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Overview: SYSLIN Procedure
The SYSLIN procedure estimates parameters in an interdependent system of linear regression equations.

Ordinary least squares (OLS) estimates are biased and inconsistent when current period endogenous variables
appear as regressors in other equations in the system. The errors of a set of related regression equations
are often correlated, and the efficiency of the estimates can be improved by taking these correlations into
account. The SYSLIN procedure provides several techniques that produce consistent and asymptotically
efficient estimates for systems of regression equations.

The SYSLIN procedure provides the following estimation methods:

• ordinary least squares (OLS)

• two-stage least squares (2SLS)

• limited information maximum likelihood (LIML)

• K-class

• seemingly unrelated regressions (SUR)

• iterated seemingly unrelated regressions (ITSUR)

• three-stage least squares (3SLS)

• iterated three-stage least squares (IT3SLS)

• full information maximum likelihood (FIML)

• minimum expected loss (MELO)

Other features of the SYSLIN procedure enable you to:

• impose linear restrictions on the parameter estimates
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• test linear hypotheses about the parameters

• write predicted and residual values to an output SAS data set

• write parameter estimates to an output SAS data set

• write the crossproducts matrix (SSCP) to an output SAS data set

• use raw data, correlations, covariances, or cross products as input

Getting Started: SYSLIN Procedure
This section introduces the use of the SYSLIN procedure. The problem of dependent regressors is introduced
using a supply and demand example. This section explains the terminology used for variables in a system of
regression equations and introduces the SYSLIN procedure statements for declaring the roles the variables
play. The syntax used for the different estimation methods and the output produced is shown.

An Example Model
In simultaneous systems of equations, endogenous variables are determined jointly rather than sequentially.
Consider the following supply and demand functions for some product:

QD D a1 C b1P C c1Y C d1S C �1.demand/

QS D a2 C b2P C c2U C �2.supply/

Q D QD D QS .market equilibrium/

The variables in this system are as follows:

QD quantity demanded

QS quantity supplied

Q the observed quantity sold, which equates quantity supplied and quantity demanded in
equilibrium

P price per unit

Y income

S price of substitutes

U unit cost

�1 the random error term for the demand equation

�2 the random error term for the supply equation
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In this system, quantity demanded depends on price, income, and the price of substitutes. Consumers
normally purchase more of a product when prices are lower and when income and the price of substitute
goods are higher. Quantity supplied depends on price and the unit cost of production. Producers supply more
when price is high and when unit cost is low. The actual price and quantity sold are determined jointly by the
values that equate demand and supply.

Since price and quantity are jointly endogenous variables, both structural equations are necessary to adequately
describe the observed values. A critical assumption of OLS is that the regressors are uncorrelated with
the residual. When current endogenous variables appear as regressors in other equations (endogenous
variables depend on each other), this assumption is violated and the OLS parameter estimates are biased and
inconsistent. The bias caused by the violated assumptions is called simultaneous equation bias. Neither the
demand nor supply equation can be estimated consistently by OLS.

Variables in a System of Equations
Before explaining how to use the SYSLIN procedure, it is useful to define some terms. The variables in a
system of equations can be classified as follows:

• Endogenous variables, which are also called jointly dependent or response variables, are the variables
determined by the system. Endogenous variables can also appear on the right-hand side of equations.

• Exogenous variables are independent variables that do not depend on any of the endogenous variables
in the system.

• Predetermined variables include both the exogenous variables and lagged endogenous variables, which
are past values of endogenous variables determined at previous time periods. PROC SYSLIN does not
compute lagged values; any lagged endogenous variables must be computed in a preceding DATA step.

• Instrumental variables are predetermined variables used in obtaining predicted values for the current
period endogenous variables by a first-stage regression. The use of instrumental variables characterizes
estimation methods such as two-stage least squares and three-stage least squares. Instrumental variables
estimation methods substitute these first-stage predicted values for endogenous variables when they
appear as regressors in model equations.

Using PROC SYSLIN
First specify the input data set and estimation method in the PROC SYSLIN statement. If any model uses
dependent regressors, and you are using an instrumental variables regression method, declare the dependent
regressors with an ENDOGENOUS statement and declare the instruments with an INSTRUMENTS statement.
Next, use MODEL statements to specify the structural equations of the system.

The use of different estimation methods is shown by the following examples. These examples use the
simulated dataset WORK.IN given below.
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data in;
label q = "Quantity"

p = "Price"
s = "Price of Substitutes"
y = "Income"
u = "Unit Cost";

drop i e1 e2;
p = 0; q = 0;
do i = 1 to 60;

y = 1 + .05*i + .15*rannor(123);
u = 2 + .05*rannor(123) + .05*rannor(123);
s = 4 - .001*(i-10)*(i-110) + .5*rannor(123);
e1 = .15 * rannor(123);
e2 = .15 * rannor(123);
demandx = 1 + .3 * y + .35 * s + e1;
supplyx = -1 - 1 * u + e2 - .4*e1;
q = 1.4/2.15 * demandx + .75/2.15 * supplyx;
p = ( - q + supplyx ) / -1.4;
output;

end;
run;

OLS Estimation
PROC SYSLIN performs OLS regression if you do not specify a method of estimation in the PROC SYSLIN
statement. OLS does not use instruments, so the ENDOGENOUS and INSTRUMENTS statements can be
omitted.

The following statements estimate the supply and demand model shown previously:

proc syslin data=in;
demand: model q = p y s;
supply: model q = p u;

run;

The PROC SYSLIN output for the demand equation is shown in Figure 29.1, and the output for the supply
equation is shown in Figure 29.2.

Figure 29.1 OLS Results for Demand Equation

The SYSLIN Procedure
Ordinary Least Squares Estimation

The SYSLIN Procedure
Ordinary Least Squares Estimation

Model DEMAND

Dependent Variable q

Label Quantity
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Figure 29.1 continued

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 9.587901 3.195967 398.31 <.0001

Error 56 0.449338 0.008024

Corrected Total 59 10.03724

Root MSE 0.08958 R-Square 0.95523

Dependent Mean 1.30095 Adj R-Sq 0.95283

Coeff Var 6.88542

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 -0.47677 0.210239 -2.27 0.0272 Intercept

p 1 0.123326 0.105177 1.17 0.2459 Price

y 1 0.201282 0.032403 6.21 <.0001 Income

s 1 0.167258 0.024091 6.94 <.0001 Price of Substitutes

Figure 29.2 OLS Results for Supply Equation

The SYSLIN Procedure
Ordinary Least Squares Estimation

The SYSLIN Procedure
Ordinary Least Squares Estimation

Model SUPPLY

Dependent Variable q

Label Quantity

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 9.033902 4.516951 256.61 <.0001

Error 57 1.003337 0.017602

Corrected Total 59 10.03724

Root MSE 0.13267 R-Square 0.90004

Dependent Mean 1.30095 Adj R-Sq 0.89653

Coeff Var 10.19821

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 -0.30389 0.471397 -0.64 0.5217 Intercept

p 1 1.218743 0.053914 22.61 <.0001 Price

u 1 -1.07757 0.234150 -4.60 <.0001 Unit Cost

For each MODEL statement, the output first shows the model label and dependent variable name and label.
This is followed by an analysis-of-variance table for the model, which shows the model, error, and total mean
squares, and an F test for the no-regression hypothesis. Next, the procedure prints the root mean squared
error, dependent variable mean and coefficient of variation, and the R2 and adjusted R2 statistics.
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Finally, the table of parameter estimates shows the estimated regression coefficients, standard errors, and t
tests. You would expect the price coefficient in a demand equation to be negative. However, note that the
OLS estimate of the price coefficient P in the demand equation (0.1233) has a positive sign. This could be
caused by simultaneous equation bias.

Two-Stage Least Squares Estimation
In the supply and demand model, P is an endogenous variable, and consequently the OLS estimates are
biased. The following example estimates this model using two-stage least squares.

proc syslin data=in 2sls;
endogenous p;
instruments y u s;
demand: model q = p y s;
supply: model q = p u;

run;

The 2SLS option in the PROC SYSLIN statement specifies the two-stage least squares method. The
ENDOGENOUS statement specifies that P is an endogenous regressor for which first-stage predicted values
are substituted. You need to declare an endogenous variable in the ENDOGENOUS statement only if it
is used as a regressor; thus although Q is endogenous in this model, it is not necessary to list it in the
ENDOGENOUS statement.

Usually, all predetermined variables that appear in the system are used as instruments. The INSTRUMENTS
statement specifies that the exogenous variables Y, U, and S are used as instruments for the first-stage
regression to predict P.

The 2SLS results are shown in Figure 29.3 and Figure 29.4. The first-stage regressions are not shown. To see
the first-stage regression results, use the FIRST option in the PROC SYSLIN statement.

Figure 29.3 2SLS Results for Demand Equation

The SYSLIN Procedure
Two-Stage Least Squares Estimation

The SYSLIN Procedure
Two-Stage Least Squares Estimation

Model DEMAND

Dependent Variable q

Label Quantity

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 9.670892 3.223631 115.58 <.0001

Error 56 1.561956 0.027892

Corrected Total 59 10.03724

Root MSE 0.16701 R-Square 0.86095

Dependent Mean 1.30095 Adj R-Sq 0.85350

Coeff Var 12.83744



2116 F Chapter 29: The SYSLIN Procedure

Figure 29.3 continued

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 1.901048 1.171231 1.62 0.1102 Intercept

p 1 -1.11519 0.607395 -1.84 0.0717 Price

y 1 0.419546 0.117955 3.56 0.0008 Income

s 1 0.331475 0.088472 3.75 0.0004 Price of Substitutes

Figure 29.4 2SLS Results for Supply Equation

The SYSLIN Procedure
Two-Stage Least Squares Estimation

The SYSLIN Procedure
Two-Stage Least Squares Estimation

Model SUPPLY

Dependent Variable q

Label Quantity

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 9.646109 4.823054 253.96 <.0001

Error 57 1.082503 0.018991

Corrected Total 59 10.03724

Root MSE 0.13781 R-Square 0.89910

Dependent Mean 1.30095 Adj R-Sq 0.89556

Coeff Var 10.59291

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 -0.51878 0.490999 -1.06 0.2952 Intercept

p 1 1.333080 0.059271 22.49 <.0001 Price

u 1 -1.14623 0.243491 -4.71 <.0001 Unit Cost

The 2SLS output is similar in form to the OLS output. However, the 2SLS results are based on predicted
values for the endogenous regressors from the first stage instrumental regressions. This makes the analysis-
of-variance table and the R2 statistics difficult to interpret. See the sections “ANOVA Table for Instrumental
Variables Methods” on page 2143 and “The R-Square Statistics” on page 2143 for details.

Note that, unlike the OLS results, the 2SLS estimate for the P coefficient in the demand equation (–1.115) is
negative.

LIML, K-Class, and MELO Estimation
To obtain limited information maximum likelihood, general K-class, or minimum expected loss estimates,
use the ENDOGENOUS, INSTRUMENTS, and MODEL statements as in the 2SLS case but specify the
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LIML, K=, or MELO option instead of 2SLS in the PROC SYSLIN statement. The following statements
show this for K-class estimation.

proc syslin data=in k=.5;
endogenous p;
instruments y u s;
demand: model q = p y s;
supply: model q = p u;

run;

For more information about these estimation methods, see the section “Estimation Methods” on page 2140
and consult econometrics textbooks.

SUR, 3SLS, and FIML Estimation
In a multivariate regression model, the errors in different equations might be correlated. In this case, the
efficiency of the estimation might be improved by taking these cross-equation correlations into account.

Seemingly Unrelated Regression

Seemingly unrelated regression (SUR), also called joint generalized least squares (JGLS) or Zellner estimation,
is a generalization of OLS for multi-equation systems. Like OLS, the SUR method assumes that all the
regressors are independent variables, but SUR uses the correlations among the errors in different equations to
improve the regression estimates. The SUR method requires an initial OLS regression to compute residuals.
The OLS residuals are used to estimate the cross-equation covariance matrix.

The SUR option in the PROC SYSLIN statement specifies seemingly unrelated regression, as shown in the
following statements:

proc syslin data=in sur;
demand: model q = p y s;
supply: model q = p u;

run;

INSTRUMENTS and ENDOGENOUS statements are not needed for SUR, because the SUR method assumes
there are no endogenous regressors. For SUR to be effective, the models must use different regressors. SUR
produces the same results as OLS unless the model contains at least one regressor not used in the other
equations.

Three-Stage Least Squares

The three-stage least squares method generalizes the two-stage least squares method to take into account the
correlations between equations in the same way that SUR generalizes OLS. Three-stage least squares requires
three steps: first-stage regressions to get predicted values for the endogenous regressors; a two-stage least
squares step to get residuals to estimate the cross-equation correlation matrix; and the final 3SLS estimation
step.

The 3SLS option in the PROC SYSLIN statement specifies the three-stage least squares method, as shown in
the following statements.
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proc syslin data=in 3sls;
endogenous p;
instruments y u s;
demand: model q = p y s;
supply: model q = p u;

run;

The 3SLS output begins with a two-stage least squares regression to estimate the cross-model correlation
matrix. This output is the same as the 2SLS results shown in Figure 29.3 and Figure 29.4, and is not repeated
here. The next part of the 3SLS output prints the cross-model correlation matrix computed from the 2SLS
residuals. This output is shown in Figure 29.5 and includes the cross-model covariances, correlations, the
inverse of the correlation matrix, and the inverse covariance matrix.

