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Overview: COUNTREG Procedure
The COUNTREG (count regression) procedure analyzes regression models in which the dependent variable
takes nonnegative integer or count values. The dependent variable is usually an event count, which refers
to the number of times an event occurs. For example, an event count might represent the number of ship
accidents per year for a given fleet. In count regression, the conditional mean E.yi jxi / of the dependent
variable yi is assumed to be a function of a vector of covariates xi .

The Poisson (log-linear) regression model is the most basic model that explicitly takes into account the
nonnegative integer-valued aspect of the outcome. With this model, the probability of an event count is
determined by a Poisson distribution, where the conditional mean of the distribution is a function of a vector
of covariates. However, the basic Poisson regression model is limited because it forces the conditional mean
of the outcome to equal the conditional variance. This assumption is often violated in real-life data. Negative
binomial regression is an extension of Poisson regression in which the conditional variance can exceed the
conditional mean. Also, a common characteristic of count data is that the number of zeros in the sample
exceeds the number of zeros that are predicted by either the Poisson or negative binomial model. Zero-inflated
Poisson (ZIP) and zero-inflated negative binomial (ZINB) models explicitly model the production of zero
counts to account for excess zeros and also enable the conditional variance of the outcome to differ from the
conditional mean.

In zero-inflated models, additional zeros occur with probability 'i , which is determined by a separate model,
'i D F.z0i/, where F is the normal or logistic distribution function that results in a probit or logistic model
and zi is a set of covariates.

PROC COUNTREG supports the following models for count data:

• Poisson regression

• Conway-Maxwell-Poisson regression
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• negative binomial regression with quadratic (NEGBIN2) and linear (NEGBIN1) variance functions
(Cameron and Trivedi 1986)

• zero-inflated Poisson (ZIP) model (Lambert 1992)

• zero-inflated Conway-Maxwell-Poisson (ZICMP) model

• zero-inflated negative binomial (ZINB) model

• fixed-effects and random-effects Poisson models for panel data

• fixed-effects and random-effects negative binomial models for panel data

The count data models have been used extensively in economics, political science, and sociology. For
example, Hausman, Hall, and Griliches (1984) examine the effects of research and development expenditures
on the number of patents obtained by U.S. companies. Cameron and Trivedi (1986) study factors that affect
the number of doctor visits that a group made during a two-week period. Greene (1994) studies the number
of derogatory reports to a credit reporting agency for a group of credit card applicants. As a final example,
Long (1997) analyzes the number of publications by Ph.D. candidates in science in the final three years of
their doctoral studies.

The COUNTREG procedure can use the maximum likelihood method and the Bayesian method. Initial
starting values for the nonlinear optimizations are typically calculated by OLS. When a model that contains a
dependent count variable is estimated using linear ordinary least squares (OLS) regression, the count nature of
the dependent variable is ignored. This can lead to negative predicted counts and to parameter estimates that
have undesirable properties in terms of statistical efficiency, consistency, and unbiasedness unless the mean
of the counts is high, in which case the Gaussian approximation and linear regression might be satisfactory.

Getting Started: COUNTREG Procedure
The COUNTREG procedure is similar in use to other SAS regression model procedures. For example, the
following statements are used to estimate a Poisson regression model:

proc countreg data=one ;
model y = x / dist=poisson ;

run;

The response variable y is numeric and has nonnegative integer values. To allow for variance greater than the
mean, specify the DIST=NEGBIN option to fit the negative binomial model instead of the Poisson.

The following example illustrates the use of PROC COUNTREG. The data are taken from Long (1997) and
can be found in the SAS/ETS Sample Library. This study examines how factors such as gender (fem), marital
status (mar), number of young children (kid5), prestige of the graduate program (phd), and number of articles
published by the mentor (ment) of a doctoral candidate in science affect the number of articles (art) published
by the scientist.

The first 10 observations are shown in Figure 11.1.
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Figure 11.1 Article Count Data

Obs art fem mar kid5 phd ment

1 3 0 1 2 1.38000 8.0000

2 0 0 0 0 4.29000 7.0000

3 4 0 0 0 3.85000 47.0000

4 1 0 1 1 3.59000 19.0000

5 1 0 1 0 1.81000 0.0000

6 1 0 1 1 3.59000 6.0000

7 0 0 1 1 2.12000 10.0000

8 0 0 1 0 4.29000 2.0000

9 3 0 1 2 2.58000 2.0000

10 3 0 1 1 1.80000 4.0000

The following SAS statements estimate the Poisson regression model:

proc countreg data=long97data;
model art = fem mar kid5 phd ment / dist=poisson;

run;

The “Model Fit Summary” table, shown in Figure 11.2, lists several details about the model. By default, the
COUNTREG procedure uses the Newton-Raphson optimization technique. The maximum log-likelihood
value is shown, in addition to two information measures, Akaike’s information criterion (AIC) and Schwarz’s
Bayesian information criterion (SBC), which can be used to compare competing Poisson models. Smaller
values of these criteria indicate better models.

Figure 11.2 Estimation Summary Table for a Poisson Regression

The COUNTREG ProcedureThe COUNTREG Procedure

Model Fit Summary

Dependent Variable art

Number of Observations 915

Data Set WORK.LONG97DATA

Model Poisson

Log Likelihood -1651

Maximum Absolute Gradient 3.57454E-9

Number of Iterations 5

Optimization Method Newton-Raphson

AIC 3314

SBC 3343
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The parameter estimates of the model and their standard errors are shown in Figure 11.3. All covariates are
significant predictors of the number of articles, except for the prestige of the program (phd), which has a
p-value of 0.6271.

Figure 11.3 Parameter Estimates of Poisson Regression

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.304617 0.102982 2.96 0.0031

fem 1 -0.224594 0.054614 -4.11 <.0001

mar 1 0.155243 0.061375 2.53 0.0114

kid5 1 -0.184883 0.040127 -4.61 <.0001

phd 1 0.012823 0.026397 0.49 0.6271

ment 1 0.025543 0.002006 12.73 <.0001

The following statements fit the negative binomial model. Although the Poisson model requires that the
conditional mean equal the conditional variance, the negative binomial model allows for overdispersion; that
is, the conditional variance can exceed the conditional mean.

proc countreg data=long97data;
model art = fem mar kid5 phd ment / dist=negbin(p=2) method=qn;

run;

The fit summary is shown in Figure 11.4, and parameter estimates are listed in Figure 11.5.

Figure 11.4 Estimation Summary Table for a Negative Binomial Regression

The COUNTREG ProcedureThe COUNTREG Procedure

Model Fit Summary

Dependent Variable art

Number of Observations 915

Data Set WORK.LONG97DATA

Model NegBin(p=2)

Log Likelihood -1561

Maximum Absolute Gradient 5.72129E-7

Number of Iterations 16

Optimization Method Quasi-Newton

AIC 3136

SBC 3170
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Figure 11.5 Parameter Estimates of Negative Binomial Regression

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.256144 0.138560 1.85 0.0645

fem 1 -0.216418 0.072672 -2.98 0.0029

mar 1 0.150489 0.082106 1.83 0.0668

kid5 1 -0.176415 0.053060 -3.32 0.0009

phd 1 0.015271 0.036040 0.42 0.6718

ment 1 0.029082 0.003470 8.38 <.0001

_Alpha 1 0.441620 0.052967 8.34 <.0001

The parameter estimate for _Alpha of 0.4416 is an estimate of the dispersion parameter in the negative
binomial distribution. A t test for the hypothesis H0 W ˛ D 0 is provided. It is highly significant, indicating
overdispersion (p < 0:0001).

The null hypothesis H0 W ˛ D 0 can be also tested against the alternative ˛ > 0 by using the likelihood ratio
test, as described by Cameron and Trivedi (1998, pp. 45, 77–78). The likelihood ratio test statistic is equal to
�2.LP � LNB/ D �2.�1651C 1561/ D 180, where LP and LNB are the log likelihoods for the Poisson
and negative binomial models, respectively. The likelihood ratio test is highly significant, providing strong
evidence of overdispersion.

Syntax: COUNTREG Procedure
The following statements are available in the COUNTREG procedure:

PROC COUNTREG < options > ;
BAYES < options > ;
BOUNDS bound1 < , bound2 . . . > ;
BY variables ;
CLASS variables ;
DISPMODEL dependent variable � < dispersion-related regressors > ;
FREQ variable ;
INIT initvalue1 < , initvalue2 . . . > ;
MODEL dependent = < regressors >< / options > ;
NLOPTIONS < options > ;
OUTPUT < OUT=SAS-data-set >< output-options > ;
PERFORMANCE options ;
PRIOR variables Ï distributions ;
RESTRICT restriction1 < , restriction2 . . . > ;
SCORE < OUT=SAS-data-set > < output-options > ;
SHOW options ;
STORE < OUT= >item-store-name ;
WEIGHT variable < /options > ;
ZEROMODEL dependent variable � < zero-inflated regressors > < /options > ;
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You can specify only one MODEL statement. The CLASS statement must precede the MODEL statement. If
you include the ZEROMODEL statement, it must appear after the MODEL statement. If you specify more
than one FREQ or WEIGHT statement, the variable that is specified in the first instance is used.

Functional Summary
Table 11.1 summarizes statements and that you can use in the COUNTREG procedure.

Table 11.1 PROC COUNTREG Functional Summary

Description Statement Option

Data Set Options
Specifies the input data set COUNTREG DATA=
Specifies the identification variable for panel data
analysis

COUNTREG GROUPID=

Writes parameter estimates to an output data set COUNTREG OUTEST=
Requests that the procedure produce graphics via
the Output Delivery System

COUNTREG PLOTS=

Writes estimates to an output data set OUTPUT OUT=

Declaring the Role of Variables
Specifies BY-group processing BY
Specifies classification variables CLASS
Specifies a frequency variable FREQ
Specifies a weight variable WEIGHT

Item Store Control Options
Displays the contents of the item store SHOW
Stores the model in an item store STORE
Restores the model from the item store COUNTREG RESTORE=

Printing Control Options
Prints the correlation matrix of the estimates MODEL CORRB
Prints the covariance matrix of the estimates MODEL COVB
Prints a summary iteration listing MODEL ITPRINT
Suppresses the normal printed output COUNTREG NOPRINT
Requests all printing options MODEL PRINTALL

Option Process Control Options
Specifies maximum number of iterations allowed MODEL MAXITER=
Selects the iterative minimization method to use COUNTREG METHOD=
Sets boundary restrictions on parameters BOUNDS
Sets initial values for parameters INIT
Sets linear restrictions on parameters RESTRICT
Sets the number of threads to use PERFORMANCE
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Description Statement Option

Specifies the optimization options NLOPTIONS See Chapter 6, “Nonlin-
ear Optimization Meth-
ods”

Model Estimation Options
Specifies the dispersion variables DISPMODEL
Specifies the type of model COUNTREG DIST=
Specifies the type of covariance matrix MODEL COVEST=
Specifies the type of error components model for
panel data

MODEL ERRORCOMP=

Suppresses the intercept parameter MODEL NOINT
Specifies the offset variable MODEL OFFSET=
Specifies the parameterization for Conway-Maxwell-
Poisson (CMP) model

MODEL PARAMETER=

Specifies the zero-inflated offset variable ZEROMODEL OFFSET=
Specifies the zero-inflated link function ZEROMODEL LINK=
Specifies variable selection MODEL SELECT=( )

Bayesian MCMC Options
Controls the aggregation of multiple posterior chains BAYES AGGREGATION=
Automates the initialization of the MCMC algorithm BAYES AUTOMCMC()
Specifies the initial values of the MCMC algorithm INIT
Specifies the maximum number of tuning phases BAYES MAXTUNE=
Specifies the minimum number of tuning phases BAYES MINTUNE=
Specifies the number of burn-in iterations BAYES NBI=
Specifies the number of iterations during the sam-
pling phase

BAYES NMC=

Specifies the number of threads to use during the
sampling phase

BAYES NTRDS=

Specifies the number of iterations during the tuning
phase

BAYES NTU=

Controls options for constructing the initial proposal
covariance matrix

BAYES PROPCOV=

Specifies the sampling scheme BAYES SAMPLING=
Specifies the random number generator seed BAYES SEED=
Prints the time required for the MCMC sampling BAYES SIMTIME
Controls the thinning of the Markov chain BAYES THIN=

Bayesian Summary Statistics and Convergence Diagnostics
Displays convergence diagnostics BAYES DIAGNOSTICS=
Displays summary statistics of the posterior samples BAYES STATISTICS=

Bayesian Prior and Posterior Samples
Specifies a SAS data set for the posterior samples BAYES OUTPOST=
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Description Statement Option

Bayesian Analysis
Specifies normal prior distribution PRIOR NORMAL(MEAN=,

VAR=)
Specifies gamma prior distribution PRIOR GAMMA(SHAPE=,

SCALE=)
Specifies inverse gamma prior distribution PRIOR IGAMMA(SHAPE=,

SCALE=)
Specifies uniform prior distribution PRIOR UNIFORM(MIN=,

MAX=)
Specifies beta prior distribution PRIOR BETA(SHAPE1=,

SHAPE2=,
MIN=, MAX=)

Specifies t prior distribution PRIOR T(LOCATION=, DF=)

Output Control Options
Includes covariances in the OUTEST= data set COUNTREG COVOUT
Outputs the estimates of dispersion for the CMP
model

OUTPUT DISPERSION

Outputs the estimates of GDelta D g0iı for CMP
model

OUTPUT GDELTA=

Outputs the estimates of � for the CMP model OUTPUT LAMBDA=
Outputs the estimates of � for the CMP model OUTPUT NU=
Outputs the estimates of � for the CMP model OUTPUT MU=
Outputs the estimates of mode for the CMP model OUTPUT MODE=
Outputs the probability that the response variable
will take the current value

OUTPUT PROB=

Outputs probabilities for particular response values OUTPUT PROBCOUNT( )
Outputs expected value of response variable OUTPUT PRED=
Outputs the estimates of variance for the CMP model OUTPUT VARIANCE=
Outputs estimates of XBetaD x0iˇ OUTPUT XBETA=
Outputs estimates of ZGammaD z0i OUTPUT ZGAMMA=
Outputs the probability that the response variable
will take a zero value as a result of the zero-
generating process

OUTPUT PROBZERO=

Specifies the output data set for scoring SCORE OUT=
Outputs the estimates of dispersion for the CMP
model

SCORE DISPERSION

Outputs the estimates of GDeltaD g0iı for the CMP
model

SCORE GDELTA=

Outputs the estimates of � for the CMP model SCORE LAMBDA=
Outputs the estimates of � for the CMP model SCORE NU=
Outputs the estimates of � for the CMP model SCORE MU=
Outputs the estimates of mode for the CMP model SCORE MODE=
Outputs the probability that the response variable
will take the current value

SCORE PROB=

Outputs probabilities for particular response values SCORE PROBCOUNT( )
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Description Statement Option

Outputs expected value of response variable SCORE PRED=
Outputs the estimates of variance for the CMP model SCORE VARIANCE=
Outputs estimates of XBetaD x0iˇ SCORE XBETA=
Outputs estimates of ZGammaD z0i SCORE ZGAMMA=
Outputs the probability that the response variable
will take a zero value as a result of the zero-
generating process

SCORE PROBZERO=

PROC COUNTREG Statement
PROC COUNTREG < options > ;

You can specify the following options in the PROC COUNTREG statement.

Data Set Options

DATA=SAS-data-set
specifies the input SAS data set. If the DATA= option is not specified, PROC COUNTREG uses the
most recently created SAS data set.

GROUPID=variable
specifies an identification variable when a panel data model is estimated. The identification variable is
used as a cross-sectional ID variable.

Item Store Control Options (Experimental)

RESTORE=item-store-name
specifies the source item store for processing. An item-store-name consists of a one- or two-level
name, as with SAS data sets. As with data sets, an item store is associated by default with the Work
library, and any item stores that are created in this library are deleted when the SAS session concludes.

Output Data Set Options

OUTEST=SAS-data-set
writes the parameter estimates to the specified output data set.

COVOUT
writes the covariance matrix for the parameter estimates to the OUTEST= data set. This option is valid
only if the OUTEST= option is specified.
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Printing Options

CORRB
prints the correlation matrix of the parameter estimates. This option can also be specified in the
MODEL statement.

COVB
prints the covariance matrix of the parameter estimates. This option can also be specified in the
MODEL statement.

NOPRINT
suppresses all printed output.

Estimation Control Options

COVEST=value
specifies the type of covariance matrix of the parameter estimates. The quasi-maximum-likelihood
estimates are computed using COVEST=QML. By default, COVEST=HESSIAN. The supported
covariance types are as follows:

HESSIAN specifies the covariance from the Hessian matrix.

OP specifies the covariance from the outer product matrix.

QML specifies the covariance from the outer product and Hessian matrices.

Plot Control Options

PLOTS<(global-plot-options)> < = plot-request | (plot-requests)>
requests that the COUNTREG procedure produce statistical graphics via the Output Delivery System,
provided that ODS GRAPHICS has been enabled. For general information about ODS Graphics, see
Chapter 21, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide). The global-plot-options
apply to all relevant plots that are generated by the COUNTREG procedure.

You can specify the following global-plot-options:

COUNTS(value1 <value2...>)
supplies the plots PREDPROB and PREDPROFILE with particular values of the response variable.
Each value should be a nonnegative integer. Nonintegers are rounded to the nearest integer. The value
can also be a list of the form X TO Y BY Z. For example, COUNTS(0 1 2 TO 10 BY 2 15) specifies
plotting for counts 0, 1, 2, 4, 6, 8, 10, and 15.

ONLY
suppresses the default plots. Only the plots that are specifically requested are produced.

UNPACKPANEL

UNPACK
displays each graph separately. (By default, some graphs can appear together in a single panel.)

You can specify the following plot-requests:
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ALL
requests that all plots appropriate for the particular analysis be produced.

AUTOCORR< (LAGS=n) >
displays the autocorrelation function plots of the parameters. This plot-request is available only for
Bayesian analysis. The optional LAGS= suboption specifies the number (up to lag n) of autocorrelations
to be plotted in the AUTOCORR plot. If this suboption is not specified, autocorrelations are plotted up
to lag 50.

BAYESDIAG
displays the TRACE, AUTOCORR, and DENSITY plots. This plot-request is available only for
Bayesian analysis.

BAYESSUM
displays the posterior distribution, prior distribution, and maximum likelihood estimates. This plot-
request is available only for Bayesian analysis.

DENSITY< (FRINGE) >
displays the kernel density plots of the parameters. This plot-request is available only for Bayesian
analysis. If you specify the FRINGE suboption, a fringe plot is created on the X axis of the kernel
density plot.

DISPERSION
produces the overdispersion diagnostic plot.

NONE
suppresses all plots.

PREDPROB
produces the overall predictive probabilities of the specified count levels. You must also specify
COUNTS in global-plot-options.

PREDPROFILE
produces the predictive probability profiles of specified count levels against model regressors. The
regressor on the X axis is varied, whereas all other regressors are fixed at the mean of the observed
data set.

PROFILELIKE
produces the profile likelihood functions of the model parameters. The model parameter on the X axis
is varied, whereas all other parameters are fixed at their estimated maximum likelihood estimates.

TRACE< (SMOOTH) >
displays the trace plots of the parameters. This plot-request is available only for Bayesian analysis.
The SMOOTH suboption displays a fitted penalized B-spline curve for each trace plot.

ZEROPROFILE | ZPPRO
produces the probability profiles of zero-inflation process selection and zero count prediction against
model regressors. The regressor on the X axis is varied, whereas all other regressors are fixed at the
mean of the observed data set.

Optimization Process Control Options

PROC COUNTREG uses the nonlinear optimization (NLO) subsystem to perform nonlinear optimization
tasks. All the NLO options are available in the NLOPTIONS statement. For more information, see the
“NLOPTIONS Statement” on page 579. In addition, you can specify the following option in the PROC
COUNTREG statement:
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METHOD=value

specifies the iterative minimization method to use. By default, METHOD=NRA.

CONGRA specifies the conjugate-gradient method.

DBLDOG specifies the double-dogleg method.

NMSIMP specifies Nelder-Mead simplex method.

NRA specifies the Newton-Raphson method.

NRRIDG specifies the Newton-Raphson ridge method.

QN specifies the quasi-Newton method.

TR specifies the trust region method.

BAYES Statement (Experimental)
BAYES < options > ;

The BAYES statement controls the Metropolis sampling scheme that is used to obtain samples from the
posterior distribution of the underlying model and data. You can specify the following options.

AGGREGATION=WEIGHTED | NOWEIGHTED
specifies how multiple posterior samples should be aggregated.

WEIGHTED implements a weighted resampling scheme for the aggregation of multiple posterior
chains. You can use this option when the posterior distribution is characterized by several
very distinct posterior modes.

NOWEIGHTED aggregates multiple posterior chains without any adjustment. You can use this option
when the posterior distribution is characterized by one or few relatively close posterior
modes.

By default, AGGREGATION=NOWEIGHTED. For more information, see the section “Aggregation
of Multiple Chains” on page 622.

AUTOMCMC< =(automcmc-options) >
specifies an algorithm for the automated initialization of the MCMC sampling algorithm. For more
information, see the section “Automated Initialization of MCMC” on page 623.

ACCURACY=(accuracy-options)
customizes the behavior of the AUTOMCMC algorithm when you are searching for an accurate
representation of the posterior distribution. By default, it implements the TARGETSTATS option.
You can specify the following accuracy-options:

ATTEMPTS=number
specifies the maximum number of attempts that are required in order to obtain accurate
samples from the posterior distribution. By default, ATTEMPTS=10.
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TARGETESS=number
requests that the accuracy search be based on the effective sample size (ESS) analysis and
specifies the minimum number of effective samples.

TARGETSTATS<=(targetstats-option)>
requests that the accuracy search be based on the analysis of the posterior mean and a
posterior quantile of interest. You can customize the behavior of the analysis of the posterior
mean by adjusting the HEIDELBERGER suboptions. You can customize the behavior of
the analysis of the posterior quantile by adjusting the RAFTERY suboptions. If you specify
TARGETSTATS, you can also specify how the Raftery-Lewis test should be interpreted by
using the following option:

RLLIMITS=(LB=number UB=number )
specifies a region where the search for the optimal sample size depends directly on the
Raftery-Lewis test. By default, RLLIMITS=(LB=10000 UB=300000).

TOL=value
specifies the proportion of parameters that are required to be accurate. By default, TOL=0.95.

MAXNMC=number
specifies the maximum number of posterior samples that the AUTOMCMC option allows. By
default, MAXNMC=700000.

RANDINIT< =(randinit-options) >
specifies random starting points for the MCMC algorithm. The starting points can be sampled
around the maximum likelihood estimate and around the prior mean. You can specify the
following randinit-options:

MULTIPLIER=(value)
specifies the radius of the area where the starting points are sampled. For the starting points
that are sampled around the maximum likelihood estimate, the radius equals the standard
deviation of the maximum likelihood estimate multiplied by the multiplier value. For the
starting points that are sampled around the prior mean, the radius equals the standard devia-
tion of the prior distribution multiplied by the multiplier value. By default, MULTIPLIER=2.

PROPORTION=(value)
specifies the proportion of starting points that are sampled around the maximum likelihood
estimate and around the prior mean. By default, PROPORTION=0, which implies that all
the initial points are sampled around the maximum likelihood estimate. If you choose to
sample starting points around the prior mean, the convergence of the MCMC algorithm
could be very slow.

STATIONARITY=(stationarity-options)
customizes the behavior of the AUTOMCMC algorithm when you are trying to sample from the
posterior distribution. You can specify the following stationarity-options:

ATTEMPTS=number
specifies the maximum number of attempts that are required in order to obtain stationary
samples from the posterior distribution. By default, ATTEMPTS=10.
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TOL=value
specifies the proportion of parameters whose samples must be stationary. By default,
TOL=0.95.

DIAGNOSTICS=ALL | NONE | (keyword-list)
DIAG=ALL | NONE | (keyword-list)

controls which diagnostics are produced. All the following diagnostics are produced by using DIAG-
NOSTICS=ALL. If you do not want any of these diagnostics, specify DIAGNOSTICS=NONE. If you
want some but not all of the diagnostics, or if you want to change certain settings of these diagnostics,
specify a subset of the following keywords. By default, DIAGNOSTICS=NONE.

