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Overview: AUTOREG Procedure

The AUTOREG procedure estimates and forecasts linear regression models for time series data when
the errors are autocorrelated or heteroscedastic. The autoregressive error model is used to correct for
autocorrelation, and the generalized autoregressive conditional heteroscedasticity (GARCH) model and its
variants are used to model and correct for heteroscedasticity.

When time series data are used in regression analysis, often the error term is not independent through time.
Instead, the errors are serially correlated (autocorrelated). If the error term is autocorrelated, the efficiency
of ordinary least squares (OLS) parameter estimates is adversely affected and standard error estimates are
biased.

The autoregressive error model corrects for serial correlation. The AUTOREG procedure can fit autore-
gressive error models of any order and can fit subset autoregressive models. You can also specify stepwise
autoregression to select the autoregressive error model automatically.

To diagnose autocorrelation, the AUTOREG procedure produces generalized Durbin-Watson (DW) statistics
and their marginal probabilities. Exact p-values are reported for generalized DW tests to any specified order.
For models with lagged dependent regressors, PROC AUTOREG performs the Durbin ¢ test and the Durbin £
test for first-order autocorrelation and reports their marginal significance levels.

Ordinary regression analysis assumes that the error variance is the same for all observations. When the error
variance is not constant, the data are said to be heteroscedastic, and ordinary least squares estimates are
inefficient. Heteroscedasticity also affects the accuracy of forecast confidence limits. More efficient use of
the data and more accurate prediction error estimates can be made by models that take the heteroscedasticity
into account.

To test for heteroscedasticity, the AUTOREG procedure uses the portmanteau Q test statistics (McLeod and
Li 1983), Engle’s Lagrange multiplier tests (Engle 1982), tests from Lee and King (1993), and tests from
Wong and Li (1995). Test statistics and significance p-values are reported for conditional heteroscedasticity
at lags 1 through 12. The Bera-Jarque normality test statistic and its significance level are also reported to
test for conditional nonnormality of residuals. The following tests for independence are also supported by the
AUTOREG procedure for residual analysis and diagnostic checking: Brock-Dechert-Scheinkman (BDS) test,
runs test, turning point test, and the rank version of the von Neumann ratio test.
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The family of GARCH models provides a means of estimating and correcting for the changing variability of
the data. The GARCH process assumes that the errors, although uncorrelated, are not independent, and it
models the conditional error variance as a function of the past realizations of the series.

The AUTOREG procedure supports the following variations of the GARCH models:

» generalized ARCH (GARCH)

* integrated GARCH (IGARCH)

» exponential GARCH (EGARCH)
* quadratic GARCH (QGARCH)

¢ threshold GARCH (TGARCH)

* power GARCH (PGARCH)

* GARCH-in-mean (GARCH-M)

For GARCH-type models, the AUTOREG procedure produces the conditional prediction error variances in
addition to parameter and covariance estimates.

The AUTOREG procedure can also analyze models that combine autoregressive errors and GARCH-type
heteroscedasticity. PROC AUTOREG can output predictions of the conditional mean and variance for models
with autocorrelated disturbances and changing conditional error variances over time.

Four estimation methods are supported for the autoregressive error model:

Yule-Walker
* iterated Yule-Walker
* unconditional least squares

¢ exact maximum likelihood

The maximum likelihood method is used for GARCH models and for mixed AR-GARCH models.

The AUTOREG procedure produces forecasts and forecast confidence limits when future values of the
independent variables are included in the input data set. PROC AUTOREG is a useful tool for forecasting
because it uses the time series part of the model in addition to the systematic part in generating predicted
values. The autoregressive error model takes into account recent departures from the trend in producing
forecasts.

The AUTOREG procedure permits embedded missing values for the independent or dependent variables.
The procedure should be used only for ordered and equally spaced time series data.
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Getting Started: AUTOREG Procedure

Regression with Autocorrelated Errors

Ordinary regression analysis is based on several statistical assumptions. One key assumption is that the errors
are independent of each other. However, with time series data, the ordinary regression residuals usually are
correlated over time. It is not desirable to use ordinary regression analysis for time series data since the
assumptions on which the classical linear regression model is based will usually be violated.

Violation of the independent errors assumption has three important consequences for ordinary regression.
First, statistical tests of the significance of the parameters and the confidence limits for the predicted values
are not correct. Second, the estimates of the regression coefficients are not as efficient as they would be if the
autocorrelation were taken into account. Third, since the ordinary regression residuals are not independent,
they contain information that can be used to improve the prediction of future values.

The AUTOREG procedure solves this problem by augmenting the regression model with an autoregressive
model for the random error, thereby accounting for the autocorrelation of the errors. Instead of the usual
regression model, the following autoregressive error model is used:

yi =% + v
Vp = —Q1Vi—1 —@2Vr—2 — ... — OmVi—m + €
€r ~ IN(O, 0'2)

The notation €, ~ IN(0, 02) indicates that each ¢; is normally and independently distributed with mean 0
2

and variance o “.
By simultaneously estimating the regression coefficients 8 and the autoregressive error model parameters ¢;,
the AUTOREG procedure corrects the regression estimates for autocorrelation. Thus, this kind of regression
analysis is often called autoregressive error correction or serial correlation correction.

Example of Autocorrelated Data

A simulated time series is used to introduce the AUTOREG procedure. The following statements generate a
simulated time series Y with second-order autocorrelation:

/* Regression with Autocorrelated Errors */
data a;
ul = 0; ull = 0;
do time = -10 to 36;
u=+ 1.3 » ul — .5 x ull + 2*xrannor(12346);
y =10 + .5 % time + u;
if time > 0 then output;
ull = ul; ul = u;
end;
run;
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The series Y is a time trend plus a second-order autoregressive error. The model simulated is

Vr = 10 4+ 0.5t + V¢
Vy = 1.31);_1 — O.Sl)l_z + €;
€r ~ IN(O, 4)

The following statements plot the simulated time series Y. A linear regression trend line is shown for
reference.

title 'Autocorrelated Time Series';
proc sgplot data=a noautolegend;

series x=time y=y / markers;

reg x=time y=y/ lineattrs=(color=black);
run;

The plot of series Y and the regression line are shown in Figure 8.1.

Figure 8.1 Autocorrelated Time Series

Autocorrelated Time Series
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Note that when the series is above (or below) the OLS regression trend line, it tends to remain above (below)
the trend for several periods. This pattern is an example of positive autocorrelation.
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Time series regression usually involves independent variables other than a time trend. However, the simple
time trend model is convenient for illustrating regression with autocorrelated errors, and the series Y shown
in Figure 8.1 is used in the following introductory examples.

Ordinary Least Squares Regression

To use the AUTOREG procedure, specify the input data set in the PROC AUTOREG statement and specify
the regression model in a MODEL statement. Specify the model by first naming the dependent variable and
then listing the regressors after an equal sign, as is done in other SAS regression procedures. The following
statements regress Y on TIME by using ordinary least squares:

proc autoreg data=a;

model y = time;
run;

The AUTOREG procedure output is shown in Figure 8.2.

Figure 8.2 PROC AUTOREG Results for OLS Estimation

Autocorrelated Time Series
The AUTOREG Procedure

Dependent Variable y

Ordinary Least Squares Estimates

SSE 214.953429 DFE 34
MSE 6.32216 Root MSE 2.51439
SBC 173.659101 AIC 170.492063
MAE 2.01903356 AICC 170.855699
MAPE 12.5270666 HQC 171.597444
Durbin-Watson 0.4752 Regress R-Square 0.8200

Total R-Square 0.8200

Parameter Estimates

Standard Approx
Variable DF Estimate Error t Value Pr > |t

Intercept 1  8.2308 0.8559 9.62 <.0001
time 1 0.5021 0.0403 12.45 <.0001
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The output first shows statistics for the model residuals. The model root mean square error (Root MSE) is
2.51, and the model R? is 0.82. Notice that two R? statistics are shown, one for the regression model (Reg
Rsq) and one for the full model (Total Rsq) that includes the autoregressive error process, if any. In this case,
an autoregressive error model is not used, so the two R? statistics are the same.

Other statistics shown are the sum of square errors (SSE), mean square error (MSE), mean absolute error
(MAE), mean absolute percentage error (MAPE), error degrees of freedom (DFE, the number of observations
minus the number of parameters), the information criteria SBC, HQC, AIC, and AICC, and the Durbin-
Watson statistic. (Durbin-Watson statistics, MAE, MAPE, SBC, HQC, AIC, and AICC are discussed in the
section “Goodness-of-Fit Measures and Information Criteria” on page 371.)

The output then shows a table of regression coefficients, with standard errors and ¢ tests. The estimated model
is

yr = 8.23 4 0.502¢ + ¢
Est. Var(e;) = 6.32

The OLS parameter estimates are reasonably close to the true values, but the estimated error variance, 6.32,
is much larger than the true value, 4.

Autoregressive Error Model

The following statements regress Y on TIME with the errors assumed to follow a second-order autoregressive
process. The order of the autoregressive model is specified by the NLAG=2 option. The Yule-Walker
estimation method is used by default. The example uses the METHOD=ML option to specify the exact
maximum likelihood method instead.

proc autoreg data=a;
model y = time / nlag=2 method=ml;
run;
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The first part of the results is shown in Figure 8.3. The initial OLS results are produced first, followed by
estimates of the autocorrelations computed from the OLS residuals. The autocorrelations are also displayed
graphically.

Figure 8.3 Preliminary Estimate for AR(2) Error Model

Autocorrelated Time Series
The AUTOREG Procedure

Dependent Variable y

Ordinary Least Squares Estimates

SSE 214.953429 DFE 34
MSE 6.32216 Root MSE 2.51439
SBC 173.659101 AIC 170.492063
MAE 2.01903356 AlCC 170.855699
MAPE 12.5270666 HQC 171.597444
Durbin-Watson 0.4752 Regress R-Square 0.8200

Total R-Square 0.8200

Parameter Estimates

Standard Approx
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 82308 0.8559 9.62 <.0001
time 1 0.5021 0.0403 1245 <.0001

Estimates of Autocorrelations
Lag Covariance Correlation -1 9 8 76 54 32 101234567891

0 5.9709 1.000000 | [ ok ek kK KX |
1 4.5169 0.756485 | | %% % ok Kk K K kKKK X |
2 2.0241 0.338995 | | %% %k ok ok x |

Preliminary MSE 1.7943
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The maximum likelihood estimates are shown in Figure 8.4. Figure 8.4 also shows the preliminary Yule-
Walker estimates used as starting values for the iterative computation of the maximum likelihood estimates.

Figure 8.4 Maximum Likelihood Estimates of AR(2) Error Model

Estimates of Autoregressive
Parameters

Standard
Lag Coefficient Error t Value

1 -1.169057 0.148172 -7.89
2 0545379 0.148172  3.68

Algorithm converged.

Maximum Likelihood Estimates

SSE 54.7493022 DFE 32
MSE 1.71092 Root MSE 1.30802
SBC 133.476508 AIC 127.142432
MAE 0.98307236 AICC 128.432755
MAPE 6.45517689 HQC 129.353194
Log Likelihood -59.571216 Regress R-Square 0.7280
Durbin-Watson 2.2761 Total R-Square 0.9542

Observations 36

Parameter Estimates

Standard Approx
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 7.8833 1.1693 6.74 <.0001
time 1 0509  0.0551 9.25 <.0001
AR1 1 -1.2464 0.1385 -9.00 <.0001
AR2 1 0.6283 0.1366  4.60 <.0001

Autoregressive parameters assumed given

Standard Approx
Variable DF Estimate Error t Value Pr > |t

Intercept 1  7.8833 1.1678 6.75 <.0001
time 1 0509  0.0551 9.26 <.0001

The diagnostic statistics and parameter estimates tables in Figure 8.4 have the same form as in the OLS
output, but the values shown are for the autoregressive error model. The MSE for the autoregressive model is
1.71, which is much smaller than the true value of 4. In small samples, the autoregressive error model tends

to underestimate o2, while the OLS MSE overestimates o 2.

Notice that the total R? statistic computed from the autoregressive model residuals is 0.954, reflecting the
improved fit from the use of past residuals to help predict the next Y value. The Reg Rsq value 0.728 is the
R? statistic for a regression of transformed variables adjusted for the estimated autocorrelation. (This is not
the R2 for the estimated trend line. For details, see the section “Goodness-of-Fit Measures and Information
Criteria” on page 371 later in this chapter.)

The parameter estimates table shows the ML estimates of the regression coefficients and includes two
additional rows for the estimates of the autoregressive parameters, labeled AR(1) and AR(2).



310 4 Chapter 8: The AUTOREG Procedure

The estimated model is
yr = 7.88 4+ 0.5096¢ + v;

Vy = 1.251)[_1 - 0.628\)t_2 + ¢
Est. Var(e;) = 1.71

Note that the signs of the autoregressive parameters shown in this equation for v; are the reverse of the
estimates shown in the AUTOREG procedure output. Figure 8.4 also shows the estimates of the regression
coefficients with the standard errors recomputed on the assumption that the autoregressive parameter estimates
equal the true values.

Predicted Values and Residuals

The AUTOREG procedure can produce two kinds of predicted values and corresponding residuals and
confidence limits. The first kind of predicted value is obtained from only the structural part of the model,
x;b. This is an estimate of the unconditional mean of the response variable at time 7. For the time trend
model, these predicted values trace the estimated trend. The second kind of predicted value includes both
the structural part of the model and the predicted values of the autoregressive error process. The full model
(conditional) predictions are used to forecast future values.

Use the OUTPUT statement to store predicted values and residuals in a SAS data set and to output other
values such as confidence limits and variance estimates. The P= option specifies an output variable to contain
the full model predicted values. The PM= option names an output variable for the predicted mean. The R=
and RM= options specify output variables for the corresponding residuals, computed as the actual value
minus the predicted value.

The following statements store both kinds of predicted values in the output data set. (The printed output is
the same as previously shown in Figure 8.3 and Figure 8.4.)

proc autoreg data=a;
model y = time / nlag=2 method=ml;
output out=p p=yhat pm=trendhat;
run;

The following statements plot the predicted values from the regression trend line and from the full model
together with the actual values:

title 'Predictions for Autocorrelation Model';

proc sgplot data=p;
scatter x=time y=y / markerattrs=(color=blue);
series x=time y=yhat / lineattrs=(color=blue);
series x=time y=trendhat / lineattrs=(color=black);

run;
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The plot of predicted values is shown in Figure 8.5.

Figure 8.5 PROC AUTOREG Predictions

Predictions for Autocorrelation Model
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oy yhat trendhat

In Figure 8.5 the straight line is the autocorrelation corrected regression line, traced out by the structural
predicted values TRENDHAT. The jagged line traces the full model prediction values. The actual values are
marked by asterisks. This plot graphically illustrates the improvement in fit provided by the autoregressive
error process for highly autocorrelated data.
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Forecasting Autoregressive Error Models

To produce forecasts for future periods, include observations for the forecast periods in the input data set.
The forecast observations must provide values for the independent variables and have missing values for the
response variable.

For the time trend model, the only regressor is time. The following statements add observations for time
periods 37 through 46 to the data set A to produce an augmented data set B:

data b;

y = .;

do time = 37 to 46; output; end;
run;

data b;
merge a b;
by time;

run;

To produce the forecast, use the augmented data set as input to PROC AUTOREG, and specify the appropriate
options in the OUTPUT statement. The following statements produce forecasts for the time trend with
autoregressive error model. The output data set includes all the variables in the input data set, the forecast
values (YHAT), the predicted trend (YTREND), and the upper (UCL) and lower (LCL) 95% confidence
limits.

proc autoreg data=b;
model y = time / nlag=2 method=ml;
output out=p p=yhat pm=ytrend
lcl=1lcl ucl=ucl;
run;

The following statements plot the predicted values and confidence limits, and they also plot the trend line for
reference. The actual observations are shown for periods 16 through 36, and a reference line is drawn at the
start of the out-of-sample forecasts.

title 'Forecasting Autocorrelated Time Series';
proc sgplot data=p;

band x=time upper=ucl lower=lcl;

scatter x=time y=y;

series x=time y=yhat;

series x=time y=ytrend / lineattrs=(color=black);
run;

The plot is shown in Figure 8.6. Notice that the forecasts take into account the recent departures from the
trend but converge back to the trend line for longer forecast horizons.
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Figure 8.6 PROC AUTOREG Forecasts

Forecasting Autocorrelated Time Series
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Testing for Autocorrelation

In the preceding section, it is assumed that the order of the autoregressive process is known. In practice, you
need to test for the presence of autocorrelation.

The Durbin-Watson test is a widely used method of testing for autocorrelation. The first-order Durbin-
Watson statistic is printed by default. This statistic can be used to test for first-order autocorrelation. Use
the DWPROB option to print the significance level (p-values) for the Durbin-Watson tests. (Since the
Durbin-Watson p-values are computationally expensive, they are not reported by default.)

You can use the DW= option to request higher-order Durbin-Watson statistics. Since the ordinary Durbin-
Watson statistic tests only for first-order autocorrelation, the Durbin-Watson statistics for higher-order
autocorrelation are called generalized Durbin-Watson statistics.

The following statements perform the Durbin-Watson test for autocorrelation in the OLS residuals for orders
1 through 4. The DWPROB option prints the marginal significance levels (p-values) for the Durbin-Watson
statistics.
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/*—— Durbin-Watson test for autocorrelation --x/
proc autoreg data=a;

model y = time / dw=4 dwprob;
run;

The AUTOREG procedure output is shown in Figure 8.7. In this case, the first-order Durbin-Watson test is
highly significant, with p < .0001 for the hypothesis of no first-order autocorrelation. Thus, autocorrelation
correction is needed.

Figure 8.7 Durbin-Watson Test Results for OLS Residuals
Forecasting Autocorrelated Time Series

The AUTOREG Procedure

Dependent Variable y

Ordinary Least Squares Estimates

SSE 214.953429 DFE 34
MSE 6.32216 Root MSE 2.51439
SBC 173.659101 AIC 170.492063
MAE 2.01903356 AICC 170.855699
MAPE 12.5270666 HQC 171.597444

Regress R-Square 0.8200

Total R-Square 0.8200

Durbin-Watson Statistics
Order DW Pr<DW Pr>DW
1 04752 <.0001 1.0000
2 12935 0.0137 0.9863
3 20694 0.6545 0.3455
4 25544 09818 0.0182

NOTE: Pr<DW is the p-value for testing positive autocorrelation, and Pr>DW is the p-value for
testing negative autocorrelation.

Parameter Estimates

Standard Approx
Variable DF Estimate Error t Value Pr > |t

Intercept 1  8.2308 0.8559 9.62 <.0001
time 1 0.5021 0.0403 1245 <.0001

Using the Durbin-Watson test, you can decide if autocorrelation correction is needed. However, generalized
Durbin-Watson tests should not be used to decide on the autoregressive order. The higher-order tests
assume the absence of lower-order autocorrelation. If the ordinary Durbin-Watson test indicates no first-
order autocorrelation, you can use the second-order test to check for second-order autocorrelation. Once
autocorrelation is detected, further tests at higher orders are not appropriate. In Figure 8.7, since the first-order
Durbin-Watson test is significant, the order 2, 3, and 4 tests can be ignored.

When using Durbin-Watson tests to check for autocorrelation, you should specify an order at least as large
as the order of any potential seasonality, since seasonality produces autocorrelation at the seasonal lag. For
example, for quarterly data use DW=4, and for monthly data use DW=12.
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Lagged Dependent Variables

The Durbin-Watson tests are not valid when the lagged dependent variable is used in the regression model. In
this case, the Durbin 4 test or Durbin 7 test can be used to test for first-order autocorrelation.

For the Durbin # test, specify the name of the lagged dependent variable in the LAGDEP= option. For the
Durbin 1 test, specify the LAGDEP option without giving the name of the lagged dependent variable.

For example, the following statements add the variable YLAG to the data set A and regress Y on YLAG
instead of TIME:

data b;
set a;

ylag = lagl(y );
run;

proc autoreg data=b;

model y = ylag / lagdep=ylag;
run;

The results are shown in Figure 8.8. The Durbin £ statistic 2.78 is significant with a p-value of 0.0027,
indicating autocorrelation.

Figure 8.8 Durbin h Test with a Lagged Dependent Variable

Forecasting Autocorrelated Time Series
The AUTOREG Procedure

Dependent Variable y

Ordinary Least Squares Estimates

SSE 97.711226 DFE 33
MSE 2.96095 Root MSE 1.72074
SBC 142.369787 AIC 139.259091
MAE 1.29949385 AICC 139.634091
MAPE 8.1922836 HQC 140.332903

Regress R-Square 0.9109

Total R-Square 0.9109

Miscellaneous Statistics
Statistic Value Prob Label
Durbinh 2.7814 0.0027 Pr>h

Parameter Estimates

Standard Approx
Variable DF Estimate Error t Value Pr> |t

Intercept 1 15742 0.9300 1.69 0.0999
ylag 1 09376 0.0510 18.37 <.0001



316 4 Chapter 8: The AUTOREG Procedure

Stepwise Autoregression

Once you determine that autocorrelation correction is needed, you must select the order of the autoregressive
error model to use. One way to select the order of the autoregressive error model is stepwise autoregression.
The stepwise autoregression method initially fits a high-order model with many autoregressive lags and then
sequentially removes autoregressive parameters until all remaining autoregressive parameters have significant

t tests.

To use stepwise autoregression, specify the BACKSTEP option, and specify a large order with the NLAG=

option. The following statements show the stepwise feature, using an initial order of 5:

/*—— stepwise autoregression —--x/
proc autoreg data=a;

model y =
run;

The results are shown in Figure 8.9.

time / method=ml nlag=5 backstep;

Figure 8.9 Stepwise Autoregression
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Figure 8.9 continued

Backward Elimination of
Autoregressive Terms

Lag Estimate t Value Pr > |t|
4 -0.052908 -0.20 0.8442
3 0.115986  0.57 0.5698
5 0.131734  1.21 0.2340

The estimates of the autocorrelations are shown for 5 lags. The backward elimination of autoregressive terms
report shows that the autoregressive parameters at lags 3, 4, and 5 were insignificant and eliminated, resulting
in the second-order model shown previously in Figure 8.4. By default, retained autoregressive parameters
must be significant at the 0.05 level, but you can control this with the SLSTAY = option. The remainder of the
output from this example is the same as that in Figure 8.3 and Figure 8.4, and it is not repeated here.

The stepwise autoregressive process is performed using the Yule-Walker method. The maximum likelihood
estimates are produced after the order of the model is determined from the significance tests of the preliminary
Yule-Walker estimates.

When using stepwise autoregression, it is a good idea to specify an NLAG= option value larger than the order
of any potential seasonality, since seasonality produces autocorrelation at the seasonal lag. For example, for
monthly data use NLAG=13, and for quarterly data use NLAG=5.

Subset and Factored Models

In the previous example, the BACKSTEP option dropped lags 3, 4, and 5, leaving a second-order model.
However, in other cases a parameter at a longer lag may be kept while some smaller lags are dropped. For
example, the stepwise autoregression method might drop lags 2, 3, and 5 but keep lags 1 and 4. This is called
a subset model, since the number of estimated autoregressive parameters is lower than the order of the model.

Subset models are common for seasonal data and often correspond to factored autoregressive models. A
factored model is the product of simpler autoregressive models. For example, the best model for seasonal
monthly data may be the combination of a first-order model for recent effects with a 12th-order subset model
for the seasonality, with a single parameter at lag 12. This results in a 13th-order subset model with nonzero
parameters at lags 1, 12, and 13. See Chapter 7, “The ARIMA Procedure,” for further discussion of subset
and factored autoregressive models.

You can specify subset models with the NLAG= option. List the lags to include in the autoregressive model
within parentheses. The following statements show an example of specifying the subset model resulting from
the combination of a first-order process for recent effects with a fourth-order seasonal process:

/*—— specifying the lags —--*/
proc autoreg data=a;

model y = time / nlag=(1 4 5);
run;

The MODEL statement specifies the following fifth-order autoregressive error model:
ye=a+ bt + v

Vi = —Q1Vi—1 — P4Vi—4 — P5Vt—5 + €;
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Testing for Heteroscedasticity

One of the key assumptions of the ordinary regression model is that the errors have the same variance
throughout the sample. This is also called the homoscedasticity model. If the error variance is not constant,
the data are said to be heteroscedastic.

Since ordinary least squares regression assumes constant error variance, heteroscedasticity causes the OLS
estimates to be inefficient. Models that take into account the changing variance can make more efficient
use of the data. Also, heteroscedasticity can make the OLS forecast error variance inaccurate because the
predicted forecast variance is based on the average variance instead of on the variability at the end of the
series.

To illustrate heteroscedastic time series, the following statements create the simulated series Y. The variable
Y has an error variance that changes from 1 to 4 in the middle part of the series.

data a;
do time = -10 to 120;
s =1 + (time >= 60 & time < 90);
sxrannor (12346) ;
y =10 + .5 x time + u;
if time > 0 then output;
end;

u

run;

title 'Heteroscedastic Time Series’';
proc sgplot data=a noautolegend;

series x=time y=y / markers;

reg x=time y=y / lineattrs=(color=black);
run;

The simulated series is plotted in Figure 8.10.
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Figure 8.10 Heteroscedastic and Autocorrelated Series
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To test for heteroscedasticity with PROC AUTOREG, specify the ARCHTEST option. The following
statements regress Y on TIME and use the ARCHTEST= option to test for heteroscedastic OLS residuals:

/*—— test for heteroscedastic OLS residuals —--x*/
proc autoreg data=a;

model y = time / archtest;

output out=r r=yresid;
run;

The PROC AUTOREG output is shown in Figure 8.11. The Q statistics test for changes in variance across
time by using lag windows that range from 1 through 12. (See the section “Testing for Nonlinear Dependence:
Heteroscedasticity Tests” on page 392 for details.) The p-values for the test statistics strongly indicate
heteroscedasticity, with p < 0.0001 for all lag windows.

The Lagrange multiplier (LM) tests also indicate heteroscedasticity. These tests can also help determine the
order of the ARCH model that is appropriate for modeling the heteroscedasticity, assuming that the changing
variance follows an autoregressive conditional heteroscedasticity model.
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Figure 8.11 Heteroscedasticity Tests

Heteroscedastic Time Series
The AUTOREG Procedure

Dependent Variable y

Ordinary Least Squares Estimates

SSE 223.645647 DFE 118
MSE 1.89530 Root MSE 1.37670
SBC 424.828766 AIC 419.253783
MAE 0.97683599 AICC 419.356347
MAPE 2.73888672 HQC 421.517809
Durbin-Watson 2.4444 Regress R-Square 0.9938

Total R-Square 0.9938

Tests for ARCH Disturbances Based on
OLS Residuals

Order Q Pr>Q LM Pr>LM
1 19.4549 <.0001 19.1493 <.0001

2  21.3563 <.0001 19.3057 <.0001
3 28.7738 <.0001 25.7313 <.0001
4 38.1132 <.0001 26.9664 <.0001
5 52.3745 <.0001 32.5714 <.0001
6 54.4968 <.0001 34.2375 <.0001
7 553127 <.0001 34.4726 <.0001
8 58.3809 <.0001 34.4850 <.0001
9 68.3075 <.0001 38.7244 <.0001
10 73.2949 <.0001 38.9814 <.0001
11 749273 <.0001 39.9395 <.0001
12 76.0254 <.0001 40.8144 <.0001

Parameter Estimates

Standard Approx
Variable DF Estimate Error t Value Pr> |t

Intercept 1 9.8684  0.2529 39.02 <.0001
time 1 0.5000 0.003628 137.82 <.0001

The tests of Lee and King (1993) and Wong and Li (1995) can also be applied to check the absence of ARCH
effects. The following example shows that Wong and Li’s test is robust to detect the presence of ARCH
effects with the existence of outliers.

/*—— data with outliers at observation 10 —-x/
data b;
do time = -10 to 120;
s 1 + (time >= 60 & time < 90);
u sxrannor (12346) ;
y 10 + .5 * time + u;
if time = 10 then
do; y = 200; end;
if time > 0 then output;
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end;
run;
/*—— test for heteroscedastic OLS residuals --x*/
proc autoreg data=b;
model y = time / archtest=(gqlm) ;
model y = time / archtest=(lk,wl) ;
run;

As shown in Figure 8.12, the p-values of Q or LM statistics for all lag windows are above 90%, which fails
to reject the null hypothesis of the absence of ARCH effects. Lee and King’s test, which rejects the null
hypothesis for lags more than 8 at 10% significance level, works better. Wong and Li’s test works best,
rejecting the null hypothesis and detecting the presence of ARCH effects for all lag windows.

Figure 8.12 Heteroscedasticity Tests

Heteroscedastic Time Series
The AUTOREG Procedure

Tests for ARCH Disturbances Based
on OLS Residuals

Order QPr>Q LM Pr>LM
1 0.0076 0.9304 0.0073 0.9319

2 0.0150 0.9925 0.0143 0.9929
3 0.0229 0.9991 0.0217 0.9992
4 0.0308 0.9999 0.0290 0.9999
5 0.0367 1.0000 0.0345 1.0000
6 0.0442 1.0000 0.0413 1.0000
7 0.0522 1.0000 0.0485 1.0000
8 0.0612 1.0000 0.0565 1.0000
9 0.0701 1.0000 0.0643 1.0000
10 0.0701 1.0000 0.0742 1.0000
11 0.0701 1.0000 0.0838 1.0000
12 0.0702 1.0000 0.0939 1.0000

Tests for ARCH Disturbances Based on
OLS Residuals

Order LK Pr> |LK| WL Pr> WL
1 06377 05236 34.9984 <0001

2 -08926 03721 729542 <.0001
3  -1.0979 0.2723 104.0322 <.0001
4 12705 0.2039 139.9328 <.0001
5 -1.3824 0.1668 176.9830 <.0001
6 -15125 0.1304 200.3388 <.0001
7 -1.6385 0.1013 238.4844 <.0001
8 -1.7695 0.0768 267.8882 <.0001
9 -1.8881 0.0590 304.5706 <.0001
10 -2.2349 0.0254 326.3658 <.0001
11 -2.2380 0.0252 348.8036 <.0001
12 -2.2442  0.0248 371.9596 <.0001
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Heteroscedasticity and GARCH Models

There are several approaches to dealing with heteroscedasticity. If the error variance at different times is
known, weighted regression is a good method. If, as is usually the case, the error variance is unknown and
must be estimated from the data, you can model the changing error variance.

The generalized autoregressive conditional heteroscedasticity (GARCH) model is one approach to modeling
time series with heteroscedastic errors. The GARCH regression model with autoregressive errors is

yi =%+ v

Ve =€ —@Q1Vi—1 — .. — OmVt—m

€ = \/h—tet

q p
hy =+ ZOli€t2_l~ + Z Yihe—;j

i=1 j=1
ey ~ IN(O, 1)

This model combines the mth-order autoregressive error model with the GARCH(p, ¢) variance model. It is
denoted as the AR(m)-GARCH(p, ¢) regression model.

