
SAS/ETS® 14.1 User’s Guide
The EXPAND Procedure

This document is an individual chapter from SAS/ETS® 14.1 User’s Guide.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2015. SAS/ETS® 14.1 User’s Guide. Cary, NC:
SAS Institute Inc.

SAS/ETS® 14.1 User’s Guide

Copyright © 2015, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute
Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time
you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is
illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic
piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software
developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or
disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as
applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S.
federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision
serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The
Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

July 2015

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Chapter 16

The EXPAND Procedure

Contents
Overview: EXPAND Procedure . 884
Getting Started: EXPAND Procedure . 885

Converting to Higher Frequency Series . 885
Aggregating to Lower Frequency Series . 885
Combining Time Series with Different Frequencies 886
Interpolating Missing Values . 886
Requesting Different Interpolation Methods . 887
Using the ID Statement . 888
Specifying Observation Characteristics . 888
Converting Observation Characteristics . 889
Creating New Variables . 889
Transforming Series . 890

Syntax: EXPAND Procedure . 891
Functional Summary . 891
PROC EXPAND Statement . 892
BY Statement . 895
CONVERT Statement . 895
ID Statement . 896

Details: EXPAND Procedure . 897
Frequency Conversion . 897
Identifying Observations . 898
Range of Output Observations . 899
Extrapolation . 899
OBSERVED= Option . 900
Conversion Methods . 902
Transformation Operations . 904
OUT= Data Set . 918
OUTEST= Data Set . 919
ODS Graphics . 920

Examples: EXPAND Procedure . 922
Example 16.1: Combining Monthly and Quarterly Data 922
Example 16.2: Illustration of ODS Graphics . 925
Example 16.3: Interpolating Irregular Observations 929
Example 16.4: Using Transformations . 932

References . 934

884 F Chapter 16: The EXPAND Procedure

Overview: EXPAND Procedure
The EXPAND procedure converts time series from one sampling interval or frequency to another and
interpolates missing values in time series. A wide array of data transformations is also supported. Using
PROC EXPAND, you can collapse time series data from higher frequency intervals to lower frequency
intervals, or expand data from lower frequency intervals to higher frequency intervals. For example, quarterly
values can be aggregated to produce an annual series, or quarterly estimates can be interpolated from an
annual series.

Time series frequency conversion is useful when you need to combine series with different sampling intervals
into a single data set. For example, if you need as input to a monthly model a series that is only available
quarterly, you might use PROC EXPAND to interpolate the needed monthly values.

You can also interpolate missing values in time series, either without changing series frequency or in
conjunction with expanding or collapsing the series.

You can convert between any combination of input and output frequencies that can be specified by SAS
time interval names. (See Chapter 5, “Date Intervals, Formats, and Functions,” for a complete description of
SAS interval names.) When the FROM= and TO= options are used to specify from and to intervals, PROC
EXPAND automatically accounts for calendar effects such as the differing number of days in each month and
leap years.

The EXPAND procedure also handles conversions of frequencies that cannot be defined by standard interval
names. Using the FACTOR= option, you can interpolate any number of output observations for each group
of a specified number of input observations. For example, if you specify the option FACTOR=(13:2), 13
equally spaced output observations are interpolated from each pair of input observations.

You can also convert aperiodic series, observed at arbitrary points in time, into periodic estimates. For
example, a series of randomly timed quality control spot-check results might be interpolated to form
estimates of monthly average defect rates.

The EXPAND procedure can also change the observation characteristics of time series. Time series observa-
tions can measure beginning-of-period values, end-of-period values, midpoint values, or period averages or
totals. PROC EXPAND can convert between these cases. You can construct estimates of interval averages
from end-of-period values of a variable, estimate beginning-of-period or midpoint values from interval
averages, or compute averages from interval totals, and so forth.

By default, the EXPAND procedure fits cubic spline curves to the nonmissing values of variables to form
continuous-time approximations of the input series. Output series are then generated from the spline
approximations. Several alternate conversion methods are described in the section “Conversion Methods”
on page 902. You can also interpolate estimates of the rate of change of time series by differentiating the
interpolating spline curve.

Various transformations can be applied to the input series prior to interpolation and to the interpolated
output series. For example, the interpolation process can be modified by transforming the input series,
interpolating the transformed series, and applying the inverse of the input transformation to the output series.
PROC EXPAND can also be used to apply transformations to time series without interpolation or frequency
conversion.

The results of the EXPAND procedure are stored in a SAS data set. No printed output is produced.

Getting Started: EXPAND Procedure F 885

Getting Started: EXPAND Procedure

Converting to Higher Frequency Series
To create higher frequency estimates, specify the input and output intervals with the FROM= and TO=
options, and list the variables to be converted in a CONVERT statement. For example, suppose variables
X, Y, and Z in the data set ANNUAL are annual time series, and you want monthly estimates. You can
interpolate monthly estimates by using the following statements:

proc expand data=annual out=monthly from=year to=month;
convert x y z;

run;

Note that interpolating values of a time series does not add any real information to the data as the interpolation
process is not the same process that generated the other (nonmissing) values in the series. While time series
interpolation can sometimes be useful, great care is needed in analyzing time series containing interpolated
values.

Aggregating to Lower Frequency Series
PROC EXPAND provides two ways to convert from a higher frequency to a lower frequency. When a
curve fitting method is used, converting to a lower frequency is no different than converting to a higher
frequency–you just specify the desired output frequency with the TO= option. This provides for interpolation
of missing values and allows conversion from non-nested intervals, such as converting from weekly to
monthly values.

Alternatively, you can specify simple aggregation or selection without interpolation of missing values. This
might be useful, for example, if you want to add up monthly values to produce annual totals, but want the
annual output data set to contain values only for complete years.

To perform simple aggregation, use the METHOD=AGGREGATE option in the CONVERT statement. For
example, the following statements aggregate monthly values to yearly values:

proc expand data=monthly out=annual
from=month to=year;

convert x y z / method=aggregate;
convert a b c / method=aggregate observed=total;
id date;

run;

This example assumes that the variables X, Y, and Z represent point-in-time values observed at the beginning
of each month, and that the desired results are point-in-time values observed at the beginning of each year.
(The default value of the OBSERVED= option is OBSERVED=(BEGINNING,BEGINNING).) The variables
A, B, and C are assumed to represent monthly totals, and that the desired results are annual totals; therefor

886 F Chapter 16: The EXPAND Procedure

the option OBSERVED=TOTAL is specified. See the section “Specifying Observation Characteristics” on
page 888 for more information on the OBSERVED= option.

Note that the AGGREGATE method can be used only if the input intervals are nested within the output
intervals, as when converting from daily to monthly or from monthly to yearly frequency.

Combining Time Series with Different Frequencies
One important use of PROC EXPAND is to combine time series measured at different sampling frequencies.
For example, suppose you have data on monthly money stocks (M1), quarterly gross domestic product (GDP),
and weekly interest rates (INTEREST), and you want to perform an analysis of a model that uses all these
variables. To perform the analysis, you first need to convert the series to a common frequency and then
combine the variables into one data set.

The following statements illustrate this process for the three data sets QUARTER, MONTHLY, and WEEKLY.
The data sets QUARTER and WEEKLY are converted to monthly frequency using two PROC EXPAND steps,
and the three data sets are then merged using a DATA step MERGE statement to produce the data set COM-
BINED. The quarterly GDP data are interpolated as the total GDP over each month (OBSERVED=TOTAL)
while the weekly INTEREST data are converted to average rates over each month (OBSERVED=AVERAGE).

proc expand data=quarter out=temp1
from=qtr to=month;

id date;
convert gdp / observed=total;

run;

proc expand data=weekly out=temp2
from=week to=month;

id date;
convert interest / observed=average;

run;

data combined;
merge monthly temp1 temp2;
by date;

run;

See Chapter 4, “Working with Time Series Data,” for further discussion of time series periodicity, time series
dating, and time series interpolation. See the section “Specifying Observation Characteristics” on page 888
for more information on the OBSERVED= option.

Interpolating Missing Values
To interpolate missing values in time series without converting the observation frequency, leave off the TO=
option on the PROC EXPAND statement. For example, the following statements interpolate any missing
values in the time series in the data set ANNUAL.

Requesting Different Interpolation Methods F 887

proc expand data=annual out=new from=year;
id date;
convert x y z;
convert a b c / observed=total;

run;

This example assumes that the variables X, Y, and Z represent point-in-time values observed at the beginning
of each year. (The default value of the OBSERVED= option is OBSERVED=BEGINNING.) The variables
A, B, and C are assumed to represent annual totals.

To interpolate missing values in variables observed at specific points in time, omit both the FROM= and TO=
options and use the ID statement to supply time values for the observations. The observations do not need to
be periodic or form regular time series, but the data set must be sorted by the ID variable. For example, the
following statements interpolate any missing values in the numeric variables in the data set A.

proc expand data=a out=b;
id date;

run;

If the observations are equally spaced in time, and all the series are observed as beginning-of-period values,
only the input and output data sets need to be specified. For example, the following statements interpolate
any missing values in the numeric variables in the data set A using a cubic spline function, assuming that the
observations are at equally spaced points in time.

proc expand data=a out=b;
run;

Refer to the section “Missing Values” on page 911 for further information.

Requesting Different Interpolation Methods
By default, a cubic spline curve is fit to the input series, and the output is computed from this interpolating
curve. Other interpolation methods can be specified with the METHOD= option on the CONVERT statement.
The section “Conversion Methods” on page 902 explains the available methods.

For example, the following statements convert annual series to monthly series using linear interpolation
instead of cubic spline interpolation.

proc expand data=annual out=monthly from=year to=month;
id date;
convert x y z / method=join;

run;

888 F Chapter 16: The EXPAND Procedure

Using the ID Statement
An ID statement is normally used with PROC EXPAND to specify a SAS date or datetime variable to identify
the time of each input observation. An ID variable allows PROC EXPAND to do the following:

� identify the observations in the output data set

� determine the time span between observations and detect gaps in the input series caused by omitted
observations

� account for calendar effects such as the number of days in each month and leap years

If you do not specify an ID variable with SAS date or datetime values, PROC EXPAND makes default
assumptions that may not be what you want. See the section “ID Statement” on page 896 for details.

Specifying Observation Characteristics
It is important to distinguish between variables that are measured at points in time and variables that represent
totals or averages over an interval. Point-in-time values are often called stocks or levels. Variables that
represent totals or averages over an interval are often called flows or rates.

For example, the annual series U.S. Gross Domestic Product represents the total value of production over the
year and also the yearly average rate of production in dollars per year. However, a monthly variable inventory
may represent the cost of a stock of goods as of the end of the month.

When the data represent periodic totals or averages, the process of interpolation to a higher frequency is
sometimes called distribution, and the total values of the larger intervals are said to be distributed to the
smaller intervals. The process of interpolating periodic total or average values to lower frequency estimates
is sometimes called aggregation.

By default, PROC EXPAND assumes that all time series represent beginning-of-period point-in-time values.
If a series does not measure beginning of period point-in-time values, interpolation of the data values using
this assumption is not appropriate, and you should specify the correct observation characteristics of the series.
The observation characteristics of the series are specified with the OBSERVED= option on the CONVERT
statement.

For example, suppose that the data set ANNUAL contains variables A, B, and C that measure yearly
totals, while the variables X, Y, and Z measure first-of-year values. The following statements estimate the
contribution of each month to the annual totals in A, B, and C, and interpolate first-of-month estimates of X,
Y, and Z.

proc expand data=annual out=monthly
from=year to=month;

id date;
convert x y z;
convert a b c / observed=total;

run;

The EXPAND procedure supports five different observation characteristics. The OBSERVED= options for
these five observation characteristics are:

Converting Observation Characteristics F 889

BEGINNING beginning-of-period values

MIDDLE period midpoint values

END end-of-period values

TOTAL period totals

AVERAGE period averages

The interpolation of each series is adjusted appropriately for its observation characteristics. When OB-
SERVED=TOTAL or AVERAGE is specified, the interpolating curve is fit to the data values so that the area
under the curve within each input interval equals the value of the series. For OBSERVED=MIDDLE or END,
the curve is fit through the data points, with the time position of each data value placed at the specified offset
from the start of the interval.

