achieved by initializing
multiple models in parallel. The only computational step that is not fully parallelized in this release
is the step of computing empirical distribution function (EDF) estimates, which are required when
PROC HPSEVERITY needs to invoke a distribution’s PARMINIT subroutine to initialize distribution
parameters. The EDF estimation step is not amenable to full-fledged parallelism because it requires
sequential access to sorted data, especially when the loss variable is modified by truncation effects.
When the data are distributed across nodes, the EDF computations take place on local data and the
PARMINIT function is invoked on the local data by using the local EDF estimates. The initial values
that are supplied to the nonlinear optimizer are computed by averaging the local estimates of the
distribution parameters that are returned by the PARMINIT functions on each node.

e Initialization of regression parameters (if you specify the SCALEMODEL statement): In this stage, if
you do not specify initial values for the regression parameters by using the INEST= data set or the
INSTORE-= item store, then PROC HPSEVERITY initializes those parameters by solving a linear
regression problem log (y) = Bo + Zf-;l B x . For more information, see the section “Parameter
Initialization for Regression Models” on page 1247. The most computationally intensive step is the
formation of the crossproducts matrix. PROC HPSEVERITY exploits the parallelism by observing
the fact that the contribution to the crossproducts matrix due to one observation is independent from
the contribution due to another observation. Each node computes the contribution of its local data to
each entry of the crossproducts matrix. Within each node, each thread computes the contribution of its
chunk of data to each entry of the crossproducts matrix. On each node, the contributions from all the
threads are added up to form the contribution due to all of the local data. The partial crossproducts
matrices are then gathered from all nodes on a central node, which sums them up to form the final
crossproducts matrix.

e Optimization: In this stage, the nonlinear optimizer iterates over the parameter space in search of the
optimal set of parameters. In each iteration, it evaluates the objective function along with the gradient
and Hessian of the objective function, if needed by the optimization method. Within one iteration,
for the current estimates of the parameters, each observation’s contribution to the objective function,
gradient, and Hessian is independent of another observation. This enables PROC HPSEVERITY to
fully exploit the distributed and multithreaded paradigms to efficiently parallelize each iteration of the
algorithm.

Defining a Severity Distribution Model with the FCMP Procedure

A severity distribution model consists of a set of functions and subroutines that are defined using the FCMP
procedure. The FCMP procedure is part of Base SAS software. Each function or subroutine must be named as
<distribution-name>_<keyword>, where distribution-name is the identifying short name of the distribution
and keyword identifies one of the functions or subroutines. The total length of the name should not exceed
32. Each function or subroutine must have a specific signature, which consists of the number of arguments,
sequence and types of arguments, and return value type. The summary of all the recognized function and
subroutine names and their expected behavior is given in Table 23.16.

Consider the following points when you define a distribution model:

e When you define a function or subroutine requiring parameter arguments, the names and order of those
arguments must be the same. Arguments other than the parameter arguments can have any name, but
they must satisfy the requirements on their type and order.

1274 4 Chapter 23: The HPSEVERITY Procedure

e When the HPSEVERITY procedure invokes any function or subroutine, it provides the necessary input
values according to the specified signature, and expects the function or subroutine to prepare the output
and return it according to the specification of the return values in the signature.

e You can use most of the SAS programming statements and SAS functions that you can use in a DATA
step for defining the FCMP functions and subroutines. However, there are a few differences in the
capabilities of the DATA step and the FCMP procedure. To learn more, see the documentation of the
FCMP procedure in the Base SAS Procedures Guide.

e You must specify either the PDF or the LOGPDF function. Similarly, you must specify either the CDF
or the LOGCDF function. All other functions are optional, except when necessary for correct definition
of the distribution. It is strongly recommended that you define the PARMINIT subroutine to provide a
good set of initial values for the parameters. The information provided by PROC HPSEVERITY to the
PARMINIT subroutine enables you to use popular initialization approaches based on the method of
moments and the method of percentile matching, but you can implement any algorithm to initialize the
parameters by using the values of the response variable and the estimate of its empirical distribution
function.

e The LOWERBOUNDS subroutines should be defined if the lower bound on at least one distribution
parameter is different from the default lower bound of 0. If you define a LOWERBOUNDS subroutine
but do not set a lower bound for some parameter inside the subroutine, then that parameter is assumed
to have no lower bound (or a lower bound of —c0). Hence, it is recommended that you explicitly return
the lower bound for each parameter when you define the LOWERBOUNDS subroutine.

e The UPPERBOUNDS subroutines should be defined if the upper bound on at least one distribution
parameter is different from the default upper bound of co. If you define an UPPERBOUNDS subroutine
but do not set an upper bound for some parameter inside the subroutine, then that parameter is assumed
to have no upper bound (or a upper bound of co). Hence, it is recommended that you explicitly return
the upper bound for each parameter when you define the UPPERBOUNDS subroutine.

e If you want to use the distribution in a model with regression effects, then make sure that the first
parameter of the distribution is the scale parameter itself or a log-transformed scale parameter. If the
first parameter is a log-transformed scale parameter, then you must define the SCALETRANSFORM
function.

e In general, it is not necessary to define the gradient and Hessian functions, because the HPSEVERITY
procedure uses an internal system to evaluate the required derivatives. The internal system typically
computes the derivatives analytically. But it might not be able to do so if your function definitions use
other functions that it cannot differentiate analytically. In such cases, derivatives are approximated
using a finite difference method and a note is written to the SAS log to indicate the components that are
differentiated using such approximations. PROC HPSEVERITY does reasonably well with these finite
difference approximations. But, if you know of a way to compute the derivatives of such components
analytically, then you should define the gradient and Hessian functions.

In order to use your distribution with PROC HPSEVERITY, you need to record the FCMP library that
contains the functions and subroutines for your distribution and other FCMP libraries that contain FCMP
functions or subroutines used within your distribution’s functions and subroutines. Specify all those libraries
in the CMPLIB= system option by using the OPTIONS global statement. For more information about the
OPTIONS statement, see SAS Statements: Reference. For more information about the CMPLIB= system
option, see SAS System Options: Reference.

Each predefined distribution mentioned in the section “Predefined Distributions” on page 1230 has a
distribution model associated with it. The functions and subroutines of all those models are available in the

Defining a Severity Distribution Model with the FCMP Procedure 4 1275

Sashelp.Svrtdist library. The order of the parameters in the signatures of the functions and subroutines is
the same as listed in Table 23.2. You do not need to use the CMPLIB= option in order to use the predefined
distributions with PROC HPSEVERITY. However, if you need to use the functions or subroutines of the
predefined distributions in SAS statements other than the PROC HPSEVERITY step (such as in a DATA
step), then specify the Sashelp.Svrtdist library in the CMPLIB= system option by using the OPTIONS global

statement prior to using them.

Table 23.16 shows functions and subroutines that define a distribution model, and subsections after the table
provide more detail. The functions are listed in alphabetical order of the keyword suffix.

Table 23.16 List of Functions and Subroutines That Define a Distribution Model

Name Type Required Expected to Return
dist_ CDF Function YES! Cumulative distribution
function value
dist CDFGRADIENT Subroutine NO Gradient of the CDF
dist_ CDFHESSIAN Subroutine NO Hessian of the CDF
dist CONSTANTPARM Subroutine NO Constant parameters
dist_DESCRIPTION Function NO Description of the distribution
dist_LOGCDF Function YES! Log of cumulative distribution
function value
dist LOGCDFGRADIENT Subroutine NO Gradient of the LOGCDF
dist LOGCDFHESSIAN Subroutine NO Hessian of the LOGCDF
dist_LOGPDF Function YES? Log of probability density
function value
dist_ LOGPDFGRADIENT Subroutine NO Gradient of the LOGPDF
dist LOGPDFHESSIAN Subroutine NO Hessian of the LOGPDF
dist_LOGSDF Function NO Log of survival
function value
dist LOGSDFGRADIENT Subroutine NO Gradient of the LOGSDF
dist_ LOGSDFHESSIAN Subroutine NO Hessian of the LOGSDF
dist_ LOWERBOUNDS Subroutine NO Lower bounds on parameters
dist_ PARMINIT Subroutine NO Initial values
for parameters
dist_PDF Function YES? Probability density
function value
dist_ PDFGRADIENT Subroutine NO Gradient of the PDF
dist PDFHESSIAN Subroutine NO Hessian of the PDF
dist_QUANTILE Function NO Quantile for a given CDF value
dist_SCALETRANSFORM Function NO Type of relationship between
the first distribution parameter
and the scale parameter
dist_SDF Function NO Survival function value
dist_ SDFGRADIENT Subroutine NO Gradient of the SDF
dist_ SDFHESSIAN Subroutine NO Hessian of the SDF
dist_UPPERBOUNDS Subroutine NO Upper bounds on parameters

Notes:

1. Either the dist_CDF or the dist_LOGCDF function must be defined.
2. Either the dist_PDF or the dist_ LOGPDF function must be defined.

1276 4 Chapter 23: The HPSEVERITY Procedure

The signature syntax and semantics of each function or subroutine are as follows:

dist_CDF
defines a function that returns the value of the cumulative distribution function (CDF) of the distribution
at the specified values of the random variable and distribution parameters.

e Type: Function
e Required: YES
o Number of arguments: m + 1, where m is the number of distribution parameters

o Sequence and type of arguments:

X Numeric value of the random variable at which the CDF value should be evaluated
pl Numeric value of the first parameter

p2 Numeric value of the second parameter

pm Numeric value of the mth parameter

e Return value: Numeric value that contains the CDF value F(x; p1, p2,..., Pm)

If you want to consider this distribution as a candidate distribution when you estimate a response
variable model with regression effects, then the first parameter of this distribution must be a scale
parameter or log-transformed scale parameter. In other words, if the distribution has a scale parameter,
then the following equation must be satisfied:

X
F(x:p1,p2,....pm) = F(p—;l,pz,...,pm)
1
If the distribution has a log-transformed scale parameter, then the following equation must be satisfied:

X
F(xap19p2”pm) = F(—707p277pm)
exp(p1)

Here is a sample structure of the function for a distribution named ‘FOQO’:

function FOO_CDF (x, P1l, P2);
/* Code to compute CDF by using x, P1l, and P2 x/

F = <computed CDF>;
return (F);
endsub;

dist_ CONSTANTPARM

defines a subroutine that specifies constant parameters. A parameter is constant if it is required for
defining a distribution but is not subject to optimization in PROC HPSEVERITY. Constant parameters
are required to be part of the model in order to compute the PDF or the CDF of the distribution.
Typically, values of these parameters are known a priori or estimated using some means other than
the maximum likelihood method used by PROC HPSEVERITY. You can estimate them inside the
dist_ PARMINIT subroutine. Once initialized, the parameters remain constant in the context of
PROC HPSEVERITY; that is, they retain their initial value. PROC HPSEVERITY estimates only the
nonconstant parameters.

e Type: Subroutine
e Required: NO

Defining a Severity Distribution Model with the FCMP Procedure 4 1277

o Number of arguments: k, where k is the number of constant parameters

o Sequence and type of arguments:

constant parameter 1

Name of the first constant parameter

constant parameter k Name of the kth constant parameter

e Return value: None

Here is a sample structure of the subroutine for a distribution named ‘FOQO’ that has P3 and P5 as its
constant parameters, assuming that distribution has at least three parameters:

subroutine FOO_CONSTANTPARM (p5, p3);

endsub;

Note the following points when you specify the constant parameters:

e At least one distribution parameter must be free to be optimized; that is, if a distribution has total
m parameters, then £ must be strictly less than m.

e If you want to use this distribution for modeling regression effects, then the first parameter must
not be a constant parameter.

e The order of arguments in the signature of this subroutine does not matter as long as each
argument’s name matches the name of one of the parameters that are defined in the signature of

the dist_PDF function.

e The constant parameters must be specified in signatures of all the functions and subroutines that
accept distribution parameters as their arguments.

e You must provide a nonmissing initial value for each constant parameter by using one of the
supported parameter initialization methods.

dist DESCRIPTION

defines a function that returns a description of the distribution.

e Type: Function
e Required: NO

o Number of arguments: None

o Sequence and type of arguments: Not applicable

e Return value: Character value containing a description of the distribution

Here is a sample structure of the function for a distribution named ‘FOQO’:

function FOO_DESCRIPTION() $48;
length desc $48;
desc = "A model for a continuous distribution named foo";

return (desc);

endsub;

1278 4 Chapter 23: The HPSEVERITY Procedure

There is no restriction on the length of the description (the length of 48 used in the previous example is
for illustration purposes only). However, if the length is greater than 256, then only the first 256 charac-
ters appear in the displayed output and in the _DESCRIPTION_ variable of the OUTMODELINFO=
data set. Hence, the recommended length of the description is less than or equal to 256.

dist LOGcore
defines a function that returns the natural logarithm of the specified core function of the distribution at
the specified values of the random variable and distribution parameters. The core keyword can be PDF,
CDF, or SDF.

e Type: Function

e Required: YES only if core is PDF or CDF and you have not defined that core function; otherwise,
NO

o Number of arguments: m + 1, where m is the number of distribution parameters
o Sequence and type of arguments:
x Numeric value of the random variable at which the natural logarithm of the core function
should be evaluated
pl Numeric value of the first parameter

p2 Numeric value of the second parameter

pm Numeric value of the mth parameter

e Return value: Numeric value that contains the natural logarithm of the core function

Here is a sample structure of the function for the core function PDF of a distribution named ‘FOQO’:

function FOO_LOGPDF (x, P1l, P2);
/* Code to compute LOGPDF by using x, P1l, and P2 x/

1l = <computed LOGPDF>;
return (1);
endsub;

dist_ LOWERBOUNDS
defines a subroutine that returns lower bounds for the parameters of the distribution. If this subroutine
is not defined for a given distribution, then the HPSEVERITY procedure assumes a lower bound of
0 for each parameter. If a lower bound of /; is returned for a parameter p;, then the HPSEVERITY
procedure assumes that /; < p; (strict inequality). If a missing value is returned for some parameter,
then the HPSEVERITY procedure assumes that there is no lower bound for that parameter (equivalent
to a lower bound of —o0).

e Type: Subroutine
e Required: NO

o Number of arguments: m, where m is the number of distribution parameters

Defining a Severity Distribution Model with the FCMP Procedure 4 1279

e Sequence and type of arguments:

pl Output argument that returns the lower bound on the first parameter. You must
specify this in the OUTARGS statement inside the subroutine’s definition.

p2 Output argument that returns the lower bound on the second parameter. You must
specify this in the OUTARGS statement inside the subroutine’s definition.

pm Output argument that returns the lower bound on the mth parameter. You must
specify this in the OUTARGS statement inside the subroutine’s definition.

e Return value: The results, lower bounds on parameter values, should be returned in the parameter
arguments of the subroutine.

Here is a sample structure of the subroutine for a distribution named ‘FOO’:

subroutine FOO_LOWERBOUNDS (pl, p2);
outargs pl, p2;

Pl = <lower bound for P1l>;
P2 = <lower bound for P2>;
endsub;

dist_ PARMINIT
defines a subroutine that returns the initial values for the distribution’s parameters given an empirical
distribution function (EDF) estimate.

Type: Subroutine
Required: NO

Number of arguments: m + 4, where m is the number of distribution parameters

e Sequence and type of arguments:

dim Input numeric value that contains the dimension of the X, nx, and F array arguments.

x{*} Input numeric array of dimension dim that contains values of the random variables
at which the EDF estimate is available. It can be assumed that x contains values in
an increasing order. In other words, if i < j, then x[i] < x[/].

nx{*} Input numeric array of dimension dim. Each nx[i] contains the number of observa-
tions in the original data that have the value x[i].

F{*} Input numeric array of dimension dim. Each F[i] contains the EDF estimate for x[i].
This estimate is computed by the HPSEVERITY procedure based on the options that
you specify in the LOSS statement and the EMPIRICALCDF= option.

Ftype Input numeric value that contains the type of the EDF estimate that is stored in x
and F. See the section “Supplying EDF Estimates to Functions and Subroutines” on
page 1265 for definition of types.

pl Output argument that returns the initial value of the first parameter. You must specify
this in the OUTARGS statement inside the subroutine’s definition.

1280 4 Chapter 23: The HPSEVERITY Procedure

p2 Output argument that returns the initial value of the second parameter. You must
specify this in the OUTARGS statement inside the subroutine’s definition.

pm Output argument that returns the initial value of the mth parameter. You must specify
this in the OUTARGS statement inside the subroutine’s definition.

e Return value: The results, initial values of the parameters, should be returned in the parameter
arguments of the subroutine.

Here is a sample structure of the subroutine for a distribution named ‘FOO’:

subroutine FOO_PARMINIT (dim, x{x}, nx{x}, F{x}, Ftype, pl, p2);
outargs pl, p2;

/* Code to initialize values of Pl and P2 by using
dim, x, nx, and F */

Pl = <initial value for pl>;
P2 = <initial value for p2>;
endsub;

dist_PDF
defines a function that returns the value of the probability density function (PDF) of the distribution at
the specified values of the random variable and distribution parameters.

e Type: Function

e Required: YES

o Number of arguments: m + 1, where m is the number of distribution parameters

o Sequence and type of arguments:
x Numeric value of the random variable at which the PDF value should be evaluated
pl Numeric value of the first parameter

p2 Numeric value of the second parameter

pm Numeric value of the mth parameter

e Return value: Numeric value that contains the PDF value f(x; p1, p2,.... Pm)

If you want to consider this distribution as a candidate distribution when you estimate a response
variable model with regression effects, then the first parameter of this distribution must be a scale
parameter or log-transformed scale parameter. In other words, if the distribution has a scale parameter,
then the following equation must be satisfied:

1 X
f(X;pl’pZ""’pm) = _f(_;l,PZa---aPm)
P1 D1

If the distribution has a log-transformed scale parameter, then the following equation must be satisfied:
1 X
A ;0
exp(p1) " exp(p1)

f(x;p1.p2,.... pm) = . D25y Pm)

Defining a Severity Distribution Model with the FCMP Procedure 4 1281

Here is a sample structure of the function for a distribution named ‘FOQO’:

function FOO_PDF (x, P1l, P2);
/* Code to compute PDF by using x, Pl, and P2 x/

f = <computed PDF>;
return (f);
endsub;

dist_QUANTILE
defines a function that returns the quantile of the distribution at the specified value of the CDF for the
specified values of distribution parameters.

e Type: Function
e Required: NO
o Number of arguments: m + 1, where m is the number of distribution parameters
e Sequence and type of arguments:
cdf Numeric value of the cumulative distribution function (CDF) for which the quantile should
be evaluated
pl Numeric value of the first parameter

p2 Numeric value of the second parameter

pm Numeric value of the mth parameter

e Return value: Numeric value that contains the quantile F -1 (cdf; p1, p2,..., Pm)

Here is a sample structure of the function for a distribution named ‘FOO’:

function FOO_QUANTILE (c, P1l, P2);
/* Code to compute quantile by using c¢, P1l, and P2 %/

Q = <computed quantile>;
return (Q);
endsub;

dist_ SCALETRANSFORM
defines a function that returns a keyword to identify the transform that needs to be applied to the scale
parameter to convert it to the first parameter of the distribution.

If you want to use this distribution for modeling regression effects, then the first parameter of this
distribution must be a scale parameter. However, for some distributions, a typical or convenient
parameterization might not have a scale parameter, but one of the parameters can be a simple transform
of the scale parameter. As an example, consider a typical parameterization of the lognormal distribution
with two parameters, location p and shape o, for which the PDF is defined as follows:

_l(log(X)-M)z
2 o

1
f(xip,0) = me

1282 4 Chapter 23: The HPSEVERITY Procedure

You can reparameterize this distribution to contain a parameter 6 instead of the parameter yu such
that u = log(8). The parameter 6 would then be a scale parameter. However, if you want to specify
the distribution in terms of p and o (which is a more recognized form of the lognormal distribution)
and still allow it as a candidate distribution for estimating regression effects, then instead of writing
another distribution with parameters 6 and o, you can simply define the distribution with u as the first
parameter and specify that it is the logarithm of the scale parameter.

e Type: Function

e Required: NO

e Number of arguments: None

o Sequence and type of arguments: Not applicable

e Return value: Character value that contains one of the following keywords:

LOG specifies that the first parameter is the logarithm of the scale parameter.
IDENTITY specifies that the first parameter is a scale parameter without any transforma-
tion.

If you do not specify this function, then the IDENTITY transform is assumed.

Here is a sample structure of the function for a distribution named ‘FOO’:

function FOO_SCALETRANSFORM() $8;
length xform $8;

xform = "IDENTITY";
return (xform);
endsub;

dist_SDF
defines a function that returns the value of the survival distribution function (SDF) of the distribution
at the specified values of the random variable and distribution parameters.
e Type: Function
e Required: NO
e Number of arguments: m + 1, where m is the number of distribution parameters

e Sequence and type of arguments:

X Numeric value of the random variable at which the SDF value should be evaluated
pl Numeric value of the first parameter

p2 Numeric value of the second parameter

pm Numeric value of the mth parameter

e Return value: Numeric value that contains the SDF value S(x; p1, p2,..., Pm)

If you want to consider this distribution as a candidate distribution when estimating a response variable
model with regression effects, then the first parameter of this distribution must be a scale parameter

Defining a Severity Distribution Model with the FCMP Procedure 4 1283

or log-transformed scale parameter. In other words, if the distribution has a scale parameter, then the
following equation must be satisfied:

X
S(X;p1.p2...., pm) = S(E; Lp2,....pm)
If the distribution has a log-transformed scale parameter, then the following equation must be satisfied:

S(x;p1,p2, ... pm) = S(:0, P2, .., Pm)

X
exp(p1)

Here is a sample structure of the function for a distribution named ‘FOO’:

function FOO_SDF (x, P1l, P2);
/* Code to compute SDF by using x, Pl, and P2 x/

S = <computed SDF>;
return (S);
endsub;

dist_ UPPERBOUNDS
defines a subroutine that returns upper bounds for the parameters of the distribution. If this subroutine
is not defined for a given distribution, then the HPSEVERITY procedure assumes that there is no
upper bound for any of the parameters. If an upper bound of u; is returned for a parameter p;, then
the HPSEVERITY procedure assumes that p; < u; (strict inequality). If a missing value is returned
for some parameter, then the HPSEVERITY procedure assumes that there is no upper bound for that
parameter (equivalent to an upper bound of 00).

e Type: Subroutine
e Required: NO
o Number of arguments: m, where m is the number of distribution parameters
o Sequence and type of arguments:
pl Output argument that returns the upper bound on the first parameter. You must
specify this in the OUTARGS statement inside the subroutine’s definition.

p2 Output argument that returns the upper bound on the second parameter. You must
specify this in the OUTARGS statement inside the subroutine’s definition.

pm Output argument that returns the upper bound on the mth parameter. You must

specify this in the OUTARGS statement inside the subroutine’s definition.

o Return value: The results, upper bounds on parameter values, should be returned in the parameter
arguments of the subroutine.