The tests for the presence of ARCH effects (namely, Q and LM tests, tests from Lee and King (1993) and
tests from Wong and Li (1995)) can help determine the order of the ARCH model appropriate for the data.
For example, the Lagrange multiplier (LM) tests shown in Figure 8.11 are significant (p < 0.0001) through
order 12, which indicates that a very high-order ARCH model is needed to model the heteroscedasticity.

The basic ARCH(g) model (p = 0) is a short memory process in that only the most recent g squared residuals
are used to estimate the changing variance. The GARCH model (p > 0) allows long memory processes,
which use all the past squared residuals to estimate the current variance. The LM tests in Figure 8.11 suggest
the use of the GARCH model (p > 0) instead of the ARCH model.

The GARCH(p, g) model is specified with the GARCH=(P=p, Q=¢) option in the MODEL statement. The
basic ARCH(g) model is the same as the GARCH(0, ¢) model and is specified with the GARCH=(Q=q)
option.

The following statements fit an AR(2)-GARCH(1, 1) model for the Y series that is regressed on TIME. The
GARCH=(P=1,Q=1) option specifies the GARCH(1, 1) conditional variance model. The NLAG=2 option
specifies the AR(2) error process. Only the maximum likelihood method is supported for GARCH models;
therefore, the METHOD= option is not needed. The CEV= option in the OUTPUT statement stores the
estimated conditional error variance at each time period in the variable VHAT in an output data set named
OUT. The data set is the same as in the section “Testing for Heteroscedasticity” on page 318.

data c;
ul=0; ull=0;
do time = -10 to 120;

s =1+ (time >= 60 & time < 90);
u=+ 1.3 » ul — .5 x ull + s*rannor(12346);
y =10 + .5 * time + u;

if time > 0 then output;
ull = ul; ul = u;
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end;
run;
title 'AR(2)-GARCH(1l,1l) model for the Y series regressed on TIME';
proc autoreg data=c;
model y = time / nlag=2 garch=(g=1,p=1) maxit=50;
output out=out cev=vhat;
run;

The results for the GARCH model are shown in Figure 8.13. (The preliminary estimates are not shown.)

Figure 8.13 AR(2)-GARCH(1, 1) Model
AR(2)-GARCH(1,1) model for the Y series regressed on TIME

The AUTOREG Procedure

GARCH Estimates

SSE 218.861036 Observations 120
MSE 1.82384 Uncond Var 1.6299733
Log Likelihood -187.44013 Total R-Square 0.9941
SBC 408.392693 AIC 388.88025
MAE 0.97051406 AICC 389.88025
MAPE 2.75945337 HQC 396.804343

Normality Test 0.0838

Pr > ChiSq 0.9590

Parameter Estimates

Standard Approx
Variable DF Estimate Error t Value Pr > |t

Intercept 1  8.9301 0.7456 11.98 <.0001

time 1 05075 0.0111 45.90 <.0001
AR1 1 -1.2301 0.1111 -11.07 <.0001
AR2 1 05023 0.1090 4.61 <.0001
ARCHO 1 0.0850 0.0780 1.09 0.2758
ARCH1 1 02103 00873 241 0.0159
GARCH1 1 07375 0.0989 7.46 <.0001

The normality test is not significant (p = 0.959), which is consistent with the hypothesis that the residuals
from the GARCH model, €; /+/h;, are normally distributed. The parameter estimates table includes rows for
the GARCH parameters. ARCHO represents the estimate for the parameter w, ARCH1 represents «1, and
GARCHI represents 1.

The following statements transform the estimated conditional error variance series VHAT to the estimated
standard deviation series SHAT. Then, they plot SHAT together with the true standard deviation S used to
generate the simulated data.

data out;

set out;
shat = sqrt( vhat );
run;

title 'Predicted and Actual Standard Deviations';
proc sgplot data=out noautolegend;
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scatter x=time y=s;
series x=time y=shat/ lineattrs=(color=black);
run;

The plot is shown in Figure 8.14.

Figure 8.14 Estimated and Actual Error Standard Deviation Series
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In this example note that the form of heteroscedasticity used in generating the simulated series Y does not
fit the GARCH model. The GARCH model assumes conditional heteroscedasticity, with homoscedastic
unconditional error variance. That is, the GARCH model assumes that the changes in variance are a function
of the realizations of preceding errors and that these changes represent temporary and random departures
from a constant unconditional variance. The data-generating process used to simulate series Y, contrary to

the GARCH model, has exogenous unconditional heteroscedasticity that is independent of past errors.

Nonetheless, as shown in Figure 8.14, the GARCH model does a reasonably good job of approximating the
error variance in this example, and some improvement in the efficiency of the estimator of the regression

parameters can be expected.

The GARCH model might perform better in cases where theory suggests that the data-generating process
produces true autoregressive conditional heteroscedasticity. This is the case in some economic theories of

asset returns, and GARCH-type models are often used for analysis of financial market data.
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GARCH Models
The AUTOREG procedure supports several variations of GARCH models.

Using the TYPE= option along with the GARCH= option enables you to control the constraints placed
on the estimated GARCH parameters. You can specify unconstrained, nonnegativity-constrained (default),
stationarity-constrained, or integration-constrained models. The integration constraint produces the integrated
GARCH (IGARCH) model.

You can also use the TYPE= option to specify the exponential form of the GARCH model, called the
EGARCH model, or other types of GARCH models, namely the quadratic GARCH (QGARCH), threshold
GARCH (TGARCH), and power GARCH (PGARCH) models. The MEAN= option along with the GARCH=
option specifies the GARCH-in-mean (GARCH-M) model.

The following statements illustrate the use of the TYPE= option to fit an AR(2)-EGARCH(1, 1) model to the
series Y. (Output is not shown.)

/*—— AR(2)-EGARCH(1,1) model --x*/
proc autoreg data=a;

model y = time / nlag=2 garch=(p=1,qg=1, type=exp);
run;

See the section “GARCH Models” on page 362 for details.

Syntax: AUTOREG Procedure

The AUTOREG procedure is controlled by the following statements:

PROC AUTOREG options ;
BY variables ;
CLASS variables ;
MODEL dependent = regressors / options ;
HETERO variables / options ;
NLOPTIONS options ;
OUTPUT < OUT=SAS-data-set> < options > < keyword=name > ;
RESTRICT equation, ..., equation ;
TEST equation, ..., equation / option ;

At least one MODEL statement must be specified. One OUTPUT statement can follow each MODEL
statement. One HETERO statement can follow each MODEL statement.
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Functional Summary

The statements and options used with the AUTOREG procedure are summarized in the following table.

Table 8.1 AUTOREG Functional Summary

Description Statement Option
Data Set Options

Specify the input data set AUTOREG DATA=
Write parameter estimates to an output data set AUTOREG OUTEST=
Include covariances in the OUTEST= data set AUTOREG CcovouT
Requests that the procedure produce graphics AUTOREG PLOTS=
via the Output Delivery System

Write predictions, residuals, and confidence OUTPUT OUT=

limits to an output data set

Declaring the Role of Variables

Specify BY-group processing BY
Specify classification variables CLASS

Printing Control Options

Request all printing options MODEL ALL
Print transformed coefficients MODEL COEF
Print correlation matrix of the estimates MODEL CORRB
Print covariance matrix of the estimates MODEL COVB
Print DW statistics up to order j MODEL DW=j
Print marginal probability of the generalized =~ MODEL DWPROB
Durbin-Watson test statistics for large sample

sizes

Print the p-values for the Durbin-Watson test ~ MODEL LDW

be computed using a linearized approximation
of the design matrix

Print inverse of Toeplitz matrix MODEL GINV

Print the Godfrey LM serial correlation test MODEL GODFREY=
Print details at each iteration step MODEL ITPRINT
Print the Durbin 7 statistic MODEL LAGDEP
Print the Durbin / statistic MODEL LAGDEP=
Print the log-likelihood value of the regression MODEL LOGLIKL
model

Print the Jarque-Bera normality test MODEL NORMAL
Print the tests for the absence of ARCH effects MODEL ARCHTEST=
Print BDS tests for independence MODEL BDS=

Print rank version of von Neumann ratio test =~ MODEL VNRRANK=
for independence

Print runs test for independence MODEL RUNS=

Print the turning point test for independence MODEL TP=

Print the Lagrange multiplier test HETERO TEST=LM
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Table 8.1 continued

Description Statement Option

Print Bai-Perron tests for multiple structural MODEL BP=

changes

Print the Chow test for structural change MODEL CHOW=

Print the predictive Chow test for structural MODEL PCHOW=

change

Suppress printed output MODEL NOPRINT

Print partial autocorrelations MODEL PARTIAL

Print Ramsey’s RESET test MODEL RESET

Print Phillips-Perron tests for stationarity or MODEL STATIONARITY=(PHILLIPS=)
unit roots

Print Augmented Dickey-Fuller tests for MODEL STATIONARITY=(ADF=)
stationarity or unit roots

Print ERS tests for stationarity or unit roots MODEL STATIONARITY=(ERS=)
Print KPSS tests or Shin tests for stationarity = MODEL STATIONARITY=(KPSS=)
or cointegration

Print Ng-Perron tests for stationarity or unit MODEL STATIONARITY=(NP=)
roots

Print tests of linear hypotheses TEST

Specify the test statistics to use TEST TYPE=

Print the uncentered regression R? MODEL URSQ

Options to Control the Optimization Process

Specify the optimization options NLOPTIONS see Chapter 6,
“Nonlinear Optimization
Methods,”

Model Estimation Options

Specify the order of autoregressive process MODEL NLAG=
Center the dependent variable MODEL CENTER
Suppress the intercept parameter MODEL NOINT
Remove nonsignificant AR parameters MODEL BACKSTEP
Specify significance level for BACKSTEP MODEL SLSTAY=
Specify the convergence criterion MODEL CONVERGE=
Specify the type of covariance matrix MODEL COVEST=

Set the initial values of parameters used by the MODEL INITIAL=
iterative optimization algorithm

Specify iterative Yule-Walker method MODEL ITER

Specify maximum number of iterations MODEL MAXITER=
Specify the estimation method MODEL METHOD=
Use only first sequence of nonmissing data MODEL NOMISS
Specify the optimization technique MODEL OPTMETHOD=
Imposes restrictions on the regression RESTRICT

estimates

Estimate and test heteroscedasticity models HETERO
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Table 8.1 continued

Description Statement Option

GARCH Related Options

Specify order of GARCH process MODEL GARCH=(Q=,P=)
Specify type of GARCH model MODEL GARCH=(...,TYPE=)
Specify various forms of the GARCH-M MODEL GARCH=(...,MEAN=)
model

Suppress GARCH intercept parameter MODEL GARCH=(...,NOINT)
Specify the trust region method MODEL GARCH=(...,TR)
Estimate the GARCH model for the MODEL GARCH=(...) DIST=
conditional ¢ distribution

Estimate the start-up values for the conditional MODEL GARCH=(...,STARTUP=)
variance equation

Specify the functional form of the HETERO LINK=
heteroscedasticity model

Specify that the heteroscedasticity model does HETERO NOCONST

not include the unit term

Impose constraints on the estimated HETERO COEF=

parameters in the heteroscedasticity model

Impose constraints on the estimated standard ~ HETERO STD=

deviation of the heteroscedasticity model

Output conditional error variance OUTPUT CEV=

Output conditional prediction error variance OUTPUT CPEV=

Specify the flexible conditional variance form HETERO

of the GARCH model

Output Control Options

Specify confidence limit size OUTPUT ALPHACLI=

Specify confidence limit size for structural OUTPUT ALPHACLM=
predicted values

Specify the significance level for the upper and OUTPUT ALPHACSM=

lower bounds of the CUSUM and CUSUMSQ

statistics

Specify the name of a variable to contain the =~ OUTPUT BLUS=

values of the Theil’s BLUS residuals

Output the value of the error variance atz OUTPUT CEV=

Output transformed intercept variable OUTPUT CONSTANT=
Specify the name of a variable to contain the =~ OUTPUT CUSUM=

CUSUM statistics

Specify the name of a variable to contain the =~ OUTPUT CUSUMSQ=
CUSUMSQ statistics

Specify the name of a variable to contain the =~ OUTPUT CUSUMUB=

upper confidence bound for the CUSUM

statistic

Specify the name of a variable to contain the =~ OUTPUT CUSUMLB=

lower confidence bound for the CUSUM
statistic
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Table 8.1 continued

Description Statement Option

Specify the name of a variable to contain the =~ OUTPUT CUSUMSQUB=
upper confidence bound for the CUSUMSQ

statistic

Specify the name of a variable to contain the =~ OUTPUT CUSUMSQLB=
lower confidence bound for the CUSUMSQ

statistic

Output lower confidence limit OUTPUT LCL=

Output lower confidence limit for structural OUTPUT LCLM=
predicted values

Output predicted values OUTPUT P=

Output predicted values of structural part OUTPUT PM=

Output residuals OUTPUT R=

Output residuals from structural predictions OUTPUT RM=

Specify the name of a variable to contain the =~ OUTPUT RECPEV=

part of the predictive error variance (v;)

Specify the name of a variable to contain OUTPUT RECRES=
recursive residuals

Output transformed variables OUTPUT TRANSFORM=
Output upper confidence limit OUTPUT UCL=

Output upper confidence limit for structural OUTPUT UCLM=

predicted values

PROC AUTOREG Statement
PROC AUTOREG options ;
The following options can be used in the PROC AUTOREG statement:

DATA=SAS-data-set
specifies the input SAS data set. If the DATA= option is not specified, PROC AUTOREG uses the
most recently created SAS data set.

OUTEST=SAS-data-set
writes the parameter estimates to an output data set. See the section “OUTEST= Data Set” on page 401
for information on the contents of these data set.

covouT
writes the covariance matrix for the parameter estimates to the OUTEST= data set. This option is valid
only if the OUTEST= option is specified.
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PLOTS<(global-plot-options)> < = (specific plot options)>
requests that the AUTOREG procedure produce statistical graphics via the Output Delivery System,
provided that the ODS GRAPHICS statement has been specified. For general information about ODS
Graphics, see Chapter 21, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide). The global-
plot-options apply to all relevant plots generated by the AUTOREG procedure. The global-plot-options
supported by the AUTOREG procedure follow.

Global Plot Options

ONLY suppresses the default plots. Only the plots specifically requested are produced.

UNPACKPANEL | UNPACK displays each graph separately. (By default, some graphs can appear together
in a single panel.)

Specific Plot Options

ALL requests that all plots appropriate for the particular analysis be produced.
ACF produces the autocorrelation function plot.

IACF produces the inverse autocorrelation function plot of residuals.

PACF produces the partial autocorrelation function plot of residuals.

FITPLOT plots the predicted and actual values.

COOKSD produces the Cook’s D plot.

QQ Q-Q plot of residuals.

RESIDUAL | RES plots the residuals.

STUDENTRESIDUAL plots the studentized residuals. For the models with the NLAG= or GARCH=
options in the MODEL statement or with the HETERO statement, this option is replaced
by the STANDARDRESIDUAL option.

STANDARDRESIDUAL plots the standardized residuals.

WHITENOISE plots the white noise probabilities.

RESIDUALHISTOGRAM | RESIDHISTOGRAM plots the histogram of residuals.
NONE suppresses all plots.

In addition, any of the following MODEL statement options can be specified in the PROC AUTOREG
statement, which is equivalent to specifying the option for every MODEL statement: ALL, ARCHTEST,
BACKSTEP, CENTER, COEF, CONVERGE=, CORRB, COVB, DW=, DWPROB, GINV, ITER, ITPRINT,
MAXITER=, METHOD=, NOINT, NOMISS, NOPRINT, and PARTIAL.
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BY Statement

BY variables ;

A BY statement can be used with PROC AUTOREG to obtain separate analyses on observations in groups
defined by the BY variables.

CLASS Statement (Experimental)
CLASS variables ;

The CLASS statement names the classification variables to be used in the analysis. Classification variables
can be either character or numeric.

In PROC AUTOREG, the CLASS statement enables you to output class variables to a data set that contains a
copy of the original data.

Class levels are determined from the formatted values of the CLASS variables. Thus, you can use formats

to group values into levels. See the discussion of the FORMAT procedure in SAS Language Reference:
Dictionary for details.

MODEL Statement

MODEL dependent = regressors / options ;

The MODEL statement specifies the dependent variable and independent regressor variables for the regression
model. If no independent variables are specified in the MODEL statement, only the mean is fitted. (This is a
way to obtain autocorrelations of a series.)

Models can be given labels of up to eight characters. Model labels are used in the printed output to identify
the results for different models. The model label is specified as follows:

label : MODEL ...;
The following options can be used in the MODEL statement after a slash (/).

CENTER

centers the dependent variable by subtracting its mean and suppresses the intercept parameter from the
model. This option is valid only when the model does not have regressors (explanatory variables).

NOINT
suppresses the intercept parameter.

Autoregressive Error Options

NLAG=number

NLAG=(number-list)
specifies the order of the autoregressive error process or the subset of autoregressive error lags to be
fitted. Note that NLAG=3 is the same as NLAG=(1 2 3). If the NLAG= option is not specified, PROC
AUTOREG does not fit an autoregressive model.
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GARCH Estimation Options

DIST=value
specifies the distribution assumed for the error term in GARCH-type estimation. If no GARCH=
option is specified, the option is ignored. If EGARCH is specified, the distribution is always the normal
distribution. The values of the DIST= option are as follows:

T specifies Student’s ¢ distribution.
NORMAL specifies the standard normal distribution. The default is DIST=NORMAL.

GARCH-=(option-list)
specifies a GARCH-type conditional heteroscedasticity model. The GARCH= option in the MODEL
statement specifies the family of ARCH models to be estimated. The GARCH(1, 1) regression model
is specified in the following statement:

model y = x1 x2 / garch=(g=1,p=1);

When you want to estimate the subset of ARCH terms, such as ARCH(1, 3), you can write the SAS
statement as follows:

model y = x1 x2 / garch=(g=(1 3));

With the TYPE= option, you can specify various GARCH models. The IGARCH(2, 1) model without
trend in variance is estimated as follows:

model y = / garch=(g=2,p=1, type=integ, noint);

The following options can be used in the GARCH=( ) option. The options are listed within parentheses
and separated by commas.

Q=number

Q=(number-list)
specifies the order of the process or the subset of ARCH terms to be fitted.

P=number

P=(number-list)
specifies the order of the process or the subset of GARCH terms to be fitted. If only the P= option is
specified, P= option is ignored and Q=1 is assumed.

TYPE=value
specifies the type of GARCH model. The values of the TYPE= option are as follows:

EXP I EGARCH specifies the exponential GARCH, or EGARCH, model.
INTEGRATED | IGARCH specifies the integrated GARCH, or IGARCH, model.
NELSON | NELSONCAO specifies the Nelson-Cao inequality constraints.
NOCONSTRAINT  specifies the GARCH model with no constraints.



MODEL Statement 4 333

NONNEG specifies the GARCH model with nonnegativity constraints.

POWER | PGARCH specifies the power GARCH, or PGARCH, model.

QUADR | QUADRATIC | QGARCH specifies the quadratic GARCH, or QGARCH, model.
STATIONARY  constrains the sum of GARCH coefficients to be less than 1.

THRES | THRESHOLD | TGARCH | GJR | GIRGARCH  specifies the threshold GARCH, or
TGARCH, model.

The default is TYPE=NELSON.

MEAN=value
specifies the functional form of the GARCH-M model. You can specify the following values:

LINEAR specifies the linear function:
ye =% B +8h + &
LOG specifies the log function:
ye =%+ 8n(hs) + €
SQRT specifies the square root function:
Vi =x;,3+8\/h—t+et

NOINT

suppresses the intercept parameter in the conditional variance model. This option is valid only when
you also specify the TYPE=INTEG option.

STARTUP=MSE | ESTIMATE
requests that the positive constant c¢ for the start-up values of the GARCH conditional error variance

process be estimated. By default, or if you specify STARTUP=MSE, the value of the mean squared
error is used as the default constant.

TR

uses the trust region method for GARCH estimation. This algorithm is numerically stable, although
computation is expensive. The double quasi-Newton method is the default.

Printing Options

ALL
requests all printing options.

ARCHTEST

ARCHTEST=(option-list)
specifies tests for the absence of ARCH effects. The following options can be used in the ARCHTEST=(
) option. The options are listed within parentheses and separated by commas.
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QLM | QLMARCH
requests the Q and Engle’s LM tests.

LK | LKARCH
requests Lee and King’s ARCH tests.

WL | WLARCH
requests Wong and Li’s ARCH tests.

ALL
requests all ARCH tests, namely Q and Engle’s LM tests, Lee and King’s tests, and Wong and
Li’s tests.

If ARCHTEST is defined without additional suboptions, it requests the Q and Engle’s LM tests. That
1s,the statement

model return = x1 x2 / archtest;

is equivalent to the statement

model return = x1 x2 / archtest=(qlm);

The following statement requests Lee and King’s tests and Wong and Li’s tests:

model return = / archtest=(lk,wl);

BDS

BDS=(option-list)
specifies Brock-Dechert-Scheinkman (BDS) tests for independence. The following options can be
used in the BDS=( ) option. The options are listed within parentheses and separated by commas.

M=number
specifies the maximum number of the embedding dimension. The BDS tests with embedding
dimension from 2 to M are calculated. M must be an integer between 2 and 20. The default value
of the M= suboption is 20.

D=number
specifies the parameter to determine the radius for BDS test. The BDS test sets up the radius as
r = D x o, where o is the standard deviation of the time series to be tested. By default, D=1.5.

PVALUE=DIST | SIM
specifies the way to calculate the p-values. By default or if PVALUE=DIST is specified, the
p-values are calculated according to the asymptotic distribution of BDS statistics (that is, the
standard normal distribution). Otherwise, for samples of size less than 500, the p-values are
obtained though Monte Carlo simulation.
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Z=value
specifies the type of the time series (residuals) to be tested. You can specify the following values:

Y specifies the regressand.

RO specifies the OLS residuals.

R specifies the residuals of the final model.

RM specifies the structural residuals of the final model.

SR specifies the standardized residuals of the final model, defined by residuals

over the square root of the conditional variance.

The default is Z=Y.

If BDS is defined without additional suboptions, all suboptions are set as default values. That is, the
following two statements are equivalent:

model return = x1 x2 / nlag=1 BDS;

model return = x1 x2 / nlag=1 BDS=(M=20, D=1.5, PVALUE=DIST, Z=Y);

To do the specification check of a GARCH(1,1) model, you can write the SAS statement as follows:

model return = / garch=(p=1,g=1) BDS=(Z=SR);

BP

BP=(option-list)
specifies Bai-Perron (BP) tests for multiple structural changes, introduced in Bai and Perron (1998).
You can specify the following options in the BP=( ) option, in parentheses and separated by commas.

EPS=number
specifies the minimum length of regime; that is, if EPS=¢, forany i,i = 1,.... M, T; —T;—1 > Te,
where T is the sample size; (77...Tyy) are the break dates; and Typ = 0 and Tpy4+; = T. The
default is EPS=0.05.

ETA=number
specifies that the second method is to be used in the calculation of the supF (I + 1|I) test, and
the minimum length of regime for the new additional break date is (7; — 7;—1)n if ETA=n and
the new break date is in regime i for the given break dates (77...77). The default value of the
ETA= suboption is the missing value; i.e., the first method is to be used in the calculation of the
supF (I + 1|/) test and, no matter which regime the new break date is in, the minimum length of
regime for the new additional break date is T'¢ when EPS=¢.

HAC<(option-list)>
specifies that the heteroscedasticity- and autocorrelation-consistent estimator be applied in the
estimation of the variance covariance matrix and the confidence intervals of break dates. When
the HAC option is specified, you can specify the following options within parentheses and
separated by commas:
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KERNEL=value
specifies the type of kernel function. You can specify the following values:

BARTLETT specifies the Bartlett kernel function.

PARZEN specifies the Parzen kernel function.

QUADRATICSPECTRAL | QS specifies the quadratic spectral kernel function.
TRUNCATED  specifies the truncated kernel function.

TUKEYHANNING | TUKEY I TH specifies the Tukey-Hanning kernel function.

The default is KERNEL=QUADRATICSPECTRAL.

KERNELLB=number
specifies the lower bound of the kernel weight value. Any kernel weight less than this lower
bound is regarded as zero, which accelerates the calculation for big samples, especially for
the quadratic spectral kernel. The default is KERNELLB=0.

BANDWIDTH=value
specifies the fixed bandwidth value or bandwidth selection method to use in the kernel
function. You can specify the following values:

ANDREWS91 | ANDREWS specifies the Andrews (1991) bandwidth selection method.

NEWEYWEST94 | NW94 <(C=number)> specifies the Newey and West (1994) band-
width selection method. You can specify the C= option in parentheses to
calculate the lag selection parameter; the default is C=12.

SAMPLESIZE | SS <(option-list)>  specifies that the bandwidth be calculated according
to the following equation, based on the sample size:

b=yT" +¢

where b is the bandwidth parameter and 7 is the sample size, and y, r,
and c are values specified by the following options within parentheses
and separated by commas.

GAMMA=number
specifies the coefficient y in the equation. The default is y = 0.75.

RATE=number
specifies the growth rate r in the equation. The default is » = 0.3333.

CONSTANT=number
specifies the constant ¢ in the equation. The default is ¢ = 0.5.

INT
specifies that the bandwidth parameter must be integer; that is, b =
lyT" + c|, where | x | denotes the largest integer less than or equal to
X.

number specifies the fixed value of the bandwidth parameter.

The default is BANDWIDTH=ANDREWSO91.
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PREWHITENING
specifies that prewhitening is required in the calculation.

In the calculation of the HAC estimator, the adjustment for degrees of freedom is always applied.
See the section “Heteroscedasticity- and Autocorrelation-Consistent Covariance Matrix Estimator”
on page 367 for more information about the HAC estimator.

HE
specifies that the errors are assumed to have heterogeneous distribution across regimes in the
estimation of covariance matrix.

HO
specifies that €2;s in the calculation of confidence intervals of break dates are different across
regimes.

HQ
specifies that Q;s in the calculation of confidence intervals of break dates are different across
regimes.

HR
specifies that the regressors are assumed to have heterogeneous distribution across regimes in the
estimation of covariance matrix.

M=number
specifies the number of breaks. For a given M, the following tests are to be performed: (1) the
supF tests of no break versus the alternative hypothesis that there are i breaks, i = 1, ..., M;
(2) the UDmaxF and WDmaxF double maximum tests of no break versus the alternative
hypothesis that there are unknown number of breaks up to M; and (3) the sup F (I + 1|/) tests of
[ versus [ + 1 breaks, ! = 0, ..., M. The default is M=5.

NTHREADS=number
specifies the number of threads to be used for parallel computing. The default is the number of
CPUs available.

P=number
specifies the number of covariates that have coefficients unchanged over time in the partial
structural change model. The first P=p independent variables that are specified in the MODEL
statement have unchanged coefficients; the rest of the independent variables have coefficients that
change across regimes. The default is P=0; i.e., the pure structural change model is estimated.

PRINTEST=ALL | BIC | LWZ | NONE | SEQ<(number)> | number
specifies in which structural change models the parameter estimates are to be printed. You can
specify the following option values:

ALL specifies that the parameter estimates in all structural change models with m
breaks, m = 0, ..., M, be printed.

BIC specifies that the parameter estimates in the structural change model that
minimizes the BIC information criterion be printed.

LwWZ specifies that the parameter estimates in the structural change model that
minimizes the LWZ information criterion be printed.
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NONE specifies that none of the parameter estimates be printed.

SEQ specifies that the parameter estimates in the structural change model that is
chosen by sequentially applying sup F (I 4+ 1|/) tests, [ from 0 to M, be printed.
If you specify the SEQ option, you can also specify the significance level in
the parentheses, for example, SEQ(0.10). The first / such that the p-value
of supF (I 4 1|I) test is greater than the significance level is selected as the
number of breaks in the structural change model. By default, the significance
level 5% is used for the SEQ option; i.e., specifying SEQ is equivalent to
specifying SEQ(0.05).

number specifies that the parameter estimates in the structural change model with the
specified number of breaks be printed. If the specified number is greater than
the number specified in the M= option, none of the parameter estimates are
printed; that is, it is equivalent to specifying the NONE option.

The default is PRINTEST=ALL.

If you define the BP option without additional suboptions, all suboptions are set as default values. That
is, the following two statements are equivalent:

model y zl z2 / BP;

model y = z1 z2 / BP=(M=5, P=0, EPS=0.05, PRINTEST=ALL);

To apply the HAC estimator with the Bartlett kernel function and print only the parameter estimates
in the structural change model selected by the LWZ information criterion, you can write the SAS
statement as follows:

model y = zl1 z2 / BP=(HAC (KERNEL=BARTLETT), PRINTEST=LWZ);

To specify a partial structural change model, you can write the SAS statement as follows:

model y = x1 x2 x3 z1 z2 / NOINT BP=(P=3);

CHOW=( obs; ...o0bs, )
computes Chow tests to evaluate the stability of the regression coefficient. The Chow test is also called
the analysis-of-variance test.

Each value obs; listed on the CHOW= option specifies a break point of the sample. The sample is
divided into parts at the specified break point, with observations before 0bs; in the first part and obs;
and later observations in the second part, and the fits of the model in the two parts are compared to
whether both parts of the sample are consistent with the same model.

The break points obs; refer to observations within the time range of the dependent variable, ignoring
missing values before the start of the dependent series. Thus, CHOW=20 specifies the 20th observation
after the first nonmissing observation for the dependent variable. For example, if the dependent variable
Y contains 10 missing values before the first observation with a nonmissing Y value, then CHOW=20
actually refers to the 30th observation in the data set.

When you specify the break point, you should note the number of presample missing values.
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COEF
prints the transformation coefficients for the first p observations. These coefficients are formed from a
scalar multiplied by the inverse of the Cholesky root of the Toeplitz matrix of autocovariances.

CORRB
prints the estimated correlations of the parameter estimates.

covB
prints the estimated covariances of the parameter estimates.

COVEST= OP | HESSIAN | QML | HCO | HC1 | HC2 | HC3 | HC4 | HAC<(...)> | NEWEYWEST<(... )>
specifies the type of covariance matrix.

When COVEST=O0P is specified, the outer product matrix is used to compute the covariance matrix
of the parameter estimates; by default, COVEST=0P. The COVEST=HESSIAN option produces
the covariance matrix by using the Hessian matrix. The quasi—-maximum likelihood estimates are
computed with COVEST=QML, which is equivalent to COVEST=HCO0. When the final model is an
OLS or AR error model, COVEST=0P, HESSIAN, or QML is ignored; the method to calculate the
estimate of covariance matrix is illustrated in the section “Variance Estimates and Standard Errors” on
page 360.

When you specify COVEST=HCn, where n = 0, 1,2, 3,4, the corresponding heteroscedasticity-
consistent covariance matrix estimator (HCCME) is calculated.