See the section “OBSERVED= Option” on page 900 for details.

Converting Observation Characteristics
The EXPAND procedure can be used to interpolate values for output series with different observation
characteristics than the input series. To change observation characteristics, specify two values in the
OBSERVED= option. The first value specifies the observation characteristics of the input series; the second
value specifies the observation characteristics of the output series.

For example, the following statements convert the period total variable A in the data set ANNUAL to yearly
midpoint estimates. This example does not change the series frequency, and the other variables in the data set
are copied to the output data set unchanged.

proc expand data=annual out=new from=year;
id date;
convert a / observed=(total,middle);

run;

Creating New Variables
You can use the CONVERT statement to name a new variable to contain the results of the conversion. Using
this feature, you can create several different versions of a series in a single PROC EXPAND step. Specify the
new name after the input variable name and an equal sign:

convert variable=newname ... ;

For example, suppose you are converting quarterly data to monthly and you want both first-of-month and
midmonth estimates for a beginning-of-period variable X. The following statements perform this task:

proc expand data=a out=b
from=qtr to=month;

id date;
convert x=x_begin / observed=beginning;
convert x=x_mid / observed=(beginning,middle);

run;

890 F Chapter 16: The EXPAND Procedure

Transforming Series
The interpolation methods used by PROC EXPAND assume that there are no restrictions on the range of
values that series can have. This assumption can sometimes cause problems if the series must be within a
certain range.

For example, suppose you are converting monthly sales figures to weekly estimates. Sales estimates should
never be less than zero, but since the spline curve ignores this restriction some interpolated values may be
negative. One way to deal with this problem is to transform the input series before fitting the interpolating
spline and then reverse transform the output series.

You can apply various transformations to the input series using the TRANSFORMIN= option on the CON-
VERT statement. (The TRANSFORMIN= option can be abbreviated as TRANSFORM= or TIN=.) You can
apply transformations to the output series using the TRANSFORMOUT= option. (The TRANSFORMOUT=
option can be abbreviated as TOUT=.)

For example, you might use a logarithmic transformation of the input sales series and exponentiate the
interpolated output series. The following statements fit a spline curve to the log of SALES and then
exponentiate the output series.

proc expand data=a out=b from=month to=week;
id date;
convert sales / observed=total

transformin=(log)
transformout=(exp);

run;

Note that the transformations specified by the TRANSFORMIN= option are applied before the data are
interpolated; the cubic spline curve or other interpolation method is fitted to transformed input data. The
transformations specified by the TRANSFORMOUT= option are applied to interpolated values computed
from the curves fit to the transformed input data.

As another example, suppose you are interpolating missing values in a series of market share estimates.
Market shares must be between 0% and 100%, but applying a spline interpolation to the raw series can
produce estimates outside of this range.

The following statements use the logistic transformation to transform proportions in the range 0 to 1 to values
in the range �1 toC1. The TIN= option first divides the market shares by 100 to rescale percent values to
proportions and then applies the LOGIT function. The TOUT= option applies the inverse logistic function
ILOGIT to the interpolated values to convert back to proportions and then multiplies by 100 to rescale back
to percentages.

proc expand data=a out=b;
id date;
convert mshare / tin=(/ 100 logit)

tout=(ilogit * 100);
run;

When more than one transformation is specified in the TRANSFORMIN= or TRANSFORMOUT= option,
the transformations are applied in the order in which they are listed. Thus in the above example the complete

Syntax: EXPAND Procedure F 891

input transformation is logit(mshare/100) (and not logit(mshare)/100) because the division operation is listed
first in the TIN= option.

You can also use the TRANSFORM= (or TRANSFORMOUT=) option as a convenient way to do calculations
normally performed with the SAS DATA step. For example, the following statements add the lead of X to the
data set A. The METHOD=NONE option is used to suppress interpolation.

proc expand data=a method=none;
id date;
convert x=xlead / transform=(lead);

run;

Any number of operations can be listed in the TRANSFORMIN= and TRANSFORMOUT= options. See
Table 16.2 for a list of the operations supported.

Syntax: EXPAND Procedure
The EXPAND procedure uses the following statements:

PROC EXPAND options ;
BY variables ;
CONVERT variables / options ;
ID variable ;

Functional Summary
The statements and options controlling the EXPAND procedure are summarized in the following table.

Description Statement Option

Statements
specify options PROC EXPAND
specify BY-group processing BY
specify conversion options CONVERT
specify the ID variable ID

Data Set Options
specify the input data set PROC EXPAND DATA=
extrapolate values before or after input series PROC EXPAND EXTRAPOLATE
specify the output data set PROC EXPAND OUT=
write interpolating functions to a data set PROC EXPAND OUTEST=

Input and Output Frequencies
control the alignment of SAS Date values PROC EXPAND ALIGN=
specify frequency conversion factor PROC EXPAND FACTOR=
specify input frequency PROC EXPAND FROM=
specify output frequency PROC EXPAND TO=

892 F Chapter 16: The EXPAND Procedure

Description Statement Option

Interpolation Control Options
specify interpolation method for all series PROC EXPAND METHOD=
specify interpolation method for series CONVERT METHOD=
specify observation characteristics for series PROC EXPAND OBSERVED=
specify observation characteristics for series CONVERT OBSERVED=
specify transformations of the input series CONVERT TRANSFORMIN=
specify transformations of the output series CONVERT TRANSFORMOUT=

Graphical Output Control Options
specify graphical output PROC EXPAND PLOTS=

PROC EXPAND Statement
PROC EXPAND options ;

The following options can be used with the PROC EXPAND statement:

Data Set Options

DATA= SAS-data-set
names the input data set. If the DATA= option is omitted, the most recently created SAS data set is
used.

OUT= SAS-data-set
names the output data set containing the resulting time series. If OUT= is not specified, the data set is
named using the DATAn convention. See the section “OUT= Data Set” on page 918 for details.

OUTEST= SAS-data-set
names an output data set containing the coefficients of the spline curves fit to the input series. If the
OUTEST= option is not specified, the spline coefficients are not output. See the section “OUTEST=
Data Set” on page 919 for details.

Options That Define Input and Output Frequencies

ALIGN= option
controls the alignment of SAS dates used to identify output observations. The ALIGN= option
allows the following values: BEGINNING | BEG | B, MIDDLE | MID | M, and ENDING | END | E.
BEGINNING is the default.

PROC EXPAND Statement F 893

FACTOR= n

FACTOR=(n : m)
specifies the number of output observations to be created from the input observations. FACTOR=n
specifies that n output observations are to be produced for each input observation. FACTOR=(n : m)
specifies that n output observations are to be produced for each group of m input observations.
FACTOR=n is the same as FACTOR=(n : 1).

In the FACTOR=() option, a comma can be used instead of a colon or the delimiter can be omitted.
Thus FACTOR=(n, m) or FACTOR=(n m) is the same as FACTOR=(n : m).

The FACTOR= option cannot be used if the TO= option is used. The default value is FACTOR=(1:1).
For more information, see the section “Frequency Conversion” on page 897.

FROM= interval
specifies the time interval between observations in the input data set. Examples of FROM= values are
YEAR, QTR, MONTH, DAY, and HOUR. See Chapter 5, “Date Intervals, Formats, and Functions,”
for a complete description and examples of interval specifications.

TO= interval
specifies the time interval between observations in the output data set. By default, the TO= interval is
generated from the combination of the FROM= and the FACTOR= values or is set to be the same as the
FROM= value if FACTOR= is not specified. See Chapter 5, “Date Intervals, Formats, and Functions,”
for a description of interval specifications.

Options to Control the Interpolation

EXTRAPOLATE
specifies that missing values at the beginning or end of input series be replaced with values produced
by a linear extrapolation of the interpolating curve fit to the input series. See the section “Extrapolation”
on page 899 later in this chapter for details.

By default, PROC EXPAND avoids extrapolating values beyond the first or last input value for a series
and only interpolates values within the range of the nonmissing input values. Note that the extrapolated
values are often not very accurate and for the SPLINE method the EXTRAPOLATE option results
may be very unreasonable. The EXTRAPOLATE option is rarely used.

METHOD= option

METHOD=SPLINE(constraint < , constraint >)
specifies the method used to convert the data series. The methods supported are SPLINE, JOIN, STEP,
AGGREGATE, and NONE. The METHOD= option specified on the PROC EXPAND statement can
be overridden for particular series by the METHOD= option on the CONVERT statement. The default
is METHOD=SPLINE. The constraint specifications for METHOD=SPLINE can have the values
NOTAKNOT (the default), NATURAL, SLOPE=value, and/or CURVATURE=value. See the section
“Conversion Methods” on page 902 for more information about these methods.

OBSERVED= value

OBSERVED=(from-value , to-value)
indicates the observation characteristics of the input time series and of the output series. Speci-
fying the OBSERVED= option on the PROC EXPAND statement sets the default OBSERVED=
value for subsequent CONVERT statements. See the sections “CONVERT Statement” on page 895

894 F Chapter 16: The EXPAND Procedure

and “OBSERVED= Option” on page 900 later in this chapter for details. The default is OB-
SERVED=BEGINNING.

Options to Control Graphical Output

PLOTS= option | (options)
specifies the graphical output desired. If the PLOTS= option is used, the specified graphical output
is produced for each output variable that is specified by a CONVERT statement. By default, the
EXPAND procedure produces no graphical output. The following PLOTS= options are available:

INPUT plots the input series.

TRANSFORMIN plots the transformed input series. The TRANSFORMIN= option must also be
specified in the CONVERT statement.

CROSSINPUT plots both the input series and the transformed input series on one plot with two
Y axes. The input and transformed series are shown on separate scales. The
TRANSFORMIN= option must also be specified in the CONVERT statement.

JOINTINPUT plots both the input series and the transformed input series on one plot with one
Y axis. The input and transformed series are shown on the same scale. The
TRANSFORMIN= option must also be specified in the CONVERT statement.

CONVERTED plots the converted series after input transformations and interpolation, but before
any TRANSFORMOUT= transformations are applied. The METHOD= option
must also be specified in the PROC EXPAND or CONVERT statements.

TRANSFORMOUT plots the transformed output series. The TRANSFORMOUT= option must also
be specified in the CONVERT statement.

CROSSOUTPUT plots both the converted series and the transformed output series on one plot
with two Y axes. The converted and transformed output series are shown on
separate scales. The TRANSFORMOUT= option must also be specified in the
CONVERT statement.

JOINTOUTPUT plots both the converted series and the transformed output series on one plot with
one Y axis. The converted and transformed output series are shown on the same
scale. The TRANSFORMOUT= option must also be specified in the CONVERT
statement.

OUTPUT plots the series stored in the OUT= data set. The OUTPUT option does not
require any options to be specified in the CONVERT statement.

ALL produces all plots except the joint and cross plots. PLOTS=ALL is the same as
PLOTS=(INPUT TRANFORMIN CONVERTED TRANSFORMOUT).

The PLOTS= option produces results associated with each CONVERT statement output variable and the
options listed in the PLOTS= specification. See the section “PLOTS= Option Details” on page 921 for more
information.

BY Statement F 895

BY Statement
BY variables ;

A BY statement can be used with PROC EXPAND to obtain separate analyses on observations in groups
defined by the BY variables. The input data set must be sorted by the BY variables and be sorted by the ID
variable within each BY group.

Use a BY statement when you want to interpolate or convert time series within levels of a cross-sectional
variable. For example, suppose you have a data set STATE containing annual estimates of average disposable
personal income per capita (DPI) by state and you want quarterly estimates by state. These statements convert
the DPI series within each state:

proc sort data=state;
by state date;

run;

proc expand data=state out=stateqtr from=year to=qtr;
convert dpi;
by state;
id date;

run;

CONVERT Statement
CONVERT variable = newname . . . < / options > ;

The CONVERT statement lists the variables to be processed. Only numeric variables can be processed.

For each of the variables listed, a new variable name can be specified after an equal sign to name the variable
in the output data set that contains the converted values. If a name for the output series is not given, the
variable in the output data set has the same name as the input variable. Variable lists may be used only when
no name is given for the output series.