Here is a sample structure of the subroutine for a distribution named ‘FOO’:

subroutine FOO_UPPERBOUNDS (pl, p2);
outargs pl, p2;

pl <upper bound for P1>;
P2

endsub;

<upper bound for P2>;

1284 4 Chapter 23: The HPSEVERITY Procedure

dist_coreGRADIENT
defines a subroutine that returns the gradient vector of the specified core function of the distribution at
the specified values of the random variable and distribution parameters. The core keyword can be PDF,
CDF, SDF, LOGPDF, LOGCDF, or LOGSDF.

e Type: Subroutine
e Required: NO
o Number of arguments: m 4 2, where m is the number of distribution parameters

o Sequence and type of arguments:

X Numeric value of the random variable at which the gradient should be evaluated
pl Numeric value of the first parameter

p2 Numeric value of the second parameter

pm Numeric value of the mth parameter

grad{*} Output numeric array of size m that contains the gradient vector evaluated at the
specified values. If / denotes the value of the core function, then the expected order

i ' . Oh 0h 0h
of the values in the array is as follows: 91 903" o

e Return value: Numeric array that contains the gradient evaluated at x for the parameter values
(p1.P2.-- s Pm)

Here is a sample structure of the function for the core function CDF of a distribution named ‘FOO’:

subroutine FOO_CDFGRADIENT (x, Pl, P2, grad{x});
outargs grad;

/* Code to compute gradient by using x, P1l, and P2 x/
grad[l] = <partial derivative of CDF w.r.t. Pl
evaluated at x, P1l, P2>;
grad[2] = <partial derivative of CDF w.r.t. P2
evaluated at x, P1l, P2>;
endsub;

dist_coreHESSIAN
defines a subroutine that returns the Hessian matrix of the specified core function of the distribution at
the specified values of the random variable and distribution parameters. The core keyword can be PDF,
CDF, SDF, LOGPDF, LOGCDF, or LOGSDF.

e Type: Subroutine
e Required: NO

o Number of arguments: m + 2, where m is the number of distribution parameters

e Sequence and type of arguments:

X Numeric value of the random variable at which the Hessian matrix should be evalu-
ated

pl Numeric value of the first parameter

Predefined Utility Functions 4 1285

p2 Numeric value of the second parameter

pm Numeric value of the mth parameter

hess{*} Output numeric array of size m(m + 1)/2 that contains the lower triangular portion
of the Hessian matrix in a packed vector form, evaluated at the specified values. If &

denotes the value of the core function, then the expected order of the values in the
0%h 0%h 0%h 0%h 0%h

9p10p2 9p3 0p10pm 0p20Pm ap2,

. 2
array is as follows: % |

e Return value: Numeric array that contains the lower triangular portion of the Hessian matrix
evaluated at x for the parameter values (p1, p2,..., Pm)

Here is a sample structure of the subroutine for the core function LOGSDF of a distribution named
‘FOO’:

subroutine FOO_LOGSDFHESSIAN (x, P1l, P2, hess{*});
outargs hess;

/* Code to compute Hessian by using x, Pl, and P2 x/

hess[1l] = <second order partial derivative of LOGSDF
w.r.t. Pl evaluated at x, P1l, P2>;

hess[2] = <second order partial derivative of LOGSDF
w.r.t. Pl and P2 evaluated at x, P1l, P2>;

hess[3] = <second order partial derivative of LOGSDF

w.r.t. P2 evaluated at x, P1l, P2>;
endsub;

Predefined Utility Functions

The following predefined utility functions are provided with the HPSEVERITY procedure and are available
in the Sashelp.Svrtdist library:

SVRTUTIL_EDF:
This function computes the empirical distribution function (EDF) estimate at the specified value of the
random variable given the EDF estimate for a sample.

e Type: Function
o Signature: SVRTUTIL_EDF(y, n, x{*}, F{*}, Ftype)
e Argument Description:
Value of the random variable at which the EDF estimate is desired.
n Dimension of the x and F input arrays.

x{*} Input numeric array of dimension n that contains values of the random variable
observed in the sample. These values are sorted in nondecreasing order.

F{*} Input numeric array of dimension n in which each F[i] contains the EDF estimate for
x[7]. These values must be sorted in nondecreasing order.

Ftype Type of the empirical estimate that is stored in the x and F arrays. See the section
“Supplying EDF Estimates to Functions and Subroutines” on page 1265 for definition
of types.

1286 4 Chapter 23: The HPSEVERITY Procedure

e Return value: The EDF estimate at y.

The type of the sample EDF estimate determines how the EDF estimate at y is computed. For more
information, see the section “Supplying EDF Estimates to Functions and Subroutines” on page 1265.

SVRTUTIL_EMPLIMMOMENT:
This function computes the empirical estimate of the limited moment of specified order for the specified
upper limit, given the EDF estimate for a sample.

e Type: Function

e Signature: SVRTUTIL_EMPLIMMOMENT(K, u, n, x{*}, F{*}, Ftype)

e Argument Description:

k Order of the desired empirical limited moment.

u Upper limit on the value of the random variable to be used in the computation of the
desired empirical limited moment.

n Dimension of the x and F input arrays.

x{*} Input numeric array of dimension n that contains values of the random variable
observed in the sample. These values are sorted in nondecreasing order.

F{*} Input numeric array of dimension n in which each F[i] contains the EDF estimate for
x[7]. These values must be sorted in nondecreasing order.

Ftype Type of the empirical estimate that is stored in the x and F arrays. See the section
“Supplying EDF Estimates to Functions and Subroutines” on page 1265 for definition
of types.

e Return value: The desired empirical limited moment.

The empirical limited moment is computed by using the empirical estimate of the CDF. If Fj,(x)
denotes the EDF at x, then the empirical limited moment of order k with upper limit u is defined as

En[(X Au)f] =k /u(l — Fp(x))x*1dx
0

The SVRTUTIL_EMPLIMMOMENT function uses the piecewise linear nature of F;, (x) as described
in the section “Supplying EDF Estimates to Functions and Subroutines” on page 1265 to compute the
integration.

SVRTUTIL_HILLCUTOFF:
This function computes an estimate of the value where the right tail of a distribution is expected to
begin. The function implements the algorithm described in Danielsson et al. 2001. The description of
the algorithm uses the following notation:

n Number of observations in the original sample.

B Number of bootstrap samples to draw.

mi Size of the bootstrap sample in the first step of the algorithm (711 < n).
x(jl)m ith order statistic of jth bootstrap sample of sizem (1 <i <m,1 < j < B).

X(i) ith order statistic of the original sample (1 <i < n).

Predefined Utility Functions 4 1287

Given the input sample x and values of B and m1, the steps of the algorithm are as follows:

Take B bootstrap samples of size m1 from the original sample.

2. Find the integer k; that minimizes the bootstrap estimate of the mean squared error:

ki =arg min Q(my,k)

1<k<m

Take B bootstrap samples of size m, = m% /n from the original sample.

4. Find the integer k, that minimizes the bootstrap estimate of the mean squared error:

ko = arg min Q(ma, k)
1<k<m>

5. Compute the integer Kop, Which is used for computing the cutoff point:

k2 log(k 2—2log(k1)/log(my)
kopt = 1 (og(k1))
ko \ 2log(my) —log(ky)

6. Set the cutoff point equal to x(,, +1)-

The bootstrap estimate of the mean squared error is computed as

B
1
Q(m.k) = = > [MSE;(m. k)
j=1

The mean squared error of jth bootstrap sample is computed as
MSE; (m, k) = (M (m, k) = 2(y;(m,k))*)?

where M ; (m, k) is a control variate proposed by Danielsson et al. 2001,

k
1 . . 2
Mj(m k)= =" (log (e 4 1y) = log (el 1))

i=

and y; (m, k) is the Hill’s estimator of the tail index (Hill 1975),

k
1 . .
yi(m. k) =23 log(xi; 1) —log(x(;" 1)
i=1

This algorithm has two tuning parameters, B and m;. The number of bootstrap samples B is chosen
based on the availability of computational resources. The optimal value of 21 is chosen such that the
following ratio, R(m1), is minimized:

_ (O(my,ky))?
Rm1) = Q(ma, k)

The SVRTUTIL_HILLCUTOFGF utility function implements the preceding algorithm. It uses the grid
search method to compute the optimal value of m;.

e Type: Function
o Signature: SVRTUTIL_HILLCUTOFF(n, x{*}, b, s, status)

1288 4 Chapter 23: The HPSEVERITY Procedure

o Argument Description:

n
x{*}
b

status

Dimension of the array x.
Input numeric array of dimension n that contains the sample.

Number of bootstrap samples used to estimate the mean squared error. If b is less
than 10, then a default value of 50 is used.

Approximate number of steps used to search the optimal value of m in the range
[n%73 n —1]. If s is less than or equal to 1, then a default value of 10 is used.

Output argument that contains the status of the algorithm. If the algorithm succeeds
in computing a valid cutoff point, then sfatus is set to 0. If the algorithm fails, then
status is set to 1.

e Return value: The cutoff value where the right tail is estimated to start. If the size of the input
sample is inadequate (n < 5), then a missing value is returned and stafus is set to a missing
value. If the algorithm fails to estimate a valid cutoff value (status = 1), then the fifth largest
value in the input sample is returned.

SVRTUTIL_PERCENTILE:
This function computes the specified empirical percentile given the EDF estimates.

e Type: Function
o Signature: SVRTUTIL_PERCENTILE(p, n, x{*}, F{*}, Ftype)

o Argument Description:

p

n

x{*}

F{*}

Ftype

Desired percentile. The value must be in the interval (0,1). The function returns the
100pth percentile.

Dimension of the x and F input arrays.

Input numeric array of dimension n that contains values of the random variable
observed in the sample. These values are sorted in nondecreasing order.

Input numeric array of dimension n in which each F[i] contains the EDF estimate for
x[i]. These values must be sorted in nondecreasing order.

Type of the empirical estimate that is stored in the x and F arrays. See the section
“Supplying EDF Estimates to Functions and Subroutines” on page 1265 for definition
of types.

e Return value: The 100pth percentile of the input sample.

The method used to compute the percentile depends on the type of the EDF estimate (Ftype argument).

Ftype =1

Smoothed empirical estimates are computed using the method described in Klug-
man, Panjer, and Willmot (1998). Let | x| denote the greatest integer less than or
equal to x. Define g = |p(n + 1)] and h = p(n + 1) — g. Then the empirical
percentile 77, is defined as

ap = (1 —h)x[g] + hx[g + 1]

This method does not work if p < 1/(n+1)orp >n/(n+1).If p < 1/(n+ 1),
then the function returns 7, = x[1]/2, which assumes that the EDF is O in the
interval [0, x[1]). If p > n/(n + 1), then 7, = x[n].

Predefined Utility Functions 4 1289

Ftype =2 If p < F[1], then 7, = x[1]/2, which assumes that the EDF is 0 in the interval
[0, x[1]). If | p — F[i]| < € for some value of i and i < n, then 7, is computed as
. x[i]+ x[i +1]
7Tp e —
2
where € is a machine-precision constant as returned by the SAS function CON-
STANT(‘MACEPS’). If F[i — 1] < p < F[i], then 77, is computed as
If p > F[n],then 7, = x[n].
Ftype =3 If p < F[1], then 7, = x[1]/2, which assumes that the EDF is O in the interval
[0, x[1]). If | p — F[i]| < € for some value of i and i < n, then 7, is computed as
N x[i]+ x[i + 1]
ij -
2
where € is a machine-precision constant as returned by the SAS function CON-
STANT(CMACEPS’). If F[i — 1] < p < F[i], then 7, is computed as
N . . x[i]—x[i —1]
=x[i—1 —Fli - 1)—/———
p = xli =11+ (= Fli = 1) iy

If p > F[n],then 7, = x[n].

SVRTUTIL_RAWMOMENTS:
This subroutine computes the raw moments of a sample.
e Type: Subroutine
o Signature: SVRTUTIL_RAWMOMENTS(n, x{*}, nx{*}, nRaw, raw{*})

o Argument Description:

n Dimension of the x and nx input arrays.

x{*} Input numeric array of dimension n that contains distinct values of the random variable
that are observed in the sample.

nx{*} Input numeric array of dimension n in which each nx[i] contains the number of
observations in the sample that have the value x[i].

nRaw Desired number of raw moments. The output array raw contains the first nRaw raw
moments.

raw{*} Output array of raw moments. The kth element in the array (raw{k}) contains the kth

raw moment, where 1 < k < nRaw.

e Return value: Numeric array raw that contains the first nRaw raw moments. The array contains
missing values if the sample has no observations (that is, if all the values in the nx array add up
to zero).

SVRTUTIL_SORT:
This function sorts the given array of numeric values in an ascending or descending order.

e Type: Subroutine
o Signature: SVRTUTIL_SORT(n, x{*}, flag)

1290 4 Chapter 23: The HPSEVERITY Procedure

o Argument Description:

n Dimension of the input array x.

x{*} Numeric array that contains the values to be sorted at input. The subroutine uses the
same array to return the sorted values.

flag A numeric value that controls the sort order. If flag is 0, then the values are sorted in
an ascending order. If flag has any value other than 0, then the values are sorted in
descending order.

e Return value: Numeric array x, which is sorted in place (that is, the sorted array is stored in the
same storage area occupied by the input array x).

You can use the following predefined functions when you use the FCMP procedure to define functions and
subroutines. They are summarized here for your information. For more information, see the FCMP procedure
documentation in Base SAS Procedures Guide.

INVCDF:
This function computes the quantile from any continuous probability distribution by numerically
inverting the CDF of that distribution. You need to specify the CDF function of the distribution, the
values of its parameters, and the cumulative probability to compute the quantile.

LIMMOMENT:
This function computes the limited moment of order k with upper limit « for any continuous probability
distribution. The limited moment is defined as

E[(X Au)¥] = fu Xk Fx)dx + /Oo uk f(x)dx

0 u

= /uxkf(x)dx +uk(1 = F(u))
0

where f(x) and F(x) denote the PDF and the CDF of the distribution, respectively. The LIMMO-
MENT function uses the following alternate definition, which can be derived using integration-by-parts:

E[(X Au)f] =k /uu — F(x))x*dx
0

You need to specify the CDF function of the distribution, the values of its parameters, and the values
of k and u to compute the limited moment.

Scoring Functions

Scoring refers to the act of evaluating a distribution function, such as LOGPDF, SDF, or QUANTILE, on
an observation by using the fitted parameter estimates of that distribution. You can do scoring in a DATA
step by using the OUTEST= data set that you create with PROC HPSEVERITY. However, that approach
requires some cumbersome programming. In order to simplify the scoring process, you can specify that
PROC HPSEVERITY create scoring functions for each fitted distribution.

Scoring Functions 4 1291

As an example, assume that you have fitted the Pareto distribution by using PROC HPSEVERITY and that it
converges. Further assume that you want to use the fitted distribution to evaluate the probability of observing
a loss value greater than some set of regulatory limits {L} that are encoded in a data set. You can simplify this
scoring process as follows. First, in the PROC HPSEVERITY step that fits your distributions, you create the
scoring functions library by specifying the OUTSCORELIB statement as illustrated in the following steps:

proc hpseverity data=input;

loss lossclaim;

dist pareto;

outscorelib outlib=sasuser.fitdist;
run;

Upon successful completion, if the Pareto distribution model has converged, then the Sasuser.Fitdist li-
brary contains the SEV_SDF scoring function in addition to other scoring functions, such as SEV_PDF,
SEV_LOGPDF, and so on. Further, PROC HPSEVERITY also sets the CMPLIB system option to include
the Sasuser.Fitdist library. If the set of limits {L} is recorded in the variable Limit in the scoring data set
Work.Limits, then you can submit the following DATA step to compute the probability of seeing a loss greater
than each limit:

data prob;

set work.limits;

exceedance_probability = sev_sdf (limit);
run;

Without the use of scoring functions, you can still perform this scoring task, but the DATA step that you need
to write to accomplish it becomes more complicated and less flexible. For example, you would need to read
the parameter estimates from some output created by PROC HPSEVERITY. To do that, you would need to
know the parameter names, which are different for different distributions; this in turn would require you to
write a specific DATA step for each distribution or to write a SAS macro. With the use of scoring functions,
you can accomplish that task much more easily.

If you fit multiple distributions, then you can specify the COMMONPACKAGE option in the OUTSCORELIB
statement as follows:

proc hpseverity data=input;

loss lossclaim;

dist exp pareto weibull;

outscorelib outlib=sasuser.fitdist commonpackage;
run;

The preceding step creates scoring functions such as SEV_SDF Exp, SEV_SDF Pareto, and
SEV_SDF Weibull. You can use them to compare the probabilities of exceeding the limit for differ-
ent distributions by using the following DATA step:

data prob;
set work.limits;
exceedance_exp = sev_sdf_exp(limit);
exceedance_pareto = sev_sdf pareto(limit);
exceedance_weibull = sev_sdf weibull (limit);
run;

1292 4 Chapter 23: The HPSEVERITY Procedure

Formal Description

PROC HPSEVERITY creates a scoring function for each distribution function. A distribution function is
defined as any function named dist_suffix, where dist is the name of a distribution that you specify in the
DIST statement and the function’s signature is identical to the signature of the required distribution function
such as dist_CDF or dist_LOGCDF. For example, for the function ‘FOO_BAR’ to be a distribution function,
you must specify the distribution ‘FOO’ in the DIST statement and you must define ‘FOO_BAR’ in the
following manner if the distribution ‘FOO’ has parameters named ‘P1’ and ‘P2’:

function FOO_BAR(y, P1l, P2);
/* Code to compute BAR by using y, P1l, and P2 x/
R = <computed BAR>;
return (R);

endsub;

For more information about the signature that defines a distribution function, see the description of the
dist_CDF function in the section “Defining a Severity Distribution Model with the FCMP Procedure” on
page 1273.

The name and package of the scoring function of a distribution function depend on whether you specify the
COMMONPACKAGE option in the OUTSCORELIB statement.

When you do not specify the COMMONPACKAGE option, the scoring function that corresponds to the
distribution function dist_suffix is named SEV_suffix, where SEV_ is the standard prefix of all scoring
functions. The scoring function is created in a package named dist. Each scoring function accepts only one
argument, the value of the loss variable, and returns the same value as the value returned by the corresponding
distribution function for the final estimates of the distribution’s parameters. For example, for the preceding
‘FOO_BAR’ distribution function, the scoring function named ‘SEV_BAR’ is created in the package named
‘FOO’ and ‘SEV_BAR’ has the following signature:

function SEV_BAR(y);
/* returns value of FOO_BAR for the supplied value
of y and fitted values of P1l, P2 */
endsub;

If you specify the COMMONPACKAGE option in the OUTSCORELIB statement, then the scoring function
that corresponds to the distribution function dist_suffix is named SEV_suffix_dist, where SEV_is the standard
prefix of all scoring functions. The scoring function is created in a package named sevfit. For example, for
the preceding ‘FOO_BAR’ distribution function, if you specify the COMMONPACKAGE option, the scoring
function named ‘SEV_BAR_FOQ’ is created in the sevfit package and ‘SEV_BAR_FOQO’ has the following
signature:

function SEV_BAR_FOO(y);
/* returns value of FOO_BAR for the supplied value
of y and fitted values of P1l, P2 */
endsub;

Scoring Functions 4 1293

Scoring Functions for the Scale Regression Model

If you use the SCALEMODEL statement to specify a scale regression model, then PROC HPSEVERITY
generates the scoring functions when you specify only singleton continuous effects. If you specify interaction
or classification effects, then scoring functions are not generated.

For a scale regression model, the estimate of the scale parameter or the log-transformed scale parameter of
the distribution depends on the values of the regressors. So PROC HPSEVERITY creates a scoring function
that has the following signature, where x{*} represents the array of regressors:

function SEV_BAR(y, x{x});
/* returns value of FOO_BAR for the supplied value of x and fitted values of Pl, P2 x/
endsub;

As an illustration of using this form, assume that you submit the following PROC HPSEVERITY step to
create the scoring library Sasuser.Scalescore:

proc hpseverity data=input;

loss lossclaim;

scalemodel x1-x3;

dist pareto;

outscorelib outlib=sasuser.scalescore;
run;

Your scoring data set must contain all the regressors that you specify in the SCALEMODEL statement. You
can submit the following DATA step to score observations by using the scale regression model:

data prob;

array regvals{*} x1-x3;

set work.limits;

exceedance_probability = sev_sdf(limit, regvals);
run;

PROC HPSEVERITY creates two utility functions, SEV_NUMREG and SEV_REGNAME, in the OUTLIB=
library that return the number of regressors and name of a given regressor, respectively. They are described in
detail in the next section. These utility functions are useful when you do not have easy access to the regressor
names in the SCALEMODEL statement. You can use the utility functions as follows:

data prob;
array regvals{10} _temporary_;
set work.limits;

do i = 1 to sev_numreg();
regvals (i) = input (vvaluex (sev_regname(i)), bestl2.);
end;
exceedance_probability = sev_sdf(limit, regvals);
run;

The dimension of the regressor values array that you supply to the scoring function must be equal to K + L,
where K is the number of regressors that you specify in the SCALEMODEL statement irrespective of whether
PROC HPSEVERITY deems any of those regressors to be redundant. L is 1 if you specify an OFFSET=
variable in the SCALEMODEL statement, and 0 otherwise.

1294 4 Chapter 23: The HPSEVERITY Procedure

Utility Functions and Subroutines in the OUTLIB= Library

In addition to creating the scoring functions for all distribution functions, PROC HPSEVERITY creates the
following utility functions and subroutines in the OUTLIB= library.

SEV_NUMPARM | SEV_NUMPARM_dist
is a function that returns the number of distribution parameters and has the following signature:

e Type: Function
o Number of arguments: 0
e Sequence and type of arguments: Not applicable

e Return value: Numeric value that contains the number of distribution parameters

If you do not specify the COMMONPACKAGE option in the OUTSCORELIB statement, then a
function named SEV_NUMPARM is created in the package of each distribution. Here is a sample
structure of the code that PROC HPSEVERITY uses to define the function:

function SEV_NUMPARM() ;
n = <number of distribution parameters>;
return (n);

endsub;

If you specify the COMMONPACKAGE option in the OUTSCORELIB statement, then for each
distribution dist, the function named SEV_NUMPARM_dist is created in the sevfit package.
SEV_NUMPARM._ dist has the same structure as the SEV_NUMPARM function that is described
previously.

SEV_PARMEST | SEV_PARMEST _dist
is a subroutine that returns the estimate and standard error of a specified distribution parameter and has
the following signature:

e Type: Subroutine
o Number of arguments: 3

o Sequence and type of arguments:

index specifies the numeric value of the index of the distribution parameter for which you want
the information. The value of index must be in the interval [1,m], where m is the number
of parameters in the distribution to which this subroutine belongs.

est specifies the output argument that returns the estimate of the requested parameter.

stderr specifies the output argument that returns the standard error of the requested parameter.

e Return value: Estimate and standard error of the requested distribution parameter that are returned
in the output arguments est and stderr, respectively

If you do not specify the COMMONPACKAGE option in the OUTSCORELIB statement, then a
subroutine named SEV_PARMEST is created in the package of each distribution. Here is a sample
structure of the code that PROC HPSEVERITY uses to define the subroutine:

Scoring Functions 4 1295

subroutine SEV_PARMEST (index, est, stderr);
outargs est, stderr;
est = <value of the estimate for the distribution parameter
at position 'index'>;
stderr = <value of the standard error for distribution parameter
at position 'index'>;
endsub;

If you specify the COMMONPACKAGE option in the OUTSCORELIB statement, then for each
distribution dist, the subroutine named SEV_PARMEST _dist is created in the sevfit package.
SEV_PARMEST_dist has the same structure as the SEV_PARMEST subroutine that is described
previously.

If you use the SCALEMODEL statement to specify a scale regression model, and if you specify only
singleton continuous effects, then for index=1, the returned estimates are of 6y, the base value of the
scale parameter, or log(6p) if the distribution has a log-scale parameter. For more information about
o, see the section “Estimating Regression Effects” on page 1245.

SEV_PARMNAME | SEV_PARMNAME_dist
is a function that returns the name of a specified distribution parameter and has the following signature:

e Type: Function

Number of arguments: 1
o Sequence and type of arguments:
index specifies the numeric value of the index of the distribution parameter for which you want

the information. The value of index must be in the interval [1,m], where m is the number
of parameters in the distribution to which this function belongs.