The HAC option specifies the heteroscedasticity- and autocorrelation-consistent (HAC) covariance
matrix estimator. When you specify the HAC option, you can specify the following options in
parentheses and separate them with commas:

KERNEL=value
specifies the type of kernel function. You can specify the following values:

BARTLETT specifies the Bartlett kernel function.

PARZEN specifies the Parzen kernel function.

QUADRATICSPECTRAL | QS specifies the quadratic spectral kernel function.
TRUNCATED  specifies the truncated kernel function.

TUKEYHANNING | TUKEY | TH specifies the Tukey-Hanning kernel function.

The default is KERNEL=QUADRATICSPECTRAL.

KERNELLB=number
specifies the lower bound of the kernel weight value. Any kernel weight less than this lower
bound is regarded as zero, which accelerates the calculation for big samples, especially for the
quadratic spectral kernel. The default is KERNELLB=0.

BANDWIDTH=value
specifies the fixed bandwidth value or bandwidth selection method to use in the kernel function.
You can specify the following values:
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ANDREWS91 | ANDREWS specifies the Andrews (1991) bandwidth selection method.

NEWEYWEST94 | NW94 <(C=number)> specifies the Newey and West (1994) bandwidth
selection method. You can specify the C= option in the parentheses to calculate
the lag selection parameter; the default is C=12.

SAMPLESIZE | SS <(option-list)>  specifies that the bandwidth be calculated according to the
following equation, based on the sample size:

b=yT" +c¢

where b is the bandwidth parameter and T is the sample size, and y, r, and ¢
are values specified by the following options within parentheses and separated
by commas.

GAMMA=number
specifies the coefficient y in the equation. The default is y = 0.75.

RATE=number
specifies the growth rate r in the equation. The default is » = 0.3333.

CONSTANT=number
specifies the constant ¢ in the equation. The default is ¢ = 0.5.

INT
specifies that the bandwidth parameter must be integer; that is, b =
lyT" + c], where | x| denotes the largest integer less than or equal to x.

number specifies the fixed value of the bandwidth parameter.

The default is BANDWIDTH=ANDREWS91.

PREWHITENING
specifies that prewhitening is required in the calculation.

ADJUSTDF
specifies that the adjustment for degrees of freedom be required in the calculation.

The COVEST=NEWEYWEST option specifies the well-known Newey-West estimator, a special HAC
estimator with (1) the Bartlett kernel; (2) the bandwidth parameter determined by the equation based on
the sample size, b = |yT" + c|; and (3) no adjustment for degrees of freedom and no prewhitening.
By default the bandwidth parameter for Newey-West estimator is |_0.75 703333 O.SJ, as shown in
equation (15.17) in Stock and Watson (2002). When you specify COVEST=NEWEYWEST, you can
specify the following options in parentheses and separate them with commas:

GAMMA-= number
specifies the coefficient y in the equation. The default is y = 0.75.

RATE= number
specifies the growth rate r in the equation. The default is » = 0.3333.
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CONSTANT= number
specifies the constant c¢ in the equation. The default is ¢ = 0.5.

The following two statements are equivalent:

x / COVEST=NEWEYWEST;

model y

model y = x / COVEST=HAC (KERNEL=BARTLETT,
BANDWIDTH=SAMPLESIZE (GAMMA=0.75,
RATE=0.3333,
CONSTANT=0.5,
INT));

Another popular sample-size-dependent bandwidth, LTI/ 4+ 1.5J, as mentioned in Newey and West
(1987), can be specified by the following statement:

model y = x / COVEST=NEWEYWEST (GAMMA=1, RATE=0.25, CONSTANT=1.5) ;

See the section “Heteroscedasticity- and Autocorrelation-Consistent Covariance Matrix Estimator” on
page 367 for more information about HCO to HC4, HAC, and Newey-West estimators.

DW=n
prints Durbin-Watson statistics up to the order n. The default is DW=1. When the LAGDEP option is
specified, the Durbin-Watson statistic is not printed unless the DW= option is explicitly specified.

DWPROB
now produces p-values for the generalized Durbin-Watson test statistics for large sample sizes. Previ-
ously, the Durbin-Watson probabilities were calculated only for small sample sizes. The new method
of calculating Durbin-Watson probabilities is based on the algorithm of Ansley, Kohn, and Shively
(1992).

GINV
prints the inverse of the Toeplitz matrix of autocovariances for the Yule-Walker solution. See the
section “Computational Methods” on page 359 later in this chapter for more information.

GODFREY

GODFREY=r
produces Godfrey’s general Lagrange multiplier test against ARMA errors.

ITPRINT
prints the objective function and parameter estimates at each iteration. The objective function is the
full log likelihood function for the maximum likelihood method, while the error sum of squares is
produced as the objective function of unconditional least squares. For the ML method, the ITPRINT
option prints the value of the full log likelihood function, not the concentrated likelihood.
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LAGDEP

LAGDV
prints the Durbin ¢ statistic, which is used to detect residual autocorrelation in the presence of lagged
dependent variables. See the section “Generalized Durbin-Watson Tests”” on page 388 for details.

LAGDEP=name

LAGDV=name
prints the Durbin /4 statistic for testing the presence of first-order autocorrelation when regressors
contain the lagged dependent variable whose name is specified as LAGDEP=name. If the Durbin &
statistic cannot be computed, the asymptotically equivalent ¢ statistic is printed instead. See the section
“Generalized Durbin-Watson Tests” on page 388 for details.

When the regression model contains several lags of the dependent variable, specify the lagged dependent
variable for the smallest lag in the LAGDEP= option. For example:

model y = x1 x2 ylag2 ylag3 / lagdep=ylag2;

LOGLIKL
prints the log likelihood value of the regression model, assuming normally distributed errors.

NOPRINT
suppresses all printed output.

NORMAL
specifies the Jarque-Bera’s normality test statistic for regression residuals.

PARTIAL
prints partial autocorrelations.

PCHOW=(obs; ...0bs; )
computes the predictive Chow test. The form of the PCHOW= option is the same as the CHOW=
option; see the discussion of the CHOW= option earlier in this chapter.

RESET
produces Ramsey’s RESET test statistics. The RESET option tests the null model

Ve =%XB +uy
against the alternative
p .
Ve =%+ Z(f’jﬁt] + Uz
j=2

where ¥, is the predicted value from the OLS estimation of the null model. The RESET option
produces three RESET test statistics for p = 2, 3, and 4.

RUNS

RUNS=(Z=value)
specifies the runs test for independence. The Z= suboption specifies the type of the time series or
residuals to be tested. The values of the Z= suboption are as follows:
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Y specifies the regressand. The default is Z=Y.

RO specifies the OLS residuals.

R specifies the residuals of the final model.

RM specifies the structural residuals of the final model.

SR specifies the standardized residuals of the final model, defined by residuals over the

square root of the conditional variance.

STATIONARITY=( ADF)

STATIONARITY=( ADF=( value ... value ) )

STATIONARITY=( KPSS )

STATIONARITY=( KPSS=( KERNEL=type ) )

STATIONARITY=( KPSS=( KERNEL=type TRUNCPOINTMETHOD) )
STATIONARITY=( PHILLIPS )

STATIONARITY=( PHILLIPS=( value ... value ) )

STATIONARITY=( ERS)
STATIONARITY=( ERS=( value ) )
STATIONARITY=( NP)
STATIONARITY=( NP=( value ) )

STATIONARITY=( ADF<=(...)>ERS<=(...)>, KPSS<=(...)>, NP<=(...)>, PHILLIPS<=(...)>)
specifies tests of stationarity or unit roots. The STATIONARITY= option provides Phillips-Perron,
Phillips-Ouliaris, augmented Dickey-Fuller, Engle-Granger, KPSS, Shin, ERS, and NP tests.

The PHILLIPS or PHILLIPS= suboption of the STATIONARITY= option produces the Phillips-Perron
unit root test when there are no regressors in the MODEL statement. When the model includes
regressors, the PHILLIPS option produces the Phillips-Ouliaris cointegration test. The PHILLIPS
option can be abbreviated as PP.

The PHILLIPS option performs the Phillips-Perron test for three null hypothesis cases: zero mean,
s1ng1e mean, and deterministic trend. For each case, the PHILLIPS option computes two test statistics,
Z p and Z: (in the original paper they are referred to as Zo and Zy;) , and reports their p-values. These
test statistics have the same limiting distributions as the corresponding Dickey-Fuller tests.

The three types of the Phillips-Perron unit root test reported by the PHILLIPS option are as follows:

Zero mean computes the Phillips-Perron test statistic based on the zero mean autoregressive
model:

Yt = pYr—1 + Uz

Single mean computes the Phillips-Perron test statistic based on the autoregressive model with a
constant term:

Ve =+ pYr—1 + Us
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Trend computes the Phillips-Perron test statistic based on the autoregressive model with
constant and time trend terms:

Ve = W+ pyr—1 + 8t +uy

You can specify several truncation points ! for weighted variance estimators by using the
PHILLIPS=(/.. .l,) specification. The statistic for each truncation point / is computed as

1 T ) 1 T
o7y = T Zﬁzz + T Z W) Z Uptle—s
i=1 s=1  t=s+1
where wg; = 1 — /(I + 1) and 1; are OLS residuals. If you specify the PHILLIPS option without

specifying truncation points, the default truncation point is max(1, +/T /5), where T is the number of
observations.

The Phillips-Perron test can be used in general time series models since its limiting distribution is
derived in the context of a class of weakly dependent and heterogeneously distributed data. The
marginal probability for the Phillips-Perron test is computed assuming that error disturbances are
normally distributed.

When there are regressors in the MODEL statement, the PHILLIPS option computes the Phillips-
Ouliaris cointegration test statistic by using the least squares residuals. The normalized cointegrating
vector is estimated using OLS regression. Therefore, the cointegrating vector estimates might vary
with the regressand (normalized element) unless the regression R-square is 1.

The marginal probabilities for cointegration testing are not produced. You can refer to Phillips and
Ouliaris (1990) tables Ia—Ic for the Zx test and tables Ila—Ilc for the Z ¢ test. The standard residual-
based cointegration test can be obtained using the NOINT option in the MODEL statement, while the
demeaned test is computed by including the intercept term. To obtain the demeaned and detrended
cointegration tests, you should include the time trend variable in the regressors. Refer to Phillips and
Ouliaris (1990) or Hamilton (1994, Tbl. 19.1) for information about the Phillips-Ouliaris cointegration
test. Note that Hamilton (1994, Tbl. 19.1) uses Z, and Z; instead of the original Phillips and Ouliaris
(1990) notation. We adopt the notation introduced in Hamilton. To distinguish from Student’s ¢
distribution, these two statistics are named accordingly as p (rho) and t (tau).

The ADF or ADF= suboption produces the augmented Dickey-Fuller unit root test (Dickey and Fuller
1979). As in the Phillips-Perron test, three regression models can be specified for the null hypothesis
for the augmented Dickey-Fuller test (zero mean, single mean, and trend). These models assume that
the disturbances are distributed as white noise. The augmented Dickey-Fuller test can account for the
serial correlation between the disturbances in some way. The model, with the time trend specification
for example, is

Ve =R+ pyi—1 + 8t + y1Ayp—1+ ...+ YpAyi—p + us

This formulation has the advantage that it can accommodate higher-order autoregressive processes
in u;. The test statistic follows the same distribution as the Dickey-Fuller test statistic. For more
information, see the section “PROBDF Function for Dickey-Fuller Tests” on page 157.

In the presence of regressors, the ADF option tests the cointegration relation between the dependent
variable and the regressors. Following Engle and Granger (1987), a two-step estimation and testing
procedure is carried out, in a fashion similar to the Phillips-Ouliaris test. The OLS residuals of the
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regression in the MODEL statement are used to compute the ¢ statistic of the augmented Dickey-Fuller
regression in a second step. Three cases arise based on which type of deterministic terms are included
in the first step of regression. Only the constant term and linear trend cases are practically useful
(Davidson and MacKinnon 1993, page 721), and therefore are computed and reported. The test
statistic, as shown in Phillips and Ouliaris (1990), follows the same distribution as the A ¢ statistic in
the Phillips-Ouliaris cointegration test. The asymptotic distribution is tabulated in tables Ila—Ilc of
Phillips and Ouliaris (1990), and the finite sample distribution is obtained in Table 2 and Table 3 in
Engle and Yoo (1987) by Monte Carlo simulation.

The ERS or ERS= suboption and the NP or NP= suboption provide a class of efficient unit root tests,
because they reduce the size distortion and improve the power compared with traditional unit root tests
such as the augmented Dickey-Fuller and Phillips-Perron tests. Two test statistics are reported with the
ERS= suboption: the point optimal test and the DF-GLS test, which are originally proposed in Elliott,
Rothenberg, and Stock (1996). Elliott, Rothenberg, and Stock suggest using the Schwarz Bayesian
information criterion to select the optimal lag length in the augmented Dickey-Fuller regression. The
maximum lag length can be specified by the ERS= suboption. The minimum lag length is 3 and the
default maximum lag length is 8. Six tests, namely M Zy, M SB, M Z;, the modified point optimal
test, the point optimal test, and the DF-GLS test, discussed in Ng and Perron (2001), are reported with
the NP= suboption. Ng and Perron suggest using the modified AIC to select the optimal lag length in
the augmented Dickey-Fuller regression by using GLS detrended data. The maximum lag length can
be specified by the NP= suboption. The default maximum lag length is 8. The maximum lag length in
the ERS tests and Ng-Perron tests cannot exceed 7'/2 — 2, where T is the sample size.

The KPSS, KPSS=(KERNEL=TYPE), or KPSS=(KERNEL=TYPE TRUNCPOINTMETHOD) spec-
ifications of the STATIONARITY= option produce the Kwiatkowski, Phillips, Schmidt, and Shin
(1992) (KPSS) unit root test or Shin (1994) cointegration test.

Unlike the null hypothesis of the Dickey-Fuller and Phillips-Perron tests, the null hypothesis of the
KPSS states that the time series is stationary. As a result, it tends to reject a random walk more often. If
the model does not have an intercept, the KPSS option performs the KPSS test for three null hypothesis
cases: zero mean, single mean, and deterministic trend. Otherwise, it reports the single mean and
deterministic trend only. It computes a test statistic and provides p-value (Hobijn, Franses, and Ooms
2004) for the hypothesis that the random walk component of the time series is equal to zero in the
following cases (for more information, see “Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) Unit
Root Test and Shin Cointegration Test” on page 383):

Zero mean computes the KPSS test statistic based on the zero mean autoregressive model.
Ve = Uy
Single mean computes the KPSS test statistic based on the autoregressive model with a constant
term.
Yt =+ ur
Trend computes the KPSS test statistic based on the autoregressive model with constant

and time trend terms.

Ve =pn+ 8t +u
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This test depends on the long-run variance of the series being defined as
1 T 7 I T
2 _ A2~ PN
or; = T,Zul + T Zwsl Z UrUs—g
i=1 s=1 t=s+1

where wy; is a kernel, s is a maximum lag (truncation point), and #, are OLS residuals or original data
series. You can specify two types of the kernel:

KERNEL=NW | BART Newey-West (or Bartlett) kernel

s

D) =1-—
w(s, ) T

KERNEL=QS Quadratic spectral kernel

25 sin (6 x/5)
w(s/l) =wkx) = 32252 ( 6x/5 — cos (67rx/5))

You can set the truncation point / by using three different methods:
SCHW=c Schwert maximum lag formula

7\ /4

| =max{1,floor|c|—

100
LAG=! LAG=!/ manually defined number of lags.
AUTO Automatic bandwidth selection (Hobijn, Franses, and Ooms 2004) (for details,

see “Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) Unit Root Test and Shin
Cointegration Test” on page 383).

If STATIONARITY=KPSS is defined without additional parameters, the Newey-West kernel is used.
For the Newey-West kernel the default is the Schwert truncation point method with ¢ = 12. For the
quadratic spectral kernel the default is AUTO.

The KPSS test can be used in general time series models because its limiting distribution is derived
in the context of a class of weakly dependent and heterogeneously distributed data. The limiting
probability for the KPSS test is computed assuming that error disturbances are normally distributed.
The p-values that are reported are based on the simulation of the limiting probability for the KPSS test.

To test for stationarity of a variable, y, by using default KERNEL= NW and SCHW= 12, you can use
the following statements:

/*—— test for stationarity of regression residuals ——x/
proc autoreg data=a;

model y= / stationarity = (KPSS);
run;

To test for stationarity of a variable, y, by using quadratic spectral kernel and automatic bandwidth
selection, you can use the following statements:
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/*—— test for stationarity using quadratic
spectral kernel and automatic bandwidth selection —--*/
proc autoreg data=a;

model y= /
stationarity = (KPSS=(KERNEL=QS AUTO)) ;
run;

If there are regressors in the MODEL statement except for the intercept, the Shin (1994) cointegration
test, an extension of the KPSS test, is carried out. The limiting distribution of the tests, and then the
reported p-values, are different from those in the KPSS tests. See “Kwiatkowski, Phillips, Schmidt,
and Shin (KPSS) Unit Root Test and Shin Cointegration Test” on page 383 for more information.

TP

TP=(Z=value)
specifies the turning point test for independence. The Z= suboption specifies the type of the time series
or residuals to be tested. You can specify the following values:

Y specifies the regressand. The default is Z=Y.

RO specifies the OLS residuals.

R specifies the residuals of the final model.

RM specifies the structural residuals of the final model.

SR specifies the standardized residuals of the final model, defined by residuals over the

square root of the conditional variance.

URSQ
prints the uncentered regression R2. The uncentered regression R? is useful to compute Lagrange
multiplier test statistics, since most LM test statistics are computed as 7 *URSQ, where T is the
number of observations used in estimation.

VNRRANK

VNRRANK=(option-list)
specifies the rank version of the von Neumann ratio test for independence. You can specify the
following options in the VNRRANK=( ) option. The options are listed within parentheses and
separated by commas.

PVALUE=DIST | SIM
specifies the way to calculate the p-value. By default or if PVALUE=DIST is specified, the
p-value is calculated according to the asymptotic distribution of the statistic (that is, the standard
normal distribution). Otherwise, for samples of size less than 100, the p-value is obtained though
Monte Carlo simulation.

Z=value
specifies the type of the time series or residuals to be tested. You can specify the following
values:



348 4 Chapter 8: The AUTOREG Procedure

Y specifies the regressand.

RO specifies the OLS residuals.

R specifies the residuals of the final model.

RM specifies the structural residuals of the final model.

SR specifies the standardized residuals of the final model, defined by residuals

over the square root of the conditional variance.

By default, Z=Y.

Stepwise Selection Options

BACKSTEP
removes insignificant autoregressive parameters. The parameters are removed in order of least signif-
icance. This backward elimination is done only once on the Yule-Walker estimates computed after
the initial ordinary least squares estimation. You can use the BACKSTEP option with all estimation
methods because the initial parameter values for other estimation methods are estimated by using the
Yule-Walker method.

SLSTAY=value
specifies the significance level criterion to be used by the BACKSTEP option. By default, SLSTAY=.05.

Estimation Control Options

CONVERGE=value
specifies the convergence criterion. If the maximum absolute value of the change in the autoregressive
parameter estimates between iterations is less than this criterion, then convergence is assumed. By
default, CONVERGE=.001.

If you specify the GARCH= option or the HETERO statement, convergence is assumed when the
absolute maximum gradient is smaller than the value specified by the CONVERGE= option or when
the relative gradient is smaller than 1E-8. By default, CONVERGE=1E-5.

INITIAL=( initial-values )

START=( initial-values )

specifies initial values for some or all of the parameter estimates. This option is not applicable
when the Yule-Walker method or iterative Yule-Walker method is used. The specified values are
assigned to model parameters in the same order in which the parameter estimates are printed in the
AUTOREG procedure output. The order of values in the INITIAL= or START= option is as follows:
the intercept, the regressor coefficients, the autoregressive parameters, the ARCH parameters, the
GARCH parameters, the inverted degrees of freedom for Student’s ¢ distribution, the start-up value
for conditional variance, and the heteroscedasticity model parameters 1 specified by the HETERO
statement.

The following is an example of specifying initial values for an AR(1)-GARCH(1, 1) model with
regressors X1 and X2:
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/*—— specifying initial values —--%/
model y = w x / nlag=l garch=(p=1,qg=1)
initial=(1 11 .5 .8 .1 .6);

The model that is specified by this MODEL statement is
Yt = Bo + Brws + Baxt + vy

Vt = € — P1Vi—1
€ = \/htet

ht =w+ 0[161‘2_1 + V]ht_l
€1 N(O,Gtz)

The initial values for the regression parameters, INTERCEPT (o), X1 (81), and X2 (f82), are specified
as 1. The initial value of the AR(1) coefficient (¢1) is specified as 0.5. The initial value of ARCHO (w)
is 0.8, the initial value of ARCH1 («1) is 0.1, and the initial value of GARCHI1 (y;) is 0.6.

When you use the RESTRICT statement, the initial values that you specify in the INITIAL= option
should satisfy the restrictions specified for the parameter estimates. If they do not, these initial values
are adjusted to satisfy the restrictions.

LDW
specifies that p-values for the Durbin-Watson test be computed by using a linearized approximation
of the design matrix when the model is nonlinear because an autoregressive error process is present.
(The Durbin-Watson tests of the OLS linear regression model residuals are not affected by the LDW
option.) See White (1992) for information about Durbin-Watson testing of nonlinear models.

MAXITER=number
sets the maximum number of iterations allowed. The default is MAXITER=50. When you specify
both the GARCH= option in the MODEL statement and the MAXITER= option in the NLOPTIONS
statement, the MAXITER= option in the MODEL statement is ignored. This option is not applicable
when the Yule-Walker method is used.

METHOD=value
requests the type of estimates to be computed. You can specify the following values:

METHOD=ML specifies maximum likelihood estimates.
METHOD=ULS specifies unconditional least squares estimates.
METHOD=YW specifies Yule-Walker estimates.
METHOD=ITYW specifies iterative Yule-Walker estimates.

If you specify the GARCH= or LAGDEP option, the default is METHOD=ML. Otherwise, the default
is METHOD=YW.

NOMISS
requests the estimation to the first contiguous sequence of data with no missing values. Otherwise, all
complete observations are used.
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OPTMETHOD=QN | TR
specifies the optimization technique when the GARCH or heteroscedasticity model is estimated.
The OPTMETHOD=QN option specifies the quasi-Newton method. The OPTMETHOD=TR option
specifies the trust region method. The default is OPTMETHOD=QN.

HETERO Statement
HETERO variables / options ;

The HETERO statement specifies variables that are related to the heteroscedasticity of the residuals and the
way these variables are used to model the error variance of the regression.

The heteroscedastic regression model supported by the HETERO statement is

Vi =%xp+ €
€ ~ N(O, otz)
02 =0l

he = 1(2'n)

The HETERO statement specifies a model for the conditional variance h;. The vector z; is composed of the
variables listed in the HETERO statement, 7 is a parameter vector, and /(-) is a link function that depends on
the value of the LINK= option. In the printed output, H E T0 represents the estimate of sigma, while HET'1
- HE Tn are the estimates of parameters in the 1 vector.

The keyword XBETA can be used in the variables list to refer to the model predicted value x’; 8. If XBETA is
specified in the variables list, other variables in the HETERO statement will be ignored. In addition, XBETA
cannot be specified in the GARCH process.

For heteroscedastic regression models without GARCH effects, the errors €; are assumed to be uncorrelated —
the heteroscedasticity models specified by the HETERO statement cannot be combined with an autoregressive
model for the errors. Thus, when a HETERO statement is used, the NLAG= option cannot be specified unless
the GARCH= option is also specified.

You can specify the following options in the HETERO statement.

LINK=value
specifies the functional form of the heteroscedasticity model. By default, LINK=EXP. If you specify a
GARCH model with the HETERO statement, the model is estimated using LINK= LINEAR only. For
details, see the section “Using the HETERO Statement with GARCH Models” on page 364. Values of
the LINK= option are as follows:

EXP specifies the exponential link function. The following model is estimated when you
specify LINK=EXP:

hy = exp(z', 0)]

SQUARE specifies the square link function. The following model is estimated when you
specify LINK=SQUARE:

he = (1 +2/tn)?
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LINEAR specifies the linear function; that is, the HETERO statement variables predict
the error variance linearly. The following model is estimated when you specify
LINK=LINEAR:

he = (1 +2'tn)

COEF=value
imposes constraints on the estimated parameters 7 of the heteroscedasticity model. You can specify
the following values:

NONNEG specifies that the estimated heteroscedasticity parameters 7 must be nonnegative.
UNIT constrains all heteroscedasticity parameters 7 to equal 1.

ZERO constrains all heteroscedasticity parameters 7 to equal 0.

UNREST specifies unrestricted estimation of 7.

If you specify the GARCH= option in the MODEL statement, the default is COEF=NONNEG. If you
do not specify the GARCH= option in the MODEL statement, the default is COEF=UNREST.

STD=value
imposes constraints on the estimated standard deviation o of the heteroscedasticity model. You can
specify the following values:

NONNEG specifies that the estimated standard deviation parameter & must be nonnegative.
UNIT constrains the standard deviation parameter o to equal 1.
UNREST specifies unrestricted estimation of o.

The default is STD=UNREST.

TEST=LM
produces a Lagrange multiplier test for heteroscedasticity. The null hypothesis is homoscedasticity;
the alternative hypothesis is heteroscedasticity of the form specified by the HETERO statement. The
power of the test depends on the variables specified in the HETERO statement.

The test may give different results depending on the functional form specified by the LINK= option.
However, in many cases the test does not depend on the LINK= option. The test is invariant to the
form of h; when h;(0) = 1 and /;(0) # 0. (The condition 4,(0) = 1 is satisfied except when the
NOCONST option is specified with LINK=SQUARE or LINK=LINEAR.)

NOCONST
specifies that the heteroscedasticity model does not include the unit term for the LINK=SQUARE and
LINK=LINEAR options. For example, the following model is estimated when you specify the options
LINK=SQUARE NOCONST:

hy = (Z,t 77)2
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NLOPTIONS Statement
NLOPTIONS < options > ;

PROC AUTOREG uses the nonlinear optimization (NLO) subsystem to perform nonlinear optimization tasks
when the GARCH= option is specified. If the GARCH= option is not specified, the NLOPTIONS statement
is ignored. For a list of all the options of the NLOPTIONS statement, see Chapter 6, “Nonlinear Optimization
Methods.”

OUTPUT Statement
OUTPUT < OUT=SAS-data-set> < options > < keyword=name > ;

The OUTPUT statement creates an output SAS data set as specified by the following options.

OUT=SAS-data-set
names the output SAS data set to contain the predicted and transformed values. If the OUT= option is
not specified, the new data set is named according to the DATA#n convention.

You can specify any of the following options.

ALPHACLI=number
sets the confidence limit size for the estimates of future values of the response time series. The
ALPHACLI= value must be between 0 and 1. The resulting confidence interval has 1-number
confidence. The default is ALPHACLI=0.05, which corresponds to a 95% confidence interval.

ALPHACLM=number
sets the confidence limit size for the estimates of the structural or regression part of the model. The
ALPHACLM= value must be between 0 and 1. The resulting confidence interval has 1-number
confidence. The default is ALPHACLM=0.05, which corresponds to a 95% confidence interval.

ALPHACSM=0.01 | 0.05 | 0.10
specifies the significance level for the upper and lower bounds of the CUSUM and CUSUMSQ
statistics output by the CUSUMLB=, CUSUMUB=, CUSUMSQLB=, and CUSUMSQUB= options.
The significance level specified by the ALPHACSM-= option can be 0.01, 0.05, or 0.10. Other values
are not supported.

You can specify the following values for keyword=name, where keyword specifies the statistic to include in
the output data set and name gives the name of the variable in the OUT= data set to contain the statistic.

BLUS=variable
specifies the name of a variable to contain the values of the Theil’s BLUS residuals. Refer to Theil
(1971) for more information on BLUS residuals.

CEV=variable

HT=variable
writes to the output data set the value of the error variance o from the heteroscedasticity model
specified by the HETERO statement or the value of the conditional error variance s; by the GARCH=
option in the MODEL statement.
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CPEV=variable
writes the conditional prediction error variance to the output data set. The value of conditional predic-
tion error variance is equal to that of the conditional error variance when there are no autoregressive
parameters. See the section “Predicted Values” on page 397 for details.

CONSTANT=variable
writes the transformed intercept to the output data set. The details of the transformation are described
in “Computational Methods” on page 359.

CUSUMz=variable
specifies the name of a variable to contain the CUSUM statistics.

CUSUMSQ=variable
specifies the name of a variable to contain the CUSUMSAQ statistics.

CUSUMUB-=variable
specifies the name of a variable to contain the upper confidence bound for the CUSUM statistic.

CUSUMLB=variable
specifies the name of a variable to contain the lower confidence bound for the CUSUM statistic.

CUSUMSQUB=variable
specifies the name of a variable to contain the upper confidence bound for the CUSUMSAQ statistic.

CUSUMSQLB=variable
specifies the name of a variable to contain the lower confidence bound for the CUSUMSAQ statistic.

LCL=name
writes the lower confidence limit for the predicted value (specified in the PREDICTED= option) to the
output data set. The size of the confidence interval is set by the ALPHACLI= option. See the section
“Predicted Values” on page 397 for details.

LCLM=name
writes the lower confidence limit for the structural predicted value (specified in the PREDICTEDM=
option) to the output data set under the name given. The size of the confidence interval is set by the
ALPHACLM= option.

PREDICTED=name

P=name
writes the predicted values to the output data set. These values are formed from both the structural and
autoregressive parts of the model. See the section “Predicted Values” on page 397 for details.

PREDICTEDM=name

PM=name
writes the structural predicted values to the output data set. These values are formed from only the
structural part of the model. See the section “Predicted Values” on page 397 for details.

RECPEV=variable
specifies the name of a variable to contain the part of the predictive error variance (v;) that is used to
compute the recursive residuals.
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RECRES=variable
specifies the name of a variable to contain recursive residuals. The recursive residuals are used to
compute the CUSUM and CUSUMSAQ statistics.

RESIDUAL=name

R=name
writes the residuals from the predicted values based on both the structural and time series parts of the
model to the output data set.

RESIDUALM=name

RM=name
writes the residuals from the structural prediction to the output data set.

TRANSFORM=variables
transforms the specified variables from the input data set by the autoregressive model and writes
the transformed variables to the output data set. The details of the transformation are described in
the section “Computational Methods” on page 359. If you need to reproduce the data suitable for
re-estimation, you must also transform an intercept variable. To do this, transform a variable that is all
1s or use the CONSTANT= option.

UCL=name
writes the upper confidence limit for the predicted value (specified in the PREDICTED= option) to
the output data set. The size of the confidence interval is set by the ALPHACLI= option. For more
information, see the section “Predicted Values” on page 397.

UCLM=name
writes the upper confidence limit for the structural predicted value (specified in the PREDICTEDM=
option) to the output data set. The size of the confidence interval is set by the ALPHACLM-= option.