For example, variable lists can be specified as follows:

convert y1-y25 / observed=(beginning,end);
convert x--a / observed=average;
convert x-numeric-a / observed=average;

Any number of CONVERT statements can be used. If no CONVERT statement is used, all the numeric
variables in the input data set except those appearing in the BY and ID statements are processed.

The following options can be used with the CONVERT statement.

896 F Chapter 16: The EXPAND Procedure

METHOD= option

METHOD=SPLINE(constraint < , constraint >)
specifies the method used to convert the data series. (The method specified by the METHOD=
option is applied to the input data series after applying any transformations specified by the TRANS-
FORMIN= option.) The methods supported are SPLINE, JOIN, STEP, AGGREGATE, and NONE.
The METHOD= option specified on the PROC EXPAND statement can be overridden for particular
series by the METHOD= option on the CONVERT statement. The default is METHOD=SPLINE.
The constraint specifications for METHOD=SPLINE can have the values NOTAKNOT (the default),
NATURAL, SLOPE=value, and/or CURVATURE=value. See the section “Conversion Methods” on
page 902 section for more information about these methods.

OBSERVED= value

OBSERVED=(from-value , to-value)
indicates the observation characteristics of the input time series and of the output series. The values
supported are TOTAL, AVERAGE, BEGINNING, MIDDLE, and END. In addition, DERIVATIVE
can be specified as the to-value when the SPLINE method is used.

When only one value is specified, that value specifies both the from-value and the to-value. (That
is, OBSERVED=value is equivalent to OBSERVED=(value, value).) If the OBSERVED= op-
tion is omitted from both the PROC EXPAND and the CONVERT statements, the default is OB-
SERVED=(BEGINNING, BEGINNING). See the section “OBSERVED= Option” on page 900 for
details.

TRANSFORMIN=(operation . . .)
specifies a list of transformations to be applied to the input series before the interpolating function is
fit. The operations are applied in the order listed. See the section “Transformation Operations” on
page 904 later in this chapter for the operations that can be specified. The TRANSFORMIN= option
can be abbreviated as TRANSIN=, TIN=, or TRANSFORM=.

TRANSFORMOUT=(operation . . .)
specifies a list of transformations to be applied to the output series. The operations are applied in the
order listed. See the section “Transformation Operations” on page 904 later in this chapter for the
operations that can be specified. The TRANSFORMOUT= option can be abbreviated as TRANSOUT=,
or TOUT=.

ID Statement
ID variable ;

The ID statement names a numeric variable that identifies observations in the input and output data sets. The
ID variable’s values are assumed to be SAS date or datetime values.

The input data must form time series. This means that the observations in the input data set must be sorted by
the ID variable (within the BY variables, if any). Moreover, there should be no duplicate observations, and
no two observations should have ID values within the same time interval as defined by the FROM= option.

If the ID statement is omitted, SAS date or datetime values are generated to label the input observations.
These ID values are generated by assuming that the input data set starts at a SAS date value of 0, that is, 1
January 1960. This default starting date is then incremented for each observation by the FROM= interval

Details: EXPAND Procedure F 897

(using the same logic as DATA step INTNX function). If the FROM= option is not specified, the ID values
are generated as the observation count minus 1. When the ID statement is not used, an ID variable is added to
the output data set named either DATE or DATETIME, depending on the value specified in the TO= option.
If neither the TO= option nor the FROM= option is given, the ID variable in the output data set is named
TIME.

Details: EXPAND Procedure

Frequency Conversion
Frequency conversion is controlled by the FROM=, TO=, and FACTOR= options. The possible combinations
of these options are explained in the following:

None Used
If FROM=, TO=, and FACTOR= are not specified, no frequency conversion is done. The data are processed
to interpolate any missing values and perform any specified transformations. Each input observation produces
one output observation.

FACTOR=(n:m)
FACTOR=(n :m) specifies that n output observations are produced for each group of m input observations.
The fraction m /n is reduced first: thus FACTOR=(10:6) is equivalent to FACTOR=(5:3). Note that if m /n
=1, the result is the same as the case given previously under “None Used”.

FROM=interval
The FROM= option used alone establishes the frequency and interval widths of the input observations.
Missing values are interpolated, and any specified transformations are performed, but no frequency conversion
is done.

TO=interval
When the TO= option is used without the FROM= option, output observations with the TO= frequency are
generated over the range of input ID values. The first output observation is for the TO= interval containing
the ID value of the first input observation; the last output observation is for the TO= interval containing the
ID value of the last input observation. The input observations are not assumed to form regular time series and
may represent aperiodic points in time. An ID variable is required to give the date or datetime of the input
observations.

FROM=interval TO=interval
When both the FROM= and TO= options are used, the input observations have the frequency given by the
FROM= interval, and the output observations have the frequency given by the TO= interval.

FROM=interval FACTOR=(n:m)
When both the FROM= and FACTOR= options are used, a TO= interval is inferred from the combination of
the FROM=interval and the FACTOR=(n:m) values specified. For example, FROM=YEAR FACTOR=4 is
the same as FROM=YEAR TO=QTR. Also, FROM=YEAR FACTOR=(3:2) is the same as FROM=YEAR
used with TO=MONTH8. Once the implied TO= interval is determined, this combination operates the same
as if FROM= and TO= had been specified. If no valid TO= interval can be constructed from the combination
of the FROM= and FACTOR= options, an error is produced.

898 F Chapter 16: The EXPAND Procedure

TO=interval FACTOR=(n:m)
The combination of the TO= option and the FACTOR= option is not allowed and produces an error.

ALIGN= option
Controls the alignment of SAS dates used to identify output observations. The ALIGN= option allows the
following values: BEGINNING | BEG | B, MIDDLE | MID | M, and ENDING | END | E. BEGINNING is
the default.

Converting to a Lower Frequency

When converting to a lower frequency, the results are either exact or approximate, depending on whether or
not the input interval nests within the output interval and depending on the need to interpolate missing values
within the series. If the TO= interval is nested within the FROM= interval (as when converting from monthly
to yearly), and if there are no missing input values or partial periods, the results are exact.

When values are missing or the FROM= interval is not nested within the TO= interval (as when aggregating
from weekly to monthly), the results depend on an interpolation. The METHOD=AGGREGATE option
always produces exact results, never an interpolation. However, this method can only be used if the FROM=
interval is nested within the TO= interval.

Identifying Observations
The variable specified in the ID statement is used to identify the observations. Usually, SAS date or datetime
values are used for this variable. PROC EXPAND uses the ID variable to do the following:

� identify the time interval of the input values

� validate the input data set observations

� compute the ID values for the observations in the output data set

Identifying the Input Time Intervals

When the FROM= option is specified, observations are understood to refer to the whole time interval and
not to a single time point. The ID values are interpreted as identifying the FROM= time interval containing
the value. In addition, the widths of these input intervals are used by the OBSERVED= values TOTAL,
AVERAGE, MIDDLE, and END.

For example, if FROM=MONTH is specified, then each observation is for the whole calendar month
containing the ID value for the observation, and the width of the time interval covered by the observation is
the number of days in that month. Therefore, if FROM=MONTH, the ID value ’31MAR92’D is equivalent
to the ID value ’1MAR92’D–both of these ID values identify the same interval, March of 1992.

Widths of Input Time Intervals

When the FROM= option is not specified, the ID variable values are usually interpreted as referring to points
in time. However, if an OBSERVED= option value is specified that assumes the observations refer to whole
intervals and also requires interval widths (TOTAL or AVERAGE), then, in the absence of the FROM=

Range of Output Observations F 899

specification, interval widths are assumed to be the time span between ID values. For the last observation,
the interval width is assumed to be the same as for the next to last observation. (If neither the FROM= option
nor the ID statement are specified, interval widths are assumed to be 1.0.) A note is printed in the SAS log
warning that this assumption is made.

Validating the Input Data Set Observations

The ID variable is used to verify that successive observations read from the input data set correspond to
sequential FROM= intervals. When the FROM= option is not used, PROC EXPAND verifies that the ID
values are nonmissing and in ascending order. An error message is produced and the observation is ignored
when an invalid ID value is found in the input data set.

ID values for Observations in the Output Data Set

The time unit used for the ID variable in the output data set is controlled by the interval value specified by the
TO= option. If you specify a date interval for the TO= value, the ID variable values in the output data set are
SAS date values. If you specify a datetime interval for the TO= value, the ID variable values in the output
data set are SAS datetime values.

The date or datetime values for the ID variable for output observations is the first date or datetime of the TO=
interval, unless the ALIGN= option is used to specify a different alignment. (For example, if TO=WEEK is
specified, then the output dates are Sundays. If TO=WEEK.2 is specified, then the output date are Mondays.)
See Chapter 5, “Date Intervals, Formats, and Functions,” for more information on interval specifications.

Range of Output Observations
If no frequency conversion is done, the range of output observations is the same as in the input data set.

When frequency conversion is done, the observations in the output data set range from the earliest start of
any result series to the latest end of any result series. Observations at the beginning or end of the input range
for which all result values are missing are not written to the OUT= data set.

When the EXTRAPOLATE option is not used, the range of the nonmissing output results for each series
is as follows. The first result value is for the TO= interval that contains the ID value of the start of the
FROM= interval containing the ID value of the first nonmissing input observation for the series. The last
result value is for the TO= interval that contains the end of the FROM= interval containing the ID value of
the last nonmissing input observation for the series.

When the EXTRAPOLATE option is used, result values for all series are computed for the full time range
covered by the input data set.

Extrapolation
The spline functions fit by the EXPAND procedure are very good at approximating continuous curves within
the time range of the input data but poor at extrapolating beyond the range of the data. The accuracy of the
results produced by PROC EXPAND may be somewhat less at the ends of the output series than at time
periods for which there are several input values at both earlier and later times. The curves fit by PROC
EXPAND should not be used for forecasting.

900 F Chapter 16: The EXPAND Procedure

PROC EXPAND normally avoids extrapolation of values beyond the time range of the nonmissing input
data for a series, unless the EXTRAPOLATE option is used. However, if the start or end of the input series
does not correspond to the start or end of an output interval, some output values may depend in part on an
extrapolation.

For example, if FROM=YEAR, TO=WEEK, and OBSERVED=BEGINNING are specified, then the first
observation output for a series is for the week of 1 January of the first nonmissing input year. If 1 January of
that year is not a Sunday, the beginning of this week falls before the date of the first input value, and therefore
a beginning-of-period output value for this week is extrapolated.

This extrapolation is made only to the extent needed to complete the terminal output intervals that overlap
the endpoints of the input series and is limited to no more than the width of one FROM= interval or one
TO= interval, whichever is less. This restriction of the extrapolation to complete terminal output intervals is
applied to each series separately, and it takes into account the OBSERVED= option for the input and output
series.

When the EXTRAPOLATE option is used, the normal restriction on extrapolation is overridden. Output
values are computed for the full time range covered by the input data set.

For the SPLINE method, extrapolation is performed by a linear projection of the trend of the cubic spline
curve fit to the input data, not by extrapolation of the first and last cubic segments.

The EXTRAPLOTE option should be used with caution.

OBSERVED= Option
The values of the CONVERT statement OBSERVED= option are as follows:

BEGINNING indicates that the data are beginning-of-period values. OBSERVED=BEGINNING is the
default.

MIDDLE indicates that the data are period midpoint values.

ENDING indicates that the data represent end-of-period values.

TOTAL indicates that the data values represent period totals for the time interval corresponding to
the observation.

AVERAGE indicates that the data values represent period averages.

DERIVATIVE requests that the output series be the derivatives of the cubic spline curve fit to the input
data by the SPLINE method.

If only one value is specified in the OBSERVED= option, that value applies to both the input and the output
series. For example, OBSERVED=TOTAL is the same as OBSERVED=(TOTAL,TOTAL), which indicates
that the input values represent totals over the time intervals corresponding to the input observations, and the
converted output values also represent period totals. The value DERIVATIVE can be used only as the second
OBSERVED= option value, and it can be used only when METHOD=SPLINE is specified or is the default
method.