Figure 29.5 Estimated Cross-Model Covariances Used for 3SLS Estimates

The SYSLIN Procedure
Three-Stage Least Squares Estimation

The SYSLIN Procedure
Three-Stage Least Squares Estimation

Cross Model Covariance

DEMAND SUPPLY

DEMAND 0.027892 -.011283

SUPPLY -.011283 0.018991

Cross Model Correlation

DEMAND SUPPLY

DEMAND 1.00000 -0.49022

SUPPLY -0.49022 1.00000

Cross Model Inverse
Correlation

DEMAND SUPPLY

DEMAND 1.31634 0.64530

SUPPLY 0.64530 1.31634

Cross Model Inverse
Covariance

DEMAND SUPPLY

DEMAND 47.1941 28.0379

SUPPLY 28.0379 69.3130

The final 3SLS estimates are shown in Figure 29.6.

Figure 29.6 Three-Stage Least Squares Results

System Weighted MSE 0.5711

Degrees of freedom 113

System Weighted R-Square 0.9627

Model DEMAND

Dependent Variable q

Label Quantity
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Figure 29.6 continued

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 1.980269 1.169176 1.69 0.0959 Intercept

p 1 -1.17654 0.605015 -1.94 0.0568 Price

y 1 0.404117 0.117179 3.45 0.0011 Income

s 1 0.359204 0.085077 4.22 <.0001 Price of Substitutes

Model SUPPLY

Dependent Variable q

Label Quantity

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 -0.51878 0.490999 -1.06 0.2952 Intercept

p 1 1.333080 0.059271 22.49 <.0001 Price

u 1 -1.14623 0.243491 -4.71 <.0001 Unit Cost

This output first prints the system weighted mean squared error and system weighted R2 statistics. The
system weighted MSE and system weighted R2 measure the fit of the joint model obtained by stacking all
the models together and performing a single regression with the stacked observations weighted by the inverse
of the model error variances. See the section “The R-Square Statistics” on page 2143 for details.

Next, the table of 3SLS parameter estimates for each model is printed. This output has the same form as for
the other estimation methods.

Note that, in some cases, the 3SLS and 2SLS results can be the same. Such a case could arise because of
the same principle that causes OLS and SUR results to be identical, unless an equation includes a regressor
not used in the other equations of the system. However, the application of this principle is more complex
when instrumental variables are used. When all the exogenous variables are used as instruments, linear
combinations of all the exogenous variables appear in the third-stage regressions through substitution of
first-stage predicted values.

In this example, 3SLS produces different (and, it is hoped, more efficient) estimates for the demand equation.
However, the 3SLS and 2SLS results for the supply equation are the same. This is because the supply
equation has one endogenous regressor and one exogenous regressor not used in other equations. In contrast,
the demand equation has fewer endogenous regressors than exogenous regressors not used in other equations
in the system.

Full Information Maximum Likelihood

The FIML option in the PROC SYSLIN statement specifies the full information maximum likelihood method,
as shown in the following statements.

proc syslin data=in fiml;
endogenous p q;
instruments y u s;
demand: model q = p y s;
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supply: model q = p u;
run;

The FIML results are shown in Figure 29.7.

Figure 29.7 FIML Results

The SYSLIN Procedure
Full-Information Maximum Likelihood Estimation

The SYSLIN Procedure
Full-Information Maximum Likelihood Estimation

NOTE: Convergence criterion met at iteration 3.

Model DEMAND

Dependent Variable q

Label Quantity

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 1.988538 1.233632 1.61 0.1126 Intercept

p 1 -1.18148 0.652278 -1.81 0.0755 Price

y 1 0.402312 0.107270 3.75 0.0004 Income

s 1 0.361345 0.103817 3.48 0.0010 Price of Substitutes

Model SUPPLY

Dependent Variable q

Label Quantity

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 -0.52443 0.479522 -1.09 0.2787 Intercept

p 1 1.336083 0.057939 23.06 <.0001 Price

u 1 -1.14804 0.237793 -4.83 <.0001 Unit Cost

Computing Reduced Form Estimates
A system of structural equations with endogenous regressors can be represented as functions of only the
predetermined variables. For this to be possible, there must be as many equations as endogenous variables. If
there are more endogenous variables than regression models, you can use IDENTITY statements to complete
the system. See the section “Reduced Form Estimates” on page 2145 for details.

The REDUCED option in the PROC SYSLIN statement prints reduced form estimates. The following
statements show this by using the 3SLS estimates of the structural parameters.

proc syslin data=in 3sls reduced;
endogenous p;
instruments y u s;
demand: model q = p y s;
supply: model q = p u;

run;
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The first four pages of this output were as shown previously and are not repeated here. (See Figure 29.3,
Figure 29.4, Figure 29.5, and Figure 29.6.) The final page of the output from this example contains the
reduced form coefficients from the 3SLS structural estimates, as shown in Figure 29.8.

Figure 29.8 Reduced Form 3SLS Results

The SYSLIN Procedure
Three-Stage Least Squares Estimation

The SYSLIN Procedure
Three-Stage Least Squares Estimation

Endogenous Variables

p q

DEMAND 1.176543 1

SUPPLY -1.33308 1

Exogenous Variables

Intercept y s u

DEMAND 1.980269 0.404117 0.359204 0

SUPPLY -0.51878 0 0 -1.14623

Inverse Endogenous
Variables

DEMAND SUPPLY

p 0.398466 -0.39847

q 0.531187 0.468813

Reduced Form

Intercept y s u

p 0.995788 0.161027 0.143131 0.456735

q 0.808682 0.214662 0.190804 -0.53737

Restricting Parameter Estimates
You can impose restrictions on the parameter estimates with RESTRICT and SRESTRICT statements. The
RESTRICT statement imposes linear restrictions on parameters in the equation specified by the preceding
MODEL statement. The SRESTRICT statement imposes linear restrictions that relate parameters in different
models.

To impose restrictions involving parameters in different equations, use the SRESTRICT statement. Specify
the parameters in the linear hypothesis as model-label.regressor-name. (If the MODEL statement does not
have a label, you can use the dependent variable name as the label for the model, provided the dependent
variable uniquely labels the model.)

Tests for the significance of the restrictions are printed when RESTRICT or SRESTRICT statements are used.
You can label RESTRICT and SRESTRICT statements to identify the restrictions in the output.

The RESTRICT statement in the following example restricts the price coefficient in the demand equation
to equal 0.015. The SRESTRICT statement restricts the estimate of the income coefficient in the demand
equation to be 0.01 times the estimate of the unit cost coefficient in the supply equation.
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proc syslin data=in 3sls;
endogenous p;
instruments y u s;
demand: model q = p y s;
peq015: restrict p = .015;
supply: model q = p u;
yeq01u: srestrict demand.y = .01 * supply.u;

run;

The restricted estimation results are shown in Figure 29.9.

Figure 29.9 Restricted Estimates

The SYSLIN Procedure
Three-Stage Least Squares Estimation

The SYSLIN Procedure
Three-Stage Least Squares Estimation

Model DEMAND

Dependent Variable q

Label Quantity

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 -0.46584 0.053307 -8.74 <.0001 Intercept

p 1 0.015000 0 . . Price

y 1 -0.00679 0.002357 -2.88 0.0056 Income

s 1 0.325589 0.009872 32.98 <.0001 Price of Substitutes

RESTRICT -1 50.59353 7.464988 6.78 <.0001 PEQ015

Model SUPPLY

Dependent Variable q

Label Quantity

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 -1.31894 0.477633 -2.76 0.0077 Intercept

p 1 1.291718 0.059101 21.86 <.0001 Price

u 1 -0.67887 0.235679 -2.88 0.0056 Unit Cost

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

RESTRICT -1 342.3605 38.12094 8.98 <.0001 YEQ01U

The standard error for P in the demand equation is 0, since the value of the P coefficient was specified by
the RESTRICT statement and not estimated from the data. The “Parameter Estimates” table for the demand
equation contains an additional row for the restriction specified by the RESTRICT statement. The parameter
estimate for the restriction is the value of the Lagrange multiplier used to impose the restriction. The
restriction is highly significant (t D 6:777), which means that the data are not consistent with the restriction,
and the model does not fit as well with the restriction imposed. See the section “RESTRICT Statement” on
page 2135 for details.
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Following the “Parameter Estimates” table for the supply equation, the results for the cross model restrictions
are printed. This shows that the restriction specified by the SRESTRICT statement is not consistent with the
data (t D 8:98). See the section “SRESTRICT Statement” on page 2136 for details.

Testing Parameters
You can test linear hypotheses about the model parameters with TEST and STEST statements. The TEST
statement tests hypotheses about parameters in the equation specified by the preceding MODEL statement.
The STEST statement tests hypotheses that relate parameters in different models.

For example, the following statements test the hypothesis that the price coefficient in the demand equation is
equal to 0.015.

proc syslin data=in 3sls;
endogenous p;
instruments y u s;
demand: model q = p y s;
test_1: test p = .015;
supply: model q = p u;

run;

The TEST statement results are shown in Figure 29.10. This reports an F test for the hypothesis specified by
the TEST statement. In this case, the F statistic is 6.79 (3.879/.571) with 1 and 113 degrees of freedom. The
p value for this F statistic is 0.0104, which indicates that the hypothesis tested is almost but not quite rejected
at the 0.01 level. See the section “TEST Statement” on page 2138 for details.

Figure 29.10 TEST Statement Results

The SYSLIN Procedure
Three-Stage Least Squares Estimation

The SYSLIN Procedure
Three-Stage Least Squares Estimation

System Weighted MSE 0.5711

Degrees of freedom 113

System Weighted R-Square 0.9627

Model DEMAND

Dependent Variable q

Label Quantity

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 1.980269 1.169176 1.69 0.0959 Intercept

p 1 -1.17654 0.605015 -1.94 0.0568 Price

y 1 0.404117 0.117179 3.45 0.0011 Income

s 1 0.359204 0.085077 4.22 <.0001 Price of Substitutes

Test Results

Num DF Den DF F Value Pr > F Label

1 113 6.79 0.0104 TEST_1
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To test hypotheses that involve parameters in different equations, use the STEST statement. Specify the
parameters in the linear hypothesis as model-label.regressor-name. (If the MODEL statement does not have
a label, you can use the dependent variable name as the label for the model, provided the dependent variable
uniquely labels the model.)

For example, the following statements test the hypothesis that the income coefficient in the demand equation
is 0.01 times the unit cost coefficient in the supply equation:

proc syslin data=in 3sls;
endogenous p;
instruments y u s;
demand: model q = p y s;
supply: model q = p u;
stest1: stest demand.y = .01 * supply.u;

run;

The STEST statement results are shown in Figure 29.11. The form and interpretation of the STEST statement
results are like the TEST statement results. In this case, the F test produces a p value less than 0.0001, and
strongly rejects the hypothesis tested. See the section “STEST Statement” on page 2137 for details.

Figure 29.11 STEST Statement Results

The SYSLIN Procedure
Three-Stage Least Squares Estimation

The SYSLIN Procedure
Three-Stage Least Squares Estimation

System Weighted MSE 0.5711

Degrees of freedom 113

System Weighted R-Square 0.9627

Model DEMAND

Dependent Variable q

Label Quantity

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 1.980269 1.169176 1.69 0.0959 Intercept

p 1 -1.17654 0.605015 -1.94 0.0568 Price

y 1 0.404117 0.117179 3.45 0.0011 Income

s 1 0.359204 0.085077 4.22 <.0001 Price of Substitutes

Model SUPPLY

Dependent Variable q

Label Quantity

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 -0.51878 0.490999 -1.06 0.2952 Intercept

p 1 1.333080 0.059271 22.49 <.0001 Price

u 1 -1.14623 0.243491 -4.71 <.0001 Unit Cost
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Figure 29.11 continued

Test Results

Num DF Den DF F Value Pr > F Label

1 113 22.46 0.0001 STEST1

You can combine TEST and STEST statements with RESTRICT and SRESTRICT statements to perform
hypothesis tests for restricted models. Of course, the validity of the TEST and STEST statement results
depends on the correctness of any restrictions you impose on the estimates.

Saving Residuals and Predicted Values
You can store predicted values and residuals from the estimated models in a SAS data set. Specify the OUT=
option in the PROC SYSLIN statement and use the OUTPUT statement to specify names for new variables
to contain the predicted and residual values.

For example, the following statements store the predicted quantity from the supply and demand equations in
a data set PRED:

proc syslin data=in out=pred 3sls;
endogenous p;
instruments y u s;
demand: model q = p y s;
output predicted=q_demand;
supply: model q = p u;
output predicted=q_supply;

run;

Plotting Residuals
You can plot the residuals against the regressors by using the PROC SGPLOT. For example, the following
statements plot the 2SLS residuals for the demand model against price, income, and price of substitutes.

proc syslin data=in 2sls out=out;
endogenous p;
instruments y u s;
demand: model q = p y s;
output residual=residual_q;

run;

proc sgplot data=out;
scatter x=p y=residual_q;
refline 0 / axis=y;

run;

proc sgplot data=out;
scatter x=y y=residual_q;
refline 0 / axis=y;

run;
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proc sgplot data=out;
scatter x=s y=residual_q;
refline 0 / axis=y;

run;

The plot for income is shown in Figure 29.12. The other plots are not shown.