Return value: Character value that contains the name of the distribution parameter that appears at
the position /ndex in the distribution’s definition

If you do not specify the COMMONPACKAGE option in the OUTSCORELIB statement, then a
function named SEV_PARMNAME is created in the package of each distribution.

Here is a sample structure of the code that PROC HPSEVERITY uses to define the function:

function SEV_PARMNAME (index) $32;
name = <name of the distribution parameter at position 'index'>;
return (name);

endsub;

If you specify the COMMONPACKAGE option in the OUTSCORELIB statement, then for each
distribution dist, a function named SEV_PARMNAME_dist is created in the sevfit package.
SEV_PARMNAME _dist has the same structure as the SEV_PARMNAME function that is described
previously.

If you use the SCALEMODEL statement to specify a scale regression model, and if you specify only
singleton continuous effects, then the following helper functions and subroutines are also created in the
OUTLIB= library.

1296 4 Chapter 23: The HPSEVERITY Procedure

SEV_NUMREG
is a function that returns the number of regressors and has the following signature:

e Type: Function
o Number of arguments: 0
o Sequence and type of arguments: Not applicable

e Return value: Numeric value that contains the number of regressors that you specify in the
SCALEMODEL statement. If you specify an OFFSET= variable in the SCALEMODEL state-
ment, then the returned value is equal to 1 plus the number of regressors that you specify in the
SCALEMODEL statement.

Here is a sample structure of the code that PROC HPSEVERITY uses to define the function:

function SEV_NUMREG() ;
m = <number of regressors>;
if (<offset variable is specified>) then m = m + 1;
return (m);

endsub;

This function does not depend on any distribution, so it is always created in the sevfit package.

SEV_REGEST | SEV_REGEST_dist
is a subroutine that returns the estimate and standard error of a specified regression parameter and has
the following signature:

e Type: Subroutine
o Number of arguments: 3

e Sequence and type of arguments:

index specifies the numeric value of the index of the regression parameter for which you want
the information. The value of index must be in the interval [1,K], where K is the number
of regressors as returned by the SEV_NUMREG function. If you specify an OFFSET=
variable in the SCALEMODEL statement, then an index value of K corresponds to the
offset variable.

est specifies the output argument that returns the estimate of the requested regression param-
eter.

stderr specifies the output argument that returns the standard error of the requested regression
parameter.

e Return value: Estimate and standard error of the requested regression parameter that are returned
in the output arguments est and stderr, respectively

If you do not specify the COMMONPACKAGE option in the OUTSCORELIB statement, then a
subroutine named SEV_REGEST is created in the package of each distribution. Here is a sample
structure of the code that PROC HPSEVERITY uses to define the subroutine:

Scoring Functions 4 1297

subroutine SEV_REGEST (index, est, stderr);
outargs est, stderr;
est = <value of the estimate for the regression parameter
at position 'index'>;
stderr = <value of the standard error for regression parameter
at position 'index'>;
endsub;

If you specify the COMMONPACKAGE option in the OUTSCORELIB statement, then for
each distribution dist, the subroutine named SEV_REGEST_dist is created in the sevfit package.
SEV_REGEST_dist has the same structure as the SEV_REGEST subroutine that is described previ-
ously.

If the regressor that corresponds to the specified index value is a redundant regressor, the returned
values of both est and stderr are equal to the special missing value of .R. If you specify an OFFSET=
variable in the SCALEMODEL statement and if the index value corresponds to the offset variable —
that is, it is equal to the value that the SEV_NUMREG function returns — then the returned value of
est is equal to 1 and the returned value of stderr is equal to the special missing value of .F.

SEV_REGNAME
is a function that returns the name of a specified regressor and has the following signature:

Type: Function
Number of arguments: 1

Sequence and type of arguments:

index specifies the numeric value of the index of the regressor for which you want the name.
The value of index must be in the interval [1,K], where K is the number of regressors as
returned by the SEV_NUMREG function. If you specify an OFFSET= variable in the
SCALEMODEL statement, then an index value of K corresponds to the offset variable.

Return value: Character value that contains the name of the regressor that appears at the position
index in the SCALEMODEL statement. If you specify an OFFSET= variable in the SCALE-
MODEL statement, then for an index value of K, the returned value contains the name of the
offset variable.

Here is a sample structure of the code that PROC HPSEVERITY uses to define the function:

function SEV_REGNAME (index) $32;
name = <name of regressor at position 'index'>;
return (name);

endsub;

This function does not depend on any distribution, so it is always created in the sevfit package.

1298 4 Chapter 23: The HPSEVERITY Procedure

Custom Objective Functions

You can use a series of programming statements that use variables in the DATA= data set to assign a value to
an objective function symbol. You must specify the objective function symbol by using the OBJECTIVE=
option in the PROC HPSEVERITY statement.

The objective function can be programmed such that it is applicable to any distribution that is used in
the model. For that purpose, PROC HPSEVERITY recognizes the following keyword functions in the
programming statements:

PDF(x)

_CDF _(x)

SDF(x)

LOGPDF(x)

LOGCDF(x)

LOGSDF(x)

EDF(x)

returns the probability density function (PDF) of a distribution evaluated at the current
value of a data set variable x.

returns the cumulative distribution function (CDF) of a distribution evaluated at the current
value of a data set variable x.

returns the survival distribution function (SDF) of a distribution evaluated at the current
value of a data set variable x.

returns the natural logarithm of the PDF of a distribution evaluated at the current value of
a data set variable x.

returns the natural logarithm of the CDF of a distribution evaluated at the current value of
a data set variable x.

returns the natural logarithm of the SDF of a distribution evaluated at the current value of
a data set variable x.

returns the empirical distribution function (EDF) estimate evaluated at the current value
of a data set variable x. Internally, PROC HPSEVERITY computes the estimate using
the SVRTUTIL_EDF function as described in the section “Predefined Utility Functions”
on page 1285. The EDF estimate that is required by the SVRTUTIL_EDF function is
computed by using the response variable values in the current BY group or in the entire
input data set if you do not specify the BY statement.

EMPLIMMOMENT(k, u)

returns the empirical limited moment of order k evaluated at the current value of a data
set variable u that represents the upper limit of the limited moment. The order k can
also be a data set variable. Internally, PROC HPSEVERITY computes the moment using
the SVRTUTIL_EMPLIMMOMENT function as described in the section “Predefined
Utility Functions” on page 1285. The EDF estimate that is required by the SVRTU-
TIL_EMPLIMMOMENT function is computed by using the response variable values in
the current BY group or in the entire input data set if you do not specify the BY statement.

LIMMOMENT(k, u)

returns the limited moment of order k evaluated at the current value of a data set variable
u that represents the upper limit of the limited moment. The order k can be a data set
variable or a constant. Internally, for each candidate distribution, PROC HPSEVERITY
computes the moment using the LIMMOMENT function as described in the section
“Predefined Utility Functions” on page 1285.

All the preceding functions are right-hand side functions. They act as placeholders for distribution-specific
functions, with the exception of _EDF_ and _EMPLIMMOMENT __ functions.

Custom Objective Functions 4 1299

As an example, let the data set Work.Test contain a response variable Y and a left-truncation threshold variable
T. The following statements use the values in this data set to fit a model with distribution D such that the
parameters of the model minimize the value of the objective function symbol MYOBJ:

options cmplib=(work.mydist);
proc hpseverity data=work.test objective=myobj;
loss y / 1lt=t;

myobj = —-_LOGPDF_ (y);
if (not(missing(t))) then
myobj = myobj + log(l-_CDF_(t));

dist d;
run;

The symbol MYOBJ is designated as an objective function symbol by using the OBJECTIVE= option in the
PROC HPSEVERITY statement. The response variable Y and left-truncation variable T are specified in the
LOSS statement. The distribution D is specified in the DIST statement. The remaining statements constitute
a program that computes the value of the MYOBJ symbol.

Let the distribution D have parameters P1 and P2. In order to estimate the model for this distribution, PROC
HPSEVERITY internally converts the generic program to the following program specific to distribution D:

myobj = -D_LOGPDF (y, pl, p2);
if (not (missing(t))) then
myobj = myobj + log(l-D_CDF(t, pl, p2));

Note that the generic keyword functions _LOGPDF_ and _CDF _ have been replaced with distribution-specific
functions D_LOGPDF and D_CDF, respectively, with appropriate distribution parameters. The D_LOGPDF
and D_CDF functions must have been defined previously and are assumed to be available in the Work.Mydist
library that you specify in the CMPLIB= option.

The program is executed for each observation in Work.Test to compute the value of MYOBJ by using the
values of variables Y and T in that observation and internally computed values of the model parameters
P1 and P2. The values of MYOBJ are then added over all the observations of the data set or over all the
observations of the current BY group if you specify the BY statement. The resulting aggregate value is the
value of the objective function, and it is supplied to the optimizer. If the optimizer requires derivatives of
the objective function, then PROC HPSEVERITY automatically differentiates MYOBJ with respect to the
parameters P1 and P2. The optimizer iterates over various combinations of the values of parameters P1 and
P2, each time computing a new value of the objective function and the needed derivatives of it, until it finds a
combination that minimizes the objective function.

Note the following points when you define your own program to compute the custom objective function:

e The value of the objective function is always minimized by PROC HPSEVERITY. If you want to
maximize the value of a certain objective, then add a statement that assigns the negated value of the
maximization objective to the objective function symbol that you specify in the OBJECTIVE= option.
Minimization of the negated objective is equivalent to the maximization of the original objective.

e The contributions of individual observations are always added to compute the overall objective function
in a given iteration of the optimizer. If you specify the WEIGHT statement, then the contribution of
each observation is weighted by multiplying it with the normalized value of the weight variable for
that observation.

1300 4 Chapter 23: The HPSEVERITY Procedure

e If you are fitting multiple distributions in one PROC HPSEVERITY step and use any of the keyword
functions in your program, then it is recommended that you do not explicitly use the parameters of any
of the specified distributions in your programming statements.

e If you use a specific keyword function in your programming statements, then the corresponding
distribution functions must be defined in a library that you specify in the CMPLIB= system option
or in Sashelp.Svrtdist, the predefined functions library. In the preceding example, it is assumed that
the functions D_LLOGPDF and D_CDF are defined in the Work.Mydist library that is specified in the
CMPLIB= option.

e You can use most DATA step statements and functions in your program. The DATA step file and the
data set I/O statements (for example, INPUT, FILE, SET, and MERGE) are not available. However,
some functionality of the PUT statement is supported. See the section “PROC FCMP and DATA Step
Differences” in Base SAS Procedures Guide for more information. In addition to the differences listed
in that section, the following differences exist:

— Only numeric-valued variables can be used in PROC HPSEVERITY programming statements.
This restriction also implies that you cannot use SAS functions or call routines that require
character-valued arguments, unless you pass those arguments as constant (literal) strings or
characters.

— You cannot use functions that create lagged versions of a variable in PROC HPSEVERITY
programming statements. If you need lagged versions, then you can use a DATA step prior to the
PROC HPSEVERITY step to add those versions to the input data set.

e When coding your programming statements, avoid defining variables that begin with an underscore
(L), because they might conflict with internal variables created by PROC HPSEVERITY.

Custom Objective Functions and Regression Effects

If you specify regression effects by using the SCALEMODEL statement, then PROC HPSEVERITY
automatically adds a statement prior to your programming statements to compute the value of the scale
parameter or the log-transformed scale parameter of the distribution using the values of the regression variables
and internally created regression parameters. For example, if your specification of the SCALEMODEL
statement results in three regression effects x1, x2, and x3, then for a model that contains the distribution D
with scale parameter S, PROC HPSEVERITY adds a statement that is equivalent to the following statement
to the beginning of your program:

S = _SEVTHETAO * exp(_SEVBETAl * x1 + _SEVBETA2 x x2 + _SEVBETA3 x x3);

If a model contains a distribution D1 with a log-transformed scale parameter M, PROC HPSEVERITY adds
a statement that is equivalent to the following statement to the beginning of your program:

M = _SEVTHETAO + _SEVBETAl * x1 + _SEVBETA2 % x2 + _SEVBETA3 x x3;

The _SEVTHETAO, _SEVBETA1, _SEVBETA2, and _SEVBETA3 are the internal regression parameters
associated with the intercept and the regression effects x1, x2, and x3, respectively.

Since the names of the internal regression parameters start with a prefix _SEV, if you use a variable in your
program with a name that begins with _SEV, then PROC HPSEVERITY writes an error message to the SAS
log and stops processing.

Input Data Sets 4 1301

Input Data Sets

PROC HPSEVERITY accepts DATA= and INEST= data sets as input data sets. This section details the
information they are expected to contain.

DATA= Data Set

The DATA= data set is expected to contain the values of the analysis variables that you specify in the LOSS
statement and the SCALEMODEL statement.

If you specify the BY statement, then the DATA= data set must contain all the BY variables that you specify
in the BY statement and the data set must be sorted by the BY variables unless you specify the NOTSORTED
option in the BY statement.

INEST= Data Set

The INEST= data set is expected to contain the initial values of the parameters for the parameter estimation
process.

If you specify the SCALEMODEL statement, then you can use the INEST= data set only if the SCALE-
MODEL statement contains singleton continuous effects.

If you specify the BY statement, then the INEST= data set must contain all the BY variables that you specify
in the BY statement. If you do not specify the NOTSORTED option in the BY statement, then the INEST=
data set must be sorted by the BY variables. However, it is not required to contain all the BY groups present
in the DATA= data set. For the BY groups that are not present in the INEST= data set, the default parameter
initialization method is used. If you specify the NOTSORTED option in the BY statement, then the INEST=
data set must contain all the BY groups that are present in the DATA= data set and they must appear in the
same order as they appear in the DATA= data set.

In addition to any variables that you specify in the BY statement, the data set must contain the following

variables:
MODEL. identifying name of the distribution for which the estimates are provided.
TYPE type of the estimate. The value of this variable must be EST for an observation to be valid.

<Parameter 1> ...<Parameter M>
M variables, named after the parameters of all candidate distributions, that contain initial
values of the respective parameters. M is the cardinality of the union of parameter
name sets from all candidate distributions. In an observation, estimates are read only
from variables for parameters that correspond to the distribution that is indicated by the
MODEL. variable.

If you specify a missing value for some parameters, then default initial values are used
unless the parameter is initialized by using the INIT= option in the DIST statement. If
you want to use the dist_ PARMINIT subroutine for initializing the parameters of a model,
then you should either not specify the model in the INEST= data set or specify missing
values for all the distribution parameters in the INEST= data set and not use the INIT=
option in the DIST statement.

1302 4 Chapter 23: The HPSEVERITY Procedure

If you specify regressors, then the initial value that you provide for the first parameter of
each distribution must be the base value of the scale or log-transformed scale parameter.
For more information, see the section “Estimating Regression Effects” on page 1245.

<Regressor 1> ...<Regressor K>

If you specify K regressors in the SCALEMODEL statement, then the INEST= data set
must contain K variables that are named for each regressor. The variables contain initial
values of the respective regression coefficients. If a regressor is linearly dependent on
other regressors for a given BY group, then you can indicate this by providing a special
missing value of .R for the respective variable. In a given BY group, if you mark a
variable as linearly dependent for one model, then you must mark that variable as linearly
dependent for all the models. Similarly, in a given BY group, if you do not mark a variable
as linearly dependent for one model, then you must not mark that variable as linearly
dependent for all the models.

Output Data Sets

PROC HPSEVERITY writes the OUTCDF=, OUTEST=, OUTMODELINFO=, and OUTSTAT= data sets
when requested by their respective options. The data sets and their contents are described in the following

sections.

OUTCDF= Data Set

The OUTCDF= data set records the estimates of the cumulative distribution function (CDF) of each of the
specified model distributions and an estimate of the empirical distribution function (EDF). This data set is
created only when you run PROC HPSEVERITY in single-machine mode.

If you specify BY variables, then the data are organized in BY groups and the data set contains variables that
you specify in the BY statement. In addition, the data set contains the following variables:

<response variable>

OBSNUM

EDF

_EDF_STD

_EDF_LOWER

value of the response variable. The values are sorted. If there are multiple BY groups, the
values are sorted within each BY group.

observation number in the DATA= data set. This is a sequence number that indicates the
order in which the procedure accesses the observation; it does not necessarily reflect the
actual observation number in the data set.

estimate of the empirical distribution function (EDF). This estimate is computed by using
the EMPIRICALCDF= option that you specify in the PROC HPSEVERITY statement.

estimate of the standard error of EDF. This estimate is computed by using a method
that is appropriate for the EMPIRICALCDF= option that you specify in the PROC
HPSEVERITY statement.

estimate of the lower confidence limit of EDF for a pointwise 100(1 — «)% confidence
interval, where « is the value of the EDFALPHA= option that you specify in the PROC
HPSEVERITY statement (default is « = 0.05). For an EDF estimate F}, that has standard
eITor Oy, it is computed as MAX(0, Fy, — z(1—q/2)0n), Where z, is the pth quantile from
the standard normal distribution.

Output Data Sets 4 1303

_EDF_UPPER estimate of the upper confidence limit of EDF for a pointwise 100(1 —)% confidence
interval, where « is the value of the EDFALPHA= option that you specify in the PROC
HPSEVERITY statement (default is « = 0.05). For an EDF estimate F}, that has standard
error oy, it is computed as MIN(1, Fy, + z(1—q/2)0n), Where z,, is the pth quantile from
the standard normal distribution.

<distribution1>_CDF ... <distributionD>_CDF
estimate of the cumulative distribution function (CDF) for each of the D candidate
distributions, computed by using the final parameter estimates for that distribution. This
value is missing if the parameter estimation process does not converge for the given
distribution.

If you specify regressor variables, then the reported estimates are from a mixture distribu-
tion. For more information, see the section “CDF and PDF Estimates with Regression
Effects” on page 1249.

If you specify truncation, then the data set contains the following additional variables:

<distribution1>_COND_CDF ... <distributionD>_COND_CDF
estimate of the conditional CDF for each of the D candidate distributions, computed
by using the final parameter estimates for that distribution. This value is missing if the
parameter estimation process does not converge for the distribution. The conditional
estimates are computed by using the method that is described in the section “Truncation
and Conditional CDF Estimates” on page 1241.

OUTEST= Data Set

The OUTEST= data set records the estimates of the model parameters. It also contains estimates of their
standard errors and optionally their covariance structure. If you specify BY variables, then the data are
organized in BY groups and the data set contains variables that you specify in the BY statement.

If you do not specify the COVOUT option, then the data set contains the following variables:

MODEL identifying name of the distribution model. The observation contains information about
this distribution.

TYPE type of the estimates reported in this observation. It can take one of the following two
values:
EST point estimates of model parameters
STDERR standard error estimates of model parameters

_STATUS _ status of the reported estimates. The possible values are listed in the section “_STATUS _

Variable Values” on page 1306.

<Parameter 1> ...<Parameter M>

M variables, named after the parameters of all candidate distributions, that contain
estimates of the respective parameters. M is the cardinality of the union of parameter
name sets from all candidate distributions. In an observation, estimates are populated
only for parameters that correspond to the distribution that is indicated by the _MODEL_
variable. If _TYPE_ is EST, then the estimates are missing if the model does not
converge. If _TYPE_ is STDERR, then the estimates are missing if covariance estimates
cannot be obtained.

1304 4 Chapter 23: The HPSEVERITY Procedure

If you specify regression effects, then the estimate that is reported for the first parameter
of each distribution is the estimate of the base value of the scale or log-transformed
scale parameter. For more information, see the section “Estimating Regression Effects”
on page 1245.

<Regression Effect 1> ... <Regression Effect K>

<Offset Variable>

If your effect specification in the SCALEMODEL statement results in K regression
effects, then the OUTEST= data set contains K regression variables. The name of each
variable is formed by using the name of the effect and the names of the levels of the
CLASS variables that the effect might contain. If the effect name or level names are
too long, then the variable name is constructed by using partial effect name and integer
identifiers for BY groups and CLASS variable levels. The label of the variable is more
descriptive than the name of the variable. The variables contain estimates for their
respective regression coefficients. If an effect is deemed to be linearly dependent on
other effects for a given BY group, then a warning message is written to the SAS log
and a special missing value of .R is written in the respective variable. If _"TYPE_ is EST,
then the estimates are missing if the model does not converge. If _'TYPE_ is STDERR,
then the estimates are missing if covariance estimates cannot be obtained.

If you specify an OFFSET= variable in the SCALEMODEL statement, then the OUT-
EST= data set contains a variable that is named after the offset variable. If _TYPE_ is
EST, then the value of this variable is 1. If _TYPE_is STDERR, then the value of this
variable is a special missing value of .F.

If you specify the COVOUT option in the PROC HPSEVERITY statement, then the OUTEST= data set
contains additional observations that contain the estimates of the covariance structure. Given the symmetric
nature of the covariance structure, only the lower triangular portion is reported. In addition to the variables
listed and described previously, the data set contains the following variables that are either new or have a
modified description:

TYPE

STATUS

NAME

type of the estimates reported in this observation. For observations that contain rows of
the covariance structure, the value is COV.

status of the reported estimates. For observations that contain rows of the covariance
structure, the status is O if covariance estimation was successful. If estimation fails, the
status is 1 and a single observation is reported with _TYPE_=COV and missing values for
all the parameter variables.

name of the parameter for the row of covariance matrix that is reported in the current
observation.

OUTMODELINFO= Data Set

The OUTMODELINFO= data set records the information about each candidate distribution that you specify
in the DIST statement. It contains the following variables:

MODEL

DEPVAR

identifying name of the distribution model. The observation contains information
about this distribution.

name of the loss variable.

Output Data Sets 4 1305

DESCRIPTION descriptive name of the model. This has a nonmissing value only if the DESCRIP-
TION function has been defined for this model.
_VALID _ validity of the distribution definition. This has a value of 1 for valid definitions

and a value of O for invalid definitions. If the definition is invalid, then PROC
HPSEVERITY writes the reason for invalidity to the SAS log.

_PARMNAMEI ... _.PARMNAMEM
M variables that contain names of parameters of the distribution model, where M
is the maximum number of parameters across all the specified distribution models.
For a given distribution with m parameters, values of variables _PARMNAME;
(j > m) are missing.

OUTSTAT= Data Set

The OUTSTAT= data set records statistics of fit and model selection information. If you specify BY variables,
then the data are organized in BY groups and the data set contains variables that you specify in the BY
statement. The data set contains the following variables:

MODEL identifying name of the distribution model. The observation contains information
about this distribution.

_NMODELPARM _ number of parameters in the distribution.

NESTPARM number of estimated parameters. This includes the regression parameters, if you

specify any regression effects.

NOBS number of nonmissing observations used for parameter estimation.

STATUS status of the parameter estimation process for this model. The possible values are
listed in the section “_STATUS_ Variable Values” on page 1306.

SELECTED indicator of the best distribution model. If the value is 1, then this model is the

best model for the current BY group according to the specified model selection
criterion. This value is missing if the parameter estimation process does not
converge for this model.

Neg2LogLike value of the log likelihood, multiplied by —2, that is attained at the end of the
parameter estimation process. This value is missing if the parameter estimation
process does not converge for this model.

AIC value of the Akaike’s information criterion (AIC) that is attained at the end of the
parameter estimation process. This value is missing if the parameter estimation
process does not converge for this model.

AICC value of the corrected Akaike’s information criterion (AICC) that is attained at the
end of the parameter estimation process. This value is missing if the parameter
estimation process does not converge for this model.

BIC value of the Schwarz Bayesian information criterion (BIC) that is attained at the
end of the parameter estimation process. This value is missing if the parameter
estimation process does not converge for this model.

KS value of the Kolmogorov-Smirnov (KS) statistic that is attained at the end of the
parameter estimation process. This value is missing if the parameter estimation
process does not converge for this model.