Since the TOTAL, AVERAGE, MIDDLE, and END cases require that the width of each input interval be
known, both the FROM= option and an ID statement are normally required if one of these observation
characteristics is specified for any series. However, if the FROM= option is not specified, each input interval

OBSERVED= Option F 901

is assumed to extend from the ID value for the observation to the ID value of the next observation, and
the width of the interval for the last observation is assumed to be the same as the width for the next to last
observation.

Scale of OBSERVED=AVERAGE Values

The average values are assumed to be expressed in the time units defined by the FROM= or TO= option. That
is, the product of the average value for an interval and the width of the interval is assumed to equal the total
value for the interval. For purposes of interpolation, OBSERVED=AVERAGE values are first converted to
OBSERVED=TOTAL values using this assumption, and then the interpolated totals are converted back to
averages by dividing by the widths of the output intervals.

For example, suppose the options FROM=MONTH, TO=HOUR, and OBSERVED=AVERAGE are specified.
Since FROM=MONTH is specified, each input value is assumed to represent an average rate per day such
that the product of the value and the number of days in the month is equal to the total for the month.
The input values are assumed to represent a per-day rate because FROM=MONTH implies SAS date ID
values that measure time in days, and therefore the widths of MONTH intervals are measured in days. If
FROM=DTMONTH is used instead, the values are assumed to represent a per-second rate, because the
widths of DTMONTH intervals are measured in seconds.

Since TO=HOUR is specified, the output values are scaled as an average rate per second such that the product
of each output value and the number of seconds in an hour (3600) is equal to the interpolated hourly total. A
per-second rate is used because TO=HOUR implies SAS datetime ID values that measure time in seconds,
and therefore the widths of HOUR intervals are measured in seconds.

Note that the scale assumed for OBSERVED=AVERAGE data is important only when converting between
AVERAGE and another OBSERVED= option, or when converting between SAS date and SAS datetime ID
values. When both the input and the output series are AVERAGE values, and the units for the ID values are
not changed, the scale assumed does not matter.

For example, suppose you are converting gross domestic product (GDP) from quarterly to monthly. The GDP
values are quarterly averages measured at annual rates. If you want the interpolated monthly values to also be
measured at annual rates, then the option OBSERVED=AVERAGE works fine. Since there is no change of
scale involved in this problem, it makes no difference that PROC EXPAND assumes daily rates instead of
annual rates.

However, suppose you want to convert GDP from quarterly to monthly and also convert from annual
rates to monthly rates, so that the result is total gross domestic product for the month. Using the option
OBSERVED=(AVERAGE,TOTAL) would fail, because PROC EXPAND assumes the average is scaled to
daily, not annual, rates.

One solution is to rescale to quarterly totals and treat the data as totals. You could use the options TRANS-
FORMIN=(/ 4) OBSERVED=TOTAL. Alternatively, you could treat the data as averages but first convert to
daily rates. In this case you would use the options TRANSFORMIN=(/ 365.25) OBSERVED=AVERAGE.

Results of the OBSERVED=DERIVATIVE Option

If the first value of the OBSERVED= option is BEGINNING, TOTAL, or AVERAGE, the result is the
derivative of the spline curve evaluated at first-of-period ID values for the output observation. For OB-
SERVED=(MIDDLE,DERIVATIVE), the derivative of the function is evaluated at output interval midpoints.
For OBSERVED=(END,DERIVATIVE), the derivative is evaluated at end-of-period ID values.

902 F Chapter 16: The EXPAND Procedure

Conversion Methods

The SPLINE Method

The SPLINE method fits a cubic spline curve to the input values. A cubic spline is a segmented function
consisting of third-degree (cubic) polynomial functions joined together so that the whole curve and its first
and second derivatives are continuous.

For point-in-time input data, the spline curve is constrained to pass through the given data points. For interval
total or average data, the definite integrals of the spline over the input intervals are constrained to equal the
given interval totals.

For boundary constraints, the not-a-knot condition is used by default. This means that the first two spline
pieces are constrained to be part of the same cubic curve, as are the last two pieces. Thus the spline used
by PROC EXPAND by default is not the same as the commonly used natural spline, which uses zero
second-derivative endpoint constraints. While De Boor (1978) recommends the not-a-knot constraint for
cubic spline interpolation, using this constraint can sometimes produce anomalous results at the ends of the
interpolated series. PROC EXPAND provides options to specify other endpoint constraints for spline curves.

To specify endpoint constraints, use the following form of the METHOD= option.

METHOD=SPLINE(constraint < , constraint >)
The first constraint specification applies to the lower endpoint, and the second constraint specification
applies to the upper endpoint. If only one constraint is specified, it applies to both the lower and upper
endpoints.

The constraint specifications can have the following values:

NOTAKNOT
specifies the not-a-knot constraint. This is the default.

NATURAL
specifies the natural spline constraint. The second derivative of the spline curve is constrained to be
zero at the endpoint.

SLOPE= value
specifies the first derivative of the spline curve at the endpoint. The value specified can be any positive
or negative number, but extreme values may produce unreasonable results.

CURVATURE= value
specifies the second derivative of the spline curve at the endpoint. The value specified can be any
positive or negative number, but extreme values may produce unreasonable results. Specifying
CURVATURE=0 is equivalent to specifying the NATURAL option.

For example, to specify natural spline interpolation, use the following option in the CONVERT or
PROC EXPAND statement:

method=spline(natural)

For OBSERVED=BEGINNING, MIDDLE, and END series, the spline knots are placed at the be-
ginning, middle, and end of each input interval, respectively. For total or averaged series, the spline
knots are set at the start of the first interval, at the end of the last interval, and at the interval midpoints,
except that there are no knots for the first two and last two midpoints.

Conversion Methods F 903

Once the cubic spline curve is fit to the data, the spline is extended by adding linear segments at the
beginning and end. These linear segments are used for extrapolating values beyond the range of the
input data.

For point-in-time output series, the spline function is evaluated at the appropriate points. For interval
total or average output series, the spline function is integrated over the output intervals.

The JOIN Method

The JOIN method fits a continuous curve to the data by connecting successive straight line segments. For
point-in-time data, the JOIN method connects successive nonmissing input values with straight lines. For
interval total or average data, interval midpoints are used as the break points, and ordinates are chosen so that
the integrals of the piecewise linear curve agree with the input totals.

For point-in-time output series, the JOIN function is evaluated at the appropriate points. For interval total or
average output series, the JOIN function is integrated over the output intervals.

The STEP Method

The STEP method fits a discontinuous piecewise constant curve. For point-in-time input data, the resulting
step function is equal to the most recent input value. For interval total or average data, the step function is
equal to the average value for the interval.

For point-in-time output series, the step function is evaluated at the appropriate points. For interval total or
average output series, the step function is integrated over the output intervals.

The AGGREGATE Method

The AGGREGATE method performs simple aggregation of time series without interpolation of missing
values.

If the input data are totals or averages, the results are the sums or averages, respectively, of the input values
for observations corresponding to the output observations. That is, if either TOTAL or AVERAGE is specified
for the OBSERVED= option, the METHOD=AGGREGATE result is the sum or mean of the input values
corresponding to the output observation. For example, suppose METHOD=AGGREGATE, FROM=MONTH,
and TO=YEAR are specified. For OBSERVED=TOTAL series, the result for each output year is the sum of
the input values over the months of that year. If any input value is missing, the corresponding sum or mean is
also a missing value.

If the input data are point-in-time values, the result value of each output observation equals the
input value for a selected input observation determined by the OBSERVED= attribute. For ex-
ample, suppose METHOD=AGGREGATE, FROM=MONTH, and TO=YEAR are specified. For
OBSERVED=BEGINNING series, January observations are selected as the annual values. For
OBSERVED=MIDDLE series, July observations are selected as the annual values. For OBSERVED=END
series, December observations are selected as the annual values. If the selected value is missing, the output
annual value is missing.

The AGGREGATE method can be used only when the FROM= intervals are nested within the TO= intervals.
For example, you can use METHOD=AGGREGATE when FROM=MONTH and TO=QTR because months
are nested within quarters. You cannot use METHOD=AGGREGATE when FROM=WEEK and TO=QTR
because weeks are not nested within quarters.

904 F Chapter 16: The EXPAND Procedure

In addition, the AGGREGATE method cannot convert between point-in-time data and interval total or average
data. Conversions between TOTAL and AVERAGE data are allowed, but conversions between BEGINNING,
MIDDLE, and END are not.

Missing input values produce missing result values for METHOD=AGGREGATE. However, gaps in the
sequence of input observations are not allowed. For example, if FROM=MONTH, you may have a missing
value for a variable in an observation for a given February. But if an observation for January is followed by
an observation for March, there is a gap in the data, and METHOD=AGGREGATE cannot be used.

When the AGGREGATE method is used, there is no interpolating curve, and therefore the EXTRAPOLATE
option is not allowed.

Alternate methods for aggregating or accumulating time series data are supported by the TIMESERIES
procedure. See Chapter 39, “The TIMESERIES Procedure,” for more information.

METHOD=NONE

The option METHOD=NONE specifies that no interpolation be performed. This option is normally used in
conjunction with the TRANSFORMIN= or TRANSFORMOUT= option.

When METHOD=NONE is specified, there is no difference between the TRANSFORMIN= and TRANS-
FORMOUT= options; if both are specified, the TRANSFORMIN= operations are performed first, followed by
the TRANSFORMOUT= operations. TRANSFORM= can be used as an abbreviation for TRANSFORMIN=.
METHOD=NONE cannot be used when frequency conversion is specified.

Transformation Operations
The operations that can be used in the TRANSFORMIN= and TRANSFORMOUT= options are shown in
Table 16.2. Operations are applied to each value of the series. Each value of the series is replaced by the
result of the operation.

In Table 16.2, xt or x represents the value of the series at a particular time period t before the transformation
is applied, yt represents the value of the result series, and N represents the total number of observations.

The notation noptional indicates that the argument noptional is an optional integer; the default is 1. The notation
window is used as the argument for the moving statistics operators, and it indicates that you can specify either
a number of periods n (where n is an integer) or a list of n weights in parentheses. The internal maximum
value of the number of periods n is clipped at the number of observations in the series. The notation sequence
is used as the argument for the sequence operators, and it indicates that you must specify a sequence of
numbers. The notation s indicates the length of seasonality, and it is a required argument.

Table 16.2 Transformation Operations
Syntax Result
+ number Adds the specified number : x C number
� number Subtracts the specified number : x � number
* number Multiplies by the specified number : x � number
/ number Divides by the specified number : x=number
ABS Absolute value: jxj
ADJUST Indicates that the following moving window summation or

product operator should be adjusted for window width

Transformation Operations F 905

Table 16.2 continued
Syntax Result
CD_I s Classical decomposition irregular component
CD_S s Classical decomposition seasonal component
CD_SA s Classical decomposition seasonally adjusted series
CD_TC s Classical decomposition trend-cycle component
CDA_I s Classical decomposition (additive) irregular component
CDA_S s Classical decomposition (additive) seasonal component
CDA_SA s Classical decomposition (additive) seasonally adjusted series
CEIL Smallest integer greater than or equal to x : ceil.x/

CMOVAVE window Centered moving average
CMOVCSS window Centered moving corrected sum of squares
CMOVGMEAN window Centered moving geometric mean

for window = number of periods, n:
.
Qjmax

jDjmin
xtCj /1=n

jmin D �.nC n mod 2/=2C 1

jmax D .n � n mod 2/=2

for window = weight list, w:

.
Qjmax

jDjmin
x

wj�jmin
tCj /1=

Pn�1
jD0 wj

CMOVMAX n Centered moving maximum
CMOVMED n Centered moving median
CMOVMIN n Centered moving minimum
CMOVPROD window Centered moving product

for window = number of periods, n:Qjmax
jDjmin

xtCj

for window = weight list, w:

.
Qjmax

jDjmin
x

wj�jmin
tCj /1=

Pn�1
jD0 wj

CMOVRANGE n Centered moving range
CMOVRANK n Centered moving rank
CMOVSTD window Centered moving standard deviation
CMOVSUM n Centered moving sum
CMOVTVALUE window Centered moving t value
CMOVUSS window Centered moving uncorrected sum of squares
CMOVVAR window Centered moving variance
CUAVE noptional Cumulative average
CUCSS noptional Cumulative corrected sum of squares
CUGMEAN noptional Cumulative geometric mean
CUMAX noptional Cumulative maximum
CUMED noptional Cumulative median
CUMIN noptional Cumulative minimum
CUPROD noptional Cumulative product
CURANK noptional Cumulative rank
CURANGE noptional Cumulative range
CUSTD noptional Cumulative standard deviation
CUSUM noptional Cumulative sum
CUTVALUE noptional Cumulative t value

906 F Chapter 16: The EXPAND Procedure

Table 16.2 continued
Syntax Result
CUUSS noptional Cumulative uncorrected sum of squares
CUVAR noptional Cumulative variance
DIF noptional Span n difference: xt � xt�n

EWMA number Exponentially weighted moving average of x with
smoothing weight number, where 0 < number < 1:
yt D number xt C .1 � number/yt�1.
This operation is also called simple exponential smoothing.