RESTRICT Statement
RESTRICT equation, ..., equation ;

The RESTRICT statement provides constrained estimation and places restrictions on the parameter estimates
for covariates in the preceding MODEL statement. The AR, GARCH, and HETERO parameters are also
supported in the RESTRICT statement when you specify the GARCH= option. Any number of RESTRICT
statements can follow a MODEL statement. To specify more than one restriction in a single RESTRICT
statement, separate them with commas.

Each restriction is written as a linear equation composed of constants and parameter names. Refer to model
parameters by the name of the corresponding regressor variable. Each name that is used in the equation
must be a regressor in the preceding MODEL statement. Use the keyword INTERCEPT to refer to the
intercept parameter in the model. For the names of these parameters, see the section “OUTEST= Data Set” on
page 401. Inequality constraints are supported only when you specify the GARCH= option. For non-GARCH
models, if inequality signs are specified, they are treated as equality signs.

The following is an example of a RESTRICT statement:
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model y = a b ¢ d;
restrict a+b=0, 2xd-c=0;

When restricting a linear combination of parameters to be 0, you can omit the equal sign. For example, the
following RESTRICT statement is equivalent to the preceding example:

restrict a+b, 2xd-c;
The following RESTRICT statement constrains the parameters estimates for three regressors (X1, X2, and
X3) to be equal:

restrict x1 = x2, x2 = x3;

The preceding restriction can be abbreviated as follows:

restrict x1 = x2 = x3;

The following example shows how to specify AR, GARCH, and HETERO parameters in the RESTRICT
statement:

model y = a b / nlag=2 garch=(p=2,g=3,mean=sqrt);
hetero c d;
restrict _A 1=0,_AH 2=0.2, HET 2=1, DELTA =0.1;

You can specify only simple linear combinations of parameters in RESTRICT statement expressions. You
cannot specify complex expressions that involve parentheses, division, functions, or complex products.

TEST Statement

The AUTOREG procedure supports a TEST statement for linear hypothesis tests. The syntax of the TEST
statement is

TEST equation, ..., equation / option ;

The TEST statement tests hypotheses about the covariates in the model that are estimated by the preceding
MODEL statement. The AR, GARCH, and HETERO parameters are also supported in the TEST statement
when you specify the GARCH= option. Each equation specifies a linear hypothesis to be tested. If you
specify more than one equation, separate them with commas.

Each test is written as a linear equation composed of constants and parameter names. Refer to parameters by
the name of the corresponding regressor variable. Each name that is used in the equation must be a regressor
in the preceding MODEL statement. Use the keyword INTERCEPT to refer to the intercept parameter in the
model. For the names of these parameters, see the section “OUTEST= Data Set” on page 401.

You can specify the following options in the TEST statement:

TYPE=value
specifies the test statistics to use. The default is TYPE=F. The following values for TYPE= option are
available:
F produces an F test. This option is supported for all models specified in MODEL

statement.
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WALD

LM

LR

ALL

produces a Wald test. This option is supported for all models specified in MODEL
statement.

produces a Lagrange multiplier test. This option is supported only when the
GARCH-= option is specified (for example, when there is a statement like MODEL
Y = C D I/ GARCH=(Q=2)).

produces a likelihood ratio test. This option is supported only when the GARCH=
option is specified (for example, when there is a statement like MODEL Y =CD I
/ GARCH=(Q=2)).

produces all tests applicable for a particular model. For non-GARCH-type models,
only F' and Wald tests are output. For all other models, all four tests (LR, LM, F,
and Wald) are computed.

The following example of a TEST statement tests the hypothesis that the coefficients of two regressors A and

B are equal:

model y = a b c d;

test a = b;

To test separate null hypotheses, use separate TEST statements. To test a joint hypothesis, specify the
component hypotheses on the same TEST statement, separated by commas.

For example, consider the following linear model:

e = Po + Bixl; +

B2x2; + €

The following statements test the two hypotheses Hg : 8o = 1 and Hy : 81 + B> = 0:

model y = x1 x2;
test intercept =
test x1 + x2 = 0;

1;

The following statements test the joint hypothesis Hy : 8o = 1 and 81 + B2 = O:

model y = x1 x2;
test intercept =

1, x1 + x2 = 0;

To illustrate the TYPE= option, consider the following examples.

model Y = C D I / garch=(g=2);

test C + D = 1;

The preceding statements produce only one default test, the F test.

model Y = C D I / garch=(g=2);

test C+ D=1/

type = LR;

The preceding statements produce one of four tests applicable for GARCH-type models, the likelihood ratio

test.

model Y = C D I / nlag = 2;

test C+ D=1/

type = LM;

The preceding statements produce the warning and do not output any test because the Lagrange multiplier
test is not applicable for non-GARCH models.
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model Y = C D I / nlag=2;
test C + D =1 / type = ALL;

The preceding statements produce all tests that are applicable for non-GARCH models (namely, the F' and
Wald tests). The TYPE= prefix is optional. Thus the test statement in the previous example could also have
been written as:

test C + D =1 / ALL;
The following example shows how to test AR, GARCH, and HETERO parameters:
model y = a b / nlag=2 garch=(p=2,g=3,mean=sqrt) ;

hetero c d;
test _A 1=0,_AH 2=0.2,_ HET 2=1, DELTA =0.1;

Details: AUTOREG Procedure

Missing Values

PROC AUTOREG skips any missing values at the beginning of the data set. If the NOMISS option is
specified, the first contiguous set of data with no missing values is used; otherwise, all data with nonmissing
values for the independent and dependent variables are used. Note, however, that the observations containing
missing values are still needed to maintain the correct spacing in the time series. PROC AUTOREG can
generate predicted values when the dependent variable is missing.

Autoregressive Error Model

The regression model with autocorrelated disturbances is as follows:

i =% 8+
Vt =€ —@Q1Vt—1 — ... — PmVt—m
€ N(0,02)

In these equations, y; are the dependent values, x; is a column vector of regressor variables, f§ is a column
vector of structural parameters, and ¢; is normally and independently distributed with a mean of 0 and a
variance of 2. Note that in this parameterization, the signs of the autoregressive parameters are reversed
from the parameterization documented in most of the literature.

PROC AUTOREG offers four estimation methods for the autoregressive error model. The default method,
Yule-Walker (YW) estimation, is the fastest computationally. The Yule-Walker method used by PROC
AUTOREG is described in Gallant and Goebel (1976). Harvey (1981) calls this method the two-step full
transform method. The other methods are iterated YW, unconditional least squares (ULS), and maximum
likelihood (ML). The ULS method is also referred to as nonlinear least squares (NLS) or exact least squares
(ELS).
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You can use all of the methods with data containing missing values, but you should use ML estimation if the
missing values are plentiful. See the section “Alternative Autocorrelation Correction Methods” on page 361
later in this chapter for further discussion of the advantages of different methods.

The Yule-Walker Method

Let ¢ represent the vector of autoregressive parameters,

0 =(01.92,....0m)

and let the variance matrix of the error vector v = (vy,...,vy) be X,

EW) =X =02V

If the vector of autoregressive parameters ¢ is known, the matrix V can be computed from the autoregressive
parameters. X is then 62V. Given X, the efficient estimates of regression parameters 8 can be computed
using generalized least squares (GLS). The GLS estimates then yield the unbiased estimate of the variance

o2,

The Yule-Walker method alternates estimation of § using generalized least squares with estimation of ¢ using
the Yule-Walker equations applied to the sample autocorrelation function. The YW method starts by forming
the OLS estimate of 8. Next, ¢ is estimated from the sample autocorrelation function of the OLS residuals
by using the Yule-Walker equations. Then V is estimated from the estimate of ¢, and X is estimated from V
and the OLS estimate of 0-2. The autocorrelation corrected estimates of the regression parameters 8 are then
computed by GLS, using the estimated ¥ matrix. These are the Yule-Walker estimates.

If the ITER option is specified, the Yule-Walker residuals are used to form a new sample autocorrelation
function, the new autocorrelation function is used to form a new estimate of ¢ and V, and the GLS estimates
are recomputed using the new variance matrix. This alternation of estimates continues until either the
maximum change in the ¢ estimate between iterations is less than the value specified by the CONVERGE=
option or the maximum number of allowed iterations is reached. This produces the iterated Yule-Walker
estimates. Iteration of the estimates may not yield much improvement.

The Yule-Walker equations, solved to obtain ¢ and a preliminary estimate of o2, are
R¢ = —r
Here r = (rq,...,rm)’, where r; is the lag i sample autocorrelation. The matrix R is the Toeplitz matrix

whose i,jth element is r|;_;|. If you specify a subset model, then only the rows and columns of R and r
corresponding to the subset of lags specified are used.

If the BACKSTEP option is specified, for purposes of significance testing, the matrix [R r] is treated as a
sum-of-squares-and-crossproducts matrix arising from a simple regression with N — k observations, where k
is the number of estimated parameters.

The Unconditional Least Squares and Maximum Likelihood Methods

Define the transformed error, e, as
e=L"n

where n =y — Xp.
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The unconditional sum of squares for the model, S, is
S=n'Vin=~¢e
The ULS estimates are computed by minimizing S with respect to the parameters 8 and ¢; .

The full log likelihood function for the autoregressive error model is

N
2

S

| = e
202

N 1
In(27) — —In(c?) — =In(|V]) —
2 2
where | V| denotes determinant of V. For the ML method, the likelihood function is maximized by minimizing
an equivalent sum-of-squares function.

Maximizing / with respect to o2 (and concentrating o2 out of the likelihood) and dropping the constant term
—%1n(2n) + 1 — In(N) produces the concentrated log likelihood function

N
le = = In(S[V['/")

Rewriting the variable term within the logarithm gives

Smi = [LIYNee|L| N

PROC AUTOREG computes the ML estimates by minimizing the objective function S,,; = |L| UN o e|L| N,

The maximum likelihood estimates may not exist for some data sets (Anderson and Mentz 1980). This is the
case for very regular data sets, such as an exact linear trend.

Computational Methods

Sample Autocorrelation Function

The sample autocorrelation function is computed from the structural residuals or noise ny = y; — x}b, where
b is the current estimate of 8. The sample autocorrelation function is the sum of all available lagged products
of n; of order j divided by £ + j, where £ is the number of such products.

If there are no missing values, then £ + j = N, the number of observations. In this case, the Toeplitz matrix
of autocorrelations, R, is at least positive semidefinite. If there are missing values, these autocorrelation
estimates of r can yield an R matrix that is not positive semidefinite. If such estimates occur, a warning
message is printed, and the estimates are tapered by exponentially declining weights until R is positive
definite.

Data Transformation and the Kalman Filter

The calculation of V from ¢ for the general AR(m) model is complicated, and the size of V depends on the
number of observations. Instead of actually calculating V and performing GLS in the usual way, in practice
a Kalman filter algorithm is used to transform the data and compute the GLS results through a recursive
process.

In all of the estimation methods, the original data are transformed by the inverse of the Cholesky root of
V. Let L denote the Cholesky root of V — that is, V = LL’ with L lower triangular. For an AR(m) model,
L~! is a band diagonal matrix with 7 anomalous rows at the beginning and the autoregressive parameters
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along the remaining rows. Thus, if there are no missing values, after the first m — 1 observations the data are
transformed as

Zr =Xt + Q1 X1+ ...+ OmXt—m

The transformation is carried out using a Kalman filter, and the lower triangular matrix L is never directly
computed. The Kalman filter algorithm, as it applies here, is described in Harvey and Phillips (1979) and
Jones (1980). Although L is not computed explicitly, for ease of presentation the remaining discussion is
in terms of L. If there are missing values, then the submatrix of L consisting of the rows and columns with
nonmissing values is used to generate the transformations.

Gauss-Newton Algorithms

The ULS and ML estimates employ a Gauss-Newton algorithm to minimize the sum of squares and maximize
the log likelihood, respectively. The relevant optimization is performed simultaneously for both the regression
and AR parameters. The OLS estimates of 8 and the Yule-Walker estimates of ¢ are used as starting values
for these methods.

The Gauss-Newton algorithm requires the derivatives of e or |L| N

derivatives with respect to the parameter vector § are

e with respect to the parameters. The

de

— =-L7'X

B’

9L 1/N

_| 8|ﬁ_/ = = —mNLIX

These derivatives are computed by the transformation described previously. The derivatives with respect to ¢
are computed by differentiating the Kalman filter recurrences and the equations for the initial conditions.

Variance Estimates and Standard Errors

For the Yule-Walker method, the estimate of the error variance, s2, is the error sum of squares from the last
application of GLS, divided by the error degrees of freedom (number of observations N minus the number of
free parameters).

The variance-covariance matrix for the components of b is taken as s2(X’V~!X)~! for the Yule-Walker
method. For the ULS and ML methods, the variance-covariance matrix of the parameter estimates is computed
as s2(J'J)~!. For the ULS method, J is the matrix of derivatives of e with respect to the parameters. For
the ML method, J is the matrix of derivatives of |L| N o divided by |L| /N The estimate of the variance-
covariance matrix of b assuming that ¢ is known is s>(X’V~!X)~!. For OLS model, the estimate of the
variance-covariance matrix is s2(X’X) 1.

Park and Mitchell (1980) investigated the small sample performance of the standard error estimates obtained
from some of these methods. In particular, simulating an AR(1) model for the noise term, they found that the
standard errors calculated using GLS with an estimated autoregressive parameter underestimated the true
standard errors. These estimates of standard errors are the ones calculated by PROC AUTOREG with the
Yule-Walker method.

The estimates of the standard errors calculated with the ULS or ML method take into account the joint
estimation of the AR and the regression parameters and may give more accurate standard-error values than
the YW method. At the same values of the autoregressive parameters, the ULS and ML standard errors
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will always be larger than those computed from Yule-Walker. However, simulations of the models used by
Park and Mitchell (1980) suggest that the ULS and ML standard error estimates can also be underestimates.
Caution is advised, especially when the estimated autocorrelation is high and the sample size is small.

High autocorrelation in the residuals is a symptom of lack of fit. An autoregressive error model should not be
used as a nostrum for models that simply do not fit. It is often the case that time series variables tend to move
as a random walk. This means that an AR(1) process with a parameter near one absorbs a great deal of the
variation. See Example 8.3, which fits a linear trend to a sine wave.

For ULS or ML estimation, the joint variance-covariance matrix of all the regression and autoregression
parameters is computed. For the Yule-Walker method, the variance-covariance matrix is computed only for
the regression parameters.

Lagged Dependent Variables

The Yule-Walker estimation method is not directly appropriate for estimating models that include lagged
dependent variables among the regressors. Therefore, the maximum likelihood method is the default when
the LAGDEP or LAGDEP= option is specified in the MODEL statement. However, when lagged dependent
variables are used, the maximum likelihood estimator is not exact maximum likelihood but is conditional on
the first few values of the dependent variable.

Alternative Autocorrelation Correction Methods

Autocorrelation correction in regression analysis has a long history, and various approaches have been
suggested. Moreover, the same method may be referred to by different names.

Pioneering work in the field was done by Cochrane and Orcutt (1949). The Cochrane-Orcutt method refers
to a more primitive version of the Yule-Walker method that drops the first observation. The Cochrane-Orcutt
method is like the Yule-Walker method for first-order autoregression, except that the Yule-Walker method
retains information from the first observation. The iterative Cochrane-Orcutt method is also in use.

The Yule-Walker method used by PROC AUTOREG is also known by other names. Harvey (1981) refers to
the Yule-Walker method as the two-step full transform method. The Yule-Walker method can be considered
as generalized least squares using the OLS residuals to estimate the covariances across observations, and
Judge et al. (1985) use the term estimated generalized least squares (EGLS) for this method. For a first-order
AR process, the Yule-Walker estimates are often termed Prais-Winsten estimates (Prais and Winsten 1954).
There are variations to these methods that use different estimators of the autocorrelations or the autoregressive
parameters.

The unconditional least squares (ULS) method, which minimizes the error sum of squares for all observations,
is referred to as the nonlinear least squares (NLS) method by Spitzer (1979).

The Hildreth-Lu method (Hildreth and Lu 1960) uses nonlinear least squares to jointly estimate the parameters
with an AR(1) model, but it omits the first transformed residual from the sum of squares. Thus, the Hildreth-
Lu method is a more primitive version of the ULS method supported by PROC AUTOREG in the same way
Cochrane-Orcutt is a more primitive version of Yule-Walker.

The maximum likelihood method is also widely cited in the literature. Although the maximum likelihood
method is well defined, some early literature refers to estimators that are called maximum likelihood but are
not full unconditional maximum likelihood estimates. The AUTOREG procedure produces full unconditional
maximum likelihood estimates.
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Harvey (1981) and Judge et al. (1985) summarize the literature on various estimators for the autoregressive
error model. Although asymptotically efficient, the various methods have different small sample properties.
Several Monte Carlo experiments have been conducted, although usually for the AR(1) model.

Harvey and McAvinchey (1978) found that for a one-variable model, when the independent variable is
trending, methods similar to Cochrane-Orcutt are inefficient in estimating the structural parameter. This is not
surprising since a pure trend model is well modeled by an autoregressive process with a parameter close to 1.

Harvey and McAvinchey (1978) also made the following conclusions:

* The Yule-Walker method appears to be about as efficient as the maximum likelihood method. Although
Spitzer (1979) recommended ML and NLS, the Yule-Walker method (labeled Prais-Winsten) did as
well or better in estimating the structural parameter in Spitzer’s Monte Carlo study (table A2 in their
article) when the autoregressive parameter was not too large. Maximum likelihood tends to do better
when the autoregressive parameter is large.

* For small samples, it is important to use a full transformation (Yule-Walker) rather than the Cochrane-
Orcutt method, which loses the first observation. This was also demonstrated by Maeshiro (1976),
Chipman (1979), and Park and Mitchell (1980).

* For large samples (Harvey and McAvinchey used 100), losing the first few observations does not make
much difference.

GARCH Models

Consider the series y;, which follows the GARCH process. The conditional distribution of the series Y for
time 7 is written

Ve|Wr—1~N(0, hy)
where W;_ denotes all available information at time # — 1. The conditional variance /; is
q b4
hy =w+ Zoeiytz_i + Z Vihi—j
i=1 j=1
where
p=>0,qg>0

w>0,0; >20,y; >0

The GARCH(p, ¢) model reduces to the ARCH(q) process when p = 0. At least one of the ARCH
parameters must be nonzero (¢ > 0). The GARCH regression model can be written

yi =X+ &

€ = \/h—tet
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q p
hy = o+ Zaief_i + Z Yihe—;
i=1 j=1

where e;~IN(0, 1).
In addition, you can consider the model with disturbances following an autoregressive process and with the
GARCH errors. The AR(m)-GARCH(p, ¢) regression model is denoted

Ve =%+ v

Ve =€ —@Q1Vi—1 — .. — OmVt—m

€ = \/h—té’t

q p
hy = o+ Z%ftz_i + Z Yihe—;
j=1

i=1

GARCH Estimation with Nelson-Cao Inequality Constraints

The GARCH(p, ¢) model is written in ARCH(o0) form as

-1
p q
ht = 1—ZJ/JB‘] |:a)+ZOti6t2_ii|
=1

i=1

oo
= o+ Zd’iftz_i

i=1

where B is a backshift operator. Therefore, h; > 0 if o* > 0 and ¢; > 0, Vi. Assume that the roots of the
following polynomial equation are inside the unit circle:

p
Do vz
=0

where y9 = —1 and Z is a complex scalar. — Zj'):o V4 P~/ and Z?zl o; Z97" do not share common
factors. Under these conditions, |w*| < 0o, |¢;| < 00, and these coefficients of the ARCH(c0) process are
well defined.

Define n = max(p, g). The coefficient ¢; is written

o = a1
$1 = Y190 + a2
Pn-1 = ViPn—2 + V2Pu—3+ -+ Yu—1¢0 + an
bk = YV1i¢k—1+ V2Pk—2 + + Vudp—p fork > n

where o; = 0 fori > g andy; = 0for j > p.
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Nelson and Cao (1992) proposed the finite inequality constraints for GARCH(1, ¢) and GARCH(2, g) cases.
However, it is not straightforward to derive the finite inequality constraints for the general GARCH(p, q)
model.

For the GARCH(1, ¢) model, the nonlinear inequality constraints are

o > 0
yi =2 0
¢r = Ofork=0,1,---,g—1

For the GARCH(2, ¢) model, the nonlinear inequality constraints are

A; € Rfori=1,2
w* > 0
Al > 0

q—1 )
Y AVajp > 0
j=0
¢r > Ofork=0,1,---,q

where A1 and A, are the roots of (22 — V1iZ — y2).

For the GARCH(p, g) model with p > 2, only max(qg — 1, p) + 1 nonlinear inequality constraints (¢ > 0
for k = 0 to max(q — 1, p)) are imposed, together with the in-sample positivity constraints of the conditional
variance hi;.

Using the HETERO Statement with GARCH Models

The HETERO statement can be combined with the GARCH= option in the MODEL statement to include
input variables in the GARCH conditional variance model. For example, the GARCH(1, 1) variance model
with two dummy input variables D1 and D2 is

€& = \/h—tet

hy = o4 are’ |+ yihi—1 + D1, + 2 D2,

The following statements estimate this GARCH model:

proc autoreg data=one;
model y = x z / garch=(p=1,qg9=1);
hetero dl d2;

run;

The parameters for the variables D1 and D2 can be constrained using the COEF= option. For example, the
constraints 71 = 1, = 1 are imposed by the following statements:

proc autoreg data=one;
model y = x z / garch=(p=1,g9=1);
hetero dl d2 / coef=unit;

run;
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IGARCH and Stationary GARCH Model

The condition Z?=1 o + Zf=1 y; < 1 implies that the GARCH process is weakly stationary since the
mean, variance, and autocovariance are finite and constant over time. When the GARCH process is stationary,
the unconditional variance of €; is computed as

V() =

(1- Ziq=1 o5 — Zﬁ'):l Vj)
where €, = «/hse; and hy is the GARCH(p, ¢) conditional variance.

Sometimes the multistep forecasts of the variance do not approach the unconditional variance when the
model is integrated in variance; thatis, Y_7_ a; + 25'):1 y; = 1.

The unconditional variance for the IGARCH model does not exist. However, it is interesting that the IGARCH
model can be strongly stationary even though it is not weakly stationary. Refer to Nelson (1990) for details.

EGARCH Model

The EGARCH model was proposed by Nelson (1991). Nelson and Cao (1992) argue that the nonnegativity
constraints in the linear GARCH model are too restrictive. The GARCH model imposes the nonnegative
constraints on the parameters, o; and y;, while there are no restrictions on these parameters in the EGARCH
model. In the EGARCH model, the conditional variance, 4;, is an asymmetric function of lagged disturbances
€r—i:

q p
In(h) =w+ Y a;igz—i)+ Y yjn(y_;)
i=1 j=1

where
g(zs) = Ozt + y[|z¢| — Elz¢]]
Zy = €t/\/h_t

The coefficient of the second term in g (z;) is set to be 1 (y=1) in our formulation. Note that E |z;| = (2/7)'/2
if z;~N(0, 1). The properties of the EGARCH model are summarized as follows:

* The function g(z;) is linear in z; with slope coefficient 8 + 1 if z; is positive while g(z;) is linear in
z; with slope coefficient 6 — 1 if z; is negative.

* Suppose that § = 0. Large innovations increase the conditional variance if |z;| — E|z;| > 0 and
decrease the conditional variance if |z;| — E|z;| < 0.

* Suppose that 8 < 1. The innovation in variance, g(z;), is positive if the innovations z; are less than
(2/7)Y2 /(0 —1). Therefore, the negative innovations in returns, €;, cause the innovation to the
conditional variance to be positive if 8 is much less than 1.
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QGARCH, TGARCH, and PGARCH Models

As shown in many empirical studies, positive and negative innovations have different impacts on future volatil-
ity. There is a long list of variations of GARCH models that consider the asymmetricity. Three typical varia-
tions are the quadratic GARCH (QGARCH) model (Engle and Ng 1993), the threshold GARCH (TGARCH)
model (Glosten, Jaganathan, and Runkle 1993; Zakoian 1994), and the power GARCH (PGARCH) model
(Ding, Granger, and Engle 1993). For more details about the asymmetric GARCH models, see Engle and Ng
(1993).

In the QGARCH model, the lagged errors’ centers are shifted from zero to some constant values:

q 14
h =+ Zai(ét—i —¥i)* + Z Vihi—j

i=1 j=1

In the TGARCH model, there is an extra slope coefficient for each lagged squared error,

q P
hy = o + Z(Oéi + le,_ <oVi)er; + Z yihi—j
i=1 Jj=1

where the indicator function 1¢, <¢ is one if €, < 0; otherwise, zero.

The PGARCH model not only considers the asymmetric effect, but also provides another way to model the
long memory property in the volatility,

q p
ht =+ Y aille—il—Vie-)** + Y yihi;
i=1 j=1
where A > O and |Y;| < 1,i =1,...,q.

Note that the implemented TGARCH model is also well known as GJIR-GARCH (Glosten, Jaganathan, and
Runkle 1993), which is similar to the threshold GARCH model proposed by Zakoian (1994) but not exactly
same. In Zakoian’s model, the conditional standard deviation is a linear function of the past values of the
white noise. Zakoian’s version can be regarded as a special case of PGARCH model when A = 1/2.

GARCH-in-Mean

The GARCH-M model has the added regressor that is the conditional standard deviation:
yr = x;,b’ +8vh: + ¢

€ = \/h—tet

where h; follows the ARCH or GARCH process.

Maximum Likelihood Estimation

The family of GARCH models are estimated using the maximum likelihood method. The log-likelihood
function is computed from the product of all conditional densities of the prediction errors.
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When ¢; is assumed to have a standard normal distribution (e;~N(0, 1)), the log-likelihood function is given
by

=y

t=1

2
[—ln(2n) —In(hy) — i:|

N[ —

where €, = y; — x}p and A, is the conditional variance. When the GARCH(p, ¢)-M model is estimated,
€ = y: — X, B — 8+/h;. When there are no regressors, the residuals €, are denoted as y; or y; — 8+/h;.

If e; has the standardized Student’s ¢ distribution, the log-likelihood function for the conditional ¢ distribution

_ %{m (r (” er 1)) ~m(r(2))- %ln((v —2)rhy)

t=1

1 €2
_E(V + 1)ln (1 + h(w—2) 2)):|

where I'(-) is the gamma function and v is the degree of freedom (v > 2). Under the conditional ¢ distribution,
the additional parameter 1/v is estimated. The log-likelihood function for the conditional ¢ distribution
converges to the log-likelihood function of the conditional normal GARCH model as 1/v— 0.

The likelihood function is maximized via either the dual quasi-Newton or the trust region algorithm. The
default is the dual quasi-Newton algorithm. The starting values for the regression parameters §§ are obtained
from the OLS estimates. When there are autoregressive parameters in the model, the initial values are obtained
from the Yule-Walker estimates. The starting value 1.07° is used for the GARCH process parameters.

The variance-covariance matrix is computed using the Hessian matrix. The dual quasi-Newton method
approximates the Hessian matrix while the quasi-Newton method gets an approximation of the inverse of
Hessian. The trust region method uses the Hessian matrix obtained using numerical differentiation. When
there are active constraints, that is, q(6) = 0, the variance-covariance matrix is given by

V(@) =H'I-Q(QH'Q)'QH™]

where H = —021/36000’ and Q = dq(0)/98". Therefore, the variance-covariance matrix without active
constraints reduces to V(0) = H™!.

Heteroscedasticity- and Autocorrelation-Consistent Covariance Matrix
Estimator

The heteroscedasticity-consistent covariance matrix estimator (HCCME), also known as the sandwich (or
robust or empirical) covariance matrix estimator, has been popular in recent years because it gives the
consistent estimation of the covariance matrix of the parameter estimates even when the heteroscedasticity
structure might be unknown or misspecified. White (1980) proposes the concept of HCCME, known as HCO.
However, the small-sample performance of HCO is not good in some cases. Davidson and MacKinnon (1993)
introduce more improvements to HCO, namely HC1, HC2 and HC3, with the degrees-of-freedom or leverage
adjustment. Cribari-Neto (2004) proposes HC4 for cases that have points of high leverage.
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HCCME can be expressed in the following general “sandwich” form:
T=B"'MB!

where B, which stands for “bread,” is the Hessian matrix and M, which stands for “meat,” is the outer product
of gradient (OPG) with or without adjustment. For HCO, M is the OPG without adjustment; that is,

T

Mruco = Z 88
=1

where T is the sample size and g; is the gradient vector of 7th observation. For HC1, M is the OPG with the
degrees-of-freedom correction; that is,

Myc1 = T_% gtg;

Pl
i

where k is the number of parameters. For HC2, HC3, and HC4, the adjustment is related to leverage, namely,

T ’ T /
8t8; gtgz 818
Myco = —_— Mycs = Mycy = .
— 1 — hyy Z (1 _ htt)z ; (1 _ h”)mm(4,Th,t/k)

The leverage hy; is defined as h;; = jt/(ZtT=1 Jt jt’)_lj,, where j; is defined as follows:

* For an OLS model, j; is the rth observed regressors in column vector form.
* For an AR error model, j; is the derivative vector of the rth residual with respect to the parameters.

* For a GARCH or heteroscedasticity model, j; is the gradient of the rth observation (that is, g;).

The heteroscedasticity- and autocorrelation-consistent (HAC) covariance matrix estimator can also be
expressed in “sandwich” form:

Y =B 'MB™!
where B is still the Hessian matrix, but M is the kernel estimator in the following form:

T—j

Muac = a thgz + Z k ( ) Z (gtg;—i—j + gt+jg;)

t=1

where T is the sample size, g; is the gradient vector of 7th observation, k(.) is the real-valued kernel function,
b is the bandwidth parameter, and a is the adjustment factor of small-sample degrees of freedom (that is,

= 1 if ADJUSTDF option is not specified and otherwise a = T /(T — k), where k is the number of
parameters). The types of kernel functions are listed in Table 8.2.
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Table 8.2 Kernel Functions

Kernel Name Equation
1—|x| |x| =1

Bartlett k(x) = ; 0 . l)tlte;wise
1—6x2+6/x]> 0<|x|<1/2

Parzen k(x) =14 2(1—|x|)3 1/2<|x] <1
0 otherwise

Quadratic spectral k(x) = 122)62 (Siné;’;;cs/ 3) _ cos (6x/ 5))
1 x| =<1

Truncated k(x) = ; 0 Ltklle;wise

) 1+cos(mx))/2 |x| <1
Tukey-Hanning k(x) = ; (() (X)) / l)tlLerwise

When you specify BANDWIDTH=ANDREWS91, according to Andrews (1991) the bandwidth parameter is
estimated as shown in Table 8.3.