1306 4 Chapter 23: The HPSEVERITY Procedure

AD

CVM

value of the Anderson-Darling (AD) statistic that is attained at the end of the
parameter estimation process. This value is missing if the parameter estimation
process does not converge for this model.

value of the Cramer-von Mises (CvM) statistic that is attained at the end of the
parameter estimation process. This value is missing if the parameter estimation
process does not converge for this model.

_STATUS_Variable Values

The _STATUS_ variable in the OUTEST= and OUTSTAT= data sets contains a value that indicates the status
of the parameter estimation process for the respective distribution model. The variable can take the following
values in the OUTEST= data set for _'TYPE_=EST observations and in the OUTSTAT= data set:

0
301

302

303

304

400

The parameter estimation process converged for this model.

The parameter estimation process might not have converged for this model because there is no
improvement in the objective function value. This might indicate that the initial values of the
parameters are optimal, or you can try different convergence criteria in the NLOPTIONS statement.

The parameter estimation process might not have converged for this model because the number of
iterations exceeded the maximum allowed value. You can try setting a larger value for the MAXITER=
options in the NLOPTIONS statement.

The parameter estimation process might not have converged for this model because the number of
objective function evaluations exceeded the maximum allowed value. You can try setting a larger
value for the MAXFUNC= options in the NLOPTIONS statement.

The parameter estimation process might not have converged for this model because the time taken
by the process exceeded the maximum allowed value. You can try setting a larger value for the
MAXTIME-= option in the NLOPTIONS statement.

The parameter estimation process did not converge for this model.

The _STATUS_ variable can take the following values in the OUTEST= data set for _TYPE_=STDERR and
TYPE=COV observations:

0
1

The covariance and standard error estimates are available and valid.

The covariance and standard error estimates are not available, because the process of computing
covariance estimates failed.

Displayed Output

The HPSEVERITY procedure optionally produces displayed output by using the Output Delivery System
(ODS). All output is controlled by the PRINT= option in the PROC HPSEVERITY statement. Table 23.17
relates the ODS tables to PRINT= options.

Displayed Output 4 1307

Table 23.17 ODS Tables Produced in PROC HPSEVERITY

ODS Table Name Description Option
AllFitStatistics Statistics of fit for all the dis- PRINT=ALLFITSTATS
tribution models
ConvergenceStatus Convergence status of param- PRINT=CONVSTATUS
eter estimation process
DescStats Descriptive statistics for the PRINT=DESCSTATS
response variable
DistributionInfo Distribution information PRINT=DISTINFO
EstimationDetails Details of the estimation pro- PRINT=ESTIMATIONDETAILS
cess for all the distribution
models
Initial Values Initial parameter values and PRINT=INITIALVALUES
bounds
IterationHistory Optimization iteration history PRINT=NLOHISTORY
ModelSelection Model selection summary PRINT=SELECTION
OptimizationSummary Optimization summary PRINT=NLOSUMMARY
ParameterEstimates Final parameter estimates PRINT=ESTIMATES
Performancelnfo Execution environment infor- Default
mation that pertains to the
computational performance
RegDescStats Descriptive statistics for the PRINT=DESCSTATS
regression effects that do not
contain a CLASS variable
StatisticsOfFit Statistics of fit PRINT=STATISTICS
Timing Timing information for vari- DETAILS (PERFOR-
ous computational stages of MANCE statement)
the procedure
TurnbullSummary Turnbull EDF estimation PRINT=ALL

summary

If you do not specify the PRINT= option, then by default PROC HPSEVERITY produces ModelSelection,
Performancelnfo, ConvergenceStatus, OptimizationSummary, StatisticsOfFit, and ParameterEstimates ODS
tables.

The following describes the content that each table displays:

AllIFitStatistics (PRINT=ALLFITSTATS)
displays the comparison of all the statistics of fit for all the models in one table. The table does not
include the models whose parameter estimation process does not converge. If all the models fail to
converge, then this table is not produced. If the table contains more than one model, then the best
model according to each statistic is indicated with an asterisk (¥) in that statistic’s column.

ConvergenceStatus (PRINT=CONVSTATUS)
displays the convergence status of the parameter estimation process.

1308 4 Chapter 23: The HPSEVERITY Procedure

DescStats (PRINT=DESCSTATS)
displays the descriptive statistics for the response variable.

Distributioninfo (PRINT=DISTINFO)
displays the information about all the candidate distribution. It includes the name, the description, the
number of distribution parameters, and whether the distribution is valid for the specified modeling task.

EstimationDetails (PRINT=ESTIMATIONDETAILS)
displays the comparative details of the estimation process that is used to fit each candidate distribution.
If you specify the DETAILS option in the PERFORMANCE statement, then this table contains a
column that indicates the time taken to estimate each candidate model.

InitialValues (PRINT=INITIALVALUES)
displays the initial values and bounds used for estimating each model.

IterationHistory (PRINT=NLOHISTORY)
displays the iteration history of the nonlinear optimization process used for estimating the parameters.

ModelSelection (PRINT=SELECTION)
displays the model selection table. The table shows the convergence status of each candidate model,
and the value of the selection criterion along with an indication of the selected model.

OptimizationSummary (PRINT=NLOSUMMARY)
displays the summary of the nonlinear optimization process used for estimating the parameters.

ParameterEstimates (PRINT=ESTIMATES)
displays the final estimates of parameters. The estimates are not displayed for models whose parameter
estimation process does not converge.

Performancelnfo
displays information about the execution mode. For single-machine mode, the table displays the
number of threads that are used. For distributed mode, the table displays the grid mode (symmetric or
asymmetric), the number of compute nodes, and the number of threads per node. PROC HPSEVERITY
produces this table by default.

RegDescStats (PRINT=DESCSTATS)
displays the descriptive statistics for the regression effects in the SCALEMODEL statement that do
not contain a CLASS variable.

StatisticsOfFit (PRINT=STATISTICS)
displays the statistics of fit for each model. The statistics of fit are not displayed for models whose
parameter estimation process does not converge.

Timing (DETAILS option in the PERFORMANCE statement
displays elapsed times (absolute and relative) for the main tasks of the procedure. PROC HPSEVERITY
produces this table when you specify the DETAILS option in the PERFORMANCE statement,

TurnbullSummary (PRINT=ALL)
displays the summary of Turnbull’s estimation process if Turnbull’s method is used for computing
EDF estimates. The summary includes whether the nonlinear optimization converged, the number of
iterations, the maximum absolute relative error, the maximum absolute reduced gradient, and whether
the final estimates are maximum likelihood estimates. This table is produced only if you specify
PRINT=ALL and Turnbull’s method is used for computing EDF estimates.

ODS Graphics 4 1309

ODS Graphics

Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Before you create graphs, ODS Graphics must be enabled (for example, by using the ODS GRAPHICS ON
statement). For more information, see the section “Enabling and Disabling ODS Graphics” (Chapter 21,
SAS/STAT User’s Guide).

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” (Chapter 21, SAS/STAT User’s
Guide).

This section describes how the HPSEVERITY procedure uses ODS to create graphics.
NOTE: The graphics are created only when you run PROC HPSEVERITY in single-machine mode.

ODS Graph Names

PROC HPSEVERITY assigns a name to each graph that it creates by using ODS. You can use these names to
selectively reference the graphs. The names are listed in Table 23.18.

Table 23.18 ODS Graphics Produced by PROC HPSEVERITY

ODS Graph Name Plot Description PLOTS= Option
CDFPlot Comparative CDF plot CDF
CDFDistPlot CDF plot per distribution CDFPERDIST
PDFPIot Comparative PDF plot PDF
PDFDistPlot PDF plot per distribution PDFPERDIST
PPPlot P-P plot of CDF and EDF PP

QQPlot Q-Q plot QQ

Comparative CDF Plot

The comparative CDF plot helps you visually compare the cumulative distribution function (CDF) estimates
of all the candidate distribution models and the empirical distribution function (EDF) estimate. The plot does
not contain CDF estimates for models whose parameter estimation process does not converge. The horizontal
axis represents the values of the response variable. The vertical axis represents the values of the CDF or EDF
estimates.

If you specify truncation, then conditional CDF estimates are plotted. Otherwise, unconditional CDF
estimates are plotted. The conditional estimates are computed by using the method that is described in the
section “Truncation and Conditional CDF Estimates” on page 1241.

If you specify regression effects, then the plotted CDF estimates are from a mixture distribution. For more
information, see the section “CDF and PDF Estimates with Regression Effects” on page 1249.

1310 4 Chapter 23: The HPSEVERITY Procedure

CDF Plot per Distribution

The CDF plot per distribution shows the CDF estimates of each candidate distribution model unless that
model’s parameter estimation process does not converge. The plot also contains estimates of the EDF. The
horizontal axis represents the values of the response variable. The vertical axis represents the values of the
CDF or EDF estimates.

This plot shows the lower and upper pointwise confidence limits for the EDF estimates. For an EDF estimate
Fy, with standard error 0, they are computed as MAX(0, Fy, — z(1—q/2)0n) and MIN(1, F, + Z(1—-¢/2)0n).
respectively, where z, is the pth quantile from the standard normal distribution and « denotes the confidence
level that you specify in the EDFALPHA= option (the default is o = 0.05).

If you specify truncation, then conditional CDF estimates are plotted. Otherwise, unconditional CDF
estimates are plotted. The conditional estimates are computed by using the method that is described in the
section “Truncation and Conditional CDF Estimates” on page 1241.

If you specify regression effects, then the plotted CDF estimates are from a mixture distribution. For more
information, see the section “CDF and PDF Estimates with Regression Effects” on page 1249.

Comparative PDF Plot

The comparative PDF plot helps you visually compare the probability density function (PDF) estimates of all
the candidate distribution models. The plot does not contain PDF estimates for models whose parameter
estimation process does not converge. The horizontal axis represents the values of the response variable. The
vertical axis represents the values of the PDF estimates.

If you specify the HISTOGRAM option, then the plot also contains the histogram of response variable values.
If you specify the KERNEL option, then the plot also contains the kernel density estimate of the response
variable values.

If you specify regression effects, then the plotted PDF estimates are from a mixture distribution. For more
information, see the section “CDF and PDF Estimates with Regression Effects” on page 1249.

PDF Plot per Distribution

The PDF plot per distribution shows the PDF estimates of each candidate distribution model unless that
model’s parameter estimation process does not converge. The horizontal axis represents the values of the
response variable. The vertical axis represents the values of the PDF estimates.

If you specify the HISTOGRAM option, then the plot also contains the histogram of response variable values.
If you specify the KERNEL option, then the plot also contains the kernel density estimate of the response
variable values.

If you specify regression effects, then the plotted PDF estimates are from a mixture distribution. For more
information, see the section “CDF and PDF Estimates with Regression Effects” on page 1249.

P-P Plot of CDF and EDF

The P-P plot of CDF and EDF is the probability-probability plot that compares the CDF estimates of a
distribution to the EDF estimates. A plot is not prepared for models whose parameter estimation process does
not converge. The horizontal axis represents the CDF estimates of a candidate distribution, and the vertical
axis represents the EDF estimates.

This plot can be interpreted as displaying the data that are used for computing the EDF-based statistics of
fit for the given candidate distribution. As described in the section “EDF-Based Statistics” on page 1267,

ODS Graphics 4 1311

these statistics are computed by comparing the EDF, denoted by F;(y), to the CDF, denoted by F(y), at
each of the response variable values y. Using the probability inverse transform z = F(y), this is equivalent
to comparing the EDF of the z, denoted by F},(z), to the CDF of z, denoted by F(z) (D’Agostino and
Stephens 1986, Ch. 4). Because the CDF of z is a uniform distribution (¥ (z) = z), the EDF-based statistics
can be computed by comparing the EDF estimate of z to the estimate of z. The horizontal axis of the plot
represents the estimated CDF Z = F (»). The vertical axis represents the estimated EDF of z, E, (z). The
plot contains a scatter plot of (Z, Fy (2)) points and a reference line Fy(z) = z that represents the expected
uniform distribution of z. Points that are scattered closer to the reference line indicate a better fit than the
points that are scattered farther away from the reference line.

If you specify truncation, then the EDF estimates are conditional, as described in the section “EDF Estimates
and Truncation” on page 1265. So conditional estimates of CDF are displayed, which are computed by using
the method that is described in the section “Truncation and Conditional CDF Estimates” on page 1241.

If you specify regression effects, then the displayed CDF estimates, both unconditional and conditional, are
from a mixture distribution. For more information, see the section “CDF and PDF Estimates with Regression
Effects” on page 1249.

Q-Q Plot

The Q-Q plot is a quantile-quantile scatter plot that compares the empirical quantiles to the quantiles from
a candidate distribution. A plot is not prepared for models whose parameter estimation process does not
converge. The horizontal axis represents the quantiles from a candidate distribution, and the vertical axis
represents the empirical quantiles.

Each point in the plot corresponds to a specific value of the EDF estimate, F,,. The Y coordinate is the value
of the response variable for which F;, is computed. The X coordinate is computed by using one of the two
following methods for a candidate distribution named diist:

e If you have defined the dist_ QUANTILE function that satisfies the requirements listed in the section
“dist_QUANTILE” on page 1281, then that function is invoked by using F;, and estimated distribution
parameters as arguments. The QUANTILE function is defined in the Sashelp.Svrtdist library for all
the predefined distributions.

o If the dist_ QUANTILE function is not defined, then PROC HPSEVERITY numerically inverts the
dist_CDF function at the CDF value of F}, for the estimated distribution parameters. If the dist_ CDF
function is not defined, then the exp(dist_LOGCDF) function is inverted. If the inversion fails, the
corresponding point is not plotted in the Q-Q plot.

If you specify truncation, then the EDF estimates are conditional, as described in the section “EDF Estimates
and Truncation” on page 1265. The CDF inversion process, whether done numerically or by evaluating the
dist_QUANTILE function, needs to accept an unconditional CDF value. So the F}, value is first transformed
to an unconditional estimate F} as

Fl = Fy - (F(the) — F(thi)) + Fhi)

) and F (tl) are as defined in the section “Truncation and Conditional CDF Estimates” on

min

where F (17,
page 1241.

ax

If you specify regression effects, then the value of the first distribution parameter is determined by using the
DFMIXTURE=MEAN method that is described in the section “CDF and PDF Estimates with Regression
Effects” on page 1249.

1312 4 Chapter 23: The HPSEVERITY Procedure

Examples: HPSEVERITY Procedure

Example 23.1: Defining a Model for Gaussian Distribution

Suppose you want to fit a distribution model other than one of the predefined ones available to you. Suppose
you want to define a model for the Gaussian distribution with the following typical parameterization of the
PDF (f) and CDF (F):

, 1 (x —)2
Sxip, o) = O\/EGXD (—20—2)
F(x;p,0) = % (1 + erf (x ://_;))

o

For PROC HPSEVERITY, a distribution model consists of a set of functions and subroutines that are defined
with the FCMP procedure. Each function and subroutine should be written following certain rules. For

more information, see the section “Defining a Severity Distribution Model with the FCMP Procedure” on
page 1273.

NOTE: The Gaussian distribution is not a commonly used severity distribution. It is used in this example
primarily to illustrate the process of defining your own distribution models. Although the distribution has
a support over the entire real line, you can fit the distribution with PROC HPSEVERITY only if the input
sample contains nonnegative values.

The following SAS statements define a distribution model named NORMAL for the Gaussian distribution.
The OUTLIB= option in the PROC FCMP statement stores the compiled versions of the functions and
subroutines in the ‘models’ package of the Work.Sevexmpl library. The LIBRARY= option in the PROC
FCMP statement enables this PROC FCMP step to use the SVRTUTIL_RAWMOMENTS utility subroutine
that is available in the Sashelp.Svrtdist library. The subroutine is described in the section “Predefined Utility
Functions” on page 1285.

[k——————— Define Normal Distribution with PROC FCMP —-————————— */
proc fcmp library=sashelp.svrtdist outlib=work.sevexmpl.models;
function normal_pdf (x,Mu, Sigma);
/* Mu : Location x/
/* Sigma : Standard Deviation */
return (exp (- (x-Mu)**2/(2 * Sigma**2)) /
(Sigma * sqrt (2xconstant ('PI'))));
endsub;

function normal_cdf (x,Mu, Sigma);
/* Mu : Location */
/* Sigma : Standard Deviation */
z = (x-Mu)/Sigma;
return (0.5 + 0.5xerf (z/sqrt(2)));
endsub;

subroutine normal_parminit (dim, x[x], nx[*], F[x], Ftype, Mu, Sigma);
outargs Mu, Sigma;
array m[2] / nosymbols;

Example 23.1: Defining a Model for Gaussian Distribution 4 1313

/* Compute estimates by using method of moments x/
call svrtutil rawmoments (dim, x, nx, 2, m);

Mu = m[1l];
Sigma = sqrt (m[2] - m[1]%%2);
endsub;

subroutine normal_lowerbounds (Mu, Sigma);
outargs Mu, Sigma;

Mu = .; /* Mu has no lower bound */
Sigma = 0; /% Sigma > 0 %/
endsub;

quit;

The statements define the two functions required of any distribution model (NORMAL_PDF and NOR-
MAL_CDF) and two optional subroutines (NORMAL_PARMINIT and NORMAL_LOWERBOUNDS). The
name of each function or subroutine must follow a specific structure. It should start with the model’s short or
identifying name, which is ‘NORMAL in this case, followed by an underscore ‘_’, followed by a keyword
suffix such as ‘PDF’. Each function or subroutine has a specific purpose. For more information about all the
functions and subroutines that you can define for a distribution model, see the section “Defining a Severity
Distribution Model with the FCMP Procedure” on page 1273. Following is the description of each function
and subroutine defined in this example:

e The PDF and CDF suffixes define functions that return the probability density function and cumulative
distribution function values, respectively, given the values of the random variable and the distribution
parameters.

e The PARMINIT suffix defines a subroutine that returns the initial values for the parameters by using the
sample data or the empirical distribution function (EDF) estimate computed from it. In this example,
the parameters are initialized by using the method of moments. Hence, you do not need to use the EDF
estimates, which are available in the F array. The first two raw moments of the Gaussian distribution
are as follows:

Elx] = p, Elx’] = p* + 02

Given the sample estimates, 71 and m,, of these two raw moments, you can solve the equations
E[x] = m and E[x?] = m, to get the following estimates for the parameters: fi = m; and

G = /my— m% The NORMAL_PARMINIT subroutine implements this solution. It uses the
SVRTUTIL_RAWMOMENTS utility subroutine to compute the first two raw moments.

e The LOWERBOUNDS suffix defines a subroutine that returns the lower bounds on the parameters.
PROC HPSEVERITY assumes a default lower bound of O for all the parameters when a LOWER-
BOUNDS subroutine is not defined. For the parameter © (Mu), there is no lower bound, so you
need to define the NORMAL_LOWERBOUNDS subroutine. It is recommended that you assign
bounds for all the parameters when you define the LOWERBOUNDS subroutine or its counterpart,
the UPPERBOUNDS subroutine. Any unassigned value is returned as a missing value, which PROC
HPSEVERITY interprets to mean that the parameter is unbounded, and that might not be what you
want.

You can now use this distribution model with PROC HPSEVERITY. Let the following DATA step statements
simulate a normal sample with 4 = 10 and 0 = 2.5:

1314 4 Chapter 23: The HPSEVERITY Procedure

[h—————— Simulate a Normal sample —--————————- */
data testnorm(keep=y);
call streaminit (12345);
do i=1 to 100;
y = rand('NORMAL', 10, 2.5);
output;
end;
run;

Prior to using your distribution with PROC HPSEVERITY, you must communicate the location of the library
that contains the definition of the distribution and the locations of libraries that contain any functions and
subroutines used by your distribution model. The following OPTIONS statement sets the CMPLIB= system
option to include the FCMP library Work.Sevexmpl in the search path used by PROC HPSEVERITY to find
FCMP functions and subroutines.

/*——— Set the search path for functions defined with PROC FCMP -——-x/
options cmplib=(work.sevexmpl) ;

Now, you are ready to fit the NORMAL distribution model with PROC HPSEVERITY. The following
statements fit the model to the values of Y in the Work.Testnorm data set:

/*——— Fit models with PROC HPSEVERITY ——-%/
proc hpseverity data=testnorm print=all;
loss y;
dist Normal;
run;

The DIST statement specifies the identifying name of the distribution model, which is ‘NORMAL’. Neither
the INEST= option nor the INSTORE= option is specified in the PROC HPSEVERITY statement, and the
INIT= option is not specified in the DIST statement. So PROC HPSEVERITY initializes the parameters by
invoking the NORMAL_PARMINIT subroutine.

Some of the results prepared by the preceding PROC HPSEVERITY step are shown in Output 23.1.1 and
Output 23.1.2. The descriptive statistics of variable Y and the “Model Selection” table, which includes just
the normal distribution, are shown in Output 23.1.1.

Output 23.1.1 Summary of Results for Fitting the Normal Distribution
The HPSEVERITY Procedure

Input Data Set
Name WORK.TESTNORM

Descriptive Statistics for y

Observations 100
Observations Used for Estimation 100
Minimum 3.88249
Maximum 16.00864
Mean 10.02059

Standard Deviation 2.37730

Normal Yes

Example 23.1: Defining a Model for Gaussian Distribution 4 1315

Output 23.1.1 continued

Model Selection
-2 Log

Distribution Converged Likelihood Selected

455.97541 Yes

The initial values for the parameters, the optimization summary, and the final parameter estimates are shown
in Output 23.1.2. No iterations are required to arrive at the final parameter estimates, which are identical to
the initial values. This confirms the fact that the maximum likelihood estimates for the Gaussian distribution
are identical to the estimates obtained by the method of moments that was used to initialize the parameters in
the NORMAL_PARMINIT subroutine.

Output 23.1.2 Details of the Fitted Normal Distribution Model

Parameter Estimate

The HPSEVERITY Procedure
Normal Distribution

Distribution Information
Name Normal
Distribution Parameters 2

Initial Parameter Values and Bounds

Initial Lower Upper
Parameter Value Bound Bound
Mu 10.02059 -Infty Infty
Sigma 2.36538 1.05367E-8 Infty

Optimization Summary
Optimization Technique Trust Region
lterations 0
Function Calls 4
Log Likelihood -227.98770

Parameter Estimates

Standard Approx
Error t Value Pr > [t]

10.02059 0.23894 41.94 <.0001

Sigma 2.36538 0.16896 14.00 <.0001

The NORMAL distribution defined and illustrated here has no scale parameter, because all the following

inequalities are true:

Fipo) # - fCi10)
'

1
flxip.0) # ;f(g;u, 1)
F(x; 1, 0) # F(% 1,0)

F(xi 1, 0) # F(g;u, 1)

This implies that you cannot estimate the influence of regression effects on a model for the response variable

based on this distribution.

1316 4 Chapter 23: The HPSEVERITY Procedure

Example 23.2: Defining a Model for the Gaussian Distribution with a Scale
Parameter

If you want to estimate the influence of regression effects, then the model needs to be parameterized to have
a scale parameter. Although this might not be always possible, it is possible for the Gaussian distribution by
replacing the location parameter y with another parameter, « = /o, and defining the PDF (f) and the CDF
(F) as follows:

flxio.a) =

F(x;0,a) = % (1 +ertf (% (g - a)))

You can verify that o is the scale parameter, because both of the following equalities are true:

fwow = f(51a)

o
F(x;0,a) = F(i; 1,a)
o

NOTE: The Gaussian distribution is not a commonly used severity distribution. It is used in this example
primarily to illustrate the concept of parameterizing a distribution such that it has a scale parameter. Although
the distribution has a support over the entire real line, you can fit the distribution with PROC HPSEVERITY
only if the input sample contains nonnegative values.

The following statements use the alternate parameterization to define a new model named NORMAL_S. The
definition is stored in the Work.Sevexmpl library.