EXP Exponential function: exp.x/

FDIF d Fractional difference with difference order d where 0 < d <

0:5

FLOOR Largest integer less than or equal to x : floor.x/

FSUM d Fractional summation with summation order d where 0 < d <

0:5

HP_T lambda Hodrick-Prescott Filter trend component where lambda is the
nonnegative filter parameter

HP_C lambda Hodrick-Prescott Filter cycle component where lambda is the
nonnegative filter parameter

ILOGIT Inverse logistic function: exp.x/
1Cexp.x/

LAG noptional Value of the series n periods earlier: xt�n

LEAD noptional Value of the series n periods later: xtCn

LOG Natural logarithm: log.x/

LOGIT Logistic function: log. x
1�x

/

MAX number Maximum of x and number : max.x; number/
MIN number Minimum of x and number : min.x; number/
> number Missing value if x <D number, else x
>= number Missing value if x < number, else x
= number Missing value if x ¤ number, else x
^= number Missing value if x D number, else x
< number Missing value if x >D number, else x
<= number Missing value if x > number, else x
MOVAVE n Backward moving average of n neighboring values:

1
n

Pn�1
jD0 xt�j

MOVAVE window Backward weighted moving average of neighboring values:
.
Pn

jD1 wj xt�nCj /=.
Pn

jD1 wj /

MOVCSS window Backward moving corrected sum of squares
MOVGMEAN window Backward moving geometric mean

for window = number of periods, n:
.
Qn

jD1 xt�nCj /1=n

for window = weight list, w:
.
Qn

jD1 x
wj

t�nCj /1=
Pn

jD1 wj

MOVMAX n Backward moving maximum
MOVMED n Backward moving median
MOVMIN n Backward moving minimum

Transformation Operations F 907

Table 16.2 continued
Syntax Result
MOVPROD window Backward moving product

for window = number of periods, n:Qn
jD1 xt�nCj

for window = weight list, w:
.
Qn

jD1 x
wj

t�nCj /1=
Pn

jD1 wj

MOVRANGE n Backward moving range
MOVRANK n Backward moving rank
MOVSTD window Backward moving weighted standard deviation:q

1
n�1

Pn
jD1 wi .xj � xw/2

MOVSUM n Backward moving sum
MOVTVALUE window Backward moving t value
MOVUSS window Backward moving uncorrected sum of squares
MOVVAR window Backward moving variance
MISSONLY <MEAN> Indicates that the following moving time window

statistic operator should replace only missing values with the
moving statistic and should leave nonmissing values un-
changed.
If the option MEAN is specified, then missing values are
replaced by the overall mean of the series.

NEG Changes the sign: �x

NOMISS Indicates that the following moving time window
statistic operator should not allow missing values

PCTDIF n Percent difference of the current value and lag n
PCTSUM n Percent summation of the current value and cumulative sum

n-lag periods
RATIO n Ratio of current value to lag n
RECIPROCAL Reciprocal: 1=x

REVERSE Reverses the series: x
N�t

SCALE n1 n2 Scales the series between n1 and n2

SEQADD sequence Adds sequence values to series
SEQDIV sequence Divides the series by sequence values
SEQMINUS sequence Subtracts sequence values to series
SEQMULT sequence Multiplies the series by sequence values
SET (n1 n2) Sets all values of n1 to n2

SETEMBEDDED (n1 n2) Sets embedded values of n1 to n2

SETLEFT (n1 n2) Sets beginning values of n1 to n2

SETMISS number Replaces missing values in the series with the number specified
SETRIGHT (n1 n2) Sets ending values of n1 to n2

SIGN �1, 0, or 1 as x is < 0, equals 0, or > 0, respectively
SQRT Square root:

p
x

SQUARE Square: x2

SUM Cumulative sum:
Pt

jD1 xj

SUM n Cumulative sum of multiples of n-period lags:
xt C xt�n C xt�2n C : : :

908 F Chapter 16: The EXPAND Procedure

Table 16.2 continued
Syntax Result
TRIM n Sets xt to missing a value if t�n or t�N � nC 1

TRIMLEFT n Sets xt to missing a value if t�n

TRIMRIGHT n Sets xt to missing a value if t�N � nC 1

Moving Time Window Operators

Some operators compute statistics for a set of values within a moving time window; these are called moving
time window operators. There are centered and backward versions of these operators.

The centered moving time window operators are CMOVAVE, CMOVCSS, CMOVGMEAN, CMOVMAX,
CMOVMED, CMOVMIN, CMOVPROD, CMOVRANGE, CMOVRANK, CMOVSTD, CMOVSUM,
CMOVTVALUE, CMOVUSS, and CMOVVAR. These operators compute statistics of the n values xi

for observations t � .nC n mod 2/=2C 1 � i � t C .n � n mod 2/=2

The backward moving time window operators are MOVAVE, MOVCSS, MOVGMEAN, MOVMAX,
MOVMED, MOVMIN, MOVPROD, MOVRANGE, MOVRANK, MOVSTD, MOVSUM, MOVTVALUE,
MOVUSS, and MOVVAR. These operators compute statistics of the n values xt ; xt�1; : : :; xt�nC1.

All the moving time window operators accept an argument n specifying the number of periods to include in
the time window. For example, the following statement computes a five-period backward moving average of
X.

convert x=y / transformout=(movave 5);

In this example, the resulting transformation is

yt D .xt C xt�1 C xt�2 C xt�3 C xt�4/=5

The following statement computes a five-period centered moving average of X.

convert x=y / transformout=(cmovave 5);

In this example, the resulting transformation is

yt D .xt�2 C xt�1 C xt C xtC1 C xtC2/=5

If the window with a centered moving time window operator is not an odd number, one more lead value than
lag value is included in the time window. For example, the result of the CMOVAVE 4 operator is

yt D .xt�1 C xt C xtC1 C xtC2/=4

Transformation Operations F 909

You can compute a forward moving time window operation by combining a backward moving time window
operator with the REVERSE operator. For example, the following statement computes a five-period forward
moving average of X.

convert x=y / transformout=(reverse movave 5 reverse);

In this example, the resulting transformation is

yt D .xt C xtC1 C xtC2 C xtC3 C xtC4/=5

Some of the moving time window operators enable you to specify a list of weight values to compute weighted
statistics. These are CMOVAVE, CMOVCSS, CMOVGMEAN, CMOVPROD, CMOVSTD, CMOVTVALUE,
CMOVUSS, CMOVVAR, MOVAVE, MOVCSS, MOVGMEAN, MOVPROD, MOVSTD, MOVTVALUE,
MOVUSS, and MOVVAR.

To specify a weighted moving time window operator, enter the weight values in parentheses after the operator
name. The window width n is equal to the number of weights that you specify; do not specify n.

For example, the following statement computes a weighted five-period centered moving average of X.

convert x=y / transformout=(cmovave(.1 .2 .4 .2 .1));

In this example, the resulting transformation is

yt D :1xt�2 C :2xt�1 C :4xt C :2xtC1 C :1xtC2

The weight values must be greater than zero. If the weights do not sum to 1, the weights specified are divided
by their sum to produce the weights used to compute the statistic.

A complete time window is not available at the beginning of the series. For the centered operators a complete
window is also not available at the end of the series. The computation of the moving time window operators
is adjusted for these boundary conditions as follows.

For backward moving window operators, the width of the time window is shortened at the beginning of the
series. For example, the results of the MOVSUM 3 operator are

y1 D x1

y2 D x1 C x2

y3 D x1 C x2 C x3

y4 D x2 C x3 C x4

y5 D x3 C x4 C x5

� � �

910 F Chapter 16: The EXPAND Procedure

For centered moving window operators, the width of the time window is shortened at the beginning and the
end of the series due to unavailable observations. For example, the results of the CMOVSUM 5 operator are

y1 D x1 C x2 C x3

y2 D x1 C x2 C x3 C x4

y3 D x1 C x2 C x3 C x4 C x5

y4 D x2 C x3 C x4 C x5 C x6

� � �

y
N�2

D x
N�4
C x

N�3
C x

N�2
C x

N�1
C x

N

y
N�1

D x
N�3
C x

N�2
C x

N�1
C x

N

y
N
D x

N�2
C x

N�1
C x

N

For weighted moving time window operators, the weights for the unavailable or unused observations are
ignored and the remaining weights renormalized to sum to 1.

Cumulative Statistics Operators

Some operators compute cumulative statistics for a set of current and previous values of the series. The
cumulative statistics operators are CUAVE, CUCSS, CUMAX, CUMED, CUMIN, CURANGE, CUSTD,
CUSUM, CUUSS, and CUVAR.

By default, the cumulative statistics operators compute the statistics from all previous values of the series, so
that yt is based on the set of values xt ; xt�1; : : : ; x1. For example, the following statement computes yt as
the cumulative sum of nonmissing xi values for i�t .

convert x=y / transformout=(cusum);

You can specify a lag increment argument n for the cumulative statistics operators. In this case, the statistic
is computed from the current and every nth previous value. When n is specified these operators compute
statistics of the values xt ; xt�n; xt�2n; : : :; xt�in for t � in > 0.

For example, the following statement computes yt as the cumulative sum of nonmissing xi values for odd i

when t is odd and for even i when t is even.

convert x=y / transformout=(cusum 2);

The results of this example are

y1 D x1

y2 D x2

y3 D x1 C x3

y4 D x2 C x4

y5 D x1 C x3 C x5

y6 D x2 C x4 C x6

� � �

Transformation Operations F 911

Missing Values

You can truncate the length of the result series by using the TRIM, TRIMLEFT, and TRIMRIGHT operators
to set values to missing at the beginning or end of the series.

You can use these functions to trim the results of moving time window operators so that the result series
contains only values computed from a full width time window. For example, the following statements
compute a centered five-period moving average of X, and they set to missing values at the ends of the series
that are averages of fewer than five values.

convert x=y / transformout=(cmovave 5 trim 2);

Normally, the moving time window and cumulative statistics operators ignore missing values and compute
their results for the nonmissing values. When preceded by the NOMISS operator, these functions produce a
missing result if any value within the time window is missing.

The NOMISS operator does not perform any calculations, but serves to modify the operation of the moving
time window operator that follows it. The NOMISS operator has no effect unless it is followed by a moving
time window operator.

For example, the following statement computes a five-period moving average of the variable X but produces
a missing value when any of the five values are missing.

convert x=y / transformout=(nomiss movave 5);

The following statement computes the cumulative sum of the variable X but produces a missing value for all
periods after the first missing X value.

convert x=y / transformout=(nomiss cusum);

Similar to the NOMISS operator, the MISSONLY operator does not perform any calculations (unless followed
by the MEAN option), but it serves to modify the operation of the moving time window operator that follows
it. When preceded by the MISSONLY operator, these moving time window operators replace any missing
values with the moving statistic and leave nonmissing values unchanged.