AUTOCORR< (LAGS=numeric-list) >
computes the autocorrelations at lags that are specified in the numeric-list . Elements in the
numeric-list are truncated to integers, and repeated values are removed. If you do not specify the
LAGS= option, autocorrelations of lags 1, 5, and 10 are computed.

ESS
computes Carlin’s estimate of the effective sample size, the correlation time, and the efficiency of
the chain for each parameter.

GEWEKE< (geweke-options) >
computes the Geweke spectral density diagnostics, which are essentially a two-sample t test
between the first f1 portion and the last f2 portion of the chain. The default is f1 D 0:1 and
f2 D 0:5, but you can choose other fractions by using the following geweke-options:

FRAC1=value
specifies the fraction f1 for the first window.

FRAC2=value
specifies the fraction f2 for the second window.

HEIDELBERGER< (heidel-options) >
computes the Heidelberger-Welch diagnostic for each variable, which consists of a stationarity
test of the null hypothesis that the sample values form a stationary process. If the stationarity test
is not rejected, a halfwidth test is then performed. Optionally, you can specify one or more of the
following heidel-options:

SALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the stationarity test. By default, SALPHA=0.05.

HALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the halfwidth test. By default, HALPHA=0.1.

EPS=value
specifies a positive number � such that if the halfwidth is less than � times the sample mean
of the retained iterates, the halfwidth test is passed. By default, EPS=0.05.

MCSE
MCERROR

computes the Monte Carlo standard error for each parameter. The Monte Carlo standard error,
which measures the simulation accuracy, is the standard error of the posterior mean estimate and
is calculated as the posterior standard deviation divided by the square root of the effective sample
size.
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RAFTERY< (raftery-options) >
computes the Raftery-Lewis diagnostics, which evaluate the accuracy of the estimated quantile
( O�Q for a given Q 2 .0; 1/) of a chain. O�Q can achieve any degree of accuracy when the chain
is allowed to run for a long time. The computation is stopped when the estimated probability
OPQ D Pr.� � O�Q/ reaches within˙R of the value Q with probability S; that is, Pr.Q �R �
OPQ � Q C R/ D S . The following raftery-options enable you to specify Q;R; S , and a

precision level � for the test:

QUANTILE | Q=value
specifies the order (a value between 0 and 1) of the quantile of interest. By default, Q=0.025.

ACCURACY | R=value
specifies a small positive number as the margin of error for measuring the accuracy of
estimation of the quantile. By default, R=0.005.

PROBABILITY | S=value
specifies the probability of attaining the accuracy of the estimation of the quantile. By
default, S=0.95.

EPSILON | EPS=value
specifies the tolerance level (a small positive number) for the stationary test. By default,
EPS=0.001.

MAXTUNE=number
specifies the maximum number of tuning phases. By default, MAXTUNE=24.

MINTUNE=number
specifies the minimum number of tuning phases. By default, MINTUNE=2.

NBI=number
specifies the number of burn-in iterations before the chains are saved. By default, NBI=1000.

NMC=number
specifies the number of iterations after the burn-in. By default, NMC=1000.

NTRDS=number

THREADS=number
specifies the number of threads to be used. The number of threads cannot exceed the number of
computer cores available. Each core samples the number of iterations that is specified by the NMC=
option. By default, NTRDS=1.

NTU=number
specifies the number of samples for each tuning phase. By default, NTU=500.

OUTPOST=SAS-data-set
names the SAS data set to contain the posterior samples. Alternatively, you can create the output data
set by specifying an ODS OUTPUT statement as follows:

ODS OUTPUT POSTERIORSAMPLE=< SAS-data-set > ;
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PROPCOV=value
specifies the method to use in constructing the initial covariance matrix for the Metropolis-
Hastings algorithm. The quasi-Newton (PROPCOV=QUANEW) and Nelder-Mead simplex (PROP-
COV=NMSIMP) methods find numerically approximated covariance matrices at the optimum of
the posterior density function with respect to all continuous parameters. The tuning phase starts at
the optimized values; in some problems, this can greatly increase convergence performance. If the
approximated covariance matrix is not positive definite, then an identity matrix is used instead.

You can specify the following values:

CONGRA
performs a conjugate-gradient optimization.

DBLDOG
performs a version of double-dogleg optimization.

NEWRAP
performs a Newton-Raphson optimization that combines a line-search algorithm with ridging.

NMSIMP
performs a Nelder-Mead simplex optimization.

NRRIDG
performs a Newton-Raphson optimization with ridging.

QUANEW
performs a quasi-Newton optimization.

TRUREG
performs a trust-region optimization.

SAMPLING=MULTIMETROPOLIS | UNIMETROPOLIS
specifies how to sample from the posterior distribution.

MULTIMETROPOLIS implements a Metropolis sampling scheme in a single block that contains all
the parameters of the model.

UNIMETROPOLIS implements a Metropolis sampling scheme in multiple blocks, one for each
parameter of the model.

By default, SAMPLING=MULTIMETROPOLIS.

SEED=number
specifies an integer seed in the range 1 to 231 � 1 for the random number generator in the simulation.
Specifying a seed enables you to reproduce identical Markov chains for the same specification. If you
do not specify the SEED= option, or if you specify SEED=0, a random seed is derived from the time
of day, which is read from the computer’s clock.

SIMTIME
prints the time required for the MCMC sampling.
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STATISTICS< (global-options) >=ALL | NONE | keyword | (keyword-list)

STATS< (global-options) >=ALL | NONE | keyword | (keyword-list)
controls the number of posterior statistics that are produced. Specifying STATISTICS=ALL is
equivalent to specifying STATISTICS=(CORR COV INTERVAL PRIOR SUMMARY). If you do not
want any posterior statistics, specify STATISTICS=NONE. By default, STATISTICS=(SUMMARY
INTERVAL).

You can specify the following global-options:

ALPHA=numeric-list
controls the probabilities of the credible intervals. The values in the numeric-list must be between
0 and 1. Each ALPHA= value produces a pair of 100(1–ALPHA)% equal-tail and HPD intervals
for each parameter. By default, ALPHA=0.05, which yields the 95% credible intervals for each
parameter.

PERCENT=numeric-list
requests the percentile points of the posterior samples. The values in the numeric-list must be
between 0 and 100. By default, PERCENT=25, 50, 75, which yields the 25th, 50th, and 75th
percentile points, respectively, for each parameter.

You can specify the following keywords:

CORR
produces the posterior correlation matrix.

COV
produces the posterior covariance matrix.

INTERVAL
produces equal-tail credible intervals and HPD intervals. The default is to produce the 95%
equal-tail credible intervals and 95% HPD intervals, but you can use the ALPHA= global-option
to request intervals of any probabilities.

NONE
suppresses printing of all summary statistics.

PRIOR
produces a summary table of the prior distributions that are used in the Bayesian analysis.

SUMMARY
produces the means, standard deviations, and percentile points (25th, 50th, and 75th) of the
posterior samples. You can use the global PERCENT= global-option to request specific percentile
points.

THIN=number

THINNING=number
controls the thinning of the Markov chain. Only one in every k samples is used when THIN=k, and if
NBI=n0 and NMC=n, the number of samples that are kept is�

n0 C n

k

�
�

�
n0

k

�
where bac represents the integer part of the number a. By default, THIN=1.
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BOUNDS Statement
BOUNDS bound1 < , bound2 . . . > ;

The BOUNDS statement imposes simple boundary constraints on the parameter estimates. BOUNDS
statement constraints refer to the parameters that are estimated by the COUNTREG procedure. You can
specify any number of BOUNDS statements as follows.

Each bound is composed of parameter names, constants, and inequality operators as follows:

item operator item < operator item operator item . . . >

Each item is a constant, a parameter name, or a list of parameter names. Each operator is <, >, <=, or >=.

You can use both the BOUNDS statement and the RESTRICT statement to impose boundary constraints;
however, the BOUNDS statement provides a simpler syntax for specifying these kinds of constraints. See
also the section “RESTRICT Statement” on page 582.

The following BOUNDS statement constrains the estimates of the parameter for z to be negative, the
parameters for x1 through x10 to be between zero and one, and the parameter for x1 in the zero-inflation
model to be less than one:

bounds z < 0,
0 < x1-x10 < 1,
Inf_x1 < 1;

The BOUNDS statement is not supported if a BAYES statement is also specified. In Bayesian analysis, the
restrictions on parameters are usually introduced through the prior distribution.

BY Statement
BY variables ;

A BY statement can be used with PROC COUNTREG to obtain separate analyses on observations in groups
defined by the BY variables. When a BY statement appears, the input data set should be sorted in the order
of the BY variables.

CLASS Statement
CLASS variable < options > . . . < variable < options > > < /global-options > ;

The CLASS statement names the classification variables that are used to group (classify) data in the analysis.
Classification variables can be either character or numeric.

Class levels are determined from the formatted values of the CLASS variables. Thus, you can use formats
to group values into levels. See the discussion of the FORMAT procedure in the SAS Language Reference:
Dictionary for details. The CLASS statement must precede the MODEL statement.

Most options can be specified either as individual variable options or as global-options. You can specify
options for each variable by enclosing the options in parentheses after the variable name. You can also specify



574 F Chapter 11: The COUNTREG Procedure

global-options for the CLASS statement by placing them after a slash (/). Global-options are applied to all
the variables that are specified in the CLASS statement. If you specify more than one CLASS statement, the
global-options specified in any one CLASS statement apply to all CLASS statements. However, individual
CLASS variable options override the global-options. You can specify the following values for either an
option or a global-option:

MISSING
treats missing values (., ._, .A, . . . , .Z for numeric variables and blanks for character variables) as valid
values for the CLASS variable.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of classification variables. This ordering determines which
parameters in the model correspond to each level in the data, so the ORDER= option can be useful when
you use the CONTRAST statement. By default, ORDER=FORMATTED. For ORDER=FORMATTED
and ORDER=INTERNAL, the sort order is machine-dependent. When ORDER=FORMATTED is in
effect for numeric variables for which you have supplied no explicit format, the levels are ordered by
their internal values.

The following table shows how PROC COUNTREG interprets values of the ORDER= option.

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set
FORMATTED External formatted values, except for numeric

variables with no explicit format, which are sorted
by their unformatted (internal) values

FREQ Descending frequency count; levels with more
observations come earlier in the order

INTERNAL Unformatted value

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

PARAM=keyword
specifies the parameterization method for the classification variable or variables. You can specify any
of the keywords shown in the following table; by default, PARAM=GLM.

Design matrix columns are created from CLASS variables according to the corresponding coding
schemes:

Value of PARAM= Coding

EFFECT Effect coding

GLM Less-than-full-rank reference cell coding (this
keyword can be used only in a global option)

REFERENCE
REF

Reference cell coding

All parameterizations are full rank, except for the GLM parameterization. The REF= option in the
CLASS statement determines the reference level for effect and reference coding and for their orthogonal
parameterizations. It also indirectly determines the reference level for a singular GLM parameterization
through the order of levels.
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REF=’level’ | keyword
specifies the reference level for PARAM=EFFECT, PARAM=REFERENCE, and their orthogonaliza-
tions. When PARAM=GLM, the REF= option specifies a level of the classification variable to be put at
the end of the list of levels. This level thus corresponds to the reference level in the usual interpretation
of the linear estimates with a singular parameterization.

For an individual variable REF= option (but not for a global REF= option), you can specify the level
of the variable to use as the reference level. Specify the formatted value of the variable if a format is
assigned. For a global or individual variable REF= option, you can use one of the following keywords.
By default, REF=LAST.

FIRST designates the first-ordered level as reference.

LAST designates the last-ordered level as reference.

DISPMODEL Statement
DISPMODEL dependent-variable � < dispersion-related regressors > ;

The DISPMODEL statement names the variables that are used to model dispersion. This statement is
ignored unless you specify DIST=CMPOISSON in the MODEL statement. The dependent-variable in the
DISPMODEL statement must be the same as the dependent-variable in the MODEL statement.

The dependent-variables that appear in the DISPMODEL statement are directly used to model dispersion.
Each of these q variables has a parameter to be estimated in the regression. For example, let g0i be the ith
observation’s 1 � .q C 1/ vector of values of the q dispersion explanatory variables (q0 is set to 1 for the
intercept term). Then the dispersion is a function of g0iı, where ı is the .q C 1/ � 1 vector of parameters
to be estimated, the dispersion model intercept is ı0, and the coefficients for the q dispersion covariates are
ı1; : : : ; ıq . If you specify DISP=CMPOISSON in the MODEL statement but do not include a DISPMODEL
statement, then only the intercept term ı0 is estimated. The “Parameter Estimates” table in the displayed
output shows the estimates for the dispersion intercept and dispersion explanatory variables; they are labeled
with the prefix “Disp_”. For example, the dispersion intercept is labeled “Disp_Intercept”. If you specify Age
(a variable in your data set) as a dispersion explanatory variable, then the “Parameter Estimates” table labels
the corresponding parameter estimate “Disp_Age”. The following statements fit a Conway-Maxwell-Poisson
model by using the covariates SEX, ILLNESS, and INCOME and by using AGE as a dispersion covariate:

proc countreg data=docvisit;
model doctorvisits=sex illness income / dist=cmpoisson;
dispmodel doctorvisits ~ age;

run;

FREQ Statement
FREQ variable ;

The FREQ statement specifies a variable whose values represent the frequency of occurrence of each
observation. PROC COUNTREG treats each observation as if it appears n times, where n is the value of the
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FREQ variable for the observation. If the frequency value is not an integer, it is truncated to an integer; if it
is less than 1 or missing, the observation is not used in the model fitting. When the FREQ statement is not
specified, each observation is assigned a frequency of 1. If you specify more than one FREQ statement, then
the first statement is used.

INIT Statement
INIT initvalue1 < , initvalue2 . . . > ;

The INIT statement sets initial values for parameters in the optimization.

Each initvalue is written as a parameter or parameter list, followed by an optional equal sign (=), followed by
a number:

parameter < = > number

For continuous regressors, the names of the parameters are the same as the corresponding variables. For a
regressor that is a CLASS variable, the parameter name combines the corresponding CLASS variable name
with the variable level. For interaction and nested regressors, the parameter names combine the names of
each regressor. The names of the parameters can be seen in the OUTEST= data set. By default, initial values
are determined by OLS regression. Initial values can be displayed with the ITPRINT option in the PROC
statement.

If you also specify the BAYES statement, the INIT statement also initializes the Markov chain Monte Carlo
(MCMC) algorithm. In particular, the INIT statement does one of the following:

• initializes the tuning phase (this also includes the PROPCOV= option)

• initializes the sampling phase, if there is no tuning phase

MODEL Statement
MODEL dependent-variable = <regressors> </ options> ;

The MODEL statement specifies the dependent-variable and independent covariates (regressors) for the
regression model. If you specify no regressors, PROC COUNTREG fits a model that contains only an
intercept. The dependent count variable should take on only nonnegative integer values in the input data set.
PROC COUNTREG rounds any positive noninteger count values to the nearest integer. PROC COUNTREG
ignores any observations that have a negative count.

Only one MODEL statement can be specified. You can specify following options in the MODEL statement
after a slash (/).
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DIST=value
specifies a type of model to be analyzed. If you specify this option in both the MODEL statement
and the PROC COUNTREG statement, then only the value in the MODEL statement is used. The
following model types are supported:

POISSON | P specifies a Poisson regression model.

CMPOISSON | C | CMP specifies a Conway-Maxwell-Poisson regression model.

NEGBIN(P=1) specifies a negative binomial regression model with a linear variance function.

NEGBIN(P=2) | NEGBIN specifies a negative binomial regression model with a quadratic variance
function.

ZIPOISSON | ZIP specifies a zero-inflated Poisson regression. The ZEROMODEL statement must
be specified when this model type is specified.

ZICMPOISSON | ZICMP specifies a zero-inflated Conway-Maxwell-Poisson regression. The ZE-
ROMODEL statement must be specified when this model type is specified.

ZINEGBIN | ZINB specifies a zero-inflated negative binomial regression. The ZEROMODEL state-
ment must be specified when this model type is specified.

ERRORCOMP=value
specifies a type of conditional panel model to be analyzed. The following model types are supported:

FIXED specifies a fixed-effect error component regression model.

RANDOM specifies a random-effect error component regression model.

NOINT
suppresses the intercept parameter.

OFFSET=variable
specifies a variable in the input data set to be used as an offset variable. The offset variable appears as
a covariate in the model with its parameter restricted to 1. The offset variable cannot be the response
variable, the zero-inflation offset variable (if any), or one of the explanatory variables. The “Model
Fit Summary” table gives the name of the data set variable used as the offset variable; it is labeled as
“Offset.”

PARAMETER=MU | LAMBDA
specifies the parameterization for the Conway-Maxwell-Poisson model. The following parameteriza-
tions are supported:

LAMBDA estimates the original Conway-Maxwell-Poisson model (Shmueli et al. (2005))

MU reparameterizes � as documented by Guikema and Coffelt (2008), where � D �1=�

and the integral part of � represents the mode, which can be considered a measure
of central tendency (mean).

By default, PARAMETER=MU.
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SELECT=INFO< (options) >

SELECTVAR=INFO< (options) >

SELECT=PEN< (options) >

SELECTVAR=PEN< (options) >

specifies variable selection.

SELECT=INFO requests that the variable selection method be based on an information criterion. For
more information, see the section “Variable Selection Using an Information Criterion” on page 605.
You can specify the following options:

DIRECTION=FORWARD | BACKWARD
specifies the search algorithm to use in the variable selection method. By default, DIREC-
TION=FORWARD.

CRITER=AIC | SBC
specifies the information criteria to use in the variable selection. By default, CRITER=SBC.

MAXSTEPS=value
specifies the maximum number of steps to allow in the search algorithm. The default is infinite;
that is, the algorithm does not stop until the stopping criterion is satisfied.

LSTOP=value
specifies the stopping criterion. The value represents the percentage of decrease or increase in
the AIC or SBC that is required for the algorithm to proceed; it must be a positive number less
than 1. By default, LSTOP=0.

RETAIN(variable1 <variable2...>)
specifies that the variables named within parentheses be retained during the variable selection
process.

SELECT=PEN requests the penalized likelihood variable selection method. For more information,
see the section “Variable Selection Using Penalized Likelihood” on page 606. You can specify the
following options:

LLASTEPS=value
specifies the maximum number of iterations in the algorithm of local linear approximations. By
default, LLASTEPS=5.

GCVLENGTH=value
specifies the number of different values to use for the generalized cross validation (GCV) tuning
parameter. The value corresponds to � in the computations that are described in the section
“Variable Selection Using Penalized Likelihood” on page 606. By default, GCVLENGTH=20.

GCV
specifies the generalized cross-validation (GCV) approach. For more information, see the section
“The GCV Approach” on page 608.
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GCV1
specifies the GCV1 approach. For more information, see the section “The GCV1 Approach” on
page 609.

When SELECT=PEN, GCV1 is the default.

Printing Options

CORRB
prints the correlation matrix of the parameter estimates. The CORRB option can also be specified in
the PROC COUNTREG statement.

COVB
prints the covariance matrix of the parameter estimates. The COVB can also be specified in the PROC
COUNTREG statement.

ITPRINT
prints the objective function and parameter estimates at each iteration. The objective function is the
negative log-likelihood function. The ITPRINT option can also be specified in the PROC COUNTREG
statement.

PRINTALL
requests all printing options. The PRINTALL option can also be specified in the PROC COUNTREG
statement.

NLOPTIONS Statement
NLOPTIONS < options > ;

The NLOPTIONS statement provides the options to control the nonlinear optimization (NLO) subsystem
to perform nonlinear optimization tasks. For a list of all the options of the NLOPTIONS statement, see
Chapter 6, “Nonlinear Optimization Methods.”

OUTPUT Statement
OUTPUT < OUT=SAS-data-set > < output-options > ;

The OUTPUT statement creates a new SAS data set that contains all the variables in the input data set
and, optionally, the estimates of x0iˇ, the expected value of the response variable, and the probability of the
response variable taking on the current value or other values that you specify. In a zero-inflated model, you
can additionally request that the output data set contain the estimates of z0i and the probability that the
response is zero as a result of the zero-generating process. For the Conway-Maxwell-Poisson model, the
estimates of g0iı, �, �, �, mode, variance, and dispersion are also available. Except for the probability of the
current value, these statistics can be computed for all observations in which the regressors are not missing,
even if the response is missing. By adding observations that have missing response values to the input data
set, you can compute these statistics for new observations or for settings of the regressors that are not present
in the data without affecting the model fit.
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You can specify only one OUTPUT statement. You can specify the following output-options:

OUT=SAS-data-set
names the output data set.

XBETA=name
names the variable that contains estimates of x0iˇ.

PRED=name

MEAN=name
assigns a name to the variable that contains the predicted value of the response variable.

PROB=name
names the variable that contains the probability of the response variable taking the current value,
Pr(Y D yi ).

PROBCOUNT(value1 <value2...>)
outputs the probability that the response variable will take particular values. Each value should be
a nonnegative integer. Nonintegers are rounded to the nearest integer. The value can also be a list
of the form X TO Y BY Z. For example, PROBCOUNT(0 1 2 TO 10 BY 2 15) requests predicted
probabilities for counts 0, 1, 2, 4, 5, 6, 8, 10, and 15. This option is not available for the fixed-effects
and random-effects panel models.

ZGAMMA=name
names the variable that contains estimates of z0i .

PROBZERO=name
names the variable that contains the value of 'i , the probability of the response variable taking on
the value of zero as a result of the zero-generating process. It is written to the output file only if the
model is zero-inflated. This is not the overall probability of a zero response; that is provided by the
PROBCOUNT(0) option.

GDELTA=name
assigns a name to the variable that contains estimates of g0iı for the Conway-Maxwell-Poisson
distribution.

LAMBDA=name
assigns a name to the variable that contains the estimate of � for the Conway-Maxwell-Poisson
distribution.

NU=name
assigns a name to the variable that contains the estimate of � for the Conway-Maxwell-Poisson
distribution.

MU=name
assigns a name to the variable that contains the estimate of � for the Conway-Maxwell-Poisson
distribution.

MODE=name
assigns a name to the variable that contains the integral part of � (mode) for the Conway-Maxwell-
Poisson distribution.
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VARIANCE=name
assigns a name to the variable that contains the estimate of variance for the Conway-Maxwell-Poisson
distribution.

DISPERSION=name
assigns a name to the variable that contains the value of dispersion for the Conway-Maxwell-Poisson
distribution.

PERFORMANCE Statement
PERFORMANCE < performance-options > ;

The PERFORMANCE statement controls the number of threads that are used in the optimization phase. You
can also specify that multithreading not be used in the optimization phase by using the NOTHREADS option.

You can specify only one PERFORMANCE statement. The PERFORMANCE statement supports the
following performance-options:

NTHREADS=number
specifies the number of threads to be used during optimization of the model.

NOTHREADS
specifies that no threads should be used during optimization of the model.

DETAILS
specifies that a timing table be included in the output.

If you use both the NTHREADS= and NOTHREADS options, then the NTHREADS= option is ignored. If
you use a PERFORMANCE statement, then it overrides any global threading settings that might have been
set using the CPUCOUNT=, THREADS, or NOTHREADS system option.

PRIOR Statement (Experimental)
PRIOR _REGRESSORS | parameter-list Ï distribution ;

The PRIOR statement specifies the prior distribution of the model parameters. You must specify a single
parameter or a list of parameters, a tilde (Ï), and then a distribution with its parameters. Multiple PRIOR
statements are allowed.

You can specify the following distributions:

BETA(SHAPE1=a, SHAPE2=b, MIN=m, MAX=M)
specifies a beta distribution that has the parameters SHAPE1 and SHAPE2 and is defined between
MIN and MAX.

GAMMA(SHAPE=a, SCALE=b)
specifies a gamma distribution that has the parameters SHAPE and SCALE.
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IGAMMA(SHAPE=a, SCALE=b)
specifies an inverse gamma distribution that has the parameters SHAPE and SCALE.

NORMAL(MEAN=�, VAR=�2)
specifies a normal distribution that has the parameters MEAN and VAR.