[*———————e Define Normal Distribution With Scale Parameter -—--————————— */
proc fcmp library=sashelp.svrtdist outlib=work.sevexmpl.models;
function normal_s_pdf(x, Sigma, Alpha);
/* Sigma : Scale & Standard Deviation */
/* Alpha : Scaled mean */
return (exp(-(x/Sigma - Alpha)=**x2/2) /
(Sigma * sqrt (2xconstant ('PI'))));
endsub;

function normal_s_cdf(x, Sigma, Alpha);
/* Sigma : Scale & Standard Deviation =*/
/* Alpha : Scaled mean */
z = x/Sigma - Alpha;
return (0.5 + 0.5xerf (z/sqrt(2)));
endsub;

subroutine normal_s_parminit (dim, x[*], nx[x], F[*], Ftype, Sigma, Alpha);
outargs Sigma, Alpha;
array m[2] / nosymbols;
/* Compute estimates by using method of moments */
call svrtutil_ rawmoments (dim, x, nx, 2, m);
Sigma = sqrt (m[2] - m[1]**2);
Alpha = m[1]/Sigma;
endsub;

Example 23.2: Defining a Model for the Gaussian Distribution with a Scale Parameter 4 1317

subroutine normal_s_lowerbounds (Sigma, Alpha);
outargs Sigma, Alpha;

Alpha = .; /* Alpha has no lower bound x/
Sigma = 0; /* Sigma > 0 */
endsub;

quit;

An important point to note is that the scale parameter Sigma is the first distribution parameter (after the
‘x’ argument) listed in the signatures of NORMAL_S_PDF and NORMAL_S_CDF functions. Sigma is
also the first distribution parameter listed in the signatures of other subroutines. This is required by PROC
HPSEVERITY, so that it can identify which is the scale parameter. When you specify regression effects,
PROC HPSEVERITY checks whether the first parameter of each candidate distribution is a scale parameter
(or a log-transformed scale parameter if dist_ SCALETRANSFORM subroutine is defined for the distribution
with LOG as the transform). If it is not, then an appropriate message is written the SAS log and that
distribution is not fitted.

Let the following DATA step statements simulate a sample from the normal distribution where the parameter
o is affected by the regressors as follows:

o =exp(l +0.5X1 +0.75 X3 — 2 X4 4 X5)
The sample is simulated such that the regressor X2 is linearly dependent on regressors X1 and X3.

/*——— Simulate a Normal sample affected by Regressors ———x/
data testnorm reg(keep=y x1-x5 Sigma);

array x{*} x1-x5;

array b{6} _TEMPORARY (1 0.5 . 0.75 -2 1);

call streaminit (34567);

label y='Normal Response Influenced by Regressors';

don =1 to 100;
/* simulate regressors */
do i =1 to dim(x);
x(i) = rand('UNIFORM');
end;
/* make x2 linearly dependent on x1 */
x(2) =5 * x(1);

/* compute log of the scale parameter x*/
logSigma = b(1l);
do i = 1 to dim(x);
if (i ne 2) then
logSigma = logSigma + b(i+l) * x(i);
end;

Sigma = exp(logSigma) ;
y = rand('NORMAL', 25, Sigma);
output;
end;
run;

The following statements use PROC HPSEVERITY to fit the NORMAL_S distribution model along with
some of the predefined distributions to the simulated sample:

1318 4 Chapter 23: The HPSEVERITY Procedure

/*——— Set the search path for functions defined with PROC FCMP ——-%/
options cmplib=(work.sevexmpl) ;

[H——————— Fit models with PROC HPSEVERITY —-——————- */
proc hpseverity data=testnorm_reg print=all;

loss y;

scalemodel x1-x5;

dist Normal_s burr logn pareto weibull;
run;

The “Model Selection” table in Output 23.2.1 indicates that all the models, except the Burr distribution
model, have converged. Also, only three models, Normal_s, Burr, and Weibull, seem to have a good fit for
the data. The table that compares all the fit statistics indicates that Normal_s model is the best according to
the likelihood-based statistics; however, the Burr model is the best according to the EDF-based statistics.

Output 23.2.1 Summary of Results for Fitting the Normal Distribution with Regressors
The HPSEVERITY Procedure

Input Data Set
Name WORK.TESTNORM_REG

Model Selection

-2 Log
Distribution Converged Likelihood Selected
Normal_s VYes 603.95786 Yes
Burr Maybe 612.81685 No
Logn Yes 749.20125 No
Pareto Yes 841.07022 No
Weibull Yes 612.77496 No

All Fit Statistics

-2 Log
Distribution Likelihood AlC AlCC BIC KS AD
Normal_s 603.95786 * 615.95786 * 616.86108 * 631.58888 * 1.52388 4.00152
Burr 612.81685 626.81685 628.03424 645.05304 1.50448 * 3.90072 *
Logn 749.20125 761.20125 762.10448 776.83227 2.88110 16.20558
Pareto 841.07022 853.07022 853.97345 868.70124 4.83810 31.60568
Weibull 612.77496 624.77496 625.67819 640.40598 1.50490 3.90559

Note: The asterisk (*) marks the best model according to each column'’s criterion.

All Fit Statistics

Distribution CvM
Normal_s 0.70769
Burr 0.63399 *
Logn 3.04825
Pareto 6.84046
Weibull 0.63458

Note: The asterisk (*)
marks the best model
according to each
column's criterion.

Example 23.2: Defining a Model for the Gaussian Distribution with a Scale Parameter 4 1319

This prompts you to further evaluate why the model with Burr distribution has not converged. The initial
values, convergence status, and the optimization summary for the Burr distribution are shown in Output 23.2.2.
The initial values table indicates that the regressor X2 is redundant, which is expected. More importantly, the
convergence status indicates that it requires more than 50 iterations. PROC HPSEVERITY enables you to
change several settings of the optimizer by using the NLOPTIONS statement. In this case, you can increase
the limit of 50 on the iterations, change the convergence criterion, or change the technique to something other
than the default trust-region technique.

Output 23.2.2 Details of the Fitted Burr Distribution Model

The HPSEVERITY Procedure
Burr Distribution

Distribution Information

Name Burr
Description Burr Distribution
Distribution Parameters 3
Regression Parameters 4

Initial Parameter Values and Bounds

Initial Lower Upper
Parameter Value Bound Bound
Theta 25.75198 1.05367E-8 Infty
Alpha 2.00000 1.05367E-8 Infty
Gamma 2.00000 1.05367E-8 Infty
x1 0.07345 -709.78271 709.78271
x2 Redundant
x3 -0.14056 -709.78271 709.78271
x4 0.27064 -709.78271 709.78271
x5 -0.23230 -709.78271 709.78271

Convergence Status
Needs more than 50 iterations.

Optimization Summary
Optimization Technique Trust Region

Iterations 50
Function Calls 137
Log Likelihood -306.40842

The following PROC HPSEVERITY step uses the NLOPTIONS statement to change the convergence crite-
rion and the limits on the iterations and function evaluations, exclude the lognormal and Pareto distributions
that have been confirmed previously to fit the data poorly, and exclude the redundant regressor X2 from the
model:

/*——— Refit and compare models with higher limit on iterations —-—-x/
proc hpseverity data=testnorm_reg print=all;
loss y;

scalemodel x1 x3-x5;

dist Normal_ s burr weibull;

nloptions absfconv=2.0e-5 maxiter=100 maxfunc=500;
run;

1320 4 Chapter 23: The HPSEVERITY Procedure

The results shown in Output 23.2.3 indicate that the Burr distribution has now converged and that the Burr
and Weibull distributions have an almost identical fit for the data. The NORMAL_S distribution is still the
best distribution according to the likelihood-based criteria.

Output 23.2.3 Summary of Results after Changing Maximum Number of lterations
The HPSEVERITY Procedure

Input Data Set
Name WORK.TESTNORM_REG

Model Selection

-2 Log
Distribution Converged Likelihood Selected

Normal_s Yes
Burr Yes
Weibull Yes

603.95786 Yes
612.79276 No
612.77496 No

All Fit Statistics

Distribution Likelizhlt-)gg AIC AICC BIC KS AD
Normal_s 603.95786 * 615.95786 * 616.86108 * 631.58888 * 1.52388 4.00152
Burr 612.79276 626.79276 628.01015 645.02895 1.50472 * 3.90351 *
Weibull 612.77496 624.77496 625.67819 640.40598 1.50490 3.90559

Note: The asterisk (*) marks the best model according to each column'’s criterion.

All Fit Statistics

Distribution CvM
Normal_s 0.70769
Burr 0.63433 *
Weibull 0.63458

Note: The asterisk (*)
marks the best model
according to each
column's criterion.

Example 23.3: Defining a Model for Mixed-Tail Distributions

In some applications, a few severity values tend to be extreme as compared to the typical values. The extreme
values represent the worst case scenarios and cannot be discarded as outliers. Instead, their distribution
must be modeled to prepare for their occurrences. In such cases, it is often useful to fit one distribution to
the non-extreme values and another distribution to the extreme values. The mixed-tail distribution mixes
two distributions: one for the body region, which contains the non-extreme values, and another for the tail
region, which contains the extreme values. The tail distribution is usually a generalized Pareto distribution
(GPD), because it is usually good for modeling the conditional excess severity above a threshold. The body
distribution can be any distribution. The following definitions are used in describing a generic formulation of
a mixed-tail distribution:

PDF of the body distribution
CDF of the body distribution

g(x)
G(x)

Example 23.3: Defining a Model for Mixed-Tail Distributions 4 1321

h(x) PDF of the tail distribution
H(x) CDF of the tail distribution

0 scale parameter for the body distribution

Q set of nonscale parameters for the body distribution

£ shape parameter for the GPD tail distribution

Xr normalized value of the response variable at which the tail starts
DPn mixing probability

Given these notations, the PDF f(x) and the CDF F(x) of the mixed-tail distribution are defined as

Pn :
_ | sopg™ if x < xp
0= { (1= pa)h(x —xp) ifx > xp

Dn :
Fx) = { coy O) if x < xp
pnt+ (L= po)H(x —xp) ifx > xp

where x; = 6x, is the value of the response variable at which the tail starts.

These definitions indicate the following:

e The body distribution is conditional on X < xj, where X denotes the random response variable.
e The tail distribution is the generalized Pareto distribution of the (X — xp) values.

e The probability that a response variable value belongs to the body is p,. Consequently the probability
that the value belongs to the tail is (1 — py).

The parameters of this distribution are 6, @, &, x,, and p,. The scale of the GPD tail distribution 6; is
computed as

_ G(xp;0,22) (1 — py) _ QG(xr;Q =1,2) (1 — pn)
g(xp:0,2) Pn g(xr;0=1,Q) Pn

t

The parameter x, is usually estimated using a tail index estimation algorithm. One such algorithm is
the Hill’s algorithm (Danielsson et al. 2001), which is implemented by the predefined utility function
SVRTUTIL_HILLCUTOFF available to you in the Sashelp.Svrtdist library. The algorithm and the utility
function are described in detail in the section “Predefined Utility Functions” on page 1285. The function
computes an estimate of xz, which can be used to compute an estimate of x, because x, = xp/ é, where 0 is
the estimate of the scale parameter of the body distribution.

The parameter p,, is usually determined by the domain expert based on the fraction of losses that are expected
to belong to the tail.

The following SAS statements define the LOGNGPD distribution model for a mixed-tail distribution with the
lognormal distribution as the body distribution and GPD as the tail distribution:

1322 4 Chapter 23: The HPSEVERITY Procedure

[h=——————e Define Lognormal Body-GPD Tail Mixed Distribution --—————-
proc fcmp library=sashelp.svrtdist outlib=work.sevexmpl.models;
function LOGNGPD_DESCRIPTION() $256;
length desc $256;

descl = "Lognormal Body-GPD Tail Distribution.";
desc2 = " Mu, Sigma, and Xi are free parameters.";
desc3 = " Xr and Pn are constant parameters.";
desc = descl || desc2 || desc3;
return (desc) ;

endsub;

function LOGNGPD_SCALETRANSFORM() $3;
length xform $3;
xform = "LOG";
return (xform);

endsub;

subroutine LOGNGPD_CONSTANTPARM (Xr,Pn);
endsub;

function LOGNGPD_PDF (x, Mu,Sigma,Xi,Xr,Pn);
cutoff = exp(Mu) * Xr;
p = CDF('LOGN', cutoff, Mu, Sigma);
if (x < cutoff + constant ('MACEPS')) then do;
return ((Pn/p)*PDF('LOGN', x, Mu, Sigma));
end;
else do;
gpd_scale = p*((1-Pn)/Pn)/PDF('LOGN', cutoff, Mu, Sigma);
h = (1+Xi* (x—-cutoff)/gpd_scale) ** (-1-(1/Xi)) /gpd_scale;
return ((1-Pn)*h);
end;
endsub;

function LOGNGPD_CDF (x, Mu,Sigma,Xi,Xr,Pn);
cutoff = exp(Mu) * Xr;
p = CDF('LOGN',cutoff, Mu, Sigma);
if (x < cutoff + constant ('MACEPS')) then do;
return ((Pn/p)*CDF('LOGN', x, Mu, Sigma));
end;
else do;
gpd_scale = p*((1-Pn)/Pn) /PDF('LOGN', cutoff, Mu, Sigma);
H=1- (1 + Xi* ((x—cutoff)/gpd_scale))**(-1/Xi);
return (Pn + (1-Pn)xH);
end;
endsub;

subroutine LOGNGPD_PARMINIT (dim,x[*],nx[*],F[x],Ftype,
Mu, Sigma, Xi,Xr,Pn);
outargs Mu, Sigma,Xi, Xr,Pn;
array xe[l] / nosymbols;
array nxe[l] / nosymbols;

eps = constant ('MACEPS');

Example 23.3: Defining a Model for Mixed-Tail Distributions 4 1323

Pn = 0.8; /* Set mixing probability =/
status = .;
call streaminit (56789);
Xb = svrtutil hillcutoff (dim, x, 100, 25, _status_);
if (missing(_status_) or _status_ = 1) then
Xb = svrtutil_percentile(Pn, dim, x, F, Ftype);

/* Initialize lognormal parameters */
call logn_parminit (dim, x, nx, F, Ftype, Mu, Sigma);
if (not (missing(Mu))) then
Xr = Xb/exp (Mu);
else
Xr = .,

/* prepare arrays for excess values */

i=1;

do while (i <= dim and x[i] < Xb+eps);
i=1i4+1;

end;

dime = dim-i+1;
if (dime > 0) then do;
call dynamic_array (xe, dime);
call dynamic_array (nxe, dime);
j=1;
do while (i <= dim);
xe[j] = x[i] - Xb;

nxe[]j] = nx[i];
i=1i+1;
j=3+1

end;

/* Initialize GPD's shape parameter using excess values */
call gpd parminit (dime, xe, nxe, F, Ftype, theta gpd, Xi);
end;
else do;
Xi = .;
end;
endsub;

subroutine LOGNGPD_LOWERBOUNDS (Mu, Sigma, Xi, Xr,Pn);
outargs Mu, Sigma,Xi, Xr,Pn;

Mu = .; /* Mu has no lower bound */
Sigma = 0; /% Sigma > 0 %/
Xi =0; /+ Xi > 0 «/

endsub;

quit;
Note the following points about the LOGNGPD definition:

e The parameters x, and p, are not estimated with the maximum likelihood method used by
PROC HPSEVERITY, so you need to specify them as constant parameters by defining the
dist_CONSTANTPARM subroutine. The signature of LOGNGPD_CONSTANTPARM subroutine
lists only the constant parameters Xr and Pn.

1324 4 Chapter 23: The HPSEVERITY Procedure

e The parameter x, is estimated by first using the SVRTUTIL_HILLCUTOFF utility function to compute
an estimate of the cutoff point X and then computing x, = X/ ef*. If SVRTUTIL_HILLCUTOFF
fails to compute a valid estimate, then the SVRTUTIL_PERCENTILE utility function is used to set X,
to the p,th percentile of the data. The parameter p, is fixed to 0.8.

e The Sashelp.Svrtdist library is specified with the LIBRARY= option in the PROC FCMP state-
ment to enable the LOGNGPD_PARMINIT subroutine to use the predefined utility functions (SVR-
TUTIL_HILLCUTOFF and SVRTUTIL_PERCENTILE) and parameter initialization subroutines
(LOGN_PARMINIT and GPD_PARMINIT).

e The LOGNGPD_LOWERBOUNDS subroutine defines the lower bounds for all parameters. This
subroutine is required because the parameter Mu has a non-default lower bound. The bounds for Sigma
and Xi must be specified. If they are not specified, they are returned as missing values, which PROC
HPSEVERITY interprets as having no lower bound. You need not specify any bounds for the constant
parameters Xr and Pn, because they are not subject to optimization.

The following DATA step statements simulate a sample from a mixed-tail distribution with a lognormal
body and GPD tail. The parameter p,, is fixed to 0.8, the same value used in the LOGNGPD_PARMINIT
subroutine defined previously.

[k————— Simulate a sample for the mixed-tail distribution ----—- */
data testmixdist (keep=y label='Lognormal Body-GPD Tail Sample');
call streaminit (45678);
label y='Response Variable';

N = 100;
Mu = 1.5;
Sigma = 0.25;
Xi =1.5;
Pn = 0.8;

/* Generate data comprising the lognormal body =*/
Nbody = N*Pn;
do i=1 to Nbody;
y = exp(Mu) * rand('LOGNORMAL') xxSigma;
output;
end;

/* Generate data comprising the GPD tail x/

cutoff = quantile ('LOGNORMAL', Pn, Mu, Sigma);

gpd_scale = (1-Pn) / pdf('LOGNORMAL', cutoff, Mu, Sigma);

do i=Nbody+l to N;
y = cutoff + ((l-rand('UNIFORM'))**(-Xi) - 1) *gpd_scale/Xi;
output;

end;

run;

The following statements use PROC HPSEVERITY to fit the LOGNGPD distribution model to the simulated
sample. They also fit three other predefined distributions (BURR, LOGN, and GPD). The final parameter
estimates are written to the Work.Parmest data set.

Example 23.3: Defining a Model for Mixed-Tail Distributions 4 1325

/*——— Set the search path for functions defined with PROC FCMP -——-x%/
options cmplib=(work.sevexmpl) ;
[Hh———————e Fit LOGNGPD model with PROC HPSEVERITY ———————-— */
proc hpseverity data=testmixdist print=all outest=parmest;
loss y;
dist logngpd burr logn gpd;
run;

Some of the results prepared by PROC HPSEVERITY are shown in Output 23.3.1 and Output 23.3.2. The
“Model Selection” table in Output 23.3.1 indicates that all models converged. The last table in Output 23.3.1
shows that the model with LOGNGPD distribution has the best fit according to almost all the statistics of
fit. The Burr distribution model is the closest contender to the LOGNGPD model, but the GPD distribution
model fits the data very poorly.

Output 23.3.1 Summary of Fitting Mixed-Tail Distribution
The HPSEVERITY Procedure

Input Data Set
Name WORK.TESTMIXDIST
Label Lognormal Body-GPD Tail Sample

Model Selection

-2 Log
Distribution Converged Likelihood Selected
logngpd Yes 418.78232 Yes
Burr Yes 424.93728 No
Logn Yes 459.43471 No
Gpd Yes 558.13444 No

All Fit Statistics

-2 Log
Distribution Likelihood AIC AICC BIC KS AD
logngpd 418.78232 * 428.78232 * 429.42062 * 441.80817 0.62140 * 0.31670 *
Burr 424.93728 430.93728 431.18728 438.75280 * 0.71373 0.57649
Logn 459.43471 463.43471 463.55842 468.64505 1.55267 3.27122
Gpd 558.13444 562.13444 562.25815 567.34478 3.43470 16.74156

Note: The asterisk (*) marks the best model according to each column'’s criterion.

All Fit Statistics

Distribution CvM
logngpd 0.04972 *
Burr 0.07860
Logn 0.48448
Gpd 3.31860

Note: The asterisk (*)
marks the best model
according to each
column's criterion.

The detailed results for the LOGNGPD distribution are shown in Output 23.3.2. The initial values table
indicates the values computed by LOGNGPD_PARMINIT subroutine for the Xr and Pn parameters. It also

1326 4 Chapter 23: The HPSEVERITY Procedure

uses the bounds columns to indicate the constant parameters. The last table in the figure shows the final
parameter estimates. The estimates of all free parameters are significantly different from 0. As expected, the
final estimates of the constant parameters Xr and Pn have not changed from their initial values.

Output 23.3.2 Detailed Results for the LOGNGPD Distribution

The HPSEVERITY Procedure
logngpd Distribution

Distribution Information

Name logngpd
Description Lognormal Body-GPD Tail Distribution. Mu, Sigma, and Xi are free parameters. Xr and Pn are constant

parameters.
Distribution 5
Parameters

Initial Parameter Values and Bounds

Initial Lower Upper
Parameter Value Bound Bound
Mu 1.49954 -Infty Infty
Sigma 0.76306 1.05367E-8 Infty
Xi 0.36661 1.05367E-8 Infty
Xr 1.27395 Constant Constant
Pn 0.80000 Constant Constant

Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Optimization Summary
Optimization Technique Trust Region

Iterations 11
Function Calls 33
Failed Function Calls 1
Log Likelihood -209.39116

Parameter Estimates

Standard Approx
Parameter Estimate Error t Value Pr> |t
Mu 157921 0.06426 24.57 <.0001
Sigma 0.31868 0.04459 7.15 <.0001
Xi 1.03771 0.38205 2.72 0.0078
Xr 1.27395 Constant
Pn 0.80000 Constant

The following SAS statements use the parameter estimates to compute the value where the tail region is

estimated to start (x;, = e x}) and the scale of the GPD tail distribution (6, = %%):

[hm———————e Compute tail cutoff and tail distribution's scale —————-—-—- */
data xb_thetat (keep=x_b theta_t);
set parmest (where=(_MODEL_='logngpd' and _TYPE ='EST'));
X b = exp(Mu) x Xr;
theta_t = (CDF('LOGN',x_ b,Mu,Sigma) /PDF ('LOGN',x _b,Mu,Sigma)) =*
((1-Pn) /Pn);
run;

Example 23.4: Fitting a Scaled Tweedie Model with Regressors 4 1327

proc print data=xb_thetat noobs;
run;

Output 23.3.3 Start of the Tail and Scale of the GPD Tail Distribution

x_b theta_t
6.18005 1.27865

The computed values of x; and 6; are shown as x_b and theta_t in Output 23.3.3. Equipped with this
additional derived information, you can now interpret the results of fitting the mixed-tail distribution as
follows:

e The tail starts at y ~ 6.18. The primary benefit of using the scale-normalized cutoff (x;,) as the
constant parameter instead of using the actual cutoff (xp) is that the absolute cutoff is optimized by
virtue of optimizing the scale of the body region (6 = e”).

e The values y < 6.18 follow the lognormal distribution with parameters 4 ~ 1.58 and 0 ~ 0.32.
These parameter estimates are reasonably close to the parameters used for simulating the sample.

e The values y; = y — 6.18 (y; > 0) follow the GPD distribution with scale 6; ~ 1.28 and shape
& ~ 1.04.

Example 23.4: Fitting a Scaled Tweedie Model with Regressors

The Tweedie distribution is often used in the insurance industry to explain the influence of regression effects
on the distribution of losses. PROC HPSEVERITY provides a predefined scaled Tweedie distribution
(STWEEDIE) that enables you to model the influence of regression effects on the scale parameter. The
scale regression model has its own advantages such as the ability to easily account for inflation effects. This
example illustrates how that model can be used to evaluate the influence of regression effects on the mean of
the Tweedie distribution, which is useful in problems such rate-making and pure premium modeling.