For example, the following statement replaces any missing values of the variable X with an exponentially
weighted moving average of the past values of X and leaves nonmissing values unchanged. The missing
values are interpolated using the specified exponentially weighted moving average. (This is also called simple
exponential smoothing.)

convert x=y / transformout=(missonly ewma 0.3);

The following statement replaces any missing values of the variable X with the overall mean of X.

convert x=y / transformout=(missonly mean);

You can use the SETMISS operator to replace missing values with a specified number. For example, the
following statement replaces any missing values of the variable X with the number 8.77.

convert x=y / transformout=(setmiss 8.77);

912 F Chapter 16: The EXPAND Procedure

Classical Decomposition Operators

If xt is a seasonal time series with s observations per season, classical decomposition methods “break down”
the time series into four components: trend, cycle, seasonal, and irregular components. The trend and cycle
components are often combined to form the trend-cycle component. There are two basic forms of classical
decomposition: multiplicative and additive, which are show below.

xt D T CtStIt

xt D T Ct C St C It

where

T Ct is the trend-cycle component

St is the seasonal component or seasonal factors that are periodic with period s and with
mean one (multiplicative) or zero (additive)

It is the irregular or random component that is assumed to have mean one (multiplicative) or
zero (additive)

For multiplicative decomposition, all of the xt values should be positive.

The CD_TC operator computes the trend-cycle component for both the multiplicative and additive models.
When s is odd, this operator computes an s-period centered moving average as follows:

T Ct D

bs=2cX
kD�bs=2c

xtCk=s

For example, in the case where s=5, the CD_TC s operator

convert x=tc / transformout=(cd_tc 5);

is equivalent to the following CMOVAVE operator:

convert x=tc / transformout=(cmovave 5 trim 2);

When s is even, the CD_TC s operator computes the average of two adjacent s-period centered moving
averages as follows:

T Ct D

bs=2c�1X
kD�bs=2c

.xtCk C xtC1Ck/=2s

For example, in the case where s=12, the CD_TC s operator

convert x=tc / transformout=(cd_tc 12);

is equivalent to the following CMOVAVE operator:

Transformation Operations F 913

convert x=tc / transformout=(cmovave 12 movave 2 trim 6);

The CD_S and CDA_S operators compute the seasonal components for the multiplicative and additive models,
respectively. First, the trend-cycle component is computed as shown previously. Second, the seasonal-
irregular component is computed by SIt D xt=T Ct for the multiplicative model and by SIt D xt � T Ct

for the additive model. The seasonal component is obtained by averaging the seasonal-irregular component
for each season.

SkCjs D

X
tDk mod s

SIt

n=s

where 0�j�n=s and 1�k�s. The seasonal components are normalized to sum to one (multiplicative) or
zero (additive).

The CD_I and CDA_I operators compute the irregular component for the multiplicative and additive models
respectively. First, the seasonal component is computed as shown previously. Next, the irregular component
is determined from the seasonal-irregular and seasonal components as appropriate.

It D SIt=St

It D SIt � St

The CD_SA and CDA_SA operators compute the seasonally adjusted time series for the multiplicative and
additive models, respectively. After decomposition, the original time series can be seasonally adjusted as
appropriate.

Qxt D xt=St D T CtIt

Qxt D xt � St D T Ct C It

The following statements compute all the multiplicative classical decomposition components for the variable
X for s=12.

convert x=tc / transformout=(cd_tc 12);
convert x=s / transformout=(cd_s 12);
convert x=i / transformout=(cd_i 12);
convert x=sa / transformout=(cd_sa 12);

The following statements compute all the additive classical decomposition components for the variable X for
s=4.

convert x=tc / transformout=(cd_tc 4);
convert x=s / transformout=(cda_s 4);
convert x=i / transformout=(cda_i 4);
convert x=sa / transformout=(cda_sa 4);

The X12 and X11 procedures provides other methods for seasonal decomposition. See Chapter 44, “The X12
Procedure,” and Chapter 43, “The X11 Procedure.”

914 F Chapter 16: The EXPAND Procedure

Fractional Operators

For fractional operators, the parameter, d, represents the order of fractional differencing. Fractional summation
is the inverse operation of fractional differencing.

Examples of Usage
Suppose that X is a fractionally integrated time series variable of order d=0.25. Fractionally differencing X
forms a time series variable Y which is not integrated.

convert x=y / transformout=(fdif 0.25);

Suppose that Z is a non-integrated time series variable. Fractionally summing Z forms a time series W which
is fractionally integrated of order d D 0:25.

convert z=w / transformout=(fsum 0.25);

Moving Rank Operators

For the rank operators, the ranks are computed based on the current value with respect to the cumulative,
centered, or moving window values. If the current value is missing, the transformed current value is set to
missing. If the NOMISS option was previously specified and if any missing values are present in the moving
window, the transformed current value is set to missing. Otherwise, redundant values from the moving
window are removed and the rank of the current value is computed among the unique values of the moving
window.

Examples of Usage
The trades of a particular security are recorded for each weekday in a variable named PRICE. Given the
historical daily trades, the ranking of the price of this security for each trading day, considering its entire past
history, can be computed as follows:

convert price=history / transformout=(curank);

The ranking of the price of this security for each trading day considering the previous week’s history can be
computed as follows:

convert price=lastweek / transformout=(movrank 5);

Transformation Operations F 915

The ranking of the price of this security for each trading day considering the previous two week’s history can
be computed as follows:

convert price=twoweek / transformout=(movrank 10);

Moving Product and Geometric Mean Operators

For the product and geometric mean operators, the current transformed value is computed based on the
(weighted) product of the cumulative, centered, or moving window values. If missing values are present in
the moving window and the NOMISS operator is previously specified, the current transformed value is set to
missing. Otherwise, the current transformed value is set to the product of the nonmissing values within the
moving window. If a geometric mean operator is specified for a window of size n, the nth root of the product
is taken. In cases where weights are specified explicitly, both the product and geometric mean operators
normalize these exponents so that they sum to one.

Examples of Usage
The interest rates for a savings account are recorded for each month in the data set variable RATES. The
cumulative interest rate for each month considering the entire account past history can be computed as
follows:

convert rates=history / transformout=(+ 1 cuprod - 1);

The interest rate for each quarter considering the previous quarter’s history can be computed as follows:

convert rates=lastqtr / transformout=(+ 1 movprod 3 - 1);

The average interest rate for the previous quarter’s history can be computed as follows:

convert rates=lastqtr / transformout=(+ 1 movprod (1 1 1) - 1);

Sequence Operators

For the sequence operators, the sequence values are used to compute the transformed values from the original
values in a sequential fashion. You can add to or subtract from the original series or you can multiply or
divide by the sequence values. The first sequence value is applied to the first observation of the series, the
second sequence value is applied to the second observation of the series, and so on until the end of the
sequence is reached. At this point, the first sequence value is applied to the next observation of the series and
the second sequence value on the next observation and so on.

916 F Chapter 16: The EXPAND Procedure

Let v1; : : : ; vm be the sequence values and let xt , t D 1; : : : N , be the original time series. The transformed
series, yt , is computed as follows:

y1 D x1 op v1

y2 D x2 op v2

� � �

ym D xm op vm

ymC1 D xmC1 op v1

ymC2 D xmC2 op v2

� � �

y2m D x2m op vm

y2mC1 D x2mC1 op v1

y2mC2 D x2mC2 op v2

� � �

where op D C;�;�; or =.

Examples of Usage
The multiplicative seasonal indices are 0.9, 1.2. 0.8, and 1.1 for the four quarters. Let SEASADJ be a
quarterly time series variable that has been seasonally adjusted in a multiplicative fashion. To restore the
seasonality to SEASADJ use the following transformation:

convert seasadj=seasonal /
transformout=(seqmult (0.9 1.2 0.8 1.1));

The additive seasonal indices are 4.4, -1.1, -2.1, and -1.2 for the four quarters. Let SEASADJ be a quarterly
time series variable that has been seasonally adjusted in additive fashion. To restore the seasonality to
SEASADJ use the following transformation:

convert seasadj=seasonal /
transformout=(seqadd (4.4 -1.1 -2.1 -1.2));

Set Operators

For the set operators, the first parameter, n1, represents the value to be replaced and the second parameter,
n2, represents the replacement value. The replacement can be localized to the beginning, middle, or end of
the series.

Examples of Usage
Suppose that a store opened recently and that the sales history is stored in a database that does not recognize
missing values. Even though demand may have existed prior to the stores opening, this database assigns
the value of zero. Modeling the sales history may be problematic because the sales history is mostly zero.
To compensate for this deficiency, the leading zero values should be set to missing with the remaining zero
values unchanged (representing no demand).

Transformation Operations F 917

convert sales=demand / transformout=(setleft (0 .));

Likewise, suppose a store is closed recently. The demand might still be present; hence, a recorded value of
zero does not accurately reflect actual demand.

convert sales=demand / transformout=(setright (0 .));

Scale Operator

For the scale operator, the first parameter, n1, represents the value associated with the minimum value (xmin)
and the second parameter, n2, represents the value associated with the maximum value (xmax) of the original
series (xt). The scale operator rescales the original data to be between the parameters n1 and n2 as follows:

yt D ..n2 � n1/=.xmax � xmin//.xt � xmin/C n1

Examples of Usage
Suppose that two new product sales histories are stored in variables X and Y and you wish to determine their
adoption rates. In order to compare their adoption histories the variables must be scaled for comparison.

convert x=w / transformout=(scale 0 1);
convert y=z / transformout=(scale 0 1);

Adjust Operator

For the moving summation and product window operators, the window widths at the beginning and end of
the series are smaller than those in the middle of the series. Likewise, if there are embedded missing values,
the window width is smaller than specified. When preceded by the ADJUST operator, the moving summation
(MOVSUM CMOVSUM) and moving product operators (MOVPROD CMOVPROD) are adjusted by the
window width.

For example, suppose the variable X has 10 values and the moving summation operator of width 3 is applied
to X to create the variable Y with window width adjustment and the variable Z without adjustment.

convert x=y / transformout=(adjust movsum 3);
convert x=z / transformout=(movsum 3);

The above transformations result in the following relationship between Y and Z: y1 D 3z1, y2 D
3
2
z2,

yt D zt for t > 2 because the first two window widths are smaller than 3.

For example, suppose the variable X has 10 values and the moving multiplicative operator of width 3 is
applied to X to create the variable Y with window width adjustment and the variable Z without adjustment.

convert x=y / transformout=(adjust movprod 3);
convert x=z / transformout=(movprod 3);

The above transformation result in the following: y1 D z3
1 , y2 D z

3=2
2 , yt D zt for t > 2 because the first

two window widths are smaller than 3.

918 F Chapter 16: The EXPAND Procedure

Moving T-Value Operators

The moving t-value operators (CUTVALUE, MOVTVALUE, CMOVTVALUE) compute the t-value of the
cumulative series or moving window. They can be viewed as combinations of the moving average (CUAVE,
MOVAVE, CMOVAVE) and the moving standard deviation (CUSTD, MOVSTD, CMOVSTD), respectively.

Percent Operators

The percentage operators compute the percent summation and the percent difference of the current value and
the lag.n/. The percent summation operator (PCTSUM) computes yt D 100xt=cusum.xt�n/. If any of the
values of the preceding equation are missing or the cumulative summation is zero, the result is set to missing.
The percent difference operator (PCTDIF) computes yt D 100.xt � xt�n/=xt�n. If any of the values of the
preceding equation are missing or the lag value is zero, the result is set to missing.

For example, suppose variable X contains the series. The percent summation of lag 4 is applied to X to create
the variable Y. The percent difference of lag 4 is applied to X to create the variable Z.

convert x=y / transformout=(pctsum 4);
convert x=z / transformout=(pctdif 4);

Ratio Operators

The ratio operator computes the ratio of the current value and the lag.n/ value. The ratio operator (RATIO)
computes yt D xt=xt�n. If any of the values of the preceding equation are missing or the lag value is zero,
the result is set to missing.

For example, suppose variable X contains the series. The ratio of the current value and the lag 4 value of
X assigned to the variable Y. The percent ratio of the current value and lag 4 value of X is assigned to the
variable Z.

convert x=y / transformout=(ratio 4);
convert x=z / transformout=(ratio 4 * 100);

OUT= Data Set
The OUT= output data set contains the following variables:

� the BY variables, if any

� an ID variable that identifies the time period for each output observation

� the result variables

� if no frequency conversion is performed (so that there is one output observation corresponding to each
input observation), all the other variables in the input data set are copied to the output data set

The ID variable in the output data set is named as follows:

OUTEST= Data Set F 919

� If an ID statement is used, the new ID variable has the same name as the variable used in the ID
statement.