Table 8.3 Bandwidth Parameter Estimation

Kernel Name Bandwidth Parameter
Bartlett b = 1.1447(ax(1)T)/3
Parzen b =2.6614(a(2)T)'/>
Quadratic spectral b = 1.3221(a(2)T)'/?
Truncated b =0.6611(x(2)T)'/>
Tukey-Hanning b = 1.7462(x(2)T)/°

Let {g4;} denote each series in {g;}, and let (pg, 02) denote the corresponding estimates of the autoregressive
and innovation variance parameters of the AR(1) model on {g4;},a = 1, ..., k, where the AR(1) model is
parameterized as gq; = pgar—1 + €ar With Var(e,y) = 05. The factors (1) and «(2) are estimated with
the following formulas:

k 4pzog k  4piol

_ Za:l (1—pa)°(1+p4)? _ Za:l (1—pa)®

a(l) = 7 a@) = ——5—
k o, Zk 04

a=1 (1-p,)* a=1 (1-p,)*

When you specify BANDWIDTH=NEWEYWEST94, according to Newey and West (1994) the bandwidth
parameter is estimated as shown in Table 8.4.
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Table 8.4 Bandwidth Parameter Estimation

Kernel Name Bandwidth Parameter

Bartlett b = 1.1447({s1/s0}*T)'/3
Parzen b = 2.6614({s1/s0}2T)/>
Quadratic spectral b = 1.3221({s1/s0}2T)/>
Truncated b = 0.6611({s1/s0}2T)'/>
Tukey-Hanning b = 1.7462({s1 /so}2T)'/>

The factors s1 and s¢ are estimated with the following formulas:

n n
s1:22j0j Sozao—i-ZZaj
j=1 j=1

where 7 is the lag selection parameter and is determined by kernels, as listed in Table 8.5.

Table 8.5 Lag Selection Parameter Estimation

Kernel Name Lag Selection Parameter
Bartlett n = ¢(T/100)%/°

Parzen n = ¢(T/100)*/25
Quadratic spectral n = ¢(T/100)2/%>
Truncated n = ¢(T/100)1/5
Tukey-Hanning n = ¢(T/100)1/5

The factor ¢ in Table 8.5 is specified by the C= option; by default it is 12.

The factor 0 is estimated with the equation

T k k
oj=T7" Z Zgatzgat—j ,J=0,...n
t=j+1 \a=i a=i

where i is 1 if the NOINT option in the MODEL statement is specified (otherwise, it is 2), and g,; is the
same as in the Andrews method.

If you specify BANDWIDTH=SAMPLESIZE, the bandwidth parameter is estimated with the equation

lyT" + c] if BANDWIDTH=SAMPLESIZE(INT) option is specified
yT" +c¢ otherwise

where T is the sample size; | x| is the largest integer less than or equal to x; and y, r, and ¢ are values
specified by the BANDWIDTH=SAMPLESIZE(GAMMA=, RATE=, CONSTANT=) options, respectively.
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If you specify the PREWHITENING option, g; is prewhitened by the VAR(1) model,
gt = Agi—1 +wy
Then M is calculated by

T—j

T T-1 .
Myac = a(l —A)_1 Zw,w; + Zk (é) Z (w,w;+j + w,+jw;) ((] _A)—l)/
t=1 j=1 t=1

The bandwidth calculation is also based on the prewhitened series wy.

Goodness-of-Fit Measures and Information Criteria

This section discusses various goodness-of-fit statistics produced by the AUTOREG procedure.

Total R-Square Statistic
The total R-Square statistic (Total Rsq) is computed as

SSE

thot=1—SS—T

where SST is the sum of squares for the original response variable corrected for the mean and SSE is the
final error sum of squares. The Total Rsq is a measure of how well the next value can be predicted using the
structural part of the model and the past values of the residuals. If the NOINT option is specified, SST is the
uncorrected sum of squares.

Regression R-Square Statistic
The regression R-Square statistic (Reg RSQ) is computed as

TSSE

2
1 — ==
R TSST

reg —

where TSST is the total sum of squares of the transformed response variable corrected for the transformed
intercept, and TSSE is the error sum of squares for this transformed regression problem. If the NOINT option
is requested, no correction for the transformed intercept is made. The Reg RSQ is a measure of the fit of the
structural part of the model after transforming for the autocorrelation and is the R-Square for the transformed
regression.

The regression R-Square and the total R-Square should be the same when there is no autocorrelation correction
(OLS regression).

Mean Absolute Error and Mean Absolute Percentage Error

The mean absolute error (MAE) is computed as

T
1
MAE = ?;|€t|
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where e; are the estimated model residuals and 7 is the number of observations.

The mean absolute percentage error (MAPE) is computed as

lez]

MAPE =
WZ:”#WI

where e; are the estimated model residuals, y; are the original response variable observations, §,,9 = 1 if
Vi #0,8,,20le;/ye| = 0if y; = 0, and T" is the number of nonzero original response variable observations.

Calculation of Recursive Residuals and CUSUM Statistics
The recursive residuals w; are computed as

()
Wy = ——

N

€y = YVt — X;,B(t)

t—1 -1
B = [inx;} (me)
i=1 i=1
t—1 -1
Uy = 1 —J’-X/t [ZX[X;}

i=1

Note that the first ,B(’) can be computed for # = p + 1, where p is the number of regression coefficients. As
a result, first p recursive residuals are not defined. Note also that the forecast error variance of e; is the scalar
multiple of v; such that V(e;) = o2v;.

The CUSUM and CUSUMSAQ statistics are computed using the preceding recursive residuals.

t

cusuM, = Y. 4
. Ow
i=k+1
2
w
CUSUMSQ, = Z’T"—“’z
i=k+1 wl

where w; are the recursive residuals,

¢2,me—wv
(T —k —1)

W =——- w;
i=k+1

and k is the number of regressors.
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The CUSUM statistics can be used to test for misspecification of the model. The upper and lower critical
values for CUSUM; are

ia{thz+zi£:@T}
(T —k)2

where a = 1.143 for a significance level 0.01, 0.948 for 0.05, and 0.850 for 0.10. These critical values are
output by the CUSUMLB= and CUSUMUB= options for the significance level specified by the ALPHACSM=
option.

The upper and lower critical values of CUSUMSQ; are given by

t—k)

+
a—+ Tk

where the value of a is obtained from the table by Durbin (1969) if the %(T — k) —1 < 60. Edgerton and
Wells (1994) provided the method of obtaining the value of a for large samples.

These critical values are output by the CUSUMSQLB= and CUSUMSQUB= options for the significance
level specified by the ALPHACSM= option.

Information Criteria AIC, AICC, SBC, and HQC

Akaike’s information criterion (AIC), the corrected Akaike’s information criterion (AICC), Schwarz’s
Bayesian information criterion (SBC), and the Hannan-Quinn information criterion (HQC), are computed as
follows:

AIC = —2In(L) + 2k

k(k + 1)
AICC = AIC 4 22+ D
C=AC+20—

SBC = —2In(L) + In(N)k
HQC = —2In(L) + 2In(In(N))k

In these formulas, L is the value of the likelihood function evaluated at the parameter estimates, N is the
number of observations, and k is the number of estimated parameters. Refer to Judge et al. (1985), Hurvich
and Tsai (1989), Schwarz (1978) and Hannan and Quinn (1979) for additional details.

Testing

The modeling process consists of four stages: identification, specification, estimation, and diagnostic
checking (Cromwell, Labys, and Terraza 1994). The AUTOREG procedure supports tens of statistical tests
for identification and diagnostic checking. Figure 8.15 illustrates how to incorporate these statistical tests
into the modeling process.
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Figure 8.15 Statistical Tests in the AUTOREG Procedure

Time series
T

Testing for stationarity (Unit root tests)
. Phillips-Perron
e  Phillips-Ouliaris cointegration
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—> e Shin cointegration Stationarity? o>, Difference
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e  Engle-Granger cointegration
. Elliott, Rothenberg, and Stock
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e BDS
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e Jarque-Bera
END No
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Testing for linear or non-linear dependence
e  Durbin-Watson
e Durbin-h/Durbin-t
e  Godfrey
e Ramsey's RESET
. McLeod-Li portmanteau Q ARCH
e Engle’s LM ARCH
e Leeand King's ARCH
e Wong and Li's ARCH
_______________________ Yy ___
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: Specify linear models Specify non-linear models Specify other models |
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| |* Regression with e AR-GARCH e  Using other PROCs (PROC |
| AR errors MODEL, PROC ARIMA, ...) :
e |
< Residuals 4 ‘
v
Goodness-of-fit statistics: R-square, MAE and MAPE,
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Information Criteria: AIC and AlCc, SBC, HQC
v
General tests: F, WALD, LR, LM
v
Testing for structural changes
e Chow
. Bai-Perron supF, UDmaxF, WDmaxF and
supF(I+1]1)

Adequate model? Yes END

Testing for Stationarity

Most of the theories of time series require stationarity; therefore, it is critical to determine whether a time
series is stationary. Two nonstationary time series are fractionally integrated time series and autoregressive
series with random coefficients. However, more often some time series are nonstationary due to an upward
trend over time. The trend can be captured by either of the following two models.

 The difference stationary process

(I-L)y: =8+ vy (L)e
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where L is the lag operator, ¥ (1) # 0, and ¢; is a white noise sequence with mean zero and variance
o2, Hamilton (1994) also refers to this model the unit root process.

* The trend stationary process

ve = a+ 8t +y(L)e

When a process has a unit root, it is said to be integrated of order one or I(1). An I(1) process is stationary
after differencing once. The trend stationary process and difference stationary process require different
treatment to transform the process into stationary one for analysis. Therefore, it is important to distinguish
the two processes. Bhargava (1986) nested the two processes into the following general model

ye=vo+yit +a(yi—1 —yo—y1(t — 1)) + ¥ (L)e;

However, a difficulty is that the right-hand side is nonlinear in the parameters. Therefore, it is convenient to
use a different parametrization

ye = Bo+ B1t +ayr—1 + ¥ (L)e
The test of null hypothesis that @ = 1 against the one-sided alternative of @ < 1 is called a unit root test.

Dickey-Fuller unit root tests are based on regression models similar to the previous model

ye = Bo+ Pit +oyi—1 + €&

where ¢; is assumed to be white noise. The ¢ statistic of the coefficient o does not follow the normal
distribution asymptotically. Instead, its distribution can be derived using the functional central limit theorem.
Three types of regression models including the preceding one are considered by the Dickey-Fuller test. The
deterministic terms that are included in the other two types of regressions are either null or constant only.

An assumption in the Dickey-Fuller unit root test is that it requires the errors in the autoregressive model to
be white noise, which is often not true. There are two popular ways to account for general serial correlation
between the errors. One is the augmented Dickey-Fuller (ADF) test, which uses the lagged difference in the
regression model. This was originally proposed by Dickey and Fuller (1979) and later studied by Said and
Dickey (1984) and Phillips and Perron (1988). Another method is proposed by Phillips and Perron (1988);
it is called Phillips-Perron (PP) test. The tests adopt the original Dickey-Fuller regression with intercept,
but modify the test statistics to take account of the serial correlation and heteroscedasticity. It is called
nonparametric because no specific form of the serial correlation of the errors is assumed.

A problem of the augmented Dickey-Fuller and Phillips-Perron unit root tests is that they are subject to size
distortion and low power. It is reported in Schwert (1989) that the size distortion is significant when the
series contains a large moving average (MA) parameter. DeJong et al. (1992) find that the ADF has power
around one third and PP test has power less than 0.1 against the trend stationary alternative, in some common
settings. Among some more recent unit root tests that improve upon the size distortion and the low power are
the tests described by Elliott, Rothenberg, and Stock (1996) and Ng and Perron (2001). These tests involve
a step of detrending before constructing the test statistics and are demonstrated to perform better than the
traditional ADF and PP tests.

Most testing procedures specify the unit root processes as the null hypothesis. Tests of the null hypothesis of
stationarity have also been studied, among which Kwiatkowski et al. (1992) is very popular.

Economic theories often dictate that a group of economic time series are linked together by some long-run
equilibrium relationship. Statistically, this phenomenon can be modeled by cointegration. When several
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nonstationary processes z; = (z1¢,- -+, Zx;) are cointegrated, there exists a (kx1) cointegrating vector ¢
such that ¢’z is stationary and c is a nonzero vector. One way to test the relationship of cointegration is the
residual based cointegration test, which assumes the regression model

e = B1 +X;,3+ut

where y; = z14, X¢ = (227, Zks)s and B = (B2, -.Bx)’. The OLS residuals from the regression model
are used to test for the null hypothesis of no cointegration. Engle and Granger (1987) suggest using ADF on
the residuals while Phillips and Ouliaris (1990) study the tests using PP and other related test statistics.

Augmented Dickey-Fuller Unit Root and Engle-Granger Cointegration Testing
Common unit root tests have the null hypothesis that there is an autoregressive unit root Hy : « = 1, and the
alternative is H, : |o| < 1, where « is the autoregressive coefficient of the time series

Ve =0Yi—1 + €

This is referred to as the zero mean model. The standard Dickey-Fuller (DF) test assumes that errors €; are
white noise. There are two other types of regression models that include a constant or a time trend as follows:

Ve =p+ayr—1 + €&
ye=pu+pt+ay—1+ €

These two models are referred to as the constant mean model and the trend model, respectively. The constant
mean model includes a constant mean p of the time series. However, the interpretation of © depends on the
stationarity in the following sense: the mean in the stationary case when o < 1 is the trend in the integrated
case when a = 1. Therefore, the null hypothesis should be the joint hypothesis that = 1 and u© = 0.
However for the unit root tests, the test statistics are concerned with the null hypothesis of o« = 1. The joint
null hypothesis is not commonly used. This issue is address in Bhargava (1986) with a different nesting
model.

There are two types of test statistics. The conventional ¢ ratio is

_ a—1
T sd(@)
and the second test statistic, called p-test, is
T@—1)

For the zero mean model, the asymptotic distributions of the Dickey-Fuller test statistics are

T@—1) = ([1 W(r)dW(r)) (/1 W(r)zdr)
0 0
—-1/2
DF, = (/1 W(r)dW(r)) (/1 W(r)zdr)
0 0

For the constant mean model, the asymptotic distributions are

2\ —1
T@a@-1) = ([W(l)2 —1]/2-w(1) /1 W(r)dr) (/1 W(r)2dr — ([1 W(r)dr) )
0 0 0
1 1 1 2\ ~1/2
DF, = ([W(l)2 —1]/2 - W(l)/o W(r)dr) (/0 W(r)?dr — (fo W(r)dr) )

-1
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For the trend model, the asymptotic distributions are

. 1 1 1 1 1

T@—-1) = [W(r)dW + 12 (/0 rW(r)dr — E/(; W(r)dr) (/0 W(r)dr — EW(I))
1
-wQ) | W(r)dr| D!
W [ wiar]

1 1 1 1 1

DF, = [W(r)dW + 12 (/0 rW(r)dr — 5/0 W(r)dr) (/0 W(r)dr — EW(I))

—W(1) /01 W(r)dr} D/2

where

2
D = /01 W(r)2dr — 12 (/Olr(W(r)dr) + 12/(;1 W(r)dr/o1 rW(r)dr—4(/01 W(r)dr)

One problem of the Dickey-Fuller and similar tests that employ three types of regressions is the difficulty in
the specification of the deterministic trends. Campbell and Perron (1991) claimed that “the proper handling
of deterministic trends is a vital prerequisite for dealing with unit roots”. However the “proper handling”
is not obvious since the distribution theory of the relevant statistics about the deterministic trends is not
available. Hayashi (2000) suggests to using the constant mean model when you think there is no trend, and
using the trend model when you think otherwise. However no formal procedure is provided.

2

The null hypothesis of the Dickey-Fuller test is a random walk, possibly with drift. The differenced process is
not serially correlated under the null of I(1). There is a great need for the generalization of this specification.
The augmented Dickey-Fuller (ADF) test, originally proposed in Dickey and Fuller (1979), adjusts for the
serial correlation in the time series by adding lagged first differences to the autoregressive model,

p
Ayr =+ 68t +ay—1 + ZajAyt—j + €t
j=1

where the deterministic terms §¢ and p can be absent for the models without drift or linear trend. As
previously, there are two types of test statistics. One is the OLS ¢ value

a—1
sd (&)
and the other is given by
T@—-1)
l—a1—...—ap

The asymptotic distributions of the test statistics are the same as those of the standard Dickey-Fuller test
statistics.

Nonstationary multivariate time series can be tested for cointegration, which means that a linear combination
of these time series is stationary. Formally, denote the series by z; = (z1¢, -+ -, Zx;)’. The null hypothesis of
cointegration is that there exists a vector ¢ such that ¢z, is stationary. Residual-based cointegration tests
were studied in Engle and Granger (1987) and Phillips and Ouliaris (1990). The latter are described in the
next subsection. The first step regression is

Vi =X+ u;



378 4 Chapter 8: The AUTOREG Procedure

where y; = 214, X¢ = (221, Zks), and B = (B2,---,Bx) . This regression can also include an intercept or
an intercept with a linear trend. The residuals are used to test for the existence of an autoregressive unit
root. Engle and Granger (1987) proposed augmented Dickey-Fuller type regression without an intercept
on the residuals to test the unit root. When the first step OLS does not include an intercept, the asymptotic
distribution of the ADF test statistic DF7 is given by

1
DF, — / o)
0

(fol 02)1/2
1 1 -1
o = - [ Wlwg(fo WZWZ’) Wa(r)
0
S(r) = (K/K)l/z

1 1 -1
P (1,-[ WIWZ/(/ WZWZ/) )
0 0

where W(r) is a k vector standard Brownian motion and

W) = (W), Wa())

is a partition such that Wi (r) is a scalar and W5(r) is k — 1 dimensional. The asymptotic distributions of the
test statistics in the other two cases have the same form as the preceding formula. If the first step regression
includes an intercept, then W(r) is replaced by the demeaned Brownian motion W (r) = W(r) — fol W(r)dr.
If the first step regression includes a time trend, then W (r) is replaced by the detrended Brownian motion. The
critical values of the asymptotic distributions are tabulated in Phillips and Ouliaris (1990) and MacKinnon
(1991).

The residual based cointegration tests have a major shortcoming. Different choices of the dependent variable
in the first step OLS might produce contradictory results. This can be explained theoretically. If the dependent
variable is in the cointegration relationship, then the test is consistent against the alternative that there is
cointegration. On the other hand, if the dependent variable is not in the cointegration system, the OLS
residual y; — x; 8 do not converge to a stationary process. Changing the dependent variable is more likely to
produce conflicting results in finite samples.

Phillips-Perron Unit Root and Cointegration Testing

Besides the ADF test, there is another popular unit root test that is valid under general serial correlation and
heteroscedasticity, developed by Phillips (1987) and Phillips and Perron (1988). The tests are constructed
using the AR(1) type regressions, unlike ADF tests, with corrected estimation of the long run variance of
Ayy. In the case without intercept, consider the driftless random walk process

Ve = Yr—1 + Uy

where the disturbances might be serially correlated with possible heteroscedasticity. Phillips and Perron
(1988) proposed the unit root test of the OLS regression model,

Vi = pYr—1 + Uz
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Denote the OLS residual by #;. The asymptotic variance of % ZtT=1 #i? can be estimated by using the
truncation lag /.

I
A= kil —j/+ D]y
j=0

where kg = 1,k; = 2for j > 0,and §; = + ZtT=j+1 usu;— ;. This is a consistent estimator suggested by
Newey and West (1987).

The variance of u, can be estimated by s> = L Y°7_ 412, Let 62 be the variance estimate of the OLS

estimator p. Then the Phillips-Perron Zp test (zero mean case) is written

A N 1 A
Zp=T(p—=1)=5T*6>(A = J0)/s*

The Z o statistic is just the ordinary Dickey-Fuller Z4 statistic with a correction term that accounts for the
serial correlation. The correction term goes to zero asymptotically if there is no serial correlation.

Note that P(p < 1)~0.68 as T'— o0, which shows that the limiting distribution is skewed to the left.

Let 7, be the 7 statistic for p. The Phillips-Perron Ze (defined here as Zf) test is written
A ~ 1 ~ ~
Ze = 9o/ V)15 = S TG (A = J0)/(sA1/?)

To incorporate a constant intercept, the regression model y; = u + py;—1 + u; is used (single mean case)
and null hypothesis the series is a driftless random walk with nonzero unconditional mean. To incorporate
a time trend, we used the regression model y; = p + 8¢ 4 py;—1 + u; and under the null the series is a
random walk with drift.

The limiting distributions of the test statistics for the zero mean case are
1 2
R >1B(1)" -1
%, = 2{1 ()" -1}
Jo [B(9)]*ds
1 2
N {[B()]- -1
e o SBOP -1
o [B(x)J2dx}t/2

where B(-) is a standard Brownian motion.

The limiting distributions of the test statistics for the intercept case are
5 _ 3UBOP -1 -BO) y Bx)dx
fol [B(x)]2dx — [fol B(x)dx]
5 _ UBMP 13— B() Jy Bdx
2
o BoPdx = 3 Byax]| 3112

Finally, The limiting distributions of the test statistics for the trend case are can be derived as
B(1)
[0 ¢ o]v! (B(l)2 — 1) /2
B(1) — [y B(x)dx
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where ¢ = 1 for Zp and c = «/_L for 2,,

0
1 [} B(x)dx 1/2

V=|[lBx)dx [, B(x)?dx [, xB(x)dx
1/2 [y xB(x)dx 1/3

0=1[0 ¢ o]v™'[0 ¢ 0]"

The finite sample performance of the PP test is not satisfactory ( see Hayashi (2000) ).

When several variables z; = (214, -+, Zx;)’ are cointegrated, there exists a (kx 1) cointegrating vector ¢ such
that ¢’z is stationary and c is a nonzero vector. The residual based cointegration test assumes the following
regression model:

Vi :,31+X;,3+Mt

where y; = z17, X = (z21,++, zkt)', and B = (B2, -,Bx)’. You can estimate the consistent cointegrating
vector by using OLS if all variables are difference stationary — that is, I(1). The estimated cointegrating
vectoris ¢ = (1, ,32, —,Bk)’ The Phillips-Ouliaris test is computed using the OLS residuals from the

preceding regression model, and it uses the PP unit root tests Z p and 7 developed in Phillips (1987), although
in Phillips and Ouliaris (1990) the asymptotic distributions of some other leading unit root tests are also
derived. The null hypothesis is no cointegration.

You need to refer to the tables by Phillips and Ouliaris (1990) to obtain the p-value of the cointegration test.
Before you apply the cointegration test, you may want to perform the unit root test for each variable (see the
option STATIONARITY=).

As in the Engle-Granger cointegration tests, the Phillips-Ouliaris test can give conflicting results for different
choices of the regressand. There are other cointegration tests that are invariant to the order of the variables,
including Johansen (1988), Johansen (1991), Stock and Watson (1988).

ERS and Ng-Perron Unit Root Tests

As mentioned earlier, ADF and PP both suffer severe size distortion and low power. There is a class of newer
tests that improve both size and power. These are sometimes called efficient unit root tests, and among them
tests by Elliott, Rothenberg, and Stock (1996) and Ng and Perron (2001) are prominent.

Elliott, Rothenberg, and Stock (1996) consider the data generating process

= Bzt + uy

U = odus—1 +ve,t =1,..., T

where {z;} is either {1} or {(1,#)} and {v;} is an unobserved stationary zero-mean process with positive
spectral density at zero frequency. The null hypothesis is Hy : @ = 1, and the alternative is H, : || < 1.
The key idea of Elliott, Rothenberg, and Stock (1996) is to study the asymptotic power and asymptotic power
envelope of some new tests. Asymptotic power is defined with a sequence of local alternatives. For a fixed
alternative hypothesis, the power of a test usually goes to one when sample size goes to infinity; however,
this says nothing about the finite sample performance. On the other hand, when the data generating process
under the alternative moves closer to the null hypothesis as the sample size increases, the power does not
necessarily converge to one. The local-to-unity alternatives in ERS are
¢

=14+ —
o +T
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and the power against the local alternatives has a limit as 7" goes to infinity, which is called asymptotic power.
This value is strictly between 0 and 1. Asymptotic power indicates the adequacy of a test to distinguish small
deviations from the null hypothesis.

Define

Ya = (yl’(l _O‘L)J’Z,---,(l _O‘L)YT)
zo = (z1, (1 —al)zy, ..., (1 —al)zy)

Let S(«) be the sum of squared residuals from a least squares regression of yo on zy. Then the point optimal
test against the local alternative @ = 1 4+ ¢/ T has the form

pGLS _ S(a) —aS(1)

T - T
where &2 is an estimator for w? = ZZOZ_OO Evsv,_j. The test rejects the null when Pz is small. The
asymptotic power function for the point optimal test that is constructed with ¢ under local alternatives with ¢
is denoted by 7 (c, ¢). Then the power envelope is 7 (c, ¢) because the test formed with ¢ is the most powerful
against the alternative ¢ = ¢. In other words, the asymptotic function 7 (c, ¢) is always below the power
envelope 7 (c) except that at one point, ¢ = ¢, they are tangent. Elliott, Rothenberg, and Stock (1996) show
that choosing some specific values for ¢ can cause the asymptotic power function 7 (c, ¢) of the point optimal
test to be very close to the power envelope. The optimal ¢ is —7 when z; = 1, and —13.5 when z; = (1,1)".
This choice of ¢ corresponds to the tangent point where &= = 0.5. This is also true of the DF-GLS test.

Elliott, Rothenberg, and Stock (1996) also propose the DF-GLS test, given by the ¢ statistic for testing Yo = 0
in the regression

P
Ay = oyl + Y VAV + e
Jj=1
where y,d is obtained in a first step detrending
ytd =)t — ,8(/;21,‘

and ,3& is least squares regression coefficient of y, on z,. Regarding the lag length selection, Elliott,
Rothenberg, and Stock (1996) favor the Schwarz Bayesian information criterion. The optimal selection of the
lag length p and the estimation of w? is further discussed in Ng and Perron (2001). The lag length is selected
from the interval [0, pyqax] for some fixed pqx by using the modified Akaike’s information criterion,

2(zr(p) + p)

— Pmax

MAIC(p) = log(63) +

where t7(p) = (02) llﬁo Zt pmax+1(yt )2 and 6 o = (T — pmax — 17! Z, B etp For fixed lag
length p, an estimate of w? is given by

o2 — (T=1-p)~ IZt p+26tp
( _Zj:1Wj)

DF-GLS is indeed a superior unit root test, according to Stock (1994), Schwert (1989), and Elliott, Rothenberg,
and Stock (1996). In terms of the size of the test, DF-GLS is almost as good as the ADF ¢ test DF; and better
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than the PP Z p and 7. test. In addition, the power of the DF-GLS test is greater than that of both the ADF ¢
test and the p-test.

Ng and Perron (2001) also apply GLS detrending to obtain the following M-tests:

-1

T—-1
MZy = (T — 1) (y4)? - d?) (2<T -2 of >2)

ST i\ .
. yt
MSB = ( (T —1)2p2 )

MZ; =MZ, x MSB
The first one is a modified version of the Phillips-Perron Z, test,
T
MZy=7p+ 5@~ 1)?

where the detrended data {y; } is used. The second is a modified Bhargava (1986) R test statistic. The third
can be perceived as a modified Phillips-Perron Z; statistic because of the relationship Z; = M SB x Z,.

The modified point optimal tests that use the GLS detrended data are

MPYQLS — Z(T 1) 22[ 1 (yt )Z_C(T 1) l(yd)z for Zt — 1
-2 -2 2 —1 2
MPYQLS G it VI Y (y, 202 1=a(T-1)"'f) for z; = (1,1)

The DF-GLS test and the MZ; test have the same limiting distribution:

DF-GLS ~ MZ, = o.s(fL)“))]/2 forz, = 1
Jo Je(r)2dr

DE-GLS ~ MZ, = 0.5( I(ch‘l)z‘l))l/z for z; = (1.1)
Jo Ve.e(r)?dr

The point optimal test and the modified point optimal test have the same limiting distribution:

PSLS ~ MPSLS = & [ J.(r)2dr —Jc(1)2 forz; = 1
PSS ~ MPSLS = & [ Ve o (2dr + (1= &)Ve s (1)? forz, = (1,1)

where W (r) is a standard Brownian motion and J.(r) is an Ornstein-Uhlenbeck process defined by dJ.(r) =
cJe(r)dr + dW(r) with Je(0) = 0, Voa(r) = Je(r) — r [AJC(I) +301-2) [} sJC(s)ds], and A =
(1-¢)/(1—¢ +¢2/3).

Overall, the M-tests have the smallest size distortion, with the ADF 1 test having the next smallest. The
ADF p-test, Z,, and Z; have the largest size distortion. In addition, the power of the DF-GLS and M-tests is

greater than that of the ADF ¢ test and p-test. The ADF Z p has more severe size distortion than the ADF Ze,
but it has more power for a fixed lag length.
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Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) Unit Root Test and Shin Cointegration Test
There are fewer tests available for the null hypothesis of trend stationarity 1(0). The main reason is the
difficulty of theoretical development. The KPSS test was introduced in Kwiatkowski et al. (1992) to test
the null hypothesis that an observable series is stationary around a deterministic trend. For consistency, the
notation used here differs from the notation in the original paper. The setup of the problem is as follows: it is
assumed that the series is expressed as the sum of the deterministic trend, random walk r;, and stationary
error u;; that is,

Ve =p+ 0t +rs + uy

e =r—1 + ¢

where e; ~iid (0,02), and an intercept  (in the original paper, the authors use rq instead of 1; here we
assume ro = 0.) The null hypothesis of trend stationarity is specified by Hy : aez = 0, while the null of level
stationarity is the same as above with the model restriction § = 0. Under the alternative that o2 # 0, there is
a random walk component in the observed series y;.

Under stronger assumptions of normality and iid of #; and e;, a one-sided LM test of the null that there is no
random walk (e; = 0, V¢) can be constructed as follows:

1 & s2
IM = — t
T2 t; 2(1)

1 T ) I T
2 _ A~D A A
s2(1) = ?Zut +7§w(s,1) > s

=1 t=s+1
t
St - Z 12-[
=1

Under the null hypothesis, #; can be estimated by ordinary least squares regression of y; on an intercept
and the time trend. Following the original work of Kwiatkowski et al. (1992), under the null (082 = 0), the
LM statistic converges asymptotically to three different distributions depending on whether the model is
trend-stationary, level-stationary (§ = 0), or zero-mean stationary (§ = 0, 4 = 0). The trend-stationary
model is denoted by subscript 7 and the level-stationary model is denoted by subscript ;. The case when there
is no trend and zero intercept is denoted as 0. The last case, although rarely used in practice, is considered in
Hobijn, Franses, and Ooms (2004):

1
— D
Ve =ug: LMy —>/ B2(r)dr
0
yi=p+u: LMy —>[ V2(r)dr
0
—— D 1
Ve =+ 8t 4+ uy LM,—)/ V22(r)dr
0
with
V(r) = B(r) —rB(1)

1
Va(r) = B(r) + 2r — 3r?)B(1) + (—6r + 6r2)/ B(s)ds
0
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where B(r) is a Brownian motion (Wiener process) and — is convergence in distribution. V' (r) is a standard
Brownian bridge, and V5 (r) is a second-level Brownian bridge.