Figure 29.12 Plot of Residuals against Income
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Syntax: SYSLIN Procedure
The SYSLIN procedure uses the following statements:

PROC SYSLIN options ;
BY variables ;
ENDOGENOUS variables ;
IDENTITY identities ;
INSTRUMENTS variables ;
MODEL response = regressors / options ;
OUTPUT PREDICTED= variable RESIDUAL= variable ;
RESTRICT restrictions ;
SRESTRICT restrictions ;
STEST equations ;
TEST equations ;
VAR variables ;
WEIGHT variable ;

Functional Summary
The SYSLIN procedure statements and options are summarized in the following table.

Description Statement Option

Data Set Options
specify the input data set PROC SYSLIN DATA=
specify the output data set PROC SYSLIN OUT=
write parameter estimates to an output data set PROC SYSLIN OUTEST=
write covariances to the OUTEST= data set PROC SYSLIN OUTCOV

OUTCOV3
write the SSCP matrix to an output data set PROC SYSLIN OUTSSCP=

Estimation Method Options
specify full information maximum likelihood
estimation

PROC SYSLIN FIML

specify iterative SUR estimation PROC SYSLIN ITSUR
specify iterative 3SLS estimation PROC SYSLIN IT3SLS
specify K-class estimation PROC SYSLIN K=
specify limited information maximum likeli-
hood estimation

PROC SYSLIN LIML

specify minimum expected loss estimation PROC SYSLIN MELO
specify ordinary least squares estimation PROC SYSLIN OLS
specify seemingly unrelated estimation PROC SYSLIN SUR
specify two-stage least squares estimation PROC SYSLIN 2SLS
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Description Statement Option

specify three-stage least squares estimation PROC SYSLIN 3SLS
specify Fuller’s modification to LIML PROC SYSLIN ALPHA=
specify convergence criterion PROC SYSLIN CONVERGE=
specify maximum number of iterations PROC SYSLIN MAXIT=
use diagonal of S instead of S PROC SYSLIN SDIAG
exclude RESTRICT statements in final stage PROC SYSLIN NOINCLUDE
specify criterion for testing for singularity PROC SYSLIN SINGULAR=
specify denominator for variance estimates PROC SYSLIN VARDEF=

Printing Control Options
print all results PROC SYSLIN ALL
print first-stage regression statistics PROC SYSLIN FIRST
print estimates and SSE at each iteration PROC SYSLIN ITPRINT
print the reduced form estimates PROC SYSLIN REDUCED
print descriptive statistics PROC SYSLIN SIMPLE
print uncorrected SSCP matrix PROC SYSLIN USSCP
print correlations of the parameter estimates MODEL CORRB
print covariances of the parameter estimates MODEL COVB
print Durbin-Watson statistics MODEL DW
print Basmann’s test MODEL OVERID
plot residual values against regressors MODEL PLOT
print standardized parameter estimates MODEL STB
print unrestricted parameter estimates MODEL UNREST
print the model crossproducts matrix MODEL XPX
print the inverse of the crossproducts matrix MODEL I
suppress printed output MODEL NOPRINT
suppress all printed output PROC SYSLIN NOPRINT

Model Specification
specify structural equations MODEL
suppress the intercept parameter MODEL NOINT
specify linear relationship among variables IDENTITY
perform weighted regression WEIGHT

Tests and Restrictions on Parameters
place restrictions on parameter estimates RESTRICT
place restrictions on parameter estimates SRESTRICT
test linear hypothesis STEST
test linear hypothesis TEST
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Description Statement Option

Other Statements
specify BY-group processing BY
specify the endogenous variables ENDOGENOUS
specify instrumental variables INSTRUMENTS
write predicted and residual values to a data set OUTPUT
name variable for predicted values OUTPUT PREDICTED=
name variable for residual values OUTPUT RESIDUAL=
include additional variables in X 0X matrix VAR

PROC SYSLIN Statement
PROC SYSLIN options ;

The following options can be used with the PROC SYSLIN statement.

Data Set Options

DATA=SAS-data-set
specifies the input data set. If the DATA= option is omitted, the most recently created SAS data set is
used. In addition to ordinary SAS data sets, PROC SYSLIN can analyze data sets of TYPE=CORR,
TYPE=COV, TYPE=UCORR, TYPE=UCOV, and TYPE=SSCP. See the section “Special TYPE=
Input Data Sets” on page 2140 for details.

OUT=SAS-data-set
specifies an output SAS data set for residuals and predicted values. The OUT= option is used in
conjunction with the OUTPUT statement. See the section “OUT= Data Set” on page 2147 for details.

OUTEST=SAS-data-set
writes the parameter estimates to an output data set. See the section “OUTEST= Data Set” on page 2147
for details.

OUTCOV

COVOUT
writes the covariance matrix of the parameter estimates to the OUTEST= data set in addition to the
parameter estimates.

OUTCOV3

COV3OUT
writes covariance matrices for each model in a system to the OUTEST= data set when the 3SLS, SUR,
or FIML option is used.

OUTSSCP=SAS-data-set
writes the sum-of-squares-and-crossproducts matrix to an output data set. See the section “OUTSSCP=
Data Set” on page 2148 for details.
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Estimation Method Options

2SLS
specifies the two-stage least squares estimation method.

3SLS
specifies the three-stage least squares estimation method.

ALPHA=value
specifies Fuller’s modification to the LIML estimation method. See the section “Fuller’s Modification
to LIML” on page 2146 for details.

CONVERGE=value
specifies the convergence criterion for the iterative estimation methods IT3SLS, ITSUR, and FIML.
The default is CONVERGE=0.0001.

FIML
specifies the full information maximum likelihood estimation method.

ITSUR
specifies the iterative seemingly unrelated estimation method.

IT3SLS
specifies the iterative three-stage least squares estimation method.

K=value
specifies the K-class estimation method.

LIML
specifies the limited information maximum likelihood estimation method.

MAXITER=n
specifies the maximum number of iterations allowed for the IT3SLS, ITSUR, and FIML estimation
methods. The MAXITER= option can be abbreviated as MAXIT=. The default is MAXITER=30.

MELO
specifies the minimum expected loss estimation method.

NOINCLUDE
excludes the RESTRICT statements from the final stage for the 3SLS, IT3SLS, SUR, and ITSUR
estimation methods.

OLS
specifies the ordinary least squares estimation method. This is the default.

SDIAG
uses the diagonal of S instead of S to do the estimation, where S is the covariance matrix of equation
errors. See the section “Uncorrelated Errors across Equations” on page 2146 for details.

SINGULAR=value
specifies a criterion for testing singularity of the crossproducts matrix. This is a tuning parameter used
to make PROC SYSLIN more or less sensitive to singularities. The value must be between 0 and 1.
The default is SINGULAR=1E–8.
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SUR
specifies the seemingly unrelated estimation method.

Printing Control Options

ALL
specifies the CORRB, COVB, DW, I, OVERID, PLOT, STB, and XPX options for every MODEL
statement.

FIRST
prints first-stage regression statistics for the endogenous variables regressed on the instruments. This
output includes sums of squares, estimates, variances, and standard deviations.

ITPRINT
prints parameter estimates, system-weighted residual sum of squares, and R2 at each iteration for the
IT3SLS and ITSUR estimation methods. For the FIML method, the ITPRINT option prints parameter
estimates, negative of log-likelihood function, and norm of gradient vector at each iteration.

NOPRINT
suppresses all printed output. Specifying NOPRINT in the PROC SYSLIN statement is equivalent to
specifying NOPRINT in every MODEL statement.

REDUCED
prints the reduced form estimates. If the REDUCED option is specified, you should specify any
IDENTITY statements needed to make the system square. See the section “Reduced Form Estimates”
on page 2145 for details.

SIMPLE
prints descriptive statistics for the dependent variables. The statistics printed include the sum, mean,
uncorrected sum of squares, variance, and standard deviation.

USSCP
prints the uncorrected sum-of-squares-and-crossproducts matrix.

USSCP2
prints the uncorrected sum-of-squares-and-crossproducts matrix for all variables used in the analysis,
including predicted values of variables generated by the procedure.

VARDEF=DF | N | WEIGHT | WGT
specifies the denominator to use in calculating cross-equation error covariances and parameter standard
errors and covariances. The default is VARDEF=DF, which corrects for model degrees of freedom.
VARDEF=N specifies no degrees-of-freedom correction. VARDEF=WEIGHT specifies the sum of the
observation weights. VARDEF=WGT specifies the sum of the observation weights minus the model
degrees of freedom. See the section “Computation of Standard Errors” on page 2145 for details.

BY Statement
BY variables ;

A BY statement can be used with PROC SYSLIN to obtain separate analyses on observations in groups
defined by the BY variables.
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ENDOGENOUS Statement
ENDOGENOUS variables ;

The ENDOGENOUS statement declares the jointly dependent variables that are projected in the first-stage
regression through the instrument variables. The ENDOGENOUS statement is not needed for the SUR,
ITSUR, or OLS estimation methods. The default ENDOGENOUS list consists of all the dependent variables
in the MODEL and IDENTITY statements that do not appear in the INSTRUMENTS statement.

IDENTITY Statement
IDENTITY equation ;

The IDENTITY statement specifies linear relationships among variables to write to the OUTEST= data
set. It provides extra information in the OUTEST= data set but does not create or compute variables. The
OUTEST= data set can be processed by the SIMLIN procedure in a later step.

The IDENTITY statement is also used to compute reduced form coefficients when the REDUCED option
in the PROC SYSLIN statement is specified. See the section “Reduced Form Estimates” on page 2145 for
details.

The equation given by the IDENTITY statement has the same form as equations in the MODEL statement. A
label can be specified for an IDENTITY statement as follows:

label : IDENTITY . . . ;

INSTRUMENTS Statement
INSTRUMENTS variables ;

The INSTRUMENTS statement declares the variables used in obtaining first-stage predicted values. All the
instruments specified are used in each first-stage regression. The INSTRUMENTS statement is required for
the 2SLS, 3SLS, IT3SLS, LIML, MELO, and K-class estimation methods. The INSTRUMENTS statement
is not needed for the SUR, ITSUR, OLS, or FIML estimation methods.

MODEL Statement
MODEL response = regressors / options ;

The MODEL statement regresses the response variable on the left side of the equal sign against the regressors
listed on the right side.

Models can be given labels. Model labels are used in the printed output to identify the results for different
models. Model labels are also used in SRESTRICT and STEST statements to refer to parameters in different
models. If no label is specified, the response variable name is used as the label for the model. The model
label is specified as follows:

label : MODEL . . . ;
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The following options can be used in the MODEL statement after a slash (/).

ALL
specifies the CORRB, COVB, DW, I, OVERID, PLOT, STB, and XPX options.

ALPHA=value
specifies the ˛ parameter for Fuller’s modification to the LIML estimation method. See the section
“Fuller’s Modification to LIML” on page 2146 for details.

CORRB
prints the matrix of estimated correlations between the parameter estimates.

COVB
prints the matrix of estimated covariances between the parameter estimates.

DW
prints Durbin-Watson statistics and autocorrelation coefficients for the residuals. If there are missing
values, d 0 is calculated according to Savin and White (1978). Use the DW option only if the data set
to be analyzed is an ordinary SAS data set with time series observations sorted in time order. The
Durbin-Watson test is not valid for models with lagged dependent regressors.

I
prints the inverse of the crossproducts matrix for the model, .X0X/�1. If restrictions are specified, the
crossproducts matrix printed is adjusted for the restrictions. See the section “Computational Details”
on page 2144 for details.

K=value
specifies K-class estimation.

NOINT
suppresses the intercept parameter from the model.

NOPRINT
suppresses the normal printed output.

OVERID
prints Basmann’s (1960) test for over identifying restrictions. See the section “Overidentification
Restrictions” on page 2146 for details.

PLOT
plots residual values against regressors. A plot of the residuals for each regressor is printed.

STB
prints standardized parameter estimates. Sometimes known as a standard partial regression coefficient,
a standardized parameter estimate is a parameter estimate multiplied by the standard deviation of the
associated regressor and divided by the standard deviation of the response variable.
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UNREST
prints parameter estimates computed before restrictions are applied. The UNREST option is valid only
if a RESTRICT statement is specified.

XPX
prints the model crossproducts matrix, X 0X . See the section “Computational Details” on page 2144
for details.

OUTPUT Statement
OUTPUT < PREDICTED=variable > < RESIDUAL=variable > ;

The OUTPUT statement writes predicted values and residuals from the preceding model to the data set
specified by the OUT= option in the PROC SYSLIN statement. An OUTPUT statement must come after the
MODEL statement to which it applies. The OUT= option must be specified in the PROC SYSLIN statement.

The following options can be specified in the OUTPUT statement:

PREDICTED=variable
names a new variable to contain the predicted values for the response variable. The PREDICTED=
option can be abbreviated as PREDICT=, PRED=, or P=.