� If no ID statement is used, but the FROM= option is used, then the name of the ID variable is either
DATE or DATETIME, depending on whether the TO= option indicates SAS date or SAS datetime
values.

� If neither an ID statement nor the TO= option is used, the ID variable is named TIME.

OUTEST= Data Set
The OUTEST= data set contains the coefficients of the spline curves fit to the input series. The OUTEST=
data set is of interest if you want to verify the interpolating curve PROC EXPAND uses, or if you want to use
this function in another context, (for example, in a SAS/IML program).

The OUTEST= data set contains the following variables:

� the BY variables, if any

� VARNAME, a character variable containing the name of the input variable to which the coefficients
apply

� METHOD, a character variable containing the value of the METHOD= option used to fit the series

� OBSERVED, a character variable containing the first letter of the OBSERVED= option name for the
input series

� the ID variable that contains the lower breakpoint (or “knot”) of the spline segment to which the
coefficients apply. The ID variable has the same name as the variable used in the ID statement. If an
ID statement is not used, but the FROM= option is used, then the name of the ID variable is DATE or
DATETIME, depending on whether the FROM= option indicates SAS date or SAS datetime values. If
neither an ID statement nor the FROM= option is used, the ID variable is named TIME.

� CONSTANT, the constant coefficient for the spline segment

� LINEAR, the linear coefficient for the spline segment

� QUAD, the quadratic coefficient for the spline segment

� CUBIC, the cubic coefficient for the spline segment

For each BY group, the OUTEST= data set contains observations for each polynomial segment of the spline
curve fit to each input series. To obtain the observations defining the spline curve used for a series, select the
observations where the value of VARNAME equals the name of the series.

The observations for a series in the OUTEST= data set encode the spline function fit to the series as follows.
Let ai ; bi ; ci ; and di be the values of the variables CUBIC, QUAD, LINEAR, and CONSTANT, respectively,
for the ith observation for the series. Let xi be the value of the ID variable for the ith observation for the

920 F Chapter 16: The EXPAND Procedure

series. Let n be the number of observations in the OUTEST= data set for the series. The value of the spline
function evaluated at a point x is

f .x/ D ai .x � xi /
3
C bi .x � xi /

2
C ci .x � xi /C di

where the segment number i is selected as follows:

i D

8̂<̂
:

i xi � x < xiC1; 1 � i < n

1 x < x1

n x � xn

In other words, if x is between the first and last ID values (x1 � x < xn), use the observation from the
OUTEST= data set with the largest ID value less than or equal to x. If x is less than the first ID value x1, then
i D 1. If x is greater than or equal to the last ID value (x � xn), then i D n.

For METHOD=JOIN, the curve is a linear spline, and the values of CUBIC and QUAD are 0. For
METHOD=STEP, the curve is a constant spline, and the values of CUBIC, QUAD, and LINEAR are
0. For METHOD=AGGREGATE, no coefficients are output.

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” in that chapter.

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

This section describes the use of ODS for creating graphics with the EXPAND procedure. To request these
graphs, you must specify the PLOTS= option in the PROC EXPAND statement.

ODS Graph Names

PROC EXPAND assigns a name to each graph it creates using ODS. You can use these names to reference
the graphs when using ODS. The names are listed in Table 16.3.

Table 16.3 ODS Graphics Produced by PROC EXPAND
ODS Graph Name Plot Description PLOTS= Options
ConvertedSeriesPlot Converted Series Plot CONVERTED OUTPUT

ALL
CrossInputSeriesPlot Cross Input Series Plot CROSSINPUT
CrossOutputSeriesPlot Cross Output Series Plot CROSSOUTPUT
InputSeriesPlot Input Series Plot INPUT JOINTINPUT ALL
JointInputSeriesPlot Joint Input Series Plot JOINTINPUT
JointOutputSeriesPlot Joint Output Series Plot JOINTOUTPUT

ODS Graphics F 921

Table 16.3 (continued)
ODS Graph Name Plot Description PLOTS= Options
OutputSeriesPlot Output Series Plot SERIES|OUTPUT
TransformedInputSeriesPlot Transformed Input Series Plot TRANSFORMIN

OUTPUT ALL
TransformedOutputSeriesPlot Transformed Output Series Plot TRANSFORMOUT

OUTPUT ALL

PLOTS= Option Details

Some plots are produced for a series only if the relevant options are also specified. For example, if
PLOTS=TRANSFORMIN is specified, then the TRANSFORMIN plot is not produced for a variable
unless the TRANSFORMIN= option is specified in a CONVERT statement for that variable. The
PLOTS=TRANSFORMIN option plots the series after the input transformation (TRANSFORMIN= option)
is applied.

The PLOTS=CONVERTED option plots the series after the input transformation (TRANSFORMIN= option)
is applied and after frequency conversion (METHOD= option). If there is no frequency conversion for an
output variable, the converted series plot is not produced.

The PLOTS=TRANSFORMOUT option plots the series after the output transformation (TRANSFORMOUT=
option) is applied. If the TRANFORMOUT= option is not specified in the CONVERT statement for an
output variable, the output transformation plot is not produced.

The PLOTS=OUTPUT option plots the series after it has undergone input transformation (TRANSFORMIN=
option), frequency conversion (METHOD= option), and output transformation (TRANSFORMOUT= option)
if these CONVERT statement options were specified.

Cross and Joint Plots
The PLOTS= option values CROSSINPUT and CROSSOUTPUT produce graphs that overlay plots of two
series by using two Y axes and with each of the two plots shown at a separate scale. These plots are called
cross plots.

The PLOTS= option values JOINTINPUT and JOINTOUTPUT produce graphs that overlay plots of two
series by using a single Y axis and with both of the plots shown on the same scale. These plots are called
joint plots. The joint graphics options (PLOTS=JOINTINPUT or PLOTS=JOINTOUTPUT) plot the (input
or converted) series and the transformed series on the same scale; therefore if the transformation changes, the
range of the series these plots might be hard to visualize.

The PLOTS=CROSSINPUT option plots both the input series and the series after the input transformation
(TRANSFORMIN= option) is applied. The left vertical axis refers to the input series, while the right vertical
axis refers to the series after the transformation. If the TRANFORMIN= option is not specified in the
CONVERT statement for an output variable, then the cross input plot is not produced for that variable.

The PLOTS=JOINTINPUT option jointly plots both the input series and the series after the input trans-
formation (TRANSFORMIN= option) is applied. If the TRANSFORMIN= option is not specified in the
CONVERT statement for an output variable, then the joint input plot is not produced for that variable.

The PLOTS=CROSSOUTPUT option plots both the converted series and the converted series after the output
transformation (TRANSFORMOUT= option) is applied. The left vertical axis refers to the input series,

922 F Chapter 16: The EXPAND Procedure

while the right vertical axis refers to the series after the transformation. If the TRANSFORMOUT= option is
not specified in the CONVERT statement for an output variable, then the cross output plot is not produced
for that variable.

The PLOTS=JOINTOUTPUT option jointly plots both the converted series and the converted series after the
output transformation (TRANSFORMOUT= option) is applied. If the TRANSFORMOUT= option is not
specified in the CONVERT statement for an output variable, then the joint output plot is not produced for
that variable.

Requesting All Plots
The PLOTS=ALL option is a convenient way to specify all the plots except the OUTPUT plots and the
joint and cross plots. The option PLOTS=(ALL OUTPUT JOINTINPUT JOINTOUTPUT CROSSINPUT
CROSSOUTPUT) requests that all possible plots be produced.

Examples: EXPAND Procedure

Example 16.1: Combining Monthly and Quarterly Data
This example combines monthly and quarterly data sets by interpolating monthly values for the quarterly
series. The series are extracted from two small sample data sets stored in the SASHELP library. These data
sets were contributed by Citicorp Data Base services and contain selected U.S. macro economic series.

The quarterly series gross domestic product (GDP) and implicit price deflator (GD) are extracted from
SASHELP.CITIQTR. The monthly series industrial production index (IP) and unemployment rate (LHUR)
are extracted from SASHELP.CITIMON. Only observations for the years 1990 and 1991 are selected. PROC
EXPAND is then used to interpolate monthly estimates for the quarterly series, and the interpolated series are
merged with the monthly data.

The following statements extract and print the quarterly data, shown in Output 16.1.1.

data qtrly;
set sashelp.citiqtr;
where date >= '1jan1990'd &

date < '1jan1992'd ;
keep date gdp gd;

run;

title "Quarterly Data";
proc print data=qtrly;
run;

Example 16.1: Combining Monthly and Quarterly Data F 923

Output 16.1.1 Quarterly Data Set

Quarterly DataQuarterly Data

Obs DATE GD GDP

1 1990:1 111.100 5422.40

2 1990:2 112.300 5504.70

3 1990:3 113.600 5570.50

4 1990:4 114.500 5557.50

5 1991:1 115.900 5589.00

6 1991:2 116.800 5652.60

7 1991:3 117.400 5709.20

8 1991:4 . 5736.60

The following statements extract and print the monthly data, shown in Output 16.1.2.

data monthly;
set sashelp.citimon;
where date >= '1jan1990'd &

date < '1jan1992'd ;
keep date ip lhur;

run;

title "Monthly Data";
proc print data=monthly;
run;

924 F Chapter 16: The EXPAND Procedure

Output 16.1.2 Monthly Data Set

Monthly DataMonthly Data

Obs DATE IP LHUR

1 JAN1990 107.500 5.30000

2 FEB1990 108.500 5.30000

3 MAR1990 108.900 5.20000

4 APR1990 108.800 5.40000

5 MAY1990 109.400 5.30000

6 JUN1990 110.100 5.20000

7 JUL1990 110.400 5.40000

8 AUG1990 110.500 5.60000

9 SEP1990 110.600 5.70000

10 OCT1990 109.900 5.80000

11 NOV1990 108.300 6.00000

12 DEC1990 107.200 6.10000

13 JAN1991 106.600 6.20000

14 FEB1991 105.700 6.50000

15 MAR1991 105.000 6.70000

16 APR1991 105.500 6.60000

17 MAY1991 106.400 6.80000

18 JUN1991 107.300 6.90000

19 JUL1991 108.100 6.80000

20 AUG1991 108.000 6.80000

21 SEP1991 108.400 6.80000

22 OCT1991 108.200 6.90000

23 NOV1991 108.000 6.90000

24 DEC1991 107.800 7.10000

The following statements interpolate monthly estimates for the quarterly series and merge the interpolated
series with the monthly data. The resulting combined data set is then printed, as shown in Output 16.1.3.

proc expand data=qtrly out=temp from=qtr to=month;
convert gdp gd / observed=average;
id date;

run;

data combined;
merge monthly temp;
by date;

run;

title "Combined Data Set";
proc print data=combined;
run;

Example 16.2: Illustration of ODS Graphics F 925

Output 16.1.3 Combined Data Set

Combined Data SetCombined Data Set

Obs DATE IP LHUR GDP GD

1 JAN1990 107.500 5.30000 5409.69 110.879

2 FEB1990 108.500 5.30000 5417.67 111.048

3 MAR1990 108.900 5.20000 5439.39 111.367

4 APR1990 108.800 5.40000 5470.58 111.802

5 MAY1990 109.400 5.30000 5505.35 112.297

6 JUN1990 110.100 5.20000 5538.14 112.801

7 JUL1990 110.400 5.40000 5563.38 113.264

8 AUG1990 110.500 5.60000 5575.69 113.641

9 SEP1990 110.600 5.70000 5572.49 113.905

10 OCT1990 109.900 5.80000 5561.64 114.139

11 NOV1990 108.300 6.00000 5553.83 114.451

12 DEC1990 107.200 6.10000 5556.92 114.909

13 JAN1991 106.600 6.20000 5570.06 115.452

14 FEB1991 105.700 6.50000 5588.18 115.937

15 MAR1991 105.000 6.70000 5608.68 116.314

16 APR1991 105.500 6.60000 5630.81 116.600

17 MAY1991 106.400 6.80000 5652.92 116.812

18 JUN1991 107.300 6.90000 5674.06 116.988

19 JUL1991 108.100 6.80000 5693.43 117.164

20 AUG1991 108.000 6.80000 5710.54 117.380

21 SEP1991 108.400 6.80000 5724.11 117.665

22 OCT1991 108.200 6.90000 5733.65 .

23 NOV1991 108.000 6.90000 5738.46 .

24 DEC1991 107.800 7.10000 5737.75 .

Example 16.2: Illustration of ODS Graphics
This example illustrates the use of ODS graphics with PROC EXPAND.