Using the notation of Kwiatkowski et al. (1992), the LM statistic is named as 7). This test depends on the
computational method used to compute the long-run variance s(/); that is, the window width / and the kernel
type w(-,-). You can specify the kernel used in the test by using the KERNEL option:

* Newey-West/Bartlett (KERNEL=NW | BART) (this is the default)
s

JDy=1-
w(s, /) 1

* quadratic spectral (KERNEL=QS)

25 in (6 5 6
w(s,l) =w (;) =w(x) = n2e2 (sm6(n;r;c5/ ) — cos (gnx))

You can specify the number of lags, /, in three different ways:

e Schwert (SCHW = ¢) (default for NW, c=12)

T\ /4
[ =max{1,floor|c|—
e ()

* automatic selection (AUTO) (default for QS), from Hobijn, Franses, and Ooms (2004). The number of
lags, /, is calculated as in the following table:

e manual (LAG =)

KERNEL=NW KERNEL=QS
I = min(7, floor(pT1/3)) I = min(7, floor(pT /%))
N 2] /3 N c@)\2) 1/°
p= 1.1447%(;(—0)) } p = 1.3221;(;(—0)) }
§U) = 80,90 + 2371 i/ P §U) = 80,90 + 2371 i/ P
n = floor(T'2/) n = floor(T'2/25)

where 7 is the number of observations, §o,; = 1if j = 0 and 0 otherwise, and y; = % ZIT;II UrUpy.

Simulation evidence shows that the KPSS has size distortion in finite samples. For an example, see Caner
and Kilian (2001). The power is reduced when the sample size is large; this can be derived theoretically (see
Breitung (1995)). Another problem of the KPSS test is that the power depends on the truncation lag used in
the Newey-West estimator of the long-run variance s2(/).

Shin (1994) extends the KPSS test to incorporate the regressors to be a cointegration test. The cointegrating
regression becomes

Vi=pu+8t+X/B+r+u

e =re—1+ ¢
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where y; and X; are scalar and m-vector /(1) variables. There are still three cases of cointegrating regressions:
without intercept and trend, with intercept only, and with intercept and trend. The null hypothesis of the
cointegration test is the same as that for the KPSS test, Hp : 62 = 0. The test statistics for cointegration in
the three cases of cointegrating regressions are exactly the same as those in the KPSS test; these test statistics
are then ignored here. Under the null hypothesis, the statistics converge asymptotically to three different
distributions:

1
— D
yi = X/B+u;: LM0—>/ Q%(r)dr
0
— D 1
ye=p+ X/B+u;: LMM—>/ Q%(r)dr
0
—~— D 1
ye=p+ 8t + X/B+us: LMT—)/O Q%(r)dr

with

r 1

01(r) = B() - ( / Bm<x>dx) ( / Bm<x>Bm’(x)dx)
r 1 _ 1 _

O>(r)=V(r)— (/0 Bm(x)dx) (/0 Bm(x)Bm/(x)dx) (/(; Bm(x)dB(x))
r 1 1

03(r) = Va(r) — (/0 Bfn(x)dx) (/0 B;‘;(x)B;/(x)dx) (/0 B;';l(x)dB(x))

D
where B(.) and By (.) are independent scalar and m-vector standard Brownian motion, and —> is convergence
in distribution. V() is a standard Brownian bridge, V> (r) is a Brownian bridge of a second-level, By, (r) =
Bun(r) — fol Bm(x)dx is an m-vector standard demeaned Brownian motion, and B}, (r) = By, (r) + (61 —

4) fol Bn(x)dx 4+ (—12r + 6) fol xBm(x)dx is an m-vector standard demeaned and detrended Brownian
motion.

-1

1
(/ Bm(x)dB(x))
0

-1

-1

The p-values that are reported for the KPSS test and Shin test are calculated via a Monte Carlo simulation of
the limiting distributions, using a sample size of 2,000 and 1,000,000 replications.

Testing for Statistical Independence

Independence tests are widely used in model selection, residual analysis, and model diagnostics because
models are usually based on the assumption of independently distributed errors. If a given time series (for
example, a series of residuals) is independent, then no deterministic model is necessary for this completely
random process; otherwise, there must exist some relationship in the series to be addressed. In the following
section, four independence tests are introduced: the BDS test, the runs test, the turning point test, and the
rank version of von Neumann ratio test.

BDS Test

Brock, Dechert, and Scheinkman (1987) propose a test (BDS test) of independence based on the correlation
dimension. Brock et al. (1996) show that the first-order asymptotic distribution of the test statistic is
independent of the estimation error provided that the parameters of the model under test can be estimated
J/n-consistently. Hence, the BDS test can be used as a model selection tool and as a specification test.
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Given the sample size T, the embedding dimension m, and the value of the radius r, the BDS statistic is

Cmm,7(r) — i’y 7(r)
Seps(Tom,r) = T —m + 1" 1,m,T

Um,T(r)

where

m—1

I (25— 2-)
0

2 s
Cmn N (r) = (N—n+ 1)(N —n) Z Z

s=nt=s+1 j=
_ Uitz —zf<r
Ir(@s, 2) = { 0 otherwise
m—1 . .
Or%z,T(r) =4 k" +2 Z Km=Jc% 4 (m — 1)2C2m — m2kc2m—2
Jj=1

c=c1,1,r(r)

6 T T T
k=kr(r) = T(T—l)(T—2)Z Y harze.z)

t=1s=t+1]=s5+1

1
hr(z¢,25,21) = 5 (r(ze,25)1r (25, 21) + Ir(2¢, 20) 1 (21, 25) + Tr (25, 2¢) Ir (22, 27))

The statistic has a standard normal distribution if the sample size is large enough. For small sample size,
the distribution can be approximately obtained through simulation. Kanzler (1999) has a comprehensive
discussion on the implementation and empirical performance of BDS test.

Runs Test and Turning Point Test

The runs test and turning point test are two widely used tests for independence (Cromwell, Labys, and Terraza
1994).

The runs test needs several steps. First, convert the original time series into the sequence of signs, {+ + — —
... + ———},thatis, map {z;} into {sign(z; — zps)} where zs is the sample mean of z; and sign(x) is
“4” if x is nonnegative and “—” if x is negative. Second, count the number of runs, R, in the sequence. A run
of a sequence is a maximal non-empty segment of the sequence that consists of adjacent equal elements. For
example, the following sequence contains R = 8 runs:

+++——— ++ —— + — +++++ ——
1

Third, count the number of pluses and minuses in the sequence and denote them as N4+ and N_, respectively.
In the preceding example sequence, N+ = 11 and N_ = 8. Note that the sample size T = Ny + N_.
Finally, compute the statistic of runs test,

R—p

Sruns =

where
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2 (u—=Dn-2)
o-f=m ——
T-1

The statistic of the turning point test is defined as follows:

o _XIH TP 2T -2)/3
T 6T —29)/%

where the indicator function of the turning point 7P is 1 if z; > z;41 or z; < z;4 (that is, both the previous
and next values are greater or less than the current value); otherwise, 0.

The statistics of both the runs test and the turning point test have the standard normal distribution under the
null hypothesis of independence.

Rank Version of von Neumann Ratio Test
Since the runs test completely ignores the magnitudes of the observations, Bartels (1982) proposes a rank
version of the von Neumann Ratio test for independence:

VT (T2l Repi —R)>
2 (T(T2-1)/12)

SRVN =

where R; is the rank of tth observation in the sequence of T observations. For large sample, the statistic
follows the standard normal distribution under the null hypothesis of independence. For small samples of
size between 11 and 100, the critical values through simulation would be more precise; for samples of size
no more than 10, the exact CDF is applied.

Testing for Normality

Based on skewness and kurtosis, Jarque and Bera (1980) calculated the test statistic

N N
Ty = [—bf + ﬂ(bz — 3)2}

6
where

VN YL 0
b1 = 3

N  ~2\2

( t=1”t2)

N -

b N Zl_l u?‘

2 —

The x?(2) distribution gives an approximation to the normality test Ty .

When the GARCH model is estimated, the normality test is obtained using the standardized residuals
iy = € /~/hs. The normality test can be used to detect misspecification of the family of ARCH models.
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Testing for Linear Dependence

Generalized Durbin-Watson Tests
Consider the following linear regression model:

Y=XB8+v

where X is an N x k data matrix, 8 is a k x 1 coefficient vector, and v is a N x 1 disturbance vector. The
error term v is assumed to be generated by the jth-order autoregressive process vy = €; — ¢ V;—; where
loj| <1, € is a sequence of independent normal error terms with mean 0 and variance o2. Usually, the
Durbin-Watson statistic is used to test the null hypothesis Hyp : ¢1 = 0 against Hy : —¢1 > 0. Vinod (1973)
generalized the Durbin-Watson statistic:

N A oA
. Zt:j-f-l (Ve — Ut—j)2

“ il 07
where v are OLS residuals. Using the matrix notation,
J Y’ MA; A, MY
7T YMY

where M = Iy — X(X’X) !X’ and A isa (N — j) x N matrix:
-1 0 - 0 1 0 --- 0

o -1 0 -~ 0 1 O

o - 0 -1 0 -+ 0 1

and there are j — 1 zeros between —1 and 1 in each row of matrix A ;.

The QR factorization of the design matrix X yields a N x N orthogonal matrix Q:
X =QR

where R is an N x k upper triangular matrix. There exists an N x (N — k) submatrix of Q such that
Q:1Q] = Mand Q| Q; = Iy_k. Consequently, the generalized Durbin-Watson statistic is stated as a ratio of
two quadratic forms:

g, = iz A

> &

where Aj1...Aj, are upper n eigenvalues of MA’;A;M and & is a standard normal variate, and
n = min(N —k, N — j). These eigenvalues are obtained by a singular value decomposition of Q';A’;
(Golub and Van Loan 1989; Savin and White 1978).

The marginal probability (or p-value) for d; given cg is

Sl Ajigl

Prob(==—L
S &

< ¢g) = Prob(g; <0)
where

qj =Y (ji—coét

=1



Testing 4 389

When the null hypothesis Hg : ¢; = 0 holds, the quadratic form g ; has the characteristic function

n

¢; (1) =[] =20 —coity /2

=1

The distribution function is uniquely determined by this characteristic function:

1 1/°°e”"¢j(—f)—e_”x¢j(l)dt
0

F(x) = - + —
) =3+ i1

For example, to test Hy : ¢4 = 0 given ¢; = @3 = @3 = 0 against H; : —@4 > 0, the marginal probability
(p-value) can be used:

_ 1T %0 (ga(=t) — ¢al?))
F(O) = 5 + E[ i dt

where

¢a(t) = [T —20ar = dayiny ™"/

=1

and 624 is the calculated value of the fourth-order Durbin-Watson statistic.

In the Durbin-Watson test, the marginal probability indicates positive autocorrelation (—¢; > 0) if it is less
than the level of significance («), while you can conclude that a negative autocorrelation (—¢; < 0) exists if
the marginal probability based on the computed Durbin-Watson statistic is greater than 1 — . Wallis (1972)
presented tables for bounds tests of fourth-order autocorrelation, and Vinod (1973) has given tables for a
5% significance level for orders two to four. Using the AUTOREG procedure, you can calculate the exact
p-values for the general order of Durbin-Watson test statistics. Tests for the absence of autocorrelation of
order p can be performed sequentially; at the jth step, test Ho : ¢; = 0 given ¢1 = ... = ¢, 1 = 0 against
@, # 0. However, the size of the sequential test is not known.

The Durbin-Watson statistic is computed from the OLS residuals, while that of the autoregressive error model
uses residuals that are the difference between the predicted values and the actual values. When you use the
Durbin-Watson test from the residuals of the autoregressive error model, you must be aware that this test is
only an approximation. See “Autoregressive Error Model” on page 357 earlier in this chapter. If there are
missing values, the Durbin-Watson statistic is computed using all the nonmissing values and ignoring the
gaps caused by missing residuals. This does not affect the significance level of the resulting test, although
the power of the test against certain alternatives may be adversely affected. Savin and White (1978) have
examined the use of the Durbin-Watson statistic with missing values.

The Durbin-Watson probability calculations have been enhanced to compute the p-value of the generalized
Durbin-Watson statistic for large sample sizes. Previously, the Durbin-Watson probabilities were only
calculated for small sample sizes.

Consider the following linear regression model:
Y=X8+u

Up + QjUs—j = €&, t=1,....N
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where X is an N x k data matrix, 8 is a k x 1 coefficient vector, uis a N x 1 disturbance vector, and ¢; is a

sequence of independent normal error terms with mean 0 and variance o'2.

The generalized Durbin-Watson statistic is written as
o A/j At
'l

DW; =

where 1 is a vector of OLS residuals and A is a (T" — j) x T matrix. The generalized Durbin-Watson
statistic DW ; can be rewritten as

YMALA;MY 7' (QUA%A; Qo)
YMY n'n

DW; =

where Q/lQl =Ir_g, Q/IX =0,andn = Q/lu
The marginal probability for the Durbin-Watson statistic is
Pr(DW; <¢) =Pr(h <0)

where h = n/(Q/lA’jAle —cDn.

The p-value or the marginal probability for the generalized Durbin-Watson statistic is computed by numerical
inversion of the characteristic function ¢ () of the quadratic form & = 1'(Q), A/j A ;Qq—cI)n. The trapezoidal
rule approximation to the marginal probability Pr(h# < 0) is

¢((k +3)4)]
+3)

Pr(h <0) = = — Z +Er(A) + Er(K)

where Im [¢(+)] is the imaginary part of the characteristic function, Ej(A) and E7 (K) are integration and
truncation errors, respectively. Refer to Davies (1973) for numerical inversion of the characteristic function.

Ansley, Kohn, and Shively (1992) proposed a numerically efficient algorithm that requires O(/N) operations
for evaluation of the characteristic function ¢ (u). The characteristic function is denoted as

;o -1/2
p) = [I-2iu(Q;AA; Qi —cly)

—-1/2 1/2

= VT2 XVIIX]T XX
where V = (14+2iuc)l—2i uA/j A andi = +/—1. By applying the Cholesky decomposition to the complex
matrix V, you can obtain the lower triangular matrix G that satisfies V.= GG’. Therefore, the characteristic
function can be evaluated in O(N) operations by using the following formula:

}—1/2 1/2

¢u) = |G| XX XX

where X* = G~!X. Refer to Ansley, Kohn, and Shively (1992) for more information on evaluation of the
characteristic function.
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Tests for Serial Correlation with Lagged Dependent Variables

When regressors contain lagged dependent variables, the Durbin-Watson statistic (d;) for the first-order
autocorrelation is biased toward 2 and has reduced power. Wallis (1972) shows that the bias in the Durbin-
Watson statistic (d4) for the fourth-order autocorrelation is smaller than the bias in d; in the presence of a
first-order lagged dependent variable. Durbin (1970) proposes two alternative statistics (Durbin % and ¢ ) that
are asymptotically equivalent. The £ statistic is written as

h=pyN/(1=NV)

where p = Z?/:z Debi—1/ vazl $2 and V is the least squares variance estimate for the coefficient of the
lagged dependent variable. Durbin’s 7 test consists of regressing the OLS residuals D; on explanatory variables
and v;_ and testing the significance of the estimate for coefficient of U;_1.

Inder (1984) shows that the Durbin-Watson test for the absence of first-order autocorrelation is generally
more powerful than the 4 test in finite samples. Refer to Inder (1986) and King and Wu (1991) for the
Durbin-Watson test in the presence of lagged dependent variables.

Godfrey LM test

The GODFREY= option in the MODEL statement produces the Godfrey Lagrange multiplier test for serially
correlated residuals for each equation (Godfrey 1978b, a). r is the maximum autoregressive order, and
specifies that Godfrey’s tests be computed for lags 1 through r. The default number of lags is four.

Testing for Nonlinear Dependence: Ramsey’s Reset Test

Ramsey’s reset test is a misspecification test associated with the functional form of models to check whether
power transforms need to be added to a model. The original linear model, henceforth called the restricted
model, is

ye =Xt +u;

To test for misspecification in the functional form, the unrestricted model is

P
ve=xB+ Y ¢iH +u
i=2
where y; is the predicted value from the linear model and p is the power of y; in the unrestricted model

equation starting from 2. The number of higher-ordered terms to be chosen depends on the discretion of the
analyst. The RESET option produces test results for p = 2, 3, and 4.

The reset test is an F statistic for testing Ho : ¢; = 0, forall j = 2,..., p, against Hy : ¢; # 0 for at least
one j = 2,..., p in the unrestricted model and is computed as follows:
- _ (SSER—SSEy)/(p—1)
P=tnk=p ) = TGSEy [(n—k — p + 1)

where S SER is the sum of squared errors due to the restricted model, S SEy is the sum of squared errors
due to the unrestricted model, n is the total number of observations, and & is the number of parameters in the
original linear model.

Ramsey’s test can be viewed as a linearity test that checks whether any nonlinear transformation of the
specified independent variables has been omitted, but it need not help in identifying a new relevant variable
other than those already specified in the current model.
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Testing for Nonlinear Dependence: Heteroscedasticity Tests

Portmanteau Q Test
For nonlinear time series models, the portmanteau test statistic based on squared residuals is used to test for
independence of the series (McLeod and Li 1983):

B a r(i;f)tz)
Q(g) = N(N +2)§ N5
where
r(l "}tZ) — Z?]:i-i-l (ﬁtz _52)(ﬁ3—i — 62)

N A A
Yo (07 = 62)
1 N
A2 _ 52
0" =~ ,_E 1 V;

This Q statistic is used to test the nonlinear effects (for example, GARCH effects) present in the residuals. The
GARCH(p, q) process can be considered as an ARMA (max(p, ¢g), p) process. See the section “Predicting
the Conditional Variance” on page 399. Therefore, the Q statistic calculated from the squared residuals can
be used to identify the order of the GARCH process.

Engle’s Lagrange Multiplier Test for ARCH Disturbances

Engle (1982) proposed a Lagrange multiplier test for ARCH disturbances. The test statistic is asymptotically
equivalent to the test used by Breusch and Pagan (1979). Engle’s Lagrange multiplier test for the gth order
ARCH process is written

NWZ(Z'T)"'7’W

LM(q) = WW
where
52 52 !
and
1 f)g ﬁzqﬂ
. . . .
e

The presample values ( vg,. a2 4+1) have been set to 0. Note that the LM(q) tests might have different
finite-sample properties depending on the presample values, though they are asymptotically equivalent
regardless of the presample values.
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Lee and King’s Test for ARCH Disturbances

Engle’s Lagrange multiplier test for ARCH disturbances is a two-sided test; that is, it ignores the inequality
constraints for the coefficients in ARCH models. Lee and King (1993) propose a one-sided test and prove
that the test is locally most mean powerful. Let g;,¢ = 1, ..., T, denote the residuals to be tested. Lee and
King’s test checks

Hy:0;=0,i =1,....,q

Hi:o;>0,i=1,..,q
where o;,i = 1, ..., q, are in the following ARCH(q) model:

& = \/h_tet,et lld(o, 1)

q
hy = ag + Zaisz‘z—i
i=1

The statistic is written as
T e? q 2
Di=q+1 (s —1D D i1 &

S = . 2(27' 4 2 )2 1/2
|:2 Zt=q+1 (Z?=1 gtz_i)z — t=q+%,_é=l r—i :|

Wong and Li’s Test for ARCH Disturbances

Wong and Li (1995) propose a rank portmanteau statistic to minimize the effect of the existence of outliers in
the test for ARCH disturbances. They first rank the squared residuals; that is, R; = rank(e?). Then they
calculate the rank portmanteau statistic

q 2
(ri — i)
Or = Z : 2 l
i1 Y

where r;, u;, and O'iz are defined as follows:

T Re = (T4 D/D(Rei = (T +1)/2)
T T(T2—1)/12
T—i
CT(T-1)
5 ST*—(5i +9T3+9(i —2)T? + 2i(5i + 8)T + 16i>

o° =

l 5(T — D2T(T + 1)

i =

The Q, Engle’s LM, Lee and King’s, and Wong and Li’s statistics are computed from the OLS residuals, or
residuals if the NLAG= option is specified, assuming that disturbances are white noise. The Q, Engle’s LM,
and Wong and Li’s statistics have an approximate X%q) distribution under the white-noise null hypothesis,
while the Lee and King’s statistic has a standard normal distribution under the white-noise null hypothesis.
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Testing for Structural Change

Chow Test
Consider the linear regression model

y=Xf+u

where the parameter vector 8 contains k elements.

Split the observations for this model into two subsets at the break point specified by the CHOW= option, so
that

y = 1.5
— (X-/ly X/Z)/
u — (11/1, u/z)l

Now consider the two linear regressions for the two subsets of the data modeled separately,
yi=Xi1f1+w

y2 = X2 +wp
where the number of observations from the first set is 71 and the number of observations from the second set

1S ny.

The Chow test statistic is used to test the null hypothesis Hy : f1 = B2 conditional on the same error variance
V(uy) = V(uz). The Chow test is computed using three sums of square errors:
(W'a—ja; —u50,)/k

Fopoy = ——
hov T (@ @y + 0p)/(ny + na — 2k)

where 1 is the regression residual vector from the full set model, 11; is the regression residual vector from the
first set model, and 1, is the regression residual vector from the second set model. Under the null hypothesis,
the Chow test statistic has an F distribution with k and (n; + np — 2k) degrees of freedom, where k is the
number of elements in §.

Chow (1960) suggested another test statistic that tests the hypothesis that the mean of prediction errors is 0.
The predictive Chow test can also be used when n, < k.

The PCHOW= option computes the predictive Chow test statistic

. (i — i i),/n2
h = QA7 A
PRy /(g — k)

The predictive Chow test has an F distribution with n, and (n; — k) degrees of freedom.

Bai and Perron’s Multiple Structural Change Tests

Bai and Perron (1998) propose several kinds of multiple structural change tests: (1) the test of no break versus
a fixed number of breaks (supF test), (2) the equal and unequal weighted versions of double maximum tests
of no break versus an unknown number of breaks given some upper bound (UDmax F test and WDmax F
test), and (3) the test of / versus / + 1 breaks (su pFi41) test). Bai and Perron (2003a, b, 2006) also show
how to implement these tests, the commonly used critical values, and the simulation analysis on these tests.
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Consider the following partial structural change model with m breaks (:m 4 1 regimes):
yi = X B+ 2,8 + us, t=Ti-1+1,..Tj,j =1,...,m

Here, y; is the dependent variable observed at time #, x; (p X 1) is a vector of covariates with coefficients 8
unchanged over time, and z; (g x 1) is a vector of covariates with coefficients §; at regime j, j = 1,...,m. If
p = 0 (that is, there are no x regressors), the regression model becomes the pure structural change model.
The indices (71, ..., T,) (that is, the break dates or break points) are unknown, and the convenient notation
To = 0 and T;,,+1 = T applies. For any given m-partition (77, ..., Ty,), the associated least squares estimates
of Band d;, j = 1,...,m, are obtained by minimizing the sum of squared residuals (SSR),

m+1 T;

Sr(Ti. o Tw) =Y > (i —x/B—2{8)°

i=1t=T;_1+1

Let S‘T(Tl, .oy Ip) denote the minimized SSR for a given (74,...,Ty). The estimated break dates
(Ty, ..., T,;) are such that

(Ti,....Tw) = arg _min Sp(Ti, ..., Tym)
T1,....Tm
where the minimization is taken over all partitions (771, ..., Ty, ) such that 7; — T;_y > Te. Bai and Perron
(2003a) propose an efficient algorithm, based on the principle of dynamic programming, to estimate the
preceding model.

In the case that the data are nontrending, as stated in Bai and Perron (1998), the limiting distribution of the
break dates is as follows:

((AA;;%—:AA:))Z@ I arg max v (s), i=1,...m
where
YO (s) = W (—s) - WZ@) ifs <0
SN (@i 2/ di )W, (s) —nils]/2 ifs >0
and

0 0 0
AT? =T -T2,

1

Aj = 5?+1 ot
TP
Qi =lm(ATY)™" Y E(zz)
t=TP | +1

TP TP
Q; =lim(ATY)™" > E(rzjurur)
r=T%  +1t=T2  +1
ni = A;Qir10;i/A; Qi A
¢71 = NQiAi /A Qi A,
$72 = AjQir1Ai /A Qi1
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Also, Wl(l)(s) and Wz(l) (s) are independent standard Weiner processes that are defined on [0, 00), starting at
the origin when s = 0; these processes are also independent across i. The cumulative distribution function of
arg maxg V (’)(s) is shown in Bai (1997). Hence, with the estimates of A;, Q;, and €2;, the relevant critical
values for confidence interval of break dates 7; can be calculated. The estimate of A; is 81 +1 — 8 The
estimate of Q; is either

70

A &\ —1

Oi = (ATH™ ) =z
t=T0  +1

if the regressors are assumed to have heterogeneous distributions across regimes (that is, the HQ option is
specified), or

T
0i=0=M"") =z

if the regressors are assumed to have identical distributions across regimes (that is, the HQ option is not
specified). The estimate of €2; can also be constructed with data over regime i only or the whole sample,
depending on whether the vectors z;1; are heterogeneously distributed across regimes (that is, the HO
option is specified). If the HAC option is specified, Q i 1s estimated through the heteroscedasticity- and
autocorrelation-consistent (HAC) covariance matrix estimator applied to vectors z; ;.

The supF test of no structural break (2 = 0) versus the alternative hypothesis that there are a fixed number,
m = k, of breaks is defined as follows:

k+1 A A ~

supF (k) = ( (Zq )4~ p)(R@)'(RV(@)R’)—l(Re)
where

qup Iq _Iq O O e O

Ogxp O I, —I; O - 0

Rkeg)yx(p+k+1)q) = - o

qup 0 0 Iq _]q

and /, is the g X g identity matrix; § is the coefficient vector (ﬁ/ 8’1 ...8k+1)/ , which together with the break
dates (fl ...fk) minimizes the global sum of squared residuals; and 17(@) is an estimate of the variance-
covariance matrix of 8, which could be estimated by using the HAC estimator or another way, depending on
how the HAC, HR, and HE options are specified. The output supF' test statistics are scaled by ¢, the number
of regressors, to be consistent with the limiting distribution; Bai and Perron (2003b, 2006) take the same
action.

There are two versions of double maximum tests of no break against an unknown number of breaks given
some upper bound M : the UDmax F test:

UDmaxF(M) = max supk(m)
1<m<M

and the WDmaxF test:

1
WDmaxF(M,x) = max ¢a(1)
1<m<M co(m)

supF(m)
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where « is the significance level and ¢4 () is the critical value of supF (m) test given the significance level
«. Four kinds of WDmax F tests that correspond to @ = 0.100, 0.050, 0.025, and 0.010 are implemented.

The supF (I + 1|I) test of [ versus [ + 1 breaks is calculated in two ways that are asymptotically the same.
In the first calculation, the method amounts to the application of (I + 1) tests of the null hypothesis of no
structural change versus the alternative hypothesis of a single change. The test is applied to each segment that
contains the observations Tj_; to 7; (i = 1,...,1 + 1). The supF(l + 1|I) test statistics are the maximum
of these (I + 1) supF test statistics. In the second calculation, for the given [ breaks (Ty, ..., f"l), the new
break 7™™) is to minimize the global SSR:

TW) = arg min SSR(YAH, s fl; T(N))
TN)

Then,

SSR(T1,....T)) — SSR(Ty, ..., T;; T™))
SSR(T1,....T))

supF({ +1|)=(T -+ 1)q—p)

The p-value of each test is based on the simulation of the limiting distribution of that test.

Predicted Values

The AUTOREG procedure can produce two kinds of predicted values for the response series and correspond-
ing residuals and confidence limits. The residuals in both cases are computed as the actual value minus the
predicted value. In addition, when GARCH models are estimated, the AUTOREG procedure can output
predictions of the conditional error variance.

Predicting the Unconditional Mean

The first type of predicted value is obtained from only the structural part of the model, x;b. These are useful
in predicting values of new response time series, which are assumed to be described by the same model as
the current response time series. The predicted values, residuals, and upper and lower confidence limits
for the structural predictions are requested by specifying the PREDICTEDM=, RESIDUALM=, UCLM=,
or LCLM= option in the OUTPUT statement. The ALPHACLM-= option controls the confidence level for
UCLM= and LCLM=. These confidence limits are for estimation of the mean of the dependent variable, x;b,
where x; is the column vector of independent variables at observation ¢.

The predicted values are computed as
Jr =xb

and the upper and lower confidence limits as
Uy = Jr +1q)ov

lt = Yt —to)2v

2

where v* is an estimate of the variance of J; and ¢/, is the upper /2 percentage point of the ¢ distribution.

Prob(T > tg/) = /2
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where T is an observation from a ¢ distribution with ¢ degrees of freedom. The value of « can be set with the
ALPHACLM-= option. The degrees of freedom parameter, g, is taken to be the number of observations minus
the number of free parameters in the final model. For the YW estimation method, the value of v is calculated
as

v = \/szx; X'V-1X)~1x,

where 52 is the error sum of squares divided by g. For the ULS and ML methods, it is calculated as

v = 4/5%x, Wx;

where W is the k xk submatrix of (J’J)~! that corresponds to the regression parameters. For details, see the
section “Computational Methods” on page 359 earlier in this chapter.

Predicting Future Series Realizations

The other predicted values use both the structural part of the model and the predicted values of the error
process. These conditional mean values are useful in predicting future values of the current response time
series. The predicted values, residuals, and upper and lower confidence limits for future observations
conditional on past values are requested by the PREDICTED=, RESIDUAL=, UCL=, or LCL= option in the
OUTPUT statement. The ALPHACLI= option controls the confidence level for UCL= and LCL=. These
confidence limits are for the predicted value,

Vi =X;b + v

where x; is the vector of independent variables if all independent variables at time ¢ are nonmissing, and
V¢|¢—1 18 the minimum variance linear predictor of the error term, which is defined in the following recursive
way given the autoregressive model, AR(m) model, for v;:

m ~ . . ..
— > i—1PiVs—i; S§ >t orobservation s is missing

Vst = 1 Vs —Xsb 0 < s <t and observation s is nonmissing
0 s <0
where ¢;,i = 1,...,m, are the estimated AR parameters. Observation s is considered to be missing if the

dependent variable or at least one independent variable is missing. If some of the independent variables at
time ¢ are missing, the predicted y; is also missing. With the same definition of vy, the prediction method
can be easily extended to the multistep forecast of y,,4,d > 0:

Vitd = X4 b+ Vigdji—1
The prediction method is implemented through the Kalman filter.

If y; is not missing, the upper and lower confidence limits are computed as
Uy = Yt + lgj2V

it =)t — la/2V

where v, in this case, is computed as

v =./2;Vgz; + s%r
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where Vg is the variance-covariance matrix of the estimation of regression parameter j; z, is defined as

m
Zr = X + E QiXi—i|t—1

i=1

and X|; is defined in a similar way as vg);:

— Y7L @iXg—i; >t orobservation s is missing
Xglf =\ Xs 0 < s <t and observation s is nonmissing
0 s <0

The formula for computing the prediction variance v is deducted based on Baillie (1979).