RESIDUAL=variable
names a new variable to contain the residual values for the response variable. The RESIDUAL= option
can be abbreviated as RESID= or R=.

For example, the following statements create an output data set named B. In addition to the variables
in the input data set, the data set B contains the variable YHAT, with values that are predicted values of
the response variable Y, and YRESID, with values that are the residual values of Y.

proc syslin data=a out=b;
model y = x1 x2;
output p=yhat r=yresid;

run;

For example, the following statements create an output data set named PRED. In addition to the
variables in the input data set, the data set PRED contains the variables Q_DEMAND and Q_SUPPLY,
with values that are predicted values of the response variable Q for the demand and supply equations
respectively, and R_DEMAND and R_SUPPLY, with values that are the residual values of the demand
and supply equations respectively.

proc syslin data=in out=pred;
demand: model q = p y s;
output p=q_demand r=r_demand;
supply: model q = p u;
output p=q_supply r=r_supply;

run;

See the section “OUT= Data Set” on page 2147 for details.
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RESTRICT Statement
RESTRICT equation , . . . , equation ;

The RESTRICT statement places restrictions on the parameter estimates for the preceding MODEL statement.
Any number of RESTRICT statements can follow a MODEL statement. Each restriction is written as a
linear equation. If more than one restriction is specified in a single RESTRICT statement, the restrictions are
separated by commas.

Parameters are referred to by the name of the corresponding regressor variable. Each name used in the
equation must be a regressor in the preceding MODEL statement. The keyword INTERCEPT is used to refer
to the intercept parameter in the model.

RESTRICT statements can be given labels. The labels are used in the printed output to distinguish results for
different restrictions. Labels are specified as follows:

label : RESTRICT . . . ;

The following is an example of the use of the RESTRICT statement, in which the coefficients of the regressors
X1 and X2 are required to sum to 1.

proc syslin data=a;
model y = x1 x2;
restrict x1 + x2 = 1;

run;

Variable names can be multiplied by constants. When no equal sign appears, the linear combination is set
equal to 0. Note that the parameters associated with the variables are restricted, not the variables themselves.
Here are some examples of valid RESTRICT statements:

restrict x1 + x2 = 1;
restrict x1 + x2 - 1;
restrict 2 * x1 = x2 + x3 , intercept + x4 = 0;
restrict x1 = x2 = x3 = 1;
restrict 2 * x1 - x2;

Restricted parameter estimates are computed by introducing a Lagrangian parameter � for each restriction
(Pringle and Rayner 1971). The estimates of these Lagrangian parameters are printed in the “Parameter
Estimates” table. If a restriction cannot be applied, its parameter value and degrees of freedom are listed as 0.

The Lagrangian parameter � measures the sensitivity of the sum of squared errors (SSE) to the restriction. If
the restriction is changed by a small amount �, the SSE is changed by 2��.

The t ratio tests the significance of the restrictions. If � is zero, the restricted estimates are the same as the
unrestricted.

Any number of restrictions can be specified on a RESTRICT statement, and any number of RESTRICT
statements can be used. The estimates are computed subject to all restrictions specified. However, restrictions
should be consistent and not redundant.

NOTE: The RESTRICT statement is not supported for the FIML estimation method.
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SRESTRICT Statement
SRESTRICT equation , . . . , equation ;

The SRESTRICT statement imposes linear restrictions that involve parameters in two or more MODEL
statements. The SRESTRICT statement is like the RESTRICT statement but is used to impose restrictions
across equations, whereas the RESTRICT statement applies only to parameters in the immediately preceding
MODEL statement.

Each restriction is written as a linear equation. Parameters are referred to as label.variable, where label is
the model label and variable is the name of the regressor to which the parameter is attached. (If the MODEL
statement does not have a label, you can use the dependent variable name as the label for the model, provided
the dependent variable uniquely labels the model.) Each variable name used must be a regressor in the
indicated MODEL statement. The keyword INTERCEPT is used to refer to intercept parameters.

SRESTRICT statements can be given labels. The labels are used in the printed output to distinguish results
for different restrictions. Labels are specified as follows:

label : SRESTRICT . . . ;

The following is an example of the use of the SRESTRICT statement, in which the coefficient for the
regressor X2 is constrained to be the same in both models.

proc syslin data=a 3sls;
endogenous y1 y2;
instruments x1 x2;
model y1 = y2 x1 x2;
model y2 = y1 x2;
srestrict y1.x2 = y2.x2;

run;

When no equal sign is used, the linear combination is set equal to 0. Thus, the restriction in the preceding
example can also be specified as

srestrict y1.x2 - y2.x2;

Any number of restrictions can be specified on an SRESTRICT statement, and any number of SRESTRICT
statements can be used. The estimates are computed subject to all restrictions specified. However, restrictions
should be consistent and not redundant.

When a system restriction is requested for a single equation estimation method (such as OLS or 2SLS), PROC
SYSLIN produces the restricted estimates by actually using a corresponding system method. For example,
when SRESTRICT is specified along with OLS, PROC SYSLIN produces the restricted OLS estimates via a
two-step process equivalent to using SUR estimation with the SDIAG option. First, the unrestricted OLS
results are produced. Then, the GLS (SUR) estimation with the system restriction is performed, using the
diagonal of the covariance matrix of the residuals. When SRESTRICT is specified along with 2SLS, PROC
SYSLIN produces the restricted 2SLS estimates via a multistep process equivalent to using 3SLS estimation
with the SDIAG option. First, the unrestricted 2SLS results are produced. Then, the GLS (3SLS) estimation
with the system restriction is performed, using the diagonal of the covariance matrix of the residuals.
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The results of the SRESTRICT statements are printed after the parameter estimates for all the models in the
system. The format of the SRESTRICT statement output is the same as the “Parameter Estimates” table. In
this output the parameter estimate is the Lagrangian parameter � used to impose the restriction.

The Lagrangian parameter � measures the sensitivity of the system sum of square errors to the restriction.
The system SSE is the system MSE shown in the printed output multiplied by the degrees of freedom. If the
restriction is changed by a small amount �, the system SSE is changed by 2��.

The t ratio tests the significance of the restriction. If � is zero, the restricted estimates are the same as the
unrestricted estimates.

The model degrees of freedom are not adjusted for the cross-model restrictions imposed by SRESTRICT
statements.

NOTE: The SRESTRICT statement is not supported for the LIML and the FIML estimation methods.

STEST Statement
STEST equation , . . . , equation / options ;

The STEST statement performs an F test for the joint hypotheses specified in the statement.

The hypothesis is represented in matrix notation as

Lˇ D c

and the F test is computed as

.Lb � c/0.L.X0X/�1L0/�1.Lb � c/
m O�2

where b is the estimate of ˇ, m is the number of restrictions, and O�2 is the system weighted mean squared
error. See the section “Computational Details” on page 2144 for information about the matrix X0X.

Each hypothesis to be tested is written as a linear equation. Parameters are referred to as label.variable, where
label is the model label and variable is the name of the regressor to which the parameter is attached. (If the
MODEL statement does not have a label, you can use the dependent variable name as the label for the model,
provided the dependent variable uniquely labels the model.) Each variable name used must be a regressor in
the indicated MODEL statement. The keyword INTERCEPT is used to refer to intercept parameters.

STEST statements can be given labels. The label is used in the printed output to distinguish different tests.
Any number of STEST statements can be specified. Labels are specified as follows:

label : STEST . . . ;

The following is an example of the STEST statement:

proc syslin data=a 3sls;
endogenous y1 y2;
instruments x1 x2;
model y1 = y2 x1 x2;
model y2 = y1 x2;
stest y1.x2 = y2.x2;

run;
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The test performed is exact only for ordinary least squares, given the OLS assumptions of the linear model.
For other estimation methods, the F test is based on large sample theory and is only approximate in finite
samples.

If RESTRICT or SRESTRICT statements are used, the tests computed by the STEST statement are conditional
on the restrictions specified. The validity of the tests can be compromised if incorrect restrictions are imposed
on the estimates.

The following are examples of STEST statements:

stest a.x1 + b.x2 = l;
stest 2 * b.x2 = c.x3 + c.x4 ,

a.intercept + b.x2 = 0;
stest a.x1 = c.x2 = b.x3 = 1;
stest 2 * a.x1 - b.x2 = 0;

The PRINT option can be specified in the STEST statement after a slash (/):

PRINT
prints intermediate calculations for the hypothesis tests.

NOTE: The STEST statement is not supported for the FIML estimation method.

TEST Statement
TEST equation , . . . , equation / options ;

The TEST statement performs F tests of linear hypotheses about the parameters in the preceding MODEL
statement. Each equation specifies a linear hypothesis to be tested. If more than one equation is specified, the
equations are separated by commas.

Variable names must correspond to regressors in the preceding MODEL statement, and each name represents
the coefficient of the corresponding regressor. The keyword INTERCEPT is used to refer to the model
intercept.

TEST statements can be given labels. The label is used in the printed output to distinguish different tests.
Any number of TEST statements can be specified. Labels are specified as follows:

label : TEST . . . ;

The following is an example of the use of TEST statement, which tests the hypothesis that the coefficients of
X1 and X2 are the same:

proc syslin data=a;
model y = x1 x2;
test x1 = x2;

run;

The following statements perform F tests for the hypothesis that the coefficients of X1 and X2 are equal, for
the hypothesis that the sum of the X1 and X2 coefficients is twice the intercept, and for the joint hypothesis.
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proc syslin data=a;
model y = x1 x2;
x1eqx2: test x1 = x2;
sumeq2i: test x1 + x2 = 2 * intercept;
joint: test x1 = x2, x1 + x2 = 2 * intercept;

run;

The following are additional examples of TEST statements:

test x1 + x2 = 1;
test x1 = x2 = x3 = 1;
test 2 * x1 = x2 + x3, intercept + x4 = 0;
test 2 * x1 - x2;

The TEST statement performs an F test for the joint hypotheses specified. The hypothesis is represented in
matrix notation as follows:

Lˇ D c

The F test is computed as

.Lb � c/0.L.X0X/�L0/�1.Lb � c/
m O�2

where b is the estimate of ˇ, m is the number of restrictions, and O�2 is the model mean squared error. See the
section “Computational Details” on page 2144 for information about the matrix X0X.

The test performed is exact only for ordinary least squares, given the OLS assumptions of the linear model.
For other estimation methods, the F test is based on large sample theory and is only approximate in finite
samples.

If RESTRICT or SRESTRICT statements are used, the tests computed by the TEST statement are conditional
on the restrictions specified. The validity of the tests can be compromised if incorrect restrictions are imposed
on the estimates.

The PRINT option can be specified in the TEST statement after a slash (/):

PRINT
prints intermediate calculations for the hypothesis tests.

NOTE: The TEST statement is not supported for the FIML estimation method.

VAR Statement
VAR variables ;

The VAR statement is used to include variables in the crossproducts matrix that are not specified in any
MODEL statement. This statement is rarely used with PROC SYSLIN and is used only with the OUTSSCP=
option in the PROC SYSLIN statement.
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WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement is used to perform weighted regression. The WEIGHT statement names a variable
in the input data set whose values are relative weights for a weighted least squares fit. If the weight value is
proportional to the reciprocal of the variance for each observation, the weighted estimates are the best linear
unbiased estimates (BLUE).

Details: SYSLIN Procedure

Input Data Set
PROC SYSLIN does not compute new values for regressors. For example, if you need a lagged variable, you
must create it with a DATA step. No values are computed by IDENTITY statements; all values must be in
the input data set.

Special TYPE= Input Data Sets

The input data set for most applications of the SYSLIN procedure contains standard rectangular data. However,
PROC SYSLIN can also process input data in the form of a crossproducts, covariance, or correlation matrix.
Data sets that contain such matrices are identified by values of the TYPE= data set option.

These special kinds of input data sets can be used to save computer time. It takes nk2 operations, where n is
the number of observations and k is the number of variables, to calculate cross products; the regressions are
of the order k3. When n is in the thousands and k is much smaller, you can save most of the computer time in
later runs of PROC SYSLIN by reusing the SSCP matrix rather than recomputing it.

The SYSLIN procedure can process TYPE=CORR, COV, UCORR, UCOV, or SSCP data sets. TYPE=CORR
and TYPE=COV data sets, usually created by the CORR procedure, contain means and standard deviations,
and correlations or covariances. TYPE=SSCP data sets, usually created in previous runs of PROC SYSLIN,
contain sums of squares and cross products. See the SAS/STAT User’s Guide for more information about
special SAS data sets.

When special SAS data sets are read, you must specify the TYPE= data set option. PROC CORR and PROC
SYSLIN automatically set the type for output data sets; however, if you create the data set by some other
means, you must specify its type with the TYPE= data set option.

When the special data sets are used, the DW (Durbin-Watson test) and PLOT options in the MODEL statement
cannot be performed, and the OUTPUT statements are not valid.

Estimation Methods
A brief description of the methods used by the SYSLIN procedure follows. For more information about these
methods, see the references at the end of this chapter.
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There are two fundamental methods of estimation for simultaneous equations: least squares and maximum
likelihood. There are two approaches within each of these categories: single equation methods (also referred
to as limited information methods) and system methods (also referred to as full information methods). System
methods take into account cross-equation correlations of the disturbances in estimating parameters, while
single equation methods do not.