T(LOCATION=�, DF=�)
specifies a noncentral t distribution that has DF degrees of freedom and a location parameter equal to
LOCATION.

UNIFORM(MIN=m, MAX=M)
specifies a uniform distribution that is defined between MIN and MAX.

For more information about how to specify distributions, see the section “Standard Distributions” on page 630.

You can specify the special keyword _REGRESSORS to select all the parameters that are used in the linear
regression component of the model.

RESTRICT Statement
RESTRICT restriction1 < , restriction2 . . . > ;

The RESTRICT statement imposes linear restrictions on the parameter estimates. You can specify any
number of RESTRICT statements.

Each restriction is written as an expression, followed by an equality operator (=) or an inequality operator (<,
>, <=, >=), followed by a second expression:

expression operator expression

The operator can be =, <, >, <=, or >=.

Restriction expressions can be composed of parameter names, constants, and the operators times (�), plus
(C), and minus (�). The restriction expressions must be a linear function of the parameters. For continuous
regressors, the names of the parameters are the same as the corresponding variables. For a regressor that is a
CLASS variable, the parameter name combines the corresponding CLASS variable name with the variable
level. For interaction and nested regressors, the parameter names combine the names of each regressor. The
names of the parameters can be seen in the OUTEST= data set.

Lagrange multipliers are reported in the “Parameter Estimates” table for all the active linear constraints. They
are identified with the names Restrict1, Restrict2, and so on. The probabilities of these Lagrange multipliers
are computed using a beta distribution (LaMotte 1994). Nonactive (nonbinding) restrictions have no effect
on the estimation results and are not noted in the output.

The following RESTRICT statement constrains the negative binomial dispersion parameter ˛ to 1, which
restricts the conditional variance to be �C �2:

restrict _Alpha = 1;

The RESTRICT statement is not supported if you also specify a BAYES statement. In Bayesian analysis, the
restrictions on parameters are usually introduced through the prior distribution.
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SCORE Statement (Experimental)
SCORE < OUT=SAS-data-set > < output-options > ;

The SCORE statement enables you to compute predicted values and other statistics for a SAS data set. As
with the OUTPUT statement, the new data set that is created contains all the variables in the input data set
and, optionally, the estimates of x0iˇ, the expected value of the response variable, and the probability that
the response variable will take the current value or other values that you specify. In a zero-inflated model,
you can additionally request that the output data set contain the estimates of z0i and the probability that the
response is zero as a result of the zero-generating process. For the Conway-Maxwell-Poisson model, the
estimates of g0iı, �, �, �, mode, variance, and dispersion are also available. Except for the probability of the
current value, these statistics can be computed for all observations in which the regressors are not missing,
even if the response is missing.

The following statements fit a Poisson model by using the DocVisit data set. Additional observations in the
additionalPatients data set are used to compute expected values by using the SCORE statement. The data in
the additionalPatients data set are not used during the fitting stage and are used only for scoring.

You score a data set in two separate steps. In the first step, you fit the model and use the STORE statement to
preserve it in the DocVisitPoisson item store, as shown in the following statements:

proc countreg data=docvisit;
model doctorvisits=sex illness income / dist=poisson;
store docvisitPoisson;

run;

In the second step, you retrieve the content of the DocVisitPoisson item store and use it to calculate expected
values by using the SCORE statement for the additionalPatients data set as follows:

proc countreg restore=docvisitPoisson data=additionalPatients;
score out=outScores mean=meanPoisson probability=prob;
run;

By retrieving the model from the item store and using it in a postprocessing step, you can separate the fitting
and scoring stages and use data for scoring that might not be available at the time when the model was fitted.

You can specify only one SCORE statement. You can specify the following output-options:

OUT=SAS-data-set
names the output data set.

XBETA=name
names the variable that contains estimates of x0iˇ.

PRED=name

MEAN=name
assigns a name to the variable that contains the predicted value of the response variable.
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PROB=name
names the variable that contains the probability that the response variable will take the current value,
Pr(Y D yi ).

PROBCOUNT(value1 <value2...>)
outputs the probability that the response variable will take particular values. Each value should be
a nonnegative integer. Nonintegers are rounded to the nearest integer. The value can also be a list
of the form X TO Y BY Z. For example, PROBCOUNT(0 1 2 TO 10 BY 2 15) requests predicted
probabilities for counts 0, 1, 2, 4, 5, 6, 8, 10, and 15. This option is not available for the fixed-effects
and random-effects panel models.

ZGAMMA=name
names the variable that contains estimates of z0i .

PROBZERO=name
names the variable that contains the value of 'i , the probability of the response variable taking on
the value of zero as a result of the zero-generating process. It is written to the output file only if the
model is zero-inflated. This is not the overall probability of a zero response; that is provided by the
PROBCOUNT(0) option.

GDELTA=name
assigns a name to the variable that contains estimates of g0iı for the Conway-Maxwell-Poisson
distribution.

LAMBDA=name
assigns a name to the variable that contains the estimate of � for the Conway-Maxwell-Poisson
distribution.

NU=name
assigns a name to the variable that contains the estimate of � for the Conway-Maxwell-Poisson
distribution.

MU=name
assigns a name to the variable that contains the estimate of � for the Conway-Maxwell-Poisson
distribution.

MODE=name
assigns a name to the variable that contains the integral part of � (mode) for the Conway-Maxwell-
Poisson distribution.

VARIANCE=name
assigns a name to the variable that contains the estimate of variance for the Conway-Maxwell-Poisson
distribution.

DISPERSION=name
assigns a name to the variable that contains the value of dispersion for the Conway-Maxwell-Poisson
distribution.
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SHOW Statement (Experimental)
SHOW options ;

The SHOW statement displays the contents of the item store. You can use the SHOW statement to verify the
contents of the item store before proceeding with the analysis.

Table 11.2 summarizes the options available in the SHOW statement.

Table 11.2 SHOW Statement Options

Option Description

ALL Displays all applicable contents
CLASSLEVELS Displays the “Class Level Information” table
CORRELATION Produces the correlation matrix of the parameter estimates
COVARIANCE Produces the covariance matrix of the parameter estimates
EFFECTS Displays information about the constructed effects
FITSTATS Displays the fit statistics
PARAMETERS Displays the parameter estimates
PROGRAM Displays the SAS program that generates the item store

You can specify the following options after the SHOW statement:

ALL | _ALL_
displays all applicable contents.

CLASSLEVELS | CLASS
displays the “Class Level Information” table. This table is produced by the COUNTREG procedure by
default if the model contains effects that depend on classification variables.

CORRELATION | CORR | CORRB
produces the correlation matrix of the parameter estimates.

COVARIANCE | COV | COVB
produces the covariance matrix of the parameter estimates.

EFFECTS
displays information about the effects in the model.

FITSTATS | FIT | FITSUMMARY
displays the fit statistics from the item store.

PARAMETERS

PARMS
displays the parameter estimates table from the item store.
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PROGRAM

PROG
displays the SAS program that generates the item store, provided that this was stored at store generation
time. The program does not include comments, titles, or some other global statements.

STORE Statement (Experimental)
STORE < OUT= >item-store-name ;

The STORE statement saves the contents of the analysis to an item store in a binary format that cannot
be modified. You can restore the stored information by specifying the RESTORE= option in the PROC
COUNTREG statement and use it in postprocessing analysis.

WEIGHT Statement
WEIGHT variable < / option > ;

The WEIGHT statement specifies a variable to supply weighting values to use for each observation in
estimating parameters. The log likelihood for each observation is multiplied by the corresponding weight
variable value.

If the weight of an observation is nonpositive, that observation is not used in the estimation.

You can specify the following option after a slash (/):

NONORMALIZE
does not normalize the weights. By default, the weights are normalized so that they add up to the
actual sample size. Weights wi are normalized by multiplying them by nPn

iD1wi
, where n is the sample

size. If the weights are required to be used “as is,” then specify the NONORMALIZE option.

ZEROMODEL Statement
ZEROMODEL dependent variable � < zero-inflated regressors > < /options > ;

The ZEROMODEL statement is required if you specify either ZIP or ZINB in the DIST= option in the
MODEL statement. If ZIP or ZINB is specified, then the ZEROMODEL statement must follow immediately
after the MODEL statement. The dependent variable in the ZEROMODEL statement must be the same as
the dependent variable in the MODEL statement.

The zero-inflated (ZI) regressors appear in the equation that determines the probability ('i ) of a zero count.
Each of these q variables has a parameter to be estimated in the regression. For example, let z0i be the ith
observation’s 1 � .q C 1/ vector of values of the q ZI explanatory variables (w0 is set to 1 for the intercept
term). Then 'i is a function of z0i , where  is the .q C 1/ � 1 vector of parameters to be estimated. (The ZI
intercept is 0; the coefficients for the q ZI covariates are 1; : : : ; q .) If this option is omitted, then only the
intercept term 0 is estimated. The “Parameter Estimates” table in the displayed output gives the estimates
for the ZI intercept and ZI explanatory variables; they are labeled with the prefix “Inf_”. For example, the
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ZI intercept is labeled “Inf_intercept”. If you specify Age (a variable in your data set) as a ZI explanatory
variable, then the “Parameter Estimates” table labels the corresponding parameter estimate “Inf_Age”.

You can specify the following options after a slash (/):

LINK=value

specifies the distribution function to use to compute probability of zeros. The following distribution
functions are supported:

LOGISTIC specifies the logistic distribution.

NORMAL specifies the standard normal distribution.

If this option is omitted, then the default ZI link function is logistic.

OFFSET=variable
specifies a variable in the input data set to be used as a zero-inflated (ZI) offset variable. The ZI offset
variable is included as a term, with its coefficient restricted to 1, in the equation that determines the
probability ('i ) of a zero count. The ZI offset variable cannot be the response variable, the offset
variable (if any), or one of the explanatory variables. The name of the data set variable that is used as the
ZI offset variable is displayed in the “Model Fit Summary” output, where it is labeled as “Inf_offset”.

SELECT=INFO< (option) >

SELECTVAR=INFO< (option) >
specifies variable selection.

SELECT= INFO requests that the variable selection method be based on an information criterion. For
more information, see the section “Variable Selection Using an Information Criterion” on page 605.
You can specify the following options:

DIRECTION=FORWARD | BACKWARD
specifies the search algorithm to use in the variable selection method. By default, DIREC-
TION=FORWARD.

CRITER=AIC | SBC
specifies the information criterion to use in the variable selection. By default, CRITER=SBC.

MAXSTEPS=value
specifies the maximum number of steps to allow in the search algorithm. The default is infinite;
that is, the algorithm does not stop until the stopping criterion is satisfied.

LSTOP=value
specifies the stopping criterion. The value represents the percentage of decrease or increase in
the AIC or SBC that is required for the algorithm to proceed; it must be a positive number less
than 1. By default, LSTOP=0.

RETAIN(variable1 <variable2...>)
requests that the variables named within the parentheses be retained during the variable selection
process.
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Details: COUNTREG Procedure

Specification of Regressors
Each term in a model, called a regressor, is a variable or combination of variables. Regressors are specified
in a special notation that uses variable names and operators. There are two kinds of variables: classification
(CLASS) variables and continuous variables. There are two primary operators: crossing and nesting. A third
operator, the bar operator, is used to simplify effect specification.

In the SAS System, classification ( CLASS) variables are declared in the CLASS statement. (They can also be
called categorical, qualitative, discrete, or nominal variables.) Classification variables can be either numeric
or character. The values of a classification variable are called levels. For example, the classification variable
Sex has the levels “male” and “female.”

In a model, an independent variable that is not declared in the CLASS statement is assumed to be continuous.
Continuous variables, which must be numeric, are used for covariates. For example, the heights and weights
of subjects are continuous variables. A response variable is a discrete count variable and must also be
numeric.

Types of Regressors

Seven different types of regressors are used in the COUNTREG procedure. In the following list, assume that
A, B, C, D, and E are CLASS variables and that X1 and X2 are continuous variables:

• Regressors are specified by writing continuous variables by themselves: X1 X2.

• Polynomial regressors are specified by joining (crossing) two or more continuous variables with
asterisks: X1*X1 X1*X2.

• Dummy regressors are specified by writing CLASS variables by themselves: A B C.

• Dummy interactions are specified by joining classification variables with asterisks: A*B B*C
A*B*C.

• Nested regressors are specified by following a dummy variable or dummy interaction with a classifica-
tion variable or list of classification variables enclosed in parentheses. The dummy variable or dummy
interaction is nested within the regressor that is listed in parentheses: B(A) C(B*A) D*E(C*B*A).
In this example, B(A) is read “B nested within A.”

• Continuous-by-class regressors are written by joining continuous variables and classification variables
with asterisks: X1*A.

• Continuous-nesting-class regressors consist of continuous variables followed by a classification variable
interaction enclosed in parentheses: X1(A) X1*X2(A*B).

One example of the general form of an effect that involves several variables is

X1*X2*A*B*C(D*E)
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This example contains an interaction between continuous terms and classification terms that are nested within
more than one classification variable. The continuous list comes first, followed by the dummy list, followed
by the nesting list in parentheses. Note that asterisks can appear within the nested list but not immediately
before the left parenthesis.

The MODEL statement and several other statements use these effects. Some examples of MODEL statements
that use various kinds of effects are shown in the following table, where a, b, and c represent classification
variables. The variables x and z are continuous.

Specification Type of Model
model y=x; Simple regression

model y=x z; Multiple regression

model y=x x*x; Polynomial regression

model y=a; Regression with one classification variable

model y=a b c; Regression with multiple classification variables

model y=a b a*b; Regression with classification variables and their interactions

model y=a b(a) c(b a); Regression with classification variables and their interactions

model y=a x; Regression with both continuous and classification variables

model y=a x(a); Separate-slopes regression

model y=a x x*a; Homogeneity-of-slopes regression

The Bar Operator

You can shorten the specification of a large factorial model by using the bar operator. For example, two ways
of writing the model for a full three-way factorial model follow:

model Y = A B C A*B A*C B*C A*B*C;

model Y = A|B|C;

When the bar (|) is used, the right and left sides become effects, and the cross of them becomes an effect.
Multiple bars are permitted. The expressions are expanded from left to right, using rules 2–4 given in Searle
(1971, p. 390).

• Multiple bars are evaluated from left to right. For instance, A|B|C is evaluated as follows:

A | B | C ! f A | B g | C

! f A B A*B g | C

! A B A*B C A*C B*C A*B*C

• Crossed and nested groups of variables are combined. For example, A(B) | C(D) generates A*C(B D),
among other terms.

• Duplicate variables are removed. For example, A(C) | B(C) generates A*B(C C), among other terms,
and the extra C is removed.
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• Effects are discarded if a variable occurs on both the crossed and nested parts of an effect. For instance,
A(B) | B(D E) generates A*B(B D E), but this effect is discarded immediately.

You can also specify the maximum number of variables involved in any effect that results from bar evaluation
by specifying that maximum number, preceded by an @ sign, at the end of the bar effect. For example, the
specification A | B | C@2 would result in only those effects that contain two or fewer variables: in this case,
A B A*B C A*C and B*C.

More examples of using the | and @ operators follow:

A | C(B) is equivalent to A C(B) A*C(B)

A(B) | C(B) is equivalent to A(B) C(B) A*C(B)

A(B) | B(D E) is equivalent to A(B) B(D E)

A | B(A) | C is equivalent to A B(A) C A*C B*C(A)

A | B(A) | C@2 is equivalent to A B(A) C A*C

A | B | C | D@2 is equivalent to A B A*B C A*C B*C D A*D B*D C*D

A*B(C*D) is equivalent to A*B(C D)

Missing Values
Any observation in the input data set that has a missing value for one or more of the regressors is ignored by
PROC COUNTREG and not used in the model fit. PROC COUNTREG rounds any positive noninteger count
values to the nearest integer. PROC COUNTREG ignores any observations that have a negative count, a zero
or negative weight, or a frequency less than 1.

If there are observations in the input data set that have missing response values but with nonmissing regressors,
PROC COUNTREG can compute several statistics and store them in an output data set by using the OUTPUT
statement. For example, you can request that the output data set contain the estimates of x0iˇ, the expected
value of the response variable, and the probability that the response variable will take values that you specify.
In a zero-inflated model, you can additionally request that the output data set contain the estimates of z0i ,
and the probability that the response is zero as a result of the zero-generating process. The presence of such
observations (with missing response values) does not affect the model fit.

Poisson Regression
The most widely used model for count data analysis is Poisson regression. This assumes that yi , given the
vector of covariates xi , is independently Poisson-distributed with

P.Yi D yi jxi / D
e��i�

yi
i

yi Š
; yi D 0; 1; 2; : : :

and the mean parameter (that is, the mean number of events per period) is given by

�i D exp.x0iˇ/
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where ˇ is a .k C 1/ � 1 parameter vector. (The intercept is ˇ0; the coefficients for the k regressors are
ˇ1; : : : ; ˇk .) Taking the exponential of x0iˇ ensures that the mean parameter �i is nonnegative. It can be
shown that the conditional mean is given by

E.yi jxi / D �i D exp.x0iˇ/

The name log-linear model is also used for the Poisson regression model because the logarithm of the
conditional mean is linear in the parameters:

lnŒE.yi jxi /� D ln.�i / D x0iˇ

Note that the conditional variance of the count random variable is equal to the conditional mean in the Poisson
regression model:

V.yi jxi / D E.yi jxi / D �i

The equality of the conditional mean and variance of yi is known as equidispersion.

The marginal effect of a regressor is given by

@E.yi jxi /
@xj i

D exp.x0iˇ/ˇj D E.yi jxi /ˇj

Thus, a one-unit change in the jth regressor leads to a proportional change in the conditional mean E.yi jxi /
of ˇj .

The standard estimator for the Poisson model is the maximum likelihood estimator (MLE). Because the
observations are independent, the log-likelihood function is written as

L D
NX
iD1

wi .��i C yi ln�i � lnyi Š/ D
NX
iD1

wi .�e
x0
i
ˇ
C yix0iˇ � lnyi Š/

where wi is defined as follows:

1 if neither the WEIGHT nor FREQ statement is used.

Wi where Wi are the nonnormalized values of the variable that are specified in the WEIGHT
statement in which the NONORMALIZE option is specified.

nPn
iD1Wi

Wi where Wi are the nonnormalized values of the variable that is specified in the WEIGHT
statement.

Fi where Fi are the values of the variable that is specified in the FREQ statement.

WiFi if both the WEIGHT statement, without the NONORMALIZE option, and the FREQ
statement are specified.Pn

iD1 FiPn
iD1 FiWi

WiFi if both the FREQ and WEIGHT statements are specified.

The gradient and the Hessian are, respectively,

@L
@ˇ
D

NX
iD1

wi .yi � �i /xi D
NX
iD1

wi .yi � e
x0
i
ˇ/xi
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@2L
@ˇ@ˇ0

D �

NX
iD1

wi�ixixi 0 D �
NX
iD1

wie
x0
i
ˇxix0i

The Poisson model has been criticized for its restrictive property that the conditional variance must equal the
conditional mean. Real-life data are often characterized by overdispersion (that is, the variance exceeds the
mean). Allowing for overdispersion can improve model predictions because the Poisson restriction of equal
mean and variance results in the underprediction of zeros when overdispersion exists. The most commonly
used model that accounts for overdispersion is the negative binomial model. Conway-Maxwell-Poisson
regression enables you to model both overdispersion and underdispersion.

Conway-Maxwell-Poisson Regression
The Conway-Maxwell-Poisson (CMP) distribution is a generalization of the Poisson distribution that enables
you to model both underdispersed and overdispersed data. It was originally proposed by Conway and
Maxwell (1962), but its implementation to model under- and overdispersed count data is attributed to Shmueli
et al. (2005).

Recall that yi , given the vector of covariates xi , is independently Poisson-distributed as

P.Yi D yi jxi / D
e��i�

yi
i

yi Š
yi D 0; 1; 2; : : :

The Conway-Maxwell-Poisson distribution is defined as

P.Yi D yi jxi ; zi / D
1

Z.�i ; �i /

�
yi
i

.yi Š/�i
yi D 0; 1; 2; : : :

where the normalization factor is

Z.�i ; �i / D

1X
nD0

�ni
.nŠ/�i

and

�i D exp.x0iˇ/

�i D � exp.g0iı/

The ˇ vector is a .k C 1/ � 1 parameter vector. (The intercept is ˇ0, and the coefficients for the k regressors
are ˇ1; : : : ; ˇk). The ı vector is an .mC 1/ � 1 parameter vector. (The intercept is represented by ı0, and
the coefficients for the m regressors are ı1; : : : ; ık). The covariates are represented by xi and gi vectors.

One of the restrictive properties of the Poisson model is that the conditional mean and variance must be
equal:

E.yi jxi / D V.yi jxi / D �i D exp.x0iˇ/

The CMP distribution overcomes this restriction by defining an additional parameter, �, which governs the
rate of decay of successive ratios of probabilities such that

P.Yi D yi � 1/=P.Yi D yi / D
.yi /

�i

�i
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The introduction of the additional parameter, �, allows for flexibility in modeling the tail behavior of the
distribution. If � D 1, the ratio is equal to the rate of decay of the Poisson distribution. If � < 1, the rate
of decay decreases, enabling you to model processes that have longer tails than the Poisson distribution
(overdispersed data). If � > 1, the rate of decay increases in a nonlinear fashion, thus shortening the tail of
the distribution (underdispersed data).

There are several special cases of the Conway-Maxwell-Poisson distribution. If � < 1 and � ! 1, the
Conway-Maxwell-Poisson results in the Bernoulli distribution. In this case, the data can take only the values
0 and 1, which represents an extreme underdispersion. If � D 1, the Poisson distribution is recovered with
its equidispersion property. When � D 0 and � < 1, the normalization factor is convergent and forms a
geometric series,

Z.�i ; 0/ D
1

1 � �i

and the probability density function becomes

P.Y D yi I�i ; �i D 0/ D .1 � �i /�
yi
i

The geometric distribution represents a case of severe overdispersion.

Mean, Variance, and Dispersion for the Conway-Maxwell-Poisson Model

The mean and the variance of the Conway-Maxwell-Poisson distribution are defined as

EŒY � D
@ lnZ
@ ln�

V ŒY � D
@2 lnZ
@2 ln�

The Conway-Maxwell-Poisson distribution does not have closed-form expressions for its moments in terms
of its parameters � and �. However, the moments can be approximated. Shmueli et al. (2005) use asymptotic
expressions for Z to derive E.Y / and V.Y / as

EŒY � � �1=� C
1

2�
�
1

2

V ŒY � �
1

�
�1=�

In the Conway-Maxwell-Poisson model, the summation of infinite series is evaluated using a logarithmic
expansion. The mean and variance are calculated as follows for the Shmueli et al. (2005) model:

E.Y / D
1

Z.�; �/

1X
jD0

j�j

.j Š/�

V.Y / D
1

Z.�; �/

1X
jD0

j 2�j

.j Š/�
�E.Y /2

The dispersion is defined as

D.Y / D
V.Y /

E.Y /
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Likelihood Function for the Conway-Maxwell-Poisson Model

The likelihood for a set of n independently and identically distributed variables y1; y2; : : : ; yn is written as

L.y1; y2; : : : ; ynj�; �/ D

Qn
iD1�

yi

.
Qn
iD1 yi Š/

�
Z.�; �/�n

D �
Pn
iD1 yi exp .��

nX
iD1

ln.yi Š//Z.�; �/�n

D �S1 exp .��S2/Z.�; �/�n

where S1 and S2 are sufficient statistics for y1; y2; : : : ; yn. You can see from the preceding equation that the
Conway-Maxwell-Poisson distribution is a member of the exponential family. The log-likelihood function
can be written as

L D �n ln.Z.�; �//C
nX
iD1

.yi ln.�/ � � ln.yi Š//

The gradients can be written as

Lˇ D
 
NX
kD1

yk � n
�Z.�; �/�
Z.�; �/

!
x

Lı D
 
NX
kD1

ln.ykŠ/ � n
Z.�; �/�
Z.�; �/

!
�z

Conway-Maxwell-Poisson Regression: Guikema and Coffelt (2008) Reparameterization

Guikema and Coffelt (2008) propose a reparameterization of the Shmueli et al. (2005) Conway-Maxwell-
Poisson model to provide a measure of central tendency that can be interpreted in the context of the generalized
linear model. By substituting � D �� , the Guikema and Coffelt (2008) formulation is written as

P.Y D yi I�; �/ D
1

S.�; �/

�
�yi

yi Š

��
where the new normalization factor is defined as

S.�; �/ D

1X
jD0

 
�j

j Š

!�

In terms of their new formulations, the mean and variance of Y are given as

EŒY � D
1

�

@ lnS
@ ln�

V ŒY � D
1

�2
@2 lnS
@2 ln�
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They can be approximated as

EŒY � � �C
1

2
� �

1

2

V ŒY � �
�

�

In the COUNTREG procedure, the mean and variance are calculated according to the following formulas for
the Guikema and Coffelt (2008) model:

E.Y / D
1

Z.�; �/

1X
jD0

j��j

.j Š/�

V.Y / D
1

Z.�; �/

1X
jD0

j 2��j

.j Š/�
�E.Y /2

In terms of the new parameter �, the log-likelihood function is specified as

L D ln.S.�; �//C �
NX
iD1

.yi ln.�/ � ln.yi Š//

and the gradients are calculated as

Lˇ D
 
�

NX
iD1

yi �
�S.�; �/�

S.�; �/

!
x

Lı D
 
NX
iD1

.yi ln.�/ � ln.yi Š// �
S.�; �/�
S.�; �/

!
�g

The default in the COUNTREG procedure is the Guikema and Coffelt (2008) specification. The Shmueli
et al. (2005) model can be estimated by specifying the PARAMETER=LAMBDA option. If you specify
DISP=CMPOISSON in the MODEL statement and you omit the DISPMODEL statement, the model is
estimated according to the Lord, Guikema, and Geedipally (2008) specification, where � represents a single
parameter that does not depend on any covariates. The Lord, Guikema, and Geedipally (2008) specification
makes the model comparable to the negative binomial model because it has only one parameter.