Assume a Tweedie process, whose mean p is affected by k regression effects x;, j = 1,..., k as follows:

k
W = o exp Z Bjxj
j=1

where 1o represents the base value of the mean (you can think of g as exp(Bo), where By is the intercept).
This model for the mean is identical to the popular generalized linear model for the mean with a logarithmic
link function.

More interestingly, it parallels the model used by PROC HPSEVERITY for the scale parameter 0,

k
0 =6pexp | Y Bjx;
j=1

where 6 represents the base value of the scale parameter. As described in the section “Tweedie Distributions”
on page 1232, for the parameter range p € (1, 2), the mean of the Tweedie distribution is given by

2 —
p—1

1328 4 Chapter 23: The HPSEVERITY Procedure

where A is the Poisson mean parameter of the scaled Tweedie distribution. This relationship enables you to
use the scale regression model to infer the influence of regression effects on the mean of the distribution.

Let the data set Work.Test_Sevtw contain a sample generated from a Tweedie distribution with dispersion
parameter ¢ = 0.5, index parameter p = 1.75, and the mean parameter that is affected by three regression
variables x1, x2, and x3 as follows:

w =5 exp(0.25x1 —x2 4+ 3x3)

Thus, the population values of regression parameters are (o = 5, f; = 0.25, B2 = —1, and 3 = 3. You
can find the code used to generate the sample in the PROC HPSEVERITY sample program hsevex04.sas.

The following PROC HPSEVERITY step uses the sample in Work.Test_Sevtw data set to estimate the
parameters of the scale regression model for the predefined scaled Tweedie distribution (STWEEDIE) with
the dual quasi-Newton (QUANEW) optimization technique:

/*——— Fit the scale parameter version of the Tweedie distribution —--—-x/
proc hpseverity data=test_sevtw outest=estw covout print=all;
loss y;

scalemodel x1-x3;

dist stweedie;
nloptions tech=quanew;
run;

The dual quasi-Newton technique is used because it requires only the first-order derivatives of the objective
function, and it is harder to compute reasonably accurate estimates of the second-order derivatives of Tweedie
distribution’s PDF with respect to the parameters.

Some of the key results prepared by PROC HPSEVERITY are shown in Output 23.4.1 and Output 23.4.2.

The distribution information and the convergence results are shown in Output 23.4.1.

Output 23.4.1 Convergence Results for the STWEEDIE Model with Regressors

The HPSEVERITY Procedure
stweedie Distribution

Distribution Information

Name stweedie
Description Tweedie Distribution with Scale Parameter
Distribution Parameters 3
Regression Parameters 3

Convergence Status
Convergence criterion (FCONV=2.220446E-16) satisfied.

Optimization Summary
Optimization Technique Dual Quasi-Newton
lterations 42
Function Calls 218
Log Likelihood -1044.3

Example 23.4: Fitting a Scaled Tweedie Model with Regressors 4 1329

The final parameter estimates of the STWEEDIE regression model are shown in Output 23.4.2. The estimate
that is reported for the parameter Theta is the estimate of the base value 6y. The estimates of regression
coefficients 81, B2, and B3 are indicated by the rows of x1, x2, and x3, respectively.

Output 23.4.2 Parameter Estimates for the STWEEDIE Model with Regressors

Parameter Estimates

Standard Approx
Parameter Estimate Error t Value Pr > |t
Theta 0.82888 0.26657 3.11 0.0021
Lambda 16.57174 13.12083 1.26 0.2076
P 1.75440 0.20187 8.69 <.0001
x1 0.27970 0.09876 2.83 0.0049
x2 -0.76715 0.10313 -7.44 <.0001
x3 3.03225 0.10142 29.90 <.0001

If your goal is to explain the influence of regression effects on the scale parameter, then the output displayed
in Output 23.4.2 is sufficient. But, if you want to compute the influence of regression effects on the mean of
the distribution, then you need to do some postprocessing. Using the relationship between x and 6, (can be
written in terms of the parameters of the STWEEDIE model as

k
2—p
-0 § x|z =2
Hn 0 €XP j=1,3]xj p—1

This shows that the parameters ; are identical for the mean and the scale model, and the base value 119 of
the mean model is

2—p
p—1

po = BoA

The estimate of 1o and the standard error associated with it can be computed by using the property of the
functions of maximum likelihood estimators (MLE). If g(€2) represents a totally differentiable function of
parameters €2, then the MLE of g has an asymptotic normal distribution with mean g(fZ) and covariance
C = (0g)'X(dg), where €2 is the MLE of ©Q, ¥ is the estimate of covariance matrix of €2, and dg is the
gradient vector of g with respect to 2 evaluated at <. For o, the function is g(2) = A2 — p)/(p — 1).
The gradient vector is

9 — dg dg 0dg Og g
8= %0, o 9 9B B

(B Mo —no
_(90 r (-De-p O‘“O)

You can write a DATA step that implements these computations by using the parameter and covariance
estimates prepared by PROC HPSEVERITY step. The DATA step program is available in the sample program
hsevex04.sas. The estimates of (1o prepared by that program are shown in Output 23.4.3. These estimates
and the estimates of 8; as shown in Output 23.4.2 are reasonably close (that is, within one or two standard
errors) to the parameters of the population from which the sample in Work.Test_Sevtw data set was drawn.

1330 4 Chapter 23: The HPSEVERITY Procedure

Output 23.4.3 Estimate of the Base Value MuO of the Mean Parameter

Standard Approx
Parameter Estimate Error tValue Pr> |t
Mu0 447179 0.42225 10.5904 0

Another outcome of using the scaled Tweedie distribution to model the influence of regression effects is that
the regression effects also influence the variance V of the Tweedie distribution. The variance is related to
the mean as V = ¢uP, where ¢ is the dispersion parameter. Using the relationship between the parameters
TWEEDIE and STWEEDIE distributions as described in the section “Tweedie Distributions” on page 1232,
the regression model for the dispersion parameter is

log(¢) = (2 — p)log(n) —log(A(2 — p))
k

= (2= p)log(no) —log(A2 = p) + 2—p) Y _ Bjx;
ji=1

Subsequently, the regression model for the variance is

log(V) = 2log(n) —log(A(2 — p))

k
= (2log(po) —log(A2 — p))) +2 Y _ Bjx;
j=1

In summary, PROC HPSEVERITY enables you to estimate regression effects on various parameters and
statistics of the Tweedie model.

Example 23.5: Fitting Distributions to Interval-Censored Data

In some applications, the data available for modeling might not be exact. A commonly encountered scenario
is the use of grouped data from an external agency, which for several reasons, including privacy, does not
provide information about individual loss events. The losses are grouped into disjoint bins, and you know
only the range and number of values in each bin. Each group is essentially interval-censored, because you
know that a loss magnitude is in certain interval, but you do not know the exact magnitude. This example
illustrates how you can use PROC HPSEVERITY to model such data.

The following DATA step generates sample grouped data for dental insurance claims, which is taken from
Klugman, Panjer, and Willmot (1998):

/* Grouped dental insurance claims data
(Klugman, Panjer, and Willmot, 1998) x/
data gdental;
input lowerbd upperbd count @Q;
datalines;
0 25 30 25 50 31 50 100 57 100 150 42 150 250 65 250 500 84
500 1000 45 1000 1500 10 1500 2500 11 2500 4000 3

4

run;

Example 23.5: Fitting Distributions to Interval-Censored Data 4 1331

The following PROC HPSEVERITY step fits all the predefined distributions to the data in Work.Gdental
data set:

/* Fit all predefined distributions =*/
proc hpseverity data=gdental edf=turnbull print=all criterion=aicc;
loss / rc=lowerbd lc=upperbd;
weight count;
dist _predef_;
performance nthreads=1;
run;

The EDF= option in the PROC HPSEVERITY statement specifies that the Turnbull’s method be used for EDF
estimation. The LOSS statement specifies the left and right boundaries of each group as the right-censoring
and left-censoring limits, respectively. The variable count records the number of losses in each group and is
specified in the WEIGHT statement. Note that no response variable is specified in the LOSS statement, which
is allowed as long as each observation in the input data set is censored. The PERFORMANCE statement
specifies that just one thread of execution be used, to minimize the overhead associated with multithreading,
because the input data set is very small.

Some of the key results prepared by PROC HPSEVERITY are shown in Output 23.5.1. According to the
“Model Selection” table in Output 23.5.1, all distribution models have converged. The “All Fit Statistics”
table in Output 23.5.1 indicates that the exponential distribution (EXP) has the best fit for data according to a
majority of the likelihood-based statistics.

Output 23.5.1 Statistics of Fit for Interval-Censored Data
The HPSEVERITY Procedure

Input Data Set
Name WORK.GDENTAL

Model Selection
Distribution Converged AICC Selected

Burr Yes 51.41112 No
Exp Yes 44.64768 Yes
Gamma Yes 47.63969 No
lgauss Yes 48.05874 No
Logn Yes 47.34027 No
Pareto Yes 47.16908 No
Gpd Yes 47.16908 No

Weibull Yes 47.47700 No

1332 4 Chapter 23: The HPSEVERITY Procedure

Distribution

Burr
Exp
Gamma
Igauss
Logn
Pareto
Gpd
Weibull

-2 Log

Likelihood
41.41112 * 47.41112
42.14768 44.14768
41.92541 45.92541
42.34445 46.34445
41.62598 45.62598
41.45480 45.45480
41.45480 45.45480
41.76272 45.76272

Output 23.5.1 continued

All Fit Statistics

AIC AICC
51.41112 48.31888
* 44.64768 * 44.45026
47.63969 46.53058
48.05874 46.94962
47.34027 46.23115
47.16908 46.05997
47.16908 46.05997
47.47700 46.36789

0.08974
0.26412
0.19569
0.34514
0.16853
0.11423
0.11423
0.17238

0.00103
0.09936
0.04608
0.12301
0.01884
0.00739
0.00739
0.03293

Note: The asterisk (*) marks the best model according to each column'’s criterion.

All Fit Statistics

Distribution CvM
Burr 0.0000816 *
Exp 0.01866
Gamma 0.00759
Igauss 0.02562
Logn 0.00333
Pareto 0.0009084
Gpd 0.0009084
Weibull 0.00472

Note: The asterisk (*) marks
the best model according to
each column's criterion.

AD

Example 23.6: Benefits of Distributed and Multithreaded Computing

One of the key features of the HPSEVERITY procedure is that is takes advantage of the distributed and
multithreaded computing machinery in order to solve a given problem faster. This example illustrates the

benefits of using multithreading and distributed computing.

The example uses a simulated data set Work.Largedata, which contains 10,000,000 observations, some of
which are right-censored or left-truncated. The losses are affected by three external effects. The DATA step

program that generates this data set is available in the accompanying sample program hsevex06.sas.

The following PROC HPSEVERITY step fits all the predefined distributions to the data in Work.Largedata

data set on the client machine with just one thread of computation:

/* Fit all predefined distributions without any multithreading or
distributed computing =*/
proc hpseverity data=largedata criterion=aicc initsample(size=20000);
loss y / lt=threshold rc=limit;

scalemodel x1-x3;

dist _predef_;
performance nthreads=1 bufsize=1000000 details;

run;

Example 23.6: Benefits of Distributed and Multithreaded Computing 4 1333

The NTHREADS=1 option in the PERFORMANCE statement specifies that just one thread of computation
be used. The absence of the NODES= option in the PERFORMANCE statement specifies that single-machine
mode of execution be used. That is, this step does not use any multithreading or distributed computing. The
BUFSIZE= option in the PERFORMANCE statement specifies the number of observations to read at one
time. Specifying a larger value tends to decrease the time it takes to load the data. The DETAILS option in
the performance statement enables reporting of the timing information. The INITSAMPLE option in the
PROC HPSEVERITY statement specifies that a uniform random sample of maximum 20,000 observations
be used for parameter initialization.

The “Performance Information” and “Procedure Task Timing” tables that PROC HPSEVERITY creates are
shown in Output 23.6.1. The “Performance Information” table contains the information about the execution
environment. The “Procedure Task Timing” table indicates the total time and relative time taken by each of
the four main steps of PROC HPSEVERITY. As that table shows, it takes around 28.2 minutes for the task of
estimating parameters, which is usually the most time-consuming of all the tasks.

Output 23.6.1 Performance for Single-Machine Mode with No Multithreading
The HPSEVERITY Procedure

Performance Information
Execution Mode Single-Machine
Number of Threads 1

Procedure Task Timing

Task Seconds Percent
Load and Prepare Models 3.04 0.18%
Load and Prepare Data 130 0.08%
Initialize Parameters 0.84 0.05%
Estimate Parameters 1694.44 99.62%
Compute Fit Statistics 131 0.08%

If the grid appliance is not available, you can improve the performance by using multiple threads of
computation; this is in fact the default. The following PROC HPSEVERITY step fits all the predefined
distributions by using all the logical CPU cores of the machine:

/* Specify that all the logical CPU cores on the machine be used */
options cpucount=actual;

/* Fit all predefined distributions with multithreading, but no
distributed computing */

proc hpseverity data=largedata criterion=aicc initsample (size=20000);
loss y / lt=threshold rc=limit;
scalemodel x1-x3;
dist _predef_;
performance bufsize=1000000 details;

run;

When you do not specify the NTHREADS= option in the PERFORMANCE statement, the HPSEVERITY
procedure uses the value of the CPUCOUNT= system option to decide the number of threads to use in
single-machine mode. Setting the CPUCOUNT= option to ACTUAL before the PROC HPSEVERITY step
enables the procedure to use all the logical cores of the machine. The machine that is used to obtain these
results (and the earlier results in Output 23.6.1) has four physical CPU cores, each with a clock speed of 3.4

1334 4 Chapter 23: The HPSEVERITY Procedure

GHz. Hyperthreading is enabled on the CPUs to yield eight logical CPU cores; this number is confirmed by
the “Performance Information” table in Output 23.6.2. The results in the “Procedure Task Timing” table in
Output 23.6.2 indicate that the use of multithreading has improved the performance by reducing the time to
estimate parameters to around 5.7 minutes.

Output 23.6.2 Performance for Single-Machine Mode with Eight Threads
The HPSEVERITY Procedure

Performance Information
Execution Mode Single-Machine
Number of Threads 8

Procedure Task Timing

Task Seconds Percent
Load and Prepare Models 0.50 0.14%
Load and Prepare Data 1.03 0.29%
Initialize Parameters 0.67 0.19%
Estimate Parameters 343.44 97.74%
Compute Fit Statistics 576 1.64%

When a grid appliance is available, performance can be further improved by using more than one node in the
distributed mode of execution. Large data sets are usually predistributed on the grid appliance that hosts a
distributed database. In other words, large problems are best suited for the alongside-the-database model of
execution. However, for the purpose of illustration, this example assumes that the data set is available on the
client machine and is then distributed to the grid nodes by the HPSEVERITY procedure according to the
options that are specified in the PERFORMANCE statement.

The next few PROC HPSEVERITY steps are run on a grid appliance by varying the number of nodes and the
number of threads that are used within each node.

You can specify your distributed computing environment by using SAS environment variables or by specifying
options in the PERFORMANCE statement, or by a combination of these methods. For example, you can
submit the following statements to specify the appliance host (GRIDHOST= SAS environment variable)
and the installation location of shared libraries on the appliance (GRIDINSTALLLOC= SAS environment
variable):

/* Set the appliance host and installation location that are
appropriate for your distributed mode setup =*/

option set=GRIDHOST ="&GRIDHOST";

option set=GRIDINSTALLLOC="&GRIDINSTALLLOC";

To run the preceding statements successfully, you need to set the macro variables GRIDHOST and GRIDIN-
STALLLOC to resolve to appropriate values, or you can replace the references to macro variables with the
appropriate values. Alternatively, you can specify the HOST= and INSTALL= options in the PERFOR-
MANCE statement; this method is used in the PROC HPSEVERITY steps of this example. You can use other
SAS environment variables and PERFORMANCE statement options to describe your distributed computing
environment. For more information, see the section “PERFORMANCE Statement” on page 87.

Example 23.6: Benefits of Distributed and Multithreaded Computing 4 1335

To establish a reference point for the performance of one CPU of a grid node, the results of using only one
node of the grid appliance without any multithreading are presented first. The particular grid appliance that is
used to obtain these results has more than sixteen nodes. Each node has 8 dual-core CPUs with a clock speed
of 2.7 GHz. The following PROC HPSEVERITY step fits all the predefined distributions to the data in the
Work.Largedata data set:

/* Fit all predefined distributions on 1 grid node without
any multithreading */
proc hpseverity data=largedata criterion=aicc initsample (size=20000);
loss y / lt=threshold rc=limit;
scalemodel x1-x3;
dist _predef_;
performance nodes=1 nthreads=1 details
host="&GRIDHOST" install="&GRIDINSTALLLOC";
run;

The PERFORMANCE statement specifies that only one node be used to fit the models, with only one thread
of computation on that node. The “Performance Information” and “Procedure Task Timing” tables that
PROC HPSEVERITY creates are shown in Output 23.6.3. It takes around 33.5 minutes to complete the task
of estimating parameters. Note that this time is longer than the time taken for the single-machine mode with
one thread of computation, because the CPUs of an individual grid node are slower than the CPUs of the
machine that is used in single-machine mode. When the performance is measured, the grid node is shared
among multiple users, unlike the machine that is used in single-machine mode.

Output 23.6.3 Performance on One Grid Appliance Node with No Multithreading

Performance Information

Host Node << your grid host >>
Install Location << your grid install location >>
Execution Mode Distributed

Number of Compute Nodes 1
Number of Threads per Node 1

Procedure Task Timing

Task Seconds Percent
Load and Prepare Models 049 0.02%
Load and Prepare Data 0.92 0.05%
Initialize Parameters 1.03 0.05%
Estimate Parameters 2008.81 99.80%
Compute Fit Statistics 1.61 0.08%

The computations and time taken to fit each model are shown in the “Estimation Details” table of Out-
put 23.6.4, which is generated whenever you specify the DETAILS option in the PERFORMANCE statement.
This table can be useful for comparing the relative effort required to fit each model and drawing some broader
conclusions. For example, even if the Pareto distribution takes a larger number of iterations, function calls,
and gradient and Hessian updates than the gamma distribution, it takes less time to complete; this indicates
that the individual PDF and CDF computations of the gamma distribution are more expensive than those of
the Pareto distribution.

1336 4 Chapter 23: The HPSEVERITY Procedure

Output 23.6.4 Estimation Details

Estimation Details

Function Gradient Hessian Time
Distribution Converged Iterations Calls Updates Updates (Seconds)
Burr Yes 11 28 104 90 325.96
Exp Yes 4 12 27 20 29.56
Gamma Yes 6 16 44 35 722.06
Igauss Yes 4 16 27 20 215.40
Logn Yes 4 12 27 20 112.60
Pareto Yes 39 113 902 860 397.75
Gpd Yes 6 17 44 35 132.98
Weibull Yes 4 12 27 20 72.57

To obtain the next reference point for performance, the following PROC HPSEVERITY step specifies that 16
computation threads be used on one node of the grid appliance:

/* Fit all predefined distributions on 1 grid node with multithreading =/
proc hpseverity data=largedata criterion=aicc initsample(size=20000);

loss y / lt=threshold rc=limit;

scalemodel x1-x3;

dist _predef_;

performance nodes=1 nthreads=16 details

host="&GRIDHOST" install="&GRIDINSTALLLOC",;

run;

The performance tables that are created by the preceding statements are shown in Output 23.6.5. As the
“Procedure Task Timing” table shows, use of multithreading has improved the performance significantly
over that of the single-threaded case. Now, it takes around 2.9 minutes to complete the task of estimating
parameters.

Output 23.6.5 Performance Information with Multithreading but No Distributed Computing

Performance Information

Host Node << your grid host >>
Install Location << your grid install location >>
Execution Mode Distributed

Number of Compute Nodes 1
Number of Threads per Node 16

Procedure Task Timing

Task Seconds Percent
Load and Prepare Models 0.49 0.28%
Load and Prepare Data 0.51 0.29%
Initialize Parameters 091 0.52%
Estimate Parameters 173.34 98.38%

Compute Fit Statistics 0.94 0.53%

Example 23.6: Benefits of Distributed and Multithreaded Computing 4 1337

You can combine the power of multithreading and distributed computing by specifying that multiple nodes of
the grid be used to accomplish the task. The following PROC HPSEVERITY step specifies that 16 nodes of
the grid appliance be used:

/* Fit all predefined distributions with distributed computing and
multithreading within each node x/
proc hpseverity data=largedata criterion=aicc initsample(size=20000);
loss y / lt=threshold rc=limit;
scalemodel x1-x3;
dist _predef_;
performance nodes=16 nthreads=16 details
host="&GRIDHOST" install="&GRIDINSTALLLOC",;
run;

When the DATA= data set is local to the client machine, as it is in this example, you must specify a nonzero
value for the NODES= option in the PERFORMANCE statement in order to enable the distributed mode of
execution. In other words, for the distributed mode that is not executing alongside the database, omitting the
NODES-= option is equivalent to specifying NODES=0, which is single-machine mode.

The performance tables that are created by the preceding statements are shown in Output 23.6.6. If you
compare these tables to the tables in Output 23.6.3 and Output 23.6.5, you see that the task that would have
taken a long time with a single thread of execution on a single machine (over half an hour) can be performed
in a much shorter time (around 15 seconds) by using the computational resources of the grid appliance to
combine the power of multithreaded and distributed computing.

Output 23.6.6 Performance Information with Distributed Computing and Multithreading

Performance Information

Host Node << your grid host >>
Install Location << your grid install location >>
Execution Mode Distributed

Number of Compute Nodes 16
Number of Threads per Node 16

Procedure Task Timing

Task Seconds Percent
Load and Prepare Models 0.81 4.86%
Load and Prepare Data 0.04 0.25%
Initialize Parameters 0.71 4.24%
Estimate Parameters 14.52 86.62%
Compute Fit Statistics 0.68 4.03%

The machines that were used to obtain these performance results are relatively modest machines, and PROC
HPSEVERITY was run in a multiuser environment; that is, background processes were running in single-
machine mode or other users were using the grid in distributed mode. For time-critical applications, you can
use a larger, dedicated grid that consists of more powerful machines to achieve more dramatic performance
improvement.

1338 4 Chapter 23: The HPSEVERITY Procedure

Example 23.7: Estimating Parameters Using Cramér-von Mises Estimator

PROC HPSEVERITY enables you to estimate model parameters by minimizing your own objective function.
This example illustrates how you can use PROC HPSEVERITY to implement the Cramér-von Mises estimator.
Let F(y;; ®) denote the estimate of CDF at y; for a distribution with parameters ®, and let F,(y;) denote
the empirical estimate of CDF (EDF) at y; that is computed from a sample y;, 1 < i < N. Then, the
Cramér-von Mises estimator of the parameters is defined as

N
O = arg m@in Z(F(yi; ®) — Fu(y:))?

i=1

This estimator belongs to the class of minimum distance estimators. It attempts to estimate the parameters
such that the squared distance between the CDF and EDF estimates is minimized.

The following PROC HPSEVERITY step uses the Cramér-von Mises estimator to fit four candidate distribu-
tion models, including the LOGNGPD mixed-tail distribution model that was defined in “Example 23.3: Defin-
ing a Model for Mixed-Tail Distributions” on page 1320. The input sample is the same as is used in that
example.

/*——— Set the search path for functions defined with PROC FCMP ——-x%/
options cmplib=(work.sevexmpl) ;

[Hh———————e Fit LOGNGPD model with PROC HPSEVERITY by using —--——-——-
———————— the Cramer-von Mises minimum distance estimator ——————-x/
proc hpseverity data=testmixdist obj=cvmobj print=all;
loss y;
dist logngpd burr logn gpd;

* Cramer-von Mises estimator (minimizes the distance =*

* between parametric and nonparametric estimates) *;
cvmobj = _cdf (y);
cvmobj = (cvmobj —_edf (y))**2;

run;

The OBJ= option in the PROC HPSEVERITY statement specifies that the objective function cvmobj should
be minimized. The programming statements compute the contribution of each observation in the input data
set to the objective function cvmobj. The use of keyword functions _CDF_ and _EDF_ makes the program
applicable to all the distributions.