OLS, 2SLS, MELO, K-class, SUR, ITSUR, 3SLS, and IT3SLS use the least squares method; LIML and
FIML use the maximum likelihood method.

OLS, 2SLS, MELO, K-class, and LIML are single equation methods. The system methods are SUR, ITSUR,
3SLS, IT3SLS, and FIML.

Single Equation Estimation Methods

Single equation methods do not take into account correlations of errors across equations. As a result, these
estimators are not asymptotically efficient compared to full information methods; however, there are instances
in which they may be preferred. (See the section “Choosing a Method for Simultaneous Equations” on
page 2142 for details.)

Let yi be the dependent endogenous variable in equation i, and Xi and Yi be the matrices of exogenous and
endogenous variables appearing as regressors in the same equation.

The 2SLS method owes its name to the fact that, in a first stage, the instrumental variables are used as
regressors to obtain a projected value OYi that is uncorrelated with the residual in equation i. In a second stage,
OYi replaces Yi on the right-hand side to obtain consistent least squares estimators.

Normally, the predetermined variables of the system are used as the instruments. It is possible to use variables
other than predetermined variables from your system as instruments; however, the estimation might not be as
efficient. For consistent estimates, the instruments must be uncorrelated with the residual and correlated with
the endogenous variables.

The LIML method results in consistent estimates that are equal to the 2SLS estimates when an equation is
exactly identified. LIML can be viewed as a least-variance ratio estimation or as a maximum likelihood
estimation. LIML involves minimizing the ratio � D .rvar_eq/=.rvar_sys/, where rvar_eq is the residual
variance associated with regressing the weighted endogenous variables on all predetermined variables that
appear in that equation, and rvar_sys is the residual variance associated with regressing weighted endogenous
variables on all predetermined variables in the system.

The MELO method computes the minimum expected loss estimator. MELO estimators “minimize the
posterior expectation of generalized quadratic loss functions for structural coefficients of linear structural
models” (Judge et al. 1985, p. 635).

K-class estimators are a class of estimators that depends on a user-specified parameter k. A k value less than
1 is recommended but not required. The parameter k can be deterministic or stochastic, but its probability
limit must equal 1 for consistent parameter estimates. When all the predetermined variables are listed as
instruments, they include all the other single equation estimators supported by PROC SYSLIN. The instance
when some of the predetermined variables are not listed among the instruments is not supported by PROC
SYSLIN for the general K-class estimation. However, it is supported for the other methods.

For k D 1, the K-class estimator is the 2SLS estimator, while for k D 0, the K-class estimator is the OLS
estimator. The K-class interpretation of LIML is that k D �. Note that k is stochastic in the LIML method,
unlike for OLS and 2SLS.



2142 F Chapter 29: The SYSLIN Procedure

MELO is a Bayesian K-class estimator. It yields estimates that can be expressed as a matrix-weighted
average of the OLS and 2SLS estimates. MELO estimators have finite second moments and hence finite risk.
Other frequently used K-class estimators might not have finite moments under some commonly encountered
circumstances, and hence there can be infinite risk relative to quadratic and other loss functions.

One way of comparing K-class estimators is to note that when k =1, the correlation between regressor and
the residual is completely corrected for. In all other cases, it is only partially corrected for.

See “Computational Details” on page 2144 for more details about K-class estimators.

SUR and 3SLS Estimation Methods

SUR might improve the efficiency of parameter estimates when there is contemporaneous correlation of
errors across equations. In practice, the contemporaneous correlation matrix is estimated using OLS residuals.
Under two sets of circumstances, SUR parameter estimates are the same as those produced by OLS: when
there is no contemporaneous correlation of errors across equations (the estimate of the contemporaneous
correlation matrix is diagonal) and when the independent variables are the same across equations.

Theoretically, SUR parameter estimates are always at least as efficient as OLS in large samples, provided that
your equations are correctly specified. However, in small samples the need to estimate the covariance matrix
from the OLS residuals increases the sampling variability of the SUR estimates. This effect can cause SUR to
be less efficient than OLS. If the sample size is small and the cross-equation correlations are small, then OLS
is preferred to SUR. The consequences of specification error are also more serious with SUR than with OLS.

The 3SLS method combines the ideas of the 2SLS and SUR methods. Like 2SLS, the 3SLS method uses OY
instead of Y for endogenous regressors, which results in consistent estimates. Like SUR, the 3SLS method
takes the cross-equation error correlations into account to improve large sample efficiency. For 3SLS, the
2SLS residuals are used to estimate the cross-equation error covariance matrix.

The SUR and 3SLS methods can be iterated by recomputing the estimate of the cross-equation covariance
matrix from the SUR or 3SLS residuals and then computing new SUR or 3SLS estimates based on this
updated covariance matrix estimate. Continuing this iteration until convergence produces ITSUR or IT3SLS
estimates.

FIML Estimation Method

The FIML estimator is a system generalization of the LIML estimator. The FIML method involves minimizing
the determinant of the covariance matrix associated with residuals of the reduced form of the equation system.
From a maximum likelihood standpoint, the LIML method involves assuming that the errors are normally
distributed and then maximizing the likelihood function subject to restrictions on a particular equation. FIML
is similar, except that the likelihood function is maximized subject to restrictions on all of the parameters in
the model, not just those in the equation being estimated.

NOTE: The RESTRICT, SRESTRICT, TEST, and STEST statements are not supported when the FIML
method is used.

Choosing a Method for Simultaneous Equations

A number of factors should be taken into account in choosing an estimation method. Although system
methods are asymptotically most efficient in the absence of specification error, system methods are more
sensitive to specification error than single equation methods.
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In practice, models are never perfectly specified. It is a matter of judgment whether the misspecification is
serious enough to warrant avoidance of system methods.

Another factor to consider is sample size. With small samples, 2SLS might be preferred to 3SLS. In general,
it is difficult to say much about the small sample properties of K-class estimators because the results depend
on the regressors used.

LIML and FIML are invariant to the normalization rule imposed but are computationally more expensive
than 2SLS or 3SLS.

If the reason for contemporaneous correlation among errors across equations is a common, omitted variable,
it is not necessarily best to apply SUR. SUR parameter estimates are more sensitive to specification error
than OLS. OLS might produce better parameter estimates under these circumstances. SUR estimates are also
affected by the sampling variation of the error covariance matrix. There is some evidence from Monte Carlo
studies that SUR is less efficient than OLS in small samples.

ANOVA Table for Instrumental Variables Methods
In the instrumental variables methods (2SLS, LIML, K-class, MELO), first-stage predicted values are
substituted for the endogenous regressors. As a result, the regression sum of squares (RSS) and the error
sum of squares (ESS) do not sum to the total corrected sum of squares for the dependent variable (TSS). The
analysis-of-variance table included in the second-stage results gives these sums of squares and the mean
squares that are used for the F test, but this table is not a variance decomposition in the usual sense.

The F test shown in the instrumental variables case is a valid test of the no-regression hypothesis that the
true coefficients of all regressors are 0. However, because of the first-stage projection of the regression mean
square, this is a Wald-type test statistic, which is asymptotically F but not exactly F -distributed in finite
samples. Thus, for small samples the F test is only approximate when instrumental variables are used.

The R-Square Statistics
As explained in the section “ANOVA Table for Instrumental Variables Methods” on page 2143, when
instrumental variables are used, the regression sum of squares (RSS) and the error sum of squares (ESS) do
not sum to the total corrected sum of squares. In this case, there are several ways that the R2 statistic can be
defined.

The definition of R2 used by the SYSLIN procedure is

R2
D

RSS

RSS CESS

This definition is consistent with the F test of the null hypothesis that the true coefficients of all regressors
are zero. However, this R2 might not be a good measure of the goodness of fit of the model.

System Weighted R-Square and System Weighted Mean Squared Error

The system weighted R2, printed for the 3SLS, IT3SLS, SUR, ITSUR, and FIML methods, is computed as
follows.

R2
D Y0WR.X0X/�1R0WY=Y0WY
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In this equation, the matrix X0X is R0WR and W is the projection matrix of the instruments:

W D S�1
˝Z.Z0Z/�1Z0

The matrix Z is the instrument set, R is the regressor set, and S is the estimated cross-model covariance
matrix.

The system weighted MSE, printed for the 3SLS, IT3SLS, SUR, ITSUR, and FIML methods, is computed as
follows:

MSE D
1

tdf
.Y0WY �Y0WR.X0X/�1R0WY/

In this equation, tdf is the sum of the error degrees of freedom for the equations in the system.

Computational Details
This section discusses various computational details.

Computation of Least Squares-Based Estimators

Let the system be composed of G equations and let the ith equation be expressed in this form:

yi D Yiˇi CXii C u

where

yi is the vector of observations on the dependent variable

Yi is the matrix of observations on the endogenous variables included in the equation

ˇi is the vector of parameters associated with Yi

Xi is the matrix of observations on the predetermined variables included in the equation

i is the vector of parameters associated with Xi

u is a vector of errors

Let OVi D Yi � OYi , where OYi is the projection of Yi onto the space spanned by the instruments matrix Z.

Let

ıi D

�
ˇi

i

�
be the vector of parameters associated with both the endogenous and exogenous variables.

The K-class of estimators (Theil 1971) is defined by

Oıi;k D

�
Y 0i Yi � k OV

0
i
OVi Y 0iXi

X 0iYi X 0iXi

��1 �
.Yi � kVi /

0yi

X 0iyi

�
where k is a user-defined value.
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Let

R D ŒYiXi �

and

OR D Œ OYi Xi �

The 2SLS estimator is defined as

Oıi;2SLS D Œ OR
0
i
ORi �
�1 OR0iyi

Let y and ı be the vectors obtained by stacking the vectors of dependent variables and parameters for all G
equations, and let R and OR be the block diagonal matrices formed by Ri and ORi , respectively.

The SUR and ITSUR estimators are defined as

Oı.IT /SUR D

h
R0
�
O†�1
˝ I

�
R
i�1

R0
�
O†�1
˝ I

�
y

while the 3SLS and IT3SLS estimators are defined as

Oı.IT /3SLS D

h
OR
0
�
O†�1
˝ I

�
OR
i�1
OR
0
�
O†�1
˝ I

�
y

where I is the identity matrix, and O† is an estimator of the cross-equation correlation matrix. For 3SLS, O† is
obtained from the 2SLS estimation, while for SUR it is derived from the OLS estimation. For IT3SLS and
ITSUR, it is obtained iteratively from the previous estimation step, until convergence.

Computation of Standard Errors

The VARDEF= option in the PROC SYSLIN statement controls the denominator used in calculating the
cross-equation covariance estimates and the parameter standard errors and covariances. The values of the
VARDEF= option and the resulting denominator are as follows:

N uses the number of nonmissing observations.

DF uses the number of nonmissing observations less the degrees of freedom in the model.

WEIGHT uses the sum of the observation weights given by the WEIGHTS statement.

WDF uses the sum of the observation weights given by the WEIGHTS statement less the degrees
of freedom in the model.

The VARDEF= option does not affect the model mean squared error, root mean squared error, or R2 statistics.
These statistics are always based on the error degrees of freedom, regardless of the VARDEF= option. The
VARDEF= option also does not affect the dependent variable coefficient of variation (CV).

Reduced Form Estimates

The REDUCED option in the PROC SYSLIN statement computes estimates of the reduced form coefficients.
The REDUCED option requires that the equation system be square. If there are fewer models than endogenous
variables, IDENTITY statements can be used to complete the equation system.
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The reduced form coefficients are computed as follows. Represent the equation system, with all endogenous
variables moved to the left-hand side of the equations and identities, as

BY D �X

Here B is the estimated coefficient matrix for the endogenous variables Y, and � is the estimated coefficient
matrix for the exogenous (or predetermined) variables X.

The system can be solved for Y as follows, provided B is square and nonsingular:

Y D B�1�X

The reduced form coefficients are the matrix B�1� .

Uncorrelated Errors across Equations

The SDIAG option in the PROC SYSLIN statement computes estimates by assuming uncorrelated errors
across equations. As a result, when the SDIAG option is used, the 3SLS estimates are identical to 2SLS
estimates, and the SUR estimates are the same as the OLS estimates.

Overidentification Restrictions

The OVERID option in the MODEL statement can be used to test for overidentifying restrictions on
parameters of each equation. The null hypothesis is that the predetermined variables that do not appear in any
equation have zero coefficients. The alternative hypothesis is that at least one of the assumed zero coefficients
is nonzero. The test is approximate and rejects the null hypothesis too frequently for small sample sizes.

The formula for the test is given as follows. Let yi D ˇiYi C iZi C ei be the i th equation. Yi are the
endogenous variables that appear as regressors in the i th equation, and Zi are the instrumental variables that
appear as regressors in the i th equation. Let Ni be the number of variables in Yi and Zi .