The dispersion is defined as

D.Y / D
V.Y /

E.Y /

Using the Guikema and Coffelt (2008) specification results in the integral part of � representing the mode,
which is a reasonable approximation for the mean. The dispersion can be written as

D.Y / D
V.Y /

E.Y /
�

�
�

�C 1
2
� � 1

2

�
1

v
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When � < 1, the variance can be shown to be greater than the mean and the dispersion greater than 1. This is
a result of overdispersed data. When � = 1, and the mean and variance are equal, the dispersion is equal to 1
(Poisson model). When � > 1, the variance is smaller than the mean and the dispersion is less than 1. This is
a result of underdispersed data.

All Conway-Maxwell-Poisson models in the COUNTREG procedure are parameterized in terms of dispersion,
where

� ln.�/ D ı0 C
qX
nD1

ıngn

Negative values of ln.�/ indicate that the data are approximately underdispersed, and values of ln.�/ that are
greater than 0 indicate that the data are approximately overdispersed.

Negative Binomial Regression
The Poisson regression model can be generalized by introducing an unobserved heterogeneity term for
observation i. Thus, the individuals are assumed to differ randomly in a manner that is not fully accounted
for by the observed covariates. This is formulated as

E.yi jxi ; �i / D �i�i D ex
0
i
ˇC�i

where the unobserved heterogeneity term �i D e
�i is independent of the vector of regressors xi . Then the

distribution of yi conditional on xi and �i is Poisson with conditional mean and conditional variance �i�i :

f .yi jxi ; �i / D
exp.��i�i /.�i�i /yi

yi Š

Let g.�i / be the probability density function of �i . Then, the distribution f .yi jxi / (no longer conditional on
�i ) is obtained by integrating f .yi jxi ; �i / with respect to �i :

f .yi jxi / D
Z 1
0

f .yi jxi ; �i /g.�i /d�i

An analytical solution to this integral exists when �i is assumed to follow a gamma distribution. This solution
is the negative binomial distribution. When the model contains a constant term, it is necessary to assume that
E.e�i / D E.�i / D 1 in order to identify the mean of the distribution. Thus, it is assumed that �i follows a
gamma(�; �) distribution with E.�i / D 1 and V.�i / D 1=� ,

g.�i / D
��

�.�/
���1i exp.���i /
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where �.x/ D
R1
0 zx�1 exp.�z/dz is the gamma function and � is a positive parameter. Then, the density

of yi given xi is derived as

f .yi jxi / D
Z 1
0

f .yi jxi ; �i /g.�i /d�i

D
���

yi
i

yi Š�.�/

Z 1
0

e�.�iC�/�i �
�Cyi�1
i d�i

D
���

yi
i �.yi C �/

yi Š�.�/.� C �i /�Cyi

D
�.yi C �/

yi Š�.�/

�
�

� C �i

�� � �i

� C �i

�yi
Making the substitution ˛ D 1

�
(˛ > 0), the negative binomial distribution can then be rewritten as

f .yi jxi / D
�.yi C ˛

�1/

yi Š�.˛�1/

�
˛�1

˛�1 C �i

�˛�1 �
�i

˛�1 C �i

�yi
; yi D 0; 1; 2; : : :

Thus, the negative binomial distribution is derived as a gamma mixture of Poisson random variables. It has
conditional mean

E.yi jxi / D �i D ex
0
i
ˇ

and conditional variance

V.yi jxi / D �i Œ1C
1

�
�i � D �i Œ1C ˛�i � > E.yi jxi /

The conditional variance of the negative binomial distribution exceeds the conditional mean. Overdispersion
results from neglected unobserved heterogeneity. The negative binomial model with variance function
V.yi jxi / D �i C ˛�

2
i , which is quadratic in the mean, is referred to as the NEGBIN2 model (Cameron

and Trivedi 1986). To estimate this model, specify DIST=NEGBIN(p=2) in the MODEL statement. The
Poisson distribution is a special case of the negative binomial distribution where ˛ D 0. A test of the Poisson
distribution can be carried out by testing the hypothesis that ˛ D 1

�i
D 0. A Wald test of this hypothesis is

provided (it is the reported t statistic for the estimated ˛ in the negative binomial model).

The log-likelihood function of the negative binomial regression model (NEGBIN2) is given by

L D

NX
iD1

wi

(
yi�1X
jD0

ln.j C ˛�1/ � ln.yi Š/

�.yi C ˛
�1/ ln.1C ˛ exp.x0iˇ//C yi ln.˛/C yix

0
iˇ

)

�.y C a/=�.a/ D

y�1Y
jD0

.j C a/

if y is an integer. See “Poisson Regression” on page 590 for the definition of wi .
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The gradient is

@L
@ˇ
D

NX
iD1

wi
yi � �i

1C ˛�i
xi

and

@L
@˛
D

NX
iD1

wi

8<:�˛�2
yi�1X
jD0

1

.j C ˛�1/
C ˛�2 ln.1C ˛�i /C

yi � �i

˛.1C ˛�i /

9=;
Cameron and Trivedi (1986) consider a general class of negative binomial models with mean �i and variance
function �i C ˛�

p
i . The NEGBIN2 model, with p D 2, is the standard formulation of the negative binomial

model. Models with other values of p, �1 < p < 1, have the same density f .yi jxi / except that ˛�1

is replaced everywhere by ˛�1�2�p. The negative binomial model NEGBIN1, which sets p D 1, has
variance function V.yi jxi / D �i C ˛�i , which is linear in the mean. To estimate this model, specify
DIST=NEGBIN(p=1) in the MODEL statement.

The log-likelihood function of the NEGBIN1 regression model is given by

L D

NX
iD1

wi

(
yi�1X
jD0

ln
�
j C ˛�1 exp.x0iˇ/

�
� ln.yi Š/ �

�
yi C ˛

�1 exp.x0iˇ/
�
ln.1C ˛/C yi ln.˛/

)

See the section “Poisson Regression” on page 590 for the definition of wi .

The gradient is

@L
@ˇ
D

NX
iD1

wi

8<:
0@yi�1X
jD0

�i

.j˛ C �i /

1A xi � ˛�1 ln.1C ˛/�ixi

9=;
and

@L
@˛
D

NX
iD1

wi

8<:�
0@yi�1X
jD0

˛�1�i

.j˛ C �i /

1A � ˛�2�i ln.1C ˛/ � .yi C ˛�1�i /
1C ˛

C
yi

˛

9=;

Zero-Inflated Count Regression Overview
The main motivation for zero-inflated count models is that real-life data frequently display overdispersion and
excess zeros. Zero-inflated count models provide a way of modeling the excess zeros in addition to allowing
for overdispersion. In particular, for each observation, there are two possible data generation processes. The
result of a Bernoulli trial is used to determine which of the two processes is used. For observation i, Process
1 is chosen with probability 'i and Process 2 with probability 1 � 'i . Process 1 generates only zero counts.
Process 2 generates counts from either a Poisson or a negative binomial model. In general,

yi �

�
0 with probability 'i
g.yi / with probability 1 � 'i
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Therefore, the probability of fYi D yig can be described as

P.yi D 0jxi / D 'i C .1 � 'i /g.0/

P.yi jxi / D .1 � 'i /g.yi /; yi > 0

where g.yi / follows either the Poisson or the negative binomial distribution. You can specify the probability
' by using the PROBZERO= option in the OUTPUT statement.

When the probability 'i depends on the characteristics of observation i, 'i is written as a function of z0i ,
where z0i is the 1� .qC 1/ vector of zero-inflation covariates and  is the .qC 1/� 1 vector of zero-inflation
coefficients to be estimated. (The zero-inflation intercept is 0; the coefficients for the q zero-inflation
covariates are 1; : : : ; q .) The function F that relates the product z0i (which is a scalar) to the probability
'i is called the zero-inflation link function,

'i D Fi D F.z0i/

In the COUNTREG procedure, the zero-inflation covariates are indicated in the ZEROMODEL statement.
Furthermore, the zero-inflation link function F can be specified as either the logistic function,

F.z0i/ D ƒ.z
0
i/ D

exp.z0i/
1C exp.z0i/

or the standard normal cumulative distribution function (also called the probit function),

F.z0i/ D ˆ.z
0
i/ D

Z z0
i


0

1
p
2�

exp.�u2=2/du

The zero-inflation link function is indicated in the LINK option in ZEROMODEL statement. The default ZI
link function is the logistic function.

Zero-Inflated Poisson Regression
In the zero-inflated Poisson (ZIP) regression model, the data generation process that is referred to earlier as
Process 2 is

g.yi / D
exp.��i /�

yi
i

yi Š

where �i D ex
0
i
ˇ. Thus the ZIP model is defined as

P.yi D 0jxi ; zi / D Fi C .1 � Fi / exp.��i /

P.yi jxi ; zi / D .1 � Fi /
exp.��i /�

yi
i

yi Š
; yi > 0

The conditional expectation and conditional variance of yi are given by

E.yi jxi ; zi / D �i .1 � Fi /
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V.yi jxi ; zi / D E.yi jxi ; zi /.1C �iFi /

Note that the ZIP model (as well as the ZINB model) exhibits overdispersion because V.yi jxi ; zi / >
E.yi jxi ; zi /.

In general, the log-likelihood function of the ZIP model is

L D
NX
iD1

wi ln ŒP.yi jxi ; zi /�

After a specific link function (either logistic or standard normal) for the probability 'i is chosen, it is possible
to write the exact expressions for the log-likelihood function and the gradient.

ZIP Model with Logistic Link Function

First, consider the ZIP model in which the probability 'i is expressed using a logistic link function—namely,

'i D
exp.z0i/

1C exp.z0i/

The log-likelihood function is

L D

X
fi WyiD0g

wi ln
�
exp.z0i/C exp.� exp.x0iˇ//

�
C

X
fi Wyi>0g

wi

"
yix0iˇ � exp.x0iˇ/ �

yiX
kD2

ln.k/

#

�

NX
iD1

wi ln
�
1C exp.z0i/

�
See the section “Poisson Regression” on page 590 for the definition of wi .

The gradient for this model is given by

@L
@
D

X
fi WyiD0g

wi

�
exp.z0i/

exp.z0i/C exp.� exp.x0iˇ//

�
zi �

NX
iD1

wi

�
exp.z0i/

1C exp.z0i/

�
zi

@L
@ˇ
D

X
fi WyiD0g

wi

�
� exp.x0iˇ/ exp.� exp.x0iˇ//
exp.z0i/C exp.� exp.x0iˇ//

�
xi C

X
fi Wyi>0g

wi
�
yi � exp.x0iˇ/

�
xi

ZIP Model with Standard Normal Link Function

Next, consider the ZIP model in which the probability 'i is expressed using a standard normal link function:
'i D ˆ.z0i/. The log-likelihood function is

L D

X
fi WyiD0g

wi ln
˚
ˆ.z0i/C

�
1 �ˆ.z0i/

�
exp.� exp.x0iˇ//

	
C

X
fi Wyi>0g

wi

(
ln
��
1 �ˆ.z0i/

��
� exp.x0iˇ/C yix

0
iˇ �

yiX
kD2

ln.k/

)
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See the section “Poisson Regression” on page 590 for the definition of wi .

The gradient for this model is given by

@L
@

D

X
fi WyiD0g

wi
'.z0i/

�
1 � exp.� exp.x0iˇ//

�
ˆ.z0i/C

�
1 �ˆ.z0i/

�
exp.� exp.x0iˇ//

zi

�

X
fi Wyi>0g

wi
'.z0i/�

1 �ˆ.z0i/
�zi

@L
@ˇ

D

X
fi WyiD0g

wi
�
�
1 �ˆ.z0i/

�
exp.x0iˇ/ exp.� exp.x0iˇ//

ˆ.z0i/C
�
1 �ˆ.z0i/

�
exp.� exp.x0iˇ//

xi

C

X
fi Wyi>0g

wi
�
yi � exp.x0iˇ/

�
xi

Zero-Inflated Conway-Maxwell-Poisson Regression
In the Conway-Maxwell-Poisson regression model, the data generation process is defined as

P.Yi D yi jxi ; zi / D
1

Z.�i ; �i /

�
yi
i

.yi Š/�i
; yi D 0; 1; 2; : : :

where the normalization factor is

Z.�i ; �i / D

1X
nD0

�ni
.nŠ/�i

and

�i D exp.x0iˇ/

�i D � exp.g0iı/

The zero-inflated Conway-Maxwell-Poisson model can be written as

P.yi D 0jxi ; zi / D Fi C .1 � Fi /
1

Z.�i ; �i /

P.yi jxi ; zi / D .1 � Fi /
1

Z.�i ; �i /

�
yi
i

.yi Š/�i
; yi > 0

The conditional expectation and conditional variance of yi are given by

E.yi jxi ; zi / D .1 � Fi /
1

Z.�; �/

1X
jD0

j�j

.j Š/�
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V.yi jxi ; zi / D .1 � Fi /
1

Z.�; �/

1X
jD0

j 2�j

.j Š/�
�E.yi jxi ; zi /2

General form of the log-likelihood function for the Conway-Maxwell-Poisson zero-inflated model is

L D
NX
iD1

wi ln ŒP.yi jxi ; zi /�

Zero-Inflated Conway-Maxwell-Poisson Model with Logistic Link Function

In this model the probability 'i is expressed with a logistic link function as

'i D ƒ.z0i/ D
exp.z0i/

1C exp.z0i/

The log-likelihood function is

L D

X
fi WyiD0g

wi ln
�
ƒ.z0i/C

�
1 �ƒ.z0i/

� 1

Z.�i ; �i /

�
C

X
fi Wyi>0g

wi
˚
ln
��
1 �ƒ.z0i/

��
� ln.Z.�; �//C .yi ln.�/ � � ln.yi Š/

	

Zero-Inflated Conway-Maxwell-Poisson Model with Normal Link Function

For this model, the probability 'i is specified with the standard normal distribution function (probit function):
'i D ˆ.z0i/.

The log-likelihood function is written as

L D

X
fi WyiD0g

wi ln
�
ˆ.z0i/C

�
1 �ˆ.z0i/

� 1

Z.�i ; �i /

�
C

X
fi Wyi>0g

wi
˚
ln
��
1 �ˆ.z0i/

��
� ln.Z.�; �//C .yi ln.�/ � � ln.yi Š/

	

Zero-Inflated Negative Binomial Regression
The zero-inflated negative binomial (ZINB) model in PROC COUNTREG is based on the negative binomial
model with quadratic variance function (p=2). The ZINB model is obtained by specifying a negative binomial
distribution for the data generation process referred to earlier as Process 2:

g.yi / D
�.yi C ˛

�1/

yi Š�.˛�1/

�
˛�1

˛�1 C �i

�˛�1 �
�i

˛�1 C �i

�yi
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Thus the ZINB model is defined to be

P.yi D 0jxi ; zi / D Fi C .1 � Fi / .1C ˛�i /
�˛�1

P.yi jxi ; zi / D .1 � Fi /
�.yi C ˛

�1/

yi Š�.˛�1/

�
˛�1

˛�1 C �i

�˛�1
�

�
�i

˛�1 C �i

�yi
; yi > 0

In this case, the conditional expectation and conditional variance of yi are

E.yi jxi ; zi / D �i .1 � Fi /

V .yi jxi ; zi / D E.yi jxi ; zi / Œ1C �i .Fi C ˛/�

Like the ZIP model, the ZINB model exhibits overdispersion because the conditional variance exceeds the
conditional mean.

ZINB Model with Logistic Link Function

In this model, the probability 'i is given by the logistic function—namely,

'i D
exp.z0i/

1C exp.z0i/

The log-likelihood function is

L D

X
fi WyiD0g

wi ln
h
exp.z0i/C .1C ˛ exp.x0iˇ//

�˛�1
i

C

X
fi Wyi>0g

wi

yi�1X
jD0

ln.j C ˛�1/

C

X
fi Wyi>0g

wi
˚
� ln.yi Š/ � .yi C ˛�1/ ln.1C ˛ exp.x0iˇ//C yi ln.˛/C yix

0
iˇ
	

�

NX
iD1

wi ln
�
1C exp.z0i/

�
See the section “Poisson Regression” on page 590 for the definition of wi .

The gradient for this model is given by

@L
@

D

X
fi WyiD0g

wi

"
exp.z0i/

exp.z0i/C .1C ˛ exp.x0iˇ//�˛
�1

#
zi

�

NX
iD1

wi

�
exp.z0i/

1C exp.z0i/

�
zi
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@L
@ˇ

D

X
fi WyiD0g

wi

"
� exp.x0iˇ/.1C ˛ exp.x0iˇ//

�˛�1�1

exp.z0i/C .1C ˛ exp.x0iˇ//�˛
�1

#
xi

C

X
fi Wyi>0g

wi

�
yi � exp.x0iˇ/
1C ˛ exp.x0iˇ/

�
xi

@L
@˛
D

X
fi WyiD0g

wi
˛�2

�
.1C ˛ exp.x0iˇ// ln.1C ˛ exp.x0iˇ// � ˛ exp.x0iˇ/

�
exp.z0i/.1C ˛ exp.x0iˇ//.1C˛/=˛ C .1C ˛ exp.x0iˇ//

C

X
fi Wyi>0g

wi

8<:�˛�2
yi�1X
jD0

1

.j C ˛�1/
C ˛�2 ln.1C ˛ exp.x0iˇ//C

yi � exp.x0iˇ/
˛.1C ˛ exp.x0iˇ//

9=;
ZINB Model with Standard Normal Link Function

For this model, the probability 'i is specified using the standard normal distribution function (probit function):
'i D ˆ.z0i/. The log-likelihood function is

L D

X
fi WyiD0g

wi ln
n
ˆ.z0i/C

�
1 �ˆ.z0i/

�
.1C ˛ exp.x0iˇ//

�˛�1
o

C

X
fi Wyi>0g

wi ln
�
1 �ˆ.z0i/

�
C

X
fi Wyi>0g

wi

yi�1X
jD0

˚
ln.j C ˛�1/

	
�

X
fi Wyi>0g

wi ln.yi Š/

�

X
fi Wyi>0g

wi .yi C ˛
�1/ ln.1C ˛ exp.x0iˇ//

C

X
fi Wyi>0g

wiyi ln.˛/

C

X
fi Wyi>0g

wiyix0iˇ

See the section “Poisson Regression” on page 590 for the definition of wi .

The gradient for this model is given by

@L
@
D

X
fi WyiD0g

wi

24 '.z0i/
h
1 � .1C ˛ exp.x0iˇ//

�˛�1
i

ˆ.z0i/C
�
1 �ˆ.z0i/

�
.1C ˛ exp.x0iˇ//�˛

�1

35 zi
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�

X
fi Wyi>0g

wi

�
'.z0i/

1 �ˆ.z0i/

�
zi

@L
@ˇ
D

X
fi WyiD0g

wi
�
�
1 �ˆ.z0i/

�
exp.x0iˇ/.1C ˛ exp.x0iˇ//

�.1C˛/=˛

ˆ.z0i/C
�
1 �ˆ.z0i/

�
.1C ˛ exp.x0iˇ//�˛

�1
xi

C

X
fi Wyi>0g

wi

�
yi � exp.x0iˇ/
1C ˛ exp.x0iˇ/

�
xi

@L
@˛
D

X
fi WyiD0g

wi

�
1 �ˆ.z0i/

�
˛�2

�
.1C ˛ exp.x0iˇ// ln.1C ˛ exp.x0iˇ// � ˛ exp.x0iˇ/

�
ˆ.z0i/.1C ˛ exp.x0iˇ//.1C˛/=˛ C

�
1 �ˆ.z0i/

�
.1C ˛ exp.x0iˇ//

C

X
fi Wyi>0g

wi

8<:�˛�2
yi�1X
jD0

1

.j C ˛�1/
C ˛�2 ln.1C ˛ exp.x0iˇ//C

yi � exp.x0iˇ/
˛.1C ˛ exp.x0iˇ//

9=;

Variable Selection

Variable Selection Using an Information Criterion

This type of variable selection uses either Akaike’s information criterion (AIC) or the Schwartz Bayesian
criterion (SBC) and either a forward selection method or a backward elimination method.

Forward selection starts from a small subset of variables. In each step, the variable that gives the largest
decrease in the value of the information criterion specified in the CRITER= option (AIC or SBC) is added.
The process stops when the next candidate to be added does not reduce the value of the information criterion
by more than the amount specified in the LSTOP= option in the MODEL statement.

Backward elimination starts from a larger subset of variables. In each step, one variable is dropped based on
the information criterion chosen.

You can force a variable to be retained in the variable selection process by adding a RETAIN list to the
SELECT=INFO (or SELECTVAR=) option in your model. For example, suppose you add a RETAIN list to
the SELECT=INFO option in your model as follows:

MODEL Art = Mar Kid5 Phd / dist=negbin(p=2) SELECT=INFO(lstop=0.001 RETAIN(Phd));

Then this causes the variable selection process to consider only those models that contain Phd as a regressor.
As a result, you are guaranteed that Phd will appear as one of the regressor variables in whatever model the
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variable selection process produces. The model that results is the “best” (relative to your selection criterion)
of all the possible models that contain Phd.

When a ZEROMODEL statement is used in conjunction with a MODEL statement, then all the variables that
appear in the ZEROMODEL statement are retained by default unless the ZEROMODEL statement itself
contains a SELECT=INFO option.

For example, suppose you have the following:

MODEL Art = Mar Kid5 Phd / dist=negbin(p=2) SELECT=INFO(lstop=0.001 RETAIN(Phd));
ZEROMODEL Art ~ Fem Ment / link=normal;

Then Phd is retained in the MODEL statement and all the variables in the ZEROMODEL statement (Fem and
Ment) are retained as well. You can add an empty SELECT=INFO clause to the ZEROMODEL statement
to indicate that all the variables in that statement are eligible for elimination (that is, need not be retained)
during variable selection. For example:

MODEL Art = Mar Kid5 Phd / dist=negbin(p=2) SELECT=INFO(lstop=0.001 RETAIN(Phd));
ZEROMODEL Art ~ Fem Ment / link=normal SELECT=INFO();

In this example, only Phd from the MODEL statement is guaranteed to be retained. All the other variables in
the MODEL statement and all the variables in the ZEROMODEL statement are eligible for elimination.