Some of the key results prepared by PROC HPSEVERITY are shown in Output 23.7.1. The “Model Selection”
table indicates that all models converged. When you specify a custom objective function, the default selection
criterion is the value of the custom objective function. The “All Fit Statistics” table indicates that LOGNGPD
is the best distribution according to all the statistics of fit. Comparing the fit statistics of Output 23.7.1 with
those of Output 23.3.1 indicates that the use of the Cramér-von Mises estimator has resulted in smaller
values for all the EDF-based statistics of fit for all the models, which is expected from a minimum distance
estimator.

Example 23.8: Defining a Finite Mixture Model That Has a Scale Parameter 4 1339

Output 23.7.1 Summary of Cramér-von Mises Estimation
The HPSEVERITY Procedure
Input Data Set

Name WORK.TESTMIXDIST
Label Lognormal Body-GPD Tail Sample

Model Selection
Distribution Converged cvmobj Selected

logngpd Yes 0.02694 Yes
Burr Yes 0.03325 No
Logn Yes 0.03633 No
Gpd Yes 2.96090 No

All Fit Statistics

Distribution cvmobj Likelizhlt-)ggl AIC AlCC BIC KS
logngpd 0.02694 * 419.49635 * 429.49635 * 430.13464 * 44252220 * 0.51332 *
Burr 0.03325 436.58823 442.58823 442.83823 450.40374 0.53084
Logn 0.03633 491.88659 495.88659 496.01030 501.09693 0.52469
Gpd 2.96090 560.35409 564.35409 564.47780 569.56443 2.99095

Note: The asterisk (*) marks the best model according to each column'’s criterion.

All Fit Statistics

Distribution AD CvM
logngpd 0.21563 * 0.03030 *
Burr 0.82875 0.03807
Logn 2.08312 0.04173
Gpd 15.51378 2.97806

Note: The asterisk (*) marks the best
model according to each column's
criterion.

Example 23.8: Defining a Finite Mixture Model That Has a Scale Parameter

A finite mixture model is a stochastic model that postulates that the probability distribution of the data
generation process is a mixture of a finite number of probability distributions. For example, when an
insurance company analyzes loss data from multiple policies that are underwritten in different geographic
regions, some regions might behave similarly, but the distribution that governs some regions might be
different from the distribution that governs other regions. Further, it might not be known which regions
behave similarly. Also, the larger amounts of losses might follow a different stochastic process from the
stochastic process that governs the smaller amounts of losses. It helps to model all policies together in order
to pool the data together and exploit any commonalities among the regions, and the use of a finite mixture
model can help capture the differences in distributions across regions and ranges of loss amounts.

1340 4 Chapter 23: The HPSEVERITY Procedure

Formally, if f; and F; denote the PDF and CDF, respectively, of component distribution i and p; represents
the mixing probability that is associated with component i, then the PDF and CDF of the finite mixture of K
distribution components are

K
f(:0,p) = pi fi(x: ©;)

i=1

K
F(x;0,p) = ZpiFi(X;G)i)

i=1

where ©; denotes the parameters of component distribution i and ® denotes the parameters of the mixture
distribution, which is a union of all the ®; parameters. p denotes the set of mixing probabilities. All mixing
probabilities must add up to 1 (ZiKzl pi =1).

You can define the finite mixture of a specific number of components and specific distributions for each of
the components by defining the FCMP functions for the PDF and CDF. However, in general, it is not possible
to fit a scale regression model by using any finite mixture distribution unless you take special care to ensure
that the mixture distribution has a scale parameter. This example provides a formulation of a two-component
finite mixture model that has a scale parameter.

To start with, each component distribution must have either a scale parameter or a log-transformed scale
parameter. Let 61 and 6, denote the scale parameters of the first and second components, respectively. Let
p1 = p be the mixing probability, which makes p, = 1 — p by using the constraint on p. The PDF of the
mixture of these two distributions can be written as

1

X — X
fx:01,00, 0, p) = 2 fi(C o) + — L f(2)

617 01 62 62
where ©; and ®, denote the sets of nonscale parameters of the first and second components, respectively,
and @ denotes a union of ®; and ®,. For the mixture to have the scale parameter 8, the PDF must be of the

form
1
0.9 p) = 2 (PAiG: @) + (1= p) fo(5: D)

where @', @/, and @/, denote the modified sets of nonscale parameters. One simple way to achieve this is
to make 0; = 6, = 0 and ® = ®; that is, you simply equate the scale parameters of both components
and keep the set of nonscale parameters unchanged. However, forcing the scale parameters to be equal in
both components is restrictive, because the mixture cannot model potential differences in the scales of the
two components. A better approach is to tie the scale parameters of the two components by a ratio such
that 6y = 0 and 6, = pf. If the ratio parameter p is estimated along with the other parameters, then the
mixture distribution becomes flexible enough to model the variations across the scale parameters of individual
components.

To summarize, the PDF and CDF are of the following form for the two-component mixture that has a scale
parameter:

f(x:0,p,®,p) = é (Pfl(%; @) + (1 p)fz(%;p, <I>z))

X X
F(x;0,p,®, p) = PFl(g; o)+ (1 - p)Fz(E;p, ®5)

Example 23.8: Defining a Finite Mixture Model That Has a Scale Parameter 4 1341

This can be generalized to a mixture of K components by introducing the K — 1 ratio parameters p; that
relate the scale parameters of each of the K components to the scale parameter 6 of the mixture distribution
as follows:

6 =96
0; = pif; i €[2,K]

In order to illustrate this approach, define a mixture of two lognormal distributions by using the following
PDF function:

f(x;pm, 01, p2, p2,02) _d=pr) exp —(log(x) — 1) I
R Y o1X 2w 20%
P —(log(x) — 1 — log(p2))?
02X 21 2022

You can verify that u serves as the log of the scale parameter 8 (1 = log(6)).

The following PROC FCMP steps encode this formulation in a distribution named SLOGNMIX?2 for use
with PROC HPSEVERITY:

/*— Define Mixture of 2 Lognormal Distributions with a Log-Scale Parameter —-x/
proc fcmp library=sashelp.svrtdist outlib=work.sevexmpl.models;
function slognmix2_description() $128;
return ("Mixture of two lognormals with a log-scale parameter Mu");
endsub;

function slognmix2_scaletransform() $8;
return ("LOG");
endsub;

function slognmix2_pdf (x, Mu, Sigmal, p2, Rho2, Sigma2);
Mul = Mu;
Mu2 = Mu + log(Rho2);
pdfl = logn_pdf (x, Mul, Sigmal);
pdf2 = logn_pdf(x, Mu2, Sigma2);
return ((1-p2)*pdfl + p2xpdf2);
endsub;
function slognmix2_ cdf (x, Mu, Sigmal, p2, Rho2, Sigma2);
Mul = Mu;
Mu2 = Mu + log(Rho2);
cdfl = logn_cdf(x, Mul, Sigmal);
cdf2 = logn_cdf(x, Mu2, Sigma2);
return ((1-p2)*cdfl + p2xcdf2);
endsub;
subroutine slognmix2_parminit (dim, x[*], nx[x], F[x], Ftype,

Mu, Sigmal, p2, Rho2, Sigma2);
outargs Mu, Sigmal, p2, Rho2, Sigma2;
array m[1l] / nosymbols;
p2 = 0.5;
Rho2 = 0.5;

1342 4 Chapter 23: The HPSEVERITY Procedure

median = svrtutil_percentile(0.5, dim, x, F, Ftype);
Mu = log(2*median/1.5);

call svrtutil rawmoments (dim, x, nx, 1, m);

1ml = log(m[1]);

/* Search Rho2 that makes log(sample mean) > Mu */
do while (1lml <= Mu and Rho2 < 1);
Rho2 = Rho2 + 0.01;
Mu = log(2*median/ (1+Rho2));
end;
if (Rho2 >= 1) then
/* If Mu cannot be decreased enough to make it less
than log(sample mean), then revert to Rho2=0.5.
That will set Sigmal and possibly Sigma2 to missing.
PROC HPSEVERITY replaces missing initial values with 0.001. =/
Mu = log(2*median/1.5);

Sigmal = sqrt(2.0*(log(m[1l])-Mu));
Sigma2 = sqrt(2.0* (log(m[1l])-Mu-log(Rho2)));
endsub;

subroutine slognmix2_lowerbounds (Mu, Sigmal, p2, Rho2, Sigma2);
outargs Mu, Sigmal, p2, Rho2, Sigma2;
Mu = .; /* Mu has no lower bound */
Sigmal = 0; /* Sigmal > 0 */
P2 =0; /* p2 > 0 %/
Rho2 = 0; /* Rho2 > 0 x/
Sigma2 = 0; /% Sigma2 > 0 */
endsub;

subroutine slognmix2_upperbounds (Mu, Sigmal, p2, Rho2, Sigma2);
outargs Mu, Sigmal, p2, Rho2, SigmaZ2;
Mu = .; /% Mu has no upper bound x*/
Sigmal = .; /% Sigmal has no upper bound */
P2 =1; /+* p2 <1 %/
Rho2 = 1; /* Rho2 < 1 x/
Sigma2 = .; /* Sigma2 has no upper bound */
endsub;

quit;
As shown in previous examples, an important aspect of defining a distribution for use with PROC HPSEVER-
ITY is the definition of the PARMINIT subroutine that initializes the parameters. For mixture distributions,
in general, the parameter initialization is a nontrivial task. For a two-component mixture, some simplifying
assumptions make the problem easier to handle. For the initialization of SLOGNMIX?2, the initial values of
p2 and p; are fixed at 0.5, and the following two simplifying assumptions are made:

e The median of the mixture is the average of the medians of the two components:

F71(0.5) = (exp(i1) + exp(i2))/2 = exp(u)(1 + p2)/2
Solution of this equation yields the value of w in terms of p, and the sample median.

e Each component has the same mean, which implies the following:

exp(it + 07/2) = exp(u + log(p2) + 03/2)

Example 23.8: Defining a Finite Mixture Model That Has a Scale Parameter 4 1343

If X; represents the random variable of component distribution i and X represents the random variable
of the mixture distribution, then the following equation holds for the raw moment of any order &:

K
E[X*1=Y" pE[X}]

i=1

This, in conjunction with the assumption on component means, leads to the equations

02

log(m1) = p + —-
O.2
log(m1) = u +log(p2) + 72

where m denotes the first raw moment of the sample. Solving these equations leads to the following
values of o1 and o05:

of = 2(log(my) —)
o3 = 2(log(my) — jt — log(p2))

Note that o has a valid value only if log(m1) > u. Among the many possible methods of ensuring
this condition, the SLOGNMIX2_PARMINIT subroutine uses the method of doing a linear search over

2.

Even when the preceding assumptions are not true for a given problem, they produce reasonable initial values
to help guide the nonlinear optimizer to an acceptable optimum if the mixture of two lognormal distributions
is indeed a good fit for your input data. This is illustrated by the results of the following steps that fit the
SLOGNMIX2 distribution to simulated data, which have different means for the two components (12.18 and
22.76, respectively), and the median of the sample (15.94) is not equal to the average of the medians of the
two components (7.39 and 20.09, respectively):

[*x———————— Simulate a lognormal mixture sample —————————- */
data testlognmix (keep=y);
call streaminit (12345);
Mul = 2;
Sigmal = 1;
i=0;
do j=1 to 2000;
y = exp(Mul) * rand('LOGNORMAL') *xSigmal;
output;
end;
Mu2 = 3;
Sigma2 = 0.5;
do j=1 to 3000;
y = exp(Mu2) * rand('LOGNORMAL') *xSigmaZ2;
output;
end;
run;

/*—— Fit and compare scale regression models with 2-component -——x%/
/*—— lognormal mixture and the standard lognormal distribution --*/
options cmplib=(work.sevexmpl) ;

1344 4 Chapter 23: The HPSEVERITY Procedure

proc hpseverity data=testlognmix print=all;
loss y;
dist slognmix2 logn;

run;

The comparison of the fit statistics of SLOGNMIX?2 and LOGN, as shown in Output 23.8.1, confirms that
the two-component mixture is certainly a better fit to these data than the single lognormal distribution.

Output 23.8.1 Comparison of Fitting One versus Two Lognormal Components to Mixture Data
The HPSEVERITY Procedure

All Fit Statistics

-2 Log
Distribution Likelihood AIC AICC BIC KS AD CvM
slognmix2 38343 * 38353 * 38353 * 38386 * 0.52221 *0.19843 * 0.02728 *
Logn 39073 39077 39077 39090 5.86522 66.93414 11.72703

Note: The asterisk (*) marks the best model according to each column'’s criterion.

The detailed results for the SLOGNMIX2 distribution are shown in Output 23.8.2. According to the “Initial
Parameter Values and Bounds” table, the initial value of p; is not 0.5, indicating that a linear search was
conducted to ensure log(m) > U.

Output 23.8.2 Detailed Estimation Results for the SLOGNMIX2 Distribution

The HPSEVERITY Procedure
slognmix2 Distribution

Distribution Information

Name slognmix2
Description Mixture of two lognormals with a log-scale parameter Mu
Distribution Parameters 5

Initial Parameter Values and Bounds

Initial Lower Upper
Parameter Value Bound Bound
Mu 2.92006 -Infty Infty
Sigma1 0.10455 1.05367E-8 Infty
P2 0.50000 1.05367E-8 1.00000

Rho2 0.72000 1.05367E-8 1.00000
Sigma2 0.81728 1.05367E-8 Infty

Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Optimization Summary
Optimization Technique Trust Region
Iterations 7
Function Calls 18
Log Likelihood -19171.5

Example 23.9: Predicting Mean and Value-at-Risk by Using Scoring Functions 4 1345

Output 23.8.2 continued

Parameter Estimates

Standard Approx
Parameter Estimate Error t Value Pr > |t
Mu 3.00922 0.01554 193.68 <.0001
Sigmat 0.49516 0.01451 34.13 <.0001
P2 0.40619 0.02600 15.62 <.0001
Rho2 037212 0.02038 18.26 <.0001

Sigma2 1.00019 0.02124 47.09 <.0001

By using the relationship that u, = @ + log(p2), you can see that the final parameter estimates are indeed
close to the true parameter values that were used to simulate the input sample.

Example 23.9: Predicting Mean and Value-at-Risk by Using Scoring Functions

If you work in the risk management department of an insurance company or a bank, then one of your primary
applications of severity loss distribution models is to predict the value-at-risk (VaR) so that there is a very
low probability of experiencing a loss value that is greater than the VaR. The probability level at which VaR
is measured is prescribed by industry regulations such as Basel III and Solvency II. The VaR level is usually
specified in terms of (1 — &), where @ € (0, 1) is the probability that a loss value exceeds the VaR. Typical
VaR levels are 0.95, 0.975, and 0.995.

In addition to predicting the VaR, which is regarded as an estimate of the worst-case loss, businesses are
often interested in predicting the average loss by estimating either the mean or median of the distribution.

The estimation of the mean and VaR combined with the scale regression model is very potent tool for
analyzing worst-case and average losses for various scenarios. For example, if the regressors that are used in
a scale regression model represent some key macroeconomic and operational indicators, which are widely
referred to as key risk indicators (KRIs), then you can analyze the VaR and mean loss estimates over various
values for the KRIs to get a more comprehensive picture of the risk profile of your organization across various
market and internal conditions.

This example illustrates the use of scoring functions to simplify the process of predicting the mean and VaR
of scale regression models.

To compute the mean, you need to ensure that the function to compute the mean of a distribution is available
in the function library. If you define and fit your own distribution and you want to compute its mean, then you
need to use the FCMP procedure to define that function and you need to use the CMPLIB= system option to
specify the location of that function. For your convenience, the dist. MEAN function (which computes the
mean of the dist distribution) is already defined in the Sashelp.Svrtdist library for each of the 10 predefined
distributions. The following statements display the definitions of MEAN functions of all distributions. Note
that the MEAN functions for the Burr, Pareto, and generalized Pareto distributions check the existence of the
first moment for specified parameter values.

[h————————— Definitions distribution functions that compute the mean —-————————- */
proc fcmp library=sashelp.svrtdist outlib=work.means.scalemod;
function BURR_MEAN (x, Theta, Alpha, Gamma);
if not (Alpha * Gamma > 1) then
return (.); /* first moment does not exist */
return (Thetaxgamma(l + 1/Gamma)*gamma (Alpha - 1/Gamma)/gamma (Alpha));
endsub;

1346 4 Chapter 23: The HPSEVERITY Procedure

function EXP_MEAN (x, Theta);
return (Theta);

endsub;

function GAMMA_MEAN (x, Theta, Alpha);
return (ThetaxAlpha);

endsub;

function GPD_MEAN (x, Theta, Xi);
if not(Xi < 1) then

return (.); /* first moment does not exist */

return (Theta/(1 - Xi));

endsub;

function IGAUSS_MEAN (x, Theta, Alpha);
return (Theta);

endsub;

function LOGN_MEAN (x, Mu, Sigma);
return (exp(Mu + Sigma*Sigma/2.0));

endsub;

function PARETO_MEAN (x, Theta, Alpha);
if not (Alpha > 1) then
return (.); /* first moment does not exist */
return (Theta/(Alpha - 1));
endsub;
function STWEEDIE MEAN (x, Theta, Lambda, P);
return (Theta* Lambda * (2 — P) / (P - 1));
endsub;
function TWEEDIE_MEAN (x, P, Mu, Phi);
return (Mu);
endsub;
function WEIBULL MEAN (x, Theta, Tau);
return (Thetaxgamma(l + 1/Tau));
endsub;
quit;
For your further convenience, the dist QUANTILE function (which computes the quantile of the dist
distribution) is also defined in the Sashelp.Svrtdist library for each of the 10 predefined distributions.
Because the MEAN and QUANTILE functions satisfy the definition of a distribution function as described
in the section “Formal Description” on page 1292, you can submit the following PROC HPSEVERITY
step to fit all regression-friendly predefined distributions and generate the scoring functions for the MEAN,
QUANTILE, and other distribution functions:

[=== Fit all distributions and generate scoring functions —--—-—--—- */
proc hpseverity data=test_sev9 outest=est print=all;
loss y;

scalemodel x1-x5;

dist _predefined_stweedie;

outscorelib outlib=scorefuncs commonpackage;
run;

Example 23.9: Predicting Mean and Value-at-Risk by Using Scoring Functions 4 1347

The SAS statements that simulate the sample in the Work.Test_sev9 data set are available in the PROC
HPSEVERITY sample program hsevex09.sas. The OUTLIB= option in the OUTSCORELIB statement
requests that the scoring functions be written to the Work.Scorefuncs library, and the COMMONPACKAGE
option in the OUTSCORELIB statement requests that all the functions be written to the same package. Upon
completion, PROC HPSEVERITY sets the CMPLIB system option to the following value:

(sashelp.svrtdist work.scorefuncs)

The “All Fit Statistics” table in Output 23.9.1 shows that the lognormal distribution’s scale model is the best
and the inverse Gaussian’s scale model is a close second according to the likelihood-based statistics.

You can examine the scoring functions that are written to the Work.Scorefuncs library by using the FCMP
Function Editor, which is available in the Display Manager session of Base SAS when you select Solu-
tions—Analysis from the main menu. For example, PROC HPSEVERITY automatically generates and
submits the following PROC FCMP statements to define the scoring functions SEV_MEAN_LOGN and
SEV_QUANTILE_IGAUSS:

proc fcmp library=(sashelp.svrtdist) outlib=work.scorefuncs.sevfit;
function SEV_MEAN LOGN(y, x{=*});
logscale=0;

logscale = _logscale_ + (7.64722278930350E-01 » x{1});
logscale = _logscale_ + (2.99209540369860E+00 » x{2});
logscale = _logscale_ + (-1.00788916253430E+00 » x{3});
logscale = _logscale_ + (2.58883602184890E-01 » x{4});
logscale = _logscale_ + (5.00927479793970E+00 » x{5});
logscale = _logscale_ + (9.95078833050690E-01);
return (LOGN_MEAN(y, _logscale_, 2.31592981635590E-01));
endsub;
function SEV_QUANTILE_TIGAUSS(y, x{*});
logscale=0;
logscale = _logscale_ + (7.64581738373520E-01 * x{1});
logscale = _logscale_ + (2.99159055015310E+00 » x{2});
logscale = _logscale_ + (-1.00793496641510E+00 » x{3});
logscale = _logscale_ + (2.58870460543840E-01 » x{4});
logscale = _logscale_ + (5.00996884646730E+00 x x{5});
scale = 2.77854870591020E+00 * exp(_logscale_);
return (IGAUSS_QUANTILE(y, _scale_, 1.81511227238720E+01));
endsub;

quit;

1348 4 Chapter 23: The HPSEVERITY Procedure

Output 23.9.1 Comparison of Fitted Scale Models for Mean and VaR lllustration
The HPSEVERITY Procedure

All Fit Statistics

-2 Log
Distribution Likelihood AIC AlCC BIC KS AD
stweedie 460.65756 476.65756 476.95083 510.37442 10.44549 64571
Burr 451.42238 467.42238 467.71565 501.13924 10.32782 42254
Exp 1515 1527 1527 1552 8.85827 29917
Gamma 448.28222 462.28222 462.50986 491.78448 10.42272 63712
Igauss 444.44512 458.44512 458.67276 487.94738 10.33028 83195
Logn 444.43670 * 458.43670 * 458.66434 * 487.93895 * 10.37035 68631
Pareto 1515 1529 1529 1559 8.85775 * 29916 *
Gpd 1515 1529 1529 1559 8.85827 29917
Weibull 527.28676 541.28676 541.51440 570.78902 10.48084 72814

Note: The asterisk (*) marks the best model according to each column'’s criterion.

All Fit Statistics

Distribution CvM
stweedie 37.07708
Burr 37.19808
Exp 23.98267
Gamma 37.19450
Igauss 37.30880
Logn 37.18553
Pareto 23.98149 *
Gpd 23.98267
Weibull 36.36039

Note: The asterisk (*)
marks the best model
according to each column's
criterion.

PROC HPSEVERITY detects all the distribution functions that are available in the current CMPLIB= search
path (which always includes the Sashelp.Svrtdist library) for the distributions that you specify in the DIST
statement, and it creates the corresponding scoring functions. You can define any distribution function that
has the desired signature to compute an estimate of your choice, include its library in the CMPLIB= system
option, and then specify the OUTSCORELIB statement to generate the corresponding scoring functions.
Specifying the COMMONPACKAGE option in the OUTSCORELIB statement causes the name of the
scoring function to take the form SEV_function-suffix_dist. If you do not specify the COMMONPACKAGE
option, PROC HPSEVERITY creates a scoring function named SEV_function-suffix in a package named dist.
You can invoke functions from a specific package only inside the FCMP procedure. If you want to invoke the
scoring functions from a DATA step, then it is recommended that you specify the COMMONPACKAGE
option when you specify multiple distributions in the DIST statement.

To illustrate the use of scoring functions, let Work.Reginput contain the scoring data, where the values of
regressors in each observation define one scenario. Scoring functions make it very easy to compute the mean
and VaR of each distribution’s scale model for each of the scenarios, as the following steps illustrate for the
lognormal and inverse Gaussian distributions:

Example 23.9: Predicting Mean and Value-at-Risk by Using Scoring Functions 4 1349

/*——— Set VaR level —-——x/
%$let varLevel=0.975;

/*——— Compute scores (mean and var) for the —_—
——- scoring data by using the scoring functions —-—-x%/
data scores;
array x{x} x1-x5;
set reginput;

igauss_mean = sev_mean_igauss(., x);

igauss_var = sev_quantile_igauss (&varlevel, x);

logn_mean = sev_mean_logn(., X);

logn_var = sev_quantile_logn (&varLevel, x);
run;

The preceding steps use a VaR level of 97.5%.