Let vi D yi �Yi
Ǒ
i . Let Z represent all instrumental variables, T be the total number of observations, and K

be the total number of instrumental variables. Define Ol as follows:

Ol D
v0i .I � Zi .Z0iZi /

�1Z0i /vi

v0i .I � Z.Z0Z/�1Z0/vi

Then the test statistic

T �K

K �Ni
. Ol � 1/

is distributed approximately as an F with K �Ni and T �K degrees of freedom. See Basmann (1960) for
more information.

Fuller’s Modification to LIML

The ALPHA= option in the PROC SYSLIN and MODEL statements parameterizes Fuller’s modification
to LIML. This modification is k D  � .˛=.n � g//, where ˛ is the value of the ALPHA= option,  is the
LIML k value,n is the number of observations, and g is the number of predetermined variables. Fuller’s
modification is not used unless the ALPHA= option is specified. See Fuller (1977) for more information.
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Missing Values
Observations that have a missing value for any variable in the analysis are excluded from the computations.

OUT= Data Set
The output SAS data set produced by the OUT= option in the PROC SYSLIN statement contains all the
variables in the input data set and the variables that contain predicted values and residuals specified by
OUTPUT statements.

The residuals are computed as actual values minus predicted values. Predicted values never use lags of other
predicted values, as would be desirable for dynamic simulation. For these applications, PROC SIMLIN is
available to predict or simulate values from the estimated equations.

OUTEST= Data Set
The OUTEST= option produces a TYPE=EST output SAS data set that contains estimates from the regres-
sions. The variables in the OUTEST= data set are as follows:

BY variables identifies the BY statement variables that are included in the OUTEST= data set.

_TYPE_ identifies the estimation type for the observations. The _TYPE_ value INST indicates
first-stage regression estimates. Other values indicate the estimation method used: 2SLS
indicates two-stage least squares results, 3SLS indicates three-stage least squares re-
sults, LIML indicates limited information maximum likelihood results, and so forth.
Observations added by IDENTITY statements have the _TYPE_ value IDENTITY.

_STATUS_ identifies the convergence status of the estimation. _STATUS_ equals 0 when convergence
criteria are met. Otherwise, _STATUS_ equals 1 when the estimation converges with a
note, 2 when it converges with a warning, or 3 when it fails to converge.

_MODEL_ identifies the model label. The model label is the label specified in the MODEL statement
or the dependent variable name if no label is specified. For first-stage regression estimates,
_MODEL_ has the value FIRST.

_DEPVAR_ identifies the name of the dependent variable for the model.

_NAME_ identifies the names of the regressors for the rows of the covariance matrix, if the COVOUT
option is specified. _NAME_ has a blank value for the parameter estimates observations.
The _NAME_ variable is not included in the OUTEST= data set unless the COVOUT
option is used to output the covariance of parameter estimates matrix.

_SIGMA_ contains the root mean squared error for the model, which is an estimate of the standard
deviation of the error term. The _SIGMA_ variable contains the same values reported as
Root MSE in the printed output.

INTERCEPT identifies the intercept parameter estimates.

regressors identifies the regressor variables from all the MODEL statements that are included in the
OUTEST= data set. Variables used in IDENTIFY statements are also included in the
OUTEST= data set.
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The parameter estimates are stored under the names of the regressor variables. The intercept parameters
are stored in the variable INTERCEPT. The dependent variable of the model is given a coefficient of –1.
Variables that are not in a model have missing values for the OUTEST= observations for that model.

Some estimation methods require computation of preliminary estimates. All estimates computed are output
to the OUTEST= data set. For each BY group and each estimation, the OUTEST= data set contains one
observation for each MODEL or IDENTITY statement. Results for different estimations are identified by the
_TYPE_ variable.

For example, consider the following statements:

proc syslin data=a outest=est 3sls;
by b;
endogenous y1 y2;
instruments x1-x4;
model y1 = y2 x1 x2;
model y2 = y1 x3 x4;
identity x1 = x3 + x4;

run;

The 3SLS method requires both a preliminary 2SLS stage and preliminary first-stage regressions for the en-
dogenous variable. The OUTEST= data set thus contains three different kinds of estimates. The observations
for the first-stage regression estimates have the _TYPE_ value INST. The observations for the 2SLS estimates
have the _TYPE_ value 2SLS. The observations for the final 3SLS estimates have the _TYPE_ value 3SLS.

Since there are two endogenous variables in this example, there are two first-stage regressions and two
_TYPE_=INST observations in the OUTEST= data set. Since there are two model statements, there are two
OUTEST= observations with _TYPE_=2SLS and two observations with _TYPE_=3SLS. In addition, the
OUTEST= data set contains an observation with the _TYPE_ value IDENTITY that contains the coefficients
specified by the IDENTITY statement. All these observations are repeated for each BY group in the input
data set defined by the values of the BY variable B.

When the COVOUT option is specified, the estimated covariance matrix for the parameter estimates is
included in the OUTEST= data set. Each observation for parameter estimates is followed by observations
that contain the rows of the parameter covariance matrix for that model. The row of the covariance matrix is
identified by the variable _NAME_. For observations that contain parameter estimates, _NAME_ is blank.
For covariance observations, _NAME_ contains the regressor name for the row of the covariance matrix and
the regressor variables contain the covariances.

See Example 29.1 for an example of the OUTEST= data set.

OUTSSCP= Data Set
The OUTSSCP= option produces a TYPE=SSCP output SAS data set that contains sums of squares and
cross products. The data set contains all variables used in the MODEL, IDENTITY, and VAR statements.
Observations are identified by the variable _NAME_.

The OUTSSCP= data set can be useful when a large number of observations are to be explored in many
different SYSLIN runs. The sum-of-squares-and-crossproducts matrix can be saved with the OUTSSCP=
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option and used as the DATA= data set on subsequent SYSLIN runs. This is much less expensive computa-
tionally because PROC SYSLIN never reads the original data again. In the step that creates the OUTSSCP=
data set, include in the VAR statement all the variables you expect to use.

Printed Output
The printed output produced by the SYSLIN procedure is as follows:

1. If the SIMPLE option is used, a table of descriptive statistics is printed that shows the sum, mean, sum
of squares, variance, and standard deviation for all the variables used in the models.

2. If the FIRST option is specified and an instrumental variables method is used, first-stage regression
results are printed. The results show the regression of each endogenous variable on the variables in the
INSTRUMENTS list.

3. The results of the second-stage regression are printed for each model. (See the following section
“Printed Output for Each Model” on page 2149 for details.)

4. If a systems method like 3SLS, SUR, or FIML is used, the cross-equation error covariance matrix is
printed. This matrix is shown four ways: the covariance matrix itself, the correlation matrix form, the
inverse of the correlation matrix, and the inverse of the covariance matrix.

5. If a systems method like 3SLS, SUR, or FIML is used, the system weighted mean squared error and
system weighted R2 statistics are printed. The system weighted MSE and R2 measure the fit of the
joint model obtained by stacking all the models together and performing a single regression with the
stacked observations weighted by the inverse of the model error variances.

6. If a systems method like 3SLS, SUR, or FIML is used, the final results are printed for each model.

7. If the REDUCED option is used, the reduced form coefficients are printed. These consist of the
structural coefficient matrix for the endogenous variables, the structural coefficient matrix for the
exogenous variables, the inverse of the endogenous coefficient matrix, and the reduced form coefficient
matrix. The reduced form coefficient matrix is the product of the inverse of the endogenous coefficient
matrix and the exogenous structural coefficient matrix.

Printed Output for Each Model

The results printed for each model include the analysis-of-variance table, the “Parameter Estimates” table,
and optional items requested by TEST statements or by options in the MODEL statement.

The printed output produced for each model is described in the following.

The analysis-of-variance table includes the following:

• the model degrees of freedom, sum of squares, and mean square

• the error degrees of freedom, sum of squares, and mean square. The error mean square is computed by
dividing the error sum of squares by the error degrees of freedom and is not affected by the VARDEF=
option.
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• the corrected total degrees of freedom and total sum of squares. Note that for instrumental variables
methods, the model and error sums of squares do not add to the total sum of squares.

• the F ratio, labeled “F Value,” and its significance, labeled “PROB>F,” for the test of the hypothesis
that all the nonintercept parameters are 0

• the root mean squared error. This is the square root of the error mean square.

• the dependent variable mean

• the coefficient of variation (CV) of the dependent variable

• the R2 statistic. This R2 is computed consistently with the calculation of the F statistic. It is valid for
hypothesis tests but might not be a good measure of fit for models estimated by instrumental variables
methods.

• the R2 statistic adjusted for model degrees of freedom, labeled “Adj R-SQ”

The “Parameter Estimates” table includes the following:

• estimates of parameters for regressors in the model and the Lagrangian parameter for each restriction
specified

• a degrees of freedom column labeled DF. Estimated model parameters have 1 degree of freedom.
Restrictions have a DF of –1. Regressors or restrictions dropped from the model due to collinearity
have a DF of 0.

• the standard errors of the parameter estimates

• the t statistics, which are the parameter estimates divided by the standard errors

• the significance of the t tests for the hypothesis that the true parameter is 0, labeled “Pr > |t|.” As
previously noted, the significance tests are strictly valid in finite samples only for OLS estimates but
are asymptotically valid for the other methods.

• the standardized regression coefficients, if the STB option is specified. This is the parameter estimate
multiplied by the ratio of the standard deviation of the regressor to the standard deviation of the
dependent variable.

• the labels of the regressor variables or restriction labels

In addition to the analysis-of-variance table and the “Parameter Estimates” table, the results printed for each
model can include the following:

• If TEST statements are specified, the test results are printed.

• If the DW option is specified, the Durbin-Watson statistic and first-order autocorrelation coefficient are
printed.

• If the OVERID option is specified, the results of Basmann’s test for overidentifying restrictions are
printed.
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• If the PLOT option is used, plots of residual against each regressor are printed.

• If the COVB or CORRB options are specified, the results for each model also include the covariance
or correlation matrix of the parameter estimates. For systems methods like 3SLS and FIML, the
COVB and CORB output is printed for the whole system after the output for the last model, instead of
separately for each model.

The third-stage output for 3SLS, SUR, IT3SLS, ITSUR, and FIML does not include the analysis-of-variance
table. When a systems method is used, the second-stage output does not include the optional output, except
for the COVB and CORRB matrices.

ODS Table Names
PROC SYSLIN assigns a name to each table it creates. You can use these names to reference the table when
you use the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in the following table. If the estimation method used is 3SLS, IT3SLS, ITSUR or SUR, you can obtain
tables by specifying ODS OUTPUT CorrResiduals, InvCorrResiduals, InvCovResiduals.

Table 29.2 ODS Tables Produced in PROC SYSLIN
ODS Table Name Description Option
ANOVA Summary of the SSE, MSE for the equations default
AugXPXMat Model crossproducts XPX or USSCP
AutoCorrStat Autocorrelation statistics DW
ConvergenceStatus Convergence status default
CorrB Correlations of parameters CORRB
CorrResiduals Correlations of residuals
CovB Covariance of parameters COVB
CovResiduals Covariance of residuals
EndoMat Endogenous variables REDUCED
ExogMat Exogenous variables REDUCED
FitStatistics Statistics of fit default
InvCorrResiduals Inverse correlations of residuals
InvCovResiduals Inverse covariance of residuals
InvEndoMat Inverse endogenous variables REDUCED
InvXPX X 0X inverse for system I
IterHistory Iteration printing ITPRINT
MissingValues Missing values generated by the program default
ModelVars Name and label for the model default
ParameterEstimates Parameter estimates default
RedMat Reduced form REDUCED
SimpleStatistics Descriptive statistics SIMPLE
SSCP Model crossproducts XPX or USSCP
TestResults Test for overidentifying restrictions
Weight Weighted model statistics
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ODS Graphics
This section describes the use of ODS for creating graphics with the SYSLIN procedure.

ODS Graph Names

PROC SYSLIN assigns a name to each graph it creates using ODS. You can use these names to reference the
graphs when you use ODS. The names are listed in Table 29.3.

To request these graphs, you must specify the ODS GRAPHICS statement.

Table 29.3 ODS Graphics Produced by PROC SYSLIN

ODS Graph Name Plot Description
DiagnosticsPanel All applicable plots listed below
ActualByPredicted Predicted versus actual plot
QQPlot Q-Q plot of residuals
ResidualHistogram Histogram of the residuals
ResidualPlot Residual plot

Examples: SYSLIN Procedure

Example 29.1: Klein’s Model I Estimated with LIML and 3SLS
This example uses PROC SYSLIN to estimate the classic Klein Model I. For a discussion of this model, see
Theil (1971). The following statements read the data.