Similarly, if your ZEROMODEL statement contains a SELECT=INFO option but your MODEL statement
does not, then all the variables in the MODEL statement are retained, whereas only those variables listed
in the RETAIN() list of the SELECT=INFO option for your ZEROMODEL statement are retained. For
example:

MODEL Art = Mar Kid5 Phd / dist=negbin(p=2) ;
ZEROMODEL Art ~ Fem Ment / link=normal SELECT=INFO(RETAIN(Ment));

Here, all the variables in the MODEL statement (Mar Kid5 Phd) are retained, but only the Ment variable in
the ZEROMODEL statement is retained.

Variable Selection Using Penalized Likelihood

Variable selection in the linear regression context can be achieved by adding some form of penalty on the
regression coefficients. One particular such form is L1 norm penalty, which leads to LASSO:

min
ˇ
kY �Xˇk2 C �

pX
jD1

ˇ̌
ˇj
ˇ̌

This penalty method is becoming more popular in linear regression, because of the computational development
in the recent years. However, how to generalize the penalty method for variable selection to the more general
statistical models is not trivial. Some work has been done for the generalized linear models, in the sense that
the likelihood depends on the data through a linear combination of the parameters and the data:

l .ˇjx/ D l
�
xTˇ

�
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In the more general form, the likelihood as a function of the parameters can be denoted by l.�/ D
P
i li .�/,

where � is a vector that can include any parameters and l.�/ is the likelihood for each observation. For example,
in the Poisson model, � D .ˇ0; ˇ1; : : : ; ˇp/, and in the negative binomial model � D .ˇ0; ˇ1; : : : ; ˇp; ˛/.
The following discussion introduces the penalty method, using the Poisson model as an example, but it
applies similarly to the negative binomial model. The penalized likelihood function takes the form

Q.ˇ/ D
X
i

li .ˇ/ � n

pX
jD1

p�j
�ˇ̌
ˇj
ˇ̌�

The L1 norm penalty function that is used in the calculation is specified as

p� .jˇj/ D �

The main challenge for this penalized likelihood method is on the computation side. The penalty function
is nondifferentiable at zero, posing a computational problem for the optimization. To get around this
nondifferentiability problem, Fan and Li (2001) suggested a local quadratic approximation for the penalty
function. However, it was later found that the numerical performance is not satisfactory in a few respects. Zou
and Li (2008) proposed local linear approximation (LLA) to solve the problem (see page 607) numerically.
The algorithm replaces the penalty function with a linear approximation around a fixed point ˇ.0/:

p�
�ˇ̌
ˇj
ˇ̌�
� p�

�ˇ̌̌
ˇ
.0/
j

ˇ̌̌�
C p0�

�ˇ̌̌
ˇ
.0/
j

ˇ̌̌� �ˇ̌
ˇj
ˇ̌
�

ˇ̌̌
ˇ
.0/
j

ˇ̌̌�
Then the problem can be solved iteratively. Start from ˇ.0/ D ǑM , which denotes the usual MLE estimate.
For iteration k,

ˇ.kC1/ D arg max
ˇ

8<:X
i

li .ˇ/ � n

pX
jD1

p0�

�ˇ̌̌
ˇ
.k/
j

ˇ̌̌� ˇ̌
ˇj
ˇ̌9=;

The algorithm stops when kˇ.kC1/�ˇ.k/k is small. To save computing time, you can also choose a maximum
number of iterations. This number can be specified by the LLASTEPS= option.

The objective function is nondifferentiable. The optimization problem can be solved using an optimization
methods with constraints, by a variable transformation

ˇj D ˇ
C
j � ˇ

�
j ; ˇ

C
j � 0; ˇ

�
j � 0

For each fixed tuning parameter �, you can solve the preceding optimization problem to obtain an estimate
for ˇ. Because of the property of the L1 norm penalty, some of the coefficients in ˇ can be exactly zero. The
remaining question is to choose the best tuning parameter �. You can use either of the approaches that are
described in the following subsections.
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The GCV Approach

In the GCV approach, the generalized cross validation criteria (GCV) is computed for each value of � on a
predetermined grid f�1; : : : ; �Lg; the value of � that achieves the minimum of the GCV is the optimal tuning
parameter. The maximum value �L can be determined by lemma 1 in Park and Hastie (2007) as follows.
Suppose ˇ0 is free of penalty in the objective function. Let Ǒ0 be the MLE of ˇ0 by forcing the rest of the
parameters to be zero. Then the maximum value of � is

�L D arg max
�

�
max
�
W

ˇ̌̌̌
@l

@ˇj
. Ǒ0/

ˇ̌̌̌
� nP 0�.jˇj j/; j D 1; : : : ; p

�
D arg max

�

�ˇ̌̌̌
1

n

@l

@ˇj
. Ǒ0/

ˇ̌̌̌
; j D 1; : : : ; p

�

You can compute the GCV by using the LASSO framework. In the last step of Newton-Raphson approxima-
tion, you have

1

2
min
ˇ

.r2l.ˇ.k///1=2.ˇ � ˇ.k//C .r2l.ˇ.k///�1=2rl.ˇ.k//2 C n pX
jD1

p0�.jˇ
.k/
j j/jˇj j

The solution Ǒ satisfies

Ǒ � ˇ.k/ D �.r2l.ˇ.k// � 2W �/�1
�
rl.ˇ.k// � 2b

�
where

W � D ndiag.W �1 ; : : : ; W
�
p /

W �j D

8<:
p0
�
.jˇ

.k/

j
j/

jˇj j
; ifˇj ¤ 0

0; ifˇj D 0

b D ndiag.p0�.jˇ
.k/
1 j/sgn.ˇ1/; : : : ; p0�.jˇ

.k/
p j/sgn.ˇp//

Note that the intercept term has no penalty on its absolute value, and therefore the W �j term that corresponds
to the intercept is 0. More generally, you can make any parameter (such as the ˛ in the negative binomial
model) in the likelihood function free of penalty, and you treat them the same as the intercept.

The effective number of parameters is

e.�/ D tr
��
r
2l.ˇ.k//

�1=2 �
r
2l.ˇ.k// � 2W �

��1 �
r
2l.ˇ.k//

�1=2�
D tr

��
r
2l.ˇ.k// � 2W �

��1
r
2l.ˇ.k//

�
and the generalized cross validation error is

GCV.�/ D
l. Ǒ/

nŒ1 � e.�/=n�2
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The GCV1 Approach

Another form of GCV uses the number of nonzero coefficients as the degrees of freedom:

e1.�/ D

pX
jD0

1Œˇj¤0�

GCV1.�/ D
l. Ǒ/

nŒ1 � e1.�/=n�2

The standard errors follow the sandwich formula:

cov. Ǒ/ D
n
r
2l.ˇ.k// � 2W �

o�1bcov
�
rl.ˇ.k// � 2b

� n
r
2l.ˇ.k// � 2W �

o�1
D

n
r
2l.ˇ.k// � 2W �

o�1bcov
�
rl.ˇ.k//

� n
r
2l.ˇ.k// � 2W �

o�1
It is common practice to report only the standard errors of the nonzero parameters.

Panel Data Analysis

Panel Data Poisson Regression with Fixed Effects

The count regression model for panel data can be derived from the Poisson regression model. Consider the
multiplicative one-way panel data model,

yit � Poisson.�it /

where

�it D ˛i�it D ˛i exp.x0itˇ/; i D 1; : : : ; N; t D 1; : : : ; T

Here, ˛i are the individual effects.

In the fixed-effects model, the ˛i are unknown parameters. The fixed-effects model can be estimated by
eliminating ˛i by conditioning on

P
t yit .

In the random-effects model, the ˛i are independent and identically distributed (iid) random variables,
in contrast to the fixed effects model. The random-effects model can then be estimated by assuming a
distribution for ˛i .

In the Poisson fixed-effects model, conditional on �it and parameter ˛i , yit is iid Poisson-distributed with
parameter �it D ˛i�it D ˛i exp.x0itˇ/, and xit does not include an intercept. Then, the conditional joint
density for the outcomes within the ith panel is

P Œyi1; : : : ; yiTi j

TiX
tD1

yit � D P Œyi1; : : : ; yiTi ;

TiX
tD1

yit �=P Œ

TiX
tD1

yit �

D P Œyi1; : : : ; yiTi �=P Œ

TiX
tD1

yit �
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Because yit is iid Poisson(�it ), P Œyi1; : : : ; yiTi � is the product of Ti Poisson densities. Also, .
PTi
tD1 yit / is

Poisson(
PTi
tD1 �it ). Then,

P Œyi1; : : : ; yiTi j

TiX
tD1

yit � D

PTi
tD1.exp.��it /�

yit
it =yit Š/

exp.�
PTi
tD1 �it /

�PTi
tD1 �it

�PTi
tD1 yit

=
�PTi

tD1 yit

�
Š

D

exp.�
PTi
tD1 �it /

�QTi
tD1 �

yit
it

� �QTi
tD1 yit Š

�
exp.�

PTi
tD1 �it /

QTi
tD1

�PTi
sD1 �is

�yit
=
�PTi

tD1 yit

�
Š

D
.
PTi
tD1 yit /Š

.
QTi
tD1 yit Š/

TiY
tD1

 
�itPTi
sD1 �is

!yit

D
.
PTi
tD1 yit /Š

.
QTi
tD1 yit Š/

TiY
tD1

 
�itPTi
sD1 �is

!yit

Thus, the conditional log-likelihood function of the fixed-effects Poisson model is given by

L D
NX
iD1

24ln

0@. TiX
tD1

yit /Š

1A � TiX
tD1

ln.yit Š/C
TiX
tD1

yit ln

 
�itPTi
sD1 �is

!35
The gradient is

@L
@ˇ

D

NX
iD1

TiX
tD1

yitxit �

NX
iD1

TiX
tD1

"
yit

PTi
sD1

�
exp.x0isˇ/xis

�PTi
sD1 exp.x0isˇ/

#

D

NX
iD1

TiX
tD1

yit .xit � Nxi /

where

Nxi D
TiX
sD1

 
exp.x0isˇ/PTi
kD1

exp.x0
ik

ˇ/

!
xis

Panel Data Poisson Regression with Random Effects

In the Poisson random-effects model, conditional on �it and parameter ˛i , yit is iid Poisson-distributed with
parameter�it D ˛i�it D ˛i exp.x0itˇ/, and the individual effects, ˛i , are assumed to be iid random variables.
The joint density for observations in all time periods for the ith individual, P Œyi1; : : : ; yiT j�i1; : : : ; �iTi �,
can be obtained after the density g.˛/ of ˛i is specified.

Let

˛i � iid gamma.�; �/
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so that E.˛i / D 1 and V.˛i / D 1=� :

g.˛i / D
��

�.�/
˛��1i exp.��˛i /

Let �i D .�i1; : : : ; �iTi /. Because yit is conditional on �it and parameter ˛i is iid Poisson(�it D ˛i�it ), the
conditional joint probability for observations in all time periods for the ith individual, P Œyi1; : : : ; yiTi j�i ; ˛i �,
is the product of Ti Poisson densities:

P Œyi1; : : : ; yiTi j�i ; ˛i � D

TiY
tD1

P Œyit j�i ; ˛i �

D

TiY
tD1

"
exp.��it /�

yit
it

yit Š

#

D

24 TiY
tD1

e�˛i�it .˛i�it /
yit

yit Š

35
D

24 TiY
tD1

�
yit
it =yit Š

35�e�˛iPt �it˛Pt yiti

�

Then, the joint density for the ith panel conditional on just the � can be obtained by integrating out ˛i :

P Œyi1; : : : ; yiTi j�i � D

Z 1
0

P Œyi1; : : : ; yiT j�i ; ˛i �g.˛i /d˛i

D
��

�.�/

24 TiY
tD1

�
yit
it

yit Š

35Z 1
0

exp.�˛i
X
t

�it /˛
P
t yit

i ˛��1i exp.��˛i /d˛i

D
��

�.�/

24 TiY
tD1

�
yit
it

yit Š

35Z 1
0

exp

"
�˛i

 
� C

X
t

�it

!#
˛
�C

P
t yit�1

i d˛i

D

24 TiY
tD1

�
yit
it

yit Š

35 �.� CPt yit /

�.�/

�

�
�

� C
P
t �it

��  
� C

X
t

�it

!�Pt yit

D

24 TiY
tD1

�
yit
it

yit Š

35 �.˛�1 CPt yit /

�.˛�1/

�

�
˛�1

˛�1 C
P
t �it

�˛�1  
˛�1 C

X
t

�it

!�Pt yit

where ˛.D 1=�/ is the overdispersion parameter. This is the density of the Poisson random-effects model
with gamma-distributed random effects. For this distribution, E.yit / D �it and V.yit / D �it C ˛�2it ; that
is, there is overdispersion.
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Then the log-likelihood function is written as

L D

NX
iD1

8<:
TiX
tD1

ln.
�
yit
it

yit Š
/C ˛�1 ln.˛�1/ � ˛�1 ln.˛�1 C

TiX
tD1

�it /

9=;
C

NX
iD1

8<:�
0@ TiX
tD1

yit

1A ln

0@˛�1 C TiX
tD1

�it

1A
C ln

24�
0@˛�1 C TiX

tD1

yit

1A35 � ln.�.˛�1//

9=;
The gradient is

@L
@ˇ

D

NX
iD1

8<:
TiX
tD1

yitxit �
˛�1

PTi
tD1 �itxit

˛�1 C
PTi
tD1 �it

9=;
�

NX
iD1

8<:
0@ TiX
tD1

yit

1A PTi
tD1 �itxit

˛�1 C
PTi
tD1 �it

9=;
@L
@ˇ

D

NX
iD1

8<:
TiX
tD1

yitxit �
.˛�1 C

PTi
tD1 yit /.

PTi
tD1 �itxit /

˛�1 C
PTi
tD1 �it

9=;
and

@L
@˛

D

NX
iD1

8<:�˛�2
24Œ1C ln.˛�1/� �

.˛�1 C
PTi
tD1 yit /

.˛�1/C
PTi
tD1 �it

� ln

0@˛�1 C TiX
tD1

�it

1A359=;
C

NX
iD1

(
�˛�2

"
� 0.˛�1 C

PTi
tD1 yit /

�.˛�1 C
PTi
tD1 yit /

�
� 0.˛�1/

�.˛�1/

#)

where �it D exp.x0itˇ/, �
0.�/ D d�.�/=d.�/ and � 0.�/=�.�/ is the digamma function.

Panel Data Negative Binomial Regression with Fixed Effects

This section shows the derivation of a negative binomial model with fixed effects. Keep the assumptions of
the Poisson-distributed dependent variable

yit � Poisson .�it /

But now let the Poisson parameter be random with gamma distribution and parameters .�it ; ı/,

�it � � .�it ; ı/
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where one of the parameters is the exponentially affine function of independent variables �it D exp
�
x0itˇ

�
.

Use integration by parts to obtain the distribution of yit ,

P Œyit � D

Z 1
0

e��it�
yit
it

yit Š
f .�it / d�it

D
� .�it C yit /

� .�it / � .yit C 1/

�
ı

1C ı

��it � 1

1C ı

�yit
which is a negative binomial distribution with parameters .�it ; ı/. Conditional joint distribution is given as

P Œyi1; : : : ; yiTi j

TiX
tD1

yit � D

0@ TiY
tD1

� .�it C yit /

� .�it / � .yit C 1/

1A
�

0@�
�PTi

tD1 �it

�
�
�PTi

tD1 yit C 1
�

�
�PTi

tD1 �it C
PTi
tD1 yit

�
1A

Hence, the conditional fixed-effects negative binomial log-likelihood is

L D

NX
iD1

24log�

0@ TiX
tD1

�it

1AC log�

0@ TiX
tD1

yit C 1

1A � log�

0@ TiX
tD1

�it C

TiX
tD1

yit

1A35
C

NX
iD1

TiX
tD1

Œlog� .�it C yit / � log� .�it / � log� .yit C 1/�

The gradient is
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D

NX
iD1

240@� 0
�PTi
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�
�
�PTi
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� � � 0
�PTi
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tD1 yit

�
�
�PTi

tD1 �it C
PTi
tD1 yit

�
1A TiX
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�itxit

35
C

NX
iD1

� 0
�PTi

tD1 yit C 1
�

�
�PTi

tD1 yit C 1
�

C

NX
iD1

TiX
tD1

��
� 0 .�it C yit /

� .�it C yit /
�
� 0 .�it /

� .�it /

�
�itxit �

� 0 .yit C 1/

� .yit C 1/

�

Panel Data Negative Binomial Regression with Random Effects

This section describes the derivation of negative binomial model with random effects. Suppose

yit � Poisson .�it /

with the Poisson parameter distributed as gamma,

�it � � .�i�it ; ı/
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where its parameters are also random:

�i�it D exp
�
x0itˇ C �it

�
Assume that the distribution of a function of �i is beta with parameters .a; b/:

�i

1C �i
� Beta .a; b/

Explicitly, the beta density with Œ0; 1� domain is

f .z/ D ŒB .a; b/��1 za�1 .1 � z/b�1

where B .a; b/ is the beta function. Then, conditional joint distribution of dependent variables is

P Œyi1; : : : ; yiTi jxi1; : : : ; xiTi ; �i � D
TiY
tD1

� .�it C yit /

� .�it / � .yit C 1/

�
1

1C �i

��it � �i

1C �i

�yit
Integrating out the variable �i yields the following conditional distribution function:

P Œyi1; : : : ; yiTi jxi1; : : : ; xiTi � D
Z 1

0

24 TiY
tD1

� .�it C yit /

� .�it / � .yit C 1/
z
�it
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35f .zi / dzi
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� .aC b/ �
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�
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�
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� .�it C yit /

� .�it / � .yit C 1/

Consequently, the conditional log-likelihood function for a negative binomial model with random effects is
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The gradient is
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BY Groups and Scoring with an Item Store
If you use the BY statement in conjunction with the ITEMSTORE statement when you fit your model, then
the parameter estimates for each BY group are preserved in your item store.

You must use a BY statement if you want to score a data set by using an item store that was created when a
BY statement was provided. The names of the BY variables in the data set to be scored (hereafter referred to
as the scored data set) must match the names of the BY variables in the data set that is used to produce the
item store (hereafter referred to as the fitted data set). The order of the names of the BY variables in your BY
statement must match their order in the BY statement that was used when the item store was created.

The order in which the values of the BY variables appear in the scored data set does not have to match their
order in the fitted data set. Furthermore, not all the values of the BY variables that are present in the fitted
data set need to be present in the scored data set.

For example, suppose you have a data set named DocVisit that you use to fit a model by using a BY statement.
Your BY variable is named AgeGroup, and there are four values for the AgeGroup variable (0, 1, 2, and 3) in
the DocVisit data set.

In the first step, you use the following statements to fit your model by using the BY statement and generate
an item store named DocVisitByAgeGroup:

PROC COUNTREG data=DocVisit;
model doctorvisits = sex illness income / dist=poisson;
store DocVisitByAgeGroup;
by AgeGroup;
run;
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Now suppose you want to score a second data set named AdditionalPatients by using the DocVisitByAgeGroup
item store. Then the AdditionalPatients data set must contain a variable named AgeGroup, and the values
of this variable must be a subset of 0, 1, 2, and 3. Suppose that the values of the AgeGroup variable in the
AdditionalPatients data set are 1 and 3.

In that case, you can score the data set by using this second step:

PROC COUNTREG data=AdditionalPatients restore=DocVisitByAgeGroup;
score out=OutScores mean=meanPoisson probability=prob;
by AgeGroup;
run;

Because the AdditionalPatients data set contains two BY groups, PROC COUNTREG first extracts the
parameter estimates that are associated with the AgeGroup=1 BY group from the DocVisitByAgeGroup
item store and uses them to score the first BY group in the AdditionalPatients data set. Then, PROC
COUNTREG extracts the parameter estimates that are associated with the AgeGroup=3 BY group from the
DocVisitByAgeGroup item store and uses them to score the second BY group in the AdditionalPatients data
set.

What happens if your scored data set contains a value of the BY variable that is not present in the fitted
data set? Modifying the preceding example slightly, suppose the values of the AgeGroup variable in the
AdditionalPatients data set are 1, 2, 3, and 6. In that case, when the second step is submitted, PROC
COUNTREG scores the BY groups in which AgeGroup equals 1, 2, or 3, but it does not attempt to score the
BY group in which AgeGroup=6.

If you want to use the parameter estimates that are associated with a particular BY group in an item store to
score a data set that contains no BY variable, it is fairly easy to do so. First, you create a new data set based
on your original data set that includes an additional single-valued BY variable (whose value corresponds to
the BY group in the item store in which you are interested). Second, you use the new data set and the BY
statement to retrieve the parameter estimates of interest, which are then used to score the entire data set.

For example, suppose that the AdditionalPatients data set does not contain the AgeGroup variable. But
suppose you happen to know that all the observations in the AdditionalPatients data set fall within the age
group in which AgeGroup=2, as defined in the DocVisit data set. Then you could score the AdditionalPatients
data set by using the following steps.

First, you would create a new data set named AdditionalPatientsWithByVar, which essentially adds a variable
named AgeGroup, with its value set to 2, to each observation in the AdditionalPatients data set:

data AdditionalPatientsWithByVar;
set AdditionalPatients;
agegroup=2;
run;

Then, you would score the AdditionalPatientsWithByVar data set by using the DocVisitByAgeGroup item
store along with the BY statement, as follows:

PROC COUNTREG data=AdditionalPatientsWithByVar restore=DocVisitByAgeGroup;
score out=OutScores mean=meanPoisson probability=prob;
by AgeGroup;
run;
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Computational Resources
The time and memory that PROC COUNTREG requires are proportional to the number of parameters in the
model and the number of observations in the data set being analyzed. Less time and memory are required
for smaller models and fewer observations. Also affecting these resources are the method that is chosen to
calculate the variance-covariance matrix and the optimization method. All optimization methods available
through the METHOD= option have similar memory use requirements.

The processing time might differ for each method, depending on the number of iterations and functional calls
needed. The data set is read into memory to save processing time. If not enough memory is available to hold
the data, the COUNTREG procedure stores the data in a utility file on disk and rereads the data as needed
from this file. When this occurs, the execution time of the procedure increases substantially. The gradient
and the variance-covariance matrix must be held in memory. If the model has p parameters including the
intercept, then at least 8 � .p C p � .p C 1/=2/ bytes are needed. If the quasi-maximum likelihood method
is used to estimate the variance-covariance matrix (COVEST=QML), an additional 8 � p � .p C 1/=2 bytes
of memory are needed.

Time is also a function of the number of iterations needed to converge to a solution for the model parameters.
The number of iterations that are needed cannot be known in advance. The MAXITER= option can be used
to limit the number of iterations that PROC COUNTREG does. The convergence criteria can be altered by
nonlinear optimization options available in the PROC COUNTREG statement. For a list of all the nonlinear
optimization options, see Chapter 6, “Nonlinear Optimization Methods.”

Nonlinear Optimization Options
PROC COUNTREG uses the nonlinear optimization (NLO) subsystem to perform nonlinear optimization
tasks. In the PROC COUNTREG statement, you can specify nonlinear optimization options that are then
passed to the NLO subsystem. For a list of all the nonlinear optimization options, see Chapter 6, “Nonlinear
Optimization Methods.”

Covariance Matrix Types
The COUNTREG procedure enables you to specify the estimation method for the covariance matrix. The
COVEST=HESSIAN option estimates the covariance matrix based on the inverse of the Hessian matrix,
COVEST=OP uses the outer product of gradients, and COVEST=QML produces the covariance matrix based
on both the Hessian and outer product matrices. The default is COVEST=HESSIAN.

Although all three methods produce asymptotically equivalent results, they differ in computational intensity
and produce results that might differ in finite samples. The COVEST=OP option provides the covariance
matrix that is typically the easiest to compute. In some cases, the OP approximation is considered more
efficient than the Hessian or QML approximation because it contains fewer random elements. The QML
approximation is computationally the most complex because both the outer product of gradients and the
Hessian matrix are required. In most cases, OP or Hessian approximation is preferred to QML. The need to
use QML approximation arises in some cases when the model is misspecified and the information matrix
equality does not hold.
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Displayed Output
PROC COUNTREG produces the following displayed output.