The following DATA step accomplishes the same task by reading the parameter estimates that were written
to the Work.Est data set by the previous PROC HPSEVERITY step:

/*——— Compute scores (mean and var) for the —_—
—-—— scoring data by using the OUTEST= data set —-—-x/
data scoresWithOutest (keep=x1-x5 igauss_mean igauss_var logn_mean logn_var);
array _x_{*} x1-x5;
array _xparmlIgauss_{5} _temporary_;
array _xparmLogn_{5} _temporary_;

retain _ThetaO_ AlphaO;
retain _MuO_ Sigma0;
*——— read parameter estimates for igauss and logn models ———=x;
if (_n_ = 1) then do;
set est (where=(upcase (_MODEL_)='IGAUSS' and _TYPE_='EST'));
Theta0 = Theta; Alpha0 = Alpha;
do _i =1 to dim(_x);
if (x_(_i_) = .R) then _xparmIgauss_(_i_) = 0;
else _xparmIgauss_(_i) = _x_ (i);
end;

set est (where=(upcase(_MODEL_)='LOGN' and _TYPE_='EST'));

MuO = Mu; Sigma0O = Sigma;

do _i_=1 to dim(_x_);
if (x_(_i_) = .R) then _xparmlLogn_(_i_) = 0;
else _xparmlogn_(_i_) = _x (_i_);

end;

end;
set reginput;

*——— predict mean and VaR for inverse Gaussian --—-x%;
* first compute X'xbeta for inverse Gaussian x;
xbeta = 0.0;
do _i =1 to dim(_x);

xbeta = _xbeta_ + _xparmIgauss_(_i_) » _x_ (_i_);
end;

1350 4 Chapter 23: The HPSEVERITY Procedure

* now compute scale for inverse Gaussian *;

SCALE = _Thetal_ » exp(_xbeta);

igauss_mean = igauss_mean(., _SCALE_, Alpha0);

igauss_var = igauss_quantile(&varLevel, _SCALE_, AlphaO);

*——— predict mean and VaR for lognormal —-———%;
* first compute X'xbeta for lognormalx;
xbeta = 0.0;

do _i =1 to dim(_x_);
xbeta = _xbeta_ + _xparmLogn_(_i_) » _x (_i_);
end;
* now compute Mu=log(scale) for lognormal =*;
MU = _MuO_ + _xbeta_;
logn_mean = logn_mean(., _MU_, SigmaO);
logn_var = logn_quantile(&varLevel, _MU_, Sigma0);
run;

The “Values Comparison Summary” table in Output 23.9.2 shows that the difference between the estimates
that are produced by both methods is within the acceptable machine precision. However, the comparison
of the DATA step complexity of each method clearly shows that the method that uses the scoring functions
is much easier because it saves a lot of programming effort. Further, new distribution functions, such as
the dist_ MEAN functions that are illustrated here, are automatically discovered and converted to scoring
functions by PROC HPSEVERITY. That enables you to focus your efforts on writing the distribution function
that computes your desired score, which needs to be done only once. Then, you can create and use the
corresponding scoring functions multiple times with much less effort.

Output 23.9.2 Comparison of Mean and VaR Estimates of Two Scoring Methods

The COMPARE Procedure
Comparison of WORK.SCORESWITHOUTEST with WORK.SCORES
(Method=RELATIVE(0.0222), Criterion=1.0E-12)

NOTE: All values compared are within the equality criterion used. However, 40
of the values compared are not exactly equal.

Example 23.10: Scale Regression with Rich Regression Effects
This example illustrates the use of regression effects that include CLASS variables and interaction effects.

Consider that you, as an actuary at an automobile insurance company, want to evaluate the effect of certain
external factors on the distribution of the severity of the losses that your policyholders incur. Such analysis
can help you determine the relative differences in premiums that you should charge to policyholders who
have different characteristics. Assume that when you collect and record the information about each claim,
you also collect and record some key characteristics of the policyholder and the vehicle that is involved in
the claim. This example focuses on the following five factors: type of car, safety rating of the car, gender
of the policyholder, education level of the policyholder, and annual household income of the policyholder
(which can be thought of as a proxy for the luxury level of the car). Let these regressors be recorded in the
variables CarType (1: sedan, 2: sport utility vehicle), CarSafety (scaled to be between 0 and 1, the safest
being 1), Gender (1: female, 2: male), Education (1: high school graduate, 2: college graduate, 3: advanced
degree holder), and Income (scaled by a factor of 1/100,000), respectively. Let the historical data about the
severity of each loss be recorded in the LossAmount variable of the Work.Losses data set. Let the data set

Example 23.10: Scale Regression with Rich Regression Effects 4 1351

also contain two additional variables, Deductible and Limit, that record the deductible and ground-up loss
limit provisions, respectively, of the insurance policy that the policyholder has. The limit on ground-up loss
is usually derived from the payment limit that a typical insurance policy states. Deductible serves as the
left-truncation variable, and Limit serves as the right-censoring variable. The SAS statements that simulate an
example of the Work.Losses data set are available in the PROC HPSEVERITY sample program hsevex10.sas.

The variables CarType, Education, and Gender each contain a known, finite set of discrete values. By
specifying such variables as classification variables, you can separately identify the effect of each level of the
variable on the severity distribution. For example, you might be interested in finding out how the magnitude
of loss for a sport utility vehicle (SUV) differs from that for a sedan. This is an example of a main effect.
You might also want to evaluate how the distribution of losses that are incurred by a policyholder with a
college degree who drives a SUV differs from that of a policyholder with an advanced degree who drives
a sedan. This is an example of an interaction effect. You can include various such types of effects in the
scale regression model. For more information about the effect types, see the section “Specification and
Parameterization of Model Effects” on page 1253. Analyzing such a rich set of regression effects can help
you make more accurate predictions about the losses that a new applicant with certain characteristics might
incur when he or she requests insurance for a specific vehicle, which can further help you with ratemaking
decisions.

The following PROC HPSEVERITY step fits the scale regression model with a lognormal distribution to data
in the Work.Losses data set, and stores the model and parameter estimate information in the Work.EstStore
item store:

/* Fit scale regression model with different types of regression effects x*/
proc hpseverity data=losses outstore=eststore
print=all plots=none;

loss lossAmount / lt=deductible rc=limit;

class carType gender education;

scalemodel carType gender carSafety income education*carType

income*gender carSafetyxincome;

dist logn;

run;

The SCALEMODEL statement in the preceding PROC HPSEVERITY step includes two main effects
(carType and gender), two singleton continuous effects (carSafety and income), one interaction effect
(education*carType), one continuous-by-class effect (income*gender), and one polynomial continuous effect

(carSafety*income). For more information about effect types, see Table 23.9, “GLM Parameterization of
Classification Variables and Effects,” on page 1256.

When you specify a CLASS statement, it is recommended that you observe the “Class Level Information”
table. For this example, the table is shown in Output 23.10.1. Note that if you specify BY-group processing,
then the class level information might change from one BY group to the next, potentially resulting in a
different parameterization for each BY group.

Output 23.10.1 Class Level Information Table
The HPSEVERITY Procedure

Class Level Information

Class Levels Values
carType 2 SUV Sedan
gender 2 Female Male

education 3 AdvancedDegree College High School

1352 4 Chapter 23: The HPSEVERITY Procedure

The regression modeling results for the lognormal distribution are shown in Output 23.10.2. The “Initial
Parameter Values and Bounds” table is important especially because the preceding PROC HPSEVERITY
step uses the default GLM parameterization, which is a singular parameterization—that is, it results in some
redundant parameters. As shown in the table, the redundant parameters correspond to the last level of each
classification variable; this correspondence is a defining characteristic of a GLM parameterization. An
alternative would be to use the reference parameterization by specifying the PARAM=REFERENCE option
in the CLASS statement, which does not generate redundant parameters for effects that contain CLASS
variables and enables you to specify a reference level for each CLASS variable.

Output 23.10.2 Initial Values for the Scale Regression Model with Class and Interaction Effects

Initial Parameter Values and Bounds

Initial Lower Upper
Parameter Value Bound Bound
Mu 4.88526 -709.78271 709.78271
Sigma 0.51283 1.05367E-8 Infty
carType SUV 0.56953 -709.78271 709.78271
carType Sedan Redundant
gender Female 0.41154 -709.78271 709.78271
gender Male Redundant
carSafety -0.72742 -709.78271 709.78271
income -0.33216 -709.78271 709.78271
carType*education SUV AdvancedDegree 0.31686 -709.78271 709.78271
carType*education SUV College 0.66361 -709.78271 709.78271
carType*education SUV High School Redundant
carType*education Sedan AdvancedDegree -0.47841 -709.78271 709.78271
carType*education Sedan College -0.25968 -709.78271 709.78271
carType*education Sedan High School Redundant
income*gender Female -0.02112 -709.78271 709.78271
income*gender Male Redundant
carSafety*income 0.13084 -709.78271 709.78271

The convergence and optimization summary information in Output 23.10.3 indicates that the scale regression
model for the lognormal distribution has converged with the default optimization technique in five iterations.

Output 23.10.3 Optimization Summary for the Scale Regression Model with Class and Interaction Effects

Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Optimization Summary
Optimization Technique Trust Region

Iterations 5
Function Calls 14
Log Likelihood -8286.8

The “Parameter Estimates” table in Output 23.10.4 shows the distribution parameter estimates and estimates
for various regression effects. You can use the estimates for effects that contain CLASS variables to infer the
relative influence of various CLASS variable levels. For example, on average, the magnitude of losses that
are incurred by the female drivers is exp(0.44145) ~ 1.56 times greater than that of male drivers, and an

References 4 1353

SUV driver with an advanced degree incurs a loss that is on average exp(0.39393)/ exp(—0.35210) ~ 2.11
times greater than the loss that a college-educated sedan driver incurs. Neither the continuous-by-class effect
income*gender nor the polynomial continuous effect carSafety*income is significant in this example.

Output 23.10.4 Parameter Estimates for the Scale Regression with Class and Interaction Effects

Parameter Estimates

Standard Approx
Parameter Estimate Error t Value Pr > |t
Mu 5.08874 0.05768 88.23 <.0001
Sigma 0.55774 0.01119 49.86 <.0001
carType SUV 0.62459 0.04452 14.03 <.0001
gender Female 0.44145 0.04885 9.04 <.0001
carSafety -0.82942 0.08371 -9.91 <.0001
income -0.35212 0.07657 -4.60 <.0001
carType*education SUV AdvancedDegree 0.39393 0.07351 5.36 <.0001
carType*education SUV College 0.76532 0.05723 13.37 <.0001
carType*education Sedan AdvancedDegree -0.61064 0.05387 -11.34 <.0001
carType*education Sedan College -0.35210 0.03942 -8.93 <.0001
income*gender Female -0.01486 0.06629 -0.22 0.8226
carSafety*income 0.07045 0.11447 0.62 0.5383

If you want to update the model when new claims data arrive, then you can potentially speed up the estimation
process by specifying the OUTSTORE= item store that is created by the preceding PROC HPSEVERITY
step as an INSTORE= item store in a new PROC HPSEVERITY step as follows:

/* Refit scale regression model on new data different types of regression effects x*/
proc hpseverity data=withNewLosses instore=eststore print=all plots=all;

loss lossAmount / lt=deductible rc=limit;

class carType gender education;

scalemodel carType gender carSafety income education*carType

income*gender carSafetyxincome;

dist logn;

run;

PROC HPSEVERITY uses the parameter estimates in the INSTORE= item store to initialize the distribution
and regression parameters.

References

D’ Agostino, R. B., and Stephens, M., eds. (1986). Goodness-of-Fit Techniques. New York: Marcel Dekker.

Danielsson, J., de Haan, L., Peng, L., and de Vries, C. G. (2001). “Using a Bootstrap Method to Choose the
Sample Fraction in Tail Index Estimation.” Journal of Multivariate Analysis 76:226-248.

Dunn, P. K., and Smyth, G. K. (2005). “Series Evaluation of Tweedie Exponential Dispersion Model
Densities.” Statistics and Computing 15:267-280.

1354 4 Chapter 23: The HPSEVERITY Procedure

Frydman, H. (1994). “A Note on Nonparametric Estimation of the Distribution Function from Interval-
Censored and Truncated Observations.” Journal of the Royal Statistical Society, Series B 56:71-74.

Gentleman, R., and Geyer, C. J. (1994). “Maximum Likelihood for Interval Censored Data: Consistency and
Computation.” Biometrika 81:618-623.

Greenwood, M. (1926). “The Natural Duration of Cancer.” In Reports of Public Health and Related Subjects,
vol. 33, 1-26. London: Her Majesty’s Stationery Office.

Hill, B. M. (1975). “A Simple General Approach to Inference about the Tail of a Distribution.” Annals of
Statistics 3:1163-1173.

Jorgensen, B. (1987). “Exponential Dispersion Models (with Discussion).” Journal of the Royal Statistical
Society, Series B 49:127-162.

Kaplan, E. L., and Meier, P. (1958). “Nonparametric Estimation from Incomplete Observations.” Journal of
the American Statistical Association 53:457-481.

Klein, J. P., and Moeschberger, M. L. (1997). Survival Analysis: Techniques for Censored and Truncated
Data. New York: Springer-Verlag.

Klugman, S. A., Panjer, H. H., and Willmot, G. E. (1998). Loss Models: From Data to Decisions. New York:
John Wiley & Sons.

Koziol, J. A., and Green, S. B. (1976). “A Cramér—von Mises Statistic for Randomly Censored Data.”
Biometrika 63:466-474.

Lai, T. L., and Ying, Z. (1991). “Estimating a Distribution Function with Truncated and Censored Data.”
Annals of Statistics 19:417-442.

Lynden-Bell, D. (1971). “A Method of Allowing for Known Observational Selection in Small Samples
Applied to 3CR Quasars.” Monthly Notices of the Royal Astronomical Society 155:95-118.

Searle, S. R. (1971). Linear Models. New York: John Wiley & Sons.

Turnbull, B. W. (1976). “The Empirical Distribution Function with Arbitrarily Grouped, Censored, and
Truncated Data.” Journal of the Royal Statistical Society, Series B 38:290-295.

Tweedie, M. C. K. (1984). “An Index Which Distinguishes between Some Important Exponential Families.”
In Statistics: Applications and New Directions—Proceedings of the Indian Statistical Institute Golden
Jubilee International Conference, edited by J. K. Ghosh, and J. Roy, 579-604. Calcutta: Indian Statistical
Institute.

Subject Index

BY groups
HPSEVERITY procedure, 1217

censoring and truncation
HPSEVERITY procedure, 1240

defining a custom objective function
HPSEVERITY procedure, 1298

defining a custom probability distribution
HPSEVERITY procedure, 1273

empirical distribution function
HPSEVERITY procedure, 1260

fitting custom probability distributions
HPSEVERITY procedure, 1220

HPSEVERITY procedure
BY groups, 1217
censoring and truncation, 1240

defining a custom objective function, 1298
defining a custom probability distribution, 1273

empirical distribution function, 1260
ODS graph names, 1309

ODS table names, 1306

predefined distributions, 1230
predefined utility functions, 1285
probability of observability, 1241
scale regression model, 1245
scoring functions, 1290

statistics of fit, 1266

Tweedie distribution, 1232

Kaplan-Meier’s EDF estimator
HPSEVERITY procedure, 1262

loss distribution modeling
HPSEVERITY procedure, 1194

modified Kaplan-Meier’s EDF estimator
HPSEVERITY procedure, 1262

ODS graph names

HPSEVERITY procedure, 1309
ODS table names

HPSEVERITY procedure, 1306

probability of observability
HPSEVERITY procedure, 1241

scale regression model

HPSEVERITY procedure, 1245
scoring functions

HPSEVERITY procedure, 1290
statistics of fit

HPSEVERITY procedure, 1266

Turnbull’s EDF estimator
HPSEVERITY procedure, 1263
Tweedie distribution
HPSEVERITY procedure, 1232

Syntax Index

BY statement
HPSEVERITY procedure, 1217

CLASS statement

HPSEVERITY procedure, 1218
COMMONPACKAGE option

OUTSCORELIB statement (HPSEVERITY),

1226

COVOUT option

PROC HPSEVERITY statement, 1209
CRITERION= option

PROC HPSEVERITY statement, 1214

DATA= option

PROC HPSEVERITY statement, 1209
DESCENDING option

CLASS statement (HPSEVERITY), 1218
DFMIXTURE-= option

SCALEMODEL statement (HPSEVERITY),

1228

DIST statement

HPSEVERITY procedure, 1220

EDFALPHA= option

PROC HPSEVERITY statement, 1209
EMPIRICALCDF= option

PROC HPSEVERITY statement, 1215

HPSEVERITY procedure, 1206
CLASS statement, 1218
DIST statement, 1220
LOSS statement, 1222
NLOPTIONS statement, 1224
OUTSCORELIB statement, 1225
PERFORMANCE statement, 1227
SCALEMODEL statement, 1227
syntax, 1206
WEIGHT statement, 1229
HPSEVERITY procedure, CLASS statement
DESCENDING option, 1218
MISSING option, 1219
ORDER= option, 1218
PARAM-= option, 1220
REF= option, 1219
TRUNCATE-= option, 1220
HPSEVERITY procedure, DIST statement
INIT= option, 1221
LISTONLY option, 1221
VALIDATEONLY option, 1222

HPSEVERITY procedure, LOSS statement
LEFTCENSORED-= option, 1222
LEFTTRUNCATED= option, 1223
PROBOBSERVED-= option, 1223
RIGHTCENSORED= option, 1223
RIGHTTRUNCATED-= option, 1224

HPSEVERITY procedure, OUTSCORELIB statement
COMMONPACKAGE option, 1226
OUTBYID= option, 1226
OUTLIB= option, 1225

HPSEVERITY procedure, PROC HPSEVERITY

statement, 1209
COVOUT option, 1209
CRITERION= option, 1214
DATA= option, 1209
EDF=AUTO option, 1215
EDF=KAPLANMEIER option, 1215
EDF=MODIFIEDKM option, 1216
EDF=NOTURNBULL option, 1216
EDF=STANDARD option, 1216
EDF=TURNBULL option, 1216
EMPIRICALCDF= option, 1215
INEST= option, 1209
INITSAMPLE option, 1209
INSTORE= option, 1210
NAMELEN= option, 1210
NOCLPRINT option, 1211
NOPRINT option, 1211
OBJECTIVE= option, 1217
OUTCDF= option, 1211
OUTEST= option, 1211
OUTMODELINFO= option, 1211
OUTSTAT= option, 1211
OUTSTORE-= option, 1211
PLOTS= option, 1212
PRINT= option, 1213
VARDEF-= option, 1214

HPSEVERITY procedure, SCALEMODEL statement
DFMIXTURE-= option, 1228
OFFSET= option, 1229

INEST= option

PROC HPSEVERITY statement, 1209
INIT= option

DIST statement (HPSEVERITY), 1221
INITSAMPLE option

PROC HPSEVERITY statement, 1209
INSTORE-= option

PROC HPSEVERITY statement, 1210

LEFTCENSORED-= option

LOSS statement (HPSEVERITY), 1222
LEFTTRUNCATED= option

LOSS statement (HPSEVERITY), 1223
LISTONLY option

DIST statement (HPSEVERITY), 1221
LOSS statement

HPSEVERITY procedure, 1222

MISSING option
CLASS statement (HPSEVERITY), 1219

NAMELEN= option

PROC HPSEVERITY statement, 1210
NLOPTIONS statement

HPSEVERITY procedure, 1224
NOCLPRINT option

PROC HPSEVERITY statement, 1211
NOPRINT option

PROC HPSEVERITY statement, 1211

OBJECTIVE= option
PROC HPSEVERITY statement, 1217
OFFSET= option
SCALEMODEL statement (HPSEVERITY),
1229
ORDER= option
CLASS statement (HPSEVERITY), 1218
OUTBYID= option
OUTSCORELIB statement (HPSEVERITY),
1226
OUTCDF= option
PROC HPSEVERITY statement, 1211
OUTEST= option
PROC HPSEVERITY statement, 1211
OUTLIB= option
OUTSCORELIB statement (HPSEVERITY),
1225
OUTMODELINFO= option
PROC HPSEVERITY statement, 1211
OUTSCORELIB statement
HPSEVERITY procedure, 1225
OUTSTAT= option
PROC HPSEVERITY statement, 1211
OUTSTORE= option
PROC HPSEVERITY statement, 1211

PARAM-= option

CLASS statement (HPSEVERITY), 1220
PERFORMANCE statement

HPSEVERITY procedure, 1227
PLOTS= option

PROC HPSEVERITY statement, 1212

PRINT= option

PROC HPSEVERITY statement, 1213
PROBOBSERVED= option

LOSS statement (HPSEVERITY), 1223
PROC HPSEVERITY statement, 1209

REF= option

CLASS statement (HPSEVERITY), 1219
RIGHTCENSORED= option

LOSS statement (HPSEVERITY), 1223
RIGHTTRUNCATED-= option

LOSS statement (HPSEVERITY), 1224

SCALEMODEL statement
HPSEVERITY procedure, 1227

TRUNCATE-= option
CLASS statement (HPSEVERITY), 1220

VALIDATEONLY option

DIST statement (HPSEVERITY), 1222
VARDEF-= option

PROC HPSEVERITY statement, 1214

WEIGHT statement
HPSEVERITY procedure, 1229

	The HPSEVERITY Procedure
	Overview: HPSEVERITY Procedure
	Getting Started: HPSEVERITY Procedure
	A Simple Example of Fitting Predefined Distributions
	An Example with Left-Truncation and Right-Censoring
	An Example of Modeling Regression Effects

	Syntax: HPSEVERITY Procedure
	Functional Summary
	PROC HPSEVERITY Statement
	BY Statement
	CLASS Statement
	DIST Statement
	LOSS Statement
	NLOPTIONS Statement
	OUTSCORELIB Statement
	PERFORMANCE Statement
	SCALEMODEL Statement
	WEIGHT Statement
	Programming Statements

	Details: HPSEVERITY Procedure
	Predefined Distributions
	Censoring and Truncation
	Parameter Estimation Method
	Parameter Initialization
	Estimating Regression Effects
	Levelization of Classification Variables
	Specification and Parameterization of Model Effects
	Empirical Distribution Function Estimation Methods
	Statistics of Fit
	Distributed and Multithreaded Computation
	Defining a Severity Distribution Model with the FCMP Procedure
	Predefined Utility Functions
	Scoring Functions
	Custom Objective Functions
	Input Data Sets
	Output Data Sets
	Displayed Output
	ODS Graphics

	Examples: HPSEVERITY Procedure
	Example 23.1: Defining a Model for Gaussian Distribution
	Example 23.2: Defining a Model for the Gaussian Distribution with a Scale Parameter
	Example 23.3: Defining a Model for Mixed-Tail Distributions
	Example 23.4: Fitting a Scaled Tweedie Model with Regressors
	Example 23.5: Fitting Distributions to Interval-Censored Data
	Example 23.6: Benefits of Distributed and Multithreaded Computing
	Example 23.7: Estimating Parameters Using Cramér-von Mises Estimator
	Example 23.8: Defining a Finite Mixture Model That Has a Scale Parameter
	Example 23.9: Predicting Mean and Value-at-Risk by Using Scoring Functions
	Example 23.10: Scale Regression with Rich Regression Effects

	References

	Subject Index
	Syntax Index