*---------------------------Klein's Model I----------------------------*
| By L.R. Klein, Economic Fluctuations in the United States, 1921-1941 |
| (1950), NY: John Wiley. A macro-economic model of the U.S. with |
| three behavioral equations, and several identities. See Theil, p.456.|

*----------------------------------------------------------------------*;
data klein;
input year c p w i x wp g t k wsum;

date=mdy(1,1,year);
format date monyy.;
y =c+i+g-t;
yr =year-1931;
klag=lag(k);
plag=lag(p);
xlag=lag(x);
label year='Year'

date='Date'
c ='Consumption'
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p ='Profits'
w ='Private Wage Bill'
i ='Investment'
k ='Capital Stock'
y ='National Income'
x ='Private Production'
wsum='Total Wage Bill'
wp ='Govt Wage Bill'
g ='Govt Demand'
i ='Taxes'
klag='Capital Stock Lagged'
plag='Profits Lagged'
xlag='Private Product Lagged'
yr ='YEAR-1931';

datalines;
1920 . 12.7 . . 44.9 . . . 182.8 .
1921 41.9 12.4 25.5 -0.2 45.6 2.7 3.9 7.7 182.6 28.2
1922 45.0 16.9 29.3 1.9 50.1 2.9 3.2 3.9 184.5 32.2
1923 49.2 18.4 34.1 5.2 57.2 2.9 2.8 4.7 189.7 37.0
1924 50.6 19.4 33.9 3.0 57.1 3.1 3.5 3.8 192.7 37.0
1925 52.6 20.1 35.4 5.1 61.0 3.2 3.3 5.5 197.8 38.6
1926 55.1 19.6 37.4 5.6 64.0 3.3 3.3 7.0 203.4 40.7
1927 56.2 19.8 37.9 4.2 64.4 3.6 4.0 6.7 207.6 41.5
1928 57.3 21.1 39.2 3.0 64.5 3.7 4.2 4.2 210.6 42.9
1929 57.8 21.7 41.3 5.1 67.0 4.0 4.1 4.0 215.7 45.3
1930 55.0 15.6 37.9 1.0 61.2 4.2 5.2 7.7 216.7 42.1

... more lines ...

The following statements estimate the Klein model using the limited information maximum likelihood
method. In addition, the parameter estimates are written to a SAS data set with the OUTEST= option.

proc syslin data=klein outest=b liml;
endogenous c p w i x wsum k y;
instruments klag plag xlag wp g t yr;
consume: model c = p plag wsum;
invest: model i = p plag klag;
labor: model w = x xlag yr;

run;

proc print data=b;
run;

The PROC SYSLIN estimates are shown in Output 29.1.1 through Output 29.1.3.

Output 29.1.1 LIML Estimates for Consumption

The SYSLIN Procedure
Limited-Information Maximum Likelihood Estimation

The SYSLIN Procedure
Limited-Information Maximum Likelihood Estimation

Model CONSUME

Dependent Variable c

Label Consumption
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Output 29.1.1 continued

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 854.3541 284.7847 118.42 <.0001

Error 17 40.88419 2.404952

Corrected Total 20 941.4295

Root MSE 1.55079 R-Square 0.95433

Dependent Mean 53.99524 Adj R-Sq 0.94627

Coeff Var 2.87209

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 17.14765 2.045374 8.38 <.0001 Intercept

p 1 -0.22251 0.224230 -0.99 0.3349 Profits

plag 1 0.396027 0.192943 2.05 0.0558 Profits Lagged

wsum 1 0.822559 0.061549 13.36 <.0001 Total Wage Bill

Output 29.1.2 LIML Estimates for Investments

The SYSLIN Procedure
Limited-Information Maximum Likelihood Estimation

The SYSLIN Procedure
Limited-Information Maximum Likelihood Estimation

Model INVEST

Dependent Variable i

Label Taxes

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 210.3790 70.12634 34.06 <.0001

Error 17 34.99649 2.058617

Corrected Total 20 252.3267

Root MSE 1.43479 R-Square 0.85738

Dependent Mean 1.26667 Adj R-Sq 0.83221

Coeff Var 113.27274

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 22.59083 9.498146 2.38 0.0294 Intercept

p 1 0.075185 0.224712 0.33 0.7420 Profits

plag 1 0.680386 0.209145 3.25 0.0047 Profits Lagged

klag 1 -0.16826 0.045345 -3.71 0.0017 Capital Stock Lagged
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Output 29.1.3 LIML Estimates for Labor

The SYSLIN Procedure
Limited-Information Maximum Likelihood Estimation

The SYSLIN Procedure
Limited-Information Maximum Likelihood Estimation

Model LABOR

Dependent Variable w

Label Private Wage Bill

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 696.1485 232.0495 393.62 <.0001

Error 17 10.02192 0.589525

Corrected Total 20 794.9095

Root MSE 0.76781 R-Square 0.98581

Dependent Mean 36.36190 Adj R-Sq 0.98330

Coeff Var 2.11156

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 1.526187 1.320838 1.16 0.2639 Intercept

x 1 0.433941 0.075507 5.75 <.0001 Private Production

xlag 1 0.151321 0.074527 2.03 0.0583 Private Product Lagged

yr 1 0.131593 0.035995 3.66 0.0020 YEAR-1931

The OUTEST= data set is shown in part in Output 29.1.4. Note that the data set contains the parameter
estimates and root mean squared errors, _SIGMA_, for the first-stage instrumental regressions as well as the
parameter estimates and � for the LIML estimates for the three structural equations.

Output 29.1.4 The OUTEST= Data Set

Obs _TYPE_ _STATUS_ _MODEL_ _DEPVAR_ _SIGMA_ Intercept klag plag xlag wp

1 LIML 0 Converged CONSUME c 1.55079 17.1477 . 0.39603 . .

2 LIML 0 Converged INVEST i 1.43479 22.5908 -0.16826 0.68039 . .

3 LIML 0 Converged LABOR w 0.76781 1.5262 . . 0.15132 .

Obs g t yr c p w i x wsum k y

1 . . . -1 -0.22251 . . . 0.82256 . .

2 . . . . 0.07518 . -1 . . . .

3 . . 0.13159 . . -1 . 0.43394 . . .

The following statements estimate the model using the 3SLS method. The reduced form estimates are
produced by the REDUCED option; IDENTITY statements are used to make the model complete.

proc syslin data=klein 3sls reduced;
endogenous c p w i x wsum k y;
instruments klag plag xlag wp g t yr;
consume: model c = p plag wsum;
invest: model i = p plag klag;
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labor: model w = x xlag yr;
product: identity x = c + i + g;
income: identity y = c + i + g - t;
profit: identity p = y - w;
stock: identity k = klag + i;
wage: identity wsum = w + wp;

run;

The preliminary 2SLS results and estimated cross-model covariance matrix are not shown. The 3SLS
estimates are shown in Output 29.1.5 through Output 29.1.7. The reduced form estimates are shown in
Output 29.1.8 through Output 29.1.11.

Output 29.1.5 3SLS Estimates for Consumption

The SYSLIN Procedure
Three-Stage Least Squares Estimation

The SYSLIN Procedure
Three-Stage Least Squares Estimation

System Weighted MSE 5.9342

Degrees of freedom 51

System Weighted R-Square 0.9550

Model CONSUME

Dependent Variable c

Label Consumption

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 16.44079 1.449925 11.34 <.0001 Intercept

p 1 0.124890 0.120179 1.04 0.3133 Profits

plag 1 0.163144 0.111631 1.46 0.1621 Profits Lagged

wsum 1 0.790081 0.042166 18.74 <.0001 Total Wage Bill

Output 29.1.6 3SLS Estimates for Investments

Model INVEST

Dependent Variable i

Label Taxes

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 28.17785 7.550853 3.73 0.0017 Intercept

p 1 -0.01308 0.179938 -0.07 0.9429 Profits

plag 1 0.755724 0.169976 4.45 0.0004 Profits Lagged

klag 1 -0.19485 0.036156 -5.39 <.0001 Capital Stock Lagged
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Output 29.1.7 3SLS Estimates for Labor

Model LABOR

Dependent Variable w

Label Private Wage Bill

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 1.797218 1.240203 1.45 0.1655 Intercept

x 1 0.400492 0.035359 11.33 <.0001 Private Production

xlag 1 0.181291 0.037965 4.78 0.0002 Private Product Lagged

yr 1 0.149674 0.031048 4.82 0.0002 YEAR-1931

Output 29.1.8 Reduced Form Estimates

Endogenous Variables

c p w i x wsum k y

CONSUME 1 -0.12489 0 0 0 -0.79008 0 0

INVEST 0 0.013079 0 1 0 0 0 0

LABOR 0 0 1 0 -0.40049 0 0 0

PRODUCT -1 0 0 -1 1 0 0 0

INCOME -1 0 0 -1 0 0 0 1

PROFIT 0 1 1 0 0 0 0 -1

STOCK 0 0 0 -1 0 0 1 0

WAGE 0 0 -1 0 0 1 0 0

Output 29.1.9 Reduced Form Estimates

Exogenous Variables

Intercept plag klag xlag yr g t wp

CONSUME 16.44079 0.163144 0 0 0 0 0 0

INVEST 28.17785 0.755724 -0.19485 0 0 0 0 0

LABOR 1.797218 0 0 0.181291 0.149674 0 0 0

PRODUCT 0 0 0 0 0 1 0 0

INCOME 0 0 0 0 0 1 -1 0

PROFIT 0 0 0 0 0 0 0 0

STOCK 0 0 1 0 0 0 0 0

WAGE 0 0 0 0 0 0 0 1
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Output 29.1.10 Reduced Form Estimates

Inverse Endogenous Variables

CONSUME INVEST LABOR PRODUCT INCOME PROFIT STOCK WAGE

c 1.634654 0.634654 1.095657 0.438802 0.195852 0.195852 0 1.291509

p 0.972364 0.972364 -0.34048 -0.13636 1.108721 1.108721 0 0.768246

w 0.649572 0.649572 1.440585 0.576943 0.072629 0.072629 0 0.513215

i -0.01272 0.987282 0.004453 0.001783 -0.0145 -0.0145 0 -0.01005

x 1.621936 1.621936 1.10011 1.440585 0.181351 0.181351 0 1.281461

wsum 0.649572 0.649572 1.440585 0.576943 0.072629 0.072629 0 1.513215

k -0.01272 0.987282 0.004453 0.001783 -0.0145 -0.0145 1 -0.01005

y 1.621936 1.621936 1.10011 0.440585 1.181351 0.181351 0 1.281461

Output 29.1.11 Reduced Form Estimates

Reduced Form

Intercept plag klag xlag yr g t wp

c 46.7273 0.746307 -0.12366 0.198633 0.163991 0.634654 -0.19585 1.291509

p 42.77363 0.893474 -0.18946 -0.06173 -0.05096 0.972364 -1.10872 0.768246

w 31.57207 0.596871 -0.12657 0.261165 0.215618 0.649572 -0.07263 0.513215

i 27.6184 0.744038 -0.19237 0.000807 0.000667 -0.01272 0.014501 -0.01005

x 74.3457 1.490345 -0.31603 0.19944 0.164658 1.621936 -0.18135 1.281461

wsum 31.57207 0.596871 -0.12657 0.261165 0.215618 0.649572 -0.07263 1.513215

k 27.6184 0.744038 0.80763 0.000807 0.000667 -0.01272 0.014501 -0.01005

y 74.3457 1.490345 -0.31603 0.19944 0.164658 1.621936 -1.18135 1.281461

Example 29.2: Grunfeld’s Model Estimated with SUR
The following example was used by Zellner in his classic 1962 paper on seemingly unrelated regressions.
Different stock prices often move in the same direction at a given point in time. The SUR technique might
provide more efficient estimates than OLS in this situation.

The following statements read the data. (The prefix GE stands for General Electric and WH stands for
Westinghouse.)

*---------Zellner's Seemingly Unrelated Technique------------*
| A. Zellner, "An Efficient Method of Estimating Seemingly |
| Unrelated Regressions and Tests for Aggregation Bias," |
| JASA 57(1962) pp.348-364 |
| |
| J.C.G. Boot, "Investment Demand: an Empirical Contribution |
| to the Aggregation Problem," IER 1(1960) pp.3-30. |
| |
| Y. Grunfeld, "The Determinants of Corporate Investment," |
| Unpublished thesis, Chicago, 1958 |

*------------------------------------------------------------*;

data grunfeld;
input year ge_i ge_f ge_c wh_i wh_f wh_c;
label ge_i = 'Gross Investment, GE'
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ge_c = 'Capital Stock Lagged, GE'
ge_f = 'Value of Outstanding Shares Lagged, GE'
wh_i = 'Gross Investment, WH'
wh_c = 'Capital Stock Lagged, WH'
wh_f = 'Value of Outstanding Shares Lagged, WH';

datalines;
1935 33.1 1170.6 97.8 12.93 191.5 1.8

... more lines ...

The following statements compute the SUR estimates for the Grunfeld model.

proc syslin data=grunfeld sur;
ge: model ge_i = ge_f ge_c;
westing: model wh_i = wh_f wh_c;

run;

The PROC SYSLIN output is shown in Output 29.2.1 through Output 29.2.5.