Class Level Information

If you specify the CLASS statement, the COUNTREG procedure displays a table that contains the following
information:

• class variable name

• number of levels of the class variable

• list of values of the class variable

Iteration History for Parameter Estimates

If you specify the ITPRINT or PRINTALL option in the PROC COUNTREG statement, PROC COUNTREG
displays a table that contains the following information for each iteration. Some information is specific to the
model-fitting procedure that you choose (for example, Newton-Raphson, trust region, quasi-Newton).

• iteration number

• number of restarts since the fitting began

• number of function calls

• number of active constraints at the current solution

• value of the objective function (–1 times the log-likelihood value) at the current solution

• change in the objective function from previous iteration

• value of the maximum absolute gradient element

• step size (for Newton-Raphson and quasi-Newton methods)

• slope of the current search direction (for Newton-Raphson and quasi-Newton methods)

• lambda (for trust region method)

• radius value at current iteration (for trust region method)
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Model Fit Summary

The “Model Fit Summary” table contains the following information:

• dependent (count) variable name

• number of observations used

• number of missing values in data set, if any

• data set name

• type of model that was fit

• parameterization for the Conway-Maxwell-Poisson model

• offset variable name, if any

• zero-inflated link function, if any

• zero-inflated offset variable name, if any

• log-likelihood value at solution

• maximum absolute gradient at solution

• number of iterations

• AIC value at solution (a smaller value indicates better fit)

• SBC value at solution (a smaller value indicates better fit)

Under the “Model Fit Summary” is a statement about whether the algorithm successfully converged.

Parameter Estimates

The “Parameter Estimates” table gives the estimates of the model parameters. In zero-inflated (ZI) models,
estimates are also given for the ZI intercept and ZI regressor parameters labeled with the prefix “Inf_”.
For example, the ZI intercept is labeled “Inf_intercept”. If you specify “Age” as a ZI regressor, then the
“Parameter Estimates” table labels the corresponding parameter estimate “Inf_Age”. If you do not list any ZI
regressors, then only the ZI intercept term is estimated.

If the DISPMODEL statement is specified for the Conway-Maxwell-Poisson model, the estimates are given
for the dispersion intercept, and parameters are labeled with the prefix “Dsp_”. For example, the dispersion
model intercept is labeled “Dsp_Intercept”. If you specify “Education” as a dispersion model regressor, then
the “Parameter Estimates” table labels the corresponding parameter estimate “Dsp_Education”. If you do not
list any dispersion regressors, then only the dispersion intercept is estimated.

“_Alpha” is the negative binomial dispersion parameter. The t statistic given for “_Alpha” is a test of
overdispersion.
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Last Evaluation of the Gradient

If you specify the model option ITPRINT, the COUNTREG procedure displays the last evaluation of the
gradient vector.

Covariance of Parameter Estimates

If you specify the COVB option in the MODEL statement or in the PROC COUNTREG statement, the
COUNTREG procedure displays the estimated covariance matrix, defined as the inverse of the information
matrix at the final iteration.

Correlation of Parameter Estimates

If you specify the CORRB option in the MODEL statement or in the PROC COUNTREG statement, PROC
COUNTREG displays the estimated correlation matrix. It is based on the Hessian matrix that is used in the
final iteration.

Bayesian Analysis
To perform Bayesian analysis, you must specify a BAYES statement. Unless otherwise stated, all options in
this section are options in the BAYES statement.

By default, PROC COUNTREG uses the random walk Metropolis algorithm to obtain posterior samples.
For information about implementing the Metropolis algorithm in PROC COUNTREG, such as blocking the
parameters and tuning the covariance matrices, see the sections “Blocking of Parameters” on page 620 and
“Tuning the Proposal Distribution” on page 620.

The Bayes theorem states that

p.� jy/ / �.�/L.yj�/

where � is a parameter or a vector of parameters and �.�/ is the product of the prior densities that are
specified in the PRIOR statement. The term L.yj�/ is the likelihood that is associated with the MODEL
statement.

Blocking of Parameters

In a multivariate parameter model, all the parameters are updated in one single block (by default or when
you specify the SAMPLING=MULTIMETROPOLIS option). This could be inefficient, especially when
parameters have vastly different scales. As an alternative, you could update the parameters one at a time (by
specifying SAMPLING=UNIMETROPOLIS).

Tuning the Proposal Distribution

One key factor in achieving high efficiency of a Metropolis-based Markov chain is finding a good proposal
distribution for each block of parameters. This process is called tuning. The tuning phase consists of a number
of loops that are controlled by the options MINTUNE= and MAXTUNE=. The MINTUNE= option controls
the minimum number of tuning loops and has a default value of 2. The MAXTUNE= option controls the
maximum number of tuning loops and has a default value of 24. Each loop iterates the number of times that
are specified by the NTU= option, which has a default of 500. At the end of every loop, PROC COUNTREG
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examines the acceptance probability for each block. The acceptance probability is the percentage of samples,
specified by the NTU= option, that have been accepted. If this probability does not fall within the acceptable
tolerance range (see the following section), the proposal distribution is modified before the next tuning loop
begins.

A good proposal distribution should resemble the actual posterior distribution of the parameters. Large
sample theory states that the posterior distribution of the parameters approaches a multivariate normal
distribution (see Gelman et al. 2004, Appendix B; Schervish 1995, Section 7.4). That is why a normal
proposal distribution often works well in practice. The default proposal distribution in PROC COUNTREG
is the normal distribution.

Scale Tuning
The acceptance rate is closely related to the sampling efficiency of a Metropolis chain. For a random walk
Metropolis, a high acceptance rate means that most new samples occur right around the current data point.
Their frequent acceptance means that the Markov chain is moving rather slowly and not exploring the
parameter space fully. A low acceptance rate means that the proposed samples are often rejected; hence the
chain is not moving much. An efficient Metropolis sampler has an acceptance rate that is neither too high
nor too low. The scale c in the proposal distribution q.�j�/ effectively controls this acceptance probability.
Roberts, Gelman, and Gilks (1997) show that if both the target and proposal densities are normal, the optimal
acceptance probability (TargetAcceptance) for the Markov chain should be around 0.45 in a one-dimensional
problem and should asymptotically approach 0.234 in higher-dimensional problems. The corresponding
optimal scale is 2.38, which is the initial scale that is set for each block.

Because of the nature of stochastic simulations, it is impossible to fine-tune a set of variables so that the
Metropolis chain has exactly the desired acceptance rate that you want. In addition, Roberts and Rosenthal
(2001) empirically demonstrate that an acceptance rate between 0.15 and 0.5 is at least 80% efficient,
so there is really no need to fine-tune the algorithms to reach an acceptance probability that is within a
small tolerance of the optimal values. PROC COUNTREG works with a probability range, determined by
TargetAcceptance ˙ 0:075. If the observed acceptance rate in a given tuning loop is less than the lower
bound of the range, the scale is reduced; if the observed acceptance rate is greater than the upper bound of
the range, the scale is increased. During the tuning phase, a scale parameter in the normal distribution is
adjusted as a function of the observed acceptance rate and the target acceptance rate. PROC COUNTREG
uses the updating scheme1

cnew D
ccur �ˆ�1.popt=2/

ˆ�1.pcur=2/

where ccur is the current scale, pcur is the current acceptance rate, and popt is the optimal acceptance
probability.

1 Roberts, Gelman, and Gilks (1997) and Roberts and Rosenthal (2001) demonstrate that the relationship between acceptance
probability and scale in a random walk Metropolis scheme is p D 2ˆ

�
�
p
Ic=2

�
, where c is the scale, p is the acceptance rate, ˆ

is the CDF of a standard normal, and I � Ef Œ.f
0.x/=f .x//2�, f .x/ is the density function of samples (Roberts, Gelman, and

Gilks 1997; Roberts and Rosenthal 2001). This relationship determines the updating scheme, with I replaced by the identity matrix
to simplify calculation.



622 F Chapter 11: The COUNTREG Procedure

Covariance Tuning
To tune a covariance matrix, PROC COUNTREG takes a weighted average of the old proposal covariance
matrix and the recent observed covariance matrix, based on the number of samples (as specified by the NTU=
option) in the current loop. The formula to update the covariance matrix is

COVnew D 0:75 COVcur C 0:25 COVold

There are two ways to initialize the covariance matrix:

• The default is an identity matrix that is multiplied by the initial scale of 2.38 and divided by the square
root of the number of estimated parameters in the model. A number of tuning phases might be required
before the proposal distribution is tuned to its optimal stage, because the Markov chain needs to spend
time learning about the posterior covariance structure. If the posterior variances of your parameters
vary by more than a few orders of magnitude, if the variances of your parameters are much different
from 1, or if the posterior correlations are high, then the proposal tuning algorithm might have difficulty
forming an acceptable proposal distribution.

• Alternatively, you can use a numerical optimization routine, such as the quasi-Newton method, to find
a starting covariance matrix. The optimization is performed on the joint posterior distribution, and the
covariance matrix is a quadratic approximation at the posterior mode. In some cases this is a better
and more efficient way of initializing the covariance matrix. However, there are cases, such as when
the number of parameters is large, in which the optimization could fail to find a matrix that is positive
definite. In those cases, the tuning covariance matrix is reset to the identity matrix.

A by-product of the optimization routine is that it also finds the maximum a posteriori (MAP) estimates with
respect to the posterior distribution. The MAP estimates are used as the initial values of the Markov chain.

For more information, see the section “INIT Statement” on page 576.

Initial Values of the Markov Chains

You can assign initial values to any parameters. (For more information, see the section “INIT Statement” on
page 576) If you use the optimization option PROPCOV=, then PROC COUNTREG starts the tuning at the
optimized values. This option overwrites the provided initial values. If you specify the RANDINIT option,
the information that the INIT statement provides is overwritten.

Aggregation of Multiple Chains

When you want to exploit the possibility of running several MCMC instances at the same time (that is, the
value of the NTRDS= option is greater than 1), you face the problem of aggregating the chains. In ordinary
applications, each MCMC instance can easily obtain stationary samples from the entire posterior distribution.
In these applications, you can use the option AGGREGATION=NOWEIGHTED. This option piles one
chain on top of another and makes no particular adjustment. However, when the posterior distribution is
characterized by multiple distinct posterior modes, some of the MCMC instances fail to obtain stationary
samples from the entire posterior distribution. You can use the option AGGREGATION=WEIGHTED when
the posterior samples from each MCMC instance approximate well only a part of the posterior distribution.

The main idea behind the option AGGREGATION=WEIGHTED is to consider the entire posterior distribution
to be similar to a mixture distribution. When you are sampling with multiple threads, each MCMC instance
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samples from one of the mixture components. Then the samples from each mixture component are aggregated
together using a resampling scheme in which weights are proportional to the nonnormalized posterior
distribution.

Description of the Algorithm
The preliminary step of the aggregation that is implied by the option AGGREGATION=WEIGHTED is to
run several (K) independent instances of the MCMC algorithm. Each instance searches for a set of stationary
samples. Notice that the concept of stationarity is weaker: each instance might be able to explore not the
entire posterior but only portions of it. In the following, each column represents the output from one MCMC
instance:0BB@

x11
x21
: : :

xn1

1CCA
0BB@
x12
x22
: : :

xn2

1CCA : : :
0BB@
x1K
x2K
: : :

xnK

1CCA � globally or locally sampled from the posterior

If the length of each chain is less than n, you can augment the corresponding chain by subsampling the chain
itself. Each chain is then sorted with respect to the nonnormalized posterior density: �.xŒ1�:/ � �.xŒ2�:/ �
� � ��.xŒn�:/. Therefore,0BB@

x11
x21
: : :

xn1

1CCA
0BB@
x12
x22
: : :

xn2

1CCA : : :
0BB@
x1K
x2K
: : :

xnK

1CCA!
0BB@
xŒ1�1
xŒ2�1
: : :

xŒn�1

1CCA
0BB@
xŒ1�2
xŒ2�2
: : :

xŒn�2

1CCA : : :
0BB@
xŒ1�K
xŒ2�K
: : :

xŒn�K

1CCA
The final step is to use a multinomial sampler to resample each row i with weights proportional to the
nonnormalized posterior densities:ex.i�1/KC1;ex.i�1/KC2; : : : ;ex.i�1/KCK � Multinom

�
xŒi�1; xŒi�2; : : : ; xŒi�K I�.xŒi�1/; �.xŒi�2/; : : : ; �.xŒi�K/

�
The resulting posterior sample,ex1;ex2; : : : ;exK ; : : : ;ex.i�1/KC1;ex.i�1/KC2; : : : ;ex.i�1/KCK ; : : : ;ex.n�1/KC1;ex.n�1/KC2; : : : ;exnK
is a good approximation of the posterior distribution that is characterized by multiple modes.

Automated Initialization of MCMC

The MCMC methods can generate samples from the posterior distribution. The correct implementation of
these methods often requires the stationarity analysis, convergence analysis, and accuracy analysis of the
posterior samples. These analyses usually imply the following:

• initialization of the proposal distribution

• initialization of the chains (starting values)

• determination of the burn-in

• determination of the length of the chains

In more general terms, this determination is equivalent to deciding whether the samples are drawn from the
posterior distribution (stationarity analysis) and whether the number of samples is large enough to accurately
approximate the posterior distribution (accuracy analysis). You can use the AUTOMCMC option to automate
and facilitate the stationary analysis and the accuracy analysis.
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Description of the Algorithm
The algorithm has two phases. In the first phase, the stationarity phase, the algorithm tries to generate
stationary samples from the posterior distribution. In the second phase, the accuracy phase, the algorithm
searches for an accurate representation of the posterior distribution. The algorithm implements the following
tools:

• Geweke test to check stationarity

• Heidelberger-Welch test to check stationarity and provide a proxy for the burn-in

• Heidelberger-Welch halfwidth test to check the accuracy of the posterior mean

• Raftery-Lewis test to check the accuracy of a specified percentile (indirectly providing a proxy for the
number of required samples)

• effective sample size analysis to determine a proxy for the number of required samples

During the stationarity phase, the algorithm searches for stationarity. The number of attempts that the
algorithm makes is determined by the ATTEMPTS= option. During each attempt, a preliminary tuning stage
chooses a proposal distribution for the MCMC sampler. At the end of the preliminary tuning phase, the
algorithm analyzes tests for the stationarity of the samples. If the percentage of successful stationary tests is
greater than or equal to the percentage that is indicated by the TOL= option, then the posterior sample is
considered to be stationary. If the sample cannot be considered stationary, then the algorithm attempts to
achieve stationarity by changing some of the initialization parameters as follows:

• increasing the number of tuning samples (NTU= option)

• increasing the number of posterior samples (NMC= option)

• increasing the burn-in (NBI= option)

Figure 11.6 shows a flowchart of the AUTOMCMC algorithm as it searches for stationarity.
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Figure 11.6 Flowchart of the AUTOMCMC Algorithm: Stationarity Analysis

You can initialize NMC=M, NBI=B, and NTU=T during the stationarity phase by specifying the NMC=,
NBI=, and NTU= options in the BAYES statement. You can also change the minimum stationarity acceptance
ratio of successful stationarity tests that are needed to exit the stationarity phase. By default, TOL=0.95. For
example:

proc countreg data=dataset;
...;
bayes nmc=M nbi=B ntu=T automcmc=( stationarity=(tol=0.95) );
...;

run;

During the accuracy phase, the algorithm attempts to determine how many posterior samples are needed.
The number of attempts is determined by the ATTEMPTS= option. You can choose between two different
approaches to study the accuracy:

• accuracy analysis based on the effective sample size (ESS)

• accuracy analysis based on the Heidelberger-Welch halfwidth test and the Raftery-Lewis test

If you choose the effective sample size approach, you must provide the minimum number of effective samples
that are needed. You can also change the tolerance for the ESS accuracy analysis (by default, TOL=0.95).
For example:
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proc countreg data=dataset;
...;
bayes automcmc=(targetess=N accuracy=(tol=0.95));
...;

run;

Figure 11.7 shows a flowchart of the AUTOMCMC algorithm based on the effective sample size approach to
determine whether the samples provide an accurate representation of the posterior distribution.

Figure 11.7 Flowchart of the AUTOMCMC Algorithm: Accuracy Analysis Based on the ESS

If you choose the accuracy analysis based on the Heidelberger-Welch halfwidht test and the Raftery-Lewis
test (the default option), then you might want to choose a posterior quantile of interest for the Raftery-Lewis
test (by default, 0.025). You can also change the tolerance for the accuracy analysis (by default, TOL=0.95).
Notice that the Raftery-Lewis test produces a proxy for the number of posterior samples that are required.
In each attempt, the current number of posterior samples is compared to this proxy. If the proxy is greater
than the current NMC, then the algorithm reinitializes itself. To control this reinitialization, you can use the
option RLLIMITS=(LB=lb UB=ub). In particular, there are three cases

• If the proxy is greater than ub, then NMC is set equal to ub.

• If the proxy is less than lb, then NMC is set equal to lb.

• If lb is less than the proxy, which is less than ub, then NMC is set equal to the proxy.
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For example:

proc countreg data=dataset;
...;
bayes raftery(q=0.025) automcmc=( accuracy=(tol=0.95 targetstats=(rllimits=(lb=k1 ub=k2))) );
...;

run;

Figure 11.8 shows a flowchart of the AUTOMCMC algorithm based on the Heidelberger-Welch halfwidth
test and the Raftery-Lewis test approach to determine whether the posterior samples provide an accurate
representation of the posterior distribution.

Figure 11.8 Flowchart of the AUTOMCMC Algorithm: Accuracy Analysis Based on the Heidelberger-Welch
Halfwidth Test and the Raftery-Lewis Test

Prior Distributions
The PRIOR statement is used to specify the prior distribution of the model parameters. You must specify a
list of parameters, a tilde (Ï), and then a distribution and its parameters. You can specify multiple PRIOR
statements to define independent priors. Parameters that are associated with a regressor variable are referred
to by the name of the corresponding regressor variable.
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You can specify the special keyword _REGRESSORS to consider all the regressors of a model. If multiple
prior statements affect the same parameter, the prior that is specified is used. For example, in a regression
that uses three regressors (X1, X2, X3), the following statements imply that the prior on X1 is NOR-
MAL(MEAN=0, VAR=1), the prior on X2 is GAMMA(SHAPE=3, SCALE=4), and the prior on X3 is
UNIFORM(MIN=0, MAX=1):

...
prior _Regressors ~ uniform(min=0, max=1);
prior X1 X2 ~ gamma(shape=3, scale=4);
prior X1 ~ normal(mean=0, var=1);
...

If a parameter is not associated with a PRIOR statement or if some of the prior hyperparameters are missing,
then the default choices shown in Table 11.3 are considered.

Table 11.3 Default Values for Prior Distributions

PRIOR distribution Hyperparameter1 Hyperparameter2 Min Max Parameters Default Choice
NORMAL MEAN=0 VAR=1E6 �1 1 Regression-Location-Threshold
IGAMMA SHAPE=2.000001 SCALE=1 > 0 1 Scale
GAMMA SHAPE=1 SCALE=1 0 1

UNIFORM �1 1

BETA SHAPE1=1 SHAPE2=1 �1 1

T LOCATION=0 DF=3 �1 1

For density specifications, see the section “Standard Distributions” on page 630.

Automated MCMC Algorithm
The main purpose of the automated MCMC algorithm is to provide the user with the opportunity to obtain a
good approximation of the posterior distribution without initializing the MCMC algorithm: initial values,
proposal distributions, burn-in, and number of samples.

The automated MCMC algorithm has two phases: tuning and sampling. The tuning phase has two main
concerns: the choice of a good proposal distribution and the search for the stationary region of the posterior
distribution. In the sampling phase, the algorithm decides how many samples are necessary to obtain good
approximations of the posterior mean and some quantiles of interest.

Tuning Phase

During the tuning phase, the algorithm tries to search for a good proposal distribution and, at the same
time, to reach the stationary region of the posterior. The choice of the proposal distribution is based on the
analysis of the acceptance rates. This is similar to what is done in PROC MCMC; for more information, see
Chapter 61, “The MCMC Procedure” (SAS/STAT User’s Guide). For the stationarity analysis, the main idea
is to run two tests, Geweke (Ge) and Heidleberger-Welch (HW), on the posterior chains at the end of each
attempt. For more information, see Chapter 7, “Introduction to Bayesian Analysis Procedures” (SAS/STAT
User’s Guide). If the stationarity hypothesis is rejected, then the number of tuning samples is increased and
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the tests are repeated in the next attempt. After 10 attempts, the tuning phase ends regardless of the results.
The tuning parameters for the first attempt are fixed:

0 burn-in (nbi)
1000 tuning samples (ntu)
10000 MCMC samples (nmc)

For the remaining attempts, the tuning parameters are adjusted dynamically. More specifically, each parameter
is assigned an acceptance ratio (AR) of the stationarity hypothesis,

ARi D 0 if both tests reject the stationarity hypothesis
ARi D 0:5 if only one test rejects the stationarity hypothesis
ARi D 1 if neither test rejects the stationarity hypothesis

for i D 1; : : : ; k. Then, an overall stationarity average (SA) for all parameters ratios is evaluated,

SA D
kX
iD1

ARi
k

and the number of tuning samples is updated accordingly:

ntu D ntuC 2000 if SA < 70%
ntu D ntuC 1000 if 70% � SA < 100%
ntu D ntu if SA D 100%

The Heidelberger-Welch test also provides an indication of how much burn-in should be used. The algorithm
requires this burn-in to be nbi.HW/ D 0. If that is not the case, the burn-in is updated accordingly,
nbi D nbiCnbi.HW/, and a new tuning attempt is made. This choice is motivated by the fact that the burn-in
must be discarded in order to reach the stationary region of the posterior distribution.

The number of samples that the Raftery-Lewis nmc(RL) diagnostic tool predicts is also considered: nmc D
nmc C nmc.RL/. For more information, see Chapter 7, “Introduction to Bayesian Analysis Procedures”
(SAS/STAT User’s Guide). However, in order to exit the tuning phase, nmc.RL/ D 0 is not required.

Sampling Phase

The main purpose of the sampling phase is to make sure that the mean and a quantile of interest are evaluated
accurately. This can be tested by implementing the Heidelberger-Welch halfwidth test and by using the
Raftery-Lewis diagnostic tool. In addition, the requirements that are defined in the tuning phase are also
checked: the Geweke and Heidelberger-Welch tests must not reject the stationary hypothesis, and the burn-in
that the Heidelberger-Welch test predicts must be zero.

The sampling phase has a maximum of 10 attempts. If the algorithm exceeds this limit, the sampling phase
ends and indications of how to improve sampling are given. The sampling phase first updates the burn-in
with the information provided by the Heidelberger-Welch test: nbi D nbiC nbi.HW/. Then, it determines
the difference between the actual number of samples and the number of samples that are predicted by the
Raftery-Lewis test: �Œnmc.RL/� D nmc.RL/ � nmc. The new number of samples is updated accordingly:

nmc D nmcC 1000 if 0 < �Œnmc.RL/� � 10000
nmc D nmcC�Œnmc.RL/� if 10000 < �Œnmc.RL/� � 300000
nmc D nmcC 300000 if 300000 < �Œnmc.RL/�
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Finally, the Heidelberger-Welch halfwidth test checks whether the sample mean is accurate. If the mean of
any parameters is not considered to be accurate, the number of samples is increased:

nmc D nmcC f10000 ��Œnmc.RL/�g if 10000 ��Œnmc.RL/� � 0
nmc D nmc if 10000 ��Œnmc.RL/� < 0

Standard Distributions

Table 11.4 through Table 11.9 show all the distribution density functions that PROC COUNTREG recognizes.
You specify these distribution densities in the PRIOR statement.

Table 11.4 Beta Distribution

PRIOR statement BETA(SHAPE1=a, SHAPE2=b, MIN=m, MAX=M)

Note: Commonly m D 0 and M D 1.