The value s2r is the estimate of the conditional prediction error variance. At the start of the series, and after
missing values, r is usually greater than 1. For the computational details of r, see the section “Predicting the
Conditional Variance” on page 399. The plot of residuals and confidence limits in Example 8.4 illustrates
this behavior.

Except to adjust the degrees of freedom for the error sum of squares, the preceding formulas do not account
for the fact that the autoregressive parameters are estimated. In particular, the confidence limits are likely to
be somewhat too narrow. In large samples, this is probably not an important effect, but it might be appreciable
in small samples. For some discussion of this problem for AR(1) models, see Harvey (1981) .

At the beginning of the series (the first m observations, where m is the value of the NLAG= option) and
after missing values, these residuals do not match the residuals obtained by using OLS on the transformed
variables. This is because, in these cases, the predicted noise values must be based on less than a complete set
of past noise values and, thus, have larger variance. The GLS transformation for these observations includes
a scale factor in addition to a linear combination of past values. Put another way, the L™! matrix defined in
the section “Computational Methods” on page 359 has the value 1 along the diagonal, except for the first m
observations and after missing values.

Predicting the Conditional Variance
The GARCH process can be written as
n p
=+ (@Yt — Y Vili—j +
i=1 j=1

where 7y = 6,2 — hy and n = max(p, ¢). This representation shows that the squared residual 6,2 follows an
ARMA(n, p) process. Then for any d > 0, the conditional expectations are as follows:

n p
E(e] 419 =0+ Y (i + v)E(F g 1%) = Y viB(eta—; %)
i=1 j=1

The d-step-ahead prediction error, §; 14 = Y;+4 — Ys+d|s» has the conditional variance

d—1

V(EralV) =Y g0k a 1
j=0
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where
2 _ 2
Ora—jie = Bler g ;W)
Coefficients in the conditional d-step prediction error variance are calculated recursively using the formula

8j = —918j-1 —--- —PmEj—m

where go = land g; = 0if j < 0; ¢1, ..., ¢ are autoregressive parameters. Since the parameters are not
known, the conditional variance is computed using the estimated autoregressive parameters. The d-step-ahead
prediction error variance is simplified when there are no autoregressive terms:

2
V(1al¥y) = O¢td|t
Therefore, the one-step-ahead prediction error variance is equivalent to the conditional error variance defined
in the GARCH process:

he = E(€t2|‘1’t—1) = Uﬁt_l

The multistep forecast of conditional error variance of the EGARCH, QGARCH, TGARCH, PGARCH, and
GARCH-M models cannot be calculated using the preceding formula for the GARCH model. The following
formulas are recursively implemented to obtain the multistep forecast of conditional error variance of these
models:

* for the EGARCH(p, ¢) model:

q d—1 )4

ln(ot2+d|t) =ow+ Z ®ig(z¢4a—i) + Z len(0t2+d_j|,) + Z yiln(hiya—j)

i=d j=1 j=d
where
g(zt) = 0z¢ + |z¢| — E|z]
2=/ VI
* for the QGARCH(p, g) model:

d—1 q

Uz2+d\t = + Z i (0t2+d—i|t +Y7) + ) ailerpa—i — Vi)’
d

i=1 =

d—1 P
2
+ Z ViOiva—jie + Z Vilita—j
j=1 j=d

* for the TGARCH(p, ¢) model:

d—1 q
Olran =@ + D@+ VD07 g+ D @+ ey <oVi)el g
i=1 i=d

d—1 »
2
+ Z YiOira—jie T Z Vihivd—j
j=1 j=d



OUT= Data Set 4 401

 for the PGARCH(p, ¢) model:

d—1
g =0 + Y e+ 9™ + 0=y (62 4 i)™ /2

i=1

q
22
+ Y eill€rpa—il — Vierra—i)
i=d
d—1 4
2 A A
+ Vi@t + D0 vihtia
j=1 j=d

* for the GARCH-M model: ignoring the mean effect and directly using the formula of the corresponding
GARCH model.

If the conditional error variance is homoscedastic, the conditional prediction error variance is identical to the
unconditional prediction error variance

d—1
2 2
VEgal¥) =VEya) =02 ) &
j=0
since 0t2+ d—jlt = 02. You can compute s2r (which is the second term of the variance for the predicted

value y; explained in the section “Predicting Future Series Realizations” on page 398) by using the formula

2y d—-1 2 : : d—1
0“3 =087 and r is estimated from }

=0 =0 g? by using the estimated autoregressive parameters.

Consider the following conditional prediction error variance:

d—1 d—1
V(Eral¥) =02 g2+ > 202 — )
j=0 j=0

The second term in the preceding equation can be interpreted as the noise from using the homoscedastic
conditional variance when the errors follow the GARCH process. However, it is expected that if the GARCH
process is covariance stationary, the difference between the conditional prediction error variance and the
unconditional prediction error variance disappears as the forecast horizon d increases.

OUT= Data Set

The output SAS data set produced by the OUTPUT statement contains all the variables in the input data set
and the new variables specified by the OUTPUT statement options. See the section “OUTPUT Statement”
on page 352 earlier in this chapter for information on the output variables that can be created. The output
data set contains one observation for each observation in the input data set.

OUTEST= Data Set

The OUTEST= data set contains all the variables used in any MODEL statement. Each regressor variable
contains the estimate for the corresponding regression parameter in the corresponding model. In addition, the
OUTEST= data set contains the following variables:



402 4 Chapter 8: The AUTOREG Procedure

_AH i

_AHP_i

_AHQ_i

_AHT i

_DELTA_

_DEPVAR _
_GH_i

_HET i
INTERCEPT

_METHOD_
_MODEL_
_MSE_
_NAME_

_LAMBDA _

_LIKLHD_
_SSE_
_START_

_STATUS_

the ith order autoregressive parameter estimate. There are m such variables _A_1 through
_A_m, where m is the value of the NLAG= option.

the ith order ARCH parameter estimate, if the GARCH= option is specified. There are
g such variables _AH_1 through _AH_g, where ¢ is the value of the Q= option. The
variable _AH_O contains the estimate of w.

the estimate of the v; parameter in the PGARCH model, if a PGARCH model is specified.
There are g such variables _AHP_1 through _AHP_g, where ¢ is the value of the Q=
option.

the estimate of the ¥; parameter in the QGARCH model, if a QGARCH model is specified.
There are g such variables _AHQ_1 through _AHQ_g, where ¢ is the value of the Q=
option.

the estimate of the 1/; parameter in the TGARCH model, if a TGARCH model is specified.
There are g such variables _AHT _1 through _AHT_g, where ¢ is the value of the Q=
option.

the estimated mean parameter for the GARCH-M model if a GARCH-in-mean model is
specified

the name of the dependent variable

the ith order GARCH parameter estimate, if the GARCH= option is specified. There are p
such variables _GH_1 through _GH_p, where p is the value of the P= option.

the ith heteroscedasticity model parameter specified by the HETERO statement

the intercept estimate. INTERCEPT contains a missing value for models for which the
NOINT option is specified.

the estimation method that is specified in the METHOD= option

the label of the MODEL statement if one is given, or blank otherwise

the value of the mean square error for the model

the name of the row of covariance matrix for the parameter estimate, if the COVOUT
option is specified

the estimate of the power parameter A in the PGARCH model, if a PGARCH model is
specified.

the log-likelihood value of the GARCH model

the value of the error sum of squares

the estimated start-up value for the conditional variance when GARCH=
(STARTUP=ESTIMATE) option is specified

This variable indicates the optimization status. _STATUS_ = 0 indicates that there were
no errors during the optimization and the algorithm converged. _STATUS_ = 1 indicates
that the optimization could not improve the function value and means that the results
should be interpreted with caution. _STATUS_ = 2 indicates that the optimization failed
due to the number of iterations exceeding either the maximum default or the specified
number of iterations or the number of function calls allowed. _STATUS_ = 3 indicates
that an error occurred during the optimization process. For example, this error message
is obtained when a function or its derivatives cannot be calculated at the initial values or
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during the iteration process, when an optimization step is outside of the feasible region or
when active constraints are linearly dependent.

_STDERR_ standard error of the parameter estimate, if the COVOUT option is specified.

_TDFI_ the estimate of the inverted degrees of freedom for Student’s ¢ distribution, if DIST=T is
specified.

_THETA_ the estimate of the 6 parameter in the EGARCH model, if an EGARCH model is specified.

_TYPE_ PARM for observations containing parameter estimates, or COV for observations contain-

ing covariance matrix elements.

The OUTEST= data set contains one observation for each MODEL statement giving the parameter estimates
for that model. If the COVOUT option is specified, the OUTEST= data set includes additional observations
for each MODEL statement giving the rows of the covariance of parameter estimates matrix. For covariance
observations, the value of the _TYPE_ variable is COV, and the _NAME_ variable identifies the parameter
associated with that row of the covariance matrix.

Printed Output
The AUTOREG procedure prints the following items:

1. the name of the dependent variable
2. the ordinary least squares estimates

3. Estimates of autocorrelations, which include the estimates of the autocovariances, the autocorrelations,
and (if there is sufficient space) a graph of the autocorrelation at each LAG

4. if the PARTIAL option is specified, the partial autocorrelations

5. the preliminary MSE, which results from solving the Yule-Walker equations. This is an estimate of the
final MSE.

6. the estimates of the autoregressive parameters (Coefficient), their standard errors (Standard Error), and
the ratio of estimate to standard error (t Value)

7. the statistics of fit for the final model. These include the error sum of squares (SSE), the degrees of
freedom for error (DFE), the mean square error (MSE), the mean absolute error (MAE), the mean
absolute percentage error (MAPE), the root mean square error (Root MSE), the Schwarz information
criterion (SBC), the Hannan-Quinn information criterion (HQC), the Akaike information criterion
(AIC), the corrected Akaike information criterion (AICC), the Durbin-Watson statistic (Durbin-Watson),
the regression R? (Regress R-square), and the total R? (Total R-square). For GARCH models, the
following additional items are printed:

* the value of the log-likelihood function (Log Likelihood)
* the number of observations that are used in estimation (Observations)

¢ the unconditional variance (Uncond Var)

* the normality test statistic and its p-value (Normality Test and Pr > ChiSq)
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8. the parameter estimates for the structural model (Estimate), a standard error estimate (Standard Error),
the ratio of estimate to standard error (t Value), and an approximation to the significance probability
for the parameter being O (Approx Pr > Itl)

10.

If the NLAG= option is specified with METHOD=ULS or METHOD=ML, the regression parameter
estimates are printed again, assuming that the autoregressive parameter estimates are known. In this
case, the Standard Error and related statistics for the regression estimates will, in general, be different
from the case when they are estimated. Note that from a standpoint of estimation, Yule-Walker
and iterated Yule-Walker methods (NLAG= with METHOD=YW, ITYW) generate only one table,
assuming AR parameters are given.

If you specify the NORMAL option, the Bera-Jarque normality test statistics are printed. If you specify
the LAGDEP option, Durbin’s /# or Durbin’s ¢ is printed.

ODS Table Names

PROC AUTOREG assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are

listed in the Table 8.6.

Table 8.6 ODS Tables Produced in PROC AUTOREG

ODS Table Name Description Option

ODS Tables Created by the MODEL Statement

ClassLevels Class Levels default

FitSummary Summary of regression default

SummaryDepVarCen Summary of regression (centered de- CENTER
pendent var)

SummaryNolntercept Summary of regression (no intercept) NOINT

Y WIterSSE Yule-Walker iteration sum of squared METHOD=ITYW
error

PreMSE Preliminary MSE NLAG=

Dependent Dependent variable default

DependenceEquations Linear dependence equation

ARCHTest Tests for ARCH disturbances based ARCHTEST=
on OLS residuals

ARCHTestAR Tests for ARCH disturbances based ARCHTEST=
on residuals (with NLAG=)

BDSTest BDS test for independence BDS<=()>

RunsTest Runs test for independence RUNS<=()>

TurningPointTest Turning point test for independence ~ TP<=()>

VNRRankTest Rank version of von Neumann ratio VNRRANK<=()>
test for independence

FitSummarySCBP Fit summary of Bai and Perron’s mul- BP=

tiple structural change models
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Table 8.6 continued
ODS Table Name Description Option
BreakDatesSCBP Break dates of Bai and Perron’s mul- BP=
tiple structural change models
SupFSCBP supF tests of Bai and Perron’s multi- BP=
ple structural change models
UDmaxFSCBP UDmaxF test of Bai and Perron’s mul- BP=
tiple structural change models
WDmaxFSCBP WDmaxF tests of Bai and Perron’s BP=
multiple structural change models
SeqFSCBP supF(1+11I) tests of Bai and Perron’s BP=
multiple structural change models
ParameterEstimatesSCBP Parameter estimates of Bai and Per- BP=
ron’s multiple structural change mod-
els
ChowTest Chow test and predictive Chow test CHOW=
PCHOW=
Godfrey Godfrey’s serial correlation test GODFREY<=>
PhilPerron Phillips-Perron unit root test STATIONARITY=
(PHILIPS<=()>)
(no regressor)
PhilOul Phillips-Ouliaris cointegration test STATIONARITY=
(PHILIPS<=()>)
(has regressor)
ADF Augmented Dickey-Fuller unit root STATIONARITY=
test (ADF<=(0>) (no
regressor)
EngleGranger Engle-Granger cointegration test STATIONARITY=
(ADF<=()>) (has
regressor)
ERS ERS unit root test STATIONARITY=
(ERS<=()>)
NgPerron Ng-Perron Unit root tests STATIONARITY=
(NP=<()>)
KPSS Kwiatkowski, Phillips, Schmidt, and STATIONARITY=
Shin (KPSS) test or Shin cointegra- (KPSS<=()>)
tion test
ResetTest Ramsey’s RESET test RESET
ARParameterEstimates Estimates of autoregressive parame- NLAG=
ters
CorrGraph Estimates of autocorrelations NLAG=
BackStep Backward elimination of autoregres- BACKSTEP
sive terms
ExpAutocorr Expected autocorrelations NLAG=
IterHistory Iteration history ITPRINT
ParameterEstimates Parameter estimates default
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Table 8.6 continued

ODS Table Name Description Option

ParameterEstimatesGivenAR  Parameter estimates assuming AR pa- NLAG=,

rameters are given METHOD=
ULS | ML

Partial AutoCorr Partial autocorrelation PARTIAL

CovB Covariance of parameter estimates COVB

CorrB Correlation of parameter estimates CORRB

CholeskyFactor Cholesky root of gamma ALL

Coefficients Coefficients for first NLAG observa- COEF

tions

Gammalnverse Gamma inverse GINV

ConvergenceStatus Convergence status table default

MiscStat Durbin ¢ or Durbin &, Bera-Jarque nor- LAGDEP=;

mality test NORMAL

DWTest Durbin-Watson statistics DW=

ODS Tables Created by the RESTRICT Statement

Restrict Restriction table default

ODS Tables Created by the TEST Statement

FTest F test default,
TYPE=ALL

WaldTest Wald test TYPE=WALDIALL

LMTest LM test TYPE=LMIALL
(only  supported
with GARCH=
option)

LRTest LR test TYPE=LRIALL
(only  supported
with GARCH=
option)

ODS Graphics

Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described

in detail in Chapter 21, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and

Disabling ODS Graphics” in that chapter.

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS

Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.
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This section describes the use of ODS for creating graphics with the AUTOREG procedure.

To request these graphs, you must specify the ODS GRAPHICS statement. By default, only the residual,
predicted versus actual, and autocorrelation of residuals plots are produced. If, in addition to the ODS
GRAPHICS statement, you also specify the ALL option in either the PROC AUTOREG statement or
MODEL statement, all plots are created. For HETERO, GARCH, and AR models studentized residuals are
replaced by standardized residuals. For the autoregressive models, the conditional variance of the residuals is
computed as described in the section “Predicting Future Series Realizations” on page 398. For the GARCH
and HETERO models, residuals are assumed to have 4, conditional variance invoked by the HT= option of
the OUTPUT statement. For all these cases, the Cook’s D plot is not produced.

ODS Graph Names

PROC AUTOREG assigns a name to each graph it creates using ODS. You can use these names to reference
the graphs when using ODS. The names are listed in Table 8.7.

Table 8.7 ODS Graphics Produced in PROC AUTOREG

ODS Table Name Description Plots= Option

DiagnosticsPanel All applicable plots

ACFPlot Autocorrelation of residuals ACF

FitPlot Predicted versus actual plot FITPLOT, default

CooksD Cook’s D plot COOKSD (no NLAG=)

IACFPlot Inverse autocorrelation of residuals IACF

QQPlot Q-Q plot of residuals QQ

PACFPlot Partial autocorrelation of residuals PACF

ResidualHistogram Histogram of the residuals RESIDUALHISTOGRAM
or RESIDHISTOGRAM

ResidualPlot Residual plot RESIDUAL or RES, default

StudentResidualPlot Studentized residual plot STUDENTRESIDUAL (no
NLAG=, GARCH=, or HET-
ERO)

StandardResidualPlot Standardized residual plot STANDARDRESIDUAL

WhiteNoiseLogProbPlot Tests for white noise residuals WHITENOISE
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Examples: AUTOREG Procedure

Example 8.1: Analysis of Real Output Series

In this example, the annual real output series is analyzed over the period 1901 to 1983 (Balke and Gordon
1986, pp. 581-583). With the following DATA step, the original data are transformed using the natural
logarithm, and the differenced series DY is created for further analysis. The log of real output is plotted in
Output 8.1.1.

title 'Analysis of Real GNP';

data gnp;
date = intnx( 'year', '013janl901'd, _n -1 );
format date year4.;
input x QQ@;
y = log(x);
dy = dif(y);
t = _n;
label y = 'Real GNP'
dy = 'First Difference of Y'
t = 'Time Trend';
datalines;

137.87 139.13 146.10 144.21 155.04 172.97 175.61 161.22

. more lines

proc sgplot data=gnp noautolegend;
scatter x=date y=y;
xaxis grid values=('01janl901'd '01janl911'd '01janl921'd '01janl931l'd
'01janl941'd '01janl951'd '0Oljanl961'd '01janl971'd
'01janl981'd '01janl991'd);
run;
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Output 8.1.1 Real Output Series: 1901 — 1983

Analysis of Real GNP
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The (linear) trend-stationary process is estimated using the following form:
vt = Po + B1t + v

where

Vt = € — QP1Vi—1 — P2Vr—2

Et’\'IN(O, 05)

The preceding trend-stationary model assumes that uncertainty over future horizons is bounded since the

error term, vy, has a finite variance. The maximum likelihood AR estimates from the statements that follow
are shown in Output 8.1.2:

proc autoreg data=gnp;

model y = t / nlag=2 method=ml;
run;
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Output 8.1.2 Estimating the Linear Trend Model
Analysis of Real GNP

The AUTOREG Procedure

Maximum Likelihood Estimates

SSE 0.23954331 DFE 79
MSE 0.00303 Root MSE 0.05507
SBC -230.39355 AIC -240.06891
MAE 0.04016596 AICC -239.55609
MAPE 0.69458594 HQC -236.18189
Log Likelihood 124.034454 Regress R-Square 0.8645
Durbin-Watson 1.9935 Total R-Square 0.9947

Observations 83

Parameter Estimates

Standard Approx Variable
Variable DF Estimate Error t Value Pr > |t| Label

Intercept 1 4.8206 0.0661 72.88 <.0001
t 1 0.0302 0.001346 22.45 <.0001 Time Trend
AR1 1 -1.2041 0.1040 -11.58 <.0001
AR2 1 03748 0.1039  3.61 0.0005

Autoregressive parameters assumed given

Standard Approx Variable
Variable DF Estimate Error t Value Pr > |t| Label

Intercept 1 4.8206 0.0661 72.88 <.0001
t 1 0.0302 0.001346 22.45 <.0001 Time Trend

Nelson and Plosser (1982) failed to reject the hypothesis that macroeconomic time series are nonstationary
and have no tendency to return to a trend line. In this context, the simple random walk process can be used as
an alternative process:

Yt = Bo + yr—1 + vz
where v; = €; and yo = 0. In general, the difference-stationary process is written as
P(L)(A = L)y: = Pop(1) + (L)

where L is the lag operator. You can observe that the class of a difference-stationary process should have at
least one unit root in the AR polynomial ¢(L)(1 — L).
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The Dickey-Fuller procedure is used to test the null hypothesis that the series has a unit root in the AR
polynomial. Consider the following equation for the augmented Dickey-Fuller test:

m
Ay = Bo+ 8t + Bryi—1 + Y vidyi—i + &
i=1

where A = 1 — L. The test statistic 7, is the usual ¢ ratio for the parameter estimate ,él, but the 7, does not
follow a ¢ distribution.
The following code performs the augmented Dickey-Fuller test with 1 = 3 and we are interesting in the test

results in the linear time trend case since the previous plot reveals there is a linear trend.

proc autoreg data = gnp;
model y = / stationarity =(adf =3);
run;

The augmented Dickey-Fuller test indicates that the output series may have a difference-stationary process.
The statistic Tau with linear time trend has a value of -2.6190 and its p-value is 0.2732. The statistic Rho has
a p-value of 0.0817 which also indicates the null of unit root is accepted at the 5% level. (See Output 8.1.3.)

Output 8.1.3 Augmented Dickey-Fuller Test Results
Analysis of Real GNP

The AUTOREG Procedure

Augmented Dickey-Fuller Unit Root Tests

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr>F
Zero Mean 3 03827 0.7732 3.3342 0.9997

Single Mean 3 -0.1674  0.9465 -0.2046  0.9326 5.7521 0.0211
Trend 3 -18.0246  0.0817 -2.6190  0.2732 3.4472 0.4957

The AR(1) model for the differenced series DY is estimated using the maximum likelihood method for the
period 1902 to 1983. The difference-stationary process is written

Ayr = Bo + vr

Vg = € — @1Vr—1
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The estimated value of ¢ is —0.297 and that of B¢ is 0.0293. All estimated values are statistically significant.
The PROC step follows:

proc autoreg data=gnp;
model dy = / nlag=1 method=ml;
run;

The printed output produced by the PROC step is shown in Output 8.1.4.

Output 8.1.4 Estimating the Differenced Series with AR(1) Error
Analysis of Real GNP

The AUTOREG Procedure

Maximum Likelihood Estimates

SSE 0.27107673 DFE 80
MSE 0.00339 Root MSE 0.05821
SBC -226.77848 AIC -231.59192
MAE 0.04333026 AICC -231.44002
MAPE 153.637587 HQC -229.65939
Log Likelihood 117.795958 Regress R-Square 0.0000
Durbin-Watson 1.9268 Total R-Square 0.0900

Observations 82

Parameter Estimates

Standard Approx
Variable DF Estimate Error t Value Pr> |t

Intercept 1 0.0293 0.009093  3.22 0.0018
AR1 1 -0.2967 0.1067 -2.78 0.0067

Autoregressive parameters assumed given

Standard Approx
Variable DF Estimate Error t Value Pr > |t

Intercept 1 0.0293 0.009093 3.22 0.0018
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Example 8.2: Comparing Estimates and Models

In this example, the Grunfeld series are estimated using different estimation methods. Refer to Maddala
(1977) for details of the Grunfeld investment data set. For comparison, the Yule-Walker method, ULS
method, and maximum likelihood method estimates are shown. With the DWPROB option, the p-value of
the Durbin-Watson statistic is printed. The Durbin-Watson test indicates the positive autocorrelation of the
regression residuals. The DATA and PROC steps follow:

title 'Grunfeld''s Investment Models Fit with Autoregressive Errors';
data grunfeld;
input year gei gef gec;

label gei

gec

gef
datalines;

1935 33.1

'Gross investment GE'
'Lagged Capital Stock GE'
'Lagged Value of GE shares';

1170.6 97.8

. more lines

proc autoreg
model gei
model gei
model gei
run;

data=grunfeld;

gef gec / nlag=1 dwprob;

= gef gec / nlag=1 method=uls;

gef gec / nlag=1l method=ml;

The printed output produced by each of the MODEL statements is shown in Output 8.2.1 through Output 8.2.4.



414 4 Chapter 8: The AUTOREG Procedure

Output 8.2.1 OLS Analysis of Residuals
Grunfeld's Investment Models Fit with Autoregressive Errors

The AUTOREG Procedure

Dependent Variable gei
Gross investment GE

Ordinary Least Squares Estimates

SSE 13216.5878 DFE 17
MSE 777.44634 Root MSE 27.88272
SBC 195.614652 AIC 192.627455
MAE 19.9433255 AICC 194.127455
MAPE 23.2047973 HQC 193.210587
Durbin-Watson 1.0721 Regress R-Square 0.7053

Total R-Square 0.7053

Parameter Estimates

Standard Approx
Variable DF Estimate Error t Value Pr > |t| Variable Label

Intercept 1 -9.9563 31.3742 -0.32 0.7548
gef 1 0.0266 0.0156 1.71 0.1063 Lagged Value of GE shares
gec 1 01517 0.0257 590 <.0001 Lagged Capital Stock GE

Estimates of Autocorrelations
Lag Covariance Correlation -1 9 8 76 54 32 101234567891
0 660.8 1.000000 | [ ok kR K KKK |
1 304.6 0.460867 | | %k ok ok ok k k% |

Preliminary MSE 520.5

Output 8.2.2 Regression Results Using Default Yule-Walker Method

Estimates of Autoregressive
Parameters

Standard
Lag Coefficient Error t Value

1 -0.460867 0.221867 -2.08

Yule-Walker Estimates

SSE 10238.2951 DFE 16
MSE 639.89344 Root MSE 25.29612
SBC 193.742396 AIC 189.759467
MAE 18.0715195 AICC 192.426133
MAPE 21.0772644 HQC 190.536976
Durbin-Watson 1.3321 Regress R-Square 0.5717

Total R-Square 0.7717
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Output 8.2.2 continued

Parameter Estimates

Standard Approx
Variable DF Estimate Error t Value Pr > |t| Variable Label

Intercept 1 -18.2318 33.2511 -0.55 0.5911
gef 1 0.0332 0.0158 2.10 0.0523 Lagged Value of GE shares
gec 1 01392 0.0383 3.63 0.0022 Lagged Capital Stock GE

Output 8.2.3 Regression Results Using Unconditional Least Squares Method

Estimates of Autoregressive
Parameters

Standard
Lag Coefficient Error t Value

1 -0.460867 0.221867 -2.08

Algorithm converged.

Unconditional Least Squares Estimates

SSE 10220.8455 DFE 16
MSE 638.80284 Root MSE 25.27455
SBC 193.756692 AIC 189.773763
MAE 18.1317764 AICC 192.44043
MAPE 21.149176 HQC 190.551273
Durbin-Watson 1.3523 Regress R-Square 0.5511

Total R-Square 0.7721

Parameter Estimates

Standard Approx
Variable DF Estimate Error t Value Pr > |t|] Variable Label

Intercept 1 -18.6582 34.8101 -0.54 0.5993

gef 1 00339 0.0179 1.89 0.0769 Lagged Value of GE shares
gec 1 0.1369 0.0449 3.05 0.0076 Lagged Capital Stock GE
AR1 1 -0499%  0.2592 -1.93 0.0718

Autoregressive parameters assumed given

Standard Approx
Variable DF Estimate Error t Value Pr > |t| Variable Label

Intercept 1 -18.6582 33.7567 -0.55 0.5881
gef 1 0.0339 0.0159 2.13 0.0486 Lagged Value of GE shares
gec 1 0.1369 0.0404  3.39 0.0037 Lagged Capital Stock GE
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Output 8.2.4 Regression Results Using Maximum Likelihood Method

Estimates of Autoregressive
Parameters

Standard
Lag Coefficient Error t Value

1 -0.460867 0.221867 -2.08
Algorithm converged.

Maximum Likelihood Estimates

SSE 10229.2303 DFE 16
MSE 639.32689 Root MSE 25.28491
SBC 193.738877 AIC 189.755947
MAE 18.0892426 AICC 192.422614
MAPE 21.0978407 HQC 190.533457
Log Likelihood -90.877974 Regress R-Square 0.5656
Durbin-Watson 1.3385 Total R-Square 0.7719

Observations 20

Parameter Estimates

Standard Approx
Variable DF Estimate Error t Value Pr > |t| Variable Label

Intercept 1 -183751 34.5941 -0.53 0.6026

gef 1 0.0334 0.0179 1.87 0.0799 Lagged Value of GE shares
gec 1 0.1385 0.0428 3.23 0.0052 Lagged Capital Stock GE
AR1 1 -0.4728 0.2582 -1.83 0.0858

Autoregressive parameters assumed given

Standard Approx
Variable DF Estimate Error t Value Pr > |t| Variable Label

Intercept 1 -183751 33.3931 -0.55 0.5897
gef 1 0.0334 00158 211 0.0512 Lagged Value of GE shares
gec 1 0.1385 0.0389 3.56 0.0026 Lagged Capital Stock GE
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Example 8.3: Lack-of-Fit Study

Many time series exhibit high positive autocorrelation, having the smooth appearance of a random walk. This
behavior can be explained by the partial adjustment and adaptive expectation hypotheses.

Short-term forecasting applications often use autoregressive models because these models absorb the behavior
of this kind of data. In the case of a first-order AR process where the autoregressive parameter is exactly 1 (a
random walk ), the best prediction of the future is the immediate past.

PROC AUTOREG can often greatly improve the fit of models, not only by adding additional parameters but
also by capturing the random walk tendencies. Thus, PROC AUTOREG can be expected to provide good
short-term forecast predictions.