Output 29.2.1 PROC SYSLIN Output for SUR

The SYSLIN Procedure
Ordinary Least Squares Estimation

The SYSLIN Procedure
Ordinary Least Squares Estimation

Model GE

Dependent Variable ge_i

Label Gross Investment, GE

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 31632.03 15816.02 20.34 <.0001

Error 17 13216.59 777.4463

Corrected Total 19 44848.62

Root MSE 27.88272 R-Square 0.70531

Dependent Mean 102.29000 Adj R-Sq 0.67064

Coeff Var 27.25850

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 -9.95631 31.37425 -0.32 0.7548 Intercept

ge_f 1 0.026551 0.015566 1.71 0.1063 Value of Outstanding Shares Lagged, GE

ge_c 1 0.151694 0.025704 5.90 <.0001 Capital Stock Lagged, GE
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Output 29.2.2 PROC SYSLIN Output for SUR

The SYSLIN Procedure
Ordinary Least Squares Estimation

The SYSLIN Procedure
Ordinary Least Squares Estimation

Model WESTING

Dependent Variable wh_i

Label Gross Investment, WH

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 5165.553 2582.776 24.76 <.0001

Error 17 1773.234 104.3079

Corrected Total 19 6938.787

Root MSE 10.21312 R-Square 0.74445

Dependent Mean 42.89150 Adj R-Sq 0.71438

Coeff Var 23.81153

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 -0.50939 8.015289 -0.06 0.9501 Intercept

wh_f 1 0.052894 0.015707 3.37 0.0037 Value of Outstanding Shares Lagged, WH

wh_c 1 0.092406 0.056099 1.65 0.1179 Capital Stock Lagged, WH

Output 29.2.3 PROC SYSLIN Output for SUR

The SYSLIN Procedure
Seemingly Unrelated Regression Estimation

The SYSLIN Procedure
Seemingly Unrelated Regression Estimation

Cross Model Covariance

GE WESTING

GE 777.446 207.587

WESTING 207.587 104.308

Cross Model Correlation

GE WESTING

GE 1.00000 0.72896

WESTING 0.72896 1.00000

Cross Model Inverse
Correlation

GE WESTING

GE 2.13397 -1.55559

WESTING -1.55559 2.13397
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Output 29.2.3 continued

Cross Model Inverse
Covariance

GE WESTING

GE 0.002745 -.005463

WESTING -.005463 0.020458

Output 29.2.4 PROC SYSLIN Output for SUR

System Weighted MSE 0.9719

Degrees of freedom 34

System Weighted R-Square 0.6284

Model GE

Dependent Variable ge_i

Label Gross Investment, GE

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 -27.7193 29.32122 -0.95 0.3577 Intercept

ge_f 1 0.038310 0.014415 2.66 0.0166 Value of Outstanding Shares Lagged, GE

ge_c 1 0.139036 0.024986 5.56 <.0001 Capital Stock Lagged, GE

Output 29.2.5 PROC SYSLIN Output for SUR

Model WESTING

Dependent Variable wh_i

Label Gross Investment, WH

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 -1.25199 7.545217 -0.17 0.8702 Intercept

wh_f 1 0.057630 0.014546 3.96 0.0010 Value of Outstanding Shares Lagged, WH

wh_c 1 0.063978 0.053041 1.21 0.2443 Capital Stock Lagged, WH

Example 29.3: Illustration of ODS Graphics
This example illustrates the use of ODS graphics. This is a continuation of the section “Example 29.1: Klein’s
Model I Estimated with LIML and 3SLS” on page 2152. These graphical displays are requested by specifying
the ODS GRAPHICS statement before running PROC SYSLIN. For information about the graphics available
in the SYSLIN procedure, see the section “ODS Graphics” on page 2152.

The following statements show how to generate ODS graphics plots with the SYSLIN procedure. The plots
of residuals for each one of the equations in the model are displayed in Figure 29.3.1 through Figure 29.3.3.
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*---------------------------Klein's Model I----------------------------*
| By L.R. Klein, Economic Fluctuations in the United States, 1921-1941 |
| (1950), NY: John Wiley. A macro-economic model of the U.S. with |
| three behavioral equations, and several identities. See Theil, p.456.|

*----------------------------------------------------------------------*;
data klein;
input year c p w i x wp g t k wsum;

date=mdy(1,1,year);
format date monyy.;
y =c+i+g-t;
yr =year-1931;
klag=lag(k);
plag=lag(p);
xlag=lag(x);
label year='Year'

date='Date'
c ='Consumption'
p ='Profits'
w ='Private Wage Bill'
i ='Investment'
k ='Capital Stock'
y ='National Income'
x ='Private Production'
wsum='Total Wage Bill'
wp ='Govt Wage Bill'
g ='Govt Demand'
i ='Taxes'
klag='Capital Stock Lagged'
plag='Profits Lagged'
xlag='Private Product Lagged'
yr ='YEAR-1931';

datalines;
1920 . 12.7 . . 44.9 . . . 182.8 .
1921 41.9 12.4 25.5 -0.2 45.6 2.7 3.9 7.7 182.6 28.2
1922 45.0 16.9 29.3 1.9 50.1 2.9 3.2 3.9 184.5 32.2
1923 49.2 18.4 34.1 5.2 57.2 2.9 2.8 4.7 189.7 37.0
1924 50.6 19.4 33.9 3.0 57.1 3.1 3.5 3.8 192.7 37.0
1925 52.6 20.1 35.4 5.1 61.0 3.2 3.3 5.5 197.8 38.6
1926 55.1 19.6 37.4 5.6 64.0 3.3 3.3 7.0 203.4 40.7
1927 56.2 19.8 37.9 4.2 64.4 3.6 4.0 6.7 207.6 41.5
1928 57.3 21.1 39.2 3.0 64.5 3.7 4.2 4.2 210.6 42.9
1929 57.8 21.7 41.3 5.1 67.0 4.0 4.1 4.0 215.7 45.3
1930 55.0 15.6 37.9 1.0 61.2 4.2 5.2 7.7 216.7 42.1

... more lines ...
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ods graphics on;

proc syslin data=klein outest=b liml plots(unpack only)=residual ;
endogenous c p w i x wsum k y;
instruments klag plag xlag wp g t yr;
consume: model c = p plag wsum;
invest: model i = p plag klag;
labor: model w = x xlag yr;

run;

Output 29.3.1 Residuals Diagnostic Plots for Consumption
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Output 29.3.2 Residuals Diagnostic Plots for Investments
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Output 29.3.3 Residuals Diagnostic Plots for Labor
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2SLS estimation method, see two-stage least squares
3SLS estimation method, see three-stage least squares

Basmann test
SYSLIN procedure, 2133, 2146

BY groups
SYSLIN procedure, 2131

contemporaneous correlation of
errors across equations, 2142

endogenous variables
SYSLIN procedure, 2112

errors across equations
contemporaneous correlation of, 2142

exogenous variables
SYSLIN procedure, 2112

FIML estimation method, see full information
maximum likelihood

full information maximum likelihood
FIML estimation method, 2110
SYSLIN procedure, 2119, 2142

Fuller’s modification to LIML
SYSLIN procedure, 2146

instrumental variables
SYSLIN procedure, 2112

iterated seemingly unrelated regression
SYSLIN procedure, 2142

iterated three-stage least squares
SYSLIN procedure, 2142

joint generalized least squares, see seemingly unrelated
regression

jointly dependent variables
SYSLIN procedure, 2112

K-class estimation
SYSLIN procedure, 2141

lagged endogenous variables
SYSLIN procedure, 2112

limited information maximum likelihood
LIML estimation method, 2110
SYSLIN procedure, 2141

LIML estimation method, see limited information
maximum likelihood

MELO estimation method, see minimum expected loss
estimator

minimum expected loss estimator
MELO estimation method, 2141
SYSLIN procedure, 2141

ODS graph names
SYSLIN procedure, 2152

output data sets
SYSLIN procedure, 2147, 2148

output table names
SYSLIN procedure, 2151

over identification restrictions
SYSLIN procedure, 2146

predetermined variables
SYSLIN procedure, 2112

predicted values
SYSLIN procedure, 2134

printed output
SYSLIN procedure, 2149

R-square statistic
SYSLIN procedure, 2143

reduced form coefficients
SYSLIN procedure, 2145

residuals
SYSLIN procedure, 2134

restricted estimation
SYSLIN procedure, 2135, 2136

seemingly unrelated regression
joint generalized least squares, 2110
SUR estimation method, 2110
SYSLIN procedure, 2117, 2142
Zellner estimation, 2110

simultaneous equation bias
SYSLIN procedure, 2111

single equation estimators
SYSLIN procedure, 2141

SUR estimation method, see seemingly unrelated
regression

SYSLIN procedure
Basmann test, 2133, 2146
BY groups, 2131
endogenous variables, 2112
exogenous variables, 2112
full information maximum likelihood, 2119, 2142
Fuller’s modification to LIML, 2146



instrumental variables, 2112
iterated seemingly unrelated regression, 2142
iterated three-stage least squares, 2142
jointly dependent variables, 2112
K-class estimation, 2141
lagged endogenous variables, 2112
limited information maximum likelihood, 2141
minimum expected loss estimator, 2141
ODS graph names, 2152
output data sets, 2147, 2148
output table names, 2151
over identification restrictions, 2146
predetermined variables, 2112
predicted values, 2134
printed output, 2149
R-square statistic, 2143
reduced form coefficients, 2145
residuals, 2134
restricted estimation, 2135, 2136
seemingly unrelated regression, 2117, 2142
simultaneous equation bias, 2111
single equation estimators, 2141
system weighted MSE, 2144
system weighted R-square, 2143, 2149
tests of hypothesis, 2137, 2138
three-stage least squares, 2117, 2142
two-stage least squares, 2115, 2141

system weighted MSE
SYSLIN procedure, 2144

system weighted R-square
SYSLIN procedure, 2143, 2149

tests of hypothesis
SYSLIN procedure, 2137, 2138

three-stage least squares
3SLS estimation method, 2110
SYSLIN procedure, 2117, 2142

two-stage least squares
2SLS estimation method, 2110
SYSLIN procedure, 2115, 2141

Zellner estimation, see seemingly unrelated regression
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2SLS option
PROC SYSLIN statement, 2130

3SLS option
PROC SYSLIN statement, 2130

ALL option
MODEL statement (SYSLIN), 2133
PROC SYSLIN statement, 2131

ALPHA= option
MODEL statement (SYSLIN), 2133
PROC SYSLIN statement, 2130

BY statement
SYSLIN procedure, 2131

CONVERGE= option
PROC SYSLIN statement, 2130

CORRB option
MODEL statement (SYSLIN), 2133

COV3OUT option
PROC SYSLIN statement, 2129

COVB option
MODEL statement (SYSLIN), 2133

COVOUT option
PROC SYSLIN statement, 2129

DATA= option
PROC SYSLIN statement, 2129

DW option
MODEL statement (SYSLIN), 2133

ENDOGENOUS statement
SYSLIN procedure, 2132

FIML option
PROC SYSLIN statement, 2130

FIRST option
PROC SYSLIN statement, 2131

I option
MODEL statement (SYSLIN), 2133

IDENTITY statement
SYSLIN procedure, 2132

INSTRUMENTS statement
SYSLIN procedure, 2132

IT3SLS option
PROC SYSLIN statement, 2130

ITPRINT option
PROC SYSLIN statement, 2131

ITSUR option
PROC SYSLIN statement, 2130

K= option
MODEL statement (SYSLIN), 2133
PROC SYSLIN statement, 2130

LIML option
PROC SYSLIN statement, 2130

MAXIT=
PROC SYSLIN statement, 2130

MAXITER= option
PROC SYSLIN statement, 2130

MELO option
PROC SYSLIN statement, 2130

MODEL statement
SYSLIN procedure, 2132

NOINCLUDE option
PROC SYSLIN statement, 2130

NOINT option
MODEL statement (SYSLIN), 2133

NOPRINT option
MODEL statement (SYSLIN), 2133
PROC SYSLIN statement, 2131

OLS option
PROC SYSLIN statement, 2130

OUT= option
OUTPUT statement (SYSLIN), 2147
PROC SYSLIN statement, 2129

OUTCOV option
PROC SYSLIN statement, 2129

OUTCOV3 option
PROC SYSLIN statement, 2129

OUTEST= option
PROC SYSLIN statement, 2129, 2147

OUTPUT statement
SYSLIN procedure, 2134

OUTSSCP= option
PROC SYSLIN statement, 2129, 2148

OVERID option
MODEL statement (SYSLIN), 2133

PLOT option
MODEL statement (SYSLIN), 2133

PREDICTED= option
OUTPUT statement (SYSLIN), 2134



PRINT option
STEST statement (SYSLIN), 2138
TEST statement (SYSLIN), 2139

PROC SYSLIN statement, 2129

REDUCED option
PROC SYSLIN statement, 2131

RESIDUAL= option
OUTPUT statement (SYSLIN), 2134

RESTRICT statement
SYSLIN procedure, 2135

SDIAG option
PROC SYSLIN statement, 2130

SIMPLE option
PROC SYSLIN statement, 2131

SINGULAR= option
PROC SYSLIN statement, 2130

SRESTRICT statement
SYSLIN procedure, 2136

STB option
MODEL statement (SYSLIN), 2133

STEST statement
SYSLIN procedure, 2137

SUR option
PROC SYSLIN statement, 2131

SYSLIN procedure, 2127
syntax, 2127

TEST statement
SYSLIN procedure, 2138

UNREST option
MODEL statement (SYSLIN), 2134

USSCP option
PROC SYSLIN statement, 2131

USSCP2 option
PROC SYSLIN statement, 2131

VAR statement
SYSLIN procedure, 2139

VARDEF= option
PROC SYSLIN statement, 2131

WEIGHT statement
SYSLIN procedure, 2140

XPX option
MODEL statement (SYSLIN), 2134
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