Density .��m/a�1.M��/b�1

B.a;b/.M�m/aCb�1

Parameter restriction a > 0, b > 0, �1 < m < M <1

Range

8̂̂̂̂
<̂̂
ˆ̂̂̂:
Œm;M� when a D 1; b D 1

Œm;M/ when a D 1; b ¤ 1

.m;M� when a ¤ 1; b D 1

.m;M/ otherwise

Mean a
aCb
� .M �m/Cm

Variance ab
.aCb/2.aCbC1/

� .M �m/2

Mode

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

a�1
aCb�2

�M C b�1
aCb�2

�m a > 1; b > 1

m and M a < 1; b < 1

m

(
a < 1; b � 1

a D 1; b > 1

M

(
a � 1; b < 1

a > 1; b D 1

not unique a D b D 1

Defaults SHAPE1=SHAPE2=1, MIN! �1, MAX!1

Table 11.5 Gamma Distribution

PRIOR statement GAMMA(SHAPE=a, SCALE=b )

Density 1
ba�.a/

�a�1e��=b

Parameter restriction a > 0; b > 0

Range Œ0;1/

Mean ab

Variance ab2
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Mode .a � 1/b

Defaults SHAPE=SCALE=1

Table 11.6 Inverse Gamma Distribution

PRIOR statement IGAMMA(SHAPE=a, SCALE=b)

Density ba

�.a/
��.aC1/e�b=�

Parameter restriction a > 0; b > 0

Range 0 < � <1

Mean b
a�1

; a > 1

Variance b2

.a�1/2.a�2/
; a > 2

Mode b
aC1

Defaults SHAPE=2.000001, SCALE=1

Table 11.7 Normal Distribution

PRIOR statement NORMAL(MEAN=�, VAR=�2)

Density 1

�
p
2�

exp
�
�
.���/2

2�2

�
Parameter restriction �2 > 0

Range �1 < � <1

Mean �

Variance �2

Mode �

Defaults MEAN=0, VAR=1000000

Table 11.8 t Distribution

PRIOR statement T(LOCATION=�, DF=�)

Density
�
�
�C1
2

�
�.�2 /

p
��

h
1C .���/2

�

i��C1
2

Parameter restriction � > 0

Range �1 < � <1

Mean �; for � > 1

Variance �
��2

; for � > 2

Mode �

Defaults LOCATION=0, DF=3
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Table 11.9 Uniform Distribution

PRIOR statement UNIFORM(MIN=m, MAX=M)

Density 1
M�m

Parameter restriction �1 < m < M <1

Range � 2 Œm;M�

Mean mCM
2

Variance .M�m/2

12

Mode Not unique

Defaults MIN! �1, MAX!1

OUTPUT OUT= Data Set
The OUTPUT statement creates a new SAS data set that contains all the variables in the input data set and,
optionally, the estimates of x0iˇ, the expected value of the response variable, and the probability that the
response variable will take the current value or other values that you specify. In a zero-inflated model, you
can also request that the output data set contain the estimates of z0i , and the probability that the response is
zero as a result of the zero-generating process. In a Conway-Maxwell-Poisson model, you can also request
that the output data set contains estimates of g0iı, �, �, �, mode, variance and dispersion.

Except for the probability of the current value, these statistics can be computed for all observations in which
the regressors are not missing, even if the response is missing. By adding observations that have missing
response values to the input data set, you can compute these statistics for new observations or for settings of
the regressors that are not present in the data without affecting the model fit.

OUTEST= Data Set
The OUTEST= data set is has two rows: the first row (with _TYPE_=‘PARM’) contains each of the parameter
estimates in the model, and the second row (with _TYPE_=‘STD’) contains the standard errors for the
parameter estimates in the model.

If you specify the COVOUT option in the PROC COUNTREG statement, the OUTEST= data set also
contains the covariance matrix for the parameter estimates. The covariance matrix appears in the observations
for which _TYPE_=‘COV’, and the _NAME_ variable labels the rows with the parameter names.

The names of the parameters are used as variable names. These are the same names that are used in the INIT,
BOUNDS, and RESTRICT statements.

ODS Table Names
PROC COUNTREG assigns a name to each table that it creates. You can use these names to denote the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 11.10.
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Table 11.10 ODS Tables Produced in PROC COUNTREG

ODS Table Name Description Option

ODS Tables Created by the MODEL Statement
ClassLevels Class levels Default
FitSummary Summary of nonlinear estimation Default
ConvergenceStatus Convergence status Default
ParameterEstimates Parameter estimates Default
CovB Covariance of parameter estimates COVB
CorrB Correlation of parameter estimates CORRB
InputOptions Input options ITPRINT
IterStart Optimization start ITPRINT
IterHist Iteration history ITPRINT
IterStop Optimization results ITPRINT
ParameterEstimatesResults Parameter estimates ITPRINT
ParameterEstimatesStart Parameter estimates ITPRINT
ProblemDescription Problem description ITPRINT
ODS Tables Created by the BAYES Statement
AutoCorr Autocorrelation statistics for each parameter Default
Corr Correlation matrix of the posterior samples STATS=COR
Cov Covariance matrix of the posterior samples STATS=COV
ESS Effective sample size for each parameter Default
MCSE Monte Carlo standard error for each parameter Default
Geweke Geweke diagnostics for each parameter Default
Heidelberger Heidelberger-Welch diagnostics for each parame-

ter
DIAGNOSTICS=HEIDEL

PostIntervals Equal-tail and HPD intervals for each parameter Default
PosteriorSample Posterior samples (ODS output

data set only)
PostSummaries Posterior summaries Default
PriorSample Prior samples used for prior predictive analysis (ODS output

data set only)
PriorSummaries Prior summaries STATS=PRIOR
Raftery Raftery-Lewis diagnostics for each parameter DIAGNOSTICS=RAFTERY

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” in that chapter.
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The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

This section describes the use of ODS Graphics to create graphics by using the COUNTREG procedure.

To request these graphs, you must specify the ODS GRAPHICS ON statement. There is no default plot for
the COUNTREG procedure. If, in addition to the ODS GRAPHICS statement, you specify the ALL option
in the PROC COUNTREG statement, then all applicable plots are created.

ODS Graph Names

PROC COUNTREG assigns a name to each graph that it creates using ODS. You can use these names to
refer to the graphs when using ODS. The names are listed in Table 11.11.

Table 11.11 ODS Graphics Produced in PROC AUTOREG

ODS Table Name Description Plots= Option

PredProbPlot Predictive probability plot PLOTS(CNTLVLS)=PREDPROB
ProfileLikPlot Profile likelihood functions PLOTS(UNPACK)=PROFILELIKE

or PROLIK
OverDispersion Overdispersion diagnostic plot PLOTS=DISPERSION
ZpProfilePlot Zero-probability and zero-inflation

profile plot
PLOTS(UNPACK)=ZEROPROFILE
or ZPPRO

PredProfilePlot Predictive probability profile plot PLOTS(UNPACK
CNTLVLS)=PREDPRO or
PREDPROFILE

Table 11.12 Graphs Produced by PROC CONTREG When a
BAYES Statement Is Included

ODS Graph Name Plot Description Statement and Option

Bayesian Diagnostic Plots
ADPanel Autocorrelation function and density panel PLOTS=(AUTOCORR

DENSITY)
AutocorrPanel Autocorrelation function panel PLOTS=AUTOCORR
AutocorrPlot Autocorrelation function plot PLOTS(UNPACK)=AUTOCORR
DensityPanel Density panel PLOTS=DENSITY
DensityPlot Density plot PLOTS(UNPACK)=DENSITY
TAPanel Trace and autocorrelation function panel PLOTS=(TRACE AUTOCORR)
TADPanel Trace, density, and autocorrelation function panel PLOTS=(TRACE AUTOCORR

DENSITY)
PLOTS=BAYESDIAG

TDPanel Trace and density panel PLOTS=(TRACE DENSITY)
TracePanel Trace panel PLOTS=TRACE
TracePlot Trace plot PLOTS(UNPACK)=TRACE
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Table 11.12 continued

ODS Graph Name Plot Description Statement and Option

Bayesian Summary Plots
BayesSumPlot Prior/posterior densities and MLE PLOTS=BAYESSUM

Examples: COUNTREG Procedure

Example 11.1: Basic Models

Data Description and Objective

The data set DocVisit contains information for approximately 5,000 Australian individuals about the number
and possible determinants of doctor visits that were made during a two-week interval. This data set contains a
subset of variables that are taken from the Racd3 data set used by Cameron and Trivedi (1998). The DocVisit
data set can be found in the SAS/ETS Sample Library.

The variable Doctorco represents doctor visits. Additional variables in the data set that you want to evaluate
as determinants of doctor visits include Sex (coded 0=male, 1=female), Age (age in years divided by 100),
Illness (number of illnesses during the two-week interval, with five or more coded as five), Income (annual
income in Australian dollars divided by 1,000), and Hscore (a score on a general health questionnaire, in
which a high score indicates bad health). Summary statistics for these variables are computed in the following
statements and presented in Output 11.1.1.

proc means data=docvisit;
var doctorco sex age illness income hscore;

run;

Output 11.1.1 Summary Statistics

The MEANS ProcedureThe MEANS Procedure

Variable N Mean Std Dev Minimum Maximum

doctorco
sex
age
illness
income
hscore

5190
5190
5190
5190
5190
5190

0.3017341
0.5206166
0.4063854
1.4319846
0.5831599
1.2175337

0.7981338
0.4996229
0.2047818
1.3841524
0.3689067
2.1242665

0
0

0.1900000
0
0
0

9.0000000
1.0000000
0.7200000
5.0000000
1.5000000
12.0000000
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Poisson Model

The following statements fit a Poisson model to the data by using the covariates Sex, Illness, Income, and
Hscore:

proc countreg data=docvisit plots(only counts(0 to 4 by 1))=(predprob predpro);
model doctorco=sex illness income hscore / dist=poisson printall;

run;

Output 11.1.2 Mean Predicted Count Probabilities

Output 11.1.2 shows the predicted probabilities of count levels 0 to 4 from the Poisson model. Most of the
observed counts are in the range 0 to 4 and account for more than 99% of the entire data set. One factor
that would be interesting to explore is how the model-predicted probabilities of those count levels react
to different regressor values. Output 11.1.3 shows the predictive profiles of the count levels in question
against the first three regressors in the model. In each panel, the regressor in question is varied while all other
regressors are fixed at their observed mean and the model parameters are fixed at their MLE.
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Output 11.1.3 Profile Function of Predictive Probabilities

In this example, the DIST= option in the MODEL statement specifies the Poisson distribution. In addition,
the PRINTALL option displays the correlation and covariance matrices for the parameters, log-likelihood
values, and convergence information in addition to the parameter estimates. The parameter estimates for this
model are shown in Output 11.1.4.

Output 11.1.4 Parameter Estimates of Poisson Model

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -1.855552 0.074545 -24.89 <.0001

sex 1 0.235583 0.054362 4.33 <.0001

illness 1 0.270326 0.017080 15.83 <.0001

income 1 -0.242095 0.077829 -3.11 0.0019

hscore 1 0.096313 0.009089 10.60 <.0001
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Using the CLASS Statement

If some regressors are categorical in nature (meaning that these variables can take only a few discrete
qualitative values), specify them in the CLASS statement. In this example, Sex is categorical because it takes
only two values. A CLASS variable can be numeric or character.

Consider the following extension:

proc countreg data=docvisit;
class sex;
model doctorco=sex illness income hscore / dist=poisson;

run;

The partial output is given in Output 11.1.5.

Output 11.1.5 Parameter Estimates of Poisson Model with CLASS statement

The COUNTREG ProcedureThe COUNTREG Procedure

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -1.619969 0.063985 -25.32 <.0001

sex 0 1 -0.235583 0.054362 -4.33 <.0001

sex 1 0 0 . . .

illness 1 0.270326 0.017080 15.83 <.0001

income 1 -0.242095 0.077829 -3.11 0.0019

hscore 1 0.096313 0.009089 10.60 <.0001

If the CLASS statement is present, the COUNTREG procedure creates as many indicator or dummy variables
as there are categories in a CLASS variable and uses them as independent variables. In order to avoid
collinearity with the intercept, the last-created dummy variable is assigned a zero coefficient by default.
This means that only the dummy variable that is associated with the first level of Sex (male=0) is used as a
regressor. Consequently, the estimated coefficient for this dummy variable is the negative of the one for the
original Sex variable in Output 11.1.4, because the reference level has switched from male to female.

Now consider a more practical task. The previous example implicitly assumes that each additional illness
during the two-week interval has the same effect. In other words, this variable is thought of as a continuous
variable. But this variable has only six values, and it is quite possible that the number of illnesses has a
nonlinear effect on doctor visits. In order to check this conjecture, the following statements specify the Illness
variable in the CLASS statement so that it is represented in the model by a set of six dummy variables that
can account for any type of nonlinearity:

proc countreg data=docvisit;
class sex illness;
model doctorco=sex illness income hscore / dist=poisson;

run;

The parameter estimates are displayed in Output 11.1.6.
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Output 11.1.6 Parameter Estimates of Poisson Model with CLASS statement

The COUNTREG ProcedureThe COUNTREG Procedure

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -0.385930 0.088062 -4.38 <.0001

sex 0 1 -0.219118 0.054190 -4.04 <.0001

sex 1 0 0 . . .

illness 0 1 -1.934983 0.121267 -15.96 <.0001

illness 1 1 -0.698307 0.089732 -7.78 <.0001

illness 2 1 -0.471100 0.090742 -5.19 <.0001

illness 3 1 -0.488481 0.099127 -4.93 <.0001

illness 4 1 -0.272372 0.107593 -2.53 0.0114

illness 5 0 0 . . .

income 1 -0.253583 0.077441 -3.27 0.0011

hscore 1 0.094590 0.009025 10.48 <.0001

The Estimate column shows the difference between each ILLNESS parameter and ILLNESS=5. Note that
these estimates for different Illness categories do not increase linearly but instead show a relatively large
jump from zero illnesses to one illness, followed by relatively smaller increases.

Zero-Inflated Poisson (ZIP) Model

Suppose you suspect that the population of individuals can be viewed as two distinct groups: a low-risk
group, consisting of individuals who never go to the doctor, and a high-risk group, consisting of individuals
who do go to the doctor. You might suspect that the data have this structure both because the sample variance
of Doctorco (0.64) exceeds its sample mean (0.30), which suggests overdispersion, and because a large
fraction of the Doctorco observations (80%) have the value zero. Estimating a zero-inflated model is one way
to deal with overdispersion that results from excess zeros.

Suppose also that you suspect that the covariate Age has an impact on whether an individual belongs to the
low-risk group. For example, younger individuals might have illnesses of much lower severity when they do
get sick and be less likely to visit a doctor, all other factors being equal. The following statements estimate a
zero-inflated Poisson regression, with Age as a covariate in the zero-generation process:

proc countreg data=docvisit plots(only)=(dispersion zeroprofile);
model doctorco=sex illness income hscore / dist=zip;
zeromodel doctorco ~ age;

run;
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Output 11.1.7 Profile Function of Zero Process Selection and Zero Prediction

You might be interested in exploring how the zero process selection probability reacts to different regressor
values. Output 11.1.7 displays this information in much the same fashion as Output 11.1.3. Because Sex,
Illness, Income, and Hscore do not appear in the ZEROMODEL statement, the zero-inflation selection
probability does not change for different values of those regressors. However, the plot shows that Age
positively affects the zero process selection probability in a linear fashion.
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In this case, the ZEROMODEL statement that follows the MODEL statement specifies that both an intercept
and the variable Age be used to estimate the likelihood of zero doctor visits. Output 11.1.8 shows the resulting
parameter estimates.

Output 11.1.8 Parameter Estimates for ZIP Model

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -1.033387 0.096973 -10.66 <.0001

sex 1 0.122511 0.062566 1.96 0.0502

illness 1 0.237478 0.019997 11.88 <.0001

income 1 -0.143945 0.087810 -1.64 0.1012

hscore 1 0.088386 0.010043 8.80 <.0001

Inf_Intercept 1 0.986557 0.131339 7.51 <.0001

Inf_age 1 -2.090924 0.270580 -7.73 <.0001

The estimates of the zero-inflated intercept (Inf_Intercept) and the zero-inflated regression coefficient for Age
(Inf_age) are approximately 0.99 and –2.09, respectively. Because the zero-inflation model uses a logistic
link by default, you can estimate the probabilities for individuals of ages 20, 50, and 70 as follows:

20 years:
e.0:99�2:09�:20/

1C e.0:99�2:09�:20/
D 0:64

50 years:
e.0:99�2:09�:50/

1C e.0:99�2:09�:50/
D 0:49

70 years:
e.0:99�2:09�:70/

1C e.0:99�2:09�:70/
D 0:38

That is, the estimated probability of belonging to the low-risk group is about 0.64 for a 20-year-old individual,
0.49 for a 50-year-old individual, and only 0.38 for a 70-year-old individual. This supports the suspicion that
older individuals are more likely to have a positive number of doctor visits.

Alternative models to account for the overdispersion are the negative binomial and the zero-inflated negative
binomial models, which can be fit using the DIST=NEGBIN and DIST=ZINB options, respectively.
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Output 11.1.9 Overdispersion Diagnostic Plot

Output 11.1.9 plots the conditional variance against the conditional mean and can be used as a diagnostic
tool to check the level of overdispersion in a model.
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Example 11.2: ZIP and ZINB Models for Data That Exhibit Extra Zeros
In the study by Long (1997) of the number of published articles by scientists (see the section “Getting Started:
COUNTREG Procedure” on page 557), the observed proportion of scientists who publish no articles is
0.3005. The following statements use PROC FREQ to compute the proportion of scientists who publish each
observed number of articles. Output 11.2.1 shows the results.

proc freq data=long97data;
table art / out=obs;

run;

Output 11.2.1 Proportion of Scientists Who Publish a Certain Number of Articles

The FREQ ProcedureThe FREQ Procedure

art Frequency Percent
Cumulative
Frequency

Cumulative
Percent

0 275 30.05 275 30.05

1 246 26.89 521 56.94

2 178 19.45 699 76.39

3 84 9.18 783 85.57

4 67 7.32 850 92.90

5 27 2.95 877 95.85

6 17 1.86 894 97.70

7 12 1.31 906 99.02

8 1 0.11 907 99.13

9 2 0.22 909 99.34

10 1 0.11 910 99.45

11 1 0.11 911 99.56

12 2 0.22 913 99.78

16 1 0.11 914 99.89

19 1 0.11 915 100.00

PROC COUNTREG is then used to fit Poisson and negative binomial models to the data. For each model,
the PROBCOUNT option computes the probability that the number of published articles is m, for m = 0 to
10. The following statements compute the estimates for Poisson and negative binomial models. The MEAN
procedure is then used to compute the average probability of a zero response.

proc countreg data=long97data;
model art=fem mar kid5 phd ment / dist=poisson;
output out=predpoi probcount(0 to 10);

run;

proc means mean data=predpoi;
var p_0;

run;

The output from the Poisson model for the COUNTREG and MEAN procedures is shown in Output 11.2.2.
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Output 11.2.2 Poisson Model Estimation

The COUNTREG ProcedureThe COUNTREG Procedure

Model Fit Summary

Dependent Variable art

Number of Observations 915

Data Set WORK.LONG97DATA

Model Poisson

Log Likelihood -1651

Maximum Absolute Gradient 3.57454E-9

Number of Iterations 5

Optimization Method Newton-Raphson

AIC 3314

SBC 3343

Algorithm converged.

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.304617 0.102982 2.96 0.0031

fem 1 -0.224594 0.054614 -4.11 <.0001

mar 1 0.155243 0.061375 2.53 0.0114

kid5 1 -0.184883 0.040127 -4.61 <.0001

phd 1 0.012823 0.026397 0.49 0.6271

ment 1 0.025543 0.002006 12.73 <.0001

The MEANS ProcedureThe MEANS Procedure

Analysis
Variable : P_0
Probability of

art taking
level=0

Mean

0.2092071

The following statements show the syntax for the negative binomial model:

proc countreg data=long97data plots(only)=profilelike;
model art=fem mar kid5 phd ment / dist=negbin(p=2) method=qn;
output out=prednb probcount(0 to 10);

run;

proc means mean data=prednb;
var p_0;

run;
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Output 11.2.3 Profile Likelihood Functions
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Output 11.2.3 continued

Output 11.2.3 show the profile likelihood functions of the negative binomial model for the Long (1997) data
set, in which each model parameter is varied while holding all others fixed at the MLE. This can serve as a
diagnostic tool for model performance, because a large number of flat profile likelihood functions indicates
poor optimization results and the resulting MLE should be used with caution.

Output 11.2.4 shows the results of the preceding statements.
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Output 11.2.4 Negative Binomial Model Estimation

The COUNTREG ProcedureThe COUNTREG Procedure

Model Fit Summary

Dependent Variable art

Number of Observations 915

Data Set WORK.LONG97DATA

Model NegBin(p=2)

Log Likelihood -1561

Maximum Absolute Gradient 5.72129E-7

Number of Iterations 16

Optimization Method Quasi-Newton

AIC 3136

SBC 3170

Algorithm converged.

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.256144 0.138560 1.85 0.0645

fem 1 -0.216418 0.072672 -2.98 0.0029

mar 1 0.150489 0.082106 1.83 0.0668

kid5 1 -0.176415 0.053060 -3.32 0.0009

phd 1 0.015271 0.036040 0.42 0.6718

ment 1 0.029082 0.003470 8.38 <.0001

_Alpha 1 0.441620 0.052967 8.34 <.0001

The MEANS ProcedureThe MEANS Procedure

Analysis
Variable : P_0
Probability of

art taking
level=0

Mean

0.3035957

For each model, the predicted proportion of zero articles can be calculated as the average predicted probability
of zero articles across all scientists. Under the Poisson model, the predicted proportion of zero articles is
0.2092, which considerably underestimates the observed proportion. The negative binomial more closely
estimates the proportion of zeros (0.3036). Also, the test of the dispersion parameter, _Alpha, in the negative
binomial model indicates significant overdispersion (p < 0:0001). As a result, the negative binomial model
is preferred to the Poisson model.
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Another way to account for the large number of zeros in this data set is to fit a zero-inflated Poisson (ZIP) or
a zero-inflated negative binomial (ZINB) model. In the following statements, DIST=ZIP requests the ZIP
model. In the ZEROMODEL statement, you can specify the predictors, z, for the process that generates the
additional zeros. The ZEROMODEL statement also specifies the model for the probability '. By default, a
logistic model is used for '. You can change the default by using the LINK= option. In this particular ZIP
model, all variables that are used to model the article counts are also used to model '.

proc countreg data=long97data;
model art = fem mar kid5 phd ment / dist=zip;
zeromodel art ~ fem mar kid5 phd ment;
output out=predzip probcount(0 to 10);

run;

proc means data=predzip mean;
var p_0;

run;

The parameters of the ZIP model are displayed in Output 11.2.5. The first set of parameters gives the
estimates of ˇ in the model for the Poisson process mean. Parameters that have the prefix “Inf_” are the
estimates of  in the logistic model for '.

Output 11.2.5 ZIP Model Estimation

The COUNTREG ProcedureThe COUNTREG Procedure

Model Fit Summary

Dependent Variable art

Number of Observations 915

Data Set WORK.LONG97DATA

Model ZIP

ZI Link Function Logistic

Log Likelihood -1605

Maximum Absolute Gradient 2.08804E-7

Number of Iterations 16

Optimization Method Newton-Raphson

AIC 3234

SBC 3291

Algorithm converged.
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Output 11.2.5 continued

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.640838 0.121306 5.28 <.0001

fem 1 -0.209145 0.063405 -3.30 0.0010

mar 1 0.103751 0.071111 1.46 0.1446

kid5 1 -0.143320 0.047429 -3.02 0.0025

phd 1 -0.006166 0.031008 -0.20 0.8424

ment 1 0.018098 0.002295 7.89 <.0001

Inf_Intercept 1 -0.577060 0.509383 -1.13 0.2573

Inf_fem 1 0.109747 0.280082 0.39 0.6952

Inf_mar 1 -0.354013 0.317611 -1.11 0.2650

Inf_kid5 1 0.217101 0.196481 1.10 0.2692

Inf_phd 1 0.001272 0.145262 0.01 0.9930

Inf_ment 1 -0.134114 0.045244 -2.96 0.0030

The MEANS ProcedureThe MEANS Procedure

Analysis
Variable : P_0
Probability of

art taking
level=0

Mean

0.2985679

The proportion of zeros that are predicted by the ZIP model is 0.2986, which is much closer to the observed
proportion than the Poisson model. But Output 11.2.7 shows that both models deviate from the observed
proportions at one, two, and three articles.