However, good forecasts do not necessarily mean that your structural model contributes anything worthwhile
to the fit. In the following example, random noise is fit to part of a sine wave. Notice that the structural model
does not fit at all, but the autoregressive process does quite well and is very nearly a first difference (AR(1) =
—.976). The DATA step, PROC AUTOREG step, and PROC SGPLOT step follow:

titlel 'Lack of Fit Study';
title2 'Fitting White Noise Plus Autoregressive Errors to a Sine Wave';

data a;
pi=3.14159;
do time = 1 to 75;
if time > 75 then y = .;
else y = sin( pi * ( time / 50 ) );
x = ranuni( 1234567 );
output;
end;
run;

proc autoreg data=a plots;
model y = x / nlag=l;
output out=b p=pred pm=xbeta;
run;

proc sgplot data=b;
scatter y=y x=time / markerattrs=(color=black);
series y=pred x=time / lineattrs=(color=blue);
series y=xbeta x=time / lineattrs=(color=red);
run;

The printed output produced by PROC AUTOREG is shown in Output 8.3.1 and Output 8.3.2. Plots of
observed and predicted values are shown in Output 8.3.3 and Output 8.3.4. Note: the plot Output 8.3.3 can
be viewed in the Autoreg.Model.FitDiagnosticPlots category by selecting View» Results.
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Output 8.3.1 Results of OLS Analysis: No Autoregressive Model Fit

Lack of Fit Study
Fitting White Noise Plus Autoregressive Errors to a Sine Wave

The AUTOREG Procedure

Dependent Variable y

Ordinary Least Squares Estimates

SSE 34.8061005 DFE 73
MSE 0.47680 Root MSE 0.69050
SBC 163.898598 AIC 159.263622
MAE 0.59112447 AICC 159.430289
MAPE 117894.045 HQC 161.114317
Durbin-Watson 0.0057 Regress R-Square 0.0008

Total R-Square 0.0008

Parameter Estimates

Standard Approx
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 02383 0.1584 150 0.1367
X 1 -0.0665 0.2771 -0.24 0.8109

Estimates of Autocorrelations
Lag Covariance Correlation -1 9 8 76 5432 101234567891
0 0.4641 1.000000 | [k k ko k kK kK kKK |
1 0.4531  0.976386 | [ ¢k ko ok ok ok kK ok kK ok kK |

Preliminary MSE 0.0217

Output 8.3.2 Regression Results with AR(1) Error Correction

Estimates of Autoregressive
Parameters

Standard
Lag Coefficient Error t Value

1 -0.976386 0.025460 -38.35

Yule-Walker Estimates

SSE 0.18304264 DFE 72
MSE 0.00254 Root MSE 0.05042
SBC -222.30643 AIC -229.2589
MAE 0.04551667 AICC -228.92087
MAPE 29145.3526 HQC -226.48285
Durbin-Watson 0.0942 Regress R-Square 0.0001

Total R-Square 0.9947
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Output 8.3.2 continued

Parameter Estimates

Standard Approx

Variable DF Estimate Error t Value Pr > |t

Intercept 1
1 -0.001219 0.0141  -0.09 0.9315

X

-0.1473 0.1702 -0.87 0.3898
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.05~
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Output 8.3.4 Plot of Autoregressive Prediction

Lack of Fit Study
Fitting White Noise Plus Autoregressive Errors to a Sine Wave
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Example 8.4: Missing Values

In this example, a pure autoregressive error model with no regressors is used to generate 50 values of a time
series. Approximately 15% of the values are randomly chosen and set to missing. The following statements
generate the data:

title 'Simulated Time Series with Roots:';
title2 ' (X-1.25) (X*%x4-1.25)"';
title3 'With 15% Missing Values';
data ar;
do i=1 to 550;
e = rannor (12345);

n = sum( e, .8*nl, .8%n4, —-.64%n5 ); /* ar process */
y =n;
if ranuni(12345) > .85 then y = .; /* 15% missing */
n5=n4; n4d4=n3; n3=n2; n2=nl; nl=n; /* set lags */
if i>500 then output;

end;

run;

The model is estimated using maximum likelihood, and the residuals are plotted with 99% confidence limits.
The PARTIAL option prints the partial autocorrelations. The following statements fit the model:

proc autoreg data=ar partial;

model y = / nlag=(1 4 5) method=ml;

output out=a predicted=p residual=r ucl=u lcl=1 alphacli=.01;
run;

The printed output produced by the AUTOREG procedure is shown in Output 8.4.1 and Output 8.4.2.
Note: the plot Output 8.4.2 can be viewed in the Autoreg.Model.FitDiagnosticPlots category by selecting
ViewpResults.
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Output 8.4.1 Autocorrelation-Corrected Regression Results

Simulated Time Series with Roots:

(X-1.25)(X**4-1.25)
With 15% Missing Values

The AUTOREG Procedure

Dependent Variable y

Ordinary Least Squares Estimates

SSE 182.972379 DFE

MSE 4.57431 Root MSE

SBC 181.39282 AIC

MAE 1.80469152 AICC

MAPE 270.104379 HQC
Durbin-Watson 1.3962 Regress R-Square

Total R-Square

Parameter Estimates
Standard

40

2.13876
179.679248
179.781813
180.303237
0.0000
0.0000

Approx

Variable DF Estimate Error t Value Pr > |t|
Intercept 1 -2.2387 0.3340 -6.70 <.0001

Estimates of Autocorrelations

Lag Covariance Correlation -1 9 8 76 54 32 101234567891

0 4.4627  1.000000
1.4241 0.319109

|
|
2 1.6505  0.369829 |
3 0.6808  0.152551 |
4 2.9167 0.653556 |
5 -0.3816  -0.085519 | *% |
Partial
Autocorrelations
1 0.319109
4 0.619288
5 -0.821179

Preliminary MSE 0.7609

Estimates of Autoregressive
Parameters

Standard
Lag Coefficient Error t Value

1 -0.733182 0.089966 -8.15
4 -0.803754 0.071849 -11.19
5 0821179 0.093818  8.75

|******
|*******
|***

|*************

|********************|



SSE
MSE
SBC
MAE

Expected
Autocorrelations

Lag Autocorr
0 1.0000
1 04204
2 0.2480
3 03160
4 0.6903
5 0.0228

Algorithm converged.
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Maximum Likelihood Estimates
48.4396756 DFE
1.30918 Root MSE
146.879013 AIC
0.88786192 AICC

MAPE

Log Likelihood
Durbin-Watson

141.377721 HQC
-66.012362 Regress R-Square 0.0000
2.9457 Total R-Square 0.7353

Observations

Parameter Estimates

Variable DF Estimate

Intercept
AR1
AR4
AR5

37

1.14419
140.024725
141.135836
142.520679

41

Standard Approx
Error t Value Pr > |t
1 -2.2370 0.5239 -4.27 0.0001
1 -0.6201 0.1129 -5.49 <.0001
1 -0.7237 0.0914 -7.92 <.0001
1 06550 0.1202 5.45 <.0001
Expected
Autocorrelations
Lag Autocorr
0 1.0000
1 04204
2 0.2423
3 0.2958
4 0.6318
5 0.0411

Autoregressive parameters assumed given

Variable DF Estimate

Intercept

1 -2.2370

Standard

Approx

Error tValue Pr> |t

0.5225

-4.28 0.0001
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Standardized Residual

White Noise Probabilities

Output 8.4.2 Diagnostic Plots

Fit Diagnostics fory

2 o] 5 30
25 zh\
! 20
0 €
(0]
0 > e 15 —
g
I8 10
-1 -5
é 5
-2 0
0 10 20 30 40 50 0 10 20 30 40 50 -36 -2 0412 28
Observation Observation Residuals
1.0 1.0
.001 0.5 0.5
w L
S 00 < oo W
< o
.05
-0.5 -0.5
1.0 _u_ 1.0 1.0
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Lag Lag Lag

Observations 41 MSE 1.30918 Model DF 1

The following statements plot the residuals and confidence limits:

data reshapel;
set a;
miss = .;
if r=. then do;
miss = p;
P= .
end;
run;

title 'Predicted Values and Confidence Limits';

proc sgplot data=reshapel NOAUTOLEGEND;

band x=i upper=u lower=l;

scatter y=miss x=i/ MARKERATTRS =(symbol=x color=red);

series y=p x=i/markers MARKERATTRS =(color=blue) lineattrs=(color=blue);
run;

The plot of the predicted values and the upper and lower confidence limits is shown in Output 8.4.3. Note
that the confidence interval is wider at the beginning of the series (when there are no past noise values to use
in the forecast equation) and after missing values where, again, there is an incomplete set of past residuals.
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Output 8.4.3 Plot of Predicted Values and Confidence Interval

Predicted Values and Confidence Limits

miss

-10
500 510 520 530 540 550

Example 8.5: Money Demand Model

This example estimates the log-log money demand equation by using the maximum likelihood method. The
money demand model contains four explanatory variables. The lagged nominal money stock M1 is divided
by the current price level GDF to calculate a new variable M1CP since the money stock is assumed to follow
the partial adjustment process. The variable M1CP is then used to estimate the coefficient of adjustment. All
variables are transformed using the natural logarithm with a DATA step. Refer to Balke and Gordon (1986)
for a data description.

The first eight observations are printed using the PRINT procedure and are shown in Output 8.5.1. Note that
the first observation of the variables M1CP and INFR are missing. Therefore, the money demand equation is
estimated for the period 1968:2 to 1983:4 since PROC AUTOREG ignores the first missing observation. The
DATA step that follows generates the transformed variables.
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data money;

date = intnx( 'gqtr', '0l1janl968'd, _n_-1 );

format date yyqcé6.;
input ml gnp gdf ycb @Q@;
m = log( 100 * ml / gdf );

mlcp = log( 100 * lag(ml) / gdf );

y = log( gnp );
intr = log( ycb );

infr = 100 * log( gdf / lag(gdf) );

label m = 'Real Money Stock (M1)'
mlcp = 'Lagged M1l/Current GDF'
y = 'Real GNP'
intr = 'Yield on Corporate Bonds'
infr = 'Rate of Prices Changes';
datalines;

187.15 1036.22 81.18 6.84

more lines

Output 8.5.1 Money Demand Data Series — First 8 Observations

Predicted Values and Confidence Limits

Obs date m1 gnp
1968:1 187.15 1036.22
1968:2 190.63 1056.02
1968:3 194.30 1068.72
1968:4 198.55 1071.28
1969:1 201.73 1084.15
1969:2 203.18 1088.73
1969:3 204.18 1091.90
1969:4 206.10 1085.53

0 N O Ul A WN =

The money demand equation is first estimated using OLS. The DW=4 option produces generalized Durbin-
Watson statistics up to the fourth order. Their exact marginal probabilities (p-values) are also calculated with
the DWPROB option. The Durbin-Watson test indicates positive first-order autocorrelation at, say, the 10%
confidence level. You can use the Durbin-Watson table, which is available only for 1% and 5% significance
points. The relevant upper (dy) and lower (dz,) bounds are dy = 1.731 and dj, = 1.471, respectively, at
5% significance level. However, the bounds test is inconvenient, since sometimes you may get the statistic in
the inconclusive region while the interval between the upper and lower bounds becomes smaller with the

gdf ycb

81.18
82.12
82.80
84.04
84.97
86.10
87.49
88.62

6.84
6.97
6.98
6.84
7.32
7.54
7.70
8.22

increasing sample size. The PROC step follows:

m micp

5.44041
5.44732
5.45815
5.46492
5.46980
5.46375
5.45265
5.44917

y

. 6.94333

5.42890
5.43908
5.44328
5.45391
5.45659
5.44774
5.43981

title 'Partial Adjustment Money Demand Equation';
title2 'Quarterly Data - 1968:2 to 1983:4';

proc autoreg data=money outest=est covout;
model m = mlcp y intr infr / dw=4 dwprob;

run;

6.96226
6.97422
6.97661
6.98855
6.99277
6.99567
6.98982

intr
1.92279
1.94162
1.94305
1.92279
1.99061
2.02022
2.04122
2.10657

infr

1.15127
0.82465
1.48648
1.10054
1.32112
1.60151
1.28331
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Output 8.5.2 OLS Estimation of the Partial Adjustment Money Demand Equation

Partial Adjustment Money Demand Equation
Quarterly Data - 1968:2 to 1983:4

The AUTOREG Procedure

Dependent Variable m
Real Money Stock (M1)

Ordinary Least Squares Estimates

SSE 0.00271902 DFE 58
MSE 0.0000469 Root MSE 0.00685
SBC -433.68709 AIC -444.40276
MAE 0.00483389 AICC -443.35013
MAPE 0.08888324 HQC -440.18824

Regress R-Square 0.9546

Total R-Square 0.9546

Durbin-Watson Statistics
Order DW Pr<DW Pr>DW
1 17355 0.0607 0.9393
2 21058 0.5519 0.4481
3 20286 0.5002 0.4998
4 22835 0.8830 0.1120

NOTE: Pr<DW is the p-value for testing positive autocorrelation, and Pr>DW is the p-value for
testing negative autocorrelation.

Parameter Estimates

Standard Approx
Variable DF Estimate Error t Value Pr > |t| Variable Label

Intercept 1 0.3084  0.2359 131 0.1963

micp 1 0.8952 0.0439 20.38 <.0001 Lagged M1/Current GDF
y 1 0.0476  0.0122  3.89 0.0003 Real GNP
intr 1 -0.0238 0.007933 -3.00 0.0040 Yield on Corporate Bonds

infr 1 -0.005646 0.001584 -3.56 0.0007 Rate of Prices Changes
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The autoregressive model is estimated using the maximum likelihood method. Though the Durbin-Watson
test statistic is calculated after correcting the autocorrelation, it should be used with care since the test based
on this statistic is not justified theoretically. The PROC step follows:

proc autoreg data=money;
model m = mlcp y intr infr / nlag=1l] method=ml maxit=50;
output out=a p=p pm=pm r=r rm=rm ucl=ucl lcl=lcl
uclm=uclm lclm=lclm;
run;

proc print data=a(obs=8);
var p pm r rm ucl lcl uclm lclm;
run;

A difference is shown between the OLS estimates in Output 8.5.2 and the AR(1)-ML estimates in Output 8.5.3.
The estimated autocorrelation coefficient is significantly negative (—0.88345). Note that the negative
coefficient of AR(1) should be interpreted as a positive autocorrelation.

Two predicted values are produced: predicted values computed for the structural model and predicted values
computed for the full model. The full model includes both the structural and error-process parts. The
predicted values and residuals are stored in the output data set A, as are the upper and lower 95% confidence
limits for the predicted values. Part of the data set A is shown in Output 8.5.4. The first observation is missing
since the explanatory variables, M1CP and INFR, are missing for the corresponding observation.

Output 8.5.3 Estimated Partial Adjustment Money Demand Equation
Partial Adjustment Money Demand Equation
Quarterly Data - 1968:2 to 1983:4
The AUTOREG Procedure

Estimates of Autoregressive
Parameters

Standard
Lag Coefficient Error t Value

1 -0.126273 0.131393 -0.96
Algorithm converged.

Maximum Likelihood Estimates

SSE 0.00226719 DFE 57
MSE 0.0000398 Root MSE 0.00631
SBC -439.47665 AIC -452.33545
MAE 0.00506044 AICC -450.83545
MAPE 0.09302277 HQC -447.27802
Log Likelihood 232.167727 Regress R-Square 0.6954
Durbin-Watson 2.1778 Total R-Square 0.9621

Observations 63
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Output 8.5.3 continued

Parameter Estimates

Standard Approx
Variable DF Estimate Error t Value Pr > |t| Variable Label

Intercept 1 2.4121 0.4880 494 <.0001

micp 1 0.4086 0.0908 450 <.0001 Lagged M1/Current GDF
y 1 0.1509  0.0411 3.67 0.0005 Real GNP

intr 1 -0.1101 0.0159 -6.92 <.0001 Yield on Corporate Bonds
infr 1 -0.006348 0.001834 -3.46 0.0010 Rate of Prices Changes
AR1 1 -0.8835 0.0686 -12.89 <.0001

Autoregressive parameters assumed given

Standard Approx
Variable DF Estimate Error t Value Pr > |t| Variable Label

Intercept 1 24121 0.4685 5.15 <.0001

micp 1 0.4086 0.0840 4.87 <.0001 Lagged M1/Current GDF
y 1 0.1509  0.0402  3.75 0.0004 Real GNP

intr 1 -0.1101 0.0155 -7.08 <.0001 Yield on Corporate Bonds
infr 1 -0.006348 0.001828 -3.47 0.0010 Rate of Prices Changes

Output 8.5.4 Partial List of the Predicted Values

Partial Adjustment Money Demand Equation
Quarterly Data - 1968:2 to 1983:4

Obs p pm r rm ucl Icl ucim Icim

5.45962 5.45962 -.005763043 -0.012301 5.49319 5.42606 5.47962 5.43962
5.45663 5.46750 0.001511258 -0.009356 5.46954 5.44373 5.48700 5.44800
5.45934 5.46761 0.005574104 -0.002691 5.47243 5.44626 5.48723 5.44799
5.46636 5.46874 0.003442075 0.001064 5.47944 5.45328 5.48757 5.44991
5.46675 5.46581 -.002994443 -0.002054 5.47959 5.45390 5.48444 5.44718
5.45672 5.45854 -.004074196 -0.005889 5.46956 5.44388 5.47667 5.44040
5.44404 5.44924 0.005136019 -0.000066 5.45704 5.43103 5.46726 5.43122

0 N O U1 A WN =2
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Example 8.6: Estimation of ARCH(2) Process

Stock returns show a tendency for small changes to be followed by small changes while large changes are
followed by large changes. The plot of daily price changes of IBM common stock (Box and Jenkins 1976,
p.- 527) is shown in Output 8.6.1. The time series look serially uncorrelated, but the plot makes us skeptical
of their independence.

With the following DATA step, the stock (capital) returns are computed from the closing prices. To forecast
the conditional variance, an additional 46 observations with missing values are generated.

title 'IBM Stock Returns (daily)';
title2 '29junl959 - 303junl960';

data ibm;
infile datalines eof=last;
input x QQ@;
r = dif( log( x ) );
time = _n -1;
output;
return;
last:
do i =1 to 46;
r=.;
time + 1;
output;
end;
return;
datalines;
445 448 450 447 451 453 454 454 459 440 446 443 443 440

. more lines

proc sgplot data=ibm;
series y=r x=time/lineattrs=(color=blue);
refline 0/ axis = y LINEATTRS = (pattern=ShortDash);
run;
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Output 8.6.1 IBM Stock Returns: Daily

IBM Stock Returns (daily)
29jun1959 - 30jun1960

0.04
0.02
a3l ) T e
-0.02
-0.04
0 50 100 150 200 250 300
time

The simple ARCH(2) model is estimated using the AUTOREG procedure. The MODEL statement option
GARCH=(Q=2) specifies the ARCH(2) model. The OUTPUT statement with the CEV= option produces the
conditional variances V. The conditional variance and its forecast are calculated using parameter estimates:

~ ) )
hy = &+ a6, + Q€5

2
E(Et2+d|qjt) =0+ Z&iE(Etz+d_i|‘I't)
i=1
where d > 1. This model can be estimated as follows:

proc autoreg data=ibm maxit=50;
model r = / noint garch=(g=2);
output out=a cev=v;
run;
The parameter estimates for w, @1, and ap are 0.00011, 0.04136, and 0.06976, respectively. The normality
test indicates that the conditional normal distribution may not fully explain the leptokurtosis in the stock
returns (Bollerslev 1987).

The ARCH model estimates are shown in Output 8.6.2, and conditional variances are also shown in Out-
put 8.6.3. The code that generates Output 8.6.3 is shown below.
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data b; set a;
length type $ 8.;

if r #= . then do;

type = 'ESTIMATE'; output; end;
else do;

type = 'FORECAST'; output; end;

run;
proc sgplot data=b;

series x=time y=v/group=type;

refline 254/ axis = x LINEATTRS = (pattern=ShortDash);
run;

Output 8.6.2 ARCH(2) Estimation Results

IBM Stock Returns (daily)
29jun1959 - 30jun1960

The AUTOREG Procedure

Dependent Variable r

Ordinary Least Squares Estimates

SSE 0.03214307 DFE 254
MSE 0.0001265 Root MSE 0.01125
SBC -1558.802 AIC -1558.802
MAE 0.00814086 AICC -1558.802
MAPE 100.378566 HQC -1558.802
Durbin-Watson 2.1377 Regress R-Square 0.0000

Total R-Square 0.0000

NOTE: No intercept term is used.
R-squares are redefined.

Algorithm converged.

GARCH Estimates

SSE 0.03214307 Observations 254
MSE 0.0001265 Uncond Var 0.00012632
Log Likelihood 781.017441 Total R-Square 0.0000
SBC -1545.4229 AIC -1556.0349
MAE 0.00805675 AICC -1555.9389
MAPE 100 HQC -1551.7658

Normality Test 105.8587

Pr > ChiSq <.0001

NOTE: No intercept term is used.
R-squares are redefined.

Parameter Estimates

Standard Approx
Variable DF Estimate Error t Value Pr> |t

ARCHO 1 0.000112 7.6059E-6 14.76 <.0001
ARCH1 1 0.0414 0.0514  0.81 0.4208
ARCH2 1 0.0698 0.0434 1.61 0.1082
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Output 8.6.3 Conditional Variance for IBM Stock Prices

IBM Stock Returns (daily)
29jun1959 - 30jun1960

0.00030
0.00025
>
0.00020
0.00015
0.00010
0 50 100 150 200 250 300
time
type FORECAST ESTIMATE

Example 8.7: Estimation of GARCH-Type Models

This example extends Example 8.6 to include more volatility models and to perform model selection and
diagnostics.

Following is the data of daily IBM stock prices for the long period from 1962 to 2009.

data ibm_long;
infile datalines;
format date MMDDYYI10.;
input date:MMDDYY10. price_ibm;
r = 100xdif( log( price_ibm ) );

datalines;

01/02/1962 2.68
01/03/1962 2.7
01/04/1962 2.67
01/05/1962 2.62
01/08/1962 2.57

. more lines ...
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08/12/2009 119.29

4

The time series of IBM returns is depicted graphically in Output 8.7.1.

Output 8.7.1 IBM Stock Returns: Daily

IBM Stock Returns (daily)
02jan1962 - 12aug2009

10

-10

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
date
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The following statements perform estimation of different kinds of GARCH-type models. First, ODS listing
output that contains fit summary tables for each single model is captured by using an ODS OUTPUT
statement with the appropriate ODS table name assigned to a new SAS data set. Along with these new data
sets, another one that contains parameter estimates is created by using the OUTEST= option in AUTOREG
statement.

/* Capturing ODS tables into SAS data sets */

ods output
ods output
ods output
ods output
ods output
ods output
ods output
ods output
ods output
ods output

ods output

/* Estimating multiple GARCH-type models

Autoreg.ar_1l.FinalModel .FitSummary

=fitsum ar 1;
Autoreg.arch_2.FinalModel.Results.FitSummary
=fitsum_arch_ 2;
Autoreg.garch_1_1.FinalModel.Results.FitSummary
=fitsum_garch_ 1_1;
Autoreg.st_garch_1_1.FinalModel.Results.FitSummary
=fitsum st _garch_1_1;
Autoreg.ar_1l_garch_1_1.FinalModel.Results.FitSummary
=fitsum_ar 1 garch_1_1;
Autoreg.igarch_1_1.FinalModel.Results.FitSummary
=fitsum_igarch 1_1;
Autoreg.garchm_1_1.FinalModel
=fitsum garchm 1_1;
Autoreg.egarch_1_1.FinalModel
=fitsum_egarch_1_1;
Autoreg.qggarch_1_1.FinalModel
=fitsum _qggarch 1_1;
Autoreg.tgarch_1_1.FinalModel
=fitsum tgarch_1_1;
Autoreg.pgarch_1_1.FinalModel
=fitsum_pgarch 1_1;

.Results.FitSummary

.Results.FitSummary

.Results.FitSummary

.Results.FitSummary

.Results.FitSummary

*/

title "GARCH family";
proc autoreg data=ibm_long outest=garch_family;

run,

ar_1 model r = / noint nlag=l1 method=ml;

arch_2 model r = / noint garch=(g=2);

garch_1_1 model r = / noint garch=(p=1,q=1);

st_garch 1 1 model r = / noint garch=(p=1,q=1,type=stationary);
ar 1 garch_1_1 : model r = / noint nlag=1l garch=(p=1,g9=1);
igarch 1 1 : model r = / noint garch=(p=1,g=1, type=integ, noint);
egarch_1_1 model r = / noint garch=(p=1,g=1, type=egarch);
garchm_1_1 model r = / noint garch=(p=1,gq=1,mean=log);
ggarch_1_1 model r = / noint garch=(p=1,gq=1, type=qgarch);
tgarch 1 1 model r = / noint garch=(p=1,gq=1, type=tgarch);
pgarch 1 1 model r = / noint garch=(p=1, q=1, type=pgarch);

’
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The following statements print partial contents of the data set GARCH_FAMILY. The columns of interest are
explicitly specified in the VAR statement.

/* Printing summary table of parameter estimates x*/
title "Parameter Estimates for Different Models";
proc print data=garch_family;
var _MODEL_ _A 1 _AH O _AH 1 _AH 2
_GH_1 _AHQ 1 _AHT 1 _AHP_1 _THETA _L1LAMBDA__DELTA_;
run;

These statements produce the results shown in Output 8.7.2.

Output 8.7.2 GARCH-Family Estimation Results

Parameter Estimates for Different Models

Obs _MODEL _ A1 AHO AH1 AH2 GH_1 _AHQ 1 _AHT 1 _AHP_1
1 ar_1 0.017112 . .
2 arch 2 . 1.60288 0.23235 0.21407
3 garch 1.1 . 0.02730 0.06984 . 0.92294
4 st garch_1 1 . 0.02831 0.06913 . 0.92260
5 ar_1_garch_1_1 -0.005995 0.02734 0.06994 . 0.92282
6 igarch_1_1 . . 0.00000 . 1.00000
7 egarch 1 1 . 0.01541 0.12882 . 0.98914
8 garchm_1_1 . 0.02897 0.07139 . 0.92079 .
9 qggarch_1_1 . 0.00120 0.05792 . 0.93458 0.66461
10 tgarch_1_1 . 0.02706 0.02966 . 0.92765 . 0.074815
11 pgarch 1 1 . 0.01623 0.06724 . 0.93952 . . 0.43445

Obs _THETA_ _LAMBDA__DELTA_
1

-0.41706 .
. 0.094773

W 0 N OO U A WN

=y
o

0.53625

-
-

The table shown in Output 8.7.2 is convenient for reporting the estimation result of multiple models and their
comparison.

The following statements merge multiple tables that contain fit statistics for each estimated model, leaving
only columns of interest, and rename them.

/* Merging ODS output tables and extracting AIC and SBC measures */
data sbc_aic;
set fitsum arch 2 fitsum garch 1 1 fitsum st garch_ 1 1
fitsum_ar 1 fitsum ar_ 1 garch_1_1 fitsum igarch_1_1



Example 8.7: Estimation of GARCH-Type Models 4 437

fitsum _egarch_1_1 fitsum garchm 1_1

fitsum tgarch_1_1 fitsum pgarch_ 1 1 fitsum qggarch 1_1;
keep Model SBC AIC;
if Labell="SBC" then do; SBC=input (cValuel,BEST12.4); end;
if Label2="SBC" then do; SBC=input (cValue2,BEST12.4); end;
if Labell="AIC" then do; AIC=input (cValuel,BEST12.4); end;
if Label2="AIC" then do; AIC=input (cValue2,BEST12.4); end;
if not (SBC=.) then output;

run;

Next, sort the models by one of the criteria, for example, by AIC:
/* Sorting data by AIC criterion %/
proc sort data=sbc_aic;

by AIC;
run;

Finally, print the sorted data set:

title "Selection Criteria for Different Models";
proc print data=sbc_aic;

format _NUMERIC_BEST12.4;
run;

The result is given in Output 8.7.3.

Output 8.7.3 GARCH-Family Model Selection on the Basis of AIC and SBC

Selection Criteria for Different Models

Obs Model SBC AIC
1 pgarch_1_1 42907.7292 42870.7722
2 egarch_1_1 42905.9616 42876.3959
3 tgarch_1_1 42995.4893 42965.9236
4 qgarch_1_1 43023.106 42993.5404
5 garchm_1_1  43158.4139 43128.8483
6 garch_1_1 43176.5074 43154.3332
7 ar_1_garch_1_1 431855226 43155.957
8 st garch 1.1 431782497 43156.0755
9 arch_2 44605.4332  44583.259
10 ar_1 45922.0721 45914.6807
11 igarch_1_1 45925.5828 45918.1914

According to the smaller-is-better rule for the information criteria, the PGARCH(1,1) model is the leader by
AIC while the EGARCH(1,1) is the model of choice according to SBC.

Next, check whether the power GARCH model is misspecified, especially, if dependence exists in the
standardized residuals that correspond to the assumed independently and identically distributed (iid) distur-
bance. The following statements reestimate the power GARCH model and use the BDS test to check the
independence of the standardized residuals.
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proc autoreg data=ibm_ long;
model r = / noint garch=(p=1,g=1l, type=pgarch) BDS=(Z=SR,D=2.0);
run;

The partial results listing of the preceding statements is given in Output 8.7.4.

Output 8.7.4 Diagnostic Checking of the PGARCH(1,1) Model

Selection Criteria for Different Models
The AUTOREG Procedure

BDS Test for Independence

Embedding

Distance Dimension BDS Pr > |BDS|
2.0000 2 2.9691 0.0030
3 3.3810 0.0007

4 3.1299 0.0017

5 3.3805 0.0007

6 3.3368 0.0008

7 3.1888 0.0014

8 2.9576 0.0031

9 2.7386 0.0062

10 2.5553 0.0106
11 23510 0.0187
12 2.1520 0.0314
13 1.9373 0.0527
14 1.7210 0.0852
15 1.4919 0.1357
16 1.2569 0.2088
17 1.0647 0.2870
18 0.9635 0.3353
19 0.8678 0.3855
20 0.7660 0.4437

The results in Output 8.7.4 indicate that when embedded size is greater than 9, you fail to reject the null
hypothesis of independence at 1% significance level, which is a good indicator that the PGARCH model is
not misspecified.
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Example 8.8: lllustration of ODS Graphics

This example illustrates the use of ODS GRAPHICS. This is a continuation of the section “Forecasting
Autoregressive Error Models” on page 312.

These graphical displays are requested by specifying the ODS GRAPHICS statement. For information about
the graphs available in the AUTOREG procedure, see the section “ODS Graphics” on page 406.

The following statements show how to generate ODS GRAPHICS plots with the AUTOREG procedure. In
this case, all plots are requested using the ALL option in the PROC AUTOREG statement, in addition to the
ODS GRAPHICS statement. The plots are displayed in Output 8.8.1 through Output 8.8.8. Note: these plots
can be viewed in the Autoreg.Model.FitDiagnosticPlots category by selecting View» Results.

data a;
ul = 0; ull = 0;
do time = -10 to 36;
u=+ 1.3 * ul — .5 x ull + 2*xrannor(12346);
y =10 + .5 % time + u;
if time > 0 then output;
ull = ul; ul = u;
end;
run;

data b;

y = .7

do time = 37 to 46; output; end;
run;

data b;
merge a b;
by time;
run;

proc autoreg data=b all plots (unpack);
model y = time / nlag=2 method=ml;
output out=p p=yhat pm=ytrend
lcl=1lcl ucl=ucl;
run;
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Residual

Output 8.8.1 Residuals Plot

Residuals fory

10 20 30

Observation

40
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Output 8.8.2 Predicted versus Actual Plot

Fit fory
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Output 8.8.3 Autocorrelation of Residuals Plot
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Output 8.8.4 Partial Autocorrelation of Residuals Plot

PACF

Partial Autocorrelation of Residuals for y
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Output 8.8.5 Inverse Autocorrelation of Residuals Plot

Inverse Autocorrelation of Residuals for y
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Output 8.8.6 Tests for White Noise Residuals Plot

Residual White Noise Tests for y
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Lag
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Output 8.8.7 Q-Q Plot of Residuals

Q-Q Plot of Residuals for y
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Output 8.8.8 Histogram of Residuals

Distribution of Residuals for y
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