The graphical displays are requested by specifying the PLOTS= option in the PROC EXPAND statement.
For information about the graphics available in the EXPAND procedure, see the section “ODS Graphics” on
page 920.

The following statements utilize the SASHELP.WORKERS data set to convert the time series of electrical
workers from monthly to quarterly frequency and display ODS graphics plots. The PLOTS=ALL option is
specified to request the plots of the input series, the transformed input series, the converted series, and the
transformed output series. Figure 16.2.1 through Figure 16.2.4 show these plots.

926 F Chapter 16: The EXPAND Procedure

proc expand data=sashelp.workers out=out
from=month to=qtr
plots=all;

id date;
convert electric=eout / method=spline

transformin=(movmed 4)
transformout=(movave 3);

run;

Output 16.2.1 Input Series Plot

Example 16.2: Illustration of ODS Graphics F 927

Output 16.2.2 Transformed Input Series Plot—Four-Period Moving Median

928 F Chapter 16: The EXPAND Procedure

Output 16.2.3 Converted Plot of Transformed Input Series

Example 16.3: Interpolating Irregular Observations F 929

Output 16.2.4 Transformed Output Series Plot—Three-Period Moving Average

Example 16.3: Interpolating Irregular Observations
This example shows the interpolation of a series of values measured at irregular points in time. The data are
hypothetical. Assume that a series of randomly timed quality control inspections are made and defect rates
for a process are measured. The problem is to produce two reports: estimates of monthly average defect rates
for the months within the period covered by the samples, and a plot of the interpolated defect rate curve over
time.

The following statements read and print the input data, as shown in Output 16.3.1.

data samples;
input date : date9. defects @@;
label defects = "Defects per 1000 Units";
format date date9.;

datalines;
13jan1992 55 27jan1992 73 19feb1992 84 8mar1992 69

... more lines ...

title "Sampled Defect Rates";
proc print data=samples;
run;

930 F Chapter 16: The EXPAND Procedure

Output 16.3.1 Measured Defect Rates

Sampled Defect RatesSampled Defect Rates

Obs date defects

1 13JAN1992 55

2 27JAN1992 73

3 19FEB1992 84

4 08MAR1992 69

5 27MAR1992 66

6 05APR1992 77

7 29APR1992 63

8 11MAY1992 81

9 25MAY1992 89

10 07JUN1992 94

11 23JUN1992 105

12 11JUL1992 97

13 15AUG1992 112

14 29AUG1992 89

15 10SEP1992 77

16 27SEP1992 82

To compute the monthly estimates, use PROC EXPAND with the TO=MONTH option and specify OB-
SERVED=(BEGINNING,AVERAGE). The following statements interpolate the monthly estimates.

proc expand data=samples
out=monthly
to=month
plots=(input output);

id date;
convert defects / observed=(beginning,average);

run;

The following PROC PRINT step prints the results, as shown in Output 16.3.2.

title "Estimated Monthly Average Defect Rates";
proc print data=monthly;
run;

Example 16.3: Interpolating Irregular Observations F 931

Output 16.3.2 Monthly Average Estimates

Estimated Monthly Average Defect RatesEstimated Monthly Average Defect Rates

Obs date defects

1 JAN1992 59.323

2 FEB1992 82.000

3 MAR1992 66.909

4 APR1992 70.205

5 MAY1992 82.762

6 JUN1992 99.701

7 JUL1992 101.564

8 AUG1992 105.491

9 SEP1992 79.206

The plots produced by PROC EXPAND are shown in Output 16.3.3.

Output 16.3.3 Interpolated Defects Rate Curve

932 F Chapter 16: The EXPAND Procedure

Output 16.3.3 continued

Example 16.4: Using Transformations
This example shows the use of PROC EXPAND to perform various transformations of time series. The
following statements read in monthly values for a variable X.

data test;
input year qtr x;
date = yyq(year, qtr);
format date yyqc.;

datalines;
1989 3 5238
1989 4 5289
1990 1 5375
1990 2 5443
1990 3 5514
1990 4 5527
1991 1 5557
1991 2 5615
;

Example 16.4: Using Transformations F 933

The following statements use PROC EXPAND to compute lags and leads and a 3-period moving average of
the X series.

proc expand data=test out=out method=none;
id date;
convert x = x_lag2 / transformout=(lag 2);
convert x = x_lag1 / transformout=(lag 1);
convert x;
convert x = x_lead1 / transformout=(lead 1);
convert x = x_lead2 / transformout=(lead 2);
convert x = x_movave / transformout=(movave 3);

run;

title "Transformed Series";
proc print data=out;
run;

Because there are no missing values to interpolate and no frequency conversion, the METHOD=NONE
option is used to prevent PROC EXPAND from performing unnecessary computations. Because no frequency
conversion is done, all variables in the input data set are copied to the output data set. The CONVERT X;
statement is included to control the position of X in the output data set. This statement can be omitted, in
which case X is copied to the output data set following the new variables computed by PROC EXPAND.

The results are shown in Output 16.4.1.

Output 16.4.1 Output Data Set with Transformed Variables

Transformed SeriesTransformed Series

Obs date x_lag2 x_lag1 x x_lead1 x_lead2 x_movave year qtr

1 1989:3 . . 5238 5289 5375 5238.00 1989 3

2 1989:4 . 5238 5289 5375 5443 5263.50 1989 4

3 1990:1 5238 5289 5375 5443 5514 5300.67 1990 1

4 1990:2 5289 5375 5443 5514 5527 5369.00 1990 2

5 1990:3 5375 5443 5514 5527 5557 5444.00 1990 3

6 1990:4 5443 5514 5527 5557 5615 5494.67 1990 4

7 1991:1 5514 5527 5557 5615 . 5532.67 1991 1

8 1991:2 5527 5557 5615 . . 5566.33 1991 2

934 F Chapter 16: The EXPAND Procedure

References

De Boor, C. (1978). A Practical Guide to Splines. New York: Springer-Verlag.

Hodrick, R. J., and Prescott, E. C. (1980). “Post-war U.S. Business Cycles: An Empirical Investigation.”
Discussion Paper 451, Carnegie Mellon University.

Levenbach, H., and Cleary, J. P. (1984). The Modern Forecaster. Belmont, CA: Lifetime Learning
Publications.

Makridakis, S. G., and Wheelwright, S. C. (1978). Interactive Forecasting: Univariate and Multivariate
Methods. 2nd ed. San Francisco: Holden-Day.

Wheelwright, S. C., and Makridakis, S. G. (1973). Forecasting Methods for Management. 3rd ed. New York:
Wiley-Interscience.

Subject Index

adjust operators, 917
AGGREGATE method

EXPAND procedure, 903
aggregation of

time series data, 885, 888
aggregation of time series

EXPAND procedure, 885, 888

BY groups
EXPAND procedure, 895

centered moving time window operators, 908, 909
changing by interpolation

frequency, 885, 897
periodicity, 885

changing periodicity
time series data, 885

classical decomposition operators, 912
contrasted with flow variables

stocks, 888
contrasted with flows or rates

levels, 888
contrasted with stock variables

flows, 888
contrasted with stocks or levels

rates, 888
conversion methods

EXPAND procedure, 902
converting frequency of

time series data, 885
cumulative statistics operators, 910

distribution
of time series, 888

distribution of
time series data, 888

distribution of time series
EXPAND procedure, 888

EXPAND procedure
AGGREGATE method, 903
aggregation of time series, 885, 888
BY groups, 895
conversion methods, 902
distribution of time series, 888
extrapolation, 899
frequency, 885
ID variables, 896, 898
interpolation methods, 902

JOIN method, 903
ODS graph names, 920
output data sets, 918, 919
range of output observations, 899
SPLINE method, 902
STEP method, 903
time intervals, 898
transformation of time series, 890, 904
transformation operations, 904

extrapolation
EXPAND procedure, 899

flows
contrasted with stock variables, 888

fractional operators, 914
frequency

changing by interpolation, 885, 897
EXPAND procedure, 885

ID variables
EXPAND procedure, 896, 898

interpolation
of missing values, 886

interpolation methods
EXPAND procedure, 902

interpolation of
time series data, 886

interpolation of time series
step function, 903

JOIN method
EXPAND procedure, 903

levels
contrasted with flows or rates, 888

missing values, 911
time series data, 886

MISSONLY operator, 911
moving product and geometric mean operators, 915
moving rank operator, 914
moving t-value operators, 918
moving time window operators, 908

NOMISS operator, 911

ODS graph names
EXPAND procedure, 920

of missing values

interpolation, 886
of time series

distribution, 888
output data sets

EXPAND procedure, 918, 919

percent operators, 918
periodicity

changing by interpolation, 885
point-in-time values, 885, 888

range of output observations
EXPAND procedure, 899

rates
contrasted with stocks or levels, 888

ratio operators, 918

scale operators, 917
sequence operators, 915
set operators, 916
SETMISS operator, 911
SPLINE method

EXPAND procedure, 902
step function

interpolation of time series, 903
STEP method

EXPAND procedure, 903
stocks

contrasted with flow variables, 888

time intervals
EXPAND procedure, 898
widths of, 898

time series data
aggregation of, 885, 888
changing periodicity, 885
converting frequency of, 885
distribution of, 888
interpolation of, 886
missing values, 886
transformation of, 890, 904

transformation of
time series data, 890, 904

transformation of time series
EXPAND procedure, 890, 904

TRIM operator, 911
TRIMLEFT operator, 911
TRIMRIGHT operator, 911

widths of
time intervals, 898

Syntax Index

ALIGN= option
PROC EXPAND statement, 892, 898

BY statement
EXPAND procedure, 895

CONVERT statement
EXPAND procedure, 895

DATA= option
PROC EXPAND statement, 892

EXPAND procedure, 891
CONVERT statement, 904
syntax, 891

EXTRAPOLATE option
PROC EXPAND statement, 893

FACTOR= option
PROC EXPAND statement, 893, 897

FROM= option
PROC EXPAND statement, 893, 897

ID statement
EXPAND procedure, 896

METHOD= option
CONVERT statement (EXPAND), 896, 902
PROC EXPAND statement, 893, 902

OBSERVED= option
CONVERT statement (EXPAND), 896, 900
PROC EXPAND statement, 893

OUT= option
PROC EXPAND statement, 892, 918

OUTEST= option
PROC EXPAND statement, 892, 919

PLOTS= option
PROC EXPAND statement, 894

PROC EXPAND statement, 892

TIN=, 896
TO= option

PROC EXPAND statement, 893, 897
TOUT=, 896
TRANSFORM=, 896
TRANSFORMIN= option

CONVERT statement (EXPAND), 896, 904
TRANSFORMOUT= option

CONVERT statement (EXPAND), 896, 904
TRANSIN=, 896
TRANSOUT=, 896

	The EXPAND Procedure
	Overview: EXPAND Procedure
	Getting Started: EXPAND Procedure
	Converting to Higher Frequency Series
	Aggregating to Lower Frequency Series
	Combining Time Series with Different Frequencies
	Interpolating Missing Values
	Requesting Different Interpolation Methods
	Using the ID Statement
	Specifying Observation Characteristics
	Converting Observation Characteristics
	Creating New Variables
	Transforming Series

	Syntax: EXPAND Procedure
	Functional Summary
	PROC EXPAND Statement
	BY Statement
	CONVERT Statement
	ID Statement

	Details: EXPAND Procedure
	Frequency Conversion
	Identifying Observations
	Range of Output Observations
	Extrapolation
	OBSERVED= Option
	Conversion Methods
	Transformation Operations
	OUT= Data Set
	OUTEST= Data Set
	ODS Graphics

	Examples: EXPAND Procedure
	Example 16.1: Combining Monthly and Quarterly Data
	Example 16.2: Illustration of ODS Graphics
	Example 16.3: Interpolating Irregular Observations
	Example 16.4: Using Transformations

	References

	Subject Index
	Syntax Index