The ZINB model is specified by the DIST=ZINB option. All variables are again used to model both the
number of articles and '. The METHOD=QN option specifies that the quasi-Newton method be used to fit
the model rather than the default Newton-Raphson method. These options are implemented in the following
statements:

proc countreg data=long97data;
model art=fem mar kid5 phd ment / dist=zinb method=qn;
zeromodel art ~ fem mar kid5 phd ment;
output out=predzinb probcount(0 to 10);

run;

proc means data=predzinb mean;
var p_0;

run;

The estimated parameters of the ZINB model are shown in Output 11.2.6. The test for overdispersion again
indicates a preference for the negative binomial version of the zero-inflated model (p < 0:0001). The ZINB
model also does a good job of estimating the proportion of zeros (0.3119), and it follows the observed
proportions well, though possibly not as well as the negative binomial model.
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Output 11.2.6 ZINB Model Estimation

The COUNTREG ProcedureThe COUNTREG Procedure

Model Fit Summary

Dependent Variable art

Number of Observations 915

Data Set WORK.LONG97DATA

Model ZINB

ZI Link Function Logistic

Log Likelihood -1550

Maximum Absolute Gradient 0.00109

Number of Iterations 84

Optimization Method Quasi-Newton

AIC 3126

SBC 3189

Algorithm converged.

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.416747 0.143596 2.90 0.0037

fem 1 -0.195507 0.075592 -2.59 0.0097

mar 1 0.097583 0.084452 1.16 0.2479

kid5 1 -0.151732 0.054206 -2.80 0.0051

phd 1 -0.000700 0.036270 -0.02 0.9846

ment 1 0.024786 0.003493 7.10 <.0001

Inf_Intercept 1 -0.191685 1.322809 -0.14 0.8848

Inf_fem 1 0.635932 0.848913 0.75 0.4538

Inf_mar 1 -1.499469 0.938661 -1.60 0.1102

Inf_kid5 1 0.628427 0.442780 1.42 0.1558

Inf_phd 1 -0.037715 0.308005 -0.12 0.9025

Inf_ment 1 -0.882293 0.316224 -2.79 0.0053

_Alpha 1 0.376681 0.051029 7.38 <.0001

The MEANS ProcedureThe MEANS Procedure

Analysis
Variable : P_0
Probability of

art taking
level=0

Mean

0.3119487

The following statements compute the average predicted count probability across all scientists for each count
0, 1, : : : , 10. The averages for each model, along with the observed proportions, are then arranged for
plotting by PROC SGPLOT.
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proc summary data=predpoi;
var p_0-p_10;
output out=mnpoi mean(p_0-p_10)=mn0-mn10;

run;
proc summary data=prednb;

var p_0-p_10;
output out=mnnb mean(p_0-p_10)=mn0-mn10;

run;
proc summary data=predzip;

var p_0-p_10;
output out=mnzip mean(p_0-p_10)=mn0-mn10;

run;
proc summary data=predzinb;

var p_0-p_10;
output out=mnzinb mean(p_0-p_10)=mn0-mn10;

run;

data means;
set mnpoi mnnb mnzip mnzinb;
drop _type_ _freq_;

run;

proc transpose data=means out=tmeans;
run;

data allpred;
merge obs(where=(art<=10)) tmeans;
obs=percent/100;

run;

proc sgplot;
yaxis label='Probability';
xaxis label='Number of Articles';
series y=obs x=art / name='obs' legendlabel='Observed'

lineattrs=(color=black thickness=4px);
series y=col1 x=art / name='poi' legendlabel='Poisson'

lineattrs=(color=blue);
series y=col2 x=art/ name='nb' legendlabel='Negative Binomial'

lineattrs=(color=red);
series y=col3 x=art/ name='zip' legendlabel='ZIP'

lineattrs=(color=blue pattern=2);
series y=col4 x=art/ name='zinb' legendlabel='ZINB'

lineattrs=(color=red pattern=2);
discretelegend 'poi' 'zip' 'nb' 'zinb' 'obs' / title='Models:'

location=inside position=ne across=2 down=3;
run;

For each of the four fitted models, Output 11.2.7 shows the average predicted count probability for each
article count across all scientists. The Poisson model clearly underestimates the proportion of zero articles
published, whereas the other three models are quite accurate at zero. All the models do well at the larger
numbers of articles.
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Output 11.2.7 Average Predicted Count Probability

Example 11.3: Variable Selection
This example demonstrates two algorithms of automatic variable selection in the COUNTREG procedure.
Automatic variable selection is most effective when the number of possible candidates for explaining the
variation of some variable is large. For clarity of exposition, this example uses only a small number of
variables. The data set Article published by Long (1997) contains six variables. (This data set is also used in
“Example 11.2: ZIP and ZINB Models for Data That Exhibit Extra Zeros” on page 643.) The dependent
variable Art records the number of articles that were published by a doctoral student in the last three years of
his or her program. Explanatory variables include sex of the student (Fem), marital status (Mar), number of
children (Kid5), prestige of the program (Phd), and publishing activity of the academic adviser (Ment). All
these variables intuitively suggest their affect on the students’ primary academic output.

First, for comparison purposes, estimate the simple Poisson model. The choice of model is specified by
DIST= option in the MODEL statement, as follows:

proc countreg data = long97data;
model art = fem mar kid5 phd ment / dist = poisson;

run;
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The output of these statements is shown in Figure 11.3.1.

Output 11.3.1 Poisson Model for the Number of Published Articles

The COUNTREG ProcedureThe COUNTREG Procedure

Model Fit Summary

Dependent Variable art

Number of Observations 915

Data Set WORK.LONG97DATA

Model Poisson

Log Likelihood -1651

Maximum Absolute Gradient 3.57454E-9

Number of Iterations 5

Optimization Method Newton-Raphson

AIC 3314

SBC 3343

Algorithm converged.

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.304617 0.102982 2.96 0.0031

fem 1 -0.224594 0.054614 -4.11 <.0001

mar 1 0.155243 0.061375 2.53 0.0114

kid5 1 -0.184883 0.040127 -4.61 <.0001

phd 1 0.012823 0.026397 0.49 0.6271

ment 1 0.025543 0.002006 12.73 <.0001

Note that the Newton-Raphson optimization algorithm took five steps to converge. All parameters, except for
one, are significant at a 1% or 5% level, whereas Phd is not significant even at the 10% level.

In this case, it might be easy to identify the variables that have limited explanatory power. However, if the
number of variables were large, the manual selection could be time-consuming and inaccurate. For a large
number of variables, you would be better off in applying one of the automatic algorithms of variable selection.
The following statements use the penalized likelihood method, which is indicated by SELECT=PEN option
in the MODEL statement:

proc countreg data = long97data method = qn;
model art = fem mar kid5 phd ment / dist = poisson

select = PEN;
run;

The output of these statements is shown in Output 11.3.2.



654 F Chapter 11: The COUNTREG Procedure

Output 11.3.2 Poisson Model for the Number of Published Articles with Penalized Likelihood Method

The COUNTREG ProcedureThe COUNTREG Procedure

Model Fit Summary

Dependent Variable art

Number of Observations 915

Data Set WORK.LONG97DATA

Model Poisson

Log Likelihood -1651

Maximum Absolute Gradient 6.66114E-6

Number of Iterations 7

Optimization Method Quasi-Newton

AIC 3312

SBC 3336

Algorithm converged.

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.345174 0.060125 5.74 <.0001

fem 1 -0.225303 0.054615 -4.13 <.0001

mar 1 0.152175 0.061067 2.49 0.0127

kid5 1 -0.184993 0.040139 -4.61 <.0001

ment 1 0.025761 0.001950 13.21 <.0001

The “Parameter Estimates” table shows that the variable Phd was dropped from the model.

The next statements use the information criterion by specifying the SELECT=INFO option. The direction
of the search is chosen to be forward, and the information criterion is AIC. In order to achieve the same
selection of variables as for the penalized likelihood method, 0.001 is specified for the percentage of decrease
in the information criterion necessary for the algorithm to stop.

proc countreg data = long97data;
model art = fem mar kid5 phd ment / dist = poisson

select = INFO
( direction = forward
criter = AIC
lstop = 0.001 );

run;

The output of these statements is shown in Figure 11.3.3.



Example 11.3: Variable Selection F 655

Output 11.3.3 Poisson Model for the Number of Published Articles with Search Method Using Information
Criterion

The COUNTREG ProcedureThe COUNTREG Procedure

Variable Selection Information

Step
Effect
Entered

Effect
Removed AIC SBC

0 Base Model 3487.146950 3491.965874

1 ment 3341.286487 3350.924335

2 fem 3330.744604 3345.201376

3 kid5 3316.593036 3335.868733

4 mar 3312.348824 3336.443445

Model Fit Summary

Dependent Variable art

Number of Observations 915

Data Set WORK.LONG97DATA

Model Poisson

Log Likelihood -1651

Maximum Absolute Gradient 1.28369E-9

Number of Iterations 0

Optimization Method Newton-Raphson

AIC 3312

SBC 3336

Algorithm converged.

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.345174 0.060125 5.74 <.0001

fem 1 -0.225303 0.054615 -4.13 <.0001

mar 1 0.152175 0.061067 2.49 0.0127

kid5 1 -0.184993 0.040139 -4.61 <.0001

ment 1 0.025761 0.001950 13.21 <.0001

From the output, it is clear that the same set of variables was chosen as the result of information criterion
algorithm. Note that the forward optimization algorithm starts with the constant as the only explanatory
variable.



656 F Chapter 11: The COUNTREG Procedure

References

Abramowitz, M. and Stegun, A. (1970), Handbook of Mathematical Functions, New York: Dover Press.

Amemiya, T. (1985), Advanced Econometrics, Cambridge, MA: Harvard University Press.

Cameron, A. C. and Trivedi, P. K. (1986), “Econometric Models Based on Count Data: Comparisons and
Applications of Some Estimators and Tests,” Journal of Applied Econometrics, 1, 29–53.

Cameron, A. C. and Trivedi, P. K. (1998), Regression Analysis of Count Data, Cambridge: Cambridge
University Press.

Conway, R. W. and Maxwell, W. L. (1962), “A Queuing Model with State Dependent Service Rates,” Journal
of Industrial Engineering, 12, 132–136.

Fan, J. and Li, R. (2001), “Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties,”
Journal of the American Statistical Association, 96, 1348–1360.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004), Bayesian Data Analysis, 2nd Edition,
London: Chapman & Hall.

Godfrey, L. G. (1988), Misspecification Tests in Econometrics, Cambridge: Cambridge University Press.

Greene, W. H. (1994), “Accounting for Excess Zeros and Sample Selection in Poisson and Negative
Binomial Regression Models,” Working paper 94-10, Leonard N. Stern School of Business, Department of
Economics, New York University.
URL http://ideas.repec.org/p/ste/nystbu/94-10.html

Greene, W. H. (2000), Econometric Analysis, 4th Edition, Upper Saddle River, NJ: Prentice-Hall.

Guikema, S. D. and Coffelt, J. P. (2008), “A Flexible Count Data Regression Model for Risk Analysis,” Risk
Analysis, 28, 213–223.

Hausman, J. A., Hall, B. H., and Griliches, Z. (1984), “Econometric Models for Count Data with an
Application to the Patents-R&D Relationship,” Econometrica, 52, 909–938.

King, G. (1989a), “A Seemingly Unrelated Poisson Regression Model,” Sociological Methods and Research,
17, 235–255.

King, G. (1989b), Unifying Political Methodology: The Likelihood Theory and Statistical Inference, Cam-
bridge: Cambridge University Press.

Lambert, D. (1992), “Zero-Inflated Poisson Regression with an Application to Defects in Manufacturing,”
Technometrics, 34, 1–14.

LaMotte, L. R. (1994), “A Note on the Role of Independence in t Statistics Constructed from Linear Statistics
in Regression Models,” American Statistician, 48, 238–240.

Long, J. S. (1997), Regression Models for Categorical and Limited Dependent Variables, Thousand Oaks,
CA: Sage Publications.

http://ideas.repec.org/p/ste/nystbu/94-10.html


References F 657

Lord, D., Guikema, S. D., and Geedipally, S. R. (2008), “Application of the Conway-Maxwell-Poisson
Generalized Linear Model for Analyzing Motor Vehicle Crashes,” Accident Analysis and Prevention, 40,
1123–1134.

Park, M. Y. and Hastie, T. J. (2007), “l11-Regularization Path Algorithm for Generalized Linear Models,”
Journal of the Royal Statistical Society, Series B, 69, 659–677.

Roberts, G. O., Gelman, A., and Gilks, W. R. (1997), “Weak Convergence and Optimal Scaling of Random
Walk Metropolis Algorithms,” Annals of Applied Probability, 7, 110–120.

Roberts, G. O. and Rosenthal, J. S. (2001), “Optimal Scaling for Various Metropolis-Hastings Algorithms,”
Statistical Science, 16, 351–367.

Schervish, M. J. (1995), Theory of Statistics, New York: Springer-Verlag.

Searle, S. R. (1971), Linear Models, New York: John Wiley & Sons.

Shmueli, G., Minka, T. P., Kadane, J. B., Borle, S., and Boatwright, P. (2005), “A Useful Distribution
for Fitting Discrete Data: Revival of the Conway-Maxwell-Poisson Distribution,” Journal of the Royal
Statistical Society, Series C, 54, 127–142.

Winkelmann, R. (2000), Econometric Analysis of Count Data, Berlin: Springer-Verlag.

Zou, H. and Li, R. (2008), “One-Step Sparse Estimates in Nonconcave Penalized Likelihood Models,” Annals
of Statistics, 36, 1509–1533.



Subject Index

at sign (@) operator
COUNTREG procedure, 590

bar (|) operator
COUNTREG procedure, 589

BY groups
COUNTREG procedure, 573

CLASS statement
COUNTREG procedure, 573

classification variables
COUNTREG procedure, 588

continuous variables, 588
COUNTREG procedure

bounds on parameter estimates, 573
BY groups, 573
CLASS statement, 573
gamma distribution, 630
Gaussian distribution, 631
initial values, 622
inverse gamma distribution , 631
least squares means, 585
maximum a posteriori, 622
normal distribution, 631
ODS graph names, 634
output table names, 632
restrictions on parameter estimates, 582
standard distributions, 630
syntax, 560
t distribution, 631
uniform distribution, 632

discrete variables, see classification variables

example, COUNTREG, 635

gamma distribution
COUNTREG procedure, 630
definition of (COUNTREG), 630

Gaussian distribution
COUNTREG procedure, 631
definition of (COUNTREG), 631

initial values
COUNTREG procedure, 622

inverse gamma distribution
COUNTREG procedure, 631
definition of (COUNTREG), 631

levels, of classification variable, 588

maximum a posteriori
COUNTREG procedure, 622

Newton-Raphson
optimization methods, 567

Newton-Raphson method, 567
nominal variables, see also classification variables
normal distribution

COUNTREG procedure, 631
definition of (COUNTREG), 631

ODS graph names
COUNTREG procedure, 634

optimization methods
Newton-Raphson, 567
quasi-Newton, 567
trust region, 567

output table names
COUNTREG procedure, 632

prior distribution
distribution specification (COUNTREG), 581

qualitative variables, see classification variables
quasi-Newton

optimization methods, 567
quasi-Newton method, 567

regressor
definition, 588

response variable, 588

standard distributions
COUNTREG procedure, 630

t distribution
COUNTREG procedure, 631
definition of (COUNTREG), 631

trust region
optimization methods, 567

trust region method, 567

uniform distribution
COUNTREG procedure, 632
definition of (COUNTREG), 632





Syntax Index

ACCURACY=option
BAYES statement (COUNTREG), 567

AGGREGATION= option
BAYES statement (COUNTREG), 567

ALL option
PLOTS option, PROC COUNTREG statement,

566
SHOW statement (COUNTREG), 585

ATTEMPTS=number
BAYES statement (COUNTREG), 567, 568

AUTOMCMC option
BAYES statement (COUNTREG), 567

BAYES statement
COUNTREG procedure, 567

BETA
PRIOR statement (COUNTREG), 581

BOUNDS statement
COUNTREG procedure, 573

BY statement
COUNTREG procedure, 573

CLASS option
SHOW statement (COUNTREG), 585

CONGRA option
METHOD= option, PROC COUNTREG

statement, 567
CORRB option

MODEL statement, 579
PROC COUNTREG statement, 565

CORRELATION option
SHOW statement (COUNTREG), 585

COUNTREG procedure, 560
PRIOR statement, 581
SCORE statement, 583
SHOW statement, 585
syntax, 560

COUNTREG procedure, CLASS statement, 573
MISSING option, 574
ORDER= option, 574
PARAM= option, 574
REF= option, 575

COUNTREG procedure, SHOW statement, 585
ALL option, 585
CLASS option, 585
CORRELATION option, 585
COVARIANCE option, 585
EFFECTS option, 585
FITSTATS option, 585

PARAMETERS option, 585
PROGRAM option, 586

COUNTS option
PLOTS option, PROC COUNTREG statement,

565
COVARIANCE option

SHOW statement (COUNTREG), 585
COVB option

MODEL statement, 579
PROC COUNTREG statement, 565

COVEST= option
PROC COUNTREG statement, 565

COVOUT option
PROC COUNTREG statement, 564

DATA= option
PROC COUNTREG statement, 564

DBLDOG option
METHOD= option, PROC COUNTREG

statement, 567
DETAILS option

PERFORMANCE statement (COUNTREG), 581
DIAGNOSTICS= option

BAYES statement (COUNTREG), 569
DISPERSION option

PLOTS option, PROC COUNTREG statement,
566

DISPERSION= option
OUTPUT statement (COUNTREG), 581
SCORE statement (COUNTREG), 584

DISPMODEL statement
COUNTREG procedure, 575

DIST= option
MODEL statement, COUNTREG procedure, 577
PROC COUNTREG statement, 577

EFFECTS option
SHOW statement (COUNTREG), 585

ERRORCOMP= option
COUNTREG statement (COUNTREG), 577
MODEL statement (COUNTREG), 577

FITSTATS option
SHOW statement (PCOUNTREG), 585

FREQ statement
COUNTREG procedure, 575

GAMMA
PRIOR statement (COUNTREG), 581



GDELTA= option
OUTPUT statement (COUNTREG), 580
SCORE statement (COUNTREG), 584

GROUPID= option
PROC COUNTREG statement, 564

IGAMMA
PRIOR statement (COUNTREG), 582

INIT statement
COUNTREG procedure, 576

ITPRINT option
MODEL statement, 579

LAMBDA= option
OUTPUT statement (COUNTREG), 580
SCORE statement (COUNTREG), 584

LINK= option
ZEROMODEL statement, 587

MAXNMCMC=number
BAYES statement (COUNTREG), 568

MAXTUNE= option
BAYES statement (COUNTREG), 570

METHOD= option
PROC COUNTREG statement, 567

MINTUNE= option
BAYES statement (COUNTREG), 570

MISSING option
CLASS statement (COUNTREG), 574

MODE= option
OUTPUT statement (COUNTREG), 580
SCORE statement (COUNTREG), 584

MODEL statement
COUNTREG procedure, 576

MU= option
OUTPUT statement (COUNTREG), 580
SCORE statement (COUNTREG), 584

MULTIPLIER=value
BAYES statement (COUNTREG), 568

NBI= option
BAYES statement (COUNTREG), 570

NLOPTIONS statement
COUNTREG procedure, 579

NMC= option
BAYES statement (COUNTREG), 570

NMSIMP option
METHOD= option, PROC COUNTREG

statement, 567
NOINT option

MODEL statement (COUNTREG), 577
NONE= option

PLOTS option, PROC COUNTREG statement,
566

NONORMALIZE option

WEIGHT statement (COUNTREG), 586
NOPRINT option

PROC COUNTREG statement, 565
NORMAL

PRIOR statement (COUNTREG), 582
NOTHREADS option

PERFORMANCE statement (COUNTREG), 581
NRA option

METHOD= option, PROC COUNTREG
statement, 567

NRRIDG option
METHOD= option, PROC COUNTREG

statement, 567
NTHREADS= option

PERFORMANCE statement (COUNTREG), 581
NTRDS= option

BAYES statement (COUNTREG), 570
NTU= option

BAYES statement (COUNTREG), 570
NU= option

OUTPUT statement (COUNTREG), 580
SCORE statement (COUNTREG), 584

OFFSET= option
MODEL statement (COUNTREG), 577
ZEROMODEL statement, 587

ONLY option
PLOTS option, PROC COUNTREG statement,

565
ORDER= option

CLASS statement (COUNTREG), 574
OUT= option

OUTPUT statement (COUNTREG), 580
SCORE statement (COUNTREG), 583

OUTEST= option
PROC COUNTREG statement, 564

OUTPOST= option
BAYES statement (COUNTREG), 570

OUTPUT statement
COUNTREG procedure, 579

PARAM= option
CLASS statement (COUNTREG), 574

PARAMETER= option
COUNTREG statement (COUNTREG), 577
MODEL statement (COUNTREG), 577

PARAMETERS option
SHOW statement (COUNTREG), 585

PERFORMANCE statement
COUNTREG procedure, 581

PLOTS option
PROC COUNTREG statement, 565

PRED= option
OUTPUT statement (COUNTREG), 580



SCORE statement (COUNTREG), 583
PREDPROB option

PLOTS option, PROC COUNTREG statement,
566

PREDPROFILE option
PLOTS option, PROC COUNTREG statement,

566
PRINTALL option

MODEL statement, 579
PRIOR statement

COUNTREG procedure, 581
PROB= option

OUTPUT statement (COUNTREG), 580
SCORE statement (COUNTREG), 584

PROBCOUNT option
OUTPUT statement (COUNTREG), 580
SCORE statement (COUNTREG), 584

PROBZERO= option
OUTPUT statement (COUNTREG), 580
SCORE statement (COUNTREG), 584

PROFILELIKE option
PLOTS option, PROC COUNTREG statement,

566
PROGRAM option

SHOW statement (COUNTREG), 586
PROPCOV= option

BAYES statement (COUNTREG), 571
PROPORTION=value

BAYES statement (COUNTREG), 568

QN option
METHOD= option, PROC COUNTREG

statement, 567

RANDINIT option
BAYES statement (COUNTREG), 568

REF= option
CLASS statement (COUNTREG), 575

RESTORE= option
PROC COUNTREG statement, 564

RESTRICT statement
COUNTREG procedure, 582

RLLIMITS= number
BAYES statement (COUNTREG), 568

SAMPLING= option
BAYES statement (COUNTREG), 571

SCORE statement
COUNTREG procedure, 583

SEED= option
BAYES statement (COUNTREG), 571

SELECT= option
MODEL statement (COUNTREG), 578
ZEROMODEL statement (COUNTREG), 587

SHOW statement

COUNTREG procedure, 585
SIMTIME option

BAYES statement (COUNTREG), 571
STATIONARITY=option

BAYES statement (COUNTREG), 568
STATISTICS option

BAYES statement (COUNTREG), 572
STORE statement

COUNTREG procedure, 586

T
PRIOR statement (COUNTREG), 582

TARGETESS= number
BAYES statement (COUNTREG), 568

TARGETSTATS<= option>
BAYES statement (COUNTREG), 568

THIN= option
BAYES statement (COUNTREG), 572

TOL= value
BAYES statement (COUNTREG), 568

TOL=value
BAYES statement (COUNTREG), 569

TR option
METHOD= option, PROC COUNTREG

statement, 567

UNIFORM
PRIOR statement (COUNTREG), 582

UNPACK option
PLOTS option, PROC COUNTREG statement,

565

VARIANCE= option
OUTPUT statement (COUNTREG), 581
SCORE statement (COUNTREG), 584

WEIGHT statement
COUNTREG procedure, 586

XBETA= option
OUTPUT statement (COUNTREG), 580
SCORE statement (COUNTREG), 583

ZEROMODEL statement
COUNTREG procedure, 586

ZEROPROFILE option
PLOTS option, PROC COUNTREG statement,

566
ZGAMMA= option

OUTPUT statement (COUNTREG), 580
SCORE statement (COUNTREG), 584
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